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ABSTRACT

This thesis is concerned with methods for the transient solution of
the neutron diffusion equations in one or two energy groups. Initially,
nonlinear methods for solving the static diffusion equations using the
finite element method were investigated. By formulating a new eigen-
value equation, some improvement in the solution efficiency was obtained.
However, the transient solution of the diffusion equation using the finite
element method was considered to be overly expensive.

An analytic method for solving the one-dimensional diffusion equa-
tion was then developed. Numerical examples confirmed that this method
is exact in one dimension. The method was extended to two dimensions,
and results compared employing two different approximations for the
transverse leakage. The method based on a flat approximation to the
leakage was found to be superior, and it was extended to time-dependent
problems. Results of time-dependent test problems show the procedure
to be accurate and efficient. Comparisons with conventional finite dif-
ference techniques (such as TWIGL or MEKIN) indicate that the scheme
can be an order of magnitude more cost effective.
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Chapter 1

INTRODUCTION

1. 1 Introduction

The design and safety analysis of present-day light-water-moderated

nuclear reactors requires very sophisticated mathematical and computa-

tional techniques. The complexity of safety analyses required for

reactor licensing today far exceeds that which was needed seven to ten

years ago. Although during this time period digital computer technology

has improved dramatically, a realistic accident analysis of a large light-

water reactor remains a very expensive calculation.

The objective of this thesis is to develop economical computational

techniques for transient analysis of light-water reactors. In this chapter

solution techniques in present use will be reviewed, and the scope of the

present investigation will be described.

1. 2 The Problem to Be Solved

The analysis of light-water-moderated nuclear reactors is most fre-

quently performed by solving the diffusion equation in few energy-group

form. This equation is a low-order approximation to the Boltzmann

transport equation, a much more exact equation which may be derived

from first principles. The diffusion equation is a parabolic partial dif-

ferential equation with variable coefficients. Thus, for any practical

configuration, the equations are not analytically solvable; and numerical

schemes must be employed. Let us write the time-dependent, energy-

group diffusion equations:



I I

1a) (r, t) = V
v at g

G
D (r, t) V4 (r,t) + Z Z ,(r, t) 4 ,(r, t)

- g- g,=1 gg --

I
+ ZXL x .giCi (r, t)

aC

(1 <g<G)

(1. 1)

= -%iCi(r, t)

G

g'=1
P v Zfg,(r, t) 4 ,(r, t)

fg'- g
(1 I i <I)

where

G = total number of neutron energy groups

I = total number of delayed precursor groups

2
4* = neutron flux in group g (n/cm sec)

th -3
C. = density of the i' precursor (cm )

vg = neutron speed in group g (cm/sec)

D = diffusion coefficient for group g (cm)

I , = macroscopic transfer cross section

where

from group g' to g (cm 1 ),

z =Xgg pg 1-P) VEfg

x P

E - E .T,
ag g,,g sg'g

= prompt fission spectrum in group g

VEfg = nu, the number of neutrons per fission, times the macroscopic

fission cross section in group g

ag= macroscopic absorption cross section in group g

Es'= macroscopic scattering cross section from g' to 'g
Sgg'y
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= total fractional yield of delayed neutron per fission

ggI=Xpgv fg(1 -P) + sgg, g' # g

X = decay constant of the i'th group of delayed emitters

Xdgi = fraction of group i delayed neutrons which appear in neutron

group g

p. = fraction of fissions which produce a delayed emitter of group i.

If the material constants are known as a function of r and t, and if an

initial flux distribution in energy and space are known, then a unique

solution to Eq. (1. 1) may be obtained.

The solution of Eq. (1. 1) can be divided into two stages. First, the

time-independent version of Eq. (1. 1), obtained by setting all the time

derivative terms to zero, is solved to find the initial flux distribution

in energy and space. Then, the time dependence is introduced; and the

solution is advanced in time.

This thesis will not have the development of time integration methods

as its principal objective. However, any method developed to solve the

time-independent version of Eq. (1. 1) should be extendable to time-

dependent problems. Let us then write the time-independent version

of Eq. (1. 1):

G
-- 1 (, t) V * (r, t) - E- ,(r, t ' (r, t = 0

.- g- -g- gg - g

(1 <- g < G) (1. 2)

where now
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E = [X (1-p)+ Z Xd pi]vg - a - Y'gg pg gii g ag 'g sg'g

gg' [Xpg(1-)+ 1 Xdgi i]v E , + E , g, * g.

Light water reactors are designed using a rectangular x-y-z coor-

dinate system. Any x-y slice contains a great deal of geometric com-

plexity, while the z direction is relatively homogeneous. In the x-y

plane, the geometric detail is divided into several stages. The reactor

is composed of a large number of "fuel elements," cylindrical rods which

are 1/3" to 1/2" in diameter. The reactor is composed of a rectangular

lattice of these fuel elements. The fuel elements are partitioned into

rectangular "fuel assemblies," squares ~'8" on a side. The fuel elements

in each assembly are generally identical for the initial core loading (that

is, they all have the same enrichment of U 2 3 5

The first stage of a full core reactor analysis is the calculation of

"equivalent, homogenized, diffusion theory constants" for each fuel ele-

ment and surrounding water. This is normally performed by solving

an approximation to the transport equation more accurate than the diffu-

sion approximation. Once these constants have been found, the solution

of the diffusion equation (1. 2) can commence.

In the x-y plane, the geometric detail needed to describe each fuel

element yields roughly 250 X 250 mesh points. Thus, for most solution

methods, a full core time-dependent reactor analysis would be extremely

costly. To reduce the geometric detail required, equivalent homogenized

constants for each fuel assembly are found, using the sets of equivalent

constants for each fuel element, control rod, water hole, etc.I This
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procedure yields a regular square array of homogenized regions each

~8" wide. Equation (1. 2) can then be solved using this lesser degree

of geometric detail and the homogenized material constants associated

with it. It is the solution of this "homogenized" problem to which this

thesis will be addressed.

1. 3 Review of Solution Techniques

A wide variety of techniques for solving Eq. (1. 2) have been inves-

tigated. Some of the most successful of these methods are finite differ-

ence methods, synthesis methods, finite element methods, and nodal

methods. These will now be described briefly.

The most common solution methods for Eq. (1. 2) are the finite dif-

ference methods. 4, 5 These methods use a low-order finite difference

approximation to the second derivative term V - D (r, t) V4p (r, t). Sev-

eral properties of finite difference methods are very advantageous:

i) The matrix equations which must be solved have a very simple

structure.

ii) The matrices are easily formed.

iii) The method can be guaranteed to converge to the correct solu-

tion of the differential equation in the limit of small mesh

spacings.

When applied to the "homogenized" problem, however, these tech-

niques often require a large number of mesh points in order to obtain an

accurate solution of the equations. Therefore, the number of unknowns

required is high, not because of the geometric detail, but for accuracy



considlerations.

If the fuel elements within an assembly are not homogenized as

described above, the geometric detail requires a very large number

of mesh regions. A solution technique for which this is not a great

drawback is the synthesis method.2 This method finds an approximate

solution to Eq. (1. 2) by taking linear combinations of precomputed "trial

functions." In the most successful of these methods, we expand the neu-

tron flux in each energy group as follows: 3

K
9 (x, y, z) = k 1 gk , ) Tgk(z)

where *gk(x, y) are precomputed, two-dimensional expansion functions.

The accuracy of the method rests on how well the correct solution 4 (x,y,z)
g

can be approximated at each axial level by linear combinations of the

*)gk 'X Y)'

Synthesis methods achieve a drastic reduction in the number of un-

knowns; however, a poor choice of expansion functions can give an inac-

curate answer. Moreover, there is no systematic way to estimate the

magnitude of this error. This lack of a definite error bound has pre-

vented synthesis schemes from being widely accepted.

Another method for solving Eq. (1. 2) which has received consider-

able attention is the finite element method.6, 7 Some advantages of this

method are:

i) The matrix equations to be solved, although more complex than

those of finite differences, retain a generally simple structure.

ii) rho solution can be guaranteed to converge to the correct
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solution of the differential equation in the limit of small mesh

spacings.

iii) A high-order polynomial approximation may be used, thus accu-

rate solutions are obtained for large mesh regions.

The major disadvantage of this method appears to be that the coeffi-

rientri mtatrices become sufficiently complex that the time needed to solve

the problem exceeds considerably that which would be expected from the

number of unknowns. For that reason, a method of high accuracy which

retains the simple matrix structure of finite differences is more desir-

able.

Nodal methods have been in existence for some time. 8 A nodal

approximation results when the reactor is divided into a relatively small

number of coupled regions, and the calculation is oriented toward ob-

taining the average flux or power level in each region. The "coupling

coefficients" between adjacent nodes are generally not defined in a rigor-

ous way.

More recently, successful attempts have been made to combine the

"nodal" approach with more systematic means for calculating the cou-

plings between nodes. 9 ' 10, 11 Most of these techniques utilize a local

polynomial expansion to calculate couplings between two adjacent nodes.

These techniques have the promise of providing accurate solutions to

Eq. (1. 2) while using a coarse spatial mesh.

1. 4 Summary

This thesis will be concerned with both the finite element method and

the nodal method. In Chapter 2, nonlinear methods will be applied in an

- - A
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effort to reduce the coupling complexity of the finite element matrices.

An eigenvalue updating scheme will be developed which can improve the

running time of Eq. (1. 2) when the finite element method is used.

A two-group nodal method for solving Eq. (1. 2) in one dimension

will be derived in Chapter 3. In Chapter 4 this method will be extended

to two-dimensional problems, and the scheme will be extended to time-

dependent problems in Chapter 5. Numerical results for some realistic

two-dimensional reactor transients will be presented. Chapter 6 will

summarize the investigations.
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Chapter 2

SOLUTION OF TIE FINITE ELEMENT EQUATIONS

2. 1 Introduction

The finite element method, created in order to solve complex prob-

leins in structural mechanics, has found applications to many other prob-

lems in mathematical physics. It has been applied with success to the

solution of the multigroup diffusion equation by a number of investiga-

tors. 12, 13, 14, 15 For practical computations, the finite element method

offers several advantages over other methods:

i) High-order polynomials can be used, yielding very accurate

approximations with a relatively few number of unknowns.

ii) The method yields a continuous approximation to the variables

of interest, rather than a discrete approximation.

iii) Boundary conditions are easily imposed.

iv) The system of linear equations is amenable to computer solution

by well developed methods.

Full core solutions for light-water reactors generally involve core

configurations with large homogeneous (homogenized) regions. For prob-

lerns of this kind, the finite element method has been shown to yield

acceptable accuracy while maintaining a relatively large mesh size, and

hence relatively few unknowns. 13,15 Because of this promise for use in

full core light-water reactor problems, an investigation into appropriate

solution techniques for the finite element equations was carried out.
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2. 2 P roperties and Structure of the Equations

The "finite element method" is the use of piecewise polynomials as

expansion functions for the Ritz-Galerkin method. Thus, the generation

of an approximate solution begins with the definition of an appropriate

mathematical space of functions, from which an approximate solution

will be selected by application of the Ritz-Galerkin method.

Let us write the time-independent multigroup diffusion equation in

matrix form:

-V - [D(r)] V [(r)] + (r_)][ r)]

= [X] [v E(r)]T [4(r)] (2.1)

where

[*(r)] is a column vector of length G containing the neutron fluxes

(n/cm2 see)

[D(r)] is a diagonal G X G matrix containing the diffusion coeffi-

cieits (cm)

[t (r)] is a G X G matrix containing the absorption-minus-scattering

cross sections (cm~)

[v 2f(r)] is a column vector of length G containing nu, the number

of' neutrons per fission, times the fission cross section (cm )

[x] is a column vector of length G containing the fission neutron

spectrum

X is the critical eigenvalue of the problem.

Solutions to Eq. (2. 1) have been obtained for several different spaces

of functions, and a variety of orders of polynomial approximations. For
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example, linear Iermite polynomials,12, 13 cubic Hermite polyno-

13.015 14mials, 1 and quadratic Lagrange polynomials all have been used.

For the purposes of the present discussion, the discrete equations ob-

tained for the linear Hermite scheme will be described, and relation-

ships to other schemes will be discussed later. Light-water reactors

are generally designed using an orthogonal x-y-z coordinate system.

Thus, for purposes of illustration, the linear finite element method in

one (x) and two (x-y) dimensions will be described. We shall limit our

investigation to two-group problems.

A one-dimensional reactor configuration is defined over the region

R = [0, X]. For approximation by linear polynomials, this region is

divided into a partition as follows:

7: 0x < .. < x1+2 X.

We define the linear function ui(x) as follows:

i-1

x.- x 'i 4 x 4

U 1 (x) X -+I x X
x. -x. ' I i+1

i+1 1

0, otherwise

An approximate solution for the flux in neutron energy group g is then

1+2
+ (x) 2 E * .u.(x). (2.3)

g i=1 gil

The functions uI(x) and u1+ 2 (x) are chosen so that the boundary concitions



are properly accounted for. 16 If, for example, uI(x) = uI+ 2(x) = 0,

there are I number of independent variables gi for group g.

Inserting Eq. (2. 2) into Eq. (2. 1), weighting by Eq. (2. 2) and inte-

grating over 0 1 x 4 X yields the following matrix equation:

[L

0

=1$

1] 0

[L 2 2])

[A21] [A[2]

[A21 [A22

([XI [M 1] T

[X2]) [M 21 [2

(2. 4)

is a matrix of dimension I X I

is a matrix of dimension I X I

is a matrix of dimension I X I

is a column vector of length I

(D u(x d
gdxu"ixl dx

= (E , u ,(x), u (x))

r1 ui,(x), ui(x))

= (v I u.,(x)) u.(x))

21

where

-[L]

[A gg

[M ]

[4 ] 1

and

u (x))-L

A
g g t

A 2 1 . t

M
gi i

where

I
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(u, v) = f. u(r) v(r) dr.

Rewriting Eq. (2. 4) in a more concise notation, we have

[- 2 2][] = 976]m].(2. 5)

Each of the matrices in Eq. (2. 4) is tridiagonal. This is because

of the local nature of the linear "tent functions." Thus, Eq. (2. 5) can

be solved using conventional methods. Specifically, a fission source

iteration can be applied to converge the eigenvalue and fluxes.18 For

each fission source iteration, two matrix problems of the form

[B j[9 ] = [S ] (2.6)

must be solved. However, since each [B ] is tridiagonal, obtaining the

solution is simple.

The above techniques are identical to those which would be used to

solve one-dimensional finite difference equations. The distinction be-

tween the two methods lies in the fact that for finite differences the ma-

trices [A ,J and [M ] are diagonal rather than tridiagonal.

For two-dimensional (x-y) situations the equations become more

complex. The region R is defined

a = [o, x1 x [o, Y]

with this region divided into a partition:

7r: 0 xI < ... < XI = X

0= y < ... < y,= Y.

The approximation to the flux is defined by a product u.(x) u.(y). Let us
1 3
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assume that I and J are the number of partitions in the x and y direc-

tions, rcspectively. The application of the method in two dimensions to

Eq. (2. 1) yields an equation of the same form of Eq. (2. 4), with the

exception that all matrices are of dimension IJ X IJ. We now have

-L = (D Vu.,(r), Vu (r))

A = (E u (r), u.(r))

(2.7)

A 2 1 .t = (riui(r), u1(r))

M = (V fg uiI (r) u(r)).

In two dimensions, the structure of each of the

tridiagonal, with each block being tridiagonal.

results.

Let us draw a two-dimensional grid about

x
(i-1, j+1)

x
(i-1, j)

x
(i-1, i-1)

x
(i, j+1)

x
(i, j)

x
(i, j-1)

above matrices is block

A nine-stripe structure

point (i, j):

x
(i+1, j+1)

x
(i+1, j)

x
(i+ 1 ,j-1)

We note that point (i, j) is coupled not only to itself, but also to the eight

surrounding points. This nine-point coupling is present in the [L ],

[A ,,], 'and [M l matrices. In finite differences, all the matrices

[A . , and [M 1 are diagonal and [L ] is only five-stripe; point (i, j)

- 1110111W -



being coupled to only its four immediate nearest neighbors. Since the

matrices [L 1, [A ,, and [M ] in Eq. (2. 4) are symmetric and posi-

tive definite, 1 3 ' 16 and the equations are solved one group at a time as

in Eq. (2.6), it can be proved that the matrices [B j in Eq. (2.6) are

positive definite. Therefore a block successive over-relaxation itera-

tion scheme can he guaranteed to converge for all overrelaxation param-

eters w such that 0 < w < 2.1 7

The eigenvalue and eigenvector estimates can be found by a fission

source iteration with Chebyshev acceleration, or by coarse mesh re-

balancing.18,19 As mentioned above, the solution of the matrix equa-

tions (2. 6) can be obtained by successive over-relaxation.

The equations obtained from the linear finite element method have

a relatively simple structure since the unknowns represent the height of

the "tents" at each mesh point. Although the use of higher order poly-

nomials yields more accurate approximations, this accuracy is obtained

at the expense of more complex coefficient matrices. The use of cubic

Ilermite polynomials in two dimensions (at nonsingular points) generally

leads to four unknowns per group at each mesh point ($ , 'yI xy, . The

nine-point structure found for linear elements is extended to 36-point

coupling for the cubics (each of four unknowns coupled to 9 adjacent

points). This structure holds for not only the [L I matrices, but also

[A ,] and [M 1. TPhus, the straightforward implementation of succes-

sive over-relaxation schemes will be complicated because of data-handling

problems, and much denser matrices.

