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ABSTRACT

This is the third annual report of an experimental program for the
investigation of the neutronics of benchmark mock-ups of LMFBR
blankets.

During the period covered by the report, July 1, 1971 through
June 30, 1972, work was devoted to completion of data analysis on
Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial
blanket and its steel reflector; and to experimental measurements on
Blanket Mock-Up No. 3, a graphite reflected blanket.

Extensive instrumental neutron spectroscopy data from Blanket
Mock-Up No. 2 (from He-3, Li-6 and p-recoil spectrometers) are
analyzed; as are foil activation traverses from Mock-Up No. 3. Some
systematic discrepancies are noted, but in general the agreement
between multigroup calculations and the experimental data is good.

Analysis of advanced blanket configurations is also reported.
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1. INTRODUCTION

1. 1 Foreword

This is the third annual report of the LMFBR Blanket Physics

Project. This report covers work done since the last progress report,

Reference 1, during the time period from July 1 , 1971 through

June 30, 1972.

The MIT Blanket Research Project is part of the AEC's LMFBR

development program, having as its primary objective the experi-

mental investigation of clean, but realistic, benchmark mock-ups of

the blanket-reflector region of large LMFBR reactors. The key

experimental tool used in this work is the Blanket Test Facility at the

MIT Research Reactor, which contains a fission-converter plate

tailored to deliver a spectrum simulating LMFBR core leakage and

used to drive blanket mock-ups.

Blanket subassemblies are constructed of uranium metal fuel

rods, clad in carbon steel, surrounded by anhydrous sodium chromate.

The homogenized mixture closely simulates UO2 fuel, stainless steel

clad and sodium metal coolant.

To date, two blankets have been investigated: No. 2, a three-

subassembly-row, steel reflected mock-up of a typical large LMFBR

design; and No. 3, a two-row, graphite reflected mock-up of an

advanced design.

1. 2 Work Areas

During the report period, work was carried out in the following

areas:

1. analysis of instrumental neutron spectrometry data collected

on Blanket Mock-Up No. 2 (Chapter 2);

2. intensification of the efforts on the development and improve-

ment of foil methods for neutron spectrometry (Chapter 3);
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3. analysis of foil activation traverses in Mock-Up No. 3

(Chapter 4);

4. extensive experimental and theoretical work on the phenomenon

of U 2 3 8 self shielding (Chapter 5);

5. continued engineering and economic evaluations of advanced

blanket configurations (Chapters 6 and 7);

6. parametric studies in support of blanket design and analysis of

experimental results (Chapter 8).

In the final chapter, general trends are noted and the projected

future research program is outlined.

1. 3 Staff

The project staff, including thesis students, during the report

period was as follows:

*M.J. Driscoll, Associate Professor of Nuclear Engineering,
Project Director

*I. Kaplan, Professor of Nuclear Engineering

*D.D. Lanning, Professor of Nuclear Engineering

tE. A. Mason, Professor of Nuclear Engineering
N. C. Rasmussen, Professor of Nuclear Engineering

I. A. Forbes, DSR Staff (Summer 1971, 1972)

C. P. T zanos, DSR Staff (Summer 1972)

I. C. Rickard, DSR Staff (Summer 1971)

*A. T. Supple, Jr., Engineering Assistant

tS.T. Brewer, Ph.D. Student

*G.J. Brown, Research Assistant, S.M., Ph.D. Student

P. Delaquil, Research Assistant (to Jan. 1972)

*tG.A. Ducat, Ph.D. Student (since May 1972)

*tM. V. Gregory, Ph.D. Student (since Oct. 1972)

* Continuing on staff after Summer 1972.

tSalary not paid from contract funds during FY 1972.
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S.Y. Ho, Research Assistant, S.M. Student (since Feb. 1972)

tM.S. Kalra, Special Project Student (Spring 1972)

C.S. Kang, Research Assistant, Ph.D. Student (to Nov. 1971)

tL. T. Kim, Special Project Student (Spring 1972)

T.C. Leung, Research Assistant, Ph.D. Student (to Feb. 1972)

N. R. Ortiz, Research Assistant, Ph.D. Student (to April 1972)

tA.M. Thompson,- B.S. Student (to June 1972)

J. L. Lazewatsky, Laboratory Assistant (part-time starting
Feb. 1972)

K.D. Roberson, Laboratory Assistant (part-time, Feb.-May
1972)

1. 4 References

(1) LMFBR Blanket Physics Project Progress Report No. 2,

COO-3060- 5, MITNE-131, June 30, 1971.

t Salary not paid from contract funds during FY 1972.
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2. INSTRUMENTAL NEUTRON SPECTROSCOPY ON

BLANKET MOCK-UP NO. 2

The work summarized in the present chapter is primarily con-

cerned with the use of Li 6, He3 and p-recoil spectrometers for the

measurement of neutron spectra in Blanket Mock-Up No. 2. The

complete results are presented in the topical report:

N.R. Ortiz, I.C. Rickard, M.J. Driscoll
and N. C. Rasmussen, "Instrumental Methods
for Neutron Svectroscopy in the MIT Blanket
Test Facility,' COO-3060-3, MITNE-129,
May, 1972.

2. 1 Background

The United States Atomic Energy Commission has given high

priority to the development of the liquid metal cooled fast breeder

reactor (LMFBR) because of the general consensus that this system

is best suited to insure a reliable and economical source of electrical

power for the foreseeable future. The economic attractiveness of the

LMFBR stems from its ability to breed more fissible fuel than it con-

sumes. Since the blanket region of the LMFBR core accounts for a

large fraction of the breeding, M. I. T. has undertaken, under A. E. C.

contract, a detailed program of blanket physics analysis, of which

the present research is a part.

The central objective of reactor physics analysis is an accurate

description of neutron interaction rates, which can be represented as

the product of a target material property - the cross section - and a

projectile flux, the neutron flux. Both of these properties are energy-

dependent. It is the second of these two factors, the energy spectrum

of the neutron flux, which is the subject of the present research.

More specifically, the objective of the work reported here has been

the application and evaluation of instrumental methods for neutron

spectroscopy for the determination of an accurate ambient spectrum

in Blanket Test Facility Mock-Up No. 2, a simulation of the blanket
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region of a large LMFBR designed for central station power gener-

ation.

The energy range of interest is from a few keV to several MeV.

Over this energy range, instrumental methods can compete favorably

with noninstrumental methods such as nuclear emulsions and foil acti-

vation.

2. 2 Instruments and Techniques Used in this Work

The instrumental methods used in this work involved use of Li6 and

He3 semiconductor detectors and proton-recoil proportional counters.

The Li6 semiconductor detector was used in three different modes

of operation, denoted as the Sum, Difference and Triton Methods. The

last two methods were used in an attempt to improve the useful energy

range and the resolution of the spectrometer.

The He3 detector was operated in the Sum and Difference Modes.

The latter mode improves the resolution, useful energy range and

gamma discrimination of the detector.

The proton-recoil proportional counter selected was similar to

that developed by Bennett (1, 2) and extensively applied to fast critical

experiments at ANL.

2. 3 Description of the Blanket Test Facility and Test Assembly

A detailed description of the experimental facility is given in

references (3) and (4). Only a brief description will be presented here.

The Blanket Test Facility (BTF) is at the rear of the graphite-lined

cavity comprising the MITR hohlraum; Fig. 2. 1 shows a section view

of the facility. The key component in the BTF is a converter lattice

made up of graphite and slightly enriched uranium oxide fuel rods,

which converts the incident hohlraum thermal spectrum into a spectrum

of fast neutrons typical of that leaking from a large LMFBR core. The

total power of the converter lattice is about 50 watts and the fast

neutron flux approximately 109 n/cm 2-sec.

Blanket Assembly No. 2 is a mock-up of a representative large

LMFBR blanket. It consists of three rows of subassemblies containing
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steel-clad uranium metal fuel rods and anhydrous sodium chromate

powder (Fig. 2. 2). The relative proportions of the various constitu-

ents have been chosen to correctly simulate the UO2 fuel, stainless

steel clad and sodium coolant of a real LMFBR blanket (see Table 2. 1).

The blanket has an 18-inch-thick reflector of mild steel plate.

The blanket subassembly boxes are 5.92 inches square, 60 inches

high, and have an approximate wall thickness of 3/32 inch. Each sub-

assembly contains 121 fuel rods arranged in an 11 X 11 square lattice

with a spacing of 0. 511 inch. The fuel rods have a mean U235 enrich-

ment of 1. 08%.

Figure 2. 3 shows the position of the test subassembly employed

to hold the instruments used to measure the neutron flux. The sub-

assembly is within the 30-inch center region which has been shown to

have reached spectral equilibrium (4). The test subassembly is simi-

lar to the subassemblies described above except that a 1. 75 X 1. 75-

inch center section has been removed and replaced by a hollow steel

channel (see Fig. 2.4). Figure 2. 5 shows the inner subassembly

insert which fits into the center of the test subassembly. The insert

consists of two sections: a bottom section and a top section. The

bottom section is a 1.5 X 1.5 X 21 inch-long square box, with nine

uranium metal fuel elements, carbon steel clad and 5/16-inch 0. D.

The top section is similar to the one described above, but two fuel

elements in opposite corners have been removed to leave space for

instrument cables. The detector (e.g., Li 6 , He 3 , proton-recoil) is

placed between the two sections of the inner subassembly insert, in

a cavity 1.5 X 1.5 inches in cross section and 8 inches long. With the

exception of the thin steel channel walls, the special subassembly has

been designed to have a composition similar to the other standard sub-

assemblies to avoid creation of large flux perturbations. The same

experimental setup was used with the Li6 and He 3 semiconductor

detectors and the proton-recoil detector. Figure 2. 6 shows a sche-

matic of the upper section of the inner subassembly with the proton-

recoil detector installed.
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FIG. 2.2 SCHEMATIC VIEW OF BLANKET ASSEMBLY NO. 2
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TABLE 2.1

Homogenized Atom Densities in BTF Blanket No. 2

Equivalent Realistic
Nuclide Blanket No. 2 Blanket

U 2 3 5  0.000088 0.000016

U238 0.008108 0.008131

0 0. 016293 0. 016293

Na 0.008128 0.008128

Cr 0.004064 0.003728

Fe 0.013750 0.017814 0.012611 0.017814

Ni 0.000000 0.001475)

H 0.000073 0.000000

C 0.000096 0.000082

Composed of 37. 0 v/o depleted UO 2 (at 90% of theoretical density),

20. 7 v/o Type 316 stainless steel, 32 v/o sodium and 10. 3 v/o void.
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2.4 Helium-3 Semiconductor Detector

2. 4. 1 Introduction

This system consists of two silicon semiconductor detectors

in a sandwich configuration; the space between the two detectors is

filled with He3 gas. Detection is based on the reaction:

On + 2He3 - H 31 + Q (2.1)

In this reaction the neutron and the nucleus interact to form two

product particles. Energy is released; this energy plus the energy of

the incident neutron appears as kinetic energy of the product particles.

En + Q = E + ET (2.2)

2.4.2 Sum Method

2. 4. 2. 1 Description of the Method

In the Sum Method, the output of both detectors is added and

only those which fulfill the coincidence requirements are accumulated

in the multichannel pulse-height analyzer. Figure 2. 7 shows the

block diagram of the neutron spectrometer electronic system.

According to Eq. 2. 2, the height of the sum pulse is proportional to

the energy of the neutron plus the Q value (764 keV) of the reaction.

The neutron energy is therefore obtained with no ambiguity from a

measurement of the total energy released.

2. 4. 2. 2 Effect of the Discriminator Settings

To discriminate against the noise inherent in the electronic

system and to reduce the number of small gamma-ray induced pulses

reaching the coincidence unit, a baseline setting equivalent to 150 keV

was selected for the timing single-channel analyzer. The application

of this energy discrimination will cause the rejection of some real

events in which one of the emitted particles does not carry away

enough kinetic energy. This effect is taken into account in the unfold-

ing of the measured spectrum.
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2. 4. 2. 3 Experimental Results

The He 3 detector was placed in the test subassembly located

in the second row of Blanket Mock-Up No. 2 to measure the ambient

fast neutron flux. The steel doors controlling the thermal neutron flux

incident on the converter cart were opened only two and a half (of a

normal 30) turns, to limit the converter power and thereby avoid the

pile-up of events at the output of the detector preamplifier. The same

experimental conditions were used in all the experiments performed
3 6with the He detector, Li detector and proton-recoil proportional

counter. The unfolded neutron spectrum, plotted per unit lethargy in

Fig. 2.8 (4(u) = E4(E)), shows a broad peak around 350 keV. Only

the region above a neutron energy of about 200 keV was measured with

the Sum Method just described, since the large value of the absorption

cross section for low-energy neutrons produces a large background

peak which affects the measurements.

The estimated errors in the neutron flux range from about 9% to

13% in the energy region from 200 keV to 1. 3 MeV.

2.4. 3 Difference Method

The Difference Method is used in an attempt to improve the

low-energy resolution of the system and to improve the rejection of

gamma and noise background. This technique was first used with Li6

semiconductor detectors (5). In this technique, the signals of both

detectors are fed into a C. I. -1417 Amplifier operating in the difference

mode; the amplified output is then fed in coincidence with the output of

the logic shaper and delay to the multichannel analyzer. The rest of

the electronic system is similar to the Sum Method electronics (see

Fig. 2.9).

This method has the advantage that any equal-amplitude noise

common to both detectors is cancelled in the subtraction process.

Similarly, those gamma events which cause the same or nearly the

same ionization in both detectors are rejected, improving the gamma

discrimination.
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The equations for the kinematics of the reaction show that the

difference between the product particle energies changes much more

rapidly at neutron energies in the low-keV region than does the sum

of the product energies. Replacement of the sum amplifier by a

difference amplifier should therefore improve the energy resolution

(Table 2. 2).

2. 4. 3. 1 Unfolding Using the Derivative Technique

The equation relating the measured difference spectrum to

the incident neutron flux is

M(A) = N f e(E)P(E, A )u(E)O(E) dE (2.3)
0

where

M(A) = measured charged particle spectrum at a difference

energy A.

e(E) = detector efficiency, including discriminator and

electronic effects.

P(E, A) = probability that a reaction which takes place at

a neutron energy E contributes to the counting

rate at A.

o(E) = absorption cross section at energy E.

O(E) = incident neutron flux.

It can be shown that for an isotropic reaction in the center of mass

system

2/3
P(EA) =

4E (E 1+0. 75Q)

where

E = neutron energy.

Two ways of solving Eq. 2. 3 will be considered: the derivative

technique and the integral technique. The first method is discussed



TABLE 2.2

He3 System - Comparison of Difference Method

E 1

(keV)

0

0.5

1.0

2.0

3.0

10.0

25.0

50. 0

100.0

200. 0

500. 0

750. 0

1000.0

1500.0

E 3

(keV)

573.

582.

586.

591.

595.

617.

649.

691.

761.

883.

1212.

1474.

1731.

2239.

Eg 4

(keV)

191.

182.5

179.

175.

172.

157.

140.

123.

103.

81.

52.

40.

33.

25.

*
A max

E 3- E 4

(keV)

382.

399.5

407.

416.

423.

460.

509.

568.

658.

802.

1160.

1434.

1698.

2214.

and Sum Method

E3+E4

(keV)

764.

764.5

765.

766.

767.

774.

789.

814.

864.

964.

1264.

1514.

1764.

2264.

*
For observation of products at 0 =

33

0* , 4 = 180* .
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in this section; the latter is explained in the next section.

To take into account the effect of the electronics, which cannot

distinguish between (ET-Ea) and (E a-ET,), Eq. 2. 3 is written as:

E'=EL
M(A) = L e(E') P(E', A) Z(E') 4(E') dE'

E'=E

E
+ f max e(E') P (E', A) E.(E') 4(E') dE' (2.4)

E'=E 0

where

EL = neutron energy at which the effect of the electronics will

affect (actually double) the value of the probability function.

Ema = maximum neutron energy.

Applying Leibnitz's rule to Eq. 2. 4, one can show that

-dM(A) 1 P(EL,'A)(EL)4 (EL) dEL
O(E) =dE e(E) P(E, A) Z(E) + -e(E)P(E, A)Z(E)- dE

(2.5)

At high neutron energies, the second term vanishes and the expression

becomes

O(E) = dM(A) 1 (2.6)

The neutron flux is calculated first at high neutron energies (E> 1 MeV)

using Eq. 2.6. In other words, the measured data are unfolded

starting with the highest channel. As the energy is decreased, the

second term of Eq. 2. 5 becomes important and Eq. 2. 5 is used to

continue the unfolding down to the lowest neutron energy. A computer

program called DIFFE was written to perform the unfolding of the

measured spectrum.

2. 4. 3. 2 Unfolding Using the Integral Technique

The integral equation (2. 3) can be replaced by the (approxi-

mate) matrix equation
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n
M.(A) = K. .P..4. (2.7)

j=1
or

M = A (2.8)

where

K . is a square n X n matrix

A. K..P. (2.9)

A is known as the detector response matrix. The first task is to

determine the elements of the matrix A for a particular problem.

In this case, they are calculated from the kinematics equations of

the reaction. The second portion of the analysis is common to all

problems of this type, i.e. , the solution of Eq. 2.8 for V, the

neutron flux. The equation cannot be solved by simply inverting

matrix A because of the instability of the solutions obtained (for

example, negative fluxes with large oscillations). The unfolding

technique devised by R. Gold is used; this is discussed in detail in

reference (6). A computer program MATRIX was written to solve

the problem.

2. 4. 3. 3 Experimental Results

The He3 semiconductor detector operating in the Sum and

Difference Modes was used to measure the neutron spectrum in

Blanket Mock-Up No. 2. The Sum Method covers an energy range

from 200 keV to 1. 3 MeV. The Difference Method extends the low

energy limit and covers an energy range from 10 keV to 1. 1 MeV.

The overlap region for both methods (200 keV to 1. 1 MeV) shows

good agreement between the two neutron flux measurements (Fig. 2.10).

The Difference Method improves the gamma and noise discrimination.

The integral technique and differential technique used to unfold the

difference spectrum are in good agreement over the entire energy

range of the measurements (Fig. 2. 11). This consistency gives con-

fidence in the procedures applied to each technique.



0
0

0
e

G

G

0 Difference Method

6 Sum Method

0-
-J

z

10 OO

Neutron Energy (Kev)

FIG. 2.10 Neutron Flux Measurement In The Blanket Mockup NO. 2 - He-3 System

50-

101

* * - - -
0

1000

w'

0

I



& A

o Derivative Method

A Integral Method

0

LAJ

3 5 10 20 50

Neutron Energy (Kev)

FIG. 2.11 Neutron Spectrum
Difference Method

In The Blanket Mockup NO. 2 - He-3 System

2

5

2

L.
0
4-
a,
-J

C

1..
a,a-
x

LL

C
0

4-

a,
z

A

0

4L

®1
5

I



38

The uncertainty introduced by the discriminator settings affects

the accuracy of the measurements in the low-energy region and

reduces the sensitivity of the detector to low-energy neutrons.

2. 5 Lithium-6 Semiconductor Detector

2. 5. 1 Introduction

The Li6 semiconductor detector consists of a sandwich

configuration of two closely spaced surface barrier detectors with a

thin layer of Li 6F located between the detectors (7). The detector

is based on the reaction

0N 1 + 3Li6 H 3 + 2He4 + Q (2.10)

If the triton and the alpha particles are absorbed by the semiconductor

detectors, each produces a pulse whose height is proportional to the

energy deposited by the particle.

In this section, three different modes of operation of the detector

are described to cover the energy range from 10 keV to 3 MeV: The

Sum Method from 500 keV to 3 MeV, the Triton Method from 10 keV

to 600 keV, and the Difference Method from 10 keV to 600 keV.

