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ABSTRACT

This thesis is concerned with development of methods
for optimizing the energy production and refuelling decision
for nuclear power plants in an electric utility system
containing both nuclear and fossil-fuelled stations. The
objective is to minimize the revenue requirements for
refuelling the power plants during the planning horizonj; the
decision variables are the energy generation, reload
enrichment and batch fraction for each reactor cycle; the
constraints are that the customer's load demand, as well
as various other operational and engineering requirements
be satisfied. This problem can be decomposed into two
sub-problems. The first sub-problem is concerned with
scheduling energy between nuclear reactors which have
been fuelled in an optimal fashion. The second sub-problem
is concerned with optimizing the fuelling of nuclear reactors
given an optimized energy schedule. These two sub-problems
when solved iteratively and interactively, would yield an
optimal solution to the original problem.

The problem of optimal energy scheduling between
nuclear reactors can be formulated as a linear program. The
incremental cost of energy is required as input to the linear
program. Three methods of calculating incremental cost are
considered: the Rigorous Method, based on the definition
of partial derivatives, is accurate but time consuming; the
Inventory Value lMethod and the Linearization Method, based
respectively on equations of inventory evaluatilon ahd
linearization, are less accurate, but efficient. The latter
two methods are recommended for the early stages of optimiza-
tion.

The problem of optimizing the fuelling of nuclear
reactors has been solved for two cases: the special case
of steady state operation, and the general case of non-
steady-state operation. The steady-state case has been
solved by simple graphic techniques. The results indicate



that reactors should be refuelled with as small a batch
fraction as allowed by burnup constraints. The non-steady
case has been solved by polynomial approximation, in which
the objective function as well as the constraints are
approximated by a sum of polynomials. The results indicate
that the final selection of an optimal solution from a set
of sub-optimal solutions is primarily based on engineering
considerations, and not on economics considerations.

Thesis Supervisors: Manson Benedict
Institute Professor

Edward A. Mason
Department Head and Professor of
Nuclear Engineering
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CHAPTER 1.0
SUMMARY AND CONCLUSIONS

15
1.1 Framework for Analyzing the Overall

Optimization Problems of Mid-Range Utility Planning

This thesis 1s concerned with development of methods
for optimizing the energy production and refuelling decision
for nuclear power plants in an electric utility system
containing both nuclear and fossil-fueled stations. The
time period under consideration is the so-called mid-range
period from five to ten years, within which nuclear fuel
management can be varied, for available nuclear plants.

The overall optimization problem of mid-range utility
planning can be formulated as follows: given a load forecast
for a given electric utility over the span of the planning
horizon, given the composition of the electric utility in
terms of the capacity, type and location of each generating
unit, find the optimal schedule of operation 1n terms of
energy produced by each plant and the reload enrichments and
batch fractions for each nuclear plant such that the revenue
requirements are minimized and the system constraints and
demands are satisfied. The revenue requirement 1is chosen as
the objective function, because it 1s favored by many electric
utilities (CEl, ggf;) and is relatively simple to calculate.

The overall optimization problem is first decomposed
into two sub-problems: the first sub-problem consists of
finding maintenance and refuelling schedules that satisfy the
system constraints; the second sub-problem consists of finding
the optimal energy production, reload enrichments and batch

fractions for a given time schedule. A computer program for
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solving the first sub-problem has been developed (CE2). The

second sub-problem, formally called system optimization for
a given refuelling and maintenance time schedule,is further
decomposed into two second level sub-problems.

The first sub-problem at the second level is formally
called the optimal energy scheduling problem and consists

of finding the optimal energy production of each plant,

The second sub-problem at the second level is formally
called the nuclear in-core optimization problem and consists
of finding the optimal reload enrichments and batch fractions
given an optimal schedule of energy production.

These two sub-problems are to be solved interactively
and iteratively until a converged solution of energy
production from each plant reload enrichments and batch
fractions are obtained. Then the same procedures are repeated
for every feasible maintenance and refuelling time schedule.
The schedule with the lowest revenue requirement is optimal.

The optimal energy scheduling problem can be formulated
mathematically a§ R

Minimize TcS ==TES°+Z;i§r1-(E§ -E?o) (1.1)

with respect to h§ R |

R
Subject to constraints ZLEg =E§ (1.2)
r

E?(AtJ-P?8760. (1.3)
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Where 1C S = ?evenue requirement for the system
in 3)
TC SO = revenue requirement for the system
evaluated for an initial feasible solution
(in $)
ET = energy production of unit r in time period
J J (in MWHe)
ETO = energy production for an initial feasible
J solution (in MWHe)
E§ = system demand for time period j (in MwHe)
Ag = duration of time period j (in hours)
pr = capacity of unit r (in Mie)
A = 1incremental cost of energy for unit r
rJ (in $/MWHe) and period j.

The crux of the optimal energy scheduling problem is how
to calculate the incremental cost.

For fossil fuel generating units, the incremental cost
of energy 1is given simply by the discounted fuel cost for an
additional increment of undiscounted energy production. For
nuclear generating units, the incremental cost of energy Arj
is given by the change in the revenue requirement for unit
r over the entire planning horizon due to an additional
increment of energy generated in time period j while holding

all the energy production in each of the remaining time

periods constant.

t)
rj AE§ (1L.h)

Where € ¥ and f¥ are the optimal reload enrichments
and batch fractions for the initial feasible solution
* and ft are the optimal reload enrichments and

E,. €
bdtch fractions for the perturbed solution E?' + AE? .
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For nuclear reactors, the revenue requirement depends
mainly on the total energy generated in a cycle, and only
weakly on the energy generation pattern within each cycle in
which the generation actually takes place. Therefore, under
optimal conditions all the incremental costs of energy pro-

duction within a given cycle have the same value.

rj ro for all 1 <f<i .. (1.k4a)

Various methods of calculating Arc will be described
in Sections 1.2 , 1.4 , 1.5 and 1.8 and in Chapters
3,5,6,9 of the thesis. However, except in Chapter 3 where
the optimal energy scheduling problem is solved for a
particularly simple case, the application of incremental
cost calculation in the optimal energy scheduling problem
is not considered in detail in this thesis. Use of
incremental costs in optimizing electric generation by
nuclear plants is discussed in detail by Deaton (D1).

The nuclear in-core optimization problem can be

formulated mathematically as

Minimize ‘ TCTY (E§ s eg, fg) (1.5)

with respect to ez , and fz

Subject to the constraints

sj"c.:l .
Z E}" = EZ © (1.6)
Jre



19

r,>r 3r, __.r 1.
F (e7,17) =E] (1.7)
BY (27, F) =n° (1.8)
where €§= reload enrichment for reactor r cycle c
er= vector of ez

f§= batch fraction for reactor r cycle c
FT= vector of fZ

Jrc= first time period in cycle ¢

EZ= energy for reactor r cycle c
FZ= a function of & and %
BZ= average discharge burnup for reactor r cycle c

B%= maximum allowable discharge burnup.

The general nuclear in-core optimization problem
considers variation of both reload enrichments and batch
fractions in arriving at the optimum solution. Before
solving this general problem, the special problem of varying
reload enrichments alone with fixed batch fractions will be
considered. This special problem is much easier to solve
and has practical applications. Section 1.2 and 1.4 deal
with this special problem for steady-state and non-steady
state cases respectively. Section 1.5 and 1.9 inclusive
deals with the general problem; first with the steady-state
case, and later the non-steady state cases.

Two reactors of different sizes are taken as examples:
the Zion type 1065 MWe PWR and the San Onofre type u3oAmwe
PWR. The depletion code CELL-CORE (Bl,Kl) is chosen to be the

standard tool of analysis; the costing code MITCOST1(Wl) and
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and depletion-costing code COCO(Wl) are used interchangeably

for the economics calculation.

1.2 Optimal Energy Scheduling Between Two Pressurized Water
Reactors of Different Sizes Operating in Steady-State
Conditions.

The problem analyzed in that of optimizing energy
production from two reactors each refuelled at pre-specified
dates with fixed batch fractions after steady-state
conditions have been reached. The optimum condition is
reached when the incremental cost of energy from a steady-
state cycle in one reactor equals the corresponding
incremental cost for the second reactor. These 1ncremental
costs were obtained by calculating the change in revenue
requirement for a steady-state cycle per unit change in cycle
energy.

The optimal way of operating this two reactor system
as demonstrated in Section 3.4 is to have both reactors generate

energy at the same incremental cost. Figure 1.2 shows the
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incremental cost versus the sum of energies generated by

the two reactors under the equal incremental cost rule.
The discontinuity point of the curve indicates that the
Zion reactor has reached its capacity limit, and from then on
any load increments goes to San Onofre. This curve can be
interpreted as the supply curve of the system. If the demand
curve 1s given, the intersection of the two curves glve the‘
value of the equilibrium incremental cost, which can be
used in turn to calculate the optimal energy production for
each of the reactors. A detailed discussion of internal supply
and demand curve is presented in Widmers' thesis(W2). Once
the optimal energy production of each reactor is know, the
corresponding reload enrichment can be found from Figure 1.3.
For this simple problem of steady-state operations,
.fixed batch fractions and specified time schedule, the
problem of optimal energy scheduling and nuclear in-core
optimization can be solved easily by a set of graphs. For
non-steady state operations, however, the calculation of
revenue requirement and incremental cost 1s much more
fcomplex. The following section indicates different ways of
calculating the ijective function under non-steady state

conditions.

1.3 Calculation of Objective Function for Hon-Steady State
Operations - .

Under non-steady state operating conditions, the physical
state of the reactor does not go through repetitive cycles.

Consequently, the end state of the reactor at the end of



RELOAD ENRICHMENT w wo

Figore |3

RE LOAD ENR\CHHENT

VS
cycLE ENE RG Y

REACTQR ENERGY
m ;19 GmHe./cuc.L.E.

A 1065 Mwe PUR
B 530 MWe PR

24



25

the planning horizon will not necessarily be the same as
the initial state at the beginning of the planning horizon.
Consequently, in order for the optimization to be effective,
an"end-effect "correction must be incorporated into the
calculation of the objective function. The purpose of the
end-effect correction is to assign values to core inventories
which result in an objective function that varies only with
energy production within the planning horizon and not with
energy production in the nelighboring time periods. If this
can be achieved, then optimization can be performed for
each individual planning horizon; the collection of such
optimal solutions would be the same as the optimal solution
for the entire 1ife of the reactor obtained by a one-shot
calculation.

The object of the end-effect correction can be stated
mathematically as follows:

Let TCq be the revenue requirement for the entire 1life
of the reactor. Let TEI be the revenue requirement for
planning horizon I which includes end-effect corrections.

The object of the end-effect correction is to equate

9T Cer =3TCI for ﬁ% within
r —r planning horizon I
aEc 3E,

(1.10)
This requirement can be called the condition of

"equalized incremental cost."



Two different methods have been investigated for 26
evaluating the end-effect correction. The Inventory Value
Method evaluates the worth of the nuclear core as the market
value of uranium and plutonium plus a fraction of fuel
fabrication, and post irradiation costs. The fraction of
fuel fabrication costs assigned to inventory value is Lﬂﬁﬂl ’
where N 1s the total number of cycles a batch of fuel '
remains 1in the reactor and n is the number of cycles the
fuel has been in the reactor at the time the inventory
is to be valued. Similiarly, the accrual of post irradiation
costs 1s treated by deducting n/N fraction of their total
from the inventory value.

The Unit Production Method evaluates the worth of the
nuclear core as the book value of the core based on straight
line depreciation according to energy production. In order
to obtain the salvage value of the core, the reactor is
operated past the end of the planning horizon under some
prescribed refuelling strategy until all the batches to
be evaluated have been discharged and their salvage value
determined.

Table 1.1 coﬁpares the incremental costs calculated
by the Inventory Value Method and the Unit Production
Method with the exact value. The Unit Production Method
gives more accurate increhental cost than the Inventory

value Method. However, the Unit Production Method requires

more depletion calculations and is very sensitive to the



Table 1.1

Comparison of Exact Incremental Cost with Incremental Cost

Calculated by Two Approximate Methods

Incremental Cost for Cycle 1

Mills/KWHe
Method Exact Approximate
Inventory Unit
Value Production
AE1=1029GWHt 1.39 1.43 1.40

=2050GWHt 1,38 1.44 1.40

27
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prescribed refuelling strategy after the planning horizon.
Hence, the Inventory Value Method is recommended for use to
correct for end effects.

Having a method to correct for end-effects, and
consequently an acceptable method for calculating the
objective function, efficient ways of calculating approximate
incremental costs and reload enrichments for any required

set of energies are described in Section 1.4.

1.4 Calculation of Incremental Cost of Nuclear Energy Arc
and Reload Enrichments for a Given Set of Required
Energies and For Fixed Reload Batch Fraction

Three methods to calculate the incremental cost of
nuclear energy Arj will be described. The first, rigorous,

method is based on the definition of A it is accurate

rj’
but time consuming. The second method is based on

inventory evaluation techniques; it takes less time, but

is less accurate. The third method is based on an approximate
linear relationship between reload enrichment and cycle

energy and again takes less time than the rigorous method

but is less accurate.

1.4.1 Rigorous Method

According to Equations (1l.4) and (l.4a), the incremental
cost of nuclear energy is defined as the partial derivative

of the revenue requirement with respect to cycle energy ,
s =3TCh

“or r
aEC Ec' (1.10a)
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which can be replaced by the forward difference

=TI o ol o o _ mpl o o o o
Apos TC (E1 PP O +AE,E ,,..) - TC (E1 B3 5. EQ ,Ec+1..)

AE

(1.11)
If T6T 1s known for two values of Eg » le.g. 1n Equation

(1.11) for EJ" and EST+AE), while all the other Ey

are constant, Arc can be evaluated quite easily. However,
to obtain the correct enrichments which permit Eg to change
whlle all other energies Eg, remain unchange is time-
consuming and expensive. The correct. enrichment for each
cycle must be found by trial. To determine all the]ic

in an m-cycle problem requires about 3m(m+l) trials,

2
using about three trials per cycle.

1.4.2 Inventory Value Method

In Section 1.3, the Inventory Value Method has been
shown to evaluate correctly the end effect and gives fairly
accurate values of incremental cost. If the Inventory Value
Method 1s applied at the end of the cycle for which
incremental cost calculation is desired, then incremental
cost of nuclear energy for that cycle can be obtained by
analyzing the change in the revenue requirement up to that
cycle as energy production changes in that cycle. Thus, all

later cycles need not be analyzed.
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To calculate all the Arc in a planning horizon, one

can proceed in the forward direction by first changing the
energy production of Cycle 1, applyling the Inventory Value
Method and analyzing the change of revenue requirement up
to Cycle 1. This would be repeated for Cycle 2 and so on
until all the cycles have been analysed.

For an m-cycle problem, only 2m depletion calculations
are required to calculate all the incremental costs.

1.4.3 Linearization Method

This method makes use of the chain rule of partial

differentiation
- } . r r
GTE-I' = 81“Cr . aEc ] - Arc“ aEc "
r r r r r r 2 r r
kb ec, YT aEc" Ec’ aec P on aec ec,
r (1.12)
gre” | e
When all —= and —= are known, then A
T 3¢l rec
c c . —p
oTC
can be found by matrix inversion. Evaluation of 5 and
aec
aEZ,, r
- is easier than Arc because reload enrichment Ec is an
aec
explicit variable that can be controlled. The calculation of
—D
each 3Tg requires only (m-c+l) depletion calculations for an
o€
c

m-cycle problem. Hence, to calculate all the Arc’ requires
only m(m+l) depletion calculations. The relationships

betweenzrevenue requirement for indefinite planning horizon
Tﬁ;{for finite planning horizon Ta,for the first cycle Tal,
various batches and cycles are shown schematically on Figure
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1.4, Notice that the exact incremental cost given in

Table 1.2 1s based on the revenue requirement for the

indefinite planning horizon, while the Rigorous method

is based on the revenue requirement for the finite planning
r

horizon TC .

The values of )r determined by the three methods

c
for refuelling with fixed batch fraction and variable
enrichment are compared in Table 1.2 for the 1065 MWe
Zion reactor. The first two cases given below involve
perturbations from steady state three-zone operation with
3.2w/0 enriched feed, giving E = TU16.5 GWHe/cycle. The
magnitude of perturbation AE, of case 2 is twice as large
as that of case 1. The third case involves perturbation
from a three-zone transient energy mode of operation of
the reactor. The Inventory Value Method is accurate up
to + U% of the "true" value given by the Rigorous method.
The Linearization Method 1s accurate to + 4%. For
the first few steps of the optimization, when speed is
more important than accuracy, the -Inventory Value Method
or the Linearlization Method 1s recommended. Only
at the end of the optimization would one consider using
the Rigorous method for its improved accuracy.

Two methods of determining reload enrichments for a

given set of required energies and for fixed reload batch

fraction will be described. The first method determines
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Table 1.2
Incremental Cost of Enerev Naleulaten
by Three Methods

Incremental Cost by Incremental Cost by Incremental Cost by
Rigorous Method Linearization Method Inventory Value Method
Case 1 1.42 | 1.37° 1.143
Case 2 1.40. 1.37 1.44
Case 3 1.37 1.37 1.43

€€
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reload enrichments by trial and error. For a given initial

state, two depletion calculations are carried out for one
cycle using two values of reload enrichments. The trial
enrichment for a given value of cycle energy is then
obtained by interpolating between the two values of
reload enrichments and the corresponding two values of
cycle energies. Three depletion calculations are usually
sufficient for any one cycle. Hence, for an m-cycle
problem, 3m trials are needed.

The second method determines reload enrichments by
an approximate linear‘relationship between cycle energy

and reload enrichment.

r

3E r o
EI(;' ~ ECQ:I" + ; o{eci - SC'} (1.13)
o Bec,
FYoul
Since all the coefficients ._%é are made available
d¢
by the . Linearization Method in the calculation of

incremental cost, the determination of Ez, is a straight-
forward operation using matrix inversion. Table 1.3

shows values of reload enrichments calculated by the Trial
Method and Linearization Method for different sets of
cycle energies. Agreement between the two methods is

excellent. Hence, elther method can be used.



Case

Case

Case

1

Cycle

Energy Ei in 10?GWHt

Enrichment e, (1)
(w/o) (2)

2

Cycle

Energy E1 in 103GWHt

Enri¢hment €, (1)
(w/0) (2)

3.

Cycle

Energy E, in 103GWHt

Enrichment 81 (1)
(w/0) (2)

Table 1.3

Reload Enrichments Calculated by

(1) Trial Method and

(2) Linearization Method

22.964

3.359
3.360

23.985
3.557
3.557

23.085

3.359
3.360

2
21.935
3.054
3.046

21.919
2.941
2.928

21.535
2.975
2.979

21.929

- 3.174

3.181

21.906
3.186
3.197

23.605
3.545
3.534

21.928
3.196
3.191

21.937

3.235
3.225

20.995
2.833
2.836

21.933
3.133
3.132

21.970
3.106
3.108

22,164
3.286
3.287

GE
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1.5 Calculation of Incremental Cost and Nuclear In-Core

Optimization for Reactors Operating Under Steady-State
Conditions

Starting from this section, batch fractlions as well as
the reload enrichments are allowed to vary; only refuelling
times and energles are fixed. This section deals with
reactors operated under steady-state conditions. Hence,
there is only one reload enrichment variable and one batch
fraction variable for all the cycles. The problem of
nuclear in-core optimization under this special circumstance
is stated as follows:

minimize TC(ES,e,f) for a given E°

with respect to € and f

subject to constraints F(e,f) = E
B(e,f) < B°

S

the subscripts r, ¢ are omitted because only one reactor
is considered and all cycles are the same under steady
state conditions. The revenue requirement for the first -
cycle is chosen to be the objective function.

For any combination of € and f, the reactor generates
a certaln energy E° at a cost TC. By plotting TC vs ES
for all possible combinations of € and f, the optimal pair
can be found directly.

Figure 1.5 shows value of TC vs E° for different
combination of € and f for a Zion type 1065 MWe PWR refuelled
in a modified scatter manner. At cycle energies above 7000 Gwhe,
a batch fraction f = 0.33 results in lowest revenue requirement.
At cycle energies below 7000, a batch fraction of f = 0.25 is

preferable.
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In Fig. 1.6, revenue requirement has been replotted
against batch fraction at constant cycle energy. In addition,
lines of constant average burnup B°® are plotted. Only the
region to the right of a line of constant burnup 1s com-
patible with the burnup constraint (1.8). For example, at
the higher cycle energies of 10,650, 9,000 and 7,500 Gwhe,
with a burnup constraint of 30 MWD/kg, the optimum batch
fraction occurs at the burnup constraint rather than at the
lowest value of revenue requirement on the constant energy

line, at which

=0 (1.14)

When the optimum batch fraction is set by the burnup
constraint, in steady-state refueling a simple analytic
relation obtains between burnup B cycle energy Es, batch

fraction f and entire mass of uranium charged to the core W:
S
B:W.f = E (1.15)

Hence, the smallest batch fractlon that satisfies the burnup

constraint B° 1is given by f = ES/(B°W). (1.16)
Figure 1.7 shows the optimal batch fraction as a function

of cycle energy for different burnup constraints. For high values

of maximum allowable burnup and low cycle energles, the optimal

batch fraction is determined by the economic optimization con-

dition Eq.(1.14), whereas at higher cycle energies or lower

allowable burnup it is given by Eq.(1.16).
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In Figure 1.8 revenue requirement TC is plotted against
reload enrichment, with lines of constant batch fraction f or
cycle energy E or average burnup B°. The optimal values of
reload enrichment and batch fraction to produce specified
energy can be read off directly for a specified burnup

constraint B° or minimum revenue requirement.
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The calculation of incremental cost of energy for the
case of variable reload enrichment and batch fraction
deserves speclal attention. According to Equations (1.4)

and (l.4a) A is given as

)

A= =

C(ES,e®,r#*) where €% and f*
JoE

are optimal
solution for Es

which can be expanded into the following finite difference

relationship
\ = TC(ES+AE, et, £1) - TC(ES,e¥,r#*) (1.17)
AE
where ef and f* are the optimal solution for E° + AE. When

there are no constraints on the enrichment and batch fraction, €
and f are those values at which the revenue requirement is a

- minimum for a particular energy, i.e. the minima of the constant
energy lines in Fig. 1.6. When the maximum burnup B° places
lower a limit on the batch fraction with which a particular
energy may be produced, as in the case at a value of B° of

30 MWD/kg at energles above 5,000 Gwhe, the values of revenue
requirement used in Eq. 1.17 are those on the constant burnup

line of Fig. 1.6. Fig. 1.9 shows values of incremental
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cost of energy versus cycle energy for different values '

of burnup limits. Initially, incremental cost increases
rapidly with respect to cycle energy but gradually levels
off. As the burnup limit decreases, lncremental cost
increases.

For this special case of steady state operation, the
problem of nuclear in-core optimization and the calculation
of incremental cost involves a relatively small number of
variables and can be handled effectively by graphs. For
non-steady state operations, however, there are so many
variables that complicated optimization technlques such as
plece-wise linear approximation, or polynomial approximation,
coupled with total exhaustive search, is required to solve
this problem. Sections 1.7 and 1.8 summarize the methods and
results of the two approaches. But before that, tests
are required to show that the objective functlion calculated
by the Inventory Value Method 1s suitable for this pur-

pose.

1.6 Test of the Objective Function for the Variable Batch
Fraction, Non-Steady State Case

As mentioned earlier in Section 1.3, a method for
calculating the objective function for a finite planning
horizon is deemed adequate for the purpose of scheduling
energy if 1t gives the same value of incremental cost of
energy as an exact calculation in which the entire life span

of the reactor 1s considered.



— — L6

ie 8TC . - _gg_c I for all j within

J J planning horizon I

(1.18)
However, for the problem of nuclear in-core optimization,

the followlng additional equations for the partial derivatives

are involved:

%%g¢= %%QI for all c¢ within
c c planning horizon I
— _ (1.19)
oTC,_._ ¢ CI
£ £
c c

If these equalities are maintained throughout the
optimization, as demonstrated in Section 7.3, the collection
of optimal solutions for each of the finite planning horizons
would be the same as the overall optimization performed
on the entire l1ife span of the reactor. Table 1.4 shows
values of the ATE;/Ael;and ATEI/Ael versus enrichment changes
Ae, and values of ATC _/Af, and ATC,/Af, versus batch

1l
fraction changes Af. for Cycle 1. It can be seen that the

1
finite planning horizon objective function can be seen to
glve accurate first order derivatives for Cycle 1. Since
nuclear in-core optimization would in all probability be
updated on an annual basis, only the first cycle results
would actually be utilized. Hence, the main emphasis on

accuracy would be placed on the first cycle derivatives.

Having demonstrated that the finite planning horizon



Table 1.4
Effect of Variation of Enrichment and Batch Fraction on Revenue Requirement

TCoc. Revenue Requirement for the Indefinite Planning Horizon

igl Revenue Requirement for the Finite Planning Horizon

Enrichment
Changes
(w/0)
AE,

-1.200
-0.434
+0.480
+1.200

Batch Fraction
Changes

Af

1
-0.8
-0.4
+0.4

Revenue Requirement

Changes

106$
TC TC
~4.5750  -4.5804
-1.6648 -1.6T46
+1.8893 +1.8791
+4.6642 +4.6542
Revenue Requirement
Changes 6
10°$
Tﬁi TC
-2.3494 -2.3623
-1.1717 -1.1822
+0.7716 +0.7658

TC; /b,  TCx/ag,
106$/(w/o)—————-—
3.8100 3.8169
3.8360 3.858¢6
3.9361 3.9148
3.8868 3.8785
TEI/Afl TE&/Afl
106$
2.9367 2.9528
2.9293 2.9554
1.9290 1.9146

+0.5

+0.9
“‘0‘7

L
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objective function is suitable for nuclear in-core
optimization, Section 1.7 and 1.8 proceed to describe
the piece-wise linear approximation approach and the
polynomial approximation approaéh of solving the

optimization.

1.7 The Method of Piece-Wise Linear Approximation for the
Problem of Nuclear In-Core Optimization

In the Method of Piece-Wise Linear Approximation, the
objective function and the constraints are linearized

about an initial feasible solution. For example

—".‘.' ——'-’0 0 - - .
C= TC(2°,7%) + Z_ac(ec eg) + éac(fc_f;) (1.20)

[
where STC( 20 #0) :
- dTC(e?, - aT“O(e"’, )
% % 3¢, Be = 3T,

The expansion coefficients ac and Bcare determined
by a number of perturbation cases in which the decision

variables are variedone at a time. For example

TC(el,el,...e’+Ae, ... F0) -
o =‘{ (ef,ed €, tAe ) } e (1.21)

¢ TU(e?,e{,...eé,...?")

Linear programming can be applied to the set of
linearized objective function and constraints. Limiting
the changes in Af/T - by * 1% each time, a new solution
can be calculated in the steepest descent direction; The
process of linearization and optimization can be repeated

on this new solution in an iterative fashion.
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Unfortunately, practical mesh spacing setup of the

present CELL-CORE depletion code only allows discrete
changes of Af/f by 12%. Hence, the linear model must
be modified to accommodate changes by large step sizes.

