INVESTIGATION OF ELEMENTAL ANALYSIS USING NEUTRON-CAPTURE GAMMA-RAY SPECTRA by

John N. Hamawi Norman C. Rasmussen

Department of Nuclear Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

MITNE-107 Contract No. HO180895

September 1969

> Prepared for
> United States Department of the Interior
> Bureau of Mines
> Morgantown Research Center
> Morgantown, West Virginia

INVESTIGATION OF ELEMENTAL ANALYSIS USING NEUTRON-CAPTURE GAMMA-RAY SPECTRA

by

John N. Hamawi
Norman C. Rasmussen

Department of Nuclear Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

MITNE-107
Contract No. HOl80895

September 1969

Prepared for
United States Department of the Interior
Bureau of Mines
Morgantown Research Center
Morgantown, West Virginia

INVESTIGATION OF ELEMENTAL ANALYSIS USING NEUTRON-CAPTURE GAMMA RAY SPECTRA

John N. Hamawi

Submitted to the Department of Nuclear Engineering, Massachusetts Institute of Technology, on August 18, 1969 in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Abstract

This thesis evaluated the potential of neutron-capture gamma rays in elemental analysis. A large portion of the work was devoted to the development of a method for the analysis of weak peaks in gamma ray spectra. This was based on equations developed for the standard deviation in the measurement of the various peak parameters, consideration being also given to the reduction in the statistical fluctuations obtained by smoothing the data with the use of Fourier transforms. Two methods of peak area determination were considered and their relative effectiveness examined. An equation was then derived for the minimum weight of an element needed for reliable quantitative analysis. The equations were verified using both real and pseudo-experimental data constructed with the use of a computer.

Experiments were carried out using the MIT Reactor with samples positioned (a) in a high neutron flux next to the reactor tank ($2 \times 10^{-13} \mathrm{n} / \mathrm{sq} . \mathrm{cm} \mathrm{sec}$), and (b) in an external neutron beam facility of relatively lower but well thermalized flux ($2 \times 10^{8} \mathrm{n} / \mathrm{sq} . \mathrm{cm} \mathrm{sec}$). Capture gamma ray spectra were obtained with a three-crystal system capable of operating in the free mode, the Compton suppression mode and as a pair spectrometer. The results were used to examine the relative analytical sensitivity of the internal and external sample arrangements and the various gamma detection modes.

The minimum measurable weights of 75 elements were evaluated for a stainless steel sample. For these computations use was made of the listing of capture gamma ray spectra recently established by the MIT gamma spectroscopy group. 'In a majority of the cases the detection limits range between 0.1 percent and 10 percent. Equations were developed for extending the results to different samples and different experimental arrangements.

Thesis Supervisor: Title:

Prof: Norman C. Rasmussen
Professor of Nuclear Engineering

ACKNOWLEDGEMENTS

It is with great pleasure that acknowledgement is hereby made of all the friends and associates who have shown interest in this thesis and who, in one way or another, have assisted towards its completion. My particular gratitude and appreciation are extended to my supervisor, Professor Norman C. Rasmussen, whose helpful critisim, encouraging comments and continuous supervision are in a large measure responsible for the success of this research. Further thanks are extended to Professor Franklyn Clikeman for his meny helpful suggestions and for acting as thesis reader.

During the course of this thesis I became indebted to my colleagues Thomas L. Haxper and Roberto Yoshiyuti Hukai for their participation with me in interesting and stimula.ting discussions on a number of topics associated with this work. A special word of thanks is also extended to the members of the Reactor Operations Office and the Radiation Protection Office of the MITR who took part in the somple handling operations associated with the internal sample measurements.

It is a pleasure also to acknowledge the U.S. Bureau of Mines for the financial support of the contract under which part of this thesis was done.

TABLE OF CONTENTS

Page
ABSTRACT 2
ACKNOWLEDGEMENTS 3
TABLE OF CONTENTS 4
IIST OF FIGURES 7
LIST OF TABLES 10
I. INTRODUCTION 12
II. CAPTURE GAMMA VERSUS ORDINARY ACTIVATION ANALYSIS 20
2.1 Introduction 20
2.2 Theoretical Sensitivities 20
2.3 The Minimum Measurable Weight 28
III. METHOD OF DATA ANALYSIS 30
3.1 Introduction 30
3.2 GAMANL 32
3.3 Method of Linear Background fit 33
3.4 Method of Peak Area Determination 39
3:4.1 Area Equations 41
3.4.2 Errors 46
3:5 Limiting Values for Peak Areas 50
3.6 Equation for the Minimum Measurable Weight 56
IV. EXPERIMENTAL EQUIPMENT 62
4.1 Introduction 62
4.2 Description of the Experimental Facilities 62
4:2.1 The Internal-Sample Facility 63
4.2:2 The External-Sample Facility 69
Page
4.3 The Gemma Ray Spectrometer 73
V. RELATIVE SENSITIVITY OF THE VARIOUS EXPERIMENTAL 82 ARRANGEMENTS
5.1 Introduction 82
5.2 Internal versus Externel 82
5.3 Relative Sensitivity of the Gamma Detection Modes 86
5:3.1 The Stainless Steel Sample 87
5.3.2 Characteristic Features of the Gamma Ray Spectra 90
5.3.3 Relative Effectiveness of the Detection Modes 96
VI. A TEST ON THE EQUATION FOR THE MINIMUM WEIGHT 107
6:1 Introduction 107
6:2 The Method 107
6:3 Analysis of the Pair Spectrum 108
6.4 Manganese Peaks in the Spectrum 127
VII. THE MINIMUM MEASURABLE WEIGHTS OF THE ELEMENTS 136
7.1 Introduction 136
7.2 Minimum Measurable Weights of the mements in Stainless Steel 137
7.3 Development of the Extrapolation Equations 146
VIII. SUMMARY AND CONCLUSIONS 166
APPENDIX I. EFFECTS OF SMOOTHING ON SPECTRAL DATA 170
Al.1 Method of Smoothing 170
Al. 2 Smoothing Filter Function 172
Al. 3 Degree of Smoothing 174
Al. 4 Effects of Smoothing on the Peak Parameters 181
Page
APPENDIX II PEAK WIDTHS AND METHOD OF LEAST-SQUARES FIT 188
A2. 1 Reasons for the Fit 188
A2. 2 Doppler Broadening 189
A2.3 The Least-Squares Fit 193
A2.4 Application 196
APPENDIX III ERROR EQUATIONS 202
A3.1 The Error Equations 202
A3.2 Applications 209
APPENDIX IV PROMINENT CAPTURE GAMMA RAYS OF THE ELEMENTS AND THEIR MINIMUM MEASURABLE WEIGHTS IN STAINLESS STEEL 230
APPENDIX $\quad \mathrm{V}$ COMPUTER CODES 265
REFERENCES 307

IIST OF FIGURES

Page
Fig. 1.1 Neutron-induced gemma rays 13
Fig. l. 2 Various experimental arrangements for prompt activation analysis 14
Fig. 3.1 Typical neutron-capture gamma ray spect- rum (Internal facility, Al-6061 sample $1.62 \mathrm{~g})$ 31
Fig. 3.2 A graphical presentation of the method for linear background fit 37
Fig. 3.3 Histogram of a typical spectral peak ($n=12$ in this case) 42
Fig. 3.4 Ratio of errors in the two methods of peak area determination 48
Fig. 3.5 The Gaussian area percent error for various values of h and B 49
Fig. 3.6 An illustration of the three peak-area limiting levels 55
Fis. 4.1 A plan view of the internal neutron beam facility and gamma spectrometer 64
Fig. 4.2 Details of the internal beam collimator and end plug 66
Fig. 4.3a Photograph of sample holder and remotehandiling tool, disengaged; central discis a stainless steel sample, 0.5-inchin diameter68
Fig. 4.3b Sample holder and tool engaged together, ready for mounting 68
Fig. 4.4a Top view of MIT Reactor and 4THI irradi- ation facility (from Ref. [H8]) 71
Fig. 4.4b Front view of the 4THL irradiation faci-lity and the $G e(I i)$ capture gamma spect-rometer [H8]72
Fig. 4.5 The liqui-nitrogen 'snout'dewar, fully withdrawn. The $G e\left(L_{1}\right)$ crystal is located at the tip of the dewar 74

Fig. $4.6 \quad$| A general V iew of the three-crystal |
| :--- |
| spectrometer set up for internal-sam- |
| pie measeruments |

Fig. 4.7 Absolute efficiency of the spectrometer operated in the Compton suppression mode77

Fig. 4.8 Absolute efficiency of the pair spect
rometer 79

Fig. 5.1 Stainless steel spectrum obtained with
the internal-sampie facility (3.58)

Fig. 5.2 Orientation of the stainless steel semple with respect to the neutron beam and the Ge(Li) detector (sample weight 78.83 grams)
Fig. $5.3 \quad$ The free-mode stainless steel spectrum
(flux \times time $=1.32 \times 1013 \mathrm{n} / \mathrm{sq} . \mathrm{cm})$
Fig. 5.4 The Compton suppression stainless steel spectrum (flux x time $=1.33 \times 10^{12} \mathrm{n} / \mathrm{sq} . \mathrm{cm}$)92

Fig. 5.5 The stainless-steel pair spectrum (flux x time $=1.94 \times 1013 \mathrm{n} / \mathrm{sq} . \mathrm{cm}$)
Fig. 5.6 Ratio of the minimum detectable weights by the different gamma-detection modes
Fig. 6.1 Linearity correction curve 118
Fig. 7.1 Shape of background continuum in Compton suppression spectra 156
Fig. 7.2 $\begin{aligned} & \text { Shape of background continuum in } \\ & \text { pair spectra }\end{aligned} 157$
Fig. Al. $1 \quad \begin{aligned} & \text { Fourier transforms of two 4096-channel } \\ & \text { gamma ray spectra }\end{aligned} 173$
Fig. Al. 2 Section of noise spectrum and typical smoothed data for light and heavy smoothing
Fig. Al. 3 Frequency distribution of grouped data in the raw and smoothed noise spectra
Fig. Al. 4 The error reduction factor r for various combinations of the filter parmeters

Fig. Al. 5 Fourier transform of a pure-noise spectrum

180
Fig. Al. 6 Oscillations introduced by the filter functions shown in Fig. Al. 7 for heavy smoothing

Fig. Al. 7 Filter functions used in obtaining the oscillations shown in Fig. Al.6; all filters have $r=1.9$ except filter (d) which is for normal smoothing in this case

Fig. A2.1 Fitting the energy-width data to various polynomials by the method of least squares200

Fig. A2.2 Confidence interval in the three fits $\quad \begin{aligned} & \text { shown in Fig. A2.1 }\end{aligned}$
Fig. A3.1 Three of the one hundred pseudo-experimental peaks produced by the code ARTSPEC (Note that the y-scale does not start from zero)

LIST OF TABLES

Table		Page
II(1)	Sensitivities in Elemental Analysis	22
II(2)	Ratio of Minimum Detectable Weights Ordinary versus Prompt Capture Gamma Analysis	24
III(1)	Typical Peak Parameters Corresponding to the Three Peak Area Limiting Levels	54
IV(I)	Compton Suppression Efficiency and Transmission factors for Various Absorbers	76
IV(2)	Pair Spectrometer Efficiency and Transmission Factors for Various Absorbers	78
$\nabla(1)$	Elemental Composition of the SS-303 Sample	88
$\mathrm{V}(2)$	Gamma Ray Transmission Factors Through 0.45 cm of Fe	90
$\nabla(3)$	Background Data and Minimum Weight Ratios for the Free Mode and Compton Suppression Systems	99
$\nabla(4)$	Background Data and Minimum Weight Ratios for the Free Mode System and the Pair Spectrometer	102
$\nabla(5)$	Background Data, Efficiency, Width and Minimum Weight Ratios for the Compton Suppression System and the Pair Spectrometer	105
VI(1)	Part of gamanl Output SS-303 Pair Spectrum	109
$V I(2)$	Part of WTANAL Output Analysis of $\mathrm{SS}-303$ Sample	121
VI(3)	Expected and Actual Peak Areas from Manganese in SS-303 Sample and Corresponding Peak Area Limiting Levels	129
VII(I)	Limits for Quantitative Determination for Manganese	139
VII (2)	Limits for Quantitative Determination Compton Suppression	142

Page

VII(3)	Limits for Quantitative Determination Pair Spectrometer	144
VII (4)	Limits for Quantitative Determination Grouped Data	147
VII (5)	Experimental Data Employed in the Evoluation of the $f_{C S}$ and $f_{P S}$ Coefficients	152
VII(6)	$b(E)$ Distribution in Compton Suppression Spectra	158
VII (7)	$b(E-1022)$ Distribution in Pair Spectrometer Spectra	162
$A I(1)$	Effect of Various Smoothing Filter Functions on the Spectral Peak Parameters (Statistical Analysis based on 100 Pseudo-experimental Peaks	183
AII(I)	Doppler Broadening Contribution to Peak Width	192
AII(2)	POLYFIT Output Results of Least-Squares Fit	198
AIII(1)	Part of GAMANL Output for the Analysis of the 100 Artificial Peaks	211
AIII(2)	Statistical Analysis Applied to the 100 Pseudo-Experimental Peaks	214
AIII(3)	Pertinent Information Associated with the Three Aluminum Runs	217
AIII(4)	Comparison of the Three Aluminum Runs, Pair Spectrometer, Internal Sample	218
AIV(I)	Compton Spectrometer Limits for Quantitative Determination	232
AIV (2)	Pair Spectrometer Limits for Quantitative Determination	242
AIV (3)	Twelve of the Most Prominent Capture Gamma Rays of 75 Elements Listed in Terms of Increasing Gamma Ray Energy	256

Chapter I

INTRODUCTION
Conventional neutron activation analysis has been shown to have good analytical sensitivity for many elements. It has found its place in all the physical sciences and has been widely employed in a non-destructive manner in the analysis of samples containing elements at trace levels and higher concentrations [G1, II, L2, PI, WI]. In this method, the elemental compostion of a sample is determined through the analysis of the gamma ray spectra of the radionuclides formed within the sample by neutron capture. As such, the method is applicable only if the product nucleus is (a) radioactive, (b) is formed in reasonable amounts, and (c) has a half-Iffe that is neither too long to produce sufficient activity nor too short for measurement. Evidently a number of elements throughout the periodic table are not susceptible to this type of analysis:

Another approach to elemental analysis that still uses the neutron as the bombarding particle but does not rely on the radionuclear properties of the product nuclei is what is often referred to as prompt activation analysis. In this case, as is shown in Figures 1.1 and 1.2 , one examines (a) the prompt gamma rays resulting from fast neutron inelastic scattering or (b) the prompt gamma rays associated with thermal neutron capture. And since all nuclei have unique neutron inelastic scattering and absorption cross sections, any element may now be identified and its concentration in a given

Fig. 1.1 Neutron induced gamma rays

Fig. 1.2 Various experimental arrangements for prompt activation analysis.
sample determined.
The method of prompt activation analysis thus offers a number of reactions that are not available to the analysis based on delayed gamma radiations: Nevertheless, the measurement and utilization of prompt gamma rays has been hindered mainly by the complex nature of the spectra. The low resolution (tens of keV) $\mathrm{NaI}(\mathrm{II})$ scintillations detectors, which are invariably used in ordinary activation analysis, strongly restricts the usefulness of these detectors in prompt activation analysis. The recent development, however, of large (approximately $50 \mathrm{c} . \mathrm{c}$.) Iithium-drifted germanium detectors, with resolutions of a few kev, offers the possibility of using this technique in a number of new applications [T], El, 化, P2, S2, 02].

The desire to apply these detectors to the development of prompt activation analysis was one of the primary motivations for the work performed under the supervision and guidance of Prof. Norman C. Rasmussen at MIT by a number of researchers. The work on thermal neutron capture includes the design and construction of a Ge(Li) pair spectrometer and an external neutron beam facility by J. N. Hanson [H2] and V. J. Orphan [OI], and the acquisition and computer analysis of the neutron-capture gamma ray spectra of 75 elements by Y. Eurai [R2] and T. Inouye [I2]. The data and the technique have been applied to the analysis of coal samples of varying ash content. The results were very encouraging and provided a preliminary measure of the potential of capture gamma analysis [R3].

The work on neutron inelastic scattering is still under way and has involved the construction of a facility utilizing Pu-Be neutrons, and the acquisition of prompt gamma-ray data for a number of elements by D. P. Simonson [S4] and B. Hui [H6]. The work reported in this thesis is aimed at establishing the potential of neutron-capture gamma rays as an analytical tool in elemental analysis.

Most of the reported experimental investigations of prompt gamma rays have been to study nuclear energy levels (e.g. I. V. Groshev et al.[G4], O. I. Sumbaev et al.[S.]], P: Van Assche et al. [VI], G: A: Bartholomew et al. [BI], K. J. Wetzel [W3], etc.). As a result the literature on elemental analysis by neutron capture gamma ray spectroscopy is not plentiful, most of the work being moreover restricted to the determination of elements that do not satisfy the requirements of ordinary activation analysis. B. W. Garbrah and J. E. Whitley [G3] report the determination of boron in steel using a $2 \times 2^{\prime \prime} \mathrm{NaI}(\mathrm{II})$ crystal. Feasibility studies on the utilization of neutron inelastic scattering and neutron capture for the analysis of coal and iron ore samples are reported by T. C. Martin et al. [M2] and R. F. Stewart et al. [S3]. Certain estimates for the minimum detectable weights of Ca, N, , and Dy using a $G e(I i)$ spectrometer and an internal-sample arrangement were published by S. E. Arnell et al. [Al]. R. C. Greenwood [G5] has applied the method to the analysis of meteorite and terrestial-type rock samples! Biological samples were studied by D. Comar [C6], and A! Elkady [E3] reports the use of capture
gammas for the identification of gold in mixtures. A design of en apparatus for the measurement of trace elements is reported by S. M. Lombard et al. [I5] together with results for boron and cadmium.

Apparently the potentialities of capture gamma rays for elemental analysis are for the most part unexplored. Some semi-empirical results on the sensitivity of capture gamma analysis are reported by T. L. Isenhour and G. H. Morrison [II], and R. C. Greenwood and Ji. Reed [G2], and later W. G. Lussie and J. I. Brownlee, Jr. [I3], point out that this technique may play an important role in elemental and isotopic analyses. An assessment of capture gamma analysis is presented by B. W. Garbrah et al. [G7]; these authors report that the accuracy attainable in the analysis of practical samples is strongly dependent on the extent of matrix interferences and that the sensitivity of the technique is limited by the absorption cross section of the element of interest.

It is the objective of this thesis then to study the potential of neutron capture gamma rays in elementol analysis, the emphasis being on the development of general equations which can be used to predict the sensitivity of the measurement for any element in a given sample.

In Chapter II the reported theoretical sensitivities of capture gamma and ordinary activation anelysis are discussed and their relative effectiveness considered. In Chapter III is presented the derivation of the equations for the minimum number of counts in a given spectrum needed for reliable
quantitative anolysis, and for the corresponding minimum elemental weight. The remaining chapters are devoted to the experimental measurements required to obtain the empirical information needed for the application of the equations developed in Chapter III.

Neutron-capture gamma ray spectra were obtained at the MIT Reactor with the samplespositioned (a) in a high neutron flux next to the reactor tank (internal sample), and (b) in an external neutron beam facility of relatively lower but well thermelized flux, also charactrized by lower background radiation and better geometry. The gamma-ray three crystel spectrometer, consisting of a 30 c.c. coazial $\mathrm{Ge}(\mathrm{Li})$ detector surrounded by two $\mathrm{NaI}(T I)$ crystals and including a 4096-chennel analyser, was operated in the free mode (FN), the Compton suppression mode (CS), and as a pair spectrometer (PS). In Fig. I. 2 are show the various possible combinations of sourcesample position and gamma detection mode. Analysis of the results in the internal and external facilities will indicate which set up and which detection mode are more efficient.

The possibility of using a fast neutron radioactive source for the production of neutron-capture gamma ray spectra (O. A. Wasson et al. [W2], and R. F. Stewart [S3]), with the neutrons thermalizing within the sample itself if the sample is large enough or in a convenient moderator, was not considered.

To investigate the potential limits of detection offered by neutron-cepture gamme ray analysis it will also be necessary to use the listing of gamme ray spectra recently established
by the MIT gamma spectroscopy group [R2]. The peaks recognized in the spectra of 75 elements have been listed by the author in increasing order of energy so as to facilitate the qualitative analysis [H7]. The peak intensities have been expressed in a new set of units so that they can be incorporated directiy in the quantitative determination. In actual practice a large number of the capture gamma rays of each element can be used for elemental analysis in order to reduce the error in the measurements. In this work, where interest lies in the determination of the sensitivity limits, the emphasis will be on that prominent gamma ray of each element whose corresponding peak area in a given spectrum can be measured with the least error.

Chapter II

CAPTURE GAMMA VERSUS ORDINARY ACTIVATION ANALYSIS

2.1 Introduction

As noted in the introduction, the application of capture gamma analysis requires spectrometers of high resolution and high efficiency because of the complexity of the gamma ray spectra. The recent development of $\mathrm{Ge}(\mathrm{Li})$ detectors has provided a means of overcoming this difficulty and it is now of interest to explore theoretically the effectiveness of this new method of elemental analysis with respect to that of ordinary activation. The following section is devoted to this.

2.2 Theoretical sensitivities

Another reason that capture gamma analysis has not received as much attention as ordinary activation analysis is that in practice the latter may be used to detect amounts that are several orders of magnitude smaller.

Consider a neutron irradiation facility specified by a neutron flux ϕ and a gamma ray spectrometer characterized by a solid angle Ω and a counting efficiency \in. The minimum weight of an element of natural composition that may be detected in such a system is given by

$$
\begin{equation*}
m=4 \pi c /\left[\phi \Omega \in I\left(1-e^{-\lambda T_{i}}\right) e^{-\lambda T_{d}}\right] \tag{2.1}
\end{equation*}
$$

for the case of ordinary activation analysis, and by

$$
\begin{equation*}
m=4 \pi c /[\phi \Omega \in I] \tag{2.2}
\end{equation*}
$$

when the analysis is based on capture gamma rays. In these equations C represents a set of minimal count rates which, where applicable, are specified with respect to the irradiation time T_{1} and the half-lives $T_{\frac{1}{2}}$ of the radionuclides. T_{d} is the decay time after irradiation and λ the decay constant. I is defined as the number of photons of specified energy emitted per gram of element of natural composition per incident thermal neutron/sq. cm. The most intense decay and capture gamma rays of each element may be used for its identification.

Isenhour and Morrison [II] have applied the above equations to the evaluation of the sensitivities for the detection of 63 elements by ordinary activation and capture gamma analysis. They assumed unit neutron flux, unit solid angle, 100 percent counting efficiency, and zero decay time. They also employed Buchanan's criteria of one-hour irradiation for the count rates C which are

$C=1000$ counts per minute for	$T_{\frac{1}{2}}<I$ min	
$C=$	100 counts per minute for	1 min $\left\langle T_{\frac{1}{2}}<I\right.$ hour
$C=$	10 counts per minute for	$\left.T_{\frac{1}{2}}\right\rangle I$ hour

For the capture gamma rays C was set equal to 10 cpm . In addition, the calculations were based on the most intense gamma rays of the elements.

The results of these authors, which are summarized in Table II(I), indicate that in almost all cases capture gamma analysis is inherently more sensitive. However, the high

TABLE II(1)
SENSITIVITIES IN ELEMENTAL ANALYSIS

SENSITIVITY Grams	ORDINARY ACTIVATION ANALYSIS Elements	PROMPT CAPTURE GAMMA ANALYS IS Elements
$\begin{aligned} & 10^{-6}-10^{-5} \\ & 10^{-7}-10^{-6} \\ & 10^{-8}-10^{-7} \\ & 10^{-9}-10^{-8} \\ & 10^{-10}-10^{-9} \\ & 10^{-11}-10^{-10} \\ & 10^{-12}-10^{-11} \\ & 10^{-13}-10^{-12} \\ & 10^{-14}-10^{-13} \\ & 10^{-15}-10^{-14} \\ & 10^{-16}-10^{-15} \end{aligned}$	$\begin{aligned} & \mathrm{Fe} \\ & \mathrm{~S}, \mathrm{Se} \\ & \mathrm{Cd}, \mathrm{Cr}, \mathrm{Nd}, \mathrm{Si}, \mathrm{Sn}, \mathrm{Zr} \\ & \mathrm{Ce}, \mathrm{Cu}, \mathrm{~F}, \mathrm{Gd}, \mathrm{~K}, \mathrm{Mg}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Ta}, \mathrm{Te}, \\ & \mathrm{Ti}, \mathrm{Zn} \\ & \mathrm{Ba}, \mathrm{Cl}, \mathrm{Hg}, \mathrm{Pr}, \mathrm{Pt}, \mathrm{Sb}, \mathrm{Sc}, \mathrm{Tm} \\ & \mathrm{Ag}, \mathrm{Al}, \mathrm{As}, \mathrm{Br}, \mathrm{Ca}, \mathrm{Er}, \mathrm{Ga}, \mathrm{Hf}, \mathrm{I}, \\ & \mathrm{Ir}, \mathrm{La}, \mathrm{Na}, \mathrm{Nb}, \mathrm{Re}, \mathrm{Sm}, \mathrm{Sr}, \mathrm{~W} \\ & \mathrm{Au}, \mathrm{Co}, \mathrm{Cs}, \mathrm{Eu}, \mathrm{Ho}, \mathrm{Mn}, \mathrm{Rh}, \mathrm{~V} \end{aligned}$ In Dy	$\begin{aligned} & \mathrm{Bi}, \mathrm{Sn} \\ & \mathrm{C}, \mathrm{~F}, \mathrm{Nb} \\ & \dot{\mathrm{Al}, \mathrm{As}, \mathrm{Au}, \mathrm{Ba}, \mathrm{Be}, \mathrm{Br}, \mathrm{Ce}, \mathrm{Ga}, \mathrm{Mg},} \\ & \mathrm{Pr}, \mathrm{Sb}, \mathrm{Si}, \mathrm{Sr}, \mathrm{Tl}, \mathrm{Zn}, \mathrm{Zr} \\ & \mathrm{Ag}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Cs}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{I}, \mathrm{~K}, \mathrm{Ia}, \mathrm{Mn}, \\ & \mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pt}, \mathrm{Re}, \mathrm{Rh}, \mathrm{~S}, \mathrm{Se}, \mathrm{Te}, \\ & \mathrm{~V}, \mathrm{~W} \\ & \mathrm{Co}, \mathrm{Ho}, \mathrm{In}, \mathrm{Ir}, \mathrm{Na}, \mathrm{Sc}, \mathrm{Ta}, \mathrm{Ti}, \mathrm{Tm} \\ & \mathrm{Cl}, \mathrm{Er}, \mathrm{H}, \mathrm{Hf}, \mathrm{Hg} \\ & \mathrm{Cd}, \mathrm{Dy}, \mathrm{Eu}, \mathrm{Sm} \\ & \mathrm{~B}, \mathrm{Gd} \end{aligned}$

* For a neutron flux of $10^{13} \mathrm{n} / \mathrm{cm}^{2} \mathrm{sec}$, and a 100 percent detection efficiency.
background radiation associated with experiments involving the detection of capture gamma rays dictates that the sample to detector distance be appreciable so that adequate detector shielding can be provided against the undesirable background radiation. Also, in order to avoid exposing the detector to the direct neutron and gamma beams from the neutron source, it is necessary in some instances to place the samples away from the source center, and hence at relatively lower neutron flures. As a result, and with reference to equation (2.2), the relatively lower neutron fluxes and smaller solid angles increase considerably the minimum weight of an element that can be detected by this technique.

The ratio R_{m} of the minimum detectable weights of each element by the two methods analysed by Isenhour and Morrison (ordinary versus capture gamma) are show in Table II(2) for two different values of G, where

$$
G=\frac{(\phi \Omega \epsilon) \text { associated with capture gamma anal. }}{(\phi \Omega \epsilon) \text { associated with ordinary activation }} \cdot(2.3)
$$

Note that for the practically unattainable case of $G=1$ ordinary activation analysis is more sensitive for only $A u$ and Nb . For the more realistic value of $G=10^{-5}$, however, it prevails for approximately 75 percent of the cases. (Note that other elements not considered by Isenhour and Morrison that are not suitable for ordinary activation analysis are $\mathrm{He}, \mathrm{Li}, \mathrm{N}, \mathrm{O}, \mathrm{Pb}$ and Y).

A further disadvantage of capture gamma analysis is that

TABLE II(2)
RATIO OF MINIMUM DETECTABLE WEIGHTS
ORDINARY VERSUS PROMPT CAPTURE GAMMA ANALYSIS

Ratio Rm_{m} $G=1 \quad *$	ELEMENTS	Ratio R_{m} $\mathrm{G}=10^{-5} \#$
$\begin{aligned} & \text { infinite } \\ & 10^{7}-10^{8} \\ & 10^{6}-10^{7} \\ & 10^{5}-10^{6} \\ & 10^{4}-10^{5} \\ & 10^{3}-10^{4} \\ & 10^{2}-10^{3} \\ & 10^{1}-10^{2} \\ & 10^{0}-10^{1} \\ & 10^{-1}-10^{0} \end{aligned}$	```\(\mathrm{B}, \mathrm{Be}, \mathrm{Bi}, \mathrm{C}, \mathrm{H}, \mathrm{P}, \mathrm{Tl}\), Cd, Gd \(\mathrm{Fe}, \mathrm{Nd}\) \(\mathrm{S}, \mathrm{Se}\) \(\mathrm{Cl}, \mathrm{Cr}, \mathrm{Hg}, \mathrm{Sm}, \mathrm{Ta}, \mathrm{Ti}\) \(\mathrm{Cu}, \mathrm{Er}, \mathrm{Eu}, \mathrm{K}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Sc}, \mathrm{Si}, \mathrm{Te}, \mathrm{Tm}, \mathrm{Zr}\) \(\mathrm{Ag}, \mathrm{Ce}, \mathrm{Hf}, \mathrm{I}, \mathrm{Mg}, \mathrm{Pt}, \mathrm{Zn}\) \(\mathrm{Ba}, \mathrm{Ca}, \mathrm{Co}, \mathrm{Dy}, \mathrm{F}, \mathrm{Ga}, \mathrm{Ho}, \mathrm{Ir}, \mathrm{Ia}, \mathrm{Na}, \mathrm{Pr}, \mathrm{Re}\), \(\mathrm{Sb}, \mathrm{Sn}, \mathrm{W}\) \(\mathrm{Al}, \mathrm{As}, \mathrm{Br}, \mathrm{Cs}, \mathrm{In}, \mathrm{Mn}, \mathrm{Rh}, \mathrm{Sr}, \mathrm{V}\) \(\mathrm{Au}, \mathrm{Nb}\)```	infinite $10^{2}-10^{3}$ $10^{1}-10^{2}$ $10^{0}-10^{1}$ $10^{-1}-10^{0}$ $10^{-2}-10^{-1}$ $10^{-3}-10^{-2}$ $10^{-4}-10^{-3}$ $\begin{aligned} & 10^{-5}-10^{-4} \\ & 10^{-6}-10^{-5} \end{aligned}$

* Conditions: Same neutron flux available for both methods

Same detection efficiency (including geometry) in both cases.
\# Conditions: The product of neutron flux and detection efficiency available for ordinary activation is 10^{\prime} times larger than that for prompt capture gamma analysis.
the already complex gamma ray spectra are complicated even more by the following processes:
(a) Undesirable neutron and gamma radiation reaching the detector directly from the neutron source, and by scattering off the sample and its holder
(b) Undesirable gamma radiation emanating from the sample holder and other structural material as a result of neutron bombardment
(c) Undesirable gamma radia tion originating in the. sample but reaching the detector via Compton scattering, and
(d) delayed gamma rays.

In the case of a collimated neutron beam effects (a), (b) and (c) may be eliminated by recording four spectra as suggested by Hammermesh and Hummel [H4]:

1. Sample in the neutron beam
2. Semple in beam, but with thermal neutrons removed from the beam by suitable absorber
3. Sample removed from the beam, with absorber still in position
4. Both sample and absorber removed from the beam. The gamma spectrum of interest is then obtained by subtractire spectra according to

$$
1-2+3-4
$$

Such a procedure is not practical and is still liable to error because of possible spectral shifts resulting from variations in the electronics and also of possible fluctuations in the
beam intensity. Delayed gamma rays are still a problem; these may be reduced by modulating the neutron beam and gating the logic unit of the analyser in phase with the neutron bursts (Isenhour et al. [II]).

In summary then, elemental analysis based on neutron capture gamma rays is characterized by complex gamma ray spectra and is insensitive in the trace-level domain for most elements because of the restrictions mentioned above. Not to be overlooked, however, are certain definite advantages in its favour. In cases where interest lies in the quantitative determination of the main constitutents of materials, as on certain production lines for instance [S3], capture gamma analysis appears best suited when coupled with a suitably thermalized neutron source. The following reasons apply:
(a) Radioactive neutron sources are economical, reliable, readily available and capable of unattended continuous operation
(b) The experimental arrangement for such an on-line analysis is extremely simple and does not involve the complexities and inconveniences associated with nuclear reactors and accelerators
(c) No flux monitoring is necessary
(d) The gamma rays are prompt and may be analysed Without delay and, unlike ordinary activation analysis, a single run is sufficient for the identification of all the elemental constituents
(e) In view of the high penetrability of neutrons and
the low attenuation of high energy gamma rays, very large samples may be used, a procedure which eliminates sampling errors that ordinary activation analysis is often faced with.

Other fields of science and technology where prompt capture gamma analysis can find extensive application include in-field geological surveying and oceanology [M3], lunar and planetary explorations [Cl], [G2(b)], etc. The usefulness of capture gamma analysis, therefore, should not be thought of as limited to that special group of elements mentioned earlier. And as the intensities of readily available radioactive neutron sources will soon surpass $10^{10} \mathrm{n} / \mathrm{sec}$, the method is likely to become tremendously attractive. (W. C. Reining [Hl] gives the following data on a Cf^{252} fission neutron source: 11 curies, $5 \times 10^{10} \mathrm{n} / \mathrm{sec}$ yield, approximately 20 , 000 dollars for the radionuclide, $2.9 \mathrm{rad} / \mathrm{hour}$ gama dose at I meter, 0.8 watts of heat generation, 2.65 years of half-life, and less than $1 \mathrm{~cm}^{3}$ volume. The softex neutron spectrum of such a source, as compared to the (α, n) sources, makes it particularly attractive for capture gamma measurements.).

In concluding this section it must be mentioned that many authors, such as Isenhour and Morrison [II], R. C. Greenwood and J. Reed [G2] and H. R. Lukens [L2], have correctly considered capture gamma analysis as simply a technique complenentary to the far more effective ordinary activation analysis.

2.3 The Minimum Measurable Weight

EValuation of the potentialities of capture gamma analysis is thus of prime importance. It must be emphasized here that the results of Isenhour and Morrison on the calculated sensitivities are inadequate for this purpose and must be used only as guide lines because they can lead to erroneous results in actual experiments. For instance, the calculations were based on the most intense gamma rays of the elements which, in view of the energy dependence of the gamma detection efficiency of the spectrometer, do not necessarily correspond to the strongest peaks visible in the spectra. Moreover, the sensitivities were based on the arbitrarily chosen minimal counts rates C for possible detection of the gamma rays irrespective of the emplitude of the continuum background on which the gamma peaks are located. In fact more counts are needed to identify a peak if the peak is sitting on a high background and it is to appear above the statistical fluctuetions of the latter. And finally no mention is made of the errors associated with the calculated sensitivities. The subsequent work is aimed at overcoming the above deficiencies.

If we rewrite equation (2.2) for the minimum measurable weight by capture gamma analysis as

$$
\begin{equation*}
m=4 \pi A_{\min } /[\phi \Omega \in I t] \tag{2.4}
\end{equation*}
$$

where t is the counting time and $A_{\text {min }}=C t$, it is evident that the values of m we seels to establish depend directly on the minimum number of counts $A_{m i n}$ that can be used satisfacto-
rily for quantitative determination. It is thus necessary to establish a method for determining $A_{\text {min }}$ and as $A_{\text {min }}$ is itself a function of background, it is important to know what this continuum background radiation is over the whole spectrum and how it varies with different experimental arrangements and different gamma detection modes.

In the chapter that follows an equation for $A_{\text {min }}$ will be derived. This willbe based on an improved method for the measurement of small peaks in gamma ray spectra. The energy dependence of the background continuum will be considered in later chapters.

Chapter III

METHOD OF DATA ANALYSIS

3.1 Introduction

When a sample is placed in a neutron flux and the resulting prompt capture gamma radiation is detected and anaIysed by means of a $G e(L i)$ spectrometer, there results a gamma spectrum that usuelly includes some 100-200 peaks ranging in energy from 200 keV to 10 MeV with typical fwhm (fullwidth at half maxima) of the order of 6 to 12 keV . The actual experimental arrangements for obtaining such spectra, of which a typical example is show in Fig. 3.1, will be described in the chapters that follow. For the present let us assume that we are faced with the problem of establishing the energies and intensities of the peaks that appear in one such spectrum. Once these are measured, the characteristic gamma rays of any element can be used to identify its presence in the sample and the areas of the corresponding photopeaks can be used to establish its concentration.

In the section that follows there is presented a short description of the computer code that was developed by the gamma spectroscopy group for the anolysis of these complex spectra. Sections 3.3 and 3.4 are devoted to the description of those functions of the program developed or modified by the author, and to the presentation of the error equations associated with the measurement of the photopeak areas. Since the equation for the minimum detectable area that we seek to establish is directly related to the error equations, a large

Energy of incident gamma ray, E (MeV)

Fig. 3.1 Typical neutron-capture gamma ray spectrum (Internal facility, Al-6061 sample, 1.62 g)
part of this chapter is devoted to the latter. In section 3.5 are developed three equations on peak area limiting Values (or levels) which must be consulted in deciding whether a weak peak in a given spectrum should be labelled as good for reliable quantitative determination', or 'good only for qualitative analysis', or simply 'unreliable'. And finally in the last section appears the derivation of the equation for the minimum weight of an element needed for reliable quantitative determination.

