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ABSTRACT

This thesis is concerned with development of methods
for optimizing the energy production and refuelling decision
for nuclear power plants in an electric utility system
containing both nuclear and fossil-fuelled stations. The
objective is to minimize the revenue requirements for
refuelling the power plants during the planning horizon; the
decision variables are the energy generation, reload
enrichment and batch fraction for each reactor cycle; the
constraints are that the customer's load demand, as well
as various other operational and engineering requirements
be satisfied. This problem can be decomposed into two
sub-problems. The first sub-problem is concerned with
scheduling energy between nuclear reactors which have
been fuelled in an optimal fashion. The second sub-problem
is concerned with optimizing the fuelling of nuclear reactors
given an optimized energy schedule. These two sub-problems
when solved iteratively and interactively, would yield an
optimal solution to the original problem.

The problem of optimal energy scheduling between
nuclear reactors can be formulated as a linear program. The
incremental cost of energy is required as input to the linear
program. Three methods of calculating incremental cost are
considered: the Rigorous Method, based on the definition
of partial derivativesis accurate but time consuring; the
Inventory Value Method and the Linearization Method, based
respectively on equations of inventory evaluation and
linearization, are less accurate, but efficient. The latter
two methods are recommended for the early stages of optimiza-
tion.

The problem of optimizing the fuelling of nuclear
reactors has been solved for two cases: the special case
of steady state operation, and the general case of non-
steady-state operation. The steady-state case has been
solved by simple graphic techniques. The results indicate
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that reactors should be refuelled with as small a batch
fraction as allowed by burnup constraints. The non-steady
case has been solved by polynomial approximation, in which
the objective function as well as the constraints are
approximated by a sum of polynomials. The results indicate
that the final selection of an optimal solution from a set
of sub-optimal solutions is primarily based on engineering
considerations, and not on economics considerations.

Thesis Supervisors: Manson Benedict
Institute Professor

Edward A. Mason
Department Head and Professor of

Nuclear Engineering



U

LIST OF CONTENTS

Chapter Page

Abstract 2
List of Contents 4
List of Tables 8
List of Figures 12
Acknowledgement 14

1 SUMMARY AND CONCLUSIONS 15

1.1 Framework for Analysing the Overall 15
Optimization Problem of Mid-Range
Utility Planning

1.2 Optimal Energy Scheduling between 20
Two Pressurized Water Reactors of
Different Sizes Operating in Steady
State Conditions

1.3 Calculation of Objective Function 23
for Non-Steady State Operations

1.4 Calculation of Incremental Cost of 28
Nuclear Energy Aand Reload En-
richments for a Given Set of Required
Energies and for Fixed Reload Batch Frac-
tion
1.4.1 Rigorous Method
1.4.2 Inventory Value Method
1.4.3 Linear Approximation Method

1.5 Calculation of Incremental Cost and 36
Nuclear In-Core Optimization for
Reactors Operating Under Steady-State
Conditions

1.6 Test of Objective Function for the 44
Variable Batch Fraction, Non-Steady
State Case

1.7 The Method of Piece-Wise Linear 48
Approximation for the Problem of
Nuclear In-Core Optimization

1.8 The Method of Polynomial Approxima- 52
tion for the Problem of Nuclear
In-Core Optimization

1.9 Conclusions 59
1.10 Recommendations 65

2 INTRODUCTION 67

2.1 Motivations for Mid-Range Utility 67
Planning

2.2 Formulation of the Overall Optimiza- 69
tion Problem for Mid Range Utility
Planning



5

2.3 Decomposition of the Overall Problem 71
into Various Sub-Problems

2.4 Brief Description of the Solution 75
Technique for the Problem of Optimal
Energy Scheduling

2.5 The Organization of the General and 78
Special Problem of Nuclear In-Core
Optimization

2.6 Types of Reactors Analyzed 79
2.7 Depletion Code CELL-CORE 81
2.8 Economics Code MITCOST1 and COCO 82

3 OPTIMAL ENERGY SCHEDULING FOR STEADY-STATE 83
OPERATION WITH FIXED RELOAD BATCH FRACTIONS
AND SHUFFLING PATTERN

3.1 Defining the Problem 83
3.2 Defining the Objective Function 84
3.3 Defining the Dacision Variables and 85

the Design Variables
3.4 Lagrangian Optimality Condition 85
3.5 The Optimization Procedures 87a
3.6 Summary and Conclusions 96

4 OBJECTIVE FUNCTION FOR NON-STEADY STATE CASES 98

4.1 Introduction 98
4.2 Objective Function Defined for the Case 99

With No Income Tax
4.2.1 Formulating the Problem
4.2.2 The Condition of Consistency
4.2.3 The Condition of Equalized

Incremental Cost
4.3 Three Methods of Evaluating Fuel Inventories 103

4.3.1 Nuclide Value Method
4.3.2 Unit Production Method
4.3.3 Constant Value Method

4.4 Results of Two Sample Cases 105
4.5 Objective Function Defined for the 112

Case With Income Tax
4.5.1 Objective Function for the Indefinite

Time Horizon
4.5.2 Objective Function for the Finite

Time Horizon
4.5.3 Conditions of Consistency and

Equalized Incremental Cost b4.6 Two Methods of Evaluating Fuel Inventories V 115
4.6.1 Inventory Value Method
4.6.2 Unit Production Method

4.7 Results of Two Sample Cases 118
4.8 Conclusions 120



5 CALCULATION OF RELOAD ENRICHMENT AND INCREMENTAL 122
COST OF ENERGY FOR GIVEN SCHEDULE OF ENERGY
PRODUCTION WITH FIXED RELOAD BATCH FRACTION AND
SHUFFLING PATTERN

5.1 Defining the Problem 122
5.2 One-Zone Refuelling 123

5.3 Multi-Zone R'efuelling 125
5.3.1 The Rigorous Method
5.3.2 Linearization Method
5.3.3 Inventory Value Method

5.4 Results For Three Sample Cases 134

5.4.1 Sample Case 1 & 2
5.4.2 Sample Problem 3

5.5 Conclusions 140

6 CALCULATION OF OPTIMAL RELOAD ENRICHMENT AND 144
RELOAD BATCH FRACTION FOR REACTORS OPERATING
IN STEADY STATE CONDITION AND MODIFIED SCATTER
REFUELLING

6.1 Introduction 144
6.2 Mathematical Formulation of the Problem 144

and Optimality Conditions
6.3 Graphic Solution for Optimal Batch 147

Fraction
6.4 Interpretation of the Lagrangian 150

Multiplier 7r
6.5 Calculation of Incremental Cost 153

of Energy X
6.6 Effects of Shortening the Irradiation 157

Interval
6.7 Conclusions 157

7 NUCLEAR IN-CORE OPTIMIZATION FOR NON-STEADY 169
STATE.FORMULATION OF THE PROBLEM

7.1 Introduction 169
7.2 Mathematical Formulation of the Problem 170

7.3 Exact and Approximate Calculation of the 173
Objective Function

7.4 Comparison of the Exact and Approximate 176
Methods

1837.5 Conclusions



7

8 NUCLEAR IN-CORE OPTIMIZATION FOR NON-STEADY 184
STATE BY METHOD OF PIECE-WISE LINEAR APPROXIMATION

8.1 Introduction 184
8.2 The Optimization Algorithm 184
8.3 Results for Sample Case A 190

with No Income Tax
8.4 Results for Sample Case A 195

with Income Tax
8.5 Conclusions 195

9 NUCLEAR IN-CORE OPTIMIZATION FOR NON-STEADY 198
STATE BY METHOD OF POLYNOMIAL APPROXIMATION

9.1 Introduction 198
9.2 Brief Comments about the Objective 199

Function and the End Conditions
9.3 Choice of the Polynomials 201
9.4 Regression Analysis on Objective Function 212
9.5 Optimization Algorithm 215
9.6 Results of Sample Case A and B 219

9.7 Estimates of Burnup Penal'ty IT 230
9.8 Incremental Cost 231
9.9 Summary and Conclusions 235

10 CONCLUSIONS AND RECOMMENDATION 239

10.1 Conclusions 239
10.2 Recommendation 240

Biographical Note 242

Appendix A Brief Description of the Several Versions of CORE 243

Appendix B Economics and Fuel Cycle Cost Parameters 244

Appendix C Nomenclature 246

Appendix D List of References 250



8

LIST OF TABLES

Page

1.1 Comparison of Exact Incremental Cost with 27
Incremental Cost Calculated by Two Approximate
Methods

1.2 Incremental Cost of Energy Calculated by 33
Three Methods (Rigorous Method, Linearization
Method and Inventory Value Method)

1.3 Reload Enrichments Calculated by (1) Trial 35
Method (2) Linearization Method

1.4 Effect of Variation of Enrichment and Batch 47
Fraction on Revenue Requirement

1.5 Reload Enrichments, Batch Fractions, Cycle 51
Energies and Revenue Reauirements for
Various Number of Iterations Using the Method
of Piece-Wise Linear Approximation

1.6 Reload Enrichments, Batch Fractions, Cycle 54
Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method
of Polynomial Approximation on Sample Case A

1.7 Average Discharge Burnup for the Sublot 55
Experiencing the Highest Exposure for Sample
Case A Calculated by (1) Polynomial Approxi-
mation Based on Regression Equations (2)
CELL-CORE Depletion Calculation

1.8 Reload Enrichments for the Various Lowest 56
Cost Cases Using the Method of Polynomial
Approximation

1.9 Average Discharge Burnup for the Sublot 58
Experiencing the Highest Exposure for
Sample Case B Calculated by (1); Polynomial
Approximation Based on Regression Equations
(2) CELL-CORE Depletion Calculation

1.10 Calculation of Incremental Cost of Energy 60
Using Regression Equations. Sample Case
A for Burnup Limit B'= 45MWD/Kg

1.11 Calculation of Incremental Cost of Energy 61
Using Regression Equations. Sample Case
A for Burnup Limit B* = 50M WD/Kg



9

1.12 Calculation of Incremental Cost of Energy 62
Using Regression Equations. Sample Case
B for Burnup Limit B* = 45MWD/Kg

1.13 Calculation of Incremental Cost of Energy 63
Using Regression Equations. Sample Case
B for Burnup Limit B = 50MWD/Kg

2.1 Various Steps in the Decomposition of the 76
Overall Optimization Problem of Mid-Range
Utility Planning

2.2 %ontents n' tCe a chapters in This 80
Thesis

3.1 Cycle Energy and Revenue Requirement for 88
Different Enrichments

4.1 Feed Enrichment and Energy Per Cycle for 106
Steady State Case and the Two Perturbed Cases

4.2 Comparison of Exact Incremental Cost with 109
Incremental Cost Calculated by Three Approxi-
mate Methods (No Income Tax)

4.3 Test of Inconsistency between the Exact Value 119
and the Approximate Methods

4.4 Comparison of Exact Incremental Cost with 121
Incremental Cost Calculated by Two Approxi-
mate Methods

5.1 Refuelling Schedule (in years) 123

5.2 Incremental Cost of Energy for Sample Cases 137
1 and 2 Calculated by Three Different Methods

5.3 Calculation ofIncremental Cost Using the 138
Method of Linearization for Sample Case 1
and 2

5.4 Reload Enrichment Salculated by Trial Method 139
and by Linearization Method

5.5 Incremental Cost of Energy for Sample Case 141
3 Calculated by Three Different Methods

5.6 Calculation of Incremental Cost Using the 142
Method of Linearization for Sample Case 3

5.7 Reload Enrichment Calculated by the Trial 143
Method and by the Linearization Method



10

6.1 Table of Revenue Requirement Per Cycle, Energy 148
Per Cycle and Average Discharge Burnup versus
Batch Fraction and Reload Enrichment

7.1 Exact and Approximate Revenue Requirement 178
for Various Enrichments and Batch Fractions

7.2 Exact and Approximate Revenue Requirement 182
Calculated for the Base Case and the Case in
which the Reload Enrichments and Batch
Fractions for All the Cycles are Changed

8.1 Reload Enrichments, Batch Fractions, Cycle 193
Energies and Revenue Requirements for
Various Number of Iterations Using the Method
of Piece-Wise Linear Approximation

8.2 Average Discharge Burnup for the Sublot 194
Experiencing the Highest Exposure for Sample
Case A Calculated by
(1) Piece-Wise Linear Approximation
(2) CELL-CORE Depletion Calculation

8.3 Reload Enrichments, Batch Fractions, Cycle 196
Energies and Revenue Requirements with
Income Taxes for Various Number of It-
erations Using the Method of Piece-Wise
Linear Approximation

9.1 Regression Equation for Revenue Requirement 204

9.2 Regression Equation for Enrichment for Cycle 1 205

9.3 Regression Equation for Enrichment for Cycle 2 206

9.4 Regression Equation for Enrichment for Cycle 3 207

9.5 Regression Equation for Enrichment for Cycle 4 208

9.6 Regression Equation for Enrichment for Cycle 5 209

9.7 Reload Enrichments, Batch Fractions, Cycle 220
Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method
of Polynomial Approximation Sample Case A

9.8 Average Discharge Burnup for the Sublot Exper- 221
iencing the Highest Exposure for Sample Case A
Calculated by (1) Polynomial Approximation Based
on Regression Equations (2) CELL-CORE Depletion
Calculation



11

9.9 Reload Enrichments, Batch Fractions, Cycle 223
Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method
of Polynomial Approximation. Sample Case A

9.10 Average Discharge Burnup for the Sublot 224
Experiencing the Highest Exposure for Sample
Case A Calculated by (1) Polynomial Approxi-
mation Based on Regression Equations (2)
CELL-CORE Depletion Calculation

9.11 Reload Enrichments, Batch Fractions, Cycle 226
Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method
of Polynomial Approximation.Sample Case B

9.12 Average Discharge Burnup for the Sublot 227
Experiencing the Highest Exposure for Sample
Case B Calculated by (1) Polynomial Approxi-
mation Based on Regression Equations (2)
CELL-CORE Depletion Calculation

9.13 Reload Enrichments, Batch Fractions, Cycle 228
Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method
of Polynomial Approximation.Sample Case B

9.14 Average Discharge Burnup for the Sublot 229
Experiencing the Highest Exposure for Sample
Case B Calculated by (1) Polynomial Approxi-
mation Based on Regression Equations (2)
CELL-CORE Depletion Calculation

9.15 Calculation of Incremental Cost of Energy 233
Using Regression Equations.Sample Case A

9.16 Calculation of Incremental Cost of Energy 234
Using Regression EquationsSample Case A

9.17 Calculation of Incremental Cost of Energy 236
Using Regression Equations.Sample Case B

9.18 Calculation of Incremental Cost of Energy 237
Using Regression Equations.Sample Case B



12

List of Figures

1.1 Incremental Cost vs Cycle Energy 21
1.2 Nuclear Sub-System Incremental Cost vs Total 22

Nuclear Energy Production
1.3 Reload Enrichment vs Cycle Energy 24
1.4 Relationship Between the Various Revenue 32

Requirements Batch Number and Cycle Number
1.5 Revenue Requirement vs Cycle Energy for 37

Various Batch Fractions
1.6 Revenue Requirement vs Batch Fraction for 39

Different Levels of Energy
1.7 Optimal Batch Fraction vs Cycle Energy for 40

Various Burnup Limits BO
1.8 Revenue Requirement vs Reload Enrichment for 41

Various Levels of Energy
1.9 Incremental Cost X vs Cycle Energy E for 43

Various Burnup Limit BO

3.1 Revenue Requirement R vs Cycle Energy EA 89
3.2 Revenue Requirement R vs Cycle Energy E5s 90
3.3 Incremental Cost dRss sdEss vs Cycle Energy 91
3.4 Nuclear Sub-System Incremental Cost vs 93

Total Nuclear Energy Production
3.5 Reactor Energy vs Total Nuclear Energy 94
3.6 Reactor Capacity Factor vs Total Nuclear 95

Energy
3.7 Reload Enrichment vs Cycle Energy 97

4.1 Relationships Between the Various Revenue 108
Requirements Batch Number and Cycle Numbers

5.1 Cycle Energy vs Reload Enrichment for One- 124
Zone Case

5.2 Revenue Requirement per Batch vs Cycle Energy 126
for Five Succeeding Cycles

5.3 Incremental Cost vs Cycle Energy for 127
Five Succeeding Cycles

5.4 Relationships Between the Various Revenue 135
Requirements Batch Numbers and Cycle Numbers

6.1 Revenue Requirement vs Cycle Energy for 149
Various Batch Fractions

6.2 Revenue Requirement vs Batch Fraction for 151
Different Levels of Energy

6.3 Revenue Requirement vs Reload Enrichment for 152
Various Levels of Energy

6.4 Incremental Cost X vs Cycle Energy for Various 156
Burnup Limits B*

6.5 Objective Function TC vs Cycle Energy for 158
Various Batch Fraction

6.6 Revenue Requirement vs. Batch Fraction for 159
Different Levels of Energy



13

7.1 Relationships between the Various Revenue 174
Requirements Batch Number and Cycle
Number

7.2 Variation of TC1 and TCU with Respect 179
to El

7.3 Variation of TC and TC with respect 180
to Batch Fractibn fw r

8.1 Flow Chart for Method of Linear 187
Approximation

8.2 Relationships Between TC, Batch and Cycle 192

9.1 Relationships Between Revenue Requirement, 200
Batch Number and Cycle Number

9.2 Standard Estimate of Error in Enrichment 211
Regression Egauations

9.3 Total Cost TC vs Cycle Energy E1 for 213
Various Batch Fractions fl

9.4 Total Cost TC vs Batch Fraction for 214
First Cycle fl for Different Energy E

9.5 Variation of TC with Respect to f, 216
for Various f2 Holding f3 = f4 = f5 = 0.33

9.6 Optimization Algorithm 218



ACKNOWLEDGMENT 14

The author expresses his most grateful appreciation

to his thesis supervisors, Professor Manson Benedict and

Professor Edward A. Mason for the advice and guidance

throughout the course of this work.

The author would like to thank the Nuclear Engineering

Department at M.I.T. for offering teaching assistantships

and research assistantships throughout the three and half

yearsof his graduate study, and Commonwealth Edison Company

for supporting this thesis research.

The author would also like to thank Joseph P.Kearney,

Paul F. Deaton and Terrance Rieck for the many fruitful

discussions during the course of this work.

The author is grateful to the typist, Miss Linda Wildman

for her effort in the preparation of this manuscript.

Finally, the author would like to express his sincere

gratitude towards his parents and wife, An-Wen for their help,

understanding and love throughout his graduate school life,



CHAPTER 1.0
SUMMARY AND CONCLUSIONS

15
1.1 Framework for Analyzing the Overall

Optimization Problems of Mid-Range Utility Planning

This thesis is concerned with development of methods

for optimizing the energy production and refuelling decision

for nuclear power plants in an electric utility system

containing both nuclear and fossil-fueled stations. The

time period under consideration is the so-called mid-range

period from five to ten years, within which nuclear fuel

management can be varied, for available nuclear plants.

The overall optimization problem of mid-range utility

planning can be formulated as follows: given a load forecast

for a given electric utility over the span of the planning

horizon, given the composition of the electric utility in

terms of the capacity, type and location of each generating

unit, find the optimal schedule of operation in terms of

energy produced by each plant and the reload enrichments and

batch fractions for each nuclear plant such that the revenue

requirements are minimized and the system constraints and

demands are satisfied. The revenue requirement is chosen as

the objective function, because it is favored by many electric

utilities (CEl, AEP1) and is relatively simple to calculate.

The overall optimization problem is first decomposed

into two sub-problems: the first sub-problem consists of

finding maintenance and refuelling schedules that satisfy the

system constraints; the second sub-problem consists of finding

the optimal energy production, reload enrichments and batch

fractions for a given time schedule. A computer program for
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solving the first sub-problem has been developed (CE2). The

second sub-problem, formally called system optimization for

a given refuelling and maintenance time scheduleis further

decomposed into two second level sub-problems.

The first sub-problem at the second level is formally

called the optimal energy scheduling problem and consists

of finding the optimal energy production of each plant.

The second sub-problem at the second level is formally

called the nuclear in-core optimization problem and consists

of finding the optimal reload enrichments and batch fractions

given an optimal schedule of energy production.

These two sub-problems are to be solved interactively

and iteratively until a converged solution of energy

production from each plant reload enrichments and batch

fractions are obtained. Then the same procedures are repeated

for every feasible maintenance and refuelling time schedule.

The schedule with the lowest revenue requirement is optimal.

The optimal energy scheduling problem can be formulated

mathematically as R

Minimize Tru 5  =T~so+ -L(E r -E) (1.1)

with respect to

R

Subject to constraints LE r =E (1.2)
r J

E rAt -Pr8 760. (1.3)iiJ
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Where TC s = revenue requirement for the system

(in ;)
TCso = revenue requirement for the system

evaluated for an initial feasible solution
(in $)

Er = energy production of unit r in time period
j (in MWH e)

ErO = energy production for an initial feasible
solution (in MWHe)

E= system demand for time period j (in MWHe)

A'J = duration of time period j (in hours)

pr = capacity of unit r (in vke)

A = incremental cost of energy for unit r
rj (in $/,MWHe) and period j.

The crux of the optimal energy scheduling problem is how

to calculate the incremental cost.

For fossil fuel generating units, the incremental cost

of energy is given simply by the discounted fuel cost for an

additional increment of undiscounted energy production. For

nuclear generating units, the incremental cost of energy Xr.

is given by the change in the revenue requirement for unit

r over the entire planning horizon due to an additional

increment of energy generated in time period j while holding

all the energy production in each of the remaining time

periods constant.

( (1.)(*. *)

rj AEr(

Where F * and f* are the optimal reload enrichments
and batch fractions for the initial feasible solution
Er, e + and f+ are the optimal reload enrichments and
bItch fractions for the perturbed solution Er + AEr

11 1
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For nuclear reactors, the revenue requirement depends

mainly on the total energy generated in a cycle, and only

weakly on the energy generation pattern within each cycle in

which the generation actually takes place. Therefore, under

optimal conditions all the incremental costs of energy pro-

duction within a given cycle have the same value.

Xr r for all 1 (1<1 (1.4a)rj rc rc rc+1

Various methods of calculating X will be described
rc

in Sections 1.2 , 1.4 , 1.5 and 1.8 and in Chapters

3,5,6,9 of the thesis. However, except in Chapter 3 where

the optimal energy scheduling problem is solved for a

particularly simple case, the application of incremental

cost calculation in the optimal energy scheduling problem

is not considered in detail in this thesis. Use of

incremental costs in optimizing electric generation by

nuclear plants is discussed in detail by Deaton (D1).

The nuclear in-core optimization problem can be

formulated mathematically as

Minimize TCr (E r, , f ) (1.5)Miimz J 'c c

with respect to e r and fr
c 'c

Subject to the constraints

E r = Er (1.6)
j c
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Fr(gr r) =E- (1-7)
c c

B (r (1.8)C

where jr= reload enrichment for reactor r cycle c
c

-*r r
r= vector of E

fr= batch fraction for reactor r cycle c
C

= vector of fr
C

irc= first time period in cycle c

Er= energy for reactor r cycle c
c

Fr= a function of e and
r

B r= average discharge burnup for reactor r cycle c

B0= maximum allowable discharge burnup.

The general nuclear in-core optimization problem

considers variation of both reload enrichments and batch

fractions in arriving at the optimum solution. Before

solving this general problem, the special problem of varying

reload enrichments alone with fixed batch fractions will be

considered. This special problem is much easier to solve

and has practical applications. Section 1.2 and 1.4 deal

with this special problem for steady-state and non-steady

state cases respectively. Section 1.5 and 1.9 inclusive

deals with the general problem; first with the steady-state

case, and later the non-steady state cases.

Two reactors of different sizes are taken as examples:

the Zion type 1065 MWe PWR and the San Onofre type 430 MWe

PWR. The depletion code CELL-CORE (Bl,K1) is chosen to be the

standard tool of analysis; the costing code MITCOSTl(Wl) and
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and depletion-costing code COCO(Wl) are used interchangeably

for the economics calculation.

1.2 Optimal Energy Scheduling Between Two Pressurized Water
Reactors of Different Sizes Operating in Steady-State
Conditions.

The problem analyzed in that of optimizing energy

production from two reactors each refuelled at pre-specified

dates with fixed batch fractions after steady-state

conditions have been reached. The optimum condition is

reached when the incremental cost of energy from a steady-

state cycle in one reactor equals the corresponding

incremental cost for the second reactor. These incremental

costs were obtained by calculating the change in revenue

requirement for a steady-state cycle per unit change in cycle

energy.

The optimal way of operating this two reactor system

as demonstrated in Section 3.4 is to have both reactors generate

energy at the same incremental cost. Figure 1.2 shows the
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incremental cost versus the sum of energies generated by 23

the two reactors under the equal incremental cost rule.

The discontinuity point of the curve indicates that the

Zion reactor has reached its capacity limit, and from then on

any load increments goes to San Onofre. This curve can be

interpreted as the supply curve of the system. If the demand

curve is given, the intersection of the two curves give the

value of the equilibrium incremental cost, which can be

used in turn to calculate the optimal energy production for

each of the reactors. A detailed discussion of internal supply

and demand curve is presented in Widmers' thesis(W2).. Once

the optimal energy production of each reactor is know, the

corresponding reload enrichment can be found from Figure 1.3.

For this simple problem of steady-state operations,

fixed batch fractions and specified time schedule, the

problem of optimal energy scheduling and nuclear in-core

optimization can be solved easily by a set of graphs. For

non-steady state operations, however, the calculation of

revenue requirement and incremental cost is much more

complex. The following section indicates different ways of

calculating the objective function under non-steady state

conditions.

1.3 Calculation of Objective Function for Non-Steady State
Operations

Under non-steady state operating conditions, the physical

state of the reactor does not go through repetitive cycles.

Consequently, the end state of the reactor at the end of
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the planning horizon will not necessarily be the same as

the initial state at the beginning of the planning horizon.

Consequently, in order for the optimization to be effective,

an"end-effect'"correction must be incorporated into the

calculation of the objective function. The purpose of the

end-effect correction is to assign values to core inventories

which result in an objective function that varies only with

energy production within the planning horizon and not with

energy production in the neighboring time periods. If this

can be achieved, then optimization can be performed for

each individual planning horizon; the collection of such

optimal solutions would be the same as the optimal solution

for the entire life of the reactor obtained by a one-shot

calculation.

The object of the end-effect correction can be stated

mathematically as follows:

Let TC. be the revenue requirement for the entire life

of the reactor. Let TC be the revenue requirement for

planning horizon I which includes end-effect corrections.

The object of the end-effect correction is to equate

for F within

Er -r planning horizon I

c C (1.10)

This requirement can be called the condition of

"equalized incremental cost."



Two different methods have been investigated for 26

evaluating the end-effect correction. The Inventory Value

Method evaluates the worth of the nuclear core as the market

value of uranium and plutonium plus a fraction of fuel

fabrication, and post irradiation costs. The fraction of

fuel fabrication costs assigned to inventory value is (N-n)
N

where N is the total number of cycles a batch of fuel

remains in the reactor and n is the number of cycles the

fuel has been in the reactor at the time the inventory

is to be valued. Similiarly, the accrual:of post irradiation

costs is treated by deducting n/N fraction of their total

from the inventory value.

The Unit Production Method evaluates the worth of the

nuclear core as the book value of the core based on straight

line depreciation according to energy production. In order

to obtain the salvage value of the core, the reactor is

operated past the end of the planning horizon under some

prescribed refuelling strategy until all the batches to

be evaluated have been discharged and their salvage value

determined.

