-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by DSpace@MIT

Efficient Evaluation of Large Polynomials

Charles E. LeisersdnLiyun Li%, Marc Moreno Maz3, and Yuzhen Xié

1 CSAIL, Massachussets Institute of Technology, Cambridge MA, USA
2 Department of Computer Science, University of Western Ontario, aor@N, Canada

Abstract. Minimizing the evaluation cost of a polynomial expression is a fun-
damental problem in computer science. We propose tools that, for aqmigh

P given as the sum of its terms, compute a representation that permits &fnore
ficient evaluation. Our algorithm runs it{nt)°™ bit operations plugt®" op-
erations in the base field wheden andt are the total degree, number of variables
and number of terms aP. Our experimental results show that our approach can
handle much larger polynomials than other available software solutionse-Mo
over, our computed representation reduce the evaluation céssabstantially.

Keywords: Multivariate polynomial evaluation, code optimization|k3+.

1 Introduction

If polynomials and matrices are the fundamental mathemlatiatities on which com-
puter algebra algorithms operate, expression trees athenon data type that com-
puter algebra systems use for all their symbolic object8/ kPLE, by means of com-
mon subexpression elimination, an expression tree candmled as a directed acyclic
graph (DAG) which can then be turned into a straight-linegpaon (SLP), if required
by the user. These two data-structures are well adapted aipstynomial (or a ma-
trix depending on some variables) needs to be regarded axtoin and evaluated at
points which are not known in advance and whose coordinasgscontain “symbolic
expressions”. This is a fundamental technique, for ingamtheHensel-Newton lifting
techniqueg6] which are used in many places in scientific computing.

In this work, we study and develop tools for manipulatingypoimials as DAGS.
The main goal is to be able to compute with polynomials thafartoo large for being
manipulated using standard encodings (such as lists of)eand thus where the only
hope is to represent them as DAGs. Our main tool is an algotitiat, for a polynomial
P given as the sum its terms, computes a DAG representaticchvplermits to evaluate
P more efficiently in terms of work, data locality and para#iel. After introducing the
related concepts in Section 2, this algorithm is presemegction 3.

The initial motivation of this study arose from the followimproblem. Consider
a = apr™ + -+ a1z + ag andb = b,x™ + - -+ + byx + by two genericunivari-
ate polynomials of respective positive degreesandn. Let R(a,b) be the resultant
of a andb. By generic polynomials, we mean here that, ..., a1, aq, by, ..., b1, bo
are independent symbols. Suppose that. .., a1, ag, by, ..., b1, by are substituted to
polynomialsay,, . .., a1, &g, Bn, - - -, B1, Bo in some other variables, ..., c,. Let us

https://core.ac.uk/display/78055529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

denote byR(«, 3) the “specialized” resultant. If these;’s and 3;’s are large, then
computingR(«, 3) as a polynomial ircq, . .., ¢,, expressed as the sum of its terms,
may become practically impossible. HoweverRifa, b) was originally computed as a
DAG with ay,, ... ,a1,a0,by, ..., b1, by as input and if they;'s and3;’s are also given
as DAGs withey, . . ., ¢, as input, then one may still be able to manipulBtey, 5).

The techniques presented in this work do not make any assamsg@bout the input
polynomials and, thus, they are not specific to resultantesfegic polynomials. We
simply use this example as an illustrative well-known peoblin computer algebra.

Given an input polynomial expression, there are a numbeppfaaches focusing
on minimizing its size. Conventional common subexpresslionination techniques are
typical methods to optimize an expression. However, asrgéperpose applications,
they are not suited for optimizing large polynomial express. In particular, they do
not take full advantage of the algebraic properties of pofgials. Some researchers
have developed special methods for making use of algetaeiorization in eliminat-
ing common subexpressions [1, 7] but this is still not su#ftifor minimizing the size
of a polynomial expression. Indeed, such a polynomial mairrdeeucible. One eco-
nomic and popular approach to reduce the size of polynommkssions and facilitate
their evaluation is the use of Horner’s rule. This high-sahidck for univariate polyno-
mials has been extended to multivariate polynomials vietihit schemes [8, 9, 3, 4].
However, it is difficult to compare these extensions andial#a optimal scheme from
any of them. Indeed, they all rely on selecting an appropatiering of the variables.
Unfortunately, there are! possible orderings fat variables.