The final form of the equations used is slightly
more complicated than the illustrative Equation (1.20).
Instead of having a single expansion coefficient for each
variable, there are two expansion coefficients, one for
positive and one for negative variation of the batch
- fraction variables. The set of piece-wise linear equations
are solved by total exhaustive search. The objective
function is calculated for all feasible neighboring points
around the initial solution. The neighboring point with
the lowest objective function is chosen to be the new
~solution on whicb linearization and optimization are to be
repeated.

As an example of the application of this method,
consider the following sample case A. The reactor under
analysis is the Zion type 1065 MWe PWR with initial condition
equivalent to the 3.2 w/o three-zone modified scatter
refuelled steady;state condition. The planning horizon
consists of five cycles. Energy requirement for each of
the five cycles is 22750 GWHt, the same value as produced
in the steady-state condition. The maximum allowable
average discharge burnup is 60 MWD/kg. The Method of
Piece-Wise Linear Approximation is applied to solve for the
optimal reload enrichments and batch fractions for the five

cycles.
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Table 1.5 shows the batch fractions, reload enrich-

ments, cycle energies and revenue requirement for the various
iterations. The revenue requirement is calculated based
on economic parameters similiar to that of TVA, with no
income tax obligations. The revenue requirement corrected
for target energy decreases in successive iterations. The
final solution results in net savings of $1.6 million
dollars when compared to the initial solution. However, when
the same -case . 1is repeated using the economics parameters
characteristic of an investor-owned utility which pays
income taxes, the Method of Piece-Wise Linear Approximation
fails to convergé. This is due to the fact that the
original initial condition 3.2 w/o three-zone modified
scatter refuelling 1s so close to the optimal solution that
- piece-wise linear approximation based on step size
of 12% is too large for the purpose.

This method of Piece-Wise Linear Approximation is
applicable to cases where the objective function has a
wide variation over the range of the decision variables,
and where the optimal solution is ultimately limited by
one or more of tﬁe constraints. However, if the objective
function is rather flat and the constraints are not active,
the M2thod of Piece-Wise Linear Approximation cannot pin-
point the optimal solutidn precisely, and a more
sophisticated technique like polynomial approximation

is needed.



Table 1.5

Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for

Various Number of Iterations Usirg the Method of Piece-Wise Linear Approximation

Cycle Revenue Requirement
1 2 3 b 5 For Actual Energy Corrected for
Target Energy
e(w/0) Piece- Piece-
f wise CELL~ wise CELL-
E(GWHt) Linear COCO Linear COCC
Appro- Appro-
Tareet ximation g ximation
arge
Energy 22750, 22750, 22750, 22750. 22750, 10°$
Iteration
Number
0 € 3.2 3.2 3.2 3.2 3.2
f 0.333 0.333 0.333 0.333 0,333 72,1119 72.1119 72,1119 72.1119
E 22750, 22750, 22750, 22750, 22750,
1 € 3-77 3037 30&‘5 3056 3'“’2
f 0.293 0.293 0.293 0.293 0.293 71.3358 71,1517 71.4971 71,3131
E 22257, 22725, 22616, 23076, 22769,
2 € 5003 3003 4027 2096 L"057
f 0.253 0.253 0.253 0.253 0.253 70,3096 70,5269 70.4969 70,7141
E 22697, 22534, 22844, 22430, 22646,
3 € 3095 4025 lhéu I+031 3061
f 0,293 0.253 0.213 0.213 0.213 70,0805 70.4763 70.2485 70,6443
E 22986, 23133, 22325, 23894, 21253,

TS
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1.8 The Mathod of Polynomial Approximation for the
Problem of Nuclear In-Core Optimization

In the Method of Polynomial Approximation, the
objective function and the constraints are approximated by

a sum of polynomials in cycle energies and batch fractions.

1 n
E -f f
fz:; bee—ry  4=— 3 %elmn'c c-1

For example

(1.22)
k ~1 m ,n
f ) } ) Boximn Ee-Fo-1"Te oot
=1 1==-1 m=_3 n=_3 (1-23)

The expansion coefficients aclmn, Bcklmn are multiple
regression coefficients based on analysis of a large number
of sample cases. For cases considered here, the polynomial
can be fitted with an accuracy of + 0.1% of TC and + 5% of
Bc using polynomials up to the third order.

The objective function and the constraints in polynomial
form can be optimized analytically. Since the energy
requirement is implicitly included in Equation (1.22) the
only independent variable is the batch fraction f¢.

The objective function TC and the discharge burnup Be
are calculated for all possible values of f. The TC with
the lowest cost satisfying a certain burnup limit B® is
chosen as the optimal solution.

The following two sample _cases are analyzed by this

method. Sample - case A is identical to the problem
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considered in the previous Section 1.7 by the Method of

Piece-Wise Linear Approximation, with economic parameters
that included income tax. Sample ' case B differs from
sample - case A in that the cyclé energy requirements are
different for different cycles.

Table 1.6 shows values of reload enrichments, batch
fractions cycle energlies and revenue requirement for
sample case A for the seven cases having the lowest
costs. AAO is the base line case, where the batch fractions
and reload enrichments are held at the original steady
state values. Net savings in the order of 0.3 million
dollars are achieved in case ABl when compared to steady-
state operation AAO0 through this optimization. Table 1.7
shows values of discharge burnup estimated by the polynomial
approximation as compared to the actual values given by
CELL-CORE. The results agree within +5%.

Sample case . B differs from sample case A in the
cycle energy requirement. Cycle energy requirements vary
for Sample problem B and are:

E1=25u50. GWHt, E27304u0. GWHt, E,=21850. GWHt,

3

Eu=l93UO. 6WHt, E.=20880. GWHt

5
Table 1.8 shows values of reload enrichments, batch

fractions, cycle energies and revenue requirements for the

five solutions having the lowest costs. BAO is the base

line case, where the batch fractions are held constant at
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Table 1,6 B” =50MWD/Kg
Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method of Polynomial Approximation Sample Case A

Cycle Revenue Regquirement
€(w/o) _1 2 3 4 5 For Actual Energy Corrected for Target
f( ) _ Energy
E(GWHt Poly- Poly-
) CELL- A CELL-~
Target 22 22 nomial nomial
Case Energy 22750, 22750, 22750, 750, 750, Appro- COCO Appro- CcoCco

Number o ximation 106¢ ximation
¥ (Difference)

AAO ¢ 3.2 3.2 3.2 3.2 3.2
f 0.333 0.333 0.333 0.333 0,333 87.30 87.24 87.30  87.24
E 22750, 22750, 22750, 22750, 22750, (+0,06)
AB1 ¢ 3.88 4,27 3,42 3,95 2,40
f 0.293 0.253 0.253 0.253 0,293 86,43 86,34 86,99 86,90
E 22690, 23000. 22480. 23100, 20500, (+0.09)
AB2 e 3,88 4,27 2,76 3.77 3,45
f 0,293 0.253 0,293 0,293 0,293 87.20 87.33 87.01 87.14
E 22690, 23000, 22510, 23130, 23070, (-0.13)
AB3 € 3.88 3.33 3.45 3.54 2.94
f 0.293 0,293 0,293 0.293 0,333 87,09 87.13 87.02 87,06
E 22690, 22840, 22560. 22920, 23030, (-0,04)
f 0.293 0.253 0,293 0,293 0,333 86.26 86,37 87.02 87,13
E 22690, 23000, 22510, 22980. 19730, (-0.11)
AB5 ¢ 3.88 3,29 3,45 4,50 2,66
f 0.293 0.293 0.293 0.253 0,293 86.82 86.89 87.03 87.10
E 22690, 22700, 22400, 23000, 22300, (-0,07)
f 0.293 0.293 0.293 0.293 0.293 86,94 87,00 87.04 87.10
AB7 & 3.88 4,27 3,42 3,95 3.61
f 0.293 0.253 0.253 0.253 0,253 87.23 87.14 87.04 96,95
E 22690, 23000, 22480, 23090. 23250, (+0.09)

1S



Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample

Table 1,7

B” =50MWD/Kg

Case A Calculated by (1) Polynomial Approximation Based on Regression Equations

Batch
Number

Case

Number
AAO
AB1
AB2
AB3
ABL
AB5

AB6

AB?7

(2) CELL-CORE Depletion Calculation

=2 = B I L 2 3 4 S
Method
: MWD/Kg

(1) 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5
(2) 31.5 31.5 31.5 31.5 31.5 —_—

(1) 38,6 38,6 38,6 Ly, 2 L7.4 Lo.4 iy 4 31.8
(1) 38.6 38,6 38,6 Ly, 2 L7 .4 34,7 3,2 36,4
(1) 38.6 38,6 38.6 bh,2 39.4 40.9 1,2 36.1
(1) 38.6 38,6 38.6 Ly, 2 47,4 34,7 43,2 31,9
(2) 38.9 38.4 38.5 bs,2 47.3 B

(1) 38,6 38,6 38,6 Li,2 39.4 40.9 L9,6 34,3
(2)  38.9 38.6 38, Wb,5 38,4 @ —

(1) 38.6 38,6 38.6 4,2 39.4 50,9 Lhi,2 4o.6
(1) 38.6 38,6 38,6 by, 2 47,4 40,4 Ly L 38,2
(2) 38.9 38,4 38.1 Lyl 47,0 _—
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Table 1.8 B®=20MWD/Kg
Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for the

Various Lowest Cost Cases_Using the Method of Polynomial Approximation. Sample Case B

Cycle Revenue Requirement
e(w/o)__1 2 3 L & ¥or Actual Energy Corrected for Tarocet
f : Energy
E(GWHt) ’ Foly- CELL- Poly- CELL-
Taprget nomial COCO nomial COCO
E €% 25450, 30440, 21850, 19340, 20880. Appro- Appro-
Cas Energy . ximation & ximetion
ase 10°$ .
Number (Difference)
BAO ¢ 3.73 L4.36 2,40 2,76 3.45
f 0,333 0.333 0.333 0,333 0.333 89.36 89.37 89.92 89.93
E 25510, 30470, 22170, 20280, 17220, . (-0.01)
BBl ¢ 3.74 4,36 2,70 3,88 2,27
f 0.333 0.333 0,293 0,253 0.293 88.66 88,71 89.67 89,72
E 25510, 30470, 21270. 19180, 17930, (-0,05)
BB2 € L"055 3079 2.91 3.87 2.61 .
f 0.293 0.333 0,293 0.253 0,293 89.35 89.38 89,67 89,71
E 25340, 30310, 21790, 19480, 20020, (-0.,04)
BB3 € 3,74 L,36 2,70 3,10 2,37
f 0.333 0.333 0.293 0.293 0.333 88,61 88,67 89.71 89.76
E 25510, 30470, 21270, 19260. 17480, (-0.05)
BB4 € 4,55 3.79 2,91 3.09 2.71
f 0.293 0.333 0.293 0,293 0,333 89.32 89,38 89.71 89,76
E 25340, 30310, 21790. 19320. 19930. (-0.05)
BB5 € .55 3.79 3.72 2,93 2.93
§ 0.293 0.333 0.253 0.253 0,293 89.31 89.27 89.72 89,68

25340, 30310, 21790. 19130. 20110, (+0.,04)
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the 0.33 level and serves as a standard for comparing other

cases. Net savings of 0.25 million dollars achieved by
Case BB5 are realized when compared to base case BAO.
Table 1.9 shows values of discharge burnup estimated by
the polynomial approximation as compared to the actual
values given by CELL-CORE. The same accuracy as in sample
case A is achileved.

The results of regression analysis and the optimization
procedure indicate that the objective function is rather
insensitive to batch fraction changes, if the same cycle
energies are produced. In the two sample cases given
above, using the base line cases instead of the optimal
cases only incurred additional cost of 0.3 million dollars,
which is amere 0.4% of the total revenue requirement. If
" the base line cases give better engineering margins in terms
of discharge burnup, power peaking and shut down reactivity,
they should be used instead. The final choice should be
based on engineering margins rather than on economics.

Finally, a method of calculating incremental cost of
energy under the variable batch fraction, non-steady
state operating conditions are given. The method is based
on taking finite differences on the regression equation
involving TC. The incremental cost of energy for cycle ¢
is given by

. TC(ES,E3,..Eo+AE,..F+) - TC(RS,E3, . .ES,. . B®)

A
¢ AE (1.24)




Table 1.9

Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample

B°=50MWD/Kg

Case B Calculated by (1) Polynomial Approximation Based on Regression Equations

(2) CELL-CORE Depletion Calculation

Batch
Number :.g_ :.1_.. _g_ ..l_ -&- _2_ _LL. ._é_.
C
Niiger Method MWD/Ke .
BAO (1) 31.5 31,5 31.5 37.2 43,9 31.9 35.0 L1,4
(2) 31.5 31,8 32,8 37,9 2,2 28,5 32.9 41,9
BB1 (1) 31,5 31.5 38.6 43,0 48,2 344 L, 3 30,9
(2) 31.5 31.8 39.3 Lbh,9 Lo .4 :
BB2 (1) 38,6 38.6 38,6 49,7 43,5 36,2 Li,1 33.7
(2) 39.2 39,8 39.7 52,2 4i,0
BB3 (1) 31.5 31,5 38.6 43.0 48,2 34,4 37.8 31,7
BB4 (1) 38.6 38,6 38,6  49.7 43,5  36.2  37.6  34.6
(2) 39.2 39.8 39.7 52,7 Ly 7
BBs (1) 38.6 38,6 38.6 49,7 43,5 42,9 36.3 36.4
(2) 39.2 39.8 39.4 51,7 Ly,1

. 0. ¢ o .

Notice that the B —§0MWD/Kg limit only applies to the estimated burnup values
calcu}ated by the polynomlgl regression equation., - The fact that actual burnup values
sometimes exceed 50MWD/Kg indicates that the estimated burfiup values are only approximate,
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where ft and fi are the optimal batch fractions for
the E° + AEc and the % case respectively.

that 1s : TC(E®S + AE,,f" ) = minimum TC(ES + aE_,f)
with respect to f

and TC(ES,r*) = minimum TC(ES,f)
with respect to f

Tables 1.10 and 1.11 show values of f*, f1 | TC and A,
for various values of Ec and for various burnup limits
based on the optimal solution of sample case A,

Tables 1.12 and 1.13 show the same quantities for sample
case B. It can be seen that the incremental cost in
a cycle varies irregularly with cycle energy. This 1is
due to the fact that different sets of f are needed to
sétisfy the burnup constraints for different cycle energy
requirements. The variation of TC with respect to these

different sets of f 1s not continuous.

1.9 Conclusions

The following conclusions are obtained from this

thesis research.

(1) The Inventory Value Method for evaluating worth

of nuclear fuel 1nventories td be used in



Calculation of Incremental Cost of Energy

Table 1,10

Using Regression Equations. Sample Case A

Burnup Limit B = LsMWD/Kg

Batch Fraction for Cycle
1 2 3 L 5
Base
Case 0.293 0.293 0,293 0.293 0,293
AAl

Positive Energy Change

AE=1000GWHt

in Cycle
1 0.333 0.293 0.293 0,293 0.333
2 0,293 0.293 0.293 0.293 0.333
3 0.293 0.293 0.293 0.293 0.333
L 0.293 0.293 0.293 0.293 0.333
5 0.293 0.293 0.293 0,293 0,333

Negative Energy Change

AE=-1000GWHt

in Cycle
1 0.293 0.293 0.293 0,293 0.333
2 0.293 0.253 .0.253 0.253 0,293
3 0.293 0,293 0.293 0.293 0.333
L 0.293 0.293 0.293 0,293 0.333
5 0.293 0.293 0.293 0.293 0.333

Revenue

Requirement

__...106$__
87.01872

87.5284
87.4265
87.3890
87.3170
87.2957

86,5642
86,5848
86,6605
86.7226
86,7443

60

Incre-

mental

Cost

in Mills/
KWHe

1.56
1,22
1.15
0.91
0.845

1.395
1.33
1,095
0.905
0.84



Table 1.11

Calculation of Incremental Cost of Energy

Using Régresgion Equations,., Sample Case A

Burnup Limit B =50MWD/Kg

Batch Fraction for Cycle Revenue Incre-
Require- mental

1 2 3 L 5 ment Cost
Base ¥ KWHe

Case 0.293 0,253 0.253 0.253 0.293 86.9890
AB1

Positive Energy Change
AE=1000GWHt
in Cycle
1 0.293 0.253 0.253 0.253 0.293 87.4642 1.46
2 0.293 0.293 0.293 0.293 0.333 87.4265 1.335
3 0.293 0.253 0,293 0.293 0.293 87.3848 1.21
4 0.293 0.253 0.253 0.253 0.293 87.3047 0.965
5 0,293 0.253 0.253 0,253 0.293 87.2748 0.875
Negative Energy Change
AE=-1000GWHt
in Cycle
1 0.293 0.253 0.253 0.253 0.293 86,5345 1.395
0.293 0.253 0.253 0.253 0,293 86.5848 1.24
0.293 0.253 0.253 0.253 0.293 86.5860 1.24
0.293 0.253 0.253 0.253 0.293  86.6761  0.955

0.293 0.253 0,253 0.253 0.293 86,7064 0.865

w & W N
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Table 1.12

Calculation of Incremental Cost of Energy

Using Regression Equations, Sample Case B

Burnup Limit B°=45MWD/Kg

Batch Fraction for Cycle Revenue Incre-

Require- mental

1 2 3 4 5 ment p Cost
Base —10"$— —Mills/KWHe—
Case 0.333 0.373 0.293 0.253 0.293 89.8251
BA1
Positive Energy Change
AE=1000GWHt
in Cycle

1 0,333 0.373 0.293 0.253 0.293  90.2916 1,435
0.333 0.373 0.293 0,253 0.293 90,2424 1.28
0.333 0.373 0.293 0.253 0.293 90,1845 1.10

- 0.333 0,373 0,293 0.293 0.333  90.1255 0,91

5 0.333 0.373 0.293 0.253 0.293 90,1049  0.915

RETThgammere onares

in Cycle
1 0.333 0.373 0.293 0.253 0.293 89,3766 1,375

0.333 0.373 0.293 0.253 0.293 89,4070 1,28

0.333 0.373 0.293 0.253 0.293  89.4773  1.07

0.333 0.373 0.293 0.253 0.293 89,5224 0.925

0.333 0.373 0.293 0.253 0.293 89,5484 0.85

£ W N

¥, + W N



Table 1.13

Calculation of Incremental Cost of Energy

Using Regression Equations. Sample Case B

Burnup Limit B =50MWD/Kg

Batch Fraction for Cycle Revenue Incre-
Require- mental
1 2 3 L 5 ment p Cost y
: Mills
Base 107%— KWHe
Caie 0.333 0.333 0.293 0.253 0,293 89.6715
BB
Positive Energy Change
AE=1000GWH%
in Cycle
1 0.333 0.333 0.293 0.253 0.293 90.1380 1.435
2 0.293 0.333 0.293 0.253 0,293 90,0775 1.25
4 0.333 0.333 0.293 0.253 0.293 89.9772 0.93
5 06333 0.333 0.293 0.253 0.293 89.9513 0.86
Negative Energy Change
AE=-1000GWHt
in Cycle
1 0.293 0.333 0.293 0.253 0.293 89,1628 1,56
2 0,293 0.293 0.253 0.253 0.293 89.1515 1.60
3 0.333 0.333 0.253 0,253 0.293 89.3229 1.07
4 0.333 0.333 0.293 0.253 0.293 89.3687 0.925
5 0.333 0.333 0.293 0.253 0.293 89,3947 0.845
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(2)

(3)

(4)

AU
calculating finite planning horizon revenue

requirement is adequate for the purpose of
scheduling energy and nuclear in-core
optimization.

Three methods are proposed for calculating
incremental cost of energy for the fixed batch
fraction case. The Linearization . Method
and the Inventory Value method for calculating
incremental cost of energy are both suitable
for the initial stages of optimal energy
scheduling. The Rigorous Method is very time-
consuming and expensive and should be used only

in the final stages of optimal energy scheduling.

For the problem of nuclear in-core optimization

under steady state conditions with variable
batch fractions and reload enrichments, the
optimal solution is practically always on the
boundary of the burnup constraints. Hence,
there are strong incentives to increase the
burnup limits.

For the problem of nuclear in-core optimization
under non-steady state conditions, the Method
of Piece-Wise Linear Approximation is applicable
for the cases wﬁere there are large variations
of objective function near the optimal solution.

It 1s not applicable for economic situations where
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there is a broad region of optimality.

(5) The Method of Polynomial Approximation gives
accurate values of the optimal solutions, even
though the objective function is very flat
near the optimum.

(6) Since the objective function is insensitive to
large variations 1in batch fractions, selection of
the optimal solution can be based primarily on

other considerations, such as engineering margins.

1.10 Recommendations

The depletion code CELL-CORE should be modified in
order that the batch fraction can be varied continuously.
This modification would enable the efficient usage of the
Method of Linear Approximation instead of Plece-Wise Linear
Approximation or Polynomial Approximation. Once the optimal
batch fraction in the continuum is located, the realistic
batch fraction to be used in refuelling would be given by
the number of 1ntegral fuel assemblies which is closest
to the continuum optimal solution.

Finally, the algorithm of optimal energy schedule
should be modified so that the polynomial equations from
regression analysis could be used directly, instead of the
present indirect usage which require intermediate calcglations
of incremental cost. It 1s recommended that a quadratic

programming algorithm, or an even higher order programming



h6
algorithm should be used in the optimal energy scheduling

procedures, so that the higher order derivatives can be

used directly.



CHAPTER 2 67

INTRODUCTION

2.1 Motivations for Mid-Range Utility Planning

Until recently, procedures fér scheduling energy
production from different nuclear power plants in an electrié
utility system have consisted of a relatively simple set of
rules. All the nuclear power plants were to be operated
base-loaded whenever they were available. They were to be
refuelled annually, either in the spring or in the fall when
the system demand is at its lowest level. From an economics
stand point, the foregoing rules can be justified because
nuclear energy, being cheaper than conventional fossil energy,
should be used whenever possible to displace the latter.
Annual refuelling 1is desirable from an operational standpoint.

For electric utilities having only a small number of
nuclear units, this is a practical and economical way to
operate nuclear power units. However, recently the number
of nuclear power units in some large utilities, such as
Commonwealth Edison and Tennesse Valley Authority, have
increased to such a level that the foregoing rules are not

sufficient for the following reasons. The combined nuclear
generating capacity is so large that all of them cannot

be operated base-loaded in periods of low system demand.
Another reason is that there are so many nuclear power units
that all of them cannot be refuelled annually during the
spring and fall without creating some operating and rellabil-

ity difficulties. For example, refuelling two or more reactors
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at the same site simultaneously or successively might create

excessive straln on the grid in the region to which these
reactors belong and might also overload station refuelling and
malntenance personel operations; Consequently, the following
requirements in refuelling are being considered (Qﬂ;)

(i) From the’standpoint of area security, no

more than one reactor should be down for refuellingi
for any region at any given time.

(ii) From the standpoint of efficient refuelling
operations, reactors should not be refuelled
simultaneously or successively at a given site.

(1ii) From the stand point of satisfying the system
demand, all the nuclear power units should be
available in the peak demand periods. Hence,
nuclear power units cannot be scheduled for
refuelling in the summer if there is a severe
summer peak.

Under these requirements annual refuelling can no longer

be maintained for all nuclear reactors at all times. In this
situation reactors cannot be base-loaded all the time and
refuelled annualiy.

New scheduling methods must be developed that will
handle this situation. These methods should provide an
optimal operating schedulé for energy production for all
the generating units(fossil, hydro and nuclear) in agiven
electric utility spanning a planning horizon of more than
five years. Besides specifying energy production for every

unit, the schedule should also specify refuelling and
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maintenance dates for each unit and other refuelling

details for nuclear reactors,such as reload enrichments
and batch fractions. This overall problem of scheduling

is called Mid-Range Utility Planning.

2.2 Formulation of the Overall Optimization Problem for
Mid-Range Utlility Planning

The overall optimization problem for Mid-Range Utility
Planning can be formulated as follows; given a load forecast
for a given electric utility over the span of the planning
horizon, given the composition of the electric utility in
terms of the capacity, type and locations of each generating
unit, find the optimal schedule of operation which consists
of refuelling and maintenance dates, energy production in
each time period for every unit, and (for all nuclear
reactors) the reload enrichments and batch fractions for
each cycle in the planning horizon.

The objective function for this problem is the revenue
requirement directly related to energy production in the
planning horizon. This 1s the capital which if received as
revenue by the company at time zero which, invested in the
company at the effective rate of return x, would enable the
company to pay all fosslil and nuclear fuel expenses startup
and shutdown costs, other variable operating costs, and all
related taxes, pay bond holders and stock holders theilr
required rate of return on outstanding investments on
nuclear fuels, and retire all fuel investments at the end

of the time horizon. The fuel revenue requirement for the



electric utility is the sum of all these revenue require-
ments for each generating units:

R
s -] mF
r

where TC° is the total revenue requirement for the
system _

(2.1)

TCY is the revenue requirement for unit r

R: total number of generating units in the system.
The decision variables are

(1) time for maintenance and refuelling for each unit

(ii) energy production of each unit for each period
of time in the planning horizon

(iii) for the nuclear generating units, the reload
enrichments and batch fractions for each cycle.

In general, there are other parameters specific to the
nuclear generating units; such as refuelling pattern,
configuration of burnable poison rods, multi-enrichment
batches etc. For the sake of simplicity, these parameters
are not included in the decision variables.

The constraints for this problem are:

(i) the sum of energy production from all of the
generating units must be equal to the total
system demand in each period of time.

(1i) Rate of energy production‘for each unit cannot
exceed its rated capacity.

(iii) Each nuclear reactor should operate within its
physics and englneering constralnts, for example,
burnup limits, power peaking factors and reactor

shut down margins.

70



(iv) Other system operating restrictions such as 71

area security, spinning reserve requirements
limitations on startup and shutdown frequency
etc. must be met.

(v) Refuelling schedules must meet the restrictions
as specified in Section 2.1. For a complete
listings of the constraints refer to Widmer (W2)
or Deaton (Dl1). For the purpose of this thesis
research, oﬂly a few of these constraints are
explicitly considered, and they will be stated
clearly in each chapter. Some of the physics
and engineering constraints for nuclear reactors
are investigated in greater depth in Kearney's (K1)

and Rieck's (BRl) thesis research.