Table 1.1 compares the incremental costs calculated

by the Inventory Value Method and the Unit Production

Method with the exact value. The Unit Production Method

gives more accurate incremental cost than the Inventory

Value Method. However, the Unit Production Method requires

more depletion calculations and is very sensitive to the
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Table 1.1

Comparison of Exact Incremental Cost with Incremental Cost

Calculated by Two Approximate Methods

Incremental Cost for Cycle 1

- Mills/KWHe

Method Exact Approximate

Inventory
Value

Unit
Production

6 E =1029GWHt

=2050GWHt

1.39 1.43 1.40

1.38 1.44 1.40
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prescribed refuelling strategy after the planning horizon.

Hence, the Inventory Value Kethod is recommended for use to

correct for end effects.

Having a method to correct for end-effects, and

consequently an acceptable method for calculating the

objective function, efficient ways of calculating approximate

incremental costs and reload enrichments for any required

set of energies are described in Section 1.4.

1.4 Calculation of Incremental Cost of Nuclear Energy Arc
and Reload Enrichments for a Qiven Set of Required
Energies and For Fixed Reload Batch Fraction

Three methods to calculate the incremental cost of

nuclear energy Xrj will be described. The first, rigorous,

method is based on the definition of Arj; it is accurate

but time consuming. The second method is based on

inventory evaluation techniques; it takes less time, but

is less accurate. The third method is based on an approximate

linear relationship between reload enrichment and cycle

energy and again takes less time than the rigorous method

but is less accurate.

1.4.1 Rigorous Method

According to Equations (1.4) and (1.4a), the incremental

cost of nuclear energy is defined as the partial derivative

of the revenue requirement with respect to cycle energy,
a T(C

rc DE r E r
C c' (1.10a)
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which can be replaced by the forward difference

=-r(Eor Ear, EorA Ear ) ffr(For ~0  or o0r
rc gg(E rE r,E r+AE,E+1.- T'E ,E,.E c11c 2 ' c 'c+l~ J.'2 '~c 'c+1"

AE

(1.11)
If TC is known for two values of E c (e.g. in Equation

(1.11) for E r and E or+AE), while all the other Erc c ''c

are constant, Xrc can be evaluated quite easily. However,

to obtain the correct enrichments which permit Er to change

rwhile all other energies Ec, remain unchange is time-

consuming and expensive. The correct.enrichment for each

cycle must be found by trial. To determine all thel.
rc

in an m-cycle problem requires about 3m(m+l) trials,
2

using about three trials per cycle.

1.4.2 Inventory Value Method

In Section 1.3, the Inventory Value Method has been

shown to evaluate correctly the end effect and gives fairly

accurate values of incremental cost. If the Inventory Value

Method is applied at the end of the cycle for which

incremental cost calculation is desired, then incremental

cost of nuclear energy for that cycle can be obtained by

analyzing the change in the revenue requirement up to that

cycle as energy production changes in that cycle. Thus, all

later cycles need not be analyzed.



To calculate all the X in a planning horizon, onere

can proceed in the forward direction by first changing the

energy production of Cycle 1, applying the Inventory Value

Method and analyzing the change of revenue requirement up

to Cycle 1. This would be repeated for Cycle 2 and so on

until all the cycles have been analysed.

For an m-cycle problem, only 2m depletion calculations

are required to calculate all the incremental costs.

1.4.3 Linearization Method

This method makes use of the chain rule of partial

differentiation

r rBE r it E r i

r r r r r r =ac r ec c' c " BEc" Ece c c ' c" c

wlr
When all and

Be rC

can be found by matrix

BE r
c are known, then X rc

inversion. Evaluation of and

(1.12)

c

__E 
r

SC" is easier than X because reload enrichment E is an
r rc c

explicit variable that can be controlled. The calculation of

each requires only (m-c+l) depletion calculations for an

c

m-cycle problem. Hence, to calculate all the 1rc, requires

only m(m+l) depletion calculations. The relationships
2

between revenue requirement for indefinite planning horizon

TC, for finite planning horizon T, for the first cycle TO1 ,

various batches and cycles are shown schematically on Figure

30

r
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1.4. Notice that the exact incremental cost given in

Table 1.2 is based on the revenue requirement for the

indefinite planning horizon, while the Rigorous method

is based on the revenue requirement for the finite planning
_r

horizon TC

The values of Arc determined by the three methods

for refuelling with fixed batch fraction and variable

enrichment are compared in Table 1.2 for the 1065 MWe

Zion reactor. The first two cases given below involve

perturbations from steady state three-zone operation with

3.2w/o enriched- feed, giving E = 7416.5 GWHe/cycle. The

magnitude of perturbation AE,of case 2 is twice as large

as that of case 1. The third case involves perturbation

from a three-zone transient energy mode of operation of

the reactor. The Inventory Value Method is accurate up

to + 4% of the "true" value given by the Rigorous method.

The Linearization Method is accurate to + 4%. For

the first few steps of the optimization, when speed is

more important than accuracy, the -Inventory Value Method

or the Linearization Method is recommended. Only

at the end of the optimization would one consider using

the Rigorous method for its improved accuracy.

Two methods of determining reload enrichments for a

given set of required energies and for fixed reload batch

fraction will be described. The first method determines
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Table 1.2-

Incremental Cost of' lner'v 'alculhteel

by Three Methods

Incremental Cost by
Rigorous Method

1.42

1.40.

1.37

Incremental Cost by
Linearization Method

1.37 -

1.37.

1.37

Incremental Cost by
Inventory Value Method

1.43

1.414

1.4:3

Case 1

Case 2

Case 3

LAJ
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reload enrichments by trial and error. For a given initial

state, two depletion calculations are carried out for one

cycle using two values of reload enrichments. The trial

enrichment for a given value of cycle energy is then

obtained by interpolating between the two values of

reload enrichments and the corresponding two values of

cycle energies. Three depletion calculations are usually

sufficient for any one cycle. Hence, for an m-cycle

problem, 3m trials are needed.

The second method determines reload enrichments by

an approximate linear relationship between cycle energy

and reload enrichment.

3Er r 0r,
Er ~Eor + -E c (1.13)c c L r

3 Er
Since all the coefficients c are made available

9Cr
by the Linearization Method in the calculation of

incremental cost, the determination of E, is a straight-

forward operation using matrix inversion. Table 1.3

shows values of reload enrichments calculated by the Trial

Method and Linearization Method for different sets of

cycle energies. Agreement between the two methods is

excellent. Hence, either method can be used.



Table 1.3
Reload Enrichments Calculated by

(1) Trial Method and

(2) Linearization Method

Case 1

Cycle 1 2 3 4 5
Energy Ei in 103GWHt 22.964 21.935 21.929 21.928 21.933
Enrichment Ei (1) 3.359 3.054 3.174 3.196 3.133

(w/o) (2) 3.360 3.046 3.181 3.191 3.132

Case 2

Cycle 1 2 3 4 5
Energy Ei in 103GWHt 23.985 21.919 21.906 21.937 21.970
Enrichment j (1) 3.557 2.941 3.186 3.235 3.106

(w/o) (2) 3.557 2.928 3.197 3.225 3.108

Case 3

Cycle 1 2 3 4 5
Energy Ei in 103GWHt 23.085 21.535 23.605 20.995 22.164
Enrichment E (1) 3.359 2.975 3.545 2.833 3.286

(w/o) (2) 3.360 2.979 3.534 2.836 3.287

(jJ
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1.5 Calculation of Incremental Cost and Nuclear In-Core
Optimization for Reactors Operating Under Steady-State
Conditions

Starting from this section, batch fractions as well as

the reload enrichments are allowed to vary; only refuelling

times and energies are fixed. This section deals with

reactors operated under steady-state conditions. Hence,

there is only one reload enrichment variable and one batch

fraction variable for all the cycles. The problem of

nuclear in-core optimization under this special circumstance

is stated as follows:

minimize TC(Es ,E,f) for a given Es

with respect to e and f

subject to constraints F(s,f) = Es

B(c,f) < B*

the subscripts r, c are omitted because only one reactor

is considered and all cycles are the same under steady

state conditions. The revenue requirement for the first -

cycle is chosen to be the objective function.

For any combination of c and f, the reactor generates

a certain energy Es at a cost TC. By plotting TC vs Es

for all possible combinations of c and f, the optimal pair

can be found directly.

Figure 1.5 shows value of TC vs Es for different

combination of c and f for a Zion type 1065 MWe PWR refuelled

in a modified scatter manner. At cycle energies above 7000 Gwhe,

a batch fraction f = 0.33 results in lowest revenue requirement.

At cycle energies below 7000, a batch fraction of f = 0.25 is

preferable.
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In Fig. 1.6, revenue requirement has been replotted

against batch fraction at constant cycle energy. In addition,

lines of constant average burnup BO are plotted. Only the

region to the right of a line of constant burnup is com-

patible with the burnup constraint (1.8). For example, at

the higher cycle energies of 10,650, 9,000 and 7,500 Gwhe,

with a burnup constraint of 30 MWD/kg, the optimum batch

fraction occurs at the burnup constraint rather than at the

lowest value of revenue requirement on the constant energy

line, at which

( af s 0(1.14)
)Es

When the optimum batch fraction is set by the burnup

constraint, in steady-state refueling a simple analytic

relation obtains between burnup B cycle energy Es, batch

fraction f and entire mass of uranium charged to the core W:

B-W-f = Es (1.15)

Hence, the smallest batch fraction that satisfies the burnup

constraint B* is given by f = Es/(B*W). (1.16)

Figure 1.7 shows the optimal batch fraction as a function

of cycle energy for different burnup constraints. For high values

of maximum allowable burnup and low cycle energies, the optimal

batch fraction is determined by the economic optimization con-

dition Eq.(l.14), whereas at higher cycle energies or lower

allowable burnup it is given by Eq.(1.16).
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In Figure 1.8 revenue requirement TC is plotted against

reload enrichment, with lines of constant batch fraction f or

cycle energy E or average burnup BO. The optimal values of

reload enrichment and batch fraction to produce specified

energy can be read off directly for a specified burnup

constraint B4 or minimum revenue requirement.
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FIGURE 1.8
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The calculation of incremental cost of energy for the

case of variable reload enrichment and batch fraction

deserves special attention. According to Equations (1.4)

and (1.4a) X is given as

_TC(EsS*,f*) where S* and f*

are optimal

solution for Es

which can be expanded into the following finite difference

relationship

TC(Es+AE, et, ft) - TC(Ess*,f*) (1.17)
AE

where c and ft are the optimal solution for Es + AE. When

there are no constraints on the enrichment and batch fraction, c

and f are those values at which the revenue requirement is a

minimum for a particular energy, i.e. the minima of the constant

energy lines in Fig. 1.6. When the maximum burnup B* places

lower a limit on the batch fraction with which a particular

energy may be produced, as in the case at a value of B* of

30 MWD/kg at energies above 5,000 Gwhe, the values of revenue

requirement used in Eq. 1.17 are those on the constant burnup

line of Fig. 1.6. Fig. 1.9 shows values of incremental
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Figure 1.9

INCREMENTAL COST X VS

CYCLE ENERGY E FOR VARIOUS BURNUP LIMIT B*
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cost of energy versus cycle energy for different values

of burnup limits. Initially, incremental cost increases

rapidly with respect to cycle energy but gradually levels

off. As the burnup limit decreases, incremental cost

increases.

For this special case of steady state operation, the

problem of nuclear in-core optimization and the calculation

of incremental cost involves a relatively small number of

variables and can be handled effectively by graphs. For

non-steady state operations, however, there are so many

variables that complicated optimization techniques such as

piece-wise linear approximation, or polynomial approximation,

coupled with total exhaustive search, is required to solve

this problem. Sections 1.7 and 1.8 summarize the methods and

results of the two approaches. But before that, tests

are required to show that the objective function calculated

by the Inventory Value Method is suitable for this pur-

pose.

1.6 Test of the Objective Function for the Variable Batch

Fraction, Non-Steady State Case

As mentioned earlier in Section 1.3, a method for

calculating the objective function for a finite planning

horizon is deemed adequate for the puroose of scheduling

energy if it gives the same value of incremental cost of

energy as an exact calculation in which the entire life span

of the reactor is considered.
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ie aTC = for all j withinD BE planning horizon I

(1.18)

However, for the problem of nuclear in-core optimization,

the following additional equations for the partial derivatives

are involved:

-TI for all c within
c c planning horizon I

(1.19)

If these equalities are maintained throughout the

optimization, as demonstrated in Section 7.3, the collection

of optimal solutions for each of the finite planning horizons

would be the same as the overall optimization performed

on the entire life span of the reactor. Table 1.4 shows

values of the ATC./Ae and ATC /Ae versus enrichment changes

1c and values of ATC /Af and ATC 1/Af versus batch

fraction changes Af for Cycle 1. It can be seen that the1

finite planning horizon objective function can be seen to

give accurate first order derivatives for Cycle 1. Since

nuclear in-core optimization would in all probability be

updated on an annual basis, only the first cycle results

would actually be utilized. Hence, the main emphasis on

accuracy would be placed on the first cycle derivatives.

Having demonstrated that the finite planning horizon



Table 1.4

Effect of Variation of Enrichment and Batch Fraction on Revenue Requirement

TcRevenue Requirement for the Indefinite Planning Horizon

T~C Revenue Requirement for the Finite Planning Horizon

Enrichment
Changes

(w/o)
& E ,

-1.200
-0.434
+0.480
+1.200

Batch Fraction
Changes

-0.8
-0.4
+0.4

Revenue Requirement
Changes 610 $

-4.570
-1.6648
+1.8893
+4.6642

-4.5804
-1.6746
+1.8791
+4.6542

Revenue Requirement
Changes 6

10 $

-2.3494
-1.1717
+0.7716

-2.3623
-1.1822
+0.7658

10 6 $/(w/o)

3.8100
3.8360
3.9361
3.8868

3.8169
3.8586
3.9148
3.8785

TCI/af T aa/&f1
io6

2.9367
2.9293
1.9290

2.9528
2.9554
1.9146

Error

+0.2
+0.6
-0.5
-0.2

Error

+0.5
+0.9
-0.7
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objective function is suitable for nuclear in-core

optimization, Section 1.7 and 1.8 proceed to describe

the piece-wise linear approximation approach and the

polynomial approximation approach of solving the

optimization.

1.7 The Method of Piece-Wise Linear Approximation for the
Problem of Nuclear In-Core Optimization

In the Method of Piece-Wise Linear Approximation, the

objective function and the constraints are linearized

about an initial feasible solution. For example

TC= T(I",) + a c C- ) + L Rf -f0) (1.20)

where

a c C(Z,* 3T 97*
C C

The expansion coefficients ac and S are determined

by a number of perturbation cases in which the decision

variables are varied one at a time. For example

C , * .A . (1 .21)

Linear programming can be applied to the set of

linearized objective function and constraints. Limiting

the changes in Af/f by + 1% each time, a new solution

can be calculated in the steepest descent direction. The

process of linearization and optimization can be repeated

on this new solution in an iterative fashion.
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Unfortunately, practical mesh spacing setup of the

present CELL-CORE depletion code only allows discrete

changes of Af/f by 12%. Hence, the linear model must

be modified to accommodate changes by large step sizes.

The final form of the equations used is slightly

more complicated than the illustrative Equation (1.20).

Instead of having a single expansion coefficient for each

variable, there are two expansion coefficients, one for

positive and one for negative variation of the batch

fraction variables. The set of piece-wise linear equations

are solved by total exhaustive search. The objective

function is calculated for all feasible neighboring points

around the initial solution. The neighboring point with

the lowest objective function is chosen to be the new

solution on which linearization and optimization are to be

repeated.

As an example of the application of this method,

consider the following sample case A. The reactor under

analysis is the Zion type 1065 MWe PWR with initial condition

equivalent to the 3.2 w/o three-zone modified scatter

refuelled steady-state condition. The planning horizon

consists of five cycles. Energy requirement for each of

the five cycles is 22750 GWHt, the same value as produced

in the steady-state condition. The maximum allowable

average discharge burnup is 60 MWD/kg. The Method of

Piece-Wise Linear Approximation is applied to solve for the

optimal reload enrichments and batch fractions for the five

cycles.



Table 1.5 shows the batch fractions, reload enrich-

ments, cycle energies and revenue requirement for the various

iterations. The revenue requirement is calculated based

on economic parameters similiar to that of TVA, with no

income tax obligations. The revenue requirement. corrected

for target energy decreases in successive iterations. The

final solution results in net savings of $1.6 million

dollars when compared to the initial solution. However, when

the same 'case is repeated using the economics parameters

characteristic of an investor-owned utility which pays

income taxes, the Method of Piece-Wise Linear Approximation

fails to converge. This is due to the fact that the

original initial condition 3.2 w/o three-zone modified

scatter refuelling is so close to the optimal solution that

piece-wise linear approximation based on step size

of 12% is too large for the purpose.

This method of Piece-Wise Linear Approximation is

applicable to cases where the objective function has a

wide variation over the range of the decision variables,

and where the optimal solution is ultimately limited by

one or more of the constraints. However, if the objective

function is rather flat and the constraints are not active,

the Method of Piece-Wise Linear Approximation cannot pin-

point the optimal solution precisely, and a more

sophisticated technique like polynomial approximation

is needed.



Table 1.5

Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for

Various Number of Iterations Usirg the Method of Piece-Wise Linear Approximation

Cycle

1 2 3 4 5

c(w/o)
f
E(GW-t)

Revenue Requirement

For Actual Energy

Piece-
wise CELL-
Linear COCO
Appro-
ximation

Corrected for
Target Energy

Piece-
wise CELL-
Linear COCO
Appro-
ximation

Target
Energy

Iteration
Number

0 E
f
E

1 E
f
E

2 e
f
E

3 E
f
E

22750. 22750. 22750. 22750. 22750. 106

3.2
0.333
22750.

3.77
0.293
22257.

5.03
0.253
22697.

3.95
0.293
22986.

3.2
0.333
22750.

3.37
0.293
22725.

3.03
0.253
22534.

4.25
0.253
23133,

3.2
0.333
22750.

3.45
0.293
22616.
4.27
0.253
22844.
4.64
0.213
22325.

3.2
0.333
22750.

3.56
0.293
23076.
2.96
0.253
22430.

4.31
0.213
23894.

3.2
0.333
22750.

3.42
0.293
22769.

4.57
0.253
22646.

3.61
0.213
21253.

72.1119 72.1119

71.3358 71.1517

70.3096 70.5269

70.0805 70.4763

72.1119 72.1119

71.4971 71.3131

70.4969 70.7141

70.2485 70.6443

\H
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1.8 The Mathod of Polynomial Approximation for the

Problem of Nuclear In-Core Optimization .

In the Method of Polynomial Approximation, the

objective function and the constraints are approximated by

a sum of polynomials in cycle energies and batch fractions.

For example

7- a i E m. fm n
c -= n3clmn c c c-1

(1.22)

B = eklmn c c-1 cc-1
c k=-i 1=-1 m=-3 n=-3 (1.23)

The expansion coefficients clmn, cklmn are multiple

regression coefficients based on analysis of a large number

of sample cases. For cases considered here, the polynomial

can be fitted with an accuracy of + 0.1% of TC and + 5% of

B. using polynomials up to the third order.

The objective function and the constraints in polynomial

form can be optimized analytically. Since the energy

requirement is implicitly included in Equation (1.22) the

only independent variable is the batch fraction fc-

The objective function TO and the discharge burnup Be

are calculated for all possible values of f. The TC with

the lowest cost satisfying a certain burnup limit B* is

chosen as the optimal solution.

The following two sample -cases are analyzed by this

method. Sample case A is identical to the problem



considered in the previous Section 1.7 by the Method of 53

Piece-Wise Linear Approximation, with economic parameters

that included income tax. Sample case B differs from

sample -case A in that the cycle energy requirements are

different for different cycles.

Table 1.6 shows values of reload enrichments, batch

fractions cycle energies and revenue requirement for

sample case A for the seven cases having the lowest

costs. AAO is the base line case, where the batch fractions

and reload enrichments are held at the original steady

state values. Net savings in the order of 0.3 million

dollars are achieved in case ABl when compared to steady-

state operation AAO through this optimization. Table 1.7

shows values of discharge burnup estimated by the polynomial

approximation as compared to the actual values given by

CELL-CORE. The results agree within +5%.

Sample case B differs from sample case A in the

cycle energy requirement. Cycle energy requirements vary

for Sample problem B and are:

E1=25450. GWHt, E2=30440. GWHt, E3=21850. GWHt,

E4=19340. GWHt, E5=20880. GWHt

Table 1.8 shows values of reload enrichments, batch

fractions, cycle energies and revenue requirements for the

five solutions having the lowest costs. BAO is the base

line case, where the batch fractions are held constant at



Table 1.6 B% 50MWD/Kg
Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method of Polynomial Approximation Sample Case A

Target
Case Energy

22750. 22750. 22750. 22750.22750.

3.2
0.333
22750.

3088
0.293
22690.

3.88
0.293
22690.

3.88
0.293
22690.

3.88
0.293
22690.

3.88
0.293
22690.

3.88
0.293
22690.

3.88
0.293
22690.

Revenue Requirement
For Actual Energy Corrected for Target

Poly- CELL-
nomial Coco
Appro-
ximation 6

Energy_
Poly- CELL-
nomial CoCo

ximation

(Difference)
87.30 87.24 87.30 87.24

(+0.06)

86.43 86.34

87.20 87.33

87.09 87.13

86.26 86.37

86.82 86.89

86.94 87.00

87.23 87.14

86.99
(+0.09)

87.01
(-0.13)

87.02
(-0.04)

87002
(-0.11)

87.03
(-0.07)

87.04
(-0.06)

87.04
(+0.09)

86.90

87.14

87.06

87.13

87.10

87.10

96.95

Uq

Cycle

f
E (GWHt)

2 4 5

Number
AAO

AB1

AB2

E
f
E

9
f
E

e

E

AB3 E
f
E

3.2
0.333
22750.

2.40
0*293
20500.

3.45
0.293
23070.

2.94
0.333
23030.

2.40
0.333
19730.
2.66
0.293
22300.

3.45
0.293
22830.

3.61
0.253
23250.

3.2
0.333
22750.a

4.27
0.253
23000.

4.27
0.253
23000.

3033
0.293
22840.

4.27
0.253
23000.

3.29
0.293
22700.

3.29
0.293
22700.

4.27
0.253
23000.

3.2
0.333
22750.

3.42
0.253
22480.

2.76
0.293
22510.

3.45
0,293
22560.

2.77
0.293
22510.

3.45
0.293
22400,

3.45
0.293
22460.

3.42
0.253
22480.

3.2
0.333
22750.

3.95
0.253
23100.

3.77
0.293
23130.

3054
0.293
22920.

3.74
0.293
22980.

4.50
0.253
23000,

3.54
0.293
22880.

3.95
0.253
23090.

AB4

AB5

AB6

AB7

17f
E

Ef
E

e
f
E

E
f
E



B" =50MWD/Kg

Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample

Case A Calculated by (1) Polynomial Approximation Based on Regression Equations

(2) CELL-CORE Depletion Calculation

Batch
Number

Case
Number

-2 -1 0

Method

AAO (1)
(2)

AB1 (1)
(2)

AB2 (1)
(2)

AB3 (1)
(2)

AB4 (1)
(2)

AB5 (1)
(2)

AB6 (1)
(2)

AB? (1)
(2)

31.5
31.5
38.6
38.9

38.6
38.9
38.6
38.9

38.6
38.9

38.6
3869
38.6
3869
38.6
38.9

31.5
31.5
38.6
3864
38.6
38.4

38.6
38.6

38.6
3864
38.6
38.6

38.6
38.6

38.6
38.4

31.5
3165
38.6
38.1

38.6
38.5
38.6
38.8

38.6
38.5
38.6
3868
38.6
38.8
38.6
38.1

. I 2

-MWD/Ks
31.5
31.5
4462
44.4
44.2
45.2
4462
4469
4462
45.2

44.2
44.5
4462
44.9
4462
4464

3

31.5
31.5
47.4
46.9

47.4
47.5

3964
3964
47.4
47.3

39.4
38.4

3964
38.7

47.4
4760

4

31.5 31.5

40.4 44.4

34.7

4069

34.7

4069

40.9

4064

43.2

4162

4362

49.6

41.2

44.4

_5

31.5

31.8

36.4

3661

31.9

34.3

40.6

3862

Un

Table 17



Reload Enrichments, Batch
Table 1.8 B0 MO!VWD/Kg

Fractions, Cycle Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method of Polynomial Approximation. Sample Case B

Li.C (w/o) i
f
E(GW~it)

Target 25450.
Energy

3.73
0.333
25510.
3.74
0.333
25510.

4.55
0.293-
25340.

3.74
0.333
25510.

4.55
0.293
25340.

4.55
0.293
25340.

Case
Number

BAO c
f
E

BB1 e
f
E

BB2 c
f
E

BB3 C
f
E

BB4 e
f
E

BB5 E
f
E

30440. 21850. 19340. 20880.

4.36
0.333
30470.
4.36
0.333
30470.

3.79
0.333
30310.

2.40
0.333
22170.

2.70
0.293
21270.

2.91
0.293
21790.

4.36 2.70
0.333 0.293
30470.'21270.

3.79 2.91
0.333 0.293
30310. 21790.
3.79 3.72
0.333 0.253
30310. 21790.

2.76
0.333
20280.

3.88
0.253
19180.
3.87
0.253
19480.

3.10
0.293
19260.

3.09
0.293
19320.
2.93
0.253
19130.

3.45
0.333
17220.

2.27
0.293
17930.
2.61
0.293
20020.

2.37
0.333
17480.
2.71
0.333
19930.
2.93
0.293
20110-

Revenue Requirement
Por Actual Energy Corrected for Target

Energy
Poly- CELL- Poly- CELL-
nomial COCO nomial COCO
Appro-
ximation 6

10 $-

89.36

88.66

89.35

88.61

89.32

89.31

Appro-
ximption

(Difference)

89.37 89.92
(-0.01)

88,71

89.38

88.67

89.38

89.27

89.67
(-0.05)

89.67
(-0*04)

89.71
(-0.05)

89.71
(-0.05)

89.72
(+0.04)

89.93

89.72

89.71

89.76

89.76

89.68

,

-Cycle
-2
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the 0.33 level and serves as a standard for comparing other

cases. Net savings of 0.25 million dollars achieved by

Case BB5 are realized when compared to base case BAO.

Table 1.9 shows values of discharge burnup estimated by

the polynomial approximation as compared to the actual

values given by CELL-CORE. The same accuracy as in sample

case A is achieved.

The results of regression analysis and the optimization

procedure indicate that the objective function is rather

insensitive to batch fraction changes, if the same cycle

energies are produced. In the two sample casles given

above, using the base line cases instead of the optimal

cases only incurred additional cost of 0.3 million dollars,

which is amere. 0.4% of the total revenue requirement. If

the base line cases give better engineering margins in terms

of discharge burnup, power peaking and shut down reactivity,

they should be used instead. The final choice should be

based on engineering margins rather than on economics.

Finally, a method of calculating incremental cost of

energy under the variable batch fraction, non-steady

state operating conditions are given. The method is based

on taking finite differences on the regression equation

involving TC. The incremental cost of energy for cycle c

is given by

TU(E ,E,.+AE,..t) - TC(E i ,..20)
c

AE h (1I.2Z4 )



Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample

Case B Calculated by (1) Polynomial Approximation Based on Regression Equations

(2) CELL-CORE Depletion Calculation
Batch
Number

-2 -1 0 1 2 3 4

Case Mto
Number Method

BAO (1)
(2)

BB1 (1)
(2)

BB2 (1)
(2)

BB3 (1)
(2)

BB4 (1)
(2)

BB5 (1)
(2)

31.5
31.5
31.5
31.5
38.6
39.2

31.5
31.5
38.6
39.2

38.6
39.2

31.5
31.8
31.5
31.8
38.6
39.8
31.5
31.8
38.6
39.8
38.6
39.8

31.5
32.8

38.6
39.3
38.6
39.7
38.6
39.3
38.6
39.7
38.6
39.4

-MWD/Kg--
37.2 43.9
37.9 42.2

43.0
44.9
49.7
52.2
43.0
45.6
49.7
52.7

49.7
51.7

48.2
49.4

43.5
44.0
48.2
50.2

43.5
44.7
43.5
44.1

31.9
28.5

34.4

36.2

34.4

36.2

42.9 36.3

Notice that the B =50MWD/Kg 1imit only applies to the estimated burnup values
calculated by the polynomial regression equation. -The fact that actual burnup values
sometimes exceed 50MWD/Kg indicates that the estimated burhup values are only approximate.