24
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2. 3 Nonlinear Iterative Schemes

The increased complexity of coefficient matrices in the finite ele-

mient nethod increases execution times to more than would be expected

in view of the number of unknowns. Thus it was desired to investigate

schemes which would reduce the degree of coupling by nonlinear means.

The two facets of this investigation were:

i) To reduce the coupling complexity of the matrices [A 2 1] and

[M 1 from nine-stripe to diagonal (the same structure as finite

difference).

ii) To reduce the coupling complexity of the [B I matrices in
g

Eq. (2. 6) from nine-stripe to five-stripe (the same structure

as finite differences).

Item (i) would help relieve data-handling problems, and speed the calcu-

lation of the vectors [S 1 in Eq. (2. 6). Item (ii) would speed the solu-

tion of Eq. (2. 6) because of the sparseness of the matrix, and also by

opening up the possibility of using the Cyclic Chebyshev method of itera-

tion instead of successive over-relaxation. The Cyclic Chebyshev method

is to be preferred because of its increased average rate of convergence.17

An investigation was carried out concerning the above objectives. A

two-dimensional, two-group model of a PWR was used for eigenvalue

calculations to test the various methods proposed. Results will be re-

ported in a qualitative fashion only.

To illustrate the nonlinear reduction of a nine-stripe matrix to a

diagonal matrix, let us write

E[4d = [A] [4] (2. 8)
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where [Ej is a nine-stripe matrix, [A] is a diagonal matrix, and [4] is

a column vector of fluxes. The diagonal elements of [A] are given by

[1 /[2] [v], where [1/t)] is a diagonal matrix whose entries are the in-

verse flux values, (1/4 ). A nonlinear procedure would be to "diago-

nalize" the [Y] matrix by use of the most recent flux iterate. These

nonlinear updates could be performed after a numter of fission source

(outer) iterations have been performed.

Numerical tests of the above scheme show that the method will con-

verge to the correct solution of the difference equations using four or

five nonlinear updates interspersed in the outer iterations. However,

the non-linear updates appear to degrade the rate of convergence that the

Chebyshev polynomiais, used to accelerate the outer iterations, provide.

Although less work is required to form the source terms, the increased

number of outer iterations needed to solve the problem makes the overall

solution time much longer. These results show that although the non-

linear updating procedure will converge, the potential time savings for

each outer iteration is insufficient to warrant auoption of the scheme.

It was felt that scheme (ii) held a much larger potential for time

savings, especially since iterative schemes like Cyclic Chebyshev could

then be used.

The collapsing of nine-stripe matrices to five-stripe matrices can

be done in a variety of ways. The general transformation is

[L][4)] = [L'][4)] (2.9)

where [L] is a nine-stripe matrix, and [L'] is a five-stripe matrix. We

assume that the number of unknowns in the x and y directions are I and
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.1, respectively. Let us order the column vector [I first by rows, then

by columns; such that the (i, j) element of [ I is indexed k, where k =

i + (k-1) * I. Then Lkk, k represents the (k, k') element in the [L] matrix.

th
We can write the k equation of Eq. (2. 9) as:

Lk k-I-1 k-I-1 + Lk, k-IOk-I + Lk, k-I+1k-I+1

+ Lk, k-1 k-1 + Lk, k + Lk, k+1 k+1

+ Lk, k+I-1 k+I-1 + Lk, k+I k+I + Lk, k+I+1 k+I+1

= Lk k-I k-I LkI k-1 k-1 +Lkkk

+ LI k+1 4 k+1 + Lk+I k+I (2. 10)

where the coefficients LI LIk LI LI, and L' arek,k-I kpk-1I k, k k,k+ 1 kIPk+I

unknown.

While Eq. (2. 8) provides a unique solution for the diagonal elements

of [A], there is no unique solution to Eq. (2. 10). Three possible schemes

used to obtain an [L'] matrix which satisfies Eq. (2. 10) are:

a) Let the contribution of the four corner points be "folded" into

the diagonal, as:

Lc, k k Lk, k-I- 1 + Lk, k-I+1 k-I+1

+ L k, kk + Lk k+I-1k+I-1 + L k,k+I+1k+I+1 (2.11)

with the other matrix elements L L! .

b) Let the contribution of the four corner points be "folded" into

a the four adjacent off-diagonal points; for example, for point

(k, k -I):

- - -. Mmft -
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Lk-I k-I (Lk k-I-1k-I-1 + Lkk-I+1k-I-1) + Lk-Ik-I'

(2. 12)

c) Let part of the contribution of the four corner points be "folded"

into the diagonal, and part be folded into the off-diagonal, as:

k, kk= z(Lk k-I1 k-Il- + Lk, k-I+1k-T+1 + Lk, k+I1- 1k+I-1

+ Lk, k+I+1Ipk+I+1) + Lk, kk (2. 13a)

and for the point (k, k-I):

(1 - z)

Lk, k-Ik-I 2 (Lkkk-I-1k-I-1 Lk, k-I+1 k-I+1

+ Lk-I k-I (2. 13b)

where z ranges from 0 (scheme b) to 1 (scheme a).

The above updating schemes were tested for a variety of z values.

The nonlinear updates were inserted after a number (typically eight or

ten) of outer itterations had been performed. The results obtained are

summarized in Table 2. 1.

The results in Table 2. 1 show that the nonlinear process is conver-

gent in only a small range of z values, and behaves very poorly when

outside that range. Even though convergence was achieved for z = .3,

the degrading effect of the updating procedure on the convergence rate

of the outer iterations caused the running time to be much longer than

that obtained by using standard linear iterative techniques.

Thus the nonlinear updating procedure of scheme (i), although com-

putationally inefficient, did converge to the correct results. Whereas,

- - _ft -



29

S

Value of z

0 (scheme b)

.2

.3

.5

1.0 (scheme a)

TABLE 2. 1

ummary of Nonlinear Iterative Results

Results Obtained

Problem did not converge; eigenvalue oscillates
with each update.

Fluxes converge, although a slight eigenvalue
oscillation with each update was noticed.

Converged with no oscillations.

Eigenvalue diverged farther with each update.

Divergent results, negative fluxes obtained.

scheme (ii) generally failed to converge and proved to be very unstable.

To understand the causes of this behavior, let us rewrite Eq. (2. 5):

X[0] = [-AX + Q.]~' [m7f][0]. (2. 14)

If [0] is the converged flux vector, the replacement of [7??] [] by [A] [4]

will not affect Eq. (2. 14). However, the replacement of [- A + Q ] by

+ Q '] as above may give different results, since we have no guar-

antee that [-es ' + .'I= [- + a ] . In addition, when part of the

contribution of the off-diagonal elements is added into the diagonal

(schemes a or c) the potential exists for L, k to be either zero or nega-

tive. This situation may account for the oscillations observed, and the

negative fluxes obtained.

In summary, attempts to improve the execution times of the linear

finite element equations through nonlinear collapsing techniques proved

to be either computationally inefficient or unstable. It appears that

efforts to increase solution efficiencies must be directed elsewhere.
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2. 4 An Eigenvalue Updating Scheme

The methods introduced in the previous section to reduce the coupling

complexity of the [B ] matrices in Eq. (2.6) were all based on keeping

the full [B ] matrix on the left side of the equation, and then modifying

its form. We shall now outline another possible scheme.

Let uS begin with Eq. (2. 5):

A[- Q ~] [4b] lipW. (2.5)

We split

[- A + Qx + 1 + [- + ]2. (2.15)

Letting n be the outer iteration index and substituting Eq. (2. 15) into

Eq. (2. 5), we have:

[- +Q ] [l"* =(#[Q7] [-AR + Q 12) [il".

Thus,

[(]n+1 -[ + q ]11  [ -[- A+ C ) [ n (2.16)

or

[] 1 = [C()]

One possible splitting of [- ( + ( ] is to place the four corner

point coefficients of [- f + Q I in [- + Q ]2 , and the remaining coef-

ficients in [- 4 + Q ] This splitting permits an application of the

conventional fission source iteration.20 However, attempting the pro-

cedure led to difficulties in obtaining a converged solution.

- - a
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An examination of the mathematics involved suggests why the above

scheme failed. The expression often used to estimate the eigenvalue for

this outer iteration, 11 l+ 1 1 n 11, is an estimate of the largest eigen-

value of [C(X)]. However, this quantity is not the same as the number X.

Therefore, we should formulate a new eigenvalue problem, as:

A[d = [C(X)][0] (2. 17)

where w is the eigenvalue of [C()I. We note that if w = 1, then X is the

critical eigenvalue (keff).

We propose to solve the eigenvalue problem (2.17) instead of Eq.(2.5).

The eigenvalue w obtained will be used to "search" for a value of X for

which the spectral radius of [C(X)] is one. This reestimation of X will

be performed every eight or ten outer iterations of Eq. (2. 17).

The formula used to calculate X given w was:

A = A + 1.
new old 2

Since the nonlinear updates may degrade the convergence of the outer

iterations to some degree, it was desired to reduce the computational

effort involved in evaluating [C(X)] [(]n. Thus, a different splitting from

that previously used was attempted. Specifically, the diagonal elements

of the matrices (-[Ljj]+[Ajjj) and (-[L 2 2 ]+[A2 2 ]) and also the [A 2 1]

matrix (see Eq. (2. 9)) were included in [- f + Q ]i. Thus [- < +

was trivial to invert.

Table 2. 2 presents a summary of the results obtained when this

scheme was applied to the two-dimensional PWR problem referred to

at the beginning of Section 2. 3.

- - Aah -
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TABLE 2.2

Results of the Eigenvalue Updating Scheme

Convergence
Criteria

Converged X

Number of
Outers

Number of
Inner Iterations
per Outer (per
group)

Run Time (sec)

Conventional
Chebyshev and

Successive Over-
Relaxation

Eigenvalue Updating
Scheme with

Chebyshev Acceleration
on Outers

10~4

1.03105

29

3

4.06

1.03102

49

1

3.26

- -Ia -
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2. 5 Summary

The methods investigated in this chapter were designed to decrease

the computational burden of solving matrix equations having the form of

Eq. (2. 6). The attempts to modify the coupling patterns in a nonlinear

way were not successful. By forming a new eigenvalue equation, some

improvement in execution time of the static finite element equations can

be obtained. However, the improvement is not major.

It thus appears that the high degree of coupling in the finite element

method is a major drawback of the method. The Hermite cubic elements

are especially complex in this regard. The improvement in execution

time obtained in Sec. 2. 4 is not sufficient to make the finite element

method significantly more attractive for production calculations. It

appears that major improvements must come from the development of

methods which retain the "nearest neighbor" coupling characteristic of

finite difference methods.
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Chapter 3

AN EXACT METHOD IN ONE DIMENSION

3. 1 Introduction

The kinetic analysis of a nuclear reactor involves two different types

of calculations:

i) Reactor physics calculations, where the power generated in every

region of the reactor is found, and

ii) Thermal-hydraulics calculations, where the reactor temperatures

coolant conditions are found.

A thermal and hydraulic reactor analysis, such as that performed by the

computer code COBRA,21 requires as part of its input the average power

generated in each fuel assembly in the reactor for which core-wide ther-

mal and hydraulic calculations are made. Thus, a method which directly

calculates average fluxes over assembly sized regions would be very

efficient.

In a recent thesis, Antonopoulos22 developed one- and two-dimensional

methods for solving Eq. (1. 2) which began with a derivation of exact dif-

ference equations. However, Antonopoulos then made low-order series

approximations to these exact difference equations. Numerical results

using these approximations were somewhat improved over those of con-

ventional finite differences; however, an ext.ension to two groups and two

dimensions failed to converge properly for mesh sizes larger than one

centimeter.

In this chapter, a method for solving Eq. (1. 2) which uses average

fluxes as the quantities of interest will be derived from difference equations

- - ah -
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which are exact in one dimension. We shall show that this method is

related to response matrix theory, and to other "nodal" techniques cur-

rently in the literature. In the final section, some numerical results

for one-dimensional static problems will be presented.

3. 2 Derivation of Exact Difference Equations

Let us rewrite Eq. (2. 1) as a function of one independent variable:

- d [ x) d 1) T (.1
- d [D(x)] [(x)] + [ZT(x)][c(x)] = [X] [v2f(x)]T [x)]. (3. 1)

We now divide the one-dimensional reactor configuration R = [0, X] into

a partition

IT: 0 < x <x -X,

with the restriction that any sub-region x 4 x < x 1 be nuclearly homo-

geneous. Let us integrate Eq. (3. 1) over x < x xi+1

1 T+1

[J(x )] + hi[i][ ] =L hi[X][v]fi1T [ ] (3.2)

where

[J(x )] = -[Di ] [tcx)] x=x.

[* S]1 [O(x)] dx

[Ti, = [ET(x)] ,[2; O ITM Ix C R

R = (x ,xi+1

h = xi+1 ~ i

- - Ah -
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Equation (3. 2) shows that the average flux [$i] in a region is diepen-

dent on the net current [J(xi)] on either side of the region. In order to

obtain a solution to Eq. (3. 2), another relationship is needed between

[J(x )] and the adjacent average fluxes [ il] and [*.]. This relationship

will be obtained by finding an analytic solution to a one-dimensional prob-

lei which spans two adjacent homogeneous regions.

To find this analytic solution, let us write Eq. (3. 1) in P-1 form:

d[J(x)] + [I,(x)] [4(x)] = [x] [v[((x)]T

d [4(x)] + [D(x)]~f [J(x)] = 0

and let us further define

['D(x)] = col {[*(x)], [J(x)] } (3. 3a)

and

[0] [D(x)]~1
[N(x)] = (3. 3b)

[E T(x)] - [X][v (x)] []

so that the above equation can be written

dX
S[@(x)] + [N(x)][@(x)] =0.

This equation can be solved analytically over a homogeneous region R
.*1

to give:

-[N](x-x.)
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Since we wish to relate the current to the average flux over a region, we

integrate, Eq. (3. 4) from x. to xi+1 and divide by h.; after rearrangement

this gives

[N I h [dJ =[I - e
-[N 

[h [(x) (3. 5)

whe-re

[ ] 1 i [D(x)] dx.
I x

Similarly, we can integrate Eq. (3. 4) in the negative direction over homo-

geneous region R i to obtain

(3.6)=[I [N .
-[N _ i- ] hi- i ] = I e

We recall the trigonometric identities

1 - e-x = 1 - cosh x + sinh x

1 - ex = 1 - cosh x - sinh x.

Substituting Eq.

(3.7)

(3. 7) into Eq. (3. 5) and Eq. (3. 6), adding the resulting

equations together, and rearranging gives:

(sinh1 [N.] h.)([I] - cosh [N.] h.)[ (x.)] + [(x.)]

(sinh [N ] h )[N ] h [7]

(sinh - (N. 1] h. 1 )([I] - cosh [NiI h i_)[(xi)] - [O(xi)I

= -(sinh~[ I h )[N ] h [Nh i-i

(3.8)

h. 
[i (x)].
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We now use the additional trigonometric identity

(sinh x)(1 - cosh x) = -tanh x

and add Eqs. (3. 8) together to obtain:

-(tanh [N.] hi/2 + tanh [N _ i I hi /2)[d(x)]

(sin~ 1 [N.J h )[N1] hi[i )

- (sinh~ [N 1 ,]h i)[N ] h ili.1]. (3.9)

We recall that for two energy groups, Eq. (3.9) represents four

equations. We define

[Ai] = (tanh [N1] hi/2)

[B'] = (sinh~ [N ] h )[N1 ] h

and block the matrices [Al] and [B11 into their four (2 X 2) elements, as

and [B k'1 .

[ [0]

+ A ]

[01

[B ]

L0]

Then Eq. (3.9) becomes:

[A 1 , 2 + A 1 l [(X

[0] [J(xi)]

[01 Fi1
[0] [ I]

[ 2JL -1

[ , k'j

(3. 10)

(3.1I1)

- - Ak -
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Writing only the top equation of Eq. (3. 11) and rearranging, we have

[J(xI= - A12 +

+ [A'2 + A1 B [, 2 (3. 12a)

Equation (3. 12a) is a matrix equation relating the current values at

point xi to the average fluxes in the adjacent regions.

and its counterpart at point xy 1

Using Eq. (3. 12a)

] [4~+~]
[J(xi+1)] =[A 1,

+ A 1,

2+ A i+i1 [B

2+Ai+2 B 1 [I ] (3. 12b)

and substituting them into Eq. (3. 2), we have

[C ][ ]+ [C '-][ ]+[C i+ 1 [ i+I] + hi[ ]l[ i]

1h [vyl ]T [i] (3.13)

where

[C ]j = - + A 1 [B'-

[C ] A 2I+ A1 21 + A 1 ,2+ A i+I1 B

[Cii 1+II= - A1, 2 + Ai+l1 B B l.

Equation (.3. 13) is a matrix equation which, when solved using con-

ventional numerical methods, will give the exact values of the average

A12 B ] -i
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flu:es for each group in each region i.