2.3 Decomposition of the Overall Problem into Various
Sub-Problems

The overall optimization problem of Mid-Range planning
can be decomposed into three sub-problems. The first sub-
problem deals with the decision variable of maintenance and
refuelling times. A computer code has been developed by
John Bukovski (gﬁg) that generates a number of refuelling
and maintenance schedules compatible with specified
constraints. For each refuelling and maintenance schedule,
the se¢ond sub-problem ihvolves finding the energy pro-
ductions, reload enrichments and batch fractions for the
generating unit which lead to lowest cost. This is repeated

for each time schedule, and the schedule with the lowest
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cost is chosen to be the optimal solution. The third

sub-problem involves separating the problem of optimal
energy schedule from nuclear in-core optimization and then
the energy variables from the enrichment and batch fraction
variables. In essence, this technique of decomposition
separates the time dependence from the other decision
variables. Hence, the overall optimization problem of mid-
range planning reduces to solving for the optimal energy
production, reload enrichments and batch fractions based

on a given refuelling and maintenance time schedule. This
sub-problem is called System Optimization for a given refuell-
ing and maintenance time schedule. This problem can be

formulated mathematically as
r

minimize TCS = / TC (2.2)
f
-with respect to Eg, EZ s fz
Subject to constraints
r_ s ,
Zr-EJ EJ (2.3)
Eg <Ax1.pr.8760. (2.4)
| (\.’«0:') (2.5)
r _ r .
E, = é;_ EY
' € (2.6)
r,»r ¥, _ I
Fc(e sf ) = EC
(2.7)

Bg(Er,fr) g B°
where:

E§= system demand in time period J

E.= energy production of unit r in time period J
At; = duration of period J

P¥= capacity of unit r

Jee= Period when reactor r cycle c begins



r
L. = energy production of unit r in cycle c 73

r _
€, = reload enrichment for unit r cycle c
r
€ = vector of eg for all c = {ei, gg........}

¥ = vector of fg for all c = {fi, fg'---°°"}

Ff = a function of €T and ¥¥. This is the energy
produced in reactor r in cycle c

BT = a function of er and ¥ . This is the average
discharge burnup in reactor r cycle c

B" = Maximum allowable average discharge burnup.
Notice that only some of the constraints given in Section
(2.2)are considered explicitly in this thesis.

For a system with R units, a planning horizon containing
J period and C cycles, RJ + 3RC variables and J + RJ + 2RC
constraints are to be considered. A non-linear problem with
this number of variables and constraints is difficult to
handle. However, this problem can be further decomposed
" into two sub-problems; one containing only the linear
constraints, and the other the linear and the non-linear
constraints. The linear sub-problem, which can be called
optimal energy scheduling, is concerned with finding the
optimal energy producti&wng for each reactor r in each
time period j. |

This problem can be stated as follows

Minimize TC® = "I‘"cr(ES' P (2.8)

with respect to E 3

Subject to constraints Z_EI‘ = S - (2.3)
J "

E?‘A‘tj—P}'S?éo. (2.4)
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™ %
where Er . fr are the optimal reload enrichments and batch

fractions for any set of ET.

J

The non-linear sub-problem which can be called nuclear
in-core optimization is concerned with finding the optimum
enrichment and batch fraction for reactor r when required
to produce energy Eﬁ. This problem can be stated as follows.

TET(Er T oty - minimumTr{YEj,*r Ty (2.9) .
with respect to €T T for a specified set of E?subject

to constraints

(2T, = BT

g . (2.6)
(Jrc+‘)B (E ) < B (2.7)
Ef = ET , (2.5)

Jee J ¢
The problem of optimal energy scheduling and the

prbblem of nuclear in-core optimization can be solved
sequentially as follows. Based on an initial guess of Z#*,ff*
for all r, the problem of optimal energy scheduling can be
solved to yield an initial solution of EE.

J
of nuclear in-core optimization is solved for the optimal gr*

Then the problem

s corresponding to the initial Eg. The improved values of
Zr*and s can be used in the problem of optimal energy
scheduling to yield better values of E?’ This operation con-
tinues until the solution of the two—pfoblems remain the same
after successive iterations. The converged results are then
the optimal solution for the system optimization problem
based on one refuelling and maintenance time schedule. The
entire procedure would be repeated for all possible time

schedules.
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The time schedule with the lowest system operating cost is
then the global optimum for the overall problem of Mid-range
Utility Planning. The various steps of decomposition are
summarized in Table 2.1. The prbblem of optimal energy
scheduling is considered by Deaton(Dl).A brief description
of his solution technique is presented in Section 2.4. The
problem of nuclear in-core optimization is discussed in
Section 2.5; in Chapter 6,7,8,9, of this thesis, and also
by Kearney(Kl).

2.4 Brief Description of the Solution Technique for the
Problem of Optimal Energy Scheduling

The problem of optimal energy scheduling can be solved
by the method of steepest descent. First, the non-linear

.objective function is linearized about an initial feasible

point R R
TS =) m=]{TeeTe ) o (e - B0}
r r 1 r11 r1 '1 ..
FAl ;O >
where A =229—(EJ yer, Ty (2.10)
rJ r
JE
J
xﬁ as defined in Equation (2.10) may be thought of as

the incremental cost of energy for unit r in time period j.
Notice that in Equation (2.10) the numerator is the revenue
requirement, while the denominator is the actual undiscounted
energy. If v“rj could be evaluated for a given set of

EOT, &2 Fx | Equation (2.10) is merely a linear

J

equation, which, together with Equations (2.3) and (2.4)



Table 2.1
Various Steps in the Decomposition of the Overall optimization Problem
of Mid-Range Utility Planning

Step Number Sub-Problem Name Variables Held Fixed Variables to he Optimized

(0) Overall Optimization - 1,2,3,4
Problem of Mid-Range
Utility Planning

(1) System Optimization 1 2,3,b
for a Given Refuelling
and Maintenance Time

Schedule

(2) Optimal Energy 3, 5
Scheduling

(3) Nuclear In-Core 2 3,
Optimization

Variables Designation

1 : Refuelling and maintenance time schedule

2 : Energy production for each generating unit
3 : Reload enrichments for each nuclear unit

4 . Batch fractions for each nuclear unit

94
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constitutes a standard linear program. This can be solved
easily by Simplex Method(DZl) or by standard Network(DZ1)
programming techniques. Hence, the crux of the problem is to
calculate Mrj for a given set of E§ 5 z*v,.§*¢

For nuclear reactors, the objective function is a unique
function of the cycle energy, reload enrichments and batch
fractions, TC = Tﬁr(Ez , ex, Ty .
Since by Equation (2.5) Ey 1s a linear combination of Ey ,
thederivatives of TC with respect to Eg is the same as the
derivativesof TC with respect to EZ . In other words

» =y = dTC(E], €x,f)
rj re ,gp° (2.11)

for Jnc<J <'1::'c+1
Hence the er's for all reactors belonging to the same
-cyecle are equal. Calculation of ch under many different
operating conditions is considered in this thesis. Chapter 3
and 6 consider the calculation of Arc under steady-state
operating condition for the fixed batch fraction case and the
variable batch fraction case respectively. Chapter 5, and 9
consider the calculation for lrc under non-steady state
operating conditién for the fixed batch fraction case and
variable batch fraction case respectively. These calculations
of incremental cost would serve as inputs into the optimal
energy scheduling algorithm. Methods of solving the optimal
energy scheduling problem are not considered in this thesis,
except in Chapter 3, where an extremely simple problem of

optimal energy scheduling for two different size reactors

both operating in steady-state is solved by graphical technique.

- ~
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2.5 The Organization of the General and Special Problem Of
Nuclear In-Core Optimization

The general problem of nuclear in-core optimization is
presented in Section (2.3) by Equations (2.9), (2.5), (2.6)
and (2.1) as a minimization problem in which both reload
enrichments and batch fractions are varied to arrive at the
lowest cost. However, one can also consider the simpler
problem in which the batch fractions are fixed throughout
the planning horizon, and only the reload enrichments are
varied. For this special problem, there is at most only
one set of reload enrichments that would satisfy all the
constraints, Equations (2.5), (2.6) and (2.7). This is due
to the physics requirement'of a reactivity limited nuclear
core that, once the reload batch fraction is fixed, selectihg
the reload enrichment completely determines the energy it
-can generate in that cycle. Hence, for this special problem
in which batch fractions are fixed, nuclear in-core opti-
mization reduces to the problem of finding the correct
reload enrichments that satisfy the constraints. Chapter 3
and 5 consider the special problem of fixed batch fractions.
Chapter 6,8 and 9 consider the general problem in which
both reload enricﬁments and batch fractions are allowed
to vary.

Steady-state and non-steady-state operation of the
reactor is also considered in this thesis. For steady state
operation, the energy produced, reload enrichments, and batch

fractions are the same for every cycle. Since the physical
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state of the reactor goes through a complete cycle between

refuellings, there are no changes in the value of nuclear
fuel inventory between the beginning and the ending of the
planning horizon. However, for the non-steady-state case,
the physical state of the reactor at the end of the planning
horizon is not necessarily the same as at the beginning of
the planning horizon. Hence, in order to calculate the
objective function accurately, changes in monetary value of
nuclear fuel inventory between these two points in time
must be accounted for. Chapter U4 describes the various
methods of evaluating monetary value of nuclear fuels, which
can be used 1in the calculation of the objective function.
Table 2.2 shows the various problems and special cases

considered, and the chapters describing them.

2.6 Types of Reactors Analyzed

The generalmethodology described inthis thesis is
applicable to different types of light water reactors. How-
ever, only the pressurized water reactors are chosen as
examples. This is solely a matter of convenience because
pressurized water reactors are easier to model and the
relevant computer'codes are readily available.

Two pressurized water reactors of different sizes are
considered: the 430 MWe San Onofre reactor and the 1065 MWe
Zion reactor. Detail descriptions of the two reactors .can be
found in their final safety reports (SQ1,Z1l). In this thesis

research, the overall weight of UO2 in Zion core is taken tobe



Contents of the Various Chapters in This Thesis

Table 2.2

Special Problem :

constant batch fractions
variable enrichments

General Problem :

variable batech fractions
and enrichments

Steady State Operation

Non-steady State

Chapter 3

Chapter A

Operatlon

Chaoters 4, §

Chapters U, 7, 8, o

ug
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90 metric tonnes instead of the normal value of 86 metric tonnes.
The San Onofre reactor is normally refuelled in a Y4-zone modified
scatter manner, in which the fresh fuel 1is always loaded on to
the outer radial zone during its first cycle of irradiation,

and scattered throughout the inner zone in a checker board
pattern for the remaining cycles of irradiation. The Zion

reactor 1s normally refuelled in a 3-zone modified scatter

manner.

2.7 Depletion Code CELL-CORE

CELL (Bl) is a point depletion code which generates one
group cross-section data as a function of flux-time. These
cross-section data are fed into the spatial depletion code
CORE (K1) which is a finite-difference, one-group diffusion
theory code in R-Z geometry. Refuelling and fuel shuffling are
completely automated in CORE. The input consists of some
geometrical descriptions of the nuclear core. The output
consists of the mass and concentration of each heayy metal
isotope in each individual batch of fuel at the end of every
cycle. A more detalled description of the varlous versions of
CORE is given in Appendix A.

The twin-code CELL-CORE was chosen to be the depletion tool
in this thesis because of simplicity of usage, high speed:
of calculation and minimal storage space. To do a‘depletion

calculation for a planning horlzon consisting of five cycles
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takes 160 k byte storage and a CPU time of 0.5 minutes
on an IBM 370/45. Hence, it is possible to analyse a
large number of cases at low cost. Comparison of the
results of CORE with other computér codes and experimental

data are given by Kearney (K1).

2.8 Economics Code MITCOST1 and COCO

MITCOST (CJ1l) 1is an economics code which calculate
the revenue requirement and average fuel cycle cost for
an individual batch of fuel. MITCOST1l 1is a slight modifica-
tion of MITCOST which is capable of handling batches with
residue book value of fabrication, shipping, reprocessing
and conversion costs based on methods developed in Chapter
y,

COCO is a modification of the depletion code CORE.
The revenue requlrement for each batch of fuel is
calculated according to the Inventory Value method given
in Chapter 4 directly from the physics data provided
in the output of the depletion code CORE. Hence, it is
no longer necessary to transfer physics data from the
CORE code to MITCOST1 to obtain fuel costs data.

Course listings of CELL-CORE, MITCOST1l and COCO

are on file with Professor E.A. Mason at M,I.T.



CHAPTER 3.0

83

OPTIMAL ENERGY SCHEDULING FOR STEADY-STATE
OPERATION WITH FIXED RELOAD BATCH FRACTIONS
AND_SHUFFLING PATTERN

3.1 Defining the Problem

The first of the problemsoutlined in Section 2.5 to be
considered consists of two nuclear reactors with a fixed re-
fuelling schedule and operating at steady-state conditions.
This two-unit system is assumed to supply all the steady-
state energy demanded by a customer over the entire planning
horizon, except at the time of refuelling, when replacement
power is purchased. Depending on the incremental cost of
electricity, the customer will decide on the steady-state
power level he wishes the reactors to supply.

The problem is to find the optimal enrichments for the
reload batches for both of the reactors given the customer's
demand curve of energy from the system.

Reactor A of the system is the 1065 MWe PWR described
in Chapter 2. Reactor B of the system 1s a 430 MWe PWR simi-
lar to San Onofre I. Reactor A is fuelled in a three-zone
modified scatter manner. The irradiation interval is fixed
to be 1.375 years and refuelling takes 0.125 years. At time
0.0, the reactors start a new cycle.

Reactor B is fuelled in a four-zone modified scatter
manner. The irradiation interval and refuelling time are the
same as Reactor A.

Hence both reactors are assumed to be operating from time

0.0 to time 1.375 years and, to facilitate this simplified ana-
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they are both assumed to be down for refuelling at

the same time. This pattern would repeat itself indefinitely

into the future.

Both of the reactors can operate at any power level from

zero up to their capacity limit. Forced outages are not

included 1n this simple-minded case.

3.2 Defining the Objective Function

The obJective function of this problem 1s the revenue

requirement for fuelling these two reactors from their

initial loading 1nto the indefinite future in which they

are operating under steady state conditilons.

The equations of the revenue requirement will be stated

without proof.

where

v—3|r-5|
Q
=

=3
Q
s}

I
Q
0

=
Q
=

—H
o]

TC (3.1)

sum over all the batches
of fuel for reactor A

+x) b (3.2)

of fuel for reactor B

% sum over all the batches

(1+X) b (3.3)
zh or B | A or B 2 zh or B QE;EA or B
yA ib c ¢
+ 1o e 1 (1+x)2F¢
i (1+x) T 7| (1+x)°71
E EA or B
5 c
revenue requirement for the system (3.4)

revenue requirement for reactor A
revenue requlrement for reactor B
revenue requirement for batch b of reactor A

or B discounted to the start of irradiation for
that batch

effective cost of money
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time when batch b is charged to reactor A or B
relative to start of planning horizon

various payments associated with a given batch
for reactor A or B

time of these various payments relative to the
start of irradiation of that batch '

energy generated from a given batch at cycle ¢
for reactor A or B

time revenue is received for JOPS and income tax
paid relative to the start of irradiation

3.3 Defining the Decision Variables and the Design Varlables

Since the reload batch fractions are fixed for both

reactors and there is no time dependence in this problem, the

A

decision variables reduce to Ec and EE, energy generated per cycle

from reactor A and B respectively. Since there is a one-to-

one correspondence between energy per cycle and reload enrich-

ment under these conditions, specifying one determines the

other.

Reload enrichment is the dependent variable in this

case. Since reload enrichment is one of the design parame-

ters in fuel management, it is formally called a design

variable for this problem.

3.4 Lagrangian Optimality Condition

The objective function for the system TC® 1s to be

a minimum with respect to the declsion variables Eﬁ and

B
Ec

subject to the condition that the energy of each cycle

Ec has the specified value Ez. That is

A B
Ec +Ec = ES c = 1, 2, e o o o (3'5)
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Under the assumed condition that the batch fraction of

each reactor is held constant, TCP

the energies Eg and TCP is a function only of the energies

EE. The Lagrangian condition for TC° to be a minimum

is a function only of

subject to the constraints (3.5) is

mES A B S =
s[TC™ + iAC(Ec + E, - Ec)] 0 (3.6)
or
) s A B S -
;—K TE + XC(EC + Ec - EC) = O (307)
E
c
d  m=wS A B S -
EEE TC™ + AC(Ec +E, - Ec) =0 (3.8)
c

Ac being the Lagranglian multiplier for cycle ¢. Carrying out

the differentiation:

dTCA _ JTCB _ -
5= = = A, c=1,2, .... (3.9)

BEC BEC

After steady state conditions are reached, A_ becomes a

c
constant Ass’ and the terms in TCA and TCB 3ffected by the
R
steady state energy are of the form I s: and
rB ¢ (1+4x)"c
r —58 respectively, where tc is the time 1irradiation
c (1+x)7¢c
starts in cycle C. At steady state the revenue requirements

Rﬁs and RSS are independent of cycle number c¢. Hence Egq. (3.9)

reduces to

ar? dR>

SS - SSs -

A = B - )\ss (3.10)
dE dE
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For the present work, revenue requirements RA and RB
for steady state batches 1in reactors A and B respectively

were available, calculated from Eq. (3.4). To use Eq. (3.9)

A

directly 1t 1s necessary to have the revenue requlrements Rss

and RSS for steady state cycles. Fuel in reactor A in a
particular batch contributes energy to three cycles, starting when
batch of interest is charged, a second starting 1.5 years

later and a third starting 3.0 years later. For the present
work it was assumed that the revenue requirement for a steady-
state batch of reactor A was made up of equal contributions

of one-third of the revenue requirements of each of the

three cycles to which 1t contributes energy, each present

worthed to the time basis for the batch in question, that is

A RE 1 1
R = S8 [ 1 + + ] (3.10a)
3 (14x)1°2  (14x)3

Similarly, for reactor B, with four-zone fueling, it was

assumed that

1 1 1
R™ = [ 1+ + +
B (1+4x)1°2  (14x)3 (1+x)“"5:l

(3.10b)

This procedure of bringing the cycle revenue requirements to the
time basis of a batch 1s used instead of bringing the batch revenue
requirements to the time basis of a cycle because 1n a rigorous
treatment of this optimization problem the independent variable
used to provide the specified energy per cycle 1s the enrichment

of a batch.
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3.5 The Optlmization Procedures

The optimization procedure was divided into several steps.
Through these steps, the following data have been generated:

(1) revenue requirement for each reactor for steady state
cycles at different enrichments

(2) 1incremental revenue requirement, or incremental cost, as a
function of cycle energy for each reactor

(3) system incremental cost as a function of system energy

(4) energy per cycle for each reactor as a function of system
energy

(5) reload enrichment for each reactor
Step 1

Using the code package CELL-CORE-MITCOST 1, the cycle energy
and the revenue requirement per steady state batch for different
enrichments were calculated for reactors A and B. The results
are shown on Table (3.1), and plotted in the form of revenue

requirement per cycle on Figures (3.1, 3.2).

Step 2

By differentiating R:s with respect to Egs numerically
or graphically, the incremental steady state cycle cost is
obtained. The results are given on Figure (3.3) for reactors

A and B. \
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Revenue Requirement for Different Enrichments

Reactor A

Enrichment,

=
~N
(o]
A

= b= =W w o n
L] ® L] L] . . L]

o &= O O Do

Zion type 1065 MWe PWR Three-zone Modified Scatter

Refuelled Steady State Conditions

Energy per Cycle,

_GHe _
4732.6
6025.9
7251.0
8434.1
9575.3
10687.0
11774.7

Reactor B San Onofre type 430 MWe PWR Four-zone Modified

Enrichment,

(w/0)

1.
JAuky
.913
.846
.762

W N

For

960

both reactors, irradliation starts at O.

Scatter Refuelled Steady State Condition

Energy per Cycle,
_GWHe _
1536.7
2273.5
2940.2
4123.6
5152.7

irradiation ends

refuelling time

thermal efficiency

Revenue Requirement, 106$
Per Batch Per Cycle
8.94u8 9.9371
10.4375 11.5951
11.9499 13.2756
13.4861 14,9822
15.0320 16.6997
16.5900 18.4305
18.1588 20.1733
Revenue Requirement, 106$
Per Batch Per Cycle
3.391H 3.9666
4.2371 4.9557
5.0744 5.9350
6.7718 7.9203
8.4588 9.8934

0.125 years

0 year

at 1.375 years

32.6%



89

T [ [ | [ T 1

___,q Fig. 3.1 Revenue Requirement Rgs
Vs
A
Cycle Energy Ess

— 15

I
~~
~N

A
$s

> W

—16 " 3 —

>

§ 5

—/5 Q- —
%
D +s
-
W 3

__/3 %; Irradiation )
hJ Interval 1.375 Year
N

— /2 ‘i:’_ ?irﬁgening 0.125 Year =]

CYCLE ENERGY Y 0’cwHe

$sJ

—10 5 6 7 1 9 /0 // —
) | B l | | |




90

I
N
Rss

| |
3 oq
EQUIREMENT,

iN 10§ PER CYCLE

]
o
REVENUE R

I
Q)

(
)

Fig. 3.2 Revenue Requirement RSS

vs
B
Cycle Energy Ess

Irradiation Interval
1.375 Year

Refuelling Time
0.125 Year

CYCLE ENERGY, £ 10°Gmrie

2 3 4 )
l | I |




2.0

FIG. 3.3 dR_
INCREMENTAL COST

)9 Vs AEgs —
CYCLE ENERGY
A 1065 MWe PVR
B 430 MWe PYR |
IRRADIATION IHNTERVAL
1.375 YEAR

1.5 - REFUELLING TIME

0.125 YEAR

l‘7
b

/5]

/c‘*

INCREMENTAL COST, MILLS/KWHE

e e ae - C e e e tmeam ces ek e e memae g e m s
. LTy .. . N .
. ) i - PR . .

C e e b L T TP U IV,

n . CYCLE ENERGY IN /0% GWHE

6 s /O /2.

91



Step 3 92

Since the Lagrangian condition for minimal cost requires
that the two reactors have the same incremental cost, the
reactors should be operated in the following manner. For

S

any given level of Ec (systems demand), the reactors must

be loaded such that their incremental costs are the same.

i with respect to

Figure 3.4 shows the relationship of E
the incremental cost of reactor A or B. The ordinate repre-
sents the incremental cost for the entire system at that
level of Ei. Figure 3.4 can be viewed as the supply curve
of energy for the system. Notice that for Ei )16.7-103 GWHe
reactor A is base-loaded and any load increment goes to
reactor B. Hence the incremental cost for the system is equal
to the incremental cost for reactor B from then onwards.
Step 4

Baséd on the supply curve of energy for the system, the
customer can decide on the level of E he wants. Once he de-
cides on a Ei, Figure 3.5 would give the enérgy output from
each reactor. Figure 3.5 represents the loading of reactor
A or B for a given level of Ei under the Lagrangian condition
of equal incremental cost.

Figure 3.6 shows the relationship between capacity fac-
tor for each reactor versus Ei. Notice again that reactor A
has unity capacity factor for Ei %16.7 - 103 GWHe. This is
due to the fact that reactor A has a lower incremental cost
than reactor B, and therefore is base-loaded sooner.

Step 5

Finally, the optimum reload enrichment for each reactor
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can be inferred directly from cycle energy by Figure 3.7.

Specifying the reload enrichments completes the optimization

analysis.

3. 6 Summary and Conclusions

The problem of optimal energy schedulirig for steady-
state opefation with fixed reload batch fraction and shuf—
fling pattern has been solved in a straight-forward manner
using Lagrangian optimality condition and direct calculation
of incremental costs. Unfortunately, this problem is too
simple to be realistic or of practical interest. Not con-
sidered are time behaviour, stochastic events and other re-
fuelling and operation options. However, the important con-
cept of equal-incremental cost operation is illustrated.

This sample case shows how incremental cost can be generatéd
from fuel‘depletion computer codes and applied in the energy
scheduling for the whole system.

» The problem of optimal energy scheduling between genera-
ting units will not be considered further in this thesis.
Development of simulation method to make similar optimizations
from beginning to end involving many reactors and fossil
plants 1In a time varying framework is the subject of two other
thesis projJects (Deaton (Dl) and Kearney (Kl1)). This simple
example serves as a bridge linking the calculation of incre-
mental costs to the problem of overall system simulation and

optimization.
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CHAPTER 4,0
OBJECTIVE FUNCTION FOR NON-STEADY STATE CASES

4,1 Introduction

The second of the problems outlined in Section 2.5 is
concerned with the calculation of the obJjective function for
a finite time horizon. In principle, the complete optimiza-
tion problem would provide a solution for the indefinite time
horizon provided that pertinent information about the system
is available. However, the future is always uncertain, and
the farther away it 1s, the greater the uncertainty there is
regarding its characteristics. Hence, after some time in the
future, information about the system 1s so uncertain that op-
timization based on this information becomes irrelevant.

For practical purposes, optimization is usually performed
for a finite time horizon for which information is available
with some degree of certainty. In this circumstance, one
would like to have an optimization prodéedure such that when it
is applied successively to a sequence of finite time periods,
the collection of optimal solutions would be the same as the
optimal solution for the entire duration of the time periods
based on the same input data. In other words, one would like
to optimize for the individual pleces and at the same time
arrive at a global optimal. Any optimization procedures having
such a characteristic possess the property of separability.

The development of an optimization procedure possessing
the property of separability begins with the definition of
the objective function. The objective function is defined as

the total fuel cycle cost in a given time period. However,



99
due to the physical nature of multi-batch refuelling, the

physics, and hence the economics of fuel cost for different
batches are not separable from each other. To make the op-
timization procedure possess the property of separability,
a mechanism must be developed to decouple the fuel cycle cost
calculations in one time period from the other. The proposed
mechanism involves the treatment of fuel inventories at the
end points of thé time period.
| For the case in which the corporate income tax rate is
taken as zero (e.g., government-owned utilities) but there
are carrying charges, a rigorous and consistent treatment of
the fuel inventories at the end points is developed. TFor the
case where income taxes apply (e.g., investor-owned utilities)
the treatment i1s not completely rigorous. This is mainly due
to the fact that income tax laws are difficult to apply to
fuel batches which are in the reactor at the end of a time
period and are subject to undecided future operations.

Hence, two definitions of objective function are used,
one for the case of no income tax and the other for the case
of finite income tax.

4,2 Objective Function Defined For The Case With No Income Tax

4,2.1 Formulating the Problem

First consider the optimization problem for the indefi-
nite time horizon (unspecified but not infinite in length).
The output variables are the cycle energies EZ for Reactor r
in Cycle ¢. The objective function for Reactor r is the pre-

sent value of all the fuel cycle expenditures in the future.
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TG = TCh + TCo
N
—{1+x) “i '
T {  ) i (h.1)
. - Z S
« (1+x) ‘i

where the summation includes all the fuel cycle expenditures.

Z'g expenditures and credits for uranium and plutonium
s expenditures for service, or processing, components
Z'i which include fabrication, shipping, reprocessing

and conversion.