Un
CO

35.0
32.9
44.3

44.1

37.8

37.6

41.4
41.9

30.9

33.7

31.7

34.6

36.4

Table 1. 9 B*0=50MWD/Kg
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where ft and f* are the optimal batch fractions for

the gs + AEc and the is case respectively.

that is TC (9s + AECft ) = minimum TC(Is + AEc '

with respect to f

and TC(Es ,f) = minimum T(9sf)

with respect to f

Tables 1.10 and 1.11 show values of f*, ft , TC and A
C

for various values of Ec and for various burnup limits

based on the optimal solution of sample case A.

Tables 1.12 and 1.13 show the same quantities for sample

case B. It can be seen that the incremental cost in

a cycle varies irregularly with cycle energy. This is

due to the fact that different sets of f are needed to

satisfy the burnup constraints for different cycle energy

requirements. The variation of TC with respect to these

different sets of f is not continuous.

1.9 Conclusions

The following conclusions are obtained from this

thesis research.

(1) The Inventory Value Method for evaluating worth

of nuclear fuel inventories t6 be used in
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Table 1.10

Calculation of Incremental Cost of Energy

Using Regression Equations. Sample Case A

Burnup Limit B= 45MWD/Kg

Batch Fraction for Cycle

1 2 3

0.293 0.293 0.293

Revenue
Requirement

-- 106$
4 5

0.293 0.293 87.01872

Incre-
mental
Cost
in Mills/

KWHe

Positive Energy Change
&E=1OOOGWHt
in Cycle

1 0.333 0.293 0.293

2 0.293 0.293 0.293

3 0.293 0.293 0.293

4 0.293 0.293 0.293

5 0.293 0.293 0.293

Negative Energy Change
AE=-1000GWHt
in Cycle

1 0.293 0.293 0.293

2 0.293 0.253 -0.253

3 0.293 0.293 0.293

4 0.293 0.293 0.293

5 0.293 0.293 0.293

0.293 0.333 87.5284

0.293 0.333 87.4265

0.293 0.333 87.3890

0.293 0.333 87.3170

0.293 0.333 87.2957

0.293 0.333 86.5642

0.253 0.293 86.5848

0.293 0.333 86.6605

0.293 0.333 86.7226

0.293 0.333 86.7443

Base
Case

AA1

1.56

1.22

1.15

0.91

0.845

1.395

1.33

1.095

0.905

0.84



Table 1.11

Calculation of Incremental Cost of Energy

Using Regression Equations. Sample Case A

Burnup Limit B =50MWD/Kg

Batch Fraction for Cycle Revenue
Require-

1 2 3 4 5 ment

Base
Case 0.293 0.253 0.253
AB1

Positive Energy Change
hE=1000GWHt
in Cycle

1 0.293 0.253 0.253

2 0.293 0.293 0.293

3 0.293 0.253 0.293

4 0.293 0.253 0.253

5 0.293 0.253 0.253

Negative Energy Change
AE=-1000GWHt
in Cycle

1 0.293 0.253 0.253

2 0.293 0.253 0.253

3 0.293 0.253 0.'253

4 0.293 0.253 0.253

5 0.293 0.253 0.253

0.253 0.293

0.253 0.293

0.293 0.333

0.293 0.293

0.253 0.293

0.253 0.293

0.253 0.293

0.253 0.293

0.253 0.293

0.253 0.293

0.253 0.293

-106$-

86.9890

87.4642

87.4265

87.3848

87.3047

87.2748

86.5345

86.5848

86.5860

86.6761

86.7064

Incre-
mental
Cost

in Mills/
KWHe

1.46

1.335

1.21

0.965

0.875

1.395

1.24

1.24

0.955

0.865
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Table 1.12

Calculation of Incremental Cost of Energy

Using Regression Equations. Sample ease B

Burnup Limit B=45MWD/Kg

Batch Fraction for e

1 2 3 4 5

Base
Case 0.333 0.373 0.293 0.253 0.293
BA1

Revenue
Require-
ment

106$---

89,8251

Incre-
mental
Cost

-Mills/KWHe-

Positive Energy Change
A E=1000GWHt
in Cycle

1 0.333 0.373 0.293 0.253 0.293

2 0.333 0.373 0.293 0.253 0.293

3 0.333 0.373 0.293 0.253 0.293

4 0.333 0.373 0.293 0.293 0.333

5 0.333 0.373 0.293 0.253 0.293

Negative Energy Change
AE=-1OOOGWHt
in Cycle

1 0.333 0.373 0.293 0.253 0.293

2 0.333 0.373 0.293 0.253 0.293

3 0.333 0.373 0.293 0.253 0.293

4 0.333 0.373 0.293 0.253 0.293

5 0.333 0.373 0.293 0.253 0.293 89.5484

90.2916

90.2424

90.1845

90.1255

90.1049

1.435

1.28

1.10

0.91

0.915

89.3766

89.4070

89.4773

89.5224

1.375

1.28

1.07

0.925

0.85
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Table 1.13

Calculation of Incremental Cost of Energy

Using Regression Equations. Sample Case B

Burnup Limit B =50MWD/Kg

Batch Fraction for Cycle

1 2 3 4

0.333 0.333 0.293 0.253 0.293

Revenue
Require-
ment

-106

89.6715

Incre-
mental
Cost

Mills/
KWHe

Positive Energy Change
bE=100OGWHt
in Cycle

1 0.333 0.333 0.293 0.253 0.293

2 0.293 0.333 0.293 0.253 0.293

3 0.333 0.333 0.293 0.253 0.293

4 0.333 0.333 0.293 0.253 0.293

5 0.333 0.333 0.293 0.253 0.293

Negative Energy Change
AE=-1000GWHt
in Cycle

1 0.293 0.333 0.293 0.253 0.293

2 0.293 0.293 0.253 0.253 0.293

3 0.333 0.333 0.253 0.253 0.293

4 0.333 0.333 0.293 0.253 0.293

5 0.333 0.333 0.293 0.253 0.293 89.3947

Base
Case
BBI

90.1380

90.0775

90.0309

89.9772

89.9513

1.435

1.25

1.10

0.93

0.86

89.1628

89.1515

89.3229

89.3687

1.56

1.60

1.07

0.925

0.845



calculating finite planning horizon revenue

requirement is adequate for the purpose of

scheduling energy and nuclear in-core

optimization.

(2) Three methods are proposed for calculating

incremental cost of energy for the fixed batch

fraction case. The Linearization Method

and the Inventory Value method for calculating

incremental cost of energy are both suitable

for the initial stages of optimal energy

scheduling. The Rigorous Method is very time-

consuming and expensive and should be used only

in the final stages of optimal energy scheduling.

(3) For the problem of nuclear in-core optimization

under steady state conditions with variable

batch fractions and reload enrichments, the

optimal solution is practically always on the

boundary of the burnup constraints. Hence,

there are strong incentives to increase the

burnup limits.

(4) For the problem of nuclear in-core optimization

under non-steady state conditions, the Method

of Piece-Wise Linear Approximation is applicable

for the cases where there are large variations

of objective function near the optimal solution.

It is not applicable for economic situations where
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there is a broad region of optimality.

(5) The Method of Polynomial Approximation gives

accurate values of the optimal solutions, even

though the objective function is very flat

near the optimum.

(6) Since the objective function is insensitive to

large variations in batch fractions, selection of

the optimal solution can be based primarily on

other considerations, such as engineering margins.

1. 10 Recommendations

The depletion code CELL-CORE should be modified in

order that the batch fraction can be varied continuously.

This modification would enable the efficient usage of the

Method of Linear Approximation instead of Piece-Wise Linear

Approximation or Polynomial Approximation. Once the optimal

batch fraction in the continuum is located, the realistic

batch fraction to be used in refuelling would be given by

the number of integral fuel assemblies which is closest

to the continuum optimal solution.

Finally, the algorithm of optimal energy schedule

should be modified so that the polynomial equations from

regression analysis could be used directly, instead of the

present indirect usage which require intermediate calculations

of incremental cost. It is recommended that a quadratic

programming algorithm, or an even higher order programming
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algorithm should be used in the optimal energy scheduling

procedures, so that the higher order derivatives can be

used directly.



CHAPTER 2 67

INTRODUCTION

2.1 Motivations for Mid-Range Utility Planning

Until recently, procedures for scheduling energy

production from different nuclear power plants in an electric

utility system have consisted of a relatively simple set of

rules. All the nuclear power plants were to be operated

base-loaded whenever they were available. They were to be

refuelled annually, either in the spring or in the fall when

the system demand is at its lowest level. From an economics

stand point, the foregoing rules can be justified because

nuclear energy, being cheaper than conventional fossil energy,

should be used whenever possible to displace the latter.

Annual refuelling is desirable from an operational standpoint.

For electric utilities having only a small number of

nuclear units, this is a practical and economical way to

operate nuclear power units. However, recently the number

of nuclear power units in some large utilities, such as

Commonwealth Edison and Tennesse Valley Authority, have

increased to such a level that the foregoing rules are not

sufficient for the following reasons. The combined nuclear

generating capacity is so large that all of them cannot

be operated base-loaded in periods of low system demand.

Another reason is that there are so many nuclear power units

that all of them cannot be refuelled annually during the

spring and fall without creating some operating and reliabil-

ity difficulties. For example, refuelling two or more reactors
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at the same site simultaneously or successively might create

excessive strain on the grid in the region to which these

reactors belong and might also overload station refuelling and

maintenance personel operations. Consequently, the following

requirements in refuelling are being considered (Q)

(i) From the standpoint of area security, no

more than one reactor should be down for refuelling

for any region at any given time.

(ii) From the standpoint of efficient refuelling

operations, reactors should not be refuelled

simultaneously or successively at a given site.

(111) From the stand point of satisfying the system

demand, all the nuclear power units should be

available in the peak demand periods. Hence,

nuclear power units cannot be scheduled for

refuelling in the summer if there is a severe

summer peak.

Under these requirements annual refuelling can no longer

be maintained for all nuclear reactors at all times. In this

situation reactors cannot be base-loaded all the time and

refuelled annually.

New scheduling methods must be developed that will

handle this situation. These methods should provide an

optimal operating schedule for energy production for all

the generating units (fossil, hydro and nuclear) in agiven

electric utility spanning a planning horizon of more than

five years. Besides specifying energy production for every

unit, the schedule should also specify refuelling and
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maintenance dates for each unit and other refuelling

details for nuclear reactors,such as reload enrichments

and batch fractions. This overall problem of scheduling

is called Mid-Range Utility Planning.

2.2 Formulation of the Overall Optimization Problem for
Mid-Range Utility Planning

The overall optimization problem for Mid-Range Utility

Planning can be formulated as follows; given a load forecast

for a given electric utility over the span of the planning

horizon, given the composition of the electric utility in

terms of the capacity, type and locations of each generating

unit, find the optimal schedule of operation which consists

of refuelling and maintenance dates, energy production in

each time period for every unit, and (for all nuclear

reactors) the reload enrichments and batch fractions for

each cycle in the planning horizon.

The objective function for this problem is the revenue

requirement directly related to energy production in the

planning horizon. This is the capital which if received as

revenue by the company at time zero which, invested in the

company at the effective rate of return x, would enable the

company to pay all fossil and nuclear fuel expenses startup

and shutdown costs, other variable operating costs, and all

related taxes, pay bond holders and stock holders their

required rate of return on outstanding investments on

nuclear fuels, and retire all fuel investments at the end

of the time horizon. The fuel revenue requirement for the
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electric utility is the sum of all these revenue require-
ments for each generating units:

R

r (2.1)

where Tr is the total revenue requirement for the
system

TCT is the revenue requirement for unit r

R: total number of generating units in the system.

The decision variables are

(i) time for maintenance and refuelling for each unit

(ii) energy production of each unit for each period
of time in the planning horizon

(iii) for the nuclear generating units, the reload
enrichments and batch fractions for each cycle.

In general, there are other parameters specific to the

nuclear generating units; such as refuelling pattern,

configuration of burnable poison rods, multi-enrichment

batches etc. For the sake of simplicity, these parameters

are not included in the decision variables.

The constraints for this problem are:

(i) the sum of energy production from all of the

generating units must be equal to the total

system demand in each period of time.

(ii) Rate of energy production for each unit cannot

exceed its rated capacity.

(iii) Each nuclear reactor should operate within its

physics and engineering constraints, for example,

burnup limits, power peaking factors and reactor

shut down margins.



(iv) Other system operating restrictions such as 71

area security, spinning reserve requirements

limitations on startup and shutdown frequency

etc. must be met.

(v) Refuelling schedules must meet the restrictions

as specified in Section 2.1. For a complete

listings of the cons'traints refer to Widmer (W2)

or Deaton (DJ). For the purpose of this thesis

research, only a few of these constraints are

explicitly considered, and they will be stated

clearly in each chapter. Some of the physics

and engineering constraints for nuclear reactors

are investigated in greater depth in Kearney's (&)

and Rieck's (B) thesis research.

2.3 Decomposition of the Overall Problem into Various
Sub-Problems

The overall optimization problem of Mid-Range planning

can be decomposed into three sub-problems. The first sub-

problem deals with the decision variable of maintenance and

refuelling times. A computer code has been developed by

John Bukovski (CZy) that generates a number of refuelling

and maintenance schedules compatible with specified

constraints. For each refuelling and maintenance schedule,

the second sub-problem involves finding the energy pro-

ductions, reload enrichments and batch fractions for the

generating unit which lead to lowest cost. This is repeated

for each time schedule, and the schedule with the lowest



cost is chosen to be the optimal solution. The third 72

sub-problem involves separating the problem of optimal

energy schedule from nuclear in-core optimization and then

the energy variables from the enrichment and batch fraction

variables. In essence, this technique of decomposition

separates the time dependence from the other decision

variables. Hence, the overall optimization problem of mid-

range planning reduces to solving for the optimal energy

production, reload enrichments and batch fractions based

on a given refuelling and maintenance time schedule. This

sub-problem is called System Optimization for a given refuell-

ing and maintenance time schedule. This problem can be

formulated mathematically as

minimize Cs r (2.2)

.with respect to E r r frji c 'c

Subject to constraints

LE = Es (2.3)

E r4At -Pr. 8 7 6 0 . (2.4)
ci .1

E jr c *7 ) (2.5)
E L E

SFrc r (2.6)
Fr r r ) = Ercc c

Br rr B 0  (2.7)

where.: C

E = system demand in time period j

E.= energy production of unit r in time period j

At = duration of period j

P = capacity of unit r

=rc period when reactor r cycle c begins
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Ec= energy production of unit r in cycle c

r
c= reload enrichment for unit r cycle c

er= vector of c for all c = (E, EI ........

= vector of fr for all c (f, fr--.--.--.-
c 2

Fr = a function of cr and Pr. This is the energy

C produced in reactor r in cycle c

Br = a function of r and r . This is the average
C discharge burnup in reactor r cycle c

B = Maximum allowable average discharge burnup.

Notice that only some of the constraints given in Section

(2.2)are considered explicitly in this thesis.

For a system with R units, a planning horizon containing

J period and C cycles, RJ + 3RC variables and J + RJ + 2RC

constraints are to be considered. A non-linear problem with

this number of variables and constraints is difficult to

handle. However, this problem can be further decomposed

into two sub-problems; one containing only the linear

constraints, and the other the linear and the non-linear

constraints. The linear sub-problem, which can be called

optimal energy scheduling, is concerned with finding the

optimal energy productionE3 for each reactor r in each

time period j.

This problem can be stated as follows

Minimize T-s . -r(Er -r* pr* (2.8)

with respect to Er

Subject to constraints E = Es (2.3)

Er At - 1188760. (2.14)
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where j , are the optimal reload enrichments and batch

fractions for any set of E .r

The non-linear sub-problem which can be called nuclear

in-core optimization is concerned with finding the optimum

enrichment and batch fraction for reactor r when required

to produce energy E This problem can be stated as follows.

r(E , ,.r*) = minimuMCr r , r) (2.9)

with respect to tr F for a specified set of E rsubject

to constraints

Fr (Zr r) = Er
Sc (2.6)

- SB r(-Cr r) < B*
U B < (2.7)

Zi Er = Er (2.5)
.. r j c

The problem of optimal energy scheduling and the

problem of nuclear in-core optimization can be solved

sequentially as follows. Based on an initial guess of Cr ,

for all r, the problem of optimal energy scheduling can be

solved to yield an initial solution of Er Then the problem

of nuclear in-core optimization is solved for the optimal Ir).
r* corresponding to the initial E r The improved values of

e *and gr. can be used in the problem of optimal energy

scheduling to yield better values of E - This operation con-

tinues until the solution of the two-problems remain the same

after successive iterations. The converged results are then

the optimal solution for the system optimization problem

based on one refuelling and maintenance time schedule. The

entire procedure would be repeated for all possible time

schedules.
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The time schedule with the lowest system operating cost is

then the global optimum for the overall problem of Mid-range

Utility Planning. The various steps of decomposition are

summarized in Table 2.1. The problem of optimal energy

scheduling is considered by Deaton(j.).A brief description

of his solution technique is presented in Section 2.4. The

problem of nuclear in-core optimization is discussed in

Section 2.5; in Chapter 6,7,8,9, of this thesis, and also

by Kearney(Kl).

2.4 Brief Description of the Solution Technique for the
Problem of Optimal Energy Scheduling

The problem of optimal energy scheduling can be solved

by the method of steepest descent. First, the non-linear

objective function is linearized about an initial feasible

point R R

r r A (E - E

where o r j ( (2.10)rj aE r
J

Ar as defined in Equation (2.10) may be thought of as

the incremental cost of energy for unit r in time period j.

Notice that in Equation (2.10) the numerator is the revenue

requirement, while the denominator is the actual undiscounted

energy. If Arj could be evaluated for a given set of

Er, ZA, I * . Equation (2.10) is merely a linear

equation, which, together with Equations (2.3) and (2.4)



Table 2.1

Various Steps in the Decomposition of the Overall Optimization Problem

of Mid-Range Utility Planning

Step Number Sub-Problem Name Variables Held Fixed Variables to be Ontimized

(0) Overall Optimization --

Problem of Mid-Range
Utility Planning

(1) System.Optimization 1 2,3,4
for a Given Refuelling
and Maintenance Time
Schedule

(2) Optimal Energy 3,4 2
Scheduling

(3) Nuclear In-Core 2
Optimization

Variables Designation

1 : Refuelling and maintenance time schedule
2 : Energy production for each generating unit
3 Reload enrichments for each nuclear unit
4 Batch fractions for each nuclear unit



constitutes a standard linear program. This can be solved

easily by Simplex Method(aZl) or by standard Network(DZ1)

programming techniques. Hence, the crux of the problem is to

calculate1-rj for a given set of E , ,

For nuclear reactors, the objective function is a unique

function of the cycle energy, reload enrichments and batch

rC= -r rr
fractions, r TO(E , ,

r r
Since by Equation (2.5) E. is a linear combination of E ,

thederivatives of TC with respect to El is the same as the
r

derivativesof TO with respect to Ec In other words

rj Ixrc (Er c (2.11)
c

for J rc4 <rc+1

Hence the rj's for all reactors belonging to the same

X
-cycle are equal. Calculation of rc under many different

operating conditions is considered in this thesis. Chapter 3

and 6 consider the calculation of Xrc under steady-state

operating condition for the fixed batch fraction case and the

variable batch fraction case respectively. Chapter 5, and 9

consider the calculation for Xrc under non-steady state

operating condition for the fixed batch fraction case and

variable batch fraction case respectively. These calculations

of incremental cost would serve as inputs into the optimal

energy scheduling algorithm. Methods of solving the optimal

energy scheduling problem are not considered in this thesis,

except in Chapter 3, where an extremely simple problem of

optimal energy scheduling for two different size reactors

both operating in steady-state is solved by graphical technique.

77
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2.5 The Organization of the General and Special Problem Of
Nuclear In-Core Optimization

The general problem of nuclear in-core optimization is

presented in Section (2.3) by Equations (2.9), (2.5), (2.6)

and (2.1) as a minimization problem in which both reload

enrichments and batch fractions are varied to arrive at the

lowest cost. However, one can also consider the simpler

problem in which the batch fractions are fixed throughout

the planning horizon, and only the reload enrichments are

varied. For this special problem, there is at most only

one set of reload enrichments that would satisfy all the

constraints, Equations (2.5), (2.6) and (2.7). This is due

to the physics requirement of a reactivity limited nuclear

core that, once the reload batch fraction is fixed, selecting

the reload enrichment completely determines the energy it

-can generate in that cycle. Hence, for this special problem

in which batch fractions are fixed, nuclear in-core opti-

mization reduces to the problem of finding the correct

reload enrichments that satisfy the constraints. Chapter 3

and 5 consider the special problem of fixed batch fractions.

Chapter 6,8 and 9 consider the general problem in which

both reload enrichments and batch fractions are allowed

to vary.

Steady-state and non-steady-state operation of the

reactor is also considered in this thesis. For steady state

operation, the energy produced, reload enrichments, and batch

fractions are the same for every cycle. Since the physical



state of the reactor goes through a complete cycle between 79

refuellings, there are no changes in the value of nuclear

fuel inventory between the beginning and the ending of the

planning horizon. However, for the non-steady-state case,

the physical state of the reactor at the end of the planning

horizon is not necessarily the same as at the beginning of

the planning horizon. Hence, in order to calculate the

objective function accurately, changes in monetary value of

nuclear fuel inventory between these two points in time

must be accounted for. Chapter 4 describes the various

methods of evaluating monetary value of nuclear fuels, which

can be used in the calculation of the objective function.

Table 2.2 shows the various problems and special cases

considered, and the chapters describing them.

.2.6 Types of Reactors Analyzed

The generalmethodology described inthis thesis is

applicable to different types of light water reactors. How-

ever, only the pressurized water reactors are chosen as

examples. This is solely a matter of convenience because

pressurized water reactors are easier to model and the

relevant computer codes are readily available.

Two pressurized water reactors of different sizes are

considered: the 430 MWe San Onofre reactor and the 1065 MWe

Zion reactor. Detail descriptions of the two reactors can be

found in their final safety reports (LQLZ1). In this thesis

research, the overall weight of UO2 in Zion core is taken tobe



Table 2.2

Contents of the Various Chapters in This Thesis

Steady State Operation Non-steady State
Operation

Special Problem :

constant batch fractions
variable enrichments

General Problem :

variable batch fractions
and enrichments

Chapter 3

Chapter 9

Charters h, r

Chanters h, 7, , e
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90 metric tonnes instead of the normal value of 86 metric tonnes.

The San Onofre reactor is normally refuelled in a 4-zone modified

scatter manner, in which the fresh fuel is always loaded on to

the outer radial zone during its first cycle of irradiation,

and scattered throughout the inner zone in a checker board

pattern for the remaining cycles of irradiation. The Zion

reactor is normally refuelled in a 3-zone modified scatter

manner.

2.7 Depletion Code CELL-CORE

CELL (Bl) is a point depletion code which generates one

group cross-section data as a function of flux-time. These

cross-section data are fed into the spatial depletion code

CORE (Kl) which is a finite-difference, one-group diffusion

theory code in R-Z geometry. Refuelling and fuel shuffling are

completely automated in CORE. The input consists of some

geometrical descriptions of the nuclear core. The output

consists of the mass and concentration of each heavy metal

isotope in each individual batch of fuel at the end of every

cycle. A more detailed description of the various versions of

CORE is given in Appendix A.

The twin-code CELL-CORE was chosen to be the depletion tool

in this thesis because of simplicity of usage, high speed

of calculation and minimal storage space. To do a depletion

calculation for a planning horizon consisting of five cycles
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takes 160 k byte storage and a CPU time of 0.5 minutes

on an IBM 370/45. Hence, it is possible to analyse a

large number of cases at low cost. Comparison of the

results of CORE with other computer codes and experimental

data are given by Kearney (Kl).

2.8 Economics Code MITCOST1 and COCO

MITCOST (CJl) is an economics code which calculate

the revenue requirement and average fuel cycle cost for

an individual batch of fuel. MITCOST1 is a slight modifica-

tion of MITCOST which is capable of handling batches with

residue book value of fabrication, shipping, reprocessing

and conversion costs based on methods developed in Chapter

4.

COCO is a modification of the depletion code CORE.

The revenue requirement for each batch of fuel is

calculated according to the Inventory Value method given

in Chapter 4 directly from the physics data provided

in the output of the depletion code CORE. Hence, it is

no longer necessary to transfer physics data from the

CORE code to MITCOST1 to obtain fuel costs data.

Course listings of CELL-CORE, MITCOST1 and COCO

are on file with Professor E.A. Mason at M.I.T.
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OPTIMAL ENERGY SCHEDULING FOR STEADY-STATE
OPERATION WITH FIXED RELOAD BATCH FRACTIONS

AND SHUFFLING PATTERN

3.1 Defining the Problem

The first of the problemsoutlined in Section 2.5 to be

considered consists of two nuclear reactors with a fixed re-

fuelling schedule and operating at steady-state conditions.

This two-unit system is assumed to supply all the steady-

state energy demanded by a customer over the entire planning

horizon, except at the time of refuelling, when replacement

power is purchased. Depending on the incremental cost of

electricity, the customer will decide on the steady-state

power level he wishes the reactors to supply.

The problem is to find the optimal enrichments for the

reload batches for both of the reactors given the customer's

demand curve of energy from the system.

Reactor A of the system is the 1065 MWe PWR described

in Chapter 2. Reactor B of the system is a 430 MWe PWR simi-

lar to San Onofre I. Reactor A is fuelled in a three-zone

modified scatter manner. The irradiation interval is fixed

to be 1.375 years and refuelling takes 0.125 years. At time

0.0, the reactors start a new cycle.

Reactor B is fuelled in a four-zone modified scatter

manner. The irradiation interval and refuelling time are the

same as Reactor A.

Hence both reactors are assumed to be operating from time

0.0 to time 1.375 years and, to facilitate this simplified ana-
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lysis, they are both assumed to be down for refuelling at

the same time. This pattern would repeat itself indefinitely

into the future.

Both of the reactors can operate at any power level from

zero up to their capacity limit. Forced outages are not

included in this simple-minded case.

3.2 Defining the Objective Function

The objective function of this problem is the revenue

requirement for fuelling these two reactors from their

initial loading into the indefinite future in which they

are operating under steady state conditions.

The equations of the revenue requirement will be stated

without proof.

TCs =TA + TCI

TCA = A
b

1b (+x) b

TB= B
Rb

b (1+x)tb

R or B= Aor B
b / ib + T

i(l+X) Ati 1-

where TOs

TCA

TCB

RA or B
b

(3.1)

sum over all the batches
of fuel for reactor A

(3.2)

sum over all the batches
of fuel for reactor B

(3.3)

ZA or B ZA or B EA or B

tib (xib c tC
i (+)At

c
EA or B
c

revenue requirement for the system (3.4)

revenue requirement for reactor A

revenue requirement for reactor B

revenue requirement for batch b of reactor A
or B discounted to the start of irradiation for
that batch

x : effective cost of money
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t : time when batch b is charged to reactor A or B
b relative to start of planning horizon

ZA or B : various payments associated with a given batch
ib for reactor A or B

At : time of these various payments relative to the
start of irradiation of that batch

EA or B : energy generated from a given batch at cycle 
c

c for reactor A or B

At : time revenue is received for Ec and income tax
c paid relative to the start of irradiation

3.3 Defining the Decision Variables and the Design Variables

Since the reload batch fractions are fixed for both

reactors and there is no time dependence in this problem, the

decision variables reduce to E and E , energy generated per cycle

from reactor A and B respectively. Since there is a one-to-

one correspondence between energy per cycle and reload enrich-

ment under these conditions, specifying one determines the

other. Reload enrichment is the dependent variable in this

case. Since reload enrichment is one of the design parame-

ters in fuel management, it is formally called a design

variable for this problem.