We have not discussed how the matrices [A'] and [B1 i] in Eq. (3. 10)

are calculated. This derivation, again based on an analytic solution in

each region and insuring continuity of flux and current between each

region, is performed in Appendix A.

From the dufinition of the matrix [N(x)] in Eq. (3. 3), we note that

the eigenvalue X is needed in order to calculate the matrix elements in

Eq. (3. 10). Thus, the solution of Eq. (3. 13) must be iterative, since

the matrices [Ci' ] depend on X. However, this dependence is not ex-

pected to be strong, and an iterative scheme where the matrices [Ci' j]

are recalculated during the static iterative process is expected to con-

verge to the exact solution.

3. 3 Relationship to Past Work

In the preceding section, an analytical solution to the diffusion equa-

tion was derived in order to obtain exact difference equations. In this

sec tion, we shall show that in doing this, we have also derived the one-

dimensional response matrix for a homogeneous region. By substituting

this "response matrix" into the integrated diffusion equation, we obtain

equations which involve only the average flux and are thus of lower order

than the conventional response matrix equations. 1

Let us define and J~ as the partial currents in the +x and -x
gi gi

directions at x.. The corresponding G-element column vectors of group

partial currents are therefore [J1 and [J-1. Then for region R in a

vacuum, the transmission matrices [T±] are defined as
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I
I

(3. 14)

and the reflection matrices [R] as

(3. 15)

For R imbedded in the reactor, we can then derive the following matrix

equation:

[J+] +1F~~1= [61.]
[JL[J +1

[T]]

[R. ] [T ]

][T + [R +1

-- [ ][ it+1] + 1

A P-1 expansion of the angular flux gives the following relationship:

F2[1]

L[Jh L. ['Il
Eq. (3. 16) is therefore equivalent to

I ] 2[I]

Ji L [I]

2[] [I
[61 ] [i

-I) [Il

1

1

2

(3. 17)

[IL[i+IIj

where

(3.16)

[R +][J ]~ = [J- I

[R I][J- I = [J* ).

2[1] [ J ]
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Ol'

= [ Ji+1

By comparison with Eq. (3. 4), we see that

N = [Ni j(xi -1i)

and therefore from Eq. (A. 8) we have

[ I = [E][G(-h)][E]I . (3.18)

We have shown that the conventional response matrix [Ril for region i

is related to the inverse of the expression shown in Eq. (A. 8). Thus, the

analytic technique used in Appendix A is, in effect, a calculation of an

exact, one-dimensional response matrix. This method requires the use

of the expressions (sinh~ [N ] h )[N ] h. and tanh [N ] h./2, which are cal-

culated as shown above from the above expression for exp[N I hi. These

expressions have a simpler form than that of exp[N ] hi, in that several

of the matrix elements cancel out (see Eq. (3. 11)). This makes it simple

to derive an analytic expression between the average fluxes and currents.

The order of the equations to be solved is thereby reduced by a factor of

two.

Several "nodal" methods current in the literature have shown prom-

ise as coarse mesh methods. One such method, called the Nodal Expan-

sion Method (NEM), has been developed by Finnemann and Wagner.9 This

method begins with the integrated form of the diffusion equation, written

- - dft -
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in terms of the partial currents. A detailed flux distribution in one

dimension is found by approximating the flux by a polynomial expansion,

and using a weighted residual technique to determine the unknown coeffi-

cients. The unknowns used in the NEM are therefore the outgoing partial

currents from each region; [J-1 and [J+ 1, and the average flux in the

region, [<pl.

Although the iteration strategy of the NEM is different from that of

the method used here, the equations of the NEM can be written in the con-

ventional response matrix form, Eq. (3.16). Thus, the NEM differs

from the analytic method only in that the "response matrices" are calcu-

lated approximately by assuming a polynomial expansion for the flux.

The NEM, however, requires three unknowns per region; while the ana-

lytic method used here requires only one.

It can thus be seen that the analytic method, as well as other "nodal"

methods currently in the literature, have much similarity to response

matrices.23 In the next section, a discussion of the solution techniques

used will be presented, as well as results for one-dimensional static

problems.

3. 4 One-Dimensional Calculations

This section will first discuss the details of implementating the

rriethod derived in Sec. 3. 2 into a computer program for static one-

diiienSional diffusion rpoblems. Results obtained using this program,

called IDEX, will then be presented.

The complexity of the derivation in Appendix A demonstrates that it

would be extremely difficult to extend this method beyond two groups.

-- Am -
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For- this reason, the remainder of this thesis will concentrate on prob--

lerms which can be represented in one or two energy groups.

3. 4. 1 Boundary Conditions

IDEX is a two-group, one-dimensional static diffusion theory code.

Tt Allows two boundary condition options, symmetry and albedo. The form

of the albedo used here is

1 a1 1  a J
(3.19)

2 a 2 1  a22 2

This form is similar to that used by Kalambokas in his investigation of

albedo boundary conditions.24 Let us assume that an albedo boundary

condition is to be applied at x = x 1+. The presence of the albedo bound-

ary will modify the coefficients [C i] in Eq. (3. 13) as follows:

[C ' =-[A 12 + A 1 2]~ [B ]1, 2 1, 2 i

[CI' I] = [A 2- + A 1, 2]~ + [[A, 2 + [a ]~ I }[B 1 (3. 20)

[CI, 1+1 1 [0.

We note from Eq. (3. 19) that a zero flux boundary is imposed by setting

[a] to the null matrix.

For a symmetry boundary condition, let us assume we have zero

current at x = x 0 . Then the coefficients [Ci' 3] in Eq. (3. 13) become

Ift -
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LC1, I = [0

[C 1 ' = [A1 2 + A , 2 ]~ [B 1 I (3.21)

[C 1,2] = -[A 2 + A 2 ][B } .

3. 4. 2 Iteration Strategies in IDEX

Equation (3. 13) is an eigenvalue equation, the solution of which is

the vector of nodal average neutron fluxes in each group. The matrices

[C' ")i are, in general, full 2 X 2 matrices. Thus the 1DEX method is

different from conventional finite differences, in which the matrices

[Ci' -} are diagonal. It was therefore convenient in IDEX to solve for

both energy groups simultaneously. Equation (3. 13) is solved by a con-

ventional power iteration where the right-hand side is replaced by a fis-

sion source vector. The resulting seven-stripe matrix can be inverted

directly by an extension of the forward elimination, backward substitution

method. Thus both group fluxes at all spatial mesh points are found

simultaneously. This process is continued until the solution converges.

As discussed in Sec. 3. 2, the eigenvalue X is required to compute

the matrices [C"' i]. A nonlinear strategy was developed so that the

matrices were determined three times during the static iteration process:

i) At the beginning of the problem (assuming X = 1)

ii) When the degree of convergence of the problem became less

than ten times the required convergence criteria

iii) After the problem reached the required convergence criteria;

(then additional iterations were performed to reach that criteria
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aga in).

This strategy was found to be effective for all cases attempted.

3. 4. 3 Results Using 1DEX

Static results for three one-dimensional test cases will be presented

here. The geometry and material constants for these test cases are

given in Appendix B.

Test Case 3. 1 is a two-region problem originally solved by Kang and

Hansen. Table 3. 1 presents the inverse eigenvalues obtained by Kang

and by the IDEX code. Thie agreement between 1DEX, using a 20 cm

mesh, and a fine mesh cubic finite element solution is excellent.

TABLE 3.1

Eigenvalues (X 1) for Test Case 3. 1

Method Mesh Spacing Eigenvalue
(X-1)

Linear FEM 20 cm .9757621

Cubic FEM 20 cm .9789983

Cubic FEM 1 cm .9795255

1DEX 20 cm .9795257

Test Case 3. 2 is the static portion of a one-dimensional time-dependent

benchmark problem.. 2 5 'rihe geometry and material constants are given

as Test Case 5. 1. Results are presented in Table 3. 2 using 1DEX for a

20 cm mesh, and finite differences using a 2 cm mesh. Since IDEX is

exact for any size mesh (as long as the regions are homogeneous), exact

results with 1DEX could have been obtained using only three mesh regions;



47

TABLE 3.2

Results from Test Case 3. 2

Quantity RAUMZEIT 1DEX

Eigenvalue .9015507 .9015965

Power in Region 1 . 2790 . 27885
(0 C x - 40)

Power in Region2 .4421 .44229
(40 4 x < 200)

*
RAUMZEIT (finite differences) using Ax = 2 cm.

Powers normalized such that total power = 1.0.

TABLE 3. 3

Results from Test Case 3. 3

Eigenvalue

Region
Powers

Zone 1

2

3

4

5

6

7

8

CITATION

1 cm mesh,
explicit reflector

1.0044069

.017473

.082829

.110607

.094098

.055290

.168004

.240006

.231693

. 714 cm mesh,
exact albedos

1.0045128

.017295

.081929

.109543

.093339

.055237

.168321

.240929

.233408

1DEX

20 cm mesh

1. 0045127

.017249

.0816277

.109214

.0930729

.0552523

.1683945

.2412500

.2339394
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..panning regionis 1, 2, and 3. 1DEX runs using this mesh arrangement

were made, and agree completely with the 20 cm results.

Test Case 3. 3 is a one-dimensional slice through a model PWR core.

[he basic cross section sets are presented as Test Case 4. 2 in Appen-

dix B. This problem demonstrates the errors that can be obtained using

finitc difference methods where there are large flux peaks. Results are

shown in Table 3. 3 using the CITATION code with very small mesh

spacings.5 Figure 3. 1 shows a plot of the thermal flux for the 1 cm

mesh CITATION run. The large thermal flux peak in the reflector ac-

counts for the inability of CITATION to give acceptable answers with 1 cm

mesh spacings.

The test problems presented here verify that the 1DEX method pro-

duces accurate solutions using a coarse spatial mesh. The method

shows enough promise to warrant extension to two dimensions. In Chap-

ter 4 we shall examine the various methods of extending this scheme to

two spatial dimensions.



Figure 3. 1 Thermal Flux Plot for Test Problem 3. 3

CITATION - 1.0 cm mesh.
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Chapter 4

SOLUTION METHODS FOR STATIC PROBLEMS

IN TWO DIMENSIONS

4. 1 Introduction

In Chapter 3 a method was derived which was based on an analytical

solution of the diffusion equation. This derivation led to three-point dif-

ference relationships which are exact in one dimension. In two dimen-

sions, it is not clear that exact difference equations exist, or what their

matrix structure would be if they did exist. Nevertheless, Chapter 2

demonstrated the computational advantages of retaining a nearest-neighbor

coupling relationship in two dimensions. Therefore, the exact method

derived in Chapter 3 will be extended to two dimensions, with a nearest-

neighbor coupling relationship retained.

4. 2 Derivation in Two Dimensions

Let us begin in two-dimensional x-y geometry, with a region R de-

fined as:

It = [0, X] x [o,Y1

and with this region divided into a partition

r: 0 = x <... < x X

0 = y, < ... < y= Y.

We assume that any rectangle defined by the above partition is nuclearly

homogeneous. The first step is to integrate Eq. (2. 1) over (x, x, ) and

(y , yj ) to obtain:



h(P [.I- [J ]) + h. (p[ ]- [J ])
' i+ , j i, j i , j+1 i, j

+ hh ]*Tj 1 j] =X h h[X][VT !][* .]

h xi+1

h yj+l 

[*] =h.h. SYj+1 Xi+1
1j yj X

[4( x, y)] dxdy

T ij] ~xs') Ix c (xi, xi+ 1)
y C (yj , y+ 1)

h.

h.

-

[D a ]
yj

[Di, ]i i+1 I
x.

I

[*(x.,y)] dy

[ x, yj)] dx.

The remaining step is to find relationships between the net currents

J ] Iand [ ], and the average fluxes [ci j]. This will be accom-

plished by using the analytical procedure derived in Chapter 3.

Let us illustrate this procedure by finding a relationship between

the x directed net currents and the adjacent average fluxes. To obtain

the differential equation which must be solved analytically, we integrate

Eq. (2. 1) over (y,yj+1) and divide by h. For x C (xi, xi+1) we obtain:
jo~
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where

(4.1)

1, ]

[ 1,j j]=
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-[D ]j [ (x)]- [D ] 2j+ [p(x, y)] dy
8x y B

+ [zT, ] [P (x)] = [Xl [vf ]T 4x)] (4.2)

where

Y[ (x)] j+ 1 (. )]
3 y

[ Ti, j]= [' T(x PY)] .Xs +1

y C (y , yj+1)

Equation (4. 2) has the same form as Eq. (3. 1), with the exception

of the additional integral representing leakage in the y direction. In

order to solve Eq. (4. 2) analytically, this integral must be approximated.

Two possible approximations are:

i) Assume the leakage in the y direction is proportional to the flux

in the x direction

ii) Assume the leakage in the y direction has a low-order polyno-

mial representation.

We shall discuss both of the above approximations, and derive the appro-

priate difference equations.

4. 2. 1 The Buckling Approximation

Let us define the diagonal matrix [B 2 (x)] as follows:
yj

[1B 2 yj (x) [D y [?(x, y)] dy. (4.3)
y y i oy
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Although some function [B 2 (x)] exists such that Eq. (4. 3) is exact, it
yj

is not obvious how to find this function in the general case.

However, one situation where the function [B 2 (x)] is easy to find
yj

is when the solution [4(x,y)] is separable in x and y. For this case,

we can replace [B 2 (x)] by a matrix [B 2] which is constant over (x.,x
yj yx

Equation (4. 3) then becomes:

[B 2 Ibtj(x)] = -[DyI j] Y+ [(x, y)] dy. (4.4)
yj y i 8y

The diagonal entries of [B 2] are then related to the conventional "buck-
yj

ling" values. Substituting Eq. (4. 4) into Eq. (4. 2), we obtain:

-[D. ) [4 (x)] + ([T ]+[B ])4j(x)] =+ [X[vf,][ (x]. (4.5)
x yj

Equation (4. 5) can be solved analytically as in Chapter 3 to obtain a

three-point difference relationship of the form (see Eqs. (3. 12) and

(3. 13)):

I - [J ] = [C i ] iIi + [C ' ][X +19 ,j .) ,

+ [C i+][i+1, j] (4.6)

Elquation (4. 6) is substituted into Eq. (4. 1) to eliminate the net currents

in the x direction.

I'he y directed currents are eliminated in an analogous manner by

solving analytically the diffusion equation integrated over (x., x ). From
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this analytic solution we obtain the relationship:

J i | -- [J jJ=
-yi, j+1l,

C ' ] j-

+ [Ci' j+ i

To obtain diffe rence equations, Eqs.

into Eq. (4. 1). We thus have

(4. 6) and (4. 7) are substituted

1 -
h [C .yl j- + h i[C

. .+1
j] + h.[C" 1 ] [i+1 j3 j XJ 1+1

+ h [C 'i[j1 i, j+1] + (h [C ']

= I hT [X][v ]T

+h1 [C' 3 ]+ hih[ ])[ ]
yi 1 3 Ti.,;j]

(4. 8)

The calculation of the coefficient matrices [C ]I and [C ]
more complex since they are dependent on the matrices

[B ]. The matrix [B 2] is calculated by integrating Eq.
x.

I J
(xi, xi+1 ) and dividing by h :

[B 2 i, j*
y1

1
=I . .h j ,j j+1 ~- y. .)

1, j

Yi, j8 y:-yj

1 X.I.
r*(x, y)] dx.

Equation (4. 6) is then substituted into Eq.

[C' ] 3

(4.7)

is made

[B 2]
yj

(4.4)

and

over

where

(4. 9)

(4. 9) to obtain:
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21 2 ij = ( [ ] +] + [Ci, i+1

(4. 10)

The matrix [1 2] is found in an analogous manner.
xi

Since the coefficient matrices are dependent on the neutron fluxes,

Eq. (4. 8) is nonlinear. A fission source iteration with Chebyshev accel-

eration18 was used to find the eigenvalue and eigenvector of Eq. (4. 8).

These iterations are called the "outer" iterations. At the beginning of

the problem, the coefficient matrices were computed assuming all the

bucklings to be zero. At various times during the static iterative pro-

cess (generally every eight or ten fission source iterations), the coeffi-

cient matrices were recalculated using the bucklings found from the

most recent flux iterate (using Eq. (4. 10)). This process was repeated

until convergence.

At each outer iteration, a matrix equation of the form

[P] [] = [S] (4.11)

must be solved. The matrix [P] is block five-striped, where each entry

is a 2 X 2 matrix. Equation (4. 11) has been solved by using the Cyclic
17

Chebyshev polynomial method of iteration. These iterations are called

the "inner" iterations.

4. 2. 2 Flat Leakage Approximation

Realistic reactor problems are not separable, and methods such as

the "buckling" approximation which assume separability can be subject

to significant errors.26 Another approach would be to assume a low-
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order polynomial approximation to the leakage integral. Investigations

reported in Refs. 26 and 27 show that excellent results can be obtained

using large rmaesh sizes with a quadratic representation of the leakage

integral.

If the leakage integral in Eq. (4. 2) were replaced by a quadratic

polynon ial, the analytic solution would be extremely complicated; being

composed of the solution to the homogeneous equation plus the particular

solutions. It appears that a quadratic expansion is not practical using

28
the analytic method. However, work on nodal methods by Sims indi-

cates that accurate results can be obtained using a flat representation

of the leakage. Therefore, we shall make this assumption.

Let us make the following approximation:

-+[Ly ]I=[D ] j [x, y)] dy. (4. 12)
h Y, j y. hi Oy

We integrate Eq. (4. 12) over (x , xi+1) and divide by h, to obtain:

[L ] = ([J I- [J ]) (4. 13)
i, j yi, j+1 i, j

Substituting Eq. (4. 12) into Eq. (4. 2), we obtain

2
-[D j] 2- [jx) + [T i (x)

8 x

X [v ] [4yx)] = - [L ). (4. 14)

Equation (4. 14) must be solved analytically to obtain coupling relation-

ships between the currents and the average fluxes.



Using the notation of Eq. (3. 3), we have

[0(x)] + [N(x)][i(x)] = [L]

where

[L] = col [0], -+[Ly ]j.

The analytical solution of Eq. (4. 15) over (xi, xi+1) is

[T(x)] I e-[Ni](x-x.) [4(x )] + [Nil- ([I - -[Nj](x-x.)
e I)[L].

To relate the average fluxes to the net currents, we integrate Eq. (4. 16)

over (xi, xi+1 ) and divide by h. to obtain:

[N+] h [] = [=]-

+ (h [I] - [Ni]

Similarly, for the region (x i xi) we obtain:

e ) [ (x)]

I.

Using the trigonometric identities Eq. (3. 7), adding the equations to-

gether, and then recognizing that

(sinh~I x)(1 - cosh x) = -tanh x/2,

57

(4. 15)

(4. 16)

[N ]]= []-

- hil -)+[Ni_]- [0 ]

e- [Nil hi)r(

1] - [Ni ]hi

[N.i ] h. I)
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we obtain:

(sinih 1 [Nj hi)[N ] hi [] - (sinh 1 [N 1 1 ] ]h 1)[N i] hi_ [' 1 ]

- (sinh -1[ N ]h) (h[I) - [N 1V1 ([I] - e
-[N ] h.

+ (sinh 1 [N1 ]hi) (h. j[I] + [N. ]V( [I] - e

-(tanh [N1 ] i/2 + tanh [N 1 ] h. 1 /2)[<I(x )].

As in Eq. (3. 10), let us make the following definitions:

[A'] = (tanh [N ] hi/2)

[B ] = (sinh~ [N ] h )[N ] h

))[Li]

[N 1 ] h.

(4. 17)

(4. 18)

[D ] = -(sinh 1[N ] h )(hi[I] - [N l 1 ([I]
-[N ] h.

- e

The above matrices are defined in Appendix A for both one- and two-group

cases.

Let us partition each of the matrices in Eq. (4. 18) into four blocks,

each block being either a single element (for one group), or a 2 X 2

matrix (for two groups). Then

and rearranging, we obtain:

[Jx.
.

]= -[A 2+A 11,2 1, 2]~' [B

writing only the top equation in Eq. (4.17)

+ [A i 2 + A1, 2 [B ij1 ] - ]1

,2]~I [D 21 1. ]1- h.
J

+A 1 [D i7'] [L
( i-1

(4. 19)

3
].

]can be combined with the above
i+1 is

[A
12

1][ i ]

A similar expression for [J X
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equation to give:

[L ]=[]-[J ]=-[C '. ] ]
xi xi+1 j i, x i-1j

+ [C1 ' [4. .1 -i ]
xj 1, xj i+,j

-+ [E '.J [L ] ++ [E' .] [L ]h xj - h x yi

- [E i i+l [L ] (4.20)
xj yi+lj

where

[C . I= [A I +Al 1 2]~ [B1 1

xj 1,2 1,2

[E ] = ([A i+A1, 2 ]1 [D 2

[E ']. i [A' 2+A 1 2 A [A1,]+A 2 1, 2

[Ei'i+1] = [A +A [ +)

xj 1,2 1,2 1,2

At this point Eq. (4. 20) should be contrasted with Eq. (4. 6). In the

"buckling" approximation, it was possible to relate the x directed leak-

age [L ] to the average fluxes in the nodes (i-1, j), (i, j), and (i+1, j).
1,j3

However, for the "flat source" scheme derived here, the x directed

leakages are found to be related not only to the average fluxes but also
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to the y directed leakages in those three adjacent nodes. Therefore,

the leakages cannot be completely eliminated from Eq. (4. 1) as was

done with the "buckling" approximation.

To obtain a matrix structure suitable for efficient computation, it

will be convenient to rearrange some of the relevant equations. Accord-

ingly, we assume that I * J is the total number of mesh regions in the

reactor, and that G is the number of neutron groups. We then let K

I * J * G. Further, let us always order the unknowns such that the energy

groups are indexed first, then the x direction, and finally the y direc-

tion. Then we define:

(I a column vector of length K containing the nodal average

[L I

fluxes

a column vector of length K containing the x directed leakages

[L ] = a column vector of length K containing the y directed leakages

i ii[C,] = a matrix of order K X K containing the elements [C '.1 as
x xJ

defined in Eq. (4. 19)

[C ] a matrix of order K X K containing the elements [CJ'.3], ele-
y yi

ments defined analogously to Eq. (4. 19)

[Er] = a matrix of order K X K containing the elements [E 'l] as

defined in Eq. (4. 19)

[E] a matrix of order K X K containing the elements [Ej'.)] defined
y y1

analogously to Eq. (4. 19)

[E T a matrix or order K X K containing the elements hi h [Ti, ]

as in Eq. (4. 1)
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[M 1 a matrix of order KXK containing the elements h hi [y]v fh]T

as in Eq. (4. 1).

Then Eq. (4. 1) can be rewritten

1 [L 1 + h [L1] + [ EIw =[ M ]. (4.21)
i x 1 y T X

Equation (4. 20) (and its counterpart in the y direction) can be written

[L I = [C ] +- [E ][L ] (4.22)
x x h x y

[L = [CY][4] + [E ][L ]. (4.23)

Equations (4. 21, (4. 22), and (4. 23) comprise a linear set of three

equations in the three unknowns. The objective of the analytic method

was to develop schemes which involved only one unknown (the average

flux) per mesh region and group. However, this seems impossible for

the present case. Accordingly we attempt to shift the computational

burden of the simultaneous solution of the above equations in such a way

that the equation for the average fluxes will be "difficult" to solve (in

the sense that iterative methods will be required), while the equations

for the leakages will be relatively easy to solve. To accomplish this,

Eqs. (4. 22) and (4. 23) were substituted into Eq. (4. 21), to obtain the

equations:

(h [C ]+ h [C]+[ LET)] + [E I][L ] + [E ] [L] =I M ][ ]

(4.24)

[L [C I] +- [E ][L 1 (4.22)
x x h. x y
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S[C 6 + [Ey] [Ly]. (4. 23)

'quations (4. 24), (4. 22), and (4. 23) can be written in a more compact

[Fi ]jj [@ = [ I [$) (4. 25)

where

(h [C ]+h[C Y]+[ZT]) [E ] [E ]

[F]= [Cx] -[1 [Ex]

[C ] [Ey] -I

[[M] [0] [0]]
[if] = [0] [0] [0]

[0] [0] [0]]

+P = col ([$], [, Y])

Solving Eq. (4. 25) requires care. The matrix [F] is not nonlinear;

however, its elements depend on the eigenvalue X. Therefore, an up-

dating scheme identical to the one described in Sec. 3. 4. 2 is used in con-

junction with a fission source iteration with Chebyshev acceleration as in

Sec. 4. 2. 1. At each outer iteration, the matrix [F] is inverted by

applying a Gauss-Seidel iteration to Eqs. (4. 24), (4. 22), and (4. 23).

The solution of Eq. (4. 24) is obtained by using the Cyclic Chebyshev

polynomial method of iteration as described in Sec. 4. 2. 1.
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4. 3 Numerical Properties of the Equations

4. 3. 1 Nonlinear Iterations

Evaluation of the matrices [F] (in Eq. (4. 25)) and [C] (in Eq. (4. 8))

requires that the eigenvalue X be known. An iterative updating procedure

has been proposed in both the "buckling" and flat source methods to find

a converged solution. The convergence properties of this iterative

scheme are difficult to guarantee. However, in Sec. 2. 4 a somewhat

similar scheme was used to converge the fluxes and eigenvalue while

simultaneously "searching" for the critical eigenvalue keff. The suc-

cess of this method suggests that the matrix properties may not be strongly

dependent on the eigenvalue X. Therefore we suspect that setting X = 1

will provide a good starting guess for most situations.

The matrix [C] in Eq. (4. 8) is dependent not only on the eigenvalue X,

but also on the bucklings calculated from Eq. (4. 10). Thus Eq. (4. 8) is

nonlinear. For the two-group case, the iteration necessitated by the

inclusion of the bucklings failed to converge for Antonopoulos.22 This

was because the inclusion of the buckling terms destroyed the diagonal

dorninance of Antonopoulos' coefficient matrix. However, the diagonal

dominance will not he significantly affected in the analytical method de-

rived in Sec. 4. 2. 1. We are therefore hopeful that the iterations will

converge, although it is difficult to guarantee such behavior.

4. 3. 2 Fission Source Iterations

The acceleration of the fission source iterations by the use of Cheby-

shev polynoimials also requires certain assumptions about the iteration
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matrix. Specifically, we assume all the eigenvalues are real and non-

negative, and that the eigenvectors form a basis for the associated vector

space. Under these conditions, the Chebyshev polynomials can be guar-

anteed to provide a specific error reduction. The above properties are

difficult to show for the case of finite differences, and are also difficult

to guarantee for the analytical method derived here. However, Chebyshev

polynomials have been successfully applied to the outer iterations for

both finite difference18 and finite element methods; thus it seems

reasonable also to apply them to the analytic method.

4. 3. 3 The Inner Iterations

We shall examine the matrix equation which must be solved at each

outer iteration to yield the nodal average fluxes.

Rewriting Eq. (4. 24) as

(hj[C +hi[Cy]+[EZT,)[4] = yS)

or (4.26)

[R][4] [= S],

let us examine the numerical properties of the matrix [R].

i) We observe that even in one-group theory [R] is not symmetric.

The coupling coefficients between mesh regions i and i+l from

Eq. (4.19) are

[C '+ I [A1, 2 +A 1 2] [B 11 ]

[C ' ] = [A, 2+A 2 [B' .
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We notice that these coefficients would be equivalent only if

[B1 ] [B'+1]. Thus the matrix [R] is symmetric only in the

homogeneous case.

ii) We also observe that even in one-group theory [R] cannot in

general be guaranteed to be diagonally dominant. Referring to

Eq. (4. 19), we note that for the two-dimensional one-group case:

Diagonal Sum = h.[C1 'I + h.[Cj'9.] + h.h.[E .]
3 xj i 1 y1 j yTi,3l

Off-Diagonal . . . . . . . .
Sum = h.[Ci'. + h [C '++ h.[C' + hi[C.J xJ hJ hXJ1 .1 h.CJy1l]

If the problem is homogeneous, then

(Diagonal Sum) - (Off-Diagonal Sum) = h.h .[ . .]

and the matrix is diagonally dominant. However, for a hetero-

geneous problem, this property cannot be guaranteed. Neverthe-

less, for materials whose properties are not too dissimilar, and

for large mesh spacings, the presence of the h.hj[E .] term
i j ZTij3

on the diagonal will probably insure the diagonal dominance of

the matrix.

In two-group theory, the situation is made more complex since the

[ Tj] matrix includes scattering from group to group. However, since

the energy groups are solved simultaneously, it is doubtful that this will

severely hurt the matrix properties.

A diagonally dominant matrix is convergent for both the point Jacobi

and Gauss-Seidel iteration schemes. In general, the larger the diagonal
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elements arc compared to the off-diagonal elements, the lower the spec-

tral radius of the associated iteration matrix.

In view of the properties of the [R] matrix described above, we feel

it is reasonable to apply iterative techniques to the solution of Eq. (4. 25).

Results for two-dimensional test problems for the "buckling" and flat

source methodl. will he presented in Section 4. 4.

4. 3. 4 Convergence to the Exact Solution

We define convergence to mean that the difference between the dis-

crete approximation [4).] and the exact average fluxes can be made

arbitrarily small for every mesh interval simply by choosing the mesh

spacings h. and h. sufficiently small. For finite difference methods,

proofs of convergence generally center around the fact that the differ-

ence equations are a low-order Taylor's series expansion of the correct

solution. In the finite element method, the proofs often appeal to con-

cepts in approximation theory; where any continuous function can be re-

produced exactly by a series of ramps (in the linear case, for example)

in the limit of small h.

In one dimension, the method is exact. Therefore, the method is

convergent if and only if the approximation used for the transverse leak-

age integral becomes exact in the limit of small mesh sizes. The "buck-

ling" approximation uses small sections of the function [4 .(x)] to approx-

imate the integral. The flat source method uses a staircase function to

approximate the leakage integral. In the limit of samll mesh sizes, the

leakage integral can be exactly represented using small sections of either

of these functions. Therefore we expect both schenies to converge in
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the limit of small mesh spacings.

4. 4 Results

4. 4. 1 Computer Programs Used

The program 2DEX was written to solve two-dimensional two-group

static neutron diffLIsion p)rohlemis using the "buckling" method derived

in Sec. 4. 2. 1. The program ZDFS was written to solve the same prob-

lem using the flat source method described in Sec. 4. 2. 1. Both programs

take advantage of the iterative strategies suggested in Sec. 4. 2. Since

the Cyclic Chebyshev method (used for the inner iterations) requires a

knowledge of the spectral radius of the inner iteration matrix, both pro-

grams calculate this number before the outer iterations are begun. The

coefficient matrices are calculated in subroutine MATRX. Both codes

were written entirely in single precision.

4. 4. 2 Homogeneous Test Problem

Test Problem 4. 1 is a homogeneous two-dimensional two-group test

problem. The geometry and material constants are given in Appendix B.

Table 4. 1 summarizes the results of this test problem. Since this test

problem is separable in x and y, the results from 2DEX are exact. In

addition, both codes converge to a cosine-shaped eigenvector.

A very important aspect of the 2DFS method is the ease of solution

of Eq. (4. 25) at each outer iteration. This solution is performed by

using a Gauss-Seidel iteration through the matrix [F]. Test cases with

ZDFS were run which use one, two, and three Gauss-Seidel iterations
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TABLE 4. 1

Results of Test Problem 4. 1

2DEX 2DFS

Eigenvalue X 1.03641 1. 03652

Number of
Outer Ite rations 62 80

Number of Calls
to MATRX 9 3

Number of Inner
Iterations per Outer 3 3

*
Exact eigenvalue: 1.03641.

through [F]. These runs show that one iteration per outer iteration is

sufficient. Therefore our attempt to shift the difficult part of the solu-

tion of Eqs. (4. 21), (4. 22), and (4. 23) to the flux equation (4. 24) has suc-

ceeded. By substituting Eqs. (4. 22) and (4. 23) into (4. 21), the fluxes

have become sufficiently decoupled from the leakages such that one pass

through the matrix [F] is sufficient.

We also observe that, as a result of the large mesh spacing (20 cm),

very few "inner" iterations are required.

4. 4. 3 IAEA Benchmark Problem

The IAEA Benchmark Problem is a two- or three-dimensional two-

group static problem, representative of a PWR.A9 Finite difference

methods have been shown to be in error even when mesh sizes as small

as one centimeter are used. The geometry arid material constants for

the two-dimensional problem are shown in Appendix B. Table 4. 2
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TABLE 4. 2

Results of Test Problem 4. 2

2DEX

Eigenvalue X 1. 03044

Number of
Outer Iterat ions

Number of Inner
Iterations per Outer

Convergence Criteria
(on pointwise flux)

Number of Calls
to MATRX

Execution Time (sec)

78

4

8

2. 3

2DFS

1.03001

71

2

3

2. 6

*Reference eigenvalue: 1.02959.
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displays some of the results obtained for this test case. Figure 4. 1

shows the assembly power fractions for the reference solution,29 and

the percent e-rrors in assembly powers using 2DEX and 2DFS with a

20 cm mesh size. The ZDFS run required only one Gauss-Seidel iter-

ation through Eq. (4. 25) at each outer iteration.

This test proflem shows the superiority in accuracy of the flat source

method. Using a 20 cm mesh the 2DFS code increases the execution

time by Z0%. However, the eigenvalue error is cut in half and the worst

assembly power error lowered from 10. 8% to 2. 8%. For a 10 cm mesh,

2DEX yields a maximum error of 2. 3% in assembly power; however,

the execution time is over seven seconds. Thus the ZDFS method

appears to give the optimal combination of accuracy and execution time

for this problem.

4. 4. 4 BWR Test Problem

The BWR test problem30 is a two- or three-dimensional kinetics

benchmark problem. We have investigated the two-dimensional steady

state version of this problem. Geometric and material constants are

shown in Appendix B as Test Problem 4. 3. The problem was solved

using 2DEX and 2DFS with a 15 cm mesh.

Table 4. 3 summarizes the results of the runs. Figure 4. 2 shows

the reference assembly power fractions, as well as the percent error in

assembly power fraction for 2DEX and 2DFS. The reference solution

used here is from the 2DFS program with a 3. 75 cm mesh. Comparison

of 1his run with 5. 0 cm and 7. 5 cm runs shows that the results are essen-

tially converged.
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TABLE 4. 3

Results of Test Problem 4. 3

ZDEX 2DFS

Eigenvalue X . 996863 . 996933

Number of
Outer Iterations 103 67

Number of Inner
Iterations per Outer 4 3

Convergence Criteria 10-5 10-5

Number of Calls
to MATRX 11 3

Execution Time (see) 4. 6 3. 9

Reference eigenvalue: .996361.



Figurc 4. 2 Assembly Power Fractions and Power Fraction

Errors for Test Problem 4. 3

15 cm Results
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The eigenvalue obtained using ZDFS for a 15 cm mesh is slightly

less accurate than that obtained using 2DEX with the same mesh size.

However, for this test problem the 2DEX code required 15% more com-

puting time, and yields a maximum assembly power error of 5. 9% as

compared to 2. 9% for 2DFS. For this test problem, the 2DFS method

again appears to yield the optimal combination of accuracy and running

time.

The 2DFS results were obtained using one Gauss-Seidel iteration

through Eq. (4. 2.5) per outer iteration. The strategy of using only one

iteration per outer iteration has been successful for every static test prob-

1em attempted. It is therefore felt that this is a legitimate strategy for

the general case.

4. 4. 5 U se of Albedos in Two Dimensions

The generalized albedo boundary condition described in Sec. 3. 4. 1

can be used in either 2DEX or 2DFS. The albedo required for either

code is an average albedo over the. edge of the mesh region to which it is

being applied. Runs have been made using ZDFS for Test Problem 4. 3

in an attempt to define appropriate albedo boundary conditions. It is appar-

ent that more work is needed in this area. Albedos calculated using the

one-dimensional formulas are considerably in error (assembly power

errors in excess of 10%). We were unable to arrive at a simple prescrip-

tion for calculating the albedos. However, if these albedos can be found,

their implementation and use into either 2DEX or ZDFS is straightfor-

ward.
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4. 5 Summ ary

In this chapter, two possible methods of extending the method de-

rived in Chapter 3 to two dimensions have been described. Results from

three two-dimensional two-group test problems have been presented.

For a homogeneous test problem, both methods gave exact results in

space, while the 21)FS method had some eigenvalue error. For both

realistic test problems, the ZDFS method was judged to provide a more

effective combination of accuracy and running time. Therefore, the

2DFS method has been chosen to be extended to time-dependent problems.

Since only one Gauss-Seidel iteration through the matrix [F] of Eq. (4.25)

is required per outer iteration, the running times of ZDFS compare well

with ZDEX and with other methods of similar accuracy.

It is apparent that realistic reactor problems are not separable in

space, and a method such as ZDEX which makes such an assumption can

be subject to significant errors in assembly powers. Although the as-

sumption of the transverse leakage being flat is very approximate, it

appears to be more realistic than the assumption that the leakage is pro-

portional to the flux. In Chapter 5 we will extend the 2DFS program to

time-dependent problems.
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Chapter 5

TIME-DEPENDENT ANALYSIS

5. 1 One-Dimensional Time-Dependent Analysis

5. 1. 1 Development of the Equations

The tine-dependent nultigroup neutron diffusion equations are pre-

sented as Eq. (1. 1). Let us rewrite these equations in the matrix form

of Eq. (2. 1):

[ *-t -- I((x, t)] = [D(x, t)]- [(x,t)] -

T K
+ [xv](1-p)[vyEf(x,t)]T [4(xt)] + K

k=1

Ck(X, t)= -XkCk(xt) + Pk[V f (X, t)]T [ (x, t)]

[XdkI "kCk(x, t)

(1 < k < K)

where

[+1]
[Xe]

[Xdk]

[V 2f(x, t)]

is a diagonal G X G matrix containing the inverse neutron

speeds

is a column vector of length G containing the prompt

fission spectrum

is a column vector of length G containing the neutron

spectrum from delayed group k

is a column vector of length G containing the critical

value of nu times the fission cross section.

All other terms are defined as in Eq. (2. 1).

We now integrate Eqs. (5. 1) and (5. 2) over (xi, x i+1) to obtain:

(5. 1)

(5.2)
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h [4 (t)]= -[J .+ (t) ] + J. (t)] . E it]4 ()

KPh(-P)[X UV (t)] T~ (t 5.3
h p [f(t)] [4(t) ]+ __ [Xdk] XkCki(t) (5. 3)

k=1

C )k i k ki(t) + hpk Iv-fi(t)]T [ t] (1 < k < K)

wlore

[#(x, t)] dx
I()

x=x.I

[J t)]= [D (x, t)]I [4 (X, t)]

[ Ei(t)] = [ T(x t)]Ixc R.
IxCR

CIk(t) #I
I

Ck(x, t) d x

.X. - x.
h1 =x+1 ~ i'

To obtain a relationship between the net currents and the average

fluxes, we must solve Eqs. (5. 1) and (5. 2) analytically over a two-region

problem. The time derivative and delayed precursor terms complicate

this solution, since they are not known in general as a function of x. To

circumvent this difficulty, we make the following approximations.

For each region (Ri (x , xi+1), we assume

14(x't) = [ riIi4(Xt)] (5. 5a)

(5. 4)



where [ ]1 is a diagonal G X G matrix. We insert Eq.

(5. 1) and (5. 2), then substitute Eq. (5. 2) into Eq.

(5. 5) into Eqs.

(5. 1) to obtain:

- 8 [D(x, t)] [(x, t)] + ([ZT(x, t)]+[w ]) [4(x, t)]

- fJXp](1-P) +

If [V ] and

K

k1 [Xdk] odki + Xk

'dki are known for every region i over a time step inter-

val, Eq. (5. 6) can be solved analytically at a fixed time t as was done

in Sec. 3. 2. From this analytic solution, the following expression is

obtained:

(5. 7)

where the terms [C' S(t)] are defined as in E0:q. (3. 1 3). Substituting

Eq. (5. 7) into Eq. (5. 3) results in:

h.
t[,-(t)]

_C i-1

+ h 1(1-P)[X p] [v z (t)] [ (t] +
K

k=1

i+1[ ] [* i(t)]

[Xdkl "k ki(t).

Equations (5. 8) and (5. 4) can be solved using any of the standard time
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(5. 5b)

[v E (x, t)IT [# x, t)]. (5. 6)

(5. 8)

~o- k,(X, t) = Wdk Ck(x, t)

+ [C i, i+1(t)][<i+ (t)] I

MIRi-IMI + [Cili(t)][ i(tq[J i+1I(t)) .. [JP (t)] = [C i' i~ 1

(t)] [ i (t) ]

-- [ I It)+ h [fZI Egi(t) ])[ () -[C
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integration methods.

The above derivation requires a knowledge of [p I and . dk in

Eq. (5.6). The [w p] terms are identical to the omegas which must be

known at every time step for kinetics methods which use the so-called

frequency transformation 3 1 , 32 (although the methods referred to in

Refs. 31 and 32 generally use the omega calculated from the thermal

group as representative of all the groups). We therefore calculate the

omegas as in the above references:

1 ln n+1 n
pgi AT' \ gi gil

odki =T In on+1

where AT is the time step size, and n is the time step index.

We note that the approximations in Eq. (5. 5) can be expressed as:

i) Each position-dependent quantity in a region has the same shape

at the end of a time step as it did in the beginning of that time

step.

ii) To calculate the coupling coefficients, this shape specified above

grows (or decays) as a simple exponential over this time step.

The omegas evaluated above are used to calculate the matrices

[C i (t 1 )] for every time step n. Since these matrices are somewhat

costly to calculate, a time integration method should be chosen which

allows a long time step AT to be taken without loss of accuracy. This

criterion, of course, applies to any kinetics method. However, the

considerable effort required to calculate the coefficient matrices makes

it even more important here. Accordingly, a fully implicit time



80

integration method32 was chosen to solve Eqs. (5. 8) and (5. 4). The

"exponential transformation" has been shown to significantly improve

curtain alternating-direction time integration methods.31 However,

when applied to the fully implicit method, the improvement is not major.32

Therefore, we have not chosen to use the "exponential transformation"

to speed the solution of these equations.

The accuracy of time integration methods such as the NSADE

method31 depends to a significant degree on the accuracy of the omegas.

However, the omegas used in Eq. (5.6) affect only the calculation of the

coupling coefficients, and as such have only a second-order effect on

the transient solution. Therefore we anticipate that the solution of

Eqs. (5. 8) and (5. 4) will be accurate even when large mesh regions are

used.

5. 1. 2 Results of Test Problem 5. 1

To examine further the method derived in Sec. 5. 1. 1, the computer

program IDEX was modified to perform time-dependent calculations.

The new program, called DITD, solves the static and time-dependent

one-dimensional, two-group diffusion equations. Up to six delayed

neutron families are allowed.

Equations suitable for computation are obtained by first time dif-

-n+ 1
ferencing Eq. (5. 4) to obtain an expression for Cki . This expression

is then substituted into the time differenced form of Eq. (5. 8). The

calculational sequence is then:

i) The matrices [C ' ] are calculated using the omegas from the

previous time step.
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ii) The new fluxes [n+1] are calculated. This calculation is per-

formed using a matrix factorization technique.

iii) The now precursors Cki are calculated.ki

iv) The new omegas are calculated from Eq. (5. 9).

Test Problem 5. 1 is the time-dependent version of Test Problem

3. .25 Tpe geometric and material constants for this test problem are

given in Appendix :B. Table 5. 1 shows the results of 1DTD runs using

two different spatial mesh sizes. The reference solution is a finite

difference solution using a 2 cm mesh. For 1DTD, a time step size

of 10-2 sec is sufficiently small to insure temporal convergence.

Table 5. 2 shows the region powers versus time for the 1DTD run with

a 20 cm mesh spacing, and with AT = 10-2 sec.

With the exception of the omega approximation, the 1DTD method

provides exact spatial results. Since this approximation becomes more

exact for smaller mesh spacings, the results in Table 5. 1 indicate that

IDTD can provide highly accurate results using mesh sizes as large as

20 cm. ''he agreement of RUris A arid I suggests that the finite differ-

(nce resuLI using a 2 cm mesh are not as :kecurate as the 20 cm 1DTD

casqe.

5. 2 Two-Dimensional Time-Dependent Analysis

5. 2. 1 Development of the Equations

The results presented in Sec. 4.4 demonstrated the superiority of

the flat source method over the "buckling" method. In Section 5. 1,

approximations were made which allowed the one-dimensional method
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TABILE 5. 1

Total Power versus Time for Test Problem 5. 1

Reference Run A Run B

0.0 1.0 1.0 1.0

0.5 .7597 .7596 .7596

1.0 .6588 .6591 .6591

2.0 .6307 .6311 .6309

Reference: Finite Differences, Ax = 2 cm, AT =

10-3 sec.

Run A: lDTD, AT = 10-2 sec, Ax = 2 (20 cm),

4 (40 cm), 2 (20 cm).

Run B: 1)TI), AT = 10--2 sec, Ax = 20 cm.

TABLE 5. 2

Region Powers versus Time for Test Problem 5. 1

Region

Total Power 1 2 3

0.0 1.0 .27885 .44229 . 27885

0. 5 . 7596 .14834 .34168 . 26959

1.0 .6591 .09622 .29883 .26402

2.0 .6309 .08544 .28566 .25983

Time
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derived in Chapter 3 to be extended to two dimensions. With these approx-

imations, the flat source method can be extended to time-dependent prob-

lems in a straightforward manner.

We shall first derive an expression relating the net leakage in the

x direction to the adjacent average fluxes. From Eqs. (5. 6) and (4. 14),

we see that the equation which is to be solved analytically can be written:

8x [Dit ax j (x0 zijt1[ pi,j j X,0

( Okk T
-[ X](1-p) + k; 1Xdk] +d F k)f [v (t)] [4 (x, t)]

k= dk dki, j ki~

= [L (] (5. 10)
h iyi,

If the cross sections and the omegas are known, Eq. (5. 10) can be solved

analytically for a fixed time t as was done in Sec. 4. 2. 2. To insure

initial criticality, v has been adjusted by dividing it by the eigenvalue X.

The analytic solution of Eq. (5. 10) (and its counterpart in the y

direction) leads to equations similar to Eqs. (4. 22) and (4. 23)

[L (t)] = [R (t)[4(t] + I[E (t)] [L (t)] (4 .22)
x x h ix. y

[L (t)] = [R (t)][4(t)] + -1 [E (t)] [L (t)] (4. 23)
y y h y x

where the matrices [C ] and [C ] in Eqs. (4. 22) and (4. 23) have beenx y

renamed [R (t)] and [Ry (t)] to avoid confusion with the delayed neutron

precursor concentrations. The unknowns in Eqs. (4. 21), (4. 22), and

(4. 23) are ordered such that the energy groups are indexed first, then
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the x direction, then the y direction. Let us write the spatially inte-

grated, time-dependent diffusion equation in the form of Eq. (4. 21)

d (t ) = -h [L (t) - h [L (t) - [ T ) (

+ [M(t)][I4t)] +
K

E X k(t)]
k=1

(5. 11)

where

and

ki, j] [Xdk] ki, j

where

[Xdk]

To insure

value X.

As in

(5. 11):

is a column vector of length G containing the delayed neutron

fission spectrum for family k

is a diagonal matrix containing the inverse neutron speeds

for each group at each mesh point.

criticality, the matrix [M] has been divided by the eigen-

Sec. 4. 2. 2, Eqs. (4. 22) and (4. 23) are substituted into Eq.

[- ()) (-h1 [R (t)) - h [R (t)]+ [MMt) - [T(t)] ) [ (t)]Lidt Jx i yT

K
- [E( )[L (t)] - [E (L)] [L (t)] + T, Xk [U (t)].

Y X X y k=1 k k

(5. 12)

[Ukt) C col {[ kI, 1(t)], . .. (ki, j(t)], . (ckI, J(t)]}

- - - - - Awlkk
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The vector [4(t)] is defined as

[5P(t)] = coi{[ (t) , [L X(t)], [L y(t)]}

so that Eqs. (5. 12), (4. 22), and (4. 23) can be written

K
[W] d [+P(t)] = [T(t)] [*(t)] + Xk[Z k(t)] (5.13)

k= 1

[1/v] [0] [0]

[W] = [o] [0] [0]

[o] [o] [o]

(-h [Rt (t)] - h [R y(t)] - [M ETt][M] ) [E y(t)] [E X(t)]

[T(t)]= [R (t)] [I[E (

[R (t)] [E (t] -[I]

[Zk(t) = col {[k (t)], [0], [0}

[ Ckk(t)] - , k(t)] + Pk[M(t)] [ (t)]. (5. 14)

If the omegas [w Ij and dki, j are known, the matrices [R (t)],

[RL (t)J, [E (t)), and [E (t)] can be calculated; and Eqs. (5. 13) and

(5. 14) can be advanced over one time step. As in Sec. 5. 1, a fully im-

plicit time integration method was chosen to solve Eqs. (5. 13) and (5.14).

The "exponential transformation" was not used for this time integration.

We first time difference Eqs. (5. 13) and (5. 14) according to the

fully implicit time integration method. From Eq. (5. 14), an expression

for [ 1 is substituted into Eq. (5. 13). This results in a matrix

- __ - dd
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equatuoi of the forin:

[A] [ sn+ I [S] (5. 15)

Whe re

n+ + 1 n+1 [Ln+1
x y

As in Sec. 4. 2. 2, a Gauss-Seidel iteration is used to invert the miatrix

[A]. The most difficult part of this iteration is the calculation of the

average fluxes [ §n+1. The form of the matrix equation which must be

solved is identical to that of Eq. (4. 11). As in Sec. 4. 2, the average

fluxes were calculated by using the Cyclic Chebyshev method of iteration.

After the new average fluxes and leakages have been calculated, the new

-n+ 1
precursors C ki, are calculated.

4. 2. 2 Results from a Homogeneous Test Problem

Test Problem 5. 2 is a homogeneous test problem with two neutron

groups and one delayed precursor family. Geometric and material con-

stants are shown in Appendix B. Table 5. 3 displays the total power

versus time for a finite difference solution using a 20 cm mesh,33 and

2DTD solutions using 20 and 10 cm mesh sizes. The 2DTD runs used

a time step of 5 ms, which was determined to be adequate for temporal

convergence.

Table 5. 3 shows that a coarse finite difference spatial mesh can

lead to errors in the transient solution. The 2DTD run using a 20 cm

rislh is seen to be very accurate. Table 5. 4 shows the initial power

distribution using 2DTD (since 2DTD steady-state results are exact
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TABLE 5. 3

Total lowcrs versus Time for Test Problem 5. 2

Total Power

Time
(sec)

F inite
Difference

(20 cm)

0.0

.08

.16

.24

.32

.40

1.0

1.605

2.136

2.610

3.031

3.411

2DTD
(20 cm)

1.0

1.592

2.103

2. 546

2.934

3.275

2DTD
(10 cm)

1.0

1.592

2.105

2. 550

2.940

3.284

Finite Difference, AT = . 5 ms.

