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ABSTRACT

Heterogeneous effects in fast breeder reactors are examined

through development of simple but accurate models for the calculation

of a posteriori corrections to a volume-averaged homogeneous

representation. Three distinct heterogeneous effects are considered:

spatial coarse-group flux distribution within the unit cell, anisotropic
diffusion, and resonance self-shielding. An escape/transmission
probability theory is developed which yields region-averaged fluxes,
used to flux-weight cross sections. Fluxes calculated by the model

are in substantial agreement with S 8 discrete ordinate calculations.
The method of Benoist, as applied to tight lattices, is adopted to gener-
ate anisotropic diffusion coefficients in pin geometry. The resulting
perturbations from a volume-averaged homogeneous representation

are interpreted in terms of reactivities calculated from first order

perturbation theory and an equivalent "total differential of k" method.
Resonance self-shielding is treated by the f-factor approach, based on

correlations developed to give the self-shielding factors as functions

of one-group constants.
Various reference designs are analyzed for heterogeneous effects.

For a demonstration LMFBR design, the whole-core sodium void

reactivity change is calculated to be 90e less positive for the hetero-

geneous core representation compared to a homogeneous core, due
primarily to the effects of anisotropic diffusion. Parametric studies

show at least a doubling of this negative reactivity contribution is

attainable for judicious choices of enrichment, lattice pitch and lattice

geometry (particularly the open hexagonal lattice). The fuel dispersal
accident is analyzed and a positive reactivity contribution due to

heterogeneity is identified.
The results of intra-rod U-238 activation measurements in the

Blanket Test Facility are analyzed and compared to calculations.

This activation depression is found to be of the order of 10% (surface-

to-average) for a typical LMFBR blanket rod and is ascribed to the

effect of heterogeneous resonance self-shielding of U-238. Hetero-

geneous effects on the breeding ratio are studied with the conclusions

that accounting for resonance self-shielding reduces the total breeding

ratio by over 10%, but heterogeneous effects are not important for

breeding ratio calculations.
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Chapter 1

INTRODUCTION

1. 1 Foreword

The purpose of the research reported herein has been to develop

and apply a consistent formalism describing the effects of hetero -

geneity on fast reactor core and blanket neutronics. Attention is

focussed upon the pin geometry characteristic of LMFBR power

reactors, and emphasis is placed upon development of simple models

which provide clear physical insight into the variety of phenomena

involved, but which are sufficiently accurate for reactor physics design

calculations.

1. 2 Background and Outline

In the course of fast reactor calculations, one commonly makes

the approximation that the core may be homogenized in a volume-

averaged sense. That is, homogenized cross sections are calculated

by:

= V i V (1. 1)
1 1

where the summation is over i regions, each of volume V. and charac-

terized by macroscopic cross section E . The justification for this type

of simple homogenization is based on the observation that the mean free

path is approximately a factor of ten larger than any characteristic

dimension over which physical properties change. Thus, the rationale

continues, along its mean free path journey through the medium, the

average neutron experiences the distinct regions only in an average
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sense which may be represented by a simple volume-averaging. The

rationale concludes with the claim that this homogenization is valid in

an integral sense because the error in the effective multiplication

constant, k ff is small.

However, the classification of effects as "small"' requires some

caution in the case of fast reactors. This is because the effective

delayed neutron fraction is small (roughly 0. 0033 for a UO -PuO2 core)

and seemingly small errors in keff assume a larger significance when

discussed in terms of reactivity normalized to the delayed neutron

fraction. Such significance will be shown to be of great import when

the global sodium void reactivity is analyzed in Chapter 6.

In a recent paper, Greebler and Hutchins [1] have estimated the

precision of various design parameter calculations for the LMFBR.

For the sodium void effect, the current estimate is ± $1. 50; the goal

for the demonstration plant is ± $0. 50; while the goal for the target

plant of the 1980s is ±$0. 30. This last uncertainty is approximately

± 0. 001 in the multiplication constant k; thus the correct representation

of heterogeneous effects, which will be shown to have an effect signifi-

cantly greater than the target precision goal, becomes a design

necessity.

The physical assumption underlying the homogenization pre-

scription can be elucidated by looking in detail at the unit cell,

extracted from an infinite medium. The unit cell extracted from the

homogeneous medium is, of course, itself homogeneous. The flux

profile in this cell is flat since the neutron sources and sinks are uni-

formly distributed. On the other hand, the unit cell in the hetero-

geneous medium consists of three concentric regions: fuel at the center,
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surrounded by clad, which is surrounded by the coolant region.

Depending on what energy group one is observing, the flux in the unit

cell may be peaked in the fuel region or peaked in the coolant region,

due to the localization of different sources in different regions. Thus

the simple volume-averaged homogenization is valid only to the degree

that the deviation from a flat flux has a negligible effect on the multi-

plication constant.

A more precise homogenization may be obtained by requiring that

average reaction rates be preserved. That is, within an energy group:

i i(ri) dV iVE

E-=, (1.2)
f 0 (r) dV. I .V.

ii

where = f 0(r) dV./V is the average flux in region i.
1 1

Various weighting methods have been compared [21, specifically

real-flux weighting, as in Eq. (1. 2), and bilinear weighting using

angularly dependent real and adjoint SN fluxes. Real-flux weighting

is found to yield a more accurate k compared to an exact (i.e., not

homogenized) Double-SN calculation extrapolated to So.

Specializing Eq. (1. 2) to the three-region unit cell, one has:

E 1V1 + E 2 2 2/ 1) + E 3V3( 3/ 1E = .(1. 3)
V 1 + V 2( 2b 1 ) + V3 31

In the case of a flat flux profile, Eq. (1. 3) reduces to Eq. (1. 1).

One of the goals of the present work is the development of a simple

method to calculate the average flux ratios used in Eq. (1. 3) and there-

by obtain the detailed heterogeneous cross sections to be compared with



15

the homogeneous cross sections defined by Eq. (1. 1). Chapter 2 is

devoted to this topic. Based on elementary perturbation theory in a

two-group framework, one may then develop a method of calculating

the reactivity contribution due to the non-flat spatial flux distribution

(discussed in Chapter 4).

A second major area of consideration deals with the calculation of

an appropriate diffusion coefficient. Since the fast reactor is quite

frequently modelled by a diffusion theory code, one requires a con-

sistent method to calculate diffusion coefficients. The usual procedure

is to adopt the prescription used for homogeneous media with isotropic

scattering:

D 1 (1.4)

tr

where E tr is given by the volume-averaging procedure of Eq. (1. 1).

In Chapter 3, this prescription will be shown to be unsatisfactory and

a consistent counter-method will be discussed.

The energy self-shielding effect (not to be confused with the spatial

flux distribution effect) is considered in Chapter 5 and found to be a

significant effect; calculations neglecting resonance self-shielding are

found to give results which differ markedly from those accounting for

self-shielding. Self-shielding of the resonances of U-238 is found to

greatly reduce the infinite dilution multigroup cross sections charac-

terizing U-238. This energy self-shielding is shown to greatly mitigate

the positive sodium voiding reactivity. It also exerts the major effect

upon LMFBR blanket calculations.

In Chapter 6, the varied heterogeneous reactivity contributions

discussed in earlier chapters are drawn together and applied to the
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analysis of several reference fast breeder reactor core designs, while

in Chapter 7 the effect of heterogeneity upon the blanket region is ana-

lyzed.

Throughout this report, the intent is to treat heterogeneous effects

on a phenomenological basis: those physical processes which the

homogenization of Eq. (1. 1) and the use of infinitely dilute cross-

section sets overlook are identified; a quantitative importance (in

terms of reactivity) is associated with each identified process. The

end goal is the presentation of a consistent method which yields the

a posteriori correction to a homogeneous calculation.

1. 3 Previous Work

The reactivity effects of voiding sodium from a fast reactor core

were not fully recognized until 1959 when Nims and Zweifel [31, in

analyzing sodium temperature coefficients, pointed out the diverse

components of the sodium density coefficient: the competition, upon

voiding sodium (or the equivalent in a homogeneous model: reducing

the sodium density), between the positive spectral component, the

negative leakage component, and the small positive capture component.

The impact of the sodium void problem is particularly apparent in a

1964 evaluation of four quite different 1000-MWe fast breeder designs

submitted by four vendors [4]. All the design analyses have one

common feature: a simple, volume homogenized core is assumed.

Each design team relied on their own private prescriptions to account

for homogeneous self-shielding, and, even for a fixed geometry, the

calculated void coefficients were shown to be markedly sensitive to the

cross-section set chosen. Reference 5 provides a good picture of the



17

anarchy prevailing at the time, with at least four competing cross-

section sets (Hansen-Roach, YOM, Hummel, and WAPD-Fl) in use.

The largest whole core voiding reactivity was the + 2. 4% Ak

(about +$7. 30) calculated for Combustion Engineering's conventional

geometry core, while the other designs relied on spoiled geometry

(high leakage cores) to accentuate the negative leakage component of

the void effect. More recently, GE's analysis of its smaller demon-

stration plant [6] indicates a whole-core sodium voiding worth of +$1.10.

Part of the reduction from the value for the 1000-MWe size is due to

the smaller core size (accentuating the negative leakage component)

and part due to a better representation of the resonance self-shielding

effects using a type of Bondarenko f-factor homogeneous method [7].

Generally, the whole-core sodium voiding effects have not been

calculated in a manner which accounts for all three of the hetero-

geneous effects defined in the preceding section. While there has been

considerable study of some of the effects, it has usually been with the

emphasis upon one in isolation from the others. Indeed, recognition of

the need for consideration of heterogeneous effects in fast vectors is a

relatively recent development. As late as 1966 one could read:

"Heterogeneity of the fuel lattice in typical fast power reactors
is not large enough to have an important effect on coolant void
reactivity. Also, the spacing of the fuel rods is too close for
streaming to significantly improve the leakage component." [81

The earliest calculation of heterogeneous effects [9] concentrated

on the Doppler effect and the error caused by assuming homogeneous

self-shielding of the resonances rather than heterogeneous self-shield-

ing, the latter being calculated by an equivalence formalism (an equiva-

lence principle is one which allows the heterogeneous geometry to be
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treated as a homogeneous cell to whose "background" non-resonant

cross section is added a heterogeneous correction related to the

Dancoff factor - all discussed in Chapter 5). The changes in the cross

sections resulting from heterogeneous energy self-shielding were found

to be negligibly small. Later experiments [10] in plate geometry

obtained different reactivity perturbations, varying by more than a

factor of two, for various material arrangements all having identical

homogenized compositions; from which the conclusion was drawn that

calculations assuming homogeneous material distributions are of

limited value in highly heterogeneous plate-type critical assemblies.

The methods of perturbation theory have provided one popular tool

for the analysis of heterogeneous effects. For changes in the sodium

density of up to 5%, first order perturbation theory is generally accu-

rate to ± 10%, though for gross whole-core voiding its results may be

in error by a factor of two or more since in that case the change in

material constants exceeds the requisite small perturbation [8, 11] .

Meneghetti [12, 13, 14] has calculated heterogeneous voiding effects

for the plate-type geometry typical of fast critical assemblies, using a

hybrid first order perturbation theory analysis: the change in keff upon

gross voiding is obtained by a direct calculation for the homogeneous

case, while perturbation theory is used to calculate the heterogeneous

corrections. Heterogeneous resonance self-shielding is treated by an

equivalence principle. However, for present purposes, the plate

geometry is not directly relevant to realistic fast breeder cores. Also,

Meneghetti's analysis neglected anisotropic streaming.

Khairallah and Storrer [15,16,17, 181 have employed a collision

probability concept united with the integral transport equation and
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perturbation theory. The heterogeneity is accounted for as a pertur-

bation in the collision probabilities used to describe the medium. First,

the finite core is converted to an equivalent infinite core by adding a

fictitious leakage cross section to the capture cross section; then the

multigroup integral equations are written for the infinite medium in

terms of collision probabilities. In the resulting set of equations,

homogeneous and heterogeneous media are identically represented with

only the collision probabilities taking on different values (their differ-

ence being the perturbation) for the two different modellings, homogene-

ous and heterogeneous.

In Reference 15, the perturbation method is applied, with second

order corrections, to a 10% sodium loss with the qualitative conclusion

that heterogeneity tends to decrease the positive sodium loss coefficient.

Further analysis is presented in Reference 17 with the conclusion that

for power reactor cores, heterogeneity causes a 676 to 10% reduction in

the sodium loss reactivity, while in critical mock-ups, a 30% to 40%

reduction results. These analyses are predicated on the equivalent

infinite core defined above, in which for the sodium-out condition both

the heterogeneous and homogenous representations result in the same

k . Such a treatment does not explicitly account for finite core effects

which cause the sodium-out, heterogeneous model to predict significant

reactivity loss due to anisotropic streaming, as will be discussed in

Chapter 4. In Reference 18 the perturbation method is applied to the

MASURCA core, but only the normal sodium-in case is analyzed with

emphasis upon the effects of heterogeneity upon the critical mass (the

sodium voiding effect is not calculated). For 1. 27-cm O. D. rods on a

2. 65-cm pitch, the heterogeneity effect was found to be 0. 027 Ak of
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which 0. 016 Ak was due to resonance self-shielding and 0. 011 Ak due

to the "geometry."

Contemporaneously with these latter references, studies were still

being carried out which neglected one or more of the heterogeneous

effects. For example, Reference 19 presents a detailed design for a

variable-core-height reactor (the inner core region being of a lesser

height to promote leakage from that zone where the positive spectral

component prevails) to decrease the void coefficient; the entire analysis

is apparently based on an infinite dilution cross-section set which

neglects the very important self-shielding effects of a finite dilution.

Jankus and Hummel [201 discuss two-dimensional calculations of void

coefficients, still employing the 1964 parameters of Reference 4.

Wintzer [211 carries out a calculation using a more sophisticated

resonance self-shielding model to replace the usual formalism (which

is inapplicable if the unit cell contains resonance material in more than

one region); however, he chooses to neglect anisotropic streaming.

The most recent work has been directed toward the analysis of

plate-type critical mock-ups [22, 23, 24, 25]. These studies uniformly

neglect the effect of anisotropic streaming and are primarily directed

toward the plate-type critical assembly cores rather than the cylindrical

geometry characteristic of realistic fast power reactor designs. An

analysis of a postulated demonstration reactor, discussed in Reference

25, reports a negligible heterogeneity effect (while ignoring anisotropic

diffusion); in Reference 26 a similar geometry is analyzed, accounting

only for spatial flux distribution effects: perturbations an order of

magnitude greater were obtained.
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In contrast to much of what has been done to date, the emphasis

here will be upon the realistic cylindrical geometry unit cell with all

three types of heterogeneous effects taken into consideration. The

intent is to develop simple models which allow a rapid calculation of

the fundamental physical events uniquely associated with a hetero-

geneous model and their contribution to the multiplication constant.
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Chapter 2

CALCULATION OF FLUX RATIOS

IN UNIT CELLS

To perform the detailed homogenization of Eq. (1. 3), one requires

the average flux ratios. A computer program, such as the ANISN code

[271, may be used to obtain flux profiles in the unit cell. However, use

of a discrete SN code or some other equivalent on a production basis

simply for the calculation of average flux ratios is extravagant, par-

ticularly for parametric studies. Instead, it is worthwhile to develop

a simple method solely for the calculation of average flux ratios. The

ANISN code can then be reserved as a final check on the results of the

simpler theory. This chapter develops the required simpler theory

and demonstrates favorable comparison with ANISN S8 cell calculations.

2. 1 Representation of the Unit Cell

Figure 2. 1 shows the archetypal three-region unit cell which is

the focus of interest. Region 1 is the fuel region, whose outer radius

is identical to the outer radius of the fuel pellet. Region 2 is the clad

region, whose dimensions are identical to those of the clad. If there

is a sodium bond or a gap between the fuel pellet outer radius and the

clad inner radius, this additional region may be volume averaged with

the clad. Such a subterfuge may seem inconsistent with the spirit of

this report (which seeks to correct errors due to volume-weighted

homogenization). However, if the gap is very small, then only a small

fraction of the unit cell volume is misrepresented by this device, and

the error may be assumed negligible. Region 3 is the coolant region
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Fig. 2. 1 Standard Unit Cell

Fig. 2. 2 Mirror Boundary Condition Error
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whose outer radius is defined by assigning to each fuel rod its share of

the coolant and then assuming the coolant region may be represented by

an outer annular region. For a lattice described by an equilateral tri-

angular pitch, P, this cell outer radius is:

-q- 1/2
R = P . (2.1)

This cylindricalization of the unit cell is identical to the Wigner-

Seitz method in thermal reactor physics with one important proviso:

the reflection boundary condition at the outer radius needs to be of a

particular type, the so-called white boundary condition. Newmarch [28]

recognized that though the cylindrical cell approximation with mirror

boundary conditions results in little error when applied in a diffusion

theory context, serious errors result when the same method is used in

conjunction with transport theory.

For tight lattice calculations in thermal reactor physics, it is

recognized that, for problems in cylindrical geometry, mirror

boundary conditions can produce an over-estimation of the moderator

region flux [29]. In a sense, all fast reactor lattices are tight (i.e., the

lattice spacing is much smaller than the neutron mean free path); thus

a similar problem may prevail in FBR unit cell calculations.

Newmarch [28] pointed out the source of the problem. If the

boundary condition assumed is that of perfect (i. e. , mirror) reflection,

then neutrons emitted at certain angles in the coolant region (see

Figure 2. 2) can never make their first collision in the fuel region. In

the true physical lattice, this same neutron need only traverse several

rows of fuel elements before it enters a fueled region. In a good
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diffusive medium where the mean free path is much less than the cell

diameter, the medium itself acts to distribute the neutron paths through

successive collisions so that the events pictured in Figure 2. 1 do not

occur. For this reason, the mirror boundary condition works well in

situations described by diffusion theory (as long as the lattice is not

tight). On the other hand, in unit cells typical of fast systems, the

physical picture can only be described in terms of transport theory.

Indeed, as shown by Fukai [30], the mirror boundary conditions result

in significant errors in the calculation of first-flight collision proba-

bilities for the lattice, which in turn affect the calculated flux ratios.

The solution is to employ a white boundary condition, one which

returns all neutrons from the boundary with an isotropic distribution.

It may be artificially constructed by surrounding the real cell by a

region of pure isotropic scattering material at whose outer boundary a

mirror boundary condition is imposed [25]. Or one may simply use the

white boundary condition option at the real cell outer boundary, as

available in ANISN, which mathematically returns neutrons isotropi-

cally at the boundary. In this manner one may treat any desired unit

cell.

Recent work [311 has shown that the white boundary condition under-

estimates the flux variation in the cell by forcing the angular flux in the

cell to be almost isotropic everywhere. However, the mirror boundary

so greatly overestimates the cell flux variation that the white boundary

condition is the sole reasonable choice. As an example, in one case the

mirror boundary condition tripled the flux peaking in the fuel region

(i. e. , the mirror boundary condition gives an anomalously high flux in

the region where the neutrons are born: in the fuel for fast neutrons,
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or in the moderator for thermal neutrons, as found by Newmarch) as

compared to the identical calculation with white boundary conditions.

It is noteworthy that the probability method proposed here is inde-

pendent of these boundary condition ambiguities. As discussed in

Section 4. 2, the proposed method needs only the correct mean chord

length for the geometry of interest; it is only ANISN which requires

the white boundary condition.

2. 2 Derivation of Unit Cell Boundary Currents

With the object of developing a simple method for calculating the

ratio of average fluxes in the various cell regions, the following

probabilities are defined:

p 1 = escape probability for neutron born in fuel

p 3 = escape probability for neutron born in coolant

T 1 3  transmission probability from fuel to coolant

T = transmission probability from coolant to fuel

T = transmission probability from coolant to coolant

via clad without entering fuel

P= escape probability for neutron entering fuel

P 3  escape probability for neutron entering coolant

Note that p 1 is not the same as P 1 since the two classes of neutrons

have different average chord lengths in the fuel (see Appendix A).

In addition, boundary currents are defined (see Figure 2. 3):

j+ = current entering fuel region
S

j = current leaving fuel region
S

j+ = current entering coolant region

N
j_ = current leaving coolant region

N
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Fig. 2. 3 Boundary Current Definitions
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Now one proceeds to calculate the current entering the fuel region

due to a uniform source of S neutrons/sec cm3 in the fuel region. To

distinguish between the various classes of neutrons according to their

prior history, one identifies the nth generation as those neutrons which

have made n round trips across the clad (a round trip being fuel-clad-

coolant-clad-fuel). Since the unit cell is assumed to be surrounded by

an infinite array of identical cells, once a neutron crosses the outer

boundary of the coolant region it finds itself in an identical unit cell.

All processes are conserved if one makes the statement that all leaving

neutrons are reversed in direction at the outer boundary, back toward

the interior of the cell. Thus a single cell describes the entire lattice

in the cylindrical approximation.

As a matter of notation: a superscript attached to a boundary

.(n) th
current (e. g. , j+ ) signifies the contribution of the n generation of

S
neutrons to that current. With these definitions, one can now proceed

with what might accurately be termed a poor man's Monte Carlo calcu-

lation of the boundary currents.

On leaving the fuel region, the zeroth generation is attenuated by the

product of the three probabilities for a round trip; thus one contribution

(1) ry ry
to j+ isS S 1 p 1 - T 1 3 P 3 T 3 1 ' S 1 1  being the outward bound current

S
of zeroth generation neutrons at the fuel rod surface. This still ignores

those neutrons which missed the fuel region on their first attempted

return trip and re-entered the coolant. Out of these detoured neutrons,

P3 re-escape the coolant for another attempt to enter the fuel rod.

Assuming their next attempt to be successful, this results in another

(1) r1contribution to j+ S 1p 1  T 1 3 P 3 (T 3 3 P 3)T 3 1 . One must still

S
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account for those neutrons making multiple detours and thus add the

contribution S p T 1 3 3 (T 3 3 P 3 )m 3 1

two to infinity.

Adding all such contributions yields:

J( 1)

S

where m can range from

r

= SiP 1 - { 1 3P 3T 3 1 T 1 3P 3(T 3 3P 3)T 3 1 + T1±332T1 .. .

+T 1 3P 3 (T3 3P 3) T 3 1 + .

= S 2T 1 3P 3T 3 1(1+T 33P 3 +T 3 3 3)2+. .. +T33 3 +.

(2. 2)

Recalling that all the quantities in the brackets are probabilities, all

less than 1. 0 for physically realistic cases, the infinite series may be

expressed in a simple closed form giving:

.(1) r, T 13P 3T 3 1 1
J ~ 1 2 1 -T3 . (2. 3)

This result is only the contribution of the first generation, those

having made only one round trip across the clad with any number of

detours into the coolant. Of the first generation neutrons, P start

out in the second generation. Their attenuation is analogously

described by the terms in the brackets of Eqs. (2. 2) and (2. 3).

(2) .(1) P
+ +
S S

S r
=P S-p2

T13 3 T31
1 -T P1

33 3/

P l T13 3T31
P1 (1 -T 33P .)

Thus:

(2.4)

Making the obvious extension, the nth generation contribution is:
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.(n) r1 T13 3T31 1 T13 3 T31n
+ - Sip1 2 1 - T33 3 1 - T33 P 3 (2.5)

The desired boundary current due to all generations is the infinite

summation:

r T P13 T31 T13 3 T 3 1 m
S1pi 1 - T 3 3 P 3) m 1 T33 (2.6)

S =

In physically realistic cases pertinent to fast reactor unit cells, the clad

is thin which results in T 3 3 being much less than 1. 0, while the other

probabilities are all slightly less than 1. 0 due to the small average

cross sections in a fast spectrum. Thus every term in the infinite

series of Eq. (2. 6) beyond the first is less than 1. 0 and the series may

be written in closed form, resulting in:

r T 13PT 31
S=Sip-L2 1 - T 3 3 3 1T13 (2.7)

The other boundary currents are calculated in an identical manner;

further, the entire process is repeated for a uniform source S 3 in the

coolant region. One need only form the correct products of trans-

mission and escape probabilities, and repeatedly write the resulting

infinite series in closed form.

The only added feature worthy of note is a pitfall in the calculation

of j+ for a coolant region source. Two infinite series appear in the
N

derivation beyond the zeroth generation (see Appendix B, Eq. (B. 23)).

One series accounts for the subsequent history of the zeroth generation

neutrons which contributed to j+ by merely crossing the clad; while
N

the second series accounts for those neutrons which did not contribute

to j+ until they had made one round trip across the clad. This

N
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complication is due to the clad/coolant interface being a re-entrant

surface and to the manner in which the generation concept has been

defined here. The dual infinite series do not appear in the derivation

of j_ for a coolant region source since in that case every neutron in

N
the first generation was in the zeroth generation. In the calculation

of j+, neutrons appear in the first generation without appearing

N
earlier in the zeroth generation. Appendix B details the derivation

of the equations for the remaining boundary currents.

The boundary currents resulting from each source in each region

may be simply added together since superposition is valid for

directional currents. This results in the following general expressions

for the boundary currents:

= ry T13 3 T31
=Sp 1 1 T33 3 3 1 1 1 3 3J

+S 3 p 3 2 ) 1 - T 3 3 P 3 - 3 1P 1 T 1 3P 3  (2.8)

rr 1 P T 3

1 1 lP2I1 T P -T P T P
S - 33 3 31 1 13 3]

2 2T

+ S 3 p3 ( 2r 1 - T 3 3 P 3 1 T31 PT1 3 3  (2.9)

r2 T 3 1

N Sp 1 2r 2  1 - T 3 3 P 3 - T 3 1 P 1T 1 3 P 3

r 3 - r2 T +T P T
+S 3 2 33 31 1 13 (2. 10)

3 3 2r2 1T33 3 T31 1 T13 3.



r2 P T1

= Sip 1 2r 2 1 - T 3 3 P 3 -T 3 1P 1 T 1 3 P 3
jN

2 2
r3 - r2

3 2r2

I

1

1 T33 3 T31 1 T13 3 .

2. 3 Calculation of Regionwise Average Fluxes

By use of the statement of neutron balance, one can calculate the

regionwise average fluxes from the boundary currents and the sources.

Taking the fuel rod region:

E al17r = loss rate/unit length by absorption

27r r j+ - = gain rate/unit length by net in-leakage
s S/

2
rrSj = gain rate/unit length from internal sources.

Then the statement of neutron balance in the fuel rod is:

Eal 17rr = 27rr
(S

or

j) + 7rr 1S ,
S/

(2.12)

2 (j -i +S 1 r1

E r
alr1

(2. 13)

For the other two regions, one similarly obtains:

a 22r r -r ) = 27rr_(j-
S

j+ + 27rr 2 ( -
S N

2r 1 (j -

or 
2

j+ + 2r 2 (j_ - j+
S N N

a2(r - r2)

and E a 3 37r r r = 2r 2 (+ -j) + 7r r - r S 3 ,
N N

32

(2. 11)

(2.14)+
N

(2. 15)

(2. 16)
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2r 2 j+ - j + (r - r )S 3

or -N N (2. 17)

3 2 2

It should be noted that for the voided coolant case Ea3 = 0 and Eq. (2.17)

has no meaning; also, clad sources have thus far been ignored. These

points will be dealt with in Sections 2.6 and 2. 7.

2. 4 First Order Escape and Transmission Probabilities

Up to this point, a simple method has been presented which yields

the average cell fluxes as a function of source densities and boundary

fluxes (which are formulated in terms of various probabilities). Its

utility is determined to a large extent by the difficulty or ease with

which the required probabilities are calculated.

Because the discussion here is limited to the special case of fast

reactor unit cells, useful approximations to the probabilities may be

found. In Appendix A, average chord lengths are derived for the escape

of neutrons born in a transparent cylinder of radius r 1 , and for the

escape of neutrons entering this cylinder from the exterior. In the

-4
former case, for a spatially uniform source, one finds C = - r,. In

the latter case, for an isotropic surface source, one finds L = 2r 1

(Appendix A. 2 proves an even more general relation). From these one

deduces a first order approximation for the probabilities p1 and P1 for

a fuel rod characterized by E al

4
p1 = exp(-E al f) 1 - E al 1-3 E alrl, (2.18)

P 1 = exp(- E alL) ~ 1 - E alL = 1 - 2E al r . (2. 19)
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For a more general body, the transmission mean chord length L

is given by the usual Dirac chord method result [32] : L = 4V/S which

is 2r for the cylinder. Postulating the same type of relationship for

1 - 4
the escape mean chord length, one obtains: = V/S or = r for

the cylinder. These two relations permit one to calculate the proba-

bilities for the annular coolant region which has only one surface of

escape, the interior one, due to the reflection boundary condition. In

2_ 2 - 4 2_ 2
this case, L = 2(r3 r2)/r2 and e = 4(r3-r2)/r2, which lead to the two

coolant region probabilities:

2 2

p3 = 13 2 (2. 20)

2 2

P = 1 - 2E 3 2 . (2. 21)
3 a3 r 2)

The clad transmission probabilities remain to be determined. For

the clad, the escape surface is the sum of the inner and outer surface

areas. Thus, L = 4V/S = 2(r -r )/(r 2 +r) =2(r2-r), which leads to

the transmission probability:

T 13 = 1 - 2 E a2(r 2 -r 1 ), (2. 22)

while T 3 1  (r) 1 3 . (2.23)

As a simple approximation, it is here suggested that:

T33 =T13 -T31 (2. 24)

that is, the probability for crossing the clad on an outward bound path

is equal to the probability of crossing the clad on an inward bound path
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plus the probability of missing the fuel rod on an inward bound path

(i.e. , T 1 3  T 3 1 + T33 ).

Exact expressions for these clad transmission probabilities are

known [331:

-1 -1

T 1 cos a (1 - a cos )(cos 0 - a) Ki +a2 2 cos E a 2 r 2 dO
13 70 (1+a +2acosO) 3/2 3[ c2 25

(2. 25)

T 31 aT 13 (2. 26)

T 3 f Ki3[ 2E r cos 0] cos 6 dO. (2. 27)337r r _l 3 a2 2
-r cOS a

where a = r 1 /r 2 and Ki3 is a Bickley-Nayler function [34]:

Ki 3 f e cosh u du. (2. 27a)
0 cosh 3 u

Reference 33 presents a table of evaluated transmission coef-

ficients based on a machine integration of Eqs. (2. 25) through (2. 27).

Table 2. 1 compares those results to the transmission probabilities

obtained from the simple forms of Eqs. (2. 22) through (2. 24). A Er 2

value of 0. 1 is displayed in Table 2. 1 because that is the smallest Er 2

value tabulated in Reference 33. For the two-group representation of

a fast reactor unit cell discussed later, Er 2 for group 1 is of the order

of 0. 02 while for group 2 it is of the order of 0. 001; thus the compari-

son of Table 2. 1 is for a regime considerably outside the one in which

the theory is claimed to work best. As Er 2 becomes smaller than 0. 1,

the agreement between values predicted using the simple theory and

those based on the exact equations becomes even better than demonstrated

in Table 2. 1.



TABLE 2. 1

Comparison of Transmission Coefficients with Exact Values

T13 T 3 1  T 3 3

E r2 a Eq. (2. 22) Ref. 33 Eq. (2. 23) Ref. 33 Eq. (2. 24) Ref. 33

0. 1 0.8 0.9600 0.9692 0.7680 0.7754 0. 1920 0.1806

0.1 0.9 0.9800 0.9837 0.8820 0.8853 0.0980 0.0929

0.1 0.95 0.9900 0.9915 0.9405 0.9419 0.0495 0.0475
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In the above discussion the probabilities of Reference 33 are calcu-

lated assuming a cosine angular distribution at the clad surfaces (the

basis of Eqs. (2. 25) through (2. 27)). As a third check on the simple

transmission probability formulae, several ANISN unit cell runs were

performed. First, the coolant region was assumed to have an infinite

absorption cross section while a uniformly distributed isotropic source

occupied the fuel region. From the resulting boundary currents calcu-

lated by the code, T13 was obtained: T13= (r2/rl/+/-). Then the
N S

fuel region was assumed to have an infinite absorption cross section

while a uniform isotropic source was distributed in the coolant region.

Using the boundary currents in the code output: T31= (rl/r 2 )/(j±/j-S N
while T 3 3 = (j/+ -- Table 2. 2 compares these ANISN results with

N N
those of the simple theory.

TABLE 2. 2

Comparison of Transmission Coefficients with

ANISN Calculated Values

T 13 T 31 T 33

ANISN 0.9962 0.8648 0.1311

Simple theory 0.9958 0.8762 0.1195

By their very nature, the ANISN test cases were not constrained

to a cosine angular distribution at the clad surface. Instead, the

surface angular distribution was that due to an isotropic source distri-

bution in the source region. Nevertheless, the discrepancy between

the simple theory and reality as defined by the ANISN results is still
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small. One may conclude that the simple clad transmission probability

formulae are safe to use for the case of a cosine angular distribution of

entering neutrons and for the case where the entering neutrons were born

isotropically in the regions external to the clad annulus. Thus the

formulae may be generally applied to the analysis of fast reactor unit

cells, a claim which will be justified below by comparison with many

ANISN unit cell calculations.

2. 5 Use of ANISN Test Cell Calculations

The final justification of the simple theory is made by comparing

the average flux ratios it predicts with those calculated in a series of

ANISN S8 unit cell problems. Before this comparison was made, a

brief sensitivity study of the ANISN flux ratios was performed. First,

the effect of mesh spacing was examined: the use of twenty mesh

intervals per unit cell region was contrasted to the use of ten mesh

intervals per region. The change in the flux ratios on going from the

finer to the coarser mesh was of the order of 0. 001%, a negligible

amount. Thus all subsequent ANISN calculations were made with ten

mesh intervals per unit cell region.

Second, the effect of a non-flat source was investigated. In one

case, a flat coolant region source distribution was assumed. In the

counter-case, a tilted source distribution rising from 1. 0/cm 3

(normalized source strength) in the inner mesh interval to 1. 5/cm3 in

the outer mesh interval was considered. The maximum change in the

flux ratios was of the order of 0. 04%. From this one concludes that

the flux ratios are relatively independent of the assumed intra-region

source distribution; thus, for simplicity, one may assume all source
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distributions are regionwise flat.

Third, the effect of scattering was investigated. This comparison

has a strong bearing on the validity of the simple model developed

earlier in which only absorption events were considered in the

calculation of the various probabilities. Two ANISN calculations were

compared: one in which each region was characterized by its one-

group absorption and scattering cross sections; another in which zero

scattering cross sections were assumed (in reality, a non-zero

E = 10 5cm had to be input since ANISN does not converge if the

scattering cross section is identically zero). Between the cases with

scattering and without scattering, the flux ratios changed by 0. 02%,

a negligible amount.

Thus the assumption that escape and transmission probabilities in

a fast reactor unit cell depend only on absorption events is a valid one.

This may also be shown analytically. Appendix A shows that for a

2 2
parabolic source distribution (S(r) 1 + a r ), the mean chord length

for escape is:

4 1ar~
C = ry 1 - 66 + ... .(2. 28)

Using the definition of flux as track lengths per unit volume per unit

time, the first flight flux due to a uniform source is (from Appendix A):

OFF(r) = r, 1- ( 2+...1 . (2. 29)

The distribution of scattering sources is Es FF(r), which is a parabolic

2 2 2
source with a = -1/ 4r Substituting this a in Eq. (2. 28) results in

the escape mean chord length:
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r 1  + .24 (2. 29a)

Thus the escape mean chord lengths of scattered and nonscattered

neutrons differ by less than 0. 4%. And since p ~ 1 - E a, with E aa a

much less than 1. 0, the effect on the escape probability is smaller

still, as confirmed by the ANISN test cases.

The effect of scattering on the transmission probability is of a

different order. For one neutron entering the fuel rod:

(1 - 2Etr 1 ) = escape without interaction

2Esr 1- Etr ) = scatter once and then escape3 ( t 1)

2Esr1( sr,) (1 - 4Etr) = scatter twice and escape

and so on. Summing up all the escapes, one obtains for the trans-

mission probability:

S(1 - tr) + 2Zr 1 - tr 111+4 s 4r1 (sr 1 ) 2

8= 1 - 2 Ztr1 + 2 r 1  s- r a)( r )

= 1 - 2a r (1+ 4s r. (2. 30)

This is to be compared to the zero scattering result: P = 1 - 2a r .1 a 1

The same result has been obtained by Stuart [35] by a more elegant

analysis employing a variational principle. There will be a sizeable

scattering correction whenever 4Esr1 is of the order of 1. 0. However,

4for a typical fast reactor unit cell, E sr 1 is of the order of 0. 05, while

Ear1 is much less than 1. 0, so that the final scattering effect on the

transmission coefficient is very small. However, it is emphasized

that this is the case only for fast reactor unit cells. In thermal

8
systems, (E r )(E r ) will not be a negligible correction.3 al S1
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As a final test of the sensitivity of the flux ratios to non-zero

scatter, a series of ANISN calculations were performed in which only

the clad scattering cross section was varied from Es = . 01 cm to

-1
E = 1. 0 cm . The maximum change in any flux ratio was 0. 5%.

5

From the above sensitivity studies it was concluded that for the

purpose of calculating ratios of average fluxes in a fast reactor unit

cell:

1. scattering could be ignored

2. all distributed sources could be assumed regionwise flat

3. ten mesh intervals per unit cell region were sufficient.

2. 6 Group Sources in the Unit Cell

The stage is now set for testing the simple theory against ANISN

results. The initial expectation was that a major effect on the unit cell

flux shape would be the peaking of uncollided neutrons in the fuel rod

where the fission source was concentrated. Thus a two-group energy

description was chosen: the first group (called the first-flight group)

extended from 1. 4 MeV on up, encompassing the top four groups of the

so-called Russian cross-section set [7]. In these four groups, U-238

has a non-negligible fission cross section. The second group (called

the multiply-collided group) extended from 1. 4 MeV on down. By

judicious definition of the regionwise sources, the two groups can be

treated in isolation from one another, as will be shown.

For the first-flight group a flat source is assumed in the fuel

region, and everywhere else the source is zero. The absorption cross

section used in the probabilities in Eqs. (2. 18) through (2. 24) must

include removal from group 1 to 2 as well as true absorption in group 1.
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With this proviso, the calculations proceed using Eqs. (2. 8) through

(2. 11) with S3 = 0 to yield the boundary currents, from which the fluxes

are calculated.

