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Abstract

We elaborate upon a bijection discovered by Cools, Draisma, Payne, and Robeva
(2012) between the set of rectangular standard Young tableaux and the set of equiv-
alence classes of chip configurations on certain metric graphs under the relation of
linear equivalence. We present an explicit formula for computing the v0-reduced di-
visors (representatives of the equivalence classes) associated to given tableaux, and
use this formula to prove (i) evacuation of tableaux corresponds (under the bijec-
tion) to reflecting the metric graph, and (ii) conjugation of the tableaux corresponds
to taking the Riemann-Roch dual of the divisor.

Keywords: Metric graphs; Tropical geometry; Divisors on graphs; Chip-firing;
Young tableaux; Evacuation

1 Introduction

In [4], Baker reduces the Brill-Noether Theorem, which concerns linear equivalence classes
of divisors on a normal smooth projective curve X of genus g, to an analogous statement
regarding linear equivalence classes of divisors on certain abstract tropical curves. In [5],
Cools, Draisma, Payne, and Robeva then use this reduction to provide a tropical proof of
the Brill-Noether Theorem valid over algebraically closed fields of any characteristic.
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The abstract tropical curves in question are compact metric graphs Γg, illustrated in
Figure 1, consisting of a chain of g concatenated loops and designated vertices {v0, . . . , vg}
such that the edge lengths (`i,mi) satisfy a certain genericity condition.

v0 v1 vgvg−1
ℓ1

m1

ℓg

mg

γ1 γ2 γ3 γg

Figure 1: A metric graph Γg together with its designated vertices and edge lengths.

In the course of their proof, Cools et al. find a bijection from rectangular standard
Young tableaux to the linear equivalence classes of rank r degree d divisors on Γg that
satisfy g = (g−d+r)(r+1). This bijection raises the question of how natural operations on
rectangular standard Young tableaux, such as evacuation and conjugation (i.e. transpose),
translate for divisors on generic metric graphs Γg. In this paper, we prove that evacuation
reflects the generic graph Γg and that conjugation exchanges a divisor c with its Riemann-
Roch dual K − c. Note that in this paper we only focus on the bijection aspect of the
deep result of [5], and leave other applications for future work.

In Section 2 we review both the background material necessary to understand the
bijection due to Cools et al. and the bijection itself. Given our combinatorial goal,
our presentation of their combinatorial results differs from the one in their paper. In
particular, we reformulate their theorem [5, Theorem 1.4] as a specification of an algorithm
for computing ranks of divisors on the graphs Γg. In this formulation, their bijection
follows as a property of that algorithm.

In Section 3 we state and prove our first result, Theorem 24, equating evacuation
and reflection, by providing formulas for the bijection and its compositions with these
two operations. In Section 4, we then discuss our second result, Theorem 39, equating
conjugation of tableaux to the map c 7→ K − c on divisor classes.

Before reading Sections 3 and 4, the reader familiar with the combinatorics of [5] will
need to read only Lemma 9 and Subsection 2.3, in which we introduce the notation that
we use to prove our main results.

2 The bijection φ of Cools et al.

In this section we will review the theory of divisors on metric graphs, and the results that
go into the derivation of the bijection of Cools et al. For a more detailed exposition on
metric graphs, we refer the reader to [8, 2], which our exposition partially follows. For an
exposition of the tropical proof of the Brill-Noether theorem, we recommend the original
paper [5].
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2.1 Basic notions of compact metric graphs and their divisors

In general, a metric graph Γ is a complete metric space such that every point x ∈ Γ is of
some valence n ∈ N, meaning that there exists an ε-ball centered at x isometric to the
star-shaped metric subspace V (n, ε) = {tei kn2π : 0 6 t < ε, k ∈ Z} ⊂ C endowed with the
path metric.

A model of a compact metric graph Γ is a finite weighted multigraph without loops
G such that its vertex set V , which is a finite subset of Γ, satisfies the property that
the connected components of Γ \ V are isometric to open intervals. The weighted edge
multiset E of G is uniquely determined by the set of G’s vertices as follows. For each
connected component of Γ \ V whose boundary points in Γ are precisely {v, w} ⊂ V , we
add an edge between v and w of weight equal to the length of the isometric open interval1.
In particular, the designated vertices {v0, . . . , vn} give one model for the compact metric
graph Γg (illustrated in Figure 1), but that is not the only possible model, as illustrated
in Figure 2.

Figure 2: Two other models for the compact metric graph Γ2.

The genus g of a compact metric graph Γ can be defined to be |E| − |V | + k where
(V,E) = G is a model of Γ and k is the number of connected components. It is easy to
show that given two models G1 = (V1, E1) and G2 = (V2, E2), both give the same genus
as the model G3 = (V1 ∪ V2, E3). In particular, the genus of the graphs Γg is precisely g.

A divisor on a compact metric graph Γ is an element of the free abelian group Div(Γ)
generated by the points of Γ. There is nothing deep about the group of divisors; the
deep analogy between the theory of divisors on compact metric graphs and the theory
of divisors on Riemann surfaces comes from the definitions of rational functions on Γ,
their orders at points on Γ, and the consequent notion of equivalence of divisors, which
is strong enough for an analogue of the Riemann-Roch theorem to hold (the so-called
Tropical Riemann-Roch Theorem).

A rational function f on a compact metric graph Γ is a continuous function f : Γ→ R
that is piecewise linear with integer slopes in the following sense: there exists a model
Gf of Γ such that the restriction of f to each edge is a linear function with integer slope.
We set the order of f at x, ordx(f), to be 0 if x is not a vertex of Gf , and otherwise
we set ordx(f) to be the sum of the outgoing slopes along edges coming out of x. Note
that ordx(f) is non-zero for only finitely many points x and that ordx : Div(Γ)→ Z is a
homomorphism as ordx(f + g) = ordx(f) + ordx(g).

1By abuse of notation, we will identify the edges of G with the closed intervals that are isometric to
the closures of the connected components of Γ\V . By disallowing models which contain loops, we ensure
that these closures are still line segments.
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Two divisors c and c′ are said to be equivalent if c − c′ =
∑

x∈Γ ordx(f)(x) for some
rational function f . The divisors of the form

∑
x∈Γ ordx(f) form an abelian group called

the group of principal divisors. The quotient of Div(Γ) by the group of principal divisors
is denoted by Pic(Γ) and consists of the equivalence classes of divisors under the above
equivalence relation.

Given a divisor c, the degree of c is defined to be deg(c) =
∑

x∈Γ c(x). The degree is
invariant under equivalence, as any principal divisor has degree 0. Hence every element
of Pic(Γ) has a well-defined degree as well. Given an integer d, we define Pic6d(Γ) to be
the subset of Pic(Γ) with degree at most d.

