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Abstract

Let Dy be the dihedral group of order 2N, Dicgps the dicyclic group of or-
der 4M, S Dsm the semidihedral group of order 2", and Msm the group of order 2™
with presentation Mom = (o, 0 | " =52 =1, Bapft = a2m*2+1>. We classify
the orbits in D3y, Dicyy,, SDym, and M3, under the Hurwitz action.

1 Introduction
Let B,, denote the braid group on n strands, which is given by the presentation
B, =(o1,...,0n1 | 00, = 0j0;, |t — j| =2 2; 0,0i110; = 0410041, 1 <i<n—2).

For an arbitrary group G and n > 2, there is an action of B,, on G", called the Hurwitz
action, which is defined by

—1

Ui(ah cey an) = (ah sy A1, Qg 1, Ay A1, Wjg2,5 - - 7a’n>
for every 1 <i<n—1and (ay,...,a,) € G". Note that
—1 _ -1

o, (ar, ..y an) = (a1, ..., i1, G;Qi 115 Qi Giga, ..y Gp).

Hence, if we write @ = (ay,...,a,) € G™ and define 7(a) = a; - - - a, € G, then 7(a) is an
invariant of the Hurwitz action on G™. An action by o; or ; * on G is called a Hurwitz
move. Two tuples (ai,...,a,), (b,...,b,) € G™ are said to be (Hurwitz) equivalent,
denoted (aq,...,a,) ~ (by,...,b,), if they lie in the same B,,-orbit.

The problem of classifying the orbits in G™ under the Hurwitz action arose from the
study of braid monodromy factorization (see, e.g., Kulikov and Teicher [5]). Clearly, this
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problem is trivial for any abelian group G: two n-tuples a, b € G" are equivalent if
and only if one is a permutation of the other. However, there are few results on the
classification of B,-orbits in G™ for nonabelian groups G. Ben-Itzhak and Teicher [1]
determined all B,-orbits in S represented by (t1,...,t,), where S,, is the symmetric
group of order m!, each t; is a transposition, and ¢; - - - t,, = 1. Recently, Hou [3] determined
completely the B,-orbits in Q4 and Dy,m, where Qam is the generalized quaternion group
of order 2™ and Dsg,n is the dihedral group of order 2p™ for some prime p. Clearly, if
ai,...,a, € G generate a finite subgroup, then the B,-orb! it of (ay,...,a,) in G™ is
finite. Humphries [4] and Michel [6] proved a partial converse when G is the general
linear group GL(R™): if sq,...,s, € GL(R") are reflections such that the B,-orbit of
(s1,...,8y) is finite, then the group generated by s1,..., s, is finite.

In this paper, we determine completely the B,-orbits in G" for four families of groups
G the dihedral group Doy of order 2N, the dicyclic group Dicyps of order 4M, the semidi-
hedral group SDom of order 27, and the group Mom = (o, 3 | o®™ =% =1, Baf ' =
a®" 1Y of order 2. Our method is to find a number of invariants of the Hurwitz action
and show that these invariants completely determine the Hurwitz equivalence classes. The
invariants and the strategies used to find a canonical representative equivalent to each
tuple are essentially the same as those in [3]. The novel element of the present paper is
the idea that when performing a series of Hurwitz moves to normalize a tuple in D
with respect to a prime factor of N, we can preserve certain congruence properties with
respect to other factors of N that were obtained in earlier moves.

This paper is organized as follows. In Section 2, we develop some preliminary results
regarding the Hurwitz action on Djy. In Section 3, we classify the orbits in DZy under
the Hurwitz action. In Section 4, we classify the Hurwitz equivalence classes in Dicy,,,
SD3.., and M3..

2 The Hurwitz Action on D7

In this section, we develop some preliminary results regarding the Hurwitz action on DJ,;.
With the exception of Lemma 2.1(iv), the results presented in this section are similar to
those in [3, Section 2].

We use the following generators and relations for the dihedral group Dy of order 2/N:

Doy =(a,f | =% =1, faf™ =a7").

Each element of Dyy can be uniquely written in the form af3’, where 0 < i < N and
0 < j < 1. Conjugating one element of Dyy by another gives

(0*8) 7 (o) (0 B') = a2, (21)
(') (0" B") (') 7 = al = kT2 (2:2)
Therefore, a Hurwitz move in D3y yields one of the following two equivalences:
R el S Wl SR, [ R G 0N TN )
(ool kBl )~ (e @ TDRRRLGL i ),
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To direct the reader’s attention to the Hurwitz moves that we consider, we shall occa-
sionally omit common terms from two equivalent n-tuples a, b € G" if there is a sequence
of moves transforming a to b that does not involve any of those terms. For example,
setting (j,1) = (0,0), (0,1), (1,0), and (1,1) respectively in the above equivalences and
omitting common terms, we obtain

(a',a") ~ (af,a), (2.3)
(o', afB) ~ (o, ™),
{ (ai,akﬁ) ~ (ak+2iﬁ,al), (2’4>
(a8, 0%) ~ (a¥, a'=2*B),
| faira) ~ ok i, (25)
(Oziﬂ, Ozkﬂ) ~ (O&kﬁ, Oz_H_zkﬂ) — (ai—i-(k—i)ﬂ, ak—i—(k—i)ﬂ)’ 56
(O/ﬂ, Ozkﬂ) ~ (a—k+2i6’ O/ﬂ) — (az’—(k—z’)ﬁ’ Ozk_(k_i)ﬂ). ( : )

The following lemma sets forth some key equivalences that can be obtained through
a sequence of Hurwitz moves.