The sources in the multiply-collided group require a more detailed

description since slowing down into group 2 occurs in all three cell

regions and to a differing degree in each. It is not correct to take the

same flat multiply-collided source throughout the cell. If we let super-

scripts refer to regions (1 = fuel, 2 = clad, 3 = coolant) and subscripts

refer to groups (E12 = removal from group 1 to 2), then the sources in

each region are:

S -12 1 + Y2 vE 4;+v 1 22

S(2) (2)
12 1

S (3) _ (3)
12 1

Note that for the purpose of calculating the multiply-collided group

sources, the cell fluxes are assumed flat. Since the source normal-

ization is arbitrary, one can divide through by 4 to give:

S( = 1E) + E v() 2 (2.31)

S(2) = E(2) (2. 32)

S . (2. 33)

The cross sections are all known; by definition of the group structure,

X2 = 0.43. However, 42' 1 requires an auxiliary calculation, for which

one can choose one of the two-group diffusion equations, say the one for

group 1 for the entire homogenized core:
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(x 1 v E f- E12 al- D1 B 2 )0 + XIv Ef 2)0 2 = 0

which yields:

2
42 _ 12 + Eal + DB X (2.34)

1 X1 v Ef 2

where all the constants are homogeneous ones.

The result of Eq. (2. 34) is employed in Eq. (2. 31) to calculate the

multiply-collided source in the fuel region. The justification for using

the homogeneous constants and flat cell fluxes to calculate these sources

is that their heterogeneous values differ only slightly from the homo-

geneous ones. Thus the sources given by Eqs. (2. 31) through (2. 33)

are nearly correct, and any small error is expected to have only a weak

effect on the average flux ratios.

To confirm the above, two-group ANISN calculations were com -

pared to dual one-group ANISN calculations in which each group was

treated in isolation except for the coupled sources given by Eqs. (2. 31)

through (2. 33). The two-group ANISN test was a keff calculation in

which the code solved for the proper distributed sources internally (i.e.

the only input required was the geometry and the two-group cross-

section set); thus this was a strict test of the simple source equations.

The largest deviation in the average flux ratios calculated by the two

methods was 0. 04%, implying that the isolated group, source-coupled

calculation is a good approximation to the full two-group calculation.

Referring back to the boundary current equations, (2. 8) through

(2. 11), one notes that they imply the absence of clad region sources

(i. e. , S 2 = 0), which contradicts the above discussion, especially

Eq. (2. 32). Thus the simple theory offered here must be incomplete
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until some account of those neutrons born into the multiply-collided

group in the clad has been made.

If one wishes to account for the clad source in the manner of

Appendix B, some formalism must be developed which yields the per-

centage of zeroth generation neutrons entering the coolant, and the

percentage entering the fuel. Thereafter, each group may be traced

independently through its generations. It is reasonable to assume the

multiply-collided neutrons are born in the clad with isotropically

distributed directions. Then for a transparent clad, the average per-

centage of zeroth generation neutrons entering the fuel (called ) is equal

to the average angle formed by tangents to the fuel rod which intersect

along the locus of points formed by extending a radius of the fuel rod

through the clad, divided by 2 7r. Of course, the percentage of zeroth

generation neutrons entering the fuel rod from non-transparent clads is

equal to multiplied by a clad escape probability.

Various definitions of the clad escape probability were analyzed.

In no case were reasonable flux ratios calculated since the equations

derived were very sensitive to small changes in the parameters (e. g. , a

small change in or the clad escape probability would change an un-

reasonable positive flux ratio into an even more unreasonable negative

flux ratio). For this reason, an entirely different approach was adopted

to unite multiply-collided clad sources with the simple escape and trans-

mission probability theory; namely, an extended reciprocity relation

was postulated. The conventional reciprocity theorem states: "the one-

velocity flux at r' due to a unit source at r is the same as the one-

velocity flux observed at r when the source is moved to r' " [361.

Strictly speaking, the case here is that of a two-group problem (the
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reciprocity theorem holds only for the one-group case where the dif-

fusion equation operator is self-adjoint), in which there is a distributed

source (the reciprocity theorem speaks of a unit point source), and the

quantity of interest is a regionwise average flux (not simply the flux at

a point of the reciprocity theorem). Thus it is apparent that some

caution is required in applying a reciprocity relation to the present

case.

The extended reciprocity relation postulated here is: the total flux

in region A due to a uniformly distributed source in region B is the same

as the total flux in region B when the uniformly distributed source has

been moved to region A. If this statement is valid, then clad region

sources may be simply treated by artificially moving them to the fuel

rod region (or alternatively the coolant region).

The extended reciprocity relation was tested by a series of com-

puter experiments. First, ANISN three-region slab cells were

examined, the problem being described in Figure 2. 4. The results for

the total fluxes with a unit source being alternately placed in each region

are presented in Table 2. 3. Those total fluxes joined by a line are the

ones that the extended reciprocity relation predicts to be equal. The

maximum deviation from the required equality is 0. 06%; thus the reci-

procity relation appears validated, at least in slab geometry.

In fact, for a special case, the extended reciprocity relation can be

derived analytically; namely, the case in which neutrons move only

parallel to the x-axis. For this case the kernel (i. e. , the flux at x due

to a unit source/unit volume at ) is: K(x,() Ce . Figure 2. 5

illustrates the nomenclature.



46

1*-- 10 cm :>. 20 cm >1< 15 cm - A

Region 2

E = 0.016657 cm -1
a

Region 3

E =
a

0. 016657 cm

Fig.

Region 1

S = 0

x

- dx]-

2. 4 Slab ANISN Cell for Reciprocity Test

w

Region 2

S = S2

z

Fig. 2.5 Geometry for Reciprocity Proof (Eq.

vacuum

Region 1

E =
a

0.020514
-1cm

-1 vacuum

0 z+ t

.I I I

2. 35)

d



TABLE 2. 3

ANISN Slab Cell Total Fluxes

S9 =1.0, S =S =0 S =1.0, S =S =0 S 3=1.0, S=S 2=0 S 2=1.0 S3 S =0

1102, 5101 159. 612

700.897 1102.5281

160.507 16. 93577|

16 . 9 396 41 102. 510

1160, 470| 700. 897

406. 774 1160, 5071

OT1

T2

4T3
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For the flux distribution in region 1, one has:

z+t CS e
40W(x) f S( )K(x, )d= 2 -Xz -X(zt) 2. 35)

z

Which leads to the total flux:

T 1 1(x) C dx = S 2 eXw - Xz -X(z+t). (2. 36)
0 1

Now letting the source occupy region 1 leads to the region 2 fluxes:

02(= f S( )K(x, ) d =CS eXx [e -1] (2. 37)
0

z+t CS1
0T2 2 f Z 2 (x) dx= 2 [ew- ]-z e-X(z+t)]. (2. 38)

z

Or for S=S2' 21 = 12 thus the reciprocity holds exactly for those

regions which contain the same source per unit volume, for this special

geometry.

On the other hand, the unit cell of interest is the cylindrical one

for which the above guarantees do not necessarily hold. Thus more

ANISN computer experiments were performed, in the realistic geometry

of Figure 2. 6. Table 2. 4 sums up the results in a manner analogous to

Table 2. 3. The maximum deviation from the prescribed equality is

0. 17% (for clad-coolant reciprocity). For clad-fuel reciprocity, the

deviation is 0. 02%. In either case, the deviations from a strict equality

are small, and thus the ANISN computer experiments have substantiated

the extended reciprocity relation postulated here.



Region parameters:

r, = 0. 27 cm, Eal = 0. 2 cm-

r2 = 0. 3675 cm, Ea2 = 0. 01 cm~1

r3 = 0. 6 cm, E a3 = 0. 005 cm
-1

, Es2 = 0. 1 cm 1

Fig. 2. 6 Cylindrical ANISN Reciprocity Test
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TABLE 2.4

ANISN Cylindrical Cell Total Fluxes

S 2=1 .0 S =S1=0 S1=1.0, S 2=S 3=0 S 3=1.0 S =S 2=0 S 2=1. 0 S3 S =0

3. 145821 0. 727015

1.82684 0.426476

8.08063 1. 82991

4T 1

T2

4T3

0. 727015

0.426476

1.82991

1.29643

0.726903

3. 14662
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Clad region sources for the multiply-collided group may now be

incorporated into the simple theory. First, the calculation of the

boundary currents is performed using Eqs. (2.8) through (2. 11) in

which clad sources are ignored. This yields initial values for the

average fluxes in the fuel and coolant regions in the absence of clad

sources.

Second, the calculation is repeated with an artificial fuel region

source equal to the coolant region source given by Eq. (2. 32), the

sources in the other two regions being set identically equal to zero.

By use of the extended reciprocity relation, the resulting total flux in

region 2 can be interpreted as the true total flux in region 1 due to the

true source in region 2. Dividing this quantity by the volume of

region 1 yields the average flux in region 1 due to sources in region 2.

When this result is added to the initial value of by in the absence of

clad, region sources, the result obtained is the average flux in the fuel

due to all sources in the unit cell. The clad-coolant reciprocity treat-

ment is exactly analogous. The result is a model which handles clad

region sources in a reasonable manner.

2. 7 Final Modifications to the Model

One final change is required in the simple theory. It is possible

to derive an analytic expression for the mean chord length for trans-

mission through the annular clad [371:

2 2
r _y rl) rl r, rj)

LE= -- ~2sin-( ) -)+ 2( 1- (5) , (2.39)
7r r 2 r2) r 2 r 2

which is more sophisticated than the E = 2(r -r ) used in Eq. (2. 22).
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Table 2. 5 lists the resulting clad probabilities for the two formulations

for one particular cell. The simple expression of Eq. (2. 22) results

in a good approximation to the more detailed result in the regime of

interest.

TABLE 2. 5

Transmission Probabilities for Two Definitions of L

Eq. (2.22) Eq. (2.39)

T 13 0.9965 0.9975

T 31 0.9209 0.9218

T 33 0. 0756 0. 0757

However, when the two sets of transmission probabilities are used

in Eq. (2. 15) to calculate 2 for a test cell, the Eq. (2. 22)-based

probabilities give a value of 1. 0000 (normalized) while the Eq. (2. 39)-

based probabilities result in a value of 1. 3526 (normalized). It appears

that Eq. (2. 15) is extremely sensitive to small changes in the values of

the clad transmission probabilities. The reason for this sensitivity is

that Eq. (2. 15) has a numerator which is the difference between two

almost identical large quantities, while the denominator is a small

quantity; thus any small changes in the numerator are magnified greatly.

The solution is to assume the average flux in the clad is the simple

average of the inner and outer clad surface fluxes (i. e. , a simple linear

interpolation). Several ANISN test cells showed this to be valid to

within 0. 04%. The surface fluxes themselves are calculated from the
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boundary currents by the rule:

0s = 2(j++j_ ) , (2.40)

which may be derived under the same conditions as Fick's law, with the

added condition of negligible absorption. In a wide range of ANISN test

cells, Eq. (2. 40) was found to deviate from the actual ANISN calculated

flux by a maximum of 2%, thus the rule appears to have a wider appli-

cability than the limited conditions of its derivation would imply. On

this basis, Eq. (2. 40) was incorporated into the theory as a replace-

ment for Eq. (2. 15) in the calculation of average clad region fluxes.

In the case of the multiply-collided fluxes, the reciprocity treat-

ment of the clad sources leads to problems. Since the reciprocity

theorem is not applied to boundary currents, an equation of the type of

Eq. (2. 40) has no applicability. Instead, another linear approximation

is made:

02 = (o 1 + 3 )' (2.41)

Thus, for the first-flight group, the average clad region flux is

calculated via Eq. (2. 40); while for the multiply-collided group, the

average clad region flux is obtained from Eq. (2. 41) after the reci-

procity corrected values of 0l and 03 are already known. Because the

flux shape in the clad is well behaved and the clad itself is a relatively

thin region, such simple relationships work well in determining 02'

The case of voided sodium is of great interest; thus Eq. (2. 17)

needs a replacement whenever E a3 = 0. By inspecting the results of

ANISN calculations for voided coolant regions, it was noted that the

average flux in the voided coolant region was approximately equal to
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the flux at the outer surface of the clad. Thus, for this case, k3 is

arbitrarily set equal to the clad outer surface flux which is calculated

from Eq. (2. 40).

To summarize the model developed here to calculate regionwise

average fluxes:

1. 01 and 03 are calculated knowing the regionwise flat sources

and resulting boundary currents as functions of escape and

transmission probabilities.

2. Escape and transmission probabilities are expressed in simple

first order forms.

3. The regionwise sources are calculated assuming flat cell

fluxes and group fluxes based on homogeneous core constants.

4. Clad region sources are dealt with by artificially transforming

them into fuel and coolant region sources and then applying an

extended reciprocity relation.

5. Due to sensitivity problems, k2 is calculated only as a simple

average of the surrounding region average fluxes for the

multiply-collided group, and as a simple average of the clad

surface fluxes for the first-flight group.

2. 8 Comparison of Model Results with ANISN S Calculations

Tables 2. 6 and 2. 7 compare the fully developed simple model with

a series of ANISN unit cell calculations. The 28 cases cover a wide

spectrum of cell specifications; a number of them represent stricter

tests of the theory than required for fast reactor unit cells (in particu-

lar, cases 2, 13, and 25).
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TABLE 2.6

Comparison of Theory and ANISN Results

Case 41'3 ANISN A 01/2 ANISN A

97791

96939

95113

99146

96392

00129

99304

00074

99070

99762

00649

00724

13524

00454

00481

98417

95232

97961

98585

98559

94529

94700

00411

00428

07465

00443

94499

00859

0.96640

0.96841

0.95253

0.99108

0.96499

0.99637

0.99930

1.00084

0.99069

0.99802

1.00699

1.00702

1.11145

1.00474

1.00510

0.98395

0.95436

0.98378

0.98545

0.98522

0.94733

0.94893

1.00419

1.00427

1.06608

1.00455

0.94695

1.00907

-0.

-0.

0.

-0.

0.

-0.

0.

0.

-0.

0.

0.

-0.

-0.

0.

0.

-0.

0.

0.

-0.

-0.

0.

0.

0.

-0.

-0.

0.

0.

0.

01151

00098

00140

00038

00107

00492

00626

00010

00001

00040

00050

00022

02379

00020

00029

00022

00204

00417

00040

00037

00204

00192

00008

00001

00857

00011

00196

00048

96303

98446

97495

99571

98163

00065

99651

00037

99570

99881

00426

00504

05477

00246

00273

99213

97255

99214

99229

99227

96657

96799

00283

00285

03976

00312

96652

00523

96444

95890

96679

98683

97567

99792

99950

00036

99649

99876

00592

00513

06206

00274

00324

99256

97464

99268

99154

99170

96642

96863

00323

00322

03986

00364

96641

00641

0.

0.

-0.

-0.

-0.

-0.

0.

-0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

-0.

-0.

-0.

0.

0.

0.

0.

0.

-0.

0.

00141

02555

00816

00888

00596

00272

00299

00001

00079

00005

00166

00009

00729

00028

00051

00043

00209

00054

00075

00057

00015

00064

00040

00037

00010

00052

00011

00118

Note: see Table 2. 7 for key to cases.
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TABLE 2.7

Case Descriptions for Table 2. 6

Cell A: r1= 0. 3 cm, r2 = 0. 375 cm, r3 = 0. 6 cm

Ea 1=0.2cm, 2i=0.01c , Es2 0.1cm , Ea3=0.005cm 1

Cell B: (Carbide cell) r,= 0.34036 cm, r2= 0.3683 cm, r3= 0.70309 cm

E al 0.01 6 6 6 cm , s1= 0.30957cm ,E a2= 5.63E - 4 cm

E s2=0.289374cm , a3= 1.61E - 5 cm , s3= 0.0868729

1

Cell C: (Oxide cell) r1 = 0.2794 cm, r 2 = 0.3175 cm, r 3 = 0.535386 cm

a1= 0.0652 cm , E a2= 0.05583 cm, Es2= 1. E-5cm,

Ea3= 8.68E - 3 cm 1

Cell D: (Carbide cell - first flight) same geometry as Cell B

E al= 0.08836 cm E s= 0.09522 cm E a2= 0.05583 cm

Es2= 0. 150161 cm , a3= 8.68E-3 cm , s3= 0.036297 cm

Cell E: r,= 0.3 cm, r 2 = 0.4 cm, r3= 0.6 cm

1

E al= 0.2 cm E a2= 7.5E-3 cm 1 E s2=0.075 cm , Ea3= 5.E-3 cm

Cell F: Same geometry as Cell E

E al= 0.2 cm , Ea2= 0.01 cm- 1 E 2 0.1 cm , Ea3= 5.E-3 cm

Case Description Case Description

1 Cell A, S=S3=1.0, S02=0

2 Cell A, S2=1.0, S3= S=0

3 Cell A, S2 S3=1.0, S,=0

4 Cell A, S =S2=1.0, S03=0

5 Cell A, S =S S3= 1.0

6 Cell B, S =S2 S3= 1.0

7 Cell B, S=0.17103, S 2=0.0565,

S3=0.008176

8 Cell B, S 1 =0.202289,

S2= 0.0565,

S3= 0.008176

(Continued)
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Table 2. 7 continued

Case Description Case Description

9 Cell C, S1= S 3=1.0, S2= 0 19 Case 14 except S3= 1.0,

10 Cell C, S 1 =S 2= S 3 = 1.0 S1S 2= 0

11 Cell C,S = 1.0, S2 S3= 0 20 Case 15 except S3= 1.0,
1-1 S S2= 0

12 Case 11 except E = 0.2 cm

al 21 Cell E, S3= 1.0, S =S2= 0
13 Case 11 except E a3 0.2 cm

Cata3= E22 Cell A, S3=1.0, S=S02=0

14 Case 11 except a 2  s2= 23 CellE, =1.0, S S 0
15 Case11exceptE~ 1=

8.68E-3a2 1  24 Cell A, S1= 1.0, S2 S 3= 0

-1
16 Cell C S3=1.0, S=S2= 0 25 Case 24 except E a3= 0.1 cm

17 Case 12 except S3=1.0, 26 Cell F, S1= 1.0, S2 S3= 0

S=S02=0 27 Cell F, S3 1'0' S2 S1 0

18 Case 13 except S3= 1.0, 28 Cell D, S1= 1.0, S2 S3= 0

S= 2= 0

In general, the agreement between the simpler theory and the S8

ANISN calculations inspires confidence in the model (in particular,

cases 8, 11, and 28 which represent realistic fast reactor unit cells

show the simple theory agreeing very well with the more sophisticated

ANISN calculations). On this basis, the simple model is adopted as

the standard source of average flux ratios for unit cells, and ANISN is

retired from this role for the remainder of the discussion except where

the effects of new embellishments to the theory require substantiation.
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2. 9 Conclusions

A method has been developed which allows an accurate calculation

of average flux ratios for the three regions of the unit cell. The use of

a discrete ordinate code to calculate these quantities in a fast reactor

unit cell is thereby rendered unnecessary, with the method developed

here yielding results comparable to an S8 ANISN calculation. The

method developed is simple enough to allow rapid desk calculator based

solutions or may be automated by coding a simple program.
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Chapter 3

ANISOTROPIC DIFFUSION

One basic analytic tool used in studying the physics of the fast

reactor is the diffusion theory code, an example of which is 2DB [381.

Use of such a code requires one to deal with the diffusion coefficient,

for which the customary prescription is:

1
D =(3.1)

3 Etr

where Etr is the volume-averaged macroscopic transport cross section.

Strictly speaking, Eq. (3. 1) is valid only for homogeneous media

characterized by isotropic scattering. The requirement of isotropic

scattering is not a limiting one for fast reactors. In Reference 2, two

sets of 12-group cross-section sets, one having isotropic scatter and

the other P 1 -anisotropy, were used in plate heterogeneity studies.

The difference between the Ak/k heterogeneity factors in the two calcu-

lations was less than 5%. Thus scattering anisotropy is not a signifi-

cant factor for the fast reactor cell and one can justifiably use P 0

cross sections only. In thermal systems containing hydrogen, such a

statement would not be valid.

The second requirement for the validity of Eq. (3. 1), a homo-

geneous medium, is not so easily disposed of. This chapter will

describe a procedure for obtaining diffusion coefficients which specifi-

cally account for the heterogeneous cell geometry, thus making superflu-

ous the prescription of Eq. (3.1); while in the following chapter the use

of Eq. (3.1) will be shown to cause an error of the order of $1 in reactivity.
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3. 1 The Phenomenon of Anisotropic Diffusion

In a truly homogeneous medium there is no ambiguity in the defi-

nition of a diffusion coefficient since the physical properties of the

medium are constant along any path the neutron may choose. Such is

not the case in the heterogeneous cell. Using an illustration due to

Michelini [39]: consider a very thin slab surrounded by a large region.

The net current in the k direction is:

J = -D il (k = x, y, z) (3. 2)k k ak (k yz)

Since the slab is very thin, the current (which is a quantity obtained by

integrating over the volume) does not feel the presence of the slab. In

contrast, the derivative of the flux, which is a point-sensitive quantity,

may undergo strong fluctuations. If k is parallel to an interface

between the two different materials, the neutrons in their net motion

parallel to the interface do not cross any discontinuities in physical

properties, and thus the flux shape does not undergo any significant

changes. On the other hand, if k is normal to the interface, all

neutrons moving in that direction cross the material discontinuity so

the flux derivative suffers a discontinuity due to the discontinuity in D.

Thus the Dk of Eq. (3. 1) cannot both be the same. Michelini shows

that in the limit of a vanishingly thin slab, the parallel D in the slab

tends to the classical diffusion coefficient of the surrounding region,

while the perpendicular D in the slab tends to the classical diffusion

coefficient of the slab itself.

The result, then, is that the diffusion coefficient for this thin slab

is not the same in all directions; moreover, the value of the anisotropic
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diffusion coefficients describing the slab are dependent on the properties

of the surrounding medium as well as the geometry (i. e. , the slab

thickness). At the next level of complexity is the question of how one

arrives at a single set of diffusion coefficients which describe the entire

cell (i. e. , in the above example: both the slab and the surrounding

medium for a significantly thick slab). The following artifice sheds

some light on the problem.

An analogy is available which, though not strictly valid for fast

reactor cells, serves a useful pedagogical purpose [40]. In the diffusion

approximation, the neutron current j= -D V # is analogous to the current

in Ohm's law; in which case, the diffusion coefficient corresponds to

the electric conductance (the reciprocal of the resistance). Equivalent

diffusion coefficients may then be obtained by referring to the analogous

case in circuit theory. Thus, for a current parallel to the region inter-

faces, D is given by conductances in series:

D = v.D., (3.3)

where v. is the volume fraction of the ith material in the cell. For a
1

current normal to the region interfaces, D is given by conductances in

parallel:

V.
SD(3.4)

On an even simpler level, the two different diffusion coefficients

may be discovered as a result of a basic ambiguity in the definition of

an average diffusion coefficient. Namely, if one has a two-component

system described by D 1 and D 2 , how does one obtain an average D for
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the two materials? One possibility is to volume-average the D them-

selves. A second possibility is to volume-average the Etr. for each

region and to calculate an average D from the average Etr, a process

which is identical to volume-averaging 1/D . The prescription of

Eq. (3. 1), which is equivalent to this latter averaging procedure, is

just another form of Eq. (3. 4); thus the diffusion coefficient in the

perpendicular direction is the same as the single classical diffusion

coefficient. On the other hand, the parallel diffusion coefficient is

the volume-average of the Di. Hence, the resolution of the ambiguity

is that both averaging procedures are admissible, with one procedure

(averaging D ) valid for the parallel diffusion coefficient and the other

procedure (averaging 1/D.) valid for the perpendicular diffusion coef-

ficient.

Selengut [41] presents general forms for the diffusion coefficient

(the above discussion held only for slab geometry) which are derived

assuming a linear flux shape and requiring that the equivalent cell and

the actual cell be indistinguishable with respect to leakage and absorption

characteristics. Those results are very similar to the forms based on

the above electrical analogy, being identical for slab geometry. How-

ever, such procedures are not applicable to fast reactor cells since

their common primary assumption is that the cell diameter is large

compared to the neutron's mean free path, the antithesis of the situation

in a fast reactor cell. Thus the electrical analogy gives one an inkling

as to why the radial and axial diffusion coefficients differ but not a pro-

cedure for calculating them at the unit cell level. However, the con-

ductance model may be applicable in a FBR on a larger scale: for

example, the insertion of subassemblies of a differing composition
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(with the proviso that the regions involved be several mean free paths

in extent) into a core could be treated using the analogy.

3. 2 Available Methods of Calculation

The original treatments of anisotropic diffusion were motivated by

the desire to account for the effect of holes in thermal reactor cores.

The earliest treatment, by Behrens [421, presented a method of cor-

recting the mean square distance that the neutron travels in a given

number of collisions, accounting for the presence of voids. The

migration area was assumed to vary with the neutron mean square path

in particular directions. A subsequent study by Laletin [43] indicated

that the identification of the square of the neutron diffusion length with

one-sixth of the mean square distance to the point of absorption was

valid only for diffusion parallel to cylinders and not for perpendicular

diffusion, thus contradicting one of Behrens' assumptions. Carter [44]

modified the Behrens treatment so that perpendicular diffusion was

properly treated.

Work by Leslie [45] generalized the treatment beyond an emphasis

on dealing with holes in media to consider adjacent media of varying

composition. His treatment evolved from the definition of a "new" flux,

based on a tilted source (i. e. , xq(x) where q(x) is the true source

distribution and x the space variable), as well as the ordinary flux

resulting from a source distribution q(x). Then the axial (or parallel)

diffusion coefficient was obtained by weighting with the normal flux,

while the radial (or perpendicular) diffusion coefficient was obtained

by weighting with the "new" flux. The drawback of Leslie's procedure

is the requirement of a transport theory calculation for the "new"
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tilted-source flux. Leslie presents an approximate solution in which

diffusion theory rather than transport theory is used to calculate the

"new" flux. When this approximate result is used for weighting

purposes, it results in precisely the forms of the diffusion coefficients

derived by Selengut [41]. The latest variation on this theme has been

contributed by Williams [46,47] in which the PN equations are used to

derive normal and tilted cell fluxes which are in turn related to axial

and radial diffusion coefficients.

The above theories may be labelled the "English school" of

approach to anisotropic diffusion since their methods are in a sense all

lineal descendants of Behrens' original theory. A different viewpoint

is provided by the "Franco-Italian school," one in which the diffusion

coefficients are based on collision probability methods. In this "school"

the original role equivalent to Behrens' is played by Benoist. In recent

years, Benoist's formalism has been the one dominating the represen-

tation of anisotropic diffusion.

The procedures of the ''English school"' have several drawbacks for

present purposes. The earlier work dealing primarily with corrections

for holes is not easily generalized to non-void heterogeneous cells.

Leslie's treatment is hobbled by the requirement of a transport theory

calculation for his "new" flux. When diffusion theory is used as an

approximation in Leslie's theory, the result is not applicable to fast

reactor unit cells since those results, like Selengut's, are based on

the assumption of a cell diameter much larger than one mean free path.

Williams' treatment is sufficiently general; however, its complexity

renders it unattractive. Thus it is the theory of Benoist, which offers

sufficient generality to treat both voided and unvoided cells and has
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useful asymptotic simplifications for the fast reactor regime, that is

the method of choice here. The following sections will concentrate

on that theory.

3. 3 Benoist's Treatment of Anisotropic Diffusion

3. 3. 1 Basic Derivation

Benoist [48,49, 501 has obtained the anisotropic diffusion coef-

ficients based on a leakage formalism. An outline of his derivation is

sketched here, leaving the algebraic complexities to the references.

Since the reason for calculating diffusion coefficients is the need to

know the leakage from a zone of the reactor, the primary step is to

relate the net leakage Y, and hence the diffusion coefficient, to the

current J and the flux @:

f2 dv f VJ(r, v) dV
2 v I V cell

& =ZDkB~ 1  Vel(3. 5)
k f2 dvf (r,v) dV

v I V cell

2
where B is the k-directed buckling, v the speed variable, and V thek

volume variable. The intent is to write the integrals of VJ and < in

some manageable form and relate the Dk to the result.

Two hypotheses are made: first, that the source density distri-

bution Q(r, g, v) can be written as the product of a "macroscopic function'

O(r) and a known function q(r,Q,v) which represents the source distri-

bution in an infinite system, with Q being the direction vector. The

macroscopic function is taken to be the known solution of the Helmholtz

equation for the homogeneous medium:
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v2 + )B )k= 0. (3. 6)

The validity of this first hypothesis is discussed in Section 3. 4. 1.

The physics of the situation is described by the Boltzmann integral

equation which is cast into the form of Peierls' integral operator H:

oo 
-E R

Hf = f dv' f d' 2 s(r,32-' v'+v) f(r', ',v'), (3.7)
0 V 47rR

where Es is the scattering kernel and ER the optical thickness, leading

to the Boltzmann equation:

N = H(Q +N), (3.8)

where N is the collision density. The H operator is defined by an

integral over the volume of the cell, and the second hypothesis is that

the functions k (r) and q(r, Q , v) may be analytically continued so that

the operator's domain of integration extends to infinity. This is the

classical image reactor hypothesis which is valid when the dimensions

of the medium are large (i. e. , many mean free paths in length), as

they are in a power reactor.

A second integral operator K is defined:

-ER
KfdV' f(r', 2', v') . (3.9)

00 R

After a series of manipulations, the flux and current may be written as:

K
1 - H (V V ) (3. 10)

w~ is _~H (v u V l), (3. 11)

where 4 is the infinite medium flux, j the infinite medium current, and
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v the infinite medium directional flux.

At this point, two more hypotheses are introduced: that the curva-

ture of the macroscopic function (r) in any direction, due to the

periodicity of the system in that direction, is small; that the curvature

of $(r) in any direction, due to the rate of decrease of e-ER in that

direction, is small. Both these hypotheses hold true in fast reactor

unit cells where the cell fluxes are near-flat spatially. With these

hypotheses, one may commute the H and VI operators in Eqs. (3. 10)

and (3. 11), since in that case V (r') may be replaced by its one term

Taylor series expansion, V_'(r). This yields:

<D = V 4 - 7. V b (3. 12)

Jk - 1 lkfk'k, , (3. 13)

k'r

where K kwhr 1 =_ H (vv Q) and j1k'k 1 - H (v k'

As a result, in Eqs. (3. 12) and (3. 13) the finite medium flux and

current have been written in terms of the infinite medium flux and

current minus a correction.

These expressions for the current and flux are substituted into the

original leakage expression of Eq. (3. 5). The vector I1k whose com-

ponents are the jlkk' is introduced, and Pk is defined to be the k-

component of the vector joining the center of the cell to the point at r.

One may then write:

f<j1kk dV + f Pk Vlk dV
Dk(v) = (3. 14)

f dV
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which is the general expression for the anisotropic diffusion coefficient.

Benoist claims the second term in the numerator of Eq. (3. 14) is a

small correction (more discussion on this point is presented in Section

3. 4. 2) and ignorable, leading finally to the approximate form of the an-

isotropic diffusion coefficient:

1 . . i ij ij,k

k 1 (3. 15)

where

*3 KQkPij, k( V.x 1- H (v6 0 kv ) dV, (3. 16)

and where 6 = 1 in volume V and zero everywhere else. Thus the

calculation of the anisotropic diffusion coefficients reduces to the calcu-

*
lation of the Pi, k functions, Benoist's so-called transport probabilities.

The following section will discuss particular forms suitable for fast

reactor cores which greatly simplify the calculation of anisotropic dif-

fusion coefficients.

A different derivation of just the axial diffusion coefficient D hasz

been presented by Bonalumi [51]. Bonalumi's direct derivation con-

firms that for Dz (unlike for D r), the absorption correction of Eq. (3.14)

is absent. In addition, if the transport probabilities are written in

series form (see ahead, Eq. 3. 17) where the nth term represents the

nth collision probability weighted along the k-direction, the direct

derivation confirms that only the first term remains for Dz with the

higher order angular correlation terms vanishing.
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A brief notation of some of the literature associated with Benoist's

theory is appropriate at this point. Reference 52 applies the theory to

fuel rods with a central void region. The relevant probabilities are

tabulated in graphical, parametric form; however, the range of the

variables is that characteristic of thermal systems which makes the

tabulations useless for fast systems. Michelini [53] derives simple

relations for anisotropic diffusion coefficients describing thin regions

and applies them to BWR fuel elements. In Reference 39, a more rigor-

ous treatment is presented. General space-dependent anisotropic

diffusion coefficients are derived with the important conceptual con-

clusion that the classical diffusion coefficient is inaccurate because it

is a material constant and is hence discontinuous across material

boundaries, while D11 is found to be continuous across boundaries. The

theory as formulated is limited to slab geometry. A final amplification

of Michelini's theory is presented in Reference 54, where it is general-

ized to rectangular regions in XY geometry. Applications of the above

are consistently directed toward thermal systems, with a typical effect

of anisotropic diffusion on k of 0. 005 Ak/k.

A more detailed discussion of the calculation of the required

collision probabilities for use in Benoist's theory may be found in

References 55, 56, and 57. For present purposes, the asymptotic

forms presented in the following section will suffice.

3. 3. 2 Useful Asymptotic Forms for Fast Reactor Cells

To calculate the anisotropic diffusion coefficients, one must calcu-

late the transport probabilities of Eq. (3. 16). Benoist expands the
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transport probabilities in a series of terms corresponding to different

collisions:

ij, k E, k , (3. 17)
.k=0

where Et is the total cross section and E the transport cross section

(this convention of using t to indicate total values and no subscript to

indicate transport values is adopted for E and X throughout this

discussion). The first term ijP is the oriented first collision
ij, k

probability, defined as the probability that a neutron born in region i

will have its first collision in region j, weighted along the k direction:

(0) 3-ER
Pij,k VX .f dV f dV k e 2 (3.18)

tj V.j V.i 47rR
J 1

The series of Eq. (3. 17) converges more quickly when the

dimensions over which physical properties change (the "channels")

become small compared to the neutron mean free path, and at the limit

of infinitely small channels, only the first term remains. One would

expect that for a fast reactor cell, very few terms in the series are

required; indeed in Reference 50, from a parametric study presented

by Benoist, one concludes that only the first term P is required
ij, k

(it gives Dr correctly to within 0. 04% compared to a higher order

truncation). Thus only the oriented first collision probabilities are

required to calculate the anisotropic diffusion coefficients.

In Appendix VIII of Reference 48, Benoist presents formulae

applicable to tight lattices in light water systems, a tight lattice being

one in which the lattice pitch is much less than the neutron mean free
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path. Since such a condition is generally true in the fast reactor (i. e.,

all fast reactors have a tight lattice structure), Benoist's results may

be applied directly to the cases of interest here. Thus the anisotropic

diffusion coefficients are:

-1_m 1+u u m P , (3.19)
k 3 m V t Ot u m m u u~

where

P = P0 + (1-P )Y mk uJVk .(3. 20)
uu,k uu±(lk uu,k 1- (1-Fm,k ) uk

In the above equations, u fuel, m = moderator, t = total, and 4 is the

region average flux. Puu k is the first collision probability in the fuel,

the zero superscript being omitted. The form of Dk is based on the

assumption that all neutrons are born in the fuel. Two-group source

calculations indicate that the ratio between fuel and coolant region

sources for the multiply-collided group discussed in the prior chapter

is 16 to 1; thus, such an assumption holds fairly well.

The various terms of Eq. (3.20) have physical significance: P 0
uu3 k

is that part of the first collision probability due to capture in the fuel

of those neutrons which never entered the moderator, while the second

term represents the part due to capture of neutrons which have made

multiple traversals of both fuel and moderator. Pm and Fu are,

respectively, the probabilities that a neutron incident on the moderator

and fuel regions experience a collision there. Thus the ratio in the

second term of Eq. (3. 20) is analogous to the familiar infinite series

of products of collision probabilities expressed in closed form which

were detailed in the previous chapter. Since Benoist's results are for
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a two-region cell, the clad has been homogenized into the fuel.

Clearly, the F will depend on the geometry and the entering neutron

distribution. For cylindrical geometry and a cosine entering distri-

bution, Benoist calculates:

= _ 27 (1 _,0 (3. 21)u,k (k uu,k

m,k k (1Pmm,k (3. 22)

2V 2V
where r z and Y= ' mS m , S being the

u m
interface surface area.

Benoist tabulates the Piikprobabilities in terms of two functions,

Tr and Tzj which have 77 as arguments. For ri equal to zero, Tr and

Tz take on the values of 1. and 2., respectively. Again, fast reactor

systems lend themselves to an asymptotic treatment since in that case

the values of rl are near zero (r7 less than 0. 1), so that approximate

forms of the T. developed by Bonalumi [571 for cylindrical geometry

are applicable:

Tr 1 +12 + (3. 23)

2T
T = r , (3. 24)

z 1 _+__

0.51 +

where

1
C = 1 + 11 (3. 25)

3 + 3~ r

Thus the procedure for calculating the anisotropic diffusion coef-

ficients is to first calculate the T. functions from Eqs. (3. 23) and
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(3. 24), set the P0 k riTk Uti ), and calculate the F functions from~ii k Nkt
Eqs. (3. 21) and (3. 22). This yields the required information for calcu-

lating the first collision probabilities from Eq. (3. 20) which in turn are

used to calculate the anisotropic diffusion coefficients from Eq. (3. 19).

For the sodium voided case, Eq. (3. 19) is not valid since it yields

an infinite diffusion coefficient. Instead, the following form of the dif-

fusion coefficient is used [58]:

D u
k 3 _u

*
where Qmk

[1+ (1
x *L

MX mk
u

2 1

k rl u (1 -uPu1k

and Qz= 2 . Qr =1.

It is instructive at this point to choose one sample cell and calculate

diffusion coefficients using the three models: homogeneous,

heterogeneous-Selengut, and heterogeneous-Benoist. Table 3. 1 presents

the parameters describing the chosen cell, while Table 3. 2 lists the

resulting diffusion coefficients for each model.