A Cf 2 5 2 neutron source was used as a standard to calculate the

response function of the detector. The correction obtained with this

source allows one to extend the low-energy limit of the Sum Method

down to 160 keV.

Finally, it should be noted that the high Q value (4. 78 MeV) of the

Li 6 (n,a) T-reaction improves the gamma discrimination of the system

in comparison with the He 3 system.

2. 5. 2 Sum Method

The alpha and triton particles are detected in the two semi-

conductor detectors, and the total energy shared by these particles is

indicated by summing in coincidence the output pulses from the two

detectors. The amplitude of the Sum pulse thus has a one-to-one

correspondence with the energy of the incident neutron. The neutron
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energy is equal to the total energy minus the Q value of the reaction.

The electronics associated with this system are similar to the
3electronics used with the He system. Only the settings of the linear

amplifiers and the timing single-channel analyzer are different.

2. 5. 2. 1 Measurements of the Cf 2 5 2 Spontaneous -Fission

Neutron Spectrum

In order to provide a basis for direct normalization of data on

unknown spectra to a known reference, the Cf 2 5 2 neutron spectrum was

measured using the Li6 detector operating in the Sum Mode. The theo-

retical spectrum (8) and the unfolded spectrum are shown in Fig. 2. 12.

The charged particle spectrum was unfolded using the computer

program SUMMA. It can be seen that the agreement is good over most

of the energy range observed. The larger discrepancies occur in the

lowest energy region, due to the strong variation of the Li6 (n,a)

T-cross section (9) around the broad resonance at 250 keV. The ratio

of the theoretical spectrum to the measured spectrum is used to

correct the systematic anomaly shown by the detector in the energy

region from 10 keV to 400 keV. This correction was applied to the

neutron flux measurements in Blanket Mock-Up No. 2, as discussed

in the next section.

2.5.2.2 Neutron Flux in Blanket Mock-Up No. 2

6
The Li semiconductor detector was placed in the test sub-

assembly, described in section 2. 3, to measure the fast neutron flux.

The experimental data were unfolded with the SUMMA program. The

computer program output was corrected by hand, using the response

function of the detector (sec. 2. 5. 2. 1). The unfolded neutron spectrum

covers an energy range from 160 keV to 3. 1 MeV; it shows a small

variation from 160 keV to 350 keV and falls rapidly as the neutron

energy increases (Fig. 2.13). Around 1 MeV, a small dip is observed,
caused by a scattering resonance in oxygen. Two small peaks at

1. 5 MeV and 2.3 MeV are shown. These have also been observed in

several fast neutron spectrum measurements (10, 11, 12). They are
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a consequence of pronounced minima in the sodium and oxygen cross

sections in these energy regions. Measurements done in Blanket

Mock-Up No. 2, using a neutron spectrometer based on gamma spec-

troscopy (13), also show peaks near 1. 5 MeV and 2. 3 MeV.

2. 5. 3 Difference Method

The Difference Method is mainly used to improve the reso-

lution of the system at low neutron energies (see Table 2. 3), since

the gamma and noise rejection of the system is very good due to the

high Q value of the reaction. The block diagram of the electronic

system is the same as described in section 2.4. 3 and shown in

Fig. 2.9.

2. 5. 3. 1 Construction of Response Function

The measured difference spectrum is related to the inci-

dent neutron flux by Eq. 2. 3. The probability function is given by

Eq. 2. 11 because the Li6 (n, a) T-reaction is nonisotropic in the center

of mass

P(E, A) dA = 27rd(cos i) o (E, cos'p) (2.11)

where

a (E, cos g) = differential cross section of the reaction

for neutrons of energy E.

Following the discussion of reference (14), the differential cross

section is represented by a second-order Legendre polynomial

expansion.

2. 5. 3. 2 Unfolding Using the Derivative Technique

The unfolding technique discussed in section 2.4. 3. 1 also
6applies to the Li semiconductor detector. The only difference is that

the differential absorption cross section is nonisotropic in the center

of mass, and therefore a subroutine called THETA2 was included in

the DIFFE program to take into account the nonisotropic effect.



TABLE 2. 3
6Li System - Comparison of Difference Method and Sum Method

A max SUM

EI E 3  E4 E3-E4 E3 E4

(keV) (keV) (keV) (keV) (keV)

0 2730 2050 680 4780

0. 5 2750 2030.5 719. 5 4780. 5

1.0 2758 2022 736 4781

2.0 2769 2013 756 4782

3.0 2778 2005 773 4783

10.0 2819 1971 848 4790

25.0 2875 1930 945 4805

50.0 2943 1887 1056 4830

100.0 3047 1833 1214 4880

200.0 3214 1766 1448 4980

500.0 3610 1670 1940 5280

750.0 3899 1631 2268 5530

1000.0 4170 1610 2560 5780

1500.0 4636 1594 3092 6280

Corresponding to 6 = 00,, 4 = 1800.

43
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Equations 2. 5 and 2. 6 are used to obtain the unfolded neutron spectrum

from the measured difference spectrum.

2. 5. 3. 3 Unfolding Using the Integral Technique

The unfolding technique of section 2. 4. 3. 2 can also be applied
6to the Li semiconductor detector. A subroutine in the computer

program MATRIX calculates the neutron flux per unit lethargy at fifty

different energies fixed by the program. It also calculates the
6

response function based on the kinematics equation of the Li (n,a)

T-reaction. Other subroutines contained in the program take into

account the anisotropic nature of the reaction and the effect of the

electronics.

2. 5. 3. 4 Experimental Results

The neutron flux in Blanket No. 2 was measured using the Li6

semiconductor detector operating in the difference mode. Figure 2. 14

shows the flux per unit lethargy as a function of neutron energy from

10 keV to 600 keV. It was unfolded using the integral technique dis-

cussed in the previous section. For reasons explained below, the dif-

ferential unfolding technique did not yield acceptable results.

By unfolding theoretical particle spectra (i. e. , spectra having

realistic shapes, but for which exact relations between charged particle

and neutron spectra could be formulated), it was found that the computer

program using the derivative technique for unfolding is very sensitive

to errors associated with the differential cross section and to statistical

errors in the measured particle spectra. This leads to spurious oscil-

lations and anomalies in the unfolded neutron spectra. Hence, at the

minimum, a subroutine to smooth the data before calculating deriva-

tives should be added to improve the stability of the program before

further application to the Li6 detector is attempted. From the results

reported in section 2.4. 3.1, we may conclude that the smoother and

more accurately known absorption cross section of He 3, and the iso-

tropic nature of the reaction in the center of mass make use of the un-

improved differential approach at least marginally acceptable for that

system.
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2. 5. 4 Triton T e chnique

2. 5. 4. 1 Description of the Technique

In this technique (9, 15), only one of the detector outputs is

registered in the multichannel analyzer, but the outputs of both

detectors are required to be in coincidence to register a count. The

alpha and triton spectra obtained from the output of the detector are

well separated, so that it is possible to analyze the data above the

center of the triton peak without having to correct for the presence

of the alpha spectrum.

2. 5. 4. 2 Response Function Calculation

By analogy with Eq. 2. 11, the response function for the

Triton Method can be represented as

P(E, E 3 ) dE 3 = 27rd (cos 9)o (E, cos )

where

E3 = kinetic energy of the triton particle.

The differential cross section, a(E, cos j), is strongly nonisotropic

in the center of mass and is approximated by a second-order Legendre

polynomial expansion.

2. 5. 4. 3 Neutron Flux Measurements

The Li 6 semiconductor detector, operating in the triton mode,
was placed in Blanket Mock-Up No. 2 to measure the fast neutron

spectrum. The matrix equation discussed in section 2. 4. 3.2 is used

to unfold the measured spectrum of the triton particles. Figure 2. 15

shows the unfolded neutron flux per unit lethargy as a function of

neutron energy from 10 keV to 600 keV. In the energy range from

200 keV to 400 keV, the flux per unit lethargy, 4(u), experiences a

large decrease in magnitude. This may be an anomaly due to the

presence of the Li6 cross-section resonance at about 250 keV, even

though this spectrum has been corrected with the response function

calculated from the Cf 2 5 2 neutron spectrum measurements. The
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presence of large scattering resonances at 250 keV and 400 keV in

sodium and oxygen also contributes to a decrease in neutron flux.

Figure 2. 16 shows the neutron flux per unit lethargy as a function

of neutron energy, obtained by combining the results of the Triton and

Sum Methods.

2. 6 Proton-Recoil Proportional Counter

2. 6. 1 Basic Considerations

Proton-recoil proportional counters have been used

extensively to measure neutron spectra (1,2). In a neutron-proton

collision, all neutron energies below that of the incident neutron

energy are equally probable. This rectangular response function of

the proton spectrum has to be unfolded to arrive at the neutron

spectrum. One method of unfolding consists of differentiation of the

proton-recoil distribution. The relationship between the corrected

proton-recoil distribution, M(E); and the neutron flux per unit

lethargy, 4(u), is

0(u) E 2 dM(E) (2.12)
NT-H(E) dE

where

aa(E) is the neutron-proton scattering cross section.

Two detectors were used in the measurements; the smaller

detector is filled with about 8 atm of predominately hydrogen gas.

It was used to measure proton-recoil spectra below 100 keV. The

larger detector is filled with about 3 atm of predominately methane

gas. The methane detector was used for energies greater than

100 keV.

A block diagram of the system is shown in Fig. 2. 17. The

system has two channels, the energy channel and the rise-time-to-

amplitude converter channel. The former records a pulse whose

height is proportional to the ionization. The other channel measures

the rise time of the pulses, which is used to reject gamma-induced

events.
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2. 6. 2 Unfolding of Neutron Spectra from Proton-Recoil

Distributions

The computer program PSNS written at ANL (16) was used to

unfold the measured proton-recoil spectrum. The original program

was rewritten in Fortran IV language and the energy dependence of W

(energy per ion pair) was modified to include the results of recent

measurements (17). Corrections for wall-and-end effects, and the

recoil of heavy nuclei are also included in the program. The calcu-

lation of the neutron flux per unit lethargy is based on Eq. 2. 12, and

the results are given at a constant fractional energy increment.

2. 6. 3 Experimental Results

The fast neutron spectrum was measured over the energy

region from 2 keV to 1. 5 MeV in Blanket Mock-Up No. 2. Data were

obtained with the hydrogen-filled counter using eight high voltage set-

tings at 150-volt intervals, beginning at 3250 volts. The methane-

filled detector was used with high voltage settings of 3200 volts, 3500

volts and 3750 volts. An energy overlap was maintained between the

two counters to assure that the data were properly normalized. The

three methane-filled counter data sets were also overlapped in energy.

The neutron spectrum is shown in Fig. 2. 18. Depressions due to

various scattering resonances are seen: oxygen resonances at 400 keV

and 1 MeV, a chromium resonance at 50 keV, an iron resonance at

30 keV and a sodium resonance at 3 keV. The experimental error

varies from about ±13% over most of the energy range to almost ± 33%

in the region around 3 keV, where the statistics of ionization become

very poor.
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2. 7 Results and Conclusions

2. 7. 1 Discussion of Results

This work has involved evaluation of different instrumental

methods for measuring the fast neutron spectrum in Blanket Mock-Up

No. 2. The methods applied are shown in Table 2.4. In this final

section, the experimental results from previous chapters are inter-

compared. They are also compared with numerical calculations from

the ANISN code, and to foil activation measurements.

2. 7. 1. 2 Intercomparison of Present Results

The results obtained with the He 3 semiconductor detector

operating in the Sum and Difference Modes are in reasonable agreement

(Fig. 2. 10). The He3 Sum Method results are also in good agreement

with the Li6 semiconductor detector Sum Mode measurements over the

energy region from 200 keV to 1. 1 MeV (Fig. 2. 19). In the low-energy

region (10 keV to 100 keV), the He3 Difference Method results differ

from those obtained using the Li 6 detector (Fig. 2. 20). This is mainly

due to the effect of the discriminator setting on the He3 Difference

Method, which introduces large uncertainties and reduces the sensi-

tivity for measuring low-energy neutrons. The results from the Li 6

semiconductor detector and the Proton-Recoil proportional counter are

in very good agreement over the entire energy range of the measure-

ments (Fig. 2.21).

2. 7. 1. 3 Comparison with ANISN Calculations

The one-dimensional transport code ANISN, with the

ABBN cross section set and self-shielded U 2 3 8 cross sections, was

used in the S 8 option to calculate the theoretical neutron spectrum in

Blanket No. 2, at 24. 75 cm into the blanket (18). Figure 2.22 shows

the 26-group calculation and the experimental results obtained by

collapsing the Proton-Recoil data into the same group structure.

Relatively poor agreement in the low-energy region is observed

between the calculated and measured spectra; the former shows a
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TABLE 2.4

Summary of Instrumental and Unfolding Methods Used

to Measure the Fast Neutron Spectrum

Detector Operating Unfolding RemarksMode Method

He-3 Sum direct See Figs. 2. 8 and 2. 19
for results.

integral See Figs. 2. 10 and 2. 11

Difference for results.

derivative See Fig. 2. 11 for results.

Li-6 Sum direct See Figs. 2. 13 and 2. 19
for results.

integral See Fig. 2. 14 for results.

Difference

derivative It was not successfully
employed on the Li-6 data.
See section 2. 5.3.4.

T riton integral See Figs. 2.15 and 2.21
for results.

Proton- derivative PSNS code from ANL.
Recoil See Figs.2.18 and 2.21

for results.
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flatter distribution in the energy region from 5 keV to 100 keV. A likely

explanation is that the averaging-out of the iron and chromium scatter-

ing resonances involved in the original preparation of the 26-group

cross section set has contributed errors which lead to overestimation

of the neutron flux in that energy region. The good agreement obtained

between the different instrumental measurements, however, engenders

considerable confidence in the reliability of the experimental results:

different combinations of detectors, operating modes and unfolding

techniques all gave comparable results.

2. 7. 1. 4 Comparison with Foil Results

The three-foil experimental data unfolded by Leung with the

DRISTAN code (18) are shown in Fig. 2. 22 together with the Proton-

Recoil results. The agreement is again poor in the low-energy region.

Leung's results are subject to the same source of systematic error in

the iron and chromium scattering cross sections as the ANISN calcu-

lations, since his unfolding method is based upon fitting to a smooth

slowing-down density and extracting the flux through division by (I T,
Leung used the ABBN cross section set to determine T',, which may

explain the consistency of his results with the ANISN calculations

using the same cross section set. Foil experiments which include a

larger number of foils sensitive in the energy region from 3 keV to

50 keV should be performed to resolve the discrepancy. Leung's

unfolding method should also be applied using 9ZT values derived from

an independent source.

2.7.1.5 Comparison with Ge(Li) Data

The neutron spectrum above 0. 8 MeV leaking from Blanket

Mock-Up No. 2 was measured by C. S. Kang (13) using a Ge(Li)

crystal and a novel approach based on gamma line broadening. His

results and the measurements from the Li6 Sum Method are compared

in Fig. 2.23. There is relatively good agreement between the experi-

mental results.
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2.7.1.6 Comparison with ZPPR-2-Core-Neutron Spectrum

The converter lattice that provides the fast neutron spectrum

to drive Blanket Mock-Up No. 2 was designed (3) to achieve a neutron

leakage spectrum similar to that of the ZPPR-2 Core. Figure 2.24

shows the ZPPR-2-Core-Neutron Spectrum (19) and the Blanket Mock-

Up No. 2 Neutron Spectrum, both measured with Proton-Recoil

proportional counters. The experimental results were collapsed into

the same group structure. Both neutron spectra have a similar shape,
but the Blanket Mock-Up No. 2 spectrum is systematically softer, as

expected. As shown in Fig. 2.25, the fine-group spectra show the

same characteristic signature of the scattering resonances in sodium,

iron, chromium and oxygen.

2. 7. 2 Conclusion

In conclusion, the results from the instrumental methods used in

this work are in relatively good agreement and no unexplained

behavior was observed in the neutron spectrum measurements from

2 keV to 3. 1 MeV. This result inspires further confidence in the

Blanket Test Facility concept as a valid technique to study mock-ups

of LMFBR blankets.

Further work is called for in the areas of numerical calculations

of spectra and foil unfolding methods. Finally, for general purpose
6use in future mock-up runs, it is recommended that the Li detector

be used: it has better performance characteristics overall than the
3He system and is considerably more convenient than the Proton-

Recoil system.
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3. FOIL METHODS FOR NEUTRON SPECTROMETRY

3. 1 Introduction

While instrumental methods for neutron spectroscopy have some

compelling advantages, there are at least two areas in which their

shortcomings invite development of alternate approaches. First,

they provide no information on the spectrum below several (or in

some cases, several hundred) keV, a region of considerable interest

in the blanket-reflector region of the LMFBR. Second, in some

environments, particularly if one contemplates measuring spectra in

operating LMFBR's, the instrumental spectrometers cannot be

employed at all due to high background or excessive radiation damage.

The use of multiple foil activation methods for spectrum determi-

nation is of long standing and several comprehensive reviews of past

progress have been published (1, 2, 3). Nevertheless, further work is

still called for in order to meet some of the specific requirements

established for the present task, and also to further the development

of improved methods for unfolding neutron spectra from the foil data -

at present a major drawback to more widespread reliance on foil

methods.

3.2 Criteria for LMFBR Foil Method

The foil method now being investigated as part of the blanket

research program has evolved from previous work at M.I. T. (4, 5)
and has been further modified to satisfy a number of additional

criteria. For this reason, it is worthwhile to review the many

criteria and exercises of judgment involved in arriving at the present

approach:

(1) Encapsulated mixtures of powders are being employed, and the

activated samples are counted using high-resolution Ge(Li)

detectors based on the following rationale:
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(a) Mixing fine powders reduces resonance self-shielding effects

and the attendant necessity for correction of the cross section

data to account for them.

(b) The one-step counting procedure and use of available data

analysis codes such as GAMANL greatly reduces the amount

of tedious (and error-introducing) intermediate steps involved

in conventional foil methods.

(c) It is easier to find compounds which are suitable for high

temperature service than forms which can be fabricated

into foils.

This approach was adopted despite the recognized disadvantage

that it eliminates potential target materials which produce identical

activation products, such as all fissionable materials, and other

combinations (e.g. , Na 2 3 (n,7), Mg 2 4 (n, p), A 2 (n, a), and a few others

which produce gamma lines too close for independent resolution (e. g.,

In(n,n') and La(n,i)).

(2) Materials were selected with half lives greater than about one

hour and less than roughly one month: the lower limit to allow

for handling time and the upper because we wish to reuse foil

capsules and also to calibrate them in a thermal spectrum in

order to increase experimental precision. This latter objective,

and also the greater interest in keV-region spectra, indicates

preference for nonthreshold type absorbers.

(3) Other obvious criteria also apply: the material must activate

sufficiently in a LMFBR spectrum, decay with sufficiently

energetic, high-yield gammas to facilitate detection, and not

contain isotopes which produce unwanted background in the

composite gamma spectrum.

With these criteria in mind, a comprehensive survey of potential

capsule constituents has been started, as described in the following

section.
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3. 3 Selection of Candidate Foil Materials

Based upon the criteria just listed, a series of screening tests was

carried out on the entirety of the periodic table of elements, including

irradiation of samples in the blanket test facility. The results are

summarized in Table 3. 1.

As can be seen from this preliminary evaluation, only six materials

(Na, Mn, As, In, La, Au) have qualified, five have been selected for

further screening and four are yet to be evaluated. Although this may

appear to be a rather sparse selection, it is also an unfortunate reality

of foil methods that cross section shapes are so similar over broad

energy ranges that one could not make very productive use of a larger

number of activation products.