Lemma 2.1 (see Hou [3, Lemma 2.1]). (i) (af,a/3) ~ (a™% a?*23) for alli,j € Z.
(ii) (a'fB,0?B) ~ (a'TP=)3 oI *hi=D3) for all h,i,j € Z.

(i1i) Let pq,...,p; be distinct prime divisors of N (not necessarily all the prime divisors
of N ) such that pir||N forr=1,...,t, and let 0 < v, <k, —1 forr=1,...,t. Let
e, f € Z such that e Z f (modp,) forr = 1,...,t. Then for all g € Z such that
g =0 (mod N/T[._, p*) and T € Z, we have

T

(o teIlmip? g @+ Ihaa P gy o (@ HEAD Lma P g o+ [T 07 ),

(iv) Let py,...,p; be distinct prime divisors of N (not necessarily all the prime divisors
of N) such that pr||N forr =1,...,t, and let 0 < v, < k., — 1 forr =1,... t.
Then for all e Z f (modp,), there exists g € Z such that

(a) (QT—l—e an:1 plr'"ﬁ’ a7+f an:1 pr” ﬁ) ~ (aq—-i-(e—l—g) Hf-:l pgrﬁ’ OéT+(f+g) an:l plr/rﬁ);

(b) pt=v | f+ g, and

(c) if py is another prime divisor of N, then f+g= f (modpkr'_ur’).

In particular, p* | (f + g)[I._, P, and if p is another prime divisor of N such
k., U krl Ur
that p.r' | fIT,—y plr, then pt' | (f +9) TT—y PV

Proof. (i) We have

(', 0?B) ~ (& B,a™") (using the first equivalence in (2.4))

~ (o™ o™ 3) (using the first equivalence in (2.5)).
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(ii) This follows from (2.6).

(i) Setting i = 7 + e[\, p¥ and j = 7+ f]]._, p in (ii), we see that it suffices to
find h € Z satisfying h(f —e) [[._, P = g[['_, P (mod N). This can be achieved

T

by using the Chinese Remainder Theorem to choose h such that

h=g(f—e)™ (modpf~)forr=1,...,t,

T

h=0 (mod N/ [T'_, pF).

T

(iv) Setting i = 7 + e[, pv and j = 7+ f[['_, p¥ in (ii), we see that it suffices to
find g, h € Z satisfying the following system of congruences:

t t
hf—e [pr=g]]ps (modN),
=1 =1

g=—f (mod pyr=""),
g=0 (mod pf,’"_”*') for all other primes p,» dividing N.

This can be achieved by using the Chinese Remainder Theorem to choose h such
that

h=—f(f—e)" (modp™),
h=0 (mod pf? """ for all other primes p,» dividing N.
It is easy to see that corresponding to any choice of h, there is a unique value of g
modulo N/ ]i._, pv that satisfies the conditions in (iv). This proves the lemma.
U

3 B,-orbits in Tuples of Dihedral Groups

In this section, we classify the orbits in D, under the Hurwitz action. The main idea
behind our proof is as follows. First, we partition D, into subsets, each of which is
invariant under the Hurwitz action. We then find a number of invariants of the Hurwitz
action and show that these invariants completely determine the equivalence classes within
each subset.

For a = (a3%t,...,a"(3") € Diy, where 0 < i, < N and 0 < ji < 1, let

A(a) = the multiset {min{ix, N —ix} : jr = 0}

and

For example, if a = (a'?, a3, o, a?) € D}, then A(a) = {3,4,3} and T'(a) = {11}. Tt
is easy to see that A(a) is invariant under each of the Hurwitz moves in (2.3)—(2.6), hence
it is an invariant of the Hurwitz action.
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We fix a notational convention here. If N is odd, we write its prime factorization as
N = p'fl <. pkm.if N is even, we write its prime factorization as N = QkOpr1 coephm(fe,
we set pg = 2). Let v, (i) denote the p,-adic order of a number i. We partition DJ,, into
subsets as follows. Let
A={a € D}y :F(a):@}.
For each odd prime divisor p, of IV, for each 0 < v, <k, and 0 < 7. < pi, let
B ={a € Dyy :min({v, (i) :i € AMa)} U{k,}) =1, 0 #T(a) C 7 +p"Z},

and for each 0 < v, <k, —1and 0 < 7, < pir, let

Chr .. ={a € Dyy :min({v,, (1) :i € Aa)} U{k}) > v, +1, 0 #T'(a) C 7. +pZ,

34,7 € I'(a) such that v, (j — j') = v.}.