A divisor e =
∑n

i=1 ai(xi) is said to be effective if ai > 0 for all 1 6 i 6 n. A divisor
c that is not equivalent to an effective divisor is said to have rank r(c) = −1. A divisor
c that is equivalent to an effective divisor is said to have rank r(c) = r if r is the largest
number such that for every effective divisor e of degree r, the divisor c − e is equivalent
to an effective divisor. Note that in particular r(c) 6 min{−1, deg(c)} since if c − e has
negative degree, then it cannot be equivalent to an effective divisor.

The interest in this notion of rank stems from the fact that it is invariant under
equivalence of divisors and, more importantly, that it satisfies an analogue of the Riemann-
Roch theorem, first proven for finite graphs by Baker and Norine in [3] and subsequently
generalized for metric graphs and tropical curves independently by Gathmann and Kerber
in [7] and Mikhalkin and Zharkov in [10].

Theorem 1 (Tropical Riemann-Roch). Suppose that c ∈ Div(Γ) is a divisor on a compact

metric graph. Define the canonical divisor K on Γ by K =
∑
x∈Γ

(val(x)− 2)(x). Then we

have:
r(c)− r(K − c) = deg(c) + 1− g

where g is the genus of Γ.

2.2 The graphs Γg, and their vi-reduced divisors

In their paper, Cools et al. reduce the verification of the Brill-Noether theorem to an
analysis of the ranks of divisors on members of the following family of genus g graphs.

Definition 2. The compact metric graphs Γg consist of g circles {γi}16i6g of circum-
ferences {`i + mi} concatenated together in such a way that there exists a model with
vertices {vi}06i6g so that for every 1 6 i 6 g, vi−1 and vi are designated vertices of γi and
the two edges of γi joining vi and vi−1 have lengths `i and mi. The metric on Γg is the
path-length metric. See Figure 1 for an illustration.

In particular, Cools et al. are interested in computing the rank of an arbitrary divisor
on Γg. In the case where the divisor has degree greater than 2g − 2, there is a simple
answer using the tropical Riemann-Roch theorem, agreeing with the answer in the case
of algebraic curves.

the electronic journal of combinatorics 20(3) (2013), #P33 4



Proposition 3. Any divisor c on the compact metric graph Γg of degree greater than
2g − 2 has rank deg(c)− g.

In the case where the divisor has degree at most 2g − 2, the computation of the
rank becomes extremely difficult in general. For graphs Γg satisfying a certain genericity
condition, Cools et al. give an elementary algorithm for performing the computation. In
this subsection we describe first the input to the algorithm, which consists of certain
divisors known as v-reduced divisors, and second the genericity condition that the graphs
Γg must satisfy for the algorithm to work correctly.

The notion of v-reduced divisors for graphs was first introduced by Baker and Norine
in [3] as a slight variant of the notion of G-parking functions introduced by Postnikov and
Shapiro in [12]. Their importance for the theory of divisors stems from the fact that they
provide a system of representatives of the group Pic(Γ) of equivalence classes of divisors.
Unfortunately, the language of divisors is somewhat clunky for describing the v-reduced
divisors and their properties, so instead we consider a divisor

∑n
i=1 ai(xi) ∈ Div(Γ) to be

the chip configuration that assigns to each point xi the respective amount of ai chips. From
here onward, we will use the terms “chip configuration” and “divisor” interchangeably.
In particular, by the degree and rank of a chip configuration we will mean the degree or
rank of that divisor.

The following definition of v-reduced divisors for metric graphs is due to Luo [9].

Definition 4. Fix a point v on a connected compact metric graph Γ. A chip configuration
c ∈ Div(Γ) is called a v-reduced divisor if:

1. c has a non-negative number of chips on every point except for possibly v;

2. for any closed connected subset X ⊂ Γ not containing v, there exists a point x in
the boundary of X such that the number of chips on x is strictly smaller than the
number of edges from x to Γ \X (the number of edges joining x to a point in Γ \X
for any model G of Γ such that x is a vertex in G and G restricts to a model of X).

In [9], Luo generalizes the so-called burning algorithm due to Dhar [6] for finding v-
reduced divisors from the case of finite graphs to the case of metric graphs, and uses it to
prove that for any v in a connected compact metric graph Γ, the set of v-reduced divisors
is a system of representatives for Pic(Γ).

Theorem 5 (Theorem 2.3 of [9]). Suppose that Γ is a connected compact metric graph,
and that v is a designated point on Γ. Then every chip configuration c ∈ Div(Γ) is
equivalent to exactly one v-reduced divisor.

Using Luo’s generalization of Dhar’s burning algorithm, which we will not describe, one
can easily compute for any chip configuration c on Γg the vi-reduced divisors equivalent
to c. Since the rank of a chip configuration is invariant under equivalence, being able to
determine the rank of vi-reduced divisors is enough to determine the rank of any chip
configuration.
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Cools et al. noticed that the vi-reduced divisors on the graph Γg have an elementary
description which follows almost immediately from the definitions. This description in
turn suggests a compact notation for the elements of Pic(Γg) once we identify them with
v0-reduced divisors.

Proposition 6 (Example 2.6 of [5]). The vi-reduced divisors on Γg are precisely those
chip configurations c ∈ Div(Γg) for which:

1. every point different from vi has a non-negative number of chips;

2. each of the cut loops to the right of vi (given by γj \ {vj−1} for j > i) and to the left
of vi (given by γj \ {vj} for j 6 i) contain at most 1 chip.

Example 7. Consider a compact metric graph Γ6 with edge lengths m1 = m2 = · · · =
m6 = 1 and `1 = `2 = · · · = `6 = 10 (see Figure 1). The following, which we will use as
a running example, illustrates a v0-reduced divisor which has 2 chips on v0 and at most
1 chip on every loop γi \ {vi−1} for 1 6 i 6 g. Note that the extra vertices shown in the
first two loops are unnecessary, but help clarify the distances in this model.

2 v0

1

v1

1

v2

1

v3 v4

1

v5 v6

Definition 8. To every v0-reduced divisor on Γg, and hence to every element of Pic(Γg),
we associate sequences (d0;x1, x2, . . . , xg) where d0 is the number of chips on v0, and xi ∈ R
a distance (modulo the circumference of the ith loop) from vi−1 in the counter-clockwise
direction of the single chip on γi \ {vi−1}, with xi = 0 if there is no chip (regardless of
the possible existence of chips on vi−1). These sequences are unique up to the modular
equivalences xi mod (`i +mi).

For Example 7 this sequence is (2; 3, 4, 2, 0, 2, 0).

Next, we describe the genericity condition that the graphs Γg must satisfy for the algo-
rithm to work correctly. The following lemma, which motivates genericity, is Example 2.1
in [5] and is crucial both for their algorithm and for the proof of our own Theorem 24.