3.2 GAMANL

GAMANL is a computer program applying Fourier transforms to the analysis of gamma ray spectra and is the result of a long series of manhour units. It is a code that smooths the data and automatically identifies all the peaks in complex spectra and determines all their geometrical parameters. The original version of the program was developed by T. Inouye [I2(a)]. Modifications and improvements were subsequentiy made by T. Harper [H8] and the author. The author's main contributions include the development of (a) an improved method of linear background fit for separating the photopeaks from the underlying continuum, (b) an improvement in the anaIysis of multiplets, (c) a new approach to peak area determination and (d) the development of equations for the errors in the measured peak parameters. A description of the prograr tees published recently ([HI], [I2(b)]).

The program is written in the Fortran IV language for the MIT IBM $360 / 65$ computer and performs the following
operations in about 75 seconds of computation time:
(a) Smooths the data by employing Fourier transforms; this reduces the random fluctuations without affecting the spectral resolution
(b) Fits a linear background under the peaks using one to five point averaging at the minima, special criteria being applied for the identification of partially resolved multiplets
(c) Improves the spectral resolution by using the same Fourier transform with different constants (optional)
(d) Identifies the maxima of all the peaks by employing certain slope criteria and calculates the energies (within 1 to 2 keV) using two energy standards correcting also for system non-linearity by malking use of special input data
(e) Calculates the height, the height to background ratio, the fwhm, the least-squares fitted fohm representative of the whole spectrum, and the area of the peaks (by two methods) together with an estimate for the standard deviation in its measurement, and
(f) Calculates the intensity of the gamma rays by correcting the areas for detector efficiency.
A typical output of this proeram is show in section 6.3

3.3 Method of Linear Background F1t

The most important step in the analysis of a given spectrum is the separation of the photopeaks from the underlying continuum. This background is caused (a) by the
continuous gamma spectrum associated with the neutron source and (b) by those gamma rays of originally discrete energy which reach the detector via Compton scattering or which deposit only part of their energy within the sensitive volume of the detector.

In our analysis such a continuum is represented over small subranges of the spectrum by a linear function that connects specially chosen minima in the smoothed data. The smoothing operation which is applied to the raw data prior to this step eliminates most of the random fluctuations and thus makes the identification of all the minima possible. One is faced, however, with the problem of identifying from amons these minima those whose recorded counts are due only to the continuous background and do not include any contributions from nearby peaks; that is, care must be teken for the identification of multiplets.

Several criteria have been employed in the past with varying success for choosing the correct minima for this lineax background fit. In the original version of the program a condition was placed on the slope of the line between two adjacent minima MO and M. The second minimum was accepted or rejected according to whether the absolute value of the slope of the line was smaller or larger than a specified critical value. In mathematical terms, the condition for accepting channel MI as a minimum is

$$
\begin{equation*}
|H(M I)-H(M O)|<C^{\prime}(M I-M O) \tag{3.1}
\end{equation*}
$$

where $H(M O)$ and $H(M D)$ are the counts in channels MO and M, channel MO being itself a minimum satisfying the same condition. This procedure requires that the value of the constant C^{\prime} be small if multiplets are to be identified and large if the continuous background is increasing or decreasing rapid1y. In practice only one value can be specified for C^{\prime} and therefore the method is liable to serious errors. C^{\prime} was set at about 20 to 30 .

Another approach [H8] sets the criterion at

$$
\begin{equation*}
H(M) \quad-H(M O)<C " \sqrt{ } H(M O) \tag{3.2}
\end{equation*}
$$

Here again the constant $C^{\prime \prime}$ (approximately 2 or 3) must be small for the identification of multiplets and large for cases of rapid increases in the continuous background. Satisfactory results can be expected in most cases.

The linear background fit presently used in GAMANL has been developed by the author. Its method of operation may be understood with reference to Fig. 3.2. Assume at first that the method to be described below has already been applied to the low-number channels and that channel MO is accepted as a true minimum; i.e. the number of counts recorded in channel MO is due entirely to the continuous background radiation. Because of the statistical fluctuations in the data, the ralue of the minimum is obtained by averaging the counts in the channels neighbouring MO according to

where

$$
a_{j}=1 \quad \text { if }|H(M O+j)-H(M O)| \leqslant q \sqrt{H}(M O)
$$

and $a_{j}=0$ in all other cases.
$H(M O+j)$ is the number of counts recorded in channel (MO $+j$). Note that a maximum of $2 \mathrm{p}+1$ channels are considered in the averaging. For our spectra, in which typical peaks occupy 10 to 15 channels, p was set equal to 2 and q was arbitrarily set equal to 1 . In cases where the amplifier settings are so chosen that the peak signals are stored in a larger or smaller number of channels, the value of p can be adjusted accordingly.

The next potential minimum in Fig. 3.2 is in channel MI. For this to be accepted as a valid minimum the next two higher minima M2 and M3 must satisfy the following conditions:
(a) for $H(M Z)>\bar{H}(M O)$
(I) $\left|H^{*}(M 2)-H(M 2)\right| \leqslant C \sqrt{ }(M 2-M 1) \times H(M 2)$
(2) $|H *(M 3)-H(M 3)| \leqslant C \sqrt{ }(M 3-M C) \times H(M 3)$
or
(b) for $H(M D)<\bar{H}(M O)$
(1) $\quad H^{*}(M 2)-H(M 2) \leqslant C \sqrt{ }(M 2-M 1) \times H(M 2) \quad$ (3.5)
$\mathrm{H}(\mathrm{M} 2)$ and $\mathrm{H}(\mathrm{M} 3)$ are the number of counts in the minima in channels M2 and M3, and $H^{*}(M 2)$ and $H^{*}(M 3)$ are the counts these channels would have had they been located along the straight line joining $\bar{H}(M O)$ to $H(M)$. The right-hand side

Fig. 3.2 A graphical presentation of the method for Iinear background fit
of these equations were chosen arbitrarily; the square-root sign represents a measure of the statistical fluctuations in the counts. The constant C was set equal to 1.2 in this work. Condition $a(2)$ was specially added for the definite identification of triplets since condition $a(I)$ might not be sufficient for this purpose. The sets of conditions may be extended further for the identification of higher order multiplets by introducing similar expressions for M4, M5, etc. If channel M does not meet the requirements for a va1id minimum, as is the case in Fig. 3.2, the point is ignored and a similar analysis is carried out using points MO, M2, M3 and M4. Due to the limitations of our program to analyze high-order multiplets, this procedure is stopped if five consecutive minima do not satisfy the conditions.

In Appendix V is presented the latest form of the computer code (subroutine) written to perform the above operations. It differs in a number of points from the one published in [H(1)] in view of certain important changes that were made recently.

This method of linear background fit has the following advantages:
(a) The chosen minima are more representative of the true background because of the point averaging
(b) Identification of the multiplets is rendered more effective by applying the criteria not to the minimum that must be accepted or rejected but to the next minima higher, and
(c) Sharp rates of change in the continuum background do not influence its effectiveness since the analysis does not depend on the slope of the base line to be drawn.

For comparison note that in Fig. 3.2 both points M1 and M2 satisfy the conditions set by equation (3.1) and are therefore used in the first method of background fit described above. Similarly, in the second fit technique, point M2 satisfies equation (3.2) and is therefore accepted as a true minimum.

Choosing the correct background fit is indeed the most important step in the analysis of the data. Once this is accomplished it is only a simple matter to obtain the values for the various peak parameters. The methods of peak area determination, which is of particular importance in this work, are presented in the section that follows.
3.4 Methods of Peak Area Determination

What has prompted the work on peak area measurement is the fact that the proposed methods of area calculation available in the literature are either liable to large errors or are too complex and time consuming to warrant their use in our analysis. In particular, the method of straight sums (Covell [C2]), whereby the area is obtained by summing the counts in the channels forming the peak and subtracting the underlying continuum, does in fact require a point by point plot of the whole spectrum for the sake of certifying that the 'computer-chosen' peaks are not deformed in any way.

For example, if point MI in Fig. 3.2 were a mere 10 counts (or approximately 1 percent) larger there would be no minimum at MI and the triplet would have been 'though of' by the computer as a doublet. And it is fairly often that small unresolved peaks are located at the wings of larger ones. Again, in some other proposed methods, where the peak distribution is assumed to be Gaussian (C. L. Carnahan [C3]) the standard deviation of the Gaussian is assumed to be known a priori thus rendering the results of an analysis questionable in cases of slight voltage shifts in the electronics which change the apparent energy resolution.

Finally, there is the more precise method of leastsquares fitting the spectral data to a Gaussian function superimposed on a linear background. It has been reported by a number of authors such as Graber and Watson [G6], Daddi and D'Angelo [DI], Helmer et al. [H3], Liuzzi and Pasternack [I4], and Trombka and Schmadebeck [T2]. The iterative procedure employed in this analysis, which inevitably leads to long computation times, constitutes its main drawback. In our analysis, where the accuracy is limited mostly by the efficiency calibration of the spectrometer this expense is not warranted.

The method of area evaluation that is proposed in section
3.4.1 assumes that the peak area distributions are characterized by a Gaussian with an energy-dependent fwhm obtained by least-squares fitting the fwhm of the strongest peaks in the actual data. As will ${ }_{1}$ show later, the resulting reduction
in the error of the areas makes this method more attractive than that of the straight-sums, the latter being more accurate only for very strong non-deformed peaks. Moreover, because of the smoothing process we apply to the data before we attempt to analyze them, the accuracy with which the peak parameters can be determined is comparable to that resulting from the more elaborate procedures mentioned above.

3.4.1 Area Equations

Two methods of area calculation are presented in this section. The first is the method of straight-sums as employed in the original version of the GAMANL code. The second method was developed by the author and has been added to this code.

With reference to Fig. 3.3 the area under the peak according to the straight-sums approach is

$$
\begin{equation*}
A_{S}=\sum_{k=1}^{n-1} H_{k}-\frac{n-1}{2}\left(\bar{H}_{0}+\bar{H}_{n}\right) \tag{3.6}
\end{equation*}
$$

where n is the number of intervals occupied by the peat and \bar{H}_{0} and \bar{H}_{n} are the peak minima evaluated by equation (3.3). In the second method, the peak distributions are assumed to be Gaussian having apeak height h and an area given by

$$
\begin{equation*}
A_{G}=1.0645 \overline{\mathrm{w}} \mathrm{~h} \tag{3.7}
\end{equation*}
$$

Here is a correction factor to account for the deviation of the data points from a true Gaussian distribution; it is determined experimentally for each spectrum and usually has a value of approximately 1.02. $\overline{\mathbf{w}}$ represents the full-width

Fig. 3.3 Histogram of a typical spectral peak ($n=12$ in this case)
at half maximum of a peak (or peak width as it will often be referred to) at energy E determined by least-squares fitting the properly weighted widths and energies of the strongest peaks in the spectrum to a smooth function. The algebra associated with this procedure is presented in Appendix II together with sample results.

Note that data spread over the whole spectrum is used to evaluate ϕ and \bar{W}, and as this is done routinely for each spectrum, slight distortions or voltage shifts that occur are accounted for. The advantage of the method lies in the reduction of the error in the peak width, the fitted value of the width at any particular position in the spectrum being more accurate than that obtainable from any one single peak at the same position.

It must be pointed out here that the idea of using one single curve to represent the variation of peak width with energy is not physically correct since some of the garma rays in the fit are liable to be Doppler broadened if they are emitted while the nucleus is still recoiling from the emission of other gamma rays in the same cascade. As shom in Appendix II, ${ }^{1 I_{B}}$ lines can be broadened by as much as 1.5 keV but, in general, typical values are in the vicinity of 0.1 keV . The actual error in the measured widths in our case is in general larger than this and therefore the effect is not expected to affect the fit in any significant way. Moreover, in the application of gamma spectroscopy to elemental analysis one usually compares the unknown sample
to a standard and hence systematic errors in the fit, if any, cancel out.

In our method of analysis the actual peak width is obtained by assuming linear interpolation between the channels whose count is just above and just below the peak half maxima. With reference to Fig. 3.3 the width is

$$
w=j-1+\frac{h_{1}-(h / 2)}{h_{1}-h_{i-1}}+\frac{h_{j}-(h / 2)}{h_{j}-h_{j+1}} \cdot \text { (3.8) }
$$

As noted earlier, h is the peak height and is determined by a second order interpolation applied to the three highest points in the peak after the background continuum has been subtracted. Denoting these three points by h_{p-1}, h_{p} and h_{p+1} the peak height equation takes the form

$$
\begin{equation*}
h=h_{p}(1+a) \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{\left(h_{p+1}-h_{p-1}\right)^{2}}{8 h_{p}\left(2 h_{p}-h_{p-1}-h_{p-1}\right)} \tag{3.10}
\end{equation*}
$$

For the case of multiplets, consider one consisting of m peaks whose maxima are located at positions $c_{j}, j=1,2$, 3, ... m. The number of counts $h ;$ registered at these maxima have contributions from all the peaks in the multiplet according to

$$
\begin{equation*}
h_{j}^{p}=\sum_{i=1}^{m} h_{i} \exp \left[-\frac{\left(c_{j}-c_{i}\right)^{2}}{2 \sigma^{2}}\right] \tag{3.11}
\end{equation*}
$$

where σ is the standard deviation of the Gaussian peaks and
is related to the width by $\sigma=\bar{w} /(2 \times 1.1774)$. h_{1} are the true number of counts corresponding to each peak individually and may be obtained by solving the above simultaneous equations.

The peak area corresponding to each peak in the multiplet is obtained, in the Gaussian approach, by using these h_{i} values in equation (3.7). In the straight-sums approach, on the other hend, the total area in the multiplet, $\left(A_{S}\right)_{t}$ is normally apportioned to the m peaks according to the equation

$$
\begin{equation*}
\left(A_{S}\right)_{j}=\left[\left(A_{S}\right)_{t} h_{j}\right] / \sum_{i=1}^{m} h_{i} \tag{3.12}
\end{equation*}
$$

Note that for the analysis of multiplets both methods of area determination must rely on the resolution of the system at that particular position in the spectrum, the multiplet itself being unsuitable for supplying such information. In the original version of the program (GAMANL) the system resolution was approximated by a linear function whose parameters were dictated by the values of the fwhm of the two energy calibration lines in the spectrum. In its present form the code uses the least-squares-fitted width for these computations.

For non-deformed peaks, both methods of area determination must give comparable results. In practice the relative values of the areas obtained by the two techniques are used as a measure of confidence.

3.4.2 Errors

In order to investigate which of the two methods of peak area determination is more reliable, it is necessary to compare the error equations associated with each of these two techniques. The development of these equations, as well as the errors incurred in the measurement of the other peak parameters, are presented in Appendix III. It suffices for the moment to note that the standard deviation (which will often be referred to as the error) in the straight-sums area A_{S} is given by

$$
\begin{equation*}
\sigma\left(A_{S}\right)=\sqrt{A_{S}+(3 \bar{w}-1)\left[1+(3 \bar{w}-1)^{2} / 2 r^{2}\right] B} \tag{3.13}
\end{equation*}
$$

where $B=\left(H_{0}+H_{n}\right) / 2$ and is the average background value underneath the peak. r represents the reduction in the statistical fluctuations of the data by the smoothing process and has a value of 1.34 for the filter function that was often used in this work; more information on r appears in Appendix I.

In the Gaussian approach the standard deviation in the area is given by

$$
\begin{equation*}
\sigma\left(\Lambda_{G}\right)=A_{G} \sqrt{[(1+\alpha) / h r]^{2}(h+1.5 B)+s^{2} / \bar{w}^{2}} \tag{3.14}
\end{equation*}
$$

where the first term represents the relative standard deviation in the peak height h, and s accounts for the error in the fitted width \bar{w} resulting from the least-squares operation (see equation (12.16)).

The above equations, whose derivation was based on a
number of assumptions, were tested using both real and pseudo-experimental data. Details may be found in Appendix III.

In order to afford a comparison between the two methods of peak area determination (s / \sqrt{W}) is equation (3.14) was assumed to have the empirical value of approximately 0.02 for those peaks which, because of the weighting procedure described in Appendix II, do not have any significant influence on the fit; it is smaller for more intense peaks. A typical fwhm of 4 channels was used. The results of the comparison are presented in Fig. 3.4 for a number of values for the background continuum B in terms of the ratio of the two errors defined as

$$
R_{\sigma}=\left[\sigma\left(A_{G}\right) / \sigma\left(A_{S}\right)\right]
$$

Values for R_{σ} larger than unity indicate that the standard deviation in the area determined by the Gaussian approach is relatively larger and that therefore the method of straightsums should be preferred. R_{σ} values less than unity shift the preference to the Gaussian approach.

The actual percent error in A_{G} is showm in Fig . 3.5. Note that for $\left[\sigma\left(A_{G}\right) / A_{G}\right]=15$ percent the corresponding relative error in the straight-sums area, $\left[\sigma\left(A_{S}\right) / A_{S}\right]$, will range from $(15 / 0.7)=21$ percent to $(15 / 0.58)=26$ percent for B values ranging from 25 to infinity. The significance of this is noteworthy since, according to the peak area limiting values (or levels) developed in the following section, only areas with less than 20 percent error can be employed

Fig. 3.4 Ratio of the errors in the two methods of peak area determination

Fig. 3.5 The Gaussian area percent error for various values of h and B
reliably for quantitative determination.
It is seen from Fig. 3.4 that the straight-sums approach must be preferred only for strong peaks with large (h/B) Values. However, such peaks constitute only a small fraction of the spectrum. In addition, this method of peak area determination cannot account for small unresolved peaks located at the wings of larger ones and, moreover, it must rely on the fitted width for the evaluation of the number of counts corresponding to each peak in a multiplet. These observations, coupled together with the interest in this work in the measurement of small peaks, have convinced the author that, as far as elemental analysis using both standerd and unkown samples is concerned, the Gaussian method is to be preferred. In fact the method may be applied without any restrictions to cases that are not subject to Doppler broadening effects.

As a final validation of the above remarks there is presented in Appendix III a comparison between three aluminum spectra obtained under similar experimental conditions. It may be observed there that there is better agreement between corresponding Gaussian areas than between areas obtained by the method of straight sums.

3.5 Limiting Values for Peals Areas

The error equations presented above, which were based on a number of assumptions and empirically determined constants, are only simple estimates of the standard deviation in the measured parameters. If these are assumed to be
known exactiy, a confidence interval specified by k_{1} can be set on the value of any paramiter y according to

$$
\begin{equation*}
y-k_{1} \sigma(y)<y<y+k_{1} \sigma(y) \tag{3.15}
\end{equation*}
$$

For confidence intervals of $50,68.3,90$ and 99.46 percent k_{1} has the values of $0.6745,1.000,1.645$ and 3.00 respective1y. Thus, for example, there is a 90 percent probability that y is within the interval

$$
y-1.645 \sigma(y)<y<y+1.645 \sigma(y)
$$

Proceeding further, if the limit $y_{m i n}$ for quantitative determination of y is set equal to $k_{2} k_{1} \sigma(y)$, then y will lie in the interval

$$
\begin{equation*}
k_{2} k_{1} \sigma(y)-k_{1} \sigma(y)<y<k_{2} k_{1} \sigma(y)+k_{2} k_{1} \sigma(y) \tag{3.16}
\end{equation*}
$$

or

$$
y_{\min }=k_{2} k_{1} \sigma\left(y_{\min }\right) \pm k_{1} \sigma\left(y_{\min }\right)
$$

\mathbf{k}_{2} is related to the desired error in the measurement, this being equal to $\left(100 / k_{2}\right)$ percent. For $k_{1}=1.00$ and $k_{2}=5$ there is, for instance, a 68.3 percent probability that the error in $y_{\text {min }}$ will be 20 percent. This is equivalent to a 99.46 percent probability that the same value of $y_{\text {min }}$ (which is $5 \sigma\left(y_{\min }\right)$ in this case will have an error of 60 percent, k_{1} and k_{2} now having the values of 3 and (5/3).

In the particular case of the minimum area $A_{m i n}$ which can be used satisfactorily for quantitative analysis, equations (3.14) and (3.16) give, by using $A_{\text {min }}$ in place of $y_{m i n}$,

$$
\begin{equation*}
A_{\text {min }}=\left[1.0645 k_{1} k_{2} \psi \bar{w}(1+\alpha) / r\right] \sqrt{\left(A_{\min } / 1.0645 \psi \bar{w}\right)+1.5 B} \tag{3.17}
\end{equation*}
$$

The relatively small error in the fitted width was neglected. Solving for $A_{\text {min }}$ there results
$A_{\min }=\left[1.0644 \bar{\psi}(1+\alpha)^{2} k_{1}^{2} k_{2}^{2} /\left(2 r^{2}\right)\right]\left\{1+\sqrt{6 B\left[r /\left(k_{1} k_{2}(1+\alpha)\right)\right]^{2}+1}\right\}(3.18)$
The expression "limit for quantitative determination" was borrowed from an article by L. A. Currie [C4] who has re-examined the question of signal detection and signal extraction in analytical and nuclear chemistry in view of the occurence in the literature of numerous, inconsistent and limited definitions of detection limits. Currie defines three limiting levels: (a) the net signal level (instrument response) above which an 'observed' signal may be reliably recognized as 'detected'; (b) the 'true' net signal level which may be a priori expected to lead to detection, and (c) the level at which the measurement precision will be satisfactory for quantitative determination.

Following Currie's approach, the criticel level in the area measurement corresponds to

$$
\begin{equation*}
A_{\text {crit }}=\left[1.0645 \psi \bar{w} k_{0}(1+\alpha) / r\right] \sqrt{1.5 \mathrm{~B}} . \tag{3.19}
\end{equation*}
$$

The detection Iimit, which is so defined that it is always greater than zero, is equivalent to
$A_{\text {det }}=\left[1.0645 \mathrm{k}_{0} \psi \bar{w}(1+\alpha) / r\right]\left\{\left[k_{0}(1+\alpha) / r\right]+2 \sqrt{1.5 B}\right\}$. (3.20)
Assuming that risks of 5 percent are acceptable, the constant

1
k_{0} takes on the value 1.645 ; this is the value recommended by Currie. His finel expression for the determination level is similar to equation (3.18) derived above but with only one constant standing for the product $k_{1} k_{2}$.

Analysis of spectra associated with this research has shom that satisfactory results can be expected for $k_{1}=\dot{1}$ and $k_{2}=5$. Using these values in the above three equations, together with $\alpha=0.02$ (see Appendix III), $\psi=1.02$ and $r=1.34$ there results

$$
\begin{align*}
& A_{\text {crit }}=1.67 \bar{W} \sqrt{B} \tag{3.21}\\
& A_{\text {det }}=1.71 \bar{W}[1+1.95 \sqrt{B}] \tag{3.22}\\
& A_{\text {min }}=7.91 \bar{W}[1+\sqrt{1+0.41 B}] \tag{3.23}
\end{align*}
$$

Typical values of the peak parameters corresponding to these three limiting levels are given in Table III(I). A fwhm of 4 channels was assumed for all cases. A graphical presentation, which is representative of all the cases considered, is shown in Fig. 3.6.

From Table III(I) it can be established that for the particular filter function used $(r=1.34)$ and any value of the fwhm
(a) Peak areas with error larger than 60 percent fall below the critical level
(b) Peak areas with error larger than 30 percent constitute unreliable detection
(c) Peaks areas whose error lies in the range of

TABLE III(1)

TYPICAL PEAK PARAMETERS CORRESPONDIVG TO THE THREE PEAK AREA LIMITING LEVELS

	PARAMETER	$B=100$	$B=800$	$B=1600$	$B=6400$
	$\begin{gathered} A_{\text {crit }} \\ h \\ h / \sqrt{B} \\ \sigma(A) \% \end{gathered}$	$\begin{aligned} & 66.8 \\ & 15.4 \\ & 1.54 \\ & 63.8 \end{aligned}$	188.9 43.5 1.54 61.9	$\begin{array}{r} 267.2 \\ 61.6 \\ 1.54 \\ 61.5 \end{array}$	534.4 123.0 1.54 61.2
	$\begin{gathered} A_{\operatorname{det}} \\ h \\ h / \sqrt{B} \\ \sigma(A) \% \end{gathered}$	140.4 32.3 3.23 32.0	384.5 88.5 3.13 31.0	541.0 124.6 3.12 30.9	1075. 247.5 3.09 30.7
	$\begin{gathered} A_{\min } \\ h \\ h / \sqrt{B} \\ \sigma(A) \% \end{gathered}$	236.7 54.5 5.45 20.0	605.5 139.4 4.93 20.0	842.6 194.0 4.85 20.0	1652. 380.6 4.76 20.0

In all cases the full width at half maximum was set equal to 4 channels.

Fig. 3.6 An illustration of the three peak-area limiting levels

20 to 30 percent should be restricted to qualitative analysis only, and
(d) Peak areas with less than 20 percent error can be reliably employed for quantitative determination.

In all three cases, the (h / \sqrt{B}) values are approximately constant, irrespective of the amplitude of the continuum background. The heights of the peaks corresponding to the critical, the detection and the determination levels are approzimately $1.5 \sqrt{ } B, 3 \sqrt{B}$ and $5 \sqrt{ } B$.

Note that the limiting levels are a function of the system resolution. Consider, for instance, the peak-area critical level for two cases characterized by widths \bar{w}_{a} and \bar{w}_{b}. The background values, accumulated under otherwise identical experimental conditions, will be B_{a} and B_{b}, where $B_{a}=$ $\left(\bar{w}_{b} / \bar{w}_{a}\right) B_{b}$. Therefore $A_{\text {crit }, a}=\sqrt{\left(\bar{w}_{a} / \bar{w}_{b}\right)} A_{\text {crit, } b}$. This is because in our method of background evaluation the background data are computed with the same accuracy irrespective of the number of channels occupied by typical peaks. In fact the limiting levels would be the same if the number of points used to evaluate the average background (equation (3.3)) were adjusted with respect to the system resolution and amplifier settings.
3.6 Equation for the Minimum Measurable Weight

The minimum measurable weight of an element in a given sample is obtained by combining equations (2.4) and (3.18). With $\alpha=1.02, k_{1}=1, k_{2}=5$, and introducing the total mass of the sample M and the energy-channel conversion factor

C ($\mathrm{keV} /$ channel), there results
$\frac{m}{M}=\frac{\left[13.8 \phi \bar{w}(E-511 y) /\left(C r^{2}\right)\right]\left\{1+\sqrt{1+0.23 C r^{2} B(E-511 y)}\right\}}{M \phi t \in I(\Omega / 4 \pi)}$
where the peak width $\bar{w}(E-511 y)$ is now in units of keV and the background $B(E-5 l l y)$ is in (counts/keV).

Interpretation of this equation is as follows. Consider a sample of mass M irradiated for a time t by a thermel neutron flux ϕ in a gammedetection facility having a fractional solid angle ($\Omega / 4 \pi$) and an energy-dependent efficiency \in. The gamma rays that reach the detector, both directiy and indirectiy via Compton scattering, give rise to a continuum background spectrum on which are superimposed a number of discrete peaks. At the end of the irradiation the value of this continuum background at energy E is $B(E)$. Suppose next that one of the sample constituents emits upon neutron capture a number of gamma rays one of which has an energy E and an intensity I (photons/gram $\mathrm{n} / \mathrm{cm}^{2}$). If this gamma ray is sufficiently intense there will appear in the spectrum at energy $E-5 l l y \mathrm{keV}$, with $y=0,1$ and 2 , a peak of width $\bar{w}(E-511 y)$ keV whose count content, or peak area, will depend, emong other parameters, on the concentration of the constituent in the sample. (The value $y=0$ corresponds to the full-energy peak; $y=1$ and $y=2$ represent the single- and double-escape peaks in which case one or both of the two 511 positron annihilation rays escape the detector). If this peak area is exactly equal to the numerator in equation (3.24) then, by
definition, m denotes the minimum measurable weight of the sample constituent in question that can be determined with a 20 percent standard deviation when the analysis is based on its characteristic gamma ray of energy E. Note that this error reflects only the expected error in the peak area determination due to the statistical fluctuations in the count in each channel inthe spectrum. No error has been assumed in the parameters in equation (3.24) and it is expected that these errors will cancel out when, in actual practice, the unknown sample is compared to a standard.

For each characteristic gamma ray of this sample constituent there corresponds a given minimum weight m. The most sensitive gamma ray for elemental analysis is then that for which m is least. Note that this does not necessarily correspond to the most intense gamma ray of the element in question since this may coincide with an unfavourably high background and/or a relatively low detection efficiency.

Equation (3.24) gives the minimum weight requirement for elemental analysis based on the measurement of a single gamma ray. In actual practice use whould be made of all the gamma rays of each element observed in the spectrum.

Application of this equation requires, among other things, Values for the energies and intensities of the gamma rays. A compilation of this data was published recently by our laboratory for 75 elements [R2]. As an additional aid to elemental analysis, the energies and intensities of all the capture gamma rays of these elements have been ordered by the
author in terms of increasing energy and were published in a separate report [H7]. A similar list which includes only the strongest gamma rays of each element (up to a maximum of 12) is presented in Appendix IV.

The peak intensities reported in reference [R2] are in units of photons per 100 neutron captures. These have been expressed in reference [H7] in terms of number of photons emitted per gram of element of natural composition per incident neutron $/ \mathrm{cm}^{2}$, using the equation

$$
\begin{equation*}
I=[0.602301 /(100 \mathrm{~A})] \tag{3.25}
\end{equation*}
$$

where σ is the thermal neutron absorption cross section (barns), 1 is the gamma ray intensity in photons per 100 neutron captures, and A is the atomic weight of the element. In this set of units the intensities may be thought of as an index of the relative analytical sensitivity of the elements. In addition, interference effects may be resolved with less effort since the relative significance of gamma rays originating from different elements may be evaluated directly using these intensities. In what follows use will be made of both sets of intensity units.

The equation for the minimum measurable weight is also seen to be a function of other important parameters. Note in particular that improvements in the system resolution and reduction in the background continuum without equally affecting the peak counts lead to a decrease in the minimum peak area needed for measurement and therefore to an improvement in the
sensitivity of the method for elemental analysis. System resolution depends on the quality of the detector and associated electronics; it is for the most part limited by the state of the existing technology. The continuum background, on the other hand, depends on the design of the experimental set $u p$ and on the techniques employed in reducing the undesirable radiation.

Reduction in the minimum weight requirement can also be accomplished by an increase in the count rate of the system. Such an increase can be obtained, for instance, by increasing the sample weight, the effective solid angle, the neutron flux and/or by improving the gamma detection efficiency. To this end, consider two cases characterized by count rates c and c^{\prime} and let us evaluate the ratio, R, for the minimum weight concentration required for analysis in each case. With reference to equation (3.24), the unity terms in the curly brackets may be neglected, as a first approximation, when compared to the term involving the background continuum. Since the count rate also depends directly on the sample weight, the solid angle, the neutron $f l u x$ and the detection efficiency, the ratio R can be approximated by the equation

$$
B=\frac{\frac{m}{M}}{\frac{m^{\prime}}{M^{\prime}}}=\frac{M^{\prime} \phi \Omega \in \sqrt{B}(E-511 y)}{M \phi \Omega \in \sqrt{B^{\prime}(E-511 y)}}=\frac{c^{\prime} \sqrt{ } B(E-511 y)}{c \sqrt{B^{\prime}(E-511 y)}} \text {. (3.26) }
$$

The counting time was assumed equal in both cases. This can be simplified further by noting that the background continuun is ${ }^{\alpha}$ direct function of the count rate. The result is

$$
B=\sqrt{ }\left(c^{\prime} / c\right)
$$

Thus, if the neutron flux, for instance, is increased by a factor q, the minimum weight of an element required for analysis will be reduced by a factor of approximately $\sqrt{ } q$. Note that from the results of Isenhour and Morrison [II] discussed in Chapter II, an improvement in the system sensitivity by a factor of q would have been anticipated. This is because these authors made the assumption that the same number of counts are needed to identify and analyze a peak irrespective of the amplitude of the background continuum on which the peak is located.

Application of the minimum weight equation is straightforward if all the parameters on the right-hand side of equation (3.24) are known. The actual facilities used to obtain the necessary empirical information are considered in the chapter that follows. A test on the validity of the equation and its application for the determination of the minimum measurable weights of the elements are given in Chapters VI and VII.

Chapter IV

EXPERIMENTAL EQUIPMENT

4.1 Introduction

The techniques and procedures used in this work for extracting reliable information from weak peaks in gamma ray spectra were presented in the previous chapter and its associated appendices. The advantages of smoothing the data were demonstrated together with the precautions which must be taken in applying the smoothing. Methods of background subtraction and peak area determination were also discussed. Also developed was an equation for the minimum measurable quantity of an element in a given sample that can be detected by neutron-capture gamma ray spectroscopy. In this chapter consideration will be given to the actual experimental faciIities required to obtain the empirical information needed for the application of this equation.

4.2 Description of the Experimental Fecilities

In experiments involving the measurement and utilization of gamma rays from thermal neutron capture, two alternative geometrical arrangements of neutron source, target sample, and detector are available. In the first case one may extract a thermal neutron beam from a reactor, absorb the neutrons in the sample of interest, and study the resulting capture gamma rays with a detector located close to the sample. The other possibility is to locate the sample in a high neutron flux region of the reactor and view the capture gamma rays from
a considerable distance with a detector located outside the reactor.

At the start of this work it was not entirely clear which of these two geometrical arrangements would be more effective for elemental analysis. As a result data were taken using both alternatives. The facilities employed in these measurements, which will be referred to as the internal and external sample facilities, are described in the sections that follow.

4.2.1 The Internal-Sample Facility

A plan view of the internal facility and its orientation relative to the MIT reactor is shown in Fig. 4.1. Its basic features include the 4 TH through port, neutron and gamma collimation and shielding, a sample holder, and a three-crystel spectrometer.

The through port is a $41 / 2$ - inch i.d. tube tangent to the reactor tank on the thermal column side. The port centerline is 16 inches below the centerline of the fuel. The part of the port inside the thermal shield is embedded in graphite; the rest of it is in heavy concrete. Because of multiple scattering in the graphite the neutrons strike the sample from essentially all directions. At the sample position, close to the reactor tank, and for $5-\mathrm{MW}$ reactor power, the neutron flux is approximately $1.9 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2} \mathrm{sec}$ and the cadmium ratio is about 9. At the same position the gamma dose is $1.3 \times 10^{8} \mathrm{R} / \mathrm{hr}$. Nuclear heating of the uncooled facility leads to an ambient temperature of about $350^{\circ} \mathrm{C}$ (MITR Reference Manual).

Fig. 4.1 A plan view of the internal neutron beam facility and gamma spectrometer

Capture gamma rays from the sample are first collimated inside the through port so as to reduce the flux of neutrons and scattered gamma radiation escaping the reactor. Details of the internal collimation are show in Fig. 4.2. It consists of a stainless steel tube (SS304, 0.75-inch o.d., 1/16-inch wall, 22.25 inches long) placed in the central hole of the main port plug. The tip of the tube carries a I 1/8-inch polyethelene plug for neutron scattering and thermalization, a 1 1/4-inch LiF plug for neutron absorption and a $1 / 2$ inch lead plug for low energy gamma attenuation.

Final collimation of the gamma beam was accomplished with an external collimator in front of the Ge(Ii) detector. With a sample-to-detector distance equal to 134 inches (340 $\mathrm{cm})$, a 3/8-inch collimator gave a fractional solid angle of 4.9×10^{-7}. The collimation was such that the walls of the through port were not viewed by the detector. The effective area viewed by the detector was a circle of about I inch diameter. The actual samples used were only $1 / 2$ inch in diameter.

To reduce the gamma radiation resulting from neutron capture at the other end of the port (port 4 TH 3), a special tip consisting of aluminium, boral and lead was placed at the front of the port's main plug (see Fig. 4.2). The boral lining, also not viewed by the detector, served the purpose of reducing the number of scattered neutronsthat reached the lead block. Lead was chosen because of its simple two-gamma

Fig. 4.2 Details of the internal beam collimator
and end plug
capture spectrum.
An external beam shutter, consisting of a 2-inch masonite block followed by 4 inches of lead, could be rolled across the beam whenever the system was not in use. Additional overall shielding was provided by an 8-inch wall errected behind the spectrometer. With no sample, the gamma dose In the beam was about $80 \mathrm{mr} / \mathrm{hr}$, most of it being due to lowenergy scattered radiation. With typical samples in position the gamma dose was approximately 10 to 20 times higher and could be reduced to nominal values by placins additional lead absorbers in the beam and/or by placing the sample at other points along the through tube, away from the high-flux central position.

Samples were fastened at the center of special sample holders and inserted for irradiation with a remote-handing tool using thedend of the port opposite the spectrometer. Photographs of the tool and the sample holder, which were specially designed for use with solid samples, are shown in Fig. 4.3. The handing tool is 12 feet long; its method of operation may be inferred from the photograph and will not be described here. The holders were cylinders $21 / 2$ inches long, $43 / 8$ inches o.d. With about 5/16-inch wall. Al-1100 was used in the construction. A large fraction of the sides of the holder were machined out to reduce the amount of material irradiated. Typical holders weighed approximately 90 grams. These holders have the disadvantage of becoming highly redioactive. However, they do not introduce any neutron or

Fig. 4.3(a) Photomraph of samole holder and
remote handinc tool, disencaed; central disc
is a stainless steel samie, -inch in diameter.


```
T.4. (n) Jample nolier ant tool engaged
tomether, realy for mounting.
```

gamma scattered radiations in the beam viewed by the detector as would be the case, for instance, with a sample embedded in a graphite block.

Insertions and removals of samples were performed remotely with little radiation hazard to the three or four persons involved in the operation. A complete sample change required approximately 15 minutes with most of the time needed for the removal and repositioning of the heavy steel plug at the port entrance. The port could not be opened during reactor operation because of the prohibitively high radiation levels. Sample changing was thus limited to one per week and was performed a minimum of 18 hours after reactor shutdown. Upon removal from the reactor, the holders and samples had activities of approximately $50 \mathrm{mr} / \mathrm{hr}$ at 1 meter mostly due to the copper activity in the aluminum holder. Consequently, sample holders were limited to only one irradiation.