3.4 Lagrangian Optimality Condition

The objective function for the system TCs is to be

a minimum with respect to the decision variables EA andc

E c subject to the condition that the energy of each cycle

E has the specified value Es. That isc c

EA + EB = Es c = 1, 2, (3.5)c c c
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Under the assumed condition that the batch fraction of

each reactor is held constant, TCA is a function only of

A -B
the energies Ec and TC is a function only of the energies

E . The Lagrangian condition for TCS to be a minimum

subject to the constraints (3.5) is

6[TCs + EX (EA + EB - Es)] = 0 (3.6)
c c c c c

or

L Ijs + x (EA + EB - ES) = 0 (3.7)
aEA c c c c

c

B s + x (EA + EB - E S) = 0 (3.8)
3E B c c c c

c

Xc being the Lagrangian multiplier for cycle c. Carrying out

the differentiati on:

3TCA _ ETCB c c = 1, 2, .... (3.9)
DEcA 3 B cc c

After steady state conditions are reached, X c becomes a

constant X s, and the terms in TCA and TCB affected by the
RA

steady state energy are of the form E s- and

RB c (l+x) c

E sat respectively, where tc is the time irradiation
c (1+x) c
starts in cycle C. At steady state the revenue requirements

R Aand R are independent of cycle number c. Hence Eq. (3.9)ss ss

reduces to

dRA dR B
ss ss (3.10)

dE dE ss
ss s
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For the present work, revenue requirements RA and RB

for steady state batches in reactors A and B respectively

were available, calculated from Eq. (3.4). To use Eq. (3.9)

directly it is necessary to have the revenue requirements R
ss

and R for steady state cycles. Fuel in reactor A in a

particular batch contributes energy to three cycles, starting when

batch of interest is charged, a second starting 1.5 years

later and a third starting 3.0 years later. For the present

work it was assumed that the revenue requirement for a steady-

state batch of reactor A was made up of equal contributions

of one-third of the revenue requirements of each of the

three cycles to which it contributes energy, each present

worthed to the time basis for the batch in question, that is

RA
R[ 1 + 1  17)] (3.10a)

3 (1+x)1.5 +(1+x)3

Similarly, for reactor B, with four-zone fueling, it was

assumed that

R B

RB s [1+ 1 + 1 + 1
(1+x)1 .5  (l+x)3 (1+x)4.5

(3.10b)

This procedure of bringing the cycle revenue requirements to the

time basis of a batch is used instead of bringing the batch revenue

requirements to the time basis of a cycle because in a rigorous

treatment of this optimization problem the independent variable

used to provide the specified energy per cycle is the enrichment

of a batch.
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3.5 The Optimization Procedures

The optimization procedure was divided into several steps.

Through these steps, the following data have been generated:

(1) revenue requirement for each reactor for steady state
cycles at different enrichments

(2) incremental revenue requirement, or incremental cost, as a
function of cycle energy for each reactor

(3) system incremental cost as a function of system energy

(4) energy per cycle for each reactor as a function of system
energy

(5) reload enrichment for each reactor

Step 1

Using the code package CELL-CORE-MITCOST 1, the cycle energy

and the revenue requirement per steady state batch for different

enrichments were calculated for reactors A and B. The results

are shown on Table (3.1), and plotted in the form of revenue

requirement per cycle on Figures (3.1, 3.2).

Step 2

By differentiating R s with respect to E s numericallyss s

or graphically, the incremental steady state cycle cost is

obtained. The results are given on Figure (3.3) for reactors

A and B.



Table 3.1

Cycle Energy and Revenue Requirement for Different Enrichments

Reactor A Zion type 1065 MWe PWR Three-zone Modified Scatter

Refuelled Steady State Conditions

Enrichment, Energy per Cycle, Revenue Requirement, 10 $

Per Batch

8.9448

10.4375

11.9499

13.4861

15.0320

16.5900

18.1588

Per Cycle

9.9371

11.5954

13.2756

14.9822

16.6997

18.4305

20-1733

Reactor B San Onofre type 430 MWe PWR Four-zone Modified

Scatter Refuelled Steady State Condition

Enrichment, Energy per Cycle, Revenue Requirement, 10 6

(w/o) GWHe Per Batch Per Cycle

1.960 1536.7 3.3914 3.9666

2.444 2273.5 4.2371 4.9557

2.913 2940.2 5.0744 5.9350

3.846 4123.6 6.7718 7.9203

4.762 5152.7 8.4588 9.8934

For both reactors, irradiation starts at 0.0 year

irradiation ends at 1.375 years

refuelling time 0.125 years

thermal efficiency 32.6%

(w/o)

2.4

2.8

3.2

3.6

4.0

4.4

4.8

GWHe

4732.6

6025.9

7251.0

8434.1

9575.3

10687.0

11774.7

88
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Since the Lagrangian condition for minimal cost requires

that the two reactors have the same incremental cost, the

reactors should be operated in the following manner. For

any given level of E (systems demand), the reactors must

be loaded such that their incremental costs are the same.

Figure 3.4 shows the relationship of E with respect to

the incremental cost of reactor A or B. The ordinate repre-

sents the incremental cost for the entire system at that

5level of E . Figure 3.4 can be viewed as the supply curve

of energy for the system. Notice that for E S >l6.7-10 GWHe

reactor A is base-loaded and any load increment goes to

reactor B. Hence the incremental cost for the system is equal

to the incremental cost for reactor B from then onwards.

Step 4

Based on the supply curve of energy for the system, the

customer can decide on the level of E he wants. Once he de-

cides on a E c Figure 3.5 would give the energy output from

each reactor. Figure 3.5 represents the loading of reactor

A or B for a given level of E c under the Lagrangian condition

of equal incremental cost.

Figure 3.6 shows the relationship between capacity fac-

S
tor for each reactor versus Ec. Notice again that reactor A

chas unity capacity factor for E 116.7 -103 GWHe. This is

due to the fact that reactor A has a lower incremental cost

than reactor B, and therefore is base-loaded sooner.

Step 5

Finally, the optimum reload enrichment for each reactor
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can be inferred directly from cycle energy by Figure 3.7.

Specifying the reload enrichments completes the optimization

analysis.

3. 6 Summary and Conclusions

The problem of optimal e.nergy scheduling for steady-

state operation with fixed reload batch fraction and shuf-

fling pattern has been solved in a straight-forward manner

using Lagrangian optimality condition and direct calculation

of incremental costs. Unfortunately, this problem is too

simple to be realistic or of practical interest. Not con-

sidered are time behaviour, stochastic events and other re-

fuelling and operation options. However, the important con-

cept of equal-incremental cost operation is illustrated.

This sample case shows how incremental cost can be generated

from fuel depletion computer codes and applied in the energy

scheduling for the whole system.

The problem of optimal energy scheduling between genera-

ting units will not be considered further in this thesis.

Development of simulation method to make similar optimizations

from beginning to end involving many reactors and fossil

plants in a time varying framework is the subject of two other

thesis projects (Deaton (Dl) and Kearney (K1)). This simple

example serves as a bridge linking the calculation of incre-

mental costs to the problem of overall system simulation and

optimization.
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CHAPTER 4.0

OBJECTIVE FUNCTION FOR NON-STEADY STATE CASES

4.1 Introduction

The second of the problems outlined in Section 2.5 is

concerned with the calculation of the objective function for

a finite time horizon. In principle, the complete optimiza-

tion problem would provide a solution for the indefinite time

horizon provided that pertinent information about the system

is available. However, the future is always uncertain, and

the farther away it is, the greater the uncertainty there is

regarding its characteristics. Hence, after some time in the

future, information about the system is so uncertain that op-

timization based on this information becomes irrelevant.

For practical purposes, optimization is usually performed

for a finite time horizon for which information is available

with some degree of certainty. In this circumstance, one

would like to have an optimization prodedure such that when it

is applied successively to a sequence of finite time periods,

the collection of optimal solutions would be the same as the

optimal solution for the entire duration of the time periods

based on the same input data. In other words, one would like

to optimize for the individual pieces and at the same time

arrive at a global optimal. Any optimization procedures having

such a characteristic possess the property of separability.

The development of an optimization procedure possessing

the property of separability begins with the definition of

the objective function. The objective function is defined as

the total fuel cycle cost in a given time period. However,
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due to the physical nature of multi-batch refuelling, the

physics, and hence the economics of fuel cost for different

batches are not separable from each other. To make the op-

timization procedure possess the property of separability,

a mechanism must be developed to decouple the fuel cycle cost

calculations in one time period-from the other. The proposed

mechanism involves the treatment of fuel inventories at the

end points of the time period.

For the case in which the corporate income tax rate is

taken as zero (e.g., government-owned utilities) but there

are carrying charges, a rigorous and consistent treatment of

the fuel inventories at the end points is developed. For the

case where income taxes apply (e.g., investor-owned utilities)

the treatment is not completely rigorous. This is mainly due

to the fact that income tax laws are difficult to apply to

fuel batches which are in the reactor at the end of a time

period and are subject to undecided future operations.

Hence, two definitions of objective function are used,

one for the case of no income tax and the other for the case

of finite income tax.

4.2 Objective Function Defined For The Case With No Income 9hx

1 .2.1 Formulating the Problem

First consider the optimization problem for the indefi-

nite time horizon (unspecified but not infinite in length).

The output variables are the cycle energies E c for Reactor r

in Cycle c. The objective function for Reactor r is the pre-

sent value of all the fuel cycle expenditures in the future.
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Z N
-N i
TCr = LI1+x)ti

Z-S

(1+x) i

(4.1)

where the summation includes all the fuel cycle expenditures.

Z N expenditures and credits for uranium and plutonium

S expenditures for service, or processing, components
Z which include fabrication, shipping, reprocessing

and conversion.

This formulation separates the variable and fixed compon-

ents of the fuel cycle cost. Uranium and plutonium costs are

directly related to energy production. Service components

costs are necessary to maintain the operation of the reactor,

but they are not related directly to the level of energy pro-

duction.

The objective function for the finite horizon case is de-

fined as the present value of all the fuel cycle expenditures

associated with that finite time period. For the nuclear com-

ponent of the cost, an inventory adjustment term is included.

I I I

Z N VI V I
NC J I + .initial inal

i 1+x) jI x) It (1+x)

TZ 
S

TCS ;)I
r (1+x)'Cj I

(4.2)
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where sums over all the fuel cycle expenditures in
time period I.

V1  is the inventory adjustment term.

t : time for the various fuel cycle expenses

t ,: time when time period I begins

t ,l : time when time period I ends

4.2.2. The Condition of Consistency

The sum of the objective functions for all the time periods

must be equal to the objective function for the indefinite time

horizon.

1

n: number of time periods in the indefinite time horizon.

Substituting Equation (4.1) for TC;, and Equation (4.2) for

TCJ , Equation (4.3) reduces to (44)

S N V I I N S

i + Z + initial final Zi Z1
. t(+x) .L (1+x) i 1+x) I' (1+x) I" t (+x) i .(1+x)ti

since the sum of partial sum is equal to the total sum.

I jI i

From Equation (4.4) the consistency condition results:

V I
Vinitial

r (l+x)tT,

VI
final.

-g~ 1+)i"

4.2.3 The Condition of Equalized Incremental Cost

Equalized incremental cost: Since reactors are energy pro-

ducing devices, and fuel cycle cost is a measure of the cost

associated with energy production, the relationship between

cost and energy output must be preserved in the finite horizon

(4.5)
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case. In other words, the variation of objective function

with respect to energy in the finite time horizon must be

the same as that of the indefinite time horizon. If this

equality is maintained, optimal energy scheduling based on

the finite planning horizon objective function is the same

as that based on the indefinite planning horizon objective

function. Hence the requirement is that the incremental

cost of energy be the same in both cases.

TC Tfor those cycles c (4.6)
Er ~ Er which are in time period I

c c
Since service component costs in period I depend on

what happens in period I, and do not depend on what happens

in the other time periods,

r rrc(4.7)
DE r 3EC 1~+x)tjI 3E c (1+x)ti 3E
c cjI

Hence, ('.6) reduces to

I )___ (4.8)

Er = NErC c

Hence, the problem of developing separable optimization pro-

cedures reduces to the problem of finding Vnitial 
and VI

such that Equation (4.5) and Equation (4.8) are satisfied.

Equation (4.5) can be satisfied quite easily by equating

the present worth of V I and Vfin1initial final

that is V IV1
tinitial = final

(1+x) tI' (1+x) v-1)"

and by taking Vinitial=0 and Vfinal = 0

where n is the last time Deriod

(4 .9a)

(4. 9b , c)
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Equation (4.9a) is equivalent to the requirement that

the value of ending inventory in one time period must be

equal to the value of beginning inventory in the following

time period. To simplify the notation, V will repre-

sent V I-1
initial and Vfinal

VI VI VI-1 (4.10)
initial final

4.3 Three Methods of Evaluating Fuel Inventories

Three different methods of evaluating V have been de-

veloped. Each one of them satisfies the consistency condi-

tion (4.5). By performing some sample calculations, one can

determine whether any of them satisfies the equal incremental

cost condition Equation (4.8). The methods are described

below and the sample calculations are given in the next Sec-

tion 4.4.

4.3.1. Nuclide Value Method

V is equated to the market value of nuclear material,

i.e., value of uranium and plutonium inside the reactor at

the beginning of time period I.

V1 = $value ( UPu) (4.11)

The value of separative work is calculated for each indi-

vidual batch, and it is summed up with the value of uranium

and plutonium.

4.3.2 Unit Production Method

V is equated to the book value of nuclear material in

the fuel batches in the reactor at the beginning of time per-

iod I. Book value is determined by linear depreciation as a

function of energy production.
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VI = Initial value - salvage value Energy generation
total energy generation ain time period I

b

+ salvage value]

the summation over b runs over all the batches of fuel
in the reactor at the beginning of time period I.

Since TO1 involves the beginning inventory V1 as well

as the ending inventory V2 , calculation of CU requires pro-

jecting into time period 2 to obtain total energy generation

and nuclide salvage value for some batches.

Hence, this method is subject to forecast error. More-

over, projecting the salvage value for all the fuel batches

remaining in the reactor at the end of the time period re-

quires many more cycles of depletion calculation. For a

planning horizon of five cycles concerning a reactor refuelled

in a three-zone modified scatter manner, this method may re-

quire 2 cr more cycles of depletion calculations, equivalent

to a 40% increase in computational effort.

4.3.3 Constant Value Method

V /(l+x) tyis equated to a constant. Physically this

implies that the relative changes of the present value of

fuel inventories value from one time period to the other are

ignored.

= constant (4.12)
(1+x) I'
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4.4 Results of Two Sample Cases

Two sample cases are presented below.

The first case consists of a perturbation in energy in

the first cycle of a steady-state operating condition. The

reactor is thel065 MWe PWR described in Chapter 2.

The reactor is considered to have been operating on a

3.16 w/o three-zone modified scatter refuelling steady-state

condition for a long time. At time zero, the reload enrich-

ment for batch 1 is changed so that energy production in that

cycle is increased. For the succeeding cycles, energy pro-

duction is brought back to the former steady-state level by

adjusting the reload enrichments. This operation continues

until the reactor is back to its original steady-state condi-

tion again.

The second case is similar to the first case except that

the perturbation magnitude is doubled. Again, the reload en-

richments are adjusted in the succeeding cycles to bring back

the energy production to its former steady-state level until

the reactor is again in steady-state condition.

Table 4.1 shows the reload enrichments and cycle energies

for the steady-state case and the two perturbed cases. For

the two perturbed cases, the results of the first five

cycles are shown. Note that the reactor has nearly settled

back to its initial condition by the fifth cycle.

From the data from the depletion codes, the economics

calculations can be carried out. Hence the objective function

for the indefinite future TCic can be calculated, using:Equa-

tion (4.1).



106

Table 4.1

Feed Enrichment and Energy per Cycle for Steady State Case

and the Two Perturbed Cases

Steady State Case

Cycle 1 2 3 4 5

Enichment 3.16 3.16 3.16 3.16 3.16

Cycle Energy

GWHt 21935. 21935. 21935. 21935. 21935.

First Perturbed Case ( AE=1029GWHt in Cycle 1 )

Cycle 1 2 3 4 5

Enrichment 3.359 3.054 3.174 3.196 3.133
(w/o)

Cycle Energy 22964. 21935. 21929. 21928. 21933.
GWHt

Second Perturbed Case ( AE=205OGWHt in Cycle 1 )

Cycle 1 2 3 4 5

Enrichment 3.557 2.941 3.186 3.235 3.106
(w/o)

Cycle Energy 23985. 21919. 21906. 21939. 21970.
GWHt

Note: The cycle energies in the two perturbed cases for Cycles
2 through 5 were not converged to exactly the same energies as
occurred in the basic steady state case. The differences in
total energy for the four cycles are:

5
1st Case E c(Perturbed) - E c(Base) = - 15 GWHt (0.'Z%)

2nd Case 2 = - 6 GWHt (0.007%)

This each of the complete convergence introduces an insigni-
ficant error in the calculated incremental costs.
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N
Z

(i+x) 1~

S(1+x) T

For three-zone fueling, the perturbation affects the sal-

vage value of the two fuel batches that come before the fuel

batch loaded into the perturbed cycle, and the initial and

final value of the four fuel batches that come after it. Hence

a total of seven fuel batches are affected by the perturbation.

The other fuel batches in the indefinite time horizon are not

affected by the perturbation.

The number of batches included in TCWc and TO 1 and TO 2

is shown schematically in Figure 4.1. Only the batches that

are affected by the perturbation are included. de in-

cludes all seven batches (-1 to 5 inclusive) for a total of

eight cycles.

Td includes only the first three batches (-1, 0, 1)

for the first three cycles. TOd is credited with the value

of fuel inventories of batch 0 and -1 at the end of the first

cycle. Td2 includes the last six batches for the last six

cycles. T62 is charged with initial value of fuel inventories

of batch 0 and -1 at the beginning of the second cycle.

Part A of Table 4.2 gives the objective function for the

batches whose values are affected by changes in energy in

Cycle 1. The first column gives the result of exact calculation
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Table 4.2

Comparison of Exact Incremental Cost with Incremental Cost

Calculated by Three Approximate Methods. ( No Income Tax)

Exact Nuclide
Value

Unit Constant
Production Value

TU, Tu,
Quantity
Calculated

Batches
Included 7 3 3

(-1,o,1,2,3,4,5) (-1,0,1) (-1,0,1)
3

(-1,0,1)

Revenue Reguirement

10$

Steady
State 62.3515

Additional Energy in
Cycle I
AE =1029GWHt 62.7428

=2050WHt 63.1245

Part B.

25.8651 25.0157

26.2693 25.3782

26.6740 25.7430

Incremental Cost for Cycle 1

Mills/KWH

A E 1029GWHt

2050 GWHt

1.17

1,16

1.20

1.21

1.08

1.09

+ Mi1ls/kwhe=10ATC/10%AE.-

t *1 = thermal efficiency=0.326

Irradiation time =1.375 year
Refuelling time =0.125 year

Method

Part A

35.2680

35.9983

36.7316

2.18

2.19.
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of the objective function for batches -1, 0, 1, 2, 3, 4, and

5. The second, third and fourth. columns give the results

of calculation of the objective function by three different

approximate methods. For these columns, results are given

for only batches -1, 0, 1, since these are the only batches

whose contribution to the objective function are changed by

change of energy in cycle 1, under the assumptions of these

approximate methods.

The first row of Part A gives the objective function

for the stated number of batches for the unperturbed case.

The second row gives the objective function for an increase

in energy production AE in cycle 1 of 1000 GWHt, with un-

changed energy production in all following periods. The

third row gives corresponding information for an energy in-

crease of 2000 GWHt in cycle 1.

Part B gives incremental costs as defined in Equation

(4.13), for the two values of &E . The first column gives

exact incremental costs over the entire five cycles. The

last three columns give approximate incremental costs calcu-

lated by each of the three methods for evaluating the initial

and final inventories for the first cycle. These incremental

costs are calculated from Equation (4.13).

T TUM(E +AE1 ) - TCc( E )
bt=E (4.13a)

AT-- T_(E +AE 1 ) - TC(E 1 )
11 (4.13b)
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From the results of Table 4.2, the Constant Value Method

clearly gives poor agreement with the exact values for the

incremental cost. Accounting for the changes in inventory

is necessary for calculation of the objective function in

periods of finite duration.

Both the Nuclide Value Method and the Unit Production

Method give incremental cost close to the exact value. Hence

both of them satisfies the equalized incremental cost condi-

tion of Equation (4.6). Since both of the methods are con-

sistent they can be accepted as a valid way to evaluate

changes in inventory value.

As mentioned under Section 4.3, the Unit Production

Method requires forecast of performance of future cycles. How-

ever, for these sample cases, the future operation of the

reactor after Cycle 1 has been explicitly specified. Hence

Table 4.2 a, b, show values of the objective function with

no forecast error.

In practical application of this method, when the future

is uncertain, the Unit Production Method may give less accurate

results for incremental costs due to uncertainty in future

discharge burnup and salvage values. Moreover, predicting

these values may increase computational effort to a large

extent. Hence, the Nuclide Value Method, which is consistent,

accurate in calculating incremental cost, and free from fore-

cast error, is recommended for calculating the objective

function for the case of no income tax.
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4.5 Objective Function Defined for the Case with Income Tax

4.5.1 Objective Function for the Indefinite Time Horizon

The objective function for the indefinite time horizon

is defined to be the "revenue requirement", which is given

by Equation (4.14).

b d
wd (14.114)

where

Pwc Zib t present value of fuel cycle expenses
wc (1+x) ib

wd f ib X we
i6 E

discounted depreciation credit

Pb= T21 Eb t discounted electricity gener'atedwe (1+x) jb

b bE =LE total energy generated by batch b

ji3

T = income tax rate

For the derivation of Equation (4.14) refer to Benedict (&)

and Grant (G;). This definition of objective function is

consistent with the cost code MITCOST.

TC -Pwe
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4.5.2 Objective Function for the Finite Time Horizon

Objective function for the finite time horizon can be

derived in a manner analogous to the derivation in Section 4.2.

Again, it is necessary to introduce an inventory value for

those fuel batches that are in the reactor at the end of a

time period. Since depreciation credit is calculated for

each batch individually, an inventory value' must be assigned

on the per batch basis. Defining vb(t) as the residue value

of fuel batch b at time t , the objective function for the

finite time horizon is given by

IC 1 d -- 415)
b

where the summation runs over all the fuel batches that have

ever been in the reactor during that time period.

For those fuel batches that are charged and discharged

from the reactor in thetime period, Pb P d are definedwc wd

earlier.

For those fuel batches that are in the reactor at the be-

ginning of the time period at time t1, but are not in the reac-

tor at the end of the time period

b V b(tT, Z ,
PW =(1+x) I' . (1+x) i(

Pwd (t, + 2we (417)

e E

where 4 sum over expenses in this time period only
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P : Present worth of electricity generated by this fuelwe batch in this time period

Eb Electricity generated by this fuel batch in this
time period

For those fuel batches that are in the reactor at the

end of the time period at time ti,, but are not in the reactor

at the beginning of the time period

P b Z i , V b ( l)4 1
WC is (l+x)tif - (1+x)tIl (4.18)

wd =tZi,, - Vb~t,).~e(.9
" b (4.19)

where
wher sums over expenses in this time period only

b present worth of electricity generated by this fuelP we batch in this time period

Eb electricity generated by this fuel batch in this
time period

If the reactor operator purchases the fuel batches at

value Vb(t,)atthe beginning of the time period, and sells

them at Vb(t,11 ) at the end of thetime period, the objective

function defined in Equation (4.15) is the revenue requirement

for this time period.

4.5.3 Conditions of Consistency and Equalized Incremental Cost

Again, the property of separability is required. Hence

the objective function defined in Equation (4.15) should satis-

fy the consistency and equalized incremental cost conditions.
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n

L c = (4.3)

n: number of time Deriods in the indefinite time horizon

~ ...(Tr . (14.6)
9E c 3E

for those cycles c that are in time period I

Unfortunately, due to the effect of tax credits, it is

no longer possible to satisfy the consistency condition

exactly by imposing the equality of Equation (4.9).

Vb ( b f S - (14.9)
(1+x) I" (1+x) (+i

Inconsistency comes from the fact that the depreciation

base for the finite time horizon case is different from that

of the indefinite horizon case.

Hence, the problem of separability reduces once again to

the problem of finding values of Vb(t) that come closest to

satisfying the consistency and equalized incremental cost

conditions.

Two different methods of evaluating Vb(t).have been exa-

mined. They are the Inventory Value Method and the Unit Pro-

duction Method. The Constant Value Method is not applicable

in this case because neglecting the relative changes of the

present value of fuel inventories is not consistent with tax

regulations.

4.6 Two Methods of Evaluating Fuel Inventories Vb

4.6.1 Inventory Value Method

Vb(t)is equated to the market value of nuclear material
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of fuel batch b at time t , plus the book value of fabrica-

tion and appreciated value of shipping, reprocessing, and

conversion. The value of the service cost is determined by

linear depreciation based on the Unit Production Method.

Vb(t1 ,) = $value (U,Pu) + $value FSRC

where $value FSRC = book value of fabrication, shipping, re-
processing and conversion

(initial value-final value) fenergy
=initial value . generated

total energy generation p to

initial value = ZF: fabrication cost

final value =-(ZS+ZR+ZC) : post-irradiation costs

Thus, $ value FSRC varies linearly with respect to energy

production from an initial value of the fabrication cost to a

final value equal to the sum of post-irradiation costs. Since

V b(t 1 ,) depends on the total amount of energy generated by

fuel in the reactor, projected into future operations, this

method is subject to forecast uncertainty. A forecasting

rule is given below in Equation (4.26) to project total energy

generation. No depletion calculations are involved.

Eb (N/n)- Eb (4.26)

Eb total energy generation for batch b

Ey : total energy generation up to time tI,

n :number of cycles the fuel batch has been in the
reactor up to time

N :total number of cycles the fuel batch is expected
to go through before discharge

Since Eb and n are already known at time t1, , the only
I

parameter to predict is N. Predicting N is much easier than
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predicting Eb directly. This rule of thumb is useful when

very little or no information is available for predicting

the future. Even though this rule is crude, incremental cost

calculations based on the Inventory Value Method using this

rule of thumb give fairly accurate results (See Table 4.4).

If enough information is available to predict Eb reliably,

Eb should be used instead of this approximate value.

4.6.2 Unit Production Method

Vb(t) is equated to the book value of nuclear material

and service cost (FSRC) for batch b in time t . Book value

is determined by linear depreciation using the Unit Production

Method.

Vb(:t1 ,) = initial value of nuclides and FSRC

initial value of nuclides and FSRC otal
nergy

- salvage value of nuclides and FSRC eneratio

Xtenergy generation up to tA
where Initial value of nuclides, FSRC = 7U +ZF

Salvage value of nuclides, FSRC = ZU,+ZPu'ZS~ZR~ZC

In this method Vb(t ,) depends on both the total amount

of energy to be generated by the fuel in the reactor, projected

into future operations, and on the composition of the fuel

when discharged after these future operations. This requires

running depletion calculations. Hence, the depletion calcula-

tions must be carried out until all the fuel batches in time

period I have been discharged from the reactor. This would

provide enough data for calculating salvage value as well as

total energy. In order to complete the calculation for time
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period I, it is necessary to predict system behaviour for

time period 2. This is much more difficult than predicting

E b and requires more computation effort.

