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On the basis of extended simulations, we provide some results concern-
ing the spectrum of Massive SU(2) Yang–Mills on the lattice. We study
the “time” correlator of local gauge invariant operators integrated over the
remaining three dimensions. The energy gaps are measured in the isospin
I = 0, 1 and internal spin J = 0, 1 channels. No correlation is found in
the I = 1, J = 0 channel. In the I = 1, J = 1 channel and far from the
critical mass value mc, the energy gap roughly follows the bare value m
(vector mesons). In approaching the critical value mc at β fixed, there is
a bifurcation of the energy gap: one branch follows the value m, while the
new is much larger and it shows a more and more dominant weight. This
phenomenon might be the sign of two important features: the long range
correlation near the fixed point at β → ∞ implied by the low energy gap
and the screening (or confining) mechanisms across the m = mc associ-
ated to the larger gap. The I = 0, J = 0, 1 gaps are of the same order
of magnitude, typically larger than the I = 1, J = 1 gap (for m � mc).
For m ∼ mc, both I = 0 gaps have a dramatic drop with minima near the
value m. This behavior might correspond to the formation of I = 0 bound
states both in the J = 0 and J = 1 channels.
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1. Introduction

In the present paper, we continue the study of the Massive SU(2) Yang–
Mills (MYM) theory on the lattice, initiated in Ref. [1] and further pursued
in Ref. [2]. Let us remind why we consider the model to be of great inter-
est. Recently, a Massive Yang–Mills theory for SU(2) has been formulated
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in the continuum in Refs. [3, 4]. The mass is introduced à la Stückelberg.
Since the theory is nonrenormalizable, a new subtraction strategy is neces-
sary. The strategy has been developed in a series of papers [5–7] and it is
based on a Local Functional Equation (LFE) for the vertex functional and
on dimensional subtraction. Although the subtraction procedure has been
successfully applied to massless [5] and massive [8] nonlinear sigma model,
to the low energy electroweak model [9–11] and to field-coordinate transfor-
mations [12], still nonrenormalizability has unpleasant consequences for the
high energy behavior in most of the listed cases (unitarity violations). It has
been suggested that such nonrenormalizable theories, once made finite by
the appropriate subtraction strategy, undergo to a phase transition [13, 14]
at very large energies. This conjecture might be investigated in a nonpertur-
bative approach, as in a lattice model. This is the rationale for considering
a Massive Yang–Mills lattice gauge theory: the model has the same local
gauge symmetry as in the continuum and one has the possibility to avoid
completely any gauge fixing. The challenge consists in comparing the lattice
and the continuum amplitudes, in mapping the parameters and in evaluating
the limit of validity of the lattice model as a phenomenological theory. In [1],
the existence of a Transition Line (TL) m = mTL(β) in the (β,m2) space
has been confirmed. Along this line, from the end-point βe ∼ 2.2 through
β →∞, both energy and order parameter have a very steep inflection, whose
derivative increases with the lattice size (as discussed later in Sec. 2). The
line separates the deconfined phase from a supposedly confined phase. For
β < βe, the transition through the line is smooth. Thus we denote the TL
by m = mc(β) for β > βe.

In Ref. [2], we have compared global quantities as energy and order
parameter evaluated by Monte Carlo in the lattice and two-loop calculations
in the continuum. The results are suggestive of a good agreement.

The present paper is devoted to the investigation of the particle content
of the Massive Yang–Mills on the lattice in the deconfined region of the
parameter space (β,m2). We look at the energy gap in the time correlator of
suitable gauge invariant operators mediated over the other dimensions (zero
three-momentum states). These operators are easily associated to particles
with isospin I = 0, 1 and spin J = 0, 1 in the deconfined phase. The fit is
done with the function

g(x) = 1
2(f(x) + f(L− x)) ,

f(x) = b1e
−∆1x + b2e

−∆2x , (1)

