
Efficient Evaluation of Large Polynomials

Charles E. Leiserson1, Liyun Li2, Marc Moreno Maza2, and Yuzhen Xie2

1 CSAIL, Massachussets Institute of Technology, Cambridge MA, USA
2 Department of Computer Science, University of Western Ontario, London ON, Canada

Abstract. Minimizing the evaluation cost of a polynomial expression is a fun-
damental problem in computer science. We propose tools that, for a polynomial
P given as the sum of its terms, compute a representation that permits a moreef-
ficient evaluation. Our algorithm runs ind(nt)O(1) bit operations plusdtO(1) op-
erations in the base field whered, n andt are the total degree, number of variables
and number of terms ofP . Our experimental results show that our approach can
handle much larger polynomials than other available software solutions. More-
over, our computed representation reduce the evaluation cost ofP substantially.

Keywords: Multivariate polynomial evaluation, code optimization, Cilk++.

1 Introduction

If polynomials and matrices are the fundamental mathematical entities on which com-
puter algebra algorithms operate, expression trees are thecommon data type that com-
puter algebra systems use for all their symbolic objects. InMAPLE, by means of com-
mon subexpression elimination, an expression tree can be encoded as a directed acyclic
graph (DAG) which can then be turned into a straight-line program (SLP), if required
by the user. These two data-structures are well adapted whena polynomial (or a ma-
trix depending on some variables) needs to be regarded as a function and evaluated at
points which are not known in advance and whose coordinates may contain “symbolic
expressions”. This is a fundamental technique, for instance in theHensel-Newton lifting
techniques[6] which are used in many places in scientific computing.

In this work, we study and develop tools for manipulating polynomials as DAGs.
The main goal is to be able to compute with polynomials that are far too large for being
manipulated using standard encodings (such as lists of terms) and thus where the only
hope is to represent them as DAGs. Our main tool is an algorithm that, for a polynomial
P given as the sum its terms, computes a DAG representation which permits to evaluate
P more efficiently in terms of work, data locality and parallelism. After introducing the
related concepts in Section 2, this algorithm is presented in Section 3.

The initial motivation of this study arose from the following problem. Consider
a = amxm + · · · + a1x + a0 andb = bnxn + · · · + b1x + b0 two genericunivari-
ate polynomials of respective positive degreesm andn. Let R(a, b) be the resultant
of a andb. By generic polynomials, we mean here thatam, . . . , a1, a0, bn, . . . , b1, b0

are independent symbols. Suppose thatam, . . . , a1, a0, bn, . . . , b1, b0 are substituted to
polynomialsαm, . . . , α1, α0, βn, . . . , β1, β0 in some other variablesc1, . . . , cp. Let us

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78055529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

denote byR(α, β) the “specialized” resultant. If theseαi’s and βj ’s are large, then
computingR(α, β) as a polynomial inc1, . . . , cp, expressed as the sum of its terms,
may become practically impossible. However, ifR(a, b) was originally computed as a
DAG with am, . . . , a1, a0, bn, . . . , b1, b0 as input and if theαi’s andβj ’s are also given
as DAGs withc1, . . . , cp as input, then one may still be able to manipulateR(α, β).

The techniques presented in this work do not make any assumptions about the input
polynomials and, thus, they are not specific to resultant of generic polynomials. We
simply use this example as an illustrative well-known problem in computer algebra.

Given an input polynomial expression, there are a number of approaches focusing
on minimizing its size. Conventional common subexpressionelimination techniques are
typical methods to optimize an expression. However, as general-purpose applications,
they are not suited for optimizing large polynomial expressions. In particular, they do
not take full advantage of the algebraic properties of polynomials. Some researchers
have developed special methods for making use of algebraic factorization in eliminat-
ing common subexpressions [1, 7] but this is still not sufficient for minimizing the size
of a polynomial expression. Indeed, such a polynomial may beirreducible. One eco-
nomic and popular approach to reduce the size of polynomial expressions and facilitate
their evaluation is the use of Horner’s rule. This high-school trick for univariate polyno-
mials has been extended to multivariate polynomials via different schemes [8, 9, 3, 4].
However, it is difficult to compare these extensions and obtain an optimal scheme from
any of them. Indeed, they all rely on selecting an appropriate ordering of the variables.
Unfortunately, there aren! possible orderings forn variables.

As shown in Section 4, our algorithm runs in polynomial time w.r.t. the number of
variables, total degree and number of terms of the input polynomial expression. We have
implemented our algorithm in theCilk++ concurrency platform. Our experimental
results reported in Section 5 illustrate the effectivenessof our approach compared to
other available software tools. For2 ≤ n,m ≤ 7, we have applied our techniques to the
resultantR(a, b) defined above. For(n,m) = (7, 6), our optimized DAG representation
can be evaluated sequentially 10 times faster than the inputDAG representation. For
that problem, none of code optimization software tools thatwe have tried produces a
satisfactory result.