4.7 Results of Two Sample Cases

The sample cases of Section 4.4 are used again to test

the degree of consistency and equality of incremental cost

for the two methods.

Similar to the treatment in Section 4.4, the objective

function TC. includes all seven batches (-1, 0, 1, 2, 3, 4,

and 5) affected by the perturbation. TO1 includes the first

three batches, credited with the inventory value of batch 0

and 1 at the end of cycle 1. TC 2  includes the last six

batches, charged with the inventory value of batch 0 and 1

at the beginning of cycle 2.

If the methods of evaluating inventory worth possess the

property of consistency, then T CeTc1+ TC . Hence,

any difference between TC cc and 7C1+T2 is a measure of

inconsistency for the two methods.

Part A of Table 4.3 gives the objective function for the

batches whose values are affected by changes in energy in

Cycle 1. The first column gives the result of exact calcula-

tion of the objective function for the indefinite time hori-

zon Tac . The second column gives the result of using the

Inventory Value Method for calculating the objective function

for time period 1, TO1 . The third column gives values of

TUC 2 . The fourth column gives the sum of TO 1  and TC 2

it should be compared with column 1. Part B is a similar table

for the Thit Production Method.
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Table 4.3

Test of Inconsistency Between the Exact Value and the

Approximate Methods

Exact

Revenue Requiremert

Inventory Value Method

Quantity
Calculated

Steady State
case

Additional Energy in
Cycle 1
AE,=1029GWHt

=2o5OGWHt

31.2713 44.9588

31.7532 44.9339

Revenue Requirement

Unit Production Method

Quantity
Calculated

Steady State
case

106$

75.8458 30.1342 45.7538 75.8879

Additional Energy in
Cycle 1
AE10293WHt

=2050GWHt

76,3106 30.6041 45.7333

76.7661 31.0729 45.7073

76.3375

76.7802

Part A,

Method

75.8458 30.7900 44.9734

L6 t10w

76,3106

76.7661

75-7634

76.2301

76.6872

Method Exact
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From the results in Table 4.3, the magnitude of incon-

sistency can be seen to be quite small for both methods in

all three cases, but the Unit Production Method in compari-

son has the smaller measure of inconsistency.

Table 4.4 shows the incremental cost for the two methods.

Incremental costs calculated from the Unit Production Method

give better agreement in general.

4.8 Conclusions

The Unit Production Method provides the most consistent

and accurate evaluation of V b(t). However, to use this method

in a practical cas.e, the information required as input is dif-

ficult to obtain. Moreover, more depletion calculations are

required.

On the other hand, the Inventory Value Method requires

the minimal amount of projections and computations, at some

loss of consistency and accuracy. For this kind of scoping

optimization which requires evaluation of many different al-

ternatives, computational speed is the major concern. Using

a fast optimization algorithm, a large number of cases can

be evaluated in order to eliminate those that are far from

optimal and locate those that may be optimal. Then a more

accurate algorithm can be used to evaluate those limited

number of near optimal cases.

Hence, the Inventory Value Method for evaluating V b(t)

is recommended for scoping calculation of the objective func-

tion for the finite horizon case.
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Table 4.4

Comparison of Exact Incremental Cost with Incremental Cost

Calculated by Two Approximate Methods

Incremental Cost for Cycle 1

Mills/KWHe

Method Exact Approximate

Inventory
Value

Unit
Production

A E1=1029GWHt

=205OGWHt

1,39

1.38

1 .43

1,44

1040

1.40
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CHAPTER 5 .0

CALCULATION OF RELOAD ENRICHMENT AND
INCREMENTAL COST OF ENERGY FOR GIVEN

SCHEDULE OF ENERGY PRODUCTION WITH FIXED RELOAD
BATCH FRACTION AND SHUFFLING PATTERN

5.1 Defining the Problem

The problem here is to calculate the reload enrichments

and incremental cost of energy for successive cycles of a

particular reactor given the energy requirements for each

cycle and the refuelling schedule. The initial state of

the reactor is specified. Reload batch fraction and

shuffling pattern for each cycle are fixed. Under these

restrictive conditions, there is only one unique solution

for this problem. This can be understood quite easily by

analyzing the relationships between the variables.

If the initial state of the reactor is specified and

if the reload batch fraction and shuffling pattern for the

first cycle are fixed, the only refuelling option is the

reload enrichment. If the energy for the first cycle is

given, the reload enrichment for the first cycle is fixed.

This in turn specifies the end condition of the first cycle.

The above argument can be repeated for the second, third

and subsequent cycles. Hence, if the energy requirements

for successive cycles are specified there is only one

sequence of reload enrichments for this case.

The economics of the fuel cycle is a unique function

of the physical state of the fuel cycle. Since the physical

state of the fuel cycle is uniquely specified, the economics

of the system is also uniquely defined. Hence, incremental



123

costs for the various cycles can be explicitly evaluated.

5.2 One-Zone Batch refuelling case

For a batch refuelled one-zone reactor, the calculation

of reload enrichment and incremental cost of energy is

straight forward. Energy output depends entirely on the

reload enrichment for that cycle. There is no inter-coupling

between cycles.

Figure 5.1 shows the relationship between cycle energy

and reload enrichment for this one-zone case. For a sequence

of cycle energies, the sequence of reload enrichments for

successive cycles can be read off directly.

Since there is no inter-coupling between cycles, the

fuel costs for different cycles are also decoupled.

The objective function is given by

T = wc td (5.1)

= b Rb

L(1+x) tb

where P = revenue requirement for batch b

tb = irradiation starts for cycle 
b

The specific refuelling schedule is given in Table 5.1

Table 5.1

Refuelling Schedule (in years)

Cycle Irradiation Starts Ends
1 0.0 1.463
2 1.588 3.151
3 3.176 4.639
4 4.764 6.227
5 6.352 7.815
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Figure 5.2 shows the relationship between Rb and cycle

energy. For a given sequence of cycle energies, the sequence

of R bs can be read off directly.

The incremental cost of energy for Cycle c is equal to

the slope of the curve of Rb vs E curve. Notice that for

the same cycle energy, the incremental cost are different

for different cycles due to the present worth factor. Figure

5.3 shows the relationship between incremental cost and

energy per cycle.

Hence for the batch refuelling case, the reload

enrichment and incremental cost of energy for each cycle

can be calculated directly once the cycle energy and the

refuelling schedule are specified.

5.3 Multi-Zone Refuelling

In the more general case, only a part of the reactor

core is replaced during each refuelling. Energy generated

in any cycle originates from the fissioning of the fresh

reload fuel and the partially burnt fuel remaining in the

reactor. As a result, energy generated in one cycle depends

not only on the reload fuel for that cycle, but also in the

reload fuel for the preceding cycles. In this way, all the

fuel cycles are coupled together. Hence, the calculation of

reload enrichments and incremental cost is no longer straight-

forward.

Three methods are developed for the calculation. The

first method is the Rigorous Method based on the definition

of the incremental cost. The second method, called
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Linearization Method is based on approximate linear relation-

ship between objective function and reload enrichments. The

third method, called the Inventory Value is based on an

analysis of the variation of the revenue requirement

calculated for the perturbed cycle alone.

5.3.1 The Rigorous Method

The incremental cost of energy X is defined as the

partial derivative of the revenue requirement with respect

to cycle energy

c aE E ,c~ c

(5.2)

which can be replaced by the forward difference

TU(EO,El,..E+AE, E+1..) - n(E?,EO.,..E0 , E*+1XC -
AE2 

C(5 3__ (5. 3)
If TC is known for two values of Ec (eg .in Equation

(5.3) for Ec and E0 + AE) while all other E , are constant,c c c
A can be evaluated quite easily. However, to obtain thec

correct enrichments which permit Ec to change while all other

energies Ec , remain unchanged .is, time consuming and compu-

tationally expensive. The correct enrichment for each

cycle must be found by trial. To determine all the Ac in

an m-cycle problem requires about 3m 2(m+l) trials, using

about three trials per cycle.

5.3.2 Linearization Method

Due to the complicated inter-coupling effects between

various batches and cycles, energy production in any one
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cycle depends on the reload enrichments of all the preceding

cycles.

Ec = Ec (i, 2 ---- O) (5.4)

where iP is the initial state of the reactor prior

to Cycle 1.

For small changes of enrichments from a given base

case, the energy production per cycle can be approximated

by the linear relation

Ec -Ec_ -(c'~c*,) (5.5)
where CO : reload enrichment for cycle c' for the base

case

E4 : energy production for cycle c for the base
case.

Equation (5.5) can be put in matrix form

= 4 AC + io (5.6)

where E = col {E 1 *... EC1

= lower diagonal matrix

E ( /Ac, for c' c

for c'> c
Ac = col{ACt........Ae}

= c21{ Ef..... E C
Solving for A.C, Equation (5.6) becomes

+1 -1 + .+Ec = NA (E - E -) (5.7)

Adding C0 on both sides

+ +0 + 1 + +
C = 0 + AC = A~ (E - E ) + 0 (5.8)

where c= col'{ ci... c

+0
E col {E..g
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If the elements in the matrix A are known, the reload

enrichments can be calculated for any specified set of cycle

energy.

A is lower diagonal. Equation (5.8) can be solved by

forward elimination.

The success of this method depends on the accuracy

-4 -4.of the elements of matrix A. If E is close to E or one

of the E's from which the coefficients are calculated, the

method can be very accurate.

The objective function TC for a finite time period can

be treated in a similiar manner. The objective function

depends on the physical state of the system, and consequently

it has the same set of independent variables.

TC = TC (E1-.. E 10) (5.9)

However, by the chain rule of differentiation,

C C,

3TC _ ET c_ L 3Ec' (5.10)
c c

C!C

Equation (5.10) can be inverted to solve for c''

Rewriting Equation (5.10) in matrix notation

A\Tt (5.11)

where

T col. 3TC 3TC ........ 3 I
e DC1 3C2 acC

S = col. a 3_.... T-1
3E1 3E 2 aEC
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Inverting Equation (5.11) to solve for X,

=A\T)- fTc (5.12)

If matrix A\ and the vector are known,X can be

calculated directly.

The matrix A and the vector are determined by a

series of perturbation calculations. Using the steady state

case as the base line, the perturbed case consists of a

positive change in enrichment in the first cycle alone. Reload

enrichments for the succeeding cycles are kept to the original

steady state value. Cycle energy for the first few cycles

would be increased. This effect would slowly damp out. By

analysing the dampening effect in cycle energy, the elements

in matrix A can be determined.

For example

a -3E E1 (e+Acl) - E1 (d) (5.13)

a - = 2As (5.l13)
11 Ac 1e

a _ 2 E2(e?+ het,,[ )-E e ,51)
a21 3 1  (5.14)

aE5 E5(e*+Acj,eO....)-E5(ei'ei----
a 51 Ac 5 (5.15)

Similiarly, 3T can be calculated.

DTC _TC(ei+Ae1e ... -TC(ei,E2*. .. ) (5.16)
aei AE,
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Table 5.3 and Table 5.6 show the application of this

method in sample problem 1, 2 and 3.

5.3.3 Inventory Value Method

The Inventory Value Method consists of two parts. Part 1

deals with the calculation of reload enrichments by trial and

error. Part 2 calculates incremental cost of energy by

making use of the data generated in Part 1.

Part 1 Given an initial state of the reactor, the reload

enrichments for succeeding cycles for a specified sequence

of cycle energies can be determined by trial and error. This

method is primitive and costly, but it can be made as accurate

as one likes.

For a given initial state, a given requirement of cycle

energy, a guess is made for the reload enrichment for the

first cycle. A depletion run is made using the guessed value

for the reload enrichment. If the resulting cycle energy is

too high (low), the reload enrichment is decreased (increased).

The depletion run for this cycle is repeated. The cycle energy

for the adjusted reload enrichment is obtained. A third trial

on the reload enridhment can be made using interpolation, or

extrapolation based on previous results.

(1C) _ (i-1)
(11 (i) (C -)

i)= Wi) (i-l) .(E(i) - EO) + E(i) (5.17)
E -E

Where E0  = target value
E~i) = cycle energy for the i-th trial
E(i) = reload enrichment for the i-th trial
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This method converges very rapidly. Usually three

trials of the enrichment are required for an accuracy of

+0.1%. With experience, the number of trials can be reduced

to two.

After the reload enrichment for the first cycle has

converged, the whole procedure can be repeated for the second

cycle.

For an m - cycle problem, at most 3m depletion runs are

required to determine the reload enrichments.

Part 2 Incremental costs can be calculated using data

generated in the trial and error procedures.

In Chapter 4, it has been shown that the Inventory Value

Method correctly evaluates the end effect and gives fairly

accurate values of incremental cost. If the Inventory Value

Method is applied at the end of the cycle for which incremental

cost calculation is desired, then incremental cost of nuclear

energy for that cycle can be obtained by analyzing the change

in the revenue requirement up to that cycle as energy production

changes in that cycle.

Consider the first cycle in the planning horizon in which

the initial state is well specified. After using the trial and

error procedures to calculate the correct reload enrichment

for the target energy, there would be at least three depletion

runs available for that cycle with different enrichments and

cycle energies.

From the output of the depletion runs, the revenue

requirement up to the end of Cycle 1 can be calculated for
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each enrichment or cycle energy. Incremental cost of energy

for the first cycle ATC can be approximated by
AES

AYU TT,(EI) - TJ (El)

1 AE (E' - E")
l1

Where El and El correspond to different trial energies for

the first cycle.

The same method can be applied for Cycle 2, 3... etc.

Hence, the incremental cost of energy for all the cycles can

be approximated.

From Equation (5.18) it may be noted that only two data

points are required for each calculation of incremental cost.

If more than two depletion runs are available for each cycle,

higher order coefficients can be calculated.

Figure (5.4) shows the relationships between YU, T1

(revenue requirements up to cycle 1) batches and cycle for the

example in which the incremental cost of energy for Cycle 1

is required.

5.4 Results For Three Sample cases

Three sample cases are considered in this section. The

first two sample cases deal with perturbation in a steady-

state operating condition. The third sample case deals with

non-steady state operating condition. The third case

supposedly is more realistic.

5.4.1 Sample Case 1 & 2

Sample Cases 1 & 2 are the same cases considered in

Section 4.4. The initial state of the 1065 MWe Zion type
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reactor is given by the steady-state operating condition of

three-zone, 3.16 w/o refuelling, with energy generation of

21935 GWHt per cycle. The energy production in Cycle 1

of the planning horizon is increased to 22964 GWHt per cycle

for case 1, and 23985 GWHt per cycle for case 2 by increasing

the reload enrichment. The energy productions in the

remaining cycles of the planning horizon are kept constant

at the 21935 GW1t level by adjusting the reload enrichments.

Table 5.2 shows the reload enrichments, cycle energies

and revenue requirementsfor the base line case and the two

perturbed cases. Incremental cost of energy calculated by

the three methods are presented in the last three columns.

The Inventory Value Method gives better results than the

Linearization Method when compared to the exact values given

by the Rigorous Method.

Table 5.3 shows the calculations required by the

Linearization Method. From a set of five enrichment

perturbation cases, the coefficients and - were
c c

calculated. Solving the set of linear equations, the

incremental cost of energy - were determined, and areAE
c

given in the last row of the table.

Finally Table 5.4 shows values of reload enrichment

calculated by trial and error and by the Linearization Method.

They agree within 0.3%.

5.4.2 Sample Case 3

This is a case with non-steady state initial condition and

varying cycle length and cycle energy. Refuelling intervals



Table 5.2

Incremental Cost of Energy for Sample Casese 1 and 2 Calculated By Three Different

Methods

Enrichment and Cycle Energy

E(w/o)
E(GWHt)

Revenue
Requirement

Incremental Cost
Method of Calculation:
Rigor- Inventory Linear-
ous Value ization

Cycle 1

Base e
Case E

Case 1 e
E

Case 2 G
E

3. 162
21935

2

3.162
21935

3 4 5

3.162
21935

3.359 3.054 3.174
22964 21935 21929

3.557 2.941 3.186
23985 21919 21906

3.162
21935

3.162
21935

3.196 3.133
21928 21933

3.235 3.106
21937 21970

106r- Mills/kWHe
69.983 -30.790

70.461 31.271 1,42

70.929 31.753 1.40'

1.43

1.44

1.37

1.37

Refuelling Time Schedule For These Two Cases

Irradiation starts

Years

0.0

1.5
3.0
4.5
6.0

Irradiation ends

1.375
2.875
4.375

5.875
7.375

Cycle

1

2

3
4

5

H
L'J



Table 5.3

Calculation of Incremental Cost Using the Method of Linearization for Sample Case land 2

RevenueEnrichment and Cycle Energy_

6(w/o)
E(GWHt)

Incremental
Requirement Cost

__69 o6(bI) Mills/KWHe
TMills/KWHtT

e 3,162
E 21935 69.9837

Perturbation

Cycle 1 E 3.557

E 23985

A E/M, 5181.

Cycle 2 9 3.162

E 21935
A E/M --

Cycle 3 A 3.162

E 21935
AE/AE3  _

Cycle 4 f- 3.162

E 21935

A E/4% _-

Cycle 5 E 3.162

E 21935

3.162 3.162 3.162 3.162

23126 22424 21791 21929

3010. 1236. -364.
71.5094

-15.

3.557 3.162 3.162 3.162

23985 23126 22424 21791

5181. 3010. 1236. -364.

3.162 3.557 3.162 3.162

21935 23985 23126 22424

5181. 3010. 1236.

3.162 3.162 3.557 3.162

21935 21935 23985 23126

_ - 5181. 3010.

3.162 3.162 3.162 3.557
21935 21935 21935 23985

5181.

71. 3511

71.2338

70.9535

70.5965

3.8526 1.3646
(0'4448)

3.4531 1.2408
(0.4045)

3.1569 1.1176
(0.3643)

2.4490 0.9178
(0.2992)

1.5473 0.9163
(0.2987)

-J
LAJ

Base
Case

3.162
21935

3.162
21935

3.162
21935

3.162
21935



Table 5.4

Reload Enrichment Calculated By Trial Method and By Linearization Method

Sample Case 1

Cycle

Energy/Cycle

1

GWHt 22964.

2

21935. 21929.

Enrichment

Trial Method E(w/o) 3.359

Linearization e(w/o) 3.360
Method

Sample Case 2

Cycle

Energy/cycle

1

GWHt 23985.

2

21919. 21906.

4 5

21937. 21970.

Enrichment

Trial Method e(w/o)

Linearization f(w/o)
Method

4

21928.

5

21933.

3.054

3.046

3.174

3.181

3.196

3.191

3.133

3*132

3.557

3.55?

2.941

2.928

3.186

3.197

3.235

3.225

3.106

3.108

H
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alternate between twelve and eighteen months. Cycle energies

follow a similiar pattern to the refuelling intervals. The incre-

mental cost of energy for Cycle 1 is obtained by decreasing energy

production in that cycle by 1000 GWH+ while keeping energy produc-

tion in other cycles the same as the base case. Table 5.5 gives

values of reload enrichments, cycle energies, revenue require-

ments and incremental costs. The accuracy of the Inventory Value

Method is comparable to the previous results. The apparent accuracy

of the Linearization Method is just coincidental.

Table 5.6 shows the calculations required by the Linearization

Method. The perturbation cases are the same as given in Table 5.3,

except that refuelling times are different.

Finally Table 5.7 shows the values of reload enrichment calcu-

lated by the trial and error method and the Linearization Method.

The same order of accuracy is obtained in this case as in the

previous two cases.

5.5 Conclusions

The Linearization Method is least accurate among the three

methods. However, once the coefficients are calculated, incre-

mental costs and reload enrichments for any cycles can be obtained

very easily. The Inventory Value Method is more accurate in terms

of incremental costs. However, the trial method of calculating

reload enrichments is awkward. Either the Linearization Method

or the Inventory Value Method can be used to estimate incremental

cost to be used in the beginning.



Table 5.5

Incremental Cost of Energy for Sample Case- 3 Calculated by Three Different Methods

Enrichment and Cycle Energy Revenue
Requirement

e (w/o)
E(GWHt)

Incremental Cost
Method of Calculation:

Rigor- Inventory Linear-
ous Value ization

Cycle

Base
Case

E

Changed r.
Case

E

1 2

3.557 2.864

24105. 21532.

3.359 2.975

23085. 21535.

5 TC TC-
10$-- Mills/KWHer

3.557 2.864 3.260

23621. 20999. 22172.

3.545 2.833 3.286

23605. 20995. 22164.

70.837 31.580

70.383 31.107 1.37

Error 4%

Refuelling Time Schedule For This Case

Irradiation starts

YeArs-

0.0

1.5
2.5

4.0

5.0

Irradiation ends

1.375
2.375
3.875
4.875
6.375

1.43 1.37

0.05%

Cycle

1

2

3
4
5

1H



Table 5.6

Calculation of Incremental Cost Using the Method

Enrichment and Cycle Energy

6 (w/o)
E(GWHt)

of Linearization for Sample Case 3

Revenue
Requirement

ATC/Ae Incremental
Cost

Base
Case

E 3.162
E 21935.

Perturbation

Cycle I r- 3.557
E 23985.

AE/&e 5181.

Cycle 2 E 3.162
E 21935.

AE/E. -

Cycle 3 6 3.162
E 21935.

AE/Ae3 -

Cycle 4 6 3.162
E 21935.

A E/helt -

Cycle 5 6 3.162
E 21935.

69.59363.162
21935.

3.162
23126.
3010.

3.557
23985.
5181.

3.162
21935.

3.162
21935.

3.162
21935.

3.162
21935.

3.162
22424.
1236.

3.162
23126.
3010.

3.557
23985.
5181.

3.162
21935.

3.162
21935.

3.162
21935.

3.162
21791.
-363.

3.162
22424.
1236.

3.162
23126.
3010.

3.557
23985.
5181.

3.162
21935.

3.162
21935.

3.162
21929.
-15.

3.162
21791.
-363.

3.162
22424.
1236.

3.162
23126.
3010.

3.557
23985.
5181.

71.0973

70.9090

70.8707

70.5645

70.2515

3.8007

3.3248

3.2280

2.4542

1. 6631

1. 3687
(0.4462)

1 1509
(0.3752)

1.1647
(0.3797)

0.8810
(0.2872)

0.9847
(0.3210)

I-j

--1 $ 0 4 mills/KWHe-10 - %ONO) Mills/KWHt



Table 5.7

Reload Enrichment Calculated By the Trial Method and by the Linearization Method

Sample Case 3

Cycle

Energy/cycle (GWH t)

Enrichment

Trial Method e(w/o)

LinearizationrE(w/o)
Method

1

23085.

3.359

3.360

2 4

21532. 23605.

2.975

2-979

3.545

3.534

20995.

2.833

2.836

5

22164.

3.286

3.287

H-
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CHAPTER 6.0

CALCULATION OF OPTIMAL RELOAD
ENRICHMENT AND RELOAD BATCH FRACTION

FOR REACTORS OPERATING IN STEADY
STATE CONDITION AND MODIFIED SCATTER REFUELLING

6.1 Introduction

The problem of nuclear in-core optimization can be

formulated as follows: given a refuelling schedule and a

fixed energy demand, find the optimal combination of reload

enrichment and reload batch fraction such that the fuel

cycle cost is minimized. In this chapter, the special case

of steady-state operation is considered in which the size

of the irradiation interval and the energy demand are the

same cycle after cycle. Refuelling is done in a modified-

scatter manner. Fresh fuel elements are always put on the

outside annulus and once-irradiated fuel elements are scat-

tered throughout the inner core. Under these restrictive

conditions, the state of the reactor is uniquely defined,

as the reload enrichment and reload batch fraction are

specified. For a given combination of reload enrichment

and batch fraction, there is a unique fuel cost and a

unique cycle energy.

6.2 Mathematical Formulation of the Problem and Optimality
Conditions

The problem of nuclear in-core optimization in the

steady-state case can be stated mathematically as



145

Minimize TO (ef) (6.1)

subject to constraints E(Ef) = E (6.2)
B(c,f) < B* (6.3)

Where TO revenue requirement for a single cycle
E :reload enrichment
f batch fraction
Es :energy demanded by the system on this

reactor
B* burnup limitations.

The revenue requirement for a single cycle is chosen to be

the objective function because in steady state conditions,

the revenue requirement for a single cycle is equal to that

of the succeeding cycles. Equation (6.2) is the constraint

that the energy demand must be satisfied. Equation (6.3)

is the limitation on discharge burnup.

Notice that for reactivity limited burnup, specifying

the cycle energy and reload batch fraction completely

determines the reload enrichment. hence cycle energy and

reload batch fraction can be taken as the independent

variables, and reload enrichment as the dependent variable.

Equations (6.1) (6.2) and (6.3) can be rewritten as

Minimize TO (E s ,f) (6.4)

Subject to constraints B(Es,f) <BO (6.5)

The non-linear Kuhn-Tucker optimality conditions for

Equations (6.1) and (6.3) are

BO - B(E sf*) > 0 (6.6)

f* 0 0 (6.7)

-. B(Es,f*)4  (Esf*) (6.8)

7 0 (6.9)

w(B0 -B(Es,f*)) =0 (6.10)

376 .f*+70B f* =0 (6.11)
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Equations (6.6) and (6.7) state that at (Es, ) the burnup

constraint is satisfied. Equations (6.8) and (6.9) state

that at (Es, * ) the objective function cannot be further

minimized. Equations (6.10) and (6.11) state that either

(Bo - B(Es, f ) )is zero or is zero. Physically thatY af

means the optimal solution(E s, f )either lies on the boundary

of the constraints, or it is at a local minimum. Combining

Equation (6.8) and Equation (6.1) reduces to

(Es, f 3 B(Esf (6.12)
a f - - fg( .2

For steady-state refuelling, the average discharge

burnup B(Es, f) can be expressed in analytic form, in terms

of the cycle energy Es and reload batch fraction f

B(Es, f) . W * f = Es (6.13)

or B(Es, f ~ (6.14)

where W is the mass of uranium for the entire core before

irradiation.

Substituting Equation (6.14) into Equation (6.10) results in

=- 0 (6.15)

If the maximum allowable burnup is high eg. B0 > 60

MWD/kg, Equation (6.6) would never be zero in the practical

range Es.

Hence, according to Equation (6.10) n would be zero.

In this case, the condition at optimum would be

3TC (Esf*) 0
W~ ~ (6.16)
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However, if the maximum allowable burnup is low, eg.

BO < 30 MWD/kg, w is not equal to zero, and hence

BO - E /(W.f*) = 0 (6.17)

f*= Es/(W-BO) (6.18)

At these lower maximum allowable burnups, the optimal batch

fraction can be expressed as a linear function of (ES/B*).

6.3 Graphic Solution for Optimal Batch Fraction

A direct way of solving this problem is to calculate TC

for all possible choices of Es and f. Since TC is a smooth

varying function of these variables, calculating TC on a

coarse mesh of Es and f would give an adequate representation

of the function. Results shown on Table 6.1 are based on the

Zion type 1065 MWe Pressurized water reactor. Figure 6.1

shows TC versus Es for various values of f.

In Fig. 6.2, revenue requirement has been replotted against

batch fraction at constant cycle energy. In addition, lines of

constant average burnup B* are plotted. Only the region to the

right of a line of constant burnup is compatible with the

burnup constraint (6.3).

At the higher cycle energies of 10,650, 9,000 and 7,500

Gwhe, with a burnup constraint of 30 MWD/kg the optimal batch

fraction occurs at the intersection of the constant burnup

line and the constant energy line. At the lowest cycle energy

of 5,000 Gwhe, the optimal batch fraction occurs at the

lowest point on the constant energy line, at which condition

(6.16) is met.
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Table 6.1

Table of Revenue Requirement Per CycleEnergy Per Cycle

and Average Discharge Burnup versus Batch Fraction and

Reload Enrichment

Batch 1/1
Fraction ___

1/2 1/3 1/4 1/6

Enrichment

TC 17.837
2.0 E 6278.