TABLE 3. 1

Sample Cell for Dk Calculation

Region Outer Radius (cm) Group 1 D (cm) Group 2

Fuel (UO ) 0. 2797 2.0469 0.95464

Clad (Fe) 0.3175 1.6220 0.78860

Coolant (Na) 0.4508 7. 5507 3.0810

(3. 26)

(3. 27)
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For the homogeneous case, the diffusion coefficients are calculated

from Eq. (3. 1), while for the heterogeneous-Benoist case, Eq. (3. 19)

is employed. For the heterogeneous-Selengut model, the pedagogical

example invoked in Section 3. 1, Dz is calculated from Eq. (3. 3) while

Dr is obtained from the cylindrical geometry form equivalent to

Eq. (3. 4):

[(1+v)D0 + (1-v)D ]
Dr = jD1 , (3. 27a)

(1-v)D 0 + (1+v)D J

where the averaging process is applied twice to two regions at a time,

f0" being the inner region of volume fraction v, and "1" being the outer

region. That is, Eq. (3. 27a) is first applied to the (fuel) + (clad) region

pair, and then to the (fuel + clad) + (coolant) region pair.

TABLE 3. 2

Diffusion Coefficients for Sample Cell

Model D (cm)
Group 1 Group 2

Homogeneous Dz 3.0917 1.4126

Dr 3.0917 1.4126

Dhet /Dhom
Group 1 Group 2

Benoist Dz 3.1150 1.4310 1.0075 1.0130

Dr 3.0963 1.4169 1.0014 1.0030

Selengut D r 4.1276 1.7746 1.3351 1.2563

Dz 4.7730 2.0076 1.5438 1.4212
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The Selengut model clearly predicts much augmented diffusion

coefficients; however, that model is invalid for fast reactor cells since

its primary assumption is that the cell diameter is much larger than a

neutron mean free path, and it is of interest here only because it was

referred to in an analogy used earlier.

On the other hand, the Benoist theory predicts more reasonably

moderate increases in the diffusion coefficients (of the order of 1%)

due to anisotropic leakage. The above calculation is for a case with

coolant present. For the sodium voided case, the anisotropy increases,

as will be discussed later, to several percent. The effects will be

translated into terms of reactivity in the next chapter.

3. 3. 3 Comparison with Experiments

Benoist [48, 491 has made a detailed comparison of his theory with

experimental measurements, analyzing seven different types of experi-

ments ranging from the variation of critical assembly buckling to the

measurement of decay constants as a function of B by pulsed neutron

experiments. Typically, the migration areas or diffusion lengths are

obtained by measurement of bucklings for various configurations. That

is, taking the equation:

K 1 + M2B2 +MB , (3. 28)
0 r r z z

upon dividing through by M , the ratio M /M can be taken as the slope
r r

2.
for a series of measurements in which B is varied. This ratio of thez

migration areas can be calculated from the Benoist theory and is found

to be in general agreement with the measured ratio, comparisons being

made for four moderators: BeO, D20, H20 and graphite. Discrepan-

cies can be explained by pointing to finite size effects in those systems
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which are small since the Benoist theory is primarily applicable to

large systems (viz. , the second hypothesis of Section 3. 3. 1).

The ratio of the radial diffusion coefficient to the moderator dif-

fusion coefficient has been measured for a highly anisotropic lattice

(heavy water containing air-fulled tubes) with the experimental result

1. 29 ± .02 agreeing well with the theoretical value of 1. 28 [591.

Axial streaming has been investigated, and Benoist's theory found to

give the correct angular correlation corrections [60]; that is, the

higher order terms of Eq. (3. 17). Behrens' theory, which is equiva-

lent to the zero order Benoist solution detailed in the last section, has

been compared with Monte Carlo calculations as well as UO 2 experi-

ments [61], and the conclusion drawn that the axial diffusion coefficient

is predicted well, while the radial anisotropy is significantly under-

predicted as compared to Monte Carlo calculations. The results of

Reference 59, however, contradict this latter conclusion on the basis

of experimental results.

In sum total, one has reasonable confidence in applying the theory

of Benoist to anisotropic diffusion in thermal systems, based on

experimental confirmation. By extension, the theory should be even

closer to reality when applied to fast systems since they are consider-

ably less heterogeneous, making the hypotheses upon which the theory

is based (vide Section 3. 3. 1) even more valid for fast systems then for

thermal systems.

There has been a recent awakening of interest in anisotropic dif-

fusion to explain discrepancies in plate versus pin reactivity effects in

fast reactor critical assembly measurements [31]. Though no calcu-

lation of the anisotropic diffusion effect is performed in Reference 31,
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an ad hoc increase of 8% in the effective diffusion constant for the plate

geometry is shown to account for all of the discrepancy. One is

tempted to suggest that the method of Benoist (or a variation thereof)

be applied to analyze the plate geometry, as has been done here for pin

geometry. Quite recent work in the Federal Republic of Germany [891

has been directed precisely along such lines, applying the theory of

Benoist to plate-type fast critical assemblies.

3. 4 Corrections to the Benoist Theory

Various refinements may be added to the Benoist theory developed

in the earlier sections, primarily in the form of corrections to the

original calculation. Firstly, the discussion of Sections 3. 3. 1 and

3. 3. 2 is inherently directed toward a monoenergetic problem, for

which Benoist [48,49] has calculated the corrections required to take

into account the effect of group coupling. In addition, errors in his

conclusions regarding the absorption correction of Eq. (3. 14) have been

pointed out by various authors [62, 63,641. The following two sub-

sections will discuss these corrections with the useful conclusion that

for fast reactor systems, these corrections are negligible.

3. 4. 1 Group Coupling Corrections

We return to the first hypothesis of the Benoist theory: that the

source distribution is factorable into a macroscopic function and a

lattice-periodic function. Such a treatment neglects the coupling

between various groups; namely, the spatial variation of the slowing-

down sources into different groups.

The absorption term of Eq. (3. 14), which was assumed to be

negligible, is:
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p rVjl dV

6 D = dV (3. 29)
a r <f dV

V

where the notation is taken from Section 3. 3. 1 with k= r. In the context

of a two-group theory and by use of various manipulations based on the

assumption of an isotropic directional flux, Benoist concludes that the

absorption correction for the fast group is:

6 D1 V 2 D(1 1
a r _ 1 2Dm r m(-- -K)r 8 Kr4m , (3.30)1 X 1) 8i r m V ; ( I( 1 ) (1))

3 m 3 m t

2
where K = E am/D and m = moderator. Then assuming an equilibri-

um between the fast absorption and slow source corrections, Benoist

finds the thermal group scattering correction is:

(1)

6 D(2) 6 D), (3. 31)s r (/2) a r
t

where the flux ratio is the average lattice fast flux divided by the aver-

age lattice slow flux. Benoist finds 6 D(2) much less than 6 D , anda r a r

6 D(1) much less than 6 , thus only the quantities in Eqs. (3. 30)s r s r

and (3. 31) are of significance.

These coupling corrections may be applied to a two-group calcu-

lation for a typical fast reactor cell, where the two groups are the

first-flight and multiply-collided groups identified earlier. A typical

cell has the following parameters:



79

rfuel = 0. 36 cm, r outer = 0. 57 cm

uncorrected Dr = 3. 3 cm
r

= 7.6 cm
3 m

E51) =0. 01 cm 1
am

1) 0.044 cm-1
tr m

V 2
8rt= 0. 015 cm 3

87rV

To use Eq. (3. 30), assume #m /t = 0 in lieu of calculating the actual

ratio; this assumption will predict an overly large correction. With

these quantities:

6 D = - (7. 6)(. 015)(. 0013)(3. 3/7. 6) = -6 X 10-5 cm
a r

6 D(2) (1) /0(2) )(- 6 X 10-5 cm).
s r

It is apparent that 6 Dr is an entirely negligible correction to the mono-a r

energetic diffusion coefficient. Since 4()/(2) is of the order of 10~k,

6 is an even smaller correction. One concludes that for a fast
5 r

reactor unit cell, group coupling corrections are unnecessary.

3. 4. 2 Blackburn's Anisotropy Correction

Blackburn originally pointed out an error in Benoist's calculation

of the absorption correction due to his assumption of an isotropic

directional flux. Bridge and Howarth [64] have performed an analysis

on the CAGR lattice in which the absorption correction was found to

consist of two parts, one of which Benoist neglected due to his flux

assumption. For the case of a graphite lattice, where relatively large
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cross-channel gradients occur, Bridge and Howarth found the original

Benoist calculation to be in error by as much as 13%.

However, the case of interest here is the fast reactor cell.

Bonalumi [63] has developed a method to calculate these corrections in

a simple manner. The corrected diffusion coefficient may be written

as:

D = D ±+ DD - D (3. 32)
r 0 an 5 a'

where D is the principal part of the Benoist diffusion coefficient, Da is

the absorption correction (in absolute value) and Ds the source

correction, both discussed in the prior subsection. The new correction

is Dan, Blackburn's anisotropy correction:

f xj0 dV

Dan 40 t - (3. 33)

Because Benoist assumed an isotropic directional flux, the current

j0 =0 and Dan vanished. On the other hand, by taking advantage of the

fact that j0 = 0 on the cell surface, using Green's theorem to transform

to a surface integral, and making a simple statement of neutron balance,

it is possible to write:

(q -~ E )V
D (q_ m am m m (3.34)an 87r0(b)

where Vm is the moderator volume per unit cell length, 0(b) is the cell

edge flux, 0 the average moderator region flux, and q = E 4 them m rm
slowing-down source. To obtain Eq. (3. 34), the simplifying assumption

that (q - Ea d) is regionwise flat has been made.
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Again performing the calculation for the typical fast reactor cell

where the additional assumption of a flat cell flux is made (i. e.,

k(b) = km), one finds for the first-flight group where qm= 0:

D( 1 ) (Vmy( 1) = (. 03)(. 01) = 0. 0003 cm.
an \ 87 am

For the multiply-collided group where qm = rm rm m

(1)) 1V4
D (2) _fm) E m _ (2)

an 87r rm (2) am

L m.

= - (.03) [(. 01)(0. 1) -(.00004)] = -0. 00003 cm.

To serve as a basis of comparison in deciding how important these

anisotropy corrections are, one notes that the quantity of interest is

the difference between the homogeneous and the anisotropic Benoist

diffusion coefficients, which typically is about 0. 01 cm. In that con-

text, the larger of the two flux anisotropy corrections (the first-flight

group value) is negligible, being of the order of 3% of the principal

Benoist anisotropy. From another viewpoint, the Benoist calculation

results in a 1% anisotropy; the Blackburn anisotropy correction adds

to that an additional 0. 03%. In either case, the correction to the

principal term of the Benoist anisotropic diffusion coefficient is negli-

gible for the specific case of fast reactor cells, and the asymptotic

forms of Section 3. 3. 2 may be employed without recourse to source

corrections, absorption corrections, or flux anisotropy corrections.

3. 5 Leakage Treatment in Finite Cores

At this point, it is appropriate to return to the topic of Chapter 2,

flux ratios in unit cells, and account for the presence of these unit
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cells in a core of finite size. The earlier discussion was solely con-

cerned with cells enclosed by the white boundary condition; thus no

accounting was made for leakage from the unit cell and its effect upon

the flux ratios. A method of coupling the average flux ratios with the

anisotropic diffusion coefficients is required.

The first question of interest involves the manner in which the flux

ratios vary from cell to cell in a finite reactor. Since the available

calculational tool for the present work is limited to the one-dimensional

ANISN code, the desired investigation can only be carried out in slab

geometry. Figure 3. 1 describes the "Gedanken" problem postulated.

The results of an ANISN S8 calculation are presented in the form of the

ratio of average fuel flux to average coolant flux in Table 3.4.

TABLE 3.3
Cell Constants (cm~)

Group 1 Group 2
Fuel:

E 0.020504 0.016657a
v Ef 0. 053880 0. 020419

E 90.091667 0.030580

E g, g +1 0. 068804 -

Coolant:
E 4. 178E-5 1. 613E-5a

0. 034939 0. 085275
gg
g,g +1 0.008176 -

TABLE 3.4
Cell-Dependent Flux Ratios (0 fuel/ cool)

Cell Number Group 1 Group 2

1 1.00856 1.00148
2 1.00855 1.00148
3 1.00853 1.00150
4 1.00849 1.00151
5 1.00842 1.00154
6 1.00829 1.00160
7 1.00810 1.00175
8 1.00822 1.00247
9 1.01259 1.01460
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Fig. 3. 1 Multi-Cell Slab Core
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Since the slab was decreed to be infinitely long axially in order to isolate

the effect of one-dimensional leakage, axial leakage has been ignored.

It is apparent that the flux ratios remain very nearly constant from cell

to cell, regardless of position, until the boundary is reached. However,

in the boundary cell the flux in both groups is reduced by more than a

factor of four compared to the central cell, with the heterogeneous

effects occurring there having a lesser impact on the reactivity. Thus

the assumption that the flux fine structure is identical in each cell is a

reasonable approximation when the basic quantity of interest is an inte-

gral parameter such as a multiplication constant.

The final link in the chain requires that the flux ratio calculations

for a single isolated cell with reflective boundary conditions yield the

same values as for the cell in a finite core. This is achieved by adding

the familiar DB2 correction to the macroscopic absorption cross section.

For the validation of this procedure, an ANISN calculation was per-

formed for the isolated unit cell of Figure 3. 1. The buckling is equated

to -V 2 4k/4, which is calculated by applying a central difference formula

to various pointwise flux values given by the 9 cell slab ANISN results:

1 2 k k+1 2k k-1 k+2 4k+1+60k4 k+ k2 I

+9[ k+3 6k+2+15k+1 20 4k-- 6 k-2 k-31. (3.35)

Table 3. 5 lists the group buckling values calculated at three locations.

The DB2 correction was then calculated using the central core values

for the bucklings, with the radial diffusion coefficient calculated from

Eq. (3. 4).
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TABLE 3. 5

Group Buckling Values (cm- 2

Location B2 B 2

B1  2

Center of core 0.0013986 0.0013829

Center of cell 2 0.0013588 0. 0013835

Center of cell4 0.0013330 0.0014019

When the isolated, reflected cell calculation is performed with the

DB2 correction, one finds (0 /4c 1) 1. 00916 and (4 /4c 2 = 1. 00146,

reasonably close to the central cell values in the finite core given in

Table 3. 4. In addition, the isolated cell calculation yields k= 1. 1037

while the slab core calculation yields k= 1. 1083. We conclude that the

effects of radial leakage from a cell in a finite lattice upon the flux

ratios in that cell are reasonably accounted for by adding a D B 2
r r

correction to the absorption cross section in an isolated, reflected cell.

Thus the methods of Chapter 2, developed for a unit cell in an infinite

lattice, may be retained for the cell in a finite lattice with the one

proviso that all macroscopic absorption cross sections be augmented

by the term (D B +D B ).
r r z z

One should take cognizance of the coupling between the flux ratios

and the anisotropic diffusion coefficients. Namely, from Eq. (3. 19),

it is apparent that the anisotropic diffusion coefficients depend on ratios

of the fluxes, while the flux ratios themselves depend on the diffusion

coefficients through the DB2 correction. Thus an iterative procedure

suggests itself: to calculate the diffusion coefficients assuming flat

cell fluxes, to calculate the flux ratios using these initial diffusion
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coefficients, and then to calculate first iterate diffusion coefficients.

The cell flux ratios in fast reactor cells are generally so nearly unity

that even the first iteration yields a negligible change in the anisotropic

diffusion coefficients (i. e. , the change is in the fifth significant figure

which, based on the method discussed in the next chapter, results in a

change in the reactivity effect of the order of 0. 1 ). Thus only when

the flux ratios depart significantly (e. g. , more than 10%) from unity

does the coupling between the flux ratios and the diffusion coefficients

require an iterative solution; such a condition does not occur in a

typical fast reactor unit cell.

3. 6 Conclusions

The method of Benoist for calculating anisotropic diffusion coef-

ficients has been investigated. Its basic hypotheses have been shown

to be valid for fast reactor unit cells and useful asymptotic forms

applicable to these cells have been collected. The corrections to the

Benoist theory important for thermal lattices have been discussed with

the conclusion that they are negligible for fast reactor unit cells; thus

the first order form of the Benoist theory is valid for these cells. The

methods of calculating flux ratios in infinite lattices can be extended to

cells in finite lattices by a DB 2 -type correction to the macroscopic

absorption cross sections.
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Chapter 4

REACTIVITY EFFECTS OF HETEROGENEITY

The preceding two chapters contain a discussion of the methods

which allow the calculation of cross sections characterizing the hetero-

geneous nature of the FBR unit cell. Since the differences between

these heterogeneous constants and those describing a volume-averaged,

homogeneous medium are sufficiently small, the methods of first order

perturbation theory may be employed to calculate the reactivity differ-

ence between neutron balances computed using these two models.

A two-group model is adopted as the minimum useful approach.

The groups are chosen to allow a separation of the peaking of first-

flight neutrons in the fuel rod from the absorptive depression of lower

energy neutrons in the fuel rod. This objective can be accommodated

by choosing a group one cut-off at 1. 4 MeV. This chapter presents a

two-group perturbation theory model and points out the significant

reactivity contributions, with the exception of energy self-shielding

effects which have been reserved for the entirety of Chapter 5. In

addition, a simpler direct calculation of the reactivity contributions,

equivalent to perturbation theory for an equivalent bare core, is pre-

sented.

4. 1 A Useful Approximation to First Order Perturbation Theory

As is well known, the reactivity due to small changes in system

properties may be expressed in terms of perturbation integrals [16,651
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f [ 0,-]T[6p][]dV f [v4*]T[6D][v4]dV
k _V V (4.1)kTI

[4 ]T[ P][4[]dV [ ]T[P 0 ][4]dV
V

where the 4 are the adjoint group fluxes and 4 the group fluxes, all

characteristic of the unperturbed case in the first order perturbation

theory approximation; P 0 is the fission production matrix, 6P the

perturbation matrix exclusive of changes in the diffusion constant,

while 6D is the perturbation in the latter quantity. Thus, with knowledge

of the homogeneous-medium fluxes, and by defining the difference

between the homogeneous and heterogeneous constants as the pertur-

bations, one may employ Eq. (4. 1) to calculate the reactivity equivalent

of the heterogeneities. Various simplifications will be assumed which

make the perturbation integrals tractable.

A more direct calculation of the reactivity effect may be performed

by considering the multiplication constant to be a multi-variable function.

That is, in the two-group model one has the multiplication constant:

k(Ea l' a2 12 vE ,vEf2 D rB , PDrB , D zB , D zB )2

E +E +D B2+D B2 E +D B 2 +D B 2

12 al 1r rr' 2r r 2r 2z zVYI f 1 Xf2 12

+ ,1VF 2E1 (4.2)
(E +E +D B 2 +D B 2 )(E +D 2 2

12 al 1r r lz z a2 2r r 2z z

from which the total differential, Ak, can be formed:
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Ak a AE ak AE + AE ± a
ak a al+ 2 a2 + r r a(v I) A(Vf 1 )

+ 8k+ A (D B2 )+ ak AD B2
a(vE f 2 ) A(VYf 2 ±(D B 2) ir r a(D B 2 2r r

1r r 2r r

+ k A(D B2) + k A(D B) (4.3)
a(D B2 1z z a(D B 2 2z z

1z z 2z z

To calculate the reactivity Ak/k, the differentials in Eq. (4. 3) are taken

to be the differences between the homogeneous and the heterogeneous

constants. This procedure will be termed the "direct" method.

It is also of interest to investigate the validity of the "direct" cal-

culation of the reactivity effect by reducing the integrals in the pertur-

bation theory approach and comparing the result to the "direct" method.

First, it should be emphasized that the expression for the two-group k

given by Eq. (4. 2) is for the specific case of a one region medium;

thus the blanket and reflector regions are implicitly treated through a

reflector savings correction. In that case, the two-group equations

can be rearranged to yield ratios of the fluxes:

X 1 Vf2/k 
(4. 4a)

2 Eal 12 + DIB 2 - X1vE /k

at E12 X2VE /k

2 - .k(4. 4b)

02 E al + E12 + D B - X1vE /k

These ratios may be used to simplify the integrals of Eq. (4. 1) since

the flux ratios and the material constants are all space-independent.

One additional property, useful in simplifying the perturbation

integrals, arises due to the limitation of the calculation to equivalent
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bare cores (i. e. , bare cores with a reflector savings correction): the

diffusion constant perturbation may be treated without necessitating the

calculation of flux gradients. We assume that the unperturbed group

fluxes may be written as:

4O (r, z) = A JO(Brr) cos (B zZ) (4. 5)

Concentrating on the second term of Eq. (4. 1), one finds that the

following identity holds:

f (V4) 2 6D dV = f B2 k 2 6D dV, (4. 6)
V core V core

2 2 2where B = Br + B . It should be emphasized that the above identity is

valid only for the case of a bare equivalent core in which there occurs

a uniform diffusion constant perturbation everywhere, and the inte-

gration is to be carried out over the entire core volume. In that case,

the cross-terms obtained upon squaring the gradient vanish due to

orthogonality while other nonmatching terms are zero on the boundary;

the integral identity of Eq. (4. 6) holds due to these fortuitous conditions.

Using the above identity, the diffusion constant perturbation can be

treated in the same manner as the other perturbations in Eq. (4. 1).

Under the above conditions, the following expression for the pertur-

bation theory form of the reactivity is found:
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S{[X6(v f)-6Y a-B 6Dr-B 6D 1 1
k IlY1 2 al r ri zI Z1i

+ {X 1 6(v+f2  26(v1)+6

2 2 .V
+ [X 2 6(vf 2 )- Ea 2 -B 6Dr 2 -B 6D}z2] Xv

2 k2

+YXvf X2v'l + X, vEf ' (4' 7)

where the flux ratios are given by Eqs. (4. 4a) and (4. 4b). This is the

simplified result which is to be compared with the "direct" method of

Eq. (4. 3).

When the equivalent bare core, first order perturbation theory is

used to calculate the reactivity effect of the various heterogeneities, it

yields a value essentially identical to that calculated using the total

differential of k from Eq. (4. 3): in all FBR cases investigated, the

two results differ only in the sixth significant figure. Thus the total

differential method for calculating heterogeneous reactivity effects

(i. e. , the "direct" method) is equivalent to a two-group perturbation

theory calculation for an equivalent bare core.

The validity of the "direct" model for calculating the heterogeneity

corrections due solely to the non-flat flux component (i. e. , all effects

exclusive of anisotropic diffusion) was confirmed with ANISN S 8

calculations into which first the homogeneous constants were input,

after which the calculation was repeated with the heterogeneous constants.

The change in keff given by the ANISN results agreed with that calculated
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by the total differential of k method in all cases to within ±1 in

reactivity (assuming f = 0. 0033). To put this result into proper

perspective: the non-flat flux component is of the order of 15g or less,

thus while the uncertainty of ±lg is relatively large (>6%), the import-

ance of this quantity, as will be shown in the next section, is relatively

small, being considerably outweighed by the effect of anisotropic

diffusion.

Similarly, one can now quantify the effect of the errors in the

methods developed in Chapter 2 for the calculation of region-averaged

cell flux ratios. Performing two calculations of the heterogeneous

reactivity effect, the first using the flux ratios given by an ANISN S8

cell calculation and the second using the escape/transmission proba-

bility theory results developed here, one finds that in the example of

Case 11 in Table 2.6, the net discrepancy due to the differing flux

ratios is 0. 5 in reactivity, a negligible quantity. Thus the escape/

transmission probability formalism of Chapter 2 is entirely adequate

for use in calculating the heterogeneous reactivity effects of non-flat

cell fluxes.

The "direct" model's predictions for the reactivity effect of the

anisotropic diffusion perturbations are not as easily verified. The

common diffusion theory codes, such as 2DB, are unable to account

correctly for anisotropic diffusion coefficients because only one dif-

fusion coefficient is defined per region. The usual manner in which

leakage is treated [38] is to convert the volume integral f DV 2 4 dV

into the surface integral in the form of a finite difference represen-

tation for the leakage at mesh point "0":



f
cell

DV4 - dA =

4 Ak

Uk Ik 0) , 0
Ak

D ODk(h0+hk
where Dk - Dh +Dh

k O 0hk +Dkho

with the labelling conventions defined in Figure 4. 1. For the case of

anisotropic diffusion, the leakage at point "O" is more properly

described by:

4

z
k= 1

k k
k= 1

15(r) k 0 +k Ik k 0

4

k= 3

-kz) k 0 

(4. 10)

where explicit recognition has been made of the fact that the radial and

axial diffusion coefficients differ.

Nevertheless, in the case of the equivalent bare core, an equivalent

diffusion coefficient may be defined:

D B2 + D B2

(D) r r z z

B + B
r z

(4. 11)

Assuming a uniform mesh structure and recognizing that the equivalent

core is homogeneous, one finds from Eq. (4.9) that Dk (D) everywhere.

Under these conditions, the homogeneous leakage algorithm becomes:

A 4

hom = D) 0 1
0k= 1

(4. 12)

while the anisotropic leakage algorithm becomes:

9 4

L = D(Or)A L k 0 ) + D(z) 0 y 0
0 k=1 0 k=3

(4. 13)
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(4.8)

(4.9)
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A = area of boundary between mesh point k and mesh point 0

Dk effective diffusion constant between mesh point k and
mesh point 0

V k =distance between mesh point k and mesh point 0

D = diffusion constant of region k

hk radial width of region k

Fig. 4. 1 Mesh Structure in 2DB Finite
Difference Representation
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Thus, for the prescribed equivalent diffusion coefficient to be valid as

defined by Eq. (4. 11), one requires F hom

to the two requirements:

B
2

r
2B 2

B + B
z r

ani' which is equivalent

2

k= 1
4

k 0
k=1

(4. 14)

and

4

B 2
z

2 2
B2 + B

z r

k= 3
4

k= 1

(4.15)

One final manipulation reduces these last two equalities to a single

equality which must be satisfied for the equivalent diffusion constant

to be valid:

B 2 [( 30 0 O4 0)]. (4. 16)

Dividing both sides of Eq. (4. 16) by the uniform mesh interval and

allowing that interval to become infinitesimal results in the condition:

Bz [(10 (4. 17)
r 2J

- 41.

Carrying out the same manipulation again results in:

BB[L2] [3 (4. 18)

B [(1 0 2 0)]

B 2r az
[(ao)3
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or finally B2[-B2] = B2[-B24] which is indeed an equality.' Thus for

a uniform medium, and in the limit of infinitesimal mesh spacing, the

equivalent diffusion coefficient given by Eq. (4. 11) results in the same

calculated leakage as a proper anisotropic leakage representation.

With the above discussion in mind, the mean diffusion coefficient

described by Eq. (4. 11) may now be used as the single diffusion coef-

ficient in 2DB calculations for a uniform cylindrical core in rz geome-

try. An identical set of constants was used in the diffusion coefficient

perturbation calculation described in the last section and in a 2DB

calculation. The latter was repeated with transport cross sections

decreased by a factor of 0. 996446 in group 1 and 0. 993633 in group 2,

these factors being the ratios of the homogeneous diffusion coefficients

to the equivalent diffusion coefficients obtained by using the Benoist

theory and Eq. (4. 11). The 2DB calculations predicted a -46. 70 effect

due to anisotropic diffusion while the perturbation theory value was

-53. 9 . This discrepancy of 13% between the two values is acceptable.

In particular, the mesh intervals in the 2DB calculation (3. 370 cm

radially and 3. 049 cm axially) were significantly non-infinitesimal,

with the definition of the equivalent diffusion coefficient being non-exact

in this event. One would consequently place more faith in the pertur-

bation theory value than in the one calculated using 2DB.

* 2
The observant reader will note that V2 2 + r the second term ofr r2  r _~ th seodtemo

which is missing from Eq. (4.18) for the required next step: V2= -B2.
r r

That is because the above discussion implicitly assumes the transfor-

mation from the cylindrical rz space to a rectangular rz space (viz.

Fig. 4. 1). Upon transformation back to the cylindrical space, the

required r ar term reappears in Eq. (4. 18).r a
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The same analysis for the sodium-out case is of greater interest

since the degree of anisotropy is greater: for the test cell, the factors

decreasing Etr in groups 1 and 2 were 0. 991798 and 0. 982402, respect-

ively. The perturbation theory calculation indicated a contribution of

-$1. 69 due to anisotropic diffusion, while the 2DB value was -$1. 45.

In this case the discrepancy was slightly larger than the 13% observed

for the sodium-in case.

Earlier it was shown that the mean diffusion coefficient defined by

Eq. (4. 11) gives the correct anisotropic leakage for a uniform system

in the limit of infinitesimal mesh spacing. In order to verify this, the

sodium-out 2DB calculations were repeated after halving of the mesh

intervals (now 1. 685 cm radially and 1. 5245 cm axially). For the finer

mesh structure, 2DB yielded a -$1. 58 (i. e. , 7% low) reactivity contri-

bution due to anisotropic diffusion, to be compared to -$1. 45 (i.e., 14%

low) for the coarser mesh and -$1.69 (the reference value) for the

perturbation theory result. Thus it appears that the mesh spacing is

important in diffusion theory calculations that incorporate the mean

diffusion coefficient method. In addition, the perturbation theory result

appears to be confirmed since the 2DB diffusion code result tends to

approach the perturbation theory value in the limit of fine mesh spacing.

Roughly speaking, halving the mesh spacing, halves the error implicit

in making the mean diffusion coefficient approximation to the anisotropic

diffusion coefficients. In order to reduce the error to less than 1%, the

mesh spacing needs to be of the order of 0. 2 cm, which would result in

a prohibitive running time for the calculation. Thus the perturbation

theory calculation is far more attractive for finding the reactivity contri-

bution of the anisotropic leakage than a direct diffusion code calculation.
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4. 2 Identification of the Individual Reactivity Contributions

The total differential Ak provides a direct measure of the importance

to be placed upon each heterogeneous perturbation: the I multiplier

xxis the weight to be given to the perturbation AE . Table 4. 1 lists the nine

perturbation multipliers and their values for a representative FBR unit

cell.

TABLE 4.1

Perturbation Multipliers

x1 VEf1

kE1 2±+E a 1 B 2)2

+ X1 VE f 2 12 -20.02

( E 12 al+D B2

-[ 2 V~f 2

E2  2 22 +)
Ea2 +D2 B2

X(1+BEf2D12

12 +Eal +D 1B2 a2+D 2B2

= -163.48

S-1 1  = 18.87

12 Ea1+D1B

X2  +

E a2+D 2B 2

( E1
2 ) =177. 94

E12 +Ea1+D 1B 2) a2 +D 2B 2)

- X 1Vf f

L(E12 al +D B2 2)

X1 VEf 2 E12

/12 al+D B 2I= -19.21

X2 V~f2  X1 vEf2 -12  2 -156.81

E 2 a2+D 2 B 22 (E 1 2 1 +D 1 B
2)( a2+D 2B2)

D.B 2 = D. B +D. j= 1, 2; i=r, z

ak

al

ak

a2

3k
avEfl

ak
3vEf2

3k

3D B 2
ii i

3k

3D B 2
2i i

where
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It is apparent that the perturbations in the multiply-collided group have

a consistently larger weighting; however, the values of the pertur-

bations themselves are smaller than for the first-flight group; thus the

products remain of the same order of magnitude.

Tables 4. 2 and 4. 3 present the results for a typical FBR cell. At

this juncture, only the relative magnitudes of quantities are of interest

and more detailed discussion of the effects for specific cells will be

presented in Chapters 6 and 7. Using the perturbations given in Table

4. 2, the reactivity effect of each is calculated with the results presented

in Table 4. 3. Throughout, the column labelled "perturbation" refers to

"heterogeneous" minus "homogeneous," while the direction of the per-

turbation yielding the reactivity contribution is the change from homo-

geneous constants to heterogeneous constants.

TABLE 4.2

Heterogeneous Cross-Section Perturbations (Na In)(cm-)

Homogeneous

0.00594414

0.00597820

0.0150227

0.00677904

0. 0335229

0. 00220976

0. 00104778

0. 00100303

0. 000475596

Heterogeneous

0.00596404

0.00597701

0. 0150737

0. 00677765

0. 0335829

0. 00222643

0. 00104934

0. 00101660

0. 000477098

Perturbation

0.00001990

-0.00000119

0. 0000510

-0. 00000139

0. 0000600

0. 00001667

0. 00000156

0. 00001357

0. 000001502

Cross
Cross

Section

Sal

Ea2

VE f2

E12

D B 2
Dz z

D B 2

2r r

D B 2
2z z

D B 2
2r r
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TABLE 4. 3

Heterogeneous Reactivity Contributions (Na In)

Effect

Group 1 fission

Group 1 absorption

Group 1 removal

Group 1 radial leakage

Group 1 axial leakage

Group 2 fission

Group 2 absorption

Group 2 radial leakage

Group 2 axial leakage

Total

Contribution

20. 7e

-8.6

-3.8

-0. 7

-7. 2

-5.0

3.9

, -4. 9

-44. 1

-49. 6

Throughout, the conversion to e and $ of reactivity is based on

eff = 0. 0033. The contributions from fission, absorption, and removal

events are due to non-flat cell fluxes, while the leakage contributions

are due to anisotropic diffusion. From these results, one concludes

that the purely homogeneous calculation, for the sodium-in condition,

overpredicts the reactivity by half a dollar. Note that the two-group

model developed here is not expected to accurately calculate the abso-

lute value of the reactivity; rather, it is used to calculate the reactivity

difference between a homogeneous and a heterogeneous representation,

that is, an a posteriori correction to a homogeneous calculation which

may be of any degree of sophistication required.
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Tables 4. 4 and 4. 5 report analogous results for the sodium-out

condition in the same cell.

TABLE 4.4

Heterogeneous Cross-Section Perturbations (Na Out) (cm
1)

Cross

Section Homogeneous Heterogeneous Perturbation

E al 0.00593931 0.00595056 0.00001125

Ea2 0.00522278 0.00522330 0.00000052

vE 0.0150827 0.0151115 0.0000288

VEf 2  0.00624499 0.00624562 0.00000063

E12 0.0288451 0.0288826 0.0000375

DzB 0.00221218 0.00225130 0.00003912

D B 2  0.00118822 0.00119218 0.00000396
1r r

D B 2  0.00106308 0.00110109 0.00003801
2z z

D B 2  0.000571009 0.000575298 0.000004289
2r r

TABLE 4. 5

Heterogeneous Reactivity Contributions (Na Out)

E ffe ct Contribution

Group 1 fission

Group 1 absorption

Group 1 removal

Group 1 radial leakage

Group 1 axial leakage

Group 2 fission

Group 2 absorption

Group 2 radial leakage

Group 2 axial leakage

12. 9

-5. 5

-2.9

-1.9

-19.0

2.4

-1.8

-14.7

-130. 5

Total -161. Og
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With the sodium voided, the cell fluxes are more nearly flat, reducing

that component of the heterogeneity effect. However, the major hetero-

geneous contribution is the -$1. 50 due to preferential streaming of

neutrons in the voided coolant regions, an effect which the homogeneous

model completely overlooks. Adding up all contributions, one finds that

the homogeneous calculation overpredicts the reactivity by $1. 61.

The ultimate quantity of interest is the effect of the heterogeneities

on the sodium void reactivity. For the example under consideration here,

the homogeneous calculation overpredicts the sodium-out reactivity by

$1. 61 and the sodium-in reactivity by $0. 50. Thus the homogeneous

calculation yields a whole core sodium voiding worth which is $1. 11 too

positive in reactivity (neglecting resonance self-shielding effects

described in Chapter 5).

To generalize as to which effects are important and which are not:

from the results presented in Tables 4. 3 and 4. 5, one notes that the net

effect due to non-flat cell fluxes is +7. 2g for the sodium-in case and

+5. 1 for the sodium-out case, leading to a difference of only 2. 10 in

the sodium void calculation. On the other hand, the net effects due to

anisotropic diffusion are -56. 9g and -166. le for the sodium-in and

sodium-out cases, respectively. Due to partial cancellation of the

components (i. e. , augmented fission in the fuel is accompanied by aug-

mented parasitic capture in the fuel), the non-flat cell flux contributes

very little to the heterogeneous reactivity effect. The major contri-

bution is that due to anisotropic diffusion, particularly when the core

is voided.
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4. 3 The DELKHET Code

The procedures of Chapter 2 for calculating average flux ratios in

the cell, the method of Benoist for calculating anisotropic diffusion

coefficients discussed in Chapter 3, and the calculation of reactivity

equivalents for the heterogeneous perturbations of the homogeneous cell

constants discussed earlier in this chapter have been united in the form

of the DELKHET code (see detailed description in Appendix E), an ele-

mentary programming of the relevant equations discussed in the present

text. The calculation of the anisotropic diffusion coefficients is carried

through one iteration in order to account for the effect of non-flat cell

fluxes on the resulting diffusion coefficients. As input, one enters a

two-group cross-section table, number densities, cell geometry, a

value for ,eff' and the two-group fission spectrum. The output yields

the region-averaged cell flux ratios, the heterogeneous cell constants,

and a breakdown of the nine individual components of the heterogeneous

reactivity effect. Execution time for the object deck on the IBM 370/165

is less than 0. 02 minutes per case.

Since a one-group model will be under discussion in the next chapter,

a one-group version of DELKHET has been created. A test problem was

analyzed using a consistent set of cross sections (i. e. , two-group and

one-group cross sections collapsed from 26 groups over an identical

spectrum using ANISN). Table 4.6 summarizes the results.
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TABLE 4.6

Sensitivity of the Heterogeneous Reactivity Effect to the Group Model

One Group Two Groups

Na In Ak/k -50.0 -59.0

Na Out Ak/k -150.0 -167.69

Net void effect -$1.00 -$1.09

The effect of the group model chosen is not great, with the one-group

model underestimating the effects by less than 20%. For the net

sodium void effect, calculated by subtraction, the one-group model is

accurate to within 10%. Thus the retention of a two-group model is

not imperative; however, it does provide additional useful physical

insight into the problem.

4. 4 Conclusions

The heterogeneous cell constants calculated using the methods of

the prior two chapters have been translated into terms of their

reactivity effect, using a two-group equivalent bare core model. An

approximation (called the "direct" method) to first order perturbation

theory is developed and shown to yield identical results for the equiva-

lent bare core model. The heterogeneous effects calculated using

either the perturbation theory or the equivalent "direct" method were

found to compare favorably with calculations using the ANISN and 2DB

codes. In the absence of resonance self-shielding effects (to be dis-

cussed in the following chapter), the primary effect was found to be

that due to anisotropic diffusion. The use of anisotropic diffusion
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coefficients in place of a single homogeneous diffusion coefficient was

found to reduce the reactivity contribution of whole-core sodium voiding

by about one dollar. In contrast, the effects of non-flat cell fluxes were

only about 2% of the anisotropic diffusion effect.
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Chapter 5

SELF-SHIELDING OF RESONANCES

Priortothis point, resonance self-shielding effects have been

omitted: namely, all calculations have been performed using cross-

section sets for infinitely diluted constituent materials. In reality,

the constituent materials in the unit cell are at a finite density; and,

further, the most important resonant material, U-238, is restricted

to the fuel rod, causing increased self-shielding of the resonances.

