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ABSTRACT

The idea of the representation of reflectors by boundary conditions
in static and dynamic reactor calculations is investigated. Ana-
lytical, group-diffusion theory boundary conditions relating
neutron flux to normal current at core-reflector interfaces in
terms of the reflector parameters are derived and applied for the
implicit treatment of reflectors. Kirchhoff's formula of optics,
translated into the neutron-diffusion language, is the general
relation from which boundary conditions for various reflector con-
figurations (slab, wedge, elbow), geometrically separable or not,
are obtained. The integral form of these boundary conditions in
space and/or time generally being unswited for computer implemen-
tation, a reduction to simle, approximate algebraic forms is car-
ried out. The finite diffusion length and/or the finite neutron
lifetime in various reflector materials are exploited in the above
reduction.

The bulk of the applications of the reflector-replacement method
are for two-dimensional, light water-reflected reactor models with
typical, step-like core-reflector interfaces, in steady state. With
these models it is found that, if the reflector is viewed as con-
sisting of many, narrow channels perpendicular to the interface
and the transchannel leakage is neglected, (so that the one-di-
mensional-slab boundary conditions can be used to represent the
reflector), the accuracy of the method, is extremely good for
large, shrouded cores, decreases with core-size and is poor when
the surface of a small, unshrouded core contains reentrant corners.
In the latter case the accuracy is improved by either the explicit
treatment of a light water buffer zone, about 2 cm thick, adjacent
to the core and the representation of the rest of the reflector by
one-dimensional-slab boundary conditions, or the employment of
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numerical corrections generated internally during the computation
or the employment of simple, analytical corrections derived from
the infinite-wedge-shaped reflector configuration.

The replacement of light water reflectors in transients and the
replacement of heavy water or graphite reflectors in steady state
or transients are studied in a preliminary way. Excellent results
are obtained from the implicit treatment of light water reflectors
of one-dimensional-slab geometry in fast transients. Heavy water
or graphite reflectors are found to be more difficult to replace
by boundary conditions because of their longer diffusion lengths
and neutron lifetimes.

In all cases, the computational cost is reduced by about 40% when
the reflector is treated implicitly.

Thesis Supervisor: Allan F. Henry

Title: Professor of Nuclear Engineering
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I. I N T R 0 D U C T I 0 N

1.1 THEME AND OBJECTIVE OF THE THESIS.

The theme of the present thesis is analogous to that of the

well-known Thevenin's theorem of electrical engineering.

The theorem, a useful tool in the analysis of electric networks

and circuits, permits the determination of the currents and voltages

in a certain, arbitrary, part of a network without necessitating a

calculation of the currents and voltages in the entire network. The

means for this determination consists in:

i) a "bissection"of the network into two parts:

(a) the part of immediate interest (i.e. the part mentioned

above) and

(b) the rest of the network

and

ii) a representation of part (b) by a simple, a priori obtainable,

equivalent. (The equivalent is, of course, meant with regard to the

electrical effect of part (b) on part (a)).
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The present dissertation concerns the determination of the

neutron distribution in a nuclear reactor core without a full,

core-reflector calculation.

The "bissection", from a computational point of view, of the

reactor into

(a) the core, as the region of immediate interest and

(b) the reflector, as the rest of the reactor, is natural,

because information about the neutron distribution in the

reflector is rarely needed . It is the neutron distri-

bution in the core that is of interest to the reactor

designer. This is due to the fact that the core is the

hot and depletable part of the reactor. Knowledge of the

neutron flux in the core allows for the evaluation of the

temperature - and depletion - patterns in the core, both

very important pieces of information, pertaining to the

safety of the reactor and to the management of the nucle-

*
In fact, after the flux-distribution in the core is found, the

flux-distribution in the reflector can be evaluated by means of

Kirchhoff's formula (presented in Chapter 2). The formula, which

involves a line-integral and not a differential equation, must then

be applied once for each reflector-point of interest.

16



ar fuel.

The derivation and testing of a simple, a priori obtainable,

equivalent to represent the reflector (or, more accurately, to

represent the effect of the reflector on the core) is the objective

of this thesis. We shall carry out the development with a dif-

fusion-theory reactor model, two energy groups, one and two spatial

dimensions, steady and transient states.

1.2 MOTIVATION.

The anticipation of a significant savings in calculational

effort provides the motivation for the present work.

The source of this savings is obvious. Typically, about 1/3 of

the total number of spatial mesh-points, employed in a finite-

*
difference, PWR computation, are located in the reflector region.

This fraction may seem too large. However it is a common practice,

for programming convenience, to augment the number of the reflector

mesh-points by additional mesh-points, which "fill" the space between

the actual, cylindrical outer-boundary of the reflector and its cir-

cumscribed rectangular parallelopiped. The addition of these points

does not disturb the flux-distribution in the reactor, because the

computed values of the flux at the additional points are very small.

17



Replacement of the reflector by a mathematical equivalent,

therefore, means the elimination of all the reflector mesh points

and the consequent proportional reduction of the number of un-

knowns in the problem. Thus we anticipate significant savings

especially in multi-dimensional, static and -more important-

time-dependent calculations.

1.3 MATHEMATICAL FORM OF THE REFLECTOR - EQUIVALENT.

The reflector is coupled to the core at the core-reflector

interface, and on this interface we shall apply a boundary con-

dition to represent the reflector.

The mathematical form which we choose for this boundary con-

dition is:

al Jin

=j IL(1.1)
2 X21 22 J2n

(where the D's and J 's are two - group fluxes and normal currentsn

at the interface) or, inversely.

18



J 1n 1 =ll 
$1

(1.2)

L jL 21 a22] 2

where the 8 - parameters are related to the a's by the equations:

1 18i22 a a21 _ 12 1
all 8 a 2 a allI a22(133'11 322 1-2

Eqs. (1.1), (1.2) with the a's and a's constant depending

only on the reflector properties are exact for one-dimensional-

slab geometry and steady state conditions. For the same geometry

but for a transient state, Eq. (1.1) can be replaced by an exact

integral relation, which, reduces approximately to the form (1.1) .

For two-dimensional geometry and for steady-state, Eq. (1.1) can

The formulation (1.1), (1.2) is an extension of that employed by

Prof. A.F. Henry in his work for control rod blades. Specifically,

Henry's formulation is for purely absorbing blades (see material

leading to the definition of blackness coefficients in Ref.[H-2]).

The extension, due to Dr. Y.Lukic and Prof. Henry, is for scatter-

ing media (see Ref. [L-3]).
**

See Chapter 4 of the present dissertation.
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again be replaced by an exact integral relation, which, too,

reduces approximately to the form (1.1).

The boundary conditions (1.1),(1.2) are of the homogenous type.

1.4 COMPUTATIONAL FEATURES OF OUR REFLECTOR - EQUIVALENT.

The replacement of the reflector leaves the core-reflector

interface as the "outer boundary" for reactor calculations.

The interface having a step-like form, some extra programming

will be required for the implementation of boundary conditions on

such a jagged outer boundary,_ and extra programming means, of

course, increased computational cost. However, estimates of this

extra cost can be obtained by means of runs of the same, full,

core-reflector problem, once with the code CITATION [F-], which is

programmed to accept group-dependend boundary conditions for

**

regions with jagged boundaries , and once with another diffusion -

theory code which does not have such a provision. Such comparisons

have been made and show that the extra-cost in question is small and

should not be a problem.

As was already mentioned, the boundary conditions (1.1) , (1.2)

are exact only for a one-dimensional slab in steady-state and ap-

*

See Chapters 2 and 3 of the present dissertation.
**

Meant to be control rod regions.
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proximate for all other cases. There will be, therefore, errors

associated with the representation of reflectors by these boundary

conditions in all cases but the steady-state, one-dimensional

slab. We shall see however that, for the general class of light

water moderated power reactors, these errors are small. Moreover,

even though approximate, the boundary conditions (1.1), (1.2),

being derived analytically, are free of the truncation error which

accompanies explicit representations of reflectors. This is another

reason that the number of spatial mesh points saved when (1.1),

(1.2) can legitimatelybe used is as much as 33%.

1.5 BACKGROUND AND ITS RELATION TO THE PRESENT WORK.

For static cases, the idea of replacing the explicit represen-

tation of reflector regions by boundary conditions at the core -

reflector interface is not new.

The one-group, nodal code FLARE [D-l]and the also-one-group,

coarse-mesh scheme by Robinson and Eckard[R-l employ simple expres-

sions of the form:

Jn(1.4)

to relate normal current to flux at the interface, where the

constant-aJlong-the-interface value of S is determined empirically

(i.e. by means of fitting to experimental data or to the results of

21



more accurate calculations).

The multigroup code CITATION [F-1] accepts group-dependent

boundary conditions of the form:

J =a 9 -
gng g

(1.5)

where the a 's are constant along the interface.

For two energy groups, the boundary conditions (1.5) may be

written in the form:

L0n

J 2 0 2 2
L nj LJL

(1.5)'

Let us compare the form of Eqs. (1.5)' with that of the static,

two-group balance equations in the reflector:

= LE

LV 2.J L 1+ 2

0

2 Id

22
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We see that Eqs. (1.5)' treat the two energy groups symmetrically

while Eqs. (1.6) do not. The asymmetry associated with the thermal

group is absorbed by 82 in Eqs. (1.5)'.

Galanin [G-l]employs a boundary condition to replace not only

the reflector but also ribbons of the core adjacent to the core -

reflector interface and describes the thermal flux in the remaining

(interior) part of the core by a one-group-type equation;

2 2
V ) + B -.D = 0 (1.7)

2 2 2

His boundary condition is of the type:

J =2 2 2 (1.8)
n

For 82 he uses values calculated from one-dimensional, two-group,

reflected reactor models. The thus-determined values for 82

contain built into them the contribution of the thermal-group

asymmetry mentioned above.

Galanin applies this method to obtain quick estimates for the

critical dimensions of reflected cores of simple geometrical shapes:

slab, cylinder and sphere. For cylindrical cores of finite height

he introduces a transverse-buckling-correction to 82
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In the present work we employ boundary conditions of the type

(1.1), (1.2). These boundary conditions provide, via $21, an extra

degree of freedom over conditions (1.5)'.

The conditions (1.1), (1.2) are found from consideration of

the physical and geometrical characteristics of the reflector

alone. On the contrary, the values of $2 in (1.5)' and in (1.8)

depend on characteristics of both the reflector and the core.

To see this latter dependence, let us rearrange the second of

Eqs. (1.2),

J 2 21 1 + $ 22 2'
n

into the form:

J2 (21 42 + 22 2(1.9)

If we denote the quantity in parentheses in (1.9) by 22, Eqs.

(1.2) take the form:

24



1 Oil0 <b
n

(1.2)'

L2 n L0 $22 21

Eqs. (1.2) ' are group-wise symmetrical: the thermal-group

* *
asymmetry has been lumped into $22. However we see that a22

depends on the group-flux ratio. Hence, this ratio must somehow

be estimated, before the value of a22 is found. Since the group-

flux ratio under discussion depends on both the core and reflector

characteristics, it follows that the parameter a22 does too.

The a priori estimation of the group-flux ratio is a source

of uncertainty for the value of a22, with possibly undesirable

consequences. By making use of Eqs. (1.1) , (1.2) in the present

work we eliminate this uncertainty. The non-zero value for a21'

which makes the elimination possible, requires no extra program-

ming for its computer implementation.

To determine the values of the coefficients in our boundary

conditions, we make use, like Galanin, of algebraic formulas - as

25



opposed to the empirical values used in [D-1] and [R-l]. However

we develop an alternative to Galanin's transverse-buckling cor-

rection to account for transverse leakage effects for two

dimensional cases.

Finally for time-dependent cases, the author is not aware of

any previous work in the area of replacement of reflectors by

boundary conditions.

1.6 ORGANIZATION OF THE THESIS.

This thesis is organized as follows:

Chapter II contains the derivation of the general, steady-

state, flux-to-normal-current relation along the boundary of a

reflector of an arbitrary configuration. We call this relation

Kirchhoff's formula. In the same chapter we give the specialized

versions of Kirchhoff's formula for four reflector configurations

of practical interest: the one-dimensional slab, the 900 wedge,

*

Empirical methods are, from a practical standpoint, themselves

valuable. However, when systematic, theoretically founded ap-

proaches are available, they are preferable, for the insight and

security they offer.
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the 2700 wedge and the right-angled elbow.

Chapter III contains an alternative derivation of the steady-

state, flux-to-normal current relation along the boundary of a

wedge-shaped reflector.

Chapter IV is the unsteady-state counterpart of Chapter II,

except that we only examine the one-dimensional slab as a special

case.

In Chapter V we describe various numerical tests, performed

to determine the accuracy of the "reflector replacement" method

and present the results.

The conclusions and recommendations for further work on the

implicit representation of reflectors are given in Chapter VI.

27



(

II. K I R C H H O F F' S F 0 R M U L A

2.1 KIRCHHOFF'S FORMULA FOR ONE ENERGY GROUP.

To begin, we consider the diffusion of one-energy-group

neutrons in a homogeneous, non-multiplying medium which occupies

a two-dimensional region A bounded by the closed curve r:

r

A

Figure 2.1

Two-dimensional region, A, bounded by curve 1.

In the steady state, the balance between the local neutron -

leakage and reaction rates is expressed by the following equation:

(2.1)
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where # = 4D(x,y) is the neutron flux, and L is the neutron dif-

fusion length.

It can be shown that Eq. (2.1) implies the following expres-

sion for the flux at any point in the interior of region A in

terms of the distributions of flux and normal current along the

boundary 1:

(2.2)

where:

(x,y) is a point in the interior of region A,

"(x', y') is a point on the boundary curve 1,"

r [E... ]dl denotes integration along r,

3 / 3 n denotes differentiation along a line normal to the curve

toward its interior,

Jn (x',y') is defined by:

See discussion below (in this section) and also part (b) of

Section (2.6).
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D is the neutron diffusion coefficient, Ko is the modified Bes-

sel function of order zero (second kind) and p is defined by:

X (2.4)

Eq. (2.2) is the analogue of the so-called Kirchhoff's

formula of wave theory . For convenience, in the remaining of the

present dissertation we shall refer to Eq. (2.2) specifically as

Kirchhoff's formula.

*

The wave equation,

2
6 e"V, 4 ; b = real and constant,

and Kirchhoff's formula reduce, respectively, to Eqs. (2.1) and

(2.2) in the special case of an exponential time-dependence and

of two spatial dimensions.

A derivation of Kirchhof's formula from the wave equation is

given in Ref . [P-ll.
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It can be verified by substitution that Eq. (2.2) satisfies

Eq. (2.1). A direct proof, starting from Eq. (2.1), is outlined

in Section 2.7, part b).

If we take the point (x,y) at a distance C from the boundary

r and let e - 0, Kirchhoff's formula (Eq. (2.2)) becomes an

integral relation between the boundary flux and normal current.

This relation is a formal boundary condition which contains all

the information, physical and geometrical, relevant to the dif-

fusion of one-energy-group neutrons in region A. The effect of

the diffusing medium in region A on the neutron distribution in

any surrounding regions is reproduced mathematically by the above

boundary condition. In this sense, the boundary condition formally

represents region A.

2.2 THE ONE-DIMENSIONAL SLAB.

Suppose the region A is a one-dimensional slab of thickness

A, oriented with respect to the x-y coordinate system as shown in

Figure 2.2:
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+00

b6 C

o xxe x

-coc

Figure 2.2

One dimensional slab, A, of thickness A ; x -x..e .i

In the above configuration, the steady-state flux distri-

bution is independent of y. Therefore,

S( x, j) = 4 (x) (2.6)
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and 6Xc

Furthermore, the value of

(2.7)

~ 2 K 0

on the horizontal segments bc and da of the boundary curve I'

tends to zero as lab! = lcd! j+00.

This latter fact and Eq. (2.7) imply that the segments bc and

da do not contribute to the line integral of Eq. (2.2). Therefore,

for the configuration of Fig. (2.2), Eq. (2.2) becomes:

4 CX) I (2.8)

where

-400

(2.9)
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.i[(s (C)
40e

(2.10)

4. (2.11)y

Next we evaluate the integral which appears in (2.9) and

(2.10):

.Tr - ex (-

substitute (2.12) into (2.9)

I CjI L
2

and (2.10) and obtain:

)1I

L~c~t)

(2.14)
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(2.12)

)L

Ic

(2.13)
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We carry out the differentiations indicated in (2.13) and

(2.14) and substitute the resulting expressions into the right

hand side of Eq. (2.8) to get:

= (Y.N = 1 f

I -(L ox)) L)])

(2.15)

We evaluate Eq. (2.15) at x = x and at x = x and use the

quantity A to denote the difference x - x.. We find:

(2.16)

After some rearrangement, we get from Eqs. (2.16).
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Cos (.D)L)

'D %Lt\ A
L ~L/

4(X)

(2.17)

The 2X2 matrix in Eq. (2.17) expresses the transfer proper-

ties of the slab, in the sense that it allows for the determi-

nation of flux and normal current on the right face of the slab,

given the flux and normal current on the left face. For con-

venience, we shall denote this matrix by [Mie .