In addition to selection of the foil materials, the screening tests

have also been employed to select candidate capsule materials,
together with the additional criteria that they be compatible with ex-

posure to high temperature sodium. Both vanadium and niobium appear

equally suitable; both were used as cladding in the original Dounreay

FBR core, and neither activates substantially in an LMFBR spectrum.

Further tests will be conducted to select one of the two as a final choice.

3.4 Comments and Conclusions

In addition to selection of appropriate foil materials, one must have

available a satisfactory means for unfolding neutron spectra from the

activation data. Methods employed at M. I. T. to date have included an

approach developed by Leung (6), and the SAND-II program. The

former appears to overly restrict the shape of the allowable flux, while

the latter appears to be overly flexible (7). Thus, current efforts have

been devoted to evaluation of an improved version of the SPECTRA code

(8, 9). Results to date are too preliminary to draw any definitive con-

clusions.

Considerable work remains to be done in this area: completion of

screening tests, demonstration applications using prototype capsules

including thermal spectrum calibration, and final selection of a well-

evaluated version of a spectrum unfolding program. All but the last of

these tasks should be completed during the coming year.
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TABLE 3.1

Screening of Candidate Foil Materials

Z Element Rating Z Element Rating Z Element Rating

1 H RN 29 Cu Xa 57 La C
2 He RG 30 Zn XH 58 Ce T
3 Li RN 31 Ga T 59 Pr T
4 Be RN 32 Ge T 60 Nd RH
5 B RN 33 As C 61 Pm RG
6 C RN 34 Se XA 62 Sm S
7 N RN 35 Br RI 63 Eu RH
8 0 RN 36 Kr RG 64 Gd RI
9 F RH 37 Rb XA 65 Tb RH

10 Ne RG 38 Sr RA 66 Dy S
11 Na C 39 Y RA 67 Ho RH
12 Mg RI 40 Zr XA 68 Er RI
13 Al RI 41 Nb XA 69 Tm RH
14 Si RAH 42 Mo XAI 70 Yb RI
15 P RA 43 Tc RG 71 Lu RA
16 S RA 44 Ru XA 72 Hf RI
17 Cl XA 45 Rh XH 73 Ta XH
18 Ar RG 46 Pd S 74 W XI
19 K RH 47 Ag XH 75 Re XA
20 Ca RA 48 Cd XA 76 Os RI
21 Sc RIH 49 In C 77 Ir XH
22 Ti S 50 Sn RH 78 Pt RI
23 V XA 51 Sb XH 79 Au C
24 Cr XA 52 Te RIH 80 Hg XA
25 Mn C 53 I XA 81 T1 RH
26 Fe XA 54 Xe RG 82 Pb RN
27 Co RI 55 Cs XH 83 Bi RN
28 Ni XAH 56 Ba S > 84 Various RGI

Ke:

R = rejected without irradiation

X = rejected after irradiation screening

S = selected for further screening tests

G = inert gas, or does not occur in nature

N = no useful activation product for present purposes

I = unwanted radionuclides activated for present purposes

A insufficient activation or gamma yield

T = still to be evaluated

H undesirable half life

C = selected for use -- passes all tests
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4. BLANKET MOCK-UP NUMBER 3

4. 1 Introduction

One of the major objectives of the blanket research program has

been the acquisition of experimental data against which the adequacy

of multigroup calculations can be tested. Methods and cross section

sets previously proven adequate for core calculations will not neces-

sarily suffice for blanket calculations owing to the severe spatial

attenuation and spectral degradation of the flux. This uncertainty is

accentuated where high-albedo blanket reflectors such as graphite

or beryllium are employed, since they are also good moderators. In

such cases, self-shielding effects in U238 are of particular concern.

The material activation traverses reported in this chapter were

measured on Blanket Mock-Up No. 3 - a graphite-reflected assembly

- and, therefore, constitute a useful benchmark against which the

methods used to calculate blanket performance using advanced

reflector designs can be tested.

A detailed description of the design and construction of the

Blanket Test Facility (BTF) used to drive the blanket mock-ups

irradiated under this program is presented in reference (1). For

present purposes, the only point requiring reiteration is that the BTF

converter provides neutrons closely simulating the leakage spectrum

from an LMFBR core.

To date, three blankets have been irradiated: the first contained

no uranium and was only used to evaluate facility performance.

Blanket No. 2, however, was an accurate mock-up of a typical

LMFBR blanket, consisting of three rows of fuel-containing sub-

assemblies and a steel reflector. The results of the test program

using this blanket have been documented in a series of reports

(2, 3, 4, 5, 6). Blanket No. 3, the present subject, was designed to

incorporate a graphite reflector region in place of the third row of

fuel in Blanket No. 2: otherwise, all important characteristics were
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kept the same. Section 4. 2 reviews the design and construction of

Blanket No. 3; section 4. 3 discusses the experimental program, whose

results are presented and analyzed in section 4. 4. Conclusions and

comments are outlined in section 4. 5.

4.2 Description of Blanket Mock-Up No. 3

4. 2. 1 General Description

Figure 4. 1 shows a schematic view of the BTF Blanket Mock-

Up No. 3 assembly on its cart, including the uranium subassemblies,

and the graphite and steel reflectors. The support structure for the

assembly consists of two pieces of 1 inch by 60 inches by 39 inches and

one piece of 1 inch by 62-7/16 inches by 58-1/4 inches hot-rolled, mild

steel plates, welded to make an H-frame. The H-frame support

structure and cart for this mock-up are identical to those used for

Blanket Mock-Up No. 2 except for an additional steel plate, 0. 5 inch by

23 inches by 61 inches, welded to the bottom of the cart, providing the

necessary overhang to support the uranium subassemblies and graphite

reflector on the front half of the H-frame.

There are 19 full subassemblies (5-13/16 inches by 5-13/16 inches

by 60 inches) arranged in two rows. The full-size subassemblies are

filled with steel-clad uranium rods and sodium chromate. The two

half-size peripheral subassemblies, used to provide a staggered array,
are filled with a mixture of iron and borax, shown to be a good repre-

sentation of a fueled assembly in the work on Blanket No. 1 (1).

Forty-three foil tubes are provided for the irradiation of various

foils in the blanket and reflector in the axial and transverse directions,
as depicted in Fig. 4.2. The foil tubes are mild steel tubing of 7/16-

inch outside diameter, 0. 028 inch thick and 58 inches long, and are

held in place by the top and bottom grid plates in each subassembly.

4.2.2 Blanket Subassembly Description

The subassemblies for Blanket Mock-Up No. 3 are identical to

those used in Blanket Mock-Up No. 2. A detailed description of these

subassemblies is given in reference (5) and is included here for com-

pleteness.



72

SIDE OF " H" FRAME

x23"x61" STEEL PLATE

FIG 4,1 SCHEMATIC VIEW OF BLANKET MOCK-UP NO. 3
WITH GRAPHITE REFLECTOR



GRAPHITE STRINGER

I-
U-

-j
w
w to)

w

z

w

73

URANIUM SUBASSEMBLY

Cl)w

Cl)

w

OVERHEAD VIEW OF BLANKET MOCK-UP NO, 3

i

FIG. 4.2



74

Each subassembly box has a wall thickness of approximately 3/32

inch and a seal-welded bottom closure plate. It contains 121 fuel rods

arranged in an 11 by 11 square lattice whose pitch is 0. 511 inch

(Figs. 4. 3 and 4. 4). The uranium metal rods are 0. 250 inch in

diameter and 48 inches in length. Sixty of the rods have a U235 enrich-

ment of 1. 016%, and sixty-one have a U235 enrichment of 1. 134%; the

two enrichments are loaded in a checkerboard pattern within the sub-

assembly box. The uranium metal rods are clad in low-carbon, mild

steel tubing. The clad tubing dimensions are 5/16-inch 0. D. , 0. 018-

inch wall thickness and 50 inches in length. Each end of the tube is

closed by a press-fitted steel plug, 1/2 inch long by 9/32 inch 0. D.

This arrangement leaves a one-inch free space in the tube to allow for

dimensional variations and fuel expansion. The fuel rods are held in

place by aluminum bottom and top grid plates, 1/4 inch in thickness.

Technical grade anhydrous sodium powder, Na 2 CrO4 , baked at

400* F to decrease the water content to less than 0. 1%, and ground

into a uniform powder, occupies the inter-rod volume. Each sub-

assembly is sealed by a 0. 035-inch-thick steel top plate, epoxied in

place to make the subassembly air- and water-tight. Figure 4. 5

shows the cross-sectional view of the blanket subassembly.

A breakdown of the average subassembly weight is given in

Table 4. 1 (as reported in reference (5)).

TABLE 4. 1

Subassembly Component Weights

Uranium metal 89. 30 Kg

Na 2CrO4  31. 11 Kg

Cladding 13. 00 Kg

Subassembly box 26. 55 Kg

Grid plate support tubes 0. 91 Kg

Grid plates 0. 36 Kg

161. 23 KgT otal
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The homogenized subassembly atom densities in Blanket No. 3 are

given in Table 4. 2. They represent the puclide densities in the central

portions of the assembly. Table 4. 2 also includes the atom densities

for an "equivalent realistic blanket" composed of 37 v/o depleted UO 2
(at 90% t. d. ), 20. 7 v/o Type 316 stainless steel (71. 2 w/o Fe,

20. 0 w/o Cr, 8.8 w/o Ni), 32 v/o sodium and 10. 3 v/o void. Nuclide

densities for the graphite and steel reflectors are also listed in

Table 4. 2. It is evident that Blanket No. 3 provides a realistic blanket

composition.

TABLE 4.2

Homogenized Atom Densities in Blanket No. 3

(Atoms/barn-cm)

Equivalent *
Nuclide Blanket No. 3 Realistic Blanket

U 2 3 5  0.000088 0.000016

U 2 3 8  0.008108 0.008131

0 0.016293 0.016293

Na 0.008128 0.008128

Cr 0.004064 0.003728

Fe 0.013750 0.017814 0.012611 0.017814

Ni 0.000000) 0.001475)

H 0.000073 0.000000

C 0.000096 0.000082

Nuclide Graphite Reflector

C 0.083245

H 0.000298

Nuclide Steel Reflector

C 0. 000590

Fe 0.084570

Composed of

20. 7 v/o Type

37. 0 v/o depleted UO 2 (at 90% of the theoretical density),

316 stainless steel, 32. 0 v/o sodium and 10. 3 v/o void.
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4. 2. 3 Description of the Graphite Reflector

Figure 4.6 shows a schematic view of the graphite reflector

assembly. It consists of a bottom graphite layer acting as the lower

grid plate, the graphite reflector, and an aluminum top grid plate,

forming a parallelepiped 52-1/4 inches high, 12 inches thick (i. e.,

two fuel subassemblies) and 60 inches wide. From a neutronic stand-

point, 12 inches of graphite are effectively infinite in the present

application.

The bottom grid plate was made from three 60-inch pieces of

4-inch-square graphite stringers placed side by side, forming a slab

4 inches by 12 inches by 60 inches.

These three stringers are held together by two aluminum rods

which fit into 1/2-inch-diameter holes drilled through the stringers

15 inches from each end. The rods are threaded at each end and

recess-bolted to clamp the grid plate together. Holes were then

drilled into the top face of the plate to align the vertical stringers

which make up the reflector. These holes are 1/4 inch in diameter

and 3/4 inch deep and seat aluminum pins 1-1/2 inches long. The

reflector consists of 48 graphite stringers 48 inches high. Four of

the outside stringers are half pieces, 4 inches by 2 inches instead of

4 inches by 4 inches to permit formation of a staggered array. Also,

the two stringers in the center of the assembly are half pieces,

making 6 half stringers in all.

In each of these 48 stringers, 1/4-inch-diameter holes, 3/4-inch

deep, were drilled in the top and bottom ends to fit over the aluminum

pins set in the bottom grid plate, and to house pins which in turn align

with the positioning holes in the top 1/4-inch-thick aluminum grid

plate.

In order to permit foil activation traverses in the reflector

assembly, twenty 3/8-inch-square vertical slots were milled into the

faces of selected graphite stringers comprising the reflector. These

slots house the holder rods for foil samples, as can be seen in

Fig. 4. 7. There are 6 slots which can be used to determine axial

traverses and 14 slots for the transverse measurements.
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FIGs 4.7 GRAPHITE REFLECTOR WITH AXIAL AND TRANSVERSE HOLDER
RODS INSERTED
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In the experiments which follow, positions within the blanket and

reflector are described in terms of a Cartesian coordinate system

whose origin is at the center of the front face of the blanket (i. e. ,
the converter-blanket interface): the ± X and ± Y axes delineate the

horizontal and vertical directions, respectively, while the +Z axis

(corresponding to the radial direction in a cylindrical core and

blanket) designates the depth into the blanket (see Fig. 4. 2).

4. 3 Experimental Aspects

4. 3. 1 Introduction - Objectives

The objective of the present experiments was to obtain the

necessary data to evaluate the transverse buckling and axial reaction

rates for various foil materials in Blanket No. 3. The foil materials

employed are listed in Table 4. 3 along with the reactions of interest.

Buckling measurements in the X and Y directions are important

because, in order to validate the one-dimensional calculational model,
the leakage must be characterized by a buckling formulation. If this

is the case, the neutron flux can be separated in space according to

the relation:

4(X,Y,Z,E) = cos(4X) cos(Z) O(Z,E) (4.1)

where the buckling is given by

B2 = BX 2 + BY2 ()2 ()2 (4.2)

and where W and H are experimentally determined values of the

extrapolated width and height, respectively. The system was designed

to achieve this result and the experiments on Blanket No. 2 have con-

firmed that this desired cosine dependence is attained (5). In the

present work, therefore, less emphasis was placed on transverse

buckling determinations than previously, and measurements were made

just to confirm that the values of W and H in the graphite reflector are

consistent with those previously determined in the blanket region of

Blanket No. 2. The necessity for high precision in these measurements



83

has been further reduced by the observation that calculated Z traverses

are not sensitive to the transverse buckling: even setting B2= 0 results

in negligible changes in the calculated results.

4. 3. 2 Experimental Procedure

The experimental technique is rather conventional and practi-

cally identical to that used in the analysis of BTF No. 2 (5). Thus,
only a brief description, primarily noting changes in the experimental

procedure, will be presented.

4. 3. 2. 1 Buckling Experiment

Transverse buckling measurements were made in the graphite

reflector utilizing various foil materials. Gold, molybdenum and

thorium foils were utilized for horizontal measurements. Gold and

thorium foils were utilized in the vertical measurements. The

thorium foils were used to detect fast neutrons by counting fission

products produced in the threshold fission reaction. The experimental

techniques were similar to those used in Blanket No. 2.

Aluminum rods containing milled axial depressions were used to

position the foils vertically and, when inserted in the respective

transverse traversing slots, provided the desired lateral positioning

(see Fig. 4. 7). Aluminum holders were used in the graphite instead

of the standard steel holders employed for the blanket to avoid

absorption of low-energy neutrons moderated by the graphite.

For vertical measurements, one rod holding 10 equispaced foils

(3-inch spacing) was inserted in the central transverse slot. The

horizontal measurements utilized all 14 slots (4-inch spacing) with

foils held in place at locations along the midline (Y-axis) of the

graphite.

The counting procedure used to obtain the raw data was identical

to that used with BTF No. 2, as were foil weight~background and decay

time corrections (where necessary) (5). The only procedural inno-

vation involved the thorium foils, which were not used previously. In

order to achieve useful counting statistics, a sandwich arrangement
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of three aluminum fission product catcher foils and two thorium foils

held together with Mylar tape was used (Fig. 4. 8). By counting the

fission products recoiled into the catcher foils, instead of those in the

thorium metal itself, the high thorium background activity did not

compromise the fission product counting.

4.3.2.2 Axial Traverses

Axial traverses were made in the blanket and graphite

reflector assemblies. Simulating traverses in the radial direction in

cylindrical geometry, twelve axial traversing slots are provided, six

each in the blanket and graphite. Steel foil-holder rods were used in

the blanket region and aluminum rods were used in the graphite region.

The foils irradiated in this phase of the experiment are listed in

Table 4. 3. Along with thorium, which was discussed in section 4. 3.2. 1,
neptunium and manganese represent the only foil materials not irradi-

ated previously in Blanket No. 2.

The manganese, in powder form, was encapsulated in poly vials

in a manner similar to that used for the sodium foils. The neptunium

compound, a nitrate of undetermined composition, was loaded in 1/4-

inch-diameter by 1-inch-long aluminum capsules and taped to the foil-

holder rods. The relative neptunium content of the individual capsules

was determined by background activity measurements.

The counting procedure used to obtain the raw data was identical

to that used in Blanket No. 2, as were corrections for foil weights,
background and decay time. The only additional modification involved

determination of the relative weights of the plutonium samples, where

background activity was used to determine the relative plutonium

content instead of direct weighing or thermal activation calibration.

Table 4. 4. summarizes the counting characteristics of the

thorium, neptunium and manganese foils used in the reaction rate

measurements. Similar data for the other foil materials are found

in reference (5).
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FIG. 4.8 THORIUM FOIL PACKET

THORIUM METAL FOILS
5 MILS THICK
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TABLE 4.3

Activation Foils Used in BTF No. 3

Foil

Gold

Molybdenum

Indium

Manganeset

Sodium

Chromium

Uranium

-238 in-rod

-238 ex-rod

-238 in-rod

-238 ex-rod

-235

Plutonium-239

Thoriumt

Neptuniumt

Reaction

Au 9 (n, 7)Au 1
98

Mo 98(n,Y)Mo99

In 1 15(n,n') In115m.

Mn 55(n,y)Mn56

Na 23(n,y)Na24

Cr 50(n,y)Cr51

U238(7)

U 23(n,)

U238(nf)

U238(nf)

U 235(n,f)

Pu 239(n,f)

Th 232(n, f)

Np 237(n, f)

Remarks

Measures entire energy
spectrum (A, B)*

Emphasizes keV range (A,B)

Threshold reaction E > 0. 2
MeV (A, B)

Emphasizes keV range (A)

Typical LMFBR material (A)

Typical LMFBR material (A)

Typical LMFBR material

(A)

(A, B)

Threshold reaction
E > 1.0 MeV (A)

(A, B)

(A)

Typical LMFBR material (A)

Threshold reaction
E > 1. 75 MeV (AB)

Threshold reaction
E > 0. 75 MeV (A)

A indicates foil used for axial activation traverse.
B indicates foil used for transverse activation traverse (i.e.

buckling determination).

New materials, not used in BTF No. 2.
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TABLE 4.4

Typical Data Pertinent to Foil Counting

Parameter Thorium Neptunium Manganese
Foil Foil Foil

Reaction

Product nuclide

Half life

Th 2 3 2 (n, f)

Fission
products

~2. 5 hours

Np 2 3 7 (n,f)

Fission
products

~ 2. 5 hours

Mn 55(n,)

Mn 5 6

2. 58 hours

E7 (MeV)

Ey detected (MeV)

Discriminator
setting

E n (volts)

E (volts)max

Typical counts
(less bkg.)

Counting time
(minutes)

Irradiation time
(hours)

*
Calibration approximately 0.46 MeV per volt

t Calibration approximately 0. 38 MeV per volt

> 0. 5

0. 72-oo

*
1.54

00

500

> 0. 5

1. 28-oo

*
2.80

00

2,000

0.84

0. 72-oo

1.90

00

30,000

10

12

5 2

12 16
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4. 4 The Results

4.4. 1 Analytical Predictions

4.4.1.1 Buckling

As previously mentioned, the transverse fluxes in Blanket

No. 2 were found to follow the anticipated cosine shape. Hence, the

buckling in Blanket No. 3 should also conform to this result:

A(X) = A(o) cos

and (4.3)

A(Y) = A(o) cos(4+)

where the extrapolated width and height, W and H, are best determined

by curve-fitting the experimental data, and A( o) is the maximum

amplitude. The values of W and H obtained in Blanket No. 2 were

74 inches and 60 inches, respectively; the corresponding assembly

width and active fuel height are 58 inches and 48 inches. No significant

change is to be expected for Blanket No. 3, since the graphite was sized

to have approximately the same theoretical extrapolated peripheral

dimensions as the rest of the assembly, which is otherwise identical

to Blanket No. 2 in the X and Y directions.