The advantages and disadvantages of this facility as compared to the external set up will be discussed in Chapter V. Other internal-sample systems with rather different characteristics have been described by Motz and Jurney [M5], G. E. Thomas et al. [T3], and S. E. Arnell et al. [Al].
4.2.2 The External-Sample Facility

This facility was constructed by T. Harper as a part of the research for his doctoral thesis on capture gamma measurements. In this section will be presented a short descritpion of the set up, the emphasis being on information pertinent to understanding the results presented in the following chapters.

Complete details may be found in reference [H8].
A plan view of this external facility and gamma spectrometer is shown in Fig. 4.4(a). It is a permanent facility which uses the 4 THI tangential through port formerly used for the internal sample measurements. Included is the companion facility constructed by Y. Hukai for lattice fuel rodirradiation studies [H9].

Neutrons from the reactor core are scattered by a graphite plug and form the 4 THI neutron beam. The beam diameter is reduced to $3 \mathrm{l} / 2$ inches by a steel collimator. A lead plug placed inside the collimator reduces the gamma flux impinging on the sample and then scattering into the detector without degrading the neutron flux excessively. In this geometry the samples receive a well-thermalized flux (Cd ratio about 80) of approximately $1.8 \times 10^{8} \mathrm{n} / \mathrm{cm}^{2} \mathrm{sec}$. The flux may be monitored by placing gold foils on the aluminum sample holder.

A front view of the facility indicating the vertical gamma ray path from the sample to the spectrometer is shown in Fig. 4.4(b). The sample to detector distance is about 39 inches and the effective solid angle can be adjusted by placins collimators between the sample and the detector. For the $1 / 2$ 3/4 and 1 inch collimators available the corresponding frectional solid angles are $1.59 \times 10^{-5}, 3.17 \times 10^{-5}$ and $4.15 \times$ 10^{-5} respectively. A $11 / 2$ inch masonite block was placed in the gamma beam so as to reduce the number of neutrons reaching the $G e(L i)$ detector.

Fig. 4.4(a) Top view of the MIT Reactor and the 4THI irradiation facility (from Ref. [H8])

Fig. 4.4(b) Front view of the 4THi irradiation facility and the Ge(Li) capture gamma spectrometer [H8]

4.3 The Gemma-Ray Spectrometer

The spectrometer used in this work consists of a $30 \mathrm{c} . \mathrm{c}$. coaxial $\mathrm{Ge}(\mathrm{Li})$ detector (No. 45) placed between two NaI crystals 6 inches in diameter and 3 inches thick. As shown in Fig. 4.4.b the crystals are positioned inside a gamma shield of 5 inches of steel plus $3 / 4$ inch lead. The shield was built by Atomium Corporation and has been described by J. N. Hanson [H2]. A photograph of the liquid-nitrogen 'snout' dewar, with the Ge(Li) detector located in the tip, is shown in Fig. 4.5 together with the $3 / 8$ and 1 inch collimators.

In view of the three-crystal combination, the spectrometer is capable of operation in (a) the direct or free mode, (b) in the Compton suppression mode at low energies (200 keV to 2500 keV), and (c) as a pair spectrometer at high energies (greater than approximately 1500 keV).

In the free mode all signals above the discrimination level produced in the Ge(Li) detector are amplified, analyzed and recorded. For operation as a Compton or Pair spectrometer, on the other hand, use is also made of the signals from the $\mathrm{NaI}(\mathrm{TI})$ crystals. In the Compton mode, when a pulse from either $\mathrm{NaI}(\mathbb{T 1})$ detector is in time coincidence with a pulse from the Ge(Li) detector, the signal from the Ge(Li) detector is not analysed. This arrangement results in a reduction of the Compton background since a large fraction of the Compton events occuring in the germanium are rejected if the scattered gammas are detected by either $\mathrm{NaI}(\mathrm{TI})$. In the

Fig. 4.5 The liquid-nitrogen 'snout' dewar, fully withdrawn. The Ge(Ii) crystal is located at the tip of the dewar.

Fig. 4.6 A general view of the three-crystal
spectrometer set up for internal-sample measurements.
pair mode of operation a signal from the Ge(Ii) detector is recorded only when it is in coincidence with 0.511 MeV signals from each of the $\mathrm{NaI}(T I)$ crystals. This arrangement yields a spectrum in which only double-escape peaks appear, fullenergy peaks, single-escape peaks and Compton background being rejected.

The reader is referred to references [O1] and [H8] for complete details of the electronics associated with the spectrometer. It is noteworthy that use of a 4096-channel Nuclear Data Analyser (Model I6IF) allowed the high-energy capture spectrum (1.5 to 9 MeV) of most elements to be obtained in a single run while still maintaining 6 or 7 channels per peak. The internal sample data were taken with the electronic system described by Orphan [O1]; a photosraph of the spectrometer and the electronics as set up for these measurements is shown in Fig. 4.6. The system described by Harper [H8] was used for the external sample experiments. This includes a number of changes and improvements over thet described by Orphan, such as the incorporation of a new pre-amplifier and amplifier set. In both cases the overall energy resolution of the system varied from about 8 keV at low energies to approximately 12 keV at high energy (9 MeV).

The intrinsic gamma detection efficiencies of the system In the Compton suppression mode and as a pair spectrometer are given in the second columns of Tables IV(1) and IV(2) and are shown in Figs. 4.7 and 4.8 The Compton suppression efficiency represents the probability for the total absorption

TABLE IV(1)

COMPTON SUPPRESSION EFFICIENCY AND TRANSMISSION

FACTORS FOR VARIOUS ABSORBERS

Energy	Efficiency		Transmissi	O Factor	
E(keV)	ϵ	5/8" LiF	17/16" Poly	1 " Lead	12" Masonite
200	. 110	. 793	. 693	0.0	. 515
400	. 055	. 801	. 751	. 0025	. 591
600	. 035	. 810	. 785	. 0375	. 632
800	. 025	. 818	. 809	. 090	. 665
1000	. 020	. 825	. 826	. 139	. 700
1200	. 016	. 833	. 840	. 182	. 721
1400	. 014	. 840	. 851	. 214	. 736
1600	. 012	. 848	. 860	. 236	. 751
1800	. 010	. 855	. 868	. 255	.765
2000	. 0088	. 861	. 875	. 268	. 775
2200	. 0078	. 868	. 882	. 276	.783
2400	. 0069	. 874	. 887	. 283	. 795
2600	. 0059	. 880	. 891	. 289	. 807
2800	. 0052	. 886	. 895	. 294	. 815
3000	. 0045	. 891	. 899	. 297	. 822
3200	. 0038	. 896	. 902	. 298	. 828
3400	. 0034	. 902	. 905	. 299	. 834
3600	. 0031	. 907	. 908	. 299	. 838
3800	. 0025	. 911	. 910	. 298	. 844
4000	. 0023	. 916	. 912	. 298	. 848

Fig. 4.7 Absolute efficiency of the spectrometer operated in the Compton suppression mode

TABLE IV(2)

PAIR SPECTROMETER EFFICIENCY AND TRANSMISSION FACTORS FOR VARIOUS ABSORBERS

Energy	Efficiency		Transmissi	O Fnctor	
keV	$\times 10^{4}$	5/8" LiF	17/16" Poly	1" Lead	1-1" Masonite
1000	0.0	. 825	. 826	. 139	. 700
1500	0.78	. 844	. 856	. 229	. 736
2000	2.5	. 861	. 875	. 268	. 775
2500	4.5	. 877	. 886	. 282	. 798
3000	6.5	. 891	. 899	. 297	. 822
3500	8.4	. 904	. 906	. 297	. 834
4000	9.7	. 916	. 912	. 298	. 847
4500	10.5	. 926	. 917	. 296	. 855
5000	10.4	. 934	. 922	. 293	. 862
5500	10.2	. 941	. 925	. 289	. 867
6000	9.7	. 947	. 928	. 285	. 871
6500	9.0	. 951	. 931	. 281	. 875
7000	8.1	. 954	. 933	. 276	. 879
7500	7.2	. 956	. 935	. 271	. 882
8000	6.4	. 956	. 937	. 267	. 885
8500	5.6	. 955	. 938	. 261	. 887
9000	4.6	. 952	. 940	. 256	. 889
9500	3.5	. 948	. 941	. 250	. 890
10000	2.3	. 942	. 943	. 244	. 892

Fig. 4.8 Absolute efficiency of the pair spectrometer
of the gamma ray energy within the sensitive volume of the Ge(Li) detector. For operation as a pair spectrometer, on the other hand, the efficiency includes (a) the probability of having gpair event within the sensitive volume of the Ge(Li) detector, (b) the probability that the electron arid positron pair will not escape from the $G e(I i)$ detector, (c) the probability that the energetic electron and positron will not lose any energy by bremsstrahlung which escapes the $\mathrm{Ge}(\mathrm{Ii})$ detector, and (d) the probability that both 511-keV photons resulting from the positron annihilation within the Ge(Li) detector will escape from the $G e(L i)$ detector and be totally absorbed by the $\mathrm{NaI}(11)$ crystals.

For operation in the free mode, the energy response of a Ge(Li) detector makes it desirable to have two efficiency curves, one for the full-energy peak and one for the doubleescape peak. For the $30 \mathrm{~cm}^{3}$ demployed in this work, the detection efficiency of the full energy peak is most useful in the energy region below 3 MeV . Above this energy the increasing pair production cross section makes it advantageous to use the efficiency of the double-escape peak. The efficiency values for total energy absorption in the free mode are identical to those presented for operation of the spectrometer with Compton suppression. For the double-escape peak, on the other hand, the efficiency may be obtained by multiplying the pair spectrometer values by a constant factor. This factor, which represents the inverse of the probability that both $511-\mathrm{keV}$ gamma rays will escape from the Ge(Li)
detector and be totally absorbed by the NaI(II) crystals, is equal to 7.0 for the spectrometer in question; it is independent of energy.

It is usual practice to include in the efficiency curves corrections for the attenuation of the gamma rays by absorbers placed permanently between the sample and the detector. Because of the different absorbers used in the two facilities the efficiency values reported here do not include any such corrections. Instead, transmission factors for the absorbers used in this work are presented in TAbles IV(I) and IV(2) for various gamma ray energies.

Analytical sensitivity can be affected both by the design of the experimental set up and by the gamma detection techniques employed. The relative sensitivities of the various experimental arrangements are examined in the following chapter.

Chapter V

RELATIVE SENSITIVITY OF THE VARIOUS
EXPERIMENTAL ARRANGEMENTS

5.1 Introduction

This chapter presents the operating characteristics of the internal and external facilities and the various gamma detection modes. The facilities will be examined and conclusions will be reached as to which of the two arrangements is more sensitive and more suitable for elementel analysis. This will be followed by an evaluation of the relative sensitivity of the various options available for the accumulation of the gamma ray spectra. A stainless steel sample will be used for an example.

5.2 Internol versus External

In this section we will examine the two experimental facilities described in Chapter IV and determine which is more effective for elemental analysis. Consideration will be given to the ratio of the minimum weight concentrations of an element that can be measured in a given sample by using these two alternative geometrical arrangements.

Experimental data have shown that, in both cases, scettered gama radiation originating from the reactor core is of sufficiently low energy and intensity such that it does not interfere with the high energy capture gemma spectra. Also, in the facilities described, the gamma rays resulting from neutron capture in the structural material surrounding the
sample and the detectors contribute, in most cases, only a small fraction of the background continuum. As a result, the background continuum observed in the two facilities has the same general shape. This can be verified, for instance, by examining the pair spectrometer data shown in Figs. 5.1 and 5.5 for two stainless steel samples.

To a first approximation, therefore, the ratio of the minimum weight requirements in each case is given by equation (3.26). Substituting the maximum values available for the neutron fluxes, the solid angles and the efficiencies, the ratio R reduces to

$$
R(\text { int } / \text { ext })=\frac{\left(m_{\text {int }} / M_{\text {int }}\right)}{\left(m_{\text {ext }} / M_{\text {ext }}\right)}=(1 / 33) \sqrt{\left[M_{\text {ext }} / M_{\text {int }}\right]}
$$

Thus one sees that for a sample of given size the internal sample system can be used to measure elemental concentrations that are approximately 33 times less then those required by the other geometry. The main advantage of the internal facility is thus its sensitivity. Its inherent drawbacks are also worth noting. Some of these are listed below:
(a) Sample heating by nuclear events might become serious. The ambient temperature is about $350^{\circ} \mathrm{C}$ but samples such as boron may become severel hurdred degrees hotter because of the energy released in the (n, α) reaction and the total deposition of the alpha energy within the sample. Some type of cooling is necessary to permit more freedom in the choice of sample materials.

Energy of Incident Gamma Ray, E (MeV)

Fig. 5.1 Stainless steel spectrum obtained with the internal-sample facility (3.5 g)
(b) The neutron spectrum has a low Cd ratio (about 9) and therefore the gamma ray production cross sections avallable from measurements utilizing wellthermalized neutron beams might not be directiy applicable for elemental analysis. Use of a standard eliminates this difficulty.
(c) Samples become highly radioactive and difficult to handle.
The internal facility used in this work had also the following additional disadvantages:
(d) Sample-changing procedures were inconvenient and had to be done during reactor shut down. This limited the irradiation to one sample per week.
(e) Flux monitoring using the normal foil activation procedure was impossible since the foils would have been irradiated from reactor start up to reactor shut dow while capture gamma spectra were normally accumulated for only a fraction of this time.

These limitations are not necessarily applicable to all inter-nal-sample systems since such facilities might include provisions for sample and foil handling with the reactor in operation.

Internal-sample facilities, therefore, are not convenient to use for elemental analysis. However, the high count rate available with such arrangements makes them suitable for studies involving reactions with low cross sections or samples which
are available only in small quantities, such as separated isotopes. Their geometrical arrangement also makes them suitable for studying the gamma ray spectra resulting from neutron capture in gases.

The main advantages of the external facility include the convenient sample changing and flux monitoring procedures and the low-level activities of the irradiated samples. Its main drawback is that ${ }_{i}^{i t}$ less sensitive than the alternative internal arrangement.

Experiments have shown that the high sensitivity of the internal facility could not be used advantageously since the detector could not tolerate the very intense gamma ray beam impinging on it. In fact, the maximum counting rate that our present system can accomodate without a significant deterioration in the energy resolution due to multiple pulse effects can be attained in most cases by using the external facility together will properly chosen sample weights and solid angles. Thus for samples available in sizes of roughly 30 grams or greater use of the internal arrangement is not advantageous. As a result the internal-sample experiments were discontinued. In the section that follows consideration will be given to data obtained with the external system; systems of this type have been used in many cases for analytical applications ([G7], [G2], [II], [3] and present work).

5.3 Relative Sensitivity of the Gamma Detection Modes

In the foregoing section the advantages and drawbacks of the internal and external sample facilities were examined and
conclusions were reached as to which is more sensitive and more suitable for elemental analysis. Analytical sensitivity can also be affected by the method employed for the detection of the gamma rays. The degree by which the various detection modes influence the sensitivity is examined in this section. The conclusions will be based on the analysis of gamma ray spectra obtained from the irradiation of a stainless steel sample. The properties of the sample are discussed first. This is followed by a description of the characteristics of the gamma ray spectra and the evaluation of the relative sensitivity of the three detection modes.
5.3.1 The Stainless Steel Sample

The sample, type SS-303, cylindrical in shape, had a diameter of 3.81 cm , a height of 0.904 cm , and a volume of $10.31 \mathrm{~cm}^{3}$ and weighed 78.825 grams. From the elemental composition of the sample supplied by its manufacturer it was possible to evaluate the fraction of neutrons captured by each of the sample constituents. These results are presented in Table $\mathrm{V}(1)$. The accuracy of these data was not evaluated since the error in the reported composition of the sample was not available. The macroscopic capture cross section of the sample, Σ_{α}, is (2.641/10.31) $=0.256 \mathrm{~cm}^{-1}$.

The orientation of the sample with respect to the neutron beam and the gamma ray detector is shown in Fig. 5.2. Flux depression in the sample was approximated by the equation

$$
\text { flux depression }=1-\exp \left(-\sum_{a} x\right)
$$

TABLE V(1)

ELEMENTAL COMPOSITION OF THE SS-303 SAMPLE

Element	Weight Percent	Weight in Semple	$\begin{aligned} & \text { Density } \\ & \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{aligned}$	$\sum_{\mathrm{e} \cdot}^{\mathrm{v}} \mathrm{~cm}^{2}$	Percent Captures
Fe	69.12	54.48	7.87	1.539	58.28
Cr	18.25	14.39	7.19	0.517	19.57
Ni	9.35	7.37	8.90	0.348	13.17
Mn	1.68	1.32	7.43	0.193	7.31
Si	0.50	0.39	2.33	0.0014	0.051
Mo	0.36	0.28	10.2	0.0048	0.182
S	0.275	0.217	2.07	0.0021	0.079
Cu	0.29	0.229	8.96	0.0083	0.316
Co	0.09	0.071	8.8	0.0277	1.05
C	0.056	0.044	1.60	0.000008	0.0003
P	0.034	0.027	1. 82	0.0001	0.0038
;			Total	2.641	

Fig. 5.2 Orientation of the stainless steel sample with respect to the neutron beam and the $G e(L i)$ detector

Here x is the distance through the sample that will yield the average neutron attenuation. In this approximation it was set equal to half the sample diameter.

Gamma self-shielding was accounted for by assuming that the gamma rays had to travel, on the average, through helf the thickness of the sample. At high energies the fraction of gamma rays transmitted by the sample was 0.89. At low energies, in which case the attenuation coefficients vary significantly with energy, the transmission factors were evaluated for a number of energies and are listed in Table $V(2)$. In these calculations the sample was approximated to be pure $F e$ with a density equal to that of the stainless steel. In this way it was possible to use the mass-attenuation coefficients for Fe available in the literature.

Table V(2)

GAMMA RAY TRANSMISSION FACTORS THROUGH 0.45 cm OF Fe

$\frac{\mathrm{E}}{\mathrm{E}}$	T	E	T	E	T	
0.2	0.623		1.6		0.854	
0.4	0.729	1.8	0.861		3.0	0.884
0.6	0.770	2.0	0.865	3.4	0.886	
0.8	0.796	2.2	0.869	3.6	0.890	
1.0	0.815	2.4	0.873	3.8	0.892	
1.2	0.831	2.6	0.876	4.0	0.893	
1.4	0.844	2.8	0.880			

E is the energy of the gamma ray, in MeV
T is the transmission factor
5.3.2 Characteristic. Features of the Gamma Ray Spectra In Figs 5.3, 5.4 and 5.5 are shown the three gamma ray spectra obtained by operating the system in the free mode, the Compton suppression mode, and as a pair spectrometer. Several characteristic features of the spectra are worth noting. We will consider each spectrum separately.

In the free mode spectrum, typical features such as fullenergy peaks, single-escape peaks, and double-escape peaks are readily visible. At low energies the spectrum is dominated by full-energy peaks. The double-escape peaks, which carry a double-bar sign for identification, dominate at high energies. Single-escape peaks, with only one bar, are visible only in a few cases. Other features such as various edges

Energy of Incident Gamma Ray, E (MeV)

Fig. 5.3 The free-mode stainless steel spectrum (flux \times time $=1.32 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$)

Energy of Incident Gamma Ray, E (MeV)

Fig. 5.4 The Compton-suppression stainless steel spectrum ($f 1 u x \times t i m e=1.33 \times 10^{12} \mathrm{n} / \mathrm{cm}^{2}$)

Energy of Incident Gamma Ray, E (MeV)

Fig. 5.5 The stainless steel pair spectrum
(flux \times time $=1.94 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$)
formed by Compton scattering of the incident gamma rays are also Visible. The multichannel analyser (MCA) count rate was 2345 counts per second and data were accumulated for 1020 minutes. The high-energy section of the spectrum appears to be particularly interesting for elemental analysis.

In the Compton suppression mode, Fig. 5.4, the specirum is the result of data accumulated for 120 minutes at an MCA count rate of 1630 counts per second. The lower count rate in this case, as compared to the free mode value, is due to the reduction in the background continum attained by operating the spectrometer with Compton suppression. Note that the reduction in the background is not uniform over the whole spectrum; it is a function varying slowly with energy and will be discussed in the section that follows. Also worth noting in the spectrum is the presence of double-escape peaks. For double-escape peaks to be present in the Compton suppression mode the annihilation radiation must not deposit any energy in the NaI(II) crystals. This occurs whenever the 5ll-keV photons are absorbed by the structural material existing between the Ge(Ii) detector and the NaI(TI) crystals or whenever these rays escape from the system completely. Therefore, Compton suppression spectra must always be carefully examined for the presence of double-escape peaks. The intensity of such peaks is considerably reduced by the anti-coincidence mantle and as a result identification of their origin is more difficult. One wey to identify double escape peaks in Compton suppression spectra is to compare
the energy difference between various peaks to the value of 1022 keV .

The pair spectrum in Fig. 5.5 represents a 1360 -minute irradiation at an MCA count rate of 65 counts per second. Comparison of this spectrum with that obtained by operating the system in the free mode shows that the pair spectrometer eliminates the full-energy peak and the single-escape peak and results in a considerable background suppression. The spectrum cosists only of double-escape peaks and therefore complexities and ambiguities in its interpretation are considerably reduced. The presence of the 5ll-keV photopeak is the only exception to this and is discussed below.

The triple-coincidence requirement for detecting annihilation photons is satisfied by chance or by one of a number of real processes that can be postulated. One such process involves the following steps:
(a) Compton scattering of a high-energy gammaray by one of the NaI(TI) crystals with the deposition there of 400 to 600 keV of ene rgy which satisfies the requirement for triple coincidence
(b) the absorption of the scattered gamma ray by a pair production event in the structual material surroundire the $G e(L i)$ detector or within its dead layer
(c) the absorption of one of the positron annihilation rays by the $G e\left(L_{i}\right)$ detector and the absorption of the other annihilation ray by the second $\mathrm{NaI}(T 1)$ crystal.

The energies of the double-escape peaks in the pair
spectrometer are increased by 1022 keV so that they correspond to the energy of the incident gamma rays. As a result the 511 annihilation line, which was assigned the value of $511+1022=1533 \mathrm{keV}$ was originally identified as an intense Fe background line since it appeared in all measurements with the pair spectrometer [01]. The origin of this 1533 line was previously pointed out in reference [R2].

5.3.3 Relative Effectiveness of the Detection Modes

At this point the question arises as to which of these gamma detection modes is most efficient for elemental analysis. For low energy measurements one is faced with the problem of choosing between the free mode and Compton suppression. For high energy applications the alternatives include operation of the system in the free mode or as a pair spectrometer. And in the intermediate energy range it is possible to perform an analysis by operating the system in any one of the three modes described.

In evaluating the relative sensitivity of the detection modes, extensive use will be made of equation (3.24) for the minimum measurable weight. The energy-channel conversion factor C required for the application of this equation was assigned the value of $2 \mathrm{keV} /$ channel for all cases; taken in the usual order, the actual spectra had 2.184, 1.977 and 2.189 $\mathrm{keV} / \mathrm{channel}$. The peak area correction factor ψ which accounts for the deviation of the spectral data from a true Gaussian distribution was set equal to 1.02. In addition, all spectra were subjected to the same degree of smoothing represented
by the reduction factor $r=1.34$. The system resolution was assumed to be the same in all cases and was set equal to that obtained for the pair spectrum. The width-energy relation obtained by applying the least-squares fit to 46 peaks in the spectrum is given by

$$
\begin{equation*}
\bar{w}(E-1022)=9.46-0.919 E \times 10^{-3}+0.196 E^{2} \times 10^{-6} \tag{5.1a}
\end{equation*}
$$

where $\bar{W}(E-1022)$ is the fwhm (in $k e V$) of the doubleescape peak of a gamma ray of energy E (keV). The corresponding fwhm of the full-energy peak is

$$
w(E)=8.726-0.518 \mathrm{E} \times 10^{-3}+0.196 \mathrm{E}^{2} \times 10^{-6} .(5.1 b)
$$

In order to afford a realistic comparison it was also necessary to reduce the data in all three runs to the same flux time value. Since the three sets of data were accumulated at different times and there appeared to be differences in the orientation of the sample with respect to the neutron beam, the flux time products were evaluated from the analysis of the spectra. In this procedure the flux time values were adjusted such that the calculated intensities of the various intense gamma rays in the individual spectra agreed well with the intensities reported in reference [R2]. The results obtained for the three cases are:

System	Flux time value
Free Mode	$1.32 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$
Compton suppres.	$1.33 \times 10^{12} \mathrm{n} / \mathrm{cm}^{2}$
Pair Spectrom.	$1.94 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$

Note that these values include neutron flux depression and corrections for fraction of sample seen. The fractional solid angle associated with these flux time values was 1.59×10^{-5} in all cases. The free mode and Compton suppression data were thus multiplied by 1.47 and 14.6 , respectively, in order to normalize them to those obtained with the pair spectrometer.

The advantages of using the spectrometer in the Compton suppression mode rather than in the free mode are evident. Since the background continuum can be suppressed without affecting the detection efficiency, it is clear from equation (3.24) that a reduction in the continuum by a factor q will improve the sensitivity of the system for elemental analysis by approximately $\sqrt{ } q$. The actual improvement that can be attained with our system is shown in Table V(3) and Fig. 5.6(a). It is given in terms of the ratio of the minimum measurable weights required by the Compton suppression and free mode systems when the analysis is based on the same gamma ray in both cases. From equation (3.24), with $\mathbf{r}=1.34$ and $C=2 \mathrm{keV} /$ channel, this ratio is

$$
\begin{equation*}
\mathrm{R}(\mathrm{CS} / \mathrm{FM})=\frac{\mathrm{m}_{\mathrm{CS}}}{m_{\mathrm{FM}}}=\frac{1+\sqrt{1+0.82 \mathrm{~B}_{\mathrm{CS}}(\mathrm{E})}}{1+\sqrt{1+0.82 \mathrm{~B}_{\mathrm{FM}}(\mathrm{E})}} \tag{5.2}
\end{equation*}
$$

The background values, in counts $/ \mathrm{keV}$, are given in Table $V(3)$ and were obtained from the spectra in Figs. 5.3 and 5.4 by applying linear averaging over 100-kev intervals in the normalized data. (Note that in this table $0.123 \mathrm{E} 04=0.123 \times 10^{4}$).

TABLE V(3)

BACKGROUND DATA AND MINIMUM WEIGHT RATIOS FOR THE FREE MODE
AND COMPTON SUPPRESSION SYSTEMS

Energy KeV	$\begin{gathered} \mathrm{B}_{\mathrm{FM}}(\mathrm{E}) \\ \text { counts/keV } \end{gathered}$	$\begin{gathered} \mathrm{B}_{\mathrm{CS}}(\mathrm{E}) \\ \text { counts } / \mathrm{keV} \end{gathered}$	$\frac{\mathrm{B}_{\mathrm{FM}}}{\mathrm{~B}_{\mathrm{CS}}}$	R(CS/FM)
150.0	0.0	0.231 ECE	C. 0	154.46*
250.0	0.0	0.703 E O6	C. C	265.61*
350.0	C. 0	C. 326 ECE	C. 0	183.24 *
450.0	0.156 ECG	C.186E CE	C. 84	1.0 c
550.0	C.150E O6	0.126 E 06	1.20	0.92
650.0	$0.116 \mathrm{EC6}$	C. 963 E C5	1.20	0.91
750.0	0.963 E 05	0.731 C C5	1.18	C. 92
\& 50. C	C.722E 05	C.587E 05	1.23	0.90
950.0	$0.635 E 05$	C.456E C5	1.28	c. 88
1050.0	0.599 E 05	0.457 E 05	1.31	0.87
1150.0	0.561 E C5	C.410E C5.	1.37	0.86
1250.0	$0.537 \mathrm{EC5}$	C. 378 E C5	1.42	0.84
1350.0	C.525E 05	0.368 E 05	1.43	0.84
$1450 . C$	C.477E C5	C. 348 EE C5	1.37	0.85
1550.0	$0.447 E 05$	$0.311 E 05$	1.44	C. 83
165C.0	C.400E 05	C.281E 05	1.42	0.84
1750.0	0.378 E 05	C. 257 C C	1.47	C. 83
1850.0	$0.361 E 05$	0.243 E O5	1.48	C. 8.2
15 SC.C	C.332E C5	C. 224 F 05	1.48	0.82
2050.0	-. 320 E 05	C.214E C5	1.45	0.82
215 C .0	C.310E 05	0.202 E 05	1.54	0.81
2250.0	C.2S6E C5	C. 193E 05	1.53	C. 81
2350.0	0.279 E 05	C.180E C5	1.55	C. $\varepsilon 1$
2450.C	C.279E 05	C. 176 E 05	1.58	0.80
2550.0	0.263 E 05	C. 168 E C5	1.57	C. 80
2650.0	0.255 E 05	0.162 E O5	1.57	C. 80
2750.0	C.247E C5	C.151E C5	1.63	0.78
2850.0	0.235 E 05	C. 147 E C5	1.65	C. 7 c
2550.0	0.233E 05	$0.141 E 05$	1.55	0.78
3050. C	C. 225 E C5	C. 14 CE C5	1.61	0.75
3150.0	$0.219 E 05$	0.133 E O5	1.t 6	C. 78
3250.0	$0.213 E 05$	0.126E 05	1.69	0.77
3350.0	C. 198 E 05	0.119 E O5	1.67	C. 78
3450.0	0.200 E 05	0.118 E 05	1.70	0.77
$355 \mathrm{C} . \mathrm{C}$	C. 195E 05	C.111E C5	1.76	0.76
3650.0	$0.189 E C 5$	C. 108 E 05	1.75	C. 76
375C.C	0.183 E 05	C. 10GE 05	1.73	0.76
$3850 . C$	C.178E C5	C. 105 E CS.	1.65	C. 77
3550.0	0.181 E 05	0.100E CS	1.81	0.75

Disregard

Fig. 5.6 Ratio of the minimum detectable weights by the different gamma-detection modes

On the average, use of the Compton suppression mode can increase the sensitivity of the system by a factor of approximately $(1 / 0.8)=1.25$. With a system involving more sophisticated electronics and larger NaI crystals the increase in sensitivity can be improved to about 2.

For elemental analysis based on high energy gamma rays it is not immediately apparent whether a pair spectrometer would have a higher sensitivity than one operated in the free mode. The pair spectrometer reduces both the background continuum and the detection efficiency. As a result, the advantages of background suppression can become off set by the reduction in efficiency. In our system the average reduction factor in the continuum at high energies is approximately 36 and is achieved at the cost of lowering the efficiency by a factor of about 7. Therefore, in this case, the pair spectrometer is, on the average, a factor of $(7 / \sqrt{ } 36)=$ 1.16 less sensitive than the free mode system. The ectual loss of sensitivity for different energies has been evaluated using the spectra in Figures 5.3 and 5.5. The results are presented in Table $V(4)$ and Fig. $5.6(b)$ in terms of the ratio of the minimum detectable weights required for analysis by the pair spectrometer and the system operated in the free mode. From equation (3.24) this ratio is

$$
\begin{equation*}
\mathrm{R}(\mathrm{PS} / \mathrm{FM})=\frac{\mathrm{m}_{\mathrm{PS}}}{\mathrm{~m}_{\mathrm{FM}}}=\frac{\epsilon_{\mathrm{FM}}\left[1+\sqrt{1+0.82 \mathrm{~B}_{\mathrm{PS}}(E-1022)}\right]}{\epsilon_{\mathrm{PS}}\left[1+\sqrt{1+0.82 \mathrm{~B}_{\mathrm{FM}}(E-1022)}\right]} \tag{5.3}
\end{equation*}
$$

The ratio of the efficiencies for the detection of double-

TABLE V(4)

BACKGROUND DATA AND MINIMUM WEIGHT RATIOS FOR THE FREE MODE
SYSTEM AND THE PAIR SPECTROMETER

Energy keV	$B_{F M}(E-1022)$ counts/keV	$\begin{aligned} & \mathrm{B}_{\mathrm{PS}}(\mathrm{E}-1022) \\ & \text { counts/keV } \end{aligned}$	$\frac{B_{F M}}{B_{P S}}$	R (PS/FM)
1600.0	0.144 E 06	0.678 E 03	211.88	0.51
1800.0	C. 827 E C5	C.587E 03	14 C .97	0.63
2000.0	0.628 E 05	C.CORE C3	103.41	0.73
2200.0	C.554E C5	$0.636 E 03$	87.18	0.79
24CC.C	0.506 E 05	C.EtIE 03	7t. 5 C	C. 8.4
2600.0	$0.433 \mathrm{E} \mathrm{O5}$	C.685E 03	t 3.20	C. .3
$28 \mathrm{CC.0}$	0.37 CE C5	C. 715 E 03	51.75	1.02
3000.0	0.334 E 05	C.727E 03	4 ¢. 01	1.C8
3200.0	C.3C7E 05	C.748E 03	40.98	1.15
340C.c	C.28CE 65	C.764E C3	36.7 C	1.21
3600.0	$0.261 E 05$	$0.736 \mathrm{E} \quad 03$	25.48	1.23
38CC. C	$0.242 E 05$	0.722 E O	33.50	1.27
$4 \mathrm{CCC.C}$	$0.231 E 05$	C.704E 03	32.88	1.28
$42 \mathrm{CC.O}$	$0.216 E 05$	C.727E C3	29.7C	1.35
4400.0	0.202 E 05	0.732 E O 3	27.67	1.35
$46 C C . C$	C.153E C5	C.68GE C3	27.96	1.39
4800.0	$0.181 E 05$	C.ES4E C3	2t.1C	1.44
$5 \mathrm{coc} . \mathrm{C}$	0.177 E 05	C.675E 03	26.26	1.43
52CC. C	C. 164 E C5	C.654E C3	25.04	1.47
5400.0	0.160 E 05	C.666E 03	24.02	1.5C
$56 \mathrm{CC}$. .	0.155 E 05	C.708E 03	21.91	1.57
5800.0	0.152 E C5	C. 748 E C?	2C.36	1. 62
6000.0	0.151 E 05	0.79 EE 03	1 c .1 C	1.67
62CC.	C. 146 E 5	C.612E C3	23.77	1.51
64CC. ${ }^{\text {c }}$	0.135 E 05	C.561E 03	24.06	1.50
6600.0	$0.126 E 05$	C. 559E C?	22.tc	1.55
6800.0	0.119 O	C.596E 03	19.8s	1.65
7 CCC. 0	C. 114 E 05	C.629E C3	18.09	1.73
7200.0	0.115 E 05	C. 74 EF C3	15.38	1. 1 ¢
74 CC .0	C.125E 05	C.788E 03	15.91	1.83
76 CC 0	0.123 E 5	C.771E C3	16.00	1.83
7800.0	0.117 E 05	C.505E C3	23.10	1.54
$8 \mathrm{CCC.C}$	0.895 F 04	$0.271 \mathrm{EFS}^{0}$	33.03	1.32
8200.0	0.745 E 04	C. 228 E C 3	32.66	1.33
8400.0	0.544 E 04	$0.271 \mathrm{E}^{\text {C }}$?	2C.C5	1.68
$86 \mathrm{CC}$.	C. $4 \mathrm{CRE} \mathrm{C4}$	C. 285 E C3	14.30	1.98
8800.0	0.363 E 04	$0.236 E 03$	15.39	1.92
9CCC.C	C. $314 \mathrm{E} \quad 04$	C. 175 EC	17.95	1.81
9200.0	$0.254 E 04$	C.881E 02	28.8.	1.45

escape peaks is approximately equal to 7, as noted above, and is independent of energy. The background values given In the table are the means obtained by applying linear averaging over 200-keV intervals in the normalized data.

Note that the energy symbol in this equation represents the energy of the incident gamma ray. The background data were evaluated at ($E-1022$) keV since the interest here is in double-escape peaks. The humps appearing at the high energy end in Fig. $5.6(b)$ are a result of the humps present in the background data underneath the intense peaks. The pair spectrometer is more efficient than the free mode at gamma energies less than 3 MeV ; it is less efficient above this energy.

Adjustement in the electronics to impose more strict conditions for triple coincidence will not have a significant influence on the results. This is because further suppression of the background continuum is normally accompanied by a reduction in the intrinsic efficiency of the system.

In the energy interval between approximately 1.5 MeV and 3 MeV an analysis can be based on either the full-energy peak or on the double-escape peak. The ratio of the minimum weight requirements with the system operated as a pair spectrom meter or in the Compton suppression mode was evaluated for different energies by the equation

$$
R(P S / C S)=\frac{m_{P S}}{m_{C S}}=\frac{\epsilon_{C S} \bar{W}(E-1022)\left[1+\sqrt{1+0.82 B_{P S}(E-1022)}\right]}{\epsilon_{P S} \bar{W}(E) \quad\left[1+\sqrt{1+0.82 B_{C S}(E)}\right]} \cdot(5.4)
$$

Values for this ratio are given in the last column of Table $V(5)$, and are shown in Fig. 5.6(c). The backEround values listed were obtained, where necessary, by direct interpolation applied to the data appearing in Tables $V(3)$ and $V(4)$. The ratios of fwhm and the efficiencies for this energy interval are also given for comparison. Note that corrections for gamma self-shielding and gamma attenuation by the masonite absorber in the beam cancel out since gamma rays of the same energy are used in both cases. At 1.6 MeV the Compton suppression system is more sensitive by a factor of 17. A t higher energies this factor drops off very fast and is equal to unity at about 3.5 MeV .