At this point we consider two special subcases:

(a) Suppose the right face of the slab is an outer boundary. Then,

(2.18)
xe = 0

and the first of Eqs. (2.17) implies:

If A ) ,

if A= (semi-infinite slab), Eq. (2.19)

(2.19)

reduces to:
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L
k. ( i

(b) Suppose we have a two-zone slab, as shown in Figure 2.3

ZONE
R.

Xe

A

Figure 2-3

Two - Zone Slab

The letters S and R denote the two zones. The physical and

geometrical parameters of slab S (Ds, Ls, and A s) are not neces-

sarily equal to the respective parameters of slab R (D R LR and

AR ).

We write Eq. (2.17) for zones S and R and take into account

37
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the continuity of flux and normal current at the interface

between the two zones:

CO S.J [ C()oe [5x(X s) Tj1. 2.1

Coe [P(xe),J.(xe) =

q mi. ].Coe Is~ i) )j"(X01(2.21)1'

We substitute (2.21) into (2.21)' and obtain:

I. C ) X (2.22)

The product matrix, [M ]4 M ], in Eq. (2.22) expresses

the transfer properties of the composite (two-zone) slab. We shall

denote the product matrix by [Mse ]. The expressions of the

elements of [Mse I in terms of the zone-parameters, D s L s

As, DR, LR and AR, are:
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S-e I
C.sk (- ) - c S

+ Lp. Ls
D2 Ls

L .

P~.

MS.,e (.

.DS

s-.e

CoS Q.}
L, p

\ L.

tosk (

DR

L. S( L)

4. cosk (

(As
'LS\Ls /

m

)

S. f e z1

's U
cosL

*Ls)

cos L )

)A/P

M +I

.Icask(
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2. 3 THE 90 0- AND THE 270 0 - WEDGE.

(a) Suppose the region A is a 90 0 - wedge, occupying the first

quadrangle of the x-y plane.

00

A

xeC

Figure 2.4

900 - Wedge

Eq. (2.2) becomes:

0 CL

4)(Xj)= I

=LI
ZTr

- 0C

4(x

K 0 ( ( xx2

y

o0

where

t 
I

(2.24)

'D

) 2(y.~ I

40
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Zn 0  L

(2.26)

The segment abc does not contribute to

Eq. (2.2), because @ and J vanish at large

origin.

the line integral in

distances from the

We evaluate Eq. (2.24) at the points: (x, 6) and (e,y) , where

e is a small, positive quantity and we let C approach zero. Thus

we obtain two boundary conditions, c1 and c2, relating, in an

integral form, the four quantities: @(xO), J (x,0), @(0,y) and

J (0,y).

In the special case where the neutron distribution is sym-

metrical with respect to the line y = x, we have

S( x, 0(,)

and

J ( x, o) = J (,)

(2.27)
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and the boundary conditions c and c2 reduce to a single relation

which reads:

4 ( x >)=

Zr G-im

--a)

+i fxr x +0 LL7~ L &
+v( (-xft)z

+ (4) Z )O];)+

) -I-

-I
L(-

(2.28)

(b) Suppose the region A is a 2700 - wedge, occurying the

second, third and fourth quadrangles of the x - y plane.
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0
e

00

Figure 2-5

2700 - Wedge

Eq. (2.2) becomes:

Sc
o--..-I (2.29)

where I and Ioa are defined by (2.26) and (2.25), respectively.
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2.4 THE RIGHT - ANGLED ELBOW.

Suppose the

respect to the x

JkI

O0

00

region A is a right-angled elbow, oriented with

- y coordinate system as shown in Figure 2.6

0

C

Figure 2-6

Right - Angled Elbow

Eq. (2.2) becomes:

C = 1 -IC I e. L -C
(2.30)
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where: Ioa and Ioc are defined by equations (2.25) and (2.26),

respectively,

- i .
yI

I +x

*KO QV ( <1Y)

'C

(2.31)
and

[
AX

I;

~J + . T (x'1D- y i

( IX
(2.32)

2.5 KIRCHHOFF'S FORMULA FOR TWO ENERGY GROUPS.

In the steady state, the balance equations for fast (group -

1) and thermal (group - 2) neutrons are

c... (2.33)
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2. (2.34)

respectively, where:

i and 02 are the group fluxes,

Li and L2 are the group diffusion lengths,

1+2 is the scattering cross section from group 1 to group

2 and

Di and D2 are the group diffusion coefficients.

The equation for the fast group, Eq. (2.33), is identical

to the one-group equation, (2.1). Therefore, we may immediately

write the one-group Kirchhoff's formula, Eq. (2.2), in terms of

the fast group quantities:

+ e (x, 5L e

(2.35)
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where

( X . ,(2.36)

The equation for the thermal group, Eq. (2.34), is a non-

homogeneous differential equation. Its solution, 02 (x,y) can be

expressed as:

S-{) Xf 4 ( f) (2.37)

where cD2h(xy) is the general solution of the nomogeneous equation:

't'2 (2.38)
+ - -- -{ = 0

and D2p (xy) is a particular solution of the full, nonhomogeneous

equation (2.34).

The homogeneous equation (2.38) is identical to the one-group

equation, (2.1). Therefore, we may write:
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4 ZkuC X Pj )
.M1I

-z

P /L2) +-
j 

11"

XI) / LZ)1 1

(2.39)

where:

(2.40)

A particular solution of Eq. (2.34) is:

LZL)2 i

*t (f

We substitute # 1 (x,y) from Eq. (2.35) into Eq. (2.41):

48

(2.41)

Ix I j
X z



.

-
2 . rA (X£ ) .

i

+ - j- (x-)oQ/1d

(2.42)

We add Eqs. (2.39) and (2.42):

2-r

4--
I

y IIt~l
F

L.j

x O ,I) - * L )
4-

(x') j') -R KCp( IL.i1 at( +

I i.

L*- Lj

+L. -i

{- .

Qir

~R0 (~1L~)

r

(X I P KR IL )1c]
(2.43)
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The left hand side of Eq. (2.43) is, by virtue of Eq. (2.37),

equal to #2 (x,y).

In the right hand side of Eq. (2.43) we easily eliminate the

quantities with subscript h in favor of the group-fluxes and normal

currents at the boundary I' as follows:

From Eqs. (2.37) and (2.41) we get:

We operate on Eq.

equation is:

z /.D

(2.44)

(2.44) with: -D2 n n . The resulting

Dz
Ni

where: J n(x',y') and J 2 h (x',y') are defined by
vn

(2.40), respectively, and

(2.45)

Eqs. (2.36) and

(2.46)
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We substitute Eq. (2.44) evaluated at (x',y) and Eq.

(2.45) into the right hand side of Eq. (2.43).

Kirchhoff's formula for the thermal group is, therefore:

S ~~)(',~j').
r

ra.(e/Lz)

R 0 Q/LZ) +

'C
LZ Lk

/ LZ)7 +

(,I)(*+ i i1j

(2.47)

The One - Dimensional Slab.

i) The two-group extension of the one-dimensional, one-zone

slab relation, Eq.

J, X

(2.17) , is:

[ M i ]0e T,0%
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4.

~pz
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where the 4x4 matrix [M
i-] groups=2 is defined by:

I
0

(c -c,).r

Li

slI

,)

o0

(32

L2,

, ci

D -C, Zz

(2. 48)

and

C E~ C(+;i)

S S tnk - )(L I.

- Ej-.. / I
1.

K
i

ci 0

L 2

0

C c

(2.49)

(2.50)

(2.51)
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If the right face of the slab is an outer boundary, then:

c5 (x : z(2.18)'

and the first two of Eqs. (2.17)' implie:

(2.19) '

where:

(2.52)

For easy reference, we shall give the parameters a a name:

we shall call them Static Impedances of the one-dimensional, one-

zone slab A, a term inspired from electric circuitry.

Values of the a's for various-reflector materials and

thicknesses can be infered from Figures 2.7 and 2.8 . The value

of al2 is always zero, due to the absence of up-scattering.
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pt'

(I)
.[ GRAPHITE]

0

.08

.06

20

08

.3

P2 1

-06

.2
(2)

-.04

.1 --
-. 02

P22 -

0 20 40 A(cM) 60
FIGURE 2.8: INVERSE IMPEDANCES OF (i) GRAPHITE AND (2) D2 0 VS.

REFLECTOR THICKNESS
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ii) The two-group extension of the one-dimensional, two-zone

slab relation, Eq. (2.22), is:

3 ix

X=Xe

(T),

(2.22) '

where the 4x4 matrix [M ] .1asi groups= 2 is defined (in terms of the

physical and geometrical parameters of zone s) by the same

equation, (2.48), which defines [M ]groups = 2(in terms of the

parameters of zone R.).

If the face x = x is an outer boundary, then:

x = c (xe) = 0

and the first tio of Eqs. (2.22) ' can be shown to imply:

[ ZJXs

0

L(zi 22J L x JxS
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where the static impedances of the composite (two-zone) slab are

defined by:

c .sD-(L . s/D ) . >
R ~ ( /D ) ( /t s s it e. eI

nSI 1 [ (':S cS).rS. ! - P +

S LJ? Z,~ Ig'%t

S R.P. IL f

I .cP.z

+ (ca -Cz ).r* / Nuwe1ekcdo

For a Stainless stell-light water reflector (zone s: stainless steel,

As = 2.0 cm; zone R: light water, A = 18.0 cm), typical values

of the S 's are:

= = 0.1587,

622 = = 0.1351.
22

(Two - group data of Table 5.2 used).
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and

S 2S

s Dss
+L -S -) +
L2

+ c~c).r 3  &.L

The quantities Cs, CR , R, r and rR are defined (with-
g g g g

out the superscripts) by Eqs. (2.49) - (2.51); the superscripts

S and R refer to the two zones, S and R.

2.6 ON THlE NATURE AND ORIGIN OF KIRCHHOFF 'S FORMULA.

a) Kirchhoff' s formula expresses the flux in region A in terms

of the boundary-flux and normal current. The latter two quantities

are not independent of each other and cannot be both specified

arbitrarily. Therefore, Kirchhoff's formula is not the solution

of the diffusion equation in region A but simply a relation

satisfied by the solution.

b) The direct proof of the one-group Kirchhoff's formula rests
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on two pillars: Green's funtion and Green's theorem.

The Green's function for the diffusion of one-group neutrons

in a homogeneous, non-multiplying medium of two dimensions is the

solution of:

')Ak #1'V - (2.56)

where p is defined by Eq. (2.4).

It can be seen that if the medium occupies an infinite region,

then:

-M (2.57)

Green's theorem in two dimensions reads:

A

=SK~ MT +it.(2.58)

where: the two-dimensional functions T and D must have continuous

first and second derivatives everywhere in the closed region A

and its boundary curve F and: 3 / 3 n is taken toward the interior

of r.

The elimination of V2 D and V2 Y from Eq. (2.58) with the help
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of Eqs. (2.1) and (2.56) yields Kirchhoff's formula, Eq. (2.2).

c) The proof of Kirchhoff's formula is not based on knowledge

of the explicit functional form of the neutron flux in the region

under consideration. The formula, therefore, provides a relation

satisfied by the neutron flux regardless of the a priori availa-

bility or non-availability of analytical forms for the flux. The

same argument is, of course, true for the boundary condition to

which Kirchhoff's formula reduces, as the interior point (x,y) is

allowed to approach and reach the boundary.

d) In the one-dimensional slab reflector the flux can be expres-

sed as:

X +C.S) (2.59)

where A and C are constants. By starting from (2.59) and eliminat-

ing A and C in favor of the current at two points, x. and xe, one

obtains (2.17) (L-3].

2.7 KIRCHHOFF'S FORMULA AS A SOURCE OF INFORMATION ABOUT THE

FUNCTIONAL FORM OF THE FLUX IN REGION A.

a) It can be easily seen that the functional form (2.59) for

the flux in the one-dimensional slab reflector can be deduced from

the Kirchhoff's formula for the same configuration, Eq. (2.15).

Indeed, Eq. (2.15) may be written as follows:
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4(x) A' e'- x2) +-. - xp(
where: (2.60)

A'~~~ j.c(i 4 .~ xc)Jexi (-sx; . X -

and (2.61)

(2.62)

Eq. (2.60), in turn, takes the form (2.59) if the coefficients A'

and C' are expressed as:

A _A_+ (2.63)

and

C_ (2.64)

b) The functional form of the symmetrically distributed flux

in a 900 - wedge-shaped reflector can be deduced from the cor-

responding Kirchhoff's formula.

Below we illustrate how this can be done.

The relevant Kirchhoff's formula (given by Eq. (2.28) if
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the lim is omitted and 6 is replaced by y) is:

X)-1 (x 0)X. D)

(2.65)

4. (4.-Y) (2.66)

(x 4- (x -y)Z (2.67)

R and R may be written in the form:

- Z.c os

(2.68)

xx 4- Ly

=. z.+

i1

(2.69
62

(-o

)

Rz

where

and

RI

onI= )2,
where:

Cos

x IX

= Xf)+(x'C +2z

-X +

-, - 0



and

Jx + LAkx

z 2~ ,2. 2

{ (2.70)

Next we make use of the following integral representation

for K 0 (R 1 /L) and KO (R 2L):

-=26s 22.

TV ( X

Hip L (2.71)

it = i)Z

The substitution of (2.71) into (2.65) and the subsequent

interchange of the order of the two integrations, Jr dx* ... and
'CO

OJ dp..., lead to:

00

yK
TT 0

x 0).-

-9 L-

(Cantinued)

1%~

63
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L )
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(Continued)

2

'I c os 17-

The quantity { ... u

duced to the form:

L..- c 5 9k -)

which appears in (2.72) , can be re-

-F(rx) (2.73)

where

ptIA=C) 3TT

(2.74)
and

cosk(3r

(X/

(2.75)
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Eq. (2.73) is substituted into (2.72) to yield the fol-

lowing functional form for the flux:

(2.76)

where: A( = - . F(px')dU'
(2.77)

The independent variables and E employed in the

right hand side of (2.76) define a polar coordinate system with

the origin located at (x=O, y=O) and the 0=O-axis aligned with

the axis of symmetry (x=y) of the wedge.

c) The functional form of the symmetrically distributed flux in

a 900- elbow-shaped reflector of thickness A can be deduced from

the corresponding Kirchhoff' s formula.

To this end, the Cartesian coordinate system, (x,y), of

Section 2.4 is supplemented with a second Cartesian coordinate

system, (x,y) defined by:

A
,X (2.78)
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S

- A X

0

Figure 2.9

Double Coordinate System

Employed for the Analytical Expression of the Flux in a Right -

Angled Elbow.
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(I.e. (x,y) is the result of translation of (x,y) by the amount

"(A,A). See Figure 2.9).

The relevant Kirchhoff's formula is given by Eq. (2.30).

By virtue of the formulation (2.76),

1 -CI =

=s A (p)- C-osk (G')' HC
0

(1~772)

(2.79)

and

- L
-..

00 AA(2.8

=;S A~p)' c.s k(G-FaR> yQ' 7 J p

(2.80)

where:
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(i) the definition of G in terms of x and y is the same as that

of 0 in terms of x and y; i.e.

0 dr C. S

A
Ge = Lr C 0S

cos =

Y Tr

(\f77+j 1

(2.81)

(X-77
(2.82)

A A

and (ii) the definition of A (p) in terms of x' is the same as

that of A (p) in terms x'.

Hence,

=fA(p))-sk~eP} R0r
(\2fT 7

L)

0

(2.83)
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2.8 GENERALIZED KIRCHHOFF'S FORMULA.

Let us apply Green's theorem with the following pair of

functions:

<(x,y); solution of (2.1) in region A

and

P(xy); Solution of (2.56) in a region A', which includes A.

The corresponding generalized version of Kirchhoff's formula

reads:

:(L-. ( CX),'()%j) +

(2.84)

Eq. (2.84) is mathematically equivalent to the original

Kirchhoff's formula, Eq. (2.2). Furthermore, depending on the

choice of the region A' and on the conditions satisfied by the

function ik on the boundary of A', Eq. ( 2.84) can be simpler in

form than Eq. (2.2).
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E x a m p 1 e s.

(a) Region A: One-dimensional slab (Fig. 2.2): x < x < x .

Region A': Semi-infinite, one-dimensional slab, occupying

the space to the left of the line x = x,.

Boundary condition for $: it vanishes at x = x .

The functional form for $ in the above region and with the

above boundary condition is found by the method of images (Cl]:

- '~~ (iV/1z +(2e > )

where i x. Xe

(2.85)
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Note that $, as defined by (2.85), vanishes for x' = x,.

With the above selection for $, Eq. (2.84) becomes:

X4 0

,2~1 -rr xim'

- - o-x (2.86)

where

-- 00

E_ _ ~ _ (2.87)

L /

After the differentiations indicated in (2.86) are carried

out and the resulting equation is evaluated at x = xi, the first

*
row of Eq. (2.17) results.