B 8.879

TC 21.224
2.4 E 9259.

B 13.097

TC
2.8 E

B

24.712
12127.
17.155

T 28.272
3.2 E 14906.

B 21.085
TCd

3.6 E
B

TfC
4.0 E

B

4.4 E
B

4.8 E
B

5.3 E
B

7.0 E
B

TU (10 6 $)
E (GWHe)
B (MWD/Kg)

10.798
4287.
12.129

12.879
6092.
17. 235
15.015
7801.
22.068

17.192
9441.
26.708

19.399
11032.
31.209

21.629
12577.
35.582
23.880
1089.
39.861

10.057
5311.
22. 539

11.595
6026.
25.571

13.278
7251.
30.771

14.982
8434.
35.791
16.700
9575.
40.634

18.430
10687.
45.352

20.174
11775.
49.968

9.799
4938.
27.938
11.236
5959.
33.718
12.668
6899.
39.035
14.122
7827.
44.285

15.583
8720.
49.339

17.052
9593.
54.277
18.901
10660.
60. 316

9.065
4348.
36.907
10.232
5053.
42.889

11.404
5730.
48.635

12.585
6385.
54.195
13.769
7019.
59.564

N.A.

20.339
10253.
87.021
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Figure 6.2 shows the variation of revenue requirement

with respect to batch fraction for various cycle energies.

The curves are rather flat near the minimum. Hence, in the

vicinity of the minimum, economics plays a less important

role than engineering and physical considerations.

Figure 6.3 shows the variation of revenue requirement

with respect to reload enrichment for various cycle energies

and batch fractions. Here the two independent variables

E and f and the two dependent variables are shown on the same

graph. The values of E* and f* can be read off directly

for any minimal points.

6.4 Interpretation of the Lagrangian Multiplier 7t

When the maximum allowable burnup is high,

BO > B(EsIf*)

according to Equation (6.10), n is zero. In this case n is

a passive parameter which has no physical meaning. When

the maximum allowable burnup is low,

B* = B(E sf*)

n would not be zero in general. In this case the optimal

solution is on the boundary of the burnup constraint. For

such cases the objective function can be further minimized

by raising the burnup limitation. However, there are certain

penalties that can be expressed in monetary terms resulting

from raising the burnup limitation. Let the penalty be p

dollars per unit increment of burnup limitation.
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FIGURE 6.3

REVENUE REQUIREMENT VS RELOAD

ENRICHMENT FOR VARIOUS LEVELS OF ENERGY
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Decreasing batch fraction by 3f would result in a saving

0 DTC(Esf*). af dollars

af 3B(Es f)If this saving is more than the penalty p- aE * af

there would be an incentive for decreasing the batch fraction

further. The penalty p* for which one is indifferent to

decrease or not to decrease Df is

3DTU(Es,f*) . aB(Esf*) (6.19)
af a

Since > 0 according to Equation (6.8) and < 0,
*

p would be negative, meaning that it is a penalty. Comparing

Equation (6.19) with Equation (6.12) reveals that

i = -p (6.19)

Therefore, one can interpret n as the maximum price one

would be willing to pay to increase the maximum allowable

burnup.

6.5 Calculation of Incremental Cost of Energy X

Since the objective function TC and the constraints

BO > B are functions of two variables, cycle energy Es and

batch fraction f*, defining incremental cost deserves

special attention.

Let f* be the optimal batch fraction for the problem

minimize TJ(Esf) with respect to f

subject to constraints BO>B(ESf)

Let ft be the optimal batch fraction for the problem

minimize TU(Es + E,ft) with respect to f

subject to constraints BO>B(Es + AEf)
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Incremental cost of energy is defined formally as X where

X = limit T(Es + AE,ft) - TU(Es
AE

AE+O (6.21)

This equation can be simplified for the following two

special cases.

Case (a): The maximum allowable burnup B* is very high,

such that BO > B(ESf*)

B4 > B(Es + AE, f )
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In this case r = 0 according to Equation (6.10). Therefore

according to Equation (6.11)

3TC(Es =0 (6.22)
af

3TC(Es + fEft) =0 (6.23)

Equation (6.22) and Equation (6.23) could be solved

individually for f* and f+. Substituting f* and f into

Equation (6.21) would yield the incremental cost of energy A.

Case (b): The maximum allowable burnup B4 is low, such that

B4 = B(Es 2f Es
W-f

B* = B(E5 + AE, f +) Es + AE

W.f

* ES 624
or f = (6.24)

W-B

+ Es + AE (6.25)

W-B

Substituting f and f into Equation (6.21) would again yield

the incremental cost of energy A. Note that in any case,

incremental cost of energy A is not given by the partial

derivative of total cost TC with respect to cycle energy E

holding batch fraction f constant, but is given by Equation

(6.21) with the f and f+ determined by either Equations

(6.22) and (6.25) or Equations (6.24) and (6.22)

Figure 6.4 shows incremental cost of energy A versus

cycle energy E5 for various burnup limitations. For the same

cycle energy Es, incremental cost of energy increases with
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Figure 6. 4

INCREMENTAL COST X VS

CYCLE ENERGY FOR VARIOUS BURNUP LIMITS B0
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decreasing allowable burnup levels. When the burnup constraint

is not controlling, incremental cost first increases, then

levels off with increasing cycle energy.

6.6 Effects of Shortening the Irradiation Interval

Fuel cycle calculations are repeated for refuelling

interval of one year based on the same depletion calculations

given in this chapter. The results are shown on Figures 6.5

and 6.6.

The following differences can be seen between the cases

of 1.5 year and 1 year refuelling interval. The revenue

requirements for all cycles are lower for the 1 year case.

This is due to a shorter time period in which carrying

charges are based. The optimum batch fraction for a given

cycle energy is somewhat lower. But the overall trends of

the two cases are very similar. Hence, for small variations

of refuelling interval, the behavior of the incremental cost

and optimal solutions would not be greatly changed.

6.7 Conclusions

For steady-state refuelling, the problem of nuclear

in-core optimization can be solved directly by graphic

techniques. For a specified cycle energy, the optimal batch

fraction is given by the smallest value compatible

with burnup limitation for nearly all practical cases.

The explanation is that the savings in service components
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In this case fr = 0 according to Equation (6.10). Therefore

according to Equation (6.11)

3TC(Es =0 (6.22)
af

aTC(Es +M.E,ft) =0 (6.23)

Equation (6.22) and Equation (6.23) could be solved

individually for f* and f+. Substituting f* and f+ into

Equation (6.21) would yield the incremental cost of energy X.

Case (b): The maximum allowable burnup BI is low, such that

BI = B(Es ) = E
W-f

B* = B(Es + AE, f+ ) E5 + AE

W-f

* E
or f = (6.24)

W-B

+ E + AE (6.25)

W-B

* +
Substituting f and f into Equation (6.21) would again yield

the incremental cost of energy X. Note that in any case,

incremental cost of energy X is not given by the partial

derivative of total cost TC with respect to cycle energy E

holding batch fraction f constant, but is given by Equation

(6.21) with the f and f+ determined by either Equations

(6.22) and (6.25) or Equations (6.24) and (6.22)

Figure 6.8 shows incremental cost of energy X versus

cycle energy E for various burnup limitations. For the same

cycle energy Es, incremental cost of energy increases with
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decreasing allowable burnup levels. For the same burnup,

incremental cost first increases, then levels off and

finally decreases for increasing cycle energy.

6.6 Effects of Shortening the Irradiation Interval

Fuel cycle calculations are repeated for refuelling

interval of one year based on the same depletion

calculations given in this chapter. The results are

shown on Figures 6.9, 6.10, 6.11, 6.12.

The following differences can be seen between the cases

of 1.5 year and 1 year refuelling interval. The revenue

requirement for all cycles are lower for the 1 year case.

This is due to a shorter time period in which carrying

charges are based. Incremental cost of energy shows a

wider spread for the range of burnup limits considered.

But the overall trends of the two cases are very similar.

hence, for small variations of refuelling interval, the

behavior of the incremental cost and optimal solutions

would not be greatly changed.

6.7 Conclusions

For steady-state refuelling, the problem of nuclear

in-core optimization can be solved directly by graphic

techniques. For a specified cycle energy, the optimal

batch fraction is given by the smallest value compatible

with burnup limitation for nearly all practical cases.

The explanation is that the savings in service components
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costs resulting from a smaller batch fraction outweights

the additional enrichment cost, carrying charges and

income taxes. Finally, the incremental cost of energy

increases with cycle energy, but levels off at E ~ 10,000

GWHe/cycle. The incremental cost of energy also increases with

decreasing allowable burnup levels.
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CHAPTER 7.0

NUCLEAR IN-CORE OPTIMIZATION FOR NON-STEADY STATE

FORMULATION OF THE PROBLEM

7.1 Introduction

Having solved the steady state nuclear in-core

optimization problem in Chapter 6, this chapter considers

the general non-steady state nuclear in-core optimi-

zation problem outlined in Chapter 2 Section 2.5. The

general problem of nuclear in-core optimization can be stated

as follows: given a refuelling and maintenance schedule,

and a specified sequence of cycle energy demand for a

given reactor in the planning horizon, find the optimal

combination of reload enrichments and batch fractions such

that the fuel cycle cost is minimized and the engineering

constraints are satisfied. A typical planning horizon

consists of five cycles with a total duration of about

seven years. In general the cycle energy demand for each

of the five cycles would be different from each other.

Consequently, the reload enrichment and batch fraction for

each cycle would be different and hence the reactor supp-

lying this energy is said to be operating in a non-steady

state manner. At the beginning of the planning horizon,

the reactor is in a certain well specified initial state.

This initial state would play an important role in the

overall optimization. In addition to satisfying the cycle

energy demand, the optimal combination of reload enrich-
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ments and batch fractions should also satisfy engineering

constraints, such as burnup limitations, power peaking,

control poison margins and other safety considerations.

Only when all these constraints have been satisfied does

the economics optimization has any practical significance.

7.2 Mathematical Formulation of the Problem

For full-power reactivity-limited burnup, cycle energy

and discharge burnup are unique functions of the reload

enrichments and batch fractions of all the preceding cycles.

Hence, reload enrichments and batch fractions can be con-

sidered as independent variables, while cycle energy and

discharge burnup can be considered as dependent variables.

The objective function: revenue requirement for the plan-

ning horizon, is also a variable dependent on reload enrich-

ments and batch fractions.

Thus, the problem of non-steady state in-core optimi-

zation can be mathematically stated as

minimize T (7.1)

with respect to I and

subject to constraints

E (,1J )=Es (7.2)c c

Bc ((7 (7.3)



171

where Td: is the revenue requirement for this reactor for

the planning horizon

Ec: energy generated in cycle c
S

Ec: energy demanded by the system on cycle c of the

reactor

Bc: average discharge burnup of Cycle c

B0 : maximum allowable burnup

E: a vector consisting of all the reload enrich-

ments

f : a vector consisting of all the batch fractions

T : initial condition of the reactor

Equation (7.2) is the requirement that the cycle

energy demand be satisfied. Equation (7.3) is the requirement

that the average discharge burnup be within technical

limits. In general, other engineering constraints, such

as power peaking and control poison margin, etc. should

be imposed on the system. However, for simplicity, only

the burnup constraint is considered. Other constraints

can be incorperated with no major difficulties.

The Kuhn -Tucker optimality conditions for the optimal

solution E, f are



Ec(S*,T*)=E

B c('C*,*)<B"

for all c

1*>0

C S
a Z{w e(B'-B )+Xj(E -)}3TC
3e c c c c c -e

C

C S-a X{wg(B 0 -Bc)+x (E E ))x3T

Tc C
C C

C

c * \(E -Ec =0
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(7.4)

(7.5)

(7.6)

(7.7)

(7.8)
for all c'

for all c' (7.9)

(7.10)

C C C
{ 3TxC +9 xf*}= I Cx ( -Ife(80-Bc)+X;(E S-Ec

c '5cTc c c dT- c c cc

(7.11)
C C

+ c T~ X{wy(BO-B )+AXj(E -Ec
c c c

where Xc is defined as the incremental cost of nuclear

energy for the c-cycle

7 : is defined as the burnup penalty for the c-cycle

Since the dependent variables are not analytically

differentiable, the optimality conditions are not useful

in a practical sense. Calculation of the incremental

cost and burnup penalty directly from these equations is

not feasible.
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Methods of solving the nuclear in-core optimization

problem are given in Chapters 8 and 9. Calculation of

incremental cost is given in Chapter 9 .

7.3 Exact and Approximate Calculation of the Objective

Function

The objective function TCI is defined as the revenue

requirement for the reactor in the planning horizon I.

The method of calculating TC is given in Section 4.3.2,

with end state correction based on the Inventory Value

Method. In principle, it includes the revenue requirement

for all the batches discharged from the reactor in the

planning horizon. The treatment for these batches is

exact.

Those batches that remain in the reactor core at the

end of the planning horizon are assigned a value Vb (00

that reflects the nuclide value and residual book value of

fabrication, shipping, reprocessing and conversion.

For these batches, the calculation of revenue require-

ment is only approximate because of these service costs.

Hence, the accuracy of the approximate TC is compared

to an exact revenue requirement TCc based on a pre-specified

fuel strategy. The number of batches included

in TCI and TCa are shown schematically in Figure 7.1.

The result of the test would hopefully demonstrate that

optimization based on the approximate TCI is equivalent



A~c

-I A

AA

A I03O r Fr- N m-r-tCl-r
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to optimization based on the exact TCw..

If e* and "* is the optimal solution based on an

exact calculation of da., according to Kuhn-Tucker opti-

mality conditions Equations (7.8), (7.9) and (7.11) would be

> {wc(B -B(c c(E) - E

(7.12)

C
(3 {( (B"-B (Z*,J*))+ A (ES- Ec (

Bfc'c'4 e c e (7.13)

C .C. C

CC
I~~ec~w c cTCCCJ)C. E-E)QL I** X

@(7c(B 0-Bc)+X (E c

(7.14)

+ If'ewj-;y *(0 B)Xd(Ec E)C CC CCC

C+ C (7c(BI-Bc)+ ( c

However, if one requires $*, f* to be the optimal

solution based on the approximate objective function TdI,

*, 7* should also satisfy the Kuhn-Tucker optimality

condition for TI. Hence, the Kuhn-Tucker conditions for

e* ,f* and TCI are exactly similar to that of Equations

(7.12), (7.13) and (7.14) with TO1 replacing TCc. . Since

the right sides of the equations are not affected by the

replacement, the value of the left hand side of the equations

should be the same for TCI and TCO . In other words, we

should show that



176

3___.(_*,_ 37I 9T , (c *, *) (7.15)

3 -. , a_ ( , (7.16)
af c a e

Therefore, if each partial derivatives for TCW. is

equal to the corresponding derivative of TO1 , then optimi-

zation based on either of them is equivalent.

7.4 Comparison of the Exact and Approximate Methods

The partial derivatives of TOI are compared to those

of TC, in a series of sample cases.

Planning horizons for each of the sample cases con-

sist of five cycles. However, to calculate TC it is

necessary to know the reload enrichment and batch fraction

up to the eighth cycle. The reload enrichinents and batch

fractions. for the sixth, seventh and eighth cycle are taken

to be 3.2 w/o and 0.33 respectively. Calculations are

based on the Zion type 1065 MWe PWR. At time zero, the

reactor is down for refuelling after it has been refuelled

in a three-zone modified scatter manner with 3.2 w/o reload

enrichment until steady state has been reached. The energy

requirement for each of the next five cycles is 22750 GWHt.

The maximum allowable average discharge burnup is 32 MWD/kg.

Under these restrictive conditions, the optimal reload

enrichments and batch fractions are E=3.2w/o and f=0.33 for
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the next five cycles. In other words, the reactor is already

optimized before the planning horizon.

The reload enrichment or the batch fraction for the

first cycle is varied in order to evaluate the partial

derivative of the objective function with respect to enrich-

ment or batch fraction. The partial derivatives for TCoWare

TC T f+, !....) - U(19 ... ) (717)

-- tfe§ (7.18)

Partial derivatives for TOI are similiar to Equations (7.17)

and (7.18) by replacing TCw with TCI.

Figure 7.1 shows schematically the number of batches

included in TCI and TCw, the last three of which bring

the reactor sufficiently close back to steady state condition.

TC6consists of eight batches irradiated from Cycle -2 to

Cycle 8 for a total of eleven cycles. TCI consists of the

same eight batches irradiated from Cycle -2 to Cycle 5 for

a total of eight cycles, with the last three batches given

approximate ending inventory value based on their discharge

composition and burnup. Table 7.1 shows the values of TO1

and TCoc for the optimal case and the cases in which reload

enrichment or batch fraction is varied. Figure 7.2 and Figure

7.3 show the value of TC and TC. plotted against E1 and

f1 respectively.

The accuracy of the partial derivatives on E1 is within

+ 0.6%. The accuracy of partial derivatives on f1 is within

± 0.9%. The accuracy of partial derivatives onE29 E 3 .and
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Table 7.1

Exact and Approximate Revenue Requirements

for Various Enrichments and Batch Fractions

Enrichment
(w/o)

S1 E 2 53

3.2 3.2 3.2

2.0 3.2 3.2

2.8 3.2 3.2

3.7 3.2 3.2

4.4 3.2 3.2

3.2 3.2 3.2

3.2 3.2 3.2

3.2 3.2 3.2

Enrichment
Changes

(w/o)

-1.200

-0.434

+0.480

+1.200

Batch
Fraction
Changes
Af
-0.8

-0.4

+0.4

Batch Fr

4 5
3.2 3.2 0.333
3.2 3.2 0.333
3.2 3.2 0.333

3.2 3.2 0.333

3.2 3.2 0.333

3.2 3.2 0.253

3.2 3.2 0.293

3.2 3.2 0.373

0.333

0.333

0.333

0.333
0.333

0.333
0.333
0.333

0

0

0

0

0

0

0

0

Revenue Requirement
Changgs

ATC I ATCa
-4.5720 -4.5804

-1.6648 -1.6746

+'.8893 +1.8791

+4.6642 +4.6542

Revenue Requirement
Changes

ATC 106$ A

-2.a3i4 4 -2.3423
-1.1717 -1.1822

+0.7716 +0.7658

action Revenue Requirement

f3 f4 £5 Approxi- Exact
mate 106$

.333 0.333 0.333 87.6426 93.506

.333 0.333 0.333 83.0706 88.9801

.333 0.333 0.33 85.9778 91.8859

.333 0.333 0.333 89.5319 95.4396

.333 0.333 0.333 92.3067 98.2147

.333 0.333 0.333 85.2932 91.1982

.333 0.333 0.333 86.4709 92.3783

.333 0.333 0.333 88.4142 94.3263

A1C-/As1 AT-c/C

3.8100
3.8360

3.9361
3.8868

3.8169
3.8586
3.9148
3.8785

A 1 /A f1  A_ /Af

10 6 1

2.9367
2.9293
1. 9290

2.9528

2.9554

1.9146

Error

+0.2

+0.6

-0.5

-0.2

Error

+0.5

+0.9

-0.7
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f2'''f5 would be progressively worse. This is due to the fact

that the end state correction would have a larger effect on the

subsequent cycles. However, this optimization would be

repeated on an annual basis. Hence, it is only the first

cycle results that would actually be utilized. Therefore, the

main emphasis on accuracy would be placed on the first cycle

derivatives.

This degree of accuracy is adequate for a survey type

of calculation in which a large number of cases are analysed.

After eliminating most of the sub-optimal cases, the exact

objective function would then be used for the final optim-

ization.

As a final test, the values of TO1 and TCe are calculated

for a complicated case in which the reload enrichments and

batch fractions are different for all the cycles. The

difference of TOI between this complicated case and the

optimal base case in the preceding sections is compared to the

same difference for TCU. Table 7.2 shows the value of TI and

TCco for the two cases. The discrepancy in this case is

substantially larger. This is due to the fact that as

enrichment and batch fraction changes take place near the end

of the planning horizon, the end-effect correction would not

be able to handle these changes accurately. Nevertheless,

this serves the purpose of comparing TOI and TCO under the

worse possible situation.



Table 7.2
Exact and Approximate Revenue Requirement Calculated for the Base Case and the Case in

which the Reload Enrichments and Batch Fractions for All the Cycles are Changed

Cycles Revenue Requirement

1 2 3 4 5 Approximate Exact

E(w/o) 6
f 10 $
E(GWHt)

Base Case
E 3.20 3.20 3.20 3.20 3.20
f 0.333 0.333 0.333 0.333 0.333 87.6426 93.5605
E 22750. 22750. 22750. 22750. 22750.

Changed Case
S 4.57 .26 4.31 2.83 3.26
f 0.293 0.373 0.253 0.253 0.293 90.2296 96.2674
E 25450. 30440. 21850. 19340. 20880.

Absolute Change
2.5870 2.7069

Percentage Error
4.6%

00
1\3
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The nuclear in-core optimization problem is formulated

as a non-linear optimization problem. Kuhn-Tucker conditions

for optimium C and f* are derived. The accuracy of the

approximate objective function TCd is compared with an exact

objective function TC = under pre-specified end conditions.

The approximate objective function TCI has been

demonstrated to be adequate for a survey type of optimization

aiming at eliminating a large number of sub-optimal cases.
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NUCLEAR IN-CORE OPTIMIZATION FOR NON-STEADv STATE 3V METHOD

OF PIECE-WISE LINEAR APPROXIMATION

8.1 Introduction

In principle, the Method of Linear Annroximation consists

of the following three stens;

(1) Linearization of the obiective function and the constraints

about a given feasible noint.

(ii)Finding the steeoest direction in which the obiective

function decreases most rapidly.

(iii)Choosing an increment sten size and Proceeding in this

steepest direction.

The entire orocess is reneated at this new noint until

either all the derivatives of the obective function are zero

or succeedinm steps show no significant imnrovement over the

previous steps. This method is useful when the objective

function and the constraints are linear or quasi-linear.

This method also assumes that an initial feasible solution

is available.

8.2 The Optimization-Algorithm

Starting from an initial feasible solution )Oand 10

O= TU(Zf")

E (O, O)=E
c c for all c

B (ZO,74)=BOc

the objective function and the constraints are linearized

about the neighborhood of ,
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N(I,7 )~ 1O+{a (E -E")+3 (f -f 0)} (8.1)
c c c c c c c

E(k(?J))+Eykc (P -C k (fc .f)} (8.2)
k k C kec C' kc c C'

Bk (Ej) B (f'110+{ P 0)r fO)) (8.3)
k( ~ Ckc c-C C C

where the coefficients are reoresented bv:

a -(Z",O )
c WeT

c

c

ykc

afec
kc-

B fc

Ckc- af
c

The expansion coefficients a 1c' cetc . are determined by a

number of variational cases, in which the variables ec'1 c

are varied one at a time. For examnle,

a= c c c

cc

Ek(C c -f+ac..-k c
kc- 85

Afc

Since Equations ;(8.1) (8.2) and (8.3) are valid only in the

vicinity of co and ",Acc and of should be limited to small

values, for example Af c Ifc 4 0.01.
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Linear programmin can be anplied to Equations (P.1 ) (8.2)

and (8.3) to determine the next ootimal noint. By imposing the

additional requirement that !fc fc/f <0.01, the next

optimal point would be forced to lie inside the region in

which the equations are valid.The objective function for this

new optimal noint is calculated, and comnared with the

previous objective function T(cOf) If the new solution

is an improvement over the previous one, the entire nrocedure

of linearization and optimization is repeated for this new

point. Figure 8.1 is the flow chart of the Method of Linear

Approximation. The iteration terminates when the new solution

shows no improvement over the previous one.

Unfortunately, this method is not aonlicahle to the

situation in which batch fraction chanmes are-restrited to

large discrete values due to the snecial requirements in the

depletion code CELL-CORE. The smallest batch fraction changes

allowed by the code is Af/f=12%. Over this large ranpe of

batch fraction changes, the linear approximation does not hold.

Hence, the Method of Ptece-Wise Linear Aporoximation is

introduced, and this requires a seperate coefficient for

positive or negative changes in the batch fraction. For

example, if (f -cf) is positive, the expansion coefficientsc c

multiplying (f -cf) and (c -cc) in Equations (8.1) and (A.2)c c c ,c

are a , Tkc' 6kce e tively. On the other hand, if (f c

is negative, the expansion coefficients are a~~Yk k6

respectively. Definitions of the nositive and negative

coefficients are given in Table A.l.
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Figure 8.1

Flow Chart for Method of Linear Approximation
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Table R.1

Definitions of the Various Linear Expansion Coerficients

- T C (Oi..... +A .... 1f ....f0 +Af ....)~0( .... .... ..- f*+Af -. )
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Using this more complicated form of the equations, sten

size AfcIc up to 12% can be handled at the expense of

doubling the number of coefficients to be calculated.

The equations involving average discharge burnuo Equation

(8.3) however, do not require additional elaboration. The

following approximation for burnup is accurate within tq of

the actual value.

Bb v E,?) ~ B(n b) x~ 1t (n b) xb-c *))(8. 6)

where nb:is the number of cycles of irradiation before

discharge for batch b

% : reload enrichment for batch b

B(nb): average discharge burnuo for a 3.2w/o

enriched batch which remains in the reactor

for nb cycles before discharge. For the Zion type

1065 MWE PWR, typical values of B(nb) are

B(3)=31.5 MWD/Kg

B(4)=38.6 MWD/Kg

B(5)=44.3 MWD/Kg

C(nb) a constant multiplying the enrichment of batch b

For the Zion tyoe 1065 MWE PWR, typical values of

(nb) are

(3 )=0.34

(4 )=0.21

E(5 )=0.23

co: a dummy constant equal to steady state refuelling

enrichment (w/o). For the Zion type 1065 MWe PWR,

the value of cois 3.2.
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The various values for B(nb ), (nb), c* are determin-

ed by multiple regression ananlysis based on a large number

of burnup data points. Equation (8.6) together with the

modified form of Equations (8.1) and (8.2) cannot be solved

by Linear Programming. They are solved by exhaustive

search, in which all possible combinations of f are

calculated. Since the equations are valid over a small

region, and the depletion code CELL-CORE only allows dis-

crete charges in batch fraction, there is a finite number

of combinations of f c. If the batch fractions are restricted

to vary by one mesh size at a time, there are 3m combinations

for an m-cycle problem. A five-cycle problem consists of

243 possible combinations of fc. The corresponding E can

be calculated by Equation (8.2). Finally E and f can

be substituted into Equations (8.1) and (8.6) to solve

for the objective function and the discharge burnup.

Only those cases which satisfy the burnup constraint are

retained.

Finally, the objective function of all the feasible

cases are compared, and the new solution for this step is

found. The entire process of linearization and exhaustive

search is repeated for this new solution.

8.3 Results for Sample Case A with No Income Tax

The reactor under analysis is the Zion type 1065 M'IWe

PWR, with initial condition equivalent to the 3.2 w/o three-

zone modified scatter refuelled steady state condition.
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The planning horizon consists of five cycles. Energy re-

quirement for each of the five cycles is 22751) GwTt. The

maximum allowable average burnup is 60 MWiD/Kg. The Method

of . Steepest Descent is applied to solve for the optimal

reload enrichments and batch fractions for the five cycles.

The objective function for this problem consisted of

revenue requirements for eight batches in the five cycle

planning horizon. Income tax rate is zero in this case.

For the more general case where there are income taxes, refer

to Section 8.4 or Chapter 9. Figure 8.2 shows the relation-

ships between the objective function, batches and cycle.

The objective function calculation is based on economics

environment similar to that of a government operated utility

which does not have to pay income tax.(refer to Appendix B)

The Nuclide Value method given in Section 4.3.1 is used to

evaluate end effects. Since there is no depreciation tax

credit for this case, future disposition of each sublot of

fuel remaining in the reactor core does not affect the

objective function. However, according to Equation (8.6)

the future disposition of each sublot of fuel must be known

before one can estimate the discharge burnup. For this

case alone, the assumption is made that the reactor would

be refuelled with f = 0.253 for all subsequent cycles after

the planning horizon.

