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Abstract

Let D2N be the dihedral group of order 2N , Dic4M the dicyclic group of or-

der 4M , SD2m the semidihedral group of order 2m, and M2m the group of order 2m

with presentation M2m = 〈α, β | α2m−1

= β2 = 1, βαβ−1 = α2m−2+1〉. We classify

the orbits in Dn
2N , Dic

n
4M , SDn

2m , and Mn
2m under the Hurwitz action.

1 Introduction

Let Bn denote the braid group on n strands, which is given by the presentation

Bn = 〈σ1, . . . , σn−1 | σiσj = σjσi, |i − j| > 2; σiσi+1σi = σi+1σiσi+1, 1 6 i 6 n − 2〉.

For an arbitrary group G and n > 2, there is an action of Bn on Gn, called the Hurwitz
action, which is defined by

σi(a1, . . . , an) = (a1, . . . , ai−1, ai+1, a
−1
i+1aiai+1, ai+2, . . . , an)

for every 1 6 i 6 n − 1 and (a1, . . . , an) ∈ Gn. Note that

σ−1
i (a1, . . . , an) = (a1, . . . , ai−1, aiai+1a

−1
i , ai, ai+2, . . . , an).

Hence, if we write a = (a1, . . . , an) ∈ Gn and define π(a) = a1 · · ·an ∈ G, then π(a) is an
invariant of the Hurwitz action on Gn. An action by σi or σ−1

i on Gn is called a Hurwitz
move. Two tuples (a1, . . . , an), (b1, . . . , bn) ∈ Gn are said to be (Hurwitz) equivalent,
denoted (a1, . . . , an) ∼ (b1, . . . , bn), if they lie in the same Bn-orbit.

The problem of classifying the orbits in Gn under the Hurwitz action arose from the
study of braid monodromy factorization (see, e.g., Kulikov and Teicher [5]). Clearly, this
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problem is trivial for any abelian group G: two n-tuples a, b ∈ Gn are equivalent if
and only if one is a permutation of the other. However, there are few results on the
classification of Bn-orbits in Gn for nonabelian groups G. Ben-Itzhak and Teicher [1]
determined all Bn-orbits in Sn

m represented by (t1, . . . , tn), where Sm is the symmetric
group of order m!, each ti is a transposition, and t1 · · · tn = 1. Recently, Hou [3] determined
completely the Bn-orbits in Qn

2m and Dn
2pm, where Q2m is the generalized quaternion group

of order 2m and D2pm is the dihedral group of order 2pm for some prime p. Clearly, if
a1, . . . , an ∈ G generate a finite subgroup, then the Bn-orb! it of (a1, . . . , an) in Gn is
finite. Humphries [4] and Michel [6] proved a partial converse when G is the general
linear group GL(Rn): if s1, . . . , sn ∈ GL(Rn) are reflections such that the Bn-orbit of
(s1, . . . , sn) is finite, then the group generated by s1, . . . , sn is finite.

In this paper, we determine completely the Bn-orbits in Gn for four families of groups
G: the dihedral group D2N of order 2N , the dicyclic group Dic4M of order 4M , the semidi-
hedral group SD2m of order 2m, and the group M2m = 〈α, β | α2m−1

= β2 = 1, βαβ−1 =
α2m−2+1〉 of order 2m. Our method is to find a number of invariants of the Hurwitz action
and show that these invariants completely determine the Hurwitz equivalence classes. The
invariants and the strategies used to find a canonical representative equivalent to each
tuple are essentially the same as those in [3]. The novel element of the present paper is
the idea that when performing a series of Hurwitz moves to normalize a tuple in Dn

2N

with respect to a prime factor of N , we can preserve certain congruence properties with
respect to other factors of N that were obtained in earlier moves.

This paper is organized as follows. In Section 2, we develop some preliminary results
regarding the Hurwitz action on Dn

2N . In Section 3, we classify the orbits in Dn
2N under

the Hurwitz action. In Section 4, we classify the Hurwitz equivalence classes in Dicn
4M ,

SDn
2m , and Mn

2m .

2 The Hurwitz Action on D
n

2N

In this section, we develop some preliminary results regarding the Hurwitz action on Dn
2N .

With the exception of Lemma 2.1(iv), the results presented in this section are similar to
those in [3, Section 2].

We use the following generators and relations for the dihedral group D2N of order 2N :

D2N = 〈α, β | αN = β2 = 1, βαβ−1 = α−1〉.

Each element of D2N can be uniquely written in the form αiβj , where 0 6 i < N and
0 6 j 6 1. Conjugating one element of D2N by another gives

(αkβl)−1(αiβj)(αkβl) = α(−1)l(i−2kj)βj , (2.1)

(αiβj)(αkβl)(αiβj)−1 = α(−1)jk+2ilβl. (2.2)

Therefore, a Hurwitz move in Dn
2N yields one of the following two equivalences:

(· · · , αiβj, αkβl, · · · ) ∼ (· · · , αkβl, α(−1)l(i−2kj)βj, · · · ),

(· · · , αiβj, αkβl, · · · ) ∼ (· · · , α(−1)jk+2ilβl, αiβj, · · · ).
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To direct the reader’s attention to the Hurwitz moves that we consider, we shall occa-
sionally omit common terms from two equivalent n-tuples a, b ∈ Gn if there is a sequence
of moves transforming a to b that does not involve any of those terms. For example,
setting (j, l) = (0, 0), (0, 1), (1, 0), and (1, 1) respectively in the above equivalences and
omitting common terms, we obtain

(αi, αk) ∼ (αk, αi), (2.3)

{
(αi, αkβ) ∼ (αkβ, α−i),
(αi, αkβ) ∼ (αk+2iβ, αi),

(2.4)

{
(αiβ, αk) ∼ (αk, αi−2kβ),
(αiβ, αk) ∼ (α−k, αiβ),

(2.5)

{
(αiβ, αkβ) ∼ (αkβ, α−i+2kβ) = (αi+(k−i)β, αk+(k−i)β),
(αiβ, αkβ) ∼ (α−k+2iβ, αiβ) = (αi−(k−i)β, αk−(k−i)β).

