UTILITY SYSTEM INTEGRATION AND OPTIMIZATION MODELS FOR NUCLEAR POWER MANAGEMENT

Paul Ferris Deaton

Work Sponsored by GAANERUOGE, MASS. 02139
NUGWEAR G EERIVG LIBRARY Work Sponsored by CAn
Commonwealth Edison Company Chicago, Illinois

Department of Nuclear Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts

Vol. 1 \& 2

UTILITY SYSTEM INTEGRATION AND OPTIMIZATION MODELS FOR NUCLEAR POWER MANAGEMENT

> by

Paul Ferris Deaton

Supervisor
Edward A. Mason

DEPARTMENT OF NUCLEAR ENGINEERING MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS

M.I.T. DSR PROJECT NO. 72107

Work Sponsored by
Commonwealth Edison Company Chicago, Illinois

Issued: June 1973

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.
Some pages in the original document contain pictures, graphics, or text that is illegible.

UTILITY SYSTEM INTEGRATION AND OPTIMIZATION
MODELS FOR NUCLEAR POWER MANAGEMENT
by
Paul F. Deaton

Submitted to the Department of Nuclear Engineering in May 1973 in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

A nuclear power management model suitable for nuclear utility systems optimization has been developed for use in multi-reactor fuel management planning over periods of up to ten years. The overall utility planning model consists of four sub-models: (1) Refueling and Maintenance Model (RAMM), (2) System Integration Model (SIM), (3) System Optimization Model (SOM), and (4) CORE Simulation and Optimization Models (CORSOM's). The SIM and SOM sub-models were developed in this study and are discussed in detail; full-scale computerized versions of each (SYSINT and SYSOPT, respectively) are evaluated as part of the methods development research.

The RAMM generates feasible, mutually exclusive nuclear refueling-fossil maintenance schedules. These are evaluated in detail by the rest of the model. Using the Booth-Baleriaux probabilistic utility system model, the SIM integrates the characteristics of the utility's plants into a representation which meets the necessary operating constraints. Scheduling of system nuclear production and detailed fossil production is done for each time period (few weeks) making up the multi-year planning horizon.

Utilizing a network programming model, the SOM optimizes the detailed production schedules of the nuclear units so as to produce the required system nuclear energy at minimum system cost. CORSOM's are utilized to optimize reload parameters (batch size and enrichment) and to generate the individual reactor fuel costs and nuclear incremental costs. These incremental costs are then used by the SOM's iterative gradient optimization technique known as the method of convex combinations.

The SYSINT model is shown to be remarkably fast, performing the Booth-Baleriaux simulation for a single time period on a system with over 45 generating units in less than 2.5 seconds on an IBM- 370 model 155 computer. SYSOPT converged to optimum solutions in roughly ten iterations. Immediate reduction of iterations by roughly half is estimated by merely increasing piecewise-linearization of the network objective function. Overall model computational requirements are limited by available CORSOM's, which require 99% of the computational effort (over 3 minutes per reactor per SOM iteration).

Nuclear incremental costs ($\sim 0.8-1.6 \$ / M W H$) are shown to be less than fossil incremental costs (> $2.0 \$ / \mathrm{MWH}$) for the foreseeable future. Thus, nuclear power should always be operated so as to supply customer demands with a minimum use of the more expensive fossil energy. For the same reason, the lengthening of nuclear irradiation cycles (in terms of both energy and time) more than pays for itself by reducing the total cost of fossil replacement energy. Idealized nuclear production schedules yield constant nuclear incremental costs regardless of reactor unit and time. One of the key input parameters is the fossil thermal energy cost.

Thesis Supervisor: Edward A. Mason
Title: Professor of Nuclear Engineering

To the 1970-1971 President of the Massachusetts Institute of Technology's Technology Dames my wife

Penelope Craig Deaton

ACKNOWLEDGMENTS

In over five years at MIT, I find myself, at this final moment, indebted to almost everyone, particularly, the Student Loan Office. Consequently, were it not for the generous support of the Atomic Energy Commission (3 years) and the John \& Fannie Hertz Foundation (2-1/2 years), I would have been unable to accumulate the vast riches Penny and I now own -- Kimberly Anne and Robyn Michele. And to married students with children, the MIT Westgate Apartments are a real godsend.

With good fortune, I have come to know, during my tenure at MIT, the entire staff of the Department of Nuclear Engineering. To Professor Manson Benedict, I, like many students before me, owe the largest debt of all -- the inspiration to enter my chosen specialty. His sincerity and enthusiasm, both for the subject matter and the students themselves, bespeaks an educator in the truest sense of the word. For the sake of the students to follow, I hope his retirement is in name only. To Professor Edward A. Mason, whose painsaking editorial efforts have attempted to make this document intelligible to others besides myself, I say a profound "Thank You." For providing a receptive ear to many an idea, complaint or just plain trivia, I wish to thank fellow graduate student Joseph P. Kearney.

Many thanks also go to the Commonwealth Edison Company of Chicago for initiating the MIT research project on which this work is based. In particular, I wish to thank W. K. Kiefer and E. F. Koncel for raising many incisive questions and for providing much valuable data and many excellent ideas. Through my association with Commonwealth Edison, it was my pleasure to participate in the stimulating sessions of the Joint Systems Analysis Task Force. SYSINT, in fact, was inspired by the original TVA-ORNL model SYSSIMUL, developed by R. R. Booth.

The Out Of Kilter Network Program was graciously provided by the MIT Flight Transportation Laboratory. All computations ($\$ 5000$ worth, all provided by Commonwealth Edison) were performed at the MIT Information Processing Center.

To the nine typists who gave of their time to decipher various drafts of this document: "Your accuracy was amazing!" To my new employer, Westinghouse Nuclear Energy Systems, for permitting me the run-of-the-house to complete this document (from drawing the figures to printing the document), I am most deeply indebted.

As for my long-neglected family, to my wife, words cannot express the gratitude for the many large and small things she has done to be both a mother and a father to our children as deadline after deadline slipped by unmet. Finally, to my children, who innumerable times saw Dad leave for the office before they were in bed, I answer, at long last, "Yes" to Kimmy's bedtime question, "Daddy, is your t'esis done?"

TABLE OF CONTENTS

Page
ABSTRACT 2
DEDICATION 4
ACKNOWLEDGMENTS 5
LIST OF FIGURES 13
LIST OF TABLES 20
Chapter 1. AN OVERVIEW 26
1.1 Historical Perspective of Nuclear Power Management 26
1.2 Planning Tools Needed 27
1.3 Introduction to Multi-year Planning 30
1.4 Complexities of Nuclear Power 35
1.5 A Nuclear Power Management Multi-year Model 40
1.6 The System Integration Model (SIM) 46
1.6.1 Booth-Baleriaux Probabilistic Utility Model 49
1.6.2 SYSINT, a Computerized SIM 60
1.7 The System Optimization Model (SOM) 62
1.7.1 Nuclear Supply Network Optimization 62
1.7.2 SYSOPT, a Computerized SOM 73
1.8 Model Evaluation 74
1.8.1 Convergence 76
1.8.2 Nuclear Incremental Costs at the Optimum 80
1.8.3 Computational Requirements 89
1.8.4 Evaluation of Competing Strategies 89
1.9 Summary 94
Page
Chapter 2. AN INTRODUCTION TO NUCLEAR POWER MANAGEMENT 96
2.1 Characteristics of a Utility 96
2.1.1 The Demand: Customer Loads 96
2.1.2 The Supply: Generating Equipment 101
2.1.2.1 Types 101
2.1.2.2 Data Required on Each Unit 102
2.1.2.3 Five Unit Reference Utility System 112
2.1.3 The Objective: Supply All Demands at Minimum Cost 116
2.2 Production Scheduling 119
2.2.1 Fossil, Peaking and Nuclear Units 119
2.2.2 Hydro Units 131
2.2.3 Pumped-Hydro Units 133
2.3 Complexities of Nuclear Power 135
2.4 Comparison of Fossil and Nuclear Utility System Optimization 138
2.4.1 Incremental Costs on All Fossil System 139
2.4.2 Incremental Costs on All Nuclear System 141
2.4.3 Optimization of a Mixed System 150
2.5 A Nuclear Power Management Multi-Year Model 152
2.5.1 Refueling and Maintenance Model (RAMM) 157
2.5.2 System Integration Model (SIM) 157
2.5.3 System Optimization Model (SOM) 157
2.5.4 Core Simulation and Optimization Model (CORSOM) 158
Page
Chapter 3. THE SYSTEM INTEGRATION MODEL 159
3.1 Overview of the SIM 159
3.2 Determining Startup and Loading Order 162
3.3 Scheduling and Costing Production 167
3.3.1 Basics of Booth-Baleriaux Proba- bilistic Utility Simulation Model 167
3.3.1.1 Background 167
3.3.1.2 Heuristic Derivation of Booth-Baleriaux Convolution Using Two Unit, Single Increment Example 171
3.3.1.3 Single Increment Example for Reference Utility System 179
3.3.1.4 Single Increment Algorithm 186
3.3.1.5 Important Numerical Prop- erties 187
3.3.2 Modification for Multiple Increments 193
3.3.2.1 Algorithm Derived 193
3.3.2.2 Multiple Increment Alogrithm 200
3.3.3 Constancy of Nuclear Potential 202
3.4 Estimating Startup-shutdown Cost 208
3.5 Determining Cost of Emergency Purchases 211
3.6 SYSINT, A Computerized SYStem INTegration Model 211
3.7 Summary of the SIM 214
Chapter 4. THE SYSTEM OPTIMIZATION MODEL 215
4.1 Overview of the SOM 215
4.2 Elements of Optimization Problem in SOM 216
Page
4.2.1 Objective Function 217
4.2.2 System Production Constraint 221
4.2.3 Reactor Production Constraint 222
4.2.3.1 Typical Period 222
4.2.3.2 Horizon End Condition 228
4.2.4 Shape Constraint 230
4.2.4.1 Purpose 232
4.2.4.2 Mathematical Basis 242
4.2.4.3 Practical Implementation 245
4.3 Mathematical Statement of Optimization
Problem 253
4.4 Method of Optimization 254
4.4.1 Concept of Nuclear Energy Supply Network 257
4.4.2 Innex Iteration on Nuclear Cost 260
4.4.3 Outer Iteration on Shape Misfit Potential 265
4.5 Completion of Supervisory Task 271
4.6 SYSOPT, A Computerized SYStem OPTimization Model 271
4.7 Summary 273
Chapter 5. EVALUATION OF THE SYSTEM INTEGRATION AND OPTIMIZATION MODELS 275
5.1 Purpose of Evaluation: Critical Questions 275
5.2 Completion of Nuclear Power Management Multi- year Model 276
5.3 Hypothetical Utility System Studied 277
5.3.1 Customer Loads 278
5.3.2 Generating Equipment 283
Page
5.3.3 Maintenance and Refueling Strategies 285
5.4 Remaining Parameters of Interest 298
5.5 Numerical Results 300
5.6 Numerical Evaluation of an Optimized Strategy 300
5.6.1 Convergence of Inner Cost Iterations 303
5.6.2 Convergence of Outer Shape Iterations 312
5.6.3 Comparison of Theory and Result: Incremental Costs 325
5.6.4 Computational Requirements 334
5.7 Evaluation of Competing Strategies 334
5.7.1 Comparing Strategies in a Single Case 336
5.7.2 Sensitivity to Horizon Length 340
5.7.3 Sensivitity to Present Value Rate 345
5.7.4 Sensitivity to Nuclear Unit Costs 351
5.7.5 Sensitivity to Non-Nuclear Costs 357
5.8 Critical Questions Revisited 358
5.8.1 To What Problems is the Model Applicable? 360
5.8.2 What Assumptions are Required? 361
5.8.3 Does the Method Converge to an Optimum? 364
5.8.4 Is it the Global Optimum? 365
5.8.5 How Accurate are the Results? 365
5.8.6 What are the Computational Require- ments? 366
Page
Chapter 6. CONCLUSIONS AND RECOMMENDATIONS 367
6.1 Summary 367
6.2 Conclusions 367
6.3 Recommendations 371
APPENDIX A. BOOTH-BALERIAUX EQUATIONS FOR GENERAL FORCED OUTAGE MODELS 374
A.l Forced-Outage Models 374
A. 2 Convolution 381
A. 3 Deconvolution 385
A. 4 Loading 386
A. 5 Summary 388
APPENDIX B. AREA METHOD OF FORMULATING SHAPE CONSTRAINT 390
APPENDIX C. REFERENCE UTILITY SYSTEM EXAMPLES 393
APPENDIX D. NUMERICAL RESULTS FOR CASES I THROUGH IV ON HYPOTHETICAL UTILITY SYSTEM OF CHAPTER 5 416
APPENDIX E. SYSINT 448
E. 1 SYSINT Discussion 448
E.l.l Introduction 448
E.l. 2 Code Structure and Mode of Opera- tion 448
E.1.3 SYSINT-to-SYSOPT Output Data Transfer 456
E.l.4 Altering Dataset Reference Numbers 460
E. 2 SYSINT Input Specifications 462
E. 3 SYSINT Sample Problems 472
E. 4 SYSINT Source Listing 475
Page
APPENDIX F. SYSOPT 476
F.l SYSOPT Discussion 476
F.l.l Introduction 476
F.l. 2 Code Structure and Mode of Opera- tion 476
F.l.3 Altering Dataset Reference Numbers 490
F. 2 SYSOPT Input Specifications 493
F. 3 SYSOPT Sample Problem 499
F. 4 SYSOPT Source Listing 501
APPENDIX G. OUT OF KILTER NETWORK PROGRAM 502
G.l Out of Kilter Discussion 502
G. 2 Out of Kilter Input Specifications 504
G. 3 Out of Kilter Sample Problem 532
G. 4 Out of Kilter Source Listing 532
APPENDIX H. QKCORE 533
H.l QKCORE Discussion 533
H.l.l Introduction 533
H.l. 2 Computational Model 535
H.l.3 Code Structure and Mode of Operation. 546
H. 2 QKCORE Input Specifications 554
H. 3 OKCORE Sample Problem 565
H. 4 QKCORE Source Listing 568
APPENDIX I. NOMENCLATURE AND ACRONYMS 569
APPENDIX J. REFERENCES 578
BIOGRAPHY 583

LIST OF FIGURES

Figure Page
1.1 Decision Variables Associated with the Hierarchy of Nuclear Utility System Planning Models 28
1.2 Nuclear Capacity Greater than Minimum Load 38
1.3 Nuclear Power Management Multi-Year Model 41
1.4 Nuclear Power Management Multi-Year Model 47
1.5 Convolution of Unit r 52
1.6 Determining Energy Demand on Increment i of Unit r 55
1.7 Example Startup-shutdown Frequency versus Availability-based Capacity Factor 59
1.8 Sample Network Configuration 63
1.9 Hypothetical Set of Incremental Cost Curves 68
1.10 Sample Reactor Production Schedule 69
1.ll Example of Infeasible Equivalent Load Shape 71
1.12 Convergence of Strategy 2 for Six Year Horizon 78
1.13 Incremental Costs and Cycle Energies at Optimum for Strategy 2 82
1.14 Incremental Costs and Cycle Energies at Optimum for Strategy 1 84
1.15 Lower Limit on Cycle Energy Preventing Incremental Cost Parity 86
2.1 Typical Weekly Load Pattern for an Electric Utility 97
2.2 Load-Duration Curve (Standard Format) for the Typical Week 99
2.3 Load-Duration Curve (Altered Format) for the Typical Week 100
Figure Page
2.4 Heat Input Rate vs. Net Power Output Level for Typical Fossil Unit 105
2.5 Heat Rates vs. Net Power Output Level for Typical Fossil Unit 106
2.6 Typical Startup-Shutdown Cost Data Sheet 108
2.7 Edison Electric Institute Definitions Related to Equipment Availability 110
2.8 Non-Performance Probability as a Function of Forced-Outage Rate and Importance 113
2.9 Normalized Customer Load-Duration Curve for 730 Hour Month on Reference Utility System 115
2.10 Incremental Costs for Reference Utility System 120
2.11 Loading Order and System Incremental Cost for Example 1 122
2.12 Production Scheduling for Example 1 123
2.13 Production Scheduling for Example 2 125
2.14 Production Scheduling for Example 3 128
2.15 Hydro Unit Production Scheduling 132
2.16 Pumped-Hydro Unit Production Scheduling 134
2.17 Nuclear Capacity Greater than Minimum Load 137
2.18 Incremental Heat Rates for Typical Light Water Reactor 142
2.19 Consequences of Period Incremental Cost Equality 147
2.20 Consequences of Conclusion II Incremental Costs vs. Cycle Energy 149
2.21 Nuclear Power Management Multi-Year Model 153
2.22 Nuclear Power Management Multi-Year Model 156
Figure Page
3.1 Optimum Startup Order 164
3.2 Example of Variation of Spinning Reserve as Units are Startedup and Loaded 168
3.3 Complete Two Unit Booth-Baleriaux Example 172
3.4 Loading Order and Energy Cost for Example 4. 180
3.5 Calculational Steps for Example 4 184
3.6 Computer Representation of Equivalent Load Curve 189
3.7 Deconvolve-Load-Convolve Scheme for Multipie Increments 195
3.8 Loading Order Sub-Groups 203
3.9 Example of Startup-Shutdown Frequency vs. Availability-based Capacity Factor 210
$4.1 \quad F^{\text {min }}$ and $F^{\text {max }}$ Load-Duration Curves
Reauired by SOM 224
4.2 Calculation of $E_{r c p}^{\max }$ 225
4.3 Calculation of $\mathrm{E}_{\mathrm{rcp}}^{\mathrm{min}}$ 227
4.4 Horizon End Condition 229
4.5 Six Identical Reactors vs. Reference Utility Customer Demand 233
4.6 Infeasible Six Reactor Production Schedule 235
4.7 Decomposition and Reordering of System Shape 239
4.8 Approximation of F_{e} 248
4.9 Comparison of System Shape and Postulated Average Reactor Shape 249
4.10 Implementation of $\mathrm{v}_{\text {REJ }}^{2}$ Period Shape Test 251
4.11 SOM Optimization Scheme 255
4.12 Sample Network Configuration 258
Figure Page
4.13 Typical Incremental Cost Curve and Approximations 261
4.14 Hypothetical Set of Incremental Cost Curves 264
4.15 Sample Reactor Production Schedule 266
4.16 Misfit Forcing Function vs. Reactor-Period Production 268
4.17 "Squeezing" Permissible Reactor Production Shapes 270
5.1 Input Load-Duration Curves 280
5.2 Forecasted Monthly Minumum and Maximum Loads for First Year 281
5.3 Typical Summer Month 288
5.4 Typical Non-Summer Month 289
5.5 Strategy 1: Annual Refueling 292
5.6 Strategy 2: Gradual Shift to Longer Cycles 293
5.7 Strategy 3: Immediate Shift to Longer Cycles. 294
5.8 Resource Commitment for S-1 During First Scheduling Window 295
5.9 Resource Commitment for S-2 During First Scheduling Window 296
5.10 Resource Commitment for S-3 During First Scheduling Window 297
5.11 Convergence of Inner Cost Iterations for Initial Shape Iteration of Stragegy 2 in Case I 305
5.12 Change in Total Nuclear Fuel Cost During Inner Iterations of Initial Shape Iteration of Strategy 2 in Case I 310
5.13 Error in Estimated Improvement vs. Change in Cycle Energies 311
5.14 Outer Shape Iteration Convergence 313
Figure Page
5.15 Distribution of 72 Period Energy Ranges Remaining at Accepted Optimum 316
5.16 Typical Period with Infeasible Postulated Average Reactor Shape 317
5.17 Typical Period Giving Shape Test V_{p}^{2} Near Zero 318
5.18 Typical Period Giving Shape Test $\mathrm{V}_{\mathrm{p}}^{2}$ Much Greater Than Zero 319
5.19 Strategy Cost vs. $\mathrm{V}_{\text {REJ }}^{2}$ 321
5.20 Accepted Optimum for Case I vs. γ Correction Factor 322
5.21 Incremental Costs and Cycle Energies at Accepted Global Optimum for Strategy 2 in Case I 326
5.22 Incremental Costs and Cycle Energies at Accepted Global Optimum for Strategy 1 in Case I 328
5.23 Lower Limit on Cycle Energy Preventing Incremental Cost Parity 330
5.24 Upper Limit on Cycle Energy Preventing Incremental Cost Parity 332
5.25 Cost and Downtime Advantage of s-3 vs. s-2 as Function of Horizon Length 341
5.26 Strategy Composite 343
5.27 Non-Nuclear Savings and Nuclear Cost for S-3 vs. S-2 as Function of Present Value Rate 350
5.28 Non-Nuclear Savings and Nuclear Cost for s-3 vs. S-2 as Function of Nuclear Unit Costs 355
5.29 Non-Nuclear Savings and Nuclear Cost for S-3 vs. S-2 as Function of Fossil Fuel Cost 359
A.l Probability Density Functions of Unit Capability 375
A. 2 Performance Probability Functions of Unit Capability 378
Figure Page
A. 3 Probability Density Functions of Unit Capacity on Outage 380
A. 4 Event Space Interpretation of Convolution 383
A. 5 Load Demanded of $\Delta K_{r i}$ Unit Increment 387
B. 1 Area Method for Determining Feasibility 391
C.l Normalized Customer Load-Duration Curve for 730 Hour Month on Reference Utility System 395
D. 1 Reactor-Cycle Notation for Strategy 1 417
D. 2 Reactor-Cycle Notation for Strategy 2 418
D. 3 Reactor-Cycle Notation for Strategy 3 419
E. 1 SYSINT Flowchart 454
E. 2 SYSINT-to-SYSOPT Output Data Transfer 458
E. 3 Example of SYSINT-to-SYSOPT Output Data 459
E. 4 SYSINT Sample Problem Input Deck I 473
E. 5 SYSINT Sample Problem Input Deck II 474
F.l SYSOPT Flowchart 483
F. 2 Nuclear Energy Network Structure 486
F. 3 "SYSOPT + Out of Kilter + QKCORE" Overlay Structure 491
F. 4 SYSOPT Sample Problem Input Deck 500
G. 1 Core Storage Requirements for Out-of-Kilter Network Program 503
H.l Compatibility of the Fuel Cost Simulator 534
H. 2 QKCORE Fuel Simulator Results for 1100 MWe PWR at Steady-State 544
H. 3 QKCORE Flowchart 551
H. 4 ELAME Table 553
Figure Page
H. 5 QKCORE Sample Problem Input Deck 566
H. 6 QKCORE Sample Problem Output 567

LIST OF TABLES

Table Page
1.1 Characteristics of Types of Electric Generating Units 33
1.2 Reactor Production Limits for 3 Reactor, 24 Period Example 66
1.3 Revenue Requirements and Undiscounted Energy for Strategy 2 over Six Year Horizon 77
1.4 Computational Requirements for Strategy 2 90
1.5 Revenue Requirements and Undiscounted Energy Over Four Year Horizon 91
2.1 Characteristics of Types of Electric Generating Units 103
2.2 Unit Characteristics for Reference Utility System 114
2.3 Example 1 on Reference Utility System: "Deterministic Model (No Forced-Outages)" 124
2.4 Example 2 on Reference Utility System: "Deterministic Model (Reduced Capacities)" 127
2.5 Example 3 on Reference Utility System: "Probabilistic Model (With Forced-Outages)" 130
3.1 Summary of Equivalent Load Distributions for Example 4 with Indication of Segments Used for Loading Each Unit 182
3.2 Example 4 on Reference Utility System: "Single Increment Booth-Baleriaux Model" 185
3.3 Example 5 on Reference Utility System: "Multiple Increment Booth-Baleriaux Model" ($\mathrm{V}-2$, then $\mathrm{III}-2$) 197
3.4 Comparison of Examples 1 to 5 on Reference Utility System 198
3.5 Example 6 on Reference Utility System:
"Multiple Increment Booth-Baleriaux Model" (III-2, then $\mathrm{V}-2$). 207
Table Page
3.6 Calculation of Startup-Shutdown Costs for Example 5 on Reference Utility System 212
4.1 Reactor Production Limits for 3 Reactor,
24 Period Example 259
5.1 Forecast of Monthly Peak Loads 282
5.2 Generating Unit Data 284
5.3 Additions and Retirements of Equipment 286
5.4 Summary of System Characteristics 287
5.5 Initial Conditions of Nuclear Reactors 291
5.6 Input Parameters Fixed Throughout Evaluation 299
5.7 Nuclear Fuel Cycle Unit Costs 301
5.8 Structure of Case Study 302
5.9 Revenue Requirements and Undiscounted Energy for Accepted Global Optimum of Strategy 2 in Case I 304
5.10 Revenue Requirements and Undiscounted Energy for Converged Initial Shape Iteration of Strategy 2 in Case I 306
5.11 Results at End of Outer Shape Iterations 314
5.12 Revenue Requirements and Undiscounted Energy in Case I 323
5.13 Computational Requirements for Strategy 2 in Case I 335
5.14 Revenue Requirements and Undiscounted Energy for Case II 337
5.15 Revenue Requirements and Undiscounted Energy for Case III 346
5.16 Revenue Requirements and Undiscounted Energy for Case II 347
5.17 Revenue Requirements and Undiscounted Energy for Case IV 348
Table Page
5.18 Revenue Requirements and Undiscounted Energy for Case V 352
5.19 Revenue Requirements and Undiscounted Energy for Case II 353
5.20 Revenue Requirements and Undiscounted Energy for Case VI 354
A.l Summary of Booth-Baleriaux Equations for Various Forced-Outage Models 389
C. 1 Unit Characteristics for Reference Utility System 394
C. 2 SYSINT Fortran-to-Text Symbol Cross- Reference Table 396
C. 3 Example 1 on Reference Utility System: "Deterministic Model (No Forced-Outages)" 398
C. 4 Example l: SYSINT Output Totals 399
C. 5 Example l: SYSINT Detailed Calculations 400
C. 6 Example 2 on Reference Utility System: "Deterministic Model (Reduced Capacities)" 401
C. 7 Example 2: SYSINT Output Totals 402
C. 8 Example 2: SYSINT Detailed Calculations 403
C. 9 Example 3 on Reference Utility System: "Probabilistic Model (with Forced-Outages)".. 404
C. 10 Example 3: SYSINT Output Totals 405
C.ll Example 3: SYSINT Detailed Calculations 406
C. 12 Example 4 on Reference Utility System:
"Single Increment Booth-Baleriaux Model" 407
C. 13 Example 4: SYSINT Output Totals 408
C. 14 Example 4: SYSINT Detailed Calculations 409
C. 15 Example 5 on Reference Utility System: "Multiple Increment Booth-Baleriaux Model ($\mathrm{V}-2$, then III-2)" 410
Table Page
C. 16 Example 5: SYSINT Output Totals 411
C. 17 Example 5: Detailed Calculations 412
C. 18 Example 6 on Reference Utility System: "Multiple Increment Booth-Baleriaux Model (III-2, then $\mathrm{V}-2$)" 413
C. 19 Example 6: SYSINT Output Totals 414
C. 20 Example 6: Detailed Calculations 415
D. 1 Revenue Requirements and Undiscounted Energy for Case I 420
D. 2 Revenue Requirements and Undiscounted Energy for Case II 421
D. 3 Revenue Requirements and Undiscounted Energy for Case III 422
D. 4 Revenue Requirements and Undiscounted Energy for Case IV 423
D. 5 Revenue Requirements and Undiscounted Energy for Case V 424
D. 6 Revenue Requirements and Undiscounted Energy for Case VI 425
D. 7 Revenue Requirements and Undiscounted Energy for Case I at End of First Shape Iteration 426
D. 8 Reactor-Cycle Results for Strategy 1 in Case I 427
D. 9 Reactor-Cycle Results for Strategy 2 in Case I 428
D. 10 Reactor-Cycle Results for Strategy 3 in Case I 429
D.ll Reactor-Cycle Results for Strategy 1 in Case II 430
D. 12 Reactor-Cycle Results for Strategy 2 in Case II 431
D. 13 Reactor-Cycle Results for Strategy 3 in Case II 432
D. 14 Reactor-Cycle Results for Strategy 1 in Case III 433
D. 15 Reactor-Cycle Results for Strategy 2 in Case III 434
D. 16 Reactor-Cycle Results for Strategy 3 in Case III 435
D. 17 Reactor-Cycle Results for Strategy 1 in Case IV 436
D. 18 Reactor-Cycle Results for Strategy 2 in Case IV 437
D. 19 Reactor-Cycle Results for Strategy 3 in Case IV 438
D. 20 Reactor-Cycle Results for Strategy 1 in Case V 439
D. 21 Reactor-Cycle Results for Strategy 2 in Case V 440
D. 22 Reactor-Cycle Results for Strategy 3 in Case V 441
D. 23 Reactor-Cycle Results for Strategy 1 in Case VI 442
D. 24 Reactor-Cycle Results for Strategy 2 in Case VI 443
D. 25 Reactor-Cycle Results for Strategy 3 in Case VI 444
D. 26 Reactor-Cycle Results for Strategy 1 in Case I at End of First Shape Iteration 445
D. 27 Reactor-Cycle Results for Strategy 2 in Case I at End of First Shape Iteration 446
D. 28 Reactor-Cycle Results for Strategy 3 in Case I at End of First Shape Iteration 447
E.l Summary of SYSINT. Subroutines 449
Table Page
E. 2 SYSINT Error Messages Printed by ERRMSG 455
E. 3 SYSINT-to-SYSOPT Output Modes 457
E. 4 SYSINT Dataset Reference Numbers 461
E. 5 SYSINT Input Specifications 463
F.l Summary of SYSOPT Subroutines 477
F. 2 SYSOPT Error Messages Printed by OPERR 484
F. 3 Interfacing of SYSOPT and an INCORE MODEL 488
F. 4 SYSOPT Dataset Reference Numbers 492
F. 5 SYSOPT Input Specifications 494
H.l QKCORE Empirical Fuel Simulator Equations 536
H. 2 QKCORE Reactor Irradiation Empirical Equations 539
H. 3 Comparison of QKCORE versus CORE results for $3.2 \mathrm{w} / \mathrm{o} \mathrm{U}-235$ at Steady-state 545
H. 4 Summary of QKCORE Subroutines 547
H. 5 QKCORE Error Messages Printed by ICERRS 552
H. 6 QKCORE Input Specifications 555

ChAPTER

AN OVERVIEW

1.1 Historical Perspective of Nuclear Power Management

The advent of commercial nuclear power created new and complex challenges to electric utility management. The utility's staff not only had to resolve difficult questions concerning safety and the environment during a nuclear plant's construction, but also ensure the economical production of energy during the plant's operating life. To aid management in this operation planning, much effort was expended incorporating nuclear power plants into existing utility system optimization models. By making reasonable and convenient assumptions (e.g., base-load operation and annual refuelings), the nuclear fuel cycle cost was determined satisfactorily and allowed a nuclear plant to be treated merely as a "fossil" plant with extremely low fuel cost.

However, as more nuclear plants are added to the grid and nuclear power makes up a larger fraction of the installed capacity, these assumptions become suspect. As a result, operating plans based on them, may be far from optimal. "Traditional methods for planning the operation of a power system cannot adequately consider nuclear fuel economics or fully recognize constraints imposed by the nature of the nuclear fuel cycle (28)."

Thus, current emphasis has shifted to developing utility nuclear power management tools which properly model nuclear plants and the complexity of the nuclear fuel cycle.

1.2 Planning Tools Needed

Utility system planners are faced with four general types of decisions:
(1) scheduling production,
(2) scheduling maintenance and refueling,
(3) purchasing new fuel and
(4) purchasing new capacity.

The above ordering of these decisions is not arbitrary. Each of these problems dominates decision-making on a longer time scale. Conversely, each characteristic time scale imposes a different set of constraints on the options available to the planner. Daily production scheduling must be performed within the context of the yearly maintenance and refueling schedules. Likewise, these scheduled outages must be coordinated with longer term fuel contracts and deliveries. Similarly, long term fuel contracts must be cognizant of future capacity additions and retirements.

The complexities of accurately and efficiently modelling the nuclear fuel cycle for each of these decisions requires four different utility system simulation models (see Figure 1.1):

Figure 1.1

(l) Daily Model: This model deals with the hour-by-hour dispatching of the various generating units. Only a small fraction of the energy potential in the nuclear fuel is released and the sole parameter available for optimization is the power output of each plant.
(2) Annual Model: This model deals with the operation of the nuclear plants between refuelings. The fuel in each reactor cannot be replaced, but the power operation of the reactor, date of the next refueling, and energy potential of the discharge fuel aredecision variables for each unit. Widmer's analytical treatment of steady-state nuclear refueling (57, 59) referred to this time scale as "shortrange."
(3) Multi-year Model: This model spans the time required for the complete nuclear fuel cycle (on the order of 5 to 10 years). In addition to the variables mentioned for the annual model, this one includes the fuel management reload variables--fuel enrichment and batch size. This time scale plays the determining role in planning for the purchase of fuel and its required processing and fabrication, as well as the financing of all these costs. In the study by Widmer (58, 59) this time scale was referred to as "mid-range."
(4) Expansion Model: This model covers a period of many years-on the order of the expected lifetime of generating stations-and is employed in planning for the addition and retirement of generating equipment. Within the first three models,
certain plants are assumed to exist or to have been ordered so that the type and characteristics of each unit are specified. But in the expansion model, a variety of new energy production equipment is under investigation. Several considerations pointed to the multi-year model as deserving the initial development effort. Relative to Figure 1.l, such a model ought to have many elements useful in the development of the other three models. At the same time, the multi-year model possesses all of the complex options inherent in nuclear fuel management without the additional complexity of the plant installation decision itself. Finally, multiyear considerations vitally affect decisions regarding longterm fuel financing. Such large dollar commitments hint at large cost savings.

For these reasons, the multi-year nuclear power management model put forth in this work was developed as the first of the Commonwealth Edison-sponsored utility system optimization research projects at the Massachusetts Institute of Technology. 1.3 Introduction to Multi-year Planning

In providing installed capacity to meet the customer loads, a utility relies on up to five different types of generating equipment:
(1) Nuclear units: very large capacity units generating electricity from steam produced via the heat released by a sustained nuclear chain reaction contained within the reactor's core.
(2) Fossil steam units: typically large capacity coal, oil and/or gas-fired boilers producing steam that is expanded in turbine-generators.
(3) Fast-start peaking units: small fossil-fueled jet engine, gas turbine or diesel-driven generators.
(4) Hydro units: Typically medium capacity hydroelectric turbines associated with dams which form water reservoirs.
(5) Pumped-hydro units: similar to hydro except that its dual-purpose turbine may alternately operate as a pump, transferring water from the foot of the dam to the higher reservoir elevation. Like a storage battery, cheap off-peak energy is temporarily stored in another form (water at a height) for retrieval during the peak by reversing the process.

Regardless of the type of unit, certain key information is required by the system planner on each and every unit of the system:
(1) minimum and maximum power level, ${ }^{1}$
(2) fuel consumption rate vs. power level,
(3) fuel cost,
(4) fuel inventory,
$1_{\text {Throughout this work, }}$ all power levels are in units of nct MWe delivered to the transmission system busbar. That is, plant auxiliary power requirements ($\sim 5 \%$) have already been subtracted from gross generator output, but transmission losses have not been accounted for.
(5) transmission losses,
(6) startup-shutdown data,
(7) maintenance requirements, and
(8) reliability data.

Table l.l presents a general summary of these characteristics for each unit type, including capital cost estimates.

With the rates (prices) per unit electricity fixed externally by regulatory commissions and the total amount of electricity determined externally by the customers' demands, the total revenue received by the utility is also fixed (albeit, in a probabilistic sense). By minimizing the revenue required to recover the cost of supplying that electricity, the utility maximizes total profit. Therefore, the utility objective function is the minimizing of the present value of all future required revenue, i.e., the revenue requirement. (Present valuing accounts for the time value of money.) For any project, this sum represents that amount of money which, if received immediately and invested in the company, would just suffice to pay all expenses, as well as permitting a fair return to investors. ${ }^{2}$ By including investors' permitted return as another cost component, "revenue requirements" and "total cost" become synonymous.

When considering different operating strategies over a multi-year time horizon (on the order of 5 years), many of the cost components (e.g., capital investment and overhead) are essentially fixed.

The multi-year objective function may, therefore, be reduced to the operating costs directly related to supplying
$\overline{2}_{\text {More precisely (55) , }}$
"The revenue requirement is that sum of money, which if received as revenue by an investor-owned electric utility at the beginning of the planning horizon and invested in the enterprise, will defray all subsequent fuel cycle costs, the return allowed by regulatory agencies on that portion of the original investment remaining unexpended at any time, and defray all associated income taxes."

Table 1.1
Characteristics of Types of Electric Generating Units

	Dimension	Nuclear Steam (LWR)	Fossil Steam	Fast-Start Peaking	Hydro	PumpedHydro
System Use		Base-Load	Base-Load and Cyclical	Peaking	Inventory Dependent	Peaking
Capacity Fact.	Percent	60-90	30-90	Up to 20	Up to 100	Up to 50
Capital Cost	\$/kwe	300-450	250-400	100-150	300-500	100-200
Unit Capacity	MW	500-1200	200-1200	10-50	10-600	50-400
Min. Power	\% Cap.	10-40	10-50	75-90	0-10	25-40
Avg. Ht. Rate	MBTU/MWH	10.5-11	8. 5-14	12-17	N/A	N/A
Avg. Net Energy Conversion Eff.	Percent	31-34	25-40	20-28	85-93	65-80
Fuel Cost	¢/MBTU	16-20	$\begin{aligned} & \hline 35-80 \text { (Coal) } \\ & 50-100 \text { (Oil) } \\ & \hline \end{aligned}$	50-100	0	Cost of pumping power
Energy Cost	\$/MWH	1.7-2.2	3.0-8.4	6.5-20	0	$\sim 1.5 \times$ pumping power
Comments on Fuel Inventory		Depends on fuel cycle	Approx. const. at 100 days supply	$\begin{aligned} & \text { 4-8 hours } \\ & \text { (Oil) } \end{aligned}$	$\begin{aligned} & \text { Depends } \\ & \text { on } \\ & \text { season } \\ & \hline \end{aligned}$	Depends on operating cycle
Trans. Losses	Percent	Up to 10	Up to 10	Up to 5	Up to 10	Up to 15
SU-SD Ht. Regt.	MBTU/MW Cap.	3-6	3-8	0-2	~ 0	~ 0
Min. SD Time	Hours	<2	2-10	<0.3	<0.5	<0.5
Maint. Reqt.	Week/Year	$4-8 \mathrm{wk} / \mathrm{refuel}$	3-5	1-4	1-2	1-2
Forced-Out Rate	Percent	Up to 15	Up to 20	Up to 40	Up to 5	Up to 10
Perf. Prob.	Percent	85-100	80-100	90-100	95-100	95-100

customer loads--fuel consumption within the system and net electricity purchases from neighboring utilities along with the associated taxes and carrying charges.

Adopting the notation that $R R(X)$ is the total revenue requirement related to direct expenditure X,

$$
\begin{align*}
& R R(X)=\text { Present (Expenditure } X) \\
& \text { Value } \\
&+ \text { Present }\binom{\text { Taxes associated }}{\text { with } X} \\
& \text { Value } \tag{1.1}\\
&+ \text { Present }\binom{\text { Carrying charges }}{\text { associated with } X}
\end{align*}
$$

Fuel consumption expenditures can be further broken down into:
(1) X_{F}, fossil fuel related directly to on-line production,
(2) X_{N}, nuclear fuel related directly to on-line produc-
(3) X_{S}, fuel related to units' startup-shutdown heat requirements.

Expenditures for electricity purchases from other utilities, X_{U}, represents both emergency purchases and economy purchases. (Economy purchases are not considered further in this work.)

The standard procedure in performing multi-year optimization is to subdivide the entire planning horizon into Z smaller time periods. In each time period p, expenditures are estimated in undiscounted dollars. Period expenditures are then present-valued at x per year from their mean time \bar{t}_{p} back to time zero. As Section 1.4 will point out, the
addition of nuclear units may prevent immediate evaluation of X_{N}. [In fact, $R R\left(X_{N}\right)$ or $R R_{N}$ is determined directly only after all periods have been simulated.]

The equivalent multi-year objective function $O R R$, the operating revenue requirement, can then be expressed as

$$
\begin{equation*}
O R R=R R_{F}+R R_{N}+R R_{S}+R R_{U} \tag{1.2}
\end{equation*}
$$

or, in terms of the nonnuclear period expenditures,

$$
\begin{align*}
O R R & =\sum^{Z} X_{F_{p}} \frac{1}{(1+x)^{\bar{t}_{p}}}+R R_{N} \\
& +\sum^{Z} x_{S_{p}} \frac{1}{(1+x)^{I_{p}}}+\sum^{Z} X_{U_{p}} \frac{1}{(1+x)^{\bar{t}_{p}}} \tag{1.3}
\end{align*}
$$

1.4 Complexities of Nuclear Power

The cost of fossil fuel is simply the cost of coal or oil plus shipping charges. Assuming a constant coal stockpile, newly delivered coal is burned immediately. From mine to ash, fossil fuel consumption requires only a matter of some days.

Nuclear fuel, on the other hand, requires years to account for all cost components. Mining, conversion and enrichment begin a year or more before insertion in the reactor. During the three years or more of irradiation, the energy potential
is slowly extracted not only from this fuel batch, but also from two or so others in the core. Four months or more after discharge, reprocessing occurs and fissile isotope credits are received. The net result is that $\overline{\mathrm{TC}}_{r}$, the cost of a reactor's fuel over a time span of cycles, is a nonlinear, nonseparable function of the energy produced in each cycle, Erc^{\prime}

$$
\begin{equation*}
\overline{T C_{r}}=\overline{T C}_{r}\left(E_{r l}, E_{r 2}, \ldots, E_{r c}\right) \tag{1,4}
\end{equation*}
$$

Summing each reactor's total fuel cost (ie., revenue requirement) yields the system nuclear revenue requirement, RR_{N},

$$
\begin{equation*}
R R_{N} \equiv \overline{T C}=\sum^{R} \overline{T C}_{r} \tag{1.5}
\end{equation*}
$$

Qualitatively, the nonlinearity,

$$
\begin{equation*}
\overline{T C}_{r} \neq c_{r 0}+c_{r 1} E_{r 1}+c_{r 2} E_{r 2}+\cdots+c_{r c} E_{r C} \tag{1.6}
\end{equation*}
$$

results from the fact that, given the refueling batch fractions, cycle energy is approximately linear in reload enrichment,
but the cost of this enrichment (ie., separative work requirement) is nonlinear.

Preventing a more general uncoupling of the cycle energies,

$$
\overline{T C_{r}} \neq C_{r 0}+C_{r 1}\left(E_{r 1}\right)+C_{r 2}\left(E_{r 2}\right)+\ldots+C_{r C} E_{r C}^{(1.7)}
$$

is the multi-irradiation (multi-zone) nature of today's LWR refueling schemes. The specification of reload enrichment requires not only reactivity allowance for the next cycle, but succeeding ones as well.

In summary, to calculate nuclear fuel costs, the cycle energies to the horizon of interest must be known.

In the early years of nuclear power, this stringent requirement did not pose a problem for conventional production scheduling models. With only one nuclear plant on a system (see Figure l.2), base-load operation was possible. That is, nuclear units were operated at full capacity whenever they were available. (In addition, annual refueling meshed nicely with fossil maintenance plans and appeared to be reasonably economical.) For the base-load case (i.e., availabilitybased capacity factor for unit $r_{g} L_{r}^{\prime}=1$), cycle energy $E_{r c}$ could be immediately determined since

$$
\begin{equation*}
E_{r c}=p_{r} T_{r c}^{\prime} K_{r} L_{r}^{\prime} \tag{1.8}
\end{equation*}
$$

Figure 1.2

where

$\mathrm{P}_{r}=$	estimated probability reactor r is capable of
	generating energy at random instant of time
$T_{r C}^{\prime}=$	length of irradiation cycle c for unit r, hours
$K_{r}=$	rated electric capacity of unit $r, ~ M W$

If $T_{r c}^{\prime}$ was constant, the cycles energies to the horizon were the same and reactor steady-state fuel costs could be calculated and used for all cycles.

However, as nuclear capacity on the system increased, two problems became apparent. First, not all nuclear units could be base-loaded if total nuclear capacity was greater than the minimum load (see Figure 1.2). Equation (1.8) was no longer easily evaluated because the nuclear portion of the loadduration curve was no longer equal to 1.0 for all nuclear units ($L_{r}^{\prime}=?<1$). Which nuclear unit should occupy the baseload position? Intra-nuclear incremental cost competition had surfaced for the first time. Only rough estimates of nuclear fuel costs had been necessary to decide that all nuclear equipment was cheaper than all fossil equipment (22), but very refined costs were now needed to decide nuclear unit A versus nuclear unit B.

Secondly, annual refueling created scheduling problems when each nuclear unit had to be refueled within every calendar scheduling window. Coupled with decreasing nuclear load demand, what was the optimum cycle length for each reactor?

The net result was that cycle energies were no longer easily specified out to the horizon. The nuclear complications rendered previous utility system optimization models obsolete. The nuclear power management model put forth here was developed to provide a modern utility system optimization model capable of handling nuclear plants explicitly. In a utility system containing nuclear powered generating equipment, the planning of the fuel management must be optimized from the system demand viewpoint (cost to utility of supplying all customer loads), not an individual reactor supply viewpoint (cost to utility of supplying power from a particular reactor). The complex interaction between system load and incremental operating costs of the multiplicity of generating units available on a utility system must be considered in optimizing the two nuclear reload design vari-ables--fuel enrichment and batch fraction. The result is that what may appear uneconomical for a particular reactor (e.g., refueling while energy potential remains in the core), may indeed be optimum for the overall system.

1.5 A Nuclear Power Management Multi-year Model

A nuclear power management multi-year model currently under development (23, 34, 41, 55) contains four sub-models as presented in Figure 1.3. The overall model's purpose is to supply the utility system planner with the following outputs:

Figure 1.3
Nuclear Power Management
Multi-Year Model

(1) Optimum schedule for fossil maintenance and nuclear refueling,
(2) Associated optimum production schedule and
(3) The resultant fuel requirements.

Operation of the overall model begins within the Refueling and Maintenance Model (RAMM). Incorporating such inputs as load forecasts, maintenance requirements and scheduling constraints, the RAMM determines a number of feasible multiyear refueling and maintenance schedules. Each schedule is a mutually exclusive, alternative mode of operating the entire system over the multi-year horizon. The purpose of the rest of the overall model is to determine which of the possible alternative strategies results in the minimum total operating revenue requirement, $O R R$.

The output of the RAMM is accepted by the System Integration Model (SIM) in the form of either a set of downtime dates for each unit on the system or a period-by-period (on the order of one to four weeks per period) maintenance schedule indicating which units are down in each period. Also helpful to the rest of the model is an a priori RAMM ranking of the strategies in order of estimated desirability. That is, "ballpark" estimates by the RAMM of economics and reliability ought to indicate Strategy l is most likely to be optimum, while Strategy $n(n \sim 100)$, though feasible, is highly unlikely to be economically attractive and/or a reliable operating scheme. Such a ranking would decrease computing
requirements for the overall model by permitting the detailed evaluation of only those strategies with a reasonable chance of competing for the optimum.

Strategy-by-strategy evaluation begins in the System Integration Model (SIM). For each strategy, the SIM integrates the utility's available equipment, operating practices, etc. into a realistic utility simulation model. Since nuclear incremental costs are much less than those of fossil units, production scheduling is optimized so as to meet customer load demand by maximizing nuclear energy and minimizing fossil energy and fossil cost.

The task of the System Optimization Model (SOM) is to then optimize the operation of the nuclear portion of the system (see Figure 1.3) so that the nuclear energy $E_{\text {Nuclear }}$ is produced at minimum cost, \$Nuclear. To do this, the SOM postulates reactor-by-reactor multi-year production schedules which are then passed to Core Simulation and Optimization Models (CORSOM's) for each reactor unit or type (PWR, BWR, LMFBR, etc.). With each production schedule specified to the horizon, each CORSOM is then able to optimize its reload parameters of batch size and enrichment, minimizing the total fuel revenue requirement for the particular reactor. In addition, the CORSOM calculates nuclear incremental costs for each of the cycles.

With all reactors optimized for the given energy production schedules, the SOM begins a second iteration by using the CORSOM's incremental nuclear energy costs to postulate
a better reactor-by-reactor multi-year production schedule.
At each iteration between $S O M$ and the CORSOM's in Figure 1.3, each CORSOM accepts a new set of cycle energies (E's) for its reactor and, in point of fact, the same set of cycle lengths (T's) associated with the particular possible alternative strategy. After simulating core physics-depletion and optimizing the reload parameters (batch size and enrichment), only two specific types of information are returned to the SOM:
(1) the minimum total reactor fuel revenue requirement $\left(\overline{T C}_{r}\right)$ and
(2) the $\lambda_{r C}\left(E_{r C}\right)$ nuclear incremental cost curve for each reactor reload batch,

$$
\begin{equation*}
\lambda_{r c}\left(E_{r c}\right)=\frac{\partial \overline{T C}_{r}}{\partial E_{r c}} \tag{1.9}
\end{equation*}
$$

Specific information about the fuel designs is not needed by the SOM. As long as each CORSOM is properly matched with the reactor unit that it represents, the SOM does not care which units are PWR's, BWR's, HTGR's or fast breeders. Of course, management personnel need fuel design information and it must, therefore, be available in the printed output received directly from the CORSOM (at least, for the final fully-converged iteration).

Iterations between SOM and the CORSOM's continue until the system-wide production schedule converges (see Figure 1.3),
giving minimum system nuclear cost $\$_{\text {Nuclear. }}$ The total system cost for the particular refueling and maintenance strategy under investigation is then merely the sum of $\$_{\text {Fossil }}$ and $\$_{\text {Nuclear }}$.

After evaluating all possible alternative strategies in this manner, the overall optimum system strategy is the one resulting in the minimum total system operating revenue requirement ORR.

Though the above discussion and, in fact, this entire work assumes only fossil and nuclear equipment exist on the system, the general structure of the overall model holds even if hydro and pumped-hydro equipment have been installed.

The development of the complete nuclear power management multi-year model is a very large task. The four sub-models represent convenient building blocks suitable for somewhat independent development. However, model interface problems must be considered. Ideally, the models ought to be coupled together like the boxcars of a train, not nailed together like the tracks.

In the context of the Commonwealth Edison-sponsored utility system optizimation research project at the Massachusetts Institute of Technology, development of a RAMM was assumed by the project sponsor (20). Development of a pressurized water reactor CORSOM was undertaken at MIT by Kearney (41) and Watt (55). The work reported here deals specifically with the development of the remaining SIM and

SOM. In this regard, Figure 1.4 and the following sections describe these two models.

1.6 The System Integration Model (SIM)

The System Integration Model (SIM) has as its basic purpose the simulation of multi-year utility operation. To do this, it must integrate the following information into a representative utility system model:
(1) Forecasts of customer loads,
(2) Generating equipment characteristics,
(3) Forecasts of fuel costs,
(4) Maintenance schedules, and
(5) Operating constraints.

To portray system operation more accurately, the multiyear horizon is divided into much smaller time periods, on the order of a few weeks. Periods shorter than a week create an undue computational burden. On the other hand, periods longer than a month are precluded by the necessity of discretely representing scheduled maintenance outages which are usually two to four weeks in length.

These time periods are then simulated individually in chronological sequence. Forecasted loads for each period (Item 1 above) are represented by a normalized customer loadduration curve. Thermal energy costs (Item 3) are combined with the characteristics of the generating units to yield unit incremental costs. Any units unavailable due to scheduled maintenance (Item 4) are treated as non-existent for

that period. The next step is the establishment of the startup and loading order for the remaining (on-line) units. It is in this order that various operating constraints (Item 5), such as "spinning reserve" and "zone-loading" requirements are incorporated. Production scheduling of the resulting system representation is performed using the BoothBaleriaux (10, 19) probabilistic utility system model. As pointed out earlier (see Section 1.4), the complexities of nuclear power preclude a priori knowledge of nuclear fuel costs except for the special case of all nuclear baseload operation. Nevertheless, by incorporating nuclear versus fossil incremental cost arguments (22) to sub-optimize each period, the SIM is able to mark time by calculating in its place, the system nuclear potential (demand) N for each period (a part of the horizon's total $E_{\text {Nuclear }}$). The responsibility for optimizing and costing intra-nuclear production of this energy rests with the System Optimization Model (SOM). Thus, the actual period-by-period output of the SIM consists of:
(1) $\mathrm{X}_{\mathrm{F}}=$ Fossil fuel expense related to energy production,
(2) $\mathrm{N}=$ Potential nuclear energy production,
(3) $\mathrm{X}_{\mathrm{S}}=$ Combined fossil and nuclear startup-shutdown cost, and
(4) $X_{U}=$ Expense related to emergency energy purchases.
1.6.1 Booth-Baleriaux Probabilistic Utility Simulation Model

The Booth-Baleriaux probabilistic utility simulation model is a recent adaptation of previous deterministic utility models with new emphasis on the field of applied probability theory. Though the original 1967 paper on the subject is a product of Baleriaux, et al., (10) of Belgium, Booth (17-19) of Australia deserves much of the credit for introducing and promoting the model in the United States.

Previous papers reporting on the Booth-Baleriaux model, including the work of Joy and Jenkins (39), have closely followed the development in the original paper. With due respect to these ground-breaking efforts, the following presentation leads to computational savings in terms of time and storage, and also follows a more direct line of reasoning. The Booth-Baleriaux probabilistic utility model is based on the concept of equivalent system load which embodies not only direct customer demands on a particular unit, but also the indirect demands left unsatisfied by previously loaded units when they are on forced-outages.

The equivalent load P_{e} may be defined as

$$
\begin{equation*}
P_{e} \equiv P_{D}+P_{O} \tag{1.10}
\end{equation*}
$$

where

$$
P_{D}=\text { actual direct customer load demand, MW }
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{O}}= & \text { system capacity on forced-outage that would } \\
& \text { be generating energy otherwise, MW }
\end{aligned}
$$

Capacity that is on forced-outage during what would otherwise have been reserve (i.e., economy) shutdown hours anyway is not counted since the outage does not affect system generating operations.

In a probabilistic sense, P_{D} is a random variable with a complementary cumulative distribution given by $F_{D}\left(P_{D}\right)$, the normalized customer load-duration curve. Since forced-outages are random, P_{O} is also a random variable characterized by the performance probabilities of each unit. Thus, P_{e} is also a random variable and the computation of its complementary cumulative distribution (the equivalent load-duration curve) $F_{e}\left(P_{e}\right)$ involves the convolution (26) of the distributions of P_{D} and P_{O}. The heuristic presentation here is limited to the common two-state model of forced-outages:

State 1: With performance probability p, the unit will perform at any output up to its rated capacity when called upon, and

State 2: With non-performance probability q, the unit will not perform at all when called upon.

Thus,

$$
\begin{equation*}
p+q=1 \tag{1.11}
\end{equation*}
$$

In accounting for the forced-outages of all of the utility's available generating units (i.e., those not down
anyway due to scheduled outages), the approach presented in this work performs the system-wide convolution by sequentially incorporating each unit's contribution to the equivalent load. Referring to Figure 1.5 , the general equation for convolving up to the i th increment of unit r into the equivalent load-duration distribution $F_{r i}^{W O}$ can be shown to be as follows,

$$
\begin{array}{r}
F_{r i}^{W}\left(P_{e}\right)=p_{r} \cdot F_{r i}^{W O}\left(P_{e}\right)+q_{r} \cdot F_{r i}^{W O}\left(P_{e}-K_{r i}\right) \tag{1.12}\\
\text { for all } p_{e}
\end{array}
$$

where

$$
\begin{aligned}
\mathrm{F}_{\mathrm{ri}}^{\mathrm{W}}= & \text { Equivalent load distribution with the } \\
& \text { forced-outages of i increments of unit } r \text { included. } \\
\mathrm{F}_{r i}^{\mathrm{wo}}= & \text { Equivalent load distribution without the forced- } \\
& \text { outages of i increments of unit } r \text { included } \\
\mathrm{K}_{r i}= & \text { rated capacity of unit } r \text { up to and including } i \text { th } \\
& \text { increment, i.e.. magnitude of forced-outage in- } \\
& \text { cluded in } P_{e} \text { when forced-outage occurs }\left(q_{r}\right. \text { fraction } \\
& \text { of the time), MW } \\
P_{r}= & \text { performance probability of unit } r \\
q_{r}= & l-p_{r}
\end{aligned}
$$

Due to Equation (1.10), $K_{r i}$ may be less than the K_{r} maximum rated capacity of unit r because the rest of the unit's capacity is not being used whether on forced-outage or not.

Figure 1.5

Since Equation (1.12) is valid for all P_{e}, (not merely the single value shown in Figure 1.5$)$, the complete $F_{r i}^{W}\left(P_{e}\right)$ curve can be calculated easily. Two limiting cases are readily apparent. One caseis P_{e} less than the minimum load-each $F_{r i}^{W O}=1$, as does the resulting $F_{r i}^{W}\left(P_{e}\right)$. For very large P_{e}, each $F_{r i}^{W O}=0$ and, hence, $F_{r i}^{w}\left(P_{e}\right)=0$. Equation (1.12) is the heart and soul of the Booth-Baleriaux model. All subsequent calculations involving F, whether convolutions or deconvolutions (see below) are merely rearrangements of it.

Deconvolution merely refers to reversing the convolution process, subtracting unit r's forced-outages from the equivalent load. That is, given $F_{r i}^{W}\left(P_{e}\right)$, determine $F_{r i}^{w o}\left(P_{e}\right)$. The necessity of performing deconvolutions comes about because:
(1) entire units are not scheduled as single blocks of capacity but as smaller capacity increments due to units' varying incremental costs, and
(2) during the production calculation (see below), increments of the same unit cannot possibly make up for each other's forced-outages since they are all forced offline together (at least, in the simple two-state forced-outage model).

Rearranging Equation (1.12) to the following, deconvolution is accomplished thusly,

Making use of the fact that $\mathrm{F}_{\mathrm{ri}}^{\mathrm{WO}}\left(\mathrm{P}_{\mathrm{e}}\right)=1$ for P_{e} less than the minimum load, $F_{r i}^{W O}\left(P_{e}\right)$ can be "boot-strapped" from right to left in Figure 1.5 to determine the complete $F_{r i}$ wo

As illustrated in Figure 1.6, forced-outages of units lower in the loading order increase the demand or duration of load $\left[F_{r i}^{w o}\left(P_{e}\right)>F_{D}\left(P_{e}\right)\right]$ to be satisfied by capacity increments higher in the loading order. However, forced-outages affect not only the demand $F_{r i}^{\text {WO }}$ on each increment, but also the increment's energy production $E_{r i}$. If the unit only performs 90% of the time, then it is expected that only 90% of the production demanded from it will be served. Recalling that p_{r} is the unit's performance probability, the increments' expected energy production for the period is given by,

$$
\begin{equation*}
E_{r i}=T^{\prime} p_{r} \int_{P_{r i}^{0}}^{P_{r i}^{0}+\Delta K_{r i}} F_{r i}^{w i}\left(P_{e}\right) d P_{e} \tag{1.14}
\end{equation*}
$$

where
$T^{\prime}=$ duration of time period, hours
$\Delta K_{r i}=i$ th increment of capacity of unit $r, M W$
$P_{r i}^{o}=s y s t e m$ equivalent load when increment i first loaded, i.e., the increment's loading point.

Total unit energy production for the period, E_{r}, is given by summing $E_{r i}$ over the unit's I increments,

$$
\begin{equation*}
E_{r}=\sum^{I} E_{r i} \tag{1.15}
\end{equation*}
$$

Figure 1.6

At an average cost of $\overline{\mathrm{e}}_{\mathrm{rl}}$ for the first increment and incremental costs $\lambda_{r i}$ for the other increments, the cost of each energy increment is

$$
\begin{align*}
& x_{r l}=\bar{e}_{r l} E_{r l} \tag{1.16}\\
& x_{r i}=\lambda_{r i} E_{r i} \quad \text { for } i>1 \tag{1.17}
\end{align*}
$$

and, hence, period production fuel expense X_{r} for unit r is given by

$$
\begin{equation*}
X_{r}=\sum^{I} X_{r i} \tag{1.18}
\end{equation*}
$$

Recall from Section 1.6, that for nuclear units, the SIM's required period output is not cost, but the system nuclear potential N,

Nucl. Units

$$
\begin{equation*}
N=\sum^{\text {NUCL. UNits }} \tag{1.19}
\end{equation*}
$$

In Figure 1.6, notice that for the final total system curve, F_{T}, some indirect customer demand extends beyond the available installed (on-line) capacity,

$$
\begin{equation*}
K_{T}^{\prime}=\sum_{O_{N-L I N E} U_{N I T S}}^{K_{r I}} \tag{1.20}
\end{equation*}
$$

As one measure of system reliability, D_{U} represents the energy unserved by the system's resources (ie., wholly owned capacity plus firm purchases),

$$
\begin{equation*}
D_{u}=T^{\prime} \int_{K_{T}^{\prime}}^{\infty} F_{T}\left(P_{e}\right) d P_{e} \tag{1.21}
\end{equation*}
$$

"Expected unserviced energy . . . is the expected curtailment or, more realistically, the expected emergency support required during" the time period (49). The determination of the X_{U} expenditure relative to the D_{U} emergency electricity purchases from neighboring utilities is straightforward given an \bar{e}_{U} average cost for this emergency support. The period expenditure is merely,

$$
\begin{equation*}
X_{u}=\bar{e}_{U} D_{U} \tag{1.22}
\end{equation*}
$$

Along with D_{U}, another measure of the system's reliability is the LOLP "loss-of-load-probability,"

$$
\begin{equation*}
L O L P=F_{T}\left(K_{T}^{\prime}\right) \tag{1.23}
\end{equation*}
$$

the fraction of time the utility is unable to serve its costomers with its own resources.

With production scheduling completed, only the task of determining the startup-shutdown cost component for the period remains. To accurately calculate the period's X_{S}, startup-shutdown cost, an hour-by-hour production scheduling model would be required. Having sacrificed detailed chronological load shapes for the more convenient load-duration curves covering much longer periods of time, shutdown costs must be estimated by an approximate technique.

Consider Figure 1.7 [after (18)] which displays qualitatively the approximate relation between Ω, the frequency of startup-shutdowns (per day) and $L_{r l}^{\prime}$ ' the availability-based capacity factor for the unit's first capacity increment.

That is,

$$
\begin{equation*}
L_{r l}^{\prime}=\frac{1}{K_{r l}} \int_{P_{r 1}}^{P_{r i}^{0}+K_{r l}} F_{r l}^{w o}\left(P_{e}\right) d P_{e} \tag{1.24}
\end{equation*}
$$

For must-run units, $L_{r l}^{\prime}$ equals 1 and Ω equals 0 . For very expensive peaking units, $L_{r 1}^{\prime}$ approaches 0 and Ω again approaches 0 . As expected, units never shutdown and units never started-up incur no startup-shutdown cost. In between are those units started-up and shutdown on a daily basis and, hence, Ω approaches one.

If unit startup-shutdown cost Q_{r} is specified in time independent units of equivalent thermal energy input, multiplying it by \varnothing_{r}, the unit's thermal energy cost for the period,

Figure 1.7

Example of Startup-Shutdown Frequency versus
Availability-Based Capacity Factor [After (18)]

permits escalation in terms of undiscounted dollars. Since $L_{\text {rl }}^{\prime}$ is easily extracted for each unit during the BoothBaleriaux simulation, the fractional starts per day are easily estimated given the proper dependence of Ω upon $L_{r l}^{\prime}$. Thus, a period T'/24 days long, incurs total period startup-shutdown cost amounting to

$$
\begin{equation*}
X_{S}=\frac{T^{\prime}}{24} \sum^{R} \phi_{r} Q_{r} \Omega\left(L_{r l}^{\prime}\right) \tag{1.25}
\end{equation*}
$$

1.6.2 SYSINT, A Computerized Version of the SYStem INTegration Model

SYSINT, a 2000 card Fortran IV version of the SYStem INTegration Model is detailed in Appendix E. This section merely summarizes its capabilities.

The standard two-state forced-outage model (perform or not perform) is employed. A single startup frequency curve Ω ($L_{r l}^{\prime}$) is input for the entire horizon. The limitations of the current version, though easily altered, are as follows:
(1) up to 100 units (including retirements and additions),
(2) up to 5 valve points for each unit,
(3) no limit on number of strategies per computer run,
(4) up to 100 time periods per strategy and
(5) up to 25 typical load-duration "shapes," stored in completely normalized form (i.e., peak demand also equals one.)

The multi-period strategy is input for each unit in the following form:
(1) the period installed,
(2) period just prior to retirement and
(3) up to 20 intermediate periods of downtime for maintenance or refueling.

For each period the following data may be input or altered:
(1) Choice of load-duration shape,
(2) Forecasted peak demand,
(3) Expected spinning reserve requirement,
(4) Length of time period,
(5) Average cost of emergency purchase energy,
(6) Fuel cost for each unit (optional initial guess for nuclear units),
(7) Performance probability for each unit, and
(8) Startup order indicating must-run units and peaking equipment.

As for typical running time, each period of a simulation of a utility system containing 40 units with a total of 150 valve points requires approximately 2.5 CPU sec on an IBM 370 Model 155 computer operating in an MVT environment. The code itself requires 108 K bytes of storage, i.e., not including the computer system supervisor. Total core requirements are thus approximately 134 K bytes.

Data transfer from SYSINT to SYSOPT (see Section 4.6 and Appendix F) is completely automated via either disk,
magnetic tape or punched cards.
1.7 System Optimization Model (SOM)

The SOM receives period-by-period information from the SIM relative to the system nuclear energy production potential and each reactor's possible maximum (i.e., if it is the first nuclear unit to be loaded) and minimum (i.e., if last nuclear unit) contribution to it. In addition, the nonnuclear cost totals are entered and later discounted at the appropriate present value rate to yield the total non-nuclear revenue requirement. Optimization itself (see Figure 1.4) begins by utilizing any initial nuclear fuel cost estimates to schedule period-by-period, reactor-by-reactor energy production using network programming (NP).

1.7.1 Nuclear Supply Network Optimization

Since the optimization within the SOM deals with a single commodity (nuclear energy production) in a strict one-to-one (reactor) supply and (customer) demand sense, the production constraints form a (nuclear energy) supply network. Figure 1.8 presents such a network configuration for a 3 reactor, 24 period (month) example. Numbers are displayed for the nuclear potentials N_{p} to emphasize the fact that these are fixed constraints throughout all of the iterations for a particular refueling and maintenance strategy. Nuclear energy is allocated (i.e., supplied) to each reactor-cycle ($E_{r c}$). Within each cycle, this energy is allocated to the pertinent

Figure 1.8

Sample Network Configuration
PERIOD
periods ($E_{r c p}$) so as to satisfy the system nuclear potentials (i.e., demanded).

The objective function for the nuclear supply network optimization is the system nuclear fuel revenue requirement,

$$
\begin{equation*}
\text { minimize } R R_{N} \equiv \overline{T C}=\sum \overline{T C}_{r}\left(E_{r 1}, E_{r 2}, \ldots\right) \tag{1.26}
\end{equation*}
$$

Due to the nonlinearity of Equation (1.26) as discussed in Section 1.4, an iterative gradient optimization technique known as the "method of convex combinations" (54) is employed. With the gradient defined as $\lambda_{r c}$, the incremental cost (revenue requirement) of extracting an additional amount of energy in cycle c of reactor r, then

$$
\begin{equation*}
\lambda_{r c}=\frac{\partial{\overline{T C_{r}}}_{\partial E_{r c}}}{\partial{ }^{\prime}} \tag{1.27}
\end{equation*}
$$

Denoting the iteration or trials by the superscript t, a Taylor expansion of the objective function about the "current" t set of reactor-cycle energies yields,

Thus, given the information at the t th iteration, the next iteration determines the $t+l$ set of $E_{r c}$ so that the double summation term of Equation (1.28) is minimized subject to the constraints indicated in Figure l.8. Specifically, the sum of any column must equal the energy supplied (or extracted) during that particular reactor-cycle,

$$
\begin{equation*}
E_{r c}=\sum^{p \text { in } c} E_{r c p} \text { for all } r \text { and all } c \tag{1.29}
\end{equation*}
$$

At the same time, the sum of any row must equal the period's required nuclear potential,

$$
\begin{equation*}
N_{p}=\sum^{a l l} E_{x c p} \quad \text { for all } p \tag{1.30}
\end{equation*}
$$

The range of each $E_{r c p}$ is also constrained ("capacitated") via

$$
\begin{equation*}
\mathrm{E}_{r c p}^{\min } \leq \mathrm{E}_{r c p} \leq \mathrm{E}_{\mathrm{rcp}}^{\max } \text { for all } \mathrm{r} \text { and all } \mathrm{p} \tag{1.31}
\end{equation*}
$$

which is indicative of the minimum and maximum demand in the equivalent load range served by the nuclear units. Representative $E_{r c p}^{\min }$ and $E_{r c p}^{\max }$ for each $E_{r c p}$ in Figure 1.8 are presented in Table l.2.

At each iteration, the $E_{r c}$ cycle energy production requirements are passed to the CORSOM's which design the fuel reload batches (batch size and enrichment) to meet the

Table 1.2
Reactor Production Limits for 3 Reactor, 24 Period Example

Period p	Reactor 1		Reactor 2		Reactor 3	
	$\mathrm{E}_{\mathrm{lcp}}^{\min }$	$E_{\max }^{\max }$	$\mathrm{E}_{2 \mathrm{cp}}^{\min }$	$E_{2 c p}^{\max }$	$\mathbf{E}_{3 \mathrm{cp}}^{\min }$	$\mathrm{E}_{3 \mathrm{cp}}^{\max }$
1	669	762	629	722	669	762
2	635	760	596	720	635	760
3	687	756	0	0	687	756
4	577	747	540	707	577	747.
5	636	760	596	720	636	760
6	669	762	629	722	669	762
7	714	7.63	674	723	714	763
8	669.	762	629	722	669	762
9	669	762	629	722	669	762
10	616	755	577	714	616	755
11	610	759	571	718	610	759
1.2	718	760	678	720	0	0
13	656	761	617	721	656	761
14	0	0	703	722	743	763
15	610	752	571	712	610	752
16	706	758	0	0	706	758
17	657	761	617	721	657	761
18	686	762	646	722	686	762
19	724	763	684	723	724	763
20	686	762	646	722	686	762
21	686	762	646	722	686	762
22	643	758	604	718	643	758
23	632	759	593	719	632	759
24	0	0	703	722	743	763

$$
\text { All } E_{\text {rcp }} \text { in } G W H
$$

production schedule and refueling dates at minimum reactor cost. Information returned to the SOM is minimum total reactor nuclear fuel revenue requirement $\overline{\mathrm{TC}}_{\mathrm{r}}$ (for later summation of total system nuclear costs) and the nuclear incremental cost curve of each reload batch,

$$
\begin{equation*}
\lambda_{r c}\left(E_{r c}\right)=\frac{\partial \bar{T}_{r}}{\partial E_{r c}} \tag{1.32}
\end{equation*}
$$

With these incremental costs, the network algorithm reoptimizes nuclear production in order to minimize the objective function [Equation (1.28)]. The result is that all nuclear reload batches are designed at the same incremental cost within the limits of availability and loads (22).

To illustrate a single iteration, consider the 3 reactor, 24 period example of Figure 1.8 and Table 1.2. Figure 1.9 presents a hypothetical set of incremental cost curves returned to the SOM at the end of the previous iteration. The "stairstep" nature of the curves is indicative of the piecewiselinearization of $\overline{\mathrm{TC}}$ required to cast the double summation term in Equation (1.28) in an NP format. Note that the NP program effectively seeks to establish equal incremental costs among the reactor-cycles that compete for the nuclear potential (e.g., at the optimum, $\lambda_{1,1}^{*}=\lambda_{2,2}^{*}=\lambda_{3,1}^{*}$). Figure 1.10 presents the complete, optimized period-by-period reactor production schedule for this example.

Figure 1.9
Hypothetical Set of Incremental Cost Curves

Figure 1.10
Sample Reactor Production Schedule

$\begin{gathered} \text { PERIOD } \\ p \end{gathered}$	REACTOR I CYCLE:		REACTOR 2 CYCLE:			$\text { REACTOR } 3$ CYCLE:		NUCLEAR POTENTIAL, Np	
	1	2	1	2	3	1	2		
1	715		722			691		- 2128	GWH
2	697		720			652		2069	
3	722		REFU	ING		721		1443	
4	661			707		582		1950	
5	697			720		653		2070	
6	715			722		691		2128	
7	738			723		732		2193	
8	715			722		691		2128	
9	715			722		691		2128	
10	685			714		626		2025	
11	684			672		671		2027	
12	738			700		REFU	ING	1438	
13	668			674			761	2103	
14	REFUE			703			762	1465	
15		52		571			686	2009	
16		58		REF			706	1464	
17		61			687		657	2105	
18		62			704		686	2152	
19		63			719		724	2206	
20		62			704		686	2152	
21		62			704		686	2152	
22		58			674		643	2075	
23		59			671		632	2062	
24					722		743	1465	
HOLDOVER					500		REF	2500	
TOTAL	9150	837	1442	350	085	7401	3372	$49,637$	

In addition to the above network constraint Equations (1.30) and (1.31), which are special cases of linear constraints and can therefore be handled easily by a standard NP code (45), a nonlinear constraint for each period must also be incorporated. In particular, after the iterations are complete, a check must be made to ensure that the optimum $E_{r c p}$ reactor-period energy productions are compatible, or feasible, with regard to shape of the period's equivalent load curve. As illustrated in Figure 1.11, even though Equation (1.30) is satisfied, the set of energy productions for the four nuclear units is not feasible. Within that segment of the equivalent load curve preassigned to the nuclear units (i.e., after the must-run fossil units), the low minimum load permits only one unit A or B to operate as a base-load unit.

In order to account for this feasibility problem, a shape constraint (similar to a least-squares fitting criterion) was derived that of necessity, included second-order terms in $\mathrm{E}_{\mathrm{rcp}}$,

$$
\sum^{\text {avail. }} c_{1_{r p}} \cdot E_{r c p}+\sum_{i}^{\substack{\text { avail. } \\ \text { units }}} \cdot E_{r c p}^{2} \leq c_{p}
$$

The $c_{1_{r p}}, c_{2_{r p}}$ and c_{p} are constants for each reactor r in period p, precalculated by the $S O M$ using the nuclear segment

Figure 1.11

Example of Infeasible Equivalent Load Shape

of the actual equivalent load curve and the performance characteristics of the various nuclear units.

As mentioned above, the nonlinear shape constraint is implemented as a posterior check on the optimized reactorperiod production schedules. For each period violating the shape constraint Equation (1.33), the $E_{r c p}^{\min }$ and $E_{r c p}^{\max }$ of each reactor's production constraint Equation (1.31) are "squeezed" slightly toward their mean so that infeasible schedules (such as in Figure 1.11) are unlikely to occur in that period again. After checking and adjusting the production constraints for all infeasible periods, the revised network is again optimized. Such shape iterations continue until all periods of an optimized schedule satisfy their respective shape constraint.

When iterative convergence and feasibility of the production schedule is realized, overall fossil-nuclear system operation has been optimized for the particular possible alternative maintenance and refueling schedule under investigation.

With the optimization task completed, the resulting (minimum) $\overline{\mathrm{TC}}$ * represents the total revenue requirement for nuclear fuel RR_{N}. By present-valuing all of the other period expenditures (received as input from the SIM) according to Equation (1.3), the determination of ORR is complete,

$$
\begin{equation*}
O R R=R R_{N}+\sum^{z} \frac{1}{(1+x)^{F_{p}}}\left(X_{F_{p}}+X_{S_{p}}+X_{U_{p}}\right) \tag{1.34}
\end{equation*}
$$

The ORR operating revenue requirement is appropriately stored for later comparison with that of other possible alternative strategies. With the completion of this task, processing of the particular alternative refueling and maintenance strategy is complete. And with completion of the last alternative strategy, selection of the minimum ORR cost strategy becomes possible.

1.7.2 SYSOPT, A Computerized SYStem OPTimization Model

SYSOPT, a 2100 card Fortran IV version of the SYStem OPTimization Model is detailed in Appendix F. SYSOPT is link-edited with the Out of Kilter Network Program (45) which represents an additional 1200 cards in Fortran IV and Assembler Language. Out of Kilter is detailed in Appendix G. This section merely summarizes the capabilities of the current combined version of SYSOPT.

The limitations of the current version of SYSOPT, though easily altered, are as follows:
(1) up to 15 reactors,
(2) up to 15 cycles per reactor within the horizon,
(3) up to 3 cycles per reactor beyond the horizon,
(4) no limit on number of strategies per computer run, and
(5) up to 100 periods per strategy.

Input data for each strategy includes:
(1) Present value rate,
(2) Various convergence criteria, and
(3) Maximum number of iterations to be permitted. Input data supplied manually for each reactor includes:
(1) Optional initial estimates of $\lambda_{r c}^{*}$ or $E_{r C^{\prime}}^{*}$
(2) Holdover energy at end of planning horizon, and
(3) Cycle energies and refueling dates beyond planning horizon.

The large volume of SYSINT output required by SYSOPT may be passed either on disk, magnetic tape or punched cards.

As for typical running times on an IBM 370 Model 155 computer (MVT environment), a hypothetical six reactor utility required only 9 CPU seconds per inner iteration (exclusive of time spent in CORSOM's) for strategies 72 periods long and totaling 30 reactor-cycles. The SYSOPT code itself requires 130 K bytes of storage (plus $\sim 26 \mathrm{~K}$ for computer supervisor), while the Out-of-Kil.ter Network Program requires an additional 135 K . Using an overlay structure reduces the 265 K total to 200 K . Execution time is not noticeably increased by the use of the overlay structure.

1.8 Model Evaluation

To properly evaluate the SIM and SOM (or more specifically, the computerized versions SYSINT and SYSOPT, respectively), required interfacing them with a RAMM and CORSOM's to complete the nuclear power management multi-year model of Figure l.3.

For the purposes of developing and testing a SIM and SOM, the multitude of possible alternative strategies output by a

RAMM were replaced by a few typical strategies developed through simple hand calculations. On the other hand, the online iterative nature of the optimization procedure requires computerized CORSOM's. The state of the art, as witnessed by the concurrent methods development research by Kearney (41) and Watt (55), precluded utilization of an established multi-year CORSOM. In order to proceed with the testing of the SIM and SOM, QKCORE, a psuedo-one dimensional, quick core model (performing simulation only), was developed (see Appendix H). The nature of QKCORE necessarily limited the scope of the evaluation to LWR's with the following characteristics:
(1) Modified-scatter refueling with fixed number of zones (e.g., refueling fraction was fixed at onethird),
(2) No plutonium recycle,
(3) No stretchout beyond reactivity-limited energy, and
(4) No cycle-to-cycle optimization
(i.e., at each refueling, minimum enrichment chosen regardless of future cycles).

To evaluate the model's usefulness, several sample cases were calculated. An electric utility possessing six 1050 MW PWR's on a 46 -unit $11,000 \mathrm{MW}$ system was hypothesized. Minimum customer loads (typically 4000 MW), combined with other system operating constraints, restricted average nuclear availability-based capacity factors to about 80 per cent, i.e., below base-load operation.

Three possible refueling strategies were investigated: S-1: strictly annual refuelings

S-2: gradual shift to longer (14 month) cycles
S-3: immediate shift to the longer cycles with additional cost of one million dollars for each short notice enrichment change.

Underlying later discussion of the choice from among the several optimized strategies are the properties of the individual strategies themselves. The important numerical properties are convergence, incremental costs and computational requirements. The results (see Table l.3) of Strategy 2 over a six year horizon will be used for most of the discussion. However, when this Strategy fails to clearly demonstrate a point under discussion, one of the other two will be utilized.

1.8.1 Convergence

Starting from a relatively poor initial guess of equal energy in each cycle regardless of cycle length, the optimization of S-2 required ten cost iterations to converge to the initial optimum $\overline{\mathrm{TC}}$. The iteration-by-iteration system nuclear fuel cost $\overline{T C}^{t}$ (i.e., the objective function of the optimization) in presented in Figure l.12. Since initially 50% of the 72 periods failed their shape constraint, three more iterations were required to produce the feasible optimum. This resulted in a cost increase of only 0.25 (out of nearly 300) million dollars.

$$
\text { Table } 1.3
$$

Revenue Requirements and Undiscounted Energy for Accepted Global Optimum of Strategy 2 over Six Year Horizon

	$10^{6} \mathrm{~S}$	$10^{6} \mathrm{MWH}$
Fossil Fuel	276.583	85.836
Startup-shutdown Cost	1.704	--
Emergency Purchases	0.407	0.048
Non-nuclear Production	278.964	85.884
Nuclear Fuel	297.709	194.077
System Production	576.673	279.961
Fixed Firm Purchase	133.920	81.468
System Total	710.593	361.429

Figure 1.12

The symbol Δ in the Figure represents the energy step size used to segment the continuous incremental cost curves into the stair-step cost functions required by the SOM's NP optimization package. As Δ decreases, the accuracy of the stair-step representation increases as do the computational requirements. Thus, the relatively poor $\lambda_{r c}$ fits at large Δ were utilized for the initial iterations until either the cycle energies converged (to within a specified percent of Δ, typically 100%) or the objective function itself converged (i.e., the last iteration failed to improve the objective function by more than a required amount, say \$2000): In fact, iteration 5 displayed "negative" improvement because piecewise-linearization of $\overline{\mathrm{TC}}_{r}$ prevented the NP program from seeing the smooth increase of $\lambda_{r c}$ for fractional Δ changes in cycle energy. The net result was that the NP program over-reacted to small differences between various $\lambda_{r c}$ incremental costs.

After convergence using the first Δ, a second and smaller Δ was utilized and convergence again attained using the same two criteria. This second converged solution was considered to be the initial optimum $\overline{\mathrm{TC}}$.

From three standpoints, a third Δ choice appeared unwarranted:
(1) With total nuclear fuel cost approaching $\$ 300,000,000$ for the six year horizon, the fuel cost improvement from the $\Delta=100 \mathrm{GWH}$ optimum solution to $\Delta=20$ was
only $\$ 220,000$ for the fivefold Δ reduction and would undoubtedly have been much less than that for another fivefold reduction.
(2) At $\Delta=20 \mathrm{GWH}$, cycle energies were already converged to well within 1% ($\pm 50 \mathrm{GWH}$ out of $6000-8000 \mathrm{GWH}$). and
(3) The fuel cost errors and cycle energy errors both appear to be well within the noise levels of CORSOM errors (> $\$ 100,000$ per reactor over the planning period) and the errors inherent in forecasting load demands and availabilities (> 1\%).

Using the above sequence of the two step sizes, all cases effectively converged (i.e., objective function decreasing insignificantly for $\Delta=20 \mathrm{GWH})$ within ten iterations. Inasmuch as completed CORSOM's are estimated to require over 3 minutes of IBM 370 Model 155 CPU time per reactor strategy per iteration (41), an average six reactor-four iteration solution would involve over an hour and a half of computer time for the CORSOM's alone. The ad hoc simulator QKCORE required less than 3 minutes for all ten iterations.

1.8.2 Nuclear Incremental Costs at the Optimum

An analytical discussion of nuclear utility system optimization similar to that in (22) presents two conclusions relating a strong primary dependence between pertinent cycle incremental costs for each reactor during each period and a
weak secondary conclusion relating an idealized state that may not be attainable:

Conclusion I:

At the optimum reactor-cycle energies,

$$
\lambda_{N_{p}}=\frac{\partial \overline{T C}_{r}}{\partial E_{r c}} \quad \text { for all } \quad \text { (1.35) }
$$

during each period for the pertinent cycle of each reactor.

Conclusion II:
At the optimum reactor-cycle energies,

$$
\begin{equation*}
\lambda_{N}=\frac{\partial \overline{T C}_{r}}{\partial E_{r c}} \tag{1.36}
\end{equation*}
$$

for all periods, all cycles and all reactors simultaneously.
As for typical values of $\lambda_{N_{p}}$ and λ_{N}, the results of Widmer (57), Kearney (51) and Watt (55) indicate optimum midrange nuclear incremental costs in the range of 0.9 to 1.5 \$/MWH.

The terms "strong" and "weak" refer to the number of incremental cost violations anticipated because of over-riding engineering and time constraints.

The $\lambda_{r c}^{*}$ cycle-by-cycle incremental costs at the optimum of Strategy 2 are presented in Figure l.13. In analyzing these values, four important points are to be made. First, the general equality of $\lambda_{r c}^{\star}$ at each point in time confirms Conclusion I.

Figure 1.13
Incremental Costs and Cycle Energies at Accepted Global Optimum for Strategy- 2 in Case I

Secondly, incremental costs increase over the first few cycles as the short-range incremental costs of the first year give way to the mid-range incremental costs of later cycles. During the first year, incremental costs are very low because a large proportion of each reactor's cycle costs (e.g., separative work, fabrication and reprocessing) are already spent or committed. Discharge burnup is the only variable. Thus, $\lambda_{r l}^{*}$ is Widmer's short-range incremental cost (57, 59). For a cycle further into the future, a larger degree of flexibility is available in the design of the reload batch (size and enrichment) and a larger fraction of total cycle costs can thus be altered. For c >2, $\lambda_{\text {rc }}^{*}$ becomes Widmer's mid-range incremental cost (58, 59). Thus, shortrange incremental costs evolve into mid-range incremental costs.

During the middle two to five years of Strategy 2 , the constancy of $\lambda_{r c}^{*}$ for most reactor-cycles provides ample evidence that Conclusion II is also valid.

Finally, the $\lambda_{r c}^{*}$ beyond the fifth year are, indeed, optimal (but erratic) due to the assumed horizon end condition which involved specifying cycle energies beyond the horizon in order to permit cost evaluation of the core contents at the horizon.

Though Figure 1.13 confirmed Conclusion II, the typical $\lambda_{r c}^{*}$ optima of the other strategies did not. For example, Figure 1.14 presents $\lambda_{r c}^{*}$ for Strategy 1 over the same six

Figure 1.14

year horizon. Though Conclusion I continues to be valid with few violations, evidence supporting Conclusion II is nonexistent. However, each inconsistency in these incremental costs as cycles begin and end, can be translated directly into the optimal loading order. During reactor-cycle E-3 (with $\lambda_{\mathrm{E}, 3}^{*}=1.689$ \$ $/ \mathrm{MWH}$), Reactor E is loaded only after all other nuclear units (with $\lambda_{r c}^{*}=1.240 \$ / \mathrm{MWH}$) are fully loaded. Since for economic reasons $E-3$ is always last, it generates $E_{E, 3, p}^{\min }$ during each included period of cycle 3 and, hence, $E_{E, 3}=E_{E, 3}^{\mathrm{min}}$. As Figure 1.15 illustrates, this lower limit on cycle energy prevents $E-3$ from reaching the cost parity of Conclusion I. (If $E_{E, 3}$ was less than $E_{E, 2}$ min obviously uneconomic fossil energy costing over $2 \$ / \mathrm{MWH}$ would be substituted for its 1.7 \$/MWH energy.)

Reactor-cycle $\mathrm{F}-1$ of Figure 1.14 has the opposite problem. With the initial core configuration assumed fixed, $\lambda_{\mathrm{F}, 1}^{*}$ is a (cheap) short-range incremental cost. (Cycle burnup is the only design variable.) Thus, Reactor F is always loaded first, generating $E_{F, l}^{\max }$ for the cycle. In an analogous manner, this upper limit on cycle energy can also prevent incremental cost parity.

The other $\lambda_{r c}^{*}$ inconsistencies of Figures 1.13 and 1.14 are merely more complicated versions of these two simple cases-reactor-cycles $E-3$ and $F-1$. In each instance, the optimal economic period loading order is easily deduced: cheapest first.

Figure 1.15

Comparing all reactor-cycles of Figures 1.13 and 1.14, $\lambda_{r c}^{*}$ is seldom over $1.41 \$ / \mathrm{MWH}$. As Figure 1.2 pointed out, base-loading of a utility system's nuclear reactors may be impossible because the utility's minimum load is too low. However, since λ_{N} is always much less than $\lambda_{F}(>2.0 \$ / M W H)$, two possibilities exist for economically utilizing the excess nuclear capacity during the low load periods. One alternative is to sell excess nuclear capacity (i.e., energy) to neighboring utilities at a price greater than its incremental cost. Incorporation of such nuclear economy interchange sales into the SIM and SOM is desirable since this may well become a common utility practice.

The second option is to use the excess capacity on the utility's own system by operating a pumped-hydro station. By pumping during low load hours, $\lambda_{p}=\lambda_{N} \leq 1.4 \$ / \mathrm{MWH}$. Using the stored energy for peak-shaving high cost fossil the next day, $\lambda_{G}=\lambda_{F}>\sim 4 \$ / \mathrm{MWH}$. Even if overall pumped-hydro efficiency is only 67\%, total operating revenue requirements are reduced roughly 2 \$/MWH (i.e., 50\% of λ_{F}) for each fossil MWH displaced. Since such a station is also comparatively cheap to install (100-200 \$/kwe), a pumped-hydro station on the grid of a heavily nuclear utility produces startling economies (21, 35). "Froma utility's viewpoint, pumped storage is a natural fit with large base-load plants. It can take on load instantly, it uses off-peak power to replenish its resources, and its reliability is second to none (ㄷ)."

As pumped-hydro stations become more numerous [~4400 MW installed versus over 8000 MW under construction in entire United States at end of 1972 (5)], the appropriate planning tools must be developed. Thus, it is highly recommended that pumped-hydro units (and hydro units, as well) be incorporated into the SIM.

Underlying the above discussion of incremental costs is the source of those costs--the CORSOM, or specifically, the QKCORE in-core simulator developed merely to test the SOM. By forgoing reload optimization, QKCORE is unable to see some obvious means of saving money. For instance, reactor-cycle E-3 of Figure 1.14 has a very high incremental cost due to energy production requiring 4% enriched reload fuel. Yet, the previous cycle loaded the minimum enrichment allowed (1.5\%). If QKCORE allowed early shutdown (reactivity > 0) and optimized the enrichments alone, it might well have loaded 2.5% fuel in $E-2$, burned only part of the way down and then loaded 3.0% fuel for a complete burn. Indeed, a full-scale CORSOM would be able to optimize reload batch size, as well. What would be the optimum incremental costs for such modes of operation? Obviously, the incorporation of more versatile CORSOM's is a prerequisite to completing a fully operational nuclear power management model.

1.8.3 Computational Requirements

The computational requirements of SYSINT are detailed in Section 1.6 .2 while SYSOPT details can be found in Section 1.7.2. However, Table l.4 presents a summary of computer usage for Strategy 2.

1.8.4 Evaluation of Competing Strategies

Having discussed the properties of a single optimized strategy, it now becomes appropriate to discuss the broader question of strategy versus strategy comparison. In particular, given the same set of input data (i.e., forecasts), which of the individually optimized strategies represents the optimum plan for operating the utility system? How sensitive is this choice to various parameters in the input? To answer these questions, the results for the three Strategies over a four year horizon are presented in Table 1.5.

Recall that $S-1$ is an annual refueling strategy, S-2 a gradual shift to longer cycles and S-3 an immediate shift to longer cycles.

Of prime importance in correlating the results, is the refueling downtime of each strategy. Naturally, the more rapid the shift to longer cycle lengths, the fewer refuelings that must be scheduled.

With less nuclear downtime, the nuclear energy production increases and fossil energy production decreases by approximately the same amount. Also, startup-shutdown cost is decreased as the fossil units move farther away from nightly

Table 1.4

Computational Requirements for Strategy 2

(Based on IBM 370 model 155 computer operating in MVT environment)

Program	Total Core Storage (Bytes)	CPU Time	Input/ Output Time	Time Units
SYSINT	134 K	2.2	0.5	Sec/period
SYSOPT	$\left\{\begin{array}{l}246 \mathrm{~K} \text { with } \\ \text { overlay }\end{array}\right\}$	9	7	Sec/inner iteration
QKCORE	$\left(\begin{array}{l}371 \mathrm{~K} \text { without } \\ \text { overlay }\end{array}\right.$	13	<1	Sec/inner iteration

TABLE 1.5 REVENUE REQUIREMENTS AND UNDISCOUNTED ENERGY OVER FOUR YEARS (48 Month Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)			
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months) Average cycle length (months) System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	$\begin{aligned} & 33 \\ & 14.5 \\ & 0.647 \end{aligned}$	31 15.2 0.651
$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$			
Fossil fuel	$\begin{aligned} & 184.223 \\ & (51.703) \end{aligned}$	$\begin{aligned} & 176.348 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 173.250 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.497	1.281	1.227
Emergency purchases	$\begin{gathered} 0.464 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.317 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.265 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 186.184 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 177.946 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 174.742 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 198.267 \\ (118.376) \end{gathered}$	$\begin{gathered} 197.189 \\ (120.035) \end{gathered}$	$\begin{gathered} 199.821 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 384.451 \\ (170.132) \end{gathered}$	$\begin{gathered} 375.135 \\ (170.132) \end{gathered}$	$\begin{gathered} 374.563 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{aligned} & 95.166 \\ & (54.312) \end{aligned}$	$\begin{aligned} & 95.166 \\ & (54.312) \end{aligned}$	$\begin{aligned} & 95.166 \\ & (54.312) \end{aligned}$
Penalty for short-notice enrichment changes			
System Total	$\begin{gathered} 479.617 \\ (224.444) \end{gathered}$	$\begin{gathered} 470.301 \\ (224.444) \end{gathered}$	$\begin{gathered} 471.729 \\ (224.444) \end{gathered}$

shutdown. Fewer emergency energy purchases are required due to increased on-line resource margins.

All three components of non-nuclear production cost thus favor reducing downtime. (By looking at the differences in non-nuclear production cost, average long-term levelized replacement energy costs of 5.2-5.7 \$/MWH can be calculated.)

As mentioned above, each succeeding strategy is able to increase production because of less refueling downtime. However, the cost of this energy does not increase proportionally. In fact, compared to $S-1, S-2$ generates more nuclear energy for less money: To explain this anomaly, consider the following:
(1) Less downtime means fewer reloads must be purchased.
(2) Increased average cycle length, however, means increased cycle energy and reload enrichment.
(3) Even with increased batch enrichment cost, the savings due to foregone reloads and the increased energy for amortizing fixed costs, etc., result in a 1.98 decrease in levelized nuclear fuel costs over the four year horizon.
(4) Due to fixed initial conditions and only gradual shift to longer cycles, S-1 and S-2 are very similar in energy production during the first year. At the end of four years, energy production by $\mathrm{s}-2$ is only 1.4\% higher. (For longer horizons, the first year
matters less and energy production differences are greater.)
(5) Finally, since the levelized nuclear fuel cost decreases percentagewise more than energy production increases, the net result is more nuclear energy for less money.

Turning to $\mathrm{S}-3$, the immediate shift to longer cycles results not only in increased energy production, but also in increased levelized fuel cost. The result is a return to normalcy--more nuclear energy costs more.

Looking then at system production cost, $\mathrm{s}-3$ saves $\$ 570,000$ over S-2 and roughly ten million dollars over s-1. This, of course, is not enough to absorb s-3's assumed additional two million dollars in penalties for the two short notice enrichment changes required for the immediate shift to longer cycles. Thus, among the three strategies, S-2 has minimum total system cost.

During the first four years, then, $\mathrm{S}-2$'s gradual shift to longer cycles saves 9.3 million dollars compared to the annual cycles of $S-1$. Such a savings clearly justifies a few hundred thousand dollars in overhead necessary to implement the engineering design changes in the reload fuel specifications.

However, S-2 and S-3 are roughly competitive depending on the magnitude of the enrichment change penalty. Without the penalty $\mathrm{s}-3$ is favored by roughly $\$ 600,000$. (Of this
$\$ 600,000$, roughly $\$ 95,000$ could also be saved by $\mathrm{s}-2$ were it allowed to freely change initial enrichment for two of the reactors.) But after the 2 million dollar penalty, $\mathrm{S}-3$ is 1.4 million dollars more costly.

1.9 Summary

This work presents a multi-reactor, multi-year fuel management model consisting of four sub-models (RAMM, SIM, SOM and CORSOM). The SIM and SOM sub-models have been discussed in some detail. Numerical results were presented as an example of the model's ultimate versatility. Some work remains to be done before the completely computerized nuclear power management multi-year model is ready for implementation on nuclear utility systems. The most severe deficiency is not in either the SIM (SYSINT) or the SOM (SYSOPT), but is due to the large computational requirements of current PWR CORSOM's (estimated at several hours for optimizing a single refueling and maintenance for the entire utility system). In addition, CORSOM's for the other types of reactors are also needed. Acceptable RAMM's already exist [e.g.,(20)] and merely require proper interfacing.

As for the major required improvements in SYSINT and SYSOPT, there are two: (1) addition of hydro and pumpedhydro unit types (likewise, permitting initial cycles of nuclear units to be treated as a scarce-resource initial condition) and (2) on-line sensitivity analysis of the
effect on total operating revenue requirement of various forecasting errors, such as incorrect customer load demands or unit performance probabilities.

CHAPTER 2

 AN INTRODUCTION TO NUCLEAR

 AN INTRODUCTION TO NUCLEAR
 POWER MANAGEMENT

2.1 Characteristics of a Utility

An electric utility, like any other business enterprise, exists because its product fulfills an established need. The utility generates electricity to supply the requirements, or load, demanded by the customers in its geographical service region. The utility's objective is to do so at minimum total cost.

These three characteristics (load demand, power supply and utility objective) must be fully understood before system optimization techniques can be successfully applied to utility management problems.

2.1.1 The Demand: Customer Loads

The load supplied by a utility at any one instant in time is the sum of the individual loads demanded by thousands of customers. These loads range from a residential customer's 40 -watt light bulb to a heavy industrial customer's 100 MW 's of factory equipment. The statistical nature of the sum of hundreds of thousands of residential customers, thousands of commercial customers and scores of industrial customers makes minute-by-minute load patterns far too cumbersome for even daily management planning work. The typical unit of analysis is the average load during the hour. These hourly loads follow definite daily and weekly patterns for each utility (see Figure 2.1). Minimum loads range from 35% to 60% of peak demand depending on the utility's mix of large round-theclock heavy industrial customers and small cyclical loads due to residential

Figure 2.1

and commercial customers. Even for the same utility, seasonal variations and annual load growth affect these patterns.

For daily (or even annual) models, chronological hourly load detail may be appropriate. However, multi-year and long-range models cannot afford to look at each of the 8760 hours in each year. For these models, the load-duration curve is more appropriate. Figure 2.2 presents the load-duration curve for the data of Figure 2.1. The 168 hours in the week are merely rearranged in order of decreasing load demand. Thus, the peak demand occurs during the first hour of the new time scale and the minimum load occurs during the last hour. The interpretation of the new time scale is the number of hours the load was greater than or equal to a specified power level - in short, the load's duration.

The rearrangement of loads results in the complete loss of chronological information, but preserves the more important property that the integral under the curve is the total energy demanded during the week.

Realizing hourly loads are actually averages of a rapidly changing but continuous function, such histograms are usually drawn as smooth curves. In addition, two other changes are made to the load representation throughout the work reported here. First, the axes are reversed so that the power level P is the abscissa and duration d the ordinate (see Figure 2.3). This facilitates mathematical treatment of power level as the independent variable and duration as the dependent variable. The second alteration involves normalizing the duration scale by the total length of the time period T^{\prime}. The new zero-to-one ordinate scale can be interpreted as not only the fractional duration F but, more importantly, as the probability that the load will be greater than or equal to the specified power level at a random instant of time. From Figure 2.3, the load

Figure 2.2

Figure 2.3

was always (100% of the time) greater than or equal to the minimum load of 3120 MW , but never (0% of the time) greater than the peak of 7050 MW .

Neither of these changes alters the basic property that, in the correct units, the integral under the curve is the total energy demanded during the time period,

$$
\begin{equation*}
D_{T}=\int_{0}^{\infty} d \cdot d P=T^{\prime} \int_{0}^{\infty}\left(\frac{d}{T^{\prime}}\right) d P=T^{\prime} \int_{0}^{\infty} F d P \tag{2.1}
\end{equation*}
$$

2.1.2 The Supply: Generating Equipment

2.1.2.1 Types

In providing installed capacity to meet the customer loads, a utility relies on up to five different types of generating equipment:
(1) Nuclear units: very large capacity units generating electricity via the heat released by a sustained nuclear chain reaction contained within the reactor's core. If the core coolant exits as a gas or vapor (as in a BWR), it may be expanded directly in turbine-generators. Otherwise, the heat may be first transferred in boilers to produce expandable steam (as with a PWR).
(2) Fossil steam units: typically large capacity coal, oil and/or gas-fired boilers producing high temperature-high pressure steam that is expanded in turbine-generators.
(3) Fast-start peaking units: small fossil-fueled jet engine, gas turbine or diesel-driven generators.
(4) Hydro units: typically medium capacity hydroelectric turbines housed in man-made dams. These dams create the necessary water height differential, or head, by trapping a river's inflows in the reservoir behind the dam.
(5) Pumped-hydro units: similar to hydro except that the dualpurpose turbine may also operate as a pump, transferring water from the foot of the dam to the reservoir. Like a storage battery, excess energy is temporarily stored in another form (water at a height) for later retrieval by reversing the process.

2.1.2.2 Data Required On Each Unit

Regardless of the type of unit, certain key information is required by the system planner on each and every unit of the system:
(1) minimum and maximum power level, ${ }^{1}$
(2) fuel consumption vs. power level,
(3) fuel cost,
(4) fuel inventory,
(5) transmission losses,
(6) startup-shutdown data,
(7) maintenance requirements and
(8) reliability data.

Table 2.1 presents a general summary of these characteristics for each unit type, including capital cost estimates.

The minimum and maximum power levels indicate the lower and upper bounds, respectively, for continuous plant operation. Below the minimum (typically 10 to 50 percent of the maximum), engineering problems, such as boiler flame instability for fossil units, preclude reliable and sustained operation. Similarly, stressing the unit above its maximum power level would be unwise.

[^0]TABLE 2.1
Characteristics of Types of Electric Generating Units

	Dimension	Nuclear Steam (LWR)	Fossil Steam	Fast-Start Peaking	Hydro	PumpedHydro
System Use		Base-Load	Base-Load and Cyclical	Peaking	Inventory Dependent	Peaking
Capacity Fact.	Percent	60-90	30-90	Up to 20	Up to 100	Up to 50
Capital Cost	\$/kwe	300-450	250-400	100-150	300-500	100-200
Unit Capacity	MW	500-1200	200-1200	10-50	10-600	50-400
Min. Power	\% Cap.	10-40	10-50	75-90	0-10	25-40
Avg. Ht. Rate	MBTU/MWH	10.5-11	8. 5-14	12-17	N/A	N/A
Avg. Net Energy Conversion Eff.	Percent	31-34	25-40	20-28	85-93	65-80
Fuel Cost	¢/MBTU	16-20	$\begin{aligned} & \hline 35-80 \text { (Coal) } \\ & 50-100 \text { (Oil) } \\ & \hline \end{aligned}$	50-100	0	Cost of pumping power
Energy Cost	\$/MWH	1.7-2.2	3.0-8.4	6. 5-20	0	$\sim 1.5 \times$ pumping power
Comments on Fuel Inventory		Depends on fuel cycle	Approx. const. at 100 days supply	$\begin{aligned} & \text { 4-8 hours } \\ & \text { (Oil) } \end{aligned}$	$\begin{gathered} \text { Depends } \\ \text { on } \\ \text { season } \\ \hline \end{gathered}$	Depends on operating cycle
Trans. Losses	Percent	Up to 10	Up to 10	Up to 5	Up to 10	Up to 15
SU-SD Ht. Reqt.	MBTU/MW Cap.	3-6	3-8	0-2	~ 0	~ 0
Min. SD Time	Hours	<2	2-10	<0.3	<0.5	<0.5
Maint. Regt.	Week/Year	$4-8 \mathrm{wk} / \mathrm{refuel}$	3-5	1-4	1-2	1-2
Forced-Out Rate	Percent	Up to 15	Up to 20	Up to 40	Up to 5	Up to 10
Perf. Prob.	Percent	85-100	80-100	90-100	95-100	95-100

Fuel consumption data are important in characterizing the unit's thermal efficiency as a function of its power level. Figure 2.4 presents H (heat input rate) versus P (power level) at the valve points typical of a fossil generating unit. Defining \bar{h} and $h_{\text {inc }}$ as the average and incremental heat rates, respectively,

$$
\begin{align*}
& \frac{\mathrm{H}}{\mathrm{P}} \equiv \overline{\mathrm{~h}} \equiv \frac{3.413}{\bar{\eta}} \quad \text { Mega BTU } / \mathrm{MWH} \tag{2.2}\\
& \frac{\mathrm{dH}}{\mathrm{dP}} \equiv \mathrm{~h}_{\mathrm{inc}} \equiv \frac{3.413}{\eta_{\mathrm{inc}}} \quad \text { Mega BTU/MWH } \tag{2.3}
\end{align*}
$$

During fuel consumption tests, H can only be measured to within a few percent (20). This uncertainty plus the complicated nature of the true H curve ($\underline{4}, \underline{52}$) make the actual derivative $\mathrm{dH} / \mathrm{dP}$ impossible to obtain. The result is that $\Delta H / \Delta P$ is usually substituted and treated as a constant for each capacity increment (i.e., between valve points). Figure 2.5 presents \bar{h} and $h_{i n c}$ for the data of Figure 2.4. With $h_{\text {inc }}$ interpreted as the additional heat input required to generate the next increment of electrical energy, $H\left(P>K_{1}\right)$ can be expressed mathematically as,

$$
\begin{equation*}
H(P)=H_{1}+\int_{K_{l}}^{P} \frac{d H}{d P} d P=\bar{h}_{l} K_{l}+\int_{K_{1}}^{P} h_{i n c}(P) d P \tag{2.4}
\end{equation*}
$$

In terms of thermal energy, heat rate data can be treated as constant for years at a time. By then applying ϕ time-dependent thermal energy fuel cost, similarly shaped time-dependent incremental energy costs can be calculated,

$$
\begin{equation*}
\lambda(\mathrm{P}, \mathrm{t})=\mathrm{h}_{\mathrm{inc}}(\mathrm{P}) \phi(\mathrm{t}) \quad \text { and } \quad \overline{\mathrm{e}}_{1}=\bar{h}_{1} \phi(\mathrm{t}) \tag{2.5}
\end{equation*}
$$

In the same way that fuel cost has more meaning for a fossil plant than for a hydro unit (where the water is normally assumed to be free), fuel inventory information pertains specifically to the energy-limited type

Figure 2.4
Heat Input Rate versus Net Power Output Level for Typical Fossil Unit [After (37)]

Figure 2.5

of units - nuclear, hydro and pumped-hydro. Fossil fuel inventories are normally maintained at about a 100-day supply (20). Thus, deliveries and consumption can be treated under LIFO last-in, first-out accounting procedures while considering the fuel inventory as an additional initial fixed plant investment. On the other hand, the nature of the nuclear unit's fuel cycle (i.e., core reactivity requirements), the seasonal nature of a hydro unit's river inflows and the weekly pumping-generating cycles of a pumpedhydro unit create situations when there is not enough of the cheap resource to operate the unit at full power all the time. The fuel (or water) becomes a so-called "scarce resource." Generating decisions utilizing scarce resources require a separate method of analysis (see Sections 2.2.2 and 2.2.3).

Transmission losses from the generating unit to the load center must be accounted for. If the customer demands 10 MW , a unit 150 miles away aray have to generate 11 MW . Though detailed load flow calculations are required for on-line dispatching (43), more approximate representations are suitable for planning scales on the order of months or years. One of the simplest assumptions is that each unit loses a characteristic percentage of its generation due to this resistance heating. The net MW output for each valve point can then be written down by this percentage so that, just as load demand is in units of MW at the load center, so is unit production. An even simpler assumption (and the one adopted throughout this work) is that transmission losses are negligible or, at least, invariant.

Included in startup-shutdown data are generally three pieces of information: (1) the net cost in time-dependent units of equivalent thermal energy input required for a combined startup-shutdown sequence (see Figure 2.6), (2) the minimum shutdown time (i.e., it is not practical to

Figure 2.6

Startup-Shutdown Cost Data Sheet

ONE HOUR NORMAL OPERATION
AUXILIARY POWER

MWH
GENERATION (GROSS) \qquad MWH
RESULTANT HEAT RATE

shut down a fossil unit and then have it back on-line within an hour or so even if it were economically attractive), and (3) maximum rate of change of power due to engineering limitations. For a model simulating operation on the order of years, only the startup-shutdown cost is required. For models dealing with day-to-day operating decisions (and restrictions), all three must be included.

Preventive maintenance is performed to keep the units in good operating order. Typically, each unit type has a periodic maintenance requirement, such as two weeks per year. As for scheduling this maintenance, most utilities have an annual peak demand period (frequently the summer months) when scheduled maintenance is prohibited to provide the maximum possible system resources (i.e., wholly-owned generating capacity plus the committed capacity of neighboring utilities) to meet the peak. On a calendar, these taboo periods act as partitions between scheduling windows. It is during these windows that all of the system's required maintenance must be scheduled.

Reliability data account for unscheduled maintenance downtime due to a unit being forced out of service by operating problems, a "forced outage." Normally quoted is the forced-outage rate FOR defined by the Edison Electric Institute (7) (see Figure 2.7) as

$$
\begin{equation*}
\mathrm{FOR} \equiv \frac{\mathrm{FOH}}{\mathrm{FOH}+\mathrm{SH}} \tag{2.6}
\end{equation*}
$$

(Instances of merely derating the unit capability to less than full power due to equipment problems, "forced-deratings," have been ignored.) Currently, the utility industry is continuing (2) to discuss the proper measurement of unit reliability. For this reason, the following detailed discussion is presented.

Figure 2.7
Edison Electric Institute Definitions Related to
Equipment Availability (Assuming No Forced-Deratings)

Defining the "importance" f as the fraction of forced-outage hours occurring when service was desired (2), the suggested breakdown of FOH in Figure 2.7 becomes

$$
\begin{align*}
& \mathrm{FOSH}=f \mathrm{FOH} \tag{2.7}\\
& \mathrm{FORH}=(1-f) \mathrm{FOH} \tag{2.8}
\end{align*}
$$

These additions are required because FOR is not always an accurate indication of how often the unit did not perform when it was called upon. A much better indication of forced-outage effects is q, the nonperformance probability defined as,

$$
\begin{equation*}
\mathrm{q} \equiv \frac{\mathrm{FOSH}}{\mathrm{FOSH}+\mathrm{SH}} \tag{2.9}
\end{equation*}
$$

Thus the probability that the unit will perform service when called upon, p, can be defined as

$$
\begin{equation*}
\mathrm{p} \equiv 1-\mathrm{q} \tag{2.10}
\end{equation*}
$$

Returning to Equation (2.9) and utilizing Equation (2.7),

$$
\begin{equation*}
\mathrm{q}=\frac{f \mathrm{FOH}}{f \mathrm{FOH}+\mathrm{SH}} \tag{2.11}
\end{equation*}
$$

From Equation(2.6),

$$
\begin{equation*}
\mathrm{FOH}=\mathrm{SH}\left(\frac{\mathrm{FOR}}{1-\mathrm{FOR}}\right) \tag{2.12}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathrm{q}=\frac{\mathrm{SH}\left(\frac{\mathrm{FOR}}{1-\mathrm{FOR}}\right) f}{\mathrm{SH}\left(\frac{\mathrm{FOR}}{1-\mathrm{FOR}}\right) f+\mathrm{SH}} \tag{2.13}
\end{equation*}
$$

Rearrangement and cancellation lead to the following result,

$$
\begin{equation*}
\mathrm{q}=\frac{f \mathrm{FOR}}{1-\operatorname{FOR}(1-f)} \tag{2.14}
\end{equation*}
$$

Figure 2.8 plots the nonperformance probability as a function of the forced-outage rate and the importance. As f approaches 1, q approaches FOR as would be expected for base-load units which are operated whenever possible. On the other hand, forced-outage rate statistics of around 20% to 40% for peaking units make these units appear very unreliable. Considering their low utilizations of around 10%, FOR converts into a respectable 2.5% to 6% nonperformance probability.

2.1.2.3 Five-Unit Reference Utility System

A small Reference Utility System consisting of five units will be used throughout Chapters 2 and 3 for presenting numerical examples designed to assist the reader in understanding the procedures developed here. Quoting Wagner (54), "the manager who resolutely avoids familiarizing himself with the basic mechanism [underlying] his . . . application is flirting with trouble. If he really wants to maintain control, he must nurture his insight to the approach."

The pertinent unit data are presented in Table 2.2. The normalized load-duration curve of Figure 2.9 represents the typical month's (730 hour) customer demands. A convenient step size of 100 MW is used for all calculations. A summary of all six examples is presented in Appendix B.

As a final note, a much larger hypothetical utility system consisting of 46 generating units will be used for the nuclear power management model evaluation in Chapter 5. (See Section 5.3.)

Figure 2.8

TABLE 2.2

Unit Characteristics for Reference Utility System

Total Capacity $=2000 \mathrm{MW}$

	Type						Valve	nt Da	
Name r		$\begin{aligned} & \text { Cap. } \\ & \mathrm{K}_{\mathrm{r}} \\ & \mathrm{MW} \\ & \hline \end{aligned}$	Prob. \qquad	$\begin{gathered} \text { Cost } \\ \phi_{\mathrm{r}} \\ \xi / \mathrm{MBTU}^{3} \end{gathered}$	$\begin{gathered} \text { Heat } \\ Q_{r} \\ \text { MBTU } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{K}_{\mathrm{r} 1} \\ & \mathrm{MW} \\ & \hline \end{aligned}$	$\begin{gathered} \bar{h}_{\mathrm{r} 1} \\ \text { BTU/kwe } \end{gathered}$	$\begin{aligned} & \mathrm{K}_{\mathrm{r} 2} \\ & \mathrm{MW} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{h}_{\mathrm{inc}}{ }_{\mathrm{r} 2} \\ \mathrm{BTU} / \mathrm{kwhe} \end{gathered}$
I	P^{2}	100	95	90	50	100	18,000	---	----
II	F	200	95	50	800	100	11,000	200	8,500
III	N	300	90	19	1200	100	12,000	300	10,000
IV	F	600	90	40	3600	200	9,800	600	8,300
V	N	800	85	18	2400	300	12,500	800	9,500
${ }^{1}$ Equivalent startup-shutdown heat requirement									
${ }^{2} \mathrm{~F}=$ Fossil, $\mathrm{N}=$ Nuclear, $\mathrm{P}=$ Peaking									

Figure 2.9

Normalized Customer Load-Duration Curve for 730 Hour Month on Reference Utility System

2.1.3 The Objective: Supply All Demands at Minimum Cost

The electric power supply industry is often chosen as the textbook example of pure monopoly. In fact, electric power is a "natural monopoly" because economies-of-scale with regard to investment in generating and transmission equipment make competition impossible (56). "Recognizing the advantages...of avoiding wasteful duplication and competition, the public [the utility's customers]...grants a utility an exclusive franchise for its particularservice in a given geographical region [24]."

As a means of controlling the utility investor's rate-ofreturn, the Federal Power Commission and state public utilities commissions retain the right to oversee the utility's actions vis-à-vis the public interest. In particular, the local commissions must approve all changes in the electricity rate structure (i.e., prices charged to the utility's customers).

With the rates per unit electricity fixed externally by the regulatory commissions and the total amount of electricity determined externally by the customers' demands, the total revenue received by the utility is also fixed (albeit, in a probabilistic sense). By minimizing the revenue required to recover the cost of supplying that electricity, the utility maximizes total profit. Therefore, the utility objective function is the minimizing of the present value of all future required revenue, i.e., the revenue requirement. (Present valuing accounts for the time value of money.) This sum represents that amount of money which, if received immediately and invested in the company, would just suffice to pay all expenses, as well as permitting a fair return to investors. ${ }^{2}$ By including investors' permitted return as another cost component, "revenue requirement" and "total cost" become synonymous. The utility decision-maker is thus responsible for supplying all customer load demands in a reliable manner at minimum total cost.
$\overline{2}$ More precisely (55),
"The revenue requirement is that sum of money, which if received as revenue by an investor-owned electric utility at the beginning of the planning horizon and invested in the enterprise, will defray all subsequent fuel cycle costs, the return allowed by regulatory agencies on that portion of the original investment remaining unexpended at any time, and defray all associated income taxes."

In accounting for all the costs relative to utility operation, revenue is required for the following items:
(1) investment in equipment and facilities,
(2) fuel consumption,
(3) electricity purchases from (less sales to) neighboring utilities,
(4) overhead expenses,
(5) labor and supplies,
(6) maintenance expenses,
(7) taxes and
(8) carrying charges on all of the above.

When considering different operating strategies over a multi-year time horizon (on the order of 5 years), many of the above components are essentially fixed. The long lead times required to effect changes in current equipment installation plans remove item (1) from the multi-year decision-maker's control. On the other hand, total strategy overhead (item 4), labor and supplies (item 5) and maintenance (item 6) are largely invariant though the timing of the latter may be slightly altered by the multi-year strategist.

The multi-year objective function may, therefore, be reduced to the operating costs directly related to supplying customer loads--fuel consumption (item 2) and electricity purchases (item 3) along with the associated taxes (item 7) and carrying charges (item 8).

Adopting the notation that $R R(X)$ is the total revenue requirement related to direct expenditure X ,

$$
\begin{align*}
R R(X)= & \underset{\text { Vresent }}{\text { Value }} \text { (Expenditure } X) \\
& +\underset{\text { Vresent }}{\text { Pre }}\binom{\text { Taxes associated }}{\text { with } X} \\
& +\underset{\text { Vresent }}{\text { Palue }} \quad\binom{\text { Carrying charges }}{\text { associated with } X} \tag{2.15}
\end{align*}
$$

Fuel consumption expenditures can be further broken down into:
(1) X_{F}, fossil fuel related directly to production,
(2) X_{N}, nuclear fuel related directly to production, and
(3) X_{S}, fuel related to startup-shutdown heat requirements.

Expenditures for electricity purchases from other utilities, X_{U}, represents both emergency purchases and economy purchases. (Economy purchases are not considered further in this work.)

The standard procedure in performing multi-year optimization is to subdivide the horizon into Z smaller time periods. In each time period p, expenditures are estimated in undiscounted dollars. Period expenditures are then present-valued at x per year from their mean time \bar{t}_{p} back to time zero. As Section 2.3 will point out, the addition of nuclear units may prevent immediate evaluation of X_{N}. [In fact, $R R\left(X_{N}\right)$ or $R R_{N}$ is determined directly only after all periods have been simulated.]

The equivalent multi-year objective function $O R R$, the operating revenue requirement, can then be expressed as

$$
\begin{equation*}
O R R=R R_{F}+R R_{N}+R R_{S}+R R_{U} \tag{2.16}
\end{equation*}
$$

or, in terms of the nonnuclear period expenditures,

$$
\begin{align*}
O R R= & \sum^{Z} X_{F_{p}} \frac{1}{(1+x)} \bar{t}_{p}+R R_{N} \\
& +\sum^{Z} X_{S_{p}} \frac{1}{(1+x)} \bar{t}_{p}+\sum X_{U_{p}} \frac{1}{(1+x)} \bar{t}_{p} \tag{2.17}
\end{align*}
$$

2.2 Production Scheduling

Given the predicted customer loads and generating equipment, how are operating expenditures on the Reference System estimated? Much work has been done on modelling utility production scheduling (9, 18, 30, 43, 48, 52, 53). A relatively new technique, the Booth-Baleriaux probabilistic system model (10,19) is rapidly gaining acceptance among utility system planners. The following sections describe qualitatively how the model schedules each type of unit. A quantitative description of the model has been postponed until Chapter 3 .

2.2.1 Fossil, Peaking and Nuclear Units

As Section 2.4 will point out, the key element in any utility system optimization is incremental cost. Thus, the first step in any production scheduling technique is surveying the incremental costs of the available units. Using the $r^{\text {th }}$ unit and $i^{\text {th }}$ increment notation, Equation (2.5) becomes

$$
\begin{equation*}
\bar{e}_{r 1}=\phi_{r} \bar{h}_{r 1} \quad \text { and } \quad \lambda_{r i}=\phi_{r} h_{i n c} \quad i>1 \tag{2.18}
\end{equation*}
$$

Figure 2.10 presents the resulting incremental costs for the Reference System of Section 2.1.2.3. Utilizing these, the order in which the plant increments are started up and loaded (i.e., the startup and loading order) can be established. If all units but Unit I are assumed to be already running at their minimum loads (700 MW in toto), the question is "Which increment should then be loaded when the $701^{\text {st }}$ MW is demanded?" The cheapest unused increment ($1.71 \$ / \mathrm{MWH}$ per Figure 2.10) is that of Unit V. Thus, it is loaded until total demand reaches 1200 MW. Now Unit III's 1.90 \$/MWH increment should be loaded for the next 200 MW .

Figure 2.10

This procedure of loading in order of increasing incremental cost results in the loading order and system incremental cost curve shown in Figure 2.11. Overlaying this loading order on the customer loads of Figure 2.9 yields the production schedule shown in Figure 2.12. Temporarily assuming all units are always operable (i.e., no forced-outages), energy production by each unit increment $E_{r i}$ equals the total period length T^{\prime} (the normalizing factor) times the area $A_{r i}$ under that increment's section of the normalized customer load-duration curve,

$$
\begin{equation*}
E_{r i}=T^{\prime} A_{r i}=T^{\prime} \int_{P_{r i}^{\circ}}^{P_{r i}^{\circ}+\Delta K_{r i}} F(P) d P \tag{2.19}
\end{equation*}
$$

and total unit energy production E_{r} is given by

$$
\begin{equation*}
\mathrm{E}_{\mathrm{r}}=\sum^{\mathrm{I}} \mathrm{E}_{\mathrm{ri}} \tag{2.20}
\end{equation*}
$$

At an average incremental cost of $\lambda_{r i}$, the cost of each energy increment is

$$
\begin{equation*}
X_{r 1}=\vec{e}_{r 1} E_{r 1} \quad \text { and } \quad X_{r i}=\lambda_{r i} E_{r i} \quad i>1 \tag{2.21}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
X_{r}=\sum^{I} X_{r i} \tag{2,22}
\end{equation*}
$$

Table 2.3 summarizes each unit's energy and cost totals for Example 1. (Startup-shutdown costs are ignored throughout this chapter.)

The above description is typical of older, deterministic utility models since all units were assumed always operable with no stochastic forcedoutages. Example 2 (see Figure 2.13) portrays the more realistic case where each unit is assumed to have a fixed percentage of random downtime.

Figure 2.11
Loading Order and System Incremental Cost for Example 1

Figure 2.12

Production Scheauling for Example 1 No Forced - Outages)

TABLE 2.3
Example 1 on Reference Utility System:
"Deterministic Model (No Forced-Outages)"
(See Appendix $\mathbf{C}_{\text {for }}$ further details.)

Unit r	Increment i	```Position in Loading Order```	Increment Energy E_{ri} (GWH)	Increment Cost $\begin{gathered} \mathrm{X}_{\mathrm{ri}} \\ \left(10^{3} \$\right) \\ \hline \end{gathered}$
I	1	9 (last)	- 0 -	- 0 -
II	1	4	73.00	401.5
	2	8	- 0 -	- 0 -
III	1	2	73.00	166.4
	2	6	73.00	138.7
IV	1	3	146.00	572.3
	2	7	29.20	97.0
V	1	1 (first)	219.00	492.8
	2	5	335.80	574.2
Utility Production			949.00	2442.9
Emergency Purchases (at $10 \$ / \mathrm{MWH}$)			- 0 -	- 0 -
Total			949.00	2442.9

Loss-of-Load Probability, LOLP $=0 \%$

Figure 2.13

One of the first attempts at accounting for these forced-outages was to reduce each capacity increment by its nonperformance probability. A $200-\mathrm{MW}$ unit performing 90% of the time was treated as a $180-\mathrm{MW}$ unit performing 100% of the time. Table 2.4 summarizes the energy and cost totals for this example.

A more elegant means of incorporating forced-outages in production scheduling has been developed $(10,19)$ and is portrayed as Example 3 in Figure 2.14. The abscissa has been relabeled the equivalent load P_{e} signifying the stochastic or random nature of those units on forced-outages. The original normalized customer load-duration curve has been relabeled F_{D}, the "direct" customer demand to signify that each increment is directly responsible for satisfying customers within its section of the curve. However, if increment V-2 is off-the-line due to a forced-outage, increments of other units higher in the loading order (i.e., to its right) possess excess capacity capable of satisfying the customers $\mathrm{V}-2$ is temporarily failing to serve. These customers are the direct responsibility of V-2 but are also the indirect responsibility of the other units. This additional indirect demand on all partially loaded unit increments is indicated by F_{I}. The resultant total equivalent demand F_{e} on each increment (derived in detail in Chapter 3) is given by

$$
\begin{equation*}
F_{e}\left(P_{e}\right)=F_{D}\left(P_{e}\right)+F_{I}\left(P_{e}\right) \tag{2.23}
\end{equation*}
$$

Forced-outages affect not only the demand on each increment, but also the increment's production. If the unit only performs 90% of the time, then it is expected that only 90% of its demand will be served. Recalling from Section 2.1.2.2 that p_{r} is the unit's performance probability, Equation (2.19) becomes,

TABLE 2.4
Example 2 on Reference Utility System:
"Deterministic Model (Reduced Capacities)"
(See Appendix \mathbf{C} for further details.)

Unit r	Increment	```Position in Loading Order```	$\begin{gathered} \text { Increment } \\ \text { Energy } \\ \mathbf{E}_{\mathbf{r i}} \\ (\mathrm{GWH}) \\ \hline \end{gathered}$	Increment Cost $\begin{gathered} X_{r i} \\ \left(10^{3} \$\right) \\ \hline \end{gathered}$
I	1	9	2.51	40.7
II	1	4	69.35	381.4
	2	8	5.81	24.7
III	1	2	65.70	149.8
	2	6	108.82	206.8
IV	1	3	131.40	515.1
	2	7	79.85	265.1
V	1	1	186.15	418.8
	2	5	299.30	511.8
Utility Production			948.89	2514.2
Emergency Purchases (at $10 \$ / \mathrm{MWH}$)			0.11	1.1
'Total			949.00	2515.3

Loss-of-Load Probability, LOLP $=1.25 \%$

Figure 2.14

Production Scheduling for Example 3 (With Forced-Outages)

$$
\begin{equation*}
E_{r i}=T^{\prime} p_{r} \int_{P_{r i}^{o}}^{P_{r i}^{o}+\Delta K_{r i}} F_{e}\left(P_{e}\right) d P_{e} \tag{2.24}
\end{equation*}
$$

For this more general case, Equation (2.24) replaces Equation (2.19) for $E_{r i}$. However, Equations (2.20) to (2.22) remain unchanged.

Table 2.5 presents the production and cost summary for the Reference System as loaded in Figure 2. 14. Notice that, in contrast to Figure 2.12 where peaking Unit I was not utilized to meet any direct demand, in Examples 2 and 3 the unit is subject to some indirect demand due to forcedoutages of the other four units. Furthermore, some indirect customer demand extends beyond the available installed (on-line) capacity,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{T}}^{\prime}=\sum^{\mathrm{R}^{\prime}} \mathrm{K}_{\mathrm{rI}} \tag{2,25}
\end{equation*}
$$

As one measure of system reliability, D_{U} represents the energy unserved by the system's resources,

$$
\begin{equation*}
D_{U}=T^{\prime} \int_{K_{T}^{\prime}}^{\infty} F_{e}\left(P_{e}\right) d P_{e} \tag{2.26}
\end{equation*}
$$

"Expected unserviced energy . . . is the expected curtailment or, more realistically, the expected emergency support required during" the time period (49).

Along with D_{U}, another measure of the system's reliability is the LOLP "loss-of-load-probability,"

$$
\begin{equation*}
\operatorname{LOLP}=\mathrm{F}_{\mathrm{e}}\left(\mathrm{~K}_{\mathrm{T}}^{\prime}\right) \tag{2.27}
\end{equation*}
$$

the fraction of time the utility is unable to serve its customers with its own resources.

TABLE 2.5
Example 3 on Reference Utility System:
"Probabilistic Model (With Forced-Outages)"
(See Appendix \mathbf{C} for further details.)

Unit r	Increment	```Position in Loading Order```	Increment Energy E_{ri} (GWH)	Increment Cost $\begin{gathered} \mathrm{X}_{\mathrm{ri}} \\ \left(10^{3} \$\right) \\ \hline \hline \end{gathered}$
I	1	9	11.93	193.3
II	1	4	69.35	381.5
	2	8	14.01	59.5
III	1	2	65.70	149.8
	2	6	80.69	153.3
IV	1	3	131.40	515.1
	2	7	70.85	235.2
V	1	1	186.15	418.8
	2	5	288.81	493.9
Utility Production			918.89	2600.4
Emergency Purchases (at $10 \$ / \mathrm{MWH}$)			30.11	301.1
Total			949.00	2901.5

Loss-of-Load Probability, LOLP $=15.6 \%$

The quantitative details of Chapter 3 underlying the above discussion center around the calculation of F_{e}.

Far more germane to the current topic is how other unit types are handled by this model. As for fast-start peaking units, their high fuel cost places them very high in the loading order, but, when their turn finally comes, they are represented exactly like fossil units.

Nuclear units, with very low fuel costs, are also treated like fossil units but they come very early in the loading order, provided each has sufficient reactivity inventory to supply the resulting energy requirements. If not, they are treated like the scarce resource hydro units in the following Section 2.2.2.

2.2.2 Hydro Units

The important characteristic of hydro unit scheduling is making optimum use of a free, but scarce, resource. To do this requires finding that place in the loading order (see Figure 2.15) that utilizes all the available hydro energy while displacing the most costly fossil fuel possible. This is the same process often interpreted as "peak-shaving" the system demand (51).

In terms of Equation (2.24), the optimum hydro loading point P^{*} is determined such that,

$$
\begin{equation*}
E_{H}=T^{\prime} p_{H} \int_{P^{*}}^{P^{*}+K_{H}} F_{e}\left(P_{e}\right) d P_{e} \tag{2.28}
\end{equation*}
$$

The cost of E_{H} is zero, but by utilizing E_{H} in this manner, each hydro megawatthour has been used to displace the most expensive fossil energy possible and thereby saving the maximum amount of money.

Figure 2.15

Hydro Unit Production Scheduling

Determining the hydro's position in the loading order given E_{H} is not difficult. The much more difficult question to answer is how much of the year's forecasted hydro resources to allocate to the period in question-i.e., determining E_{H} itself. Large scale computer programs (51) are required to tackle this problem on a realistic mixed fossil-hydro system. In order to avoid the hydro complexities in this early nuclear power management development work, hydro units were not included in this study.

2.2.3 Pumped-Hydro Units

The most complicated of all, pumped-hydro unit production scheduling requires not only hydro-type utilization of a fixed energy resource, but also involves the pumping of that resource into the reservoir prior to the generation. Figure 2.16 portrays the situation. Pumping involves an added direct demand on nonfully loaded increments low in the loading order, while generating involves using the stored energy to displace more expensive fossil equipment high in the order. If η_{P} and η_{G} are the net efficiencies in the pumping and generating modes, respectively, pumping is continued until the last increment of pumping energy costing λ_{P} just breaks even displacing an associated increment of generation saving λ_{G}. That is, pumping continues until,

$$
\begin{equation*}
\lambda_{\mathrm{G}}=\frac{\lambda_{\mathrm{P}}}{\eta_{\mathrm{P}} \eta_{\mathrm{G}}} \tag{2.29}
\end{equation*}
$$

However, this is subject to the constraint that the upper level reservoir capacity is not exceeded before pumping is terminated.

As with hydro units, pumped-hydro units were not included for further consideration in this initial development effort to avoid unnecessary complexity.

Figure 2.16

2.3 Complexities of Nuclear Power

The cost of fossil fuel is simply the cost of coal or oil plus shipping charges. Assuming a constant coal stockpile, newly delivered coal is burned immediately. From mine to ash, fossil fuel consumption requires only a matter of days.

Nuclear fuel, on the other hand, requires years to account for all cost components. Mining and enrichment occur nine months or more before insertion in the reactor. During the three years or more of irradiation, the energy potential is slowly extracted not only from this fuel batch but also from two or so others in the core. Three months or more after discharge, reprocessing occurs and fissile isotope credits are received. (Appendix H treats nuclear fuel cycle costs in more detail.) The net result is that the cost of a reactor's fuel over a time span of cycles is a nonlinear, nonseparable function of the $E_{r c}$ energy produced in each irradiation cycle,

$$
\begin{equation*}
\overline{\mathrm{TC}}_{\mathrm{r}}=\overline{\mathrm{TC}}_{\mathrm{r}}\left(\mathrm{E}_{\mathrm{r} 1}, \mathrm{E}_{\mathrm{r} 2}, \ldots, \mathrm{E}_{\mathrm{rC}}\right) \tag{2,30}
\end{equation*}
$$

Qualitatively, the nonlinearity,

$$
\begin{equation*}
\overline{\mathrm{TC}}_{\mathrm{r}} \neq \mathrm{c}_{\mathrm{r} 0}+\mathrm{c}_{\mathrm{r} 1} \cdot \mathrm{E}_{\mathrm{r} 1}+\mathrm{c}_{\mathrm{r} 2} \cdot \mathrm{E}_{\mathrm{r} 2}+\ldots+\mathrm{c}_{\mathrm{rC}} \cdot \mathrm{E}_{\mathrm{rC}} \tag{2.31}
\end{equation*}
$$

results from the fact that, given the refueling batch fractions, cycle energy is approximately linear in feed enrichment, but the cost of this enrichment (i.e., separative work requirement) is nonlinear.

Preventing a more general uncoupling of the cycle energies,

$$
\begin{equation*}
\overline{\mathrm{TC}}_{\mathrm{r}} \neq \mathrm{C}_{\mathrm{r} 0}+\mathrm{C}_{\mathrm{r} 1}\left(\mathrm{E}_{\mathrm{r} 1}\right)+\mathrm{C}_{\mathrm{r} 2}\left(\mathrm{E}_{\mathrm{r} 2}\right)+\ldots+\mathrm{C}_{\mathrm{rC}}\left(\mathrm{E}_{\mathrm{rC}}\right) \tag{2.32}
\end{equation*}
$$

is the multi-irradiation (multi-zone) nature of today's LWR refueling schemes. The specification of reload enrichments requires not only
reactivity allowance for the next cycle, but succeeding ones as well.
In summary, to calculate nuclear fuel costs, the cycle energies to the horizon of interest must be known.

In the early years of nuclear power, this stringent requirement did not pose a problem for conventional production scheduling models. With only a single nuclear plant on the system (see Figure 2.17), base-load operation was possible. That is, nuclear units were operated at full capacity whenever they were available. In addition, annual refueling meshed nicely with fossil maintenance plans and appeared to be reasonably economical. For the base-load ($\mathrm{F}_{\mathrm{e}}=1$) case, Equation (2.24) reduced to

$$
\begin{equation*}
E_{r c}=p_{r} T_{r c}^{\prime} K_{r} \tag{2.33}
\end{equation*}
$$

for all cycles. If $T_{r c}^{\prime}$ was constant, the cycles energies to the horizon were the same and reactor steady-state fuel costs could be calculated and used for all cycles.

However, as nuclear capacity on the system increased, two problems became apparent. First, not all nuclear units could be base-loaded if total nuclear capacity was greater than the minimum load as in Figure 2.17. Equation (2.33) was no longer valid because the nuclear portion of the load-duration curve was no longer equal to 1.0 for all nuclear units. Which nuclear unit should occupy the base-load position? Inter-nuclear incremental cost competition had surfaced for the first time. Only rough estimates of nuclear fuel costs had been necessary to decide that all nuclear equipment was cheaper than all fossil equipment, but very refined costs were now needed to decide nuclear unit A versus nuclear unit B.

Figure 2.17

Nuclear Capacity Greater than Minimum Load

Secondly, annual refueling created scheduling problems when each nuclear unit had to be refueled within every scheduling window. Coupled with decreasing nuclear load demand (F_{e}), what was the optimum cycle length for each reactor?

The net result was that cycle energies were no longer easily specified out to the horizon. The nuclear complications rendered previous utility system optimization models obsolete in the sense that operating plans based on them might be far from optimal.

The nuclear power management model to be put forth in Section 2.5 was developed to provide a modern model for utility system optimization, capable of handling nuclear plants explicitly. To do this, it must accurately predict cycle energies out to the horizon.