where L is the size of the lattice (an integer) and L4 gives the number of the
lattice sites. We considered mainly lattices of size 244 and the measures are
performed on 104 configurations each separated by 15 updatings. Statistical
errors are evaluated by using bins of size 100.
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This excruciating analysis is limited to few values of β = 1.5, 3, 10, 40,
being the end-point βe ∼ 2.2. We find no correlation in the channel I = 1,
J = 0; i.e. no scalars with flavor 1. In the channel I = 1, J = 1 (gauge
vector mesons) the value of the gap is close to the bare mass m for m ≥ 1.
For m near mc (thus β = 1.5 excluded), a bifurcation occurs, i.e. the fit
requires two energy gap parameters. The lower follows the m value while
the second is much larger. A posteriori this bifurcation looks necessary if
we expect a large correlation length near β →∞ (=⇒ mc → 0) and a larger
gap for the establishment of confinement across the TL.

A similar situation is present in the channels I = 0, J = 0, 1; however,
the bifurcation sets on nearer the TL than in the vector mesons channel. The
numerical values, in general, follow the pattern ∆I=0 J=1 ' ∆I=0 J=0 � m.
For m ∼ mc, the lower energy gap in the I = 0 channels drops to values of
the order of m. In this region, the larger gap in the I = 1, J = 1 channel is
dominant; therefore, long living resonant states might develop in the I = 0,
J = 0, 1 channels.

This scenario of the spectrum opens many interesting questions. We
mention here a couple of them. The onset of confinement across the TL
for β � βe is clearly related to the bifurcation of gap when m → mc. The
present work spots the point where it is possible to study the mechanism
of confinement at its onset. A further question of great interest is whether
a bound state of two vector mesons exists near the TL, i.e. where the cor-
relation length becomes larger. We shall illustrate this phenomenon with
some pictures later on.

The lattice model is of great interest by itself: the phase diagram in the
parameter space (β,m2) is very intriguing. The TL at large β is compatible
with βm2 ∼ 0.64, i.e. the TL points to the critical point of theO(4) nonlinear
sigma model [15].

The same lattice gauge model has been studied previously (see [16–23])
as an example of Higgs mechanism with a frozen length. We agree on the
position of the TL, but we have no definite results on the exact nature of the
phase transition, beyond the presence of a steep inflection which becomes
more and more strong by increasing β.

Further work is necessary in order to establish the character of the phase
transition across the TL. Moreover, it is very important to interpret the
model in the limit of β → ∞, where a fixed point is expected [24]. In the
limit, some correlation length should become very large.

The relation between the lattice model and the continuum theory is not
discussed here. We postpone this complex topic to a future work.
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2. The model

The present section is devoted to the recollection of the essentials of the
model. More details are given in Refs. [1] and [2].

The action on the cubic lattice of size N ≡ L4 with sites x and links µ is

SL =
β

2
Re
∑
2

Tr{1− U2}

+
β

2
m2Re

∑
xµ

Tr
{
1−Ω(x)†U(x, µ)Ω(x+ µ)

}
, (2)

where the sum over the plaquette is the Wilson action [25]. The link variables
U(x, µ) and the site variables Ω(x) are elements of the SU(2) group.

The action is invariant under the local-left transformations gL(x) ∈
SU(2)L and the global-right transformations gR ∈ SU(2)R

SU(2)L

{
Ω′(x) = gL(x)Ω(x)

U ′(x, µ) = gL(x)U(x, µ)g†L(x+ µ)
,

SU(2)R

{
Ω′(x) = Ω(x)g†R
U ′(x, µ) = U(x, µ)

. (3)

We would like to stress the importance of this invariance property, in par-
ticular because in the nonrenormalizable continuum Minkowskean theory it
is the starting point for the removal of the ultraviolet divergences of the
loop expansion. In fact, the invariance of the path integral measure en-
sures the validity of the LFE for the generating functionals (e.g. the vertex
functional) [5].

The quantity (D = 4)

C :=
1

2DN

〈∑
xµ

Tr
{
Ω(x)†U(x, µ)Ω(x+ µ)

}〉
(4)

is taken as an order parameter. It has the symmetry property C(β,−m2) =
C(β,m2). The TL is given by the loci in the (β,m2) plan, where C has an
inflection as function of m2 for given β as shown in Fig. 1.