This chapter is a study of the effects of finite dilution and lumping of

resonant material upon the multiplication constant and sodium voiding

reactivity. Correlation techniques are presented which yield self-

shielding factors for U-238 based on defined spectral indices.

5. 1 Energy Self-Shielding Defined

Some confusion may arise from the various usages of the term

"self-shielding." Spatial flux-weighting effects were discussed in

Chapter 2, where the term referred to the spatial variation of the flux

in a coarse group (i. e. , group width much greater than resonance

width) multi-group sense, due to the localization of sources and sinks

within the unit cell -- for the sake of clarity, this may be termed the

flux distribution effect. Typically, these two components of the flux

are separated by the multi-group assumption that the flux within a

particular group is separable in space and energy:

(5.0)4 (rE) = p .(r) O (E) .
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Hence, the procedures of Chapter 2 dealt only with the component cp (r)

in a two-group framework, in the absence of resonance self-shielding.

If resonance self-shielding is accounted for, there is a negligible

change in the cp (r): Tables 5. 1 and 5. 2 present results for the unit cell

of Table 4. 3 which indicate use of a heterogeneous resonance self-

shielded two-group set in place of an infinite dilution two-group set

affects the average flux ratios by an amount equivalent to about 3g in

reactivity.

TABLE 5. 1

Self-Shielding Effects on Heterogeneous Contributions

Na In Na Out

Effect Infinite Self- Infinite Self-
Dilute Shielding Dilute Shielding

Group 1 fission +20. 7e +19. 4e +12. 90 +12. 1

Group 1 absorption -8.6 -8.5 -5.5 -5.3

Group 1 removal -3.8 -3. 3 -2.9 -2. 6

Group 1 radial leakage -0.7 -0.7 -1.9 -1.9

Group 1 axial leakage -7. 2 -6.8 -19.0 -18.0

Group 2 fission -5.0 -0.4 +2.4 -0.1

Group 2 absorption +3.9 +0.3 -1.8 +0.1

Group 2 radial leakage -4.9 -4.8 -14. 7 -14.8

Group 2 axial leakage -44.1 -42.5 -130.5 -127.6

TABLE 5. 2

Resonance Self-Shielding Effects on Heterogeneous
Correction to Voiding Worth

Infinite Dilution Self-Shielded

Na In Ak/k -49. 6g -47. 30

Na Out Ak/k -161. Og -158. Og

Net voiding effect -$1. 11 -$1. 11
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Resonance self-shielding alters primarily the contributions from group 2

fission and group 2 absorption, which are effects opposite in sign. As

shown in Table 5. 1, the result is a cancellation of effects with the over-

all result remaining unchanged. Thus, on a practical level, one may

consider the resonance self-shielding effects in isolation from aniso -

tropic diffusion and spatial flux distribution effects. On the other hand,

0.(E) changes markedly when self-shielding is accounted for: in a 26-

group calculation, the flux in the lower energy groups (E < 1 keV) is

observed to increase by orders of magnitude. Fast reactor blanket

results are of a different class and will be discussed in Chapter 7.

Two different types of self-shielding will be considered: homogene-

ous and heterogeneous. The former takes cognizance of the fact that the

cell constituents are at some finite number density (in contrast to the

infinite dilution model), while the latter accounts in addition for the fact

that the fuel is lumped at the center of the cell. Strictly speaking, the

heterogeneous resonance self-shielding effect is the difference between

these two types of self-shielding. Since the effect of adding self-shielding

to an infinite dilution model is also of interest here, the discussion in

this chapter will go beyond the heterogeneous effects to consider self-

shielding in general.

Table 5. 3 summarizes the various models which are of interest.

The relationship between these models can be more clearly defined by

means of the f-factor formalism [73,821. The macroscopic cross

section for a homogenized cell may be written as:
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TABLE 5. 3

Summary of Physical Models

Details

1. Infinitely dilute model

2. Spatial flux distribution

model

3. Homogeneous resonance

self-shielding model

4. Heterogeneous resonance

self-shielding model

The cross sections used are for all

elements at infinite dilution in a

homogeneous medium; no reso-

nance self-shielding.

The cross sections used are weighted

to account for coarse group flux

variation in the unit cell; reso-

nance energy self-shielding not

accounted for since infinite

dilution cross sections are used

in the weighting.

The cross sections used account for

resonance self-shielding for ele-

ments in a homogeneous medium

(finite dilution).

The cross sections used account for

resonance self-shielding for ele-

ments in specified heterogeneous

geometry. Spatial component of

energy self-shielding accounted

for: equivalent to an ultra-fine

group approach (group width less

than resonance width).

N.B. The term "self-shielding" in this chapter always refers to
self-shielding of U-238 absorption and scattering resonances.

Model
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Eg = (5.1)
x

SV.

where: f = self-shielding factor ( 1)

g = group number

x = process (e. g., absorption)

j = region (e. g. , fuel region)

i = material (e.g., U-238)

( = average microscopic group g cross section for

g process x, element i, in the absence of self-

shielding (i. e. , infinite dilution)

N = number density

4 = average flux

V = volume

Thus we see that in Table 5. 3, the infinitely dilute model corresponds

to f 1, 4. the same for all j; the spatial flux distribution model

corresponds to 4. not the same in all regions; the homogeneous self-

shielding model corresponds to f < 1 with f calculated for a homogene-

ous medium; and the heterogeneous resonance self-shielding model

corresponds to f< 1 with some account being made of the heterogeneous

geometry of the unit cell in the calculation of f. Generally, hetero-

geneous self-shielding decreases the value of f compared to homo-

geneous self-shielding (i. e., lumping the absorber increases the reso-

nance self-shielding).

The comparisons of Tables 5. 1 and 5. 2 involved the processing of

cross sections two ways: the "infinite dilution" results were obtained
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by using Eq. (5. 1) with f = 1 (i. e. , the procedures of Chapter 2), while

the "self-shielded" results were based on calculations with the hetero-

geneous value of f< 1 for U-238. This chapter investigates the effect

of employing various simplifications in the calculation of the f-factor

and presents a correlation which yields f for a standard, heterogeneous

FBR cell.

One should keep in mind that heterogeneous resonance self-

shielding has associated with it a spatial flux dip which should not be

confused with the spatial flux distribution effect under discussion here.

The calculation of the spatial component of heterogeneous resonance

self-shielding is discussed in Sections 7. 3. 1 and 7. 3. 2, where it is

pointed out that coarse group calculations do not give the proper result.

Instead, calculation of the heterogeneous self-shielding effect's spatial

component requires an ultra-fine group calculation where the group

width is much less than the resonance width. Throughout this chapter,

heterogeneous self-shielding effects will be treated by the appropriate

f-factor (vide Eq. 5. 1), and information on the spatial flux dip that such

self-shielding causes is implicitly carried in the value of the f-factor.

Section 7. 3. 2 presents a method for extracting that implicit spatial flux

dip from the heterogeneous self-shielding factor.

5. 2 The MIDI Code

Self-shielded U-238 cross sections for the present study were

obtained through the use of the MIDI code [661, a modified version of

the IDIOT code [67]. MIDI was used to calculate self -shielded cross

sections for U-238 in groups 11 through 21 (21.5 keV through 4.65 eV)

of the ABBN 26-group set. The energy group structure is described

in Table 5. 4.
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TABLE 5. 4

Energy Group Structure of 26-Group Set

Group En Aun

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

6.5 -

4.0 -

2.5 -

1.4 -

0.8 -

0.4 -

0.2 -

0. 1 -

46.5 -

21.5 -

10.0 -

4.65 -

2. 15 -

1.0 -

465 -

215 -

100 -

46.5 -

21.5 -

10.0 -

4.65 -

2. 15 -

1.0 -

0.465 -

0.215 -

0. 252

10. 5

6.5

4.0

2.5

1.4

0.8

0.4

0. 2

100

46. 5

21.5

10.0

4.65

2. 15

1000

465

215

100

46.5

21.5

10. 0

4.65

2. 15

1.0

0.464

MeV

MeV

MeV

MeV

MeV

MeV

MeV

MeV

KeV

MeV

KeV

KeV

KeV

KeV

eV

eV

eV

eV

eV

eV

eV

eV

eV

eV

eV

eV

0.48

0.48

0.48

0.57

0.57

0.69

0.69

0.69

0.77

0.77

0.77

0.77

0.77

0. 77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0. 77

0.77

0.77

0.77

0.77
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Based on the narrow resonance approximation (used for the

resolved resonance region), the code calculates the flux in resonance k:

k(E) n (5. 2)
n sr ar

where an is the total nonresonant scattering cross section per resonant

absorber atom, constant within the resonance; where a sr(E) is the

microscopic resonant scattering cross section and a (E) is the micro-

scopic resonant absorption cross section. The resonant cross sections

are calculated from a library of resonance parameters using the single-

level, Doppler-broadened Breit-Wigner model.

The self-shielded cross section is then found from:

N

Ixk(E) Ok(E) dE

Cr k=1 AE (.3

f O(E) dE
AE

where the x subscript refers to the cross section of interest, N is the

number of resonances within the group, and 4(E) is the total flux. For

the unresolved resonances, the sum over the N resonances is replaced

by an average for the group. For isolated resonances, chi-squared

distributions are used to generated the required averages; where ap-

plicable, overlap corrections are made.

Heterogeneous effects are dealt with by an equivalence relation

[9, 661 which modifies the total nonresonant scattering cross section:

a p m h , (5.4)
n N

r



114

where E and E m are the nonresonant scattering cross sections due to
pm

light and heavy elements, respectively, in the fuel lump; Eh is the

heterogeneous contribution, the effective nonresonant cross section

due to neutron leakage from the lump; Nr is the number density of the

resonant element in the lump. The equivalence principle yields:

1 - C K (55)
h 1 + (K-1)C

where 7 is the mean chord length (4V/S), C the Dancoff factor, and K

a factor which corrects the rational approximation for its known under-

estimate of the escape probability P:

P = 1 (5.6)
1 + E t /K

The Dancoff factor for cylindrical cells is calculated using Sauer's

method [681:

exp(-r E mT )
C = m m ,(5. 7)

1 - (1-r) E 7
m m

where "m" refers to the coolant, and 'r is a geometrical index given for

a hexagonal lattice as:

- 1 + VR - 1

= 2N7 - 0.12 , (5.8)
VR

with VR the coolant-to-fuel volume ratio. The factor K is calculated by

the extended equivalence relation of Kelber [69] for the resolved narrow

resonances, while for the unresolved resonances one assumes the

customary value of 1. 3 [661.
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The treatment of the heterogeneous effect using Eqs. (5. 5) through

(5. 8) has one interesting result for the case of constant volume ratio:

the heterogeneous correction is virtually independent of the fuel rod

radius. Table 5. 5 presents results for two different rod radii, but with

a constant fuel-to-coolant ratio.

TAB LE 5. 5

Effect of Pin Size on Self-Shielding

(barns)

e=.0005 cm

11.13

11.94

12.31

10.60

11.00

9.798

12.77

13.78

12.48

11.20

9.585

28
a

7= .8 cm

0.4913

0.7844

0.6178

0.7073

0.9568

0.9198

1.489

4.450

3.709

9.695

9.794

(barns)

7= .0005 cm

0.4936

0. 7929

0.6300

0.7268

0.9941

0.9605

1.558

4.640

3.837

10.01

10. 13

It is remarkable that the amount of self-shielding increases so

little with an increase of three orders of magnitude in fuel pin diameter.

On close inspection of Eq. (5. 5), one finds that the change in the mean

chord length is compensated for by the change in the Dancoff factor, so

that Eh remains roughly constant. The physical implication is that a

Group

11

12

13

14

15

16

17

18

19

20

21

28

.= .8 cm

11.09

11.85

12.04

10.54

10.91

9.756

12.60

13.60

12.37

11. 13

9.565
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FBR lattice of small radius fuel rods on a narrow pitch exhibits approxi-

mately the same degree of self-shielding as a FBR lattice of large

radius fuel rods on a wide pitch, provided the fuel-to-coolant volume

ratio is the same in both cases. In effect, the neutron in either case

has traversed the same amount of U-238 in reaching any identical rela-

tive point (e. g. , half-way into either radius fuel rod): in fact, the mean

free path for absorption within the resonance ranges from approximately

280 cm in group 11 to 14 cm in group 21. This leads one to conclude

that the effect of heterogeneity on self-shielding in the FBR is small,

as will be demonstrated directly in the following section.

5. 3 The Effect of Self-Shielding on Reactivity

5. 3. 1 Calculations in Spherical Geometry

To gain some preliminary understanding of how the various cross-

section sets affect reactivity, one-dimensional spherical ANISN S8

calculations in 26 groups were performed. The reactor geometry was

such that its volume was equal to a typical 1000-MWe core and blanket;

each region was individually described in the calculation. The oxide

core was composed of two enrichment zones of equal volume, 12%

Pu-239 in the inner and 17% Pu-239 in the outer. For the voided case,

sodium was removed only from the central zone. Thus the formulation

of the problem highly emphasized the positive spectral component of

the sodium voiding effect with the result of underscoring changes due to

the self-shielding representation. Table 5. 6 summarizes the results.

The reactivities resulting from voiding the central zone using the vari-

ous self-shielding prescriptions are presented in Table 5. 7 (where

Ak/k = (k out- k in)/kout ).
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TABLE 5.6

Self-Shielding Effects in Spherical Geometry

Case

Infinite dilute., Na In:

Na Out:

Heterogeneous self-shielded, Na In:

Na Out:

Na Out (with Na In self-shielding):

Homogeneous self-shielded, Na In:

Na Out:

Na Out (only a self-shielded):

Na Out (only oa self-shielded + Na In self-shielding):

TABLE 5.7

Central Zone Sodium Voiding Reactivities

Case Ak/k

Infinitely dilute: +$12. 56

Heterogeneous self-shielded: +$ 2.51

Heterogeneous self-shielded (Na In self-shielding): +$ 2. 73

Homogeneous self-shielded: +$ 2.44

Homogeneous self-shielded (Na In a self-shielding): +$ 2. 30

N.B. 3=0. 0033

k

0.99743

1.03889

1.09426

1. 10253

1.10328

1.08926

1.09732

1.09097

1.09855
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One should recognize that the comparisons in this chapter between

infinite dilution results and various self-shielded results are all predi-

cated on the assumption of a negligible contribution due to the spatial

flux distribution effect. That is, the input for the ANISN and 2DB code

calculations consists of tables of microscopic cross sections: either

infinite dilution values, or the latter times the appropriate f-factor.

Such a procedure is equivalent to Eq. (5. 1) with all the region fluxes

(N ) identical. When the spatial component of self-shielding (i. e. ,

heterogeneous self-shielding) is factored into the calculation, it is done

so by altering the value of the f-factor in Eq. (5. 1). Thus, only energy

self-shielding is the effect of interest in this chapter.

Several observations can be made based on the results of Table 5.7.

First, infinite dilution cross sections underpredict the multiplication

constant by up to 9%, and overpredict the central zone sodium voiding

effect by $10 compared to the self-shielded calculations. Second, the

sophistication of the self-shielding model chosen has a relatively small

effect upon the results of interest here. The crudest possible self-

shielding model, homogeneous self-shielding of the absorption reso-

nances only with no accounting made of the change in self-shielding upon

voiding sodium, underpredicts the central zone sodium voiding effect

by 20g and underpredicts the multiplication constant by less than 0. 4%

compared to the reference calculation (heterogeneous self-shielding

with changes in self-shielding upon voiding). A detailed, homogene-

ously self-shielded calculation underpredicts the central zone sodium

voiding effect by 7 and underpredicts the multiplication constant by

less than 0. 6%. Using the heterogeneously self-shielded constants

from only the sodium-in case results in overpredictions of the central
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zone sodium voiding effect by 22g, and of the multiplication constant

by less than 0. 1%.

Although the theoretical justification for use of self-shielding cor-

rections is clear, it is worthwhile to cite some pertinent experimental

data which confirm that such corrections produce results in quanti-

tative agreement with measurements in an LMFBR environment.

Leung et al. [70] have demonstrated that a significant improvement in

predicted activation traverses is obtained using self-shielded U-238

cross sections. A typical result of that work is presented in Figure 5.1.

Thus the following observation may be made: for the calculation of

integral quantities, a nonrigorous variety of self-shielding models yield

results reasonably close to those given by a detailed and realistic

modelling, and all examined here were significant improvements upon

the infinite dilution model.

The spherical geometry calculations were used to investigate one

additional effect: the result of core size scale-up. That is, an

extremely large core would require a relatively low enrichment with

an attendant softer spectrum. In that case, the question arises as to

how the increase in the weight of self-shielding effects due to the softer

spectrum (i. e. , more neutrons in the resonant groups) changes the

sodium void reactivity. To investigate this point, ANISN calculations

were performed for a 1000-cm radius bare core of a single enrichment

zone of 9% Pu-239 in UO 2 , with the inner half-volume being the voided

region. Using infinite dilution cross sections, ANISN predicted a

central region void reactivity of +$28. 39 while the self-shielded set

indicated +$9. 65. Thus the positive sodium void effect does increase

with core size, irrespective of the increase in self-shielding effects
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Fig. 5. 1 Effect of U-238 Self-Shielding on
U(n, y) Reaction Rate Calculations
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due to the softer spectrum. However, the infinite dilution calculations

demonstrate a much greater positive effect than the self-shielded cal-

culations, indicating that the increased self-shielding does indeed

mitigate the positive void effect, but not to the point where any particu-

lar advantage of extremely large size is evidenced. It is useful to re-

iterate at this point that while the necessity for resonance self-shielding

might appear self-evident, the early studies which caused such pre-

occupation with the sodium void effect [e. g. , Reference 3] , as well as

some relatively recent ones [e. g. , Reference 19] , did not account for

this important phenomenon.

In summarizing the spherical geometry calculations, one can

make the following six observations:

1. Accounting for U-238 self-shielding reduces the inner-core

voiding reactivity by $10 compared to infinite dilution calcu-

lations.

2. Homogeneous self-shielding underestimates the inner-core

voiding reactivity by 7g and the multiplication constant by

0. 6% compared to heterogeneous self-shielding.

3. Using Na In self-shielding for the Na Out condition overesti-

mates the inner-core voiding reactivity by 22g.

4. Accounting only for U-238 oa self-shielding and ignoring self-

shielding of elastic scattering resonances underestimates the

inner-core voiding reactivity by 360.

5. Infinite dilution cross sections underestimate keff by up to 9%.

6. Increases in self-shielding in large, lower enrichment cores
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are not sufficient to overcome increases in the positive

sodium void effect due to the greater predominance of

the positive spectral component.

5. 3. 2 Calculations in Cylindrical Geometry

One-dimensional calculations, discussed in the previous sub-

section, are a good guide for physical insight; however, they do not

include the leakage from a core of realistic geometry in a rigorous

manner. For this reason, 26-group 2DB calculations were performed

in a realistic rz-geometry. The core examined was described by the

parameters listed in Table 5.8.

TABLE 5.8

Reactor Description - 2DB Calculations

Core height:

Core radius:

Core central zone radius:

Radial blanket thickness:

Axial blanket thickness:

Mesh points per core radius:

Mesh points per radial blanket thickness:

Mesh points per core half-height:

Mesh points per axial blanket thickness:

Unit cell radii (fuel pellet, clad, coolant boundary)

Core:

Radial blanket:

Axial blanket:

76. 2 cm

110.0 cm

55. 0 cm

42.4 cm

45. 7 cm

10

10

10

10

0. 2794 cm, 0. 3175 cm, 0.45075 cm

0.6350 cm, 0.6858 cm, 0. 75335 cm

0. 2794 cm, 0. 3175 cm, 0. 45075 cm

Regionwise number densities (10 24/cm )

U-238 (UO 2 ): 0. 0218

Na (8000 F): 0. 0224

Fe: 0.0848
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Two sets of enrichments were used: a two-zone core with 12%/16%

Pu-239 for the infinite dilution calculations and a reduced enrichment

core with 10. 5%/14% Pu-239 for the self-shielded calculations, the

latter being required because the first core was overenriched using the

self-shielded set. Table 5. 9 tabulates the multiplication constants for

the cases considered.

Table 5. 9

2DB Cylindrical Geometry Results

Case

12%/16% loadings

Infinite dilute, Na In:

Na Out:

Central Na Out:

Heterogeneous self-shielded, Na In:

Na Out:

k

0. 98632

1.00895

1. 00042

1.07090

1.06125

10. 5%/ 14% loadings

Heterogeneous self-shielded, Na In:

Na Out:

Central Na Out:

Homogeneous self-shielded, Na In:

Na Out:

Central Na Out:

1.00343

0.99180

1.00389

1.00305

0. 99214

1.00381

N. B. Na Out = sodium voided from whole core.

Central Na Out = sodium voided only from inner enrichment zone.

The self-shielded calculations utilized the self-shielded U-238

cross sections given by the results of MIDI in the homogeneous and

heterogeneous options for the specific enrichments and sodium-in or
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sodium-out condition; radial and axial blanket cells were treated in

individual MIDI calculations since the respective blanket unit cells are

dimensionally different. As found in the spherical geometry calcu-

lations, the infinite dilution calculations underestimate keff by about 8%

or less; the homogeneously self-shielded results are reasonably close

to the heterogeneously self-shielded multiplication constants which they

underestimate by less than 0. 04%. Thus the observations formulated

in the last subsection are substantiated.

Table 5. 10 presents the calculated sodium voiding reactivities for

the 2DB rz-geometry study.

TABLE 5. 10

Sodium Void Effects in Cylindrical Geometry

Case Ak/k

12%/ 16% loadings:

Infinite dilute, whole core +$6. 79

Infinite dilute, central zone +$4. 27

Heterogeneous self-shielded, whole core -$2. 75

10. 5%/ 14% loadings:

Heterogeneous self-shielded, whole core - $3. 55

Heterogeneous self-shielded, central zone +$0. 14

Homogeneous self-shielded, whole core - $3. 33

Homogeneous self-shielded, central zone +$0. 23

N.B. - .0033

Paralleling the spherical geometry calculations, the 2DB results in

Table 5. 10 indicate that self-shielding of U-238 absorption and

scattering resonances decreases the whole-core sodium voiding
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reactivity by approximately $10 compared to infinite dilution based

calculations. The self-shielded calculations indicate a slight positive

reactivity contribution in voiding the central zone (due to the predomi-

nance of the positive spectral component) which becomes significantly

negative as the entire core is voided, in contrast to the infinite dilution

calculation which predicts a large positive reactivity effect in voiding

the whole core. The homogeneous representation of self-shielding is

found to underestimate the whole-core reactivity change by 22 com-

pared to the heterogeneous calculation (i. e. , the difference due to using

the heterogeneous or homogeneous options in MIDI). In general, the

conclusions applicable to the spherical geometry calculations in the

prior subsection remain valid for the cylindrical geometry results.

In conclusion, one notes that the heterogeneous model for self-

shielding contributes relatively little to the sodium voiding reactivity:

specifically, -22g in the above example. As such, it is somewhat

larger than the heterogeneous effect of the spatial flux distribution.

However, both effects would be outweighed by the effect of anisotropic

diffusion discussed in earlier chapters (of the order of -$1. in

reactivity). Most important, all three effects serve to decrease the

positive reactivity contribution due to voiding sodium.

The calculations of sodium voiding effects have been necessarily

approximate here, with some sacrifice of the spatial mesh represen-

tation (20 X 20) being made to perform the calculation in 26 groups.

Additionally, it is well known that the void effect calculated is very

sensitive to the cross-section set chosen and the core representation,

which was greatly simplified here as consisting of only five elements

(U-238, Pu-239, 0, Fc, and Na) in a repeating unit cell structure.
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Thus the results of Table 5. 10 are not intended to be definitive calcu-

lations for the case at hand. The results are useful in the sense that

conclusions may be made as to the relative importance of the self-

shielding model chosen -- none, homogeneous, or heterogeneous. In

summary, one may make three observations:

1. Infinite dilution calculations of multiplication constants, and

particularly changes caused by voiding sodium, are to be

treated with scepticism.

2. Homogeneously self-shielded calculations are sufficient for the

calculation of multiplication constants to within about 0. 04% and

whole- or half-core sodium voiding to within approximately 25g

of reactivity.

3. The importance of heterogeneous energy self-shielding effects

in terms of the reactivity perturbation ranks in the middle of

our trinity of effects: higher than the effects of spatial flux

distributions and lower than the effects of anisotropic diffusion.

5. 4 U-238 Self-Shielding Correlations

Prior work by Sheaffer et al. [71, 72] has indicated that FBR spectra

may be correlated against certain one-group spectral indices. Two

spectrum characterization parameters are introduced:

S - 59V f + ' E (5. 9)

R= , (5. 10)
r

where the constants are one-group values (Er being the cross section
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for removal of neutrons from above 1. 4 MeV). These indices are used

to correlate one-group microscopic cross sections in the form:

g.
-. ,: = O X j , (5. 11)

where x is the appropriate spectral index (R for the fission cross

section of fertile material and S for all other cross sections). The

correlation parameters Oj and g. are tabulated by Sheaffer et al. for

microscopic fission, absorption, and transport (the j variable) cross

sections for most elements of interest. An iterative procedure is used

to calculate the spectral indices: an initial guess is used to obtain the

correlated one-group constants; the resulting constants are used in

Eqs. (5. 9) and (5. 10) to calculate new spectral indices, which in turn

are used to calculate new one-group constants. The iterative process

has been shown to converge rapidly.

One should note that this is a homogeneous correlation in that all

media of the same homogeneous composition have identical spectral

indices. In addition, the Sheaffer correlations were obtained based on

infinite dilution constants. The next two subsections develop both an

extension of the one-group method which yields correlations for U-238

self-shielding factors and a modification of the one-group method to

account for self-shielding effects. The results of the previous section

which indicate that heterogeneous self-shielding effects change negli-

gibly with geometry are invoked: the self-shielding correlations

established here are all based on the standard core unit cell described

in Table 5. 8. The standard heterogeneous cell calculations yield

correlations generally applicable to realistic FBR unit cells, being

far closer to reality than a homogeneous treatment. The correlations
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are offered with the caveat that they are applicable only to cylindrical

geometry unit cells typical of an FBR -- in particular, they are not

intended for slab geometry cells typical of critical assemblies where

heterogeneous self-shielding effects are considerably larger [73]

5. 4. 1 Multi-Group Correlations

A correlation which yields group-by-group self-shielding factors

represents a somewhat easier goal than a single group correlation

since the self-shielding within a group can be expected to be a rela-

tively slowly varying function of the correlation one has chosen. That

is, when the core's composition is altered, the shape of the flux within

a particular group changes relatively little although the overall

spectrum may change greatly. On the other hand, a one-group corre-

lation has to deal implicitly with changes in the full spectrum over

which the collapsing is carried out. It is worthwhile to develop a group-

by-group self-shielding correlation first to suggest what form the ulti-

mate one-group self-shielding correlation might take.

One should note that the self-shielding correlations developed here

are solely for U-238. A more detailed model would concern itself

with self-shielding for the other constituent elements in the core as

well as for control material. A more sophisticated analysis [251 for

the significantly more heterogeneous slab lattice geometry indicates

that self-shielding effects on the capture and fission cross sections of

Pu-239 are large but of virtually equal and opposite sign with a negligible

net effect; whereas sodium plus stainless steel self-shielding effects

are counterbalanced by self-shielding effects of opposite sign in carbon,

Pu-240, and other miscellaneous constituents. The overall effect in
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terms of reactivity is found to be 96% of the effect calculated for U-238

self-shielding only. Thus the limitation here of applying self-shielding

corrections to U-238 alone is a reasonably accurate one in the context

of developing simple models.

The correlations presented here are essentially empirical in that

their specific forms were established on a trial-and-error basis.

Some suggestion of the appropriate form for the correlation function is

provided by Reference 74, where the effective resonance integral is

correlated against the ratio Ng-0 Fa E, where N is the number density

of the resonant material and Fa the partial width for absorption.

Sheaffer's work [71, 72] also provided some inspiration. Various combi-

nations of one-group constants were investigated to establish which

grouping yielded a generally linear correlation of the group-by-group

self-shielding factor. Figures 5. 2 through 5. 23 present the "best"

(i. e. , most smoothly fitted curve) correlation found: f. versus

28 T_1
28 [1 Y where the constants within the brackets are the infinite

la tr] 28
dilution, one-group values for the core, while E ai is the macroscopic

absorption cross section for group i, for U-238. By definition, f. is

the self-shielding factor, the ratio of the self-shielded cross section to

28
the infinite dilution cross section for group i. E is the absorption

cross section of U-238 alone, in group i, at infinite dilution; while the

other constants are characteristic of the homogenized medium. All

other combinations of one-group constants tested yielded widely

scattered distributions of points.

Each point of Figures 5. 2 through 5. 23 represents one MIDI code

calculation. The cases studied varied from 9% to 25% in enrichment

(Pu-239 in UO 2 ), with variation in coolant-to-fuel volume ratios from



GROUP-BY-GROUP SELF-SHIELDING FACTORS FOR U-238

Fig. 5. 2 Group 11 f Correlation
a

7.4 7.8 8. 2 8.6
I I I I

9. 0 9.4 9.8 10.2 10.6 11.0
Correlation (X 7. 5)

Fig. 5. 3 Group 12 f aCorrelation

7.0 7.4 7.8 8.2 8.6
Correlation (X 5. 769)

Fig. 5. 4 Group 13 fa Correlation

-a

-0

-
1 11 1 ib

9.0 9.4

o = oxide

= carbide

9.8 10.2 10.6 11.0

9.0 9.4 9.8 10.2 10.6 11.0
Correlation (X 3. 75)

0.68 -

f
a

0.

0.

66 -

64 -

6. 2 6. 6 7. 0

1. 02 K
f
a

1.001-

0.98

6. 2 6.6

0.54

0.52

0.50

0.48

0.46

f
a

6. 2 6.6 7. 0 7. 4 7.8 8.2 8.6

iI i I i i ii i a i



0.36 Fig. 5. 5 Group 14 f Correlation

0.34 -

0. 32

0.30 -

0. 28
*.28 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 2. 143)

0. 28
Fig. 5. 6 Group 15 fa Correlation

0. 26 -
fa9

0.24 -

0. 22
* 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 1. 25)

0. 22 -

0. 21 -

f0. 200 Fig. 5. 7 Group 16 fa Correlation
a

0. 19 -

0. 18 -

0. 17 -

I I I I I . I
6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 1. 0)



0.10 - Fig. 5.8 Group 17 fa Correlation

0.09 -
f

0.08

0. 07
6.2 6.4 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 0. 2647)

0. 32 .
oFig. 5. 9 Group 18 f a Correlation

0. 30 -

0.28 -

0. 26 - o 0

0. 24 -- ' I I 1|0
6.2 6.4 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 0. 3)

0.07 -

0.06
fa

0.04 I I
6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.

Correlation (X 0. 07759)
L\D



0. 12-
Fig. 5. 11 Group 20 fC orrelation

fa
0. 10 - 0 0

0. 09 1 |- - I -- I 1 I - |
6. 2 6. 6 7.0 7.4 7.8 8. 2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 0. 05488)

0.07 - Fig. 5. 12 Group 21 fa Correlation

f 0.06 -
a

0.05 
n

6.2 6.6 7.0 7.4 7.8 8.2 8. 6 9.0 9.4 9.8 10. 2 10. 6 11.0
Correlation (X 0. 02632)



Fig. 5. 13 Group~ 1fCorltn0.86

0.85 1-

6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 7. 5)

Fig. 5. 14

6.2 6.6 7.0

Group 12 f Correlation

- _

7.4 7.8 8.2 8.6 9.0 9.8 10.2 10.6 11.0

Correlation (X 5. 769)

0.82

0.81

0.80
S

0. 79

0

SFig. 5. 15 Group 13 fs Correlation

U . . U 7. 0 7.0 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0
Correlation (X 3. 75)

f
S

0.84

f

0.83

0.82

0.81

0.80
9.4

II

Fig. 5. 13 Group 11 f Correlation

78

0. 77

7 . 4



0. 68
Fig. 5. 16 Group 14 fs Correlation

0.67
S

0.66

6.65 ---- 7---10 Fi5 17Gop1 orlto
6.2 6. 6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 2. 143)

0. 58 ~ Fig. 5. 17 Group 15 fs Correlation

f 0. 57 -
S

0. 565

6. 2 6. 6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 1. 25)

0. 71 Fig. 5. 18 Group 16 fs Correlation

0.70 -
S

0.69 I I 1 I 1
6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 0. 2647)



Fig. 5. 19 Group 17 fs Correlation
0. 21

0.20-0
s II I I I I I L-- I 1 1

0.19 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 0. 2647)

0. 57 - Fig. 5. 20 Group 18 fs Correlation

0. 56 -

0.55 -
S

0.54 -
0 0

0. 53 -

0.52 -

6. 2 6. 6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0
Correlation (X 0. 3)

Fig. 5. 21 Group 19 f Correlation

f6

0. 14 1 Iy I I I
6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 0. 07759)



f 0.30 Fig. 5. 22 Group 20 f Correlation

0. 28
6. 2 6.4 7.0 7.4 7.8 8. 2 8.6 9.0 9.4 9.8 10. 2 10.6 11.0

Correlation (X 0. 05488)

Fig. 5. 23 Group 21 fs Correlation

0. 51

0.50 L L - - - -- 0
6.2 6.4 7. 0 7.4 7.8 8.2 8. 6 9.0 9.4 9.8 10.2 10.6 11.0

Correlation (X 0. 02632)



138

1. 0 to 2. 0. In addition to the oxide-fueled cases, three carbide-fueled

cells were investigated, whose results indicate correlated curves

parallel to but displaced slightly from the oxide curves.

The carbide cell datum points are identified in Figures 5. 2 through

5. 25 by a bar through the point. The difference between the carbide

and oxide cells is ascribed to the small differences between the oxygen

and carbon scattering cross sections (carbon being generally larger

while lacking a resonance in group 5) as well as the density difference

between the two fuel types (the U-238 in the carbide being more dense

than in the oxide by a factor of 1. 35). Similar comments apply to the

one-group correlation presented in the next subsection. The correla-

tion can be used for both cases without significant error.

The correlations presented here permit one to look up the group-

by-group self-shielding factors for the 26-group ABBN set in a direct

manner. One need only calculate the spectral indices characteristic

of the medium to calculate the correlation's abscissa value which

immediately yields the value of the self-shielding factor.

5. 4. 2 One-Group Correlations

One-group correlations were investigated by collapsing 26-group

ABBN sets (incorporating U-238 self-shielding corrections from MIDI)

down to one-group using the ANISN code for a critical spherical geome-

try. As before, a trial-and-error procedure was employed to establish

the best (i. e. , smoothest linear curve) correlation. Starting from the

correlation established for the group-by-group self-shielding factor,

one finds that an additional parameter is required for the correlation,

as well as a slightly different function for the scattering cross section



139

f-factor. The two self-shielding correlations established were:

f vs. E28 l + a
a a E a Etr

and

f vs. E+ E + ,
s aVEf Etr

where a = -1.40 and b = -1. 00. The linearity of the resulting fit is

quite sensitive to the values of a and b: for example, a = -1. 42 and

b = -0. 95 cause significant departures from a straight line fit (i. e. ,

kinks appear in the correlation curves). As for the group-by-group

case, the correlations are entirely empirical. Figures 5. 24 and 5. 25

present the one-group correlations established here. Table 5. 11

presents the best linear fits representing the correlation.

The one-group correlations which appear here are semi-

heterogeneous in the sense that the self-shielded cross sections were

obtained by MIDI calculations for a standard heterogeneous cell: fuel

pellet diameter = 0. 5588 cm, pitch = 0. 8585 cm. As shown previously,

the differences in the calculated keff and sodium void reactivity between

using homogeneously and heterogeneously self-shielded cross sections

are fairly small (0. 04% and 25g, respectively). Thus the result using

the standard heterogeneous correlations should be virtually identical to

a detailed heterogeneous calculation for any reasonable cell geometry.

5. 4. 3 A Self-Shielded One-Group Method

With the above correlations available, the one-group model of

Sheaffer et al. [71] may be modified to take the heterogeneous self-

shielding of U-238 into account. One first calculates the S and R
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TABLE 5. 11

One-Group U-238 Self-Shielding Correlations

Self-shielding factor

f = absorption self-shielding

f = scattering self-shielding

Correlation constants:

X

X - 0. 1406

X > 0. 1406

fs

X 0. 06063

0. 06063 < X, 0.07445

X > 0. 07445

Correlation X

28 1. 40

a Ere

E28 1 _1. 00
a v Eg f Etr

f = mx +b

m b

-0.6456

-0.5232

-0. 1490

-0.1158

-0.1269

0.9399

0.9227

0.9743

0.9723

0.9732

N.B. The above fits are for oxide cores. For carbide cores,
the following corrections are applied:

-0.030 for f and -0.004 for f
a s

spectral indices for the infinite dilution representation, from which

the abscissa values of Figures 5. 24 and 5. 25 may be calculated.

This yields directly the fa and fs self-shielding factors for U-238.

For the remainder of the calculation, the cross sections of U-238

remain fixed at their infinite dilution values multiplied by the

f
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appropriate f-factors. The self-shielded U-238 constants are then em-

ployed in the calculation of new spectral indices; the same iterative

procedure is used to calculate the new indices, except that only the non-

U-238 cross sections are affected by the varying indices during the

iterations. Upon convergence, one has new values for S and R which

reflect the altered values of all other cross sections due to the changed

spectrum as well as the correlated, self-shielded cross sections of

U-238. Figure 5. 26 summarizes the procedure in block diagram form.

The procedure has been coded into a minor program (see Appendix E. 3).