This formulation separates the variable and fixed compon-
ents of the fuel cycle cost. Uranium and plutonium costs are
directly related to energy production. Service components
costs are necessary to maintaln the operation of the reactor,
but they'are nof related directly to the level of energy pro-
duction. |

The obJective function for the finite horizon case 1is de-
fined as the present value of all the fuel cycle expenditures
assoclated with that finite time period. For the nuclear com-

ponent of the cost, an Inventory adjustment term is included.

S
TC,= TC} + T3
z N I I |
TEN:Z JT__, _Vinittar _ _Vrina1 (1.2)
T (14x) V35T (1) VT (14x) “1" '

7 S
59 I
TCy= -—l—wqf—-
[ (1+x) %51
i
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where sums over all the fuel cycle expenditures in

time period I.
T

v* 1is the inventory adjustment term.

th : time for the various fuel cycle expenses
ti' time when time period I begins
Tiw time when time period I ends

4,2.2. The Condition of Consistency

The sum of the objective functions for all the time periods

must be equal to the objJective function for the indefinite time

n
] T, =T« (4.3)
I

n: number of time periods in the indefinite time horizon.

Substituting Equation (4.1) for TCq , and Equation (4.2) for

TEI , Equation (4.3) reduces to (4.14)

S N I I N S

[ 25 ., ? 25 ) Vinitiax _ Yfina1 ,_.Z 24 +[Zi
t ; .tt t t -to to
T (1+x) "1 T (1+x) i T (1+4x) "1° (1+x) "1I* i(1+x) i 5 (1+x) “i

since the sum of partlal sum is equal to the total sum.

I JI 1
From Equation (4.4) the consistency condition results:

I I
Z Vinit1a1 _ ] Vrinal (4.5)
T (1+x) F1o 1 1+x) b1"

4.2.3 The Condition of Equalized Incremental Cost

Equalized incremental cost: Since reactors are energy pro-
ducing devices, and fuel cycle cost is a measure of the cost
associated with energy production, the relationship between

cost and energy output must be preserved in the finite horizon
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case. In other words, the variation of obJective function
with respect to energy in the finite time horizon must be
the same as that of the indefinite time horizon. If this
equality is maintained, optimal energy scheduling based on
the finite planning horizon objective function is the same
as that based on the Indefinite planning horizon objective
function. Hence the requirement is that the incremental
cost of energy be the same in both cases.

)“EI 'BTﬁn for those cycles ¢ (4.6)

= = which are in time period I
3, JE,
Since service component costs in period I depend on

what happens in period I, and do not depend on what happens

in the other time periods,

ATCO 75 zS ATCO
I .9 JI = 9 i - « ¥.7)
r t r t r (k.7
r oE (1+x)°JI »JE (1+x)"1 3E
aEc ¢ 5% c =g c
Hence, («.6) reduces to
=N N
dTc] el (h.8)
r = r
BEc: BEc
Hence, the problem of developing separable optimization pro-

_ I I
cedures reduces to the problem of finding Vinitial and Vfinal

such that Equation (4.5) and Equation (4.8) are satisfied.
Equation (4.5) can be satisfied quite easily by equating

I I-1
the present worth of vinitial and Vfinal

I I-1
that 1s Vi 4¢1a1 = Vrinal (4.9a)
(14x) %1 (14x) Q-1 "
1 _ n _ |
and by taking vinitial'o and Vesnay = © (4.9p,c)

where n 1s the last time perlod
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Equation (4.9a) is equivalent to the requirement that

the value of ending inventory in one time period must be
equal to the value of beginning inventory in the following

time period. To simplify the notation, VI will repre-

I I-1
sent  Vinseg3a1 204 Vegpaq -

I .1 11
Vo = Vinit1ar = Veinal (4.10)

Three different methods of evaluating VI have been de-
veloped. Each one of them satisfies the consistency condi-
tion (4.5). By performing some sample calculations, one can
determine whether any of them satisfies the equal incremental
cost condition Equation (4.8). The methods are described
below and the sample calculations are given in the next Sec-
tion 4.4,

4,3.1. Nuclide Value Method

I
V™ is equated to the market value of nuclear material,
i.e., value of uranium and plutonium inside the reactor at

the beginning of time period I.

vl = $value ( U,Pu) (4.11)
The value of separative work 1s calculated for each indi-
vidual batch, and it is summed up with the value of uranium
and plutonium.
4,3.2 Unit Production'Method

VI is equated t£® the book value of nuclear material in

the fuel batches in the reactor at the beginning of time per-
iod I. Book value 1is determined by linear depreciation as a

function of energy production.
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I
\'2 {Initial value -~ salvage valuﬁ}‘"{Energy generatiof}

total energy generation in time period I
b

+ salvage value]

the summation over b runs over all the batches of fuel
in the reactor at the beginning of time period I.

Since Tﬁl involves the beginning inventory Vl as well
as the ending inventory V2, calculatlion of TC

1
Jecting into time period 2 to obtain total energy generation

requires pro-

and nuclide salvage value for some batches.

Hence, this method is subject to forecast error. More-
over, projecting the salvage value for all the fuel batches
remaining in the reactor at the end of the time period re-
quires many more cycles of depletion calculation. For a
planning horizon of five cycles concérning a reactor refuelled
in a three~-zone modified scatter manner, this method may re-
quire 2 or more cycles of depletion calculations, equivalent
to a 40% increase in computational effort.

4.3.3 Constant Value Method

VI/(l+x)tI'is equated to a constant. Physically this
implies that the relative changes of the present value of
fuel inventories value from one time period to the other are
ignored.

vi _

TI:ESEE: = constant (4.12)
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4.4 Results of Two Sample Cases

Two sample cases are presented below.

The first case consists of a perturbation in energy in
the first cycle of a steady-state operating condition. The
reactor is the 1065 MWe PWR described in Chapter 2.

The reactor is'considered to have been operating on a
3.16 w/o three-zone modified scatter refuelling steady-state
condition for a long time. At time zero, the reload enrich-
ment for batch 1 is changed so that energy production in that
cycle is increased. For the succeeding cycles, energy pro-
duction is brought back to the former steady-state level by
adjusting the reload enrichments. This operation continues
until the reactor is back to its original steadj-state condi-
tion again.

The second case 1s similar to the first case except that
the perturbation magnitude is doubled. Again, the reload en-
richments are adjusted in the succeeding cycles to bring back
the energy production to its former steady-state level until
the reactor is again in steady-state condition.

Table 4.1 shows the reload enrichments and cycle energles
for the steady-state case and the two perturbed cases. For
the two perturbed cases, the results of the first five
cycles are shown. Note that the reactor has nearly settled
back to its initial condition by the fifth cycle. |

From the data from the depletion codes, the economics
calculations can be carried out. Hence the objective function
for the indefinite future TCe can be calculated, using:Equa-

tion (4.1).
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Table 4,1

Feed Enrichment and Energy per Cycle for Steady State Case

and the Two Perturbed Cases

Steady State Case

Cycle 1 2 3 b4 5
Enplomment . 3,16 3.16 3.16 3.16 3.16
Cycle Energy
GWH £ 21935, 21935, 21935, 21935, 21935,
First Perturbed Case ( AE=1029GWHt in Cycle 1 )
Cycle 1 2 3 L 5
Enrichment 3.359 3.054 3.174 3.196 3.133
(w/o)
Cyg&gtEnergy 22964, 21935. 21929, 21928, 21933,
Second Perturbed Cage ( AE=2050GWHt in Cycle 1 )
Cycle | 1 2 3 4 5
Enrichment 3.557 2,941 3.186 3.235 3.106
(w/o)
Cyg%gtEnergy 23985, 21919, 21906, 21939, 21970,

Note: The cycle energies in the two perturbed cases for Cycles
2 through 5 were not converged to exactly the same energies as
occurred iIn the basic steady state case. The differences in

total energy for the four cycles are:

5
1st Case JE (Perturbed) - gEc(Base) = - 15 GWHt (0."2%)

ond Case ° = - 6 GWHt (0.007%)

This each of the complete convergence introduces an insigni-
ficant error in the calculated incremental costs.



107

TCe= TCn + TCo
N
=N Z3
'I'C«__’== P
1+x) 1
L (4.1)
S

M= Zy
"= Lot
For three-zone fueling, the perturbation affects the sal-
vage value of the two fuel batches that come before the fuel
batch loaded into the perturbed cycle, and the initial and
final value of the four fuel batches that come after it. Hence
a total of seven fuel batches are affected by the perturbation.
The other fuel batches in the indefinite time horizon are not
affected by the perturbation.
The number of batches included in TC and TC.

1
is shown schematically in Figure 4.1. Only the batches that

and Tﬁz

are affected by the perturbation are included. TCq in-
cludes all seven batches (-1 to 5 inclusive) for a total of
eight cycles.

TC, dincludes only the first three batches (-1, 0, 1)

1

for the first three cycles. TC is credited with the value

1
of fuel inventories of batch 0 and -1 at the end of the first
cycle. Tﬁz includes thé last six batches for the last six
cycles. T52 is charged with initial value of fuel inventories
of batch 0 and -1 at the beginning of the second cycle}

Part A of Table 4.2 gives the objective function for the

batches whose values are affected by changes in energy in

Cycle 1. The first column gives the result of exact caleilatien
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Table 4,2

Comparison of Exact Incremental Cost with Incremental Cost

Calculated by Three Approximate Methods. ( No Income Tax)

Method Exact Nuclide Unit Constant
Value Production Value

Quantity v

Calculated TCox TC, T, TC,

Batches

Included

7 3 3 3
(-10001;293’405) ("10001) ("100’1) (“1'011)

Part A Revenue Requirement
10" %
Steady
State 62,3515 25,8651 25.0157 35.2680
Additional Energy in
Cycle 1

AE1=1029GWHt 62,7428 26,2693 25,3782 35.9983
=2050GWHt 63.1245 26,6740 25,7430 36.7316

Part B Incremental Cost for Cycle 1
Mills/KWH 2>
AE,S1029GWHt 1.17 1.20 1.08 2,18
2050GWHt 1,16 1.21 1,09 2.19

+ Mills/kwhe=1024TC/1 06-AE1 -n
T M = thermal efficiency=0.326

Irradiation time =1,375 year
Refuelling +time =0,125 year
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of the objective function for batches -1, 0, 1, 2, 3, 4, and

5. The second, third and fourth . columns give the results
of calculation of the objective function by three different
approximate methods. For these columns, results are given
for only batches -1, 0, 1, since these are the only batches
whose contribution to thé objéctive function are changed by
change of energy in cycle 1, under the assumptions of these
approximate methods.

The first row of Part A gives the objective function
for the stated number of batches for the unperturbed case.
The second row gives the obJective function for an increase
in energy production AE in cycle 1 of 1000 GWHt, with un-
changed energy production in all following periods. The
third row gives corresponding information for an energy in-
crease of 2000 GWHt in cycle 1.

Part B gives incremental costs as defined in Equation
(4.13), for the two values of DE . The first column gives
exact incremental costs over the entire five cycles. The
last three columns give approximate incremental costs calcu-
lated by each of the three methods for evaluating the initial
and final inventories for the first cycle. These incremental

costs are calculated from Equation (4.13).

— —

ATC, _ (E, +AE,) - TCe( E,.) ~
L= C& 1 1 (. 1 (‘4.138,)
AE, AEl

ATC,; TC,(E, +8E,) - TCy(E, )
. = 1
EEl Abl (4.13b)
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From the results of Table 4.2, the Constant Value Method

clearly gilves poor agreement with the exact values for the
incremental cost. Accounting for the changes in inventory
is necessary for calculation of the objective function in
periods of finite duration. |

Both the Nuclide Value Method and the Unit Production
Method give incremental cost close to the exact value. Hence
both of them satisfies the equalized incremental cost condi-
tion of Equation (4.6). Since both of the methods are con-
sistent they can be accepted as a valid way to evaluate
changes in inventory value.

As mentioned under Section 4.3, the Unit Production
Method requires forecast of performance of future cycles. How-
ever, for these sample cases, the future operation of the
reactor after Cycle 1 has been explicitly specified. Hence
Table 4.2 a, b, show values of the objective function with
no forecast error.

In practical application of this method, when the future
1s uncertain, the Unlt Production Method may give less accurate
results for incremgntal costs due to uncertainty in future
discharge burnup and salvage values. Moreover, predicting
these values may increase computational effort to a large
extent. Hence, the Nuclide Value Method, which is consistent,
accurate in calculating inéremental cost, and free from fore-
cast error, is recommended for calculating the objective

function for the case of no income tax.
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4.5 Objective Function Defined for the Case with Income Tax

4L.5.1 Objective Function for‘thé Indefinite Time Horizon

The objective function for the indefinite time horizon

is defined to be the "revenue requirement", which is given

by Equation (4.14).

e 1 ./ob b
TC, =) pize(eB, —weB, ) (4.14)
b
where
b Z1b
ch= —x present Vvalue of fuel cycle expenses
b(1+x) ib
b
b _ P
Pua™ éz:ibx ge discounted depreciation credit
! E
Eb
P8e= —AL——E—— discounted electricity generated
jb (1+X) Jb
b _ b
E™ = EJ total energy generated by batch b
Jb

T = income tax rate
For the derivation of Equation (4.14) refer to Benedict (B2)
and Grant (Gl). This definition of objéctive function 1is

consistent with the cost code MITCOST.
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4.5.2 Objective Function for the Finite Time Horizon

Objective function for the finite time horizon can be
derived in a manner analogous to the derivation in Section 4.2.
Agailn, 1t is necessary to introduce an inventory value for
those fuel batches that are in the reactor at the end of a
time period. Since depreciation credit is calculated for
each batch individually, an inventory value must be assigned
on the per batch basis. Defining vb(t) as the residue value
of fuel batch b at time t , the objective function for the

finite time horizon is given by

o

- 1 b b
o -Z-l_—,-(ch w2 ) (4.15)
b

where the summation runs over all the fuel batches that have
ever been in the reactor during that time period.
For those fuel batches that are charged and discharged

from the reactor in the time period, Pb b

we wd are defined

s P
earlier.

For those fuel batches that are in the reactor at the be-
ginning of the timg period at time tI' but are not in thekreac—

tor at the end of the time period

b , YA
PR, = LELL ) LT (4.16)

(1+x) 1! i'(1+X)ti'
b
b _Jb P
R I E e (4.17)
v E

where
é; sum over expenses in this time period only
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time period
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Present worth of electricity generated by this fuel
batch in this time period

Electricity generated by this fuel batch in this

For those fuel batches that are in the reactor at the

end of thetime period at time ¢

but are not in the reactor

Il!
at the beginning of the time period
b
Pb - zi" _ V (tIn)
wce i" (1+X)ti" (1+X)tI" (u-ls)
b
P:d = E' {Ziu = Vb(tI")}._P_!’L
i" Eb (uOlg)
Wwhere 2 Sums over expenses in this time period only
i
b present worth of electricity generated by this fuel
Pwe batch in this time period
Eb : electricity generated by this fuel batch in this

time period

If the reactor operator purchases the fuel batches at

value Vb(tI,)a1:the beginning of the time period, and sells

them at Vb(tI") at the end of thetime period, the objective

function defined in Equation (4.15) is the revenue requirement

for this time period.

4.,5.3 Conditions of Consistency and Equalized Incremental Cost

Again, the property of separability is required.

Hence

the objective function defined in Equation (4.15) should satiss

fy the consistency and equalized incremental cost conditions.



] ™ - T (4.3)
I
n: number of time periods in the indefinite time horizon
B__F(TEIL -2 q-aa,:) (4.6)
aEc aEc

for those cycles c that are in time period I

Unfortunately, due to the effect of tax credits, it is
no longer possible to satisfy the consistency condition

‘exactly by imposing the equality of Equation (4.9).

VbG; I") - Vb( t_’_ﬁ)

(1+x) °1" (14x) “+D

Inconsistency comes from the fact that the depreciation

(4.9)

base for the finite time horizon case is different from that
of the indefinite horizon case.

Hence, the problem of separability reduces once again to
the problem of finding values of Vb(t) that come closest to
satisfying the consistency and equalized incremental cost
conditions.

Two different methods of evaluating VP(t) have been exa-
mined. They are the Inventory Value Method and the Unit Pro-
duction Method. The Constant Value Method is not applicable
in this case because neglecting the relative changes of the
present value of fuel inventories is not consistent with tax
regulations.

4.6 Two Methods of Evaluating Fuel Inventories Vb

4.6.1 Inventory Value Method

b
Vi(t)is equated to the market value of nuclear material
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of fuel batch b at time t , plus the book value of fabrica-

tion and appreciated value of shipping, reprocessing, and

conversion. The value of the service cost is determined by

linear depreciation based on the Unit Production Method.
vP(t;,) = $value (U,Pu) + $value FSRC

where $value FSRC = book value of fabrication, shipping, re-

processing and conversion

generated
up to

initial value-final value) )SNeTeY
=initial value - .

total energy generation I

initial value = ZF: fabrication cost

final value =-(ZS+ZR+ZC) : post-irradiation costs

Thus, $ value FSRC varies linearly with respect to energy
production from an initial value of the fabrication cost to a
final value equal to the sum of post-irradiation costs. Since
Vb(tI,) depends on the total amount of energy generated by
fuel in fhe reactor, projected into future operations, this
method is subject to forecast uncertainty. A forecasting

rule is given below in Equation (4.26) to project total energy

generation. No depletion calculations are involved.

E® =(N/n)- ED (4.26)
Eb total energy generation for batch b
Eg total energy generation up to time tI'
n number of cycles the fuel batch has been in the
reactor up to time :
N : total number of cycles the fuel batch is expected

to go through before discharge

Since Eg and n are already known at time tI"

parameter to predict is N. Predicting N is much easier than

the only
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predicting Eb directly. This rule of thumb is useful when

very little or no information is available for predicting
the future. Even though this rule 1s crude, incremental cost
calculations based on the Inventory Vvalue Method using this
rule of thumb give fairly accurate results (See Table 4.U4).

If enough information is available to predict Eb reliably,

b

E” should be used instead of this approximate value.

4.,6.2 Unit Production Method

Vb(t) is equated to the book value of nuclear material
and service cost (FSRC) for batch b in time t . Book value
i1s determined by linear depreciation using the ynit production
Method.

Vb(tl,) = initial value of nuclides and FSRC
{ initial value of nuclides and FSRC} Eotal

nergy

salvage value of nuclides and FSRC eneration

x{energy generation up to tI'}

where Initial value of nuclides, FSRC = ZU +ZF

Salvage value of nuclides, FSRC = ZU,+ZPu-ZS-ZR-ZC

In this method‘Vb(tI.) depends on both the total amount
of energy to be generated by the fuel in the reactor, projected
into future operations, and on the composition of the fuel
when diséharged after these future operations. This requires
running depletion calculations. ﬁence, the depletion calcula-
tions must be carried out until all the fuel batches in time
period I have been discharged from the reactor. This would

provide enough data for calculating salvage value as well as

total energy. In order to complete the calculation for time
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period I, it 1s necessary to predict system behaviour for
time period 2. This is much more difficult than predicting

Eb and requires more computation effort.

4.7 Results of Two Sample Cases

The sample cases of Section 4.4 are used again to test
the degree of consistency and equality of incremental cost
for the two methods.

Similar to the treatment in Section 4.4, the objective
function TC_ includes all seven batches (-1, 0, 1, 2, 3, L,
and 5) affected by the perturbation. TE, includes the first
three batches, credited with the inventory value of batch 0
and 1 at the end of cycle 1. T52 includes the last six
batches, charged with the inventory value of batch 0 and 1
at the beginning of cycle 2.

If the methods of evaluating inventory worth possess the

property of consistency, then TEQ=T51+ TC Hence,

5 .
any difference between TC ¢ and T51+T52 is a measure of
inconsistency for the two methods.

Part A of Table 4.3 gives the objective function for the
batches whose values are affected by changes in energy in
Cycle 1. The first column gives the result of exact calcula-
tion of the objective function for the indefinite time hori-
zon TC« . The second column gives the result of using the
Inventory Value Method for calculating the objective function
for time period 1, Tﬁl . The third column gives values of
T52 . The fourth column gives the sum of T51 and T§2 5
it should be compared with column 1. Part B is a similar table
for the wit Production Method.
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Test of Inconsistency Between the Exact Value and the

Approximate Methods

Part A
Method

Quantity
Calculated

Steady State
case

Revenue Requirement

Additional Energy in

Cycle 1
AEF1029GWHY

=2050GwWHt

Part B
Method

Quantity
Calculated

Steady State
case

Exact Inventory Value Method

TCx -T_-l p ﬁz -'I-.‘-éi'fTCz
10°$—

75.8458 30.7900 Li,9734 75.7634

76,3106 31,2713 44,9588 76,2301

76,7661 31.7532 44,9339 76,6872

Revenue Requirement

Additional Energy iﬁ

Cycle 1
.AEF10293WHt

=2050GWHt

Exact Unit Production Method
TCe TC TC TC,+TC
1 106¢ 2 1 2
P
75.8458 30,1342 45,7538 75.8879
76,3106 30,6041 b5,7333 76.3375
76,7661 31.0729 45,7073 76,7802
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From the results in Table 4.3, the magnitude of incon-

sistency can be seen to be quite small for both methods in
all three cases, but the Unit Production Method in compari-
son has the smaller measure of inconsistency.

Table 4.4 shows the incremental cost for the two methods.
Incremental costs calculated from the Unit Production Method

give better agreement in'general.

4.8 Conclusions

The Unit Production Method provides the most consistent
and accurate evaluation of Vb(t). However, to use this method
in a practical case, the information required as input is dif-
ficult to obtain. Moreover, more depletion calculations are
required.

On the other hand, the Inventory Value Method requires
the minimal amount of projections and computations, at some
loss of consistency and accuracy. For this kind of scoping
optimization which requires evaluation of many different al-
ternatives, computational speed is the major concern. Using
a fast optimization algorithm, a large number of cases can
be evaluated in order to eliminate those that are far from
optimal and locate those that may be optimal. Then a more
accurate algorithm can be used to evaluate those limited
number of near optimal cases.

Hence, the Inventory Value Method for evaluating.Vb(t)
is recommended for scoping calculation of the objective func-

tion for the finite horizon case.
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Table 4.4

Comparison of Exact Incremental Cost with Incremental Cost

Calculated by Two Approximate Methods

Incremental Cost for Cycle 1

Mills/KWHe
Method Exact Approximate
Inventory Unit
Value Production
AE,=1029GWHt 1.39 . 1.43 1.40

=2050GWHt 1.38 1,44 1.40
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CHAPTER 5.0

CALCULATION OF RELOAD ENRICHMENT AND
INCREMENTAL COST OF ENERGY FOR GIVEN
SCHEDULE OF ENERGY PRODUCTION WITH FIXED RELOAD

BATCH FRACTION AND SHUFFLING PATTERN

5.1 Defining the Problen

The problem here is to calculate the reload enrichments
and incremental cost of energy for successive cycles of a
particular reactor given the energy requirements for each
cycle and the refuelling schedule. The initial state of
the reactor is specified. Reload batch fraction and
shuffling pattern for each cycle are fixed. Under these
restrictive conditions, there is only one unique solution
for this problem. This can be understood quite easily by
analyzing the relationships between the variables.

If the initial state of the reactor is specified and
if the reload batch fraction and shuffling pattern for the
first cycle are fixed, the only refuelling option is the
reload enrichment. If the energy for the first cycle is
given, the reload enrichment for the first cycle is fixed.
This in turn specifies the end condition of the first cycle.
The above argument can be repeated for the second, third
and subsequent cycles. lence, if the energy requirements
for successive cycles are specified there is only one
sequence of reload enrichments for this case. |

The economics of the fuel cycle is a unique function
of the physical state of the fuel cycle. Since the physical
state of the fuel cycle is uniquely specified, the economics

of the system is also uniquely defined. Hence, incremental
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costs for the various cycles can be explicitly evaluated.

5.2 One-Zone Batch refuelling case

For a batch refuelled one-zone reactor, the calculation
of reload enrichment and incremental cost of energy is
straight forward. Energy output depends entirely on the
reload enrichment for that cycle. There is no inter-coupling
between cycles.

Figure 5.1 shows the relationship between cycle energy
and reload enrichment for this one-zone case. For a sequence
of cycle energies, the sequence of reload enrichments for
successive cycles can be read off directly.

Since there is no inter-coupling between cycles, the
fuel costs for different cycles are also decoupled.

The objective function is given by

= 1 _,pb b
TC = _I-7 (Pye = TPya ) (5.1)
(1+x)
where Q) = revenue requirement for batchbp

%

The specific refuelling schedule 1is given in Table 5.1

irradiation starts for cycle b

Table 5.1
Refuelling Schedule (in years)
Cycle Irradiation Starts Ends
1 0.0 1.463
2 1.588 3.151
3 3.176 4,639
Yy 4,764 6.227
5 6.352 7.815
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Figure 5.2 shows the relationship between Ry and cycle
energy. For a given sequence of cycle energies, the sequence
of Rb's can be read off directly.

The incremental cost of energy for Cycle ¢ is equal to
the slope of the curve of Rb vs E curve. Notice that for
the same cycle energy, the incremental cost are different
for different cycles due to the present worth factor. Figure
5.3 shows the relationship between incremental cost and
energy per cycle.

Hence for the batch refuelling case, the reload
enrichment and incremental cost of energy for each cycle

can be calculated directly once the cycle energy and the

refuelling schedule are specified.

5.3 Multi-Zone Refuelling

In the more general case, only a part of the reactor
core 1s replaced during each refuelling. Energy generated
in any cycle originates from the fissioning of the fresh
reload fuel and the partially burnt fuel remaining in the
reactor. As a'result, energy generated 1n one cycle depends
not only on the reioad fuel for that cycle, but also in the
reload fuel for the preceding cycles. In this way, all the
fuel cycles are coupled together. Hence, the calculation of
reload enrichments and incremental cost is no longer straight-
forward.

Three methods are developed for the calculation. The
first method is the Rigorous Method based on the definition

of the incremental cost. The second method, called
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Linearization Method is based on approximate linear relation-
ship between objective function and reload enrichments. The
third method, called the Inventory Value is based on an
analysis of the variation of the revenue requirement

calculated for the perturbed cycle alone.

5.3.1 The Rigorous Method

The incremental cost of energy Ac is defined as the
partial derivative of the revenue requirement with respect

to cycle energy

——

A -9oTC
(5.2)
which can be replaced by the forward difference
Ao - TE(E?,EQ,..E2+AE,E3+1..) - TU(EQ,Eg,..Eg,E;+1 o)
AE (5.3)

If TC is known for two values of Ec (eg .in Equation
(5.3) for Eg and Eg + AE) while all other Ec, are constant,
Ac can be evaluated quite easily. However, to obtaln the
correct enrichments which permit Ec to change while all other
energies Ec' remain unchanged 1is. time consuming and compu-
tationally expensive. The correct enrichment for each
cycle must be found by trial. To determine all the Ac in
an m-cycle problem requires about iﬂiiﬂill trials, using

about three trials per cycle.