As a simple application of the above results consider the measurement of a given element in the stainless steel sample. Let us assume that a characteristic gamma ray of this element has an energy of 3 MeV and that the analysis is based on the full-energy peak of this gamma ray in the free-mode spectrum. Assume further that such a measurement yields the value of m grams as the minimum measurable weight. If the analysis were based on the double-escape peak of this gamma ray, or if the background suppression techniques were employed, the minimum weight requirements would have been as follows:

Mode	Peak Type Minimum Weight	
Free	Full-energy	m
Compton Sup.	Full-energy	0.79 m
Pair Spectrom	Double-esc.	$1.54 \times 0.79 \mathrm{~m}=1.22 \mathrm{~m}$
Free	Double-esc.	$1.22 \mathrm{~m} / 1.08=1.13 \mathrm{~m}$

105

TABLE V(5)

BACKGROUND DATA, EFFICIENCY, WIDTH AND MINIMUM WEIGHT RATIOS FOR THE COMPTON SUPPRESSION SYSTEM AND THE PAIR SPECTROMETER

Energy keV	$\begin{aligned} & \mathrm{B}_{\mathrm{PS}}(\mathrm{E}-1022) \\ & \text { counts } / \mathrm{keV} \end{aligned}$	$\begin{gathered} \mathrm{B}_{\mathrm{CS}}(\mathrm{E}) \\ \text { counts/keV } \end{gathered}$	$\frac{\epsilon_{C S}(E)}{\epsilon_{P S}(E)}$	$\frac{\bar{w}(E-1022)}{\bar{w}(E)}$	R(PS/CS $)$
1600	678	29600	107.	1.01	17.0
1800	587	25000	55.6	1.00	8.85
2000	608	21900	35.2	0.99	6.04
2200	636	19750	21.7	0.98	3.97
2400	661	17800	16.8	0.97	3.27
2600	685	16500	12.04	0.97	2.45
2800	715	14900	8.97	0.96	1.94
3000	727	14050	6.92	0.95	1.54
3200	748	12950	5.35	0.94	1.25
3400	764	11850	4.30	0.93	1.05
3600	736	10950	3.52	0.93	0.87
3800	722	10550	2.72	0.92	0.67
4000	704	9850	2.37	0.91	0.59

This example indicates that at 3 MeV , only a modest change in the sensitivity of approximately ± 20 percent can be obtained by the various methods of measurement. At other energies the changes are more significant, the pair spectrometer option being in all cases the least sensitive. The extreme simplicity of the pair spectra, however, should not be overlooked, and this fact alone will have a significant influence on the choice of detection. mode.

The usefulness of the results presented above can be extended further by noting that the ratios of the minimum weight requirement are approximately equivalent to the ratios of the percent errors in the peak areas obtained by the various detection modes. Thus if a full-energy peak in a freemode spectrum at 3 MeV has an error $\left[\sigma\left(A_{G}\right) / A_{G}\right]$, the same peak in the corresponding Compton suppression spectrum will have an error of $0.79 \times\left[\sigma\left(A_{G}\right) / A_{G}\right]$. Similarly, the errors in the double escape peaks will be $1.22 \times\left[\sigma\left(A_{G}\right) / A_{G}\right]$ in the pair spectrum and $1.13 \times\left[\sigma\left(A_{G}\right) / A_{G}\right]$ in the free mode.

The results presented above are based on the particular system and detection crystal used in this work. However, due to the square root signs in the R equations, the results are expected to hold approximately for most cases of practical interest. Further insight into the criteria for evaluating background suppression techniques can be obtained from an article by R. B. Galloway [G8].

Chapter VI

A TEST ON THE EQUATION FOR THE MINIMUM WEIGHT

6.1 Introduction

In the previous chapter extensive use was made of the minimum weight equation (3.24) for evaluating the relative sensitivity of the various experimental arrangements. The analysis that follows constitutes a test on the validity of this equation and also of the equations developed for the peak area limiting levels. The dataassociated with the pair spectrum in Fig. 5.5 will be used. A complete analysis of the spectrum is presented and special emphasis is given to the peaks that resulted from neutron capture in manganese.

6.2 The Method

An experimental verification of the minimum measurable weight of an element in a given sample can be obtained by irradiating samples which include different known concentrations of the element in question and then extrapolating the results to obtain the required information. In such a case the determination of the element in the sample will be based on the capture gamma ray of the element that is found to be most suitable for the purpose. This procedure, if carried out properly, will yield good results. However, it is tedious and limits the choice of target materials.

In a simpler approach to the problem, irradiation of the sample is carried out only once and use is made of a large number of capture gamma rays emitted by one of the
sample constituents. The corresponding peak areas that are expected to appear in the spectrum are computed for the given concentration of the element in the sample. If this concentration is suitable a number of these peaks will be clearly visible in the spectrum while others will be lost in the statistical fluctuations of the background continuum. The presence or absence of a peak must be in accordance with the equations for the peak area limiting levels and therefore the spectral data can be examined to verify the validity of these equations and, consequently, the equation for the minimum weight.

In this work it was decided to test the equations using the second approach. The pair spectrum shown in Fig. 5.5 was used for this purpose. The manganese content in the sample seemed to be particularly suitable for this application since intense capture gemma rays of this element yielded peak ereas both above and below the limiting levels.

In order to carry out the test described above it is necessary first to obtain a complete analysis of the spectrum in question. This analysis is presented in the section that follows.

6.3 Analysis of the Pair Spectrum

Part of the GAMANL output for the analysis of the stainless steel pair spectrum is shown in Table VI(1). The table includes (a) results of the least-squares fit for the resolution of the system, (b) comparison between the original fwhm and the fitted data, and (c) the analysis of the spectrum.

TABLE VI(1) - PART OF GAMANL OUTPUT - SS 303 PAIR SPECTRUM

```
    RESULTS OF LEAST-SQUARES FIT
NUMBER OF PEAKS USED = 46
STATISTICAL FLUCTUATIONS REDUCED BY 1.34
SUM(WEIGHT*FWHM*ENERGY(1OMEV)**0) = 0.29738E 04
SUM(WEIGHT*FWHM*ENERGY(1OMEV)**1) = 0.15442E 04
SUM(WEIGHT*FWHM*ENERGY(1OMEV)**2) = 0.88415E 03
```

COEFFICIENTS OF ORIGINAL MATRIX

0.28887 E	03	0.14336 E	03
0.14336 E	03	0.79404 E	02
0.79404 E	02		
0.79404 E	02	0.46758 E	02

VALUE OF DETERMINANT $=0.71581 \mathrm{E} 03$
COEFFICIENTS OF INVERTED MATRIX
0.12635 E 00
$-0.55594 \mathrm{E} 00$
0.55670 E 00
$-0.55594 \mathrm{E} 00 \quad 0.27633 \mathrm{E} 01 \quad-0.29666 \mathrm{E} 01$ $0.55670 \mathrm{E} 00-0.29666 \mathrm{E}$ Ol 0.33309 E Ol

EQUATION OF LEAST-SQUARES FIT

$$
\begin{aligned}
\text { FWHM }= & 0.94644 \mathrm{E} 01 * \operatorname{ENERGY}(10 \mathrm{MEV}) * * 0 \\
& -0.91934 \mathrm{E} 01 * \operatorname{ENERGY}(10 \mathrm{MEV}) * * 1 \\
& +0.19612 \mathrm{E} 02 * \operatorname{ENERGY}(10 \mathrm{MEV}) * * 2
\end{aligned}
$$

SQRT(SUM WEIGHTED RESIDUALS/DEGREES OF FREEDOM) $=0.1291 E O_{i}$
飞苋

fitteo data

 $\stackrel{\rightharpoonup}{6}$
 ※ No ※

PAELB VI（1）（COMTINUED）

M0．	ENERGV KEV	PK CNTR CHAN NO	ME IGHT COUVTS	$\begin{gathered} \text { Hyit BG } \\ \text { RASIO } \end{gathered}$	AREAIA） COUNTS	rsis AREAIAI COUNTS	［NT（B）	ERRORIB） PERCENT	$\begin{aligned} & W(A) \\ & K \in V \end{aligned}$	$\begin{gathered} \text { W(B) } \\ \text { KEV } \end{gathered}$	hase CHAN	TVPF
1	1513.0	224.9	137.9	0.079	297.2	583．4	1.33	23.64	4.89	8.52	5.	5
2	1532．C	233.4	1824.4	1.106	8211.2	7791.2	16.24	3.72	9． 53	0.52	19.	－ 5
3	1612.0	269.4	477.3	0.337	1817.8	2C32．6	3.20	8.53	8.03	8.49	9.	－5
4	1711.2	313.5	118.6	0.093	487.4	593.1	c． 61	79．29	9．46	0.46	17.	00.00
5	1724.8	319.7	906.4	0.700	3795.9	3846.8	4.48	5.01	A．4h	0.46	17.	00.00
${ }^{6}$	1747.1	329.7	113.9	0.092	200.4	482．7	C． 53	29.90	4.99	ค． 46	5.	S
7	1793.7	346.3	265.6	C． 204	741.9	1125.1	1.15	13.75	5.83	0.45	8.	5
8	1809．9	35 A .1	6 Cl ． 5	0.451	2503.1	2548．6	2.46	6.71	7.91	8.44	14.	－5
－	1900.0	39月．9	tc9． 2	0.082	323.3	461.3	C． 38	31.50	6.47	0.43	6.	5
10	$1951 . \mathrm{C}$	422.0	84.5	0.066	179．8	356.9	C． 27	39.64	4.87	8.42	4.	5
11	1993.5	441.3	155.7	0.116	5 C 3.4	656.6	C． 46	22.79	8.41	8.41	12.	0 C .05
12	2001.6	445.0	102.6	0.977	339.4	432.9	0.70	33.39	8.41	－．41	12.	00.05
13	2044．7	464.5	109.3	$0 . C 83$	443.6	460.4	C． 30	33.27	10.61	0.43	8.	5
14	2065.5	473.9	161.9	． 0.120	541.3	682.1	c． 43	21.60	13.07	8.40	11.	5
15	2112.7	495.4	443.2	0.310	1752.6	1866.4	1.09	9.02	7.70	9． 40	11.	－ 5
16	2128.3	502.5	188.2	0.128	776.9	792.4	0.45	20.32	9.38	8． 40	8.	－5
17	2153.2	513.8	111.9	0.077	248.5	471.2	0.26	32.27	4.84	8.39	5.	5
18	2189.1	530.2	100.5	0.073	307.4	422.9	0.22	34.89	8.39	8.39	10.	00.05
19	2221.7	545.1	151.4	C． 106	796.8	637.0	0.32	23.72	8.39	8． 39		00.05
20	2239.1	553.0	608.6	0.423	2328.9	2560.3	1.27	6.69	7.87	8． 39	9.	－s
21	2320.6	59C． 3	442.3	0.300	2195.5	18 AJ .4	0.84	8.99	7.94	8.39	16.	－5
22	2375.8	615.4	146.3	0.098	484.0	615.3	C． 23	26.37	6.72	8.39	7.	5
23	2429.7	640.0	99.4	0.068	345.2	419.1	0.17	35.93	6.16	3.39	7.	5
24	2469.7	658.2	223.0	0.150	1083.7	938.3	0.36	16.79	10.98	8． 39	11.	S
25	2525.9	683.8	161.4	0.107	900.4	679.5	C． 25	22.86	9.63	8.39	11.	－s
26	2555.2	697.2	205.7	0.137	6 C5． 1	865.9	0.31	18.34	5.99	8.40	8.	5
27	2572.9	705．3	104．3	0.069	392.0	439.2	C． 15	35.95	5.11	8.40	8.	5
－28	2582.9	709.9	106.7	0.072	215.4	449．3	0.16	34.01	4.45	－．40	4.	5
29	2602.9	719.0	234.9	0.159	1065.2	999.4	0.34	15.77	8.35	8.40	12.	－5
30	2620.4	726.9	132.1	0.387	273.5	556．9	0.19	27.79	4.63	9.49	4.	5
31	2653.9	742．2	96.5	0.063	3 Al .1	406.8	c． 13	38.49	9.38	0.41	7.	5
32	2670.5	749.8	132.7	0.083	445.7	559.6	0.18	28.48	8.41	9.41	12.	00.01
33	2682.4	755.2	265.7	0.167	899.9	1120.5	C． 76	14.69	9.41	8.41	12.	00.01
34	2696.9	761.8	156.1	0.095	445.0	659.4	C． 21	24.80	5.94	8.41	6.	5
35	2721.7	773.1	671.3	0.418	3073.5	2837.9	C． 88	6.35	8.47	8.41	14.	－5
36	2781.9	800.5	111.8	0.073	323.6	472.3	0.14	34.69	5.77	A． 42	1.	5
37	2834.8	824．7	439. 月	0.272	1917.5	1860.0	C． 53	9.34	0.51	H． 4.3	11.	－ 5
38	2873.3	842.3	271.0	0.17 C	749.4	1147.2	0.32	14.53	5.97	． 4.44	7.	5
39	2955.9	879.9	265．3	C． 168	1372.7	1125.7	C． 30	14.50	A． 46	8．46	19.	00.00
40	2969.7	886.3	234.8	0.149	1198.9	996.4	0.26	16.49	6.46	9．45	19.	00.00
41	3025.4	911.8	199.7	0.125	941．0	844．9	c． 21	19.23	17.34	8.48	11.	－5
42	3060.8	928.0	122.8	0.077	286.4	522.5	0.13	30.46	5.34	8.49	5.	5
43	3103.0	947.3	458.8	9．28月	1920.2	1955.7	C． 47	－ 6.90	0.50	－． 50	13.	02.01
44	3112.3	951.6	147.3	0.093	611.8	629.2	0.15	26.01	9． 50	月． 50	13.	00.01
45	3168.6	977.3	329.0	0.702	1498.7	1406.4	C． 32	12.25	ค． 52	8． 52	19.	00.00
46	3186.0	985.2	491.5	0.297	2263.1	2100.7	0.48	8.45	ค． 52	0.52	19.	0.0 .00
47	3225.3	1003.2	173.5	0.103	822．5	743．0	0.17	22.47	9.66	3． 54	12.	
48	324C． 3	101 Cl	190.7	0.113	604．7	816.9	0.18	20.50	6.96	8.54	6.	5
49	3267.4	1022.5	909.6	0.539	4138.3	$38 \rightarrow 7.5$	0.85	5.15	9.06	8.55	12.	－5
50	3292.2	1033.8	238.4	0.141	885.7	1023.8	C． 22	16.62	7.16	8.56	11.	－5
51	3357.6	1067.7	247.1	0.146	748.3	1064.4	C． 22	16.23	6.57	－． 59	6.	－5
52	3371.0	1069.9	97.9	0.059	211.6	422.0	0.09	38.87	4.85	8． 59	5.	5
53	3413.1	1089.2	1237．c	0.714	5540.3	5345.1	1.00	3.98	0.62	8．h？	26.	00.00
54	3436.6	1099．9	1148.9	0.681	5171.1	4964.6	1.00	4.15	8.62	0.62	26.	0.0 .00
55	3486.6	1122.8	256.3	0.158	1467.8	1111.6	0.22	15.19	B． 65	8.65	21.	90.00
56	3506.5	1131.9	217.9	0.132	1250.7	945.0	0.18	17.82	8.65	0.65	21.	） 0.00
57	3545.2	1149.6	107．1	0.069	501.4	465.7	C． 09	34.76	8.67	8.67	13.	00.20

. 38	3553.5	1153.4	196.4	0.126	899.9	854.3	0.16	19.59 31.95	$\begin{aligned} & 8.67 \\ & 8.69 \end{aligned}$	8.67 8.69	$\begin{array}{ll} 13 . & 0 \\ 16 . & \end{array}$	$\begin{aligned} & 0.20 \\ & 0.00 \end{aligned}$	$0 . c 6$
59	3565.1	1158.7	116.6	0.075	435.1	508.0	0.10	19.93	8.69	8.69	16. T	0.00	C. 06
40	3580.8	1165.9	186.6	0.123	702.4	812.9	0.15 $C .09$	37.96	8.69	8.69	16. T	0.00	0.06
41	3588.9	1169.6	103.6	0.066	365.7	451		10.92	10.89	8. 70	8.		
62	3616.6	1182.2	228.5	0.143	1077.8	997.2	C. 13	22.83	8. 74	8.74	18. 0	0.06	
63	3677.0	1209.8	165.4	0.105	807.1	724.9	C. 13	18.93	8. 74	8.74	18. 0	0.06	
64	3687.1	1214.4	209.3	0.133	977.1	917.4	C.17	37.35	8.76	0.76	15. 0	0.00	
65	3706.3	1223.2	98.0	0.064	476.9	430.3	0. 08	37 8.64	8.76	8.76	15.0	0.00	
66	3720.3	1229.6	473.3	0.306	2257.8	2078.2	C.37						
		PEAKS ARE	ANALYSED	MUMBER AS A TRI	PEAKS IN ET. CHECK	MULTIPLET BACKGROUNO	SUBTRACTEN	DATA.					
THE	3 STRONGES	PEAKS ARE	229.3	0.149	1283.1	1011.0	0.18	16.49	8.79	8.79	28. 1	0.21	0.66
67	3776.3	1255.2 1257.6	229.3	0.144	1205.7	981.9	C. 17	17.33	8. 79	8.79	28. T	0.21	$0 . c 6$
68	3781.7	1257.6	222.5	0.144 0.150	1248.3	1015.8	C. 18	16.84	8. 79	8.79	28. T	0.21	0.66
69	3792.1	1262.4	230.3 234.5	0.154	1135.2	1033.4	0.18	16.57	8.83	8.83	27. 0	0.01	
70	3844.1		234.5 1037.2	0.144	5022.8	4594.1	0.79	4.44	8.83	8.83	27. 0	0.01	
71	3855.0	1291.2	1037.2 168.5	0.639 0.106	575.6	750.3	C. 13	23.87	7.46	8.83	7.	S	
72	3930.0	1325.5	168.5 99.5	0.064	262.2	443.9	0.07	37.47	4.49	8.90	4.	5	
73	3956.9	1337.8	99.5 334.5	0.064	1412.5	1493.?	c. 25	11.96	0.58	8.93	11.	- 5	
74	4010.7	1367.4	334.5	0.216	1412.5 579.7	884.9	C. 14	19.16	6.23	8.97	8.	5	
75	4073.4	1391.1	196.7	0.126	478.9	457.9	C. 07	36.80	10.97	9.07	9.	5	
76	4110.7	1408.1	101.5	0.063	469.9	521.5	C. 28	32.45	9.02	9.02	11.0	0.07	
17	4131.7	1417.7	115.3	0.075	469.9 482.2	455.5	C. 07	39.08	9.06	9.06	33. T	$0 . C 0$	C.CO
78	4177.3	1438.5	100.2	0.065	1055.3	945.6	c. 15	18.29	9.06	9.06	33.	0.00	C.CO
79	4199.0	1448.4	208.1	0.134	14761.5	13424.7	2.13	2.25	9.06	9.06	33. T	0.00	C. ${ }^{0}$
6	4218.8	1457.4	2953.9	1.877	14761.5	13424.7	0.12	22.72	9.12	9.12	16. 1	0.02	0.02
81	4264.5	1478.3	170.7	0.107	607.1 1482.5	1876.6	c. 30	9.77	9.12	9.12	16. 1	0.02	C.C?
82	4274.2	1487.7	410.4	0.258	1482.5	559.1	0.09	30.78	9.12	9.12	16. 1	0.02	$0 . C 2$
83	4285.3	1487.8	122.3	0.077	1351.8	1711.0	0.27	10.56	7.90	9.16	7.	- 5	
84	4323.0	1505.1	372.7	0.235 0.102	510.5	787.6	0.12	23.18	6.53	9.20	7.	5	
85	4378.2	1530.3	17	0.102	510.5 4990.5	5561.9	0.86	4.01	8.58	9.22	12.	- 5	
66	4406.5	1543.3	1202.8	0.717	729.6	727.2	C. 11	24.25	9.26	9.26	16. 0	0.00	
87	4447.3	1561.9	156.6 504.5	0.097 0.312	729.6 2351.0	2343.4	0.36	8. 09	9.26	9.26	16. 0	0.00	
88	4462.5	1569.9	504.5	0.312 0.066	234.9	488.9	0.07	37.30	6.29	9.30	5.	5	
99	4496.7	1584.6	104.9	0.106	418.6	747.3	C. 11	23.74	5.69	9.33	5.	5	
91	4531.2	1600.3	159.8 136.5	0.1087 0.087	926.2	640.3	0.10	27.24	11.98	9.36	12.	5	
91	4567.6	1617.0 1666.2	136.5 284.1	0.182	952.3	1346.7	C. 21	13.61	6.62	9.65	10.	5	
92	4675.1	1666.2 1689.0	284.1 281.7	0.187	1549.5	1342.0	0.20	13.40	9.03	9.50	14.	-5	
94	4789.7	171 . 6	106.3	0.070	278.9	509.4	0.08	35.52	5.69	9.56	5.	- 5	
95	4810.0	1727.9	1163.8	0.760	5280.6	5590.6	C. 85	3.92	9.28	9.5	12.	5	
96	4847.0	1744.9	15 C .1	0.093	602.8	723.9	C. 0.08	25.29 35.68	5.52	9.63	6.	5	
97	4858.8	1750.2	106. 2	0.067	278.6	512.9 1017.9	0.16	18.29	5.47	9.64	6.	5	
98	4874.0	1757.2	210.5	0.133	527.3 2873.4	1017.9	C. 52	5.97	0.51	9.72	10.	-s	
99	4949.9	1791.9	699.3	0.451	2873.4	3408.3 532.2	C. 08	35.26	4.75	9.75	5.	5	
100	4982.1	1806.6	108.8	0.071	2486.6	2554.9	C. 39	7.65	9.23	9.79	15.	- 3	
101	5015.3	1821.8	520.6	0.347 0.085	2486.6 473.1	2554.9 631.9	0.10	29.45	8. 16	9.21	7.	5	
102	5040.9	1833.5	128.4	0.085	1145.9	1414.3	0.2 ?	13.12	7.35	9.84	11.	4	
103	5068.6	1846.2	286.5	0.195	1145.9 365.5	1414.3 533.9	0.08	32.46	7.12	9.86	7.	5	
104	5088.4	1855.2	112.0	0.076	365.5 491.7	553.9 554.9	0.08	31.42	11.49	9.89	9.	5	
105	5.111 .9	1866.0	111.9	0.079	491. 81	897.0	0.14	20.61	9.93	9.93	8. 2	20.30	
106	5138.7	1878.2	180.2	0.123 0.244	587.1 1328.6	1731.7	0.27	11.04	7.65	9.97	10.	${ }^{5} 5$	
107	5180.4	1897.3 1915.8	346.6 127.8	0.244 0.086	1328.6 633.4	1731.7 641.4	0.15	28.37	10.97	12.01	8.	5	
108	5220.8	1915.8 1930.4	154.0	0.107	816.2	776.8	0.12	23.96	10.06	10.06	2 C	0.6 .00	
109 110	5252.7 5268.6	1930.4	353.4	0.245	1913.9	1782.8	0.27	10.69	10.06	10.06	20. 0	D 0.c0	
110	5268.6 5312.0	1937.7	182.3 183.	0.124	738.4	925.3	0.14	20.64	10.12	10.12	10.	0 O.31	
112	5320.1	1961.2	93.7	0.065	398.5	475.5	0.07	37.96	10.12	10.12	10.	0 O.31	
113	5357.7	1978.4	129.4	0.089	506.8	660.0	0.10	28.74	6.79	10.17			
114	5391.5	1993.8	103.4	0.071	221.3	529.6	0.08	34.8 \%	4.79	10.21			

The method of least-squares fit is described in Appendix II. The first page of Table VI(I) includes (a) the number of peaks used in the fit, which is 46 in this case, (b) three summation values for the parameters V_{j} in equation (A2.12), (c) the matrix coefficients $C_{j k}$ evaluated by equation (A2.13), (d) the value of the determinant and the coefficients of the inverted matrix supplied by the computer program MINV, (e) the equation for the fwhm, equivalent to equation (A2.9), and (f) the square root of the weighted sum of the residuals (equation A2.14) divided by the degrees of freedom which is $46-3=43$ in this case.

The second page of table VI(I) includes data most of which were evaluated by the equations presented in Appendices II and III. This part of the table includes
(1) the peak number
(2) the peak energy, in keV
(3) the peak form (equation A3.7)
(4) the standard deviation in the fwhm evaluated by equation (A3.13)
(5) the value of the weighting function (equations A2.10, A3.8, and A3.13)
(6) The value of the fitted fwhm, in keV, using equation (A2.9) and the constants listed in the first page of this table
(7) the difference between the calculated and fitted fwhm
(8) The value of the residual at each point in the
fit, which is the product of the weight function and the square of the difference in the fwhm, and
(9) the confidence interval (equation A2.16), which is an estimate of the uncertainty in the interpolated and extrapolated fwh values obtained by equation (A2.9).

In the remaining pages of the table is presented the analysis of the spectrum. The various columns represent
(1) the peak number
(2) the energy of the incident gamma ray, in keV
(3) the location of the peak center in the spectrum
(4) the height of the peak evaluated by equation (A3.9)
(5) the ratio of the peak height to the average background underneath the peak, with the background computed by equation (3.3)
(6) the straight-sums peak area (equation 3.6)
(7) the Gaussian area (equation 3.7)
(8) the Gaussian peak intensity, in photons per 100 neutron captures in the sample
(9) the percent error in the Gaussian area (eq. 3.14)
(10) the fwhm of the peak (eq. A3.7), in keV (note that for multiplets this is set equal to the fitted fwhm)
(11) the fitted fwhm evaluated by the least squares procedure
(12) the width of the peak at its base line, and
(13) the type of the peak, the symbols S, D, and T standing for singlet, doublet and triplet.

Note that in the last column, 13, an asterisk close to a singlet indicates that the gamma ray is intense and was used in the least-squares fit and in the evaluation of the area correction factor ψ for the deviation of the peak shapes from the Gaussian distribution. The numbers following the doublet and triplet symbols are a measure of the contributions to the height of a peak from the remaining peaks in the multiplet. Also note that due to the limitations of the GAMAL code to analyze high-order multiplets, the three strongest peaks of such multiplets are analyzed as triplets. This procedure does not lead into any serious trouble since, in a majority of the cases, the high-order multiplets are caused by weak peaks located at the wings of strong ones.

Other pertinent datassociated with this analysis are listed below:
(a) The gamma ray energies were corrected for system non-linearity according to the energy-dependent correction shown in Fig. 6.1 for this run
(b) The values assigned to the smoothing parameters in equation (AI.4) were $\omega_{\mathrm{m}}=2 \pi(1024 / 4096$) $=\pi / 2$ and $\sigma_{m}=2 \pi(128 / 4096)=\pi / 16$; the corresponding error reduction factor for this degree of smooth ing is 1.34
(c) The two encrgy calibration lines required by the code were the 4218.8 and the 5920.5 keV gamma rays of Fe ; the energy-channel conversion factor, C, was $2.189 \mathrm{keV} /$ channel

Fig. 6.1 Iinearity Correction Curve
(d) Only peaks with less than 40 percent error in the peak area are included in the Table
(e) The correction term ψ was computed using 36 peaks; its value was 1.031
(f) The geometry of the system included a 1/2-inch collimator which is equivalent to a fractional solid angle of 1.59×10^{-5}
(g) The flux-time product was assigned the empirical value of $1.94 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$ which was found to best fit the data analysis; it includes corrections for neutron depression and fraction of sample seen
(h) Values for the efficiencies were taken from Table IV(2) and were corrected for the 1 1/2-inch masonite plug in the beam; gamma self-shieldjng was set equal to 0.89 for all energies.

The GAMANL results given above constitute the first step that must be taken in elemental analysis. The entgies and peak areas of the gamma rays in the spectrum have been evaluated. These must now be used to identify the various elements in the somple and to obtain their corresponding concentrations. A computer code has been written to carry out these operation. The code, which was named WTANAL for weight analysis, is listed in Appendix V.

In this code use is made of the energies and intensities of all the gamma rays of the elements that are believed to be present in the sample. The program, working on each element separately (at first), selects from the list those gamma rays
whose energies are within specified limits and whose intensities are larger than a given value. In this manner the code can be used both for low energy and high energy applications and unnecessary computations are eliminated by rejectingiow intensity gamma rays. The enegies of the selected gamma rays are then compared to those in the spectrum for possible correspondence; this occurs if the energies are within a specified number of keV units. Whenever an element which could have produced the observed gamma peak in the spectrum is found, the weight M_{c} of the element is calculated. For this computation use is made of equation (3.25) and of the equation

$$
\begin{equation*}
M_{c}=\Lambda_{G} /[\phi t \Omega \in I] \tag{6.1}
\end{equation*}
$$

where the various symbols have already been defined. If, through such a procedure, the origin of a gamma ray is assigned to more than one element, the symbols of the interfering elements are listed. In its present form the program does not resolve interference effects.

Application of this code to the analysis of the stainless steel sample gave the results appearing in Table VI(2). On the first page of this table are listed (a) the reference sample analysed, (b) the flux time value (which in this case includes also the 0.89 correction factor for gamma selfshielding), and the solid angle, (c) the efficiency data, and (d) a list of the elements for which the spectrum is exemined. Note that the maximum difference between observed and tabu-

SAECE VI(2) - PART OF MTANAL OUTPUT
ANALVSIS OF SS-3CZ SAMFLE - RLN $92 E 1$ - CCMPLIE日 CLTFUT 70028
FLEXOIIME (N/CMOCD) = $0.1735 E 14$ SCLIC ANGLE O.159CE-C4
EFFICIENCY CATA INITIAL ENERGY (KEV) = ICCC. DELTAEREPGY (FEV) - 500 .
EEFICIEACV AHRAY C.ICCE-CS C. $575 E-C 4$ C. $158 E-03$ C. $364 E-03$ O. $535 E-03$ O.701E-0

ELEMEATS FCR WHICH SPECTRUM IS ANALYZED

PABLE VI(2) (CONTIMUED)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& \& 0.11 \&

\hline 92 \& \& 422.03
985
9 \& 38.81 \& ni
ni
1 \& -3500.80 \& - 0.24 \&

\hline 39 \& 3569.14
36710.0 \& 508.02
724.90 \& 31.45 \& \cdots \& 3se19.96 \& -0.11 \& C. 18116

\hline 67 \& 3176.30 \& $1{ }^{1611.101001}$ \& ${ }^{10} 10.45$ \& A1 \& 3717.36 \& 0 \&

\hline ${ }^{68}$ \& 3781.ct \& 750.35 \& 23.97 \& A1
al \& 3520.06
6283.60 \& 0.80 \&

\hline ${ }_{86}^{83}$ \& (425.27 \& 5561.93 \& 4.01 \& A1 \& \$405.10 \& - \&

\hline 48 \& ${ }_{4858.11}$ \& 1346.73 \& ${ }_{\substack{13.61 \\ 35.68}}$ \& A1 \& \& 1:17 \&

\hline 103 \& 5008.62 \& ${ }^{1416.635}$ \& $1312
c134632$ \& ${ }_{\text {ar }}$ \& S¢Eti. 2 C \& 0.13 \&

\hline 104 \& S098:\%0 \& 594.92 \& ${ }^{31}$ \& A1 \& \& 0.12 \& -1239E 03 co CO

\hline 107 \& 5126.39
5268.65 \& ${ }^{1731782.78}$ \& ${ }_{\text {1c }} 11.65$ \& Ni \& \& 1:14 \& C.7132e ${ }^{\text {che }}$

\hline 111 \& \& (255.28 \& 20.6. \& ${ }^{1}$ \& ${ }_{\text {Stase }}$ \& 0.95 \& cosemit

\hline 121 \& 56<8. 30 \& ${ }^{563.72}$ \& 33.70 \& al \& ${ }^{5}$ \& 2.34 \& -0.7369\% 01

\hline 126 \& 9819.00 \& 1761.31 \& 27, \& ni \& 9936.7c \& - \& 0.6.691F 02

\hline - 132 \& \& \& 17.43 \& 11

1 \& 6105:00 \& 2.08 \&

\hline ¢ \& ${ }^{81525.94}$ \& \$936.94 \& ${ }_{\substack{37 \\ 27.02}}$ \& A1 \& 81560.90
0853.60 \& 1.99 \& O.ST9RE Oil

\hline 148 \& \& +10150.94 \& 3, 3 \& N1 \& etericc \& 11.91 \& O.111se 03 CR

\hline - 152 \& \& cilt 116.25 \& \& nit \& csetilc \& - \& -.

\hline 154 \& 1939.36 \& 315,4n \& 30.43 \& ${ }_{\text {it }}$ \& 1996:日0 \& $1 \cdot 36$ \& 3.8272f ${ }^{\text {a }}$

\hline 1178 \& (7694.0.15 \& -173.96 \& 5.67 \& A1 \& (1917.40 \& 0.15 \& C. $4332 \mathrm{CE} \mathrm{Cl}_{6}$

\hline 176 \& ${ }_{8121093}$ \& ${ }_{\text {cosem }}$ \& 112:12 \& ${ }_{\text {hi }}$ \& ${ }_{\text {efs }}$ \& 18.74 \& 0.034 .26 oi

\hline 121
186 \& -8936.92 \& - \& 3:37 \& , \& 8959.80 \& 41.05 \& 0.6996 cl

\hline \& \& - \& \& \& \& \&

\hline \& \& 482.92 \& 29.96 6.71 \& ~n \& ${ }_{\substack{1747.00 \\ 1810.40}}$ \& 3.95 \&

\hline ${ }^{8}$ \& - 1200.888 \& - \& cisi.27 \& -n \& $2c436
c206260$ \& 2.430 \& c.atemex

\hline ${ }_{15}^{14}$ \& \& \& 210\% \& ~N \& - \& 18.0.95 \&

\hline 24 \& 2469.70 \& 938.34 \& 10.79 \& N \& 2621.30 \& 0.94 \& O.4033 ${ }^{\text {a }}$

\hline 30 \& | 2620.35 |
| :--- |
| 2606895 | \& S56.760 \& 24.80 \& N \& \& - 0.36 \&

\hline - \& \& \& ceme \& - \& \& \&

\hline 8 \& \& \& 5:15 \& "n \& 3267.50 \& - 56 \&

\hline ${ }_{58}^{52}$ \& \& - \& 10, 19.9 \& Mn \& 3, 3 380.85 \& -. 21 \&

\hline \% \& \& ${ }_{981}^{812.76}$ \& ${ }^{19} 17.38$ \& n \& \& \&

\hline 1 \& 384,4.99 \& ${ }_{4}^{494.15}$ \& 23.04 \& N \& ciser \& - \&

\hline ${ }_{79} 7$ \& Stasi.97 \& 945.58 \& \& \cdots \& ¢155.ec \& \%88 \&

\hline ${ }_{8}^{81}$ \& \& 135190.47 \& cin 22.12 \& \% \& \& 0.40 \& O. 5036 E Oi FE

\hline ${ }_{8}^{81}$ \& \& 787.03
127.23 \& - 4.12 \& - \& 4466.20 \& 1.10 \& 0.1065801

\hline
\end{tabular}

PABER	(CONTIN								
			27.24	中 ${ }^{\text {N }}$	4566.90	1.94	C. 11545	C1	
51	4567.62	64C.26	13.46	PN	4724.70	2.33	0.1596 E		
93	4724.56	1342.04	13.46 35.8	PN	4792.80	0.23	$0.6137 E$	01	
54	4789.69	509.40	35. ${ }^{2}$	PN	4975.60	0.84	$0.3359 F$	C 1	CR
48	4814.60	$1 \mathrm{Cl} \mathrm{l}^{51}$	18.29	0 N	4949.70	1.47	0.6430 E	01	FE
99	4949.86	3408.29	E.97	${ }_{-1}$	5014.7 C	5.54	C. 1280E	01	
161	5015.30	2554.94	13.65	PA	5067.40	3.18	0.1234 E	01	Nit
103	5068.62	1414.35	13.12	WN	5111.40	0.31	0.6969 E	01	NI
105	5111.90	554.92	31.42	M ${ }^{\text {N }}$	5135.10	0.13	$0.1516 E$	C2	FE
106	5138.7C	897.01	20.61	PN	5181.20	3.20	0.1504 E	01	CO Nt
107	5180.39	1731.75	11.64	MN	S2E3.9C	1.29	0.1676 E	01	
165	5252.71	776.82	23.96	PA	5435.70	2.09	0.1783 E	C1	NI
115	5436.26	1329.56	14.52	PN	5E27.20	6.94	0.9386 E	00	
117	5529.36	2312.20	8.57	-	E921.3C	1.01	C. $8765 E$	C2	FE
125	592C.50	$3 C 194.29$	1.47	PR	E1C4. 50	1.90	0.4028 E	01	N
133	6104.61	2565.17	21.79	N	C783.76	3.46	0.9528 E	00	
149	6794.17	981.98	21.79	PA	6929.00	2.37	C. 9766 F	co	
153	6930.48	125.98	$3 C .14$ 7.31	Pa	7057.9 ${ }^{\text {c }}$	11.35	0.1090 E	01	CO
156	705日. 30	3484.94	1.31	M ${ }_{\text {N }}$	1159.96	6.16	C.1272E	01	
158	714.8.60	2125.14	11.76	PR	7243.50	12.05	$0.1397 E$	01	
155	7245.66	4556.86	6.17	PR					
			.						
				CC	1515.60	2.82	$0.3207 E$	C1	
1	1512.98	585.36	28.64 11.04	cc	¢181.76	2.16	$0.8364 E$	00	MN Ni
107	5190.39	1731.75	11.04	CC	3270.06	1.11	0.1679 E	C1	AI CR
110	elete65	1782.74	10.69	CC	5 560.30	6.21	0.9613 E		
119	$5 \in 60.62$	555.41	34.5	CO	t¢Fs. 16	2.82	C. 2931 E	00	NI
194	6583.09	630.14	35.04	CC	7055.9 C	1.65	C.2815E	01	N
196	7C58.30	3484.94	7.71	C	7055.9				

lated gamma ray energies for possible correspondence was 4 keV. This is approrimately twice the error in the calculated energies and was set large in order to facilitate evaIuation of the interference effects.

In the remaining pages of Table VI(2) are shown the results of the analysis. The first four columns of the table represent the GAMANL output data which were supplied as input to WTANAL. These are the peak number, the peak energy, the Gaussian peak area and its percent error. In columns 4,5 and 6 are given the elements and the energies and intensities of their capture gamma rays (obtained from reference [R2]) for which there are corresponding peaks in the actual spectrum. The intensities are in photons per 100 neutron captures in the particular elements. In column 7 are given the weights of the elements evaluated by equation (6.1), and in column 8 are listed the elements, if any, that cause interference effects.