Then, for any odd prime divisor p, of N, we have

n o __ Dr
Dy =Au| || By, |U L] . |- (3.1)
0y <ky 0<pr <kr—1
0 <pi” 0T <pi”
It is easy to check that each of A, BYr _, and CIr  is invariant under the Hurwitz moves

n (2.3)-(2.6). Thus A, Bfr _, and CPr  are invariant under the Hurwitz action.
For a € CPr

o s collect the components of a of the form '3 from left to right and let
the result be (a’13,...,a"3), where 0 < i, < N. Let e5 € Z,,., 1 < s < t, be defined by
is =T + plres (modp’”“) Define

t

op(a) = 3 (~1) e,

s=1
For example, let N =135=233-5,p, =3, v, =2, 7. =3, n =4, and let
a — (a7+32'13ﬁ, a32-6’ a7+32'2ﬁ, a7+32-116) c Cg,j.

Then o3(a) = 13 =2+ 11 = 1 € Z3. It is easy to see from (2.3)—(2.6) that o(a) is also
an invariant under the Hurwitz equivalence. This allows us to further partition Cr  into
two invariant subsets

Cur 7r,0 {a’ < Cur Tr Upr (CL) = 0}
and

CVT Tl T {a’ € CVT Tr - Op, (a’) 7& 0}
Thus, the partition (3.1) can be further refined into

/2 Pr DPr
2N - "4 U |_| Bu:,n LU |_| CIJT,TT, LU |_| CIJT,TT,l (32)
0<vr <kyr O<yr <kr—1 O<yr <kr—1
0<T<pr” 0<r<pr” 0<r<pr”
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for odd primes p, dividing N.
If N is even, we require some additional definitions. For each 0 < < ko and
0< 1< 2%, let

B, ., = {a € D3y :min({vs(i) : i € A(a)} U{ko — 1}) =15, 0 #T'(a) C 79 + 2°Z},
and for each 0 < vy < kg — 1 and 0 < 75 < 20, let

Co o ={a € Dyy :min({va(i) i € A(a)} U{ko—1}) > o+ 1, 0 #T(a) C 79 + 2%
34,7 € I'(a) such that ve(j — 7') = o} .

Then A, B} ., and C7 . are all invariant under the Hurwitz equivalence and
n o __ 2
Dyy=Au| || By, |U ] .- (3.3)
0<vo<ko 0<vo<ko—1
0<rp <2*0 0<T0<2"0

For a = (a371,... ™ B3in) € C?

V0,70

where 0 < 4, < N and 0 < ji < 1, let
u(a) = #{k cJg =1 and i = 19 + 2"° (mod 2V0+1)}_

It is easy to check that u(a) is also invariant under the Hurwitz action.

Having set up this framework, we are now ready to define our desired partition P of
D3y. Let Q be the common refinement of the partitions (3.2) as p, varies over all the odd
prime factors of N. If N is odd, then we take P = Q, so that any block of the partition
P is either A or has the form

P1 P2 . P
AX'Vl T1 XVZ T2 XVﬂTTm
where each XPr_ stands for one of BPr Pr or CP" .. If N is even, we take P to be
Vp,Tr Vp,Tr) ~Up,Tr,00 Vp,Tr,1 )

the common refinement of Q and (3. 3) Let RUSoU.S; UT UU be a partition of the set
of prime divisors of NV, with the restriction that 2 € RU Sy U S, and either T'= U = (),
(T,U) = ({2},0), or (T,U) = (0,{2}). For convenience, we will denote the block

(00 () (0-)o ()
preER preSo preS pr€T preU

by (R, Sy, S1,T,U)(v,)(7:.), where (v,.) and (7,.) represent vectors that record the num-
bers v, and 7, for each prime p,. For example, if pg = 2, p1 = 3, po = 5, and p3 = 7,
then

H({57 7}7 {3}7 @7 @7 {2})(17 27 17 1)(17 87 47 O) = Cil N CS,S,O N B?A N BI,O

By our remarks above, each block of P is invariant under the Hurwitz action, hence it
suffices to find a set of representatives of the B,-orbits in A and in each of the blocks
II(R, So, S1,T,U)(v,)(7,). This is achieved in Theorem 3.1 below.
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Theorem 3.1. (i) The B, -orbits in A are represented by
(™, ..., a™),
where 0 <43 < --- <1, < N.
(ii) For each odd prime divisor p, of N, let 0 < v, <k, and 0 < 1; < p;*; if N is even,

further let 1 < vy < kg and 0 < 19 < 2*°. The By,-orbits in II(R, Sy, S1,T,U) (v, )(7:)
are represented by

w
' is E F a G
(@™, ... o, a™" ﬁ,gT+ B,a™tCB, . . a"t ﬁ,ofﬁ,...,of@, (3.4)

s—1

n

where

(a) 0<s<nand0<ip < -+ <is < NJ2,

(b) 7 is the unique integer such that 0 < 7 <[], yp/" and 7 = 7. (modp;") for
each prime p, dividing N,