2 Syntactic Decomposition of a Polynomial

Let K be a field and letx1 > · · · > xn ben ordered variables, withn ≥ 1. DefineX =
{x1, . . . , xn}. We denote byK[X] the ring of polynomials with coefficients inK and
with variables inX. For a non-zero polynomialf ∈ K[X], the set of its monomials is
mons(f), thusf writesf =

∑

m∈mons(f) cm m, where, for allm ∈ mons(f), cm ∈ K

is the coefficient off w.r.t. m. The setterms(f) = {cm m | m ∈ mons(f)} is the set
of the terms off . We use♯terms(f) to denote the number of terms inf .

Syntactic operations.Let g, h ∈ K[X]. We say thatgh is a syntactic product, and we
write g⊙h, whenever♯terms(g h) = ♯terms(g)·♯terms(h) holds, that is, if no grouping
of terms occurs when multiplyingg andh. Similarly, we say thatg + h (resp.g − h)
is a syntactic sum(resp.syntactic difference), written g ⊕ h (resp.g ⊖ h), if we have
♯terms(g+h) = ♯terms(g)+♯terms(h) (resp.♯terms(g−h) = ♯terms(g)+♯terms(h)).

Syntactic factorization. For non-constantf, g, h ∈ K[X], we say thatg h is asyntactic
factorizationof f if f = g ⊙ h holds. A syntactic factorization is saidtrivial if each
factor is a single term. For a set of monomialsM ⊂ K[X] we say thatg h is a syntactic
factorization off with respect toM if f = g ⊙ h andmons(g) ⊆ M both hold.

Evaluation cost.Assume thatf ∈ K[X] is non-constant. We callevaluation costof f ,
denoted bycost(f), the minimum number of arithmetic operations necessary to eval-
uatef whenx1, . . . , xn are replaced by actual values fromK (or an extension field
of K). For a constantf we definecost(f) = 0. Proposition 1 gives an obvious upper
bound forcost(f). The proof, which is routine, is not reported here.

Proposition 1 Let f, g, h ∈ K[X] be non-constant polynomials with total degrees
df , dg, dh and numbers of termstf , tg, th. Then, we havecost(f) ≤ tf (df + 1) − 1.
Moreover, ifg ⊙ h is a nontrivial syntactic factorization off , then we have:

min(tg, th)

2
(1 + cost(g) + cost(h)) ≤ tf (df + 1) − 1. (1)

Proposition 1 yields the following remark. Suppose thatf is given inexpanded form,
that is, as the sum of its terms. Evaluatingf , whenx1, . . . , xn are replaced by actual
valuesk1, . . . , kn ∈ K, amounts then to at mosttf (df + 1) − 1 arithmetic operations
in K. Assumeg ⊙ h is a syntactic factorization off . Then evaluating bothg andh at
k1, . . . , kn may provide a speedup factor in the order ofmin(tg, th)/2. This observation
motivates the introduction of the notions introduced in this section.

Syntactic decomposition.Let T be a binary tree whose internal nodes are the operators
+,−,× and whose leaves belong toK ∪ X. Let pT be the polynomial represented by
T . We say thatT is asyntactic decompositionof pT if either (1), (2) or (3) holds:

(1) T consists of a single node which ispT ,
(2) if T has root+ (resp.−) with left subtreeTℓ and right subtreeTr then we have:

(a) Tℓ, Tr are syntactic decompositions of two polynomialspTℓ
, pTr

∈ K[X],
(b) pT = pTℓ

⊕ pTr
(resp.pT = pTℓ

⊖ pTr
) holds,

(3) if T has root×, with left subtreeTℓ and right subtreeTr then we have:
(a) Tℓ, Tr are syntactic decompositions of two polynomialspTℓ

, pTr
∈ K[X],

(b) pT = pTℓ
⊙ pTr

holds.

We shall describe an algorithm that computes a syntactic decomposition of a poly-
nomial. The design of this algorithm is guided by our objective of processing polyno-
mials with many terms. Before presenting this algorithm, wemake a few observations.

First, suppose thatf admits a syntactic factorizationf = g ⊙ h. Suppose also that
the monomials ofg andh are known, but not their coefficients. Then, one can easily
deduce the coefficients of bothg andh, see Proposition 3 hereafter.