4. 4. 1. 2 Axial Traverses

Axial reaction rates were computed by means of the one-

dimensional transport theory code, ANISN (7) in the S 8 option, using

the 26-group Russian ABBN cross-section set (9) for all but four

materials. The effect of U238 self-shielding in the converter plate and

blanket fuel rods has been taken into account. Broad group cross

sections for U 238, which account for resonance self-shielding, have

been generated with the MIDI code (3). These cross sections were then

incorporated into the 26-group ABBN set.

Au197 capture, In115(nn') and Np 2 3 7 fission cross-section data

were developed from the SAND-II Library (9) by collapsing over the

ABBN weighting spectrum. It should be noted that the cross-section

data used to evaluate the foil activities were not self-shielded, except
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for in-rod U 2 3 8 capture; i. e. , the calculated ex-rod U 2 3 8 reaction rate

is for infinite dilution cross sections.

Plots of these data are found in the figures referred to in the next

section, where they are compared to the experimental results.

4. 4. 2 Experimental Results

The data reported in this section are normalized activities

corrected for counter dead time, background activity, foil weight, and

sample decay time. To facilitate comparison, the experimental data

were normalized to coincide with the calculated results at a convenient

point. Thus, for example, the experimental axial results were made

to coincide with the calculated results at approximately 12. 7 centi-

meters from the converter-blanket interface which is a little less than

half way into the blanket. The only exception occurs in Fig. 4.16,
where the correct experimental ratio between in-rod and ex-rod U2 3 8

captures is maintained.

Error brackets are shown on the graphs when the experimental

point itself is not large enough to cover the experimental error.

Typically, over 10, 000 counts were accumulated to ensure statistical

precision of better than ± 1%. At deep penetrations and where back-

ground activity was a substantial portion of the counts, ± 1%, statisti-

cal error in the relative activity was sometimes exceeded. The

errors shown in Tables 4. 5 and 4. 6 and 4. 7 show either the uncertainty

in counting statistics or the experimental standard deviation corrected

for small sample statistics, whichever is applicable. A more detailed

discussion of experimental error is included in section 4. 4. 3.

4.4.2. 1 Buckling

Tables 4. 5 and 4.6 show the normalized vertical and hori-

zontal buckling traverse data as a function of distance from the origin

of coordinates. Figures 4.9 and 4. 10 show representative plots of

these data for the Au, Mo and Th horizontal and Au and Th vertical

data, respectively. The cosine distributions conform to Eq. 4. 1 with

W= 74 inches and H = 60 inches, the Blanket No. 2 values.
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TABLE 4.5

Activation Traverses for Vertical Buckling Determination

Normalized
Data

Au (n,y)

0.419 ± 0.001

0. 546 ± 0.001

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Foil
Position

Distance
from g
(inches)

-21

-18

-15

-12

-9

-6

-3

0

3

6

9

12

15

18

21

Statistical error.
See section 4.4.3 for discussion of errors.

Normalized
Data

Th (n, f)

0.466 ± 0.087

0. 556 ± 0.081

0.671 ± 0.083

0.765 ± 0.086

0.901 ± 0.084

0.830 ± 0.082

0. 792 ± 0. 089

1.000 ± 0.087

0.971 ± 0.089

0.405 ± 0.087

0. 970 ± 0.085

0. 887 ± 0.087

0. 752 ± 0.086

0.647 i 0.087

0. 515 ± 0.086

0. 787 ±

0.881 ±

0.950 ±

0. 988 ±

1.000 ±

0.994 ±

0.952 ±

0.896 ±

0.839 ±

0. 740 ±

0.621 ±

0. 472 ±

0.001

0.001

0.001

0. 001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0. 001
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TABLE 4.6

Activation Traverses for Horizontal Buckling Determination

Foil Distance Normalized Normalized Normalized
Position from C Data Data Data

(inches) Au (n,7) Mo (n,7) Th (n,Y)

1 -26 0.400 ± 0.001 0.403 ±0.028

2 -22 0.574 ± 0.001 0.554 ± 0.028 0. 711 ± 0.109

3 -18 0.730 ± 0.001 0.706 ± 0.035 1.132 ± 0.113

4 -14 0.838 ± 0.001 0.855 ± 0.034 1.209 ± 0.118

5 -10 0.934 ± 0.001 0.908 ± 0.036 1.468 ± 0.113

6 -6 0.991 ± 0.001 0.912 ± 0.036 1.294 ± 0.112

7 -2 0.999 ± 0.001 1. 000 ± 0.040 1.450 ± 0. 121

8 2 1. 000 ± 0.001 0.925 ± 0.037 1. 500 ± 0. 118

9 6 0.986 ± 0.001 1.139 ± 0.044 1. 337 ± 0.121

10 10 0.938 ± 0.001 0.917 ± 0.037 1.290 ± 0.120

11 14 0.856 ± 0.001 0. 779 ± 0.031 1.115 ± 0.115

12 18 0. 718 ± 0.001 0. 744 ± 0.031 1.183 ± 0.117

13 22 0, 559 ± 0.001 0. 612 ± 0.035 0. 910 ± 0.115

14 26 0. 364 ± 0.001 0. 436 ± 0.026

Statistical error.
See section 4. 4. 3 for discussion of errors.



92

FIG. 4.9 HORIZONTAL ACTIVATION TRAVERSES IN BLANKET NO. 3
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FIGs 4.10 VERTICAL ACTIVATION TRAVERSES IN BLANKET NO. 3
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To ensure that spectral equilibrium is achieved in the central

region of the graphite, the ratio of U2 3 8 to gold captures was

plotted in Fig. 4. 11. The flat region, approximately 16 inches wide,

confirms the result found in Blanket No. 2 and ensures that the

central reflector region has achieved spectral equilibrium.

4.4.2. 2 Axial Activation Traverses

Table 4. 7 lists the normalized data for the axial traverses

of the various foils as a function of the distance from the converter-

blanket interface. Figures 4. 12 through 4. 25 show these data plotted

on the same graph as the numerical predictions. For the sake of

comparison, it is found convenient to normalize both the experimental

and calculated results to the same value at approximately the midpoint

of the blanket, i. e. , at 12. 7 cm from the converter.

These results are discussed further in section 4. 4. 4.
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TABLE 4. 7. Normalized Axial Reaction Rate Data

Distance
Into -) n Y

Blanket Au (n,y) Au (n,), Dilute In (n,n') Mo (n,)

(cm)

2.34 0.1798 ± 0.0105 0.1617 0.0062 13. 10 ± 0. 300 3.088 ± 0.025

2.50 0. 1624 ± 0. 0079 0. 1515 ± 0.0130 9. 254 ± 0. 015 2. 764 ± 0. 033

12.70 0.1475 ± 0.0000 0.1475 0.0000 6. 748 ± 0.004 2.500 ± 0.047

17.40 0. 1439 ± 0.0021 0.1634 ± 0. 0212 5. 280 ± 0.360 2.118 ± 0.010

22.60 0. 1663 ± 0. 0102 0. 2364 ± 0. 0045 4.487 ± 0.227 1.856 ± 0.014

27.80 0.2501 ± 0.0076 0.4359 ± 0.0130 4.073 ± 0.210 1. 755 ± 0.018

32.87 0.6423 ± 0.0443 1.1786 ± 0.1397 3. 096 ± 0.273 1.917 ± 0.000

37.95 0.8941±0.0512 1.4690 ± 0.0590 2.391 ± 0.358 1.707±0.038

43.03 0.9692 ±0.0588 1.5777±0.0961 2.089 ±0.208 1.367 ±0.031

48.11 0.8993 ± 0.0427 1.2353 ± 0.0630 1.674 ± 0.283 1.004 ± 0.016

53.19 0.7278 ±0.0455 1.0117 ±0.2322 1.432 ±0.255 0.6871 ± 0.0051

58.27 0.4923 ± 0.0324 0.7577 ± 0.0893 1.201 ± 0.330 0. 4365 ± 0.0027

(Continued)
Coa)



TABLE 4. 7. Normalized Axial Reaction Rate Data (continued)

Distance

Blanet Mn (n,Y) Na (n,7) Cr (n,) U 238(nf

(cm)

2.34 2.255 ± < 0. 01 2. 968 ± 0. 034 1.115 ± 0. 079 16.12 ± 0. 73

2.50 2.123±<0.01 2.475±0.103 0.977±0.048 11.83 ±0.55

12.70 1.950 ± < 0.01 2.205 ± 0.000 0.894 ± 0.053 9.350 ± 0.000

17.40 2.528 ± < 0.01 2.190 ± 0.085 0.938 ± 0.037 7.511 ± 0.410

22.60 2.065 ± < 0.01 2.789 ± 0.139 1.262 ± 0.017 6.969 ± 0.794

27.80 3.334 ± < 0.01 5.249 ± 0.159 2.504 ± 0.137 6.295 ± 0.051

32.87 8.467 ± < 0.01 15.98 ± 0.63 7.937 ± 0.000 5.112 ± 0.967

37.95 12.302 ± < 0.01 23.96 ± 1.27 11.89 ± 0.565 4.576 ± 0.382

43.03 13.847 ± < 0.01 27.36 ± 0.89 13.63 ± 0.731 4.349 ± 1.069

48.11 13. 250 ± < 0.01 26.58 ± 1.20 13.25 ± 0.741 4.112 ± 1.215

53.19 10.574 ± < 0.01 21.60 ± 0.82 10.93 ± 0.584 3.875 ± 1.078

58.27 6.859 ± < 0.01 13.57 ± 0.34 6.889 ± 0.479 3.606 ± 0.930

(Continued)
Co
-z1



TABLE 4. 7. Normalized Axial Reaction Rate Data (Continued)

Distance U238 (n,y) U2 3 5 (n, f) Th (n, f) Np (n, f)Into
Blanket Ex-Rod

(cm)

2.34 10.10 ± 0.48 2.719 ± 0.029 10. 41 ± 0.10o 9.138 i 0.147

2.50 8. 71 ± 0. 35 2.477 ± 0. 056 6.417± 0.094 7. 420 ± 0. 142

12.70 8.10 ± 0.00 2.208 ± 0.000 4. 544 ± 0.092 5. 500 ± 0.145

17.40 7. 50 ± 0. 39 2. 194 ± 0.069 3. 624 ± 0. 093 4. 367 ± 0. 114

22.60 7.26 ± 0. 73 2. 533 ± 0.223 2.931 ± 0. 092 4. 383 ± 0. 116

27.80 8.46 ± 0.44 4.676 ± 0.146 2.687 ± 0.092 4. 746 ± 0.114

32.87 18. 83 ± 0. 35 15. 90 ± 0. 45 1.671 ± 0. 091 7. 134 ± 0. 146

37.95 20.74 ± 0.17 25.47 ± 1.10 0.864 ± 0.090 11.985 ± 0.157

43.03 19.40 ± 1.72 29.62 ± 0.54 0.579 ± 0.090 11.501 ± 0.164

48.11 15.59 ± 0.88 28.71 ± 0.83 0.128 ± 0.090 10.675 ± 0.152

53.19 11.38 ± 0.96 23.81 ± 0.66 0.246 ± 0.090 7.772 ± 0.136

58.27 7.85 ± 0.70 14.70 ± 0.55 0.149 ± 0.090 4.417 ± 0.111

(Continued)
CO



Normalized Axial Reaction Rate Data (Concluded)

Distance U238 (nY) U238 (n, U238 (n, f) Pu (n,f)
Into U (,)U 3  ny

Blanket In-Rod Ex-Rodt In-Rod
(cm)

* * *
2.34 3.052 ±0.034 3.30 ± 0.16 16.02 ±0.50 2.81±0.42

2.50 2.618 ± 0.010 2.85 ± 0.11 11.45 ± 0.81 2. 34 ± 0. 19

12.70 2.230 ± 0.020 2.65 ± 0.00 9.25 ± 0.00 2.10 ± 0.00

17.40 1.920 ± 0.069 2.45±0.13 8.02±0.09 1.93 ± 0.12

22.60 1.690 ± 0.010 2.37±0.24 7.11± 0.53 2.22 ±0.12

27.80 1.818 ± 0. 056 2. 77 ± 0. 14 6. 88 ± 1. 49 3. 36 ± 0. 11

32.87 10. 00 ± 1. 29

37.95 13. 78 ± 1. 73

43.03 15.24 ± 4.56

48.11 16.12 ± 1.01

53.19 12.13 ± 1.74

58.27 7.34 ± 0.24

This standard deviation includes Student's t-Factor. See section 4. 4. 3.
tStatistical error only. See section 4. 4. 3.

Normalized to U238 (n) in-rod experimental data.
(0
CO

TABLE 4. 7.
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FIG. 4.12 GOLD (n,y) AXIAL TRAVERSE
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FIG. 4.13 SODIUM (n,y) AXIAL TRAVERSE
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FIG. 4.14 CHROMIUM (n,y) AXIAL TRAVERSE
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FIG, 4.15 EX-ROD U-238 (n,y) AXIAL TRAVERSE
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FIG, 4.16 U--238 (nY) AXIAL TRAVERSE IN BLANKET
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FIG. 4.17 U-235 (n,f) AXIAL TRAVERSE
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FIG. 4.18 PLUTONIUM-239 (n,f) AXIAL TRAVERSE
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FIGs 4.19 MANGANESE (n,y) AXIAL TRAVERSE
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FIG. 4.20 MOLYBDENUM (n,y) AXIAL TRAVERSE
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FIG. 4.21 INDIUM (n,n') AXIAL TRAVERSE
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FIGs 4.22 U-238 (nf) AXIAL TRAVERSE
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FIG. 4.23 IN AND EX ROD U-238 (nf) AXIAL TRAVERSE
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FIG. 4.24 Th2 32 (n,f) AXIAL TRAVERSE
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FIG. 4.25 N1EPTUNIUM (n,f) AXIAL TRAVERSE
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4.4. 3 Error Analysis

In general, the experimental error associated with the data

reported here is the standard deviation from the mean (SDM) com-

puted from duplicate runs, with allowance made for the small sample

size by incorporation of Student's t-factor (10). It is a measure of

the overall reproductibility of the data. The governing relations are:

N 21/2
SDM = (Am-Ai)2/(N-1) (4. 4)

where

Am = arithmetic mean value of the N

different individual repetitions, Ai.

The reported error, ± a (the "one-sigma" value - namely, the

range about the reported value into which 68% of further repetitions

would be expected to fall), is then obtained from:

a t- SDM (4.5)

where t is Student's t-factor which accounts for the fact that a small

sample does not constitute a normal population. For example,

t = 1. 84 for a two-sample population and approaches 1. 0 for a large

number of samples.

Leung (5) has discussed the various identifiable contributions to

the error, including counting statistics, foil weights, time interval

determination and the like, and concludes that counting statistics

represent the most important factor. In the present work, thorium

runs being the main exception, a minimum of 10, 000 counts was

usually collected on each foil, implying an uncertainty of less than

i 1% from this source.

In those few runs, noted in Tables 4. 5 through 4. 7, where only

one set of data was obtained, the error reported is the counting

statistic uncertainty:

a C = N~U (4.6)

where C is the total number of counts accumulated. Experience would
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suggest a SDM of ± 1 or 2% for this type of measurement, if repeated.

In all cases, errors have been combined in the usual fashion:

for example, in correcting data by background subtraction.

4.4.4 Discussion of Results

4. 4.4. 1 Buckling Verification

As shown in Fig. 4.9, the buckling in the graphite reflector

has the desired cosine distribution. Superposition of the cosine

distributions determined for Blanket No. 2 on the experimental data

for the graphite reflector of Blanket No. 3 indicates that the horizontal

and vertical extrapolated dimensions are again approximately 74 and

60 inches, respectively. It has been shown that the calculated axial

reaction rates in the blanket are insensitive to changes in buckling

since the transverse leakage is small (5); thus, the transverse buck-

ling value for Blanket No. 3 was set at the value identical to that for
2 2 2 _ -2

Blanket No. 2, and Eq. 4. 2 becomes B BX + BY 0. 000704 cm

The major problem encountered in measuring the buckling in the

graphite reflector involved the determination of the spatial shape of

the high-energy region of the neutron energy spectrum. The

threshold reactions In 115(nn') and U2 3 8 (n,f) proved unsuitable,

owing to poor counting statistics, interference from capture products

and - in the case of U2 3 8 - fission due to fission in the small amount

of U235 present, which was enhanced by the highly-moderated

spectrum. However, it was possible to acquire usable data using the

Th232 (n, f) reaction, albeit with large relative counting errors.

4.4.4.2 Axial Traverses

The general features of each reaction rate axial traverse will

first be discussed, followed by discussion of the discrepancies between

the experimental and theoretical results.

Data from two types of gold foils are plotted along with the pre-

dicted traverse in Fig. 4. 12. In general, and especially in the blanket

region, the shape of each is consistent with the prediction. The upper

set of experimental points is from the infinitely dilute 2.67 w/o gold



116

dispersed in aluminum foil. The lower set of data points is from the

standard 10-mil-thick foil. The difference between the two, evident

in the graphite reflector, is what one would expect - the "infinitely

dilute" foil showing higher activation rates than the standard foil. The

predicted activation rate, falling between the two experimentally

determined rates, indicates that the gold cross sections used in the

ANISN calculations may not correspond to a truly infinitely dilute value.

The lack of allowance for self-shielding is also characteristic of the

other foil traverses and is a major contribution to the discrepancies

noted in the graphite region. In general, however, the behavior in the

blanket region is of greater concern, since it is there that the important

reactions take place.

Figures 4. 12 through 4. 18 depict axial traverses for reactions

having similarly shaped profiles. In each case - gold, sodium,
238 235 239

chromium, U captures, U and Pu fissions - the cross

section increases, and also displays more prominent resonances with

decreasing neutron energy, which accounts for the large peak in the

graphite where the flux is much softer than in the blanket, and also for

the observation that the unshielded predicted traverse lies above the

experimental traverse.

It should be emphasized that in the present work, agreement in

the blanket region between experiment and prediction was of primary

interest. However, should it become a matter of some practical

importance to match the reflector traverses more closely, then the

effort must be invested to develop multigroup self-shielding corrections

for all of the candidate foil materials. This objective was assigned a

low priority for this study.

On the other hand, self-shielding of U2 3 8 in the blanket region is

clearly of considerable interest.

Figure 4. 16 displays plots of the measured in-rod and ex-rod

U238 capture data. As expected, the ex-rod foils are more active,

being shielded only by neighboring fuel and not by the host fuel rod.

Also shown are the calculated in-rod traverse (normalized to the

experimental data) and a comparable traverse calculated using

infinitely-dilute U 2 3 8 cross sections (solid line at top of graph)
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correctly normalized relative to the in-rod traverse. The same

traverse is also shown renormalized to the ex-rod data (dotted line).

While it is clear that the ex-rod activities are less shielded than those

in-rod, they are far from being in an infinitely dilute environment.

Even so, the shape of the infinitely dilute calculated traverse is in

fair agreement with that of the ex-rod measured traverse. It should

also be noted that Leung (5) shows a comparable plot for Blanket No. 2

in which only the infinitely-dilute U238 calculations normalized to the

ex-rod data are shown, and which may therefore give the false

impression that the ex-rod foils can be correctly represented as

infinitely dilute.