Table 8.1 shows the result of the optimization. Table

8.2 shows the average discharge burnup for the various
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Table 8.1

Reload EnrichmentsBatch Fractions,Cycle Energies and Revenue Requirements foF the

Various Number of Iterati org Using the Method of Piece-wise Linear Approximation

Cycle

1 2 3 4 5

e(w/o)

E(GWHt)

Target225O
Energy 22750.

Iteration
Number

0 E 3.2
f 0.333
E 22750.

f
E

3 E
f
E

3.77
0.293
22257.

5.03
0.253
22697.

3.95
0.293
22986.

Revenue Requirement

For Actual Energy

Piece-

wise CELL

Linear COCO
Approxi-

mation

Corrected for
Target Energy

Piece-

wise CELL

Linear COCO

Approxi-

mation

22750. 22750. 22750. 22750.

3.2
0.333
22750.

3*37
0.293
22725.

3.03
0.253
22534.

4.25
0.253
23133.

3.2
0.333
22750.

3.45
0.293
22616.

4.27
0.253
22844.

4.*64
0.213
22325.

3.2
0.333
22750.

3.56
0.293
23076.
2.96
0.253
22430.
4.31
0.213
23894.

3.2
0.333
22750.

3.42
0.293
22769.
4.57
0.253
22646.

3*61
0.213
21253.

72.1119 72.1119 72.1119 72.1119

71.3358 71.1517 71.4971 71.3131

70.3096 70.5269 70.4969 70.7141

70.0805 70.4763 70.2485 70.6443

H-



Table 8.2

Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample Case A

Calculated by (1) Piece-wise Linear Approximation

(2) CELL-CORE Depletion Calculation Burnup in MWD/kg
Batch
Number

Iter-
ation

Number

0

1

2

-2

Method

(1)F31.5
(2) 31.5

(1) 38.6
(2) 38.9

(1) 38.6
(2) 38.6

(1) 38.6

.-1

31.5
31.5

38.6
38.6

38.6
38.1

38.6

0

31.5
31.5

38.6

38.7

38.6

38.3

44.3

1

MWD/Kg
31.5
31.5

43.2

43.8

52.8

54.1

51.5
3 (2) 39.0 38.5

2 3.

31.5

31.5

40.7

46-9

58-1

31.5
31.5

40.0

39.6

3703
34.4

54-4

4

31.5
31.5

41.5

36.7

54.9

S

31;5
31.5

40.4

49.2

4803
45.0 52.2



batches. The optimal solution consists of the smallest 195

possible batch fraction permitted by the discharge burnup

constraint. Further savings in excess of $1.6 million

could be realized if a higher discharge burnup were allowed.

8.4 Results for Sample Case A with Income Tax

If income tax of 50% is included in the calculation

of the objective function, the Method of Piece-Wise Linear

Approximation fails to produce an optimal solution. Table

8.3 shows the results for two iterations. The actual revenue

requirement corrected for target energy increased in the

second iteration. Hence, the method fails to produce a

better solution.

This failure is due to the fact that the objective

function for this particular Pase is very flat when

income taxes is included. Moreover, the base case is so close

to the optimal solution that the Method of Piece-Wise Linear

Approximation based on first order derivatives cannot give

good estimate of the trends. Hence, higher order approximation

is required for optimization in this situation.

8.5 Conclusions

The Method of Piece-Wise Linear Approximation is simple

and straight forward. However, the energy constraints

are only approximately satisfied. This is particularly

true when optimal solution is far away from the cases

in which the expansion coefficients are determined.



Table 8.3

Reload Enrichments. Batch Fractions. Cycle Energies and Revenue Requirements with Income

Taxes for the Various Number of Iteration Using the Method of Piece-wise Linear

Approximation

Cycle Revenue Requirement
2 3 4 5 For Actual Energy Corrected for

Target Energy
e(w/o)
f
E(GWH+)

Target22750.
Energy2

Iter-
ation
Number

0 E
f
E

1 E
f
E

3.2
0.33
22750.

3.77
0.29
22257.

106

22750. 22750. 22750. 22750.

3.2
0.33
22750.

2.77
0.33
22384.

3.2
0.33
22750.

3.29
0.33
22618.

3.2
0.33
22750.

3.88
0.29
22259.

3.2
0.33
22750.

2.67
0.33
22422.

Piece-
wise
Linear CELL
Approxi- 0000
mation

87.2407 87.2407

86.4105 86.6273

Piece-
wise
Linear CELL
Approxi- COCO
mation

87.2407 87.2407

87.1015 87.3183

H
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This method is useful for cases where the objective

function has a wide variation over the range of the decision

variables (as in this no income tax case) and where the

optimal solution is ultimately limited by one or more of

the constraints. However, if the objective function is

rather flat, as in this case with income tax, and the

constraints are not active, the Method of Piece-Wise

Linear Approximation cannot oin-point the optimal solution

precisely.



198
CHAPTER 9.0

NUCLEAR IN-CORE OPTIMIZATION
FOR NON-STEADY STATE BY METHOD
OF POLYNOMIAL APPROXIMATION

9.1 Introduction

In Chapter 7, the problem of nuclear in-core optimiza-

tion was formulated in terms of finding the combination of

reload enrichments and batch fractions such that the energy

and burnup constraints are satisfied and the objective func-

tion minimized. However, experience has shown that the energy

constraints are difficult to satisfy accurately (within +1%).

As a result, the objective function calculated for a particu-

lar combination of reload enrichments and batch fractions has

to be corrected for this error in meeting the energy constraints.

However, the objective function has been found to vary smoothly

with energy and batch fraction. This well-behaved property

of the objective function can be exploited to solve the fore-

going problem by incorporating the dependent variablecycle

energy,directly in the objective function and eliminating the

the decision variablereload enrichment, altogether. The

corresponding mathematical transformations are given below.

Repeating Equations (7.1), (7.2), and (7.3)

Minimize TC(e,f,*) with respect to e, f . (7.1)

Subject to constraints
E (Ef) =Es (7.2)c 4.-. c
Bc(,f) <B0  (7.3)

Equation (7.2) can be inverted to yield

, ) I(9.1)

which can be substituted into (7.1) and (7.3) to give

minimize TU(PsJ) with respect to (9.2)
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subject to constraints

B C(s, )<BO (9.3)

Since are specified energy requirements, the decision

variables in this problem are only the batch fractions. Since

the initial state $ is the same in all cases considered, it

has been omitted from Equation (9.2).

The functional form of Equations (9.2) and (9.3) cannot

be derived from theory. However, it can be approximated by

fitting polynomials in V and to a large set of data

with the same initial condition 4 . The analytic expressions

that result from multiple regression analysis can then be

optimized by conventional techniques. Section 9.3 describes

how the polynomials are chosen. Sections 9.4 and 9.5 present

the results of the regression analysis. Before that, there

are some brief comments about the objective function and the

end conditions.

9.2 Brief Comments About the Objective Function and the End
Conditions

The objective function TC is defined in Chapter 7

(Equation 7.1) and represents the revenue requirement for all

the batches involved in the operation of the reactor in the

planning horizon. For those batches that remain in the reactor

after the end of the time horizon, the end values are evaluated

by the Inventory Value Method as outlined in Chapter 4. For

a typical five-cycle problem, the relationships between objec-

tive function, batches andcycles are given on Figure 9.1.

However, in order to arrive at a value for the tax depre-

ciation credit and discharge burnups for all the fuel batches,
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end conditions have to be specified in the last three cycles

after the planning horizon. The end conditions are specified

in terms of the reload batch fractions for the sixth, seventh

and eighth cycles. The choice for these batch fractions could

be arbitrary, but choice based on realistic assumptions on

the future operation mode of the reactor in these cycles could

minimize this error due to truncation of the time horizon.

However, if the wrong choice is made the optimization would

be affected, at most for the last three cycles of the planning

horizon.

The optimum batch fractions for the first two cycles in

the planning horizon would not be affected. Since this op-

timization problem would be updated annually, this error would

not cause any great difficulty. For the sample cases ana-

lyzed in this chapter, the reload batch fractions for Cycles

6, 7, and 8 would be 0.253 throughout. This choice is based

on the fact that f = 1/4 is the optimal batch fraction for

the steady state case if the burnup limitation is 45 MWD/kg

and cycle energy requirement ranges from 7000 GWHe to 9000 GWHe.

9.3 Choice of the Polynomials

The following behaviors are observed when the objective

function varies over energy and batch fraction .

(1) Objective function increases as more energy is produced.

(2) Objective function increases as batch fraction increases.

(3) Objective function increases as enrichment increases
even as energy production is kept the same.

(4) Objective function increases when batch fractions vary
greatly from cycle to cycle.
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When the batch fraction changes, inefficiencies

are introduced, such as discharging fuel lots which are not

yet fully depleted, and retaining fuel lots which are over

depleted. Inefficiencies like these would not take place

in a constant batch fraction process in which fuel batches

are discharged at nearly the same burnup.

Based on the foregoing observations, the following

functional form of the objective function is constructed.

T cEc +: cfc + ycE + 6c fc c- 91.2

The first term represents the linear change of objective

function due to energy changes. The second term represents

the linear change of objective function due to batch fraction

changes. The third term represents the linear change of ob-

jective function due to enrichment changes. Energy production

is found to be directly related to fissile content of the

core. At the same time, fissile content is directly related

to reload enrichment times the batch size. Hence, reload en-

richment can be approximated as proportional to energy divi-

ded by batch fraction. The last term of Equation (9.4) repre-

sents the linear change of the objective function due to the

absolute variation of batch fraction from cycle to cycle.

While Equation (9.4) was a fairly accurate representation of

the objective function, a more accurate, more complex equation

involving 18 terms was usedwhich resulted in a multiple corre-

lation coefficient of 0.99891 and a standard error of estimate

of 0.0774 million dollars. The equation for this more complex
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objective function is given in Table 9.1.

The burnup constraint Equation (9.3 ) could be repre-

sented adequately by Equation (8.6) for an error band of

+5%. This band width is considered adequate for an in-

equality constraint. Lacking information on peak discharge

burnup, refinement in accuracy in predicting average dis-

charge burnup is not warranted. However, Equation (8.6)

involves reload enrichment as one of its independent vari-

ables. Reload enrichment evaluated as a function of cycle

energy and batch fraction has to be obtained in order to

use Equation (8.6). Following the argument that reload

enrichments are related to cycle energies divided by batch

fractions, a set of polynomials was constructed around this

argument. The regression equations for all the reload en-

richments are given in Tables 9.2 to 9.6. These equations

are used exclusively for the calculation of average dis-

charge burnup. In no way does the accuracy of these equa-

tions affect the objective function.

Figure 9.2 is a plot of the standard estimate of error

versus cycle number. The curve represents the results of

regression analysis of cases having batch fraction ranges

from 0.253 to 0.373.

On the same figure, the actual observed error in enrich-

ment is plotted. Most of the data points lie within 10% of

the actual enrichment. Since in (8.6), the estimated burnup

is represented as a linear function of enrichment, the effect

of 10% error in enrichment is equivalent to a 10% error in
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Table 9.1

Regression Equation for Revenue Requirement

75=87.240720+0.06551+ 2.28342x(E 1 -Eo1 )

+ 4.40931x(E 2-E0 2)

+ 2.26829x(E 3-Eo3 )

+ 2.47006x(E 4-EO4 )

+ 2.46467x(Es-Eo 5 )

+ 1.13642x(fi-foi)

+ 0.81828x(f 3-fO3 )

+ 0.64499x(f 4-fO4 )

+ 1.30984x(E1/f2-E 1 /fil)

+ 0.94908x(E4/f -EO 4/f0 4 )

+ 0.76090x(E3/f2-E 3 /f23 )

+ 0.20903x(E3/f2-E s/f2s)

- 5.27670

+ 0.48486x(fi-3.333) 2

+ 0.15590x(f 3-f 2 ) 2

+ 0.13438x(f4 -f3)
2

+ 0.22128x(fs-f 4 ) 2

+ 0.07579x(fs-f 2 ) 2

Constants in Regression Equation
i E01 f01
1 2.275 3.333
2 2.275 3.333
3 2.275 3.333
4 2.275 3.333
5 2.275 3.333

UNITS

TC Revenue Requirement
in 106$

E Energy for Cycle i
in 10 GWHt

f lOxBatch Fraction
for Cycle i

Statistical Properties of Regression Equation

Correlation Coefficient p=0.99 8 91
F Value F=3191.

Standard Estimate of Error=0.07740. 10 '$
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Table 9.2

Regression Equation for Enrichment for Cycle 1

Si =-1.53588 +2.84647x El

+16.85454 If,

-18. 28799xE1 /f 1

+46.35364xEI/f2

-44.67946x/f

+0.2298lxE' /f2

UNITS

E Enrichment for Cycle i 'in (w/o)

Ei Energy for Cycle i in 10 GWHt

f lOxBatch Fraction for Cycle i

Statistical Properties of Regression Equation

Correlation Coefficient p=0.99969

F Value F=29637.

Standard Estimate of Error =0.02115 w/o
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Table 9.3

Regression Equation for Enrichment for Cycle 2

E2 =0.97686 +1.28069xE 2

-10.71479xE 2/f2

+34. 56815xE 2/f

-14.59538 /f2

+ 0.14029xEi /f2

-62.52820xEI /.(fx f2 )

+ 1.31300 /fi

+ l.l2580xE 2xfi/(E1Xf 2)

UNITS

Si Enrichment for Cycle i in (w/o)

Energy for Cycle i in 10 GWHt

l0xBatch Fraction for Cycle i

Statistical Properties of Regression Equation

Correlation Coefficient p=0.99 8 05

F Value F=7741.

Standard Estimate of Error=0.05428 w/o
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Table 9.4

Regression Equation for Enrichment for Cycle 3

E:3=2.00 6 6 9 + 1.23508xE3

-11.87128 xE 3/f 3

+34.89198 XE 3/f

-18.24043/f 2

+ 0.17167 XE 3 /f 2
3 3

-61. 54253xEj/(fixf)

- 2.25149/f 2

+ 1.83274 xE 3 xf 2/(E 2Xf 3)

+20.63379 xE i/(f xf3)

+37.8536lxE2/(fixf )

- 3.60271/f 1

+ 0.77057x 2xf 1/(E xf 2

UNITS

E Enrichment for Cycle i in (w/o)

E Energy for Cycle i in 10 GWHt

f l0xBatch Fraction for Cycle i

Statistical Properties of Reqression Equation

Correlation Coefficient p=0.99651

F Value F=4106.

Standard Estimate of Error =0.06838 w/o



Table 9. 5

Regression Equation for Enrichment for Cycle o

e=2. 8 6 942 + 1.42475xE4

- 6.98729xE 4/f4

+29.96323xE 4/fi

-11.0624 0/f

-52.88219xE /(f3xf2)

- 0.37538xE4xf 3/(E 3Xf4)

+10.15228xE2/( .xf)

+29.75157xEi/(f2xfi)

-1.53779xE 3xf 2/(E 2xf 3 )

-22.62199xE1/(f xf3)

-28.70589xE1/(f xf2)

+ 4.00576/fi

- 1.72619xEixf (E2xfi)

UNITS

Si Enrichment for Cycle i in(w/o)

E Energy for Cycle i in 10 GWHt

f lOxBatch Fraction for Cycle i

Statistical Properties of Regression Equation

Correlation Coefficient p=0.99235

F Value F=1828.8

Standard Estimate of Error=0.07894 w/o
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Table 9.6

Regression Equation for Enrichment for Cycle 5

E5=0.43445 + 1.356O6xEs

-11.2170lxE 5/f s

+35. 92697xE 5/f

-19. 0441/ 5

-48.65585xE4/(f xf)

+ 1.41909xEsxf4 /(E 4xfs)

+ 6.5o443xE3/(fixfj)

+24.186ooxEi/(f4x!)

-14.66613xE /(fixf2)

-25.58575xE2/(fixf )

+ 9.66152xE?/(fixfi)

+29.41844xEI/(fixfi)

- 3.47285/f1

+ 1.56183xE 2 xfi/(Eixf 2 )

UNITS

Enrichment for Cycle i in (w/o)

E Energy for Cycle i in 10 GWHt

f l0xBatch Fraction for Cycle i

Statistical Properties of Regression Equation

Correlation Coefficient o=0.98721

F Value F=1268.

Standard Estimate of Error=0.09459 w/o
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average discharge burnup. Comparisons of actual and pre-

dicted average discharge burnup will be presented later in

Tables 9.8 and 9.10.
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9.4 Regression Analysis on Objective Function

The equation given on Table 9.1 is the result of ana-

lyzing 135 separate cases. This equation predicts the ob-

jective function for any selection of cycle energy EC

and batch fraction f to an accuracy of +0.1% of the true

value. Other independent tests besides the regression ana-

lysis have been performed to confirm this result. Using

this representation of the objective function, an analysis

of its sensitivity to changes in cycle energy E1 or batch

fraction f can be made.

Figure 9.3 shows the variation of TU due to changes

in E for different values of fl holding f2 f 3f 4 f 5=0.33

and E2=E3=E14=E 5=22750GWHt. The behavior of the ob-

jective function in the non-steady state is very similar to

that of the steady state (ref. to Figure 6.1). The objective

function for a smaller batch fraction increases more rapidly

with energy than that for a larger batch fraction. This is

due mainly to the disproportionate increase of uranium and

plutonium depletion cost.

The many cross-overs between lines of different batch

fractions imply that the optimal batch fraction for any given

level of cycle energy increases as cycle energy increases.

This trend is again similar to that in the steady-state results.

Figure 9.4, which shows the variation of the objective

function with respect to batch fraction for cycle 1 for dif-

ferent levels of cycle energy El holding all the other f's

and E's at the steady-state 3.2 w/o, 1/3 batch fraction level,

is another way of plotting the data shown in Figure 9.3. The
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trend of higher optimal batch fraction at higher cycle energy

is illustrated more clearly. Refer to Figure 6.5 for compar-

isons between steady-state and non-steady state results.

Figure 9.5 shows the variation of the objective function

with respect to batch fraction for cycle 1 for different values

of f 2  while holding the remaining f's and all the E's at

the 3.2 w/o 1/3 batch fraction steady-state level. There is

a small cross-coupling effect between f1  and f2 in deter-

mining the value of TC . If an error of +0.1% in the objec-

tive function can be tolerated, it is possible to optimize each

cycle independently and neglect the cross-coupling effects

altogether.

In all these figures, the objective function varies by

less than +0.25% over the practical range of f1  . In other

words, the objective function is very flat around the region

of 0.33 reload batch fraction. Thus near the optimal solution,

there are many sub-optimal solutions with roughly the same

total cost. For a saving of +0.25%, there is very little in-

centive to find "the optimal solution." Instead, one should

concentrate on optimizing other considerations such as engi-

neering safety and reliability within this range of batch
fractions.

9.5 Optimization Algorithm

Based on the equations given on Tables 9.1-9.6, the ob-

jective function is calculated for all possible combinations

of f's which produce the specified cycle energy demand and

satisfy the burnup constraints. These combinations are then

ranked in ascending order in terms of their cost. The lowest
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five combinations are subjected to further tests.

Further tests consist of carrying out the depletion cal-

culations based on the estimated reload enrichments and batch

fractions. The actual values of the objective function and

average discharge burnups are obtained. These are compared

with the values predicted by the regression equations. If

the estimations for reload enrichments are so far off that the

resulted cycle energies are significantly different from the

the specified cycle energy demand, the objective function

should be adjusted to reflect this difference. The case that

satisfies the constraints with the lowest adjusted objective

function is the optimal case for a particular optimization

problem.

Hence, for any set of cycle energies, a maximum of five

depletion calculations are required. Moreover, as more prob-

lems are solved, the additional depletion data can be

incorporated into the regression equations. In this manner,

the regression equations are made valid over a larger

and larger range.

The above procedures can be summarized in the flow chart

given on Figure 9.6. The computer code CELL-CORE is used for

the depletion calculations in this thesis research. In prac-

tice, one would like to use more elaborate physics models for

the depletion calculations; such as PDQ-5 or Citation, those

that would give more accurate values of discharge burnups,

power peaking and shut-down margins, etc.
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Figure 9. 6
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9.6 Results of Sample Cases A and B

The 1065 MWe Zion Type PWR is chosen for analysis. For

both cases the reactor starts with steady state condition

for 3.2 w/o, three-zone modified scatter refuelling,which pro-

duces 22750 GWHt per cycle. Economics parameters used in eval-

uating the objective function are given in Appendix B.

Sample case A consists in finding the optimal combin-

ation of batch fraction f's that produces the same amount

of energy, 22750 GWHt, in each cycle for five succeeding cycles

and satisfies the 45 or 50 MWD/kg maximum allowable discharge

burnup. Table 9.7 shows the optimal set of batch fractions,

for the 45 MWD/kg case. TCR is the objective function based

on actual energy production predicted by the regression equa-

tions, while TCC is the objective function calculated by

CELL-COCO. The last two columns on the right shows the values

of TCR and TCCC after correcting for differences in cycle

energy between the actual values and the target values.

Case AAO is the base line case in which the reactor con-

tinues to refuel with 3.2 w/o reload enrichment and three-zone

modified scatter refuelling. It serves as a standard with

which other cases are to be compared.

Case AAl with an adjusted cost of $87.06 million is the

optimal solution for this problem with burnup constrained to

be less than 45 MWD/kg. The net savings is -$0.18 million (or

0.3%) over the base line case.

Table 9.8 shows the values of the predicted discharge

burnup based on Equation (8.6) and the actual discharge burnup

from CELL -CORE. The values of the predicted burnup



Reload Enrichments, Batch Fractions. Cycle Energies and Revenue Requirements for the

Various Lowest Cost Cases Using the Method of Polynomial Appr oximation Sample Case A

Cycle

E(w/o) 1 2 3 4 5
f
E ( GWH t)

Target
Energy

Case
Number

AAO e
f
E

AAI e
f
E

AA2 e-
f
E

AA3 e
f
E

AA4 C-
f
E

AA5 e-
f
E

22750.

3.200
0.333
22750.

3088
00293
22690.

3.88
0.293
22690.

3.23
0.33
22850.

3.88
0.293
22690.

3.23
0.33
22850.

22750. 22750. 22750. 22750.

3.200
0.333
22750.

3033
0.293
22840.

3.29
0.293
22700.
3.88
0.293
22870.
3.33
0.293
22840.

3.88
0.293
22870.

3.200
0.333
22750.

3.45
0.293
22560.

3.45
0.293
22460.

3.33
0.293
22860.

3.45
0.293
22560.

3.33
0.293
22860.

3.200
0'333
22750.
3.54
0.293
22920.

3.54
0.293
22880.

3.54
0.293
22960.

3.54
0.293
22920.

3.54
0.293
22960.

3.200
0.333
22750.

2.94
0.333
23030.
3.45
0.293
22830.

2.57
0.33
20800.

2.6?
0.373
23620.

3008
0.293
21190.

Revenue Requirement

For Actual Energy Corrected for
Target Energy

Poly-
nomial CELL
Appro- COCO
ximation

87.30 87.24

87.09 87.13

86.94 87.00

86.76 86.81

87.34 87.33

86.88 86.91

Poly-
nomial CELL
Appro- COCO

6ximation
1 Difference)

87.30
(+.o6)

87.02
(-.04)

87.04
(-.06)

87.11
(-.05)

87.11
(+.01)

87.13
(-.03)

87.24

87.06

87.10

87.16

87.10

87.16

r\)

B" =45MWD/KgTable 9.7



B'=45MWD/Kg

Average Discharge Burnup for the Sublot Experiencin the Highest Exposure for Sample

Case A Calculated by (1) Polynomial Approximation Based on Regression Equations

(2) CELL-CORE Depletion Calculation

-2 -1 0

Method

(1) 31.5
(2) 31.5

(1) 38.6
(2) 38.9

(1) 38.6
(2) 38.9

(1) 31.5
(2) 31.6

(1) 38.6
(2) 38.9

(1) 31.5
(2) 31.6

31.5
31.5

38.6
38.6

38.6
38.6
38.6
38.9
38.6
38.6
38.6
38.9

31.5
31.5
38.6
38.8

38.6
38.8
38.6
38.6
38.6
38.8
38.6
38.6

MWAID/Kg
31.5
31.5
1414.2
44.9

44.2
41.9

38.8
39.2

441.2
44.9

38.8
39.2

2- -

31.5
31.5

39.4
39.14

39.4
38.7
44.2
145.0

39.4
39.9
1414.2
44.7

31.5

40.9 41.2

40.9

39.3

40.9

39.3

Batch
Number

Case
Number

AAO

AA1

AA2

AA3

AA4

AA5

14

31.5

5-

31.5

36.1

33.3

37.8

41.2

144.2

41.2

41. 2

H

Table 9. 8
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for batches discharged after the planning horizon are esti-

mated based on end conditions pre-specified in Section 9.2.

No corresponding values are given from CELL-CORE. It can be

seen that for most cases, the error between estimated and

actual burnups are less than 5%.

Table 9.9 shows the results for the case of

50 MWD/kg maximum allowable burnup. Case AB1 with an adjusted

cost of $86.90 million is the optimal solution, with a net

savings of 0.34 million, or 0.39% over the base line case.

Table 9.10 shows the burnup values. For 50 MWD/kg maximum

allowable burnup, it is possible to refuel with batch frac-

tion =0.253 for all cycles. But due to the high initial

enrichment required for Cycle 1, it is not economical to do

so. Hence, in this case of 50 MWD/kg burnup limit, the optimal

solution is not given by the strategy with the smallest feasi-

ble batch fraction, whereas the previous case of 45 MWD/kg

burnup limit, the optimal solution is dictated by burnup

constraints.

Sample case B consists of finding the optimal com-

bination of batch fraction f's that produces the following

energy requirements and satisfies the 45 or 50 MWD/kg maximum

allowable discharge burnup.

Cycle energy requirements for sample case B are

E1 =25450 GWHt, E2 =3O44OGWHt, E3= 2185OGWHt, E4 =19340GWHt

E =20880 GWHt



Reload Enrichments,
Various Lowest Cost

Bn= 50MWDh/V
Table.9

Batch Fractions, Cycle Energies and Revenue Requirements for the
Cases Using the Method of Polynomial Approximation Sample Case A

3 4e (w/o) -T
f
E (GWH t)

Target

Case Energy
Number
AAO E

f
E

AB1 C
f
E

AB2 G
f
E

AB3 6
f
E

AB4 e
f
E

AB5 6
f
E

AB6 6
f
E

AB7 G
f
E

22750. 22750.

3.2
0.333
22750.

3.88
0.293
22690.

3.88
0.293
22690.

3,88
0.293
22690.

3.88
0.293
22690.

3.88
0.293
22690.

3.88
0.293
22690.

3.88
0.293
22690.

3.2
0.333
22750-.
4.27
0.253
23000.
4.27
0.253
23000.

3.33
0.293
22840.

4.27
0.253
23000,

3.29
0.293
22700.

3.29
0.293
22700,

4.27
0.253
23000.

5

22750, 22750. 22750.

3.2
0.333
2275011

3.42
0.253
22480.
2.76
0.293
22510.

3.45
0.293
22560.

2.77
0.293
22510.

3.45
0.293
22400.

3.45
0*293
22460.

3.42
0.253
22480.

3.2
0.333
22750.

3.95
0.253
23100.

3.77
0.293
23130.

3.54
0.293
22920,

3.74
0.293
22980.

4.50
0.253
23000.

3.54
0.293
22880.

3.95
0.253
23090.

3.2
0.333
22750.
2040
0.293
20500.

3.45
0.293
23070.

2.94
0.333
23030.
2.40
0.333
19730.
2.66
0.293
22300.