(2.6)

The following lemma sets forth some key equivalences that can be obtained through
a sequence of Hurwitz moves.

Lemma 2.1 (see Hou [3, Lemma 2.1]). (i) (αi, αjβ) ∼ (α−i, αj+2iβ) for all i, j ∈ Z.

(ii) (αiβ, αjβ) ∼ (αi+h(j−i)β, αj+h(j−i)β) for all h, i, j ∈ Z.

(iii) Let p1, . . . , pt be distinct prime divisors of N (not necessarily all the prime divisors
of N) such that pkr

r ‖N for r = 1, . . . , t, and let 0 6 νr 6 kr − 1 for r = 1, . . . , t. Let
e, f ∈ Z such that e 6≡ f (mod pr) for r = 1, . . . , t. Then for all g ∈ Z such that
g ≡ 0 (modN/

∏t
r=1 pkr

r ) and τ ∈ Z, we have

(ατ+e
Qt

r=1 pνr
r β, ατ+f

Qt
r=1 pνr

r β) ∼ (ατ+(e+g)
Qt

r=1 pνr
r β, ατ+(f+g)

Qt
r=1 pνr

r β).

(iv) Let p1, . . . , pt be distinct prime divisors of N (not necessarily all the prime divisors
of N) such that pkr

r ‖N for r = 1, . . . , t, and let 0 6 νr 6 kr − 1 for r = 1, . . . , t.
Then for all e 6≡ f (mod pr), there exists g ∈ Z such that

(a) (ατ+e
Qt

r=1
pνr

r β, ατ+f
Qt

r=1
pνr

r β) ∼ (ατ+(e+g)
Qt

r=1
pνr

r β, ατ+(f+g)
Qt

r=1
pνr

r β),

(b) pkr−νr
r | f + g, and

(c) if pr′ is another prime divisor of N , then f + g ≡ f (mod p
kr′−νr′

r′ ).

In particular, pkr | (f + g)
∏t

r=1 pνr
r , and if pr′ is another prime divisor of N such

that p
kr′

r′ | f
∏t

r=1 pνr
r , then p

kr′

r′ | (f + g)
∏t

r=1 pνr
r .

Proof. (i) We have

(αi, αjβ) ∼ (αjβ, α−i) (using the first equivalence in (2.4))

∼ (α−i, αj+2iβ) (using the first equivalence in (2.5)).
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(ii) This follows from (2.6).

(iii) Setting i = τ + e
∏t

r=1 pνr
r and j = τ + f

∏t
r=1 pνr

r in (ii), we see that it suffices to
find h ∈ Z satisfying h(f − e)

∏t
r=1 pνr

r ≡ g
∏t

r=1 pνr
r (mod N). This can be achieved

by using the Chinese Remainder Theorem to choose h such that

h ≡ g(f − e)−1 (mod pkr−νr

r ) for r = 1, . . . , t,

h ≡ 0 (modN/
∏t

r=1 pkr
r ).

(iv) Setting i = τ + e
∏t

r=1 pνr
r and j = τ + f

∏t
r=1 pνr

r in (ii), we see that it suffices to
find g, h ∈ Z satisfying the following system of congruences:

h(f − e)
t∏

i=1

pνr

r ≡ g
t∏

i=1

pνr

r (modN),

g ≡ −f (mod pkr−νr

r ),

g ≡ 0 (mod p
kr′−νr′

r′ ) for all other primes pr′ dividing N .

This can be achieved by using the Chinese Remainder Theorem to choose h such
that

h ≡ −f(f − e)−1 (mod pkr−νr

r ),

h ≡ 0 (mod p
kr′−νr′

r′ ) for all other primes pr′ dividing N .

It is easy to see that corresponding to any choice of h, there is a unique value of g
modulo N/

∏t
i=1 pνr

r that satisfies the conditions in (iv). This proves the lemma.

3 Bn-orbits in Tuples of Dihedral Groups

In this section, we classify the orbits in Dn
2N under the Hurwitz action. The main idea

behind our proof is as follows. First, we partition Dn
2N into subsets, each of which is

invariant under the Hurwitz action. We then find a number of invariants of the Hurwitz
action and show that these invariants completely determine the equivalence classes within
each subset.

For a = (αi1βj1, . . . , αinβjn) ∈ Dn
2N , where 0 6 ik < N and 0 6 jk 6 1, let

Λ(a) = the multiset {min{ik, N − ik} : jk = 0}

and
Γ(a) = {ik : jk = 1}.

For example, if a = (α12, α11β, α4, α3) ∈ D4
30, then Λ(a) = {3, 4, 3} and Γ(a) = {11}. It

is easy to see that Λ(a) is invariant under each of the Hurwitz moves in (2.3)–(2.6), hence
it is an invariant of the Hurwitz action.
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We fix a notational convention here. If N is odd, we write its prime factorization as
N = pk1

1 · · · pkm
m ; if N is even, we write its prime factorization as N = 2k0pk1

1 · · · pkm
m (i.e.,

we set p0 = 2). Let vpr
(i) denote the pr-adic order of a number i. We partition Dn

2N into
subsets as follows. Let

A = {a ∈ Dn
2N : Γ(a) = ∅}.

For each odd prime divisor pr of N , for each 0 6 νr 6 kr and 0 6 τr < pνr
r , let

Bpr

νr ,τr
= {a ∈ Dn

2N : min({vpr
(i) : i ∈ Λ(a)} ∪ {kr}) = νr, ∅ 6= Γ(a) ⊂ τr + pνr

r Z} ,

and for each 0 6 νr 6 kr − 1 and 0 6 τr < pνr
r , let

Cpr

νr ,τr
= {a ∈ Dn

2N : min({vpr
(i) : i ∈ Λ(a)} ∪ {kr}) > νr + 1, ∅ 6= Γ(a) ⊂ τr + pνr

r Z,

∃j, j′ ∈ Γ(a) such that vpr
(j − j′) = νr} .