2.4 Comparison of Fossil and Nuclear Utility System Optimization

Incremental cost techniques for optimized fossil system dispatching (43,48) have been in use for many years. As Section 2.3 pointed out, nuclear plants present new problems due to the long-range time coupling inherent in the nuclear fuel cycle. Widmer et al. (57-59) optimized fossil-nuclear systems using nuclear incremental costs defined much differently from those of fossil plants. This section presents a parallel treatment of both fossil and nuclear incremental costs in order to point out the contrasting assumptions and results.

Consider the following general problem:
Minimize total system cost (i.e., revenue requirements)
from time 0 (zero) to the end of the horizon Z (on the order of ten years) for a system containing R generating units.

Fuel for each unit is assumed to be provided under several consecutive fuel contracts. The objective function is then:

$$
\begin{equation*}
\text { Minimize } \overline{\mathrm{TC}}=\sum^{\mathrm{R}} \overline{\mathrm{TC}}_{\mathrm{r}}\left(\Theta_{\mathrm{r} 1}, \Theta_{\mathrm{r} 2}, \Theta_{\mathrm{r} 3}, \ldots\right) \tag{2.34}
\end{equation*}
$$

subject to the load constraint,

$$
\begin{equation*}
\sum^{R} P_{r}(t)=P(t) \tag{2.35}
\end{equation*}
$$

If $H_{r}\left(P_{r}\right)$ represents the instantaneous heat input rate at power level P_{r} for the $\mathrm{r}^{\text {th }}$ unit, then from the end of the previous contract, $\tau_{\mathrm{r}, \mathrm{c}-1}$, to the end of current contract, τ_{rc}, the plant consumes thermal energy equivalent to

$$
\begin{equation*}
\Theta_{r c}=\int_{\tau_{r, c-1}}^{\tau_{r}, c} H_{r}\left(P_{r}\right) d t \tag{2.36}
\end{equation*}
$$

2.4.1 Incremental Costs on All Fossil System

For fossil units, two important assumptions come into play:
a) the various fuel supply contracts for each generating unit are uncoupled:

$$
\begin{equation*}
\overline{\mathrm{TC}}_{\mathrm{r}}\left(\Theta_{\mathrm{r} 1}, \Theta_{\mathrm{r} 2}, \ldots\right)=\overline{\mathrm{TC}}_{\mathrm{r} 1}\left(\Theta_{\mathrm{r} 1}\right)+\overline{\mathrm{TC}}_{\mathrm{r} 2}\left(\Theta_{\mathrm{r} 2}\right)+\ldots \tag{2.37}
\end{equation*}
$$

and
b) the contract total cost $\overline{\mathrm{TC}}_{\mathrm{rc}}$ is linear in Θ_{rc} :

$$
\begin{equation*}
\overline{\mathrm{TC}}_{\mathrm{rc}}=\overline{\mathrm{TC}}_{\mathrm{rc}}^{\circ}+\bar{\phi}_{\mathrm{rc}} \cdot \Theta_{\mathrm{rc}} \tag{2.38}
\end{equation*}
$$

where $\bar{\phi}_{r c}=$ levelized incremental thermal energy unit cost.
For an all fossil system, adding all C contracts for all the R units yields the objective function:

$$
\begin{equation*}
\overline{\mathrm{TC}}=\sum^{\mathrm{R}} \sum^{\mathrm{C}}\left\{\overline{\mathrm{TC}}_{\mathrm{rc}}^{\circ}+\bar{\phi}_{\mathrm{rc}} \int_{{ }_{\mathrm{r}, \mathrm{c}-1}}^{\boldsymbol{\tau} \mathrm{rc}} \mathrm{H}_{\mathrm{r}}\left(\mathrm{P}_{\mathrm{r}}\right) \mathrm{dt}\right\} \tag{2.39}
\end{equation*}
$$

Since one summation is over all contracts (i.e., cycles), all time from 0 to Z is included and that summation may be replaced by an integral over t. Defining

$$
\begin{equation*}
\overline{\mathrm{TC}}^{\circ}=\sum^{\mathrm{R}} \sum^{\mathrm{C}} \overline{\mathrm{TC}}_{\mathrm{rc}}^{\circ} \tag{2,40}
\end{equation*}
$$

then

$$
\begin{equation*}
\overline{\mathrm{TC}}=\overline{\mathrm{TC}}^{\circ}+\int_{0}^{\mathrm{Z}}\left\{\sum^{\mathrm{R}} \bar{\phi}_{\mathrm{rc}} \mathrm{H}_{\mathrm{r}}\left(\mathrm{P}_{\mathrm{r}}\right)\right\} \mathrm{dt} \tag{2.41}
\end{equation*}
$$

or more generally,

$$
\begin{equation*}
\overline{\mathrm{TC}}=\overline{\mathrm{TC}}^{\circ}+\int_{0}^{Z} \mathrm{f}\left(\mathrm{t} ; \mathrm{P}_{1}(\mathrm{t}), \mathrm{P}_{2}(\mathrm{t}), \ldots\right) \mathrm{dt} \tag{2.42}
\end{equation*}
$$

Since the objective function is a definite integral over t, the calculus of variations (32) allows immediate reduction of the problem. Employing the integrand of Equation (2.42) and the load constraint Equation (2.35) to form the auxiliary function ψ_{F},

$$
\begin{equation*}
\psi_{F}=f\left(t ; \text { all } P_{r} ; \text { no derivatives } \dot{P}_{r}\right)+\lambda_{F}(t)\left\{P(t)-\sum^{R} P_{r}\right\} \tag{2,43}
\end{equation*}
$$

Immediately, the optimum behavior of each $\mathbf{P}_{\mathbf{r}}(\mathrm{t})$ is given by Euler's equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}\left\{\frac{\partial \psi_{\mathrm{F}}}{\partial \dot{P}_{\mathrm{r}}}\right\}-\frac{\partial \psi_{\mathrm{F}}}{\partial \mathrm{P}_{\mathrm{r}}}=0 \tag{2.44}
\end{equation*}
$$

Since there is no dependence of ψ_{F} on $\dot{\mathrm{P}}_{\mathrm{r}}$, Equation (2.44) reduces to

$$
\begin{equation*}
\frac{\partial \psi_{\mathrm{F}}}{\partial \mathrm{P}_{\mathrm{r}}}=0=\frac{\partial \mathrm{f}(\ldots)}{\partial \mathrm{P}_{\mathrm{r}}}-\lambda_{\mathrm{F}}(\mathrm{t}) \tag{2.45}
\end{equation*}
$$

Substituting for f(...) using Equation (2.41) and rearranging,

$$
\begin{equation*}
\lambda_{\mathrm{F}}(\mathrm{t})=\bar{\phi}_{\mathrm{rc}} \frac{\partial \mathrm{H}_{\mathrm{r}}\left(\mathrm{P}_{\mathrm{r}}\right)}{\partial \mathrm{P}_{\mathrm{r}}} \tag{2.46}
\end{equation*}
$$

Since $\frac{\partial H_{r}\left(P_{r}\right)}{\partial P_{r}}$ equals the incremental heat rate at $P_{r}, h_{i n c}\left(P_{r}\right)$,

$$
\begin{equation*}
\lambda_{\mathrm{F}}(\mathrm{t})=\bar{\phi}_{\mathrm{rc}} \cdot \mathrm{~h}_{\mathrm{inc}}^{\mathrm{r}}{ }^{\left(\mathrm{P}_{\mathrm{r}}\right)} \tag{2.47}
\end{equation*}
$$

for all R units at the same time t, subject to Equation (2.35).
The Lagrangian multiplier $\lambda_{F}(t)$ represents the time-varying incremental energy cost (i.e., proportional to $\bar{\phi}_{\mathrm{rc}}$ discounted dollars over undiscounted energy) at which all fossil units on the system should be operating for minimum system cost. Equation (2.47) is the same result Kirchmayer obtained (43) with the a priori knowledge that instantaneous optimization gave the long-term optimum rather than beginning with the long-term objective function, Equation (2.34).

Typical values for present day fossil systems involve unit fuel costs of 25 to $50 \mathrm{c} / \mathrm{Mega} \mathrm{BTU}$ and incremental heat rates as low as $8000 \mathrm{BTU} / \mathrm{kwhe}$ at night to over $15,000 \mathrm{BTU} / \mathrm{kwhe}$ (8 to $15 \mathrm{Mega} \mathrm{BTU} / \mathrm{MWH}$) during the hours of peak demand. System incremental fossil fuel cost thus varies on a daily basis from 2.0 to $7.5 \$ / \mathrm{MWH}$.

2.4.2 Incremental Costs on All Nuclear System

For nuclear reactors, which have coupled, nonlinear cycle costs, the two assumptions made for fossil units [Equations (2.37) and (2.38)] do not hold. However, the data of Figure 2.18 indicates that for today's LWR's, the incremental heat rate of a nuclear plant is approximately constant over the operating range of interest (40% to 100% of full power),

$$
\begin{equation*}
h_{\text {inc }_{r}} \neq f\left(P_{r}\right) \tag{2.48}
\end{equation*}
$$

Extrapolating the heat rate curve $\mathrm{H}_{\mathrm{r}}\left(\mathrm{P}_{\mathrm{r}}\right)$ back to $\mathrm{P}_{\mathrm{r}}=0$ at the constant incremental heat rate $h_{\text {inc }}{ }_{r}$,

$$
\begin{equation*}
H_{r}\left(P_{r}\right)=H_{r}^{\circ}+h_{i n c} \cdot P_{r} \quad \text { for } P_{r} \gg 0 \tag{2.49}
\end{equation*}
$$

Figure 2.18

Since $\mathrm{P}_{\mathrm{r}}\left(\right.$ and hence $\left.\mathrm{H}_{\mathbf{r}}\right) \equiv 0$ during the refueling downtime following shutdown at $\tau_{r, c-1}$ (the end of the irradiation cycle), Equation (2.36) need only be integrated over the available generating hours $\mathrm{T}_{\mathrm{rc}}{ }^{\prime}$,

$$
\begin{equation*}
\Theta_{\mathrm{rc}}=\int_{\tau_{\mathrm{rc}}-\mathrm{T}_{\mathrm{rc}}^{\prime}}^{\tau_{\mathrm{rc}}}\left(\mathrm{H}_{\mathrm{r}}^{\circ}+\mathrm{h}_{\mathrm{inc}} \cdot \mathrm{P}_{\mathrm{r}}\right) \mathrm{dt} \tag{2.50}
\end{equation*}
$$

Assuming the nuclear units to be "must-run" units (see Section 2.4.3), they can be expected to perform at least at minimum load (i.e., $\mathbf{P}_{r} \gg 0$) for $\mathrm{p}_{\mathrm{r}} \mathrm{T}_{\mathrm{rc}}^{\prime}$ hours.

Hence,

$$
\begin{equation*}
\Theta_{r c}=H_{r}^{\circ} p_{r} T_{r c}+h_{i n c} \int_{\tau_{r c}}^{\tau_{r c}} T_{r c}^{\prime} P_{r} d t \tag{2.51}
\end{equation*}
$$

or,

$$
\begin{equation*}
\Theta_{r c}=H_{r}^{\circ} p_{r} T_{r c}^{\prime}+h_{i n c_{r}} E_{r c} \tag{2.52}
\end{equation*}
$$

Since $\Theta_{r c}$ is linear in $E_{r c}$, direct substitution into the objective function is possible:

$$
\begin{equation*}
\overline{\mathrm{TC}}=\sum^{\mathrm{R}} \overline{\mathrm{TC}}_{\mathrm{r}}\left(\Theta_{\mathrm{r} 1}, \Theta_{\mathrm{r} 2}, \ldots\right)=\sum^{\mathrm{R}} \overline{\mathrm{TC}}_{\mathrm{r}}\left(\mathrm{E}_{\mathrm{r} 1}, \mathrm{E}_{\mathrm{r} 2}, \ldots\right) \tag{2.53}
\end{equation*}
$$

In order to transform the customer loads into corresponding energy units, the time horizon is segmented into Z convenient time periods on the order of weeks. Then, the right-hand side of Equation (2.35) is integrated over each time period to yield period energy demand,

$$
\begin{equation*}
D_{p}=\int_{t_{p-1}}^{t_{p}} P(t) d t \tag{2.54}
\end{equation*}
$$

Assuming there are enough nuclear units on the system to prevent loss-of-load, the period energy demand must be generated by the R units in that period,

$$
\begin{equation*}
\mathrm{D}_{\mathrm{p}}=\sum^{\mathrm{R}^{\prime}} \mathrm{E}_{\mathrm{rcp}} \tag{2.55}
\end{equation*}
$$

During a particular reactor-cycle, the energy must be the sum of the reactor's production in each of the included periods,

$$
\begin{equation*}
\mathrm{E}_{\mathrm{rc}}=\sum^{\mathrm{pinc}} \mathrm{E}_{\mathrm{rcp}} \tag{2.56}
\end{equation*}
$$

Thus, the independent variables in Equation (2.53) can be further subdivided into period energy productions,

$$
\begin{equation*}
\overline{\mathrm{TC}}=\sum^{\mathrm{R}} \overline{\mathrm{TC}}_{\mathrm{r}}\left(\left\{\mathrm{E}_{\mathrm{rcp}}\right\}_{\mathrm{r}}\right) \tag{2.57}
\end{equation*}
$$

To form the ψ_{N} auxiliary function of Equation (2.57), the constraints [Equation (2.55)] are incorporated using a $\lambda_{N_{p}}$ Lagrangian constant for each period,

$$
\begin{equation*}
\psi_{N}=\sum^{\mathrm{R}} \overline{\mathrm{TC}}_{\mathrm{r}}\left(\left\{\mathrm{E}_{\mathrm{rcp}}\right\}_{\mathrm{r}}\right)+\sum^{\mathrm{Z}} \lambda_{\mathrm{N}_{\mathrm{p}}} \cdot\left(\mathrm{D}_{\mathrm{p}}-\sum^{\mathrm{R}} \mathrm{E}_{\mathrm{rcp}}\right) \tag{2.58}
\end{equation*}
$$

which is only a function of the $\mathrm{E}_{\mathrm{rcp}}$ set, $\left\{\mathrm{E}_{\mathrm{rcp}}\right\}$.
For ψ_{N} to be a relative minimum (31), the following must hold for all r, all c and all p :

$$
\begin{equation*}
\frac{\partial \psi_{N}}{\partial \mathrm{E}_{\mathrm{rcp}}}=0=\frac{\partial \overline{\mathrm{TC}}_{\mathrm{r}}}{\partial \mathrm{E}_{\mathrm{rcp}}}-\lambda_{\mathrm{N}_{\mathrm{p}}} \tag{2.59}
\end{equation*}
$$

Therefore, during each period of the optimum,

$$
\begin{equation*}
\lambda_{N_{p}}=\frac{\partial \overline{\mathrm{TC}}_{r}}{\partial \mathrm{E}_{\mathrm{rcp}}} \tag{2.60}
\end{equation*}
$$

for the pertinent cycles of each reactor, subject to Equation (2.55).
Since the $\mathrm{E}_{\mathrm{rcp}}$ sum linearly to give the cycle energy E_{rc} [Equation (2.56)],

$$
\begin{equation*}
\frac{\partial(\ldots)}{\partial E_{r c p}}=\frac{\partial(\ldots)}{\partial E_{r c}} \quad \text { for all } p \text { in } c \tag{2.61}
\end{equation*}
$$

the optimality condition Equation (2.60) can be restated as

$$
\begin{equation*}
\lambda_{N_{p}}=\frac{\partial \overline{T C}_{r}}{\partial \mathrm{E}_{\mathrm{rc}}} \tag{2.62}
\end{equation*}
$$

The Lagrangian constant $\lambda_{N_{p}}$ (with units identical to λ_{F}, discounted dollars over undiscounted energy) represents the incremental energy cost at which the pertinent refueling cycle of each nuclear unit should be designed and operated. The coupling of nuclear energies in the objective function prevents the simplifications made in the fossil case. However, the approximately constant incremental heat rate of today's nuclear units (above 40% of capacity) permits a different simplification and leads to Equation (2.62).

To contrast Equations (2.47) and (2.62) in more general terms, consider that

$$
\begin{equation*}
\lambda_{N_{p}}=\frac{\partial \overline{T C}_{r}}{\partial E_{r c}}=\frac{\partial \overline{T C}_{r}}{\partial \Theta_{r c}} \frac{d \Theta_{r c}}{d E_{r c}} \tag{2.63}
\end{equation*}
$$

Differentiating Equation (2.52),

$$
\begin{equation*}
\frac{d \Theta_{r c}}{d E_{r c}}=h_{i n c_{r}} \tag{2.64}
\end{equation*}
$$

Hence, for nuclear units,

$$
\begin{equation*}
\lambda_{N_{p}}=\frac{\partial \overline{\mathrm{TC}}_{\mathrm{r}}}{\partial \mathrm{\Theta}_{\mathrm{rc}}} \cdot \mathrm{~h}_{\mathrm{inc}}^{\mathrm{r}} \text { } \tag{2.65}
\end{equation*}
$$

resulting in nuclear dispatching on a cycle-by-cycle basis using energyrelated incremental costs.

Fossil units, on the other hand, are dispatched using instantaneous incremental costs related to power level [Equation (2.47)],

$$
\begin{equation*}
\lambda_{\mathrm{F}}(\mathrm{t})=\bar{\phi}_{\mathrm{rc}} \mathrm{~h}_{\mathrm{inc}_{\mathrm{r}}}\left(\mathrm{P}_{\mathrm{r}}(\mathrm{t})\right) \tag{2.66}
\end{equation*}
$$

Substituting the definition of $\mathrm{h}_{\mathrm{inc}} \mathrm{r}_{\mathrm{r}}$ [Equation (2.3)],

$$
\begin{equation*}
\lambda_{\mathrm{F}}(\mathrm{t})=\bar{\phi}_{\mathrm{rc}} \cdot \frac{\mathrm{dH}_{\mathrm{r}}\left(\mathrm{P}_{\mathrm{r}}\right)}{\mathrm{dP}_{\mathrm{r}}} \tag{2.67}
\end{equation*}
$$

Comparing Equations (2.65) and (2.67), the former is in terms of energy because the "incremental" effect or derivative is in the fuel cost component related to cycle energy, not the incremental heat rate $\mathrm{h}_{\text {inc }}{ }_{r}$ which is assumed constant for any power level. The reverse is true for the latter's fossil incremental cost. The λ_{F} is power level dependent because the $h_{i n c}$ is recognized as a function of $P_{r}(t)$; the fuel cost component $\partial \overline{T C}_{r} / \partial \Theta_{r c}$ is assumed a constant $\bar{\phi}_{r c}$ independent of cycle energy.

Another conclusion regarding nuclear incremental costs can be deduced by considering the cycle-to-cycle overlap of two reactors as in Figure 2.19. In the $p^{\text {th }}$ period, both reactors have the same incremental cost per Equation (2.60). Going one step further, Equations (2.56) and (2.62) indicate that within the range of periods in the companion cycles, the incremental cost remains the same. Finally, as the cycle ends for Reactor 1, $\lambda_{N_{p}}$ remains at the same level due to Reactor 2. But, Equation (2.62) states that Reactor 1's next cycle should also be designed at this same level to maintain the equality. Thus, the overlapping of reactor-cycles creates a constant λ_{rc} regardless of reactor and cycle. Consequently,

$$
\begin{equation*}
\lambda_{N_{p}}=\lambda_{\mathrm{N}}=\text { constant for all } \mathrm{p} \tag{2.68}
\end{equation*}
$$

Figure 2.19
Consequences of Period Incremental Cost Equality

and

$$
\begin{equation*}
\lambda_{\mathrm{N}}=\frac{\partial \overline{\mathrm{TC}}_{\mathrm{r}}}{\partial \mathrm{E}_{\mathrm{rc}}} \tag{2.69}
\end{equation*}
$$

for all r and all c simultaneously.
A consequence of Equation (2.69) is that steady-state would never be reached. Due to the discounting of dollars, but not energy, it becomes profitable to generate more and more energy in each succeeding cycle, relying on the increasing discount factor to appropriately reduce the additional undiscounted cost. This is the case for cycles 1 through 3 of Figure 2.20. While Equation (2.69) indicates the profitable thing-to-do, it does not indicate how feasible it is. Cycles 4, 5 and 6 of Figure 2. 20 are examples of steady-state designs (with decreasing incremental costs) being forced by a constraint, namely, that the capacity factor cannot be greater than one. In other words, generation cannot be postponed. Demand must be satisfied instantaneously, not four years later. Generation can be shifted from one reactor to another on a day-to-day basis but the total production each period must be met [Equation (2.55)].

The net result is the primary Conclusion I [Equation (2.70)], relating a strong dependence between pertinent cycle incremental costs for each reactor during each period and a secondary Conclusion II [Equation (2.71)] relating an idealized state that may not be attainable:

Conclusion I:

At the optimum reactor-cycle energies,

$$
\begin{equation*}
\lambda_{N_{p}}=\frac{\partial \overline{\mathrm{TC}}_{\mathrm{r}}}{\partial \mathrm{E}_{\mathrm{rc}}} \tag{2.70}
\end{equation*}
$$

during each period for the pertinent cycle of each reactor.

Figure 2-20

Conclusion II:

At the optimum reactor-cycle energies,

$$
\begin{equation*}
\lambda_{\mathrm{N}}=\frac{\partial \overline{\mathrm{TC}}_{\mathrm{r}}}{\partial \overline{\mathrm{E}}_{\mathrm{rc}}} \tag{2.71}
\end{equation*}
$$

for all periods, all cycle and all reactors simultaneously, subject to physical constraints.

As for typical values of $\lambda_{N_{p}}$ and λ_{N}, the results of Widmer (57), Kearney (41) and Watt (55) as well as Section 5.6.3 indicate optimum midrange nuclear incremental costs in the range of 0.9 to $1.6 \$ / \mathrm{MWH}$.

2.4.3 Optimization of a Mixed System

The two previous sections have indicated how an all fossil or an all nuclear system would meet the same loads at minimum total system cost. This section endeavors to show the reasoning behind segmenting the more realistic mixed fossil-nuclear system into an equivalent "all fossil plus all nuclear" system such that,

$$
\begin{equation*}
\mathrm{D}_{\mathrm{T}_{\mathrm{p}}}=\mathrm{E}_{\mathrm{F}_{\mathrm{p}}}+\mathrm{E}_{\mathrm{N}_{\mathrm{p}}}+\mathrm{D}_{\mathrm{U}} \tag{2.72}
\end{equation*}
$$

Given the normalized customer load-duration curve and the available generating equipment, a startup and loading order is required by the production scheduling model. The first consideration is the placement of unit increments under the "knee" of the load-duration curve, i.e., below the minimum load (see Figure 2.12) where they will be operated even during periods of lowest system demand, such as the early morning hours. These unit increments are typically the minimum loads on all of the large units (e.g., rated capacity $\geqslant 300 \mathrm{MW}$). If such units were shut down overnight due to economics alone, minimum shutdown times and other engineering
problems might prevent the unit from being in service when it was needed for the next day's peak. Losing such a large unit creates reliability problems. Thus, the operating philosophy is that all large units must be running at least at minimum load if possible. If the minimum load is too low to permit this, either the smallest of the "must-run" units is shut down or its excess capacity is sold to neighboring utilities on an hour-byhour economy interchange basis.

For a mixed fossil-nuclear system, this must-run philosophy results in grouping all nuclear minimums at the lowest point in the startup and loading order. Next comes the must-run fossil minimums in order of decreasing size. Figure 2.12 portrayed the must-run units in Examples 1 to 3 for a lower limit of 200 MW .

The startup and loading order for the rest of the system is determined by noting two important points. First, on a time scale where reload fuel is being designed, nuclear units are not energy-limited, and nuclear production should not be scheduled as scarce resource. Secondly, even with fossil fuel costing as little as 25 c/MegaBTU, the best-plant fossil incremental costs are at least $2.0 \$ / \mathrm{MWH}$ (see Section 2.4.1). Since even the highest nuclear incremental fuel costs are less than 1.6 \$/MWH (see Section 5.6.3), nuclear power should be operated so as to displace maximum fossil energy. In other words, the greatest potential for cost savings in each period is in maximizing nuclear production $\mathrm{E}_{\mathrm{N}_{\mathrm{p}}}$ vis-à-vis fossil production $\mathrm{E}_{\mathrm{F}_{\mathrm{p}}}$. $\left(\mathrm{D}_{\mathrm{U}_{\mathrm{p}}}\right.$ is invariant given the on-line equipment.) Mathematically, total period cost is a minimum when

$$
\begin{equation*}
\mathrm{D}_{\mathrm{T}_{\mathrm{p}}}=\mathrm{E}_{\mathrm{F}_{\mathrm{p}}}^{\min }+\mathrm{E}_{\mathrm{N}_{\mathrm{p}}}^{\max }+\mathrm{D}_{\mathrm{U}}^{\circ} \tag{2.73}
\end{equation*}
$$

The above loading order does just that, maximizing $\mathrm{E}_{\mathrm{N}_{\mathrm{p}}}$ and resulting in N_{p},
the system's nuclear potential for the period,

$$
\begin{equation*}
N_{p}=E_{N_{p}}^{\max } \tag{2.74}
\end{equation*}
$$

Thus, after starting up and raising to minimum power the must-run units that are not shut down regularly, all nuclear plants are loaded to full power in accordance with system demands. As demand continues to increase, all the remaining fossil power is loaded in order of increasing incremental cost.

Figure 2.11 portrayed such a startup and loading order applied to the Reference System in Examples 1 to 3. It is now a simple matter to separate the "all nuclear" system from the "all fossil" system. Performing the above for each time period of a study thus separates the fossil and nuclear portions of the system. These two subsystems can then be optimized using the techniques of Sections 2.4.1 and 2.4.2, respectively.

The key assumption leading to the fossil-nuclear dichotomy, bears repeating since it is the basis of the entire nuclear power management model presented in the next section.

$$
\begin{equation*}
\lambda_{N_{p}}<\lambda_{F}(t) \text { for all } t \text { and } p \tag{2.75}
\end{equation*}
$$

2.5 A Nuclear Power Management Multi-Year Model

A nuclear power management multi-year model currently under development ($23, \underline{34}$) contains four submodels as presented in Figure 2. 21. The overall model's purpose is to supply the utility system planner with the following outputs:
(1) Optimum schedule for fossil maintenance and nuclear refueling,
(2) Associated optimum production schedule and
(3) The resultant fuel requirements.

Figure 2.21
Nuclear Power Management
Multi-Year Model

Operation of the overall model begins within the Refueling and Maintenance Model (RAMM). Incorporating such inputs as load forecasts, maintenance requirements and scheduling constraints, the RAMM determines a number of feasible multi-year refueling and maintenance schedules. Each schedule is a mutually exclusive, alternative mode of operating the entire system over the multi-year horizon. The purpose of the rest of the overall model is to determine which of the possible alternative strategies results in minimum total cost.

Strategy-by-strategy evaluation begins in the System Integration Model (SIM). For each strategy, the SIM integrates the utility's available equipment, operating practices, etc. into a realistic utility simulation model. Production scheduling is optimized so as to meet customer load demand by maximizing nuclear energy and minimizing fossil energy and fossil cost (see Section 2.4.3).

The task of the System Optimization Model (SOM) is then to optimize the operation of the nuclear portion of the system (see Section 2.4.2) so that the nuclear energy $\mathrm{E}_{\text {Nuclear }}$ is produced at minimum cost $\$_{\text {Nuclear }}$. To do this, the SOM postulates reactor-by-reactor multi-year production schedules which are then passed to Core Simulation and Optimization Models (CORSOM's) for each reactor unit or type (PWR, BWR, LMFBR, etc.). With each production schedule specified to the horizon (see Section 2.3), each CORSOM is then able to optimize its reload parameters of batch size and enrichment, minimizing the total fuel cost for the particular reactor. In addition, the CORSOM calculates nuclear incremental costs for each of the cycles.

With all reactors optimized for the given schedules, the SOM begins a second iteration by using the CORSOM's incremental nuclear energy
costs to postulate a better reactor-by-reactor multi-year production schedule. Iterations continue until the system-wide production schedule converges, giving minimum system nuclear cost $\$_{\text {Nuclear }}$.

The total system cost for the particular refueling and maintenance strategy under investigation is then merely the sum of $\$_{\text {Fossil }}$ and $\$_{\text {Nuclear }}$.

After evaluating all possible alternative strategies in this manner, the overall optimum system strategy is the one resulting in the minimum total system cost.

Though the above discussion and, in fact, this entire work assumes only fossil and nuclear equipment exist on the system, the general structure of the overall model holds even if hydro and pumped-hydro equipment have been installed.

The development of the complete nuclear power management multiyear model is a very large task. However, the four submodels represent convenient building blocks suitable for somewhat independent development. However, model interface problems must be considered. Ideally, the models ought to be coupled together like the boxcars of a train, not nailed together like the tracks.

In the context of the Commonwealth Edison-sponsored utility system optimization research project at the Massachusetts Institute of Technology, development of a RAMM was assumed by the project sponsor (20). Development of a pressurized water reactor CORSOM was undertaken at MIT by Kearney (41) and Watt (55). The concluding sections of this chapter emphasize these two models, indicating the important aspects relative to RAMM and CORSOM development and their interfacing with the rest of the model (see Figure 2.22). As the title indicates, the work reported here deals specifically with the development of the remaining SIM and SOM.

2.5.1 Refueling and Maintenance Model (RAMM)

Taking due account of the five inputs indicated in Figure 2.22, the RAMM's purpose is to generate possible alternative strategies for further investigation by the rest of the nuclear power management multi-year model.

The output of the RAMM is anticipated by the SIM in the form of either a set of downtime dates for each unit on the system or a period-byperiod (on the order of one to four weeks per period) maintenance schedule indicating which units are down in each period.

Also desirable is a RAMM ranking of the strategies in order of anticipated desirability. That is, "ballpark" estimates of economics and reliability ought to indicate Strategy 1 is most likely to be optimum, while Strategy $n(n \sim 100)$, though feasible, is highly unlikely to be economically attractive and/or a reliable operating scheme. Such a ranking would decrease computing requirements by permitting the detailed evaluation of only those strategies with a reasonable chance of competing for the optimum.

With regard to the testing of the nuclear power management model in Chapter 5, Sections 5.2 and 5.3.3 indicate the RAMM utilized in the evaluation.

2.5.2 System Integration Model (SIM)

Chapter 3 is devoted to a detailed discussion of the SIM and, in particular, the Booth-Baleriaux utility model.

2.5.3 System Optimization Model (SOM)

Chapter 4 is devoted to a detailed discussion of the SOM.

2.5.4 Core Simulation and Optimization Model (CORSOM)

At each iteration in Figure 2.22, the CORSOM accepts a new set of cycle energies (E^{\prime} s) for its reactor and, in point of fact, the same set of cycle lengths (T's) associated with the particular possible alternative strategy. After simulating core physics-depletion and optimizing the reload parameters (batch size and enrichment), it is required to return to the SOM only two specific types of information:
(1) the minimum total reactor fuel cost $\left(\overline{T C}_{\mathbf{r}}\right)$ and
(2) the nuclear incremental cost curve for each reactor reload batch,

$$
\begin{equation*}
\lambda_{r c}\left(\mathrm{E}_{\mathrm{rc}}\right)=\frac{\partial \overline{\mathrm{TC}}_{\mathrm{r}}}{\partial \mathrm{E}_{\mathrm{rc}}} \tag{2.76}
\end{equation*}
$$

Specific information about the fuel designs is not needed by the SOM. As long as each CORSOM is properly matched with the reactor unit index that it represents, the SOM does not care which unit indexes are PWR's, BWR's, HTGR's or fast breeders. Of course, management personnel need fuel design information and it must, therefore, be available in the printed output received directly from the CORSOM (at least, for the final fullyconverged iteration).

The details of such a PWR core model can be found in the work of Kearney (41) while the techniques of incremental costing can also be found in the work of Widmer (57) and Watt (55).

With regard to the testing of the nuclear power management model in Chapter 5, Section 5.2 and Appendix H detail the CORSOM utilized in the evaluation.

CHAPTER 3
THE SYSTEM INTEGRATION MODEL

3.1 Overview of the SIM

Many aspects of the System Integration Model (SIM) have already been described in Chapter 2. The emphasis in the current chapter will be on detailing the BoothBaleriaux probabilistic utility model and describing the calculation of the various cost components.

The SIM has as its basic purpose the simulation of multi-year utility operation. To do this, it must integrate the following information into a representative utility system model:
(1) Forecasts of customer loads,
(2) Generating equipment characteristics,
(3) Forecasts of fuel costs,
(4) Maintenance schedules and
(5) Operating constraints.

To portray system operation more accurately, the multi-year horizon is divided into much smaller time periods, on the order of a few weeks. Periods shorter t.han a week create an undue computational burden. On the other hand, periods longer than a month are precluded by the necessity of discretely representing scheduled maintenance outages which are usually two to four weeks in length.

These time periods are then simulated individually in chronological sequence. Forecasted loads for each period (Item 1 above) are represented by a normalized customer load-duration curve such as the month on the Reference Utility System presented in Figure 2.9. Thermal energy costs (Item 3) are combined with the characteristics of the generating units per Equation (2.18) to yield unit incremental costs. Any unavailable units down due to scheduled maintenance (Item 4) are treated as non-existent for that period. The next step is the establishment of the startup and loading order (see Section 3.2) for the remaining online units. It is in this order that various operating constraints (Item 5), such as "spinning reserve" and "zoneloading" requirements are incorporated. Production scheduling of the resulting system representation is performed using the Booth-Baleriaux probabilistic utility system model (see Section 3.3).

The qualitative discussion of the Booth-Baleriaux model presented in Section 2.2 .1 developed cost components for most of the required period expenditures enumerated in Section 2.1.3:
(1) $X_{F}=$ Fossil fuel expense related to E_{F} energy production,
(2) $X_{N}=$ Nuclear fuel expense related to E_{N} energy production,
(3) $X_{S}=$ Combined fossil and nuclear startup-shutdown cost (not discussed in Chapter 2) and
(4) $X_{U}=$ Expense related to D_{U} emergency energy purchases.

Later, Section 2.3 pointed out that the complexities of nuclear power preclude a priori knowledge of nuclear fuel costs X_{N} except for the special case of all nuclear baseload operation. Nevertheless, by incorporating the nuclear versus fossil incremental cost argument of Section 2.4.3 to sub-optimize each period, the SIM is able to mark time by calculating in its place the system nuclear potential N for each period. The responsibility for optimizing and costing inter-nuclear production of this energy rests with the System Optimization Model (SOM).

Even an a priori estimate of unit nuclear fuel costs $\varnothing_{N_{r}}$ is sufficiently accurate for the nuclear component of system startup-shutdown costs since $\left(X_{S}\right)_{N}$ represents only a small fraction of total nuclear production fuel cost X_{N},

$$
\begin{equation*}
\left(X_{S}\right)_{N} \ll X_{N} \tag{3.1}
\end{equation*}
$$

Furthermore, for nuclear units (all assumed to be must-run units), there are very few startup-shutdowns since the units are always running. Hence, nuclear startup cost is also much less than fossil startup cost,

$$
\begin{equation*}
\left(X_{S}\right)_{N} \ll\left(X_{S}\right)_{F} \tag{3.2}
\end{equation*}
$$

Thus, an initial error in $\varnothing_{N_{r}}$ has a very small effect on total period expenses.

In summary, the actual period-by-period output of the SIM consists of:
(1) $X_{F}=$ Fossil fuel expense related to $E_{F}^{m i n}$ energy production (see Section 3.3),
(2) $N=$ Nuclear potential equal to $E_{N}^{\max }$ energy production (see Section 3.3.3),
(3) $X_{S}=$ Combined fossil and nuclear startup-shutdown cost (see Section 3.4) and
(4) $X_{U}=$ Expense related to D_{U} emergency energy purchases (see Section 3.5).

In addition to these outputs discussed in this chapter, the SOM of Chapter 4 requires various data related to the nuclear potential and each reactor's possible contributions to it. Discussion of these more subtle outputs is postponed until Section 4.2.

3.2 Determining Startup and Loading Order

The Booth-Baleriaux model to be discussed in Section 3.3 is an objective, mathematical algorithm for calcurating energy production given a startup and loading order for the capacity increments. Thus, it is in determining this input loading order (sometimes referred to as the
"pecking order"), that the more subjective aspects of utility operating practices and constraints must be considered.

The goal is to determine for each period the startup and loading order that meets all operating constraints at minimum total cost. Ironically, startup-shutdown cost itself is not used in the multi-year model for determining the startup order. For one thing, total startup-shutdown cost is rarely as large as 1% of production fuel cost. In addition, accurate startup-shutdown cost prediction requires a daily or hourly model, as in the work of Joy (37, 38). Though this cost component is not considered in determining the loading order prior to the Booth-Baleriaux simulation, Section 3.4 will discuss how X_{S} is estimated from the model's output.

To determine the unit-by-unit startup order, minimum average fuel costs are determined by inspection of average heat rate data as in Figure 2.5 .

A tentative startup order can then be determined by plotting this data in ascending order of cost. Figure 3.la presents such a startup order for the online units of a hypothetical utility system. This order is the most attractive economically (ignoring incremental effects due

Figure 3.la

Figure 3. 1b
Optimum Constrained Startup Order

to startup-shutdown cost itself).
However, various operating constraints alter the order. For instance, engineering and reliability constraints may dictate that some units are must-run units (see Section 2.4.3). Additional constraints related to the distribution of units, loads and transmission lines among geographical regions or zones may impose zone-loading requirements. Such constraints require a unit to be started earlier in the order so that utilization of the entire transmission system will remain approximately balanced. This not only reduces the probability of a transmission system outage, but also reduces the consequences should one occur. Figure 3.1 b presents the final constrained startup order for the data of Figure 3.la.

The first increments in the complete system loading order are, by definition, the minimum power levels of each must-run unit. As Figure 2.12 and Equation (2.33) indicate, the exact order below the minimum system load is arbitrary since all are base-loaded. In fact, the generally low level of nuclear fuel costs coupled with the must-run constraint for such large units is sufficient to permit the assumption that all nuclear minimums are base-loaded. Furthermore, the incremental cost argument of Section 2.4.3 justifies placing all of the upper nuclear increments, as a group, next in the order just to the right of the must-run increments. As it turns out (see Section
3.3.3), the exact intranuclear loading order for these upper increments is arbitrary, relieving the necessity of having precise nuclear incremental costs during the SIM's calculations.

Having assigned all nuclear capacity and all must-run fossil minimums, the incremental cost arguments of Sections 2.2 .1 and 2.4.1 determine a complete, but tentative, startup and loading order. For determining the startup of remaining units, $\vec{e}_{r}^{m i n}$ represents unit $r^{\prime} s$ opportunity generating cost if the unit is on-line at the power level that minimizes \bar{h}. However, costing of the unit's first increment is performed using the $\bar{e}_{r l}$ out-of-pocket average cost [per Equations (2.18) and (2.21)].

$$
\begin{equation*}
X_{r 1}=\bar{e}_{r 1} E_{r 1} \tag{3.4}
\end{equation*}
$$

The unit's upper increments are characterized by the usual $\lambda_{r i}$.

Given the constrained startup order, the completed loading order is the economic optimum. However, actual operating practices may violate this ordering in the same way that the economic startup order was violated. For instance, a daily practice may involve bringing units up to minimum load a few hours early so that any minor startup problems can be alleviated and their capacity will be available when actually required. Another operating constraint
is the requirement for several hundred megawatts of spinning reserve in case a large unit suddenly trips off the line. Spinning reserve represents the readily available (on the order of minutes), uncommitted capacity of turbines already spinning, but generating at less than full capacity. Such a requirement necessitates earlier (uneconomical) startup of some units so that cheaper increments, previously comprising the spinning reserve, may be loaded (see Figure 3.2).

Because of their fast-start capability, peaking units are considered as a separate "stand-by reserve". As such, they need be committed only when their high fuel cost is economically justified.

With such operating constraints properly factored in, the startup and loading order for the period is complete. The evaluation of the period's resulting energy and cost components is the subject of the rest of this chapter.

3.3 Scheduling and Costing Production

3.3.1 Basics of Booth-Baleriaux Probabilistic Utility Simulation Model

3.3.1.1 Background

The Booth-Baleriaux probabilistic utility simulation model is a recent adaptation of previous deterministic utility models with new emphasis on the field of applied probability theory. Though the original 1967 paper on the

Figure 3.2

subject is a product of Baleriaux, et al. (10) of Belgium, Booth (17-19) of Australia deserves much of the credit for introducing and promoting the model in the United States.

Previous papers reporting on the Booth-Baleriaux model, including the work of Joy and Jenkins (39), have closely followed the development in the original paper. With due respect to these ground-breaking efforts, the following presentation leads to computational savings in terms of time and storage, and also follows a more direct line of reasoning.

The Booth-Baleriaux probabilistic utility model is based on the concept of equivalent load which embodies not only direct customer demands on a particular unit, but also the indirect demands left unsatisfied by previously loaded units when they are on forced-outages.

The equivalent load P_{e} may be defined as

$$
\begin{equation*}
P_{e} \equiv P_{D}+P_{0} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{D}= & \text { actual direct customer load demand, } M W \\
P_{O}= & \text { system capacity on forced-outage that would be } \\
& \text { generating energy otherwise, } M W
\end{aligned}
$$

Capacity that is on forced-outage during what would otherwise have been reserve (i.e., economy) shutdown hours anyway
is not counted since the outage does not affect system generating operations.

In a probabilistic sense, P_{D} is a random variable with a complementary cumulative distribution given by $F_{D}\left(P_{D}\right)$, the normalized customer load-duration curve. Since forcedoutages are random, P_{O} is also a random variable characterized by the performance probabilities of each unit. Thus, P_{e} is also a random variable and the computation of its required complementary cumulative distribution function $F_{e}\left(P_{e}\right)$ involves the convolution of the distributions of P_{D} and $P_{O}\left(\underline{26)}\right.$. Hence, $F_{e}{ }^{\left(P_{e}\right)}$ is the load-duration curve for the equivalent load P_{e}. The heuristic presentation here is limited to the common two-state model of forcedoutages:

State 1: With probability p, the unit will perform at any output up to its rated capacity when called upon and

State 2: With probability q, the unit will not perform at all when called upon.

Thus,

$$
\begin{equation*}
p+q=1 \tag{3.6}
\end{equation*}
$$

A rigorous treatment of the more general case allowing for forced deratings (i.e., inability of the unit to perform at rated capacity, though partial output is possible), is presented in Appendix A.

To keep the numerical effort to a minimum while illustrating the principle, the detailed numerics of the BoothBaleriaux convolution algorithm are first presented by way of a simple two-unit, single-increment example. ("Single increment" refers to the fact that each unit is treated as a single block of capacity). This model, the original contribution of Baleriaux, et al. (10), is the so-called "one-piece" Booth-Baleriaux model. Building on this, a more general "multi-piece" procedure (39) permitting the multiple increments to be scheduled separately is presented in Section 3.3.2.

3.3.1.2 Heuristic Derivation of Booth-Baleriaux Convolution using Two Unit, Single Increment Example

In order to derive the basic Booth-Baleriaux convolution equation, consider a 500 MW system consisting of Unit 1 (200 MW with $p_{1}=70 \%$) and Unit 2 (300 MW with $p_{2}=60 \%$). As displayed in Figure 3.3, the system is attempting to satisfy the indicated F_{D} customer load-duration curve abcde with a peak demand of 400 MW . For convenience, let the time period duration $T^{\prime}=1$ hour. Hence, total demand $D_{T}=250 \mathrm{MWH}$ (area zabcdez).

Since Unit 1 is the first to come on line, the first step in the simulation is to compute its loading. Since there are no units to its left, the equivalent load as seen by Unit 1 is merely the direct customer demand F_{D}. However, the unit performs only 70% of the time. Thus, Unit 1 is

Figure 3.3

only able to generate 70% of the energy demanded from it (area zabcsz),

$$
\begin{equation*}
E_{1}=T^{\prime} p_{1} \int_{0}^{K_{1}} F_{D}\left(P_{e}\right) d P_{e} \tag{3.7}
\end{equation*}
$$

or

$$
E_{1}=1 \text { hour } \times 0.7 \times 180 \frac{\mathrm{MWH}}{\text { hour }}=126 \mathrm{MWH}
$$

Unit 1 has been loaded according to F_{D}, the equivalent load curve F "without" an adjustment for Unit l's outages ($\equiv \mathrm{F}_{1}^{\mathrm{WO}}$). Unit 2, on the other hand, sees not only direct customer demand $F_{D^{\prime}}$ but also indirect demand unsatisfied by Unit 1 while it was down due to a forced-outage. Thus, before loading Unit 2, Unit l's outages must be "convolved" into $F_{1}^{W O}\left(\equiv F_{D}\right)$ to yield F_{1}^{W} (i.e., "with" an allowance for Unit l's forced-outages).

To do this, it is necessary to consider the two states:
(1) Unit 1 performs, a state with the probability p_{1}

$$
(=0.7), \text { and }
$$

(2) Unit 1 fails to perform, a state with the probability $q_{1}=1-p_{1}(=0.3)$.
Thus, a particular equivalent load, for example $\mathrm{P}_{\mathrm{e}} \geq 300 \mathrm{MW}$ can be arrived at in only two possible independent ways. The probability that the equivalent load $\geq 300 \mathrm{MW}$ is the
sum of the probabilities of each of the individual ways. When unit 1 performs, the probability that the equivalent load $\mathrm{P}_{\mathrm{e}} \geq 300 \mathrm{MW}$ is the product of the probability that unit 1 will perform $\left(p_{1}\right)$ and the probability that the equivalent load will exceed 300 MW without an allowance for outage of unit $I\left[F_{l}^{\text {Wo }}\left(P_{e}\right)\right]$, that is $p_{1} F_{1}^{\text {Wo }}\left(P_{e}\right)$.

When unit 1 fails to perform, its forced outage of $K_{1}=200 \mathrm{MW}$ contributes 200 MW to the equivalent load of 300 MW. Hence, the other probability that the equivalent load $P_{e} \geq 300 \mathrm{MW}$ (when Unit 1 fails to perform), is the product of the probability that Unit 1 fails $\left(q_{1}\right)$ and the probability that the equivalent load will exceed $P_{e}-K_{1}$ $=300-200=100 \mathrm{MW}$ without the $\mathrm{K}_{1}=200 \mathrm{MW}$ allowance for the forced-outage of Unit $1\left[F_{1}^{W O}\left(P_{e}-K_{1}\right)\right]$; that is, $\mathrm{q}_{1} \mathrm{~F}_{1}^{\mathrm{WO}}\left(\mathrm{P}_{\mathrm{e}}-\mathrm{K}_{1}\right)$.

Hence, the equivalent load curve with allowance for forced-outages of Unit $1, F_{l}^{W}\left(P_{e}\right)$, is the sum of the probabilities for states 1 and 2,

$$
\begin{equation*}
F_{1}^{W}\left(P_{e}\right)=p_{1} F_{1}^{W O}\left(P_{e}\right)+q_{1} F_{1}^{W O}\left(P_{e}-K_{1}\right) \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{1}^{W}\left(P_{e}\right)=0.7 \cdot F_{I}^{W O}\left(P_{e}\right)+0.3 \cdot F_{1}^{W O}\left(P_{e}-200\right) \tag{3.10}
\end{equation*}
$$

For the $P_{e}=300 \mathrm{MW}$ example of Figure 3.3
$\mathrm{F}_{1}^{\mathrm{WO}}(300)_{\text {(point d) }}=0.400$ and $\mathrm{F}_{1}^{\mathrm{WO}}(100)_{(\text {point } b)}=1.00$. Hence

$$
\begin{equation*}
\mathrm{F}_{1}^{\mathrm{W}}(300)=0.7(0.4)+0.3(1.0)=0.58 \tag{3.11}
\end{equation*}
$$

$$
\text { (point d) } \quad \text { (point b) } \quad \text { (point } g \text {) }
$$

Continuing thus for all the points along $\mathrm{F}_{\mathrm{l}}{ }^{\mathbf{W}}$,

$$
\begin{aligned}
& \mathrm{F}_{1}^{\mathrm{W}}(200)=0.7 \times \underset{(\text { point } \mathrm{c})}{0.600}+0.3 \times 1.0 \\
& (\text { point a) }=0.720 \\
& (\text { point f) }
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{F}_{1}^{\mathrm{W}}(500)=0.7 \times \underset{(\text { point } t)}{0.0}+0.3 \times \underset{(\text { point d) }}{0.400}=0.120(\text { point i) } \tag{3.12}
\end{equation*}
$$

$$
\mathrm{F}_{1}^{\mathrm{W}}(600)=0.7 \times \underset{(\text { point } j)}{0.0}+0.3 \times 0.0 \underset{(\text { point e) }}{=} \underset{(\text { point } j)}{0.000}
$$

In more general terms, any unit r can be convolved into the equivalent load distribution,

MW Contribution to Equivalent load:

In deriving Equation (3.13), use was made of the common assumption of statistical independence between the forced-outages of the various units vis-a'-vis each other and the customer demand. Furthermore, Equation (3.13) is valid for all P_{e}. One limiting case is P_{e} less than the minimum load where each $F_{r}^{W O}=1$ as does the resulting $F_{r}^{W}\left(P_{e}\right)$. For very large P_{e}, each $F_{r}^{W O}=0$ and, likewise, $F_{r}^{W}\left(P_{e}\right)=0$. Equation (3.13) is the heart and soul of the BoothBaleriaux model. All subsequent calculations involving F, whether convolutions or deconvolutions (see Section 3.3.2.1) are merely rearrangements of it.

Returning to the two unit example, Figure 3.3 indicates the resulting F_{1}^{W} obtained by applying Equation (3.13) at each multiple of 100 MW . [Equation (3.13) could be applied explicitly at intermediate P_{e}, but linear interpolation is rigorously correct for this example because the F_{D} curve consists of straight-line segments.]

Since Unit 2 follows Unit 1 in the loading order, the production of Unit 2 must be determined using an equivalent load curve ($\mathrm{F}_{2}^{\mathrm{Wo}}$) that includes not only the direct customer load demands, F_{D}, but also the forcedoutages of units to the left of it in the loading order (i.e., Unit l). Thus,

$$
\begin{equation*}
F_{2}^{W O}\left(P_{e}\right)=F_{1}^{W}\left(P_{e}\right) \tag{3.15}
\end{equation*}
$$

That is, the probability that the equivalent load will exceed a particular value P_{e} without taking into account forced-outages of Unit 2 equals the same probability taking into account forced-outages of Unit 1.

As with Unit 1 , the loading of Unit 2 is determined by multiplying the total demand on the unit (area sfghits) by its performance probability p_{2},

$$
\begin{gather*}
E_{2}=T^{\prime} p_{2} \int_{200}^{500} F_{2}^{\mathrm{WO}}\left(\mathrm{P}_{\mathrm{e}}\right) \mathrm{dP} \mathrm{e} \tag{3.16}\\
\mathrm{E}_{2}=1 \text { hour } \times .60 \times 118 \frac{\mathrm{MWH}}{\mathrm{H}}=70.8 \mathrm{MWH} \tag{3.17}
\end{gather*}
$$

Rewriting Equation (3.16) in general notation for any Unit r,

$$
\begin{equation*}
E_{r}=T^{\prime} p_{r} \int_{P_{r}^{\circ}}^{P_{r}^{\circ}+K_{r}} F_{r}^{W O}\left(P_{e}\right) d P_{e} \tag{3.18}
\end{equation*}
$$

where $P_{r}^{o}=$ Loading point for unit $r, M W$
Now that Unit 2's production has been accounted for, its outages must be convolved into $\mathrm{F}_{2}^{\mathrm{WO}}$. By applying Equation (3.13),

$$
\begin{equation*}
F_{2}^{W}\left(P_{e}\right)=p_{2} \cdot F_{2}^{W O}\left(P_{e}\right)+q_{2} \cdot F_{2}^{W O}\left(P_{e}-K_{2}\right) \tag{3.19}
\end{equation*}
$$

For example (see Figure 3.3), since $K_{2}=300 \mathrm{MW}$ and $p_{2}=60 \%$,

$$
\begin{equation*}
F_{2}^{W}\left(P_{e}\right)=0.6 \times F_{2}^{W O}\left(P_{e}\right)+0.4 \times F_{2}^{W O}\left(P_{e}-300\right) \tag{3.20}
\end{equation*}
$$

In particular, at $\mathrm{P}_{\mathrm{e}}=500 \mathrm{MW}$ (point n)

$$
\begin{equation*}
\mathrm{F}_{2}^{\mathrm{W}}(500)=0.6 \times \underset{\text { (point i) }}{.120+0.4 \times \underset{\text { (point f) }}{0.720}=0.360} \text { (point n) } \tag{3.21}
\end{equation*}
$$

Continuing thus,

$$
\begin{align*}
& \mathrm{F}_{2}^{\mathrm{W}}(600)=0.6 \times 0.0+0.4 \times 0.580=0.232 \\
& \text { (point j) (point g) (point o) } \\
& \mathrm{F}_{2}^{\mathrm{W}}(700)=0.6 \times 0.0+0.4 \times 0.180=0.072 \\
& \text { (point h) (point p) } \\
& \mathrm{F}_{2}^{\mathrm{W}}(800)=0.6 \times 0.0+0.4 \times 0.120=0.048 \tag{3.22}\\
& \text { (point i) (point q) } \\
& \mathrm{F}_{2}^{\mathrm{W}}(900)=0.6 \times 0.0+0.4 \times \underset{(\text { point }}{0.0}=0.000(\text { point r) }
\end{align*}
$$

Since both of the units on the system have been convolved in via Equation (3.13), the resulting F_{2}^{W} equivalent load distribution (see Figure 3.3) includes the entire system, $\mathrm{F}_{\mathrm{T}}^{\mathbf{W}}$.

Hence, the remaining D_{U} unserved energy (i.e., unserved by the K_{T} MW of the system's own resources or
area tnopqrt) is equal to

$$
\begin{equation*}
D_{U}=T \cdot \int_{K_{T}}^{\infty} F_{T}^{W}\left(P_{e}\right) d P_{e}=53.2 \mathrm{MWH} \tag{3.23}
\end{equation*}
$$

This energy represents the amount of emergency support required from neighboring utilities.

The second measure of system reliability is the LOLP, loss-of-load probability (i.e., percent of time emergency support is required: $P_{e} \geq K_{T}$). Hence,

$$
\begin{gather*}
\text { LOLP }=F_{T}^{W}\left(P_{e}=500 \mathrm{MW}\right)=0.360 \tag{3.24}\\
(\text { point } \mathrm{n})
\end{gather*}
$$

Note that total system production plus emergency purchases have met total customer demand:

$$
\begin{gather*}
D_{T}=E_{1}+E_{2}+D_{U} \tag{3.25}\\
250 \mathrm{MWH}=126+70.8+53.2 \mathrm{MWH} \tag{3.26}
\end{gather*}
$$

3.3.1.3 Single Increment Example for Reference Utility System

Returning to the original Reference Utility System of Section 2.1.2.3, the customer loads of Figure 2.9 are repeated in Figure 3.4. As for the five generating units, assume the loading order, unit characteristics and average (i.e., equivalent single increment, see Table C.l3 in

Figure 3.4

Appendix C) costs also indicated in Figure 3.4. This then represents Example 4 on the Reference System.

Applying the load-then-convolve sequence of Section 3.3.1.2, the unit loadings E_{r} are simulated in order. Table 3.1 presents all of the resulting probability distributions.

When the last unit (Unit I) has been convolved in, the resulting F_{I}^{W} distribution includes the entire system $\mathrm{F}_{\mathrm{T}} \mathbf{W}$. Hence,

$$
\begin{equation*}
\mathrm{D}_{\mathrm{U}}=\mathrm{T}^{\cdot} \int_{\mathrm{K}_{\mathrm{T}}}^{\infty} \mathrm{F}_{\mathrm{T}}^{\mathrm{W}}\left(\mathrm{P}_{\mathrm{e}}\right) \mathrm{dP} \mathrm{e}_{\mathrm{e}}=30,111 \mathrm{MWH} \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { LOLP }=F_{T}^{W}\left(P_{e}=K_{T}\right)=15.647 \% \tag{3.28}
\end{equation*}
$$

This completes the Booth-Baleriaux energy calculations for Example 4. Equation (2.21) can then be utilized to determine the cost of each unit's energy production.

$$
\begin{equation*}
x_{r}=\bar{e}_{r} \cdot E_{r} \tag{3.29}
\end{equation*}
$$

Figure 3.5 sketches the complete flow of calculations, including the energy and cost totals (see also Table 3.2).

Table 3.1
Summary of Equivalent Load Distributions for Example 4 with Indication of Segments Used for Loading Each Unit

Unit Loaded, (r) v		III	IV	II	I	Neigh.Util
$\begin{aligned} & \text { Rated Cap. }\left(\mathrm{K}_{\mathrm{r}}\right)^{800 \mathrm{MW}} \\ & \text { Perf. Prob. }\left(\mathrm{p}_{\mathrm{r}}\right) 0.85 \end{aligned}$		300	600	200	100	∞
		0.90	0.90	0.95	0.95	1.00
$\begin{aligned} & \mathrm{P}_{\mathrm{e}} \\ & \text { (MW) } \end{aligned}$	$\mathrm{F}_{\mathrm{D}}=$	$\mathrm{F}_{\mathrm{V}}^{\mathrm{W}}=$	$\mathrm{F}_{\text {III }}^{\mathrm{W}}=$	$\mathrm{F}_{\text {IV }}^{\mathrm{W}}=$	$\mathrm{F}_{\mathrm{II}}^{\mathrm{W}}=$	$\mathrm{F}_{\mathrm{I}}^{\mathrm{W}}=$
	$\mathrm{F}_{\mathrm{V}}^{\mathrm{WO}}$	$\mathrm{F}_{\mathrm{III}}^{\mathrm{wo}}$	$F_{\mathrm{IV}}^{\mathrm{wo}}$	$F_{I I}^{w o}$	$\mathrm{F}_{\mathrm{I}}^{\mathrm{wo}}$	F_{T}^{W}
0	1.007	1.0000	1.00000	1.00000	1.00000	1.00000
-	: V	-	-	-	-	.
	1.00.	1.00007			1.00000	1.00000
800	1.00-	1.00007	1.00000	1.00000	1.00000	1.00000
900	. 95	. 9575	. 96175	. 96558	. 96730	. 96893
1000	. 90	. 9150 年	. 92350	. 93115	. 93459	. 93623
1100	. 85	.8725-	. 885257	. 89672	. 90017	. 90189
1200	. 80	. 8300	. 84275	. 85848	. 86211	. 86401
1300	. 50	. 5750	. 60900	. 64810	. 66053	. 67061
1400	. 20	. 3200	. 37525 IV	. 43772	. 45876	. 46885
1500	. 15	. 2775	. 33275	. 39565	. 40827	. 41080
1600	. 10	. 2350	. 26900	. 33445	. 33961	. 34305
1700	. 05	. 1850	.19850	. 267187	. 27360	. 27690
1800	. 00	. 1350	. 14925	. 21860 III	. 22439	. 22685

Table 3.1--Continued

P_{e}	$\mathrm{F}_{\mathrm{D}}=$	$\mathrm{F}_{\mathrm{V}}^{\mathrm{W}}=$	$\mathrm{F}_{\text {III }}^{\mathrm{W}}=$	$\mathrm{F}_{\mathrm{IV}}^{\mathrm{W}}=$	$\mathrm{F}_{\mathrm{II}}^{\mathrm{W}}=$	$\mathrm{F}_{\mathrm{I}}^{\mathrm{W}}=$
(MW)	$\mathrm{F}_{\mathrm{V}}^{\mathrm{WO}}$	$\mathrm{F}_{\text {III }}^{\text {wo }}$	$\mathrm{F}_{\text {IV }}^{\text {Wo }}$	$\mathrm{F}_{\text {II }}^{\text {WO }}$	$\mathrm{F}_{\mathrm{I}}^{\text {Wo }}$	$\mathrm{F}_{\mathrm{T}}^{\mathrm{W}}$
1900		.1275*	. 13825	.18532 ${ }^{\text {ل }}$. 18942 I	. 19117
2000		. 1200	. 12650	. 15138	. 15474 -	. 15647 LOLP
2100		. 0750	. 08100	. 10618	. 11013	. 11236
2200		.0300*	.03975*	. 06268	. 06711	. 06926
2300		. 0225	. 03225	. 04888	. 05174	$.05251 \mathrm{D}_{U}$
2400		. 0150	. 02100	. 03382	. 03527	. 03609
2500		. 0075	. 00975	. 02260	. 02391	. 02448
2600		. 0000	. 00225	. 01468	. 01563	. 01605
2700			. 00150	. 00945	. 01011	. 01038
2800			. 00075	. 00465	. 00515	. 00540

[^1]Figure 3.5

Calculational Steps for Example 4

TABLE 3.2

Example 4 on Reference Utility System:
"Single Increment Booth-Baleriaux Model"
(See Appendix Cor further details.)

Unit r	Increment i	```Position in Loading Order```	Increment Energy $E_{r i}$ (GWH)	```Increment Cost Xri (103 $)```
I	1	5	11.93	193.3
II	$\left.\begin{array}{l}1 \\ 2\end{array}\right\}$	4	30.85	152.2
III	1 2 .	2	184.54	375.0
IV	$\left.\begin{array}{l}1 \\ 2\end{array}\right\}$	3	195.17	710.6
V	$\left.\begin{array}{l}1 \\ 2\end{array}\right\}$	1	496.40	949.4
	Utility Production Emergency Purchases	(10 \$/MWH)	918.89 30.11	$\begin{array}{r} 2380.5 \\ 301.1 \end{array}$
	Total		949.00	2681.6

3.3.1.4 Single Increment Algorithm

From Figure 3.5, the load-convolve sequence of the single increment Booth-Baleriaux algorithm can be stated as follows:

Step 1: From the specified loading order, label the first unit as unit r. Re-label F_{D}, the normalized customer load-duration curve so that it becomes the "current" F.

Step 2: Re-label the current F so that it becomes $\mathrm{F}_{\mathrm{r}}^{\mathrm{wo}}$.
Step 3: Load unit r by calculating its expected production,

$$
\begin{equation*}
E_{r}=T^{\prime} \operatorname{Pr} \int_{P_{r}^{o}}^{P_{r}^{o}+K_{r}} F_{r}^{W_{0}^{o}}\left(P_{e}\right) d P_{e} \tag{3.30}
\end{equation*}
$$

where $P_{r}^{0}=$ equivalent load level when unit r is at zero power level.
Step 4: Convolve the unit's outages into $F_{r}^{\text {wo }}$ to account for the production unit r was unable to satisfy,

$$
\begin{equation*}
F_{r}^{W}\left(P_{e}\right)=p_{r} \cdot F_{r}^{W O}\left(P_{e}\right)+q_{r} \cdot F_{r}^{W O}\left(P_{e}-K_{r}\right) \tag{3.31}
\end{equation*}
$$

Step 5: If there are no more units in the loading order, go to Step 6. Otherwise, label the next unit in the specified loading order as
unit r. Return to Step 2 and continue. Step 6: Since there are no more units to be loaded, the current F is for the total system. Label it F_{T}. Then,

$$
\begin{equation*}
\text { LOLP }=F_{T}\left(P_{e}=K_{T}^{\prime}\right) \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{u}=T^{\prime} \int_{K_{T}^{\prime}}^{\infty} F_{T}\left(P_{e}\right) d P_{e} \tag{3.33}
\end{equation*}
$$

This completes the Booth-Baleriaux algorithm for onepiece units. Production costing of the energy,

$$
\begin{equation*}
X_{r}=\bar{e}_{r} E_{r} \tag{3.34}
\end{equation*}
$$

can be performed either on-line as a second part of Step 3 or off-line after all of the energies have been assigned.

3.3.1.5 Important Numerical Properties

Seven important numerical properties of the BoothBaleriaux model are worthy of note. The first three relate directly to the computational effort involved while the latter four deal with the more philosophical aspects of the results.

First, by invoking Equation (3.6), the time involved in the convolution of Equation (3.31) can be reduced by almost one-half by rearranging to:

$$
\begin{equation*}
F_{r}^{W}\left(P_{e}\right)=F_{r}^{W O}\left(P_{e}\right)+q_{r}\left[F_{r}^{W O}\left(P_{e}^{-K_{r}}\right)-F_{r}^{W O}\left(P_{e}\right)\right] \tag{3.35}
\end{equation*}
$$

Two time-consuming multiplications can be reduced to one. [As a sidelight, F_{r}^{W} at P_{e} never decreases in magnitude as loading proceeds since the second term in Equation (3.35) can never by negative.] Secondly, though Example 4 involved six different F's, only one was required at any one time and, furthermore, none was ever required a second time; the result being that only one array of storage need ever be allocated to F. The array F is stored in the computer as a one dimensional array of equally-spaced points DM MW apart (see Figure 3.6). Thus the 12 th array location has stored in it $F\left(P_{e}=12 * D M\right)$. Linear interpolation is assumed between points.

Since the convolution of Equation (3.31) involves only the point of interest (at p_{e}) and points to its left (specifically, at $P_{e}-K_{r}$), it is convenient to begin the convolution of each unit r at the extreme right-hand side of Figure 3.6. Proceeding toward the left, each array location has its current quantity $\left[F_{r}^{W O}\left(P_{e}\right)\right]$ increased by $q_{r}{ }^{*}\left[F_{r}^{W O}\left(P_{e}-K_{r}\right)-F_{r}^{W O}\left(P_{e}\right)\right]$ per Equation (3.35). In this manner, $\mathrm{F}_{\mathrm{r}}^{\mathrm{wo}}$ is convoluted to yield $\mathrm{F}_{\mathrm{r}}^{\mathrm{W}}$. By being identically located, $\mathrm{F}_{\mathrm{r}}^{\mathrm{W}}$ automatically becomes F^{WO} for the next unit. The result is that the single F array is kept "current" as the scheduling algorithm

Figure 3.6

Computer Representation of Equivalent Load Curve

proceeds from unit to unit.
The third and final point concerning computational details involves deconvolution. Even if a previous F were needed again, it could be easily restored by reversing Equation (3.31). Such a deconvolving, or stripping out, of the outages of a previously included unit r can thus be achieved by,

$$
\begin{equation*}
F_{r}^{W O}\left(P_{e}\right)=\frac{1}{P_{r}}\left[F_{r}^{W}\left(P_{e}\right)-q_{r} \cdot F_{r}^{W O}\left(P_{e}-K_{r}\right)\right] \tag{3.36}
\end{equation*}
$$

For deconvolution, the direction of calculation would also be reverser, proceeding from left to right of Figure 3.6 so that $F\left(P_{e}\right)$ for P_{e} to the left of the point of interest would already be F^{WO} as required by Equation (3.35).

The first important philosophical result has already been seen in Section 3.3.1.2: The production of previous increments is unaffected by changes in the loading order of subsequent units. The order of the computations bears this out immediately.

Secondly, with regard to any currently stored F array, it is a function of the units convolved in, but not a function of the order in which they were added. Consider an initial customer demand F_{D} and the simple two unit utility system (Unit 1 and Unit 2). The task is to prove that $F_{T}\left(P_{e}\right)$ is identical whether the loading order is (1) Unit 1 , then Unit 2 (see Section 3.3.1.2) or (2) Unit 2, then

Unit 1.
Equation (2.31) holds for both cases,

$$
\begin{equation*}
F_{1}^{W}\left(P_{e}\right)=p_{1} F_{1}^{W O}\left(P_{e}\right)+q_{1} F_{1}^{W O}\left(P_{e}-K_{1}\right) \tag{3.37}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}^{W}\left(P_{e}\right)=p_{2} F_{2}^{W O}\left(P_{e}\right)+q_{2} F_{2}^{W O}\left(P_{e}-K_{2}\right) \tag{3.38}
\end{equation*}
$$

For Case (1) (Unit 1, then Unit 2),

$$
\begin{align*}
& \mathrm{F}_{1}^{\mathrm{WO}}=\mathrm{F}_{\mathrm{D}} \tag{3.39}\\
& \mathrm{~F}_{2}^{\mathrm{WO}}=\mathrm{F}_{1}^{\mathrm{W}} \tag{3.40}
\end{align*}
$$

$$
\begin{equation*}
F_{T}=F_{2}^{W} \tag{3.41}
\end{equation*}
$$

and

$$
\begin{aligned}
F_{T}\left(P_{e}\right) & =p_{2}\left[p_{1} F_{D}\left(P_{e}\right)+q_{1} F_{D}\left(P_{e}-K_{1}\right)\right] \\
& +q_{2}\left[p_{1} F_{D}\left(P_{e}-K_{2}\right)+q_{1} F_{D}\left(P_{e}-K_{2}-K_{1}\right)\right]
\end{aligned}
$$

or finally,

$$
\begin{aligned}
F_{T}\left(P_{e}\right) & =p_{1} p_{2} F_{D}\left(P_{e}\right)+q_{1} p_{2} F_{D}\left(P_{e}-K_{1}\right) \\
& +p_{1} q_{2} F_{D}\left(P_{e}-K_{2}\right)+q_{1} q_{2} F_{D}\left(p_{e}-K_{1}-K_{2}\right)
\end{aligned}
$$

For Case (2) (Unit 2, then Unit 1),

$$
\begin{align*}
& \mathrm{F}_{2}^{\mathrm{WO}}=\mathrm{F}_{\mathrm{D}} \tag{3.44}\\
& \mathrm{~F}_{1}^{\mathrm{WO}}=\mathrm{F}_{2}^{\mathrm{W}} \tag{3.45}
\end{align*}
$$

and

$$
\begin{equation*}
F_{T}=F_{1}^{W} \tag{3.46}
\end{equation*}
$$

Thus,

$$
\begin{align*}
F_{T}\left(P_{e}\right) & =p_{1}\left[p_{2} F_{D}\left(P_{e}\right)+q_{2} F_{D}\left(P_{e}-K_{2}\right)\right] \\
& +q_{1}\left[p_{2} F_{D}\left(P_{e}-K_{1}\right)+q_{2} F_{D}\left(P_{e}-K_{1}-K_{2}\right)\right] \tag{3.47}
\end{align*}
$$

or, rearranging,

$$
\begin{align*}
F_{T}\left(P_{e}\right) & =p_{1} p_{2} F_{D}\left(P_{e}\right)+q_{1} p_{2} F_{D}\left(p_{e}-K_{1}\right) \\
& +p_{1} q_{2} F_{D}\left(p_{e}-K_{2}\right)+q_{1} q_{2} F_{D}\left(p_{e}-K_{1}-K_{2}\right) \tag{3.48}
\end{align*}
$$

Since F_{T} in Case (1) [Equation (3.43)] is term by term identical with F_{T} in Case (2) [Equation (3.48)], the proof for the two unit system is complete. The generalization to more units is straightforward, though cumbersome and is not presented formally. In conclusion, each F is a function of the units whose outages have already been included but not a
function of their order of inclusion.
The third philosophical point follows immediately from the above. Since F is independent of the order of inclusion, a unit's loading, determined using the F, is also independent of the ordering. However, as with F, it does depend on which units are included.

The fourth and final philosophical point also follows from the second. When all units have been convolved in, the resulting F_{T} is independent of the loading order. Thus, the LOLP and D_{U} are not functions of the startup and loading order, but only of the original customer demand and the aggregate system equipment not on scheduled maintenance.

3.3.2 Modifications for Multiple Increments

3.3.2.1 Algorithm Derived

The original single increment Booth-Baleriaux model was a tremendous leap forward in utility system simulation. As Example 3 in Section 2.2 .1 pointed out, not only was the production of peaking equipment more accurately predicted, but the model was also better able to estimate the LOLP and unserved energy D_{U} by the same technique. One large stumbling block remained--how to accurately represent the interweaving of the multiple increments of the various units. Units are not scheduled as single blocks of capacity, not only because of economics, but also because of spinning reserve requirements.

To handle this more general case rigorously, only a slight modification of the single increment algorithm is required. The load-convolve pattern is replaced with a deconvolve-load-convolve sequence.

To derive the algorithm, after loading the first increments of several units, assume (1) the next increment in the loading order is $\Delta K_{r i}$ (the i th increment of unit r), (2) that $i>1$ and (3) that the current $F,\left(F_{r, i-1}^{W}\right)$ already includes unit $r^{\prime} s$ increments up to $K_{r, i-1}$. If $\Delta K_{r i}$ was mistakenly loaded using $F_{r, i-1}^{W}$ itself, the i th increment would, in essence, be meeting demands due to (1) customers, (2) the forced-outages of increments of other units already loaded and (3) the forced-outages of its own lower (i-l) increments. However, the latter is an impossibility. If the lower increments are down on forced-outage, so is $\Delta K_{r i}$. (The converse is not necessarily true. See Appendix A.)

Thus, to load $\Delta K_{r i}$ properly (see Figure 3.7), the previously convolved forced-outages of unit $r\left(K_{r, i-1} M W\right.$ at p_{r} percent) must be stripped out of F to yield $\mathrm{F}_{\mathrm{r}, \mathrm{i}-1}^{\mathrm{WO}}$.

Equation (3.36) does just that,

$$
\begin{equation*}
F_{r, i-1}^{w o}\left(P_{e}\right)=\frac{1}{P_{r}}\left[F_{r, i-1}^{W}\left(P_{e}\right)-q_{r} F_{r, i-1}^{w o}\left(P_{e}-K_{r, i-1}\right)\right] \tag{3.49}
\end{equation*}
$$

Figure 3.7

After deconvolution,

$$
\begin{equation*}
F_{r, i-1}^{w o}=F_{r i}^{w o} \tag{3.50}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{r i}=T^{\prime} \operatorname{Pr}_{P_{r i}^{0}}^{P_{r i}^{o}+\Delta K_{r i}}{ }_{F}^{P_{r i}}\left(P_{e}\right) d P_{e} \tag{3.51}
\end{equation*}
$$

Once the i th increment itself has been loaded, the outages of all the i increments can be convolved into $F_{r i}^{w o}$ at one time,

$$
F_{r i}^{W}\left(P_{e}\right)=p_{r} \cdot F_{r i}^{W O}\left(P_{e}\right)+q_{r} \cdot F_{r i}^{W O}\left(P_{e}-K_{r i}\right)
$$

The resulting deconvolve-load-convolve sequence of Figure 3.7 can be applied successively to each increment in the loading order.

Using the indicated multiple increment loading order (Units III-V must run; 80 MW spinning reserve), Table 3.3 presents the results for this Example 5 on the Reference Utility System. Table 3.4 presents a summary comparison of Examples 1 through 5. The D_{T}, D_{U} and LOLP are reassuringly equal for all three probabilistic examples. Furthermore, the multiple increment Example 5 does save $\$ 123,000$ in production costs over the less economical (early startup

TABLE 3.3

Example 5 on Reference Utility System:
"Multiple Increment Booth-Baleriaux Model (V-2, then III-2)"
(Among Nuclear Upper Increments V-2, then III-2)
(See Appendix Cor further details.)

Unit r	Increment i	```Position in Loading Order```	Increment Energy $E_{r i}$ (GWH)	$\begin{gathered} \text { Increment } \\ \text { Cost } \\ X_{r i} \\ \left(10^{3} \$\right) \end{gathered}$
I	1	9	11.93	193.3
II	1	6	36.71	201.9
	2	8	14.01	59.5
III (Nuclear)	1	2	65.70	149.8
	2	5	103.90	197.4
IV	1	3	131.40	515.1
	2	7	70.85	235.2
$\begin{aligned} & \text { V } \\ & \text { (Nuclear) } \end{aligned}$	1	1	186.15	418.8
	2	4	298.24	510.0
Utility Production			918.89	2481.0
Emergency Purchases		(10 \$/MWH)	30.11	301.1
Total			949.00	2782.1

Loss-of-load Probability, LOLP $=15.6 \%$

Comparison of Examples 1 to 5 on Reference Utility System

Example	Remarks	$\begin{gathered} \mathrm{D}_{\mathrm{T}} \\ (\mathrm{GWH}) \end{gathered}$	$\begin{gathered} D_{U} \\ \text { (GWH) } \end{gathered}$	System Production Fuel Cost $\left(10^{6} \$\right)$	LOLP (\%)	Reference Table
1	Deterministic (No Forced Outages)	949	0.00	2.443	0.00	2.3
2	Deterministic (with Reduced Capacities)	949	0.11	2.514	1.25	2.4
3	Probabilistic, Multiple Increment; Early Startup of II	949	30.11	2.604	15.65	2.5
4	Probabilistic, Single Increment; No MustRun, No Spin Res.	949	30.11	2.380^{1}	15.65	3.2
5	```Probabilistic, Multi- ple Increment;Oper- ating Constraints App' to Econ. order```	949	30.11	$2.481{ }^{2}$	15.65	3.3
${ }^{1}$ Lower ${ }^{2}$ Lower	limit if all operating limit if all operating		aints	violated. satisfied		

of Unit II) but practical (spinning reserve satisfied) multiple increment Example 3. The low cost of Example 4 is misleading because the must-run status of Unit IV and the system spinning reserve requirement were ignored, rendering the single increment loading order infeasible (i.e., the system operating constraints were violated). Before formally stating the steps of the more general multiple increment Booth-Baleriaux algorithm in the next Section, two important points need to be made to justify that generality. First, the method is valid even if $i=1$. For then,

$$
\begin{equation*}
K_{r, i-1}=K_{r, 0} \equiv 0 \tag{3.53}
\end{equation*}
$$

and the deconvolution of Equation (3.49) reduces to

$$
\begin{equation*}
F_{r 0}^{W O}\left(P_{e}\right)=\frac{1}{P_{r}}\left[F_{r 0}^{W}\left(P_{e}\right)-q_{r} F_{r 0}^{W O}\left(P_{e}-0\right)\right] \tag{3.54}
\end{equation*}
$$

Utilizing Equation (3.6), $\mathrm{F}_{\mathrm{r} 0}^{\mathrm{WO}} \equiv \mathrm{F}_{\mathrm{r} 0}^{\mathrm{W}}$. That is, if no in-
crements of the unit have been previously loaded, straightforward application of Equation (3.49) correctly deconvolves zero MW.

The second point also involves a limiting condition. Suppose all the multiple increments for a given unit happen to be scheduled adjacent to each other. This case ought to revert to the results of the single increment model. Indeed, each "convolution to left; deconvolution to the right"
sequence returns F to the identical $F_{r}^{W O}$. In fact, this was the actual scheme used to calculate Example 4 of Section 3.3.1.3 (see Appendix C).

3.3.2.2 Multiple Increment Algorithm

The deconvolve-load-convolve sequence of the more general, multiple increment Booth-Baleriaux algorithm is stated as follows:

Step 1: From the specified loading order, label the first unit increment as unit r, increment i (i $\equiv 1$). Re-label F_{D} the normalized customer load-duration curve so that it becomes $F_{r, i-1}{ }^{\mathbf{w}}$.
Step 2: Deconvolve the i-l previously loaded increments of unit r which cannot create indirect demand on the current increment,

$$
F_{r, i-1}^{w o}\left(P_{e}\right)=\frac{1}{p_{r}}\left[F_{r, i-1}^{w}\left(P_{e}\right)-q_{r} F_{r, i-1}^{w o}\left(P_{e}-K_{r, i-1}\right)\right]
$$

and re-label the result $\mathrm{F}_{\mathrm{ri}}^{\mathrm{WO}}$.
Step 3: Load the unit increment by calculating its expected production,

$$
\begin{equation*}
E_{r i}=T^{\prime} \operatorname{Pr} \int_{P_{r i}^{\circ}}^{P_{r i}^{\circ}+\Delta K_{r i}}{ }_{F}^{r i}\left(P_{e}\right) d P_{e} \tag{3.56}
\end{equation*}
$$

where $P_{r_{i}}^{0}=$ equivalent load level when the unit increment is at zero power level.

Step 4: Convolve the outages of the unit's increments loaded thus far ($K_{r i}$) into $F_{r i}^{\text {WO }}$ to account for the production unit r has thus far been unable to satisfy,

$$
\begin{equation*}
F_{r i}^{W}\left(P_{e}\right)=p_{r} \cdot F_{r i}^{W O}\left(P_{e}\right)+q_{r} \cdot F_{r i}^{W O}\left(P_{e}-K_{r i}\right) \tag{3.57}
\end{equation*}
$$

Step 5: If there are no more unit increments, go to Step 6. Otherwise, label the next unit increment in the specified loading onder as unit r, increment i. Re-label the current F so that it becomes $\mathbf{F}_{\mathbf{r}, i-1}^{\mathbf{W}}$. Return to Step 2 and continue.

Step 6: Since there are no more increments to be loaded, the current F is for the total system. Label it $\mathbf{F}_{\mathbf{T}}$. Then,

$$
\begin{equation*}
\text { LOLP }=F_{T}\left(P_{e}=K_{T}^{\prime}\right) \tag{3.58}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{U}=T^{\prime} \int_{K_{T}^{\prime}}^{\infty} F_{T}\left(P_{e}\right) d P_{e} \tag{3.59}
\end{equation*}
$$

This completes the Booth-Baleriaux multiple increment algorithm. Comparing it with the single increment
algorithm of Section 3.3.1.4, only Step 2 is significantly different. Instead of immediately re-labeling the current F to $F_{r}^{\text {wo }}$, a deconvolution must first be performed to ensure that no outages of unit r are included.

As before, production costing of the energy increment,

$$
\begin{equation*}
x_{r l}=\bar{e}_{r l} E_{r l}, o r, x_{r i}=\lambda_{r i} E_{r i} \text { for } i>1 \tag{3.60}
\end{equation*}
$$

can be performed either on-line as a second part of Step 3 or off-line after all of the energies have been assigned.

3.3.3 Constancy of Nuclear Potential

An extremely important conclusion regarding nuclear energy production can be deduced by combining the simple logic of the optimized loading order presented in Sections 2.4.3 and 3.2 and the purely mathematical properties of the Booth-Baleriaux model as discussed in Section 3.3.1.5.

Conclusion: Irrespective of the the intra-group loading order of the nuclear increments, the period's nuclear potential N_{p} is a constant.

Consider Figure 3.8 which presents a typical period loadduration curve being satisfied by a nuclear utility system using a loading order as suggested in Section 3.2. Proceeding from left to right through the startup and loading order, the first two groups of increments are the nuclear minimums (group 1) and the fossilminimums (group 2) for the

Figure 3.8

must-run units. Since today's nuclear units all possess incremental costs on the order 0.9 to $1.5 \$ / \mathrm{MWH}$, next comes an amorphous block of capacity comprised of all the nuclear upper increments (group 3). (It is assumed that there are units in group 2. Otherwise, groups 3 and 4 must be mixed in order to provide spinning reserve.) After group 3 comes the well-ordered, but much more expensive, remaining fossil equipment (group 4) costing from 2 \$/MWH on up. Beyond this installed capacity, are the emergency resources of neighboring utilities (group 5).

The conclusion is postulated as follows:
Given two alternative loading orders for group 3 $(g=3 A$ and $g=3 B)$, show that the nuclear potentials are equal:

$$
\begin{equation*}
N_{g=3 A}=N_{g=3 B} \tag{3.61}
\end{equation*}
$$

The other group loading orders remain the same. For instance,

$$
\begin{equation*}
g=4 A \equiv 4 B \tag{3.62}
\end{equation*}
$$

Since,

$$
\begin{equation*}
N \equiv E_{g=1}+E_{g}=3 \tag{3.63}
\end{equation*}
$$

The question becomes,

$$
\begin{equation*}
E_{g=1 A}+E_{g=3 A} \geqslant E_{g=1 B}+E_{g=3 B} \tag{3.64}
\end{equation*}
$$

Since groups 1 and 2 remain the same and precede group 3, the conclusions of Section 3.3.1.5 dictate that those groups produce the same energy. Dropping the "g $=$ " notation for convenience,

$$
\begin{equation*}
E_{1 A}=E_{1 B} \tag{3.65}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{2 A}=E_{2 B} \tag{3.66}
\end{equation*}
$$

Moving through group 3, the first increment of group 4 is loaded utilizing the F curve remaining after the last nuclear increment has been convolved in. Since all of the nuclear increments have been convolved in, the current F must be identical for the two alternatives since the order they were included is immaterial. Thus, all of the BoothBaleriaux calculations for group 4 will be identical and,

$$
\begin{equation*}
E_{4 A}=E_{4 B} \tag{3.67}
\end{equation*}
$$

As for $D_{U}\left(\equiv E_{g=5}\right)$, Section 3.3.1.5 already stated that it is invariant. Thus,

$$
\begin{equation*}
E_{5 A}=E_{5 B} \tag{3.68}
\end{equation*}
$$

Since the same customer demand is satisfied for both alternatives,

$$
\begin{align*}
& D_{T}=E_{1 A}+E_{2 A}+E_{3 A}+E_{4 A}+E_{5 A} \\
& \| \tag{3.69}
\end{align*}\left\|\left\|\left\|\left\|_{1}\right\| E_{2 B}+E_{3 B}+E_{4 B}+E_{5 B} .\right.\right.\right.
$$

With four of the five components on the right-hand side being equal, the remaining components must also be equal,

$$
\begin{equation*}
E_{3 A}=E_{3 B} \tag{3.70}
\end{equation*}
$$

and Equation (3.64) is, in fact, true.
Therefore,

$$
\begin{equation*}
E_{g=1}+E_{g=3}=N=\text { constant } \tag{3.71}
\end{equation*}
$$

independent of the intra-nuclear loading order.
Q.E.D.

As a matter of fact, a much more general conclusion can be proven in an analogous manner: Each sub-group of unit increments produces the same energy regardless of the intra-group loading orders, provided that the inter-group loading order remains the same.

Example 6 on the Reference System is presented in Table 3.5. It involves the rearrangement of nuclear upper increments V-2 and III-2 with respect to Example 5 of Table 3.3. In both examples, the two upper nuclear increments produced a total of 402.14 GWH and a system nuclear potential of 653.99 GWH.
-207-
TABLE 3.5

Example 6 on Reference Utility System:
"Multiple Increment Booth-Baleriaux Model (III-2, then V-2)"
(Among Nuclear Upper Increments III-2, then V-2)
(See Appendix Cor further details.)

Unit r	Increment i	```Position in Loading Order```	Increment Energy $E_{r i}$ (GWH)	$\begin{aligned} & \text { Increment } \\ & \text { Cost } \\ & x_{r i} \\ & \left(10^{3} \$\right) \end{aligned}$
I	1	9	11.93	193.3
II	1	6	36.71	201.9
	2	8	14.01	59.5
III (Nuclear)	1	2	65.70	149.8
	2	4	131.40	249.7
IV	1	3	131.40	515.1
	2	7	70.85	235.2
V (Nuclear)	1	1	186.15	418.8
	2	5	270.74	463.0
Utility Production			918.89	2486.3
Emergency Purchases (10 \$/MWH)			30.11	301.1
Total			949.00	2787.4

Loss-of-load Probability, LOLP $=15.6 \%$

The conclusion concerning constant nuclear potential is extremely important to the structure of the nuclear power management model of Figure 2.21 because the BoothBaleriaux simulation in the SIM does not require detailed reactor-by-reactor nuclear incremental costs. (Recall that "ballpark" nuclear incremental costs were, nonetheless, useful in establishing the loading order groups.) Any intra-nuclear order is as good as any other for calculating the system nuclear potential. The model merely picks an arbitrary order for the amorphous nuclear group ($g=3$), simulates the system and totals the nuclear production to get the constant nuclear potential.

Furthermore, after all periads have been simulated by the SIM, the SOM begins optimizing the intra-nuclear production of the nuclear potentials. Since period nuclear potential is a constant regardless of the various detailed incremental costs (i.e., loading orders) calculated at each iteration by the CORSOM's (see Section 2.5), the iterations in Figure 2.21 need not loop back through the SIM. All of the above, make this an extremely important conclusion.

3.4 Estimating Startup-Shutdown Cost

To accurately calculate the startup-shutdown cost component of operating revenue requirements, an hour-byhour production scheduling model is required. Having sacrificed the detailed chronological load shapes for the
more convenient load-duration curves (see Section 2.l.1) covering much longer periods of time, it becomes necessary to estimate startup-shutdown costs by an approximate technique.

Consider Figure 3.9 [after (18)] which displays qualitatively the approximate relation between Ω, the frequency of startup-shutdowns (per day) and $L_{r l}^{\prime}$, the availability-based capacity factor for the unit's first increment. That is,

$$
\begin{equation*}
L_{r 1}^{\prime}=\frac{1}{K_{r l}} \int_{P_{r 1}^{0}}^{P_{r 1}^{0}+K_{r 1}} F_{r l}^{W O}\left(P_{e}\right) d P_{e} \tag{3.72}
\end{equation*}
$$

For must-run units, $L_{r 1}^{\prime}$ equals 1 and Ω equals 0 . For very expensive peaking units, $L_{r l}^{\prime}$ approaches 0 and Ω again approaches 0. As expected, units never shutdown and units never started-up incur no startup-shutdown cost. In between are those units started-up and shutdown on a daily basis and, hence, Ω approaches one.

Since unit startup-shutdown cost Q_{r} is specified in time independent units of equivalent thermal energy input, multiplying it by \emptyset_{r}, unit thermal energy cost for the time period, permits escalation in terms of undiscounted dollars. Since $L_{r l}^{\prime}$ is easily extracted for each unit during the Booth-Baleriaux simulation, the fractional starts per

Figure 3.9

Example of Startup-Shutdown Frequency versus
Availability-Based Capacity Factor [After (18)]

day are easily estimated given the proper dependence of Ω upon $L_{r l}^{\prime}$. Thus, a period $\mathrm{T}^{\prime} / 24$ days long, incurs total startup-shutdown cost amounting to

$$
\begin{equation*}
x_{S}=\frac{T^{\prime}}{24} \sum^{R} \phi_{r} Q_{r} \Omega\left(L^{\prime}{ }_{r l}\right) \tag{3.73}
\end{equation*}
$$

Table 3.6 presents the detailed calculation of unit startup-shutdown costs for Example 5 which was presented in Table 3.3.

3.5 Determining Cost of Emergency Purchases

The determination of expenditures relative to D_{U} emergency electricity purchases from neighboring utilities is straight-forward once the SIM has been given an \bar{e}_{U} average cost for this emergency support. The total expenditure is merely,

$$
\begin{equation*}
x_{U}=\bar{e}_{U} \cdot D_{U} \tag{3.74}
\end{equation*}
$$

3.6 SYSINT, A Computerized Version of the SYStem INTegration Model

SYSINT, a 2000 card Fortran IV version of the SYStem INTegration Model is detailed in Appendix E. This section merely summarizes its capabilities.

The standard two-state forced-outage model (performs or fails) is employed. A single startup frequency curve $\Omega\left(L_{r 1}^{\prime}\right)$ is input for the entire horizon. The limitations of the current version, though easily altered, are as follows:

Table 3.6
Calculation of Startup-Shutdown Costs for Example 5 on
Reference Utility System

Unit r	Fuel Cost ϕ_{r} $\not \subset /$ MegaBTU	Susd. Heat Reqt. Q_{r} MegaBTU	$\begin{gathered} \text { Avl.-bsd. } \\ \text { Capacity } \\ \text { Factor } \\ L_{r 1}^{\prime} \end{gathered}$	Susd. Frequency $\Omega\left(L_{r 1}^{\prime}\right)^{1}$ per day	Unit Susd. Cost $\phi_{r}{ }_{S}{ }_{r}$	Daily Susd. Cost $\phi_{r} Q_{r} \Omega$ \$/day	Period Susd. Cost $\phi_{r} Q_{r} \Omega T^{\prime} / 24$ \$
I	90	50	. 172	. 152	45	6.85	208
II	50	800	. 529	. 860	400	344.00	10,460
III	19	1200	1.000	-0-	228	-0-	-0-
IV	40	3600	1.000	-0-	1440	-0-	-0-
v	18	2400	1.000	-0-	432	-0-	-0-
Total Startup-Shutdown Cost~\$12,670							
$1_{\text {See Figure }} 3.9$							

(1) up to 100 units (including retirements and additions),
(2) up to 5 valve points for each unit,
(3) no limit on number of strategies per computer run
(4) up to 100 time periods per strategy and
(5) up to 25 typical load-duration "shapes", stored in completely normalized form (i.e., peak demand also equals one).

The multi-period strategy is input for each unit in the following form:
(1) the period installed,
(2) period just prior to retirement and
(3) up to 20 intermediate periods of downtime for maintenance or refueling.

For each period the following data may be input or altered:
(l) Choice of load-duration shape,
(2) Forecasted peak demand,
(3) Expected spinning reserve requirement,
(4) Length of time period,
(5) Average cost of emergency purchase energy,
(6) Fuel cost for each unit (optional initial guess for nuclear units),
(7) Performance probability for each unit and
(8) Startup order indicating must-run units and peaking equipment.

As for typical running time, each period of a simulation of a utility system containing 40 units with a total of 150 valve points requires approximately 2.5 CPU sec on an IBM 370 model 155 computer in an MVT environment. The code itself requires 108 K bytes of storage, i.e., not including the computer system supervisor. Total core requirements are thus approximately 134 K bytes.

Data transfer from SYSINT to SYSOPT (see Section 4.6 and Appendix F) is completely automated via either disk, magnetic tape or punched cards.

3.7 Summary of the SIM

For each multi-year refueling and maintenance strategy, the SIM performs period-by-period detailed production scheduling utilizing the Booth-Baleriaux probabilistic utility system model. Besides, calculating the system nuclear potential N (shown to be a constant), the model outputs the following system cost components:
(1) X_{F}, the fossil fuel expense related to electricity production,
(2) X_{S}, the startup-shutdown cost and
(3) X_{U}, the cost of emergency energy purchases.

This and other data are then passed to the SOM of Chapter 4 for iterative optimization of the production of the nuclear potential and present-valuing of all the cost components to obtain the final ORR for the given strategy.

CHAPTER

4.1 Overview of the SOM

The System Optimization Model (SOM), shown schematically in Figure 2.22 performs two tasks for each of the possible alternative refueling and maintenance strategies under investigation. The first, and most difficult, is optimizing each reactor's energy output so as to produce the required system nuclear potential for each period with a minimum total revenue requirement for nuclear fuel over the multi-year horizon (see Section 4.2.1). The SOM receives, as input, the period-by-period results (see Section 3.7) of the System Integration Model (SIM) which are used to formulate the constraints on this optimization (see Sections 4.2.2 to 4.2.4). Interfacing with a CORe Simulation and Optimization Model (CORSOM) for each reactor (see Section 2.5.4), the SOM passes a set of reactor-cycle energies and receives the minimum total reactor fuel revenue requirement to the horizon and the partial derivatives of this cost with respect to each of the cycle energies. These nuclear incremental cost data are then used to iterate toward the optimum set of cycle energies (see Section 4.4).

When the system nuclear fuel revenue requirement has been thus minimized, the supervisory task commences. This second task (see Section 4.5) merely involves present-valuing the non-nuclear period expenses and adding in the total
nuclear revenue requirement to determine the total operating revenue requirement for the particular possible alternative strategy under investigation. With the completion of this task, processing of the refueling and maintenance strategy is complete and optimization of the next such strategy may begin.

4.2 Elements of Optimization Problem in SOM

The following sections outline the elements of the SOM's optimization problem. In Section 4.2.1, the objective function of the optimization is first presented straightforwardly as the total system nuclear fuel revenue requirement. Then assumptions and simplifications are made to reduce the objective function to a form readily solvable by an iterative gradient technique. Next, the constraints on the optimization are discussed in detail.

Reviewing the context of this optimization, the principal SIM result passed to the System Optimization Model is the nuclear potential, N_{p}, which is equal to the sum of the subset of reactor period energy productions, $\mathrm{E}_{\mathrm{rcp}}$, for each period. As indicated in Section 3.3.3, each N_{p} value is independent of the detailed loading order of the nuclear increments. Hence, for each period p subset of $E_{r c p}$, there exist many possible combinations of each reactor's $E_{r c p}$ which will satisfy N_{p}. The SOM is able to determine these additional possible subsets of $E_{r c p}$ more rapidly than if the SIM is used repeatedly, thus eliminating the need for
more than one SIM calculation per period. The object of the SOM is then to determine, subject to certain feasibility constraints, which combination of these subsets of $\mathrm{E}_{\mathrm{rcp}}$ for each period in the entire planning horizon results in the minimum system revenue requirement.

The first constraint (see Section 4.2.2) ensures that each system production subset of $E_{r c p}$ satisfies the nuclear potential, N_{p}, that was calculated by the SIM for that period. Next, the reactor production constraints (see Section 4.2.3.1) put limits on each reactor's maximum and minimum period enexgy production. These represent the SIM cases when each nuclear unit's total upper capacity was loaded first or last, respectively, within the system upper nuclear capacity. Finally, a shape constraint (see Section 4.2.4) is used to select subsets of reactor-period productions, $E_{r c p}$, which are compatible with the shape of the equivalent load curve.

4.2.1 Objective Function

The optimization seeks to minimize $\overline{T C}\left(\equiv R_{N}\right)$, the system nuclear fuel revenue requirement, over the multi-year horizon as a function of \mathcal{E}, the set of all $E_{r c p}$,

$$
\begin{equation*}
\operatorname{minimize} \overline{\mathrm{TC}}=\overline{\mathrm{TC}}(\varepsilon) \tag{4.1}
\end{equation*}
$$

Since $\overline{T C}$ is the sum of the various reactor fuel costs $\overline{T C}_{r}$ calculated by the CORSOM's, which, in turn, are really functions of the $E_{r c}$ cycle energies,

$$
\begin{equation*}
\overline{\mathrm{TC}}(\varepsilon)=\sum^{R} \overline{\mathrm{TC}}_{r}\left(E_{r 1}, E_{r 2}, \ldots\right) \tag{4.2}
\end{equation*}
$$

As Section 2.3 pointed out, $\overline{T C}_{r}$ is non-linear and nonseparable. However, since $\overline{T C}_{r}$ has been minimized by the CORSOM for the given set of E_{rc}, it must be well-behaved in the sense that it is continuous and unimodal, increasing with increasing $E_{r c}$. Hence $\overline{T C}_{r}$ is differentiable and

$$
\begin{equation*}
\lambda_{r c} \equiv \frac{\partial \overline{T C}_{r}}{\partial E_{r c}}>0 \tag{4.3}
\end{equation*}
$$

Equation (4.3) permits taking the total differential of Equation (4.2),

$$
\begin{equation*}
d \overline{T C}=\sum^{R} \sum^{c} \frac{\partial{\overline{T C_{r}}}_{r c}}{\partial E_{r c}} d E_{r c} \tag{4.4}
\end{equation*}
$$

Since $\overline{T C}$ is a point function, given a cost $\overline{T C}^{t}$ at ε^{t} trial set of $E_{r c p}$, the cost $\overline{T C}^{t+1}$ at any other set \mathcal{E}^{t+1} can be obtained by integrating Equation (4.4),

$$
\begin{equation*}
\overline{T C}^{t+1}-\overline{T C}^{t}=\int_{\varepsilon^{t}}^{\varepsilon^{t+1}} \sum^{R} \sum^{c}\left(\frac{\partial \overline{T C}_{r}}{\partial E_{r c}}\right)_{\varepsilon^{t} \rightarrow \varepsilon^{t+1}} d E_{r c} \tag{4.5}
\end{equation*}
$$

(Section 5.6.1 of Chapter 5 refers to the integral on the right-hand side as the actual or true difference between $\overline{T C}^{\mathbf{t}}$ and $\left.\overline{T C}^{\mathbf{t + 1}}, \sum_{\text {act }}^{\mathrm{t}+1}.\right)$
To be rigorously accurate, the line integral must follow a tortuous route through the multidimensional space from
ε^{t} to ε^{t+1}. Thus, each partial derivative must be calculated along a different line segment connecting two adjacent intermediate points along the route. It is far easier to calculate each partial derivative only about the current trial point \mathcal{E}^{t} itself, $\left(\partial T C_{r} / \partial E_{r c} \varepsilon^{t}\right.$. If these derivatives are used to replace those in Equation (4.5), an error term δ^{t+1} must be included to correct for the approximation,

$$
\overline{T C}^{t+1}=\overline{T C}^{t}+\delta^{t+1}+\int_{\varepsilon^{t}}^{\varepsilon^{t+1}} \sum^{R} \sum^{c}\left(\frac{\partial \bar{T}_{r}}{\partial E_{r c}}\right)_{\varepsilon^{t}} d E_{r c}(4.6)
$$

Since each differential is only about its own $E_{r c}^{t}$, the integral limits reduce to $E_{r c}^{t}$ to $E_{r c}^{t+1}$ and the two summations may be taken outside,

$$
\overline{T C}^{t+1}=\overline{T C}^{t}+\delta^{t+1}+\sum^{R} C \int_{E_{r c}^{t}}^{E_{r c}^{t+1}}\left(\frac{\partial \bar{T}_{r}}{\partial E_{r c}}\right)_{\varepsilon^{t}} d E_{r c}(4.7)
$$

or

$$
\overline{T C}^{t+1}=\overline{T C}^{t}+\delta^{t+1}+\sum \sum \sum_{E_{r c}^{t}}^{R} \int_{r c}^{E_{r c}^{t+1}} \lambda_{r c}^{t} d E_{r c}
$$

Defining the double summation term as $\sum_{E S T}^{t+1}$, the estimated change in $\overline{T C}^{t}$,

$$
\begin{equation*}
\overline{T C}^{t+1}=\overline{\overline{T C}}^{t}+\delta^{t+1}+\Sigma_{E S T}^{t+1} \tag{4.9}
\end{equation*}
$$

Provided that the error in the approximation or astimation δ^{t+1} is sufficiently small (see Section 5.6.1), Equation (4.9) provides an excellent basis for re-formulating the non-linear objective function and hence, the optimization, into an iterative procedure:

Given a trial point \mathcal{E}^{t} with cost $\overline{\mathrm{TC}}^{t}$ and incremental costs $\lambda_{r c}^{t}$, the next feasible trial point ε^{t+1} is determined that minimizes $\overline{T C}^{t+1}$.

Since $\overline{T C}^{t}$ is constant within the iteration, the minimization of $\overline{T C}^{t+1}$ may be replaced by the approximately equivalent minimization of $\sum_{E S T}^{t+1}$. Using the new ε^{t+1}, the CORSOM's can then generate the corresponding $\overline{T C}_{r}^{t+1}$ and $\lambda_{\mathrm{rc}}^{\mathrm{t}+1}$. The next SOM iteration then seeks to minimize $\sum \underset{E S T}{t+2}$, and so on.

In general, convergence of \mathcal{E} and $\overline{T C}$ may occur but globality of the optimum \mathcal{E}^{*} and $\overline{\mathrm{TC}}^{*}$ cannot be guaranteed. However, for the special case of a convex $\overline{T C}(\varepsilon)$, both convergence and globality are guaranteed (54). That is,
or

$$
\begin{gather*}
\frac{\partial^{2} \overline{T C}_{r}}{\partial E_{r c}^{2}} \text { must be } \geq 0 \tag{4.10}\\
\frac{\partial}{\partial E_{r c}}\left(\frac{\partial \overline{T C}_{r}}{\partial E_{r c}}\right)=\frac{\partial \lambda_{r c}}{\partial E_{r c}} \text { must be } \geq 0 \tag{4.11}
\end{gather*}
$$

The work of Widmer (57) and Watt (55) have shown that this is a reasonable assumption--the nuclear incremental cost $\lambda_{\text {rc }}$ increases or, at least, does not decrease with the cycle energy $\mathrm{E}_{\text {rc }}$. That is, each additional increment of cycle energy (i.e., reload enrichment) costs at least as much as the previous increment.

To summarize, given that $\overline{\mathrm{TC}}(\mathcal{\varepsilon})$ is convex, the iterative optimization will converge to the global optimum using as the objective function,

$$
\begin{equation*}
\operatorname{minimize} \sum_{E S T}^{t+1}(\varepsilon)=\sum^{R} \int_{E_{r c}^{t}}^{E_{r c}^{t+1}} \lambda_{r c}^{t} d E_{r c} \tag{4.12}
\end{equation*}
$$

The above objective function is actually not a function of the period productions, but only of the cycle subtotals, the $\mathrm{E}_{\text {rc }}$ cycle energies. However, all of the various constraints on the optimization, discussed in the following Sections 4.2.2-4.2.4, are period constraints and involve $\mathrm{E}_{\mathrm{rcp}}$ explicitly.

4.2.2 System Production Constraint

The constraint on system production requires that in each period the reactors produce sufficient energy to meet the nuclear potential,

$$
\begin{equation*}
\sum^{R} E_{r c p}=N_{p} \text { for all } p \tag{4.13}
\end{equation*}
$$

Calculation of N_{p} has already been discussed in Section 3.3.3.

4.2.3 Reactor Production Constraint

There are two types of reactor production constraints. The first, discussed in Section 4.2.3.1 brackets the permissible values of each reactor's production for each of the Z periods within the planning horizon,

$$
\begin{equation*}
E_{r c p}^{\min } \leq E_{r c p} \leq E_{r c p}^{\max } \text { for all } r \text { and } p \tag{4.14}
\end{equation*}
$$

The second, discussed in Section 4.2.3.2, specifies the reactor energy production beyond the planning horizon. These horizon end conditions permit the CORSOM's to evaluate and cost (at least approximately) the reactivity requirements of cycles beyond the end of the planning horizon. The goal is to normalize strategy vs. strategy horizon end effects. To accomplish this,

$$
\begin{equation*}
E_{r C}=E_{r C p}+E_{r, C, z+1} \text { for all } r \tag{4.15}
\end{equation*}
$$

where $E_{r, C, Z+1}=$ energy held over for production by reactor r beyond the horizon cycle C (in fictitious period $Z+1$). In addition, $E_{r, C+1}, E_{r, C+2}$, etc. are specified.

4.2.3.1 Typical Period

The reactor period production constraint [Equation (4.14)] merely establishes the limits on each reactor's production. For the trivial case when unit r is down for refueling in period p,

$$
\begin{equation*}
E_{r c p}^{\min }=E_{r c p}^{\max }=0 \tag{4.16}
\end{equation*}
$$

The SOM pre-calculates the other minimums and maximums using results from SIM. Two important load-duration curves, ($\mathrm{F}^{\mathrm{min}}$ and $\mathrm{F}^{\mathrm{max}}$), not previously discussed, are among these results (see Figure 4.1).

The $\mathrm{F}^{\text {min }}$ was the SIM's current F immediately prior to the deconvolution required to load the first nuclear upper increment of group 3 (see Figure 3.8). That is, $F^{\text {min }}$ includes forced-outage allowances for all of the nuclear minimums (group 1) plus any must-run fossil minimums (group 2). This curve is used to determine the $E_{r c p}^{\max }$ since the maximum energy a reactor's upper increments can produce occurs when all of its remaining capacity,

$$
\begin{equation*}
k_{r} \equiv k_{r I}-k_{r l}=k_{r}-k_{r l} \tag{4.17}
\end{equation*}
$$

is loaded at the very beginning of this group 3.
Thus to determine $E_{r c p}^{\max }$, the following two step procedure is performed (see Figure 4.2) for each on-line reactor:

Step 1: From $F^{\text {min }}$, which includes all on-line nuclear minimums, deconvolve the initial increment of unit r,

Figure 4.1

Figure 4.2

$$
\begin{equation*}
F_{r 1}^{\omega 0}\left(P_{e}\right)=\frac{1}{p_{r}}\left[F^{\min }\left(P_{e}\right)-q_{r} F_{r 1}^{w o}\left(P_{e}-K_{r 1}\right)\right] \tag{4.18}
\end{equation*}
$$

Step 2: Since $\mathrm{F}_{\mathrm{rl}}^{\mathrm{wo}}$ is the proper curve for loading the

$$
\text { remaining } k_{r} M W \text { in order to maximize } E_{r c p}
$$

$$
\begin{equation*}
E_{r c p}^{\max }=E_{r c p}^{\circ}+T p_{r} \int_{P^{\min }}^{P^{\min }+k_{r l}} \mathrm{~F}_{r l}^{w o} d P_{e} \tag{4.19}
\end{equation*}
$$

where $E_{r c p}^{\circ}$ is the invariant energy production of the unit's first $K_{r l}$ MW.

To determine $E_{r c p}^{\min }$ requires the $F^{\max }$ of Figure 4.1, which represents the SIM's current F after the last nuclear upper increment of group 3 has been convolved in. That is, $F^{\max }$ includes any fossil must-run minimums plus all of the nuclear maximums. Whereas $E_{r c p}$ was maximized when k_{r} MW were first in group 3, minimum reactor energy production for the period occurs when unit r's $k_{r} \mathrm{MW}$ are the very last in group 3 to be loaded. Thus, the following two step procedure is applied to $\mathrm{F}^{\text {max }}$ for each reactor (see Figure 4.3):

Step 1: From $\mathrm{F}^{\text {max }}$, which includes all on-line nuclear units at their maximum capacity, deconvolve the entire $K_{r I} M W$ of unit r,

$$
\begin{equation*}
F_{r I}^{w o}=\frac{1}{p_{r}}\left[F^{\text {max }}\left(p_{e}\right)-q_{r} F_{r I}^{\omega \sigma}\left(P_{e}-K_{r I}\right)\right] \tag{4.20}
\end{equation*}
$$

Figure 4.3

$$
\begin{align*}
\text { Step 2: } & \text { Since } F_{r I}^{W O} \text { is the proper curve for loading the } \\
& \text { remaining } k_{r} M W \text { in order to minimize E }{ }_{r c p} \\
E_{r c p}^{m i n}= & E_{r c p}^{0}+T_{p r}^{\prime} \int_{p}^{m a x} F_{r}^{m o x} \tag{4.21}
\end{align*}
$$

4.2.3.2 Horizon End Condition

To properly evaluate fuel cycle costs (ie., reload requirements and discharge characteristics) incurred within the planning horizon, each reactor's CORSOM must receive not only the energy of each of the C "included" cycles within the horizon, but also estimated cycle energies for several "excluded" cycles beyond the horizon. The specified end condition should match as closely as possible the same general operating philosophy (i.e., capacity factor) anticipated for the strategy's included cycles. That is, excluded cycles continue with similar cycle lengths in both energy and time as those within the horizon, not return to some arbitrary state, regardless of the particular included strategy.

To effect this requires an estimate of $E_{r, C, z+1}$, the amount of cycle C energy held over beyond the horizon (for fictitious period $\mathrm{Z}+1$) for production before the next refueling (see Figure 4.4),

$$
\begin{equation*}
E_{r c}=\sum^{z} E_{r c_{p}}+E_{r, c, z+1} \tag{4.22}
\end{equation*}
$$

Figure 4.4
Horizon End Condition

In addition, several completely excluded cycle energies are estimated ($E_{r, C+1}, E_{r, C+2}$, etc.). Total system nuclear production from all reactors during the excluded cycles should be held constant for all refueling and maintenance strategies to ensure similar system-wide core energy content at the end of the planning horizon. Recall that the goal is to normalize strategy vs. strategy horizon end effects.

Since the end condition exists only in deference to the CORSOM's calculational requirements, it is not included explicitly in the mathematical formulation of the SOM's optimization problem summarized in Section 4.3.

4.2.4 Shape Constraint

The shape constraint is used to guarantee that the reactor energy productions within the period are, in the aggregate, compatible with the given equivalent load shape. In the Booth-Baleriaux calculations of the SIM, the various increments of each unit are assigned various segments of the equivalent load curve on a MW for MW basis. Summing the I increments of energy production $E_{r i}$ for each unit,

$$
\begin{equation*}
E_{r}=\sum^{I} E_{r i} \tag{4.23}
\end{equation*}
$$

These E_{r} represent each unit's energy production for the period using the specified increment-by-increment loading order. By the nature of the SIM calculation, any detailed
loading order specifies a set of feasible E_{r} 's for the period (i.e., a set of E_{r} 's which are compatible with the shape of the equivalent load curve).

However, the optimization variable in SOM is not the detailed loading order, but each nuclear unit's period production $E_{r c p}$. Thus, the shape compatibility question becomes: "For a given subset of reactor-period energy productions ($E_{r c p}$ for all r at p) whose sum equals the required period nuclear potential N_{p} from SIM, could a corresponding detailed reactor loading order be found that satisfies the period's equivalent load shape (calculated by SIM) yet results in the SOM's postulated $E_{r c p}$?" The shape constraint attempts to quantify the feasibility of finding such a loading order (yet circumvents actually having to perform the search or SIMulation).

The general form of the shape constraint will be shown to be second-order,

$$
\begin{equation*}
\sum^{R_{p}} c_{1 r p} E_{r c p}+\sum_{p}^{R_{p}^{\prime}} c_{r p} E_{r p p}^{2} \leq c_{p} \tag{4.24}
\end{equation*}
$$

where $c_{1 r p}, c_{2 r p}$ and c_{p} are constants pre-calculated by the SOM from SIM results. While the system and reactor producetion constraints [Equations (4.13) and (4.14), respectivelye] are linear, (i.e., first order), the shape constraint Equation (4.24) is non-linear. As with all but the most trivial problems in operations research, non-linearities greatly complicate the optimization algorithm (see Section
4.4.3). The current discussion, however, concentrates solely on understanding "why" and "how" the shape constraint is formulated in the first place.

4.2.4.1 Purpose

To understand why the shape constraint is necessary, consider the following example which would otherwise be permisted by the SOM as a feasible solution. Assume the caustome loads remain as on the Reference Utility System in Figure 2.9. However, assume for the sake of this example that the utility system itself consists of only six identical 400 MW nuclear reactors which, for simplicity in the example, have no forced-outages ($p_{r}=1008$) and no minimum load constraint; therefore, $F_{D}=F_{e}$. Figure 4.5 portrays system production calculated by the SIM for the specified startup and loading order. Note that for this feasible production schedule, the SIM results indicate nuclear symtemp production of

$$
\begin{equation*}
N_{p}=D_{T}=949 \mathrm{GWH} \tag{4.25}
\end{equation*}
$$

and reactor production limits equivalent to

$$
\begin{align*}
& E_{\text {rep }}^{\max }=292 G W H \tag{4.26}\\
& E_{r c p}^{\min }=0 G W H \tag{4.27}
\end{align*}
$$

Figure 4.5

Inserting these values in the two production constraints [Equation (4.13) and (4.14)] and ignoring any shape constraint, the SOM would be perfectly justified in postulating the production schedule shown in Figure 4.6 since the desired total energy N_{p} (proportional to area under the curve) is supplied. Comparing this production shape with that of the customers (F_{D}), the shape infeasibility is readily apparent since production never reaches a power level greater than 1400 MW while the customer demand is greater than that 20% of the time.

Thus, the optimization model must include either (a) some method of forcing each subset of $E_{r c p}$ derived in the SOM to satisfy the load shape, or (b) include a constraint, or posteriori check, which rejects from further consideration any subsets of $E_{r c p}$ which cannot satisfy the load shape. The latter method, referred to as a "shape constraint," is utilized in the model presented here.

Having established the necessity of a shape constraint, how might the "shape" be quantified?

First of all, the shape most indicative of the demands to be satisfied by each nuclear unit is not the direct customer load-duration curve F_{D} (unless all p_{r} are actually equal to 100\%), but the equivalent load-duration curve F_{e}, which includes not only direct, but also indirect, customer loads. (Section 4.2.4.3 discusses the practical means by which the SOM determines F_{e} given $F^{\min }$ and $F^{\text {max }}$.) Furthermore, by focusing attention only on the nuclear units and assuming their size and economics make them all must-run

Figure 4.6
Infeasible Six Reactor Production Schedule

units, the pertinent range of F_{e} can be reduced to that segment served by the nuclear upper increments of the R^{\prime} available (on-line) nuclear units (group 3 of Figure 4.1). Henceforth, the term "system shape" and symbol F_{e} refer to that segment of the equivalent load curve over the range of loads running from zero $M W$ upper nuclear capacity to the system total availability-based nuclear upper increment
 from the discussion since all $K_{r l} M W$ are base-loaded),

$$
\begin{equation*}
k_{T}^{\prime}=\sum^{R^{\prime}} k_{r}=\sum^{R^{\prime}}\left(K_{r I}-K_{r I}\right) \tag{4.28}
\end{equation*}
$$

In order to characterize the production schedule in terms of the optimization variables $E_{r c p}$, consider the capacity factors of the units. (For convenience, the $\mathrm{E}_{\mathrm{rcp}}$ notation is shortened to E_{r} since the same period p applies to all reactors and cycle c is immaterial to the current discussion.) As Widmer (57, 58) stated with elegant simplicity,

$$
\begin{equation*}
E=K L T \tag{4.29}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{E}= & \text { electric energy production } \\
\mathrm{K}= & \text { rated electric capacity } \\
\mathrm{L}= & \text { average capacity factor } \\
\mathrm{T}= & \text { total length of time (i.e., including } \\
& \text { all outages) }
\end{aligned}
$$

Equation (4.29) actually serves to define L,

$$
\begin{equation*}
L \equiv \frac{E}{K T} \tag{4.30}
\end{equation*}
$$

With the current discussion limited to any time period of length T ' during which the unit (with a performance probebility p) is never down for scheduled maintenance or refueling, a more meaningful parameter is the availabilitybased capacity factor L^{\prime}

$$
\begin{equation*}
E=K L^{\prime} T^{\prime} p \tag{4.31}
\end{equation*}
$$

or

$$
\begin{equation*}
L^{\prime} \equiv \frac{E}{\bar{K} T^{\prime} p} \tag{4.32}
\end{equation*}
$$

In words, L^{\prime} represents the capacity factor the unit experienced during the period's pT^{\prime} available hours that it was not down due to maintenance or refueling (T-T') or forcedoutages [(1-p)T']. By comparing Equation (4.31) with Equation (2.24) integrated over the appropriate segment of the complete F_{e} 。
or,

$$
\begin{equation*}
K_{r} L_{r}^{\prime} T_{p_{r}}^{\prime}=T_{p_{r}}^{\prime} \int_{0}^{K_{r}} F_{e}\left(P_{e}\right) d P_{e} \tag{4.33}
\end{equation*}
$$

$$
\begin{equation*}
L_{r}^{\prime}=\frac{1}{K_{r}} \int_{0}^{K_{r}} F_{e}\left(P_{e}\right) d P_{e} \tag{4.34}
\end{equation*}
$$

Hence, L_{r}^{\prime} represents the average value of F_{e} in those segments placing demand on unit r.

Since the discussion is limited to the nuclear unit's upper (i.e., I-1) increments, define ℓ_{r}^{\prime} as the availabilitybased increment capacity factor for unit r. Thus,

$$
\begin{equation*}
E_{r}=\sum^{I} E_{r i}=E_{r l}+k_{r_{r}}^{\prime} T^{\prime} p_{r} \tag{4.35}
\end{equation*}
$$

or

$$
\begin{equation*}
\ell_{r}^{\prime} \equiv \frac{E_{r}-E_{r l}}{k_{r} T^{\prime} p_{r}}=\alpha_{r} E_{r}-\beta_{r} \tag{4.36}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{r} \equiv 1 / k_{r} T^{\prime} p_{r} \tag{4.37}\\
& \beta_{r} \equiv E_{r l} / k_{r} T^{\prime} p_{r} \tag{4.38}
\end{align*}
$$

Given each reactor's postulated production, $E_{r c p}$ (the p subset for all r resulting in N_{p} in toto), each ℓ_{r}^{\prime} can be calculated and then ordered and plotted in decreasing magnitude. The resulting curve, whose abscissa is defined as P_{r}, is labeled the "average reactor shape" \bar{F}_{r} in Figure 4.7c.

Using Figure 4.7a as an illustration, the segments of F_{e} used for loading each reactor's upper capacity k_{r} can be replotted separately as in Figure 4.7b. The average F_{e} for each reactor's upper increments is then ℓ_{r}^{\prime}. Reordering the

Figure 4.7 Decomposition and Reordering of System Shape

reactor segments of Figure 4.7 b with the largest ℓ_{r}^{\prime} first, the detailed reactor shape F_{r} of Figure $4.7 c$ results, defining the abscissa P_{r}, the composite reactor upper increment power. The system shape $\mathrm{F}_{\mathrm{e}}\left(\mathrm{P}_{\mathrm{e}}\right)$ of Figure 4.7 a has merely been segmented and then reordered into the detailed reactor shape of $F_{r}\left(P_{r}\right)$ of Figure 4.7 c on the basis of the average demand on each unit's upper increments ℓ_{r}^{\prime}. Mathematically speaking, $F_{r}\left(P_{r}\right)$ is a one-to-one mapping of $F_{e}\left(P_{e}\right)$ since for every element of (point along) F_{e} at $P_{e}{ }^{\prime}$ there exists a corresponding element of (point along) F_{r} at P_{r}. (However, in general, $P_{e} \neq P_{r}$.) Thus, the total area under the three shapes (i.e., for all k_{T}^{\prime} MW of online nuclear upper increment capacity) is the same,

$$
\begin{equation*}
\int_{0}^{k_{T}^{\prime}} F_{e}^{\prime}\left(P_{e}\right) d P_{e}=\int_{0}^{k_{T}^{\prime}} F_{r}\left(P_{r}\right) d P_{r}=\int_{0}^{k_{T}^{\prime}} \bar{F}_{r}\left(P_{r}\right) d P_{r} \tag{4.39}
\end{equation*}
$$

The example in Figure 4.7 is, by definition, feasible since the detailed upper increment loading order resulting in each E_{r} (recall that each $K_{r l} M W$ are base-loaded) and N_{p} in toto is clearly specified in Figure 4.7a. However, recall that in the $S O M$, only the F_{e} system shape to be satisfied and a postulated subset of E_{r} 's are specified (not the detailed loading order). Hence, too little information is known to determine the detailed $\mathrm{F}_{\mathrm{r}}\left(\mathrm{P}_{\mathrm{r}}\right)$ as in Figure 4.7c. Nonetheless, the \bar{F}_{r} average reactor shape can be determined for the postulated subset of E_{r} 's. By
applying Equation (4.36), each reactor's ℓ_{r}^{\prime} can be calculated and placed in descending order, resulting in the de$\operatorname{sired} \bar{F}_{r}$.

The question of feasibility can then be stated as follows:

Given a postulated subset of E_{r} 's (and the resulting "postulated" average reactor shape \bar{F}_{r} on the upper increments), does there exist at least one intra-nuclear upper increment loading order such that the on-line reactors can indeed satisfy the given detailed system shape F_{e} ?

A detailed loading order need not be determined, merely its existence established. If one exists, the postulated set of E_{r} represent a feasible means of operating the nuclear units; if none exists, then the postulated schedule is infeasible.

Two methods were considered for determining the existence of such a loading order: (1) area method and (2) variance method. The area method (see Appendix B), though rigorous (i.e., necessary and sufficient), involved an inordinate amount of computer data handling and storage and, therefore, was not implemented.

Utilizing the other (approximate) variance method, the shape constraint (derived in Section 4.2.4.2 and implemented per Section 4.2.4.3) is used to eliminate postulated subsets of E_{r} 's which result in infeasible shapes by comparing a single parameter, the "variance" of the shape produced by the postulated E_{r} 's against a similar parameter for the

SIM-calculated system shape F_{e}.

4.2.4.2 Mathematical Basis

To derive the shape constraint, consider the $F_{e}\left(P_{e}\right)$ system shape on the upper nuclear increments shown in Figure 4.7a. As a measure of the system shape, compare the shape with its mean $\overline{\ell^{\prime}}$

$$
\begin{equation*}
\overline{l^{\prime}} \equiv \frac{1}{k_{T}^{\prime}} \int_{0}^{k_{T}^{\prime}} F_{e}\left(P_{e}\right) d P_{e} \tag{4.40}
\end{equation*}
$$

Defining s^{2} as the "variance" of the system shape compared with its mean,

$$
\begin{equation*}
S^{2} \equiv \frac{1}{k_{T}^{\prime}} \int_{0}^{k_{T}^{\prime}}\left(F_{e}-\bar{l}^{\prime}\right)^{2} d P_{e} \tag{4.41}
\end{equation*}
$$

For a known feasible solution, the S^{2} variance will be the same whether integrated directly from 0 to k_{T}^{\prime} (see Figure 4.7a), or first segmented into the respective detailed MW-by-MW reactor load shapes, reordered and then integrated (see Figure 4.7c).

Breaking this integral into a sum over each of the R^{\prime} on-line reactors,

$$
\begin{equation*}
S^{2}=\frac{1}{k_{r}^{\prime}} \sum \int_{P_{r}^{\prime}}^{R^{\prime}}\left(F_{r}-\bar{l}^{\prime}\right)^{p_{r}^{+}+k_{r}} d P_{r} \tag{4.43}
\end{equation*}
$$

Adding and subtracting ℓ_{r}^{\prime} inside the integrals of the summation,

$$
\begin{equation*}
S^{2}=\frac{1}{k_{r}^{i}} \sum \int_{p_{r}^{\circ}}^{R^{\prime}} \int_{p_{r}^{0}+h_{r}}\left(F_{r}-l_{r}^{\prime}+l_{r}^{\prime}-\overline{l^{\prime}}\right)^{2} d F_{r} \tag{4.44}
\end{equation*}
$$

$$
\begin{equation*}
S^{2}=\frac{1}{h_{r}} L \int_{p_{r}^{\prime}}^{R_{i}^{\prime}} \int_{P_{r}^{\prime}}^{p_{r}^{P_{r}^{+}+l_{r}}}\left[F_{r}-l_{r}^{\prime}\right)^{2}+\left(l_{r}^{\prime}-e^{\prime}\right)^{2}+2\left(F_{r}-l_{r}^{\prime}\left(l_{r}^{\prime}-R^{\prime}\right)\right] d P_{r} \tag{4.45}
\end{equation*}
$$

The third term inside the brackets vanishes since ($\left.l_{\mathbf{r}}^{\prime}-\bar{\ell}\right)$ equals a constant and

$$
\begin{equation*}
l_{r}^{\prime} \equiv \frac{1}{k_{r}} \int_{P_{r}^{0}}^{p_{r}^{+}+k_{r}} F_{r}\left(P_{r}\right) d P_{r} \tag{4.46}
\end{equation*}
$$

for then

$$
\begin{equation*}
\int_{P_{r}^{0}}^{P_{r}^{0}+h_{r}} 2\left(F_{r}-l_{r}^{\prime}\right)\left(l_{r}^{\prime}-\overline{l^{\prime}}\right) d P_{r}=2\left(l_{r}^{\prime}-l^{\prime}\right) \underbrace{\int_{P_{r}^{0}}^{P_{r}^{0}+h_{r}}\left(F_{r}-l_{r}^{\prime}\right) d P_{r}}_{=0} \tag{4.47}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
S^{2}=\underbrace{\frac{1}{k_{r}^{\prime}} \sum^{R^{\prime}} \int_{P_{r}^{0}}^{P_{r}^{\prime}+k_{r}}\left(F_{r}-l_{r}^{\prime}\right)^{2} d P_{r}}_{V^{2}}+\underbrace{\frac{1}{k_{T}^{\prime}} \sum^{R^{\prime}} k_{r}\left(l_{r}^{\prime}-\bar{l}^{\prime}\right)^{2}}_{W^{2}} \tag{4.48}
\end{equation*}
$$

where $v^{2}=$ total internal variance of sub-segments of F_{r} for each reactor (ie., requires detailed loading order)
$W^{2}=$ weighted sum of squares of reactor average versus system average of F_{e} (i.e., not dependent on MW-by-MW loading order, only average F_{r} over each k_{r} MW)

For a feasible E_{r} subset, V^{2} must be nonnegative since the integrand is squared. Therefore, if V^{2} is negative for some other postulated production schedule when calculated by taking the difference in the calculated values of s^{2} [Equation (4.41)] and W^{2} [Equation (4.48)], that postulated schedule is clearly infeasible. Note that the converse is not true. If $\left(S^{2}-W^{2}\right)$ is greater than or equal to zero, feasibility is not guaranteed. The following Section 4.2.4.3 discusses the practical implementation of this approximate constraint.

Typical values of s^{2} calculated in this study are on the order of 0.01 to 0.03 , while the theoretical maximum value is 0.25 for the pathological case of

$$
\begin{array}{rlrl}
F_{e}\left(P_{e}\right) & =1 & & 0 \leqslant P_{e}<0.5 k_{T}^{\prime} \\
& =0 & 0.5 k_{\tau}^{\prime}<P_{e} \leqslant k_{T}^{\prime} \tag{4.50}
\end{array}
$$

For the infeasible example of Figure $4.6, \mathrm{~s}^{2}=0.201$ while the reactor summation term W^{2} has a value of 0.217 . Thus, $v^{2}=s^{2}-W^{2}=-0.016$, a highly infeasible value.

4.2.4.3 Practical Implementation

Practical implementation of Equation (4.49) as the SOM's shape constraint involves (1) determining the system shape F_{e} given the SIM's $F^{\text {min }}$ and $F^{\max }$ (see Figure 4.1) and (2) incorporating a $v_{\text {REJ }}^{2}$ rejection level on v^{2} to allow flexibility in the model's handling of the constraint that $v^{2} \equiv s^{2}-w^{2} \geq 0$.

The practical definition of F_{e} is the demand curve used for loading each MW according to Equation (2.24). For the first MW of the nuclear upper increments, the deconvolve-load-convolve sequence of the multiple increment algorithm of Section 3.3.2.2 must be applied to $\mathrm{F}^{\mathrm{min}}$. Since the identity of the first nuclear upper increment to be loaded is arbitrary at this point, a hypothetical unit with the average values of p_{r} and $K_{r l}$ which gives the same average $M W$ of outage would appear to be useful,

$$
\begin{align*}
\overline{p_{r}^{\text {min }}} & =\sum^{R^{\prime}} p_{r} K_{r l} / \sum^{R^{\prime}} K_{r l} \tag{4.51}\\
\overline{K_{r l}} & =\frac{1}{R^{\prime}} \sum^{R^{\prime}} K_{r l} \tag{4.52}
\end{align*}
$$

Deconvolving this unit per Equation (3.55),

$$
\begin{equation*}
F_{\overline{r 1}}^{\omega \sigma}\left(P_{e}\right)=\frac{1}{\overline{p_{r}^{\min }}}\left[F^{\min }\left(P_{e}\right)-\left(1-\overline{p_{r}^{\min }}\right) F_{\overline{r 1}}^{\omega \sigma}\left(P_{e}-\overline{K_{r 1}}\right)\right] \tag{4.53}
\end{equation*}
$$

This $\mathrm{F}_{\overline{\mathrm{FI}}}^{\mathrm{WO}}$ is the average curve used to load the first MW of the nuclear upper increments. In a similar manner, an $F_{\overline{T I}}^{\text {WO }}$ can be determined from $F^{\max }$ that estimates the curve used for loading the last MW of the nuclear upper increments:

$$
\begin{align*}
& \overline{p_{r}^{\text {max }}}=\sum^{R^{\prime}} p_{r} K_{r I} / \sum^{R^{\prime}} K_{r I} \tag{4.54}\\
& \overline{K_{r I}}=\frac{1}{R^{\prime}} \sum^{R^{\prime}} K_{r I} \tag{4.55}
\end{align*}
$$

and

$$
\begin{equation*}
F_{\overline{r I}}^{\omega \sigma}\left(P_{e}\right)=\frac{1}{\overline{p_{r}^{m a x}}}\left[F^{\text {max }}\left(P_{e}\right)-\left(1-\overline{p_{r}^{\text {max }}}\right) F_{\overline{r I}}^{w \sigma}\left(P_{e}-\overline{k_{r I}}\right)\right] \tag{4.56}
\end{equation*}
$$

Figure 4.8 presents $F_{\overline{\mathrm{YI}}}^{\mathrm{WO}}$ and $\mathrm{F}_{\overline{\mathrm{WI}}}^{\mathrm{WO}}$ for the $\mathrm{F}^{\text {min }}$ and $\mathrm{F}^{\text {max }}$ of Figure 4.1. Since each $F^{W O}$ is equal to F_{e} at a particular point of application,

$$
\begin{array}{ll}
\text { Point A: } & F^{w \sigma}(0)=F_{e}(0) \\
\text { Point B: } & F_{\frac{w \sigma}{r I}}\left(k_{T}^{\prime}\right)=F_{e}\left({\beta_{T}^{\prime}}_{T}^{\prime}\right) \tag{4.58}
\end{array}
$$

then $F_{e}\left(P_{e}\right)$ must trace a path connecting points A and B of Figure 4.8. Thus, F_{e} can be simply approximated by interpolation over the range $0 \leq \mathrm{P}_{\mathrm{e}} \leq \mathrm{k}_{\mathrm{T}}^{\prime}$,

$$
\begin{equation*}
F_{e}\left(P_{e}\right)=\left(1-\frac{P_{e}}{k_{T}^{\prime}}\right) F_{\frac{w v}{r I}}^{w_{e}}\left(P_{e}\right)+\frac{P_{e}}{k_{T}^{\prime}} F^{w{ }^{w}}\left(P_{e}\right) \tag{4.59}
\end{equation*}
$$

With F_{e} approximated, $\bar{l} \cdot$ and S^{2} are easily calculated (see Figure 4.9),

$$
\begin{align*}
\overline{l^{\prime}} & \equiv \frac{1}{k_{T}^{\prime}} \int_{0}^{k_{T}^{\prime}} F_{e}\left(P_{e}\right) d P_{e} \tag{4.40}\\
S^{2} & \equiv \frac{1}{k_{T}^{\prime}} \int_{0}^{k_{T}^{\prime}}\left(F_{e}-\overline{l^{\prime}}\right)^{2} d P_{e} \tag{4.41}
\end{align*}
$$

With $\bar{\ell}$ ' and S^{2} pre-calculated by the SOM before the iterative optimization procedure begins (see Section 4.4), Equation (4.49) is implemented as the shape constraint on

Figure 4.8
$\xrightarrow{\text { Approximation of } F_{e}}$

Figure 4.9

each iteration's postulated set of E_{r}. This involves (1) using Equation (4.36) to calculate l_{r}^{\prime} for each postulated E_{r},

$$
\begin{equation*}
\ell_{r}^{\prime}=\alpha_{r} E_{r}-\beta_{r} \tag{4.36}
\end{equation*}
$$

(2) calculating W^{2} from the resulting ℓ_{r}^{\prime} (see Figure 4.9),

$$
\begin{equation*}
W^{2} \equiv \frac{1}{k_{T}^{\prime}} \sum^{R^{\prime}} k_{r}\left(l_{r}^{\prime}-l^{\prime}\right)^{2} \tag{4.48}
\end{equation*}
$$

and (3) testing the resultant $v^{2}\left(\equiv s^{2}-w^{2}\right)$ versus a $v_{\text {REJ }}^{2}$ rejection level designed to establish feasibility, not merely infeasibility, as discussed below.

Rearranging Equation (4.49),

$$
\begin{equation*}
v^{2}=s^{2}-w^{2} \tag{4.60}
\end{equation*}
$$

This is the convenient form of Equation (4.49) since determining V^{2} by difference does not required a detailed loading order (which may not even exist). For $\mathrm{V}^{2}<0$, the postulated production schedule is infeasible; $v^{2} \sim 0$, may be infeasible; $\mathrm{V}^{2} \gg 0$, almost certainly feasible. To implement the constraint, a $V_{\text {REJ }}^{2}$ rejection level is introduced such that if $\mathrm{V}^{2} \leq \mathrm{V}_{\text {REJ' }}^{2}$ the postulated schedule is rejected as probably infeasible. Figure 4.10 presents a visual interpretation of the implementation.

Figure 4.10

Note the flexibility of a model allowing $V_{R E J}^{2}$ as an input parameter:
(1) If $\mathrm{V}_{\text {REJ }}^{2}=0$, Equation (4.48) holds directly with $\mathrm{v}^{2}>0$ being required, or (2) If $V_{R E J}^{2} \leq-0.25$, the shape constraint is effectively nullified. To be accepted W^{2} must be $\leq S^{2}-V_{\text {RES }}^{2}=S^{2}+0.25$. Theoretically g $\left(W^{2}\right)^{\text {max }}=0.25$ (see Section 4.2.4.2) and $\left(\mathrm{S}^{2}\right)^{\mathrm{min}}=0$. Thus, W^{2} is always $\leq s^{2}+0.25$ and, hence, always accepted.