The results shown in Fig. 4.16 display the expected effects of

spectral softening near the graphite reflector: the in-rod flux

depression is enhanced and the spread between the in-rod and ex-rod

traverses widens.

The manganese data of Fig. 4. 19 show extremely poor agreement

with the predicted traverse, leaving in doubt the validity of the manga-

nese cross section, or the experiment, or both. No plausible expla-

nation can be offered at the present time.

Molybdenum (Fig. 4.20) shows only slightly better agreement

between experiment and prediction. In the first row of blanket, ade-

quate agreement is found (due, in part, to the normalization); however,

deeper in the blanket and in the graphite reflector, the prediction is too

high by a factor of almost 2. 5. As before, this is probably due in part

to the spectral shift in the blanket and the inability of the cross sections

used by this "keV range" absorber to properly reflect the self-

shielding. A further obvious source of discrepancy is that natural

molybdenum cross sections were employed, whereas the measured
99 98Mo activity is produced from isotope Mo 8 , which is only 24%

abundant.

The last set of graphs, Figs. 4. 21 through 4. 25, depict threshold

reactions: inelastic scattering by indium (Et 0. 3 MeV) and fast

fission in uranium-238 (Et 1.0 MeV), thorium-232 (Et= 1. 75 MeV),
and neptunium (Et= 0. 75 MeV). The predicted axial traverses have

practically identical shapes for all of these reactions, implying that
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the fast reactions (above 300-keV indium threshold) behave similarly.

The experimental data agree quite well with the predictions in the

blanket region. However, in the graphite, the situation is different.

Within the experimental error, the thorium data and prediction agree;

the other three sets of data do not. The neptunium data exhibit a peak

in the reflector region, similar in shape to the nonthreshold reactions
237

discussed previously. This would indicate that Np capture products

(Np 238, T 1/2 = 2. 1 d) and not fission products were actually being

counted in the experiment. This was undoubtedly the case, since it

was found necessary in the counting procedure to use a baseline setting

above the Np 238 1. 03-MeV gamma peak to count the fission products.

However, the observed Np238 contribution was so strong that this

effect was probably not entirely eliminated.

The uranium and indium data deep in the reflector are an order of

magnitude higher than calculated. It is important to note that this is

the same problem observed in the steel reflector of Blanket No. 2.

Correcting U238 fissions for contamination by fission in the 18-ppm

U235 does not solve the problem. To date, no completely satisfactory

answer has been derived for either case. Since the thorium data do

not exhibit this discrepancy, the effect could be explained by a

neutron "window" in the 0. 3-1. 0-MeV range. Another explanation

could be that there are competing neutron reactions that are contami-

nating the measurements of the desired (n,n') and (n,f) reactions.

For example, Swedish researchers have attributed similar discrepan-

cies for the In (n, n') reaction in water shielding studies to gamma

excitation of the appropriate indium level (11). Further experiments

to resolve this discrepancy are planned for Blankets Nos. 4 and 5.

4. 5 Summary

Blanket No. 3, incorporating a moderating, high-albedo graphite

reflector has been designed, built, and studied. Previous analytical

studies (2, 3) indicating possible economic advantages for this blanket-

reflector combination motivated this study in order to reinforce the

confidence placed in the analytical results, particularly in view of the
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severe spectral changes in the blanket-reflector region which made it

questionable whether or not the codes and cross sections available

could adequately describe this type of configuration. The general

conclusion that can be drawn from this effort is that the analytical

methods adequately describe the neutronic behavior of the blanket.

However, the fast flux in the reflector is not being predicted well,
and serious questions with respect to fast neutron damage and shield-

ing can thereby arise. To investigate this problem further, detailed

measurements in the steel reflector region are proposed in Blanket

No. 5.
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5. THE EFFECTS OF HETEROGENEITY

5. 1 Introduction

Experimental and analytical work on the effects of heterogeneity

on blanket neutronics has been carried out in a number of areas.

Two-piece annular foil irradiations have been made to characterize

the in-rod U238 capture profile; six-piece annular foil experiments

have been performed to confirm the validity of relying upon two-

piece foil data; and numerical and analytical studies are being

carried out to relate calculation to experiment and also to assess all

important contributions of heterogeneity to LMFBR neutron balances.

5. 2 Two-Piece Foil Irradiations

The work whose initiation was described in reference (1) has been

completed, in which two-piece annular foils were irradiated in both

the U-metal fuel rods used in the blanket mock-up and in the sodium-

"cooled" UO 2 fuel rods of a special subassembly (1) inserted into

Blanket Mock-Up No. 2. The work was also extended to encompass

similar measurements in U-metal fuel in Blanket Mock-Up No. 3.

The results are summarized in Table 5. 1 in terms of F, the ratio of

the average activation within the rod to the activation at the rod

surface.

A number of interesting qualitative conclusions can be drawn from

the results: the uranium metal and uranium dioxide fuel have essenti-

ally the same self-shielding characteristics; the reduction in self-

shielding upon voiding of sodium is evident; and the progressive

softening of the spectrum as one moves deeper into the blanket is evi-

denced by an increase in self-shielding, especially in Mock-Up No. 3,

the two-row, graphite-reflected blanket.
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TABLE 5.1

Results of Annular U238 Foil Irradiation

Blanket Subassembly
Subassembly

Row

Front

Front

Middle

Middle

Middle

Middle

Outer

Outer

Front

Rear

F

0.91

0.91

0.90

0.91

0.94

0.89

0.87

0.84

0.91

0.84

Comment

In U-metal

In UO
2

In U-metal

In UO
2

In UO 2, sodium voided

In UO 2 , 6-piece foils

In U-metal

In UO
2

In U-metal

In U-metal

Notes:

(a) F = average U238 (n,Y) + surface U238 (n,7)
239

measured using Np-- activity.

(b) Typical standard deviation: ± 3%.

(c) U-metal fuel is 0.250 in O.D.; UO2 fuel is

0.430 in O.D.

Blanket
Number

2

3
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5. 3 Six-Piece Foil Irradiations

Six-piece annular foils were irradiated in the UO -sodium sub-

assembly of Blanket Mock-Up No. 2 in order to confirm the theoreti-

cal assertions used to justify employing two-piece foils for self-

shielding measurements.

By treating a fuel rod as a nearly transparent medium containing

a spatially uniform source or sink of neutrons, a particularly simple

low-order approximation to the in-rod flux (hence material activation)

profile results (2):

A(r) = C + C E 2 (5.1)

where C and C 1 are constants, a is the rod radius and E is the com-

plete elliptic integral of the second kind. Equation 5. 1 is of intrigu-

ing simplicity in that it implies all in-rod fluxes have the same shape,

differing only in the relative amplitude of enhancement or depression.

The six-piece foils were irradiated and counted in exactly the

same manner as the two-piece foils and the results least-squares

curve-fitted to Eq. 5. 1. It was found that Eq. 5. 1 reproduced the

measured U238 capture rate profile to within ± 2%, which was also

the estimated precision of the measurements. Many other tests of

this relation were also conducted, including comparisons with

multiple-piece foil irradiation in thermal reactor fuel elements and

to ANISN S-8 calculations, with equally good and, in most instances,

even better results. It was therefore concluded that for present

purposes, Eq. 5. 1 is adequate for interpretation of the experimental

data; and since Eq. 5. 1 involves only two unknowns, a two-piece foil

will suffice.

Given the validity of Eq. 5. 1, the self-shielding ratio, F,

average-to-surface activity, can be determined in several ways. For

multiple-piece foils, the constants C and C 1 were determined by

least-squares analysis, following which:

4
CO + 4C

F = C 1 (5.2)
0 1
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For the two-piece foils, on the other hand, it is more appropri-

ate to employ the specific activities of the inner and outer foil pieces

directly:

y 4
S E(x) dx -

F = ) (5. 3)

f E(x) dx - Z -1
\y 0 3

where

y ratio of inner foil weight to that of both pieces,

Z = ratio of specific activity of inner foil (CPM/MG)

to that of both pieces.

Equations 5. 2 and 5. 3 were employed to generate all results

quoted in Table 5. 1. Note that the two-piece U-metal and six-piece

UO2 traverses in a comparable environment (middle row, Blanket

No. 2, sodium-in) agree well within the experimental accuracy.

5.4 Analytical Investigations

Calculations of U238 resonance self-shielding effects were con-

tinued, using the MIDI program (3). The two most pertinent results

were the discovery that: (a) Rod size was not an important effect;

apparently, the Dancoff correction term compensates for the in-rod

effect. (b) As shown in Table 5. 2, the U-metal unit cell of the

blanket mock-ups affords a good representation of the heterogeneity of

real blankets. The BTF is intermediate between a typical radial and

a typical axial blanket, being somewhat closer to the latter.

Work is also under way to determine the simultaneous influence

on core and blanket neutronics of all of the major heterogeneous effects,

including anisotropic diffusion, coarse-group flux shape within the cell,

and resonance self-shielding. Preliminary results indicate that U2 3 8

self-shielding is the only heterogeneous effect having a major impact

on the neutron balance in the blanket region; and that anisotropic dif-

fusion has a rather important effect on core reactivity, especially in



125

the sodium voiding accident where it tends to make the reactivity

addition less positive by on the order of one dollar.

TABLE 5.2

BTF Resonance Self-Shielding Comparison

BTF (Typical Blanket a) -+ (BTF a)

(barns) Axial Radial

Group a a as abs scat abs scat

11 0.4843 10.99 1.0010 1.0009 0.9738 0.9864

12 0.7641 11.65 1.0059 1.0034 0.9627 0.9777

13 0.5480 11.56 1.0361 1.0112 0.9407 0.9818

14 0.6142 10.27 1.0451 1.0078 0.9324 0.9883

15 0.8075 10.55 1.0578 1.0104 0.9226 0.9858

16 0.7276 9.574 1.0686 1.0049 0.9089 0.9939

17 1.200 11.91 1.0642 1.0160 0.9208 0.9815

18 3.281 12.53 1.0585 1.0144 0.9137 0.9785

19 2.676 11.47 1.0486 1.0096 0.9152 0.9826

20 7.265 10.60 1.0406 1.0066 0.9310 0.9896

21 7.730 9.446 1.0445 1.0021 0.9352 0.9969

5.5 Discussion

All of the analytical and experimental effort to date supports the

contention that U238 self-shielding is an extremely important effect

which must be correctly accounted for, if one is to describe accurately

the various elements of the neutron ba ance. Unlike the situation with

plate-type critical experiments, the rod-lattices used in the BTF

appear to be very similar to actual LMFBR designs in terms of their

heterogeneous reactor physics descripti p. Further, it has been

shown that simple two-piece foil irradiation can provide useful infor-
238

mation on resonance self-shielding of U . The major remaining

task, which is the subject of work currently under way, is, to derive
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a quantitative connection between the results of these experiments

and the results of MIDI code computations.

5.6 References

(1) "Heterogeneous Effects in LMFBR Blanket Fuel Elements,"

Ch. 7 in "LMFBR Blanket Physics Project Progress

Report No. 2," COO-3060-5, MITNE-131, June 30, 1971.

(2) Thompson, A. M., "Activation Profiles in Reactor Fuel

Elements," B.S. Thesis, M.I.T. Physics Department,
June 1972.

(3) Rogers, V. C. , and I. A. Forbes, "Calculation of U-238

Cross Sections," Ch. 8 in "LMFBR Blanket Physics

Project Progress Report No. 2," COO-3060-5, MITNE-131,
June 30, 1971.



127

6. ECONOMIC EVALUATION OF

BLANKET PERFORMANCE

The work summarized in the present chapter is primarily

concerned with the formulation of a consistent economic model which

can be used to evaluate the comparative performance of LMFBR

blanket designs and thereby help guide the selection of blanket mock-

up experiments for the MIT Blanket Test Facility (1, 2). The complete

results are presented in the topical report:

S. T. Brewer, E.A. Mason and M.J. Driscoll, "The
Economics of Fuel Depletion in Fast Breeder Reactor
Blankets," COO-3060-4, MITNE-123 (est. Nov. 1972).

6. 1 Introduction

A Fast Breeder Reactor blanket performs several functions: it

acts as a fertile-to-fissile material converter, as a reflector, and as

a shield. In addition, it produces some power, thereby relieving,
slightly, the power burden on the core. Of these functions, the fissile

breeding objective is considered paramount. For current 1000-MWe

designs, a fast reactor without blankets is not a breeder; although

most of the conversion is accomplished in the core (internal breeding

ratio ~ 0. 8), a fertile blanket is required to achieve overall breeding

ratios greater than unity.

Objectives of the work reported here were twofold: (1) to develop

a simple depletion-economics calculational tool for survey evaluations

of LMFBR blanket configurations; and (2) to perform several compara-

tive studies around a 1000-MWe reference LMFBR configuration. The

1000-MWe case studies involve choice of radial reflector material

(Be-metal vs. sodium), radial blanket thickness, advantages of local

fuel management in the radial blanket, and the sensitivity of LMFBR

fuel energy costs to changes in the economic environment.
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6. 2 Qualitative Discussion of FBR Blanket Design Considerations

and Literature Survey

The major economic objective of FBR blanket design is to maxi-

mize the net blanket fissile revenue, that is, to maximize the fissile

credit less fabrication, reprocessing, and carrying charges. At the

same time, thermal-hydraulic engineering design seeks to minimize

the effects of the blanket power swing over a refueling cycle interval

and to minimize the power gradient across the blanket. Other engi-

neering considerations are the shielding role of the blanket, and

possible material constraints on blanket exposure.

The blanket designer has several design variables and options to

work with in meeting these objectives while satisfying the constraints.

Some of the major variables and options are discussed qualitatively

below. Studies which have addressed these considerations are listed

in the references.

6. 2. 1 Blanket Thickness

Selection of blanket thickness involves a tradeoff between the

fissile plutonium production rate and fuel cycle costs - fabrication,

reprocessing, and associated carrying charges. An incremental

increase in blanket thickness imposes additional fabrication and re-

processing costs while providing some additional fissile production.

The incremental increase in fissile production decreases with blanket

thickness because of flux attenuation. An incremental increase in

thickness beyond some point is unprofitable; the added fissile revenue

is not sufficient to offset the added fabrication and reprocessing costs.

The "optimum" thickness depends on the economic environment -

fissile value ($/kg Puf), fabrication cost ($/kg HM), and reprocessing

cost ($/kg HM). Thick blankets are indicated when fissile value is high

and/or fabrication and reprocessing costs are low. Thicker blankets

may also be in order when leakage flux to the blanket is increased due

to changes in core design.

The Westinghouse LMFBR Follow-On Studies (3), Task I, have

shown that the optimum radial blanket thickness is not sharp; that is,
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the blanket profit is a weak function of blanket thickness. This con-

clusion is borne out in the present study. The Westinghouse optimum

thickness is between 25 cm and 30 cm, again consistent with the

present study.

6. 2.2 Blanket Irradiation Time

Below some irradiation time, T, the bred fissile inventory

in the blanket is not sufficient to offset the blanket fabrication,
reprocessing, and carrying charges. At T, the "break-even point,"

the revenue from bred fissile is just equal to fabrication, reprocess-

ing, and carrying charges. Beyond T1. the blanket produces a net

profit. As irradiation time T is further increased, Pu2 3 9 is produced

at a decreasing rate because of the burnup of both fertile U2 3 8 and

fissile Pu2 3 9 , and the fissile credit averaged over irradiation time T

decreases. Also, as irradiation time T increases, carrying charges

increase, and direct fabrication and reprocessing charges decrease.

Taken together, these opposing effects result in an optimum irradi-

ation time, Topt, at which the net revenue in $/kg HM/year (or in

mills/KWHe) is a maximum.

Local optimum irradiation time decreases, and local net revenue

at the optimum increases, with increased local flux. Thus regions

near the blanket-core interface reach their optima sooner and produce

more revenue than regions deeper in the blanket. For pancaked cores,
the axial blanket optimum irradiation time is less than that of the

radial blanket. Thinner blankets enjoy shorter optimum irradiation

times.

Several studies have assessed optimum blanket irradiation times

for particular designs (4, 5, 6, 7). Typical local optima range from

about two to about eight years across the radial blanket.

Engineering considerations such as burnup, power swing, cor-

rosion, and irradiation damage of cladding may tend to limit feasible

irradiation time.
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6. 2. 3 Blanket Fuel Management Scheme

Axial blanket fuel management is constrained to that of the

core, since axial blanket fuel assemblies are merely extensions of

core assemblies in present LMFBR designs. The core-axial blanket

fuel management scheme adopted in the 1000-MWe LMFBR Follow-On

Studies (3, 7, 8, 9, 10) can be described as a region-scatter scheme.

In this scheme, the core-axial blanket is divided into annular regions.

At each refueling event, fractions g1 , g2 ,. .. of regions 1,2, . . . are

discharged and replaced with fresh fuel. Fuel sees only one position

in the reactor. The discharge fractions g 1 , g2 , .. . decrease with

distance from the core centerline, implying that irradiation times

increase with distance from the core centerline. This procedure en-

hances flux flattening and discharge burnup uniformity.

Radial blanket fuel management is independent of that of the core-

axial blanket, with the restriction, of course, that blanket refueling

dates coincide with those of the core-axial blanket, to minimize

reactor shutdowns for refueling. With the exception of Westinghouse

(3), the scheme selected in the 1000-MWe Follow-On Studies is

region-scatter. Again, irradiation time increases and discharge

fraction decreases with distance of the region from the core-blanket

interface, thus implementing flux flattening across the blanket.

Batch management is the special case of scatter management in which

the discharge fractions are set equal to unity; i.e. , at each refueling

event for a given region, 100% of the fuel is discharged and replaced

with fresh fuel.

Other schemes proposed for the radial blanket are out-in, in-out,
and fuel assembly rotation. The Westinghouse Follow-On design (3)

specifies in-out. In this scheme, fresh fuel is loaded in the inner-

most blanket region and is moved outward in subsequent refuelings,
remaining in each annular region for one or more cycles. Fuel is

discharged, finally, from the outermost region. Advantages (11) of

the in-out management are power flattening, reduction of local power

swing, and burnup uniformity. An earlier study (5) argued quali-

tatively that in-out management would be uneconomic due to the pro-

longed holdup of bred fissile. This was not demonstrated quantitatively.
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In the out-in scheme, fresh fuel is loaded in the outermost region,
moved inward, and discharged from the innermost region. The scheme

has the advantage of achieving uniform burnup and would tend to reduce

the power swing over an irradiation cycle. However, out-in would

tend to aggravate the power tilt across the blanket. Out-in manage-

ment was compared (5) to fixed element management (batch or scatter)

and was found to have only a few percent profit advantage.

A recent study (12) has investigated the optimum out-in throughput

for a 1000-MWe LMFBR radial blanket. The study determined the

effect of throughput on 10-year fuel cycle costs. Halving of the radial

blanket out-in throughput increased fuel cycle costs (from optimal) by

less than 5%. Increasing the throughput by a factor of about 1. 5

increased the 10-year -fuel cycle cost by about 1%.

The optimum throughput analysis reported in this (12) study was

used as an illustration of a computational method for selecting optimal

FBR fuel management strategies in a changing economic environment.

The method permits changing fuel management during plant life (in

response to changes in the economic environment) in order to mini-

mize fuel costs during the remainder of plant life. In the radial

blanket illustration cited, remaining plant life is 10 years.

Fuel element rotation has been studied by Westinghouse (11).

Rotation may be considered a sub-fuel management scheme in that it

may be used in conjunction with the other schemes. During a refuel-

ing, fuel assemblies are simply rotated in place, thus moving fuel with

high fissile content deeper into the blanket. Advantages of rotation are

power-flattening and reduction of local power swing over an irradiation

cycle. Westinghouse has shown that the maximum (with time) rod

peaking factor for a radial blanket rod adjacent to the core can be

reduced by about 20% by rotation. The reduction in power peaking

across the blanket was not reported. Also, the effect of rotation on

breeding economics was not reported.
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6. 2.4 Inner Radial Moderator

Insertion of a layer of moderating material between core and

blanket would offer the advantage of softening the leakage flux entering

the blanket, improving the fertile capture rate per incident neutron.