As shown in Section 4, our algorithm runs in polynomial timetwthe number of
variables, total degree and number of terms of the inputrpootyial expression. We have
implemented our algorithm in théi | k++ concurrency platform. Our experimental
results reported in Section 5 illustrate the effectiver@fssur approach compared to
other available software tools. For< n, m < 7, we have applied our techniques to the
resultant?(a, b) defined above. Fdm, m) = (7, 6), our optimized DAG representation
can be evaluated sequentially 10 times faster than the DAG representation. For
that problem, none of code optimization software tools thathave tried produces a
satisfactory result.

2 Syntactic Decomposition of a Polynomial

LetK be a field and let; > --- > x,, ben ordered variables, with > 1. DefineX =
{z1,...,z,}. We denote byK[X] the ring of polynomials with coefficients i and
with variables inX. For a non-zero polynomigl € K[X], the set of its monomials is
mons(f), thusf writes f = 3°, - ,u() ¢m ™, Where, for allm € mons(f), ¢ € K
is the coefficient off w.r.t. m. The seterms(f) = {¢,, m | m € mons(f)} is the set
of the terms off. We useiterms(f) to denote the number of terms jn

Syntactic operations.Let g, h € K[X]. We say thayh is asyntactic produgtand we
write ¢ ® h, whenevefiterms(g h) = fterms(g)-fterms(h) holds, that is, if no grouping
of terms occurs when multiplying and k. Similarly, we say thay + h (resp.g — h)
is asyntactic sunfresp.syntactic difference writteng & h (resp.g & h), if we have
fterms(g+h) = fiterms(g)+fterms(h) (respfterms(g—h) = fterms(g)+fterms(h)).

Syntactic factorization. For non-constanf, g, h € K[X], we say thay h is asyntactic
factorizationof f if f = g ® h holds. A syntactic factorization is satdvial if each
factor is a single term. For a set of monomials C K[X] we say thay h is a syntactic
factorization off with respect toM if f = g ® h andmons(g) C M both hold.

Evaluation cost. Assume thalf € K[X] is non-constant. We cadivaluation cosbf f,
denoted bycost(f), the minimum number of arithmetic operations necessaryab e
uate f whenzx,, ..., z, are replaced by actual values frdi (or an extension field
of K). For a constanf we definecost(f) = 0. Proposition 1 gives an obvious upper
bound forcost(f). The proof, which is routine, is not reported here.

Proposition 1 Let f,g,h € K[X] be non-constant polynomials with total degrees
d¢,dg,dy, and numbers of termk, ¢, t,. Then, we haveost(f) < ty(dy +1) — 1.
Moreover, ifg @ h is a nontrivial syntactic factorization of, then we have:

min(tg, ts)

5 (14 cost(g) + cost(h)) < ty(df +1) —1. (1)

Proposition 1 yields the following remark. Suppose thatgiven inexpanded form
that is, as the sum of its terms. Evaluatiigwhenz, ...z, are replaced by actual
valuesks, ..., k, € K, amounts then to at mosf(d; + 1) — 1 arithmetic operations
in K. Assumeg ® h is a syntactic factorization of. Then evaluating both andh at
ki,..., k, may provide a speedup factor in the ordendfi(t,, ¢;,) /2. This observation
motivates the introduction of the notions introduced irs gction.

Syntactic decomposition.Let 7" be a binary tree whose internal nodes are the operators
+, —, x and whose leaves belong¥u X. Let py be the polynomial represented by
T. We say thafl" is asyntactic decompositioof pr if either (1), (2) or (3) holds:

(1) T consists of a single node whichpg,

(2) if T has root} (resp.—) with left subtre€l, and right subtre&’. then we have:
(a) Ty, T are syntactic decompositions of two polynomiais, pr. € K[X],
(b) pr = pr, ® pr, (resp.pr = pr, © pr,) holds,

(3) if T has rootx, with left subtreel; and right subtred,. then we have:
(a) Ty, T are syntactic decompositions of two polynomiais, pr. € K[X],
(b) pr = pr, ® pr, holds.

We shall describe an algorithm that computes a syntactiordposition of a poly-
nomial. The design of this algorithm is guided by our objee®tf processing polyno-
mials with many terms. Before presenting this algorithm maake a few observations.

First, suppose that admits a syntactic factorizatioh = ¢ ® h. Suppose also that
the monomials ofy and i are known, but not their coefficients. Then, one can easily
deduce the coefficients of boghandh, see Proposition 3 hereafter.

Secondly, suppose thatadmits a syntactic factorizatign: while nothing is known
aboutg andh, except their numbers of terms. Then, one can set up a sy$teotyno-
mial equations to compute the termsyadndh. For instance withi; = 4 andt, = t), =
2,letf=M+N+P+Q,9g=X+Y,h=Z+T.Uptorenaming the terms g¢f the
following system must have asolutiok:Z = M, XT =P, YZ =N and YT = Q.