To summarize the complete formulation of the shape constraint for period p, the E_{r} notation returns to $E_{r c p}$. Hence, a postulated period production schedule is not rejected as infeasible if

$$
\begin{equation*}
W_{p}^{2} \leqslant S_{p}^{2}-V_{R E J}^{2} \tag{4.61}
\end{equation*}
$$

or

Note the existence of second-order terms ($E_{r c p}^{2}$) as was indicated in Equation (4.24).
4.3 Mathematical Statement of Optimization Problem

Summarizing the elements of the optimization problem
formulated in Section 4.2, the problem can be stated succinctly as,

$$
\begin{equation*}
\operatorname{minimize} \overline{T C}(\varepsilon)=\sum^{R} \overline{T C}_{r}\left(\left\{E_{r c}\right\}_{r}\right) \tag{4.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\text { minimize } \Sigma_{\varepsilon S T}^{t+1}(\varepsilon)=\sum^{R} \sum_{E_{r c}^{c}}^{c} \int_{r c}^{\varepsilon_{r c}^{t+1}} \lambda_{r c}^{t} d E_{r c} \tag{4.12}
\end{equation*}
$$

such that the following period constraints are met for

System Production:

$$
\begin{equation*}
\sum^{R} E_{r c p}=N_{p} \text { for all } p \tag{4.13}
\end{equation*}
$$

Reactor Production:

$$
\begin{equation*}
E_{r c p}^{\min } \leqslant E_{r c p} \leqslant E_{r c p}^{\max } \text { for all } r \text { and } p \tag{4.14}
\end{equation*}
$$

and Shape:

$$
\frac{\sum_{r=1}^{R_{p}^{\prime}} k_{r}\left(\alpha_{r p} E_{r c p}-\beta_{r p}-\overline{l_{p}^{\prime}}\right)^{2}}{\sum_{r=1}^{R_{p}^{\prime}} k_{r}} \leqslant S_{p}^{2}-V_{R E J}^{2}
$$

4.4 Method of Optimization

In choosing a method of optimization, the size of the problem itself must be considered. Suppose a utility with eight reactors desires to optimize the system refueling strategy over the next six years using time periods two weeks long. Then, there will be $2 \sim 150$ time periods, each of which has two constraints [Equations (4.13) and (4.62), one of which is non-linear]. Each of the $R \cdot Z=1200$ optimization variables in \mathcal{E} has a lower and an upper limit (2400 more constraints). The final total: 1200 variables to be optimized subject to 2700 constraints--a very large optimization problem, particularly if solved in an iterative fashion.

The schematic diagram of a two-stage iterative optimization procedure is shown in Figure 4.11. The optimization is initiated by the precalculation of constraint limits (Block A) based on the output supplied by the SIM. Then for each outer shape iteration, s, the inner cost iteration loop, consisting of the network program without any shape constraints (Block B) and the CORSOM's (Block C), operates within the remaining constraints. The inner loop's output is a complete set of optimized reactor-cycle energies, $\mathrm{E}_{\mathrm{rc}}^{*}, \mathrm{~s}$, which results in the minimum nuclear fuel revenue requirement for the system, $\overline{T C}{ }^{*}, s$. In the second stage, the network program of Block D is used to apportion each reactorcycle energy in this set among the various reactor-periods

Figure 4.11

SOM Optimization Scheme

making up a reactor-cycle. The objective is to minimize the likelihood that the shape constraint for any period will be violated, $\mathrm{M}^{*}, \mathrm{~S}$. Then, Block E compares the "variance", v_{p}^{2} for each period of the resulting set of reactor-period energy productions, $\left\{\mathrm{E}_{\mathrm{rcp}}^{\mathrm{*}} \mathrm{s}\right\}$, with the preselected shape rejection criterion, $V_{\text {REJ }}^{2}$. If the shape of any period violates the criterion, another outer shape iteration is begun by decreasing the range of the permissible reactor-period energy productions for all reactors supplying energy in each rejected period. When all period shapes are accepted, the optimization of the $S O M$ is complete. The resulting optimized (i.e., minimized) nuclear fuel revenue requirement, $\overline{\mathrm{TC}}$, is combined with the non-nuclear operating revenue requirements to produce the system's total optimized operating revenue requirement (as shown in Figure 2.22) for the particular alternative refueling and maintenance strategy under investigation.

While many iterative, non-linear optimization techniques seek the global optimum by operating within the feasible \mathcal{E} hyperspace, this two-stage technique approaches the optimum from without, i.e., from the infeasible region. Consequently, instead of each iteration decreasing the objective function, the objective function increases as feasibility is approached, giving a lower bound for the more feasible solution at the next iteration (see Section 5.6.2).

4.4.1 Concept of Nuclear Energy Supply Network

Since the only non-linear constraint [Equation (4.62)] is not considered explicitly in either sub-optimization of Figure 4.11, the remaining constraints are linear. In fact, because the resulting sub-optimizations deal with a single commodity (nuclear energy production) in a strict one-tomone (reactor) supply and (customer) demand sense, the constraints form a nuclear energy supply network. Figure 4.12 presents such a network configuration for a 3 reactor, 24 period (month) example. (Numbers are displayed for the nuclear potentials to emphasize the fact that these are fixed constraints throughout all of the iterations for a particular refueling and maintenance strategy.) Nuclear energy is allocated (supplied) to each reactor-cycle. Within each cycle, the energy is allocated to the pertinent periods so as to satisfy the system nuclear potentials (demanded). The sum of any column must equal the energy supplied (or extracted) during that particular reactor-cycle while the sum of any row must equal its required nuclear potential [Equation (4.13)]. The range of each $E_{r c p}$ is also constrained via Equation (4.14) (presented in Table 4.1 but not shown explicitly on Figure 4.12) leading to the term "capacitated" network.

Each of the sub-optimizations in the following sections thus seeks to determine that \mathcal{E} set of $E_{r c p}$ that satisfies these network constraints, yet minimizes its repective objective function.

Figure 4.12

Sample Network Configuration
PORIOD

Table 4.1
Reactor Production Limits for 3 Reactor, 24 Period Example

Period p	Reactor 1		Reactor 2		Reactor 3	
	$\mathrm{E}_{\mathrm{lcp}}^{\min }$	$\mathrm{E}_{\mathrm{lcp}}^{\max }$	$\mathrm{E}_{2 \mathrm{cp}}^{\min }$	$\mathrm{E}_{2 \mathrm{Cp}}^{\max }$	$\mathrm{E}_{3 \mathrm{cp}}^{\min }$	$\mathrm{E}_{3 \mathrm{cp}}^{\max }$
1	669	762	629	722	669	762
2	635	760	596	720	635	760
3	687	756	0	0	687	756
4	577	747	540	707	577	747
5	636	760	596	720	636	760
6	669	762	629	722	669	762
7	714	763	674	723	714	763
8	669	762	629	722	669	762
9	669	762	629	722	669	762
10	616	755	577	714	616	755
11	610	759	571	718	610	759
12	718	760	678	720	0	0
13	656	761	617	721	656	761
14	0	0	703	722	743	763
15	610	752	571	712	610	752
16	706	758	0	0	706	758
17	657	761	617	721	657	761
18	686	762	646	722	686	762
19	724	763	684	723	724	763
20	686	762	646	722	686	762
21	686	762	646	722	686	762
22	643	758	604	718	643	758
23	632	759	593	719	632	759
24	0	0	703	722	743	763

All $E_{\text {rcp }}$ in GWH

4.4.2 Inner Iteration on Nuclear Cost

Each inner cost iteration of Figure 4.11 solves the following sub-optimization problem:
$\operatorname{minimize} \sum_{E S T}^{t+1}\left(\varepsilon^{t+1}\right)=\sum^{R} \sum_{E_{r c}^{t}}^{E_{r c}^{t+1}} \lambda_{r c}^{t} d E_{r c}$
such that

$$
\begin{equation*}
\sum^{R} E_{r c p}=N_{p} \text { for all } p \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{r c p}^{\min , s} \leq E_{r c p} \leq E_{r c p}^{\max , s} \tag{4.14}
\end{equation*}
$$

Inner iterations continue until \mathcal{E}^{t+1} converges to $\mathcal{E}^{*, s}$. Critical to the minimization of Equation (4.12) is the representation of the incremental cost curve $\lambda_{r c}^{t}$ as a function of $E_{r C}^{t}$. Figure 4.13 presents a typical true indremental cost curve and two approximations to it:
(1) linear approximation,

$$
\begin{equation*}
\lambda_{r c}^{t}=a_{r c}^{t} E_{r c}^{t}+b_{r c}^{t} \tag{4.63}
\end{equation*}
$$

and (2) a "stair-step" approximation having the same areas as the Δ GWH segments of the true curve,

$$
\begin{align*}
\lambda_{r c}^{t} & =\overline{\lambda_{r c}^{t-}} & E_{r c}^{t}-\Delta \leqslant E_{r c}<E_{r c}^{t} \\
& =\overline{\lambda_{r c}^{t+}} & E_{r c}<E_{r c} \leqslant E_{r c}^{t}+\Delta \tag{4.64}
\end{align*}
$$

Figure 4.13

Typical Incremental Cost Curve ond Approximations

Performing the integration of Equation (4.12), the linear approximation results in a quadratic programming (QP) problem,
$\operatorname{minimize} \sum_{E S T}^{t+1}=\sum^{R}\left\{\left\{\frac{a_{r c}^{t}}{2}\left[\left(E_{r c}^{t+1}\right)^{2}-\left(E_{r c}^{t}\right)^{2}\right]+b_{r c}^{t}\left(E_{r c}^{t+1}-E_{r c}^{t}\right)\right\}\right.$
subject to the capacitated supply network constraints of Equations (4.13) and (4.14).

On the other hand, the stair-step approximation leads to a linear programming (LP) problem utilizing the method of "convex combinations" (54) of $E_{r c}^{t}$ and $E_{r c}^{t+1}$. In fact, since the model's context is a supply network and the objective function is linear, this special LP problem reduces to a network programming (NP) problem,
$\operatorname{minimize} \sum_{E S T}^{t+1}=\sum^{R} \overline{\lambda_{r c}^{t \pm}} \cdot\left(E_{r c}^{t+1}-E_{r c}^{t}\right)$

Considering only the accuracy of the underlying approximations, a QP code package ought to be favored over a NP package for achieving the sub-optimization. However, even the example optimization problem of Section 4.4 (with 1200 primary variables subject to 2700 constraints), is too large for a typical generalized QP package (6) which permits only 1100 variables (including slack variables) and 800 constraints.

Investigating the stair-step approximation further by decreasing Δ and increasing the number of steps, Equation (4.66) becomes a "piecewise-linear" (54) NP problem and the second approximation approaches the first with regard to accuracy. [This piecewise-linearization refers to $\overline{T C}_{r}$ and is made possible by the separability of the equivalent objective function Equation (4.12)]. Furthermore, specialized NP packages tailored to capacitated networks (27, 45) are available that can readily handle up to 10,000 primary capacitated variables and up to 5000 system production-type constraints (see Appendix G). Such capabilities easily permit the additional variables introduced during the piecewiselinearization.

To illustrate a single inner iteration consider the 3 reactor, 24 period example of Figure 4.12 and Table 4.1. Figure 4.14 presents a hypothetical set of incremental cost curves returned to the SOM at the end of the previous iteration. These are taken with respect to changes about the indicated $E_{r c}^{t}$. Also indicated is the next trial set $E_{r C}^{t+1}$ resulting from the single inner optimization. Note that (1) the NP program seeks to establish equal nuclear incremental costs (see Section 2.4.2) among the reactorcycles that compete for the nuclear potential (e.g., $\lambda_{1,1}=\lambda_{2,2}=\lambda_{3,1}$) and (2) the total increase in cycle energies in a given trial equals the total decrease in cycle energies in that trial since the total nuclear

Figure 4.14
Hypothetical Set of Incremental Cost Curves

potential, of course, does not change from iteration to iteration. Figure 4.15 presents the complete period-byperiod reactor production schedule for $t+1$.

4.4.3 Outer Iteration on Shape Misfit Potential

As outlined in Section 4.4 and Figure 4.11, inner cost iterations continue until the $\left\{\mathrm{E}_{\mathrm{r}, \mathrm{c}}^{\mathrm{t}} \mathrm{s}\right\}$ converges to $\left\{\mathrm{E}_{\mathrm{rc}}^{*}, \mathrm{~s}\right\}$ at which time the outer iteration commences. The objective function M^{*}, s of the outer shape iteration is based on the key fact that if all ${ }^{\ell}{ }_{r p}^{\prime}=\bar{\ell}_{p}^{\prime}$, then $W_{p}^{2}=0$ [from Equation (4.48)]. Hence, $v_{p}^{2}=S_{p}^{2}$ and consequently, all periods are feasible since $V_{p}^{2} \gg V_{\text {RES }}^{2}$ (see Figure 4.10). Furthermore, any deviation of $\ell_{r p}^{\prime}$ from $\bar{\ell}_{p}^{\prime}$ increases the likelihood of ultimate period rejection.

Each outer shape iteration of Figure 4.11 thus solves the following sub-optimization problem:
$\operatorname{minimize} M^{*, \alpha}(\varepsilon) \equiv \sum \sum_{\substack{R}}^{E_{\text {rep }}} \operatorname{man}_{\substack{\text { coRtes } \\ \text { to } \overline{\ell_{p}^{\prime}}}}\left(E_{r c p}\right) d E_{r c p}$

$$
\begin{equation*}
E_{r e p}^{\text {min ,s }} \leq E_{r c p} \leqslant E_{\text {rep }}^{\text {max, \& }} \text { for ale rand } p \tag{4.14}
\end{equation*}
$$

$$
\begin{equation*}
E_{r c} \equiv \sum^{p i n e} E_{r c p}=E_{r c}^{*, \Delta} \text { for ale rand } \tag{4.68}
\end{equation*}
$$

Figure 4.15
Sample Reactor Production Schedule

The M^{*}, S system misfit potential, defined by Equation (4.67), merely represents a mathematical "gimmick" designed to force \mathcal{E} (i.e., the set of all $\mathrm{E}_{\mathrm{rcp}}$) into the feasible region, minimizing the number of period shapes later rejected due to misfitting shapes [Equation (4.62)]. The all-important misfit forcing function, $m_{r p}$, though arbitrary, should possess the properties indicated in Figure 4.16. At $E_{r c p}$ corresponding to $\ell_{r p}^{\prime}=\bar{\ell}_{p}^{\prime}, m_{r p}=0$; for deviations in either direction from this $E_{r c p} m_{r p}$ increases rapidly; and for the end points $E_{r c p}^{\min , 0}$ and $E_{r c p}^{\max , 0}$, which are especially vulnerable to rejection, $m_{r p}$ should still be finite since the extremums are not unacceptable per se. The optimization of Equations (4.67) to (4.68) thus attempts to force each $\mathrm{E}_{\mathrm{rcp}}$ to the bottom of the resulting "trough" of $m_{r p}$ subject to the various constraints, such as fixed reactor-cycle energy.

Since M^{*}, s is defined (via the $m_{r p}$) to be separable and convex, the methods of piecewise-linearization and convex combinations can again be applied as was done for the inner cost iterations of Section 4.4.2. Note that given the typical, but arbitrary stair-step $m_{r p}$ curve of Figure 4.16, the linearized M^{*}, s optimization of the capacitated supply network is not iterative in nature--the complete optimization of $\varepsilon^{*, s}$ occurs in one pass through the NP package. The actual "iteration" involves checking resulting period shape acceptabilities and appropriately altering the reactor production constraints for the next

Figure 4.16

set of inner cost iterations (see Figure 4.11).
Looking at each optimized period in turn (the notation is shortened to E_{r} for convenience), the variance test of Equation (4.62) is applied. If $s^{2}-W^{2} \geq V_{R E J}^{2}$ the period is accepted and processing moves on to the next period. If the test fails, then $v^{2}\left(\equiv S^{2}-W^{2}\right) \leq v_{\text {REJ }}^{2}$. Defining σ as following measure of infeasibility,

$$
\begin{equation*}
\sigma \equiv \sqrt{V_{R E J}^{2}-V^{2}} \tag{4.69}
\end{equation*}
$$

σ represents the average change of each ℓ_{r}^{\prime} (toward $\bar{\ell}$) required before the postulated production shape would pass the test. If a fraction γ of this average reduction is applied to each reactor's limiting values of l_{r}^{\prime} (see Figure 4.17), then from Equation (4.35),

$$
\begin{align*}
& E_{r}^{m a x, s+1}=E_{r 1}+k_{r} T^{\prime} p_{r}\left[\left(l_{r}^{\prime}\right)^{\max , \infty}-\gamma \sigma\right] \tag{4.71}
\end{align*}
$$

When all periods have been tested thusly, and/or the appropriate limits altered, the outer shape iteration terminates and inner cost iterations begin on the new subproblem. The shape iteration which results in all period shapes being accepted, terminates the entire optimization at the feasible global optimum \mathcal{E}^{\oplus} and minimum total

Figuie 4.17
"Squeezing" Permissible Reactor Production Shapes

cost $\overline{\mathrm{TC}}^{\text {® }}$. [Note that if $\mathrm{V}_{\mathrm{REJ}}^{2} \leq-0.25$ (see Section 4.2.4.3), all period shapes are acceptable regardless of feasibility. Hence, $\mathcal{E}^{*, 0}=\mathcal{E}^{\oplus}$ and $\overline{\mathrm{TC}}^{*}, 0=\overline{\mathrm{TC}}^{(}$immediately.]

4.5 Completion of Supervisory Task

With the optimization task completed, the resulting feasible optimum $\overline{T C}^{\text {© }}$ represents the total revenue requirement for nuclear fuel $R R_{N}$. By present-valuing all of the other period expenditures (received as input from the SIM) according to Equation (2.17),

$$
\begin{equation*}
O R R=R R_{N}+\sum^{Z} \frac{1}{(1+x)} \bar{t}_{p}\left(X_{F_{p}}+X_{S_{p}}+X_{U_{p}}\right) \tag{4.72}
\end{equation*}
$$

The ORR operating revenue requirement is appropriately stored for later comparison with that of other possible alternative strategies. With the completion of this task, processing of the particular alternative strategy is complete. And with completion of the last alternative strategy, selection of the minimum ORR cost strategy becomes possible (see Section 2.5.1).

4.6 SYSOPT, A Computerized SYStem OPTimization Model

SYSOPT, a 2100 card Fortran IV version of the SYStem OPTimization Model is detailed in Appendix F. SYSOPT is link-edited with the Out of Kilter Network Program (45) which represents an additional 1200 cards in Fortran IV and Assembler Language. Out of Kilter is detailed in

Appendix G. This section merely summarizes the capabilities of the current combined version of SYSOPT.

The limitations of the current version of SYSOPT, though easily altered, are as follows:
(1) up to 15 reactors,
(2) up to 15 cycles per reactor within the horizon,
(3) up to 3 cycles per reactor beyond the horizon,
(4) no limit on number of strategies per computer run and
(5) up to 100 periods per strategy.

Input data for each strategy includes:
(1) Present value rate,
(2) Various convergence criteria,
(3) Various Δ for linearizing $\lambda_{r c}$ of inner iterations,
(4) Maximum total number of inner iterations to be permitted,
(5) Number of linearized segments in $m_{r p}$ (up to l0) and
(6) $V_{\text {REJ }}^{2}$ and γ of the shape iteration.

Input data supplied manually for each reactor includes:
(1) Optional initial estimates of $\lambda_{r c}^{*}$ or $E_{r c}^{*}$,
(2) Holdover energy at end of planning horizon, $E_{r, C, Z+1}$ and
(3) Cycle energies and refueling dates beyond planning horizon.

The large volume of SYSINT output required by SYSOPT may be passed either on disk, magnetic tape or punched cards.

As for typical running times on an IBM 370 model 155 computer (MVT environment), the cases presented in Chapter 5 for a hypothetical six reactor utility required only 9 CPU seconds per inner iteration (exclusive of time spent in CORSOM's) for strategies 72 periods long and totaling 30 reactor-cycles. The SYSOPT code itself requires 130 K bytes of storage (plus ~ 26 K for computer supervisor) while the Out-of-Kilter Network Program requires an additional 135 K . Using an overlay structure reduces the 265 K total to 200 K . [When link-edited with QKCORE (see Appendix H) to complete the overall nuclear power management model (see Section 5.2), the code storage requirement increases to 345 K without overlay or 220 K with overlay (exclusive of computer supervisor).] Execution time is not noticeably increased by the use of the overlay structure.

4.7 Summary

For each multi-year refueling and maintenance strategy, the SOM receives period-by-period system nuclear energy production requirements and system non-nuclear operating costs. The SOM performs a two-stage iterative optimization in conjunction with the necessary CORSOM's to produce the required nuclear energy at minimum total nuclear cost. The
optimized final nuclear cost is then added to the presentvalue of all the other operating expenses to determine the total ORR operating revenue requirement for the strategy. It is this final total cost which is used to rank the alternatives economically.

chaptrr 5

EVALUATION OF THE SYSTEM INTEGRATION AND

OPTIMIZATION MODELS

5.1 Purpose of Evaluation: Critical Questions

When pursuing research in "methods development," important questions must be answered. These critical questions revolve around the characteristics of the numerical method and the model itself:
(1) To what problems is the model applicable?
(2) What assumptions are required?
(3) Does the method converge to an optimum?
(4) Is it the global optimum?
(5) How accurate are the results?
(6) What are the computational requirements?

Once these questions have been answered satisfactorily, research interest shifts from the methodology to the impact of its results.

Since the main thrust of the work reported here is methods development, the purpose of the evaluation is to aid and abet further development by searching for the answers to these basic questions. After a brief discussion of the hypothetical utility system studied (Section 5.3), the detailed discussion of results is presented. Section 5.8 concludes the chapter with a summary of the findings with respect to each of the critical questions.

5.2 Completion of Nuclear Power Management Multi-year Model

To properly evaluate the SIM and SOM (or more specifically, the computerized versions SYSINT and SYSOPT, respectively), requires interfacing them with a RAMM and CORSOM's to complete the nuclear power management multiyear model of Figure 2.21.

For the purposes of developing and testing a SIM and SOM, the multitude of possible alternative strategies output by a RAMM may be replaced by a few typical strategies developed through simple hand calculations (see Section 5.3.3). On the other hand, the on-line iterative nature of the optimization procedure requires computerized CORSOM's. The state of the art, as witnessed by the concurrent methods development research by Kearney (41) and Watt (55), precluded utilization of an established multi-year CORSOM. In order to proceed with the testing of the SIM and SOM, QKCORE, a pseudo-one dimensional, quick core model (performing simulation only) was developed (see Appendix H). The nature of QKCORE necessarily limited the scope of the evaluation to LWR's with the following characteristics:
(1) Modified-scatter refueling with fixed number of zones (e.g., refueling fraction was fixed at one-third),
(2) No plutonium recycle,
(3) No optional stretchout beyond reactivity-limited energy and
(4) No cycle-to-cycle optimization

$$
\begin{aligned}
& \text { (i.e., at each refueling, minimum enrichment } \\
& \text { chosen regardless of future cycles). }
\end{aligned}
$$

Nevertheless, QKCORE is a key element in the success of the SYSOPT evaluation. By generating coupled and wellbehaved physics data, the resultant total costs and marginal costs passed to SYSOPT are also well-behaved. It provides all of this at a very high speed. On an IBM 370 model 155 computer, less than 15 milliseconds (CPU time) per reactor cycle were required to choose the proper refueling enrichment to yield the required cycle energy, deplete the core and calculate the cost of that energy. On the same computer, a simplified two dimensional fLAREtype model requires on the order of seconds to perform the depletion task alone--an increase of at least two orders of magnitude.

5.3 Hypothetical Utility System Studied

An 11,000 MW (~ 45\% nuclear) utility was hypothesized in order to confirm the nuclear power management multiyear model's applicability to large utility systems. To properly represent scheduled downtime and, at the same time, keep computation costs within a development budget, one month was chosen as the length of each time period. Customer loads (see Section 5.3.1) were forecast for six calendar years on this monthly basis. With respect to generating equipment, the utility's forty fossil generating
units (see Section 5.3.2) were chosen so as to have a representative span of sizes and heat rates. With respect to nuclear equipment, four 1050 Mwe PWR's were assumed to be on the system initially with two more to be commissioned on specific dates within the planning horizon. These additions, plus typical fossil additions and retirements were taken as fixed for the multi-year horizon.

Assuming negligible (or invariant) transmission costs and with all alterations to system generating capacity completely specified, only the operating revenue requirements need be considered when comparing alternative refueling and maintenance strategies (see Section 2.1.3). Three such possible alternative strategies (see Section 5.3.3) were developed for satisfying the customer load demands and the generating equipment maintenance requirements.

The model's behavior for a typical strategy (see Section 5.6) and the relative economics of the three strategies (see Section 5.7) form the data base for all of the evaluations in this chapter.

5.3.1 Customer Loads

Representation of monthly customer loads required three pieces of information:
(1) a load-duration curve, normalized on both scales,
(2) a normalizing factor for the load scale ($P_{D}^{\max } M W$ peak load) and
(3) a normalizing factor for the duration scale (T' hours in the time period)

Utilizing Commonwealth Edison data covering several recent years, the four normalized load-duration curves presented in Figure 5.1 where chosen to represent obvious seasonal variations.

A typical set of twelve monthly peaks (see Figure 5.2) was assembled for the first year with an overall peak of 10,000 MW occurring in July. The resultant monthly minimum loads are also presented in Figure 5.2. Note that what may appear at first glance in Figure 5.1 to be seasonal variations in the minimum load are actually the result of variations in the peak loads, i.e., the normalizing factors. In fact, the non-seasonal nature of the nightly minimum load components results in remarkably constant monthly minimum loads.

For the remaining five years in the planning horizon, monthly peaks (see Table 5.1) were forecast using 7\% annual growth (rounded to 10 NW). As for time period duration, all months were assumed to be 730 hours (30.4 days) in length.

Having specified the required three pieces of information for each period, customer loads had been forecast six years in the future. One of the current model's shortcomings is that it assumes these are perfect forecasts, which, therefore, are treated as deterministic. The

Figure 5.1

Figure 5.2

Forecasted Monthly Minimum and Maximum Loads for First Year

Table 5.1
Forecast of Monthly Peak Loads

Month	Year 1	Year 2	Year 3	Year 4	$\underline{\text { Year } 5}$	Year 6
January	7,900	8,450	9,050	9,680	10,350	11,070
February	7,800	8,350	8,940	9,560	10,210	10,910
March	7,100	7,600	8,130	8,700	9,300	9,950
April	7,300	7,810	8,360	8,950	9,560	10,220
May	8,000	8,560	9,160	9,800	10,490	11,200
June	9,500	10,180	10,890	11,640	12,450	13,300
July	10,000	10,700	11,450	12,250	13,100	14,000
August	9,750	10,430	11,170	11,950	12,780	13,650
September	8,500	9,100	9,730	10,410	11,130	11,900
October	7,600	8,130	8,700	9,310	9,960	10,640
November	7,900	8,450	9,050	9,680	10,350	11,070
December	8,200	8,770	9,400	10,050	10,740	11,490

significant probabilistic nature of the Booth-Baleriaux model derives from the simulation of each unit's stochastic forced-outages, not customer's stochastic demands. Though errors in forecasting monthly peaks can be incorporated into the model (18), the truly difficult uncertainties, such as incorrect load-duration shape, have not been adequately investigated. Research into this area is needed to establish the sensitivity of various results to such uncertainties and to develop means of incorporating them directly so that the model yields not only a numerical answer, but also a confidence interval around it.

5.3.2 Generating Equipment

Again relying on Commonwealth Edison Company data, a representative mix of fossil generating equipment was assembled (see Table 5.2). For reliability, units greater than 300 MW were considered must-run units (i.e., at least at minimum load) provided enough demand was present for the must-run units themselves.

Also presented in Table 5.2 are unit heat rate characteristics for each of the nuclear plants. Because of their size and economics, these six units are also treated as must-run units. All have high heat rates characteristic of light water reactors. The two nuclear units (E and F) under-construction at time-zero are assumed to have only 70% performance probabilities for the first twelve months of commercial service. After this shakedown period, they are

TABLE 5.2 GENERATING UNIT DATA												
Unit No. -	Name	Rated Cap.$K_{p} N W$	Type	SU.SD Reqt. a_{p} MegaBTU	Performance Probability P_{r}	Valve Point by Valve Point Host Rate Date Capacity in MW and Heat Rate in BTU/Kwh						
						$k_{r 1} \quad \overline{h r}_{1}$	K 2	$h_{\text {inc }}$ 2	$\mathrm{K}_{\mathbf{r}}$	$n_{\text {inc }}{ }^{3}$	$\mathrm{K}_{\mathrm{r} 4} \quad \mathrm{~h}_{\text {inc }}{ }_{\text {r } 4}$	$k_{r 5} \quad h_{\text {inc }}{ }_{\text {r }}$
1	A 100	100	Fossil	510	0.87	1024800.	45	12500.	65	13420.	9013700.	10014540.
2	A 120	120	F	850	0.90	3012790.	70	10640.	110	$121^{\circ} 0$	17013400.	***********
3	A 120	120	F	343	0.91	3512410.	70	10980	120	12480.	***********	***********
4	A140	140	F	250	0.85	3012380.	90	çso.	120	10140.	14011340.	***********
5	3140	140	F	500	0.94	3013100.	75	9090.	100	9120.	1259350.	1409520.
6	C140	140	F	1050	0.00	4012770.	90	10500.	120	11100.	13011350.	14011950.
7	A1/0	100	F	690	0.89	2513220.	90	9470.	110	10040.	13510610.	15011560.
8	A 160	160	F	520	0.92	3513380.	115	8750.	145	$\bigcirc 230$.	1659850.	***********
\bigcirc	C1*0	180	F	700	0.94	4511040.	80	7950.	130	8410.	150 P610.	150 9757.
10	0160	160	F	1130	0.90	4511030.	75	8260.	115	8430.	1508490.	160 959].
11	- 220	220	F	660	0.85	7010110.	150	8270.	185	9900.	2059120.	22010100.
12	- 272	220	F	6to	0.90	7010110.	150	2270.	185	8700.	2059120.	22010100.
13	C220	220	F	1450	0.91	60 Q450.	180	8020.	210	8200.	223 8570.	***********
14	$02 ? 0$	220	F	1450	0.99	t0 0459.	180	8.820.	210	8260.	2208570.	***********
15	4320	320	F	1750	0.87	140 9670.	180	7800.	290	3120.	310 3450.	320 8980.
16	A670	500	f	3360	0.95	20010320.	400	8500.	530	9050.	570 0510.	ton 9670.
17	A600	600		4160	0.87	200 9760.	390	7730.	530	8270.	5308890.	6008740.
18	4650	650		3500	0.98	30010370.	400	8600.	530	9050.	5909510.	6509670.
19	¢ 450 4830	650		4500	0.90	3009760.	390	7030.	530	8270.	-90 8680.	6508740°.
20	4830	930	F	5980	0.99	4509980.	650	8310.	750	9510.	8308710.	***********
21	9880	330	5	5990	0.91	4509760.	650	8310.	750	8510.	837 971才.	***********
22	DK 1	60	Peaking	66	0.95	54 17030.	60	19500.	******	******	*\#\#\#*******	***********
23	DK 2	60		$t 6$	0.95	5417000.	60	1¢5?	*****	******	***********	***********
24	PK PK PK	60	P	+6	0.05	5417000.	60	19500.	******	******	***********	***********
25	PK OK O	60	p	+6	0.95	5417000.	60	19500.	*****	******	***********	***********
26	OK 5	A0	p	56	0.95	5417000.	60	19500.	******	******	***********	***********
27	DK 6	100	p	110	0.95	9017000.	100	19500.	*****	******	***********	***********
28	PK 7	100	p	110	0.95	9017000.	100	19500.	*****	******	***********	***********
29	PK PK Pr	109	p	110	0.95	9017000.	100	19500.	*****	******	***********	***********
30		100	p	110	0.95	0017000.	100	19500.	*****	******	***********	***********
31	F-10	100	p	110	0.75	0017000.	100	19500.	*****	******	***********	***********
32	PK11	100	p	110	0.95	c0 17000.	100	19590.	****	******	***********	***********
33	PK12	100	p	110	0.05	9017000.	100	19500.	*****	******	***********	***********
34	PK13	100	P	110	0.95	9017000.	100	19500.	*******	******	***********	***********
35	PK14	100	p	110	0.95	9017000.	100	19500.	******	******	***********	**********
36	PK15	100	P	110	0.75	9017000.	100	19500.	*****	******	***********	***********
37	PK16	100	0	110	0.95	9017000.	100	1950).	*****	******	***********	********
38	DK17	100	p	110	0.95	90 i 7000.	100	10500.	*****	******	*******\#\#**	**********
39	OKIF	100	p	119	0.05	9017000.	100	19500.	****	******	******E****	***********
40	DK10	100	-	110	0.95	901700.	100	19500.	*****	******	***********	**********
41	A	1059	Nuclear	6400	0.95	40012425.	520	9910.	830		105010323.	*u********
42	B	1059	N	6400	0.25	40012178.	620	9470.	830	9990.	1055 1050130.	**u********
43	C	1050	N	6400	0.95	40012425.	520	9010.	830	9570.	105010390.	**********
$\begin{aligned} & 44 \\ & 45 \end{aligned}$	D	1050 1050	N N	6400 6400	0.95	40012178.	620	9470.	830	9090.	105910130.	***********
45	E	1050	N	6400	0.70	40012178.	520	9470.	830	9090.	105010130.	***********
46	F	1050	N	6400	0.70	40012178.	620	9470.	830	9000.	1757 10130.	***********

assumed to perform 95% of the time. The physics characteristics of the reactors are detailed in Appendix H.

In order to impose a more severe test of the nuclear planning ability of the model, the dispatcher's opportunities to base-load the nuclear capacity were decreased by adding an admittedly artificial constraint--a long-term contract with a neighboring utility for 1550 MW capacity with 100\% guaranteed availability.

The schedule for installing and retiring utility equipment to keep pace with load growth is presented in Table 5.3. All plants not specifically mentioned exist both before and after the time span of interest. Note the typical trend of retiring smaller (and older) equipment with high heat rates in favor of larger, more efficient units. The system characteristics are summarized in Table 5.4. (The term "system resources" refers to wholly-owned capacity plus firm purchases). A typical summer and non-summer month on the hypothetical system are shown in Figures 5.3 and 5.4, respectively. The difficulty in base-loading the nuclear plants is readily apparent.

5.3.3 Maintenance and Refueling Strategies

While developing maintenance and refueling strategies, various scheduling constraints, maintenance requirements and initial conditions had to be considered. Due to summer peak loads, reliability considerations were assumed to dictate that no scheduled maintenance was to be performed during

Table 5.3
Additions and Retirements of Equipment

Year	Additions			Retirements		
	First Month	(Period)	Unit Name	Last Month	(Period)	Unit Name
First	June	(6)	$\begin{aligned} & \text { Reactor E } \\ & \text { PK-15 } \end{aligned}$	August	(8)	A-160
Second	June	(18)	A-600		NONE	
Third	June	(30)	$\begin{aligned} & \text { A-830 } \\ & \text { PK }-16 \end{aligned}$	August	(32)	B-160
Fourth	June	(42)	Reactor F	August	(44)	A-100
Fifth	June	(54)	$\begin{aligned} & \mathrm{C}-220 \\ & \mathrm{~B}-600 \\ & \text { PK-17 } \\ & \text { PK-18 } \end{aligned}$	August	(56)	A-120
Sixth	June	(66)	$\begin{aligned} & \mathrm{D}-220 \\ & \mathrm{~B}-830 \\ & \mathrm{PK}-19 \end{aligned}$	August	(68)	B-120

Table 5.4
Summary of System Characteristics
I. Customer Loads:

Load-Duration Curves See Figure 5.1
Monthly Peaks for First Year See Figure 5.2
Monthly Peaks for Six Years See Table 5.1
II. Generating Equipment:

Unit Data	See Table 5.2
Additions and Retirements	See Table 5.3

III. Resulting System Configuration:

Equipment Type
Fossil (Non-Peaking)
Fast-Start Peaking
Nuclear
Firm Purchases (1550 MW)
Total System Resources
Annual Peak Demand

$$
\begin{gathered}
\text { Per Cent of System } \\
\text { Resources } \\
\hline
\end{gathered}
$$

29-36
10-11
41-46
11-14
100\%

Resource Margin

88-89
$11-12 \%$

Figure 5.4

June, July or August. This typical constraint provided a convenient way of looking at schedules--as nine month "windows" between two summers. Maintenance requirements for (non-peaking) fossil equipment were set at one month per year while fast-start peaking equipment was assumed to be maintained during off-line hours. Two months downtime was assumed for each nuclear refueling. The initial conditions of each reactor core are indicated in Table 5.5. Within this context, the following three nuclear refueling schedules were postulated:

S-1 : Strictly annual refueling
S-2 : Gradual shift to longer cycles (14 months) to increase cycle energy production S-3 : Immediate shift to the longer cycles. These schedules are presented graphically in Figures 5.5, 5.6 and 5.7, respectively. For each of these strategies, fossil maintenance was then scheduled so as to level-off the monthly capacity margin. Figures 5.8, 5.9 and 5.10 present detailed views of the maintenance and refueling schedules for each of the strategies during the first full scheduling window. Note that during the window, each strategy, in turn, refuels one less reactor (i.e., $2100 \mathrm{MW}-$ months less downtime). Thus, the average monthly resource margin during the nine month window increases by 233 MW . Before considering strategy 3 further, note that due to the immediate shift to longer cycles, two initial conditions must be violated--namely, the enrichments already

Table 5.5

Reactor	Current Status	Scheduled Refueling During First Year	Enrichment Ordered (w/o U-235)	Zone	Current Co Enrich. (Fab.) (w/o U-235)	re Contents Current Burnup (MWD/Kg)
A	Generating	OctoberNovember	Open	1	3.3	1.5
				2	3.3	11.5
				3	3.3	20.5
B	Generating	FebruaryMarch	3.4	1	3.4	9.0
				2	3.2	19.0
				3	3.2	28.0
c	Down for Refueling	January (Current)	3.6	1	3.3	10.0
				2	3.3	20.0
				3	N/A	N/A
D	Generating	$\begin{aligned} & \text { April- } \\ & \text { May } \end{aligned}$	3.2	1	3.2	7.0
				2	3.2	17.0
				3	3.2	27.0
E	Under-Constr. (On-line June First year)	Open	Open		3.2	0.0
				2	2.7	0.0
				3	2.2	0.0
F	Under-Constr.	Open	Open	1	3.2	0.0
	(On-line June			2	2.7	0.0
	Fourth year)			3	2.2	0.0

Figure 5.5

Figure 5.6
Strategy 2: Gradual Shift to Longer Cycles (14 Months when Possible $=12$ Up +2 Down)

Figure 5.7
Strategy 3: Immediate Shift to Longer Cycles (14 Months when Possible $=12 \mathrm{Up}+12$ Down)

$-b 62-$

Figure 5.8

Figure 5.9

Resource Commitment for S-2 During First Scheduling Window

Figure 5.10

scheduled for Reactors B and D. [Kearney (41) noted the same infeasibility for abrupt large energy changes in the initial cycles.] These longer cycles require increased be-ginning-of-cycle reactivity to generate the additional energy. Because the QKCORE simulation model required constant refueling batch size for each unit throughout the horizon, the only alternative was to refuel with a higher enrichment. However, the minimum notice for changing reload enrichments is about nine months (20). In order to permit evaluation of $S-3$, a one million dollar penalty (roughly one year's carrying charges on the unused reload batch) was assessed for changing a batch enrichment on less than nine months notice. This raised new questions: Could s-3 pay such a penalty and still be economically attractive? How much of a penalty could it afford to pay? The ability of the nuclear power management model to answer such "What if . . . ?" questions is but one indication of the model's versatility and usefulness as a utility management planning tool.

5.4 Remaining Parameters of Interest

In addition to the customer load demand, utility generating equipment and feasible maintenance and refueling schedules, other operating and cost information must be provided. Some of these inputs were arbitrarily fixed at reasonable values (see Table 5.6) throughout the evaluation. Other inputs were adjusted from case to case to evaluate the

Table 5.6
Input Parameters Fixed Throughout Evaluation

	Value	Dimensions
Startup-Shutdown Frequency Curve	See Figure 3.9	
Spinning Reserve Requirement	600	MW
Fossil Fuel Cost	40	$\notin /$ MegaBTU
Peaking Fuel Cost	90	$\notin / \mathrm{MegaBTU}$
Emergency Energy Purchase	10	$\$ / \mathrm{MWH}$
Firm Energy Purchase	2	$\$ /$ MWH
Tax Rate	$52 \quad$ per cent	
Refueling downtime	2	months/ refueling

Nuclear Data:

Enrichment Feed Assay	0.711	w/O U-235
Enrichment Tails Assay	0.25	w/O U-235
Pre-Irradiation Investment Lead Time	0.5	year
Post-Irradiation Credit Lag Time	0.6	year
Delay Time From Yellowcake to UF	0.123	year
Processing Yields:	0.995	
\quad Conversion	0.99	
\quad Fabrication	0.99	
Reprocessing	0.995	

model's performance (see Tables 5.7 and 5.8).
From a computational viewpoint, note that the six cases per strategy represent perturbations of only SYSOPT's input. Thus only one reference 72 period SYSINT run was recuired per strategy. Furthermore, because many of SYSINT's unit costs were fixed per Table 5.6, the effect of varying cost parameters could be determined by hand calculation.

5.5 Numerical Results

With all the pertinent information specified for each of the eighteen optimizations, the necessary computer runs were carried out. The revenue requirements and undiscounted energy totals up to the end of specified planning horizon are tabulated for each of the cases in subsequent sections where appropriate to the particular discussion. These tables are cross-referenced in Table 5.8 for ease in locating the results of the six cases.

In addition to these results, Appendix D also presents more detailed numerical results relative to each reactorcycle (e.g., cycle energy, average energy cost, incremental energy cost and reload enrichment).

The discussion of the results of the cases is the subject of the remainder of this chapter.
5.6 Numerical Evaluation of an Optimized Strategy

Underlying later discussion of the choice from among several optimized strategies are the properties of the individual strategies themselves. The important numerical

Table 5.7
Nuclear Fuel Cycle Unit Costs

Cost Component	Dimensions	Notation		
		Low (75\% Reference)	Reference (12)	$\begin{gathered} \text { High } \\ \text { (125\% Reference) } \end{gathered}$
Yellowcake	\$/1b $\mathrm{U}_{3} \mathrm{O}_{8}$	6.00	8.00	10.00
Conversion to UF_{6}	\$/Kg U	1.72	2.30	2.88
Separative Work	\$/Kg SWU	24.00	32.00	40.00
Fabrication	\$/Kg U	52.50	70.00	87.50
Ship. and Reproc.	\$/Kg ($\mathrm{U}+\mathrm{Pu}$)	26.25	35.00	43.75
Re-conversion	\$/Kg U	4.20	5.60	7.00
Pu Credit ${ }^{1}$	\$/gm. Fis. Pu	9.38	7.50	5.62

direction. ${ }^{1}$ Note that since plutonium is a credit, it is changed in the opposite

Table 5.8
Structure of Case Study

> All three Strategies $(S-1, S-2$ and $S-3)$ were optimized for each set of input parameters comprising Cases I through VI.

Case Number	Shortened Case Notation ${ }^{1}$	Horizon Length (months)	Present Value Rate (\%)	Nuclear Unit Costs ${ }^{2}$	Shape Rej; Criterion ${ }^{3}$	For Results See
I	72M, 7\%, R, 0	72	7	Reference	0.0	Table 5.12
II	48M, 7\%, R, N	48	7	Reference	N.A.	$\left\{\begin{array}{l}\text { Table } 5.14 \\ \text { Table } 5.16 \\ \text { Table 5.19 }\end{array}\right.$
III	48M, 0\%, R, N	48	0	Reference	N.A.	Table 5.15
IV	48M, 12\%, R, N	48	12	Reference	N.A.	Table 5.17
V	48M, $7 \%, \mathrm{~L}, \mathrm{~N}$	48	7	Low	N.A.	Table 5.18
VI	48M, $7 \%, \mathrm{H}, \mathrm{N}$	48	7	High	N.A.	Table 5.20
```l Refers to parameter values in next four columns. 2 See Table 5.7.```						

properties are cost convergence, shape convergence, incremental costs and computational requirements. The results (see Table 5.9) of Strategy 2 in Case I (i.e., S-2 with 72 month horizon, $7 \%$ present value rate, Reference nuclear unit costs and zero rejection level) will be used for most of the discussion. However, when this strategy fails to clearly demonstrate a point under discussion, another will be utilized.

### 5.6.1 Convergence of Inner Cost Iterations

Starting from a relatively poor initial guess of equal energy in each cycle regardless of cycle length, the initial ( $s=0$ ) shape iteration of $s-2$ in Case I required ten inner cost iterations to converge to $\overline{T C}^{*}, 0$ (see Section 4.4.2 and Figure 4.11). The system nuclear fuel cost $\overline{\mathrm{TC}}^{t}$ (i.e., the objective function of the optimization) for each iteration is presented in Figure 5.11. The revenue requixements and undiscounted energy for this converged solution are shown in Table 5.10.

The symbol $\Delta$ in Figure 5.11 represents the energy step size used to segment the incremental cost curves into the stair-step cost functions required by the NP optimization package (see Figure 4.13). As $\Delta$ decreases, the accuracy of the piecewise-linear representation increases as does the computational requirement. Thus, a relatively coarse piecewise fit for $\lambda_{r c}$ at large $\Delta$ was utilized for the initial iterations until either the cycle energies

Table 5.9
Revenue Requirements and Undiscounted Energy for Accepted Global Optimum of Strategy 2 in Case I ( $72 \mathrm{M}, 7 \%, \mathrm{R}, 0$ )

	$100^{6} \$$	$10^{6} \mathrm{MWH}$
Fossil Fuel	276.583	85.836
Startup-shutdown Cost	1.704	--
Emergency Purchases	0.407	0.048
Non-nuclear Production	278.964	85.884
Nuclear Fuel	297.709	194.077
System Production	576.673	279.961
Fixed Firm Purchase	133.920	81.468
		710.593

Figure 5.11

-306-

Table 5.10
Revenue Requirements and Discounted Energy For Converged Initial ${ }^{1}$ Shape Iteration of Strategy 2 in Case I $(72 \mathrm{M}, 7 \%, \mathrm{R}, 0)$

	$10^{6} \$$	$10^{6} \mathrm{MWH}$
Fossil Fuel	276.853	85.836
Startup-shutdown Cost	1.704	--
Emergency Purchases	0.407	0.048
Nonuclear Production	278.964	85.884
Nuclear Fuel	297.456	194.077
System Production	576.420	279.961
Fixed Firm Purchase	133.920	81.468
System Total		

${ }^{1}$ Per Section 4.4.3, these results also apply for the global optimum for the following input set: 72M, 7\%, R,N (cf. Table 5.8).
converged (to within a specified per cent of $\Delta$, typically 100\%) or the objective function itself converged (i.e., $\Sigma_{E S T}^{t+1}$ of the last iteration failed to improve the objective function by more than a required amount, say $\$ 2000$ ). In fact, iteration 5 displayed "negative" improvement because piecewise-linearization of $\overline{T C}_{r}$ prevented the NP program from seeing the smooth increase of $\lambda_{r c}$ for fractional $\Delta$ changes in cycle energy. The net result was that the NP program over-reacted to small differences between the incremental costs $\lambda_{r c}$.

After convergence using the first $\Delta$, a second and smaller $\Delta$ was utilized and convergence again attained using the same two criteria. This second converged solution was considered to be the inner optimum TC $^{*}, 0$.

From three standpoints, a third $\Delta$ choice appeared unwarranted:
(1) With the total nuclear fuel revenue requirement approaching $\$ 300,000,000$, the fuel cost improvement from the $\Delta=100$ GWH optimum solution to $\Delta=20$ was only $\$ 220,000$ for the fivefold $\Delta$ reduction and would undoubtedly have been much less than that for another fivefold reduction.
(2) At $\Delta=20 \mathrm{GWH}$, cycle energies were already converged to well within $1 \%$ ( $\pm 50 \mathrm{GWH}$ out of 6000 8000 GWH), and
(3) The fuel cost errors and cycle energy errors both appear to be well within the noise levels of CORSOM errors [ $>\$ 100,000$ per reactor over five years (55)] and the errors inherent in forecasting load demands and availabilities (> 1\%).

Using the above sequence of the two step sizes for all cases, the initial shape iteration was effectively converged (i.e., objective function decreasing insignificantly for $\Delta=20 \mathrm{GWH}$ ) within ten inner iterations. In as much as completed CORSOM's are estimated to require over 3 minutes of IBM 370 model 155 CPU time per reactor strategy per iteration (41), a six reactor-ten iteration solution would involve over 3 hours of computer time for the CORSOM's alone. (The ad hoc simulator QKCORE required less than 3 minutes for all ten iterations.) Since each iteration of the $S O M$ [using roughly 9 seconds (see Section 4.6)] involves another 20 minutes of CORSOM time, further investigation is recommended into improving the SOM's NP convergence and decreasing the number of iterations required.

Returning to Figure 5.11, a detailed analysis of the iteration-to-iteration improvement in the objective function is warranted. Recalling the development of the cost objective function $\sum_{E S T}^{\mathrm{t}+1}$ in Section 4.2.1, Equation (4.8) stated that

$$
\begin{align*}
& \overline{T C}^{t+1}=\overline{T C}^{t}+\delta^{t+1}+\underbrace{\sum \sum \sum_{E_{r c}^{t}}^{C} \int_{r c}^{E_{r c}^{t+1}} \lambda_{r c}^{t} d E_{r c}}_{\sum_{E S T}^{R}}  \tag{5.1}\\
& \overline{T C}^{t+1}=\overline{T C}^{t}+\sum_{k c T}^{t+1}=\overline{T C}^{t}+\delta^{t+1}+\sum_{E S T}^{t+1} \tag{5.2}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\delta^{t+1}=\sum_{A C T}^{t+1}-\sum_{E S T}^{t+1} \tag{5.3}
\end{equation*}
$$

Both $\sum_{E S T}^{t+1}$ and $\delta^{t+1}$ are presented in Figure 5.12.
Section 4.2.1 postulated simplification of the objective function [Equation (4.12)] based on the assumption that the resulting error $\delta^{t+1}$ was much less than the projected improvement, which is the case seven out of nine times. The two failures are a combination of (1) the actual error in the simplification and (2) the NP program's over-reaction to small differences in incremental costs.

By plotting $\delta^{t+1}$ versus the average (root-mean-square) energy change for all reactor-cycles altered between the two iterations, Figure 5.13 results. Intuitively, such behavior was to be expected--namely, $\delta^{t+1}$ tends to grow large for large shifts in energy. The cluster of data representing less than

Figure 5.12
Change in Total Nuclear Fuel Cost During Inner Iterations
of Initial Shape Iteration of Strategy 2 in Case 1


Figure 5.13
Error in Estimated Improvements versus Change in Cycle Energies (Strategy 2 in Case 1)

$\$ 30,000$ errors for changes on the order of 50 GWH provides adequate justification that the assumption in Chapter 4 can be applied for small changes in energy. The fact that even the largest $\delta^{t+1}$ still permits a net improvement indicates, though somewhat less convincingly, an even larger range of applicability.

In summary, the validity of the $\delta^{t+1}$ assumption of Section 4.2.1 has been established. The inner NP optimization based on it converged adequately with regard to both cycle energies and total system nuclear fuel cost. However, as previously mentioned, the rate of convergence left something to be desired.

### 5.6.2 Convergence of Outer Shape Iterations

Strategy 2 in Case $I(72 M, 7 \%, R, 0)$ required four outer shape iterations to achieve the acceptable optimum $\overline{\mathrm{TC}}^{\oplus}$ by the method described in Section 4.4 .3 using the "stairstep" mrp of Figure 4.16. Figure 5.14 plots the progress at each outer $s$ shape iteration of $\overline{T C} *, S$ and the number of rejected periods versus the average rejected $v_{p}^{2}$. Convergence is rapid in the sense that the early iterations greatly reduce the average $\mathrm{v}_{\mathrm{p}}^{2}$ while the later iterations reduce the number of periods that must be included in the average.

Also presented in Figure 5.14 are similar data provided by a separate computer run in which the $V_{R E J}^{2}$ was raised from 0.00 to 0.01 . Table 5.11 presents a summary of the

Figure 5.14


$$
\text { Table } 5.11
$$

Results at End of Outer Shape Iterations
(Strategy 2 in Case I)

s	$\begin{aligned} & \overline{\mathrm{TC}}^{\star}, \mathrm{s} \\ & \left(10^{3} \$\right) \end{aligned}$	$\begin{gathered} \text { Lowest } \\ \mathrm{V}_{\mathrm{p}}^{2} \\ \left(x 10^{3}\right) \end{gathered}$	$\begin{gathered} \text { Average } \\ \text { Rejected } \\ \mathrm{V}_{\mathrm{p}}^{2} \\ \left(\times 10^{3}\right) \end{gathered}$	Number of Periods Rejected
	$\uparrow \psi \mathrm{v}_{\text {REJ }}^{2}=0.0$		$\cdots 7$	
0	297,457	-12.31	-8. 66	29
1	297,627	- 4.03	-2.35	22
2	297,701	- 4.15	-1.50	4
3	297,709	+ 0.09	0.0	0
	$\uparrow * \mathrm{v}_{\text {REJ }}^{2}=0.01$			
0	297.457	-12.31	-1.12	64
1	297,717	- 8.03	+3.65	61
2	297,938	- 4.73	+6.63	54
3	298,098	+ 2.75	+8.20	36
4	298,173	+ 6.29	+8.39	13
5	298,199	+ 9.00	+9.46	4
6	298,205	+10.03	10.00	0

important results at the end of each shape iteration for both runs.

During the outer iterations, reactor production limits of each rejected period are "squeezed" toward each other to decrease the likelihood of further rejection (See Section 4.4.3 and Figure 4.17). When the final iteration reaches the global optimum, a distribution of the $Z=72$ periods versus the percent original energy range remaining can be plotted as in Figure 5.15. For the run with $\mathrm{V}_{\mathrm{REJ}}^{2}=0,42$ of the 72 periods required no reduction in energy range (i.e., 100\% remaining since never rejected) and the maximum reduction for any single period was $22 \%$ ( $78 \%$ remaining). The much stiffer requirements imposed by $\mathrm{v}_{\text {REJ }}^{2}=0.01$ ( $S_{p}^{2}$ was only $\sim 0.02$ ), resulted in only 3 unaltered periods and 45 periods with reductions of $25 \%$ or more.

As for the proper choice of $V_{\text {REJ }}^{2}$ itself, Figures 5.16 to 5.18 present system and average reactor shapes yielding the indicated values of $S_{p}^{2}$ and $v_{p}^{2}$. Visual inspection indicates the infeasibility of Figure 5.16 and the acceptability of the other two periods. Furthermore, the system shape itself is not an ironclad constraint from the standpoint that the information it contains is the result of many forecasts (customer load-duration shape and performance probabilities), not of well-defined engineering constraints such as are found in deterministic optimization problems (e.g., optimum heat exchanger design). The net result is a

Figure 5.15. Distribution of 72 Period Energy Ranges Remaining at Accepted Optimum (Strategy 2 in Case I)



Figure 5.16
Typical Period with Infeasible Postulated Average Reactor Shape ( $V^{2}<0$ )

-317-

Figure 5.17

-318-

Figure 5.18

recommendation that $V_{\text {REJ }}^{2} \sim 0$ is satisfactory for planning purposes.

Figure 5.19 presents the iterative progress of $\overline{T C}{ }^{*}, s$ for Strategy 2 in Case $I$ versus the lowest $V_{p}^{2}$ (i.e., $v_{p}^{2}$ for the period failing the criterion by the largest amount or equivalently, the $V_{\text {REJ }}^{2}$ that would have accepted all periods). Since both solid curves begin from the same point, but are not co-linear, $\overline{\mathrm{TC}}^{*}, \mathrm{~s}$ is only valid as a measure of minimum system nuclear cost at the final optimum $\overline{T C}^{\oplus}$ for each $\mathrm{V}_{\mathrm{REJ}}^{2}$. In other words, the outer iterations reach their respective global optimums by a sequence of nonoptimum iterations. The means of increasing the rate of outer shape convergence, as with inner cost convergence, lies merely in increasing the number of steps used in the piecewise-linearization of the objective functions.

Another input parameter affecting the outer shape iterations is the fraction $\gamma$ of the $\sigma\left(\equiv \sqrt{\mathrm{v}_{\text {REJ }}^{2}-\mathrm{v}^{2}}\right)$ actually applied to the reactor production limits [Equations (4.70) and (4.71)]. Figure 5.20 presents a plot of all three optimizations in Case $I\left(V_{\text {REJ }}^{2}=0\right)$ as a function of the $\boldsymbol{\gamma}$ used to achieve the global optimization. The ordinate represents the increase of $\overline{\mathrm{TC}}{ }^{8}$ over $\overline{\mathrm{TC}}^{*}, 0$, absolute minimum cost when all shape constraints are ignored (i.e., ignoring feasibility). (The revenue requirements and undiscounted energy totals for Case $I$ are presented in Table 5.12.)

Figure 5.19
Strategy Cost versus $\mathrm{V}_{\text {REJ }}^{2}$ (Strategy 2 in Case I)


Figure 5.20
Accepted Optimum for Case I versus y Correcition Factor


REVENUE REQUIR ENER   (72 Month Horizon, 7\% P. 0.0 Shape Direct Calcu	5.12   TS AND OR CASE   e, Referen ion Criter Using $\gamma$	COUNTE   clear Unit	
Strategy	S. 1	S-2	S-3
Downtime to horizon (reactor-months) Average cycle length (months) System nuclear capacity factor	$\begin{aligned} & 62 \\ & 12 \\ & 0.642 \end{aligned}$	$\begin{aligned} & 51 \\ & 14.9 \\ & 0.656 \end{aligned}$	$\begin{aligned} & 49 \\ & 15.2 \\ & 0.658 \end{aligned}$
	$10^{6} \$$		
Fossil fuel	$\begin{gathered} 293.205 \\ (90.068) \end{gathered}$	$\begin{aligned} & 276.853 \\ & (85.836) \end{aligned}$	$\begin{aligned} & 274.082 \\ & (85.196) \end{aligned}$
Startup-shutdown cost	2.022	1.704	1.650
Emergency purchases	$\begin{gathered} 0.655 \\ (0.079) \end{gathered}$	$\begin{gathered} 0.407 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.363 \\ (0.043) \end{gathered}$
Nonnuclear production	$\begin{gathered} 295.882 \\ (90.147) \end{gathered}$	$\begin{gathered} 278.964 \\ (85.884) \end{gathered}$	$\begin{aligned} & 276.095 \\ & (85.239) \end{aligned}$
Nuclear fuel	$\begin{gathered} 294.690 \\ (189.814) \end{gathered}$	$\begin{gathered} 297.709 \\ (194.077) \end{gathered}$	$\begin{gathered} 300.137 \\ (194.722) \end{gathered}$
System production	$\begin{gathered} 590.572 \\ (279.961) \end{gathered}$	$\begin{gathered} 576.673 \\ (279.961) \end{gathered}$	$\begin{gathered} 576.232 \\ (279.961) \end{gathered}$
Fixed firm purchase	$\begin{aligned} & 133.920 \\ & (81.468) \end{aligned}$	$\begin{aligned} & 133.920 \\ & (81.468) \end{aligned}$	$\begin{aligned} & 133.920 \\ & (81.468) \end{aligned}$
Penalty for short-notice enrichment changes			
System Total	$\begin{gathered} 724.492 \\ (361.429) \end{gathered}$	$\begin{gathered} 710.593 \\ (361.429) \end{gathered}$	$\begin{gathered} 712.152 \\ (361.429) \end{gathered}$

Two points are worthy of note. First, $\boldsymbol{\gamma} \sim 0.1$ to 0.3 appears optimal since for $\gamma$ smaller, a larger number of outer iterations (>10) would be required (i.e., slower convergence) while for $\boldsymbol{\gamma}$ larger, the method over-corrects the offending periods causing an additional cost penalty. Secondly, for scoping purposes only (i.e., when only ORR is required for the comparison of many strategies and the feasibility of $\epsilon^{*}$ is not important for actual production purposes), the additional computations required in attaining an acceptable optimum for each and every run may not be required. (However, if the convergence of SYSOPT is accelerated, the additional shape computations may be easily tolerated in the first place.) Since the strategy versus strategy "cost of feasibility" differences are small (<\$100,000 for $S-3$ vs. S-2) relative to overall cost differences $(\sim \$ 1,400,000)$, a single benchmark run is sufficient for determining the appropriate strategy cost penalty. Adding this to each $\overrightarrow{\mathrm{TC}}^{*}, 0$ eliminates the need for any further outer shape iterations (for scoping purposes only).

The results of Cases II through VI presented in Section 5.7 represent such TC $^{*}, 0$ solutions (i.e., ignoring all shape considerations). By applying the cost penalties indicated in Figure 5.20, they can be approximately converted to $\overline{\mathrm{TC}}^{(1)}$ (however, $\mathcal{E}^{*, 0} \neq \mathcal{E}^{0}$ ).

### 5.6.3 Comparison of Theory and Result: Incremental Costs

The analytical discussion of utility system optimization in Section 2.4 .2 presented two conclusions:

Conclusion I: The strong conclusion [Equation (2.70)]
that all reactor-cycles generating energy during the same time period should be designed at the same incremental cost, and

Conclusion II: The weak conclusion [Equation (2.71)] that all reactor-cycles should simultaneously be designed at the same incremental cost. Recall that "strong" and "weak" refer to the number of incremental cost violations anticipated because of over-riding engineering and time constraints.

The $\lambda_{r c}^{\text {© }}$ cycle-by-cycle incremental costs at the optimum of Strategy 2 in Case $I$ are presented in Figure 5.21. In analyzing these values, four important points are to be made. First, the general equality of $\lambda_{r c}^{\infty}$ at each point in time confirms Conclusion I that

$$
\begin{equation*}
\lambda_{N_{p}}=\frac{\partial \overline{T C}_{r}}{\partial E_{r C}}=\text { constant for all } r \text { at each } p \tag{5.4}
\end{equation*}
$$

Secondly, incremental costs increase over the first few cycles as the short-range incremental costs of the first year give way to the mid-range incremental costs of later cycles. During the first year, incremental costs are very low because a large proportion of each reactor's cycle costs

Figure 5.21
Incremental Costs and Cycle Energies at Accepted Global Optimum for Strategy 2 in Case I

(e.g., separative work, fabrication and reprocessing) are already spent or committed. Discharge burnup is the only variable. Thus, $\lambda_{r l}^{0}$ is Widmer's short-range incremental cost (57, 59). For a cycle further into the future, a larger degree of flexibility is available in the design of the reload batch (size and enrichment) and a larger fraction of total cycle costs can thus be altered. For $c>2, \lambda_{r c}$ becomes Widmer's mid-range incremental cost (57, 58). Thus, short-range incremental costs evolve into mid-range incremental costs.

During the middle two to five years of Strategy 2 (see Figure 5.21), the constancy of $\lambda_{r c}^{0}$ for most reactorcycles provides ample evidence that Conclusion II is also valid.

Finally, the $\lambda_{r c}$ beyond the fifth year are optimal (but erratic) for the fixed horizon end condition of Section 4.2.3.2. Further investigation into the ideal end condition for each reactor and each strategy are recommended.

Though Figure 5.21 confirmed Conclusion II, the typical $\lambda_{r c}^{\ominus}$ optima of the other strategies did not. For example, Figure 5.22 presents $\lambda_{\text {rc }}^{*}$ for Strategy 1 in Case I. Though Conclusion $I$ continues to be valid with few violations, the results do not support Conclusion II.

Figure 5.22


Underlying any discussion of incremental costs is the source of those costs--the CORSOM, or specifically, the QKCORE in-core simulator developed merely to test the SOM. By foregoing an internal optimization, QKCORE is unable to see some obvious means of saving money. For instance, reactor-cycle E-3 of Figure 5.22 has a very high incremental cost due to energy production requiring $4 \%$ enriched reload fuel (see Appendix D, Table D.8). Yet, the previous cycle loaded the minimum enrichment allowed (1.5\%). If QKCORE allowed early shutdown (reactivity > 0) and optimized the enrichments alone, it might well have loaded $2.5 \%$ fuel in E-2, burned only part of the way down and then loaded $3.0 \%$ fuel for a complete burn. Indeed, a full-scale CORSOM should be able to optimize reload batch size, as well. The development and incorporation of more versatile CORSOM's is a prerequisite to completing a fully operational nuclear power management model as in Figure 2.21.

Each inconsistency in incremental costs as cycles begin and end, can be translated directly into the optimal loading order (see Figure 5.22). During reactor-cycle E-3 (with $\lambda_{E, 3}^{\oplus}=1.689 \$ / \mathrm{MWH}$ ), Reactor $E$ is loaded only after all other nuclear units (with $\lambda_{r c}^{0}=1.240 \$ / \mathrm{MWH}$ ) are fully loaded. Since E-3 is always loaded last, it generates $E_{E, 3, p}^{m i n}$ during each included period of cycle 3 and, hence, $E_{E, 3}=E_{E, 3}^{\text {min }}$. As Figure 5.23 illustrates, this lower limit on cycle energy prevents $E-3$ from reaching the cost parity

Figure 5.23

of Conclusion I. (If $E_{E, 3}$ was less than $E_{E, 3}$ min obviously uneconomic fossil energy costing over 2 \$/MWH would be substituted for its 1.7 \$/MWH energy.)

Reactor-cycle F-1 of Figure 5.22 fails to establish cost parity for the opposite reason. With the initial core configuration assumed fixed, $\lambda_{\mathrm{F}, 1}^{\boldsymbol{1}}$ is a cheap (0.818 \$/MWH) short-range incremental cost. (Cycle burnup is the only design variable.) Thus, Reactor $F$ is always loaded first, generating $\mathrm{E}_{\mathrm{F}, 1}^{\max }$ for the cycle. As Figure 5.24 indicates, this upper limit on cycle energy can also prevent incremental cost parity.

The other $\lambda_{r c}^{(+)}$inconsistencies of Figures 5.21 and 5.22 are merely more complicated versions of these two simple cases--reactor-cycles E-3 and F-1. In each instance, the optimal economic period loading order is easily deduced: cheapest first.

Comparing all reactor-cycles of Figures 5.21 and 5.22, $\lambda_{r c}$ is seldom greater than $1.41 \$ / \mathrm{MWH}$. This observed upper limit on the mid-range incremental cost of nuclear power for an optimized utility system is typical of the individual reactor incremental costs observed by others (41, 55, 57, 58), especially since the Reference nuclear unit cost set (12) is also representative of typical "current" economic parameters.

As Figures 5.3 and 5.4 pointed out, base-loading of the hypothetical utility system's six nuclear reactors is

Figure 5.24

impossible because the utility's minimum load is too low. However, since $\lambda_{N}$ is always much less than $\lambda_{F}$ ( $>2.0 \$ / \mathrm{MWH}$ ), two possibilities exist for economically utilizing the excess nuclear capacity during the low load periods to decrease system operating revenue requirements. One alternative is to sell excess nuclear capacity (i.e., energy) to neighboring utilities at any price greater than its incremental cost. Incorporation of such nuclear economy interchange sales into the SIM and SOM is recommended since this may well become a common utility practice.

The second option is to use the excess capacity on the utility's own system by operating a pumped-hydro station (see Section 2.2.3). By pumping during low load hours, $\lambda_{\mathrm{P}}=\lambda_{\mathrm{N}} \leq 1.4 \$ / \mathrm{MWH}$. Using the stored energy for peakshaving high cost fossil the next day, $\lambda_{G}=\lambda_{F}>\sim 4 \$ / \mathrm{MWH}$. With overall pumped-hydro efficiency typically 67\%, total operating revenue requirements are reduced roughly 2 \$/MWH (i.e., 50\% of $\lambda_{F}$ ) for each fossil MWH displaced [Equation (2.29)]. Since such a station is also comparatively cheap to install (See Table 2.1), a pumped-hydro station on the grid of a utility unable to base-load its nuclear capacity produces startling economies (21, 35). "From a utility's viewpoint, pumped storage is a natural fit with large baseload plants. It can take on load instantly, it uses offpeak power to replenish its resources, and its reliability is second to none [5]."

As pumped-hydro stations become more numerous [~ 4400 MW installed versus over 8000 MW under construction in entire United States at end of 1972 (5)], the appropriate planning tools must be developed. Thus, it is highly recommended that pumped-hydro units (and hydro units, as well) be incorporated into the SIM.

### 5.6.4 Computational Requirements

The computational requirements of SYSINT are detailed in Section 3.6 and Appendix E, while SYSOPT details can be found in Section 4.6 and Appendices $F$ and G. However, Table 5.13 presents a summary of computer usage for Strategy 2 in Case I.

### 5.7 Evaluation of Competing Strategies

Having discussed the properties of a single optimized strategy, it now becomes appropriate to discuss the broader question of strategy versus strategy comparison. In particular, given the same set of input data (i.e., forecasts), which of the individually optimized strategies represents the optimum plan for operating the utility system? How sensitive is this choice to various parameters in the input? To answer these questions, first the results for Case II will be presented in Section 5.7.1. Later sections will then discuss the other Cases and the optimum strategy choice with respect to horizon length (Section 5.7.2), present value rate (Section 5.7.3), nuclear unit costs

Table 5.13
Computational Requirements For
Stragegy 2 in Case 1
(Based on IBM 370 model 155 computer operating in MVT environment)

Program	Total Core Storage (Bytes)	CPU Time	Input/ Output Time	Time Units
SYSINT	134 K	2.2	0.5	Sec/period
SYSOPT	$\left\{\begin{array}{l}246 \mathrm{~K} \text { with } \\ \text { overlay }\end{array}\right.$	9	7	Sec/inner iteration
QKCORE	$\left(\begin{array}{l}371 \mathrm{~K} \text { without } \\ \text { overlay }\end{array}\right.$	13	<1	Sec/inner iteration

(Section 5.7.4) and non-nuclear unit costs (Section 5.7.5).

### 5.7.1 Comparing Strategies in a Single Case

The optimized results for the three strategies ( $\mathrm{S}-1$, S-2 and S-3) in Case II are presented in Table 5.14. Recall from Section 5.3.3 that $\mathrm{S}-1$ is an annual refueling strategy, $S-2$ a gradual shift to longer cycles and s-3 an immediate shift to longer cycles.

Of prime importance in correlating the results, is the refueling downtime of each strategy. Naturally, the more rapid the shift to longer cycle lengths, the fewer refuelings that must be scheduled.

With less nuclear downtime, the nuclear energy production increases and fossil energy production decreases by approximately the same amount. Also, startup-shutdown cost is decreased as the fossil units move farther away from nightly shutdown. Fewer emergency energy purchases are required due to increased on-line resource margins (see Section 5.3.3).

All three components of non-nuclear production cost thus favor reducing downtime. (By looking at the differences in non-nuclear production cost, average long-term levelized replacement energy costs of 5.2.-5.7 \$/MWH can be calculated.)

As mentioned above, each succeeding strategy is able to increase production because of less refueling downtime. However, the cost of this energy does nct increase

TABLE 5.14   REVENUE REQUIREMENTS AND UNDISCOUNTED ENERGY FOR CASE II   (48 Month Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)			
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	33   14.5   0.647	31 15.2 0.651
$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$			
Fossil fuel	$\begin{aligned} & 184.223 \\ & (51.703) \end{aligned}$	$\begin{aligned} & 176.348 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 173.250 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.497	1.281	1.227
Emergency purchases	$\begin{gathered} 0.464 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.317 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.265 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 186.184 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 177.946 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 174.742 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 198.267 \\ (118.376) \end{gathered}$	$\begin{gathered} 197.189 \\ (120.035) \end{gathered}$	$\begin{gathered} 199.821 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 384.451 \\ (170.132) \end{gathered}$	$\begin{gathered} 375.135 \\ (170.132) \end{gathered}$	$\begin{gathered} 374.563 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$	$\begin{aligned} & 95.166 \\ & (54.312) \end{aligned}$	$\begin{aligned} & 95.166 \\ & (54.312) \end{aligned}$
Penalty for short-notice enrichment changes			2.000
System Total	$\begin{gathered} 479.617 \\ (224.444) \end{gathered}$	$\begin{gathered} 470.301 \\ (224.444) \end{gathered}$	$\begin{gathered} 471.729 \\ (224.444) \end{gathered}$

proportionally. In fact, compared to $S-1, S-2$ generates more nuclear energy for less money: To explain this anomaly, consider the following:
(1) Less downtime means fewer reloads must be purchased.
(2) Increased average cycle length, means increased cycle energy and reload enrichment.
(3) Even with increased batch enrichment cost,the savings due to foregone reloads and the increased energy for amortizing fixed costs, etc., result in a $1.9 \%$ decrease in levelized nuclear fuel costs over the four year horizon.
(4) Due to fixed initial conditions and only gradual shift to longer cycles, S-1 and S-2 are very similar in nuclear energy production during the first year. At the end of four years, nuclear production by $\mathrm{S}-2$ is only $1.4 \%$ higher. (For longer horizons, the first year matters less and nuclear energy production differences are greater.)
(5) Finally, since the levelized nuclear fuel cost decreases percentagewise more than nuclear production increases, the net result is more nuclear energy for less money.

Turning to $S-3$, the immediate shift to longer cycles results not only in increased energy production, but also in increased levelized fuel cost. The result is a return to normalcy--more nuclear energy costs more.

Looking then at system production cost over the 48 month horizon, S-3 saves $\$ 570,000$ over $S-2$ and roughly ten million dollars over $\mathrm{S}-1$. This, of course, is not enough to absorb S-3's assumed additional two million dollars in penalties for the two short-notice enrichment changes. Thus, among the three strategies, $S-2$ has minimum total system cost.

During the first four years, then, $\mathrm{S}-\mathbf{2}^{\prime} \mathrm{s}$ gradual shift to longer cycles saves 9.3 million dollars compared to the annual cycles of $S-1$. Such a savings would clearly justify a few hundred thousand dollars necessary to implement the engineering design changes in the reload fuel specifications. In fact, the savings is large enough to perpetuate $s-1$ 's poor showing in all six Cases of the input parameters (see Table 5.8 and Appendix D). (Strategy 2 is always cheaper by at least 6.7 million dollars.)

However, S-2 and S-3 are roughly competitive depending on the magnitude of the enrichment change penalty. Without the penalty $\mathrm{s}-3$ is favored by roughly $\$ 600,000 .^{1}$ But after the 2 million dollar penalty, it is 1.4 million dollars more costly. This competitiveness is used to advantage in the following sections where the sensitivity study is presented as a comparison of $S-2$ vs. $S-3$ directly (i.e., without
$l_{\text {Of }}$ this $\$ 600,000$, roughly $\$ 95,000$ could also be saved by $S-2$ were it allowed to freely change initial enrichment for Reactors B and D.
any penalty) and with penalties of a half or one million dollars per change.

### 5.7.2 Sensitivity to Horizon Length

Ideally, a management planning tool should yield consistent results whether the planning horizon is taken to be four, five or six years into the future. To test this aspect of the model, the results in Figure 5.25 were produced using the Case I (see Table 5.8) detailed optimized solutions for Strategies 2 (see Figure 5.6) and 3 (see Figure 5.7). However, the operating revenue requirement summation [Equation (2.17)] for the 72 months covered by the horizon of Case I was only carried up to and including the horizon indicated on the abscissa (enrichment change penalties were not included). The disturbing oscillatory nature of the comparison is almost identically matched by the shifts in downtime advantages which are also presented. In a particular period, if an additional reactor is down for refueling in Strategy S-3, then S-3 will lose a reactor-month of downtime advantage. More importantly each nuclear MWH foregone must be made up with fossil replacement energy. Thus, each month of downtime means roughly 300 GWH (discounted) of short-term replacement energy at $4.0 \$ / M W H$ versus nuclear average costs of $2.0 \$ / \mathrm{MWH}$. The net result: each reactormonth of downtime five years in the future costs roughly $\$ 600,000$.

Figure 5.25
Cost and Downtime Advantage of $\mathrm{S}-3$ versus $\mathrm{S}-2$
as Function of Horizon Length


The next question is "What causes these shifts in downtime advantage?" The answer is given in Figure 5.26, a composite of the two month refueling outages in each strategy presented in Figures 5.5 to 5.7. [Note the regularity of $S-1$ 's annual refuelings and the fact that every refueling window involves at least two months of simultaneous or "stacked" refuelings. S-2 and S-3, by selectively skipping over a window with different reactors (see Section 5.3.3), are able to avoid simultaneous refuelings until the fifth year.] S-3's two reactor-month downtime advantage at 48 months can be pin-pointed as actually occurring during the first full window of the first year when S-3's immmediate shift to longer cycles dictated immediately skipping a summer. Further note that although the four year horizon ends exactly after a refueling for both $S-2$ and $S-3, S-2$ shifts the next refueling back one month. This causes the temporary one reactor-month shift in downtime advantage just after four years.

At the six year horizon, shown on Figure 5.26, note both S-2 and S-3 conveniently terminate exactly after a refueling. Now consider the relative position of their simultaneous refueling with respect to a five year horizon. In $S-3$, it occurs before the five year cutoff, but in $S-2$, it is postponed until just before the summer. The window, as a whole, involves no shift in downtime advantages, but if the horizon occurs within the window (e.g., 5 year horizon) an anomalous one million dollar added advantage may


高 (

accrue to S-2. Since no refuelings occur during the summer and, in fact, the summers represent the partitions between the windows, it is recommended that a single horizon coinciding with one of these partitions be chosen. Note that if the horizon occurs in any of the six summer months appearing in Figure $5.25, \mathrm{~S}-3$ is cheaper by roughly $\$ 700,000$ (if no enrichment change penalty is applied).

In the absence of utility refueling constraints (e.g., no refuelings in summer) that create the computationally convenient windows and partitions, a single, long horizon could still be calculated in detail. However, prudence would dictate developing shorter horizon results such as those in Figure 5.25 to permit a more intelligent evaluation of strategy cost differences.

Though the above horizon-at-partition conclusion is presented with verification, a solid conclusion concering which partition must await the second generation nuclear power management model possessing detailed CORSOM's. As an interim rule of thumb, intuition suggests that the horizon ought to include a complete core of freely specified enrichments for each reactor. In other words, the horizon should be far enough into the future to predict completely the discharge characteristics of the next reload enrichment to be finalized (i.e., actually ordered from vendor) for each reactor.

In summary, choice of a proper horizon is imperative, but not difficult. If the worst comes to the worst, a long
horizon evaluated per Figure 5.25 would always be valid and helpful. In any event, for planning horizons on the order of five or six years, differences in total system cost under a few hundred thousand dollars are best viewed as insignificant (see Section 5.8.5). Such dilemmas ought to be reconciled based on other criteria--e.g., the most flexible, the easiest to implement or the most reliable strategy.

### 5.7.3 Sensitivity to Present Value Rate

The optimized results for the three Cases with different present value rates are presented in Table 5.15 for Case III (0\%), Table 5.16 for Case II (7\%) and Table 5.17 for Case IV (12\%).

By recognizing three general cost components of each strategy, much insight can be gained. They are (1) all fossil fuel related costs, (2) direct nuclear outlays and (3) carrying charges on the nuclear outlays. At a 7\% present value rate, nuclear carrying charges are ~ 25\% of nuclear outlays while fossil carrying charges are relatively insignificant.

As the present value rate increases, the revenue requirements for (1) and (2) decrease slowly while those for component (3) rise sharply. The result is that as the present value rate increases, the heavier a strategy's reliance on nuclear energy, the less advantageous that strategy becomes. The optimum choice may not change, but

## TABLE 5.15

REVENUE REQUIREMENTS AND UNDISCOUNTED ENERGY FOR CASE III
(48 Month Horizon, 0\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)

Strategy	S. 1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	$\begin{aligned} & 33 \\ & 14.5 \\ & 0.647 \end{aligned}$	$\begin{aligned} & 31 \\ & 15.2 \\ & 0.651 \end{aligned}$
	$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$		
Fossil fuel	$\begin{aligned} & 212.434 \\ & (51.703) \end{aligned}$	$\begin{gathered} 203.326 \\ (50.061) \end{gathered}$	$\begin{aligned} & 199.928 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.684	1.430	1.373
Emergency purchases	$\begin{gathered} 0.528 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.355 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.299 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 214.646 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 205.111 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 201.600 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 158.416 \\ (118.376) \end{gathered}$	$\begin{gathered} 153.987 \\ (120.035) \end{gathered}$	$\begin{gathered} 154.678 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 373.062 \\ (170.132) \end{gathered}$	$\begin{gathered} 359.098 \\ (170.132) \end{gathered}$	$\begin{gathered} 356.278 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{aligned} & 108.624 \\ & (54.312) \end{aligned}$	$\begin{aligned} & 108.624 \\ & (54.312) \end{aligned}$	$\begin{aligned} & 108.624 \\ & (54.312) \end{aligned}$
Penalty for short-notice enrichment changes   System Total			2.000
	$\begin{gathered} 481.686 \\ (224.444) \end{gathered}$	$\begin{gathered} 467.722 \\ (224.444) \end{gathered}$	$\begin{gathered} 466.902 \\ (224.444) \end{gathered}$


REVENUE REQUIR ENER   (48 Month Horizon, 7\% No S	E 5.16   TS AND OR CASE   Rate, Refer Constraints	COUNTE   uclear Un	
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	$\begin{aligned} & \dot{3} 3 \\ & 14.5 \\ & 0.647 \\ & \hline \end{aligned}$	$\begin{aligned} & 31 \\ & 15.2 \\ & 0.651 \\ & \hline \end{aligned}$
	$10^{6}{ }_{\$}$		
Fossil fuel	$\begin{aligned} & 184.223 \\ & (51.703) \end{aligned}$	$\begin{aligned} & 176.348 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 173.250 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.497	1.281	1.227
Emergency purchases	$\begin{gathered} 0.464 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.317 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.265 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 186.184 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 177.946 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 174.742 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 198.267 \\ (118.376) \end{gathered}$	$\begin{gathered} 197.189 \\ (120.035) \end{gathered}$	$\begin{gathered} 199.821 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 384.451 \\ (170.132) \end{gathered}$	$\begin{gathered} 375.135 \\ (170.132) \end{gathered}$	$\begin{gathered} 374.563 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{aligned} & 95.166 \\ & (54.312) \end{aligned}$	$\begin{aligned} & 95.166 \\ & \text { (54.312) } \end{aligned}$	$\begin{aligned} & 95.166 \\ & (54.312) \end{aligned}$
Penalty for short-notice enrichment   changes			
System Total	$\begin{gathered} 479.617 \\ (224.444) \end{gathered}$	$\begin{gathered} 470.301 \\ (224.444) \end{gathered}$	$\begin{gathered} 471.729 \\ (224.444) \end{gathered}$


REVENUE REQUIR ENER (48 Month Horizon, 12\% No	[ 5.17   TS AND   OR CASE   Rate, Refe   Constraint	SCOUNTED   Nuclear Unit	
Strategy	S. 1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	$\begin{aligned} & 33 \\ & 14.5 \\ & 0.647 \end{aligned}$	$\begin{aligned} & 31 \\ & 15.2 \\ & 0.651 \end{aligned}$
$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$			
Fossil fuel	$\begin{aligned} & 167.908 \\ & (51.703) \end{aligned}$	$\begin{aligned} & 160.762 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 157.850 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.388	1.194	1.142
Emergency purchases	$\begin{gathered} 0.427 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.294 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.245 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 169.723 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 162.250 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 159.237 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 220.395 \\ (118.376) \end{gathered}$	$\begin{gathered} 221.107 \\ (120.035) \end{gathered}$	$\begin{gathered} 224.731 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 390.118 \\ (170.132) \end{gathered}$	$\begin{gathered} 383.357 \\ (170.132) \end{gathered}$	$\begin{gathered} 383.968 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{gathered} 87.340 \\ (54.312) \end{gathered}$	$\begin{gathered} 87.340 \\ (54.312) \end{gathered}$	$\begin{gathered} 87.340 \\ (54.312) \end{gathered}$
Penalty for short-notice enrichment changes			2.000
System Total	$\begin{gathered} 477.458 \\ (224.444) \end{gathered}$	$\begin{gathered} 470.697 \\ (224.444) \end{gathered}$	$\begin{gathered} 473.308 \\ (224.444) \end{gathered}$

the advantage will decrease. For example, comparing $S-1$ (the annual strategy) and $S-2$ (the gradual shift to longer cycles), S-2 is always favored but the savings decreases from 14.0 to 6.7 million dollars as the rate goes from 0 to 12 per cent.

To investigate such changes in more detail, Figure 5.27 presents a cost comparison of S-2 (gradual shift) and s-3 (immediate shift) for the three rates involved. $S-3$ uses more nuclear energy and less fossil. Therefore, it possesses a non-nuclear savings of 3.5 million dollars at 0 per cent. However, as a result of nuclear carrying charges, S-3's added nuclear cost increases six times as fast as the fossil advantage itself decreases: On an unpenalized basis, S-3 is the optimum at a 7 \% present value rate, but S-2 is optimum at 12 per cent. The break-even point is 9-1/4 per cent. Naturally, the higher the penalty, the more s-3 must have saved prior to applying the penalty. The result: one million dollars in penalties breaks even at $5-1 / 2 \%$ while two million requires $2-1 / 4 \%$. With any reasonable penalty and present value rate, $\mathrm{S}-2$ is clearly optimum over both S-1 and S-3.

An interesting question is now posed: Suppose a mythical fourth strategy differed from S-2 by only $\$ 500,000$. What size error in forecasting the present value rate would completely mask this difference? Using the slope from Figure 5.27, an error of approximately $1-3 / 4 \%$ in the present

Figure 5.27
Non-Nuclear Savings and Nuclear Cost for S-3 versus S-2 as Function of Present Value Rate

value rate would shift the total cost advantage $\$ 500,000$. Such a forecasting error is not altogether improbable. Thus, as standard practice, all near optimal policies should be evaluated and ranked at several additional present value rates (say, the nominal $\pm 2 \%$ ), not at the nominal rate alone. In this manner, strategies extremely sensitive to the present value rate may be eliminated.

In the above recommendation, note the word "evaluated", not "re-optimized". All of the results quoted in this Section are for re-optimized solutions using the specified present value rate. Practically speaking, the computer expense of re-optimizing the Case II solutions was not necessary. Re-optimization saved less than $\$ 90,000$ each on five out of the six cases involved [S-3 saved $\$ 275,000$ if there was no time value of money ( $0 \%$ )].

### 5.7.4 Sensitivity to Nuclear Unit Costs

The optimized results for the cases involving Low, Reference, and High nuclear unit costs (see Table 5.7) are presented in Table 5.18 for Case V (Low), Table 5.19 for Case II (Reference) and Table 5.20 for Case VI (High). From a total cost standpoint, S-2 remained the optimum choice. The trends in the s-2 vs. S-3 comparison are portrayed in Figure 5.28.

Of course, variations in nuclear costs do not affect S-3's 3.2 million dollar fossil savings. But $S-3 ' s$ increased nuclear energy does result in increased separative

$\begin{array}{r}\text { TABLE 5.18 } \\ \text { REVENUE REQUIREMENTS AND UNDISCOUNTED } \\ \text { ENERGY FOR CASE V }\end{array}$			
(48 Month Horizon, 7\% P.V. Rate, Low Nuclear Unit Costs,			
No Shape Constraints)			


TABLE 5.19   REVENUE REQUIREMENTS AND UNDISCOUNTED ENERGY FOR CASE II   (48 Month Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)			
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	$\begin{aligned} & 33 \\ & 14.5 \\ & 0.647 \end{aligned}$	$\begin{aligned} & 31 \\ & 15.2 \\ & 0.651 \end{aligned}$
$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$			
Fossil fuel	$\begin{aligned} & 184.223 \\ & (51.703) \end{aligned}$	$\begin{aligned} & 176.348 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 173.250 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.497	1.281	1.227
Emergency purchases	$\begin{gathered} 0.464 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.317 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.265 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 186.184 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 177.946 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 174.742 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 198.267 \\ (118.376) \end{gathered}$	$\begin{gathered} 197.189 \\ (120.035) \end{gathered}$	$\begin{gathered} 199.821 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 384.451 \\ (170.132) \end{gathered}$	$\begin{gathered} 375.135 \\ (170.132) \end{gathered}$	$\begin{gathered} 374.563 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$
Penalty for short-notice enrichment changes			2.000
System Total	$\begin{gathered} 479.617 \\ (224.444) \end{gathered}$	$\begin{gathered} 470.301 \\ (224.444) \end{gathered}$	$\begin{gathered} 471.729 \\ (224.444) \end{gathered}$

## TABLE 5.20

REVENUE REQUIREMENTS AND UNDISCOUNTED ENERGY FOR CASE VI
(48 Month Horizon, 7\% P.V. Rate, High Nuclear Unit Costs, No Shape Constraints)

Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	$\begin{aligned} & 33 \\ & 14.5 \\ & 0.647 \end{aligned}$	$\begin{aligned} & 31 \\ & 15.2 \\ & 0.651 \end{aligned}$
	$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$		
Fossil fuel	$\begin{aligned} & 184.223 \\ & (51.703) \end{aligned}$	$\begin{aligned} & 176.348 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 173.250 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.497	1.281	1.227
Emergency purchases	$\begin{gathered} 0.464 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.317 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.265 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 186.184 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 177.946 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 174.742 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 255.223 \\ (118.376) \end{gathered}$	$\begin{gathered} 253.211 \\ (120.035) \end{gathered}$	$\begin{gathered} 256.169 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 441.407 \\ (170.132) \end{gathered}$	$\begin{gathered} 431.157 \\ (170.132) \end{gathered}$	$\begin{gathered} 430.911 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$
Penalty for short-notice enrichment changes			2.000
System Total	$\begin{gathered} 536.573 \\ (224.444) \end{gathered}$	$\begin{gathered} 526.323 \\ (224.444) \end{gathered}$	$\begin{gathered} 528.077 \\ (224.444) \end{gathered}$

Figure 5.28
Non-Nuclear Savings and Nuclear Cost for S-3 versus S-2 as Function of Nuclear Unit Costs

work requirements. These, in turn, cause $S-3$ to suffer a larger disadvantage as unit costs increase. Unpenalized, S-3 is able to maintain at least a $\$ 300,000$ advantage in the entire range investigated. However, even one million dollars in penalties turns the choice around for the same range.

As for the forecasting error that results in $\$ 500,000$ closer competition, a $40 \%$ change in Reference nuclear unit costs is required. This would appear to border on the improbable. However, the characteristics of the six PWR reactors comprising the hypothetical utility are so similar, that generalizations to all types of nuclear reactors are impossible. A utility possessing a broad mix of reactor types (PWR, BWR, HTGR, LMFBR, GCFR, etc.) and sizes would very likely find that small shifts within various unit cost components would alter the reactor loading order. For instance, rising plutonium value decreases LWR fuel costs as a credit, but increases LMFBR fuel costs. Such an investigation is clearly beyond the scope of the current nuclear power management model because of QKCORE's inherent limitations (see Section 5.2). In the future, this may well be the most interesting investigation of all.

A word about re-optimizing the Case II solutions is again in order. With the qualifications just mentioned regarding other reactor types, re-optimization, though performed, was not necessary. Since the reactors were nearly
identical, energy was not re-optimized significantly. The nuclear cost was merely re-evaluated. The average cost savings for each of the six perturbed solutions was less than $\$ 15,000$.

### 5.7.5 Sensitivy to Non-Nuclear Costs

To evaluate the non-nuclear cost components, the results of Case II in Table 5.14 are used. Since the nonnuclear cost components only affect SYSINT results directly, parameterization of these costs did not require further SYSOPT runs.

Cursory examination of Table 5.15 indicates immediately that startup-shutdown cost and emergency power purchases do not vary by more than $\$ 300,000$ from strategy to strategy. On the other hand, fossil fuel cost can vary by 10 million dollars or more. On account of their relative size and absolute size with respect to various forecasting and core modeling errors, the comparison is more convenient if all non-nuclear components are lumped together. The obvious parameter is $\oint_{F}$ cents per MegaBTU for fossil fuel. If this were to increase, startup-shutdown costs would increase proportionally since the major cost component is incurred due to sensibie heat requirements during startup (see Figure 2.6). Emergency power purchases should also be proportional to fossil fuel cost if the neighbor supplying the energy relies on fossil fueled equipment to generate it.

With these assumptions, Figure 5.29 is presented indicating breakeven points for $S-2$ (gradual shift) versus s-3 (immediate shift) as a function of fossil fuel cost. The higher the cost of fossil fuel, the larger the fossil savings of $S-3$ and the larger penalty it can successfully absorb. Unpenalized, S-3 breaks even at $33 \phi /$ MegaBTU. Each one million dollars in penalties requires another $12-1 / 2 \not \subset /$ MegabTU. Thus, with any reasonable penalty, $\mathrm{S}-2$ is again the optimum.

More importantly, note the forecasting error required to equalize a $\$ 500,000$ difference--merely $6-1 / 4 \phi /$ MegaBTU. Given the realities of today's fossil fuel marketplace and the environmental concern, forecasting fossil fuel costs five or six years into the future within $6 \notin / M e g a B T U$ is a near impossible task. This forecast very likely could turn out to be the critical item in the overall model input. The models of interfuel competition currently under development in many institutions [e.g., (11)] may aid in pinpointing, or at least bracketing more closely, the future trends in fossil fuel costs.

In short, fossil fuel thermal energy cost appears to be one of the critical input data.

### 5.8 Critical Questions Revisited

Section 5.1 posed six critical questions pertinent to the development of any management planning tool. The following sections provide a summary of their answers as they apply

Figure 5.29

to the current nuclear power management multi-year model and, in particular, to the SIM and SOM developed in this work.

### 5.8.1 To What Problems is the Model Applicable?

The complete model of Figure 2.21 applies to the multiyear management of utility systems possessing any types and amounts of fossil, nuclear, hydro and pumped-hydro equipment. As implemented in the SYSINT and SYSOPT computer models of the SIM and SOM, respectively, only fossil and nuclear equipment are currently permitted. Addition of the other two types should receive a high priority. A computerized RAMM should be interfaced with the models to permit the investigation of many strategies. Development of detailed CORSOM's for each reactor type are required to replace the limited test simulator QKCORE.

Once these improvements have been made, the scope of the problems the model could analyze are almost numberless. Input to the model consists of forecasts, operating constraints, initial conditions, unit costs, etc. The optimized outputs include period production schedules, fossil maintenance-nuclear refueling schedules and nuclear reload parameters. The combination and permutations of altered inputs affecting outputs generates an enormous number of possibilities.

### 5.8.2 What Assumptions are Required?

Though the current computerized version of the nuclear power management model contains several simplifying assumptions, only one of the assumptions is actually inherent in the model of Figure 2.21. The others, enumerated below, could be relaxed by reprogramming the affected portions.

The pivotal assumption involves the permanent relationship between nuclear and fossil fuel costs. Namely, nuclèar incremental costs are sufficiently less than even the best fossil incremental costs, that for the foreseeable future, nuclear energy will be utilized so as to displace as much fossil energy as possible. This maximization of nuclear energy dictates the SIM's loading order segregation into must-run fossil minimums, nuclears and remaining fossils (see Section 3.2) regardless of intra-nuclear cost differences. The SOM then minimizes the cost of producing this nuclear energy.

The SOM's inner iterative procedure involves passing cycle energy vectors to the CORSOM's and receiving cost information as a feedback loop to test for convergence and determine the cycle energy vectors for the next iteration. If the key assumption were to be relaxed or should it become invalid due to unforeseen price shifts, the termination of the feedback loop would have to be shifted to the SIM. ${ }^{2}$ For then, changes in nuclear incremental costs would
${ }^{2}$ The ORSIM model, currently under development at Oak Ridge National Laboratory (14), is of this more general type.
also alter the fossil-nuclear competition (i.e., loading order), resulting in varying amounts of fossil energy and fossil cost at each iteration. The objective function in the SOM would become the total system cost directly, not merely the nuclear cost as at present.

Though the nuclear-vs.-fossil cost assumption does restrict the model's generality, the prospects of violating it are low and the computational savings may be significant.

The following additional assumptions were made in order to simplify programming the models:
(1) At time zero, none of the nuclear cores is so depleted as to represent a scarce resource. When further development enables the SIM to handle scarce resource hydro units, this assumption may be relaxed by treating energy-short nuclear plants similarly.
(2) All forecasts (even six years into the future) are 100\% accurate (i.e., a deterministic future). As recommended in Section 5.3.1, much work needs to be done in this area with regard to confidence limits on the various results.
(3) For such a non-expansion planning model, only operating costs need be included in the objective function since capital costs and related carrying charges are already fixed by the additions and
retirements specified and held constant for all strategies (see Section 2.1.3). The addition of these and other cost components to the model would complete a useful tool for multi-year or longer planning.
(4) The incremental heat rate of each nuclear plant was assumed constant by the SOM over the operating range of interest. As Section 2.4 .2 pointed out, proprietary data on today's PWR's and BWR's confirm the assumption. Future plant types, as well as newer generations of the above, may force reevaluation of this assumption.
(5) The utility system contains enough must-run fossil equipment to provide sufficient spinning reserves to permit all nuclear upper increment capacity (group 3 in Figure 3.8 ) to be scheduled as a single, continuous block of capacity. In other words, spinning reserve requirements do not make it necessary to mix groups 3 and 4 (remaining fossil capacity). This condition appears likely to prevail for many years, i.e., as long as the system contains large fossil units that cannot be shutdown and then started up readily and reliably.
(6) All incremental cost curves are continuous and monotonically increasing. All data produced by the simple QKCORE model bore out this assumption.

Such behavior assures convexity of the SOM's operating cost objective function and permits the use of a standard NP optimization package.
(7) Finally, all nuclear minimums are base-loaded. One implied result is that there are no nuclear startup-shutdowns. In addition, this assumption coupled with assumption (4) allows the analytical simplifications that lead to Equation (2.52) relating thermal and electrical energy directly. This same simplification facilitates the interfacing of the SIM and SOM, but, as with the other six simplifications, it could be relaxed.

As for recommendations concerning further development, numbers (1) and (2) ought to have high priority; (3) through (5), medium priority; (6) and (7), low priority.

### 5.8.3 Does the Method Converge to an Optimum?

As the discussion in Section 5.6 .1 pointed out, the inner iteration on system cost did converge. Considering the other errors inherent in the models (see Section 5.8.5), convergence can be called complete. Convergence was, however, slow. This prompted the recommendation to study the problem further.

Convergence of the outer shape iterations (see Section 5.6.2) was obtained with only slight increases in predicted system total cost. However, outer convergence was also slow.

Increasing the amount of piecewise-linearization would aid both the inner and outer convergence rates.

### 5.8.4 Is it the Global Optimum?

Globality hinges on two key issues:
(1) Was the globally optimal strategy even included as a possible alternative?
(2) Did the SOM achieve the minimum system cost for each and every strategy that was evaluated?

The answer to the first question depends on the completeness of the RAMM. As for the second question, assumption (5) of Section 5.8.2,relative to the incremental cost curves, guaranteed convexity of the objective function (see Section 4.4.2). And this, in turn, guaranteed the minimization of each strategy subject only to a posterior feasibility check.

Barring decreasing incremental cost curves, globality thus depends solely on providing a suitable RAMM.

### 5.8.5 How Accurate are the Results?

The forecast error analysis of Sections 5.7.3 to 5.7.5, combined with the work of Watt (55), indicate that strategy versus strategy total cost differences are probably accurate only to within a minimum of $\$ 500,000$ when compared with the actual (versus calculated) total costs realized over five or six years (on the order of $\$ 500,000,000$ ). The major contributions to this error are CORSOM inaccuracies ( $>\$ 100,000$ per reactor) and poor forecasts regarding fossil fuel costs,
present value rate, customer load demands and unit availabilities. The latter two forecasting errors have been totally ignored in this initial modeling work and should, therefore, be high on the list for future development effort.
5.8.6 What are the Computational Requirements?

Computational requirements have been previously discussed in Sections 3.6, 4.6 and 5.6.4.

## CHAPTER 6

## CONCLUSIONS AND RECOMMENDATIONS

6.1

Summary

This work has presented a nuclear power management multi-year model suitable for 5 to 10 year multi-reactor fuel management studies. The overall model consists of four sub-models:
(1) Refueling and Maintenance Model (RAMM),
(2) System Integration Model (SIM),
(3) System Optimization Model (SOM), and
(4) CORe, Simulation and Optimization Model (CORSOM) for each reactor type.

The SIM and SOM sub-models have been developed in this study and are discussed in detail. Computerized versions of these (SYSINT and SYSOPT, respectively), were programmed and tested. Numerical results were presented not only to evaluate the models, but also as examples of the overall model's versatility. As an aid in further model development, the following sections summarize the main conclusions and recommendations. (All computation times given below are in terms of an IBM 370 model 155 computer.)

### 6.2 Conclusions

(1) While fossil unit instantaneous power levels are chosen so as to maintain equal fossil incremental costs, the nuclear unit period energy production schedules should be
chosen so that all reactors are operating at the same nuclear incremental cost.
(2) The overlapping of irradiation cycles for the various reactors plus Conclusion (l) above leads to idealized production schedules yielding a constant nuclear incremental cost regardless of time. However, such production schedules may not be feasible. The computer code SYSOPT determines the optimum feasible production schedule that approaches this ideal as closely as possible (i.e., with minimum total system revenue requirement).
(3) While nuclear average fuel costs are on the order of 1.8 to $2.2 \$ / \mathrm{MWH}$, the incremental system cost of designing more nuclear energy into a given cycle is on the order of 0.8 to 1.6 \$/MWH. During nightly low load periods, it would be economical to sell power to neighboring utilities in this lower price range. In fact, it is even more advantageous to use excess nuclear capacity for pumping at a stored-hydro station.
(4) Even with fossil fuel costing as little as $25 \not \subset /$ MegaBTU (and rising), the best-plant fossil incremental cost is at least $2.0 \$ / M W H$. Considering that even the highest nuclear incremental fuel costs today are less than $1.6 \$ / \mathrm{MWH}$, the conclusion is that nuclear incremental costs will be less than fossil incremental costs for the foreseeable future.
(5) As a result of Conclusion (4) above, nuclear power should always be operated so as to displace maximum fossil energy.
(6) Another conclusion bascd on Conclusion (4) above is that an economic incentive exists for lengthening nuclear irradiation cycles in terms of both energy and time. Increasing nuclear incremental costs are more than justified by the reduction in average annual fossil replacement energy required during refueling downtime. In addition, minimum total system nuclear downtime (subject to burnup constraints) appears to be a good a priori measure of the ranking of various refueling and maintenance strategies.
(7) One of the key input parameters was shown to be the fossil thermal energy cost. A small forecasting error in this number alone (roughly 6 out of $40 \not \subset / \mathrm{MegaBTU}$ ) altered example four year strategy cost differences by $\$ 500,000$ (out of a total difference of $\$ 1,500,000$ ).
(8) Using the latest in a PWR in-core model (41) and assuming convergence in five iterations, computation costs are on the order of 300 to 500 per strategy for a utility system possessing five nuclear reactors. Assuming a lo annual savings in nuclear fuel revenue requirements alone, roughly $\$ 500,000$ per year would be saved. Thus, scores of strategies could be run each year in order to up-date the current operating strategy, specify the next set of reload enrichments or, more importantly, re-optimize the strategy to account for large perturbations from the intended production or refueling and maintenance schedule. For example, how does the AEC's 1973 step price increase in enrichment charges from $\$ 32$ to $\$ 38.50$ per $k g$ SWU (1) affect the
current operating strategy. The nuclear power management model's ability to quantify the complex utility system trade-offs (not only nuclear-vs-nuclear, but also, nuclear-vs-fossil) make it an indispensable planning tool for nuclear utility decision-makers.
(9) The reactor-by-reactor nuclear energy allocation problem may be cast as a network supply problem, permitting the use of network programming rather than the more general (and computationally difficult) linear programming.
(10) In addition, the Out of Kilter Network Program (45) was demonstrated to be sufficiently flexible to permit piecewise-linearization of the nuclear system optimization to an extent approaching quadratic programming in accuracy and exceeding it in the size of the problem solved.
(11) Several instances were encountered where strategy reoptimization was not necessary in order to evaluate the effect of various input data changes on previously optimized solutions. The capability to merely re-evaluate several previously optimized solutions eliminates the need for more than a single iteration per strategy and thus, reduces computational costs further.
(12) On a multi-year basis ( $\sim 5$ to 7 years), strategy-vsstrategy cost differences are estimated to be accurate only to within $\$ 200,000$ per 1000 MW reactor (out of roughly $\$ 50,000,000$ ) given perfect (i.e., deterministic) load and unit reliability forecasts. Estimates of the additional
cost inaccuracies incurred due to errors in these forecasts form part of the Recommendations.
(13) The multi-year planning horizon ought to include a full core of freely specified enrichments for each reactor. In other words, the horizon should be far enough into the future to completely predict the discharge characteristics of the next reload enrichment to be finalized (i.e., actually ordered from a vendor) for each reactor. In addition, it is convenient to place the planning horizon in a forbidden maintenance period in order to minimize distortion of strategy-vs-strategy cost differences due to horizon end effects. Beyond the planning horizon, cycle energies should be postulated so as to maintain the individual operating philosophy ("character") of each strategy, not return to an arbitrary final state.

### 6.3 Recommendations

(1) The Booth-Baleriaux probabilistic utility model within SYSINT represents the latest in utility system simulation. The current model is capable of simulating a 100 unit utility system (with up to 5 valve points per unit) for up to 100 time periods. Since nuclear, fossil and peaking equipment are currently included, the addition of hydro and pumped-hydro equipment (i.e., types involving scarce resource utilization) is highly recommended in order to complete the range of possibilities.
(2) The Booth-Baleriaux model's accuracy has been established by others (19, 36, 49) based on the reproduction of historical data. However, little if any testing has been done of the model's ability to project future production given forecasted loads and unit reliability data. Research into this area is needed to establish the sensitivity of the various results to unavoidable forecasting errors. Ultimately, the nuclear power management model should yield not only a numerical answer, but also a confidence interval around it.
(3) As a further refinement of the Booth-Baleriaux model, the two-state forced-outage model ought to be replaced with a more general model permitting unit derating (See Appendix A).
(4) The principal recommendation for SYSOPT model improvement is expansion of the network structure to permit decreased cycle energy step size (i.e., increased total cost linearization) and, hence, provide a closer approximation to quadratic programming (QP). (Due to problem size, the direct inclusion of a general QP model is out of the question.) Each iteration of SYSOPT (itself using less than 10 seconds for a six reactor utility system) requires another 20 minutes of computer time within even advanced in-core models (41). The reduction in step size is aimed at decreasing the number of iterations required to reach an acceptable optimum nuclear production schedule (hopefully, to as few as three of four).
(5) Other suggested improvements to SYSOPT include the capability to optimize nuclear units with varying incremental heat rates and to handle core reactivity stretchout (i.e., allowance for reduced plant capacity). The inclusion of capital and other nonoperating revenue requirements in the total cost would complete a useful tool for multi-year (or longer) planning horizons.
(6) Relative to completion of the overall nuclear power management model put forth in this work, acceptable RAMM's already exist. The most severe deficiency is not due to either the SIM (SYSINT) or SOM (SYSOPT), but to a lack of computationally efficient CORSOM's for each reactor type. These in-core models represent the critical submodels requiring the greatest development effort. The PWR in-core model recently developed by Kearney (41), though a great leap forward in nuclear in-core simulation and optimization, still requires over 3 minutes per reactor per SYSOPT iteration. CORSOM's an order of magnitude faster are desired so that computation costs can be rendered truly insignificant compared with system savings.

## appendix $\boldsymbol{A}$

## BOOTH-BALERIAUX EQUATIONS FOR GENERAL FORCED-

OUTAGE MODELS

## A.l Forced-Outage Models

Presented in this Appendix are derivations of the most general forms of the Booth-Baleriaux deconvolve-load-convolve Equations (3.55), (3.56) and (3.57) of the multiple increment algorithm of Section 3.3.2.2. Whereas, Chapter 3 dealt exclusively with the two-state forced-outage model, this Appendix extends the model to premit derating of a unit. That is, a unit may be unable to produce at full capacity, yet be capable of operating at $90 \%$ of capacity--a 10\% derating.

To distinguish the more general unit performance models from the simpler two-state model requires introducing their probability density functions (26) $f_{G}$ as a function of $P_{G}$ ' the generating unit output power capability. Thus, $f_{G}\left(P_{G}\right) d P_{G}$ represents the probability that, at a random instant of time, the unit's capability is limited to a range of $\mathrm{dP}_{\mathrm{G}}$ about $\mathrm{P}_{\mathrm{G}}$. For the two-state model (See Figure A.1), $f_{G}$ is one impulse $\left(q_{r}\right)$ at $P_{G}=0$ and another $\left(P_{r}\right)$ at $P_{G}=K_{r}$ since the unit is assumed not operable at all $\left(P_{G}=0\right)$ or operable over the entire range to rated power ( $\mathrm{P}_{\mathrm{G}}=\mathrm{K}_{\mathrm{r}}$ ).

The probability density functions $f_{G}$ for the general unit performance models are also shown in Figure A.l. With probability $p_{r}$, unit $r$ is capable of $f u^{\circ} 1$ power operation at
-375-

Figure A. 1
Probability Density Functions of Unit Capability

$P_{G}=K_{r}\left(\equiv K_{r I}\right) M W$. Conversely, with probability $q_{r}$ the unit is not capable of producing any power at all ( $\mathrm{P}_{\mathrm{G}}=0$ ). For the "general derating" model, any fraction of capacity may be derated and, hence, $f_{G}$ may have any shape between $0<P_{G}<K_{r}$ so long as the standard probability density function requirement is met,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f_{G}\left(P_{G}\right) d P_{G}=1 \tag{A.1}
\end{equation*}
$$

More specifically,

$$
\begin{equation*}
p_{r}+q_{r}+\int_{0}^{K_{r}^{-}} f_{G}\left(p_{G}\right) d P_{G}=1 \tag{A.2}
\end{equation*}
$$

In the second "discrete derating" model, only whole increments of capacity may be derated and $f_{G}$ is restricted to a probability mass function with each $q_{r i}$ coinciding with the $K_{r i}$ capacity increments. For $i=0, q_{r i}=q_{r 0}=q_{r}$ and

$$
\begin{equation*}
p_{r}+\sum_{i=0}^{I-1} q_{r i}=1 \tag{A.3}
\end{equation*}
$$

Finally, for the special case $q_{r i}=0$ for all $i>0$, the discrete derating model reduces to the original (all-ornothing) "two-state" model of Chapter 3,

$$
\begin{equation*}
p_{r}+q_{r}=1 \tag{A.4}
\end{equation*}
$$

The symbol $P$ is used to denote the complementary cumulative distribution function for $\mathbf{f}_{G}$,

$$
\begin{equation*}
P_{\left(P_{G}\right)}=1-\int_{-\infty}^{P_{G}} f_{G}(P) d P \tag{A.5}
\end{equation*}
$$

Thus, $\mathbb{P}\left(P_{G}\right)$ represents the probability that the unit is capable of generating $\mathrm{P}_{\mathrm{G}} \mathrm{MW}$ or more at any random instant of time. ${ }^{1}$ Figure A. 2 presents typical $P$ for the three models. When performing each convolution or deconvolution, the pertinent portion of the $K_{r I} I^{M W}$ unit may be temporarily treated as a smaller "sub-unit" of $\mathrm{K}_{\mathrm{r}} \mathrm{Q}^{\mathrm{MW}}$. Derived in this manner, the following equations are the most general. For this smaller unit, $P\left(P_{G}\right)$, by definition, falls to zero just beyond $K_{r Q}{ }^{M W}$. In addition, $f_{G}$ for the sub-unit is most easily viewed as the probability masses and derivative of this truncated $\rho\left(P_{G}\right)$,

$$
\begin{equation*}
f_{G}\left(P_{G}\right)=-\frac{d P\left(P_{G}\right)}{d P_{G}} \tag{A.7}
\end{equation*}
$$

$l_{\text {Note }}$ that in this work, the complementary cumulative distribution function is defined to include the equality at the upper limit of the integral, in contrast to the usual (26) placement of the equality with the cumulative distribution function itself,
$\underbrace{\text { Prob. }\left(P<P_{G}\right)+\overbrace{\text { Prob. }\left(P=P_{G}\right)}^{e}+\text { Prob. }\left(P>P_{G}\right)} \underbrace{P\left(P_{G}\right)}=1$
usual C.D.F.
usual C.C.D.F.
The distinction is purely academic as applied in this work.

Figure A. 2

Performance Probability Functions of Unit Capability




Of more immediate use than ${ }_{f_{G}}$ in determining equivalent load distribution is the forced-outage distribution $f_{0}\left(P_{O}\right)$ since only the unit's forced-outages contribute to the equivalent load [See Equation (3.5)]. To derive $f_{0}\left(P_{0}\right)$, use is made of the fundamental applied probability equation for changing random variables in a density function,

$$
\begin{equation*}
f_{O}\left(P_{0}\right) d P_{O}=f_{G}\left(P_{G}\right) d P_{G} \tag{A.8}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{O}\left(P_{o}\right)=f_{G}\left(P_{G}\right)\left|\frac{d P_{G}}{d P_{O}}\right| \tag{A.9}
\end{equation*}
$$

Since,

$$
\begin{align*}
& P_{G}+P_{O}= K_{r \Omega}\left(=K_{r i}+P_{O_{i}}\right. \text { for the discrete case) }  \tag{A.10}\\
& \qquad\left|\frac{d P_{G}}{d P_{O}}\right|=|-1|=1 \tag{A.11}
\end{align*}
$$

Hence,

$$
\begin{equation*}
f_{O}\left(P_{O}\right)=f_{G}\left(K_{r \Omega}-P_{O}\right) \tag{A.12}
\end{equation*}
$$

and $f_{G}$ is merely reversed (i.e., rotated about 0.5* $\mathrm{K}_{\mathrm{r} \Omega}$ ). Figure A. 3 presents typical $f_{o}\left(P_{O}\right)$ for the three models.

Figure A. 3


## A. 2 Convolution

As in Chapter 3, convolution is presented first since deconvolution is most easily expressed as the reverse of convolution. The aim of the convolution is to calculate an $F_{r e} \mathbf{W}$ which includes (i.e., superscript $w=w i t h$ ) unit r's forced-outages (up to $K_{r} Q^{M W}$ ). The starting point is (1) the current equivalent load curve $\mathrm{F}_{\mathrm{rd}}^{\mathrm{wo}}$ that does not include any allowance for the outages of unit $r$ (i.e., wo = without) and (2) the sub-unit's own forced-outage distribution $f_{0}\left(P_{0}\right)$. (Since all references to $F$ are for the same unit increment $r d_{g}$ the notation is shortened to $F^{W}$ and ${ }^{\text {WOO }}$ ).

From the equivalent load definition Equation (3.5), the notation becomes

$$
\begin{align*}
& P_{e}=P_{D}+\left(P_{O}\right)_{\text {Other }}+\left(P_{O}\right)_{\text {Unit } r}  \tag{A.13}\\
& \downarrow \underbrace{\text { Units }} \downarrow \\
& P_{e}^{W}=P_{e}^{W O}+P_{0} \tag{A.14}
\end{align*}
$$

The equivalent load curve $\mathrm{F}^{\text {WO }}$ is the complementary cumulative density function of $\mathrm{f}^{\text {WO }}$ or the probability that $\mathrm{P}_{\mathrm{e}} \geq \mathrm{P}_{\mathrm{e}}^{\mathrm{wo}}$,

$$
\begin{equation*}
F^{W O}\left(P_{e}^{W O}\right)=1-\int_{-\infty}^{P_{e}^{W O}} f^{W O}(P) d P \tag{A.15}
\end{equation*}
$$

Convolution is performed in the manner of Drake (26) using Figure A.4. Thus, $F^{W}\left(P_{e}^{W}\right)$ represents the complementary cumulative distribution function of $f_{e, 0}^{\text {wo }}$ (i.e., below and to the left of the $\mathrm{P}_{\mathrm{e}}^{\mathrm{w}}=$ constant line),

$$
F^{w}\left(p_{e}^{w}\right)=1-\int_{-\infty}^{+\infty} \int_{-\infty}^{\left(P_{e}^{w}-P_{o}\right)} \underset{e, o}{w o}\left({\underset{e}{e}}_{w o}, P_{o}\right) d P_{e}^{w o} d P_{o}
$$

Assuming the usual statistical independence between equivalent load ( $\mathrm{f}^{\mathrm{WO}}$ ) and un-included unit forced-outages ( $f_{0}$ ),

$$
\begin{equation*}
f_{e, 0}^{\mathrm{WO}}\left(\mathrm{P}_{\mathrm{e}}^{\mathrm{WO}}, \mathrm{P}_{\mathrm{O}}\right)=\mathrm{f}^{\mathrm{WO}}\left(\mathrm{P}_{\mathrm{e}}^{\mathrm{WO}}\right) \cdot \mathrm{f}_{\mathrm{O}}\left(\mathrm{P}_{\mathrm{O}}\right) \tag{A.17}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
F^{W}\left(P_{e}^{W}\right)=1-\int_{-\infty}^{+\infty} \int_{-\infty}^{\left(P_{e}^{W}-P_{O}\right)} f^{W O}\left(P_{e}^{W O}\right) \cdot f_{O}\left(P_{O}\right) d P_{e}^{W O} d_{O} \tag{A.18}
\end{equation*}
$$

Since

$$
\begin{equation*}
1=\int_{-\infty}^{+\infty} f_{o}\left(P_{o}\right) d P_{o} \tag{A.19}
\end{equation*}
$$

Figure A. 4
6253-87

## Event Space Interpretation of Convolution



Equation (A.18) can be factored into

$$
\begin{equation*}
F^{W}\left(P_{e}^{W}\right)=\int_{-\infty}^{+\infty} f_{o}\left(P_{o}\right)\left[1-\int_{-\infty}^{\left(P_{e}^{W}-P_{O}\right)} f^{W O}\left(P_{e}^{w o}\right) d P_{e}^{w o}\right] d P_{o} \tag{A.20}
\end{equation*}
$$

Since the bracketed term is, by definition Equation (A.15), the complementary cumulative distribution function of $f^{\text {wo }}$, i.e., $\mathrm{F}^{\mathrm{WO}}\left(\mathrm{P}_{\mathrm{e}}^{\mathrm{w}}-\mathrm{P}_{\mathrm{O}}\right)$, then

$$
\begin{equation*}
F^{W}\left(P_{e}^{W}\right)=\int_{-\infty}^{+\infty} f_{O}\left(P_{O}\right) F^{W O}\left(P_{e}^{W}-P_{o}\right) d P_{O} \tag{A.21}
\end{equation*}
$$

Reducing the $P_{e}^{W}$ notation to merely $P_{e}$, the result is the convolution of the general derating model,

$$
\begin{equation*}
F^{W}\left(P_{e}\right)=\int_{-\infty}^{+\infty} f_{o}\left(P_{o}\right) \cdot F^{W O}\left(P_{e}-P_{o}\right) d P_{O} \tag{A.22}
\end{equation*}
$$

For the discrete derating model of Equation (A.3), this reduces to

$$
\begin{equation*}
F^{W}\left(p_{e}\right)=p_{r} F^{W o}\left(P_{e}\right)+\sum_{i=0}^{\ell-1} q_{r i} \cdot F^{w o}\left(p_{e}-K_{r \ell^{-K}}{ }_{r i}\right) \tag{A.23}
\end{equation*}
$$

Finally, the two-state model of Equation (A.4) yields the original Equation(3.57),

$$
\begin{equation*}
F^{W}\left(P_{e}\right)=p_{r} F^{W O}\left(P_{e}\right)+q_{r} F^{W O}\left(P_{e}-K_{r l}\right) \tag{A.24}
\end{equation*}
$$

## A. 3 Deconvolution

Deconvolution seeks to regain $\mathrm{F}^{\text {WO }}$ given $\mathrm{F}^{\mathrm{W}}$. That is, it strips out the forced-outages of the $\mathrm{K}_{\mathrm{r} \ell^{M W}}$ unit.

Performing the integration of Equation (A.22) from $-\infty$ to $\mathrm{O}^{+}$(See Figure A.1),

$$
\begin{equation*}
F^{W}\left(P_{e}\right)=p_{r} F^{W O}\left(P_{e}\right)+\int_{0}^{\infty} f_{o}\left(P_{o}\right) F^{W O}\left(P_{e^{-P}}\right) d P_{O} \tag{A.25}
\end{equation*}
$$

Solving for $\mathrm{F}^{\text {WO }}\left(\mathrm{P}_{\mathbf{e}}\right)$, deconvolution for the general derating model becomes

$$
\begin{equation*}
F^{W O}\left(P_{e}\right)=\frac{1}{P_{r}}\left[F^{W}\left(P_{e}\right)-\int_{0}^{\infty} f_{o}\left(P_{O}\right) F^{W O}\left(P_{e}-P_{O}\right) d P_{O}\right] \tag{A.26}
\end{equation*}
$$

For the discrete derating model, Equation (A.23) rearranges into

$$
\begin{equation*}
F^{W O}\left(P_{e}\right)=\frac{1}{p_{r}}\left[F^{W}\left(P_{e}\right)-\sum_{i=0}^{\ell-1} q_{r i} F^{W O}\left(P_{e^{-K}}^{K_{d}}+K_{r i}\right)\right] \tag{A.27}
\end{equation*}
$$

Likewise, the two-state model of Equation (3.55) may be obtained from Equation (A.24),

$$
\begin{equation*}
F^{W O}\left(P_{e}\right)=\frac{1}{p_{r}}\left[F^{W}\left(P_{e}\right)-q_{r} F^{W O}\left(p_{e}-K_{r_{Q}}\right)\right] \tag{A.28}
\end{equation*}
$$

## A. 4 Loading

In performing the expected loading calculation of Figure A.5, the statistical independence is again invoked,
$\begin{aligned} \text { Prob. }\left[\begin{array}{l}\text { Energy increment } \\ \text { at } P_{e}=P_{r i}^{O}+\delta K \\ \text { is generated }\end{array}\right] & =\text { Prob. }\left[\begin{array}{l}\text { Energy } \\ \text { demanded } \\ \text { at } P_{e}\end{array}\right] \times \text { Prob. }\left[\begin{array}{l}\delta K \text { increment of } \\ \text { capacity is } \\ \text { operable, i.e., } \\ P_{G} \geq K_{r, i-1}+\delta K\end{array}\right] \\ & =F^{w o}\left(P_{r i}^{O}+\delta K\right) \quad \text { (A.29) }\end{aligned}$
(A. 30)

Integrating from $\delta K=0$ to $\delta K=\Delta K_{r i}$ and multiplying by $T^{\prime}$, the length of the time period, the general derating model is loaded according to

$$
E_{r i}=T^{\prime} \int_{P_{r i}}^{P_{r i}^{O}+\Delta K_{r i}} F_{\left(P_{e}\right)} P_{\left.\left(K_{r, i-1}+P_{e}-P_{r i}^{O}\right) d P_{e}^{(A .31)}\right)}
$$

For the discrete derating model (See Figure A.2),

$$
\begin{equation*}
P_{\left(K_{r, i-1}+\delta K\right)} \equiv P_{r i}=\text { constant for } 0 \leq \delta K \leq \Delta k_{r i} \tag{A.32}
\end{equation*}
$$

Figure A. 5
Load Demanded of $\Delta K_{r i}$ Unit Increment

and, hence,

$$
\begin{equation*}
E_{r i}=T \cdot P_{r i} \int_{P_{r i}^{0}}^{P_{r i}^{o}+\Delta K_{r i}} F^{w o}\left(P_{e}\right) d P_{e} \tag{A.33}
\end{equation*}
$$

The two-state model $\left(P_{r i}=p_{r}\right)$ reduces to Equation (3.56),

$$
\begin{equation*}
E_{r i}=T^{\prime} P_{r} \int_{P_{r i}^{o}}^{P_{r i}^{o}+\Delta K_{r i}} F^{W o}\left(P_{e}\right) d P_{e} \tag{A.34}
\end{equation*}
$$

## A. 5 Summary

Table A.l presents a summary of the deconvolve-loadconvolve sequence of calculations for each forced-outage models.

Table A. 1
Summary of Booth-Baleriaux Equations for Various Forced-Outage Models


NOTES:
(1) $D=$ Deconvolve, $L=$ LOAD, $C=$ CONVOLVE
(2) identity of sub-unit ked changes between deconvolution and CONVOLUTION STEPS SINCE $Q_{\text {convolve }}^{\text {P }}$ OE CONVOLVE TO ACCOUNT FOR $\Delta \mathrm{K}_{\text {re }}$ Mw JUST LOADED.
(3) IN ACCORDANCE WITH EQUATION (A.7) AND NOTE (2), Pr FOR SUBUNI K K IS ACTUALLY ORIGINAL $O\left(P_{G}\right)$ (FOR ENTIRE UNIT $K_{r}$ ) evaluated at $P_{G}=k_{r d}$.

## APPENDIX $\mathbf{B}$

## AREA METHOD OF FORMULATING SHAPE CONSTRAINT

Section 4.2.4 explained the need for a shape constraint in the SOM and derived an approximate variance method for establishing the feasibility of postulated $\bar{F}_{r}$ shapes. This Appendix presents the rigorous (i.e., necessary and sufficient) but cumbersome, area method. Recall that given an $\mathrm{Fe}_{\mathrm{e}}$ system shape (cf. Figure 4.9 and Figure B.l) over the system nuclear upper increment capacity from 0 to $k_{T}^{\prime}$, the problem is to determine if a set of postulated period energies $E_{r}$ (that resulted in the $\bar{F}_{r}$ postulated average reactor shape) could be satisfied by a feasible detailed loading order.

The area method is based on an observation relative to the mapping process of Figure 4.7. That is, over the range from 0 to any equivalent load $P$, it is impossible to reorder $F_{e}\left(P_{e}\right)$ into a detailed $F_{r}\left(P_{r}\right)$ such that the resulting $\bar{F}_{r}\left(P_{r}\right)$ contains more energy than the original $F_{e}\left(P_{e}\right)$. In other words, there can be no pre-production of equivalent load energy. Thus,

$$
\begin{equation*}
\int_{0}^{P} \bar{F}_{r} d P_{r} \leq \int_{0}^{P} F_{e}\left(P_{e}\right) d P_{e} \tag{B.1}
\end{equation*}
$$

or

Figure B.I


$$
\begin{equation*}
0 \leq \int_{0}^{P}\left(F_{e}\left(P_{e}\right)-\bar{F}_{r}\right) d P_{e} \tag{B.2}
\end{equation*}
$$

Hence, the net area between $F_{e}\left(P_{e}\right)$ and $\bar{F}_{r}\left(P_{r}\right)$ from 0 to any $P$ must be positive (See Figure B.l).

If the inequality of Equation (B.1) or (B.2) does not hold at any single $P$, the required detailed loading order does not exist (e.g., see Figure 4.6). Herein, lies the difficulty with the area method: it must be checked at every $P$ or at least at several well-chosen ones. Though the method is rigorous, the amount of computer data handling and storage are unwieldy even using a linear approximation to $\mathrm{F}_{\mathrm{e}}$.

## APPENDIX

REFERENCE UTILITY SYSTEM EXAMPLES

Section 2.1.2.3 presented the Five-Unit Reference Utility System. Unit characteristics were detailed in Figure 2.2. Table C.l summarizes the data for each valve point. Figure $C .1$ repeats the $F_{D}$ customer load-duration curve of Figure 2.9 for the 730 hour month.

Table C. 2 presents a SYSINT Fortran-to-text symbol cross-reference table. The following Tables C. 3 to C. 20 present the numerical data of SYSINT's Booth-Baleriaux model for each of the six Examples, in turn. (Section E. 3 presents the computer input decks actually used in executing the Examples.)

Table C.l

## Unit Characteristics for Reference Utility System

Unit Name r	Type	Rated   Cap.   $K_{r}$   MW	Perf.   Prob.   $p_{r}$   \%
I	Peaking	100	95
II	Fossil	200	95
III	Nuclear	300	90
IV	Fossil	600	90
V	Nuclear	800	85


SUSD.   Cost   \$	Valve Point Data			
	$\begin{aligned} & \mathrm{K}_{\mathrm{rl}} \\ & \mathrm{MW} \end{aligned}$	$\begin{gathered} \bar{e}_{r l} \\ \$ / \mathrm{MWH} \end{gathered}$	$\begin{aligned} & \mathrm{K}_{\mathrm{r} 2} \\ & \mathrm{MW} \end{aligned}$	$\begin{gathered} \lambda_{r 2} \\ \$ / \mathrm{MWH} \end{gathered}$
45	100 (95) *	16.20	-----	-----
400	100(95)	5.50	200 (190)	4.25
228	100(90)	2.28	300 (270)	1.90
1440	200(180)	3.92	600 (540)	3.32
432	300(255)	2.25	800 (680)	1.71