Then, for any odd prime divisor pr of N , we have

Dn
2N = A ⊔







⊔

06νr6kr

06τr<pνr
r

Bpr

νr ,τr







⊔







⊔

06νr6kr−1
06τr<pνr

r

Cpr

νr ,τr







. (3.1)

It is easy to check that each of A, Bpr
νr,τr

, and Cpr
νr ,τr

is invariant under the Hurwitz moves
in (2.3)–(2.6). Thus A, Bpr

νr ,τr
, and Cpr

νr ,τr
are invariant under the Hurwitz action.

For a ∈ Cpr
νr ,τr

, collect the components of a of the form αiβ from left to right and let
the result be (αi1β, . . . , αitβ), where 0 6 ik < N . Let es ∈ Zpr

, 1 6 s 6 t, be defined by
is ≡ τr + pνr

r es (mod pνr+1
r ). Define

σpr
(a) =

t∑

s=1

(−1)s−1es.

For example, let N = 135 = 33 · 5, pr = 3, νr = 2, τr = 3, n = 4, and let

a = (α7+32·13β, α32·6, α7+32·2β, α7+32·11β) ∈ C3
2,7.

Then σ3(a) = 13 − 2 + 11 = 1 ∈ Z3. It is easy to see from (2.3)–(2.6) that σ(a) is also
an invariant under the Hurwitz equivalence. This allows us to further partition Cpr

νr ,τr
into

two invariant subsets
Cpr

νr,τr ,0 = {a ∈ Cpr

νr ,τr
: σpr

(a) = 0}

and
Cpr

νr ,τr,1 = {a ∈ Cpr

νr ,τr
: σpr

(a) 6= 0}.

Thus, the partition (3.1) can be further refined into

Dn
2N = A⊔







⊔

06νr6kr

06τ<pνr
r

Bpr

νr ,τr







⊔







⊔

06νr6kr−1
06τ<pνr

r

Cpr

νr ,τr,0







⊔







⊔

06νr6kr−1
06τ<pνr

r

Cpr

νr ,τr,1







(3.2)
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for odd primes pr dividing N .
If N is even, we require some additional definitions. For each 0 6 ν0 6 k0 and

0 6 τ0 < 2ν0, let

B2
ν0,τ0 = {a ∈ Dn

2N : min({v2(i) : i ∈ Λ(a)} ∪ {k0 − 1}) = ν0, ∅ 6= Γ(a) ⊂ τ0 + 2ν0Z} ,

and for each 0 6 ν0 6 k0 − 1 and 0 6 τ0 < 2ν0, let

C2
ν0,τ0

= {a ∈ Dn
2N : min({v2(i) : i ∈ Λ(a)} ∪ {k0 − 1}) > ν0 + 1, ∅ 6= Γ(a) ⊂ τ0 + 2ν0Z

∃j, j′ ∈ Γ(a) such that v2(j − j′) = ν0} .

Then A, B2
ν0,τ0

, and C2
ν0,τ0

are all invariant under the Hurwitz equivalence and

Dn
2N = A ⊔






⊔

06ν06k0

06τ0<2ν0

B2
ν0,τ0




 ⊔






⊔

06ν06k0−1
06τ0<2ν0

C2
ν0,τ0




 . (3.3)

For a = (αi1βj1, . . . , αinβjn) ∈ C2
ν0,τ0

, where 0 6 ik 6 N and 0 6 jk 6 1, let

u(a) = #{k : jk = 1 and ik ≡ τ0 + 2ν0 (mod 2ν0+1)}.

It is easy to check that u(a) is also invariant under the Hurwitz action.
Having set up this framework, we are now ready to define our desired partition P of

Dn
2N . Let Q be the common refinement of the partitions (3.2) as pr varies over all the odd

prime factors of N . If N is odd, then we take P = Q, so that any block of the partition
P is either A or has the form

X p1

ν1,τ1
∩ X p2

ν2,τ2
∩ · · · ∩ X pm

νm,τm
,

where each X pr
νr ,τr

stands for one of Bpr
νr ,τr

, Cpr

νr ,τr ,0, or Cpr

νr ,τr,1. If N is even, we take P to be
the common refinement of Q and (3.3). Let R ⊔ S0 ⊔ S1 ⊔ T ⊔U be a partition of the set
of prime divisors of N , with the restriction that 2 6∈ R ∪ S0 ∪ S1, and either T = U = ∅,
(T, U) = ({2}, ∅), or (T, U) = (∅, {2}). For convenience, we will denote the block

(
⋂

pr∈R

Bpr

νr ,τr

)

∩

(
⋂

pr∈S0

Cpr

νr ,τr ,0

)

∩

(
⋂

pr∈S1

Cpr

νr,τr ,1

)

∩

(
⋂

pr∈T

Bpr

νr ,τr

)

∩

(
⋂

pr∈U

Cpr

νr ,τr

)

by Π(R, S0, S1, T, U)(νr)(τr), where (νr) and (τr) represent vectors that record the num-
bers νr and τr for each prime pr. For example, if p0 = 2, p1 = 3, p2 = 5, and p3 = 7,
then

Π({5, 7}, {3}, ∅, ∅, {2})(1, 2, 1, 1)(1, 8, 4, 0) = C2
1,1 ∩ C3

2,8,0 ∩ B5
1,4 ∩ B7

1,0.

By our remarks above, each block of P is invariant under the Hurwitz action, hence it
suffices to find a set of representatives of the Bn-orbits in A and in each of the blocks
Π(R, S0, S1, T, U)(νr)(τr). This is achieved in Theorem 3.1 below.
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Theorem 3.1. (i) The Bn-orbits in A are represented by

(αi1 , . . . , αin),

where 0 6 i1 6 · · · 6 in < N .