This implies thatM /P = N/Q@ holds. Then, one can check tHgt ¢’, M /g, N/g') is
a solution for(X,Y, Z,T'), whereg = ged (M, P) andg’ = ged(N, Q).

Thirdly, suppose thaf admits a syntactic factorizatioh= g ® h while nothing is
known abouy, h including numbers of terms. In the worst case, all integé@sigg,, t5,)
satisfyingt,t;, = ¢ty need to be considered, leading to an algorithm which is esupioai
int;. This approach is too costly for our targeted large polyrassniFinally, in practice,
we do not know whethef admits a syntactic factorization or not. Traversing every
subset oterms(f) to test this property would lead to another combinatorigl@esion.

3 The Hypergraph Method

Based on the previous observations, we develop the folpwsirategy. Given a set of
monomialsM, which we callbase monomial sgtve look for a polynomiap such that
terms(p) C terms(f), andp admits a syntactic factorizatigyh w.r.t M. Replacingf
by f — p and repeating this construction would eventually produparéial syntactic
factorizationof f, as defined below. The algorithRarSynFactorization(f, M) states
this strategy formally. We will discuss the choice and cotapian of the setM at the
end of this section. The key idea of AlgorithRarSynFactorization is to consider a
hypergraptHG(f, M) which detects “candidate syntactic factorizations”.

Partial syntactic factorization. A set of pairs{(gi, h1), (g2, h2), ..., (ge, he)} Of poly-
nomials and a polynomial in K[z, ...,,] is apartial syntactic factorizatiorof f
w.r.t. M if the following conditions hold:

1. Vi=1---e, mons(g;) C M,
2. no monomials i divides a monomial of,
3. f=(g1Oh1)®(g2@h2) D+ D (ge ® he) ® r holds.

Assume that the above conditions hold. We say this partialagyic factorization is
trivial if eachg; ® h; is a trivial syntactic factorization. Observe thatglfor1 <i <e
andr do not admit any nontrivial partial syntactic factorizatiev.r.t. M, whereas it is
possible that one df;’'s admits a nontrivial partial syntactic factorization.

Hypergraph HG(f, M). Given a polynomialf and a set of monomial1, we construct
a hypergraptHG(f, M) as follows. Its vertex set i¥ = M and its hyperedge sét
consists of all nonempty sefs, := {m € M | mq € mons(f)}, for an arbitrary
monomialg. Observe that if a term of is not the multiple of any monomials iM,

then it is not involved in the construction BifG(f, M). We call such a ternsolated

Example. For f = ay 4+ az + by + bz + ax + aw € —
Qlz,y, z,w,a,b] and M = {z,y,z}, the hypergraph
HG(f, M) has3 verticesz,y, 2 and 2 hyperedgest, =
{z,y,z} and E, = {y, z}. A partial syntactic factorization
of f w.rt M consists of (y + z,a + b), (z,a)} andaw.

a

[]
%

<@

[X

We observe that a straightforward algorithm compuéx f, M) in O(|M|nt)
bit operations. The following proposition, whose proof msmediate, suggests how
HG(f, M) can be used to compute a partial syntactic factorizatigh\wfr.t. M.

Proposition 2 Let f, g, h € K[X] such thatf = ¢ ® h andmons(g) C M both hold.
Then, the intersection of all;, for ¢ € mons(k), containsmons(g).

Before stating AlgorithmParSynFactorization, we make a simple observation.

Proposition 3 Let F, F5, ..., F. be the monomials and, f», ..., f. be the coeffi-
cients of a polynomiaf € K[X], such thatf = }";_, f;F;. Leta,b > 0 be two inte-
gers such that = ab. Given monomialé, Go, ...,G, andHy, Ho, ..., Hy, such that
the productss; H; are all in mons(f) and are pairwise different. Then, with(ab)

operations inK and O(a?b%n) bit operations, one can decide whethgr= g © h,

mons(g) = {G1,Ga,...,G,} andmons(h) = {H,, Hs, ..., Hy} all hold. Moreover,
if such a syntactic factorization exists it can be computhimthe same time bound.