Lemma 9 (Recentering vi-reduced divisors on Γg). Let c be a vi−1-reduced divisor. Sup-
pose that c has k chips on vi−1, and that the chip on γi \ {vi−1} is a counter-clockwise
distance xi from vi−1 (with xi = 0 if there is no chip).

Then c is equivalent to the vi-reduced divisor c′ which agrees with c everywhere outside
γi, and which restricts on γi according to the following cases:

1. If xi = 0 and k > 1, then c′ has k − 1 chips on vi and one chip that is (k − 1)mi

away clockwise from vi−1;

2. if xi 6≡ (k+ 1)mi mod (`i +mi) then c′ has k chips on vi plus a chip that is kmi−xi
away clockwise from vi−1;
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3. if xi ≡ (k + 1)mi mod (`i +mi), then c′ has k + 1 chips on vi−1.

Note that the first case can result in all k chips being moved from vi−1 to vi if and
only if (k − 1)mi ≡ `i ≡ −mi mod (`i + mi), which is the same as requiring that kmi

is an integer multiple of `i + mi, i.e. that `i
mi

= k−n
n

for some positive integer n. If
deg(c) 6 2g − 2, however, then certainly k 6 2g − 2, so this can only happen if `i/mi

can be written as the ratio of two integers with sum at most 2g − 2. Thus, the notion of
genericity that we define below ensures that the first case of the lemma never results in
all k chips being moved from vi−1 to vi.

Definition 10. We say that Γg is generic if none of `i/mi can be written as the ratio of
two positive integers with sum at most 2g − 2.

Example 11. The graph Γ6 of Example 7 with edge lengths m1 = m2 = · · · = m6 = 1 and
`1 = `2 = · · · = `6 = 10 is generic since `i/mi = 10/1 and 10+1 > 2 ·g−2 = 2 ·6−2 = 10.

2.3 The algorithm of Cools et al., and the bijection φ

We proceed with describing the algorithm of Cools et al. Its input, as indicated in the
previous subsection, are sequences (d0;x1, . . . , xg) with d0 ∈ Z and xi ∈ R that encode
v0-reduced divisors according to the scheme of Definition 8. Next, we define the objects
which will constitute the algorithm’s output, and afterward we specify the algorithm itself.

Definition 12. Fix a positive integer r. Define the Weyl chamber C ⊂ Zr to consist of
those points p for which p(1) > p(2) > p(3) > · · · > p(r) > 0. Then an r-dimensional
lingering lattice path is a sequence of points p0, p1, . . . , pg in the Weyl chamber such that:

1. p0 = (d0, d0 − 1, d0 − 2, . . . , d0 − (r − 1)) for some positive integer d0;

2. For any 1 6 i 6 g, we have that each step pi − pi−1 is either one of the standard
basis vectors ei for Zr, the negative diagonal (−1,−1, . . . ,−1), or zero;

We denote the set of r-dimensional lingering lattice paths by LLPr, and the set of all
lingering lattice paths by LLP. Note that, for the sake of brevity, our notion of lingering
lattice path is more restrictive than that in [5] and captures only the objects pertinent to
our algorithmic reinterpretation of their results.

An r-dimensional non-lingering lattice path is a lingering lattice path in which:

1. No step “lingers,” in the sense that pi − pi−1 is never 0;

2. The total number of steps in the (−1,−1, . . . ,−1) direction, which we abbreviate
as the r + 1st direction, equals the number of steps in the first direction.

3. The integer d0 as defined in the definition of lingering lattice path is equal to r, so
that p0 = (r, r − 1, . . . , 1).

We denote the set of r-dimensional non-lingering lattice paths by NLLPr, and the set of
all non-lingering lattice paths by NLLP.
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Remark 13. It is convenient to visualize the sequences (p0, p1, . . . , pg) ⊂ Zr as a collection
of r piecewise-linear paths in R2 defined by requiring that for each r > j > 1, the
points (0, p0(j)), (1, p1(j)), . . . , (g, pg(j)) are all cusps of the jth path. An example of this
visualization is given in Figure 3. Note that because the points of lingering lattice paths
are in the Weyl chamber, they are non-intersecting with the points (0, p0(j)), . . . , (g, pg(j))
above ((0, p0(k)), . . . , (g, pg(k)) for j < k.

1(j = 2)

2(j = 1)

1

3

p0

1

4

p1

2

4

p2

1

3

p3

2

3

p4

1

2

p5 p6

Figure 3: A 2-dimensional non-lingering lattice path

Having described the output of the algorithm, we now specify the algorithm itself and
collect its combinatorial properties in the following theorem, which is a restatement of [5,
Theorem 1.4] and its proof.

Algorithm 14. If c is a v0-reduced divisor given by (d0;x1, . . . , xg), then compute ρr(c) =
(p0, p1, . . . , pr) according to the procedure:

1. p0 = (d0, d0 − 1, . . . , d0 − (r − 1));

2. pi − pi−1 =



(−1, . . . ,−1) if xi = 0,

ej
if xi ≡ (pi−1(j) + 1)mi mod `i +mi

and both pi−1, pi−1 + ej ∈ C,

0 otherwise.

Theorem 15. Suppose that for each positive integer r and generic Γg, the above al-
gorithm, Algorithm 14, is well-defined and guaranteed to terminate, and returns a map
ρr : Pic62g−2(Γg) → Zr for generic Γg. Then, identifying each element of Pic62g−2(Γg)
with its v0-reduced divisor c, we have that ρr(c) satisfies the following properties:

1. c ∈ Pic62g−2(Γg) is of rank at least r if and only if r 6 max{−1, d0} and ρr(c) is
a lingering lattice path in Zr, that is, ρr(c) is in the Weyl chamber. In particular,
if ρr(c) is a non-lingering lattice path, then r must be at most the rank of c since
d0 = r so r 6 max{−1, d0} clearly holds.
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2. if ρ : Pic62g−2(Γg) → LLP is defined by ρ(c) = ρr(c) if c has rank r, then there
exists a map α : NLLP→ Pic(Γg) with ρ ◦ α = 1, whose image consists of all rank
r degree d elements of Pic(Γg) such that (g − d+ r)(r + 1) = g.

Example 16. The non-lingering lattice path indicated in Figure 3 is the result of ap-
plying the above algorithm to the v0-reduced divisor of Example 7, which was given by
(2; 3, 4, 2, 0, 2, 0) on the graph Γ6 with edge lengths `i = 10, mi = 1.

Since mi = 1, applying the algorithm is particularly simple since pi − pi−1 = ej if
xi ≡ pi−1(j) + 1 mod (`i +mi), i.e. if xi is one more than pi−1(j) for some j, we increase
the jth path. If xi is zero, we decrease all paths, and if xi is neither 0 nor one more than
pi−1(j) for some j, we linger.