Note that the calcualted weights of the elements obtained by analysing the intense gamma rays of the elements in Table VI(2) compare well with the actual concentrations given in Table $V(1)$. The errors in the calculated weights are due to errors in the peak area measurement and in the intensity values.

A weighted average of the weight of each element considered in WTANAL was obtained using the equation

$$
\bar{M}_{c}=\sum_{i}\left[M_{c, i} / \sigma_{i}^{2}\left(A_{G}\right)\right] / \sum_{i}\left[1 / \sigma_{i}^{2}\left(A_{G}\right)\right] \quad .(6.2)
$$

For these computations use was made of only those characteristic capture gamma rays of the elements for which the following conditions were satisfied:
(a) gamma ray intensity greater than 1 photon per 100 neutron captures in the particular element
(b) error in the measured peak area less than 20 percent
(c) interference effects not significant.

The results are show below and compared to the data supplied by the manufacturer of the sample. The agreenent is good. The cobalt lines were destroyed by interference effects; the 1810 and 2113 Mn gamma rays are decay gamma rays and were not considered. It was not possible to evaluated the errors in the calculated weights since the errors in the tabulated intensities are not availeble.

Element	Gamma Rays Considered	Colculated Weights (g)	Manufacturer's Fe
	14	55.9	54.48
Cr	19	17.9	14.39
Ni	9	6.9	7.37
Mn	9	1.29	1.32
Co	-	-	0.071

6.4 Manganese Peaks in the Spectrum

From Table VI(2) it is seen that the WTANAL code has identified in the stainless steel spectrum 42 capture gamma
peaks whose energies correspond to those of Mn . Of these only 9 yielded weights that could be used reliably in equation (6.2). The remaining peaks were either too weak or subject to serious interference effects.

From reference [R2], Mn has 101 capture gamma rays of energy greater than 1.5 MeV . The purpose of this section is to examine which of these gamma rays have not appeared in the spectrum and how their expected areas compare to the peak area limiting levels.

In the first 3 columns of Table VI(3) are Iisted the number, the energy and the intensity of each of these 101 Mn gamma rays. The energies are in keV and the intensities are in photons per 100 neutron captures. In columns 4, 5 and 6 are given the peak area limiting levels evaluated by equations (3.21), (3.22) and (3.23). Equation (5.1a) for the fwhm was also used together with non-averaged data for the background continuum obtained from the actual smoothed spectrum. Typical values for the critical level, the detection level and the determination level are 250, 500 and 800 counts respectively. In the 7 th column are listed the peak areas which the Mn in the sample is expected to produce. These were obtained from the equation

$$
A(\text { expected })=\left(\Sigma_{Q} V\right)_{\operatorname{Mn}} \phi t \Omega \epsilon_{P S}(1 / 100)
$$

From Table $V(I)$ the $\sum_{a} V$ value for mangancse is 0.193 cm^{2}. Comparison of the expected areas with the limiting levels shows that

TABLE VI（3）
EXPECTED AND ACTUAL PEAK AREAS FROM MANGANESE IN SS－303 SAMPLE ANO CORRESPONDING PEAK AREA LIMITING LEVELS

MN C	capture	gamma rays	area limiting levels			EXPECTED AREA	EXPERIMENTAL DATA		
NO．	－ENERGY	INTEN．	A（CRIT）	A（DET）	A（MIN）		AREA	ERROR	INTERFERENCE
1	1705.4	1.20	230．	466.	730.	72.			
2	1747.0	2.85	232.	469．	734.	188．	482.9	29.9	Cu
3	1810.4	35.80	238.	481.	752.	2702．	2546.7	6.7	DECAY
4	1876.2	0.81	231.	469．	733.	69.			
5	1915.2	2.15	235.	475 。	743.	197．			
6	1987.6	2.36	235.	476.	745.	244.			
7	2044.3	2.43	233.	472.	738.	275.	460.5	33.3	
8	2062.6	1.89	235.	475.	742.	220．	682.1	21.6	FE
9	2090.5	0.98	240.	485.	758.	119.			
10	2113.2	18.85	243.	492.	769.	2361.	1866.4	9.0	decay，FE
11	2175.2	2.25	239.	483．	755.	306.			
12	2258.2	0.41	241.	489.	763.	62.			
13	2294.1	1.36	241.	488．	762．	214.			
14	2330.9	3.13	246.	498.	777.	512.	1860.4	9.0	CR
15	2369.5	0.56	247.	500.	780.	95.			
16	2437.1	1.13	245.	495.	773.	206 。			
17	2453.8	0.31	250.	505.	788.	58.			
18	2471.5	0.58.	246.	497.	776.	109.	938．3	16.8	FE
19	2508.8	0.32	249.	505.	787.	63.			
20	2521.8	0.94	249 。	504.	786	186.	679.5	22.9	FE
21	2593.7	0.75	245.	496.	775.	158.			
22	2610.1	0.28	249.	504.	787.	60.			
23	2621．3	0.84	252.	509.	794.	182.	556.8	27.8	CR
24	2658.0	0.66	251.	508.	793.	147.			
25	2676.9	0.97	256.	518.	808.	220.			

TABLE VI（3）（CONTINUED）

MN C	APTURE	GAMMA RAYS	AREA L	MITING	VELS	EXPECTED	EXPERIMENTAL DATA		
NO．	ENERGY	INTEN．	A（CRIT）	A（DET）	A（MIN）	AREA	ARcA	ERROR	INTERFERENCE
26	2696．9	0.36	260.	526.	820.	83.	$658 \cdot 4$	24.8	FE
27	2856.4	0.41	259.	524.	817.	106.			
28	2863.5	0.29	255.	516.	805.	75.			
29	2925．6	0.37	257.	521.	812.	100.			
30	2969．8	0.30	256.	517.	807.	84.	996.4	$16 \cdot 5$	NI．FE
31	3003．2	0.70	256 。	518.	807.	200.			
32	3060.2	0.27	259.	523.	816.	80 －	$552 \cdot 5$	30.5	FE
33	3144.4	0.24	262.	529.	826.	75.			
34	3203.6	0.28	266.	538.	839.	91.			
35	3267.5	0.83	268.	542.	844.	278.	3897.5	5.2	NI，CR，FE
36	3321.1	0.19	262.	531.	827 ．	65.			
37	3347．0	0.61	269 。	543.	847 ．	213.			
38	3372.9	0.56	268.	541.	843.	198.	422.0	38.9	NI
39	3408．5	3．38	274 。	553.	861 ．	1213.	5345.1	4.0	FE
40	3457.4	40.23	269.	543.	847 ．	84.			
41	3498．9	0.67	267 。	540.	842.	250.			
42	3555．5	50.28	259.	523.	816.	107.	$854 \cdot 3$	19.6	
43	3580．8	80.21	260.	525.	820.	81.	$812 \cdot 8$	19.9	FE
44	3626.6	0.51	265.	536.	836.	200.			
45	3642.1	10.45	266.	539.	840.	178.			
46	3667．8	$8 \quad 0.19$	265.	537.	837.	76.			
47	3751.4	$4 \quad 0.33$	263.	532.	830.	135.			
48	3783.1	10.22	263.	532.	831.	91.	981.0	$17 \cdot 3$	NI，CR，FE
49	3815.0	01.51	271.	549.	856.	630.			LOST
50	3858.4	$4 \quad 0.57$	272 。	549 。	856	241.	$4594 \cdot 1$	1 $4 \cdot 4$	FE

TABLE VI（3）（CONTINUED）

MN C	APture	MA RAYS	AREA L	MITING	EVELS	EXPECTED		PPERIM	ENTAL data
NO．	ENERGY	INTEN．	A（CRIT）	A（DET）	A（MIN）	AREA	AREA	ERROR	INTERFERENCE
51	3929．1	0.76	269．	544.	848.	327.	750.4	23.9	NI，CR
52	3979.7	0.30	2.72 。	550.	858.	131.			
53	4030．1	0.22	275 。	556.	867.	97.			
54	4101.3	0.13	275 。	556.	866.	58.			
55	4199.6	0.13	274.	554.	864.	60.	945.6	$18 \cdot 3$	
56	4222.7	0.88	276.	558.	871.	405.	13424.7	$2 \cdot 3$	FE
57	4267.7	0.51	277．	560.	873.	236.	780.5	22.7	
58	4348.1	0.35	283.	572.	892．	164 。			
59	4380．3	0.44	287.	579。	903.	207.	787.6	23.2	FE
60	4413.1	0.24	288.	583.	908.	113.			
61	4446．2	1.10	284.	574.	895.	522.	727.2	24.3	
62	4549.8	0.33	282．	571.	890.	157.			
63	4566.9	1.54	282．	570.	890.	735.	640.3	27．2	
64	4587.8	0.33	282.	571.	891.	157.			
65	4613.8	0.14	283.	572.	892．	67.			
66	4644.6	0.77	282.	570.	889.	368 •			
67	4690.0	0.85	287 。	580.	905.	406.			
68	4724.7	2.33	281 •	569 。	889．	1113.	1342.0	13.4	．
69	4780.3	0.22	281.	559.	889.	105.			
70	4792.8	0.23	283.	573.	894.	110.	509.4	35.5	
71	4829.1	0.57	299．	606.	944.	272.			
72	4875.6	0.84	290.	587.	915.	401.	1017．9	18．3	CR
73	4907.5	0.58	289 •	585.	912.	277 •			
74	4932．7	0.17	291.	589.	919.	81.			
75	4949.7	1.47	292．	590.	921.	702.	3408.3	36.0	FE

TABLE VI(3) (CONTINUED)

MN C	CAPTURE	gamma rays	area limiting levels			EXPECTED AREA	D EXPERIMENTAL DATA		
NO.	ENERGY	INTEN.	A(CRIT)	A(DET)	A(MIN)		AREA	ERROR	INTERFERENCE
76	4970.3	0.32	290.	587.	916.	153.			
77	5014.7	5.54	289.	585.	913.	2644.	2554.9	7.7	
78	5034.7	0.90	290.	587.	917.	429.			
79	5067.4	3.18	288.	582.	909.	1517.	1414.4	13.1	NI
80	5111.4	0.31	286.	578.	902.	148.	554.9	31.4	NI
81	5135.1	0.13	286.	579.	904.	62.	897.0	20.6	FE
82	5181.2	3.20	291.	588.	919.	1525.	1731.8	11.0	CO, NI
83	5199.0	0.38	295.	596.	931.	181.			
84	5253.9	1.29	291.	588.	919.	614.	776.8	24.0	
85	5405.2	0.28	299.	605.	944.	132.			
86	5435.7	2.09	299.	604.	944.	987.	1329.6	14.5	NI
87	5527.2	6.94	312.	632.	986.	3262.	2312.0	9.0	
88	5586.3	0.14	310.	626.	978.	66.			
89	5761.1	1.61	333.	672.	1048.	744.			LOST
90	5921.3	1.01	344.	696.	1084.	459. 30	30194.3	1.5	FE
91	6032.6	0.44	345.	697.	1086.	197.			
92	6104.5	1.90	324.	655.	1023.	843.	2565.2	8.4	NI
93	6430.1	0.75	311.	631.	988.	316.			
94	6556.0	0.15	318.	643.	1007.	62.			
95	6783.7	3.46	336.	680.	1063.	1365.	982.0	21.8	
96	6929.0	2.57	356.	720.	1126.	985.	726.0	30.1	
97	7038.7	0.18	370.	748.	1168.	67.			
98	7057.9	11.35	374.	757.	1181.	4234.	3484.9	7.3	CO
99	7159.9	6.06	389.	786.	1227.	2212.	2125.1	11.8	
100	7243.5	12.05	401.	810.	1263.	4320.	4556.9	6.2	
101	7270.6	3.08	408.	825.	1287 .	1097. 1	15101.4	2.6	FE

(a) 13 Mn gamma rays will yield peak areas greater than the determination level and can therefore be used for reliable quantitative determination
(b) 9 gamma rays will yield areas between the detection level and the determination level, with errors ranging between 30 and 20 percent and should be restricted to qualitative analysis only
(c) 13 gamma rays will yield areas between the critical and detection levels, with errors between 60 and 30 percent and will lead to unreliable detection if employed, and
(d) 66 gamma rays will yield peak areas less than the critical level.
The objective of this analysis is to compare these results with the actual Mn gamma rays appearing in the spectrum. To facilitate the comparison the data obtained by the WTANAL code have been included in Table VI(3). The results are as follows:
(a) Of the 13 Mn gamma rays expected to have peak areas above the determination level, 9 appeared in the spectrum and were used in the application of equation (6.2) for the evaluation of the average weight. Their energies were $4724.7,5014.7,5067.4,5181.2,5435.7,5527.2$, 7057.9, 7159.9 and 7243.5 keV . The two prominent decay gamma rays, of energies 1810.4 and 2113.2 keV , were also
distinctly visible but were not used in equation (6.2). Of the remaining two gamma rays, that of energy 3408.5 was masked byfa strong Fe interference; the other, of energy 6783.7, had an error of 21.8 percent which is slightly larger than the 20 percent limit set for the determination level.
(b) Of the 9 gamma rays expected to be suitable only for qualitative analysis, only the 4566.9, 5253.9 and 6929.0 keV were observed in the spectrum. Their peak area errors were 27.2 , 24.0 and 30.1 percent, respectively. Two gamma peaks, the 3815.0 and the 5761.1 , were probably lost in the background fit. The remaining four rays, of energies 2330.9 , 4949.7, 6104.5 and 7270.6, were masked by strong interference effects from Cr, Fe, Ni and Fe , respectively.
(c) Of the 13 gamma rays expected to have peak areas between the detection level and the critical level only two were observed in the spectrum. These were the 2044.3 keV gamma ray with a peak area error of 33.3 percent and that of energy 4446.2 with an error of 24.3 percent. The smaller error in the second case is due to either a slieht error in the tabulated intensity for this peak or to some interference effect that has lead to a peak area slightly larger than the one expected. Of the remaining 11 gamma rays, five were masked by interference effects; their energies are 3267.5, 3929.1, 4222.7, 4875.6, and $592 . .3 \mathrm{keV}$. The other six, of energies 1987.6, 2275.2 ,
$4644.6,4690.0,5034.7$ and 6430.1 , were not seen in the spectrum. The percent errorsin the peakscorresponding to these gamma rays were probably larger than 40 percent and were therefore automatically excluded from the listing supplied by the GAMANL code.
(d) Finally, of the 66 gamma rays expected to lead to peak areas less than the critical level were not seen, as expected. The peaks observed at the corresponding energies in the spectrum were attributed to other elements with the exceptions of those at energies 3555.5 , 4199.6, 4267.7 and 4792.8 kev .

The presence or absence of peaks from the spectrum is thus seen to be in accordance with the predictions based on the peak area limiting levels, a conclusion that we set forth to prove. The minimum measurable weight of Mn in stainless steel is considered as an example in the following chapter.

Cahpter VII
THE MINIMUM MEASURABLE WEIGHTS OF THE ELEMENTS

7.1 Introduction

Application of the minimum weight equation is straightforward if all the parameters on the right-hand side of equation (3.24) are known. Such information is not always available to persons who are likely to be interested in the practical applications of capture gamma rays in elemental analysis. It was therefore decided to evaluate the minimum measurable weights of the elements in cases where all the required information is known and then to develop equations that will permit extrapolation of the results to different samples and/or different experimental geometries and gamma detection systems.

The minimum weight requirements were evaluated for a stainless steel sample with the system operated in the Compton suppression mode and as a pair spectrometer. Both sets of data are presented below because, depending on the experimental arrangement, it is not immediately apparent whether it is the low energy or the high energy gamma rays that will be more advantageous or more convenient to use for elemental analysis. In practice use should be made of those characteristic capture gamma rays of the elements that yield spectral peaks whose area can be measured with the least error, irrespective of whether these are gamma rays of low or high energy. Sometimes gamma rays of lower yield are
of interest, however; for example, in large samples the high energy gamma rays with low self absorption may give a more accurate analysis.
7.2 Minimum Measurable Weights of the Elements in S. Steel The stainless steel sample described in section 5.3 .1 was used for this application together with the Compton suppression and pair spectrometer data show in Figures 5.4 and 5.5. The spectra were in essence used to evaluate the background continuum resulting from the given experimental conditions. The presence of the photopeaks in the spectra was ignored and the minimum weight requirements were evaluated under the assumption that these peaks will not cause any interference effects.

It was noted in section 3.6 that any of the characteristic gamma rays of thelelements can be used for elemental analysis. In this application, in order to evaluate the sensitivity limits, consideration was given only to twelve of the most prominent gamma rays of each element. Four of these gamma rays had energies less than 2 MeV and the other eight were above this limit. In the cases of $\mathrm{H}, \mathrm{C}, \mathrm{Pb}$ and Bi for which less than 12 capture gamma rays are reported in [R2], the analysis was applied to all the gamma rays available. The values of the remaining parameters in equation (3.24) are now considered. The flux time product was assigned the value of $1.94 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$ corresponding to the pair spectruan. As noted earlier, the Compton suppression date were multiplied by 14.6 in order to normalize them to those obtained with the
pair spectrometer. Values for the efficiencies were obtained from Tables IV(I) and IV(2) with appropriate corrections for the masonite plue in the gamma beam. Gamma ray selfshielding corrections were applied according to the information given in section 5.3.1. The solid angle wos 1.59×10^{-5}. The energy-channel conversion factor was assigned the value of $2 \mathrm{keV} / \mathrm{channel}$ and the smoothing filter function chosen had $r=1.34$ The system resolution was set equal to that obtained from the pair spectrum; the fwhm-energy equation is given by equation (5.1).

A computer program was written for the evaluation of the minimum measurable area and minimum weight of an element in a known spectrum. The code was named MINIMUM and is listed in Appendix V. Sample results of the analysis are show in Table VII(I) for the minimum measurable weight of Mn in stainless steel. Let us consider the information presented in the first row of the Compton suppression option. Columns 2 and 3 give the energy and the intensity of a prominent Mn capture gamma ray. The intensity, which is 0.00877 In this case, is the number of gamma rays of energy 212.5 keV that will be emitted per gram of lin of natural composition per incident thermal neutron $/ \mathrm{cm}^{2}$. The fourth column shows that, from equation (3.23), the minimum number of counts needed for quantitative determination at this position in the spectrum is approximately 30700 counts for the conditions described above. From equation (3.24), this number of counts corresponds to 0.33 grams of $\mathrm{Mn}(\operatorname{col} u m n 5)$. And

TABLE VII(1)

LIMITS FOR QUANTITATIVE DETERMINATION FOR MANGANESE

COMPTON SUPPRESSION

ELEM.	$\begin{aligned} & \text { ENERGY } \\ & \text { KEV } \end{aligned}$	INTENSITY P/G N/CM2	MIN.AREA COUNTS		MIN.WT GRAMS		WT PERCENT	
MN	212.5	0.877E-02	$0.307 E$	05	$0.33 E$	00	$0.42 E$	00
MN	$314 \cdot 3$	0.517E-02	$0.191 E$	05	$0.43 E$	00	0.54 E	00
$M N$	1747.0	$0.415 \mathrm{E}-02$	$0.490 E$	04.	0.55 E	00	0.70 E	00
$M N$	1987.6	0.344E-02	0.452 E	04	$0.73 E$	00	$0.92 E$	00
MN	2330.9	0.456E-02	$0.422 E$	04	0.60E	04	0.77 E	00

PAIR SPECTROMETER

ELEM.	ENERGY KEV	INTENSITY P/G N/CM2	MIN.AREA COUNTS	MIN.WT GRAMS	WT PERCENT
MN	1747.0	$0.415 \mathrm{E}-02$	$0.766 \mathrm{E} \quad 03$	0.54 E 01	0.69 El
MN	1987.6	0.344E-02	$0.778 \mathrm{E} \quad 03$	0.42 El	0.54 E Ol
MN	2330.9	0.456E-02	0.815 E 03	$0.21 E 01$	0.27 El
MN	3408.5	0.492E-02	$0.901 E 03$	0.98 E 00	0.12 El
MN	5014.7	0.807E-02	0.956 E 03	0.48 E 00	0.61 E 00
MN	5527.2	0.101E-01	0.103 E 04	0.42 E 00	0.53 E 00
MN	6783.7	0.504E-02	$0.111 E 04$	$0.11 E 01$	0.14 E 01
MN	7057.9	$0.165 \mathrm{E}-01$	$0.124 E 04$	$0.39 E 00$	0.49 E 00
MN	7159.9	0.883E-02	0.128 E 04	$0.77 E 00$	0.98 C 00
MN	7243.5	0.175E-01	$0.132 E 04$	$0.41 E 00$	0.52 E 0

since the stainless steel sample used had a welght of 78.83 grams, this requirement is equivalent to a Mn concentration of 0.42 percent, as show in column 6 .

In examining the results obtained for the remaining Mn gamma rays in the Compton suppression option, note that because of the rapid decrease in the background with increasing energy, the peak area determination level, column 4 , decreases by as much as a factor of about 7. However, since the detection efficiency also decreases with energy, the in gamma ray most suitable for elemental analysis is also the most intense gamma ray of this element in this energy interval (approximately 200 to 3000 keV). (This is true for a.ll the elements considered with the exceptions of $\mathrm{Co}, \mathrm{La}, \mathrm{Mg}$ and P). Therefore, the minimum concentration of Mn that can be measured with a 20 percent standard deviation in a stainless steel sample is 0.42 percent when the analysis is based on $1 t_{5}$ 212.5 - keV gamma ray and when the data are accumulated under the experimental conditions described above.

The results obtained for the pair spectrometer are show In the second part of the table (Table VII(I)). It is seen that for this mode of detection the minimum Mn requirement for analysis is 0.49 weight percent and corresponds to its gorma ray of energy 7057.9 kev . Observe that this is not thefrost intense gemma ray of Mn in this energy range (1.5 to 9 MeV). Note also that the $A_{m i n}$ values in this table are larger than those in Table VI(3) by $\mathcal{N}(2.189 / 2.0)=1.05$. This is because in Table VI(3) use was made of the actual energy-channel

141
conversion factor in the pair spectrum ($2.189 \mathrm{keV} /$ channel) whereas in the data presented in Table VII(I) a $2 \mathrm{keV} / \mathrm{channel}$ conversion was assumed to hold approximately for all the data obtained with the various detection modes. The dependence of the peak area limiting levels on the system resolution was discussed in the last paragraph of section 3.5.

The above results show that for an analysis based on a single capture gamma ray of Mn , both the Compton suppression system and the pair spectrometer have approximately the same analytical sensitivity. The extreme simplicity of the pair spectrum, however, favours considerably use of this detection mode.

Note that three Min gamma rays appear in both the Compton and peir options in Table VII(I). The ratio of the minimum weight requirements for these two modes of detection are in accordance with the results shown in Fig. 5.6.

In Appendix IV are given the results for 75 elements similar to those in Table VII(I) for Mn. The data ossociated with the least concentration requirements by the two detection modes considered are given in Tables VII(2) and VII(3) for all the elements. The Compton suppression option is seen to be more sensitive than the pair spectrometer in all the cases with the exceptions of $C, S i$ and Y. In a majority of the cases this is accounted for by the much higher detection efficiency at low energies. The capture gamma rays of Bi and Pb are greater than 3 MeV and therefore these elements are not present in Table VII(2). Note also that in

TABLE VII(2)

LIMITS FOR QUANTITATIVE DETERMINATION COMPTON SUPPRESSION

ELEM.	ENERGY KEV	INTENSITY P/G N/CM2	MIN.AREA COUNTS	MIN.WT GRAMS	WT PERCENT
AG	199.5	0.124E 00	0.319E 05	0.24E-01	0.30E-01
AL	248.7	0.392E-03	$0.251 E 05$	0.65E 01	0.82 El
AS	472.2	0.147E-02	0.128 E 05	0.13 O 01	0.17 E 01
AU	215.7	0.298E-01	0.299 ES	0.95E-01	0.12 E 00
B	477.70	0.267E-01	0.125 E 05	0.74E-01	0.93E-01
B	497.5	0.126E-03	0.119 OF	$0.15 E 02$	0.19E 02
BA	627.5	$0.738 \mathrm{E}-03$	0.980 E 04	$0.26 E 01$	0.33 E 01
BE	853.5	0.161E-03	0.728E 04	$0.11 E 02$	0.14 E 02
BR	246.1	0.746E-02	$0.259 E 05$	0.35 E 00	0.44 E 00
C	1261.2	0.497E-04	0.587E 04	0.40E 02	0.51 E 02
CA	1942.5	$0.339 E-02$	$0.459 \mathrm{E} ~ 04$	0.73 E 00	0.92 E 00
CD	558.6	0.154 E 02	$0.107 E 05$	0.12E-03	0.16E-03
CE	662.3	0.903E-03	0.916E 04	$0.21 E 01$	0.27 E 01
CL	1951.3	0.121 E 00	0.459 E 04	0.20E-01	$0.26 \mathrm{E}-01$
CO	277.7	0.599E-01	0.224 E 05	0.40E-01	0.51E-01
CR	$835 \cdot 1$	0.863E-02	0.751 E 04	$0.21 E 00$	$0.27 E 00$
CS	1300.9	$0.790 \mathrm{E}-02$	0.583 E 04	$0.26 E 00$	0.33 E 00
CU	278.3	0.109E-01	0.222E 05	0.22 E 00	0.28 E 00
DY	185.7	0.671 E 00	$0.291 E 05$	0.39E-02	0.49E-02
ER	816.1	0.188 E 00	0.770 E 04	0.99E-02	0.13E-01
EU	208.0	$0.931 E 00$	0.314 E 05	0.32E-02	0.40E-02
F	596.2	0.281E-03	0.102 E 05	0.69 El	0.87 E 01
FE	352.5	0.307E-02	0.172 E 05	0.70E 00	0.89 E 00
GA	691.7	0.276E-02	0.900E 04	0.70 E 00	0.88 E 00
GD	1185.4	0.888 E 01	0.603 E 04	0.22E-03	0.28E-03
GE	596.0	0.704E-02	0.102E 05	$0.27 E 00$	$0.35 E 00$
H	2223.3	0.200E 00	0.431 E 04	$0.13 \mathrm{E}-01$	0.17E-01
HF	214.0	0.200E 00	0.304 E 05	0.14E-01	0.18E-01
HG	367.8	0.922E 00	0.162E 05	$0.23 E-02$	$0.29 E-02$
HO	240.3	0.100E-01	0.264 E 05	$0.26 E 00$	0.33 E 00
1	291.4	$0.311 \mathrm{E}-02$	0.213 E 05	0.76 E 0	0.96 E 00
IN	273.3	0.734E-01	$0.224 E 05$	0.33E-01	0.41E-01
IR	217.4	0.121E 00	0.292E 05	$0.23 \mathrm{E}-01$	0.29E-01
K	770.6	0.101E-01	0.790E 04	0.18 E 00	$0.23 E 00$
LA	289.1	$0.385 \mathrm{E}-02$	$0.216 E 05$	$0.61 E 00$	0.78 E 00
LI	2032.5	0.841E-03	$0.446 E 04$	0.30101	0.38 E 01
LU	458.1	0.407E-01	0.130E 05	0.49E-01	0.62E-01

143

TABLE VII(2) (CONTINUED)

ELEM.	ENERGY KEV	INTENSITY P/G N/CM2	MIN.AREA COUNTS		MIN.WT GRAMS	WT PERCENT
MG	585.2	0.335E-03	0.102 E	05	$0.57 E 01$	0.72 E 01
MN	212.5	0.877E-02	0.307 E	05	0.33 E 00	0.42 E 00
MO	778.4	0.834E-02	0.786 E	04	0.22 E 00	0.28 E 00
N	1887.9	0.126E-02	0.467 E	04	0.19 El	0.24 E 01
NA	472.4	0.969E-02	0.128 E	05	$0.20 E 00$	0.26 E 00
NB	191.0	0.294E-02	0.322 E	05	0.99 O 0	$0.13 E 01$
ND	696.7	0.134E 00	0.899 E	04	$0.14 E-01$	0.18E-01
NI	465.1	0.676E-02	0.129 E	05	$0.29 E 00$	0.37 E 00
OS	634.0	0.497E-02	$0.973 E$	04	0.39 E 00	0.50 E 00
P	1413.1	0.571E-03	0.566E	04	0.37 E 01	$0.47 \mathrm{E} ~ 01$
PD	716.9	0.528E-02	0.851 E	04	0.35 E 00	0.45 E 00
PR	178.4	0.397E-02	$0.207 E$	05	0.46 E 00	0.58 E 00
PT	356.1	0.100E-01	0.170E	05	$0.21 E 00$	0.27 E 0
RB	556.8	0.658E-03	$0.107 E$	05	$0.29 E 01$	0.37 E 01
RE	255.4	0.184E-01	0.244 E	05	$0.14 E 00$	0.17 E 00
RH	217.4	0.935E-01	0.292 E	05	$0.30 E-01$	$0.38 \mathrm{E}-01$
RU	539.8	0.231E-02	0.109 E	05	0.82 E 00	0.10 E 01
S	841.1	0.522E-02	0.744 E	04	0.35 E 00	0.45 E 00
SB	332.7	0.100E-02	0.183 E	05	0.22 E 01	0.28 E 01
SC	228.6	0.126 E 00	0.280 E	05	$0.22 \mathrm{E}-01$	$0.27 E-C 1$
SE	613.9	0.122E-01	0.998 E	04	0.16 E 00	0.20 E 00
SI	2092.9	0.919E-03	0.447 E	04	0.28 El	$0.36 \mathrm{E} ~ O 1$
SM	333.9	0.195 E 02	0.183 E	05	$0.11 \mathrm{E}-03$	0.14E-03
SN	1293.3	0.414E-03	0.582 E	04	0.49 El	0.62 El
SR	1835.9	0.761E-02	$0.476 E$	04	0.31 E 00	0.39 E 00
TA	271.1	0.205E-01	0.229E	05	0.12 E 00	0.15 E 00
TB	$1442 \cdot 6$	0.185E-02	0.559 E	04	0.12 E 01	0.15 E 01
TE	602.9	0.368E-02	0.101 E	05	0.53 E 00	0.67 E 00
TI	1381.4	$0.498 \mathrm{E}-01$	0.580 E	04	$0.43 \mathrm{E}-01$	$0.54 \mathrm{E}-01$
TL	348.6	0.310E-03	0.175 E	05	$0.70 E 01$	0.88 E 01
TM	237.5	$0.319 E-01$	0.266 E	05	$0.83 \mathrm{E}-01$	$0.10 E 00$
V	645.9	0.696E-02	0.956 E	04	0.28 E 00	0.35 E 00
w	551.5	$0.218 \mathrm{E}-02$	0.107 E	05	0.88 E 00	0.11 El
Y	776.9	0. $244 \mathrm{E}-02$	0.787 E	04	$0.76 E 00$	$0.96 E 00$
YB	241.8	0.250E-01	0.257 E	05	$0.10 E 00$	$0.13 E 00$
2N	1077.5	$0.217 \mathrm{E}-02$	0.631 E	04	0.87 E 00	0.11 El
2R	934.5	0.473E-03	0.680 E	04	0.38 El	0.48 El

TABLE VII(3)

LIMITS FOR QUANTITATIVE DETERMINATION PAIR SPECTROMETER

ELEM.	ENERGY KEV	INTENSITY P/G N/CM2	MIN.AREA COUNTS	MIN.WT GRAMS	WT PERCENT
AG	5699.7	0.549E-02	0.106 E 04	$0.81 E 00$	0.10101
AL	7723.8	0.106E-02	0.135 E 04	$0.77 \mathrm{E} \quad 01$	$0.97 E 01$
AS	6809.9	0.105E-02	$0.111 E 04$	0.52 E 01	$0.66 E 01$
AU	6252.0	0.165E-01	0.102 E 4	$0.27 E 00$	0.35 E 00
B	4443.0	0.153E-04	0.939E 03	$0.25 E^{03}$	0.32 E 03
BA	4096.3	$0.873 \mathrm{E}-03$	0.908 E 03	0.45 E 01	0.57 E 01
BE	6810.0	$0.397 E-03$	0.111 E 04	0.14E 02	0.17 E 02
BI	4171.1	0.362E-04	0.895E 03	O.IOE 03	$0.13 E 03$
BR	5914.2	0.363E-03	$0.113 E 04$	$0.13 E 02$	$0.17 E 02$
C	4945.2	$0 \cdot 114 \mathrm{E}-03$	0.967E 03	0.34E 02	$0.43 E 02$
CA	6419.9	$0.182 \mathrm{E}-02$	0.103 E 04	$0.26 E 01$	0.33 E 01
CD	2455.8	$0.876 E 00$	$0.821 E 03$	0.97E-02	0.12E-01
CE	4766.1	0.499E-03	0.936 E 03	0.76 E 01	$0.96 E 01$
CL	6111.1	0.890E-01	$0.107 E 04$	$0.52 \mathrm{E}-01$	0.66E-01
CO	5660.3	0.241E-01	0.105 E 04	0.18 E 00	$0.23 E 00$
CR	8884.1	0.867E-02	0.981 E 03	0.95 E 00	$0.12 E 01$
CS	5020.3	$0 \cdot 193 \mathrm{E}-02$	$0.957 E 03$	$0.20 \mathrm{E}^{01}$	0.25 E 01
CU	7914.5	$0.103 \mathrm{E}-01$	0.971 E 03	0.59E 00	0.75 E 00
DY	5607.3	0.957E-01	$0.105 E 04$	0.45E-01	0.58E-01
ER	6229.0	0.530E-02	$0.104 E 04$	$0.87 E 00$	0.11 El
EU	2697.5	0.449E-01	$0.858 \mathrm{E} \quad 03$	0.16 E 00	0.20 E 00
F	1889.5	$0.175 \mathrm{E}-03$	0.778 E 03	0.98 E 02	0.12 E 03
FE	7631.6	0.768E-02	0.143 E 04	0.11 E 01	0.14 E 01
GA	6360.0	0.313E-02	$0.101 E 04$	0.15 E 01	0.19 Ol
GD	6749.8	0.198 E 01	$0.111 E 04$	0.27E-02	0.35E-02
GE	6116.3	$0.415 \mathrm{E}-03$	$0.107 E 04$	O.1lE 02	0.14 E 02
H	2223.3	0.200 E 0	0.803 E 03	0.54E-01	0.68E-01
HF	5723.5	0.797E-02	$0.107 E 04$	0.56E 00	$0.71 E 00$
HG	5966.9	0.173 E 00	0.112 E 04	$0.28 \mathrm{E}-01$	$0.35 \mathrm{E}-01$
HO	5813.4	0.169E-02	0.109 O	$0.27 E 01$	$0.34 \mathrm{E} \mathrm{O1}$
1	5197.8	$0.566 \mathrm{E}-03$	$0.974 E 03$	0.70E 01	0.89 El
IN	5891.9	0.633E-02	0.113 E 04	0.76 E 00	0.36 E 20
1 R	5957.7	0.200E-01	0.112 E 04	0.24 E 00	O.30E 00
K	5380.3	0.236E-02	$0.978 \mathrm{E}^{0} 3$	0.17 El	$0.21 E 01$
LA	5097.6	$0.274 \mathrm{E}-02$	0.936 E 03	0.14 E 01	$0.18 \mathrm{E} ~ 01$
LI	$2032 \cdot 5$	0.841E-03	0.769 E 03	$0.16 E 02$	$0.20 E 02$
LU	5020.4	0.174E-02	0.957 E 03	0.22 E 01	0.28 E 01

TABLE VII(3) (CONTINUED)

ELEM.	ENERGY KEV	INTENSITY P/G N/CM2	MIN.AREA COUNTS	MIN.WT GRAMS	WT PERCENT
MG	3916.7	0.637E-03	0.888 E 03	0.63 E 01	0.79 El
MN	7057.9	0.165E-01	0.124 E 04	$0.39 E 00$	0.49 E 0
MO	6919.3	0.579E-03	$0.117 E 04$	0.10E 02	0.13 E 02
N	5267.1	0.117E-02	0.965 E 03	0.33 E 01	0.42 E 01
NA	6395.4	0.359E-02	0.104 E 04	0.13 E 01	0.17 El
NB	5104.2	0.842E-04	0.938E 03	0.45 E 02	0.57 E 02
ND	6502.1	0.120E-01	$0.106 E 04$	0.41 E 00	0.52 E 00
NI	8998.8	0.197E-01	0.912 E 03	$0.41 E 00$	$0 . j 2 E 00$
OS	5146.9	0.170E-03	0.954 E 03	0.23 E 02	0.29 E 02
P	3900.3	0.649E-03	0.880 E 03	$0.61 E 01$	0.78 El
PB	7367.7	0.476E-03	0.140 E 04	$0.16 E 02$	0.21 E 02
PD	4794.6	0.493E-03	0.940 E 03	0.77 El	0.98 E 01
PR	5140.2	0.133E-02	0.949 E 03	$0.29 E 01$	0.37 E 01
PT	5254.6	0.144E-02	0.963 E 03	$0.27 E 01$	0.34 El
RB	7624.1	0.987E-04	0.143 E 04	0.85 E 02	0.11 E 03
RE	5910.2	0.184E-02	0.113 E 04	$0.26 E 01$	0.33 E 01
RH	5347.2	0.122E-01	0.978 E 03	0.33 E 00	0.41 E 00
RU	5022.8	0.166E-03	0.958 E 03	0.23 E 02	0.30 E 02
S	5420.5	0.408E-02	0.998 E 03	$0.10 E 01$	0.13 E 01
SB	6523.6	0.321E-03	0.104 E 04	0.15 E 02	0.19 E 02
SC	8174.7	0.286E-01	$0.878 \mathrm{E} ~ 03$	0.21E 00	$0.26 E 00$
SE	6601.2	0.404E-02	$0.107 E 04$	0.12 El	0.16 El
SI	4934.3	0.242E-02	0.965 E 03	$0.16 E 01$	$0.20 E 01$
SM	5532.8	0.112E 00	$0.103 E 04$	$0.38 \mathrm{E}-01$	0.48E-01
SN	$3334 \cdot 3$	0.320E-04	0.879 E 03	$0.15 E 03$	$0.19 E 03$
SR	1835.9	0.761E-02	0.758 E 03	$0.24 E 01$	$0.31 \mathrm{E}^{01}$
TA	5964.7	0.451E-03	0.112 E 04	0.11E 02	0.13 E 02
TB	5891.5	0.924E-03	0.113 E 04	0.52 E 01	$0.66 E 01$
TE	2747.2	0.103E-02	0.841 E 03	0.66 E O1	0.84 E 01
11	6759.7	0.411E-01	0.112 E 04	0.13 E 00	$0.17 E 00$
TL	5641.9	0.374E-03	0.105 E 04	0.12 E 0	$0.15 E 02$
TM	5737.2	0.427E-02	0.107E 04	O.10E 01	0.13 E 01
v	6517.2	0.112E-01	0.104 E 04	0.43 E 00	0.55 E 00
W	5261.7	0.258E-02	0.964 E 03	0.15 E OL	$0.19 E 21$
Y	6080.3	0.643E-02	$0.109 E 04$	0.74 E 00	$0.93 E 00$
YB	5265.7	0.660E-02	0.965 E 03	0.59 E 00	0.75 E 00
ZN	7862.9	0.118E-02	0.102 E 04	$0.53 \mathrm{E} \mathrm{O1}$	0.68 E 01
2R	6295.0	0.193E-03	$0.103 E 04$	0.24 E 02	0.30 E 02

the particular case of boron, the $477.7-\mathrm{keV}$ decay gamma ray resulting from the (n, α) reaction was included as additional information.

