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ABSTRACT

Three of the THERMIT thermal hydraulic reactor computer

codes are available through the Department of Nuclear Engi-

neering at MIT. The three available codes are THERMIT-2,

for LWR subchannel analysis, THIOD, for BWR analysis and

NATOF-2D, for LMFBR sodium boiling analysis.

Descriptive summaries and sample results are given for

each code. In addition, a list of THERMIT references is

given.
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PREFACE

This document is written for THERMIT users outside

of MIT. Code descriptions are given for the three

THERMIT versions which are publicly available through the

Nuclear Engineering Department.

For THERMIT users at MIT, however, a more detailed

description of these three THERMIT reactor computer

codes as well as several other versions is found in

MITNE-242, "An Introduction to the THERMIT Thermal

Hydraulic Reactor Computer Codes at M.I.T."
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I. INTRODUCTION

Several versions of the thermal hydraulic reactor code

THERMIT have been developed at MIT for various reactor

engineering applications. Despite the differences intro-

duced by the various problem specific requirements, most

THERMIT versions use the same fundamental engineering

approaches developed in the original THERMIT. Therefore,

a description of the features of the original THERMIT will

provide a basis for understanding the code features gener-

ally shared by all versions of THERMIT. Subsequently,

descriptive code summaries will be given which will estab-

lish the individual code differences.

II. THERMIT DESCRIPTION

THERMIT is a three-dimensional cartesian coordinates

computer code originally developed at MIT under EPRI spon-

sorship for the thermal hydraulic analysis of reactor cores. i)

It employs a two fluid, six equation model for the two phase

fluid dynamics. THERMIT also employs a radial heat conduc-

tion model of the fuel pins which is coupled to the coolant

by a flow regime dependent heat transfer model.

The governing fluid dynamics partial differential equations

are solved numerically by a modified version of the I.C.E.

method. This method is used in a semi-implicit form which

gives rise to a Courant time step stability limit of
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At< Az
Vmax

where Az is the mesh spacing and vmax is the maximum fluid

velocity of either phase. Due to the mathematical illposedness

of the fluid dynamics difference equations,. exceedingly fine

mesh spacing should be avoided.

The radial heat conduction equations in the fuel pins

are solved using a fully implicit finite difference method.

These equations include a gap conductance model between the

fuel pellet and cladding.

THERMI' was developed using MULTICS on a Honeywell 6180,

but conversion to IBM machines is possible. THERMIT makes

exclusive use of SI units. Like other thermal hydraulic reactor

codes, THERMIT allows either the conventional pressure or

velocity boundary conditions at the top and bottom of the reac-

tor core.

III. CODE DEVELOPMENT

A THERMIT development history is graphically shown in

Figure 1. Developmental work is continuing on an advanced

coupled neutronics and thermal hydraulic code for LWR analysis

and on a more complete sodium version which will have both

four and six equation model capability.

IV. CODE AVAILABILITY

Three versions of THERMIT are currently available through

the Nuclear Engineering Department of MIT. All code requests

should be directed to Ms. Rachel Morton c/o Nuclear Engineering
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Department. A tape copy of the requested code with documentation

will be sent along with a bill to cover expenses. Code summaries

of the three available code versions are given below.

V. CODE SUMMARIES

A. THERMIT-2

1. Author: John Kelly

2. Advisor: Mujid S. Kazimi

3. Relationship to Other Versions of THERMIT:

THERMIT-2 was developed directly from the original

THERMIT.

4. Capabilities and Features: THERMIT-2 was

developed primarily to give the original THERMIT the

capability of LWR subchannel analysis. This was

done by a modification of the coolant to fuel rod

coupling which allows coolant centered subchannels.

In addition, three other major modifications to

THERMIT were made. First, the liquid vapor inter-

facial exchange terms were improved. Second, a two

phase mixing model was added to predict turbulent

mixing effects between mesh cells. Finally, the

heat transfer models and CHF correlations were

improved.

5. Verification Tests: During the assessment of the

modifications made to THERMIT, numerous comparisons

with reported experimental measurements were made.

The liquid vapor interfacial mass exchange model
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eas tested against some 30 void fraction experi-

ments. For example, Figure 2 shows a comparison

between THERMIT and the data of Maurer . The

turbulent mixing model was tested against experi-

mental velocity and quality data from the GE nine-

rod bundle tests(3) and from the Ispra sixteen

rod bundle tests 4'5 ). The heat transfer models

were tested against experimental wall temperature

and CHF data from the GE nine rod transient CHF

measurements and from the steady state experiments

of Bennett (6) Sample comparison results from

these tests are shown in Figures 3-5.

6. Experience and Code Comparisons: THERMIT-2 was the

first two-fluid reactor thermal-hydraulics computer

code which included a turbulent mixing model to

have been shown to correctly predict the thermal-

hydraulic behavior of rod bundles. Other codes

which are similar in function are listed and

compared with THERMIT-2 on Table 1.