Thus, starting with p0 =
(

2
1

)
, the fact that x1 = 3 and then x2 = 4 give us that

p1 =
(

3
1

)
and then p2 =

(
4
1

)
. Next, the fact that x3 = 2 and then x4 = 0 give p3 =

(
4
2

)
and

then p4 =
(

3
1

)
. Finally, x5 = 2 and x6 = 0 give p5 =

(
3
2

)
and p6 =

(
2
1

)
.

With the above theorem, Cools et al. construct their bijection φ from the map α and a
bijection β between rectangular standard Young tableaux and non-lingering lattice paths.

Definition 17. Let SYT(nm) be the set of rectangular m × n standard Young tableaux,
that is, m × n matrices (aij) whose entries are all the integers from 1 to mn such that
ai,j+1, ai+1,j > ai,j. Let RSYT be the set of all rectangular standard Young tableaux. See
[14] for more details and background.

Proposition 18 (Proved in the proof of Theorem 1.4 of [5]). Let P = (p0, p1, . . . , pg)
be an r-dimensional non-lingering lattice path such that g = (g − d + r)(r + 1). We
can fill a (g − d + r) × (r + 1) standard Young tableau with the numbers from 1 to g as
follows. Starting with 1 and ending with g, place the number i in the topmost free spot of
the jth column if pi − pi−1 = ej, and in the r + 1st column if pi − pi−1 = (−1, . . . ,−1).
Furthermore, all (g−d+ r)× (r+ 1) rectangular standard Young tableaux can be obtained
in this way from one and only one non-lingering lattice path.

Remark 19. In the case r = 0, Proposition 18 still holds. In this case, the equality
g = (g − d+ r)(r + 1) implies that d = 0 and for each positive integer g, the zero divisor
is indeed the unique effective divisor of degree and rank zero. This corresponds to the
empty path and to the unique g × 1 standard Young tableau.

Example 20. Starting with the r = 2-dimensional non-lingering lattice path of Figure 3,
we construct the standard Young tableaux as follows. From p0 =

(
2
1

)
to p1 =

(
3
1

)
we have

an increase in the first path so we put a 1 in the first column. Going to p2 =
(

4
1

)
and

then to p3 =
(

4
2

)
we have increases in the first and then the second path, which means we

put 2 in the first column and 3 in the second. Next we have a decrease to p4 =
(

3
1

)
which

means we put 4 in column r + 1 = 3. Continuing, we obtain the tableau:

T =
1 3 4
2 5 6
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Definition 21. Let β : RSYT→ NLLP be the inverse of the above-described bijection.
Define the injective map φ : RSYT→ Pic(Γg) by φ = α ◦ β : RSYT→ Pic(Γg). Then

the map φ bijects rectangular standard Young tableaux onto rank r degree d v0-reduced
divisors such that (g − d+ r)(r + 1) = g.

Pic(Γg) NLLP? _αoo RSYT? _
β
oo

φ

uu

Figure 4: The map φ

3 Evacuation and Reflection

In this section we state and prove our original result regarding how evacuation on standard
Young tableaux acts on v0-reduced divisors on the generic graphs Γg under the bijection
φ of Definition 21 discovered by Cools et al. in [5].

Definition 22. We consider an involution ev : RSYT→ RSYT, called evacuation, send-
ing T in RSYT to ev(T ) = (bij) where bi,j = (mn+1−am+1−i,n+1−j). Evidently, evacuation
preserves the dimensions of tableaux.

Geometrically, ev(T ) can be pictured as rotating the rectangular standard Young
tableaux 180◦ and flipping the entries according to the rule i→ mn+1−i. For more details
on evacuation of tableaux, introduced by Schützenberger [13], we direct the interested
reader to the wonderful survey in [14] by Richard Stanley.

Definition 23. Suppose that Γg is as in Definition 2, i.e. the concatenation of g circles γi
of circumferences `i +mi, along with designated vertices {vi}06i6g such that vi−1, vi ∈ γi
and `i and mi are the lengths of the two arcs joining vi−1 and vi in γi. Define the
reflection Γ′g of Γg to be the same compact metric graph as Γg, but with designated
vertices v′i = vg+1−i. Note that this gives `′g+1−i = `i and m′g+1−i = mi.

Identifying Pic(Γg) with the set of v0-reduced divisors, we define the reflection σ from
Pic(Γg) → Pic(Γ′g) to be given by the rule that if c is a v0-reduced divisor on Γg, then
σ(c) is the vg = v′0-reduced divisor equivalent to c considered as a divisor on Γ′g.

Theorem 24. Suppose that Γg is generic and suppose (g − d + r)(r + 1) = g. Let
φ = α ◦ β : RSYT → Pic(Γg) be the map of Definition 21 due to Cools et al. that bijects
(g − d + r) × (r + 1) rectangular standard Young tableaux to rank r degree d v0-reduced
divisors on Γg. Let φ′ = α′ ◦ β : RSYT→ Pic(Γ′g) be the analogous map from rectangular
standard Young tableaux to v0-reduced divisors on the reflection Γ′g. Then evacuation on
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tableaux corresponds to reflection in the sense that the following diagram commutes:

Pic(Γg)

σ

��

NLLP? _αoo RSYT? _
β
oo

φ

uu

ev

��

Pic(Γ′g) NLLP? _α′
oo RSYT? _

β
oo

φ′ii

The remainder of this section is devoted to the proof this theorem. In Subsection 3.1,
we introduce our useful notation for elements of Pic(Γg) in the image of φ, and give
formulas for α, β, φ, and φ′ ◦ ev.

Once the notation is laid out, the heart of this proof is Proposition 36, where we
characterize non-lingering lattice paths p based on the sequence of differences pi − pi−1.
These differences are characterized by three cases: a change in the coordinate j where
j = 0, 0 < j < r, or j = r. As we will show, this characterization is symmetric in j and
r − j, so that reading the path p′ obtained from reading c backwards must change in the
r − j direction, exactly as evacuation would suggest.

In Subsection 3.2 we give a formula for σ◦φ, which we show is the same as the formula
for φ′ ◦ ev, thus proving Theorem 24.

3.1 Notation, and formulas for φ = α ◦ β and φ′ ◦ ev

Proposition 25 (Formula for α). If P is an r-dimensional non-lingering lattice path,
then α(P ) = (r;x1, . . . , xg) can be computed via the formula:

xi =

{
0 if pi − pi−1 = (−1,−1, . . . ,−1)

(pi−1(j) + 1)mi if pi − pi−1 = ej

Proof. Immediate from the definition of α in Theorem 15 as a map that inverts ρ and the
definition of ρ.

Notation 26. If c is a v0-reduced divisor on Γg such that (g−d+r)(r+1) = g, then we can
describe c by a sequence (d0;x0, x1, . . . , xg) where ximi is the counter-clockwise distance
of the single chip on γi from vi, if such a chip exists, and xi = 0 if the chip does not exist.
Again, this description is unique up to the modular equivalences xi mod ((`i + mi)/mi).
Note that if mi = 1, we get xi ≡ xi − 1 mod (`i + mi) since xi measures the counter-
clockwise distance modulo li + 1 to the chip, starting from vi−1, while xi measures the
distance starting from vi instead.