For large β, the TL approaches the critical coupling βm2 ∼ 0.64 of the
SU(2) nonlinear sigma model in 4 dimensions [15]. Moreover, in the region
C ∼ 0, the global-right SU(2)R charges are screened (or confined), while for
C ∼ ±1 the global-right SU(2)R is unitarely implemented and vector mesons
exist.
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Fig. 1. The transition line. The arrow marks the position of the end-point. In the
figure data from previous analysis have been used and the statistical errors are not
displayed since they are too small to be shown.

The character of the transition across the TL is not yet well established.
The inflection becomes steeper by increasing the lattice size for β larger than
the end-point value: βe ∼ 2.2,m2

e ∼ 0.381. Numerically, one cannot easily
affirm whether it is a first order transition with a small jump or a second
order or even a crossover. This question is not under investigation in the
present paper.

3. Gauge invariant fields

In order to investigate the spectrum in the deconfined region in the
(β,m2) plan, we consider the field (τa are the Pauli matrices)

C(x, µ) := Ω†(x)U(x, µ)Ω(x+ µ) = C0(x, µ) + iτaCa(x, µ) . (5)

By construction,

C(x, µ) ∈ SU(2) . (6)

According to the transformations of Eq. (3), C(x, µ) is invariant under local-
left transformations (usually said “gauge invariant”), while under the global-
right transformations they have I = 0 (C0) and I = 1 components (Ca).
One has

C0(x, µ)
2 +

∑
a=1,3

Ca(x, µ)
2 = 1 . (7)
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Then, we get

|C0(x, µ)| ≤ 1 (8)

and, therefore, (from Eq. (4))

|C| ≤ 1 . (9)

In the deconfined region, we expect the global-right symmetry to be imple-
mented and, therefore,

〈Ca(x, µ)〉 = 0 ,

〈Ca(x, µ)Cb(y, ν)〉 = 0 , if a 6= b . (10)

Moreover, the symmetry over four-dimensional finite rotations requires

〈Ca(x, µ)Ca(y, ν)〉 = 0 , if µ 6= ν . (11)

Equations (9), (10) and (11) are satisfied by the numerical simulations to a
reasonable level of accuracy.

4. The numerical simulation

The spectrum is evaluated in the deconfined phase, by considering the
two-point function of the zero-three-momentum operator

Cj(t, µ) =
1

L
3
2

∑
x1,x2,x3

Cj(x1, x2, x3, x4, µ)|x4=t , j = 0, 1, 2, 3 . (12)

Then, we evaluate the connected correlator

Cjj′,µν(t) =
1

L

∑
t0=1,L

〈
Cj(t+ t0, µ)Cj′(t0, ν)

〉
C
. (13)

According to Eqs. (10) and (11), the correlator is zero unless j = j′ and
µ = ν. The spin one- and zero-amplitudes V and S are extracted by using
the relation

Cjj,µν(t) = Vjj (δµν − δµ4δν4) + Sjjδµ4δν4 . (14)

A very good fit of the data is obtained by using the function

g(t) = 1
2(f(t) + f(L− x)) ,

f(t) = b1e
−∆1t + b2e

−∆2t . (15)

Two exponentials are needed only for m ' mc, as we will illustrate shortly.
Otherwise, one single exponential is enough for the fit.
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The expectation values are performed on 104 configurations created by
a Heat-Bath Monte Carlo for a lattice of size 244. A configuration is stored
every 15 updating steps. Statistical errors are evaluated by using bins of
100 measures. We consider the values β = 1.5, 3, 10, 40 and m2 < 8. The
first is interesting since it is outside the TL (the “end point” is at βe ∼ 2.2).
For β = 3, the TL separates different phases and the “coupling constant”
(g =

√
4/β ∼ 1.155) is large, while for β = 40, we are in the region of weak

coupling limit (g ∼ 0.316) and “near” the fixed point β →∞.
Figures 2, 3, 4 and 5 illustrate the fact that for m2 � m2

TL
gauge vector

mesons are present in the spectrum of the lattice Massive Yang–Mills the-
ory (2). The mass (∆1) follows roughly the bare value m and looks not to
depend much on β. The fit shown in the figures is performed by using the
function

√
m2

[
1 + (A lnm2 +B)

]
(16)

inspired by the expression of the self-energy in perturbation theory. It pa-
rameterizes the departure of the gap from the bare value m.
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The scalar isospin (I = 0) states have spin zero (J = 0) and spin (J = 1).
Figures 6, 7, 8 and 9 show the numerical results. The patterns are not as
clear as in the case of I = 1. The energy gaps are much larger than m.
These states are not present in the naive continuum limit of zero spacing, if
perturbation theory is used.
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Now, we discuss the region wheremc≤m<1. For large β (β = 3, 10, 40),
two exponentials (see Eq. (15)) are necessary in the region m2 ∼ m2

c in order
to fit the time correlators (13). For β = 1.5, a single exponential fit works
well also for values of m ∼ mTL , where the inflection points show up.

The value of m2, where the bifurcation occurs, is signaled by sudden
and very large errors on ∆1 and ∆2. The lower energy gap ∆1 follows the
bare valuem, the weight b1 becomes smaller and smaller by approachingmc,
while, at the same time, ∆2 and b2 increase. The two pictures in Fig. 10 show
the bifurcation for β = 3 in the isovector channel. The pictures in Figs. 11
and 12 show a similar phenomenon for β = 3 in the isoscalar channels
(J = 0, 1). Our interpretation is that the lower energy gap is responsible for
the long range correlation, signaling the near fixed point at β → ∞. The
larger energy gap is associated to the confining mechanism intervening in
the crossing of the TL. A set of figures tries to illustrates these facts. In the
isovector channel (J = 1), the pattern is very clear. By m approaching mc,
the lower gap ∼ m has a vanishing weight, while the higher gap (� m)
becomes dominant.

A similar phenomenon occurs in the channels I = 0, J = 0 (see Fig. 11)
and I = 0, J = 1 (see Fig. 12); however, the onset of bifurcation is for
lower m values and the patterns are not as clear as in the isovector case.

We have repeated this analysis for β = 10 and for β = 40. The features
are very similar to the case β = 3, thus we shall not provide further pictures
to illustrate the bifurcation phenomena for these cases.
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Fig. 10. Mass spectrum and weights (mc ≤ m) of the isovector for β = 3.
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4.1. Comments on the spectrum

We summarize the comments on the spectrum resulting from the lattice
simulations. There is some non-trivial time correlation in the two-point
function for the channels with quantum numbers (I = 1, J = 1), (I = 0,
J = 0) and (I = 0, J = 1). In the channel I = 1 and J = 0, we find
zero correlation for t > 0 in Eq. (13). No fit of the function in Eq. (15) is
provided for this channel.

The departure from the bare value m of the energy gap for m � 1 is
common to the values of β = 1.5, 3, 10, 40.

By approaching m ∼ mc, a single exponential fitting of the time corre-
lators is inadequate. A linear combination of two exponentials provides a
very good fit. Thus at some value of m (depending on β), the single gap
bifurcates: one follows the m line, while the other is much larger. Moreover,
the weight of the lower vanishes for m → mc. This phenomenon is most
evident in the channel I = 1, J = 1. In the other channels, the onset of
the bifurcation is faint and at smaller values of m. Our scenario is the fol-
lowing: in approaching the TL, the lower gap provides the large correlation
length, while the large gap is the manifestation of the screening/confining
mechanism, which becomes dominant for m ∼ mc.



1884 R. Ferrari

For m ∼ mc, there are some drastic changes in the energy gaps of the
isoscalar channels (for both J = 0, 1): one notices a sharp drop, even below
the bare value m. This fact sustains the scenario where bound states arise
in the isoscalar channels because (i) the gap energy becomes lower than
the threshold and (ii) the vector mesons decouple (very small weight in the
two-point functions).

We gratefully acknowledge the warm hospitality of the Center for The-
oretical Physics at MIT, Massachusetts, where part of the present work has
been done. We profited of many stimulating discussions with the colleagues
at the Department of Physics of the University of Pisa.
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