(ii) For each odd prime divisor pr of N , let 0 6 νr 6 kr and 0 6 τi < pνi

i ; if N is even,
further let 1 6 ν0 6 k0 and 0 6 τ0 < 2ν0. The Bn-orbits in Π(R, S0, S1, T, U)(νr)(τr)
are represented by

(αi1 , . . . , αis, ατ+Eβ, ατ+Fβ,

w
︷ ︸︸ ︷

ατ+Gβ, . . . , ατ+Gβ, ατβ, . . . , ατβ
︸ ︷︷ ︸

n−s−1

), (3.4)

where

(a) 0 6 s < n and 0 6 i1 6 · · · 6 is 6 N/2,

(b) τ is the unique integer such that 0 6 τ <
∏

pr|N
pνr

r and τ ≡ τr (mod pνr
r ) for

each prime pr dividing N ,

(c) for each pr ∈ R, we have min{vpr
(i1), . . . , vpr

(is), kr} = νr, n − s − 1 > 0,
pνr

r | E, pkr
r | F , and pkr

r | G,

(d) for each pr ∈ S0, we have min{vpr
(i1), . . . , vpr

(is), kr} > νr + 1, n − s − 1 > 2,
E ≡ pνr

r (mod pνr+1
r ), F ≡ pνr

r (mod pkr
r ), and pkr

r | G,

(e) for each pr ∈ S1, we have min{vpr
(i1), . . . , vpr

(is), kr} > νr + 1, n − s − 1 > 1,
pνr

r ‖E, pkr
r | F , and pkr

r | G,

(f) if 2 ∈ T , then min{v2(i1), . . . , v2(is), k0 − 1} = ν0 − 1, n − s − 1 > 0, 2ν0 | E,
2k0 | F , and 2k0 | G,

(g) if 2 ∈ U , then min{v2(i1), . . . , v2(is), k0 − 1} > ν0, 2ν0‖E, G ≡ 2ν0 (mod 2k0),
and either

(1) 2k0 | F and w = 0 (so u(a) = 1) or

(2) F ≡ 2ν0 (mod 2k0) and n − s − 1 > w + 2 (so u(a) > 2).

There are certain degenerate cases where terms of the form ατ+F or ατ+G do not ap-
pear in (3.4); this occurs exactly when conditions (c)–(g) force F ≡ G ≡ 0 (mod N).

The reason for our final comment is that a term of the form ατ+F arises only when
S0 ∪ U is nonempty, while terms of the form ατ+G arise only when U is nonempty.

Let ϕ : D2N → D2N/〈αN/p
ki
i 〉 ∼= D

2p
ki
i

be the canonical projection. We remark that

under the map ϑ : Dn
2N → Dn

2p
ki
i

, ϑ(a) = (ϕ(a1), . . . , ϕ(an)), the images of the representa-

tives in (3.4) agree with the representatives in [3, Theorems 3.1 and 4.2] up to the ordering
of αi1 , . . . , αis. Thus Theorem 3.1 can be viewed as a generalization of the results in [3].

Before proceeding with the proof of Theorem 3.1, we give two examples to familiarize
the reader with the content of parts (ii)(b)–(g). Suppose N = 225 = 32 ·52, p1 = 3, p2 = 5,
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n = 2, and consider the block Π({3, 5}, ∅, ∅, ∅, ∅)(1, 1)(2, 3). Since S0 = S1 = T = U = ∅,
only the conditions in parts (a)–(c) apply; furthermore, there are no terms of the form
ατ+F or ατ+G. From (ii)(b), we have 0 6 τ < 15, τ ≡ 2 (mod 3), and τ ≡ 3 (mod 5), so
τ = 8. From (ii)(c), min{v3(i1), . . . , v3(is), 2} = 1 and min{v5(i1), . . . , v5(is), 2} = 1, so
we must have s = 1 and v3(is) = v5(is) = 1; also, 3 | E and 5 | E, so 15 | E. Finally,
from (ii)(a), 0 6 i1 6 225/2. Thus, by (3.4), the equivalence classes in this block are
represented by

(α15i, α8+15eβ),

where gcd(15, i) = 1, 1 6 i 6 15/2, and e ∈ Z.
Now, suppose instead that N = 36 = 22 · 32, p0 = 2, p1 = 3, n = 2, and consider the

block Π({3}, ∅, ∅, ∅, {2})(1, 2)(0, 7). From (ii)(b), we have 0 6 τ < 18, τ ≡ 0 (mod 2),
and τ ≡ 7 (mod 9), so τ = 16. From (ii)(g), we have 2‖E. Now, (ii)(g)(2) would require
that n > 3, so we only need to consider (ii)(g)(1); this condition implies that there are
no terms of the form ατ+F or ατ+G. Moreover, since 2 ∈ U , both terms must be of the
form αiβ. Finally, from (ii)(c), we have 32 | E, so E ≡ 18 (mod 36). Thus, the (unique)
equivalence class in this block is represented by

(α34β, α16β).

Proof of Theorem 3.1. (i) This is clear.

(ii) First, we observe that different tuples in (3.4) have different combinations of invari-
ants Λ(a), π(a), σpr

(a), and u(a) (whenever these invariants are defined for a).
Thus, different tuples in (3.4) are inequivalent.

Next, we show that every a ∈ Π(R, S0, S1, T, U)(νr)(τr) is equivalent to one of the
tuples in (3.4). Since we can use a sequence of Hurwitz moves to shift all the terms
of the form αi to the front, we may as well assume that a has the form

a = (αi′
1, . . . , αi′s, αi′s+1β, . . . , αi′nβ).

The general idea behind our proof is to write a in the form

a = (αi′
1 , . . . , αi′s, ατ+e1

Q

pr |N
pνr

r β, . . . , ατ+et

Q

pr |N
pνr

r β)

and consider the effects of Hurwitz moves on the numbers e1, . . . , et modulo pkr−νr
r

for each prime pr dividing N . To avoid cluttering up expressions, we shall use the
notation

∏
pνr

r to mean
∏

pr |N
pνr

r in the sequel; if a different product is intended, it
will be specified in the subscript of the product symbol. Note that the existence and
uniqueness of τ is a direct consequence of the Chinese Remainder Theorem. Because
the case pr = 2 must be handled differently from the case of odd pr, we shall first
prove the theorem for odd values of N , and then show how the proof can be modified
to work for even values of N . Observe that it suffices to prove that we can obtain the
conditions in parts (c)–(g), since we can then use (2.3) and Lemma 2.1(i) repeatedly
to ensure that part (a) is also satisfied.
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First suppose that N is odd, so that we only need to prove that we can obtain the
conditions in parts (c)–(e). We proceed by induction on t, the number of terms of
the form αiβ in a. The case t = 1 is trivial. Suppose t = 2. Write a in the form

a = (αi′
1, . . . , αi′s, ατ+e1

Q

pνr
r β, ατ+e2

Q

pνr
r β).