The above self-shielding correlations were obtained for 3000 K

conditions. Sheaffer et al. have correlated the temperature change in

a for U-238 against the spectral index S. The following quadratic

relations were established:

2
for T = 300 0 K - T= 9000K: Aa = .0351 - .0888S + .0580S (5.12)

for T = 900 0 K - T = 2100 0 K: Aua = .0238 - .0556S + .0335S2 (5.13)

The temperature correlation was checked here by performing MIDI

calculations for 3000 K, 9000 K, and 21000 K, and using ANISN to col-

lapse the temperature-corrected, self-shielded cross sections to a

single group. The self-shielded, one-group method yielded the spectral

index S =0.3468 for the 12% Pu-239 enriched oxide core. Table 5. 12

compares the changes in the cross sections predicted by the correlation

to those obtained by MIDI and ANISN. The agreement is quite good. It

implies that the methods used in the MIDI code are consistent with the

ABBN f-factor technique which formed the basis of the correlation.
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TABLE 5.12

Temperature Corrections

AT 
Au a (barns)

Correlation MIDI + ANISN

300 0 K - 9000 K 0.0113 0.0112

900 0 K - 2100 0 K 0.0085 0.0092

The one-group scattering cross section changes with temperature

as well. No correlation for its behavior is available; however, the

following prescriptions were established:

A ~ 9. 6 *Aa (3000 K - 9000 K)
s a

A ~ 5. 4* a (900K - 21000K)

As shown by Tables 5. 6 and 5. 7, completely neglecting the self-shield-

ing of the scattering cross section leads to errors in keff of 0. 6% and

in the half-core sodium voiding effect of 36g. This suggests that

accounting for self-shielding at 3000 K and correcting for temperature

changes by the above prescriptions should result in a negligible error.

As a final check upon the validity of the one-group method as modi-

fied to account for self-shielding, several parallel ANISN-collapsed

calculations were performed. Some results of that comparison are

given in Table 5. 13. The self-shielded model predicts k approxi-

mately as well as, or better than, the original correlation predicts the

infinite dilution k . Considering the self-shielded ANISN calculation

as the reference standard, the infinite dilution one-group model con-

sistently underpredicts k ; while the self-shielded one-group model

generally overpredicts k , but with a much smaller absolute error.
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TABLE 5.13

One-Group Models vs. ANISN

Infinite Dilution Self-Shielded

Correlation ANISN Correlation ANISN

12% Core (Na In)

E a (cm ) 0.005343 0.005266 0.004844 0.004881

V E f (cm ) 0.006670 0.006271 0.006651 0.006700

k 1.248 1.191 1. 373 1. 373
00

25% Core (Na In)

Ea 0.006452 0.006229 0.006270 0.006119

y E 0. 01257 0. 01197 0. 01256 0. 01210

k 1.948 1.922 2.003 1.977
00

16% Core (Na In)

E a 0.005594 0.005466 0.005246 0.005311

VE f 0.008541 0.008054 0.008528 0.008340

k 1. 527 1.473 1.626 1. 570

16% Core (Na Out)

E a 0.005114 0.004839 0.004940 0.004730

VE f 0.008451 0.007930 0.008440 0.008005

k 1.653 1.639 1. 709 1.692

Thus one can conclude that the self-shielding modification does permit

the one-group method to deal with physically more realistic systems.
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5. 5 Conclusions

Comparative multi-group calculations using infinite dilution and

self-shielded U-238 cross sections have demonstrated that major

errors in keff and sodium void reactivity result if resonance self-

shielding is neglected. Homogeneous resonance self-shielding has

been shown to be the major effect, with heterogeneous resonance

self-shielding a lesser added correction. The heterogeneous reso-

nance self-shielding of a standard FBR cell geometry is well described

by a correlation of one-group f-factors against specific functions of

one-group cross sections at infinite dilution. A technique has been

presented whereby a one-group method may be modified to account

for heterogeneous resonance self-shielding of U-238.



148

Chapter 6

HETEROGENEOUS EFFECTS IN REFERENCE

FBR DESIGNS

In the first five chapters, the formalism required for the calcu-

lation of heterogeneous effects has been developed. In this chapter,

various reference fast breeder designs will be examined for the

occurrence of significant heterogeneous reactivity effects. Parametric

studies varying rod pitch, enrichment, and clad thickness are discussed.

Heterogeneous effects in blankets are discussed in the following chapter.

6. 1 1000-MWe LMFBR Designs

Table 6. 1 presents the core parameters of interest for four 1000-

MWe LMFBR designs [75], while Table 6.2 summarizes the unit cell

descriptions used in the DELKHET code calculations for the four

reference designs.

TABLE 6. 1

1000-MWe LMFBR Core Parameters [75]

AI B & W GE CE

Core height (in.) 42.8 34.7 30.0 24.0

L/D 0.42 0. 29 0. 308 0. 225

Fuel material PuO -UO2 PuO -UO2 PuO 2-UO2 PuC-UC

Enrichment (at. %) 10.5/13.1 10.4/11.2/13.0 10.73/13.45 9.78/11.79

Fuel density (% TD) 85 85 85 -

Fuel pin OD (in.) 0.30 0.28 0. 25 0.40

Pitch (in.) 0.363 0.337 0.300 0.451

Clad thickness (in.) 0.0175 0.010 0.010 0.011

Na Void Reactivity
(whole core) $8.07 $7.50 - $3.82
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DELKHET

Core height (cm)

Core radius (cm)

Unit cell radii (cm):

r 1

r 2

r 3

Average enrichment
(at. %)

Regionwise number
densities:

Pu-239

U-238

O(C)

Na

Fe

TABLE 6. 2

Description of Reference

AI B&W

108.7 88.1

129.4 152.0

0. 3366

0.3810

0.4841

11.8

0.002435

0.018199

0.041267

0. 0224

0. 0848

0. 3302

0. 3556

0.4494

11.5

0.

0.

0.

0.

0.

002373

018260

041265

0224

0848

Cores

GE

76.2

123. 7

0. 2921

0.3175

0. 4001

12.1

0.

0.

0.

0.

0.

002497

018138

041269

0224-

0848

CE

61.0

135.5

0.4801

0. 5080

0. 6015

10. 8

0.002976

0.024576

(0.027551)

0. 0224

0. 0848

The cell description is approximate in that the clad is represented as

pure iron, while the fuel has only two heavy element constituents,

U-238 and Pu-239. Multi-enrichment zones are represented by a

single average enrichment. In addition, the core is represented as a

collection of unit cells only; thus structural material, such as sub-

assembly duct walls, is unaccounted for in the DELKHET treatment.

The equivalent bare core model requires the calculation of a

reflector savings for the blanket regions [761. An initial guess for the

blanket savings is calculated from:

D D
6 = (6.1)

r F'
ar
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where "r" refers to the blanket constants and "c" to the core, and

Ea a E -V E Table 6. 3 presents the standard blanket constantsar ar fr*

assumed for all four designs. Note that the constants are sensitive to

the absence or presence of sodium in the core, as well as being

different for axial or radial blankets due to the greater volume fraction

of U-238 in the radial blanket. Thus Eq. (6. 1) yields four values of

blanket savings: radial and axial, for the sodium-in and sodium-out

conditions.

TABLE 6. 3

Blanket Constants for Analyses

Radial Blanket Axial Blanket

Na In Core

D r (cm) 1.0877 1.4740

-1
E (cm ) 0.0068660 0.0042081ar

Na Out Core

Dr (cm) 1.1058 1.4580

E ar (cm ) 0. 0065542 0. 0039745

To arrive at a consistent blanket savings (i. e. , one which gives a

critical core geometry identical to the design parameters), the follow-

ing iterative procedure was adopted. The savings ratio is defined:

6
r

z

which is the ratio of radial to axial savings calculated from Eq. (6. 1)

using constants from Table 6. 3. Then the consistent axial savings 6'
z

is calculated from:

(6. 2)



151

2 / 2.4048 )2 13.1416 2
B=\R +W6 H + 26,' 6.3

z z

where B2 is the known total critical buckling, R and H are the core

dimensions given in Table 6. 2. Once the unknown consistent axial

savings 6' has been found, the consistent radial savings is 6' = 6'.z r z

For example, the initial blanket savings for the G. E. core (sodium-in)

were calculated to be 6r = 16. 0 cm and 6z = 17. 6 cm, while the

consistent blanket savings were found to be 6' = 11. 1 cm and 6' =
r z

12. 2 cm. The sodium-out savings are calculated from the voided

savings ratio rl:

S(r Na Out (6.4)
(6)

r Na In

which is calculated using Eq. (6. 1) and Table 6. 3. Next, the consistent

sodium-out savings are calculated from (6') = (6') andr Na Out r NalIn

(6')Na Out /0Na Out The end result for the sodium-in case is

a total buckling identical to the critical buckling, which is divided

axially and radially in a consistent manner; as well as buckling values

for the sodium-out state which correctly account for the increase in

blanket savings for a voided core. In a sense, the reflector savings

obtained by these procedures are artificial quantities: they are the

required reflector savings for k= 1. 0 with the given core geometry and

the given two-group cross-section set. (In fact, the initial blanket

savings guess for the carbide core utilized oxide reflector constants).

However, the procedures established ensure that the ratio of the axial

leakage decrement (due to axial blanket savings) to the radial leakage

decrement (due to radial blanket savings) is correctly preserved.
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Table 6. 4 summarizes the DELKHET code results for the four

reference cores.

TABLE 6. 4

Heterogeneous Effects in 1000-MWe Designs

(cents of reactivity - exclusive of self-shielding)

AI B & W GE CE

Na In

Spatial 5.8 3.6 3.5 3.1

Ani. Diff. -31.9 -33.1 -31.5 -33.5
Net -26.1 -29.5 -28.0 -30.5

Na Out

Spatial 3.6 1. 2 1.2 2.0

Ani. Diff. -95. 7 -98. 0 -88. 7 -84. 1

Net -92.1 -96.8 -87.5 -82. 2

Net Void Effect -66.0 -67.3 -59.5 -51.7

*
# 0. 0033 for oxide cores (AI, B & W, GE)

3 = 0. 0040 for carbide core (CE)

The results in Table 6. 4 have been divided into two classes: those

contributions due to anisotropic diffusion, and those due to spatial flux

variation in the unit cell. Anisotropic diffusion is clearly the domi-

nating heterogeneous effect. The heterogeneous contribution of reso-

nance self-shielding was not calculated for each reference design since,

as shown in Chapter 5, a typical heterogeneous geometry (as given in

Table 5. 9) characterizes the range of FBR designs quite well as far as

heterogeneous effects on the multiplication constant are concerned.

The results of Chapter 5 demonstrate that for a typical FBR configuration,
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the heterogeneous resonance self-shielding contribution is +11. 5g for

the sodium-in condition and +2. 4g for the sodium-out condition, with

a net sodium void effect of -9. 10, which may be added to the results of

Table 6. 4 to assess the totality of effects considered in this work.

The original homogeneous results for the whole-core voiding reactivity

are given in Table 6. 1.

Thus all three heterogeneous effects, resonance self-shielding,

flux shape, and anisotropic diffusion, reduce the magnitude of the

whole-core sodium void reactivity. Anisotropic diffusion does so by

creating a negative heterogeneous contribution to the sodium-in case

and a still larger negative contribution to the sodium-out case, while

the other two effects create a positive heterogeneous contribution for

the sodium-in case and a lesser positive contribution for the sodium-

out case; the net effect is a reduced voided reactivity. Figure 6. 1

illustrates the trends at work.

In Chapter 4, sample calculations were presented, ranking the

importance of various heterogeneous contributions: those results

suggest an anisotropic diffusion contribution somewhat larger than the

ones calculated for the four reference designs. In part, this differ-

ence is due to the larger lattice pitch in the illustrative case of

Chapter 4 (this effect is discussed further in Section 5. 3). However,

part of the difference is due to the treatment of blanket savings. In

Chapter 4, identical blanket savings were assumed for the sodium-in

and sodium-out cases, while the calculations for the reference designs

discussed in this chapter include the blanket savings more systemati-

cally. It is of interest to perform the calculation for the G. E. design

(a 15% enrichment case) using both options: accounting for the increase
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in blanket savings for the voided case (different savings) as opposed to

using the same sodium-in blanket savings in both cases (same savings).

Table 6. 5 presents a comparison of results using both techniques.

TABLE 6. 5

Effect of Blanket Savings Representation

Different Savings Same Savings

2-group k , Na Out 1.0285 0.99067

(Ak)het for Na Out -111. 70 -127. 7

(Ak/k)het for Na Out -114. 7 -126. 5

2-group k ff Na In 1.0000 1.0000

Net heterogeneous void effect -75.5g -87. 3

See text

Not accounting for the increased blanket savings results in a significant

underprediction of k and an overprediction of the heterogeneous

effect upon whole-core voiding by approximately 16%.

In summary of this subsection: the single most important obser-

vation is the relatively large magnitude of the heterogeneous contri-

bution of anisotropic diffusion. Most earlier analyses of FBRs

[e. g. , Reference 25] have concerned themselves with the heterogeneous

contributions due to resonance self-shielding and spatial flux distri-

bution effects; the effect of anisotropic diffusion has been almost

uniformly neglected, although it has been shown here to play the domi-

nant role. To gain proper perspective, one should recall that the

target goal for accuracy in calculating the sodium void effect for the

commercial FBR plant of the 1980s is ±$0. 30 [1]. To meet this goal,
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a proper accounting of the heterogeneous effects due to anisotropic

diffusion is imperative. Conversely, the combined other effects,

except for resonance self-shielding, are well within this criterion.

6. 2 Demonstration Plant Design

The effect of heterogeneity on a representative demonstration

LMFBR plant core design is considered separately in this subsection

because a demo core differs in size and enrichment from the 1000-MWe

designs, and also because it is closer to a construction date. Table 6.6

summarizes the physical parameters for the Westinghouse 300-MWe

design [77] , while Table 6. 7 lists the unit cell descriptions used in

the DELKHET code.

TABLE 6.6
Demonstration Plant Design Core Parameters

Core height (in.)

L/D

Fuel material

Enrichment (at. %)
Fuel density (% TD)

Fuel pellet OD (in.)

Pitch (in.)

Clad thickness (in.)

36

0.436

PuO2-UO2

18.91/26.47

84

0. 194

0. 285

0. 015

TABLE 6. 7
DELKHET Description of Demonstration Core

Core height (cm)
Core radius (cm)
Unit cell radii (cm):

r1

r3
Enrichment (at. %)
Regionwise number densities:

Pu-239
U-238
0
Fe
Na

91.44
94.07

0.2464
0. 2845
0.3801
22. 2

0. 0045354
0.015894
0. 040859
0.0848
0. 0224
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The notable differences between the demonstration plant design and

the 1000-MWe design are the smaller fuel pin diameter, the higher en-

richment, and the smaller core radius. The first has the effect of

reducing the heterogeneous resonance self-shielding, the second the

effect of increasing the fast flux peaking in the fuel rod, which increases

the contribution of the spatial heterogeneity component, while the last

increases the core leakage and hence the contribution of anisotropic dif-

fusion. Although the resonance self-shielding effect was not calculated

separately for the demonstration core, the other two expectations are

confirmed by the DELKHET results presented in Table 6.8.

TABLE 6.8

Heterogeneous Effects in Demonstration Core

(cents of reactivity - exclusive of self-shielding)

Na In

Spatial 13.3

Ani. Diff. -43.6

Net -30. 3

Na Out

Spatial 12.4

Ani. Diff. -131. 7

Net -119.3

Net Void Effect -89. 0

*

= 0. 0033

From these results, one concludes that the heterogeneous effect on

the whole-core sodium void worth in the demonstration plant core is

approximately 50% larger than in the 1000-MWe core. The increased
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positive contribution due to spatial flux distribution effects is more

than compensated for by the even larger increase in the negative

anisotropic diffusion component. As a point of reference: the target

accuracy for calculating the sodium void reactivity in the demon-

stration core is ±$0. 50 [1] , thus anisotropic diffusion effects must

be taken into account. Moreover, the whole-core sodium voiding

effect for a demonstration-size plant is of the order of +$1. 10 [61

calculated with no consideration of anisotropic diffusion. If aniso-

tropic diffusion effects are included, the results above lead one to a

whole-core sodium voiding effect of only +22e of reactivity. The

heterogeneous reactivity effect of anisotropic diffusion thus offers a

significant mechanism to mitigate the whole-core sodium voiding

accident in the demonstration FBR plant.

6. 3 Effect of Design Choices on Heterogeneity

In this section, the G. E. 1000-MWe design is used as a basis for

some parametric studies. The effects of varying enrichment, fuel pin

pitch, and clad thickness upon the various heterogeneous contributions

are investigated.

6. 3. 1 Enrichment

The G. E. core design was the subject of DELKHET calculations

for two average enrichment values: 12. 1% as in the reference design,

and a 15% enrichment variant. For both cases (as in subsequent

parameter calculations), the reference L/D value was assumed fixed.

The radial and axial blanket savings were calculated from Eq. (6. 1)

where the term consisting of blanket constants,
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Dr

---, , was defined to be that constant which gave the consistent
r ar

blanket savings for the reference core when multiplied by Dc On that

basis, the core radius R is calculated as the only unknown in the

equation:

B2 = (2.4048) 2
B=\R +6 /

r

+ 3.1416 \2
2(L D)R + 26 )

where B2 is the critical buckling of the off-design core.

(6.5)

Table 6. 9

compares the results for the two enrichments.

TABLE 6.9

Effect of Enrichment on Heterogeneity
(cents of reactivity - exclusive of self-shielding)

E =12.1% E=15%

Na In

Spatial 3.5 5.2

Ani. Diff. -31.5 -44.5

Net -28.0 -39.3

Na Out

Spatial 1.2 4.1

Ani. Diff. -88.7 -118.8

Net -87.5 -114.7

Net Void Effect -59.5 -75.4

Critical Core Dimensions:

Height (cm) 76.2 53.5

Radius (cm) 123. 7 86.9

As was observed for the demonstration reactor core, the higher

enrichment increases the spatial flux component, while the resulting

smaller core size increases the negative contribution due to
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anisotropic diffusion. The major contribution to the spatial flux com-

ponent is due to the augmented group 1 fission in the fuel rod (increas-

ing from + 11. 2g to + 13. 1 , sodium-in; from +6. 9g to +8. 70, sodium-

out) for the higher enrichment.

6.3.2 Clad Thickness

The effect of doubling the clad thickness while keeping the other

volumes fixed was also investigated. As for the other parametric

studies, the critical geometry was calculated from Eq. (6. 5) employing

the same consistent calculation of the blanket savings. Table 6. 10

reports the results.

TABLE 6.10

Effects of Clad Thickness, t, on Heterogeneity
(cents of reactivity - exclusive of self-shielding)

t = 0. 01 in. t 0. 02 in.

Na In

Spatial 3.5 6.7

Ani. Diff. -31.5 -25. 7

Net -28.0 -19.0

Na Out

Spatial 1.2 3.8

Ani. Diff. -88.7 -70.0

Net -87.5 -66.2

Net Void Effect -59.5 -47.2

Critical Core Dimensions:

Height (cm) 76. 2 88.9

Radius (cm) 123.7 144.3
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As expected, the effect of increasing the clad thickness while keep-

ing the fuel and coolant volumes fixed is to decrease the effective

enrichment homogenized over the unit cell; thus a larger critical core

size is required with attendant decreases in core leakage and in the

contribution of anisotropic diffusion. The increase in the spatial flux

distribution effect is due to the relative decrease in the average clad

and coolant region fluxes as compared to the average fuel region flux,

resulting from the addition of more clad volume. The net effect is to

decrease the heterogeneous reactivity effect.

6. 3. 3 Lattice Pitch

The final parameter varied in this investigation was the lattice

pitch. Clearly, as the spacing is increased, the coolant occupies a

larger and larger fraction of the unit cell volume; hence the negative

anisotropic diffusion component can be expected to increase.

Table 6. 11 summarizes the DELKHET code calculations for this

parametric variation.

Several conclusions can be drawn from the results in Table 6. 11.

First, it is apparent that for the sodium-in condition, the negative

reactivity contribution of anisotropic diffusion reaches a maximum and

thereafter decreases with increasing pitch. This is due to reduced

leakage from the large-pitch, large critical size cores: beyond

P = 1. 05 cm, the product (6D)het B2 decreases. On the other hand, no

such limit is reached for the sodium-out case: the increase in the void

volume with increasing pitch provides a sufficient heterogeneous per-

turbation of D to overcome the decreasing B 2; thus ( 6 D)het B2 increases.
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TABLE 6. 11

Effects of Lattice Pitch on Heterogeneity
(cents of reactivity - exclusive of self-shielding)

P=0.76 20 cm P=0.90 cm P=1.05 cm P=1.25 cm

v/o* =0.3703 v/o=0.5485 v/o=0.6683 v/o=0.7660

Na In

Spatial 3.5 8.2 11.5 16.4

Ani. Diff. -31.5 -55.5 -65.1 -62.0

Net -28.0 -47.3 -53.6 -45.6

Na Out

Spatial 1.2 3.6 4.4 5.6

Ani. Diff. -88.7 -197.9 -299.4 -401.4

Net -87.5 -194.3 -295.0 -395.8

Net Void Effect -59.5 -147.0 -241.4 -350.2

Critical Core
Geometry:

Height (cm) 76.2 104.5 139.8 194.3

Radius (cm) 123.7 169. 7 227.0 315.4

v/o = volume percent of coolant in cell

The positive spatial contribution increases with increasing pitch for

precisely the same reason as when the clad thickness was doubled:

the average flux in the coolant region is depressed relative to that in

the fuel region by the addition of more coolant volume in the unit cell.

It is notable that a significantly smaller increase in the spatial contri-

bution occurs for the voided cell; the effect is geometrical, namely

changes in mean chord lengths rather than in the value of E 7 as for

the sodium-in case.
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We conclude that varying the lattice pitch has the most significant

effect upon the heterogeneous reactivity contributions. By increasing

the lattice pitch from 0. 7620 cm in the original design to 0. 90 cm, the

negative heterogeneous contribution to the whole core sodium-voiding

reactivity is magnified by a factor of 2. 5. However, it should be kept

in mind that the larger core will also have a larger whole-core homo-

geneous voiding worth, thus part of the more favorable negative

heterogeneity effect is outweighed by a more positive homogeneous

void worth.

A conjunction of both desirable trends is achieved if the increased

fuel rod pitch is also accompanied by an increased enrichment.

Table 6. 12 compares the heterogeneous contributions for various pitch

values at an enrichment of 15% against the reference design.

TABLE 6. 12

Effects of Pitch and Enrichment on Heterogeneity

(cents of reactivity - exclusive of self-shielding)

Na In

Spatial

Ani. Diff.

Net

E = 12. 1%

P=0.7620 cm

3.5

-31.5

-28. 0

P=0.90 cm

11.8

-80. 8

-69. 0

E = 15%

P=1.05 cm

16.2

-97. 7

-81.5

P=1.25 cm

23.0

-98. 2

-75. 2

Na Out

Spatial 1.2

Ani. Diff. -88. 7

Net -87.5

Net Void Effect -59.5

Critical Core Dimensions:
Height (cm) 76.2
Radius (cm) 123.7

6.

-266.

-259.

-190.

2

1

9

9

10.

-404.

-394.

-312.

3

5

2

7

13.6

-548. 5

-534.9

-459. 7

130. 7
212. 2

72. 7
118.1

96.1
156.0
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The conclusion to be drawn from the above parametric studies is

that the beneficial aspects of the heterogeneous reactivity contribution,

as far as the whole core sodium-voiding accident is concerned, are

maximized when the core enrichment and fuel rod spacing are as large

as possible, while the clad thickness is kept to a minimum. It is the

thermal-hydraulic and mechanical design constraints which generally

determine the latter two of these parameters; thus they are outside

the province of this work. However, the above results make clear in

which direction these design variables are to be changed in order to

take maximum advantage of heterogeneous effects in mitigating the

consequences of a sodium-voiding accident.

6. 3. 4 Lattice Geometry

Work by Newton [781 has suggested that lattice geometry has a

significant effect on leakage in a FBR. That is, keeping all volume

fractions constant, Newton showed that an open hexagonal lattice

doubles the leakage increment due to anisotropic diffusion effects as

compared to a triangular lattice; Behrens' theory [42] formed the basis

of that calculation.

Since the theory of Benoist provides a more sophisticated formal-

ism to analyze the lattice geometry effect, it is of interest to examine

the G. E. 1000-MWe reference design in two forms: the original tri-

angular pitch, and an open hexagonal modification (see Figure 6. 2).

The fuel rods are identical in both lattices; to maintain the same

coolant-to-fuel volume ratio, the hexagonal pitch is related to the tri-

angular pitch by: ph t
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The triangular pitch lattice may be viewed as a hexagonal lattice

with a fuel pin occupying the center of each hexagon. If the open

hexagonal lattice is represented by the typical cylindricalized unit cell,

the unit cell is found to be identical to the triangular lattice (as it

must, since the volume fractions are identical). However, a more

natural unit cell for the hexagonal lattice is the "inside-out" unit cell:

the central region of the unit cell represents a cylindricalization of the

coolant volume within the hexagon, while the outer annulus represents

a cylindricalization of the two fuel rods per hexagon (i. e. , each fuel

rod is shared by three adjacent hexagons; hence 6/3 of the six fuel rods

are included in eachhexagon). Clad and fuel are homogenized. Since

mean chord lengths can be determined for any given cell geometry, it

is not required, but merely convenient, that the cell be cylindricalized

for the computation of anisotropic diffusion effects.

The Benoist theory was applied to the "inside-out unit cell repre-

senting the open hexagonal lattice, and the results are compared to the

original triangular pitch calculations. In Table 6. 13, the anisotropic

diffusion coefficients calculated in the two cases are reported in terms

of the ratio of the diffusion coefficient perturbation for the open hexago-

nal pitch to the perturbation for the triangular pitch (in the two-group

notation of DELKHET). The prediction by Behrens' theory that R=2 is

seen, in general, to overestimate the lattice effect; the anisotropicity

ratio for radial leakage does equal approximately 2 (unlike the Benoist

theory, Behrens' formalism does not yield distinct radial and axial

diffusion coefficients).
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TABLE 6. 13

Anisotropicity Ratios for Lattices

(D .- D )
ani hom hex

R (D . - D )ani horn tri

Na In R

Group 1 radial 1.9095

Group 1 axial 1.7688

Group 2 radial 2.0787

Group 2 axial 1.7471

Na Out

Group 1 radial 2.0155

Group 1 axial 1.7954

Group 2 radial 2. 0534

Group 2 axial 1.8056

Recalling that the reactivity effect is obtained by taking the product

of the perturbation multiplier (see Table 4. 1) and the perturbation it-

self, and noting that both lattices are of identical homogenized compo-

sition (and thus have identical perturbation multipliers), one may obtain

the reactivity effects for the hexagonal lattice by multiplying the tri-

angular lattice values by the anisotropicity ratios. These reactivity

effects due to anisotropic leakage are presented in Table 6. 14. One

concludes that the hexagonal lattice increases the desired negative

effect due to anisotropic leakage upon the whole-core sodium-voiding

effect by a factor of 1.8 (the factor of 2 predicted by the Behrens

theory is thus reasonably close to the result of the more sophisticated

Benoist theory). Thus lattice geometry provides yet another means to

augment the desired effects of heterogeneity.
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TABLE 6.14

Leakage Reactivity in Hexagonal and Triangular Lattices

(cents of reactivity)

Na In Hex Tri

Group 1 radial -0.6 -0.3

Group 1 axial -7.6 -4.3

Group 2 radial -3.7 -1.8

Group 2 axial -43.9 -25.1

Total -55.8 -31.5

Na Out

Group 1 radial -1.4 -0.7

Group 1 axial -18.1 -10.1

Group 2 radial -11.1 -5.4

Group 2 axial -130.9 -72.5

Total -161.5 -88.7

Net Void Effect -105.7 -57. 2

The important result confirmed here is that if one constructs an

open hexagonal lattice consisting of fuel rods identical to those in a

triangular lattice, with both lattices having an identical coolant-to-fuel

volume ratio, the open hexagonal lattice will provide a far larger

negative reactivity contribution during the sodium-voiding accident,

due to augmented anisotropic leakage.

6.4 Sodium Temperature Coefficient

The sodium temperature coefficient is of interest because of its

relation to reactivity feedback, stability, and control system design.

For the large core size typical of the 1000-MWe designs, the coef-

ficient is positive and of the order of 1. 5 X 10-5 /0 C (for smaller core
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sizes it is a negative quantity; e. g. , for the 300-MWe demo size, a

typical value is -9 X 10~ /oC [92] ). Thus it is worthwhile to calculate

the effect of the anisotropic diffusion correction upon this quantity.

For consistency, the G. E. core design was again the focus of

attention. DELKHET calculations were carried out for 100%, 99%, 98%,

and 97% sodium densities. The temperature coefficient is calculated

from:

T- (AV/V/ (6.6)

where a is the volumetric expansion coefficient of sodium, 3 X 10 4/OC

(the value near 7000C). In Table 6. 15, the results of DELKHET calcu-

lations for the reference design and a parametric variation (enrichment

of 15%, pitch of 1. 25 cm) are reported.

TABLE 6. 15

Anisotropic Diffusion and Sodium Density

Density Reference Design Variation

(Ak) ani A (Ak)ani Ap

100% -0.0010395 - -0.0032406

99% -0.0010529 -1. 34 X 10-5 -0.0032940 -5. 34 X 10 5

98% -0. 0010663 -1. 34 X 10 5 -0. 0033538 -5. 98 X 10 5

9 7% -0.0010759 -9.6 X 10-6 -0.0034069 -5.31 X 10 5

*

The difference between successive values of (Ak) ani

From Eq. (6.6), one finds that the anisotropic diffusion component

of the sodium temperature coefficient is of the order of -4 X 10 /oC

for the reference design. This is a negligible correction which is not
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sufficiently negative to mitigate the positive temperature coefficient.

If the calculation is performed for the rather extreme parametric

variation case, the anisotropic diffusion contribution is found to be of

the order of -1.6 X 10 6/OC, a factor of four larger than for the refer-

ence design, but still negligible in terms of the effect upon the total

sodium temperature coefficient. Thus, for this particular parameter,

accounting for anisotropic diffusion leads to a negligible correction to

the homogeneous calculation.

6. 5 The Gas-Cooled Fast Reactor

The GCFR is an interesting case for heterogeneity calculations

since it is neutronically equivalent to a voided LMFBR. Although there

is no void reactivity effect to which heterogeneous corrections must be

applied, heterogeneity is expected to reduce the multiplication factor

compared to a homogeneous modelling of the core, which cannot cor-

rectly account for neutron streaming in the gas-coolant channels.

Table 6. 16 presents the core parameters of interest for the Gulf

General Atomic designs for a 300-MWe demonstration GCFR and for

a 1000-MWe plant [79, 801, while Table 6. 17 reports the unit cell

description input to DELKHET. The results of the DELKHET code

calculations are presented in Table 6. 18.

One observes that heterogeneity (exclusive of heterogeneous reso-

nance self-shielding effects) reduces the multiplication constant calcu-

lated by a simple homogeneous modelling of the GCFR core by 0. 00849

for the 300-MWe demonstration design. As expected, the major part

of the effect is due to anisotropic diffusion. The 1000-MWe design is

characterized by a larger void fraction; however, the larger core has
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TABLE 6. 16

GCFR Core Parameters

Core height (cm)

L/D

Fuel material

Enrichment (at. %)

Smear fuel density (% TD)

Fuel pin OD (cm)

Clad OD/ID

Pitch (cm)

300 MWe

100

0.5

PuO -UO2G
18.5

80

0. 723

1.15

0. 9804

1000 MWe

135

0.5

PuO 2-UO2

15.9

84. 1

0.603

1. 10

*
Calculated from given void fraction = 0. 547

TABLE 6. 17

GCFR Unit Cell Descriptions

300 MWe 1000 MWe

Unit cell radii (cm):

r 1 0.3143 0.2741

r2 0.3615 0.3015

r 3 0.5147 0.4480

Regionwise number densities:

Pu-239 0.003597 0.003248

U-238 0. 015847 0. 017182

0 0.038888 0.040860

Fe 0.0848 0.0848

TABLE 6.18

Heterogeneous Effects in GCFRs
(cents* of reactivity - exclusive of self-shielding)

300 MWe 1000 MWe

Spatial 13.4 8.6

Ani. Diff. -270.6 -249.3

Net -257.2 -240.7

= 0. 0033
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a smaller buckling, thus the overall anisotropic diffusion contribution

is smaller. For the 1000-MWe GCFR, Ak due to anisotropic stream-

ing is -0. 00823.

After the analysis in this work was completed, a reference was

discovered which confirmed the calculations performed here. Pellaud

[811 has calculated the effect of anisotropic streaming on the 300-MWe

demonstration GCFR. Using a slightly modified Benoist analysis,

Pellaud performed calculations in one and ten energy groups; the

former using a one-group perturbation theory method, and the latter

using a two-dimensional diffusion theory code modified to accept

directional diffusion coefficients. Table 6. 19 compares Pellaud's

results to those obtained here.

TABLE 6.19

Effect of Anisotropic Streaming on 300-MWe GCFR

Pellaud - 1 Group Pellaud - 10 Groups DELKHET - 2 Groups

Ak -0.011 -0.008 -0.00893

The DELKHET two-group calculation gives a result between

Pellaud's one-group and ten- group calculations; the closeness of the

DELKHET result to the ten-group value indicates that the two-group

calculation is sufficient. Though this comparison does not provide an

absolute check on the calculations since the Benoist analysis is

common to both values, the agreement does validate the techniques

employed in the DELKHET code.
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6.6 The Fuel Dispersal Accident

As an indication that the effect of heterogeneity is not always bene-

ficial in a safety sense, the fuel dispersal accident is considered in this

section. The fuel dispersal accident postulates the physical homogeni-

zation of the core (the issue of possible mechanisms for such an event

is not considered here) in such a manner that the reactivity "tied-up"

with heterogeneity suddenly becomes available. For the designs under

study in this chapter, Table 6. 20 lists the reactivity insertions which

would result from a homogenization of the core.

TABLE 6. 20

Fuel Dispersal Accident

(dollars of reactivity - exclusive of self-shielding)

Na In Na Out

1000 MWe

AI $0.26 $0.92

B & W $0.30 $0.97

GE $0.28 $0.88

CE $0.30 $0.82

GGA - $2. 41*

300 MWe

W $0.30 $1.19

GGA - $2. 57*
*
Gas - cooled

The positive reactivity gain on homogenizing the core is due

primarily to the loss of anisotropic streaming effects; the spatial flux

distribution and resonance self-shielding effects yield small negative

contributions which are overcome by the positive loss-of-leakage
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contribution. The fuel dispersal causes a relatively small positive

contribution for the sodium-in case; however, if sodium has been

voided from the core prior to the core homogenization, the reactivity

insertion approaches one dollar for the LMFBRs. The largest fuel

dispersal reactivity contribution, in excess of two dollars, is demon-

strated by the gas-cooled cores. However, it is difficult to envision

a realistic mechanism for such an accident in a GCFR.

One should recall that the effects of energy self-shielding (which

are ignored in the results of Table 6. 20) as calculated for the typical

FBR geometry of Chapter 5 contribute of the order of -10 for the

sodium-in case and -20 for the sodium-out case toward the fuel dis-

persal accident. Hence, in Table 6. 20 the positive sodium-in

reactivities are slightly high, while the sodium-out values are

essentially correct.

If one postulates a sodium-voiding accident which leads to an ex-

plosive homogenization of the core, the heterogeneous effects act

differently during different phases of the accident: during the initial

voiding of the core, heterogeneity reduces the reactivity insertion;

however, once core-homogenization occurs, the reactivity associated

with heterogeneity materializes as a positive reactivity insertion.

Thus careful modelling of this genre of postulated accidents requires

consideration of anisotropic diffusion effects (and to a lesser degree,

heterogeneous spatial flux distribution effects and resonance self-

shielding effects) for a realistic physical description of the underlying

processes.
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6. 7 Conclusions

Specific core designs have been investigated for the effects of

heterogeneity on multiplication constants and sodium-void reactivities.

For the 1000-MWe LMFBR designs, heterogeneity is found to reduce

the positive sodium-void effect (whole core) by approximately 70 cents

in reactivity, due primarily to anisotropic diffusion. For the LMFBR

demonstration plant, this reduction approaches 90 cents. The open

hexagonal lattice geometry is found to nearly double the negative

reactivity contribution due to anisotropic leakage during the sodium-

voiding accident as compared to a triangular lattice of identical rods

and fuel-to-coolant volume ratio. The GCFR is shown to contain a

Ak due to heterogeneity of approximately -0. 008. Parametric studies

have shown that the heterogeneous reactivity effects may be consider-

ably increased by a slight increase in enrichment coupled with an

increase in fuel rod pitch. Heterogeneity is demonstrated to cause a

positive reactivity insertion for the fuel dispersal accident. Hetero-

geneous effects upon the Doppler coefficient were not considered here;

however, Reference 9 indicates such effects are negligible.
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Chapter 7

HETEROGENEOUS EFFECTS IN FBR BLANKETS

In this chapter, the focus of attention is upon heterogeneous effects

in fast breeder reactor blankets. Experimental results obtained from

the Blanket Test Facility (BTF) [83] of the MIT LMFBR Blanket

Physics Project are reported as well as analytical studies of blanket

heterogeneity.

7. 1 Self-Shielding Characterization of the BTF

In the BTF, a typical LMFBR blanket is mocked-up by the unit cell

configuration pictured in Figure 7. 1. On a homogenized basis, the

BTF unit cell and a typical blanket cell are essentially identical [70].

This does not necessarily insure that the identity holds on the level of

heterogeneous effects, particularly for heterogeneous resonance self-

shielding effects: the BTF consists of uranium metal rods with the

oxygen, normally associated with the LMFBR's UO2 fuel, in the

sodium chromate external to the rod.

A comparison of resonance self-shielding effects using the MIDI

code was undertaken. The results are reported in Table 7. 1 in terms

of the MIDI-generated, heterogeneously self-shielded U-238 cross

sections for the BTF unit cell, while the analogous values for typical

LMFBR axial and radial blanket unit cells are reported as fractions of

the BTF unit cell value. The typical radial blanket rod is assumed to

have an outside diameter of 0. 5 inch on a pitch of 0. 565 inch, while

for the typical axial blanket rod, the respective values are 0. 25 inch
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0. 511 in.