ZDTD, AT = 5 ns.

Initial Eigenvalues: Analytic
2DTD
2DTD

1.
10 cm 1.
20 cm 1.

01133
01177
01320
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TABLE 5.4

I nitial Hegion Powers for Test Problem 5. 2

Y Region

1

.1512-1

.4389- 1

.6836-1

.8614-1

.9549-1

2

.1364- 1

.3960-1

.6167-1

.7771- 1

.8614- 1

3

.1083-1

.3142-1

.4894- 1

.6167-1

.6836-1

4

.6952- 2

.2018-1

.3142-1

.3960-1

.4389- 1

5

.2395-2

.6952-2

.1083-1

.1364-1

.1512-1

Region definitions based on a 20 cm mesh.

All powers normalized to unity total power.

x
Region

5

4

3

2

1
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for this case, 2DTD results using 20 or 10 cm mesh sizes are identical).

Since the perturbation is homogeneous, the shape of the power distribu-

tion does not change with time.

A very important aspect of the 2DTD method is the degree of diffi-

culty of solving Eq. (5. 15) at each time step. The matrix [A] is inverted

by using a Gauss-Seidel iteration. 2DTD runs have been made for this

test problem using one, two, and three Gauss-Seidel iterations at each

time step. The results from these runs showed no observable differences.

Therefore, the general strategy used for steady state problems of per-

forming only one Gauss-Seidel iteration appears also to be valid for the

transient case.

In two dimensions, it is felt to be most efficient to calculate the

average fluxes by an iterative technique. An important aspect of this

iteration is the degree of convergence required to give accurate solu-

tions. In 2DTD, the transient convergence criterion is expressed in the

form of an error reduction, which is based on the asymptotic error re-

duction achievable using the Cyclic Chebyshev method. 2DTD runs were

made using a variety of error reductions. It was found that for this

problem an error reduction of .05 was sufficient. This error reduction

corresponds to 8 Cyclic Chebyshev iterations per time step. We note

that larger mesh sizes and smaller time steps will tend to make the

iterations required to calculate the average fluxes easier to converge.

5. 2. 3 Results from TWIGL Test Problems

'est Problems 5. 3 and 5. 4 are test cases originally solved by the

34TWJIL program.' Problem 5. 3 is a step insertion of positive reactivity,
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while Problem 5. 4 is a ramp insertion of positive reactivity. Geometric

and material properties are shown in Appendix B. To determine the

appropriate spatial mesh sizes for 2DTD, several steady state runs

were made. The eigenvalues so obtained are shown in Table 5. 5. An

examination of the eigenvalues and region powers showed that the 2DTD

F0ine Mush solutions are very accurate. We shall therefore display tran-

sient results for 2DTD using the Fine Mesh results as the reference

solution.

The TWIGL results given in Reference 5 do not include average

powers within each homogeneous region, nor do they include the total

power. Only the pointwise fluxes are shown, and these are not imme-

diately comparable to 2DTD results. TWIGL execution times are avail-

able, however.

Tables 5. 6 and 5. 7 show the total powers versus time found from

2DTD for Test Problems 5. 3 and 5. 4, respectively. These results

show that the 2DTD method using the " coarse" mesh structure yields

very accurate results. The time-dependent assembly powers for both

test problems are given in Appendix C. The time steps used by 2DTD

were determined to provide converged temporal results. The time steps

used compare favorably with the steps used to give accurate TWIGL

solutions.

As was done for Test Problem 5. 2, 2DTD runs were made to deter-

mine the number of Gauss-Seidel iterations required per time step in

order to solve Eq. (5. 15). Again, these results showed that one itera-

tion per time step is quite adequate. The transient error reduction
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IABLE 5. 5

Eigenvalues Obtained for Test Problems 5. 3 and 5. 4

Method Eigenvalue

ZDTD Fine Mesh . 913363

ZDTD Coarse Mesh . 913684

TWIGIL (finite differences) . 914193

Most accurate eigenvalue avaliable - .91322.

2DTD Fine Mesh - Uniform 8 cm.

2DTD Coarse Mesh - 2 (12 cm), 2 (16 cm), 2 (12 cm).

TWIGIL -- Uniform 8 cm.

- - -- fi
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TABLE 5. 6

Total Powers versus Time for Test Problem 5. 3

2IDTLD rTotal Power

Time (see) Coarse Mesh

1.00.0

0.1

0.2

0. 3

0. 4

0. 5

2.051

2.068

2. 085

2. 102

2.119

Fine Mesh

1.0

2.059

2.076

2. 094

2. 111

2. 129

2DTD runs used AT = 10 ms.

Transient Error Reduction: .05.

Number of Cyclic Chebyshev iterations per time step:
Coarse Mesh: 18
Fine Mesh: 33

Error Summary:

i) Maximum error in total power: -. 5%.

ii) Error in perturbed
-. 16%.

iii) Error in perturbed
-1.4%.

region power at t = 0. 0 see:

region power at t = 0. 5 sec:

- - -AMINIOL
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TABLE 5. 7

Total Powers versus Time for Test Problem 5. 4

ZDTD Total Power

Timec (sec) Coarse Mesh

1.00.0

0. 1

0. 2

0. 3

0.4

0. 5

1. 305

1. 951

2.064

2.081

2.098

Fine Mesh

1.0

1.308

1. 959

2.073

2.090

2.108

ZDTD runs used AT = 5 ms.

Transient Error Reduction: .05.

Nurilber of Cyclic Chebysliev iterations per tine step:
Coar~i M(?fh: 13
Fine Mesh: 24

E'rror Summary:

i) Maximum error in total power: -. 5%.

ii) Error
-. 16%.

iii) Error
-. 57%.

in perturbed region power at t = 0. 0 sec:

in perturbed region power at t = 0. 5 sec:

- - .4safft



94

criterion of .05 used in the previous test problem was found also to be

adequate for Test Problems 5. 3 and 5. 4.

The execution times of 2DTD are of obvious interest. 2DTD execu-

tion times for the Coarse and Fine mesh sizes will be compared to the

TWIGL execution times given in Reference 34. The TWIGL execution

tiimes: are adjuste(d since TWIGL solves the full core problem rather

than the quarter core problem. The digital computer speeds are com-

parable (IBM 370/168 - CDC 6600). The execution times are shown in

Table 5. 8. This table demonstrates the superiority of 2DTD for tran-

sient calculations. One very interesting aspect of Table 5. 8 is the com-

parison between TWIGL and the 2DTD Fine Mesh case. Since the mesh

sizes are identical, 2DTD involves three times the number of unknowns

(a flux and two leakages) as TWIGL. However, strangely enough, it

appears to run four times faster.

There appear to be two major reasons for the efficiency of 2DTD.

First, the leakages do not require any iteration for their calculation;

thus the majority of the computational effort is directed toward the cal-

culation of the average fluxes. Second, TWIGL has two levels of iter-

ation at each time step; an outer iteration (between the groups), and an

inner iteration (to calculate the fluxes for this group). Since 2DTD

solves both groups simultaneously, the extra level of iteration is elim-

inated.

- - 'ANNOWL
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TABLE 5.8

Execution Time Comparison for Test Problems 5. 3 and 5. 4

Test Problem Method Time Step Execution Time
(sec)

2DTD - Coarse

2DTD - Fine

TWTGL*

2DTD - Coarse

2DTD - Fine

TWIGL*

All TWIGL times adjusted for quarter-core calculations.

5. 3

5. 3

5. 3

5. 4

5.4

5. 4

10 ms

10 ms

10 ms

5 ms

5 ms

5 ms

5. 28

18.78

86. 5

9. 37

32. 34

137. 5
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5. 2. 4 Results from Test Problem 5. 5

Test Problem 5. 5 is a two-group problem based on a half-core

configuration of the BWR Test Problem.20 The thermal feedback model

used in Ref. 20 was not used for this test problem. The geometric and

material constants are shown in Appendix B. The half-core configura-

tion was chosen so that the accuracy of the flat source method could be

evaluated for test problems with large flux gradients.

This problem was designed to be representative of a rod ejection

accident. As shown in Appendix B, the region labeled as Composi-

tion 6 is perturbed by a step change in Ta in both neutron groups. This

perturbation represents a reactivity increase of 1. 34 dollars. The tran-

sient is followed to .02 seconds, by which time the total power has

risen by a factor of four and the perturbed region power by a factor of

20. This introduces a very severe spatial flux gradient.

Transient runs were made using the 2DTD probram with both 15

and 5 cm spatial mesh sizes. Steady state results showed that the

assembly powers from the 5 cm mesh solution are accurate to within

0. 2%. Therefore, the 5 cm results have been taken as the reference

solution. To determine the appropriate time step size, transient runs

using .05, . 1, . 2, and . 4 ms time steps were made. The assembly

powers and total power for the case using a . 1 ms time step were de-

termined to be accurate to within . 5% as compared to the standard

solution obtained by extrapolation. The five centimeter reference

solution was also run using a . 1 ms time step.

Table 5. 9- shows some results from this test problem. For a
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TABLE 5.9

Results from Test Problem 5. 5

Time Total Power

2DTD

(15 cm)F(rmls)

0

2

4

6

8

10

12

14

16

18

20

1.0

1.1155

1.2786

1.4765

1.7073

1.9715

2.2714

2.6102

2. 9920

3.4219

3.9054

2DTD

(5 cm)f

1.0

1.1160

1.2786

1.4745

1.7011

1.9586

2.2488

2.5741

2. 9379

3.3443

3.7980

Step . 1 ms,

Step . 1 ms,

Execution Time

Execution Time

104 sec.

1113 sec.

Time

ITime

- Aftkd
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15 cm mesh, the maximum error in the total power is 2. 8% (with the

execution time under two minutes). Appendix C contains maps of the

transient region powers for the reference solution, as well as percent.

errors in region powers for the coarse mesh 2DTD solution. An exam-

ination of these results shows that the maximum region power error for

the 1 5 cm mesh solution occurs in one of the perturbed regions at T

02 sec. The percentage error for this region at this time is 6. 4%.

Runs were made for this test problem to determine the number of

Gauss-Seidel iterations required per time step in order to solve Eq.(5.15).

The results of these runs again showed that errors incurred from the

use of only one iteration per time step are very small. Runs were also

made to determine the appropriate transient error reduction for this

test problem. Since the reactor is prompt critical, small time steps

are required to follow the transient accurately. The use of small time

steps tends to make the iterations which are needed to calculate the aver-

age fluxes converge more rapidly. To insure that the spatial iterations

were fully converged, a trans ierit error reduction of 10 4 was used for

this test problem. For the 2DTD case with a time step of . 1 ms and a

15 cm mesh size, this corresponded to the use of 8 Cyclic Chebyshev

iterations per time step.

Numerical solutions to this test problem using finite difference tech-

niques are not available. To obtain an estimate of the cost of solving

this problem using finite difference methods, some static runs were

made using the MEKIN code.6 Our objective was to determine the spatial

mesh size that is needed for MEKIN such that the maximum error in any

assembly power was less than five percent. It was found that if a mesh

-As&
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size or 2. 5 cm was used, the maximum assembly power was found to be

4. 4%. The static solution to this half-core problem using MEKIN required

665 seconds of CPU time, as compared to 6 seconds for the 2DTD pro-

gram using a 15 cm mesh.

For the transient problem, the CPU time per time step for the IBM

370/168 required by MEKIN is6 (3 X 10~4 sec)(NPTX)(2+.3 * NDF)

where NPTX is the number of spatial mesh points, and NDF is the num-

ber of delayed families. For this problem, NDF = 2 and NPTX = 8712;

Therefore MEKIN would require 6. 8 seconds per time step. The time

integration method used by MEKIN requires smaller time step sizes to

insure accurate solutions than does the fully implicit method. For many

problems, five times more time steps are required. Therefore, we

estimate that a MEKIN solution of comparable accuracy to 2DTD would

require 1000 time steps and thus 1. 9 hours of CPU time. Table 5. 9

shows that the 2DTD solution using a 15 cm mesh required less than two

minutes to execute.

In the light of this discussion, we conclude that finite difference

solutions cannot provide the combination of high accuracy and low com-

putational effort that can be obtained from nodal schemes such as the

flat source analytical method derived in this thesis.

5. 2. 5 Results from Test Problem 5. 6

Test Problem 5.6 is a two-group transient problem which begins

from the same initial conditions as does Test Problem 5. 5. This test

problem simulates the ramp insertion of several banks of control rods,

with one of the banks "stuck" outside the core. The duration of the ramp
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is from 0 to .2 seconds, and the transient is followed to . 5 seconds. The

details of the perturbation are given in Appendix B.

Transient runs were made using the 2DTD program with a 15 cm

mesh. The reference solution was calculated using 2DTD with a 5 cm

mesh. To determine the appropriate time step size, transient runs

were made using 5, 10,. and 20 ms time steps. The results of these runs

agreed to within . 1% for the total power and assembly powers. The re-

sults using a 10 ms time step for both 15 and 5 cm mesh spacings will.

be presented.

Some results are shown in Table 5. 10. Appendix C contains maps

of the transient region powers for the reference solution, as well as

percent errors in region powers for the coarse mesh 2DTD solution. An

examination of these results shows that the region power errors for the

coarse mesh solution are all less than 4. 5%. The maximum error in

the total power during the transient is 1. 2%.

Transient runs were made to determine the number of Gauss-Seidel

iterations required per time step in order to solve Eq. (5. 15). Exami-

nation of the results using one, two, and three Gauss-Seidel iterations

per time step showed no significant differences. The strategy of using

one Gauss-Seidel iteration per time step has been successful for every

transient problem attempted. Therefore, it is felt to be a good approx-

imation for the general case.

The transient error reduction of .05 used in Sections 5. 2. 2 and 5. 2. 3

was found to be adequate for this test problem also. For the 15 cm

2DTD problem, this corresponded to the use of 12 Cyclic Chebyshev

- m
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TABLE 5.10

Results from Test Problem 5.6

Time Total Power

2DTD 2DTD

(sec) (15 cm) (5 cm)

0.0 1.0 1.0

.05 .9182 .9112

.10 .8502 .8424

.15 .8020 .7936

.20 .7660 .7571

.25 .7604 .7526

.30 .7585 .7506

.35 .7566 .7487

.40 .7547 .7469

.45 .7531 .7451

.50 .7514 .7434

Time Step 10 ms, Execution Time 28.4 sec.

ITime Step 10 ms, Execution Time 398 sec.
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iterations per time step. The results in Table 5. 10 and Appendix C show

that the 15 cm 2DTD solution provides very accurate solutions in a small

computing time. The fully implicit time integration method provides

very accurate solutions for this problem.

In the calculation of the reference solution to this test problem, the

2DTD program predicted some negative fluxes in the reflector. This

behavior was caused by the rapid decrease in power level of the perturbed

assemblies. A scheme which was found to eliminate this problem will

now be described.

In his investigation of albedo boundary conditions, Kalambokas 7

developed steady state and time-dependent expressions for the albedos.

The time-dependent expressions involved omegas very similar to the

ones used in this thesis. Kalambokas observed that unless the reactor

was prompt supercritical, the omegas were rarely large enough to be of

significant influence in the calculation of the albedos. Therefore, in

2DTD the prompt omegas (see Eq. (5. 5a)) were set to zero for any re-

gion in which the fluxes were decreasing.

This scheme was found to eliminate completely the problem of nega-

tive fluxes for the 5 cm reference case. In addition, comparisons of this

scheme with the normal omega scheme for the 15 cm solution to this

test problem showed that the results agreed to within a few tenths of one

percent. Therefore, it was felt that setting the prompt omegas equal to

zero in any region where the fluxes are decreasing is a legitimate approx-

imation for the general case. The results presented in this section are

all based on the zero omega approximation.

- Aft Ank,
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5. 2. 6 liesults from the BWR Kinetics. Problem

Test Problem 5. 7 is a two-dimensional quarter-core BWR kinetics

problem. 3 0 This problem is designed to simulate a rod ejection accident

from a low-power condition. The thermal feedback model used in this

test problem incorporates adiabatic heatup with space-dependent Doppler

feedback. The equations describing this process are

a[ Zf(x, t) * (X, t)+f 2(xt) *(x,t)] = T(x, t) (5. 16)

a1(X, t) = a(x 1t=0)(1 + y[ T(x, t) -- N ]. (5.17)

The description of this test problem is given in Appendix B.

The ZDTD program was modified to include the above thermal feed-

back model, and several runs were made using a 15 cm spatial mesh.

The following time step sizes were found to yield acceptably accurate

re sults:

AT (sec) Time (sec)

.01 0 < t< 1.0

.001 1. 0 < t < 1. 3

.0005 1.3 < t<1.6

.002 1.6 < t< 2.0

.01 2.0 < t < 3.0

Table 5. 11 presents a summary of the results obtained for this test

problem, as well as results obtained by other investigators. 3 0 , 37

Entries in Table 5. 11 which have been left blank were either uncertain

- n AW
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TABLE 5.11

Results for Test Problem 5. 7

Number of time steps

Run time (sec)

Initial X

k after rods out

Time to first peak (sec)

Time to second peak
(sec)

P at first peak (w)av

Pav at second peak (w)

Tm at 3.0 sec (*K)

Tav at 3.0 sec (K)

Werner 3 7

Method

Finnemann 3 0

1200

120

.99629

1.01537

1.455

. 99630

1.01531

1. 4425

2.0

5712 5489

850

2979

1096
___________________________________________________________-I

* Execution time on an IBM 360/91.