Secondly, suppose thatf admits a syntactic factorizationg h while nothing is known
aboutg andh, except their numbers of terms. Then, one can set up a system of polyno-
mial equations to compute the terms ofg andh. For instance withtf = 4 andtg = th =
2, letf = M +N +P +Q, g = X +Y , h = Z +T . Up to renaming the terms off , the
following system must have a solution:XZ = M, XT = P, Y Z = N and Y T = Q.

This implies thatM/P = N/Q holds. Then, one can check that(g, g′,M/g,N/g′) is
a solution for(X,Y,Z, T), whereg = gcd(M,P) andg′ = gcd(N,Q).

Thirdly, suppose thatf admits a syntactic factorizationf = g ⊙ h while nothing is
known aboutg, h including numbers of terms. In the worst case, all integer pairs (tg, th)
satisfyingtgth = tf need to be considered, leading to an algorithm which is exponential
in tf . This approach is too costly for our targeted large polynomials. Finally, in practice,
we do not know whetherf admits a syntactic factorization or not. Traversing every
subset ofterms(f) to test this property would lead to another combinatorial explosion.

3 The Hypergraph Method

Based on the previous observations, we develop the following strategy. Given a set of
monomialsM, which we callbase monomial set, we look for a polynomialp such that
terms(p) ⊆ terms(f), andp admits a syntactic factorizationgh w.r.t M. Replacingf
by f − p and repeating this construction would eventually produce apartial syntactic
factorizationof f , as defined below. The algorithmParSynFactorization(f,M) states
this strategy formally. We will discuss the choice and computation of the setM at the
end of this section. The key idea of AlgorithmParSynFactorization is to consider a
hypergraphHG(f,M) which detects “candidate syntactic factorizations”.

Partial syntactic factorization. A set of pairs{(g1, h1), (g2, h2), . . . , (ge, he)} of poly-
nomials and a polynomialr in K[x1, . . . , xn] is a partial syntactic factorizationof f
w.r.t.M if the following conditions hold:

1. ∀i = 1 · · · e, mons(gi) ⊆ M,
2. no monomials inM divides a monomial ofr,
3. f = (g1 ⊙ h1) ⊕ (g2 ⊙ h2) ⊕ · · · ⊕ (ge ⊙ he) ⊕ r holds.

Assume that the above conditions hold. We say this partial syntactic factorization is
trivial if eachgi⊙hi is a trivial syntactic factorization. Observe that allgi for 1 ≤ i ≤ e
andr do not admit any nontrivial partial syntactic factorization w.r.t.M, whereas it is
possible that one ofhi’s admits a nontrivial partial syntactic factorization.

Hypergraph HG(f,M). Given a polynomialf and a set of monomialsM, we construct
a hypergraphHG(f,M) as follows. Its vertex set isV = M and its hyperedge setE
consists of all nonempty setsEq := {m ∈ M | mq ∈ mons(f)}, for an arbitrary
monomialq. Observe that if a term off is not the multiple of any monomials inM,
then it is not involved in the construction ofHG(f,M). We call such a termisolated.

Example. For f = ay + az + by + bz + ax + aw ∈
Q[x, y, z, w, a, b] and M = {x, y, z}, the hypergraph
HG(f,M) has 3 verticesx, y, z and 2 hyperedgesEa =
{x, y, z} andEb = {y, z}. A partial syntactic factorization
of f w.r.tM consists of{(y + z, a + b), (x, a)} andaw.

y

z

b

a

x

We observe that a straightforward algorithm computesHG(f,M) in O(|M|n t)
bit operations. The following proposition, whose proof is immediate, suggests how
HG(f,M) can be used to compute a partial syntactic factorization off w.r.t.M.

Proposition 2 Let f, g, h ∈ K[X] such thatf = g ⊙ h andmons(g) ⊆ M both hold.
Then, the intersection of allEq, for q ∈ mons(h), containsmons(g).

Before stating AlgorithmParSynFactorization, we make a simple observation.

Proposition 3 Let F1, F2, . . . , Fc be the monomials andf1, f2, . . . , fc be the coeffi-
cients of a polynomialf ∈ K[X], such thatf =

∑c

i=1fiFi. Leta, b > 0 be two inte-
gers such thatc = ab. Given monomialsG1, G2, . . . , Ga andH1,H2, . . . ,Hb such that
the productsGiHj are all in mons(f) and are pairwise different. Then, withinO(ab)
operations inK and O(a2b2n) bit operations, one can decide whetherf = g ⊙ h,
mons(g) = {G1, G2, . . . , Ga} andmons(h) = {H1,H2, . . . ,Hb} all hold. Moreover,
if such a syntactic factorization exists it can be computed within the same time bound.