On the other hand, the incident flux (entering the blanket) would be

diminished due to absorption and reflection by the moderating layer.

Thus the net effect of inner radial moderator configuration on blanket

breeding is not qualitatively clear. Furthermore, one might expect

the moderating layer to return more neutrons to the core and to degrade

the returning spectrum. The net effect (on critical mass and internal

breeding ratio) of the improved reflection plus degraded core spectrum

is also not intuitively evident.

Perks and Lord (13) have performed survey calculations on the

inner radial moderator concept, using a variety of moderating

materials and thicknesses. Candidate materials were graphite (82%

graphite), graphite-steel (41% graphite, 51% stainless steel), and

sodium (100% sodium). The inner radial moderator configuration

consistently resulted in a small reduction in critical mass, an increase

in internal breeding ratio, a reduction in blanket breeding ratio, and a

net reduction in total breeding ratio. Their cost results (13) show that

the core fissile inventory reduction does not offset the breeding revenue

reduction; thus, the inner radial moderator concept does not appear

economically attractive.

6. 2. 5 Moderated Blankets

Replacing some blanket fuel with moderator material would

tend to soften the blanket spectrum, enhancing the conversion rate per

unit of fuel. Opposing this effect is the lessened gross breeding

occasioned by the diminished fuel content. Some candidate moderating

materials are graphite, ZrH2 , and BeO.

Two studies (5, 6) have investigated the breeding economics of

moderated blankets. Hasnain (5) considered graphite in an LMFBR

radial blanket, while Mayer (6) considered graphite, ZrH2 ' and BeO

in a steam-cooled fast reactor (SCFR) radial blanket. In all cases,
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the inclusion of moderating materials (at the expense of fuel volume)

led to a reduction in breeding ratio. Core parameters (keff , critical

mass) were only slightly affected. Both studies concluded that moder-

ated blankets offered no significant economic advantages.

Another study (12) has shown that seeding a typical LMFBR radial

blanket with carbon leads to a slight improvement in the breeding per-

formance of the inner radial blanket: about 10% increase in inner

radial blanket fissile concentration. The outer radial blanket was

found to be practically unaffected.

6. 2. 6 Radial Reflector

Functions of the radial reflector are: (1) to enhance radial

blanket performance by flattening blanket flux and, possibly, by

softening the return spectrum; and (2) to provide a neutron shield for

structural materials outside the reactor. Two major design decisions

are choice of radial reflector composition and choice of radial

reflector thickness.

In the Westinghouse LMFBR Follow-On work (3), Fe, C, Ni, and

Na (reference case) reflectors were compared for a 10. 5-inch-thick

radial blanket. Maximum improvement (over the Na-reflected case)

in radial blanket fuel economic performance was only 0. 008 mill/KWHe

(the 12-inch graphite reflector). A 3-inch Fe reflector provided mini-

mum improvement (0. 002 mill/KWHe). A 3-inch Ni reflector resulted

in 0. 007 mill/KWHe savings. Choice of radial reflector material and

thickness was found to have little effect on power ratios across the

blanket. Nickel provided a significant improvement in flux attenuation

and was selected as the preferred reflector material.

Using the BR-1 reactor, Russian experimenters (14) have studied

the effect of reflector composition on radial blanket breeding. Be, C,
Ni, Fe, Cu, 1 Kh 18N9T steel, water, and extended blanket material

were compared. The thicknesses of these reflectors were chosen

such that any further increase in thickness resulted in negligible

increase in blanket U238 (n,'Y) captures. "Reflector efficiency" was

defined as:



134

B = A /AxB

where

A = additional U2 3 8 (n,-y) captures resulting from

addition of reflector of material i,

AxB = additional U238(n,7) captures resulting
from extending the blanket.

The base radial blanket thickness was not given, nor could it be

inferred. Two types of blankets - uranium carbide and metallic

uranium - were used.

Table 6. 1 summarizes the results. The reflector efficiency for

the extended blanket case was unity, by definition. All other efficien-

cies were less than unity, indicating that an extended blanket is

preferable if fabrication and reprocessing costs are ignored. The

results show that moderating reflectors (Be, water) are significantly

more effective for metallic blankets than for carbide blankets, owing

to the harder spectrum in metallic blankets and the potential for

improved U238 (n,y) capture. For both carbide and metallic blankets,

Be is the preferred reflector.

TABLE 6.1

Effect of Radial Reflector on Radial Blanket
Russian Experimental Results (14)

Breeding,

Bi

Reflector
Material

Be
C
Ni
Fe
Steel
Cu
Water
UC
U-metal

Reflector
Thickness

(cm)

140
600
192
184
160
184
144

Uranium
Carbide
Blanket

0.54
0.50
0.47
0.42
0.33
0.24
0.23
1.00

Metallic
Uranium
Blanket

0.86

0.51
0.28
0.40
0.41
0.49

1.00
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The study included no analysis of the fissile revenue-fuel cycle

cost tradeoff in extending the blanket. Thus, from their results,
Table 6. 1, it is not possible to reach a firm economic judgment vis-

A-vis replacement of blanket material with reflector.

In an analytical study at M.I. T. (2), it was found that for an 18-

inch blanket, no improvement in blanket breeding was accomplished

by increasing the reflector (Fe) thickness beyond 18 inches. Similarly,
no improvement was noted in extending an unreflected 18-inch blanket

by more than an additional 18 inches, i. e. , beyond a total unreflected

thickness of 36 inches. Thus an 18-inch iron reflector and a 36-inch

radial blanket are effectively infinite.

A German study (6) has evaluated radial reflector materials for

steam-cooled FBRs. Candidate materials were steam, water, ZrH2'
BeO, graphite, steel, UO 2 (extended blanket), and U-metal. The

radial blanket in all cases was 35 cm thick and composed of 56 v/o

UO2 and 18 v/o structural material. Reflectors in all cases were

80 v/o reflector material, 10 v/o steel, and 10 v/o coolant.

The reflector materials were first ranked by their effect on

"breeding rate" (undefined). Optimum reflector thickness was selected

such that further increase in thickness increased the breeding rate by

less than 1%. Table 6. 2 summarizes the results of the breeding rate

ranking.

The moderating reflectors are ZrH2 , BeO, and graphite. Of

these, ZrH2 has the strongest moderating effect, but it is also the

strongest absorber and thus the weakest net reflector. It has the least

beneficial effect on blanket breeding. The less-thermalizing and less-

absorbing BeO and graphite return more neutrons, albeit at higher

energies, and result in higher blanket breeding.

The shielding effectiveness of the materials was also considered.

In these studies, reflector thickness was held constant at 8 cm. Flux

values (in arbitrary units) at the outer edge of the reflectors are shown

in Tale (. 3. If the objective is to minimize high energy flux, ZrII2
would be the preferred reflector. The other moderating reflectors,
1e1) and graphite, are somewhat poorer attentuators.
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TABLE 6.2

Effect of Radial Reflector on Radial Blanket Breeding,
German Study (6)

Optimum
Reflector Reflector *
Material Thickness B

(cm)

BeO 12-16 0.023

Graphite 12-16 0.021

Steel 6-8 0.015

UO 2  6-8 0. 013

U-metal 6-8 0.013

ZrH2  4 0.011

B radial breeding rate - radial breeding rate with no reflector.

TABLE 6.3

Shielding Performance of Reflectors,
German Studies (6)

Reflector
Material

BeO

Graphite

Steel

UO
2

U-metal

ZrH
2

Flux at Outer Edge

Fast Flux
0.8-10.5 MeV

(Arbitrary Units)

1.63

2.68

2.77

2.41

2.00

1. 09

of an 8-cm Reflector

Total Flux
0-10.5 MeV

(Arbitrary Units)

49. 66

53.30

39.14

33.28

25.46

33. 24

*
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The breeding rate and shielding effectiveness surveys described

above were based on "snapshot" multigroup physics computations. In

a further study, the same author (6) evaluated the blanket revenues,
with the various reflectors, at optimum irradiation times. Fabrication

costs of the blanket were ignored entirely. Also, portions of the

blanket which would not yield a net profit (after reprocessing) were not

counted. That is, these unprofitable regions did not burden the blanket

with any cost whatever; they were simply not considered to be

reprocessed. Table 6.4 summarizes the percent revenue improve-

ments (over the case with no reflector) resulting from the addition of

the various reflectors. The oversimplified economic assumptions

apparently account for the inconsistency in reflector rankings between

Tables 6.2 and 6.4.

TABLE 6.4

Effect of Radial Reflector on Blanket Revenue,
German Studies (6)

Reflector Blanket Revenue Improvement
Material with Respect to Reference*

BeO 11.6%

Graphite 12.9%

Steel 6.8%

UO 2  4.0%

U-metal 3.2%

ZrH2  9.8%

Reference = no reflector.

6. 2. 7 Metallic vs. Oxide Blankets

The economics of metallic and oxide blankets have been com-

pared by Klickman (4). Core design was held fixed. Optimum thick-

ness for the metallic blanket (~ 20 cm) was about one half that of the

oxide blanket (- 40 cm). For these thicknesses, the two blankets had
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approximately the same breeding ratio, uranium content, and flux

attenuation characteristics. Burnup limitations were assumed to be

5, 000 MWD/MT for the metallic blanket and 25,000 MWD/MT for the

oxide blanket. The study showed that the low burnup limitation

severely disadvantages the metallic blanket - its regional optimum

irradiation times cannot be achieved. The oxide blanket's irradiation

time was not so-limited. Even without the burnup limitations, the

oxide blanket was found to be economically preferable.

6. 3 Summary

6. 3. 1 Objectives

As stated in the Introduction, the objectives of this work

were twofold:

[11 to develop a simple depletion-economics calculational tool

for survey evaluations of LMFBR blanket configurations, and

[21 to perform several comparative studies around a 1000-MWe

reference LMFBR configuration.

The 1000-MWe case studies [2], to which model [1 was applied,
dealt with (a) the effect of choice of radial reflector material

(Be-metal vs. Na) and radial blanket thickness on radial blanket fuel

economics, (b) the advantage of operating each radial blanket region

on its own local optimum irradiation, schedule, and (c) the sensitivity

of LMFBR fuel energy costs to the economic environment.

A preliminary study examined the economic viability of FBR

blankets as reactor size is increased. The reactor size-blanket eco-

nomics study used only the economics equations developed in task [1]

above. Depletion information was obtained from simple, one energy

group, spherical geometry breeding ratio expressions. Three cases

were compared over a range of core sizes: (a) a spherical core

surrounded by a breeding blanket, with no fissile burnup in the blanket;

(b) a spherical core surrounded by a sodium reflector (no blanket); and

(c) a spherical core surrounded by a breeding blanket, with blanket

burnup (power) accounted for.
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6. 3. 2 The Depletion-Economics Model

The depletion-economics model has two parts: (a) the cost

analysis model which yields the fuel components of energy cost, given

unit fabrication and reprocessing costs ($/kgHM), plutonium market

values ($/kgPuf), money costs (discount and tax rates), and the nuclide

balance data; and (b) the physics-depletion model, which yields the

nuclide balance data - load and discharge masses of fertile and fissile

materials - used in the cost analysis model. The depletion economics

model is programmed in the computer code SPPIA, described in

MITNE-123. Given local physics data (local flux and flux-averaged

cross sections) from a single multigroup physics computation, and

given the economic parameters, the code yields fuel costs locally (or

for an annular region) in $/kgHM/year, and energy costs by major

region (core, axial blanket, radial blanket) in mills/KWHe.

6. 3. 2. 1 Cost Analysis Model

Despite attempts to standardize nuclear fuel cost accounting

methodology (15, 16, 17, 18), a casual review of methods actually used

in design evaluations and tradeoff studies reveals substantial inconsist-

encies. Furthermore, FBR blankets impose several unique accounting

problems: blanket fuel appreciates with irradiation, raising certain tax

questions; and the long irradiation times in the radial blanket make the

treatment of blanket carrying charges important. For these reasons,

a cash flow method (CFM) was adopted in the present work.

A general CFM expression for the levelized cost of electricity

(mills/KWHe) was derived and applied to FBR fuel costs. When applied

to a region (core, axial blanket, or radial blanket) or subregion under

fixed-element (batch or scatter) management, the equations reduce to

forms giving local fuel economic performance, e. g., in an annular zone,

or at a "point," in mills/KWHe or $/kgHM/year:
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where e is the local levelized fuel component of the energy cost

(mills/KWHe), E is the electrical energy produced by the reactor in

one year (KWHe/yr), T is the local irradiation time (year), Cfab and

Crepr are the unit fabrication and reprocessing costs ($/kgHM), Cfis
is the fissile plutonium price ($/kg), E0 is the initial enrichment,
E(T) is the discharge enrichment (kg fissile discharged per kg of heavy

metal loaded), F (T) is the carrying charge factor for cost component

q, and MHM is the mass of heavy metal loaded. The term in brackets

{ } may be regarded as a figure of merit representing local fuel eco-

nomic performance, having units of dollars per year per local kilo-

gram of heavy metal loaded.

The carrying charge factors, Fq(T), are given by

F ( )= ___-[1 - T ( + Tq

1
(1+x~)Tq

for capitalized
costs or revenues

for non-capitalized
costs or revenues
(expensed cost or
taxed revenue)

x = (1- 7)rbf b + rs s "discount rate" (6.3)

and where T is the income tax rate, fb and fs are the debt and equity

fractions, rb and r5 are the debt and equity rates of return, and Tq
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(6.1)

where

(6.2)

TI
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is the time between the cash flow transaction q and the irradiation

midpoint.

The "front end" components, fabrication and material purchase,
are normally capitalized. The "back end" components, reprocessing

and material credit, may be capitalized or not, according to tax

interpretation. If they are not capitalized, then revenue from the sale

of plutonium is taxed as ordinary income, along with electricity reve-

nue, and reprocessing charges are treated as tax deductible expenses

in the year in which they occur. The two methods, capitalizing and

not capitalizing back-end transactions, were compared and were found

to have a significant effect on absolute values of energy costs. However,
choice of method does not distort comparative or incremental results,
e. g., design rankings, optimum blanket irradiation time, sensitivity

studies. In the case studies to which the depletion-economics model

was applied, material credit was consistently taxed and reprocessing

charges were consistently expensed.

The CFM treatment of carrying charges is embodied in Equations

6. 1 and 6. 2 above. Two approximate methods, here labeled "Simple

Interest Method" (SIM) and "Compound Interest Method" (CIM), were

identified in the literature:

Fq = 1 +y qTq (6.4)

and

Fq = (1+y ) (6.5)

where

yq x/ 1 -' for capitalized costs or revenues

= x for non-capitalized costs or
revenues (expensed costs
or taxed revenues) (6.6)

The CFM expressions were shown, through series expansions, to

reduce to SIM and CIM for small Tq yq. SIM underpredicts, while

CIM overpredicts, the carrying charge factor. Because radial

blanket irradiation times are typically long, the CFM method was

selected for use in the case studies of this report.
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6.3.2.2 Physics -Depletion Model

The function of the physics-depletion model is to furnish dis-

charge fuel composition, E(T), to the cost analysis model for use in

computing material credit.

In the method developed for this work, the "Semi-Analytic Method"

(SAM), local physics data (fluxes and spectrum-weighted cross sections)

from a single multigroup calculation are used in the analytical solutions

of the reaction rate equations to obtain discharge fissile content:

M4 9 + M 4

HM

M =N M -
49 49 N

(6.7)

(6.8)M 1= N4 1 V N

N N 0 A exp(- 2 8 )1ex(-(a49_ 28))]49 28 XPUaLP

+ N2 9 exp(- a a96)

N = N28AB C exp(-a 2 8 6) - N20 ABC 4)41 28 1 1 a 28 22 ex(a

+ N0 B C exp(-o-4 9 ) + 0 C exp(-a 4 0 )49 2 2 a 1 3 a

+ #2 exp(-a 41e)

c2a a

B a4 9 40- 28 B 49 40 49
1 c a aa Bac (Ua a

C =o.40 a41_ 28) C = 40 41 49) C31 a - 2 c a - a3

= N 0 - (N 0 AB -N 0 AB2+N0 B)1 40 '28A1282 492

N3 N0 - N0 A _N0 AB C +N0 BC+2 41 -( 2 8 AB 1 C1 N 2 8 2 2 N 4 9 B 2 C2 +( 1 C3 )

(6.9)

(6. 10)

a-40 41_ 40
c a a

(6.11)

,
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e = f T(T') dT' = local flux time (6. 12)

M 4 9 , M 4 1  discharge masses of Pu2 3 9, Pu 2 4 1, respectively

N 4,1 = discharge atom density of Pu239 Pu 24 1

respectively

M 4 atomic masses of Pu239 Pu , respectively

Nav = Avogadro's number

V = volume of the zone (6. 13)

Local flux and local spectrum-weighted cross sections are taken

from a single multigroup physics computation and are assumed constant

over a fueling cycle.

Several effects complicate the physics -depletion characteristics of

FBR blankets: (1) spectrum softening with distance from the core-

blanket interface; (2) spectrum hardening with irradiation time, due to

the relatively large buildup of fissile plutonium in the blanket; (3) flux

shift, i. e. , increase in blanket flux with irradiation time, due to build-

up of fissile plutonium in the blanket; and (4) heterogeneity effects

occasioned by the soft blanket spectrum and aggravated, in the case of

radial blankets, by larger pin diameters.

Effect (1) requires that cross sections be input to the depletion

calculation with sufficient spatial detail, i. e. , a separate cross section

set, properly flux-weighted, for each of many blanket regions. Since

the accurate spatial description of blanket physics is a prime concern

in the Blanket Test Facility work, no attempt was made to determine

potential savings in computational effort through reduced spatial detail.

Instead, attention was concentrated on effects (2) and (3).

Effects (2) and (3) suggest that static physics calculations be per-

formed sufficiently often, during a depletion calculation, to correct the

local fluxes and cross sections. Since most of the computational effort

is absorbed by the multigroup calculations, computer expense can be

significantly reduced by minimizing their frequency - that is, by maxi-

mizing the irradiation time intervals over which flux shape and local
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spectra are assumed constant. For this reason, studies were per-

formed to assess the effects of item (2), spectrum hardening, and

item (3), flux shift, on depletion calculation results. Qualitatively,
the two effects operate in opposite directions, spectrum hardening

tending to decrease blanket discharge fissile inventory, flux shift

tending to increase blanket discharge fissile inventory.

Three parallel depletion calculations were performed for a

reference 1000-MWe LMFBR:

(a) a 26-energy-group time step depletion calculation (26G-TSD),
which accounted for both spectrum changes and flux shift;

(b) a 1-energy-group time step depletion calculation (1G-TSD),

which accounted only for flux shift; and

(c) a "semi-analytic method" (SAM) calculation, which accounts

for neither spectrum change nor flux shift with irradiation.

The two approximate methods, (b) and (c), used local spectrum-

weighted cross sections from the initial (time zero) method (a) solution.

In addition, method (c) used local fluxes from the initial method (a)

solution. The computer program 2DB (19) was used for calculations

(a) and (b). Method (a) used the Bondarenko 26-group cross section set

(20), heterogeneity-corrected by the program 1DX (21).

The calculations assumed batch management of both core (plus

axial blanket) and radial blanket. Core and axial blanket fuel was

assumed replaced after two years' irradiation, corresponding to an

average burnup of 100, 000 MWD/MT. Radial blanket fuel was assumed

irradiated to four years. The use of batch management in these calcu-

lations imposes a severe test of the constant flux, constant spectrum

assumptions. For the same irradiation time, the variations of compo-

sition, flux shape, and spectra over a cycle interval are greater for

batch management than for scatter management.