Note that by the definition of Cpr

νr ,τr,0, we cannot have a ∈ Cpr

νr,τr ,0 for any prime
divisor pr of N (because t = 2). Hence, we must have e1 6≡ e2 (mod pr) for every
prime pr ∈ S0∪S1. Suppose that pr ∈ R. By the definition of Bpr

νr ,τr
, either Λ(a) 6= ∅

and at least one of vpr
(i′1), . . . , vpr

(i′s), say vpr
(i′k), is equal to νr, or Λ(a) = ∅. First

suppose that we are in the former case. Applying (2.3) and (2.4) multiple times, we
can shift the term αi′

k to the right until the last three terms of a are

(αi′
k , ατ+e1

Q

pνr
r β, ατ+e2

Q

pνr
r β).

If e1 ≡ e2 (mod pr), then applying Lemma 2.1(i) to the first two terms yields

(α−i′
k , ατ+e′

1

Q

pνr
r β, ατ+e2

Q

pνr
r β),

where e′1 6≡ e2 (mod pr). Thus we may assume that e1 6≡ e2 (mod pr) for all prime
divisors pr of N . Now, by Lemma 2.1(iv), we have

(ατ+e1

Q

pνr
r β, ατ+e2

Q

pνr
r β) ∼ (ατ+f1

Q

pνr
r β, ατ+f2pkr−νr

r

Q

pνr
r β) (3.5)

for some f2 such that if pr′ is another prime divisor of N such that p
kr′−νr′

r′ | e2, then

p
kr′−νr′

r′ | f2 also. If Λ(a) = ∅ instead, then νr = kr by definition of Bpr
νr ,τr

and we
obtain (3.5) without any additional work. Repeating this argument for each prime
pr dividing N , we have

(ατ+e1

Q

pνr
r β, ατ+e2

Q

pνr
r β) ∼ (ατ+Eβ, ατβ).

This completes the case t = 2.

Now assume t > 2. Again, we write a in the form

a = (αi′1, . . . , αi′s, ατ+e1

Q

pνr
r β, . . . , ατ+et

Q

pνr
r β).

First consider pr ∈ R. As before, we wish to apply a sequence of Hurwitz moves to
obtain an n-tuple

a
′ = (αj1, . . . , αjs, ατ+f1

Q

pνr
r β, . . . , ατ+ft−1

Q

pνr
r β, ατ+ft

Q

pνr
r β) ∼ a

such that if pr′ is another prime divisor of N such that p
kr′−νr′

r′ | et, then p
kr′−νr′

r′ | ft

also. Using a similar argument as above, we may assume that et−1 6≡ et (mod pr) for
every pr ∈ R, and hence by Lemma 2.1(iv), we have

(ατ+et−1

Q

pνr
r β, ατ+et

Q

pνr
r β) ∼ (ατ+ft−1

Q

pνr
r β, ατ+ftp

kr−νr
r

Q

pνr
r β)
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for some ft such that if pr′ is another prime divisor of N such that p
kr′−νr′

r′ | et, then

p
kr′−νr′

r′ | ft also. Repeating this argument for each prime pr ∈ R, we have

a = (αi′
1, . . . , αi′s, ατ+e1

Q

pνr
r β, . . . , ατ+et

Q

pνr
r β)

∼ (αj1, . . . , αjs, ατ+g1

Q

pνr
r g1β, . . . , ατ+gt−1

Q

pνr
r β, ατ+gt

Q

pνr
r β),

where pkr−νr
r | gt for every prime pr ∈ R.

Now consider pr ∈ S0 ∪ S1. Assume that gl 6≡ gl+1 ≡ · · · ≡ gt (mod pr). By (2.6)
and Lemma 2.1(iv), we have

(ατ+gl

Q

pνr
r β, ατ+gl+1

Q

pνr
r β, . . . , ατ+gt

Q

pνr
r β)

∼ (ατ+g′
l

Q

pνr
r β, ατ+gl

Q

pνr
r β, . . . , ατ+gt

Q

pνr
r β)

∼ · · ·

∼ (ατ+g′
l

Q

pνr
r β, . . . , ατ+g′t−2

Q

pνr
r β, ατ+gl

Q

pνr
r β, ατ+gt

Q

pνr
r β)

∼ (ατ+g′
l

Q

pνr
r β, . . . , ατ+g′t−2

Q

pνr
r β, ατ+ht−1

Q

pνr
r β, ατ+ht

Q

pkr
r β),

for some ht such that if pr′ is another prime divisor of N such that p
kr′−νr′

r′ | gt, then

p
kr′−νr′

r′ | ht also. Repeating this argument for each prime pr ∈ S0 ∪ S1, we obtain

a = (αi′
1, . . . , αi′s, ατ+e1

Q

pνr
r β, . . . , ατ+et

Q

pνr
r β)

∼ (αj1, . . . , αjs, ατ+h1

Q

pνr
r β, . . . , ατ+ht−1

Q

pνr
r , ατβ) = b.

If h1, . . . , ht−1 are not all the same modulo pr for any prime divisor pr of N , then
the induction hypothesis applies to b = (αj1, . . . , αjs, ατ+h1pνr

r β, . . . , ατ+ht−1pνr
r , ατβ).

So assume that the set I of prime divisors pr of N such that h1 ≡ · · · ≡ ht−1 6≡
0 (mod pr) is nonempty. Let J be the set of prime divisors of N that are not in I.
By the Chinese Remainder Theorem, we can find an integer M satisfying the system
of congruences

M ≡ 0 (mod pks

s ) for each ps ∈ J,

M
∏

p∈I
p 6=pr

p ≡ 1 (mod pkr

r ) for each pr ∈ I.