Proof. Defineg =
∑a

i=1giGi andh =
∑b

i=1hiHi whereg1, . . . , ga andh1, . . . , hb

are unknown coefficients. The system to be solved isgihj = fij , for all i = 1 · · · a
and all j = 1 · · · b wherefij is the coefficient ofGiHj in p. To set up this system
gihj = fij , one needs to locate each monomialGiHj in mons(f). Assuming that
each exponent of a monomial is a machine word, any two monomials of K[x1, . . . , xn]
are compared withinO(n) bit operations. Hence, each of theseab monomials can be
located in{F1, F2, . . . , Fc} within O(cn) bit operations and the system is set up within
O(a2b2n) bit operations. We observe that iff = g ⊙ h holds, one can freely setg1

to 1 since the coefficients are in a field. This allows us to deduceh1, . . . , hb and then
g2, . . . , ga usinga + b − 1 equations. The remaining equations of the system should
be used to check if these values ofh1, . . . , hb andg2, . . . , ga lead indeed to a solution.
Overall, for each of theab equations one simply needs to perform one operation inK.

Remark on Algorithm 1. Following the property of the hypergraphHG(f,M) given by
Proposition 2, we use a greedy strategy and search for the largest hyperedge intersection
in HG(f,M). Once such intersection is found, we build a candidate syntactic factoriza-
tion from it. However, it is possible that the equality in Line 12 does not hold. For exam-
ple, whenM = Q = {a, b}, we have|N | = 3 6= 2× 2 = |M | · |Q|. When the equality
|N | = |M | · |Q| holds, there is still a possibility that the system set up as in the proof of
Proposition 3 does not have solutions. For example, whenM = {a, b}, Q = {c, d} and
p = ac + ad + bc + 2 bd. Nevertheless, the termination of the while loop in Line 10 is
ensured by the following observation. When|Q| = 1, the equality|N | = |M | · |Q| al-
ways holds and the system set up as in the proof of Proposition3 always has a solution.
After extracting a syntactic factorization from the hypergraphHG(f,M), we update
the hypergraph by removing all monomials in the setN and keep extracting syntactic
factorizations from the hypergraph until no hyperedges remain.

Example. Considerf = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de + s. Our base
monomial setM is chosen as{a, bc, e, d}. Following Algorithm 1, we first construct
the hypergraphHG(f,M) w.r.t. which the terms is isolated.

e

a

d ac

a d

bc^2

b^2c

bc cd

ab

 e

bd

Input : a polynomialf given as a sorted setterms(f), a monomial setM
Output : a partial syntactic factorization off w.r.tM

1 T ← terms(f), F ← ∅;
2 r ←

P

t∈I
t whereI = {t ∈ terms(f) | (∀m ∈M) m ∤ t} ;

3 compute the hypergraphHG(f,M) = (V, E) ;
4 while E is not emptydo
5 if E contains only one edgeEq then Q← {q}, M ← Eq;
6 else
7 find q, q′ such thatEq ∩ Eq′ has the maximal cardinality;
8 M ← Eq ∩ Eq′ , Q← ∅;
9 if |M | < 1 then find the largest edgeEq, M ← Eq, Q← {q};

10 else forEq ∈ E do if M ⊆ Eq then Q← Q ∪ {q} ;

11 while truedo
12 N = {mq | m ∈M, q ∈ Q};
13 if |N | = |M | · |Q| then
14 let p be the polynomial such thatmons(p) = N andterms(p) ⊆ T ;
15 if p = g ⊙ h with mons(g) = M andmons(h) = Q then
16 computeg, h (Proposition 3); break;

17 else randomly chooseq ∈ Q, Q← Q \ {q}, M ← ∩q∈QEq;

18 for Eq ∈ E do
19 for m′ ∈ N do
20 if q |m′ then Eq ← Eq \ {m

′/q} ;

21 if Eq = ∅ then E ← E \ {Eq};

22 T ← T \ terms(p), F ← F ∪ {g ⊙ h};

23 returnF , r

Algorithm 1: ParSynFactorization

The largest edge intersection isM = {a, d} = Eb2c ∩ Ebc2 ∩ Ee yielding Q =
{b2c, bc2, e}. The setN is {mq | m ∈ M, q ∈ Q} = {ab2c, abc2, ae, b2cd, bc2d, de}.
The cardinality ofN equals the product of the cardinalities ofM and ofQ. So we keep
searching for a polynomialp with N as monomial set and withterms(p) ⊆ terms(f).
By scanningterms(f) we obtainp = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de.
Now we look for polynomialsg, h with respective monomial setsM,Q and such that
p = g ⊙ h holds. The following equality yields a system of equations whose unknowns
are the coefficients ofg andh: (g1a + g2d)(h1b