3.45
0.293
22830.

3.61
0.253
23250.

Revenue Requirement
For Actual Energy Corrected for Target

Energv
Poly-
nomial CELL-
Appro- COCO
ximation 14

87.30 87.24

86.43 86.34

87.20 87.33

87.09 87.13

86.26 86.37

86.82 86.89

86.94 87.00

87.23 87.14

Poly-
nomial CELL-
Appro- COCO
ximation

(Difference)

87.30 87.24
(+0,06)

86.99
(+0.09)

87.01
(-0.13)

87.02
(-0.04)

87.02
(-0.11)

87.03
(-0.07)

87.04
(-0.06)

87,04
(+0.09)

86.90

87.14

87.06

87.13

87.10

87.10

86.95
N)

g

Cyc le
2



b =50MWD/Kg

Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample

Case A Calculated by(1) Polynomial Approximation Based on Regression Equations

(2) CELL-CORE Depletion Calculation

-2 -1 0

Method

Batch
Number

Case
Number

AAO

AB1

AB2

AB3

AB4

AB5

AB6

31.5
31.5
38.6
38.4

38.6
38.4

38.6
38.6
38.6
38.4

38.6
38.6
38.6
38.6
38.6
38.4

I

MWD/KA
31.5
31.5
38.6
38.1
38.6
38.5

38.6
38.8
38.6
38.5
38.6
38.8
38.6
38.8
38.6
38.1

31.5
31.5
44.2
44.4

44.2
45.2

44.2
44.5

44.2
44.9
44.2
44.4

2 3

31.5
31.5
47.4
46.9

39.4
39.4
47.4
47.3

39.4
38.4
39.4
38.7
47.4
47.0

31.5 31.5

40.4

34.7

40.9

34.7

40.9

40.Q

40.4

44.4

43.2

41.2

43.2

5

31.5

31.8

36.1

31.9

4Q.6 31.3

41.2 ho.6

44.4 38.2

(1) 31.5
(2) 31.5

(1) 38.6
(2) 38.9

(1) 38.6
(2) 38.9

(1) 38.6
(2) 38.9

(1) 38.6
(2) 38.9

(1) 38.6
(2) 38.9

(1) 38.6
(2) 38.9

(1) 38.6
(2) 38.9

AB7

Table 9.10
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Table 9.11 shows the three lowest cost combinations of

TCR for the case of 45 MWD/kg burnup limit. Case BAO is

the reference case in which the batch fractions are held con-

stant at the 0.33 level and is used as a standard for com-

paring other cases.

Case BAl with an adjusted cost of $89.65 million is the

optimal solution for case B with burnup constraint equal

to 45 MWD/kg. The net savings is 0.28 million compared to

BAO. Table 9.12 shows estimated and actual burnup values for

cases BAl-BA3. Table 9.13 shows the set of optimal solutions

for the case of 50 MWD/kg burnup limit. Case BB5 with an

adjusted total cost of $89.68 million is the optimal solution.

However, BB5 is not cheaper than BAl despite the more relaxed

burnup constraints. Due to the fact that the objective

function is so flat near the optimal, the regression equa-

tions with a +0.1% error cannot always succeed in identifying

"the optimal solution" among the neighboring sub-optimals.

Table 9.14 shows estimated and actual burnup values for cases

BBl-BB5.

From case BAl or BB5, one can identify some interesting

relations between optimal batch fractions and cycle energy

requirements. Where the cycle energy level is high, the op-

timal batch fraction is relatively large, and conversely.

This phenomenon has already been observed in Figure 9.4 and

in the steady state results in Figure 6.5. Since this case

is similar to the first example given in J. Kearney's thesis(Kl),

it is possible to make a comparison between the Method of

Dynamic Programming and the Method of Polynomial Approximation.



Table 9.11 BO =

Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for the

Various Lowest Cost Cases Using the Method of Polynomial Approximation Sample Case B

Cyc le

1 2

25450. 30440.

3 4 5

21850. 19340. 20880.

Revenue Requirement

For Actual Energy Corrected for Target
Energy

Poly-
nomial
Appro-
ximation

CELL-
Coco

Poly-
nomial
Appro-
ximation

CELL-
COCo

Number
BAO

f
E

BA1 Q
f
E

BA2 G
f
E

BA3 E
f
E

3.73
0.333
25510.

3.74
0.333
25520.

3.74
0.333
25520.

3.74
0.333
25510.

4.36
0.333
30470.

3*73
0.373
30100.
3.73
0.373
30100.
4.36
0.333
30470.

2.40
0.333
22170.
3.25
0.293
22030.

3.24
0.293
22030.
2.70
0.293
21270.

2*76
0.333
20280.

3*68
0.253
19200.
2*93
0.293
19250.
2.66
0.333
19740.

3.45
0.333
17220.
2.71
0.293
20150.

2.77
0.333
19890.

2.37
0.373
17310.

(Difference)

89.36 89.37

89.53 89.36

89.50 89.36

88.88 88.91

E (w/o)
f
E(GWHt)

KMWD/Kg

Target
Energy

Case

89.92
(-0.01)

89.83
(+0.18)

89.83
(+0.13)

89.87
(-0.02)

89.93

89.65

89.70

89.89

N)
r.)



B4 =45MWD/Kg

Average Discharge Burnup for the Sublot Experiencing the Hiihest Exposure for Sample

Case B Calculated by (1) Polynomial Approximation Based on Regression Equations

(2) CELL-CORE Depletion Calculation

-2 -1 0 1

Method

(1) 31.5
(2) 31.5

(1) 31.5
(2) 31.5

(1) 31.5
(2) 31.5

(1) 31.5
(2) 31.5

31.5
31.8
31.5
31.8
31.5
31.8
31.5
31.8

31.5
32.8
31.5
32.8
31.5
32.8
38.6
39.3

37.2
37.9
43.0
44.9
43.0
45.3

2

MWD/Kg
43.9
42.2

43.0
44.5

113.
41.5

4

31.Q - 35.0
31.9 35.0
28.5 32.9

39.0 12.6

39.0

34.4

36.3

3)h.1

Batch
Number

Case
Number

BAO

BAl

BA2

BA 3

_5-

41.4
41.9
34.5

35.0

31.7

Table 9.12



Table 9.13 B0 =50MWD/Kg
Reload Enrichments. Batch Fractions, Cycle Energies and Revenue Requirements for the

Various Lowest Cost Cases Using the Method of Polynomial Approximation Sample Case B

Cycle
E(w/o) 1 2 3 _4 5
f
E (GWHt)

Target25450.
Energy

TKO~-4
f
E

BB1 e
f
E

BB2 6
f
E

BB3 6
f
E

BB4 e
f
E

BB5 *
f
E

3073
0.333
25510.

3.74
0.333
25510.

4.55
0.293
25340.

3.74
0.333
25510.
4055
0.293
25340.

4.55
0.293
25340.

4.57
0.293
25450.

f
E

30440. 21850. 19340. 20880.

4.36
0.333
30470.
4.36
0.333
30470.

3079
0.333
30310.
4.36
0.333
30470.

3.79
0.333
30310.
3079
0.333
30310.
3.26
0.373
30440.

2.40
0.333
22170.

2.70
0.293
21270.

2.91
0.293
21790.
2.70
0.293
21270.

2.91
0.293
21790.

3.72
0.253
21790.

4.31
0.253
21850.

2.76
0.333
20280.

3088
0.253
19180.

3087
0.253
19480.

3.10
0.293
19260.

3009
0.293
19320.

3.45
0.333
17220.
2.27
0.293
17930.
2061
0.293
20020.

2.37
0.333
17480.

2.71
0.333
19930.

2.93 2.93
0.253 0.293
19130.20110.
2.83 3.26
0.253 0.293
19340. 20880.

Revenue Requirement
For Actual Energy Corrected for Target

Energy
Po ly-
nomial CELL-
Appro-
ximation.

COCO

(
89.36 89.37

(

88.66 88.71

89.35 89.38

88.61 88.67

89.32 89.38

89.31 89.27

89.94 89.82

Po ly-
nomial CELL-
Appro- COCO

6 ximation

Difference)

89.92
-0.01)

89.67
(-0.05)

89.67
(-0.04)

89.71
(-0.05)

89.71
(-0.05)

89.72
(+0.04)

89.94
(+0.12)

89.93

89.72

89.71

89.76

89.76

89.68

89.82

Case

B*

(ZO

11111191111 PIP PIN



B. -COMWD/Kg

Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample

Case B Calculated by (1) Polynomial Approxiamtion Based on Regression Eauations

(2) CELL-CORE Depletion Calculation

31.5
31.5
31.5
31.5

(1) 38.6
(2) 39.2

(1) 31.5
(2) 31.5

38.6
39.2
38.6
39.2
38.6
39.2

-1

31.5
31.8
31.5
31.8
38.6
39.8
31.5
31.8
38.6
39.8
38.6
39.8
31.5
31.3

142.9 36.3

Notice that +he B*=50MWD/Kg limit only applies to the estimated burnup values
calculated by t nnlynomial regression equation. The +qet that actual burnup values
sometimes Pxceed 50 MWD/Kg indicates that the esti.'ated burnup values are only approximato,

-2. 0

Method

1

(1)
(2)

(1)
(2)

Batch
Number

Case
Number

BAO

BB1

BB2

BB3

BB4

BB 5

4

35.0
32.9
44.3

44.1

31.9
28.5
314. 1

36.2

311.4

2 :

-MWD/Kg-
43.9
42.2

43.5
414.0
48.2
50.2
43.5
44.7
43.5
414.1
39.1
39.5

31.5
32.8
38.6
39.3
38.6
39.7
38.6
39.3
38.6
39.7
38.6
39.4
38.6
39.9

37.2
37.9
43.0
44.9
49.7
52.2

43.0
45.6
49.7
52.7
49.7
51.7

50.7
52.3

(1)
(2)

(1)
(2)

(1)
(2)

41 .
41.9
30.9

33.7

31.7

3h.6

47.8
46.3

35.5
32.5

39.1
38.4

Table 9 .14
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Case BI is the optimal solution arrived at by Dynamic Pro-

gramming. BI is more expensive than BAl by $0.17 million

dollars. However, the total savings of BI from the base

line BAO is only $0.11 million dollars. This is in great

contrast with the $2.5 million dollars saving reported by

Kearney. The difference is probably due to the different

methods of calculating TC.

Finally, it is important to notice that in the vicinity

of "the optimal solution", there are many sub-optimal solu-r

tions with roughly the same total cost. Some of these

solutions may have higher engineering margins in terms of

discharge burnup, power peaking and shut-down reactivity.

Hence,,the final choice should be based on these consider-

ations as well.

9.7 Estimates of Burnup Penalty w

The concept of burnup penalty wwas introduced in Chap-

ter 6,and it is defined for the non-steady state case by

Equation (7.10) in Chapter 7. For each cycle, there would be

a separate value for burnup penalty wc, which can be inter-

preted as the additional cost that would be incurred if the

burnup limitation on Cycle c were decreased by one unit.

Since the actual optimization algorithm solves by ex-

haustive search instead of by Equations (7.10) and (7.11),

burnup penalty is not calculated explicitly. However, the

order of magnitude of wrc can be infered by inspecting

Tables 9.7, 9.8, 9.9, and 9.10.

Tables 9.8 and 9.10 show that the discharge burnup is
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well within the limit for almost all of the batches except

one in all cases. In other words, a single batch in each

case controls the values of the batch fractions. Hence,

by definition, the burnup penalties for those cycles not on

the border of the burnup constraints have the value zero.

The burnup penalty for the controlling batch can be

estimated by

c AB"
c

where TU(E,*) is the optimal solution for and AO

and TU(Et**) is the optimal solution for Es and A*+ABO
C

For sample case A, 'r2 for the second fuel batch is given by

the difference in TR between case AAl and AB1 divided by

the increment in B.

2 5(872/86.98)0106$ - 0.4 = 0.008-10 6 $/(MWD/Kg)2= 5(MWD/Kg) 5

This value of w is much smaller than that given in

Figure 6.7 for the steady state case. Similar results are

obtained for sample case B. Hence there is very little

incentive to increase the maximum allowable burnup limit

above the 45 MWD/Kg level.

9.8 Incremental Cost

Incremental cost of energy is defined as the additional

cost that would be incurred if an additional unit of energy

is produced in an optional fashion. In other words, if the reactor
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is optimized for one set of cycle energy ES
4.s -.- -. S 40.

TC(E ,f*) =minimum of TC(E ,f) with respect to f

and B0 <B (s P)
and for the second set of cycle energies, ES +AEc the

reactor is reoptimized.

T6(Es +AE ,ft) = mininum of TC(Es +AEc,
C C

with respect to f

and B>B (Es +AE , ft)
then the incremenial costcof energy from the c-cycle

is given by

Tgs+AE ,t)-T(E ,f*)
Ac'2 cE (9.5)

c

The values of TO are obtained from the regression equations.

In principle, one can use the. actual TO calculated from

CELL-COCO; However, for the purpose of this calculation, the

additional efforts involved in doing all the depletion analysis

are not justified. Tables 9.15, 16 show the values of fd($s

and Tf(I*+AEc,Pt) for various AEc for sample case A. Also

shown are the various f* and f . For many cases, f are

seen to be the same as ft For these cases, more or less

energy can be generated using the same combination of f*

However, for those cases that ft are not equal to f*

either the f* are not the least costly combination at the

new set of E +AE , or the f* are not feasible in

terms of discharge burnup. For AE c> 0 , feasibility con-

siderations change the ?* to ?t ; on the other hand,

for AE c< 0 , economics considerations cause the change.

Tables 9.15, .16 also show the incremental cost for various cycles

as a function of energy. In general, the incremental cost



Table 9.15

Calculation of Incremental Cost of Energy

Using Regression Equations. Sample Case A

Burnup Limit B = 45MWD/Kg

Batch Fraction for Cycle

1 2 3 14

Base
Case 0.293 0.293 0.293 0.293 0.333
AAl

Positive Energy Change
E=1000GWHt
in Cycle

Revenue Incre-
Requirement mental

5 Cost
mills/--10 $- KWHe

87.01872

1 0.333 0.293 0.293

2 0.293 0.293 0.293

3 0.293 0.293 0.293

4 0.293 0.293 0.293

5 0.293 0.293 0.293

Negative Energy Change
AE=-1000GWHt
in Cycle

1 0.293 0.293 0.293

2 0.293 0.253 0.253

3 0.293 0.293 0.293

4 0.293 0.293 0.293

5 0.293 0.293 0.293

0.293 0.333 87.5284

0.293 0.333 87.4265

0.293 0.333 87.3890

0.293 0.333 87.3170

0.293 0.333 87.2957

0.293 0.333 86.5642

0.253 0.293 86.5848

0.293 0.333 86.6605

0.293 0.333 86.7226

0.293 0.333 86.7443

1.56

1.22

1.15

0.91

0.845

1.395

1.33

1.095

0.905

o.84
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Table 9.16

Calculation of Incremental Cost of Energy

Using Regression Equations. Sample Case A

Burnup Limit BO= 50MWD/Kg

Batch Fraction for Cycle Revenue Incre-
Require- mental

1 2 3 4 5 ment Cost
Mills/

--40 $- KWH

Base
Case 0.293 0.253 0.253
AB1

Positive Energy Change
AE01000GWHt
in Cycle

1 0.293 0.253 0.253

2 0.293 0.293 0.293

3 0.293 0.253 0.293

4 0.293 0.253 0.253

5 0.293 0.253 0.253

Negative Energy Change
AE=-1000GWHt
in Cycle

1 0.293 0.253 0.253

2 0.293 0.253 0.253

3 0.293 0.253 - 0.253

4 0.293 0.253 0.253

5 0.293 0.253 0.253

0.253 0.293 86.9890

0.253 0.293 87.4642

0.293 0.333 87.4265

0.293 0.293 87.3848

0.253 0.293 87.3047

0.253 0.293 87.2748

0.253

0.253

0.253

0.253

0.253

0.293

0.293

0.293

0.293

0.293

86.5345

86.5848

86.5860

86.6761

86.7064

1.46

1.335

1.21

0.965

0.875

1.395

1.24

1.24

0.955

0.865
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increases as more energy is produced. However, for those

cases in which ?*# 1 , incremental cost would have a

negative slope. In the limit that AEc 0 X c would

approach infinity for those cases that i* . This

is mainly due to the fact that in the present model one can

only change batch fraction by a discrete amount, and the

objective functions of the two discrete combinations of

and Pt have a finite difference. If batch fractions

could be varied in a continuous fashion, these singularities

would not be present and the incremental cost would vary

continuously in a pattern similar to Figure 6.8.

Table 9.1V and Table 9.18 show values of the objective

function and the incremental costs for various AEc for

sample case B. The same phenomenon of negative sloping

incremental cost is observed.

9.9 Summary and Conclusions

Using cycle energies P and batch fractions I as

independent variables, a set of regression equations based on

polynomials in these independent variables hasbeen obtained.

These predict the objective function to an accuracy of within

+ 0.1% and average discharge burnup to an accuracy of within

+10%. An optimization algorithm based on the principle of ex-

haustive search is developed. For every specified set of cycle

energies, this algorithm results in five or more sub-optimal

cases that bracket the optimal solution. These cases can be

analysed further by more elaborate depletion codes.

The results of the regression analysis and the optimiza-

tion procedures indicate that the objective function for



Table 9.17

Calculation of Incremental Cost of Energy

Using Regression Equations. Sample Case B

Burnup Limit B = 45MWD/Kg

Batch Fraction for Cycle

1 2 3

0.333 0.373 0.293

4 5

Revenue
Requirement

Incre-
mental
Cost

Mills/
KWHe

0.253 0.293 89.8251

Positive Energy Change
AE=1000GWHt
in Cycle

1 0.333 0.373 0.293

2 0.333 0.373 0.293

3 0.333 0.373 0.293

4 0.333 0.373 0.293

5 0.333 0.373 0.293

Negative Energy Change
AE=-1000GWHt
in Cycle

1 0.333 0.373 0.293

2 0.333 0.373 0.293

3 0.333 0.373 0.293

4 0.333 0.373 0.293

5 0.333 0.373 0.293

0.253 0.293 90.2916

0.253 0.293 90.2424

0.253 0.293 90.1845

0.293 0.333 90.1255

0.263 0.293 90.1049

0.253 0.293 89.3766

0.253 0.293 89.4070

0.253 0.293 89.4773

0.253 0.293 89.5224

0.253 0.293 89.5484

Bas e
Case
BAl

1.435

1.28

1.10

0.91

0.915

1.375

1.28

1.07

0.925

0.85
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Table 9.18

Calculation of Incremental Cost of Energy

Using Regression Equations. Sample Case B

Burnup Limit B = 50MWD/Kg

Batch Fraction for Cycle

4

Revenue

5

Incre-
Requirement mental

-10 $-

Cost

in Mills/

Base
Case
BBL1

0.333 0.333 0.293

Positive Energy Change
AE=1000GWHt
in Cycle

1 0.333 0.333 0.293

2 0.293 0.333 0.293

3 0.333 0.333 0.293

4 0.333 0.333 0.293

5 0.333 0.333 0.293

Negative Energy Change
AE=-1000GWHt
in Cycle

1 0.293 0.333 0.293

2 0.293 0.293 0.253

3 0.333 0.333 0.253

4 0.333 0.333 0.293

5 0.333 0.333 0.293

0.253 0.293 89.6715

0.253 0.293 90.1380

0.253 0.293 90.0775

0.253 0.293 90.0309

0.253 0.293 89.9772

0.253 0.293 89.9513

0.253 0.293 89.1628

0.253 0.293 89.1515

0.253 0.293 89.3229

0.253 0.293 89.3687

0.253 0.293 89.3947
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1 2 3

1.435

1.10

0.93

0.86

1.56

1.60

1.07

0.845
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cas-es A and B is insensitive to batch fraction changes, if

the same cycle energies are produced. Hence, engineering

considerations should be the principal criteria in the

selection process for those problems. Since batch fraction

cannot be varied continuously, incremental cost of energy

varies in a series of discrete jumps. This problem would

have been less severe if the increments in batch fraction

had been made smaller.
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CHAPTER 10.0

CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

The following conclusions are obtained from this

thesis research.

(1) The Inventory Value Method for evaluating worth

of nuclear fuel inventories to be used in

calculating finite planning horizon revenue

requirement is adequate for the purpose of

scheduling energy and nuclear in-core

optimization.

(2) Three methods are proposed for calculating

incremental cost of energy for the fixed batch

fraction case. The Linearization Method

and the Inventory Value method for calculating

incremental cost -of energy are both suitable

for the initial stages of optimal energy

scheduling. The Rigorous Method is very time

consuming and expensive and should be used only

in the final stages of optimal energy scheduling.

(3) For the problem of nuclear in-core optimization

under steady state conditions with variable

batch fractions and reload enrichments, the

optimal solution is practically always on the

boundary of the burnup constraints. Hence,

there are strong incentives to increase the

burnup limits.
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(4) For the problem of nuclear in-core optimization

under non-steady state conditions, the Method

of Piece-Wise Linear Approximation is applicable

for the cases where there are large variations

of objective function near the optimal solution.

It is not applicable for economic situations where

there is a broad region of optimality.

(5) The Method of Polynomial Approximation gives

accurate values of the optimal solutions, even

though the objective function is very flat

near the optimum.

(6) Since the objective function is insensitive to

large variations in batch fractions, selection of

the optimal solution can be based primarily on

other considerations, such as engineering margins.

10.2 Recommendations

The depletion code CELL-CORE should be modified in

order that the batch fraction can be varied continuously.

This modification would enable the efficient usage of the

Method of Linear Approximation instead of Piece-Wise Linear

Approximation or Polynomial Approximation. Once the optimal

batch fraction in the continuum is located, the realistic

batch fraction to be used in refuelling would be given by

the number of integral fuel assemblies which is closest

to the continuum optimal solution.



Finally, the algorithm of optimal energy schedule

should be modified so that the polynomial equations from

regression analysis could be used directly, instead of the

present indirect usage which require intermediate calculations

of incremental cost. It is recommended that a quadratic

programming algorithm, or an even higher order programming

algorithm should be used in the optimal energy scheduling

procedures, so that the higher order derivatives can be

used directly.

241
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Brief Description of the

Code Name

MOVESCIV

Time of

Time of
Development

Early 1971

Appendix A

Several Versions of CORE

Description of
Refuelling Options

N-zone modified
scatter refuelling
(Batch fraction
cannot be changed
in adjacent cycles)

Homogenization
of Fuel Batches

Fuel properties
homogenized only
once when they are
scattered from the
outer annulus into
the inner region.

Economics
Calculations

January 1972

April 1972

November 1972

(same as MOVESCIV except it is much faster)

Non-integral batch
fraction. Variable
batch fraction in
adjacent cycles

Fuel properties in
the inner region are
homogenized at the
beginning of every
cycle

(same as CORE(April 1972)) Fuel cycle
ca)culations
on per batch
basis. Ending
inventory
calculated by
Inventory
Value Method

COPE

CORE

Coco
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Appendix B

Econonips and FuelCycle Cost Parameterq

Fuel Cycle Financi.ng

Investor-owned utility

Fraction of bond financing 0.55

Fraction of preferred stock 0.10

Fraction of common stock 0.35

Rate of return on bonds, fraction per year 0.08

Rate of return on preferred stock, fraction

per year 0.08

Rate of return on common stock, fraction

per year 0.13

Tax rate 0.50

Government-owned utility

Fraction of bond financing 1.00

Rate of return on bonds, fraction per year 0.0755

Lead Times: Time of transaction prior to the

beginning of irradiation , in days

Purchase of uranium concentrate 127

Conversion of U3 08 to UF6  127

Enrichment 97

Plutonium purchase 97

Fabrication 40



Lag Times: Time of transactions after the end of the

irradiation, in days

Shipping 182

Reprocessing 212

Conversion of UNH to UF 6  212

Credit for reprocessed fuel 212

Lag time for receipt of revenue:

60 days after the mid-point of the generation period;

one single payment

Charges for materials and services

Price of U 3 0 8 , $/ib 8.00

Conversion of U3 08 to UF 6, $/kg U 2.20

Enrichment $/kg SWU 32.00

Enrichment plant tails composition, w/o U-235 0.25

Fabrication, $/kg U 70.00

Shipping, $/kg initial fuel metal 4.00

Reprocessing, $/kg initial fuel metal 30.57

Conversion of UNH to UF6, $/kg U 5.60

Process Yields

Fabrication 0.99

Reprocessing 0.99

Conversion of U 308 to UF6  0.995

Conversion of UNH to UF6  0.995

#Consistent with a natural UF 6 price of $23.46/kg U
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Appendix C
NOMENCLATURE

TO Revenue requirement

TCA

TCB

TCs

-N
TCC

TU1

TC

TU

Revenue

Revenue

Revenue

Revenue

Revenue
nuclide

Revenue
service

Revenue

Revenue
nuclide

Revenue
service

Revenue

Revenue

R Revenue requirement for a batch

R Revenue requirement for Reactor A Batch b

R Revenue requirement for Reactor B Batch bb

Z. Component i of the various fuel cycle expenses,$

Z Nuclide component of the fuel cycle expense
1

Z Service component of the fuel cycle expense
1

ZU Cost of U feed as UF6
ZUCredit for U discharge as UF6

ZF Fuel fabrication cost

requirement

requirement

requirement

requirement

requirement
component

requirement
component

requirement

requirement
component

requirement
component

requirement

requirement

for Reactor A

for Reactor B

for nuclear sub-system

for the indefinite horizon

for the indefinite horizon

for the indefinite horizon

for planning horizon I

for planning horizon I

for planning horizon I

up to and including Cycle 1

for reactor r in the planning horizon
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Zg . Shipping cost

Z Reprocessing cost

ZC Conversion cost

Z Pu Plutonium credit

V Value of nuclear fue]

Vi Value of nuclear fuel at the begininitialhorizon I

VfIna Value of nuclear fuel at the endohorizon I

V Value of nuclear fuel at hte end o
horizon I

Vb(t1 1.) Value of nuclear fuel batch b at t

X t Incremental cost of energy

A rc Incremental cost of energy for react

Ac Incremental cost of energy for cycle

7 Burnup penalty

Tc Burnup penalty for cycle c

7b Burnup penalty for batch b

p Negative of burnup penalty (-n)

Sc Enrichment for cycle c w/o U-235

fc Batch fraction for cycle c

B Average discharge burnup

Bc Average discharge burnup for cycle c

Bb Average discharge burnup for batch b

BO Maximium allowable burnup limit

ning of planning

f planning

f planning

ime ti,

or r cycle c

c

Initial state of the reactor at the beginning of
time horizon

Corporate income tax rate

Effective cost of money, per year

?1

T

x
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t Time

tb Time when batch b is charged to the reactor

ti Time when fuel cycle expense i is paid

tc Time when cycle c begins

t Time when fuel cycle expense j in time horizon I is naid

tj, Time when planning horizon I begins

tI,, Time when planning horizon I ends

Coefficient matrix of derivative of energy with respect

to enrichment

a Derivative of revenue requirement with respect to
enrichment of Cycle c

Derivative of revenue requirement with respect to
c batch fraction of Cycle c

ykc Derivative of energy for Cycle k with respect to
enrichment of Cycle c

6 Derivative of energy for Cycle k with resnect to
kc batch fraction of Cycle c

(kc Derivative of discharge burnuo of Cycle k with respect
to enrichment of Cycle c

kc Derivative of discharge burnuo of Cycle k with respect
to batch fraction of Cycle c

E(nb )Burnup coefficient for a batch of fuel that has been
irradiated for nb cycles

a c Multiple regression coefficient

cMultiple regression coefficient

ye Multiple regression coefficient

c Multiple regression coefficient

Superscripts

*t Denote optimal values
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Superscripts

+ Coefficients evaluated at positive values

- Coefficients evaluated at negative values
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