An overall impression of the sensitivity of capture gamma rays for elemental analysis can be obtained by examining Table VII(4) where the minimum weight requirements have been divided into a number of weight-percent groups. In approximately 67 percent of the cases the concentrations required for analysis range between 0.1 and 10 percent for both the Compton suppression system and the pair spectrometer. The results may be extended to the free-mode system by employing the data in Chapter V.

7.3 The development of Extrapolation Equations

The purpose of this section is to develop equations and present data that will permit extrapolation of the above results to different experimental arrangements and different samples. Consideration will be given first to the minimum weight requirements for the measurement of the elements in a stainless steel matrix, the emphasis being on changes that can be brought about by variations in the parameters on the right-hand side of equation (3.24).

In this case, of particular interest are the peak area determination level (which is specified by a standard deviation of $\left[100 / k_{2}\right]$ percent in the peak area), the neutron flux $\left(\mathrm{n} / \mathrm{cm}^{2} \mathrm{sec}\right)$, the irradiation time (secs), the fractional solid angle and the sample weight (grams). With reference to equations (3.18) and (3.24), and neglecting the 1 terms within the curly brackets, the effects of changes in these

TABLE VII(4)

LIMITS FOR QUANTITATIVE DETERMINATION
GROUPED DATA

COMPTON SUPPRESSION

Weight Percent Range	Number of Elements	Elements
10-100	3	B, Be, C
1 - 10	20	$\mathrm{Al}, \mathrm{As}, \mathrm{Ba}, \mathrm{Ce}, \mathrm{F}, \mathrm{Li}, \mathrm{Mg}, \mathrm{N}, \mathrm{Nb}, \mathrm{P}, \mathrm{Rb}, \mathrm{Ru}$, $\mathrm{Sb}, \mathrm{Si}, \mathrm{Sn}, \mathrm{Tb}, \mathrm{Tl}, \mathrm{W}, \mathrm{Zn}, \mathrm{Zr}$
$0.1-1$	31	$\mathrm{Au}, \mathrm{Br}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Cs}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ga}, \mathrm{Ge}, \mathrm{Ho}, \mathrm{I}, \mathrm{K}$, La, Mn, Mo, Na, Ni, Os, Pd, Pr, Pt, Re, S, Se, $\mathrm{Sr}, \mathrm{Te}, \mathrm{Te}, \mathrm{Tm}, \mathrm{V}, \mathrm{Y}, \mathrm{Yb}$
0.01-0.1	13	$\begin{aligned} & \mathrm{Ag}, \mathrm{Cl}, \mathrm{Co}, \mathrm{Er}, \mathrm{H}, \mathrm{Hf}, \mathrm{In}, \mathrm{Ir}, \mathrm{Lu}, \mathrm{Nd}, \mathrm{Rh}, \mathrm{Sc}, \\ & \mathrm{Ti} \end{aligned}$
0.001-0.01	3	$\mathrm{Dy}, \mathrm{Eu}, \mathrm{Hg}$
.0001-.001	3	Cd, Gd, Sm
PAIR SPECTROMETER		
>100	5	$\mathrm{B}, \mathrm{Bi}, \mathrm{F}, \mathrm{Rb}, \mathrm{Sn}$
10-100	14	$\begin{aligned} & \mathrm{Be}, \mathrm{Br}, \mathrm{C}, \mathrm{Ge}, \mathrm{Li}, \mathrm{Mo}, \mathrm{Nd}, \mathrm{Os}, \mathrm{~Pb}, \mathrm{Ru}, \mathrm{Sb}, \mathrm{Ta}, \\ & \mathrm{Tl}, \mathrm{Zr} \end{aligned}$
$1-10$	33	$\mathrm{Ag}, \mathrm{Al}, \mathrm{As}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Ce}, \mathrm{Cr}, \mathrm{Cs}, \mathrm{Er}, \mathrm{Fe}, \mathrm{Ga}, \mathrm{Ho}$, $\mathrm{I}, \mathrm{K}, \mathrm{La}, \mathrm{Lu}, \mathrm{Mg}, \mathrm{N}, \mathrm{Na}, \mathrm{P}, \mathrm{Pd}, \mathrm{Pr}, \mathrm{Pt}, \mathrm{Re}, \mathrm{S}, \mathrm{Se}$, $\mathrm{Si}, \mathrm{Sr}, \mathrm{Tb}, \mathrm{Te}, \mathrm{Tm}, \mathrm{W}, \mathrm{Zn}$
0.1-1	16	$\mathrm{Au}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Eu}, \mathrm{Hf}, \mathrm{In}, \mathrm{Ir}, \mathrm{Mn}, \mathrm{Nd}, \mathrm{Ni}, \mathrm{Rh}, \mathrm{Sc}$, Ti,V,Y,Yb
0.01-0.1	6	Cd, Cl, Dy, $\mathrm{H}, \mathrm{Hg}, \mathrm{Sm}$
0.001-0.01	1	Gd

parameters on the minimum weights can be approximated by the equation

$$
\begin{equation*}
R=\frac{\left(m^{\prime} / M^{\prime}\right)}{(m / M)}=\frac{20.0}{\left(100 / k_{2}\right)} \sqrt{\frac{78.83}{M^{\prime}} \times \frac{1.735 \times 10^{13}}{\phi^{\prime} t^{\prime}} \times \frac{1.59 \times 10^{-5}}{\left(\Omega^{\prime} / 4 \pi\right)}} \tag{7.1}
\end{equation*}
$$

Here (m / M) represents the data given in the previous section and ($\mathrm{m}^{\prime} / \mathrm{M}^{\prime}$) are the modified concentration requirements. The square root sign is a result of the linear dependence of the background continuum on M, ϕ, t and Ω. Thus, for instance, the results must be multiplied by 2 if the standard deviation in peak area is required to be 10 percent (i.e. $k_{2}=10$); and a l00-fold increase in the product $m \phi t \Omega / 4 \pi$ will reduce the weight requirement by a factor of 10 .

The effects of changes in the system resolution w(keV), the channel-energy conversion factor C ($\mathrm{keV} / \mathrm{channcl}$), and the error reduction factor r are not as simple to evaluate. This is because, as shom in Appendix I, r depends on the number of channels occupied by typical peaks in a given spectrum and these, in turn, are a direct function of both w and C. If the smoothing filter function is chosen arbitrarily such that this correlation can be neglected, changes in these parameters will affect the weight requirements according to the equation

$$
\begin{equation*}
\mathrm{R}=\frac{\left(\mathrm{m}^{\prime} / \mathrm{M}^{\prime}\right)}{(\mathrm{m} / \mathrm{M})}=\frac{\mathrm{w}^{\prime}(\mathrm{E}-511 \mathrm{y})}{\mathrm{w}(\mathrm{E}-511 \mathrm{y})} \times \frac{1.34}{\mathrm{r}} \times \sqrt{\frac{2.0}{\mathrm{C}}} \tag{7.2}
\end{equation*}
$$

where $w(E-5.11 y)$ is given by equation (5.1). Recall that E is the energy of the incident gamma ray and that $y=0$ for the

Compton suppression data and $y=2$ for the pair spectrometer.
An expression similar to equation (7.1) applies for changes in the detection efficiency.

Extrapolation of the results to different samples is also important. In this application it will be assumed that the parameters in equation (3.24), with the exceptions of the sample weight and the background continuum, have values identical to those given in section 7.2. The emphasis thus is on the amplitude and shape of the background continuum that will result from the irradiation of any given material. To this end let the background continuum be represented by the equation

$$
\begin{equation*}
B(E-5 l l y)=N_{B} b(E-511 y) \tag{7.3}
\end{equation*}
$$

where N_{B} is the total number of counts between the energy Iimits E_{1} and E_{2}, and $b(E-511 y)$ is a function representing the distribution of these counts over the spectrum (in counts per keV). Note that

$$
\int_{E_{1}}^{E_{2}} b(E-511 y) d(E-511 y)=1.0
$$

A number of spectra reported in [R2] were employed in attempts to obtain equations for N_{B} and $b(E-5 l l y)$ that would be representative of all the elements. It was found that the total number of background counts could be approximated by the sum of three components according to the equation

$$
N_{B}=N_{\text {capt }}+N_{\text {scat }}+N_{\text {backgr }}
$$

where the first term represents the contribution to N_{B} resulting from neutron capture in the sample, $N_{\text {scat }}$ is the contribution from neutron scattering by the sample and subsequent absorption in the surrounding structural material Viewed by the detector, and $N_{\text {backgr }}$ is the counts recorded without any sample in position. By normalizing the data obtained from [R2] to $\phi t \Omega / 4 \pi=2.745 \times 10^{8} \mathrm{n} / \mathrm{cm}^{2}$ for the stainless steel spectrum, it was possible to obtain the equation

$$
\begin{equation*}
N_{B}=\left[f_{C S} \Sigma_{a} V+1.181 \Sigma_{s} V+27.93\right] \times 10^{6} \tag{7.5}
\end{equation*}
$$

for the total Compton suppression counts between the energy Iimits $E_{1}=100 \mathrm{keV}$ and $E_{2}=2600 \mathrm{keV}$, and the equation

$$
\begin{equation*}
N_{B}=\left[\mathrm{f}_{P S} \Sigma_{a} V+.00528 \sum_{s} V+.157\right] \times 10^{6} \tag{7.6}
\end{equation*}
$$

for the pair spectrometer with $E_{1}=1500 \mathrm{keV}$ and $\mathrm{E}_{2}=9300$ kev. In these equations Σ_{a} and Σ_{s} are the macroscopic neutron absorption and scattering cross sections (in cm^{-1}) and V is the sample volume (in cm^{3}). $f_{C S}$ and $f_{P S}$ are correction factors and are discussed below.

The $N_{\text {scat }}$ numerical coefficients were evaluated by subtracting from the data the know $N_{b a c k e r}$ contribution and solving simultaneously the equations correspondine to two particular syectra. The carbon and nickel data Eiven in Table VII(5) were chosen for this purpose. The $f_{C S}$ and $f_{P S}$ factors were then adjusted in order than the above equations agreed with the experimental data for the other
elements examined. The values obtained for these factors are given in Table VII(5) together with other pertinent data involved in the computations. In this table the weight of the materials is in grams, $(\phi t)_{e}$ are the effective flux time values in units of $10^{13} \mathrm{n} / \mathrm{cm}^{2}$ which include corrections for flux depression and gamma self-shielding, and N_{B}^{\prime} are the total counts (in units of 10^{6}) in the original un-nomalized data between the energy Iimits E_{1} and E_{2}. To obtain the normalized counts use was made of the approximate equation

$$
\begin{equation*}
\left(N_{B}\right)_{\text {actual }}=N_{B}^{\prime}\left[4 \pi 2.745 \times 10^{8} /(\phi t)_{e} \Omega\right] \tag{7.7}
\end{equation*}
$$

The approximation involved in this equation is that the same effective flux time value was assumed to apply for all the components of N_{B}. Note that $N_{\text {scat }}$ does not require a correction for gamma self-shielding and that $N_{\text {backgr }}$ should not be adjusted for any of these two effects. These corrections amount to less than 10 to 15 percent in most cases. Moreover, since $N_{\text {scat }}$ and $N_{\text {backgr }}$ constitute only a small fraction of N_{B}, the approximations involved in obtaining equations (7.5) and (7.6) are justified.

Not included in Table VII (5) are the values for the solid angles. For the stainless steel spectra, as given in Sec. 5.3.3, the fractional solid angle was 1.59×10^{-5}. In all other cases the solid angle was 5.76×10^{-6} with the exceptions of the $S n$ and BaO pair spectra for which $\Omega / 4 \pi$ was 1.6×10^{-5} and the Mg, Al and CaO pair spectrometer data for which $\Omega / 4 \pi$ was 4.1×10^{-5}.

TABLE VII(5) - EXPERIMENTAL DATA EMPLOYED IN THE EVALUATION OF THE $f_{\text {CS }}$ aND $f_{\text {PS }}$ COEFFICIENTS COMPTON SUPPRESSION

PAIR SPECTROMETER

Sample	Weight	$\underline{\Sigma}{ }_{\text {a }}{ }^{\text {V }}$	$\underline{\Sigma_{s} \mathrm{~V}}$								
				Run	$\phi t)_{e}$	$\mathrm{N}_{\mathrm{B}}{ }^{\text { }}$	$\mathrm{f}_{\text {CS }}$	Run	$\underline{(\phi t)}{ }_{e}$	$\mathrm{N}_{\mathrm{B}}{ }^{\text {d }}$	f_{PS}
SS303	78.83	2.64	8.38	9274	. 133	14.79	67.4	9261	1.94	4.675	1.69
Backg	-	-	-	404	. 104	1.055	-	414	2.57	. 0848	-
C	240.7	. 04.11	57.98	512	. 231	4.839	79.	440	2.62	. 300	2.01
NaF	19.10	. 1496	2.172	479	. 627	11.88	399.	480	4.79	. 620	2.99
Mg	10.96	. 0177	. 979	461	. 937	6.71 .1	296.	462	6.42	1.976	2.53
Al	28.40	. 1490	. 888	437	. 258	3.647	258.	450	3.18	1.981	1.72
Si	46.86	. 1616	1.717	471	. 5.15	9.027	331.	470	5.97	.585	1.86
CC 4	1.748	. 9097	. 477	475	. 245	6.429	106.	476	2.69	1.050	1.87
KF	41.93	. 9.26	2.35	460	. 25.1	11.06	196.	459	3.86	1.215	1.45
CaO	14.02	. 0649	1.087	482	. 902	8.746	261.	481	2.89	1.306	2.16
TiO_{2}	9.149	. 460	. 936	428	. 242	5.838	187.	427	3.00	. 710	2.10
Fe	28.35	. 8007	3.362	434	. 201	6.258	146.				
	93.49	2.641	11.09					701	2.67	2.882	1.86
N1	12.78	. 6026	2.293	439	. 263	4.3 .25	79.	438	4.05	1.174	2.01
zr	189.2	. 225	9.99	402	. 528	14.06	387.	407	4.44	0.418	1.06
Mo	90.7	1.54	3.98	526	. 205	18.40	257.	506	4.72	2.525	1.54
AS	5.33	1.88	. 179	565	. 158	19.89	306.	597	1.87	1.410	1.83
Sn	149.4	. 434	3.03	594	. 468	19.32	349.	602	3.71	2.363	1.94
Sb	31.65	. 861	. 673	559	. 388	26.60	346.				
	51.3	1.39	1.09					608	3.34	1.345	1.26
BaO	51.48	. 27.	1.81	544	. 455	15.00	468.	677	3.50	1.715	2.48
W	19.97	1.26	. 327	448	. 228	10.70	155.	447	3.61	. 988	0.91

It is seen from Table VII (5) that the $f_{C S}$ and $f_{P S}$ factors can vary substancially between different materials. Nevertheless, one can still use the values of $f_{C S}=200$ and $f_{P S}=1.5$ for all the elements and specify that this will result in $N_{\text {capt }}$ values that can be off by a factor of approximately 2.

The data employed in the development of equations (7.5) and (7.6) were also used to examine the shape of the background continuum. Typical b(E - 5lly)distributions are shown in Figs. 7.1 and 7.2 for carbon, iron and silver. It was observed that the Compton suppression spectra can be characterized by the same distribution in a majority of the cases. For spectra obtained with the pair spectrometer the shape of the background continuum depends on the neutron binding energy of the irradiated sample, on the existence of intense gamma rays, and on the total fraction of capture gamma rays observed (see also reference [H8]). The distributions obtained for the elements listed in Table VII(5) are given in Tables VII(6) and VII(7). These were obtained by applying linear averaging over $100-\mathrm{keV}$ intervals in the Compton suppression spectra, and over $200-\mathrm{keV}$ intervals in the pair spectra.

The last three tables of this chapter present background data for a number of elements that are believed to be of practical interest. For cases where detailed information is not available, minimum weight estimates can be obtained by using the approximate N_{B} equations given above and by
assuming a typical shape for the background continuum. This procedure is expected to yield results accurate to within approximately a factor of 2 .

Estimates for the minimum weight requirements for other materials can be obtained from the equation

$$
\mathrm{R}=\left[\left(\mathrm{m}^{*} / \mathrm{M}^{*}\right) /(\mathrm{m} / \mathrm{M})\right]
$$

$$
\begin{equation*}
=\frac{M}{M^{*}} \times \frac{\sqrt{N_{B}^{*}}}{\sqrt{N_{B}}} \times \frac{\sqrt{ } b^{*}(E-51.1 y)}{\sqrt{b}(E-511 y)} \tag{7.8}
\end{equation*}
$$

where the starred parameters correspond to the material of interest and the unstarred to stainless steel. Note that N_{B}^{*} is given by equation (7.7)

As a simple application of this equation let us consider the minimum weight of sulphur that can be measured in a carbon sample weighing 240.7 grams by basing the analysis on the $5420.5-\mathrm{keV}$ gamma ray of sulphur. Using the data in Table VII(5), and by applying direct interpolation to the carbon and stainless steel data in Table VII(7), equation (7.8) gives

$$
\begin{aligned}
R & =\frac{78.83}{240.7} \times \frac{\sqrt{ }\left[1.82 \times .300 \times 10^{6}\right]}{\sqrt{ }\left[4.675 \times 10^{6}\right]} \times \frac{\sqrt{ }\left[0.89 \times 10^{-4}\right]}{\sqrt{ }\left[1.41 \times 10^{-4}\right]} \\
& =0.089
\end{aligned}
$$

From Teble VII(3), the minimum sulphur concentration for measurement in stainless steel is 1.3 percent. Therefore, for the carbon sample in question, the minimum sulphur concentration required is 1.3 x $0.089=0.12$ percent appro-

155

ximately. It can be extended to different experimental parameters by equation (7.1). Work on coal samples [R3] is in good agreement with this result.

Fig. 7.1 Shape of background continuum in Compton-suppression spectra

Fig. 7.2 Shape of background continuum in pair spectra

TABLE VII（6）
b（E）DISTRIBUTION IN COMPTON SUPPRESSION SPECTRA

ENERGY	S．STEEL	BACKGRND	CARBON	SODIUM	MAGNESIUM
150.	0．84E－03	0．30E－02	0．41E－02	0．32E－02	0．31E－02
250.	$0.29 E-02$	0．20E－02	0．27E－02	0．22E－02	$0.23 \mathrm{E}-02$
350.	$0 \cdot 15 \mathrm{E}-02$	0．99E－03	0．89E－03	0．99E－03	0．96E－03
450.	$0.86 \mathrm{E}-03$	0．62E－03	$0.47 \mathrm{E}-03$	0．58E－03	0．58E－03
550.	$0.58 \mathrm{E}-03$	0．42E－03	0．29E－03	0．39E－03	$0.40 E-03$
650.	$0.45 \mathrm{E}-03$	0．35E－03	0．22E－03	0．32E－03	$0.32 \mathrm{E}-03$
750.	$0 \cdot 34 \mathrm{E}-03$	0．29E－03	0．17E－03	0．26E－03	$0.27 E-03$
850.	$0 \cdot 27 E-03$	0．26E－03	0．15E－03	0．22E－03	0．23E－03
950.	$0.23 \mathrm{E}-03$	0．23E－03	0．13E－03	0．19E－03	$0.20 E-03$
1050.	$0.21 E-03$	0．20E－03	0．11E－03	0．17E－03	$0.18 \mathrm{E}-03$
1150.	0．19E－03	0．19E－03	0．94E－04	$0.15 \mathrm{E}-03$	$0.16 E-03$
1250.	0．17E－03	0．17E－03	0．83E－04	0．14E－03	0．15E－03
1350.	0．17E－03	0．16E－03	0．73E－04	0．13E－03	$0.14 E-03$
1450.	0．16E－03	$0.15 \mathrm{E}-03$	0．67E－04	0．12E－03	0．12E－03
1550.	$0.14 E-03$	$0.14 \mathrm{E}-03$	0．62E－04	0．11E－03	$0.12 \mathrm{E}-03$
1650 。	$0 \cdot 13 E-03$	0．13E－03	0．59E－04	0．11E－03	0．12E－03
1750．	0．12E－03	0．13E－03	0．58E－04	0．11E－03	0．12E－03
1850．	0．11E－03	0．13E－03	0．60E－04	0．12E－03	0．12E－03
1950.	0．10E－03	0．15E－03	0．68E－04	0．13E－03	0．15E－03
2050．	0．99E－04	0．92E－04	0．46E－04	0．94E－04	0．96E－04
2150.	0．93E－04	0．56E－04	0．32E－04	0．64E－04	0．59E－04
2250.	0．89E－04	0．35E－04	0．19E－04	0．45E－04	0．33E－04
2350 。	0．83E－04	0．27E－04	0．14E－04	0．34E－04	0．22E－04
2450 。	0．81E－04	0．24E－04	0．13E－04	$0.33 \mathrm{E}-04$	0．20E－04
2550．	0．78E－04	0．24E－04	0．13E－04	0．30E－04	0．20E－04

TABLE VII（6）（CONTINUED）

$b(E)$ DISTRIBUTION IN COMPTON SUPPRESSION SPECTRA

ENERGY	A	SILICON	NE	POTASSIUM	CALCIUM
150.	0．32E－02	0．36E－02	0．26E－02	0．24E－02	0．29E－02
250.	0．22E－02	0．24E－02	0．20E－02	0．19E－02	0．23E－02
350 。	0．94E－03	0．90E－03	0．11E－02	0．98E－03	0．10E－02
450 。	0．59E－03	0．53E－03	$0.71 E-03$	0．69E－03	0．63E－03
550.	0．41E－03	0．35E－03	0．52E－03	0．58E－03	0．42E－03
650.	$0 \cdot 34 E-03$	0．28E－03	$0.40 E-03$	$0.43 E-03$	0．33E－03
750.	0．29E－03	0．23E－03	$0.33 E-03$	0．34E－03	0．27E－03
850.	0．24E－03	O．20E－03	$0.28 \mathrm{E}-03$	0．29E－03	0．24E－03
950.	0．21E－03	$0 \cdot 17 \mathrm{E}-03$	0．26E－03	0．26E－03	0．21E－03
1050.	$0 \cdot 19 E-03$	0．16E－03	0．21E－03	0．24E－03	O．18E－03
1150.	0．17E－03	0．14E－03	$0 \cdot 18 \mathrm{E}-03$	0．21E－03	0．17E－03
1250 。	0．16E－03	0．12E－03	$0 \cdot 16 E-03$	0．19E－03	0．16E－03
1350 。	0．15E－03	$0.11 E-03$	$0.15 E-03$	0．18E－03	0．15E－03
1450.	0．15E－03	0．99E－04	0．14E－03	0．16E－03	0．14E－03
1550.	$0 \cdot 15 E-03$	0．94E－04	$0.13 E-03$	0．14E－03	0．13E－03
1650.	0．12E－03	0．91E－04	$0.13 E-03$	0．14E－03	0．13E－03
1750.	0．99E－04	0．89E－04	0．12E－03	0．14E－03	$0 \cdot 13 E-03$
1850.	0．91E－04	0．93E－04	0．11E－03	0．13E－03	0．13E－03
1950.	0．99E－04	0．97E－04	$0.11 \mathrm{E}-03$	0．13E－03	0．16E－03
2050.	0．74E－04	0．70E－04	0．80E－04	0．10E－03	0．10E－03
2150.	0．53E－04	0．51E－04	0．69E－04	0．83E－04	0．58E－04
2250 。	0．37E－04	0．39E－04	0．59E－04	0．71E－04	0．29E－04
2350.	0．33E－04	0．31E－04	0．54E－04	0．64E－04	0．21E－04
2450.	0．31E－04	0．31E－04	0．52E－04	0．56E－04	0．20E－04
2550 。	0．30E－04	0．33E－04	0．52E－04	0．53E－04	0．19E－04

TABLE VII（6）（CONTINUED）

$b(E)$ DISTRIBUTION IN COMPTON SUPPRESSION SPECTRA

GY	M	I RON	NICKEL	ZIRCONIUM	MOLYBDENUM
150.	0．25E－02	0．29E－02	0．27E－02	$0.28 \mathrm{E}-02$	0．24E－02
250.	0．20E－02	0．22E－02	0．22E－02	$0.25 \mathrm{E}-02$	$0.22 \mathrm{E}-02$
350.	$0.98 \mathrm{E}-03$	0．10E－02	0．10E－02	0．10E－02	0．11E－02
450 ．	$0.64 \mathrm{E}-03$	0．61E－03	$0.64 \mathrm{E}-03$	$0.63 \mathrm{E}-03$	0．79E－03
550.	$0.48 \mathrm{E}-03$	$0.43 \mathrm{E}-03$	0．41E－03	$0.44 \mathrm{E}-03$	$0.67 \mathrm{E}-03$
650.	$0.40 E-03$	$0.34 \mathrm{E}-03$	0．36E－03	$0 \cdot 36 E-03$	0．48E－03
750 。	$0 \cdot 35 E-03$	0．29E－03	0．29E－03	$0.31 E-03$	0．36E－03
850.	$0.31 E-03$	$0.25 E-03$	0.25 E－03	$0.24 E-03$	$0.26 \mathrm{E}-03$
950.	0．28E－03	0．21E－03	0．22E－03	$0 \cdot 20 E-03$	0．22E－03
1050．	$0.28 E-03$	$0.20 E-03$	0．20E－03	0．17E－03	0．19E－03
1150.	$0.30 E-03$	0．18E－03	0．18E－03	0．16E－03	0．17E－03
1250.	$0.23 E-03$	$0.17 E-03$	0．16E－03	0．14E－03	0．15E－03
1350.	$0.18 \mathrm{E}-03$	$0.15 \mathrm{E}-03$	$0.15 \mathrm{E}-03$	0．13E－03	0．13E－03
1450.	0．13E－03	$0.14 \mathrm{E}-03$	$0.14 \mathrm{E}-03$	$0.11 \mathrm{E}-03$	0．12E－03
1550.	0．12E－03	$0.13 E-03$	0．13E－03	$0 \cdot 11 \mathrm{E}-03$	0．94E－04
1650.	0．11E－03	$0.11 \mathrm{E}-03$	0．13E－03	0．10E－03	0．10E－03
1750.	0．10E－03	$0.11 \mathrm{E}-03$	0．12E－03	0．96E－04	0．96E－04
1850.	0．10E－03	$0 \cdot 10 E-03$	$0.12 \mathrm{E}-03$	0．93E－04	0．89E－04
1950 。	0．12E－03	0．11E－03	0．13E－03	0．97E－04	0．89E－04
2050.	0．90E－04	0．91E－04	0．10E－03	0．73E－04	0．74E－04
2150.	0．67E－04	0．80E－04	0．88E－04	$0.58 \mathrm{E}-04$	0．63E－04
2250.	0．52E－04	0．71E－04	0．73E－04	$0.48 \mathrm{E}-04$	0．54E－04
2350 。	0．47E－04	0．64E－04	0．67E－04	$0.41 \mathrm{E}-04$	0．48E－04
2450 。	0．46E－04	$0.65 \mathrm{E}-04$	0．65E－04	0．39E－04	$0.45 E-04$
2550 。	0．45E－04	0．61E－04	0．63E－04	0．36E－04	0．41E－04

TABLE VII(6) (CONTINUED)

$b(E)$ DISTRIBUTION IN COMPTON SUPPRESSION SPECTRA
ENERGY

ENERGY \begin{tabular}{c}
TIN

SILVER

\quad

ANTIMONY

TIN

\quad

BARIUM

ANTIMONY

\quad

EUROPIUM

BARIUM

TUNGSTEN

TUNGSTEN
\end{tabular}

TABLE VII（7）

b（E－1022）DISTRIBUTION IN PAIR SPECTROMETER SPECTRA

GY	S．	D	CARBON	SODIUM	
1600 •	0	$0.41 \mathrm{E}-03$	$0.46 E-03$	3	0．32E－03
1800 ．	$0.13 E-03$	$0.34 \mathrm{E}-03$	0．36E－03	0．30E－03	$0.31 \mathrm{E}-03$
2000．	0．13E－03	0．37E－03	$0.33 E-03$	0．33E－03	$0.39 \mathrm{E}-03$
2200	0．14E－03	$0.52 \mathrm{E}-03$	0．39E－03	$0.46 E-03$	$0.70 E-03$
240	0．14E－03	$0.24 E-03$	0．29E－03	0．35E－03	0．43E－03
2600	0．15E－03	0．20E－03	$0.22 \mathrm{E}-03$	0．27E－03	0．20E－03
2800	$0.15 \mathrm{E}-03$	0．19E－03	0．20E－03	0．30E－03	0．19E－03
30	0．16E－03	0．18E－03	0．19E－03	0．22E－03	$0.17 \mathrm{E}-03$
32	0．16E－03	0．16E－03	0．18E－03	0．20E－03	$0.15 \mathrm{E}-03$
3400．	0．16E－03	0．17E－03	0．17E－03	0．18E－03	0．15E－03
3600．	0．16E－03	0．17E－03	0．18E－03	0．19E－03	0．15E－03
380	0．15E－03	0．15E－03	0．17E－03	0．17E－03	0．16E－03
4000 。	0．15E－03	0．14E－03	0．15E－03	0．18E－03	$0 \cdot 15 \mathrm{E}-03$
4200．	0．16E－03	$0.14 \mathrm{E}-03$	0．15E－03	$0 \cdot 14 \mathrm{E}-03$	$0 \cdot 12 \mathrm{E}-03$
4400 。	0．16E－03	0．13E－03	$0.14 \mathrm{E}-03$	0．12E－03	O．10E－03
46	0．15E－03	0．14E－03	0．14E－03	0．11E－03	0．10E－03
48	0．15E－03	$0.13 \mathrm{E}-03$	0．15E－03	0．10E－03	0．98E－04
5000 •	$0 \cdot 14 \mathrm{E}-03$	0．13E－03	0．15E－03	0．10E－03	0.9
5200 。	0．14E－03	0．11E－03	0．10E－03	0．94E－04	0．87E－04
5400．	0．14E－03	0．11E－03	0．89E－04	0．92E－04	0.8
5600 ．	0．15E－03	0．81E－04	0．84E－04	0．96E－04	0
5800.	0．16E－03	0．83E－04	0．83E－04	0．83E－04	0.72
6000.	0．17E－03	0．85E－04	0．84E－04	0．84E－04	0．69E－04
6200	0．13E－03	0．76E－04	0．75E－04	0．96E－04	0．69E－04
－	0．12E－03	0．71E－04	0．71E－04	0．11E－03	0．69E－04
6500.	0．12E－03	0．85E－04	0．68E－04	0．61E－04	
6800 。	0．13E－03	0．77E－04	0．68E－04	$0.48 \mathrm{E}-04$	0.
7000 。	0．13E－03	0．78E－04	0．57E－04	0．43E－04	0.
7200 。	0．16E－03	C．11E－03	0．66E－04	$0.49 E-04$	0.
7400 。	$0.17 E-03$	0．93E－04	0．61E－04	0．52E－04	0
7600 。	$0.16 E-03$	$0.29 E-04$	$0.33 \mathrm{E}-04$	O． $23 \mathrm{E}-04$	0．33E－04
7800．	0．11E－03	0．10E－04	$0.18 \mathrm{E}-04$	0．13E－04	0．22E－04
8000.	0．58E－04	$0.30 \mathrm{E}-05$	$0 \cdot 11 E-04$	$0.63 \mathrm{E}-05$	
8200 •	0．49E－04	0.0	$0.39 \mathrm{E}-05$	$0.18 \mathrm{E}-05$	0
8400 。	0．58E－04	0.0	$0 \cdot 36 E-05$	$0.19 \mathrm{E}-05$	0.
8600 －	0．61E－04	0.0	0．29E－05	$0.15 \mathrm{E}-05$	0．38E－05
8800 •	0．50E－04	0.0	$0 \cdot 16 \mathrm{E}-05$	$0 \cdot 10 E-05$	$0.33 \mathrm{E}-05$
9000．	$0.37 \mathrm{E}-04$	0.0	$0.13 \mathrm{E}-05$	0．10E－05	$0.24 \mathrm{E}-0$
92	0.	0	$0.64 \mathrm{E}-06$	$0.46 \mathrm{E}-06$	0 ．

TABLE VII(7) (CONTINUED)
b (E-1022) DISTRIBUTION IN PAIR SPECTROMETER SPECTRA

ENERGY ALUMINUM

SILICON
$0.24 \mathrm{E}-03$
0.19E-03
0.20E-03
0.21E-03
0.21E-03
0.26E-03
$0.33 E-03$
0.18E-03
$0.16 E-03$
$0.15 \mathrm{E}-03$
$0.18 \mathrm{E}-03$
$0.23 E-03$
$0.26 E-03$
$0.98 \mathrm{E}-04$
0.75E-04
$0.72 \mathrm{E}-04$
$0.75 \mathrm{E}-04$
0.76E-04
$0.83 E-04$
0.93E-04
$0.62 \mathrm{E}-04$
0.61E-04
0.59E-04
0.72E-04
0.52E-04
0.19E-04
0.10E-04
$0.79 E-05$
$0.61 E-05$
$0.54 \mathrm{E}-05$
$0.32 E-05$
$0.93 E-06$
0.92E-06
0.26E-06

CHLORINE POTASSIUM
$-\infty-\infty-\infty$
$0.20 E-03$
20E-03 0.22E-03
$0.18 E-03 \quad 0.20 E-03$
$0.22 E-03 \quad 0.26 E-03 \quad 0.40 E-03$
$0.24 E-03 \quad 0.30 E-03 \quad 0.69 E-03$
CALCIUM

0.29E-03
0. 30E-03
$0.21 E-03 \quad 0.25 E-03 \quad 0.42 E-03$
$0.19 E-03 \quad 0.23 E-03 \quad 0.18 \mathrm{E}-03$
$0.21 E-03 \quad 0.24 E-03 \quad 0.17 E-03$
$0.21 \mathrm{E}-03 \quad 0.24 \mathrm{E}-03 \quad 0.15 \mathrm{E}-03$
$0.19 E-03 \quad 0.23 E-03 \quad 0.15 \mathrm{E}-03$
$0.19 E-03 \quad 0.26 E-03 \quad 0.14 E-03$
$0.20 E-03 \quad 0.26 E-03 \quad 0.15 E-03$
$0.18 \mathrm{E}-03 \quad 0.23 \mathrm{E}-03 \quad 0.13 \mathrm{E}-03$
$0.17 E-03 \quad 0.22 E-03 \quad 0.13 E-03$
$\begin{array}{lll}0.16 E-03 & 0.18 E-03 & 0.13 E-03 \\ 0.16 E-03 & 0.15 E-03 & 0.11 E-03\end{array}$
$0.16 E-03 \quad 0.14 E-03 \quad 0.11 E-03$
$0.16 E-03 \quad 0.17 E-03 \quad 0.11 E-03$
$\begin{array}{lll}0.15 E-03 & 0.16 E-03 & 0.97 E-04 \\ 0.15 E-03 & 0.16 E-03 & 0.94 E-04\end{array}$
$0.16 E-03 \quad 0.15 E-03 \quad 0.93 E-04$
$\begin{array}{lll}0.17 E-03 & 0.12 \mathrm{E}-03 & 0.94 \mathrm{E}-04 \\ 0.17 E-03 & 0.51 \mathrm{E}-04 & 0.98 \mathrm{E}-04\end{array}$
$0.15 E-03 \quad 0.41 E-04 \quad 0.10 E-03$
$0.10 E-03 \quad 0.36 E-04 \quad 0.12 E-03$
$0.11 \mathrm{E}-03 \quad 0.38 \mathrm{E}-04$
0.77E-04
0.68E-04
$0.41 E-04$
0.58E-04
$0.55 E-04$
$0.67 E-04$
$0.70 E-04$
0.24E-04
0.16E-04
0.92E-05
$0.44 E-05$
$0.32 E-05$
$0.23 E-05$
$0.22 E-05$
$0.14 \mathrm{E}-05$
0.92E-06