Principal findings of the methods study described above are listed

below.

(1) For the core, the discharge fissile inventories from the

three calculations were practically in exact agreement (errors less

than 0. 1%).
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(2) For the axial blanket, 1G-TSD overpredicted discharge

fissile inventory by less than 4%, while SAM underpredicted by less

than 4%.

(3) For the radial blanket, 1G-TSD overpredicted discharge

fissile inventory by about 10%, due to its soft cross sections. SAM

underpredicted discharge fissile inventory by around 10%, in spite of

its soft cross sections, because of its low flux values.

(4) Of the two effects examined in this exercise, spectrum

hardening and flux shift, the latter was found to be dominant.

The SAM calculation, performed by the program SPPIA, resulted

in computer time savings (over the 26G-TSD performed by 2DB) of on

the order of 90%, while the 1G-TSD (2DB) led to about 60% time

savings. In addition to depletion results, the SPPIA computation

obtained fuel costs by region, as functions of irradiation time.

The effect of heterogeneity corrections (i. e. , U238 resonance,
spatial self-shielding) on radial blanket depletion results was examined.

Heterogeneity influences blanket fissile production in two opposing ways:

(a) the lower effective U238 microscopic capture cross section, a-2 8
c

depresses the conversion rate, tending to decrease bred fissile inven-

tory; (b) viewing blanket neutronics as an attenuation process, the
28lower a c results in higher blanket fluxes, tending to increase the con-

version rate and bred fissile inventory. Of these two opposing effects,
(a) dominates and heterogeneity leads to a net adverse effect on blanket

breeding.

Two multigroup physics computations were performed using,
respectively, 26-group, infinitely dilute cross sections and 26-group,
heterogeneity-corrected cross sections in the blanket. Local fluxes

and one-group cross sections from these two computations were then

input to SAM to obtain depletion results with and without heterogeneity

corrections. Comparison of the two SAM results showed that blanket

heterogeneity reduced fissile discharge inventory by about 10% for

irradiation times of interest (2 to 7 years). A similar study (22)

showed that heterogeneity corrections for a typical LMFBR axial

blanket diminished calculated axial blanket Pu2 3 9 discharge mass by

as much as 3%.
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6.3.3 1000-MWe LMFBR Case Studies

The depletion-economics model established above was applied

to case studies involving radial blanket thickness, choice of radial

reflector material, radial blanket fuel management, and the sensitivity

of LMFBR fuel energy costs to the economic environment.

6. 3. 3. 1 Radial Blanket Thickness and Radial Reflector Material

Combinations of three radial blanket thicknesses (15 cm, 30 cm,
and 45 cm) and two radial reflector materials (sodium, beryllium-metal)

were evaluated. The total radial dimension (blanket plus reflector) was

held fixed at 95 cm, since even the thinnest (50 cm) reflector is effect-

ively infinite (2, 14). The core and axial blanket configuration was also

held fixed. Core volume was 4908 liters, core height-to-diameter ratio

was 0. 4 and the axial blanket was 40 cm thick. Core and axial blanket

fuel economics were found to be insensitive to radial blanket/reflector

design changes. A solid beryllium-metal reflector (no coolant, no

structural material) was selected as a limiting case, i. e. , as the

reflector apt to provide maximum improvement in radial blanket fuel

economics.

Figure 6. 1 and Table 6. 5 summarize the results of the blanket

thickness- reflector material survey. "Reference" and "more favor-

able" economic environments, for radial blankets, are defined in

Table 6. 6. Principal findings are listed below.

1. The relative advantage of the moderating reflector, Be-

metal, increases as the reflector is moved nearer the high flux zones

of the blanket, that is, as the blanket thickness decreases. For a

thick (45 cm) blanket, the effect of radial reflector material choice

is only slight.

2. For either reflector, reducing the blanket thickness

always reduces the bred plutonium inventory of the blanket; that is,

the plutonium forfeited in the region eliminated is greater than the

additional plutonium bred in the remaining region as a result of

improvement of its breeding performance (a280).
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Effect of Radial Blanket Thickness and Radial

Reflector Material on Radial Blanket Fuel Economics

Reference More Favorable
E conomic Environment Economic Environment

Con- Radial Radial M4 9 /T eRB Mg4 9  RB M4 9figu- Blanket Reflector @Topt @T opt
ration Thickness Material @T=2 yr Topt (mills/ @Topt Topt (mills/ @Topt
No. (cm) (kg/yr) (yr) KWHe) (kg) (yr) KWHe) (kg)

1 45 Na 158 6-1/2 -0. 037 825 3-1/2 -0. 237 512

2 45 Be-metal 160 6-1/2 -0.040 845 3-1/2 -0.243 521

1A 30 Na 141 4-3/4 -0.058 596 2-1/2 -0.242 342

2A 30 Be-metal 157 4-1/2 -0.072 610 2-1/2 -0.279 380

1B 15 Na 97 3-1/2 -0.055 304 2 -0.188 194

2B 15 Be-metal 130 2-3/4 -0. 087 308 1-1/2 -0. 276 205

TABLE 6. 5.



149

TABLE 6.6

Radial Blanket Economic Environment

Reference More Favorable
Economic Economic

Environment Environment

Fabrication, $/kgHM 69 40

Reprocessing, $/kgHM 31 31

Fissile Market Value, $/kg 10,000 20,000

Discount Rate, % 8 8

3. Optimum irradiation time decreases as the radial blanket

thickness decreases and as the economic environment improves. The

effect of the choice of radial reflector material on optimum irradiation

time is more pronounced, the thinner the blanket.

4. Radial blanket thickness optimization is weak; that is, net

blanket revenue does not display a sharp peak as radial blanket thick-

ness is reduced from 3 rows to 2 rows to 1 row (15 cm per row).

Thick blankets are indicated when fabrication and reprocessing costs

decrease and/or fissile market value increases.

6. 3. 3. 2 Advantage of Local Fuel Management

Fuel management schemes addressed in this study are charac-

terized as "fixed fuel" schemes; i. e. , fuel sees only one position in the

reactor. During a refueling event, a fraction, g, of a region's fuel is

discharged and replaced with fresh fuel ("scatter" management). If all

of the region's fuel (g= 1. 0) is replaced, the region is said to be

"batch" -managed.

The entire radial blanket may be batch- or scatter-managed, in

which case all fuel experiences the same irradiation time. Alterna-

tively, the blanket may be divided into annular regions (rows), with

each irradiated to its own local optimum irradiation time, again in a

batch or scatter management scheme. The advantage of operating

each radial blanket annular region on its own local optimum irradiation
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schedule was estimated for the reference LMFBR configuration (45-cm

blanket, Na radial reflector). Net radial blanket revenue in mills/
KWHe was found to be about 30% higher when local management was

assumed. The local optimum irradiation time ranged from 2. 5 years

(at the core blanket interface) to about 12 years (at the blanket-

reflector interface), while the optimum irradiation time for the blanket

as a whole was 6.5 years.

Another advantage of local fuel management, not quantified in the

present studies, is the power-flattening effect.

6. 3. 3. 3 Sensitivity of LMFBR Fuel Energy Costs to the

Economic Environment

Costs generated throughout the fuel cycle are ultimately trans-

ferred to the utility company and borne, along with the utility company's

carrying charges, by the electricity consumer via the fuel component

of the levelized cost (price) of electricity in mills/KWHe. Economic
*

environment is defined here as the unit costs for fabrication and re-

processing ($/kgHM), the fissile Pu market value ($/kgPu fissile), and

the utility company discount rate (%). The sensitivity of reference

LMFBR fuel energy costs (mills/KWHe) to components of the economic

environment was examined by varying each parameter around the refer-

ence values given in parentheses in Table 6. 7. Sensitivity of region

"" fuel cost ( s) to cost component "q" about reference environment

"'o" is represented by the "sensitivity coefficient" (A ) o, defined by

(A o =(C s o) (s/aC ) (6.14)

Table 6. 8 summarizes the sensitivity coefficients for the reference

core, axial blanket, and radial blanket. Fabrication and reprocessing

components include their respective carrying charges. The material

component is the net direct fissile material cost (fissile material pur-

chase less fissile material credit) plus the material carrying charges

Carrying charges of the fuel cycle industries are included in their unit
costs ($/kgHM). Carrying charge components of energy costs refer to
utility company carrying charges.
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TABLE 6.7

Ranges of Economic Environment Parameters

Unit Processing Costs [$/kgHM]

Fabrication

Core

Axial Blanket

Radial Blanket

Reprocessing

Core

Axial Blanket

Radial Blanket

Nuclide Market Values ($/kg)

Fertile (C 2 8 , C 4 0 )

Fissile (C 4 9 , C 4 1 )

Utility Company Financial Parameters

Income Tax Rate (-)

Discount Rate (x)

150-(314)-330

20-( 80)-314

20-( 69)-100

15-( 31)- 60

15-( 31)- 60

15-( 31)- 60

0

5000-(10,, 000)-25, 000

(0.5)

0. 06-(0. 08)-0. 10

( ) indicates reference value.

TABLE 6.8

Sensitivity Coefficients, (A q,)oJ for Reference LMFBR

Core, Axial Blanket, and Radial Blanket

q, s Core Axial Blanket Radial Blanket

Fabrication 0.357 -0.495 -2.15

Reprocessing 0.025 -0.140 -0.44

Material 0.628 1.635 +3.59

1.000 1.000 1.00

* (A ) = 5 50
q,Aso C /(C )q, s q, So

** These terms are negative because the (es o for the blankets are
negative.
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(inventory). For all three regions, the energy costs for fuel are seen

to be most sensitive to unit fissile value and least sensitive to unit

reprocessing cost.

For the core and axial blanket, irradiation time is set by the burn-

up limit of the core. Thus, for these regions, Eq. 6. 1 reduces to

simple linear relations of the unit costs:

S=a C + a C + a C (6.15)
s =fab, s fab, s repr,s repr,s mat, s fiss

where

a = 000 MI0Ig(T) = constant.

Hence, for these regions, sensitivity coefficients simply represent the

fractions of the regional cost, es, contributed by the respective compo-

nents:

(A ) = s (6.16)
q, s o

es o

where

eqs aq Cq 5 .eq, sa q, s q, s

The radial blanket energy cost of interest is the fuel cost at the

optimum irradiation time, (eRB Topt. Since the optimum irradiation

time is an implicit function of the economic environment parameters,
Eq. 6. 1 for the radial blanket does not reduce exactly to a simple

linear form. However, sensitivity results from the SPPIA program

(Figs. 6. 2, 6. 3 and 6. 4) showed that (eRB)Topt is practically linear

in Cfab' Crepr, and C fiss over the expected ranges of these parame-

ters. Thus, Eqs. 6. 15 and 6. 16 are applicable to the radial blanket

near reference economic conditions.

Figures 6. 2, 6. 3, and 6.4 also show that Topt is approximately

linear in Cfab' repr, and Cfis and that Topt decreases with im-

provement in the radial blanket's economic environment.
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Figure 6. 5 shows the regional (core, axial blanket, and radial

blanket) and total fuel costs as functions of fissile plutonium value.

Several features are noted:

(a) Due to the core fissile inventory component, the total

reactor fuel energy cost, ereactor, increases with Cfiss despite

the fact that the reactor produces more fissile plutonium than it

consumes.

(b) The axial blanket is more profitable than the radial

blanket because the axial blanket sees more neutrons in this

particular, but typical, design (H/D = 0.4).

(c) The axial blanket breakeven point occurs at about

3.9 $/gm.

(d) The radial blanket breakeven point occurs at about

7.25 $/gm.

(e) As fissile price increases, the blankets become more

viable, substantially offsetting the higher core inventory costs.

It is unlikely that the disparity between axial blanket profit and

radial blanket profit would be diminished significantly by reasonable

changes in the thickness or composition of either blanket. The axial

blanket advantage is largely inherent: the axial blanket enjoys a

higher flux and higher fissile generation rate per unit of heavy metal

loaded, and a short optimum irradiation time close to that set by the

core burnup limit (2 years). Hence, axial blanket fissile credit is

not threatened by overwhelming processing and material carrying

charges.

6. 3.4 Reactor Size and Blanket Fuel Economics

A semiquantitative scoping study was performed to examine

the effect of reactor unit rating on the economic viability of blankets.

As core size increases (holding core shape fixed), core fuel economics

improve due to the decreased critical enrichment and increased

internal breeding ratio. At the same time, core surface-to-volume

ratio and external breeding ratio diminish, and blanket fuel economics

degenerate.
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All of the major assumptions in this preliminary study penalized

the blanket. A spherical core was assumed throughout the range of

core size; that is, core geometry spoiling to maintain negative sodium

void coefficients was not accounted for. A one-zone core was assumed,
whereas a graded enrichment scheme would have enhanced blanket

economics. The increased control requirements and associated costs,

involved in increasing the internal breeding ratio much above unity,
were ignored.

Figure 6.6 shows that in spite of these (and other) penalties, the

blanket concept is economically preferable to a nonbreeding reflector

(Na) for reactor ratings well over 1000 MWe. Beyond the "indifference

point," the advantage of the "no-blanket" configuration is only very

slight. Thus, it is likely that blankets will remain an important part

of LMFBR design for the foreseeable future.

6.4 Conclusions and Recommendations

The most significant findings and recommendations are summarized

in the following paragraphs.

Choice of fuel cost accounting method has a significant effect on

absolute values of energy costs (mills/KWHe) but does not distort

comparative and incremental results, design rankings, optimization

of fuel residence times, etc. Choice of taxing method can, however,

affect the optimized thickness of blankets.

A single, multigroup physics computation, to obtain the flux shape

and local spectra for depletion calculations, is sufficient for evaluating

blanket/reflector design changes and for scoping and sensitivity studies.

The major source of error in depletion results is the assumption of

constant local flux over an irradiation cycle.

Choice of radial reflector material is important for radial blankets

of one or two rows of subassemblies (15 to 30 cm). The relative

advantage of a moderating reflector increases as the reflector is moved

nearer the high flux zones of the blanket - that is, as the blanket thick-

ness decreases from three (45 cm) rows to two (30 cm) rows to one

(15 cm) row of subassemblies.
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Radial blanket thickness optimization is weak; i. e. , net blanket

revenue does not display a sharp peak as radial blanket thickness is

reduced from three rows to two rows to one row. Significant improve-

ment (~ 30% increase in net blanket revenue) results from irradiating

each radial blanket region to its own, local optimum irradiation time.

Both the optimum radial blanket irradiation time and the corre-

sponding radial blanket net revenue are approximately linear functions

of the unit costs in dollars per kilogram for fabrication, reprocessing,

and fissile material. For increased fissile costs, both blankets (axial

and radial) become more important in offsetting the increased core

fissile inventory costs.

Based on a simple examination of reactor size versus blanket

fuel economics, blankets are expected to remain an important part

of LMFBR design for the foreseeable future.

Fast breeder reactor blanket design and fuel management has not

received attention, in the open literature, commensurate with its

importance. Design and fuel management study results tend to be

highly specialized and fragmentary, making normalizations and com-

parisons difficult. A comparative evaluation of scatter, batch, out-in,

and in-out equilibrium radial blanket fuel management schemes, for a

fixed reactor configuration, is recommended.

The flexibility of radial blanket fuel management, after the

reactor is in operation, presents the opportunity of optimizing reload

strategies in accordance with the current and projected economic

environments. Further effort in this area is recommended.

Interactions between engineering design and fuel management

parameters should be examined with the aim of better understanding

and characterizing the blanket. Radial blanket fuel management

directly influences the degree of power flattening across the blanket,

the power swing over an irradiation cycle, and the core-blanket power

split. The associated economic tradeoffs are not well understood. In

particular, an analysis of the benefits and penalties of blanket fissile

seeding is recommended.

In brief, the most important recommendation is that, whatever

aspects of blanket fuel management are subjected to further scrutiny,
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this be done on a more global basis, at the minimum taking into con-

sideration the strong interaction of management schemes and the flow

orificing pattern adopted.

Since unit sizes are projected to increase to 2000 MWe and beyond

after the year 2000, a more thorough parametric study of blanket per-

formance versus reactor rating is recommended.
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7. ANALYSIS OF ADVANCED BLANKET DESIGNS

7. 1 Introduction

Work has recently been initiated in three areas, involving evalu-

ation of:

(1) the effects of variations in blanket and reflector composition,
(2) the advantages of the use of an interior blanket, the so-called

parfait blanket concept, and

(3) the economic benefits which may be achieved through use of

thorium in place of depleted uranium in LMFBR blankets.

Since this work is still in its early stages, we will merely describe

the underlying motivation and outline the projected scope of the research

in the successive sections of this chapter.

7.2 Variations in Blanket Composition

This investigation is in large measure an outgrowth of previous

work described in a forthcoming topical report (1). Major objectives

will be evaluation of the economic advantages of the use of high-albedo

reflectors, blanket pre-enrichment and power flattening in the radial

blanket. The economic analysis developed in reference (1) will be ex-

panded to consider the thermal-hydraulic aspects of blanket design,

which have been treated in preliminary fashion in reference (2). In

addition, gamma heating - which can be an important contributor to

blanket power, particularly in the outermost row - will be analyzed.

7. 3 The Parfait Blanket

Although the primary emphasis of the work conducted under the

aegis of the MIT Blanket Research Project has been on the external

axial and radial blankets typical of present LMFBR designs, prelimi-

nary studies have identified one unconventional internal blanket con-

figuration which merits further investigation: the totally enclosed or
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parfait blanket concept. As shown in Fig. 7. 1, the parfait blanket is

surrounded both axially and radially by core.

Preliminary calculations indicate the following potential advan-

tages of the parfait blanket design over a conventional LMFBR core:

(1) decreased reactivity swing over lifetime due to the presence

of bred plutonium in a high worth central position,
(2) better axial and radial power flattening with no sacrifice of

subassembly power equalization over core lifetime,

(3) lower peak flux due to higher fissile loading in core zones

surrounding the blanket, hence the possibility of reduced

stainless steel swelling,

(4) the potential of selecting blanket size to permit use of a single

fissile enrichment in the two core zones.

Potential disadvantages identified to date, which do not appear to

be serious, are:

(1) less flexible fuel management (e. g., out-in movement between

core zones is precluded) which may be acceptable if the

present trend toward region scatter management for LMFBR's

continues,

(2) slightly higher clean critical mass before (and perhaps after)

burnup effects have been taken into account,
(3) a larger positive component for the whole-core sodium void

reactivity (but smaller for voiding at the core hot spot),

(4) a large power density discontinuity in the fuel rod at the core-

blanket interface, somewhat larger than that at the core-axial

blanket interface.

Work is planned to quantify these varied factors and, in particular,
to translate them into economic terms to permit a detailed comparison

between the parfait and conventional designs.

7.4 Thorium in LMFBR Blankets

The final area in which it was thought that major innovations in

blanket design may occur involves the use of thorium in place of

uranium as blanket fertile species. The motivation for this choice
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has become more substantial in the past year with the increasing

penetration of the U.S. power reactor market by the HTGR. Roughly

speaking, U2 3 3 is worth a factor of two more than Pu239 as HTGR

fuel. Thus it is at least superficially attractive to breed U 2 3 3 in

LMFBR blankets for sale to HTGR operators, and to purchase make-

up plutonium for the LMFBR from LWR operators. The resulting fuel

cycle economy of all three reactor types may in turn encourage more

rapid adoption of the LMFBR by the utility industry.

This evaluation will include a parallel economic comparison

between U238 and Th232 blankets using many of the tools developed

in reference (1).