Proof. Defineg = >°¢ ,¢;G; andh = ZlehiHi wheregy, ..., g9, andhy, ..., hy
are unknown coefficients. The system to be solvegiis = f;;, foralli = 1---a
and allj = 1---b where f;; is the coefficient ofG; H; in p. To set up this system
g:hj = fij, one needs to locate each monomiglH; in mons(f). Assuming that
each exponent of a monomial is a machine word, any two monewi& [z, . . ., z,]
are compared withit©(n) bit operations. Hence, each of thegemonomials can be
located in{ F, Fy, . .., F.} within O(cn) bit operations and the system is set up within
O(a®b*n) bit operations. We observe thatff = g ® h holds, one can freely set

to 1 since the coefficients are in a field. This allows us to deduce. ., h;, and then
g2, ..., 9q USiNga + b — 1 equations. The remaining equations of the system should
be used to check if these valuesiaf . .., h, andgs, . .., g, lead indeed to a solution.
Overall, for each of theb equations one simply needs to perform one operatidf.in

Remark on Algorithm 1. Following the property of the hypergraptG(f, M) given by
Proposition 2, we use a greedy strategy and search for thestenyperedge intersection
in HG(f, M). Once such intersection is found, we build a candidate syintiactoriza-
tion from it. However, it is possible that the equality in eit2 does not hold. For exam-
ple, whenM = @ = {a,b}, we have N| = 3 # 2 x 2 = | M| - |Q|. When the equality
|N| = |M]-|Q| holds, there is still a possibility that the system set umdkeé proof of
Proposition 3 does not have solutions. For example, whes {a,b},Q = {¢,d} and

p = ac + ad + bc 4+ 2 bd. Nevertheless, the termination of the while loop in Line 40 i
ensured by the following observation. Whegp| = 1, the equalityN| = | M| - |Q| al-
ways holds and the system set up as in the proof of Propo&itaiways has a solution.
After extracting a syntactic factorization from the hypagh HG(f, M), we update
the hypergraph by removing all monomials in the Aetind keep extracting syntactic
factorizations from the hypergraph until no hyperedgesaiam

Example. Considerf = 3abc + 5abc? + 2ae + 6b%cd + 10bc*d + 4de + s. Our base
monomial setM is chosen aga, be, e, d}. Following Algorithm 1, we first construct
the hypergraptiG(f, M) w.r.t. which the terms is isolated.

‘@‘

Input :apolynomialf given as a sorted setrms(f), a monomial setm
Output : a partial syntactic factorization ¢gfw.r.t M

1 7 « terms(f), F «— 0;

2 7Y ot whereZ = {t € terms(f) | (Ym € M) m{t};

3 compute the hypergraghG(f, M) = (V,) ;

4 while £ is not emptydo

5 if £ contains only one edgg, then Q — {¢}, M — Eg;

6 else

7 find ¢, ¢’ such thatF, N E,, has the maximal cardinality;

8 M—E,NE;, Q<0

9 if [M| < 1then find the largest edg€,, M — E,,Q — {q};

10 | else forE, € £do if M C Egthen Q «— QU {g};

11 while true do

12 N ={mg|me M,qeQ};

13 if IN| = |M]|-|Q|then

14 let p be the polynomial such thatons(p) = N andterms(p) C 7 ;

15 if p =g ® h withmons(g) = M andmons(h) = Q then

16 L computeg, h (Proposition 3); break;

17 | elserandomly choosg € Q, Q «— Q \ {¢}, M « Ngeq Eq;

18 for E, € £ do

19 for m’ € N do

20 | if g|mthen E, — E,\ {m'/q};

21 | if Eq =0then & «— £\ {E,};

2 | T« T\terms(p), F — FU{gOh};

23 returnF,r

Algorithm 1: ParSynFactorization

The largest edge intersection = {a,d} = Ej2. N Ep2 N E, yielding Q@ =
{b2%c,bc?,e}. The setN is {mq | m € M,q € Q} = {ab?c,abc?, ae, b*cd, bc?d, de}.
The cardinality ofV equals the product of the cardinalities/af and of(). So we keep
searching for a polynomial with N as monomial set and witterms(p) C terms(f).
By scanningterms(f) we obtainp = 3ab®c + 5abc? + 2ae + 6b%cd + 10bc2d + 4de.
Now we look for polynomialg;, h with respective monomial sef/, @ and such that
p = g ® h holds. The following equality yields a system of equatiori®ge unknowns
are the coefficients of andh: (gia + god)(h1b?c + haobc?® + hse) = 3ab’c + 5abc? +
2ae + 6b%cd + 10bc?d + 4de. As described in Proposition 3, we can freely geto 1
and then usé out of the6 equations to deduck, hs, h3, g2; these computed values
must verify the remaining equations for= g © h to hold, which is the case here.

gih1 =3 = ;
grhe =5 g1=1 92 = goho = 10
hy =2 =32 by = 4
gth 6 hy =5 2113
oh1 =

hs =2

Now we have found a syntactic factorization mf We update each edge in the
hypergraph, which, in this example, will make the hypergrampty. After adding
(a + 2d, 3b%c + 5bc® + 2¢) to F, the algorithm terminates wit, s as output.

One may notice that in Example B,= 3b%c + 5bc* + 2e also admits a nontrivial
partial syntactical factorization. Computing it will prace a syntactic decomposition
of f. When a polynomial which does not admit any nontrivial padimtactical fac-
torizations w.r.tM is hit, for instanceg; or r in a partial syntactic factorization, we
directly convert it to an expression tree. To this end, weligsthat there is a proce-
dureExpressionTree(f) that outputs an expression tree of a given polynorfiadlgo-
rithm 2, which we give for the only purpose of being precigates the most straight
forward way to implemenExpressionTree(f). Then, Algorithm 3 formally states how
to produce a syntactic decomposition of a given polynomial.

Input :a polynomialf given asterms(f) = {t1,t2,...,ts}
Output : an expression tree whose value eqyals

1 if fterms(f) = 1 sayf = c- z{ 222 ... z{* then

fori«+— 1tokdo
T; «— x4,
for j «— 2tod; do
L Tiﬂg — Ti, root(Ti) — ><7T'L',7‘ — X,

a b W N

o

T «— empty treeyoot(T) «— x, Ty «— ¢, T, « T1;
7 for i — 2to k do

8 L Ty < T,root(T) «— x, T « Ty;

9 else

10 k<« s/2, f1 <—Zf:1ti7f2 D DS 7
1 T « ExpressionTree(f1);

12 Ty «— ExpressionTree(f2);

13 | root(T) « +, T « T1, Tr < T3;

Algorithm 2: ExpressionTree

We have stated all the algorithms that support the consbructf a syntactic de-
composition except for the computation of the base monosgaJM. Note that in
Algorithm 1 our main strategy is to keep extracting syntafetctorizations from the hy-
pergraptHG(f, M). For all the syntactic factorizations> h computed in this manner,
we havemons(g) C M. Therefore, to discover all the possible syntactic faztdions
in HG(f, M), the base monomial set should be chosen so as to contaie afichomi-
als from which a syntactic factorization may be derived. et obvious choice is to
consider the saF of all non constant gcds of any two distinct termsfoHowever,|G|
could be quadratic igtterms(f), which would be a bottleneck on large polynomials
f. Our strategy is to choose fo¥1 as the set of the minimal elements @Gffor the
divisibility relation. A straightforward algorithm comges this setM within O(t*n)
operations irK; indeed M| fits in |G| = O(¢?). In practice M is much smaller thatv

Input : a polynomialf given asterms(f)
Output : a syntactic decomposition ¢f

1 compute the base monomial set for f;
2 if M = then returnExpressionTree(f);
3 else

4 F,r < ParSynFactorization(f, M);

5 for i — 1to|F| do

6 (gi, hi) — Fi,T; — empty treeyoot(T;) «— X;

7 T;,c < ExpressionTree(g;);

8 T;,» < SyntacticDecomposition(h;);

9 T — empty treeroot(T") < +, T¢ <« ExpressionTree(r), T «— T1;
10 for i < 2to |F| do

1 | Te—T,root(T) — +,Tr — T;;

Algorithm 3: SyntacticDecomposition

(for large dense polynomiald/ = X holds) and this choice is very effective. However,
since we aim at manipulating large polynomials, the(eian be so large that its size
can be a memory bottleneck when computikgy In [2] we address this question: we
propose a divide-and-conquer algorithm which compuk¢glirectly from f without
storing the whole se&fr in memory. In addition, the parallel implementationGnl k+
shows linear speed-up on 32 cores for sufficiently largetinpu

4 Complexity Estimates

Given a polynomialf of ¢ terms with total degreé in K[X], we analyze the running
time for Algorithm 3 to compute a syntactic decompositionfofAssuming that each
exponent in a monomial is encoded by a machine word, eaclhii@e(GCD, division)
on a pair of monomials dK[X] requiresO(n) bit operations. Due to the different man-
ners of constructing a base monomial set, we keep- | M| as an input complexity
measure. As mentioned in SectiorH%;(f, M) is constructed withirD (utn) bit oper-
ations. This hypergraph contaipsrertices and)(ut) hyperedges. We first proceed by
analyzing Algorithm 1. To do so, we follow its steps.

— The “isolated” polynomial- can be easily computed by testing the divisibility of
each term inf w.r.t each monomial ioM, i.e. inO(y - t - n) bit operations.

— Each hyperedge iHG(f, M) is a subset oM. The intersection of two hyperedges
can then be computed in - n bit operations. Thus we need((ut)? - un) =
O(p*t?n) bit operations to find the largest intersectibh(Line 7).

— If M is empty, we traverse all the hyperedge$ii@(f, M) to find the largest one.
This takes no more thamt - un = p%tn bit operations (Line).

— If M is not empty, we traverse all the hyperedges$i®(f, M) to testif M is a
subset of it. This takes at mogt - un = u2tn bit operations (Lind0).

— Line 6 to Line 10 takesO(p3t?n) bit operations.

— The setN can be computed in - ut - n bit operations (Lind 2).

— by Proposition 3, the candidate syntactic factorizatiom loa either computed or
rejected inO(|M|? - |Q|?n) = O(u*t>n) bit operations and(..>t) operations in
K (Lines13 to 16).

— If |N| # |M] - |Q| or the candidate syntactic factorization is rejected, weaee
one element frond) and repeat the work in LinE2 to Line 16. This while loop ends
before or when@| = 1, hence it iterates at mogd| times. So the bit operations of
the while loop are irO(u*t?n - ut) = O(u5t>n) while operations irK are within
O(p?t - ut) = O(p3t?) (Line 11 to Line 17).

— We update the hypergraph by removing the monomials in thetoaected syntactic
factorization. The two nested for loops in Lihg to Line 21 takeO(|€| - |N|-n) =
O(|&] - IM|-]Q| - n) = O(ut - - ut - n) = O(u3t?n) bit operations.

— Each time a syntactic factorization is found, at least on@angal in mons(f) is
removed from the hypergragtG(f, M). So the while loop from Linel to Line
22 would terminate irO(¢) iterations.

Overall, Algorithm 1 take®)(u>t*n) bit operations an@(n>t3) operations irk. One
easily checks from Algorithm 2 that an expression tree cacobgputed fromf (where

f hast terms and total degre® within in O(ndt) bit operations. In the sequel of this
section, we analyze Algorithm 3. We make two preliminaryaskiations. First, for the
input polynomialf, the cost of computing a base monomial set can be covereceby th
cost of finding a partial syntactic factorization 6f Secondly, the expression trees of
all g;'s (Line 7) and of the isolated polynomial (Line 9) can be computed within
O(ndt) operations. Now, we shall establish an equation that rhlesunning time of
Algorithm 3. Assume thaf in Line 4 contains: syntactic factorizations. For eagh h;
such that(g;, h;) € F, let the number of terms ih; bet; and the total degree &f; be
d;. By the specification of the partial syntactic factorizatiove haved ;_, ¢; < t. Itis
easy to show that; < d — 1 holds forl < i < e as total degree of eagh is at leastl.
We recursively call Algorithm 3 on ah;’s. Let Ty, (¢, d, n)(Tk (¢, d,n)) be the number
of bit operations (operations iK) performed by Algorithm 3. We have the following
recurrence relation,

Ty(t,d,n) =Y Ty(t;, di,n) + O(u°t*n), Te(t,d,n) = Y Tk(ti,di,n) + O(ut?),

i=1 i=1
from which we derive thafl},(¢,d, n) is within O(u’t*nd) and Tk (¢, d, n) is within
O(p3t3d). Next, one can verify that if the base monomial get is chosen as the
set of the minimal elements of all the pairwise gcd’s of moradsnof f, wherepy =
O(t?), then a syntactic decomposition ¢f can be computed 0 (t'“nd) bit op-
erations andD(t°d) operations inK. If the base monomial set is simply set to be
X = {x1,72,...,2,}, then a syntactic decomposition pfcan be found irO(t*n°d)
bit operations and(t3n3d) operations irK.

5 Experimental Results

In this section we discuss the performances of differertsok tools for reducing the
evaluation cost of large polynomials. These tools are bessukbctively on a multivari-

ate Horner’s scheme [3], thapt i mi ze function witht r yhar d option provided by
the computer algebra system Maple and our algorithm predentSection 3. As de-
scribed in the introduction, we use the evaluation of resist of generic polynomials
as a driving example. We have implemented our algorithm énGihl k++ program-
ming language. We report on different performance measafresir optimized DAG
representations as well as those obtained with the othva@ tools.