(c¢) for each p, € R, we have min{v,, (i1),...,vp (is),k} = v, n —s—1 > 0,
Pyl E pr | F, and py | G,

(d) for each p, € Sy, we have min{w, (i1),...,vp, (is),k} 21, +1, n—s—12>2,
E =p¥ (modp ™), F = p¥ (modpt), and ptr | G,

(e) for each p, € Sy, we have min{vy, (i1),...,v,.(is), k} Zvr +1, n—s—12>1,
PN E, py | F,and pyr | G,

(f) if 2 € T, then min{vy(iy),...,v2(is), ko — 1} =1 —1,n—s—12>0, 2" | E,
2k | B and 2% | G,

(g9) if 2 € U, then min{vy(iy), ..., va(is), ko — 1} = vy, 20||E, G = 2" (mod 2k0),
and either
(1) 2% | F and w =0 (so u(a) =1) or
(2) F=2" (mod2¥) andn—s—1>w+2 (sou(a) > 2).

There are certain degenerate cases where terms of the form o+t or o™ do not ap-

pear in (3.4); this occurs exactly when conditions (¢)—(g) force F = G =0 (mod N).

The reason for our final comment is that a term of the form a7 %

Sy U U is nonempty, while terms of the form o™ +¢

arises only when
arise only when U is nonempty.

Let ¢ : Doy — DQN/<aN/pfi> = D2pin be the canonical projection. We remark that

under the map o : D3y — D7, Y a) = (p(ar),. .., p(a,)), the images of the representa-
P;

tives in (3.4) agree with the representatives in [3, Theorems 3.1 and 4.2] up to the ordering

of @ ... a®. Thus Theorem 3.1 can be viewed as a generalization of the results in [3].

Before proceeding with the proof of Theorem 3.1, we give two examples to familiarize
the reader with the content of parts (ii)(b)—(g). Suppose N = 225 = 3%2.5% p; = 3, p, = 5,
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n = 2, and consider the block IT1({3,5},0,0,0,0)(1,1)(2,3). Since Sp =S, =T =U =0,
only the conditions in parts (a)—(c) apply; furthermore, there are no terms of the form
o™ or o™, From (ii)(b), we have 0 < 7 < 15, 7 = 2 (mod 3), and 7 = 3 (mod 5), so
7 = 8. From (ii)(c), min{vs(i1),...,v3(is), 2} = 1 and min{wvs(i1),...,vs(is),2} = 1, so
we must have s = 1 and wv3(is) = v5(is) = 1; also, 3 | E and 5 | E, so 15 | E. Finally,
from (ii)(a), 0 < 43 < 225/2. Thus, by (3.4), the equivalence classes in this block are

represented by '
(a15z’ Oé8+158/6),

where ged(15,7) =1, 1 <9< 15/2, and e € Z.

Now, suppose instead that N = 36 = 2232, py = 2, p1 = 3, n = 2, and consider the
block TI({3},0,0,0,{2})(1,2)(0,7). From (ii)(b), we have 0 < 7 < 18, 7 = 0 (mod 2),
and 7 =7 (mod9), so 7 = 16. From (ii)(g), we have 2||E. Now, (ii)(g)(2) would require
that n > 3, so we only need to consider (ii)(g)(1); this condition implies that there are
no terms of the form a™* or a”+“. Moreover, since 2 € U, both terms must be of the
form o’B. Finally, from (ii)(c), we have 3% | £, so E = 18 (mod 36). Thus, the (unique)
equivalence class in this block is represented by

(034, 01%9).
Proof of Theorem 3.1. (i) This is clear.

(ii) First, we observe that different tuples in (3.4) have different combinations of invari-
ants A(a), m(a), o, (a), and u(a) (whenever these invariants are defined for a).
Thus, different tuples in (3.4) are inequivalent.

Next, we show that every a € II(R, Sy, S1,T,U)(v,)(7,) is equivalent to one of the
tuples in (3.4). Since we can use a sequence of Hurwitz moves to shift all the terms
of the form o’ to the front, we may as well assume that a has the form

a= (o, .. . a a3, .. o).
The general idea behind our proof is to write a in the form

3 i’ vr v
a = (O‘Zla CEIC als a7+61 HW‘NPT ﬁ, ey a7+et HW"NPT ﬁ)