*
Eq. (2.86) becomes an identity, when evaluated at x = x.
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We see that by using Eq. (2.84) and selecting T as given by

Eq. (2.85) we avoid the rearrangement which, in the treatment of

Section 2.2, follows the evaluation of Eq. (2.15) at x = x.. This

rearrangement is easy in the present example because it consists

of algebraic manipulations. It is not as easy when integral

equations are to be rearranged/solved (see next example).

(b) Region A: 90 O-wedge (Fig. 2.4).

Region A': Coincides with Region A.

Boundary condition for V: a 3/ 3 n vanishes along the boundary

r of a region A'.

The functional form for $ in region A' with the above

boundary condition is found by the method of images( :

4+2.88

+.F{( y(.1,Iz+(xDZ

(2.88)

72



With $ defined by (2.88), the derivative 3 $/ 3 n vanishes

along the positive semi-axes x and y'.

Eq. (2.84) becomes:

(X -I - XD

- X

(2.89)

Suppose, for simplicity, that the neutron distribution in

the 900 -wedge is symmetric with respect to the line x = y.

Then,

X ( , () = - J ,0 ') (2.90)

and Eq. (2.89) simplifies to:
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T 04xL

+ KO t ~,)4-- 2 ) +

(2.91)

If we let x + 0, Eq. (2.91) becomes:

2/LL* L

(2.92)

This last equation is equivalent to Eq. (2.28). It is also

simpler than (2.28). The mathematical operations which rearrange

(2.28) in the form (2.92) are bypassed with the use of Eqs. (2.84)

and (2.88).
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Having given the above two applications of the generalized

Kirchhoff's formula, we make a few general comments.

i) The generalized Kirchhoff's formula, Eq. (2.84), reduces to

the original Kirchhoff's formula, Eq. (2.2), if the region A' is

taken to extend over the entire x - y plane.

ii) By choosing the function $ to vanish along a part r. of the

boundary 1 of region A, we eliminate from the generalized

Kirchhoff's formula the values of the normal current, J , along r..
n1

iii) By choosing 3$/a n to vanish along P., we eliminate from the

generalized Kirchhoff's formula the values of the flux, D, along

iv) The function $, which satisfies: $ = 0 or a $/3n = 0 on a

certain boundary, is readily available only when the form of the

boundary is sufficiently simple. Thus, the availability of an ex-

pression for 4 imposes an upper bound on the complexity of the

geometrical shape of the region (A') over which we define $.

v) As a consequence of (iv), a continuous increase in the

complexity of region A cannot be accompanied by a continuous in-

crease in the complexity of region A'; the shape of A' must be

simple. It follows that the simplification of (2.84) relative to

(2.2) diminishes as region A becomes more and more complex.
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vi) For sufficiently simple regions A, therefore, the general-

ized Kirchhoff's formula is an improvement over the original

Kirchhoff's formula, because it offers a savings in mathematical

manipulations (of integral equations, in general).

vii) For more complex regions A, however, the savings offered by

the generalized formula is relatively small, because both the

generalized and the original formula are complicated.

viii) The method of images works for point sources located inside

angles of magnitude 7/m, where m is an integer, but breaks down

for angles of magnitude n.T/m, where m and n are integers, prime

to each other. The reason for the failure is that one or more

image-point sources, located inside the angle, are required by

the method for the above mentioned values of the angle in order

to create the desired zero-flux or zero-normal current condition

along the boundaries of the angle. Image-sources inside the angle

are, of course, unacceptable.

ix) An extension of the method of images devised by Sommerfeld

[S-2] and modified by Carslaw (C-11 allows for the evaluation of

Green's function, solution of Eq. (2.56), in a wedge of any angle.
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III. T H E W E D G E - S H A P E D R E F L E C T O R.

3.1 BOUNDARY CONDITION FOR ONE ENERGY GROUP.

Suppose we have a two-dimensional reflector in the shape of

a angle 200 (0< 0 < 7T) . We take a polar coordinate system, (r,G) ,

with the origin at the peak of the wedge and the axis for measure-

ment of 0 on the axis of symmetry of the wedge, as shown in Figure

(3.1).

COPE

0

90
RErLcroM

- e ( =o

0

Figure 3-1

A Wedge - Shaped Reflector of Angle 2eo
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The steady-state diffusion equation for one-energy-group

neutrons reads in polar coordinates as follows:

2~4
4-i 0-' 4- i

-VV

2 cp

where

(D= f (r,O) is the neutron flux and

L is the neutron diffusion length.

We can easily verify that Eq. (3.1) is satisfied by the

functional forms:

and sLV 1-n)K-, ( ) (3.2)

where: p is a real parameter and

K. is the modified Bessel function of imaginary order.

K. ( ) satisfies the following differential equation:

I ZV tct -= (3.3)
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The integral representation:

shows that the function K. ( ) and hence the functional forms

(3.2) vanish at large distances from the origin.

Now we synthesize the general solution of Eq. (3.1) in the

form (S-1]

00

$( G)= 00[A (p).cosk(@p) +

(3.5)

where A(p) and C(p) are two functions depending on the boundary

conditions imposed on the flux and current.

On physical grounds, the neutron flux must vanish at large

distances from the origin. Expression (3.5) does so, because

it is a superposition of components which do vanish at large

distances from the origin.

We are interested to find a relation between flux and normal

current at the boundary of the wedge. Since the boundary is an
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iso - e line, the direction normal to the boundary is the e -

direction.

The G - direction component of the neutron current is defined

by:

j ( G . _ _ ( '' (3.6)

where D is the diffusion coefficient of the reflector.

We operate on Eq. (3.5) with - - and obtain:

(3.7)

Next we eliminate the functions A(p) and C(p) between Eqs.

(3.5) and (3.7). To this and, we express A(p) and C(p) in terms

of the distributions of the normal current along the two

boundaries.

Eq. (3.7) is of the form:

00

L L )3.
(3.8)
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where:

,.gL -A()sin(&)c(p)cosh(ep)
(3.9)

Formally, Eq. (3.8) is the integral expansion of the function

- J , with respect to r/L in terms of the function

K. (r/L). The amplitude function M(p,e) for such an expansion is

given by the following formula due to N.N. Lebedev

(3.10)

We equate the right hand sides of Eqs. (3.9) and (3.10) and

obtain:

(3.11)

See references [S-1], [M-1], EL-1] and [L-2].
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By evaluating Eq. (3.11) at G = ± Go we get two different

linear combinations of A(p) and C(p). We rearrange the two

relations so that they read:

I /L1 S ink (rJ) **
D/L s"Ink (e.,) *

'TC,)W (I) CL

+ /L c*

+ J , -e). ug()A

(3.12)

We substitute Eqs. (3.12) into Eq.

resulting equation at 9 = t Go. Thus we

(3.5) and evaluate the

obtain:

go =

- J,((,+e0). RL

(3.13)
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where:

+ Go

IM
00

S ( )
0

Equivalently, we write Eq. (3.13)

current, Ja ,

ict (

in terms of the asymmetry

0 ) , defined by:

L
I ea) + J (L

Eq. (3.13) becomes:

S- - -

D/L *
e(I g- 0 (

i~2

(3.16)
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t o-A (

- C e )
+CVI6(60P

) (e0 ) (3.15)

) +

A §
+00 )

- im (I ) eo) -



where:

(3.17)
0 (

In the special case where the neutron distribution is sym-

metric with respect to the axis e = 0, the asymmetry current

vanishes and Eq. (3.16) reduces to:

(3.18)

3.2 EVALUATION OF THE KERNEL Ge FOR THE WEDGES OF ANGLES

200 = 1800, 900 AND 2700.

(a) 200 = 1800.

From Eq. (3.17) we get:
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QTr(

00
(3.19)

0

We use the identity:

S.Y+
(3.20)

c 0S k Orp)

and the integral formula:

00

S.
0

HO K ()2 - -c S 
(321

(3.21)
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to find:

(+tL)

(b) 2G 0 = 900 .

From Eq. (3.17) we get:

00 u t i t

We use the identity:

+ C h (Tr + 9v -c ( )

(3.24)

and the integral formula (3.21) to find:
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Ttp)

4
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4

* (3.25)

C) 2 9 = 270.

A general, series expression, Eq. (A.27), of G for an

arbitrary value of the angle 0, is derived by means of contour

integration in Appendix A. By evaluating Eq. (A.27) at E, = 37r/4

and solving for G we get:

c- 4 2r .1 00.1i.(E) +

00

*-i (3. 26)

3 3
Eq. (3.26) is valid for <

L

For values E > :, the kernel G is given by Eq. (3.26) with
d L i37nr4c

the roles of E and r/L interchanged.
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3.3 RE-DERIVATION OF THE ONE-DIMENSIONAL BOUNDARY CONDITION FOR

THE SEMI-INFINITE SLAB.

A semi-infinite slab occupying on the cartesian x-y plane

the space:

x > x.

may be viewed as a wedge with its peak at the origin and its

edges coinciding with the semi - axes: {x = x.,, y > 01 and

{x = x., y < 01. Furthermore, a one-dimensional - independent of

y - distribution of neutrons in the slab may be viewed as a

special-featured distribution of neutrons in the wedge, the special

features being:

(i) symmetry with respect to the semi-axis {x > x., y = 0} and

(ii) constancy of flux and normal current along the edges of the

wedge.

For the above reasons, we expect to be able to deduce the

flux-current relation for the one-dimensional, semi-infinete slab,

Eq. (2.20), from the "symmetrical" formula for the wedge, Eq.

(3.18), by:

(a) taking the constant J0 out of the integral:
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r4~~
Z~l~r

Z 
7r)5(

L T,

00

- -T

(b) substituting for G 7T the expression (3.22):

T00

-I Z

(c) evaluating the resulting integral:

0

so that

4~ r it) L-T
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(d) changing coordinates from polar to cartesian:

(X* (j , j ) 'and

(e) dropping the superfluous notation of a y-dependence.

We indeed obtain Eq. (2.20)

3.4 A SIMPLE, APPROXIMATE BOUNDARY CONDITION FOR THE 900 - WEDGE.

By inspecting the expression for the kernel G (E, ), Eq.
7T L
4

(3.25), we identify a feature which motivates an approximation/

simplification of the exact, "symmetrical" boundary condition for

the 900 - wedge, Eq. (3.18). The feature is the resonance-like

behavior of G at the value = and, if r is sufficiently

small, at ( = 0.

(i) At = {, G1  exhibits a peak of infinite height, due to

the term:

(K1-1I).
ooL

The (two-sided) width of the peak is, roughly, 4L.
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(ii) At ( = 0 and r less than about 2L, G exhibits a peak due

to the sum:

The height of the peak decreases as r increases; for r = 0 the

height is infinite and for r > 2L it is practically zero. The

(one-sided) width of the peak has an upper bound of about 2L

for all relevant values of r; the upper bound is attained when

r = 0.

From (i) and (ii) above we recognize that for the values

of r for which the peak at E=o is non-negligible, the width of

the peaks overlap. This fact motivates the following approximation:

If Jg varies very slowly along the boundary of the 900 -

wedge over an interval centered at r and about 4L wide, then we

can write:
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(3.30) is a zero-order-truncated Taylor series expansion of J

with respect to about the value =

If we substitute (3.30) into Eq. (3.18), J9 no more depends

on and we take it out of the integral. We carry out the remain-

ing integration of the kernel G (r, )
7T L

with respect to ( from 0 to 00:

T CT, CL TT (-±)+ (3.31)

and obtain:

(3.32)

3.5 BOUNDARY CONDITIONS FOR TWO ENERGY GROUPS.

The extension of Eq. (3.16) for two energy groups reads:
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) 0 T
0

*1-L ,+e(12Er

(3.33)

and

LZ

I- .

L' L~

K32

< 3

-L 2 G (

, 00) L

(3.34)
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In Eqs. (3.33) and (3.34) the subscripts 1 and 2 serve to

distinguish between the two energy groups; otherwise the

notation is that of Section 3.1.

The proof of Eqs. (3.33) and (3.34), given Eq. (3.16),

proceeds along the same lines as the extension of Kirchhoff's

formula from one to two energy groups (Section 2.6).

Consider now the 900 - wedge. The two-group extension of

the approximate relation (3.32) results from the substitution:

0 !2 (3.30)'

into Eqs. (3.33) and (3.34) and reads:

and (3.32)

and (3.32)11

- Lj. L2 L) (33)
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3.6 DISCUSSION

a) The wedge-shaped reflector was re-considered in the present

chapter. This time, the analytical expression for the flux

provided the starting point for the derivation of a relation

between the boundary values of the flux and normal current.

Although this relation appears formally different than the

boundary condition obtained from Kirchhoff's formula, the two

must be equivalent, in the sense that each one must be re-

ducible to the other by means of appropriate mathematical oper-

ations.

b) The crucial step in the derivation of the boundary condition

in the present chapter was the use of Lebedev's formula, Eq.

(3.10). Eqs. (3.10) and (3.8) may be viewed as a pair of equations

defining an integral transformation and the inverse transformation,

respectively; i.e.:

10 .
Ir .T0 1.4 (3.10)'

SM .(3.8)'
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The transform pair ((3.10)', (3.8)') may also be written in

the form of a single identity:

T

-(T)i 4%j)-(3.35)

The proof of identity (3.35) (or, equivalently, the proof

of the inversion formula (3.8)') is to be found in Refs. [L-1]

and [L-2] and is not simple.

The following sufficient conditions for the existence of

the transform are given in [L-l] and (L-2]:

(i) f(E) and f'*(E) must be bounded and continuous for (E(0,o)

(ii) E2 f (E) EL (O,co) and (f' (E) EL (0,o) (i. e. [T-3] : 2 f(E) and

f'() must be measurable and f cl 2 f ( ) Id < 0 and

f 1f' (E) | d < o) .

c) The flux-to-normal-current relation along the boundary of

a 90 0 - wedge is, for a symmetrical neutron distribution,

given by Eq. (3.18) together with the expression (3.25) for

the relevant kernel G. In the present chapter, this boundary

relation was derived by means of Lebedev's formula. The same
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boundary relation was derived in the previous chapter by means

of the generalized Kirchhoff's formula. Perhaps, the above two

independent derivations may provide -as a by-product of the

present work- the basis for an alternative proof of Lebedev's

formula.
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IV. T I M E - D E P E N D E N T A N A L Y S I S

4.1 TIME - DEPENDENT KIRCHHOFF'S FORMULA FOR ONE ENERGY GROUP

In Section 2.1 we presented Kirchhoff's formula, Eq. (2.2),

for the:

(a) steady-state diffusion of

(b) one-energy-group neutrons in

(c) a non-multiplying medium occupying

(d) a two-dimensional region A with boundary 1.

In the present Section we relax condition (a), above, and

allow for a time-dependence of the neutron distribution while we

keep conditions (b), (c) and (d) in effect. The relevant

extension of Eq. (2.2) is:

"' +

Eq.cont.
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i ]v - 2

+ F (X)) )
(4.1)

where the function F 0 depends on the initial flux distribution

in region A.

In the remaining of this section we prove (4.1) and specify

We start with the following pair of functions:

rD(x, y ,t): Solution of

z2
O4 -eZ L2 -. -_

in region A

and

99

Fo.

(i)

(4.2)

-M V)). <



i(p,t): Solution of

ii 'I).
4.t

(4.3)

over the entire x-y plane

with initial distribution '(x,y,t = 0) = 0 (4.4)

The Laplace transforms of (i) and (ii) with respect to t

00
e( 5:

(4.5):

Solution of

+

(4.2)'

in region A

100

are:

(i) "

(ii)

'>7f P

N.



(ii)-

4

where

C
Solution of

2xI+r
2 I. (4. 3)

over the entire x-y plane,

I + S

T may be expressed as:

- t +(4.8)
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(4.6) :

(4.7)
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where: Dh is the solution of the homogeneous part of Eq. (4.2)

and

I is a particular solution of the full equation (4.2).
p

The Kirchhoff's formula corresponding to the pair h and T

is:

-.5 s
FT

(4.9)

where:

T h (4.10)
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In analogy with Eq. (4.10) we define:

(4.11)

and

In view of Eq. (4.8) , Eqs. (4.10) - (4.12)

+ 5I,,v~

(4.12)

imply:

(4.13)

Next we- eliminate from (4.9):

- on one hand h with the help of (4.8)

- and on the other hand J with the help of (4.13).
n

The result is:

--L 0
2-rT

<S4 Ij I )

Eq. cont.
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Eq. cont.

(4.14)

T depends on the initial flux distribution in region A,
p

O(xy,t = 0).

Eq. (4.14) is the dynamic Kirchhoff's formula in the

frequency (s) - domain for an arbitrary initial flux distribution.

If:

(I) A steady-state distribution of neutrons existed in region A

prior to t=0 and

(II) The transient, which occurs at t > 0, is driven by a force

located outside region A,

then:

* the diffusion length, L, in region A maintains throughout the

transient its steady-state value,

- D(x,y,t = 0) is the solution of the equation:
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(4.15)

La

in region A and

a particular solution of Eq. (4.2) is:

- x) +O) (4.16)

We operate on (4.16) with -D. 3 / 3 n and obtain:

SX) ) S)
S

( x, /J, 4 a )

Since the initial neutron distribution is a steady-state one,

the steady-state Kirchhoff's formula may be written for it:

(4.18)
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We substitute (4.16) and (4.17) into Eq. (4.14), denote the

resulting equation by (4.14) ', multiply Eq. (4.18) by 1/s, denote

the resulting equation by (4.18)'and add Eq. (4.18)' to (4.14)'.