B. THIOD

1. Author: Don Dube

2. Advisor: David D. Lanning

3. Relationship to Other Versions of THERMIT: Even

though THIOD was developed from the original THERMIT

a major numerical revision effort was required.
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TABLE 1

Features of Some Thermal-Hydraulic Computer Codes

Computer Type of Method of Two-Phase Solution Technique
Code Analysis Analysis- Flow Model

COBRA IIIC (7) Component Subchannel Homogeneous Equilibrium Marching Method

COBRA IV (8) Component Subchannel Homogeneous Equilibrium Marching Method or
I.C.E. Method

WOSUB (9) Component Subchannel Drift Flux Marching Method

COMMIX-2 (10) Component Distributed Two-Fluid I.C.E. Method
Resistance

THEII1T Component Distributed Two-Fluid I.C.E. Method
Resistance

TRAC (11) Loop Distributed Two-Fluid or Drift Flux I.C.E. Method
Resistande

H
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4. Capabilities and Features: THIOD (thermal-hydrau-

lic; implicit; one-dimensional) was developed

primarily to address the restrictive Courant time

step stability limit of THERMIT. The two fluid

six equation model difference equations used in

THERMIT were rewritten into a fully implicit one-

dimensional form. In addition, a point kinetics

neutronic package was coupled to the thermal-

hydraulics via some simple reactivity feedback

loops. However, THIOD does not have the capability

to handle flow reversals. Therefore, THIOD is a

useful code for the analysis of mild reactor

transients which are of a one-dimensional nature.

Examples of this kind of transient are BWR

feedwater water failures, flow coastdowns or

turbine trips. THIOD may also be used to model

one-dimensional flow experiments, steam generator

tubes or other reactor system components.

5. Verification Tests: Although the primary verifi-

cation effort for THIOD involved comparisons with

THERMIT-2, one of the supplemental assessment

efforts performed on THIOD was a modeling of the

Peach Bottom 2 turbine trip measurements. While

most of the experimental data was available(12)

critical data on the reactivity coefficients was

(13)
proprietary( . Typical reactivity coefficients

for end of cycle conditions were therefore used.
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Neutron flux squared weighting of the void reac-

tivity coefficients was also found necessary.

Figure 6 shows a comparison between the

measured turbine trip results and the THIOD calcu-

lations for the reactor power. Within the limita-

tions of the point kinetics model, good agreement

is seen.

6. Experience and Code Comparisons: Comparisons

between THERMIT-2 and THIOD were made in sufficient

numbers to validate the THIOD code for thermal

hydraulic calculations. The solution technique used

in THIOD was found to generate steady state solutions

about five times faster than the semi-implicit method

used in THERMIT-2. Additionally, levels of conver-

gence several orders of magnitude greater than the

THERMIT-2 results were attained. For mild thermal

hydraulic transients, time step sizes up to about

twenty times larger than the Courant limit were

found to yield admissibly accurate results. When

the neutronic feedback was included, however, it was

found that time step sizes only somewhat larger than

the Courant limit could be used. This was due pri-

marily to a lack of accuracy observed in the results

and not particularly due to any stability concerns.

THIOD is compared to other coupled neutronic

and thermal hydraulic reactor codes in Table 2. Of

all the codes, THIOD appears best suited for long

slow BWR transients such as flow coastdowns and



6

5

0 f4 -

o 11

r%

0
0 '0.1 0.2 0.3 0.4 0.5 0.6

Time (sec)

Figure*6: Peach Bottom Turbine Trip .1 Power History

13.



TABLE 2: Summary of Neutronic-Thermal-Hydraulic Codes

CHIC-KIN (17)

PARET (18)

TWIGL (19)

BNL-TWIGL (20)

FX2-TH (LMFBR) (21)

SAS2A (LMFBR) (2-2)

HERMITE (23)

MEKIN (24)

THIOD

THERMIT-3 (25)

QUANDRY (23)

NEUTRONICS

4 3-

1-D, single channel model

four channel model

Lumped parameter .model, no
boiling allowed

time-dependent two-phase model

l-D with no boiling

l-D with sodium bubble mod

2--D homogeneous equilibriu
model

2-D homogeneous equilibriu
model

l-D, two fluid, non-equili
model for LWR

3-D, two fluid model, non-
equilibrium

lumped parameter model, no
boiling

el

m

m

brium

point kinetics

point kinetics

2-D, 2-group finite difference
diffusion theory model

2-D, 2-group finite difference
diffusion theory model

3-D, multi group diffusion
theory, quasistatic method.

point kinetics

3-D finite element diffusion
theory, 1 to 4 groups

3-D finite difference 2 group
diffusion theory

point kinetics

point kinetics

3-D, 2 group nodal diffusion
theory model

THERMAL-.HYDRAULICS

H
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feedwater heater failures.

C. NATOF-2D

1. Author: Mario Granziera

2. Advisor: Mujid S. Kazimi

3. Relationship to Other Versions of THERMIT: NATOF

was developed independently of THERMIT, but it

makes use of many of the same methods used in

THERMIT.

4. Capabilities and Features: NATOF was developed

for the analysis of LMFBR fuel assemblies under

non-uniform radial flow conditions. This is

possible either during sodium boiling or at low

coolant flow rates.

NATOF is a two-dimensional code written in R-Z

coordinates. Like THERMIT, it employs two-fluid

six-equation thermal hydraulics difference equations

in a semi-implicit form. Some of the constitutive

relationships and correlations used in NATOF were

developed at MIT. The interfacial mass exchange

rate correlation is based on the kinetic theory of

boiling and condensation(2 4 ). The interfacial

momentum exchange rate correlation was empirically

based on the KFK experiments in Karlsruhe(25). A

relationship for the interfacial heat exchange

rate was developed from theoretical principles(2 6 )
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5. Verification Tests: Two experimental tests were

simulated with NATOF as part of its code assessment

effort. The first test simulated was the P3A

experiment of the Sodium Loop Safety Facility in

Idaho (27) Table 3 compares the experimental

results with the NATOF predictions. SOBOIL(2 8 )

results are also given. The second test simulated

was the steady state predictions of BACCHUS of the

BRl9 experiment performed in France (29) Table 4

compares the experimental measurements of the

maximum coolant temperatures with the NATOF pre-

dictions as a function of flow rate.

6. Experience and Code Comparisons: It has been found

that NATOF is very sensitive to the interfacial

mass exchange rate correlation. This is due to the

density difference between the two phases of sodium.

NATOF provides a two-dimensional analysis

capability for the analysis of LMFBR fuel assemblies

under non-uniform radial flow conditions. Such

capability is not available in the widely used code

SAS . Other comparable codes which are also

under further development are COMMIX(1 0 ), SABRE

(U.K.) (30), BACCHUS (France) (29) and an advanced

sodium version of THERMIT.
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TABLE 3

P3A Exper-iment Event Sequence Times (s)

Experimental
Data NATOF-2D

Boiling inception 8.8 8.9 8.9

Boiling at DAS 23 10.0 9.7 9.5
(35.7 in., interior)

Boiling at DAS 12 10.0 9.9 9.9
(32.7 in., edge)

Inlet flow reversal 10.15 10 9.9

. TABLE 4

Mass Flow Rate
and Temperatures for the GR19 Experiment

Flow

(kg/sec)

.606

.476

.405

.350

.329

.311

.293

.277

.265

.260

max (* C)
(measured)

693

766

825

890

918

923

926

926

926

944

T(C
Tmax (* C)

(NATOF-2D)

694

768

827

892

920 (Boiling)

921

921

922

925

927

SOBOIL
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Supplemental THERMIT References

The ongoing development of the THERMIT computer codes at

MIT has given rise to the publication of a considerable number

of papers in the open literature. This bibliography is given

to facilitate further research and document previous work on

THERMIT.

1. W. H. Reed, H. B. Stewart and L. Wolf, "Applications of
the THERMIT Code to 3D Thermal Hydraulic Analysis of LWR
Cores," ANS Topical Meeting, Williamsburg, VA 4/79, (THERMIT).

2. M. I. Autruffe, G. J. Wilson, B. Stewart and M. S. Kazimi,
"A Proposed Momentum Exchange Coefficient for Two-Phase
Modeling of Sodium Boiling," Proc. Int. Mtg. Fast Reactor
Safety Technology, Vol. 4, pp. 2512-2521, Seattle, WA,
August 1979.

3. M. R. Granziera and M. S. Kazimi, "NATOF-2D: A Two Dimen-
sional Two-Fluid Model for Sodium Flow Transient Analysis,"
Trans. ANS, 33, p. 515, November 1979, (NATOF-2D).

4. J. Kelly and M. Kazimi, "THERMIT, A Three-Dimensional
Two-Fluid Code for LWR Transient Analysis," Trans. ANS, 34,
June 1980, (THERMIT-2).

5. P. Gierszewski, B. Mikic, N. Todreas, "Natural Circulation
in Fusion Reactor Blankets," ASME 80-HT-69, National Heat
Transfer Conf., Orlando, FL, July 1980, (THERLIT, THERFLIBE).

6. John Kelly and M. S. Kazimi, "Development of the Two-Fluid
Multi-Dimensional Code THERMIT for LWR Analysis," National
Heat Transfer Conf., Orlando, FL, July 1980, (THERMIT-2).

7. D. Y. Hsia and P. Griffith, "Steam Generator Flow Instability
Modeling During the Reflood Stage of a LOCA," to be published
in Nuclear Engineering and Design, (THERMIT-2D-PLENUM).
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