Using the xi notation, we can thus rewrite our formula for α from above as:

xi =

{
0 if pi − pi−1 = (−1,−1, . . . ,−1)

pi−1(j) if pi − pi−1 = ej
(1)
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Example 27. Consider once again the v0-reduced divisor (2; 3, 4, 2, 0, 2, 0) on Γ6 with
`i = 10, mi = 1 from Example 7. Since the algorithm gives a non-lingering lattice path,
we know that it satisfies (g − d + r)(r + 1) = g. In particular, it is of degree 6 and rank
2, while the genus is 6.

Hence in the new notation its sequence is (2; 2, 3, 1, 0, 1, 0).

Remark 28. Even though the images of α and α′ are usually different, in particular
they map to divisors on Γg and Γ′g respectively, the images of φ and φ′ agree as tuples
(r;x1, . . . xr). Technically the tuples in the image of φ is defined modulo (`i + mi)/mi

and the image of φ′ is defined modulo (`g+1−i + mg+1−i)/mg+1−i, but since each `i + mi

is assumed to be greater than 2g − 2, if we assume each mi = 1, then we can take the
distances to satisfy 0 6 xi 6 (`i + 1) so that the moduli never come into play. For
other choices of mi, the distance chosen might need to be larger than (`i + mi)/mi, i.e.
wrap around the loop γi, to agree with the values from (1). For convenience, we will
assume distances are chosen to be multiples of mi and agreeing with the values from (1)
throughout the rest of this paper.

Proposition 29 (Formula for β). Suppose that T is a rectangular (g − d + r) × (r + 1)
standard Young tableau and that β(T ) = P = (p0, . . . , pg). Then for any i, pi can be
computed according to the formula:

pi = p0 +


l1 − lr+1

l2 − lr+1

. . .
lr − lr+1

 =


r + l1 − lr+1

r − 1 + l2 − lr+1

. . .
1 + lr − lr+1

 (2)

where ls is the number of cells in the sth column of T whose entries are at most i.

Proof. In the bijection of Cools et al. (see Proposition 18) between the non-lingering lattice
paths and the standard Young tableaux, a number k 6 i is placed in column j < r + 1
when pk − pk−1 = ej, i.e., when there has been an increase in the jth direction. The
number lj hence counts the number of increases that have occurred in the jth direction
by the ith step.

On the other hand, a number k 6 i is placed in column r + 1 when pk − pk−1 =
(−1,−1, . . . ,−1), i.e., when there has been a decrease along all directions. Hence, lr+1

counts the number of decreases that have occurred by the ith step. Knowing that we
start with p0 = (r, r − 1, . . . , 1), it follows that pi(j) = p0(j) + lj − lr+1 and hence the
proposition follows.

Notation 30. If T is a rectangular m×n standard Young tableau and 1 6 i 6 mn, then
we let

(i) lr(i, T ) denote the index of the row of T (from top to bottom) containing i,

(ii) lc(i, T ) denote the index of the column (from left to right) containing i,
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(iii) Lfirst(i, T ) denote the number of cells in the first column whose entries are strictly
less than i, and

(iv) Llast(i, T ) denote the number of cells in the last column whose entries are strictly
less than i.

Putting the formulas for α and β together, we obtain a formula for φ = α ◦ β.

Proposition 31 (Formula for φ). Suppose that T ∈ SYT((r+ 1)g−d+r), and that φ(T ) =
α ◦ β(T ) = c is described by (r;x1, . . . , xg).

Then the xi’s can be computed according to the formula:

xi = r + lr(i, T )− lc(i, T )− Llast(i, T ) (3)

using the above notation.

Proof. Let β(T ) = P = (p0, . . . , pg) so that α(P ) = c. If the number i is in the l =
lc(i, T )th column of T for 1 6 l < r + 1, then pi − pi−1 = el and hence formula (1) for α
gives us xi = pi−1(l), while formula (2) for β gives us

pi−1(l) = (r + 1− l) + (lr(i, T )− 1)− Llast(i, T )),

yielding formula (3). Note that since lr(i, T ) is the index of the row containing i, it follows
that lr(i, T )− 1 is the number of entries in column l that are at most i− 1.

Otherwise, if the number i is in the r+1st column of T , then pi−pi−1 = (−1, . . . ,−1).
We obtain xi = 0 in this case, and since lc(i, T ) = r + 1 and lr(i, T ) = Llast(i, T ) + 1, the
proposed formula for φ still holds.

Example 32. Consider the tableau of Example 20

T =
1 3 4
2 5 6

.

Using the formula for φ from Proposition 31, we compute φ(T ) = (2; 2, 3, 1, 0, 1, 0)
agreeing with Example 27. To compute x5, for example, we see that i = 5 is in row
2 = lr(5, T ) and column 2 = lc(5, T ). Also, the number of cells in the last columns that
are strictly less than i = 5 is Llast(5, T ) = 1. It follows that x5 = r + lr(5, T )− lc(5, T )−
Llast(5, T ) = 2 + 2− 2− 1 = 1.

Next, we obtain the formula for φ′ ◦ ev.

Proposition 33 (Formula for φ′ ◦ ev). Suppose that T is a (g − d+ r)× (r + 1) rectan-
gular standard Young tableaux and that φ′ ◦ ev(T ) = α′ ◦ β ◦ ev(T ) = c′ is described by
(r;x′1, . . . , x

′
g).

Then the x′i’s can be computed according to the formula:

x′g+1−i = j − 1 + l1 − lj (4)

where j = lc(i, T ) is the index of the column containing i and ls is the number of cells in
the sth column of T whose entries are at most i.
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Proof. Evacuation takes column j = lc(i, T ) of T to column r + 2− j. Hence, if lj is the
number of cells in column j of T whose entries are at most i, then lj is also the number
of cells in column r+ 2− j of ev(T ) whose entries are at least g+ 1− i (since evacuation
also flips the values of the entries).

If we let β(ev(T )) = (p′0, p
′
1, . . . , p

′
g), then the ls acquire the following significance.

For j 6= 1, lj counts the number of increases in the r + 2 − jth direction from p′g−i to
p′g = (r, r − 1, . . . , 1). Similarly, l1 counts the number of decreases along all directions
from p′g−i to p′g = (r, r − 1, . . . , 1).

Given that the lj are counting steps in the r + 2 − jth direction from p′g−i to p′g, we
obtain the following analogue of Proposition 29:

p′g−i = p′g −


lr−1 − l1
lr − l1
. . .

l2 − l1

 =


r + l1 − lr+1

r − 1 + l1 − lr
. . .

1 + l2 − l1

 .