2DTD

1300

403

. 99693

1.01693

1.402

2.0

5627

838

3286

1162

- -- ;. Aft
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or unknown. Figure 5. 1 shows a semilog plot of the total power during

the interesting period of the transient. Detailed power distribution and

temperature results are presented in Appendix C.

This test problem is very difficult since the neutron fluxes must

increase by many orders of magnitude before the thermal feedback comes

into play. For this particular problem, a time integration method which

uses an exponential transformation would have been more effective than

the fully implicit method used in ZDTD. The results in Table 5. 11,

however, show that ZDTD is capable of producing accurate results with-

in a reasonable computing time.

5. 3 Summary

One- and two-dimensional static methods for solving the diffusion

equations were derived in Chapters 3 and 4. In this chapter, we have

shown that accurate transient results can be obtained using spatial

mesh sizes as large as 20 cm. The analytic method has also been shown

to enjoy a significant cost savings over conventional finite difference

methods.

- -a m



Figure 5. 1 Total Power versus Time

for Test Problem 5. 7
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Chapter 6

SUMMARY

6. 1 Overview of Thesis Results

The objective of this thesis was to develop economical computational

techniques for transient analysis of light-water reactors. The initial

stages of the research consisted of an investigation of the finite element

method.1 2 This method has been shown to yield accurate results for

static and transient reactor problems. In Chapter 2, the results of sev-

eral attempts to speed the solution of the finite element equations by non-

linear means were reported. Although some success was obtained by

formulating a different eigenvalue problem, it was felt that a finite ele-

ment solution to the space-dependent reactor kinetics equations was

overly costly.

In Chapter 3 a one-dimensional analytic method for solving the static

one- and two-group diffusion equations was derived. This method was

shown to be exact in one dimension. The analytic method was success-

fully extended to two spatial dimensions in Chapter 4. Two procedures

for accomplishing this extension were developed; the "buckling" method

and the flat source method. These methods were tested for a variety of

two-group, two-dimensional static problems. The results of these test

problems demonstrated that the flat source method possessed the opti-

mum combination of accuracy and execution time. The flat source method

was therefore chosen to be extended to time-dependent problems.

In Chapter 5, the one-dimensional analytic method and the two-

dimensional flat source method were both extended to time-dependent

- __ Aa
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problems. The results for a variety of test problems showed that the

approximations required to accomplish this extension were very accu-

rate for mesh spacings as large as 20 cm. The two-dimensional time-

dependent test problems demonstrated the accuracy and efficiency of the

flat source method. For both of the TWIGL test problems, the ZDTD

Coarse Mesh solution was shown to be more accurate than the TWIGL

solution; however, its execution time was an order of magnitude smaller

than that of TWIGL. Test Problems 5. 5 and 5. 6 showed that 2DTD re-

tains high spatial accuracy even for problems with large flux tilts. Com-

parisons with conventional finite difference techniques (MEKIN) showed

that for equivalent accuracy, ZDTD can be as much as 60 times more

cost effective. Finally, Test Problem 5. 7 showed that accurate tran-

sient results can be obtained for a very difficult test problem in which

the flux changes by nine orders of magnitude.

The analytic method developed in this thesis has been shown to be

accurate and economical for two-dimensional, two-group transient

reactor calculations. Comparisons with finite difference methods show

that the analytic method can be between 10 and 60 times less costly to

run. The analytic method is therefore an attractive alternative to finite

difference methods now in general use.

6. 2 Extension to Three Dimensions

The results presented in this thesis have demonstrated that efficient

computational techniques should possess a nearest-neighbor coupling

relationship. The flat source method can be easily extended to three-

dimensional problems, and will retain this nearest-neighbor coupling

- - do&
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TABLE 6.1

Execution Time Breakdown for Test Problems 5. 5 and 5. 6

Matrix Generation

Iterative Solution of
Average Fluxes

Leakage and Right-
hand Side Calcu-
lation

Test
Problem 5. 5

55%

18%

Test
Problem

27%

5. 6

51%

24%

25%

- - ANN&
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relationship. In three dimensions, the result of each one-dimensional

analytic solution is an equation in which the x directed leakages are

coupled to the average fluxes, and also to the y and z directed leakages.

This equation and its counterparts in the y and z directions are then

substituted into the integrated diffusion equation. The numerical tech-

niques used in the 2DTD code can be applied to the solution of the three-

dimensional problem.

The numerical solution of the two-dimensional transient diffusion

equations have been accomplished by the use of powerful iterative tech-

niques, such as the Cyclic Chebyshev iterative method. It is doubtful

that further improvements in execution time could be obtained by attempt-.

ing a more efficient iterative solution.

The transient results for Test Problems 5. 5 and 5. 6 have been ana-

lyzed to determine where the bulk of the computational effort is being

expended. Table 6. 1 shows the breakdown of computational effort for

the 15 cm solutions to Test Problems 5. 5 and 5. 6. This table shows

that over 50% of the execution time during a transient is spent calculating

the matrices at each time step. Thus far, no significant effort has been

made to optimize the calculation of the matrices. It is apparent that the

matrix calculation should be performed with considerable care so that

the efficiency of the overall method is not seriously degraded.

6. 3 Recommendations for Future Work

Future work is required in the following areas:

i) The method incorporated in the 2DTD program uses a flat

representation of the transverse leakage. A higher order
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representation, such as a quadratic expansion, can lead to sig-

nificant improvements in accuracy for some test problems.

Although such a representation would appear to be very com-

plicated, the accuracy improvement would suggest that this

area should be explored further.

ii) The fully implicit time integration method used in 2DTD is a

very simple solution technique. As discussed in Sec. 5. 2. 6,

for some problems a time integration method which uses the

exponential transformation could be superior to schemes which

do not use it. The applicability of the exponential transforma-

tion to the method derived in this thesis should be investigated.

In addition, other semi-implicit and alternating direction time

integration methods should be investigated.

iii) Investigation of iteration strategies for three-dimensional prob-

lems.

iv) Efficient generation of the coefficient matrices. Also, investi-

gations into whether approximations could be made to simplify

the matrix elements.

v) Determination of average albedos at core-reflector and core-

shroud interfaces.

vi) Efficient data management techniques for three-dimensional

problems.
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Appendix A

DERIVATION OF THE MATRICES [A'], [B'], AND [Di]

We wish to calculate the matrices [A'], [B1 ], and [Di]. The deriva-

tion will be carried out for the case of two neutron energy groups. How-

ever, the results for both one- and two-neutron energy groups will be

shown.

We assume that region R. (x . x 4 xi+1) is nuclearly homogeneous.

Thus, for the two-group case, Eq. (3. 1) can be rewritten as:

2

dx 2 f2

D2 2 2
dx

zr1

=0

L2(x)- -

(A. 1)

where

TE = zT - v .

We seek particular solutions such that

d 20 4 1(x) -B
dx2

L2(x) 00
dx 2

0 (x)

AL i*

-2 42(x

(A.2)

Substituting Eq. (A. 2) into Eq. (A. 1), we

be chosen so that

21f2

Er1 -D2 B2 1

see that the numbers B2 must

(x)
= 0. (A.3)

- - A

2
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Thus, the determinant of the coefficient matrix in Eq. (A. 3) must vanish.

2Equ-ation (A. 2) is then valid only for certain values of B .We see that

there are two and only two values of B2 which satisfy Eq. (A. 2).

values, designated K2 and - 2, are defined as:

2 1 1
K =--2( D2)

2D 1

2 2
2D 2)

These

v Ef2 ri
+ D D D2

(A. 4)

2 1
+

E 1
2D 1

2 2
2D 2)

+VEf2rl
XD ID 2

where ±2 is always positive, and K2 can be either negative or positive.

Let us further define

R(B2 rl

+ D 2B 2+ Z 2

so we have R(K2) = r and R(-± 2 S.

The general solution to Eq. (A. 1) is then the linear combination

$)(x) i~

L 2 x arj sin KX + a2Lj COS KX

+ a 3 sinh FLx + a j4 cosh x

* (x)

L02 (x) r

j La sin Kx +

s a3 sinh I.x +

a 2 cos xx

a4 cosh ix

and the corresponding current vector is

11(A. 5)

- - IMI&



-D *d(x) -D

-D d * (x)I-D2r2 dx 2 L

J 1(x

J2(x

119

-D a IK COS Xx - a 2K sinKX

-D 2s a3P cosh xK + a4p sinh x

Let us write the total flux-current vector as

[D(x)]=
J 1 (x)

J2(x)

11 0 0

r s 0 0

0 0 -U D

sin KX

0

cos Kx

0

K COS KX -K sin KX

0

0 0

sinh Lx cosh jLx

0 0

(Isinh x

where [A] is the column vector col (a , a 2 , a 3'ag4. Hence the above

equation reduces to

[O(x)] = [E][F(x)] [A].

Both the matrices [E] and [F(x)] have inverses.

al

a
2

a3

ag0 J cs()h11 LX

(A. 6)

They are given by

- [ 14,][ 1'(x)|ILA I



[E] ~ s Ir

S -1

-r 1

o 0o

0 0 D

[F(x)~1 =

sin KX

cos KX

0

0

0

0

-sinh ix

cosh ix

1
COS KX

K

1 sin cx
K

0

0

0

0

-cosh FLx

- sinh j.x

Thus, the coefficients in the general solution are given by

[A] = [F(x)] 1 [E]I1 [O(x)]. (A. 7)

If a homogeneous region extends from x1 to x 2 we may find [i(xd

in terms of [4(x 2 )] by applying Eq. (A. 6) for x = xi and Eq. (A. 7) for

x = x 2 . Thus

Defining h = x 2 - x, multiplying out and rearranging, we have

G(h) = [F(xI)] [F(x2

0

cosh lh

0

-FL sinh Kh

1- sin Kh
K

0

Cos Kh

0

0

- sinh FLh

0

cash FLli

- - 1M

120

0

0

S

1

0

0

1

2

-

coS Kh

0

, sin KBh

0

[ 1@(x 1)] = [E] [F(x I)] [F(x 2)]~' [E]~1 [cb&2 ']



Then we have

[D(x )] = [E] [G(h)] [E] [@(x2)l.

Comparing Eq. (A. 8) to Eq. (3. 4), we see that

exp -[Ni ] h = [E][G(h)][E~ 1.

Since we have an expression for e

tanh [Nil hi/2 and sinh [Nil hi by us ing

, we can obtain expressions for

the identities

sinh x = (ex -e X)

ex -
tanh x - e x

e + et

Performing the necessary algebra gives the final expressions

[A 2 s ri)

s tanK hK 2

r s. tan K 1h1/2

KD

r. tanh h /2
p. ~D1 i

r s. tanh h /2
ii D 1

tan K h /2

K .D +

r tan Kh 2

i D2i

tanh h 2

s. tanh h/2

iD2i

121

(A. 8)

(A.9a)
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.B 1h.

s - ri

(K s. csc K.h. - .r. csch i.h.)
11 1 1 1 1 1 1

(s.r.K. csc ,c.h. - s.r.p.. csch .h.)
1 1 1 1 1i 1 1

(-K. cSc K.h. + . csch p..h.)

(- C r CSC K h + IJ.S Csc h ih)

To calculate the matrix [D'] defined in Eq. (4. 18),

the column vector [L] in Eq. (4. 15) is defined

[LI = col

(A. 9b)

'we observe that

[01-

and since only the top equation of Eq. (4. 17) is used, we find that

[Di = - (sinh 1 [Ni] h. ) h. + [N ].

Therefore it can be easily shown that

[D
h.

,2s.- r.
1 1

+

csc K h.

K.11

r i S
KC.

csc Kh
11

i2iX f2i rni

csch h

Ili

s. csch p-.h

p..

2i

r1 i

S.

1

D -

1
D2i

21
D 2i

1
- v fi

11~i (A. 9c)

In a region where there is no fissioning, we note

to infinity.

that si will tend

Thus, the matrices in Eq. (A. 9) must be re-evaluated using

1''Hopital's rule. We find that

] 
, .
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tan K.h./2

iD I
[Al ])=[,2

[13 h .

Qr. tan Kh./2

K.D .

r. tanh i.h./2
1 1 1
~. .D 1 .

tanh .ih./2)j
1 11.D .

0

([L csch iih )

[D' 21's 2

h. csc K.h.
1 K1

Di .K

h r. csc i.h. h.r. csch .h.LK 1  .11+ D1 i.1)

2i x f2i i

(7

0

h. csch .h.\

D 2i i

1

11

For the c(ase of one energy group, the following formulas are

obtained:

Let K 2=

where

i Ti T fio

Then

(K. CSC K.h.)
S1 ii

(rc csc , h. - r.± eschh)

(A. 10a)

(A. 1Ob)

(A. 10c)
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tan K.Il/2

[A P2 = D.K.
1 1

[BI } = h CSC K h. (A.l1l)

.h. csc ,c.h.
[DI ] = -i

1 i D.,c.
1 1

- dmb
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Appendix B

TEST PROBLEM DATA

1) Test Problem 3. 1

Geometry:

Composition

2 1
$=0

0

Material Constants:

Group 1

Composition

1

2

Group 2

20 cm

D

1.5

1.2

J =0
60 cm

STg , vz 

.0623

.101

.06

.1

0

0

Composition

1

2

D E

.4 .2

.15 .02

2) Test Problem 3. 3

Geometry:

Composition

J =0

0

3 1 2 12 1

10 30 50

2 13 1 2 1 41

70 90
110 I I 1

110 130 150

X Axis (cm)

Esgg'

0

0

.218

0

170

I
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Material Constants:

Same as Test Problem 4. 2. For the one-dimensional case,

buckling was not added.

3) Test Problem 4. 1

Ge<>metry:

A uniform square 100 cm on each side, with Ax = Ay = 20 cm.

* = 0

100 1 1

Jx= 0 0
x

C,

0
0 100

X Axis
(cm)

J =0
y

Material Constants

Group

1

D
g

1.5

zTg

.0623

sgg'

.06

v fg

0

.4 .2 0 .218

the

2
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4) Test Problem 4. 2

Geometry:

This two-dimensional test problem is a square 170 cm on a side.

$ =0
170

150

130
J =0

x

110

4 =0

0 10 30 50 70 90 110 130 150 170

X Axis (cm)

J = 0
y

Ci2

90

70

50

30

10

0
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Material Constants:

Group 1

Composit ion

1

2

3

4

D
g

1.5

1.5

1.5

2.0

zTg

.03

Esgg'

.02

.03 .02

.03

.04

.02

.04

Group 2

Composition

1

2

3

4

D E E
g Tg sgg'

.4 .08

.4 .085

.4 .13

.3 .01

0

0

0

0

(in all compositions).

- As

v Efg

0

0

0

0

v Ifg

.135

.135

.135

0

B 2z
= . 8 x 10



Test Problem 4. 3

Geometry:

Test Problem 4. 3 is a square 165 cm on a side.

* =0

165-

135-
120 3
105

75

J =0 -x

15
0

0 15

J = 0
y

X Axis

75 105 135 165
120

(cm)

5)

129

- Aaft
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Material Constants:

Group I

Composition

I

2

3

4

5

D
g ITg sgg' v Efg

1~

1.

1.

1.

1.

1.

255

268

259

234

257

.033582

.034851

.034172

.035172

.0481434

.02533

.02767

.02617

.02805

.04754

.004602

.004609

.004663

.004668

0

Group 2

Composition

1

2

3

4

5

D
g

.211

.1902

.2091

.1935

.1592

M Tg

. 1003

.07047

.08344

.06552

.01911

.sgg'

0

0

0

0

0

. vTfg

.1091

.08675

.1021

.08792

0

B = 1 x 10''4 (all compositions).z
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6) Fest Problem 5. 1

Geometry:

Test Problem 5. 1 is a one-dimensional two-group kinetics problem.

Composition

= 0
0

1 2 3

$ = 0

40 cm 200 cm 240 cm

Material Constants:

Group I

Composition

I.

1

2

3

D E
g Tg

1.5

1.0

1.5

.026

S02

.026

s gg'

.015

.015

.015

2 :fg

.01

.005

.01

Conposition

1

2

3

D sgg, v 1fg

.5 .18

.5 .08

.5 .18

- dh

G roup ;

0

0

0

.2

.099

.2

I
I
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Kinetic Parameters:

Delayed
Family

1

2

3

4

5

6

vi

Beta

.00025

.00164

.00147

.00296

.00086

.00032

Lambda

.0124

.0305

111

.301

1.14

3.01

= 10

v2 = 3 X

Perturbation:

ET2 in composition 1 is linearly increased by 3% over 1. 0 seconds.

Problem solved out to 2. 0 sec.
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7) Test Problem 5. 2

Geometry:

Test Problem 5. 2 is a two-dimensional two-group kinetics bench-

mark problem.

4 = 0
100 cm

J =$x

0
0 J 0

Y

$=0

100 cm

Material Constants:

Kinetic Parameters:

P = .0064,

.003682

.0056869

.0023

0

.00058322

.0103148

vi = . 3 X 10-8 v 2 =. 22 X

Step perturbation, AMT2 = -. 3 6 9 x 10~4.