Evaluation cost. Figure 1 shows the total number of internal nodes of a DAGeaepr
senting the resultank(a, b) of two generic polynomials = a,, ™ + - -+ 4+ a¢ and

b = by,x™ + --- + by of degreesn andn, after optimizing this DAG by different ap-
proaches. The number of internal nodes of this DAG meastresdst of evaluating
R(a,b) after specializing the variables,, . . ., ag, b, . . ., by. The first two columns of
Figure 1 givesn andn. The third column indicates the number of monomials appeari
in R(a,b). The number of internal nodes of the input DAG, as computebyLE,

is given by the fourth column (Input). The fifth column (Horh&s the evaluation cost
(number of internal nodes) of the DAG afterAdLE’s multivariate Horner’s rule is ap-
plied. The sixth column (tryhard) records the evaluatiost@iter MAPLE'S optimize
function (with the tryhard option) is applied. The last twmumns reports the evaluation
cost of the DAG computed by otmypergraph metho@HG) before and after removing
common subexpressions. Indeed, our hypergraph methodesdhis post-processing
(for which we use standard techniques running in time limeat. input size) to produce
better results. We note that the evaluation cost of the DAGrmed by HG + CSE is
less than the ones obtained with the Horner's rule amebMt’'s opt i mi ze functions.

n|#Mon| Input |Hornentryhard HG |HG + CSH
4| 219 | 1876 | 977 | 721 | 899 549
4| 549 | 5199 | 2673 | 1496 | 2211 | 1263
5/ 1696| 18185| 7779 | 4056 | 7134 | 3543
4] 1233| 13221| 6539 | 3230 | 4853 | 2547
5/ 4605| 54269| 22779| 10678| 18861| 8432
6
4
5
6

14869190890 69909| 31760 63492| 24701
2562| 30438| 14948| 6707 | 9862 | 4905
11380146988 61399 27363| 45546 19148
43166601633219341 - (179870 65770

N~N~No oo oo M3

Fig. 1. Cost to evaluate a DAG by different approaches

Figure 2 shows the timing in seconds that each approacht@akesimize the DAGS
analyzed in Figure 1. The first three columns of Figure 2 haeesame meaning as in
Figure 1. The columns (Horner), (tryhard) show the timingpfimizing these DAGs.
The last column (HG) shows the timing to produce the syntatgicompositions with
ourCi | k++ implementation on multicores using 1, 4, 8 and 16 cores.hdldequen-
tial benchmarks (Horner, tryhard) were conducted on a @abé Pentium VI Quad
CPU 2.40 GHZ machine with 4 MB L2 cache and 3 GB main memory. Jéallel
benchmarks were carried out on a 16-core machir®HARCNET (www.sharcnet.ca)

with 128 GB memory in total and»84096 KB of L2 cache (each integrated by 2 cores).
All the processors are Intel Xeon E7340 @ 2.40GHz.

As the input size grows, the timing of theA®LE Opt i m ze command (with try-
hard option) grows dramatically and takes more th@hours to optimize the resultant
of two generic polynomials with degreésand 6. For the generic polynomials with
degree7 and6, it does not terminate aftérdays. For the largest input (7, 6), our algo-
rithm completes within 5 minutes on one core. Our prelimyrierplementation shows
a speedup around 8 when 16 cores are available. The paratileti of our algorithm
is still work in progress (for instance, in the current impkntation Algorithm 3 has
not been parallelized yet). We are further improving the impgeamation and leave for
a future paper reporting the parallelization of our aldoris.

#Mon| Horner tryhard HG (# cores= 1,4, 8, 16)
219 0.116 7.776 0.017 0.019 0.020 0.023
549 0.332 49.207 0.092 0.073 0.068 0.067

1696 1.276 868.118 0.499 0.344 0.280 0.2%0
1233 0.988 363.970 0.383 0.249 0.213 0.188

4605 4.868 8658.037 3.267 1.477 1.103 0.940

14869 24.378145602.915 29.130 9.946 6.568 4.712

2562 4.377 1459.343 1.418 0.745 0.603 0.477

11380 24.305 98225.730 22.101 7.687 5.106 3.680

43166108.035>136 hours273.963 82.497 49.067 31.722

N~N~NOoOOoo oo MNS
oo s abNS

Fig. 2.timing to optimize large polynomials

Evaluation schedule Let T be a syntactic decomposition of an input polynonfiallar-
geting multi-core evaluation, our objective is to decomgibsnto p sub-DAGS, given
a fixed parametep, the number of available processors. Ideally, we want tiseke
DAGs to be balanced in size such that the “span” of the intépaeallel evaluation can
be minimized. These sub-DAGSs should also be independercio @her in the sense
that the evaluation of one does not depend on the evaluati@mmodher. In this manner,
these sub-DAGs can be assigned to different processors. YWpmtessors are avail-
able, we call h-schedule” such a decomposition. We report on4fand8-schedules
generated from our syntactic decompositions. The colufiihrecords the size of a
syntactic decomposition, counting the number of nodes.cbhemn “4#CS” indicates
the number of common subexpressions. We notice that thermtrobwork assigned to
each sub-DAG is balanced. However, scheduling the evaluatithe common subex-
pressions is still work in progress.