Y

and consider the effects of Hurwitz moves on the numbers ey, ..., e; modulo pFr=r

for each prime p, dividing N. To avoid cluttering up expressions, we shall use the
notation [ p¥ to mean Hm N Py in the sequel; if a different product is intended, it
will be specified in the subscript of the product symbol. Note that the existence and
uniqueness of 7 is a direct consequence of the Chinese Remainder Theorem. Because
the case p, = 2 must be handled differently from the case of odd p,, we shall first
prove the theorem for odd values of N, and then show how the proof can be modified
to work for even values of V. Observe that it suffices to prove that we can obtain the
conditions in parts (¢)—(g), since we can then use (2.3) and Lemma 2.1(i) repeatedly
to ensure that part (a) is also satisfied.
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First suppose that N is odd, so that we only need to prove that we can obtain the
conditions in parts (c)—(e). We proceed by induction on ¢, the number of terms of
the form o3 in a. The case t = 1 is trivial. Suppose t = 2. Write a in the form

a = (Ozill, L 70/27 aTte Hp;’f'57 a7 re Hpifrﬂ)'
Note that by the definition of C}” _ ,, we cannot have a € C}’ _ , for any prime

divisor p, of N (because ¢t = 2). Hence, we must have e; # ey (modp,) for every
prime p, € SoUS:. Suppose that p, € R. By the definition of Bfr _, either A(a) # 0
and at least one of v, (i}),. .., v, (), say v,, (i}), is equal to v, or A(a) = 0. First
suppose that we are in the former case. Applying (2.3) and (2.4) multiple times, we

can shift the term o'+ to the right until the last three terms of @ are

(O/% ot Hp?’"ﬁ e Hpﬁrﬂ)
b ) *

If e; = es (modp,), then applying Lemma 2.1(i) to the first two terms yields

(a—i%’ OKT+6/1 Hpvu‘rﬂ’ OKT+62 ler/76>

)

where €| # ey (modp,). Thus we may assume that e; #Z ey (modp,) for all prime
divisors p, of N. Now, by Lemma 2.1(iv), we have

(a7t ler”ﬂ’ e Hpi”ﬂ) ~ (aT+f1 ler”ﬂ’ o T ler”ﬂ) (3.5)
for some f5 such that if p,» is another prime divisor of NV such that pff """ | ey, then
pf,r "7 fy also. If A(a) = 0 instead, then v, = k, by definition of Bbr  and we

obtain (3.5) without any additional work. Repeating this argument for each prime
p dividing N, we have

(a7t I 3, ame e 17 ) ~ (0755, a75).

This completes the case t = 2.

Now assume t > 2. Again, we write @ in the form
-/ -/ VUr Ur
a=(a",. . . o qrrallr g o grredle’ 5)

First consider p, € R. As before, we wish to apply a sequence of Hurwitz moves to
obtain an n-tuple

a — (ozjl, o 7aj37 et 1'[1!)?*57 o o T Hp?*ﬂ’ aT+fth?’"/6) ~ a

such that if p,» is another prime divisor of N such that pff """ | ey, then pff T f

also. Using a similar argument as above, we may assume that e, 1 # e; (mod p,) for
every p, € R, and hence by Lemma 2.1(iv), we have

(aT+€t71 Hpﬁrﬁ’ a7 te l_[p?/g) ~ (a7—+ft—1 Hp?ﬁ’ a7+ftp'ﬁ“"r Hpﬁr/g)
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! Vet

for some f; such that if p,» is another prime divisor of N such that pr | e;, then
]: 7" | f, also. Repeating this argument for each prime p, € R, we have
a= (o/ll, Al aT+e1Hp¥Tﬁ’ e of+etnp:rﬁ)
~ (ozjl, o ozjs, o7 t9 Hpi’"mﬁ’ QT Hpﬁrﬂ’ o7 Tt Hpﬁrﬂ)’
where pFr=vr | g, for every prime p, € R.
Now consider p, € Sy U S;. Assume that g, Z gjo1 = -+ = ¢¢ (modp,). By (2.6)
and Lemma 2.1(iv), we have
(aT+gl Hp¥T57 o o Hp‘r'rﬂ’ Qe [Tpr" 5)
-~ (aT+gf l_[pif’ﬂ’ Qo Hpﬁrﬁ’ o ety 3)
~ (Ofﬂ]{l_[p?ﬁ’ o o 92 Hp?ﬁ’ Q™o Hp?rﬁ’ oo Hp?rﬁ)
~ (a7+9{l_[p¥rﬁ’ LT Hlﬁrﬁ’ o thi1 Hp?ﬂ" ot Hp'ﬁrﬁ)’
for some h; such that if p,» is another prime divisor of N such that pk,' “" | gy, then
]: 7" | hy also. Repeating this argument for each prime p, € Sy U S}, we obtain
a= (o/ll, Al of’LelH”Zrﬁ, e of+etnp:rﬁ)
~ (. ok amt T g e DI TRy — .
If hy,...,hy_q are not all the same modulo p, for any prime divisor p, of N, then
the induction hypothesis applies to b = (o', ..., o, oM 3, a7Hhe-P" o7 6).
So assume that the set I of prime divisors p, of N such that hy = --- = h_; #

0 (mod p,) is nonempty. Let J be the set of prime divisors of N that are not in /.
By the Chinese Remainder Theorem, we can find an integer M satisfying the system
of congruences