Next we obtain the analogue of Proposition 31 using exactly the same argument.
Suppose that i is in the jth column of T . Then we have that g+ 1− i is in the r+ 2− jth

column of ev(T ). If j > 2, then p′g+1−i−p′g−i = er+2−j and hence x′g+1−i = p′g−i(r+2−j) =
j − 1 + l1 − lj where ls is the number of cells in the sth column of T whose entries are at
most i.

Otherwise, if j = 1, we have that g + 1 − i is in the r + 1st column of ev(T ), which
means that p′g+1−i − p′g−i = (−1, . . . ,−1) and x′g+1−i = 0. Since 0 = 1 − 1 + l1 − l1, the
formula holds in both cases.

Example 34. Consider the tableau of Example 20 and its associated non-lingering lattice
path P ′ = β(ev(T )) shown in Figure 5.

T =
1 3 4
2 5 6

ev(T ) =
1 2 5
3 4 6

1(j = 2)

2(j = 1)

1

3

p0

2

3

p1

2

4

p2

3

4

p3

2

3

p4

1

2

p5 p6

Figure 5: The 2-dimensional non-lingering lattice path P ′ associated to ev(T ).

This example will demonstrate the shortcut formula for φ′ ◦ ev of Proposition 33. To
compute x′3, for example, we see that g + 1 − i = 3 implies i = 7 − 3 = 4, and that
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4 is in column 3 = j. The number l3 of cells in the third column that are at most
i = 4 is 1, and the number of cells l1 in the first column that are at most i = 4 is 2.
It follows that x3 = j − 1 + l1 − lj = 3 − 1 + 2 − 1 = 3. Doing this for each xi, we
obtain the sequence c′ = α′(P ′) = (2; 2, 1, 3, 2, 0, 0). In Example 37, we will show that
this sequence corresponds to the reflection σ(c′) of the v0-reduced divisor (2; 2, 3, 1, 0, 1, 0)
from Example 27.

2 v′0

1

v′1

1

v′2

1

v′3

1

v′4 v′5 v′6

Figure 6: The proposed reflection of the v0-reduced divisor from Example 7

3.2 Formula for σ ◦ α and proof of Theorem 24

We compute a formula for σ ◦ α using the following lemma.

Lemma 35. Let c be a v0-reduced divisor of non-negative degree at most 2g − 2, and
for i > 0 let ci be the vi-reduced divisor that is equivalent to c. Then if ρ(c) = P =
(p0, p1, . . . , pg), we have that ci(vi) = pi(1).

Proof. Trivially, we have that p0(1) = d0 = c0(v0).
Next, suppose inductively that pi−1(1) = k = ci−1(vi−1). By Lemma 9 we know that

ci(vi)−ci−1(vi−1) = −1, 0, or 1 depending on whether xi = 0, xi ≡ (k+1)mi mod (`i+mi),
or xi 6≡ (k+ 1)mi mod (`i +mi). But since pi−1(1) = k, these are precisely the conditions
for pi − pi−1 = (−1,−1, . . . ,−1), 0, or e1, and hence for pi(1)− pi−1(1) = −1, 0, or 1.

Proposition 36 (Formula for σ ◦ α). Suppose that c ∈ Pic(Γg) is such that c = α(P ) for
some non-lingering lattice path P = (p0, p1, . . . , pg), i.e. that c is of rank r and degree d
such that (g−d+r)(r+1) = g, and further that c is described by a sequence (r;x1, . . . , xg).

Then σ(c) is also of rank r and degree d such that (g−d+r)(r+1) = g, and hence can
be described by a sequence (r;x′1, . . . , x

′
g). The x′i’s can be computed from the xi’s using

the formula:

x′g+1−i = max{pi−1(1)− xi − 1, 0}. (5)

Proof. Note that under the reflection that takes Γg to Γ′g, the counter-clockwise distances
from vi in the loop γi are sent to clockwise distance from v′1+g−i = vi in the loop γ′g+1−i =
γi. Hence, the x′i’s in the sequence (r;x′1, . . . , x

′
g) which describes σ(c), the vg = v′0-reduced

divisor equivalent to c, can be interpreted as both the counter-clockwise distance from v′i
in the loop γ′i, and as the clockwise distances from v1+g−i of the single chip on the loop
γ1+g−i.
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These clockwise distances, however, are determined by successively computing the
equivalent v1-reduced divisor, then the equivalent v2-reduced divisor and so on until the
equivalent vg-reduced divisor. Lemma 9 applies and gives us the following.

Suppose that k is the number of chips on vi−1 of the vi−1-reduced divisor ci−1 that is
equivalent to c. Then combining Lemma 9 with our notation for xi, we obtain:

1. if xi is 0, i.e. if there is no chip on γi \ {vi−1} in ci−1, then there will be one chip on
γi \ {vi} that is a clockwise distance (k − 1)mi away from vi−1 in ci;

2. if ximi 6≡ kmi mod (li + mi), then there is one chip on γi \ {vi} in ci−1 that is a
clockwise distance kmi − (xi + 1)mi away from vi−1 in ci;

3. if ximi ≡ kmi mod (li +mi), then there are no chips left on γi \ {vi} in ci.

Now, k is of course pi−1(1) by the previous lemma. Hence, the formula x′g+1−i =
max{pi−1(1)− xi − 1, 0} holds for each of the three cases above.

Example 37. Consider the v0-reduced divisor c = (r;x1, . . . , xg) = (2; 2, 3, 1, 0, 1, 0) on
the graph Γ6 from Example 27. Its associated non-lingering lattice path is the one from
Figure 3 with top path (p0(1), p1(1), . . . , pg(1)) = (2, 3, 4, 4, 3, 3, 2).

Figure 7 illustrates the process described in the proof of Proposition 36 of succes-
sively computing the vi-reduced divisors ci equivalent to c. Looking at the top path
(2, 3, 4, 4, 3, 3, 2), the figure also illustrates the claim of Lemmas 9 and 35.

To illustrate Proposition 36, note that if we subtract the sequence of xi’s in c =
(2; 2, 3, 1, 0, 1, 0) from the sequence of pi−1(1)’s for 1 6 i 6 g, which is (2, 3, 4, 4, 3, 3),
we obtain (0, 0, 3, 4, 2, 3). Subtracting a further 1 from everything and reversing, we get
(2, 1, 3, 2,−1,−1). Taking the maximum with 0 and putting the rank r = 2 in front, we
obtain the v′0-reduced divisor on Γ′g given by (r;x′1, . . . , x

′
g) = (2; 2, 1, 3, 2, 0, 0), which is

what Figure 7 also produces.
In accordance with our theorem, this is exactly the same v′0-reduced divisor as the one

obtained from evacuating the tableau in Example 34.

Proof of Theorem 24. We need to show that φ′ ◦ ev = σ ◦ φ, and we have so far formulas
for φ′ ◦ ev, σ ◦ β, and α where φ = β ◦ α.