Group D
g

I

z Tg

1

2

1. 35

1.08

Fsgg' VE fg

X =.08

10-6
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8) Test Problems 5. 3 and 5. 4

Geometry:

Test Problems 5. 3 and 5. 4 are square test problems in quarter-

core symmetry.

j~ 0
J =0 .12

x

< 4

80 -

56 -

2.

0

3

2

3

1

3 2j3

0 24 56

X Axis (cm)

Jy = 0

Composition 1 is the "seed" region.

Mesh spacings used:

TWIGL Mesh: Uniform 8 cm.

2DTD Coarse Mesh: 2 (12 cm), 2 (16 cm), 2 (12 cm).

ZDTD Fine Mesh: Uniform 8 cm.

3

3 $ =0

80
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Material Constants:

Group 1

Composition

1

2

3

D
g

4.

1.4

1.4

1.3

STg

.02

.02

.018

sgg' v fg

.01 .007

.01

.01

.007

.003

Group 2

Composition

1

2

3

Kinetic Parameters:

@ = .0075,

D
g

.4

.4

fTg

.15

.15

.5 .05

X =.08

1/v 1 = 1 X 10~, 1/v 2 = 5 X 10- 6

Test Problem 5. 3:

Step perturbation in Composition 1.

AE T 2 = -. 0035. Problem duration 0 < t < . 5 sec.

Test Problem 5. 4

Ramp perturbation in Composition 1.

A T2 = -. 0035, duration of ramp 0 < t 5 .2 sec. Problem duration

0 < t < . 5 sec.

- - Af

sgg'

0

0

0

vFfg

.2

.06
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9) Test Problem 5. 5

Geometry:

Test Problem 5. 5 is a half-core BWR test Problem.

* =0

330

300
3 3

270
22

240

J =0
x

C.)

C')

180

150

90

60

30

15
$=0

X Axis (cm)

15 105 135 165
0
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Material Constants:

Same as for Test Problem 4, 3, except for Composition 6; which is

initially the same as Composition 3.

Kinetic Parameters:

Delayed
Family

1

2

vI = 3 X 10 ,

p

.0054

.001087

X

.0654

1.35

v2 = 3 x 105

Perturbation in Composition 6.

Step Change at t = 0. 0

AIal = -. 0006

A a 2 = -. 006

Duration of transient

0 < t<.02 sec.

- -:- A&
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10) Test Problem 5. 6

Geometry:

Test Problem 5. 6 is a half-core BWR test problem.

* = 0

15 0

X Axis (cm)

L2 6 4~0

3

4

5

75 105 135 165

330

300

270

240

J =0
x

180

130

90

60

30

0
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Material Constants:

Same as for Test Problem 4. 3, except Composition 6; which is ini-

tially the same as Composition 3.

Kinetic Parameters:

Same as Test Problem 5. 5.

Perturbation in Composition 6

Ramp change:

A-4A E =5. X 10-
al

A TEa2 =5 X 10- 3

Duration of ramp

0 < t 6.2se

Du ration of transient

0 < t <.5 sec.
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11) Test Problem 5. 7

Geometry:

Test Problem 5. 7 is a quarter-core BWR test problem.

165

135
120
105

75

U

-I]

J =0x

15

0 I 15
0 15 J =0

y

$ =0

75 105 135 165

X Axis (cm)

Material Constants:

Same as Test Problem 4. 3, except for Composition 6, which is ini-

tially the same as Composition 3.

5

3 4

22 6

1 3

tziYiI
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Kinetic Parameters:

Same as Test Problem 5. 5.

Perturbation in Composition 6

Ramp change

A Fal = 0

A;az =a2
-1.010116 cm~

Duration of ramp

0 < t < 2. 0 sec.

Thermal Parameters:

Energy conversion parameter E . 3204 x 10 ws/f

Mean power density at

t = 0. 0 d = 1. o x 1o- 6 W/cc

Conversion factor in feedback model

a = 3. 83 X 10 1 *K cc

Feedback constant

y = 3. 034 X 10-3 *K
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Appendix C

RESULTS FROM TEST PROBLEMS

TABLE C.1

Region Powers at T = 0.0 and T = 0. 5 sec for Test Problem 5. 3

For both directions, let the regions be defined as

1: 0 x 24 cm

2: 2 4 x 56 cm

3: 56 x 80 cm

2DTD Coarse Mesh)
.2DTD Fine Mesh /

Region Power Map at T = 0. 0 sec

3 . 03533
.03528

y
Region 2 . 2438

. 2433

1133
1 136

.03414 .008328

.03431 .008363

.2518

. 2522

. 24:38

. 2433

. 03414

.03431

. 03533

. 03528

Region Power Map at T = 0. 5 sec

3 .07360 .07305 .01797
.07442 .07435 .01825

Y
Region 2 .5061

. 5116

.2331

.2366

1

.5455

. 5530

.5061
.5116

2

X Region

.07305

. 07435

.07360

.07442

3

xxx
yyy

- --- ddft
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TABLE C.2

Region Powers at T = 0. 5 sec for Test Problem 5. 4

Region definitions given in Table C. 2.

Region power map at T = 0.0 sec also given in Table C. 2.

Region Power Map at T = 0. 5 sec

3 .07348 .07292 .01794
.07369 .07362 .01807

Y 2 .5052 .5445 .07292
Region .5066 . 5476 .07362

1 .2327 .5052 .07348
.2343 .5066 .07369

1 2 3

X Region



Initial Power Distribution for Test Problems 5. 5 and 5. 6:

300

285

270

255

240

225

210

195

180

1 65

150

135

izo

10 5

90

'75

60

15 30 45 60 75 90 105 120 135

X Axis (cm)

.5921-2 .5560-2 .5302-2 .5471-2 . 5981-2 . 6226-2 . 5404-2

.9493-2 . 8218-2 .7516-2 .7827-2 . 9121-2 . 1076-1 . 1045-1 .8308-2

.1067-1 .7373-2 .6191-2 .6546-2 .8578-2 .1317-1 .1388-1 .1045-1 .5404-2

.8898-2 .6022-2 .5012-2 .5399-2 .7378-2 .1189-1 .1317-1 .1076-1 .6226-2

.5063-2 .4302-2 .3963-21.4348-2 .5545-2 .7378-2 .8578-2 .9121-2 . 5981-2

.3278-2 .3145-2 .3157-2 .3544-2 .4348-2 .5399-2 .6546-2 .7827-2 .5471-21
I___ L 36-151-169- - __ -4

0.2645-2 .2608-2 . 2721-2 .3157-2 .3963-2 5012-2 6191-2 .7516-2 .5302-2

.2820-2 .2563-2 .2608-2.3145-2 .4302-2 .6022-2 1.7372-2 .8218-2 . 5 5 6 0-2

.3930-2 .2820-2 t.2645-2.3278-2 .5063-2 .8898-2 . 1067-1 .9493-2 .5921-2

.3930-2 .2820-2. 2645-2 .3278-2 .5063-2 .8898-2 .1067-1 .9493-2 .5921-2

.2820-2 Z 56 3 -2 .2608-21 3145-2 . 4302-2 . 6022-2 .7372-2 . 8218-2 .5560-2

.2645-2 .2608-2 .2721-2 3157-2 3963-2 5012-2 .6191-2 .7516-2, 5302-2

.3278-2 . 3145-2J.3157-2 .3544-21.4348-2 .5399-2 .6546-2 .7827-21. 5471-2

.5063-2 . 4302-2 .3963-2 . 4348-2 .5545-2 .7378-2 .8578-2 .9121-2 .5981-2

.8898-2 .6022- . 5012-2 .5399-2 .7378-2 .1189-1 .1317-1 .1076-1 .6226-2
-I I.-..-........--- - - - - - . _____________________

. 1067-1. 7373-2 . 6191-f . 6546-2. 8578-2 . 1317-1 .1388-1 .1045-1 .5404-2

.9493-2 .8218-Z .7516-2 .7827-2 . 9 122 -2 .1076-1 .1045-1 .8308-2

.5921-2 .5560-2 .5302-2t.5471-2 .5982-2 .6226-2 .5404-2

C)

Ci)

k

45

30
0

Figure C.1 I Re forence Case



Power Distribution at T = .005 for Test Problem 5. 5:

300

270

240

210225

10

165

1 50

135

20

105

90

75

60

45

30
15 30 45 60 75 90 105 120

X Axis (cn)

4~4

C)

':1)

.5944-2 .5582-2 .5322-2 .5490-2 .6001-2 .6246-Z .5421-21

.9536-2 . 8254-2 . 7547-2 . 7857-Z . 9155-2 . 1080-1 .1049-1 . 8338-2

.1073-1 .7413-2 .6223-2 .6578-2 .8616-2 .1322-1 .1394-1 .1050-1 .5428-2

.8968-2 .6072-2 .5052-2 .5439-2 .7424-2 .1195-1 .1324-1 .1082-1 .6264-2

.5137-Z . 4368-2 . 4022-2 . 4403-2 . 5603-2 .7445-2 .8653-2 . 9204-2 . 6036-2

.3391-2 .3249-2 .3250-2 .3631-2 .4435-2 .5493-2 .6651-2 .7948-2 .5554-2

1.2850-2 .2789-2 .2875-2 . 3298-2 .4106-2 5167-2 .6363-2 .7708-2 .5431-2

.3229-2 .2887-2 .2863-2 .3371-2 .4541-2 .6305-2 .7680-2 .8528-2 .5758-2

.4780-2 .3375-2 .3050-2 .3628-2 .5445-2 .9438-2 .1124-1 .9967-2 .6202-2

5135-2 .3643-2 .3264-2 3802-2 .5594-2 .9594-2 .1140-1 .1010-1 .6291-2

.4215-2 .3751-2 .3572-2j.3937-2.5004-2 .6717-2 .8076-2 .8944-2 .6035-2

.4886-2 .457 3-2 .4 3 01-2 .4401-2 .4986-21.5923-2 .7080-2 .8467-2 .5934-2

.7465-2 . 6658-2 .5811-2 . 5524-21. 5926-2 . 6784-2 .7858-2 .9176-2 .6342-2

.1364-1 .1068-1 .8322-2 .7416-21.7994-2 .9684-21.1071-1.1106-1 .7146-2

.2718-1.1700-1 .1170-1 .9875-21.1101-1 .1597-2 1684-1 .1337-1 .7600-2

.3789-1T.234 3 -1 .1569-11.1270-1 .1331-1 .1811-21 1807-1. .1320-1 6693-2

.4291-1 .2892-1 .2005-11. 1581-1 .1474-1 .1524-1 .1386-1 . 10 62-1

.2942-1 .2058-1 .1451--1 .1130-1 .9917-2 .9025-2 .7293-2

0
c.',

Reference CaseFigure C. 2



Figure C. 3 Power Distribution. -~ = . 01 for Test Problem 5. 5: Reference Case

300

285

270

240

225

210

195

180

165

150
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Figure C. 4 Power Distribmioc at T = .015 for Test Problem 5. 5: Reference Case
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Figure C. 5 Power Distribution at T = .02 for Test Problem 5. 5: Reference Case
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Figure C. 6 Percent Errors for 15 cm 2DTD Solution at T = 0. 0 for Test
Problems 5. 5 and 5. 6
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Figu-re C. 7 Percent Errors for 15 cm 2DTD Solution at T = .01 for Test
Problem 5. 5
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Figure C. 8 Percent Errors 5or .
Problem 5. E

cm 2DTD Solution at T = .02 for Test
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Figure C. 9 Power Distribution at T = . 2 for Test Problem 5.6: Reference Case
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Figure C. 10 Power Distribution at T = .3 for Test Problem 5.6: Reference Case
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Figure C. 11 Power Distribution at T = . 5 for Test Problem 5.6: Reference Case
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Figure C. 12 Percent Errors for 15 cm 2DTD Solution at T = . 2 for Test

Problem 5.6
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Figure C. 13 Percent Errors for 15 cm
Problem 5. 6

2DTD Solution at T = . 5 for Test
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Figure C. 14 Region Powers for Test Problem 5. 7 T=O.0
T=1. 405

. 9060-6 .8592-6 . 8248-6 .8589-6 .9472-6 . 9885-6 . 8546-6

.3103+4 .3137+4 . 3420+4 .4168+4 .5303+4 . 6227+4 . 5971+4

.1462-5 .1269-5 . 1162-5 . 1220-5 .1441-5 . 1706-5 .1667-5 .1330-5

.4970+4 .4599+4 . 4811+4 .5970+4 .8206+4 . 1103+5 .1231+5 . 1143+5

.1662-5 .1133-5 .9496-6 .1011-5 .1342-5 .2099-5 .2223-5 .1667-5 .8546-6
.5624+4 .4081+4 .3946+4 .5012+4 .7823+4 .1390+5 .1721+5 .1708+5 .1020+5

.1385-5 .9261-6 .7683-6 .8321-6 .1151-5 .1887-5 .2099-5 .1706-5 .9885-6
.4695+4 ..3339+4 .3204+4 .4150+4 . 6745+4 . 1254+5 .1625+5 .1726+5 .1125+5

.7761-6 .6652-6 .6134-6 .6761-6 .8676-6 .1151-5 .1342-5 . 1441-5 .9472-6

.2655+4 .2423+4 .2552+4 .3314+4 .4922+4 .7356+4 .9643+4 .1153+5 .8065+4

.4981-6 .4847-6 .4911-6 .5531-6 .6761-6 .8321-6 .1011-5 .1220-5 .8589-6

.1718+4 .1772+4 .2006+4 .2578+4 . 3536+4 . 4770+4 .6226+4 .7861+4 .5697+4

.4011-6 .4005-6 .4218-6 .4911-6 .6134-6 .7683-6 .9496-6 .1162-5 .8248-6

.1371+4 .1439+4 .1656+4 .2119+4 .2852+4 .3771+4 .4854+4 .6093+4 .4407+4

.4290-6 .3927-6 .4005-6 .4847-6 .6652-6 .9260-6 .1133-5 .1269-5 .8592-6

.1431+4 .1366+4 .1500+4 .1947+4 .2787+4 .3967+4 .4958+4 .5673+4 .3907+4

.6058-6 . 4290-6 .4011-6 .4981-6 .7761-6 .1385-5 . 1662-5 .1462-5 .9060-6
.1985+4 .1458+4 .1460+4 .1924+4 .3095+4 .5595+4 .6790+4 .6057+4 .3807+4

15 30 45 60 75 90 105 120 135

X Axis (cm)

135

120

105

90

C~)

t12

75

60

45

15

0
0 c-fl



Figure C. 15 Region Powers for Test Problem 5. 7
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.3685+3 . 3824+3 . 4369+3 . 5613+3 . 7495+3 . 9217+3 . 9266+3
.4792+2 .4891+2 .5425+2 .6757+2 .8816+2 .1069+3 .1066+3

.5877+3 .5582+3 .6136+3 .8051+3 .1165+4 .1646+4 .1960+4 .1962+4

.7649+2 .7146+2 .7611+2 .9659+2 .1364+3 .1899+3 .2241+3 .2236+3

.6648+3 .4949+3 .5050+3 .6804+3 .1121+4 .2099+4 .2804+4 .3178+4 .2034+4

.8672+2 .6346+2 .6258+2 .8139+2 .1307+3 .2414+3 .3197+3 .3606+3 .2309+3
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.2095+3 .2211+3 .2605+3 .3495+3 .4984+3 .6970+3 .9408+3 .1217+4 .8985+3
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.1690+3 .1804+3 .2135+3 .2811+3 .3871+3 .5222+3 .6840+3 .8700+3 .6368+3

.2254+2 . 2370+2 .2734+2 .3508+2 .4738+2 .6308+2 .8196+2 .1039+3 .7598+2

.1769+3 .1709+3 . 1911+3 . 2518+3 .3630+3 . 5188+3 .6531+3 .7548+3 .5253+3

.2394+2 .2279+2 .2486+2 .3200+2 .4545+2 .6437+2 .8051+2 .9269+2 .6437+2

.2451+3 .1816+3 . 1843+3 .2449+3 .3940+3 .7111+3 .8649+3 .7764+3 .4922+3
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Average Temperatures for Test Problem 5. 7 T=2. 0
T=3. 0

606 612 645 727 851 957 940
731 740 789 910 1093 1253 1237

790 757 785 912 1154 1466 1630 1568
989 944 987 1174 1530 1993 2256 2196

855 705 698 814 1116 1776 2174 2249 1494

1080 872 865 1036 1477 2448 3068 3262 2143

764 632 624 727 1006 1634 2071 2267 1609

953 769 760 911 1318 2242 2918 3286 2313

563 542 558 641 814 1080 1342 1570 1199
671 643 668 789 1043 1436 1833 2189 1648

471 478 503 565 667 801 961 1141 913

542 552 590 679 829 1026 1263 1531 1202

437 445 468 516 593 689 804 935 761

495 506 539 609 720 860 1026 1218 968

443 437 451 497 583 703 804 879 699
504 496 516 581 703 874 1019 1127 872

499 446 447 494 612 863 984 911 685
584 509 510 576 743 1100 1271 1168 847
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