2c + h2bc
2 + h3e) = 3ab2c + 5abc2 +

2ae + 6b2cd + 10bc2d + 4de. As described in Proposition 3, we can freely setg1 to 1
and then use4 out of the6 equations to deduceh1, h2, h3, g2; these computed values
must verify the remaining equations forp = g ⊙ h to hold, which is the case here.

g1h1 = 3
g1h2 = 5
g1h3 = 2
g2h1 = 6

g1=1
=⇒

g1 = 1
g2 = 2
h1 = 3
h2 = 5
h3 = 2

⇒

{

g2h2 = 10
g2h3 = 4

Now we have found a syntactic factorization ofp. We update each edge in the
hypergraph, which, in this example, will make the hypergraph empty. After adding
(a + 2d, 3b2c + 5bc2 + 2e) toF , the algorithm terminates withF , s as output.

One may notice that in Example 3,h = 3b2c + 5bc2 + 2e also admits a nontrivial
partial syntactical factorization. Computing it will produce a syntactic decomposition
of f . When a polynomial which does not admit any nontrivial partial syntactical fac-
torizations w.r.tM is hit, for instance,gi or r in a partial syntactic factorization, we
directly convert it to an expression tree. To this end, we assume that there is a proce-
dureExpressionTree(f) that outputs an expression tree of a given polynomialf . Algo-
rithm 2, which we give for the only purpose of being precise, states the most straight
forward way to implementExpressionTree(f). Then, Algorithm 3 formally states how
to produce a syntactic decomposition of a given polynomial.

Input : a polynomialf given asterms(f) = {t1, t2, . . . , ts}
Output : an expression tree whose value equalsf

1 if ♯terms(f) = 1 sayf = c · xd1

1 xd2

2 · · ·x
dk

k then
2 for i← 1 to k do
3 Ti ← xi;
4 for j ← 2 to di do
5 Ti,ℓ ← Ti, root(Ti)← ×, Ti,r ← xi;

6 T ← empty tree,root(T)← ×, Tℓ ← c, Tr ← T1;
7 for i← 2 to k do
8 Tℓ ← T, root(T)← ×, Tr ← Ti;

9 else
10 k ← s/2, f1 ←

Pk

i=1 ti, f2 ←
Ps

i=k+1 ti;
11 T1 ← ExpressionTree(f1);
12 T2 ← ExpressionTree(f2);
13 root(T)← +, Tℓ ← T1, Tr ← T2;

Algorithm 2: ExpressionTree

We have stated all the algorithms that support the construction of a syntactic de-
composition except for the computation of the base monomialsetM. Note that in
Algorithm 1 our main strategy is to keep extracting syntactic factorizations from the hy-
pergraphHG(f,M). For all the syntactic factorizationsg⊙h computed in this manner,
we havemons(g) ⊆ M. Therefore, to discover all the possible syntactic factorizations
in HG(f,M), the base monomial set should be chosen so as to contain all the monomi-
als from which a syntactic factorization may be derived. Themost obvious choice is to
consider the setG of all non constant gcds of any two distinct terms off . However,|G|
could be quadratic in#terms(f), which would be a bottleneck on large polynomials
f . Our strategy is to choose forM as the set of the minimal elements ofG for the
divisibility relation. A straightforward algorithm computes this setM within O(t4n)
operations inK; indeed|M| fits in |G| = O(t2). In practice,M is much smaller thanG

Input : a polynomialf given asterms(f)
Output : a syntactic decomposition off

1 compute the base monomial setM for f ;
2 if M = ∅ then returnExpressionTree(f);
3 else
4 F , r ← ParSynFactorization(f,M);
5 for i← 1 to |F| do
6 (gi, hi)← Fi, Ti ← empty tree,root(Ti)← ×;
7 Ti,ℓ ← ExpressionTree(gi);
8 Ti,r ← SyntacticDecomposition(hi);

9 T ← empty tree,root(T)← +, Tℓ ← ExpressionTree(r), Tr ← T1;
10 for i← 2 to |F| do
11 Tℓ ← T, root(T)← +, Tr ← Ti;

Algorithm 3: SyntacticDecomposition

(for large dense polynomials,M = X holds) and this choice is very effective. However,
since we aim at manipulating large polynomials, the setG can be so large that its size
can be a memory bottleneck when computingM. In [2] we address this question: we
propose a divide-and-conquer algorithm which computesM directly from f without
storing the whole setG in memory. In addition, the parallel implementation inCilk+
shows linear speed-up on 32 cores for sufficiently large input.