```
*(95MW) \(=0.95 \times 100 \mathrm{MW}=\mathrm{K}_{\mathrm{ri}}\) for Example 2 only.
 \(\begin{array}{ccc}\downarrow & & \downarrow \\ p_{r} & \times & K_{r i}\end{array}\)
```

Figure C. 1


Table C. 2

SYSINT Fortran-to-Text Symbol Cross-
Reference Table

SYSINT

Fortran Symbol

Text
Symbol

$=\frac{E_{r i}}{K_{r i} T^{\prime} P_{r}} \equiv L_{r i}^{\prime}$

DELGWH	$E_{r i}$
DM	
EXPGWH	$\sum^{I} E_{r i}$

IDNO

IEMAX

L

MWADD
$\Delta K_{r i}$

Increment energy production, GWH

Spacing of $F$ array stored in PROB.

Cumulative increment production, GWH

Unit identification number

PROB storage location of peak equivalent load, $\mathrm{PROB}($ IEMAX $) \equiv 0.0$

Unit index $=$ order unit data read in = order final unit results presented

Increment of capacity being loaded for unit-of-interest r

Table C.2--Continued

SYSINT

Fortran
Symbol

MWIN

MWTOT

$$
\mathrm{K}_{\mathrm{ri}}
$$

PE

$$
P_{r i}^{0}+\Delta K_{r i}
$$

$\operatorname{PROB}(K) \quad F_{r i}\left(P_{e}=K * D M\right)$


Text Symbol

$$
K_{r, i-1}
$$

Unit r capacity previously loaded.

Unit $r$ capacity now loaded

Equivalent load after loading increment

Current $F$ equivalent loadduration curve

Position in loading order

Table C. 3
Example 1 on Reference Utility System:
"Deterministic Model (No Forced-Outages)"
(See Sect. 2.2.1 for further details.)

Unit $\mathbf{r}$	Increment i	```Position in Loading Order```	Increment Energy $\begin{gathered} \mathrm{E}_{\mathrm{ri}} \\ (\mathrm{GWH}) \\ \hline \end{gathered}$	Increment Cost $\begin{gathered} \mathrm{X}_{\mathrm{ri}} \\ \left(10^{3} \$\right) \\ \hline \end{gathered}$
I	1	9 (last)	- 0 -	- 0 -
II	1	4	73.00	401.5
	2	8	- 0 -	- 0 -
III	1	2	73.00	166.4
	2	6	73.00	138.7
IV	1	3	146.00	572.3
	2	7	29.20	97.0
V	1	1 (first)	219.00	492.8
	2	5	335.80	574.2
Utility Production			949.00	2442.9
Emergency Purchases (at $10 \$ / \mathrm{MWH}$ )			- 0 -	- 0 -
Total			949.00	2442.9

Loss-of-Load Probability, LOLP $=0 \%$

Table C. 4

## Example 1 : SYSINT Output Totals



Table C. 5

## Example 1 : SYSINT Detailed Calculations



Table C. 6
Example 2 on Reference Utility System:
"Deterministic Model (Reduced Capacities)"
(See Sect. 2.2.1 for further details.)

Unit	Increment	$\begin{aligned} & \text { Position } \\ & \text { in } \end{aligned}$	Increment Energy	Increment Cost
$\mathbf{r}$	i	Loading Order	$\begin{gathered} \mathbf{E}_{\mathbf{r i}} \\ (\mathrm{GWH}) \\ \hline \end{gathered}$	$\begin{gathered} X_{r i} \\ \left(10^{3} \$\right) \end{gathered}$


I	1	9	2.51	40.7
II	1	4	69.35	381.4
	2	8	5.81	24.7


	1	2	65.70	149.8
III	6	108.82	206.8	
	2	6		

IV 1

2
7
131.40
515.1
79.85
265.1

V	1	1	186.15	418.8
	2	5	299.30	511.8
Utility Production				
Emergency Purchases (at $10 \$ / \mathrm{MWH})$	0.11	2514.2		
Total	948.89	1.1		

Loss-of-Load Probability, LOLP $=1.25 \%$

Table C. 7

## Example 2: SYSINT Output Totals



Table C. 8

## Example 2 : SYSINT Detailed Calculations



Table C. 9
Example 3 on Reference Utility System:
"Probabilistic Model (With Forced-Outages)"
(See Sect. 2.2.1 for further details.)

Unit r	Increment i	```Position in Loading Order```	Increment Energy $\mathrm{E}_{\mathrm{ri}}$ (GWH)	Increment Cost $\begin{gathered} X_{r i} \\ \left(10^{3} \$\right) \\ \hline \hline \end{gathered}$
I	1	9	11.93	193.3
II	1	4	69.35	381.5
	2	8	14.01	59.5
III	1	2	65.70	149.8
	2	6	$80.69{ }^{\text { }}$	153.3
IV	1	3	131.40	515.1
	2	7	70.85	235.2
V	1	1	186.15	418.8
	2	5	288.81	493.9
Utility Production			918.89	2600.4
Emergency Purchases (at $10 \$ / \mathrm{MWH}$ )			30.11	301.1
Total			949.00	2901.5

Loss-of-Load Probability, LOLP $=15.6 \%$

Table C. 10

## Example 3 : SYSINT Output Totals



Table C. 11

## Example 3: SYSINT Detailed Calculations



Table C. 12

Example 4 on Reference Utility System:
"Single Increment Booth-Baleriaux Model"
(See Sect. 3.3.1.3 forfurther details.)

Unit $r$	Increment Position   in   in   i Loading   Order	Increment Energy $E_{r i}$ (GWH)	Increment Cost $\begin{gathered} x_{r i} \\ \left(10^{3} \$\right) \end{gathered}$
I	15	11.93	193.3
II	$\left.\begin{array}{l}1 \\ 2\end{array}\right\}$	30.85	152.2
III	$\left.\begin{array}{l}1 \\ 2\end{array}\right\}$	184.54	375.0
IV	$\left.\begin{array}{l}1 \\ 2\end{array}\right\} \quad 3$	195.17	710.6
V	$\left.\begin{array}{l}1 \\ 2\end{array}\right\} \quad 1$	496.40	949.4
	Utility Production Emergency Purchases ( $10 \$ / \mathrm{MWH}$ )	918.89 30.11	$\begin{array}{r} 2380.5 \\ 301.1 \end{array}$
	Total	949.00	2681.6

Table C. 13
Example 4 : SYSINT Output Totals





,aocivi:
.....................................................................................................................

 :moome: , soo ter:


 :moonitio



suotfe[nगlej pal!ezad INISAS : t Oldwex]


Table C. 15

## Example 5 on Reference Utility System:

"Multiple Increment Booth-Baleriaux Model (V-2, then III-2)"
(Among Nuclear Upper Increments V-2, then III-2)
(See Sect. 3.3.2.1 for further details.)


Loss-of-load Probability, LOLP $=15.6 \%$

Table C. 16

## Example 5 : SYSINT Output Totals



Table C. 17

## Example 5 : SYSINT Detailed Calculations



Table C. 18

## Example 6 on Reference Utility System:

## "Multiple Increment Booth-Baleriaux Model (III-2, then V-2)"

(Among Nuclear Upper Increments III-2, then V-2)
(See Sect.3.3.3 for further details.)

Unit r	Increment i	```Position in Loading Order```	Increment Energy $E_{r i}$ (GWH)	Increment Cost $\begin{gathered} x_{r i} \\ \left(10^{3} \$\right) \end{gathered}$
1	1	9	11.93	193.3
II	1	6	36.71	201.9
	2	8	14.01	59.5
III   (Nuclear)	1	2	65.70	149.8
	2	4	$131.40^{\circ}$	249.7
IV	1	3	131.40	515.1
	2	7	70.85	235.2
$V$   (Nuclear)	1	1	186.15	418.8
	2	5	270.74	463.0
Utility Production			918.89	2486.3
Emergency Purchases (10 \$/MWH)			30.11	301.1
Total			949.00	2787.4
Loss-of-load Probability, LOLP $=15.6 \%$				

Table C. 19
Example 6 : SYSINT Output Totals


Table C. 20

## Example 6 : SYSINT Detailed Calculations

:	
$\qquad$	
(3): :  	
-imusum insu'	
$\cdots:$	
㫦:	

APPENDIX
NUMERICAL RESULTS FOR CASES I THROUGH VI ON
HYPOTHETICAL UTILITY SYSTEM OF CHAPTER 5

Section 5.3 presented the customer loads, generating equipment and the three maintenance and refueling strategies investigated. (Figures D.l to D. 3 present the reactor-cycle notation used in tabulating the results for each strategy). Section 5.4 indicated the values chosen for the remaining parameters of interest. Table 5.8 presented the structure of the Case I through VI studies.

Tables D. 1 through D. 6 present the same Case-by-Case results presented throughout Chapter 5. In addition, Table D. 7 presents the Case $I$ results at the end of the first shape iteration when $\overline{\mathrm{TC}}=\overline{\mathrm{TC}}{ }^{*}, 0$. These results differ from Case II input only with respect to the planning horizon (72 month rather than 48 month as in Case II).

Tables D. 8-D. 25 present strategy-by-strategy, Case-byCase detailed results for each reactor-cycle. In addition, Tables D. $26-$ D. 28 present Case I strategy-by-strategy data at the end of the first shape iteration.

Figure D. 1

Reactor-Cycle Notation for Strategy 1 (Annual Refuelings)


Figure D. 2
Reactor-Cycle Notation for Strategy 2 (Gradual Shift to Longer Cycles)

-816-

Figure D. 3
Reactor-Cycle Notation for Strategy 3 (Immediate Shift to Longer Cycles)

-6しか-

REVENUE REQUIR ENER   (72 Month Horizon, 7\% P.V 0.0 Shape Direct Calcula	LE D. 1   NTS AND FOR CAS   te, Refere ction Crite Using $\gamma$	SCOUNT   uclear Un   5	
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months) Average cycle length (months) System nuclear capacity factor	$\begin{aligned} & 62 \\ & 12 \\ & 0.642 \end{aligned}$	$\begin{aligned} & 51 \\ & 14.9 \\ & 0.656 \end{aligned}$	49   15.2   0.658
	$10^{6} \$$		
Fossil fuel	$\begin{gathered} 293.205 \\ (90.068) \end{gathered}$	$\begin{aligned} & 276.853 \\ & (85.836) \end{aligned}$	$\begin{aligned} & 274.082 \\ & (85.196) \end{aligned}$
Startup-shutdown cost	2.022	1.704	1.650
Emergency purchases	$\begin{gathered} 0.655 \\ (0.079) \end{gathered}$	$\begin{gathered} 0.407 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.363 \\ (0.043) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 295.882 \\ & (90.147) \end{aligned}$	$\begin{aligned} & 278.964 \\ & (85.884) \end{aligned}$	$\begin{aligned} & 276.095 \\ & (85.239) \end{aligned}$
Nuclear fuel	$\begin{gathered} 294.690 \\ (189.814) \end{gathered}$	$\begin{gathered} 297.709 \\ (194.077) \end{gathered}$	$\begin{gathered} 300.137 \\ (194.722) \end{gathered}$
System production	$\begin{gathered} 590.572 \\ (279.961) \end{gathered}$	$\begin{gathered} 576.673 \\ (279.961) \end{gathered}$	$\begin{gathered} 576.232 \\ (279.961) \end{gathered}$
Fixed firm purchase	$\begin{aligned} & 133.920 \\ & (81.468) \end{aligned}$	$\begin{aligned} & 133.920 \\ & (81.468) \end{aligned}$	$\begin{aligned} & 133.920 \\ & (81.468) \end{aligned}$
Penalty for short-notice enrichment   changes $\square$			
System Total	$\begin{gathered} 724.492 \\ (361.429) \end{gathered}$	$\begin{gathered} 710.593 \\ (361.429) \end{gathered}$	$\begin{gathered} 712.152 \\ (361.429) \end{gathered}$


TABLE D.2   REVENUE REQUIREMENTS AND UNDISCOUNTED   ENERGY FOR CASE II			
(48 Month Horizon, 7\% P.V. Rate, Reference			
No Shape Constraints)			


TABLE D. 3   REVENUE REQUIREMENTS AND UNDISCOUNTED   ENERGY FOR CASE III   (48 Month Horizon, 0\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)			
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	$\begin{aligned} & 33 \\ & 14.5 \\ & 0.647 \end{aligned}$	31   15.2   0.651
$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$			
Fossil fuel	$\begin{gathered} 212.434 \\ (51.703) \end{gathered}$	$\begin{aligned} & 203.326 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 199.928 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.684	1.430	1.373
Emergency purchases	$\begin{gathered} 0.528 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.355 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.299 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{gathered} 214.646 \\ (51.756) \end{gathered}$	$\begin{aligned} & 205.111 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 201.600 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 158.416 \\ (118.376) \end{gathered}$	$\begin{gathered} 153.987 \\ (120.035) \end{gathered}$	$\begin{gathered} 154.678 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 373.062 \\ (170.132) \end{gathered}$	$\begin{gathered} 359.098 \\ (170.132) \end{gathered}$	$\begin{gathered} 356.278 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{aligned} & 108.624 \\ & (54.312) \end{aligned}$	$\begin{aligned} & 108.624 \\ & (54.312) \end{aligned}$	$\begin{aligned} & 108.624 \\ & (54.312) \end{aligned}$
Penalty for short-notice enrichment changes			2.000
System Total	$\begin{gathered} 481.686 \\ (224.444) \end{gathered}$	$\begin{gathered} 467.722 \\ (224.444) \end{gathered}$	$\begin{gathered} 466.902 \\ (224.444) \end{gathered}$


TABLE D. 4   REVENUE REQUIREMENTS AND UNDISCOUNTED ENERGY FOR CASE IV   (48 Month Horizon, 12\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)			
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	$\begin{aligned} & 33 \\ & 14.5 \\ & 0.647 \end{aligned}$	31 15.2 0.651
$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$			
Fossil fuel	$\begin{aligned} & 167.908 \\ & (51.703) \end{aligned}$	$\begin{aligned} & 160.762 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 157.850 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.388	1.194	1.142
Emergency purchases	$\begin{gathered} 0.427 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.294 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.245 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 169.723 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 162.250 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 159.237 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 220.395 \\ (118.376) \end{gathered}$	$\begin{gathered} 221.107 \\ (120.035) \end{gathered}$	$\begin{gathered} 224.731 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 390.118 \\ (170.132) \end{gathered}$	$\begin{gathered} 383.357 \\ (170.132) \end{gathered}$	$\begin{gathered} 383.968 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{gathered} 87.340 \\ (54.312) \end{gathered}$	$\begin{gathered} 87.340 \\ (54.312) \end{gathered}$	$\begin{gathered} 87.340 \\ (54.312) \end{gathered}$
Penalty for short-notice enrichment changes$2.000$			
System Total	$\begin{gathered} 477.458 \\ (224.444) \end{gathered}$	$\begin{gathered} 470.697 \\ (224.444) \end{gathered}$	$\begin{gathered} 473.308 \\ (224.444) \end{gathered}$


TABLE D. 5   REVENUE REQUIREMENTS AND UNDISCOUNTED ENERGY FOR CASE V   (48 Month Horizon, 7\% P.V. Rate, Low Nuclear Unit Costs, No Shape Constraints)			
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 38 \\ & 12 \\ & 0.638 \end{aligned}$	$\begin{aligned} & 33 \\ & 14.5 \\ & 0.647 \end{aligned}$	$\begin{aligned} & 31 \\ & 15.2 \\ & 0.651 \end{aligned}$
$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$			
Fossil fuel	$\begin{aligned} & 184.223 \\ & (51.703) \end{aligned}$	$\begin{aligned} & 176.348 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 173.250 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.497	1.281	1.227
Emergency purchases	$\begin{gathered} 0.464 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.317 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.265 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 186.184 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 177.946 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 174.742 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{aligned} & 141.229 \\ & (118.376) \end{aligned}$	$\begin{gathered} 141.156 \\ (120.035) \end{gathered}$	$\begin{gathered} 143.463 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 327.413 \\ (170.132) \end{gathered}$	$\begin{gathered} 319.102 \\ (170.132) \end{gathered}$	$\begin{gathered} 318.205 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{aligned} & 95.166 \\ & (54.312) \end{aligned}$	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$
Penalty for short-notice enrichment changes			2.000
System Total	$\begin{gathered} 422.579 \\ (224.444) \end{gathered}$	$\begin{gathered} 414.268 \\ (224.444) \end{gathered}$	$\begin{gathered} 415.371 \\ (224.444) \end{gathered}$


TABLE D. 6   REVENUE REQUIREMENTS AND UNDISCOUNTED ENERGY FOR CASE VI   (48 Month Horizon, 7\% P.V. Rate, High Nuclear Unit Costs, No Shape Constraints)			
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months) Average cycle length (months) System nuclear capacity factor		$\begin{aligned} & 33 \\ & 14.5 \\ & 0.647 \end{aligned}$	$\begin{aligned} & 31 \\ & 15.2 \\ & 0.651 \end{aligned}$
$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$			
Fossil fuel	$\begin{aligned} & 184.223 \\ & (51.703) \end{aligned}$	$\begin{aligned} & 176.348 \\ & (50.061) \end{aligned}$	$\begin{aligned} & 173.250 \\ & (49.390) \end{aligned}$
Startup-shutdown cost	1.497	1.281	1.227
Emergency purchases	$\begin{gathered} 0.464 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.317 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.265 \\ (0.030) \end{gathered}$
Nonnuclear production	$\begin{aligned} & 186.184 \\ & (51.756) \end{aligned}$	$\begin{aligned} & 177.946 \\ & (50.097) \end{aligned}$	$\begin{aligned} & 174.742 \\ & (49.420) \end{aligned}$
Nuclear fuel	$\begin{gathered} 255.223 \\ (118.376) \end{gathered}$	$\begin{gathered} 253.211 \\ (120.035) \end{gathered}$	$\begin{gathered} 256.169 \\ (120.712) \end{gathered}$
System production	$\begin{gathered} 441.407 \\ (170.132) \end{gathered}$	$\begin{gathered} 431.157 \\ (170.132) \end{gathered}$	$\begin{gathered} 430.911 \\ (170.132) \end{gathered}$
Fixed firm purchase	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$	$\begin{gathered} 95.166 \\ (54.312) \end{gathered}$
Penalty for short-notice enrichment changes			2.000
System Total	$\begin{gathered} 536.573 \\ (224.444) \end{gathered}$	$\begin{gathered} 526.323 \\ (224.444) \end{gathered}$	$\begin{gathered} 528.077 \\ (224.444) \end{gathered}$


TABLE D. 7   REVENUE REQUIREMENTS AND UNDISCOUNTED   ENERGY FOR CASE I AT END OF FIRST SHAPE ITERATION   (72 Month Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)			
Strategy	S-1	S-2	S-3
Downtime to horizon (reactor-months)   Average cycle length (months)   System nuclear capacity factor	$\begin{aligned} & 62 \\ & 12 \\ & 0.642 \end{aligned}$	51   14.9   0.656	49   15.2   0.658
$\begin{gathered} 10^{6} \$ \\ \left(10^{6} \mathrm{MWH}\right) \end{gathered}$			
Fossil fuel	$\begin{gathered} 293.205 \\ (90.068) \end{gathered}$	$\begin{gathered} 276.853 \\ (85.836) \end{gathered}$	$\begin{aligned} & 274.082 \\ & (85.196) \end{aligned}$
Startup-shutdown cost	2.022	1.704	1.650
Emergency purchases	$\begin{gathered} 0.655 \\ (0.079) \end{gathered}$	$\begin{gathered} 0.407 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.363 \\ (0.043) \end{gathered}$
Nonnuclear production	$\begin{gathered} 295.882 \\ (90.147) \end{gathered}$	$\begin{gathered} 278.964 \\ (85.884) \end{gathered}$	$\begin{aligned} & 276.095 \\ & (85.239) \end{aligned}$
Nuclear fuel	$\begin{gathered} 294.583 \\ (189.814) \end{gathered}$	$\begin{gathered} 297.456 \\ (194.077) \end{gathered}$	$\begin{gathered} 299.761 \\ (194.722) \end{gathered}$
System production	$\begin{gathered} 590.465 \\ (279.961) \end{gathered}$	$\begin{gathered} 576.420 \\ (279.961) \end{gathered}$	$\begin{gathered} 575.856 \\ (279.961) \end{gathered}$
Fixed firm purchase	$\begin{aligned} & 133.920 \\ & (81.468) \end{aligned}$	$\begin{aligned} & 133.920 \\ & (81.468) \end{aligned}$	$\begin{aligned} & 133.920 \\ & (81.468) \end{aligned}$
Penalty for short-notice enrichment changes   System Total			2.000
	$\begin{gathered} 724.385 \\ (361.429) \end{gathered}$	$\begin{gathered} 710.340 \\ (361.429) \end{gathered}$	$\begin{gathered} 711.776 \\ (361.429) \end{gathered}$

## TABLE D. 8

REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE I
( 72 Month Horizon, $7 \%$ P.V. Rate, Reference Nuclear Unit Costs, $V_{\text {REJ }}^{2}=0$ )

| ReactorCycle | Cycle Length (Months on-line) | Cycle Energy (GWH) | Average <br> Cycle <br> Energy Cost (\|\$|/MWH) | Incremental <br> Cycle <br> Energy <br> Cost <br> (\$/MWH) | Reload Enrichment (w/o U.235) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A-1 | 9* | 5280 | 1.703 | . 683 | - |
| A-2 | 10 | 5662 | 1.896 | . 992 | 2.876 |
| A-3 | 10 | 5688 | 1.935 | 1.240 | 3.164 |
| A-4 | 10 | 5799 | 1.931 | 1.063 | 3.178 |
| A-5 | 10 | 5760 | 1.905 | . 921 | 3.036 |
| A-6 | 10 | 5746 | 1.924 | 1.096 | 3.153 |
| A. 7 | 10 | 5950 | 1.909 | 1.182 | 3.226 |
| B-1 | 1* | 638 | 1.845 | . 499 | - |
| B-2 | 10 | 6418 | 1.832 | . 683 | $3.4{ }^{\dagger}$ |
| B-3 | 10 | 6440 | 1.771 | . 992 | 2.907 |
| B-4 | 10 | 6240 | 1.854 | 1.240 | 3.447 |
| B-5 | 10 | 6230 | 1.825 | . 963 | 3.123 |
| B-6 | 10 | 6180 | 1.815 | . 921 | 3.113 |
| B-7 | 10 | 6500 | 1.834 | 1.096 | 3.471 |
| C-1 | $10^{\dagger}$ | 6180 | 1.875 | . 683 | $3.6{ }^{\dagger}$ |
| C-2 | 10 | 6140 | 1.845 | . 992 | 2.786 |
| C. 3 | 10 | 5760 | 1.944 | 1.240 | 3.296 |
| C-4 | 10 | 5740 | 1.936 | 1.031 | 3.096 |
| C-5 | 10 | 5720 | 1.904 | . 921 | 2.983 |
| C-6 | 10 | 5656 | 1.942 | 1.096 | 3.177 |
| D-1 | 3* | 2129 | 1.465 | . 448 | $\square$ |
| D-2 | 10 | 5920 | 1.822 | . 683 | $3.2{ }^{\dagger}$ |
| D-3 | 10 | 6060 | 1.817 | . 992 | 3.040 |
| D. 4 | 10 | 6400 | 1.830 | 1.240 | 3.377 |
| D-5 | 10 | 6149 | 1.827 | . 963 | 3.118 |
| D-6 | 10 | 5983 | 1.830 | . 921 | 3.013 |
| D. 7 | 10 | 6120 | 1.852 | 1.096 | 3.255 |
| E-1 | 9 | 3297 | 3.437 | . 683 | $3.2{ }^{\dagger}$ |
| E-2 | 10 | 5337 | 2.086 | . 992 | 1.5** |
| E-3 | 10 | 5089 | 2.183 | 1.689 | 4.012 |
| E-4 | 10 | 5080 | 2.091 | 1.031 | 3.168 |
| E-5 | 10 | 6869 | 1.718 | . 846 | 2.661 |
| E-6 | 10 | 5326 | 1.967 | 1.122 | 3.331 |
| F-1 | 15 | 7874 | 2.175 | . 818 | $3.2{ }^{\dagger}$ |
| F-2 | 10 | 6372 | 1.847 | 1.093 | 3.410 |
| F-3 | 10 | 5882 | 1.840 | 1.130 | 3.086 |

* Fractional cycle
$\dagger$ Fixed initial condition
** 1.5 w/o U-235 was lower limit permitted by QKCORE.

TABLE D. 9   REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE I nth Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, $\mathrm{V}_{\text {REJ }}^{2}=0$ )						
ReactorCycle	Cycle Length (Month on-line)	Cycle   Energy   (GWH)	Average   Cycle   Energy   Cost   (\|\$	/MWH)	Incremental   Cycle   Energy   Cost   (\$/MWH)	Reload Enrichment (w/o U-235)
A-1	9*	5270	1.690	. 959	-	
A-2	12	6720	1.913	1.309	3.592	
A-3	12	7280	1.900	1.408	3.927	
A-4	12	7580	1.883	1.408	3.936	
A. 5	15	7775	1.979	1.408	3.966	
A-6	12	7165	1.884	1.173	3.497	
B-1	1*	667	1.802	. 657	- ${ }^{\text {¢ }}$	
B-2	10	6420	1.819	. 959	$3.4{ }^{\dagger}$	
B-3	12	7566	1.798	1.309	3.650	
B-4	15	7500	1.942	1.408	3.965	
B-5	14	8060	1.872	1.408	3.984	
B-6	12	7732	1.808	1.173	3.689	
C-1	$10^{\dagger}$	6300	1.844	. 959	$3.6{ }^{\dagger}$	
C-2	12	7260	1.873	1.309	3.620	
C-3	12	7218	1.902	1.408	3.863	
C-4	15	7500	1.988	1.408	3.875	
C-5	12	7480	1.878	1.248	3.760	
D-1	3*	2100	1.481	. 657		
D-2	10	5340	1.905	. 959	$3.2{ }^{\dagger}$	
D-3	15	7820	1.894	1.408	3.841	
D-4	12	7460	1.844	1.408	3.928	
D-5	14	8060	1.872	1.408	3.975	
D-6	11	7089	1.786	1.070	3.243	
E-1	15	7200	2.284	. 959	$3.2{ }^{\dagger}$	
E-2	12	7623	1.843	1.401	3.838	
E-3	13	7133	1.907	1.408	3.990	
E-4	12	8174	1.781	1.244	3.822	
E-5	15	7855	1.916	1.248	3.880	
F-1	17	9060	2.053	1.408	$3.2{ }^{\dagger}$	
F-2	13	6949	2.045	2.033	4.632	
* Fractional cycle   $\dagger$ Fixed initial condition						


TABLE D. 10   REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE I   nth Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, $\mathrm{V}^{2}$					
ReactorCycle	Cycle   Length   (Months on-line)	Cycle   Energy   (GWH)	Average Cycle Energy Cost (I\$1/MWH)	Incremental Cycle Energy Cost (\$/MWH)	Reload Enrichment (w/o U-235)
A-1	9*	5460	1.660	1.397	-
A-2	14	7206	1.994	1.905	4.101
A-3	12	7652	1.887	1.577	3.998
A-4	15	7406	1.974	1.228	3.626
A-5	12	6960	1.861	1.158	3.451
B-1	1*	710	1.735	. 795	-
B-2	12	7265	1.820	1.397	3.718**
B-3	15	8026	1.912	1.905	4.140
B-4	12	7280	1.822	1.092	3.479
B-5	12	7400	1.817	1.092	3.546
B-6	12	7220	1.842	1.158	3.620
C-1	$10^{\dagger}$	6473	1.817	1.312	$3.6{ }^{\dagger}$
C-2	14	7740	1.953	1.905	4.119
C-3	15	7960	1.998	1.905	4.243
C-4	12	7320	1.876	1.092	3.504
C-5	12	7042	1.892	1.158	3.465
D-1	3*	2057	1.486	1.045	-
D-2	15	8445	2.023	1.600	5.0**
D-3	12	7880	1.881	1.905	4.242
D-4	12	8076	1.765	1.055	3.465
D-5	12	7480	1.817	1.092	3.550
D-6	11	7225	1.813	1.144	3.651
E-1	17	8295	2.159	1.418	$3.2{ }^{\dagger}$
E-2	13	7120	1.959	1.905	4.230
E-3	12	6924	1.848	1.092	3.464
E-4	15	7584	1.895	1.185	3.533
F-1	16	8599	2.097	. 436	$3.2{ }^{\dagger}$
F-2	14	8174	2.035	1.158	5.0
* Fractional cycle   $\dagger$ Fixed initial condition   ** Short notice enrichment change ( $5.0 \mathrm{w} / \mathrm{o}$ U-235 was upper limit permitted by OKCORE).					


TABLE D. 11   REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE II   (48 Month Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)					
ReactorCycle	Cycle Length (Months on-line)	Cycle Energy (GWH)	Average   Cycle   Energy   Cost   (\|\$1/MWH)	Incremental Cycle   Energy Cost (\$/MWH)	Reload   Enrichment (w/o U-235)
$\begin{aligned} & \text { A-1 } \\ & \text { A-2 } \\ & \text { A-3 } \\ & \text { A-4 } \\ & \text { A-5 } \end{aligned}$	$\begin{aligned} & 9^{*} \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	4960   5740   5880   5840   5919	$\begin{aligned} & 1.752 \\ & 1.877 \\ & 1.948 \\ & 1.917 \\ & 1.887 \end{aligned}$	$\begin{aligned} & 0.632 \\ & 0.915 \\ & 1.227 \\ & 1.245 \\ & 1.339 \end{aligned}$	2.736   3.465   3.098   3.083
$\begin{aligned} & \text { B-1 } \\ & \text { B-2 } \\ & \text { B-3 } \\ & \text { B-4 } \\ & B-5 \end{aligned}$	$\begin{aligned} & 1^{*} \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 638 \\ 6500 \\ 6520 \\ 6420 \\ 6725 \end{array}$	$\begin{aligned} & 1.842 \\ & 1.819 \\ & 1.769 \\ & 1.836 \\ & 1.804 \end{aligned}$	$\begin{aligned} & 0.446 \\ & 0.630 \\ & 0.915 \\ & 1.227 \\ & 1.243 \end{aligned}$	$\begin{aligned} & 3 . \overline{4^{\dagger}} \\ & 3.005 \\ & 3.492 \\ & 3.402 \end{aligned}$
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{C}-2 \\ & \mathrm{C}-3 \\ & \mathrm{C}-4 \end{aligned}$	$\begin{aligned} & 10^{\dagger} \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5640 \\ & 6654 \\ & 5740 \\ & 5800 \end{aligned}$	$\begin{aligned} & 1.960 \\ & 1.803 \\ & 1.957 \\ & 1.922 \end{aligned}$	$\begin{aligned} & 0.632 \\ & 0.889 \\ & 1.229 \\ & 1.245 \end{aligned}$	$\begin{aligned} & \hline 3.6^{\dagger} \\ & 2.765 \\ & 3.431 \\ & 3.061 \end{aligned}$
$\begin{aligned} & \mathrm{D}-1 \\ & \mathrm{D}-2 \\ & \mathrm{D}-3 \\ & \mathrm{D}-4 \\ & \mathrm{D}-5 \end{aligned}$	$\begin{gathered} 3^{*} \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \end{gathered}$	2129   6349   5520   6614   6402	$\begin{aligned} & 1.457 \\ & 1.765 \\ & 1.857 \\ & 1.825 \\ & 1.819 \end{aligned}$	$\begin{aligned} & 0.442 \\ & 0.630 \\ & 0.917 \\ & 1.227 \\ & 1.243 \end{aligned}$	$\begin{aligned} & 3 . \overline{2}^{\dagger} \\ & 2.941 \\ & 3.494 \\ & 3.270 \end{aligned}$
$\begin{aligned} & \mathrm{E}-1 \\ & \mathrm{E}-2 \\ & \mathrm{E}-3 \\ & \mathrm{E}-4 \end{aligned}$	$\begin{array}{r} 9 \\ 10 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 3697 \\ & 5186 \\ & 5073 \\ & 5088 \end{aligned}$	$\begin{aligned} & 3.194 \\ & 2.073 \\ & 2.190 \\ & 2.099 \end{aligned}$	$\begin{aligned} & 0.632 \\ & 0.917 \\ & 1.627 \\ & 1.313 \end{aligned}$	$\begin{aligned} & 3.2^{\dagger} \\ & 1.5^{* *} \\ & 4.023 \\ & 3.152 \\ & \hline \end{aligned}$
F-1	15	7139	2.311	1.395	$3.2{ }^{\dagger}$
* Fractional cycle   $\dagger$ Fixed initial condition   ** $1.5 \mathrm{w} / \mathrm{o}$ U-235 was low					


TABLE D. 12   REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE II   (48 Month Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)					
ReactorCycle	Cycle Length (Months on-line)	Cycle   Energy (GWH)	Average Cycle Energy Cost (I\$1/MWH)	Incremental Cycle Energy Cost (\$/MWH)	Reload   Enrichment (w/o U-235)
$\begin{aligned} & \text { A-1 } \\ & \text { A-2 } \\ & \text { A-3 } \\ & \text { A-4 } \end{aligned}$	$\begin{gathered} 9^{*} \\ 12 \\ 12 \\ 12 \end{gathered}$	$\begin{aligned} & 5400 \\ & 6760 \\ & 7240 \\ & 7580 \end{aligned}$	$\begin{aligned} & 1.671 \\ & 1.920 \\ & 1.892 \\ & 1.884 \end{aligned}$	$\begin{aligned} & 0.924 \\ & 1.339 \\ & 1.474 \\ & 1.476 \\ & \hline \end{aligned}$	$\begin{aligned} & -7.710 \\ & 3.812 \\ & 3.941 \end{aligned}$
$\begin{aligned} & \mathrm{B}-1 \\ & \mathrm{~B}-2 \\ & \mathrm{~B}-3 \\ & \mathrm{~B}-4 \\ & \mathrm{~B}-5 \end{aligned}$	$\begin{aligned} & 1^{*} \\ & 10 \\ & 12 \\ & 15 \\ & 14 \end{aligned}$	$\begin{array}{r} 710 \\ 6580 \\ 7422 \\ 7480 \\ 8524 \end{array}$	$\begin{aligned} & 1.747 \\ & 1.795 \\ & 1.810 \\ & 1.936 \\ & 1.889 \end{aligned}$	$\begin{aligned} & 0.614 \\ & 0.924 \\ & 1.339 \\ & 1.478 \\ & 1.476 \end{aligned}$	$\begin{aligned} & 3.4^{\dagger} \\ & 3.674 \\ & 3.888 \\ & 4.374 \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{C}-2 \\ & \mathrm{C}-3 \\ & \mathrm{C}-4 \end{aligned}$	$\begin{aligned} & 10^{\dagger} \\ & 12 \\ & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 6220 \\ & 7420 \\ & 7280 \\ & 8129 \end{aligned}$	$\begin{aligned} & 1.855 \\ & 1.865 \\ & 1.902 \\ & 1.999 \end{aligned}$	$\begin{aligned} & 0.924 \\ & 1.339 \\ & 1.474 \\ & 1.674 \end{aligned}$	$\begin{aligned} & 3.6^{\dagger} \\ & 3.678 \\ & 3.912 \\ & 4.346 \end{aligned}$
$\begin{aligned} & \mathrm{D}-1 \\ & \mathrm{D}-2 \\ & \mathrm{D}-3 \\ & \mathrm{D}-4 \end{aligned}$	$\begin{gathered} 3^{*} \\ 10 \\ 15 \\ 12 \end{gathered}$	$\begin{aligned} & 2057 \\ & 5308 \\ & 7820 \\ & 7440 \end{aligned}$	$\begin{aligned} & 1.494 \\ & 1.914 \\ & 1.892 \\ & 1.816 \end{aligned}$	$\begin{aligned} & 0.636 \\ & 1.043 \\ & 1.474 \\ & 1.476 \end{aligned}$	$\begin{aligned} & 3.2^{\dagger} \\ & 3.802 \\ & 3.944 \end{aligned}$
$\begin{aligned} & \mathrm{E}-1 \\ & \mathrm{E}-2 \\ & \mathrm{E}-3 \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 7080 \\ & 7609 \\ & 6940 \end{aligned}$	$\begin{aligned} & 2.308 \\ & 1.838 \\ & 1.919 \end{aligned}$	$\begin{aligned} & 0.926 \\ & 1.374 \\ & 1.478 \end{aligned}$	$\begin{aligned} & 3.2^{\dagger} \\ & 3.743 \\ & 3.912 \end{aligned}$
F-1	17	8834	2.084	1.258	$3.2{ }^{\dagger}$
* Fractional cycle					


TABLE D. 13   REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE II   (48 Month Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)					
ReactorCycle	Cycle Length (Month on-line)	Cycle   Energy (GWH)	Average Cycle Energy Cost (I\$1/MWH)	Incremental Cycle Energy Cost (\$/MWH)	Reload Enrichment (w/o U-235)
$\begin{aligned} & \text { A-1 } \\ & \text { A-2 } \\ & \text { A-3 } \\ & \text { A-4 } \end{aligned}$	$\begin{gathered} 9^{*} \\ 14 \\ 12 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 5560 \\ & 7120 \\ & 7704 \\ & 8129 \end{aligned}$	$\begin{aligned} & 1.647 \\ & 2.001 \\ & 1.882 \\ & 1.976 \end{aligned}$	$\begin{aligned} & 1.309 \\ & 1.837 \\ & 1.601 \\ & 1.574 \end{aligned}$	$\begin{gathered} - \\ 4.105 \\ 4.009 \\ 4.182 \\ \hline \end{gathered}$
$\begin{aligned} & \mathrm{B}-1 \\ & \mathrm{~B}-2 \\ & \mathrm{~B}-3 \\ & \mathrm{~B}-4 \end{aligned}$	$\begin{aligned} & 1^{*} \\ & 12 \\ & 15 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{r} 710 \\ 7260 \\ 7980 \\ 7392 \\ \hline \end{array}$	$\begin{aligned} & 1.735 \\ & 1.820 \\ & 1.912 \\ & 1.786 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.772 \\ & 1.311 \\ & 1.837 \\ & 1.302 \\ & \hline \end{aligned}$	$\begin{aligned} & -\overline{1} \\ & 3.715^{* *} \\ & 4.105 \\ & 3.561 \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{C}-2 \\ & \mathrm{C}-3 \\ & \mathrm{C}-4 \end{aligned}$	$\begin{aligned} & 10^{\dagger} \\ & 14 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 6609 \\ & 7560 \\ & 7940 \\ & 7004 \end{aligned}$	$\begin{aligned} & 1.799 \\ & 1.964 \\ & 1.992 \\ & 1.883 \end{aligned}$	$\begin{aligned} & 1.240 \\ & 1.837 \\ & 1.833 \\ & 1.336 \end{aligned}$	$\begin{aligned} & 3.6^{\dagger} \\ & 4.081 \\ & 4.189 \\ & 3.311 \end{aligned}$
$\begin{aligned} & \hline \mathrm{D}-1 \\ & \mathrm{D}-2 \\ & \mathrm{D}-3 \\ & \mathrm{D}-4 \end{aligned}$	$\begin{gathered} 3^{*} \\ 15 \\ 12 \\ 12 \end{gathered}$	$\begin{aligned} & 2057 \\ & 8373 \\ & 7865 \\ & 8228 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.487 \\ & 2.032 \\ & 1.874 \\ & 1.764 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.970 \\ & 1.492 \\ & 1.833 \\ & 1.290 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 . \overline{0^{* *}} \\ & 4.175 \\ & 3.584 \end{aligned}$
$\begin{aligned} & \mathrm{E}-1 \\ & \mathrm{E}-2 \\ & \mathrm{E}-3 \end{aligned}$	$\begin{aligned} & 17 \\ & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 8405 \\ & 6960 \\ & 7020 \end{aligned}$	$\begin{aligned} & 2.142 \\ & 1.966 \\ & 1.843 \end{aligned}$	$\begin{aligned} & 1.313 \\ & 1.835 \\ & 1.302 \end{aligned}$	$\begin{aligned} & 3.2^{\dagger} \\ & 4.177 \\ & 3.508 \\ & \hline \end{aligned}$
F-1	16	7634	2.238	1.242	$3.2{ }^{\dagger}$
* Fractional cycle   $\dagger$ Fixed initial condition   ** Short-notice enrichment change ( $5.0 \mathrm{w} / \mathrm{o}$ U-235 was upper limit permitted by OKCORE).					

TABLE D. 14
REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE III
(48 Month Horizon, 0\% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)


* Fractional cycle
$\dagger$ Fixed initial condition
** 1.5 w/o U-235 was lower limit permitted by OKCORE.

TABLE D. 15   REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE III   (48 Month Horizon, 0\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)					
ReactorCycle	Cycle Length (Months on-line)	Cycle Energy (GWH)	Average   Cycle   Energy   Cost   (I\$I/MWH)	Incremental   Cycle   Energy   Cost (\$/MWH)	Reload Enrichment (w/o U-235)
$\begin{aligned} & \text { A-1 } \\ & \text { A-2 } \\ & \text { A-3 } \\ & \text { A-4 } \end{aligned}$	$\begin{gathered} 9^{*} \\ 12 \\ 12 \\ 12 \end{gathered}$	$\begin{aligned} & 5342 \\ & 6702 \\ & 7300 \\ & 7600 \end{aligned}$	$\begin{aligned} & 1.272 \\ & 1.271 \\ & 1.269 \\ & 1.260 \end{aligned}$	$\begin{aligned} & 0.756 \\ & 0.981 \\ & 1.227 \\ & 1.367 \end{aligned}$	$\begin{array}{r} - \\ 3.628 \\ 3.907 \\ 3.949 \end{array}$
$\begin{aligned} & \text { B-1 } \\ & \text { B-2 } \\ & \text { B-3 } \\ & \text { B-4 } \\ & \text { B-5 } \end{aligned}$	$\begin{aligned} & 1^{*} \\ & 10 \\ & 12 \\ & 15 \\ & 14 \end{aligned}$	$\begin{array}{r} 710 \\ 6816 \\ 7300 \\ 7780 \\ 8582 \end{array}$	$\begin{aligned} & 1.239 \\ & 1.221 \\ & 1.220 \\ & 1.224 \\ & 1.233 \end{aligned}$	$\begin{aligned} & 0.566 \\ & 0.698 \\ & 0.981 \\ & 1.369 \\ & 1.350 \end{aligned}$	$\begin{aligned} & 3 . \overline{4^{\dagger}} \\ & 3.746 \\ & 4.022 \\ & 4.367 \end{aligned}$
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{C}-2 \\ & \mathrm{C}-3 \\ & \mathrm{C}-4 \end{aligned}$	$\begin{aligned} & 10^{\dagger} \\ & 12 \\ & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 6080 \\ & 7600 \\ & 7141 \\ & 8129 \end{aligned}$	$\begin{aligned} & 1.308 \\ & 1.264 \\ & 1.261 \\ & 1.279 \end{aligned}$	$\begin{aligned} & 0.756 \\ & 0.979 \\ & 1.229 \\ & 1.516 \end{aligned}$	$\begin{aligned} & 3.6^{\dagger} \\ & 3.706 \\ & 3.838 \\ & 4.354 \end{aligned}$
$\begin{aligned} & D-1 \\ & D-2 \\ & D-3 \\ & D-4 \end{aligned}$	$\begin{gathered} 3^{*} \\ 10 \\ 15 \\ 12 \end{gathered}$	$\begin{aligned} & 2057 \\ & 5308 \\ & 7980 \\ & 7487 \end{aligned}$	$\begin{aligned} & 1.152 \\ & 1.246 \\ & 1.239 \\ & 1.230 \end{aligned}$	$\begin{aligned} & 0.665 \\ & 0.927 \\ & 1.227 \\ & 1.367 \end{aligned}$	$\begin{aligned} & 3 . \overline{2^{\dagger}} \\ & 3.917 \\ & 3.948 \end{aligned}$
$\begin{aligned} & E-1 \\ & E-2 \\ & E-3 \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 7042 \\ & 7609 \\ & 6980 \end{aligned}$	$\begin{aligned} & 1.664 \\ & 1.280 \\ & 1.235 \end{aligned}$	$\begin{aligned} & 0.798 \\ & 1.094 \\ & 1.369 \end{aligned}$	$\begin{aligned} & 3.2^{\dagger} \\ & 3.716 \\ & 3.963 \end{aligned}$
F-1	17	8288	1.566	1.367	$3.2{ }^{\dagger}$
* Fractional cycle   $\dagger$ Fixed initial condition					

TABLE D. 16
REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE III
(48 Month Horizon, 0\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)


* Fractional cycle
$\dagger$ Fixed initial condition
** Short-notice enrichment change ( $5.0 \mathrm{w} / \mathrm{o}$ U-235 was upper limit permitted by QKCORE).

TABLE D. 17   reactor-cycle results for strategy 1 in case iv   (48 Month Horizon, 12\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)					
ReactorCycle	Cycle Length (Months on-line)	Cycle Energy (GWH)	Average Cycle Energy Cost ( $\$$ \$1/MWH)	Incrementa Cycle Energy Cost (\$/MWH)	Reload Enrichment (w/o U-235)
A-1	$9 *$	4840	2.099	0.569	-
A. 2	10	5780	2.284	0.954	2.690
A-3	10	5620	2.421	1.314	3.343
A-4	10	6002	2.348	1.295	3.274
A. 5	10	5919	2.293	1.336	3.013
B-1	1*	638	2.250	0.421	
B-2	10	6320	2.271	0.567	$3.4{ }^{\dagger}$
B-3	10	6366	2.151	0.954	2.803
B-4	10	6340	2.286	1.312	3.605
B-5	10	6749	2.208	1.263	3.433
C-1	$10^{\dagger}$	5420	2.463	0.569	$3.6{ }^{\dagger}$
C-2	10	6654	2.160	0.882	2.622
C-3	10	5546	2.458	1.314	3.451
C-4	10	6080	2.348	1.293	3.282
D. 1	3*	2129	1.694	0.362	
D-2	10	6368	2.153	0.567	$3.2{ }^{\dagger}$
D-3	10	5440	2.303	0.958	2.901
D-4	10	6540	2.230	1.297	3.465
D. 5	10	6544	2.220	1.262	3.387
E-1	9	4198	3.499	0.567	$3.2{ }^{\dagger}$
E-2	10	5380	2.353	0.956	1.5**
E-3	10	5073	2.750	1.923	4.207
E-4	10	5088	2.596	1.312	3.065
F-1	15	7139	2.770	1.336	$3.2{ }^{\dagger}$
* Fractional cycle   $\dagger$ Fixed initial condition   ** 1.5 w/o U-235 was lower limit permitted by OKCORE.					



TABLE D. 19   REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE IV   (48 Month Horizon, 12\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)					
ReactorCycle	Cycle   Length (Months on-line)	Cycle Energy (GWH)	Average Cycle Energy Cost (I\$I/MWH)	Incremental   Cycle   Energy   Cost   (\$/MWH)	Reload Enrichment (w/o U-235)
A-1	9*	5574	1.924	1.409	-
A-2	14	7080	2.520	2.066	4.083
A. 3	12	7704	2.326	1.710	4.010
A-4	15	8129	2.492	1.620	4.191
B-1	1*	710	2.097	0.805	-
B-2	12	7100	2.256	1.451	3.603**
B-3	15	7956	2.410	2.066	4.132
B-4	12	7320	2.209	1.332	3.541
C-1	$10^{\dagger}$	6609	2.170	1.350	$3.6{ }^{\dagger}$
C-2	14	7560	2.459	2.066	4.081
C-3	15	8029	2.514	1.995	4.264
C-4	12	7004	2.346	1.370	3.304
D-1	3*	2057	1.733	0.955	-
D-2	15	8373	2.533	1.558	5.0**
D-3	12	7880	2.327	1.995	4.187
D-4	12	8228	2.175	1.317	3.582
E-1	17	8551	2.531	1.451	$3.2{ }^{\dagger}$
E-2	13	6920	2.469	2.064	4.245
E-3	12	7092	2.286	1.332	3.518
F-1	16	7634	2.686	1.166	$3.2{ }^{\dagger}$
* Fractional cycle   $\dagger$ Fixed initial condition   ** Short-notice enrichment change ( $5.0 \mathrm{w} / \mathrm{o}$ U-235 was upper limit permitted by OKCORE).					

TABLE D. 20
REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE V
(48 Month Horizon, 7\% P.V. Rate, Low Nuclear Unit Costs, No Shape Constraints)

ReactorCycle	Cycle Length (Months on-line)	Cycle   Energy   (GWH)	Average   Cycle   Energy   Cost   (I\$I/MWH)	Incremental   Cycle   Energy   Cost   (\$/MWH)	Reload Enrichment (w/o U-235)
A-1	9*	4740	1.302	0.426	-
A-2	10	5800	1.379	0.627	2.642
A-3	10	5706	1.410	0.875	3.462
A-4	10	6020	1.347	0.856	3.246
A-5	10	5919	1.325	0.930	2.986
B-1	$1^{*}$	680	1.007	0.320	-
B-2	10	6320	1.325	0.424	$3.4{ }^{\dagger}$
B-3	10	6477	1.269	0.627	2.884
B-4	10	6260	1.305	0.873	3.490
B-5	10	6749	1.274	0.846	3.453
C-1	$10^{\dagger}$	5440	1.416	0.426	$3.6{ }^{\dagger}$
C-2	10	6654	1.289	0.590	2.635
C-3	10	5540	1.399	0.875	3.432
C-4	10	6080	1.348	0.854	3.287
D-1	3*	2087	0.987	0.320	-
D-2	10	6246	1.286	0.424	$3.2{ }^{\dagger}$
D. 3	10	5509	1.337	0.665	2.865
D-4	10	6560	1.285	0.858	3.532
D-5	10	6506	1.282	0.852	3.343
E-1	9	4400	2.081	0.424	$3.2{ }^{\dagger}$
E-2	10	5180	1.454	0.665	1.5**
E-3	10	5073	1.525	1.226	4.168
E-4	10	5088	1.472	0.877	3.072
F-1	15	7139	1.662	0.989	$3.2{ }^{\dagger}$
* Fractional cycle					
$\dagger$ Fixed initial condition					
** 1.5 w/o U-235 was lower limit permitted by OKCORE.					


TABLE D. 22
REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE $V$
(48 Month Horizon, 7\% P.V. Rate, Low Nuclear Unit Costs, No Shape Constraints)

ReactorCycle	Cycle Length (Months on-line)	Cycle Energy (GWH)	Average   Cycle   Energy   Cost   (\|\$1/MWH)	Incremental   Cycle   Energy   Cost   (\$/MWH)	Reload Enrichment (w/o U-235)
A-1	9*	5560	1.192	0.930	-
A-2	14	7100	1.468	1.306	4.089
A-3	12	7704	1.360	1.117	4.013
A-4	15	8129	1.422	1.108	4.187
B-1	1*	710	0.975	0.548	-
B-2	12	7200	1.310	0.932	3.673**
B-3	15	7960	1.384	1.306	4.106
B-4	12	7432	1.275	0.889	3.601
C-1	$10^{\dagger}$	6609	1.269	0.883	$3.6{ }^{\dagger}$
C-2	14	7560	1.415	1.306	4.081
C-3	15	8020	1.431	1.302	4.256
C-4	12	7004	1.357	0.953	3.304
D-1	3*	2057	0.998	0.684	-
D-2	15	8373	1.457	1.051	5.0**
D-3	12	7865	1.359	1.302	4.175
D-4	12	8228	1.268	0.876	3.584
E-1	17	8465	1.532	0.932	$3.2{ }^{\dagger}$
E-2	13	6920	1.418	1.304	4.186
E-3	12	6980	1.316	0.889	3.466
F-1	16	7634	1.609	0.875	$3.2{ }^{\dagger}$
* Fractional cycle   $\dagger$ Fixed initial condition   ** Short-notice enrichment change ( $5.0 \mathrm{w} / \mathrm{o} \mathrm{U}-235$ was upper limit permitted by OKCORE).					

TABLE D. 23
REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE VI
(48 Month Horizon, 7\% P.V. Rate,
High Nuclear Unit Costs, No Shape Constraints)

ReactorCycle	Cycle Length (Months on-line)	Cycle Energy (GWH)	Average   Cycle   Energy   Cost   ( $1 \$ 1 / \mathrm{MWH}$ )	Incremental   Cycle   Energy Cost (\$/MWH)	Reload Enrichment (w/o U-235)
A-1	9*	5080	2.206	0.837	-
A-2	10	5766	2.374	1.199	2.824
A-3	10	5840	2.484	1.552	3.348
A-4	10	5840	2.484	1.653	3.126
A-5	10	5968	2.446	1.741	3.145
B-1	1*	638	2.650	0.636	-
B-2	10	6769	2.288	0.835	$3.4{ }^{\dagger}$
B-3	10	6260	2.289	1.199	3.002
B-4	10	6554	2.369	1.552	3.526
B-5	10	6720	2.336	1.651	3.394
C-1	$10^{\dagger}$	5680	2.522	0.837	$3.6{ }^{\dagger}$
C-2	10	6654	2.315	1.155	2.792
C-3	10	5720	2.529	1.554	3.389
C-4	10	5707	2.495	1.653	3.011
D-1	3*	2129	1.936	0.588	-
D. 2	10	6349	2.255	0.835	$3.2{ }^{\dagger}$
D. 3	10	5560	2.373	1.201	2.966
D-4	10	6540	2.369	1.552	3.428
D. 5	10	6500	2.355	1.651	3.354
E-1	9	3268	4.346	0.884	$3.2{ }^{\dagger}$
E-2	10	5380	2.667	1.201	1.5**
E-3	10	5073	2.865	2.106	4.012
E. 4	10	5039	2.734	1.742	3.138
F-1	15	7139	2.959	1.802	$3.2{ }^{\dagger}$
* Fractional cycle   $t$ Fixed initial condition   ** 1.5 w/o U- 235 was lower limit permitted by OKCORE					

## TABLE D. 24

REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE VI
(48 Month Horizon, 7\% P.V. Rate,
High Nuclear Unit Costs, No Shape Constraints)

ReactorCycle	Cycle Length (Months on-line)	Cycle Energy (GWH)	Average Cycle Energy Cost (I\$1/MWH)	Incremental   Cycle   Energy Cost (\$/MWH)	Reload   Enrichment (w/o U.235)
A. 1	9*	5360	2.140	1.157	-
A. 2	12	6700	2.430	1.698	3.639
A. 3	12	7320	2.426	1.924	3.91
A-4	12	7560	2.426	1.928	3.914
B-1	1*	710	2.508	0.747	
B-2	10	6660	2.289	1.157	3.4
B-3	12	7420	2.327	1.698	3.726
B-4	15	7480	2.478	1.930	3.848
B-5	14	8566	2.432	1.927	4.407
C-1	$10^{\dagger}$	6218	2.400	1.157	$3.6{ }^{\dagger}$
C-2	12	7482	2.392	1.696	3.722
C-3	12	7257	2.448	1.926	3.878
C-4	15	8129	2.564	2.175	4.342
D-1	3*	2057	1.985	0.820	$\bar{\square}{ }^{\dagger}$
D. 2	10	5308	2.440	1.343	3.2
D-3	15	7841	2.423	1.924	3.817
D. 4	12	7400	2.345	1.928	3.910
E. 1	15	7042	2.966	1.208	$3.2{ }^{\dagger}$
E-2	12	7609	2.357	1.765	3.716
E-3	13	6880	2.471	1.930	3.888
F. 1	17	8834	2.673	1.618	$3.2{ }^{\dagger}$
* Fractional cycle   $\dagger$ Fixed initial condition					


TABLE D. 25   REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE VI   (48) Month Horizon, 7\% P.V. Rate, High Nuclear Unit Costs, No Shape Constraints)					
ReactorCycle	Cycle Length (Month on-line)	Cycle   Energy   (GWH)	Average Cycle Energy Cost (I\$I/MWH)	Incremental Cycle Energy Cost (\$/MWH)	Reload Enrichment (w/o U-235)
$\begin{aligned} & \text { A-1 } \\ & \text { A-2 } \\ & \text { A-3 } \\ & \text { A-4 } \end{aligned}$	$\begin{gathered} 9^{*} \\ 14 \\ 12 \\ 15 \end{gathered}$	$\begin{aligned} & 5560 \\ & 7120 \\ & 7704 \\ & 8129 \end{aligned}$	$\begin{aligned} & 2.102 \\ & 2.534 \\ & 2.404 \\ & 2.530 \end{aligned}$	$\begin{aligned} & 1.683 \\ & 2.364 \\ & 2.089 \\ & 2.038 \end{aligned}$	$\begin{array}{r} -\overline{1} \\ 4.105 \\ 4.009 \\ 4.182 \end{array}$
$\begin{aligned} & \mathrm{B}-1 \\ & \mathrm{~B}-2 \\ & \mathrm{~B}-3 \\ & \mathrm{~B}-4 \end{aligned}$	$\begin{aligned} & 1^{*} \\ & 12 \\ & 15 \\ & 12 \end{aligned}$	$\begin{array}{r} 710 \\ 7320 \\ 8000 \\ 7380 \\ \hline \end{array}$	$\begin{aligned} & 2.495 \\ & 2.330 \\ & 2.438 \\ & 2.296 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.993 \\ & 1.685 \\ & 2.364 \\ & 1.718 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.757^{* *} \\ & 4.105 \\ & 3.539 \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{C}-2 \\ & \mathrm{C}-3 \\ & \mathrm{C}-4 \end{aligned}$	$\begin{aligned} & 10^{\dagger} \\ & 14 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 6609 \\ & 7560 \\ & 7900 \\ & 7004 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.329 \\ & 2.513 \\ & 2.552 \\ & 2.410 \end{aligned}$	$\begin{aligned} & 1.597 \\ & 2.364 \\ & 2.362 \\ & 1.720 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.6^{\dagger} \\ & 4.081 \\ & 4.156 \\ & 3.316 \end{aligned}$
$\begin{aligned} & \mathrm{D}-1 \\ & \mathrm{D}-2 \\ & \mathrm{D}-3 \\ & \mathrm{D}-4 \end{aligned}$	$\begin{gathered} 3^{*} \\ 15 \\ 12 \\ 12 \end{gathered}$	$\begin{aligned} & 2057 \\ & 8373 \\ & 7860 \\ & 8228 \end{aligned}$	$\begin{aligned} & 1.976 \\ & 2.606 \\ & 2.389 \\ & 2.260 \end{aligned}$	$\begin{aligned} & 1.231 \\ & 1.897 \\ & 2.362 \\ & 1.706 \end{aligned}$	$\begin{array}{r} -\overline{-} \\ 5.0^{* *} \\ 4.171 \\ 3.585 \end{array}$
$\begin{aligned} & \mathrm{E}-1 \\ & \mathrm{E}-2 \\ & \mathrm{E}-3 \end{aligned}$	$\begin{aligned} & 17 \\ & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 8345 \\ & 6985 \\ & 7032 \end{aligned}$	$\begin{aligned} & 2.757 \\ & 2.510 \\ & 2.372 \end{aligned}$	$\begin{aligned} & 1.687 \\ & 2.364 \\ & 1.718 \end{aligned}$	$\begin{aligned} & \hline 3.2^{\dagger} \\ & 4.156 \\ & 3.532 \end{aligned}$
F-1	16	7634	2.868	1.609	$3 .{ }^{\dagger}$
* Fractional cycle   $\dagger$ Fixed initial condition   ** Short-notice enrichment change ( $5.0 \mathrm{w} / \mathrm{o}$ U-235 was upper limit permitted by QKCORE)					

TABLE D. 26

## REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE 1 AT END OF FIRST SHAPE ITERATION

(72 Month Horizon, 7\% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

ReactorCycle	Cycle Length (Months on-line)	Cycle Energy (GWH)	Average   Cycle   Energy Cost (I\$I/MWH)	Incremental   Cycle   Energy Cost (\$/MWH)	Reload Enrichment (w/o U-235)
A-1	9*	5280	1.703	0.682	-
A-2	10	5660	1.896	0.997	2.875
A-3	10	5680	1.937	1.244	3.160
A-4	10	5690	1.937	1.032	3.107
A. 5	10	5700	1.914	0.918	3.033
A. 6	10	5740	1.928	1.102	3.168
A. 7	10	5933	1.908	1.179	3.204
B-1	$1^{*}$	638	1.845	0.495	$\overline{+}$
B-2	10	6420	1.832	0.682	$3.4{ }^{\dagger}$
B-3	10	6420	1.772	0.995	2.895
B-4	10	6200	1.856	1.242	3.427
B-5	10	6316	1.823	0.990	3.190
B-6	10	6220	1.809	0.916	3.109
B-7	10	6520	1.830	1.100	3.470
C-1	$10^{\dagger}$	6200	1.872	0.682	$3.6{ }^{\dagger}$
C-2	10	6140	1.847	0.995	2.798
C-3	10	5740	1.944	1.244	3.269
C-4	10	5620	1.943	0.992	3.025
C-5	10	5676	1.913	0.918	3.001
C-6	10	5700	1.941	1.102	3.212
D-1	3*	2129	1.465	0.454	- +
D-2	10	5900	1.825	0.684	3.2
D.3	10	6080	1.815	0.997	3.042
D-4	10	6419	1.829	1.240	3.394
D. 5	10	6260	1.822	0.990	3.182
D.6	10	6020	1.824	0.918	3.000
D. 7	10	6141	1.850	1.100	3.260
E-1	9	3346	3.405	0.686	$3.2{ }^{\dagger}$
E-2	10	5320	2.084	0.997	1.5**
E-3	10	5073	2.185	1.678	4.004
E-4	10	4980	2.099	0.992	3.102
E-5	10	6962	1.721	0.872	2.753
E-6	10	5316	1.960	1.113	3.280
F-1	15	8057	2.146	0.813	$3.2{ }^{\dagger}$
F-2	10	6260	1.859	1.100	3.445
F-3	10	5857	1.836	1.125	3.014
* Fractional cycle   $\dagger$ Fixed initial condition   ** $1.5 \mathrm{w} / \mathrm{o}$ U-235 was lower limit permitted by OKCORE					


TABLE D. 27   REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE 1 AT END OF FIRST SHAPE ITERATION   (72 Month Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)					
ReactorCycle	Cycle Length (Months on-line)	Cycle Energy (GWH)	Average   Cycle   Energy Cost (\|\$1/MWH)	Incremental   Cycle   Energy   Cost   (\$MWH)	Reload Enrichment (w/o U-235)
A-1	9*	5191	1.702	0.967	-
A-2	12	6780	1.907	1.347	3.583
A-3	12	7220	1.904	1.380	3.907
A-4	12	7540	1.883	1.380	3.910
A. 5	15	7660	1.979	1.380	3.890
A-6	12	7218	1.850	1.159	3.567
B-1	1 *	667	1.803	0.666	-
B-2	10	6400	1.822	0.967	$3.4{ }^{\text {t }}$
B-3	12	7602	1.797	1.347	3.661
B-4	15	7500	1.942	1.382	3.966
B-5	14	8021	1.871	1.380	3.950
B-6	12	7860	1.808	1.205	3.786
C-1	$10^{\dagger}$	6300	1.845	0.967	$3.6{ }^{\dagger}$
C-2	12	7220	1.874	1.347	3.591
C-3	12	7140	1.903	1.380	3.816
C-4	15	7440	1.990	1.382	3.854
C-5	12	7513	1.880	1.264	3.807
D-1	3*	2100	1.478	0.666	-
D. 2	10	5480	1.882	0.969	$3.2{ }^{\dagger}$
D-3	15	7640	1.905	1.382	3.811
D-4	12	7460	1.840	1.380	3.896
D-5	14	7980	1.873	1.380	3.943
D-6	11	7238	1.784	1.079	3.361
E-1	15	7217	2.281	0.969	$3.2{ }^{\dagger}$
E-2	12	7609	1.844	1.375	3.840
E-3	13	7100	1.906	1.382	3.959
E-4	12	8240	1.781	1.266	3.878
E-5	15	7940	1.916	1.262	3.936
F-1	17	9340	2.016	1.378	$3.2{ }^{\dagger}$
F-2	13	6740	2.067	2.001	4.636
* Fractional cycle   $\dagger$ Fixed initial condition					


TABLE D. 28   REACTOR-RECYCLE RESULTS FOR STRATEGY 3 IN CASE I AT END OF FIRST SHAPE ITERATION   (72 Month Horizon, 7\% P.V. Rate, Reference Nuclear Unit Costs, No Shape Constraints)					
ReactorCycle	Cycle Length (Months on-line)	Cycle   Energy   (GWH)	Average   Cycle   Energy   Cost   (I\$/MWH)	Incremental   Cycle   Energy   Cost   (\$/MWH)	Reload   Enrichment   (w/o U-235)
A. 1	9*	5603	1.642	1.322	-
A-2	14	7060	2.006	1.853	4.088
A-3	12	7704	1.883	1.630	4.001
A-4	15	7275	1.978	1.196	3.543
A-5	12	6960	1.865	1.160	3.490
B-1	1*	710	1.735	0.814	-
B-2	12	7260	1.820	1.397	3.715**
B-3	15	7980	1.911	1.853	4.105
B-4	12	7305	1.820	1.101	3.502
B-5	12	7440	1.816	1.101	3.574
B-6	12	7267	1.839	1.160	3.635
C-1	$10^{\dagger}$	6580	1.803	1.322	$3.6{ }^{\dagger}$
C-2	14	7580	1.961	1.853	4.074
C-3	15	7960	1.993	1.849	4.217
C-4	12	7320	1.877	1.101	3.528
C-5	12	7040	1.892	1.160	3.464
D-1	3*	2057	1.487	1.008	-
D-2	15	8373	2.032	1.537	5.0**
D-3	12	7885	1.874	1.849	4.191
D-4	12	8200	1.763	1.099	3.563
D-5	12	7540	1.813	1.101	3.564
D-6	11	7225	1.808	1.134	3.616
E-1	17	8391	2.144	1.399	$3.2{ }^{\dagger}$
E-2	13	6960	1.964	1.851	4.168
E-3	12	6980	1.843	1.101	3.485
E-4	15	7519	1.897	1.170	3.504
F-1	16	8712	2.081	0.436	$3.2{ }^{\dagger}$
F-2	14	8082	2.043	1.160	5.0
* Fractional cycle   $\dagger$ Fixed initial condition   ** Short-notice enrichment change ( $5.0 \mathrm{w} / \mathrm{o}$ U-235 was upper limit permitted by OKCORE).					

## appendix E

SYSINT

## E. 1 SYSINT Discussion

## E.1.1 Introduction

SYSINT is a computerized version of the SYStem INTegration Model (SIM) discussed in Chapter 3. A summary of SYSINT characteristics was presented in Section 3.6.

SYSINT performs (1) the Booth-Baleriaux probabilistic utility system simulation for each time period in the planning horizon, (2) estimates all of the required cost components and, (3) outputs data for SYSOPT, the computerized SYStem OPTimization Model (SOM) of Chapter 4 and Appendix F.

## E.1.2 Code Structure and Mode of Operation

Table E.l presents a summary of SYSINT subroutine information while Figure E.l portrays the general sequence of operations occurring in a SYSINT production run. (Table E. 2 presents information relative to possible error messages printed by subroutine ERRMSG.)

The input to SYSINT is modularized into three separate datasets to permit maximum flexibility in changing parameters with a minimum number of input cards: strategy data (alternative maintenance schedules) change often, period data (e.g., load forecasts and fossil fuel costs) less often, unit data (heat rates) seldom.

Table E.l
Summary of SYSINT Subroutines

Name	Called   SYSINT   (Main)	Calls	Purpose
BLOCK DATA	SUPSIM   STRTIM	Main Program   Prints Title	
SUPSIM   (QUIT)	SYSINT	BASIC   PERIOD   STRATG   PRESIM   PUNCHR   ERRMSG	Initializes data in COMMON areas   CMPTIM
ERASE			

Table E.l--Continued

Name	$\begin{gathered} \text { Called } \\ \text { By } \\ \hline \end{gathered}$	Calls	Purpose
STRATG	SUPS IM	INNDEX   ERRMSG   ERASE	Reads refueling and maintenance strategy input
PRESIM	SUPS IM	NUS CAL   LDGORD   SYSGEN   GWHNRG   PUNCHR   CMPTIM   ERASE	Performs pre-simulation data manipulation for each period
NUSCAL	PRESIM	GWHNRG ERRMSG	Changes spacing of $P R O B$ from that determined by input PKMW to DM
LIFGORD	PRES IM	INNDEX   COMPRS   RETMRG   MERGER   ERRMSG   ERASE	Optimizes loading order according to NORDOP and encodes order as 1000*NPT + INDEX

Table E.l--Continued

Name	$\begin{gathered} \text { Called } \\ \text { By } \\ \hline \end{gathered}$	Calls	Purpose
COMPRS   (RETMRG)	LDGORD	INNDEX   ERRMSG   ERASE	Performs STATUS vs. IDNO check and then compresses and transfers NORDER into NTEMP;   Alters incremental cost curves and optimizes startup order;   Has ENTRY RETMRG to return incremental cost curves to original values.
MERGER	LDGORD	ERRMSG	Merges newly started plant increments with those of previously started plants
SYSGEN	PRES IM	SUBPLT   GWHNRG   ADDPLT   PROBX   SUSDNO   PUNCHR   ERRMSG   ERASE	Supervises actual simulation; Calculates costs, etc.; Prints period output.
SUBPLT	SYSGEN	ERRMSG	Subtracts outages of plant-of interest from PROB
GWHNRG	PRESIM NUSCAL SYSGEN	------	Calculates energy under section of PROB

Table E.l--Continued

| Name | Called <br> By | Calls <br> ADDPLT | SYSGEN |
| :--- | :--- | :--- | :--- |$\quad$| ERRMSG |
| :--- |$\quad$| Adds outages of plant-of-interest into PROB |
| :--- |

Table E.l--Continued

Name	$\begin{gathered} \text { Called } \\ \quad \mathrm{By} \\ \hline \end{gathered}$	Calls	Purpose
CMPTIM	SYS INT	WHEN*	Calls MIT internal clock routines to monitor
(STRTIM)	SUPS IM	TIMING*	execution time;
(DAYTIM)	PRES IM		Prints subroutine-to-subroutine transfer times;
	PUNCHR		Has ENTRY STRTIM to start clock and ENTRY DAYTIM to print calendar date and time.
ERASE	SUPS IM	------	MIT Assembler Language program that sets arrays
	PRPNDX		to zeroes rapidly
	StRATG		
	PRESIM		
	LDGORD		
	COMPRS		
	SYSGEN		

Figure E. 1



## E.1.3 SYSINT-to-SYSOPT Output Data Transfer

SYSINT-to-SYSOPT output can be obtained in either disk, magnetic tape or punched card format. All are in card image form with LRECL=80. Table E. 3 summarizes the control cards and output modes.

Figure E. 2 portrays accumulation of SYSINT strategy output during a single CALC step (see Section E.3, Figure E.5) in the computer run. After terminating the CALC step, the output must be separated by a STORE step or by hand for input into SYSOPT. As an example of the volume of output data involved, each of the three strategies of Chapter 5 (72 time periods each) produced 2164 punched cards. Figure E. 3 presents the punched output of the sample SYSINT run shown in Figure E. 5 of Section E.3.

Each strategy output deck begins with "./ADD NAME=" and "---BEGIN" cards and ends with a "---ABORT" or "---END" card followed by two blank cards. The ADD NAME card is used as input to the IBM utility IEBUPDTE (3) in the STORE step. [The IBM utility IEBPTPCH, used for printing and/or punching datasets in the PUNCH step, is also detailed in (3).] The ABORT card signifies abnormal termination of SYSINT-toSYSOPT output due to SYSINT execution errors. The END card signifies normal (successful) completion of all SYSINT calculations and output.

Table E. 3


Notes:

1. Card Output: (a) No limit on number of strategies in one SYSINT run.
(b) May be put through later STORE step to create Disk output.
(c) Strategies may be separated and input directly into SYSOPT.
2. Tape Output: (a) May be temporary direct access dataset on SYSDA device if STORE step used immediately to create Disk output with no limit on number of strategies per run.
(b) If actually a (backup) tape, may be put through later STORE step to create Disk output with no limit on number of strategies per run.
(c) May be input directly into SYSOPT but limit of one strategy per SYSINT run (i.e., per tape file).
3. Disk output: Preferred SYSOPT input since Disk output is on-line, provides faster data transfer and does not idly tie up tape drive during subsequent SYSOPT execution.

Figure E. 2

SYSINT - to - SYSOPT Output Data Transfer


Figure E. 3

## Example of SYSINT-to-SYSOPT Output Data



## E.1.4 Altering Dataset Reference Numbers

Table E. 4 presents the dataset reference number for each input/output device, their meaning and instructions for altering them for other computer installations.

Table E. 4
SYSINT Dataset Reference Numbers

Fortran   Symbol	Meaning	Current Value	Instructions for Altering
RD	Card Reader	5	See BLOCK DATA subroutine
WT	Output Printer	6	See BLOCK DATA subroutine
CARD	Card Punch	7	See BLOCK DATA subroutine
tape	Output tape or disk for SYSINT-to-SYSOPT output	8	See BLOCK DATA subroutine and any //G.FT08F001 Data Definition cards (see Section E.3)
	```Temporary direct access device storing period-by-period forecasts```	9	See PERIOD and PRESIM subroutines and any //G.FT09F001 Data Definition cards (see Section E.3)
-	Final Disk dataset	SYSUT2	See Section E.3, Figure E. 5

E. 2 SYSINT Input Specifications

Table E. 5 presents complete input specifications for SYSINT. The "START" Card 1 heads the plant data input module (Cards 2-10). The "SAVE" Card 11 heads the period data input module (Cards 12-20). Likewise, the "STRATEGY" Card 21 heads the maintenance strategy input module (Cards 22-24). "Compute" Cards 25-26 determine which periods of the strategy are executed. If no other modules are to be input and/or executed, a "STOP" Card 27 terminates SYSINT calculations.

Table E. 5
SYSINT Input Specifications

Variable Columns Format Description

Card 1

... $1-5 \quad$	"START" Control card initi-
ates input processing for plant	
data, normalized startup-shut-	
down frequency function and	
load-duration shapes	

Card 2
... $1-10$... "PLANT DATA" Header card for plant data

Card 3

NOSTNS I5 $1-5 \quad$| Number of units (stations) to |
| :--- |
| be read in, $1<$ NOSTNS <100 |

Note: For each of NOSTNS, a Card 4 of unit data is read in.

Card 4

IDNO	1-4	I4	Unique unit identification number
NAME	5-8	A4	Unit name
TYPE	10	LX, AI	Type of Unit:
			F= Fossil H= Hydro (not currently used) $\mathrm{N}=$ Nuclear $\mathrm{P}=$ Peaking S= Pumped-storage (not currently used)
SUSDHT	11-20	F10.0	Q_{r} unit startup-shutdown equivalent heat requirement, MegaBTU
PNOM	21-29	F9.5	```pr unit performance probability, fraction```
NPTS	30	I1	I total number of capacity incremen'e, $1 \leq I \leq 5$

Variable	Columns	Format	Description
MWPT	-••	I4	$K_{r i}$ cumulative unit capacity, MW
HTRAT	-••	F6.0	$h_{\text {inc }}^{r i}$ incremental heat rate, BTU/kwhe

Note: Continue (MWPT, HTRAT) sets until all I increments have been read in.

Card 5

... 1-20 ... | "NORMALIZED SUSD DATA" Header |
| :--- |
| card for normalized startup- | shutdown frequency function

Note: There are three Card 6's required to read in the 20Ω values

Card 6

$\begin{aligned} & F(1) \text { to } \\ & F(20) \end{aligned}$	1-80	8F10.4	$\Omega\left(L_{r 1}^{\prime}\right)$ normalized startupshutdown frequency function at increments of 0.05 of $L_{r 1}^{\prime}\left(.05 \leqslant L_{r 1}^{\prime} \leq 1.00\right) ; \Omega(0)$ $\equiv 0$; linear interpolation between points; per day

Card 7
... 1-10 ...

Card 8
LDTYPS
1-5
I5
Total number of normalized load-duration shapes, $1 \leq$ LDTYPS ≤ 25

Note: For each of LDTYPS, Cards 9 and 10 of load shape data are read in.

Card 9
LDTYPE l-5 I5
Unique load-duration shape identification number, $1 \leq$ LDTYPE ≤ 25

Variable	Columns	Format	Description
NUMONE	6-10	I5	Number of l.'s to be prefixed to load shape data on Card 10, $0 \leqslant$ NUMONE $\leqslant 49$
Note:	There are [(50-NUMONE + 7)/8] Card 10's to be read in for this LDTYPE		

Card 10

PROB (NUMONE	1-80	8F10.4	F_{D} completely normalized customer load-duration curve
+ 1) to			from minimum load to peak
PROB (50)			demand where $F_{D}=0$ for first
			time. (Usually $\mathrm{FD}^{\text {d }}=0$ at
			PROB (50) resulting in
			spacing of 2% of PKMW.)
			fractional duration

Card 11

\ldots	$1-4$	"SAVE" Control card sig- nifying previous data on Cards $1-10$ to be saved.

Card 12

	1-7		"OUTPUT ", Control card for large volume of data to be transferred to SYSOPT
	8-11		"TAPE", SYSINT data output to temporary dataset with Dataset Reference Number $=$ TAPE (See BLOCK DATA subroutine and Section E.1.3)
	8-11		"CARD", SYSINT data output to card punch with Dataset Reference Number = CARD (See BLOCK DATA Subroutine and Section E.l.3)
\cdots	8-14		"NO TAPE", SYSINT-to-SYSOPT data not desired

Variable Columns Format Description

Card 13

	1-14		"OUTPUT PRINT ",Control card for printed output on Dataset Reference Number $=$ WT (See BLOCK DATA Subroutine and section E.1.4)
.	15-18		"MINI" prints input edit, unit incremental costs, unit production totals and system totals
	15-18		"MIDI" prints MINI plus Unit increment loading during load step of Booth-Baleriaux algorithm
(15-18		"MAXI" prints MIDI plus all F's calculated at each convolve or deconvolve operation (Warning: This option should be used only for very small problems.)

Note: Choose one or include all three types of Card 13 with only last one read being valid.

Note: A set of Cards 14-20 is included for each of NPERS (up to l00) periods desired in planning horizon. Each NPER need not be entered in numerical order.

Card 14

\ldots	$1-6$	\ldots	"PERIOD" Header card
\ldots	$7-10$	A4	Free for Comments

Card 15
PDTITL 1-80 10A8 Period title

Card 16

NPER	$1-4$	I4	Period number, $1 \leq$ NPER ≤ 100
LDTYPE	$5-8$	I4	Load shape desired,

Variable	Columns	Format	Description
PKMW	9-16	F8.0	Peak customer demand, MW (The resulting minimum load must not be less than largest unit on the system.)
SPNRES	17-24	F8. 0	Spinning reserve requirement, (Expected) MW
DM	25-32	F8. 0	Desired equivalent load curve spacing, should be 1 to 4% of PKMW if PROB (49) $\neq 0$ (Card 10), MW
DT	33-40	F8.0	T', Duration of period, hours
CSTEMR	41-48	F8.0	\bar{e}_{U}, Average cost of emergency purchases, \$/MWH
CSTFOS*	49-56	F8.0	ϕ_{F}, Cost of fossil fuel for all fossil units, $\notin /$ MegabTU
CSTNUK*	57-64	F8.0	ϕ_{N}, Cost of nuclear fuel for all nuclear units, $\not \subset /$ MegaBTU
CSTPKG*	65-72	F8.0	Cost of fuel for all peaking units, $\not \subset / M e g a B T U$
AVLALL*	73-80	F8.0	p_{r}, Performance probability for all units, (If 0.0 or blank, 100* PNOMr used for each unit for first period read.), per cent
* Requires non-zero, non-negative entry to be effective. To input zero, use 1.E-50. If left blank, has no effect on data remaining after previous period was processed.			

Note: Card 17 included for each unit whose data is to be altered from current values (i.e., last period processed plus effects of CSTFOS, CSTNUK, CSTPKG or AVLALL for this period).

Card 17 (Optional)

...	$1-5$..	"ALTER" Control Card
ID	$17-20$	$11 X, 14$	IDNO for unit whose data is to be altered

Variable Columns	Format		Description CST* *
2l-30	Fl0.4		ϕ_{r} unit fuel cost, \&/MegaBTU

Note: Cards 18-20 optional if period is to use same startup-shutdown data remaining after previous period was processed.

Card 18
... 1-9 ". "SUSD DATA" Control Card

Card 19

Variable Columns format	Description		
NOPEAK	$16-20$	I5	The last NOPEAK entries in
		NORDER form the Peaking group regardless of unit TYPE. The Intermediate (central) group is made up of the remaining NOENTY-NOBASE-NOPEAK entries in NORDER.	

Note: There are [(NOENTY + 15)/16] Card 20's to be read in.

Card 20
NORDER (1) l-80 In Input startup-shutdown order,
to
NORDER
(NOENTY)
unit (increment) IDNO. SYSINT automatically strips out off-line units and, therefore, it is wise to include all units in NORDER since various strategies will have different off-line units in the same period.

Note: A set of Cards 21-26 is included for each strategy (no limit on number of strategies) to be calculated.

Card 21
... 1-8 ... "STRATEGY" Control Card

Note: Card 13 required here if this is not first strategy.

Card 22

NPM	3	2X, L1	Nuclear power management assumption check option, SYSINT-SYSOPT assumptions concerning nuclear plant utilization not checked (That is, base-load nuclear minimums and all nuclear upper increments consecutive) ="T", Assumptions checked
IPLACE	4	Il	Version of strategy if same strategy was run previously

Variable Columns Format		Description IDSTRG	$5-10$

Note: SYSINT-to-SYSOPT output data stored using 8 alphamerjc character membername $=$
NPM $+10^{6}$ *IPLACE + IDSTRG which should be unique to save old results with same IDSTRG

SGTITL 11-80 10A7 Strategy Title
Card 23

```
... l-11 ... "MAINT. DATA" Header card
Note: Card 24 must appear for each of NOSTNS.
```

Card 24

ID	1-4	I4	Unit IDNO for which maintenance data card applies
NAM	5-8	A4	Unit NAME (optional)
NOTZRO(1)	11-15	2X, I5	Unit installed just prior to period NOTZRO(l). If blank or zero, unit already installed before beginning strategy
NOTZRO (2)	16-20	I5	Unit retired after period NOTZRO(2). If blank or zero, unit not retired during strategy
NDOWN (1) to NDOWN (20)	21-80	2013	Period number during which unit off-line for maintenance (or refueling). If blank, zero or > NPERS has no effect

Note: If "COMPUTE" Card 25 omitted, only checks input of strategy and/or periods.

Card 25

\ldots	$1-8$	\ldots	"COMPUTE "Control Card ini- tiates computation of strategy for all indicated periods
\ldots.	$9-12$	\ldots	"SOME" (optional) only some of NPERS +o be calculated

Variable Columns Format Description
Note: Card 26 included only if "SOME" included on "COMPUTE" Card 25. Then, there must be [(NPERS + 79)/80] Card 26's.

Card 26

$\begin{aligned} & \text { DUPERD (1) 1-80 } \\ & \text { to DOPERD } \\ & \text { (NPERS) } \end{aligned}$	80 Ll	Calculate period NPER = Card Column? "T" = Yes
		"F" or blank = No

Note: Next card may be "START" Card 1, "SAVE" Card 11, "STRATEGY" Card 21 or "STOP" Card 27. Control reverts back to that point in Card input sequence.

Card 27

... $1-4 \quad .$.	"STOP" Control card to
terminate SYSINT execution	
for this computer run.	

E. 3 SYSINT Sample Problems

Two sample problem input decks are presented in Figures E. 4 and E.5. The deck in Figure E. 4 was actually used to generate Reference Utility System Examples 1 and 2 (see Appendix C). The deck in Figure E. 5 was likewise used for Examples 3 to 6 and to produce the SYSINT-to-SYSOPT output deck example in Figure E. 3.

Figure E. 4
SYSINT Sample Problem Input Deck I

/OSNI LCN
/OSNI LCN
\primeOMAIN LINES=In.CAK_, = 00.IIME=1
\primeOMAIN LINES=In.CAK_, = 00.IIME=1

/AC.SVSIN (ji).
STANT

STRATEGY
MAINT. DATA
505
404
303
202
101
COMPJTE SOME
IT
START

SAVE
OUTPJT NO TAPE
SAVEPJT NO TAPE
UUTPJT PKINT MAXI
UERIOD I

Figure E. 5

SYSINT Sample Problem Input Deck II

cosml Iem

llo.STSIN UU
STANT
LLANI CAIA

$\begin{array}{rrrrrr}3 & 5 & 3 & 1 & \\ 505 & 303 & 404 & 20< & 101\end{array}$

susu nata, $\quad, 0$

sthategy

MAINT. JATA
202
604
101
505
505
303
compJte sove
17
310
//PINVCM EXEC MGM=IFRPITCN
//SYSPRINT UD SYSOUI = A

"/srsurz Du SySiUut=r
/ISrSindo.
DUNCA MAXFLDS=1
RECGHD FIELO=IdO

/1SYSDRINT US SẎIUUT=A

11 SHACE=(1000.11.1.c1...ñuN(1).

// VOLUME=nEF=..CALC.Ciot TOMFO.I
1

E. 4 SYSINT Source Listing

The following is a Fortran IV source listing of the SYSINT code (included only in MIT library copies).

APPENDIX F

S Y S O P T

F. 1 SYSOPT Discussion

F.l.l Introduction

SYSOPT is a computerized version of the SYStem OPTimization Model (SOM) discussed in Chapter 4. A summary of SYSOPT characteristics was presented in Section 4.6 .

SYSOPT performs the nuclear system optimization in conjunction with CORSOM's (specifically QKCORE of Appendix H using the Out-of-Kilter ($\mathrm{O}-\mathrm{O}-\mathrm{K}$) Network Program of Appendix G. Input is accepted in the form of output from SYSINT (See Section E.l.3) as well as SYSOPT's own card input.

F.1. 2 Code Structure and Mode of Operation

Table F.l presents a summary of SYSOPT subroutines while Figure $F . l$ portrays the general sequence of operations occurring in a SYSOPT production run. (Table F. 2 presents information relative to possible error messages printed by subroutine OPERR.)

In interfacing with the off-line code SYSINT, the SYSINT-to-SYSOPT outplt is transferred per Section E.1.3.

To be operational, SYSOPT must be link-edited with O-O-K since variables are transferred into and out of $0-0-K^{\prime}$'s storage on-line by SYSOPT. The structure of the network itself and the resulting arc "Types" are indicated in Figure F. 2.

Table F.l
Summary of SYSOPT Subroutines

Table F.l--Continued

Name	Called By	Calls	Purpose
RDSTRG	SYSOPT	OPERR ERASE	Reads SYSINT-to-SYSOPT information relative to maintenance and refueling strategy
RDPERS	SYSOPT	PDCALC OPERR	Reads SYSINT-to-SYSOPT information relative to period results
PDCALC	RDPERS	SUBPLT GWHNRG PROBX OPERR	Performs various pre-calculations for each period; Sets up some costs and limits for network arcs
SUBPLT	PDCALC	OPERR	Subtracts plant-of-interest from PROB; Similar to SUBPLT of SYSINT
GYHNRG	PDCALC	-	Calculates energy under section of PROB; Identical to GWHNRG of SYSINT
PROBX	PDCALC	------	Linearly interpolates PROB at a particular equivalent load; Identical to PROBX of SYSINT
ASMTYS	SYSOPT	PVPER\$	Assembles various calendar dates to and beyond horizon

Table F.1--Continued

Name	$\begin{gathered} \text { Called } \\ \text { By } \\ \hline \end{gathered}$	Calls	Purpose
WTPERS	SYSOPT	OPERR ERASE	Writes out input for the various periods and system horizon totals
SETUPN	SYSOPT	$\begin{aligned} & \text { ONLY } \\ & \text { LOC } \\ & \text { ERASE } \end{aligned}$	Sets up costs and limits for remaining arcs in the network
SETUPT	SYSOPT	OPERR	Sets up input tape for Out of Kilter ($0-0-\mathrm{K}$) Network Program
CONVRG	SYSOPT	CALSHP ARCPRT SETELE NEWMRG PVPER $\$$ LOC OPERR ERASE OOKMAN ${ }^{1}$ INCORE ${ }^{2}$	Supervises inner cost convergence between OOKMAN (O-O-K Main Program) and INCORE Model
Out of Kilter ($0-0-K$) Network Program subroutines (see Appendix G) INCORE Model subroutines (see QKCORE, Appendix H)			

Table F.l--Continued

Table F.l--Continued

Name	$\begin{gathered} \text { Called } \\ \text { By } \\ \hline \end{gathered}$	Calls	Purpose
SQUEEZ	CHKSHP	LOC	Squeezes reactor period energy production range
EDTSHP	SYSOPT	LOC	Edits shape information and prints final altered energy limits
OPTMUM	SYSOPT	$\begin{aligned} & \text { SETELE } \\ & \text { INCORE } \end{aligned}$	Supervises printing of optimum solution; Calls INCORE Model to get final nuclear costs at optimum; Totals all operating revenue requirements
LOC	SYSOPT SETUPN CONVRG CALSHP ARCPRT NEWMRG CHKSHP SQUEEZ EDTSHP	------	Calculates pointer to desired network arc

Table F.1--Continued

Figure F. 1

SYSOPT Flowchart

Table F. 2

SYSOPT Error Messages Printed by OPERR

Number*	Source	Action after Printing	Error
1	RDPERS	Terminate	PROB Data inconsistent
2	$\left\{\begin{array}{l}\text { PDCALC } \\ \text { SUBPLT }\end{array}\right.$	Terminate	Nuclear upper increment not consecutive or unit capacity $>$ minimum load
3	RDSTRG	Terminate	Reactor or Strategy IDNO's do not agree
4	SETUPT	Terminate	Number of arcs input to $0-0-\mathrm{K}$ and equation in Figure F. 2 do not agree
5	NEWMRG	RETURN	Incremental cost curve not monotonically increasing
6	$\left\{\begin{array}{l}\text { SYSOPT } \\ \text { RDOPTN } \\ \text { WTPERS }\end{array}\right.$	Terminate	Improper input sequence and/or card; Input option outside limits
7	CONVRG	RETURN	MXITER reached without complete convergence
8	SYSOPT	Terminate	"STOP" Card 10 encountered in input or other severe error
9	CONVRG	RETURN	$\overline{\mathrm{TC}}$ converged within TH\$CON

[^2]Table F.2--Continued

Number*	Source	$\begin{gathered} \text { Action } \\ \text { after Printing } \end{gathered}$	Error
A ($=10$)	CONVRG	Terminate	INCORE and SYSOPT using different present value rates
B ($=11$)	ARCPRT	Terminate	No feasible solution to 0-0-K problem
C ($=12$)	$\left\{\begin{array}{l} \text { RDSTRG } \\ \text { RDPERS } \\ \text { WTPERS } \end{array}\right.$	Terminate	Premature end to SYSINT data; some periods not read in
$D(=13)$	NEWMRG	RETURN	Cycle energy greater than its upper stretchout limit

Figure F. 2
Nuclear Energy Network Structure

Relative to INCORE interfacing, only four distinct points of SYSOPT-INCORE contact are necessary to ensure compatibility with general CORSOM's:
(l) SYSOPT itself calls ICNPUT [if an "INCORE INPUT" Control Card 1 is encountered (See Section F.2)] to permit an INCORE Model to read any data required by it (e.g., core initial conditions and cost parameters).
(2) Subroutine CONVRG calls INCORE subroutine with the arguments specified in Table F.3. This call is executed many times as this is the actual inner iteration. The important results are $\overline{T C}_{r}$ (returned as RTC) and the $\lambda_{r c}$ (appearing "sandwiched" between the pertinent E_{rc} and $\mathrm{E}_{\mathrm{rc}}+\Delta$ in array ELAME as in Section H.l.3.
(3) Subroutine OPTIMUM also calls INCORE subroutine per Table F.3, but only to evaluate the final optimum reload designs in more detail. COMMON area /PRINTS/ is used for passing any print options or dataset reference numbers.
(4) Finally, subroutine OPERR calls INCORE error subroutine ICERRS to permit printing final edit of any INCORE Model errors encountered during the SYSOPT optimization.

When SYSOPT and $0-0-K$ have been link-edited with the particular simulator QKCORE, core storage requirements (See Section 4.6) can be reduced by 125 K bytes of storage or

Table F. 3

Interfacing of SYSOPT and an INCORE Model

(SYSOPT)		
Variable	Supplied By	Description
IDNUM	SYSOPT	Unit IDNO
NCYCIN	SYSOPT	Number of cycles at least partially within horizon
NCYCXS	SYSOPT	Number of whole cycles specified beyond horizon
NCYCTO	SYSOPT	=NCYCIN + NCYCXS $=$ total
$\begin{aligned} & \operatorname{TSY}(1) \text { to } \\ & \text { TSY (NCYCTO) } \end{aligned}$	SYSOPT	Calendar time at start of cycle, years ${ }_{\text {c }}^{\substack{\text { c }}}$
TEY(1) to TEY (NCYCTO)	SYSOPT	Calendar time at end of cycle, years
NECBAL (1) to NE:BAL (NCYCTO)	SYSOPT	Position of key $E_{r C}$ within ELAME representing $E_{r C}^{t}$ (See Section H.l.3)
ELAME $(1,1)$ to ELAME ($2 n_{\lambda}+1$, NCYCTO $)$	E by SYSOPT λ by INCORE	$\mathrm{Erc}_{\text {cycle }}$ energy and $\lambda_{r c}$ incremental costs (See Section H.1.3)
MXESX2	SYSOPT	${ }^{n} \lambda$ number of Δ stair-steps in each $\lambda_{r c}$ incremental cost curve
ECHDOV	SYSOPT	Holdover energy, GWHe

(SYSOPT)		
Variable	Supplied By	Description
RTC	INCORE	Total nuclear fuel cost including appropriate fraction of cost of cycle split by horizon, 10^{3} dollars
PVR	INCORE	x, present value rate used by INCORE, fraction per year
YBS	INCORE	Calendar time base date of present valuing in INCORE, years
ECUPLM(1) to ECUPLM(NCYCTO)	INCORE	Upper limit of energy extractable from each cycle that has reload enrichment fixed, GWHe
$\begin{aligned} & \text { TOY (1) to } \\ & \text { TOY (NCYCTO) } \end{aligned}$	SYSOPT	Length of time that unit is operating during cycle, years

one-third of total (with negligible increase in computing time) by using the overlay structure of Figure F.3.
F.1.3 Altering Dataset Reference Numbers

Table F. 4 presents the dataset reference numbers for each input/output device, their meaning and instructions for altering them for other computer installations.

Figure F. 3
"SYSOPT + Out of Kilter + QKCORE" Overlay Structure

Table F. 4
 SYSOPT Dataset Reference Numbers

Fortran Symbol	Meaning	Current Value	Instructions for Altering
RD	Card Reader	5	See BLOCK DATA subroutine
WT	Output Printer	6	See BLOCK DATA subroutine
SIOT	SYSINT-to-SYSOPT Output Output	8	Input Card 4 and any //G.FT08F001 Data Definition Cards (see Figure F.4)
NPIN	Network Program Input	9	Input Card 4 and any //G.FT09F001 Data Definition Cards (see Figure F.4)
NPOT	Network Program Output	10	Input Card 4 and any //G.FTlof001 Data Definition Cards (see Figure F.4)

F. 2 SYSOPT Input Specifications

Table F. 5 presents compiete SYSOPT input specifications. "NEW" Card l signals a call to ICNPUT to read the INCORE Model data module. After the INCORE input, "STRATEGY" Card 2 heads the SYSOPT input data module (Cards 3-8). The next module read is SYSINT-to-SYSOPT output whether on disk, tape or card. A "COMPUTE" Card 9 initiates the optimization. If no other modules are to be input and/or executed, a "STOP" Card 10 terminates SYSOPT execution.

Table F. 5

SYSOPT Input Specifications

Variable Columns Format Description

Card 1

1-12...\quad| "INCORE INPUT" Control card |
| :--- |
| signifies following group |
| of cards intended as input |
| to INCORE Model |

Note: Input deck for INCORE Model is inserted here.
Card 2

... 1-8 ... | "STRATEGY" Control Card sig- |
| :--- |
| nifies SYSOPT input to follow |

Card 3

Card 4

SIOT	I-5	I5	Dataset reference number for SYSINT-to-SYSOPT output, $\neq \mathrm{WT}$
NPIN	$6-10$	I5	Dataset reference number for $0-0-K$ Network Program input, $\neq R D$ or WT
NPOT	$11-15$	I5	Dataset reference number for $0-0-K ~ N e t w o r k ~ P r o g r a m ~ o u t p u t ~$
$\neq R D$			

Variable	Columns	Format	Description
PARCAL	16-20	I5	Last arc type printed for all inner SYSOPT iterations (See Figure F.2), ≥ 0
PARCON	21-25	I5	Last arc type printed for converged inner iteration (See Figure F.2), ≥ 0
PARCOP	26-30	I5	Last arc type printed for accepted global optimum (See Figure F.2), ≥ 0
CORDTL	31-35	I5	INCORE detailed output desired for accepted global optimum? $\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
OPRCOR (1) to OPRCOR	$\begin{aligned} & 36-41 \\ & (6) \end{aligned}$	6 Ll	INCORE print parameters for use by OPTMUM (See Card 2, QKCORE Input Specifications, Table H.6) $\begin{aligned} & F=N o \\ & T=Y e s \end{aligned}$
			Fortran symbol in
			SYSOPT QKCORE
			OPRCOR(1) = RELCST
			OPRCOR (2) $=$ INCCST
			OPRCOR (3) $=$ BALCST
			OPRCOR (4) $=$ NBLCST
			OPRCOR (5) $=$ PIRDAT

Card 5

PVRATE	1-7	F7.0	x, present value rate, frac- tion per year
YBASE	$8-14$	F7.0	Calendar time base date for present valuing, years
YSTART	$15-21$	F7.0	Calendar time at start of Period 1, years
PCONVG	$22-28$	F7.0	$100 *\left\|E_{\text {rc }}^{t+1}-E_{\text {rc }}^{t}\right\| / \Delta \leq$ PCONVG, Cycle energy convergence criteria, per cent

Variable	Columns	Format	Description
TH\$CON	29-35	F7.0	$\overline{\mathrm{TC}}^{\mathrm{t}}-\overline{\mathrm{TC}}^{\mathrm{t}+1}$ < TH\$CON, total nuclear fuel cost convergence criterion, $10^{3} \$$
PCDELA	36-42	F7.0	γ, fraction of estimated correction applied to reactor production limits, per cent
REJLVL	43-50	F8.0	$\mathrm{V}_{\text {REJ, }}^{2}$ shape rejection criterion for $s^{2}-W^{2}$
NPERS	51-55	I5	Z, number of periods of SYSINT strategy to be included in horizon, \leq NPERS in SYSINT ≤ 100
GESFRS	56-60	I5	Initial guess option for starting optimization: $=0$, No guess at all (No Card 6's)
			$\begin{aligned} & =1, \text { Use SYSINT output } E_{\text {rcp }} \\ & \text { (No Card 6's) } \end{aligned}$
			$=2, \lambda_{\text {rc }}$ entered on Card 6's $=3$, Estimated $E_{r c}$ entered on Card 6's
			$=4$, Previous $\mathrm{E}_{\mathrm{rc}}^{*}$ solution entered on Card 6's
MXITER	61-65	I5	Maximum total number of inner iterations to be allowed, ≤ 100
IAUX	66-70	I5	Total number of auxiliary arcs (Types 2 and 3 of Figure F.2) per reactor-cycle, used to form stair-step $\lambda_{\text {rc }}$ curve, $3 \leq$ IAUX ≤ 19
JFRWRD	71-75	I5	Number of forward arcs (part of Type 7) per reactor per period, $2 \leq$ JFRWRD ≤ 6

| Variable Columns | Format | | Description
 JBKWRD
 $.76-80$ $\operatorname{I5}$ |
| :--- | :--- | :--- | :--- | | Number of backward arcs (rest |
| :--- |
| of TYpe 7) per reactor per |
| period, For balance, JBKWRD= |

Note: Total number of network arcs (See Figure F.2) cannot exceed MXARCS (=3500). Total number of network nodes cannot exceed MXNODS $(=700)$.

Note: If GESFRS ≥ 2, there must be NRCRS of Card 6. one for each reactor.

Card 6 (if GESFRS = 2)
ELAME (NR, 1) 1-80 20F4.0 ' $\lambda_{\text {rc }}$, incremental cost guess, to ELAME (NR, NCYCIN) $\$ / \mathrm{GWH} \equiv \$ / \mathrm{MWH} \times 10^{3}$

Card 6 (if GESFRS >2)

ELAME (NR, 1) 1-80	2014
to ELAME	
(NR,NCYCIN)	
rcycle energy guess or	
solution, GWH	

Card 7

NMESH	1-5	I5	Number of different Δ energy increment (step size) to be used in approaching $\mathrm{TC}^{*}, 0$, $1 \leq \mathrm{NMESH} \leq 15$
MESH (1) to MESH	$\begin{gathered} 6-80 \\ \text { AESH) } \end{gathered}$	15 I 5	Δ energy increment (step size), largest first, GWH

Note: There must be NRCRS of Card 8, one for each reactor.

Card 8

IDNO	1-4	I4	Reactor IDNO, must agree with SYSINT's IDNO for same unit.
INSTAT	5-7	I3	```Initial state of unit, i.e., maintenance status during "period" immediately preceding first period of strategy```
			$\begin{aligned} & =0 \quad \text {, did not exist } \\ & =1 \quad \text { down for refueling } \\ & =2 \text {, on-line } \end{aligned}$

Variable	Columns	Format	Description
CYCXS	8-10	13	Number of excess cycles included beyond horizon
GWHOLD	11-15	I5	$E_{r, C, z+1}$ Cycle energy held over beyond horizon for split cycle, GWH
DYHOLD	16-22	F7. 4	```T refueling beyond horizon for split cycle, years```
DYDWN		F6. 4	Downtime between excess cycles, years
DYUP		F6. 4	Uptime for this excess cycle, years
GWHXS		I6	$E_{r, C+1}$ Excess cycle energy, GWH
Note:	Continue until cYCXS number of excess cycles have been specified.		
Note:	SYSINT-to-SYSOPT output is inserted here if SIOT $=$ RD $=5$ at MIT (See Section E.l.3).		
Note:	"COMPUTE" Control Card 9 may be omitted to only check input of strategy or obtain present value of SYSINT cost results.		

Card 9
... 1-7 ... "COMPUTE" Control Card initiates optimization

Note: Next card may be "INCORE INPUT" Card l, "STRATEGY" Card 2 or "STOP" Card 10 with input sequence reverting to appropriate point in card sequence.

Card 10

$$
\begin{array}{cc}
1-4 \quad . . . & \begin{array}{l}
\text { "STOP" Control Card to ter- } \\
\text { minate execution of SYSOPT } \\
\text { for this computer run. }
\end{array}
\end{array}
$$

F. 3 SYSOPT Sample Problem

Figure F. 4 presents the input deck used for optimizing Strategy 2 in Case I of Chapter 5. SYSINT-toSYSOPT output is provided on Disk.

Figure F. 4
SYSOPT Sample Problem Input Deck

F. 4 SYSOPT Source Listing

The following is a Fortran IV source listing of the SYSOPT code (included only in MIT library copies).

APPENDIX

Out of Kilter Network Program

G. 1 Out of Kilter Discussion

The complete Out of Kilter Network Program was graciously provided to the author by the Flight Transportation Laboratory at MIT. Only minor modifications were made to the program to facilitate on-line merging with SYSOPT. These modifications are transparent to any user interested only in the Out of Kilter Program itself, i.e., for solving network programming problems in other contexts. Figure $G .1$ is provided as a guide to the computer storage requirements necessary to run the progam for various size problems (see Sub-section 13 of Section G.2).

Because of the program's generality, the original input manual (45) is included here with only minor editorial revisions.

Figure $G .1$
6253-98

G. 2 Out of Kilter Input Specifications

IBM /360 OUT OF KILTER NETWORK FLOW ROUTINE DESCRIPTION FOR THE USER

Table of Contents

Section	
1.	Introductory Notes
2.	Formulation
3.	Data
4.	Control Cards for Standard Run
5.	Exampie
6.	Jobs with More Than One Run
7.	Save and Alter Run
8.	Other Program Options
9.	Output
10.	Program Messages
1i.	Program Operation Notes
i2.	Structure of the Program
13.	Compiling the Program

1. Introductorv Notes

This writeup is intended for the user of the "Out of Kilter" program which has been written for the IBM system 360 model 65 . .The program has been successfully run at the MIT Computation center.

Both the program and the writeup are based on the SHARE routine RS OKFl and its corresponding writeup.

The FORTRAN subprograms are written in FORTRAN "iv (G level). The assembly language subprograms use the extended memonic branching instruction codes and the macros SAVE and RETURN.

The program and this writeup were prepared by Amos Levin, Flight Transportation Laboratory, MIT, August 1967.
2. Formulation

A Computer routine for the solution of "network flow" programs -- problems of finding those flows of an homogeneous commodity through a capacitated network minimizing the sum of the linear costs of flow through each arc -- is herein described. The computational algorithm employed is described in the book "Flows in Networks", L.R. Ford and D.R. Fulkerson, Princeton - University Press, 1962. pp.162-169.

The network in question consists of nodes designated by i or j, and a certain collection of arcs joining pairs of nodes. The arc $\widehat{i j}$ is thought of as directed from i to j. With each arc in the network is associated the following four integer quantities.
$c_{i j}$ the cost of one unit of flow from i to i along arc $\widehat{i j}$;
uij the upper bound on the amount of flow along the arc ij:
$l_{i j}$ the lower bound on the amount of flow along the arc ij;
$x_{i j}$ the quantity of flow along the arc $\overparen{i j}$

The network flow problem is that of determining $\mathbf{x}_{\mathbf{j} j}$ (for all arns $\widehat{i j}$ of the network) such that
(1) $\quad \boldsymbol{l}_{i j} \leq x_{i j} \leq u_{i j} \quad$ (all arcs $\overparen{i j}$).
(2) the net flow into any node (generally zero)remains fixed throughout the solution of the problem, and
(3)
$\sum_{i j} c_{i j} x_{i j}$ is minimized

Data Format

A node may be represented by any combination of six Hollerith characters (at least one of which is neither zero nor blank) ; i and j below are such combinations. (Note that for node names a blank is a character, and different from a zero.) The numerical data above are represented as right-justified integers in the appropriate fields. All data pertaining to one arc are entered pr ore card as follows:

1.6	$7 . .12$	13..18	19.20	21. . 30	$31 . .40$	$41 . .50$	$51 . .60$	$61 . .80$
blank.	i	j	free to use	$c_{i j}$	$\mathbf{u}_{\text {ij }}$	$\ell_{i j}$	$\mathbf{x}_{\mathbf{i j}}$	free to use

Leading zeros in the numeric fields need not be entered, nor need any figures where zero is desired.

Of course, fields 7-50 contain constants for the stated problem. Entry of the " $x_{i j}$ " is optipnal, constituting only an initial guess at the solution.

An optional initial set of node prices π_{i} may be entered. These are enterea one per card as follows:

1.66	$7 \ldots 12$	$13 \ldots 20$	$21 . . .30$	$31 . . .880$
blank	i	free to	πT_{i}	free to use

As sembly of Data

The data just described is put together in the following way:

1) All arcs $\hat{i j}$ having a given first node i must be adjacent in the deck. (No other requirement on their order $2 s$ made.)
2) The arc cards are preceded by two cards, the first being the title card and the second bearing the word "ARCS" in the field l-4. The title card should be blank in column 1 and may have any Hollerith punches in columns 2-80.
3) If no node prices are given, the arc cards are followed by a card bearing "END" in 1-3.
4) If node prices are given, the arcs are followed by a card bearing "NODES" in 1-5; the node cards follow this, and all the cards are followed by the END card of (3).
4. Control Cards for Standard Run

Input, computation, and output are effected by control cards whose punching in the field l-12 controls the operation of the routine. Punching always begins in column 1, and there is one blank between English words. The first card of the deck which follows the program deck must be the control card READY

Following the "READY" card must be cne of the two control cards

CARDS or TAPE
If "TAPE", the assembled data described in the previous section should be on the reserved input tape. If "CARDS", the assembled data should inmediately follow this controi card.

Next may be placed any combination of the three output control cards

OUTPUT TAPE
CUTPUT PRINTER
OUTPUT PUNCH
which will cause the types of output described in Section 8. At least one ouTpuT control card must be included in the data set.

Next is placed the card COMPUTE
which causes computation to beqin.

The last card in the deck must be the control card
PAUSE
which terminates the job.

5. Example

The example which follows is a modification of the one given in the book " Flows In Networks", L.R. Ford and D.R. Fulkerson, Princeton University Press, 1962, pp.123-127. Costs and bounds for the arcs can be found in the data listing on the next page. Since the cost on the arc T S is very low (negative) compared to the costs on the other arcs, the routine finds the maximal flow that minimizes costs from S to T.


```
READY
CARDS
    F. AND F. EXAMPLE 1
ARCS
\begin{tabular}{llr} 
S & \(\times 1\) & \\
5 & \(\times 2\) & 3 \\
5 & \(\times 3\) & 6 \\
\(\times 1\) & \(\times 2\) & 8 \\
\(\times 1\) & \(\times 4\) & 2 \\
\(\times 2\) & \(\times 3\) & 2 \\
\(\times 2\) & \(\times 4\) & 2 \\
\(\times 2\) & \(\times 5\) & 1 \\
\(\times 2\) & \(\times 7\) & 3 \\
\(\times 3\) & \(\times 5\) & 8 \\
\(\times 3\) & \(\times 8\) & 1 \\
\(\times 4\) & \(\times 6\) & 3 \\
\(\times 4\) & \(\times 7\) & 9 \\
\(\times 5\) & \(\times 7\) & 8 \\
\(\times 6\) & \(\times 7\) & 5 \\
\(\times 6\) & \(T\) & 1 \\
\(\times 7\) & \(\times 9\) & 2 \\
\(\times 7\) & \(T\) & 1 \\
\(\times 8\) & \(\times 7\) & 4 \\
\(\times 8\) & \(\times 9\) & 2 \\
\(\times 9\) & \(T\) & 3 \\
\(T\) & \(S\) & 3 \\
& & \\
\hline
\end{tabular}
\begin{tabular}{rrr}
50 & 35 & 0 \\
30 & 0 & 0 \\
15 & 0 & 0 \\
50 & 0 & 0 \\
25 & 0 & 0 \\
15 & 0 & 0 \\
45 & 0 & 0 \\
10 & 10 & 0 \\
15 & 0 & 0 \\
10 & 0 & 0 \\
20 & 0 & 0 \\
90 & 0 & 0 \\
10 & 0 & 0 \\
60 & 0 & 0 \\
10 & 7 & 0 \\
10 & 0 & 0 \\
10 & 0 & 0 \\
80 & 0 & 0 \\
20 & 0 & 0 \\
10 & 0 & 0 \\
10 & 25 & 0 \\
85 & 0 & 0
\end{tabular}
END
OUTPUT PRINTER
OUTPUT TAPE
COMPUTE
pause
```

6. Joiss with More than Cre kur.

The control card setup described in section 3 applies to jobs with only one run. By a "job", we mean all that is done in one pass at the computer; that is, any work that can be done without manual interference with the computer and, in addition, without inputting the program instructions into the computer more than once. By a "run", we mean that which is involved in the solution of one problem.

For multiple run jobs, the standard input for each run is as described in Section 3 with the "PAUSE" card removed. Runs may be stacked one after another. Only one "PAUSE" card may be used, and it is always placed after the "COMPUTE" card of the final run.

Each run kegins with a "RExAy" atd or a "Sñe" card as described in Section 6. Each run ends with a "COMPUTE" card. The job ends with a "PAUSE" card.

7. Save ard Alter Run

Abstract

In Section 3, the standard run beginnirg with the " READY" card was described. In section 5, it was noted that these runs may be stacked, one after another. Frequently it is desired to execute a run in which only relatively few $c_{i j}$. $u_{i j}$ or $l_{i j}$ are chancged, but in which the arc configuration remains the same. In this event, a "Save and Alter" procedure may be followed. A "Save and Alter" run may be any run except the first. The control card setup for this type of run is as follows.

The first card of the run must be the control card
SAVE
which initiates a ncw run without destroying the results of the previous run.

The second card is the title card, which may have any Hollerith punches in it, excopt that column 1 should be blank.

Next are placed tno "OUTPUT" cards as' mentioned in Section 3 and described in Scction 8.

Next are placed any number of "ALTER" cards. Each "ALTER" card has the following format:

$1 \ldots 6$	$7 \ldots 12$	$13 \ldots 18$	19,20	$21 \ldots 30$	$31 \ldots 40$	$41 \ldots 50$	$51 \ldots 60$	$61 \ldots 80$
ALTER	i			$n_{i j}$	$c_{i j}$	$u_{i j}$	$\ell_{i j}$	$\Delta f_{i j}$
free to								
use								

i and j are the source and sink nodes of an are which is in core storage; that is, one which was used on the preceding "READY" run. $n_{i j}$ may be left blank if there is only one arc ij. If there is more than one arc $\widehat{i j}$, then $n_{i . j}$ gives the number of this arc as to whether it was the lst, $2 n d$, 3 rd , etc. arc $i 3$. which was read into memory in the applicable "READY" run. $c_{i j} u_{i j}$ and $l_{i j}$ are the new values of these same quancities for this arc.
$\Delta f_{i j}$ is usually zero (or biank). It is the change in the flow out of node i and into node j. Note that inputting a new $x_{i j}$ is meaningless, since $x_{i j}$ on input is a guess, and guessing a value of $x_{i j}$ on an alter run would only upset the conservation of flow from the nodes. Hence inputting a non-zero $\Delta f_{i j}$ is a means of deliberately upsetting the flow conservation. It will change $x_{i j}$ to $x_{i j}+\Delta f_{i j}$.

The last card of the run must be the control card
COMDUTE
which causes computation to begin.

Note that any number of "Save and Alter" runs may follow one "READY" run. The effects oi each "Save and Aiter" are cumulative.

The program also allows "ALTER" cards to be placed after tine "OUTPUT" cards and befors the "COMPUTE" card on a "READY" run. This "Ready and Alter" run is useful when data is on tape and a few changes in the value of c, u, and ℓ are needed before the run is to be executed.

8. Other Program Options

In the standard run, the program requires that every node be a first node for some arc and be a second node for some other arc. This is the standard network problem. Another type of problem allows arcs to end at nodes at which no arcs begin. These sinks are designated by the program as "dead end arcs." There may also be source nodes at which no arc terminates. This type of problem is designated a "transportation" problem and the requirement that at least one arc begin at each node and end at each node is ignored by the program.

The reserved input tape may have data for several jobs stacked on it. There are no ends of file on this tape except at the end of all data; the program knows when it is at the end of the data for one run by sensing the "END" card record. In certain cases, it may be desirable to pass over some data packages while processing a job. In this event, the control card "SKIP" is used.

The general "READY" type run is now described.
The first card must be the control card
READY
An optional card which must follow the "READY" card if this is a transportation problem, is the control card TRANSPORTATION
Also optional is the control card SKIP
which is used to cause the reserved input tape to skip one package of assembled data. As many "SKIP" cards are used as are needed to skip the desired number of packages of assembled data. The "SKIP" cards and the "TRANSPORTATION" card may be in any order immediately following the "READY" card.

Following the above cards must be one of the two control cards CARDS or TAPE

These cards are as described in Section 3.

The data package follows the "CARDS" control card. Following the data package, or the control card "TAPE" where there is no data package with the control cards, may be an optional title card. If this is included, it supersedes the title card on the data package.

Next may be placed any number of "OUTPUT" cards as described in Section 8.

Next may be placed any number of "ALTER" cards as described in Section 6.

The last card in the run must be the controi cara COMPUTE
which causes computation to begin.
9. Output

The type of output is controlled by one or more of four control cards. The four control cards are
a) OUTPUT PRINTER
b) output tape
c) OUTPUT PUNCH
d) OUTPUT NODES

The "OUTPUT PRJNTER" control card causes output to be written on the system output device.This output is written for printing on the peripheral printer under program control. The system output device is denoted in the program by the symbol "KO", and ko has the value 6 in the version of the program submitted. The data for each arc are printed horizontally on the page. The data for one arc, $\hat{i j}$, are printed in the following order:

1) node name i
2) node name j
3) $c_{i j}$, the unit cost of arc $\widehat{i j}$
4) $u_{i j}$, the upper bound of the quantity of flow through arc ij
5) $l_{i j}$ the lower bound of the qunatity of flow through are $\overparen{i j}$
6) $x_{i j}$, the quantity of flow in the arc if
7) "FLOW" $=c_{i j} x_{i j}$, the total cost of $x_{i j}$ units at the cost $c_{i j}$
8) π_{i}, the rode price of node i
9) π_{j}, the node price of node j
10) $\bar{c}_{i j}$ the quantity $\pi_{i}+c_{i j}-\pi_{j}$
11) The letter " K ", ©he letter " N " or nothing. The letter " K " is printed if all the arcs are in kilter. The letter "N" is printed if this arc could not be brought into kilter,
```
inaicating that the problem has
no feasible solution. Nothing is
printed in all other cases.
```

The "OUTPUT TAPE" control card causes output to be written on the reserved output tape. This output may be printed peripherally using single space (or double space) control. It may also be punched peripherally, and the cards gotten thereby will be substantially the same as the cards goten from the "OUTPUT PUNCH" option described below. The information from the "OUTEUT TAPE" option is the same as that from the "OUTPUT PRINTER" option, except that items 8), 9), and 10), are not output. This output is compatible with the input "TAPE" option.

The "OUTPUT PUNCH" option gives items 1) through 7) on the on-line punch. This option is generally very time consuming cxcept on short problems.

Any of the above three options may be used in combination on ary one problem. At least one OUTPUT control card must be included in each data set.

The "OUTPUT NODES" option will output a list of node prices in addition to the arc information on the tape or punch options. This option will have no effect on the printer output option.

All of the output on the reserved output tape and on the punch is compatiole with the input to the probjem. The "OUTPUT PRINTER" output is not compatible with the input.

In addition to the above, all control card information is written or the peripheral printer aevice, with the execption of the
"COMPUTE" control card for which is sulstitutcd a count of the arcs and the nodes. The messages in section 9 are all written on the system output device also.

On the following two pages are shown the "OUTPUT PRINTER" results of the example given in Section 4. "Flow" is $c_{i j} x_{i j}$. "Total system contribution" is the optimal value of the objective function
$\sum c_{i j} x_{i j}$. Note that the first page contains information that would be on the system output device regardless of whether "OUTPUT PRINTER" is requested.
-520-

READY
CARDS
F. AND F. EXAMPLE 1

ARCS
OUTFUT PRINTER
output tape
NO OF ARCS= 22 NO OF NODES= 11
this run output to tape

PAUSt

reservel tape has been mritten
10. Program Nessages

One exception to the previous formats is permitted. If the "READY" of "SAVE" card is not the first card in a run this is not considered to be an error, but it is assumed that these are comment caras. The contents of columns 7-72 of all cards in a run (if any) which precede the "READY" or "SAVE" card plus columns 7-72 of the "READY" or "SAVE" card itself are written on the system output eevice. Thus only columns 1-6 of the "READY" and the "SAVE" card are fixed in format, the rest of the card may be used for comments. The above is also applicable to the "PAJSE" card.

Below is given a list of comments which may be written on the system output device.

Comments 3), 4), 5), 6), 7), 8), 9), 12), and 13), denote errors in data set-up that were caught by the pre-processing routines. Conditions 10) and 11) are considered to be errors only if no "TRANSPORTATION" control card was present. Whenever any of the above error conditions are present, the run is terminated.

Comment 18) is given to convey information but is not regarded as an error.

Coment 17) denotes a trivial infeasibility--in this case the algorithm is not executed.

Comment 2) is written if the algorithm computation was started but not finished. Comment 1) will be present when comme.t 2) is written.

OFF LINE PROXRTM COYMENTS

1) OVERFLOW IN NODE PRICES
2) RUN TERMINATED AT ARC_

14)	OUTPUT CONTROL CARD MISSING OR OUR OF SEQUENCE	Self - explanatory
15)	RESERVED TAPE HAS BEEN WRITTTEN	This comment states whether an output has been written on
16)	NO RESERVED TAPE HAS BEEN WRITTEN	a tape other than the system device (as requested by an " OUTPUT TAPE" control card).
17)	ARC \qquad HAS LOWER BOUND GREATER THAN UPPER ROUND	Self-explanatory
18)	NODE \qquad NON-CONSERVATIVE, NET FLOW= \qquad	```Node has a finite net flow. Negative flow denotes source node.```
19)	THIS RUNN OUTPUT TO TAPE	These comments state where the output to this run may
20)	THIS RUN OUTPUT PUNCH	be found.
21)	ARCS ARE OUT OF KILTER	This run was completed, but there is no feasible solution. As many as 100 arcs are mariked with an "N" on the output. "N" denotes that these arcs are not in kilter.

The $1 / O$ device reference numbers the program uses are given below. Since these numbers vary from installation to installation, they can be changed as indicated in Section 13.

I/O Device

System input device--
all control cards and data packages of the "CARDS" variety

System output device-- ко general editing output and "OUTPUT PRINTER" option

Card punch--
"OUTPUT CARD" output
Reserved output tape-- KQ (2) "OUTPUT TAPE" output

Reserved input tape-- KQ(3) 2 data packages of "TAPE" variety

System control cards must be included in the deck whenever the reserved tapes are used. The reference numbers 2 and 3 for the reserved input and output tapes, respectively, were arbitrarily chosen. These numbers can be changed, but they must correspond to the tape numbers specified on the system control cards.

For a reserved output tape the following two control cards must be included:

```
    //G.FT03F001 DD UNIT=TAIEG,LABEL=(1,NL),
// VOLUME=SER=tap&id,DCB=(RECFM=FB,LRECL=80, BLKSIZE=8000)
```

These cardsshould immediately precede the data. When the job is run under the ASP system (at the MIT Computation center), the following card must also be included:
/*SETUP DDNAME=FTO3F001,DEVICE=2400-9,ID=(tapeid,RING,SAVE,NL)

This card should immediately follow the job card. Note that "tapeid" is an identification number assigned to the tape by the MIT Computation Center. Three similar control cards must be included whenever a reserved input tape is used, but FT03 should be changed to FTO2. The OS/360 user's manual contains more details concerning the use of reserved tapes.

The sequence of operations by the computer when it is doing one problem is as follows:

First the "READY" card is looked for.

Next the data package is read.

Next comes the generation of the output. When outputting is finished, the next run (if any) will be started.

The running time for this program, of course, varies considerably from problem to problem. The input and output time will be roughly proportional to the number of arcs. The execution of the algorithm is the most variable part of the problem, and its duration will depend on the type of problem considered. At the end of "PRINTER" cutput, the number of

[^3]| Number of arcs | 414 |
| :--- | :--- |
| Number of nodes | 348 |
| Number of breakthroughs | 40 |
| Number of non-ibreakthroughs | 179 |
| Number of X-changes | 1915 |
| Number of nodes from which | 7550 |
| labeling was done | |

The upper bounds on the elacsed times were:

Program compilation	2.2 min.
Data preprocessing	3.3 sec.
Algorithm computations	3.6 sec.

12. Structure of the Program

A. Main Program

1) Sets up I/O device numbers and dimensions
2) Calls MAINE
B. Subroutine MAINE (with ENTRY OOKMAN for on-line linking and execution)
3) Calls the preprocessing routines

PREDAT
ARCASY
MAKEJL
NODASY
READER
TRANSL
2) Calls the subroutine KILTER once for each arc.
3) Calls the postprocessing routine OUTPUT.

The routine also processes certain error and infeasibility conditions.
C. Subroutine PREDAT looks for a control card of the type "READY", "SAVE", or "PAUSE". If it finds a "READY" card, core is cleared and it looks for a control card of the type "CARDS", "TAPE", "SKIP", or "TRANSPORTATION". After it finds a "CARD" or "TAPE" control card, it then looks for the control card "ARCS" on the appropriate input device.
If a "SAVE" card is found the program returns control to the main program and control is passed next to the subroutine READER.

If a "PAUSE" card is found, the end-of-job instructions are executed.
D. Subroutine ARCASY reads arc record after arc record into storage until it comes to a record with "END" or one with "NODES"
The $\ell_{i j}, u_{i j}, c_{i j}$, and $x_{i j}$ information is stored in the $K L, K U, K C$, and $K X$ blocks, respectively. The BCD names of the first nodes are stored in NN, and the BCD names of the second nodes are stored in IJ.
E. Subroutine MAKEJL sets up lists in IL and JL storage. These lists are cumulative counts of the arcs beginning and ending at the nodes. The subroutine also replaces the IJ names by numbers.
F. Subroutine NODASY reads in the node prices, if any.
G. Subroutine READER reads the OUTPUT, ALTER, and COMPUTE control cards.
H. Subroutine TRANSL performs the final operations before going to the Out of Kilter algorithm.
I. Subroutine KILTER tests the arc presented to see if it is in kilter. If it is not in kilter, the assembly language subroutine LABELN is called. Depending on a flag set in LABELN, the KILTER subroutine then calls either UPNOPR or BREAKT. When the arc has been brought into kilter or when it is determined that the arc cannot be brought into kilter, the control passes back to MAINE.
J. Subroutine OUTPUT generates the output required for the run.
K. ASSEMI routine includes:

1) Assembly language subroutine LABELN performs the labeling operation. If a breakthrough results, the next subroutine called by KILTER will be BREAKT. If a non-breakthrough results, the next subroutine called by KILTER will be UPNOPR.
2) Assembly language subroutine BREAKT alters the quantities of flow in the cycle generated by LABELN.
3) Assembly language subroutine UPNOPR raises the node prices of the labeled nodes by the appropriate amount.
4) Assembly language function NODENO returns the number of the node that has the name presented.
L. ASSEM2 routine includes:
5) Assembly language function LADDR returns the rightmost 16 bits of the word presented as a 32-bits FORTRAN integer.
6) Assembly language function LDECR returns the leftmost 16 bits of the word presented as a 32bits FORTRAN integer.
7) Assembly language subroutine PLACE stores the rightmost 16 bits of the first full-word argument in the leftmost 16 bits of the second full-word argument.

13. Compiling the Program

In order to change the I/O device numbers of the program, only the MAIN program need be compiled. The I/O device numbers are the first items to be defined by the program. The symbols assigned to the devices are as follows:

$$
\begin{array}{ll}
\mathrm{KI} & =\text { System input device } \\
\mathrm{KO} & =\text { System output device } \\
\mathrm{KQ}(1) & =\text { Punch card device } \\
\mathrm{KQ}(2) & =\text { Reserved output tape } \\
\mathrm{KQ}(3) & \text { Reserved input tape }
\end{array}
$$

In order to change the dimensions of the program, it is necessary to change the dimensions of all the FORTRAN subprograms and also the numeric values of the symbols $K Q(4)$ and $K Q(5)$. The assembly language subprograms need not be changed since they do not contain dimensions information.

Let "a" be the maximum number of arcs allowed in the program and " n " the maximum number of nodes allowed. Then, $K Q(4)=a$, and $K Q(5)=n$ in the main routine. The storage which must be allocated for each symbol is as follows:

	SYMBOL	DIMENSION
	KL	a
	KC	a
	KU	a
	KX	a
	NL	n
	NN	2n
	NP	n
Must occupy at least	(IJ	n
"a" words of conse-	\{ IL	$n+1$
cutive storage	(JL	$\operatorname{maximum}\binom{n+1}{a-2 n-1}$

JI
a
Total storage for above symbols $=5 a+4 n+\max (a, 3 n+2)$
A total of 108,000 four-byte words were available for dimensions when the program was tested on the IBM 360 model 65 computer. One can choose a and n to be any positive integers as long as

$$
\begin{aligned}
5 a+4 n+\max (a, 3 n+2) & \leq \begin{array}{l}
\text { full-word storage available } \\
\text { for dimensions. }
\end{array}
\end{aligned}
$$

G. 3 Out of Kilter Sample Problem

Sub-section 5 of Section G. 2 contains a sample problem input listing.
G. 4 Out of Kilter Source Listing

The following is a source listing of the Out of Kilter Network Program (included only in MIT library copies).

APPENDIX
Q K C O R E

H. 1 QKCORE Discussion

H.1.1 Introduction

As was pointed out in Section 5.2, development of QKCORE, a Quick in-CORE empirical fuel cost simulator (See Figure H.l) was undertaken to allow completion and evaluation of the nuclear power management model of Figure 2.2l. To provide maximum flexibility, QKCORE is programmed as a separate "stand-alone" code suitable for independent fuel management studies.

A pseudo-1D nodal model of LWR reactor core physics is used (See Section H.1.2). Each cycle of a multicycle planning horizon may operate in one of three modes:
(1) With reload (i.e., freshly fabricated) enrichment ϵ_{f} specified, irradiate to reactivitylimited cycle energy $E_{r c}$. This mode is representative of normal fuel-depletion code operation.
(2) With cycle energy $E_{r c}$ specified, determine reload enrichment ϵ_{f} required at start of cycle to generate reactivity-limited $E_{r C}$. This mode is required by SYSOPT.
${ }^{1}$ Notation in this Appendix is defined specifically in context rather than in Nomer -lature of Appendix I.

Figure H .1

Compatibility of the Fuel Cost Simulator

CORE SIMULATION AND OPTIMIZATION MODFL

(3) If both \boldsymbol{E}_{f} and $E_{r c}$ specified, determine amount of early shutdown or stretchout required. This model represents a compromise where first few cycles of horizon have enrichment fixed and specific cycle energy required.

Total and incremental fuel costs for each cycle are determined on-line as indicated in Section H.l.2.

The limitations of the code are as follows:
(1) modified-scatter refueling with fixed number of zones $(1 \leq N O Z O N E \leq 10)$,
(2) no plutonium recycle,
(3) up to 20 cycles considered,
(4) up to 15 different sets of nuclear generating unit characteristics may be retained simultaneously,
(5) each nuclear unit may have a different set of empirical core physics constants,
(6) up to 5 different sets of empirical fuel constants and
(7) the cost of each operation in the nuclear fuel cycle may be escalated using an input quadratic equation.

H.1.2 Computational Model

The computational model is based on (1) empirical
fuel equations (See Table H.l) which represent homogenized unit fuel cell data as a function of fabricated

Table H.l

QKCORE Empirical Fuel Simulator Equations

I. $k_{\infty}=K 8=\left(F_{1}+F_{2} \varepsilon_{f}+F_{3} \varepsilon_{f}^{2}\right)$

$$
+\left(F_{4}+F_{5} \varepsilon_{f}+F_{6} \varepsilon_{f}^{2}\right) B
$$

$$
+\left(F_{7}+F_{8} \varepsilon_{f}+F_{9} \varepsilon_{f}^{2}\right) B^{2}
$$

II. \quad GU $=\left(F_{10}+F_{11} \varepsilon_{f}+F_{12} \varepsilon_{f}^{2}\right)$

$$
\begin{aligned}
+\left(F_{13}\right. & \left.+F_{14} \varepsilon_{f}+F_{15} \varepsilon_{f}^{2}\right) B \\
& +\left(F_{16}+F_{17} \varepsilon_{f}+F_{18} \varepsilon_{f}^{2}\right) B^{2}
\end{aligned}
$$

III. $\varepsilon=$ ENRICH $=\varepsilon_{f} \cdot e^{-\alpha_{1} B}$
where

$$
\begin{aligned}
\alpha_{1}=\left(F_{19}\right. & \left.+F_{20} \varepsilon_{f}+F_{21} \varepsilon_{f}^{2}\right) \\
& +\left(F_{22}+F_{23} \varepsilon_{f}+F_{24} \varepsilon_{f}^{2}\right) B \\
& +\left(F_{25}+F_{26} \varepsilon_{f}+F_{27} \varepsilon_{f}^{2}\right) B^{2}
\end{aligned}
$$

IV. \quad KGPU $=\alpha_{2}\left(e^{-\alpha_{3} B}-e^{-\alpha_{4} B}\right)$
where

$$
\begin{aligned}
\alpha_{2}= & \left(F_{28}+F_{29} \varepsilon_{f}+F_{30} \varepsilon_{f}^{2}\right) \\
& +\left(F_{31}+F_{32} \varepsilon_{f}+F_{33} \varepsilon_{f}^{2}\right) B \\
& +\left(F_{34}+F_{35^{\varepsilon} \varepsilon_{f}}+F_{36} \varepsilon_{f}^{2}\right) B^{2} \\
\alpha_{3}= & F_{37}+F_{38} \varepsilon_{f}+F_{39} \varepsilon_{f}^{2} \\
\alpha_{4}= & F_{40}+F_{41} \varepsilon_{f}+F_{42} \varepsilon_{f}^{2}
\end{aligned}
$$

Table H.l--Continued
v. $\sum_{a}=S I G A=F_{43}+F_{44} \varepsilon_{f}$

Units:

$\mathrm{F}_{\mathrm{i}}=\operatorname{FULCON}(\mathrm{I})$
$\varepsilon_{f}=$ as-fabricated enrichment, w/o U-235
$\varepsilon=$ current (i.e., at burnup B) enrichment, w/o U-235
$B=$ average zone burnup, $M W D / k g$
KGU = uranium inventory, $\mathrm{kg} \mathrm{U} / \mathrm{kg} \mathrm{U}$ fab.
KGPU $=$ fissile plutonium inventory, $k g$ fissile Pu/kg U fab
$\Sigma_{a}=$ macroscopic absorption cross section, cm^{-1}
enrichment ϵ_{f} and current burnup B and (2) empirical reactor equations (See Table H.2) which mockup zone-by-zone irradiation during each cycle.

To facilitate explanation of the model, assume that all the required coefficients in Tables H.l and H. 2 are known a priori. In the first operating mode (See Section H.l.l), the purpose of the model is to answer the following question:

Given the as-fabricated enrichments $\epsilon_{f_{i}}$ and average zone burnups B_{i} for non-fresh fuel ($i=2$ to n) in an $n-$ zone core, what must be the fresh fuel (i.e., $\mathrm{B}_{1}=0$), enrichment $\epsilon_{f_{1}}$ loaded to give a cycle electrical energy production of $E_{c} \bar{z}$

First, the electrical energy production E_{c} must be converted to thermal energy θ_{C}. Using a previous assumption (See Section 2.4.2) of constant nuclear incremental efficiency $\eta_{i n c}$, Equation (2.52) yields

$$
\begin{equation*}
\theta_{c}=H^{\circ} T_{o p}+\frac{E_{c}}{\eta_{i n c}} \tag{H.1}
\end{equation*}
$$

where
$H^{\circ}=$ fixed heat consumption rate during operation
$T_{\text {op }}=$ time of operation
The next step is the determination of $k_{\infty}{ }_{\text {INNER }}$ as an index of the reactivity remaining in the core. Assuming three-zone modified-scatter refueling,

Table H. 2
QKCORE Reactor Irradiation Empirical Equations

$$
\text { VI. } \quad \begin{aligned}
& \mathrm{k}_{\mathrm{\infty}}=\mathrm{KEW} \\
&=18 N W=1+\mathrm{R}_{1}+\mathrm{R}_{2} \theta c+\mathrm{R}_{3} \theta \mathrm{c}^{2} \\
&+\left(\mathrm{R}_{4}+\mathrm{R}_{5} \delta k_{\text {INNER }}+\mathrm{R}_{6} \theta_{c}\right) \delta k_{\text {INNER }}
\end{aligned}
$$

$$
\text { where } \delta k_{\text {INNER }}=k_{\infty \text { INNER }}-1
$$

$$
k_{\infty I N N E R}=\frac{\sum_{i=2}^{n} k_{\infty}\left(\varepsilon_{f_{i}}, B_{i}\right)}{n-1}
$$

$$
\text { VII. } \Phi=\frac{1}{1+R_{7}+R_{8} \varepsilon_{f}+R_{9} \varepsilon_{f}^{2}+R_{10} \varepsilon_{f}^{3}+R_{11} \delta k_{\text {INNER }}+R_{12} \delta k_{\text {INNER }}^{2}}
$$

Units:

$$
\begin{aligned}
R_{i} & =\text { RCRCON }(I) \\
\theta_{C} & =\text { Cycle thermal energy, GWHt } \\
n & =\text { n-zone core (NOZONE) } \\
\varepsilon_{f} & =\text { w/O U-235 as-fabricated }
\end{aligned}
$$

$$
\begin{equation*}
k_{\infty I N N E R}=\frac{k^{\infty}\left(\epsilon_{f_{2}}, B_{2}\right)+k_{\infty}\left(\epsilon_{f_{3}}, B_{3}\right)}{2} \tag{H.2}
\end{equation*}
$$

Using this index and θ_{c} the required energy production, Equation VI of Figure H. 2 gives the fresh fuel k_{∞} needed,

$$
\begin{equation*}
{ }^{k_{\infty}}{ }^{\text {NEW }}={ }^{k_{\infty}}{ }_{\text {NEW }}\left(\boldsymbol{\theta}_{\mathrm{C}}, \mathrm{k}_{\infty} \text { INNER }\right) \tag{H.3}
\end{equation*}
$$

The fresh ($B_{1}=0$) fuel enrichment is then determined by applying the quadratic equation to

$$
\begin{equation*}
{ }^{k_{\infty}^{\infty} \mathrm{NEW}}={ }^{k_{\infty}}\left(\epsilon_{f_{\mathrm{NEW}}}, 0\right)=\mathrm{F}_{1}+\mathrm{F}_{2} \epsilon_{f_{\mathrm{NEW}}}+\mathrm{F}_{3} \epsilon_{f_{\mathrm{NEW}}}^{2} \tag{H.4}
\end{equation*}
$$

and solving for $\epsilon_{f_{\mathrm{NEW}}}\left(\equiv \epsilon_{f_{1}}\right)$.
Burnup increments for each zone must now be calculated by predicting power-sharing.

Since,

$$
\begin{equation*}
\Sigma_{f} \equiv\left(\frac{\Sigma_{a}}{v}\right)\left(\frac{\nu \Sigma_{f}}{\Sigma_{a}}\right) \propto \Sigma_{a} k_{\infty} \tag{H.5}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
v= & \text { average number of neutrons per fission } \\
\Sigma_{f}= & \text { macroscopic fission cross section } \\
& \mathrm{cm}^{-1}
\end{aligned}
$$

then

$$
\begin{equation*}
\Delta B_{i} \propto \Sigma_{f_{i}} \varnothing_{i} t \propto\left(\varnothing \Sigma_{a} k_{\infty}\right)_{i} \tag{H.6}
\end{equation*}
$$

Since inner zones 2 and 3 see the same flux $\left(\phi_{2}=\phi_{3}\right)$, a single fit of outer zone 1 flux ϕ, normalized to that of the inner zones suffices to allow a determination of power sharing:

where

$$
\left.\begin{array}{l}
\varnothing_{1}=\boldsymbol{\Phi}\left(\epsilon_{f_{\text {NEW }}}, k_{\infty}{ }^{\text {INNER }}\right.
\end{array}\right) \text { of Equation VII }
$$

After the burnup increments are determined for each zone, simulation of one irradiation is complete. Refueling is then represented by discharging zone 3 and renumbering zones 1 and 2 to 2 and 3 , respectively. Clearly, the next irradiation can now be simulated by repeating all of the above steps. And so on, for all the cycles of interests. (The other operating cycle modes of Section H.l.l are easily handled within this framework.)

When all fed and discharged fuel characteristics $\left(\epsilon_{f}, B_{F I N A L}\right)$ have been determined, application of the uranium inventory Equation II (See Table H.l), current enrichment Equation III, and fissile plutonium inventory Equation IV provides pertinent mass balance data.

Reload batch fuel cost is then calculated using the simple, straightforward, but approximate equation:

$$
\begin{aligned}
\left(\begin{array}{c}
\text { Batch Revenue Requirement } \\
\text { Present Valued to } \\
\text { Middle of Irradiation }
\end{array}\right) & =\left(\begin{array}{c}
\text { Batch Initial } \\
\text { Investment } \\
\text { Cost }
\end{array}\right)\left(1+y\left(T_{p r e}+\frac{T}{2}\right)\right) \\
& -\left(\begin{array}{c}
\text { Batch } \\
\text { Salvage } \\
\text { Value }
\end{array}\right)\left(1-y\left(T_{p s t}+\frac{T}{2}\right)\right)
\end{aligned}
$$

$$
\begin{gather*}
\text { where } y=\frac{x}{1-\tau}=\begin{array}{c}
\text { average cost of money (before taxes), } \\
\text { per year }
\end{array} \tag{H.8}\\
x=\text { present value rate, per year } \\
T=\text { income tax rate, fraction of taxable income } \\
T=\text { total in-core time, years } \\
T_{p r e}=\begin{array}{l}
\text { pre-irradiation lead time for fuel fur- } \\
\text { chases, years }
\end{array} \\
T_{p s t}=\begin{array}{l}
\text { post-irradiation lag time for receipt of } \\
\text { fuel credit, years }
\end{array}
\end{gather*}
$$

All batches are then present-valued to the study's base date to yield $\overline{T C}_{r}^{p}$, the total nuclear fuel revenue requirement for the "path" p of cycle energies ($E_{r 1}, E_{r 2}, E_{r 3}, \ldots$) to the horizon. A second path p^{\prime}, equal to the first in all but one cycle $\left(E_{r l}, E_{r 2}+\Delta\right.$, $E_{r 3}, \ldots$), can also be evaluated. Then, the $\lambda_{r 2}$ indremental cost for that cycle becomes simply

$$
\begin{equation*}
\lambda_{r 2} \equiv \frac{\partial \overline{T C}_{r}}{\partial E_{r 2}} \approx \frac{\overline{T C}_{r}^{p^{\prime}}-\overline{T C}_{r}^{p}}{\Delta} \tag{He}
\end{equation*}
$$

Returning to the question of determining the proper empirical coefficients, data points can be easily generated by a suitable physics-depletion code set such as CELL-CORE (40,41) or even LASER-FLARE (25, 50). Multiple regression techniques (15) can be applied directly to the unit fuel cell data with a minimum of pre-fit data handling. On the other hand, the reactor irradiation data is best utilized in terms of the parameters of interest (e.g., power-sharing) as opposed to the physics quantities represented (e.g., flux ratios). In other words, the interpretation of Φ is qualitatively based on a flux ratio, but the actual Φ (to be used as input to any data-fitting package) is more appropriately backedout of the actual power-sharing data using the empirical value of $k_{\infty_{i}}$ and $\Sigma_{a_{i}}$ calculated for the same reactor core conditions.

Sample results for a Zion class 1100 MW PWR are shown in Figure H.2. Coefficients were fitted to Zion data output by CELL-CORE. Cost calculations are all based on annual refuelings with four week outages using unit costs representative of 1975 startup (46).

As an indication (See Table H.3) of simulator accuracy, in attempting to reproduce one of the fitted data points, QKCORE end of cycle burnups were in error by less than 0.6 per cent compared to CORE results (118 out of $19149 \mathrm{MWD} / \mathrm{T}$ at the end of second irradiation);

Figure H. 2

Table H. 3

Comparison of QKCORE versus CORE results

 for 3.2% U-235 at Steady-stateNOTE: All burnups in YWD/T 30.1 Metric tonnes loaded at each refueling

Initial	Average Zone Burnup				ERROR: QKCORE vs. CORE			
	CORE		QKCORE		End of Cycle		Cycle Increment	
	0.0				Absolute	Percent	Absolute	Percent
Increment		9173		9200			27	. 294
At End of Cycle 1	9173		9200		27	. 294		
Increment		9976		10067			91	. 912
At End of Cycle 2	19149		19267		118	. 616		
Increment		9294		9163			-131	1.410
At End of Cycle 3 (Discharge)	28443		28430		-13	. 046		

errors in cycle incremental burnups were higher but still less than 1.5 per cent (131 out of $9294 \mathrm{MWD} / \mathrm{T}$).

Programming the empirical model and its associated cost calculations resulted in the 1300 card Fortran IV program QKCORE which requires 80 K bytes of computer memory (plus 26 K for computer supervisor). Less than 0.2 sec of CPU time on an IBM 370 model 155 is required to simulate ten irradiation cycles including costing for each batch.

H.1.3 Code Structure and Mode of Operation

Table H. 4 presents a summary of QKCORE subroutines while Figure H. 3 portrays the general sequence of operations occurring in a QKCORE production run. (Table H. 5 presents information relative to possible error messages printed by subroutine ICERRS.)

In order to calculate incremental costs ($\partial \overline{\mathrm{TC}}_{\mathrm{r}} / \partial \mathrm{E}_{\mathrm{rc}}$), an ELAME table (See Figure H.4) is passed to INCORE. The key path p of cycle energies is evaluated first. Then, each cycle, in turn, (last cycle first) is altered to a p^{\prime} with a non-key $E_{r c}$, holding all others constant at their key value. Equation (H.9) is then used to determine $\lambda_{r c}$ which is then "sandwiched" between the two pertinent cycle energies that differ (See Figure H.4).