Fig. 7. 1
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TABLE 7.1

BTF Resonance Self-Shielding Comparison

BTF (Typical Blanket g) + (BTF a)

(barns) Axial Radial

Group aa s abs scat abs scat

11 0.4843 10.99 1.0010 1.0009 0.9738 0.9864

12 0.7641 11.65 1.0059 1.0034 0.9627 0.9777

13 0.5480 11.56 1.0361 1.0112 0.9407 0.9818

14 0.6142 10.27 1.0451 1.0078 0.9324 0.9883

15 0.8075 10.55 1.0578 1.0104 0.9226 0.9858

16 0.7276 9.574 1.0686 1.0049 0.9089 0.9939

17 1.200 11.91 1.0642 1.0160 0.9208 0.9815

18 3.281 12.53 1.0585 1.0144 0.9137 0.9785

19 2.676 11.47 1.0486 1.0096 0.9152 0.9826

20 7.265 10.60 1.0406 1.0066 0.9310 0.9896

21 7.730 9.446 1.0445 1.0021 0.9352 0.9969

and 0. 338 inch. From the comparison of Table 7. 1, it is evident that

as far as heterogeneous resonance self-shielding effects are concerned,

the BTF is intermediate between a typical radial and a typical axial

blanket, being somewhat closer to the latter.
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7.2 Experimental Intra-Rod Activation Profile Measurements in the BTF

7. 2. 1 Six-Piece Foil Measurements

Measurements of the activation profile within a UO2 rod using a foil

made up of six concentric annuli have been performed [841 . These

measurements were performed using the BTF special sodium sub-

assembly which, unlike the standard chromate subassembly, consisted

of 0. 5-inch outside diameter UO2 fuel rods on a 0. 61-inch triangular

pitch immersed in solid sodium. The six-piece foil measurements con-

firmed that, to within a ± 2% error in the calculated activation, the intra-

rod activation profile could be represented by a universal shape function:

A(r) = C 0 + CS[() (7.1)

where C and C are constants, a is the rod radius, and S is the

complete elliptic integral of the second kind.

The results obtained by curve-fitting the universal shape function

to various activation measurements (i. e.., the calculated values of C0

and C1) may be interpreted in terms of a useful ratio, F, which is an

index of heterogeneous self-shielding:

a

A f A(r) dV

F A a , (7.2)

s A(a) f dV
0

that is, the ratio of the average activation within the rod to the acti-

vation at the surface. Substituting Eq. (7. 1) into Eq. (7. 2) and per-

forming the integration, one obtains:

4
CO + 4C,

F C +C . (7.3)
0 1
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Thus the C0 and C 1 coefficients lead directly to the F-factor, and

Table 7. 2 presents the ratios calculated from the data of Reference 84.

TABLE 7. 2

Six-Piece Foil F-Factors for UO2 Rods

Measurement F

Fission product activity 1. 1221

Fission product activity 1. 0447

Fission product activity 1. 0609

Np-239 activity 0.89703

Np-239 activity 0. 85478

Np-239 activity 0. 90501
*

Middle blanket row

The fission product measurements reveal flux peaking within the

rod due to fission enhancement by the first-flight group, while the

Np-239 activity measurements reveal flux depression within the rod

due to U-238 capture self-shielding.

7. 2. 2 Two-Piece Foil Measurements

Two-piece foil measurements of the activation profile within rods

in the chromate subassembly and the special sodium subassembly have

been performed as well: as can be seen from Eq. (7. 1), only two

parameters are needed to determine the activation shape within the

validity of the model confirmed by six-piece foil irradiations. A deri-

vation is required which relates these measurements to the activation

ratio F. To do so, we let A be the activity of the ith foil region (i= 1

for the central disk of radius Ri, i = 2 for the outer annulus of outer

radius a), so that:



A A
1 

2

R1
A(r) dV

-0
a

A(r) dV
0

where A(r) is given by Eq. (7. 1), I R- 1
a 20

and z C /CO.

F = (1±z) /(1+ z).

calculate F, giving:

2
_y 2+ zI

1 + 4z
(7.4)

2

I r dr ;

Now, from the definition of Eq. (7. 3),

Thus we may solve Eq. (7.4) for z

4
3

a 2

R

a )2 + 1

The observables are the foil weights w. and the activities of the foils A;

from which, C 1 = A/wi and C2 = A2/w 2 , which lead to the identity:

A1 
).A 1 +A 2

(a) 2
R1

C1(w+w2

C 1w1 + C2w2

We may finally write the F-factor as:

1 ) f (W 
W2

1 0
S(x)dx -

0 1 2

0
S(x)dx - [C (w+w) 1C1W1 2W

Cw +Cw 2
1 1 2 2

The results presented in this section are all based on calculating F

from Eq. (7. 7), where C and C2 are the specific activities calculated

from the measured activities A 1 and A2 and w. the foil weights.

Experimental details are discussed in Reference 85.
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y = Rl/a,

and then

(7.5)

(7.6)

4

w ±w(1 2)
1

(7. 7)

- 1

1(A, ) 2

3A 1+A 2 R
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The F-factors calculated from two-piece foil measurements for

both the 0. 43-inch OD UO2 rods in the special sodium subassembly

[861 in Blanket No. 2 and the 0. 25-inch OD uranium metal rods in the

standard chromate subassembly [86,87]

are reported in Tables 7. 3 and 7.4.

of Blankets No. 2 and No.

TABLE 7. 3

Two-Piece Foil F-Factors for UO2 Rods

Case Description Fission Product Np-239 Activity
Activity

1 Sodium absent 0.9605 0.9359

2 Sodium present 1.056 0.9005

3 Sodium present 1.078 0.9132
*
Middle blanket row (Blanket No. 2)

TABLE 7.4

Two-Piece Foil F-Factors for Metal Rods

Blanket Position Fission Product Np-239 ActivityActivity

Ref. 86 - Blanket No. 2

Front row 1.005 0.9063

Middle row 0. 9796 0. 8954

Outer row - 0.8683

Ref. 87 - Blanket No. 3

Front row 1.0003 0.9140

Outer row 1.0374 0.8423

Several observations may be made. First, cases 2 and 3 in

Table 7. 3 (which represent two foils within the same rod, albeit

3
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at slightly different positions) indicate the effect of experimental

uncertainty upon the calculated F-factor, since both results reflect the

measurement of the same quantity. The results of Tables 7. 2 and 7. 3

are directly comparable since only the foil details differ (i. e. , six-

piece versus two-piece). These results suggest F of the order of 1. 05

for the fission product activity measurements and F of the order of

0. 90 for the Np-239 activity measurements. Second, the effect of

position within the blanket upon the Np-239 measurements is clearly

demonstrated by the results in Table 7. 4 : the deeper into the blanket,

the larger the flux depression measured. This phenomenon may be

ascribed to the softening of the spectrum with blanket depth, which

places more neutrons in the lower energy groups, which in turn have

larger absorption resonances. In addition, case 1 in Table 7. 3 sug-

gests that in the absence of sodium, the self-shielding decreases

slightly. Comparing middle row results for both UO2 rods and metal

rods half their diameter (but with 2. 2 times the U-238 density) suggests

the self-shielding effects are comparable in both types of rods

(confirming the conclusions of Section 7. 1). Fifth, the fission product

activity measurements for the metal rods are inconclusive due to the

magnitude of the experimental uncertainty. Results calculated from

the measurements of References 86 and 87 give opposing results for

the fission product activations : both indicate an F of about 1. 0 in the

front blanket row, but then predict opposite trends with increasing

blanket depth. One should note that in one case the blanket is reflected

by steel (Blanket No. 2, Reference 86); while in the other case, a

graphite reflector is employed (Blanket No. 3, Reference 87). Lastly,

the uncertainty in the F-factors due to the uncertainty in the activation
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measurements [87] are of the order of 5% for the fission product

activity measurement and of the order of 0. 5% for the Np-239 activity

measurement. Thus the experimental uncertainty obscures any con-

clusion one may make about the first-flight flux shape beyond the

observation that it is essentially flat. On the other hand, the ratio of

the average activation in the rod to the surface activation is unmis-

takably of the order of 0. 9 with a definite increase in the U-238 capture

dip with blanket depth.

7. 3 Theoretical Analysis of BTF Measurements

In this section, the attempt to predict analytically the results of

the intra-rod activation measurements is discussed, with an emphasis

on heterogeneous resonance self-shielding effects.

7. 3. 1 The Failure of Coarse-Group Multi-Group Calculations

If one attempts to calculate the intra-rod activation shape using,

say, the ANISN code in 26 groups, the flux dip predicted by the Np-239
*

activation measurements is simply not seen. For a unit cell represen-

tation with a shell source characteristic of a typical blanket spectrum

in the outer coolant region, the total flux at the rod center is 0. 9943

times that at the rod surface, a negligible flux dip compared to the

measured average-to-surface activation ratio of 0. 9. Looking at the

flux group-by-group, only below 130 eV does the flux within a group

given by ANISN show a dip approaching the measured 10% value for the

activation profile. Clearly, the typical multi-group calculation is

incapable of duplicating the measured activation dip. On the other

hand, the MIDI calculation performed to yield the proper resonance

self-shielded cross sections is capable of treating the problem because

*
Even using unshielded (infinite dilution) cross sections.
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it assumes a continuous flux representation within each resonance ( vide

Eq. 5. 2), which is equivalent to an infinite-number-of-groups represen-

tation. Thus one must look beyond multi-group calculations for a

method of calculating the measured activation dip in the BTF rods.

7. 3. 2 Relationships Among Various Self-Shielding Factors

It is possible to derive a relationship between the self-shielding

factor F used earlier in analyzing the experimental results and the

heterogeneous self-shielding factor for cross sections f , defined as:

f = a f/o (7.8)

where ox is the absorption cross section of fuel, and a f is the

absorption cross section of fuel when it is homogenized over the cell.

Recall earlier that the definition of the overall self-shielding factor f

in terms of the MIDI-generated cross sections was f = ( S)het /O dil

so that:

SS het X SS hom (7.9)

s hom 0o dil

* *
or f = (f )(g). Note that a is the cross section given by MIDI in theaf

heterogeneous option, (ss ) het; while oaf is the cross section given by

the homogeneous option, (a ) . For clarity, Table 7. 5 summa-
sshorn

rizes the various self-shielding factors used in this work.

Equating fine-group reaction rates in the homogeneous cell and in

the fuel rod yields (since blanket rods are the subject, only absorptions

in U-238 are considered):



186

TABLE 7. 5

Summary of Self-Shielding Factors Used

Des cription

F = Xf/As

f = (a ss / o dil
het

het hom

g = (ass) /oo dil
hom

Ratio of average activation in rod to

surface activation, calculated from

activation profile measurements.

Ratio of heterogeneously self-

shielded cross section to infinite

dilution cross section.

Ratio of heterogeneously self-

shielded cross section to homo-

geneously self-shielded cross

section.

Ratio of homogeneously self-

shielded cross section to infinite

dilution cross section.

afioci c E afi fif 

*

Eafi = absorption cross section in fine-group i of fuel

homogenized over total cell volume, V c

Eafi = absorption cross section in fine-group i of fuel

in rod of volume Vf

Eci

Now,

f.
1{=

= cell-averaged flux in fine-group i

= average flux in fuel rod in fine-group i.

*

Eafi c

afi Vf
(7. 11)

Factor

where:

(7. 10)
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and comparing Eqs. (7. 11) and (7. 10) leads to the result:

f fi/V ci

From the two-region escape/transmission probability cell model for

parabolic flux distributions (see Appendix C):

(7.13)
mi si si fi

(7.12)

where ;mi is the average flux in the coolant region and 0 si

the fuel rod surface for fine-group i.

the flux at

Equation (7. 13) may be re-

written as:

mi

Ofi

= 2 -

Ofi

1 2
F.

I

(7. 14)

In Eq. (7. 14), the equality FE Xf /A . /f V has been employed;

it is valid within a fine group since U-238 is the primary absorber in

the blanket so that the constant of proportionality between flux and

activation within the fine group is the group absorption cross section.

By definition, the cell-averaged fine-group flux is:

V

Tci (i) 1 mic

from which:

7.
fci

VOft
i)V c

Substituting Eq. (7. 14) into Eq. (7. 16) leads to the desired final result:

F.= 1
1-f

+
2f (1-v)

1

V
+ G f

c
(7. 15)

Vf

V
c f.

(7. 16)

(7. 17)
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where v is the volume fraction of fuel, Vf/Vc'

The assumption is made that Eq. (7. 17) holds not only on a fine-

group level but also on a many-group basis (i. e. , the i-subscript is

suppressed), so that F may be identified with the activation ratio cal-

culated from the data of the activation measurements (vide Np-239

activity in Tables 7. 2 through 7. 4). Note that for homogeneous self-

shielding only, f = 1 and F = 1 (though still g < 1).

Strictly speaking, F should be calculated from the F. of Eq. (7. 17)

in the following manner:

Afi F.A. F.w.f. g(a
Ssi i i i oo dil .

F = = - 1 1 (7. 18)

Asi ZAS 3wfg('o dil).
i i i1

where w is the group i weight (i. e. , normalized flux for group i, with

representative values listed in Table 7.6). That is, the Fi are weighted

to arrive at the F-factor. Instead, the simplifying assumption is made

that Eq. (7. 17) holds with the "i" suppressed, and f is then the quantity

to be weighted (as shown below) to arrive at the f -factor. Comparative

calculations show that this simplifying assumption leads to a negligible

error of 0. 1% in the F-factor. The BTF measurements have shown that

F is about 0. 9. For the metal rod case where v = 0. 75, this requires

f = 0. 95; while for the UO2 rods v = 0. 82, thus requiring f = 0. 96.

To utilize Eq. (7. 17), one must calculate the overall f -factor.

That quantity may be obtained by appropriately averaging the group-by-

group self-shielding factors. The group-averaged homogeneously and

heterogeneously self-shielded cross sections may be obtained from:
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w g Woodil).

(C- ) hom = (7. 19)

i

w fjg( oo dil .

(cr ) = (7. 20)
ss het ~ w

i

*
From the above, one calculates the f -factor:

wf oo dil.

f = i (7. 21)

wgi(uoo dil.
i1

*
where f and g are different from unity only in the self-shielded groups

11 through 21, while the summations are over all 26 groups.

*
Table 7. 7 presents the group-by-group f. -factors and the g.-

factors for the BTF UO2 rods, obtained by performing two MIDI calcu-

lations: one for a homogeneous cell description which yields the g

and a second for a heterogeneous cell description which yields the f

*
(see definitions in Table 7. 5). Then the quotient f /g, yields the f*-

factors. The group weights given in Table 7.6 for the BTF are taken

from Reference 70 for a position 24.4 cm into the blanket. Using

these quantities together with the infinite dilution cross sections of the

ABBN set, Eq. (7. 21) yields f = 0. 9841, which is to be compared to

f* = 0. 96 calculated from the experimental determination of F. This

leads to a prediction of the average-to-surface activation ratio, F, of

0. 9570 (recall experimentally F = 0. 9) which, though a considerable
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TABLE 7.6

Group Weights for Blanket and Core Spectra
(Arbitrary Normalization *)

BTF

0.1432

0.7948

1.534

3.671

5.738

16.96

27.50

32.61

35.22

27.22

31.03

17.64

4.384
*
Normalization

Core

0.5155

3.229

6.716

14.30

17.74

36.83

45.62

45.84

39.74

28.20

24.96

13.40

21.87

different for

Group

14

15

16

17

18

19

20

21

22

23

24

25

26

BTF and core

TABLE 7. 7

f - and g-Factors for UO 2 Rods

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

f

9814

9607

9903

9848

9792

9722

9736

9736

9753

9802

9801

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

6225

9264

4338

2769

2113

1512

06676

2053

04329

08416

04313

Group

1

2

3

4

5

6

7

8

9

10

11

12

13

BTF

16.08

12.63

9.006

5.494

2.446

1.054

0.3086

0.08392

0.08384

0.06608

0.04161

0.01762

0.00418

Core

8.722

4.989

2. 123

0.6410

0.1225

0.02640

0.00281

0.00039

0.00022

0.00009

0.00001

0

0

*
fGroup

11

12

13

14

15

16

17

18

19

20

21

ad hoc

0.95

0.93

0.96

0.95

0.95

0.94

0.94

0.94

0.94

0.95

0.95
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improvement over the multi-group ANISN prediction of virtually no dip,

still represents a significant underprediction of the measured activation

dip.

*
It is of interest to impose an ad hoc decrease in the f. -factors of

1

approximately 3%, the choices for the ad hoc f being given in Table 7.7

under the appropriate column. With this set of f , one calculates

f = 0. 9632 and F = 0. 9041, very nearly those values obtained from the

BTF measurements. To provide an appreciation of the significance of

*
this ad hoc change in the f , Table 7.8 presents both the MIDI-generated,

heterogeneously self-shielded cross sections and those implied by the

ad hoc change. One observes that only a very slight decrease in the

theoretical group-by-group self-shielded cross sections is required

(approximately 3%) to give the measured activation dip correctly. Or

from a different perspective, the calculated activation dip is exceed-

ingly sensitive to the calculated self-shielded cross sections, with high

precision being required for the latter. Thus experiments of this type

provide a very strict test of the method for calculating heterogeneous

self-shielding: the implication of the results presented here is that the

equivalence formulae utilized in the MIDI code underpredict hetero-

geneous self-shielding effects by several percent in the resulting group

cross sections.

At first glance, it may be unexpected that such a small change in

the group cross sections could be paralleled by a sizeable change in

the activation dip. However, on closer examination, one notes that

many narrow resonances occur in a typical coarse-group (e. g. , group

13A of the MIDI library is populated by 49 resonances from 3003 eV to

3858 eV, all less than 1 eV in width and separated from one another
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MIDI (hom

0.467

0.722

0.521

0.582

0.761

0.680

1.132

3.079

2.511

6.901

7.375

TABLE 7.8

U-238 Self-Shielded a

(barns)

L) MIDI (het)

0.458

0.694

0.516

0.573

0.745

0.661

1.105

2.998

2.449

6.764

7.228

ad hoc (het)

0.444

0.672

0.500

0.552

0. 723

0.640

1.067

2.895

2.360

6.556

7.006

by the order of 12 eV to 30 eV). Thus a slight change in the coarse-

group-average cross section (roughly proportional to the area under

the resonances plus the area under the non-resonant background

cross section) could be associated with a large change in the ampli-

tude of the individual resonances. It is this "amplification effect"

which can cause a small change in the coarse-group cross section to

be associated with a large change in the activation dip. One should

also note from Table 7. 8 that the smallest coarse-group cross

sections correspond to the largest activation dip. Indeed, the larger

the degree of self-shielding (i. e. , the larger the activation dip), the

smaller the broad-group cross sections calculated by MIDI. This is

exactly opposite to the result given by a multi-group calculation and

points out the defect of coarse-group multi-group theory in predicting

intra-rod flux shapes.

Group

11

12

13

14

15

16

17

18

19

20

21
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One other possible source for the discrepancy may be the incorrect

calculation of the blanket spectrum over which the weighting in Eq. (7.21)

is carried out. For the moment, assume the blanket spectrum is softer

than calculated, resulting in a relatively larger neutron population in

the resonance groups, hence a larger depression. To ascertain the

effect of such a discrepancy, the BTF flux values given in Table 7. 6 for

*
groups 11 through 26 were arbitrarily doubled. The resulting f value

was then found to be 0. 9808, a slight decrease from the value of 0. 9841

calculated for the theoretical spectrum, but still significantly larger

than the required value of 0. 96. Thus even a factor of two uncertainty

in the lower energy flux does not account for the underprediction in the

resonance flux dip (in contrast to the ad hoc decrease in the heterogene-

ously self-shielded cross sections given in Table 7. 8 which does

account for the discrepancy).

Lastly, errors in the resonance parameters themselves (e. g. ,

resonance widths, spacing) are a possible source of the discrepancy.

The variation of the measured activation dip with increasing

blanket depth is also calculable utilizing Eq. (7. 21), since the softer

spectrum can be represented by an increase in the relative magnitude

of the group weights wi in the resonance groups, leading to an

increased f . Interestingly enough, generating the fi and gi factors for

a typical core unit cell (12% enrichment) and using the mid-core

spectrum given in Table 7.6 (the result of a 2DB calculation), one

obtains f * and F factors substantially the same as calculated for the

BTF case. Thus if intra-rod activation profile measurements are per-

formed on a fuel rod in a FBR core, the measured dip is predicted to

be comparable to that measured in the BTF. Conversely, measurements
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in the BTF are applicable to both core and blanket fuel.

It is important to note that the activation dip measurements ana-

lyzed in this section deal with the effects of heterogeneous resonance

self-shielding (i. e. , the spatial component of an energy self-shielding

effect). This (ultra fine group) "spatial" effect is to be kept distinct

from the so-called (coarse group) spatial flux distribution effect dis-

cussed in earlier sections. Though somewhat arbitrary, this dichotomy

is based on the usual assumption of separability of the flux in energy

and space ( vide Eq. (5. 1), which is repeated here:

I N.. fg .(0 x) 4OV.
ij x,1. x,k j j

x z v.

The spatial flux distribution effect enters into the calculation of an

appropriately homogenized cross section through the 4 weights. On
J

the other hand, the effect of resonance self-shielding on the cross-

section processing is concentrated in the f-factors. Thus, for U-238

absorption and scattering in the resonant groups, the resonance flux

dip does not appear in the 49 flux weights; instead, the homogenization

of Eq. (5. 1) is accomplished by utilizing multiplicative f-factors less

than unity. Whereas, for non-resonant materials, the 49 flux weights

are applied to the non-resonant microscopic cross sections and the f-

factors are unity. This distinction between the energy and space com-

ponents of the flux leads to the U-238 resonance flux dip being treated

implicitly through the f-factors, while the spatial cross section

averaging for non-resonant materials is explicitly treated by weighting

with calculated group-flux values (the 49).
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7. 3. 3 Peaking in the First-Flight Group Flux

The fission product activation measurements of the flux peaking in

the first-flight group at the center of the rod lend themselves to a con-

siderably more straightforward analysis since one need not deal with

resonance self-shielding effects. In fact, the escape/transmission

probability formalism of Chapter 2 provides the necessary analytic

tools. For example, a DELKHET calculation for the BTF metal rod

predicts <f/~s = 1. 017, whereas the measured F-factor, the fission

product activation ratio, for various blanket positions [86,87] has been:

1. 005, 0. 9796, 1. 0003, 1. 0373 with a ± 5% error band. In this case,

the theory is more believable than the measurements, due to the ex-

perimental uncertainty.

7.4 Heterogeneous Effects and the Breeding Ratio

A quantity of interest in the FBR is, naturally enough, the breeding

ratio (used here to denote the total breeding ratio of core and blankets).

This section examines the effect of heterogeneity upon the calculated

breeding ratio: in particular, the effects of anisotropic diffusion and

resonance self-shielding.

7.4. 1 Anisotropic Diffusion and the Breeding Ratio

Anisotropic diffusion increases the leakage of neutrons from the

core to the blanket, thus one expects its effect to be an increase in the

breeding ratio. The effect was investigated by performing several one-

dimensional 2DB calculations, allowing only axial leakage in one case,

and only radial leakage in the other case. Each case was calculated

using both the homogeneous prescription for the diffusion coefficient

and the Benoist theory result for the appropriate directional diffusion



196

coefficient. To dramatize the effect, these calculations were performed

for a voided core which maximizes the leakage. The radial calculation

predicted a 0. 1% increase (i. e. , BR 1 -BR 2 /BR,) in the breeding ratio

and the axial calculation predicted a 0. 4% increase (roughly speaking, a

net increase of 0. 5% in the breeding ratio due to anisotropic diffusion).

An analogous two-dimensional calculation has been performed for a

GCFR [811 which predicted a 0. 6% increase, which is consistent with

the above results. For the normal LMFBR operating condition with

sodium in the core, the effect is predicted to be approximately a factor

of three less (the approximate ratio of the sodium-in to sodium-out

heterogeneous diffusion coefficient perturbation). Thus the increase in

the breeding ratio due to anisotropic diffusion is negligible, especially

for the LMFBR. In passing, one recalls that the reactivity effect

associated with the spatial flux distribution effect is an order of magni-

tude less than that associated with anisotropic diffusion; by extension,

the former's effect upon the breeding ratio will also be negligible.

7.4. 2 Resonance Self-Shielding and the Breeding Ratio

For the core analyzed in Section 5. 3. 2 (see Tables 5. 8, 5. 9, and

5. 10), breeding ratios were calculated for each type of cross section

set. The results are presented in Table 7. 9.

TABLE 7.9

Effect of Self-Shielding on Breeding Ratio

Case k BR

Infinite dilution (12%/16%) 1.000 1.4977

Het. self-shielded (12%/16%) 1. 071 1. 1982

Het. self-shielded (10. 5%/14%) 1.003 1.3489

Hom. self-shielded (10. 5%/14%) 1. 003 1. 3508
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One notes that the infinite dilution set (i. e. , no resonance self-

shielding) is considerably over-optimistic in the breeding ratio calcu-

lated. If the cross-section set is heterogeneously self-shielded and

the calculation repeated, the breeding ratio decreases precipitously

(self-shielding decreases absorptions in U-238, hence decreasing

production of Pu-239) while k increases, and an over-enriched core

results. If the enrichment is then reduced so that k returns to 1. 0,

the breeding ratio increases to assume a value 11% smaller than the

original value for the infinite dilution calculation. The difference

between the breeding ratios calculated from a homogeneously self-

shielded set and a heterogeneously self-shielded set is quite small:

heterogeneous self-shielding is found to reduce the breeding ratio by

0. 14%6.

The effect of the self-shielding model upon the calculated Pu-239

inventory in the blanket for a single 100-day time-step in 2DB is pre-

sented in Table 7. 10 in terms of a normalized inventory (1. 0 equals

42. 51 kg). One observes that the infinite dilution calculation yields

the highest value for the blanket inventory; the same calculation using

heterogeneously self-shielded cross sections (recall an over-enriched

core results) predicts a 23. 2 kg smaller (i. e. , 14% less) total blanket

inventory. Decreasing the core enrichment in order to return the

reactor to k= 1. 0, and using appropriate heterogeneously self-shielded

cross sections, increases the inventory by 9.8 kg (i.e. , 7%) compared

to the over-enriched core results. The homogeneously self-shielded

calculation overpredicts the total blanket inventory by 0. 4 kg (i. e. ,

0. 3%) as compared to the heterogeneously self-shielded calculation.



TABLE 7. 10
Effect of Self-Shielding on Blanket Pu-239 Inventory (100 Days Burn-Up)

Blanket Region(2) Inventory(1)
Case 12 13 14 15 16 17 Radial Axial Corner Total

Infinite dilution 1.120 0.2439 0.6471 1.380 0.3665 0.07600 1.364 2.027 0.4425 3.834
(12%/16%)

Het. self-shielded 0.9428 0. 2326 0.5530 1. 148 0.3418 0.07903 1.175 1.701 0.4208 3. 297
(12%/16%)

Het. self-shielded 1.000 0.2452 0.6057 1. 233 0. 3622 0.08335 1.245 1.839 0.4456 3.530
(10.5%/14%)

Hom. self-shielded 1.001 0.2455 0.6077 1. 236 0.3624 0.08343 1.247 1.844 0.4458 3.537
(10.5%/ 14%)

Region volume 612. 2 719.9 434.4 1303. 734. 7 863.9
(liters)

Key:

(1) Normalized inventory:
1. 0 = (Pu-239 number density of 0.

(2) Radial blanket = region 12 + region 13

Axial blanket = region 14 + region 15

Corner blanket = region 16 + region 17

1749E-3 in volume of 612. 2 liters) = 42. 51 kg of Pu-239

co
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Thus we conclude that significant errors in the amount of Pu-239 bred

result if k is not maintained near 1. 0, with major differences in the

breeding gain (BR - 1). On the other hand, differences in the results

using heterogeneous or homogeneous resonance self-shielding models

are quite small.

The two significant conclusions in this comparison are that

neglecting U-238 self-shielding causes a significant error in the

calculated breeding ratio, and that a homogeneous self-shielding

model is sufficient to calculate the breeding ratio to within 0. 2%

for the LMFBR.

7. 5 Conclusions

Intra-rod foil activation measurements have been performed for

the BTF which indicate a 10% U-238 activation dip (average to surface)

occurs within a typical FBR blanket rod. This measured dip can be

ascribed to heterogeneous self-shielding effects (i. e. , the spatial

component of resonance self-shielding) within the rod, and as such

the measurement is shown to provide a very sensitive test of the

heterogeneous resonance self-shielding model used in self-shielding

calculations. Intra-rod measurement of fission product activation

suggests a peaking of first-flight neutrons within the rod (i. e. , the

fast effect), and the result is predictable, based on escape/trans-

mission probability analysis. The breeding ratio is shown to be a

quantity which is sensitive to the presence or absence of resonance

self-shielding; however, heterogeneity has a negligible effect upon the

breeding ratio. Use of the "ad hoc" cross sections of Table 7. 8 would

change the results of previous chapters negligibly since that set
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represents a small change in the heterogeneously resonance self-

shielded cross sections; one should recall that integral quantities

such as the multiplication constant are negligibly affected by the

resonance self-shielding model ( vide Section 5. 3).
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Chapter 8

SUMMARY AND RECOMMENDATIONS

8. 1 Summary

Heterogeneous effects in fast breeder reactors have been investi-

gated by developing simple but accurate models which account for the

various physical phenomena that are overlooked in a volume-averaged

homogenization. The focus of attention was upon the pin geometry

characteristic of LMFBR power reactors.

Three distinct components of heterogeneity were identified: the

effect of spatial flux distributions within the unit cell, the effect of

anisotropic diffusion, and the effect of resonance self-shielding.

An escape/transmission probability method to calculate the region-

wise average fluxes in the unit cell was formulated in Chapter 2. The

currents at the boundaries between the various cell regions were found

to be directly expressible in terms of the sources within the regions

and the probabilities of occurrence for certain escape and transmission

events. The region-averaged fluxes calculated by using the above

method were found to compare favorably with ANISN S8 [27] unit cell

calculations. On this basis, the probability method was used to gener-

ate the fluxes employed in flux-weighting the regionwise cross sections

in a manner which accounted for coarse-group spatial flux distribution

within the unit cell.

In Chapter 3, the increased leakage in a heterogeneous lattice as

compared to a homogeneous medium (particularly when coolant is

voided) was treated by adapting the method of Benoist [481. Anisotropic
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diffusion coefficients were calculated from the Benoist theory for tight

lattices. The augmented leakage in the heterogeneous lattice was

characterized in terms of directional diffusion coefficients which are

larger than the single multi-directional diffusion coefficient calculated

for a homogeneous medium.

In Chapter 4, the cross-section perturbations due to the cell flux-

weighting and the directional diffusion coefficients (the perturbation

being the difference between the volume-homogenized constants and

the heterogeneous constants calculated by the methods of Chapters 2

and 3) were interpreted in terms of reactivity effects by use of first

order perturbation theory as well as by an analogous "total differential

method" which is shown to give identical results for an equivalent bare

core.

Resonance self-shielding effects were discussed in Chapters 5 and

7, with blanket effects being the focus of the latter. The effects of

various resonance self-shielding models were investigated in Chapter 5

by means of direct, multi-group diffusion theory calculations of the

multiplication constant. Significant discrepancies were discovered if

calculations were made which ignored resonance self-shielding effects,

i. e. , major underprediction of the multiplication constant and major

overpredictions of the sodium void reactivity and the breeding ratio.

On the other hand, heterogeneous resonance self-shielding effects as

opposed to homogeneous resonance self-shielding effects were found to

be of lesser importance. It was shown that a defined "average" hetero-

geneous unit cell is quite adequate for calculations involving any real-

istic FBR geometry. Simple correlations were established which gave

directly the U-238 self-shielding factors for a wide range of
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compositions. In Chapter 7, analyses of Blanket Test Facility intra-

rod measurements provided an index for judging heterogeneous reso-

nance self-shielding models for U-238. A measured 10% depression

(average-to-surface) of the resonance flux was found to be significantly

underpredicted by the theory.

Reference FBR designs were analyzed in Chapter 6 in terms of

heterogeneous effects (exclusive of resonance self-shielding). The

major heterogeneous contribution was found to be that due to aniso-

tropic diffusion. A net decrease in the magnitude of the whole-core

sodium void reactivity addition was calculated to be of the order of 600

(for P = 0. 0033) for the reference 1000-MWe designs. For a demon-

stration plant design, the heterogeneity was found to decrease whole-

core sodium void reactivity by the order of 90g. Parametric studies

showed that by making a judicious choice of core enrichment, lattice

pitch, and lattice geometry, the negative heterogeneous effect could be

increased by a factor greater than two over the reference design values.

The fuel dispersal accident was also investigated with the conclusion

that heterogeneity provided a positive reactivity effect for this event,

being fairly negligible for the LMFBR (of the order of +200) except

for the voided core (about +90g), but fairly large for the GCFR (about

+$2. 40). However, no realistic whole-core dispersal mechanism for

such an accident in the GCFR was suggested. The simple model

developed here for calculating the reactivity effect due to anisotropic

diffusion, which is the major contributor, was found to give favorable

results when compared to a more detailed, multi-group two-

dimensional anisotropic diffusion code calculation.
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The simple models developed in this work provide an a posteriori

heterogeneous correction to a homogeneous calculation for the same

medium. The phenomenological treatment adopted has the added ad-

vantage of giving concurrent physical insight into the nature of the

heterogeneous processes.

In overall summary, several points bear reiteration:

1. It is sufficient to account for only homogeneous resonance self-

shielding and anisotropic diffusion to obtain key parameters

within their target accuracy (i. e. , k ± 1%, BR ± 3%, whole-core

Na void reactivity ± 50g). Specifically, one may neglect coarse-

group flux shape effects.

2. All heterogeneous effects serve to decrease the positive sodium

void effect; hence most contemporary calculations which neglect

one or more of the heterogeneous effects (particularly anisotropic

diffusion) are overly conservative, and thus safety design margins

are undoubtedly greater than presently established.

3. The ABBN f-factor formalism is adequate to deal with resonance

self-shielding.

4. The BTF U-metal blanket is a good simulator of UO2-Na blanket

heterogeneity effects.

8. 2 Recommendations for Future Work

The area for future endeavor which suggests itself most strongly

is the possibility of performing strict experimental checks of various

heterogeneous resonance self-shielding models through intra-rod

activation measurements, as alluded to in Section 7. 3. 2. Such
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measurements would provide a validation of the various equivalence

formulations extant which account for heterogeneous resonance self-

shielding by establishing an equivalent homogeneous cell. In particu-

lar, the extended equivalence relation proposed by Kelber [69] for the

calculation of the K-correction factor ( vide Eqs. (5. 5) and (5.6))

could be compared against the standard formulation in which K

assumes some value between 1. 3 and 1. 35; in addition, the Dancoff

factor formulae suggested by Sauer [68] and the MC2 code [91] could

be tested. The basis of these comparisons would be the precision with

which the measured activation depression within a fuel rod was calcul-

able. As shown in Section 7. 3. 2, such a procedure provides a technique

for validating the coarse-group, heterogeneously self-shielded cross

sections. Additional work should be directed toward developing a

more sophisticated theory to relate heterogeneous self-shielding

factors to the measured activation dip.

Another fertile area for further work lies in the precinct of reso-

nance self-shielding correlations. The correlations developed here

were somewhat elementary in that only U-238 resonance self-shielding

was considered, essentially because the required MIDI resonance

parameter libraries for other elements were unavailable to develop

broader correlations. Recently, a Pu-239 resonance library for MIDI

has been prepared. It would be of interest to perform direct multi-

group calculations of the multiplication constant (sodium-in and

sodium-out), using the MIDI-generated self-shielded cross sections

with Pu-239 resonances represented, to ascertain what effect self-

shielding of those resonances has on the conclusions of Section 5. 3,

which were based solely on U-238 resonance self-shielding. Some



206

modification of the correlations presented here may be required due to

the interaction between overlapping U-238 and Pu-239 resonances. In

addition, correlations for Pu-239 self-shielding factors could be

developed, probably quite similar in form to those presented in

Section 5.4 for U-238. The expanded one-group correlation model of

Sheaffer, which now incorporates resonance self-shielding, may find

somewhat wider applicability: for example, the analysis of Doppler

coefficient measurements performed on SEFOR. For completeness,

the effects of heterogeneity on light element resonance scattering (e.g.

in sodium) should be investigated; as well as the entirety of Th-232

self-shielding effects since the latter material has been suggested as

a major blanket constituent.

More detailed core representation within the context of the simple

model is in order. For example, gross heterogeneities such as control

rod regions and in-core test loops have been found to cause region-wide

flux heterogeneities in FBR cores [6, 901, suggesting that a homogene-

ous, equivalent bare core representation is not a sufficient basis for

the first order perturbation theory calculation of heterogeneous reac-

tivity effects. The results obtained here for whole-core voiding are of

sufficient interest to 'suggest an examination of local voiding in light of

heterogeneous effects.

Calculations of the whole-core fuel dispersal accident and its

attendant insertion of reactivity, quite large in the case of the GCFR,

suggest an area for further study; in particular, further analysis

should seek to ascertain if any realistic mechanisms can be established

for the propagation of such an accident.
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The theory of Benoist is well-established. Any further work in

this area would best be devoted to the formulation of a fairly detailed

experimental verification in a FBR-oriented application. The analyti-

cal formalism required to calculate anisotropic diffusion effects in

plate-geometry using the theory of Benoist is available in the German

KAPER code [89] and was found to adequately analyze a sodium void

traverse experiment in which the plate orientation was rotated 900

between two sets of measurements. It would be of some interest to

employ the KAPER formalism in analyzing the heterogeneity measure-

ments of Reference 31 in which only an ad hoc assumption was made

concerning the effect of anisotropic diffusion. This should provide

further confirmation of the validity of the Benoist theory in fast

systems.