TABLE VII（7）（CONTINUED）
b（E－1022）DISTRIBUTION IN PAIR SPECTROMETER SPECTRA

GY	titanium	IRON	NICKEL	ZIRCONIUM	MOLYBDENUM
1600.	0．21E－03	03	$0.14 \mathrm{E}-03$	0．27E－03	0．21E－03
1800.	$0 \cdot 17 E-03$	0．11E－03．	$0.11 \mathrm{E}-03$	$0.25 \mathrm{E}-03$	$0.21 \mathrm{E}-03$
2000．	0．18E－03	0．12E－03	0．12E－03	0．28E－03	$0.25 E-03$
2200．	$0.24 \mathrm{E}-03$	0．15E－03	$0.15 E-03$	0．36E－03	0．31E－03
2400．	0．18E－03	0．13E－03	0．13E－03	$0.26 \mathrm{E}-03$	$0.28 \mathrm{E}-03$
2600.	0．15E－03	$0 \cdot 14 \mathrm{E}-03$	0．12E－03	$0.24 E-03$	0．28E－03
2800．	0．16E－03	$0.15 \mathrm{E}-03$	0．13E－03	$0.23 \mathrm{E}-03$	0．28E－03
3000．	$0.17 \mathrm{E}-03$	0．15E－03	$0.14 \mathrm{E}-03$	$0.23 E-03$	$0.28 \mathrm{E}-03$
3200．	0．16E－03	0．17E－03	0．14E－03	0．24E－03	0．27E－03
3400 。	0．17E－03	0．17E－03	0．13E－03	0．23E－03	$0.26 E-03$
3600．	0．17E－03	0．16E－03	$0.14 \mathrm{E}-03$	$0.23 \mathrm{E}-03$	$0.25 \mathrm{E}-03$
3800 ．	0．17E－03	0．16E－03	0．14E－03	$0.20 E-03$	0．24E－03
4000.	0．16E－03	0．16E－03	$0.14 \mathrm{E}-03$	0．19E－03	$0.22 \mathrm{E}-03$
4200 。	0．16E－03	0．17E－03	$0.14 \mathrm{E}-03$	0．19E－03	0．21E－03
4400．	0．16E－03	0．17E－03	0．14E－03	$0.17 \mathrm{E}-03$	$0.18 \mathrm{E}-03$
4600．	0．16E－03	0．15E－03	0．14E－03	$0.16 E-03$	0．17E－03
4800.	0．17E－03	0．16E－03	$0 \cdot 15 \mathrm{E}-03$	$0.14 \mathrm{E}-03$	$0.15 \mathrm{E}-03$
5000．	0．17E－03	$0.15 E-03$	$0.14 \mathrm{E}-03$	$0.14 \mathrm{E}-03$	0．13E－03
5200 。	$0 \cdot 14 E-03$	$0.14 \mathrm{E}-03$	0．14E－03	$0.13 \mathrm{E}-03$	0．11E－03
5400．	0．14E－03	0．15E－03	0．14E－03	$0 \cdot 11 \mathrm{E}-03$	0．10E－03
5600.	$0.15 \mathrm{E}-03$	0．16E－03	$0.15 \mathrm{E}-03$	0．96E－04	$0.10 \mathrm{E}-03$
5800．	0．16E－03	$0.19 \mathrm{E}-03$	$0.15 \mathrm{E}-03$	0．90E－04	0．80E－04
6000．	0．18E－03	0．20E－03	$0.14 \mathrm{E}-03$	$0.95 \mathrm{E}-04$	0．63E－04
6200 。	$0.22 E-03$	0．13E－03	$0.13 \mathrm{E}-03$	0．11E－03	0．55E－04
6400．	$0.30 E-03$	$0.12 \mathrm{E}-03$	$0.14 \mathrm{E}-03$	$0.89 \mathrm{E}-04$	0．53E－04
6600．	0．25E－03	$0.12 \mathrm{E}-03$	$0.15 \mathrm{E}-03$	0．43E－04	0．52E－04
6800.	0．21E－03	0．13E－03	$0.15 \mathrm{E}-03$	$0.43 \mathrm{E}-04$	0．49E－04
7000．	0．46E－04	$0.15 E-03$	$0.12 \mathrm{E}-03$	$0.39 \mathrm{E}-04$	0．40E－04
7200．	0．29E－04	$0.18 \mathrm{E}-03$	$0.12 \mathrm{E}-03$	$0.43 \mathrm{E}-04$	0．26E－04
7400 。	0．27E－04	$0.21 \mathrm{E}-03$	$0.12 \mathrm{E}-03$	$0.41 E-04$	0．26E－04
7600 ．	0．12E－04	$0.27 \mathrm{E}-03$	$0 \cdot 13 \mathrm{E}-03$	$0.21 \mathrm{E}-04$	0．16E－04
7800.	0．78E－05	$0.76 \mathrm{E}-04$	$0.12 \mathrm{E}-03$	0．13E－04	0．75E－05
8000.	0．48E－05	$0.18 \mathrm{E}-04$	$0 \cdot 10 E-03$	$0.60 \mathrm{E}-05$	0．60E－05
8200 ．	0．30E－05	$0.14 \mathrm{E}-04$	0．10E－03	$0.30 \mathrm{E}-05$	0．51E－05
8400 ．	0．23E－05	0．14E－04	0．12E－03	$0.28 \mathrm{E}-05$	0．41E－05
8600.	0．11E－05	$0.14 \mathrm{E}-04$	$0 \cdot 12 E-03$	$0.31 \mathrm{E}-05$	0．14E－05
8800 •	0．91E－06	$0.15 \mathrm{E}-04$	0．10E－03	$0.98 \mathrm{E}-06$	0．84E－06
9000.	0．96E－06	$0.14 \mathrm{E}-04$	0．90E－04	$0.65 \mathrm{E}-06$	0．63E－06
9200．	0．62E－06	0．18E－04	0．17E－04	$0.42 \mathrm{E}-06$	0．51E－06

TABLE VII(7) (CONTINUED)

b(E-1022) DISTRIBUTION IN PAIR SPECTROMETER SPECTRA

| | | | | ANTIMONY | BARIUM |
| :--- | :--- | :--- | :--- | :--- | :--- | TUNGSTEN

Chapter VIII

SUMMARY AND CONCLUSIONS

This thesis evaluated the potential of neutron-capture gamma rays in elemental analysis. A large portion of the work was devoted to the development of a method for the analysis of weak peaks in gamma ray spectra. This was based on a new method of linear background fit and on equations developed for the standard deviation in the measurement of the various peak paramiters. Consideration was also given to the reduction in the statistical fluctuations obtained by smoothing the data with the use of Fourier transforms. It was shown in Appendix III that the standard deviation in the number of counts H in a given channel can be represented by the equation

$$
\begin{equation*}
\sigma(H)=(I / r) \sqrt{H} \tag{8.1}
\end{equation*}
$$

where r is the error reduction factor obtained by smoothing the data and is discussed in Appendix I.

Two methods of peak area determination were considered. These were the straight-sums approach (equation 3.6) and the Gaussian method (equation 3.7). The errors associated with these two equations were examined and it was found that the Gaussian area was to be preferred in a majority of the cases. The advantages of this method of area determination lies in the reduction of the standard deviation in the measured fwhm of a peak obtained by applying a least-squares fit to the fwhm
and energies of the intense peaks in the spectrum (Appendix II). It was therefore possible to approximate the error in the Gaussian area by the equation

$$
\begin{equation*}
\sigma\left(A_{G}\right)=1.0645 \bar{W}(1+\alpha)(1 / r) \sqrt{h+1.5 B} \tag{8.2}
\end{equation*}
$$

and to use this information in chapter III to evaluate the three peak area limiting levels. These levels are denoted as the critical level, the detection level and the determination level and are given by the equations

$$
\begin{aligned}
& A_{\text {crit }}=(2.23 \overline{\mathrm{w}} / \mathrm{r}) \sqrt{ } \mathrm{B} \\
& A_{\text {det }}=(1.82 \overline{\mathrm{w}} / r)[(1.68 / r)+2.45 \sqrt{ } \mathrm{~B}](8.4) \\
& A_{\min }=\left(14.1 \overline{\mathrm{w}} / \mathrm{r}^{2}\right)\left[1+\sqrt{ }\left(1+0.23 \mathrm{r}^{2} \mathrm{~B}\right)\right](8.5)
\end{aligned}
$$

and should be consulted in deciding whether a peak in a given spectrum is 'unreliable', 'good only for qualitative analysis' or 'good for rellable quantitative determination'. It was observed that irrespective of the amplitude of the continuum background the heights of the peaks corresponding to these three limiting levels are approximately $1.5 \sqrt{ }$, $3 \sqrt{ } B$ and $5 \sqrt{ } B$ when $r=1.34$. For this value of r the limits correspond to peak area errors of approximately 60,30 and 20 percent, respectively.

The minimum measurable concentration of an element in a given sample was considered in section 3.6. The equation derived was based on the peak area determination level and is given by

Note that this equation gives the minimum weight requirement for elemental analysis based on the measurement of a single gamma ray. In practice use should be made of all the gamma rays of an element present in a given spectrum.

The equations presented above were verified (In Appendix III) by applying statistical analysis to the various parameters of 100 artificial peaks constructed with the use of a computer. The standard deviations obtained in these parameters were in agreement with the equations on which the peak area limiting levels were based. Also, in the same Appendix, an examination of three aluminum spectra for data reproducibility showed the differences in peak areas to be in accordance with the error equations.

An experimental verification of the equations was obtained in Ch. VI by examining the manganese peaks in a stainless steel pair spectrum. Since the manganese concentration in the irradiated sample was known, it was possible to compute the intensity of the 101 manganese peaks. By comparing these values with the corresponding peak area limiting levels, it was possible to specify which of the peaks would be clearly visible in the spectrum and which would be lost in the statistical fluctuations of the background. The conclusions arrived at were in good agreement with the 17 manganese peaks observed in the actual spectrum.

These equations were then used to examine the effectiveness of the two experimental arrangements and the various gamma detection modes. Results of the comparison were given in Chapter V. It was found that because of count-rate limitations both internal and external arrangements could be used with approximately the same analytical sensitivity. Comparison of the detection modes has shown that Compton suppression leads to an increase in the sensitivity of about 25 percent over that in the free mode; the pair spectrometer was found to be less sensitive than the free mode by approximately the same factor. For gamma rays of energy in the Vicinity of 3 MeV , in which case the full-energy peak and the double-escape peak in our spectra have approximately the same intensity, any one of these modes can be used with the same effectiveness.

In Chapter 7 the minimum measurable weights of 75 elements were evaluated for a stainless steel matrix. In a majority of the cases the detection limits were found to range between 0.1 and 10 percent. Equations and data were then presented in Sec. 7.3 for extrapolating the results to different samples and different experimental arrangements.

In summary then, elemental analysis based on neutroncapture gamma ray spectra is characterized by complex gamma ray spectra and is insensitive in the trace-level domain for most elements. The method is likely to be found useful for on-line applications, as discussed in Chapter II, and for the detection of elements that do not satisfy the requirements of ordinary activation analysis.

APPENDIX I

EFFECTS OF SMOOTHING ON SPECTRAL DATA

Al. 1 Method of Smoothing

It is general practice in the analysis of gamma ray spectra to subject the raw data to some sort of smoothing before attempting to evaluate the various peak parameters. As a result, a number of smoothing procedures may be found in the Iiterature ([I2], [C5], [H3], [M4], [Y]]). The one used in this work is based on the use of Fourier transforms and was developed by T. Inouye. In this section will be presented a short description of this type of smoothing. Complete details may be found in references [I2] and [HI].

In this method of smoothing, the spectral data are transformed from'energy space' to 'energy frequency space' or ω space. It is analogous to the usual transformations from time to frequency that are extensively used in communication theory. In most spectra the spectral peaks are spread over a number of channels; superimposed on these are channel to channel random fluctuations which represent the noise. As a result, this Fourier transformation separates the low frequency spectral information from the statistical noise which is of higher frequency. Thus by using an appropriate filter function in ω space and retransforming back to 'energy space' it is possible to decrease the noise content of the spectra without seriously affecting the real spectral information.

To describe the method mathematically, let the observed
data $f(E)$ be represented as the sum of two components

$$
\begin{equation*}
f(E)=s(E)+n(E) \tag{Al.I}
\end{equation*}
$$

where $s(E)$ is the true spectral information and $n(E)$ is the noise which in this case is due principally to statistical fluctuations in the number of counts in a channel. The Fourier transform of $f(E)$, denoted by $F(w)$, can be written in the usual notation as
or

$$
F(\omega)=\int_{-\infty}^{\infty} f(E) e^{-i \omega E} d E
$$

$$
\begin{equation*}
F(\omega)=S(\omega)+N(\omega) \tag{A1.2}
\end{equation*}
$$

where $S(\omega)$ and $N(\omega)$ stand for the Fourier transforms of the component of $f(E)$.

As was mentioned above, the success of the method depends upon $S(w)$ and $N(w)$ being different functions so that an appropriate filter function can be chosen which will eliminate at least part of $N(\omega)$ without seriously affecting $S(\omega)$. This is particularly so when the spectral peaks occupy a large number of channels in the spectrum. Denoting this filter function by $P(\omega)$, the smoothed version of the original spectrum is obtained by the inverse transform

$$
s(E)=(1 / 2 \pi) \int_{-\infty}^{\infty} F(\omega) P(\omega) e^{j \omega E} d \omega
$$

Note that all transforms have been expressed in their integral form for simplicity. In practice, where the technique is applied to discrete data, the transformations are used in their discrete form.

Al. 2 Smoothing Filter Function

The method of choosing the filter function $P(\omega)$ is discussed next. As noted above, the'w-space' subregion containing the transformed spectral information $S(\omega)$ will be large or small according to whether the peaks in the original spectrum occupy a small or a large number of channels. In practice one makes representative plots of $F(w)$ versus ω and attempts to identify that point where $S(\omega)$ ends. The proper filter function would then be one that passes all the frequencies below this point and eliminates those above it. Such a plot, reproduced from reference [HI], is shown in Fig. Al. 1 for two typical 4096-channel spectra. The actual transformation used gives one ω point for each energy point. For clarity of presentation only every fiftieth point in ω space has been plotted. The x 's represent a run where the gain was adjusted to produce a channel width of 0.971 keV . The circles represent a lower gain width of 2.063 keV . The approximate shape of the components of $F(\omega)$ are shown as the solid lines. As expected for the $0.971-k e v$ run where the peaks contain more channels, the signal component $S(\omega)$ contains less high frequencies.

The type of filtering function employed in the analysis has the form (see figure Al. 7)

$$
P(\omega)=1 \quad \text { for } 0 \leqslant \omega \leqslant \omega_{m}
$$

and

$$
P(\omega)=\exp \left[-\frac{\left(\omega-\omega_{m}\right)^{2}}{2 \sigma_{m}^{2}}\right] \quad \text { for } \quad \omega_{m} \leqslant \omega \leqslant \pi
$$

Fig. Al. 1 Fourier transforms of two 4095-channel gamma ray spectra
where ω_{m} and σ_{m} must be chosen with respect to the total number of channels in the spectrum and the number of channels occupied by typical peaks. Careful analysis has revealed that the smoothing action is rather insensitive to small variations in these quantities; variations of 10 to 15 percent in either ω_{m} or σ_{m} gave appreciably the same results. Thus the same filter function can be used for all runs of approximately the same gain. If this function is properly chosen it is possible to reduce the noise content of the spectra without affecting the true spectral information. Inappropriate filter functions will lead to either insufficient smoothing (ω_{m} and σ_{m} large) or oversmoothing (ω_{m} and σ_{m} small) in which case considerable spectral information is lost.

Al. 3 Degree of Smoothing

Let us represent the degree of smoothing attainable by the above technique by the equation

$$
\begin{equation*}
r=\left[\sigma\left(H^{\prime}\right) / \sigma(H)\right] \tag{AI.5}
\end{equation*}
$$

where $\sigma\left(H^{\prime}\right)$ and $\sigma(H)$ are the standard deviations in the raw (H^{\prime}) and smoothed (H) data of a pure noise spectrum. Thus defined, r is a measure of the average reduction in the statistical fluctuations of a large number of random data normally distributed about a fixed mean H_{m}. In order that these data closely approximate a Poisson distribution the standard deviation in the normal distribution was set equal to the square root of the mean H_{m}. r will be referred to as the

error reduction factor.

Values for r were calculated using a pseudo-experimental noise spectrum constructed by the computer code ARTSPEC and subjecting it to a number of smoothing operations. Part of this spectrum is show in Fig. Al. 2 ; the code is described in Appendix V. In order to examine whether both the raw and smoothed data closely approximate a normal distribution, the data were divided into a number of groups of width $\sqrt{\mathrm{H}_{\mathrm{m}}} / 4$. Each group was specified by its mean value $H_{k}=H_{m}+(I / 2) v_{2}{ }_{m}$ where $k= \pm I, \pm 2, \pm 3$, etc. Whenever a data point of meannitude within the interval $H_{k} \pm \sqrt{F_{m}} / 4$ was encountered in the noise spectrum it was considered as being representative of the kth group. The frequency of occurence of these groups is shown in Fig. Al. 3 for three typical cases. 900 data points were considred in each case. The lines in the figure are three normal distributions given by the equation

$$
\begin{equation*}
y(H)=r y_{0} \exp \left[-r^{2}\left(H-H_{m}\right)^{2} / 2 H_{m}\right] \tag{AZ.6}
\end{equation*}
$$

from
where $y_{0}=199.7$ and was obtained, the raw data. The mean $H_{m}=500$. The error reduction factors corresponding to the three cases were $r=1$ for thetraw data, $r=1.34$ and $r=1.84$ and were obtained in the manner described below. From Fig. Al. 3 it is seen that both raw and smoothed data closely approximate a normal distribution. It was therefore possible to analyse the data statistically and obtain values for the standard deviations needed in equation

- Original Raw Data
—— Smoothing Parameters: $\omega_{m}=\pi / 2, \sigma_{m}=\pi / 16, r=1.34$
- - Smoothing Parameters: $\omega_{m}=\pi / 4, \sigma_{m}=\pi / 16, r=1.84$

Fig. Al. 2 Section of noise spectrum and typical smoothed data for light and heavy smoothing

Fig. Al. 3 Frequency distribution of grouped data in the raw and smoothed noise spectra
(Al.5). The results are shown in Fig. Al.4; the solid lines correspond to an empirical relation for r developed below.

It may be noted here that the smoothing operation did not affect the value of the mean; in all 18 cases considered changes in H_{m} were less than 0.004 percent. Also, using different noise spectra, it was observed that the reduction in the standard deviation is independent of H_{m}. This is an interesting result since it indicates that in a real spectrum r does not depend on the amplitude of the continuum bakground and so only one value for r need be specified for any given filter function.

The development of an empirical relation capable of predicting the factor r for any filter function of practical interest is now considered. Note that when a pure noise spectrum is Fourier transformed in the manner described above the resulting frequency spectrum exhibits, over its whole range, random fluctuations about a fixed mean G_{m} similar to those in the untransformed data. This is shown in Fig. Al. 5 where, for clarity purposes, only every fifth point in the 1024-point spectrum has been ploted. To a very good approximation, therefore, the area underneath this frequency spectrum, from 0 to π degrees, is equal to πG_{m}. Now, since a filter function that permits the whole frequency spectrum to pass undisturbed is characterized by $r=1$, it was anticipated that any other filter function that transmits only part of this area will have for r a value that is somehow related to the fraction of the area transmitted. In view

Fig. AI. 4 The error reduction factor r for various combinations of the filter parameters ω_{m} and σ_{m}

Fig. Al. 5 Fourier transform of a pure noise spectrum
of the constancy of G_{m} over the whole frequency range, the empirical relation sought for r had the form

$$
r=f\left[\pi /\left(\omega_{m}+\sigma_{m} \sqrt{\pi / 2}\right)\right]
$$

where the fraction may now be thought of as the inverse of the fraction of the area between 0 and π degrees that falls underneath the filter function (see Fig. Al.7). Search for such a relation to represent the pseudo-experimental data lead to the equation

$$
\begin{equation*}
r=\sqrt{ }\left[\pi /\left(\omega_{\mathrm{m}}+0.9 \sigma_{\mathrm{m}}\right)\right] \tag{A1.7}
\end{equation*}
$$

(Note that the area underneath the filter function is $\omega_{m}+1.25 \sigma_{m}$. .

From the results shown in Fig. Al. 4 , and noting that r need only be known to within two significant figures, equation (Al.7) may be considered reliable for evaluating the effect of all filter functions that are likely to be used in practice. The equation overestimates the reduction factor for small values of σ_{m}.

A1. 4 Effects of Smoothing on the Peak Parameters

As noted earlier, the type of filter function most suitable for the anal ysis of a given spectrum depends on the characteristics of the spectrum itself. Nevertheless one may still choose to apply relatively heavy smoothing for the purpose of further reducing the statistical fluctuations. In order to examine what effect this would have on the various peak parameters, a pseudo-experimental spectrum consisting
of 100 artificial peaks resting on a background continuum of 500 counts was constructed using the computer code ARTSPEC. Part of the spectrum is shown in Fig. A3.1 of Appendix III. where the same data is used to verify the equations developed for the various peak parameters. This artificial spectrum was subjected to four different smoothing operations. The error reduction factors were $r=l$, representing the raw data, $r=1.34$ corresponding to a filter obtained by the graphical procedure described above, and $r=1.6$ and $r=1.9$ arbitrarily chosen as typical values of medium and heavy smoothing. Statistical anolysis was thenapplied in each case to the 100 values for the continuum background underneath the peaks, the peak heights above the background, the fwhm (or widths) and the peak areas. The means and standard deviations resulting from this analysis are shown in Table AI(I). These may be compared to the built-in values used in constructing the spectrum in question.

With respect to the peak areas, the main reason in the difference between the built-in and calculated values is in evaluating the background continuum. Since in our method of spectral analysis this is calculated by using count minima in the spectrum, and these minima constitute extreme points, it is not surprising that the background is underestimated in all cases. This is true despite the 1 to 5 point averaging involved in the background fit (see section 3.3). Evidently the smoothing process improves the situation by reducing the deviation of these extreme points from the actual mean. If

TABLE AI(1)

EFFECT OF VARIOUS SMOOTHING FIUTER FUNCTIONS ON THE SPECTRAL PEAK PARAMETERS
(STATISTICAL ANALYSIS BASED ON 100 PSEUDO-EXPERIMENTAL PEAKS)

	r	Background, B	Peak Height, h	Peak Width, w	Peak Area, ASum
Built-in Value		500.0	500.0	3.53	1880.0
Raw Data	1.0	480.1 ± 18.0	516.9 ± 32.7	3.67 ± 0.22	2089.2 ± 203.7
Smoothed Data	1.34	492.4 ± 14.5	504.7 ± 23.8	3.63 ± 0.17	1957.9 ± 146.9
Smoothed Data	1.60	497.3 ± 10.4	452.6 ± 20.8	3.97 ± 0.16	1915.3 ± 125.8
Smoothed Data	1.90	499.3 ± 9.5	413.6 ± 18.9	4.33 ± 0.15	1894.5 ± 130.6

the background is underestimated by an amount $\delta \mathrm{B}$, then the peak area will be overestimated by approximately $\delta A=3 w \delta B$. Here w is the fwhm and 3 w is approximately equal to the base width of the peak. Actual values associated with the four cases considered are:

r	($\delta \mathrm{A}$) actual	$3 \mathrm{w} \delta \mathrm{B}$
1.0	209.2	219
1. 34	77.9	82
1.6	35.3	32
1.9	14.5	9

As expected, therefore, heavy smoothing leads to more precise estimates for the background continuum. This, in turn, results in peak areas that are closer to the built-in value. But heavy smoothing also leads to shorter, broader peaks which, if sufficiently weak, will be completely smeared out and lost in the background. Consequently whether heavy smoothing should be used or not depends on whether interest lies in the strong or weak peaks in a given spectrum. Ideally one should first expose the spectral data to heavy smoothing and extract more reliable information from the strong peaks and then repeat the analysis with lighter smoothing to obtain the weak peak parameters.

Note that very heavy smoothing is not always advantageous even for the analysis of very strong peaks. This is because the standard deviation in the peak area, as shown
in Appendix III, is not decreasing monotonically with heavier smoothing as is the case with the other peak parameters. The advantages of larger reductions in the statistical fluctuations may indeed become off set by the increase in the number of channels occupied by the peak. For instance, in the pseudo-experimental spectrum considered above the standard deviation in the peak area is a minimum for r approximately equal to 1.6.

Another important point to note in the case of heavy smoothing is that the filter function parameters that will give the desired effect must be chosen with care. There is indeed an infinite number of ω_{m} and σ_{m} combinations that will yield the same error reduction factor. However, as was noted earlier, spurious peaks may appear in the spectrum for small σ_{m} values. This is dramatically illustracted in Fig. Al. 6 where a peak, of peak height 5000 counts and a width of 4 channels resting on a background continuum of 500 counts, was subjected to heavy smoothing utilizing three different filter functions. All three filters, whose parameters are shown in Fig. Al.7, are characterized by $r=1.9$. Note that filter (a) does not lead to any oscillations that are immediately apparent and that sharper filter cut-offs lead to fluctuations whose amplitude increases with decreasing σ_{m} value. Filter functions with sharp cut-offs must therefore be avoided, a fact that was pointed out by Inouye [I2]. The normal filter (d) for use with this case is also shown in Fig. Al. 7 for comparison.

Fig. Al. 6 Oscillations introduced by the filter functions shown in Fig. Al. 7 for heavy smoothing

Fig. Al. 7 Filter functions used in obtaining the oscillations shown in Fig. Al. 6 ; all filters have $r=1.9$ except filter (d) which is for normal smoothing in this caso $(r=1.34)$.

Appendix II

PEAK WIDTHS AND METHOD OF LEAST-SQUARES FIT

A2. 1 Reasons for the Fit

The gamma ray spectra associated with $G e(L i)$ spectroscopy are characterized by peaks whose parameters may be assumed to approximately coincide with the corresponding parameters of a Gaussian function. The peak areas in such spectra can therefore be obtained by the equation

$$
\begin{equation*}
\mathrm{A}_{\mathrm{G}} \quad=\quad 1.0645 \mathrm{wh} \tag{A2.I}
\end{equation*}
$$

where w and h are the full-width at half-maximum (or peak width) and the peak height, and ψ is a correction term of the order of 2 percent to account for the deviation of the peaks from the Gaussian. Assuming the error in ψ is negligible, the standard deviation in peak area evaluated by this technique is

$$
\sigma\left(A_{G}\right)=A_{G} \sqrt{\left[\sigma^{2}(h) / h^{2}\right]+\left[\sigma^{2}(w) / w^{2}\right]}
$$

$\sigma(h)$ and $\sigma(w)$ are the standard deviation in the height and width and are governed by counting statistics, their values being entirely dependent on the peak in question. In particular note that the widths of strong peaks may be measured with greater accuracy than those of weaker ones.

Now, for a strong and a weak peak close to each other, the widths must be comparable since they reflect the resolution of the system corresponding to that particular position in the spectrum. Yet one of them is known with greater accu-
racy. It is therefore possible to reduce the error in the area of the weaker peak by utilizing some of the information contained in the strong peak. Proceeding further, such an error may be reduced even more by incorporating more strong peaks in the analysis. In this case, however, one must allow for the possible variation of the system resolution with energy. One answer to the problem is to obtain the width as a function of energy by least-squares fitting the widths and energies of the strong peaks in the spectrum to a smoothly varying function.

A2. 2 Doppler Broadening

The main assumption in the above remarks is that peak widths are expected to vary smoothly over the range of the spectrum. Physically this assumption is not quite valid since certain gamma rays will be Doppler broadened if they are emitted while the nucleus is recoiling from the emission of other gamma rays in the same cascade. Consider, for instance, a two-step cascade following thermal neutron capture. Let the energies of the first $\left(\gamma_{a}\right)$ and second $\left(\gamma_{b}\right)$ gamma rays emitted be E_{a} and E_{b}. The recoil velocity of the nucleus resulting from the emission of γ_{a} is, from conservation of momentum,

$$
\begin{equation*}
v=c\left[E_{a} /\left(m c^{2}\right)\right] \tag{A2.3}
\end{equation*}
$$

where m is the mass of the nucleus and c the velocity of light. Now, assuming that the mean Iife of the level at which the nucleus is left after the emission of γ_{a} is so
short (less than about 10^{-15} secs) that γ_{b} is emitted while the nucleus is still in the recoiling process, the observed energy of this transition will be Doppler shifted according to

$$
\begin{equation*}
\mathrm{E}_{\mathrm{b}}^{\prime}=\mathrm{E}_{\mathrm{b}}[1 \pm(\nabla / c) \cos \beta] \tag{A2.4}
\end{equation*}
$$

where β is the angle between the direction along which the nucleus is recoiling and the direction of emission of γ_{b}. The maximum spread in the observed energy is equal to twice the maximum Doppler shift which is

$$
\begin{equation*}
\delta \mathrm{E}_{\mathrm{b}, \max }=(v / c) \mathrm{E}_{\mathrm{b}}=\left[\mathrm{E}_{\mathrm{a}} \mathrm{E}_{\mathrm{b}} /\left(\mathrm{m} \mathrm{c}^{2}\right)\right] \tag{A2.5}
\end{equation*}
$$

Moreover, since the emission of γ_{a} and, consequently, the nuclear recoil direction are isotropic, the observed energy E_{b}^{\prime} will. have all values between $\left[E_{b}-\delta E_{b, \max }\right]$ and $\left[E_{b}+\delta E_{b, \max }\right]$ specified by an intensity distribution $f_{I}\left(E_{b}-E_{b}^{\prime}\right)$. The spectral shape of γ_{b}, which is broadened by two independent effects (Doppler and electronic noise (f_{2})) may be represented by the convolution

$$
f\left(E_{b}\right)=\quad \int_{-\delta E_{b, \max }}^{+\delta E_{b}, \max } f_{1}\left(E_{b}-E_{b}^{\prime}\right) f_{2}\left(E_{b}^{\prime}\right) d E_{b}^{\prime}
$$

Here f_{1} and f_{2} are the profiles the spectral line would assume if only one of the broadening effects was present.

The system resolution function $f_{2}\left(E_{b}^{\prime}\right)$ is, for the case of $G e(L i)$ spectroscopy, reasonably well described by a Gaussian function of width $W_{2} \cdot f_{1}\left(E_{b}-E_{b}^{\prime}\right)$ on the other hand
depends on the angular correclation between γ_{a} and γ_{b}, a correlation which in most cases is not known. In fact the Dopp.ler broadening effect is presently employed in the study of nuclear level structure (Wetzel[W3]).

Evaluation of equation (A2.6) is not straight-forward and in most cases requires numerical integration for each particular case considered. For the purpose of this work, where the intent is to afford some simple estimate of the Doppler broadening contribution to peak widths, it is sufficient to assume that f_{1} is also a Gaussian function of width w_{1} and extend the limits of integration from - infinity to + infinity. In such a case it turns out (H.C. Van de Hulst and J. J. M. Reesinck [H5]) that f is also a Gaussian having a width

$$
\begin{equation*}
w=\sqrt{ }\left[w_{1}^{2}+w_{2}^{2}\right] \tag{A2.7}
\end{equation*}
$$

Using the results reported by Wetzel on boron and nitrogen as a basis, it was found that for the case of no gamma-gamma correlation the Doppler broadening may be approximated by setting $w_{1}=1.5 \delta \mathrm{E}_{\mathrm{b} \text {, max }}$. The net increase in the peak width by this effect is then

$$
\delta w=w-w_{2}=\sqrt{ }\left[\left(1.5 E_{a} E_{b} / \mathrm{mc}^{2}\right)^{2}-w_{2}^{2}\right]-w_{2} \cdot(A 2.8)
$$

In Table AII(I) are presented typical values of $\delta \mathrm{w}$ for a number of cases. Wetzel's results are also given for reference. The transitions used for Be, Al and Fe are not real and E_{a} was set equal to E_{b} so as to maximize the value of $\delta \mathrm{w}$.

TABLE AII(1)

DOPPLER BROADENING CONTRIBUTION TO PEAK WIDTH

Element	Binding En.	Gamma Energy	Gomma Energy	Doppler Shift	System Res.	Broadening	Wetzel
	B_{n}	E_{2}	E_{b}	$\delta \mathrm{E}_{\mathrm{b}, \text { max }}$	w_{2}	$\delta \mathrm{w}$	$\delta \mathrm{w}$
11_{B}	11453	4711	6739	3.100	7.65	1.30	1.33
		2534	8916	2.206	8.61	0.61	0.62
${ }^{15} \mathrm{~N}$	10834	5534	5298	2.099	5.21	0.88	0.91
		2521	8311	1.500	6.36	0.39	0.37
${ }^{10} \mathrm{Be}$	6810	3405	3405	1.245	7.0	0.25	
${ }^{28} \mathrm{Al}$	7724	3862	3862	0.572	7.0	0.05	
${ }^{58} \mathrm{Fe}$	10046	5023	5023	0.467	7.0	0.035	

For gamma-gamma correlation favourable to Doppler broadening $\delta \mathrm{w}$ is approximately 50 percent larger. It may be concluded that the effect, if at all present, should be observable in those particular isotopes that have both high neutron binding energy and low atomic mass. For our case, where the samples used have their natural isotopic compositions, there is only a small number of elements for which appreciable Doppler shifts can be expected. The phenomenon can thus be neglected, but it was necessary to sidetrack for a moment to prove this point.

A2. 3 The Least-Squares Fit

Reverting now to equation (A2.1), and as it was noted earlier, the error in the peak area may be reduced by utilizing the fitted width $\overline{\mathrm{w}}$ in place of the actual width of the peak. $\overline{\mathrm{W}}$ is obtained by least-squares fitting the properly weighted widths w_{i} and energies E_{i} of the strong peaks in the spectrum to the polynomial

$$
\begin{equation*}
\bar{w}=\sum_{j=1}^{p} A_{j} E^{(j-1)} \tag{A2.9}
\end{equation*}
$$

where A_{j} are constants evaluated in the fit and (j-1) are the powers of E.

Not all the peaks in the spectrum are used in the fit since some of them are too weak to have representative widths while others are partly resolved or completely unresolved multiplets. In general the criteria employed in the selection of peaks used for the fit reject approximately 75 percent of
them. In addition, since the widths of some peaks are known with higher accuracy, it is necessary to use proper weighting functions $\left(W_{i}\right)$ to accentuate the more reliable information contained in the strong peaks. The type of weighting employed in the present analysis is often called 'statistical weighting', the weights themselves being defined as the reciprocals of the squares of the standard deviations in the various measurements. The error incurred in the measurement of the independent parameter E_{1}, the gamma energy, is relatively negligible; that of the dependent variable w_{i} is given by equation (A3.8) in Appendix III. The weighting function used is

$$
\begin{equation*}
w_{i}=\left[1 / \sigma^{2}\left(w_{i}\right)\right] \tag{A2.10}
\end{equation*}
$$

where $\sigma\left(w_{i}\right)$ is the standard deviation in the measured width of the ith peak.

The equations used in the fit for the evaluation of the constants A_{j} have been put in the form

$$
\left(\begin{array}{c}
v_{1} \tag{A2.11}\\
v_{2} \\
\cdot \\
\cdot \\
v_{p}
\end{array}\right)=\left(\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 p} \\
c_{21} & c_{22} & \cdots & c_{2 p} \\
\cdot & & & \\
\cdot & & & c_{p p} \\
c_{p 1} & c_{p 2} & & c_{1}
\end{array}\right)\left(\begin{array}{c}
A_{1} \\
A_{2} \\
\cdot \\
\cdot \\
A_{p}
\end{array}\right)
$$

where

$$
v_{j}=\sum_{i=1}^{N} w_{1} w_{1} E_{i}^{(j-1)} \quad j=1,2, \ldots p \quad(A 2.12)
$$

$$
c_{j k}=\sum_{i=1}^{N} w_{i} E_{i}(j+k-2) \quad j, k=1,2, \ldots p \quad(A 2.13)
$$

and N is the total number of peaks used in the fit. The A_{j} are evaluated by the usual method of matrix inversion. The weighted sum of the squares of the residuals is

$$
\begin{equation*}
s=\sum_{i=1}^{N} w_{i}\left(w_{i}-\bar{w}_{i}\right)^{2} \tag{A2.14}
\end{equation*}
$$

Also, since there are p constants in equation (A 2.9) the number of degrees of freedom is (N - p). J. R. Wolbers [W4] points out that if the weights W_{i} are not over- or underestimated the ratio [$\mathrm{S} /(\mathrm{N}-\mathrm{p})$] must be close to unity. That is, for an experiment repeeted a large number of times, the values of S will be distributed according to a chisquared distribution with ($N-p$) degrees of freedom, the mean value of the distribution being equal to the number of degrees of freedom. This fact was used as a check on the error equation for the width and is discussed below.

An estimate of the uncertainty in the interpolated and extrapolated values obtainable from equation (A2.9) is given by Wolberg ([54], page 64) as

$$
s_{i}=\sqrt{\frac{s}{N-p} \sum_{j=1}^{p} \sum_{k=1}^{p} \frac{\partial \bar{w}}{\partial \Lambda_{j}} \frac{\partial \bar{w}}{\partial A_{k}} c_{j k}^{-1}} \text {. (A2.15) }
$$

In the present case this reduces to

$$
\begin{equation*}
s_{i}=\sqrt{-\frac{S}{N-p} \sum_{j=1}^{p} \sum_{k=1}^{p} E^{(j+l k-2)} c_{j k}^{-1}} \tag{A2.16}
\end{equation*}
$$

and corresponds to the parameter employed in the area error equation (3.14). The confidence interval associated with the fit is such that there is a given probability that if the experiment were repeated the value obtained for the fitted width at a given energy would fall within the interval $\bar{W}_{i}-t s_{i}<\bar{W}_{i}<\bar{W}_{i}+t s_{i}$. t is the student t-distribution and is used to evaluate the probability referred to; in this work it was set equal to 1 .

A2. 4 Application

A computer code has beendritten by the author to perform the above operations. It is capable of fitting the data to a p-order polynomial where p can be any integral number. However, computational accuracy restricts p to a maximum of 5 or 6. The code ${ }^{*}$ is an entity in itself but was also incorporated into GAMANL. In GAMANL may also be found the various conditions used in choosing the appropriate peaks for the fit.

To choose the proper value for p the widths and energies of 46 selected peaks in Fig. 3.1 were subjected to polynomial fits of order I, 2 and 3. In Table AII(2) is presented part of the computer output corresponding to $p=3$. The results of the fits are shown graphically in Figs. A2.1 and A2.2. The error bars in Fig. A2.I correspond to the standard devia-
tion in the widths evaluated by equation (A3.8) Peaks whose computed errors are exceptionally large are observed to be distorted.