Table H. 4
Summary of QKCORE Subroutines

Name	$\begin{gathered} \text { Called } \\ \quad B Y \\ \hline \end{gathered}$	Calls	Purpose
QKCORE (Main)	------	INCORE ICNPUT ICERRS ERASE	Reads QKCORE input, then calls INCORE (see Table F.3)
INCORE (ICNPUT)	QKCORE (Main)	REDCOR FULSIM INIT3 EMPRCL ICERRS	Supervises in-core simulation; Has ENTRY ICNPUT to initiate reading of input data by subroutine REDCOR
REDCOR	ICNPUT	INIT2 UF6VAL SETUVL PVINIT ICERRS ERASE	Reads input data for INCORE
FULSIM	INCORE	CONSTS NXTIRR FRSIRR CSTBAT PRTTOP PRTBTM ERASE	Supervises fuel irradiation simulation for all E's

Table H.4--Continued

Name	$\begin{gathered} \text { Called } \\ \text { By } \\ \hline \end{gathered}$	Calls	Purpose
CONSTS	FULSIM	UNTCOS PVPER\$	Supervises calculation of unit ($\$ / \mathrm{Kg}$) cost for all batches
NXTIRR (FRSIRR)	FULSIM	FK8 FSIGA FEPF FK8NEW FPHI FECOUT ICERRS	Performs simulations of next irradiation; Has ENTRY FRSIRR for initial split cycle
$\begin{aligned} & \text { CSTBAT } \\ & \text { (INIT3) } \end{aligned}$	INCORE FULSIM	FKGUR FEPB FKGPU UF6VAL PVPERS ERASE	Calculates cost of batch of fuel; Has ENTRY INIT3 for initialization
PRTTOP (PRTBTM)	FULSIM	--	Prints top of FULSIM result table; Has ENTRY PRTBTM to print bottom of table

Table H.4--Continued

Name	$\begin{gathered} \text { Called } \\ \quad \mathrm{By} \\ \hline \end{gathered}$	Calls	Purpose
EMPRCL (FK8, FKGUR, FEPB, FKGPU FSIGA, FEPF, FK8NEW, FPHI, FECOUT)	INCORE NXTIRR FRSIRR CSTBAT	------	Initializes empirical equations; Has multiple ENTRY points for each equation
untcos (INIT2)	REDCOR CONSTS	------	Calculates escalated unit ($\$ / \mathrm{Kg}$) costs; Has ENTRY INIT2 to initialize excalation constants
UF6VAL (SETUVL)	$\begin{aligned} & \text { REDCOR } \\ & \text { CSTBAT } \end{aligned}$	PVPER\$	Calculates value of enriched uranium ($\$ / \mathrm{Kg} \mathrm{UF}_{6}$) ; Has ENTRY SETUVL to pre-calculate constants in value equation
$\begin{aligned} & \text { P•PERS } \\ & \text { (PVINIT) } \end{aligned}$	REDCOR CONSTS CSTBAT SETUVL	------	Calculates present (at base date) value of one dollar: Has ENTRY PVINIT to initialize present value rate; Identical to SYSOPT version (see Appendix F)
ICERRS	QKCORE (Main) INCORE REDCOR NXTIRR FRSIRR	-------	Prints error messages and choses to terminate execution if severe error occurs (see Table H.2)

Table H.4--Continued

	Called Name ERASE	By	Purpose
	QKCORE (Main) REDCOR FULSIM CSTBAT		MIT Assembler Language program that sets arrays to zeroes rapidly

Note: Computer installation-dependent dataset reference numbers for $R D$ and WT may be altered in ICNPUT.

Figure H. 3
QKCORE Flowchart

Table H. 5

QKCORE Error Messages Printed by ICERRS

Number*	Source	Action after Printing	Error
1	NXTIRR	RETURN	Cycle energy stretched-out more than 25% of reactivity-1imited energy
2	NXTIRR	RETURN	Cycle energy less than 75% of reactivitylimited energy
3	$\left\{\begin{array}{l} \text { QKCORE } \\ \text { REDCOR } \end{array}\right.$	IN) Terminate	Input deck has improper sequence and/or card
4	INCORE	Terminate	Array G in subroutine INCORE too small for problem
5	$\left\{\begin{array}{l} \text { INCORE } \\ \text { REDCOR } \end{array}\right.$	Terminate	One or more inputs are outside permissible limits
6	INCORE	RETURN	```NCYCTO }\not=\mathrm{ NCYCIN + NCYCXS when subroutine INCORE entered```
7	INCORE	Terminate	Data for unit IDNUM not read in
8	QKCORE	Terminate	"Stop" Card 27 or severe error encountered
9	REDCOR	RETURN	Power-sharing fractions (see Card 15 of Section H.2) do not sum within 1 ± 10^{-5}
A ($=10$)	QKCORE	Terminate	Too many cycle-energies being investigated
$B(=11)$	NXTIRR	RETURN	Needs reload enrichment < $1.5 \mathrm{w} / \mathrm{o}$ U-235 or > $5.0 \mathrm{w} / \mathrm{O} \mathrm{U}-235$
$C(=12)$	NXTIRR	Terminate	NXTIRR improperly called instead of FRSIRR

* The error number initiating the ICERR print appears as the rightmost digit in the accumulated ERRCOD (which is printed as part of the message).

Figure H. 4

ELAME Table

CYCLE c

$c=\operatorname{cYCLE} c$
$\operatorname{ELAME}(\mathrm{I} . \mathrm{C})=\mathrm{E}_{\mathrm{rc}}+[(\mathrm{I}-1) / 2] * \Delta$ IF I ODD

$$
=\lambda_{r c} \quad \text { IF I EVEN }
$$

H. 2 QKCORE Input Specifications

Table H. 6 presents the complete input specifications for QKCORE. "INCORE" Card 1 initiates reading of INCORE input data. Card 2 indicates the amount of input data and print options desired. A single set of economic parameters (with quadratic escalation permitted) are input on Cards 3-11. Reactor unit initial conditions and thermal efficiencies appear on Cards 12-15. Card 16-17 contain sets of reactor empirical constants while sets of fuel empirical constants are input on Cards 18-19. "END " Card 20 indicates end of INCORE input. Then, Card 21 "CASE" enters case data on Cards 22-25. Another"CASE" can then be entered, or a "NEW " Card 26 enters any new INCORE data (back to Card 1). Finally a "STOP" Card 27 terminates QKCORE execution.

Table H. 6

QKCORE Input Specifications

Variable Columns Format Description

Card 1

...	$1-12$	\ldots	"INCORE INPUT" Control Card	
initiates input of INCORE data				

Card 2

NUECON	1-5	I5	Control parameter for new economic data: $\text { if: } \begin{aligned} & =0 \quad \frac{\text { Cards } 3 \text { to } 11}{\text { not to be read in }} \\ & =1, \frac{\text { Cards } 3 \text { to } 11}{\text { to be read in }} \end{aligned}$
NURCRS	6-10	I5	Number of individual reactors (i.e., nuclear units) for which data to be read in, $0 \leq$ NURCRS \leq MXRCRS (=15)
NURCRK	11-15	I5	Number of sets of reactor empirical constants for which data to be read in, $0 \leq \operatorname{NURCRK} \leq \operatorname{MXRCRK}(=15)$
NUFULK	16-20	I5	Number of sets of fuel empirical constants for which data to be read in, $0 \leq$ NUFULK \leq MXFULK $(=5)$
RELCST	21	L1	Print option for relative cost results $\left(\overline{T C}_{r}^{p}-\overline{T C}_{r}^{p}\right)$ in in ELAME table, $\begin{aligned} & \mathrm{F}=\mathrm{No} \\ & \mathrm{~T}=\mathrm{Yes} \end{aligned}$
INCCST	22	L1	$\begin{aligned} & \text { Print option for incremental } \\ & \text { cost } \lambda_{r c} \text { results in ELAME } \\ & \text { table, } \\ & F=\text { No } \\ & T=\text { Yes } \end{aligned}$

Table H.6--Continued

Variable	Columns	Format	Description
BALCST	23	Ll	Print option for batch costs of key cycle energy path p
			$\mathbf{F}=\mathrm{No}$
			$\mathrm{T}=\mathrm{Yes}$
NBLCST	24	L1	Print option for batch costs at all cycle energy paths p^{\prime}
			$\mathrm{F}=\mathrm{No}$
			$\mathrm{T}=\mathrm{Yes}$
PIRDAT	25	Ll	Print option for irradiation data of all paths,
			$\mathrm{F}=\mathrm{No}$
			$\mathrm{T}=\mathrm{Yes}$
PBATCS	26	L1	Print option for detailed batch cost data of all paths,
			$\mathrm{F}=\mathrm{No}$
			$\mathrm{T}=\mathrm{Yes}$

Note: Cards 3 to 11 may be omitted from subsequent INCORE INPUT blocks if no changes in previous economic data read in. Then, NUECON $=0$. If QKCORE used in SYSOPT overlay structure (See Section F.l.2), always use NUECON = 1 .

Card 3
ECTITL 1-80 20A4 Title for economic data

Card 4

XF	l-10	Fl0.3	Enrichment of diffusion plant feed material (yellowcake), weight fraction U-235
XW	11-20	Fl0.3	Enrichment of diffusion plant tails, weight fraction U-235
TXRATE	21-30	F10.3	₹, income tax rate, fraction of taxable income

Table H.6--Continued

Variable	Columns	Format	Description
PVRATE	31-40	F10.3	x, present value rate, fraction per year
TBASE	41-50	F10.3	Calendar base data for present valuing, years
DTPRE	51-60	F10. 3	```Tpre, pre-irradiation lead time for fuel purchases, years```
DTPST	61-70	F10.3	```Tpst' post-irradiation lag time for receipt of fuel credit, years```
DTY2F6	71-80	F10.3	Effective delay time from yellowcake to UF_{6}, years

Card 5

| $A 0(1)$ | 1-10 $10.3 \quad$Constant term in yellowcake
 unit cost escalation,
 $\$ / 1 b \mathrm{U}_{3} \mathrm{O}_{8}$ |
| :--- | :--- | :--- |

A1 (1)

A2 (1)
21-30
F10. 3
F10. 3
Linear coefficient in yellowcake unit cost escalation, $\$ / 1 \mathrm{~b} \mathrm{U}_{3}{ }^{0}{ }_{8} /$ year

Quadratic coefficient in yellowcake unit cost escalation, $\$ / 1 \mathrm{~b}_{3} \mathrm{O}_{8} /$ year 2

Constant term in uranium conversion unit cost escalation, \$/kgU

A1 (2)	11-20	F10.3	Linear coefficient, $\$ / \mathrm{kgU} /$ Year
A2 (2)	$21-30$	F10.3	Quadratic coefficient, $\$ / \mathrm{kgU} /$ Year2
FCOR	$31-40$	Fl0.3	Yield in uranium conversion step, fraction

-558-
Table H.6--Continued
Variable Columns Format Description

Card 7

AO (3) 1-10 F10.3

Al (3)
11-20

A2 (3)
21-30
F10. 3

F10. 3

F10. 3

F10. 3

31-40 F10.3

F10. 3

F10. 3
Al (5)
11-20

21-30
$31-40$
F10. 3
FSAR
Flo. 3
A2 (5)
1-10
F10. 3

Card 10
A0 16

Al (6)
11-20
F10. 3

Constant term in separative work unit cost escalation, $\$ / \mathrm{kg}$ SWU

Linear coefficient, \$/kg SWU/year

Quadratic coefficient, \$/kg SWU/Year ${ }^{2}$

Constant term in fabrication unit cost escalation, $\$ / \mathrm{kg}$ Fab.

Linear coefficient, \$/kg Fab./year

Quadratic coefficient, $\$ / \mathrm{kg}$ Fab./year ${ }^{2}$

Yield in fabrication step, fraction

Constant term in shipping and reprocessing unit cost escalation, $\$ / \mathrm{kg}$ S\&R (U+Pu)

Linear Coefficient, $\$ / \mathrm{kg} \mathbf{S} \& \mathbf{R}$ (U+Pu)/year

Quadratic Coefficient, $\$ / \mathrm{kg} \mathrm{S} \& \mathrm{R}(\mathrm{U}+\mathrm{Pu}) /$ Year 2

Yield in reprocessing step, fraction

Constant term in uranium reconversion unit cost escalation, $\$ / \mathrm{kg} \mathrm{U}$.

Linear coefficient, \$/kg U/Year

Table H.6--Continued

Variable	Columns	Format	Description
A2 (6)	21-30	F10.3	Quadratic coefficient, $\$ / \mathrm{kg} \mathrm{U} /$ year 2
FCRE	31-40	F10.3	Yield in uranium reconversion step, fraction

Card 11

A0 (7)	1-10	Fl0.3	Constant term in fissi plutonium value escala \$/gm fis.Pu
A1 (7)	11-20	F10.3	Linear Coefficient, $\$ / g m$ fis. Pu/year
A2(7)	21-30	Fl0.3	Quadratic coefficient, $\$ / g m$ fis.Pu/year

Note: There must be NURCRS sets of Cards 12 to 15, one for each nuclear unit. If no change in previous NRCRS (nuclear unit data read in previously), NURCRS may equal zero. However, if QKCORE used in SYSOPT overlay structure (See Section F.l.2), always use NURCRS >0

Card 12

IDNO	2-5	1X, I4	Unique unit identification number
NAME	7-10	1X, A4	Unit name
MWCAP	11-15	I5	Unit net capacity, MW
IRCRKA	16-20	I5	Pointer to set of reactor empirical constants to be used for unit, $1 \leqslant$ IRCRKA \leqslant NRCRK
IFULKA	21-25	I5	Pointer to set of fuel empirical constants to be used for unit, $1 \leqslant$ IFULKA \leqslant NFULK
NOZONE	26-30	I5	n, number of refueling zones in units' fuel management scheme, $1 \leqslant$ NOZONE $\leqslant 10$
ZONKG	$31-40$	F10. 2	Mass of uranium fabricated for placement in units' outer zone, kg

Table H.6--Continued

Variable Columns	Format		Description EFFNET
DECRIT	Fl-50	Fl0.2	Average net thermal effi- ciency for unit, fraction
DESTCH	$61-70$	Fl0.2	Energy remaining in split cycle (at start of simulation) until reactivity limited burnup reached, GWHe
EFFINC	$71-80$	Fl0.2	Maximum stretchout permitted in cycle with fixed reload enrichment, GWHe
		Incremental net thermal efficiency for unit, fraction	
If=0 or blank, EFFINC set			
equal to EFFNET internally.			

Card 13

| N 12 | $\left.\begin{array}{l}\text { Number of entries to follow } \\ \text { for EPFFX } 0 \leq N \leq M X C Y T O ~ \\ \\ \\ \end{array}=20\right)$ |
| :--- | :--- | :--- |

$\operatorname{EPFFX}(1)$	$3-80$	F8.3,	Ef Refueling enrichment already
to		$7 F 10.3$	ordered for reactor, w/o $\operatorname{EPFFX}(8)$

$$
\begin{aligned}
& \text { if }<0,\left|\varepsilon_{f}\right| \text { is enrichment } \\
& \text { loaded at that refueling } \\
& \text { with reactivity-limited } \\
& \text { energy to be determined. } \\
& \text { if =0 (or blank), enrichment } \\
& \text { not ordered; free to choose } \\
& \text { reload enrichment to give } \\
& \text { reactivity-limited energy } \\
& \text { desired. }
\end{aligned}
$$

if $>0, \varepsilon_{f}$ enrichment ordered, extract cycle energy (regardless of reactivity-limited energy).

Note: If $N>8$, there must be $[(N-1) / 8]$ Card 14's for remaining EPFFX

Table H.6--Continued
Variable Columns Format Description
Card 14

```
EPFFX(9) 1-80 8F10.3 Remaining EPFFX (see Card
    to
EPFFX(N)
```

Note: There must be NOZONE Card 15, one for each zone of the reactor. First Card 15 is for Zone 1 (freshest fuel), while last card 1.5 is for Zone NOZONE (about to be discharged).

Card 15

EPFSRT	1-10	F10. 3	```\varepsilon}\mp@subsup{f}{i}{ w/o U-235```
BSRT	11-20	F10.3	B_{i} Current average burnup at start of simulation, MWD/kg U fab.
FABINV	21-30	F10. 3	Remaining book value of fabrication to be depreciated before discharge, $\$ / \mathrm{kg} \mathrm{U}$ fab.
SRCINV	31-40	F10.3	Current book value of shipping, reprocessing and reconversion (to be appreciated before discharge), $\$ / \mathrm{kg}(\mathrm{U}+\mathrm{Pu})$ disch.
POWFRC	41-50	F10.3	Power-sharing for this zone during this initial split cycle, fraction of total core output
			$\sum_{i=1}^{\text {NOZONE }} \mathrm{POWFRC}_{i}-1 \mid$ must be $<10^{-5}$

Note: If simulation does not start with split cycle, zone parameters for last Card 15 should be chosen judiciously since instantaneous depreciation of FABINV and appreciation of SRCINV can result in error in total cost (incremental costs are not affected). (Subroutine CSTBAT currently assumes the initial cycle is a split cycle.) Try EPFSRT $=1.0$, FABINV $=0.0$ and SRCINV $=A O(5)$ $+A O(6)$ to net error to zerc.

Table H.6--Continued
Variable Columns Format Description
Note: There must be NURCRK sets of Cards 16 and 17, one set for each set of reactor empirical constants. If no change in NRCRK sets of constants read in previously, NURCRK may equal zero. However, if QKCORE used in SYSOPT overlay structure (see Section F.l.2), always use NURCRK >0.

Card 16
RCRKTL 1-80 20A4 Title card for set of reactor empirical constants

Note: There must be three Card 17's to accommodate the 18 constants in each set.

Card 17

```
RCRCON(1) 1-80 3(6El2.6) R R, Reactor empirical con-
    to
RCRCON (18)
stants, }12\mathrm{ constants
currently used (see Table H.2)
```

Note: There must be NUFULK sets of Cards 18 and 19, one set for each set of fuel empirical constants. If no change in NFULK sets of constants read in previously, NUFULK may equal zero. However, if QKCORE used in SYSOPT overlay structure (see Section F.l.2), alway use NUFULK >0.

Card 18
FULKTL \quad - 80 20A4 Title card for set of fuel empirical constants

Note: There must be eight Card 19's to accommodate the 48 constants in each set.

Card 19

FULCON(1) 1-80	$8(6 \mathrm{El2.6})$	F_{i}, Fuel empirical constants,
to	44 currently used (see Table FULCON (48)	H.l)

Card 20

. . $1-4$. . . | "END "Control card signifying |
| :--- |
| end of REDCOR input. |

Table H.6--Continued

Variable Columns Format		Description	
. .	$5-80$	19A4	Free for comments

Card 21

- • •	1-4	- . .	"CASE" cating by QKC	
- . -	5-80	19A4		

Card 22
CATITL 1-80 20A4 Case title card
Card 23

NCYCIN	1-10	I 10	Number of cycles involved in horizon (initial cycle assumed split and final cycle may be split)
NCYCXS	11-20	I10	Number of complete extra (excess) cycles beyond horizon (=NOZONE-1)
Note:	NCYC	$=$ NCYCIN	NCYCXS \leq MXCYTO ($=20$)
IDNUM	27-30	6X, I4	IDNO of unit being input (used to retrieve unit data input by REDCOR)
ECHDOV	31-40	F10. 2	Energy held over beyond horizon in split cycle, $0 \leqslant$ ECHDOV, GWHe

Note: There must be NCYCTO sets of Card 24 and 25, one set for each cycle in simulation.

Card 24

I	$1-10$	Il0	Cycle number, $1 \leq I \leq$ NCYCTO
NECBAL	ll-20	Il0	Position of key cycle energy on Card 25, $1 \leq$ NECBAL \leqslant NES
TS	$21-30$	Fl0.4	Calendar time at start of irradiation cycle, years
TE	$31-40$	F10.4	Calendar time at end of irradiation cycle, years

Table H.6--Continued

Variable	Columns	Format	Description
NES	41-50	I 10	Number of cycle energies to be read in on card 25, $1 \leq \operatorname{NES} \leq[(\operatorname{MXESX} 2+1) / 2]=25$
T0	51-60	F10.4	Length of time unit operated during cycle,years
			TO \leq TE-TS
Note:	There mus accommod	t be [ate the	$+71 / 8]$ of Card 25 to cycle energies.

Card 25

| ERC(1) | $1-80$ | $8 F 10.4$ |
| :--- | :--- | :--- | | Alternative cycle energies for |
| :--- |
| to |
| ERC(NES) |

Note: Next card may be "NEW" Card 26, "CASE" Card 21 or "STOP" Card 27 with input seauence reverting to appropriate point.

Card 26

- . .	1-4	- • •	"NEW "Control card initiates input of new INCORE data. Revert to Card l in input sequence.
- . -	5-80	19A4	Free for comments

Card 27

. .	$1-4$.	"STOP" Control card to termi- nate execution of QKCORE for this computer run.
. .			

H. 3 QKCORE Sample Problem

Figure H. 5 presents a QKCORE Sample Problem input deck which is, in fact, part of (i.e., Reactor 2) the SYSOPT Sample Problem in Figure F.4. Figure H. 6 presents a summary of QKCORE output for the Sample Problem.

FIGURE H. 5
QKCORE
SMPLE PROBLEM INPUT DECK

Figure H. 6

QKCORE Sample Problem Output

H. 4 QKCORE Source Listing

The following is a Fortran IV source listing of the QKCORE code (included only in MIT library copies).

APPENDIX NOMENCLATURE AND ACRONYMS

Symbol	Description	Dimension ${ }^{1}$
A	Area under fractional loadduration curve	MW
a	Coefficient of cycle energy in linear approximation to λ	$\frac{\$}{(\mathrm{MWH})^{2}}$
AH	Available Hours, those during which a unit is available (I)	hours
b	Constant term in linear approximation to λ	$\frac{\$}{\mathrm{MWH}}$
C	(See Subscripts)	
c	Numerical constant	
CORSOM	CORe Simulation and Optimization	
D	Customer electric energy demand	MWH
d	Duration of load, amount of time that load \geq specified power level	hours
DM	Equivalent load spacing along F curves	MW
E	Electric energy produced	MWH
ε	Set of all $\mathrm{E}_{\text {rcp }}$ or $\left\{\mathrm{E}_{\mathrm{rcp}}\right\}$	MWH
e	Electric energy unit cost	$\frac{\$}{\text { MWH }} \equiv \frac{\text { mills }}{\text { kwhe }}$
F	Fractional load-duration, probability that load \geq specified power level $\bar{a} t$ random instant	fraction of period

$1_{\text {The }}$ symbol $\$$ represents present-valued or discounted dollars while |\$| represents absolute-value or nondiscounted dollars. All MW are in net megawatts electric.

Symbol	Description	Dimension ${ }^{1}$
f_{G}	Probability density function of unit performing (capable of $\mathrm{P}_{\mathrm{G}} \mathrm{MW}$)	per MW
f_{0}	Probability density function of unit not performing (derated $\mathrm{P}_{\mathrm{O}} \mathrm{MW}$)	per MW
f	Forced-outage importance, fraction of FOH actually affecting system generating operations	(None)
FOH	Forced-Outage Hours, those during which a unit was unavailable due to a forced-outage (7)	hours
FOR	Forced-Outage Rate (7), See Equation (2.6)	(None)
FORH	Forced-Outage Reserve Hours, Ehose dūring which a uñit was unavailable due to a forcedoutage, but would have been in reserve shutdown status if available.	hours
FOSH	Forced-Outage Service Hours, Ehose düring which a unit was unavailable due to a forcedoutage, but would have been in service status if available	hours
g	(See Subscripts)	
H	Heat input rate	$\frac{\text { MegaBTU }}{\text { hour }}$
h	Heat rate	$\frac{\text { MegaBTU }}{\text { MWH }}$
I	(See Subscripts)	
K	Unit capacity	MW
k	Unit capacity above minimum	MW
L	Capacity factor	(None)

Symbol	Description	Dimension ${ }^{1}$
ℓ	Increment capacity factor, i.e., above minimum	(None)
LIFO	```Last-In, First-Out inventory accounting```	
LOLP	Loss-Of-Load Probability	fraction of period
LP	Linear Programming	
M	Misfit potential, objective function for outer shape iterations	"misfits"
m	Misfit forcing function	$\frac{\text { "misfits" }}{\text { MWH }}$
MOH	Maintenance Outage Hours, those đuring which a unit is unavailable due to a postponed repair maintenance outage (7)	hours
N	Nuclear Potential	MWH
NP	Network Programming	
O-O-K	Out-Of-Kilter Network Program	
ORR	Operating Revenue Requirement to the horizon	\$
P	Power or load level	MW
\otimes	Probability unit capable of generating P_{G} MW or more when called upon	(None)
p	Performance probability, probability unit capable of generating K MW when called upon	(None)
PH	Period Hours, total hours in The perīod (7)	hours
POH	Planned Outage Hours, those đuring which a unit is unavailable due to a planned preventive maintenance outage (7)	hours

Symbol	Description	Dimension ${ }^{1}$
PV	Present Value of stream of expenditures within horizon	\$
Q	Quantity of equivalent thermal energy input during a startupshutdown sequence	Megabtu
q	Non-performance probability, probability unit will not perform when called upon	(None)
QKCORE	Quick in-CORE nuclear reactor core simulator and cost accounting computer code	
QP	Quadratic Programming	
R	(See Subscripts)	
R'	(See Subscripts)	
RAMM	Refueling And Maintenance Model	
RR	Revenue Requirement to the horizon associated with a direct expense	\$
RSH	Reserve Shutdown Hours, those during which a unit is off-line due to economy or similar reasons but is available as reserves (7)	hours
S	Strategy or schedule of system refueling and maintenance outages	
s^{2}	Variance of F_{e} equivalent loadduration shape (Nuclear upper increments only)	(None)
SH	Service Hours, those during which a unit is "actually operated with breakers closed to station bus" (7)	hours
SIM	System Integration Model	
SOH	Scheduled Outage Hours, those during which a unitt is unavailable due to mainetnance and planned outages (7)	hours

Symbol	Description	Dimension
SOM	System Optimization Model	
SYSINT	SYStem INTegration model computer code.	
SYSOPT	SYStem OPTimization model computer code	
T	Duration of a time interval extending over several time periods	hours
T'	Duration of a time period	hours
t	Time, calendar time	hours
$\overline{T C}$	Total Cost (i.e., revenue requirement) to horizon	\$
v^{2}	Total internal variance of mean availability-based increment capacity factors (Nuclear upper increments only)	(None)
w^{2}	Weighted sum of squares reactor average versus system average availability-based increment capacity factors (Nuclear upper increments only)	(None)
X	Expenditures during period	$\|\boldsymbol{s}\|$
x	Present value rate \equiv discount rate \equiv effective cost of money	$\frac{\text { fraction }}{\text { year }}$
Z	Time at end of planning horizon (See also Subscripts)	hours
α	Coefficient of E in Equation (4.36)	$\frac{\text { fraction }}{\text { MWH }}$
β	Constant term in Equation (4.36)	(None)
γ	Fraction of σ applied to limits on availability-based increment capacity factors	(None)
Δ	Energy step size for segmenting incremental cost curves	MWH
$\Delta \mathrm{K}$	Capacity of Increment	MW

Symbol	Description	Dimension
δ	Error in estimated objective function for next SOM iteration	\$
$\delta \mathrm{K}$	Power level within ΔK capacity increment	MW
η	Energy conversion efficiency	$\frac{M W(e)}{\operatorname{MW}(t)}$
θ	Thermal energy consumption	Megabtu
λ	Incremental energy cost	$\frac{s}{M W H} \equiv \frac{\text { mills }}{\text { kwhe }}$
Σ	Change in ORR at next trial solution	\$
σ	Average reduction in $\ell_{r}^{\prime}-\bar{\ell}$ ' required to pass shape test	(None)
τ	Time at end of cycle	hours
ϕ	Incremental fossil thermal energy cost during the period	$\frac{\|\$\|}{\text { MegaBTU }}$
Φ	Levelized incremental fossil thermal energy unit cost	$\frac{\$}{\text { MegaBTU }}$
ψ	Lagrangian auxiliary function	\$
Ω	Frequency of startup-shutdown sequence	per day
\$	Same as RR; the units of presentvalued or discounted dollars	\$
$\|\$\|$	The units of absolute value or non-discounted dollars	$\|\$\|$
\{...\}	Set of all .	

Subscripts

ACT ACTual
C Cycle number at end of planning horizon
C Cycle or contract
D Direct demand
e Equivalent or expected
EST ESTimated
F

G
9
H
I
I
d
$i \quad$ Increment of unit capacity
inc incremental
N
0
P Pumped-hydro or pumping mode
p Period number
$R \quad$ Number of reactors or generating units
R' Number of on-line reactors
$r \quad$ Reactor or generating unit
REJ
S

Fossil

Generating mode
Ordered sub-group of unit increments
Hydro
Indirect demand
Total number of capacity increments for unit
Total number of capacity increments currently being considered for unit

Nuclear
Outage

REJection level
Startup-shutdown

Subscripts

T Total for utility system
U Unserved (energy), urgent or emergency (purchases)

Z Total number of periods in planning horizon

Z+l Fictitious holdover period beyond planning horizon

Superscripts	
max	maximum
min	minimum
0	Out, as in without
s	Shape interation
t	Trial or inner total cost iteration
w	With
wo	Average; levelized
- At the optimum	
*	At the acceptable optimum
-	At zero; is invariant
-	Availability-based
l	

APPENDIX

REFERENCES

(1) "AEC to Raise Enrichment Prices in August and Institute an Annual 2% Hike," Nucleonics Week, 14, 7, February 15, 1973.
(2) "A Four-state Model for Estimation of Outage Risk for Units in Peaking Service," IEEE Task Group on Models for Peaking Service Units, IEEE Trans. on Power App. and Sys., PAS-91, 618-627 (March/April 1972).
(3) "IBM System/360 Operating System Utilities," Manual C28-6586-8, IBM Corporation (1968).
(4) "Present Practices in the Economic Operation of Power Systems," IEEE Trans. on Power App. and Sys., PAS-90, pp. 1768-1775 (July/August 1971).
(5) "Pumped Storage comes to the Rescue," Electrical World, p. 106, June 15, 1972.
(6) "Quadratic Programming System," MIT Information Processing Center, Applications Program Manual AP-53, May 22, 1970.
(7) "Report on Equipment Availability for the Nine-Year Period 1960-1968," Report of EEI Prime Movers Committee, EEI Publication 69-33, September 1969.
(8) "Zeroing Arrays," MIT Information Processing Center, Applications Program Manual, AP-39 Revision 1, March 1, 1972.
(9) Anderson, S. W., R. T. Jenkins, D. S. Joy, E. T. Merrill and T. D. Wolsko, "Methods of Planning Generating Unit Operation," Proc. Am. Power Conf., April 1970.
(10) Baleriaux, H., E. Jamoulle and Fr. Linard deGuertechin, "Simulation de l'exploitation d'un parc de machines thermiques de production d'électricité couplé à des stations de pompage," Revue E (edition S.R.B.E.), V, No. 7, pp. 3-24 (1967).
(11) Baughman, M. L., "Dynamic Energy System Modeling--Interfuel Competition," Energy Analysis and Planning Group, MIT, Report No. 72-1, September 1972.
(12) Benedict, M., "Economics of Nuclear Power," 22.27 Course Notes, MIT Dept. of Nuclear Engineering, Spring 1971.
(13) Benedict, M. of MIT, personal Communication, October 26, 1972.
(14) Bennett, L. L. and J. Turnage of ORNL, personal communication, October 12, 1972.
(15) Bevington, P. R., "Data Reduction and Error Analysis for the Physical Sciences," McGraw-Hill, New York (1969).
(16) Billinton, R., "Bibliography on the Application of Probability Methods in Power System Reliability Evaluation," IEEE Trans. on Power App. and Sys., PAS-91, pp. 649-660 (March/April 1972).
(17) Booth, R. R., "Notes on Computer Programs Developed During Period of Stay with T.V.A.: Jan.-Feb. -March 1970," State Electricity Commission of Victoria, Australia, April 1970.
(18) Booth, R. R., "The A-B-C of Probabilistic Simulation," State Electricity Commission of Victoria, Australia, February 1971.
(19) Booth, R. R., "Power System Simulation Model Based on Probability Analysis," IEEE Trans. on Power App. and Sys., PAS-91, 62-69 (January/February 1972).
(20) Commonwealth Edison Company of Chicago, personal communications with the Staff, November 1969 to February 1973.
(21) Day, J. T., "Factors Affecting the Justification of Nuclear Units in Generation Expansion," Trans. Am. Nucl. Soc., 13, 770 (1970).
(22) Deaton, P. F. and E. A. Mason, "Parallel Derivation of Marginal Costs Pertinent to Utility System Optimization," Trans. Am. Nucl. Soc., 15, 375 (1972).
(23) Deaton, P. F. and E. A. Mason, "A System Integration and Optimization Model for Nuclear Power Management Planning," Trans. Am. Nucl. Soc., 15, 373-375 (1972).
(24) DeGarmo, E. P., "Engineering Economy," Fourth edition, p. 441, Macmillan, Toronto (1967).
(25) Delp, D. L., D. L. Fischer, J. M. Harriman and M. J. Stedwell, "FLARE--A Three-Dimensional Boiling Water Reactor Simulator," USAEC Report GEAP-4598, Atomic Power Equipment Department, General Electric Company, July 1964.
(26) Drake, A. W., "Fundamentals of Applied Probability Theory," McGraw-Hill, New York (1967).
(27) Ford, L. R. Jr.\& D. R. Fulkerson, "Flows in Networks," Princeton University Press, Princeton, New Jersey (1962).
(28) Gilleland, J. E., W. B. Behnke and M. J. Whitman, "Integrating Nuclear Power into Planning for PowerSystem Operation," Peaceful Uses of Atomic Energy, Vol. 4, p. 105, Proc. of Fourth International Conf., Geneva, September 1971.
(29) Gilleland, J. E., R. E. Hoskins, W. M. Kiefer and E. F. Koncel, "Fitting Nuclear Capacity into Utility Planning," Proc. Am. Power Conf., April 1970.
(30) Hicks, K. L., "Theory of Economic Selection of Generating Units," AIEE Trans. on Power App. and Sys., PAS-79, pp. 1794-1800 (February 1960).
(31) Hildebrand, F. B., "Advanced Calculus for Applications," Prentice-Hall, Englewood Cliffs, New Jersey, pp. 354, 360 (1962).
(32) Hildebrand, F. B., "Methods of Applied Mathematics," Prentice-Hall, Englewood Cliffs, New Jersey, Second edition, p. 125 (1965).
(33) Hoskins, R. E., N. B. Hughes, W. M. Kiefer and E. F. Koncel, "Nuclear Fuel and Power Management," Trans. Am. Nucl. Soc., 15, 596 (1972).
(34) Hoskins, R. E., E. F. Koncel, S. Strauch, "Planning through Simulation of Operating with Nuclear and Fossil Plants," Proc. Am. Power Conf., April 1972.
(35) Houser, H. G. and D. A. Nordman, "Nuclear Plant Evaluation More Complex in Phase II," Electrical World, May 23, 1966.
(36) Jenkins, R. T., of TVA, personal communication, September 1970.
(37) Joy, D. S., "A Dynamic Programming Solution of the Electric Generating System Unit Commitment Problem," ORNL-TM-2881 (April 1970).
(38) Joy, D. S., "A Dynamic Programming Approach for Determining the Optimal Dispatching Sequence for a Combined Hydro-Thermal-Pumped-Storage Utility System," ORNL4624 (November 1970).

Joy, D. S. and R. T. Jenkins, "A Probabilistic Model for Estimating the Operating Cost of an Electric Power Generating System," ORNL-TM-3549 (October 1971).
(40)

Kearney, J. P., "Summary Description of the Fuel Depletion Code CELL-MOVE," MIT Dept. of Nuclear Engineering, August 1971.
(41) Kearney, J. P., "Simulation and Optimization Techniques of Nuclear In-core Fuel Management Decisions," Ph.D. Thesis, Dept. of Nuclear Engineering, MIT, January 1973.
(42) Kiefer, W. M. and E. F. Koncel, "Scheduling Generation on Systems with Fossil and Nuclear Units," Trans. Am. Nucl. Soc., 13, 768 (1970).
(43) Kirchmayer, L. K., "Economic Operation of Power Systems," Wiley, New York, p. 40 (1958).
(44) Koncel, E. F., to M. Benedict, personal communication, October 11, 1972.
(45) Levin, A., "IBM/360 Out of Kilter Network Flow Routine: Description for the User," Flight Transportation Laboratory, MIT, August 1967.

Mason, E. A., "An Overall View of the Nuclear Fuel Cycle," Nuclear News, 14, No. 2, 35, February 1971.
(47) McCoy, N. H., "Introduction to Modern Algebra," Allyn and Bacon, Boston (1968).
(48) Noakes, F. and A. Arismunandar, "Bibliography on Optimum Operation of Power Systems: 1919-1959," AIEE Trans. on Power App. and Sys.," PAS-82, pp. 864-871 (February 1963).
(49) Peschon, J., "Program Assesses Fuel Cost and Security," Electrical World, p. 42, May $1,1972$.
(50) Poncelet, C. G., "LASER--A Depletion Program for Lattice Calculations Based on MUFT and THERMOS," USAEC Report WCAP-6073, Westinghouse Electric Corporation, September 1963.
(51) Rees, F. J. and R. E. Larson, "Computer-Aided Dispatching and Operations Planning for an Electric Utility with Multiple Types of Generation," IEEE Trans. on Power App. and Sys., PAS-90, pp. 891-899 (March/April 1971).
(52) Skrotski, B. G. A., and W. A. Vopat, "Power Station Engineering and Economy," McGraw-Hill, New York (1960).
(53) Steinberg, M. J. and T. H. Smith, "Economic Loading of Steam Power Plants and Electric Systems," Wiley, New York (1943).
(54) Wagner, H. M., "Principles of Operations Research," Prentice-Hall, Englewood Cliffs, New Jersey, pp. 96, 551, 580 (1969).
(55) Watt, H. Y., "Incremental Costs and Optimization of In core Fuel Management of Nuclear Power Plants," Ph.D. Thesis, Dept. of Nuclear Engineering, MIT, June 1973.
(56) Weiss, L. W., "Case Studies in American Industry," Wiley, New York, p. 89 (1967).
(57) Widmer, H., "The Optimal Utilization of a Nuclear Power Plant with Fixed Fueling Schedule," Ph.D. Thesis, Dept. of Nuclear Engineering, MIT, September 1970.
(58) Widmer, H., E. A. Mason and P. W. MacAvoy, "Mid-Range Optimization of a Nuclear Power Plant," Trans. Am. Nuc1. Soc., 13, 784 (1970).
(59) Widmer, H., E. A. Mason and P. W. MacAvoy, "Short-Range Optimization of Use of a Nuclear Power Plant," Trans. Am. Nucl. Soc., 13, 785 (1970).

PERSONAL INFORMATION
Birth date: June 22, 1944
Married; Two children

$$
\begin{aligned}
& 5^{\prime} 8^{\prime \prime} ; 170 \text { pounds } \\
& \text { Health: excellent }
\end{aligned}
$$

VOCATIONAL OBJECTIVE: Employment in the area of nuclear economics and system analysis, particularly in power management, fuel management or fuel cycle analysis.

EDUCATION

Massachusetts Institute of Technology, Cambridge, Massachusetts Currently completing PhD thesis in the Department of Nuclear Engineering: "A System Integration and Optimization Model for Nuclear Power Management", Adviser: Professor E.A. Mason. Working closely with large Midwest utility sponsoring the research, thesis involves application of operations research methods to simulate and optimize their electric generating system which possesses both fossil and nuclear power plants. Graduate courses include nuclear physics, reactor engineering, reactor physics, nuclear chemical engineering, economics of nuclear power and space applications of nuclear energy. Minor includes managerial accounting, financial management and economics of fuel and power.

Cumulative grade average: 5.0 (5.0 = A) Expected degree and date: PhD; January 1973
AEC Special Fellowships in Nuclear Science (1967, 1968, 1969). John \& Fannie Hertz Foundation Fellowships (1970, 1971, 1972).
Member: American Nuclear Society; President, Westgate Community Association (Married students in MIT housing).

University of Cincinnati, Cincinnati, Ohio
Majored in Chemical Engineering. Courses included process economics and control, physical and chemical rate processes, material and energy balances, organic and physical chemistry, and modern physics.

Rank in class: lst in 223
Cumulative grade average: 3.91 ($4.0=A$)
Degree and date: B.S.Ch.E. (with High Honors); June 1967
Four scholarships
Member: American Institute of Chemical Engineers, Varsity Baseball
Honoraries: Vice-president, Tau Beta Pi; Omicron Delta Kappa; Phi Eta Sigma; Phi Lambda Upsilon.

Tecumseh High School, New Carlisle, Ohio: Diploma, 1962 (Valedictorian) Majored in College Preparatory Course.

WORK EXPERIENCE

Stone \& Webster Engineering Corporation, Boston, Mass. (1969): Sumer work in Nuclear División's new fuel management group adapting computer codes to in-house IBM/360 computer. Familiar with: 2DB, ANISN, FLARE, CELI-MOVE, GGC-3, CINCAS and COBRA. Programming capabilities include Fortran II, Fortran IV, BASIC, MAD, Assenbler and Job Control languages.

Raphael Katzen Associates, Cincinnati, Ohio (1967): Part-time work during senior year of college, organizing the data-files and design notebooks of this chemical engineering consulting firm.

Bauer Bros. Company, Springfield, Ohio (1962 to 1966): Co-operative work experience included 10 months in engineering department as draftsman and checker, 7 months as metallurgical. laboratory technician using classical methods of analysis, and 7 months as a technician in an industrial demonstration laboratory.

PUBLICATIONS

"A System Integration and Optimization Model for Nuclear Power Management Planning," P.F. Deaton and E.A. Nason, Trans. Am. Nucl. Soc., 15, 373 (1972).
"Parallel Derivation of Marginal Costs Pertinent to Utility Optimization," P.F. Deaton and E.A. Mason, Trans. Am. Nucl. Soc.. 15. 375 (1972).

MILITARY STATUS: First Lieutenant in U.S. Army Reserves with 3-year Ready Reserve obligation remaining.

BACKGROUND AND INTERESTS: Born and raised in small Ohio town; active in sports; hobbies include bridge, chess and flying.

```
C*********************************************************************************
C*
C* S Y S I N T : AN ELECTRIC UTILITY SYSTEM INTEGRATICN MODEL
    WRITTEN BY PAUL F. DEATON
    M.I.T. DOCTORAL THESIS. MARCH 1973
C*
C*
```



```
C MAIN PROGRAM
C SYSINT VERSION 1-01-73
    COMMON/INTEGR/RD,WT
    INTEGER RD,WT
    CALL STRTIM
    WRITE(WT.900)
    CALL SUPSIM
    STOP
    900 FORMAT(T31,72('*')/T31,'*',T102,'*'/T31,**',T37,'S Y S I N T :
        $ AN ELECTRIC UTILITY SYSTEM INTEGRATION MODEL',T102,'*'/
    $T 31.**'.T64,'WRITTEN BY PAUL F. DEATON',T102,***/
    $T31."*'.T58,'M.I.T. DOCTORAL THESIS, MARCH 1973'.T102.**'/
    $T31.**',T102,**'/T31,72('*')//
    $T56.'VERSION 1-01-73')
            END
            BLCCK DATA
C SYSINT VERSION 10-15-71
C INITIALIZES CONSTANT DATA IN COMMON AREAS
```



```
    IMPLICIT REAL*8 (A-H.O-$)
C CCMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
    COMMON/PLTDAT/IDNO(100),NAME(100), TYPE (100), SUSDHT (100), PNCM(100),
    $NPTS(100),MWPT (5,100),HTRAT(5,100)
    COMMON/PERDAT/AVLBTY(100),CSTBTU(100),STATUS(100), EXPHRS(100),
    $EXPBTU(100), EXP GWH(100),NORDER(500),COST(100), ENERGY(100).
    $SUPCST (100),MRGCST (5,100)
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    COMMON/PROB/DM, DT,GWHPER,DAYS, IEMIN,IEMAX, PEMI N, PEMAX, PROB (500)
```

SINTOOOI
SINTOOO2
SINT0003
SINT0004
SINTOOO5
SINT0006
SINT0007
SINTOOO8
SINT0009
SINTOO10
SINTOOII
SINTOO12
SINTOO13
SINT0014
SINT0015
SINTOO16
SINTOO17
SINTOOL 8
SINT0019
SINT0020
SINT0021
SINTOO22
SINTOO23
SINTOO24
SINTOO25
SINT0026
SINT0027
SINTOO28
SINTOO29
SINTOO30
SINTOO31
SINTOO32
S INT0033
SINTOO34
SINT0035
SINTOO36
PAGE 1

```
    COMMON/FLOAT/EPS,TRACE,PKMW,SPNRES,CSTEMR
    CCMMON/TITLE/SGTITL(10),PDTITL(10)
    COMMON/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
    $, IDSTR G.PCHMIN, PCHMAX,MBRNUM
    CCMMON/LDGNFO/LDTYPE,LDTYPS,LOAD(50,25),NORDOP,NOENTY,NOBASE,
    $NOPEAK, NNORD
    COMMON/MAXMUM/IDIMEN,MAXPLT,MAXPER,MAXNPT
    COMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI,THOUS,MILLI
    COMMON/LOG ICL/MINI,MIDI,MAXI,NPM, PCHING
    COMMON/SUSDF/F(20)
    COMMON/MAINT/MAINT (100,20)
C MAINT IS DIMENSIONED (MAXPLT,MAXPER/5) THE 5 IS 5II/INTEGER*2
    COMMON/MURGER/CTEMP(500),NEWCOD(5),NEWCST(5),MPTS,IFRST,ILAST
    NEWCST & NEWCOD ARE DIMENSIONED MAXNPT:CTEMP (MAXPLT*MAXNPT)
    REAL*4 SUSDHT, PNOM,HTRAT
    REAL*4 SUPCST,MRGCST
    REAL*4 CTEMP,NEWCST
    REAL*8 MILLI
    INTEGER RD,WT, PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
    INTEGER*4 NEWCOD
    INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
    LOGICAL*I MINI,MIDI,MAXI,NPM,PCHING
    END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    REAL*8 EPS/1.D-3/
    REAL*8 TRACE/1.D-10/
    INTEGER RD/5/.WT/6/,CARD/7/.TAPE/8/
    INTEGER IDIMEN/500/
    INTEGER MAXPLT/100/
    INTEGER MAXPER/100/
    INTEGER MAXNPT/5/
    INTEGER NPERI/1/
    REAL*8 ZERO/0.000/,ONE/1.000/,TWO/2.000/,HALF/0.500/,TEN/1.D1/,
$TENTH/1.D-1/.HUNDRD/1.D2/.CENTI/1.D-2/.THOUS/1.D3/.MILLI/1.D-3/
    END
    SUBROUTINE SUPSIM
    SUPERVISOR OF ENTIRE SYSINT SIMULATION
```

SINT0037 SINT0038 SINTOO39 SINT0040 SINT0041 SINT0042 SINT0043 SINT0044 SINT0045 SINT0046 SINT0047 SINT0048 SINT0049 SINT0050 SINT0051 SINT0052 SINT0053 SINT0054 SINTOO55 SINT0056 SINT0057 SINT0058 SINT0059 SINT0060 SINT0061 SINT0062 SINT0063 SINT0064 SINT0065
SINT0066 SINT0067 SINT0068 SINT0069 SINT0070 SINT0071
SINT0072

```
SYSINT VERSION 11-2-71
**********************************************************************
DEFINITION OF IMPORTANT VARIABLES *********************************
AVLBTY = PERFORMANCE PROBABILITY (PER CENT)
CARD = UNIT NUMBER FOR COMPUTER CARD PUNCH DEVICE
COST = EXPECTED COST (DOLLARS)
CSTBTU = COST OF FUEL (CENTS/MEGABTU)
CSTEMR = COST OF EMERGENCY ENERGY PURCHASES {$/MWH}
DAYS = DURATION OF PERIOD (DAYS)
OM = EQUIVALENT LOAD CURVE SPACING (MW)
DT = DURATION OF PERIOD (HOURS)
EMRP$ = TOTAL COST OF EMERGENCY ENERGY PURCHASES (DOLLARS)
ENERGY = ENERGY AVAILABLE AS A SCARCE RESOURCE (GWH)
EPS = MINIMUM SEPARATION OF IEMAX*DM AND PEMAX (MW)
ERRCOD = ACCUMULATED ERROR CODE
EXPBTU = EXPECTED FUEL CONSUMPTION (MEGABTU)
EXPDEM = EXPECTED ENERGY DEMAND (GWH)
EXPEMR = EXPECTED EMERGENCY ENERGY PURCHASES (GWH)
EXPGEN = EXPECTED SYSTEM GENERATION (GWH)
EXPGWH = EXPECTED PLANT GENERATION (GWH)
EXPHRS = EXPECTED HOURS OF OPERATION
F = NORMALIZED STARTUP-SHUTDOWN FREQUENCY FUNCTION (PER DAY)
GWHPER = ENERGY PER UNIT AREA UNDER LOAD CURVE (GWH) = DM*DT/1000
HTRAT = INCREMENTAL HEAT RATE (BTU/KWH)
IDIMEN = MAXIMUM NUMBER OF POINTS ALLOWED IN PROB ARRAY
IDNO = PLANT IDENTIFICATION NUMBER
IDSTRG = STRATEGY ID
IEMAX = PROB ARRAY LOCATION OF MAXIMUM LOAD
IEMIN = PROB ARRAY LOCATION OF MINIMUM LOAD
INDEX = SEQUENTIAL ORDER OF PLANT AS READ IN
LDTYPE = TYPE OF LOAD CURVE TO BE USED IN THIS PERIOD
LDTYPS = TOTAL NUMBER OF LOAD CURVES INPUT
LOAD = NORMALIZED LOAD-DURATION CURVES (10**-4)
MAINT = NUMERICALLY-PACKED MAINTENANCE STATUS
MAXI = OPTION FOR MAXIMUM PRINTOUT
MAXNPT = MAXIMUM NUMBER OF VALVE PCINTS ALLOWED
```

SINTOO73
SINT0074 SINT0075 SINT0076 SINT0077 SINT0078 S INT0079 SINT0080 SINT0081 SINT0082 SINTO083 SINT0084 SINTOO85 SINT0086 SINT0087 SINTOO88 SINTO089 SINT0090 SINT0091 SINT0092 SINT0093 SINTO094 SINT0095 SINT0096 SINTOC97 SINTOO98 SINT0C99 SINTO 100 SINTO101 SINTO102 SINTO103 SINTOLO4 SINTOLO5 SINTOLO6 SINTOl07 SINTOLO8

```
MAXPER = MAXIMUM NUMBER OF PERIODS ALLOWED
MAXPLT = MAXIMUM NUMBER OF PLANTS ALLOWED
MIDI = OPTION FOR MEDIUM VOLUME PRINTOUT
MINI = OPTION FOR MINIMUM PRINTOUT
MRGCST = MARGINAL COST ($/MWH)
MWPT = VALVE POINT RATING (MW)
NAME = PLANT NAME
NNORD = NUMBER OF VALVE POINTS USED IN NORDER
NOBASE = NUMBER OF ENTRIES IN NORDER IN BASE PORTION
NOENTY = NUMBER OF ENTRIES TO NORDER
NOPEAK = NUMBER OF ENTRIES IN NORDER TREATED AS PEAKERS
NORDER = LOADING ORDER CODED AS 1000*NPT+INDEX
NORDOP = STARTUP ORDER OPTION DESIRED
NOSTNS = NUMBER OF STATIONS FOR WHICH CATA READ IN
NPER = NUMBER OF THIS PERIOD
NPERS = TOTAL NUMBER OF PERIODS READ IN
NPERI = ASSOCIATED VARIABLE FOR DIRECT ACCESS DEVICE; NPERI=NPER
NPM = NUCLEAR POWER MANAGEMENT CPTION
    = (.TRUE.=N.P.M. PROBLEM, .FALSE.=SIMULATION ONLY)
NPTS = NUMBER OF VALVE POINTS OR CAPACITY INCREMENTS
PCHMAX = NORDER POINT WHEN PROB PUNCHED AT MAX.NUKES
PCHMIN = NORDER POINT WHEN PROB PUNCHED AT MIN.NUKES
PDTITL = PERIOD TITLE
PEMAX = MAXIMUM EQUIVALENT LOAD (MW)
PEMIN = MINIMUM EQUIVALENT LOAD (MW)
PKMW = FORECAST PEAK LOAD FOR THE PERIOD (MW)
PNCM = PLANT NOMINAL AVAILABILITY FRACTION
PROB = EQUIVALENT LOAD CDF
PROD$ = TOTAL SYSTEM PRODUCTION FUEL COST (DOLLARS)
PUNCH = OUTPUT DEVICE TO BE USED FOR PUNCHED OUTPUT
RD = UNIT NUMBER OF COMPUTER INPUT READING DEVICE
SGTITL = STRATEGY TITLE
SPNRES = SPINNING RESERVE REOUIREMENT (MW)
STATUS = MAINTENANCE STATUS
    =(0=NON-EXISTENT,1=DOWN,2=ON-LINE)
SUPCST = STARTUP-SHUTDOWN COST (DOLLARS)
```

SINTOIO9 SINTOIIO SINTOL11 SINT0112 SINTO113 SINT0114 SINTOII5 SINT0116 SINTO117 SINTO118 SINTOII9 SINTO120 SINTOL21 SINTO122 SINTO123 SINTO124 SINTO125 SINTO 126 SINTO 127 SINTO128 SINTO129 SINT0130 SINTOI31 SINTOl32 SINTOI33 SINTO 134 SINTO135 SINT0136 SINTO 137 SINTO138 SINTO 139 SINT0140 SINTO141 SINTO 142 SINTO143 SINTO144
C SUSDHT = PLANT STARTUP \& SHUTDOWN HEAT REQUIREMENT (MEGABTU) SINTO145
C SUSDS = TOTAL SYSTEM STARTUP-SHUTDOWN COST (DOLLARS) SABT SINTOl46
C
C
C
C
C
C
C
C VARIABLES DIMENS IONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
COMMON/PLTDAT/IDNO(100), NAME(100), TYPE (100), SUSDHT(100), PNCM(100),
\$NPTS (100), MWPT (5,100), $\operatorname{HTRAT}(5,100)$
COMMON/ PERDAT/AVLBTY(100), CSTBTU(100), STATUS(100), EXPHRS(100),
\$EXPBTU(100), EXPGWH(100), NORDER(500), COST(100), ENERGY(100).
$\$$ SUPCST (100), MRGCST $(5,100)$
OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
CCMMON/ PROB/DM, DT, GWHPER, DAYS, IEMIN, IEMAX, PEMIN, PEMAX, PROB (500)
COMMCN/FLOAT/EPS,TRACE, PKMW, SPNRES,CSTEMR
COMMON/TITLE/SGTITL(10), PDTITL(10)
COMMCN/ INTEGR/RD,WT, PUNCH,CARD,TAPE, ERRCOD,NOSTNS, NPER,NPERS,NPERI
\$, IDSTRG, PCHMIN, PCHMAX, MBRNUM
COMMON/ LDGNFO/LDTYPE,LDTYPS,LOAD (50,25), NORDOP, NOENTY, NOBASE,
\$NOPEAK, NNORD
COMMON/MAXMUM/IDIMEN,MAXPLT,MAXPER,MAXNPT
CCMMON/ CONSTS/ZERO, ONE, TWO, HALF, TEN, TENTH, HUNDRD,CENTI, THOUS, MILLI
COMMON/LOGICL/MINI,MIDI,MAXI,NPM, PCHING
COMMON/SUSDF/F(20)
CCMMON/MAINT/MAINT (100,20)
MAINT IS DIMENSIONED (MAXPLT,MAXPER/5) THE 5 IS 5II/INTEGER*2
CCMMON/MURGER/CTEMP (500), NEWCOD(5),NEWCST(5), MPTS, IFRST, ILAST
NEWCST \& NEWCOD ARE DIMENSIONED MAXNPT;CTEMP (MAXPLT*MAXNPT)
REAL*4 SUSDHT, PNOM.HTRAT
REAL*4 SUPCST,MRGCST
REAL*4 CTEMP,NEWCST
TAPE = UNIT NUMBER FOR COMPUTER TAPE DEVICE
TOTALS = TOTAL SYSTEM COST (DOLLARS)
TRACE = LOWER LIMIT OF PROB PROCESSING
TYPE $=$ PLANT TYPE
$=(F=F O S S I L, H=H Y D R O, N=N U C L E A R, P=P E A K I N G, S=P U M P E D-S T O R A G E)$
WT = UNIT NUMBER OF COMPUTER OUTPUT PRINTING DEVICE

SINTO146
SINTO147
SINTO148
SINTO149
SINTO150
SINTOI51
SINTO152
SINT0153
SINTO154
SINTOl55
SINTO156
SINTO 157
SINTO158
SINT0159
SINTO 160
SINT0161
SINTO162
SINT0163
SINTO164
SINTO165
SINTO166
SINT0167
SINTO168
SINTO169
SINTO170
SINTOI71
SINTO172
SINTO173
SINTO174
SINTO 175
SINTOI76
SINTO177
SINTOI 78
SINT0179
SINTO180

```
    REAL*8 MILLI SINTOI81
    INTEGER RD,WT, PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
    INTEGER*4 NEWCOD
    INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
    LOGICAL*I MINI,MIDI,MAXI,NPM,PCHING
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    DATA $SUPSI/'SUPSIM'/
    INTEGER KEYWRD(7)/"STAR','SAVE*.'OUTP','PERI*,'STRA', 'CCMP', 'STOP*
    $/,$PRIN$/'PRIN'/.$CARD$/'CARD'/,$TAPE$/'TAPE'/.$MINI$/'MINI'/.
    $$MIDI$/'MIDI'/,$MAXI$/'MAXI'/.$BSOM$/' SOM'/
    LOGICAL*1 DOPERD(100)
    DOPERD DIMENSIONED BY MAXPER
    DEFINE FILE 9(100,1000,U,NPER1)
C IN DEFINE FILE STATEMENT, 100 IS MAXPER & 1000 IS 10*MAXPLT
    MINI=.TRUE .
    ASSIGN 10 TO NEXT
    ERRCOD=0
    10 MIDI=.TRUE.
    15 KEY=0
    20 KEY=KEY+1
    30 READ(RD,900) KEY1,I ,KEY2,J,KEY3
    WRITE(WT,910) $SUPSI,KEY1,I ,KEY2,J.KEY3
    40 IF(KEYI.EQ.KEYWRD(KEY)) GO TO (50, 20,60,80,90,100, 140), KEY
    KEY=KEY+1
    IF(KEY.GE.8) CALL ERRMSG('SUPSIM*.6)
    GO TO 40
    START CONTROL CARD READ
    50 ERRCOD=0
    CALL CMPTIMI'SUPSIM'.'BASIC ')
    CALL BASIC
    CALL CMPTIM(*BASIC '.'SUPSIM')
    GO TO 20
    60 IF(KEY2.EQ.$PRIN$) GO TO }7
    OUTPUT TAPE OR OUTPUT CARD CONTRCL CARD READ
    PUNCH=0
    IF(KEY2.EQ.$TAPE$) PUNCH=TAPE
SINTO181
SINTOl82
SINTO183
SINTO184
SINTO185
SINTO186
SINTO187
SINT0188
SINTO 189
SINT0190
SINTOI91
SINTO192
SINTOI93
SINTO194
SINTOIS5
SINTO196
SINTO197
SINT0198
SINTOI99
SINT0200
SINTO201
SINT0202
SINTO203
SINTO204
SINT0205
SINTO206
SINTO207
SINT0208
SINTO209
SINT0210
SINT0211
SINT0212
SINTO213
SINT0214
SINTO215
SINT0216
```

 IF(KEY2.EO.$CARD$) PUNCH=CARD SINTO217
 PCHING=PUNCH.GT.O SINTO218
 GO TO 30
 70 MIDI=.FALSE.
 MAXI=.FALSE.
 IF(KEY3.EQ.$MAXI$.OR.KEY3.EQ.$MIDI$) MIDI=.TRUE.
 IF(KEY3.EQ.$MAXI$) MAXI=.TRUE.
 GO TO 30
 PERIOD CCNTROL CARD READ
 80 DO 85 I=1,NCSTNS
 8 5 ~ A V L B T Y (I) = H U N D R D * P N O M (I) ~
 CALL ERASE(CSTBTU, 2*MAXPLT, ENERGY, 2*MAXPLT,NORDER,MAXPLT*MAXNPT/2)
 IF(MIDI) CALL CMPTIM('SUPSIM','PERIOD')
 CALL PERIOD
 IF(MIDI) CALL CMPTIM('PERIOD','SUPSIM')
 STRATEGY CONTROL CARD READ
 90 IF(MIDI) CALL CMPTIM('SUPSIM','STRATG')
 CALL STRATG
 IF(MIDI) CALL CMPTIMI'STRATG'."SUPSIM')
 GO TO 20
 COMPUTE CONTROL CARD READ
 100 IF(KEY2.NE.$BSOM$) GO TO 104
 REAC (RD.915) (DOPERD(J),J=1,NPERS)
 DO 102 N=1,NPERS
 IF(DOPERD(N)) WRITE(WT, 916) N
 102 CONTINUE
 GO TO 108
 104 DO 106 N=1,NPERS
 106 DOPERD (N)=.TRUE.
 108 KEY2=ERRCOD
 CALL CMPTIM(' *.'COMPUT')
 WRITE BASIC PLANT INFO FOR THIS STRATEGY
 WRITE(WT,920)
 WRITE(WT.930) IDSTRG,SGTITL,NPM,MBRNUM
 IF(NPM) WRITE(WT.935)
    ```

SINT0217
SINT0218
SINTO219
SINTO220
SINTO221
SINTO222
SINTO223
SINTO224
SINT0225
SINTO226
SINTO227
SINTO228
SINT0229
SINTO230
SINTO231
SINTO232
SINTO233
SINTO234
SINT0235
SINTO236
SINTO237
SINTO238
SINTO239
SINTO240
SINTO241
SINTO242
SINT0243
SINTO244
SINT0245
SINTO246
SINT0247
SINT0248
SINT0249
SINTO250
SINT0251
SINTO252
PAGE 7
```

 IF(PCHING) CALL PUNCHR(1)
 WRITE(WT,940) NOSTNS
 WRITE(WT,950)(J,IDNO(J),NAME(J),MWFT(NPTS(J),J),TYPE(J),SUSDHT(J),
 $PNCM(J),NPTS(J),(MWPT(I,J),HTRAT(I,J),I=1,MAXNPT),J=1,NOSTNS)
 WRITE(WT,970)(I,I=1,9)
 KEY1=(NPERS+4)/5
 DO 110 I=1, NOSTNS
 110 WRITE(WT,971) I,IDNO(I),(MAINT(I,J),J=1,KEYI)
 WRITE(WT,960) F
 IF(PUNCH.LT.O) GO TO 130
 ASSIGN 120 TO NEXT
 DO 120 N=1,NPERS
 IF(.NOT.DOPERD(N)) GO TO 120
 NPER=N
 NPER1=NPER
 ERRCOD=KEY2
 IF(MIDI) CALL CMPTIM('SUPSIM'.'PRESIM')
 CALL PRESIM
 IF(MIDI) CALL CMPTIM('PRESIM'.'SUPSIM')
 IF(PCHING) CALL PUNCHR(5)
 IF(.NOT.MINI) GO TO }13
 120 CONTINUE
 ASSIGN 10 TO NEXT
 ERRCOD=KEY2
 130 CALL CMPTIM('COMPUT',' ')
 GO TO 15
 ENTRY QUIT
 135 IF(PCHING) CALL PUNCHR(6)
 GO TO NEXT,(10,120)
 STOP CCNTROL CARD READ
 140 CALL ERRMSG('SUPSIM',8)
RETURN
900 FORMAT(2(A4,A3),3A4)
910 FORMAT(/T12,'KEY1 KEY2 KEY3'/2X,A6,' : ',2(A4,A3),3A4)
915 FCRMAT (80L1)
916 FORMAT(' SIMULATE PERIOD',I4)

```

SINTO253
SINT0254
SINT0255
SINT0256
SINTO257
SINT0258
SINTO259
SINT0260
SINT0261
SINT0262
SINT0263
SINT0264
SINT0265
SINT0266
SINT0267
SINT0268
SINT0269
SINTO270 G
SINT0271 N
SINT0272
SINT0273
SINT0274
SINT0275
SINT0276
SINT0277
SINT0278
SINT0279
SINT0280
SINTO281
SINT0282
SINTO283
SINT0284
SINT0285
SINT0286
SINTO287
SINT0288
```

 920 FORMAT('1'/30('0'%).4(:',132('0')/'+',132('*')/\prime)
 930 FCRMAT('OSTRATEGY ID = ',I6,5X,'TITLE :"',10AT,'"',3X,
 $'PUNCH NAME=',L1,I7)
 935 FORMAT('O',T25.'******NUCLEEAR P OWER MANAG',
 $' EMENT S T U D Y * * * * *')
 940 FORMAT('O',' PLANT DATA FOR',I4,' STATICNS'//
 $' INDEX IDNO NAME MAXMW TYPE SUSDHT(MEGABTUI PNON NPTS',
 $ ' MWPT(I,INDEX),HTRAT(I,INDEX),I=1,NPTS *.
 $'MWPT IN MW & HTRAT IN BTU/KWH'/I
 950 FORMAT((I4,I8,A6,I6,5X,A1,F14.2,F11.5,I3,5(2X,14,F7.0)1)
 960 FORMAT(//' NORMALIZED STARTUP & SHUTDOWN',
 $' FUNCTION :'/(8F10.6))
 970 FORMAT(//,T20,' MAINTENANCE STRATEGY BY PERIOD AND INDEX',
 $' (0=NON-EXISTENT; I=DOWN;2=ON-LINE)'//T115,'1',T62,'PERIOD'/
 $15x,9I 10.9X,00%/' INDEX IDNO',4X,10('1234567890%/)
 971 FCRMAT(14,17.4X,2015)
 END
 SUBROUTINE EASIC
 SYSINT VERSION 10-31-71
 READS BASIC SYSTEM INFORMATION
    ```

```

 IMPLICIT REAL*8 (A-H,O-$)
 COMMON VARIABLES
 VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
 COMMON/PLTDAT/IDNO(100),NAME(100), TYPE(100),SUSDHT(100), PNCM(100),
 $NPTS(100),MWPT(5,100),HTRAT (5,100)
 OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
 COMMON/ PROB/DM, DT, GWHPER,DAYS,IEMIN, IEMAX, PEMIN,PEMAX, PROB (500)
 COMMON/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
 $.IDSTRG,PCHMIN, PCHMAX,MBRNUM
 COMMON/LDGNFO/LDTYPE,LDTYPS,LOAD(50,25), NORDOP,NOENTY,NOBASE,
 $NOPEAK,NNORD
 CCMMON/MAXMUM/IDIMEN,MAXPLT,MAXPER,MAXNPT
 COMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI,THOUS,MILLI
 COMMON/SUSDF/F(20)
 SINTO289
SINTO290
SINTO291
SINT0291
SINT0292
SINT0293
SINT0294
SINT0295
SINT0296
SINT0297
SINT0298
SINT0299
SINT0300
SINT0301
SINTO302
SINT0303
SINT0304
SINT0305
SINT0306
SINT0307
SINT0308
SINT0309
SINT0310
SINT0311
SINTO312
SINT0313
SINTO314
SINT0315
SINT0316
SINT0317
SINT0318
SINTO319
SINT0320
SINT0321
SINT0322
SINT0323
SINTO324

```
        REAL*4 SUSDHT, PNOM, HTRAT
        REAL*8 MILLI
        INTEGER RD,WT, PUNCH,CARD,TAPE, ERRCOD, PCHMIN, PCHMAX
        INTEGER*2 IDND,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT, LOAD
    20 REAC (RD.920) NOSTNS
    WRITE(WT,930) NOSTNS
    REAC (RD,940)(IDNO(J),NAME(J),TYPE(J), SUSDHT(J),PNOM(J),NPTS(J).
    $(MWPT (I,J),HTRAT (I ,J),I=1,MAXNPT),J=1,NOSTNS)
        DO 40 J=1, NCSTNS
        I=NPTS (J)
    30 IF(I.EQ.MAXNPT) GO TO }4
        I=I +1
        MWPT(I,J)=30000
        HTRAT(I,J)=1.E20
        GO TO 30
    40 CONTINUE
    WRITE(WT,950)(J,IDNO(J),NAME(J),MWPT(NPTS(J),J),TYPE(J),SUSOHT (J),
    $PNCM(J),NPTS(J),(MWPT(I,J),HTRAT(I,J),I=1,MAXNPT),J=1,NOSTNS)
        I=PRPNDX(J)
        GO TO 10
    READ NORMALIZED STARTUP & SHUTDOWN FUNCTION
50 READ(RD,960) F
    WRITE(WT.970) F
    GO TO 10
```

SINTO 325
SINTO326
SINT0327
SINT0328
SINT0329
SINT0330
SINTO331
SINTO332
SINT0333
SINT0334
SINT0335
SINT0336
SINTO337
SINT0338
SINT0339
SINT0340
SINT0341
SINT0342
SINT0343
SINTO344
SINT0345
SINT0346
SINT0347
SINT0348
SINT0349
SINT0350
SINTO351
SINT0352
SINTO353
SINT0354
SINT0355
SINTO356
SINT0357
SINT0358
SINT0359
SINTO360

```
C READ LOAD TYPES SINTO361
    60 TEMP=TEN**4
    WRITE(WT,980) LDTYPS
    IF(LDTYPS.GT.25) CALL ERRMSG('BASIC'.6)
    OO 90 I=1, LDTYPS
    REAC(RD,920) LDTYPE,NUMONE
    WRITE(WT,921) LDTYPE, NUMONE
    IF(NUMONE.LE.O) GO TO }7
    DO }70\textrm{J}=1.NUMON
    70 PROB(J)=ONE
    75 KEY 1=NUMONE +1
    READ(RD, 960)(PROB(J), J=KEY1, 50)
    WRITE(WT,990)(PROB(J), J=1,50)
    IF(PROB (50).GT.ZERO) WRITE(WT.991)
C STORE LOAD TYPES IN UNITS OF 10**-4 (SAVES STORAGE)
    DO }80\textrm{J}=1,5
    80 LOAD(J.LDTYPE)=PROB(J)*TEMP +HALF
    90 CONTINUE
    GO TO 10
900 FORMAT (2(A4,A3),3A4)
910 FORMAT(//T12,'KEY1 KEY2 KEY3'/2X,A6,': , 2(A4,A3),3A4)
920 FORMAT (1615)
921 FORMAT(/.2I5)
930 FORMAT ('I'.'BASIC NOW READING PLANT DATA FOR',I4,' STATICNS'//
    $* INDEX IDNO NAME MAXMW TYPE SUSDHTIMEGABTUI PNOM NPTS'.
    $ : MWPT(I,INDEX),HTRAT(I,INDEX),I=1,NPTS :
    $*MWPT IN MW & HTRAT IN BTU/KWH*/I
940 FORMAT ((I4,A4,IX,A1,F10.0.F9.5,I1,5(14,F6.0)))
950 FORMAT((14,I8,A6,I6,5X,A1,F14.2,F11.5,I3,5(2X,I4,F7.0)))
960 FCRMAT (8F10.4)
970 FORMAT (/" BASIC NOW READING NORMALIZED STARTUP & SHUTDOWN',
    $' FUNCTION : '/(8F10.6)
980 FORMAT (/' EASIC NOW READING*.I3,' LOAD TYPES'/' LDTYPE NUMONES*/)
990 FORMAT (1OF 10.4)
991 FORMAT ('+',T104,'<--- PRESIM WILL LINEARIZE'/
```

SINTO361
SINTO 362
SINT0363
SINTO 364
SINT0365
SINTO 366
SINT0367
SINT0368
SINTO369
SINT0370
SINTO371
SINTO372
SINT0373
SINTO374
SINTO375
SINT0376
SINTO377
SINTO378
SINT0379
SINTO380
SINT0381
SINTO382
SINT0383
SINT0384
SINT0385
SINT0386
SINT0387
SINT0388
SINT0389
SINT0390
SINT0391
SINT0392
SINT0393
SINT0394
SINT 0395
SINTO396

```
    $ T110, 'THIS NON-ZERO END POINT')
    END
    SUBROUTINE PERIOD
    SYSINT VERSION 10-29-71
C READS PERIOD DATA AND STORES IT ON DIRECT ACCESS DEVICE 
    IMPLICIT REAL*8 (A-H,O-$)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
    CCMMON/PLTDAT/IDNO(100),NAME(100), TYPE(100),SUSDHT(100), PNCM(100),
    $NPTS(100), MWPT (5,100),HTRAT(5,100)
    COMMON/PERDAT/AVLBTY(100),C STBTU(100),STATUS(100), EXPHRS(100),
    $EXPBTU(100), EXPGWH(100),NORDER(500), COST (100), ENERGY(100),
    $SUPCST(100),MRGCST(5,100)
    OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    COMMON/PROB/DM,DT,GWHPER,DAYS, IEMIN,IEMAX, PEMIN,PEMAX, PROB(500)
    COMMON/FLOAT/EPS,TRACE,PKMW,SPNRES,CSTEMR
    CCMMON/TITLE/SGTITL(10),PDTITL(10)
    COMMON/INTEGR/RD,WT,PUNCH,C ARD,TAPE,ERRCOD, NOSTNS, NPER,NPERS,NPER1
    $, IDSTRG.PCHMIN,PCHMAX,MBRNUM
    CCMMON/LDGNFO/LDTYPE,LDTYPS,LOAD(50,25), NORDOP,NOENTY,NOBASE,
    $NOPEAK,NNORD
    COMMON/ CONSTS/ ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI,THOUS,MILLI
    REAL*4 SUSDHT, PNOM,HTRAT
    REAL*4 SUPCST,MRGCST
    REAL*8 MILLI
    INTEGER RD,WT, PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
    INTEGER *2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
    END OF STATEMENTS COMMCN TO SEVERAL SUBROUTINES
    REAL*8 BTUCST(3)
    INTEGER*2 TEST(3)/'F', 'N', 'P*/
    LOGICAL*1 CHGCST(3),CHGAVL
    EQUIVALENCE (BTUCST,CSTFOS).(BTUCST(2),CSTNUK),(BTUCST (3),CSTPKG)
    DATA $STRAT,$PERIO,$SUSDB,$ALTER/'STRAT','PERIO','SUSD ','ALTER'/
    DATA STARS/1.D50/
    WRITE(WT,900)
```

SINT0397 SINT0398
SINT03S9
SINT 0400
SINTO401
SINT0402
SINTO403
SINT04C4
SINT0405
SINT0406
SINT0407
SINT0408
SINT0409
SINTO410
SINT0411
SINT0412
SINTO413
SINTO414
SINT0415
SINT0416
SINT0417
SINT0418
SINT0419
SINT0420
SINT0421
SINT0422
SINT0423
SINT0424
SINT0425
SINT0426
SINT0427
SINT0428
SINT0429
SINTO430
SINT0431
SINT0432

```
C NPERS=0
    10 REAC(RD,910) PDTITL
        READ(RD,920) NPER,LDTYPE,PKMW,SPNRES,DM,DT, CSTEMR,CSTFOS,CSTNUK,
        $CSTPKG,AVLALL
            NPERS=NPERS+1
            IF(SPNRES.LT.ZERO) SPNRES=ZERO
            DO 12 K=1,3
            CHGCST(K)=BTUCST(K).GT.ZERO
            IF(.NOT.CHGCST(K)) BTUCST(K)=STARS
    12 CONTINUE
            CHGAVL=AVLALL.GT.IERO.AND.AVLALL.LT.HUNDRD+ONE
            IF(.NOT.CHGAVL) AVLALL=STARS
            WRITE(WT,930) PDTITL,NPER,LDTYPE,PKMW,SPNRES,DM,DT,CSTEMR,CSTFOS,
            $CSTNUK,CSTPKG,AVLALL
            IF(.NOT.CHGAVL) GO TO 16
            DO 14 I=1. NOSTNS
    14 AVLBTY(I)=AVLALL
    16 DO 20 K=1.3
            IF(.NOT.CHGCST(K)) GO TO 20
            DO 18 I= 1,NOSTNS
            IF(TYPE(I).EQ.TEST(K)) CSTBTU(I)=BTUCST(K)
    18 CONTINUE
    20 CONTINUE
    30 READ(RD,940)$KEY1,$KEY2,ID,CST,AVL,ENER
    IF($KEYI.EQ.$STRAT.OR.$KEYI.EQ.$PERIO) GO TO 50
    IF($KEY1.EQ.$SUSDB) GO TO 40
    IF($KEYI.EQ.SALTER) GO TO 31
    WRITE(WT,950) $KEY1,$KEY2,ID,CST,AVL,ENER
        CALL ERRMSG('PERIOD',6)
C ALTER CARD WAS READ
    31 INDEX= INNDEX(ID)
    IF(CST.NE. ZERO) GO TO }3
    CST=STARS
    GO TO 33
    32 CSTBTU(INDEX)=CST
```

```
    33 IF(AVL.GT. 2ERD) GO TO }3
        AVL = STARS
        GO TO 35
    34 AVLBTY(INDEX)=AVL
    35 IF(ENER.GT.ZEROIGO TO }3
        ENER=STARS
        GO TO 37
    36 ENERGY(INDEX)= ENER
    37 WRITE(WT,950) $KEY1,$KEY2,ID,CST,AVL,ENER
        GO TO 30
C
    SUSD DATA CONTROL CARD READ
    40 WRITE(WT,951)$KEY1,$KEY2
        REAC(RD,970) NORDOP,NOENTY,NOBASE,NOPEAK
        WRITE(WT, 960) NORDOP, NOENTY,NOBASE,NOPEAK
        REAC(RL,970) (NORDER(I),I=1,NOENTY)
        WRITE(WT,970)(NORDER(I).I=1. NOENTY)
        GO TO 30
    50 WRITE(WT,980)(I,IDNO(I),NAME(I),CSTBTU(I), AVLBTY(I),ENERGY(I),
        $I=1, NOSTNS)
        WRITE(WT,951)$KEY1, $KEY2
        NPERI=NPER
        WRITEI9'NPER1)PDTITL,NPER,LDTYPE,PKMW,SPNRES,DM,DT,CSTEMR,NORDOP,
        $NOENTY, NOBASE,NOPEAK,CSTBTU,AVLBTY,NORDER, ENERGY
        IF($KEYI.EQ.$PERIO) GO TO IO
C STRATEGY CONTROL CARD READ
        RETURN
    900 FORMAT ('OPERIOD NOW READING PER PERIOD DATA & STORING ON DIRECT'
    $,' ACCESS DEVICE'/)
    910 FORMAT (IOA8)
    920 FORMAT (2I4,9F8.0)
    930 FORMATI'1PERIDD TITLE :H".10A8,"'%/T83."(CENTS PER MEGABTU)!/
    N: NPER LDTYPE PKMW(MW) SPNRES(MW) DM(MW) DT(HRS)',
    $' NPER LDTYPE PKMW(MW) SPNRES(MW) DM(MW) DT(HRS)',
    $16,18,F12.0,F11.0,F12.2,F9.2,F13.3.8X,3(F6.3.3X),F9.4/
    $'OSPECIFIC CHANGES INPUT ON ALTER CARDS:'
    $/T18.'IDNO CSTBTU AVLBTY ENERGY')
```

SINT0469
SINTO470
SINTO471
SINT0472
SINT0473
SINT0474
SINT0475
SINTO476
SINT0477
SINTO478
SINT0479
SINT0480
SINTO481
SINTO482
SINTO483
SINTO484
SINT0485
SINTO486
SINT0487
SINT0488
SINT0489
SINT0490
SINT0491
SINTO492
SINTO493
SINT0494
SINT0495
SINT0496
SINT0497
SINT0498
SINTO499
SINTO500
SINT0501
SINT0502
SINT0503
SINT0504

```
```

940 FORMAT(2A5,110.3F10.4)

```
```

940 FORMAT(2A5,110.3F10.4)
950 FORMAT(: ,2A5, I10,3F10.4)
950 FORMAT(: ,2A5, I10,3F10.4)
951 FORMATI//T 12,'$KEY1$KEY2'/' PERIOD : ',2A5/)
951 FORMATI//T 12,'$KEY1$KEY2'/' PERIOD : ',2A5/)
960 FORMATI
960 FORMATI
\$' STARTUP ORDER OPTION = NORDOP = =.15/
\$' STARTUP ORDER OPTION = NORDOP = =.15/
\$! NUMBER OF ENTRIES IN NORDER
\$! NUMBER OF ENTRIES IN NORDER
\$' NUMBER OF ENTRIES IN BASE PORTION = NOBASE = '.15/
\$' NUMBER OF ENTRIES IN BASE PORTION = NOBASE = '.15/
\$' NUMBER OF ENTRIES IN PEAK PORTION = NOPEAK =',I5/
\$' NUMBER OF ENTRIES IN PEAK PORTION = NOPEAK =',I5/
\$' NORDER(I),I=1,NOENTY :')
\$' NORDER(I),I=1,NOENTY :')
970 FORMAT (16I5)
970 FORMAT (16I5)
980 FORMATI//' FINAL KEY PERIOD INFO:'/
980 FORMATI//' FINAL KEY PERIOD INFO:'/
\$. INDEX IDNO NAME CSTBTU AVLBTY ENERGY!/
\$. INDEX IDNO NAME CSTBTU AVLBTY ENERGY!/
\$(14,18,A6,2X,3F10.4))
$(14,18,A6,2X,3F10.4))
 END
 END
 FUNCTION INNDEX(ID)
 FUNCTION INNDEX(ID)
C SYSINT VERSION 1-01-73
C SYSINT VERSION 1-01-73
C FINDS INDEX CORRESPONDING TO A PARTICULAR IDNO
C FINDS INDEX CORRESPONDING TO A PARTICULAR IDNO
 C ***
 C ***
 IMPLICIT REAL*8 (A-H,O-$)
IMPLICIT REAL*8 (A-H,O-\$)
C COMMON VARIABLES
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
COMMON/PLTDAT/IDNO(100),NAME(100),TYPE (100),SUSDHT(100), PNCM(100),
COMMON/PLTDAT/IDNO(100),NAME(100),TYPE (100),SUSDHT(100), PNCM(100),
\$NPTS(100).MWPT(5,100),HTRAT (5,100)
\$NPTS(100).MWPT(5,100),HTRAT (5,100)
OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
COMMON/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
\$,IDSTRG,PCHMIN, PCHMAX,MERNUM
\$,IDSTRG,PCHMIN, PCHMAX,MERNUM
REAL*4 SUSDHT,PNOM,HTRAT
REAL*4 SUSDHT,PNOM,HTRAT
INTEGER RD,WT,PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
INTEGER RD,WT,PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
C ENC OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
C ENC OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
INTEGER*2 ID2NDX(100)
INTEGER*2 ID2NDX(100)
C DIMENSION 100 ALLOWS FOR ALL TWO-DIGIT NUMBERS
C DIMENSION 100 ALLOWS FOR ALL TWO-DIGIT NUMBERS
IF(ID.LT.O.OR.ID.GT.9999) GO TO 20
IF(ID.LT.O.OR.ID.GT.9999) GO TO 20
IDNO(NOSTNS+1)=1D
IDNO(NOSTNS+1)=1D
I=ID2NDX(ID/100+1)-1
I=ID2NDX(ID/100+1)-1
10 I= I +1

```
```

 10 I= I +1
    ```
```

SINT0505 SINT0506 SINT0507 SINT0508 SINT0509 SINT0510 SINT0511 SINT0512 SINT0513 SINTO514 SINT0515 SINT0516 SINT0517 SINT0518
SINT0519 SINT0520
SINT0521 SINTO522 SINT0523 SINT0524 SINTO525 SINTO526 SINT0527 SINT0528 SINT0529 SINT0530 SINTO531 SINTO532 SINTO533 SINT0534 SINT0535 SINT0536 SINT0537 SINT0538 SINTO539
SINT0540

```
        IF(ID.EQ.IDNO(I)) GO TO 30 SINTO541
        GO TO 10
    20 I =NOSTNS+1
    30 IF(I.GT.NOSTNS) GO TO 50
        I NNDEX=I
        RETURN
C PREPARES ID2NDX FOR FASTER SEARCH BY LATER CALLS TO INNDEX
        ENTRY PRPNDX(JDUMMY)
        PRPNDX=JDUMMY
        CALL ERASE(ID2NDX,100/2)
        DO 40 I=1,NCSTNS
        KEYID=IDNO(I)/100+1
        IF(ID2NDX(KEYID).EQ.0) ID2NDX(KEYID)=I
    40 CONTINUE
    RETURN
    50 WRITE (WT,900) ID
        CALL ERRMSG('INNDEX',7)
        INNDEX=I
        RETURN
    900 FORMAT(TIO,'INVALID IDNO = ',IIO)
        END
        SUBROUTINE STRATG
    SYSINT VERSION 10-15-71
    READS STRATEGY INPUT AND FORMS MAINTENANCE CODE
    *****************************************************************
        IMPLICIT REAL*8 (A-H,O-$)
        COMMON VARIABLES
        VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
        COMMON/PLTDAT/IDNO(100),NAME(100),TYPE(100),SUSDHT(100), PNOM(100),
    $NPTS(100),MWPT(5,100),HTRAT(5,100)
    OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    CCMMON/TITLE/SGTITL(10),PDTITL(10)
    COMMON/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
    $,IDSTRG,PCHMIN, PCHMAX,MBRNUM
    COMMON/MAXMUM/IDIMEN,MAXPLT,MAXPER,MAXNPT
    LOGICAL*1 MINI,MIDI,MAXI,NPM,PCHING
```

SINT0541
SINT0542
SINT0543
SINTO544
SINTO545
SINT0546
SINT0547
SINT0548
SINT0549
SINT0550
SINT0551
SINT0552
SINT0553
SINTO554
SINT0555
SINT0556
SINTO557
SINTO558
SINT0559
SINT0560
SINT0561
SINT0562
SINT0563
SINT0564
SINT0565
SINT0566
SINT0567
SINT0568
SINT0569
SINT0570
SINT0571
SINT0572
SINTO573
SINT0574
SINT0575
SINT0576

```
    COMMON/MAINT/MAINT (100.20)
C MAINT IS DIMENSIONED (MAXPLT,MAXPER/5) THE 5 IS 5II/INTEGER*2
    REAL*4 SUSDHT,PNOM,HTRAT
    INTEGER RD,WT, PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
    INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
    CCMMCN/LOGICL/MINI,MIDI,MAXI,NPM, PCHING
    END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    INTEGER*2 M(100),NOTZRC(2),NDOWN(20)
    DIMENSION M(MAXPER)
    INTEGER $MAIN$/IMAIN*/,$BLANK// '/,NOT/INOT !/
    READ(RD,910) NPM,IPLACE,IDSTRG,SGTITL
    WRITE(WT,920)IDSTRG,SGTITL
    IF(IPLACE.LE.O) IPLACE=9
    MBRNUM=1000000*IPLACE*IDSTRG
    IF(IDSTRG.LT.O) MBRNUM=9999999
    KEYI=NCT
    IF(NPM) KEYI=$BLANK
    WRITE(WT,925) KEY1,NPM,MBRNUM
    READ(RD,930) KEY1,KEY2,KEY3
    WRITE(WT,940)KEY1,KEY2,KEY3
    IF(KEYI.NE.SMAINS) CALL ERRMSG('STRATG',6)
    LMAX=(NPERS+4)/5
    CALL ERASE(MAINT,MAXPLT*MAXPER/10)
    DO 50 I=1. NCSTNS
    RE AD (RD.950) ID,NAM,NOTZRO,NDOWN
    INDEX= INNDEX(ID)
    IF(NAM.NE.NAME (INDEX).AND.NAM.NE.$BLANK) CALL ERRMSG('STRATG',7)
    IF(NOTZRO(1).LE.0) NOTZRO(1)=1
    IF(NOT ZRO(2).LE.O.OR.NOTZRO(2).GT.NPERS) NOTZRO(2)=NPERS
    WRITE(WT,960) INDEX,IDNO(INDEX), NAME(INDEX),NOTZRO, NDOWN
    CALL ERASE(M,MAXPER/2)
    NOT1=NCTZRO(1)
    NOT2=NOTZRO(2)
    DO 10 L=NOT1,NOT2
10M(L)=2
    DO 20 L=1,20
```

SINT0577
SINTO578
SINT0579
SINTO580
SINTO581
SINTO582
SINT0583
SINT0584
SINT0585
SINTO586
SINT0587
SINTO588
SINTO589
SINT0590
SINT0591
SINT0592
SINT0593
SINT0594
SINT0595
SINT0596
SINT0597
SINT0598
SINT0599
SINT0600
SINT0601
SINT0602
SINT0603
SINT0604
SINT0605
SINT0606
SINT0607
SINT0608
SINT0609
SINT0610
DO $20 \mathrm{~L}=1,20$

```
        IF(NDOWN(L).LT.NOT1.OR.NDOWN(L).GT.NOT 2) GO TO 30
    20 M(NDOWN(L))=1
    30 DO 40 N=1,NPERS,5
    40 MAINT(INDEX,(N+4)/5)=
    $M(N+4)+10*(M(N+3)+10*(M(N+2)+10*(M(N+1)+10*M(N))))
    50 CONTINUE
        WRITE(WT,970)(I,I=1,9)
        DO 60 I=1,NOSTNS
    60 WRITE(WT,971) I,IDNO(I),(MAINT(I,J),J=1,LMAX)
        RETURN
    910 FORMAT (L3,I1,I6,10A7)
    920 FORMAT('1 STRATG NOW PROCESSING STRATEGY DATA FOR IDSTRG = ',IIO/
        $'0 STRATEGY TITLE :"',1OA7,""'//)
    925 FORMAT ('O*****',A6,'A NUCLEAR POWER MANAGEMENT STRATEGY ******',
        $' NAME=',Ll,I7,' FOR PUNCH OPTION *****'//)
    930 FORMAT (3A4)
    940 FORMAT(' KEYI'/' ',3A4//
        $' INDEX IDNO NAME STARTUP RETIRE DOWN FOR REFUELING &/OR'
        $,' MAINTENANCE'/T29,'AFTER'I
    950 FCRMAT(I4,A4,2X,215,2013)
    960 FORMATII4,I8,A6,15,18,6X,2014)
    970 FOKMAT (//,T20,' MAINTENANCE STRATEGY BY PERIOD AND INDEX',
        $' (0=NON-EXISTENT; 1=DOWN; 2=ON-LINE)'//T115,'1',T62,'PERIOD'/
        $15X.9I10,9X,'0'/' INDEX IDNO',4X,10('1234567890')/]
    971 FORMAT(I4,17,4X,2015)
        END
        SUBROUTINE PRESIM
C SYSINT VERSION 1-01-73 
C ******************************************************************
        IMPLICIT REAL*8 (A-H,O-$)
C COMMCN VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
        COMMON/PLTDAT/IDNO(100),NAME(100),TYPE (100),SUSDHT(100), PNCM(100),
    $NPTS (100), MWPT(5,100), HTRAT(5,100)
    COMMON/PERDAT/AVLBTY(100),CSTBTU(100),STATUS(100), EXPHRS(100),
```

SINT0613
SINT0614
SINT0615
SINT0616
SINT0617
SINT0618
SINT0619
SINT0620
SINT0621
SINT0622
SINT0623
SINT0624
SINT0625
SINT0626
SINT0627
SINT0628
SINT0629
SINT0630
SINT0631
SINT0632
SINT0633
SINT0634
SINT0635
SINT0636
SINT0637
SINT0638
SINT0639
SINT0640
SINT0641
SINT0642
SINT0643
SINT0644
SINT0645
SINT0646
SINT0647
SINTOG48
PAGE 18

```
    $EXPBTU(100), EXPGWH(100),NORDER(500), COST(100), ENERGY(1C0), SINTO649
    $SUPCST (100),MRGCST (5,100)
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    COMMON/PROB/DM, DT, GWHPER,DAYS, IEMIN, IEMAX, PEMIN, PEMAX, PROB (500)
    COMMON/FLOAT/EPS,TRACE,PKMW,SPNRES,CSTEMR
    CCMMON/TITLE/SGTITL(10),PDTITL(10)
    COMMON/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
    $,IDSTRG,PCHMIN, PCHMAX,MBRNUM
    COMMON/LDGNFO/ LDTYPE, LDTYPS,LOAD(50, 25),NORDOP,NOENTY,NOBASE,
    $NOPEAK,NNORD
    COMMON/MAXMUM/ IDIMEN,MAXPLT,MAXPER,MAXNPT
    COMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI,THOUS,MILLI
    COMMON/LOGICL/MINI,MIDI,MAXI,NPM,PCHING
    CCMMON/MAINT/MAINT (100,20)
C MAINT IS DIMENSIONED (MAXPLT,MAXPER/5) THE 5 IS 5II/INTEGER*2
    REAL*4 SUSDHT,PNOM,HTRAT
    REAL*4 SUPCST,MRGCST
    REAL*8 MILLI
    INTEGER RD,WT, PUNCH,CARD,TAPE, ERRCOD,PCHMIN, PCHMAX
    INTEGER*2 IDNO, TYPE,NPTS,MWPT,NORDER,STATUS,MAINT, LOAD
    LOGICAL*I MINI,MIDI,MAXI,NPM,PCHING
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    LOGICAL*I PRINT
    EQUIVALENCE (PRINT,MIDI)
    REAL*4 TEMP4
    FIND(9'NPER1)
C TRANSLATE MAINTENANCE CODE INTO STATUS
    J=(NPER+4)/5
    I =NPER+5-J*5
    IOUM=10**(5-I)
    DO 110 K=1,NOSTNS
    110 STATUS (K)=MOD(MAINT (K,J)/IDUM,10)
    RETRIEVE PERIOD INFO FROM DIRECT ACCESS DEVICE
    READ (9'NPERI)PDTITL,NPER,LDTYPE,PKMH,SPNRES,DM,DT,CSTEMR,NORDOP,
    $NOENTY, NOBASE,NOPEAK,CSTBTU,AVLBTY,NORDER, ENERGY
    RESCALE LOAD-DURATION CURVE & CONVERT FROM DL SPACING (2% PKMW)

SINT0649 SINTO650 SINT0651 SINT0652 SINT0653 SINT0654 SINTO655 SINT0656
SINTO657 SINT0658
SINT0659
SINT0660
SINT0661
SINT0662
SINT0663
SINT0664
SINT0665
SINT0666
SINT0667
\begin{tabular}{l} 
a \\
- \\
\hline
\end{tabular}
SINT0668
SINT0669
SINT0670
SINT0671
SINT0672
SINT0673
SINT0674
SINT0675
SINT0676
SINT0677
SINT0678
SINT0679
SINT0680
SINT0681
SINT0682
SINTO683
SINT0684
```

C TO DESIRED DM SINTO685
CALL ERASE(PROB,2*IDIMEN) SINT0686
TEMP=1.D-4
I EM IN=0
DO 10 J=1.50
PROB{J)=LOAD(J,LDTYPE)*TEMP
IF(PROB(J).GT.ONE-TRACE) IEMIN=J
IF(PROB(J).LE.ZERO) GO TO 20
10 CONTINUE
J=50
20 IEMAX=J
DL=PKMW*ONE/IEM AX
PEMAX=I EMA X*DL +EPS
PEMIN=IEMIN*DL
GWHPER=DL*DT*MILLI
CAYS=DT/24.DO
DMTEMP=DM
DM=DL
IF(.NOT.PRINT) GO TO 30
WRITE(WT,930) IDSTRG,SGTITL
WRITE(WT.940) NPER,PDTITL
WRITE(WT,920) DM, IEMAX, PEMAX,(PROB(K),K=1,IEMAX)
TEMP=GWHNRG (ZERO.PEMAX)
WRITE(WT.901) TEMP
3 0 ~ C A L L ~ N U S C A L (D L , D M T E M P) ~
ADJUST FINAL POINT SO LATER LINEAR INTERPOLATION GIVES PROPER
AREA UNDER THE CURVE (I .E. EXPECTED VALUE)
PROB(IEMAX)=PROB(IEMAX)*HALF*(ONE +PEMAX/DM-IEMAX)
PROB (IEMAX+1)= ZERO
IEMAX=IEMAX+1
PEMAX=IEMAX*DM+EPS
IF(.NOT.PRINT) GO TO 40
WRITE(WT,9 20) DM,IEMAX,PEMAX,(PROB(K),K=1,IEMAX)
TEMP=GWHNRG(ZERO,PEMAX)
WRITE(WT.902) TEMP
40 DO 50 I=1,NCSTNS

```

SINT0685 SINT0686 SINT0687 SINT0688 SINT0689 SINT0690 SINT0691 SINTO692 SINT0693 SINT0694 SINT0695 SINT0696 SINT0697 SINT0698 SINT0699 SINTO700 SINT0701 SINT0702 SINT0703 SINT0704 SINT0705 SINTO706 SINT0707 SINT0708 SINT0709 SINT0710 SINTO711 SINTO 712 SINT0713 SINTO714 SINTO715 SINT0716 SINTO717 SINTO718 SINT0719 SINTO720
```

 TEMP4=CSTBTU(I)*CENTI
 SUPCST(I)= SUSDHT(I)*TEMP4
 DO 50 J=1,MAXNPT
 50 MRGCST(J,I)=HTRAT(J,I)*.001*TEMP4
 WRITE FINAL PERIOD CONFIGURATION
 WRITE(WT.930) IDSTRG,SGTITL
 WRITE(WT,940) NPER,PDTITL
 IF(NORDOP.EQ.1) SPNRES=-2.D9
 WRITE(WT,950) PKMW,SPNRES.DT.LDTYPE
 WRITE(WT,920) DM, IEMAX, PEMAX,(PROB (K),K=1, IEMAX)
 WRITE(WT,960) CSTEMR
 WRITE(WT,970) (I,IDNO(I),NAME(I),MWPT(NPTS(I),I),TYPE(I),STATUS(I)
 $,AVLBTY(I), CSTBTU(I),SUPCST(I),ENERGY(I),NPTS(I),(MWPT(J,I),
 $MRGCST(J,I),J=1,MAXNPT),I,I=1,NOSTNS)
 [F(MIDI) CALL CMPTIM('PRESIM','LDGORD')
 CALL LDGORD
 IF(MIDI) CALL CMPTIM('LDGORD','PRESIM')
 IF(PCHING) CALL PUNCHR(2)
 CALL CMPTIM('PRESIM'.'SYSGEN')
 CALL SYSGEN
 CALL CMPTIM('SYSGEN'.'PRESIM')
 RETURN
 901 FORMAT (//10X,'GWHNRG(O,PEMAX) AT POINT 1=',F15.8)
902 FORMAT (//10X,'GWHNRG(O,PEMAX) AT PCINT 2=',F15.8)
920 FORMAT('0', 10X,'DM = , F10.4.10X,'IEMAX = ',I5,10X,'PEMAX = ',
\$F12.4.//.10X,'PROB(K),K=1,IEMAX ',/,(1X,10F13.9))
930 FORMAT('1'/'OSTRATEGY ID = ',I10,10X,'TITLE :"',10A7,'n')
940 FORMAT('OPERIOD NUMBER =', [9,10X,'TITLE :"',10A8,""')
950 FORMAT('O',T10,'PKMW',T22,'SPNRES(MW)',T39,'DT(HRS)',T54,'LDTYPE'/
\$F15.2,7X,F7.2,F15.2,113)
960 FORMAT('OCOST OF EMERGENCY POWER = ',F8.4,' \$/MWH')
970 FORMAT(/'OINDEX IDNO NAME MAXMW TYPE STAT.AVLBTY CSTBTU SUPCST',
$' ENERGY NPTS',T68,'(MWPT,MRGCST) IN UNITS OF (MW,$/MWH)',
\$T129.' INDEX'//(I4,I7,A5,I5,3X,A1,IG,F8.3,F7.3,F6.0,F8.1,I3,I5,F7.3
\$.4(2X,14.F7.3),14))
END

```

SINTOT21 SINTO722
SINTOT23
SINT0724
SINT0725
SINT0726
SINT0727
SINTO728
SINTO729
SINT0730
SINT0731
SINT0732
SINTO733
SINTO734
SINTO735
SINT0736
SINT0737
SINT0738 SINT0739 SINTO740 SINTO741 SINTO742 SINT0743 SINT0744 SINT0745 SINTO746 SINT0747 SINT0748 SINT0749 SINT0750 SINTO751 SINT0752 SINT0753 SINT0754 SINT0755 SINT0756

```

 10 PROB(I + IDUM)=ONE
 JLOW=IEMIN+1
 TEMP = (IDUM-1)*DMOLD
 JHI = TEMP/DM+ONE
 IF(JHI.GT.IEMAX) GO TO }3
 TEMP=PROB (IDUM- I)/(PDUM-TEMP)
 DO 20 I=JHI,IEMAX
 20 PROB(I + IDUM)=TEMP*(PDUM-I*DM)
 30 JHI=JHI-1
 FIRST APPROX: PROB(INEW)=LINEAR INTERPOLATION OF OLD PROB
 AT INEW*DMNEW
 TEMP=DMNEW/DMOLD
 DO 40 I=JLOW,JHI
 FB=I*TEMP
 ILO=FB
 FB=FB-ILO
 IHI=ILO+1
 40 PROB(I+IDUM)=PROB(ILO)+FB*(PROB(IHI)-PROB(ILO))
 DO 50 I=1. IEMAX
 50 PROB(I)=PROB(I + IDUM)
 I= IEMAX
 IF(PROB(I).GT.ZERO) GO TO 59
 I= I-1
 IF(PROB(I).GT.ZERO) GO TO 58
 51I=I-1
 IF(PROB(I).LE.ZERO) GO TO 51
 I EMAX=I +1
 58 PEMAX=I EMAX*DM +EPS
 59 TEST=GWHNRG(ZERO,PEMAX)
 TEST = EXPECTED DEMAND UNDER FIRST APPROX
 TRUERR=GOAL-TEST
 RELERR= DABS (TRUERR)/GOAL
 IF(RELERR.LT.TRACE) GO TO }10
 IF(RELERR.GT.MILLI) CALL ERRMSG(*NUSCAL',3)
 IF(.NOT.MAXI) GO TO }6
 WRITE(WT,910) GOAL,TEST,TRUERR,RELERR
    ```

SINT0793
S INT0794
SINTO795
SINT0796
SINT0797
SINT0798
SINT0799
SINT0800
SINT0801
SINT0802
SINTO803
SINTO804
SINTO805
SINT0806
SINTO 807
SINT0808
SINTO809
SINTO810
SINTO811
SINTO812
SINT0813
SINT0814
SINT0815
SINT0816
SINTO817
SINT0818
SINT0819
SINT0820
SINTO821
SINT0822
SINT0823
SINTO824
SINTO825
SINT0826
SINTO827
SINTO828

```

ly, WRITE(WT,920) DM,IEMAX,PEMAX,(PROB(I),I=I,IEMAX)
lum, WRITE(WT,920) DM,IEMAX,PEMAX,(PROB(I),I=1,IEMAX)

```


```

M WRITE(WT,920) DM,IEMAX,PEMAX,(PROB(I),I=1,IEMAX)
lum, WRITE(WT,920) DM,IEMAX,PEMAX,(PROB(I),I=1,IEMAX)

```

```

lum, WRITE(WT,920) DM,IEMAX,PEMAX,(PROB(I),I=1,IEMAX)
SINTO829
SINTO830
SINT0831
SINT0832
SINTO833
SINTO834
SINT0835
SINT0836
SINTO837
SINTO838
SINTO839
SINTO840
SINTO841
SINT0842
SINT0843
SINTO844
SINTO845
SINTO846
SINT0847
SINTO848
SINTO849
SINTO850
SINT0851
SINTO852
SINTO853
SINTO854
SINTO855
SINT0856
SINTO857
SINT0858
SINT0859
SINTO860
SINT0861
SINTO862
SINTO863
SINTO864

```
    920 FORMAT (/,10X,'DM = ',F10.4.10X.'IEMAX = .,I5,10X,'PEMAX = . .
    $F12.4,//.10X,'PROB(I),I=1,IEMAX ', /, (1X,10F13.9))
    930 FORMAT(/.T11,'DP = ',F12.10.//)
        END
        SUBROUTINE LDGORD
C SYSINT VERSION 11-2-71
C SETS UP NORDER FOR THE SPECIFIED OPTION NORDOP
```



```
        IMPLICIT REAL*8 (A-H,O-$)
C CCMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
    COMMON/PLTCAT/IDNO(100),NAME(100), TYPE(100),SUSDHT (100), PNOM(100),
    $NPTS(100).MWPT (5,100),HTRAT (5,100)
    COMMON/PERDAT/ AVLBTY(100), C STBTU(100),STATUS(100), EXPHRS(100),
    $EXP BTU(100), EXPGWH(100),NORDER(500),COST (100), ENERGY(100).
    $SUPCST (100),MRGCST (5,100)
        OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
        COMMON/FLOAT/EPS,TRACE,PKMW,S PNRES,CSTEMR
        COMMON/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
        $, IDSTRG, PCHMIN, PCHMAX, MERNUM
    COMMON/LDGNFO/LDTYPE,LDTYPS,LOAD(50.25),NORDOP,NOENTY,NOBASE,
    $NOPEAK , NNORD
    CCMMON/MAXMUM/ IDIMEN,MAXPLT,MAXPER,MAXNPT
    COMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI,THOUS,MILLI
    COMMON/LOGICL/MINI,MIDI,MAXI,NPM,PCHING
    CCMMCN/MURGER/CTEMP(500),NEWCOD(5),NEWCST(5),MPTS,IFRST,ILAST
    NEWCST & NEWCOD ARE DIMENSIONED MAXNPT;CTEMP (MAXPLT*MAXNPT)
    REAL*4 SUSDHT, PNOM,HTRAT
    REAL*4 SUPCST,MRGCST
    REAL*4 CTEMP.NEWCST
    REAL*8 MILLI
    INTEGER RD,WT,PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
    INTEGER*4 NEWCOD
    INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
    LOGICAL*1 MINI,MIDI,MAXI,NPM,PCHING
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
```

SINTO 865 SINTO866 SINTO 867 SINT0868 SINTO869 SINT0870 SINTO871 SINT0872
SINT0873
SINT0874
SINT0875
SINTO876
SINTO877
SINTO878
SINT0879
SINTO880
SINT0881
SINTO882
SINT0883
SINT0884
SINT0885
SINTO886
SINT0887
SINTO888
SINT0889
SINT0890
SINT0891
SINT0892
SINTO893
SINT0894
SINT0895
SINTO896
SINTO 897
SINT0898
SINT0899
SINT0900

```
    DATA SONLY/1.DO/
    INTEGER*2 NTEMP(500),MWSPIN(500)
C NTEMP AND MWSPIN ARE DINENSIONED MAXPLT*MAXNPT
    NAMELIST/ERRDAT/NORDOP, NOENTY, NOBASE,NOPEAK,IFRST,ILAST, INDEX,NPT,
    $MPTS,ID,I,SPIN,NORDER,NTEMP
    CALL COMPRS (NTEMP)
    WRITE(WT,940) NORDOP,NOENTY,NOBASE,NOPEAK,(NTEMP(I),I=1,NOENTY)
C ENCODE THOSE VALVE POINTS IN BASE PORT ION
    I SWTCH=NOENTY-NOPEAK+1
    NCBASP = NOBASE+1
    IFRST=NOBASP
    ILAST=NOBASE
    CTEMP{ILAST+1)=1.E50
    NORDER(ILAST+1)=1001
    SPINXS=-SPNRES
    DO 120 INDEX=1,NOSTNS
    NPT=0
    ID=IDNO(INDEX)
    DO 7O NORD=1,NOBASE
    IF(NTEMP(NORD).NE.ID) GO TO 70
    NPT = NPT +1
    NORDER(NORD)=1000*NPT+INDEX
    CTEMP(NORD)=MRGCST(NPT, INDEX)
    70 CCNTINUE
    IF(NPT.EQ.O) GO TO 120
    MPTS=NPTS(INDEX)-NPT
    IF(MPTS) 8C.105,90
    ANY ONE OF SEVERAL ERRORS
    80 WRITE(WT,ERRDAT)
        CALL ERRMSG('LDGORD',9)
    90 SPINXS=SPINXS+
    $CENTI*AVLBTY(INDEX)*(MWPT(NPTS(INDEX),INDEX)-MWPT(NPT,INDEX))
        DO 100 I=1,MPTS
        MPT=NPT+I
        NEWCOD(1)=1000*MPT+INDEX
    100 NEWCST(I)=MRGCST(MPT,INDEX)
```

SINT0901
SINT0902
SINT0903
SINT0904
SINT0905
SINT0906
SINT0907
SINT0908
SINT0909
SINTO910
SINT0911
SINT0912
SINT0913
SINT0914
SINT0915
SINT0916
SINT0917
SINT0918
SINT0919
SINT0920
SINT0921
SINT0922
SINT0923
SINT0924
SINT0925
SINT0926
SINT0927
SINT0928
SINT0929
SINT0930
SINT0931
SINT0932
SINT0933
SINT0934
SINT0935
SINTO936

```
    ILAST= ILAST+MPTS
    CTEMP(ILAST+1)=1.E50
    NORDER (ILAST+1)=1001
    CALL MERGER
    105 IF(NOBASE.EQ.NOENTY) GO TO }12
    DO 110 I=NCBASP,NOENTY
    IF(NTEMP(I).EQ.ID) GO TO 80
    110 CONTINUE
    120 CONTINUE
    IF(NOBASE.EQ.NOENTY) GO TO 205
    STARTUP INTERMEDIATE PLANTS ACCORDING TO SPINNING RESERVE REQ.
    OR ECONOMICS
    IPTR=NOEASP
    NEXTID=NTEMP(IPTR)
    NXTNDX=INNDEX(NEXTID)
    REASON=ZERC
    K=0
    140 IF(ILAST-IFRST+1) 80,141,142
    141 K=1
    142 NPT=NORDER(IFRST)/1000
        INDEX=NCRDER(IFRST)-NPT*1000
        DSPIN=CENTI*AVLBTY(INDEX)*(MWPT(NPT,INDEX)-MWPT(NPT-1,INDEX))
        IF(DSPIN.GT.SPINXS+HALF) GO TO 150
C SPINNING RESERVE OK WITH PLANTS ALREADY STARTED
    IF(MRGCST(1,NXTNDX).LT.CTEMP(IFRST)) GO TO 150
C NEXT VALVE POINT LESS EXPENSIVE THAN NEXT PLANT
    SPINXS=SPINXS-DSPIN
    I FRST=I FRST+1
    GO TO 140
    START UP NEXT PLANT
    150 IF(IPTR.NE.ISWTCH) GO TO 170
    FIRST PEAKING PLANT ABOUT TO BE STARTED
    IF(NOPEAK.EQ.O) GO TO 205
    IF(REASON.EQ.$ONLY) GO TO 170
    SPINXS=10.D6
    REASCN=$ONLY
```

SINT0937 SINT0938 SINTO939 SINT0940 SINT0941 SINT0942 SINT0943 SINT0944 SINT0945 SINT0946 SINT0947 SINT0948 SINT0949 SINT0950 SINT0951 SINT0952 SINT0953 SINT0954 SINT0955 SINT0956 SINT0957 SINT0958 SINT0959 SINT0960 SINT0961 SINT0962 SINT0963 SINT0964 SINT0965 SINT0966 SINT0967 SINTO968 SINT0969 SINT0970 SINT0971 SINT0972

```
    IF(NORDOP.EQ.4) GO.TO 140 SINTOM73
    NORDOP=4 PEAKERS COMMITTED ECONOMICALLY AFTER LAST INTERMEDIATE SINTO974
    PLANT STARTED SINTO975
    NORDOP<4 PEAKERS COMMITTED ECONOMICALLY AFTER ALL INTERMEDIATE SINTO976
    EQUIPMENT
    I FRST= I LAS T +1
    K=1
170 IF(IPTR.GT.NOENTY) GO TO 205
    CTEMP(IFRST)=CTEMP(IFRST)-2.E-5
    ID=NTEMP(IPTR)
    NEXTID=NTEMP(IPTR+1)
    NXTNDX=INNDEX(NEXTID)
    IPTR=IPTR +1
    INDEX=INNDEX(ID)
    MPTS=NPTS(INDEX)
    SPINXS= SPINXS+
    $CENTI*AVLBTY(INDEX)*(MWPT(MPTS,INDEX)-MWPT(1,INDEX))
    I=2
    IF(MPTS.EQ.I) GO TO 200
    DO 180 I=2,MPTS
    NEWCOD(I-K)=1000*I + INDEX
180 NEWCST (I-K)=MRGCST (I,INDEX)
    IF(K.EQ.1) GO TO }20
    DO 190 I=2.MPTS
    NEWCOD(I-1)=NEWCOD (I)
    NEWCST(I-1)=NEWCST(I)
    IF(NEWCST(I).GE.CTEMP(IFRST)) GO TO 200
190 CONTINUE
    l=MPTS +1
200 NEWCST (I-1)=CTEMP(IFRST)
    NEWCOD(I-1)=NORDER(IFRST)
202 NORDER(IFRST)=1000+INDEX
    CTEMP(IFRST)=MRGCST(1,INDEX)
    IFRST=IFRST+1
    ILAST = ILAST+MPTS
    CTEMP(ILAST+1)=1.E50
```

SINT0973
SINT0975
SINT0976
SINT0977
SINTOS78
SINT0979
SINTO980
SINT0981
SINTOG82
SINTO983
SINT0984
SINT0985
SINTOG86
SINTOS87
SINT0988
SINT0989
SINT0990
SINT0991
SINT0992
SINT0993
SINT0994
SINT0995
SINT0996
SINT0997
SINTOSS8
SINT0999
SINT1000
SINT 1001
SINT1002
SINT1003
SINT1004
SINT1 005
SINT1006
SINT1007
SINT1008

```
    NORDER(ILAST+1)=1001 SINTIO09
    MPTS=MPTS-K
    CALL MERGER
    IF(MPTS.GT.0) K=0
    GO TO 140
205 NNORD= ILAST
    CALL RETMRG
    SPIN=ZERO
    CALL ERASE(NTEMP,MAXPLT*MAXNPT/2)
    DO 230 I=1,NNORD
    [F(NORDER(I).LE.1000) GO TO }8
    NPT=NORDER(I )/ 1000
    I NDEX=NCRDER(I)-NPT*1000
    IF(NPT-1.NE.NTEMP(INDEX)) GO TO }8
    NTEMP{INDEX)=NPT
    IF(NPT.EQ.1) GO TO 220
    SPIN=SPIN-
    $CENTI*AVLBTY(INDEX)*(MWPT(NPT.INDEX)-MWPT(NPT-1.INDEX))
    GO TO 230
220 SPIN=SPIN+
    $CENTI*AVLBTY(INDEX)*(MWPT(NPTS (INDEX), INDEX)-MWPT(1,INDEX))
230 MWSPIN(I)= SPIN
    JJ=(NNORD+4)/5
    I= JJ*5-NNORD
    IF(I.EQ.O) GO TO 250
    DO 240 J=1.I
    NORDJ=NNORD+J
    NORDER (NORDJ)=0
    MWSPIN(NORDJ)=-10000
240 CTEMP(NORDJ)=-1.E30
250 JJ5=JJ*5
    DO 255 J=1,JJ5
255 NTEMP(J)=J
    WRITE(HT.920) NNORD
    WRITE(WT,930)(J,NORDER(J),CTEMP(J),MWSPIN(J), (NTEMP(J+I*JJ),
    $NORDER(J+I*JJ),CTEMP(J*I*JJ),MWSPIN(J+I*JJ),I=I,4),J=1,JJ)
```

SINT1009 SINT1010 SINT1011 SINT1012
SINT1013
SINT1014
SINT1015
SINT1016
SINT1017
SINT1018
SINT1019
SINT1020
SINT1021
SINT1022
SINT1023
SINT1024
SINT1025
SINT1 026
SINT1027
SINT 1028
SINTI 029
SINT1030
SINT1031
SINTIO32
SINT1033
SINT1 034
SINT1035
SINT1036
SINT1037
SINT 1038
SINT1039
SINT1040
SINT1041
SINT 1042
SINT1043
SINT1044

```
        IF(CABS(SPIN).GT.HALF) GO TO 80
        RETURN
    920 FORMAT(/'OLOADING ORDER (NORDER) AS (1000*NPT + INDEX) :',10X, I5
        $,' VALID ENTRIES'//1X,5(!) J NORDER MRGCST MWSPN'),'1')
    930 FORMAT((' '.5('1',15,16,F9.4,15),'1'))
    G40 FORMAT (//OSTARTUP ORDER :',10X,'WITH NORDOP =', I2,6X,'NOENTY=',I4,
    $6X,'NOBASE=',13,6X,'NOPEAK=',13/(2CI5))
        END
        SUBROUTINE COMPRS(NTEMP)
    SYSINT VERSION 10-31-71
    PERFORM STATUS:IDNO CHECK AND THEN COMPRESS AND TRANSFER NORDER
        INTO NTEMP; ALTER MARGINAL COST CURVES AND OPTIMIZE STARTUP ORDER
        ******************************************************************
        IMPLICIT REAL*8 (A-H,O-$)
C COMMON VARIABLES 
        COMMON/PLTDAT/IDNO(100),NAME(100), TYPE (100),SUSDHT(100), PNCM(100),
    $NPTS(100), MWPT (5,100),HTRAT(5,100)
        COMMON/PERDAT/AVLBTY(100), CSTBTU(100),STATUS(100), EXPHRS(100),
    $EXPBTU(100), EXPGWH(100),NORDER(500), COST(100), ENERGY(100),
    $SUPCST(100),MRGCST (5,100)
        OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
        COMMON/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
    $,IDSTRG,PCHMIN, PCHMAX,MBRNUM
    COMMON/LDGNFO/LDTYPE,LDTYPS,LOAD(50,25),NORDOP ,NOENTY,NOBASE,
    SNOPEAK,NNORD
    COMMON/MAXMUM/IDIMEN,MAXPLT,MAXPER,MAXNPT
    COMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI,THOUS,MILLI
    COMMON/LOGICL/MINI,MIDI,MAXI,NPM,PCHING
    REAL*4 SUSDHT,PNOM,HTRAT
    REAL*4 SUPCST,MRGCST
    REAL*8 MILLI
    INTEGER RD,WT, PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
    INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT, LOAD
    LOGICAL*1 MINI,MIDI,MAXI,NPM,PCHING
    END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES

SINT1045
SINT1046
SINT1047
SINT1048
SINT1049
SINT1050
SINT1051
SINTIO52
SINT1053
SINT1054
SINT1055
SINT1056
SINTI 057
SINT1058
SINTI 059
SINT1060
SINT1061
SINT1062
SINT1063
SINT 1064
SINT1065
SINT1066
SINT1067
SINT1068
SINT1069
SINT1070
SINT1071
SINT1072
SINT1073
SINT1074
SINT1075
SINT1076
SINT 1077
SINT1078
SINT1079
SINT 1080
```

 REAL*4 TEMP4
 [NTEGER*2 NTEMP(1),[PJ(3)
 C
CHECK CCNSISTENCY OF NOBASE,NOPEAK \& NOENTY
5 IF(NORDOP.EQ.1.OR.NOBASE.GT.NOENTY) NOBASE=NOENTY
IF(NOBASE.LE.O) NUBASE=1
NOPEAK=MINO(NOPEAK,NOENTY-NOBASE)
NTEMP(NOENTY+1)=IDNO(1)
IF(NORDER(1).EQ.O) GO TO 80
CALL ERASE(NTEMP,MAXPLT*MAXNPT/2)
C FLAG OFF-LINE PLANTS \& CHECK THAT EACH ON-LINE PLANT MENTIONED
DO 8 I=1,NOSTNS
ID=IDNO(I)
IS=STATUS(I)
IF(IS.NE.2) IS=1
DO 7 J=1,NOENTY
IF(ID.EQ.NORDER(J)) GO TO (6,8).IS
GO TO 7
6 \operatorname { N O R D E R (J) = 0 }
7 CONTINUE
IF(IS.EQ.2) WRITE(WT,911)ID
IF(IS.EQ.2) CALL ERRMSG('COMPRS',9)
8 CONTINUE
CONTROL SEGMENT OF NORDER COMPRESSED INTO NTEMP
IP=0
J=1
10 GO TO (20,30,40,45).J
20 ILO=1
IHI=NOBASE
GO TO 50
30 ILO=IHI+1
IHI=NOENTY-NOPEAK
IF(IHI.LT.ILO) GO TO 70
GO TO 50
40 ILO=IHI+1
IHI= NOENTY
GO TO 50

```
```

 SINT1081
 SINT1082
 SINT1083
 SINT1084
 SINT1085
 SINT1086
 SINT1087
 SINT1088
 SINT1089
 SINT1090
 SINT1091
 SINT1092
 SINT1093
 SINT1094
 SINT1095
 SINT1096
 SINT1097
 SINT1098
 SINT1099
 SINT1100 G
 SINT1101
 SINT1102
 SINT1103
 SINT1104
 SINT1105
 SINT1106
 SINT1107
 SINT1108
 SINT1109
 SINT1110
 SINT1111
 SINT1112
 SINT1113
 SINT1114
 SINTI115
 SINT1116
 PAGE
\circ

```
```

 45 NOBASE=IPJ(1)
 NOPEAK=IPJ(3)-IPJ(2)
 NOENTY=IPJ(3)
 NORDER(1)=0
 GO TO }
 C
PERFORM COMPRESSION AND TRANSFER OF A SEGMENT
50 IF(ILO.GT. NCENTY) GO TO }7
DO 60 I= ILO.IHI
IF(NORDER(I).EQ.O) GO TO 60
IP=IP+1
NTEMP(IP)=NORDER(I)
6 0 ~ C O N T I N U E ~
70 IPJ(J)=IP
J=J+1
GO TO 10
C ALTER MARGINAL COST CURVES
80 IF(MIDI) WRITE(WT,901)
DO 61 I=1,NCSTNS
JJ=NPTS(I)
C PUT MINIMUM AVERAGE COST IN MRGCST(I,I)
TEMP4=MRGCST(1,I)*MWPT (1,I)
IF (JJ.EQ.1) GO TO 61
DO 1 J=2.JJ
TEMP4=TEMP4+MRGCST(J,I)*(MWPT(J,I)-MWPT(J-1,I))
1 MRGCST (1,I)=AMINI(MRGCST(1,I),TEMP4/MWPT(J,I))
SUM=ZERO
C LEVELIZE DECREASING MARGINAL COST CURVES
11 IF(JJ.LT.3) GO TO 55
DO 51 J=3,JJ
IF(MRGCST(J,I).GE.MRGCST(J-1,I)) GO TO 51
SUM=ZERO
DO 31 K=2.J
31 SUM=SUM+MRGCST(K,I)*(MWPT(K,I)-MWPT(K-1,I))/(MWPT(J,I)-MWPT(1,I))
DO 41 K=2,J
41 MRGCST(K,I)=SUM
GO TO 11

```

SINT1117
SINTIII8
SINTI119
SINT1120
SINT1121
SINTI122
SINT1123
SINT1124
SINT1125
SINT1126
SINT1127
SINT1128
SINT1129
SINT 1130
SINTII31
SINT1132
SINT1133
SINT1134
SINT1135 の
SINTII36
SINT1137
SINTI138
SINT1139
SINT1140
SINT1141
SINT 1142
SINT1143
SINT 1144
SINT1145
SINT1146
SINTII47
SINT1148
SINT1149
SINT1150
SINTIL51
SINTII52
PAGE
```

 51 CONTINUE
 55 IF(MINI) GC TO 61
 WRITE(WT,910) I,IDNO(I),NAME(I),(MWPT(K,I),MRGCST(K,I),K=1,JJ)
 IF(SUM.NE.ZERO) WRITE(WT,920)
 61 CONTINUE
 IF(NORDOP.LT.3) GO TO 170
 C OPTIMIZE STARTUP ORDER
NO=NOENTY- (NOBASE+NOPEAK)
IDUM=NOBASE
IPJ(3)=2
IF(NO.NE.O) GO TO 100
90 NC=NOPEAK
I DUM=NOENTY-NOPEAK
IPJ(3)=3
IF(NO.EQ.O) GO TO }15
100 DO 110 J=1,NO
ID=NTEMP(IDUM+J)
NORDER(J)=INNDEX(ID)
110 NORDER (NO+J)=ID
C
START UP UNITS IN ORDER OF INCREASING MINIMUM AVERAGE COST
IF(NO.EQ.1) GO TO 150
DO 140 J=2,NO
IPJ(1)=NORDER(J)
IPJ(2)=NORDER(NO+J)
IP=J
120 IP P I P-1
IF(IP.EQ.O) GO TO 130
IF(MRGCST(1,IPJ(1)).GE.MRGCST(1,NORDER(IP))) GO TO 130
NORDER (IP+1)=NORDER (IP)
NORDER (NO+IP+1)=NORDER (NO+IP)
GO TO 120
130 NORDER(IP+1)=IPJ(1)
NORDER(NO+IP+I)=IPJ(2)
140 CONTINUE
150 DO 160 J=1.NO
160 NTEMP(IDUM+J)=NORDER(NO +J)

```

SINT1153
SINT1154
SINTL155
SINT1156
SINT1157
SINT1158
SINT1159
SINT 1160
SINT1161
SINT1162
SINT1163
SINT1164
SINT1165
SINT1166
SINT1167
SINT1168
SINT1169
SINT1170
SINT1171
SINT1172
SINT1173
SINT 1174
SINT1175
SINT1176
SINT 1177
SINT1178
SINT1179
SINT1180
SINT1181
SINT 1182
SINT1183
SINT1184
SINT1185
SINT1186
SINT1187
SINT1188
```

 IF(IPJ(3).NE.3) GO TO 90
 170 CALL ERASE (NORDER,MAXPLT*MAXNPT/2)
 RETURN
 C RETURN MARGINAL COST CURVES TO ORIGINAL VALUES
ENTRY RETMRG
DO 210 I=1,NOSTNS
TEMP4=CSTBTU(I)*1.E-5
DO 210 J=1,MAXNPT
210 MRGCST(J.I)=HTRAT(J,I)*TEMP4
RETURN
901 FORMATI'1 CCMPRS WILL TEMPORARILY LEVELIZE DECREASING MARGINAL',
\$' COST CURVES TO ALLOW PROPER INCREMENTAL LOADING.'/' IN ADDITION
\$, MINIMUM AVERAGE COST WILL BE PLACED IN MRGCST(1,I). THUS,'//
\$T5,'I'.T8,'IDNO'.T14,'NAME',T21,'(MWPT,MINAVGCST)',T50,'INCREASING
\$ MARGINAL COST CURVE')
910 FORMAT (15,16,A6,5(' (',14,',',FG.5,'1'))
911 FORMAT(///.' UNLISTED IDNO OF CN-LINE PLANT=',I5)
920 FORMAT('+',T122,'LEVELIZED')
END
SUBROUTINE MERGER
SYSINT VERSION 10-31-71
C MERGES NEWLY STARTED PLANT WITH PREVIOUSLY STARTED ONES
IMPLICIT REAL*8 (A-H,O-S)
COMMON VARIABLES
C VARIABLES DIMENS IONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
CCMMON/ PERLAT/AVLBTY(100),CSTBTU(100),STATUS(100), EXPHRS(100),
\$EXPBTU(100), EXPGWH(100),NORDER(500), COST(100), ENERGY(100),
\$SUPCST(100),MRGCST(5,100)
OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/MAXMUM/IDIMEN,MAXPLT,MAXPER,MAXNPT
CCMMON/MURGER/CTEMP(500),NEWCOD(5),NEWCST(5),MPTS, IFRST, ILAST
NEWCST \& NEWCOD ARE DIMENSIONED MAXNPT:CTEMP (MAXPLT*MAXNPT)
REAL*4 SUPCST,MRGCST
REAL*4 CTEMP,NEWCST
INTEGER*4 NEWCOD

```

SINT1189
SINTII90
SINTII91
SINT1192
SINT1193
SINT1194
SINT1195
SINT1196
SINT1197
SINT1198
SINT1199
SINT 1200
SINT1201
SINT1202
SINT1203
SINT1204
SINT 1205
SINT1206
SINT1207
SINT1208
SINT1209
SINT1210
SINTi211
SINT1212
SINT1213
SINT1214
SINT1215
SINT 1216
SINT1217
SINT1218
SINT1219
SINT1220
SINT 1221
SINT1222
SINT 1223
SINT 1224
PAGE 34
```

INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
IF(MPTS.EQ.O) RETURN
I=ILAST+1-MPTS
10 I= I- 1
IP=I+MPTS
NORDER(IP)=NORDER(I)
CTEMP(IP)=CTEMP(I)
IF(I.GT.IFRST) GO TO 10
CTEMP(ILAST+1)=1.E50
NORDER (ILAST+1)=1001
IF(ILAST.GE.MAXPLT*MAXNPT) CALL ERRMSG('MERGER',9)
IP = IFRS T
I = I FRST+MPTS
DO 40 M=1.MPTS
20 IF(NEWCST(M).LT.CTEMP(I)) GO TO }3
CTEMP(IP)=CTEMP(I)
NORDER(IP)=NORDER(I)
I=I +1
IP=IP+1
GO TO 20
30 CTEMP(IP) = NEWCST(M)
NORDER (IP)=NEWCOD(M)
40 IP=IP+1
RETURN
END
SUBROUTINE SYSGEN
C SYSINT VERSION 1-01-73
C SIMULATES SYSTEM GENERATION FOR ONE TIME PERIOD
C ***
IMPLICIT REAL*8 (A-H,O-\$)
COMMON VARIABLES
VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
COMMON/PLTDAT/IDNO (100),NAME(100), TYPE(100),SUSDHT (100), FNCM(100),
\$NPTS(100), MWPT (5,100), HTRAT (5,100)
COMMON/PERDAT/AVLBTY(100),CSTBTU(100),STATUS(100), EXPHRS(100),

```

SINT1225
SINT1226
SINT1227
SINT 1228
SINTL229
SINT1230
SINT1231
SINT 1232
SINT1233
SINT1234
SINT1235
SINT1236
SINT1237
SINT1238
SINT 1239
SINT1240
SINT1241
SINT 1242
SINT1243
SINT 1244
SINT1245
SINT1246
SINT1247
SINT 1248
SINT1 249
SINT 1250
SINT1 251
SINT 1252
SINT1 253
SINT1254
SINT1255
SINT1256
SINT1257
SINT1258
SINT 1259
SINT1260
```

 $EXPBTU(100), EXPGWH(100),NORDER(500),COST(100),ENERGY(100), SINT1261
 $SUPCST(100),MRGCST (5,100)
 OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
 COMMON/PROB/DM,DT,GWHPER,DAYS, IEMIN,IEMAX, PEMIN, PEMAX, PROB(500)
 CCMMON/FLOAT/EPS,TRACE,PKMW,SPNRES,CSTEMR
 COMMON/TITLE/SGTITL(10),PDTITL(10)
 COMMON/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERL
 \$, IDSTR G, PCHMIN, PCHMAX,MBRNUM
COMMON/LDGNFO/LDTYPE, LDTYPS,LOAD(50.25),NORDOP,NOENTY,NOBASE,
\$NOPEAK, NNORD
COMMON/MAXMUM/IDIMEN,MAXPLT,MAXPER,MAXNPT
COMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI,THOUS,MILLI
CCMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH
REAL*4 SUSDHT, PNOM,HTRAT
REAL*4 SUPCST,MRGCST
REAL*8 MILLI
INTEGER RD,WT, PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
INTEGER*2 IDNO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
LOGICAL*1 MINI,MIDI,MAXI,NPM,PCHING
END OF STATEMENTS COMMCN TO SEVERAL SUBROUTINES
END OF STATEMENTS COMMCN TO SEVERAL SUBROUTINES
NAMELIST /FNLTOT/MWINST,MWONLN,MWPEAK,MWMRGN,MWSPIN,PLOFL,
$EXPDEM,EXPGEN,XNKGEN,IDUM1 *XNNGEN,EXPEMR,IDUM2 ,UNSRVD,PROD$,
$IDUM3 ,$NKPRD,$NNPRD,IDUM4 ,SUSD$,$NKSUS,IDUM5 ,$NNSUS,\$SBTOT,
$IDUM6 ,$NKTOT,$NNTOT,IDUM7 ,EMRP$,TOTAL\$
INTEGER*2 IDUM1,IDUM2,IDUM3,IDUM4,IDUM5,IDUM6,IDUM7
DATA IDUM1,IDUM2,IDUM3,IDUM4,IDUM5,IDUM6,IDUM7/7*0/
INTEGER*2 NUCL/'N'/
REAL*4 PLOFL
C IDSTRG.LT.O IS OPTIONAL RETURN TO CHECK INPUT
IF(IDSTRG.LT.O) RETURN
IF(MIDI) WRITE(WT,930)
CALL ERASE(EXPBTU,2*MAXPLT,EXPGWH, 2*MAXPLT, EXPHRS,2*MAXPLT)
EXPDEM=GWHNRG(ZERO, PEMAX)
PE=ZERO
EXPOUT=ZERO
SINT1262
F
SINT1263
SINT1264
SINT1265
SINT1266
SINT1267
SINT1268
SINT1269
SINT1270
SINT1271
NT271
SINT1272
SINT1273
SINT1274
SINT1274
SINT1275
SINT1276
SINT1277
SINT1278
SINT1279
SINT1280
SINT1288
SINT1289
SNT1289
SINTI290
SINT1291
SINT1292
SINT1293
SINT1294
SINT1295
SINT1296

```
C DOUBLE CHECK TO AVOID INADVERTENT PUNCHING
    PCHMIN=-1
    PCHMAX=-1
    DO LOOP TO BUILD UP EQUIVALENT LOAD CDF
    40 DO 50 J=1,NNORD
    Ll=NORDER(J)
    NPT=L1/1000
    L=L1-NPT*1000
    IF(STATUS(L).LE.1) GO TO 50
    P=AVLBTY(L)*1.D-2
    MW IN=0
    IF(NPT.GT.1)MWIN=MWPT(NPT-1,L)
    MWTOT=MWPT (NPT,L)
    HTRATE=HTRAT(NPT,L)
    MWADD=MWTOT-MWIN
    EXPCUT = EXPOUT+(ONE-P)*MWADD
    SUBTRACT PLANT OF INTEREST
    CALL SUBPLT(MWIN,P)
    IF(MAXI) WRITE(WT,921) DM,IEMAX,PEMAX,(PROB(K),K=1,IEMAX)
    TEMP= PE+MWADD
    EVALUATES INCREMENT OF EXPECTED PRODUCTION
    ENERGE = P*GWHNRG(PE,TEMP)
    PE=TEMP
C ADD THE PLANT OF INTEREST BACK IN
    CALL ADDPLT(MWTOT,P)
C EVALUATE & ACCUMULATE IMPORTANT PRCDUCTION INFO
    IF(NPT.EQ.1) EXPHRS(L)=ENERGE*THOUS/MWPT(I,L)
    EXPBTU(L) = EXPBTU(L) +ENERGE*HTRATE
    EXPGWH(L)= EXPGWH(L)+ENERGE
    IF(J.EQ.PCHMIN.OR.J.EQ.PCHMAX) CALL PUNCHR(IDINT(PE))
    IF(.NOT.MIDI) GO TO }5
    AVPROB=1.D20
    IF(MWADD.GT.0) AVPROB=ENERGE*THOUS/(P*DT*MWADD)
    IF(MAXI) WRITE(WT,931)
    WRITE(WT,940)L.IDNO(L), PE, MWIN,MWADD,MWTOT, AVPROB, ENERGE,
```

SINT1297
SINTI298
SINT 1299
SINT 1300
SINT1301
SINT1302
SINT1303
SINT1304
SINT1305
SINT 1306
SINT1307
SINT1308
SINT1309
SINT1310
SINT1311
SINT1312
SINT1313
SINT1314
SINT1315 $\stackrel{\sim}{\circ}$
SINT 1316
SINT1317
SINT1318
SINT1319
SINT 1320
SINT1320
SINT1322
SINT 1323
SINT1324
SINT 1325
SINT1326
SINT 1327
SINT1328
SINT1329
SINT1330
SINT 1331
SINT1332
PAGE

```
    $EXPGWH(L),L SINT1333
    IF(MAXI) WRITE(WT,922) DM,IEMAX,PEMAX,(PROB(K),K=1,IEMAX)
    5 0 ~ C O N T I N U E ~
    TEMP=GWHNRG(ZERO,PEMAX)
    TEMP=TEMP-EXPDEM
    APXOUT =TEMP*THOUS/DT
    TEMP=(EXPOUT-APXOUT)*HUNDRD/(EXPOUT+1.D-20)
    IF(DABS(TEMP).GT.CENTI) CALL ERRMSG('SYSGEN'.5)
    IFI.NOT.MIDI) GO TO }6
    WRITE(WT,910) EXPOUT,APXOUT,TEMP
    WRITE(WT,920) DM,IEMAX, PEMAX,(PROB(K),K=1,IEMAX)
    60 UNSRVD=GWHNRG(PE,PEMAX)
    PLOFL=PROBX(PE)
    MWONLN=PE+EPS
    MWPEAK = PKMW
    MWMRGN=MWONLN-MWPEAK
    MWSPIN= SPNRES
    MWINST=0
    PROD }==2\mathrm{ ERO
    EXPGEN=ZERO
    SUSD$=ZERO
    XNNGEN=ZERO
    $NNPRD=2ERO
    $NNSUS=ZERO
    TEMP=HUNDRD/DT
    WRITE (WT,950) IDSTRG,SGTITL,NPER,PDTITL
C EVALUATE AND PRINT FINAL PER PLANT RESULTS
    DO 70 J=1,NOSTNS
    IF(STATUS(J).GE.1) MWINST=MWINST+MWPT(NPTS(J),J)
    FACT=EXPGWH(J)*THOUS/(MWPT(NPTS(J),J)*DT)
    SUSDS=SUSDNO(EXPHRS(J)*TEMP/AVLBTY(J)I
    SUBTU=SUSDS*SUSDHT(J)
    $SUSD=SUBTU*CSTBTU(J)*1.D-2
    SUSD$=SUSD$+$SUSD
    PRDBTU=EXPBTU(J)
    EXPBTU(J)=EXPBTU(J)+SUBTU
```