Lastly, the escape/transmission probability theory does not

immediately suggest itself as a candidate for future effort for FBR

applications of the type considered herein, especially since the final

heterogeneous reactivity contribution due to the coarse-group spatial

flux distribution effect is insignificant compared to the other hetero-

geneities. However, the unit cell theory may find wider applicability

(e. g. , in thermal lattice analysis) due to its efficiency of use. On a

fine-group level, it has the potential of replacing the equivalence

principles currently in use by providing a direct calculation of hetero-

geneous resonance self-shielding effects. In addition, the question of

the proper unit cell boundary condition remains. Of the two available

choices, mirror or white, the latter boundary condition yields more

reasonable results, though recent work [31] has suggested it causes

an underprediction in the cell-flux structure. There is no explicit
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assumption about the type of reflective boundary condition in the proba-

bility theory; however, it is found to give good agreement with ANISN

calculations employing the white boundary condition. Thus the impli-

cations of the choice of boundary condition may be further investigated.

8. 3 Conclusion

The single, overall conclusion which this work reaffirms is that

simple models can have a great utility in the analysis of fast reactor

neutronics. To a large extent, complex computer-oriented calculations

have been considered de rigueur in reactor analysis; however, simple

methods are capable of providing significant physical insight and quite

respectable accuracy for design calculations of particular parameters.
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Appendix A

MEAN CHORD LENGTH CALCULATIONS

A. 1 Internal Sources

For the calculation of escape probabilities to be used in the formal-

ism of Chapter 2, one requires the mean chord length for neutrons

born in the fuel rod. The fundamental assumption of the calculation is

that the rod may be treated as a transparent medium.

Figure A. 1 pictures the situation for an isotropic source at point

S inside the transparent rod, emitting neutrons along the escape chord

SB described by the azimuthal angle 4 and the angle of inclination 0.

Averaging all possible escape paths originating at point S over all solid

angles gives the "local" mean chord length:

127r 2r
,P = f SB sin0 dO d . (A. 1)

4=0 0=0

Recognizing that SB sin 0 = PC, allows one integration to be performed,

leaving:

27r
k = PC do. (A. 2)

0

The law of cosines gives:

PC = -r cos4 + R 1 - sin2k , (A. 3)

which when substituted into Eq. (A. 2) leads to:

k = R /7r/2 -(2 sin24 do (A. 4)
0
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Fig. A. 1 Escape Chord Length from Transparent Cylinder
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The above integral is recognized as the complete elliptic integral of

the second kind
2

X with a known series expansion, thus:

2
2=R 4 

+ 

.

.

.

To calculate the mean chord length, the source distribution function

S(r) needs to be specified.

R

The mean chord length is given by:

27rr 1(r) S(r) dr

R

0

(A. 6)

2rr S(r) dr

where 1(r) is given by Eq. (A. 5). For a general parabolic source

distribution:

2 2
S(r) = 1 + a r ,

and the mean chord length is calculated to be:

(A. 7)

(A. 8)=±R 1 -

In the case of a uniform source distribution, a = 0 and one has

= $R the result used in Section 2. 4.

A. 2 External Sources

For the calculation of transmission probabilities to be used in the

formalism of Chapter 2, one requires the mean chord length within

the fuel rod of neutrons entering the region from an outside source.

Again, the medium is assumed to be transparent.

Figure A. 2 pictures the situation where S is now at the surface of

the rod and the transmission chord length is SB. For the entering

distribution f(O):

(A.5)1

+ ... 1.
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S D

Fig. A. 2 Transmission Chord Length Through Transparent Cylinder
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7= 5~2Sf(O)d dO. (A.9)
0=0 0=0

The chord SB can be identified as:

SB = 2R cos 0 (A. 10)

1 - sin 0 sin 20

which leads to the mean chord length:

i =2R f7r/2 f() d0. (A. 11)
0

For an isotropic distribution (e. g.., f(0) = cos 0), P_ 2R, the result

used in Section 2. 4.

Interestingly enough, if the distribution is normalized so that the

integral in Eq. (A. 11) is unity, then Y = 2R regardless of the form of

the distribution (this normalization of f(0) corresponds to one neutron

emitted into the right half plane). Thus, to first order, the trans-

mission probability is independent of the incident angular distribution

for all distributions which are a function only of the angle between the

neutron direction and the normal to the surface.
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Appendix B

FURTHER BOUNDARY CURRENT EQUATIONS

In this appendix, the derivations of the remaining boundary current

equations for the escape/transmission probability model of the FBR

unit cell are given. As such, this section is an amplification and con-

tinuation of the derivation presented in Section 2. 2.

For fuel region source density Sy

To calculate j_:
S

(0) 1S P r (B. 1)
S

-iS p
11

-LPT P+T PTPT
2 13 3 31 1 1 3  3T33 3 3 1  1

T 1 3P 3 (T 3 3P 3) 2 T 3 1P 1+ ..}I (B. 2)

.(2) P T13 T31 P1
_- =S 1p-- 1 - T P

S 33 3 13 3 T31 1+...

+T 1 3 P 3 (T 3 3 P 3)m T 3 1 P 1+...

_ r 1 - T33 P3
133 3 13 331 1

(B. 3)

(B.4)IS
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To calculate j
1N

(0)

N

2

2r2

2
=S p r.1)

T 13±T 13 (P3T 3 3 )T 1 3(P 3T 3 3)
2 +. . .} (

T 13 3 3T 1PT 3T 1P1T T
(1-TP) /P 13113+P3 31 13(P 333 3

.5)

+P 3 T 3 1 P 1 T 1 3 (P 3 T 3 3 ) 2+. ..

2
r

T13 )(P3T31 1T13)

1T T33 3 1 T33 3

2

.j+ = S 1 2 [ A. 13

1-T33 3 13 3 T31 1

To calculate j_
N

_p3 j(0)

N

~P (13 j
N

2

j- = Sp r
N I1(2r2)

p 3 T13
L1-T P -T P T P33 3 13 3 31 1

For coolant region source density S3

To calculate j+
S

.(0)

S

2 2
3 r 3 r 2)

S3 3( 2r)

( 1)
j+ S 3 Jj±

r2 - r2

2r2r1

T 3 1 +(T 3 3 P 3 )T 3 1 +(T 3 3 P 3 ) 2 T 3 1+. ..

(T31 31 3I P T 3T +P1-T 33 P 3) 1 13 3 31

+P 1 T 1 3 P 3 (T 3 3 P 3 ) 2 T 3 1 +. .. }

} (B. 12)

2 2
r - r

=S 3p 3 2r 2

T 3 1  (P 1 T 1 3 P 3 T 3 1 )

1- T33 3 1 T33 3

(2)

N

(B.6)

(B. 7)

I (B.8)

j(0)

N

j(1)

N

(B. 9)

(B. 10)

(B. 11)I

.(2)

S

1 T 1 3 P 3 (T 3 3 P 3 )T 3 1

(B. 13)

9

(B. 14)
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.+ . (r -r
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To calculate j_:
S

()

S S

... _

2 2

- 33\ 2r

I

I-

131

1- T33 3 31 1 13 3

1 T31
1-T3 PT T3  PT33 3 T31 1T13 3

To calculate j_
N

2 2
S3 3 r r2

2

2 2

3P3
2

I1+T33 3 (T33P 3 +...

)(1-T33) { 31P 1T 1 3P3 T 31P 1 T 1 3P3 (T 3 3P 3)

+T 3 1 P 1 T 1 3 P 3 (T 3 3 P 3 )2 +... }

2 2

(r-_. 3 r2 1 31 1T133
S3P3 2r2 1-T 3 3P 3 1-T33 P3

2 2
S3 3r -r233 2r2 2) L1-T

1

33 3 31 1 T13 3

To calculate j+
N

.(0) -

+ 3p3
N

1)

(
2 2

r3  2)

2

2 2

3 33r32r 
2 )

{T 3 3 T 3 3 (P 3 T 3 3)T 3 3 (P 3 T 3 3) 2 +.

T 3 3
1-T 33P3

(B. 22)

) P 3 T 3 1 P 1 T 1 3 +P 3 T 3 1 P 1 T1 3 (P3 T3 3 )±. .-

+[T 3 1 1T13 T 3 1 P 1T13(T 33P 3 31 1T13 33 3 2 .2.

(B. 23)
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I (B. 15)

(B. 16)

(B. 17)

*(0)

N

(1)

N

} (B. 18)

.(2)

N

(B. 19)

N

2

I

(B. 20)

(B. 21)
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=S p r 3 -r
- 3 3 2r 2

T 3 3 _ P 3 T 3 1 1T13 2

1-T 3 3 P 3 1- T33 3

+ T31 1T13)
+\ 1-T33 3

S3 T31 1 T13

1-T33 3

P 3T31 P1T13
)( 1T33p 3

+ T31 p1T13
1-T33 3

S22
= S 3 3 2r 2 ) [ 1... N 3

S3 T31 1 T13
1-T33 P3

2

I
T33 31 1 T13

33 3 3 T31 1 T13

(All notation is defined in Section 2. 1 )

.(2)

N
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.(3)

N

2 2

2r
2
)

(B. 24)

It
T 33

(1-T 33 p3

3

(B. 25)

(B. 26)2

3 3\ (
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Appendix C

CALCULATION OF FLUX RATIOS IN THE

TWO-REGION UNIT CELL

Considerable simplification of the calculation of average flux ratios

in the unit cell results when the cell is represented by two regions

(i. e. , the clad, as a distinct region, is neglected).

Using the same notation as in Section 2. 2, we consider successive
r 1

events for a neutron born in the fuel, region 1: Sip1  neutrons per

cm 2 of surface per second escape the fuel initially, (Sp 1 4) ( 2 1

escape the fuel after returning,(S1 p1 4) (PP1 )2 do so after a second

return to the fuel, and so on. Summing up, one finds S 1 p r/2(1- P1 P 2)

is the current leaving the fuel, where the source is S neutrons/cm 3 sec.

Similarly, the current leaving the coolant, region 2, is

S 2 2 (r2 - r )/2r (1- P 1 P 2 )'
r

To consider neutrons returning to each region: S p P neutrons1l 1 2 2

escape the fuel and return, (S1 p P2 1 2 re-escape and return

a second time, and so on, summing up to S p i P 2/ 1P 2

neutrons/cm2 sec entering the fuel due to the source S1 within the fuel.

Again, similarly, the current entering the coolant due to sources within

2 2the coolant is S 2 P 2 (r 2 rl)P1 /2r,(1-P 1 P 2)'

The partial current entering the fuel rod is the sum of entries due

to neutrons from internal and external sources:

2 2
S pr 1 P 2  S 2 (r 2 r )
21 - P P2) + 2r (P2 2 , (C. 1)
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while the partial current leaving is:

S 1 pi 1
2(1- P 1P 2

2 2

+ S 2 2 (r 2 r1 ) 1
2r 1 (1- P 1 P 2 )

One notes that the three-region formulae (Eq. (2. 8) through Eq. (2. 11))

reduce to these expressions in the limit of zero clad thickness, at

which point the transmission probabilities associated with the clad

attain the limits: T33 = 0, T 13 T 31 '

As before, the average flux within the region is given by a neutron

balance. For the fuel rod, one finds:

Eal~l r
2

=27r r 1J +±r (C. 3)

where J is the net current into the rod: J = j+ -
S S

. One can define the

flux at the rod surface as: 40 = 2(j++j_ ).

and (C. 3), one finds the flux ratio:

1 
1Eal r1

Using Eqs. (C. 1), (C. 12,

2 2
(r2 -r)

S 2 p 2  r 1  (1-P 1 )-S 1p 1 rI(1-P 2 )+S (1-P P2
122

S1 p r1 (1+P 2 )+S 2 P2 (
r2-r

2r (1+PS1

Noting that the partial current entering the coolant is identical to the

partial current leaving the fuel, and similarly for the partial current

leaving the coolant, one may proceed with an analogous derivation of:

S1p 1 r 1 (1-P 2 ) -

2 2

2 2 2 -r (1-1)S2r 1r 1

2 2 
~a 2 (r-ri) S1 p r I(1+P 2 )

2 2
r -r

+S 2 2 ( 2r1 ) (1+P 1

S
(C. 2)

(C. 4)

)

1 2

)

(C. 5)
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The escape probabilities are defined as before, with the exception

of the P. probabilities which require a second order term for the linear-

ization which will be carried out below. That is,

4
P, E al jr (C. 6)

P2 a2 z2 (C. 7)

P 1 = 1 - ral a + (r)2 (C.8)

P 122 z2 +8 Ea 2 z 2 ) 2  (C. 9)2 a2 2

where z= r-2 r/r 1 .

After considerable algebraic manipulation, in which the second

order terms of Eqs. (C. 8) and (C. 9) are required at intermediate points,

and neglecting higher order terms in the resulting expressions, one

finds linearized formulae for the flux ratios:

S2 
(C. 10)

=_ 13 al1(S 1 +S 2  a2z2 (S 1+S 2 (

S 1 2 1 2

22S S1(C 12

= 1±+ al1(S2 2 a2z2(S 1+ 2  (C. 11)

= 1+ Kalr1(S2+S2 a2z2 S1s 2  . (C. 12)

If the shape of the flux in each region is assumed to be parabolic, the

following expression relating the center-line, fuel average, and fuel

surface fluxes results:

(OS - N1) = (i - # )h ,(C. 13)
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so that:

S + E2a r 1 S +
=1 ~, S [Yir(-± 2 E 2 z 2 S+2

The above results may be compared to results in the literature.

For thermal neutron absorption by a non-moderating fuel rod, the

slowing-down source S 1 is zero; thus:

(C. 14)

1r
= 1 3 al l

2
and 1 - Eal r

An extensive study has been carried out on metallic fuel and absorber

rods in D 2 0 moderator [88] . Empirical curve fits to the experimental

data were reported as:

IP11
= 1 - 0. 34957 Eal r and -= 1 - 0.69713 Eal r,

which are in substantial agreement with the theoretical predictions.
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Appendix D

CROSS-SECTION LIBRARIES

The DELKHET code for calculating heterogeneous reactivity effects

requires a two-group cross-section library (see Appendix E). This

appendix presents standard two-group cross-section sets for an oxide

core (13. 1% Pu-239) and a carbide core (11% Pu-239) plus their

blankets. The cross sections were generated by collapsing the 26-group

ABBN set using the ANISN code. A cylindrical geometry representation

was employed: core radius = 110 cm; blanket outer radius = 152. 4 cm;

core + blanket height (sodium-in) = 123. 6 cm; core + blanket height

(sodium voided from core) = 140. 8 cm. The last two parameters differ

for the Na In and Na Out cases due to the change in axial reflector

savings which in turn affects the axial DB2 correction. The core

geometry is typical of that for a 1000-MWe reactor, and the enrich-

ments were chosen so that k e'= 1. 0 with sodium present. Tables D. 1

through D. 8 list the two-group libraries (the group 1 cut-off being

1. 4 MeV) for core and blanket; the sodium voided values

assume the sodium to be absent from the core only, which also changes

the blanket constants due to the altered spectrum.

Both the transport cross section and the total cross section are

listed since the Benoist theory (see Chapter 3) requires both. The

ANISN calculations were performed in the transport approximation;

thus the as given in the tables is in reality a nel + (1-_)o-e . The

group-collapse yielded the values of a tr, from which I-t was calculated

in two steps:
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a (' = (a- aa)/(1-) (D. 1)
s tr a

and

a = -' +a . (D. 2)
t s a

The result of Eq. (D. 2) is not rigorously true since it implies:

at= el a- mel t=a el inel
o- = a + y + s instead of the proper definition: a =a +- g ine1

t a s5 a s 5

1 -A el
The imprecision arises because it is not possible to separate a and

a nel out of the collapsed a- (i. e., a- a + (1-j) ±l a ine). However,s s . tr = a 5j 5

the error is negligible since a-el , aine1 for the light elements and
5 5

(1-) :> .94 - 1. 0 (for the worst case, carbon, 1 - f = .94). The ulti-

mate quantity calculated is Et whose main contribution comes from the

heavy elements Pu-239 and U-238 for which 1 - . 997; thus the over-

all effect of the error in Eq. (D. 2) is insignificant.

Table D. 9 lists the nuclide number densities required to calculate

regionwise macroscopic cross section within DELKHET.



TABLE D.1

Two-Group" Library for Oxide
(barns)

Core - Na In

Group 2

0. 0

3.4850

3.4850

3.6365

Oxygen
a

otr
cys

Ut
cr

r

a

otr

as

ct

r

a

ctr

os

ct
cx

r

a
Va f

atr

cx
s

at

r

aa
vcxf
ctr

os
cx t
a
or

Sodium

Iron

Pu-239

Group 1 = 10.5 MeV - 1. 4 MeV ; = .57
Group 2= 1.4MeV - 0.0252eV ; X2 =.43

224

Group 1

0. 010256

1.4503

1.2519

1.5047

0. 18807

0020010

9686

9665

1169

018680

0516

0328

1123

0.

1.

1.

2.

0.

0.

2.

1.

2.

0.

2.

6.

4.

1.

4.

1.

U-238

0.

4.

4.

5.

0.

5.

5.

5.

2.3232

5.4229

10. 450

8. 1267

10.473

0. 37268

0.0036785

10. 337

9.9640

10.365

0018692

9707

5644

0174

40442

0036805

4241

7278

4449

69255

0177

3980

7911

7070

7959

0664

0.57821

1.5136

4. 9917

1.8282

4.9968

2. 5852
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TABLE D.2

Two-Group Library for Blanket (Oxide Core - Na In)
(barns)

Group 1 Group 2

Oxygen 9a 0.010519 0.0

tr 1.4460 3. 4629

as 1.2424 3.4629

1.5000 3.6135

ar 0. 19306 -

Sodium a 0.0018570 0.0037377
a
tr 1.9743 6.6328

as 1.5633 6.6289

Ut 2.0210 6.8306

U 0.40916

Iron U 0.0036857 0.022911
a

Utr 2.4234 5.7646

Us 1.7172 5.7416

at 2.4441 5.8337

Ur 0. 70251 -

Pu-239 a 2.0176 2.5315
a

V f 6.3945 5.6439

Utr 4.7956 11.566

U 1.7113 9.0343
s

Ut 4.8004 11.591

a 1.0667 -
r

U-238 U 0.57699 0.45871
a

v f 1.5073 0.0015791

r 5.0027 11.421

U 1.8354 10.962
S

Ut 5.0079 11.452

Ur 2.5901
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TABLE D.3

Two-Group Library for Oxide Core - Na Out
(barns)

Oxygen

Group 2

0. 0

3.4907

3. 4907

3. 6425

a
Utr

as

Ut

r

a

tr
U

s
Ut

a
r

9
a

Va

otr

U
s

at

cr
r

a
v f

tr

os

Ut

or

Group 1

0. 010795

1.4465

1. 2506

1.5009

0. 18507

0. 0037397

2.4193

1. 7248

2. 4401

0. 69076

2. 0171

6.4043

4.7822

1.6996

4. 7870

1.0656

0.57917

1.5204

4.9785

1.8213

4. 9836

2. 5779

Iron

Pu-239

0.016091

4.7622

4. 7460

4.8194

2. 1454

5.1713

10.003

7.8575

10. 025

0.30571

0.0038267

9.9418

9.6361

9. 9688

U-238



TABLE D.4

Two-Group Library for Blanket (Oxide Core
(barns)

Group 1

gen aa 0.010860

atr 1.4435

a s 1. 2413

a t 1.4975

U r 0.19136

Sodium

Iron

Pu-239

a

tr

s

Ut

r

a

Utr

U

Ut

r

a
v f

Utr

U

Ut

r

a
V a f

otr

at

r

U-238

- Na Out)

Group 2

0. 0

3.4630

3.4630

3.6135

0.

6.

6.

6.

0019155

9704

5607

0170

40777

0037190

4205

7150

4412

70176

0172

3981

7903

7069

7951

0662

57749

5111

9948

8314

9999

5857

0.

5.

5.

5.

0037447

6585

6547

8572

022329

7021

6798

7706

2. 4782

5.5678

11.438

8.9599

11.463

0.43981

0.0015614

11.313

10. 873

11.344

227

Oxy



TABLE D.5

Two-Group Library for Carbide Core -

(barns)

Group 1

aa 4. 2044E-5
a

atr 1.6046

a s 1.3309

a t 1.6829
ar 0. 27364

0. 0018834

1.9608

1.5620

2. 0074

0. 39692

0. 0036640

2.4207

1.7367

2.4416

0. 68035

2. 0165

6.4038

4. 7780

1.6959

4.7827

1.0656

0. 57951

1.5232

4.9661

1.8149

4.9712

2.5716

Na In

Group 2

0. 0

3.7372

3.7372

3.9571

0. 0018349

4.8555

4. 8535

5.0003

0.017381

4.8859

4.8684

4. 9445

2. 2256

5.2947

10. 107

7. 8810

10.129

0. 33646

0. 0040714

10.010

9.6735

10.037

228

Carbon

Sodium

Iron

Pu-239

a
Utr

as

at
ar

aa
r

as
a

a tr

va

as

at
r

a
v 9

a tr

as

a t

ar

r

a
V cf

Ut

r

U-238



229

TABLE D.6

Two-Group Library for Blanket (Carbide Core - Na In)
(barns)

Carbon

Group 2

0.0

3.9040

3.9040

4. 1336

a

otr

as

at

r

a
ctr

asS
Cxt

r

a

ctr

at
r

cx
a

Va f

cxtr

as

at

r

cxa

9 tr

as

at

r

Group 1

3. 9677E-5

1.6014

1.3255

1.6794

0.27580

0.0018502

1.9610

1.5610

2.0076

0.39816

0.0036436

2.4198

1.7324

2.4407

0.68375

2.0160

6.4018

4.7781

1.6963

4.7828

1.0657

0.57879

1.5204

4.9669

1.8167

4.9720

2.5715

Sodium

Iron

0.0032557

6.2307

6.2274

6.4166

0.020810

5.5002

5.4793

5.5662

2.3765

5.4403

11.026

8.6495

11.050

0.40119

0.0019778

10.914

10.513

10.944

Pu-239

U-238
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TABLE D.7

Two-Group Library for Carbide Core - Na Out
(barns)

Group 1 Group 2

Carbon oa 4. 4366E-5 0. 0

U-tr 1.6022 3.6761

as 1.3334 3.6761

at 1.6806 3.8924

a r 0. 26875 -

Iron a 0.0037107 0.015027

Utr 2.4163 4.6064

u 1.7354 4.5913

at 2.4372 4.6618

a 0. 67713 -

Pu-239 a 2. 0158 2. 0896a
V a-f 6.4099 5.1264

atr 4.7687 9.6800

Us 1.6881 7.5902
5

ot 4.773 9.7013

ar 1.0648

U-238 U- 0. 58049 0. 28301a
v o-f 1.5303 0.0043322

Utr 4.9514 9.6122

as 1.8072 9.3293

Ut 4.9565 9.6383

a-r 2.5636



TABLE D.8

Two-Group Library for Blanket (Carbide Core
(barns)

Group 1

rbon 9a 4. 0754E-5

atr 1. 5999

a S 1. 3266

a t 1.6779

ar 0.27317

a

Utr

S

Ut

r

a

Utr
a

S

Ut

r

a
v U f

tr

s

Ut

r

a
v 9 f
atr

asS

Ut

r

- Na Out)

Group 2

0. 0

3.8848

3. 8848

4.1134

0.

6.

6.

6.

0.0018958

1.9571

1.5588

2.0036

0. 39645

0. 0036674

2.4172

1.7314

2. 4381

0. 68214

2.

6.

4.

1.

4.

1.

0.

1.

4.

1.

4.

2.

0156

4051

7728

6920

7775

0653

57929

5241

9587

8124

9638

5668

0032049

1988

1956

3838

0. 020137

5.4146

5.3943

5. 4795

2.3317

5.3814

10. 876

8.5445

10. 900

0. 38403

0. 0019839

10. 776

10. 391

10. 805

231

Ca

Sodium

Iron

Pu-239

U-238
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TABLE D. 9

Nuclide Number Densities

(10 24/cm3 )

Nuclide Metal Oxide Carbide

Pu-239 0.0494 0.0222 0.02646

U-238 0.0483 0.0218 0.0295

U-235 0.0483 0.0218 0.0295
**

Na 0.0224

Fe 0.0848

90 % theoretical density

800 *F
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Appendix E

COMPUTER CODE NOTES

In this appendix, listings of the two minor codes programmed to

perform the heterogeneity calculations discussed in the text are pre-

sented, as well as comments on using the programs.

E.1 DELKHET

DELKHET is a code which calculates the spatial flux distribution

and anisotropic diffusion components of the heterogeneity effect. The

former is calculated using the escape/transmission probability

formalism of Chapter 2, while the latter is based upon the theory of

Benoist discussed in Chapter 3. The reactivity effects are calculated

both from a two-group, equivalent bare core, first order perturbation

theory approach and from the "direct" method of Section 4. 1 (i. e. ,

calculating the total differential Ak).

E. 1. 1 Input to DELKHET

Variable Columns Format Description

Card 1 (To run a series of cases, repeat from this card)

TITLE(18) 1-72 18A4 Identification

CZECH 73-80 G8. 0 Normally blank field. If CZECH>0.0,
program stops; to be used as an end
card following last case.

Card 2

ITAB 1-4 14 ITAB=0, cross-section table to be
input

ITAB=1, use cross-section table
from previous case (not
input for present case)
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Variable Columns

Card 2 (continued)

5-8

9-20

Format

I4

G12. 0

21-32 G12. 0

33-44 G12. O

45-56 G12. 0

57-68 G12. O

69-80 G12. 0

Description

IFLAG

Cards 3-12 (absent if ITAB=1)

MICRO1(5,5)

MICRO2(5, 4)

1-60

1-48

5G12. 0

4G12. 0

group 1 cross sections

group 2 cross sections

Cross-section library formed in the following order:

Card Cross-section description

U-238, group 1
U-238, group 2
Pu-239 (or U-235),
Pu-239 (or U-235),
o (or C), group 1
o (or C), group 2
Fe, group 1
Fe, group 2
Na, group 1
Na, group 2

group 1
group 2

IFLAG=O, full calculation for mini-
mum critical core
(R = 0. 55 H)

IFLAG=1, ratio of average fluxes to
be input

IFLAG=2, bucklings to be input

IFLAG=3, flux ratios and bucklings
to be input

IFLAG=4, uses bucklings from
previous case (not input
for present case)

IFLAG=5, core L/D to be input
(calculates critical core
size)

fuel rod radius (cm)

clad outer radius (cm)

unit cell outer radius (cm)

fraction of fission spectrum in group 1

fraction of fission spectrum in group 2

total delayed neutron fraction

R(1)

R(2)

R(3)

CHIl

CHI2

BETA

3
4
5
6
7
8
9

10
11
12
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Order of cross sections on each card:

group 1: absorption, nu* fission, transport, removal, total

group 2: absorption, nu* fission, transport, total

All cards must be present, even if element is absent in core (blank
card may be inserted in that case).
blank fields. Last eight columns o
used for any label.

Columns

1-60

Format

5G12. 0

Zeros may be entered as
f cross-section cards may be

Des cription

Regionwise number densities in the
order:

U-238
Pu-239 or U-235
O or C

in fuel rod

Fe - in clad

Na - in coolant region

Last eight columns may be used for
label.

Card 14 (absent unless IFLAG=5)

ELDE 1-12 G12. 0 L/D for core

Card 15 (absent unless IFLAG=2 or IFLAG=3)

1-12 G12. 0

13-24 G12. O

25-36 G12. O

total buckling (cm 2)

radial buckling (cm- )

axial buckling (cm-2 )

Card 16 (absent unless IFLAG=1 or IFLAG=3)

1-12 G12. 0

13-24 G12. 0

25-36 G12. 0

37-48 G12. 0

average clad flux + average fuel
flux for group 1

average coolant flux average fuel
flux for group 1

average clad flux + average fuel
flux for group 2

average coolant flux + average fuel
flux for group 2

Variable

Card 13

DNS(5)

B2

B2RAD

B2AX

FUCL(1)

FUCO(1)

FUCL(2)

FUCO(2)
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E. 1. 2 Output from DELKHET

The output from DELKHET consists of three pages per case. The

first page provides an input check and prints out the cross-section

table and number densities used. The second page presents the results

of the spatial flux distribution calculation. The cell radii input are

printed (R), as well as the sum of Ea +Er +DB2 for each region (SIG).

Regionwise sources are printed (S). The calculated flux ratios for the

first-flight and multiply-collided groups are given.

On the third page, the results of the heterogeneous reactivity calcu-

lation are presented. The homogeneous (i. e. , volume-averaged) and

heterogeneous (i. e. , spatially flux-weighted and anisotropic diffusion

corrected) cell constants are printed, the left-hand column for group 1

and the right for group 2. As an input check, the fission spectrum X-
2are printed, as are the B which may have been internally calculated

depending on the IFLAG option. The kef of the homogenized core is

printed (K). The nine individual reactivity contributions calculated in

two ways (perturbation theory and partial differentials of k) are printed,

together with the net heterogeneous effect.

E. 1. 3 Typical Procedures

If the two-group cross-section set for the case of interest is not

available, the tables in Appendix D (which were generated for typical

FBR cases) may be used. If the consistent reflector savings procedure

of Section 6. 1 is to be used, DELKHET calculations for the sodium-in

cases with IFLAG= 0 will yield the required critical total buckling

(BSQUARED). This buckling may then be divided into radial and axial

components using the procedures of Section 6. 1. Whereupon, the
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DE LKHET calculations may be repeated with IFLAG= 2 and the axial

and radial buckling values calculated input on Card 15 obtain the

final results.

E. 1. 4 Listing of DELKHET

The following pages contain a listing of the DELKHET code.



*** DELKHET ***

A PROGRAI TO CALCULATE THE TWO-GROUP HETEROGENEOUS REACTIVITY EFF
DUE TO ANISOTROPIC DIFFUSION AND NON-UNIFORM UNIT CELL FLUXES

DIMENSION TITLE(18),R(3),SIG(3),RAT(4),XABl(3),XTRAN1(3),XNUF
1 XSIG12(3),XDl(3),XD2(3),XA32(3) ,XNUF2(3),XTRAN2(3),FUCL (2),
2 FUCO(2),XTJTI(3),XTOT2(3),DNS(5),TAGL1(5),TAG12(5),TAG21(5),
3 TAG22(5)

REAL JAPSJAMSJAPNIJAMNNUF1,NUF2,KMICROI(5,5),MICR2(5,4)
1 READ(5,5) TITLE,CZECH

[F (CZECH.GT .O.O)STOP
READ IN OPTION CONTROL, CELL RADII, FISSION SPECTRUM, BETA

REAC(5,10)ITAB, IFLAG,R,CHI1,CH[2,BETA
ITAB=0, INPUT CROSS-SECTION TABLE
ITAB=1, USE CROSS-SECTIDN TABLE FROM PREVIOUS CASE
IFLAG=0, FULL CALCULATION, ASSUMES MINIMUM CURE VOLUME
IFLAG=1, INPUT FLUX RATIOS
IFLAG=2, INPUT BUCKLING
IFLAG=3, INPUT RATIOS AND BUCKLING
IFLAG=4, USES BUCKLING FROM PREVIOUS CASE
IFLAG=5, INPUT CORE L/D, ASSUMES K=1.

5 FORMAT(18A4,G3. 0)
10 FORMAT(2I4,6G12.0)

V1=3.141 593*(R (1 )**2)
V2=3.141593*(R(2)**2-R(1)**2)
V3=3.141593*(R(3)**2-R(2)**2)
Z3 = (R(3)**2-R(2)**2)/R(2)
IF(ITAB.EQ.1)GO TO 211

READ IN TWO GROUP MICRO-S IGMAS
DO 213 1=1,5
READ(5,82 )(MICROI( I,KK) ,KK=l, 5), TA311( I) ,TAG 12(l)

210 READ(5,83)(MICRO2(I,KK),KK=1,4),TAG21(I),TAG22(I)
82 FORMAT(5G12.0,12X,2A4)
83 FORMAT(4G12.0,24X,2A4)

I

C
C
C
C
C
C

DELK
DELK
DE LK

ECTSDELK
DELK
DELK

(3),DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK

DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36

CIO



C
C

C

C

MICRO1=ABSNUFTRAN,REM,TOTAL FOR GROUP 1
MICRO2=ABS,NUFTRANTOTAL FOR GROUP 2

211 CONTINUE
RE4 IN REGION-WISE NUMBER DENSITIES

RE AD (5 ,82) ( DNS ( I), I=1, 5) ,TAGA, TAGB
DNS=U-238,U-235/PU-239,0,FE,NA NUMBER DENSITIES

WRITE(6,84) TITLE
R4 FORMAT(IH1,20X18A4,///,' INPUT CHECK - CROSS SECTION LI

DO 85 1=1,5
WRITE(6,12)fMICROl(IKK),KK=l,5),TAGIl(I),TAG12(I)

85 WRITE(6,13)(MICRO2([,KK),KK=1,4),TAG21(I),TAG22(I)
WRITE(6,12) (DNS( I),I=l,5),TAGATAGB

12 FORMAT(IH ,5G12.5,12X,2A4)
13 FORMAT(IH ,4G12.5,24X,2A4)

WRITE(6,86)
86 FORMAT(lH ,'NOTE--ORDER OF ELEMENTS AND GROUPS ON INPUT

1238-1,U0238-2,J235-1/PU239-1,0235-2/PU239-2,0-1,0-2,FE-1
INA-2',
2/,T7X,'ORDER OF TYPES ON EACI CARD IS ABS, NUF, TRAN, RE

DE LK
DELK

DELK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DELK
DFLK
DELK
DELK
DELK

CARDS IS UDELK
FE-2 ,NA-1 ,DELK

DELK
M, TOTAL FODELK

3R GROUP 1',/,38X,'ABS, NUF, TRAN, TOTAL FOR GROUP 2',/,7X,
4DENSITIES INPUT I SAME ORDER AS CROSS-SECTIONS.')
WRITE(6,20) TITLE

C CALCULATE REGION-WISE MACROSCOPIC CROSS-SECTIONS
XABI(1)=DNS(1)*MICROl(1,1)+DNS(2)*MICROL(2,1)+CNS(3)*MICROl(3,1)
XAB2(1)=DNS(1)*PMICRO2(1,1)+DNS(2)*MICRO2(2,1)+DNS(3)*MICRO2(3,1)
XAB1(2)=DNS(4)*MICR01(4,1)
XAB2(2)= DNS (4)*MICRO2(4, 1)
XAB1(3)=DNS(5)*MICRO1(5,1)
XA32(3)=DNS(5)*MICRO2(5,1)
XNUFl( 1) =DNS( 1)*MICROI( 1, 2)+ DNS( 2)*M ICRO 1( 2, 2)
XNUF2(1)=DNS(1)*MICR02(1,2)+DNS(2)*MICRO2(2,2)
XTRANI(1)=DNS( 1)*MICROI(1,3)+DNS(2)*MICR01(2,3)+DNS(3)*MICRkJ1((3,
XTRAN2(1)=DNS(1)*MICRO2(1,3)+DNS(2)*MICRO2(2,3)+DNS(3)*MICRD2(3,
XTRAN1(2)=DNS(4)*MICRO1(4,3)
XTRAN2(2)=DNS(4)*MICR02(4,3)
XTRANl(3)=DNS(5)*MICRO1(5,3)

R DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DE LK
DELK

3) DELK
3)DELK

DELK
DELK
,DELK

BRARY')

3T
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72



XTRAN2
XSIG12
XSIG12
XSIG12

(3
(1
(2
(3

)=DNS(5)*MCCR02( 5,3)
)=DNS(1)*MICRO1(1,4)+UNS(2)*MICROI(2,4)+DNS(3)*MICRO
)=DNS( 4)*MICRO1 (4,4)
)=DNS(5 )*M ICRO 1(5,4)

DELK
1(3, 4) DELK

DELK
DE LK

XTOT(1)=DNS(1)*MICRO1(1,5)+DNS(2)*MICRO1(2,5)+DNS(3)*MICRO1(3,5)
XTOT2(1)=DNS(1)*MICR2(1,4)+DNS(2)*MICR2(2,4)+DNS(3)*MICR2(3,4)
XTOTI(2)=DNS(4)*MICRO1(4,5)
XTOT2( 2)=Dl S(4) *MICRO2(4,4)
XTOT1(3)=DNS(5)*MICRO1(5,5)
XTOT2( 3)=DNS(5)*MICRO2 (5,4)
DO 214 1=2,3
XNUFI( I)-=0.0

214 XNUF2(I)=J. 0
C 216 I=1,3
IF(XTRAN1(I).EQ.0.0) GO TO 215
XDl( I)=.3333333/XTRAN1(1

215 CONTINUE
IF(XTRAN2(I).EQ..0.) GO TO 216
X02( I)=.3333333/XTRAN2(I)

216 CONTINUE
CALCULATE VOLUME HOMOGENIZED CELL CONSTANTS

CEN=Vl+V2+V3
AB1=(XAB1(1)*Vl+XAB1(2)*V2+XABI(3)*V3)/DEN
AB2=(XAB2(1)*V1+XAB2(2)*V2+XAB2(3)*V3)/DEN
NUFI=(XNUF1(1)*V1+XNUF1(2)*V2+XNUF1(3)*V3)/DEN
NUF2=IXNUF2(1)*V1+XNUF2(2)*V2+XNUF2(3)*V3)/DEN
SIG12=(XSIG12(1) *V1+XSIG12(2)*V2+XSIG12(3)*V3)/DEN
TRAN1=(XTRAN1(1)*V1+XTRAN1(2)*V2+XTRAN1(3)*V3)/DEN
TRAN2= (XTRAN2( 1)*VL+XTRAN2( 2)*V2+XTPAN2( 3)*V3) /DEN

01,D2 ARE HOMOGENIZED D'S, BASED ON VOL. AVE. SIGMA TRANSPORT
01=..3333333/TRAN1
C2=.3333333/TRAN2
IF(IFLAG.EQ.4)GO TO 110
IF(IFLAG.GE.2 .AND. IFLAG.LT.5)GO TO 108

CALCULATE BUCKLINGS ASSUMING MINIMUM CORE VOLUME
OR INPUT L/D

DELK
DELK
DELK
DELK
DELK

DELK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DE LK
DELK
DELK
FLK

DELK
DE LK
DELK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DELK

f-.