4 Complexity Estimates

Given a polynomialf of t terms with total degreed in K[X], we analyze the running
time for Algorithm 3 to compute a syntactic decomposition off . Assuming that each
exponent in a monomial is encoded by a machine word, each operation (GCD, division)
on a pair of monomials ofK[X] requiresO(n) bit operations. Due to the different man-
ners of constructing a base monomial set, we keepµ := |M| as an input complexity
measure. As mentioned in Section 3,HG(f,M) is constructed withinO(µtn) bit oper-
ations. This hypergraph containsµ vertices andO(µt) hyperedges. We first proceed by
analyzing Algorithm 1. To do so, we follow its steps.

– The “isolated” polynomialr can be easily computed by testing the divisibility of
each term inf w.r.t each monomial inM, i.e. inO(µ · t · n) bit operations.

– Each hyperedge inHG(f,M) is a subset ofM. The intersection of two hyperedges
can then be computed inµ · n bit operations. Thus we needO((µt)2 · µn) =
O(µ3t2n) bit operations to find the largest intersectionM (Line 7).

– If M is empty, we traverse all the hyperedges inHG(f,M) to find the largest one.
This takes no more thanµt · µn = µ2tn bit operations (Line9).

– If M is not empty, we traverse all the hyperedges inHG(f,M) to test if M is a
subset of it. This takes at mostµt · µn = µ2tn bit operations (Line10).

– Line 6 to Line10 takesO(µ3t2n) bit operations.

– The setN can be computed inµ · µt · n bit operations (Line12).
– by Proposition 3, the candidate syntactic factorization can be either computed or

rejected inO(|M |
2
· |Q|2n) = O(µ4t2n) bit operations andO(µ2t) operations in

K (Lines13 to 16).
– If |N | 6= |M | · |Q| or the candidate syntactic factorization is rejected, we remove

one element fromQ and repeat the work in Line12 to Line16. This while loop ends
before or when|Q| = 1, hence it iterates at most|Q| times. So the bit operations of
the while loop are inO(µ4t2n · µt) = O(µ5t3n) while operations inK are within
O(µ2t · µt) = O(µ3t2) (Line 11 to Line17).

– We update the hypergraph by removing the monomials in the constructed syntactic
factorization. The two nested for loops in Line18 to Line21 takeO(|E| · |N | ·n) =
O(|E| · |M | · |Q| · n) = O(µt · µ · µt · n) = O(µ3t2n) bit operations.

– Each time a syntactic factorization is found, at least one monomial inmons(f) is
removed from the hypergraphHG(f,M). So the while loop from Line4 to Line
22 would terminate inO(t) iterations.

Overall, Algorithm 1 takesO(µ5t4n) bit operations andO(µ3t3) operations inK. One
easily checks from Algorithm 2 that an expression tree can becomputed fromf (where
f hast terms and total degreed) within in O(ndt) bit operations. In the sequel of this
section, we analyze Algorithm 3. We make two preliminary observations. First, for the
input polynomialf , the cost of computing a base monomial set can be covered by the
cost of finding a partial syntactic factorization off . Secondly, the expression trees of
all gi’s (Line 7) and of the isolated polynomialr (Line 9) can be computed within
O(ndt) operations. Now, we shall establish an equation that rules the running time of
Algorithm 3. Assume thatF in Line4 containse syntactic factorizations. For eachgi, hi

such that(gi, hi) ∈ F , let the number of terms inhi beti and the total degree ofhi be
di. By the specification of the partial syntactic factorization, we have

∑e

i=1 ti ≤ t. It is
easy to show thatdi ≤ d− 1 holds for1 ≤ i ≤ e as total degree of eachgi is at least1.
We recursively call Algorithm 3 on allhi’s. Let Tb(t, d, n)(TK(t, d, n)) be the number
of bit operations (operations inK) performed by Algorithm 3. We have the following
recurrence relation,

Tb(t, d, n) =

e
∑

i=1

Tb(ti, di, n) + O(µ5t4n), TK(t, d, n) =

e
∑

i=1

TK(ti, di, n) + O(µ3t3),

from which we derive thatTb(t, d, n) is within O(µ5t4nd) andTK(t, d, n) is within
O(µ3t3d). Next, one can verify that if the base monomial setM is chosen as the
set of the minimal elements of all the pairwise gcd’s of monomials of f , whereµ =
O(t2), then a syntactic decomposition off can be computed inO(t14nd) bit op-
erations andO(t9d) operations inK. If the base monomial set is simply set to be
X = {x1, x2, . . . , xn}, then a syntactic decomposition off can be found inO(t4n6d)
bit operations andO(t3n3d) operations inK.