Write b as (αj1, . . . , αjs, ατ+h′
1

Q

r∈I pνr
r β, . . . , ατ+h′

t−1

Q

r∈I pνr
r , ατβ). Let x ∈ Z be such

that x 6≡ −h′
t−1 (mod pr) for each pr ∈ I and x ≡ 0 (mod pks

s ) for each ps ∈ J .
Then, using Lemma 2.1(iii) repeatedly, we have

(ατ+h′
t−2

Q

pr∈I pνr
r β, ατ+h′

t−1

Q

pr∈I pνr
r β, ατβ)

∼ (ατ+h′
t−2

Q

pr∈I pνr
r β, ατ+(h′

t−1
+M)

Q

pr∈I pνr
r β, ατ+M

Q

pr∈I pνr
r β)

∼ (ατ+(h′
t−2

+x)
Q

pr∈I pνr
r β, ατ+(h′

t−1
+x+M)

Q

pr∈I pνr
r β, ατ+M

Q

pr∈I pνr
r β)

∼ (ατ+(h′
t−2+x)

Q

pr∈I pνr
r β, ατ+(h′

t−1+x)
Q

pr∈I pνr
r β, ατβ).

(3.6)
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If t = 3, use the Chinese Remainder Theorem to choose x such that

(h′
t−1 + x)

(∏

pr′∈I p
νr′

r′

pνr
r

)

≡ 1 (mod pkr−νr

r )

for each pr ∈ I and x ≡ 0 (mod pks
s ) for each ps ∈ J . Then the middle term becomes

ατ+F ′
, where F ′ ≡ pνr

r (mod pkr
r ) for each pr ∈ I. Since S0 ⊆ I in this case because

h1 −h2 ≡ 0 (mod pr) for each pr ∈ I, condition (d) holds. Applying (3.5) to the first
two terms in (3.6) for each prime pr ∈ R∪S1, we can also get conditions (c) and (e)
to hold. Hence a is equivalent to the tuple in (3.4).

If t > 3, choose x such that x 6≡ −h′
t−1, 0 (mod pr) for each pr ∈ I. Then the

induction hypothesis applies to

(αi′1 , . . . , αi′s, ατ+h′
1

Q

pr∈I pνr
r β, . . . , ατ+h′

t−3

Q

pr∈I pνr
r β,

ατ+(h′
t−2+x)

Q

pr∈I pνr
r β, ατ+(h′

t−1+x)
Q

pr∈I pνr
r β, ατβ).

This concludes the induction and completes the proof in the case that N is odd.

Now, we describe how the proof above can be modified to work for even N . If
a ∈ B2

ν0,τ0
for some ν0 and τ0, then the technique for primes pr ∈ R carries over

almost exactly to the case pr = 2. In what follows, we concentrate on the case
a ∈ C2

ν0,τ0
.

First observe that the proof for odd N can be carried out in steps: we change terms
in the n-tuple to ατβ one-by-one, starting from the rightmost element and working
our way left until we reach the third element of the form αiβ from the left. We shall
use a similar approach when N is even, except that we wish to obtain one of the
following two tuples after changing all but the first three elements of the form αiβ:







(ατ+f1

Q

pνr
r f1β, ατ+e1

Q

pνr
r β, ατ+f2

Q

pνr
r β, ατβ, . . . , ατβ

︸ ︷︷ ︸

t−3

), if u(a) = 1,

(ατ+e1

Q

pνr
r β, ατ+e2

Q

pνr
r β, ατ+f1

Q

pνr
r β, ατ−gβ, . . . , ατ−gβ

︸ ︷︷ ︸

u−2

, ατβ, . . . , ατβ
︸ ︷︷ ︸

t−u−1

),

if u(a) > 2,
(3.7)

where e1 and e2 are odd, f1 and f2 are even, and g satisfies the congruences

g ≡ 0 (mod N/2k0),

g ≡ 2ν0 (mod 2k0).
(3.8)

This can be achieved as follows. Consider the first term from the right that does
not agree with the form mentioned above; let it be ατ+z

Q

pνr
r β. Observe that by the

definition of u(a) and the form of the n-tuples in (3.7), there exists a term of the
form ατ+y

Q

pνr
r β, where y has different parity from z, occurring before ατ+z

Q

pνr
r β.
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Using the second equivalence in (2.6), we can shift ατ+y
Q

pνr
r β to the right until we

have an adjacent pair
(ατ+y

Q

pνr
r β, ατ+z

Q

pνr
r β).

Now, using Lemma 2.1(iii), we can find an equivalent pair

(ατ+y′
Q

pνr
r β, ατ+z′

Q

pνr
r β),

where z′
∏

pνr
r ≡ −2ν0 or 0 (mod 2k0) as desired. We can then use Lemma 2.1(iv)

again for all the odd primes pr, as in the case where N is odd, so that the term that
was previously ατ+z

Q

pνr
r β now has the correct form. Finally, by performing Hurwitz

moves on the 3 leftmost terms, we can ensure that e1, e2, f1, and f2 have the correct
parity.

At this stage, consider the first three terms of the form αiβ in the resulting n-tuple.
If u(a) = 1, we want to show that

(ατ+f1

Q

pνr
r β, ατ+e1

Q

pνr
r β, ατ+f2

Q

pνr
r β) ∼ (ατ+E, ατ+F , ατ),

where E and F satisfy the conditions in Theorem 3.1; if u(a) > 2, we want to show
that

(ατ+e1

Q

pνr
r β, ατ+e2

Q

pνr
r β, ατ+f1

Q

pνr
r β) ∼ (ατ+E, ατ+F , ατ ).

First suppose u(a) = 1. Using the same technique as above, we can obtain

(ατ+f1

Q

pνr
r β, ατ+e1

Q

pνr
r β, ατ+f2

Q

pνr
r β) ∼ (ατ+f ′

β, ατ+e′β, ατβ), (3.9)

where f ′ is even, e′ is odd, and e′ ≡ pνr
r (mod pνr+1

r ), f ′ ≡ pνr
r (mod pkr

r ) for each pr ∈
S0. Applying (3.5) to the second tuple in (3.9) for every prime pr ∈ R∪S1 ∪ T ∪U ,
we see that a is equivalent to the tuple in (3.4).