C

73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
9)
91
92
93
94
95
96
97
98
99

13)
101
102
103
104
105
106
10T
108

0



A=D1*D2
B=AB2*D)1+(SIG12+ABI)*C2-NUFI*CHIl*D2-NUF2*CHI2*Di.
C= (SIG12+AB1)*(AB2-NUF2*CHI2)-AB2*NUF1*CHI -NUF2*CHIl*SIG12
B2=(-b+SQRT (B**2-4.*A*C) )/(2.*A)
IF(LFLAG.LT.5)GO TO 109
REAC(5,2)ELDE

2 FORMAT(GIZ.0)
AR2=((2.404826**2)+(1.57074/ELDE)**2)/32
62RAD= (2 .404826**2 ) /AR2
B2AX=B2-B2R AD
GO TO 110

109 B2RAD=.659556* B2
B2AX=B2-B2RAD
GO TO 110

OPTIONALLY READ IN BUCKLINGS. VOIDED CELL REQUIRES IFLAG=2
108 REAC(5,58)B2,B2RAD,B2AX
58 FORMAT(3G12.0)
110 CONTINUE

OPTIONALLY READ IN FLUX RATIOS: (CLAD/FUEL(1),C00LANT/FUEL

IF( IFLAG.E2
1 FUCO(2) ,ZI

CALCULAT
LERD TH

Zl= 1.

.1.OR.IFLAG.FQ.3) READ(5,83)
LTCH
ION OF D'S FROM ASYMPTOTIC B
ITERATE FOR D WITH FLAT FLUX

FUCL( 1)

(
I=GROUPI, GROUP2
,F UCO( 1) ,FUCL(2)

ENOIST THEORY

Z2= 1.
fMM=1
IF(XTRAN1(3).EQ.0.)MMM=2
SUR=3. 14 1593*R (2)
X6=Vl+V2
MM= 1
ETAM=V3/SUR*XTRAN1 (3)
ETAMT=V3/SUR*XTOTl (3)

HOMOGENIZE FUEL AND CLAD FOR THIS PURPOSE
X7=XTRAN1(1)*Vl/X6+XTRAN1(2)*V2/X6
ETAU=X6/SUR,*X7

DE LK
DFLK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK

OR 4DELK
DELK
DELK
DELK

I)) ,DELK
DELK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DE L K
DE LK
DELK
DELK 139
DELK 140
DELK 141
DELK 142
DELK 143
DELK 144

C
C

C
C

109
11)
111
112
113
114
115
116
111
118
119
12)
121
122
123
124
125
126
127
128
129
13)
131
132
133
134
135
136
137
138



X8=XT1T1(1) *Vl/X6+XTOTl(2)*V2/X6
ETAUT=X6/SUR*X8

54 CONTINUE
CALCULATE PMM,0

C=1.+l./(3.+11./3.*ETAMT)
TR=(1.+2.*ETAMT)/(1.+2.*ETAMT*(C+ETAMT))
TZ=2.*TR/(1.+ETAMT/(.51+ETAMT))
BPRM=ETAM*TR
BPZM=E TAM*TZ

C CALCULATE PUU,)
C=1.+1./(3.+11./3.*E-TAUT)
TR=(1.+2.*ETAUT)/(1.+2.*ETAUT*(C+ETAUT))
TZ=2.*TR/(l.+ETAUT/(.51+ETAUT))
IF(XTRAN1(3).EQ.0.)GO TO 71
BPRU=ETAU*TR
BPZU=ETAU*TZ
GMR=2.*ETAM*8./9.*(1.-BPRM)
GMZ=2.*9ETAM*4./3.*(1.-BPZM)
GUR-=2.*ETAJ*8./9.*(1.-BPRU)
GUZ=2.*ETAU*4./3.*(1.-BPZU)

C CALCULATE PUU
BPR=BPRU+(1.-BPRU)*(1.-GMR)*GUR/ (1.-(1.-GMR)*(1.-GUR))
BPZ=BPLU+(l.-BPZU)*(1.-GMZ)*GUZ/(1.-(1.-GMZ)*(1.-GUZ))
IF (MM.GT.1) GO TO 53

57 DRADI=XD1(3)*(1.+X6/DEN*Zl*(1.-X7/XTRAN1(3))*(1.+(XTRAN1
I 1.)*BPR))

DAXI =XD1(3)*(1.+X6/DEN*Zl*(1.-X7/XTRAN1(3))*(1.+(XTRAN1
1 L.)*BPZ))
GO TO 59

FOR VOIDED CFLL, D CALCULATED ONLY FOR FLAT FLUXES
71 RM=V3/SUR

IF(MM.GT.1)GO TO 70
QR=1.-2./9.*8.+1./(ETAU*(1.-ETAU*TR))
QZ=2.-2./3.*4.+1./(ETAU*(1.-ETAU*TZ))
DRAD1=.3333333/X7*(1.+V3/DEN*(1. +RM*X7*QR))
CAX1 =.3333333/X7*1.+V3/DEN*(1.+RM*X7*QZ))

DELK
DELK
DELK
DELK
DELK
DFLK
DELK
DELK
DELK
DELK
DFLK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DE LK
DE LK
DELK
DELK

(3)/X7*Z2-DELK
DELK

(3)/ X7*Z2-DELK
DELK

DELK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
1.67
168
169
170
171
172
173
174
175
176
177
178
179
180



59 CONTINUE
CALCULATION OF FLUX RATIOS FROM TRANSMISSION/ESCAPE/REFLECTION

PROBABILITY THEORY
DO 52 1=1,3

52 SIG(I)=XABI(I)+XSIGI2(I)+DRADI*B2RAD+DAX1*B2AX
IMAP=l
IF(IFLAG.EQ.1.OR.IFLAG.EQ.3)GO TC 220

101 CONTINUE
CALCULAT

IF(IMAP.EQ.
IF(IMAP.EQ.

1 -CHII*NUF1
IF(IMAP.EQ.
IF(IMAP.EQ.
IF(IMAP.EQ.
IF(IMAP.EQ.
IF(IMAP.EQ.
IF(IMAP.EO.

23 FJRMAT(30X,
24 FORMAT(30X,

CALCULAT
65 CONTINUE

MARK=0
IF (MMM.EQ.2
IF (MMM. EQ.2
ELI = SIG(1
EL2=SIG(2)*
EL3 = SIG(3
Pl = 1.0-2.
T13=1.-EL2+
F3 = 1.0-2.
PP1 =1.)-1
PP3 = 1.0-1
T31 = (Rk()
T33 = T13-T
DNN = 1.0-T

DELK
DELK
DELK
DELK
DELK
DELK
DELK
DE LK

E REGION-WISE CELL SOURCES DELK
1) S 1=1. DEL K
2)Sl=XSIG12(L)+CHI2*(XNUFI(1)+XNUF2(1)*(SIG.12+ABl+D1*B2DELK
)/(CHI1*NUF2)) DELK
1)S2=0.0 DELK
2)S2=XSIG12(2) DELK
1)S3=0.0 DELK
2) S3=XS IG12(3) DEL K
1 .AND. AMM.FQ.2)WRITE(6,23) DELK
2 .AND. MMM.EQ.2)WRITE(6,24) DELK
' FIRST FLIGHT GROUP' ,/) DELK
MULTIPLY-COLLIDED GROUP',/) DELK

E MEAN CHORD LENGTHS AND VARIOUS PROBABILITIES DELK
DELK
DELK

)WRITE(6,22)R(1),SIG( 1),R(2),SIG(2),R(3),SIG(3) DELK
)WRITE(6,30) SIS2,S3 DELK
)*R(1) DELK
(R(2)-R(1))*2.

)*Z3
O*EL1+2.666667*( ELl**2)
1. 333333*( EL2**2)
0*EL3+2 .666667*( EL3**2)
.333333*EL1i
.333333*EL3
/R(2))*T13
31
33*P3-P1*T13*P3*T31

DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK

C
C

181
182
183
184
185
186
187
188
189
190)
191
192
193
194
195
196
197
198
199
200
201
202
203
2.)4
205
206
207
208
209
210
211
212
213
214
215
216



60 CONTINUE
SSI=SI*PPI*R 1)/2.
IF(MARK.EQ.2)SS=0.0
SSSI=SS1*R( 1)/R(2)
SS3=S3*PP3*Z3*R(2)/(2.*R(1))
IFIMARK. EQ. 1) SS3=0.0
SSS3=SS3*R(1)/R(2)
DUM4=1 .-T33*P3
DUM6=SS3*T3 1/DNN

C CALCULATE THE REGION INTE
JAPS=SSI*T13*P3*T31/DNN
JAMS=SS1*DJM4/DNN +Pl
DUM7=S SSl*T13/ DNN
JAPN=IJM7 +SSS3*(T33+T31

RFACE CURRENTS 'JA..'
+DUM6
*DUM6

*Pl*T13) /D NN
JAMN=P3*DUM7 +SSS3/DNN

CALCULATE AVERAGE REGION FLUXES
FHIl=(2.*(JAPS-JAMS)+Sl*R(1) )/(SIG( 1)*R( 1))
IF(SIG(3).EQ.0.0)GO TO 17
FHI3=( 2. *R( 2)*( JAPN-JAMN)+S3*(R( 3)**2-R( 2)*
1(R(3)**2-R(2)**2))

17 FHIS=2.*(JAPS+JAMS)
FHIC=2.*(JAPN+JAMN)
IF IS IG (3 ) . EQ.0.0) FHI3=FHIC
FHI2=.5*(FHIS S+FHIC)
IF(MARK.EQ.2)GO TO 63
IF(MARK.EQ.1)GU TO 62
IF(S2.LQ.0.0)GO T3 61
HOLDI=FHIl
HOLD2=FHI12
HOLD3=FH 13
MARK=1

REPEAT FOR CASE WITH CLAD SOURCES USING
Sl =S2
GO TO 6-)

62 FHI2=FHI2*V2/VI
HOLD1=HJLD1+FHI2

*2) )/ (S IG(3 )*

RECIPROCITY THEOREM

DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
OF LK
DELK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK

21T
218
219
220
221
222
223
224
225
226
227
223
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
25)
251
252



MARK=2
S3=S2
GO TO 60

63 FHI2=FHI2*V2/V3
HOLD3=HOLD3+FHI2
FH1i=HOLDI1
FH13=HOLD3
FH 12=. 5*(IF-I I i+FHI 3)

61 CONTINUE
IF(MMM.EQ.2)GO TO 56
TO CALCULATE D, ITERATE ONCE WITH NON

MMM=2
ZL=FHI3*DEN/(Vl*tFHi+V2*FHI2+V3*FHI3)
Z2=(VI*FHI1+V2*FHI2)/(FHI3*X6)
IF(IMAP.EQ.2) GO TO 70
GO TO 57

56 CONTINUE
RAT(1)=FHhl/FHIS
RAT(2)=FHII/FHI 3
RAT (3) =F
RAT( 4) =F
IF (MARK.
IF (MARK.

20 FORMAT(1
IITY THEO

22 FORMAT('
1
2

30 FORMAT('
l'S(3)=',
WRI TE ( 6,

25 FORMAT('
1 '
2'
3'
4 17X,'/Z

FIS/FHIC
HII /FH12
GT.0)RAT( 1)=0.0
GT.0)RAT(3 )=0.0
Hi, 20X18A4,///,15X,
RY',///)

CELL PARAMETERS:
1, 22X, 'R(2)=',
G12.7,3X,'SIG(

SOURCE DENSITY:'
G13.7,//)

-FL

'CALCULATION

AT FLUXES

CF FLUX RATIOS

',3X,'R(1)=',G12.7,3X,'SIG(1

G12.7,3X,'SIG(2)=',G12.7,/,2
3)=',G12.7,//)
,3X,'S(1)=',G13.7,3X,'S(2)='

DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DE LK
DELK
DE LK
DELK
DELK
DELK

BY PROBABILDELK
DELK

)=',G12.7, DELK

2X,' R (3)' ,DELK
DELK

,G13.7,3X, DELK
DE LK

25) RAT ( 1) , RAT (2) ,RAT (4) , RAT (3)
AVE FUEL FLUX / FLUX AT FUEL SURFACE=',G13.7,//,

AVE FUEL FLUX / AVE COOLANT FLUX=',G13.7,//,
AVE FUEL FLUX / AVE CLAD FLUX=' ,G13.7,//,
FLUX AT FUEL SURFACE / FLUX AT CLAD SURFACE=',G13.7,//,

ERO RESULT FOR RECIPROCITY THEOREM CASES/',///)

DELK
DELK
DELK
DELK
DELK
DEL K

253
254
255
256
257
253
259
26)
261
262
263
264
265
266
267
268
269
273
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

C-"



FLUX RATIOS WER
1 t AVE FUEL FLUX / AVE COOLANT
2 4 AVE FUEL FLUX / AVE CLAD FLU

FUCL(IMAP)=1./RAT(4)
FUCO(IMAP)=1./RAT(2)
IF(IMAP.GT.1)GO TO 103

220 CONTINUE
REPEAT FOR MULTIPLY-COLLIDED GROUP

E INPUT AND N
FLUX=',G13.7,
X=* ,G13.7,///

OT
//,
)

MMM= 1
IF(XTRAN1(3).EQ.0.)MMM=2
Z1=1.
Z2=1 .
IMAP=2
ETAM=V3/SUR*XTRAN2(3)
ETAMT=V3/SJR*XTOT2 (3)
XT=XTRAN2(1)*Vl/X6+XTRAN2(2) *V2/X6
ETAU=X6/SUR*X7
X8=XTOT2(1) *Vl/X6+XTOT2(2)*V2/X6
ETAUT=X6/SUR*X8
PM=2
GO TO 54

53 CONTINUE
70 CONTINUE

IF(XTRAN2(3).EQ.0.)GO TO 72
DRAD2=XD2(3)*(I.+X6/DFN*Zl*(1.-X7/XTRAN2(3))*(1.+(XTR
I 1.)*BPR))

DAX2 =XD2(3)*(l.+X6/DEN*Ll*(1.-X7/XTRAN2(3))*(1.+(XTR
1 1.)*BPZ))

GO TO 64
C FOR VOIDED CELL, D CALCULATED ONLY FOR FLAT FLUXES

72 QR=1.-2./9.*8.+1./(ETAU*(1.-ETAU*TR))
QZ=2.-2./3.*4.+1./(ETAU*(I.-ETAU*TZ))
CRA02=.3333333/X7*(1.+V3/DEN*(1.+RM*X7*QR))
OAX2 =.3333333/X7*(1.+V3/DEN*(1.+RM*X7*QZ))

64 CONTINUE
00 47 1=1,3

26 FORMAT(' CALCULATED',/DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DE LK
DELK
PELK
DELK
DELK
DE LK
DELK
DELK

AN 2(3) /X7*Z2-DELK
DELK

AN2(3)/X7*Z2-DELK
DELK
DELK
DELK
DELK
DELK
DE LK
DELK
DELK
DELK

C

289
290
291
292
293
294
295
296
297
298
299
300
3)1
302
303
304
305
396
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324



47 SIG( I)=XA32(I ) +DRAD2*B2RAD+IDAX2*B2AX
IF(IFLAG.EQ.1.OR.IFLAG.EQ.3)GO TO 48
GO TO 101

103 CONTINUE
GO TO 49

48 RAT(2)=1./FUCO(1)
RAT (4) =1 ./FUCL (1)
WRITE(6,23)
WRITE(6, 26)RAT(2),RAT(4)
RAT(2)=1./FUCO(2)
RAT(4)=1./FUCL(2)
WRITE(6,241
WRITE(6,26)RAT(2) ,RAT(4)

49 CONTINUE

CALCULATED FLUX RATIDS ARE

CALCULAT

NOW USED TC DETERMINE DELTA K

E FLUX AND VOLUME WEIGHTED CROSS-SECTIONS (HET'GENEOUS)
CEN=Vl+V2*FUCL( 1)+V3*FUCO( 1)
HABl=(XABl(1)*Vl+XAB1(2)*V2*FUCL (1)+XABl(3)*V3*FUC0( 1)/DEN
HNUFl=(XNUFl(1)*Vl+XNUFI(2)*V2*FUCL(1)+XNUFl(3)*V3*FUCO(1))/DEN
HSIG12=(XSIG12(1)*Vl+XSIG12(2)*V2*FUCL(1)+XSIG12[3)*V3*FUCO(1))

I DEN
DEN=VI+V2*FUCL(2)+V3*FUCO(2)
HAB2=(XAB2(1)*Vl+XAB2(2)*V2*FUCL(2)+XA82(3)*V3*FUCO(2))/DEN
HNUF2=(XNUF2(1)*Vl+XNUF2(2)*V2*FUCL(2)+XNUF2(3)*V3*FUCO(2))/DEN

CALCULATE CROSS-SECTION PERTURBATIONS
DABl=HABl-AB1
DAB2=HAB2-A82
CNUF1=HNUF1-NUFl
DNUF2=HNUF2-NUF2
OSIG12=HSIG12-SG12
CD1=DR AD1-D1
CO2=CRAD2-D2
CDAX1=DAX 1-01
DDAX2=DAX2-D2

It

DELK
DELK
DELK

C
C
C

C

DELK
DE LK
DELK
DELK
DELK
DELK
O) ELK
DELK
DE LK
DELK
DELK
DELK
DE LK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DE LK
DELK

-21

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
343
349
350
351
352
353
354
355
356
357
358
359
36)



RAT 1=S IG12+ABI+D1*B2
RAT2=A B2+D2*82
K=CHII*NUFI/RATl+CHI2*NUF2/RAT2+CHI1*SIG12*NJF2/(RATl*RAT2)
DU M= 0. 0
WRITE(6,300) TITLE

300 FURMAT(lH1,20X18A4)
WRITE(6,51)

51 FORMAT(liH
WRITE(b,45)
WRITE(6,46)
WRITE( 6,14)

45 FORMAT('
l'NUFIS',3X,
2 /,IOX,'REM

46 FORMAT(*
l'NUFIS', 3X,
2 /,1OX,'REM

14 FORMAT('
1G12.7,
I ,G13.7,'
WRITE(6,42)

42 FORMAT(30X,
WEI GHT C

CKNUF=(CHI

///,39X,'CALCULATION OF HETEROGENEOUS DELTA K',///)
ABIAB2,NUF1,NUF2,D1,02,)1,D2,DUM,SI 312
HAB1,HAB2,HNUF1,HNUF2,DAX1,DAX2,DRADIDRAD2,DUM,HSIG12
CHI lCHI2,BETA,K,B2,v2RADq2AX

HOMOGENEOUS CONSTANTS',/,10X,'ABS',5X,2G14.7,/, 1X,
2G14.7,/,1OX,'DAXL',4X,2G14.7,/,1)X,'DRAD',4X,2G14.7,

',5X,2G14.7)
HETEROGENEOUS CONSTANTS',/,1JX,'ABS',5X,2G14.7,/, 10X,
2G14.7,/,10X,'DAXL',4X,2G14.7,/,10X,'DR
',5X,2G14.7)
CHI(l)=',G12.7,p' CHI(2)=',G12.7,'

K=',G12.7,' BSQUARED=',G13.7,/,38X,'
AXIAL B2=',G13.7,//)

' METHOD: PARTIAL
ROSS-SECTION PERTURBATIONS
I/RAT 1) *DNUFI

AD',4X,2G14.

BETA=',
RADIAL

DIFFERENTIALS DF K')
FOR CONTRIBUTIONS TO DEL

7,

B2=

TA

DKAB1=(NUFI/(RATl**2)+NUF2*SIG12/((RAT1**2)*RAT2))*CHI1*DAB1
CKREM=(NUFI/(RATl**2)-NUF2*(RATi-SIG12)/((RATl**2)*RAT2))*CHIl*

ICSIG12
DKNUF2=(CHI2/RAT2+CHl*SIG12/(RATI*RAT2))*DNUF2
DKAB2=(CHI2/(RAT2**2)+ >,HI1*SIG12/(IRAT2**2)*RAT1))*DAB2*NUF2
DKD1=(NUFl/(RATL**2)+NUF2*SIG12/((RATl**2)*RAT2))*CHI1*
I (DO1*B2RAD)
CKD3=(NUF1/(RATl**2)+NUF2*SIG12/((RAT1**2)*RAT2))*CHII*

1 (DDAX1*B2AX)
DKD2=(CHI2/(RAT2**2)+CHI1*SIG12/((RAT2**2)*RAT1))*NUF2*

1 (DD2*B2RAD)
DKD4=(CHI2/(RAT2**2)+CHI1*SIG12/((RAT2**2)*RAT1))*NUF2*

DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK

'DELK
DELK
DELK
DE LK

KDELK
DELK
DE LK
DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK

361
362
363
364
365
366
367
368
369
37)
371
372
373
374
375
376
377
378
379
38)
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

C



(DDAX2*B2AX)
DELK=( DKNUF 1-DKAB1-DKREM+DKNUF2-DKAB2-DKD1-DKD2-DKD3-DKD4)/K
DELKS=DELK/ BETA*100.
Sl=DKNUFl/ (BET A*K)*100.
S2=DKAR/(BETA*K)*(-100.)
S3=DKREM/ (BETA*K)*(-100.)
S4=DKNUF2/( BETA*K);100.
S5=DKA312/(BETA*K)*(-100.)
S6=DKD1/ (BETA*K)*(-100.)
S8=DKD3/(BETA*K)*(-10J.)
S7=DKD2/ (BETA*K)*(-100.)
59=DKD4/ (BE TAK)*(-100.)
S 16= Sl+S2+S3+S6+S8
S47=S4+S5+S7+S9
SS=S16+S47
WRITE(6, 50) DEL

50 FORMAT(* ',19X
WRITE(6,55)S1,

55 FORMAT(' I
18X,' DUE TO
28X,' DUE TO
3'FIRST FLIGHT
48X,' DUE TO
58X,' DUE TO
58X,' DUE TO
68X,' DUE TO
78X,' DUE TO
8'MULTIPLY-COLL
98X,' DUE TO
s8X,' DUE TO
1 43X,'NET=',F7.1,'

K,DELKS
,' DELTA K/K=',G15.7, #=I,
S2,S16,S3,S6,S8,S4,55,S47,S7
NDIVIDUAL CDNTRIBUTIONS:',/,

FL
FL

IBU
FL
FL
FL

IGHT
IGHT
TI ON
IGHT
IGHT
IGHT

FISS I
ABSOR

REMOV
L EAKA
LEAKA
I DED

F7 .1,'
,S9, SS

ON ='FT.1,
PTION =F7.1,
',F7.1, ' CENTS',/,

AL =',F7.I,
GE(RADIAL)=' ,F7. 1,
GE(AXIAL) =',F7.1,
FISSION =',F7.1,
ABSORPTION=',F7.1,
',F7.1,' CENTS',/,
LEAK.(RAD)' ,F7.1,
LEAK.(AXL)' ,F7. ,

CENTS')

' CENTS',/,
' CENTS',5X,

'

'

1

CENTS'
CEN TS'
CENTS'
CENTS'
CENTS'

,/,
,,

,/,

,/, X

CENTS',/,
CENT S',/,

FIRST
F IRST
CONTR
FIRST
FIRST
FIRST
MULTIPLY-COLL
MULTIPLY-COLLIDED
IDED CCNTRIBUTION=
MULTIPLY-COLLI DED
MULTI PLY-COLLIDED

CENTS', /)
CALCULATE REACTIVITY USING PERTUPBATION THEORY FORMULAE

Y=RATI-CHIl*NUF1/K
41 FORMAT(30X,' METHOD: TWO GROUP PERTURBATION THEORY')

FHI12=CHIl*NUF2/(Y*K)
FHST12=( SIG12+CHI2*NUF 1/K)/Y

DELK
DELK
DELK
DE LK
DELK
DE LK
DELK
DELK
DELK
DELK
DE LK
DE LK
DELK
DE L K
DELK
DELK
DELK
DE LK
DELK
DELK
DELK
DE LK
DELK
DE LK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK
DELK

397
398
399
400
401
402
4)3
404
405

406
407
4)8
409
410
411
412
413
414
415
416
417
418
4 19
420
421
422
423
424
425
426
42T
428
429
430
431
432

'
'

C



RAT3=CHIl*NJFI*FHI12*FHST12+CHII*NUF2*FHST12+CHI2*NUFI*FHI12+ DELK 433
1 CHI2*NUF2 DELK 434
RAT4=RAT3/K DELK 435
DKNUF=DNUF1*CHI*FHII2*FHST12/RAT3+DNUFI*CH[2*FHI12/RAT3 DELK 436
DKAB1=DAB1*FHIl2*FHST12/RAT4*(-1.O) DELK 437
DKREM=DS IG12*FH[12*(1.J-FHST12)/RAT4 DELK 438

DKNUF2=DNUF 2*(CHII*FHSTI2+CHI2)/RAT3 DELK 439

DKA82=DAB2* (-1.0)/RAT4 DELK 440
DKD1=(DD1*B2RAD) *FHST12*FHIi2*(-1.)/RAT4 DELK 441
DKD3= (f)DAX1*B2AX)*FHST12*FHI2*(-1.)/RAT4 DELK 442
DKD2=(DD2*B2RAD) *(-1.)/RAT4 DELK 44.3
DKD4= (DDAX2*B2AX)*(-I. )/RAT4 DELK 444
DELK=DKNUF 1+DKAB1+DKREM+DKNUF2+DKAB2+DKD I+DKD2+DKD3+DKD4 DELK 445
DELKS=DELK/BETA*100. DELK 446

Sl= (DKNUFI/BETA)*100. DELK 447
S2= (DKAB1/BETA)*100. DELK 448
S3= (DKRFM/BETA)*L0). DELK 449
S4= (DKNUF2/8ETA)*100. DEL K 450
S5= (DKAB2/BETA)*100. DELK 451
S6= (DKD1/BETA)* 100. DELK 452
S8= (DKD3/BETA)*100. DELK 453
S7= (DKD2/3ETA)*130. DELK 454
S9= (DKD4/ BETA)*100. DELK 455

S16=SI+S2+S3+S6+SS DELK 456
S47= S4+S 5+S 7+ S9 DELK 457
SS=S16+S47 DELK 4.58
WRITE(6,41) DELK 459
WRITE(6,50) DELK,DELKS DELK 460
WRITE(6,55) SiS2,S1.6,S3,S6,S8,S4,SS,S47,S7,S9,SS DELK 461
GO TO 1 DELK 462

C
C **SAMPLE INPUT DECK (WITH EXTRA "C" IN COLUMN I FOR "COMMENT")**
C **FOR CASE WITH ITAB=J AND IFLAG=2**
C **OTHER OPTIONS MAY PFQUIRE DIFFERENT INPUT. REFER TO REPORT**
C
C **FIRST CARD: TITLE CARD**



C G.E. 1000 MWE OXIDE CORE - NA IN - 99% NA DENSITY
C **SECOND CARD: OPTION CHOICES, RADII, CHIS, BETA**
C 0 2 .2921 .3175 .6563 .57 .43
C **THIRD THRU TWELFTH CARDS: CROSS-SECTION TABLE%*
C.57821 1.5136 4.9917 2.5852 4.9968
C.37268 .0036785 10.337 10.365
C2.011 6.398 4.7911 1.0664 4.7959
C2.3232 5.4229 10.450 10.473
C.C10256 1.4503 .18807 1.5047
C 3.4850 3.6365
C.0036805 2.4241 .69255 2.4449
C.01868 5.0516 5.1123
C.0018692 1.9707 .40442 2.C174
C.C020C1 4.9686 5.1169
C **THIRTEENTH CARD: NUMBER DENSITIES**
C.01754 .003095 .041269 .0848 .02218
C **FOURTEENTH CARD: BUCKLINGS**
C.00045119 .00010925 .00034194
C **ENU CARD**
C FOLLOWS THE LAST CASE. ANY NUMBER .GT. 0.0 IN THE LAST 8 COLUMNS.
C

END

.0033

U233-1
U238-2
PU 239-1
PU239-2
0-1
0-2
FE-1
FE-2
NA-1
NA-2

DELK 463

wJ
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E.2 SCODE

SCODE is a minor program which calculates one-group constants

using Sheaffer's correlations and then applies the one-group self-

shielding correlations of Chapter 5 to obtain heterogeneously self-

shielded constants (assuming a typical FBR geometry).

E. 2. 1 Input to SCODE

Variable Columns Format Description

Card 1 (To run a series of cases, repeat from this card)

TITLE(18)

ZOPT

1-72 18A4

73-80 G12. 0

Identification

ZOPT=0.0, Pu-239/UO 2 cases

ZOPT=1.5, U-235/UO 2 cases

ZOPT=2.5, Pu-239/UC cases

For multiple-case runs: all Pu-239
cases must be run before U-235
cases; all oxide cases must be run
before carbide cases.

1-60 5G12. 0

61-72 G12. 0

Homogenized number densities in
the order: Pu/U-235, U-238, O/C,
Fe, Na

Initial guess for S parameter;
suggested: oxide core = 0.4

carbide core = 0. 5

E. 2. 2 Output from SCODE

For both the infinite dilution representation (Sheaffer's original

correlations) and the self-shielded representation, the output prints

the S and R spectral indices, as well as the one-group macroscopic

cross sections: Ea (ABSRB), Etr (CSGTR), v E (NUFIS), Er (XSREM),

Etr (XSGTR). The number of iterations required to converge the one-

group spectral index S is also printed (K). Between the infinite dilution

Card 2

XND(5)

S
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and self-shielded results, the values of the self-shielding factors are

printed: the self-shielding factor for U-238 absorption (FABS), and

the self-shielding factor for U-238 scattering (FSCAT).

E. 2. 3 Listing of SCODE

The following pages provide a listing of the SCODE program.



4*SfnrE ***

A PRUGRAM Tj CALtC-ULATE CNE--- JJP CRf7lS-Sc"CTlCNS RY
APJ4i PiAKa THt. U-238 )cLF-SF'IFLCING

sc Or)
S CO r)

F-HEAFIFOS M77HO)
(CrFPFCTTr,,IS THERF"'IP,

C
c
C

C
C
c

A1LU
R EAb(,IJ ) XNU,
F ORMAT it) A4. vG
FJRMAT4 o i .U)
lF(LZjPT.L~ol9

U-235 6CjRRLL
X!AJ(1I)=2o,&Th
(;LL( I ) =uO8:
SIF IS ( IJ = 1. 37
GI- IS (I )=-61+330

(,Tk ( 0 )-*3393
KEMtiJ=2. 86
SlABM 1=19571
GA8(1 )=-o5ts17

fNT CASE-rFYPC ICr-NTIFICA1tICN
,l70PT

lIED-. NUMdc.-l DE7NSITIE c IN 1,2,3,4, 5 ORDER
IMITIAL kGiU'SS FrOP, S PARAMETIERe
S
0)

OR.o ZJ3PT ,f o2. GCI Tr 4
ATICN CLNvdfAN~TS

1
2
3
4

SClD 8
SC 7D 7
SCID 10

SC Of) 10

SCr)D 12
SC M) 13
SCOD 17
SC-90 18

SC C F) 21
SCO)D 17

Sf00 20
S CCf ) 21
SCO) 22
SC 9D 23S

SCOD 27i
S CflD 28~
SCOt) 27Q

SCMD 31
SC OD 32

SMC 33
SCOt) 34
SCOt) 35
SCflnn 36

IF ZjPTs(3i1*.C*AN09LT,29O, 1g-FN 1=U23'i
ii- wPfoGI.2.o0, T f\ :J=C

ALL VU23'V CAEFS INSf ba PU FFC.PF U235 CASI ES
ALL j?~lJI L.MSFS MLST & PU PrFC-Rr ChPO3IOF CASCS

1 MLI\it JN , X iL ( e) , 1 t2)r.L(, ) ,AR(5),r- S 2) S T~ r) GT (

DAT A ANiU/4.3 I ,2PC 6/,1.cL/ CC 839CC E4,v 129, 035 C845 /I
S Si- 1!>/ i o1.3 , 1 Q7 2f/,GF IS/-.147 2 ,7r,1 1.,S 1T R/ 6,6 61 , 6,33 1,p3, 30 7

1 e- Z 1 3.27 -/ , GTR/- .2 12,-3,2 8,C 2f ;5,.2 84 4 ,9- o15 P59
1 1 3,5,,185'-,9.- 4.37/SAB/.13,*2147t.0024 6.q,

e. 004905t 6e 42
C rAL) liTLr_ A
I krE-AU(.)13) THU-e

C RkAu HjMjLr-A
C

3
10

C

cJ1



4 COlNTIJ E SCOD 37
IF(ZOPT.LT.2.) GO TO 6 SCOf) 38

CARBON ZORRELATICN CONSTANTS SCOD 39
CEL (3)=.158 SCOD 40
REM(3)=.2396 SCOD 41
SIAR(3)= 6.8379E-6 SCOD 42
GABI(3)=.7102 SCOD 43
S1TR(3)=2.753 SCOD 44
GTR (3)=-. 1601 SCOD 45

6 CONTINUE SCOD 46
CALCUALTIDN OF INFINITELY DILUTF ONE-GROUP CONSTANTS SCOD 47

SPF"=0.0 SCOD 43
00 5 1=1,5 SCOD 49

5 SPFm=SREM+XND(I)*REM(I) SCOD 50
K=1 SCOD 51

15 HO)LD=S SCOD 52
CSIGTR=0.0 SCOD 53
01 20 T=1,5 SCOD 54

20 CSIGTR= S1 TR+CEL(I)*XND(I)*S1TR (I)*(S**GTR()J SCOD 55
R=S*CSIGTR/(SREM*(1.-S)) SCOD 56
XNUF=XNU(1)*XND(1)*S1FIS(l)*(S**GFIS(1))+XNU(2)*XND(2)*S1FIS(2)* SCO) 57

1 (P**GFIS(2)) SCOD 58
S=XNUF/( XNUF+CSIGTR) SCOD 59
K=K+1 SCOn 60
IF(K.GT.20) GO TO 25 SCOD 61
CHFCK=APR S(S-HOLD) SCOD 62
IF(CHFCK.GT..0001) GO TO 15 SCOD 63

25 P=S*CSIGTR/(SPEM*(1.-S)) SCOD 64
WRITE(6,31) TITLE,S,R,K SCOD 65

30 F10MAT(1HO,18A4,/,10X,'INFINITF DILUTION CELL',/, SCOD 66
7X,'S=',G14.7,l)X,'R=',G14.7,1)X,'K=',I2) SCOD 67

CSIGTP=0.0 SCOD 68
XSIGTR=0.0 SCOD 69
XA3=2 SCOD 70
Cr 35 1=1,5 SCOD 71
CSIGTr=CSI^ TR+CFL( I)*XND(I)*STR (T)*(S**GTR( I) SCOD 72



XSIGTP=XSISTR+ XND(I)*SITR(I)*(S**GTR(I))
35 XAP=XAA+XND(I)*S1AB(I)*(S**GAB(I))

WRITE(6,4)) XAB,CSIGTR,XNUF ,SREMXSIGTR
40 FrRMAT(1H ,15X,'CORF ABSRB=',G14.7,/,16X

1 16X,'CORF NUFIS=',G14.7,/,16X,'CORE X
2 'CORE XSGTR=',G14.7,/)
FSA28=XND(2)*S1AB(2)*(S**GAA(2))
FSTR28=XND(2)*CEL(2)*SlTR(2)*(S**GTP(2))

CALCJLATION OF SFLF-SHIELDING FACTORS
COPR=FSA28*(l./XAR-1.4/CSIGTR)
IF(CORR.GT.0.1406) GO TO 100
EM=-.645577
E= .939868

GO TO 110
100 FM=-.523232

FE=.922666
110 EFA=FM*CORR+BE

CIRR=FSA?8*(1./XNUF-1.)/CSIGTR)
IF(CORR.GT..06063) GO TO 120
EM=-.149001
BE=.974334
GO TO 140

120 IF(CORR.GT..17445) GO TO 132
EM=-.115774
RE=.972319
GO TO 140

130 EM=-.1?6925
BF=.97315

140 FFS=EM*CORR+BE
IF-(ZOPT.LT.2.) GO TO 150

MODIFY CORRELATIONS FOR CAPBIDF CASES
EFA=EFA-0.030
EFS=EFS-0.004

152 WRITE(6,160) EFAFFS
160 FORMAT(7X,' THE F-FACTORS ARE: FABS=',G

K=1

, 'CORE C SGTR=lG14.7,#/,f
SREM=' ,G14.7,/, 16X,

FROM C2RRELATIONS

14.7,' FSCAT=' ,G14.7)

SCO0 73
SCOD
SCOD
SCOD
SCOD
SCOD
SCOD
SCOD
SCOD
SCO )
SCOD
SC OD
SCO 0
SCOn)
SC OD
SC OD
SC OD
SC no
SCOD
SC OD
SCOD
SC OD
SCOD
SCOD
SC OD
SCOD
SC OD
SCOD
SCOD)
SC OD
SC OD
SC OD
SC OD
SCOO
SCOD
SCOD

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
1)0
101
102
103
104
105
106
107
108

w.,
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411
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111
0 11
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uojs
00 3S
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003S
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003JS
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a 00S
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009S
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003s
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CSIGTR=CSIGTP+CEL(1)*XND(1)AS1TR(1)*(S**GTR(1))+STR28
XSIGTR=XSI3TR+ XND(1)*SITR(1)*(S**GTR(1)) +STR28/CEL(2)
R=S*CSIGTP/
XNIF=XNU (1)
1 (R**GFIS

WOI TTE(6,80)
F) FOR MAT(1HO,

WRITE(6,40)
WRITE(6,9)

(SREM*(1.-S))
*XND(1)*S1FIS(1)*(S**GFIS(1))+XNU(2)*XND(2)*S
(2))
TITLF,S,R,K
18A4,/, 1OX,' SELF-SHI ELDED CELL',/,

7X,'S=',314.7,10X,'R=1,G14.7,10X,'K='
XAB,CSIGTR,XNUFSPFM,XSIGTR

9 0 ERMAT(' *

GD TO 1

SCOD 145
SCOD 146
SCOD

1FIS(2)* SCOD
SC OD
SCOD
SCOD

,12) SCOD
Sc 00
SC on

******SC 00
SC 00
SCOD

147
148
149
150
151
152
153
154
155
156
157

**SAMPLE INPUT DECK (WITH EXTRA "C" TN COLJMN 1 FOR "COMMENT")**

**FIRST CARD: TITLF CARD, CASE TYPE**
125% PU-239 CELL - SODIUM IN

**SECOD CARD: HDM0GENIZED NUMBFR DENSITIES, INITIAL S GUESS**
10604 .0069428 .016016 .0194917 .)11286 .40

END SCOD 158

C
C
C
C13.
C
C.*00
C

wJ
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