Benchmarking generated codeWe generated-schedules of our syntactic decomposi-
tions and compared with three other methods for evaluatimgest polynomials on a
large number of uniformly generated random points d&/&rZ wherep = 2147483647

is the largest 31-bit prime number. Our experimental dagassammarized in Figure 4.
Out the four different evaluation methods, the first threessmquential and are based on
the following DAGs: the original MPLE DAG (labeled as Input), the DAG computed
by our hypergraph method (labeled as HG), the HG DAG furthstinized by CSE

T |#CS 4-schedule 8-schedule
8432|1385 1782,1739, 1760, 1757 836, 889, 884, 881, 892, 886, 886, 869
24701 4388| 4939, 5114, 5063, 5194|2436, 2498, 2496, 2606, 2535, 2615, 2552, 2555
19148 3058| 3900, 4045, 4106, 4054|1999, 2049, 2078, 1904, 2044, 2019, 1974, 2020
657701095813644, 13253, 14233, 137[810, 6449, 7117, 6802, 6938, 7025, 6807, §968

~~N o o3
o o 0o

Fig. 3. parallel evaluation schedule

(labeled as HG + CSE). The last method uses the 4-scheduéeaged from the DAG
obtained by HG + CSE. All these evaluation schemes are atitatipa generated as a
list of SLPs. When an SLP is generated as one procedure in eesfiley, the file size
grows linearly with the number of lines in this SLP. We obsetivat gcc 4.2.4 failed

to compile the resultant of generic polynomials of degéegnd 6 (the optimization
level is 2). In Figure 4, we report the timings of the four aggrhes to evaluate the
input at10 K and100K points. The first four data rows report timings where the gcc
optimization level i9) during the compilation, and the last row shows the timing wi
the optimization at leve2. We observe that the optimization level affects the evalua-
tion time by a factor o, for each of the four methods. Among the four methods, the
4-schedule method is the fastest and it is alatuimes faster than the first method.

n|#poin{ Input | HG |HG+CSH4-schedulg#point Input HG |HG+CSH4-schedule
5| 10K | 14.490| 2.675| 1.816 0.997 |100K| 144.838| 26.681| 18.103| 9.343
6| 10K |57.853|18.618 4.281 | 2.851 |100K|577.624/185.883 42.788 | 28.716
5| 10K |46.180|11.423 4.053 2.104 |100K|461.981/114.026 40.526 | 19.560
6| 10K [190.39754.552 13.896 | 8.479 |100K|1902.813545.569 138.656| 81.270

[5] 10K | 6.611] 1.241] 0.836 | 0.435 |100K| 66.043] 12.377] 8.426 | 4.358 |

m
6
6
7
7
6

Fig. 4.timing to evaluate large polynomials

References

1. Melvin A. Breuer. Generation of optimal code for expressions vitof@zation. Commun.
ACM, 12(6):333-340, 1969.

2. C. E. Leiserson, L. Li, M. Moreno Maza, and Y. Xie. Parallel comagion of the minimal
elements of a poset. Proc. PASCO’10ACM Press, 2010.

3. J. Carnicer and M. Gasca. Evaluation of multivariate polynomials aiddarivatives Math-
ematics of Computatiqrb4(189):231-243, 1990.

4. M. Ceberio and V. Kreinovich. Greedy algorithms for optimizing muliste horner schemes.
SIGSAM Bull. 38(1):8-15, 2004.

5. Intel Corporation. Cilk++. http://www.cilk.com/.

6. J.von zur Gathen and J. Gerhalktibdern Computer AlgebraCambridge Univ. Press, 1999.

7. A. Hosangadi, F. Fallah, and R. Kastner. Factoring and eliminatingnmmsubexpressions
in polynomial expressions. ICCAD’04, pages 169-174, 2004. IEEE Computer Society.

8. J. M. P@a. On the multivariate Horner schem8IAM J. Numer. Anal.37(4):1186-1197,
2000.

9. J. M. Péa and Thomas Sauer. On the multivariate Horner scheme ii: runniogeeralysis.
Computing 65(4):313-322, 2000.