SINT1333
SINT1334
SINT1335
SINT1336
SINT1337
SINT1338
SINT1339
SINT 1340
SINT1341
SINT1342
SINT1343
SINT1344
SINT1345
SINT1346
SINT1347
SINT1348
SINT1349
SINT1350
SINT 1351
SINT1352
SINT1353
SINT 1354
SINT1 355
SINT1356
SINT1357
SINT1358
SINT1359
SINT1360
SINT1361
SINT1362
SINT1363
SINT 1364
SINT1365
SINT1366
SINT 1367
SINT 1368

```
    $PROD=PRDBTU*CSTBTU(J)*1.D-2 SINT1369
    COST(J)=$PROD+$SUSD
    PROD$=PROD$+$PROD
    EXPGEN= EXPGEN+EXPGWH(J)
    IF(TYPE(J).EQ.NUCL) GO TO 65
    XNNGEN=XNNGEN+EXPGWH(J)
    $NNPRD= $NNPRD+$PRDD
    $NNSUS=$NNSUS+$SUSD
65 WRITE (WT,960) J,IDNO(J),NAME(J),FACT,EXPHRS(J),SUSDS,SUBTU,$SUSD,
$EXPGWH(J), PRDBTU,$PROD,EXPBTU(J),CCST(J),J
70 CONTINUE
    EVALUATE AND PRINT FINAL SYSTEM RESULTS
    XNKGEN= EXPGEN-XNNGEN
    $NK PRD=PROD$-$NNPRD
    $NKSUS=SUSD $-$NNSUS
    $NK TOT= $NK PRD+$NKSUS
    $NNTOT = $NNPRD+$NNSUS
    $SBTOT=$NKTOT+ $NNTOT
    EXPEMR=EXPDEM-EXPGEN
    EMRP$=EXPEMR*THOUS*CSTEMR
    TOTAL$=PROD$+SUSD$+EMRP$
    WRITE(WT,970) MWINST,MWONLN,MWPEAK,MWMRGN,MWSPIN,PLOFL
    WRITE(WT,980) EXPDEM, EXPGEN,XNKGEN,XNNGEN, EXPEMR,UNSRVD
    WRITE(WT,990) PROD$,$NKPRD,$NNPRD,SUSD$,$NKSUS,$NNSUS,
    $$SBTOT,$NKTOT,$NNTOT,CSTEMR,EMRP$,TCTAL$
    IF(PCHING) WRITE(PUNCH,FNLTOT)
    RETURN
910 FORMATI//T10,'TRUE EXP. CUTAGE =',F8.2.' MW'/
    $T10,'APPRROX. EXP. DUTAGE =',F8.2.' MW'/
    $T10.'ERROR IN APPROX. =',F9.5.' $%//
    $' FINAL EQUIVALENT LOAD CDF:')
920 FORMAT (/10X,'DM = ',F10.4,10X,'IEMAX = ',I5,10X,'PEMAX = ',
    $F12.4,//,10X,'PROB(K),K=1,IEMAX ',/,(1X,10F13.9))
921 FORMAT('0'.132('*')/
OWITHOUT PLANT OF INTEREST PROB(K),K=1,IEMAX :
    $ DM = 1,F8.2.5X,'IEMAX = .,I5.5X,'PEMAX = ',F12.4/(10F13.9))
```

SINT 1369 SINT1370
SINT1371
SINT1372
SINT1373
SINT1374
SINT1375
SINT1376
SINT 1377
SINT 1378
SINT1379
SINT1380
SINT1381
SINT1382
SINT1383
SINT1384
SINT1385
SINT1386
SINT1387
$\stackrel{9}{\sim}$
SINT1388 ω
SINT1389
SINT1390
SINT 1391
SINT1392
SINT1393
SINT1394
SINT1395
SINT1396
SINT1397
SINTI398
SINT1399
SINT1400
SINT 1401
SINT 1402
SINT1403
SINT1404

```
922 FORMATIOWITH PLANT OF INTEREST PROB(K),K=1,IEMAX : SINT1405
$ DM = ',F8.2,5X.'IEMAX = 1,I5.5X.'PEMAX = ',F12.4/(10F13.9))
930 FORMATI'1',T5,'L IDNO PE MWIN MWADD MWTOT AVPROB',
    $T54.'DELGWH EXPGWH L')
931 FORMATI'O',T5,'L IDNO PE MWIN MWADD MWTOT AVPROB',
    $T54.'DELGWH EXPGWH L')
940 FORMAT (I5,16,F7.0,316,F12.8,2F12.6.15)
950 FORMAT''1'/'OSTRATEGY ID = ',110,10X,'TITLE :"',10AT,'"'/
    $ 'OPERIOD NUMBER =',19,10X,'TITLE :"',10A8,'"'///
    $T45,'STARTUPS & SHUTDOWNS',T75,'EXFECTED PRODUCTION',T112,'TOTALS'
    $./.' INDEX IDNO NAME LD FACT OPER HRS NUMBER MEGABTU',
    $T60.'COST($)',T70,' ELECT(GWH) MEGABTU COST($)',
    $T108,'MEGABTU COST($) INDEX'/I
960 FORMAT (14,I 8,A6,F10.6,2F10.4,F10.0,F8.0,F14.5, 2F10.0.4X,2F10.0,16)
970 FORMATI////,T22,'P O W E R :',T59,'MEGAWATTS'./
    $T26.' INSTALLED CAPACITY',T56,I10,1
    $T26.0 ON-LINE CAPACITY'.T56,110./
    $T26,' PEAK LOAD FORECAST'.T56,I10,1
    $T26." ON-LINE MARGIN a PEAK',T56.I10./
    $T26." SPINNING RESERVE' ,T56,I10,/
    $T 26, 'LOSS-OF-LOAD PROBABILITY',T56,F10.6)
980 FORMAT ///T22,'E N E R G Y :',T60,'GWH',/
    $T30,'EXPECTED DEMAND', T54.F12.4./
    $T 30.'EXPECTED PRODUCTION', T54.F12.4.1
    $T38.'1 NUCLEAR ',T54,F12.4.'1'/
    $T38.'(NON-NUCLEAR',T54,F12.4.')'/
    $T30,'EXPECTED EMERG PURCH',T54,F12.4.1
    $T30,'(UNSERVED BY DIRECT CALC'.T54,F12.4,')')
990 FORMAT(//,T22,'D O L L A R C O S T :',T59,'SYSTEM',T74,'NUCLEAR'
    $.T86,0NCN-NUCLEAR'/
    $T31,'PRODUCTION FUEL',T54,F12.0,2F15.0/
    $T31,'STARTUPS & SHUTDOWNS'.T54,F12.0.2F15.0/
    $'+',T56,10('_'),T71,10('_'),T86,10('_')/
    $T31.' SUB-TOTALS',T54.F12.0.2F15.01
    $T31,'EMERG.PURCH.a',F6.2,' $/MWH',T56,F10.0./'+',
    $T56.'_________,',T36,'TOTAL',T54,F12.0)
```

SINT 1405 SINT 1406
SINT 1407
SINT1408
SINT1409
SINT1410
SINT1411
SINT 1412
SINT1413
SINT1414
SINT 1415
SINT1416
SINT1417
SINT1418
SINT1419
SINT 1420
SINT1421
SINT1422
SINT1423
SINT1424
SINT 1425
SINT1426
SINT1427
SINT1428
SINT1429
SINT1430
SINT1431
SINT1432
SINT1433
SINT1434
SINT1435
SINT 1436
SINT1437
SINT1438
SINT1439
SINT1440

```
    SNUBROUTINE SUBPLT(MW,P)
    SYSINT VERSION 1-01-73
    SUBTRACTS PLANT OF MW MEGAWATTS AND P FRACTIONAL AVAILABILITY
    FRCM PROB, THE EQUIVALENT LOAD CDF
    NOTE: MW MUST BE LESS THAN OR EQUAL TO PEMIN
```



```
    IMPLICIT REAL*8 (A-H,O-$)
    COMMON VARIABLES
    OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    COMMON/PROB/DM, DT,GWHPER,DAYS,IEMIN,IE MAX, PEMIN, PEMAX, PROB (500)
    COMMON/FLOAT/EPS,TRACE,PKMW,SPNRES,CSTEMR
    COMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH, HUNDRD,CENTI,THOUS,MILLI
    REAL*8 MILLI
    END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    IF(MW.LE.O) RETURN
    IF(MW.LE.PEMIN) GO TO 10
    CALL ERRMSG('SUBPLT',2)
    RETURN
    10 ILOW=IEMIN+1
        FB=MW/DM
        INT=FB
        FB=FB-INT
        OVP=ONE/P
        Q=ONE-P
        OFB=Q*FB
        GAMMA=ONE/ (CNE-QFB )
        IF(INT.GT.O) GO TO }6
    LOOP TO UNCCNVOLVE PLANT IF MW.LT.DM
    DO 20 J=ILOW.IEMAX
20 PROB(J)=GAMMA* (PROB(J)-QFB#PROB(J-1))
FIND NEW PEMAX AND IEMAX
30 J=IEMAX
40 IF(PROB(J).GT.TRACE) GO TO 50
PROB(J)=ZERO
J=J-1
```

C

END
SYSINT VERSION 1-01-73
SUBTRACTS PLANT OF MW MEGAWATTS AND P FRACTIONAL AVAILABILITY
NOTE: MW MUST BE LESS THAN OR EQUAL TO PEMIN
IMPLICIT REAL*8 (A-H,O-\$)
COMMON VAR IABLES

COMMON/PROB/DM, DT, GWHPER, DAYS, IEMIN, IE MAX, PEMI N, PEMAX, PROB (500)
COMMON/ FLOAT/EPS, TRACE, PKMW, SPNRES,CSTEMR
REAL*8 MILLI
COMMON TO SEVERAL SUBROUTINES
IF(MW.LE.O) RETURN
CALL ERRMSG('SUBPLT',2)
RETURN
10 ILOW=IEMIN+1
$B=M$ N
INT=FB
INT
OVP=ONE/P
$Q=0$ NE $-P$

LOOP TO UNCCNVOLVE PLANT IF MW.LT.DM
DO $20 \mathrm{~J}=$ ILOW.IEMAX
$20 \operatorname{PROB}(J)=G A M M A *(\operatorname{PROB}(J)-Q F B \star \operatorname{PROB}(J-1))$
FIND NEW PEMAX AND IEMAX

40 IF (PROB(J).GT.TRACE) GO TO 50
$J=\mathbf{J}-1$

SINT1441
SINT 1442
SINT1443
SINT 1444
SINT 1445
SINT 1446
SINT1447
SINT 1448
SINT1449
SINT 1450
SINT1451
SINT1452
SINT1453
SINT 1454
SINT1455
SINT1456
SINT1457
SINT1458
SINT1459
SINT1460
SINT1461
SINT 1462
SINT1463
SINT1464
SINT 1465
SINT1466
SINT1467
SINT 1468
SINT1469
SINT 1470
SINT1471
SINT1472
SINT1473
SINT1474
SINT1475
SINT1476
PAGE

```
        GO TO 40
    50 IF(IEMAX.EQ.J) RETURN
        I EMAX=J+1
        PEMAX=IEMAX*DM+EPS
        RETURN
C
C
C CALCULATES GWH OF ENERGY UNDER PORTION OF PROB, THE CDF OF
C EQUIVALENT LOAD, BY INTEGRATING FROM XLOWER TO XUPPER ASSUMING
C LINEAR INTERPOLATION BETWEEN ARRAY POINTS
C ****************************************************************
    IMPLICIT REAL*8 (A-H,O-$)
    COMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    COMMON/PROB/DM, DT,GWHPER,DAYS,IEMIN,IEMAX,PEMIN,PEMAX, PROB (500)
    COMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI,THOUS,MILLI
    REAL*8 MILLI
    END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    XLO=XLOWER
    XUP=XUPPER
    GWHNRG= ZERO
    SUM=ZERO
    IF(XLO.GE.XUP) RETURN
    IBELO=XLO/DM
    ILAST=XUP / DM
    IF(IBELO.LE.O.OR.ILAST.GE.IEMAX) GO TO }5
C STANDARD CASE WITH BOTH POINTS WITHIN NON-ZERO ARRAY POINTS
    5 IFRST=I BELO+1
    I ABOV=I LAST+I
    IFRSTP=IFRST+1
```

SINT1477 SINT1478
SINT1479
SINT 1480
SINT1481
SINT1482
SINT 1483
SINT1484
SINT1485
SINT1486
SINT1487
SINT 1488
SINT1489
SINT1490
SINT1491
SINT1492
SINTI493
SINT1494
SINT1495
SINT 1496
SINT1457
SINT1498
SINT 1499
SINT 1500
SINT1501
SINT 1502
SINT1503
SINT 1504
SINT 1505
SINT1506
SINT 1507
SINT1508
SINT 1509
SINT 1510
SINT1511
SINT 1512
PAGE 42
$\operatorname{ILASTM}=I L A S T-1$
ICASE=IABOV-IBELO
RLC $=$ IFRST-XLO/DM
RUP $=X U P / D M-I L A S T$
PLO $=$ PROB (IFRST) $+(P R O B(I B E L C)-P R O B(I F R S T)) * R L O$
$P U P=P R O B(I A B O V)+(P R O B(I L A S T)-P R O B(I A B O V)) *(O N E-R U P)$
GO TO $(10,20,30,40)$, ICASE
40 DO $35 \mathrm{I}=\mathrm{IFRSTP}$, ILASTM
35 SUM = SUM + PR OB (I)
30 SUM=SUM+HALF*(PROB(IFRST)+PROB (ILAST))
20 SUM $=$ SUM + HALF*(RLO* (PLO+PROB(IFRST)) +RUP*(PUP+PROB(ILAST)))
15 GWHNRG= SUM*GWHPER
RETURN
10 SUM=SUM+(XUP-XLO)*(PLO+PUP)*HALF/CM
GO TO 15
SPECIAL CASES INVOLVING ONE OR BOTH END POINTS
50 IF (XUP.LE.ZERO.OR.XLO.GE.PEMAX) RETURN
IF(XLO.LT.ZERO) XLO=ZERO
IF (XUP.GT.PEMAX) XUP=PEMAX
$I B E L O=X L O / D M$
ILAST=XUP/DM
JCASE=1
IF(ILAST.GT.0) JCASE=JCASE+1
IF(ILAST.EQ.IEMAX) JCASE=JCASE+1
IF(IBELO.GT.0) JCASE=JCASE+1
IF(IBELO.EQ.IEMAX) JCASE=JCASE+1
GO TO (101, 102, 102, 104, 105),JCASE
101 GWHNRG $=(X U P-X L O) * G W H P E R / D M$
RETURN
102 SUM $=$ ONE-XLC/DM
$X L O=D M$
IBELO=1
IF(JCASE.EQ.2) GO TO 5
104 XO= IEMAX*DM
PUP $=\operatorname{PROE}(I E M A X) *(O N E-(X U P-X O) /(P E M A X-X O))$
SUM $=$ SUM + (XUP-XO) *HALF* (PUP+PROB (IEMAX))/DM

SINT1513
SINT1514
SINT1515
SINT 1516
SINT1517
SINT1518
SINT1519
SINT 1520
SINT1521
SINT 1522
SINT1523
SINT1524
SINT 1525
SINT1526
SINT1527
SINT1528
SINTI 529
SINT1530
SINT1531
SINT 1532
SINT1533
SINT1534
SINT1535
SINT1536
SINT1537
SINT1538
SINT1539
SINT 1540
SINT1541
SINT1542
SINT 1543
SINT 1544
SINT1545
SINT 1546
SINT1547
SINT1548

```
        XUP=XO SINT1549
        ILAST=IEMAX-1
        GO TO 5
    105 XO=IEMAX*DM
    PUP=PROB(IEMAX)*(ONE-(XUP-XO)/(PEMAX-XO))
    PLO= PROB(IEMAX)*(ONE-(XLO-XO)/(PEMAX-XO))
    GWHNRG = (XUP-XLO)*(PLO+PUP)*HALF*GWHPER/DM
    RETURN
    END
    SUBROUTINE ADDPLT(MW,P)
    SYSINT VERSION 1-01-73
    ADDS PLANT OF MW MEGAWATTS AND P FRACTIONAL AVAILABILITY TO PROB,
    THE EOUIVALENT LOAD CDF
    NOTE: MW MUST BE LESS THAN OR EQUAL TO PEMIN
```



```
    IMPLICIT REAL*8 (A-H,O-$)
    CCMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    COMMON/PROB/DM,DT, GWHPER,DAYS,IEMIN,IEMAX, PEMIN,PEMAX, PROB(500)
    COMMCN/FLOAT/EPS,TRACE,PKMH,SPNRES,CSTEMR
    COMMON/MAXMUM/IDIMEN,MAXPLT,MAXPER,MAXNPT
    COMMON/ CONSTS/ ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI ,THOUS,MILLI
    REAL*8 MILLI
    END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    IF(MW.LE.O) RETURN
    IF(MW.LE.PEMIN) GO TO 5
    CALL ERRMSG('ADDPLT',2)
    RETURN
    5 TEMP=PEMAX
    PRTEMP = PROB (IEMAX)
    I DUX=I EMAX
    IDUM=IEMAX+1
    Q=CNE-P
    FB=MW/DM
    INT=FB
    FB=FB-INT
```

SINT 1549 SINT 1550 SINT 1551 SINT 1552 SINT1553 SINT 1554 SINT1555 SINT 1556 SINT 1557 SINT 1558 SINT1559 SINT1560 SINT1561 SINT1562 SINT1563 SINT 1564 SINT1565 SINT1566 SINT1567 SINT1568 SINT1569 SINT1570 SINT1571 SINT 1572 SINT1573 SINT1574 SINT 1575 SINT1576 SINT1577 SINT1578 SINT 1579 SINT1580 SINT 1581 SINT 1582 SINT1583 SINT1584

```
C CALCULATE NEW VALUES AT POINTS ON UPPER END OF PROB AND
C FIND NEW PEMAX AND IEMAX
    PEMAX=PEMAX +MW
    I EMAX=PEMAX/DM
    DO 20 J=IDUX,IEMAX
    JINT=J-INT
    IF(JINT.EQ.IDUM) GO TO 10
    PRJINT=PROB (JINT)
    IF(JINT.EQ.IDUX) PRJINT=PRTEMP
    PROE (J) =PROB(J)+Q*(PRJINT-PROB(J)+FB*(PROB (JINT-L)-PRJINT))
    GO TO }1
    10 PROB (J)=Q*PRTEMP*(TEMP/DM-IDUM +FB)/(TEMP/DM-IDUM+ONE)
    15 IF(J.LT.IEMAX) PROB(J+1)=ZERO
    IF(PROB(J).LE.TRACE) GO TO }3
    20 CCNTINUE
    TEMP=IEMAX*DM+EPS
    IF(TEMP.GT.PEMAX) PEMAX=TEMP
    GO TO 40
30 PROB(J)=ZERO
    IEMAX=J
    PEMAX=IEMAX*DM+EPS
    40 IF(IEMAX,GT.IDIMEN) CALL ERRMSG('ADDPLT',1)
    J=IDUX
    JINT=J-INT
    LOOP TO CONVOLVE IN NEW PLANT
50 J=J-1
    IF(J.LE.IEMIN) RETURN
    JINT=JINT-I
    PROB(J)=PROB(J)
    $ Q*(PROB(JINT)-PROB(J)+FB*(PROB(JINT-1)-PROB(JINT)))
    GO TO 50
    END
    FUNCTION PROBX(X)
    SYSINT VERSION 10-15-71
C EVALUATES PROB AT A PARTICULAR VALUE OF X MW
C ##**************************************************************
```

```
    SINT1585
```

 SINT1585
 SINT1586
 SINT1586
 SINT1587
 SINT1587
 SINT1588
 SINT1588
 SINT1589
 SINT1589
 SINT1590
 SINT1590
 SINT1591
 SINT1591
 SINT1592
 SINT1592
 SINT1593
 SINT1593
 SINT1594
 SINT1594
 SINT1595
 SINT1595
 SINT1596
 SINT1596
 SINT1597
 SINT1597
 SINT1598
 SINT1598
 SINT1599
 SINT1599
 SINT1600
 SINT1600
 SINT1601
 SINT1601
 SINT1602
 SINT1602
 SINT1603 a
 SINT1603 a
 SINT1604 -
 SINT1604 -
 SINT1605
SINT1605
SINT1606
SINT1606
SINT1607
SINT1607
SINT1608
SINT1608
SINT1609
SINT1609
SINT1610
SINT1610
SINT1611
SINT1611
SINT1612
SINT1612
SINT1613
SINT1613
SINT1614
SINT1614
SINT1615
SINT1615
SINT1616
SINT1616
SINT1617
SINT1617
SINT1618
SINT1618
SINT1619
SINT1619
SINT1620

```
SINT1620
```

```
C COMMON VARIABLES
    IMPLICIT REAL*8 (A-H,O-$)
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    COMMON/PROB/DM, DT,GWHPER,DAYS, IEMIN, IEMAX, PEMIN, PEMAX, PRCB (500)
    COMMON/CONSTS/ZERO, ONE,TWO, HALF,TEN,TENTH, HUNDRD,CENTI, THOUS,MILLI
    REAL*8 MILLI
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    PROBX=ONE
    IF(X.LE.PEMIN) RETURN
    PROBX= ZERO
    IF{X.GE.PEMAX) RETURN
    FB=X/DM
    ILC=FB
    FB=FB-ILO
    IF(ILO.GE.IEMAX) GO TO 10
    PROBX=PROB (ILO) +FB* (PROB(ILO+1)-PROB (ILO))
    RETURN
    10 PROBX=PROB (IEMAX)*(PEMAX-X)/(PEMAX-IEMAX*DM)
        RETURN
        END
        FUNCTION SUSDNO(AVBSLF)
C SYSINT VERSION 10-15-71
C AS A FUNCTION OF THE AVAILABILITY-BASED LOAD FACTOR, AVBSLF
C ###*************************************************************
    IMPLICIT REAL*8 (A-H,O-$)
C COMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    COMMCN/PROB/DM, DT, GWHPER,DAYS, IEMIN, IEMAX, PEMIN, PEMAX, PROB (500)
    COMMON/CONSTS/ZERO,ONE,TWO,HALF,TEN,TENTH,HUNDRD,CENTI,THOUS,MILLI
    COMMON/SUSDF/F(20)
    REAL*8 MILLI
    END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    IF(AVBSLF.GE.ONE) AVBSLF=ONE-1.D-1C
    FB=20.DO*AVBSLF
    ILO=FB
```

SINT1621
SINT1622
SINT1623
SINT 1624
SINT 1625
SINT1626
SINT1627
SINT1628
SINT 1629
SINT1630
SINT1631
SINT 1632
SINT1633
SINT 1634
SINT1635
SINT1636
SINT1637
SINT1638
SINT 1639
SINT 1640
SINT1641
SINT 1642
SINT1643
SINT1644
SINT1645
SINT1646
SINT1647
SINT 1648
SINT1649
SINT 1650
SINT1651
SINT1652
SINT1653
SINT1654
SINT1655
SINT 1656
PAGE

```
    FB=FB-ILO ST.0.0500) GO TO 10-LINT1657
    IF(AVBSLF.LT.0.05DO) GO TO 10
    SUSDNO=DAYS*(F(ILO)+FB*(F(ILO+I)-F(ILO)))
    RETURN
    10 SUSDNO=DAYS*FB*F(1)
    RETURN
    END
    SUBROUTINE PUNCHR(MODE)
    SYSINT VERSION 11-2-71
    PERFORMS PUNCHING OPERATIONS
    NOTE THAT:
    1. FOR PROGRAMMING MODULARITY, THIS SUBROUTINE PERFORMS PUNCHING
        OF OUTPUT, WHETHER ON CARDS, TAPE OR DIRECT ACCESS DEVICE.
        THE ONLY EXCEPTION IS THE FINAL TOTALS NAMELIST /FNLTOT/
        PUNCHED BY THE SYSGEN SUBROUTINE.
    2. THIS SUBROUTINE IS DEPENDENT UPON THE IBM/360 UTILITY PROGRAM
        "IEBUPDTE" (RELEASE 20).
```



```
    IMPLICIT REAL*8 (A-H,O-$)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
    COMMON/ PLTDAT/IDNO(100),NAME(100), TYPE(100),SUSDHT(100), FNCM(100),
    $NPTS(100), MWPT (5,100), HTRAT (5,100)
    COMMON/PERDAT/AVLBTY(100), CSTBTU(100),STATUS(100), EXPHRS(100),
    $EXPBTU(100), EXPGWH(100),NDRDER(500),COST(100), ENERGY(100),
    $SUPC ST (100),MRGCST(5,100)
    OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
    COMMON/PROB/DM, DT, GWHPER,DAYS, IEMIN, IEMAX, PEMIN, PEMAX, PROB(500)
    COMMON/FLOAT/EPS,TRACE,PKMW,SPNRES,CSTEMR
    CCMMON/TITLE/SGTITL(10),PDTITL(10)
    COMMCN/INTEGR/RD,WT,PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
$, IDSTRG, PCHMIN, PCHMAX,MBRNUM
    CCMMCN/LDGNFO/LDTYPE,LDTYPS,LOAD(50,25),NORDOP,NOENTY,NOBASE,
    $NOPEAK,NNORD
```

SINT1657
SINT1658
SINT1659
SINT 1660
SINT 1661
SINT 1662
SINT 1663
SINT 1664
SINT1665
SINT1666
SINT 1667
SINT1668
SINT 1669
SINT 1670
SINT1671
SINT 1672
SINT1673
SINT 1674
SINT1675
SINT1676
SINT 1677
SINT1678
SINT1679
SINT1680
SINT1681
SINT 1682
SINT 1683
SINT1684
SINT 1685
SINT1686
SINT1687
SINT 1688
SINT1689
SINT 1690
SINT1691
SINT1692
FAGE 47

```
    COMMON/CONSTS/ZERO.ONE,TWO,HALF,TEN,TENTH.HUNDRD,CENTI,THOUS,MILLI SINT1693
    COMMON/MAINT/MAINT (100,20)
C MAINT IS DIMENSIONED (MAXPLT,MAXPER/5) THE 5 IS 5II/INTEGER*2
    REAL*4 SUSDHT, PNOM,HTRAT
    REAL*4 SUPCST,MRGCST
    REAL*8 MILLI
    INTEGER RD,WT, PUNCH,CARD,TAPE,ERRCCD,PCHMIN, PCHMAX
    INTEGER*2 IONO,TYPE,NPTS,MWPT,NORDER,STATUS,MAINT,LOAD
    LOGICAL*I MINI,MIDI,MAXI,NPM, PCHING
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
    INTEGER*2 NTEST(100),NDXS(100),$N$/'N'/,LSTMOD/O/
C NTEST & NDXS DIMENSIONED MAXPLT
    REAL*4 A(5)
    IF(.NOT.PCHING) RETURN
    MOD=MODE
    IF(MOD.LE.6) GO TO 10
    IF(LSTMOD.NE.2.AND.LSTMOD.NE.3) GO TO 10
    MW=MODE
    MOD = LS TMOD + 1
    10 GO TO (100,200,300,400,500,600),MOD
    STRATEGY INFORMATION
    100 NUKES=0
    DO 110 N=1.NOSTNS
    IF(TYPE(N).NE.SN$) GO TO 110
    NUKES=NUKE S+1
    NDXS(NUKES)=N
    110 CONTINUE
    IF(NUKES.GT.O) GO TO }13
C SINCE NO NUKES, PUNCH ALL PLANTS
    DO 120 N=1. NOSTNS
    120 NDXS(N)=N
    NUKES=NOSTNS
    NPM=.FALSE.
    130 JMAINT = (NPERS+4)/5
    CALL WHEN(A)
```

SINT1693
SINT1694
SINT1695
SINT1696
SINT1697
SINT1698
SINT1699
SINT 1700
SINT1701
SINT 1702
SINT1703
SINT1704
SINT 1705
SINT 1706
SINT1707
SINT1708
SINT1709
SINT1710
SINTIT11
SINT1712
SINT1712
SINT1714
SINT1714
SINT1716
SINT1717
SINT 1718
SINT1719
SINT 1720
SINT1721
SINT1722
SINT1723
SINT 1724
SINT1725
SINT1726
130 JMAINT $=($ NPERS+4)/5
CALL WHEN(A)

```
        CALL DAYTIM
        N=1
        I PLACE= MBR NUM/1000000
        WRITE(PUNCH,911) NPM,MBRNUM,N,NPM,MBRNUM,A
        WRITE(PUNCH,912) NPM,IPLACE,IDSTRG,SGTITL,NUKES
        WRITE(PUNCH,913) (IDNO(NDXS(I)),NAME(NDXS(I)),MWPT(I,NDXS(I)),
        $MWPT(NPTS(NDXS(I)),NDXS(I)),NDXS(I),I=1,NUKES)
        WRITE(PUNCH,914) NPERS,JMAINT
        DO 140 N=1,NUKES
    140 WRITE(PUNCH,915) (MAINT(NDXS(N),J),J=1,JMAINT)
    GO TO 800
C PERIOD INFORMATION
C N.P.M. CHECK OF NORDER AND SET PCHMIN AND PCHMAX
    200 PCHMIN=-1
    PCHMAX=-1
    IF(.NOT.NPM) GO TO 260
    NSUM=0
    MSUM=0
    DO 210 NK=1,NUKES
    NDX=NDXS(NK)
    NTEST(NK)=1000*NPTS(NDX)+NDX
    IF(STATUS(NDX).NE.2) GO TO 210
    IF(NTEST(NK).GT.2000) NSUM=NSUM+NTEST(NK)
    MSUM=MSUM+1000+NDX
    210 CONTINUE
    NPMFAL=0
    NPMDEL =0
    DO 220 Jx1,NNORD SINT1756
    N=NORDER(J) SINT1757
    IF(N.GT.2000) GO TO 230 SINT1758
    IF(TYPE(N-1000).EQ.SN$) MSUM=MSUM-N SINT1759
    22O CONTINUE SINT1760
230 JLOW=J
    J=J-1
    IF(MSUM.NE.0) NPMFAL=100
    IF(NSUM.EQ.0) GO TO 250
SINT1761
SINT1762
SINT1763
SINT1764
```

 DO 240 J=JLCW,NNORD
 N=NCRDER(J)
 M=N-(N/1000)*1000
 IF(TYPE(M).NE.N) NPMDEL=20
 DO 240 NK=1,NUKES
 IF(N.EQ.NTEST(NK)) NSUM=NSUM-NTEST(NK)
 IFINSUM.EQ.O) GO TO 250
 240 CONTINUE
 CALL ERRMSG('PUNCHR'.9)
 250 PCHMAX=J
 PCHMIN=JLOW-1
 NPMFAL = NPMFAL +NPMDEL
 IF(NPMFAL.EQ.O) GO TO 260
 WRITE(WT,921) NPMFAL
 CALL ERRMSG('PUNCHR',11)
 260 WRITE(PUNCH,922) NPER,A,PDTITL,NPER,DM,DT,CSTEMR
 IF(.NOT .NPM) MOD=4
 GO TO 800
 C PROB AT NUCLEAR MINIMUMS
300 M=MH
NTBSLD=0
DO 310 NK=1,NUKES
N=NOXS (NK)
IF(EXPHRS(N)+MILLI.LT.DT*CENTI*AVLBTY(N)) NTBSLD=NTBSLD+1
310M=M+MWPT(NPTS(N),N)-MWPT(1,N)
LPTS=MAXO(IDINT(M/DM)-IEMIN+2,1)
LPTS=MINO(LPTS.IEMAX-IEMIN)
IF(NTBSLD.EQ.O.OR.MW.LE.PEMIN) GO TO }32
NPMFAL=NPMFAL+3
WRITE(WT,932) NPMFAL,NTBSLD.(EXPHRS(NDXS(NK)),NK=1,NUKES)
CALL ERRMSG('PUNCHR',12)
320 WRITE(PUNCH,931) MW,IEMIN,LPTS.(PROB(IEMIN+I),I=1,LPTS)
WRITE(PUNCH,933) NPMFAL,NTBSLD,(EXPHRS(NDXS(NK)),NK=1,NUKES)
GO TO 800
PROB AT NUCLEAR MAXIMUMS
400 LPTS=MAXO(IDINT(MW/DM)-IEMIN+2.1)

```

SINT1765
SINT1766
SINT1767
SINT1768
SINT1769
SINT 1770
SINT1771
SINT 1772
SINTI773
SINT 1774
SINT1775
SINT1776
SINT 1777
SINT1778
SINT 1779
SINT1780
SINT1781
SINT1782
SINT1783
SINT1784
SINT1785
SINT1786
SINT1787
SINT1788
SINT1789
SINT1790
SINT1791
SINT 1792
SINT1793
SINT1794
SINT1795
SINT1796
SINT1797
SINT1798
SINT1799
SINT 1800
```

 LPTS=MINO(LPTS,IEMAX-IEMIN) SINT1801
 WRITE(PUNCH,941) MW,IEMIN,LPTS,(PRCB(IEMIN+I),I=1,LPTS)
 GO TO 800
 FINAL PERIOD RESULTS
 NOTE SUBROUTINE SYSGEN HAS ALREADY PUNCHED THE FINAL TOTALS
 500 WRITE(PUNCH,951) (CSTBTU(NDXS(I)),AVLBTY(NDXS(I)), ENERGY(NDXS(I)),
 $EXPHRS(NDXS(I)), EXPGWH(NDXS(I)), EXPBTU(NDXS(I)),COST(NDXS(I)),
 $I=1,NUKES)
 MOD=1
 IF(NPER.LT.NPERS) GO TO }80
 WRITE(PUNCH.952) NPM,MBRNUM,A
 GO TO }70
 C ABORT CAUSED BY DETECTION OF SEVERE ERROR
600 IF(LSTMOD.GT.O) WRITE(PUNCH.96IINPM,MBRNUM, A
PUNCH=PUNCH-1000
PCHING= FALSE.
700 LSTMCD=0
RETURN
800 LS TMOD=MOD
RETURN
911 FORMAT('./ ADD NAME=',L1,I7,'.LEVEL=',Z2,',LIST=ALL'/
\$'------- BEGIN STRATEGY WITH NAME=',L1,IT,' ON ', 2A4," AT',
\$3A4,'---------')
912 FORMAT (L3,11,I6,10A7/15)
913 FORMAT([5,A5,2[5,110)
914 FORMATI'NUKES'' MAINT.DATA FOR'.T22,I4,' PERIODS 1',T41,I3,
\$' VALUES)')
915 FORMAT (1615)
92 FORMAT ('ONPMFAL=',I 3,4X,'(100=FIRST REASON, 20=SECCND REASCN,'.
\$' OR 120=BOTH REASONS FOR ERROR 11 (HEXADECIMAL B)')
922 FORMAT(13('.').I3,'TH PERICD TO FOLLOW SIMULATED ',5A4,13(".')/
\$10A8/I 10,3F10.4)
931 FORMAT('MIN :.3I5.6F10.9/(8F10.9))
932 FORMAT ('ONPMFAL=', I 3,6X,'NTBSLD='.,I3/

```

SINT1801
SINT1802
SINT 1803
SINT 1804
SINT 1805
SINT1806
SINT1807
SINT 1808
SINT 1809
SINT1810
SINT1811
SINT1812
SINT1813
SINT1814
SINT 1815
SINT1816
SINT1817
SINT1818
SINT1819
SINT1820
SINT1821
SINT1822
SINT 1823
SINT1824
SINT 1825
SINT 1826
SINT1827
SINT1828
SINT 1829
SINT1830
SINT 1831
SINT1832
SINT1833
SINT1834
SINT1835
SINT1836
```

```
```

 $' EXPHRS(NK),NK=1,NUKES AT CALL TO PCHMIN :',8F10.4/(12F10.4)) SINT1837
    ```
```

```
    $' EXPHRS(NK),NK=1,NUKES AT CALL TO PCHMIN :',8F10.4/(12F10.4)) SINT1837
```

```
```

 $' EXPHRS(NK),NK=1,NUKES AT CALL TO PCHMIN :',8F10.4/(12F10.4)) SINT1837
 933 FORMAT(215,(7F10.4))
 933 FORMAT(215,(7F10.4))
 933 FORMAT(215,(7F10.4))
 941 FORMAT('MAX ',3I5,6F10.9/(8F10.9))
 941 FORMAT('MAX ',3I5,6F10.9/(8F10.9))
 941 FORMAT('MAX ',3I5,6F10.9/(8F10.9))
 951 FORMAT(' CSTBTU AVLBTY ENERGY EXPHRS',T42,'EXPGWH',T58,'EXPBTU
 951 FORMAT(' CSTBTU AVLBTY ENERGY EXPHRS',T42,'EXPGWH',T58,'EXPBTU
 951 FORMAT(' CSTBTU AVLBTY ENERGY EXPHRS',T42,'EXPGWH',T58,'EXPBTU
 $',T75,'COST'/(2F8.4.F8.2,F10.3.F16.5.2F15.0))
 $',T75,'COST'/(2F8.4.F8.2,F10.3.F16.5.2F15.0))
 $',T75,'COST'/(2F8.4.F8.2,F10.3.F16.5.2F15.0))
 S52 FORMAT(
 S52 FORMAT(
 S52 FORMAT(
 $'-----END OF STRATEGY WITH NAME=',L1,I7,' ON ',2A4,' AT ',
 $'-----END OF STRATEGY WITH NAME=',L1,I7,' ON ',2A4,' AT ',
 $'-----END OF STRATEGY WITH NAME=',L1,I7,' ON ',2A4,' AT ',
 $3A4,'---------'//1
 $3A4,'---------'//1
 $3A4,'---------'//1
 S61 FORMATI
 S61 FORMATI
 S61 FORMATI
 $'------ABORT STRATEGY WITH NAME=',L1,IT,' ON ',2A4,' AT ',
 $'------ABORT STRATEGY WITH NAME=',L1,IT,' ON ',2A4,' AT ',
 $'------ABORT STRATEGY WITH NAME=',L1,IT,' ON ',2A4,' AT ',
 $3A4,'----------///
 $3A4,'----------///
 $3A4,'----------///
 END
 END
 END
 SUBROUTINE ERRMSG(SUBR,JERR)
 SUBROUTINE ERRMSG(SUBR,JERR)
 SUBROUTINE ERRMSG(SUBR,JERR)
 SYSINT VERSION 1-01-73
 SYSINT VERSION 1-01-73
 SYSINT VERSION 1-01-73
 C WRITES OUT ALL ERROR MESSAGES
C WRITES OUT ALL ERROR MESSAGES
C WRITES OUT ALL ERROR MESSAGES
C **
C **
C **
IMPLICIT REAL*8 (A-H.O-$)
 IMPLICIT REAL*8 (A-H.O-$)
IMPLICIT REAL*8 (A-H.O-\$)
C COMMON VARIABLES
C COMMON VARIABLES
C COMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/INTEGR/RD,WT, PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
COMMON/INTEGR/RD,WT, PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
COMMON/INTEGR/RD,WT, PUNCH,CARD,TAPE,ERRCOD,NOSTNS,NPER,NPERS,NPERI
\$, IDSTRG, PCHMIN, PCHMAX,MBRNUM
\$, IDSTRG, PCHMIN, PCHMAX,MBRNUM
$, IDSTRG, PCHMIN, PCHMAX,MBRNUM
 INTEGER RD,WT,PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
 INTEGER RD,WT,PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
 INTEGER RD,WT,PUNCH,CARD,TAPE,ERRCOD,PCHMIN, PCHMAX
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
 DATA NPRINT/O/,$QUIT$/' QUITM
 DATA NPRINT/O/,$QUIT$/' QUITM
 DATA NPRINT/O/,$QUIT\$/' QUITM
IERR=JERR
IERR=JERR
IERR=JERR
100 ERRCOD=16*ERRCOD+IERR
100 ERRCOD=16*ERRCOD+IERR
100 ERRCOD=16*ERRCOD+IERR
IF(ERRCOD.GT.8*16**6) IERR=8
IF(ERRCOD.GT.8*16**6) IERR=8
IF(ERRCOD.GT.8*16**6) IERR=8
NPRINT=NPR INT+1
NPRINT=NPR INT+1
NPRINT=NPR INT+1
GO TO (1,2,3,4,5,6,7,8,9,10,11,12),IERR
GO TO (1,2,3,4,5,6,7,8,9,10,11,12),IERR
GO TO (1,2,3,4,5,6,7,8,9,10,11,12),IERR
1 WRITE(WT.901) SUBR,ERRCOD,NPRINT
1 WRITE(WT.901) SUBR,ERRCOD,NPRINT
1 WRITE(WT.901) SUBR,ERRCOD,NPRINT
GO TO 1000
GO TO 1000
GO TO 1000
2 WRITE(WT,902) SUBR,ERRCOD,NPRINT
2 WRITE(WT,902) SUBR,ERRCOD,NPRINT
2 WRITE(WT,902) SUBR,ERRCOD,NPRINT
GO TO 1000
GO TO 1000
GO TO 1000
3 WRITE(WT,903) SUBR,ERRCOD,NPRINT
3 WRITE(WT,903) SUBR,ERRCOD,NPRINT
3 WRITE(WT,903) SUBR,ERRCOD,NPRINT
RETURN
RETURN
RETURN
4 WRITE(WT,904) SUBR,ERRCCD,NPRINT

```
```

 4 WRITE(WT,904) SUBR,ERRCCD,NPRINT
    ```
```

 4 WRITE(WT,904) SUBR,ERRCCD,NPRINT
    ```
```

```
    SINT1838
```

 SINT1838
    ```
    SINT1838
SINT1839
SINT1839
SINT1839
SINT1840
SINT1840
SINT1840
SINT1841
SINT1841
SINT1841
SINT1842
SINT1842
SINT1842
SINT1843
SINT1843
SINT1843
SINT1844
SINT1844
SINT1844
SINT1845
SINT1845
SINT1845
SINT1845
SINT1845
SINT1845
SINT1846
SINT1846
SINT1846
SINT1847
SINT1847
SINT1847
SINT1848
SINT1848
SINT1848
SINT1849
SINT1849
SINT1849
SINT1850
SINT1850
SINT1850
SINT1851
SINT1851
SINT1851
SINT1852
SINT1852
SINT1852
SINT1853
SINT1853
SINT1853
SINT1854
SINT1854
SINT1854
SINT1855
SINT1855
SINT1855
SINT1856
SINT1856
SINT1856
SINT1857
SINT1857
SINT1857
SINT1858
SINT1858
SINT1858
SINT1859
SINT1859
SINT1859
SINT1860
SINT1860
SINT1860
SINT1861
SINT1861
SINT1861
SINTIB61
SINTIB61
SINTIB61
SINT1862
SINT1862
SINT1862
SINT1863
SINT1863
SINT1863
SINT1864
SINT1864
SINT1864
SINT1865
SINT1865
SINT1865
SINT1866
SINT1866
SINT1866
SINT1867
SINT1867
SINT1867
SINT1868
SINT1868
SINT1868
SINT1868
SINT1868
SINT1868
SINT1869
SINT1869
SINT1869
SINT1870
SINT1870
SINT1870
SINT1871
SINT1871
SINT1871
SINT1872
SINT1872
SINT1872
SINT1872
```

SINT1872

```
SINT1872
```

```
        GO TO 1000
    5 WRITE(WT,905) SUBR,ERRCOD,NPRINT
    RETURN
    6 \mp@code { W R I T E ( W T , 9 0 6 ) ~ S U B R , E R R C O D , N P R I N T }
    GO TO 1000
    7 WRITE(WT,9C7) SUBR,ERRCOD,NPRINT
    GO TO 1000
    8 WRITE(WT,908) SUBR,ERRCOD,NPRINT,NPRINT
    STOP
    9 WRITE(KT,909) SUBR,ERRCCD,NPRINT
    GO TO 1000
    10 WRITE(WT,910) SUBR,ERRCOD,NPRINT
    I ERR=8
    GO TO }10
    11 WRITE(WT,911) SUBR.ERRCCD,NPRINT
    RETURN
12 WRITE(WT,912) SUBR,ERRCOD,NPRINT
    RETURN
1000 NPRINT=NPRINT+1
    WRITE(WT,999) NPRINT
    CALL OUIT
    SUBR=$QUIT $
    IERR=10
    GO TO 100
901 FORMAT (/' !,130('**)/," * SUBR. ',A6,' HAS ERRCOD = ',Z8,' : ',
    $' IEMAX GREATER THAN DIMENSION OF PROB ARRAY
    $T131,'*',/,' ',130('*'),12)
902 FORMAT (/' ',130('**)/,' * SUBR. ',A6,' HAS ERRCOD = ',28,' : ',
    $' CAPACITY OF A PLANT GREATER THAN ',
    $'MINIMUM LOAD'.
    $T131,0*'./.' ',130('*'),I2)
903 FORMAT(/' ',130('*')/.' * SUBR. ',A6,' HAS ERRCOD = ', 28,' : ',
    $'WARNING - RELERR &/OR IOP| GREATER THAN 0.001',
    $T131.'*'./.' '.130('*').12)
904 FORMAT(/:',130(**')/,:* SUBR. ',A6.' HAS ERRCOD = ', 28,' : ',
    $. NEW PROB VIOLATES PFOPERTIES OF A CDF
```



``` \$' NEW PROB VIOLATES PFOPERTIES OF A CDF
```

SINT1873
SINT1874
SINT 1875
SINT1876
SINT 1877
SINT1878
SINT1879
SINT1880
SINT1881
SINT1882
SINT 1883
SINT1884
SINT1885
SINT1886
SINT1887
SINT1888
SINT1889
SINT 1890
SINT1891
SI NT 1892
SINT 1893
SINT1894
SINT1895
SINT1896
SINT 1897
SINT1898
SINT 1899
SINT1900
SINT1901
SINT 1902
SINTI 903
SINT1904
SINT1905
SINT1906

```
    $T131,:*':/,',130(**'),12)
905 FORMAT //: ,130(%*')/,**SUBR. ',A6,' HAS ERRCOD = ',Z8,' : ',
    $' WARNING : ERROR IN EXPECTED MW OUTAGES GREATER',
    $' THAN 0.01% ',
    $T131,'*'./.' '.130('*').12)
906 FORMAT(/' ',130('*')/,' * SUBR. ',A6,' HAS ERRCOD = ', 28,' : ',
    $IINPUT DECK HAS IMPROPER SEQUENCE E/OR CARD
    $T131,0*'./.' ', 130(0*'),12)
907 FORMAT(/' ',130('*')/.' * SUBR. ',A6,' HAS ERRCOD = ', 28,' : ',
    $'INVALID OR INCONSISTENT IDNO ENCOUNTERED
    $T131,'*'./.' ',130(0*'),12)
908 FORMAT //" ',130(**')/,'* SUBR. ',AG,' HAS ERRCOD = ',Z8," : !,
    $'SUPSIM ENCOUNTERED STOP CARD. ERRMSG CALLED ONCE TOO OFTEN OR D',
    $'THER FATAL ERROR', T131,'*'/' * DURING THIS ENTIRE RUN, ERRMSG',
    $' PRINTED A TOTAL OF ',13,' ERROR MESSAGES JUST LIKE (AND ',
    $'INCLUDING) THIS ONE'.
    $T131,'*',/,' ',130(**'),I2)
909 FORMATI/' ',130('*')/,' * SUBR. ',A6.' HAS ERRCOD = ',Z8,' : ',
    $'INPUT NORDER ERROR SUCH AS TOO FEW/MANY VALVE',
    $' POINTS, BAD IDNO OR UNLISTED ON-LINE PLANT',
    $T131.'*'./.' ', 130('*'),12)
910 FORMAT(/' ',130('**)/,' * SUBR. ',A6,' HAS ERRCOD = ', 28,' : '.
    $' "QUIT" EXECUTED A RETURN TO "ERRMSG"
    $T131,'*'./." ',130('*'),12)
911 FORMAT (/' ',130('*')/,' * SUBR. ',AG,' HAS ERRCOD = ',28,' : ',
    $'BASE NUCL. W/IN NUCL. NON-MINIMUMS OR NON-MIN',
    $'IMUM NON-NUCL.V.PTS. PRECEDE SOME NUCL.V.PTS.',
    $T131,'*'./.' ',130('*').12)
912 FORMAT(/: ',130('*')/.' * SUBR. ',A6,' HAS ERRCOD = ',28,' : ',
    $'MINIMUM LOAD TOO LOW TO KEEP NUKES ON ALL THE TIME',
    $T131.'*',1,' ',130('*'),I2)
999 FORMAT(/' ',130(**')/." * PREVIOUS ERROR SEVERE ENOUGH TO',
    $' INVALIDATE FURTHER COMPUTATIONS. THEREFORE,RETURNING',
    $' CCNTRCL TC SUPSIM.'.
    $T131,'*',/,' ',130('*'),12)
        END
```

SINT1909 SINTI910
SINT1911
SINT1912
SINT1913
SINTI914
SINT1915
SINT1916
SINTI917
SINT1918
SINT1919
SINT1920
SINT1921
SINT 1922
SINT 1923
SINT1924
SINT1925
SINT1926
SINT1927
SINT1928
SINT1929
SINT1930
SINT1931
SINT1932
SINT1933
SINT1934
SINT1935
SINT1936
SINT1937
SINT 1938
SINT1939
SINT 1940
SINT1941
SINT1942
SINT1943
SINT1944

```
C SYSINT VERSION 10-15-71
C PRINTS TIME OF INTRA-SUBROUTINE TRANSFERS OR DATE&TIME SINTI947
C "TIMING" IS AN M.I.T. INTERNAL SUBROUTINE THAT RETURNS THE CPU TIME
C IN HUNCREDTHS OF SECONDS.
C "WHEN" IS AN M.I.T. INTERNAL SUBROUTINE THAT RETURNS THE CATE AND
C TIME IN THE FOLLOWING 5A4 FORMAT: MM/DD/YY HR*MI*SS.FF
    COMMCN/INTEGR/RD,WT
    INTEGER RD,WT
    DIMENSION A(5)
    DOUBLE PRECISION LV,ENT
    INTEGER TNOW,TSTART,TREL
    CALL TIMING(TNOW)
    TREL=TNOW-TSTART
    IF(TREL.LT.0) TREL=TREL+8640000
    TI=TREL/100.
    WRITE(WT,10)LV,ENT,TI
    RETURN
    ENTRY STRTIM
    CALL TIMING(TSTART)
    ENTRY DAYTIM
    CALL WHEN(A)
        WRITE(WT,20) A
        RETURN
10 FORMAT(/,T 103,29('*'),/,T103,'*LV. ',A6,T131,'*',/,
    $T103,'* ENT. ',A6,' a',F7.2,' SEC. *',1,T103,29('*'1,1)
20 FORMAT(/T103,29(**')/T103,'* DATE = *.2A4,T131,'*'/
    $T103,'* TIME = ', 3A4,T131,'*'/T103,29('*')/)
    END
```



```
*
*
*
*
*
*
ASSEmblER LANGUAGE SUEROUTINE ERASE
                    WRITTEN BY JOHN W. KIDSON * 00000012
                    MIT DEPARTMENT OF METEOROLOGY
                            * 00000014
                            * 00000016
                TO SET ELEMENTS OF REAL OR INTEGER ARRAYS TO ZERO. Al,A2,... * 00000020
```

SINT1945 SINT1946 SINT 1947 SINT1948 SINT1949 SINT1950 SINT1951 SINT1952 SINT1953 SINT1954
SINT1955
SINT1956
SINT1957
SINT1958
SINT1959
SINT1960
SINT1961
SINT1962
SINT 1963
SINT1964
SINT1965
SINT 1966
SINT1967
SINT1968
SINT1969
SINT1970
SINT1971
SINT 1972
SINT1973
SINT1974
SINT 1975
SINT1976
SINT 1977
SINT1978
SINT1979
SINT1980


```
C*
    SYSOPT: ANELECTRIC UTILITY SYSTEM CPTIMIZATION MODEL
        WRITTEN BY PALL F. DEATCN
C*
    M.I.T. DOCTURAL THESIS,
    MARCH
    *
C
```

SOPT0001
SOPTOOO2
SOPT 0003
SOPTOOO4
SOPT0005
SOPT0006
SOPT0007
SOPT0008
SDPT0009
SOPTOOLO
SOPTOOL1
SOPT0012
SOPTOO 13
SOPT0014
SOPTOJ15
SOPT 0016
SOPTOO17
SOPTOO18
SOPTOOL 19
SOPT0020
SOPT0021
SOPT0022
SOPT0023
SOPTOO24
SOPTJJ25
SOPT0026
SOPT 0027
SOP T0028
SOPTOO29
SOPT0030
SOPT0031
SOPT0032
SOPTOU33
SOPT0034
SOPT0035
SOPT0036

SOPTOO37
SOPTOO 38
SOPT0039
SOPTO040
SOPT0041
SOPT0042
SOP T0043
SOPT0044
SOPTO345
SOPT0046
SOPT0047
SOPT0048
SOPT0049
SOPTOJ50
SOPTO051
SOPT0052
SOPT0053
SOPT 0054
SOPT0055
SOPTO056 a SOPT0057 N

SOPT0058
SOPTOO59
SOP T0060
SOPT0061
SOPT0062
SOPT0063
SOPT0064
SOP TOO65
SOPT0066
SOPT0067 SOP T0068 SOPT 0069 SOPTOO70 SOPT0071 SOP T0072

```
CYCWN = COWN TIME FCR EXCESS CYCLE (YEARS)
```

CYCWN = COWN TIME FCR EXCESS CYCLE (YEARS)
CYHOLD = POST-HORIZON TINE UNTIL END OF SPLIT CYCLE (YEARS
CYHOLD = POST-HORIZON TINE UNTIL END OF SPLIT CYCLE (YEARS
CYUP = UP TIME FOR EXCESS CYCLE (YEARS)
CYUP = UP TIME FOR EXCESS CYCLE (YEARS)
ECS = EMERGENCY PCWER COST ($/MWHE)
ECS = EMERGENCY PCWER COST ($/MWHE)
ECUPLM = UPPER LIMIT ON EC'S IMPOSED BY IN-CORE MODEL (GWHE)
ECUPLM = UPPER LIMIT ON EC'S IMPOSED BY IN-CORE MODEL (GWHE)
ELAME = SANDWICHEC TABLE OF EC'S, LAMBCAS \& EC'S (GWHE,$/MWHE)
ELAME = SANDWICHEC TABLE OF EC'S, LAMBCAS & EC'S (GWHE,$/MWHE)
EMRP\$ = COST OF EMERGENCY POWER PURCHASES (10**3 $)
EMRP$ = COST OF EMERGENCY POWER PURCHASES (10**3 $)
EXFCEM = EXP. CUSTCMER ENERGY DEMAND (GWFE)
EXFCEM = EXP. CUSTCMER ENERGY DEMAND (GWFE)
EXPEMR = EXP. EMERGENCY ENERGY PURCHASED (GWFE)
EXPEMR = EXP. EMERGENCY ENERGY PURCHASED (GWFE)
EXPGEN = EXP. UTILITY TOTAL GENERATION (GWHE)
EXPGEN = EXP. UTILITY TOTAL GENERATION (GWHE)
EXPGWH = SYSINT EXPECTED GENERATION BY EACH REACTOR (GWHE)
EXPGWH = SYSINT EXPECTED GENERATION BY EACH REACTOR (GWHE)
FINTST = FINE-GRAINED SHAPE TEST FOR THE PERICD
FINTST = FINE-GRAINED SHAPE TEST FOR THE PERICD
FINVAR = FINE-GRAINED VARIANCE FOR THE PERIOD (THESIS S**2)
FINVAR = FINE-GRAINED VARIANCE FOR THE PERIOD (THESIS S**2)
GESFRS = FIRST GUESS CPTION(O=NONE, 2=SYSINT, 2=MRGCST, 3=CA.EC,4=EC)
GESFRS = FIRST GUESS CPTION(O=NONE, 2=SYSINT, 2=MRGCST, 3=CA.EC,4=EC)
GMESH = INCREMENTAL SPACING USED FOR ARC TYPES 2 & 3 (GWHE)
GMESH = INCREMENTAL SPACING USED FOR ARC TYPES 2 & 3 (GWHE)
GWHOLD = GWHE HELD OVER FOR LATER PRODUCTION IN SPLIT CYCLE
GWHOLD = GWHE HELD OVER FOR LATER PRODUCTION IN SPLIT CYCLE
CWHPER = GWHE PER UNIT DN UNDER CDF
CWHPER = GWHE PER UNIT DN UNDER CDF
CWFXS = EC FOR EXCESS CYCLE (GWHE)
CWFXS = EC FOR EXCESS CYCLE (GWHE)
IAUX = TOTAL NUMEER OF ARCS TO AUXILIARY R-C NODE
IAUX = TOTAL NUMEER OF ARCS TO AUXILIARY R-C NODE
IAUXM = IAUX-1
IAUXM = IAUX-1
IDNO = REACTOR I.D. NUMBER
IDNO = REACTOR I.D. NUMBER
IDSTRG = STRATEGY I.D. NUMBER
IDSTRG = STRATEGY I.D. NUMBER
IEMAX = PEMAX/DM
IEMAX = PEMAX/DM
IEMIN = PEMIN/DM
IEMIN = PEMIN/DM
INSTAT = INITIAL STATE OF REACTOR AT START OF PERICD 1 (CF. 'S')
INSTAT = INITIAL STATE OF REACTOR AT START OF PERICD 1 (CF. 'S')
ITER = INNER COST ITERAT ION NUMBER
ITER = INNER COST ITERAT ION NUMBER
JBKWRD = NUMBER OF BACKWARD ARCS OF TYPE }
JBKWRD = NUMBER OF BACKWARD ARCS OF TYPE }
JFRPBK = JFRWRD + JBKWRD
JFRPBK = JFRWRD + JBKWRD
JFRWRD = NUMBER OF FCRWARD ARCS OF TYPE 7
JFRWRD = NUMBER OF FCRWARD ARCS OF TYPE 7
KC = UNIT TRANSPCRTATIDN COST ACROSS ARC ($/GWHE)
KC = UNIT TRANSPCRTATIDN COST ACROSS ARC (\$/GWHE)
KL = ARC CAPACITY LOWER LIMIT (GWHE)
KL = ARC CAPACITY LOWER LIMIT (GWHE)
KU = ARC CAPACITY UPPER LIMIT (GWHE)
KU = ARC CAPACITY UPPER LIMIT (GWHE)
KX = ARC CAPACITY LSED (GWHE)
KX = ARC CAPACITY LSED (GWHE)
LVLMIN = LVLMN
LVLMIN = LVLMN
LVLMN = POWER LEVEL AT END OF MINIMUMS
LVLMN = POWER LEVEL AT END OF MINIMUMS
LVLMAX = LVLMX

```
LVLMAX = LVLMX
```

```
LVLMX = POWER LEVEL AT ENO OF MAXIMUMS
```

LVLMX = POWER LEVEL AT ENO OF MAXIMUMS
NAX = REACTOR-TO-PERIOD MAX. GWHE CONTRIB. TO NUCL. POTENTIAL
NAX = REACTOR-TO-PERIOD MAX. GWHE CONTRIB. TO NUCL. POTENTIAL
MAXTST = MAXIMUM POSSIBLE SHAPE TEST FCR THE PERIOC
MAXTST = MAXIMUM POSSIBLE SHAPE TEST FCR THE PERIOC
NAXVAR = MAXIMUM POSSIBLE VARIANCE FOR THE PERIOD
NAXVAR = MAXIMUM POSSIBLE VARIANCE FOR THE PERIOD
mesh = Sequence (f gmesh values to be used in convergence (Gwhe)
mesh = Sequence (f gmesh values to be used in convergence (Gwhe)
MIDCYC = REACTOR IN MID-CYCLE AT START OF PERICD l ?
MIDCYC = REACTOR IN MID-CYCLE AT START OF PERICD l ?
NIN = REACTOR-TO-PERIOD MIN. GWHE CONTRIB. TO NUCL. POTENTIAL
NIN = REACTOR-TO-PERIOD MIN. GWHE CONTRIB. TO NUCL. POTENTIAL
MWD = INCREMENT OF CAPACITY AVAILABLE FOR LCAD FOLLOWING (MW)
MWD = INCREMENT OF CAPACITY AVAILABLE FOR LCAD FOLLOWING (MW)
MWINST = UTILITY INSTALLED CAPACITY (MW)
MWINST = UTILITY INSTALLED CAPACITY (MW)
NWMAX = REACTOR MAXINUM LOAO (MW)
NWMAX = REACTOR MAXINUM LOAO (MW)
MWMIN = REACTOR MINIMUM LOAD (MW)
MWMIN = REACTOR MINIMUM LOAD (MW)
NWMRGN = CN-LINE CAPACITY MARGIN ABOVE FORECAST PEAK (MW)
NWMRGN = CN-LINE CAPACITY MARGIN ABOVE FORECAST PEAK (MW)
NWCNLN = UTILITY ON-LINE CAPACITY (MW)
NWCNLN = UTILITY ON-LINE CAPACITY (MW)
MWPEAK = FORECAST PEAK CLSTOMER DEMAND (NW)
MWPEAK = FORECAST PEAK CLSTOMER DEMAND (NW)
NWSPIN = SPINNING RESEFVE REQUIREMENT (MW)
NWSPIN = SPINNING RESEFVE REQUIREMENT (MW)
MXARCS = MAXIMUM ALLOWED NUMRER OF ARCS IN O-O-K
MXARCS = MAXIMUM ALLOWED NUMRER OF ARCS IN O-O-K
NXESX2 = FIRST DIMENSION OF ELAME = (MAX.NO.EC'S INCOL.) * 2
NXESX2 = FIRST DIMENSION OF ELAME = (MAX.NO.EC'S INCOL.) * 2
MXITER = NAXIMUM I TERATICNS TO BE ATTENPTED
MXITER = NAXIMUM I TERATICNS TO BE ATTENPTED
MXNODS = MAXIMUM ALLOWED NUMBER OF NODES IN C-C-K
MXNODS = MAXIMUM ALLOWED NUMBER OF NODES IN C-C-K
MXAFER = MAXIMUM ALLCWED NUMRER OF PERIOES IN SYSOPT STUDY
MXAFER = MAXIMUM ALLCWED NUMRER OF PERIOES IN SYSOPT STUDY
MXRCRS = MAXIMUM ALLCWED NUMBER OF REACTCRS IN STRATEGY
MXRCRS = MAXIMUM ALLCWED NUMBER OF REACTCRS IN STRATEGY
NXRCYC = MAXIMUM ALLOWED CYCLES FOR A SINGLE REACTCR
NXRCYC = MAXIMUM ALLOWED CYCLES FOR A SINGLE REACTCR
NCYCT = CUMULATIVE NLMBER OF R-CVS
NCYCT = CUMULATIVE NLMBER OF R-CVS
NMESH = NUMBER OF MESHES TO BE READ IN
NMESH = NUMBER OF MESHES TO BE READ IN
AP = PERIOD INDEX
AP = PERIOD INDEX
NPERIN = NUMBER OF PERIODS IN SYSINT SIMLLATICN OUTPUT
NPERIN = NUMBER OF PERIODS IN SYSINT SIMLLATICN OUTPUT
APERS = NUMBER OF CYCLES COMPRISING TIME HORILON OF INTEREST
APERS = NUMBER OF CYCLES COMPRISING TIME HORILON OF INTEREST
NPERSP = NPERS + 1
NPERSP = NPERS + 1
NPIN = COMPUTER DEVICE NUMBER FOR NET.PROG. INPUT
NPIN = COMPUTER DEVICE NUMBER FOR NET.PROG. INPUT
APM = NUCLEAR POWER NANAGEMENT STUDY?
APM = NUCLEAR POWER NANAGEMENT STUDY?
APMFAL = SYSINT ERROR INDICATION THAT SYSOPT N.P.M. MAY FAIL
APMFAL = SYSINT ERROR INDICATION THAT SYSOPT N.P.M. MAY FAIL
APCT = COMPUTER [EVICE NUMBER FOR NET.PROG. OUTPUT
APCT = COMPUTER [EVICE NUMBER FOR NET.PROG. OUTPUT
NR = REACTCR INDEX
NR = REACTCR INDEX
ARCRS = NUMBER OF REACTCRS IN THE STRATEGY
ARCRS = NUMBER OF REACTCRS IN THE STRATEGY
ATBSLD = NUMBER OF REACTCRS NOT BASE-LOACED IN THE PERIOD
ATBSLD = NUMBER OF REACTCRS NOT BASE-LOACED IN THE PERIOD
OPHRS = SYSINT OPERATING HOURS FOR REACTCR

```
OPHRS = SYSINT OPERATING HOURS FOR REACTCR
```

SOPT0073
SOPT0074
SOPT0075
SOPT0076
SOP T0077
SOPT0078
SOPT0079
SOPT0080
SOPT0081
SDP T00 82
SOPTOO83
SOPT0084
SOPT0085
SOPT0086
SOPT0087
SOPT0088
SOPT0089
SOPTOUSO
SOPT0091
SOPT0092
SOPT 0093
SOPT0094
SOPTOJ95
SOPT 0096
SOPT0J97
SOPT0098
SOPT0099
SOPT0100
SOPTOIO1
SOPTU102
SOPTO103
SOPT0104
SOPTO105
SOPT0106
SOPTO107
SOPTO108

```
CPRCCR = IN-CORE PRINT OPT IONS TO BE USEC FOR OPTIMUM SOLUTION
PAPCAL = ARC TYPES PRINTED FOR ALL O-D-K SOLUTIONS
PARCON = ARC TYPES PRINTED FOR CONVERGED O-D-K SOLUTIONS
PARCOP = ARC TYFES PRINTED FCR OPTIMUM O-C-K SCLUTTION
PCCNVG = PER CENT GMESH LSED FOR CONVERGENCE TEST
FCDELA = PERIOD CAP. FACT. RANGE CORRECTION (PER CENT DELTAL)
PDELIM = PERIOD DELIMITING CARD
PDTITL = PERIOD TITLE CARD
PEMAX = MAXIMUM EGUIVALENT LOAD CONSIDERED (MW)
PEMIN = MINIMUM EQUIVALENT LOAD (NW)
FLCFL = PROBABILITY OF LOSS OF LOAD (FRACTION)
PROB = CUMULATIVE DENSITY FUNCTION (C.C.F.) FOR EQUIVALENT LOAD
FROC$ = CIRECT PROOUCTION FUEL COST (10**3 $)
FVFACT = NID-PERIOD PRESENT VALUE FACTOR (FRACTION)
PVRATE = PRESENT VALUE RATE (FRACTION PER YEARI
RC = REACTOR-CYCLE (R-C) INDEX
RD = COMPUTER DEVICE NUMBER FOR CARD REAEER
RDFACT = ROUND-OFF CORRECTION FACTOR FOR O-D-K 'S INTEGER EC'S
REJLVL = REJECTICN LEVEL FOR FINVAR-SLNWSR
S = REACTOR STATLS DURING PERIOD ( }0=\mathrm{ NONE, l=DOWN,2=UP)
SGTITL = STRATEGY TITLE
SICT = COMPUTER CEVICE NUMBER FOR SYSINT OUTPUT
SLNCRT = SOLUTION SHAPE CRITERION = FINVAR-SLNWSR-REJLVL (.GE.O)
SLNHSR = SOLUTICA WTD. SUM OF SQUARES OF RESIICUALS (THESIS W**2)
SP\varepsilon = PRESENT VALUE SUMS OF VARIOUS PERIOC COSTS
SUSD$ = SYSTEM STARTUP & SHUTDOWN COST (10**3 $)
TEY = TIME AT END CF CYCLE (YEARS)
TH$CON = CUNVERGENCE CRITERION ON SYSTEM NUCLEAR CCST (10**3 $)
TOTAL$ = TOTAL SYSTEM COST = $NKTOT + $NNTOT + EMRP$ (10**3 $)
TOY = JPERATING TIME OF CYCLE (YEARS)
ISY = TIME AT START OF CYCLE (YEARS)
LNSRVD = SECOND ESTIMATE OF UNSERVED ENERGY, EXPEMR (GWHE)
WT = COMPUTER DEVICE NUMBER FOR PRINTER
XAKGEN = EXP. NUCLEAR GENERATION (GWHE)
XNNGEN = EXP. NON-NUCL. GENERATION (GWHE)
ybASE = bASE yEAR FCR pRESENT VALUING
```

SOPTJ109
SOPTO110
SOPTO111
SOPTOI12
SOPTO113
SOPTOL14
SOPT0115
SOPTO116
SOPT0117
SOPTOL18
SOPTO119
SOPTOL20
SOPTOL21
SOPTO122
SOPTO123
SOPTO124
SOPTOL25
SOPTOL26
SOPTJ127
SOPTO128
SOPTO129
SOPTOL30
SOPTOI31
SOPTOL32
SOPTOL33
SOPTO134
SOPTO135
SOPTO136
SOPTO137
SOPTO138
SOPTO139
SOPTOI40
SOPTO141
SOPTO142
SOPTO143
SOPT 0144

```
C YEND = ENO POINT OF PERIOD (YEARS)
C YSTART = YEAR OF START OF FIRST PERIOD IA THE STRATEGY
```



```
    IMPLICIT INTEGER(C,G)
    REAL*8 RDFACT,SGTITL
    CCMMCN/OPTLIM/RDFACT,SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
    $IAUX,I AUXM,NRCRS,NCYCT,NPERS,NPERSP,NPERIN,ITER,MXESX2,MXRCYC,
    $NXNPER,MXRCRS,M XNODS,MXARCS,SIOT,NPIN, NPCT,RD,WT, PARCAL,PARCON,
    $PARCOP,PCCNVG,NPM, IDSTRG,JFRWRD, JBKWRD,NNESH,MESH(15),MXITER
    $,GESFRS, ECUPLM(18),CORDTL,OPRCOR(6),REJLVL,PCDELA,TH$CON, JFRPBK
    INTEGER SIOT,RC,WT,PARCAL,PARCON,PARCOP
    LOGICAL NPM,OPRCOR
    LOGICAL OPTRCH, SHP SOK
    REAL*3 $NKPRD
    DIMENSION X(2O)
    CATA $STOP$,$STRA$,$NEWB$,$COMP$/'STOP','STRA','NEW ','COMP'/
    HRITE(WT,903)
    WRITE(WT,900)
10 CALL STRTIM (WT)
20 REAC(RD,SC1) X
    WRITE(WT,g02)X
    IF(X(1).EQ.$STOP$) CALL CPERR('SYSOPT',8)
    IF(X(1).EQ.$STRA$) GC TO 30
    IF(X(1).EG. $COMP$) GO TO 40
    IF(X(1).NE.$NEWB$) CALL CPERR('SYSOPT',6)
    CALL CMPTIM('SYSOPT','ICNPUT')
    CALL ICNFUT
    CALL CMPTIM('ICNPUT','SYSOPT')
    CO TO 20
30 CALL CMPTIM(' ',INFUT ')
    CALL RDOPTN
    CALL RDSTRG
    X(1)=LOC (10,0,0,0)
    CALL RDPERS
    CALL ASMTYS
```

SOPTO145
SOPTO146
SOPT 0147 SOPTO148 SOPT0149 SOPTO150 SOPTOL51 SOPT0152 SOPTO153 SOPTO154 SOPTO155 SOPT0156 SOPTO157 SOPTO158 SOPTOI59 SOPTO160 SOPTO161 SOPTO162 SOPTO163 SOPT0164 SOPTO165 SOPTO166 SOPTO167 SOPTO168 SOPTO169 SOPTO170 SOPTO171 SOPTOL 72 SOPTO173 SOPTO174 SOPTO175 SOPTO176 SOPTO177 SOPTO178 SOPTO179 SOPT0180

```
    CALL WTPERS
    CALL SETUPN
    CALL SETLPT
    CO TD 20
    40 CALL CMPTIM('INPUT ','CALCS ''
    $NKPRD=O.0DU
    5 0 ~ C A L L ~ C O N V R G I O P T R C H , ~ \$ N K P R C I ~
    CALL CHKSHP(SHPSOK)
    IF(ITER.LT.MXITER.AND.OPTRCH.AND..NOT.SHPSOK) GO TC 50
    (ALL EOTSHP(SHPSOK)
    CALL OFTMUM(CPTRCH,$NKPRC)
    CALL CMPTIM('CALCS ',' !)
    IF(.TRUE.) GO TO 10
    STOP
    900 FORMAT (T31,72('*')/Tב1,'*',T102,'*'/T31,'*',T37,'S Y S O P T :
    $ AN ELECTRIC UTILITY SYSTEM OPTIMIZATICN MODEL',T1O2,'*'/
    $T彐1,'*',TE4,'WRITTEN BY PAUL F. DEATON',T102,'*'/
    $T31,'*',T58,'M.I.T. DCCTORAL THESIS, MARCH 1973 ',T102,'*'/
    $T31,'*',Tlu2,'x='/T31,72('*')//
    $T56,'VERSION 12-16-72')
    901 FORMAT(2CA4)
    902 FORMAT('OSYSOPT READ : ',1H',20A4,1H')
    903 FORMAT('0'/'0'/'0')
    END
    elock cata
    INITIALIZES COMMON BLOCKS AND DIMENSIONS O-D-K ARRAYS
C SYSOPT VERSION 12-16-72
    IMPLICIT INTEGER(C,GI
    REAL*8 RCFACT,SGTITL
    CCMMON/OPTLIM/RDFACT,SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
    $IAUX,I AUXM, NRCRS,NCYCT,NPERS,NPERSP,NPER IN, ITER,MXESX2,MXRCYC,
    $MXNPER,MXRCRS,MXNODS,NXARCS,SIOT,NPIN,NPCT,RD,WT, PARCAL, PARCON,
    $PARCOP,PCONVG,NPM, IDSTRG,JFRWRD, JBKWRD,NMESH,MESH (15),MXITER
    $,GESFRS, ECUPLM(18), CORCTL,CPRCOR(6),REJLVL,PCDEL A,TH$CON,JFRPBK
    INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
    LOGICAL APM,CPRCOR
```

SOPT0181 SOPTO1 82 SOPTO183 SOPTO184 SOPTO185 SOPTO186 SOPTO187 SOPTO188 SOPTO189 SOPTO190 SOPT0191 SOPTO192 SOPTO193 SOPTO194 SOPT0195 SOPTO196 SOPTO197 SOPTO198 SOPTO199 SOPTO200
SOPTO201
SOPTO202
SOPTO203
SOPTO204
SOPTO205
SOPTO206
SOPTO207
SOPTO208
SOP T0209
SOPTO210
SOPT0211
SOPTO212
SOPTO213
SOPTO214
SOPTO215
SOPT0216
6

```
LOGICAL MIDCYC
INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
COMMON/RCRDAT/DYDWN(3,15), DYUP(3,15),GWHXS(3,15),CYCXS(15),
$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),IDNO(15),GWHOLD(15),MWO(15)
$,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
4,DYHCLO(15),TOY(18,15)
    CCMMCN/OCKCCM/KIX,KOX,KQ1X,KQ2X,KQ3X,KQ4X,KQ 5X
    COMMCN /KL/KL/KC/KC/KU/KU/KX/KX/NL/NL/NN/NN/NP/NP/IJ/IJ/IL/IL
    COMMCN /JL/JL/JI/JI
    DINENSION KL(3500),KC(3500),KU(3500),KX(3500),NL( 70))
    CIMENSION NN(1400),NP( 700),IJ(2100),IL( 701),JL( 701),JI(3500)
    CCNMCN/PDPERM/S(100,15), ALPHA(100,15),BETAP(100,15),FINVAR(100)
    INTEGER*2 S
    COMMON/PCTEMP/NPMFAL(100),NTBSLD(100),OPHRS(100,15),LVLMN(100),
$LVLMX(100), PDELIM(20,100), PDTITL(20,100), DMW(100),DTH(100),ECS(100
$),R4(13,100),R8(12,100), YMID(100),YEND(100), PVFACT(100), AVL(100,
$15), EXPGWH(100,15), CAVG(100), BASVAR(100),FINTST(100),MAXVAR(100),
$MAXTST(10)),MIN(100,15),MAX(100,15),BASCFA(100,15)
    REAL MAXVAR,MAXTST,CAVG
    REAL*8 PVFACT,R8
    COMMON/PROB/DM,DT,GWHPER,DAYS,IEMIN,IEMAX,PEMIN,PENAX,PRCB(500)
&,LVLNIN,LVLMAX
    REDL*B DM,DT,GWHPER,DAYS,PEMIN, PEMAX,PRCE
    COMMON/FINALS/S4,SA4,SP4,SL4,SP8
    REAL*8 S4(13),SA4(13),SP4(13),SL4(13),SP8(13)
    COMMON/PRINTS/RELCST,INCCST,BALCST,NBLCST,PIRDAT,PBATCS,KRD,KWT
    LOGICAL RELCST, INCCST,BALCST,NBLCST,PIRDAT,PBATCS
    CONMCN/SHPINF/SLNCRT(1J0),SLNWSR(100),ITRSHP,FCWS EC(100)
    LOGICAL PDWSBD
    [ATA MXESX2/40/
    CATA MXRCYC/18/
    [ATA HXNFER/100/
    CATA MXRCRS/15/
    [ATA MXARCS/3500/
    [ATA MXNCCS/ 700/
    CATA RD/5/
```

SOPTO217
SOPTO218
SOPTO219
SOPT0220
SOPT0221
SOPT0222
SDPT0223
SOPT0224
SOPTO225
SOPTO226
SOPTO227
SOPT0228
SOPTO229
SOPTO230
SOPTO231
SOPT0232
SOPT0233
SOPTO234
SOPTO235
SOPT0236
SOPT0237
SOPT0238
SOPT0239
SOPT0240
SOPT0241
SOPT0242
SOPT0243
SOPTO244 SOPTO245
SOPT0246
SOPTO247
SOPT0248
SOPTJ249
SOPT 0250
SOPT0251
SOPTO252

```
    [ATA WT/G/
    END
    SUBRCUTINE RDOPTN
    READS IN DATA PERTINEAT CIRECTLY TO SYSOPT
    SYSOPT VERSION 12-1E-72
    IMFLICIT INTEGER(C,G)
    REAL*3 RCFACT,SGTITL
    CCMMON/OPTLIM/RDFACT, SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
    $IAUX, I AUXN,NRCRS,NCYCT,NPERS,NPERSP,NPERIN, ITER,MXESX2,MXRCYC,
    $MXNPER,MXRCRS,MXNODS,MXARC S,SICT,NPIN,NPCT,RD,WT,PARCAL, PARCON,
    $FARCCP,PCONVG,NPM, IDSTRG,JFRWRD, JBKWRD,NMESH,MESH(15),MXITER
    $,GESFRS,ECUPLM(18),CORDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
    INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
    LOGICAL NPM,OPRCOR
    LOGICAL MIDCYC
    INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
    COMMON/RCRDAT/DYOWN(3,15), DYUP(3,15),GWHXS(3,15),CYCXS(15),
    &CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),ICNO(15),GWHOLD(15),MWD(15)
    $,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
    $,DYHOLD(15),TOY(18,15)
    REA[ (RD,901) NPM,IDSTRG,NRCRS
    WRITE(WT,911) NPM,IDSTRG,NRCRS
    READ (RD,907) SIOT,NPIN,NPOT,PARCAL,PARCCN,PARCOP,COROTL,CPRCOR
    WRITE(WT,912) SIOT,NPIN,NPOT,PARCAL,PARCON,PARCOP,CORDTL,OPRCOR
    READ (RD,903) PVRATE,YBASE,YSTART,PCCNVG,TH$CCN, PCCELA,REJLVL,
    $NPERS,GESFRS,MXITER, IAUX,JFRWRD, JBKWRD
    CALL PVINIT(PVRATE)
    WRITE(WT,G1 3) PVRATE,YBASE,YSTART,PCONVG,TH$CCN, PCDELA,REJLVL,
    $\PERS,GESFRS,MXITER, IAUX,JFRWRD,JBKWRD
    JFRPBK=JFRWRD+JBKWRD
    IF(GESFRS-2) 20,5,12
5 WRITE(WT,916) (I,I=2,NXRCYC)
    CO 10 NR=1,NRCRS
    REAC(RD,906) (ELAME(NR,I),I=1,MXRCYC)
10 WRITE(WT,G17) NR,(ELAME(NR,I),I=1,MXRCYC)
    co TO }2
```

SOPTO253
SOPTO254
SOPT 0255
SOPTO256
SOPT0257
SOPTO258
SOPTO259
SOPTO260
SOPTO261
SOPTO262
SOPT0263
SOPTO264
SOPTO265
SOPTO266
SOPT0267
SOPT 0268
SOPTJ269
SOPT0270
SOPT0271
SOPTO272
SOPT 0273
SOPT0274
SOPT0275
SOPT0276
SOPT0277
SOPTO278
SOPT0279
SOPT0280
SOPT0281
SOPT0282
SOPT0283
SOPT0284
SOPT0285
SOPT0286
SOPT0287
SOPT0288
PAGE
8

```
12 WRITE(WT,G18) (I,I=2,MXRCYC)
    CO 15 NR=1,NRCRS
    READ(RD,SOG) (ELAME (NF,I), I= 1,MXRCYC)
15 hRITE(WT,S19) NR,(ELAME(NR,I),I=1,MXRCYC)
20 REA[ (RC,902) NMESH, (MESH(N),N=1,NMESH)
WRITE(WT,914) NMESH,(MESH(N),N=1,NMESH)
REAC (RD,905)(IDNO(NR),INSTAT(NR),CYCXS(NR),GWHOLD(NR), DYHOLD(NR),
$(DYDWN(C,NR),DYUP(C,NR),GWHXS(C,NR),C=1,3),NR=1,NRCRS)
WRITE(WT,915)(NR,IDNO(NR),INSTAT(NR),CYCXS(NR),GWHCLD(NR), DYHCLD
$(NR),(DYDWN(C,NR), DYUP(C,NR),GWHXS(C,NR),C=1,3),NR=1,NRCRS)
IAUXM=IA\cupX-1
NPERSP=NPERS+1
IF(NRCRS.GT.MXRCRS.OR.NPERS.GT.MXNPER.OR.IAUX.GT.(MXESX2/2-1).OR.
$IAUX.LT.3.OR.JFRWRD.GT.6.OR.JFRWRD.LT.2.CR.JEKWRD.GT.5.OR.
$JBKWRD.LT.1.OR.NMESH.CT.151 CALL OPERR('RDOPTN',6)
RETURN
901 FORMAT (L 3,I 7, 15)
g02 FCRNAT(1615)
903 FORMAT(6F7.0,F8.0,6I5)
905 FORMAT((I4,2I3,15,F7.4,3(2F6.4,16)))
G06 FORMAT (20F4.0)
907 FURMAT (7I 5,6L1)
911 FORNAT ('1',10X,'SYSOPT INPUT READ BY RDOPTN:'/
$:0 NPM IDSTRG NRCRS'/9X,L1,17,I6)
9 1 2 \text { FORMAT('O SIOT NPIN NPOT PARCAL PARCON PA}
$RCCP CCRDTL CPRCOR'/7I10,6X,6L1)
913 FORMAT ('0 PVRATE YBASE YSTART PCCNVG',
$ GESFRS MXITER IAUX TH$CON PCDELA REJLVL JFRWRD JBKWRD'/F13.6,2F11.4,
$F10.2,F8.3,F7.0,1PE10.1,6I 10)
914 FORMAT('ONMESH',9X,'MESH(I),I=1,NMESH'/15,5X,24I5)
915 FORMAT('O NR IDND INSTAT CYCXS GWHCLD DYHOLD EYCWNI
$CYUP1 GWHXS1,,6X,' CYDWN2 DYUP2 GWHXS2',6X,'DYDWN3 DYUP3 GW
$HXS2./(I5,2I6,I8,IG,FS.4,3(F13.4,F8.4,I7)))
916 FOFMAT ('0 INITIAL GUESS OF REACTOR-CYCLE MARGINAL COSTS :'/
$' NR RC: 1',(17I7)/(4X,18I7))
```

SOPTO289
SOPT0290
SOPTO291
SOPT0292
SOPTO293
SOPTO294
SOPT0295
SOPTO296
SOPTO297
SOPTO298
SOPT 0299
SOPT0300
SOPTO301
SOPTO302
SOPTO303
SOP T0304
SOPTO305
SOPT0306
SOPTO307
SOPT0308
SOPTO309
SOPTO310
SOPT0311
SOPT0312
SOPT0313
SOPTO314
SOPTO315
SOPT0316
SOPT0317
SOPT 0318
SOPTO319
SOPTO320
SOPT0321
SOPT0322
SOPT 0323
SOPT0324

```
    917 FORMAT(I4,3X,-3P1BF7.3/(5X,-3P18F7.3))
    SI8 FORMAT('O INITIAL GUESS OF REACTOR-CYCLE ENERGIES, EC''S :'/
    $' NR RC: 1',(1717)/(4x,1817))
    919 FORMAT (I 4,3X,18F7.0/(5X,18F7.0))
        END
        SUBRCUTINE RDSTRG
    READS STRATEGY INFC. CUTPUT BY SYSINT
C
C SYSOPT VERSION 12-1E-72
    IMFLICIT INTEGER(C,G)
    REAL*8 RCFACT,SGTITL
    CCMMCN/OPTLIM/RDFACT,SGTITL( 10), ELAME(40,18),PVRATE,YBASE,YSTART,
    $IAUX, I AUXN, NRCRS,NCYCT, NFERS,NPERSP,NPERIN, ITER,MXESX2,MXRCYC,
    INXNPER,MXRCRS,MXNODS,MXARCS,SIOT,NPIN,NPCT,RD,WT,PARCAL,PARCCN,
    &PARCCP,PCCNVG,NPM, ICSTRG,JFRWRD, JBKWRD,NMESH,MESH(15),MXITER
    $,GESFRS, ECUPLM(18), CORDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
        INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
        LCGICAL NPM,CPRCOR
    LOGICAL MIDCYC
    INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
    COMMON/RCRDAT/DYDWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),
    $CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),I CNO(15),GWHOLD(15),MWC(15)
    $,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
    $,DYHOLD(15),TOY(18,15)
    CCMMON/PDPERM/S (100,15), ALPHA(100,15), BETAP(100,15),FINVAR(100)
    INTEGER*2 S
    CIMENSION IONUM(15),NAME(15),INDEX(15)
    LCGICAL*1 AL(26)/'A','B','C','D','E','F','G','H','I','J','K','L',
    $'M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'/,NPMI
    REAL*8 DASHES/'---------'/
5 REAC(SIOT,901,END=9) SGTITL
    WRITEIWT,SO2I SGTITL
    IF(SGTITL(1).NE.CASHES) GO TO 5
    REAC(SIOT,903,END=91 NFM1,IDSTGL,SGTITL
    WRITE(WT,GO4) NPMI,IDSTGI,SGTITL
    IF((NPM.AND..NCT.NFMI).OR.(.NOT.NPM.AND.NPMI).OR.
    $(ICSTRG.NE.IDSTG1)) CALL OPERR('RDSTRG*,3)
```

SOPT 0325
SOPT0326
SOPT0327
SOPT0328
SOPT0329
SOPT 0330
SOPT0331
SOPT0332
SOPT0333
SOPT0334
SOPT0335
SOPTU336
SOPTO337
SOPT0338
SOPTO339
SOPT0340
SOPTO341
SOPTO342
SOPT0343
SOPTO344
SOPTO345
SOPT0346
SOPT0347
SOPT0348
SOPT0349
SOPT0350
SOPT0351
SOPTO352
SOPT0353
SOPTO354
SOPTO355
SOPT0356
SOPT0357
SOPT0358
SOPTO359
SOPT0360
PAGE 10

```
    REAC(SIOT,905,END=9) NRCRS,(IDNUM(I),NAME(I),MWMIN(I),
    $NWMAX(I),INDEX(I),I=1,NRCRS)
    hRITE(WT,906) NRCRS, (I,AL(I), IDNUM(I), NANE(I),MWMIN(I),
    $MWMAX(I),INDEX(I),I=1,NRCPS)
    REAC(SIOT,907,END=9) NPERIN
    hRITE(WT,970) (I,I=1,9)
    CALL ERASE(CYCNUM,MXRCYC *NRCRS/2,CYCRNG,NXRC YC*NRCRS)
    CTCT=0
    NXRCMX=0
    CO 30 NR=1,NRCRS
    IF(ICNO(NR).NE.IDNUM(NR)) CALL OPERR('RDSTRG',3)
    MWO(NR)=MWMAX(NR)-MWMIN(NR)
    REAC(SIOT,908,END=9) (S(I,NR),I=1,NPERIN)
    hRITE(WT,909) NR,IDNC(NR),(S(I,NR),I=1,NFERIN)
    MICCYC (NR)=.FALSE.
    IF(INSTAT(NR)+S(1,NR).EQ.4) MIDCYC(NR)=.TRUE.
    J=1
    k=0
    INIFLG=3
    CTOT=CTOT+1
    CYCNLM(1,NR)=CTOT
    CYCRNG(1,CTOT)=1
    CO 20 I=1,NPERS
    IF(K.EQ.2.OR.S(I,NR).NE.2) GO TO 10
    INIFLG=INIFLG-1
    IF(INIFLG.EG.2) GO TO 10
    J= J+1
    CTOT=CTOT+1
    CYCNLN(J,NR)=CTOT
    CYCRNG(1,CTOT)=1
10 CYCRNG(2,CTOT)=I
20 k=S(I,NR)
    MXRCMX=MAXO (MXRCMX,J)
30 CYCRMX(NR)=J
    MCYCT=CTOT
    WRITE(WT,910) (I,I=1,NRCRS)
```

SOPTO361 SOPTO 362 SOPT0363 SOPT0364 SOPT 0365 SOPTO366 SOPT0367 SOPTO368
SOPT0369
SOPT0370
SOPT0371
SOPTO372
SOPT0373
SOPTO374
SOPT0375
SOPTO376
SOPT0377
SOPT0378
SOPTO379

SOPT0380

SOPT0381
SOPT0382
SOPTO3 83
SOPTO384
SOPT0385
SOPTO386
SOPT 0387
SOPT0388
SOPT0389
SOPT0390
SOPT0391
SOPT0392
SOPT0393
SOPTO 394 SOPT 0395
SOPT0396

```
        CO 40 IC=1,MXRCMX SOPTO397
```

 40 WRITE(WT,911) IC,(CYCNUM(IC,IR),IR=1,NRCRS)
    ```
    40 WRITE(WT,911) IC,(CYCNUM(IC,IR),IR=1,NRCRS)
        WRITE(WT,G12) (CYCRNX(IR),IR=1,NRCRS)
        WRITE(WT,G12) (CYCRNX(IR),IR=1,NRCRS)
        WRITE(WT,913) (IC,CYCRNG(1,IC),CYCRNG(2,IC),IC=1,NCYCT)
        WRITE(WT,913) (IC,CYCRNG(1,IC),CYCRNG(2,IC),IC=1,NCYCT)
        GO TC 50
        GO TC 50
        9 CALL OPERR('RDSTRG',12)
        9 CALL OPERR('RDSTRG',12)
    50 FETURN
    50 FETURN
    931 FORMAT(1CA8)
    931 FORMAT(1CA8)
    902 FCRMAT (' 1RDSTRG READ : ',1H',1OA 8,1H')
    902 FCRMAT (' 1RDSTRG READ : ',1H',1OA 8,1H')
    903 FORMAT (L3,I7,10A7)
    903 FORMAT (L3,I7,10A7)
    SO4 FORMAT('O', 10X,'NPN+IDSTRG =', L2,I7,5X,
    SO4 FORMAT('O', 10X,'NPN+IDSTRG =', L2,I7,5X,
    $'STRAT EGY TITLE : ',lH',10A7,1H'I
    $'STRAT EGY TITLE : ',lH',10A7,1H'I
    905 FOFMAT(I 5/(15,1X,A4,2I5,110))
    905 FOFMAT(I 5/(15,1X,A4,2I5,110))
    906 FORMAT ('OCATA FOR THE ',I3," REACTORS:"," NR AL IDNO NAME MWM
    906 FORMAT ('OCATA FOR THE ',I3," REACTORS:"," NR AL IDNO NAME MWM
    $IN MWMAX INDEX [N SYSINT:/(I5,4X,A1,I5,A5,I5,IG,I1C))
    $IN MWMAX INDEX [N SYSINT:/(I5,4X,A1,I5,A5,I5,IG,I1C))
    SO7 FORMAT(21X,I4)
    SO7 FORMAT(21X,I4)
    908 FORMAT (8011)
    908 FORMAT (8011)
    SO9 FORMAT(I 5,I 6,4X,10)I1/(15X,10UI1))
    SO9 FORMAT(I 5,I 6,4X,10)I1/(15X,10UI1))
    910 FORMAT('0 CYCNUM(RC,NR) :'/'OR.CYCLE',T19,'NR REACTOR INCEX'/
    910 FORMAT('0 CYCNUM(RC,NR) :'/'OR.CYCLE',T19,'NR REACTOR INCEX'/
    $' INDEX:,30I4/(9X,30I4))
    $' INDEX:,30I4/(9X,30I4))
    911 FORMAT('C',I4,3X,30I4/(10X,30I4))
    911 FORMAT('C',I4,3X,30I4/(10X,30I4))
    912 FORMAT ('OCYCRMX 1,30I4/(10X,30I4))
    912 FORMAT ('OCYCRMX 1,30I4/(10X,30I4))
    913 FORMAT('OCYCRNG AS (CYCNUM,FRSPRD,LSTPRD) ://
    913 FORMAT('OCYCRNG AS (CYCNUM,FRSPRD,LSTPRD) ://
    $(1X,10('(', I3,2I4,')'))
    $(1X,10('(', I3,2I4,')'))
    970 FORMAT (//,T 20,' MAINTENANCE STRATEGY BY PERIOD AND INDEX',
    970 FORMAT (//,T 20,' MAINTENANCE STRATEGY BY PERIOD AND INDEX',
        $'(0=NJN-EXISTENT;1=DOWN;2=ON-LINE)'//T115,'1',T62,'PERIOD'/
        $'(0=NJN-EXISTENT;1=DOWN;2=ON-LINE)'//T115,'1',T62,'PERIOD'/
        $15X,9I10,9X,'0'/' NR IDNO',4X,10('1234567890')/)
        $15X,9I10,9X,'0'/' NR IDNO',4X,10('1234567890')/)
        END
        END
        SUBRDUTINE RDPERS
        SUBRDUTINE RDPERS
        C FEADS PERIOD INFO OUTPUT BY SYSINT
        C FEADS PERIOD INFO OUTPUT BY SYSINT
C SYSOPT VERSION 12-16-72
C SYSOPT VERSION 12-16-72
C IDUM'S USED TO MAKE NAMELIST OUTPUT MORE REACABLE
C IDUM'S USED TO MAKE NAMELIST OUTPUT MORE REACABLE
    IMPLICIT INTEGER(C,G)
    IMPLICIT INTEGER(C,G)
        REAL** RDFACT,SGTITL
        REAL** RDFACT,SGTITL
        CCMMCN/OFTLIM/RDFACT,SGTITL(10), ELAME\40,18),PVRATE,YBASE,YSTART,
        CCMMCN/OFTLIM/RDFACT,SGTITL(10), ELAME\40,18),PVRATE,YBASE,YSTART,
        $IAUX,I AUXM,NRCRS,NCYCT, NFERS,NPERSP,NPERIN,ITER,MXESX2,MXRCYC,
```

```
        $IAUX,I AUXM,NRCRS,NCYCT, NFERS,NPERSP,NPERIN,ITER,MXESX2,MXRCYC,
```

```

SOPT0397
SOPT0398
SOPT 0399
SOPT0400
SOPT0401
SOPT0402
SOPT0403
SOP T0404
SOPT0405
SOPTO406
SOPT0407
SOPT0408
SOPT0409
SOPT04 10
SOPT0411
SOPTO4 12
SOPT0413
SOPT04 14
SOPTO4 15
SOPTO416
SOPT0417
SOPT04 18
SOPT0419
SOPT 0420
SOPT0421
SOPT04 22
SOPT04 23
SOPT0424
SOPT0425
SOPT0426
SOPT0427
SOPTO428
SOPT0429
SOPTO430
SOPT0431
SOPT0432
PAGE 12
```

\$NXAFER,MXRCRS,MXNOLS,MXARCS,SIOT, NPIN,NPCT,RD,WT, PARCAL, PARCON,
\$PARCOP,PCONVG,NPM,IDSTRG,JFRWRD, JBKWRD,NNESH,NESH(15),MXITER
$,GESFRS,ECUPLM(18), CORDTL,OPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
INTEGER SIOT,RC,WT,PARCAL,PARCON,PARCOP
LOGICAL NPM,OPRCOR
CCNMCN/PDTEMP/NPMFAL(100),NT BSLD(100),OPHRS(100,15),LVLMN(100),
\$LVLMX(1)0), PDELIM(20,100), PDTITL(20,100), DMW(100), DTH(100),ECS(100
\$),R4(13,100),R8(12,100), YMID(100), YEND(100), PVFACT(100), AVL(100,
\$15), EXPGWH(100,15),CAVG(100),BASVAR(100),FINTST(100),MAXVAR(100),
\$MAXTST (100),MIN(100,15),MAX(100,15),BASCFA(100,15)
REAL MAXVAR,MAXTST,CAVG
PEAL*8 PVFACT,R8
COMMON/PROB/DM,DT,GWHPER,DAYS,IEMIN, IEMAX, PEMIN, PEMAX,PROB(500)
\$,LVLNIN,LVLNAX
REAL*8 DN,DT,GWHPER,DAYS,PEMIN,PEMAX,PROE
MAMELIST /FNLTOT/MWINST,MWONLN,MWPEAK,MWMRGN,MWSPIN,PLOFL,
$EXPDEM,E XPGEN, XNKGEN,IDUM1 ,XNNGEN, EXPENR,IDUN2 ,UNSRVD,PROD$,
\$IDUM3 , $NKPRD,$NNPRD,IOUM4 ,SUSD$,$NKSLS,IDUMS ,$NNSUS,$SBTOT,
$IDUMG ,$NKTOT,$NNTOT,IDUM7 ,EMRP$,TOTAL\$
REAL*8 PROD $,$NKPRD,$NNPRD,SUSD$,$NKSUS,$NNSUS,$SBTOT,$NKTCT,

\$$NNTOT,ENRP$,TOTAL\$
DATA $DASH$,$DOTS$/'----','....'/
REAL *8 CCFMIN(500), CDFMAX(500)
[IMENSION X(20),Y(20)
10 REAC(SIOT,GO1,END=9) X
IF(X(1).EQ.$CASH$) GO TO 100
IF(X(1).NE.$DOTS$) GO TO 10
REA[ISIOT,902,END=9) Y,NPER,DM,DT,DC
IF(NPER.GT.NPERS) CC TC 10
IF(.NOT.NPM) GO TO 20
FEAC(SIOT,903, END=9) LVLMN(NPER),N1,L1,(CDFMIN(N1+I),I=1,L1)
READ(SIOT,904,END=9) NPNFAL(NPER), NTBSLC(NPER),(OPHRS(NPER,I),
\$ I= 1,NRCRSI
LPTS=Ll
NUMONE =N I
FEAC(SIOT,903,END=9) LVLNX(NPER),N1,L1,(CDFMAX(N1+I),I=1,L1)
```

SOPTO433
SOPT0434
SOPTO435
SOPTU436
SOPT0437
SOPT0438
SOPT0439 SOPT0440 SOPTO441 SOPT0442 SOPTO443 SOPT 0444 SOPT0445 SOP TO446 SOPT0447 SOPT0448 SOPT0449 SOPT0450 SOPT0451 SOPT0452 SOPT0453 SOPT0454 SOPTO455 SOPT0456 SOPTO457 SOPT0458 SOPTO459 SOPT0460 SOPT0461 SOPT0462 SOPT0463 SOPT0464 SOPT0465 SOPTO466 SOPT0467 SOPT0468

```
 IF(NL.NE.NUMONE.OR.LPTS.LT.LI.OR.LVLMN(NPER).GE.LVLMX(NPER))
 $ CALL OPERR('RDPERS',1)
2) READ(SIOT,FNLTOT,END=G)
 REAC(SIOT,905, END=9)(AVL(NPER,I),EXPGWH(NPER,I),I=1,NRCRS)
 CO 30 I=1,20
 FDELIM(I,NPER)=X(I)
30 FDTITL(I,NPER)=Y(I)
 DMW(NPER)=DM
 CTH(NPER)=DT
 ECS(NPER)=DC
 CWHP ER=DN*D T* 1.D-3
 IENIN=NUMONE
 IEMAX=NUNONE +LI
 PEMIN=NUMONE*DM
 FENAX=IENAX*DM+1•D-3
 LVLMIN=L VLMN(NPER)
 LVLMAX=L VLMX(NPER)
 CO 40 I=1,NUMCNE
 CDFMIN(I)=1.ODO
40 CDFMAX(I)=1.000
 R4(1,NPER)=NPER
 R4(2,NPER)=MWINST
 R4(3,NPER)=MWCNLN
 R4(4,NPER)=MWPEAK
 R4(5,NPER)=MWMRGN
 R4(6,NPER) =MWSPIN
 R4(7,NPER)=PLOFL
 R4(8,NPER)=FXPDEM
 R4(G,NPER) = EXPGEN
 R4(10,NP ER)= XNK GEN
 R4 (11,NPER) = XNNGEN
 R4(12,NPER)=EXPEMR
 R4(13,NPER)=UNSRVO
 RB(1,NPER)=NPER
 RB(2,NPER)=PROD$
 R8(3,NPER)=$NKPRD
```

SOPT0469 SOPT0470 SOPT0471 SOPT 0472 SOPT0473 SOPTO474 SOPTO475 SOPT0476 SOPT 0477 SOPT 0478 SOPT 0479 SOPTO480 SOPTO481 SOPTO482 SOPT0483 SOPT0484 SOPT0485 SOP TO486 SOPT 0487 SOPT0488 SOPT0489 SOPT0490 SOPT0491 SOPTO492 SOPT 0493 SOPTO494 SOPTO495 SOPT0496 SOPT0497 SOPT0498 SOPT 0499 SOPT0500 SOPTO501 SOPT0502 SOPTO503 SOPT0504

```
 R8(4,NPER)=$NNPRD
 R8(5,NPER)=SUSC$
 R8(6,NPER)=$NKSUS
 R8(7,NPER)=$NNSUS
 R8(8,NPER) =$SBTOT
 R8(G,NPER)=$NKTOT
 R8(10,NPER)=$NNTOT
 R3(11,NPER)=EMRP$
 R&(12,NPER)=TOTAL$
 CALL PDCALC(NPER,CCFMIN, CDFMAX)
 GO TO 10
 100 REAC(SIOT,906,END=50)
 9 CALL OPERR('RDPERS',12)
 RETURN
 FORMAT (20A4)
 FORMAT(2)A4/I10,3F10.4)
 FORMAT (3X,I7,2I5,6F1C.G/(8F10.9))
 FORMAT (2I5,(7F10.4))
 FORMAT(/(8X,F8.4,18X,F16.5))
 FOFMAT (/ //)
 END
 SUBROUTINE PDCALC(NP,CDFMIN,CDFMAX)
 FERFCRMS VARIOUS PRE-CALCS. FOR EACH PERIOD
 SYSOPT VERSION 12-16-72
 IMPLICIT INTEGER(C,G)
 REAL*8 RDFACT,SGTITL
 CCMMON/OPTLIM/ROFACT, SGTITLI 10), ELAME (40,18),PVRATE,YBASE,YSTART,
 $IAUX,I AUXM,NRCRS,NCYCT, APERS,NPERSP,NPERIN,ITER,MXESX2,M XRCYC,
 $NXNPER,M XRCRS,MXNNDS,MXARC S,SIOT,NPIN,NPCT,RD,WT, PARCAL, PARCON,
 $PARCOP,PCONVG,NPM, IDSTRG,JFRWRD,JBKWRD,NMESH,MESH(15),MXITER
 $,GESFRS, ECUPLM(18), CORCTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
 INTEGFR SIOT,RD,WT,PARCAL,PARCON,PARCOP
 LOGICAL NFM,OPRCOR
 LOGICAL MIDCYC
 INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
 COMMCN/RCRDAT/DYDWN(3,15), DYUP(3,15),GWHXS(3,15),CYCXS(15),
```

SOPT0505 SOPT0506 SOPT0507 SOPT0508 SOPT0509 SOPTO510 SOPT0511 SOPTO512 SOPTO513 SOPTO514 SOPT 0515 SOPT 0516 SOPTO517 SOPT 0518 SOPTO519 SOPTO520 SOPT 0521 SOPTO522 SOPT 0523 SOPT0524 SOPTO525 SOPTO5 26 SOPT0527 SOPT0528 SOPT0529 SOPTO530 SOPT0531 SOPTO 532 SOPTO533 SOPTO534 SOPTO535 SOPTO536 SOPTO537 SOPT0538 SOPT 0539 SOPTO540

```
$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),ICNO(15),GWHOLO(15),MWD(15)
$,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MI CCYC(15)
$,DYHCLD(15),TOY(18,15)
 CCMNON/PCPERM/S (100,15), ALPHA(100,15), BETAP(100,15),FINVAR(100)
 INTEGER#2 S
 COMMCN/PCTEMP/NPMFAL(100),NTBSLO(100),OPHRS(100,15),LVLMN(100),
$LVLMX(100), PDELIM(20,100), PDTITL(20,100),DMW(100), DTH(100),ECS(100
$),R4(13,100),R8(12,10C),YMID(100),YEND(100), PVFACT(100), AVL(100,
$15), EXPGWH(100,15),CAVG(100), BASVAR(100),FINTST(100),MAXVAR(100),
$MAXTST(100),MIN(10C,15),NAX(1J),15),BASCFA(100,15)
 REAL MAXVAR,MAXTST,CAVG
 REAL*8 PVFACT,R8
 COMMON/PROB/DM,DT,GWHPER,DAYS,IEMIN,IEMAX,PEMIN,PENAX,PRCB(500)
$,LVLNIN,LVLMAX
 REAL*8 DM,DT,GWHPER, CAYS,PEMIN,PEMAX,PROE
 REAL*8 CCFLPR(1),CDFMIN(1),CDFMAX(1)
 REAL*B CAVE,CMIN,CMAX,GWHBAS,CI,GWH,GWHNRG,F,TEMP
 EQUIVALENCE(CDFLPR(1),PRCB(1))
 CWH(MWLO,MWHI)=GWHNRG(DFLOAT (MWLO),DFLOAT(MWHI))
 NIN & MAX REACTOR CCNTRIBUTIONS TO NUCLEAR PCTENTIAL
 NRCN=0
 NWCMIN=100000
 NWDTOT=0
 IMX=0
 IMN=0
 SPMX=0.0
 SPMA =0.0
 DO 30 NR=1,NRCRS
 IF(S(NP,NR).NE.2) GO TO 20
 NRCA=NRON+1
 MWDTOT=MWDTOT+MWD(NR)
 NX=MWMAX (NR)
 NN=NWMIN(NR)
 P=AVL(NP,NR) :%0.01
 IMX = IMX M MX
 IMA =IMN+NN
```

SOPT0541
SOPT0542 SOPT0543 SOPT0544 SOPT0545 SOPT 0546 SDPT0547 SOPT0548 SOPT0549 SOPT 0550 SOPT 0551 SOPT0552 SOPTO553 SOPT0554 SOPT0555 SOPTO556 SOPT0557 SOPTO558 SOPT0559 SOPT0560 SOPT0561 SOPT0562 SOPT0563 SOPT0564 SOPT0565 SOPT0566 SOPT0567 SOPT0568 SOPT0569 SOPTO570 SOPT0571 SOPT0572 SOPTOS73 SOPT0574 SOPT0575 SOPT0576

```
 SPNX=SPMX+P*MX
 SPMN = SPMN+P #MN
 NWCMIN=M INO (MWCMIN,MWD(NR)I
 GWHBAS=OPHRS (NP,NR)*NA*).001
 EASCFA(NP,NR)=100.*OPHRS(NP,NR)/(DT*P)
 ALFHA(NP,NR)=1000./(MWC(NR)*P*DT)
 BETAP(NP,NR) =GWHBAS*ALPHA(NP,NR)
 CALL SUBPLT (MN,P,CDFMIN)
 NAX(NP,NR)=GWHPAS+F*GWH(LVLMIN,LVLMIN+MWC(NR))*0.5
 CALL SUBPLT(MX,P,CDFMAX)
 MIN(NP,NR)=GWHBAS +P*GWH(LVLMAX-MWD(NR),LVLMAX) +0.5
 GO TO 30
20 MIN(NP,NR)=0
 NAX(AP,NR)=0
 BASCFA(NP,NR)=-100.
30 CCNTINUE
 IF(MWOTOT.NE.LVLMAX-LVLNIN) CALL DPERR('PDCALC',2)
 CALCULATE CDFLPR AND CAVG
 IF(NWDTCT.LE.O) GO TC 36
 P$MX=SPMX/IMX
 F $MN=SPMN/IMN
 NXRAR=FLCAT(INX)/NRCN+10.5
 MNBAR=FLCAT(IMN)/NRON+0.5
 CALL SUBPLT (MNEAR,P$MN,CLFMIN)
 DO 32 I=1,IFMAX
32 CDFMIN(I)=PROB(I)
 CALL SUBPLT(MXEAR,P$NX,CCFMAX)
 DO 34 I=1,IEMAX
34 CDFMAX(I)=PROB(I)
36 ILO=(LVLNIN-.01)/ON
 IF(ILO.LE.IEMIN) ILO=IEMIN+1
 IHI = (LVLNAX +.01)/ON+1
 TEMP =1./MWD TOT
 [0 38 I= ILO,IHI
 F=(I*DM-LVLNIN)*TENP
38 CDFLPR(I)=CDFMIN(I)+F*(CDFMAX(I)-CDFMIN(I))
```

```
 CAVE=GWH(LVLMIN,LVLMAX)/(MWDTOT*DT *0.001)
 CAVG(NP)=CAVE
 CMAX=PROBX(DFLOAT(LVLNIN))
 CMIN=PROBX(DFLOAT(LVLMAX))
 IF(NRON.LE.O.OR.CMIN.GE.1.CO) GO TO 60
 EASVAR
 VAR=0.0
 LVL=LVLMIN
 KBLKS=(MWDTOT-1)/MWDNIN+1
 TEMP=1000./(MWDMIN*CT)
 CO 40 K=1,KBLKS
 CI=GWH(LVL,LVL+MWDMIN)*TEMP
 LVL=LVL+MWDMIN
 4) VAR=VAR+(CI-CAVE)**2
 EASVAR(NP)=VAR/KBLKS
 mAXVAR
 F=(CAVE-CMIN)/(CMAX-CMIN)
 NAXVAR(NP)=F*(CMAX-CAVE)**2+(1.-F)*(CAVE-CMIN)**2
 MAXTST(NP)= MAXVAR(NP)/BASVAR(NP)
 FINVAR
 CO 50 I=IEMIN,IEMAX
 5) CDFLPR(I)=CDFLPR(I)**2
 FINVAR(NP)=GWH(LVLMIN,LVLMAX)/(MWDTOT*DT*0.001)-CAVE**2
 FINTST(NP)=FINVAR(NP)/EASVAR(NP)
 co 10 70
 6 0 ~ N A X V A R ~ (N P) = 0 . 0 ~
 NAXTST(NP)=0.0
 FINV AR (NP)=0.0
 FINTST(NP)=0.0
 BASVAR(NP)=1.E15
 70 RETUFN
 END
 SUBROUTINE SUBPLT(MW,P,CDF)
 SURTRACTS PLANT OF MW NEGAWATTS AND P FRACTIONAL AVAILABILITY
FROM PROB, THE EQUIVALENT LOAD CDF
C SYSOPT VERSION 03-06-72
```

SOPT0613
SOPTO6 14 SOPT0615
SOPT0616
SOPT0617
SOPT06 18
SOPT 0619
SOPT0620
SOPT 0621
SOPT0622
SOPT0623
SOPT0624
SOPT0625
SOPTO626
SOPT 0627
SOPT0628
SOPT06 29
SOPT0630
SOPT0631
SOPT 0632
SOPT0633
SOPT0634
SOPT0635
SOP TO636
SOPT0637
SOPT0638
SOPT0639
SOPT 0640
SOPTJ641
SOPTO642
SOPT0643
SOPT0644
SOPT0645
SOPT0646
SOPT0647
SOPT 0648
PAGE 18
NOTE: MW MUST BE LESS THAN PEMIN
IMFLICIT REAL*8 (A-H,C- $\mathrm{F}^{(1)}$
COMMON/PROB/OM, OT, GWHPER, DAYS, IEMIN, IEMAX, PEMIN, PENAX, PROB(500)
\$,LVLMIN,LVLMAX
REAL*8 ZERO/O.ODO/,CNE/1.ODO/.TWO/2.ODO/,HALF/O.5DO/,TEN/L.D1/,
\$TENTH/1.D-1/,HUNDRD/1.D2/,CENTI/1.D-2/,THCUS/1.D3/,MILLI/L.D-3/
CIMENSION CDF (1)
CATA EPS,TRACE/1.D-3.1.D-10/
CO $10 \mathrm{~J}=1$, I EMAX
$10 \operatorname{PRCB}(\mathrm{~J})=\operatorname{CDF}(\mathrm{J})$
IF (MW.LE.O) RETURN
IF (MW.GE.PEMIN) CALL CPERF('SUBPLT',2)
ILOW=I EMIN+1
$F B=N W / D M$
$I N T=F B$
$F B=F B-I N T$
CVP $=O N E / P$
$G=C N E-P$
$G F B=Q * F B$
GANM $\Delta=$ CNE / (CNE-GFB)
IF(INT.GT.O) GC TO 60
$20 \operatorname{PROG}(J)=G A M M A *(\operatorname{PROB}(J)-Q F B * \operatorname{PROB}(J-1))$
FINC NEW PEMAX AND IEMAX
3) J=IEMAX
40 IF (PROB(J). GT.TRACE) GO TO 50
FRCE $(J)=2 E R O$
$J=\mathrm{J}-1$
CO TC 40
50 IF(IEMAX.EQ.J) RETURN
IEMAX=J+1
FEMAX $=I E N A X * D M+E P S$
RETURN
LOOP TO UNCONVOLVE PLANT IF MW.GE.DM
60 [O $70 \mathrm{~J}=\mathrm{ILCW}$, IEMAX

SOPT0649
SOPT0650
SOPT0651
SOPT0652
SOP T0653
SOPT0654
SOPT0655
SOPT0656
SOPT0657
SOPT0658
SOPT 0659
SOPT0660
SOPT0661
SOPT0662
SOPT0663
SOPT0664
SOPT 0665
SOPT0666
SOPT0667
SOPT0668
SOP T0669
SOPT0670
SOPT0671
SOPT0672
SOPT0673
SOPT0674
SOPT 0675
SOPT0676
SOPT 0677
SOPT0678
SOPT0679
SOPT0680
SOPT0681
SOPT 0682
SOPT0683
SOPTJ684

```
 JINT=J-INT
 70 PROE(J)=CVP*(PROB(J)-G*(PROB(JINT)+FB*(PROB(JINT-I)-PROB(JINT))))
 GO TO 30
 END
 FUNCTION GWHNRG(XLOWER,XUPPER)
 CALCULATES GWH OF ENERGY UNDER PORTION OF PRCB, THE CDF OF
 EQUIVALENT LOAD, BY INTEGRAT ING FROM XLOWER TO XUPPER ASSUMING
 LINEAR INTERPOLATICN EETWEEN ARRAY POINTS
 SYSOPT VERSION O3-06-72
 IMPLICIT REAL*8 (A-H,O-$)
 COMMON/PROB/DM,DT,GWHPER,DAYS,IEMIN,IEMAX, PENIN,PEMAX,PROB(500)
 $,LVLNIN,LVLMAX
 REAL*8 ZERO/0.0DJ/,ONE/1.0DJ/,TWO/2.0DO/,HALF/O.5DO/,TEN/1.D1/,
 $TENTH/1.D-1/,HUNDRD/1.02/,CENTI/1.D-2/,THCUS/1.D3/,MILLI/1.D-3/
 XLC=XLOWER
 XIJP = XUPPER
 CWHNRG=Z ERO
 SUM=ZERO
 IF(XLO.GE.XUP) RETURN
 IBELC=XLO/DM
 ILAST=XUP/DM
 IF(IBELO.LE.O.OR.ILAST.GE.IEMAX) GO TD 50
 STANDARD CASE WITH RCTH FOINTS WITHIN NON-ZERC ARRAY POINTS
 5 IFRST=IBELO+1
 IABOV=ILAST+1
 IFRSTP=I FRST+1
 ILASTM=ILAST-1
 ICASE=IABOV-IBELO
 RLC=IFRST-XLO/DM
 RUP=XUP/CM-ILAST
 FLC=PROB(IFRST)+(PROE (IBELD)-PROB(IFRST))*RLO
 PUP=PROB(IABOV)+(PROB(ILAST)-PROB(I ABOV))*(ONE-RUP)
 CO TO (10,20,30,40),ICASE
40 DO 35 I=IFRSTP.ILASTM
35SUM=SUM+PROB(I)
30 SUN=SUM+HALF*(PROB (IFRST)+PROB(ILAST))
```

SOPT0685 SOPT0686 SOPT0687 SOPT 0688 SOPT0689 SOPT 0690 SOPT 0691 SOP TO692 SOPT0693 SOPTO694 SOPT 0695 SOPT0696 SOP T0697 SOPT0698 SOPT0699 SOPT 0700 SOPT0701
SOPT0702 SOPT0703 SOPT0704 SOPT0705 SOPT 0706 SOPTO707 SOPT0708 SOPT0709 SOPTOT10 SOPT0711 SOPTO712 SOPTO713 SOPT0714 SOPT0715 SOPT0716 SOPTO717 SOPTOT18 SOPTOT19 SOPTOT20

```
 20 SUM=SUM+HALF*(RLC* (PLO+PROB(IFRST))+RUP*(PUP +PROB(ILAST))
 15 GWHNRG = SUM*GWHPER
 RETURN
 10 SUN=SUM+(XUP-XLO)*(PLC+PUP)*HALF/DM
 GO TO 15
C
 SPECIAL CASES INVOLVING ONE OR BOTH END POINTS
 5 0 ~ I F (X U P . L E . Z E R O . O R . X L C . G E . P E M A X) ~ R E T U R N ~
 IF(XLO.LT.ZERO) XLC=ZERC
 IF(XUP.GT.PEMAX) XUP=PEMAX
 IBELC=XLO/DM
 IL AST=XUP/DM
 JC ASE=1
 IF(ILAST.GT.O) JCASE=JCASE+1
 IF(ILAST.EQ.IEMAX) JCASE=JCASE+1
 IF(IBELO.GT.O) JCASE=JCASE+1
 IF(IBELO.EQ.IEMAX) JCASE=JCASE+1
 GO TO (101,102,102,104,105),JCASE
 101 GWHNRG=(XUP-XLO)*G WHPER/DM
 FETURN
 102 SUM=ONE-XLO/DM
 XLO=DM
 IBELC=1
 IF(JCASE.EQ.2) GO TO 5
 104 XO=I EMAX*DM
 FUP=FROB(IEMAX)*(ONE-(XUP-XO)/(PEMAX-XO))
 SUM = SUM + (XUP-XO) #HALF* (FUP +PROB (IEMAX))/LM
 XUP=XO
 ILAST=IEMAX-1
 G] TO 5
 105 XO=I FMAX # DM
 FUP=PROB (IEMAX)*(ONE - (XUP-XO) /(PEMAX-XO))
 FLO= PROB (IEMAX)*(ONE-(XLC-XO)/(PEMAX-XO))
 GWHNRG=(XUP-XLO)*(FLC+FUF)*HALF*GWHPER/DM
 RETURN
 END
 FUNCTION PROBX(X)
```

SOPT0721
SOPTOT22
SOPTO723
SOPTO724
SOPT0725
SOPT0726
SOPTO727
SOPTOT28
SOPT0729
SOPTO730
SOPT0731
SOPTOT32
SOPT0733
SOPTOT34
SOPTO735
SOPTOT36
SOPTO737
SOPTOT38
SOPT 0739
SOPTU740
SDPT0741
SOPTOT42
SOPTO743
SOPT0744
SOPTO745
SOPT 0746
SOPTO747
SOPTJ748
SOPTO749
SOPTO750
SOPT0751
SOPTO 752
SOPTO753
SOPTO754
SOPT0755
SOPTO756
PAGE 21

```
C EVALUATES PROB AT A PARTICULAR VALUE OF X MW SOPTO757
C SYSOPT VERSION 03-06-72 SOPTO758
 IMPLICIT REAL*8 (A-H,O-$
 CCMMCN/PROB/DM,DT,GWHPER,DAYS,IEMIN,IEMAX,PEMIN, PEMAX,PROB(500)
 &,LVLMIN,LVLMAX
 [ATA ZERO,ONE/0.0DO,1.OCO/
 FRCBX=ONE
 IF(X.LE.PEMIN) RETURN
 PRCBX=ZEFO
 IF(X.GE.PEMAX) RETURN
 FB=X/DM
 ILC=FB
 FB=FB-ILO
 IF(ILO.GE.IEMAX) GO TC 10
 PROBX=PROB(ILO)+FB*(PROB(ILO+1)-PROB (ILO))
 RETURN
 10 PRCPX=PRCB(IEMAX)*(PENAX-X)/ (PEMAX-IEMAX*OM)
 RETURN
 END
 SUBROUTINE ASMTYS
 ASSEMBLES TSY'S AND TEY'S
 SYSOPT VERSION 12-16-72
 IMPLICIT INTEGER(C,G)
 REAL*8 RCFACT,SGTITL
 CCMMCN/OPTLIM/RDFACT,SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
 $IAUX,IAUXM,NRCRS,NCYCT,NPERS,NPERSP,NPERIN,I TER,MXESX2,MXRCYC,
 $NXNPER,MXRCRS,MXNOCS,MXARCS,SIOT,NPIN,NPCT,RD,WT, PARCAL, PARCON,
 $PARCOP,PCONVG,NPM,IDSTRG,JFRWRD, JBKWRD,NNESH,MESH(15),MXITER
 $,GESFRS, ECUPLM(18),CORDTL,OPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
 INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
 LOGICAL NPM,OPRCOR
 LCGICAL MIDCYC
 INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
 COMMON/RCRDAT/CYDWN(3,15), DYUP(3,15),GWHXS(3,15),CYCXS(15),
 $CYCRMX (15),CYCNUM(18,15),CYCRNG(2,270), I CNO(15),GWHOLO(15),MWD(15)
 $,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWNAX(15),MIDCYC(15)
```

    $,DYHCLD(15),TOY(18,15)
    COMMON/PDPERM/S(100,15),ALPHA(100,15),BETAP(100,15),FINVAR(100)
    INTEGER*2 S
    CCNMCN/PDTEMP/NPMFAL(100),NTESLD(100),OPHRS(100,15),LVLMN(100),
    $LVLMX(100), PDEL IM(20,100), PDTITL(20,100),DMW(100),DTH(100),ECS(100
    $),R4(13,100), R8(12,100),YMID(100),YEND(100), PVFACT(100), AVL(100,
    $15), EXPGWH(100, 15), CAVG(100), BASVAR(100),FINTST(100),MAXVAR(100),
    $NAXTST(100),MIN(100,15),NAX(100,15),BASCFA(100,15)
    REAL MAXVAR,MAXTST,CAVG
    REAL*8 PVFACT,R&
    LOGICAL WASUP,DWNOW
    INTEGER RC
    PVP(Y)=PVPER$(Y,YBASE)
    TEMP=0.5/8760.
    YEND(1)= YSTART+DTH(1)/8760.
    YMIC(1)=(YSTART+YEND(1))#0.5
    PVFACT(1)=PVP(YMID(1))
    [0 10 NP=2,NPERS
    X=TENP*DTH(NP)
    YMID(NP) = YEND(NP-1)+X
    YENC(NP) = YMID(NP) +X
    1) PVFACT(NF)=PVP(YMID(NP))
CO }50 NR=1,NRCR
IC=1
TOY(IC,NR)=0.0
IF(MIDCYC(NR)) IC=0
CLIN=CYCRNX (NR)
CO 30 RC=1,CLIM
CYC=CYCNUM(RC,NR)
APF=CYCRNG(1,CYC)
APL=CYCRNG(2,CYC)
IC=IC+1
TOY(IC,NR)=0.0
hASUP= .FALSE.
DO 2O NP=NPF,NPL
TOY(IC,NR)=TOY(IC,NR)+OPHRS(NP,NR)/8760.
```

SOPT0793 SOPT0794 SOPT0795 SOPT0796 SOPT0797 SOPTOT98 SOPTO799 SOPTO800 SOPTO801 SOPTO802 SOPTO803 SOPT0804 SOPT 0805 SOPT08J6 SOPTO807 SOPT0808 SOPT0809 SOPT0810 SOPT0811 SOPT08 12 SOPT0813 SOPTO8 14 SOPT0815 SOPTO816 SOPT0817 SOPT 0818 SOPTJ819 SOPTO820 SOPTO821 SOPT0822 SOPT0823 SOPTO824 SOPT0825 SOPT 0826 SOP T0827
SOPT0828
```

    CWNCW=S(NP,NR),NE. 2
    IF(WASUP.AND.DWNOW) GO TO }3
    IF(WASUP.AND.. NCT.DWNCW) GO TO 20
    IF(.NOT.hASUP.AND.DWNCh) GO TO 20
    hASUP=.TRUE.
    ISY(IC,NR)=YEND(NP-1)
    IF(NP.EQ.1) TSY(IC,NR)=YSTART
    20 1EY(IC,NR)=YEND(NP)
    3) CONTINUE
    TEY(IC,NR)=TEY(IC,NR)+DYHOLD(NR)
    TOY(IC,NR)=TOY(IC,NR)+LYHOLD (NR)*AVL(NPEFS,NR)*O.01
    IF(MIOCYC(NR)) GO TO 35
    TEY(1,NR)=TSY(2,NR)
    TSY(1,NR)=TSY(2,NR)-1.E-4
    35 ACYCXS=CYCXS (NR)
IF(NCYCXS.LT.I) GO TC 50
[0 40 I= 1,NCYCXS
IC=IC+1
TSY(IC,NR)=TEY(IC-1,NR)+DYDWN(I,NR)
TOY(IC,NR)= DYUP(I,NR)*AVL(NPERS,NR)*0.01
40 TEY(IC,NR)=TSY(IC,NR)+DYUP(I,NR)
50 CONTINUE
FETURN
END
SUBROUTINE WTPERS
hRITES INFO. FCR THE VARIOUS PERIODS
SYSOPT VERSION 12-1t-72
IMPLICIT INTEGER(C,G)
REAL*8 RCFACT,SGTITL
CCMMCN/OPTLIM/RDFACT, SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
\$IAUX,I AUXM,NRCRS,NCYCT,NPERS,NPERSP, NPERIN, ITER,MXESX2,M XRCYC,
\$MXNPER,MXRCRS,MXNODS,MXARC S,SIOT,NPIN,NPCT,RD,WT, PARCAL, PARCON,
\$PARCCP,PCONVG,NPM, ICSTRG,JFRWRD,JBKWRD,NMESH,MESH(15),MXITER
$,GESFRS,ECUPLM(18),CORDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
LOGICAL NFM,OPRCOR

```

SOPT0829
SOPT0830
SOPTJ831
SOPTO832
SOPTO833
SOPT0834
SOPT0835
SOPT0836
SOPT 0837
SOPT0838
SOPT0839
SOPT0840
SOPTJ841
SOPT0842
SOPTO843
SOPTO844
SOPTO845
SOPTO846
SOPT 0847
SOPT0848
SOP T 0849
SOPTO850
SOPT0851
SOPT0852
SOPT 0853
SOPTO854
SOPT0855
SOPT0856
SOPT0857
SOPTO858
SOPT0859
SOPT0860
SOPT0861
SOPT T 862
SOPT0863
SOPT0864
```

    LOGICAL MIDCYC
    INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
    COMMON/RCRDAT/DYCWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),
    $CYCRMX(15), CYCNUM(18,15),CYCRNG(2,270),IDNO(15),GWHOLD(15),MWD(15)
    $,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
    #,DYFOLD(15),TOY(18,15)
    CCNMCN/PDPERM/S(100,15), ALPHA(100,15), BETAP(100,15),FINVAR(100)
    INTEGER*2 S
    CCNNCN/PDTEMP/NPMFAL(100),NT BSLD(100),OPHRS(100,15),LVLMN(100),
    $LVLMX(1)0),PDELIM(20,100), PDTITL(20,100), CMW(100), CTH(100),ECS(100
    $),R4(13,100),R8(12,100),YMID (100),YEND(1C0),PVFACT(100), AVL(100,
    $15), EXPGWH(100,15),CAVG(100), BASVAR(100),FINTST(100),MAXVAR(100),
    $NAXTST(100),MIN(10C,15),MAX(100,15),BASCFA(100,15)
    REAL mAXVAR,MAXTST,CAVG
    COMMON/FINALS/S4,SA4,SP4,SL4,SP8
    REAL*8 S4(13),SA4(13),SP4(13),SL4(13),SPE(13)
    REAL*8 S8(13),SAB(13),SL8(13),SPV,PV,PVFACT,R8
    LOGICAL*l AL(26)/'A','B','C','D','E','F','G','H','I','J','K','L',
    ```

```

    CALL ERASEIS4,26,SA4,26,SP4,26,SL4,26,S8,26,SA8,26,SP8,26,SL8,26)
    SPV=0.0DO
    DO 20 I=1,NPERS
    IF(R4(1,I).NE.I) CALL OPERR('WTPERS',12)
    FV=PVFACT(I)
    SPV = SPV+PV
    CO 10 J= <, 12
    S4(J)=S4(J)+R4(J,I)
    S8(J)=S8(J)+R8(J,I)
    SP4(J)=SP4(J)+PV*R4(J,I)
    10 SP\&(J)=SP8(J)+PV*R8(J,I)
S4(13)=S4(13)+R4(12,I)
20 SP4(13)=SP4(13)+PV*R4(13,I)
co 30 J=2,12
SA4(J)=S4(J)/NPERS
SL4(J)=SP4(J)/SPV
SA8(J)=S8(J)/NPERS

```

SOPT0865
SOPT0866 SOPT0867 SOPT0868 SOPT0869 SOPT0870 SOPT0871 SOPT0872 SOPT0873 SOPT0874 SOPT 0875 SOPT0876 SOPT0877 SOPT0878 SOPT0879 SOPT0880 SOPT0881 SOPT0882 SOPT0883 SOPTO884 SOPT0885 SOPTO386 SOPT0887 SOPT0888 SOPTO889 SOPT0890 SOPT0891 SOPT 0892 SOPT 0893 SOP T0894 SOPT 0895 SOPT 0896 SOPT0897 SOPT0898 SOP T0899 SOPT0900
 SA4(13) \(=\) S4(13)/NPERS
 SL4(13)=SP4(13)/SPV
 WRITE(WT,901) (I,(PDELIM(J,I), J=1,20), I=1,NPERS)
 WRITE(WT,902) (I, (PDTITL (\(\mathrm{J}, \mathrm{I}\)), \(\mathrm{J}=1,20\)), I \(=1\), NPERS)
 WRITE(WT,903) (I, DMW(I), ECS(I), DTH(I), YMIC(I), YEND(I), PVFACT(I),
 \$NPMFAL(I), NTBSLC(I),LVLMN(I),LVLMX(I), I = 1 , NPERS)
 WRITE(WT,915) SPV, (I,I =1,MXRCYC)
 CO 35 NR=1, NRCRS
 CLIM \(=\) CYCRNX (NR) + CYCXS (NR)
 IF(.NOT.NIDCYC(NR)) CLIM=CLIM+1
 IF(CLIM.GT.MXRCYC) CALL OPERR('WTPERS',6)
 WRITE(WT,916) NR,(TSY(I,NR),I=1,CLIM)
 WRITE(WT, S19) (TOY(I,NR), I=1,CLIM)
35 WRITE(WT,917) (TEY(I,NR),I=1,CLIM)
 WRITE(WT, 911)
 WRITE(WT, G04) (I, I=1,NRCRS)
 WRITE(WT, 905) (AL(I), I = 1, NRCRS)
 CO \(40 \mathrm{I}=1\), NPERS
40 WRITE(WT,906) I,(AVL (I,NR),NR=1,NRCRS)
 WRITE(WT,912)
 WRITE(WT, 904) (I, I=I,NRCRS)
 WRITE(WT,905) (AL(I), I=1,NRCRS)
 CO \(50 \mathrm{I}=1\), NPERS
50
 WRITE(WT,906) I, (OPHRS (I,NR),NR=1,NRCRS)
 WRITE(WT,918)
 WRITE(WT,904) (I,I = 1 , NRCRS)
 WRITE(WT,905) (AL(I), I=1,NRCRS)
 DO \(55 \mathrm{I}=1\), NPERS
55 WRITE(WT, S06) I, (BASCFA(I,NR),NR=1,NRCRS)
 hRITE(hT,913)
 WRITE(WT,904) (I,I=1,NRCRS)
 WRITE(WT,905) (AL(I), I=1,NRCRS)
 CO \(60 \mathrm{I}=1\), NPERS
 WRITE(WT,906) I, (EXPGWH(I,NR),NR=1,NRCRS)
 hRITE(WT,907) ((R4 (I,J),I=1,13),J=1,NPERS)

SOPT0901
SOPT0902
SOPTO903
SOPT0904
SOPT0905
SOPT0906 SOPTO907
SOPTO908
SOPT0909
SOPTO910
SOPTO911
SOPTO912
SOPT0913
SOPTO914
SOPT0915
SOPTO916
SOPT0917
SOPT0918
SOPT0919
SOPT 0920
SOPTO921
SOPTO922
SOPT0923
SOPTO924
SOPT0925
SOPT0926
SOPT0927
SOPT0928
SOPT0929
SOPT0930
SOPTO931
SOPT0932
SOPT0933
SOP TO9 34
SOPT0935
SOPT0936
```

    WRITE(WT, SO8) (S4(I),I=2,13),(SA4(I),I=2,13),(SP4(I),I=2,13),
    $(SL4(I),I=2,13)
    WRITE(WT,909) ((R8(I,J),I=1,12),J=1,NPERS)
    WRITE(WT,910) (S8(I),I=2,12),(SA8(I),I=2,12),(SP8(I),I=2,12),
    $(SL8(I),I=2,12)
    WRITE(WT,914)(I,BASVAR(I),FINVAR(I),FINTST(I),MAXVAR(I),
    $NAXTST(I),CAVG(I),I=1,NPERS)
    RETURN
    901 FORMAT('1 PERIOD',40X,'DELIMITER CARD'/(I10,10X,1H',20A4,1H'))
902 FORMAT('1 PERIOD',40X,'PD. TITLE CARC'/(I10,10X,1H',20A4,1H'))
9 0 3 ~ F O R M A T ( ' I P E R I O D ~ D M W ~ E C S ~ D T H ~ Y M I D ~ Y E N D ~ P V F A C T ~
\$NPMFAL NTBSLD LVLMN LVLMX'/II5,F8.1,F8.3,F7.1,F9.4,F9.4,F10.6,
\$16, I7,I10,I7)I
904 FORMAT (T8,'NR: ',I1,14I8/(10X,15I8))
GO5 FORMAT(' NP AL: ,A1,14(7X,A1)/(10X,15(7X,A1)))
906 FORMAT (I5,1X,15F8.2)
907 FORMAT\'1 ------- M E G A W A T T S
---------- FRACT.',
\$4X,*-------------------------------
\$ /' PERIOD MWINST MWONLN MWPEAK MWMRGN MWSPIN PLOFL",
\$4X,'EXPDEM EXPGEN XNKGEN XNNGEN EXPEMR UNSRVD'
\$ /(F6.0, 2X,5F8.0,F8.4,6F11.2))
SO8 FORMAT('OTOTAL :',5F8.0,F8.4,6F11.2)
'OAVG. : ', 5F 8.C,F8.4,6F11.2/
.OPVTOTL:',5F8.C,F8.4,6F11.2/
! OLVAVG.:',5F8.C,F8.4,6F11.2/1
909 FORMAT ''1',T 30,'ALL COSTS IN THOUSANDS OF DOLLARS AT MIDDLE OF PER
$IOD'/ PERIOD PRCE$ \$NKPRD $NNPRD SUSD$ \$NKS
\&LS \$NNSUS \$SBTCT \$NKTOT $NNTCT EMRP$ TOTA
$L$. /(OPF6.0,2X,-3P11F11.2))
91J FORMAT('OTOTAL :',-3P11F11.2/'OAVG. :',3P11F11.2/
\$ OPVTOTL:',-3P11F11.2/'OLVAVG.:',-3P11F11.2/)
911 FORMAT('1',T20,'AVAILABILITY (PER CENT)'/)
912 FORMAT('1',T20, 'OPERATING HOURS'/I
913 FORMAT ('1',T20,'EXP. PROCUCTION (GWHE) FROM SYSINT'/)
S14 FORMAT('1',T20,'SHAPE VARIANCES AND TESTS'/
\$'0 PERIOD BASVAK',10X,'FINVAR',9X,'FINTST',9X,'MAXVAR',9X,