The result is:

- 5 4 
[.19)(x% S (?S) +

ir r

+ #.,,Xjs.~ s J, j

K 0('+ (4. 19)

Eq. (4.19) is the dynamic Kirchhoff's formula in the frequen-

cy domain, when the initial flux distribution is the solution of

Eq. (4.15).

The expression for l(p,s) to be used with Eqs. (4.14) and

(4.19) is:

(4.20)

(4.20) is the solution of Eq. (4.3) over the entire x-y plane.

106



The time-domain counterparts of Eqs. (4.14) and (4.19) are

obtained via operation on (4.14) and (4.19) with the inverse -

Laplace - transform operator:

1. SI (4.21)

2Tr t C-o

The integration in (4.21) is to be carried out on the complex

s-plane, along a straight line parallel to - and at a distance c

from - the imaginary s - axis. The value of c must be sufficient-

ly large so that the direct Laplace transform,

001

.. .. (4.22)

0

converges. [P-2]

The - 1 - operated, general equation (4.14) and special

equation (4.19) are of the form:

(4.23)

Eq. cont.
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£11O
D.- 

4- 
Jn

FX (4.23)

In (4.23), we take the operator ' inside the integral

J ...dl and get:

= -L.- 5 (Xj Xf 4: OR -
2 Tr r

+ F.

where

w ='

(4.24)

-* J,,\X,1~J, s.'rq~, s)

(4.25)

By virtue of the Convolution Theorem (P2], W may be expres-

sed as:
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+00

Af=S K<4x>4~T~ +LJ',IO>
*-00V) L

(4.26)

or, alternatively, as:

+-00

-7 T(4.27)

In (4.26), the lower limit of the integration must be replac-

ed by zero, because, otherwise, Eq. (4.24) would require

anticipation of the future evolution of the boundary-flux and

normal current from the part of the transient flux distribution in

region A, a physically senseless requirement. For the same reason,

in (4.27), the upper limit of the integration must be replaced by

t.

The expression for Y(p,t) , to be used with (4.26) or (4.27),

is:
109
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t ex
LA 4.Di. /

(4.28)

The combination of (4.24), (4.26) and (4.28) yields Eq.

(4.1).

We conclude this Section by specifying Fo(x,y,t).

For an arbitrary initial flux distribution, Fo is given by:

K ~-A-eyEj + ~~iS)

.4r~~r~s)]d (4.29)

For an initial flux distribution satisfying Eq. (4.15), FO

is given by:

A 7T S
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(4.30)

4.2 THE ONE - DIMENSIONAL SLAB.

In Chapter II we derived, by starting from Eq. (2.2), the

steady-state expressions (2.17) for the flux and normal current

at the right face of the slab in terms of the flux and normal

current at the left face.

If we replace in (2.2) and (2.17):

t by < J by J kX and L by E

(4.31)

where "h' h and L are the frequency-domain quantities defined
X

in Section 4.1, we get:

Eq. (4.9) with T given by (4.20) and
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J (x) )

L L
C. O (

( )3

(4.32)

respectively.

The derivation of (4.32) from (4.9) follows the same steps

as the derivation of (2.17) from (2.2).

Suppose the initial flux distribution in the slab satisfies

the one-dimensional version ( 2 2 = 0) of Eq. (4.15) , so

that:

(4.33)(x,) = -. ~(X, =)

and, therefore,

(~%s)

and

--

(4.34)1.
S

(4.35)

s)= (X)s) -L-x x>4=)
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The inverse Laplace transforms of (4.34) and (4.35) are:

4' (X 1 -L) l > XI t ) - C)() t~o)

and

J(XI+ -) X) -

Suppose further that the right face of the slab is an outer

boundary. Then:

Cl (xe, +_ -
4 (xe,)0

and, consequently,

~xe, ) = O

Substitution of (4.39) into the first row of (4.32) yields:

(, S) = .- X (, )(4.40)

-p x
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The inverse Laplace transform of (4.40) is:

00

0

O( T

Substitution of (4.36) and (4.37) into (4.41) yields:

CK(-C) - J x

The integral

(x
1

,4~E)Jbr

of('
a(T).dT is, by virtue of the moments
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where:

(4.41)

(4.42)

( (xi I),
coo

9

i F

C(xi - =O) =

C X - 02 ) 
(4. 43)

XC ) + - -r) C(*r



Theorem, equal to the Laplace transform of a (T) evaluated at s=O.

I.e.:

00

b ~L

The right hand side of Eq. (4.44) is, in turn, equal to the

ratio D x.,t=O) /J (x ,t=O) (see Eq. (2.19)). Consequently,

0a

and Eq. (4.43) simplifies to:

t (x4 mo)

00

f oC(-). YX (ji ,- >tT
0

Moments Theorem[P 2 1

kye ()
0k (s) 9

where f(s) is the Laplace transform of the function f(t).
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(4.45)

(4.46)

I

kxc =



It can be shown that Eq. (4.42) yields:

VF

~yi= d.

From (4. 47) is f ollows- that:

I s t o of (44-Tr

Inspection of (4. 47)

(4.48)

and (4. 48) shows that a (T) and lim a (T)
A4co

tend

- to O

- to 0

as T tends to zero and

as T tends to 0.

Furthermore, lim cX(T) varies monotonically with T between T=0 and 0

while cX(T) does not. This non-monotonic variation of a(T) is due

to the "reflected" terms:
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in the expression (4.47), i.e. the terms which arise from the

finite thickness A of the slab.

In view of (4.46) and the above behavior of a(T) and lim a(T)

we conclude that the present value of the local flux, D(x ,tl

depends on the present value and on the recent history of the

local current, J (x ,t), and has no memory of the too-distant-

in-the-past history of J (x ,t).

In order to have a measure of the memory strength of @(x.,t)

for various materials we define, arbitrarily, the effective memory

span of 0 as the time within which the function a(T) drops from

****
its 1 ysec-value by a factor of 1000. Thus , in light water the

effective memory span is 1%, 30 ysec for fast neutrons and % 650

psec for thermal neutrons. In (pure) heavy water the memory span

is Il 80 psec for fast neutrons and " 70 msec (=70,000 psec) for

thermal neutrons.

*
The value of these terms is zero at T = 0 and approaches a finite

upper bound as T - co.

1 Usec = 10-6 sec ; 1 msec = 10-3 sec.

All numbers computed with A = 0 (Eq. 4.48). See Figures 4.1 and

4.2.
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We see that:

a) For each of the two materials, the thermal-neutron memory is

much stronger than the fast-neutron one and

b) Heavy water exhibits a much stronger memory for thermal

neutrons than light water.

Feature a) is due to the strong moderating capacity of both

materials and to the group-speed differential.

Feature b) is due to the fact that heavy water is a much

weaker absorber of thermal neutrons than light water.

As a consequence of a), thermal neutrons in both materials

exhibit a much more sluggish transient response than fast newtrons.

As a consequence of b), thermal neutrons in light water

exhibit a much more prompt transient response than in heavy water.

4.3 APPROXIMATIONS - SIMPLIFICATIONS OF EQ. (4.46)

a) Suppose J (x., t-T), in Eq. (4.46), is expanded in a Taylor

*
This strong moderating capacity is responsible for the large

value of the total cross section for removal of neutrons from

the fast group, as compared to the value of the thermal absorption

(a total thermal) cross section.
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series with respect to T, about the point T = t:

00

+ S o (Xi~X,4)

(4.49)

If J (x. ,t - T) varies sufficiently slowly with time over an

interval centered at t and a few lifetimes (E-v)wide, then the

Taylor series can be truncated after a few terms:

(4.50)

Zero - order truncated Taylor series

(4.51)

First - order truncated Taylor series

etc.
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i) With the approximation (4.50), Eq. (4.49) reduces to:

00
Soo(-)CL7

(4.52)

In view of Eq. (4.44), (4.52) may be written in the form:

(4.53)

Eq. (4.53) is formally the same as the steady-state relation

(2.19):

="- -0GeT)J (,Z)(2.19)

Because of this similarity we shall refer to the approximation

(4.50), which leads to (4.53), as the static approximation.

ii) With the approximation (4.51), Eq. (4.49) reduces to:

4P (X ,)

-[ C --t( (4.54)
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00

The integral a (T) .T.dT, evaluated by means of the Moments

(P-2]
Theorem , is found to be:

00

SC ("C)-rcr =
0

L 2D- _ coshz ( I1
(4.55)

Substitution of (4.44) and (4.55) into (4.54) yields:

(5 X
LL

(4.56)
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We shall refer to the approximation (4.51), which leads to

(4.56), as the linear approximation, the term stemming from the

linearity of (4.41) with respect to T.

The flux-normal current relation (4.53), which results from

the static approximation, can be alternatively derived if the

adiabatic approximation,

1) ( X(4.57)
Adiabatic approximation: ' O

is made for all points x in the reflector.

The flux-normal current relation (4.56), which results from

the linear approximation, can be alternatively derived if the

constant-shape approximation,

Constant - shape approximation:

Sc ( X) (4. 58)w (+t). cb(x)

(where w = (x t/Jx (x it))

is made for all points x in the reflector.
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Thus,the static approximation is equivalent to the adiabatic

and the linear to the constant-shape approximation.

The linear approximation boundary condition, Eq. (4.56), is

not homogeneous but can be implemented on the computer as homo-

geneous on the basis of the following strategy:

Eq. (4.54), which is equivalent to (4.56), can be written in

the form:

$(xi ,t) 0[aiW(T) <1 - (xit) - T'>dT - J(xXt)

(4.59)

where

J (x.,t)
S(xit)x (4.60)

xJ (x.,t)

The value of w, to be used in Eq. (4.59), can be estimated,

as the computation proceeds, fram the values of the normal cur-

rent (or flux ) at the two previous time-steps.

*

In view of the constant-shape approximation, Eq. (4.58), W, by

definition equal to J /J , is also equal to !/D.
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Once an estimate for the instantaneous frequency w is

available, the integral in brackets in (4.59) can be evaluated.

The value of the integral in terms of W is:

L A
[ tanh -c (4.61)

L

where

L S!! D/ E + - (4.62)

Eq. (4.61) is obtained if the factor <1 - W(x.,t) - T>inside

the integral in (4.59) is replaced by exp - W(x.,t) - T). This

replacement is, in the context of the linear approximation, legal,

because the approximation itself is valid for sufficiently slow,

i.e. sufficiently low frequency-, transients.

**

After this replacement is made, the resulting integral can be

evaluated by means of the moments theorem. According to the theorem,

the integral in (4.59) is equal to the Laplace transform of the

integrand, evaluated at s = 0. The Laplace transform of the inte-

grand, at s = 0, is & (s=w) , where X(s)= a (t) and a (t) is defined

by (4.42). It can be easily seen that, provided E is replaced by

E+-, a(s=w) is given by the same expression as x(s=0).
v
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Substitution of (4.61) into (4.59) yields:

L/A\

1(x ,t) = L - tanh - J (X t)
D ( ~L X

(4.63)

(4.63) is the linear approximation relation in homogeneous form.

When neither the static nor the linear approximation are

adequate in representing the transient behavior of a reflector,

higher-order approximations can be developed. To this end, higher-

order truncations of the Taylor series expansion in Eq. (4.49)

can be employed.

For example, the quadratic approximation relation is:

#(x.,t) "

a(T) <1 - WI(x ,t) - T+ W2 (x ,t) -> dT J (x ,t)
2

(4.64)

where

w (x ,t) a (x ,t)/J (x ,t) (4.65)
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and

2 (4.66W2 (x ,t) J (x ,t)/J (x ,t) (4.66)

The values of and W2 to be used in Eq. (4.64) can be

estimated, as the computation proceeds, from the values of the

normal current at the two and three previous time-steps, re-

spectively.

There is no intuitively simple equivalent (the way the

adiabatic and constant-shape approximations are to the static and

linear approximations, respectively) to the quadratic or to any

higher-order approximation. It is the value of the Taylor series

approach that it suggests a whole series of approximations while

the intuitive hierarchy (adiabatic, constant-shape) ends with the

constant-shape approximation.

4.4. TIME - DEPENDENT FLUX - TO - NORMAL CURRENT RELATION FOR

TWO ENERGY GROUPS.

The derivation of the general, two-group, time-dependent

Kirchhoff's formula and other, equivalent, flux-to-normal current
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relations is straightforward: First, the time-dependent, two-

group diffusion equations are Laplace-transformed with respect

to time and then the procedure of Section 2.5 is followed. Thus,

two-group, time-dependent flux-to-normal current relations can

be obtained for the one-dimensional slab, the wedge, the elbow

etc.

We shall only present, without proof, the one-dimensional

slab relations here. Specifically, we shall give the time-

domain relations for the semi-infinite slab and the static -and

linear- approximation relations for a slab of arbitrary thickness.

The time-domain, semi-infinite slab relations are

Gy (xl ,t) = O 00LI(T) * Jix (x ,t-T)dT
0

2 (Xit) = 0f 2 l(T)' J1X(xirt-T)+a 2 2(T)' J2 x(Xi,t-T)> dT

(4.67)

*

Provided the reactor is initially in steady-state and the

reflector parameters do not change with time.
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where:

*agg (r) 1 exp EgvgT; g =12 (4.68)
gg g ex ~Igg) ,

E2 i

s i+2 /D I D2 (D
* 21D aD 2  D2  D1  T

1 D 1  22D2 v 
ID 1

V2D2T iDir (4.69)erf ---- - erf
M m

and

v i v 2 D2  (4.70)

The first of Eqs. (4.67), i.e. the fast-group flux-to-normal

current relation, is of the one-group form. Hence, the discussion

of Section 4.2. on the effective memory span holds also for the

fast-group relation.
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The second of Eqs. (4.67), i.e. the thermal-group flux-to-

normal current relation, consists of two terms: one involving Jix

and another involving J2X. The latter term is of the one-group

form and therefore the discussion on the one-group memory-span

holds also for this term.

Let us now examine c 2 1(T). At T = 0 the value of a2 1 is equal

to zero; as T increases, Ic21I initially increases until it reaches

a maximum value and subsequently decreases to reach the zero-value

asymptotically, as T-+ 0. The maximum value, which is finite, occurs

at about T = 10 ysec for H20 and T = 50 psec for D20, but the

*
maximum is orders of magnitude broader for D20 than for H2 0.

Thus, values of Jix more recent than a few microseconds have

not been "noticed" yet by $2 (Xi,t) while long past values of Jix

are effectively "forgotten" by 2 (x-,t), the length of this memory

span being different for different reflector materials.

Expansion of the group-currents in the integrands of Eqs.

(4.67) in Taylor series with respect to T, about T = 0 and sub-

sequent truncation of the series leads, as in the one-group case

(Section 4.2), to approximate time-dependent, two-group relations.

Specifically, truncation of the series after their very first term

leads to the static approximation relations, truncation after the

See Figures (4.3) and (4.4).
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linear (with respect to T) term leads to the linear approximation

relations etc.

This class of approximations (static, linear, quadratic etc.)

can, of course, be generalized for a slab of arbitrary thickness.

The derivations are most conveniently carried out in the frequency

domain[K-l. In fact, the entire development of the present chapter

can be carried out in the frequency domain, without the evaluation.

of the Laplace inverses of the a(s)'s. The time-domain analysis is

presented in this dissertation because, in the opinion of the

author, it is intuitively more transparent than the frequency-domain

one.

For a slab of arbitrary thickness, the two-group, static-

approximation relations are:

(x ,t) all 0 J1 (x ,t)

-- L(4.71)

2 (Xi, t) a21 a22 J2 x (xit)

where the a's are the static impedances, defined by Eqs. (2.52)

The two-group, linear-approximation relations are also given

by (4.71), where, now, in the definitions (2.52) of the a's, the
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Z 's must be replaced by Zg + ( J (x.,t)/vJ (xit) .Of

course, J (x.,t)/J (x.,t) = (x.,t)/# (xIt).

g g 1g i g i
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V. N U M E R I C A L

5.1 THE "INSULATED CHANNEL" APPROXIMATION

Consider the two-dimensional diffusion equation (2.1):

+ - . 0 (2.1)
ax x2 y 72 L 2

If the partial derivative a 2 a/y2  is omitted from Eq. (2.1),

the resulting equation is one-dimensional and the analysis of

Section 2.2. is applicable.

Physically, the term 3 24/ y 2 represents leakage of neutrons

in the y-direction. Consequently, the omission of the above term

means deletion of the y-direction leakage. Therefore, the neutron

distribution pattern predicted by the truncated diffusion equation

in region A will be one in which the neutrons diffuse in a system

of parallel channels, aligned in the x-direction and insulated

(neutronically) from one-another.
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For two-group diffusion in two dimensions, the omission of

both 3 2/ Dy 2 and 3 22/3Y2 leads to the one-dimensional, two-

group diffusion equations, Eqs. (2.33) and (2.34).