5.3.2 Linearization Method

Due to the complicated inter-coupling effects between

various batches and cycles, energy production in any one
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cycle depends on the reload enrichments of all the preceding

cycles.
Ec = Ec(slx-EZ“"“"wo) (S.H)
Where ¢ ®is the initial state of the reactor prior

to Cycle 1.

For small changes of enrichments from a given base

case, the energy production per cycle can be approximated

by the linear relation

o .\ JE
E, -E¢ *® 532'-(60,-eg,) (5.5)
where eg,e: geload enrichment for cycle c¢' for the base
case
Eg : energy production for cycle ¢ for the base
case.

Equation (5.5) can be put in matrix form

E = R A€ + Fo (5.6)
where B = col'{El.... EC} |

A

lower diagonal matrix
{on/Aec, for c'€ ¢

qeer™ 0

AE = col{Aeguu»uAec}

E® = ci{ Ef..... E.}
Solving for A€, Equation (5.6) becomes

for ¢'> ¢

rt = a1 (E - BY (5.7)
Adding €° on both sides
€=2%4+ A=At (F-F% + 2O (5.8)
-’ ’
where € = col '{ €i1... %ﬂ
€= col { ... ©}

C
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If the elements in the matrix A are known, the reload
enrichments can be calculated for any specified set of cycle
energy.

A is lower diagonal. Equation (5.8) can be solved by
forward elimination.

The success of this method depends on the accuracy
of the elements of matrix A. If E is close to E‘ or one
of the E's from which the coefficients are calculated, the
method can be very accurate.

The objective function TC for a finite time period can
be treated in a similiar manner. The objective function
depends on the physical state of the system, and consequently
1t has the same set of independent variables.

TC = TC (e,... €4s yo). \ (5.9)

However, by the chain rule of differentiation,

C G
9TC _)aTC  alc! Y Lafer (5.10)
5ec E 3—_ ¢ e

c o

Equation (5.10) can be inverted to solve for Ac"

Rewriting Equation (5.10) in matrix notation

—_—
3TC} ¢ (5.11)
9¢e v
where
pp— o
3TC) = oo1. { 23TC 37T ... a"ft'}
o€ de, OJ€3 aec
S = col.{a-’l‘ﬁ 3TC ..ew... aTE}
3E, OF, 3,
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Inverting Equation (5.11) to solve for A,

% =(aT)2 {B'T:fz (5.12)
J€ b
3TC
If matrix A and the vector {;EQ are known;x can be

calculated directly.

The matrix A and the vector {%gg}kare determined by a
series of perturbation calculations. Using the steady state
case as the base line, the perturbed case consists of a
positive change 1in enrichment in the first cycle alone. Reload
enrichments for the succeeding cycles are kept to the original
steady state value. Cycle energy for the first few c&cles
would be increased. This effect would slowly damp out. By
analysing the dampening e{fect in cycle energy, the elements
in matrix A can be determined.

For example

_ 9E; ~ El(e?+Ael) - El(e'f) (5.13)
a11% 3¢, °© A )
1 €1
_ % E,(e+he;,e8)-E, (e, ed)
3.21'- 3—8— = 2 2 > (5.1’4)
1 ’ Aﬁl
TR X SR W
2517 36, 5 (5.15)
1 €1
Similiarly, g Y can be calculated.
€c .
aTC- = TE(E%"‘AE;,S%-") ‘“ﬁ(EQ,ego-o) (5.16)

9€ Aey
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Table 5.3 and Table 5.6 show the application of this

method in sample problem 1, 2 and 3.

5.3.3 Inventory Value Method

The Inventory Value Method consists of two parts. Part 1
deals with the calculation of reload enrichments by trial and
error. Part 2 calculates incremental cost of energy by
making use of the data generated in Part 1.

Part 1 Given an initial state of the reactor, the reload
enrichments for succeeding cycles for a specified sequence

of cycle energiles can be determined by trial and error. This
method 1s primitive and costly, but it can be made as accurate
as one likes.

For a given initial state, a given requirement of cycle
energy, a guess 1is made for the reload enrichment for the
first cycle. A depletion run is made using the guessed value
for the reload enrichment. If the resulting cycle energy is
too high (low), the reload enrichment is decreased (increased).
The depletion run for this cycle is repeated. The cycle energy
for the adjusted reload enrichment is obtained. A third trial
on the reload enric¢chment can be made using interpolation, or

extrapolation based on previous results.

(1) _ (1-1)
(1+1) _ (1) ° (1)
Where E?i) = target value
E(i) = cycle energy for the i-th trial
€ = reload enrichment for the i-th trial
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This method converges very rapidly. Usually three

trials of the enrichment are required for an accuracy of
+0.1%. With experience, the number of trials can be reduced
to two.

After the reload enrichment for the first cycle has
converged, the whole procedure can be repeated for the second
cycle.

For an m - cycle problem, at most 3m depletion runs are
required to determine the reload enrichments.

Part 2 Incremental costs can be calculated using data
generated 1in the trial and error procedures.

In Chapter 4, it has been shown that the Inventory Value
Method correctly evaluates the end effect and gives fairly
accurate values of incremental cost. If the Inventory Value
Method 1s applied at the end of the cycle for which incremental
cost calculation is desired, then incremental cost of nuclear
energy for that cycle can be obtained by analyzing the change
in the revenue requirement up to that cycle as energy production
changes 1n that cycle.

Consider the first cycle 1n the planning horizon in which
the initial state is well specified. After using the trial and
error procedures to calculate the correct reload enrichment
for the target energy, there would be at least three depletion
runs avalilable for.that cycie with different enrichments and
cycle energies.

From the output of the depletion runs, the revenue

requirement up to the end of Cycle 1 can be calculated for
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each enrichment or cycle energy. Incremental cost of energy

for the first cycle ATC can be approximated by

AE,
. s E i ﬁl(Ei) - TC, (E}) (5.18)
1~ 8E, ~ (BE] - Ej) )

Where Ei and Ei correspond to different trial energies for
the first cycle.

The same method can be applied for Cycle 2, 3... etc.
Hence, the incremental cost of energy for all the cycles can
be approximated. .

From Equation (5.18) it may be noted that only two data
points are required for each calculation of incremental cost.
If more than two depletion runs are available for each cycle,
higher order coefficients can be calculated.

Figure (5.4) shows the relationships between TC, TEl
(revenue requirements up to cycle 1) batches and cycle for the
example in which the incremental cost of energy for Cycle 1

is required.

5.4 Results For Three Sample cases

Three sample cases are consldered in this section. The
first two sample céses deal with perturbation in a steady-
state operating condition. The third sample case deals with
non-steady state operating condition. The third case

supposedly 1is more realistic.

5.4.1 Sample Case 1 & 2

Sample Cases 1 & 2 are the same cases considered in

Section 4.4, The initial state of the 1065 MWe Zion type
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reactor is given by the steady-state operating condition of

three-zone, 3.16 w/o refuelling, with energy generation of
21935 GWHt per cycle. The energy production in Cycle 1
of the planning horizon is increased to 22964 GWHt per cycle
for case 1, and 23985 GWHt per cycle for case 2 by increasing
the reload enrichment. The energy productions in the
remaining cycles of the planning horizon are kept constant
at the 21935 GWHt level by adjusting the reload enrichments.

Table 5.2 shows the reload enrichments, cycle energies
and revenue requirementsfor the base line case and the two
perturbed cases. Incremental cost of energy calculated by
the three methods are presented in the last three columns.
The Inventory Value Method gives better results than the
Linearization Method when compared to the exact values given
by the Rigorous Method.

Table 5.3 shows the calculations required by the

Linearization Method. From a set of five enrichment

‘ 3TC iE,
perturbation cases, the coefficients —5e and 3 were
c c'
calculated. Solving the set of linear equations, the
incremental cost of energy %%91 were determined, and are
c

given in the last row of the table.
Finally Table 5.4 shows values of reload enrichment
calculated by trial and error and by the Linearization Method.

They agree within 0.3%.

5.4,.2 Sample Case 3

This is a case with non-steady state initial condition and

varying cycle length and cycle energy. Refuelling intervals



Table 5.2

Incremental Cost of Energy for Sample Cases . 1 and 2 Calculated By Three Different

Methods
Enrichment and Cycle Energy Revenue - _Incremental Cost
Requirement  Method of Calculation:
€(w/o) Rigor- Inventory Linear- .
E(GWHt ) ous Value jzation
Cycle 1 2 3 L 5 TC 6T51
' 10°$ Mills/KWHe
Base € 3,162 3,162 3.162 3.162 3,162
Case E 21935 21935 21935 21935 21935 ©9+983:30.790
Case 1 e 3,359 3,054 3.174 3,196 3.133
E 3508h 31935 321029 21928 21933 70:-461 31.271 1.42 1,43 1.37
Case 2 € 30557 2-9“’1 3-186 30235 3'106 P .
B 23986 21019 21906 21937 21970 70+929 31.753 140" 1.4k 1.37

Refuelling Time Schedule For These Two Cases

Cycle Irradiation starts Irradiation ends
Years
1 0.0 1,375
2 1.5 2,875
3 3.0 b.375
b b,s 5.875
5 6.0 7.375

LET



Table 5.3

Calculation of Incremental Cost Using the Method of Linearization for Sample Case land 2

Enrichment and Cycle Energy

€(w/o)

E(GWHt)
Base € 3,162
Case E 21935
Perturbation
Cycle 1 € 3,557

E 23985

AE/a€, 5181,

Cycle 2 € 3.162
E 219358
AE/Ne, ___

Cycle 3 A 3.162
E 21935
A E/he,

Cycle 4 ¢ 3.162
E 21935
AEV@Q’

Cycle 5 € 3.162
E 21935
AE/Aeq

3.162
21935

3.162
23126
3010.

3.557
2398%
5181,
3.162
21935

3.162
21935

3.162
21935

3,162
21935

3.162
22424
1236,

3.162

23126
3010,

3.557
23985
5181,
3.162
21935

3.162
21935

3.162
21935

3.162
21791
-364,

3.162
22424
1236,

3.162
23126
3010,

3.557
23985
5181.

3.162
21935

3.162
21935

3.162
21929
-15,

3,162
21791
-364,

3.162
22424
1236,

3.162
23126
3010,

3.557
23985
5181,

Revenue ATC/he Incremental
Requirement Cost
6 6 Mills/KWHe
1078 e ‘/ (wlo “(Mills/KWHEY
69.9837 —_— e
71.5094 3.8526 1.3646
(0, 444B)
71.3511 3.4531  1,2408
(0,4045)
71,2338 3.1569 1,1176
(0.3643)
70.9535 2.4490 0,9178
(0.2992)
70,5965 1.5473  0.9163
{0.2987)

BET



Table 5.4

Reload Enrichment Calculated By Trial Method and By Linearization Method

Sample Case 1
Cycle 1

Energy/Cycle GWHt 22964,
Enrichment
Trial Method €&(w/o) 3.359

Linearizatione&(w/o) 3.360
Method

Sample Case 2

Cycle 1

Energy/cycle GWHt 23985,
Enrichment
Trial Method €(w/o) 3.557

Linearizatione(w/o) 3.557
Method

2 3
21935, 21929,
3.054 3.174
3.046 3.181

2 3
21919, 21906,
2,941 3.186
2,928 3.197

21928.

3.196
3.191

21937.

3.235
3.225

21933,

3.133
3.132

21970,

3.106
3.108

6¢T
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alternate between twelve and eighteen months. Cycle energies
follow a similiar pattern to the refuelling intervals. The incre-
mental cost of energy for Cycle 1 1s obtained by decreasing energy
production in that cycle by 1000 GWH+ while keeping energy produc-
tion in other cycles the same as the base case. Table 5.5 gives
values of reload enrichments, cycle energies, revenue require-
ments and incremental costs. The accuracy of the Inventory Value
Method 1is comparable to the previous results. The apparent accuracy
of the Linearization Method is just coincidental.

Table 5.6 shows the calculations required by the Linearization
Method. The perturbation cases are the same as given in Table 5.3,
except that refuelling times are different.

Finally Table 5.7 shows the values of reload enrichment calcu-
lated by the trial and error method and the Linearization Method.
The same order of accuracy 1s obtained in this case as in the
previous two cases.

5.5 Conclusions

The Linearization Method 1s least accurate among the three
methods. However, once the coefflcients are calculated, incre-
mental costs and reload enrichments for any cycles can be obtained
very easlly. The Inventory Value Method is more accurate in terms
of incremental costs. However, the trial method of calculating
reload enrichments is awkward. Either the Linearization Method
or the Inventory Value Method can be used to estimate incremental

cost to be used in the beginning.



Table 5.5
Incremental Cost of Energy for Sample Case’ 3 Calculated by Three Different Methods

Enrichment and Cycle Energy Revenue Incremental Cost
Requirement Method of Calculation:
€(w/o) Rigor- Inventory Linear-
E(GWHt) ' ous Value ization
Cycle 1 2 3 4 s TC Tﬁl
6 ‘ o
—10°¢~ Mills/KWHe——
Base € 3.557 2,864 3.557 2.864 3,260
Case 70,837 31.580
E 24105, 21532, 23621, 20999, 22172,
Changed & 3.359 2,975 3.545 2,833 3,286
Case 70,383 31,107 1.37 1.43 1.37
E 23085, 21535, 23605, 20995, 22164,
Error 4% 0.05%
Refuelling Time Schedule For This Case
Cycle Irradiation starts Irradiation ends
Years
2 1.5 2,375
3 2.5 3.875
L 4,0 4,875
5 5.0 6.375

HT



Table 5.6

Calculation of Incremental Cost Using the Method of Linearization for Sample Case 3

Enrichment and Cycle Energy Revenue ATC/Ae Incremental

€§W/°)) Requizement Cost S

E(GWHY & Mills/KWHe
1073 ) —Nills/KWHt

——— ——

Base € 3,162 3,162 3.162 3,162  3.162 5 coa¢
Case E 21935. 21935. 21935, 21935, 21935, .

Perturbation
E 23985, 23126, 22424, 21791, 21929, 71.0973 3.8007 (0. BU62)
AE/n,5181, 3010, 1236, -363. -15. ’
Cycle 2 € 3,162 3,557 3.162 3,162 3.162 ' 1.1509
E 21935. 23985, 23126, 22424, 21791, 70.9090 3.3248 (0. 3753)
AE/E, — 5181, 3010, 1236. -363. )
Cycle 3 € 3.162 3.162  3.557 3.162  3.162
E 21935. 21935, 23085, 23126, 22424, 70.8707  3.2280 (é'égg;)
AE/Ae; — — 5181, 3010, 1236, *
Cycle 4 € 3.162 3.162 3.162 3.557 3.162
E 21935, 21935, 21935. 23085. 23126, 70.5645  2.4542 (5:2879)
AE/ae, — —_— — 5181, 3010, *
Cycle 5 € 3.162 3.162 3,162 3,162  3.557
E 21935. 21935. 21935, 21935, 23985, 70.2515  1,6631 (8'%223)
AE/Aes — — — — 5181, )

cht



Table 5.7
Reload Enrichment Calculated By the Trial Method and by the Linearization Method

Sample Case 3
Cycle : 1 2 3 4 5

Energy/cycle (GWHt) 23085, 21532, 23605, 20995, 22164,

Enrichment
Trial Method €(w/o) 3.359 2,975 3.545 2.833 3.286
Linearizatione(w/o) 3.360 2,979  3.534 2,836 3,287
Method

Ent



CHAPTER 6.0

CALCULATION OF OPTIMAL RELOAD
ENRICHMENT AND RELOAD BATCH FRACTION
FOR REACTORS OPERATING IN STEADY
STATE CONDITION AND MODIFIED SCATTER REFUELLING

6.1 Introduction

The problem of nuclear in-core optimization can be
formulated as follows: given a refuelling schedule and a
fixed energy demand, find the optimal combination of reload
enrichment and reload batch fraction such that the fuel
cycle cost is minimized., In this chapter, the special case
of steady-state operation is considered in which the size
of the irradiation interval and the energy demand are the
same cycle after cycle. Refuelling is done in a modified-
scatter manner. Fresh fuel elements are always put on the
outside annulus and once-irradiated fuel elements are scat-
tered throughout the inner core. Under these restrictive
conditions, the state of the reactor is uniquely defined,
as the reload enrichment and reload batch fraction are
specified. For a given combination of reload enrichment
and batch fraction, there is a unique fuel cost and a

unique cycle energy.

6.2 Mathematical Formulation of the Problem and Optimality

Conditions

The problem of nuclear in-core optimization in the

steady-state case can be stated mathematically as

144
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Minimize TC (e,f) (6.1)
subject to constraints E(e,f) = ES (6.2)
B(e ,f) < B° (6.3)

Where TC : revenue requirement for a single cycle

€ : reload enrichment

fs : batch fraction

E : energy demanded by the system on this

reactor
B® : burnup limitations.

The revenue requirement for a single cycle 1s chosen to be
the objective function because in steady state conditions,
the revenue requirement for a2 single cycle 1is equal to that
of the succeeding cycles. Equation (6.2) is the constraint
that the energy demand must be satisfied. Equation (6.3)

is the limitation on discharge burnup.

Notice that for reactivity limited burnup, specifying
the cycle energy and reload batch fraction completely
determines the reload enrichment. Hence cycle energy and
reload batch fraction can be taken as the independent
variables, and reload enrichment as the dependent variable.
Equations (6.1) (6.2) and (6.3) can be rewritten as

Minimize TC (E®,f) (6.4)

Subject to constraints B(Es,f)'<B° (6.5)

The non-linear Kuhn-Tucker optimality conditions for

Equations (6.1) and (6.3) are

B® - B(E®,f*) » 0 (6.6)
£¥* > 0 (6.7)
—m. 3B(E%, 1) ATC(ES, £9) (6.8)
T> 0 (6.9)
m™(B® -B(E®,f#)) =0 (6.10)
3TC .f*+w 3B .fr* =0 (6.11)

of af
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Equations (6.6) and (6.7) state that at (E®, f*) the burnup
constraint is satisfied. Equations (6.8) and (6.9) state
that at (ES, f*) the objective function cannot be further
minimized. Equations (6.10) and (6.11) state that either
(B - B(ES, f*))is zZero or —%gg is zero. Physically that
means the optimal solution(ES, f*)either lies on the boundary

of the constraints, or it is at a local minimum. Combining

Equation (6.8) and Equation (6.1) reduces to

5 TC(ES, r# 3 B(ES, r*
= s ) (6.12)

For steady-state refuelling, the average discharge
burnup B(ES, f) can be expressed in analytic form, in terms

of the cycle energy E° and reload batch fraction f

B(E°, f) « W « £ = E° (6.13)
s _ ES
or B(E®, f) = 777 - (6.14)

where W is the mass of uranium for the entire core before
irradiation.

Substituting Equation (6.14) into Equation (6.10) results in

WO(BO - Es )

=== =0 (6.15)

If the maximum allowable burnup is high eg. B® > 60
MWD/kg, Equation (6.6) would never be zero in the practical
range Es.

Hence, according to Equation (6.10) m would be zero.

In this case, the condition at optimum would be

9TC (E°,f*%) _ ,
T (6.16)
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However, 1f the maximum allowable burnup is low, eg.
B® < 30 MWD/kg, T is not equal to zero, and hence
B® - ES/(W-f*) = 0 (6.17)
£* = E5/(W-B°) (6.18)
At these lower maximum allowable burnups, the optimal batch

fraction can be expressed as a linear function of (ES/B°).

6.3 Graphic Solution for Optimal Batch Fraction

A direct way of solving this problem is to calculate TC
for all possible cholices of ES and f. Since TC is a smooth
varying function of these variables, calculating TC on a
coarse mesh of ES and f would give an adequate representation
of the function. Results shown on Table 6.1 are based on the
Zion type 1065 MWe Pressurized water reactor. Figure 6.1
shows TC versus E° for various values of f.

In Fig. 6.2, revenue requirement has been replotted against
batch fraction at constant cycle energy. In addition, lines of
constant average burnup B° are plotted. Only the region to the
right of a line of constant burnup i1s compatible with the
burnup constraint (6.3).

At the higher cycle energies of 10,650, 9,000 and 7,500
Gwhe, with a burnup constraint of 30 MWD/kg the optimal batch
fraction occurs at the intersection of the constant burnup
line and the constant energy line. At the lowest cycle energy
of 5,000 Gwhe, the optimal batch fraction occurs at the
lowest point on the constant energy line, at which condition

(6.16) is met.



Table 6.1

Table of Revenue Requirement Per Cycle,Energy Per Cycle

and Average Discharge Burnup versus Batch Fraction and

Reload Enrichment

Batch ~
Fraction 1/1 1/2 1/3 1/4 1/6
Enrichment
(w/o) .
TC 17.837 10.798
B 8.879 12,129
TC 21,224 12.879 10.057
2.4 E 9259, 6092, 5311,
B 13,097 17.235% 22,539
TC 24,712 15.015 11.595 9.799
2.8 E 12127, 7801, 6026, 4938,
B 17.155 22,068 25,571 27.938
TC 28,272 17.192 13.278 11.236 9.065
3,2 E 14906, oLl 7251, 5959. 4348,
B 21.085 26,708 30,771 33,718 36.907
TC 19.399 14,982 12.668 10.232
3.6 E 11032, gui3k, 6899, 5053,
B 31,209 35.791 39,035 42,889
TC 21.629 16.700 14,122 11.404
4,0 E 12577, 9575. 7827. 5730
B 35,582 40,634 L, 285 48,635
TC 23.880 18,430 15.583 12.585
4,4 E 14089, 10687, 8720. 6385,
B 39,861 45,352 L9,339 54,195
TC 20.174 17.052 13.769
4,8 E 11775, 9593. 7019,
B 49,968 gL, 277 59.564
TC 18.901
5,3 E 10660, N.A.
B 60,316
TC 20.339
7.0 E 10253,
B 87,021
TG (10%8)
E (GWHe)
B (MWD/Kg)

148
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Figure 6.2 shows the variation of revenue requirement
with respect to batch fraction for various cycle energiles.
The curves are rather flat near the minimum. Hence, in the
viecinity of the minimum, economics plays a less important
role than engineering and physical considerations.

Figure 6.3 shows the variation of revenue requirement
with respect to reload enrichment for various cycle energies
and batch fractions. Here the two independent variables
E and f and the two dependent variables are shown on the same
graph. The values of E¥ and f#* can be read off directly

for any minimal points.

6.4 Interpretation of the Lagranglan Multiplier =

When the maximum allowable burnup is high,

B® > B(E®,f*®)
according to Equation (6.10), m is zero. In this case 7 is
a passive parameter which has no physical meaning. When

the maximum allowable burnup 1s low,

B® = B(E®,f#)
7 would not be zero in general. In this case the optimal
solution is on the boundary of the burnup constraint. For
such cases the objective function can be further minimized
by raising the burnup limitation. However, there are certain
penalties that can be expressed in monetary terms resulting
from raising the burnup limitation. Let the penalty be p

dollars per unit increment of burnup limitation.
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FIGURE 6.3
REVENUE REQUIREMENT VS RELOAD

ENRICHMENT FOR VARIOUS LEVELS OF ENERGY

22—
20— g
T N
>
v
~
——a
IS~
N~
%
. ‘\\
[ b 2
/6 o
>
=y
W
N
[d— 2
<
y
| G
/2;'“‘!8 . i . —
J L = IRRADIATION _
% PERIOD CAPACITY IFACTOR
N / L3975 YR, IRRAD, INTERVAL
ly
/O & | 025 YR, REFUVELING TIME |
OO G‘W/'fe . . v.-._,.,,,-_;” e e e e B .
Fr— RELOAD ENRICHMENT, wj/o
! ] ] |
O

2 3 - 5 b 7



153

Decreasing batch fraction by 3f would result in a saving
dTC(ES,f*). 3f dollars
of s
dB(E”,f#)
If this saving is more than the penalty p-gf . of

there would be an incentive for decreasing the batch fraction

of

further. The penalty p¥* for which one is indifferent to

decrease or not to decrease 3f is

0¥ = %EQ(ES,f*) . %%(Es,f*) (6.19)

Since ng > 0 according to Equation (6.8) and

3B
of

*
p would be negative, meaning that 1t is a penalty. Comparing

<o,

Equation (6.19) with Equation (6.12) reveals that
T = -p (6.19)
Therefore, one can interpret w as the maximum price one

would be willing to pay to increase the maximum allowable

burnup.

6.5 Calculation of Incremental Cost of Energy A

Since the objective function TC and the constraints
B® > B are functions of two variables, cycle energy E° and
batch fraction f¥*¥, defining incremental cost deserves
special attention.
Let £¥ be the optimal batch fraction for the problem
minimize TC(E®,f) with respect to f
subJect to constraints B°zB(ES,f)
Let fT be the optimal batch fraction for the problem
minimize TC(E® + E,fT) with respect to f

subject to constraints B°>B(E® + AE,f)



Incremental cost of energy is defined formally as A where

A S + AR (@S
A =1imit TC(E” + AE,f )AE TC(E®,f%)

AE~+0 (6.21)

This equation can be simplified for the following two
special cases.

Case (a): The maximum allowable burnup B° is very high,
such that B° > B(ES,r#)

B® > B(ES + AE, 1)
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In this case m = 0 according to Equation (€.10). Therefore

according to LEquation (6.11)

aTC(ES ,f¥*)

= > =0 (6.22)
%?(ES +ae, ety o (6.23)

Equation (6.22) and Equation (6.23) could be solved
individually for f#¥ and f+. Substituting ¥ and et into
Equation (6.21) would yield the incremental cost of energy A.

Case (b): The maximum allowable burnup B° is low, such that

S

* -y
BO = B(Es,f ) = .—E‘—w
Wef
s + _ ES + AE
B® = B(E® + AE, r')=2—17
Wef
% S
or f = —ELT (6.24)
WeB
et - E° + AE (6.25)
= E_+ AE
WeB

Substituting f and f* into Equation (6.21) would again yield
the incremental cost of energy A. Note that in any case,
incremental cost of energy A 1s not given by the partial
derivative of total cost TC with respect to cycle energy E
holding batch fraction f constant, but is given by Equation
(6.21) with the f* and et determined by either Equations
(6.22) and (6.25) or Equations (6.24) and (6.22)
A # g@@
3E If

Figure 6.4 shows incremental cost of energy A versus

cycle energy E° for various burnup limitations. For the same

cycle energy ES, incremental cost of energy increases with
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Figure 6.4
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decreasing allowable burnup levels. When the burnup constraint
is not controlling, incremental cost first increases, then

levels off with increasing cycle energy.

6.6 Effects of Shortening the Irradiation Interval

Fuel cycle calculations are repeated for refuelling
interval of one year based on the same depletion calculations
given in this chapter. The results are shown on Figures 6.5
and 6.6.

The following differences can be seen between the cases
of 1.5 year and 1 year refuelling interval. The revenue
requirements for all cycles are lower for the 1 year case.
This 1s due to a shorter time period in which carrying
charges are based. The optimum batch fraction for a given
cycle energy is somewhat lower. But the overall trends of
the two cases are very similar. Hence, for small variations
of refuelling interval, the behavior of the incremental cost

and optimal solutions would not be greatly changed.