```

SOPT0937
SOPT0938
SOPT0939
SOPT0940
SOPT0941
SOPTO 942
SOPTO943
SOPT0944
SOPT0945
SOPT0946
SOPT0947
SOP TO948
SOPT0949
SOPTO950
SOPT0951
SOPT 0952
SOP TO953
SOPT 0954
SOPT0955
SOPT0956
SOPT0957
SOPTO958
SOPT0959
SOPT0960
SOPT0961
SOPT 0962
SOPTJ963
SOPT0964 SOPT0965 SOPT0966 SOPT0967 SOPT0968 SOPT0969 SOPT0970 SOPT0971 SOPTO972
PAGE
```

    $MAXTST', 8X, 'CAVG'/(I6,4X,E12.6,E15.6,F14.6,E19.6,F11.6,F13.6))
    915 FORMAT('O',T24,'SUMMATION OF PVFACT =',F12.6/'1',T10,'STARTING AND
    $ ENCING TIMES OF REACTCR CYCLES AS PASSEC TO IN-CORE MODEL : //
    $'0 RC:',I5,1717/(IE,17I7))
    916 FORMAT ('O',I3,' = REACTOR INDEX, NR'/
    $ : TSY :',18F7.3/(F8.3,17F7.3))
    917 FORMAT(" TEY:',1&F7.3/(F8.3,17F7.3))
    C18 FORMAT(' 1',T20,'PER CENT CAPACITY FACTOR FOR BASE PORTION IAVAILAB
    $ILITY-BASED)'/)
    919 FOFMAT(' TOY :',18F7.3/(FE.3,17F7.3))
        END
        SUBROUTINE SETUPN
    SETS UP COSTS AND LINITS OF REMAINING ARCS IN THE NETWORK
    SYSOPT VERSION 12-16-72
        INPLICIT INTEGER(C,G)
        REAL*8 RCFACT,SGTITL
        CCMMJN/OPTLIM/ROFACT,SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
    $IAUX, I AUXM, NRCRS,NCYCT,NPERS,NPERSP,NPERIN,ITER,MXESX2,M XRCYC,
    #MXNPER,M XRCRS,MXNODS,NXARC S,SIOT,NPIN,NPCT,RD,WT, PARCAL,PARCON,
    $PARCCP,PCONVG,NPM, IDSTRG,JFRWRD,JBKWRD,NNESH,MESH(15),MXITER
    $,GESFRS,ECUPLM(18),CCRDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
        INTEGER SIOT,RC,WT,PARCAL,PARCON,PARCOP
        LOGICAL NPM,OPRCOR
    LOGICAL MIDCYC
    INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
    COMNON/RCRDAT/DYDWN(3,15), CYUP(3,15),GWHXS(3,15),CYCXS(15),
    $CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),I CNO(15),GWHOLD(15),MWD(15)
    $,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
    $,DYHOLD(15),TOY(18,15)
        CCMMON/PDPERM/S (100,15), ALPHA(100,15), BETAP(100,15),FINVAR(100)
        INTEGER*2 S
    COMMON/KC/KC(1)/KU/KU(1)/KL/KL(1)
    COMMON/PCTEMP/NPMFAL(100),NTBSLD(100),OPHRS(100,15),LVLMN(100),
    $LVLMX(100), PDELIM(20,100), PDTITL(20,100),DMW(100), CTH(100),ECS(100
    $),R4(13,100),R8(12,100), YMID(100), YEND(100), PVFACT(100),AVL(100,
    $15), EXPGWH(100,15),CAVG(100),BASVAR(100),FINTST(100),MAXVAR(100),
    SOPT0973
    SOPT0974
    SOPT0975
    SOPT0976
    SOPT0977
    SOPT0978
    SOPT0979
    SOPT0980
    SOPT0981
    SOPT0982
    SOPT0983
    SOPT0984
    SOPT0985
    SOPT0986
    SOPT0987
    SOPT0988
    SOPT0989
    SOPTO990
    SOPT0991
    SOPT0992
    SOPT0993
SOPT0994
SOPT0995
SOPT0996
SOPT 0997
SOPTO998
SOPT0999
SOPT1000
SOPT 1001
SOPT1002
SOPT1003
SOPT1004
SOPT1005
SOPT1006
SOPT1007
SOPT1008
PAGE 28

```
```

    #MAXTST(100),MIN(100,15),MAX(100,15),BASCFA(100,15)
    REAL MAXVAR,MAXTST,CAVG
    REAL*8 PVFACT,R8
    INTEGER RC
    CATA LARGE/2000000000/
    REAL*8 SUMD
    LOGICAL GESEQ1,GESEQ2,GESGT2
    CALL ERASE(KC,MXARCS,KU,MXARCS,KL,MXARCS)
    SUML=0.0CO
    KSUN=?
    L=LOC(6,0,0,1)-1
    CO 6 NP=1,NPERS
    LSUM=0
    CO 4 NR=1,NRCRS
    4 LSUN=LSUM+MAX(NP,NR)
TYPE 6
N=L+NP
KU(N)=R4(1U,NP)+0.5
IF(KU(N).GT.LSUM) KU(N)=LSUM
KL(N)=KU(N)
KSUM=K SUM+KU(N)
O SUMD=SUMC+R4(10,NP)
RDFACT =SUMD/KSUM
hRITEIWT,900) RDFACT
CDEL=10
IF(GESFRS.EQ.4) GDEL=0
CESEQ1=GESFRS.EQ.1
GESEG2=GESFRS.EQ.2
GESGT2=GESFRS.GT.?
[0 30 NR=1,NRCRS
L=LOC(4,NR,0,NPERSP)
TYPE 4 HLDOVR
KU(L)=GWHCLD(NR)
KL(L)=KU(L)
L=LOC(4,NR,1,1)-1
L=LOC(4,NR,1,1)

```

SOPT1009
SOPT 1010
SOPT 1011
SOPT1012
SOPT 1013
SOPT 1014
SOPT 1015
SOPT1016
SOPT 1017
SOPT1018
SOPT 1019
SOPT 1020
SOPT 1021
SOPT 1022
SOPT 1023
SOPT 1024
SOPT1025
SUPT 1026
SOPT 1027
SOPT 1028
SOPT 1029
SOPT 1030
SOPT 1031
SOPT1032
SOPT1033
SOPT 1034
SOPT 1035
SOPT 1036
SOPT 1037
SOPT1038
SOPT1039
SOPT 1040
SOPT1041
SOPT 1042
SOPT 1043
SOPT 1044
```

    CO 30 RC=1,CLIM
    C=CYCNUM(RC,NR)
    ILO=CYCRNG(1,C)
    IHI=CYCRNG(2,C)
    CMIN=0
    CMIC=0
    CMAX=0
    CO 10 J=ILO,IHI
    C TYPF4 PERIODS
A=L+J
KL(N)=MIN(J,NR)
KU(N)=MAX(J,NR)
CMID=CMID+EXPGWH(J,NR)+0.5
CMIN=CMIN+KL(N)
10 CMAX=CMAX+KU(N)
IF(IHI.NE.NPERS) GO TO 20
CMIN =CMIA KKL(L+NPERSP)
CMID=CMID+KU(L+NPERSP)
CMAX = CMAX KKU(L +NPERSP)
TYPE 1
2) KL(C)=CMIN
KU(C)=CMAX
TYPE 2
IF(GESGT 2) CO TO 26
IF(GESEQ1) GO TO 25
IF(GESEQ2) KC(C+NCYCT)=ELAME (NR,RC)
KL(C+NCYCT)=CMIN/10*10
KU(C+NCYCT)=(9+CMAX)/10*10
GO TO 30
25 KL(C+NCYCT)=CMID-5
KU(C+NCYCT)=CMID+5
GO TO 30
26 KU(C+NCYCT)=ELAME(NR,RC) +GDEL
KL(C+NCYCT)=ELAME(NR,RC)-GDEL
LAUX=LOC (3,NR,RC,O)
KC,(LAUX) =10000

```

SOPT1045
SOPT 1046
SOPT 1047
SOPT1048
SOPT 1049
SOPT 1050
SOPT 1051
SOPT 1052
SOPT 1053
SOPT 1054
SOPT 1055
SOPT1056
SOPT 1057
SOPT 1058
SOPT 1059
SOPT 1060
SOPT1061
SOPT 1062
SOPT 1063
SOPT 1064
SOPT 1065
SOPT 1066
SOPT 1067
SOPT 1068
SOPT1069
SOPT 1070
SOPT 1071
SOPT 1072
SOPT 1073
SOPT1074
SOPT 1075
SOPT 1076
SOPT 1077
SOPT 1078
SOPT 1079
SOPT 1080
PAGE 30
```

    KU(LAUX)=100000
    LAUX=LAUX+1
    KC(LAUX)}=-1000
    KL(LAUX) =-100000
    30 CONTINUE
    L=LOC(5,0,0,0)
    TYPE }
    KU(L)=LARGE
    KU(L+1)=LARGE
    KU(L+2)=LARGE
    CO }60NR=1,NRCR
    CO 60 NP=1,NPERS
    L=LOC(4,NR,0,NP)
    NCN=KL(L)
    NOX=KU(L)
    IF(MCX.LE.O) GU TO 6C
    NAV=(CAVG(NP)+BETAP(NP,NR))/ ALPHA(NP,NR) +0.5
    NDX=(MOX-MAV)/(JFRWRD-1) +1
    MDN=(MAV -MON)/JBKWRD+1
    L=LOC(7,AR,0,NP)-1
    TYPE 7
    KU(L+1)=NAV
    KL(L+1)=KU(L+1)
    CO 40 J=2,JFRWRD
    KC(L+J)=(J-1)**4
    40 KU(L+J)=MDX
L=L+JFRWRC
IF(JBKWRD.LE.O) GO TO 60
CO 50 J=1,JBKWRO
KC(L+J)=-J**4
5)KL(L+J)=-MDN
60 CONT INUE

    CALL CNLY$$
    RETURN
    900 FORMAT ('0',T6,F12.8,'= RDFACT, NUCL.GEN.ROUND-DFF CORRECTION FACT
\$(R')
SOPT1081
SOPT1082
SOPT1083
SOPT1084
SOPT1085
SOPT1086
SOPT1087
SOPT1088
SOPT1089
SOPT1090
SOPT1091
SOPT1092
SOPT1093
SOPT1094
SOPT 1095
SOPT1096
SOPT1097
SOPT1098
SOPT1099
SOPT1100
SOPT1101
SOPT1102
SOPT1103
SOPT1104
SOPT1105
SOPT1106
SOPT1107
SOPT1108
SOPT1109
SOPT1110
SOPT11111
SOPT 1112
SOPT11113
SOPT1114
SOPT1115
SOPT1116
PAGE

```
 END SOPT1117
 SUBROUTINE SETLPT
 SETS UP INPUT TAPE FOR O-D-K
 SYSOPT VERSION 12-16-72
 IMPLICIT INTEGER(C,G)
 FEAL*8 RCFACT,SGTITL
 CCMMON/OPTLIM/RDFACT, SGTITL(10), ELAME(40,18), PVRATE,YBASE,YSTART,
 $IAUX, I AUXM,NRCRS,NCYCT,NPERS,NPERSP,NPERIN,I TER,MXESX2,MXRCYC,
 $NXNPER,MXRCRS,MXNOOS,NXARCS,SIOT, NPIN, NPCT, RC,WT, PARCAL, PARCON,
 $PARCOP, PCONVG,NPM, IDSTRG,JFRWRD,JBKWRD,NMESH,NESH(15),MXITER
 $,GESFRS, ECUPLM(18), CORCTL,OPRCOR (6),REJLVL,PCDELA, TH$CON,JFRPBK
 INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCCP
 LOGICAL NPM,OPRCOR
 LOGICAL MIDCYC
 INTEGER*2 CYCNUM,C YCRNG,CYCXS,CYCRMX
 CCMMON/RCRDAT/CYCWN(3,15), DYUP(3,15),GWHXS(3,15),CYCXS(15)
 $CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),I CNO(15),GWHDLD(15),MWD(15)
 &,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
 $,DYHCLD(15),TOY(18,15)
 COMMON/KC/KC(1)/KU/KU(1)/KL/KL(1)
 LOGICAL良1 AL(26)/'A','B','C','D','E','F','G','H','I','J', 'K','L',
 $'M','N','O','P','⿴囗,'R','S','T',''U','V','W','X','Y','Z'/, AR
 INTEGER RC
 REWIND NFIN
 WRITE(NPIN,931)SGTITL
 L=0
 IYPE 1
 DO 101 NR=1,NRCRS
 CLIN=CYCRMX(NR)
 AR=AL(NR)
 CO 101 RC=1,CLIM
 L=L+1
 101 WRITE(NPIN,901) AR,RC,AR,RC,KC(L),KU(L),KL(L)
 TYPE 2
 CO 102 NR=1,NRCRS
 CLIM=CYCRMX(NR)
SOPT11118
SOPT1119
SOPT1120
SOPT1121
SOPT1122
SOPT1123
SOPT1124
SOPT11125
SOPT 1126
SOPT1127
SOPT 1128
SOPT1129
SOPT 1130
SOPT1131
SOPT11132
SOPT1133
SOPT 1134
SOPT1135
SOPT1136
SOPT1137
SOPT1138
SOPT11139
SOPT 1140
SOPT1141
SOPT1142
SOPT1144
SOPT1144
SOPT1145
SOPT1146
SOPT1147
SOPT11448
SOPT1149
SOPT1150
SOPT1151
SOPT 1152
```

    AR=AL(NR)
    [0] 102 RC=1,CLIM
    L=L+1
    102 WRITE(NPIN,902) AR,RC,KC(L),KU(L),KL(L)
    C
TYFE 3
DO 103 NR=1,NRCRS
CLIM=CYCRMX(NR)
AR=AL(NR)
CO 1C3 RC=1,CLIN
[0 103 I= 1, IAUXM
L=L+1
103 WRITE(NPIN, 902) AR,RC,KC(L),KU(L),KL(L)
C
TYPE }
CO 114 NR=1,NRCRS
CL IM=CYCRMX(NR)
AR=AL(NR)
DO 1C4 RC=1,CLIM
CYC=CYCNUM(RC,NR)
ILC=CYCRNG (1,CYC)
IHI =CYCRNG(2,CYC)
CO 104 NP=ILO, IHI
L=L+1
104 WRITE(NPIN,904) AR,RC,AR,NP,KC(L),KU(L),KL(L)
L=L+1
114 WRITE(NPIN,914) AR,CLIN,KC(L),KU(L),KL(L)
C
TYPE 5
L=L+1
LP 2=L+2
hRITE(NPIN,905) (KC(N),KU(N),KL(N),N=L,LP2)
L=LP2
TYPE }
WRITE(NPIN,906) (N,KC(L+N),KU(L+N),KL(L+N),N=1,NPERS)
L=L+NPERS
C TYPE 7
JTOTAL=JFRWRD+JBKWRC
CO 107 NP=1,NPERS

```
 SOPT 1153
 SOPT 1154
 SOPT 1155
 SOPT 1156
 SOPT1157
 SOP T 1158
 SOPT 1159
 SOPT 1160
 SOPT 1161
 SOPT 1162
 SOPT 1163
 SOPT 1164
 SOPT1165
 SOPT 1166
 SOPT 1167
 SOPT 1168
 SOPT 1169
 SOPT1170
 SOPT 1171
 SOPT 1171 w
SOPT 1172
 SOPT1173
 SOPT 1177
 SOPT 1178
 SOPT 1179
 SOPT 1182
 SOPT 1183
 SOPT 1185
 SOPT 1187
```

    DO 1C7NR=1,NRCRS SOPT1189
    AR=AL(NR)
    CO 107 J=1, JTOTAL
    L=L+1
    107 WRITE(NPIN,907) AR,NP,NP,KC(L),KU(L),KL(L)
    CUMARC = NCYCT*(IAUX+1) +NPERS* ((JFRWRD +J BKWRD+1)*NRCRS+1) +NRCRS+3
    IF(L.NE.CUMARC) CALL OPERR('SETUPT',4)
    WRITE(NPIN,932)
    J=2*MXITER
    WRITEINPIN,933) (I,SGTITL,I=2,J)
    END file NPIN
    REWIND NPIN
    FETURN
    901 FORMAT (6X,'R',A1,'C',I2,'A' ,'R',A1,'C',I2,' ',T21,3I10)
    902 FORMAT (6x,'NUKFUL',''R',A1,'C',I 2,'A',',
    904 FCRMAT (6X,'R',A1,'C',I2,', ,'R',Al,'P',I3, T21,3110)
    SO5 FORMAT(6x,'DEMAND','DUMMY ', T21,3I10/
    $ 6x,'HLDOVR' ''CUMMY ', T21,3I10/
    $ 6x,'DUMMY ','NUKFUL', T21,31101
    906 FORMAT(6X,2X,'P',13,'DEMAND', T21,3I10)
    907 FORMAT(6X,'R',A1,'P',13,2X,'P',13, T21,3I10)
    GO8 FORMAT(6x,2X,'P:,I3,'R',A1,'P',I3, T21,3I10)
    914 FORMAT (6X,'R',A1,'C',I2,' ','HLDOVR', T21,3I10)
    931 FORMAT('READY'/'TAPE'/' 1',10AT/'ARCS')
    932 FORMAT('END'/'OUTPUT PRINTER'/'COMPUTE'/'PAUSE')
    933 FORMAT('SAVE'/I2,10AT/'CUTPUT PRINTER'/'COMPUTE'/'PAUSE')
    END
    SUBROUTINE CONVRGIOPTRCH,$LASTI
    SUPERVISES CCNVERGENCE BETWEEN O-O-K AND IN-CORE MODEL
    SYSOPT VERSION 12-16-72
    IMPLICIT INTEGER(C,G)
    REAL*8 RCFACT,SGTITL
    CCMMON/OPTLIM/RDFACT, SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
    $IAUX,I AUXN,NRCRS,NCYCT, AFERS,NPERSP,NPERIN, ITER,MXESX2,MXRCYC,
    INXNPER,M XRCRS,MXNODS,NXARCS,SIOT,NPIN,NPCT,RC,WT,PARCAL,PARCCN,
    $FARCCP,PCONVG,NPM, IDSTRG,JFRWRD,JBKWRD,NNESH,MESH(15),MXITER
        SOPT1190
        SOPT1191
        SOPT1192
        SOPT1193
        SOPT1194
        SOPT1195
        SOPT1196
        SOPT1197
        SOPT1198
        SOPT1199
        SOPT1200
        SOPT1201
        SOPT1202
        SOPT1203
        SOPT1204
        SOPT1205
        SOPT1206
        SOP T1207
        SOPT 1208
        SOPT1209
    SOPT1210
SOPT1211
SOPT1212
SOPT1213
SOPT1214
SOPT1215
SOPT1216
SOPT1217
SOPT1218
SOPT1219
SOPT1220
SOPT 1221
SOPT1222
SOPT }122
SOPT1224

```
$,GESFRS, ECUPLM(18),CORDTL, OPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
 INTEGER SIOT,RC,WT,PARCAL,PARCON,PARCOP
 LOGICAL NPM,OPRCOR
 LOGICAL MIDCYC
 INTEGER*2 CYCNUN,CYCRAG,CYCXS,CYCRMX
 COMMDN/RCRDAT/DYDWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),
 $CYCRMX (15), CYCNUM(18,15),CYCRNG(2,270),ICNO(15),GWHOLD(15),MWD(15)
 $,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),NWMAX(15),MIDCYC(15)
 $,DYHOLD(15),TOY(18,15)
 CCNMCN/OCKCCM/KIX,KCX,KQ1X,KQ2X,KQ3X,KQ4X,KQ5X
 COMMON/KC/KC(1)/KU/KU(1)/KL/KL(1)
 CCNMCN/KX/KX(1)
 INTEGER*2 LSTIM(270)
 REAL$8 $,$LAST,$NUCL(1CO),RTC,$IMPLS,$IMP,$CRIT
 LOGICAL CNVED,OPTRCH
 INTEGER NECBAL(18)/18*1/
 IF($LAST.GT.O.OCO) GO TO 5
 KIX=NPIN
 KOX=NPOT
 KQ1X=7
 KQ2X=NPOT
 KQ3X=NPIN
 KQ4X=MXARCS
 KQ5X=M XNODS
 ITERTO=0
 MESHNO=0
 CMES H=-1
 GWHCNV =-1
 $CRIT=1.E 3*TH$CON
 (ALL ERASE(LSTIM,NCYCT/2)
5 $LAST=1.D50
 $IMPLS=$LAST
 CPTRCH=.FALSE.
10 CALL OOKMAN
 CALL ARCPPT(0)
 CALL CALSHP
```

```
 ITERTO=ITERTO+1
 ITER=MOD (ITERTO-1,100)+1
 $NUCL(ITER)=1.C50
 CNVGC=.TRUE.
 CO 2O C=1,NCYCT
 IF(IABS(KX(C)-LSTIM(C)).GT.GWHCNV) CNVGD=.FALSE.
 20 LSTIM(C)=KX(C)
 NARCTP = PARC AL
 IFI.NOT.CNVGC.AND.GMESH.CT.OI GO TO 50
25 NARCTP=PARCON
 IF(MESHNO.LT.NMESH) GO TO 40
 CPTRCH=. TRUE.
 LRITEIWT,902)
30 $NUCL(ITER)=-$NUCL(ITER)
 WRITE(WT,SO1) (I,$NUCL(I),I=1,ITER)
 (ALL ARCPRT(PARCON)
 RETLRN
4) MESHNO=MESHNO+1
 GMESH= MESH(MES HNO)
 GWHCNV =(PCJNVG+0.001)*GNESH*0.01
 $LAST=1.D50
 $INPLS=$LAST
50 CALL ARCPRT(NARCTP)
 $=0.000
 eraSe oll marginal ccSts
 LFRS=LOC (2,1,1,1)
 NZERC=IAUX*NCYCT
 CALL ERASE(KC(LFRS),NZERC,KU(LFRS),NZERC,KL(LFRS),NZERO)
 CO 60 NR=1,NRCRS
 CALL SETELE(NR,GMESH)
 IDNUM=IONO(NR)
 NCYCIN=CYCRMX(NR)
 IF(.NOT.NIDCYC(NR)) NCYCIN=NCYCIN+1
 NCYCXS=C YCXS(NR)
 ECHDCV=GWHOLD(NR)
 CALL INCCRE(IDNUM,NCYCIN,NCYCXS,NCYCIN+NCYCXS,TSY(1,NR),TEY(1,NR),
```

SOPT1261
SOPT 1262
SOPT 1263
SOPT 1264
SOPT 1265
SOPT 1266
SOPT 1267
SOPT 1268
SOPT1269
SOPT 1270
SOPT 1271
SOPT1272
SOPT 1273
SOPT 1274
SOPT 1275
SOPT 1276
SOPT 1277
SOPT 1278
SOPT 1279
SOPT 1280
SOPT 1281
SOPT1282
SOPT 1283
SOPT 1284
SOPT1285
SOPT 1286
SOPT1287
SOPT 1288
SOPT 1289
SOPT1290
SOPT 1291
SOPT 1292
SOPT1293
SOPT1294
SOPT1295
SOP T1296

```
 $NECEAL, ELAME,MXESX2,ECHDCV,RTC,PVR,YBS,ECUPLM,TOY(1,NR))
 {=$+RTC
 60 (ALL NEWNRG(NR,GMESH)
 IF(PVR.NE.PVRATE) CALL CPERR('CONVRG',10)
 IF(YBS.NE.YBASE) $=$*PVPER$(YBASE,YBS)
 $NUCL(ITER)=$$1.03*R[FACT
 HRITE(WT,9J0) ITER,$NLCL(ITER)
 $IMP=$LAST-$NUCL(ITER)
 IF(($IMP.GT.$CRIT.OR.$IMPLS.GT.$CRIT).ANC.$IMP.GT.0.ODO) GO TO 7C
 CALL OPERR('CONVRG',s)
 $LAST=$NUCL(ITER)+0.01C0
 $I MPLS =$ IMP
 co TO 25
 70 $LAST=$NUCL(ITER)
 $IMPLS=$IMP
 IF(ITERTC.LT.MXITER) GC TO 10
 CALL OPERR('CONVRG',7)
 fakE 'IF' AND 'RETURN' TO AVOID COMPILATION WARNING MESSAGE
 IF(.TRUE.) GO TO 30
 RETURN
 900 fornat'(OSYStEM NUCLEAR COST AT ',I3,' TH ITERATION =',-3PF15.3,
 $' THOUS. P.V.DCLLARS')
 901 FORMAT(' SYSTEM NUCLEAR. COST AT ',I3,' TH ITERATION =',-3PFI5.3,
 $' THOUS. P.V.DCLLARS')
 gO2 FORMAT''1'/'0',T20,'****** TRUE OPTINUM REACHED FOR GIVEN ARC
 &CCNSTRAINTS * * * * *'/'0'/)
 END
 SUBROUTINE CALSHP
 Calculates shape parameters for each period
 SYSOPT VERSION 12-16-72
 IMPLICIT INTEGER(C,G)
 REAL*8 RCFACT,SGTITL
 CCMMMON/OPTLIM/RDFACT,SGTITL(10), ELAME(40,18), PVRATE,YBASE,YSTART,
 $IAUX,IAUXM,NRCRS,NCYCT,NPERS,NPERSP,NPERIN,ITER,MXESX2,MXRCYC,
 $NXNPER,M XRCRS,MXNJDS,NXARCS,SIOT,NPIN,NPCT,RD,WT,PARCAL,PARCON,
 $PARCOP,PCCNVG,NPM, ICSTRG,JFRWRD, JBKWRD,NMESH,MESH(15),MXITER
```

SOPT 1297
SOPT 1298
SOPT1299
SOPT 1300
SOPT1301
SOPT 1302
SOPT 1303
SOPT 1304
SOPT 1305
SOPT 1306
SOPT1307
SOPT 1308
SOPT 1309
SOPT1310
SOPT 1311
SOPT1312
SOPT 1313
SOPT1314
SOPT1315
SOPT 1316
SOPT1317
SOPT1318
SOPT 1319
SOPT1320
SOPT 1321
SOPT1322
SOPT1323
SOPT 1324
SOPT1325
SOPT 1326
SOPT1327
SOPT1328
SOPT 1329
SOPT 1330
SOPT 1331
SOPT1332
page

```
 $,GESFRS,ECUPLM(18),CORDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
 INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
 LOGICAL NPM,OPRCOR
 LOGICAL MIDCYC
 INTEGER*2 CYCNUM,CYCRAG,CYCXS,CYCRMX
 COMMON/RCRDAT/DYDWN(3,15), DYUP(3,15),GWHXS(3,15),CYCXS(15),
 $CYCRMX(15), CYCNUM(18,15),CYCRNG(2,270),I CNO(15),GWHOLD(15),MWD(15)
 $,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15), MWMAX(15),MICCYC(15)
 $, DYHOLD(15),TOY(18,15)
 CCNMCN/KX/KX(1)
 COMMCN/PDPERM/S(100,15), AL PHA(100,15),BETAP(100,15),FINV AR(100)
 INTEGER*2 S
 CONMCN/SHPINF/SLNCRT(100),SLNWSR(100),ITRSHP,FCWSEC(100)
 LOGICAL PCWSBD
 REAL LR
 REAL*8 SKL,SKL2
 L=LDC(4,1,1,1)-1
 DO 40 NP=1,NPERS
 L=L+1
 LCK=L-NPERSP
 SKL=0.0
 SKL 2=0.0
 NWOTCT=0
 DO 20 NR=1,NRCRS
 LCK=LOK + NPERSP
 IF(S(NP,NR).NE.2) GO TC 20
 KR=MWD (NR)
 NWDTCT =MWDTOT +KR
 LR=KX(LOK)*ALPHA(NP,NR)-EETAP(NP,NR)
 SKL=SKL+KR暞L
 SKL2=SKL2+KR*LR*LR
2) CONTINUE
 SLNWSR(NP) = SKL2/MWOTCT-(SKL/MWDTOT)*2
40 SLNCRT (NP)=FINVAR(NP)-SLAWSR(NP)-REJLVL
 RETURN
 END
```

SOPT 1333
SOPT 1334
SOPT 1335
SOPT 1336
SOP T 1337
SOPT 1338
SOPT1339
SOPT 1340
SOPT 1341
SOPT 1342
SOPT 1343
SOPT1344
SOPT 1345
SOPT 1346
SOPT 1347
SOPT 1348
SOPT1349
SOPT1350 SOPT 1351
SOPT1 352
SOPT 1353
SOPT 1354
SOPT 1355
SOPT 1356
SOPT 1357
SOPT1358
SOPT 1359
SOPT 1360
SOPT 1361
SOPT 1362
SOPT 1363
SOPT 1364
SOPT 1365
SOPT 1366
SOPT 1367
SOPT1368

```
 SUBROUTINE ARCPRT(ITYPE)
 FRINTS ARCS THROUGF TYPE ITYPE
 SYSOPT VERSION 12-16-72
 IMPLICIT INTEGER(C,G)
 REAL*8 RCFACT,SGTITL
 COMMON/OPTLIM/RDFACT,SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
 $ I AUX, I AUXM, NRCRS,NCYCT,NPERS,NPERSP,NPERIN, ITER,MXESX2,M XRCYC,
 $MXNPER,M XPCRS,MXNODS,NXARCS,SIOT,NPIN,NPCT,RD,WT,PARCAL, PARCON,
 $PARCOP,P CONVG,NPM, IDSTRG,JFRWRD, JBKWRD,NMESH,MESH(15),MXITER
 $,GESFRS,ECUPLM(18),CCRCTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
 INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
 LOGICAL NFM,OPRCOR
 CONMON/SHPI NF/SLNCRT (100),SLNWSR(100), ITRSHP,FCWSEC(100)
 LUGICAL PDWSBD
 LCGICAL COK
 CIMENSION DUM1(33),DUN1O(33,10),DUM2(17)
 EQUIVALENCE (DUM1(1),CUM10(1),DUM2(1))
 REAL#8 $RARC$/'ARCS 1/,$RCSB$/'CS ARE 0'/,DUM2
 REAL*8 $COST$/: COST'/
 REWIND NFOT
 IF(ITYPE.LE.O) RETURN
 COK=.FALSE.
 WRITE(WT,900) ITER,NFN,IESTRG,SGTITL
10 READ(NPOT,903) DUM2
 WRITE(WT,903) DUM2
 IF(DUM 2(1).EQ.$BARC$.AND.DUM2(3).EQ.$CCST$) GC TO 2)
 IF(DUM2(2).EQ.$RCSB$) COK=.TRUE.
 GO TC 10
2) READ(NPOT,901) DUMI
 WRITE(WT,901) DUMI
 LLST=LOC (ITYPEE+1,1,1,1)-1
 IF(OOK) LLST=LOC(9,0,0,0)-1
 APRNT=LLST
 NEXT=1
 IF(LLST.LT.LOC (6,0,0,1)) GO TO 28
 LTEMP=LLST
```

SOPT 1369
SOPT 1370
SOPT 1371
SOPT 1372
SOPT 1373
SOPT 1374
SOPT1375
SOPT 1376
SOPT 1377
SOPT 1378
SOPT 1379
SOPT 1380
SOPT 1381
SOPT 1382
SOPT1383
SOPT 1384
SOPT1385
SOPT1386
SOPT 1387
SOPT1388

```
 LLST=LUC (6,0,0,1)-1
 NPRNT=LLST
 NEXT=0
 GO TO 28
22 WRITE(WT, SO4)
 CO 26 NP=1,NPERS
 FEAD(NPOT,901) CUM1
26 WRITE(WT,995) (DUMI(I),I =1,27),SLNCRT(NP),SLNWSR(NP)
 APRNT=LTEMP-(LLSST+NPERS)
 LLST=LTEMP
 NEXT=1
28 N10=NPRNT/10
 N1=NPRNT-N10*10
 IF(N1.LT.I) GO TO 4C
 CO 30 N=1,N1
 KEAD(NPOT,9O1) DUM1
30 WRITE(WT,901) DUMI
40 IF(N1O.LT.1) GO TO 60
 CO }50\quadN=1,N1
 FEAD(NPOT,901) CUM10
5) hRITE(WT,901) DUM10
60 IF(NEXT.EQ.O) GO TO 22
 LLSTX=LOC (9,0,0,0)-1
 NSKIP=LLSTX-LLST
 IF(NSKIP.GT.O) REAC(NPOT,9O2) (X,I=1,NSKIP)
71) READ(NPOT,901,END=80) DUN1
 WRITEIWT,901) DUMI
 GO TO }7
80 IF(OOK) CALL OPERR('ARCPRT',11)
 FEWIND NFCT
 FETURN
900 FORMAT('1'/'OITER =',14,5X,'NPM+IDSTRG =',L2,I7,5X,
 $'STRATEGY TITLE: : ',1t',10A7,1H')
9)1 FORMAT(1X,33A4)
9 0 2 ~ F O R M A T ~ (A 4) ~
GO3 FORNAT(1X,16A8,A4)
```

SOPT 1405 SOPT 1406 SOPT 1407 SOPT 1408 SOPT 1409 SOPT 1410 SOPT 1411 SOPT 1412 SOPT1413 SOPT1414 SOPT 1415
SOPT 1416 SOPT 1417 SOPT 1418 SOPT 1419 SOPT 1420 SOPT 1421 SOPT 1422 SOPT 1423 SOPT1424 SOPT 1425

SOPT 1427
SOPT 1428
SOPT1429
SOPT 1430
SOPT 1431
SDP T 1432
SOPT 1433
SOPT1434
SOPT 1435
SOPT 1436 SOPT 1437
SOPT 1438 SOPT1439 SOP T 1440
PAGE
40

```
 S04 FORMAT(' +',T114,'SLNCRT',5X,'SLNWSR')
 505 FORMAT(1X,27A4,F11.6,F12.6)
 ENC
 SUBRCUTINE SETELE(NR,GNESH)
 SETS UP NEW ELAME FCR INPUT TO INCORE
 SYSOPT VERSION 12-16-72
 IMPLICIT INTEGER(C,G)
 REAL*8 RCFACT,SGTITL
 COMMON/OPTLIM/RDFACT,SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
 $IAUX,I AUXM,NRCRS,NCYCT,NPERS,NPERSP,NPERIN,I TER,MXESX2,MXRCYC,
 $NXNPER,MXRCRS,MXNDCS,MXARCS,SIOT,NPIN,NPOT,RD,WT, PARCAL, PARCON,
 $PARCOP,PCONVG,NPM,IDSTRG,JFRWRD,JBKWRD,NNESH,MESH(15),MXITER
 $,GESFRS, ECUPLM(18),CORDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
 INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
 LOGICAL NPM,OPRCOR
 LCGICAL MIDCYC
 INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
 CDMMON/RCROAT/DYDWN(3,15), DYUP(3,15),GWHXS(3,15),CYCXS(15),
 $CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),I[NO(15),GWHOLD(15),MWD(15)
 $,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
 $,DYHCLD(15),TOY(13,15)
 CCNNCN/KC./KC(1)/KU/KU(1)/KL/KL(1)
 CDMMON/KX/KX(1)
 [ATA FAKE/O.03/
 INTEGER RC
 CALL ERASE(ELAME,MXESX2*MXRCYC)
 IC=0
 IF(MIDCYC(NR)) GO TO 10
 IC=1
 ELAME(1,1)=FAKE
10 CLIM=CYCRMX(NR)
 CO 20 RC=1,CLIM
 CYC=CYCNUM(RC,NR)
 GBAL=KX(CYC)
 MIN =KL(CYC)
 MAX =KU(CYC)
SOPT1441
SOPT1442
SOPT1443
SOPT1444
SOPT 1445
SOPT1446
SOPT 1447
SOPT 1448
SOPT1449
SOPT1450
SOPT1451
SOPT }145
SOPT1453
SOPT1454
SOPT1455
SOPT1456
SOPT 1457
SOPT1458
SOPT1459
SOPT1460
SOPT1461
SOPT1462
SOPT1463
SOPT1464
SOPT1465
SOPT1466
SOPT1467
SOPT1468
SOPT1469
SOPT1470
SOPT 1471
SOPT1472
SOPT1473
SOPT 1474
SOPT1475
SOPT1476
```

    IGNIN=GBAL/GMESH-I AUXM/2
    ILO=MAXO(MIN/GMESH,IGMIN,I)
    IHI=MINO((MAX-1)/GMESH+1,IGMIN+IAUXM)
    IC=IC+I
    ELAME(1,IC)=GBAL
    DO 20 I=ILO,1HI
    20 ELAME(2*(I-ILO)+3,IC)=I*GMESH
NCYCXS=CYCXS(NR)
IF(NCYCXS.LT.1) GO TO 40
CO 30 I=1,NCYCXS
IC=IC+1
30 ELAME(1,IC)=GWHXS(I,NR)
40 FETURN
END
SUPROUTINE NEWMRG(NR,GMESH)
ALTERS NETWORK ARCS CF TYPE 2 \& 3 FOR NEW SET OF MARGINAL COSTS
SYSOPT VERSION 12-1t-72
IMPLICIT INTEGER(C,G)
REAL*8 RDFACT,SGTITL
COMMCN/OPTLIM/RDFACT, SGTITL(10),ELAME(40,18),PVRATE,YBASE,YSTART,
\$IAUX,I AUXN,NRCRS,NCYCT,NPERS,NPERSP, NPER IN, ITER,MXESX2,MXRCYC,
\$MXNPER,MXRCRS,MXNODS,NXARC S,SIOT,NPIN,NPCT,RD,WT,PARCAL, PARCON,
\$PARCCP,PCONVG,NFM, ICSTRG,JFRWRD,JBKWRD,NMESH,MESH (15),MXITER
$,GESFRS,ECUPLM(18),CCRDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
LOGICAL NPM,OPRCOR
LOGICAL MIUCYC
INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
CONMON/RCRDAT/DYOWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),
\$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),I CNO(15),GWHOLD(15),MWD(15)
\$,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
\$,0YHDLO(15),TOY(18,15)
COMMCN/KC/KC(1)/KU/KU(1)/KL/KL(1)
INTEGER RC
IC=1
IF(MIDCYC(NR)) IC=0

```

SOP T 1477 SOPT 1478 SOPT 1479 SOPT 1480 SOPT1481 SOPT 1482 SOPT 1483 SOPT1484 SOPT 1485 SOPT1486 SOPT 1487 SOPT 1488 SOPT 1489 SOPT 1490 SOPT 1491 SOPT 1492 SOPT 1493 SOPT 1494 SOPT 1495 SOPT 1496 SOPT1497 SOPT 1498 SOPT1499 SOPT 1500 SOPT 1501 SOPT 1502 SOPT 1503 SOPT 1504 SOPT 1505 SOPT 1506 SOPT1507 SOPT 1508 SOPT 1509 SOPT 1510 SOPT 1511 SOPT1512
```

    CLIM=CYCRMX(NR)
    DO 60 RC=1,CLIM
    IC=IC+1
    L=LCC(2,NR,RC,0)
    IYPE 2 BASE PCINT
    GBAL=ELAME(1,IC)
    KU(L)=GBAL
    KL(L)=KU(L)
    KCC=-10000
    TYPE 3 INCREMENTS
    L=LCC(3,NR,RC,0)-1
    LIM=ECUPLM(IC)
    IF(LIM.LE.0) LIN=1000000
    IF(GBAL.GT.LIM) CALL OPERR('NEWMRG',13)
    AAC=-1
    CO 10 I=3,M MESX2,2
    G=EL\triangleME(I,IC)
    IF(G.LE.O) GO TO 30
    NARC=NARC+1
    IF(LIM.LE.G) GO TO 20
    1) CONTINUE
co TO }3
20 ELANE(I,IC)=LIM
30 CO 60 I=1,NARC
IL\DeltaN=I +I +2
LI=L+I
KC(LI)=1000.*ELAME(ILAM,IC)+0.5
IF(KC(LI).LT.KCC) CALL CPERR('NEWMRG',5)
KCO=KC(LI)
CLC=ELAME(ILAM-1,IC)
GUP=ELAME (ILAM+1,IC)
GDEL=GUP-GLO
IF(GRAL.(T.GUP) GO TO 50
IF(GBAL.LT.GLO) GO TO 40
KU(LI)=GUP-GBAL
KL(LI)=GLC-GBAL
```

SOPT 1513
SOPT1514
SOPT 1515
SOPT 1516
SOPT 1517
SOPT1518
SOPT1519
SOP T 1520
SOPT 1521
SOPT1522
SOPT 1523
SOPT1524
SOPT1525
SOPT 1526
SOPT 1527
SOPT 1528
SOPT 1529
SOPT 1530
SOPT 1531
SOPT1532
SOPT 1533
SOPT 1534
SOPT1535
SOPT 1536
SOPT1537
SOPT1538
SOPT 1539
SOPT 1540
SOPT 1541
SOPT 1542
SOPT1543
SOPT1544
SOPT1545
SOPT 1546
SOPT 1547
SOPT1548
```

    CO TO 60 SOPT1549
    40 KU(LI)=GDEL
    GO TC 60
    50 KL(LI)=-CCEL
    6) CONTINUE
    RETURN
    END
    FUNCTION PVPER$(T,TBASE)
    C
calculate present value at time T of is at time tbase
C SYSCPT VERSICN 12-16-72
REAL\#3 PVPER\$,LNIPX
FVPER\&=DEXP(-LNIPX*(T-TBASE))
RE TURN
ENTRY PVINIT(PVRATE)
pRE-CALCulate log cF (1+X) IN UNITS OF INVERSE years
LNIPX=DLOG(1.DO+PVRATE)
FVINIT=LN1PX
RETURN
END
SUBRCUTINE CHKSHP(SHPSCK)
CHECKS SHAPE CRITERIA to Evaluate feasibility
C CHECKS SHAPE CRITERIA TO
IMPLICIT INTEGER(C,G)
REAL*B RDFACT,SGTITL
CCMMCN/OPTLIM/RDFACT,SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
\$IAUX,I AUXM, NRCRS,NCYCT, NFERS,NPERSP,NPERIA,ITER,MXESX2,MXRCYC,
\$NXNPER,MXRCRS,MXNODS,MXARCS,SIOT,NPIN,NPCT,RD,WT,PARCAL,PARCON,
\$PARCCP,PCONVG,NPM, IDSTRG,JFRWRD, JBKWRD,NMESH,MESH(15),MXITER
$,GESFRS,ECUPLM(18), COROTL,OPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
INTEGER SIOT,RC,WT,PARCAL,PARCON,PARCOP
LOGICAL NPM,OPRCOR
COMMON/KC/KC(1)/KU/KU(1)/KL/KL(1)
COMNCN/KX/KX(1)
COMMON/SHPINF/SLNCRT(100),SLNWSR(100),ITRSHP,PCWSBC(100)
LOGICAL PCWSED
dINEASION DELTAL(100)

```

LOG ICAL SHP SOK, PCDCK
INTEGER KSTHLD(20)
PCDCK=PCDELA.GT.1.
\(\operatorname{LFRS}=\operatorname{LOC}(3,1,1,1)\)
LJFRS \(=\operatorname{LOC}(7,1,1,1)\)
NZERC \(=\) IA UXM*NCYCT
CALL ERASE(KC(LFRS),NZERC,KU(LFRS),NZERO, KL(LFRS),NZERO)
SET UP ARCS TO ATTEMPT MINIMIZING SHAPE CRITERIA
LAUX=LFRS-I \(A \cup X M\)
CO 10 NC=1, NCYCT
\(\operatorname{LAUX}=\operatorname{LA} \cup X+I A \cup X M\)
\(K L(N C Y C T+N C)=K X(N C)\)
\(K U(N C Y C T+N C)=K X(N C)\)
\(\operatorname{KC}(\operatorname{LAUX})=10000\)
\(K U(L A U X)=100000\)
KC \((\operatorname{LAUX}+1)=-10300\)
\(10 \mathrm{KL}(\operatorname{LAUX} X+1)=-100000\)
LALX \(=\) LJFRS-1
DO \(15 \mathrm{NP}=1\), NPERS
[0 \(15 \mathrm{NR}=1\), NRCRS
DO \(15 \mathrm{~J}=1\), JFRPBK
\(\operatorname{LAUX}=\operatorname{LAUX+1}\)
15 KC(LAUX) \(=\) KSTHLC(J)
ITRSHP = I TRSHP + 1
WRITE(WT,905) ITRSHP
CALL OCKNAN
CALL ARCPRT(O)
CALL CALSHP
SHPSCK=. TRUE.
CO \(20 \mathrm{NP}=1\), NPERS
CELTAL(NF)=1.E50
IF(SLNCRT(NP).GE.O.0) GC TO 20
SHPSCK =. FALSE.
PDKSBD (NF) =. TRUE.
CELTAL (NP) \(=\operatorname{SQRT}(-\operatorname{SLNCRT}(N P))\)
IF(PCDOK) CALL SGUEEZ(NP,PCDELA*DELTAL(NP)*0.01)

SOPT 1585 SOPT1586 SOPT 1587 SOPT 1588 SOPT 1589 SOPT 1590 SOPT1591 SOPT 1592 SOPT 1593 SOPT 1594 SOPT 1595 SOPT 1596 SOPT 1597 SOPT 1598 SOPT1599 SOP T 1600 SOPT 1601 SOPT 1602 SOPT 1603 SOPT1604 SOPT1605 SOPT 1606
SOPT 1607 SOPT 1608 SOPT 1609 SOPT1610
SOPT 1611
SOPT 1612
SOPT1613
SOPT 1614
SOPT1615
SOPT 1616
SOPT 1617
SOPT1618
SOPT1619
SOPT1620
```

    20 CONT INUE
        IF(PARCOP.GE.4) (ALL ARCPRT(PARCOP)
        WRI TE(WT,GO6) I IRSHP
        WRITE(WT,910) (SLNCRT(N),N=1,NPERS)
        IF(SHPSOK) GC TO 40
        WRITE(WT,G20) (DELTAL(N),N=1,NPERS)
        HRITE(WT,930)
        IF(PCDCK) GO TO 4O
        WRITE(WT,940) PCDELA
        GC TC 40
        ENTRY ONLY$$
        ITRSHP=0
        LJFRS=LOC(7,1,1,1)
        LAUX=LJFRS-1
        CO 30 J=1,JFRPBK
    30 KSTHLD(J)=KC(LALX+J)
    CO 35 NP=1,NPERS
    35 PDhSBD (NP)=.FALSE.
    4 0 ~ N Z E R O = J F R P B K : N R C R S * N P E R S
        CALL ERASE(KC(LJFRS),NZERO)
        RETURN
    905 FORMAT('1*/*2',T20,****** ENTERING SHAPE ITERATION NUMBER',
    $ I4,' *****! *
    906 FORMAT('1*/'2',T20,** RESULTS FCR SHAPE ITERATICN NUMBER'
    $,I4," * * * * **)
    910 FORNAT('0'/'0 SLNCRT(NP),NP=1,NPERS: % (10F10.6))
    920 FORMAT ('C'/'0 DELTAL(NP), NP=1,NPERS :'/(10F10.6))
    S3O FORMAT 'O'/'O',T2O,'SHAPE CRITERION REQUIRES ANOTHER OUTER ITERATI
    {CN')
    940 FORMAT ('0', 10X,'EXCEPT THAT PCDELA =', F7.2,' PERCENT PREVENTS REQ
    $LIRED IMFROVEMENT'I
        END
        SUERCUTINE SGUEEZ(NP,CEL)
    C SQUEEZES PERIOD CAPACITY FACTOR RANGE BY DEL CN BOTH ENDS
C SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(C,G)

```

SOPT 1621
SOPT1622
SOPT 1623
SOPT 1624
SOPT1625
SOPT 1626
SOPT 1627
SOPT 1628
SOPT 1629
SOPT 1630
SOPT 1631
SOPT 1632
SOPT 1633
SOPT 1634
SOPT1635
SOPT 1636
SOPT 1637
SOPT1638
SOPT 1639
SOPT1640
SOPT 1641
SOPT 1642
SOPT1643
SOPT 1644
SOPT1645
SOP T1646
SOPT 1647
SOPT 1648
SOPT 1649
SOPT1650
SOPT1651
SOPT 1652
SOPT1653
SOPT 1654
SOPT1655
SOPT1656
PAGE 46
```

    REAL*8 RCFACT,SGTITL
    CCMMCN/OPTLIM/RDFACT,SGTITL(10),ELAME(40,18),PVRATE,YBASE,YSTART,
    &IAUX,I AUXM,NRCRS,NCYCT,NPERS,NPERSP,NPERIN,ITER,MXES X2,MXRCYC,
    $NXNPER,MXRCRS,MXNODS,NXARCS,SIOT,NPIN,NPCT,RD,WT,PARCAL,PARCON,
    &PARCOP,PCONVG,NPM,IDSTRG,JFRWRD,JBKWRD,NNESH,MESH(15),MXITER
    $,GESFRS, ECUPLM(18), CORCTL,OPRCOR(6),REJLVL,PCDELA,TH $CON,JFRPBK
    INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
    LCGICAL APM,OPRCOR
    CCMNON/KC/KC(1)/KU/KU(1)/KL/KL(1)
    COMMON/PDPERM/S(100,15),ALPHA(100,15),BETAP(100,15),FINVAR(100)
    INTEGER*2 S
    CCNNCN/SHPINF/SLNCRT(100),SLNWSR(100),ITRSHP,PCWSEC(100)
    LOGICAL PCWSBD
    FEAL LMAX,LMIN
    CO 60 NR=1,NRCRS
    A=ALPHA(NP,NR)
    B=BETAP(NP,NR)
    LJFRS=LOC(7,NR,O,NP)
    IF(KU(LJFRS).LE.0) GO TO 60
    LAUX=LJFRS-1
    KFM IN=0
    KFNAX=0
    CD 20 J=1,JFRPBK
    LAUX=LAUX+1
    KFMIN=KFMIN+KL(LAUX)
    20 KFMAX=KFMAX+KU(LAUX)
LIMIT=LOC(4,NR,0,NP)
KIMIN=KL(LINIT)
KIMAX=KU(LINIT)
KANIA=MAXO(KFMIN,KIMIN)
KAMAX=MINO(KFMAX,KIMAXI
LMAX=A*K AMAX-B
LMIN=A*KAMIN-B
CEL=AMINI(DEL,(LMAX-LMIN)/3.1
LMAX=LMAX-DEL
LMIN=LMIN+DEL

```

SOPT 1657 SOP T1658 SOPT 1659 SOPT 1660 SOPT 1661 SOPT1662 SOP T1663 SOPT 1664 SOPT 1665 SOPT 1666 SOPT1667 SOP T1668 SOPT 1669 SOPT 1670
SOPT 1671
SOPT 1672
SOPT1673
SOPT1674
SOPT1675
SOPT 1676
SOPT 1677
SOPT 1678
SOPT 1679
SOPT 1680
SOPT1681
SOPT 1682
SOPT1683
SOP T 1684
SOPT 1685
SOPT 1686
SOPT 1687
SOPT1688
SOPT1689
SOPT 1690
SOPT 1691
SOPT 1692
PAGE

FLACE NEW CCNSTRAINTS CN ARCS
\(\operatorname{MOX}=(L M A X+B) / A\)
MON \(=(L M I N+E) / A+0.5\)
\(N X D=\) KF MAX-MOX
NND \(=M O N-K F M I N\)
LFRS \(=\operatorname{LOC}(7, N R, 0, N P)\)
LAUX=LFRS
\(J F=1\)
\(30 \mathrm{JF}=\mathrm{JF}+1\)
IF (JF.GT.JFRWRD) GC TC 40
\(L A \cup X=L A \cup X+1\)
\(N W=K(\) LAUX)
IF (MXD.LT.MW) GO TC 35
\(K \cup(L A U X)=0\)
\(N X D=N \times D-M h\)
CO TO 30
\(35 \mathrm{KU}(\mathrm{LAUX})=\mathrm{MW}-M X \mathrm{C}\)
4 4) LAUX=LFRS+JFRPBK
\(J B=J B K W R D+1\)
\(50 \mathrm{JB}=\mathrm{JB}-1\)
IF(JB.LT. I) GO TO 60
\(L A \cup X=L . A \cup X-1\)
\(N W=-K L(L A U X)\)
IF(MND.LT.MW) GO TO 55
\(k L(L A \cup X)=0\)
\(N N D=M N D-M h\)
CO TO 50
\(55 K L(L A \cup X)=-(M W-M N D)\)
60 CONTINUE
RETURN
END
SUBROUTINE EOTSHP(SHPSOK)
C EDITS SHAPE INFD. AND PRINTS FINAL ALTERED ENERGY LIMITS
C SYSOPT VERSION 12-16-72
IMFLICIT INTEGER(C,G)
REAL*8 REFACT, SGTITL

SOPT 1693
SOPT 1694
SOPT 1695
SOPT 1696
SOPT1697
SOPT1698
SOPT 1699
SOPT 1700
SOPT 1701
SOPT 1702
SOPT1703
SOPT 1704
SOPT 1705
SOPT1706
SOP T 1707
SOPT 1708
SOPT 1709
SOPT 1710
SOPT 1711
SOPT 1712
SOPT 1713
SOPT1714
SOPT 1715
SOPT 1716
SOPT 1717
SOPT 1718
SOPT 1719
SOPT1720
SOPT 1721
SOPT1722
SOPT 1723
SOPT 1724
SOPT 1725
SOPT1726
SOPT1727
SOPT1728
```

    COMMON/OPTLIM/RCFACT,SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
    $IAUX,I AUXN,NRCRS,NCYCT,NPERS,NPERSP,NPERIN,ITER,MXESX2,MXRCYC,
    $MXNPER,MXRCRS,MXNODS,MXARC S, SIOT,NPIN,NPCT,RD,WT, PARCAL, PARCON,
    $PARCOP,PCONVG,NPM, ICSTRG,JFRWRD,JBKWRD,NMESH,MESH(15),MXITER
    $,GESFRS, ECUPLM(18),CCRDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
    INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
    LOGICAL NPM,OPRCOR
    COMMON/KC/KC(1)/KU/KU(1)/KL/KL(1)
    CCMMCN/SHPINF/SLNCRT (100),SLNWSR(100), ITRSHP, PDW SBD(100)
    LOGICAL PDWSBD
    LOGICAL SHPSOK
    CATA STAR/'** %/,$NCT/'NCT 1/
    WURD=STAR
    IF(.NOT.SHPSOK) WORC=$NOT
    KEY=0
    IF(ITRSHP.LE.I) KEY=2
    WRITE(WT,910) KEY,ITRSHP
    IF(KEY.EQ.2) WRITE(hT,920)
    WRITE(WT,911) WORD
    IF(KEY.EQ.2) RETURN
    WRITE(WT,930)
    CO }80\textrm{NP}=1\mathrm{ , NPERS
    IF(.NOT.PDWSBD(NP)) GC TC 8)
    WRITE(WT,900)
    CO 60 NR=1,NRCRS
    LJFRS=LOC(7,NR,O,NP)
    LAUX=LJFRS-1
    KFMI }\Lambda=
    KFM\DeltaX=0
    CC 20 J=1,JFRPBK
    LAUX=LAUX+1
    KFMIN=KFMIN+KL (LAUX)
    20 KFNAX=KFNAX+KU(LAUX)
LINIT=LOC(4,NR,O,NP)
KININ=KL(LINIT)
KIMAX=KU(LINIT)

```

SOPT 1729 SOPT 1730 SOPT1731 SOPT 1732 SOPT 1733 SOPT 1734 SOPT1735 SOPT 1736
SOPT1737 SOPT 1738
SOPT 1739
SOPT 1740
SOPT 1741
SOPT1742
SOPT 1743
SOPT 1744
SOPT1745
SOPT 1746
SOPT1747
SOPT1748
SOPT 1749
SOPT1750
SOPT 1751
SOPT 1752
SOP T 1753
SOPT 1754
SOPT1755
SOPT 1756
SOPT 1757
SOPT 1758
SOPT 1759
SOPT1760
SOPT 1761
SOPT 1762
SOPT1763
SOPT1764
PAGE
```

    KFNIN=MAXO(KFMIN,KIMIN)
    KFMAX=MINO(KFMAX,KIMAX)
    KFCEL=KFNAX-KFMIN
    KIDEL=KINAX-KIMIN
    FCDEL=KFDEL*100./(KIDEL+1.E-20)
    IF(KU(LJFRS).LE.O) PCCEL=0.0
    6) WRITE(WT,940)NP,NR,KINAX,KIMIN,KIDEL,KFMAX,KFMIN,KFDEL,PCDEL
    80 CONTINUE
    RETURN
    900 FORMAT ('O')
    910 FORMAT ('1'/II,T20,****** *,I4,' SHAPE ITERATIONS WERE REQUIR
    $ED * * * * *! )
    911 FORMAT('C',T20,'*****,A4," ALL FINAL SHAPES MET SHAPE CRITE
    $EICN * * ****)
    S20 FORMAT("O*,T40,"THEREFCRE, NC PERIODS WERE ALTERED * * * * **)
    930 FORMAT ('0'/'0', 10X,'ALTERED PERIOD ENERGY RANGE LIMITS I G W H E
    $1//OPERICD REACTOR INIT.MAX INIT.MIN INIT.DEL FINL.MAX F
    $INL.MIN FINL.OEL % INIT.DEL'/)
    940 FORMAT (I 5,I 8,3I10,3X,3I10,F12.1)
        END
        SURROUTINE OPTMUM(OPTRCH,$NKPRD)
    c. SUPERVISES PRINTING CF CPTIMUM SOLUTION
C SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(C,G)
REAL*8 RDFACT,SGTITL
CLMMON/OFTLIM/RDFACT,SGTITL(10), ELAME(40,18),PVRATE,YBASE,YSTART,
\$IAUX,I AUXM,NRCRS,NCYCT,NPERS,NPERSP,NPERIN,ITER,MXESX2,MXRCYC,
\$MXNPER,MXRCRS,MXNODS,M XARC S,SIOT,NPIN,NPCT,RC,WT, PARCAL, PARCON,
\$FARCOP, PCONVG,NFM, IDSTRG,JFRWRD,JBKWRD,NMESH,MESH(15),MXITER
$,GESFRS,ECUPLM(18),CORDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
INTEGER SIOT,RC,WT,PARCAL,PARCON,PARCOP
LOGICAL NPM,OPRCOR
LDGICAL MIDCYC
INTEGER*2 CYCNUM,CYCRAG,CYCXS,CYCRMX
COMMON/RCRDAT/DYDWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),
\$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),ICNO(15),GWHOLD(15),MWD(15)

```

SOPT1765
SOPT 1766
SOPT1767
SOPT 1768
SOPT 1769
SOPT1770
SOPT 1771
SOPT1772
SOP T 1773
SOPT 1774
SOPT 1775
SOPT 1776
SOPT 1777
SOPT 1778
SOPT 1779
SOPT 1780
SOPT 1781
SOPT 1782
SOPT 1783
SOPT 1784
SOPT 1785
SOP T 1786
SOPT 1787
SOPT 1788
SOPT 1789
SOPT 1790
SOPT 1791
SOPT 1792
SOPT 1793
SOPT 1794
SOPT1795
SOPT1796
SOPT 1797
SOPT 1798
SOPT 1799
SOPT1800
PAGE 50
```

    &,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
    $,DYHOLD(15),TOY (18,15)
    COMMON/FINALS/S4,SA4,SP4,SL4,SP8
    REAL*8 S4(13),SA4(13),SP4(13),SL4(13),SPE(13)
    COMMON/PRINTS/RELCST,INCCST, BALCST,NBLCST,PIRDAT,PBATCS, KRD, KWT
    LOGICAL RELCST, INCCST,BALCST,NBLCST,PIRDAT,PBATCS
    INTEGCR NECEAL(18)/18*1/
    REAL*8 $NKPRD,$DEL,WORD,$FORC$/'FORCED'/,$TRUE$/' TRUE'/,$,RTC
    LOGICAL OPTRCH,STORE(6),USE(6)
    EQUIVALENCE (USE(1),RELCST)
    CO 10 I= 1,6
    STORE(I)=USE(I)
    1) LSE(I)=OPRCOR(I)
IF(CORDTL.LE.O) GO TO 30
IF (OPRCOR (3).OR.OPRCOR(4).OR.OPRCOR(5).OR.OPRCOR(6)) GO TO 20
GO TO 30
20 (HUCE=10**6
\$=0.000
CO 28 NR=1,NRCRS
CALL SETELE(NR,GHUEE)
OO 26 I =1,MXRCYC
26 ELAME(3,1)=0.0
IDNUM=IDNC(NR)
NCYCIN=C YCRMX(NR)
IF(.NOT.MIDCYC(NR)) NCYCIN=NCYCIN+I
NCYCXS=C YCXS(NR)
ECHDOV = GWHOLD(NR)
CALL I NCCRE(IDNUM,NCYCIN,NCYCXS,NCYCIN+NCYCXS,TSY(1,NR),TEY(1,NR),
$NECPAL, ELAME,MXESX2,ECHDOV,RTC,PVR,YBS,ECUPLN,TOY (1,NR))
28$=\$+RTC
$NKPRD =$* 1. C3*RCFACT
2) }\textrm{OO 40 I= 1,6
40 LSE(I)=STORE(I)
IF(\$NKPRD.GE.1.D2)) GC TO 20
$DEL=$NKPRD-SP8(3)
SP8(2)=SP8(2)+\$DEL
```

SOPT 1801 SOPT 1802 SOPT 1803 SOPT 1804 SOPT 1805 SOPT 1806 SOPT1807 SOPT 1808 SOPT 1809 SOPT1810 SOPT 1811 SOPT1812 SOPT 1813 SOPT 1814 SOPT 1815 SOPT 1816 SOPT1817 SOPT 1818 SOPT 1819 SOPT1820 SOPT 1821 SOPT 1822
SOPT 1823
SOPT 1824
SOPT 1825
SOPT 1826
SOPT 1827
SOPT1828
SOPT 1829
SOPT 1830
SOPT1831
SOPT 1832
SOPT 1833
SOPT1834
SOPT 1835
SOPT1836
PAGE
```

    SP8(3)=SP8(3)+$DEL
    SP8(8)=SP8(8)+$DEL
    SP8(9)=SP8(9)+$DEL
    SP8(12)=SP8(12)+$DEL
    HORD=$FORC$
    IF(OPTRCH) WORC=$TRUE$
    hRITE(WT,904) NFM,IDSTRG,SGTITL
    WRITE(WT,SO1) WORD,$NKPRD
    WRITE(WT,907)
    WRITE(WT,908) (S4(I), I=2,13),(SA4(I),I=2,13),(SP4(I),I=2,13),
    $(SL4(I),I=2,13)
    WRITE(WT,909) YBASE
    WRITE(WT,910) (SP8(I),I=2,12)
    WRITE(WT,902) WORD,SP8(12)
    RETURN
    901 FORMAT('O'/'0',T20,'AT ',A6,' OPTIMUM, \$NKPRD = ',-3PF15.3,
\$' THCUS. P.V. DOLLARS'/'0'1
302 FURMAT ('0'/'O',T2O,'AT ',AG,' OPTIMUM, TCTAL SYSTEN COST = ',
\$-3PF15.3,' THOUS. P.V. DOLLARS'/'0')
904 FORMAT('1'/'J'/,1)X,'NPM+IDSTRG =',L2,17,5X,
\#'StRATEGY TITLE : ',1t',10A7,1H')

```

```

    $4x,'---------------------------------------
    & /' PERIOC MWINST MWONLN MWPEAK MWMRGN MWSPIN PLOFL'',
    $4X,'EXPDEM EXPGEN XNKGEN XNNGEN EXPEMR UNSRVD'
    #)
    SOB FORMAT('OTOTAL :',5F8.0,F8.4,6F11.2/
\$ OAVG. :',5F\&.C,F8.4,6F11.21
\$ OPVTOTL:',5F8.0,F8.4,6F11.2/
\$ OLVAVG.:',5F8.0,F8.4,6F11.211
909 FORMAT('0'/'0',T20,'ALL COSTS IN THOUSANDS OF DOLLARS PRESENT VALU
\$ED TC YEASE =',F9.4,' YEARS'/
\$ P PERIOD PRCD\$ \$NKPRD $NNPRC SUSD$ \$NKS
\$US \$NNSUS \$SBTCT \$NKTOT $NNTOT EMRP$ TOTA
$し$!)
910 FORMAT('OPVTOTL:',-3P11F11..2)

```

SOPT1837
SOPT 1838
SOPT 1839
SOPT 1840
SOPT 1841
SOPT 1842
SOPT 1843
SOPT 1844
SOPT 1845
SOPT 1846
SOPT 1847
SOPT1848
SOPT 1849
SOPT1850
SOPT 1851
SOPT 1852
SOPT1853
SOPT 1854
SOPT1855
SOPT 1856
SOPT 1857
SOPT1858
SOPT 1859
SOPT1 860
SOPT 1861
SOPT 1862
SOPT 1863
SOPT 1864
SOPT 1865
SOPT 1866
SOPT 1867
SOPT1868
SOPT 1869
SOPT1870
SOPT 1871
SOPT1872
PAGE 52
```

        SOPT 1873
        FUNCTION LOC(ITYPE,R,C,P)
    CALCULATES lOC AS POINTER TO DESIRED ARC
    SYSOPT VERSION 12-16-72
IMFLICIT INTEGER(C,G)
REAL*8 RDFACT,SGTITL
CCMMON/OPTLIM/RDFACT, SGTITL(10),ELAME(40,18),PVRATE,YBASE,YSTART,
\$IAUX,I AUXM,NRCRS,NCYCT, NPERS,NPERSP,NPERIN,ITER,MXESX2,MXRCYC,
\$MXNPER,M XRCRS,MXNODS,NXARC S,SIOT,NPIN,NPCT,RC,WT,PARCAL,PARCON,
\$PARCCP, PCONVG,NPM, ICSTRG,JFRWRD, JBKWRD,NMESH,MESH(15),MXITER
$,GESFRS,ECUPLM(18), CORDTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
LOGICAL APM,OPRCOR
LOGICAL MIDCYC
INTEGER*2 CYCNUM,CYCRNG,CYCXS,CYCRMX
COMMON/RCRDAT/DYOWN(3,15),CYUP(3,15),GWHXS(3,15), CYCXS(15),
\$CYCRMX(15),CYCNUM(18,15),C YCRNG(2,270),I CNO(15),GWHOLD(15),MWD(15)
\$,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
\$,DYHOLD(15),TOY(18,15)
INTEGER R,C,P
GO TO (1,2,3,4,5,6,7,8,9,10),ITYPE
1 LOC=CYCNUM(C,R)
RETURN
2 LOC=LOC1X+C YCNUM(C,R)
RETURN
3 LCC=LOC2X+(CYCNUM(C,R)-1)*IAUXM+1
RETURN
4 IF(P.GT.NPERS) GO TO }4
LJC = LOC 3X + (R-1)*NPERSP +P
RETURN
4 4 ~ L C C = L O C ~ 3 x + R * N P E R S P .
RE TURN
5 LOC=LOC4x+1
RETURN
6 LOC= LOC 5 X P P
RETURN

```

SOPT 1873 SOPT 1874 SOPT1875 SOPT 1876 SOPT1877 SOPT1878 SOPT 1879 SOPT 1880 SOPT 1881 SOPT1882 SOPT1883 SOPT 1884
SOPT1885
SOPT 1886
SOPT1887
SOPT1888
SOPT1889
SOPT1890
SOPT 1891
```

    7 LOC=LOC 6X+((P-1)*NRCRS+R-1)*JTOTAL+1
        FETURN
    3 CONTINUE
    9 LOC=LOCgX
        FETUFN
    C
INITIALIZATION
10 JTOTAL = JFRWRD+JBKWRD
LOC 1X=NCYCT
LOC 2X=LOC 1X+NC YCT
LOC 3X=LOC 2X+I AUXM*NCYCT
LOC 4X=LCC 3X+NPERSP*NRCRS
LOC 5x=LOC 4X + 3
LCC6x=LOC5X+NPERS
LOC 7X = LOC 6 X +JTOTAL*NRCRS*NPERS
LOC9x=LOC7x+1
LOC=C
RETURN
END
SUBRCUTINE OPERR(SUEF,JERR)
WRITES OUT ALL ERROR MESSAGES FOR SYSOPT
SYSCPT VERSIGN 12-16-72
IMPLICIT INTEGER(C,G)
REAL*8 RCFACT,SGTITL
COMMON/OPTLIM/RDFACT,SGTITL(10), ELAME(40,18), PVRATE,YBASE,YSTART,
\$IAUX,IAUXM,NRCRS,NCYCT,NPERS,NPERSP,NPERIN,ITER,MXESX2,MXRCYC,
\$NXNPER,MXRCRS,MXNODS,MXARCS,SIOT,NPIN,NPCT,RD,WT, PARCAL, PARC ON,
\$PARCCP,PCONVG,NPM, IDSTRG,JFRWRD,JBKWRC,NMESH,MESH(15),MXITER
\$,GESFRS, ECUPLM(18),CORDTL,CPRCOR(6),REJLVL,PCDELA,TH $CON,JFRPBK
        INTEGER SIOT,RD,WT,PARCAL,PARCON,PARCOP
        LOGICAL NPM,OPRCOR
        INTFGER ERRCOD
        REAL*8 SUBR,$QLIT\$
[ATA NPRINT/0/,$QUIT$/' GUIT'/,ERRCOD/O/,MAXERR/16777216/
NAXERR=16**6
REAL*g CCI(11)/'COFMIN AND CDFMAX DATA ARE INCCNSISTENT IN SOME SE
\&NSE 1/
'/

```

SOPT 1909
SOPT1910
SOPT 1911
SOPT 1912
SOPT1913
SOPT 1914
SOPT 1915
SOPT 1916
SOPT 1917
SOPT1918
SOPT1919
SOPT 1920
SOPT 1921
SOPT 1922
SOPT 1923
SOPT 1924
SOPT 1925
SOPT1926
SOPT 1927
SOPT 1928
SOPT1929
SOPT 1930
SOPT 1931
SOPT 1932
SOPT1933
SOP T1934
SOPT 1935
SOPT 1936
SOPT 1937
SOPT 1938
SOPT1939
SOPT 1940
SOPT 1941
SOPT1942
SOPT 1943
SOPT1944
PAGE 54
```

    REAL*8 CO2(11)/MMWDTOT.NE.LVLMAX-LVLMIN .OR. MW.GE.PEMIN
    $ %/
    REAL*8 CO3(11)/'REACTCR OR STRATEGY ID''S DJ NCT AGREE
    * FEAL*8 CO4(11)/INUMBER OF ARCS INPUT TO O-D-K AND ARC EQ. DO NOT A
\$GREE
O
REAL*8 CO5(11)/'MARGINAL COST CURVE NOT MONOTCNICALLY DECREASING
\$
REAL*8 CO6(11)/'IMPROPER INPUT SEQUENCE \&/OR CARD: INPUT OPTICNS C
\$LTSICE CURRENT LIMITS
'/
REAL*8 COT(11)/MMXITER REACHED WITHOUT CCMPLETE CONVERGENCE
\$
REAL*8 CO9(11)/:\$NUCL NCT CONVERGING RAPIDLY TC MINIMUM; ASS
qUME COST HAS CONVERGED FOR THIS GMESH */
FEAL*8 CIO(11)/'INCORE AND SYSOPT USING DIFFERENT P.V.RATES
\$
REAL*8 C11(11)/10-G-K NETWORK SOLUTION IS TRULY OUT-OF-KILTER
\$
REAL*8 C 12(11)/'PREMATURE END TO SYSINT DATA ; SOME PERICDS NOT RE
\$AD IN 1/
REAL*8 C13(11)/' CYCLE ENERGY GREATER THAN ITS UPPER LIMIT
\$
IERR=JERR

10) ERRCOD=MCD(ERRCOD,MAXERR)
ERRCCD=16*ERRCOC+IERR
NPRINT=NPRINT+1
GO TO (1,2,3,4,5,6,7,8,5,10,11,12,13),IERR
1 WRITE(WT,900) SUBR,ERRCOC,CO1,NPRINT
GO TO 1)00
2 WRITE(WT,900) SUBR,ERRCOD,CO2,NPRINT
GO TO 1000
3 WRITE(WT,GOO) SURR,ERRCOD,CO3,NPRINT
CO TO 1000
4 WRITE(WT,GOO) SUBR,ERRCOC,CO4,NPRINT
CO TO 1000
5 WRITE(WT,900) SUFR,ERRCOC,CO5,NPRINT
```

SOPT 1945
SOPT1946
SOPT 1947
SOPT 1948
SOPT 1949
SOPT 1950
SOPT 1951
SOPT1952
SOPT 1953
SOPT1954
SOPT 1955
SOPT 1956
SOPT 1957
SOPT 1958
SOPT1959
SOPT 1960
SOPT 1961
SOPT 1962
SOPT1963
SOPT1964
SOPT 1965
SOPT 1966
SOPT 1967
SOPT 1968
SOPT1969
SOP T1970
SOPT 1971
SOPT 1972
SOPT 1973
SOPT 1974
SOPT 1975
SOPT 1976
SOPT 1977
SOPT 1978
SOPT 1979
SOPT 1980
```

    RETURN
    6 WRITE(WT,900) SUBR,ERRCOC,CO6,NPRINT
    GO TO 1000
    7 WRITE(WT,900) SUER,ERRCCD,CO7,NPRINT
    RETURN
    8 WRITE(WT,908) SUBR,ERRCOD,NPRINT,NPRINT
        CALL ICERRS('OPERR ',8)
        STOP
    9 WRITE(WT,900) SUER,ERRCOC,CO9,NPRINT
    RETLRN
    10 WRITE(WT, SOO) SUBR,ERRCOD,C10,NPRINT
GC TC 1000
11 WRITE(WT,GOO) SUBR,ERRCOD,CIL,NPRINT
CC TC 1000
12 hRITE(WT,900) SLBR,ERRCOC,C12,NPRINT
CO TO 10CO
13 WRITE(WT,900) SUER,ERRCOC,C13,NPRINT
RETURN
1000 NPRINT=NPRINT+1
hRITE(WT,999) APRINT
SUBR=$QUIT$
IERR=8
GO TO 100
900 FORMAT(/' ',130('-')/,' | SUBR. ',A6,' HAS ERRCOD = ', 28,' : ',
\$11A8,T131,'1',/,' ',130('-'),12)
GCB FORMAT(/','130('-')/,' | SUBR.',A6,' HAS ERRCOD = ',Z8,': ',
\#'RLCPTN ENCOUNTEREC STCP CARD, OPERR CALLED ONCE TOO OFTEN OR O',
\$'THER FATAL ERROR', T131,'|'/ | DURING THIS ENTIRE RUN, OPERR',
\$' PRINTE[ A TOTAL OF ',I3,' ERROR MESSAGES JLST LIKE IAND ',
\$'INClUDING) THIS CNE',
\&T13l,'|',/,' ',130('-'),I21
999 FORMAT//'',130('-')/,' | PREVIOUS ERROR SEVERE ENOUGH TO',
\$' INVALICATE FURTHER CCMPUTATIONS. THEREFORE,',
4' TERMINATING EXECUTION.',
\$T131,'1',/,' ',130('-'),12)
END

```

SOPT1981
SOPT1982
SOPT 1983
SOPT1984
SOPT 1985
SOPT1986
SOPT 1987
SOPT 1988
SOPT1989
SOPT 1990
SOPT 1991
SOPT 1992
SOPT 1993
SOPT1994
SOP T 1995
SOPT 1996
SOPT 1997
SOPT 1998
SOPT 1999
SOP T 2300
SOPT 2001
SOPT 2002
SOPT 2003
SOPT 2004
SOPT 2005
SOPT 2006
SOPT2007
SOPT 2008
SOPT 2009
SOPT 2010
SOPT 2011
SOPT 2012
SOP T 2013
SOPT 2014
SOPT 2015
SOPT 2016
PAGE
```

    SUPFCUTINE CMPTIM(LV, ENT) SOPT2O17
    PRINTS TIME OF INTRA-SUBROUTINE TRANSFERS OR CATEETIME SOPT2O18
    SYSOPT VERSION 03-06-72 SOPT2019
    "TIMING" IS AN N.I.T. INTERNAL SUBROUTINE THAT RETURNS THE CPU TIME SOPT2O2O
    IN HUNDREDTHS DF SECONDS. SOPT 2021
    "WHEN" IS AN M.I.T. INTERNAL SUBROUTINE THAT RETURNS THE DATE AND SOPT2O22
    TIME IN THE FOLLOWING 5A4 FORMAT: MM/DO/YY HR*MI*SS.FF SOPT2023
    LINENSION A(5)
    DOUBLE PRECISICN LV,ENT
    INTEGER TNOW,TSTART,TREL
    INTEGER LT
    CALL TIMING(TNOW)
    TREL=TNOW-TSTART
    IF(TREL.LT.O) TREL=TREL+8640000
    TI = TREL/100.
    WRITE(WT,10)LV,ENT,TI
    RETURN
    ENTRY STRTIM(WT)
    CALL TIMING(TSTART)
    CALL WHEN(A)
        hRITE(WT,20) A
        RETURN
    10 FORMAT(/,T103,29('*'),/,T103,'*LV. *,AG,T131,**',/,
    $T103,'* ENT.',A6,' a',F7.2,' SEC.*',/,T103,29(**'),/)
    20 FORMAT(/T103,29('*')/T10\Omega.'* DATE = ',2A4,T131,**'/
\$Tl03,'* TIME = ', 3A4,T131,'*'/T103,2G('*')/)
END
00000000 SOPT2044

* 00000010 SOPT2045
ASSEMBLER LANGUAGE SUBRCUTINE ERASE
* 00000011 SOPT2046
* 00000012 SOPT2047
WRITTEN BY JOHN W. KICSON
MIT DEPARTMENT OF METEOROLJGY
* 00000014 SOPT2048
* 00000016 SOPT 2049
TC SET ELEMENTS OF REAL JR INTEGER ARRAYS TO ZERO. A1,A2,... * 00000020 SOPT2050
ARE ARRAY NAMES AND N1,N2,.. ARE INTEGER VALUES OR * 00000030 SOPT 2051
EXPRESSICNS GIVING THE ARRAY SIZES. * 00000040 SDPT2052

```

PAGE

CUT-CF-KILTER MAIN PRCGRAM
CNLY DIMENS ION STATEMENTS IN THIS PROGRAM NEED BE CHANGED TO ALTER MAXIMUM ARCS GR NAXIMUM NODES ALLCWABLE IF \(A=\) MAXIMUM ARCS AND \(N=\) MAXIMUM NODES , \(K L, K C, K U, K X, A N D J I\) ARE DIMENSIONED EY 'A.
\(N L(N), N N(2 * N), N P(N), I J(N A X(N, A-2 *(N+1))), I L(N+1), j L(N+1)\)
CIMENS ION KL (2000), KC(2000), KU(2000), KX(2000), NL(1000) DINEASION NN(2000), NP(1000), IJ (1000), IL(1001), JL (1001), JI(2000) CIMENS ION LC (9), KA (\(18,21, \mathrm{KQ}(9)\)
CCMMON /KL/KL/KC/KC/KU/KU/KX/KX/NL/NL/NN/NN/NP/NP/IJ/IJ/IL/IL COMMON /JL/JL/JI/JI
COMMCN /M/M/N/N/LER/LER/KAT/KAT/KOR/KOR/KTER/KTER COMMCN / MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K
 KI \(=5\)
SYSTEM OUTPUT DEVICE
 \(K O=\epsilon\)
CARD PUNCH
 \(K Q(1)=7\)
RESERVED OUTPUT TAPE
 \(K Q(2)=3\)
RESERVED INPUT TAPE
 \(K Q(3)=2\)
MAXIMUM ARCS
 \(K Q(4)=2000\)
MAXINLM NODES
 \(K Q(5)=1000\)
 \(K Q(6)=0\)
 \(K Q(\varsigma)=0\)
 IFIN=32767
 CALL MAINE
 STOP
 END
 SUBROUTINE MAINE
 CIMENS ION LC(9), KA \((18,2), K Q(9)\)
 COMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)

OOK 0001
OOK 0002
OOK 0003
OOK 0004
OOK 0005
00K 0006
OOK 0J07
00K 0008
OK F00060 OOK 0009
OKF00080 OOK 0010
00K 0011
OOK 0012
OKF00100 OOK 0013 OKF00110 OOK 0014 OKFOO120 OOK 0015 OKFOO130 OOK 0016 OKFOO140 OOK 0017 OKFOO150 OOK 0018 OK FOO 160 OOK 0019 OKF00170 OOK 0020 OKFOO180 OOK 0021 OKFOO190 OOK 0022 OKF00200 OOK DO23 OK FOO210 OOK 0024

OOK 0025
OKF00230 OOK 0J26
00K 0027
OKF 00250 OOK 0028
OKF00260 OOK 0029
OKF00270 OOK 0030
OKF 11030 OOK 0031
OK F11040 OOK 0032
OKF11050 OOK 0033
OKF00030 OOK 0034
OKF10990 OOK 0035
00K 3036
PAGE 1
```

    COMNCN/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
    CCMMCN /M/M/N/N/LER/LER/KAT/KAT/KCR/KOR/KTER/KTER
    COMMON /MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KC/KQ/KG/K/K
    CIMENSION KE(101)
    CALL STRTIM(KO)
    100 CALL CMPTIM(' ','DATAIN')
    CALL PRECAT(KS)
    IF(KS.EQ.-1) RETURN
    IF(KS.NE.O) GO TO 1
    CALL ARCASY(L)
    CALL MAKEJL
    IF(LER.GE.KQ(4)) GC TO 38
    LER=LER*KQ(8)
    IF(L.EQ.O) GO TO l
    CALL NODASY
    1 CALL REACER
    call transl
    IF(LER.NE.O) GO TD 88
    (ALL CMPTIM('CATAIN','ALGOR.')
    I=0
    KUP=1
    KE(1C1)=C
    CO 26 K=1,N
    IF(K.LT.KUP) GO TO 38
    I= I +1
    KUP=LOECR(IL(I+1))
    38 CALL KILTER(I)
    IF(LER.EQ.O) GO TO 26
        IF(LER.NE.107) GO TO }2
        KE(101)=KE(101)+1
        KF=KE(101)
        IF(KE(101).GT.100) GC TO 26
        KE(KF)=K
    26 CONTINUE
    C CCNPLETED CHECKING ALL ARCS
LER=0

```

OOK 0037
00K 0038
OKF11020 OOK 0039 OKF00070

00K 0040
OOK 0041
DOK 0042
OOK 0043
00K 0044
OKF00290 OOK 0045
OKF00300 OOK 0046
OKF00310 OOK 0047
OKF00320 OOK 0044
OKF00330 OOK 0049
OKF00340 OOK 0050
OKF00350 OOK 0051
OKF00360 OOK 0052
OKF00370 OOK 0053 OKF00380 OOK 0054

OOK 0055
OKF00390 OOK 0056 OKF00400 OOK 0057 OKF 00410 OOK 0058 OKFOO420 OOK 0059 OKF00430 OOK 0060 OK F00440 OOK 0061 OKFOO450 OOK 0062 OKF 00460 OOK 0063 OKF00470 OOK 0064 OKF00480 OOK 0065 OKF00490 OOK 0066 OK F00500 OOK 0067 OKF00510 OOK 0068 OKF00520 OOK 0069 OKF00530 OOK 0070 OKF00540 OOK 0071 OKF00550 OOK 0072

PAGE 2
```

```
 99 CALL CMPTIM('ALGOR.','DUTPUT')
```

```
 99 CALL CMPTIM('ALGOR.','DUTPUT')
 CALL OUTPUT (KE)
 CALL OUTPUT (KE)
 CALL CMPTIM('OUTPUT',' ')
 CALL CMPTIM('OUTPUT',' ')
C CYCLE BACK FOR ANOTHER RUN
C CYCLE BACK FOR ANOTHER RUN
 GO TO 100
 GO TO 100
 24 HRITEIKO,54)
 24 HRITEIKO,54)
 LL=LADDR(IJ (K))
 LL=LADDR(IJ (K))
 WRITE(KO,55) NN(2*I-1),NN(2*I),NN(2*LL-1),NN(2*LL)
 WRITE(KO,55) NN(2*I-1),NN(2*I),NN(2*LL-1),NN(2*LL)
 EO TO 99
 EO TO 99
 88 WRITE(KO,56)
 88 WRITE(KO,56)
 STOP
 STOP
 ENTRY OOKMAN
 ENTRY OOKMAN
C ENTRY TO OCK FROM OTHER CODES (WHICH HAVE ALREADY CALLED STRTIM)
C ENTRY TO OCK FROM OTHER CODES (WHICH HAVE ALREADY CALLED STRTIM)
 CCMMON/OCKCCM/KIX,KCX,KQ1X,KQ2X,KQ3X,KQ4X,KQ5X
 CCMMON/OCKCCM/KIX,KCX,KQ1X,KQ2X,KQ3X,KQ4X,KQ5X
 KI=KIX
 KI=KIX
 KO=KCX
 KO=KCX
 KQ(1)=KQ1X
 KQ(1)=KQ1X
 KQ(2)=KQ2X
 KQ(2)=KQ2X
 KQ(3)=KQ 3X
 KQ(3)=KQ 3X
 KQ(4)=KQ4X
 KQ(4)=KQ4X
 KQ(5)=KQ5X
 KQ(5)=KQ5X
 KQ(6)=0
 KQ(6)=0
 KQ(9)=0
 KQ(9)=0
 IF IN=32767
 IF IN=32767
 IF(.TRUE.) GO TO 100
 IF(.TRUE.) GO TO 100
 STCF
 STCF
 51 FORMAT(A4)
 51 FORMAT(A4)
 54 FORMAT (24HOOVERFLOW IN NODE PRICES)
 54 FORMAT (24HOOVERFLOW IN NODE PRICES)
 55 FORMAT (23HORUN TERMINATED AT ARC ,4A4)
 55 FORMAT (23HORUN TERMINATED AT ARC ,4A4)
 56 FORMAT(37HORUN TERMINATED DUE TO ERRCRS IN DATA)
 56 FORMAT(37HORUN TERMINATED DUE TO ERRCRS IN DATA)
 ENC
```

```
 ENC
```

```


```

```
 SURRCUTINE PREDAT(KS)
```

```
 SURRCUTINE PREDAT(KS)
 CINEASION LC(9),KA(18,2),KQ(9)
 CINEASION LC(9),KA(18,2),KQ(9)
 COMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)
 COMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)
 CCMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
```

        CCMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
    ```
```

        ENT
    ```
 ENT
 KQ(2)=K&2X
```

        KQ(2)=K&2X
    ```
```

        OOK 0073
    ```
 OOK 0073
 OOK 0074
 OOK 0074
 OOK 0075
 OOK 0075
 OKF00570 OOK 0076
 OKF00570 OOK 0076
 OKF00580 OOK 0077
 OKF00580 OOK 0077
 OKFJ0590 OOK 0078
 OKFJ0590 OOK 0078
 OKF00600 00K 0079
 OKF00600 00K 0079
 OKF00610 OOK 0080
 OKF00610 OOK 0080
 OKF00620 OOK 0081
 OKF00620 OOK 0081
 OKF00630 OOK 0082
 OKF00630 OOK 0082
 OKF00640 OOK 0083
 OKF00640 OOK 0083
 OOK 0084
 OOK 0084
 OOK 0085
 OOK 0085
 OOK 0086
 OOK 0086
 OOK 0087
 OOK 0087
 OOK 0088
 OOK 0088
 OOK 0089
 OOK 0089
 OOK 0090
 OOK 0090
 OOK 0091
 OOK 0091
 OOK 0092
 OOK 0092
 OOK 0093
 OOK 0093
 OOK 0094
 OOK 0094
 OOK 0095
 OOK 0095
 OOK 0096
 OOK 0096
 OOK 0097
 OOK 0097
 OOK 0098
 OOK 0098
 OKF00650 O0K 0099
 OKF00650 O0K 0099
 OKF00660 OOK 0100
 OKF00660 OOK 0100
OKF00670 OOK 0101
OKF00670 OOK 0101
OKF00680 OOK 0102
OKF00680 OOK 0102
 OKF00690 OOK 0103
 OKF00690 OOK 0103
OKF00730 OOK O105
OKF00730 OOK O105
OKF00760 OOK 0106
OKF00760 OOK 0106
 0OK 0107
 0OK 0107
 OOK 0108
 OOK 0108
 PAGE 3
```

    PAGE 3
    ```
```

    COMMON /M/M/N/N/LER/LEER/KAT/KAT/KOR/KOR/KTER/KTER
    CCMMCN /MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K
        INTEGER PALSE,SAVE,READY,CARDS,TAPE,SKIF,TRANSP,ARCS,END
    [ATA PAUSE,SAVE,READY/4HPAUS,4HSAVE,4HREAD/
    CATA CARDS,TAPE,SKIP,TFANSP/4HCARD,4HTAPE,4HSKIP,4HTRAN/
    [ATA ARCS/4HARCS/
    CATA END/4HEND /
    HRITE(KO,53)
    (ALL ERASE(LC,9)
    KOR=KQ(3)
    KQ (7)=0
    KS=0
    21 READ(KI,SO) (KA(I,1),I=1,18)
        WRITE(KO,91) (KA(I,1),I=1,18)
        IF(KA(1,1).EG.PAUSE) GO TO 180
        IF(KA(1,1).EQ.SAVE) GO TO 50
        IF(KA(1,1).EQ.REAEY) GO TO 100
        GO TO 21
    C END JOB
180 IF(KG(6).EQ.0) GOTC 182
K2=KQ(2)
HRITEIKO,98)
END FILE K2
GO TO 183
182 HRITE(KO,99)
183 KS=-1
FETURN
C
50 KS=1
8 FETLFN
C
100 IEA=KO(4)
IEN=KQ(5)
IEJL=MAXO(IEN+1,IEA-2*IEN-1)
CALL ERASEIKL,IEA,KC,IEA,KU,IEA,KX,IEA,IJ,IEA,JI,IEA,
INL,IEN,NN,2*IEN,NP,IEN,IL,IEN+1,JL,IEJLI

```

OOK 0109
OKF00790 OOK 0110 OKF00800 OOK 0111 OKF00810 OOK 0112 OKF00820 00K 0113 OKF00830 OOK 0114 OKF00840 OOK 0115

OOK 0116
OOK 0117
OKF00870 OOK 0118 OKF00880 OOK 0119 OKF00890 OOK 0120 OKFOO900 OOK 0121 OKF00910 OOK 0122 OKF00920 OOK 0123 OKF00930 OOK 0124 OKF00940 OOK 0125 OK F00950 OOK 0126 OKF00960 OOK 0127 OKF00970 OOK 0128 OK F00980 OOK 0129 OKF00990 OOK 0130 OKFO1000 OOK 0131 OKFO1010 OOK 0132 OKF01020 OOK 0133

OOK 0134
OOK 0135
OKFO1040 OOK 0136 OKFO1050 OOK 0137 OKF01060 OOK 0138 OKFO1070 OOK 0139

OOK 0140
OOK 0141
OOK 0142
OOK 0143
OOK 0144
PAGE 4
```

    N=0
    N=0
    LER=0
    KQ(8)=1
    3 REA[(KI,90) (KA(I, 1),I=1,18)
    hRITE(KO,91) (KA(I,1),I=1,18)
    IF(KA(1,1).EQ.CARDS) GC TO 1
    IF(KA(1,1).EQ.TAPE) GO TO ó
    IF(KA(1,1).EQ.SKIP) GC TC 6
    IF(KA(1,1).EQ.TRANSP) GO TO 14
    GO TO 3
    14 KQ(8)=0
CO TO 3
6 IF(KQ(9).NE.O) GO TO 7
KQ(g)=1
REWIND KCR
7 IF(KA(I,l).EQ.TAPE) GC TC 4
co TO 13
1 KOR=KI
4 REAC(KOR,90) (KAlI,1),I=1,13)
HRITE(KO,91) (KD(I,1), I= 1,18)
IF(KA(1,1).EQ.ARCS) GC TO 8
CO IO I=1,18

1) KA(I,2)=KA(I,1)
CO TC 4
13 READ(KOR,92) KA(1,1)
IF(KA(1,1).EQ.END) GO T0 3
GO TO 13
2) FORMAT(18A4)
91 FORMAT (1+018A4)
92 FORMAT(A4)
93 FORMAT (1H1)
93 FORMAT (31HORESERVEC TAPE HAS BEEN WRITTEN///1HO)
97 FORMAT(34HONO RESERVED TAPE HAS BEEN WRITTEN)
ENC
```
```

OKF01099 OOK 0145
OKFO1100 OOK 0146
OKF01101 OOK 0147
OKFO1110 OOK 0148
OKFO1120 OOK 0149
OKF01130 OOK J150
OKF01140 OOK 0151
OKFO1150 OOK 0152
OKF01160 OOK 0153
OKFO1170 OOK 0154
OKFO1180 OOK 0155
OKFO1190 DOK 0156
OKFO1200 OOK O157
OKF01210 00K 0158
OKFO1220 OOK 0159
OKFO1230 OOK 0160
OKFO1240 OOK 0161
OKFO1250 OOK 0162
OKFO1260 OOK 0163
OKFO1270 OOK 0164
OKFO1280 OOK 0165
OKF01290 00K 0166
OKFO1300 OOK O167
OKF01310 OOK 0168
OKFO1320 OOK 0169
OKF01330 OOK 0170
OKF01340 00K 0171
OKFO1350 OOK 0172
OKFO1360 OOK 0173
OKFO1370 OOK O174
OKFO1380 00K O175
OKFO1390 OOK 0176
OOK 0177
OKF01400 OOK 0178
OKFO1410 DOK 0179
OKFO1420 OOK 0180
PAGE 5

```

```

    SUBROUTINE ARCASY(LL)
    DIMENSION LC(9),KA(18,2),KQ(9)
    CIMENSION KE(2),KF(2),KD(2)
    COMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)
    COMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
    CCMMCN /M/M/N/N/LER/LER/KAT/KAT/KOR/KOR/KTER/KTER
    COMMON/MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K
        INTEGER END,NODES,BLANK
    CATA END,NODES,BLANK/4HEND ,4HNODE,4H /
    LER=0
    KF(1)=0
    KF(2)=0
    N=0
    N=1
    6 READ(KOR,90) KD(1),KD(2),KE(1),KE(2),IJ(2*N-1),IJ(2*N),(KA(I,1),I=OKFO1610 00K 0196
    11,4)
    IF(KD(1).EQ.END) GC TO 1
    IF(KD(1).EQ.NODES) GO TO 2
    IF(KD(I).EQ.BLANK) GO TO 3
    GO TO 4
    C NO NCDES TO DO
l LL=0
GO TO 5
C NODES TC DO
2 LL=2
WRITE(KO,94) KC(1),KD(2)
5 N=N-1
99 IF(LER.EQ.O) GO TO 101
KQ(8)=2
101 RETURN
C ARC TO FILE
3 IF(KE(1).EQ.BLANK.AND.KE(2).EQ.BLANK) GO TO 6
KC(N)=KA(1,1)
KU(N)=KA(2,1)
KL(N)=KA (3,1)
OKF01460 OOK O182
OKFO1490 OOK 0183
OKFO1500 OOK 0184
OOK 0185
OOK 0186
OOK 0187
OKFO1530 OOK 0188
OKFO1540 OOK 0189
OKFO1550 OOK 0190
OKFO1560 OOK 0191
OKFO1570 OOK 0192
OKFO1580 OOK O193
OKFO1590 OOK O194
OKF01600 OOK 0195
OKF01620 OOK 0197
OKF01630 OOK 0198
OKF01640 OOK 0199
OKFO1650 OOK 0200
OKF01660 OOK 0201
OKF01670 OOK 0202
OKF01680 OOK 0203
OKF01690 OOK 0204
OKF01700 OOK 0205
OKFO1710 OOK 0206
OKFO1720 OOK 0207
OKFO1730 OOK 0208
OKFO1740 OOK 0209
OKF01750 OOK 0210
OKFO1760 OOK 0211
OKFO1770 OOK 0212
OKFO1780 OOK 0213
OKFO1790 OOK 0214
OKF01800 OOK 0215
OKF01810 OOK 0216
PAGE 6

```
```

    KX(N)=KA(4,1)
    IF(KE(1).EQ.KF(1).AND.KE(2).EQ.KF(2)) GO TO 9
    IF(NCDENC(KE(1),KE(2)).EG.M+1) GO TO 11
    WRITE(KC,91) KE(1),KE(2),IJ(2*N-1),IJ(2*N)
    CO TO 12
    11 KF(1)=KE(1)
    KF(2)=KE(2)
    IF(N.GT.KQ(5)) GO TO 23
    N=N+1
    NN(2*M-1)=KE(1)
    AN(2*M)=KE(2)
    NL(M)=N
    9 IF(N.GT.KQ(4)) GO TO 20
        N=N+1
        GO TO 6
    4 WRITE(KO,92) N
    12 WRITEE(KD,93) KD(1),KD(2),KE(1),KE(2),IJ(2*N-1),IJ(2*N), (KA(I,1),I=OKFO1980 OOK 0233
    11,4)
        LER=LER+1
        GO TO }
    20 hRITE(KO,89)
    25 LER=100JC
    GO TO 99
    23 WRITEIKO,88)
    GO TO 25
    88 FORMAT (27HOTOO MANY NCDES IN THIS RUN)
    89 FORMAT(26HUTOO MANY ARCS IN THIS RUN)
    90 FORMAT (3)(A4,A2),2X,4110)
    91 FORMAT (36HOSOURCE NODES ARE NOT ADJACENT, ARC 4A4)
    92 FORMAT(3GHOCARD PUNCHING ERROR IN ARC CARD NC.,I6)
    93 FOFMAT (1HO3(A4,A2), 2X,4I10)
    94 FORNAT(1HOA4,A2)
    END
    ```

```

subroutine makejl
CIMENSION LC(9),KA(18,2),KQ(9)
OKF01820 OOK 0217
OKFO1830 OOK 0218
OKF01840 OOK 0219
OKFO1850 OOK 0220
OKFO1860 OOK 0221
OKF01870 OOK 0222
OKFO1880 OOK 0223
OKFO1890 OOK 0224
OKFO1900 OOK 0225
OKFO1910 OOK 0226
OKFO1920 OOK 0227
OKFO1930 OOK 0228
OKFO1940 OOK 0229
OKFO1950 OOK 0230
OKFO1960 OOK 0231
OKFO1970 OOK 0232
OKFO1990 OOK 0234
OKF02000 OOK 0235
OKFO2010 OOK 0236
OKF0202O OOK 0237
OKFO2030 OOK 0238
OKF02040 OOK 0239
OKF02050 OOK 0240
OKFO2060 OOK 0241
OKF02070 OOK 0242
OKF02080 OOK 0243
OKF02090 OOK 0244
OKFO2100 OOK 0245
OKFO2110 DOK 0246
OKF02120 00K 0247
OKFO2130 OOK 0248
OKFO2140 OOK 0249
******** OOK 0250
OKFO2180 OOK 0251
OKF02210 DOK 0252
PAGE }

```

CCNMON/NA/NN(1)/NP/NP(1)/IJ/IJ(I)/IL/IL(1)/JL/JL(1)/JI/JI(1) COMMON /M/M/N/N/LER/LER/KAT/KAT/KOF/KOR/KTER/KTER COMMON/MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K NUMBERS TO IJ LIST
\(\mathrm{I}=1\)
CO \(1 \mathrm{~L}=1, \mathrm{~N}\)
\(3 K=\operatorname{NODENO}(I J(2 * L-1), I J(2 * L))\)
IF (K.L.E.M) GO TO 6
IF(M.GE.KQ(5)) GOTO 9
\(M=M+1\)
\(N N(2 * M-1)=I J(2 * L-1)\)
\(\mathrm{NN}(2 * M)=I J(2 * L)\)
\(\operatorname{IJ}(L)=K\)
\(M L(N)=N+1\)
\(L E R=L E R+1\)
19 IF (NL (I+1).GT.L) GO TO 18
\(\mathrm{I}=\mathrm{I}+1\)
IF(I.LT.M) 60 TO 19
18 WRITE(KO,90) NN(2*I-1),NN(2*I),NN(2*M-1),NN(2*M)
GO TO 1
\(6 \quad 1 J(L)=K\)
1 CONTINUE
FIX IL LIST
CO \(8 \mathrm{I}=1, \mathrm{~N}\)
CALL PLACE(NL(I), ILII)
\(8 \mathrm{NL}(\mathrm{I})=0\)
CALL PLACE \((N+1, I L(N+1))\)
COUNT J-S
[0 \(10 \mathrm{~J}=1, \mathrm{~N}\)
\(I=\operatorname{LACDR}(I J(J))\)
\(10 \mathrm{NL}(\mathrm{I})=\mathrm{NL}(\mathrm{I})+1\)
FORM JL LIST
\(K K=1\)
CALL PLACE(KK,JL(1))
CO \(20 \mathrm{I}=1, \mathrm{M}\)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{} & OOK & 0253 \\
\hline & OOK & 0254 \\
\hline & OOK & 0255 \\
\hline OKF02240 & OOK & 0256 \\
\hline OK F 02250 & OOK & 0257 \\
\hline OK F02260 & OOK & 0258 \\
\hline OKF 02270 & OOK & 0259 \\
\hline OK F02280 & OOK & 0260 \\
\hline OKF02290 & 00K & 0261 \\
\hline OKF02300 & DOK & 0262 \\
\hline OK F02310 & 00K & 0263 \\
\hline OKF 02320 & OOK & 0264 \\
\hline \multirow[t]{2}{*}{OK FO2330} & OOK & 0265 \\
\hline & OOK & 0266 \\
\hline OKF 02350 & OOK & 0267 \\
\hline OK F02360 & OOK & 0268 \\
\hline OKF02370 & OOK & 0269 \\
\hline OK FO2380 & OOK & 0270 \\
\hline OKF02390 & OOK & 0271 \\
\hline OKF 02400 & OOK & 0272 \\
\hline \multirow[t]{2}{*}{OK F02410} & OOK & 0273 \\
\hline & OOK & 0274 \\
\hline OK F02430 & 00K & 0275 \\
\hline OK F 02460 & OOK & 0276 \\
\hline OKF 02470 & OOK & 0277 \\
\hline OKF 02480 & DOK & 0278 \\
\hline OKF02490 & OOK & 0279 \\
\hline OK F 02500 & OOK & 0280 \\
\hline OK F02510 & OOK & 0281 \\
\hline OKF02520 & OOK & 0282 \\
\hline OKFO2530 & OOK & 0283 \\
\hline OKF 02540 & OOK & 0284 \\
\hline OKF 02550 & OOK & 0285 \\
\hline OK F02560 & OOK & 0286 \\
\hline OKF02570 & OOK & 0287 \\
\hline \multirow[t]{2}{*}{OKFO2580} & OOK & 0288 \\
\hline & E & \\
\hline
\end{tabular}
```

            IF(NL(I).NE.O) GO TO 23
            WRITE(KO,G1) NN(2*I-1),NN(2*I)
            LER=1
    23 KK=KK+NL (I)
        NL(I)=LDECR(JL(I))
    20 (ALL PLACE (KK,JL(I+1))
            NL(M+1)=LDECR}(JL(M+1)
            START OF JL LIST SEGMENT MOVED TO MAKEJL FRCM TRANSL
    C CMTART OF JL
I=0
LUP=1
DO 22 L=1,N
IF(L.LT.LUP) GO TO 25
I=I +1
LUP=LDECR(IL(I+1))
25k=LACDR(IJ(L))
J=NL(K)
JI(J)= I
CALL PLACE(L,JI(J))
22 NL(K)=NL(K)+1
C END OF JL LIST SEGMENT MOVED TO MAKEJL FRCM TRANSL
10) FE TURN
9 ~ L E R = 1 0 0 0 0 0
hRITE(KO,92)
GO TO 100
90 FORMAT (5HOARC,4A4,18H IS A DEAD END ARC)
9 1 ~ F O R M A T ~ ( 2 1 H O N O ~ A R C ~ E N D S ~ A T ~ N O D E ~ , 2 A 4 )
9 2 FORMAT (27HOTOO MANY NODES IN THIS RUN)
END
SUBRCUTINE NODASY
DINEASION LC(9),KA(18,2),KQ(9)
DIMENSION KE(2),KD(2)
CCNMCN/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)
COMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
COMMON
/M/M/N/N/LER/LER/KAT/KAT/KOR/KOR/KTER/KTER
OKF02590 OOK 0289
OKF02600 OOK 0290
OKF02610 OOK 0291
OKF02620 OOK 0292
OOK 0293
C
OKF02630}\mathrm{ OOK 0294

```

```

    OOK 0296
    OKF04350 OOK 0297
OK F04360 OOK 0298
OKF04370 OOK 0299
OKF04380 OOK 0300
OKF04390 OOK 0301
OKF04400 OOK 0302
OKF04410 OOK 0303
OKF04420 OOK 0304
OKF04430 OOK 0305
OKF04440 OOK 0306
OKF04450 OOK 0307
OKF04450 OOK 0307
OKF04460 OOK 0308

```
```

    COMMON/MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KC/KQ/KG/K/K
    INTEGER ENC,BLANK
    CATA END,BLANK/4HEND ,4H,
    I=0
    3 I=I + I
    REAC(KOR,90) KD(1),KC(2),KE(1),KE(2),KA(1,1)
    IF(KC(1).EQ.END) GO TO 99
    IF(KD(1).NE.BLANK) GO TO 2
    IF(KE(1).EQ.BLANK) GO TO 3
    K=NCDENO(KE(1),KE(2))
    IF(K.GT.M) GO TO 6
    NP(K)=KA(1,1)
    GO TO 3
    6 WRITE(KO,91) I,KE(1),KE(2)
    10LER=LER+1
    GO TO 3
    2 WRITE (KO,92) I,KD(1),KD(2),KE(1),KE(2),KA(1,1)
    GO TO 10
    9 9 ~ R E T U R N
    90 FORMAT (2 (A4,A2),8X,I 10)
    91 FORMAT(5HOCARD 16,6H NODE A4,A2,12H NOT IN ARCS)
    92 FORMAT (37HOCARE PUNCHING ERROR IN NODE CARD NO.IG/1H 2(A4,A2),8X,IOKF03030 OOK 0346
    110)
    END OKF03050 00K 0348
    ```

```

    SUBROUTINE READER
    [IMENS ION LC(9),KA(18,2),KQ(9)
    COMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)
    COMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
    CCMMCN /M/N/N/N/LER/LER/KAT/KAT/KOR/KOR/KTER/KTER
    COMMON/MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KC/KQ/KG/K/K
INTEGER TAPE1,PUNCH1,NODES1,PRINT1
INTEGER AL TER,OUTPUT,CCNPUT,TAPE,PUNCH, NODES, PRINT
CATA TAPE1,PUNCH1,NODESI,PRINT1/4HAPE ,4HUNCH,4HODES,4HRINT/
[ATA ALTER,OUTPUT,CCMPUT/4HALTE,4HOUTP,4HCOMP/
LATA TAPE,PUNCH,NODES,PRINT/4H TAP,4H PUN,4H NCD,4H PRI/
OKF03090 OOK 0350
OOK 0329
OKF0280 OOK 0331
OKF02910 OOK 0334
OOK 0335
OKF02930 OOK 0336
OKF02940 OOK 0337
OKF02950 OOK 0338
OKF02960 OOK 0339
OK F02970 OOK 0340
GO TO 10 (0)
OKF02980 OOK 0341
OKF02990 OOK 0342
OKF03000 OOK 0343
OKFO3010 OOK 0344
2 FORMAT (3THOCARL PUNCHING ERROR IN NOOE CARD NO.IG/1H 2VA4,A2J,8X,1OKFO303O OOK 0346
OKFO3040 OOK 0347
OKF03120 DOK 0351
OOK 0352
OOK 0353
OOK 0353
OOK 0354
OKF03150 OOK 0355
OKF03160 OOK 0356
OKFO3170 OOK 0357
OKF03180 OOK 0358
OKF03190 OOK 0359
OKF03200 OOK 0360
PAGE }1

```
```

    5 FEA[(KI,95) (KA(I,1),I=1,18)
        IF(KA(1,1).EQ.ALTER) GC TO 18
    IF(KA(l,1).EQ.OUTPUT) GO TO 119
    IF(KA(1,1).EQ.CCMPUT) GC TO 18
    WRITE(KO,96) (KA(I,1),I=1,18)
    CO 15 I=1,18
    15 KA(I,2)=KA(I,1)
    CO TO 5
    18 WRITE(KO,57)
    WRITE(KO,96) (KA(I,1),I=1,18)
    LER=1
    IF(KA(1,1).EQ.CCMPUT) GO TO 111
    20 REAC(KI,90) (KA(I,1),I=1,11)
IF(KA(1,1).EQ.ALTER) GC TO 140
IF(KA(1,1).EQ.OUTPUT) GO TO 121
IF(KA(1,1).EQ.CCMPUT) GO TO 1ll
GO TO 200
c
111 HRITE(KO,93) N,M,KG(4),KG(5)
9 9 9 ~ R E T U R N ~
C
119 hRITE(KO,96) (KA(I,1),I=1,18)
L=5
IF(KA(3,1).EQ.TAPE1) L=1
IF(KA1 3, 1).EQ.PUNCH1) L=2
IF(KA(3,l).EQ.NODES1) L=3
IF(KA(3,1).EQ.PRINT1) L=4
GO TO 80
121 WRITE(KC,88) (KA(I,1),I=1,6)
120 L=5
IF(KA(3,1).EQ.TAPE) L=1
IF(KA(3,1).EG.PUNCH) L=2
IF(KA(3,1).EQ.NODES) L=3
IF(KA(3,1).EQ.PRINT) L=4
80 IF(L-4) \&1,86,200
81 LC(L)=1

```

OKF03210 OOK 0361 OKF03220 OOK 0362 OKF03230 OOK 0363 OKF03240 ODK 0364 OKF03250 OOK 0365 OKF03260 OOK 0366 OKF03270 OOK 0367 OKF03280 OOK 0368 OKF03290 00K 0369 OK F03300 OOK 0370 OKF03310 00K 0371 OKF03320 OOK 0372 OKF03330 OOK 0373 OKF03340 OOK 0374 OKF03350 OOK 0375 OKF 03360 OOK 0376 OKF03370 OOK 0377 OKF03380 OOK 0378 OKF03390 OOK 0379 OK F03400 OOK 0380 OKF 03410 OOK 0381 OKF03420 OOK 0382 OKF03430 OOK 0383 OKF03440 OOK 0384 OKF03450 OOK 0385 OKF03460 OOK 0386 OKF03470 OOK 0387 OKF03480 OOK 0388 OKF03490 OOK 0389 OK F03500 OOK 0390 OKF03510 OOK 0391 OKFO3520 OOK 0392 OKF03530 OOK 0393 OKF03540 OOK 0394 OK FO3550 OOK 0395 OKF 03560 OOK 0396

PAGE 11
```

        CO TO 20
    86 KQ(7)=1
    GO TO 20
    C
140 IF(KA(7,1).GT.0) GC TO 142
KA (7,1)=1
142 WRITE(KO,91) (KA(I, 1),I=1,11)
N1=NCDENC(KA(3,1),KA(4,1)
A2=NCDENO(KA(5,1),KA(6,1))
IF(Nl.GT.N) GO TO 144
IF(N2.LE.M) GO TO 145
144 WRITE(KO,92)
LER=1
CO TO }2
145 Ll = LDECR(IL (N1))
L2=LDECR(IL(N1+1))-1
IF(L2.LT.LI) GO TO 144
DO 147 LL=L1,L2
IF(LAODR(IJ(LL)).NE.N2) GO TO 147
KA(7,1)=KA(7,1)-1
IF(KA(7,1).EQ.O) GO TO 149
147 CONTINUE
GO TO 144
149 KC(LL)=KA(8,1)
KU(LL)=KA(9,1)
KL(LL)=KA(10,1)
KX(LL)=KX(LL)+KA(11,1)
GO TC 20
CARD PUNCHING ERROR
200 LER=1
WRITE(KO,87) (KA(I, 1),I=1,6)
GO TO 20
87 FORMAT(23H ILLEGAL CCNTRCL CARD (3(A4,A2),1H))
8 FORMAT(1HO3(A4,A2))
90 FORMAT (3 (A4,A2), 12,4110)
91 FORMAT(1H0,3(A4,A2),I2,4I10)

```

OK F03570 DOK 0397 OKF 03580 OOK 0398 OKF03590 OOK 0399 OKF03600 OOK 0400 OKF03610 OOK 0401 OKF03620 OOK 0402 OKF 03630 OOK 0403 OK F03640 OOK 0404 OKF03650 OOK 0405 OKF03660 OOK 0406 OKF03670 OOK 0407 OKF 03680 OOK 0408 OKF03690 OOK 0409 OKF03700 OOK 0410 OKF03710 OOK 0411 OKF03720 OOK 0412 OKF 03730 OOK 0413 OKF03740 OOK 0414 DKF03750 OOK 0415 OKF 03760 OOK 0416 OKF03770 OOK 0417 OKF03780 OOK 0418 OKF03790 OOK 0419 OKF03800 OOK 0420 OKF 03810 OOK 0421 OKF03820 OOK 0422 OKF03830 OOK 0423 OKF03840 OOK 0424 OKF03850 OOK 0425 OKF 03860 DOK 0426 OKF03870 OOK 0427 OKF03880 OOK 0428 OKF03890 DOK 0429 OKF03900 OOK 0430 OKF03910 DOK 0431 OKFO3920 OOK 0432

PAGE 12
```

    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    ```

```

    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    M2, FORMAT(4THOTHE ARC ON THE ABCVE ALTER CARDIS NOT IN CORE) 
    ```
```

        KU(J)=KU(J)-KL(J) OKF04300 00K 0469
        IF(KU(J).GE.O) GO TO l
        hRITE(KO,51) J
        LER=LER+1
        I KX(J)=KX(J)-KL(J)
            JL LIST SEGMENT MOVED FROM TRANSL TD NAKEJL
        RETUFN
    5 1 ~ F O R M A T ~ ( 4 H O A R C , I 6 , 4 2 H ~ H A S ~ L O W E R ~ B O U N D ~ G R E A T E R ~ T H A N ~ U P P E R ~ B O U N D . ) ~
    90 FORMAT (6HONODE 2A4,28H NON-CONSERVATIVE, NET FLOW=I12)
        END
    ```

```

    SUBROUTINE KILTER(I)
    DINENSION LC(9),KA(18,2),KQ(9)
    CCMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)
    COMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
    COMMON
                /M/N/N/N/LER/LER/KAT/KAT/KOR/KOR/KTER/KTER
    CCMNCN/MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K
    IF(LDECR(IJ(1)).EQ.0) GO TO 70
    CALL PLACE(0,IJ(1))
    CALL ERASE(NL,N)
    70 LER=0
    5 \mp@code { I F ( K C ( K ) ) ~ 1 0 , 2 0 , 3 0 }
    10 IF(KX(K)-KU(K)) 13,40,14
    13 MINE=-KX(K)+KU(K)
    GO TO 50
    14 MINE=KX(K)-KU(K)
    EO TC 60
    20 IF(KX(K).LT.O) GO TO 13
    IF(KX(K)-KU(K)) 40,40,35
    30 [F(KX(K)) 32,40,35
    32 NINE=-KX(K)
        GO TO 50
    35 MINE=KX(K)
    CO TO 60
    50 KOR=LADDR(IJ(K))
        KAT=0
    ```

OK F04300 OOK 0469 OKF 04310 OOK 0470 OKF04320 OOK 0471 OKF04330 OOK 0472
OKF04340 OOK 0473
OOK 0474
OKF 04500 OOK 0475
OKF04510 OOK 0476
OKF04520 OOK 0477
OKF 04530 OOK 0478
******* OOK 0479
04510 00K 0480
OKF04600 OOK 0481
OOK 0482
OOK 0483
OOK 0484
DKF 04630 OOK 0485
OK F04640 OOK 0486
OKF04650 OOK 0487
OOK 0488
OK F04680 OOK 0489
OKF 04690 OOK 0490
OKF04700 OOK 0491
OKF04710 OOK 0492
OKF04720 OOK 3493
OKF04730 OOK 0494
OKF 04740 OOK 0495
OKF 04750 OOK 0496
OKF04760 OOK 0497
OKF 04770 OOK 0498
OKF04780 OOK 0499
OKF04790 OOK 0500
OKF04800 OOK 0501
OKF04810 OOK 0502 OKF 04820 OOK 0503 OKF04830 OOK 0504

PAGE 14
```

        KTER=I
    GO TO 65
    60 KOR=I
    KAT=10
    KTER=LADCR(IJ(K))
    65 (ALL LABELN(KBR)
    IF(KBR.EQ.O) GO TD 68
    CALL BREAKT
    GO TO 5
    6 8 \text { CALL UPNOPR}
    IF(LER.EQ.O) GO TO 5
    40 RETURN
    ENC
    C************************************************************************************ 00k 0518
SUBROUTINE OUTPUT(KZ)
CIMENSION LC(9),KA(18,2),KQ(9)
OIMENSION KZ(101)
CCMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)
CCMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(I)/IL/IL(1)/JL/JL(1)/JI/JI(1)
CDMMON
/M/M/N/N/LER/LER/KAT/KAT/KCR/KOR/KTER/KTER
CCMNON/MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K
CATA KILT,BLANK,IEN/IHK,IH,1HN/
INTEGER OUT(9)
LOGICAL CUTTAP,CUTPRT,CUTPCH
DOUBLE PRECISION KCUM
KG1=KQ(1)
KCUM=0
IF(KZ(101).NE.0) GO TO 10
IF(LER.NE.O) GC TO 30
MZ=KILT
CO TO 100
10 IF(LER.NE.O) GC TO 18
WRITE(KO,G9) KZ(101)
18 KZ(101)=NINO(KZ(101),100)
30 MZ=BLANK
30 MZ=RLANK

```
```

OKF04840 OOK 0505

```
OKF04840 OOK 0505
OKF04850 OOK 0506
OKF04850 OOK 0506
OKF04860 OOK 0507
OKF04860 OOK 0507
OKF04870 00K 0508
OKF04870 00K 0508
OKF04880 OOK 0509
OKF04880 OOK 0509
OKF04890 ODK 0510
OKF04890 ODK 0510
OKF04900 OOK 0511
OKF04900 OOK 0511
OKF04910 OOK 0512
OKF04910 OOK 0512
OKF04920 OOK 0513
OKF04920 OOK 0513
OKF04930 OOK 0514
OKF04930 OOK 0514
OKF04940 OOK 0515
OKF04940 OOK 0515
OKF04950 OOK 0516
OKF04950 OOK 0516
OKFO4960 OOK 0517
OKFO4960 OOK 0517
********* OOK 0518
********* OOK 0518
OKF05000 OOK 0519
OKF05000 OOK 0519
OKF05030 OOK 0520
OKF05030 OOK 0520
OKFO5O40 OOK 0521
OKFO5O40 OOK 0521
 OOK 0522
 OOK 0522
 OOK 0523
 OOK 0523
 OOK }052
 OOK }052
OKF05070 OOK 0525
OKF05070 OOK 0525
OKF05080 OOK 0526
OKF05080 OOK 0526
 ODK 0527
 ODK 0527
 OOK }052
 OOK }052
 OOK 0529
 OOK 0529
OKF05090 OOK 0530
OKF05090 OOK 0530
OKF05100 OOK 0531
OKF05100 OOK 0531
OKF05110 OOK 0532
OKF05110 OOK 0532
OKFO5120 OOK 0533
OKFO5120 OOK 0533
OK FO5130 OOK 0534
OK FO5130 OOK 0534
OKF05140 OOK 0535
OKF05140 OOK 0535
OKF05150 OOK 0536
OKF05150 OOK 0536
OKF05160 OOK 0537
OKF05160 OOK 0537
OKF05170 OOK 0538
OKF05170 OOK 0538
OKFO5180 OOK 0539
OKFO5180 OOK 0539
OKFO5190 OOK 0540
OKFO5190 OOK 0540
 PAGE 15
```

    PAGE 15
    ```
```

    IFILC(2).EQ.O) GO TO 12
    WRITE(KQ1,90) (KA(I,2),I=1,18)
    MRITE(KO,89)
    12 IF(LC(1).EQ.0) GO TO 41
IF(KG(6).NE.O) GO TO }2
KQ(6)=1
FEWIND K2
24 WRITE(K2,90) (KA(I,2),I=1,18)
WRITE(KO,88)
4 1 ~ I F ( K G ( 7 ) . E Q . 0 ) ~ G O ~ T O ~ 7 - ~
WRITE(KO,91) (KA(I,2),I=1,18)
l=1
LL=1
CUTTAP=LC(1).NE.O
CUTPRT=KQ(7).NE.O
CUTPCH=LC(2).NE.O
DO 3 I=1,M
LUP=LDECR(IL(I+1))
302 IF(L.GE.LUP) GO TO 3
LU=LADDR(IJ(L))
LLC=KC(L)
KC(L)=KC(L)-NP(I)+NP(LU)
KX(L)=KX(L)+KL(L)
KU(L)=KU(L)+KL(L)
LZ=KX(L)*KC(L)
KCUM=KCUM+LZ
NX=MZ
II = I +I
LU2=LU+LL
CUT(1)=NN(II-1)
CUT(2)=NN(II)
CUT(3)=NN(LU2-1)
CUT(4)=NN(LU2)
OUT(5)=KC(L)
CUT(6)=KU(L)
CUT(7)=KL(L)

```

OK F05200 OOK 0541 OKF 05210 DOK 0542 OKF05220 OOK 0543 OKF05230 OOK 0544 OKF05240 OOK 0545
OK F05250 OOK 0546
OKF05260 OOK 0547
OKFO5270 OOK 0548
OKF05280 OOK 0549
OKF 05290 OOK 0550
OK FO5300 OOK 0551
OKF05310 OOK 0552
OKFO5320 DOK 0553
 OOK 0554
 OOK 0555
 OOK 0556
OKF05330 OOK 0557
OKFO5340 OOK 0558
OKF05350 OOK 0559
OKF 05360 OOK 0560
OKF05370 OOK 0561
OKF05380 OOK 0562
OKFO5390 OOK 0563
OKF05400 OOK 0564
OKF05410 OOK 0565
OKFO5420 OOK 0566
OKF05430 00K 0567
 OOK 0568
 nOK 0569
 OOK 0570
 00K 2571
 OOK 0572
 ODK 0573
 OOK 0574
 OOK 0575
 OOK 0576
 PAGE 16
```

```
 CUT(8)=KX(L)
```

```
 CUT(8)=KX(L)
 CUT(9)=LZ
 CUT(9)=LZ
 IF(KZ(101).LE.0) GO TO 16
 IF(KZ(101).LE.0) GO TO 16
 IF(KZ(LL).NE.L) GO TO 16
 IF(KZ(LL).NE.L) GO TO 16
 KZ(101)=KZ(101)-1
 KZ(101)=KZ(101)-1
 LL=LL+1
 LL=LL+1
 NX=IEN
 NX=IEN
16 IF(OLTTAP) WRITE(K2,93) CUT,MX
16 IF(OLTTAP) WRITE(K2,93) CUT,MX
 IF(CUTPRT) WRITE(KC,94) CUT,NP(I),NP(LU),LLC,MX
 IF(CUTPRT) WRITE(KC,94) CUT,NP(I),NP(LU),LLC,MX
 IF(CUTPCH) WRITE(KQ1,93) OUT
 IF(CUTPCH) WRITE(KQ1,93) OUT
333 L=L+1
333 L=L+1
 GO TC 302
 GO TC 302
 3 continue
 3 continue
 IF(LC(3).EQ.0) GO TO 15
 IF(LC(3).EQ.0) GO TO 15
 IF(LC(1)+LC(2).EQ.0) GO TO 27
 IF(LC(1)+LC(2).EQ.0) GO TO 27
 IF(LC(1).EQ.0) GO TO 203
 IF(LC(1).EQ.0) GO TO 203
 WRITE(K2,96)
 WRITE(K2,96)
203 IF(LC(2).EQ.0) GO TO 115
203 IF(LC(2).EQ.0) GO TO 115
 WRITE(KQ1,96)
 WRITE(KQ1,96)
115 CO 200 I =1,M
115 CO 200 I =1,M
 IF(LC(1).EQ.0) GO TO E5
 IF(LC(1).EQ.0) GO TO E5
 hRITE(K2,95) NN(2*I-1),NN(2*I),NP(I)
 hRITE(K2,95) NN(2*I-1),NN(2*I),NP(I)
85 IF(LC(2).EQ.0) GO TO 200
85 IF(LC(2).EQ.0) GO TO 200
 hRITE(KQ1,95) NN(2*I-1),NN(2*I),NP(I)
 hRITE(KQ1,95) NN(2*I-1),NN(2*I),NP(I)
200 CONTINUE
200 CONTINUE
 15 IF(LC(1).EQ.O) GO TO 27
 15 IF(LC(1).EQ.O) GO TO 27
 WRITE(K2,97)
 WRITE(K2,97)
27 IF(KQ(7).EQ.0) GU TO 57
27 IF(KQ(7).EQ.0) GU TO 57
 WRITE(KO,98)
 WRITE(KO,98)
 WRITE(KO,999) KCUM
 WRITE(KO,999) KCUM
5 7 \text { IF(LC(2).EQ.0) GO TO 77}
5 7 \text { IF(LC(2).EQ.0) GO TO 77}
 WRITE(KQ1,97)
 WRITE(KQ1,97)
77 WRITE(KO,S2) (LC(I),I=5,8)
77 WRITE(KO,S2) (LC(I),I=5,8)
 RETURN
 RETURN
88 FORMAT(24HOTHIS RUN CUTPUT TO TAPE)
88 FORMAT(24HOTHIS RUN CUTPUT TO TAPE)
89 FORMAT(25HOTHIS RUN OLTPUT TO PUNCH)
```

```
89 FORMAT(25HOTHIS RUN OLTPUT TO PUNCH)
```

```
```

    90 FORMAT (18A4/4HARCS22X,4HCOST5X,5HUPPER5X,5HLCWER9X,1HX 8X,4HFLOW) OKFO5840 OOK 0613
    91 FORMAT (1H118A4/5H ARCS16X, HHCOST6X,5HUPPER6X,5HLOWER1OX, LHX8X, OKF05850 OOK 0614
    1 4HFLOW9X,3HPI19X,3HPI28X,4HCBAR/1XI OKF05860 00K 0615
    92 FORMAT (1 8HONO OF BREAKTHRUS=I12,22H, NO CF NCNBREAKTHRUS=I12,18H, OKF05870 OOK 06 16
    1NO OF X CHANGES=I12,/42H NO OF NODES FROM WHICH LABELING WAS DONE=OKF05880 00K 0617
    2I12)
    93 FORMAT (6X,2(A4,A2), 2X,4I 10,I 12,1X,A1)
    94 FORMAT (2(1X,A4,A2),4(1X,I10),4I12,1X,A1)
    9 5 \text { FORMAT (6X,A 4,A 2,6X,I 12)}
    96 FORMAT (6HNODES )
    97 FORNAT (3HEND)
    98 FORMAT (4HOEND)
    99 FORMAT (1HOI5,23H ARCS ARE CUT OF KILTER)
    999 FORMAT(2GHOTOTAL SYSTEM CONTRIBUTION = F20.0)
ENC

```

```

C FRINTS TIME OF INTRA-SURROUT INE TRANSFERS OR DATEETIME
C "TIMING" IS AN M.I.T. INTERNAL SUBROUTINE THAT RETURNS THE CPU TIME

```

```

C [TIMING" IS AN M.I.I. INTERNAL SUBROUTINE THAT RETURNS THE CPU TIME SECCNDS.
C TIME IN THE FOLLOWING 5A4 FORMAT: MM/DD/YY HR*MI*SS.FF
CINENSION A(5)
COUBLE PRECISION LV,EAT
INTEGER TNOW,TSTART,TREL
INTEGER LT
CALL TIMING(TNOW)
TREL=TNOW-T START
IF(TREL.LT.O) TREL=TREL+8640000
TI = TREL/ 100.
LRITE(WT,10)LV,ENT,TI
RETURN
ENTRY STRTIM(WT)
CALL TIMING(TSTART)
CALL WHEN(A)
hRITE(WT,20) A
OKF05890 OOK 0618
OKF05900 OOK 0619
OKF05910 OOK 0620
OKFO5920 00K 0621
OKF05930 OOK 0622
OKFO5940 OOK 0623
OKF05950 OOK 0624
OKF05960 OOK 0625
OOK 0626
OKF05980 OOK 0627

```


```

    0630
    OOK 0631
    OOK 0632
    OOK 0633
    OOK 0634
    OOK 0635
    OOK 0635
    OOK 0636
    OOK 0637
    OOK 0638
    OOK 0639
    OOK 0640
    OOK 0641
    OOK 0642
    OOK 0643
    OOK 0644
    OOK 0645
    OOK 0646
    DOK 0647
    OOK 0648
    PAGE 18

```
```

        RETURN
    10 FOFMAT (/,T103,29('*'),/,T103,'* LV. ',A6,T131,**',/,
    $T103,'* ENT. ',A6,' a|',F7.2,' SEC.*',/,T103,29('*'),/)
    20 FORMAT (/T103,29('*')/T103,** DATE = ',2A4,T131,**/
        $T103,'* TIME = ', 3A4,T131,'*'/T103,29('*')//)
        END
    //STEF EXEC ASMC,PARM.C='LCAC,DECK'
//C.SYSIN DD :
ASSEMI START O
ENTRY LABELN,BREAKT,UFNCPR,NODENO
SPACE 5
LABELN SAVE (14,12),,*
BALR 12,0
USING \#,12
LA 11,SAVER
ST 13,4(0,11)
ST 11,8(0,13)
L 11,IJAD
S 11,FOUR
L 10,NLAD
S 10,FOUR
13,KCAD
13,FOUR
14,K XAD
14,FOUR
15,KUAD
15,FOUR
1,0(0,1)
SR 2,2
ST 2,0(0,1)
ST 1,SAVER
L 1,JIAD
S 1,FOUR
L 2,KORAD
L 2,0(0,2)
ST 2,I I=KOR

```

OOK 0649
OOK 0650
OOK 0651
OOK 0652
OOK 3653
OOK 0654
0OK 0655
OKF 10550 OOK 0656
OKF06020 OOK 0657 OKF 06030 00K 0658 OKF06040 OOK 0659 OKF06050 OOK 0660 OKF 06060 OOK 0661 OKF06070 OOK 0662 OKF06080 OOK 0663 OKF06090 OOK 0664 OKF06100 00K 0665 OK F06110 OOK 0666 OK F06120 OOK 0667 OKF 06130 OOK 0668 OK F06140 OOK 0669 OKF06150 OOK 0670 OKF06160 OOK 0671 OK F06170 OOK 0672 OKF06180 OOK 0673 OKF06190 00K 0674 OKF06200 OOK 0675 OKF 06210 OOK 0676 OK F06220 OOK 0677 OKF06230 OOK 0678 OK F06240 OOK 0679 OKF06250 OOK 0680 OKF 06260 OOK 0681 OKF06270 OOK 0682 OKF06280 OOK 0683 OKF06290 OOK 0684 PAGE 19
\begin{tabular}{|c|c|c|c|c|}
\hline & SLL & 2,2 & & (R2 HAS I*4) \\
\hline & \(L\) & 3 , EIGHT & & \(N U=2\) \\
\hline & L & 4.NUP & & (R3 HAS NU*4) \\
\hline & SR & 7,7 & & (R4 HAS NUP*4) \\
\hline & CH & 7,4(0,11) & & IF(LDECR(IJ(1)).NE.0) GO TO 14 \\
\hline & BNE & L14 & & \\
\hline & L & 7,IFINAD & & \\
\hline & L & 7,0(0,7) & & \\
\hline & STH & 7,2(2,10) & & NL(I) \(=1 F I N\) \\
\hline & L & 7,1 & & \\
\hline & STH & 7,4(0,11) & & CALL PLACEII,IJ(1)) \\
\hline & L & 4, EIGHT & & NUP \(=2\) \\
\hline L 14 & L & 9,ILAD & & \\
\hline & S & 9 , FOUR & & (R 9 HAS ADDRESS OF IL-4) \\
\hline & LH & 5,4(2,9) & 14 & \(L 2=\operatorname{LDECR}(\mathrm{IL}(1+1) \mathrm{l}-1\) \\
\hline & BCTR & 5,0 & & \\
\hline & SLL & 5,2 & & (R5 HAS L2*4) \\
\hline & LH & 6,0(2,9) & & (R6 HAS L*4) \\
\hline & SLL & 6,2 & & L=LDECR(ILII) \\
\hline 116 & CR & 5,6 & 16 & IF(L2.LT.L) GO TO 28 \\
\hline & BL & L28 & & \\
\hline & LH & 8,2(6,11) & & J=LADDR(IJ(L)) \\
\hline & SLL & 8,2 & & (R8 HAS J*4) \\
\hline & SR & 7,7 & & \\
\hline & C & 7,018,10) & & IF(NL(J).NE.0) GO TO 27 \\
\hline & BNE & 127 & & \\
\hline & C & 7,0(6,13) & & IF(KC(L).GT.0) GO TO 21 \\
\hline & BL & L21 & & \\
\hline & L & 7,0(6,14) & & \\
\hline & C & 7,016,15) & & IF(KX(L)-KU(L)) 22,27,27 \\
\hline & BL & L22 & & \\
\hline & B & L27 & & \\
\hline L21 & SR & 7.7 & & \\
\hline & C & 7,016,14) & 21 & IF(KX(L).GE.0) GO TO 27 \\
\hline & BNH & L27 & & \\
\hline L22 & L & 7, I & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline OKF06300 & OOK 0685 \\
\hline OKF06310 & DOK 3686 \\
\hline OK F06320 & OOK 0687 \\
\hline OKF 06330 & OOK 0688 \\
\hline OKF06340 & 00K 0689 \\
\hline OKF06350 & OOK 0690 \\
\hline OK F 06360 & OOK 06 \\
\hline OK F06370 & OOK 0692 \\
\hline OKF06380 & OOK 0693 \\
\hline OKF06390 & OOK 0694 \\
\hline OKF66400 & OOK 0695 \\
\hline OKF 06410 & OOK 0696 \\
\hline OK F06420 & OOK 0697 \\
\hline OKF 06430 & OOK 0698 \\
\hline OK F06440 & OOK 0699 \\
\hline 6450 & OOK 0700 \\
\hline KF06460 & OOK 07 \\
\hline OKF06470 & OOK 0702 \\
\hline OKF06480 & OOK 0703 \\
\hline OKF06490 & 00K 0704 \\
\hline OKF06500 & OOK 0705 \\
\hline OKF 06510 & OOK 0706 \\
\hline OKF06520 & 00k 0707 \\
\hline KF06530 & DOK 0708 \\
\hline OK F06540 & 00k 0709 \\
\hline KF06550 & OOK 0710 \\
\hline OKF06560 & 00k 0711 \\
\hline OK F06570 & OOK 0712 \\
\hline OKF06580 & OOK 0713 \\
\hline OKF06590 & OOK 0714 \\
\hline OK F06600 & 00k 0715 \\
\hline OKF 06610 & OOK 0716 \\
\hline OK F06620 & OOK 0717 \\
\hline OKF06630 & OOK 0718 \\
\hline OKF06640 & OOK 0719 \\
\hline F06650 & 00k 07 \\
\hline PAGE & 20 \\
\hline
\end{tabular}