We proceed to obtain a formula for σ ◦ φ, which we then reduce to the formula for
φ′ ◦ ev.

Suppose that T is a rectangular standard Young tableaux. Then let β(T ) = P =
(p0, . . . , pg), φ(T ) = α ◦ β(T ) = α(P ) = (r;x1, . . . , xg) and σ ◦ α(P ) = (r;x′1, . . . , x

′
g). We

have established that:

1. x′g+1−i = max{pi−1(1)− xi − 1, 0} by the formula (5) for σ ◦ α.

2. pi−1(1) = r + Lfirst(i, T )− Llast(i, T ) by the formula (2) for β

(noting that i is not necesarrily in column 1).

3. xi = r + lr(i, T )− lc(i, T )− Llast(i, T ) by the formula (3) for φ.
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We reflect by setting vi = v′g+1−i, and obtain the configuration illustrated in Figure 6:

v′6 v′5 v′4

1

v′3

1

v′2

1

v′1

1

2 v′0

v′0

1

v′1

1

v′2

1

v′3

1

v′4 v′52 v′6

Figure 7: Successively computing vi-reduced divisors
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where the notation Lfirst(i, T ), Llast(i, T ), lr(i, T ), and lc(i, T ) is as above. Thus

x′g+1−i = max{(r + Lfirst(i, T )− Llast(i, T ))

− (r + lr(i, T )− lc(i, T )− Llast(i, T ))− 1, 0}
= max{Lfirst(i, T )− lr(i, T ) + lc(i, T )− 1, 0}.

Note that if lc(i, T ) = 1, then the number of cells in column 1 whose entries are strictly
less than i is one less than the index of the row containing i. We thus obtain x′g+1−i =
max{Lfirst(i, T ) − lr(i, T ), 0} = max{−1, 0} = 0. Comparing this with formula (4), we
see lc(i, T ) = 1 and indeed 0 = lc(i, T )− 1 + l1 − l1.

On the other hand, if i is in column j 6= 1, then l1 = Lfirst(i, T ) and lj = lr(i, T ).
Since j − 1 + l1 − lj is certainly non-negative as it is the formula (4) for φ′ ◦ ev, we have
x′g+1−i = j − 1 + l1 − lj as desired in this case as well.

Hence, we have proven that the formulas for σ ◦ φ and φ′ ◦ ev agree.

4 Conjugation of Tableaux and Riemann-Roch Du-

ality

We now prove a conjecture based on discussions with Sam Payne [11].

Definition 38. We consider an involution t : RSYT → RSYT, called conjugation (also
known as transposition), sending T = (aij) in RSY T to T t = (aji).

Unlike evacuation, the dimensions of a tableau T are not fixed under conjugation. In
particular, an m×n standard Young tableau is sent to an n×m standard Young tableau.
Consequently, the corresponding divisors φ(T ) and φ(T t), have different ranks and degrees.
Nevertheless, there is a natural duality induced by this involution on rectangular standard
Young tableaux.

Theorem 39. Suppose that g = (g − d + r)(r + 1) and that T is a rectangular (g − d +
r) × (r + 1) standard Young tableau. Let φ(T ) = (r;x1, . . . , xg), a rank r and degree d
divisor c in Pic(Γg).

Then φ(T t) is linearly equivalent to the rank g−d+ r−1 and degree 2g−2−d divisor
K − c in Pic(Γg). Here K is the canonical divisor on Γg that appears in the Tropical
Riemann-Roch Theorem (Theorem 1).

To prove Theorem 39, it suffices to prove the following two propositions.

Proposition 40. Assume the hypotheses of Theorem 39, including the equality φ(T ) =
(r;x1, . . . , xg). Define tuples (z0, z1, . . . , zg−1) and (y

1
, y

2
, . . . , y

g
) as follows. For 0 6 i 6

g − 1, let zi = #{j > i in the last row or last column of T} + 1. Then, for 1 6 i 6 g,
define y

i
as

y
i

= zi−1 − xi − 2. (6)

Then we obtain φ(T t) = (s; y
1
, . . . , y

g
) where s = g − d+ r − 1.
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Proposition 41. Let K be the canonical divisor on Γg, let c be the v0-reduced divisor
in Pic(Γg) represented by (r;x1, . . . , xg), and let (s; y

1
, . . . , y

g
) be as defined in Proposi-

tion 40. Then the v0-reduced divisor equivalent to K − c in Pic(Γg) is represented by
(s; y

1
, . . . , y

g
).

Proof of Proposition 40. Let T t denote the conjugate of T . Following the logic of Propo-
sition 31, the first value of tuple φ(T t) is one less than the number of columns of T t. Using
the fact that T t ∈ SY T ((g − d + r)(r+1)), we obtain that this value is s = g − d + r − 1
as desired.

It next suffices to show the equality xi + y
i

= zi−1− 2 for all 1 6 i 6 g. Using formula

(3) for the xi’s and switching the roles of “rows” and “columns”, or T and T t, to obtain
a formula for the y

i
’s yields

xi + y
i

= (r + lr(i, T )− lc(i, T )− Llast(i, T ))

+
(
s+ lc(i, T )− lr(i, T )− Llast(i, T t)

)
= r + s− Llast(i, T )− Llast(i, T t),

where Llast(i, T ) (resp. Llast(i, T
t)) equals the number of cells in the last column of T

(resp. T t) whose entries are strictly less than i. It follows that

(s+ 1)− Llast(i, T ) = #(cells > (i− 1) in the last column of T), and

(r + 1)− Llast(i, T t) = #(cells > (i− 1) in the last row of T).

Adding these two together, and subtracting 2, we conclude that

xi + y
i

= r + s− Llast(i, T )− Llast(i, T t) = zi−1 − 2

as desired (keeping in mind that zi−1 double-counts the unique cell in the last row and
column).

Before proving Proposition 41, we need one Lemma.

Lemma 42. Let T be an (r+1)×(s+1) rectangular standard Young tableau, and suppose
that φ(T ) = (r;x1, x2, . . . , xg). Define zi as in Proposition 40. Then for 1 6 i 6 g − 1,
we have xi = 0 if the entry i is in the last column of T and xi = zi − 1 if the entry i is
in the last row of T . If the entry i is in neither the last row nor the last column, then
0 < xi < zi − 2. Note in particular that xi = zi − 2 is not possible.

Proof. The first statement was already shown in the proof of Proposition 31. To prove
the second statement, assume that i in the last row of T . From formula (3), we obtain
xi = r+(s+1)− lc(i, T )−Llast(i, T ) in this case. Noting that r+s+1 equals the number
of cells in the last row or last column of T , we see that xi counts the number of cells in
the last row or last column greater than i. However, this is exactly the definition of zi− 1
and hence the second statement is proven.
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In the event that the entry i is in neither the last row nor the last column, then
xi = (r + s + 1)− lc(i, T )− Llast(i, T ))− α < zi − 1− α where α = s + 1− lr(i, T ) > 1.
Note that we have an inequality on the RHS instead of an equality this time because if
i is in column lc(i, T ) then the bottom row of that column is greater than i as opposed
to merely equal to i. We could additionally have entries in the bottom row to the left of
column lc(i, T ) that are greater than i, thus we have the desired inequality.