5 Experimental Results

In this section we discuss the performances of different software tools for reducing the
evaluation cost of large polynomials. These tools are basedrespectively on a multivari-

ate Horner’s scheme [3], theoptimize function withtryhard option provided by
the computer algebra system Maple and our algorithm presented in Section 3. As de-
scribed in the introduction, we use the evaluation of resultants of generic polynomials
as a driving example. We have implemented our algorithm in the Cilk++ program-
ming language. We report on different performance measuresof our optimized DAG
representations as well as those obtained with the other software tools.

Evaluation cost. Figure 1 shows the total number of internal nodes of a DAG repre-
senting the resultantR(a, b) of two generic polynomialsa = amxm + · · · + a0 and
b = bnxn + · · · + b0 of degreesm andn, after optimizing this DAG by different ap-
proaches. The number of internal nodes of this DAG measures the cost of evaluating
R(a, b) after specializing the variablesam, . . . , a0, bn . . . , b0. The first two columns of
Figure 1 givesm andn. The third column indicates the number of monomials appearing
in R(a, b). The number of internal nodes of the input DAG, as computed byMAPLE,
is given by the fourth column (Input). The fifth column (Horner) is the evaluation cost
(number of internal nodes) of the DAG after MAPLE’s multivariate Horner’s rule is ap-
plied. The sixth column (tryhard) records the evaluation cost after MAPLE’s optimize
function (with the tryhard option) is applied. The last two columns reports the evaluation
cost of the DAG computed by ourhypergraph method(HG) before and after removing
common subexpressions. Indeed, our hypergraph method requires this post-processing
(for which we use standard techniques running in time linearw.r.t. input size) to produce
better results. We note that the evaluation cost of the DAG returned by HG + CSE is
less than the ones obtained with the Horner’s rule and MAPLE’s optimize functions.

m n #Mon Input Horner tryhard HG HG + CSE
4 4 219 1876 977 721 899 549
5 4 549 5199 2673 1496 2211 1263
5 5 1696 18185 7779 4056 7134 3543
6 4 1233 13221 6539 3230 4853 2547
6 5 4605 54269 22779 10678 18861 8432
6 6 14869190890 69909 31760 63492 24701
7 4 2562 30438 14948 6707 9862 4905
7 5 11380146988 61399 27363 45546 19148
7 6 43166601633219341 - 179870 65770

Fig. 1.Cost to evaluate a DAG by different approaches

Figure 2 shows the timing in seconds that each approach takesto optimize the DAGs
analyzed in Figure 1. The first three columns of Figure 2 have the same meaning as in
Figure 1. The columns (Horner), (tryhard) show the timing ofoptimizing these DAGs.
The last column (HG) shows the timing to produce the syntactic decompositions with
ourCilk++ implementation on multicores using 1, 4, 8 and 16 cores. All the sequen-
tial benchmarks (Horner, tryhard) were conducted on a 64bitIntel Pentium VI Quad
CPU 2.40 GHZ machine with 4 MB L2 cache and 3 GB main memory. Theparallel
benchmarks were carried out on a 16-core machine atSHARCNET (www.sharcnet.ca)

with 128 GB memory in total and 8×4096 KB of L2 cache (each integrated by 2 cores).
All the processors are Intel Xeon E7340 @ 2.40GHz.

As the input size grows, the timing of the MAPLE Optimize command (with try-
hard option) grows dramatically and takes more than40 hours to optimize the resultant
of two generic polynomials with degrees6 and6. For the generic polynomials with
degree7 and6, it does not terminate after5 days. For the largest input (7, 6), our algo-
rithm completes within 5 minutes on one core. Our preliminary implementation shows
a speedup around 8 when 16 cores are available. The parallelization of our algorithm
is still work in progress (for instance, in the current implementation Algorithm 3 has
not been parallelized yet). We are further improving the implementation and leave for
a future paper reporting the parallelization of our algorithms.

m n #Mon Horner tryhard HG (# cores= 1, 4, 8, 16)

4 4 219 0.116 7.776 0.017 0.019 0.020 0.023
5 4 549 0.332 49.207 0.092 0.073 0.068 0.067
5 5 1696 1.276 868.118 0.499 0.344 0.280 0.250
6 4 1233 0.988 363.970 0.383 0.249 0.213 0.188
6 5 4605 4.868 8658.037 3.267 1.477 1.103 0.940
6 6 14869 24.378145602.915 29.130 9.946 6.568 4.712
7 4 2562 4.377 1459.343 1.418 0.745 0.603 0.477
7 5 11380 24.305 98225.730 22.101 7.687 5.106 3.680
7 6 43166108.035>136 hours273.963 82.497 49.067 31.722