Obviously, any truncations of the two-dimensional diffusion

equations are approximations. Truncations as above, though, are at-

tractive approximations because they provide sets of simple

relations, (Eqs. (2.17) or (2.19) for one energy-group, Eqs. (2.17)'

or (2.19)' for two groups), to represent region A, in which (2.1)

is valid. Specifically, the "x-direction channel, insulated trans-

versely" approximation provides boundary conditions to be applied

along a y-direction boundary (i.e. along a boundary perpendicular to

the direction of the channels) of region A. Boundary conditions

along a x-direction boundary are obtained if the 3 2P/ a X2-terms,

instead of the 3 2/ 3y 2 's, are omitted from the two-dimensional

diffusion equations.

To summarize, the "insulated channel" approximation permits the

representation of a two-dimensional region A by means of one-

dimensional, flux-to-normal current slab relations, applied on the

two-dimensional boundary of region A. The one-dimensional slab

relations involve the static impedances, a, defined in Chapter 2,

Section 5.
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5.2 NUMERICAL ACCOUNT FOR THE TRANS - CHANNEL LEAKAGE.

Consider, again, the two-dimensional diffusion equation (2.1):

+ - = 0 (2.1)
x 2  gy2 L2

Let us define a y-direction buckling:

B (xy) = - -(5.1)

# (x,y) 3y 2

The elimination of 3 2/ y 2 between (2.1) and (5.1) yields:

1
- [ + B2 (xy) - = 0 (5.2)

3 x 2 L 2 y

Eq. (5.2) provides no gain over (2.1), unless we know the

x-and-y-dependent buvkling B2 ; the latter, of course, we do not
y

know, unless we know the solution #(x,y) of Eq. (2.1). If however,

we can find an a priori estimate of the x- and y- dependence of B2
y
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then Eq. (5.2) is a gain over (2.1) because (5.2) is one-dimension-

al. A condition which enables an a priori estimate of B is the
y

following:

The y-direction shape of the flux is independent of x ; i.e.:

2 2B (xy) I B2 (xi,y) (5.3)
y y

where xi is fixed.

The above condition is expected to be satisfied beyond the

immediate vicinity of interfaces between regions with different

compositions, because all the severe changes in flux-shape take

place near interfaces. (For more quantitative information on the

range of validity of condition (5.3) see next section: "The

Reflector Buffer zone").

Once condition (5.3) is valid, the problem of estimating

B (x,y) is replaced by the problem of estimating B2 (xi,y). In
y y

turn, once B2 (xi ,y) is known, the region beyond xl can be represent-
y

ed by a static-impedance relation (see analysis for the one-di-

mensional slab). Thus, in a computation, the region beyond x, can

be replaced by a static-impedance boundary condition. During such

a computation, the y-direction flux-shape at x, from each iteration
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can be employed for an estimate of B2 (xj,y) to be used with the
y

next iteration. In this manner, the trans-channel leakage is ac-

counted for. The crucial point is, of course, the fulfillment of

condition (5.3).

The two-group extension of the above development is straight-

forward. The extension starts with the definition of a y-direction

buckling for each group,

B2 1 l 9 g = 1,2 (5.1)
g 9 (x,y) 3y2

g

and proceeds with the imposition of condition (5.3) for each group.

In the numerical tests, in order to avoid extra programming

and extra iterations, we used the full core-reflector solution to

determine the transverse bucklings B2 . With the flux shapes agre-
yYg

eing as shown in Section 2.5, transverse bucklings inferred from

the approximate shapes should be little different.

Regarding the iterative implementation of the transverse

buckling it is noted that if the flux shapes D (xj,y) at a given

iteration stage are used to determine the B2 (xj,y), a finite dif-

a2 yg
ference approximation to -- will be necessary. Two-sided,

3 y2
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finite-difference approximations of the Laplacian operator will be

possible at all but the end-points of a boundary segment; at the

end-points one-sided approximations will be necessary. It is

advisable that these one-sided approximations be of the same degree

(C-2]
of accuracy as the two-sided ones

5. 3 THE REFLECTOR BUFFER ZONE (RBZ)

Figures 5.1 - 5.3 show thermal flux-shapes in two-dimensional

reflector refions. Specifically, the flux-shapes are shown in

directions parallel to -and at various distances from- core-re-

flector interfaces.

In Figure 5.1, the curves (1], (2], (3], [4] and (5] represent

the thermal flux in a light-water reflector at distances, respective-

ly , 0.0, 1.4, 3.8, 7.0, and 9.0 cm from the surface of the small,

cross-shaped core. We note the huge difference between shapes (1]

and [2]. Shapes [3], [4] and [5] are, on the contrary, very much

alike.

In Figure 5.2, the curves [1], (2], [3] and (4] represent the

thermal flux again in a light-ater reflector at distances, re-

spectively, 0.0, 1.8, 3.8, and 7.0 cm from the surface of the upper

step of the intermediate-sized, 3-step core while curves (9], (8],

141



Eal

-0

D

LL

0

1.)

5
FIGURE 5.1 :FLUX SHAPES

15 CM
IN H2 0

REFLECTOR

142



5-

4-.
-J

w 3 -.
T
F-

2

13
I -~~*~~--

0
C

Fl GURE

FLUX SHAPES IN H20 REFLECTOR

x
D
-J
IL

H

(4

I
*/
p

's0-7

20
A IN

30 CIM

5.2

0- 6
b-5

40
Q

4--

10



0
o 0o04

0 0 0 04P0 oo3
*0 oe2

* O1
oooo

FIGURE 5.3A
FLUX SHAPES IN D2 0

REFLECTOR

FIGURE 5.35
FLUX SHAPES IN D2 0

REFLECTOR

I0 20
0

0
0

0 10

150o

o0

o

e0

0

0

0

o

0

0

o0

*00 0

I5-

* 0

xD

-.

0

0
0

0

o0

0

e

10-

x

->
LL

0

*

0

*0

e0

0
0 0

0

0

0

-4

4

Li
I
F-

0

G

0

0

0

0

*o 0o

0

0

-J

4

cr
Li
I
F-

0%7

5-

1
20

10-.

CM C M



(7], (6] and [5] represent the thermal flux at distances,

respectively, 0.0, 1.8, 5.0, 13.0, 16.75 cm from the surface

of the middle step. Again, the shapes (1] and (2] are vastly

different from each other and so are (9] and (8]. Deeper inside

the reflector, the shapes are much more similar: (3] is similar

to [4] and [7] is similar to [6] and (5].

In Figure 5.3, the curves (1], (2], (3], (4], (5], [6] and

[7] are thermal flux-shapes in a heavy-water reflector at

distances, respectively, 0.0, 0.6, 2.2, 3.8, 7.0, 9.0 and 11.0 cm

from the surface of the small, square core. Of these shapes, (1],

(2] and [3] are one family and [4], (5], [6] and (7] are another.

It is evident from the above figures that a reflector zone

adjacent to the core is the transition region for flux shapes.

This zone, which we shall call the Reglector Buffer Zone (RBZ),

is roughly 2.0 cm-thick for the light-water-reflected models of

Figures 5.1 and 5.2 and 4.0 cm-thick for the heavy-water-reflected

model of Figure 5.3.
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5.4 ANALYTICAL ACCOUNT FOR THE TRANS - CHANNEL LEAKAGE:

THE "SMITH" CORRECTION FACTOR.

In Chapter 3, Section 4 we derived an approximate flux-to-

normal current boundary condition, Eq. (3.32), for the 900 wedge.

The derivation was based on the assumption that the variation of

the normal current, J 6 , along the boundary of the wedge over an

interval about 4 reflector diffusion lengths wide is very slow. In-

spection of Eq.(3.32) shows that the ratio f/,7 is equal to the static

-impedance a plus a correction. The correction is s(r)=Vexp(-r/L),where

r is the distance of boundary point from the peak of the wedge. A few

diffusion lengths away from the peak the correction s(r) vanishes

while at the peak the value s(r=0) is equal to eX, so that the flux-

to-normal current ratio at the peak is equal to 2a.

The correction term in Eq. (3.32) provides a simple and ac-

curate analytical account for the trans-channel leakage, when the

assumption of slow variation of J over 4L is realistic. This

analytical account is an alternative to the numerical one, discus-

sed in Section 5.2.

We shall call the correction factor s(r) the "Smith" factor,

after the author of Ref. (S-1].
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The two-group extension of Eq. (3.32) is the pair of

equations (3. 32) ' and (3. 32)".
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5.5 SPECIFICATIONS OF THE NUMERICAL TESTS.

In this section we give various specifications for the

numerical tests which we performed on the method of implicit re-

presentation of reflectors. In the following sections we present

and discuss the results of these tests.

The configurations and sizes of the various test reactor -

models used are given in Table 5.1. The same configurations and

their relative sizes are shown in Figure 5.4.

A set of two-group, PWR data is given in Table 5.2. Table

5.3 contains two-group data for heavy water and graphite. Table

5.4 is a list of the compositions used in the tests.

The various finite-difference mesh-patterns employed in the

computations are listed in Table 5.5.

The specifications of the two time-dependent problems tested

are given in Table 5.6.

All computations were performed in the M.I.T. Information

Processing Center. The computer codes CITATION [F-] and GAKIN II

[H-l] were employed for the steady-state and time-dependent

calculations, respectively. The input of impedance boundary con-

ditions to CITATION was effected without reprogramming (see Ap-
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pendix B for details on the preparation of the input). The input

of impedance boundary conditions to GAKIN II required some minor

reprogramming (see Appendix C) .
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T A B L E 5.1

CONFIGURATIONS AND SIZES OF REACTOR

MODELS EMPLOYED IN NUMERICAL TESTS.

Name Number Description Description Symmetry
of of of of
Model Dimensions Core Reflector

1-d 1 Total core thickness=40 cm. 10 cm-thick slabs on Half
either side of the core

Square 2 Square, 40 cm X 40 cm .10 cm-thick slabs on Octant
each side of the core.

Cross 2 Total core consists of 5, Core embedded and centered Octant
square, 20 cm x 20 cm, fuel in a square, 80 cm X 80 cm
blocks arranged in the form reflector. Outer -sides of
of a cross. reflector are parallel to

the sides of the square fuel
blocks. Thus, minimum
reflector thickness=10 cm.

0



T A B L E 5.1 (Continued)

Number
of

Dimensions

Description
of

Core

SymmetryDescription
of

Reflector

Three- 2 Total core consists of 24, Core embedded and centered Octant

steps square, 20 cm X 20 cm, fuel in a square, 160 cm X 160 cm,
blocks arranged so that reflector. Outer sides of
each quarter core has a reflector parallel to sides

three-step form. of fuel blocks. Thus, minimum
refl. thickness=20 cm.

Three- 2 Same as 3 - steps model. Core is surrounded by a Octant

Steps 2 cm-thick, stainless steel

with shroud. Shrouded core is

Shroud embedded and centered in a
square, 160 cm X 160 cm,
reflector. Outer sides of
refl. parallel to sides of
fuel blocks. Thus, min. refl.
thickness=18 cm.

Name
of

Model

H



T A B L E 5.1 (Continued)

Number

of
Dimensions

Description

of
Core

Description
of

Reflector

ZION 2 See Engineer's Thesis by L. Deppe, Nuclear Engineer- Octant
ing Department, M.I.T.,, 1973.

H
U-'
toJ

Name
of

Model

Symmetry
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T A B L E 5.2

*
TWO - GROUP, PWR DATA

Material 2 2 E 2

Type tr tr a a r f f

Fuel .241010 .897882 .00827435 .068261 .018866 .00504978 .0884659

Reflector .23742 1.3495 .000791834 .0286603 .0365214
(Water)

Shroud .37978 1.1017 .00446266 .0703 .00114323

Fission Spectrum: xi = 1.0, x2 = 0*0

*Source: R.A. Shober, Nucl. Eng. Dept., M.I.T.

H
(7'



T A B L E 5.3

HEAVY WATER AND GRAPHITE

TWO - GROUP DATA

* **
H E A V Y W A T E R G R A P H I T E

g D 1+ 2 D 1+ 2

1 1.294 0.01136 0.01136 0.968992 0.00498523 0.00498000

2 0.8551 0.0000953 0.789889 0.000296

*
Source: W.J. Garland et al., Nucl. Sci. Eng. 55, 119 (1974).

**
Source: T.Y.C. Wei, Doctoral Thesis, M.I.T., 1975.

H
U,
U-I



T A B L E 5.4

COMPOSITIONS USED IN TESTS

SDe scrip tion

Typical PWR Composition.

(Source: C.M. Kang, Doctoral Thesis, M.I.T.,1971).

2 Composition of Table 5.2

3 ZION Reactor Composition

(Source: L.O.Deppe, Engineer's Thesis, M.I.T.,1973).

4 Fuel of Composition # 1.

D 20 - Reflector of Table 5.3.

5 Fuel from Composition # 2.

D 20 - Reflector of Table 5.3.

6 Fuel of Composition # 2.

Graphite - Reflector of Table 5.3
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T A B L E 5.5

MESH PATTERNS

Pattern D e s c r i p t i o n

1 Mesh Size h = 1 cm everywhere.

2 h = 2 cm everywhere.

3 h = 0.2 cm within 4 cm-thick zones on either side of

C-R interface.
h = 2.0 cm everywhere else

4 h = 0.2 cm everywhere

5 h = 0.4 cm within 4 cm-thick zones on either side

of C-R interface.

h = 2.0 cm everywhere else.

6 h = 0.5 cm within a 4 cm-thick zone on the core side

of C-R interface.

h = 0.4 cm within a 4 cm-thick zone on the reflector

side of C-R interface.

h = 2.0 cm everywhere else.

7 The value of the spatially varying h can be infered from

the abcisas- of pairs of adjacent circles in Fig.5.16.

8 The value of the spatially varying h can be infered from

the abcisas of pairs of adjacent x's or pairs of adjacent

squares in Fig. 5.16.
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T A B L E 5.6

SPECIFICATIONS OF TEST - TRANSIENTS

Reactor Configuration: 1-d Slab.

Compositions: # 5 and 6.

Group speeds: 5 x 106 and 2 x 105 cm/sec.

Delayed Neutron Data: U2 3 5/thermal fission.

Initial Condition for Slow Transient: Steady State.

Initial Condition for Fast Transient: Steady State.

Driving Force of Slow Transient: Ramp reduction of thermal capture

cross section in left half of the

core. Ramp rate = 1%/sec.

Driving Force of Fast Transient: Ramp reduction of thermal capture

cross section in left half of the

core. Ramp rate = 500%/sec.

Spatial mesh size: h = 1.0 cm.

Initial Time-Step Used in Slow Transient Calculation - 1 msec.

Initial Time-Step Used in Fast Transient Calculation = 10 psec.
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5.6 TESTS ON SMALL - SIZED REACTOR MODELS.

In this section we present and discuss the results of numerical

tests of the reflector-replacement method applied to small-sized

reactor models, namely the "l-d Slab", the "Square" and the "Cross"

(see specifications of reactor models in Table 5.1).

Table 5.7 contains a list of the various modes of implicit re-

flector representation tested on small-sized, light water-reflected

reactor models in steady state, the corresponding eigenvalues and

references to relevant figures. Many of the tests were performed with

two different mesh-patterns, one coarse and one fine. In Table 5.7 the

columns under the headings "Critical Eigenvalue" and "References to

Figures" are each split into two half-columns. The left half-columns

contain the results of the coarse-mesh calculations and the right

half-columns contain the results of the fine-mesh calculations. The

number of the mesh-pattern employed is explicitly indicated in

parentheses at all row-half column intersections.

Table 5.8 is the counterpart of Table 5.7 for heavy water-reflect-

ed reactor models.
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Table 5.9 contains results from tests on small-sized, light

and heavy water-reflected reactor models in dynamic states.
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T A B L E 5.7

TESTS ON SMALL-SIZED, LIGHT WATER-REFLECTED REACTOR

MODELS IN STEADY STATE

Type of Solution/ Critical References to

4; Type of Boundary Eigenvalue Figures

A 0 Condition Applied Coarse Fine Coarse Fine

Mesh, Mesh, Mesh, Mesh,

# # # #

Full Core-Reflector Solution 0.9660755 3.9671855 Circles

in Fig.5.5

l) HA _(#2) (#4) (#2)
rd*

H Impedances at C-R 0.9672399 2.9672012 x's

Interface in Fig.5.5

(#2) (#4) (#2)

Full Core-Reflector 0.8939846 3.8966821 Upper x's Lower x's

t *n Fig.5.6 in Figs
Solution

5.6 & 5.7

(#2) (#3) (#2) (#3)



T A B L E 5.7 (Continued)

Type of Solution/ Critical References to

Type of Boundary Eigenvalue Figures
.6-I

H .A Condition Applied Coarse Fine Coarse Fine
U1

04  Mesh, Mesh, Mesh, Mesh,

Impedances at C-R 0.8991820 0.8994374 A's ircles

Interface in Fig.5.6 In Figs.

t 5.6&5.7(I)

(#2) (#3) (#2) (#3)

Full Core-Reflector 0.8971822 0.8984979 x's in Figs.