6.7 Conclusions

For steady-state refuelling, the problem of nuclear
in-core optimization can be solved directly by graphic
techniques. For a specified cycle energy, the optimal batch
fraction 1is given by the smallest value compatible
with burnup limitation for nearly all practical cases.

The explanation 1is that the savings in service components
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In this case m = 0 according to Equation (€.10). Therefore

according to Equation (6.11)

S

BCE LT o (6.22)
S 1

ggC(E +AE, 1) 4 (6.23)

Equation (6.22) and Equation (6.23) could be solved
individually for f¥ and f+. Substituting ¥ and et into
Equation (6.21) would yield the incremental cost of energy A.

Case (b): The maximum allowable burnup B® is low, such that
S

* ]
B = B(ES,f ) = —2p
Wef
s + E5 + AE
B® = B(E® + AE, )= T
W.f
* S
or £ = -—E—b- (6.24)
WeB
o+ . ES + AE (6.25)
= £ _+ OB
WeB

Substituting f* and et into Equation (6.21) would again yileld
the incremental cost of energy A. Note that in any case,
incremental cost of energy A is not given by the partial
derivative of total cost TC with respect to cycle energy E
holding batch fraction f constant, but 1is given by Equation
(6.21) with the f* and f+ determined by either Equations
(6.22) and (6.25) or Equations (6.24) and (6.22)
)\#_B_T_-C_
3E If
Figure 6.8 shows incremental cost of energy X versus
cycle energy E® for various burnup limitations. For the same

cycle energy ES, incremental cost of energy increases with
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decreasing allowable burnup levels. For the same burnup,
incremental cost first increases, then levels off and

finally decreases for increasing cycle energy.

6.6 Effects of Shortening the Irradiation Interval

Fuel cycle calculations are repeated for refuelling
interval of one year based on the same depletion
calculations given in this chapter. The results are
shown on Figures 6.9, 6.10, 6.11, 6.12,

The following differences can be seen between the cases
of 1.5 year and 1 year refuelling interval. The revenue
requirement for all cycles are lower for the 1 year case.
This 1s due to a shorter time period in which carrying
charges are based. Incremental cost of energy shows a
wider spread for the range of burnup limits considered.
But the overall trends of the two cases are very similar.
Hence, for small variations of refuelling interval, the
behavior of the incremental cost and optimal solutions

would not be greatly changed.

6.7 Conclusions

For steady-state refuelling, the problem of nuclear
in-core optimization can be solved directly by graphic
techniques. For a specified cycle energy, the optimal
batch fraction is given by the smallest value compatible
with burnup limitation for nearly all practical cases.

The explanation is that the savings in service components
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costs resulting from a smaller batch fraction outweights

the additional enrichment cost, carrying charges and

income taxes. Finally, the incremental cost of energy
increases with cycle energy, but levels off at ES = 10,000
GWHe/cycle. The incremental cost of energy also increases with

decreasing allowable burnup levels.
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CHAPTER 7.0

NUCLEAR IN-CORE OPTIMIZATION FOR NON-STEADY STATE

FORMULATION OF THE PROBLEM

7.1 Introduction

Having solved the steady state nuclear in-core
optimization problem in Chapter 6, this chapter considers
the general non-steady state nuclear in-core optimi-
zation problem outlined in Chapter 2 Section 2.5. The
general problem of nuclear in-core optimization can be stated
as follows: given a refuelling and maintenance schedule,
and a specified sequence of cycle energy demand for a
given reactor in the planning horizon, find the optimal
combination of reload enrichments and batch fractions such
that the fuel cycle cost is minimized and the engineering
constraints are satisfied. A typical planning horizon
consists of five cycles with a total duration of about
seven years. In general the cycle energy demand for each
of the five cycles would be different from each other.
Consequently, the reload enrichment and batch fraction for
each cycle would be different and hence the reactor supp-
lying this energy is said to be operating in a non-steady
state manner. At the beginning of the planning horizon,
the reactor is in a certain well specified initial state.
This initial state would play an important role in the

overall optimization. In addition to satisfying the cycle
energy demand, the optimal combination of reload enrich-



ments and batch fractions should also satisfy engineering
constraints, such as burnup limitations, power peaking,
control poison margins and other safety considerations.
Only when all these constraints have been satisfied does

the economics optimization has any practical significance.

7.2 Mathematical Formulation of the Problem

For full-power reactivity-limited burnup, cycle energy
and dischargé burnup are unique functions of the reload
enrichments and batch fractions of all the preceding cycles.,
Hence, reload enrichments and batch fractions can be con-
sidered as independent variables, while cycle energy and
discharge burnup can be considered as dependent variables.,
The objective function: revenue requirement for the plan-
ning horizon, is also a variable dependent on reload enrich-
ments and batch fractions.

Thus, the problem of non-steady state in-core optimi-
zation can be mathematically stated as
minimize TC(e,T,v) (7.1)
with respect to € and

subject to constraints

E,(e,F )=E] (7.2)

BC<E,}‘><B° (7.3)
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where TC: is the revenue requirement for this reactor for
the planning horizon
Eqot energy generated in cycle ¢
Ei: energy demanded by the system on cycle c of the
reactor
Be: average discharge burnup of Cycle c
¢+ maximum allowable burnup

: a vector consisting of all the reload enrich-

ments

 : a vector consisting of all the batch fractions

¥ : initial condition of the reactor

Equation (7.2) is the requirement that the cycle

171

energy demand be satisfied. Equation (7.3) is the requirement

that the average discharge burnup be within technical
limits. In general, other engineering constraints, such
as power peaking and control poison margin, etc. should
be imposed on the system., However, for simplicity, only
the burnup constraint is considered. Other constraints
can be incorperated with no major difficulties.

The Kuhn -Tucker optimality conditions for the optimal

. > >
solution €, f are
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E, (%, F#)=g (7.1)
for all c
BC(E*,§*)<B° (7.5)
%50 (7.6)
T*>0 (7.7)
C
0 S A
%E_ g{"é(B —Bc)+AC(Ec-Ec)}<%§Q for all c' (7.8)
C' c'
Cc s _
3 J{mg(B°-B )+x (E_-E ) }3TC for all c' (7.9)
3F ,c °© ¢ 37,
[¢] (¢]
wc;O
A, 30
¢ s
g{né(B*-Bc)+ Aé(Ec-Ec) } =0 (7.10)
§{3T5x3*+3TC x4} = % e#x %{no(B° B )+A*(ES-E )}
& 33: c c Pt e FE; e e c e e

(7.11)

9 0 N
* [ ] - L 4 -
+ E‘ £ ,er A Z{Trc(B B )+ (EY-E )}

where Acz is defined as the incremental cost of nuclear
energy for the c~-cycle

Tt is defined as the burnup penalty for the c-cycle

Since the dependent variables are not analytically
differentiable, the optimality conditions are not useful
in a practical sense. Calculation of the incremental
cost and burnup penalty directly from these equations is

not feasible,
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Methods of solving the nuclear in-core optimization
problem are given in Chapters 8 and 9. Calculation of

incremental cost is given in Chapter 9 .,

7.3 Exact and Approximate Calculation of the Objective
Function

The objective function TEI is defined as the revenue
requirement for the reactor in the planning horizon I.

The method of calculating TEIis given in Section 4.3.2,
with end state correction based on the Inventory Value
Method. In principle, it includes the revenue requirement
for all the batches discharged from the reactor in the
planning horizon. The treatment for these batches is
exact.

Those batches that remain in the reactor core at the
end of the planning horizon are assigned a value vb(ero
that reflects the nuclide value and residual book value of
fabrication, shipping, reprocessing and conversion.

For these batches, the calculation of revenue require-
ment is only approximate because of these service costs.

Hence, the accuracy of the approximate TEI is compared
to an exact revenue requirement TC, based on a pre-specified
fuel strategy. The number of batches included
in TEI and TC« are shown schematically in Figure 7.1,

The result of the test would hopefully demonstrate that

optimization based on the approximate TEI is equivalent
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to optimization based on the exact TCe .
If €% and 7* is the optimal solution based on an
exact calculation of TC«x , according to Kuhn-Tucker opti-

mality conditions Equations (7.8), (7.9) and (7.11) would be

ITC. (2%, 7%)_ 3 & > s +

aecf > 3€d§ {"c(Bo-Bc(ei’i’f*))+ xc(Ec— Ec( e*,F*))}
(7.12)

TC (%, %) (f{(" (e%,Fx)) (> e

dTCc (¥, d T (B°-B (e*,f*))+ XA (E7- E_( c*,T%))}

o 1 S I - C ette” Tl F (7.13)

C amr 02 _— L *

ATCa(e®, T#) . 3TCx( e*,T#) .\ _
g { aec“ Xe:+ c“ f:}

¢

(7.14)

+ %ff 2 SlnuBI-B yers(ES-E) )
Lie ETEZ c c c e e

However, if one requires Z*, ?* to be the optimal
solution based on the approximate objective function TEI,

E*, f* should also satisfy the Kuhn-Tucker optimality
condition for TEI. Hence, the Kuhn-Tucker conditions for

€* F*% and TC. are exactly similar to that of Equations

I
(7.12), (7.13) and (7.14) with TEI replacing TC« . Since

the right sides of the equations are not affected by the
replacement, the value of the left hand side of the equations
should be the same for TEI and TC& .+ In other words, we

should show that
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ATC (e*,F*) _  3TC. (E*, T) (7.15)
aec f aec f
dTCL(e*,F#) _  aTC . (e*, F*) (7.16)
3F - -

c € of, IC

Therefore, if each partial derivatives for TCe is
equal to the corresponding derivative of TEI, then optimi-

zation based on either of them is equivalent.

7.4 Comparison of the Exact and Approximate Methods

The partial derivatives of TEI are compared to those
of TC, . in a series of sample cases.

Planning horizons for each of the sample cases con-
sist of five cycles. However, to calculate TC, it is
necessary to know the reload enrichment and batch fraction
up to the eighth cycle. The reload enrichaents and batch
fractions for the sixth, seventh and eighth cycle are taken
to be 3.2 w/o and 0.33 respectively. Calculations are
based on the Zion type 1065 MWe PWR, At time zero, the
reactor is down for refuelling after it has been refuelled
in a three-zone modified scatter manner with 3.2 w/o reload
enrichment until steady state has been reached. The energy
requirement for each of the next five cycles is 22750 GWH¢t,
The maximum allowable average discharge burnup is 32 MWD/kg.
Under these restrictive conditions, the optimal reload

enrichments and batch fractions are e3.2w/o and f=0,33 for
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the next five cycles. In other words, the reactor is already
optimized before the planning horizon.

The reload enrichment or the batch fraction for the
first cycle is varied in order to evaluate the partial
derivative of the objective function with respect to enrich-

ment or batch fraction. The partial derivatives for TCgare

Lol To(et t P4y _ To(et et Ft

%'2? ’_‘1‘ 2 TC(E. +A§LE"’ [J 022' TC(£| ,ez [ f ) (7‘17)
ey e (24 ot t - Ta(etst £

B}‘_‘C ‘t :V_Tc(gufjj"AfJ LAf_}_."') TCLg,f. Lf -'Ol (7.18)

Partial derivatives for TEI are similiar to Equations (7.17)
and (7.18) by replacing TCe with TEI.

Figure 7.1 shows schematically the number of batches
included in TEI and TCy¢, the last three of which bring
the reactor sufficiently close back to steady state condition.
TCeconsists of eight batches irradiated from Cycle -2 to
Cycle 8 for a total of eleven cycles. TEI consists of the
same eight batches irradiated from Cycle -2 to Cycle 5 for
a total of eight cycles, with the last three batches given
approximate ending inventory value based on their discharge

composition and burnup. Table 7.1 shows the values of TEI

and TCq for the optimal case and the cases in which reload
enrichment or batch fraction is varied. Figure 7.2 and Figure
7.3 show the value of TEI and TCq plotted against €, and
f1 respectively.

The accuracy of the partial derivatives cnlal is within
+ 0.6%. The accuracy of partial derivatives on f1 is within

+ 0.9%. The accuracy of partial derivatives onzz,e3 . .and



Exact and Approximate Revenue Requ

Table 7.1

uirements

for Various Enrichments and Batch Fractions

Enrichment

Batch Fraction

€ ez(wg;) €y €5 Ty f2 fj
3.2 3.2 3.2 3.2 3.2 0.333 0.333 0.333
2,0 3.2 3.2 3.2 3.2 0.333 0.333 0.333
2,8 3.2 3.2 3.2 3.2 0,333 0.333 0.333
3.7 3.2 3.2 3.2 3.2 0.333 0.333 0.333
h,4 3,2 3.2 3.2 3.2 0.333 0.333 0.333
3.2 3.2 3.2 3.2 3.2 0.253 0,333 0,333
3.2 3.2 3.2 3.2 3.2 0,293 0.333 0.333
3.2 3.2 3.2 3.2 3.2 0.373 0,333 0.333
Enrichment Revenue Requirement
Changes Changgs
(w/o0) —
Ael ATCI ATC
-1.200 -4,5720 -4,5804
-0.434 -1.,6648 -1,6746
+0.480 +1,8893 +1,8791
+1.200 +4,6642 +4,6542
Batch Revenue Requirement
Fraction Changes
Crgnees sre—10%—gmr——
-0.8 -2, 340k -2,3623
-0. 4 -1.,1717 -1.,1822
+0.4 +0,7716 +0.7658
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Revenue Requirement

fh f

0.333 0.333 87,6426 93,5606
0.333 0.333 83,0706 88,9801
0.333 0.333 85,9778 91,8859
0.333 0.333 89.5319 95.4396
0.333 0.333 92,3067 98,2147
0.333 0.333 85.2932 91,1982
0.333 0.333 86,4709 92,3783
0.333 0.333 88,4142 94,3263
ATE&/Ael ATE;/Ael Error
10% ——
3.8100 3.8169 40,2
3.8360 3.8586 +0,6
3.9361 3.9148 -0.5
3,8868 3.8785 -0,2
ATGi/Afl ATE;/Afl Error
10%% e
2,9367 2.9528 +0.5
2.9293 2.9554 +0.,9
1.9290 1.9146 -0.7

Approxi- Exact
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fz...f5 would be progressively worse. This is due to the fact
that the end state correction would have a larger effect on the
subsequent cycles, However, this optimization would be
repeated on an annual basis. Hence, it is only the first
cycle results that would actually be utilized. Therefore, the
main emphasis on accuracy would be placed on the first cycle
derivatives.

This degree of accuracy is adequate for a survey type
of calculation in which a large number of cases are analysed.
After eliminating most of the sub-optimal cases, the exact
objective function would then be used for the final optim-
ization,

As a final test, the values of TEI and TCx are calculated
for a complicated case in which the reload enrichments and
batch fractions are different for all the cycles. The
difference of TEI between this complicated case and the
optimal base case in the preceding sections is compared to the
same difference for TCx. Table 7.2 shows the value of TC; and
TCe for the two cases. The discrepancy in this case is
substantially larger. This is due to the fact that as
enrichment and batch fraction changes take place near the end
of the planning horizon, the end-effect correction would not
be able to handle these changes accurately. Nevertheless,
this serves the purpose of comparing TEI and TCq under the

worse possible situation.



Table E 02

Exact and Approximate Revenue Requirement Calculated for the Base Case and the Case in

which the Reload Enrichments and Batch Fractions for All the Cycles are Changed

Cycles
1 2 3 by 5
€(w/o) ' ’
f
E(GWHt)
Bage Case

€ 3.20 3.20 3.20 3.20 3.20
f

0.333 0.333 0.333 0.333 0.333
E 22750, 22750, 22750, 22750, 22750,

Changed Case
¢ L,57 2,26 4,31 2.83 3.26
f 0,293 0.373 0,253 0.253 0,293
E 25450, 30440, 21850, 19340, 20880,

Revenue Requirement

Approximate Exact
64,

Absolute Change

10°$
87,6426 93,5605
90,2296 96,2674
2.5870 2.,7069

Percentage Error

e 0

c81



7.5 Conclusions 183

The nuclear in-core optimization problem is formulated
as a non-linear optimization problem. Kuhn-Tucker conditions
for optimium e* and f* are derived. The accuracy of the
approximate objective function TEI 1s compared with an exact
objective function TC « under pre-specified end conditions.

The approximate objective function TEI has been
demonstrated to be adequate for a survey type of optimization

aiming at eliminating a large number of sub-optimal cases.
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CHAPTER R.0

NUCLEAR IN-CORE OPTIMIZATION FOR NON-STEADV STATE BV METHNON

OF PIECE-WISE LINEAR APPROXIMATION

8.1 Introduction

In principle, the Method of Linear Annroxdmation consists
of the following three steps;

(1) Linearization of the obfective function and the constraints
about a given feasible noint.

(11)Finding the steerest direction in which the obiective
functlion decreases most rapidly.

(111)Choosing an increment step size and proceedine in this
steepest direction.

The entire orocess 1s revmeated at this new noint until
elther all the derivatives of the objective function are zero
or succeedines steps show no siegnificant imnrovement over the
previous steps. This method is useful when the objective
function and the constraints are linear or quasi-linear.

This method also assumes that an initial feasible solution
is availlable.

8.2 The Optimization Algorithm

Starting from an initial feasible solution e°and £?
TC%= TC(e°,F9)
>
Ec(e°,?°)=E§

fof all c
BC(Z°,?° )=R?

the objective function and the constraints are linearized

about the neighborhood of &°,¥0



C(e, T )= TZ?°+§{ac(ec-ec°)+sc(f'c—fg)} (8.1)
Ek(z,f> ~ Ek<22?°)+g{ykc(sc-eg)+skc(fc_fg>} (8.2)
B(E,D) = By (BI04 (5)  (epme) ey (F~TQ)) (8.3)

where the coefficients are revmresented hv:

_3TC(2°, %)
c aec
_aTC(e?,FY)
B =§f
+" 0
v 2 Bk F0)
ae
5 aE (e° Foy
ke~ af
aB (e° ?°
gkc ae
(o]
. =3B (e,
ke ""f.'““—
C

The expansion coefficients ac,Bcetc. are determined bv a
number of variational cases, in which the variables Ec’?c

are varied one at a time. For examnle,
7 o o o —'_ o e o0 o .o o0 o
o <TC(eeltae .. F0)-TC(e]. el F0)

c (8.1)
Ae
(o]
+0 >
E (e f +Af W)-E (9, 00700
65 k L c (%.5)
AT,

Since Equations (8.1) (8.2) and (8.3) are valid only in the
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%0 0
vieinity of €° and T°, Ae, and Af_ should be limited to small

values, for example Afc/fcs 0.01.
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Linear programmines can be applied to Equations (8.1) (8.2)
and (8.3) to determine the next ootimal vnoint. By imposinge the
additional requirement that !fc-fg!/fc<0.01, the next
optimal point would be forced to lie inside the region in
which the equations are valid.The objiective function for this
new optimal point is calculated, and comnared with the
previous objective function TC(e?,%%). If the new solution
is an improvement over the previous one, the entire nrocedure
of linearization and optimization is repeated for this new
point. Figure 8.1 is the flow chart of the Method of Linear
Approximation. The iteration terminates when the new solution
shows no improvement over the previous one.

Unfortunately, this method is not avnlicahle to the
situation in which bateh fraction chanses are_ restriéted’ to
large discrete values due to the sveclal requirements in the
depletion code CELL-CORE. The smallest batch fraction chanees
allowed by the code 1is Af/f=12%. Over this larere range of
batech fraction changes, the linear approximation does not hold.
Hence, the Method of Piece-Wise Linear Approximation is
introduced, and this requires a severate coefficient for
positive or negative changes in the hatch fraction. For
example, if (fc-f:) is positive, the expansion coefficients
multiplying (fc—fg) and (sc-sg) in Equations (8.1) and (8.2)

+ oot

are ac’Bc’ch’ ke

is negative, the expanslon coefflclents are a;,B

respectively. On the other hand, if (fc-fg)

c’ch’akc
respectively. Definitions of the nositive and negative : .

coefficients are given in Table R.1.
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Figure 8.1

Flow Chart for Method of Linear Approximatlion
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Table 8.1
Definitions of the Various Linear Fxpansion Coefficients

TC(ef.... €0 R T e )=TC(edung PO POLAP ...
= TC(€1 €c+A€c L fc+Af‘C ) _.C(El Sc fi 'C+A~C )
Af >0
¢] Ae
c
TC o . o TR I] ° LI NT o s o0 —‘rr‘_l .9 o0 o .o o0 o [INXT] # o P e s
_ TC(ef EHtAE e Pl AL (o) =TC (el PR £O4AL )
Afc<0 Aec
g+=ATC = TC wa£IHAT ) =TC(E0, £ fl)
¢ AT £ 50 ¢ ¢
clAf, At
5-=ATC _ TE e P OHAT "")-TE(E°,f2""f§"”>
¢ Af lar <o S
¢ c Afc
1 o o"‘. o »e do - .o b0 o...'Po.. o bo oo
Y+ EAEk —Ek(eY"eQ+Aec"f1 Fo*af, ) Ek(e? egunflnfotar, )
ke Ae ,
c|Af >0 Ae
C (o]
' 0 0 0 0 0
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P 0 —“E. (29, r0..F0....
6- _AEk =Ek(€ ,fgnuf‘c'.'Afc"") Ek(i ,f[ c )
ke AT, Af <0 AT,
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Using this more complicated form of the equations, step
size Afc/fc up to 12% can be handled at the expense of
doubling the number of coefficients to be calculated.
The equations involving average discharege burnup Equation
(8.3) however, do not require additional elaboration. The

following approximation for burnup is accurate within 5% of

the actual value.
By (€, ) = B(n,) x(1+&(n ) x(g ~c %)) - (8.6)
where nb:is the number of cycles of irradiation before

discharge for batch b

Byt reload enrichment for batch b

B(nb): average discharge burnup for a 3.2w/o
enriched batch which remains in the reactor
for ny cycles before discharge. For the Zion type
1065 MWE PWR, typical values of B(nb) are

B(3)=31.5 MWD/Kg

B(4)=38.6 MWD/Kg

B(5)=44.3 MWD/Kg

E(nb) a constant multiplying the enrichment of batech b
For the:Zion type 1065 MWE PWR, typical values of
£(n,) are

£(3 )=0.34

E(y )=0.21

(5 )=0.23

c%: a dummy constant equal to steady state refuelling
enrichment (w/o). For the Zion type 1065 MWe PWR,

the value of c%is 3.2.
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The various values for B(nb), 5(nb), c® are determin-
ed by multiple regression ananlysls based on a large number
of burnup data points. Equation (8.f) together with the
modified form of Equations (8.1) and (8.2) cannot be solved
by Linear Programming. They are solved by exhaustive
search, in which all possible combinations of fc are
calculated. Since the equations are valid over a small
region, and the depletion code CELL-CORE only allows dis-
crete charges in batch fraction, there i1s a finite number
of combinations of fc. If the batch fractions are restricted
to vary by one mesh size at a time, there are 3m combinations
for an m-cycle problem. A five-cycle problem consists of
243 possible combinations of fc. mThe corresponding 81 can
be calculated by Equation (8.2). Finally €, and f, can
be substituted into Equations (8.1) and (8.6) to solve
for the objective function and the discharge burnup.

Only those cases which satisfy the burnup constraint are
retained.

Finally, the objective function of all the feasilble
cases are compared, and the new solution for this step 1s
found. The entire process of linearization and exhaustive

search 1s repeated for thls new solution.

8.3 Results for Sample Case A with No Income Tax

The reactor under analysis 1s the Zion type 10f5 MWe
PWR, with initial condition equivalent to the 3.2 w/o three-

zone modified scatter refuelled steady state conditilon.
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The planning horizon consists of five cycles. FEnergy re-

qulrement for each of the five cycles is 22750 GWHt. The
maximum allowable average burnup is A0 MWD/Kg. The Mathod
of . Steepest Dascent is applied to solve for the optimal
reload enrichments and batch fractions for the five ecycles.
The objective function for this problem consisted of
revenue requirements for eight batches in the five cycle
planning horizon. Income tax rate is zero in this case.
For the more general case where there are income taxes, refer
to Section 8.4 or Chapter 9. Figure 8.2 shows the relation-
ships between the objective function, batches and cycle.
The objective function calculation is based on economics
environment similar to that of a government operated utility
which does not have to pay income tax.(refer to Appendix B)
The Nuclide Value method given in Section 4.3.1 is used to
evaluate end effects. Since there is no depreciation tax
credit for this case, future disposition of each sublot of
fuel remaining in the reactor core does not affect the
objective function. However, according to Equation (8.6)
the future disposition of each sublot of fuel must be known
before one can estimate the discharge burnup. For this
case alone, the assumption is made that the reactor would
be refuelled with f = 0.253 for all subsequent cycles after
the planning horizon.
Table 8.1 shows the result of the optimization. Table

8.2 shows the average discharge burnup for the various
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Table 8.1
Reload Enrichments,Batch Fractions,Cycle Energies and Revenue Requirements for the

Various Number of IterationgUsing the Method of Piece-wise Linear Approximation

Cycle Revenue Requirement
1 2 3 b 5 For Actual Energy Corrected for
Target Energy
e(w/o0) Piece- Piece-
f wise . CELL wise CELL
E(GWHt) Linear COCO Linear COCO
Approxi- Approxi-
. mation mation
Eaoeey 22750, 22750, 22750, 22750, 22750, 10
Iteration
Number
0 ¢ 3.2 3.2 3.2 3.2 3.2 .
f 0.333 0,333 0.333 0.333 0,333 72.1119 72,1119 72,1119 72,1119
E 22750, 22750, 22750, 22750, 22750,
1 e 3,77 3.37 3.45 3,5 3.42
f 0.293 0.293 0,293 0.293 0,293 71.3358 71,1517 71,4971 71.3131
E 22257, 22725, 22616, 23076, 22769,
2 € 5,03 3.03 4,27 2,96 4,57
f 0.253 0,253 0,253 0,253 0,253 70,3096 70.5269 70.4969 70.7141
_E 22697, 22534, 2284L, 22430, 22646,
3¢ 3.95 4,25 4,64 4,31 3.61
f 0.293 0.253 0,213 0.213 0,213 70,0805 70,4763 70,2485 70,6443
E 22986, 23133, 22325, 23894, 21253,

€6T



Table 8,2

Average Discharge Burnup for the Sublot Experiencing the Hjghest Exposure for Sample Case A

Calculated by (1) Piece-wise Linear Approximation
(2) CELL-CORE Depletion Calculation

Burnup in MWD/kg

Batch _ e
Number =2 =1 o _1_. ' _2 —3 _LL -2
Iter- .
ation ...
Number Method MWD/Kg — — ‘
o (1) 31.5 31.5 31.5 3.5 31.5 31.5 31.5 31.5
(2) 31.5 31.5 31.5 31.5 31.5 31.5 31,5 31.5
(1) 38,6 38,6 38,6 43,2 Lo,0 40,7 bi,5 Lo, 4
1 (2) 38.9 386 38.7 43,8 39.6 S _ -
(1) 38,6 38.6 38.6 52,8 37.3 b6.9 36,7 49,2
2 (2) 38.6 38.1 38,3 sh,1 3 4 - ...__. -
(1) 38.6 38.6 Ly, 3 51.5 54,4 58,1 54,9 48,3
3 (2) 39.0 38,5 Ls,0 52,2 —_ _— _ -

h6T



batches. The optimal solution consists of the smallest 195
possible batch fraction permitted by the discharge burnup
constraint. Further savings in excess of $1.6 million

could be realized if a higher discharge burnup were allowed.