Proof of Proposition 41. We first note that for graph Γg, the canonical divisor K is simply
given as 2v1 + 2v2 + · · · + 2vg−1. Hence, the degree of K − c is dt = 2(g − 1) − d
and the rank is rt = g − d + r − 1 = s by the Tropical Riemann-Roch Theorem. In
particular, we still have the equality (g− dt + rt)(rt + 1) = g since (g− dt + rt)(rt + 1) =
(g − (2g − 2− d) + (g − d+ r − 1))(g − d+ r) = (r + 1)(g − d+ r).

Secondly, we take K − c, where c is represented by (r;x1, x2, . . . , xg), and compute its
v0-reduction by successively firing the subgraphs γg, γg−1 ∪ γg, etc. enough times from
right to left. We define a sequence (Zg−1, Zg−2, . . . , Z0) by letting Zg−i denote the number
of chips on vertex vg−i after the subgraph γg−i+2 ∪ γg−i+3 ∪ · · · ∪ γg has been fired enough
times. In particular, Zg−1 = 2 since in the divisor K − c, the vertex vg−1 (before any
firing) has 2 chips on it. We also obtain Zg−2 = 3 since γg contains 2 chips on vg−1, and
nowhere else, so after γg is fired, there are 3 chips on vertex vg−2.

We also define the sequence (Yg, Yg−1, . . . , Y1) by letting Yg−i denote the counter-
clockwise distance from vg−i of the unique chip on the loop γg−i \ {vg−i−1, vg−i} after
γg−i+1 ∪ γg−i+2 ∪ · · · ∪ γg has been fired, with the convention that Yg−i = 0 if no such
chip exists. For example, the entry g must be in the unique cell in the last row and last
column, thus xg = r+ (s+ 1)− (r+ 1)− s = 0 by formula (3). Consequently, the divisor
K − c has no chips on γg \ {vg−1, vg}, and we obtain Yg = 0 (no firings have yet taken
place).

We next observe that if xg−1 = 1, we fire γg and obtain Yg−1 = 0 while if xg−1 = 0, we
instead obtain Yg−1 = 1 after firing γg. Note that formula (3) yields xg−1 = r + s− (r +
1) − (s − 1) = 0 (resp. xg−1 = r + (s + 1) − r − s = 1) if (g − 1) is above (resp. to the
left of) the cell containing g. Since entry (g − 1) must be in one of the two cells next to
entry g, no other values for xg−1 are possible.

Having fired subgraphs γg−i+2∪γg−i+3∪· · ·∪γg to clear chips from vertices successively
from vg−i+1 to vg and ensure that there are no negative chips to the right of vg−i, we next
focus on the loop γg−i. Inductively, it contains Zg−i chips at vg−i, 2 chips at vg−i−1 and −1
chips a counter-clockwise distance of xg−i from vg−i (unless xg−i = 0 in which case the only
chips are at vg−i and vg−i−1) at this point. Firing the subgraph γg−i+1 ∪ γg−i+2 ∪ · · · ∪ γg,
for 1 6 i 6 g − 1, we have three cases:

i) if xg−i = 0, then Zg−i−1 = Zg−i + 1 and we have one chip left a counter-clockwise
distance Yg−i = Zg−i − 1 from vg−i.

ii) if xg−i = Zg−i − 1, then we can move all of the chips to the left so we obtain
Zg−i−1 = Zg−i + 1 and Yg−i = 0.

iii) if 0 < xg−i < Zg−i − 2, then we fire the subgraph γg−i+1 ∪ γg−i+2 ∪ · · · ∪ γg in two
steps, first eliminating the negative chip, and second moving all of the remaining chips off
of vertex vg−i. We thus compute Zg−i−1 = Zg−i (no increase) and Yg−i = Zg−i − xg−i − 2.
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Following this process of v0-reduction, it is clear that the tuple representing the v0-
reduction of K − c is (s;Y1, Y2, . . . Yg−1, Yg). Furthermore, as we see from the above three
cases, corresponding to firing γg−i+1 ∪ γg−i+2 ∪ · · · ∪ γg, we have

xg−i + Yg−i = Zg−i−1 − 2 for all 1 6 i 6 g − 1. (7)

We therefore finish the proof by proving simultaneously Zg−i−1 = zg−i−1 and Yg−i = y
g−i,

for all 0 6 i 6 g − 1, by double-induction.
Note that the base cases zg−1 = Zg−1 = 2, zg−2 = Zg−2 = 3, y

g
= Yg = 0 and

y
g−1

= Yg−1 = 1−xg−1 were shown above. Assume now by induction that zg−i = Zg−i and

y
g−i+1

= Yg−i+1. If the entry i is in the last column or last row of T , then zg−i−1 = zg−i+1

by definition, and xg−i = 0 or xg−i = zg−i− 1 = Zg−i− 1 by Lemma 42 and the induction
hypothesis. It follows by cases (i) and (ii) above and the induction hypothesis again that
Zg−i−1 = Zg−i + 1 = zg−i + 1 = zg−i−1 in these cases.

On the other hand, if the entry i is not in the last row or last column of T , then
zg−i−1 = zg−i by definition, and 0 < xg−i < Zg−i− 2 by Lemma 42. Then by case (iii), we
have Zg−i−1 = Zg−i and the equality zg−i−1 = Zg−i−1 follows again by induction.

Finally, in both cases, the identities (6) and (7) imply the equality of y
g−i and Yg−i,

thus finishing this inductive proof.

Example 43. Let c = φ(T ) denote the chip-configuration (2; 2, 3, 1, 0, 1, 0), i.e. the
running example, Example 7, where T is the tableau

T =
1 3 4
2 5 6

.

By successively firing (i) γ6, (ii) γ5 ∪ γ6, (iii) γ4 ∪ γ5 ∪ γ6, (iv) γ4 ∪ γ5 ∪ γ6 again, (v)
γ3∪ · · · ∪γ6, (vi) γ2∪ · · · ∪γ6, and finally (vii) γ2∪ · · · ∪γ6 again, we v0-reduce the divisor
K−c into the divisor (1; 1, 0, 1, 2, 0, 0). See Figure 8. Using formula (3) to compute φ(T t),
where

T t =
1 2
3 5
4 6

,

we do indeed obtain that φ(T t) is the v0-reduced divisor equivalent to K − φ(T ).
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Figure 8: Successively v0-reducing the divisor (K − c) to φ(T t)
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