OKF 06300 OOK 0685 OKF06310 00K 3686 OKF06320 OOK 0687 OKF 06330 OOK 0688 OKF06340 OOK 0689 OKF06350 OOK 0690 OKF06360 OOK 0691 OK F06370 OOK 0692 OKF06380 OOK 0693 OKF06390 OOK 0694 OKF06400 OOK 0695 OKF06410 DOK 0696 OK F06420 OOK 0697 OKF06440 OKF06450 OOK 0700 OKF06460 OOK 0701 OKF06470 OOK 0702 OKF06480 OOK 0703 OKF06490 OOK 0704 OKF06500 OOK 0705 OKF 06510 OOK 0706 OKF06520 00K 0707 OKF06530 OOK 0708 OKF06540 00K 0709 OKF06550 OOK 0710 OKF06560 OOK 0711 OKF06570 OOK 0712 OKF06580 OOK 0713 OKF06600 OKF 06610 OOK 0716 OK F06620 OOK 0717 OKF06640 OK F06650 OOK 0720 PAGE 20
\begin{tabular}{|c|c|c|c|c|}
\hline & ST & 7,0(8,10) & 22 & \(N L(J)=I\) \\
\hline & SRL & 6,2 & & \\
\hline & STH & 6,018,10) & & CALL PLACE(L,NL(J)) \\
\hline & SLL & 6,2 & & \\
\hline & SRL & 8,2 & & \\
\hline & STH & 8,3(4,11) & & CALL PLACE(J,IJ (NUP)) \\
\hline & A & 4, FOUR & & NUP \(=\) NUP + 1 \\
\hline & \(L\) & 7,KTERAC & & \\
\hline & 1 & 7,0(0,7) & & \\
\hline & CR & 7,8 & & IF(J.EQ.KTER) GO TO 47 \\
\hline & BE & L47 & & \\
\hline 127 & A & 6, FOUR & 27 & \(\mathrm{L}=\mathrm{L}+1\) \\
\hline & B & L16 & & GO TO 16 \\
\hline L28 & L & 9, JLAD & & \\
\hline & S & 9 , FOUR & & (R9 HAS ADDRESS OF JL-4) \\
\hline & LH & 5,4(2,9) & 28 & L2 \(2=\operatorname{LDECR}(\mathrm{JL}(\mathrm{I}+1) \mathrm{l}-1\) \\
\hline & BCTR & 5,0 & & \\
\hline & SLL & 5,2 & & \\
\hline & LH & 6,012,9) & & L=LDECR(JL(I)) \\
\hline & SLL & 6,2 & & \\
\hline L 30 & CR & 5,6 & 30 & IF(L2.LT.L) GO TO 43 \\
\hline & BL & L43 & & \\
\hline & LH & 8,2(6,1) & & \(J=L\) ADDR (JI(L)) \\
\hline & SLL & 8.2 & & \\
\hline & SR & 7,7 & & \\
\hline & C & 7,018,10) & & IF(NL(J)).NE.O) GO TO 42 \\
\hline & BNE & 142 & & \\
\hline & LH & 9,0(6,1) & & \(K R=\operatorname{LDECR}(\mathrm{JI}(\mathrm{L})\)) \\
\hline & SLL & 9,2 & & (R9 HAS KR*4) \\
\hline & C & 7,019,13) & & IF(KC(KR).GE.OI GO TO 36 \\
\hline & BnH & L36 & & \\
\hline & L & 7,0(9,14) & & \\
\hline & C & 7,019,15) & & IF \((K X(K R)-K \cup(K R)) 42,42,37\) \\
\hline & BH & 137 & & \\
\hline & B & 142 & & \\
\hline L. 36 & SR & 7,7 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & 00k 0721 \\
\hline OKF06670 & 00K 0722 \\
\hline OKF06680 & 00K 0723 \\
\hline OK F06690 & OOK 0724 \\
\hline OKF06700 & OOK 07 \\
\hline OK F06710 & OOK 0726 \\
\hline OKF06720 & OOK 0727 \\
\hline OKF 06730 & OOK 0728 \\
\hline OK F06740 & OOK 0729 \\
\hline OKF06750 & OOK 0730 \\
\hline OKF06760 & OOK 0731 \\
\hline KF06770 & 00k 0732 \\
\hline KF06780 & 3 \\
\hline K06790 & 0734 \\
\hline OKF06800 & OOK 0735 \\
\hline OKFJ6810 & 00k 0736 \\
\hline OK F 06820 & OOK 0737 \\
\hline OKF06830 & OOK 0738 \\
\hline OK F06840 & 00K 0739 \\
\hline OKF06850 & OOK 0740 \\
\hline OKF 06860 & 00K 0741 \\
\hline OK F06870 & DOK 0742 \\
\hline KF6880 & 00K 0743 \\
\hline OK F06890 & 00K 0744 \\
\hline OKF06900 & OOK 0745 \\
\hline OKF06910 & OOK 0746 \\
\hline OK F06920 & OOK 0747 \\
\hline OKF 06930 & OOK 0748 \\
\hline OK F06940 & DOK 0749 \\
\hline OKF06950 & OOK 0750 \\
\hline OK F06960 & 00K 0751 \\
\hline OK F06970 & 00K 0752 \\
\hline OKF 06980 & OOK 0753 \\
\hline OKF 06990 & OOK 0754 \\
\hline OKF07000 & OOK 0755 \\
\hline OKF 07010 & 00K 0756 \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& C \\
& B N L
\end{aligned}
\] & \[
\begin{aligned}
& 7,0(9,14) \\
& 42
\end{aligned}
\] & 36 & IF(KX(KR).LE.O) GO TO 42 \\
\hline \multirow[t]{12}{*}{137} & L & 7, I & & \\
\hline & LCR & 7,7 & 37 & \(N L(J)=-I\) \\
\hline & ST & 7,0(8,10) & & \\
\hline & SRL & 9,2 & & \\
\hline & STH & 9,018,10) & & CALL PLACE(KR,NL(J) \\
\hline & SRL & 8,2 & & \\
\hline & STH & 8,014,11) & & CALL PLACE(J,IJ (NUP)) \\
\hline & A & 4 ,FOUR. & & \(N U P=N U P+1\) \\
\hline & L & 7,KTERAD & & \\
\hline & L & 7,0(0,7) & & \\
\hline & CR & 7,8 & & IF(J.EQ.KTER) GO TO 47 \\
\hline & BE & 147 & & \\
\hline \multirow[t]{2}{*}{142} & A & 6,FOUR & 42 & \(\mathrm{L}=\mathrm{L}+1\) \\
\hline & B & L 30 & & GO TO 30 \\
\hline \multirow[t]{7}{*}{143} & CR & 3,4 & 43 & IF(NU.GE.NUP) GO TO 48 \\
\hline & BNL & L48 & & \\
\hline & LH & 2,013,11) & & I= LDECR(IJ (NU)) \\
\hline & A & 3 ,FOUR & & \(\mathrm{NU}=\mathrm{NU}+1\) \\
\hline & ST & 2,1 & & \\
\hline & SLL & 2,2 & & \\
\hline & B & L 14 & & GO TO 14 \\
\hline \multirow[t]{3}{*}{147} & L & 1,SAVER & & \\
\hline & L & 7,0NE & & \\
\hline & ST & 7,010,1) & 47 & \(K B R=1\) \\
\hline \multirow[t]{9}{*}{148} & SRL & 3,2 & & \\
\hline & BCTR & 3,3 & 48 & \(N \mathrm{~N}=\mathrm{NU}-1\) \\
\hline & L & 7,LCAD & & \\
\hline & A & 3,2810,7) & & \(L C(8)=L C(8)+N U\) \\
\hline & ST & 3,28(0,7) & & \\
\hline & ST & 4 , NUP & & \\
\hline & L & 13, SAVER+4 & & RETURN \\
\hline & RETURN & V (14,12),T & & END \\
\hline & EJECT & & & \\
\hline BREAK T & SAVE & (14,12) , * & & SUBROUTINE BREAKT \\
\hline
\end{tabular}
```

OKF07020 00K 0757
OKF07030 00K 0758
OKF07040 OOK 0759
DKF07050 OOK 0760
OKF07060 OOK 0761
OKFO7070 OOK 0762
OKFO7080 OOK 0763
OKF07090 OOK 0764
OKF07100 00K 0765
OKF07110 DOK 0766
OKF07120 DOK 0767
OKF07130 OOK 0768
OKF07140 OOK 0769
OKF07150 OOK 0770
OKF07160 OOK 0771
OKF07170 OOK 0772
OKF07180 OOK 0773
OKFO7190 OOK 0774
OKF07200 OOK 0775
OKFO7210 OOK 0776
OKF07220 OOK 0777
OKF07230 OOK 0778
OKFO7240 OOK 0779
OKF07250 OOK 0780
OKF07260 OOK 0781
OKF07270 OOK 0782
OKF07280 OOK 0783
OKF07290 OOK 0784
OKF07300 OOK 0785
OKFO7310 OOK 0786
OKF07320 OOK 0787
OKF07330 OOK 0788
OKF07340 00K 0789
OKFO7350 OOK 0790
DKF07360 DOK 0791
OKF07370 DOK 0792
PAGE 22

```

\begin{tabular}{|c|c|c|c|c|}
\hline & LH & 7,210,7) & & \\
\hline & CR & 5,7 & & IF(KP.EQ.IFIN) GC TO 31 \\
\hline & BE & B 31 & & \\
\hline & LTR & 5,5 & & IF(KP.GT.O) GO TO 23 \\
\hline & BP & B 23 & & \\
\hline & SR & 7,7 & & \\
\hline & C & 7,0(6,13) & & IF(KC(KK).GE.O) GO TO 19 \\
\hline & BNH & B19 & & \\
\hline & L & 7,0(6,14) & & \\
\hline & S & 7,016,15) & & \\
\hline & CR & 8,7 & & MINE=MINO(MINE, KX(KK)-KU(KK)) \\
\hline & BNH & B21 & & \\
\hline & LR & 8,7 & & \\
\hline & B & B21 & & GO TO 21 \\
\hline B19 & L & 7,016,14) & & \\
\hline & CR & 8.7 & 19 & MINE=MINO(MINE,KX(KK)) \\
\hline & BNH & B21 & & \\
\hline & LR & 8,7 & & \\
\hline B21 & SRL & 6,2 & & \\
\hline & LCR & 6,6 & 21 & \(K K=-K K\) \\
\hline & STH & 6,0(1,11) & & CALL PLACE(KK,IJ(J)) \\
\hline & B & B29 & & GO TO 29 \\
\hline B23 & SR & 7,7 & & \\
\hline & C & 7,0(6,13) & 23 & IF(KC(KK).GT.0) GO TO 26 \\
\hline & BL & B 26 & & \\
\hline & L & 7,0(6,15) & & \\
\hline & S & 7,0(6,14) & & \\
\hline & CR & 8,7 & & MINE=MINO(MINE, KU \((K K)-K X(K K))\) \\
\hline & BNH & B28 & & \\
\hline & LR & 8,7 & & \\
\hline & B & B28 & & GO TO 28 \\
\hline 826 & S & 7,0(6,14) & & \\
\hline & CR & 8.7 & 26 & MINE=MINO(MINE, -KX (KK)) \\
\hline & BNH & B28 & & \\
\hline & LR & 8,7 & & \\
\hline B28 & SRL & 6,2 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline OKF07740 & OOK 0829 \\
\hline 50 & OOK 08 \\
\hline KF07760 & OOK 08 \\
\hline OKF07770 & OOK 0832 \\
\hline OKF07780 & OOK 0833 \\
\hline OKF07790 & OOK 0834 \\
\hline OKF07800 & OOK 0835 \\
\hline OKF07810 & OOK 0836 \\
\hline OKF07820 & OOK 0837 \\
\hline OK F07830 & OOK 0838 \\
\hline OKF07840 & OOK 0839 \\
\hline OKFO7850 & OOK 0840 \\
\hline OK F07860 & OOK 0841 \\
\hline OKF07870 & OOK 0842 \\
\hline OKF07880 & OOK 0843 \\
\hline OKF07890 & OOK 0844 \\
\hline KF07900 & OOK \\
\hline K07910 & OOK 08 \\
\hline 07920 & 00K 08 \\
\hline KF07930 & OOK 08 \\
\hline OKF07940 & 00K 08 \\
\hline OKF 07950 & 00K 0850 \\
\hline OK F07960 & 00K 0851 \\
\hline OKF07970 & 00K 0852 \\
\hline OK F07980 & OOK 0853 \\
\hline OK F07990 & OOK 0854 \\
\hline OKF08000 & 00K 0855 \\
\hline OK F080 10 & OOK 0856 \\
\hline OKF08020 & OOK 0857 \\
\hline OK F08030 & OOK 0858 \\
\hline OK F08040 & OOK 0859 \\
\hline OKF 08050 & 00K 0860 \\
\hline OK F08060 & 00K 0861 \\
\hline OKF08070 & OOK 0862 \\
\hline OKF 08080 & OOK 08 \\
\hline 809 & 00K 0864 \\
\hline & \\
\hline
\end{tabular}

OKFO7760 OOK 083 OKF 07770 OOK 0832 OKF07780 OOK 0833 OKF07790 DOK 0834 OKFO7800 OOK 3835 OKF07810 OOK 0836 OKF 07820 OOK 0837 OKFO7840 OOK 0839 OKFO7850 OOK 0840 OK F07860 OOK 0841 OKF07870 OOK 0842 OKF07880 OOK 0843 OKF07890 OOK 0844 OKF07900 00K 0845 OKF07920 00K 0847 OKF07930 00K 0848 OKF07940 OOK 0849 OKF 07950 OOK 0850 OK F07960 OOK 0851 OKF07970 OOK 0852 OK F07980 OOK 0853 OK F07990 OOK 0854 OKF08000 OOK 0855 OKFOBO20 OOK 0857 OKF08020 OOK 0857 OKF08040 0 K OKF08050 OOK 0860 OK F08060 OOK 0861 OKF08070 OOK 0862 OKF08080 OOK 0863 PAGE 24
\begin{tabular}{|c|c|c|c|c|}
\hline & STH & 6,0(1,11) & 28 & CALL PLACE(KK,IJ(J)) \\
\hline \multirow[t]{3}{*}{829} & LPR & 4,5 & 29 & \(K T=I A B S(K P)\) \\
\hline & SLL & 4,2 & & \\
\hline & bxLE & 1,2,B11 & & \\
\hline \multirow[t]{11}{*}{B31} & L & 9,KAD & & \\
\hline & \(L\) & 9,015,9) & & \\
\hline & SLL & 9,2 & & (R9 HAS K* 4) \\
\hline & L & 7,0(9,14) & & \\
\hline & L & 5,KATAD & & \\
\hline & 1 & 5,0(0,5) & & (R5 HAS KAT) \\
\hline & S & 5 ,FOUR & 31 & IF(KAT.GT.4) GO TO 34 \\
\hline & BP & B 34 & & \\
\hline & AR & 7,8 & & \\
\hline & ST & 7,019,14) & & \(K X(K)=K X(K)+M I N E\) \\
\hline & B & 835 & & GO TO 35 \\
\hline \multirow[t]{2}{*}{B34} & SR & 7.8 & & \\
\hline & ST & 7,0(9,14) & 34 & \(K X(K)=K X(K)-M I N E\) \\
\hline \multirow[t]{9}{*}{835} & S & 1,FOUR & & \\
\hline & LR & 3,1 & 35 & \(L C(7)=L C(7)+J\) \\
\hline & SRL & 1,2 & & (R3 HAS JJ*4) \\
\hline & L & 7,LCAD & & \\
\hline & L & 9,24(0,7) & & \\
\hline & AR & 9,1 & & \(J J=J-1\) \\
\hline & A & 9,CNE & & \\
\hline & ST & 9,24(0,7) & & \\
\hline & LR & 1,2 & & DO \(43 \mathrm{~J}=1, \mathrm{JJ}\) \\
\hline \multirow[t]{9}{*}{B36} & SR & 6,6 & & \\
\hline & AH & 6,0(1,11) & & KK=LDECR(IJ (J)) \\
\hline & BP & B42 & & IFIKK.GT.0) GO TC 42 \\
\hline & LCR & 6,6 & & \(K K=-K K\) \\
\hline & SLL & 6,2 & & \\
\hline & L & 7,0(6,14) & & \\
\hline & SR & 7,8 & & KX \({ }^{\text {K }}\) K \()=K X(K K)-M I N E\) \\
\hline & ST & 7,016,14) & & \\
\hline & B & 843 & & GO TO 43 \\
\hline \(B 42\) & SLL & 6.2 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline OK F08100 & 0 \\
\hline OKF08110 & OOK 0866 \\
\hline OKF 08120 & OOK 0867 \\
\hline OK F08130 & 00K 0868 \\
\hline OKF08140 & OOK 0869 \\
\hline OKF08150 & OOK 0870 \\
\hline OKF08160 & OOK 0871 \\
\hline OKF08170 & OOK 0872 \\
\hline OKF08180 & OOK 0873 \\
\hline OKF08190 & OOK 0874 \\
\hline OK F08200 & OOK 0875 \\
\hline OK F08210 & OOK 0876 \\
\hline OKF 08220 & OOK 0877 \\
\hline OK F08230 & OOK 0878 \\
\hline KFO8240 & DOK 0879 \\
\hline OK F08250 & OOK 0880 \\
\hline OK F08260 & OOK 0881 \\
\hline OKF 08270 & OOK 0882 \\
\hline OK F08280 & ODK 0883 \\
\hline OKF08290 & OOK 0884 \\
\hline OKF 08300 & 00K 0885 \\
\hline OK F08310 & OOK 0886 \\
\hline OKF08320 & OOK 0887 \\
\hline OKF08330 & 00K 0888 \\
\hline OKF08340 & 00K 0889 \\
\hline OKF08350 & 00K 0890 \\
\hline OK F08360 & OOK 089 \\
\hline OKF08370 & OOK 0892 \\
\hline OK F08380 & OOK 0893 \\
\hline OK F08390 & OOK 0894 \\
\hline DKF08400 & OOK 0895 \\
\hline OKF08410 & OOK 089 \\
\hline OKF 08420 & OOK 0897 \\
\hline OK F08430 & 00K 0898 \\
\hline OK F08440 & OOK \\
\hline OKF08450 & 00k 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & ST & 6,20(0,7) & & \\
\hline & L & 8,IFINAD & & (R8 HAS NDELTA) \\
\hline & L & 8,0(0,8) & & NDELTA = IF IN \\
\hline & SR & 4,4 & & \(\mathrm{I}=0\) \\
\hline & SR & 5,5 & & \(K U P=0\) \\
\hline & L & 2,FOUR & & (R4 HAS I*4) \\
\hline & LR & 1,2 & & (R5 HAS KUP*4) \\
\hline & L & 3,NAD & & (R3 HAS N*4) \\
\hline & L & 3,0(0,3) & & DO \(24 \mathrm{~L}=1, \mathrm{~N}\) \\
\hline & SIL & 3,2 & & (R2 HAS 4) \\
\hline U12 & CR & 1,5 & & IF(L.LE.KUP) GO TO 16 \\
\hline & BNH & \(\cup 16\) & & (R6 HAS J*4) \\
\hline & A & 4 , FOUR & & \(\mathrm{I}=\mathrm{I}+1\) \\
\hline & LH & 5,414,91 & & (R1 HAS L*4) \\
\hline & BCTR & 5,0 & & KUP \(=\) LDECR(ILII+1) \()-1\) \\
\hline & SLL & 5,2 & & \\
\hline U16 & LH & 6,2(1,11) & 16 & \(\mathrm{J}=\) LADDR(IJ(L)) \\
\hline & SLL & 6.2 & & \\
\hline & SR & 7,7 & & \\
\hline & C & 7,0(4,10) & & IF(NL(I).EQ.O) GO TO 20 \\
\hline & BE & U20 & & \\
\hline & C & 7,0(6,10) & & IF(NL(J).NE.O) GC TO 24 \\
\hline & BNE & U 24 & & \\
\hline & L & 7,0(1,14) & & \\
\hline & C & 7,0(1,15) & & IF(KX(L)-KU(L)) 22,24,24 \\
\hline & BL & U22 & & \\
\hline & B & U24 & & \\
\hline U20 & C & 7,0(6,10) & 20 & IF(NL(J).EQ.O) GO TO 24 \\
\hline & BE & U24 & & \\
\hline & C & 7,0(1,14) & & IF(KX(L).LE.O) GC TO 24 \\
\hline & BNL & U 24 & & \\
\hline U22 & L & 7,0(1,13) & & \\
\hline & LPR & 7,7 & 22 & \(L L=I A B S I K C(L))\) \\
\hline & CR & 8,7 & & \\
\hline & BNH & U 24 & & NDELTA=MINO (LL, NDELTA) \\
\hline & LR & 8,7 & & \\
\hline
\end{tabular}

OKF08820 OOK 0937 OK F08830 OOK 0938 OKF08840 OOK 0939 OK F08850 OOK 0940 OKF08860 OOK 0941 OKF08870 OOK 9942 OKF08880 00K 0943 OKF08890 OOK 0944 OKF 08900 OOK 0945 OKF08910 00K 0946 OKF08920 OOK 0947 OKF08930 OOK 0948 OKF 08940 OOK 0949 OKF08950 00K 0950 OK F08960 OOK 0951 OKF 08970 OOK 0952 OKF08980 OOK 0953 OKFC8990 OOK 0954 OKF09000 OOK 0955 OKF09010 00K 0956 OKF09020 OOK 0957 OKF09030 OOK 0958 OKF09040 OOK 0959 OKF09050 OOK 0960 OKF09060 OOK 0961 OKF09070 OOK 0962 OKF09080 OOK 0963 OKF09090 OOK 0964 OKFO9100 O0K 0965 OK F09110 OOK 0966 OKF09120 OOK 0967 OK FJ9130 OOK 0968 OKF09140 OOK 0969 OKFO9150 OOK 0970 OK FO9160 OOK 0971 OKF09170 OOK 0972

PAGE 27

OK F09180 00K 0973 OKF 09190 OOK 0974 OKF09200 OOK 0975 OKF09210 OOK 0976 OKF09220 00K 0977 OK F09230 OOK 0978 OKF 09240 DOK 0979 OKF09250 OOK 0980 OKF09260 00K 0981 OKF09270 00K 0982 OKFO9280 OOK 0983 OKF09290 OOK 0984 OKF09300 OOK 0985 DKF09310 OOK 0986 OKF09320 OOK 0987 OK F09330 OOK 0988 OKF09340 OOK 0989 OKF09350 OOK 0990 OKF09360 DOK 0991 OKF09370 OOK 0992 OK F09380 00K 0993 OKF09390 OOK 0994 OKF09400 OOK 0995 OKF09410 OOK 0996 OKF09420 OOK 0997 OK F09430 OOK 0998 OKF09440 OOK 0999 OKFO9450 OOK 1000 OKF09460 OOK 1001 OKF09470 DOK 1002 OKF09480 OOK 1003 OKFO9490 OOK 1004 OKF09500 OOK 1005 OKF09510 OOK 1006 OKF09520 OOK 1007 OKF09530 OOK 1008

PAGE 28

\begin{tabular}{|c|c|}
\hline 40 & 00K 1009 \\
\hline OK F09550 & OOK 1010 \\
\hline OKF09560 & OOK 1011 \\
\hline OKFO9570 & 00K 1012 \\
\hline OKF09580 & OOK 1013 \\
\hline OKF09590 & OOK 1014 \\
\hline OKF09600 & OOK 1015 \\
\hline OKFO9610 & OOK 1016 \\
\hline OKF09620 & OOK 1017 \\
\hline DK F09630 & OOK 1018 \\
\hline OKF09640 & OOK 1019 \\
\hline OK F09650 & OOK 1020 \\
\hline OKF09660 & OOK 1021 \\
\hline F09670 & OOK 1022 \\
\hline F09680 & OK 1023 \\
\hline KF 09690 & OOK 1024 \\
\hline OK F09700 & OOK 1025 \\
\hline OKF09710 & OOK 1026 \\
\hline OKF09720 & 00K 1027 \\
\hline OK F09730 & 00K 1028 \\
\hline OKF09740 & OOK 1029 \\
\hline OK F09750 & OOK 1030 \\
\hline OKF09760 & 00K 1031 \\
\hline F09770 & OOK 1032 \\
\hline OK F09780 & OOK 1033 \\
\hline OKF09790 & OOK 1034 \\
\hline OKF09800 & OOK 1035 \\
\hline OK F09810 & OOK 1036 \\
\hline OKF09820 & OOK 1037 \\
\hline OKF09830 & OOK 1038 \\
\hline OKF09840 & OOK 1039 \\
\hline OK F09850 & OOK 1034 \\
\hline OK F09860 & OOK 1041 \\
\hline OKF09870 & OOK 1042 \\
\hline OK F09880 & OOK 1043 \\
\hline KFO9890 & OOK 1044 \\
\hline & \\
\hline
\end{tabular}
1010
OKF09560 OOK 1011
OKF09580 OOK 1013
OKF09590 OOK 1014
OKF09600 OOK 1015
OKFO9610 OOK 1016
OKF09620 OOK 1017
OKF09630 OOK 1018
OKF 09640 OOK 1019
OK F09650 OOK 1020
OKF 09660 OOK 1021
OKF09670 OOK 1022
OK F09680 OOK 1023
OKF 09690 OOK 1024
OK F09700 OOK 1025
KF09710 00K 1026
OKF09720 OOK 1027
KKF09730 OOK 1028
OKF09740 OOK 1029
KK09750 00K 1030
OKF09760 OOK 1031
OKF09770 OOK 1032
OK F09780 OOK 1033
OKF09790 00K 1034
OK F09810 OOK 1036
OKF09820 OOK 1037
KKF09830 OOK 1038
OK F09850 OOK 1040
OK F09860 OOK 1041
OKF09870 OOK 1042
OK F09880 OOK 1043
 PAGE 29

\begin{tabular}{|c|c|c|}
\hline & SPACE & 2 \\
\hline KLAD & DC & \(V(\mathrm{KL})\) \\
\hline KCAL & DC & \(V(K C)\) \\
\hline KUAL & DC & \(\checkmark\) (KU) \\
\hline KXAD & LC & \(v(k X)\) \\
\hline NLAD & DC & \(V(N L)\) \\
\hline iNNAD & DC & \(V(N N)\) \\
\hline NPAC & DC & \(V(N P)\) \\
\hline I JAD & DC & V(IJ) \\
\hline ILAD & DC & V(IL) \\
\hline JLAD & DC & V (JL) \\
\hline JIAD & DC & V(JI) \\
\hline MAC & DC & \(V(M)\) \\
\hline NAD & DC & \(V(N)\) \\
\hline LERAD & DC & \(V\) (LER) \\
\hline KATAD & DC & \(V(K A T)\) \\
\hline KORAD & DC & \(V(K \cap R)\) \\
\hline kterac & DC & \(V(K T E R)\) \\
\hline MINEAD & DC & \(V(N I N E)\) \\
\hline LCAD & DC & \(V(L C)\) \\
\hline KAAC & DC & \(V(K A)\) \\
\hline IFINAD & DC & V(IFIN) \\
\hline KIAD & DC & \(v(k I)\) \\
\hline KOAD & DC & \(v\) (kO) \\
\hline KQAL & DC & \(V(K Q)\) \\
\hline KAC & DC & \(v(k)\) \\
\hline & END & \\
\hline \multicolumn{3}{|l|}{/*} \\
\hline \multicolumn{3}{|l|}{//STEP EXEC ASMC, PARN.C='llad, deck.} \\
\hline \multicolumn{3}{|l|}{//C.SYSIN DD *} \\
\hline \multirow[t]{3}{*}{ASSEM 2} & START & 0 \\
\hline & ENTRY & place,lador,lcecr \\
\hline & SPACE & 2 \\
\hline \multirow[t]{3}{*}{PLACE} & SAVE & (14,12), ** \\
\hline & BALR & 12,0 \\
\hline & USING & *,12 \\
\hline
\end{tabular}

PAGE 31
```

        LA 11,SAVER
        ST 13,4(11)
        ST 11,8(13)
        L 6,0(1)
        7,4(1)
        MVC 0(2,7),2(6)
        RETURN (14,12),T
        SPACE 2
    LACDR SAVE (14,12),,*
BALR 12,0
USING *,12
LA 1l,SAVER
ST 13,4(11)
ST 11,8(13)
L 6,0(1)
LH 6,2(6)
ST 6,20(13)
RETURN (14,12),T
SPACE 2
lCECR SAVE (14,12),,*
BALR 12,0
USING *,12
LA 11.SAVER
ST 13,4(11)
ST 11,8(13)
L 6,0(1)
LH 6,0(6)
ST 6,20(13)
RETURN (14,12),T
SPACE 2
SAVER DS 18F
END
/*

```

```

*     * OO
* ASSEMBLER L ANGUAGE SUBROUTINE ERASE
CALL PLACE(f,B)
PLACES THE RIGHTMOST 16 BITS DF A
IN THE LEFTMOST 16 bits OF B

| OK F 10620 | OOK 1117 |
| :---: | :---: |
| OKF10630 | OOK 1118 |
| OKF 10640 | 00K 1119 |
| OK F10650 | OOK 1120 |
| OKF10660 | OOK 1121 |
| OK F 10670 | DOK 1122 |
| OKF10680 | 00K 1123 |
| OKF 10690 | OOK 1124 |
| OK F10700 | OOK 1125 |
| OKF10710 | OOK 1126 |
| OK F 10720 | 00K 1127 |
| OKF10730 | OOK 1128 |
| OKF 10740 | 00K 1129 |
| OKF 10750 | OOK 1130 |
| OKF10760 | OOK 1131 |
| OK F 10770 | 00k 1132 |
| OKF10780 | OOK 1133 |
| OKF 10790 | 00K 1134 |
| OKF10800 | OOK 1135 |
| OKF10810 | OOK 1136 |
| OK F 10820 | OOK 1137 |
| OK F10830 | OOK 1138 |
| OKF 10840 | 00k 1139 |
| OKF 10850 | OOK 1140 |
| OKF10860 | OOK 1141 |
| OKF10870 | OOK 1142 |
| OK F 10880 | OOK 1143 |
| OKF10890 | OOK 1144 |
| OK F10900 | OOK 1145 |
| OKF10910 | OOK 1146 |
| OKF 10920 | OOK 1147 |
| OKF10930 | OOK 1148 |
| OKF10940 | OOK 1149 |
| 00000000 | OOK 115 |
| 00000010 | 00k 1151 |
| 00000011 | OOK 1152 |
| PAGE | 32 |

```
```

* WRITTEN BY JOHN W. KIDSON
    * 00000012 OOK 1153
MIT DEPARTMENT GF METEOROLOGY * 00000014 O0K 1154
A1,A2,... * 00000020 00K 1156
ARE ARRAY NAMES AND N1,N2,... ARE INTEGER VALUES OR * 00000030 OOK 1157
EXPRESSIONS GIVING THE ARRAY SIZES. * 00000040 OOK 1158
I.E. - CALL ERASE(C,26*31,N,7*31,E,254) **00000050 00K 1159
*     * 00000060 00K 1160

```

```

ERASE START O
SAVE (14,12),.*
EALR 12,0
lSING *,12
SR 0,0
SR 2,2 fARAMETER LIST INCEX=0
El L 3,0(2,1) LOAD 3 WITH ARRAY ADDRESS
LCAD 4 WITH ADDRESS OF ARRAY LENGTH
LOAD }7\mathrm{ WITH ARRAY LENGTH-1 TIMES 4
l 7,0(4)
SLA 7,2
SR 7,6
SR 5,5
E 2
BXLE 5,6,F2
LTR 4,4
BM RETN
A 2,=F'8,
B El PICK UP NEXT ARGUNENT PAIR
RETN RETURN (14,12),T
END
STORE ZERO
TEST FOR LAST ARGUMENT IN LIST
00000080 OOK 1162
00000090 OOK 1163
00000100 OOK 1164
00000110 00K 1165
00000120 OOK 1166
00000130 OOK 1167
00000140 OOK 1168
00000150 OOK 1169
00000160 OOK 1170
00000170 OOK 1171
00000180 00K 1172
00000190 OOK 1173
00000200 OOK 1174
00000210 OOK 1175
00000220 OOK 1176
00000230 00K 1177
00000240 OOK 1178
00000250 00K 1179
00000260 00K 1180
00000270 OOK 1181
00000280 OOK 1182

```


```

C* QKCORE: A QUICK IN-CORE MODEL WITH COSTING INCLUDED *
C*
C* M.I.T. DOCTORAL THESIS, MARCH 1973 *
C* M.I.T. DDCTORAL THESIS, MARCH 1973 *
C*

```

```

C GKCCRE MAIN PROGRAN
C GKCORE VERSION 12-15-72
FEAL*8 RTC
CCMNCN/FXDDAT/MXZONE,MXCYTO,MXRCRS,MXRCRK,MX FULK, IRCRS, IRCRK, IFULK
\$,NRCRS,NRCRK,NFULK,EFF,XF,XW,TXRATE,PVRATE,TBASE,DTPRE,DTPST,
\$CTY2FG,CCRATE,FCOR,FFAB,FSAR,FCRE,NCYCIN,NCYCXS,NCYCTO,NZONE ,NZP,
\&ZONEKG,ECHDOV,EFFAV,MWS
COMNCN/PRINTS/RELCST,INCCST, BALCST,NBLCST,PIRDAT,PBATCS,RD,WT
LOGICAL RELCST,INCCST,BALCST,NBLCST,PIRDAT,PEATCS
INTEGER RC,WT
DIMENSION ELAME(50,20),NECBAL(20),TE(20),TS(20),CATITL(20)
CIMENSION ECUPLM(20),TO(20)
[ATA $NEWE#,$CASE$,$STOP$/ 'NEW ','CASE*,'STOP'/
    NXES }\times2=5
    FRINT 900
    10 CALL ICNPUT
    2) READ (RD,S20) CATITL
    WRITE(WT,921) CATITL
    IF(CATITL(1).EQ.$NEWB$) GC TO 10
    IF(CATITL(1).EQ.$STOP$) CALL ICERRS('QKCORE',8)
    IF(CATITL(1).NE.$CASE\$) CALL ICERRS('OKCCRE',3)
READ (RD,92O) CATITL
WRITE(WT,922) CATITL
READ (RD,923) NCYCIN, NCYCXS,IDNUM, ECHDOV
WRITE(WT,924) NCYCIN,NCYCXS,IDNUM,ECHDOV
NCYCTO=NCYCIN+NCYCXS
CALL ERASE(ELAME,MXESX2*NXCYTO,TS,MXCYTO,TE,NXCYTO,NECBAL,MXCYTO)
NXNES=0
CO 30 IDUN=1,NCYCTC

```

QKCROOO1
QKCRO002
QKCR 0003
QK CR 0004
QKCR 0005
QKCR0006
QKCROUO7
QKCROJ08
QKCR0009
QKCR0010
QKCR 0011
QKCROO 12
QKCROD13
QKCROO14
QKCR 0015
QKCR 0016
QKCROO 17
QKCROD18
QK CROO19
QKCR0020
QKCROO21
QKCROO 22
QKCROO23
QKCROO24
QKCR0025
QKCR0026
QKCROO27
QKCR0028
QKCR0029
QKCRO030
QKCROO31
QKCROO32
QKCR 0033
QKCR 0034
QKCROO35
QKCROO. 36
```

    FEAC(RD,925) I,NECBAL(I),TS(I),TE(I),NES,TO(I),(ELAME(2*N-1,I),
    $N=1,NES)
    30 NXNES=MAXO(MXNES,NES)
NXE2=(MXESX2+1)/2
IF(MXNES.GT.MXE2) CALL ICERRS('QKCORE',10)
hRITE(WT,908)
WRITE(WT,903) (I,I=1,NCYCTO)
WRITE(WT,904) ( TS(I),I=1,NCYCTO)
WRITE(WT,910) ( TC(I),I=1,NCYCTO)
WRITE(WT,905) ( TE(I),I=1,NCYCTO)
hRITE(WT,906) (NECBAL(I),I=1,NCYCTO)
HRITE(WT,909)
CO 40 N=1,M XNES
N=2* \ - 1
40 WRITE(WT,SO7) (ELAME(M,I),I=1,NCYCTO)
INCCST=.TRUE.
CALL INCCREIIDNUM,NCYCIN,NCYCXS,NCYCTO,TS,TE,NECBAL,ELAME,MXESX2,
\&ECHDOV,RTC,PVRAT,BASETM, ECUPLM,TOI
WRITE(WT,926) RTC, BASETM,PVRAT
WRITE(WT,G27) CATITL
IF(INCCST) GO TO 20
STCP
90) FORMAT(T31,72('*')/T31,'*:,T102,'*'/T31,'**,T37,'0 K C O R E :
\$ A QUICK IN-CORE MODEL WITH COSTING INCLUDED ',T102,**'/
\$T31,**,TG4,*WRITTEN EY PAUL F. DEATON',T102,'*'/
\$T31,**,T58,'M.I.T. DCCTORAL THESIS, MARCH 1973, T102,"*//
\$T31,'*',T102,'*'/T31,72('*')//
\$T56,'VERSION 12-15-72')
903 FORMAT ('0 CYCLE',14(I6,3X)/(12X,12(I6,3X)))
G04 FORMAT('OTSTART',14FG.4/(12X,12F9.4))
905 FORMAT(' TEND 1,14FC.4/(12X,12F9.4))
906 FORMAT(" NECEAL',14(16,3X)/(12X,12(I6,3X)))
SO7 FORMAT(' ',14FG.2/(12X,12F9.2))
903 FORMAT ('O'/'0 CASE INPUT DATA:')
SO9 FORMAT('O',T7 ''TABLE CF EC''S TO BE INVESTIGATED :')
910 FCRMAT(' TOPR ',14FG.4/(12X,12F9.4))

```

QKCR0037
QKCROO38
QKCR0039
QKCR0040
QKCRO041
QKCROO42
QKCR 0043
QKCROO44
QKCR0045
QKCRO046
QKCR0047
QKCR 0048
QKCROO49
QKCR 0050
QKCR0051
QKCROO52
QKCR 0053
QKCROO54
QKCR 0055
QKCR 0056
QKCR0057
QKCR 0058
QKCR 0059
QKCR0060
QKCR 0361
QKCR 0062
QKCR 0063
QKCR 0064
QKCR 0065
QKCR 0066
QK CR0067
QKCR 0068
QKCR 0069
QKCR0070
QKCR 0071
QKCR 0072
PAGE
```

    92) FORMAT(2JA4) QKCRO073
    921 FORMAT('O QKCORE REAL CARD :',2H ',20A4,1H')
    G22 FORMAT ('1',T15,'QKCORE CASE TITLE:',2H ',20A4,1H')
    S23 FORMAT(3I 10,F10.2)
    924 FORMAT ('O',T7,'NCYCIN NCYCXS IDNUM ECHDOV'/3I10,F10.2)
    S25 FORMAT (2I10,2F10.4,I10,F1).4/(8F10.4))
    926 FORMAT('C'/'O'/'0','INCORE RETURNED THE FOLLOWING VALUES TO GKCORE
        $:'/ '0 REACTOR TOTAL COST =',-3PF15.6,' MILLION DOLLA
        $RS PRESENT VALUED TO YEAR ',OPF8.4,' AT THE RATE OF ',2PF6.3,' PER
        $ CENT PER YEAR'/'O'/'O'/J
    927 FORMAT('O'/'J'/'0 END OF QKCORE CASE TITLE:',2H ',2OA4,1H')
END
SUBRCUTINE INCORE(ICNUM,NCYCIN,NCYCXS,NCYCTO,TS,TE,NECBAL,ELAME,
$MXESX2,ECHDOV,PVR,TC,PVRAT,BA SETM,ECUPLM,TOI
    NAIN SUBRCUTINE OF IN-CORE FUEL SIMULATOR
C GKCCRE VERSION 12-15-72
C************ CEFINITIONS OF IMPOR TANT VARIABLES ************************
    C ACCYC = AVERAGE CYCLE CCST AT IT'S MID-PT. ($/MWHE)
C ACEOCD = AVERAGE CCST CF BATCH DISCHARGEC AT END OF CYCLE (\$/MWHE)
C E = BURNUP (MWC/KG)
C BALCST = PRINT DETAILEC COST TABLES FOR BALANCED EC'S ?
EASETM = BASE TIME FOR PRESENT VALUING (YEARS)
EATCST = TOTAL EATCH COST (10**3 $)
    BSRT = ZONE BURNLPS OF FUELS AT START CF SIMULATION (MWD/KG)
    C = UNIT BATCH COST ($/KG)
CCRATE = CARRYING CHARGE RATE (FRACTION)
CECRIT = FIRST CYCLE ENERGY AVAILABLE BEFORE BARELY CRITICAL (GWFE)
[ESTCH = UPPER LIMIT CN STRETCHOUT ENERGY (GWHE)
CTC = ON-LINE CYCLE LENGTH (YEARS)
[TPRE = EFFECTIVE DELAY TIME FOR PRE-REACTOR PAYMENTS (YEARS)
DTPST = EFFECTIVE DELAY TIME FOR POST-REACTCR RECEIPTS (YEARS)
CTY2F6 = EFFECTIVE DELAY TIME FROM YELLOLCAKE TO UFG (YEARS)
EC = ELECTRICAL ENERGY PRODUCED IN THE CYCLE (GWHE)
ECHDOV = GWHE HELD OVER FOR PROD. BEYOND FORIZON IN SPLIT CYCLE
ECUPLM = UPPER LIMIT ON CYCLE PRODUCTION (GWHE)
EFF= EFFINC
QKCRO074
QKCROO75
QKCR 0076
QKCR0077
QKCROO78
QKCRO079
QKCR0080
QKCRO081
QKCRO082
QKCR 0083
QKCR0084
QKCROO85
QKCRO086
QKCROO87
QKCRDO88
QKCRO089
QKCROO90
QKCROO91
QKCR0092
QKCRJO93
QKCR0094
QKCRO095
QKCR 0096
QKCRO097
QKCR0098
QKCR0099
QKCR0100
QKCRO101
QKCRO102
QKCRO103
QKCRO104
QKCRO105
QKCR0106
QKCRO107
QKCRO108

```
```

EFFAV = EFFNET

```
```

EFFAV = EFFNET
QKCR0109
QKCR0109
EFFINC = REACTOR INCREMENTAL EFFICIENCY (FRACTION)
EFFINC = REACTOR INCREMENTAL EFFICIENCY (FRACTION)
EFFNET = REACTOR NET THERMAL EFFICIENCY (FRACTION)
EFFNET = REACTOR NET THERMAL EFFICIENCY (FRACTION)
ELAME = SANDWICHEC MATRIX OF EC'S, LAMBCAS AND EC'S (GWHE,$/MWHE)
    ELAME = SANDWICHEC MATRIX OF EC'S, LAMBCAS AND EC'S (GWHE,$/MWHE)
EPF = ENRICHMENT AS-FABRICATED (W/O U-235)
EPF = ENRICHMENT AS-FABRICATED (W/O U-235)
EPFFX = FIXED ENRICHMENTS OF INITIAL CYCLES (W/O U-235)
EPFFX = FIXED ENRICHMENTS OF INITIAL CYCLES (W/O U-235)
EPFSRT = AS-FAB. ENRICHMENT OF INITIALLY PRESENT FUELS (W/0 U-235)
EPFSRT = AS-FAB. ENRICHMENT OF INITIALLY PRESENT FUELS (W/0 U-235)
ERRCOD = ACCUMULATED ERROR CODE
ERRCOD = ACCUMULATED ERROR CODE
FAEINV = UN-DEPREC. FAB. INV ENTORY FOR STARTING FUELS ($/KG-FAB)
    FAEINV = UN-DEPREC. FAB. INV ENTORY FOR STARTING FUELS ($/KG-FAB)
FCOR = YIELD IN CCNVERSION STEP OF FUEL CYCLE (FRACTION)
FCOR = YIELD IN CCNVERSION STEP OF FUEL CYCLE (FRACTION)
FCRE = YIELD IN RECYCLE CONVERSION STEP OF FUEL CYCLE (FRACTION)
FCRE = YIELD IN RECYCLE CONVERSION STEP OF FUEL CYCLE (FRACTION)
FFAB = YIELD IN FAERICATION STEP OF FUEL CYCLE (FRACTION)
FFAB = YIELD IN FAERICATION STEP OF FUEL CYCLE (FRACTION)
FSAR = YIELD IN SHIP.\&REPROC. STEP OF FUEL CYCLE (FRACTION)
FSAR = YIELD IN SHIP.\&REPROC. STEP OF FUEL CYCLE (FRACTION)
FULCON = SETS OF EMPIRICAL FUEL CONSTANTS
FULCON = SETS OF EMPIRICAL FUEL CONSTANTS
IDNO = REACTOR I.D. NUNBER
IDNO = REACTOR I.D. NUNBER
IDNUM = I.D. NUMBER OF REACTOR TO BE SIMULATEO
IDNUM = I.D. NUMBER OF REACTOR TO BE SIMULATEO
IFULK = FUEL CCNSTANTS INDEX
IFULK = FUEL CCNSTANTS INDEX
IFULKA = POINTER TO SET OF FUEL CONSTANTS TO BE USED
IFULKA = POINTER TO SET OF FUEL CONSTANTS TO BE USED
INCCST = PRINT INCREMENTAL COST TABLE ?
INCCST = PRINT INCREMENTAL COST TABLE ?
IRCRK = REACTOR CCNSTANTS I NDEX
IRCRK = REACTOR CCNSTANTS I NDEX
IRCRKA = PDINTER TO SET OF REACTOR CONSTANTS TO BE USED
IRCRKA = PDINTER TO SET OF REACTOR CONSTANTS TO BE USED
IRCRS = REACTOR INDEX
IRCRS = REACTOR INDEX
MODIRR = MUDE OF IRRADIATION
MODIRR = MUDE OF IRRADIATION
NWCAP = REACTOR RATEC CAPACITY (MWE)
NWCAP = REACTOR RATEC CAPACITY (MWE)
NXCYTO = MAXIMUM ALLChEO VALUE OF NCYCTO
NXCYTO = MAXIMUM ALLChEO VALUE OF NCYCTO
NXESX2 = FIRST DIMENSION OF ELAME = MAX.NO. EC'S * 2
NXESX2 = FIRST DIMENSION OF ELAME = MAX.NO. EC'S * 2
NXFLLK = NAXIMUN NUMEER CF ALLOWABLE SETS OF FUEL CONSTANTS
NXFLLK = NAXIMUN NUMEER CF ALLOWABLE SETS OF FUEL CONSTANTS
MXRCRK = NAXIMUM NUMBER OF ALLOWABLE SETS OF REACTCR CONSTANTS
MXRCRK = NAXIMUM NUMBER OF ALLOWABLE SETS OF REACTCR CONSTANTS
NXRCRS = MAXIMUM NUMBER OF ALLOWABLE SETS OF REACTOR SPECS.
NXRCRS = MAXIMUM NUMBER OF ALLOWABLE SETS OF REACTOR SPECS.
NXZCNE = NAXIMUM NUMBER CF ZCNES
NXZCNE = NAXIMUM NUMBER CF ZCNES
NAME = REACTOR NAME
NAME = REACTOR NAME
ABLCST = PRINT CETAILED COST TABLE FOR UNBALANCED EC'S ?
ABLCST = PRINT CETAILED COST TABLE FOR UNBALANCED EC'S ?
NCYCFX = NUMBER OF INITIAL CYCLES WITH ENRICHNENT FIXED
NCYCFX = NUMBER OF INITIAL CYCLES WITH ENRICHNENT FIXED
NCYCIN = NUMBER OF CYCLES INVOLVED IN HORIZON
NCYCIN = NUMBER OF CYCLES INVOLVED IN HORIZON
NCYCTO = TOTAL NUMEER OF CYCLES = NCYCIN + NCYCXS
NCYCTO = TOTAL NUMEER OF CYCLES = NCYCIN + NCYCXS
NCYCXS = NUMBER OF EXCESS CYCLES BEYOND HORIZCA

```
 NCYCXS = NUMBER OF EXCESS CYCLES BEYOND HORIZCA
```

```
QKCR 0110
```

QKCR 0110
OKCRO111
OKCRO111
QKCRO112
QKCRO112
OKCRO113
OKCRO113
QKCR0114
QKCR0114
QKCRO115
QKCRO115
QKCRO116
QKCRO116
QKCR0117
QKCR0117
QKCRO118
QKCRO118
QKCR0119
QKCR0119
QKCRO120
QKCRO120
QKCRO121
QKCRO121
QKCRO122
QKCRO122
QKCRO123
QKCRO123
QKCRO124
QKCRO124
QKCR0125
QKCR0125
QKCRO126
QKCRO126
QKCRO127
QKCRO127
QKCRO128
QKCRO128
QKCRO129
QKCRO129
QKCRO13)
QKCRO13)
QK CRO131
QK CRO131
QKCROL32
QKCROL32
OKCRO133
OKCRO133
QKCRO134
QKCRO134
QKCRO135
QKCRO135
QKCRO136
QKCRO136
QKCRO137
QKCRO137
QKCRO138
QKCRO138
QKCRO139
QKCRO139
QKCRO140
QKCRO140
QKCRO141
QKCRO141
QKCRO142
QKCRO142
QKCRD143
QKCRD143
QKCRO144

```
QKCRO144
```

```
NECFAL = POSITION OF ECBAL WITHIN A CCLUNN OF EC'S OF ELAME
```

NECFAL = POSITION OF ECBAL WITHIN A CCLUNN OF EC'S OF ELAME
NFULK = NUMBER OF SETS OF FUEL CONSTANTS READ IN
NFULK = NUMBER OF SETS OF FUEL CONSTANTS READ IN
NOESX2 = (NUMBER OF EC'S)*2 IN EACH CYCLE OF THE SIMULATION
NOESX2 = (NUMBER OF EC'S)*2 IN EACH CYCLE OF THE SIMULATION
NOZONE = NUMBER OF ZCNES IN FUEL MANAGEMENT SCHEME
NOZONE = NUMBER OF ZCNES IN FUEL MANAGEMENT SCHEME
ARCRK = NUMBER OF SETS OF REACTOR CONSTANTS READ IN
ARCRK = NUMBER OF SETS OF REACTOR CONSTANTS READ IN
NRCRS = NUMBER OF SETS OF REACTOR SPECS. READ IN
NRCRS = NUMBER OF SETS OF REACTOR SPECS. READ IN
NZONE = NOZONE
NZONE = NOZONE
MZF = NOZCNE + 1
MZF = NOZCNE + 1
PBATCS = PRINT DETAILED COST FOR ALL BATCHES ?
PBATCS = PRINT DETAILED COST FOR ALL BATCHES ?
FIR[AT = PRINT DATA FCR EACH IRRADIATION CYCLE ?
FIR[AT = PRINT DATA FCR EACH IRRADIATION CYCLE ?
FOWFRC = ZONE PCWER-SHARING FRACTIONS OF STARTING CYCLE
FOWFRC = ZONE PCWER-SHARING FRACTIONS OF STARTING CYCLE
FVFACT = PRESENT VALUE OF 1\$ AT MID-PT. CF CYCLE
FVFACT = PRESENT VALUE OF 1\$ AT MID-PT. CF CYCLE
FVRAT = PRESENT VALUE RATE (FRACTION PER YEAR
FVRAT = PRESENT VALUE RATE (FRACTION PER YEAR
PVRATE = PVRAT
PVRATE = PVRAT
PVRTC = PRESENT VALUE OF REACTOR TOTAL COST (10**3 \$)
PVRTC = PRESENT VALUE OF REACTOR TOTAL COST (10**3 \$)
FVTCYC = PRESENT VALUE OF CYCLE COST (10**3 \$)
FVTCYC = PRESENT VALUE OF CYCLE COST (10**3 $)
RCRCDN = SETS OF EMPIRICAL REACTOR CONSTANTS
RCRCDN = SETS OF EMPIRICAL REACTOR CONSTANTS
RD = UNIT NUMBER CF COMPUTER INPUT READING DEVICE
RD = UNIT NUMBER CF COMPUTER INPUT READING DEVICE
RELCST = PRINT RELATIVE COST TABLE ?
RELCST = PRINT RELATIVE COST TABLE ?
SRCINV = UN-DEPREC. SRC. INVENTORY OF STARTING FUELS ($/KG-FAB)
SRCINV = UN-DEPREC. SRC. INVENTORY OF STARTING FUELS (\$/KG-FAB)
TBASE = BASE TIME FCR PRESENT VALUING (YEARS)
TBASE = BASE TIME FCR PRESENT VALUING (YEARS)
TCCYC = TOTAL CYCLE COST AT IT'S MID-PT. (10%*3 \$)
TCCYC = TOTAL CYCLE COST AT IT'S MID-PT. (10%*3 \$)
TCEDCD = TOTAL COST OF BATCH DISCHARGED AT END OF CYCLE (10**3 \$)
TCEDCD = TOTAL COST OF BATCH DISCHARGED AT END OF CYCLE (10**3 $)
TE = ENDING CYCLE DATES (YEARS)
TE = ENDING CYCLE DATES (YEARS)
TMID = MID-POINT OF CYCLE (YEARS)
TMID = MID-POINT OF CYCLE (YEARS)
TO = CYCLE CPERATING TIME (YEARS)
TO = CYCLE CPERATING TIME (YEARS)
TREFUL = REFUELING CATE (YEARS)
TREFUL = REFUELING CATE (YEARS)
TS = STARTING CYCLE CATES (YEARS)
TS = STARTING CYCLE CATES (YEARS)
IXRATE = INCOME TAX RATE (FRACTION
IXRATE = INCOME TAX RATE (FRACTION
LNTCOR = UNIT CONVERSION COST ($/KG-U CONV)
LNTCOR = UNIT CONVERSION COST ($/KG-U CONV)
LNTCRE = UNIT RECYCLE CCNVERSION COST ($/KG-U CONV)
LNTCRE = UNIT RECYCLE CCNVERSION COST ($/KG-U CONV)
LNTFAB = UNIT FABRICATION COST ($/KG-FAB)
LNTFAB = UNIT FABRICATION COST ($/KG-FAB)
LNTPUV = UNIT PLUTCNIUM VALUE ($/GM-FIS.PU)
LNTPUV = UNIT PLUTCNIUM VALUE ($/GM-FIS.PU)
LNTSAR = UNIT SHIP.&REFRCC. COST ($/KG-SAR)
LNTSAR = UNIT SHIP.\&REFRCC. COST ($/KG-SAR)
LNTSWU = UNIT SEPARATIVE WORK COST ($/KG-SWU)
LNTSWU = UNIT SEPARATIVE WORK COST ($/KG-SWU)
LNTYEL = UNIT YELLCWCAKE COST ($/LB-U3O8)

```
LNTYEL = UNIT YELLCWCAKE COST ($/LB-U3O8)
```

QKCRO145 QKCRO146
QKCRO147
QKCR 0148
QKCRO149
QKCR 0150
QKCRO151
QKCROL 52
QKCRO153
QKCRO154
QKCRO155
QKCRO156
QKCROL57
QKCRO158
QKCR 0159
QKCRO160
QKCRO161
QKCRO162
QKCRO163
QKCR0164
QKCR 0165
QKCRO166
QKCRO167
QKCRO168
QKCR0169
QKCR 0170
QKCRO171
QKCROI 72
QKCR 0173
QKCRO174
QKCR 0175
QKCRO176
QKCR 0177
QKCR 0178
QKCRO179
QKCRU180

```
C lloluNIT NUMBER CF COMPUTER OUTPUT WRITING DEVICE
```

```
 NXLAST=1000
 NXZCNE=10
 NXCYTO=20
 MXRCRS=15
 NXRCRK=15
 NXFULK=5
 RO=5
 hT=6
 CALL REDCOR
 FETURN
C
C
 5 IF(NCYCIN+NCYCXS.NE.NCYCTO) CALL ICERRS('INCORE',6)
 NCYCTO=NCYCIN+NCYCXS
 IF(NCYCTC.GT.MXCYTO) CALL ICERRS('INCORE',5)
 FVRAT=PVRATE
 EASETM=TBASE
 CO 10 I=1,NRCRS
 IF(IDNOIII.EQ.IDNUM) GO TO 20
 10 CONTINUE
 CALL ICERRS('INCORE',7)
 2) IRCRS=I
 AZCNE=NOZONE(IRCRS)
 NZP=NZONE+1
 ZONEKG=ZCNKG(IRCRS)
 IRCRK=IRCRKA(IRCRS)
 IFULK=IFULKA(IRCRS)
 EFF=EFFINC(IRCRS)
 EFFAV=EFFNET(IRCRS)
 NWS=MWCAP(IRCRS)
 ECRITI=DECRIT(IRCRS)
 STCHLM=DESTCH(IRCRS)
C SETUP POINTERS AND INITIALIZE SOME SUBROLTINES
 NCYCTP=NCYCTO+1
 LTREFU=1
 LTMID =LTREFU+NCYCTP
```

QKCR 0217
QKCRO218
QKCR 3219
QKCR 0220
QKCRO221
QKCR 0222
QKCRO223
QKCRO224
QKCRO225
QKCR0226
QKCR 0227
QKCRO228
QKCR 0229
QKCR 0230
QKCRO231
QKCRO232
QKCRO233
QKCRO234
QKCR 0235
QKCRO236
QKCR0237
QKCRO238
QKCRO239
QKCR 0240
QKCRO 241
QKCRO242
QKCR 0243
QKCRO244
QKCRO245
QKCR 0246
QKCR 0247
QKCRO248
QKCR0249
QKCRO250
QKCRO251
QKCRO252


```
 LLAST=LNEXT-1
 LLAST=21*NCYCTP+3*NZP*NCYCTP +15*NZP
 IF(LLAST.GT.MXLAST) WRITE(WT,900) LLAST,NXLAST
 IF(LLAST.GT.MXLAST) CALL ICERRS('INCORE',4)
 DUMMY=EMPRCL(FULCCN(1,IFULK),RCRCON(1,IR(RK))
 CALL INIT3IFABINV(1,IRCRS),SRCINV(1,IRCRS),
 $G(LEPF),G(LDTC),G(LB),G(LUNTYE),G(LUNTCO),G(LUNTSW),
 $G(LUNTFA),G(LUNTSA),G(LUNTCR),G(LUNTPU),G(LTCECC),G(LACEOC),
 $C(LA),G(LBC),G(LDBC),G(LDT),G(LKGU),G(LEPNCW),
 $G(luvalu),g(LGMP),G(LIUFG),G(LIFAB),GILISRC),GILIPUV),
 qG(LITOT),G(LTCST),g(LACST))
 NX2EUS=0
 CO 45 N=1,NCYC.TO
 CO 30 I= 1,MXESX2,2
 IF(ELAME(I,N).EQ.O.0) GO TO 40
30 CONTINUE
 I=NXESX2/2*2+1
 40 NOES X2(N)=I-1
 45 NX2EUS=MAXO(MX2EUS,NOES X2(N))
 CALL FULSIM(MXESX2,NOESX2, ELAME,NECBAL,EPFSRT(1,IRCRS),
 $EPFFX(1,IRCRS),BSRT(1,IRCRS),POWFRC(1,IRCRS),TS,TE,
 $C(LOTC),G(LMCDIR),G(LUNTYE),G(LUNTCD),G(LUNTSW),G(LUNTFA),
 $G(LUNTSA),G(LUNTCR),G(LUNTPU),G(LPVFAC),G(LEC),G(LPVTCY),
 $G(LTCCYC),G(LACCYC),G(LTCEOC),G(LACEOC),G(LEPF),G(LB),
 $G(LEATCS),G(LTCST),G(LTREFU),G(LTMID), ECRIT1,PVRTC,ECUPLM,
 $STCHLM, I DNUM,TO,G(LZERCH)I
 IF(NX2EUS.LT.4) GO TO 110
 PRINT ELAME TABLE IN LNITS OF $ &/OR $/MhHE
 L=LEC-1
 IF(.NOT.RELCST) GO TO 80
 hRITE(WT,GOl)
 hRITE(WT,919) IRCRS,IDNUM
 WRITE(WT,902) PVRTC,(G(L+J),J=1,NCYCIN)
 WRITE(WT,S18) (ECUPLM(J),J=1,NCYCIN)
 WRITE(WT,903) (J,J=1,NCYCIN)
 WRITE(WT,SO4) (ELAME(1,J),J=1,NCYCIN)
C
```

QKCRO289
QKCR0290
QKCR 0291
QKCRO292
QKCR0293
QKCR0294
QKCR 0295
QKCR 0296
QKCRO297
QKCR0298
QKCRO299
QKCR0300
QKCRO301
QKCRO 302
QKCRO303
QKCR 0304
QKCR0305
QKCR 0306
QKCRO307
QKCR 0308
QKCR 0309
QKCRO310
QKCRO311
QKCRO312
QKCRO3 13
QKCRO314
QKCRO315
QKCR 3316
QKCRO317
QKCRO318
QKCR0319
QKCR0320
QKCRO321
QKCR0322
QKCR 0323
QKCRO324

```
 hRITE(WT,905) (ELAME(2,J),J=1,NCYCIN)
 WRITE(WT,g06) (ELANE(2,J),J=1,NCYCIN)
 WRITE(WT,907) (ELAME(4,J),J=1,NCYCIN)
 DO 50 K=G,M\times2EUS,2
 WRITE(WT, S06) (ELAME(K-1,J),J=1,NCYCIN)
50 hRITE(WT,907) (ELAME(K ,J),J=1,NCYCIN)
8) DO lUJ N=1,NCYCIN
NE2=NOES <2(N)
DO SO I=4,NE2,2
90 ELAME(I-2,N)=(ELAME(I-2,N)-ELAME(I,N))/(ELAME(I-3,N)-ELAME(I-1,N)
 $ + 1.E-20)
10) ELAME(NE 2,N)=1.E2O
 IF(.NOT.INCCST) GO TO 110
 WRITE(WT,SII)
 WRITE(WT,S19) IKCRS,IDNUM
 WRITE(WT,902) PVRTC,(G(L+J),J=1,NCYCIN)
 hRITE(WT,S18) (ECUPLM(J),J=1,NCYCIN)
 WRITE(WT,903) (J,J=1,NCYCIN)
 WRITE(WT,904) (ELANE(1,J),J=1,NCYCIN)
 WRITE(WT,915) (ELAME(2,J),J=1,NCYCIN)
 hRITE(WT,916) (ELAME(3,J),J=1,NCYCIN)
 WRITE(WT,G17) (ELAME(4,J),J=1,NCYCIN)
 [O 60 K=6,MX2EUS,2
 HRITE(WT,907) (ELANE(K-1,J),J=1,NCYCIN)
60 WRITE(WT,G17) (ELAME(K ,J),J=1,NCYCIN)
110 CONTINUE
 RETURN
900 FORMAT('1'/' THIS ITERATION USES',I5,' LOCATICNS IN G ARRAY',
 $' C[NPAREC TO THE',I5,' AVAILABLE' /'0')
901 FORMAT('1',T25,'* * * * * REACtOR tOTAL COSTS RELATIVE tO R.T.C.'
 $,' FCR ECBAL (1000 P.V.#) * * * * *')
9 0 2 ~ F O R M A T (' O ' , T I U , ' R E A C T C R ~ T O T A L ~ C O S T ~ F O R ~ B A L A N C E C ~ E C ' ' S ~ (E C B A L) ~ = ' ,
 $F12.3,' 10**3P.V.4'/'0 ECBAL',14F9.1/(12X,12F9.1))
SO3 FOFMAT('O CYCLE',14(I6,3X)/(12X,12(I6,3X)))
S04 FORMAT('O EC ',14FG.z/(12X,12F9.2))
905 FORMAT(' DELRTC',14Fg.2/(12X,12F9.2))
```

QKCR 0325
QKCRO326
QKCR 0327
QKCRO328
QKCRO329
QKCRO330
QKCRO331
QKCRO332
QKCRO333
QKCRO334
QKCR 3335
QKCRO336
QKCR0337
QKCR 0338
QKCRO339
QKCRO340
QKCRO341
QKCRO342
QKCR 0343
QKCRO344

QKCR 0345
QKCRO346
QKCR0347
QKCR 3348
QKCR 0349
QKCR 0350
QKCR 0351
QKCRO352
QKCRO353
QKCR 0354
QKCR0355
QKCR 0356
QKCRO357
QKCRO358
QKCR 0359
QKCR0360

```
 906 FORMAT('O ETC. ,14FC.2/(12X,12F9.2))
 907 FORMAT(" *,14FG.2/(12X,12F9.2))
 911 FORMAT('1',T25,****** INCREMENTAL REACTOR TOTAL COST*,
 $' (P.V.$/MWHE) * * * * * ')
 G15 FORMAT(' INCCST',14F9.4/(12X,12F9.4))
 916 FDRMAT(' ETC. ',14F9.2/(12X,12F9.2))
 917 FORMAT(' :,14F9.4/(12X,12F9.4))
 S18 FORMAT('OECUPLM',14F9.1/(12X,12F9.1))
 919 FORMAT('+INDEX=',I 3,'IDNO=',I5)
 END
 SUBROUTINE REDCOR
 READ INPUT DATA FOR INCDRE
 GKCORE VERSION 12-15-72
 CCMMCN/ARDATA/IDNO(15),NAME(15), MWCAP(15), EFFNET(15),IRCRKA(15),
 $IFULKA(15),NCZCNE(15), ZCNKG(15), DECRIT(15),DESTCH(15),NCYCFX(15),
 $EPFFX(20,15),EPFSRT(10,15),BSRT(10,15),FABINV(10,15),SRCINV(10,15)
 4,POWFRC(10,15),RCRCCN(18,15),FULCON(48,5),EFFINC(15)
 CCNMCN/F XDDAT/MXZONE,NXCYTC,MXRCRS,MXRCRK,MXFULK,IRCRS,IRCRK,IFULK
 $,NRCRS,NRCRK,NFULK,EFF,XF,XW,TXRATE,PVRATE,TBASE,DTPRE,DTPST,
 $CTY2FG, CCRATE,FCOR, FFAB,FSAR,FCRE,NCYCIN,NCYCXS,NCYCTO,NZONE,NZP,
 $ZONEKG,ECHDOV,EFFAV,NWS
 CCMNCN/PRINTS/RELCST, INCCST, BALCST,NBLCST,PIRDAT,PBATCS,RD,WT
 LOGICAL RELCST,INCCST,EALCST,NBLCST, PIRCAT,PEATCS
 INTEGER RD,WT
```




```
 [ATA $INCO$,$ENCB$/'INCO', 'END 1/
 DIMENSION RCRKTL(2),15),FULKTL(20,5)
 CIMENSION X(20), ECTITL(2C),AO(7),A1(7),A2(7),XX(20)
 READ(RD,903) XX
 WRITE(WT,S31) xX
 IF(XX(1).NE.$INCO$) CALL ICERRS('REDCOR',3)
 READ (RD,9J1) NUECON,NURCRS,NURCRK,NUFULK,RELCST, INCCST, BALCST,
 $NBLCST,PIRDAT,PBATCS
 hRITE(WT,902) NUECON,NURCRS,NURCRK,NUFULK,RELCST,INCCST,BALCST,
 $NBLCST,PIRDAT,PBATCS
C
```

QKCR0361
QKCR 0362
QKCRO363
QKCR0364
QKCR 0365
QKCRO366
QKCR 0367
QKCR0368
QKCRO369
QKCRU370
QKCR 0371
QKCRO372
QKCR 0373
QKCRO374
QKCRO375
QKCRO376
QKCR 0377
QKCR 0378
QKCR0379
QKCRO380
QKCR0381
QKCR 0382
QKCR 0383
QKCRO384
QKCRO385
QKCRO386
QKCRO387
QKCRJ388
QKCRO389
QKCR 0390
QKCRO391
QKCR0392
QKCR 3393
QKCR0394
QKCRO395
QKCR 0396
PAGE

```
 IF (NURCRS.GT.MXRCRS.OR.NURCRK.GT.MXRCRK.OR.NUFULK.GT.MXFULK)
 4 CALL ICERRS('REDCOR',5)
 IF(NUECON.LE.O) GO TC 20
 READ ECONCMIC DATA
 REAC(RD,903) ECTITL
 FEAC(RD,908) XF,XW,TXRATE,PVRATE,TBASE,DTPRE,DTPST,DTY2F6
 x(8)=DTPRE* 365.
 X(9)=DTPST*365.
 x(10)=DTY2F6*365.
 CCRATE =P VRATE/(1.-TXRATE)
 CO 10 I=1,7
 READ(RD,SO8) AO(I),A1(I),A2(I),F
 IF(I.EQ.2) FCOR=F
 IF(I.EQ.4) FFAB=F
 IF(I.EQ.5) FSAR=F
 IF(I.EQ.6) FCRE=F
 1) CONTINUE
 X(11)=100.*xF
 INITIALIZE & SET PCINTERS WHERE POSSIBLE
 DUMMY=PVINIT(PVRATE)
 (ALL INIT2(AO,A1,A2,DTPRE,DTPST,TBASE,X)
 DUMMY= SE TUVL(DTYZF6,FCCR,XF,XW)
 X(12)=UFGVAL(X(11),X(1),X(2),X(3))
 20
 WRITE(WT,SC7) XF,Xh,TXRATE,PVRATE,TBASE,CTPRE,DTPST,DTY2F6,
 &CCRATE,X(8),X(9),X(10)
 hRITE(WT,909) FCOR,FFAB,FSAR,FCRE,(AO(I),A1(I),A2(I),X(I),
 $+D(I),I=1,7),X(12)
 IF (NURCRS.LE.O) GO TO 40
 READ REACTOR PHYSICAL INFO.
 ARCRS=NURCRS
 CALL ERASE(EPFFX,20*15)
 DO 30 I= 1,NRCRS
 FEAC(RD,910) IDNO(I),NAME(I),MWCAP(I),IRCRKA(I),IFULKA(I),
 $NOZONE(I),ZONKG(I), FFFNET(I),DECRIT(I),DESTCH(I), EFFINCII)
 IF(EFFINC(I).LT.O.2) EFFINC(I)=EFFNET(I)
```

QKCRO397 QKCRO398 QKCRO399 QKCRJ400 QKCRO401 QKCR 0402 QKCR0403 QKCRO404 QKCR 0405 QKCR 0406 QKCR0407 QKCR 0408 QKCRO409
QKCRO410
QKCR 0411
QKCR 0412
QKCRO413
QKCRO4 14
QKCRO415
QKCRO4 16
QKCRO4 17
QKCR 3418
QK CRO4 19
QKCRO4 20
QKCR 0421
QKCR0422
QKCRO4 23
QKCRO4 24
QKCR 0425
QKCR 0426
QKCRO427
QKCRO428
QK CRO4 29
QKCR0430
QKCRO431
QKCRO432
PAGE 12

```
 READ(RD,S11) N,(EPFFX(1+J,I),J=1,N)
 NCYCFX(I)=N
 N=NCZONE (I)
 IF(N.GT.MXZONE) CALL ICERRS('REDCOR',5)
 30 REAC(RD,912) (EPFSRT(J,I), ESRT(J,I),FABINV(J,I),SRCINVIJ,I),
 $POWFRC(J,I),J=1,N)
 40 WRITE(WT,913) NRCRS
 CO 60 I=1,NRCRS
 WRITE(WT,GI4)I, IDNO(I),NAME(I),MWCAP(I),IRCRKA(I),IFULKA(I),
 &NDZCNE(I),ZCNKG(I),EFFNET(I),DECRIT(I),DESTCH(I), EFFINC(I)
 N=NCYCFX(I)
 hRITE(WT,915)N,(EPFFX(1+J,I),J=1,N)
 N=NOZONE (I)
 WRITE(WT, 916)(J,EPFSRT(J,I),B SRT(J,I),FABINV(J,I),SRCINV(J,I),
 $FOWFRC(J,I),J=1,N)
 SUM=0.J
 [0 50 J=1,N
 50 SUM=SUM+POWFRC(J,I)
 IF(ABS(SUM-1.).GT.1.E-5) CALL ICERRS('REDCOR',9)
 60 CCNTINUE
 IF(NURCRK.LE.O) GO TO }7
 READ REACTOR EMPIRICAL CONSTANTS
 ARCRK=NURCRK
 READ (RD,917) ((RCRKTL(K,I),K=1,20),(RCRCON(J,I),J=1,18),
 $=1, ARCRK)
 70 hRITE(WT,918) (I,(RCRKTL(K,I),K=1,20),(RCRCON(J,I),J=1,18),
 $I=1,NRCRK)
 IF(NUFULK.LE.O) GO TC 80
 READ FUEL EMPIRICAL CCASTANTS
 AFULK=NUFULK
 READ (RD,919) ((FULKTL(K,I),K=1,20),(FULCON(J,I),J=1,48),
 $ I=1,NFULK)
80 hRITE(WT,920) (I,(FULKTL(K,I),K=1,20),(FULCON(J,I),J=1,48),
 $I=1,NFULK)
 REAC(RD,903) XX
 HRITE(WT,932) XX
```

QKCR 0433
QKCR 0434
QKCR 0435
QKCRO436
QKCR0437
QKCR 0438
QKCR 0439
QKCR 0440
QKCR0441
QKCRO442
QKCRO443
QKCR 0444
QKCR 0445
QKCRO446
QKCRO447
QKCR 0448
QKCR0449
QKCRO450
QKCR0451
QKCR0452
QKCR 0453
QKCR0454
QKCR0455
QKCR 0456
QKCR0457
QKCR 0458
QKCRO459
QKCRO460
QKCRO461
QKCR0462 QKCRO463 QKCRO464 QKCRO465 QK CR 0466 QKCR0467 QKCR0468

```
 IF(XX(1).NE.$ENDB&) CALL ICERRS('REDCOR',3)
 RETURN
901 FORMAT(4I5, GL1)
902 FORMAT (' * * * * INCORE HAS BEEN ENTERED THRU ICNPUT TO READ',
 $' CORE INPUT DATA * * * * *'/'0./10 NUECCN NURCRS NURCRK
 $ NUFULK RELCST INCCST BALCST NBLCST PIRDAT',
 $0 PBATCS'/4I10,9L101
903 FORMAT(20A4)
SO5 FCRMAT('O'/'0',T35,'* * * * * ECONOMIC CATA * * * * *'//
 $T10,1H',20A4,1H')
907 FORMATI'O XF XW TXRATE PVRATE TBASE',
 $' DTPRE DTPST DTY2F6'/8F10.5,' YEARS'/T22,'CCRATE =',
 $F10.5,T51,3F10.2,' CAYS'1
908 FORMAT (8F10.3)
909 FORMAT('U REPRCCESSING YIELDS:',T51,'UNIT COST ESCALATION COEFFS:'
 #,' COST = AO + A1*TPAY + A2*TPAY**2'/T6,'FCOR FFAB FSAR
 $ FCRE',T67,'AO Al A2 COST a TREFUL=TBASE
 $1/4F1).4,7(T61,F1U.3,F10.4,F10.5,F15.3,A8,A4/),
 $OCCST OF NAT. UFG AT ',
 $'TREFUL=TBASE (I.E., TPAY=TREFUL-DTPRE) :',F10.3,' $/KG U AS UF6')
Э10 FORMAT(I5,1X,A4,415,5F10.2)
911 FOFNAT(I2,F8.3,7F10.3/(8F10.3))
cl2 FORMAT(5F10.3)
913 FORMAT('1' /'0',T20,'***** REACTOR ENGINEERING DATA FOR',
 $' THE',I 3,' REACTORS * * * * *'/)
914 FORMAT''0'/'0 REACTOR DATA FOR IRCRS =',I3/T7,'IDNC NAME',
 $T27,'MWCAP IRCRK IFULK NOZONE ZONEKG EFFNET',
 $' DECRIT DESTCH EFFINC./IIO,A10,4I10,F10.2,F10.5,2F10.2,
 $F10.51
915 FORMAT('0 NCYCFX =',I3,' EPFFX =',(1X,12(F7.4,',')))
916 FORMAT('0 CONDITION OF CORE WHEN SIMULATION CCMMENCES AT CYCLE 1'
 $,' :'/T8,'ZONE EPF B FABINV SRCINV POWFRC'/
 $(I10,F1).4,F10.1,2F10.2,F10.4))
917 FORMAT((20A4,3(/6E12.t)))
G18 FORMAT('1' /'0',T30,'***** REACTOR EMPIRICAL DATA ',
 4'* * * * *'/'0'/('0 TYPE :,I3,10X,20A4/3(1P6E15.6/)))
```

QKCR0469
QKCR 0470
QKCR 0471
QKCR 0472
QKCR0473
QKCR0474
QKCR 0475
QKCR 0476
QKCR 0477
QKCR 0478
QKCR0479
QKCR 0480
QKCR0481
QKCR04 82
QKCR 0483
QKCR0484
QKCRO485
QKCR 0486
QKCR0487
QKCR 3488
QKCR0489
QKCR 0490
QKCR 0491
QKCR 0492
QKCRO493
QKCR0494
QKCR 0495
QKCR 0496
QKCRO497
QKCR 0498
QKCRO499
QKCR 0500
QKCR 0501
QKCRO502
QKCR 0503
QKCRO504
PAGE 14

```
 919 FORMAT((2,A4,3(/6El2.t)))
 920 FORMAT('I' TYPE','I3,10X,2OA4/8(1PGE15.6/1))
 931 FORMAT('1 FIRST INCCRE CATA CARD :',2H ',20A4,1H')
 932 FORMAT (' LAST [NCORE DATA CARD :',2H ',20A4,1H')
 END
 SUBROUTINE FULSIMINXESX2,NOE SX2,ELAME,NECBAL,EPFSRT,EPFFX,BSRT,
 $FOWFRC,TS,TE,DTC,MCDIRR,UNTYEL,UNTCOR,UNTSWU,UNTFAB,UNTSAR,UNTCRE,
 $LNTPUV,PVFACT,EC,PVTCYC,TCCYC,ACCYC,TCEOCD,ACECCD, EPF,B, BATCST,C,
 $TREFUL,TMID,ECEIAI, BALRTC, ECUPLM,STCHLM,IDNUM,TO,ZEROHT)
 FERFCRMS FUEL IRRAC. SIMUL. FOR ALL SETS OF E'S
 GKCORE VERSION 12-15-T2
 CCNNCN/FXDDAT/MXZONE,NXCYTO, MXRCRS,MXRCRK,MXFULK, IRCRS,IRCRK,IFULK
 $,NRCRS,NRCRK,NFULK,EFF,XF,XW,TXRATE, PVRATE,TBASE,DTPRE,DTPST,
 $LTY2FG,CCRATE,FCOR, FFAB,FSAR,FCRE,NCYCIN,NCYCXS,NCYCTO,NZONE,NZP,
 $ZONEKG,ECHDOV,EFFAV,NhS
 COMMON/PRINTS/RELCST, INCCST,BALC ST,NBLCST,PI RDAT, PBATCS,RD,WT
 LOGICAL RELCST, INCCST,EALCST,NBLCST, PIRDAT,PEATCS
 INTEGER RD,WT
 CIMENS ION NOESX2(NCYCTO),ELAME(MXESX2,NC YCTO),NECBAL(NCYCTO),
 $EPFSRT (NZONE), EPFFFX(NCYCTO), BSRT (NZONE), POWFRC(NZONE),TS (NCYCTO),
 $TE (NCYCTO), DTC(NCYCTO),MODIRR(NCYCTO), UNT YEL (NCYCTC), UNT CDR (NCYCTO
 &),UNTSWU(NCYCTO), UNTFAE (NCYCTO), UNTSAR (NCYCTO),UNTCRE(NCYCTO),
 $LNTPUV (NCYCTO), PVFACT(NCYCTO), EC (NCYCTO),TCCYC(NCYCTO),
 $ACCYC(NCYCTO),TCEOCD (NCYCTO), ACEOCD(NCYCTO), EPF(NZP,NCYCTO),
 $B(NZP,NCYCTO), BATCST(NZP,NCYCTO),PVTCYC(NCYCTC),C(NZP)
 CIMENSION TO(NCYCTO), ZEROHT(NCYCTO)
 CIMENSION TREFUL (NCYCTO),TNID(NCYCTO), ECUPLM(NCYCTO)
 REAL**8 TCCYC,PVTCYC,SUM,RTC,BALRTC
 INTEGER CYC,FRSCYC,FRSBAT,BAT
 ZTCA=ZONEKG**0.001
 EALRTC=0.000
 CALL CCNSTS INCYCTO,TS,TE,UNTYEL,UNTCOR,UNTSWU,UNTFAB, UNTSAR, UNTCRE
 &,UNTPUV,DTC,PVFACT,TBASE,TREFUL,TMIDI
 FRSCYC=1
 LSTCYC=NCYCTO
```

QKCR 0505
QKCR0506
QKCR 0507
QKCR 0508
QKCR0509
QKCR 0510
QKCRO511
QKCR0512
QKCR 0513
QKCRO514
QKCR 0515
QKCRO5 16
QKCR 0517
QKCR 0518
QKCRO519
QKCR 0520
QKCRO521
QKCRO522
QKCRO523
QKCRO524
QKCR 0525
QKCRO526
QKCR 0527
QKCR 0528
QKCRO529
QKCR 0530
QKCRO531
QKCR 0532
QKCRO533
QKCRO534
QKCR 0535
QKCRO5 36
QKCRO537
QKCR 0538
QKCR0539
QKCR 0540

```
 FRSEAT=1
 LSTBAT=NCYCIN+MINO(NZCNE,NCYCXS)
 CALL ERASE(ECUPLM,NCYCTO)
 ECUPLM(I)=ECEIA1+STCHLM
 CO 1O CYC=1,NC YC TD
 ZEROHT(CYC)=MWS*(1./EFFAV-1./EFF)*TO(CYC)*8.760
 IF(EPFFX(CYC)) 2,1,3
1 MODIRR(CYC)=1
 GC TC 10
2 MODIRR(CYC)=2
 GO TO 10
3 NODIRR(CYC)=3
1) EC(CYC)=ELAME(2*NECBAL(CYC)-1,CYC)
 MODIRR(1)=0
 IF(NCYCXS.EQ.O) GO TO 2O
 $=1.E20
 NCP=NCYCIN+1
 DO 15I=NCP,NCYCTO
 PVTCYC(I)=$
 ICCYC(I)=$
 ACCYC(I)=$
 DO 15 N=1,N2P
15 EATCST(N,I)=$
20 CO 50 CYC=FRSCYC,LSTCYC
 IF(PIRCAT.ANC.CYC.EQ.FRSCYC) WRITE(WT,901) IRCRS,IDNUM
 MODE=MODIRR(CYC)
 ECESPC=EC(CYC)
 ECTSPC=ECESPC/EFF+ZERCHT(CYC)
 EPFSPC=ABS(EPFFX(CYC))
 IF(FIRDAT) WRITE(WT,900) CYC,ECTSPC,ECESPC
 IF(CYC.EQ.I) GO TO 30
 CALL NXTIRR(MODE,ECTSPC,EPFSPC,ZONEKG,NZCNE,EPF(1,CYC),B(1,CYC),
$E(2,CYC+1), PIRDAT,WT,ECTCRT)
 IF (BALRTC.EQ.O.ODO.ANC.MODE.NE.I.AND.ECLPLM(CYC).EQ.O.0)
& ECUPLM(CYC)=EFF*(ECTCRT-ZEROHT(CYC))+STCHLM
 IF(MODE.EQ.2) EC(CYC)=EFF*(ECTSPC-ZEROHT(CYC))
```

QKCR0541
QKCR 0542
QKCRO543
QKCR 0544
QKCR 0545
QKCR0546
QKCR0547
QKCR0548
QKCR 0549
QKCR 0550
QKCRO551
QKCR0552
QKCRO553
QKCR0554
QKCR 0555
QKCRO556
QKCRO557
QKCRO558
QKCR 0559
QKCR 0560
QKCRO561
QKCR0562
QKCRO563
QKCRO564
QKCR0565
QKCR 0566
QKCR0567
QKCRO568
QKCR0569
QKCR 0570
QKCRO571
QKCRO572
QKCR 0573
QKCR0574
QKCR 0575
QKCR 0576
PAGE 16

```
22 E(1,CYC+1)=0.0
 DO 25 I= 1,NZONE
 EPF(I+1,CYC+1)=EPF(I,CYC)
 GO TC 50
30 CO 40 I= 1,NZONE
 EPF(I,1)=EPFSRT(I)
40 E(I, 1)=BSRT(I)
 EPF(NZP,1)=1.E20
 E(NZP,1)=1.E20
 CALL FRSIRR(MODE,ECTSPC,ZONEKG,ECEIAI/EFF+ZEROHT(CYC),NZCNE,
 $EPF(1,CYC),B(1,CYC),B(2,CYC+1),PIRDAT,WT,POWFRC)
 GO TO 22
50 CONTINUE
 IF(PBATCS) WRITE(WT,902) IRCRS,IDNUM
 CO 70 BAT=FRSBAT,L STBAT
 MIRRAD=MINO (NZCNE,BAT)
 CALL CSTBAT(BAT,NIRRAC)
 NIP=NIRRAD+1
 N1=MAXO(O,NZONE-BAT)
 M2=MAX)(BAT-NZONE,C)
 [C 60 I=1,NIP
60 BATCST(I+M1,I+M2)=C(I)*ZTON
70 TCEOCD(BAT)=TCEOCO(BAT)*ZTON
 EATCST(N2P,1)=0.0
 CO &5 CYC=1,NCYCIN
 SUN=0.0DO
 DO 80 I=1,NZP
80 SUM=SUM+BATCST(I,CYC)
 TCCYC(CYC)=SUM
85 ACCYC(CYC)=SUM/EC(CYC)
 IF(FRSBAT.LE.NCYCIN.AND.LSTBAT.GE.NCYCIN)
 $ TCCYC(NCYCIN)=TCCYC(NCYCIN)*(1.-ECHDOV/EC(NCYCIN))
 RTC=0.000
 DO 90 CYC=1,NCYCIN
 FVTCYC(CYC)=TCCYC(CYC)*PVFACT(CYC)
90 RTC=RTC+PVTCYC(CYC)
E(1,}(Y(+1)=0.
```

QKCR 1577 QKCR 0578 QKCR 0579 QKCR 0580 QKCR0581 QKCRO582 QKCRO583 QKCR0584 QKCR 0585 QKCRO586 QKCR 0587 QKCR 0588 QKCR0589 QKCR 0590 QKCRO591 QKCR 0592 QKCR 0593 QKCRO594 QKCR 0595 QKCR0596 QKCR0597 QKCR 0598 QKCRO599 QKCR 3600 QKCR 0601 QKCR0602 QKCR 0603 QKCR0604 QKCR0605 QKCRO606 QKCR0607 QKCR 0608 QKCR0609 QKCR0610 QKCR 0611 QKCR06 12

```
 IF(BALRTC.GT.0.ODO) GC TC 100
 IF (.NOT.BALCST.AND..NOT.NBLCST) GO TO 150
 CALL PRTTOPINZP,NCYCTC,WT,TS,TE,DTC,MODIRR,UNTYEL,UNTCOR,UNTSWU,
 $UNTFAG,UNTSAR,UNTCRE,UNTPUV, PVFACT, EC,PVTCYC,TCCYC,ACCYC,TCEOCD,
 $ACEOCD,EPF, E, BATCST,TREFUL,TMID,NCYCIN, ECHDOV,IRCRS,IDNUMI
 GO TO 110
100 IF(.NOT.NBLCST) GO TO 20C
110 CALL PRTETM(RTC)
 IF(BALRTC.GT.0.OD)) GC TO 200
150 EALRTC=RTC
 DO 180 N=1,NCYCIN
 NCYC=NCYCIN-N+1
 ECBAL=EC (NCYC)
 IF(MODIRR(NCYC).EQ.2) GO TO 180
 NE2=NOES X2(NCYC)
 FRSCYC=NCYC
 LSTCYC=NCYC TO
 FRSEAT =FRSCYC
 LSTBAT=NCYCIN+MINO(NZCNE,NCYCXS)
 [O 170 J=1,NE2,2
 EC(NCYC)=ELAME (J,NCYC)
 RTC=BALRTC
 IF(EC(NCYC).EQ.ECBAL) GO TO 160
 GO TO 190
160 ELAME (J+1,NCYC)=RTC-BALRTC
170 CONTINUE
180 EC (NCYC) = ECBAL
 FETURN
190 GO TO 20
200 GO TO 160
900 FORMAT ('O'/'OCYCLE ',I2, 9X,'ECTSPC =',F10.2,'GWHTH', 1OX,
 $'ECESPC =',F10.2,' GWHE '।
901 FORMAT ('I'/'OCYCLE IRRADIATION DATA FOR ',I 3,' TH REACTOR (IDND =
 $',I5,') :'/)
9O2 FORMAT('1'/'OBATCH COSTS FCR', ,I3,' TH REACTOR IIDNO =
$',I5,'):'/1
```

QKCR0613
QKCR06 14
QKCRO615
QKCR0616
QKCR 0617
QKCR 0618
QKCR0619
QKCR 0620
QKCRO621
QKCR0622
QKCRO623
QKCR0624
QKCR0625
QKCR 0626
QKCRO627
QKCR 0628
QKCR0629
QKCR 0630
QKCR 0631
QKCRO632
QKCR0633
QKCRO634
QKCR0635
QKCR 0636 QKCR0637
QKCR0638 QKCR 0639 QKCR0640 QKCR 0641 QKCR 0642 QKCR 0643 QKCR 0644 QKCRO645 QKCR0646 QKCR 0647 QKCR0648

```
 END
 SUBRDUTINE CONSTSINCYCTO,TS,TE,UNTYEL,UNTCOR,UNTSWU,UNTFAB,
 $LNTSAR, UNTCRE,UNTPUV,DTC,PVFACT,TBASE,TREFUL,TMIDI
C
 calculate constant cata for this iteration thru incore
 GKCCRE VERSION 3-04-72
 DIMENSION TS(NCYCTOI,TE(NCYCTO),COST(7)
 CINENSION DTC(NCYCTO), PVFACT (NCYCTO),UNTYEL(NCYCTO), UNTCOR (NCYCTO)
 $,UNTSWU(NCYCTO), UNTFAB(NCYCTO), UNTSAR(NCYCTO),UNTCRE (NCYCTO),
 $LNTPUV (NCYCTO),TREFUL(NCYCTO),TMID(NCYCTO)
 REAL*8 PVPER$
 TEMP=TS(NCYCTO+1)
 TS(NCYCTO+1)=TE(NCYCTC)+TS(NCYCTO)-TE(NCYCTO-1)
 I=1
 TSRT=TS(1)
100 (ALL UNTCOS(TSRT,CCST)
 LNTYEL(I)=COST(1)
 LNTCCR(I)=COST(2)
 (NTSNU(I)=CCST(3)
 UNTFAB(I)=COST(4)
 LNTSAR(I)=COST(5)
 LNTCRE(I)=COST(6)
 LNTPUV(I)=COST(7)
 TSRTNX=0.5*(TE(I)+TS(I+1))
 CTC(I)=TSRTNX-TSRT
 TMD=TSRT +0.5*DTC(I)
 PVFACT(I)=PVPER$(TMC,TBASE)
 TREFUL(I)=TSRT
 TMIC(I)=TMD
 TSRT = TSR TNX
 I=I+1
 IF(I.lE.NCYCTO) GO TO 100
 TS(NCYCTD+1)=TEMP
 FETURN
 END
 SUBROUTINE NXTIRRIMODE,ECSPC, EPFSPC,ZONEKG,NZCNE,EPF,BGIN,BFNL,
$ PRINT,NPRNTR,ECTCRT)
```

QKCR0649
OKCR 0650
QKCR 0651
QKCR0652
QKCRU653
QKCR0654
QKCR0655
QKCR 0656
QKCR0657
QKCR 0658
QKCR0659
QKCR 0660
QKCR 0661
QKCR0662
QKCR0663
QKCR0664 QKCR0665 QKCR 0666 QKCR0667 QKCR 0668 QKCR 0669 QKCR 0670 QKCR 0671 QKCR0672 QKCR0673 QKCR 0674 QKCR0675 QKCR0676 QKCR 0677 QKCR0678 QKCR 0679 QKCR0680 QKCR 0681 QKCR 0682 QKCR0683 QKCR06 84

```
C
C
C
C
C
c
C
 FERFCRMS SIMULATION OF NEXT IRRADIATION
 GKCORE VERSION 3-04-72
 ALL EC'S IN UNITS OF GWHTH FROM THE ENTIRE REACTOR
 NODE = O FIRST CYCLE WHICH IS ALREADY UNDERGOING IRRADIATION
 THEREFDRE CNLY FRSIRR CAN BE CALLED
 =1 EC SPECIFIED; EPFNEW TO BE DETERMINED
 = 2 EPFNEW SPECIFIED; EC TO BE DETERMINED
 = 3 EC & EPFNEW SPECIFIED (STRETCHCUT OR EARLY REFUELING)
 IMFLICIT REAL (K)
 LCGICAL PRINT
 [IMENS ION EPF(NZONE),BGIN(NZONE),BFNL(NZCNE)
 CIMENSION K8(10),SIGA(10),DB(10),F(10)
 CCMMON/IRRDAT/K8INR,ECCUT,ECRIT,UTIL,EC$24Z,K8,SIGA,DB,F
 [ATA EPFNIN,EPFMAX/1.5,5.0/
 IF(MODE.EQ.O) CALL ICERRS('NXTIRR',12)
 k8 INR=0.0
 LTIL=1.0
 FSUM=0.0
 IF(NZONE.EQ.1) GO TO 30
 TEMP=0.0
 CO 20 N=2,NZONE
 E=EPF(N)
 B=BGIN(N)
 K8(N)=FK8(E,B)
 SIGA(N)=FSIGA(E)
 F(N)=SIGA(N)*K8(N)
 FSUM=FSUM+F(N)
20 TEMP=TEMP+K8(N)
 K8INR=TEMP / (NZONE-1)
30 IF(MCDE.GT.1) GO TO 80
K81=FK 8NEK(ECSPC,K8INR)
K8(1)=K81
EPFI=FEPF(K81)
IF(EPF1.GT.EPFMAX.OR.EPF1.LT.EPFMIN) GO TO 100
EPF(1)=EPF1
ECOUT=ECSPC
```

QKCR 0685
QKCR 0686
QKCR0687
QKCR 0688
QKCR0689
QKCR 0690
QKCR 0691
QKCR0692
QKCR 0693
QKCR 0694
QKCR0695
QKCR 0696
QKCR 0697
QKCR0698
QKCR 0699
QKCRO 700
QKCR0701
QKCR0702
QKCR0703
QKCR 0704 QKCR0705
QKCR 0706 QKCR0707
QKCR0708
QKCR0709
QKCRO710
QKCR0711
QKCR 0712
QKCR 0713
QKCR0714 QKCRO715 QKCRO716 QKCR 0717 QKCROT18 QKCR 0719 QKCRO720
page

```
 ECRIT=ECSPC
 40 EPFI=EPF(1)
 FHI=FPHI(EPFI,K8INR)
 SIGA(1)=FSIGA(EPFI)
 F(1)=SIGA(1)*K8(1)*PHI
 TEMF=1./(FSUM+F(1))
 5) EC $24Z=ECOUT/(24.*ZCNEKG*0.001)
 CO 7C N=1,NZCNE
 F(N)=F(N)*TEMP
 CB(N)=F(N)*EC$24Z
 70 EFNL(N)= BGIN(N)+DE(N)
 ECTCRT=ECRIT
 IF(.NOT.PRINT) RETURN
 NZ=NZONE
 WRITE(NPRNTR,900) MODE,ECSPC,EPFSPC,ZONEKG,K8INR,EC$24Z,ECOUT,ECRI
 $T,UTIL,(N,EPF(N),BGIN(N),DB(N),BFNL(N),K&(N),SIGA(N),F(N),N=1,NZ)
 RETURN
 80 EPF(1)=EPFSPC
 E=EPF(1)
 B=BGIN(1)
 K81=FK8(E,B)
 K8(1)=K81
 ECRIT=FECOUT(K81,K&INR)
 IF(MCDE.GT.2) GO TO }8
 ECOUT=ECRIT
 ECSPC= ECOUT
 GO TO 40
 85 ECOUT=EC SPC
 LTIL=ECCUT/ECRIT
 CHECK FOR WARNING OF TOC MUCH STRETCHOUT
 IF(UTIL.GT.1.25) CALL ICERRS('NXTIRR',1)
C CHECK FOR WARNING CF VERY LITTLE IRRADIATION
 IF(UTIL.LT.0.75) CALL ICERRS('NXTIRR',2)
 GC TC 40
C COMPLETE FIRST CYCLE IRRADIATION
 ENTRY FRSIRR(MODE, ECSPC,ZONEKG,EKRIT,NZONE,EPF,BGIN,BFNL,PRINT,
```

QKCR0721
QKCROT22
QKCR0723
QKCR 0724
QKCROT 25
QKCRO726
QKCR 0727
QKCRO728
QKCRO729
QKCR0730
QKCRO731
QKCR 0732
QKCRO733
QKCRO734 QKCRO735 QKCR 0736 QKCR 0737 QKCROT38 QKCR 0739 QKCRO 0740 QKCRO741 QKCR 0742 QKCROT43 QKCRO744 QKCR 0745 QKCRO 746 QKCR 0747 QKCRO748 QKCR 0749 QKCR 0750 QKCR0751 QKCRO752 QKCR 0753 QKCRO754 QKCR 0755 QKCRO756
PAGE

```
 $NPRNTR,POWFRC)
 CIMENSION POWFRC(NZONE)
 ECRIT=EKRIT
 EP F SPC =0.0
 K8 INR=0.0
 ECOLT=ECSPC
 UTIL=ECOUT/ECRIT
 TENF=1.0
 CO SO N=1,NZONE
 F(N)=POWFRC(N)
 K8(M)=0.0
9) {IGA(N)=0.0
 GO TO 50
 100 NODE=3
 EPFSPC=EPFMIN
 IF(EPFI.GT.EPFMAX) EPFSPC=EPFMAX
 CALL ICERRS('NXTIRR',11)
 GO TO }8
 900 FORMAT(OMODE =',I2,10X,'ECSPC =',F10.2,' GWHTH
 $',10X,'EPFSPC =',F10.5,1CX,'ZONEKG =',F10.1/'0 K8INR =',F10.06,5X,
 $'EC$24Z =',F10.4,5X,'ECOUT =',F10.2,5X,'ECRIT =',F10.2,5X,'UTIL ='
 $,F10.6/.CN EPF BGIN DB KFNL K8',
 $6X,' SIGA F'/(I3,F10.6,3F10.4,3F10.6))
 END
 SUBROUTINE CSTBAT(LSTIRR,NIRRAD)
 CALCULATE COST OF BATCH DISCHARGED AT END OF LSTIRR AND WHICH WAS
 IRRADIATEC NIRRAD TIMES WITHIN THE SIMULATION
 GKCORE VERSION 12-15-72
 IMPLICIT REAL (K)
 COMMON/F XDDAT/MXZJNE,MXCYTO,MXRC RS,MXRCRK,MXFULK,IRCRS,IRCRK,IFULK
 $,NRCRS,NRCRK,NFULK,EFF,XF,XW,TXRATE,PVRATE,TBASE,DTPRE,DTPST,
 $CTY2F6, CCRATE,FCOR,FFAB,FS AR,FCRE, NCYCIN,NCYCXS,NCYCTO,NZONE,NZP,
 $ ZONEKG, ECHDOV, EFFAV,MWS
 COMMCN/PRINTS/RELCST, INCCST, BALCST, NBLCST,PIRCAT,PBATCS,RD,WT
 LOGICAL RELCST, INCCST, BALCST,NBLCST,PIRDAT,PEATCS
 INTEGER RC,WT
```

QKCR 0757
QKCRO758
QKCRO759
QKCR 0760
QKCR0761
QKCR 0762
QK CR0763
QKCR 0764
QKCR0765
QKCRO766
QKCRO767
QKCR 0768
QKCR0769
QKCR 0770
QKCR0771
QKCRO772
QKCRO773
QKCRO774
QKCRO775
QKCRO776
QKCR 0777
QKCR 0778
QKCR0779
QKCRO780
QKCRO781
QKCRO782
QKCR 0783
QKCRO784
QKCRO785
QKCRO786
QKCR 0787
QKCR 0788
QKCR0789
QKCRO790
QKCRO791
QKCR0792
PAGE 22

```
```

    INTEGER FRSIRR
    ```
```

    INTEGER FRSIRR
    REAL IUF6,IFAB,ISRC,IPUV,ITOT
    REAL IUF6,IFAB,ISRC,IPUV,ITOT
    REAL*8 PVPER$
    REAL*8 PVPER$
    LCGICAL NEWFUL
    LCGICAL NEWFUL
    GO TO }
    GO TO }
    ENTRY INIT3(FABINV,SRCINV,EPF,DTC,B,UNTYEL,UNTCOR,UNTSWU,UNTFAB,
    ENTRY INIT3(FABINV,SRCINV,EPF,DTC,B,UNTYEL,UNTCOR,UNTSWU,UNTFAB,
    $LNTSAR,UNTCRE,UNTPUV,TCEOCD, ACEOCD,A,BC, CBC,DT,KGU,EPNOW,UVALUE,
    $LNTSAR,UNTCRE,UNTPUV,TCEOCD, ACEOCD,A,BC, CBC,DT,KGU,EPNOW,UVALUE,
    $GMP, IUF6, IFAB, I SRC, I PUV, ITOT, C, ACI
    $GMP, IUF6, IFAB, I SRC, I PUV, ITOT, C, ACI
    [IMENSION FABINV(NZONE),SRCINV(NZONE)
    [IMENSION FABINV(NZONE),SRCINV(NZONE)
    DIMENSION EPF(NZP,NCYCTC), CTC(NCYCTO), B(NZP, NCYCTO),UNTYEL (NCYCTO)
    DIMENSION EPF(NZP,NCYCTC), CTC(NCYCTO), B(NZP, NCYCTO),UNTYEL (NCYCTO)
    $,UNTCOR(NCYCTO),UNTSWU(NCYCTO), UNTFAB(NCYCTO), UNTSAR (NCYCTO),
    $,UNTCOR(NCYCTO),UNTSWU(NCYCTO), UNTFAB(NCYCTO), UNTSAR (NCYCTO),
    $UNTCRE (NCYCTO), UNT FUV (NCYCTO),TCEOCD(NCYCTO), ACEOCD(NCYCTO)
    $UNTCRE (NCYCTO), UNT FUV (NCYCTO),TCEOCD(NCYCTO), ACEOCD(NCYCTO)
    DIMENSION A (NZP,15),BC(NZP),DBC(NZP),OT(NZP),KCU(NZP),
    DIMENSION A (NZP,15),BC(NZP),DBC(NZP),OT(NZP),KCU(NZP),
    \&EPNOW(NZP), UVALUE(NZP),GMP(NZP),IUFG(NZP),IFAB(NZP),ISRC (NZP),
\&EPNOW(NZP), UVALUE(NZP),GMP(NZP),IUFG(NZP),IFAB(NZP),ISRC (NZP),
\$IPUV(NZP),ITOT (NZP),C(NZF),AC(NZP)
\$IPUV(NZP),ITOT (NZP),C(NZF),AC(NZP)
CCPRE=DTPRE*CCRATE
CCPRE=DTPRE*CCRATE
CCPST=DT PST*CCRATE
CCPST=DT PST*CCRATE
FABLCS=(1.-FFAB)/FFAB
FABLCS=(1.-FFAB)/FFAB
SARLOS=1.-FSAR
SARLOS=1.-FSAR
CRELCS=FSAR*(1.-FCRE)
CRELCS=FSAR*(1.-FCRE)
RETURN
RETURN
5 CALL ERASE(A,15*NZP)
5 CALL ERASE(A,15*NZP)
NI =NIRRAD
NI =NIRRAD
MIP=NIRRAD+1
MIP=NIRRAD+1
MIM=NI RR }\triangleD-
MIM=NI RR }\triangleD-
NEWFUL=.TRUE.
NEWFUL=.TRUE.
FRSIRR=LSTIRR-NZONE+1
FRSIRR=LSTIRR-NZONE+1
IF(FRSIRR.GT.1) GO TC 10
IF(FRSIRR.GT.1) GO TC 10
FRSIRR=1
FRSIRR=1
NEWFUL=.FALSE.
NEWFUL=.FALSE.

1) EPFAB=EPF(NZONE,LSTIRR)
2) EPFAB=EPF(NZONE,LSTIRR)
JCYCL=FRSIRR-1
JCYCL=FRSIRR-1
JLCNE=NZCNE-NI
JLCNE=NZCNE-NI
CO 20 I= 1,NI
CO 20 I= 1,NI
A(I, 1)=I
A(I, 1)=I
JC YCL=JCYCL+1
```
 JC YCL=JCYCL+1
```

QKCRO793
QKCR0794
QKCR 0795
QKCR0796
QKCR 0797
QKCRO798
OKCRO799
QKCR 0800
QKCR0801
QKCRO802
QKCR 0803
QKCR 0804
QKCR 0805
QKCRO806
QKCR 0807
QK CR0808
QKCR0809
OKCR 0810
QKCR08 11
QKCR0812
QKCR 0813
QKCRO8 14
QKCR 0815
QKCRO8 16
QKCR 0817
QK CR 0818
QKCR0819
QKCR0820
QK CRO821
QKCR0822
QKCRO823
QKCR0824
QKCRO825
QKCR 0826
QKCR0827
QKCR0828

```
 MIM=NIRRAD-I
```

```
 MIM=NIRRAD-I
```

```
 JZCNE=JZCNE+1
 CT(I)=DTC(JCYCL)
 [BC(I)=B(JZONE+1,JCYCL+1)-B(JZONE,JCYCL)
20 BC(I)=B(JZONE,JCYCL)
 BC(NIP)=BC(NI)+DBC(NI)
 [BC(NIP)=0.0
 CT (NIP)=0.0
 CO 30 I= 1,NIP
 EURN=BC(I)
 KGU(I)=FKGUR(EPFAB,BURN)
 EPNOW(I) =FEPB(EPFAB,BURN)
 GMP(I)=FKGPU(EPFAB,BURN)*1000.
 UVALUE(I)=UFGVAL(EPNOW(I),UNTYEL(FRSIRR),UNTCCR(FRSIRR),UNTSWU(FRS
 $IRR))
 IUF6(I)=UVALUE(I)*KGU(I)
30 IPUV(I)=UNTPUV(LSTIRR)*GMP(I)
 IF\triangleR(1)=UNT FAE (FRSIRR) +FABLOS*IUF6(1)
 ISRC(1)=C.O
 IF(NEWFUL) GO TO 40
 JZCNE=NZCNE-NI+1
 IFAB(1)=FABINV(JZONE)
 ISRC(1)=SRCINV (JZONE)
4) ISRC(NIP)=UNTSAR(LSTIRR)*(KGU(NIP)*0.001*GMP(NIP))
 $ + SARLOS*(IUFG(NIP)+IPUV(NIP))
 $ + UNTCRE(LSTIRR)*KCU(NIP)*FSAR +CRELOS*IUF6 (NIP)
 CI SRC=ISRC(NIP)-I SRC(1)
 CVDB=1./(BC(NIP)-BC(1))
 CO 50 I= 1,NIP
 F=(BC(I)-BC(1))*OVCB
 IFAE(I)=IFAB(1)*(1.-F)
 ISRC(I)=ISRC(1)+DISSRC*F
50 ITOT(I)=IUF6(I)+IFAB(I)-ISRC(I)+IPUV(I)
 CO 60 I=1,NI
60 C(I)=ITOT(I)-ITOT(I +1)+(ITOT(I)+ITOT(I +1))*0.5*DT(I)*CCRATE
 IF(LSTIRR.GT.NIRRAC) C(1)=C(1)+ITOT(1)*CCPRE
 C(NIP)=ITOT(NIP)*CCPST
```

QKCR3829
QKCRO830
QKCRO831
QKCR 3832
QKCRO8 33
QKCRO834
QKCRO835
QKCR0836
QKCRU837
QK CR 0838
QKCR0839
QKCRJ840
QKCR0841
QKCR0842
QKCR 0843
QKCR0844
QKCR0845
QK CR 0846 QKCR0847 QKCRO848 QKCR0849 QKCR 0850 QKCRO851 QKCRO852 QKCR 0853 QKCRO854 QKCR0855 QKCR 0856 QKCRO857 QKCR0858 QKCRO859 QKCR0860 QKCR 0861 QKCRO 862 QKCR0863 QKCRO864

```
 TWCTFV=0.0
 N=1
70 IF(N.EQ.NI) GO TO 80
 N=N+1
 TWOTPV=TWOTPV +DT((N+1)/2)
 CO TC 70
8J TCBAT=0.0
 PVERN=0.0
 CO 90 I=1,NI
 FVPER=PVPER$(-0.5*TWOTPV,0.0)
 TCBAT=TCEAT +C(I)*PVPER
 FVBRN=PVBRN+CBC(I)*PVPER
 AC(I)=C(I)/(24.*EFFAV*DBC(I))
90 TWCTPV=TWOTPV-DT(I)-DT(I+1)
 TCBAT=TCBAT+C(NIP)*PVFER$(-0.5*TWOTPV,0.0)
 AC(NIP)=1.E2O
 PVELEC=PVBRN*24.*EFFAV
 ACEOCD(LSTIRR)=TCBAT/PVELEC
 TCECCD(LSTIRR)=TCBAT
 LST=LSTIRR
 IF(PBATCS) WRITE(WT,900) LSTIRR,NIRRAD,TCBAT,PVELEC,ACEOCD(LST),
 $((A(I,J),J=1,15),I=1,NIP)
 RETURN
900 FOFMAT('0'/10X,'COST CF BATCH DISCH. AT END OF CYCLE',I3,
 $' WHICH WAS IRRADIATED FOR',I3,' CYCLES CF THE SIMULATION:'/
 $' TOTAL COST OF DISCHARGED BATCH (P.V. AT MID-PT. CF MIDDLE',
 $' IRRAD.1 =',F8.2,' $/KGFAB'/ ' AVERAGE COST FOR THE',F8.2,
 $' MWHE/KGFAB (ALSO P.V.)',T70 ,'=',F8.4,' $/MWHE'/
 $' I BC CBC DT KGUR ENRICH UFGVAL GMSPU',
 $TX,'UF6 FAB SRC PUV TOTINV CCST AVGCST'/
 $. MWD/KGFAB MWD/KGFAB YRS KG/KGFAB W/O235 $/KGUF6 GM/KGFAB'
 $,T67,'----- DOLLARS PER KILOGRAM FABRICATED ---- $/MWHE'/
 $(F4.0,F8.4,FG.4,F8.4,FG.6,F8.4,F8.2,F7.3,3X,6F8.2,F8.41)
 END
 SUBROUTINE PRTTOP(NZP,NCYCTO,WT,TS,TE,DTC,MODIRR,UNTYEL,UNTCOR,
 $LNTSWU,UNTFAB,UNTSAR,UNTCRE,UNTPUV,PVFACT,EC,PVTCYC,TCCYC,ACCYC,
```

QKCR 0865
QKCR 0866
QKCR0867
QKCR 0868
QKCR0869
QKCR 0870
QKCR0871
QKCR0872
QKCR 9873
QKCR 0874
QKCRO875
QKCR 0876
QKCR0877
QKCR 3878
QKCR 0879
QKCRO880
QKCR 0881
QKCR0882
QKCRO883
QKCR 0384
QKCRO885
QKCRJ886
QKCR0887
QKCR 0888
QKCR 0889
QKCRO890
QKCR0891
QKCR0892
QKCR 0893
QKCR 0894
QKCRO895
QKCR 0896
QKCR0897
QKCR 0898
QKCR 0899
QKCR0900
page
25

```
 $TCEOCD,ACEOCO,EPF,R,BATCST,TREFUL,TMID,NCYCIN, ECHDCV,IRCRS, I CNUMI
 PRINT TOP OF FULSIM RESULT TABLE
 GKCORE VERSION 3-04-72
 REAL*8 TCCYC,PVTCYC,RTC
 CIMENSION TS (NCYCTO),
 $TE (NCYCTC), DTC (NCYCTC),MCDIRR(NCYCTO),UNTYEL (NCYCTC),UNTCOR (NCYCTO
 $),UNTSWU (NCYCTO), UNTFAB(NC YC TO), UNTSAR (NCYCTO), UNTCRE (NCYCTO),
 $LNTPUV (NCYCTO), PVFACT (NCYCTO), EC(NCYCTO),TCCYC(NCYCTO),
 $ACCYC(NCYCTC),TCEOCD(NCYCTO), ACEOCD(NCYCTO), EPF(NZP,NCYCTO),
 $E(AZP,NCYCTO), BATCST (NZP,NCYCTO), PVTCYC (NCYC TO), TREFUL(NCYCTO),
 $TMIC(NCYCTO)
 CCMPLEX*16 HD(GO), BLANK,E1,NP1,B1,$1
 INTEGER WT,FRS
 DATA HD/' CYCLE',' TIRSRT YRS',' TIREND YRS',' DTREF. YRS',
 $' MODIRR',' UNTYEL $/LBY',' UNTCOR $/KGC','UNTSWU $/KGS',
 $' UNTFAB $/KGF',' UNTSAR $/KGS'," UNTCRE $/KGC',' UNTPUV $/GMP',
 $' PVFACT OTMID','OEC GWHE',' PVTCYC K$'," TCCYC K$'," ACCYC $/
 $MWH',' TCEOCD K$',' ACECCD $/MWH','OTREFUL YRS',' TMID YRS'/
 CATA BLANK,E1,B1,$1,NP1/'*,' EPF(1)',' EGIN(1)',' BATCST(1)',
 $' (N+1)'/
 FRS=22
 LST=FRS+3\timesN NP-1
 NZ=NZP-1
 CO 10 I=FRS,LST
10 +C(I)= BL ANK
 HD(FRS)=El
 H(FRS+NZ)=NPI
 HD(FRS +NZP)=B1
 HD(LST-NZP)=NP1
 HC(LST-NZ)=$1
 HD(LST)=NP1
 WRITE(WT,930) IRCRS,IONUN
 WRITE(WT,901) FD(1),(I,I=1,NCYCTO)
 hRITE(WT,914) HD(20),TREFUL
 WRITE(WT,S14) HD(4),OTC
 WRITE(WT,914) HD(2),TS
```

QKCR 0901
QKCRO902
QKCRJ903
QKCR 0904
QKCR 0905
QKCR 0906 QKCR0907
QKCRO908
QKCR 0909
QKCR 0910
QKCR 0911
QKCR0912
QKCRO913
QKCR 0914
QKCRO915
QKCRO916
QKCRO917
QKCRO918
QKCR0919
QKCR0920
QKCR 0921
QKCR0922
QKCRO923
QKCRO9 24
QKCRO925
QKCR 0926
QK CRO927
QKCR0928
QKCR 0929
QKCR0930
QKCRO931
QKCR 0932
QKCRO933
QKCRO934
QKCRO935
QKCRO936
PAGE 26

```
 WRITE(WT,914) HD(3),TE
 WRITE(WT,901) HD(5),NCDIRR
 WRITE(WT,914) HD(21),TMID
 WRITE(WT,915) HD(13),PVFACT
 hRITE(WT,SO2)
 WRITE(WT,912)
 WRITE(WT,912)
 WRITE(WT,912)
 WRITE(WT,912)
 hRI TE(WT,912)
 WRITE(WT,912)
 hRITE(WT,912)
 RETURN
 ENTRY PRTBTMIRTCI
 FRINT BOTTOM OF FULSIN RESULT TABLE
 WRITE(WT,S31) IRCRS,IDNLM,RTC,NCYCIN,ECHDOV
 hRITE(WT,901) HD(1),(I,I=1,NCYCTO)
 WRITE(WT,912) HD(14),EC
 WRITE(WT,912) HD(15),PVTCYC
 hRITE(WT,G12) HO(16),TCCYC
 WRITE(WT,914) HD(17),ACCYC
 HRITE(WT,912) HD(18),TCECCD
 WRITE(WT,C14) HD(19),ACECCD
 IX = FRS - 1
 hRITE(WT,SOO)
 DO 20 M=1,NZP
20 WRITE(WT,914)
 IX = I X+NZP
 WFITE(WT,900)
 CO }30\textrm{M}=1,NZ
30 WRITE(WT,914)
 IX = IX+NZP
 WRITE(WT,900)
 CO 40 M=1,NZP
40 hRITE(WT,912) HD(N+IX),(BATCST(M,I),I=1,NCYCTO)
RETURN
```

QKCR0937
QKCR 0938
QKCRO939
QKCR0940
QKCR 0941
QKCRO942
QKCR 0943
QKCRO944
QKCRO945
QKCR 0946
QKCRO947
QKCRO948
QKCR 0949
QKCR0950
QKCR 0951
QKCR0952
QKCR 0953
QKCR 0954
QKCR 0955
QKCRO956
QKCRO957
QKCRO958
QKCR0959
QKCR0960
QKCRJ961
QKCRO962
QKCRO963
QKCRO964
QKCRO965
QKCRO966
QKCR0967
QKCR 0968
QKCR 0969
QKCR0970
QKCRO971
QKCR 0972
PAGE

```
 900 FCFMAT ('O')
 901 FORMAT (A 8,A5,12(17,3X)/(30X,10(I 7,3X)))
 902 FCRMAT (' UNIT COSTS CA. TREFUL')
 G12 FORMAT (A8,A5,12F1).2/(30X,10F10.2))
 913 FORMAT (A 8,A 5,12F10.3/(30X,10F10.3))
 914 FCRMAT (A8,A5,12F10.4/(30X,10F10.4))
 G15 FORMAT(A&,A5,12F10.5/(30X,10F10.5))
 930 FORMAT ('1:/'0'/'0'/T 35,'INDEX = ',I3,10X,'IDNO =', I5/
 $ }1\mp@subsup{0}{}{\prime},T20,****** FULSIM RESULT TABLE FOR BALANCE
 $C SET OF EC''S * * ****/'0'/'O')
 931 FOFMAT('1' /'0'/T35,'INDEX = ',I3,10X,'IDNO =',I5)
 $ O* * REACTOR TOTAL COST TC HORIZON CF INTEREST :',
 $F12.3,' (10**3 DOLLARS P.V. TO TBASE)**** % (HORIZON IS IN
 $ CYCLE ,I2,' WITH ',F10.2," GWHE HELDOVER FOR POST-HORIZON PRODUC
 $TION IN THAT CYCLE I'/)
 END
 FUNCTION EMPRCL(F,R)
 INITIALIZE EMPIRICAL EQUATIJNS
 GKCCRE VERSION 3-04-72
 IMPLICIT REAL(K)
 LINENSION F(100),R(25)
 EVALLATE QUADRATIC Q=CO + C1*X + C2*X**2
 G(CO,C1,C2,X)=(C2* X+C1)* X+CO
 LNIT FUEL SIMULATICN EGUATIONS
C SETUP INVERSION OF K8NEW TO GET EPFNEW
 EMFRCL=0.0
 IF(F(3).EQ.0.0) GO TO 10
 CEF1=-0.5*F(2)/F(3)
 CEF2=(F(2):**2-4.*F(3)*F(1))/(4.*F(3)**2)
 CEF3=1./F(3)
 CEF4=0.0
 K8NAX=Q(F(1),F(2),F(3),CEF1)-1,E-5
 RETURN
 10 CEFl=-F(1)/F(2)
 CEF2=0.0
 CEF3=0.0
```

QKCRO973
QKCR 0974
QKCR 0975
QKCR 0976
QKCR 0977
QKCR 0978
QK CR 0979
QKCRO980
QKCRO981
QK CRO982
QKCR0983
QKCR0984
QKCR0985
QKCR0986
QKCR0987 QKCR0988 QKCR 0989 QKCR0990 QKCRO991 QK CR 0992 QKCR 0993 OKCRO994 QKCR0995 QKCRO996 QK CR 0997 QKCRO998 QKCR0999 QKCR 1000 QKCR 1001 QKCR 1002 QKCR1003 QKCR 1004 QKCR 1005 QKCR 1006 QKCR 1007 QKCR1008

```
 CEF4=1/F(2)
 K8MAX=100.
 RETURN
C***********:*********************
 ENTRY FK8(EPF,B)
 FK &=Q(Q(F(1),F(2),F(3),EPF),Q(F(4),F(5),F(6),EPF),
 $G(F(7),F(8),F(9),EPF),B)
 RETURN
C********************************
 ENTRY FKGUR(EPF,B)
 FKGUR=Q(Q(F)(10),F(11),F(12),EPF),Q(F(13),F(14),F(15),EPF),
 $G(F(16),F(17),F(18),EPF),B)
 RE TURN
C#***********%*#***********######
 ENTRY FEPE(EPF,B)
 CUM=Q(Q(F(19),F(2J),F(21),EPF),Q(F(22),F(23),F(24),EPF),
 $6(F(25),F(26),F(27),EPF),B)
 FEPB=EPF*EXP(-B*DUM)
 RETURN
Cm******************************
 ENTRY FKGPU(EPF,B)
 CUM=Q(Q(F(28),F(29),F(30),EPF),Q(F(31),F(32),F(33),EPF),
 $6(F(34),F(35),F(36),EPF),B)
 LLAM=Q(F(37),F(38),F(35),EPF)
 FLAN=Q(F(40),F(41),F(42),EPF)
 FKGPU=DUM* (EXP(-B*ULAN)-EXP(-B*PLAM))
 RETURN
C*******************************
 ENTRY FSIGA(EPF)
 FSIGA=F(43)+F(44)*EPF
 FETURN
C***********:*********************
 ENTRY FEFF(K8NEW)
 FEPF=100.
 IF(K8NEW.GT.KBMAX) RETLRN
 FEPF=CEF1-SQRT(CEF2+CEF3*K8NEW)+CEF4*K 8NEW
```

QK CR 1009
QKCR1010
QKCR 1011
QKCR1012
QKCR 1013
QKCR 1014
QKCR1015
QKCR 1016
QKCR1017
QKCR 1018
QKCR 1019
QKCR1020
QKCR 1021
QKCR 1022
QKCR1 1023
QKCR 1024
QKCR1025
QKCR 1026
QKCR 1027
QKCR1028
QKCR 1029
QKCR1030
QKCR 1031
QKCR 1032
QKCR1033
QKCR 1034
QKCR 1035
QKCR1036
QKCR 1037
QKCR1038
QKCR 1039
QKCR1040
QKCR1041
QKCR 1042
QKCR1043
QKCR1044
page

RETURN

```
****4******x******x+x***********
C REACTOR IRRADIATION SIMULATION EQUATIONS
 ENTRY FK8NEW(EC,K8 INR)
 DK=K &I NR-1.
 FK 3NEW=1.+Q(R(1),R(2),R(3),EC)+Q(0.0,R(4)+R(6)*EC,R(5),DK)
 RETURN
```



```
 ENTRY FPHI(EPF,K8INR)
 CK=KRINR-1.
 FPHI=1./(1.+EPF*Q(R(8),R(9),R(10),EPF)+Q(R(7),R(11),R(12),DK))
 FETURN
```



```
 ENTRY FECOUT(K8NEW,K8INR)
C REWRITE K8NEW AS AA*EC*2 +BB*EC+CC=0 ANC SOLVE FOR EC
 CK=K &INR-1.
 AA=R(3)
 BB=R(2)+R(6)*DK
 CC=Q(1,+R(1)-K 8NEW,R(4),R(5),DK)
 IF(AA.EQ.0.O) GC TO 20
 FECOUT = BB*(SQRT(1.-4.*AA*CC/BB**2)-1.)/(AA+AA)
 FETURN
 20 FECOUT =-CC/BB
 FETURN
 END
 SUBROUTINE UNTCOS(TREFUL,COST)
C CALCULATE ESCALATEL UNIT COSTS
C GKCORE VERSION 3-34-72
 [IMENSION COST(7),AO(7),A1(7),A2(7),BO(7),B1(7),B2(7)
 GO TC 10
 ENTRY INIT2(BO,B1,B2,DTPRE,DTPST,TREFUL,COST)
C INITIALIZE POINTERS AND [ATA
 DO 5 I=1,7
 CO(I)= BO(I)
 A1(I)=B1(I)
 5 A2(I)=B2(I)
```

QKCR1045
QKCR 1046
QKCR 1047
QKCR1 048
QKCR 1049
QKCR1050
QKCR 1051
QKCR1052
QKCR1 053
QKCR 1054
OKCR 1055
QKCR 1056
QKCR1 1057
QKCR1058
QKCR 1059
QKCR 1060
QKCR 1061
QKCR 1062
QKCR1063
QKCR 1064 QKCR1065 QKCR1066 QKCR 1067 QKCR1 1068 QKCR 1069
QKCR 1070 QKCR1071
QKCR 1072
QKCR1073
QKCR 1074
QKCR 1075
QKCR1 1076
QKCR 1077
QKCR 1078
QKCR 1079
QKCR 1080
PAGE 30

```
 10 TPRE=TREFUL-DTPRE
 TPST = TREFUL +DTPST
 CO 20 I=1,4
 2) COST(I)=(TPRE*A2(I)+Al(I))*TPRE+AO(I)
 [0 30 [=5,7
 30 COST(I)=(TPST*A2(I)+A1(I))*TPST+AO(I)
 RETURN
 END
 FUNCTION UFGVAL(/EP/,/LNTYEL/,/UNTCOR/,/LNTSWU/I
C CALCULATES VALUE OF ENRICHED URANIUM AS $/KG UFG
C GKCORE VERSICN 3-04-72
 REAL*8 PVPER$
 FHI(x)=(x+x-1.)*ALOG(X/(1.-X))
 SOVP (x)=PHI(X)+A+B*X
 FOVP (XP) = (XP-XW)*OVDX
 CF=C1*UNTYEL+UNTCOR
 XP=0.0 l*EP
 UFGVAL=C F*FOVP(XP)+UNTSWU*SOVP(XP)
 RETLRN
 ENTRY SETUVL(DTY2FG,FCOR,XF,XW)
 SETUP URAN. VALUE EGUATICN
 Cl=2.599&5*PVPER$(-DTY2F6,0.0)/FCOR
 CVDX=1./(XF-XW)
 FHIXF=PHI(XF)
 FHIXW=PHI(XW)
 A=(-XF*PHIXW + XW*PHIXF)*CVDX
 B=(PHIXW-PHIXF)*OVDX
 SETUVL=0.0
 RETURN
 END
 FUNCTION PVPER$(T,TEASE)
 calculate present value at time T of 1$ at time tbase
C GKCORE VERSION 3-04-72
 REAL*8 PVPER$,LN1PX
 PVPER$=DEXP(-LNIPX*(T-TBASE))
 RETURN
```

QKCR 1081
QKCR 1082
QKCR 1083
QKCR 1084
QKCR 1085
QKCR 1086
QKCR1087
QKCR1088
QKCR 1089
QKCR1090
QKCR 1091
QK CR 1092
QKCR 1093
QKCR 1094
QKCR1095
QKCR1J96
QKCR 1097
QKCR1098
QKCR 1099
QKCR1100
QKCR 1101
QKCR 1102
QKCR1103
QKCR 1104
QKCR1105
QKCR1106
QKCR 1107
QKCR1108
QKCR 1109
QKCR 1110
QKCR1111
QKCR 1112
QKCR1113
QKCR1114
QKCR1115
QKCR1116

```
 ENTRY PVINIT(PVRATE)
```

    QKCR 1117
    QKCR1118
    QKCR 1119
    QKCR1120
    QKCR 1121
    QK CR 1122
    QKCR 1123
    QKCR 1124
    QKCR1125
    QKCR 1126
    QK CR 1127
    QKCR1128
    QKCR 1129
    QKCR1130
    QKCR1131
    QK CR 1132
    QKCR1133
    QKCR 1134
    QKCR1135
    QKCR1136
    QK CR 1137
    QKCR 1138
    QKCR 1139
    QKCR 1140
    QKCR1141
    QKCR 1142
    QKCR1143
    QKCR 1144
    QK CR 1145
    QKCR 1146
    QKCR 1147
    QKCR 1148
    QKCR1149
    QKCR 1150
    QKCR 1151
    QKCR 1152
PAGE 32

```
```

        STCP
    ```
```

        STCP
    9 WRITE(WT,909) SUBR,ERRCCD,NPRINT
    9 WRITE(WT,909) SUBR,ERRCCD,NPRINT
        RETURN
        RETURN
    10 hRITE(WT,910) SUBR,ERRCOC,NPRINT
    10 hRITE(WT,910) SUBR,ERRCOC,NPRINT
        GO TO 1000
        GO TO 1000
    11 WRITEIWT,G11I SUBR,ERRCOD,NPRINT
    11 WRITEIWT,G11I SUBR,ERRCOD,NPRINT
    FETLRN
    FETLRN
    12 WRITE(WT,S12) SUBR,ERRCOD,NPRINT
    12 WRITE(WT,S12) SUBR,ERRCOD,NPRINT
        CO TO 1000
        CO TO 1000
    1000
1000
NT =NPRI NT+1
NT =NPRI NT+1
WRITE(WT,999) NPRINT
WRITE(WT,999) NPRINT
SUBR=$QUIT$
SUBR=$QUIT$
IERR=8
IERR=8
CO TO 100
CO TO 100
901 FORMAT(/' ',130('*')/,'* SUBR.*,A6,' HAS ERRCOD= *,Z8,': *,
901 FORMAT(/' ',130('*')/,'* SUBR.*,A6,' HAS ERRCOD= *,Z8,': *,
\$' UTIL.GT. 1.25 VERY LONG STRETCHOUT
\$' UTIL.GT. 1.25 VERY LONG STRETCHOUT
\$T131,'*',/,' ',130(1*'), [2)
\$T131,'*',/,' ',130(1*'), [2)
902 FORMAT(/' ',13U('*')/,' * SUBR.',A6,' HAS ERRCOD = ',Z8,': ',
902 FORMAT(/' ',13U('*')/,' * SUBR.',A6,' HAS ERRCOD = ',Z8,': ',
\$' UTIL.LT.0.75 VERY EARLY REFUELING ",
\$' UTIL.LT.0.75 VERY EARLY REFUELING ",
\$T131,**'/,' ',130('*'),I2)
\$T131,**'/,' ',130('*'),I2)
GO3 FORMAT(/' ',130(**')/,'* SUBR. *,A6," HAS ERRCOD = *,28,': *,
GO3 FORMAT(/' ',130(**')/,'* SUBR. *,A6," HAS ERRCOD = *,28,': *,
\&'INPUT DECK HAS IMPROPER SEQUENCE \&/OR CARD ',
\&'INPUT DECK HAS IMPROPER SEQUENCE \&/OR CARD ',
\$T131,'*',/,', 13)('*'),I2)
\$T131,'*',/,', 13)('*'),I2)
904 FORMAT(/' ',130(**')/,'* SUBR. ',A6,' HAS ERRCOD = ',Z8,': ',
904 FORMAT(/' ',130(**')/,'* SUBR. ',A6,' HAS ERRCOD = ',Z8,': ',
\$'ARRAY G IN THIS VERSICN IS TOO SMALL FOR THIS',
\$'ARRAY G IN THIS VERSICN IS TOO SMALL FOR THIS',
* PRCBLEM
* PRCBLEM
\$T131,'*',/,' ',130('*'), 12)
\$T131,'*',/,' ',130('*'), 12)
905 FORMAT(/' ',130("*')/.'* SUBR. ',A6," HAS ERRCOD = ',Z8,": ',
905 FORMAT(/' ',130("*')/.'* SUBR. ',A6," HAS ERRCOD = ',Z8,": ',
\$TOO MANY ZONES, REACTORS, OR SETS OF REACTOR',
\$TOO MANY ZONES, REACTORS, OR SETS OF REACTOR',
\$'\&/CR FUEL CCNSTANTS FCR THIS VERSION
\$'\&/CR FUEL CCNSTANTS FCR THIS VERSION
4T131,'*',/,'1,130('*'),I2)
4T131,'*',/,'1,130('*'),I2)
906 FOFMAT (/' ',130('*')/,'* SUBR. ',A6,' HAS ERRCOD = ',Z8,': ',
906 FOFMAT (/' ',130('*')/,'* SUBR. ',A6,' HAS ERRCOD = ',Z8,': ',
\$' WARNING: NCYCTC WAS NOT EQUAL TC NCYCIN',
\$' WARNING: NCYCTC WAS NOT EQUAL TC NCYCIN',
*'+NCYCXS WHEN INCORE ENTERED ',
*'+NCYCXS WHEN INCORE ENTERED ',
\$T131,'*',/,' ',130('*'),I2)
\$T131,'*',/,' ',130('*'),I2)
907 FORMAT(/' ',130('*'//,'* SUBR.',A6,'HAS ERRCOD = ',Z8,':',

```
907 FORMAT(/' ',130('*'//,'* SUBR.',A6,'HAS ERRCOD = ',Z8,':',
```

```
 *,
```

                            *,
                            ',
                            ',
                            ',
    ```
 ',
```

QKCR1L53
QKCR 1154
QK CR 1155
QKCR1156
QKCR 1157
QKCR1158
QKCR1159
QK CR 1160
QKCR1161
QKCR 1162
QKCR1163
QKCR1164
QKCR 1165
QKCR 1166
QKCR1167
QK CR1168
QKCR1169
QKCR 1170
QKCR1171
QKCR1172
QKCR 1173
QKCR1174
QKCR 1175
QKCR1176
QKCR1177
QKCR 1178
QKCR1179
QKCR 1180
QKCR1181
QKCR1182
QKCR 1183
QKCR1184
QKCR 1185
QKCR1186
QKCR1187
QKCR 1188
PAGE

```
 $'REACTOR FOR CASE IDNUM NOT READ IN BY ICNPUT ', QKCR1L89
 $T131,'*',/,'',130(**'),I2)}\mathrm{ QKCR1190
 908 FORMAT (/', 130('*')/,'* SUBR.',AG,'HAS ERRCOD = ',Z8,': ', QKCR1191
 $'QKCCRE ENCOUNTEREC STCP CARD, ICERRS CALLED CNCE TOO OFTEN OR O',
 #'THER FATAL ERROR.', T 131,'汼'* DURING THIS ENTIRE RUN, ICERRS',
 $* FRINTEC A TOTAL OF ',I`,' ERROR MESSAGES JUST LIKE (AND ',
 4'INCLUDINGI THIS ONE',
 $T131,'*',/,'',130('*'), I2)
909 FORMAT(/: , 13U(*)/,'* SUBR. ',A6,' HAS ERRCOD= ',Z8,': ',
 $'SUMMATION OF POWFRC DIFFERS FROM 1.0 BY MORE ',
 $'THAN 1O*\dot{x}-5 ',
 $T131,'*',/,' ',130('*'),12)
910 FORMAT(/: ,130(**)/,:* SUBR. *,A6," HAS ERRCOD = *,Z8;*:*
 $'ELAME TABLE IS TOC large FOR THIS VERSICN. *,
 $T131,'*',/,' ',130(**'),I2)
G11 FCFMAT(/' ',130(**)/,'* SUBR. *,A6,' HAS ERRCOD = ',Z8,': ',
 $"FEED ENRICHMENT AS DETERMINED IN NXTIRR UNDER',
 $' MODE 1, OUTSIDE PRESCRIBED LIMITS ',
 $7131,'*',/,' ',13)('*'),I2)
912 FORMAT (/' ',130('*')/,'* SUBR. ',A6,' HAS ERRCOD = ', Z8,': ',
 $'NXTIRR CALLED WHEN MODE=0 (SHOULD CALL FRSIRR',
 $!)
 $T131,'*',/,'',130(**'),12)
G99 FORMAT(/'',130('*')/,'* PREVIOUS ERROR SEVERE ENOUGH TO',
 $' INVALICATE FURTHER COMPUTATIONS. THEREFORE,',
 $' TERMINATING EXECUTICN.',
 $T131,'*',/,', 130('*'),I21
 END
* 00000000
* 00000010 QKCR1218
ASSEMBLER LANGUAGE SUBROUT INE ERASE * 00000011 QKCR1219
WRITTEN BY JOHN W. KICSON
* 00000012 QKCR 1220
MIT DEPARTMENT OF METEOROLOGY
* 00000014 QKCR1221
* 00000016 QKCR 1222
TO SET ELEMENTS OF REAL OR INTEGER ARRAYS TC ZERO. A1,A2, ... * 00000020 QKCR 1223
ARE ARRAY NAMES AND N1,N2,.. ARE INTEGER VALUES OR * 00000030 QKCR1224
```


[^0]:    ${ }^{1}$ Throughout this work, all power levels are in units of net MWe delivered to the transmission system busbar. That is, plant auxiliary power requirements ( $\sim 5 \%$ ) have already been subtracted from gross generator output, but transmission losses have not been accounted for.

[^1]:    *Example:
    $0.03975=(0.9)(0.0300)+(0.1)(0.1275)$

[^2]:    *The error number initiating the OPERR print appears as the rightmost digit in the accumulated ERRCOD (which is printed as part of the message).

[^3]:    non-breakthroughs that were obtained are written. Also it writes the "number of $X$ changes." which is the sum of the number of arcs in each breakthrough chain, and "number of nodes from which labeling was done," which is the sum of the number of nodes scanned on each labeling operation.

    As an example, a problem was run that gave the following statistics:

