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ABSTRACT

This thesis is concerned with methods for the transient solution of
the neutron diffusion equations in one or two energy groups. Initially,
nonlinear methods for solving the static diffusion equations using the
finite element method were investigated. By formulating a new eigen-
value equation, some improvement in the solution efficiency was obtained.
However, the transient solution of the diffusion equation using the finite
element method was considered to be overly expensive. '

An analytic method for solving the one-dimensional diffusion equa-
tion was then developed. Numerical examples confirmed that this method
is exact in one dimension. The method was extended to two dimensions,
and results compared employing two different approximations for the
transverse leakage. The method based on a flat approximation to the
leakage was found to be superior, and it was extended to time-dependent
problems. Results of time-dependent test problems show the procedure
to be accurate and efficient. Comparisons with conventional finite dif-
ference techniques (such as TWIGL or MEKIN) indicate that the scheme
can be an order of magnitude more cost effective.

Thesis Supervisor: Allan F. Henry
Title: Professor of Nuclear Engineering
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Chapter 1
INTRODUC TION

1.1 Introduction

The design and safety analysis of present-day light-water-moderated
nuclear reactors requires very sophisticated mathematical and computa-
tional techniques. The complexity of safety analyses required for
reactor licensing today far exceeds that which was needed seven to ten
years ago. Although during this time period digital computer technology
has improved dramatically, a realistic accident analysis of a large light-
water reactor remains a very expensive calculation.

The objective of t,his. thesis is to develop economical computational
techniques for transient analysis of light-water reactors. In this chapter
solution techniques in present use will be reviewed, and the scbpe of the

presént investigation will be described.

1.2 The Problem to Be Solved

The analysis of light-watér-moderated nuclear reactors is most fre-
quently performed by soiving the diffusion equation in few energy-group
form. This equation is a low-order approximation to the Boltzmann
transport equation, a much more exact equaf.ion which may be derived
from first principles. The diffusion equation is a parabolic partial dif-
ferential equation with variable coefficients. Thus, for any practicai
configuration, the equatibns are not analytically solvable; and numerical
schemes must be employéd. L.et us write the time-dependent, energy-

group diffusion equa\’cions:l
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G
1 9 . .
rralers ¢g(_1;,t)—y Dg(g,t) _v_¢g(_x;,t)+ Z Z__(r,t) cbg.(_lg,t)

g gl:l gg
I
+ 131 ngixici(z’ t) (1<g<Q)

(1.1)
9 =
at Citrit) = -\ .C.(xr, 1)

G
¥ gil PivZp(r, 1) bp(r, t) (1<i<D)

where

G = total number of neutron energy groups

= total number of delayed precursor groups

¢g = neutron flux in group g (n/cmz sec)
_ . . th -3
C, = density of the i'"" precursor (cm *)
Vg © neutron speed in group g (cm/sec)
Dg = diffusion coefficient for group g (cm)
zgg' = macroscopic transfer cross section from group g' to g (cmnl),
where
Z = 1- z, -Z - Z Z
gz = Xpg'! TP v Fg ~ Fag giig 58'E

xpg = prompt fission spectrum in group g

i

vzfg = nu, the number of neutrons per fission, times the macroscopic

fission cross section in group g

Eag = macroscopic absorption cross section in group g

2sgg' = macroscopic scattering cross section from g' to g
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B = total fractional yield of delayed neutron per fission

= Xpg (1B + 20 €' P

)\i = decay constant of the i‘th group of delayed emitters

ngi = fraction of group i delayed neutrons which appear in neutron

group g

pi = fraction of fissions which produce a delayed emitter of group i.

If the material constants are known as a function of r and t, and if an
initial flux distribution in energy and space are known, then a unique
solution to Eq. (1.1) may be obtained.

The solution of Eq. (1.1) can be divided into two stages. First, the
time-independent version of Eq. (1.1), obtained by setting all the time
derivative terms to zero, is solved to find the initial flux distribution
in energy and space. Then, the time dependence is introduced; and the
solution is advanced in time. |

This thesis will not have the development of time integration methods
as its principal objective. However, any method developed to solve the
time-independent version of Eq.(1.1) should be extendable to time-

dependent problems. Let us then write the time-independent version

of Eq. (1.1):

| G
-7 D (r, ) Vo (r,t) - £ E__(r,t ,8) =0
VD .)__‘bg(,g ) ot g (-1 &g (r, )

(1<g<G) (1.2)

whoere now
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= 1-B)+Zx, B.JvE -Z - £ =
gz = Xpgl1® ® XagiPilv g - Zag gizg SE'E

g' sgg'

g = Do (1B + ‘12 XagiPilv S + 2 g'#g.

Light water reactors are designed using a rectangular x-y-z coor-
dinate system. Any x-y slice contains a great deal of geometric com-
plexity, while the z direction is relatively homogeneous. In the x-y
plane, the geometric detail is divided into several stages. The reactor
is composed of a large number of "fuel elements," cylindrical rods which
are 1/3" to 1/2" in diameter. The reactor is composed of a rectangular
lattice of these fuel elements. The fuel elements are partitioned into
rectangular "fuel assefnblies," squares ~8" on a side. The fuel elements
in each assembly are generally identical for the initial core loading (that
is, they all have the same enrichment of 235).

The first stage of a full core reactor analysis is the calculation of
"equivalent, homogenized, diffusion theory constants" for each fuel ele-
ment and surrounding water.1 This is normally performed by solving
an approximation to the transport equation more accurate than the diffu-
sion approximation. Once these constants have been found, the solution
of the diffusion equation (1. 2) can commence.

In the x-y plane, the geometric detail needed to describe each fuel
elecment yields roughly 250 X 250 mesh points. Thus, for most solution
mcthods, a full core time-dependent reactor analysis would be vextremely
costly. To reduce the geometric detail required, equivalent homogenized
constants for each fuel assembly are found, using the sets of equivalent

constants for each fuel element, control rod, water hole, etc.1 This
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procedure yiclds a regular square array of homogenized regions each
~8" wide. Equation (1.2) can then be solved using this lesser degree

of geometric detail and the homogenized material constants associated
with it. It is the solution of this "homogenized" problem to which this

thesis will be addressed.

1.3 Review of Solution Teclhiniques

A wide variety of techniques for soiving Eq. (1.2) have been inves-
tigated. Some of the most successful of these methods are finite differ-
ence methods, synthesis methods, finite element methods, and nodal
methods. These will now be described briefly.

The most common solution methods for Eq. (1.2) are the finite dif-

4,5 These methods use a low-order finite difference

ference methods.
approximation to the second derivative term V - Dg(_{, t) Y¢g(£, t). Sev-
eral properties of finite difference methods are very advantageous:

i) The matrix equations which must be solved have a very simple
structure.

ii) The matrices are easily formed.

iii) The method can be guaranteed to converge to the correct solu-
tion of the differential equation in the limit of small mesh
spacings.

When applied to the "homogenized" problem, however, these tech-

niques often require a large number of mesh points in order to obtain an

accurate solution of the equations. Therefore, the number of unknowns

required is high, not because of the geometric detail, but for accuracy



considerations.

If the fucl elements within an assembly are not homogenized as
described ahove, the geometric detail requires a very large number
of mesh regions. A solution technique for which this is not a great
drawback is the synthesis method.2 This method finds an approximate
solution to Eq. (1.2) by taking linear combinations of precomputed "trial
functions." in the most successful of these methods, we expand the neu-

tron flux in each energy group as follows:3

K

¢g(x, y,2) = kf’l n.pgk(x, y) Tgk(z)

where ¢gk(x, y) are precomputed, two-dimensional expansion functions.
The accuracy of the method rests on how well the correct solution ¢g(x,y,z)
can be approximated at each axial level by linear combinations of the
xbgk(x, y.

Synthesis methods achieve a drastic reduction in the number of un-
knowns; howevcr; a poor choice of expansion functions can give an inac-
curatec answer. Moreover, there is no systematic way to estimate the
magnitude of this error. This lack of a definite error bound has pre-
vented synthesis schemes from being widely accepted.

Another method for solving Eq. (1.2) which has received consider-

6,7

able attention is the finite element method.”’  Some advantages of this

method are:
i) The matrix equations to be solved, although more complex than
those of finite differences, retain a generally simple structurec.

ii) The solution can be guaranteed to converge to the correct
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solution of the differential equation in the limit of small mesh
spacings.

iii) A high-order polynomial approximation may be used, thus accu-

rate solutions are obtained fér large mesh regions.

The major disadvantage of this method appears to be that the coeffi-
cient matrices become sufficiently complex that the time needed to solve
the problem exceeds considerably that which Would be expected from the
number of unknowns. For that reason, a method of high accuracy which
retains the simple matrix structure of finite differences is more desir-
able.

Nodal methods have been in existence for some time.® A nodal
approximation results when the reactor is divided into a relatively small
number of coupled regions, and the calculation is oriented toward ob-
taining the average flux or power level in each region. The "coupling
coefficients" between adjacent nodes are generally not defined in a rigor-
ous way.

More recently, successful attempts have been made to combine the
"nodal" approach with more systematic means for calculating the cou-

B 10,11 Most of these techniques utilize a local

plings between nodes.
polynomial expansion to calculate couplings between two adjacent nodes.
These techniques have the promise of providing accurate solutions to

Iig. (1.2) while using a coarse spatial mesh.

1.4 Summary

This thesis will be concerned with both the finite element method and

the nodal method. In Chapter 2, nonlinear methods will be applied in an
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c¢ffort to reducce the coupling complexity of the finite element matrices.
An eigenvalue updating scheme will be developed which can improve the
running time of Eq. (1.2) when the finite element method is used.

A two-group nodal method for solving Eq. (1.2) in one dimension
will be derived in Chapter 3. In Chapter 4 this method will be extended
to two-dimensional problems, and the scheme will be extended to time-
dependent problems in Chapter 5. Numerical results for some realistic
two-dimensional reactor transients will be presented. Chapter 6 will

summarize the investigations.
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Chapter 2

SOLUTION OF THE FINITE ELEMENT EQUATIONS

2.1 Introduction

The finite element method, created in order to solve complex prob-
lems in structural mechanics, has found applications to many other prob-
lems in mathematical physics. It has been applied with success to the
solution of the multigroup diffusion equation by a number of investiga-

tops. 12, 13,14,15

For practical computations, the finite element method
offers several advantages over other methods:

i) High-order polynomials can be used, yielding very accurate

approximations with a relatively few number of unknowns.

ii) The method yields a continuous approximation td the variables

of interest, rather than a discrete approximation.

iii) Boundary conditions are easily imposed.

iv) The system of linear equations is amenable to computer solution

by well developed methods.

Full core solutions for light-water reactors generally involve core
configurations with large homogeneous (homogenized) regions. For prob-
lems of this kind, the finite element method has been shown to yield
acceptable accuracy while maintaining a relatively large mesh size, and
hence relatively few unkrlowns.13' IS Because of this promise for use in

full core light-water reactor problems, an investigation into appropriate

solution techniques for the finite element equations was carried out.
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2.2 Properties and Structure of the Equations

The "finite element method" is the use of piecewise polynomials as
expansion functions for the Ritz-Galerkin method. Thus, the generation
of an approximate solution begins with the definition of an appropriate
mathematical space of functions, from which an approximate solution
will be selected by application of the Ritz-Galerkin method.

Let us write the time;independent multigroup diffusion equation in

matrix form:

-v - (D] Y [()] + [Z(0)][e(x)]
=+ [XvENT (o) | (2.1)

where

[6(n)] is a column vector of length G containing the neutron fluxes
(n/cm2 sec)

[D(g_)] is a diagonal G X G matrix containing the diffusion coeffi-
cients (cm)

[ET(E)] is a G X G matrix containing the absorption-minus-scattering
cross sections (cm™ )

[vE;‘f(_g_)] is a column vector of length G contaihing nu, the number

X .. . .. . -1
of neutrons per fission, times the fissioncross section(cm )

[x] is a column vector of length G containing the fission neutron
spectrum
\ is the critical eigenvalue of the problem.

Solutions to ¥q. (2.1) have been obtained for several different spaces

of functions, and a variety of orders of polynomial approximations. For
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cxample, lincar Hermite polynomials,lz’ 1 cubic Hermite polyno-

mials,1 i 3 and quadratic Lagrange polynomialsl4 all have been used.
For the purposes of the present discussion, the discrete equations ob-
tained for the iin_(znr- Hermite scheme will be described, and relation-
ships to other schemes will be discussed later. Light-water reactors
arc generally designed using an orthogonal x-y-z coordinate system.
Thus, for purposes of illustration, the linear finite element method in
one (x) and two (x-y) dimensioné will be described. We shall limit our
investigation to two-—lgroup problems.

A one-dimensional reactor configuration is defined over the region
R = [0,X]. For approximation by linear polynomials, this region is

divided into a partition as follows:

We define the linear function “i(X) as follows:

(% - %,
I . <% <
Xi 2 xi_l 4 xi_l ke xl
w(x) =3 x.,., - X
L ——1—:1:—1———, X. <X <X,
Xiv1 ~ % b Lk
LO, otherwise

An approximate solution for the flux in neutron energy group g is then

I+2
¢g(x) = X ¢ _.ulx). (2.3)

j=1 &1

The functions ul(x) and uI+2(>:) are chosen so that the boundary conaitions



are properly accounted for'.16 If, for example, ul(x) =

there are I nuimber of independent variables ¢gi for group g.

21

up, o(x) = 0

Inserting Eq. (2.2) into Eq. (2.1), weighting by Eq. (2. 2) and inte-

grating over 0 <x <X yields the following matrix equation:

L1 o a1 o VAT
- +
0 [Ly,l (A1 [Ay,] [4,]
WAL T /1]
=%

(% / \ [My1 )\ [4,]

-[L ] is a matrix of dimension I X I
[A_ ,] is a matrix of dimension I X I
[M ] is a matrix of dimensionI X1
[¢ ] is a column vector of length I

and

g, " Oy w00, 2 wy)

A = (

ggi, it z’l‘g ll(x) u(X))

A i, i = (2 u;,(x), u;(x))

M = (vZ

g 4 g u;,(x); u,(x))

where

(2. 4)
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(u,v) = fQ u(r) v(r) dr.

Rewriting Eq. (2.4) in a more concise notation, we have

[- £+ Qlle] =5 [272](a]. (2.5)

Each of the matrices in Eq. (2.4) is tridiagonal. This is because
of the local nature of the linear "tent functions." Thus, Eq. (2.5) can
be solved using conventional methods. Specifically, a fission source
iteration can be applied to converge the eigenvalue and fluxes.18 For

each fission source iteration, two matrix problems of the form

[BgJ[<I>g] = [Sg] (2.86)

must be solved. However, since each [Bg] is tridiagonal, obtaining the
solution is simple.

The above techniques are identical to those which would be used to
solve one-dimensional finite difference equations. The distinction be-
tween the two methods lies in the fact that for finite differences the ma-
trices [Agg'J and [Mg] are diagonal rather than tridiagonal.

For two-dimensional (x-y) situations the equations become more

complex. The region R is defined
R = [0,X] X[0,Y]
with this region divided into a partition:

e 0=Xl<"‘<XI=X
0=y, <... <yI=Y.

The approximation to the flux is defined by a product ui(x) uj(y). Let us
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assume that I and J are the number of partitions in the x and y direc-
tions, respectively. The application of the method in two dimensions to
Eq. (2.1) yields an equation of the same form of Eq. (2.4), with the

exception that all matrices are of dimension IJ X IJ. We now have

—ngi, | - (Dg_v_'ui.(_zg), Vu,(r))

Aggi,i‘ Tgu i) u(r))
(2.7)

Ay = (2 5u(0), wylr)

P

M = (vZ g% ilrl, u(r))
gi, i

In two dimensions, the structure of each of the above matrices is block
tridiagonal, with each block being tridiagonal. A nine-stripe structure
results.

Let us draw a two-dimensional grid about point (i, j):

X X X
(i-1, j+1) (i, j+1) (i+1, j*+1)
X X X
(i-1,3) (i, j) (i+1, j)
X X X
(i-1, j-1) (i, j-1) (i+1,j-1)

We note that point (i, j) is coupled not only to itself, but also to the eight
surrounding points. This nine-point coupling is present in the [ng],
[Agp"]’ ‘and [M ] matrices. In finite differences, all the matrices

el

(A ,J and [M ] are diagonal and [L ] is only five-stripe; point (i, j)



being coupled to only its four immediate nearest neighbors. Since the
matrices [ngl, [Agg'l’ and [Mg‘] in Eq.(2.4) are symmetric and posi-

tive definite.lS’ 16

and the equations are solved one group at a time as
in I8q. (2.6), it can be proved that the matrices [Bg] in Eq. (2.6) are
positive definite. Therefore a block successive over-relaxation itera-
tion scheme can be guaranteed to converge for all overrelaxation param-

eters w such that 0 < w < 2.17

The eigenvalue and eigenvector estimates can be found by a fission
source iteration with Chebyshev acceleration, or by coarse mesh re-

balancing. 18,19

As mentioned above, the solution of the matrix equa-
tions (2.6) can be obtained by successive over-relaxation.

The equations obtained from the linear finite element method have
a relatively simple structure since the unknowns represent the height of
the "tents" at each mesh point. Although the use of higher order poly-
nomials yields more accurate approximations, this accuracy is obtained
at the expense of more complex coefficient matrices. The use of cubic
Hermite polynomials in two dimensions (at nonsingular points) generally
lcads to four unknowns per group at each mesh point (¢, ¢X, cby, ¢Xy). The
nine-point structure found for linear clements is extended to 36 -point
coupling for the cubics (each of four unknowns coup].ed to 9 adjacent
points). This structure holds for not only the [ng] matrices, but also

[A ] and [Mg]' Thus, the straightforward implementation of succes-

ge'
sive over-relaxation schemes will be complicated because of data-handling

problems, and much denser matrices.
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2.3 Nonlincar Iterative Schemes

— o

The increased complexity ot coefficient matrices in the finite ele-
ment inethod increases execution times to more than would be expected
in view of the number of unknowns. Thus it was desired to investigate
schemes which would reduce the degree of coupling by nonlinear means.
The two facets of this investigation were:

i) To reduce the coupling complexity of the matrices [A2 1] and
[Mg] from nine-stripe to diagonal (the same structure as finite
difference).

ii) To reduce the coupling complexity of the [Bg] matrices in
Eq. (2.6) from nine-stripe to five-stripe (the same structure
as finite differences).

Item (i) would help relieve data-handling problems, and speed the calcu-
lation of the vectors [Sg] in Eq. (2.8). Item (ii) would speed the solu-
tion of Eq. (2.6) because of the sparseness of the matrix, and also by
opening up the possibility of using the Cyclic Chebyshev method of itera-
tion instead of successive over-relaxation. The Cyclic Chebyshev method
is to be preferred because of its increased average rate of c:onvergence.17

An investigation was carried out concerning the above objectives. A
two-dimensional, two-group model of a PWR was used for eigenvalue
calculations to test the various mecthods proposed. Results will be re-
ported in a qualitative fashion only.

To illustrate the nonlinear reduction of a nine-stripe matrix to a

diagonal matrix, let us write

[(Z]le] = [A][o] (2. 8)
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where [Z] is a nine-stripe matrix, [A] is a diagonal matrix, and [¢] is
a column vector of fluxes. The diagonal elements of [A] are given by
[1/61(Z][¢], where [1/¢] is a diagonal matrix whose entries are the in-

verse flux values, (1/¢ A nonlinear procedure would be to "diago-

gif
nalize" the [Z] matrix by use of the most recent flux iterate. These
nonlinear updates could he performed after a number of fission source
(outer) iterations have been performed.

Numerical tests of thé above scheme sho;av that the method will con-
verge to the correct solution of the difference equations using four or
five nonlinear ﬁpdates interspersed in the outer iterations. However,
the nonlinear updates appear to degrade the rate of convergence that the
Chebyshev polynomials, used to accelerate the outer iteraﬁons, provide.
Although less work is required to form the source‘ terms, the increased
number of outer iterations nceded to solve the problem makes the overall
solution time much longer. These results show that although the non-
linear updating procedure will converge, the potentiai time savings for
each outer iteration is insufficient to warrant auoption of the scheme.

It was felt that scheme (ii) held a much larger potential for time
savings, especially siﬁce iterative schemes like Cyclic Chebyshev could
then be used. |

The collapsing of nine-stripe matrices to five-stripe matrices can

be done in a variety of ways. The general transformation is

[L1[¢) = [L'}[4] (2.9)

where [L.] is a nine-stripe matrix, and [L'] is a five-stripe matrix. We

assume that the number of unknowns in the x and y directions are I and
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J, respectively. I.et us order the column vector [¢] first by rows, then
by columns; such that the (i, j) element of [¢] is indexed k, where k =
i+ (k-1) *I. Then Lk |1 represents the (k, k') element in the [L] matrix.

We can write the k th equation of Eq. (2.9) as:

L k-1-1%k-1-1 ¥ L, k-1®k-1 F Dk, ko141 Pk-141

+ 1, +

ko k-1%%-1 7 D k@i Rk k1 Pk

Ly - 19r-1 T Dk err®rrn T Dk ke re1 Pkl

=TI,
Lk L

k-1%%-1 T Bk k-1%%-1 T Lk vk

FLp k1P T Bk ki (2.10)

where the coefficients Li{,k—l' Li{,k-l’ Li{, K’ Li<’ k1’ and Li{’ K+ 2T€
unknown.

While Eq. (2. 8) provides a unique solution for the diagonal elements
of [A], there is no unique solution to Eq. (2.10). Three possible schemes
used to obtain an |L'] matrix which satisfies Eq. (2.10) are:

a) Let the contribution of the four corner points be "folded" into

the diagonal, as:

Lok, ™ T ke1-1%%-1-1 7 Bk, k141 %141

+ L + L (2.11)

k kP Tk k-1 n-1 Y ke Pl

with the other matrix elements L‘i j = L{ 5
b) Let the contribution of the four corner points be "folded" into
% the four adjaceatl off-diagonal points; for example, for point

(k, k-I):
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1

' =
L, k11 77 Mk, ke1-1%k-1-1 ¥ Pk, ko1 9k-1-1) T Dieot®ier

(2.12)

c) Let part of the contribution of the four corner points be "folded"

into the diagonal, and part be folded into the off-diagonal, as:

1 =
Lk ™ 2l woro1®kor-1 * Dk kere1®ke1e1 ¥ D, ket - 19kt

T Ly ke ®reren) T Dk k% (2.13a)

and for the pointv (k, k-1):
(1-2)
Lk k-1%%-1" "7 O gera1®k-1-1 ¥ Dk, ko141 ®k-11)

+ Lk-I¢k~I (2.13Db)

where z ranges from 0 (scheme b) to 1 (scheme a).

The above updating schemes were tested for a variety of z values.
The nonlinear updates were inserted after a numper (typically eight or
ten) of outer iterations had been performed. The results obtained are
summarized in Table 2.1,

The results in Table 2.1 show that the nonlinear process is conver-
gent in only a small range of z values, and behaves very poorly when
outside that range. Even though convergence was achieved for z = .3,
the degrading effect of the updating procedure on the convergence rate
of the outer iterations caused the running time to be much longer than
that obtained by using standard linear iterative techniques.

Thus the nonlinear updating procedure of scheme (i), although com-

putationally inefficient, did converge to the correct results. Whereas,
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TABLE 2.1

Summary of Nonlinear Iterative Results

Value of z Results Obtained
0 (scheme b) Problem did not converge; eigenvalue oscillates
with each update.
.2 Fluxes converge, although a slight eigenvalue
oscillation with each update was noticed.
.3 Converged with no oscillations.
.5 : Eigenvalue diverged farther with each update.
1.0 (scheme a) Divergent results, negative fluxes obtained.

scheme (ii) generally failed to converge and proved to be very unstable.

To understand the causes of this behavior, let us rewrite Eq. (2.5):
Mol = [- R + A1 [7][e). (2.14)

If [2] is the converged flux vector, the replacement of [771][2] by [A]l[2]
will not affect Eq. (2.14). However, the replacement of [- ,;( + Q ] by
[- £ '+ A '] as above may give different results, since we have no guar-
antee that [- R ' + Q']-l =[-£ +Q ]—l. In addition, when part of the
contribution of the off-diagonal elements is added into the diagonal
(schemes a or c) the potential exists for Li{,k to be either zero or nega-
tive. This situation may account tfor the oscillations observed, and the
negative fluxes obtained.

In summary, attempts to improve the execution times of the linear
finite element equations through nonlinear collapsing techniques proved

to be either computationally inefficient or unstable. It appears that

efforts to increase solution efficiencies must be directed elsewhere.
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2.4 An Eigenvalue Updating Scheme

The methods introduced in the previous section to reduce the coupling
complexity of the [Bg] matrices in Eq. (2.6) were all based on keeping
the full [Bg] matrix on the left side of the equation, and then modifying
its form. We shall now outline another possible scheme.

Liet us begin with Eq. (2. 5):
[- &+ Qlls] =5 (7 [=]. (2.5)
We split

- +al=[-A+al +[-K+QAl,. | (2. 15)

Letting n be the outer iteration index and substituting Eq. (2.15) into

Eq. (2.5), we have:

- £+ @), [ = (R 0)- - R + Q) [o™

Thus,

[2]""! - [-£ + Q]Il (_)l: [277] - (- L+ ]2) [2]" (2.16)
or
[2]"! = [conl[a]™.

One possible splitting of [- £ + (] is to place the four corner
point coefficients of [~ R+ A linl- A+ Q]z, and the remaining coef-
ficients in [- of + a ]1. This splitting permits an application of the
conventional fission source iteration.20 However, attempting the pro-

cedure led to difficulties in obtaining a converged solution.



31

An examination of the mathematics involved suggests why the above
scheme failed. The expression often used to estimate the eigenvalue for

<?I£>n-l-1 "/ “ Qn", is an estimate of the largest eigen-

this outer iteration, “
value of [C(\)]. However, this quantity is not the same as the number \.

Therefore, we should formulate a new eigenvalue problem, as:
wle] = [cV)][2] (2.17)

where w is the eigenvalue of [C(\)]. We note that if w = 1, then \ is the
critical eigenvalue (keff)'

We propose to solve the eigenvalue problem (2.17) instead of Eq.(2.5).
The eigenvalue w obtained will be used to "search" for a value of M for
which the spectral radius of [C(\)] is one. This reestimation of A will
be performed every eight or ten outer iterations of Eq. (2.17).

The formula used to calculate N given w was:

(w-1) |
)\new = )\old 2 +t1.

Since the nonlinear updates may degrade the convergence of the outer

iterations to some degree, it was desired to reduce the computational
effort involved in evaluating [C(\)][8]". Thus, a different splitting from
that previously used was attempted. Specifically, the diagonal elements
of the matrices (—[L11]+[All]) and (-[L22]+[A22]) and also the [AZI]
matrix (see Eq. (2.9)) were included in[- R + @ 1;. Thus [- &£ + A1,
was trivial to invert.
Table 2.2 presents a summary of the results obtained when this

scheme was applied to the two-dimensional PWR problem referred to

at the beginning of Section 2. 3.



TABLE 2.2

Results of the Eigenvalue Updating Scheme

Conventional Eigenvalue Updating
Chebyshev and Scheme with
Successive Over-~ Chebyshev Acceleration
Relaxation on Outers

Convserge?nce 10—4 10-—4

Criteria
Converged \ 1.03105 1.03102
Number of

Outers 29 49

Number of

Inner Iterations 3 1

per Outer (per
group)

Run Time (sec) 4,06 3.26




2.5 Summary

The methods investigated in this chapter were designed to decrease
the computational burden of solving matrix equations having the form of
Eq. (2.6). The attempts to modify the coupling patterns in a nonlinear
way were not successful. By forming a new eigenvalue equation, some
improvement in execution time of the static finite element equations can
be obtained. However, the improvement is not major.

It thus appears that the high degree of coupling in the finite element
method is a major drawback of the method. The Hermite cubic elements
are eépecially complex in this regard. The improvement in execution
time obtained in Sec. 2.4 is not sufficient to make the finite element
method significantly more attractive for production calculations. It
appears that major improvements must come from the development of
methods which retain the "nearest neighbor" coupling characteristic of

finite difference methods.



34

Chapter 3

AN EXACT METHOD IN ONE DIMENSION

3.1 Introduction

The kinetic analysis of a nuclear reactor involves two different types
of calculations:

i} Reactor physics calculations, where the power generated in every

region of the reactor is found, and

ii) Thermal-~hydraulics calculations, where the reactor temperatures

coolant conditions are found.
A thermal and hydraulic reactor analysis, such as that performed by the
computer code COBRA,21 requires as part of its input the average power
generated in each fuel assembly in the reactor for which core-wide ther-
mal and hydraulic calculations are made. Thus, a method which directly
calculates average fluxes over assembly sized regions would be very
efficient.

In a recent thesis, Antonopoulos?z developed one- and two-dimensional
methods for solving Eq. (l.2) which began with a derivation of exact dif-
fercnce equations. However, Antonopoulos then made low-order series
appr.oximations to these exact difference equations. Numerical results
using these approximations were somewhat improved over those of con-
ventional finite differences; however, an extension to two groups and two
dimensions failed to converge properly for mesh sizes larger than one
centimeter.

In this chapter, a method for solving Eq. (l.2) which uses average

fluxes as the quantities of interest will be derived from difference equations



which are exact in one dimension. We shall show that this method is
related to response matrix theory, and to other "nodal" techniques cur-
rently in the literature. In the final section, some numerical results

for one-dimensional static problems will be presented.

3.2 Derivation of Exact Difference Equaﬁons

Let us rewrite Eq. (2. 1) as a function of one independent variable:

- a%[D(x)] g%[*b(x)] + [Zpx)] [$(x)] =-i [X][VZf(x)]T [6()]- (3.1)

We now divide the one-dimensional reactor configuration R = [0, X] into

a partition

m: 0<x, <...<x =X,

1 I

with the restriction that any sub-region X, Sxs X1 be nuclearly homo-
geneous. Let us integrate Eq. (3. 1) over X, TXs X0t

[J(xi+1)] - [J(xi)] + hi[ZTi] [4’1] =~):hi[x] ["Zﬁ] [4’1] (3.2)
where

d
[J(xi)] = '[Di] '(E[‘Nx)] _
X=X,
1+
—2_1 (%inl
(6] =5~ L Lewa] dx
1 :

1

[ETi] = [ZT(X)] X CR

Ry = (%)
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Equation (3. 2) shows that the average flux [&1] in a region is depen-
dent on the net current [J(Xi)] on either side of the region. In order to
oblain a solution to Fq. (3.2), another relationship is needed between
[J(Xi)] and the adjacent average fluxes [$i-l] and [51] This relationslr;ip
will be obtained by finding an analytic solution to a one-dimensional prob-
lem which spans two adjacent homogeneous regions.

To find this analytic solution, let us write Eq. (3.1) in P-1 form:
d 21 T
o [J(0)] + [Zp(=)] [¢(x)] =5 [x] [vZf(X)] [¢(x)]
d -1 _
povs [6(x)] + (D(x)] [J(x] =0

and let us further define

[2(x)] = col {[¢(x)], [3(x)]} (3. 32)

and
[0] D]
[N(x)] = (3. 3b)
(%) -5 [ [vE] T [0]

so that the above equation can be written
d e -
% [‘b(x)J + [N(x)][@(x)] = 0,

This equation can be solved analytically over a homogeneous region R,

to give: 1

-[N. J(x-x.)
[2(x)] = e il [@(x,)]. | (3.4)
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Since we wish to relate the current to the average flux over a region, we
integrate Eq. (3.4) from x; to x;,, and divide by h.; after rearrangement

this gives

[N] hi[&;il=[1—e ii][{b(xi)] (3.5)

whaore

Similarly, we can integrate Eq. (3.4) in the negative direction over homo-

geneous region R. , to obtain

[N, . ]Ih,
= -17i-1
AR E [1 -e U e, (3.6)
We recall the trigonometric identities

1 -e ®X=1-coshx+ sinh x

(3.7)

1 - eX=1 - coshx - sinh x.

Substituting Eq. (3.7) into Eq. (3.5) and Eq. (3.86), adding the resulting

cquations together, and rearranging gives:
(sinh ™[N, ]h)([1] - cosh [N, ) 8(x)] + [2(x))]

- (sinh"l[NiJ hIIN,] h,[3.]

(3.8)
(sinh ™[N Th,_ M[1]-cosh [N, _ Th,_)[&(x)] - [#(x,)]

L paim L -
= -(sinh lNi~1]hi~l)[Ni—1] hi—l[(pi-l]'



We now use the additional trigonometric identity

(sinh”'x)(1 - cosh x) = ~tanh %

and add Egs. (3.8) together to obtain:

~(tanh [N.]h,/2 + tanh [Ni-_lj h,_,/2)2(x,)]
= (sinh” [N W[N] (3]
-1 : =
- (sinh '[N, _,Ih, DIN._,1h, (2, ] (3.9)

We recall that for two energy groups, Eq. (3.9) represents four

cquations. We define

[A] = (tanh [N] h,/2) |
. ' (3.10)
[B'] = (sinh™ [N;] n)[N,]h,

and block the matrices [A!] and [B'] into their four (2 X 2) elements, as

[Ai | and [Bi ]. Then Eq. (3.9) becomes:

Tk, k! k, k!
i-1 i
(A5 +A5 ] [o] [3x))]

(3.11)

38
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Writing only the top equution of Eq. (3.11) and rearranging, we have

= -4l v ad L] [0, ]
i-1 i 7 [Lisl T
+ [A1,2+A1,2J [Bl,l][¢i-1]' (3.12a)
Equation (3.12a) is a matrix equation relating the current values at
point Xy to the average fluxes in the adjacent regions. Using Eq. (3.12a)
and its counterpart at point x

i+l

. T
[3Gegy 1 = '[_All, 2t Ain] [Bll-‘:ll][q’ﬂl]

. . -1 .
i i+l i —
+[A1,2+A1,2] [31,1][¢il (3. 12b)
and substituting them into Eq. (3.2), we have

(e 05, ) + eP A + (e e, 1+ 0205,

=+ h[vz1T (3, (3.13)

where

(chip = d[all 4 4 ’1+ Rt -1 G
T, 2 1,2 1,2 1,2 1,1

) -1r .
i,itly _ [ ,i i+1 i+1
[c ]= [A +A1‘2:| [Bl’l}.

Equation (3.13) is a matrix equation which, when solved using con-

ventional numerical methods, will give the exact values of the average
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fluzes for each group in each region 1i.

We have not discussed how the matrices [Ai] and [Bi] in Eq. (3.10)
arc calculated. This derivation, again based on an analytic solution in
cach region and insuring continuity of flux and current between each
region, is performed in Appendix A.

From the definition of the matrix [N(x)] in Eq. (3.3), we note that
the eigenvalue N\ is needed in order to calculate the matrix elements in
Eq. (3.10). Thus, the solution of Eq. (3.13) must be iterative, since
the matrices [Ci’ N depend on .. However, this dependence is not ex-
pected to be strong, and an iterative scheme where the matrices [Ci" J.]
arc recalculated during the static iterative process is expected to con-

verge to the exact solution.

3.3 Relationship to Past Work

In the preceding section, an analytical solution to the diffusion equa-
tion was derived in order to obtain exact difference equations. In this
sec tion, we shall show that in doing this, we have also derived the one-
dimensional response matrix for a homogeneous region. By substituting
this "response matrix" into the integrated diffusion equation, we obtain
equations which involve only the average flux and are thus of lower order
than the conventional responsc matrix equations.l

Let us define J;i and Jéi as the partial currents in the +x and -x
directions at x;. The corresponding G-element column vectors of group
partial currents are therefore [J-;] and [Ji—]. Then for region R, ina

. . . 4 .
vacuum, the transmission matrices [Ti] are defined as
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RAENRE

(3.14)
[T.":HJ.—] = [JT ]
i i i-1
and the reflection matrices [R:f] as
S S
(R I07 1 =1(J,]
(3.15)

(k710971 = [3]].

For Ri imbedded in the reactor, we can then derive the following matrix

equation:
) [k
=[],] (3.16)
;] [3541]
where
! 1717 (]
PRI VS R 65 1§ SO R P9 R &

A P-1 expansion of the angular flux gives the following relationship:

o | |20 2m|| (5]

(a1 (1 - 9]

Eq. (3.16) is therefore equivalent to

. o1l 21l 1 g 1o,
|¢l] [ [(ﬁi] 1 2 i+l (3.17)

3] (- Lin -] byl
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o1

[(t’i] [¢’i+l ]
15 .

L] (7541
By comparison with Eq. (3.4), we see that

[N.J(x., ,-%x.)
[5] &g O itl 7

1

and therefore from Eq. (A.8) we have
[S,] = [B)[G(-n][E] ™. (3.18)

We have shown that the conventional response matrix [Ri] for region i
is related to the inverse of the expression shown in Eq. (A.8). Thus, the
analytic technique used in Appendix A is, in effect, a calculation of an
exact, one-dimensional response matrix. This method requires the use
of the expressions (Sinh-l[Ni] hi)[Ni] h, and tanh [Ni] hi/2, which are cal-
culated as shown above from the above expression for exp[N.]h,. These
expressions have a simpler form than that of exp[Ni] hi’ in that several
of the matrix elements cancel out (see Eq. (3.11)). This makes it simple
to derive an analytic expression between the average fluxes and currents.
The order of the equations to.be solved is thereby reduced by a factér of
itwo.

Several "nodal" methods current in the literature have shown prom-
igse as coarse mesh methods. One such method, called the Nodal Expan-
sion Mcthod (NEM), has hbeen developed by Finnemann and Wagner.g This

method begins with the integrated form of the diffusion equation, written
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in terms of the partial currents. A detailed flux distribution in one
dimension is found by approximating the flux by a polynomial expansion,
and using o weighted residual technique to determine the unknown coeffi-
cients. The unknowns used in the NEM are therefore the outgoing partial
currents from each region; [J:I and [J;l_l], and the average flux in the
region, [¢.].

Although the iteration strategy of the NEM is different from that of
the method used here, the equations of the NEM can be written in the con-
ventional response matrix form, Eq. (3.16). Thus, the NEM differs
from the analytic method only in that the "response matrices" are calcu-
lated approximately by assuming a polynomial expansion for the flux.

The NEM, however, requires threc unknowns per region; while the ana-
lytic method used here requires only one.

It can thus be seen that the analytic method, as well as other "nodal"
methods currently in the literaturce, have much similarity to response
matrices.23 In the next section, a discussion of the solution techniques
used will be presented, as well as results for one—dimen‘sional static

problems.

3.4 One-Dimensional Calculations

This scction will first discuss the details of implementating the
method derived in Sec. 3.2 into a computer program for static one-
dimensional diffusion rpoblems. Results obtained using this program,
called IDEX, will then be presented.

The complexity of the derivation in Appendix A demonstrates that it

would be extremely difficult to extend this method beyond two groups.
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For this reason, the remainder of this thesis will concentrate on prob-

lems which can be represented in one or two energy groups.

3.4.1 Boundary Conditions

INDEX is a two-group, one-dimensional static diffusion theory code.
It a1llows two houndary condition options, symmetry and albedo. The form

of the albedo used here is

¢ 1 %2 || ~
- . (3.19)
¢y @9 % || 92 |

This form is similar to that used by Kalambokas in his investigation of
albedo boundary conditions.24 Let us assume that an albedo boundary
condition is to be applied at x = X1 The presence of the albedo bound-

ary will modify the coefficients [Cl' J] in Eq. (3.13) as follows:

ILI-1y _ I-1 I -1 pxl-1
[c™ ) = Ay, + A L1 (B 4]
(T = {lalh +a] 7t LA} ,+ ()7 B 1 3200

[CI’ I+1] = [0].

We note from Eq. (3.19) that a zero flux boundary is imposed by setting
[¢] to the null matrix.
For a symmetry boundary condition, let us assume we have zero

current at x = X Then the coefficients [Cl’ J] in Eq. (3.13) become
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lct ] = [o]
S I S 1 2 -1 1

(€71 =1Aa] 5+ A7 o1 [B] ] (3.21)
d,2¢ 1 2 2

L7 71 = -l + a7 LIIBY L.

3.4.2 Iteration Strategies in IDEX

Equation (3. 13) is an eigenvalue equation, the solution of which is
the vector of nodal average neutron fluxes in each group. The matrices
[c¥J] are, in general, full 2 X 2 matrices. Thus the IDEX method is
different from conventional finite differences, in which the matrices
[Ci’ j] are diagonal. It was therefore convenient in 1DEX to solve for
both encrgy groups sifnultaneously. Equation (3. 13) is solved by a con-
ventional power iteration where the right-hand side is replaced by a fis-
sion source vector. The resulting seven-stripe matrix can be inverted
directly by an extension of the forward elimination, backward substitution
method. Thus both group fluxes at all spatial mesh points are found
simultaneously. This process is continued until the solution converges.

As discussed in Sec. 3.2, the eigenvalue \ is required to compute
the matrices [Ci’ j]. A nonlinear strategy was developed so that the
matrices were determined three times during the static iteration process:

i) At the beginning of the problem (assuming \ = 1)

ii) When the degree of convergence of the problem became less

than ten times the required convergence criteria

iii) After the problemn reached the required convergence criteria;

(then additional iterations were performed to reach that criteria



46

again).

This strategy was found to be effective for all cases attempted.

3.4.3 Results Using 1DEX

Static results for three one-dimensional test cases will be presented
here. The geormetry and materiol constants for these test cases are
given in Appendix B.

Test Case 3.1 is a two-region problem originally solved by Kang and
Hansen.7 Table 3.1 presents the inverse eigenvalues obtained by Kang
and by the 1DEX code. The agreement between 1DEX, using a 20 cm

mesh, and a fine mesh cubic finite element solution is excellent.

TABLE 3.1

Eigenvalues (\"!) for Test Case 3.1

Method Mesh Spacing Eigenvalue
-1
)
Linear FEM 20 cm .9757621
Cubic FEM 20 cm .9789983
Cubic FEM 1l cm .9795255
IDEX 20 cm . 9795257

Test Case 3.2 is the static portion of a one-dimensional time-dependent

benchmark prnb].cn'x.25 The geometry and material constants are given
as Test Case 5.1. Results arc presented in Table 3. 2 using 1IDEX for a
20 em mesh, and finite differences using a 2 cm mesh. Since 1DEX is
exact for any size mesh (as long as the regions are homogeneous), exact

results with IDEX could have been obtained using only three mesh regions;



TABLE 3.2

Results from Test Case 3.2

RAUMZEIT
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Quantity 1DEX
Eigenvalue .9015507 . 9015965
Power in Region 1 . 2790 . 27885

(0 < x <40)
Power in Region 2" . 4421 . 44229

(40 < x <200)

E3
RAUMZEIT (finite differences) using Ax = 2 cm.

B33

Powers normalized such that total power = 1.0.

TABLE 3.3

Results from Test Case 3.3

IDEX

20 cm mesh

CITATION
1 cm mesh, .714 ¢cm mesh,
explicit reflector exact albedos
Eigenvalue 1.0044069 1.0045128
Region
Powers
Zone 1 .017473 .017295
2 . 082829 .081929
3 . 110607 . 109543
4 . 094098 .093339
5 .055290 .055237
6 . 168004 .168321
7 . 240006 . 240929
8 .231693 . 233408

1.0045127

.017249

.0816277
.109214

.0930729
. 0552523
. 1683945
. 2412500
.2339394
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spanning regions 1, 2, and 3. 1DEX runs using this mesh arrangement
were made, and agree completely with the 20 cm results.
Test Case 3.3 is a one-dimensional slice through a model PWR core.

‘The basic cross section sets are presented as Test Case 4.2 in Appen-
dix B. This problem demonstrates the errors that can be obtained using
finite difference methods where there are large flux peaks. Results are
shown in Table 3.3 using the CITATION code with very small mesh
spr;xcin,c;s.5 Figure 3.1 shows a plot of the thermal flux for the 1 cm
mesh CITATION run. The large thermal flux peak in the reflector ac-
counts for the inability of CITATION to give acceptable answers with 1 cm
mesh spacings.

| The test problems presented here verify that the 1DEX method pro-
duces accurate solutions using a coarse spatial mesh. The method
shows enough promise to warrant extension to two dimensions. In Chap-
ter 4 we shall examine the various methods of extending this scheme to

two spatial dimensions.
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Chapter 4

SOLUTION METHODS FOR STATIC PROBLEMS
IN TWO DIMENSIONS

4.1 Introduction

In Chapter 3 a method was derived which was based on an analytical
solution of the diffusion equation. This derivation led to three-point dif-
ference relationships which are exact in one dimension. In two dimen-
sions, it is not clear that exact difference equations exist, or what their
matrix structure would be if they did exist. Nevertheless, Chapter 2
demonstrated the computational advantages of retaining a nearest-neighbor
coupling relationship in two dimensions. Therefore, the exact method
derived in Chapter 3 will be extended to two dimensions, with a nearest-

neighbor coupling relationship retained.

4,2 Derivation in Two Dimensions

L.et us begin in two-dimensional x-y geometry, with a region R de-
fined as:
R =[0,X]x[0,Y]

and with this region divided into a partition

We assume that any rectangle defined by the above partition is nuclearly

homogenecous. The first step is to integrate Eq. (2.1) over (Xi’ xi+1) and

(yj’ yjH) to obtain:
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1
+ hih_'lXTi, J] [¢i, J] = hth[X] [vzﬁ, J][ [ J] (4.1) |
where
hy = Xy - %
Py Vi~

- 1 (Y (Kin
[, 5] =wm; ! S‘ T [e(x,y)] dxdy
! i’] y;i X,

T 2= 206

VASH VTR SIS

Yis1
By, =Dyl § M oy ay

i

1 9 (" Fi+1
Uy, J= % [Di.jlﬁsr‘gxl [6x,y7)] dx.
' i

The remaining step is to find relationships between the net currents

[1, Jand [Jy ], and the average fluxes [¢i,j]° This will be accom-

i3 i}
plished by using the analytical procedure derived in Chapter 3.
I.et us illustrate this procedure by finding a relationship between
the x directed net currents and the adjacent average fluxes. To obtain

the differential equation which must be solved analytically, we integrate

tiq. (2.1) over (yj’yji-l) and divide by hj‘ For xC (Xi’xi+1) we obtain:



2 V. , 2
- . 9 T3kl 197 :
Doy, 31 T o001 0y 1§ 2 Lo o

+ [Py g0 =5 B ey 1T [6500]

where

. Y ,
45691 =—§7§ 1 (e, )] ay

JYj

Zoee o] = |1 20(%,Y)
[ Ti J] [ T ]xc(xi’xi-l-l)
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(4. 2)

Equation (4. 2) has the same form as Eq. (3.1), with the exception

of the additional integral representing leakage in the y direction.

In

order to solve Eq. (4.2) analytically, this integral must be approximated.

Two possible approximations are:

i) Assume the leakage in the y direction is proportional to the flux

in the x direction

ii) Assume the leakage in the y direction has a low-order polyno-

mial representation.

We shall discuss both of the above approximations, and derive the appro-

priate difference equations.

4.2.1 The Buckling Approximation

Let us define the diagonal matrix [B z(x)] as follows:

Y

‘ . V. 2
B 0] [6;091= -, 1 {73 L ey ] ay.

Y; * Y; i dy

(4. 3)
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Althougl some function [B z(x)_] exists such that Eq. (4.3) is exact, it

is not ohvious how to find this function in the general case.
However, one situation where the function [B 2(x)] is easy to find
Yj
is when the solution [¢(x,y)] is separable in x and Yy. For this case,

we can replace [B 2{)()] by a matrix B 2] which is constant over(xi,xi+1).

N
J
Kquation (4. 3) then becomes:
Y. 1 82
B ,] [¢j(x)] = '[Di,j] g JH 7+~ [0x 9] dy. (4. 4)
Yj Yj i 9y

The diagonal entries of [B 2] are then related to the conventional "buck-
7y
ling" values. Substituting Eq. (4. 4) into Eq. (4.2), we obtaim

2

2 L

'[Di, j] '8';7 [¢j(x)] + ([ZT'L, j]+ [By?])[‘bj(x)] N [x] [vzfi’ j] [4’3("’]' (4.5)
)

Equation (4.5) can be solved analytically as in Chapter 3 to obtain a

three-point difference relationship of the form (see Egs. (3.12) and

(3. 1.3)):

TR i iy (T

aky 1]

+[(ij

1o, 5] (4.6)

lquation (4. 6) is substituted into Eq. (4.1) to climinate the net currents
in the x direction.
The y dirccted currents are eliminated in an analogous manner by

solving analytically the diffusion equation integrated over (xi’xi-bl)' From
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this analytic solution we obtain the relationship:

o -
SO B P el e [T A AR T
1
[C~‘ I 108 ) (4.7)

To obtain differcnce equations, ¥qgs. (4. 6) and (4. 7) arc substituted

into Iiq. (4.1). We thus have
.s - l - l ].+1
N A ICPN R N A [ P R W Ui TSN

1 i -
NI | TN Sty F N R EE RN S T

=1 nhi[x) vz g j]T %, ] (4. 8)

The calculation of the coefficient matrices [C;’ji'] and [CJ’iJ‘] is made

more complex since they are dependent on the matrices [B 2] and

Tl
[B ,]. The matrix [B ,] is calculated by integrating Eq. (4.4) over
X yj '
(xi. xi+1) and dividing by hi:

- 1
B o, .|=+—(|J - |J ) (4. 9)
where
a o
[Jyl 3| <o, 15y [¢i<y)1'y=yj

X.
[¢i<y)]=—;}7§ H1 Ta0x,y)] dx

1 X.

1

{
Equation (4. 6) is then substituted into Eq. (4. 9) to obtain:



-1 el | i, iy x i il r
leg] [¢i,j] le]' ( [ij J[ai-l,jj + [ij ][¢‘1,j] + [ij ][¢i+1,j])'
Y ]
(4.10)

The matrix [B ,] is found in an analogous manner.
X

Since the cciefficient matrices are dependent on the neutron fluxes,
15q. (4.8) is nonlincar. A fission source iteration with Chebyshev accel-
c:rationl 8 was used to find the eigenvalue and eigenvector of Eq. (4.8).
These iterations are called the "outer" iterations. At the beginning of
the problem, the coefficient matrices were computed assuming all the
bucklings to be zero. At various times during the static iterative pro-
cess (generally every eight or ten fission source iterations), the coeffi-
cient matrices were recalculated using the bucklings found from the
most recent flux iterate (using Eq. (4.10)). This process was repeated

until convergence.

At each outer iteration, a matrix equation of the form

[P](8] = [s] (4.11)
must be solved. The matrix [P] is block five-striped, where each entry
is a 2 X 2 matrix. Equation (4.11) has been solved by using the Cyclic

Chebyshev pol/ynomial method of iteration.” These iterations are called

the "inner" iterations.

4.2.2 Flat LLeakage Approximation

Realistic reactor problems are not separable, and methods such as

the "buckling®™ approximation which assume separability can be subject

26

to significant errors. Another approach would be to assume a low-
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order polynomial approximation to the leakage integral. Investipations
reported in Refs. 26 and 27 show that excellent results can be obtained
using large rnesh sizes with a quadratic representation of the leakage
integral.

If the leakage integral in kq. (4.2) were replaced by a quadratic
polynomial, ihe analytic solution would be extremely complicated; being
composed of the solution to the homogeneous equation plus the particular
solutions. Tt appears that a quadratic expansion is not practical using
the analytic method. However, work on nodal methods by Sims28 indi-
cates that accurate results can be obtained using a flat representation
of the leakage. Therefore, we shall make this assufnption.

Let us make the following approximation:

y. 2
Sw [y 1= {2 e (112
i,] Y.

J j J 9y

We integrate Eq. (4.12) over (xi’xi-l-l) and divide by hi to obtain:

1= (3 -y D- (4.13)

i, i i, j41 i, J

Subhstituting Eq. (4.12) into liq. (4.2), we obtain
9% : o
-[d; ] ;-;-é-[¢j(x)| 2 5l [6500]

1, . .
N Ix1[v Lﬁ’j]f‘ [¢j(x)] = - '}‘11'3' [Lyi ] (4.14)

'
IEquation (4. 14) must be solved analytically to obtain coupling relation-

ships between the currents and the average fluxes.
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Using the notation of liq. (3.3), we have

a-%{-[@(x)] + [N(x)][8(x)] = [L] (4.15)

where

[L] = col {[0], ---Hl—j—[Lyi j]} .

The analytical solution of Kq. (4.15) over (xi, xi-!-l) is

-[Ni](x-xi) -[Ni](x-xi))

[B(x)]=e [a(x))] + [Ni]'l ([I] -e [L].

(4.16)
To relate the average fluxes to the net currents, we ihtegrate Eq. (4.16)
over (xi, xi+1) and divide by hi to obtain:

[Ni] hilgi] = ([I] - € i] hi) [@(Xi)]

+ (n01- NI (1] - e'[Ni]hi)) [L.,]-

Similarly, for the region (xi l’xi) we obtain:

N,

h.
ANy Iy 8= (1 - e ! 1) [2(x))]

- (hih] N T ([I] - e[Ni~1]hi-l)) (L)

Using the trigonometric identities Eq. (3.7), adding the equations to-

gether, and then recognizing that

(sinh-lx)(l - cosh x) = -tanh x/2,
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we obhtain:

1 hi_l[cb.

S = Lo,=1
(sinh” [N, Jh)[N.] h[2.]- (sinh [N, ]1h, )N .

1]

i-1

- (sinh”'[N ] hi)(hi[I] - [Ni]’l([l] - e—[Ni] hi)) [L.]

1
l]h

L)

= -(tanh [Ni] hi/2 + tanh [Ni_l] hi_l/Z)[tb(xi)]. (4.17)

: - [N,
+ (sinh ', In (n 0+ v, 170 (10 -e

As in Eq. (3.10), let us make the following definitions:

[A}) = (tanh [N, h,/2)
[(B1] = (sinh’l[Ni] h)IN,] h, (4.18)

. -[N.]n.
(DY) = ~(sinh™'[N,) hi)(hi[I] - (w7 ([1] e L 1))

The above matrices are defined in Appendix A for both one- and two-group
cases.

Let us partitidn each of the matrices in Eq. (4.18) into four blocks,
each block being either a single element (for one group), or a 2 X 2
matrix (for two groups). Then writing only the top equation in Eq.(4.17)

and rearranging, we obtain:

_ i-1 i -1 151 = i-1 i -1 rLi-1qr1
[JX .]-_[Al,2+Al,2] lBl,l][¢1,J]+[A1,2+A1,2] [Bl,l][d)l"l,J]

L]
1 orai-l i =1 i 1 opai-l i =1 i1
ta Ay 28 Bl Dy gy TR A A 1 Dy BNy ]
J L) J l"lsJ
(4.19)
A similar expression for [Jx- ] can be combined with the above

i+l, )



cquation to give:

L, 1=03,

i,] itl,j i,]

+lep s, ) -

h,
J

L

1-05, 1= ek, )

i-1,)

it+1
(S

[¢l+l J]

1 . d,1 '
= [EL )
hj *) i, j

i
[e 1)L ]+
) Yi-1,j

1 i, i+l
- ERFL ]

i

where

* Yitl, ]

-1y _ pai-1 L i q-lpmi-l
[Cyi 1=1ay 5 +A; o [B] 1]

i, iy _ i-1
(el = (1a]7h+

[ ;JH—I] - [A

,1,11 _rai-1
[ ' ]“[A1’2+

W, i+l

[ ]~[A

At this point liq. (4. 20) should be contrasted with Eq. (4.6).

"huckling" approximation,

age [L
i, ]

AL gl +a] 5 Ay B )

i+l -1 it+1
PRV I E-HEY

i -1 il
Ay o) D] ]

i-1 i -1 i 1-!1 -1)
gtA Gl T A A [DIZ
41 4-1 ¥l
ALl D)l
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(4. 20)

In the

it was possible to relate the x directed leak-

] to the average fluxes in the nodes (i-1,3j), (i, j), and (i+1, j).

lTowever, for the "flat source" scheme derived here, the x directed

leakages are found to be related not only to the average fluxes but also
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to the y directed leakages in those three adjacent nodes. Therefore,
the leakages cannot be completely eliminated from Eq. (4.1) as was
done with the "buckling"™ approximation.

To obtain a matrix structure suitable for efficient computation, it
will be convenient to rearrange some of the relevant equations. Accord-
ingly, we assume that I * J is the total number of mesh regions in the
reactor, and that G is the number of neutron groups. We then let K =
I % J* G. Further, let us always order the unknowns such that the energy
groups are indexed first, then the x direction, and finally the y direc-

tion. Then we define:

[¢] = a column vector of length K containing the nodal average
fluxes

[Lx] = a column vector of length K containing the x directed leakages

[Ly] = a column vector of length K containing the y directed leakages

[Cx] = a matrix of order K X K containing the elements [C;‘ji'] as
defined in Eq. (4.19)

[C.] = a matrix of order K X K containing thé elements [Cg;ij'], ele-
ments defined analogously to Eq. (4.19)

[E_] = a matrix of order K X K containing the elements [E;’ji'] as

defined in Eq. (4.19)

[E_] = a matrix of order K X K containing the elements [Eg,’ij’]’ defined
analogously to Eq. (4.19)

[ET] = a matrix or order K X K containing the elements hihj[zTi, j]

as in Eq. (4.1)
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[M ] = a matrix of order KXK containing the elements hihj[x][v T j]T
as in Eq. (4.1).

Then ¥q. (4.1) can be rewritten
bl )+ L]+ (3] = [M][3]. | (4.21)

Equation (4. 20) (and its counterpart in the y direction) can be written

< 1
(L] = €131 3 (B JLy) (4.22)
RCERICRIOES JeN ] (4.29)

Equations (4.21, (4.22), and (4. 23) com;')rise a linear set of three
equations in the three unknowns. The objective of the analytic method
was to develop schemes which involved only one unknown (the average
flux) per mesh region and group. However, this seems impossible for
the present case. Accordingly we attempt to shift the computational
burden of the simultaneous solution of the above equations in such a way
that the equation for the average fluxes will be "difficult" to solve (in
the sense that iterative methods will be required), while the equations
for the leakages will be relatively easy to solve. To accomplish this,
Egs. (4.22) and (4.23) were substituted into Eq. (4.21), to obtain the

equations:
(hfc d+nfc 1+[2 D] + (B (L) + (B ]IL ] =5 (M)
(4.24)

oy 1
OREICNIOES JERIN (4.22)
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[1:y] = [C1[3] +-}%; e L. (4.23)

Ilquations (4.24), (4.22), and (4.23) can be written in a more compact

{form:
[F116] = [H][] e
where
—(hj[CX]+hi[Cy]+[ZT]) [E,] [E] |
[¥] = [c,] LU NN
] [c,] alml -l

[1] = | [o] [0] [0]

b= cor{[e]. [t ], [}

Solving Iq. (4.25) requires care. The matrix [F] is not nonlinear;
howcver, its elements depend on the eigenvalue \. Therefore, an up-
dating scheme identical to the onc described in Sec. 3.4.2 is used in con-
junction with a fission source itcration with Chebyshev acceleration as in
Sec. 4.2.1. Al cach outer iteration, the matrix [F] is inverted by
applying a Gauss-Seidel iteration to Eqs. (4.24), (4.22), and (4.23).
The solution of Eq. (4.24) is obtained by using the Cyclic Chebyshev

polynomial method of it;eration” as described in Sec. 4.2, 1.
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4.3 Numerical Properties of the Ilquations

4, 3,1 Nonlincar Iterations

Evaluation of the matrices [F] (in Eq. (4.25)) and [C] (in Eq. (4.8))
requires that the eigenvalue \ be known. An iterative updating procedure
has been proposed in both the "buckling” and flat source methods to find
a converged solution. The convergence properties of this iterative
scheme aré difficult to guarantee. However, in Sec. 2. 44 a somewhat
similar scheme was used to converge the fluxes and eigenvalue while
simultaneously "searching® for the critical eigenvalue keff‘ The suc-
cess of this method suggests that the matrix properties may not be strongly
dependent on the eigenvalue . Therefore we suspect that setting X =1
will provide a good starting guess for most situations.

The matrix [C] in Eq. (4. 8) is dependent not only on the eigenvalue X\,
but also on the bucklings calculated from Eq. (4.10). Thus Eq. (4.8) is
nonlinear. For the two-group case, the iteration necessitated by the
inclusion of the bucklings failed to converge for An’conopoulos.22 This
was because the inclusion of the buckling terms destroyed the diagonal
dominance of Antonopoulos! coefficient matrix. However, the diagonal
dominance will nol be significantly affected in the analytical method de-
rived in Sec. 4.2.1. We are therefore hopeful that the iterations will

converge, although it is difficult to guarantee such behavior.

4.3,.2 Fission Source Iterations

The acceleration of the fission source iterations by the use of Cheby-

shev polynomials also requires certain assumptions about the iteration
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matrix.] 8 Specifically, we assume all the eigenvalues are real and non-
negative, and that the eigenvectors form a basis for the associated vector
space. Under these conditions, the Chebyshev polynomials can be guar-
ahteed to provide a specific error reduction. The above properties are
difficult to show for the case of finite differences, and are also difficult

to guarantee for the analytical method derived here. However, Chebyshev
polynomials have been successfully applied to the outer iterations for
both finite o:liffelf‘ence18 and finite element12 methods; thus it seems

reasonable also to apply them to the analytic method.

4. 3.3 The Inner Iterations

We shall examine the matrix equation which must be solved at each
outer iteration to yield the nodal average fluxes.
Rewriting Eq. (4.24) as
(hj[Cx] +hi[Cy]+ [ET])[‘” = [S]
or (4.26)
[R][¢] = [S],
let us examine the numerical properties of the matrix [R]
i) We observe that even in one-group theory [R] is not symmetric.

The coupling cocfficients between mesh regions i and i+1 from

Eq. (4.19) are

i, i+l i i+1 -1 i+l
[Cll ]=[A1,2+Al ] [Bl ]

xj 1,2 1,1
i1,y _ L i+1 -1 i
[cxj ]~[A1’2+A1,2| [Bl,l].



Wce notice that these coeflicients would be equivalent only if
[Bi1 ’ 1= [Bitll] Thus the matrix [R] is symmetric only in the
homogeneous casec.

ii) We also observe that even in one-group theory [R] cannot in
gencral be guaranteed to be diagonally dominant. Referring to

Fiq. (4.19), we notle that for the two-dimensional one-group case:

: v [l Jo 3 .
Diagonal Sum = hJ.|ij | + hi[Cyi ]+ hihj[LTi’j]
Off-Diagonal i1 il oo -
= ) 1- , 3, 3-1 Js 1
Sum = hj[CXj ]+ hj[ij ]+ hi[Cyi ]+ hi[Cyi ]

If the problem is homogeneous, then

(Diagonal Sum) - (Off-Diagonal Sum) = hihj[z

Ti, §]
and the matrix is diagonally dominant. However, for a hetero-
.geneous problem, this property cannot be guaranteed. Neverthe-
less, fof‘ matcrials whose properties are not too dissimilar, and
for large mesh spacings, the presence of the hihj[ETi, j] term
on the diagonal will probably insure the diagonal dominance of
the matrix,

In two- group thcory, the situation is made more complex since the
[ETi,j] matrix includes scattering from group to group. However, since
the energy groups are solved simultaneously, it is doubtful that this will
severely hurt the matrix properties.

A diagonally dominant matrix is convergent for both the point Jacobi

. , : 17 .
and Gauss-Seidel iteration schemes, In general, the larger the diagonal
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clements are compared to the off-diagonal elements‘, the lower the spec-
tral radius of the associated iteration matrix.

In view of the properties of the [R] matrix described above, we feel
it is reasonable to apply iterative techniques to the solution of Eq. (4. 25).
Results for two-dimensional test problems for the "buckling" and flat

source method:s will be presented in Section 4. 4.,

4, 3.4 Convergence to the Exact Solution

We define convergence to mean that the difference between the dis-
crete approximation [&;ij] and the exact average fluxes can be made
arbitrarily small for every mesh interval simply by choosing the mesh
spacings h, and hj sufficiently small. For finite difference methods,
proofs of convergence generally center around the fact that the differ-
ence equations are a low-order Taylor's series expansion of the correct
solution. In the finite element method, the proofs often appeal to con-
cepts in approximation theory; where any continuous function can be re-
produced exactly by a series of ramps (in the linear case, for example)
in the limit of small h.

In one dimension, the method is exact. Therefore, the method is
convergent if and only if the approximation used for the transverse leak-
age integral becomes exact in the limit of small mesh sizes. The "buck-
ling" approximation uses small sections of the function [¢j(x)] to approx-
imate the integral. The flat source method uses a staircase function to
approximate the leakage integral. In the limit of samll mesh sizes, the
leakage integral can be ¢xactly represented using small secti’ons of either

of these functions. Thercfore we expect both schemes to converge in
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the limit of small mesh spacings.

4.4 Results

4.4.1 Computer Programs Used

The program 2DEX was written to solve two-dimensional two-group
static nceutron diffusion problems using the "buckling® method derived
in Sec. 4.2.1. The program 2DFS was written to solve the same prob-
lem using the flat source method described in Sec. 4.2.1. Both programs
take advantage of the iterative strategies suggested in Sec. 4.2. Since
the Cyclic Chebyshev method (used for the inner iterations) requires a
knowledge of the spectral radius of the inner iteration matrix, both pro-
grams calculate this number before the outer iterations are begun. The
coefficient matrices are calculated in subroutine MATRX. Both codes

were written entirely in single precision.

4. 4.2 Homogeneous Test Problem

Test i’r‘oblem 4.1 is a homogeneous two-dimensional two-group test
problem. The geometry and material constants are given in Appendix B.
Table 4.1 summarizes the results of this test problem. Since this test
problem is separable in x and y, the results from 2DEX are exact. In
addition, both codes converge to a cosine-shaped eigenvector.
| A very important aspect of the 2DFS method is the ease of solution
of Eq. (4.25) at each outer iteration. This solution is performed by
using a Gauss-Seidel iteration through the matrix [F] Test cases with

2DFS were run which use one, two, and three Gauss-Seidel iterations
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TABLE 4.1

Results of Test Problem 4.1

2DEX 2DFS

Eigenvalue A" 1.03641 1.03652
Number of

Qutoer Tterations 62 80
Number of Calls

to MATRX 9 3
Number of Inner

Iterations per Quter 3 3

%
Exact eigenvalue: 1.03641.

through [F]. These runs show that one iteration per outer iteration is
sufficient. Therefore our attempt to shift the difficult part of the solu-
tion of ¥gs. (4.21), (4.22), and (4. 23) to the flux equation (4. 24) has suc-
ceeded. By substituting ¥.gs. (4.22) and (4. 23) into (4. 21), the fluxes |
have become sufficiently decoupled from the leakages such that one pass
through the matrix |F] is sufficient.

We also observe that, as a result of the large mesh spacing (20 cm),

very few "inner" iterations are required.

4. 4.3 TAEA Benchmark Problem

The TAEA Benchmark Problem is a two- or three-dimensional two-
group static problem, representative of a PWR.29 Finite difference
methods have been shown to be in error even when mesh sizes as small

as one centimecter are used. The geometry and material constants for

the two-dimensional problem are shown in Appendix B.  Table 4.2
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TABLE 4.2

Results of Test Problem 4.2

2DEX 2DFS

Eigenvalue \"* 1.03044 1.03001
Number of

Outer Iterations 78 71
Number of Inner

Iterations per Outer 4 2
Convergence Criteria -5 -5

(on pointwise flux) 10 10
Number of Calls

to MATRX 8 3
Execution Time (sec) 2.3 2.6 .

*Reference eigenvalue: 1.02959.
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Figure 4.1 Assembly Power Fractions and Power Fraction

Errors for Test Problem 4. 2

20 cm Results

XX Reference Power Fraction
XX 2DEX Percent Error
XX 2DFS Percent Error
.1322-1
Convergence Criteria: 10.8
107° on pointwise flux. .2
.1064-1}.1548~1}.1351-1
All calculations done in -7 6.2 3.9
quarter-core.
-1.4 2.8 1.9
.2694-112183-1|.2047-11.1914-1
-1.3 .5 1.7 4.1
-.3 .6 . .6
.3320-11.3039-11].2664-1 |.2420-1|.2206-1 |.1564-1
-3.3 -2.1 .2 -.1 1.1 3.5
~-1.4 -7 .9 -.2 -. 1 -.4
.3243-1}.3342-1].2969-1}.2418-1 .2341-1{.2149-1 |.1663-1
-2.1 -2.6 -2.1 -.9 -.9 -.6 .3
-.6 -7 -.5 .2 -.4 -.4 .l
.1684-1].2956-1|.3286-1(.2734-1{.1379-11.2112-1}.2110~-1}.1706-1
-5.2 -2.0 -1.3 -1.5 -4.1 -.6 0 -.1
-2.4 .2 .6 .1 -2.3 -.3 .5
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displays some of the results obtained for this test case. Figure 4.1
shows the asscembly power fractions for the reference solution,29 and
the percent errors in assembly powers using 2DIIX and 2DFS with a
20 cm mesh size. The 2DFS run required only one Gauss-Seidel iter-
ation through Eq. (4.25) at each outer iteration.

This test problem shows the superiority in accuracy of the flat source
method. Using a 20 cm mesh the 2DFS code increases the execution
time by 20%. However, the eigenvalue error is cut in half and the worst
assembly power error lowered from 10. 8% to 2.8%. For a 10 cm mesh,
2DEX yiclds a maximum error of 2. 3% in assembly power; however,
the execution time is over seven seconds. Thus the 2DFS method
appears to give the optimal combination of accuracy and execution time

for this problem.

4,4, 4 BWR Test Problem

The BWR test problem30 is a two- or three-dimensional kinetics
benchmark problem. We have investigated the two-dimensional steady
state versionk of this problem. Geometric and material constants are
shown in Appendix B as Test Problem 4.3. The problem was solved
using 2DEX and 2DFS with a 15 cm mesh.

Table 4.3 summarizes the results of the runs. Figure 4.2 shows
the reference assembly power fractions, as well as the percent error in
assembly power [raction for 2DEX and 2DY¥S. The reference solution
used here is from the 2DI'S program with a 3. 75 ecm mesh. Comparison
of this run with 5.0 cm and 7.5 ¢cm runs shows that the results are essen-

tially converged.
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TABLE 4.3

Results of Test Problem 4. 3

2DEX 2DFS
e

Eigenvalue \ . 996863 . 996933
Number of ‘

Outer Iterations 103 67
Number of Inner

Iterations per Outer 4 -3
Convergence Criteria 107° 107>
Number of Calls

to MATRX 11 3
Execution Time (sec) 4.6 3.9

*Reference eigenvalue: .996361.
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.1660-1:

Errors for Test Problem 4.3 ;3

.2773-11.2089-11.1080-1

15 cm Results 2.1 2.5 5.1

" 2.8 2.3 1.5
XX Reference Power Fraction .2376-1(.2631-1{.2151-1{,1244-1
XX 2DEX Percent Error 1.2 1.8 1.4 2.5
XX 2DFS Percent Error 1.8 2.3 1.7 1.8
.1109-14.1476-1{.1716-1{.1823-1/.1196-1

Convefgence Criteria: 0 -9 .3 1.4 1.7
10 ° on pointwise flux. .3 -1 .3 1.3 1.5
A1l calculations done in .7089-21.8698-2}.1081-1}.1310-1}.1566-1i.1094-1

quarter-core. -.5 -7 -1.3 -.1 ) 1.1

0 -.3 -1.3 -1.1 -.1 .6
.5442-2.6315-2{.7930-2].1003-1{.1239-1{.1504-1{.1061-1

-1.1 -.8 -1.2 -1.8 -1.4 -.3 0

-.6 -.3 -.8 -1.8 -1.8 -1.0 -.4
.5128-2 ].5218~-2(.6292-2.8606-2].1205-1}.1476-1}.1644-1/.1113~1

-2.2 | -1.9 | -1.6 | -1.3 | -1.7 | -1.7 | -1.0 | -l.0

-1.8 -1.6 -1.2 -.9 -1.5 -1.6 -1.0 -1.0
.7861-2|.5646-2 |.5296-21.6564-2}.1014-1},1779-11.2133-1{.1900-1}.1185-1
-2.0 -2.9 -3.1 -3.4 -2.0 -.9 -1.0 -1.9 -2.2
-1.2 -2.6 -2.9 -2.7 -1.9 -.2 -.1 -1.4 -1.9

%
Reference is 2DFS with mesh size 3. 75 cm.

gL
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The eigenvalue obtained using 2DFS for a 15 cm mesh is slightly
less accurate than that obtained using 2DEX with the same mesh size.
IHowever, for this test problem the 2DEX code required 15% more com-
puting time, and yiclds a maximum assembly power error of 5. 9% as
compared to 2. 9% for 2DFS. For this test problem, the 2DFS method
again appears to yicld the optimal combination of accuracy and running
time. |

The 2DFS results were obtained using one Gauss-Seidel iteration
through lq. (4.25) per outer iteration. The strategy of using only one
iteration per outer iteration has been successful for every static test prob-
lem attempted. It is therefore felt that this is a legitimate strategy for

the general case.

4. 4.5 Use of Albedos in Two Dimensions

The generalized albeao boundary condition described in Sec. 3.4.1
can be used in cither 2DEX or 2DFS. The albedo required for either
code is an average albedo over the edge of the mesh region to which it is
being applied. Runs have been made using 2DFS for Test Problem 4. 3
in an attempt to define appropriate albedo boundary conditions. It is appar-
ent that more work is needed in this area. Albedos calculated using the
one-dimensional formulas arc considerably in error (assembly power
errors in excess of 10%). We were unable to arrive at a simple prescrip-
tion for calculating the albedos. However, if these albedos can be found,

their implementation and use into either 2DEX or 2DFS is straightfor-

ward.
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4.5 Summary

In this chapter, two possible methods of extending the method de-
rived in Chapter 3 to two dimensions have been described. Results from
three two-dimensional two-group test pro‘blems have been presented.
For a homogeneous test problem, both methods gave exact results in
space, while the 2DI'S method had some eigenvalue error. For both
realistic test problems, the 2DFS method was judged to provide a more
effective combination of accuracy and running time. Therefore, the
éI)FS method has been chosen to be extended to time-dependent problems.
Since only one Gauss-Seidel iteration through the matrix [F] of Eq. (4.25)
is required per outer iteration, the running times of 2DFS compare well
with 2DEX and with other methods of similar accuracy.

It is apparent that realistic reactor problems are not separable in
space, and a method such as 2DEX which makes such an assumption can
be subject to significant errors in assembly powers. Although the as-
sumption of the transverse leakage being flat is very approximate, it
appears to be more realistic than the assumption that the leakage is pro-
portional to the flux. In Chapter 5 we will extend the 2DFS program to

tirne-dependent problems.
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Chapter 5

TIME-DEPENDENT ANALYSIS

5.1 One-Dimensional Time-Dependent Analysis
5.1.1 Development of the Equations

The time-~dependent multigroup neutron diffusion equations are pre-
sented as Eq. (1.1). Let us rewrite these equations in the matrix form
of Eq. (2.1):

L -—?—-[«b(x t)] = —?-[D(x t)]—g—[tb(x 1] - [Zn0x, 0] [o(x,1)]
v| ot ’ ax ’ ox ! T ’

| K |
+ [ Ja-B [vEge, 0] [pix, 9] + Z Dxgd Myl

(5. 1)
2coxt) = -0 Co(x, 1) 48, [vEAx0]T [b(x, 9] (1 <k <K) (5.2)
at "k k7k'™’ k"8 A SR )
where
[-%;i) is a diagonal G X G matrix containing the inverse neutron
speeds
[xp] is a column vector of length G containing the prompt
fission spectrum
[Xdk] is a column vector of length G containing the neutron

spectrum from delayed group k
[vZ4x,1)] is a column vector of length G containing the critical
value of nu times the fission cross section.
All other terms are defined as in Eq. (2.1).

We now integrate Eqs. (5.1) and (5. 2) over (xi, Xi+1) to obtain:
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by I'H ST ] = =[5 0]+ P ] - b2 0] 0]

K
- _
# 0 -Bl Z0]T Bi0]+ = D Ml (5.3

0 =

2T, = AT hiﬁk[vzﬁ(t)]T Bh]  (1<k<K) (5. 4)

whaore

[5,(0] = -[D(x, 1] :':)ix [6(x, 6]

X=X.
1

=) = [Slx, 1)
,[ i) = [Z ]IxCRi

X
= - i+l
("kim = S Ck(x. t) dx

To obtain a relationship between the net currents and the average
fluxes, we must solve Eqgs. (5.1) and (5. 2) analytically over a two-region
problem. The time derivative and delayed precursor terms complicate
this solution, since they afe not known in general as é function of x. To
circumvent this difficulty, we make the following approximations.

For each region (Ri = (xi,xi“), we assume

Flete, ] = o ][00 0] (5. 5a)
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8 ‘ -
Y ("k(x’t) = wdkiCk(x,t) (5. 5b)

where [‘”pi] is a diagonal G X G matrix. We insert Eq. (5.5) into Egs.

(5.1) and (5. 2), then substitute Eq. (5.2) into Eq. (5.1) to obtain:

2 D(x, 1] 5= 2 [olx, ]+ (206 0]+ fo ;1) [60x,8)]

x p ’ Z‘ x Z X, ’ ¢ 4{, . 5. 6

If [mpi] and wyki are known for every region i over a time step inter-
val, Eq. (5.6) can be solved analytically at a fixed time t as was done
in Sec. 3.2. From this analytic solution, the following expression is

obtained:
(3., (0] -[,0)= [ Ly B, ]+ [cV m]BEw]
+ [ w)B,,, ) (5.7)

where the terms [Cl’ ‘l(t)] are defined as in Lig. (3.13). Substituting
Eq. (5.7) into lig. (5. 3) resulis in:
1|8 A, i-1,0q0x

i, 1+1

(e w]enzmD e ] - [ch T o], 0]

. K _
+ 0y (1= ) [V 20 ] [B,(0] + 2 Dead MEi -

(5. 8)

Equations (5. 8) and (5.4) can be solved using any of the standard time
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integration methods.

dk n

Iig. (5.6). The [wp] terms are identical to the omegas which must be

The above derivation requires a knowledge of [wp] and w

known at every time step for kinetics methods which use the so-called
frequency transformational’ 32 (although the methods referred to in
Refs. 31 and 32 gene‘rally use the omega calculated from the thermal
group as representative of all the groups). We therefore calculate the

omegas as in the above references:

wpgi AT (¢n+l )

_ nt+l
“aki © A'I‘ In (C )

H

(5.9)

where AT is the time step size, and n is the time step index.
We note that the approximations in Eq. (5. 5) can be expressed as:
i) Each position-dependent quantity in a region has the same shape
at the end of a time step as it did in the beginning of that time
step.
ii) To calculate the coupling coefficients, this shape specified above
grows (or decays) as a simple exponential over this time step.
The omegas evaluated above are used to calculate the matrices
[Ci’ i'(tn)] for every time step n. Since these matrices are somewhat
costly to calculate, a time integration method should be chosen which
allows a long time step AT to be taken without loss of accuracy. This
criterion, of course, applies to any kinetics method. However, the
considerable effort required to calculate the coefficient matrices makes

it even more important here. Accordingly, a fully implicit time
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integration method32 was chosen to solve Eqs. (5.8) and (5.4). The
"exponential transformation" has been shown to significantly improve
certain alternating-direction time integration methods.31 However, -
when applied to the fully implicit method, the improvement is not major.sz
Therefore, we have not chosen to use the "exponential transformation"
to speed the solution of these equations.

The accuracy of time integration methods such as the NSADE
method31 depends to a significant degree on the accuracy of the omegas.
However, the omegas used in Eq. (5.6) afféct only the calculation of the
coupling coefficients, and as such have only a second-order effect on
the transient solution. Therefore we anticipate that the solution of

Egs. (5.8) and (5. 4) will be accurate even when large mesh regions are

used.

5.1.2 Results of Test Problem 5.1

To examine further the method derived in Sec. 5.1.1, the coinputer
program IDEX wés modified to perform time-dependent calculations.
The new program, called 1DTD, solves the static and time-dependent
one-dimensional, two-group diffusion equations. Up to six delayed
ncutron families are allowed.

Equations suitable for computation are obtained by first time dif-
ferencing Eq. (5.4) to obtain an expression for EE';I . This expression
is then substituted into the time differenced form of Eq. (5.8). The
calculational sequence is then:

—
i)  The matrices [CM*!'] are calculated using the omegas from the

previous time step.
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ii) 'l‘ﬁe new fluxes [E?H] are calculated. This calculation is per-

formed using a matrix factorization technique.

iii) The new precursors Eﬁ:l are calculated.

iv) The new omegas are calculated from Eq. (5.9).

Test Problem 5.1 is the time-dependent version of Test Problem
3. i%.zs The geometric and material constants for this test problem arec
given in Appendix B. Table 5.1 shows the results of 1DTD runs using
two different spatial mesh sizes. The reference solution is a finite
difference solution using a 2 cm mesh. For 1IDTD, a time step size
of 10_2 sec is sufficiently small to insure temporal convergence.

Tuble 5.2 shows the region powers versus time for the 1DTD run with
a 20 cm mesh spacing, and with AT = 1072 sec.

With the exception of the omega approximation, the 1DTD method .
provides exact spatial results. Since this approximation becomes more
exact for smaller mesh spacings, the results in Table 5.1 indicate that
INDTD can provide highly accurate results using mesh sizes as large as
20 cm. 'The aprecanent of Runs A and B suggests that the finite differ-
cnce results using o 2 e mesh are not as accurate as the 20 em 1DTD

case.

5.2 Two-Dimensional Time-Dependent Analysis

5.2.1 Devclopment of the Equations

The results presented in Sec. 4.4 demonstrated the superiority of
the flat source method over the "buckling" method. In Section 5.1,

approximations were made which allowed the one-dimensional method
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Total Power versus Time for Test Problem 5.1

Time Reference Run A Run B
0.0 1.0 1.0 1.0
0.5 . 7597 . 7596 . 7596
1.0 . 6588 . 6591 . 6591
2.0 . 6307 . 6311 . 6309

Reference: Finite Differences, Ax =2 cm, AT =

-3
10 sec.
Run A: IDTD, AT = 10~2 sec, Ax = 2 (20 cm),

4 (40 cm), 2 (20 cm).
Run B: 1DTD, AT = 10~ sec, Ax =

TABLE 5.2

20 cm.

L

Region Powers versus Time for Test Problem 5.1

Region
Time Total Power 1 2 3
0.0 1.0 .27885 . 44229 . 27885
0.5 . 7596 . 14834 .34168 . 26959
1.0 . 6591 .09622 .29883 . 26402
2.0 . 6309 .08544 .28566 .25983
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derived in Chapter 3 to be extended to two dimensions. With these approx-
imations, the flat source method can be extended to time-dependent prob-
lems in a straightforward manner.

We shall first derive an expression relating the net leakage in the
x direction to the adjacent average fluxes. From Eqs. (5.6) and (4.14),

we sce that the equation which is to be solved analytically can be written:

- = [D; ;0] 5% [o50x, 0 + ([ 2, ] +Loy; D o0x, 1]

K B |
k"k T
AL+ 2 ) (—————v—_dki,j k *k> [v3 (017 o (x, 0]

=g Lk j(t)]' | (5.10)

If the cross sectipps and the omegas are known, Eq. (5.10) can be solved

analytically for a fixed time t as was done in Sec. 4.2.2. To insure

initial criticality, v has been adjusted by dividing it by the eigenvalue A\.
The analytic solution of Eq. (5. 10) (and its counterpart in the y

direction) leads to equations similar to Eqs. (4. 22) and (4. 23)

V] + -

[L ()] = [R (1) [o(t)] + B, [E ] [L 0] (4.22)
- 3 Lir

(L ] = [R D] [s(B] + h, [E 0L, 1] (4. 23)

where the matrices [Cx] and [Cy] in Eqs. (4.22) and (4. 23) have been
renamed [Rx(t)] and [Ry(t)] to avoid confusion with the delayed neutron
precursor concentrations. The unknowns in Eqs. (4.21), (4.22), and

(4.23) are ordered such that the energy groups are indexed first, then
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the x direction, then the y direction. Let us write the spatially inte-

grated, time-dependent diffusion equation in the form of Eq. (4. 21)

H’J fl;[;fa(t)] = —hj[LX(t)] - hi[Ly(t)] - [ZT(t)][E(t)]

+ [Mv]et)] + E 1 N[y ()] (5.11)
where
[Cy (0] = col {I[Cy; 1], ..., [Cy 0], ..., [Cyy (0]}
and
[Eki, j] = Ixgd Eki,j
where

[x dk] is a column vector of length G containing the delayed neutron

fission spectrum for family k

[-\17} is a diagonal matrix containing the inverse neutron speeds
for each group at each mesh point.
To insure criticality, the matrix [M] has been divided by the eigen-
value A\,
As in Sec. 4.2.2, Egs. (4.22) and (4. 23) are substituted into Eq.
(5.11):

[“lv"] L[] = (-h (R (O] - R (0] +[MO] - [Z(0]) (D)

K —
- [}?:y(L)HLX(t)] - [, (1] [Ly(t)] + lil N[LCL (W]

(5.12)
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The vector [W(1)] is defined as

[p(t)] = col{[$(t),[LX(t)],[Ly(t)]}

so that Bgs. (5.12), (4.22), and (4. 23) can be written

K
(W] St [u)] = (1) [e(o] + ERNC) C (5.13)
[i/vl ol o]
[wl=| [o] [o]  [o]
(o] o]  [o]
(-h (R (O]-h[R O]-[Zg0l+ M)  [B 0] [E0]
[T(b)] = (R (1)] {0 - [E )
J
' 1
[R (0] b, [E )] -1
[7, (0] = col { [T, (0], [0], [0]}
LG, (0] = X [C (0] + B [M(B)] [3()]. (5.14)

If the omegas [wpi.,j] and wg, . j

’

are known, the matrices [Rx(t)],
[}.ty(t)], [Ex(t)], and [Ey(t)] can be calculated; and Eqgs. (5.13) and
(5.14) can be advanced over one time step. As in Sec. 5.1, a fully im-
plicit time integration method was chosen to solve Egs. (5.13) and (5.14).
The "exponential transformation® was not used for this time integration.
We first time difference Eqgs. (5.13) and (5. 14) according to the
fully implicit time integration method. From Eq. (5.14), an expression

for [51:+1] is substituted into Eq. (5.13). This results in a maftrix
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cquation of the form:

[A][6" 1 = [s] (5.15)
where

[Ler—l] = C()l{[¢n+l],[142+l], [L;+l]}-

As in Sce. 4.2.2, a Gauss-Scidel iteration is used to invert the matrix
[A]. The most difficult part of this iteration is the calculation of the
average fluxes [Enﬂ]. The form of the matrix equation which must be
solved is identical to that of Eq. (4.11). As in Sec. 4.2, the average
fluxes were calculated by using the Cyclic Chebyshev method of iteration.
After the new average fluxes and leakages have been calculated, the new

precursors Ci{ﬂ{lj are calculated.

4.2.2 Results from a Homogeneous Test Problem

Test Problem 5.2 is a homogeneous test problem with two neutron
groups and one delayed precursor family. Geometric and material con-’
stants are shown in Appendix B. Table 5.3 displays the total power
versus time for a finite difference solution using a 20 cm mesh,33 and
2DTD solutions using 20 and 10 cm mesh sizes. The 2DTD runs used
a time step of 5 ms, which was determined to be adequate for temporal
convergence,

Tablce 5.3 shows that a coarse finite difference spatial mesh can
lead to errors in the transient solution. The 2DTD run using a 20 cm
meash is seen to be very accurate. Table 5.4 shows the initial power

distribution using 2DTD (since 2DTD steady-state results are exact



TABLE 5.3

Totul Powers versus Time for Test Problem 5,2

Total Power

Finite .
Time Difference 2DTD 2DTD
(sec) (20 cm) (20 cm) (10 cm)
0.0 1.0 1.0 1.0
.08 1. 605 1.592 1.592
.16 2.136 - 2.103 2.105
.24 2.610 2.546 2. 550
.32 3.031 2.934 2.940
. 40 3.411 3.275 3.284
Finite Difference, AT = .5 ms.
2DTD, AT = 5 ms.
Initial Eigenvalues: Analytic 1.01133
2DTD 10 cm 1.01177

2DTD 20 cm

1.01320
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TABLL 5.4

Initial Region Powers for Test Problem 5. 2
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Region definitions based on a 20 cm mesh.

All powers normalized to unity total power.

Y Region
1 2 3 4 5
1512 -1 .1364-1 .1083-1 . 6952 -2 .2395-2
.4389-1 .3960-1 .3142 -1 .2018-1 .6952-2
.6836-1 .6167-1 .4894 -1 .3142-1 .1083-1
.8614-1 L7771 -1 .6167-1 .3960-1 .1364-1
.9549 -1 .8614-1 .6836-1 .4389-1 .1512-1
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for this case, 2DTD results using 20 or 10 cm mesh sizes are identical).
Since the perturbation is homogeneous, the shape of the power distribu-
tion does not change with time.

A very important aspect of the 2DTD method is the degree of diffi-
culty of solving Eq. (5.15) at each time step. The matrix [A] is inverted
by using a Gauss-Seidel iteration.‘ 2DTD runs have been made for this
test problem using one, two, and three Gauss-Seidel iterations at each
time step. The results from these runs showed no observable differences.
Therefore, the general strategy used for steady state problems of per-
forming only one Gauss-Seidel iteration appears also to be valid for the
transient case.

In two dimensions, it is felt to be most efficient to calculate the
average fluxes by an iterative technique. An important aspect of this
iteration is the degree of convergence required to give accurate solu-
tions. In 2DTD, the transient convergence criterion is expressed in the
form of an error rgduction, which is based on the asymptotic error re?
duction achievable using the Cyclic Chebyshev method. 2DTD runs were
made using a variety of error reductions. It was found that for this
problem an error reduction of .05 was sufficient. This error reduction
corresponds to 8 Cyclic Chebyshev iterations per time step. We note
that larger mesh sizes and smaller time steps will tend to make the

iterations required to calculate the average fluxes easier to converge.

5.2.3 Results from TWIGL Test Problems

Test Problems 5.3 and 5.4 are test cases originally solved by the

TWIGTL, program.'M Problem 5.3 is a step insertion of positive reactivity,
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while Problemn 5.4 is a ramp insertion of positive reactivity.’ Geometric
and material properties are shown in Appendix B. To determine the
appropriate spatial mesh sizes for 2DTD, several steady state runs
were made. The eigenvalues so obtained are shown in Table 5.5. An
exumination of the eigenvalues and region powers showed that the 2DTD
I'ine Mesh solutions are very accurate. We shall thercfore display tran-
sient results for 2DTD using the Fine Mesh results as the reference
solution.

The TWIGL results given in Reference 5 do not include average
powers within each homogeneous region, nor do they include the total
power. Only the pointwise fluxes are shown, and these are not imme-
diately comparable to 2DTD results. TWIGL execution times are avail-
able, however.

Tables 5.6 and 5.7 show the total powers versus time found from
2DTD for Test Problems 5.3 and 5.4, respectively. These results
show that the 2DTD method using the " coarse" mesh structure yields
very accurate results. The time-dependent assembly powers for both
test problems aré given in Appendix C. The time steps used by 2DTD
were determined to provide converged temporal results. The time steps
used compare favorably with the steps used to give accurate TWIGL
solutions.

As was done for Test Problem 5.2, 2IT)TD runs were made to deter-
mine the number of Gauss-Seidel iterations required per time step in
order to solve Eq. (5.15). Again, these results showed that one itera-

tion per time step is quite adequate. The transient error reduction
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TABLE 5.5

Eigenvalues Obtained for Test Problems 5.3 and 5. 4

Method Eigenvalue
2DTD Fine Mesh . 913363
2DTD Coarse Mesh . 913684
TWIGI, (finite differences) . 914193

Most accurate eigenvalue avaliable — .91322.

2DTD Fine Mesh — Uniform 8 cm.

2DTD Coarse Mesh — 2 (12 cm), 2 (16 cm), 2 (12 cm).
TWIGI., —- Uniform 8 cm.



TABLE 5.6

T'otal Powers versus Time for Test Problem 5.3

2DTH Total Power

Time (sec) Coarse Mesh Fine Mesh
0.0 1.0 1.0
0.1 2.051 2.059
0.2 2.068 2.076
0.3 2.085 2.094
0.4 2.102 2.111
0.5 2.119 2.129

2DTD runs used AT = 10 ms.
Transient Frror Reduction: .05.

Number of Cyclic Chebyshev iterations per time step:
Coarse Mesh: 18
Finc Mesh: 33

Error Summary:
i) Maximum error in total power: -.5%.

ii) F.rrcg/r in perturbed region power att = 0.0 sec:
-.16%.

iii) Error in perturbed region power at t = 0.5 sec:
-1.4%.
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TABLE 5.7

Total Powers versus Time for Test Problem 5. 4

2DTD Total Power

Time (sec) Coarse Mesh Fine Mesh
0.0 1.0 1.0
0.1 1.305 1.308
0.2 1.951 '1.959
0.3 2.064 2.073
0.4 2.081 2.090
0.5 2.098 - 2.108

- 2DTD runs used AT = 5 ms.
Transient Irror Reduction: . 05.

Number of Cyclic Chebyshev iterations per time step:
Conrse Mesh: 13
Iine Mesgh: 24

Eriror Summary:
i) Maximum error in total power: -.5%.

ii) Error in perturbed region power att = 0.0 sec:

-.16%.

iii) Error in perturbed region power att = 0.5 sec:
-.57%.
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criterion of .05 used in the previous test problem was found a]:so to be
adequate for Test Problems 5. 3 and 5 4.

Thc execution times of 2DTD are of obvious interest. 2DTD execu-
tion times for the Coarse and Fine mesh sizes will be compared to the
TWIGL execution times given in Reference 34. The TWIGL execution
times are adjusted since TWIGL solves the full core problem rather
than the quarter core problem. The digital computer speeds are com-
parable (IBM 370/168 - CDC 6600). The execution times are shown in
Table 5.8. This table demonstrates the superiority of 2DTD for tran-
sient calculations. One very interesting aspect of Table 5.8 is the com-
parison between TWIGL and the 2DTD Fine Mesh case. Since the mesh
sizes are identical, 2DTD involves three times the number of unknowns
(a flux and two leakages) as TWIGL. However, strangely enough, it
appears to run four times faster.

There appecar to be two major reasons for the efficiency of 2DTD.
First, the leakages do not require any iteration for their calculation;
thus the majority of the computational effort is directed toward the cal-
culation of the average fluxes. Second, TWIGL has two levels of iter-
ation at each time step; an outer iteration (between the groups), and an
inner iteration (to calculate the fluxes for this group). Since 2DTD
solves both groups simultaneously, the extra level of iteration is elim-

inated.



TABLE 5.8

Execution Time Comparison for Test Problems 5.3 and 5. 4

Test Problem Method Time Step Execution Time

(sec)

5.3 2DTD — Coarse 10 ms 5.28

5.3 2DTD — Fine 10 ms 18.78

5.3 TWIGL” 10 ms 86. 5

5.4 2DTD — Coarse 5ms 9. 37

5.4 2DTD — Fine 5 ms 32.34

*
5.4 TWIGL 5ms 137.5

*All TWIGL times adjusted for quarter-core calculations.
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5.2.4 Results from Test Problem 5.5

Test Problem 5.5 is a two-group problem based on a half-core
configuration of the BWR Test Problem.20 The thermal feedback model
used in Ref. 20 was not used for this test problem. The geometric and
material constants are shown in Appendix B. The half-core configura-
tion was chosen so that the accuracy of the flat source method could be
evaluated for test problems with large flux gradients.

This problem was des'igned to be representative of a rod ejection
accident. As shown in Appendix B, the region labeled as Composi-
tion 6 is perturbed by a step change in Za in both neutron groups. This
perturbation represents a reactivity increase of 1. 34 dollars. The tran-
sient is followed to .02 seconds, by which time the total power has
risen by a factor of four and the perturbed region power by a factor of
20. This introduces a very severe spatial flux gradient.

Transient runs were made using the 2DTD probram with both 15
and 5 cm spatial mesh sizes. Steady state results showed that the
assembly powers from the 5 cm mesh solution are accurate to within
0.2%. Therefore, the 5 cm results have been taken as the reference
solution. To determine the appropriate time step size, transient runs
using .05, .1, .2, and .4 ms time steps were made. The assembly
powers and total power for the case using a .1 ms time step were de-
termined to be accurate to within . 5% as compared to the standard
solution obtained by extrapolation. The five centimeter reference
solution was also run using a .1 ms time step.

Table 5.9 shows some results from this test problem. For a



TABLE 5.9

Results from Test Problem 5.5

Time Total Power
2DTD 2DTD
(ms) (15 cm)* (5 cm)Ar
0 1.0 1.0
2 1.1155 1.1160
4 1.2786 1.2786
6 1.4765 1.4745
8 1.7073 1.7011
10 1.9715 1.9586
12 2.2714 2.2488
14 2.6102  2.5741
16 2. 9920 2. 9379
18 3.4219 3. 3443
20 3.9054 3.7980

*
Time Step .1 ms, Execution Time 104 sec.

TTime Step .1 ms, Execution Time 1113 sec.
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15 ¢ mesh, the maximum error in the total power is 2.8% (with the
execution time under two minutes). Appendix C contains maps of the
transient region powers for the reference solution, as well as percent.
errors in region powers for the coarse mesh 2DTD solution. An exam-
ination of these results shows that the maximum region power error for
the 15 ecm mesh solution occurs in one of the perturbed regions at T =
.02 sec. The percentage error for this region at this time is 6. 4%.

Runs were made for this test problem to determine the number of

'Gauss-Seidel iterations required per time step in order to solve Eq.(5.15).
The results of these runs again showed that errors incurred from the

use of only one iteration per time step are very small. Runs were also
made to determine the appropriate transient error reduction for this

test problem. Since the reactor is prompt critical, small timé steps

are required to follow the transient accurately. The use of small time
steps tends to make the iterations which are needed to calculate the aver-
age fluxes converge more rapidly. To insure that the spatial iterations
were fully converged, a transient error reduction of 10—4 was used for
this test problem. For the 2DTD case with a time step of .1 ms and a

15 cm mesh size, this corresponded to the use of 8 Cyclic Chebyshev
iterations per time step.

Numerical solutions to this test problem using finite difference tech-
niques are not available. To obtain an estimate of the cost of solving
this problem using finite difference methods, some static runs were
made using the MEKIN code.6 Our objective was to determine the spatial
mesh size that is needed for MEKIN such that the maximum error in any

assembly power was less than five percent. It was found that if a mesh
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size ol 2.5 cm was used, the maximum assembly power was found to be
4.4%. The static solution to this half-core problem using MEKIN required
665 seconds of CPU time, as compared to 6 seconds for the 2DTD pro-
gram using a 15 cm mesh.

For the transient problem, the CPU time per time step for the IBM

6 (3 %x107% sec)(NPTX)(2+.3 * NDF)

370/168 required by MEKIN is
where NPTX is the number of spatial mesh points, and NDF is the num-
ber of delayed families. For this problem, NDF = 2 and NPTX = 8712;
Therefore MEKIN would require 6.8 seconds per time step. The time
integration method used by MEKIN requires smaller time step sizes to
insure accurate solutions than does the fully implicit method. For many
problems, five times more time steps are required.1 Therefore, we
estimate that a MEKIN solution of comparable accuracy to 2DTD would
require 1000 time steps and thus 1.9 hours of CPU time. Table 5.9
shows that the 2DTD solution using a 15 cm mesh required less than two
minutes to execute.

In the light of this discussion, we conclude that finite difference
solutions cannot provide the combination of high accuracy and low com-

putational effort that can be obtained from nodal schemes such as the

flat source analytical method derived in this thesis.

5.2.5 Results from Test Problem 5.6

Test Problem 5.6 is a two-group transient problem which begins
from the same initial conditions as does Test Problem 5.5. This test
problem simulates the ramp insertion of several banks of control rods,

with one of the banks "stuck" outside the core. The duration of the ramp



100

is from 0 to .2 seconds, and the transient is followed to .5 seconds. The
details of the perturbation are given in Appendix B.

Transient runs were made using the 2DTD program with a 15 cm
mesh. The reference solution was calculated using 2DTD with a 5 cm
mesh. To determine the appropriate time step size, transient runs
were made using 5, 10, and 20 ms time steps. The results of these runs
agreed to within . 1% for the total power and assembly powers. The re-
sults using a 10 ms time step for both 15 and 5 cm mesh spacings will
be presented.

Some results are shown in Table 5.10. Appendix C contains maps
of the transient region powers for the reference solution, as well as
percent errors in region powers for the coarse mesh 2DTD solution. An
examination of these results shows that the region power errors for the
coarse mesh solution are all less than 4.5%. The maximum error in
the total power during the transient is 1.2%.

Transient runs were made to determine the number of Gauss-Seidel
iterations required per time step in order to solve Eq. (5.15). Exami-
nation of the results using one, two, and three Gauss-Seidel iterations
per time step showed no significant differences. The strategy of using
one Gauss-Seidel iteration per time step has been successful for every
transient problem attempted. Therefore, it is felt to be a good approx-
imation for the general case.

The transient error reduction of .05 used in Sections 5.2.2 and 5.2.3
was found to be adequate for this test problem also. For the 15 cm

2DTD problem, this corresponded to the use of 12 Cyclic Chebyshev
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TABLE 5.10

Results from Test Problem 5.6

Time Total Power
2DTD 2DTD

(sec) (15 cm)® (5 cm) T

7)10 1.0 1.0
.05 .9182 L9112
.10 . 8502 . 8424
.15 . 8020 . 7936
.20 . 7660 L7571
.25 . 7604 . 7526
.30 .7585 L1506
.35 . 7566 . 7487
.40 . 7547 ' . 7469
.45 . 7531 . 7451
. 50 . 7514 . 7434

*
Time Step 10 ms, Execution Time 28. 4 secc.
TTime Step 10 ms, Execution Time 398 sec.
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iterations per time step. The results in Table 5.10 and Appendix C show
that the 15 cm 2DTD solution provides very accurate solutions in a small
computing time. The fully implicit time integration method provides
very accurate solutions for this problem.

In the calculation of the reference solution to this test problem, the
2DTD program predicted some negative fluxes in the reflector. This
behavior was caused by the rapid decifease in power level of the perturbed
assemblies. A scheme which was found to eliminate this problem will
now be described.

In his inves’tigation of albedo boundary conditions, Kalambokas7
developed steady state and time-dependent expressions for the albedos.
The time-dependent expressions involved omegas very similar to the
ones used in this thesis. Kalambokas observed that unless the reactor
was prompt supercritical, the omegas were rarely large enough to be of
significant influence in the calculation of the albedos. Therefore, in
2DTD the prompt omegas (see Eq. (5.5a)) were set to zero for any re-
gion in which the fluxes were decreasing.

This scheme was found to eliminate completely the problem of nega-
tive fluxes for the 5 cm reference case. In addition, comparisons of this
scheme with the normal omega scheme for the 15 cm solution to this
test problem showed that the results agreed to within a few tenths of one
percent. Therefore, it was felt that setting the prompt omegas equal to
zero in any region where the fluxes are decreasing is a legitimate approx-
imation for the general case. The results presented in this section are

all based on the zero omega approximation.



103

5.2.6 Results from the BWR Kinetics. Problem

Test Problem 5.7 is a two-diménsional quarter-core BWR kinetics
pmblem.30 This problem is designed to simulate a rod ejection accident
from a low-power condition. The thermal feedback model used in this
test problem incorporates adiabatic heatup with space-dependent Doppler

feedback. The equations describing this process are

a2 (6,8 &1 (5,0 + Zp, (6, 1) &, (58] = 57 Tlx, Y (5.16)
z,, (x5, = B, (x,t=0) {t + y(VTix, 1) - '\/To]}. (5.17)

\

The description of this test problem is given in Appendix B.
The 2DTD program was modified to include the above thermal feed-
back model, and several runs were made using a 15 cm spatial mesh.

The following time step sizes were found to yield acceptably accurate

results:

AT (sec) Time (sec)
.01 0<t<1.0
.001 1.0<t<1.3
.0005 1.3<t< 1.6
.002 1.6 <t<2.0
.01 2.0<t< 3.0

Table 5.11 presents a summary of the results obtained for this test
problem, as well as results obtained by other investigators.30’ 31

Entries in Table 5. 11 which have been left blank were either uncertain
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Results for Test Problem 5.7

Method

Werner37 FinnemannBO 2DTD
Number of time steps 1200 1300
Run time (sec) 120" 403
Initial M . 99629 . 99630 . 99693
N after rods out 1.01537 .01531 1.01693
Time to first peak (sec) 1.455 . 4425 1.402
Time to second peak

(sec) 2.0 2.0

P at first peak (w) 5712 5489 5627
P_, at second peak (w) 850 838
T ax 2t 3.0 sec (°K) 2979 3286
Tav at 3.0 sec (°K) 1096 1162

<
Execution time on an IBM 360/91.
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or unknown. Figure 5.1 shows a semilog plot of the total power during
the interesting period of the transient. Detailed power distribution and
temperature results are presented in Appendix C.

This test problem is very difficult since the neutron fluxes must
increase by many orders of magnitude before the thermal feedback comes
into play. For this particular problem, a time integration method which
uses an exponential transformation would have been more effective than
the fully implicit method used in 2DTD. The results in Table 5.11,
however, show that 2DTD is capable of producing accurate results with-

in a reasonable computing time.

5.3 Summary

One- and two-dimensional static methods for solving the diffusion
equations were derived in Chapters 3 and 4. In this chapter, we have
shown that accurate transient results can be obtained using spatial
mesh sizes as large as 20 cm. The analytic method has also been shown
to enjoy a significant cost savings over conventional finite difference

methods.
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Chapter 6

SUMMARY

6.1 Overview of Thesis Results

The objective of this thesis was to develop economical computational
techniques for transient analysis of light-water reactors. The initial
stages of the research consisted of an investigation of the finite element
method.12 This method has been shown to yield accurate results for
static and transient reactor problems. In Chapter 2, the results of sev-
eral attempts to speed the solution of the finite element equations by non-
linear means were reported. Although some success was obtained by
formulating a different eigenvalue problem, it was felt that a finite ele-
ment solution to the space-dependent reactor kinetics equations was
overly costly.

In Chapter 3 a one-dimensional analytic method for solving the static
one- and two-group diffusion equations was derived. This method was
shown to be exact in one dimension. The analytic method was success-
fully extended to two spatial dimensions in Chapter 4. Two procedures
for accomplishing this extension were developed; the "buckling" method
and the flat source method. These methods were tested for a variety of
two-group, two-dimensional static problems. The results of these test
problems demonstrated that the flat source method possessed the opti-
mum combination of accuracy and execution time. The flat source method
was therefore chosen to be extended to time-dependent problems.

In Chapter 5, the one-dimensional analytic method and the two-

dimensional flat source method were both extended to time-dependent
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problems. The results for a variety of test problems showed that the
approximations required to accomplish this extension were very accu-
rate for mesh spacings as large as 20 cm. The two-dimensional time-
dependent test problems demonstrated the accuracy and efficiency of the
flat source method. For both of the TWIGL test problems, the 2DTD
Coarse Mesh solution was shown to be more accurate than the TWIGL
solution; however, its execution time was an order of magnitude smaller
than that of TWIGL. Test Problems 5.5 and 5. 6 showed that 2DTD re-
tains high spatial accuracy even for problems with large flux tilts. Com-
parisons with conventional finite difference techniques (MEKIN) showed
that for equivalent accuracy, 2DTD can be as much as 60 times more
cost effective. Finally, Test Problem 5.7 showed that accurate tran-
sient results can be obtained for a very difficult test problem in which
the flux changes by nine orders of magnitude.

The analytic method developed in this thesis has been shown to be
accurate and economical for two-dimensional, two-group transient
reactor calculations. Comparisons with finite difference methods show
that the analytic method can be between 10 and 60 times less costly to
run. The analytic method is therefore an attractive alternative to finite

difference methods now in general use,

6.2 Extension to Three Dimensions

The results presented in this thesis have demoﬁnstrated that efficient
computational techniques should possess a nearest-neighbor coupling
relationship. The flat source method can be easily extended to three-

dimensional problems, and will retain this nearest-neighbor coupling
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TABLE 6.1

lixecution Time Breakdown for Test Problems 5.5 and 5. 6

Test ' Test
Problem 5.5 Problem 5. 6
Matrix Generation : 55% 51%
Iterative Solution of
Average Fluxes 18% 24%

I.eakage and Right-
hand Side Calcu-
lation 27% 25%
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relationship. In three dimensions, the result of each one-dimensional
analytic solution is an equation in which the x directed leakages are
coupled to the average fluxes, and also to the y and z directed leakages.
This equation and its couriterparts in the y and z directions are then
substituted into the integratéd diffusion equation. The numerical tech-
niques used in the 2DTD code can be applied 'co~ the solution of the three-
dimensional problem. |

The numerical solution of the two-dimensional transient diffusion
equations have been accomplished by the use of powerful iterative tech-
niques, such as the Cyclic Chebyshev iterative method. It is doubtful
that further improvements in execution time could be obtained by attempt-
ing a more efficient iterative solution.

The transient results for Test Problems 5.5 and 5. 6 have been ana-
lyzed to determine where the bulk of the computational effort is being
expended. Table 6.1 shows the breakdown of computational effort for
the 15 ¢cm solutions to Test Problems 5.5 and 5. 6. This table shows
that over 50% of the execution time during a transient is spent calculating
the matrices at each time step. Thus far, no significant effort has been
made to optimize the calculation of the ﬁatrices. It is apparent that the
matrix calculation should be performed with considerable care so that

the efficiency of the overall method is not seriously degraded.

6.3 Recommendations fof Future Work

Future work is required in the following areas:
i) The method incorporated in the 2DTD program uses a flat

representation of the transverse leakage. A higher order



iii)

vi)

representation, such as a quadratic expansion, can lead to sig-
nificant improvements in accuracy for some test problems.
Although such a representation would appear to be very com-
plicated, the accuracy improvement would suggest that this
area should be explored further.

The fully implicit time integration method used in 2DTD is a
very simple solution technique. As discussed in Sec. 5.2. 6,
for some problems a time integration method which uses the
exponential transformation could be superior to schemes which
do not use it. The applicability of the exponential transforma-
tion to the method derived in this thesis should be investigated.
In addition, other semi-implicit and alternating direction time
integration methods should be investigated.

Investigation of iteration strategies for three-dimensional prob-
lems.

Efficient generation of the coefficient matrices. Also, investi-
gations into whether approximations could be made to simplify
the matrix elements. |
Determination of average albedos at core-reflector and core-
shroud interfaces.

Efficient data management techniques for three-dimensional

problems.
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Appendix A
DERIVATION OF THE MATRICES [A'], [BY], AND [D}]

We wish to calculate the matrices [A'], [B'], and [D']. The deriva-
tion will be carried out for the case of two neutron energy groups. How-
ever, the results for both one~ and two-neutron energy groups will be

shown.

We assume that region R, (xis x< xi+l) is nuclearly homogeneous.

Thus, for the two-group case, Eq. (3.1) can be rewritten as:

_ 0 -
d 1 B .
D, =—5-2% N Y Zg2 ¢;(x)
dx
=0 (A.1)
d2
z D, —-Z $5(x)
i rl 2 dx2 2- Reiaad
where
z,. =z —lvz
1 T1 A f1°
We seek particular solutions such that
[ 42 1r - 1T
d_ 0 ¢ (x).1 -B2 0 b (xﬂ
2 1 1 |
dx
= . (A.2)
42 2
0 =1 | &,(x) 0 -B $o(x)
2| L2t | ER R Aad
L dx”_

Substituting Eq. (A. 2) into Eq. (A.1), we see that the numbers B2 must

be chosen so that

1
-D.le -2 v $,(x)

1
o

(A.3)

zrl -DzB - Zl ¢2(x)



118

Thus, the determinant of the coefficient matrix in Eq. (A. 3) must vanish.
Equation (A.2) is then valid only for certain values of Bz. We see that

there are two and only two values of B? which satisfy Eq. (A.2). These

values, designated K.2 and —-,Lz, are defined as:

R
Z E +f_‘_22r1
2D, ~ D DD

2 172

2
2 D1 D2 2Dl 2D2 )\DID2

where p.2 is always positive, and K2 can be either negative or positive.

P
oo
i
i
o] —
/"\
+
MUiMM
~—
+

(A. 4)

Let us turther define

¢ =
¢1 D2B + 22

so we have R(ncz) =r and R(—p.z) = g.

The general solution to Eq. (A.1) is then the linear combination

= a sinkx + a COS KX
1 2
¢2(X) r I'_
1 1
+ ag sinh px + ay cosh px
S LS
or
¢1(x) 1 1 a, sin kx + a, cos kx
= (A. 5)
¢ o(x) r s || ag sinh px + a, cosh px

and the corresponding current vector is
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-D, ?1% ¢1(x) i --D1 -D1 aK COS KX - a,k sin kx
-D2 _a(.i; ¢2(x) ] L—-Dzr -Dzs agp cosh px + a,mn sinh px
—Jl(x)
) 700 |

Let us write the total flux-current vector as

¢, (x)
$5(x)
o] =| 2 |=
Jl(x)
Jo(x)
- 2 .
1 1 0 0 10 sin kx COS KX 0 0 ] "al-T
r s 0 0 0 0 sinh px cosh px a,
0 O -Dl -D1 K cOS KX =-K sin kx 0 0 ag
0 o0 D e -D,n 0 0 p cosh px p sinh px a,
~ el lreollial
where [A] is the column vector col {al, Ao a3,u4}. Hence the above
equation reduces to
[2(x)] = [E][F(x)][A]. (A.6)

Both the matrices [E] and [F(x)] have inverses. They are given by
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s -1 0 0 |
-r 1 0 0
-1 1
[E] " = S 1
s ~-r 0 0 - = —
D, Dy
r 1
0 0 = -
i D1 D2
- ) _
sin Kkx 0  COS KX 0
COS KX 0 -—'lg-sin KX 0
[FG] ™ = | 1
0 -sinh px 0 —Jcosh pX
|
0 cosh px 0 - — sinh
L : p ST R

Thus, the coefficients in the general solution are given by

(a] = [F&)]7} [E]7! [2(0)]. (A.7)

If a homogeneous region extends from x, to x, we may find [e(x))]
in terms of [ﬁ’(xz)] by applying Eq. (A.6) for x = x; and Eq. (A.7) for

X = Xg. Thus
[2(x )] = [EI[FGx DI [FOe)) ™ [E]7 [20x,)).

Defining h = x, - x|, multiplying out and rearranging, we have

G(h) = [Flx )] [Flx)] !
cos kh 0 - —'lz sin kh 0 h
_ 0 cosh ph 0 - sinh ph
K sin kh 0 cos kh 0
L 0 -p sinh kh 0 cosh ph
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Then we have
[2Gx))] = (E]GM]I[E] ™ [o(x,)]. (A.8)
Comparing Eq. (A.8) to Eq. (3.4), we see that
exp -[N;] h = [E][G(W][E] ™',

-[N.] h,
. : 1 1 . s
Since we have an expression for e , we can obtain expressions for

tanh [N;]h,/2 and sinh [N;] h; by using the identities

sinh x = -%-(ex?e—x)
X  -X
_ei-e
tanh x = el

e" +e

Performing the necessary algebra gives the final expressions'

(Si tan k;h,/2 r, tanh p.ihi/2>

kP Py

pos

kiDyj kD

(x'isi tan k;h. /2 r.s, tanh pihi/2>
L

kDoj kDoj

-
(_ tan k.h, /2 . tanh p.ihi/Z)

(A.9a)

kDos iD o

(— r; tan kb /2 . s; tanh p.ihi/2>
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h (Kisi csc kh, - p;r; csch pihi)

i i S.r.Kk. csc k.h, - s.r.u. csch p.h.
( iii i1 iTiM o} 1)
-k. ¢csc k.h. + . esch p.h.
( iC it By 1)

(A.9b)
(-:ciri csc k;h, + s, csch pihi)

To calculate the matrix [DI] defined in Eq. (4.18), we observe that

the column vector [L] in Eq. (4.15) is defined

L] = col 0], - = ,
(L] = co {[1 hj[Lyi’j]}

and since only the top equation of Eq. (4.17) is used, we find that

D} = - (sinh’1 [,] hi> h, + [Ni]‘l.

Therefore it can be easily shown that

o

aTr b
) csc Kihi csch "‘ihi ] s, 1
o hy Ky My Dy Dy
D =
1,20 8-Ti| | csck.h s, csch w.h, r,
' ! ii i ii i 1
i K By | Pu Doy
1
| Zoi % VZpoi
+ (A.QC)
) §
Z1i%9i "% Y F2i %11 | Prli 214

In a region where there is no fissioning, we note that s will tend

to infinity. Thus, the matrices in Eq. (A.9) must be re-evaluated using

1'Hopital's rule. We find that
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tan k. h. /2
i 0
; kD1
(A} o1=1, (A.10a)
(ri tan Kihilz T tanh pihi/Z tanh.pihi/Z
N P kD1 HiDoj
(Ki csc Kihi) 0
[Bll l=h, (A.10b)
(riKi csc k;h, - r;p; csch p.lhi) (pi csch pihi)
hi csc Kihi
D..x 0
; 1i7i
(! -
hiri csc Kihi hiri csch “ihi hi csch p,ihi
Dk, ' D.gn " T Don
1i7i 1i™i 2171
= LVZ‘,
1 2i X f2i
+ ; . (A.10c)
TR T W T TR DS = |
rli li

For the case of one energy group, the following formulas are

oblained:
z.
Let K.2 = - =t
i D,
i
where

Then



. tan k.h. /2
[A] 5] = -

1:2 - D.K.
i
i -
[Bl, l] = hyk; esc k;h,

h. csec k.h.
1 il

i 1
[D) ol = =57~
11

D.;c.2
i
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(A.11)



Appendix B

TEST PROBLEM DATA

1) Test Problem 3.1

Geometry:

Composition

¢=0 } ) ]
0 20 cm 60 cm
Material Constants:
Group 1
Composition Dg zTg ngg, v zfg
1 1.5  .0623 .06 0
2 1.2 .101 .1 0
Group 2
Composition Dg ZTg ngg, vzfg
1 4 2 0 .218
2 15 .02 0 0

2) Test Problem 3.3

Geometry:

Composition

PP A I M I I

| I l ! l | | | | |
0 10 30 5 70 90 110 130 150 170

X Axis {cm)
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Matcerial Constants:
Same as Test Problem 4.2. For the one-dimensional case, the

buckling was not added.