7. 5 Discussion

Although the work described in this chapter will primarily involve

application of computer-oriented tools such as the economic models of

reference (1) and the 2-DB burnup code, close integration with the

experimental program, which is the major focus of project effort, is

being enforced. For example, the overall study of composition vari-

ation discussed in section 7. 2 is being carried out in conjunction with

the experiments on Blanket No. 3, reported in Chapter 4, which are

designated to verify physics design calculations for advanced blanket

designs employing high-albedo reflectors: both phases of the work will

be reported in the same topical report. Similarly, irradiations in

Blanket No. 4 will include as many thorium capture and fission

traverses as practicable to provide direct experimental confirmation of

the numerical computations used in the remainder of the study.
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8. PARAMETRIC STUDIES

8. 1 Introduction

A considerable number of parametric and sensitivity studies have

been performed as part of the effort required to design and analyze

the experiments. It is convenient to arrange the discussion according

to the particular blanket mock-up which served as the base-case com-

puter model, even though many of the conclusions are more generally

applicable. Unless otherwise specified, all calculations were made

using the ANISN program in the S8 option, and the ABBN 26-group

cross section set.

8. 2 Studies Involving Blanket No. 2

The following variations have been investigated:

(1) Blanket No. 2 driven by two different "cores" : the

ZPPR-2 core and the MIT BTF converter plate.

(2) Blanket No. 2 using two different cross section sets:

the ABBN 26-group set and a HEDL 29-group set.

(3) Comparison of Blanket No. 2 to Demonstration and

1000-MWe LMFBR's.

Figure 8. 1 compares the spectrum calculated at the center of

Blanket Mock-Up No. 2 to the expected spectrum if the same blanket
*

were driven by the ZPPR-2 core. As can be seen, the BTF-driven

mock-up has a softer spectrum. One consequence of this spectral

difference can be seen in the calculated U238 capture traverses of

Fig. 8.2, in which the softer BTF driver produces an enhancement in

the first half of the blanket. As will be discussed subsequently, the

above observations are part of the justification for selecting hardened

driver spectrum as the governing criterion for designing Mock-Up No. 4.

Note that although the driver is being compared to the ZPPR-2 core,
the MIT Blanket No. 2 is not intended to mock up ZPPR-2 blankets.
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FIG, 8.1 SPECTRUM AT CENTER OF RADIAL BLANKET MOCKUP NO, 2
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FIG. 8.2 U-238 CAPTURE RATE IN MOCKUP NO. 2 BLANKET
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The second category of parametric studies carried out on Mock-

Up No. 2 is of particular interest in that two different cross section

sets were employed. Although the Hansen-Roach 16-group set was

used in the very early stages of the initial design of the BTF, the

ABBN or Russian 26-group set (1) has been the standard for essenti-

ally all of the work carried out to date within the MIT Blanket Research

Project. In the present group of comparisons, a set obtained from

HEDL (2), which was developed from ENDF/B data, was compared to

the ABBN set. In order not to confuse the issue, infinite dilution U 2 3 8

cross sections were used. Figure 8. 3 shows the spectrum at the inner

edge of the blanket, while Figs. 8.4 and 8. 5 show U238 capture and

fission traverses. The overall agreement is quite good, from which

the tentative conclusion may be drawn that errors in cross section sets

would have to arise from a common source in data or processing if

such errors are to explain discrepancies between calculated and

measured results. For example, both sets yield roughly comparable

slopes for the U 2 3 8 fission traverse in the iron reflector, and thus

both are in major disagreement with the measured slope. From other

work, it is also clear that specification of the U 2 3 8 self-shielding is

the single most important cross section variation: the previous para-

metric studies reported by Leung (3) show that substantial changes in

the calculated activation traverses can be thereby effected. Another

tentative conclusion suggested by the present results is that it would be

difficult to use blanket measurements to justify selecting between

cross section sets except with regard to the specific foil reactions

themselves: one could not, for example, justify arbitrary adjustment

of the U2 3 8 inelastic cross sections to force better agreement. On the

other hand, calculations for single component bulk media such as the

iron reflector do show more significant differences which might be

interpretable in terms of cross section discrepancies of the medium

itself.

The last group of intercomparison studies deals with the effect of

reactor core size on the blanket. Figure 8. 6 shows the variation in

driving spectrum between demo-size and 1000-MWe cores: the differ-

ences are small but not negligible, and, as expected, the smaller core
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FIG, 8.3 SPECTRUM AT INNER EDGE OF RADIAL BLANKET
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FIG. 8.4 U-238 CAPTURE RATE IN BLANKET AND REFLECTOR
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FIG. 8.5 U-238 FISSION RATE IN BLANKET AND REFLECTOR
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FIG, 8.E SPECTRUM AT INNER EDGE OF RADIAL BLANKET FOR
IFFERElJT LMFBR CORES
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provides the harder driving spectrum. From the detailed calculations,

it was found that:

(1) The BTF converter drives the blanket with a computed

spectrum softer than the 1000-MWe LMFBR by about the

same margin as the difference between the 1000-MWe

and demo-size driving spectra.

(2) The spectrum mismatch at the core-blanket interface tends

to wash out at deeper penetrations into the blanket, as evi-

denced by both spectrum and U2 3 8 capture traverse calcu-

lations.

Figure 8. 7 summarizes in a succinct form the general conclusions

of this investigation: The present BTF converter's soft driving

spectrum is of importance comparable to that of U238 self-shielding in

its effect upon the observed blanket spectrum. In fact, the two effects

are even more inextricably linked, since self-shielding occurs pri-

marily in the region below 1 keV. Thus, driving the blanket with a

soft spectrum creates a proportionally greater demand for an accurate

description of self-shielding.

8. 3 Parametric Investigations for Blanket No. 3

Considerably fewer parametric investigations have been made on

Blanket No. 3 than were done for Blanket No. 2. Since Blanket No. 3

is driven by the same converter, and uses the same first two rows of

blanket as No. 2, many of the results carry over. In particular,
calculations show that the graphite reflector of Blanket No. 3 affects

primarily the adjacent blanket row, and hence none of the many vari-

ations investigated by Leung appeared to require repetition. Thus,
the present study was focused upon the effect of the graphite reflection

alone.

A number of obvious variables were found to have an insignificant

effect: ± 10% variation in assumed graphite density about 1.66 gm/cc,

inclusion of 300 ppm by weight of hydrogen (in the form of moisture),
± 10 cm variation in the extrapolated width and height (hence trans-

verse buckling).
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FIG. 8.7 SPECTRUM AT INNER EDGE OF RADIAL BLANKET
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Self-shielding of both the U 2 3 8 fuel and the detector foils was found

to be an important consideration, as expected. In order to account for

decreased U238 self-shielding at the blanket-reflector interface, the

MIDI code was used to generate U2 3 8 cross sections for a 3. 9-cm-wide

interface region in the blanket. These interface-modified U238 cross

sections are compared to the infinite-dilution and infinite-blanket-

medium values in Table 8. 1. Approximate cross sections were also

estimated for 10-mil gold foils to match quoted effective resonance

integral values for this thickness; the values adopted are shown in

Table 8. 2. Figure 8. 8 compares the measured and calculated gold

traverses with and without both Au and modified U238 self-shielding.

In the blanket, the boundary-corrected U 2 3 8 clearly improves the

agreement; in the graphite reflector, the gold self-shielding over-

corrects the traverse but at least indicates that the effect can more

than account for the observed discrepancies.

8.4 Design Calculations for Blanket No. 4

Blanket Mock-Up No. 4 will use the same blanket elements and

iron reflector as Blanket No. 2; however, the converter assembly will

be modified to provide a harder driving spectrum, similar to the leak-

age spectrum from the core of a demonstration LMFBR plant.

For Blanket No. 4, the converter configuration was optimized by

comparison to a reference demonstration LMFBR design. The refer-

ence design consisted of a core having composition and dimensions

very similar to ZPPR Assembly 2 (the ANL Demonstration Reactor

Benchmark), coupled with a radial blanket and iron reflector having

the same composition and (radial) thickness as BTF Blanket Assembly

No. 2.

The optimum converter design for Blanket No. 4 was found to con-

sist of a 5-cm-thick graphite reflector region and 10 rows of UO2 fuel.

(The previous converter configuration employed for Blankets 1, 2 and

3 was 20 cm of graphite and 15 rows of UO2 fuel. ) All design calcu-

lations were made using the ANISN code and an updated version of the

ABBN 26-group cross section set, with self-shielded U238 cross

sections generated by the MIDI code.
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TABLE 8. 1. U 2 3 8 Broad-Group Capture Cross Sections

E L

21. 5 keV

10. 0 keV

4. 65 keV

2. 15 keV

1. 0 keV

465 eV

215 eV

100 eV

46.5 eV

21.5 eV

10. 0 eV

4.65 eV

2.15 eV

U2 3 8 Capture Cross Section

Infinite Infinite 3. 9-cm Blanket-
Dilution Blanket Medium Reflector Interface

0.50 0.50 0.50

0.75 0.428 0.501

0.78 0.626 0.809

1.2 0.536 0.737

2.1 0.566 0.820

3.6 0.725 0.666

4.5 0.633 1.114

17 1.058 1.793

15 2.894 4.973

58 2.384 3.895

82 6.621 10.160

171 7.043 10.750

0.54 0.54 0.54

TABLE 8.2. Au 1 9 7 (n,y)Aul 9 8 Activation Cross Sections

Group EL
(eV)

13

14

15

16

17

18

19

20

21

22

23

2150

1000.

465

215

100

46.5

21.5

10.0

4.65

2.15

1.0

Au Activation Cross Sections

Infinite Dilution 10-mil Foil (Approx.)

3.82 3.82

9.32 7.50

16.78 8.39

23.68 9.66

24.43 9.97

55.97 22.84

15.96 6.51

7.83 3.20

1677.44 167.55

285.12 28.48

24.75 24.75

Group

10

11

12

13

14

15

16

17

18

19

20

21

22
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FIG. 8.8 GOLD AXIAL ACTIVATION TRAVERSES IN BLANKET NO. 3
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Table 8. 3 compares the spectrum at the inner edge of Blanket

No. 4 with that at the core-blanket interface of the ZPPR-2 reference

design. Figure 8.9 shows the same data in graphical form. The

agreement is seen to be good except in the neighborhood of the 3-keV

sodium resonance; this is a result of the absence of sodium in the con-

verter assembly. It can also be seen from Table 8. 3 and Fig. 8. 9

that the Blanket No. 4 driving spectrum is considerably harder than

that of Blanket No. 2.

Table 8.4 compares the Blanket No. 4 and ZPPR-2 reference

design spectra at a depth of 9.5 cm into the blanket. Figure 8. 10

shows the same data in graphical form. The agreement is seen to be

excellent throughout the entire energy range, save for a small dis-

crepancy above 1 MeV.

Reduction of the converter graphite region thickness from 20 cm

to 5 cm for Blanket No. 4 should also result in about a factor of three

increase in fast flux over previous blanket assemblies, which will

facilitate deep penetration traverse measurements in the reflector

region.

8. 5 Parametric Studies of Fast Neutron Penetration in the Reflector

In both the graphite reflector of Blanket No. 3 and the iron

reflector of Blanket No. 2, the measured U2 3 8 (nf) and In (n,n')

threshold detector traverses have shown far greater than calculated

fast neutron fluxes: The calculated activation (which is approximately

linear when plotted as log activity vs. distance) has an e-folding

distance a factor of two shorter than the measured data. The follow-

ing variables have been eliminated as possible causes for this dis-

crepancy by an extensive series of parametric studies:

(1) reflector density variations;

(2) cross section set idiosyncrasies in the sense that both the

HEDL and ABBN sets gave comparable results;

(3) order of quadrature: S16 results did not differ substantially

from S8 results;
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TABLE 8.3

Neutron Spectrum at Inner Edge of Blanket

Group ZPPR-2 Blanket No. 4 Blanket No. 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

0.00156

0.00888

0.0194

0.0428

0.0610

0.130

0.159

0.152

0.133

0.0878

0.0844

0.0442

0.00981

0.0317

0.0184

0.00937

0.00417

0.00123

0.000485

0.0000988

0.0000300

0.0000336

0.0000111

0.0000057

0.0000020

0.0000005

0.00168

0.00972

0.0194

0.0423

0.0568

0.132

0.154

0.145

0.136

0.0932

0.0850

0.0450

0.0208

0.0272

0.0157

0.00905

0.00436

0.00151

0.000554

0.000121

0.0000302

0.0000263

0.0000152

0.0000069

0.0000808

0.0000063

Total 1.000 1.000 1.000

0.00111

0.00642

0.0124

0.0280

0.0387

0.102

0.131

0.135

0.140

0.104

0.105

0.0610

0.0334

0.0430

0.0265

0.0170

0.00910

0.00316

0.00127

0.000275

0.0000725

0.000296

0.000259

0.000134

0.0000348

0.0000040
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TABLE 8.4

Neutron Spectrum 9. 5 cm Into Blanket

Group ZPPR-2 Blanket No. 4

1 0.000779 0.000923

2 0.00443 0.00532

3 0.00936 0.0106

4 0.0232 0.0252

5 0.0377 0.0382

6 0.0999 0.103

7 0.142 0.141

8 0.149 0.145

9 0.143 0.142

10 0.101 0.102

11 0.103 0.103

12 0.0564 0.0564

13 0.0138 0.0140

14 0.0463 0.0457

15 0.0314 0.0304

16 0.0199 0.0193

17 0.0111 0.0109

18 0.00444 0.00443

19 0.00191 0.00193

20 0.000508 0.000514

21 0.000147 0.000148

22 0.000119 0.000119

23 0.0000777 0.0000784

24 0.0000421 0.0000426

25 0.0000165 0.0000357

26 0.0000044 0.0000082

Total 1.000 1.000
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FIG. 8.10 NEUTRON SPECTRUM 9.5 cm INTO BLANKET
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(4) variations in transverse buckling used in the 1D calculations:

even setting B 2 = B2 = 0 had no appreciable effect;
x y

(5) reflector outer boundary condition;

(6) impurity content of the reflector, such as moisture in the

graphite;

(7) higher-order scattering as opposed to the transport approxi-

mation;

(8) impurity content of the foil detectors (e. g., the 18-ppm U2 3 5

in our depleted uranium).

It is also interesting to note that the thorium (n,f) traverse in

Blanket No. 3 is in acceptable agreement with the calculated results.

This suggests that the problem may lie in a narrow band of neutron

energies around 1 MeV where, perhaps not coincidentally, both carbon

and iron have some scattering resonance fine structure in their cross

sections. Two approaches are being pursued to follow up on this line

of reasoning: Instrumental measurements will be made of the shape of

the spectrum near 1 MeV in the iron reflector of Blanket No. 4 to see

whether neutrons are in fact streaming through a window; and a

numerical analysis of the cross section collapsing algorithm and

weighting spectrum shape will be made to determine the adequacy of

the coarse-group multigroup cross sections in the groups around

1 MeV. A thorough re-examination of experimental techniques em-

ployed for the U238 and In foil traverses will also be carried out.

8.6 References

(1) Abagyan, L. P. , et al. , "Group Constants for Nuclear
Reactor Calculations~" Consultants Bureau (1964).

(2) Kidman, R.B. and R.E. Schenter, "Group Constants for Fast
Reactor Calculations," HEDL-TME-71-36, ENDF-143
(March 1971).

(3) Leung, T. C., et al., "Neutronics of an LMFBR Blanket Mock-
Up," COO-3060-1, MITNE-127 (January 1972).
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9. SUMMARY, CONCLUSIONS AND FUTURE WORK

9. 1 Introduction

This is the third annual report of the LMFBR Blanket Physics

Project at M.I. T. During the past year, work has been concerned

primarily with the following areas:

(a) Measurements on Blanket Mock-Up No. 3, a graphite-

reflected assembly, designed to test the concept of using

high-albedo materials to enhance blanket performance.

(b) Evaluation of various concepts which have promise for

improving blanket design and economics.

(c) Completion of the effort to acquire and apply state-of-

the-art instrumental neutron spectrometry methods, and

expansion of the parallel effort on foil techniques.

(c) Numerical and experimental investigations of important

variables such as heterogeneity.

9.2 Discussion

The most important conclusions which may be drawn from the

past year's work are as follows:

(1) The generally good agreement between experimental data

and the results of multigroup calculations continues. This

is particularly important in that the graphite-reflected

Blanket No. 3 is as severe a test of FBR calculation methods

as is likely to be encountered in practice.

(2) Fast neutron propagation in the reflector, whether in

graphite or in iron, remains the area of most prominent

discrepancy.

(3) Blankets Nos. 2 and 3 have been on the soft-spectrum side

of the range of interest. Hence, hardening the driving

spectrum is a priority item for future effort. Table 9. 1

compares blanket-average U238 capture cross sections



TABLE 9. 1. Effect of Various Factors on Average Blanket U238 Capture Cross- Sections*

VARIABLE % CHANGE COMMENT

1) 1000-MWe radial blanket, BOL' 0 Reference case for all comparisons
3 rows Na (or Fe) reflector which follow.

2) Blanket thickness: 1,P 2, 3 rows ~0 Thickness with conventional reflector

has no effect on a for a given row.

3) High-albedo reflector, 2-row (+4.8% for 3 rows; +31% for 1 row)
blanket; Be (also BeO or C vs. +9. 5% Being studied in Mock-Up No. 3.
Na (or Fe))

4) Homogeneous (and infinitely dilute) + 12% Important to accurately characterize
vs. heterogeneous self-shielding for all blankets.

5) Burnup, EOL vs. BOL - 12% EOL Pu enrichment (mean) is ~ 2. 5%;
, 1value includes effect of FP's and a

- 2% shift in core enrichment.

6) Composition: axial vs. radial +17% Fuel: coolant v/o is 30:50 for axial
blanket and 50:30 for radial blankets.

7) Driver spectrum: change in Axial blanket also sees comparably
adjacent core enrichment from - 7% different core enrichment in a 2-zone
1000 MWe @ ~15% to demo @ ~ 24% core.

8) Adjacent core - 21% Core spectrum is much harder than
blanket's.

9) UNAT vs. UDEP - 3% Approaching range where effect is
hard to measure.

*Note that N and T also change; hence capture rate is not proportional to o alone.
(0
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under various ambient conditions: As items 7 and 8 indicate,
driving spectrum is of comparable importance to reflector,
blanket composition, heterogeneity, and burnup effects.

9.3 Future Work

During the coming contract year, July 1, 1972 through June 30,
1973, work will be concerned mainly with the following:

(1) Completion of the documentation of the work performed on

Blanket Mock-Up No. 3.

(2) Completion of the foil irradiation experiments scheduled for

Blanket No. 4.

(3) Completion of the studies under way on the economic analysis

of advanced blanket design performance and on the effects of

heterogeneity.

(4) Further investigation of excessive fast neutron penetration

in the reflector region.

(5) Expanded efforts in the area of foil methods for neutron

spectrometry.

(6) Initiation of methods development for gamma heating

measurements planned for Blanket No. 5.

(7) Design of reflector subassemblies for Blanket No. 5.

In general, work is evolving from an initial emphasis on acqui-

sition of general purpose experimental capabilities, and their appli-

cation, to the coming emphasis on specific experimental objectives

such as gamma heating measurements and special purpose foil spec-

trometry. A similar evolution has occurred in the analytical effort:

development followed by applications, and subsequently by a focus on

specific problems. These trends will continue through the coming

year.
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Appendix A

BIBLIOGRAPHY OF BLANKET PHYSICS

PROJECT PUBLICATIONS
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work performed in the MIT Blanket Physics Project. Sc.D. theses
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Instrumental Methods for Neutron Spectroscopy in the
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The Economics of Fuel Depletion in Fast Breeder Reactor
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