8.4 Results for Sample Case A with Income Tax

If income tax of 50% is included in the calculation
of the objective function, the Method of Piece-Wise Linear
Approximation fails to produce an optimal solution. Table
8.3 shows the results for two iterations. The actual revenue
requirement corrected for target energy increased in the
second iteration. Hence, the method fails to produce a
better solution.

This failure is due to the fact that the objective
funection for this particular case. is very flat when
income taxes is included. Moreover, the base case is so close
to the optimal solution that the Method of Piece-Wise Linear
Approximation based on first order derivatives cannot give
good estimate of the trends. Hence, higher order approximation

is required for optimization in this situation.

8.5 Conclusions

The Method of Piece-Wise Linear Approximation is simple
and straight forward. However, the energy constraints
are only approximately satisfied. This is particularly
-true when optimal solution is far away from the cases

in which the expansion coefficients are determined.



Table 8.3
Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements with Income

Taxes for the Various Number of Iteration Using the Method of Piece-wise Linear

Approximation
Cycle
1 2 3 4 5
€(w/o)
f
E(GWHt)
Faree22750, 22750, 22750, 22750, 22750,
Iter-
ation
Number
0 € 13,2 3,2 3,2 3,2 3,2
f 0.33 0.33 0'33 0033 0‘33
E 22750, 22750, 22750, 22750, 22750,
1 € 3.77 2,77 3.29 3.88 2,67
f 0.29 0.33 0.33 0.29 0.33
E 22257, 22384, 22618, 22259, 22422,

Revenue Requirement

For Actual Energy Corrected for

Target Energy

10%%
Piece- Piece-
wise wise
Linear CELL Linear CELL

Approxi- COCO
mation

87.2407 87,2407

86,4105 86,6273

Approxi- COCO
mation

87.2407 87.2407

87.1015 87,3183 '

961
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This method 1is useful for cases where the objective
function has a wide variation over the range of the decision
variables (as in thisno income tax cése) and where the
optimal solution is ultimately limited by one or more of
the constraints.' However, 1f the objective function is
rather flat, as 1n thiscase with income tax, and the
constraints are not active, the Method of Plece-Wise
Linear Approximation cannot pin-polnt the optimal solution

precisely.
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CHAPTER 9.0
NUCLEAR IN-CORE OPTIMIZATION

FOR NON-STEADY STATE BY METHOD
OF POLYNOMIAL APPROXIMATION

9.1 Introduction

In Chapter 7, the problem of nuclear in-core optimiza-
tion was formulated in terms of finding the combination of
reload enrichments and batch fractions such that the energy
and burnup constraints are satisfied and the objective func-
tion minimized. However, experience has shown that the energy
constraints are difficult to satisfy accurately (within +1%).
As a result, the obJective function calculated for a particu-
lar combinatlion of relocad enrichments and batch fractions has
go be corrected for this error in meeting the energy constraints.
However, the obJective function has been found to vary smoothly
with energy and batch fraction. This well-behaved property
of the objective function can be éxploited to solve the fore-
going problem by incorporating the dependent variable,cycle
energy, directly in the objective function and eliminating the
the decision variable,reload enrichment, altogether. The

corresponding mathematical transformations are given below.

Repeating Equations (7.1), (7.2), and (7.3)

Minimize TU(Z,F;W) with respect to e, £ . (7.1)
Subject to constraints
> s
Ec(e,?) =E_ (7.2)
B,(¢,F) <B® (7.3)

Equation (7.2) can be inverted to yield
e=g(B5.F) (9.1)
which can be substituted into (7.1) and (7.3) to give

minimize TC(ES,T) with respect to T (9.2)
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subject to constraints

B, (E°,T)<B" (9.3)
Since ES are specified energy requirements, the decision
variables in this problem are only the batch fractions.. Since
the 1nitial state Yy 1s the same in all cases considered, it
has been omitted from Equation (9.2).

The functional form of Equations (9.2) and (9.3) cannot
be derived from theory. However, 1t can be approximated by
fitting polynomials in o and f to a large set of data
with the same initial condition ¢ . The analytic expressions
that result from multiple regression analysis can then be
optimized by conventional techniques. Section 9.3 describes
how the polynomials are chosen. Sections 9.4 and 9.5 present
the results of the regression analysis. Before that, there
are some brief comments about the objective function and the

end‘conditions.

9.2 Brief Comments About the Objective Function and the End

The objective function TC 1is defined in Chapter 7
(Equation 7.1) and represents the revenue requirement for all
the batches involvéd in the operation of the reactor in the
planning horizon. For those batches that remain in the reactor
after the end of the time horizon, the end values are evaluated
by the Inventory Value Method as outlined in Chapter 4. For
a typical five-cycle problem, the relationships between objec-
tive function, batches andcycles are given on Figure 9.1.

However, in order to arrive at a value for the tax depre-

clation credit and discharge burnups for all the fuel batches,
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end conditions have to be specified in the last three cycles
after the planning horizon. The end conditions are specified
in terms of the reload batch fractions for the sixth, seventh
and eighth cycles. The choice for these batch fractions could
be arbitrary, but choice based on realistic assumptions on

the future operation mode of the reactor in these cycles could
minimize this error due to truncation of the time horizon.
However, if the wrong choice is made the optimization would

be affected, at most for the last three cycles of the planning
horizon.

The optimum batch fractions for the first two cycles in
the planning horizon would not be affected. Since this op-
timization problem would be updated annually, this error would
not cause any great difficulty. For the sample cases ana-
lyzed in this chapter, the reload batch fractions for Cycles
6, 7, and 8 would be 0.253 throughout. This choice is based
on the fact that £ = 1/4 is the optimal batch fraction for
the steady state case if the burnup limitation is 45 MWD/kg
and cycle energy requirement ranges from 7000 GWHe to 9000 GWHe.

9.3 Choice of the Polynomials

The following behaviors are observed when the objective
function varies over energy and batch fraction .
(1) ObJjective function increases as more energy 1ls produced.
(2) Objective function iﬁcreases as batch fraction increases.

(3) Objective function increases as enrichment lncreases
even as energy production 1s kept the same.

(4) Objective function increases when batch fractions vary
greatly from cycle to cyele.
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When . the batch fraction changes, inefficiencies
are 1introduced, such as discharging fuel lots which are not
yet fully depleted, and retaining fuel lots which are over
depleted. Inefficiencies like these would not take place
in a constant batch fraction process in which fuel batches
are discharged at nearly the same burnup.

Based on the foregoing observations, the following

functional form of the objective function is constructed.

_ E 2
TC a E, +ZB + Z;_YCFC_ +Zc ‘Sc(fc - fc-l) (9.4)
c

The first term represents the linear change of objective
function due to energy changes. The second term represents
the linear change of obJective function due to batch fraction
changes. The third term represents the linear change of ob-
Jective function due to enrichment changes. Energy production
is found to be directly related to fissile content of the
core. At the same time, fisslle content is directly related/
to reload enrichment times the batch size. Hence, reload en-
richment can be approximated as proportional to energy divi-
ded by batch fraction. The last term of Equation (9.4) repre-
sents the linear éhange of the objective function due to the
absolute variation of batch fraction from cycle to cycle.
While Equation (9.4) was a fairly accurate representation of
the objective function, a.more accurate, more complex equation
involving 18 terms was used,which resulted in a multiple corre-
lation coefficient of 0.99891 and a standard error of estimate

of 0.0774 million dollars. The equation for this more complex
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objective function is given in Table 9.1.

The burnup constraint Equation (9.3 ) could be repre-
sented adequately by Equation (8.6) for an error band of
+5%. This band width is considered adequate for an in -
equality constraint. Lacking information on peak discharge
burnup, réfinement in accuracy in predicting average dis-
charge burnup is not warranted. However, Equation (8.6)
involves réload enrichment as one of its independent vari-
ables. Réload enrichment evaluated as a function of cycle
energy and batch fraction has to be obtained in order to
use Equation (8.6). Following the argument that reload
enrichments aré related to cycle energies divided by batch
fractions, a sét of polynomials was constructed around this
argﬁment. Thé régréssion equations for all the relead en-
richments are given in Tables 9.2 to 9.6. These equations
aré used exclusively for the calculation of average dis-
charge burnup. In no way does the accuracy of these equa-
tions affect the objective function.

Figure 9.2 is a plot of the standard estimate of error
versus cycle numbgr. The curve represents the results of
regression analysis of cases having batch fraction ranges
from 0.25é to 0.373.

On the same figure, the actual observed error in enrich-
ment is plotted. Most of the data points lie within 10% of
the actual enrichment. Since in (8.6), the estimated burnup
is represented as a linear function of enrichment, the effect

of 10% error 1in enrichment is equivalent to a 10% error in



Regression Equation for
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Table 9.1

Revenue Requirement

TC=87.240720+0.06551+

+

+

+

+

2.283L2x(E;=Eg1)
4.40931x(E,-Eo2)
2.26829x(E3=Eg3)
2.U7006x(Ey-Eqy)

2. 46U6Tx(Es-Eqs)
1.136U42x(f1-Fg1)
0.81828x(f3-Fg3)
0.68499x(£y=Fq4)
1.30984x(E}/f}-E3.1/F%1)
0.94908x(E2/f2-E}4/F%4)
0.76090x(E3/f3-E}s/f3s)
0.20903x(E/f3-E3s/f}s)
5.27670
0.48486x(f,-3.333)2
0.15590%(f3-f,)2
0.13438x(fy-F3)2
0.22128x(fg~f4y)?2
0.07579%x(fs~F,)2

Constants in Regression Equation UNITS

i

Ul FwmnH

Eog
2.275
2.275
2.275
2.275
2.275

3
3
3
3
3

fo1

C Revenue Requirement
333 in 10°%$

.333 5 Energx for Cycle 1
.333 in 10*GYWHt

.333 1 10xBatch Fraction
.333 for Cycle 1

IS |

Statistical Properties of Regression Equation
Correlation Coefficient p=0.90891

F Value

F=3191.

Standard Estimate of Error=0.077ﬂ0-,106$



Table 9.2

Regression Equation for Enrichment for Cycle 1

€1 =-1.53588 +2.84647x E,
+16.85454 /f,
~18.28799xE,/f,
+U45.3536UxE,/ 1}
-44.67946x/1}

+0.22981xE] /f}

UNITS
€4 Enrichment for Cycle 1 - in (w/o)
Ei Energy for Cycle i  in 1OMGWHt

fy 10xBatch Fraction for Cycle 1

Statistical Properties of Regression Equation
Correlation Coefficient p=0.999fA9
F Value F=29f37.

Standard Estimate of Error =0.02115 w/o
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Table 9.3

Regression Equation for Enrichment for Cycle 2

€, =0.97686 +1.28069xE,
-10.71479xE,/f,
+34.56815xE,/}
-14.59538 /f}
+ 0.14029xE} /r}
-62.52820xE? /(fix £} )
+ 1.31300 /f,
+ 1.12580%E,xf,/(E1xf,)

UNITS

€y Enrichment for Cycle 1 in (w/o)
!
Ei Energy for Cycle 1 in 104 GWHt

fi 10xBatch Fraction for Cycle 1

Statistical Properties of Regression Eaquation
Correlation Coefficient p=0.99805
F Value F=7741.

Standard Estimate of Error=0.05428 w/o



Regression Equation for Enrichment for Cycle 3

mable 9.4

£4=2.00669 + 1.
-11.

+34.,

-18.

+ O.

-61.
- 2.
+ 1.
+20.

+37.

I
(WS

23508 xE 4
87128 xE,/f,
89198 XE 3/ 3
240U3/f 3
17167%E,/f.
54253xE3/(£3xr})
25149/f,

83274 xE sxf 2/ (E 2% 3)
63379E ¥/ (£ix£})
85361 xE3/(f}xf3)

.60271/fl
LTTOSTXE X€ /(E XF )

UNITS
€y Enrichment for Cycle 1 1in (w/o)
Ei Energy for Cycle i in lOuGWHt

i

Statistical Properties of Reqression Equation

f 10xBatch Fraction for Cycle 1

Correlation Coefficient p=0.99r51

F Value

Standard Estimate of Error =0.0A838 w/o

F=4106,

207



Table 9.5

Regression Equation for Enrichment for Cycle U

€,=2.86942 + 1.42475xE,
- 6.98729%E,/f4
+29.96323xE, /2
-11.06240/12
-52.88219xE3/(fixf?)
- 0.37538xEyxf3/(E3xfy)
+10.15228xE3/(£3xr2)
+29.75157xE3/(f3xf})
=1.537T79%xE3xf,/(Eaxf3)
-22.62199xE}/(f{xF})
-28.70589xE}/(fixf})
+ 4.00576/f,
1.72619xE1xf (E2xf1)

UNITS
€y Enrichment for Cycle i in(w/o)
4
Ei Energy for Cycle 1 1in 10 GWHgt

fi 10xBatch Fraction for Cycle 1

Statistical Properties of Regresslion Equation
Correlation Coefficient 0p=0.99235
F Value F=1828.8

Standard Estimate of Error=0.078514 w/o

20
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Table 9.6

Regression Equation for Enrichment for Cycle 5

€5=0.43445 + 1.35606%Es
~-11.21701XEs/fs
+35.92697xEs/ %
-19.04411/7%
-48.65585xE2/(fixr})
+ 1.41909xEsxf,/(Eyxfs)
+ 6.50443xE3/(Fixr})
+24.18600xE3/(£ixr})
-14.66613xE3/(f3xf2)
-25.58575%xE3/(f3xf})
+ 9.66152xE}/(£ixf})
+29.418U44xE3/ (£ixF3)
- 3.47285/F,
+ 1.56183x%E ,xf/(Eyxf;)

UNITS
€4 Enrichmenp for Cycle 1 in (w/o0)
Ei Energy for Cycle 1 in 1OMGWHt
fi 10xBatch Fraction for Cycle 1

Statistical Propertles of Regression Equation
Correlation Coefficient 0=0.98721
F Value F=12A8.

Standard Estimate of Error=0.09459 w/o



average discharge burnup. Comparisons of actual and pre-
dicted average discharge burnup will be presented later in

Tables 9.8 and 9.10.
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9.4 Regression Analysis on Objective Function

The equation given on Table 9.1 is the result of ana-
lyzing 135 separate cases. This equation predicts the ob-
Jjective function for any selection of cycle energy Ec
and batch fraction fc to an accuracy of +0.1% of the true
value. Other independent tests besides the regression ana-
lysis have been performed to confirm this result. Using
this representation of the objJjective function, an analysis

of its sensitivity to changes in cycle energy E, or batch

1
fraction.fl can be made.

Figure 9.3 shows the variation of TC due to changes
in El for different values of fl holding.f2=f3=fu=f5=0.33
and.E2=E3=EM=E5=22750GWHt. The behavior of the ob-
jective function in the non-steady state 1s very similar to
that of the steady state (ref. to Figure 6.1). The objective
function for a smaller batch fraction increases more rapidly
with energy than that for a larger batch fraction. This is
due mainly to the disproportionate increase of uranium and
plutonium depletion cost.

The many cross-overs between lines of different batch
fractions imply that the optimal batch fraction for any given
level of cycle energy increases as cycle energy increases.

This trend is again similar to that in the steady-state results.

Figure 9.4, which shows the variation of the objective
function with respect to batch fraction for cycle 1 for dif-
ferent levels of cycle energy ‘El holding all the other f's
and E's at the steady-state 3.2 w/o, 1/3 batch fraction level,

is another way of plotting the data shown in Figure 9.3. The
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trend of higher optimal batch fraction at higher cycle energy
is 1llustrated more clearly. Refer to Figure 6.5 for compar-
isons between steady-state and non-steady state results.

Figure 9.5 shows the variation of the objective function
with respect to batch fraction for cycle 1 for different values
of f2 while holding the remaining f's and all the E's at
the 3.2 w/o 1/3 batch fraction steady-state level. There is
a small cross-coupling effect between fl and f2 in deter-
mining the value of TC . 1If an error of +0.1% in the objec-
tive function can be tolerated, it 1s possible to optimize each
cycle independently and neglect the cross-coupling effects
altogether.

In all these figures, the objective function varies by
less than +0.25% over the practical range of fl . In other
words,Athe objective function is very flat around the region
of 0;33 réload batch fraction. Thus near the optimal solution,
there are many sub-optimal solutions with roughly the same
total cost. For a saving of +0.25%, there is very little in-
centive to find "the optimal solution." Instead, one should
concentrate on oppimizing other considerations such as engi-

neering safety and reliability within this range of batch
fractions.

9.5 Optimization Algorithm

Based on the equations given on Tables 9.1-9.6, the ob-
Jective function is calculated for all possible combinations
of f's which produce the specified cycle energy demand and
satisfy the burnup constraints. These combinations are then

ranked in ascending order in terms of their cost. The lowest
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five combinations are subjected to further tests.

Further tests consist of carrying out the depletion cal-
culations based on the estimated reload enrichments and batch
fractions. The actual values of the objective function and
average discharge burnups are obtained. These are compared
with the values predicted by the regression equations. If
the estimations for reload enrichments are so far off that the
resulted cycle energies are significantly different from the
the specified cycle energy demand, the objective function
should be adjusted to reflect this difference. The case that
satisfies the constraints with the lowest adjusted objective
function is the optimal case for a particular optimization
problem.

Hence, for any set of cycle energies, a maximum of five
depletion calculations are required. Moreover, as more prob-
lems are solved, the additional depletion data can be
incorporated into the regression equations. In this manner,
the regression equations are made valid over a larger
and larger range.

The above procedures can be summarized in the flow chart
given on Figure 9.6. The computer code CELL-CORE is used for
the depletion calculations in this thesis research. In prac-
tice, one would 1like to use more elaborate physics models for
the depletion calculations; such as PDQ-5 or Citation, those’
that would give more accurate values of discharge burnups,

power peaking and shut-down margins, etc.
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9.6 Results of Sample Cases A and B

The 1065 MWe Zion Type PWR is chosen for analysis. For
both cases the reactor starts with steady state condition
for 3.2 w/o, three-zone modified scatter refuelling,which pro-
duces 22750 GWHt per cycle. Economics parameters used in eval-
uating the objective function are given in Appendix B.

Sample case. A consists in finding the optimal combin-
ation of batch fraction f's that produces the same amount
of energy, 22750 GWHt, in each cycle for five succeeding cycles
and satisfies the 45 or 50 MWD/kg maximum allowable discharge
burnup. Table 9.7 shows the optimal set of batch fractions,
for the 45 MWD/kg case. Tﬁﬁ is the objective function based
on actual energy production predicted by the regression equa-
tions, while Tﬂbc is the objective function calculated by
CELL-COCO. The last two columns on the right shows the values
of Trh znuiT_bC after correcting for differences 1in cycle
energy between the actual values and the target values.

Case AAO is the base line case in which the reactor con-
tinues to refuel with 3.2 w/o reload enrichment and three-zone
modified scatter refuelling. It serves as a standard with
which other cases ére to be compared.

" Case AAl with an adjusted cost of $87.06 million is the
optimal solution for this problem with burnup constrained to
be less thén 45 MWD/kg. The net savings is '$0.18 million (or
0.3%) over the base line case.

Table 9.8 shows the values of the predicted discharge

burnup based on Equation (8.6) and the actual discharge burnup

fromCELL -CORE. The values of the predicted burnup



Table 9.7 B’ =45MWD/Kg
Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method of Polynomial Approximation Sample Case A

Cycle Revenue Requirement
€(w/o) 1 2 3 4 5 For Actual Energy Corrected for
f Target Energy
E(GWH%)
T 4 Poly- Poly-
arge nomial CELL nomial CELL
Energy 22750+ 22750. 22750. 22750, 22750, 00 0. GOCO Appro- GOCO
Case ximation . 6ximation
Number 0" $—

AAO € 3,200 3.200 3.200 3.200 3,200 (Difference)
f 0.333 0.333 0.333 0,333 0.333 87.30 87.24 87.30 87.24
E 22750, 22750, 22750, 22750, 22750, A (+.06)

AAl e 3.88 3.33 3.45 3.54 2,94

- f 0.293 0,293 0.293 0,293 0.333 87,09 87.13 87,02 87,06
E 22690, 22840, 22560, 22920, 23030, (-.04)

AA2 € 3.88 3.29 3.45 3. 54 3.45
f 0.293 0,293 0,293 0,293 0.293 86.94 87,00 87.0L 87.10
E 22690, 22700, 22460, 22880, 22830, ‘ (-.06)

AA3 € 3.23 3.88 3.33 3. 54 2,57
f 0.33 0.293 0,293 0,293 0.33 86,76 86,81 87.11 87.16

AAL ¢ 3.88 3.33 3.45 3.54 2,67
f 0.293 0,293 0,293 0,293 0.373 87.34 87.33 87.11 87.10
E 22690, 22840, 22560, 22920, 23620, (+.01)

AAS5 € 3.23 3.88 3.33 3. 54 3.08
f 0.33 0,293 0,293 0,293 0,293 86,88 86.91 87.13 87.16
E 22850, 22870, 22860, 22960, 21190, (-.03)

0ce



Table 9.8 B® =4 5MWD/Kg

Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample

Case A Calculated by (1) Polynomial Approximation Based on Regression Equations

(2) CELL-CORE Depletion Calculation

Batch
Number £ =L -2 L 2 2 = 2
Case Method :
Number M‘ND/Kg
AAO (1) 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5
(2) 31.5 31.5 31.5 31.5 31.5
AAl (1) 38.6 38.6 38.6 Wy, 2 39.4 4n.9 1.2 36.1
(2) 38.9 38.6 38.8 4y, 9 39.4
AA2 (1) 38.6 38.6 38.6 uhy, o 39.4 ho.o hi,2 bhn, 6
(2) 38.9 38.6 38.8 4.9 38.7 _—
AA3 (1) 31.5 38.6 38.6 38.8 i, o 39.3 hh 2 33.3
(2) 31.6 38.9 38.6 39.2 5.0
AAL (1) 38.6 38.6 38.6 by, 2 30,4 hn,9 h1.2 33.A
(2) 38.9 38.6 38.8 hh 9 39.9
AAS (1) 31.5 38.6 38.6 38.8 Wy, 2 39.3 h1,2 37.8
(2) 31.6 38.9 38.6 39.2 uh, 7 —_—

1cc
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for batches discharged after the planning horizon are esti-
mated based on end conditions pre-specified in Section 9.2.
No corresponding values are given from CELL-CORE. It can be
seen that for most cases, the error between estimated and
actual burnups are less than 5%.

Table 9.9 shows the results for the case of
50 MWD/kg maximum allowable burnup. Case ABl1 with an adjusted'
cost of $86.90 million is the optimal solution, with a net
savings of 0.34 million, or 0.39% over the base line case.
Table 9.10 shows the burnup values. For 50 MWD/kg maximum
allowable burnup, it is possible to refuel with batch frac-
tion =Q.25§ for all cycles. But due to the high initial
enrichment required for Cycle 1, it is not economical to do
so. Hence, in this case of 50 MWD/kg burnup limit, the optimal
solution is not given by the strategy with the smallest feasi-
ble batch fraction, whereas the previous case of 45 MWD/kg
burnup limit, the optimal solution is dictated by burnup
constraints.

Sample case B consists of finding the optimal com-
bination of batch fraction f's that produces the following
energy requirements and satisfies the 45 or 50 MWD/kg maximum
allowable discharge burnup.

Cycle energy requirements for sample case B are

El=25450 GWHt, E2=30440GWHt, E,=21850GWHt, Eu=193HOGWHt

3
E5=2O880 GWHt
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Table 9.9 "B =50MWD/Kg
Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method of Polynomial Approximation Sample Case A

Cycle Revenue Requirement
€(w/o) — 1 2 3 N 5 For Actual Energy Corrected for Target
f Energy
E(GWHt) " Poly- Poly~-
Tarset nomial CELL- nomial CELL-
Ene% 22750, 22750. 22750. 22750, 22750, Appro- COCO Appro- C€OCO
Case ey ximation 6u ximation
Numpb . 10 -
—%%EQEG 3.2 3.2 3.2 3.2 3.2 | ¥ (Difference)
f 0.333 0.333 0.333 0.333 0.333 87.30 87.24 87.30 87.24
E 22750, 22750, 22750, 22750, 22750, (+0.06)
AB1 € 3.88 4,27 3,42 3,95 2,40
f 0.293 0.253 0.253 0.253 0,293 86,43 86,34 86.99 86,90
E 22690, 23000, 22480, 23100, 20500, (+0.09)
AB2 € 3,88 4,27 2,76 3.77  3.45
f 0.293 0.253 0,293 0,293 0.293 87.20 87.33 87.01 87.14
E 22690. 23000. 22510. 23130. 230?0. (-0913)
AB3 € 3.88 3.33 3.45 3.54 2,94
f 0.293 0,293 0.293 0,293 0,333 87.09 87.13 87,02 87.06
E 22690, 22840, 22560, 22920, 23030, (-0.04)
ABL € 3.88 4,27 2.77 3.74 2,40
f 0.293 0.253 0.293 0,293 0.333 86,26 86.37 87.02 87.13
E 22690, 23000, 22510, 22980, 19730. (-0,11)
AB5 € 3.88 3,29 3,45 4,50 2,66
f 0.293 0,293 0.293 0.253 0,293 86.82 86,89 87.03 87,10
E 22690, 22700, 22400, 23000, 22300, (-0.07)
AB6 € 3,88 3,29  3.45  3.54 3,45
f 0.293 0,293 0,293 0,293 0.293 86.94 87.00 87.04 87,10
E 22690, 22700. 22460, 22880. 22830, (<0,06)
AB? € 3.88 4,27 3.42 3,95 3.61
f 0.293 0.253 0,253 0.253 0,253 87.23 87.14 87.04 86,95
E 22690, 23000, 22480, 23090, 23250, (+#0.09)

gce



Table 9.10

R° =50MWD/Kg

Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample

Case A Calculated by(l) Polynomial Approximation Based on Regression Equations

Batch

(2) CELL-CORE Depletion Calculation

Case
Method
Number MWD/Kg
AAO (1) 31.5 31.5 31.5 31.5 31.5 1.5 31.5 31.5
(2) 31.5 31.5 31.5 31.5 31.5 —_—
AB1 (1) 38.6 38.6 38.6 hu, o2 h7. 4 ho.y by, b 31.8
(2) 38.9 38.4 38.1 hu, y 46.9 —_— _— —_
AB2 (1) 38.6 38.6 38.6 by, 2 4.4 34,7 43.2 364
(2) 38.9 38.4 38.5 5,2 7.5 —
AB3 (1) 38.6 38.6 38.6 by, 2 39.4 4o.9 1.2 36.1
(2) 38.9 38.6 38.8 4h.9 39.4 —_—
ABY (1) 38.6 38.6 38.6 by, 2 h7.4 34,7 43,2 31.9
(2) 38.9 38.4 38.5 b5, 2 47.3 _—
AB5 (1) 38.6 38.6 38.6 by, 2 39.4 Un,9 4o,6 34,3
(2) 38.9 38.6 38.8 44,5 38.14 ——
AB6 (1) 38.6 38.6 38.6 by, 2 39.4 bn.9 41,2 ho, 6
(2) 38.9 38.6 38.8 by, 9 38.7 —_—
AB7 (1) 38.6 38.6 38.6 by, 2 7.4 ho. L by 4 38.2
(2) 38.9 38.4 38.1 by, h h7.0 ——

hece
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Table 9.11 shows the three lowest cost combinations of
TER for the case of 45 MWD/kg burnup limit. Case BAO 1is
the reference case in which the batch fractions are held con-
stant at the 0.33 level and is used as a standard for com-
paring other cases.