Solution 5.8, 5.9,

5.10, 5.11

(#1) (#5) (#1)
U) H_
0 Impedances at C-R 0.8784639 Circles in

Interface Fig.5.8 & 5.9

...... _.._._._._ .. (#1) (#1)

I-'
0~
t'J



T A B L E 5.7 (Continued)

Type of Solution/ Critical References to

Type of Boundary Condition Eigenvalue Figures

Applied Coarse Fine Coarse Fine

Mesh, Mesh, Mesh, Mesh,

Numerically-Corrected 0.8784977 V's in

Impedances at C-R Figs. 5.8

and 5.9*
Interface

En(#1) (#1)__ ____

H1 Smith-Corrected 0.9020467 Circles in0

Impedances at C-R 
Figs. 5.10

and 5.11
Interface (#1) (#1)

* Where the V's are not shown, they coinside with the circles.

Hm
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T A B L E 5.8

TEST ON SMALL-SIZED, HEAVY WATER-REFLECTED REACTOR

MODELS IN STEADY STATE

o Type of Solution/ Critical Eigenvalue References to Figures
.t-I

w 0 Type of Boundary Coarse Fine Coarse Fine

o Condition Applied. Mesh, # Mesh, # Mesh, # Mesh, #

Full Core-Reflector 0.9471047 x's In

Solution 
Figs.5-17

& 5-19

(#5) (#5)

'I

Impedances at C-R 0.9608409 Circles ir

Fig.5.17
Interface

(#5) (#5)

Impedances at Outer 0.9536103 Circles in

Fig. 5.18
Surface of RBZ

(#5) (#5)

H

H



T A B L E 5.8 (Continued)

Type of Solution/ Critical Eigenvalue References to Figures

rI0
e Type of Boundary Coarse Fine Coarse Fine

H 0 UCondition Applied. Mesh, # Mesh,#. Mesh, # Mesh, #

Numerically-Corrected 0.9476528 Circles in)4 o T

( Impedances at Outer Fig. 5.19

P4 . Surface of RBZ (#5) (#5)
I 1 1)1

*
The numerical correction consists in computation of the impedances with E 's replaced by

g

E + D - r/80 cm) 2

g g
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T A B L E 5.9

RESULTS OF THE IMPLICIT REPRESENTATION OF REFLECTORS

IN TEST - TRANSIENTS

"SLOW" TRANSIENT

176

% Error in Reactor Power

t STATIC APPROX'N STATIC APPROX'N LINEAR APPROX'N

(sec) - NO RBZ OUTSIDE RBZ - NO RBZ

H20 D20 H20 D20 H20 D20

0.0 0.0% 0.0% 0/0% 0.0% Not tested

0.1 0.0 -0.3 -0.1 -0.3

0.5 1.4 -0.4 1.3 -0.2

1.0 2.9 -0.1 2.7 -0.2



T A B L E 5.9 (Continued)

RESULTS ON THE IMPLICIT REPRESENTATION OF REFLECTORS

IN TEST - TRANSIENTS

"FAST" TRANSIENT=

t

(msec)

Reactor Power

STATIC APPROX'N STATIC APPROX'N LINEAR APPROX'N

- NO RBZ OUTSIDE RBZ - NO RBZ

D20

0.0 0.0% 0.0% 0.0% 0.0% 0.0% Diverges

1.0 0.1 0.2 0.0 0.1 0.0

5.0 1.6 7.7 0.7 5.4 0.0

10.0 5.9 32.9 2.6 22.7 0.0

177
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Let us now discuss, briefly, the results of the tests

performed on small-sized reactor models.

a) H20 - reflected reactor models in steady state.

The tests on the "1-d Slab" model provide an opportunity for

study of the mesh-size effect. In Figure 5.5 the circles and the

x's represent the thermal flux in the core as found from a full

core - reflector calculation and from a calculation with an implicit

treatment of the reflector, respectively. The same , coarse mesh was

used in both calculations. We see that the two sets of symbols do

not exactly coincide with each other (although they should, because

the algebraic impedance relation is exact in the case of the one-

dimensional slab-geometry). The cause of the deviation is the

reflector mesh-size: The circles were found from a finite-difference

calculation with a coarse mesh both in the core and in the reflector.

The x's were found from a finite-difference calculation with a

coarse mesh in the core and an infinitely fine mesh in the reflector

(the infinitely fine mesh being realized by the analytical impedance-

relation). When a fine mesh is used in both calculations, the x's

are found to coincide with the circles.

180



The tests on the "Square" reactor model provide another op-

portunity for study of the mesh-size effect this time in two

dimensions. In Figure 5.6, the upper x's represent the thermal

flux found from a coarse-mesh (mesh-pattern #2), full core-

reflector calculation while the lower x's represent the same

thermal flux found from a fine-mesh (mesh-pattern #3) calculation.

The corresponding eigenvalues differ by 0.27%, as can be deduced

from the data of Table 5.7. The difference in these results is

due to the different mesh-sizes used. When the reflector is treat-

ed implicitly and the same two core-mesh-patterns are used as in

the above full core-reflector calculations, the resulting eigen-

values differ from each other by only 0.03%. This very significant

reduction in error in the critical eigenvalue gives a measure of

the reflector-mesh-size effect in two dimensions. The "Cross" model

results (Fig. 5.8 -5.11) provide some more information on the same

effect. Figure 5.7 seems to show this same behavior even more

strongly. (The triangles are the coarse mesh results). However the

line BC is at an interface and CITATION computes flux values on mesh

box centers. Thus the triangles in (5.7) do not represent fluxes

on the boundary but rather at a centrimeter inside the core.
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Regarding the accuracy of the reflector-replacement method

itself, it is seen by comparison between the results of the

"Square" (Fig. 5.7) and "Cross" models (Table 5.7 and Fig. 5.8-

5.11), that the one-dimensional, slab-geometry impedances (which

implement the insulated channel approximation) are especially

poor in representing the reflector in the neighborhood of

reentrant corners of the core surface. A great improvement in ac-

curacy in such cases is obtained when the Smith correction factor

is used (Fig. 5.10 and 5.11). This is obvious from the "Cross"

model results: the percent error in the eigenvalue is 2.23 vs.0.40

without and with the correction, respectively. For comparisonthe

percent error in the eigenvalue of the "Square" model, (which has

no reentrant corners), with the reflector represented by just the

one-dimensional, slab-geometry impedances is 0.27%.

In summary, the replacement of the H 20- reflectors of the

small-sized "Square" and "Cross reactor models by boundary conditions

has been effected with an accuracy of a few tenths of a percent for

the eigenvalue and a few percent for the pointwise fluxes. With all

fluxes normalized to the same total power, the maximum pointwise

error is observed near the core surface, which is a relatively low-

temperature region in the core.
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b) A D20 - reflected reactor model in steady state.

In each of the Figures 5.17- 5.19 the x's and the circles

represent the thermal flux in the "Square" core as found from a

full core-reflector calculation and from a calculation with the

reflector treated implicitly, respectively. Specifically, when

one-dimensional, slab-geometry boundary conditions are used to

represent the entire heavy water-reflector, the thermal flux

depicted by circles in Figure 5.17 is found. When a 4 cm-thick

reflector buffer zone is treated explicitly and the one-

dimensional, slab-geometry boundary conditions are used to re-

present the rest of the heavy-water reflector, the flux depict-

ed by circles in Figure 5.18 is found. Finally, when a 4 cm-

thick RBZ is treated explicitly and the rest of the reflector is

represented by numerically-corrected, one-dimensional, slab-

geometry boundary conditions, where the numerical correction is

based on an assumed pure cosine-shape for the transverse

dependence of the flux, the result shown by the circles in Fig.

5.19 is found. We note how the error is successively reduced from

a significant value in Figure 5.17 to a near-zero value in

Figure 5.19.

From the Figures 5.6, 5.7 and 5.17 and from the Tables 5.7
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and 5.8 we see that the representation of the entire reflector

by one-dimensional, slab-geometry boundary conditions without

numerical corrections is much more accurate when the reflector

consists of light rather than of heavy-water.

c) The "l-d Slab" reactor model in dynamic state.

Two transients, one fast and one slow, both spatially asym-

metric and driven by timewise-ramp reactivities have been

considered with the "l-d Slab" model (see Table 5.6 for a detailed

description of the transients). Three different reflector materials

have been used with this model: light water, heavy water and

graphite.

Regarding the slow transient in the light water-reflected

slab, it is seen in Table 5.9 that the total power at the end of

the transient is predicted with an error 2.9% and 2.7% respective-

ly, when the static approximation is used with and without the

explicit treatment of a reflector buffer zone.

The same table shows that the error in the total power at the

end of the fast transient in the light water-reflected slab is

5.9% when the static-approximation impedances are applied at the

core-reflector interface, 2.6% when the static-approximation im-
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pedances are applied at the outer surface of a reflector buffer

zone and 0% when the linear-approximation impedances are applied

at the core-reflector interface. The pointwise thermal fluxes as

found with the above three approximate representations of the

reflector are shown in Figure 5.20. It is seen that the maximum

pointwise error is practically the same as the corresponding error

in total power and occurs at the locations of the extrema of the

thermal flux. Of these locations, that of the maximum thermal flux

is the hot spot in the slab while those of the minima are relative-

ly low temperature locations. In summary, it is emphasized that,

the explicit treatment of a reflector buffer zone reduces the error

of the static approximation by about 50%, while the linear approxi-

mation, without the treatment of any RBZ, virtually elimanates hte

error.

Regarding the slow transient in the heavy water-reflected

slab, Table 5.9 shows that the total power at the end of the

transient is predicted with an error 0.1% vs. 0.2%, when the static

approximation is used with and without the explicit treatment of

a RBZ, respectively.

For the fast transient in the heavy water-reflected slab,

Table 5.9 lists an error in the prediction of the total power at

the and of the transient equal to 32.9% when the static-approxi-
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mation impedances are applied at the core-reflector interface

and 22.7% when the static-approximation impedances are applied

at the outer surface of a PBZ. The pointwise thermal fluxes cor-

responding to the above two approximate representations of the

D 20-reflector are shown in Figure 5.21(b).

The maximum pointwise error is again seen to be practically

the same as the corresponding error in total power. As far as the

linear approximation is concerned, it leads to numerical insta-

bilities when applied to heavy-water reflected slabs. The inferior

results of all three approximations (static with or without RBZ;

linear) in the D 20-case as compared to the results of the same

approximations in the H 20-case are due to the longer "memory-span"

of heavy water. The quadratic-approximation relations should prove

more effective in representing D20-reflectors in transient calcu-

lations.

With respect to "memory-span" graphite resembles heavy water,

and the results of numerical tests with graphite resemble the

above results for heavy water. The linear-approximation solution

again diverges. Large errors are associated with the static ap-

proximation (see Figure 5.21(a)) although the explicit treatment

of a RBZ cuts the error by about 30%.
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5.7 TESTS ON INTERMEDIATE - SIZED REACTOR MODELS.

The results of numerical tests on the intermediate-sized

reactor models "3-Steps" and "3-Steps with Shroud" are presented

and discussed in this section.

The various boundary conditions tested and the corresponding

eigenvalues and references to relevant figures are listed in

Table 5.10. The structure of the table is the same as that of

Tables 5.7 and 5.8. Figures 5.12-5.15 and 5.22 accompany Table

5.10. Fast fluxes are depicted in Figure 5.22while thermal ones

are shown in the other figures. Table 5.11 gives the percent error

in eigenvalue and pointwise thermal flux as computed from Table

5.10 and the above figures. Information on the cost and the number

of iterations required for convergence of- the above calculations

is given in Table 5.12.

The effect of the reflector-mesh-size can be further illumi-

nated from the results presented in this section. Let us consider

the first row of Table 5.11. The same impedances are applied at the

core-reflector interface in both the fine -and the coarse-mesh

calculations. The small difference between the two results (0.64vs.

0.65%) is due to the different core-mesh-sizes. Consider now the
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T A B L E 5.10

TESTS ON INTERMEDIATE-SIZEDLIGHT WATER-REFLECTED REACTOR

MODELS IN STEADY STATE

Type of Solution/ Critical Eigenvalue References to Figures
0

-.0 Type of Boundary

GJ C ACoarse Fine Coarse Fine0 Ms Condition Applied
Mesh, # Mesh, # Mesh, # Mesh, #

0

Full Core-Reflector

Solution

Impedances at C-R

Interface

1.0007725

(#6)

Solid lines

in Figs.5.12

5.13 & 5.22

(#6)

4 I I

0.9942630

(#6)

x's in Figs.

5.12 & 5.22

(#6)

-4 1 4 1 &

H
00
M~

U)

Q)
4~i
ciT~

C.-)

=-t:



T A B L E 5.10 (Continued)

Type of Solution/ Critical Eigenvalue References to Figures

0

- Type of Boundary
U)

0 o Condition Applied Coarse Fine Coarse Fine

Mesh,# Mesh,# Mesh,# Mesh,#

Impedances at Outer 0.9970689 Squares in

Surface of RBZ Figs.5.12 &

5.22

)(#6) (#6)

U) Numerically - Corrected 0.9982689 Dashed

I line in
Impedances at Outer

Fig.5.13
Surface of RBZ (#2) (#2)

00



T A B L E 5.10 (Continued)

.4 Type of Solution/ Critical Eigenvalue References to Figures

r8 Q, Type of Boundary
Z: 0 Coarse Fine Coarse Fine

Condition Applied Mesh, # Mesh, # Mesh, # Mesh, #

Numerically - Corrected 0.9954092

Impedances at C-R (#2)

Interface

0 Full Core-Shroud- 1.0008097 Solid line in

Reflector Solution Fig. 5.14; x's

in 5.15

(#6) (#6)

0



T A B L E 5.10 (Continued)

o Type of Solution/ Critical Eigenvalue References to Figures

HA w Type of Boundary
0 Coarse Fine Coarse Fine
0 Condition Applied Mesh, # Mesh, # Mesh, # Mesh, #

Impedances at S-R 0.9980435 Dashed line

in Fig.5.14
Interface #6) (#6)

0
14
J4

.r4 Impedances at C-S 0.9947644 Circles in

Fig.5.15
Interface

(#6) (#6)
(I)

H
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T A B L E 5.11

ERROR FROM THE IMPLICIT REPRESENTATION OF H 20 RE-

FLECTORS OF INTERMEDIATE - SIZED REACTORS

Type of % Error in % Error in Thermal Maximum % Error in

*
Boundary Critical Eigenvalue Flux at Center of Core Thermal Flux

W 0 Condition Fine Coarse Fine Coarse Fine Coarse

U Applied Mesh Mesh Mesh Mesh Mesh Mesh

Impedances

at C-R +0.64% +0.65% -5.23% -5.36% +14.80% +16.00%

Interf.

94
j N Impedances

at outer sur- +0.37% +0.40% -3.16% -3.58% +9.13% +11.62%

face of RBZ

The maximum % error in the thermal flux occurs (with all normalizations to the

power) at the core surface, close to the peaks of the re-entrant corners.

same total
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T A B L E 5.11 (Continued)

Type of Boundary % Error in % Error in Thermal Maximum % Error in

y Condition Critical Eigenvalue Flux at Center of Core Thermal Flux

w 0
ra 0 Applied Fine Coarse Fine Coarse- Fine Coarse
0 r,

0 Mesh Mesh Mesh Mesh Mesh Mesh

Numerically-

Corrected +0.54% -4.44% +13.68%

Impedances

at C-R Interf.

4p Numerically-
U)

Corrected Im-

pedances at +0.25% -2.31% + 8.13%

Outer Surface

of RBZ

Impedances at
P 0 4# +0.32% +0.28% -2.50% -2.02% +5.32% + 3.03%

C-R Interf.

OD



T A B L E 5.12

COST AND NUMBER OF ITERATIONS OF STEADY - STATE CALCU-

LATIONS IN INTERMEDIATE - SIZED REACTOR MODELS

Type of Solution/ Computational Cost in Number of Iterations

o *
Type of Boundary Dollars Required for Convergence

0 Condition Applied Coarse Fine Coarse Fine
S0

0 Mesh,# Mesh,# Mesh,# Mesh,#

Full Core-Reflector
36

Solution #6)

(#6

Impedances at C-R 7.50 19 35 52

Interface (#2) (#6) (#2) (#6)

Impedances at Outer 7.50 20.50 36 49

I Surface of RBZ (#2) (#6) (#2) (#6)
*

same convergence criteria were used in all computations.
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T A B L E 5.12 (Continued)

Type of Solution/ Computational cost Number of Iterations

A' Type of Boundary in Dollars Required for Convergence
0

Condition Applied
Coarse Fine Coarse Fine

Mesh,# Mesh,# Mesh,# Mesh,#

Numerically-Corrected 8.50 36
N

Impedances at Outer (#2) (#2)

Surface of RBZ

Full Core-Shroud- 36 580

Reflector Solution (#6) (#6)

.5-4 Impedances at S-R 7.50 21 38 48

Interface (#2) (#6) (#2) (#6)

Impedances at C-S 23 52
Interface (#6) (#6)

t'3
a
a



second row of the same table. The same impedances are applied at

the outer surface of a reflector buffer zone in both the fine -and

coarse-mesh calculations. The difference between these two results

(0.37 vs. 0.40%) is increased over the difference between the

results of the first row. Obviously, this increase is due to the

different mesh-sizes used in the reflector buffer zone. This

observation and those of Section 5.6 support the argument that for

light water-reflected reactors numerical solutions are more

sensitive to the reflector -than to the core-mesh-size. It is

reasonable to extrapolate this argument by saying that the reflector

buffer zone is mesh-wise the most sensitive region in the reflector

because all flux-shape transitions and strong curvatures of the

thermal flux occur mostly within the reflector buffer zone.