M =0 (mod p5*) foreach ps € J,
p=1

M =1 (mod p;) for each p, € I.
pel
PF#Ppr
Write b as (o, ..., s, amtM ke g q7thaller?” 076, Let 2 € Z be such

that x # —h,_; (modp,) for each p, € [ and x = 0 (mod p?*) for each p, € J.
Then, using Lemma 2.1(iii) repeatedly, we have

athiellperr” g ool e g o7 3)

~ (a2 erp” 3, o TR+ M) T, e P 3, o M1, erp” ﬁ)
Y 3.6
Of‘"(h _ota) HPTEIpT ﬁ OzT+(h 1+I+M)Hprelpr ﬁ aT+MHpT€IpTT/6) ( )

(
(
~(
( TJ’_(ht 2+Z‘ HPTEIpT /6 aT—"_(ht 1+x)HPrEIpT ﬁ’a‘rﬁ)‘

~
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If t = 3, use the Chinese Remainder Theorem to choose x such that

1 Py
(hi_; + ) (%) =1 (mod pf—)

T

for each p, € I and = 0 (mod p¥*) for each ps € J. Then the middle term becomes
o where I’ = p¥ (mod pl") for each p, € I. Since Sy C I in this case because
hy —he = 0 (mod p,) for each p, € I, condition (d) holds. Applying (3.5) to the first
two terms in (3.6) for each prime p, € RUS;, we can also get conditions (c) and (e)
to hold. Hence a is equivalent to the tuple in (3.4).

If ¢ > 3, choose x such that z # —h;_;,0 (modp,) for each p, € I. Then the
induction hypothesis applies to

; ;! h! Vr h! . vr
(a1, ... a o™ Mllerr’ g g s llerr g,

.y

! 2 i Uy
at ot ) per i g ot o) [l erpi” g, a’B).

This concludes the induction and completes the proof in the case that N is odd.

Now, we describe how the proof above can be modified to work for even N. If
a € B . for some 1 and 7y, then the technique for primes p, € R carries over
almost exactly to the case p, = 2. In what follows, we concentrate on the case

First observe that the proof for odd N can be carried out in steps: we change terms
in the n-tuple to a” (3 one-by-one, starting from the rightmost element and working
our way left until we reach the third element of the form o’3 from the left. We shall
use a similar approach when N is even, except that we wish to obtain one of the
following two tuples after changing all but the first three elements of the form o'f:

(aT+fl szrflﬁ’ a7 te szr'ﬁ’ o T2 Hpﬁrﬁ’ a’B,...,a"f), if u(a) =1,
t—3

(a7 T g grea Tl 5 o m+hTIE 5 0795, o™ 93,075, ..
u

)
u—2 t—u—1

where e; and e, are odd, f; and fy are even, and ¢ satisfies the congruences

g=0  (mod N/2M),

3.8
g=2" (mod 2M). (3.8)

This can be achieved as follows. Consider the first term from the right that does
not agree with the form mentioned above; let it be o 2I17"" 3. Observe that by the
definition of u(a) and the form of the n-tuples in (3.7), there exists a term of the
form a7 tI1P" 3 where y has different parity from z, occurring before o7 21177 3.
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Using the second equivalence in (2.6), we can shift a”¥I17"" 3 to the right until we

have an adjacent pair
(a7+TI#" g qri=TIrt" g).

Now, using Lemma 2.1(iii), we can find an equivalent pair

(a7t T 3, ar =110 ),
where 2/ [[p% = —2% or 0 (mod 2*) as desired. We can then use Lemma 2.1(iv)
again for all the odd primes p,., as in the case where N is odd, so that the term that
was previously a”#I17"" 8 now has the correct form. Finally, by performing Hurwitz
moves on the 3 leftmost terms, we can ensure that ey, ey, f1, and f5 have the correct
parity.

At this stage, consider the first three terms of the form o3 in the resulting n-tuple.
If u(a) = 1, we want to show that

(ar+f1 Hpirﬂ’ ar+e1 Hpirﬁj a'r-i-fz ler'rﬂ) ~ (Q{T+E7 aT+F’ OéT),

where E' and F satisfy the conditions in Theorem 3.1; if u(a) > 2, we want to show

that
(a7t I_Ip‘r”ﬂ7 artellr” g omth Hp‘r”ﬂ) ~ (@™ o am).

First suppose u(a) = 1. Using the same technique as above, we can obtain
(a7+f1 Hpﬁrﬂ’ o7 Te Hpﬁrﬂ’ o2 szf'ﬁ) ~ (Ozﬂ'f/ﬂ, a”e/ﬁ, OzTﬂ), (39)

where f'is even, €’ is odd, and €’ = p¥ (mod p¥ ™), f' = p¥ (mod pFr) for each p, €
So. Applying (3.5) to the second tuple in (3.9) for every prime p, € RUS; UT UU,
we see that a is equivalent to the tuple in (3.4).