Fig. 2. timing to optimize large polynomials

Evaluation schedule.Let T be a syntactic decomposition of an input polynomialf . Tar-
geting multi-core evaluation, our objective is to decompose T into p sub-DAGs, given
a fixed parameterp, the number of available processors. Ideally, we want thesesub-
DAGs to be balanced in size such that the “span” of the intended parallel evaluation can
be minimized. These sub-DAGs should also be independent to each other in the sense
that the evaluation of one does not depend on the evaluation of another. In this manner,
these sub-DAGs can be assigned to different processors. Whenp processors are avail-
able, we call “p-schedule” such a decomposition. We report on the4 and8-schedules
generated from our syntactic decompositions. The column “T ” records the size of a
syntactic decomposition, counting the number of nodes. Thecolumn “#CS” indicates
the number of common subexpressions. We notice that the amount of work assigned to
each sub-DAG is balanced. However, scheduling the evaluation of the common subex-
pressions is still work in progress.

Benchmarking generated code.We generated4-schedules of our syntactic decomposi-
tions and compared with three other methods for evaluating our test polynomials on a
large number of uniformly generated random points overZ/pZ wherep = 2147483647
is the largest 31-bit prime number. Our experimental data are summarized in Figure 4.
Out the four different evaluation methods, the first three are sequential and are based on
the following DAGs: the original MAPLE DAG (labeled as Input), the DAG computed
by our hypergraph method (labeled as HG), the HG DAG further optimized by CSE

m n T #CS 4-schedule 8-schedule
6 5 8432 1385 1782, 1739, 1760, 1757 836, 889, 884, 881, 892, 886, 886, 869
6 6 24701 4388 4939, 5114, 5063, 5194 2436, 2498, 2496, 2606, 2535, 2615, 2552, 2555
7 5 19148 3058 3900, 4045, 4106, 4054 1999, 2049, 2078, 1904, 2044, 2019, 1974, 2020
7 6 657701095813644, 13253, 14233, 137056710, 6449, 7117, 6802, 6938, 7025, 6807, 6968

Fig. 3.parallel evaluation schedule

(labeled as HG + CSE). The last method uses the 4-schedule generated from the DAG
obtained by HG + CSE. All these evaluation schemes are automatically generated as a
list of SLPs. When an SLP is generated as one procedure in a source file, the file size
grows linearly with the number of lines in this SLP. We observe that gcc 4.2.4 failed
to compile the resultant of generic polynomials of degree6 and6 (the optimization
level is 2). In Figure 4, we report the timings of the four approaches to evaluate the
input at10K and100K points. The first four data rows report timings where the gcc
optimization level is0 during the compilation, and the last row shows the timings with
the optimization at level2. We observe that the optimization level affects the evalua-
tion time by a factor of2, for each of the four methods. Among the four methods, the
4-schedule method is the fastest and it is about20 times faster than the first method.

m n #point Input HG HG+CSE4-schedule#point Input HG HG+CSE4-schedule
6 5 10K 14.490 2.675 1.816 0.997 100K 144.838 26.681 18.103 9.343
6 6 10K 57.853 18.618 4.281 2.851 100K 577.624 185.883 42.788 28.716
7 5 10K 46.180 11.423 4.053 2.104 100K 461.981 114.026 40.526 19.560
7 6 10K 190.39754.552 13.896 8.479 100K 1902.813545.569 138.656 81.270

6 5 10K 6.611 1.241 0.836 0.435 100K 66.043 12.377 8.426 4.358

Fig. 4. timing to evaluate large polynomials

References

1. Melvin A. Breuer. Generation of optimal code for expressions via factorization. Commun.
ACM, 12(6):333–340, 1969.

2. C. E. Leiserson, L. Li, M. Moreno Maza, and Y. Xie. Parallel computation of the minimal
elements of a poset. InProc. PASCO’10. ACM Press, 2010.

3. J. Carnicer and M. Gasca. Evaluation of multivariate polynomials and their derivatives.Math-
ematics of Computation, 54(189):231–243, 1990.

4. M. Ceberio and V. Kreinovich. Greedy algorithms for optimizing multivariate horner schemes.
SIGSAM Bull., 38(1):8–15, 2004.

5. Intel Corporation. Cilk++. http://www.cilk.com/.
6. J. von zur Gathen and J. Gerhard.Modern Computer Algebra. Cambridge Univ. Press, 1999.
7. A. Hosangadi, F. Fallah, and R. Kastner. Factoring and eliminating common subexpressions

in polynomial expressions. InICCAD’04 , pages 169–174, 2004. IEEE Computer Society.
8. J. M. Pẽna. On the multivariate Horner scheme.SIAM J. Numer. Anal., 37(4):1186–1197,

2000.
9. J. M. Pẽna and Thomas Sauer. On the multivariate Horner scheme ii: running error analysis.

Computing, 65(4):313–322, 2000.