However, the sensitivity of the reflector buffer zone to mesh-

size is overwhelmed by the great improvement in accuracy effected

by the freedom for flux-shape transitions provided by the explicit

treatment of the zone (compare vertically any two entries of rows

1 and 2, Table 5.11).

This sensitivity is obscured to a certain degree, depending on

geometry and reactor size, by error cancellations.
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Further examination of Table 5.11 shows that, as expected,

impedance boundary conditions applied at the outer surface of the

reflector buffer zone yield better accuracy when they are numerical-

ly-corrected for the transchannel leakage than when they are not

(compare row 1 vs. 3 and row 2 vs. 4 in the table). However, as

expected, corrected impedance boundary conditions applied at the

core-reflector interface do not yield better accuracy than uncor-

rected impedance conditionsapplied at the surface of the buffer

zone. This is because Condition (5.3) is not satisfied in this case.

Comparison between rows 2 and 5 in Table 5.11 shows that the

transchannel leakage in the reflector is significantly reduced in

the presence of the stainless steel shroud. The extent of the

reduction is such that not only no additional RBZ outside the

shroud is needed but also the shroud appears to accomodate flux-

shape transitions better than a RBZ does for an unshrouded core.

One final piece of information from Table 5.11 concerns the

effect of the shroud-mesh-size on the accuracy of the solution. Row

5 shows that the shrouded-core, coarse-mesh solution is more ac-

curate than the corresponding fine-mesh solution. This peculiar

feature is due to truncation-error cancellation.

The last three rous of Table 5.10 and Figures 5.14 and 5.15
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show that computations with both the shroud and the reflector

treated implicitly (by one-dimensional, slab-geometry boundary

conditions) are less accurate than computations with only the

reflector treated implicitly. For example, the error in the

eigenvalue is 0.60% and 0.32%, respectively, for the same, fine

mesh-pattern.

The above results, like those of the preceding section,

involve errors of a few tenths of a percent in the critical

eigenvalues and a few percent in the pointwise fluxes. With all

fluxes normalized to the same total power, the maximum pointwise

percent error is again observed near the core surface.

The reduction in computational cost, due to the implicit

treatment of a reflector, amounts to about 40% (for the same mesh-

pattern), as can be deduced from Table 5.12. The same table shows

that a comparable number of iterations is required for the

convergence of a full core-reflector solution and the correspond-

*

The error in the pointwise fast fluxes closely follows that in

the pointwise thermal fluxes, as can be seen from Figures 5.22

and 5.12 which show the two-group fluxes corresponding to the

same problem.
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ing approximate solution with the reflector treated implicitly

(for the same mesh-pattern and convergence criteria).
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5.8 TESTS ON A FULL-SCALE REACTOR MODEL.

In this section we present and discuss the results of numerical

tests performed on a full-scale reactor model, that of the ZION

reactor.

Two tests were performed on the ZION model: one with both the

shroud and the reflector treated implicitly and one with only the

reflector treated implicitly. In both tests, one-dimensional, slab-

geometry impedances without numerical -or Smith- corrections were

used. The critical eigenvalues found from these two approximate

calculations are listed on the last two rows of Table 5.13. For

comparison, the eigenvalue of the full core-reflector solution is

given on the first row of the same table. The corresponding exact

and approximate pointwise thermal fluxes are shown in Figure 5.16.

It is seen from the above table and figure that the implicit

treatment of the reflector alone yields a solution which is

practically free of error: the eigenvalue is predicted with an error

less than 0.01% and the approximate, pointwise thermal fluxes as

found from this calculation are practically indistinguishable from

the exact ones (compare the x's with the circles in Figure 5.16).
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When both the shroud and the reflector are treated implicitly,

the eigenvalue is predicted with an error 0.04% while the thermal

flux is predicted with an error of about 5% at the center of the

core and about 10% near the core-reflector interface (compare

squares and circles in Figure 5.16).

Finally, Table 5.14 indicates a reduction of about 40% in

computational cost effected by means of the implicit treatment of

the reflector. This result is in agreement with the correspond-

ing result for intermediate-sized reactor models. It is seen from

Table 5.14 that the number of iterations required for convergence

is increased by about 25% when the reflector of the ZION model

is treated implicitly (with the same convergence criteria). By

contrast, no trend for any increase in the number of iterations was

identified for intermediate-sized models.

206



T A B L E 5.13

TESTS ON A FULL - SCALE, LIGHT WATER - REFLECTED REACTOR MODEL IN

STEADY STATE

H Type of Solution/ Critical Eigenvalue Refs. to Figures

U)

0Type of BoundaryCoarse Fine Coarse Fine
0
: ) Condition Applied Mesh, # Mesh,# Mesh,# Mesh,#

Full Core-Shroud- 1.2749023 Circles in

Reflector Solution 
Fig. 5.16

(#7) (#7)

Impedances at S-R 1.2748137 x's in Fig.

Interface 5.16
o ~(#7) (#7)

Impedances at C-S 1.2743673 Squares in

Interface Fig. 5.16

(#7) (#7)

0
-j
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T A B L E 5.14

COST AND NUMBER OF ITERATIONS OF STEADY - STATE CALCULATIONS IN A

FULL - SCALE REACTOR MODEL

Type of Solution/ Computational Cost Number of Iterations

. T in Dollars Required for Convergence
4J. Type of Boundary

Condition Applied Coarse Fine Coarse Fine

Mesh,# Mesh,# Mesh,# Mesh,#

Full Core-Shroud- 73 100

Reflector Solution (#7) (#7)

Impedances at S-R 45 127

Interface (#7) (#7)

H
* Impedances at C-S 43 127

Interface (#7) (#7)

*
The same convergence criteria were used in all computations.

t'J
0
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5.9 SOME PRACTICAL CONSIDERATIONS CONCERNING THE ACCURACY OF

THE IMPEDANCE - METHOD.

The numerical results reported in the previous three sections

allowed us to estimate the effect of the light-water-reflector-

mesh-size on the accuracy of a computation. We saw that this ef-

fect depends on the dimensionality, shape and size of the reactor

model and can be significant. It is therefore an advantage of the

impedence-method that it eliminates this source of error.

However, the impedance-method is approximate, and the ac-

ceptability of its predictions should be decided on the basis of

some practical criterion. A reasonable criterion for acceptability

of any approximate reactor-analysis method is that the error

associated with the method not exceed the inherent uncertainty of

the reactor model itself - which, in our case, is the group-

[H-2], [ H-3], [H-4]diffusion theory model . In this respect, most

of the results presented in Sections 5.6 - 5.8 are satisfactory.

Further refinement is needed for only the most inaccurate of the

computations (i.e the space-and/or time-dependent D20 and graphite

cases and perhaps the two-zone reflector problem). To this end,

improved boundary conditions should be derived, Kirchhoff's

formula being the general, analytical tool for this purpose. A
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reasonable refinement in accuracy should be aimed at; an accuracy

much higher than the modeling accuracy is not worth the effort.
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VI. CONCLUS ION

6.1 CONCLUSIONS FROM THE PRESENT WORK.

The bulk of the present work and the conclusions thereof

concern light water-reflected reactors. Heavy water-and graphite-

reflected reactors have been considered in only a preliminary

way.

I. Conclusions on the Replacement of Light Water - Reflectors.

I.l. Static, Two - Dimensional Problems.

(a) Within a light water reflector, straight channels perpendicu-

lar to the reflector interface are effectively better "insulated"

neutronically from one another in the presence of a stainless

steel shroud separating the core from the reflector than in the

absence of it. As a consequence, the representation of only the

reflector by one-dimensional, slab-geometry boundary conditions is

more accurate when a shroud is present than when it is not.
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(f) The representation of both light water-reflector and stainless

steel shroud by one-dimensional, slab-geometry, composite (i.e.

two-zone)boundary conditions is less accurate than that of part

(e), above, but not dramatically so.

(g) The effect of a large core size on the accuracy of an implicit

reflector representation is, as expected, favorable. With the ZION

reactor, which is representative of large reactors of average

computational severity, the implicit representation of the light

water-reflector has given excellent results while less accurate -

but by no means bad- results were obtained when both the water-

reflector and the steel-shroud were treated implicitly.

(h) The accuracy of the implicit representation of the light water

reflectors of large, unshrouded cores, containing (like the severe,

IAEA two-dimensional benchmark problem (W-l]) some strongly absorb-

ing blocks adjacent to the reflector, remains to be seen If need-

ed -and it most probably will be- the Smith correction should prove

a useful means for higher accuracy.

*

To this end, testing is under way at the Oak Ridge National

Laboratory. Dr. D.R. Vondy's effort in carrying out this testing

is gratefully acknowledged.
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(b) With unshrouded cores, the explicit (i.e. as a distinct region)

representation of a reflector buffer zone (about 2cm thick) adjacent

to the core together with a representation of the rest of the

reflector by one-dimensional, slab-geometry boundary conditions

yields satisfactory accuracy. The reflector buffer zone allows for

non-separable spatial flux shape transitions.

(c) Iterative transverse buckling corrections incorporated in the

one-dimensional, slab-geometry boundary conditions improve the ac-

curacy reported in (b), over that achieved when the iteratively

corrected boundary conditions are applied at the outer surface of

the reflector buffer zone.

(d) The Smith correction provides an alternative to the reflector

buffer zone.

(e) With shrouded cores, the explicit representation of the shroud

(about 2cm thick) together with the representation of the reflector

by one-dimensional, slab-geometry boundary conditions yields satis-

factory accuracy. In fact, the explicit representation (with a

shrouded core) of the shroud only yields an identifiably better ac-

curacy than the explicit representation (with the same core but

unshrouded) of the reflector zone that replaces the shroud.

213



(j) A general feature of the application of the reflector-re-

placement method to large reactor models is the very accurate

prediction of the critical eigenvalue - a not surprising result.

1.2. Time - Dependent, One - Dimensional Problems.

(a) Only thin (leaky) reactor models have been considered. The

testing of the reflector -replacement method for these extreme

problems has resulted in excellent agreement. Specifically, the

"static approximation" has been found adequate for slow transients

and the "linear approximation" extremely good for fast transients.

(b) When the static approximation is used for the implicit re-

presentation of the slab-reflector during a fast transient, a

significant error results. This error, however, is greatly reduc-

ed when a reflector buffer zone adjacent to the core is explicitly

treated, the rest of the reflector being represented by the static

approximation relationships. Thus, the employment of the static

approximation together with a reflector buffer zone is an alterna-

tive to -but not as accurate as- the linear approximation employ-

ed in the entire reflector.
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1.3. Time - Dependent, Two-Dimensional Problems.

No problem in this class has been tested but we can extrapo-

late some of the above conclusions. For example, the static ap-

proximation should be adequate for the representation of two-

dimensional reflectors during slow transients. If a reflector

buffer zone is used for increased accuracy of the spatial approxi-

mation, then the accuracy of the temporal approximation will

improve, too and the static approximation will be adequate for

faster transients as well as slow ones.

II. A Few Conclusionon the Replacement of Heavy Water - or Gra-

phite Reflectors.

II.l. Static, Two - Dimensional Problems.

Spatial flux shape transitions in a heavy water -or graphite-

reflector develop over a wider buffer zone than in light water.

Outside the reflector buffer zone, the neutronic "insulation"

of the channels perpendicular to the buffer zone surface is

inferior to that observed with a light water reflector of compa-

rable configuration and size. As a consequence, the representation
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of the part of a heavy water -or graphite- reflector outside the

reflector buffer zone by one-dimensional, slab-geometry boundary

conditions is considerably less accurate than the corresponding

representation of a light water reflector of comparable configu-

ration and size. Thus the incorporation of a transverse buckling

correction to the one-dimensional, slab-geometry relations for

the representation of the outside-the-buffer-zone part of a

reflector is much more necessary for heavy water -or graphite-

reflectors than for light water-ones of comparable configuration

and size.

11.2 Time - Dependent, One-Dimensional Problems.

The static approximation is adequate for slow transients but

the linear approximation is inadequate for fast transients. In

fact the only (and not satisfactory) heavy water -or graphite-

reflector representation for fast transients has been obtained

by means of the static approximation applied outside a reflector

buffer zone.

In general, heavy water -and graphite- reflectors are more

difficult to represent by means of boundary conditions than light

water reflectors. This difference is due to the longer neutron
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diffusion length (weaker absorption of neutrons) in heavy water

and graphite.

6.2 SUGGESTIONS FOR FURTHER WORK.

A. On the Representation of Reflectors by Boundary Conditions.

The two-group, diffusion theory reflector representation

introduced in the present thesis can be extended to account for:

(i) more energy groups,

(ii) fast reactor analysis,

(iii) reflectors withproperties changing with time and

(iv) reflectors which are better described by a higher-order

angular approximation [T-1],[T-2]

In this thesis, the reflector representation procedure was

applied to reactors being analyzed by finite-difference equations.

The applicability of the procedure to higher-order nodal and

finite-element methods provides a logical sequel for investigation.

Moreover, with respect to application to finite-dif-

ference equations, there are further tests which will be necessary

to complete the investigation. These tests are listed below.
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I. Tests with Light Water Reflectors.

1.1. Static, Two -Dimensional Problems.

(a) Replacement of One - Zone Reflectors.

Apply both the 900 and 2700 Smith corrections to the "cross"

reactor model.

(b) Replacement of Two - Zone (Stainless Steel Shroud and Light

Water) Reflectors.

Approximate and test Kirchhoff's elbow formula together with

the one-zone equivalent for the light water surrounding the shroud.

1.2. Time - Dependent, Two - Dimensional Problems.

(a) Replacement of One - Zone Reflectors.

Approximate (in both its space -and time- dependences) and

test the time dependent wedge relation.

(b) Replacement of Two - Zone Reflectors.

Approximate (in both its space -and time- dependences) and
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test the time-dependent Kirchhoff's elbow formula together with

the one-zone equivalent for the light water surrounding the shroud.

II. Tests with Heavy Water or Graphite Reflectors.

II.l. Static, Two - Dimensional Problems.

(a) Replacement of One-Zone Reflectors.

Approximate and test Kirchhoff's formula.

(b) Replacement of Two-Zone Reflectors.

11.2. Time - Dependent, One - Dimensional Problems.

Derive (by keeping T2 term in the Taylor series expansion

(4.49)) and test "quadratic approximation" for fast transients.

11.3 Time - Dependent, Two - Dimensional Problems.

Approximate and test the time-dependent Kirchhoff's formulas.
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APPENDIX A.

EVALUATION OF THE IMPEDANCE - KERNEL G
L

The kernel is defined by:

k~' L

00 S -b k (e.,)

4 'F LC O' 7 ( $ ,r
(3.17)

In (3.17) we introduce a new variable, v:

(A.1)

whence:

(A. 2)LV

Since:

S . (e.V)
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and

Cesk (D.- = Cask -- 9 Cos (.- )

Eq. (3.17) becomes:

1.00 
(T.

(A. 3)

The integration indicated in (A.3) is to be carried out along

the positive imaginary axis on the complex V-plane.

Since the integrand in (A.3) is an even function of the pure

imaginary variable V, it follows that:

goK V (I). KR (L S-r) . s V

(A. 4)
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The integration indicated in (A.4) is to be carried out

along the whole imaginary axis on the complex V-plane.

I. Let us consider first the case:

(A.5)

For a reason that will become apparent in the sequel, we

employ the identity:

(A.6)
VT

where I

order +\ ,

to effect

is the modified Bessel function of the first kind and of

the splitting:

q- ' VH
(A. 7)

where:

+io

1.T

2A
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(A.9)

In (A.8) we can substitute:

v* L ) (A.lO)

because 1% is even with respect to V.

If, further, we introduce in (A.8) a new variable, i, defin-

ed by:

(A.1l)

Eq. (A.8) becomes:

+ r

4r
-i 00 ~48F

(A.12)
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By comparing (A.12) to (A.9) we find:

wt '~i '~1S
(A.13)

We substitute (A.13) into (A.7) and obtain:

(A.14)

or, if we take into account the definition of Gplus, we get:

CO

-Coo

(A.15)

Next we evaluate G by replacing the integration path

indicated in (A.15) by a suitably chosen closed contour and then

applying Cauchy's theorem.

Consider, on the right half of the complex V-plane, a semi-

circumference r with its center at the origin and of radius R.
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The semi-circumference r intersects the imaginary v-axis at

two points, A and B, with ordinates -R and +R. The segment AB

of the imaginary V-axis is, therefore, a diameter of r.