3) Test Problem 4.1

Geometry:

A uniform square 100 cm on each side, with Ax = Ay = 20 cm.

$=0
100
=
x ——
J =0 & 5, ¢ =0
>
0
0 100
X Axis
(cm)
J, =0
M
Material Constants
Group | Dy Zpg  Fgge Vg
1 1.5 .0623 .06 0
2 4 .2 0 .218
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4) Test Problem 4.2

Geometry:

This two-dimensional test problem is a square 170 cm on a side.

170

150

4
130

<~
1]
(=]

110 —

90

70

Y Axis {(cm)
<
1]
o

50 —

30 —

10

| | ]
0 10 30 50 70 90 110 130 150 170

X Axis (cm)

J =0
y



Material Constants:

128

Group 1
Composition D 2 = vZ
P g Tg “sgg fg
1 1.5 .03 .02 0
2 1.5 .03 . .02 0
3 1.5 .03 .02 0
4 2.0 .04 .04 0
Group 2
Composition D z b2 v
P g “Tg “sgg' fg
1 .4 .08 0 .135
2 .4 .085 0 .135
3 .4 .13 0 .135
4 3 .01 0 0
2 -4 . cps
B =.8%X10 (in all compositions).



5) Test Problem 4.3

Geometry:

Test Problem 4.3 is a square 165 cm on a side.

"
o
Y Axis (cm)

165

135
120

105

75

b =0
5
3 741
3.
¢=0
1 3
15 75 105 135 165
J =0 120
y

X Axis (cm)
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Material Constants:

130

Group 1
Compositiog Dg ETg zsgg' vzfg
1 1.255  .033582 .02533  .004602
2 1.268 . 034851 .02767 .004609
3 1.259 .034172 .02617 .004663
4 1.234 . 035172 . 02805 .004668
5 1.257 . 0481434 .04754 0
Group 2
Composition Dg ETg ngg. v ng
1 .211 .1003 0 .1091
2 . 1902 .07047 0 .08675
3 . 2091 . 08344 0 .1021
4 . 1935 . 06552 0 .08792
5 . 1592 .01911 0 0

B =1><10“4

(all compositions).



6) Test Problem 5.1
Geometry:
Test Problem-5.1 is a one-dimensional two-group kinetics problem.
Composition 1 2 3
o=0 | - | !
0 40 cm 200 cm
Material Constants:
Group 1
Composition D z b vZ
P g Tg sgg' fg
1 1.5 .026 .015 .01
2 1.0 .02 .015 . 005
3 1.5  .026  .015 .0l
iroup 2
Composition [)g Ta )“sgg' vZJl,g
1 .5 .18 0 .2
2 .5 .08 0 .099
3 5 .18 0 .2

240 cm

131
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Kinetic Parameters:

Delayed .

Family Beta Lambda
1 .00025 .0124
2 .00164 .0305
3 .00147 L 111
4 .00296 . 301
5 : .00086 1.14
6 .00032 3.01

v1 = 107

5
Vo = 3% 10
Perturbation:

ZTZ in composgition 1 is linearly increased by 3%\over 1.0 seconds.

Problem solved out to 2.0 sec.
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7) Test Problem 5.2
Geometry:

Test Problem 5.2 is a two-dimensional two-group kinetics bench-

mark problem.

$ =0
100 cm
Je= $ $=0
0
0 J =0 100 cm
Yy
Material Constants:
Grou D b = vz
P g Tg sgg' fg
1 1.35 .003682 .0023 .00058322
2 1.08 .0056869 0 .0103148
Kinetic Parameters: ‘
B =.0064, XA =.08
v =.3X10'8, v =.22><10"6
1 2
-4

Step perturbation, AZTZ =..369% 10 ".



8) Test Problems 5.3 and 5. 4

Geometry:

Test Problems 5.3 and 5. 4 are square test problems in quarter-

core symmetry.

¢=0
80
— 3 3 3
g
L 56
J_=0 @ 2 1 3 $=0
X b
< 24
> 3 2 3
0
0 24 56 80
X Axis (cm)
J_=0
y

Composition 1 is the "seed" region.

Mesh spacings used:

TWIGL Mesh: Uniform 8 cm.

2DTD Coarse Mesh: 2 (12 cm), 2 (16 cm), 2 (12 cm).

2DTD Fine Mesh: Uniform 8 cm.

134



Material Constants:

135

Group 1
Composition Dg zTg ngg, vng
1 1.4 .02 .01 . 007
2 1.4 .02 .01 .007
3 1.3 .018 .01 .003
Group 2
Composition D z = v
P g “Te sgg' fg
1 .15 0 .2
2 .15 0 .2
3 .05 0 .06
Kinetic Parameters:
B =.0075, A =.08
- - -6
1/v, =1x10 1/v, = 5% 10

Test Problem 5. 3:

Step perturbation in Composition 1.

AL = -.0035.

T2

Test Prohblem 5. 4

Problem duration 0 €t < .5 sec.

Ramp perturbation in Composition 1.

A ZTZ

0 <t<.5 sec.

= -,0035, duration of ramp 0 <t .2 sec.

Problem duration



9y Test Problem 5.5

Gecometry:

Test Problem 5.5 is a half-core BWR test Problem.

Y Axis (cm)

$=0
330
5

300

3 3
270 B

2 2
240
=0

180
E] 1 2 $=0
150

3
90
2 2
60
6 3 | 4]
30
5
0
15 : 15 105 135 165

$=0
X Axis (cm)
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Material Constants:

137

Same as for Test Problem 4, 3, except for Composition 6; which is

. initially the same as Composition 3.

Kinetic Parameters:

Delayed
Family g N
1 . 0054 . 0654
2 .001087 1.35°
7 5
v1-3><10, v2-3x10

Perturbation in Composition 6.

Step Change at t = 0.0

AZ

-. 0006
al

A Ea2

-.006

Duration of transient

0<t< .02 sec.
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10) Test Problem 5.6

Geometry:

Test Problem 5. 6 is a half-core BWR test problem.

¢ =0
330
5
300
270
2 2
240 |
3
_J_=0
g X
@
k%
= 180
i :-Z_-I 1 2 6 b =0
150
3
90 t—
2 2
60
6 3 4
30
5
0 05 135 165
15 =0 75 105 13

X Axis (cm)
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Material Constants:

Same as for Test Problem 4. 3, except Composition é; which is ini-

tially the same as Composition 3.

Kinetic Parameters:

Same as Test Problem 5. 5.

Perturbation in Composition 6
Ramp change:

AZ

al 5. X 10

i

3
Azaz

il

5% 10

Duration of ramp

0 <t £,2 qec,

Duration of transient

0<t<.5 sec,
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11) Test Problem 5.7

Geometry:

Test Problem 5.7 is a quarter-core BWR test problem.

<
H
o

165
135

120 3 il

105

15 +
21 2

015 I =0 75 105 135 165

X Axis (cm)

-

Material Constants:

Same as Test Problem 4.3, except for Composition 6, which is ini-

tially the same as Composition 3.



Kinetic Parameters:

Same as Test Problem 5. 5.

Perturbation in Composition 6

Ramp change

Azal =0
.010116 cm'1

A ZaZ

Duration of ramp

0<t<2.0 sec.

Thermal Parameters:

Energy conversion parameter € = . 3204 X 10'10 ws/f

Mean power density at

t=0.0 d=1.0x10"° w/ce

Conversion factor in feedback model

a=3.83%x10 11 K co

Feedback constant

vy =3.034%10"° K

141
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Appendix C
RESULTS FROM TEST PROBLEMS
TABLE C.1
Region Powers at T = 0.0 and T = 0. 5 sec for Test Problem 5.3

For both directions, let the regions be defined as

l: 0<x<24cm
2: 24 <£x <56 cm
3: 56 <x <80 cm

(xxx) N (ZDTD Coarse Mesh
yyy .2DTD Fine Mesh

Region Power Map at T = 0.0 sec

3 . 03533 .03414 .008328
.03528 . 03431 .008363

Y 9 . 2438 .2518 .03414
Region . 2433 . 2522 .03431
1 L1133 . 2438 .03533
L1136 L2433 .03528
| ] 3
X Region

Region Power Map at T = 0.5 sec

3 .07360 .07305 01797
. 07442 .07435 .01825

v '2 . 5061 . 5455 . 07305
Region L5116 . 5530 - 07435
| .2331 . 5061 . 07360
. 2366 5116 L 07442

1 2 3

X Region



TABLE C.2

Region Powers at T = 0.5 sec for Test Problem 5. 4

Region defiritions given in Table C. 2.

Region power map at T = 0.0 sec also given in Table C. 2.

Region Power Map at T = 0.5 sec

3 . 07348
.07369

Y 2 . 5052
Region . 5066

. 2327
. 2343

1

.07292
.07362

. 5445
. 5476

. 5052
. 5066

2

X Region

.01794
.01807

.07292
.07362

.07348
.07369

3
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Y Axis (cm)

Figure C.1 Initial Power Distribution for Test Problems 5.5 and 5. 6: Rcflerence Case

3c0
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Y Axis (cm)

-

Figure C.2 Power Distribution at T = . 005 for Test Problem 5.5: Refercnce Case
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Figure C.3 Power Distributior 22 T = .01 for Test Problem 5.5 Reference Case
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Figure C.4 Power Distribui.on
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a: T = .015 for Test Problem 5. 5: Reierence Case
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Figure C.5 Power Distribution at T = .02 for Test Problem 5.5: Relerence Case
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Figure C. 6 Percent Errors for 15 cm 2DTD Solution at T = 0.0 for Test
Problems 5.5 and 5. 6

149

mlclwvwlw]lol ol cnjofjoiolvlwicl @
=] Tl i St=t st T a = -
1 '
|
dlajwv|lwlojol o) wf~]oloiolalv]l ol &
o~ ~— — o ] ] ] 1 t t O .|“ —t o
Ml Njo|l~]lalolwl ] ] H]Oolo]l af ~] 0l ™
S PR IR NN R I R R B B e A e I SPGB RS
! 1 ] 1 1 1
s —
~lwvl—=irciolafef 9] | it ol of ) in} T
Y s PN R = =0 0 B B B e R I RS B PR B P
] 1} ] ] 1 ]
wlNnjawjolalolec]ofl ~j~t oo ] of g cf 0
— - o ] 1 1} o~ ' 1] ) —_f
]
Wl ojojalmlolal ] nlwvw!l ol wlol of ]l o) ol ©
Toleta]l ilol il =l alal =] s} ¢l <] <~ &
1 ] 1 1 .ﬁ ' ! ]
)
o
ol ojolrj~lalol vl ] vl ola]l )~ V] oo ©
ﬂw ] 4 - ] 1 o r—4 N N — (] 1 ] —t —t t (o]
] 1 ] ] 1 ] t ]
ool lofm|w| ) il ] injal of | W o)
_. .. .ln .l“ _. .l“ — — ?m n/m .l. — ot _. 7.“ — .. ]
] t ] 1 ] 1 ] ] 1 ] ] ]
O Nl =N P o] ) H 0] N O
vl ) BN B S IPRE IONE BN B B PR PSS RS R R B B B
t ] ] ] 1 ] ] 1 ] ] ] ] ! ]
Ot O WO SN O SO o N o
© o~ B WM N e L O WM OO~ D o9
(32 TN <V o~ (39 o o~ o — — - — — — pt

(o) s1xy X

45 60 75 g0 105 120 135
X Axis {(cm)

30



.01 for Test

Problem 5.5

Figure C.7 Percent Errors for 15 cm 2DTD Solution at T

150

w
o
—
—~ i NNl ~]—~ ]~~~ ]t ] |
— o~ o~ _1n/ma/m.|._ ~— f—
[ DU T I N B B |
O
[aN]
—
Htltolmioftrt. NI NN~ NN ]| |~ |
[ I N B B _1111]“‘11.“1_ — ] —
| I O N N N N R S B A |
wn
(@]
—
N|jO || O Mmoo {oimoiIVML I~ o]
.I“2220111|“.._111.11 1
LI S B | LI I I |
o
C~
OIM IO lwvwimltiIoojOO NN |IN {Hlrme [N O [~ frm | —
Llndl.ll.lu__.lnll_l.l
LI R R A | LI O B O |
wn
7
=]~ N]~]JO]JOO]DO | D~ N | —
—l - ' ' B B P P B I K=
LI |
(@]
. Ne}
DN = I~ I H TN FTO]MNJTOIN JTOIN O
e g4 o § s | e 3 e 37 o} ey e } .
t =1~ 1] ] =1} — [ I [ O |
t | rt ] 1 ¢t
wn
H
Hl1ojo |t~ IO |~ ]|]0DITojOI-TOLI-] N
. « ! .
—~ et o~ L~ 1NN ~F e —
LI O T A A (I I
(@]
o
Olmjo|W}jOjH|lOw]OW|l~JO]lO | N]OI~TO O | |
11.“11.“1111&1.“__ —{ o~ ]~ N N
(2 T NS [ U A NN SN NONE TN BN NN BN A R NN BN B |
} w
—
Ol<t [ ]|mio|=|O | 0> O{HlO]O@]WOIM | WO -~
. . L] .
ANfe— =N ) = Nl Iomlm
LI I | [ I O D I B | LI |
. s (@]
[« TN o Y = TR Vo NN o BN T BN < B ¥ o IR o SR o AN o SN ¥ AN oo TR U 9 Y v JRNNN ¥ o SN« TR U AN o0
[ TR~ o BEE o N ¥ o B L A AT * BEEN o I U o Y o o Y N Y o JUREN @ AN o RN BN - B oo}
M A NN N N N et e et e e -

(wo) sixy X

X Axis {cm)



.02 for Test

2DTD Solution at T

5 cm
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Y Axis (cm)

Figure C.9 Power Distribution at T = .2 for Test Problem 5.6:
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Figure C. 10
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Power Distribution at T = .3 for Test Problem 5.6:
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Figure C.11 Power Distribution at T = .5 for Test Problem 5.6:
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.5 for Test

Figure C.13 Percent Errors for 15 cm 2DTD Solution at T

Problem 5.6
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Figure C.14 Region Powers for Test Problem 5.7 =0.0

=1.405
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Figure C.15 Region Powers for Test Problem 5.7 T=2.0
: T=3.0
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.2760+42 |.2866+2. 328342, 4274+2 |. 5956+2 |. 8203+2 |.1097+3}. 1415+3|.1045+3
.1690+3 |.1804+3}.2135+3}.281143|.3871+3]. 522243 |. 6840+3 l8700+3 .6368+3
.2254+2 |. 237042 |.2734+2}. 3508+2 |. 4738+2 |. 6308+2 |. 8196+2{. 103943 |.7598+2
.1769+31.1709+3].19114+3}.2518+3|. 3630+3|.5188+3 |. 6531+3}. 7548+3 |.5253+3
. 239442 |, 227942 }.2486+2|.3200+2 |. 4545+2 |. 6437+2 .8051+2V.9269+2 . 6437+2
.245143 |, 1816+3]. 1843+3].2449+3 |. 394043 |. 711143 |, 864943 |. 7764+3 |. 4922+3
. 334842 |, 2445+2]. 242042 . 314442 |, 4987+2 [. 8944+2 |. 1083+3|. 9680+2 |. 6127+2
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Figure C.16 Average Temperatures for Test Problem 5.7 T=2.0
T=3.0
606 612 645 727 851 957 940
731 740 789 910 1093 1253 1237

790 157 785 912 1154 1466 1630 1568

989 944 987 1174 1530 1993 2256 2196
855 705 698 814 1116 1776 2174 2249 1494
1080 872 865 1036 1477 2448 3068 3262 2143
764 632 624 727 1006 1634 2071 2267 1609
953 769 760 911 1318 2242 2918 3286 2313
563 542 558 641 814 1080 1342 1570 1199
671 643 668 789 1043 1436 1833 2189 1648
471 478 503 565 667 801 961 1141 913
542 552 590 679 829 1026 1263 1531 1202
437 445 468 516 593 689 804 | 935 761
495 506 539 609 720 . 860 1026 1218 968
443 437 451 497 583 703 804 879 699
504 496 516 581 703 874 1019 1127 872
499 446 447 494 612 863 984 911 685
584 509 510 576 743 1100 1271 1168 847
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