Now suppose u(a) > 2. Notice that in (a7 te Il g gmtellr" g o +HllP" ) we
never have x = y = z (mod p, ) for any p, (because z—y+z = 0 (mod p,.)). Therefore,
using Lemma 2.1(iv) repeatedly to adjust the middle term, we obtain

(a7t Hpif’ﬂ’ a7 tez l_[p‘r”ﬂ7 ot Hpﬁrﬂ)
~ (ot g 0T T H IR g) (3.10)
~ (a7t TP g T II 3 0= F 3)  (using the first equivalence in (2.6))

where ¢’ is odd, f” and f” are even, and f” = 0 (mod p¥ =) for every p, € Sp.
Now, we concentrate on the first two terms (a7+eﬂnp:r B,a™ ”/H”?Tﬁ). Returning
to the definitions of BYr _, C)'_ , and C)’ | (for odd p,), we see that we have

e” # f"” (modp,) for any prime p, dividing N. Therefore, we can use Lemma 2.1(iv)
repeatedly for every prime p, to obtain

(a7—+e” Hp:rﬁ, aT—i—f”' Hp576> ~ (OéT+Eﬁ, OéTﬁ). (311)
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Combining (3.7), (3.10), and (3.11), we obtain
a~ (B a"B,a" 3,070, .. a"CB,a7 B, .. a7 B). (3.12)

Finally, applying (2.6) repeatedly to (™3, F3,a7=%3, ..., a"~%3), we obtain

(OéTﬁ, aT—Fﬂ’ aT—Gﬂ’ o ,OéT_Gﬂ)
~ (aT+F6’ aTﬂ’ aT—Gﬂ’ o 7aT—G/6)
~(@3,a™Y8,a7 3,079, ..., a" ) (3.13)

AT s e

~ (aT—i_Fﬁa O‘T+Gﬁ> BRI aT+Gﬁa Ofﬁ)

Combining (3.12) and (3.13), we see that a is equivalent to an n-tuple of the
form (3.4), as desired. This concludes the proof of the theorem.
U

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. (i) Two n-tuples a, b € A are equivalent if and only if a is a permu-
tation of b.

(i) Two n-tuples a, b € 1I(R, Sy, S1,T,U)(v,)(7.) are equivalent if and only if A(a) =
A(b), m(a) = 7(b), o,(a) = 0,(b) for each odd prime p | N such that a,b € Cl_,
and u(a) = u(b) if 2| N.

4 B,-orbits in Tuples of Dicyclic and Semidihedral
Groups

The results in the previous section can also be applied to classify the B,,-orbits in dicyclic
groups, which are closely related to dihedral groups. The similarity between dihedral
groups and dicyclic groups can be seen from the presentation of the dicyclic group Dicypy
of order 4M:

Dicgyy = (a, B | o® =1, o™ = 3%, Bap™ ' =a™').

Analogous to elements of Doy, each element of Dicyp; can be uniquely written in the form
o', where 0 < i < 2M and 0 < j < 1. It is easy to check that equations (2.1) and (2.2),
and hence (2.3)-(2.6), also hold for Dicsy. In these equations, the only difference between
Dy and Dicyys that affects the Hurwitz action is that the element o has order N in Doy,
but order 2M in Dicypr. If N = 2M, then there is no difference. Therefore, under the
bijection Dyy — Dicgyr, o3 — o3 for 0 < i < 2M, 0 < j < 1, the Hurwitz action on
D}, is identical to that on Dicy,,. It follows that all results in Section 3 continue to hold
with Dy replaced by Dicypy.

Hou [3] determined the B,-orbits in the generalized quaternion group @%. of order
2™ and in D%,.. These two families of groups share the property that for every m > 4,
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there exists a maximal cyclic subgroup of index 2. There are exactly two other families
of groups of order 2 that possess this property. Following Gorenstein [2], we call one of
these groups the semidihedral group and denote it by SDym. It has the presentation

= =1 pag™t =)

We denote the other group by Msm; it has the presentation

om— 1

SDom = (o, B |

M2m = <Og’ﬂ ‘ 0427”71 _ 62 — 17 6046_1 _ agm—2+1>'

In this section, we classify the B,,-orbits in SD3.. and M3j,.. The proofs of our results
are very similar to those in [3] and in Section 3, hence we omit them.

4.1 Byp-orbits in SDZ,

The semidihedral group SDym of order 2™ is defined for any m > 3. When m = 3, SDg
is isomorphic to the abelian group Zs x Z,, so the problem of determining the B, -orbits
in SDxg is trivial. In what follows, we concentrate on the case m > 4. Like the dihedral
group and the dicyclic group, every element of SDom can be uniquely written in the form
'3, where 0 <i< 2™ tand 0<j < 1.

For a = (a"p3%,... a™3%) € SD%,, where 0 < i, < 2™ ! and 0 < jp < 1, let

A(a) = the multiset {min{ik, (2"72 — 1)i, mod 2"} 1 g = 0}
and
v(a) = {ix : jr = 1}.