Now suppose u(a) > 2. Notice that in (ατ+e1

Q

pνr
r β, ατ+e2

Q

pνr
r β, ατ+f1

Q

pνr
r β), we

never have x ≡ y ≡ z (mod pr) for any pr (because x−y+z ≡ 0 (mod pr)). Therefore,
using Lemma 2.1(iv) repeatedly to adjust the middle term, we obtain

(ατ+e1

Q

pνr
r β, ατ+e2

Q

pνr
r β, ατ+f1

Q

pνr
r β)

∼ (ατ+e′′
Q

pνr
r β, ατ−Fβ, ατ+f ′′

Q

pνr
r β)

∼ (ατ+e′′
Q

pνr
r β, ατ+f ′′′

Q

pνr
r β, ατ−Fβ) (using the first equivalence in (2.6))

(3.10)

where e′′ is odd, f ′′ and f ′′′ are even, and f ′′′ ≡ 0 (mod pkr−νr
r ) for every pr ∈ S0.

Now, we concentrate on the first two terms (ατ+e′′
Q

pνr
r β, ατ+f ′′′

Q

pνr
r β). Returning

to the definitions of Bpr
νr ,τr

, Cpr

νr ,τr,0, and Cpr

νr,τr ,1 (for odd pr), we see that we have
e′′ 6≡ f ′′′ (mod pr) for any prime pr dividing N . Therefore, we can use Lemma 2.1(iv)
repeatedly for every prime pr to obtain

(ατ+e′′
Q

pνr
r β, ατ+f ′′′

Q

pνr
r β) ∼ (ατ+Eβ, ατβ). (3.11)
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Combining (3.7), (3.10), and (3.11), we obtain

a ∼ (ατ+Eβ, ατβ, ατ−Fβ, ατ−Gβ, . . . , ατ−Gβ, ατβ, . . . , ατβ). (3.12)

Finally, applying (2.6) repeatedly to (ατβ, ατ−Fβ, ατ−Gβ, . . . , ατ−Gβ), we obtain

(ατβ, ατ−Fβ, ατ−Gβ, . . . , ατ−Gβ)

∼ (ατ+Fβ, ατβ, ατ−Gβ, . . . , ατ−Gβ)

∼ (ατ+Fβ, ατ+Gβ, ατβ, ατ−Gβ, . . . , ατ−Gβ)

∼ · · ·

∼ (ατ+Fβ, ατ+Gβ, . . . , ατ+Gβ, ατβ)

(3.13)

Combining (3.12) and (3.13), we see that a is equivalent to an n-tuple of the
form (3.4), as desired. This concludes the proof of the theorem.

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. (i) Two n-tuples a, b ∈ A are equivalent if and only if a is a permu-
tation of b.

(ii) Two n-tuples a, b ∈ Π(R, S0, S1, T, U)(νr)(τr) are equivalent if and only if Λ(a) =
Λ(b), π(a) = π(b), σp(a) = σp(b) for each odd prime p | N such that a, b ∈ Cp

ν,τ ,
and u(a) = u(b) if 2 | N .

4 Bn-orbits in Tuples of Dicyclic and Semidihedral

Groups

The results in the previous section can also be applied to classify the Bn-orbits in dicyclic
groups, which are closely related to dihedral groups. The similarity between dihedral
groups and dicyclic groups can be seen from the presentation of the dicyclic group Dic4M

of order 4M :
Dic4M = 〈α, β | α2M = 1, αM = β2, βαβ−1 = α−1〉.

Analogous to elements of D2N , each element of Dic4M can be uniquely written in the form
αiβj, where 0 6 i < 2M and 0 6 j 6 1. It is easy to check that equations (2.1) and (2.2),
and hence (2.3)–(2.6), also hold for Dic4M . In these equations, the only difference between
D2N and Dic4M that affects the Hurwitz action is that the element α has order N in D2N ,
but order 2M in Dic4M . If N = 2M , then there is no difference. Therefore, under the
bijection D4M → Dic4M , αiβj 7→ αiβj for 0 6 i < 2M , 0 6 j 6 1, the Hurwitz action on
Dn

4M is identical to that on Dicn
4M . It follows that all results in Section 3 continue to hold

with D4M replaced by Dic4M .
Hou [3] determined the Bn-orbits in the generalized quaternion group Qn

2m of order
2m and in Dn

2m . These two families of groups share the property that for every m > 4,
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there exists a maximal cyclic subgroup of index 2. There are exactly two other families
of groups of order 2m that possess this property. Following Gorenstein [2], we call one of
these groups the semidihedral group and denote it by SD2m . It has the presentation

SD2m = 〈α, β | α2m−1

= β2 = 1, βαβ−1 = α2m−2−1〉.

We denote the other group by M2m ; it has the presentation

M2m = 〈α, β | α2m−1

= β2 = 1, βαβ−1 = α2m−2+1〉.

In this section, we classify the Bn-orbits in SDn
2m and Mn

2m . The proofs of our results
are very similar to those in [3] and in Section 3, hence we omit them.

4.1 Bn-orbits in SDn

2m

The semidihedral group SD2m of order 2m is defined for any m > 3. When m = 3, SD8

is isomorphic to the abelian group Z2 × Z4, so the problem of determining the Bn-orbits
in SD8 is trivial. In what follows, we concentrate on the case m > 4. Like the dihedral
group and the dicyclic group, every element of SD2m can be uniquely written in the form
αiβj, where 0 6 i < 2m−1 and 0 6 j 6 1.

For a = (αi1βj1, . . . , αinβjn) ∈ SDn
2m , where 0 6 ik < 2m−1 and 0 6 jk 6 1, let

λ(a) = the multiset
{
min{ik, (2

m−2 − 1)ik mod 2m−1} : jk = 0
}

and
γ(a) = {ik : jk = 1}.

Let
A = {a ∈ SDn

2m : γ(a) = ∅}.

For each 1 6 ν 6 m − 1 and 0 6 τ < 2ν , let

Bν,τ = {a ∈ SDn
2m : min({v2(i) : i ∈ λ(a)} ∪ {m − 2}) = ν − 1, ∅ 6= γ(a) ⊂ τ + 2ν

Z} ,

where v2(i) is the 2-adic order of i. For each 0 6 ν 6 m − 2 and 0 6 τ < 2ν , let

Cν,τ = {a ∈ SDn
2m : min({v2(i) : i ∈ λ(a)} ∪ {m − 2}) > ν, γ(a) ⊂ τ + 2ν

Z,

∃j, j′ ∈ Γ(a) such that v2(j − j′) = ν} .

Then

SDn
2m = A ⊔






⊔

16ν6m−1
06τ<2ν

Bν,τ




 ⊔






⊔

06ν6m−2
06τ<2ν

Cν,τ




 .

As in Section 3, it is easy to see that each of A, Bν,τ , and Cν,τ is invariant under the
Hurwitz action, so that it suffices to find a set of representatives of the Bn-orbits in each
of A, Bν,τ , and Cν,τ .
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For a = (αi1βj1, . . . , αinβjn) ∈ Cν,τ , where 0 6 ik < 2m−1 and 0 6 jk 6 1, let

u(a) = #{k : jk = 1 and ik ≡ τ (mod 2v+1)}.

Again, it is easy to see that u(a) is an invariant of the Hurwitz action.
The following theorem classifies the Bn-orbits in SDn

2m .

Theorem 4.1. Let m > 4, and let the semidihedral group SD2m be partitioned into sets
A, Bν,τ , and Cν,τ as above.

(i) The Bn-orbits in A are represented by

(αi1 , . . . , αin),

where 0 6 i1 6 · · · 6 in < 2m−1.

(ii) Let 1 6 ν 6 m − 1 and 0 6 τ < 2ν. The Bn-orbits in Bν,τ are represented by

(αi1, . . . , αis, ατ+2νeβ, ατβ, . . . , ατβ), (4.1)

where 0 6 i1 6 · · · 6 is < 2m−1, ik ∈ {min{i, (2m−2 − 1)i mod 2m−1} : 0 6 i 6

2m−1}, min{ν2(i1), . . . , ν2(is), m − 2} = ν − 1, and 0 6 e < 2m−1−ν.

(iii) Let 1 6 ν 6 m − 2 and 0 6 τ < 2ν. The Bn-orbits in Cν,τ are represented by

(αi1, . . . , αis, ατ+2νeβ, ατ+2ν

β, . . . , ατ+2ν

β, ατβ, . . . , ατβ
︸ ︷︷ ︸

u

), (4.2)

where 0 6 i1 6 · · · 6 is < 2m−1, ik ∈ {min{i, (2m−2 − 1)i mod 2m−1} : 0 6 i 6

2m−1}, min{ν2(i1), . . . , ν2(is), m − 2} > ν, 0 6 e < 2m−1−ν , e ≡ 1 (mod 2), and
u > 0.

Analogous to Theorem 3.1, different n-tuples in (4.1) have different combinations of
invariants λ(a) and π(a), while different n-tuples in (4.2) have different combinations of
invariants λ(a), π(a), and u(a). This allows us to establish the following criterion for two
n-tuples in SDn

2m to be equivalent.

Corollary 4.2. Let m > 4, and let the semidihedral group SD2m be partitioned into sets
A, Bν,τ , and Cν,τ as above.

(i) Two n-tuples a, b ∈ A are equivalent if and only if a is a permutation of b.

(ii) Two n-tuples a, b ∈ Bν,τ are equivalent if and only if λ(a) = λ(b) and π(a) = π(b).

(iii) Two n-tuples a, b ∈ Cν,τ are equivalent if and only if λ(a) = λ(b), u(a) = u(b), and
π(a) = π(b).
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4.2 Bn-orbits in M
n

2m

Let m > 3. Recall that M2m has the following representation in terms of generators and
relations:

M2m = 〈α, β | α2m−1

= β2 = 1, βαβ−1 = α2m−2+1〉.

Like the dihedral group, the dicyclic group, and the semidihedral group, every element of
M2m can be uniquely written in the form αiβj, where 0 6 i < 2m−1 and 0 6 j 6 1.

For a = (αi1βj1, . . . , αinβjn) ∈ Mn
2m , let

Φ(a) = the multiset{i′k : jk = 0}, where i′k =

{
ik, if ik is even;
ik mod 2m−2, if ik is odd;

and let
Ψ(a) = the multiset{i′′k : jk = 1}, where i′′k = ik mod 2m−2.

Then Φ(a) and Ψ(a) are invariants of the Hurwitz action on Mn
2m .

Let

D = {a ∈ Mn
2m : Φ(a) ⊂ 2Z and Ψ(a) ⊂ τ + 2Z for τ = 0 or 1} ∪ {a ∈ Mn

2m : Ψ(a) = ∅}.

Theorem 4.3. Let m > 3, and let the group M2m be partitioned into sets D and its
complement Dc as above.

(i) The Bn-orbits in D are represented by

(αi1, . . . , αis, αis+1β, . . . , αinβ),

where 0 6 s 6 n, 0 6 i1 6 · · · 6 is < 2m−1, and 0 6 is+1 6 · · · 6 in < 2m−1, subject
to the conditions above.

(ii) The Bn-orbits in Dc are represented by

(αi1, . . . , αir , αir+1, . . . , αis, αis+1β, . . . , αinβ), (4.3)

where 0 6 r 6 s < n, {i1, . . . , ir} ⊂ 2Z, {ir+1, . . . , is} ⊂ 1 + 2Z, 0 6 i1 6 · · · 6

ir < 2m−1, 0 6 ir+1 6 · · · 6 is < 2m−2, 0 6 is+1 6 · · · 6 in−1 6 2m−2, and
in−1 6 in < 2m−1.

As before, the invariants Φ(a), Ψ(a) and π(a) show that distinct n-tuples in (4.3) are
inequivalent. This yields the following criterion for two n-tuples in Mn

2m to be equivalent.

Corollary 4.4. Let m > 3, and let the group M2m be partitioned into sets D and Dc as
above.

(i) Two n-tuples a, b ∈ D are equivalent if and only if a is a permutation of b.

(ii) Two n-tuples a, b ∈ Dc are equivalent if and only if Φ(a) = Φ(b), Ψ(a) = Ψ(b) and
π(a) = π(b).
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