Let us form a closed contour, C, consisting of:

- the semi-circumference r and of

- the diameter AB, with a small indentation of radius p at

the origin, so that the so-formed closed contour C does not

enclose the origin.

We define the contour integral:

C 2 )

(A.16)

where the direction of the integration along the contour C is

clockwise.

The difference:

becomes identical to the integral along the indentation, if:
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Sp - 0,

. R - 0 and

* the value of the (common) integrand of Gc and G on the

semi-circumference r tends to zero as R - 0.

Obviously, if r passes through a pole of the integrand of Gc

the value of the integrand on r blows up.

The integrand of Gc has an infinite number of poles, located

on the real V-axis. The exact locations of the poles are defined

by the equation:

+...1 -, =

or

VIT 2 0) (A.17)

90

Consider a sequence of concentric semi-circumferences on

the right half of the V-plane, with the origin as their common

center and of radii:

'7 L+- (A.18)

~0 0
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None of these semi-circumferences passes through a pole.

Furthermore, as R + 00, the value of the integrand of G

nn

on the semi-circumferences tends to zero. (On the contrary, the

value of the integrand of G 0  (Eq. A.4),

on the semi-circumference does not tend to zero. Thus, the

splitting (A.6)-(A.7) is a twist of convenience in the course of

the evaluation of the impedance kernel G ).

Hence,

wee :+

where:
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aTr4 Z 0±l Ja x 1I

(A.19)

and each of the closed contours C consists of the semi-circumfer-
n

ence of radius Rn and the corresponding diameter on the imaginary

V-axis, indented at the originso that the latter is not enclosed

by Cn. The direction of the integration along each one of the

n
Cn's is clockwise.

According to Cauchy's theorem [P-2] , the value of a counter-

clockwise contour integral is equal to +27ri times the sum of the

residues at those poles of the integrand, which are enclosed by

the contour. The value of a clockwise contour integral is equal

to -27ri times the sum of the same residues.

Thus,
00

n~Q 2n ZIRes(1 IT) (A.20)

11 .-AP 00L
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(The pole corresponding to n = 0 is excluded from the sum in

(A.20) , because this pole is not enclosed by the contour C) . -

The residues at the poles of the integrand of G on the

right half of the complex V-plane are:

Res (2' mo

z s("
oo

or

Tt2L.
0 In*r nI

(A.21)

We substitute (A.21) into (A.20) and get:

00

iT

go go
60

(')

(A.22)
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But:

By virtue of a theorem given in Ref.

[bdn
A -Ack = -TT (- OS (0)

(A.23)

[H-4], we evaluate:

(A.24)

From Eq. (A.21) we get:

es (0 ) i-ri

and thus

1I n4 Ira

A; G -n c I .

(r
z

(A.25)

(A. 26)
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Substitution of (A.26) and (A.22) into (A.23) yields:

- 0

,nr2 4.

0o

I 0 go
Go Go

TV

zoo

Special Cases:

a) Tr

From (A.27) we have:

iT

c.~)00
= r 7.10()R

(A. 28)

On the right hand side of (A.28), we add and subtract the

quantity:
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and rearrange to get:

K, (M)z L~,(;. ~L

TI~2 K0O (E) +2ZE
on z

(A.29)

Given the inequality (A.5), there are simple, closed expres-

sions for both bracketed quantities in (A.29):

~B a'k qA -Ej)
(A. 30)

Second. B- dc e QA

(A. 31)
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We substitute (A.30) and (A.31) into (A.29) and get:

11-..f - C O 1 - n I +(A.32)

Expression (A.32) can also be found directly from mathematical

tables (see, for example, Ref.[G-1]).

b) 9
4+

From (A.27) we have:

21T. I'MV).I C(L W- K(V (M4,n.

(A.33)

If we subtract (A.28) from (A.33), we get:

TL

+ ZTT.Z
+ ~ 2

(Eq. Cont.)
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(Eq. Cont)

(v\I i n- 1

(A.34)

or:

CTQr )1T f

00

+

C 1 ) - -n

(A. 35)

or, given (A.5)

GT Tr (A.36)

We eliminate G between

7

(A. 36) and (A. 32) and get:

lv- f-I +-
- IeiK

0z4
(A.37)
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Expression (A.37) can also be found directly from mathematical

tables.

II. Let us now consider the case:

L (A.38)

Given (A. 38), all the above development is valid, provided the

roles of ( and S are interchanged.
L
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APPENDICES B AND C:

Library copies only



APPENDIX B.

IMPLEMENTATION OF TWO - GROUP, IMPEDANCE BOUNDARY CONDITIONS

WITH THE COMPUTER - CODE "CITATION".

Notation.

Superscript g:

Subscript i,j:

Subscript s:

refers to energy-group g (g = 1 or 2).

refers to the centerpoint of the two-dimensional

mesh-element (i,j).

refers to the midpoint of one side of a mesh-

element.

B.l FAST-NEUTRON FLOW INTO A REGION REPRESENTED BY IMPEDANCES.

Consider a mesh-element adjacent to a boundary, along which

an impedance-condition is to be applied. See Figures B.l and B.2.
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REFLeCTOR

Figure B.1

Mesh - Element Adjacent to a x-Direction Boundary.

s

x

REF LECTOPA

Figure B.2

Mesh - Element Adjacent to a y-Direction Boundary.
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The impedance boundary-condition for fast neutrons is:

Ti
..... ..

I
=Pi (B. l)

a) Let us concentrate on Figure B..l first.

We have:

'h., ~J
S

,3 'K3
(B.2)

We substitute J1
s

from (B.2) into (B.l) and get:

S S
14S.hk /Z

(B. 3)

We rearrange (B.3) in the form:

+ >J
Pit D

L
It'' (B.4)

The leakage of fast neutrons through the face MN is:
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_ MN
x

(B.5)

(In the development of (B.5), use was made of Eqs. (B.l) and

(B.4).

b) We now consider Figure B.2.

We find:

4,1 (B.6)

The proof of (B.6) is similar to the proof of (B.5).

B.2 THERMAL-NEUTRON FLOW FROM A REGION REPRESENTED BY IMPEDANCES.

The impedance boundary condition for thermal neutrons may

be written in the form:
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z

p2 + N2Z

S I S

a) Refering to Figure B.1, we have:

j z
>J

s

We substitute J from (B.8)
S

S /, z

into (B.7) . The result is:

V%(B.9)

(B. 9)

We solve (B.9) for 02:
s
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(B.7)

I.
ck .1-,

(B.8)
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S

±
1%P

1%I

k/2
z

D~jj
(B.10)

The leakage of thermal neutrons through the face MN is given

by:

21zz
LMN

4.
k: 2. +

k x 2

1+ *k)2,p
+

(In the development of (B.11), use was made of Eqs. (B.7) and (B.10)).

(B.ll) can be rearranged as follows:

2
LMW I+S .x

109 
+

246

I
S.

4-z ~~.1

0 z

(B.ll)

x

. 1 . ( I

21 Sdp " ,k)j
+hy/lz



hy 2........ k ,1

r'z2j

By substituting 0 in terms of 0 .from Eq.
s :L,J

(B.12) we obtain:

MAN

(B.4) into

x 2 .

pic - z,

4.
i b+ /1Y2

it
L~

1.

4 h~H
~2~1

'3

X
A-

+ hy /2

t>J

z+ (B.12)

IN, 4.
j>

-t- t ,
Jj

(B.13)
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b) Refering to Figure B.2, we have:

{ + kX (B.14)

B.3 HOW TO INPUT IMPEDANCE BOUNDARY CONDITIONS TO "CITATION".

a) The balance of fast neutrons in the element of Figure B.l

is expressed by the equation:

Leakage through the three interior faces (i.e. left, bottom

and right) + Leakage through face MN +

=0 (B.15)

The leakage through face MN is quantified by Eq. (B.5).

We substitute (B.5) into (B.15) and get:

Leakage through the three interior faces + X ,

kB),.
ad (B. 16)
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If an extrapolated (instead of an impedance) boundary

condition were specified for the face MN, the corresponding

balance equation would be (B.16) with the following modification:

Sii would be replaced by the fast-group extrapolation parameter

1 [F-l]( -D.. / extrapolation length) .

Therefore, and in view of the fact that CITATION accepts

group-dependent extrapolation lengths as inputs, the quantity Sii

can be input as if it were an extrapolation parameter for the

fast group.

The thermal-neutron balance in the element of Figure B.l

is expressed by the equation:

Leakage through the three interior faces + Leakage through MN +

(B.17)

The leakage through MN is given by (3.13). We substitute

(B.13) into (B.17), regroup and get:
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Leakage through interior faces +

o +

* (B.18)

where:

(B.19)

I. I Piz__ 1. +1y

Thus, the quantity 22 can be input as if it were an

2
extrapolation parameter for the thermal group ( =D. /

extrapolation length), while the quantity 2 1 can be incorporated

to a modified scattering cross section for the mesh element under

consideration. This modified cross section value is given by

Eq. (B. 19).
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b) Consider now the mesh-element of Figure B.3.

The impedance conditions for the face PQ can be input to

the code according to rules obtained from the material of

Section B.3 -this section- , part a) -above- , if the roles of

h and h are interchanged.

x y

c) Consider next the element of Figure B. 3.

A

X

C

Figure B. 3

Corner Element

251

REFLECT OR

CogE



The thermal neutron balance in the element of Figure B.3

is expressed by the equation:

Leakage through left and bottom faces +

+ Leakage through AB +

+ Leakage through BC +

+ 2 - -
Oz (B.20)

3 *k *k

The leakage through AB is given by Eq. (B.13). The leakage

through BC is given by Eq. (B.13) with the roles of h and h

interchanged. We substitute these leakage expressions into

(B. 20), regroup and get:

Leakage through left and bottom faces +

hFI

i 4- k>,Iz

'D Z

2.z D

X.cV.. (B.21)
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where:

2 1---

_~ N- 1 ~ .A16

1. f~2iIsc

(B.22)

+ kyI i 4kI
I~t I z

i 1.

X M lBc 22C + 1. + 2

Pit BC Bj 2 C

We conclude that, for the element of Figure B.3,

iiIAB, 22Ii ii ,BCand. 22 IBC can be input to CITATION

as if they were extrapolation parameters while 21i ABand 21 IBC
**

can be incorporated to
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A P P E N D I X C.

MODIFICATIONS IN THE CODE "GAKIN II" FOR ALLOWING INPUT OF IM-

PEDANCE BOUNDARY CONTIONS.

The modifications specified in this Appendix are for two

energy-groups only. In the modified code, the reflected-boundary-

condition option has been replaced by the impedance-boundary-

condition option. Thus, BCL=l or BCR=l means impedance-boundary-

condition for the left or right boundary, respectively.

Notation of Reflector Parameters.

SG: Macroscopic Cross Section for Removal of Neutrons from Group

G.

S12: Macroscopic Cross Section for Scattering of Neutrons from

Group 1 to Group 2.

DG: Diffusion Coefficient for Group G.

RETH: Reflector Thickness.

BGG': G-th Row- and G'-th Column-Element of Inverse-Impedance

Matrix.
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C.1 IMPLEMENTATION OF THE LINEAR - APPROXIMATION BOUNDARY

CONDITIONS.

FORTRAN Statements for the Computation of the Linear - Ap-

proximation Inverse - Impedances, (W).

Notation

OMEGL:

OMEGR:

OMEGA:

BGG'L:

BGG' R:

BGGA:

Instantaneous frequency at Left Interface.

"I " Right "

Denotes Either OMEGL or OMEGR.

Linear-Approximation Inverse-Impedance for the Left

Reflector.

Linear-Approximation Inverse-Impedance for the Right

Reflector.

Denotes Either BGGL or BGGR.

The following set of six FORTRAN Statements contains the

computation of BGGA.
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SG=SOG+ (OMEGA*VINV (G) )

IF(OMEGA.LT.O.0)SG=SOG

BG=DSQRT (SG/DG)

YG=BG*RETH

HTG= (DEXP (YG) -DEXP (-YG) ) /(DEXP (YG) +DEXP (-YG))

BGGA=BG*DG/HTG

For convenience, in the sequel we shall refer to the above

set as [CALCULATE BGGA].

Next, the following set of twelve FORTRAN Statements contains

the instructions for the computation of B21A.

Sl=S01+ (OMEGA*VINV(l))

S2=SO2+(OMEGA*VINV(2))

IF (OMEGA. LT. 0.0) S 1=S01

IF(OMEGA.LT.O.0)S2=SO2

Bl=DSQRT (Sl/Dl)

B2=DSQRT (S2/D2)

SI=S12/(S2- (D2* (Bl**2)))

Yl=Bl*RETH

Y2=B2*RETH

HT l= (DEXP (Y l) -DEXP (-Y l) /(DEXP (Y l) +DEXP (-Y l))

HT2= (DEXP (Y2) -DEXP (-Y2) )/(DEXP (Y2)+DEXP (-Y2))
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B21A=SI*D2* ((Bl/HTl) - (B2/HT2))

We shall refer to this latter set as [CALCULATE B21A].

Modifications in Subroutine CALC.

115 CONTINUE

CALL RHS(G,PSI,...,IPRWZ)

120 IF(SORCE)130, 140,130

130 CALL SOURCE( ... )

140 CALL LHS(G,.. .,PB,WZ)

CALL MATINV(...)

END

The modified or new FORTRAN statements are underlined.
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Modifications in Subroutine ITER.

DD(l)=l.ODO

DU(1)=0. 0

GO TO 130

120 DD(1)=DD(1)+SIGX(1,G,G)

IF_(G.EQ. 1)DD(1)=DD(1)+TWBll

IF (G.EQ. 2) DD(1)=DD(1)+TWB22

130 Z=SIGX(1,G,G)

PL=2

IF(BCR.EQ.1) GO TO 180

DD(PT)=l.ODO

DL(PT)=0.0

GO TO 190

180 IF(G.EQ.1)DD(PT)=DD(PT)+TWBll

IF (G. EQ. 2) DD (PT)=DD (PT) +TWB22

190 CONTINUE

PL=1

IF(BCL.EQ.0)PL=2
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END

The quantities TWBll and TWB22 which appear in the above

modifications are defined as twice Bll and twice B22, respective-

ly; the latter quantities are computed by means of the FORTRAN

set [CALCULATE BGGA] with OMEGA set equal to zero.

Modifications in Subroutine LHS

SUBROUTINE LHS(G, ...,IPRPB,WZ)

DIMENSION WZ(PT)

OMEGL=WZ(l)

(CALCULATE BllL, B22L]

ONEGR=WZ(PT)

[CALCULATE BllR,B22R]

PL=2

IF(G.EQ.1)TWBGGL=2.OD.O*BllL

IF(G.EQ.1)TWBGGR=2.ODO*BllR

IF(G.EQ.2)TWBGGL=2.ODO*B22L

IF(G.EQ.2)TWBGGR=2.ODO*B22R
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DO 1 Rl,1 REG

GO TO 5

65 DD (l)=VINV (G)+ (CM (1 , G)+CP (l, G) -

lTI1(1) +TWAGGL) *FF2 (l)

DU(l)=-CP (1,G) *FF2 (2)

GO TO 605

33 DD(PT)=VINV(G)+(CP(PT,G)+CM(PT,G)-

lTI l (REG) +TWAGGR) *FF2 (PT)

DL (PT) =-CM (PT, G) *FF2 (PT-i)

605 CONTINUE

END

Modifications in Subroutine PROD
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GPU=G-1

260 X=X+SIGX(R,G,GP)*PSI(P,GP)

IF (P. EQ. 1. AND. GRP. EQ. 2) X=X- (TWB2l*PST (1, 1))

IF(P.EQ.PT.AND.GRP.EQ.2)X=X- (TWB21*PSI(PT, 1))

270 PROD=X

RETURN

END

The quantity TWB21 which appears in the above FORTRAN

Statements is defined as twice B21; the latter quantity is comput-

ed by means of the FORTRAN set [CALCULATE B2lA] with OMEGA set

to zero.

Modifications in Subroutine RHS

SUBROUTINE RHS(G, PSI,... ,IPR, WZ)

DIMENSION WZ (PT)
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IF(G.EQ.1)GO TO 1000

OMEGL=WZ(l)

ICALCULATE B21L]

OMEGR=WZ(PT)

[CALCULATE B21R]

1000 CONTINUE

X3=NX(G)

PL=l

16 DO 17 GP=GLGU

GD=GP-GRP

T3=T3+SD(G,GD) *PSI (P,GP)

17 CONTINUE

18 CONTINUE

IF(P.E.Q.l.AND.G.EQ.2)Tl=Tl-(2.0*B21L*PSI(1,1))

IF(P.EQ.PT.AND.G.EQ.2)Tl=Tl-(2.0*B21R*PSI(PT,1))

Tl=Tl*FF2(P)

T2=T2*FF1(P)

END

262



C.2 IMPLEMENTATION OF THE STATIC - APPROXIMATION BOUNDARY

CONDITIONS.

Modifications in the Subroutines CALC, ITER and PROD: The same

as in Section C.1.

Modifications in the Subroutines LHS and RHS: Set OMEGL=OMEGR=0.0;

otherwise the modifications are the same as in Section C.l.
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