Let
A={ac SD}. :v(a) =0}

Foreachl1<v<m—1land 0 <7 <2" let
B,,={ac SDy, :min({vy(i) : i € NMa)}U{m —2})=v -1, 0 #~(a) C T+ 2"Z},
where vy(i) is the 2-adic order of i. For each 0 < v <m —2and 0 < 7 < 2, let
¢, ={a € SD}, : min({va(i) : i € Ma)} U{m —2}) > v, y(a) C 7+ 2"Z,
37,7 € T'(a) such that vo(j — j') = v}.
Then
SDp. =2qu | || .. |u| || e

1<v<m—1 or<m—2
0<r<2¥ 0<r<2¥

As in Section 3, it is easy to see that each of A, B, ;, and €, is invariant under the

Hurwitz action, so that it suffices to find a set of representatives of the B,-orbits in each
of A, B, ., and €, ..
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For a = (ahﬁﬁ’ .. .,ainﬁjn) € €, -, where 0 < 4, < 21 and 0 < jp < 1, let
u(a) = #{k‘ : jk =1 and Zk; =T (m0d2v+1)},

Again, it is easy to see that u(a) is an invariant of the Hurwitz action.
The following theorem classifies the B,-orbits in SD3,..

Theorem 4.1. Let m > 4, and let the semidihedral group SDom be partitioned into sets
A, B, ., and &, as above.

(i) The By-orbits in 2 are represented by
(™, ..., a™),
where 0 < iy < -+ < i, < 277L
(i1) Let 1 <v<m—1and 0 <7 <2". The B,-orbits in B, , are represented by
(i, ..., a", a2 B,.a73,...,a"3), (4.1)

where 0 < ip < -+ < iy < 271 4, € {min{i, (2% — 1)imod 27!} 1 0 < i <
271 min{v(iy), ..., e(is),m— 2} =v—1, and 0 < e < 2™ 177,

(117) Let 1 <v<m—2and 0 <7 <2”. The B,-orbits in €, . are represented by

(@™, ..., a, Q™™g a3, QT B a8, a’ ), (4.2)
— ——

u

where 0 < i; < -+ < iy < 2™ 4 € {min{7, (22 — 1)imod 2™ !} : 0 < i <
21 min{ve(iy), ..., 0(is),m — 2} > v, 0 < e < 2" e =1 (mod?2), and
u> 0.

Analogous to Theorem 3.1, different n-tuples in (4.1) have different combinations of
invariants A(a) and 7(a), while different n-tuples in (4.2) have different combinations of
invariants A(a), 7(a), and u(a). This allows us to establish the following criterion for two
n-tuples in SDZ,. to be equivalent.

Corollary 4.2. Let m > 4, and let the semidihedral group SDom be partitioned into sets
A, B, , and €, . as above.

(i) Two n-tuples a,b € A are equivalent if and only if a is a permutation of b.
(1) Two n-tuples a,b € B, . are equivalent if and only if \(a) = A\(b) and w(a) = 7(b).

(11i) Two n-tuples a,b € €, ; are equivalent if and only if AN(a) = A(b), u(a) = u(b), and
m(a) =7n(b).
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4.2 Bg-orbits in M,

Let m > 3. Recall that Mym has the following representation in terms of generators and
relations:

My = (0,0 @®" = # = 1, fag ™! = a2 1),

Like the dihedral group, the dicyclic group, and the semidihedral group, every element of
Moym can be uniquely written in the form o3/, where 0 <i < 2™ ! and 0 < j < 1.
For a = (a7, ... " (3in) € M3, let

_ ) g PR 7S if 7, is even;
®(a) = the multiset{i}, : jr = 0}, where i}, = { ir mod 272 if iy is odd:

and let
U (a) = the multiset {4} : j = 1}, where 7} = i, mod 2" 2.

Then ®(a) and V(a) are invariants of the Hurwitz action on M.
Let

D={ac M, :®a)C2Zand V(a) CT7+2Z for r=0o0r 1} U{a € M3, : ¥(a) =0}.

Theorem 4.3. Let m > 3, and let the group Msom be partitioned into sets ® and its
complement D¢ as above.

(i) The B, -orbits in ® are represented by

(0/1, LAl alhg .,0/”6),

where 0 < s <, 0< i1 < - <ig <2™ L and 0 <igyq <o < iy < 271, subject
to the conditions above.

(11) The B-orbits in D¢ are represented by
(@™, ... o, ot At ot E, L o), (4.3)

where 0 < r < s <n, {i1,...,0.} C 22, {ipy1,...,0s} CT1+2Z,0< 4 < -+ <
Gp <2770 <dppy < oo < i <2777, 0 Sdgpn < v- < dpr < 2772, and
i1 iy < 2m7L

As before, the invariants ®(a), ¥(a) and 7(a) show that distinct n-tuples in (4.3) are
inequivalent. This yields the following criterion for two n-tuples in M3, to be equivalent.

Corollary 4.4. Let m > 3, and let the group Mom be partitioned into sets ® and D¢ as
above.

(i) Two n-tuples a,b € © are equivalent if and only if a is a permutation of b.
(1) Two n-tuples a,b € D¢ are equivalent if and only if P(a) = ®(b), V(a) = ¥(b) and
m(a) = 7w(b).
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