Case BAl with an adjusted cost of $89.65 million is the
optimal solution for -case B with burnup constraint equal
to 45 MWD/kg. The net savings is 0.28 million compared to
BAO., Table 9.12 shows estimated and actual burnup values for
cases BA1-BA3. Table 9.13 shows the set of optimal solutions
for the case of 50 MWD/kg burnup limit. Case BB5 with an
adjusted total cost of $89.68 million is the optimal solution.
However, BB5 is not cheaper than BAl despite the more relaxed
burnup constraints. Due to the fact that the objective
function is so flat near the optimal, the regression equa-
tions with a #0.1% error cannot always succeed in identifying
"the optimal solution" among the neighboring sub-optimals.
Table 9.14 shows estimated and actual burnup values for cases
BB1-BB5.

From case BAl or BB5, one can identify some interesting
relations between‘optimal batch fractions and cycle energy
requirements. Where the cycle energy level is high, the op-
timal batch fraction is relatively large, and conversely.

This phenomenon has already been observed in Figure 9.4 and

in the steady state results in Figure 6.5. Since this case

is similar to the first example given in J. Kéarney's thesis(K1l),
it 1s possible to make a comparison between the Method of

Dynamic Programming and the Method of Polynomial Approximation.



Table 9.11 B° =L&MWD/Kg

Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for the

Various Lowest_Cost Cases Using the Method of Polynomial Approximation Sample Case B

Cycle Revenue Requirement
?(w/o) 1 2 3 i 5 For Actual Energy Corrected for Target
Ener
E(GWHt) Poly- Poly-
Target nomial CELL- nomial CELL-
Energy 25450, 30440, 21850, 19340, 20880, Appro- COCO Appro-  COCO
Case : ximation 6¢ximation
Number —107%—
BAO € 3.73  L4.36 2,40 2,76 3,45 (Difference)
06333 04333 0.333 0.333 0.333 89.36 89.37 89.92  89.93
25510, 30470, 22170, 20280, 17220, (-0.01)

oe]
-
S

3.74 3,73 3.25 3.68 2,7
0.333 0.373 0.293 0,253 0.293 89.53 89,36 89.83 89,65
25520, 30100, 22030, 19200, 20150, (+0.18)

3.7 3.73  3.24 2,93 2,77
0.333 0.373 0,293 0.293 0.333 89.50 89,36 89.83 89.70
25520, 30100, 22030. 19250, 19890, (+0.13)

3.7 4,36 2,70 2,66 2,37
0.333 0.333 0.293 0.333 0,373 88.88 88.91 89.87 89.89
25510, 30470, 21270, 19740, 17310, (-0,02)

o] o
> =
w N
Ere M D m EHeM e
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Table 9.12 B° =4 5MWD /Kg

Average Discharge Burnup for the Sublot Experiencing the Hizhest Exposure for Sample

Case B Calculated by (1) Polynomial Approximation Based on Regression Equations

(2) CELL-CORE Depletion Calculation

Batch
Number -2 :1_ 0 1 2 3 L 5
Case  Method
Number MWD/Kg
BAO (1) 31.5 31.5 31.5 37.2 3.9 31.9 35.0 B1.4
(2) 31.5 31.8 32.8 37.9 h2,2 28.5 32.9 41.9
BAl (1) 31.5 31.5 31.5 43.0 u3,.0 39.0 h2 . 6 34.5
(2) 31.5 31.8 32.8 hu,9 by, 5 —
BA?2 (1) 31.5 31.5 31.5 43.0 43,0 39.0 36.3 35.0
(2) 31.5 31.8 32.8 h5.3 b5, 3 —
BA3 (1) 31.5 31.5 38.6 43,0 h3.9 34,4 k.1 31.7
(2) 31.5 31.8 39.3 he,2 h1.5 e

Lee
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Table 9.13 B” =50MWD/Kg

Reload Enrichments, Batch Fractions, Cycle Energies and Revenue Requirements for the
Various Lowest Cost Cases Using the Method of Polynomial Approximation Sample Case B

Cycle , Revenue Requirement
€(w/o) __ 1 2 3 13 B For Actual Energy Corrected for Target
f Energy ‘
E(GWHY) Poly- Poly-
' Target nomial CELL- nomial CELL-
Energy25u5o' 30440, 21850, 19340, 26880, Appro- COCO Appro- COCO
. ximation 6 ximation
Case 10°%
N“%L 3.73 4'36 2.40 2.76 3.45 (leference)
0.333 0,333 0.333 0.333 0.333 89.36 89.37 89.92 89.93
25510, 30470, 22170, 20280. 17220. (-0.01)

BB1 3.7 L,36 2,70 3.88 2,27
0.333 0.333 0.293 0,253 0,293 88,66 88,71 89,67 89,72

25510, 30470, 21270, 19180, 17930. (-0,05)

b,55 3,79 2,91 3.87 2,61
0.293 0.333 0.293 0.253 0,293 89,35 89,38 89
25340, 30310, 21790, 19480, 20020, (-0

3,74 4,36 2,70 3,10 2.37
0.333 0.333 0.293 0,293 0.333 88,61 88,67 89.71 89,76
25510, 30470, 21270, 19260. 17480, (-0,05)

.55 3.79 2,91 3,09 2,71
0.293 0.333 0,293 0.293 0.333 89.32 89,38 89.71 89.76
25340. 30310. 21790, 19320. 19930. (-0.05)

b.55 3.79 3.72 2,93 2.93
25340, 30310, 21790. 19130.20110. (+0.04)

k.57 3.26 4,31 2.83 3.26
0.293 0.373 0.253 0.253 0.293 89.94 89.82 89.94 89,82
25450, 30440, 21850, 19340, 20880, (+0.12)

BB2
89.71
BB3

BB4

BB5

Hry e HH M OO OH O SO e T m

gcé



Table 9.14 B® =20MWD/Kg

Average Discharge Burnup for the Sublot Experiencing the Highest Exposure for Sample

Case B Calculated by (1) Polynomial Approxiamtion Based on Regression Eauations

(2) CELL-CORE Devoletion Calculation

Batch

Number ;-2— -—-—.1 -L —1’—- —?—’ i -—l}— .—2—
Case :
Number Method ‘MWD/KE
BAO (1) 31.5 31.5 31.5 37.2 43.0 31.9 35.0 1.4
(2) 31.5 31.8 32.8 37.9 ho,2 28.5 32.9 41.9
BB1 (1) 31.5 31.5 38.6 43.0 48,2 3.l 4.3 30.9
(2) 31.5 31.8 39.3 4y .9 hg.h
BB2 (1) 38.6 38.6 38.6 ho,7 43.5 36.2 hh, 1 33.7
(2) 39.2 39.8 39.7 52.2 uy, 0
BB3 (1) 31.5 31.5 38.6 43,0 48,2 b, Y 37.8 31.7
(2) 31.5 31.8 39.3 5,6 50.2
BBY (1) 38.6 38.6 38.6 hg,7 h3.5 3F.2 37.6 34, R
(2) 39.2 39.8 39.7 52.7 hh, 7
BB5 (1) 38.6 38.6 38.6 bg,7 b3.5 42,9 36.3 36.U
(2) 39.2 39.8 39.4 51.7 Ly 1
B§ (1) 38.6 31.5 38.6 50.7 39.1 h7.8 35.5 39.1
(2) 39.2 31.3 39.9 52.3 39.5 L&, 3 32.5 38.4

Notice that +he B°=50MWD/Kg limit only applies to the estimated burnup values
calculated by tre mnolynomial regression equation, The fact that actual burnup values
sometimes exreed 50 MWD/Kg indicates that the estimated burnup values are only approximate,

6ece
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Case B} 1s the optimal solution arrived at by Dynamic Pro-
gramming. B} 1s more expensive than BAl by $0.17 million
dollars. However, the total savings of B from the base
line BAO is only $0.11 million dollars. This is in great
contrast with the $2.5 million dollars saving reported by
Kearney. The difference 1is probably due to the different
methods of calcuiating TC.

Finally, it is important to notice that in the vicinity
of "the optimal solution", there are many sub-optimal solu-
tions with roughly the same tatal cost. Some of these
solutions may have higher engineering margins in terms of
discharge burnup, power peaking and shut-down reactivity.
Hence, the final choice should be based on these consider-
ations as well.

9.7 Estimates of Burnup Penalty =

The concept of burnup penalty mwwas introduced in Chap-
ter 6,and it is defined for the non-steady state case by
Equation (7.10) in Chapter 7. For each cycle, there would be
a separate value for burnup penalty Tys which can be 1nter-
preted as the additional cost that would be incurred if the
burnup limitation on Cycle ¢ were decreased by one unit.

Since the actual optimization algorithm solves by ex-
haustive search instead of by Equations (7.10) and (7.11),
burnup penalty 1is not calculated explicitly. However, the
order of magnitude of m, can be infered by 1inspecting
Tables 9.7, 9.8, 9.9, and 9.10.

Tables 9.8 and 9.10 show that the discharge burnup is
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well within the 1imit for almost all of the batches except

one in all cases. In other words, a single batch in each

case controls the values of the batch fractlions. Hence,

by definltion, the burnup penalties for those cycles not on

the border of the burnup constraints have the value zero.
The burnup penalty for the controlling batch can be

estimated by

o TCES,T8) - TO(ES,Ta)
¢ AB?

s
where TC(E ,f*) is the optimal solution for %5 and BO
s
and TC(E ,¥#**) is the optimal solution for B> and §°+AB£ .

For sample case A, W2 for the second fuel batch is given by

the difference 1n TCp between case AAl and ABl1 divided by

the increment in B.

_ (87.02-86.98)"10% _ 0.o4

= 1af

This value of m is much smaller than that given in
Figure 6.7 for the steady state case. Similar results are
obtalned for sample case B. Hence there is very little
incentive to increase the maximum allowable burnup limit

above the U5 MWD/Kg level.

9.8 Incremental Cost

Incremental cost of energy is defined as the additional
cost that would be incurred if an additional unit of energy

i1s produced in an optional fashion. 1In other words, if the reactor
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is optimized for one set of cycle energy E® .
TC(E",f*) =minimum of TC(E”,f) with respect to f

and B°<B_(ES,T*) s
and for the second set of cycle energles, E +AEc the

reactor 1is reoptimized.

TC(ES +AEC,F+) = mininum of TC(ES +AE )
3

->
with respect to f

0 s =
and B°>B _(E® +AE_ , ft)
then the incremen%al cost of energy from the c-cycle

is given by

|, TC(E® +8E_, Ft) - TC(ES ,7* )
c AEC (9.5)

A

The values of TC are obtalned from the regression equations.
In principle, one can use the actual TC calculated from
CELL—COCO; However, for the purpose of this calculation, the
additional efforts involved in doing all the deplétion analysis
are not Jjustified. Tables 9.15, 16 show the values of Tﬁ(ﬁs,?*)
and Tﬁ(ﬁ*+AEc,F*)for various 8E,  for sample casé A. Also
shown are the various F* and F* . For many cases, ?‘ are
seen to be the same as F* . For these cases, more or less
energy can be generated using the same combination of F* .
However, for those cases that F* are not equal to F* R
elther the F* are not the least costly combination at the

*
ES+AEC , or the f¥% are not feasible in

new set of
terms of discharge burnup. For AEc> 0 , feasibility con-

siderations change the f» to Ft 5 on the other hand,
for AEC< 0 » economics conslderations cause the change.

Tables 9.15, .16 also show the incremental cost for various cycles

as a function of energy. In general, the incremental cost



Positive Ener Change
AE=1000GWHt

0.

Table 9.15
Calculation of Incremental Cost of Energy
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Using Regression Equations. Sample .Case A

Batch Fraction for Cycle

Base
Case 0
AAlL
in Cycle
1
2 0
3 0
by 0
5 0

1

.293

333
293
.293
.293
.293

2

0.293

0.293
0.293
0.293
0.293
0.293

0

0
0
0
0
0

3

.293

.293
.293
293
.293
.293

Negative Energy Change
E=-1000GWHt

in Cycle
1 0.293
2 0.293
3 0.293
4 0.293
5 0.293

0.293

0.253

0.293
0.293
0.293

o o o O o

.293
.253
.293
.293
.293

o O O o o

o o o O

4

.293

.293
1293
.293
.293
.293

.293
.253
.293
.293
. 293

o O o o o

o O O O

333

-333
-333
333
333
333

-333
.293
-333
333
333

Burnup Limit B’ = U45MWD/Kg

Revenue Incre-
Requirement gggzal
——10%—  fime”
87.01872

87.5284 1.56
87.4265 1.22
87.3890 1.15
87.3170 0.91
87.2957 0.845
86.5642 1.395
86.5848 1.33
86.6605 1.095
86.7226 0.905
86.7443 0.84



Table 9.16

Calculation of Incremental
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Cost of Energy

Using Regression Equations. Sample Case A
Burnup Limit B°%= 50MWD/Kg
Batch Fraction for Cycle Revenue Incre-
Require~ .mental
1 2 3 h 5 ment Cost
___10€$___ Mills/
-~ KWH2
Base
Case 0.293 0.253 0.253 0.253 0.293 86.9890
ABl
Positive Energy Change
AE=1000GWH®:
in Cycle
1 0.293 0.253 0.253 0.253 0.293 87.4642 1.4%6
2 0.293 0.293 0.293 0.293 0.333 87.4265 1.335
3 0.293 0.253 0.293 0.293 0.293 87.3848 1.21
4 0.293 0.253 0.253 0.253 0.293 87.3047 0.965
5 0.293 0.253 0.253 0.253 0.293 87.2748 0.875
Negative Energy Change
AE=-1000GWHt
in Cycle
1 0.293 0.253 0.253 0.253 0.293 86.5345 1.395
2 0.293 0.253 0.253 0.253 0.293 86.5848 1.24
3 0.293 0.253° 0.253 0.253 0.293 86.5860 1.24
Yy 0.293 0.253 0.253 0.253 0.293 86.6761 0.955
5 0.293 0.253 0.253 0.253 0.293 86.7064 0.865
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increases as more energy is produced. However, for those
cases in which T## ¥ » Incremental cost would have a
negative slope. In the limit that AE_+ O » A, would
approach infinity for those cases that te ¢ ¢ . This
is mainly due to the fact that in the present model one can
only change batch fraction by a discrete amount, and the
objective functions of the two discrete combinations of [
and T+ have a finite difference. If batch fractions
could be varied in a continuous fashion, these singularities
would not be present and the lncremental cost would vary
continuously in a pattern similar to Figure 6.8.

Table 9.17 and Table 9.18 show values of the objective
function and the incremental costs for various AEc for
sample case B. The same phenomenon of negative sloping

incremental cost is observed.

9.9 Summary and Conclusions

Using cycle energies E and batch fractions T as
independent variables, a set of regression equations based on
polynomials in these independent variables has been obtained.
These predict the obJective function to an accuracy of within
+ 0.1% and average discharge burnup to an accuracy of within
+10%. An optimization algorithm based on the principle of ex-
haustive search 1s developed. For every specified set of cycle
energies, this algorithm results in five or more sub-obtimal
cases that bracket the optimal solution. These cases can be
analysed further by more elaborate depletion codes.

The results of the regression analysis and the optimiza-

tion procedures indicate that the objective function for



Calculation of Incremental

Table 9.17
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Cost of Energy

Using Regression Equations. Sample Case B
Burnup Limit B = 45MWD/Kg
Batech Fraction for Cycle Revenue Incre-
Requirement mental
1 2 3 l 5 z Cost
Mills/
Base
Case 0.333 0.373 0.293 0.253 0.293 89.8251
BAl
Positive Energy Change
AE=1000GyHt
in Cycle
1 0.333 0.373 0.293 0.253 0.293 90.2916 1.435
2 0.333 0.373 0.293 0.253 0.293 9n.2424 1.28
3 0.333 0.373 0.293 0.253 0.293 90.1845 1.10
y 0.333 0.373 0.293 0.293 0.333 090.1255 0;91
5 0.333 0.373 0.293 0.263 0.293 90.1039 0.915
Negative Ener Change
AE=-1000G WHt
in Cycle
1 0.333 0.373 0.293 0.253 0.293 89.3766 1.375
2 0.333 0.373 0.293 0.253 0.293 89.4070 1.28
3 0.333 0.373 0.293 0.253 0.293 89.4773 1.07
4 0.333 0.373 0.293 0.253 0.293 89.5224 0.925
5 0.333 0.373 0.293 0.293 89.5484 0.85

0.253



Table 9.18

Calculation of Incremental
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Cost of Energy

Using Regression Equations.

Sample Case B

Burnup Limit B

Batech Fraction for Cycle

Base

Case 0.

BBl

1

333

2

0.333 0.

Positive Energy Change
AE=1000GWHt

in Cycle

U W+
o O O o

Negative

OO

333

.293
333
-333
333

Ener

AE=-~-1000GWHt

in Cycle

v s W NN

0.
0.
0.
0.
0.

293
293
333
333
333

0.333 ©
0.333 ©
0.333 ©
0.333 O
0.333 O

Change
0.333 ©
0.293 0
0.333 0
0.333 0
0.333 ©

3

293

.293
.293
.293
.293
.293

.293
.253
.253
.293
.293

4

0.253

0.253
0.253
0.253
0.253
0.253

0.253
0.253
0.253
0.253
0.253

= 50MWD/Kg

Revenue Incre-

Requirement mental

5 Cost

—10°%— 1n Mil1S/
0.293 89.6715
0.293 90.1380 1.435
0.293 90.0775 1.25
0.293 90.N0309 1.10
0.293 89.9772 0.93
0.293 89.9513 0.86
0.293 89.1628 1.56
0.293 89.1515 1.60
0.293 89.3229 1.07
0.293 89.3687 0.925
0.293 89.3947 0.845
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cases A and B is insensitive to batch fraction changes, if
the same cycle energies are produced. Hence, engineering
considerations should be the principal criteria in the
selection process for those problems. Since batch fraction
cannot be varied continuously, incremental cost of energy
varies 1in a serles of discrete jumps. This problem would
have been less severe 1f the increments in batch fraction

had been made smaller.



CHAPTER 10.0

CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

The following conclusions are obtained from this

thesis research.

(1)

(2)

(3)

The Inventory Value Method for evaluating worth
of nuclear fuel inventories to be used in
calculating finite planning horizon revenue
requirement 1s adequate for the purpose of
scheduling energy and nuclear in-core
optimization.

Three methods are proposed for calculating

incremental cost of energy for the fixed batch

fraction case. The Linearization Method
and the Inventory Value method for calculating
incremental cost of energy are both suitable
for the initial stages of optimal energy
scheduling. The Rigorous Method is very time
consuming and expensive and should be used only
in the final stages of optimal energy scheduling.
For the problem of nuclear in-core optimization
under steady state conditions with variable
batch fractions and reload enrichments, the
optimal solution is practically always on thé
boundary of the burnup constraints. Hence,
there are strong incentives to increase the

burnup limits.

239
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(4) For the problem of nuclear in-core optimization
under non-steady state conditions, the Method
of Plece-Wise Linear Approximation is applicable
for the cases where there are large variations
of objective function near the optimal solution.
It 1s not applicable for economic situations where
there is a broad region of optimality.

(5) The Method of Polynomial Approximation gives
accurate values of the optimal solutions, even
though the objective function 1s very flat
near the optimum.

(6) Since the objective function is insensitive to
large variations in batch fractions, selection of
the optimal solution can be based primarily on

other considerations, such as engineering margins.

10.2 Recommendations

The depletion code CELL-CORE should be modified in
order that the batch fraction can be varied continuously.
This modification would enable the efficient usage of the
Method of Linear Approximation instead of Piece-Wise Linear
Approximation or Polynomial Approximation. Once the optimal
batch fraction in the continuum is located, the realistic
batch fraction to be used in refuelling would be given by
the number of integral fuel assemblies which is closest

to the continuum optimal solution.
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Finally, the algorithm of optimal energy schedule
should be modified so that the polynomial equations from
regression analysis could be used directly, instead of the
present indirect usage which require intermediate calculations
of incremental cost. It is recommended that a quadratic
programming algorithm, or an even higher order programming
algorithm should be used in the optimal energy schedullng
procedures, so that the higher order derivatives can be

used directly.
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Appendix A

Brief Description of the Several Versions of CORE

Code Name Time of
Dev men
MOVESCIV Early 1971
CCRE January 1972
CORE April 1972
CcoCco November 1972

Description of
Refuelling Options

Homogenization
of Fuel Batches

N-zone modified
scatter refuelling
(Batch fraction
cannot be changed
in ad jacent cycles)

Fuel properties
homogenized only
once when they are
scattered from the
outer annulus into
the inner region.

(same as MOVESCIV except it is much faster)

Non-integral batch
fraction, Variable
batch fraction in
ad jacent cycles

Fuel properties in
the inner region are
homogenized at the
beginning of every
cycle

(same as CORE(April 1972))

Economics
Calculations

Fuel cycle
calculations
on per batch
hasis. Ending
inventnry
calculated by
Inventory
Value Method

Ene



Appendix B

Economics and Fuel Cycle Cost Parameters

Fuel Cycle Financing

Investor-owned utility
Fraction of bond finarcing
Fraction of preferred stock
Fraction of common stock
Rate of return on bonds, fraction per year
Rate of return on preferred stock, fraction
per year
Rate of return on common stock, fraction
per year
Tax rate
Government-owned utility
Fraction of bond financing
Rate of return on bonds, fraction per year

Lead Times: Time of transaction prior to the

beginning of irradiation , in days
Purchase of uranium concentrate
Conversion of 0308 to UF6
Enrichment
Plutonium purchase

Fabrication

0.55
0.10

0.35
0.08

0.08

0.13
0.50

1.00
0.0755

127
127
97

97
40
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Lag Times: Time of transactions after the end of the

irradiation, in days
Shipping
Reprocessing
Conversion of UNH to UF6
Credit for reprocessed fuel

Lag time for receipt of revenue:

182
212
212
212

60 days after the mid-point of the generation period;

one single payment

Charges for materials and services

Price of Uj0g, $/ib

Conversion of U308 to UFg, $/kg U

Enrichment $/kg SWU

Enrichment plant tails composition, w/o U-235
Fabrication, $/kg U

Shipping, $/kg initial fuel metal
Reprocessing, $/kg initial fuel metal
Conversion of UNH to UF, $/kg U

Process Yields

Fabrication
Reprocessing
Conversion of U308 to UF6

Conversion of UNH to UF6

#Consistent with a natural UF price of $23.46/kg U

8.00 *#
2,20 #
32,00
0.25
70.00
4,00
30.57
5.60

0.99
0.99
0.995
0.995
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Appendix C
NOMENCILATURE

requirement

Revenue

Revenue requirement for Reactor A

Revenue requirement for Reactor B

Revenue requirement for nuclear sub-system

Revenue requirement for the indefinite horizon

Revenue requirement for the indefinite horizon

| 4 3l
H N HZH

o
Q

a &l

Lo St

nuclide

Revenue
service

Revenue

Revenue
nuclide

Revenue
service

Revenue

Revenue

component

requirement
component

requirement

requirement
component

requirement
component

requirement

the indefinite horizon

planning horizon I

planning horizon I

for planning horizon I

up to and including Cycle 1

requirement for reactor r in the planning horizon

Revenue requirement for a batch

o

Revenue requirement for Reactor A Batch b

=
oo >

Revenue requirement for Reactor B Batch b
Component i of the various fuel cycle expenses,$
Nuclide component of the fuel cycle expense

Service component of the fuel cycle expense

7

Z2,.. Cost of U feed as UF6

U

Z..,Credit for U discharge as UF6

U'

ZF Fuel fabrication cost



I

I

Veinal

VI

rc
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Shipping cost
Reprocessing cost
Conversion cost
Plutonium crediﬁ

Value of nuclear fuel

Vinitialvalue of nuclear fuel at the beginning of planning

horizon I

Value of nuclear fuel at the end of planning
horizon I

Value of nuclear fuel at hte end of planning
horizon I

) Value of nuclear fuel batch b at time tIo
Incremental cost of energy

Incremental cost of energy for reactor r cycle ¢
Incremental cost of energy for cycle c

Burnup penalty

Burnup penalty for cycle ¢

Burnup penalty for batch b

Negative of burnup penalty (-mw)

Enrichment for cycle ¢ w/o U-235

Batch fraction for cycle c

Average discharge burnur

Average discharge burnup for cycle c

Average dilscharge burnup for batch b

Maximium allowable burnup limit

Initial state of the reactor at the beginning of
time horizon

Corporate income tax rate

Effective cost of money, per year
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t Time

tp Time when batch b is charged to the reactor

ti Time when fuel cycle expense 1 is paid

t Time when cycle ¢ begins

tJI Time when fuel cycle expense J in time horizon I is pnaid
tI' Time when planning horilizon I begins

tI" Time when planning horizon I ends

A Coefficient matrix of derivative of energy with respect
to enrichment

o Derivative of revenue requirement with respect to
enrichment of Cycle ¢

B Derivative of revenue requirement with respect to

¢ batch fraction of Cycle c

Yy Derivative of energy for Cycle k with respect to

¢  enrichment of Cycle ¢

ch Derivative of energy for Cycle k with resnect to
batch fraction of Cycle ¢

Ekc Derivative of discharge burnuo of Cycle k with resvect
to enrichment of Cycle c

Ckc Derivative of discharge burnup of Cycle k with respect

to batch fraction of Cycle c

E(nb)Burnup coefficient for a batch of fuel that has been
irradiated for n, cycles

|

o Multiple regression coefficient
Ec Multiple regression coefficient
?c Multiple regression coefficient

e Multiple regresslon coefficient

Superscripts

*t Denote optimal values
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Superscripts
+ Coefficients evaluated at positive values

- Coefficlents evaluated at negative values
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