The values of $\sqrt{[S /(N-p)]}$ are in general greater than unity. It is believed that this reflects more the inadequacy of the criteria for choosing the appropriate peaks for the fit rather than the possible underestimation of the standard deviation in the widths. Thus, for the $p=3$ case, if the residuals of peaks Nos. 10, 13, 27 and 28 are neglected, $\sqrt{[S /(N-p)]}$ reduces from 1.48 to the more favourable value of 1.11. The residuals in the other two cases were 2.48 for $p=2$ and 1.44 for $p=4$.

Consideration of the confidence interval at each data point for the various fits, the randomness of the residuals, and the chi-squared test for the value of S has lead to the choice of $p=3$, a second order polynomial.

TABLE AII(2)

POLYFIT OUTPUT - RESULTS OF LEAST-SQUARES FIT $p=3$
Number of Peaks used $=46$
$\operatorname{SUM}($ WEIGHT*WIDTH (KEV) $*$ ENERGY (1OMEV) $* * 0)=0.44922 E 04$ (Eq. A2.12)
$\operatorname{SUM}($ WEIGHT*WIDTH (KEV) $* \operatorname{ENERGY}(10 \mathrm{MEV}) * * I)=0.17189 \mathrm{E} 04$ (Eq. A2.12)
$\operatorname{SUM}(\mathrm{WEIGHT} * W I D T H(K E V) * E N E R G Y(1 O M E V) * * 2)=0.86183 E 03$ (Eq. A2.12)

COEFFICIENTS OF ORIGINAL MATRIX (Equation A2.13)
0.50838 E 03
0.17204 E 03
0.76364 E 02
0.17204 E 03
0.76364 E 02
0.41894 E 02
0.76364 E 02
0.41894 E 02
0.26394 E 02
VALUE OF DETERMINANT $=0.66611 \mathrm{E} 04$

COEFFICIENTS OF INVERTED MATRIX
$0.39102 \mathrm{E}-01$
$-0.20143 \mathrm{E} 00$
0.20658 E 00
-0.20143E 00
0.11389E OI
-0.12250E Ol
0.20658 E 00
-0.12250E Ol
0.13846 E 01

EQUATION OF LEAST-SQUARES FIT (Equation A2.9)
FWHM (KEV) $=0.74590 E$ O1 $*$ ENERGY(1OMEV) $* * 0$

- 0.28577E O1 * ENERGY(10MEV)**1
+0.15605 E 02 * ENERGY(1OMEV)**2

SQRT (SUM WEIGHTED RESIDUALS/DEGREES OF FREEDOM) $=0.14777 \mathrm{E} 01$ (Equation A2.14)

TAEERAII(2) (COMTIMOED)

Fig. A2.1 Fitting the energy-width data to various polynomials by the method of least-squares

Fig. A2. 2 Confidence interval in the three fits shown in Fig. A2.1

A3.1 The Error Equations

In order to investigate which of the two methods of peak area determination described in Chapter III is more reliable, it was necessary to develop and compare the error equations associated with the various peak parameters. To this end, note that for a large number of identical measurements the counts recorded in any one given channel in the spectrum will fluctuate independently about a mean value in a manner dictated by counting statistics [E2]. Thus if the number of counts in channel i of the original raw data is H_{i} the expected standard deviation, or the error as it will often referred to, is $\sqrt{H_{i}}$.

Since the peak parameters are evaluated using smoothed data, it is important to extend these ideas further. The counts in neighbouring channels in the raw data fluctuate independently about their mean value. Hence the smoothing process, which reduces the intensity of the fluctuations between adjacent channels, does in fact reduce the standard deviation of the count in each channel. As shown in Appendix I, the standard deviation in the smoothed data is

$$
\begin{equation*}
\sigma\left(H_{i}\right)=(I / r) \sqrt{H_{i}} \tag{A3.1}
\end{equation*}
$$

where r represents the reduction in the statistical fluctuations by the smoothing process and depends on the particular
smoothing filter used.
Using this equation as a basis it is possible to write the error equations associated with the various peak parameters. We will consider each parameter separately.
(a) Value of Peak Minima

The equation for the value of a peak minimum in channel MO is, from equation (3.3),

$$
\begin{equation*}
\bar{H}_{O}=\bar{H}(M O)=\sum_{j=-2}^{j=2} a_{j} H(M O+j) / \sum_{j=-2}^{j=2} a_{j} \tag{A3.2}
\end{equation*}
$$

where $a_{j}=1$ when $|H(M O+j)-H(M O)| \leqslant \sqrt{H}($ MO $)$ and $a_{j}=0$ in all other cases.

Analyses of experimental data have shown that the standard deviation in H_{0} can be well approximated by the equation

$$
\begin{equation*}
\sigma\left(\bar{H}_{0}\right)=(I / r) \sqrt{\bar{H}_{0}} \tag{A3.3}
\end{equation*}
$$

The implication here is that the averaging process specified by equation (A3.2) does not reduce the standard deviation in the value of the minima. It is believed that this is due to the fact that, in our method of analysis, the averaging process always increases the value of the minima in question. Recall that thefethod of background evaluation described in Section (3.3) is based on count minima and that these minima constitute extreme points in the spectrum.
(b) Peak Height

The peak height h is determined by a second order
interpolation applied to the three highest points in the peak after the continuum background underneath the peak has been subtracted. Denoting these three points by h_{p-1}, h_{p} and h_{p+1} as shown in Fig. 3.3, the peak height equation takes the form

$$
\begin{equation*}
h=h_{p}(1+\alpha) \tag{A3.4}
\end{equation*}
$$

where

$$
\alpha=\frac{\left(h_{p+1}-h_{p-1}\right)^{2}}{8 h_{p}\left(2 h_{p}-h_{p+1}-h_{p-1}\right)}
$$

For a Gaussian having a fwhm of 4 channels, α has the maximum value of 0.0366 ; it is even less for wider peaks. The error in a may therefore be neglected and a itself may be assumed to have the average value of 0.02 in cases where exact information is not available. Moreover, for a symmetric peak,

$$
\begin{equation*}
h_{p}=H_{p}-\left(\bar{H}_{0}+\bar{H}_{n}\right) / 2=H_{p}-B \tag{A3.5}
\end{equation*}
$$

and therefore the error in the peak height is

$$
\begin{align*}
\sigma(h) & =(I+\alpha) \sqrt{\left[H_{p}+\left(\bar{H}_{0}+\bar{H}_{n}\right) / 4\right]} / r \\
& =(1+\alpha)(1 / r) \sqrt{ }[h+I .5 B] \tag{A3.6}
\end{align*}
$$

B is the average background underneath the peak.
(c) Peak Width

In our method of analysis the fwhm (or width) is obtained by assuming linear interpolation between the channels (h_{i} and h_{j}) whose count is just above the peak half-maximum ($h / 2$), and
those $\left(h_{i-1}\right.$ and h_{j+1}) which are just below it. With reference to Fig. 3.3, this is

$$
\begin{equation*}
w=j-i+\lambda_{i}+\lambda_{j} \tag{A3.7}
\end{equation*}
$$

where

$$
\lambda_{i}=\left[\left(h_{i}-h / 2\right) /\left(h_{i}-h_{i-1}\right)\right]
$$

and

$$
\lambda_{j}=\left[\left(h_{j}-h / 2\right) /\left(h_{j}-h_{j+1}\right)\right]
$$

Such a procedure does not permit the evaluation of any error in the ($j-i$) component and in fact it is not possible to state a priori whether a peak isexceptionally wide or exceptionally narrow. The only errors that can be assigned to w are therefore those associated with λ_{i} and λ_{j}. That is

$$
\begin{equation*}
\sigma(w)=\sqrt{ }\left[\sigma^{2}\left(\lambda_{i}\right)+\sigma^{2}\left(\lambda_{j}\right)\right] \tag{A3.8}
\end{equation*}
$$

To evaluate $\sigma\left(\lambda_{k}\right)$ it is safer to express the λ_{k} parameters in terms of the data H_{k}. Since the h_{k} have been obtained by subtracting from H_{K} an approximately constant value, B , one may run in to the problem of accounting more than once for the error in B. Concentrating for the moment on $\sigma\left(\lambda_{i}\right)$, this change leads to

$$
\begin{equation*}
\lambda_{i}=\left[H_{i}-(H+B) / 2\right] /\left[H_{i}-H_{i-l}\right] \tag{A3.9}
\end{equation*}
$$

Note that as a result of the smoothing operation, the various parameters in this equation are correlated to a degree dictated by the smoothing filter function employed and also by the number of channels existing between them. Despite its
significance, and in view of the complexity of the problem and the secondary role equation (A3.8) plays in the analysis of the data, this correlation was neglected. The final equation to be derived will essentially be valid only for unsmoothed data. For smoothed data, experimental results reported below indicate that this simplification leads to an overestimate in the standard deviation in the peak width of approximately 15 to 20 percent in the range of interest.

Use is made next of the equation for the propagation of errors which has the form

$$
\begin{equation*}
\sigma^{2}(\lambda)=\sum_{k}\binom{\partial \lambda}{-\cdots x_{k}}^{2} \sigma^{2}\left(x_{k}\right) \tag{A3.10}
\end{equation*}
$$

where the x_{k} represent the various parameters in equation (A3.9). This leads to
$\sigma\left(\lambda_{i}\right)=\sqrt{\left[\left(I-\lambda_{i}\right)^{2} \sigma^{2}\left(H_{i}\right)+\lambda_{i}^{2} \sigma^{2}\left(H_{i-1}\right)+\sigma^{2}(H+B) / 4\right]} /\left(H_{i}-H_{i-1}\right)$

Since we also have

$$
\begin{align*}
& \sigma^{2}\left(H_{i}\right)=\left(I / r^{2}\right) H_{i}=\left(1 / r^{2}\right)\left(h_{i}+B\right) \\
& \sigma^{2}\left(H_{i-1}\right)=\left(1 / r^{2}\right) H_{1-1}=\left(1 / r^{2}\right)\left(h_{1-1}+B\right) \tag{A3.12}\\
& \sigma^{2}(H)=\left(1 / r^{2}\right) H=\left(1 / r^{2}\right)(h+B)
\end{align*}
$$

and

$$
\sigma^{2}(B)=\left(1 / r^{2}\right) B / 2
$$

the equation reduces, after collecting terms, to
$\sigma\left(\lambda_{i}\right)=\sqrt{\left[\left(1-\lambda_{i}\right)^{2} h_{i}+\lambda_{i}^{2} h_{i-1}+h / 4+\left(2 \lambda_{i}^{2}-2 \lambda i+11 / 8\right) B\right]} /\left[r\left(h_{i}-h_{i-1}\right)\right]$

Note that if $\left(h_{1}-h_{1-1}\right)$ is small, which may happen in the case of distorted peaks, the error can be very large. By definition, however, $\sigma\left(\lambda_{1}\right)$ cannot be larger than one channel.

It is this equation (A3.13) and the corresponding one for $\sigma\left(\lambda_{j}\right)$ that are presently employed in the evaluation of the weighting parameters in the least-squares fit (equations A3. 8 and A2.10).

(d) Peak Areas

Two methods of area eveluation have been presented in Chapter III. According to one of them, the straight-sums technique, the area equation is

$$
\begin{equation*}
A_{S}=\sum_{k=1}^{n-1} H_{k}-[(n-1) / 2]\left(\bar{H}_{0}+\bar{H}_{n}\right) \tag{A3.15}
\end{equation*}
$$

where n is the number of channel intervals occupied by the peak. The standard deviation in A_{S} is

$$
\begin{align*}
\sigma\left(A_{S}\right) & =\sqrt{ }\left[\sum_{k=1}^{n-1} H_{k}+[(n-1) / 2]^{2}\left(\bar{H}_{0}+\bar{H}_{n}\right) / r\right] \\
& =\sqrt{ }\left[A_{S}+\left[(n-1) / 2+(n-1)^{2} /(2 r)^{2}\right]\left(\bar{H}_{0}+\bar{H}_{n}\right)\right] \\
& =\sqrt{ }\left[A_{S}+(3 \bar{w}-1)\left[1+(3 \bar{w}-1) /\left(2 r^{2}\right)\right] B\right] \tag{43.16}
\end{align*}
$$

The assumptions involved here are that
(a) No counts ore lost by the smoothing process, i.e.

$$
\sum_{k=1}^{n-1} H_{k}=\sum_{k=1}^{n-1} H_{k}^{\prime}
$$

and therefore

$$
\sigma\left(\sum_{k} H_{k}\right)=\sigma\left(\sum_{k} H_{k}^{\prime}\right)
$$

Recall that H^{\prime} and H are the raw and smoothed data respectively.
(b) No error is assumed in the number of channels occupied by the peak. However since the error equation is a strons function of n, and the position of the minima can vary appreciably dependine on the statistical behaviour of the data in their immediate vicinity, it was necessary to set n equal to $3 \overline{\mathrm{w}}$, the fraction of the total area of a Gaussian distribution which falls within this interval being 99.97 percent.

In the Gaussian approach, where the peak area is given by the equation

$$
\begin{equation*}
A_{G}=1.0645 \psi \overline{\mathrm{w}} \mathrm{~h}, \tag{A3.17}
\end{equation*}
$$

* being the correction term for the non-truly Gaussian form of the peaks, the error equation is

$$
\begin{equation*}
\sigma\left(A_{G}\right)=A_{G} \sqrt{ }\left[\sigma^{2}(h) / h^{2}+(s / \bar{W})^{2}\right] \tag{A3.18}
\end{equation*}
$$

where s stands for the error in the fitted width and is calculated by equation (A2.16). It is assumed that the error in ψ is negligible, ψ itself being approximately equal to 1.02.

A3. 2 Applications

The error equations presented above are of vital importance in this work since they have been used to indicate which of the two techniques of peak area determination must be preferred and also to establish the three limiting levels in area measurements. In view of the number of assumptions involved in their derivation, it was found necessary to test their validity in a number of cases.

The first test was performed using the 100 pseudo-experimental peaks constructed by the ARTSPEC code; these were discussed earlier in Appendix I. Part of this spectrum is shown in Fig. A3.1. The analysis of this spectrum by GAMANL was carried out four times using four different filter functions for the smoothing. The error reduction factors associated with these filters were $r=1.0,1.34,1.6$ and 1.9. The two energy calibration lines required by the code were assigned values that lead to a conversion factor of 1.000 $\mathrm{keV} / \mathrm{ch} a n n e l$. Part of the GAMANL output for the case $r=1.34$ appears in Table AIII(I). This may be examined for the randomness associated with the values for the various peak parameters. The various columns in Table AIII(I) represent (I) the peak number, (2) the peak energy, in $k e V$, (3) the location of the peak in the spectrum, (4) the peak height, (5) the height to background ratio, (6) the straight-sums area, (7) the Gaussian area, (8) the Gaussian intensity, which in this case is in arbitrary units, (9) the percent error in the Gaussian area, (10) the actual fwhm of the peaks, in $k e V$ or, in

Fig. A3.1 Three of the one hundred pseudo-experimental peaks produced by the code ARTSPEC (Note that the y-scale does not start from 0)

--TAELB AINI (1) - (CONTINUED)

this case only, in channels, (11) the least-squares width, (12) the base width in channels, and (13) the peak type, the symbols S and D standing for singlets and doublets.

Statistical analysis applied to these pseudo-experimental peaks yielded results that are summarized in Table AIII(2). The measured standard deviations in the peak parameters, defined by

$$
\begin{equation*}
\sigma(z)=[1 / \sqrt{ }(n-1)] \sqrt{ }\left[\sum_{i=1}^{n}(z-\bar{z})^{2}\right] \tag{A3.19}
\end{equation*}
$$

are compared to those estimated by the error equations developed above. Three entries are given for each peak parameter; these correspond, respectively, to results obtained by applying the statistical analysis to the first 50, the last 50, and all 100 peaks.

From this table it is seen that the agreement between the actual and estimated standard deviations is satisfactory. The actual values obtained for the various peak parameters in the four different cases have already been compared in Appendix I to the built-in values used in constructing the spectrum in question; they will not,therefore, be considered any further.

The analysis presented above could have been carried out using actual gamma ray spectra. This would have involved the accumulation of 100 sets of data taken under exactly identical experimental conditions. Such a procedure is not practical and, moreover, one is faced with the problem of accounting for possible electronic shifts in the spe ctrometer which

TABLE AIII(2)

STATISTICAL ANALYSIS APPLIED TO THE 100
PSEUDO-EXPERIMENTAL PEAKS

Smoothing Degree	$r=1.0$			$\mathrm{r}=1.34$			$r=1.6$			$r=1.9$		
Parameter (Error Equation)	Mean	$\sigma_{\text {cal }}$.	$\sigma_{\text {est }}$	Mean	$\sigma_{\text {cal }}$.	$\sigma_{\text {est }}$	Mean	$\sigma_{\text {cal }}$	$\sigma_{\text {est }}$	Mean	$\sigma_{\text {cal }}$.	$\sigma_{\text {est }}$
H	1001.0	30.1		999.5	21.7		951.1	19.3		913.9	16.6	
	999.5	27.7		997.1	21.7		950.0	18.3		913.0	16.0	
	1000.3	28.8	31.5	998.3	21.7	23.7	950.6	18.7	19.3	913.5	16.2	15.9
$\begin{gathered} \mathrm{H}_{0} \\ (\mathrm{~A} 3.3) \end{gathered}$	480.7	20.0		492.8	15.3		498.2	10.2		499.3	8.7	
	479.5	16.0		492.0	13.1		496.3	10.7		499.2	10.5	
	480.1	18.0	21.9	492.4	14.5	16.4	497.3	10.4	13.9	499.3	9.5	11.8
(A3. ${ }^{\text {h }}$	517.8	35.1		506.3	24.5		453.3	21.6		414.7	19.0	
	516.0	30.4		503.0	23.1		451.8	20.2		412.5	18.9	
	516.9	32.7	35.2	504.7	23.7	26.4	452.6	20.8	21.6	413.6	18.9	18.0
W(A3.13) $\times \sqrt{2}$	3.67	0.22		3.62	0.16		3.97	0.15		4.33	0.13	
	3.67	0.22		3.64	0.18		3.97	0.17		4.33	0.16	
	3.67	0.22	0.20	3.63	0.17	0.16	3.97	0.16	0.18	4.33	0.15	0.18
$\mathrm{A}_{\text {sum }}$	2099	211		1966	157		1922	118		1907	121	
	2079	198		1950	138		1908	134		1882	140	
(A3.16)	2089	204	176	1958	147	144	1915	1.26	137	1895	131	134

215

change the apparent energy resolution of the system. Furthermore, in such a case it is not possible to investigate in what way the method of analysis affects the data since no equivalent built-in values exist to which the measured peak parameters can be compared.

Despite this imitations, it was found necessary to test the error equations using also actual experimental data. Since there was also some interest in examining the reproducibility of the results obtained for a given scmple, it was decided to perform an analysis that would combine both. With this in mind, the data obtained from the anelysis of three aluminum runs taken under almost identical experimental conditions using the internal-sample facility were examined. The results are shom in Table AIII(4). Pertinent information on these runs is presented in Table AIII(3). Note the correction factors used to reduce all three runs to the same flux time value. Also, in Run 1 , there was an extra 1/4inch plate (Pb) between the sample and the detector and it was therefore necessary to correct for the additional attenuation of the gamma rays in passing through this extra length of lead. This was carried out using the data in Table IV(2).

Only peaks whose estimated stendard deviation wes less then 20 percent vere considered in this comparison. The estimated errors in the peaks are those predicted by equations (A3.16) and (A3.18). The residual errors were eveluated using equation (A3.19); sample calculations are shown
in Table AIII(3).
This analysis has shom that in most cases the three different sets of peak areas, both Gaussian and straightsums, are within the estimated standard deviation computed for each case. Also, the estimated standard deviation in the averaged peak areas are close to those obtalned by equation (A3.19). Finally, in comparing the two methods of area determination, note that there is better agreement between the peak areas determined by the Gaussian approach then between the corresponding ones obtained by the straightsums technique; the residuals in the former case are less than those in the latter.

TABLE AIII(3)

PERTINENT INFORMATION ASSOCIATED WITH THE
THREE ALUMINUM RUNS

	Run 1	Run 2	Run 3
Area correction factor (\dagger)	1.021	1.011	1.011
Channel-energy conversion factor, C, (keV/channel)	2.172	1.989	1.988
Flux-time correction factor	0.838	1.045	1.000
lIst const. in w-E equation	7.892	7.048	7.459
Ind const. in w-E equation	-3.942	0.466	-2.857
Ord const. in w-E equation	17.639	12.239	15.605

Sample Calculations

First Peak, Gaussian Method
Peak Area Estim. Error Error Resid.

Run 1
Run 2
Run 3
Average
995.3
810.1
759.9
855.1 ${ }^{\text {(a) }}$
$\frac{\text { Estim. Error }}{194.4^{(\mathrm{b})}}$ 135.4
143.8

$$
92.4^{(c)}
$$

$71.6^{(d)}$
(a) $(995.3+810.1+759.9) / 3=855.1$
(b) Estimated by equation (A3.18)
(c) $\left(194.4^{2}+135.4^{2}+143.8^{2}\right)^{\frac{1}{2}} / 3.0=92.4$
(d) $\left(\sum_{i=1}^{3}\left(A_{i}-855.1\right)^{2}\right)^{\frac{1}{2}} / 1.414=71.6$

TABLE AIII(4) COMPARISON OF THE THREE ALUMINUM RUNS -- PAIR SPECTROMETER, INTERNAL SAMPLE

		REF.	GAUSSIAN METHCD			METHOD OF SUNS		
NC.	ENERGY KEV		PEAK $\triangle R E A$	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \text { RESID } \end{aligned}$	PEAK AREA	ERROR ESTIM	$\begin{aligned} & \text { ERRCR } \\ & \text { RES IC } \end{aligned}$
1	1624.7	RUN 1	995.3	194.4		1315.8	325.2	
	1620.1	RUN 2	810.1	135.4		$823 \cdot 1$	$227 \cdot 4$	
	1620.0	RUN 3	759.9	143.8		856.4	246.0	
		AVRGE	855.1	92.4	$71 \cdot 6$	998.4	$155 \cdot 6$	159.0
2	1778.5	RUN 1	25870.1	553.6		29406.6	353.2	
	1778.5	RUN 2	27293.2	453.1		30742.8	290.1	
	$1778 \cdot 5$	RUN 3	27159.3	431.8		31924.9	280.7	
		AVRGE	26774.2	278.5	$454 \cdot 1$	30651.4	187.8	727.7
3	1810.5	RUN 1	1593.8	210.7		1512.9	345.6	
	1810.2	RUN 2	1867.2	152.0		2143.1	245.2	
	1810.2	RUN 3	2070.1	156.7		2396.3	254.2	
		$\triangle V R G E$	1843.7	101.1	138.0	2017.4	164.7	262.7
4	2112.9		2052.4	197.9		2642.8	317.3	
	2110.3	RUN 2	1978.6	150.4		2481.2	241.5	
	2111.5	RUN 3	1888.3	153.3		2706.6	251.7	
		AVRGE	1973.1	97.3	47.5	2610.2	157.2	67.1
5	2225.7	RUN 1	1654.1	194.9		1827.9	316.8	
	2221.6	RUN 2	1087.4	146.8		1034.9	244.4	
	2223.6	$\text { RUN } 3$	1115.0	$150 \cdot 3$		1062.0	253.3	
		AVRGE	1285.5	95.5	184.5	1308.3	157.9	259.9
6	2272.8	RUN 1	1468.2	214.7		1260.4	354.7	
	2273.5	RUN 2	1086.2	150.3		1060.6	250.8	
	2272.8	RUN 3	1156.1	145.8		1387.4	252.5	
		AVRGE	1236.8	100.6	117.4	1236.2	167.5	95.1

			GAUSSIAN METHCD			nethed of sums		
NO.	ENERGY KEV	REF.	$\begin{aligned} & \text { PEAK } \\ & A_{R E A} \end{aligned}$	ERROR ESTIM	$\begin{aligned} & \text { ERRCR } \\ & \text { RESID } \end{aligned}$	PEAK AREA	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \text { RESID } \end{aligned}$
7	2283.8	RUN 1	2393.0	217.3		2091.0	346.6	
	2283.2	RUN 2	2825.2	165.0		2726.3	257.4	
	2282.9	RUN 3	2691.9	162.9		3197.0	259.3	
		AVRGE	2636.7	105.9	127.8	2671.4	167.9	320.5
8	2577.7	RUN 1	1255.9	212.0		1082.6	352.1	
	2578.0	RUN 2	1576.5	162.9		1451.0	267.5	
	2578.5	RUN 3	1333.3	160.0		1217.4	268.1	
		AVRGE	1388.6	$103 \cdot 8$	$96 \cdot 6$	1250.3	172.4	107.6
9	2590.4	RUN 1	2864.9	225.8		2501.3	355.2	
	2591.5	RUN 2	2936.3	172.9		2675.0	270.1	
	2590.7	RUN 3	3192.6	174.6		2892.4	274.0	
		AVRGE	2¢57.9	111.2	99.5	2689.6	174.5	113.1
10	2626.2	RUN 1	1379.6	205.4		1370.3	338.9	
	2625.0	RUN 2	1123.3	161.3		1100.8	269.6	
	2626.3	RUN 3	1332.8	160.2		1125.7	268.2	
		AVRGE	1278.5	102.1	78.8	1198.9	169.8	86.0
11	2822.9	RUN 1	3457.4	224.4		3436.5	342.9	
	2822.5	RUN 2	3487.2	180.6		3669.5	277.3	
	2821.6	RUN 3	3260.1	177.4		3386.7	278.2	
		AVRGE	3401.6	112.8	71.3	3457.6	173.8	87.2
12	2961.8	RUN 1	$8940 \cdot 3$	290.6		9493.6	373.5	
	2960.7	RUN 2	9265.4	239.0		9500.4	306.8	
	2960.2	RUN 3	8658.4	225.1		8472.8	296.6	
		AVRGE	8954.7	146.2	175.5	9155.6	189.0	341.

TABLE AIII(4) (CONTINUED)

			GALSSIAN METHCD			METHOC CF SUNS		
NC.	$\begin{gathered} \text { ENERGY } \\ \text { KEV } \end{gathered}$	REF.	PEAK $\triangle R E A$	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	ERROR RESID	PEAK AREA	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERRCR } \\ & \text { RESIC } \end{aligned}$
13	$3034 \cdot 6$	RUN 1	8417.4	290.4		8229.9	381.3	
	3034.5	RUN 2	845.6.6	235.4		8761.0	$310 \cdot 6$	
	$3034 \cdot 3$	RUN 3	7830.6	224.0		7799.7	306.8	
		AVRGE	8249.2	145.3	210.7	$8263 \cdot 5$	193.2	278.0
14	3267.4	RUN 1	1216.7	202.8		1482.6	335.0	
	3267.8	RUN 2	1302.4	164.0		1333.3	270.5	
	3266.2	RUN 3	1375.3	163.3		1086.4	271.4	
		AVRGE	1258.2	102.6	$45 \cdot 5$	1300.8	169.7	115.5
15	3304.1	RUN 1	799.1	210.2		647.3	$352 \cdot 6$	
	3302.9	RUN 2	986.8	171.1		824.5	286.5	
	3302.7	RUN 3	1385.9	169.4		1167.0	282.5	
		AVRGE	1057.3	106.5	173.0	879.6	178.3	152.5
16			1156.5			716.0	$362 \cdot 4$	
	$3412 \cdot 5$	RUN 2	940.3	168.7		1022.7	282.7	
	3411.4	RUN 3	1102.3	166.7		1262.3	281.1	
		AVRGE	1066.4	$107 \cdot 6$	64.9	1000.3	179.6	158.1
17	3437.2	RUN 1	857.4	214.7		732.7	359.6	
	3437.3	RUN 2	782.7	166.4		646.8	279.?	
	3440.3	$\text { RUN } 3$	1112.6	165.5		996.8	285.5	
		AVRGE	917.6	106.7	¢9.9	792.1	179.2	105.3
18	3466.3	RUN 1	7907.3	291.8		7684.7	383.0	
	$3465 \cdot 9$	RUN 2	8737.6	242.9		8592.5	309.4	
	3465.6	RUN 3	8467.6	234.6		8447.7	$309 \cdot 6$	
		AVRGE	8370.8	148.8	244.6	8241.6	193.9	281.6

			GAUSSIAN METHCD			METHCD CF SUMS		
NC.	$\begin{gathered} \text { ENERGY } \\ \text { KEV } \end{gathered}$	REF.	PEAK AREA	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	ERROR RESID	PEAK AREA	ERROR ESTIM	$\begin{aligned} & \text { ERRCR } \\ & \text { RESID } \end{aligned}$
19	3561.9	RUN 1	1089.7	218.4		1290.5	363.4	
	3562.0	RUN 2	1353.8	17 C .2		1588.6	280.4	
	$3560 \cdot 6$	RUN 3	1306.3	170.7		1938.9	286.6	
		AVRGE	1250.0	108.4	81.3	1606.0	$180 \cdot 4$	187.4
20	3592.8	RUN 1	5838.3	266.8		5541.7	372.9	
	3591.6	RUN 2	5750.2	209.9		6104.8	292.4	
	3591.5	RUN 3	6019.4	207.1		6340.9	290.5	
		$A \vee R G E$	5869.3	132.5	79.3	5955.8	$185 \cdot 3$	237.0
21	3791.5	RUN 1	1504.1	210.9		1820.5	343.2	
	3789.4	RUN 2	1082.2	174.9		1044.9	290.8	
	3789.5	RUN 3	1566.7	167.2		1598.7	275.0	
		AVRGE	1384.4	107.0	152.1	1488.0	175.7	230.6
22	3825.5	RUN 1	S 67.6	221.2		796.1	368.1	
	3823.6	RUN 2	946.5	173.1		1059.0	289.3	
		$\text { RUN } 3$	890.6	166.9		892.1	$282 \cdot 4$	
		AVRGE	934.9	108.9	23.0	915.7	182.3	76.8
23	3851.8	RUN 1	4578.7	251.8		5145.5	366.5	
	3849.5	RUN 2	4625.4	206.3		5057.7	301.4	
	3849.7	$\text { RUN } 3$	4711.8	198.8		5017.2	251.9	
		AVRGE	4638.6	127.2	$39 \cdot 0$	5073.5	185.7	37.9
24	3876.6	RUN 1	$3 \in 35.6$	245.8		3490.5	371.1	
	3875.7	RUN 2	3286.7	193.6		2824.0	295.7	
	$3876 \cdot 1$	RUN 3	3061.5	187.4		3181.8	293.3	
		\triangle VRGE	3327.9	121.6	167.0	$3165 \cdot 4$	185.9	192.6

TABLE AIII(4) (CONTINUED)

			GAUSSIAN METHCD			METHOD OF SUMS		
NC.	$\begin{gathered} \text { ENERGY } \\ \text { KEV } \end{gathered}$	REF.	PEAK AREA	$\begin{aligned} & \text { ERRCR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \text { RESID } \end{aligned}$	PEAK AREA	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERRCR } \\ & \text { RESII } \end{aligned}$
25	4017.0	RUN 1	1215.6	216.1		862.9	354.4	
	4013.5	RUN 2	1045.7	167.5		1126.1	277.5	
	4017.8	RUN 3	946.0	163.8		1071.8	275.8	
		$A V R G E$	1069.1	106.3	78.7	1020.3	176.0	80.2
26	4136.0	RUN 1	9996.3	323.9		9844.6	382.5	
	4133.9	RUN 2	10416.1	263.5		11519.9	303.1	
	4133.3	RUN 3	9766.7	249.1		¢ 830.4	301.5	
		$A V R G E$	10059.7	162.1	190.1	10398.3	191.2	560.8
27	4219.1	RUN 1	2741.1	236.6		2959.6	367.5	
	4218.4	RUN 2	2495.2	188.1		2318.9	295.1	
	4217.9	RUN 3	1972.4	185.6		2005.9	302.4	
		AVRGE	2402.9	118.2	226.7	2428.1	186.6	280.7
28	4261.5	RUN 1	9818.8	323.0		S779.9	383.5	
	4259.8	$\text { RUN } 2$	9996.2	258.9		11030.8	300.1	
	4259.6	$R U N 3$	10175.7	257.4		10959.0	311.8	
		AVRGE	SS96.9	162.5	103.1	10589.9	192.7	405.5
29	4381.0	RUN 1	1075.5	206.0		1270.9	337.9	
	4378.3	RUN 2	1013.4	168.5		827.9	278.1	
	4377.9	$\text { RUN } 3$	962.3	$162 \cdot 4$		831.1	271.5	
		AVRGE	1018.4	103.9	33.9	976.6	171.7	147.1
30	4407.1	RUN 1	1038.6	209.6		974.8	344.3	
	4407.8	RUN 2	1135.6	169.9		1199.2	279.3	
	4405.7	$\text { RUN } 3$	1027.7	165.4		869.8	275.8	
		AVRGE	1067.3	105.5	34.3	1014.6	174.0	97.1

TABLE AIII (4) (CONTINUED)

			GAUSSIAN METHCD			METHOD OF SUMS		
NO.	$\begin{gathered} \text { ENERGY } \\ \text { KEV } \end{gathered}$	REF.	PEAK $A R E A$	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \text { RESID } \end{aligned}$	PEAK AREA	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERRCR } \\ & \text { RESID } \end{aligned}$
31	4426.5	RUN 1	1255.2	212.3		1298.5	345.1	
	4427.8	RUN 2	1600.9	171.6		1721.4	276.3	
	4427.1	RUN 3	1766.6	167.7		1530.5	270.1	
		$\triangle V R G E$	1554.2	106.8	138.1	1516.8	172.7	122.3
32	465 s .9	RUN 1	3587.6	251.1		3707.5	376.3	
	4660.4	RUN 2	4222.0	212.4		3879.3	312.8	
	4659.8	RUN 3	4345.2	201.6		4201.0	296.1	
		$A V^{R} G E$	4051.6	$128 \cdot 6$	234.7	3929.3	190.6	144.6
33	4690.8	RUN 1	6885.7	295.4		6878.5	395.1	
	4690.7	RUN 2	6684.5	$235 \cdot 3$		7158.2	316.6	
	4690.4	RUN 3	7580.9	237.3		7261.5	313.4	
		AVRGE	$7050 \cdot 4$	148.7	271.6	7099.4	198.5	114.4
34	4734.6	RUN 1	9150.0	321.2		9739.9	354.9	
	4733.6	RUN 2	8909.7	262.8		9035.9	330.4	
	4733.7	RUN 3	8904.7	247.6		9789.7	311.2	
		\triangle VRGE	8988.1	161.1	81.1	9521.8	200.5	243.4
35	4765.6	RUN 1	1720.0	231.5		1822.7	371.7	
	4765.1	RUN 2	$1487 \cdot 2$	189.9		981.6	308.8	
	4763.2	RUN 3	1268.6	176.2		1395.8	291.8	
		AVRGE	1492.0	115.8	130.3	1400.0	188.2	242.8
36	4811.4	RUN 1	1423.4	224.9		1102.4	363.3	
	4810.5	RUN 2	793.6	174.0		590.3	289.1	
	4809.0	RUN 3	1226.7	171.1		1045.7	282.3	
		$A V R G E$	1147.9	$110 \cdot 6$	186.0	912.8	181.1	162.1

			GAUSSIAA METHCD			METHOD OF SUNS		
NO.	$\begin{gathered} \text { ENERGY } \\ \text { KEV } \end{gathered}$	REF.	PEAK AREA	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERRCR } \\ & \text { RES ID } \end{aligned}$	PEAK AREA	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERRCR } \\ & \text { RESIC } \end{aligned}$
37	4904.3	RUN 1	4459.9	248.4		4918.1	351.6	
	4903.2	RUN 2	4911.8	203.8		5336.7	282.6	
	4903.2	RUN 3	4932.1	199.8		4928.4	280.4	
		$A V R G E$	4767.s	$126 \cdot 1$	154.2	5061.1	177.0	137.5
38	4950.6	RUN 1	$1110 \cdot 6$	$216 \cdot 7$		803.5	352.8	
	4949.9	RUN 2	857.7	167.3		772.7	276.4	
	4947.0	RUN 3	844.1	160.1		660.6	266.9	
		\triangle VRGE	937.5	105.7	86.7	745.6	173.9	43.4
39	5014.4	RUN 1	1588.0	215.2		1485.7	342.3	
	5014.9	RUN 2	1639.2	170.0		1248.6	269.5	
	5014.9	RUN 3	$1814 \cdot 1$	173.1		1573.3	276.9	
		AVRGE	1680.4	108.1	68.4	1435.9	172.1	57.0
40	5103.8	RUN 1	1133.7	199.7		1419.5	322.6	
	5101.4	RUN 2	765.1	164.4		566.1	271.7	
	5104.9	RUN 3	$629 \cdot 1$	$157 \cdot 3$		$4 \mathrm{~S} 3.9$	264.3	
		AVRGE	844.0	100.9	150.4	826.5	165.9	297.2
41	5135.2	RUN 1	5031.4	249.6		5207.0	$338 \cdot 3$	
	$5134 \cdot 2$	RUN 2	4341.6	192.8		5260.2	269.9	
	5134.3	RUN 3	4524.0	191.8		4517.2	269.4	
		AVRGE	4632.4	123.0	206.4	4994.8	169.9	239.3
42	5184.0	RUN 1	1400.0	204.0		1781.2	$325 \cdot 5$	
	5180.0	RUN 2	1072.3	162.5		1099.4	264.1	
	5181.0	RUN 3	1586.2	161.5		1918.7	258.9	
		AVRGE	1352.8	102.2	150.2	1599.8	164.2	253.3

			GAUSSIAN METHCD			METHCD OF SUNS		
NO.	$\begin{gathered} \text { ENERGY } \\ \text { KEV } \end{gathered}$	REF.	$\begin{aligned} & \text { PEAK } \\ & \text { AREA } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \text { RESID } \end{aligned}$	$\begin{aligned} & \text { PEAK } \\ & \text { AREA } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	ERRGR RESID
43	5412.7	RUN 1	2948.1	225.2		3220.4	333.5	
	5410.1	RUN 2	3057.0	178.8		3382.5	262.8	
	5411.7	RUN 3	3119.5	177.2		3351.9	262.9	
		A VRGE	3041.6	112.6	$50 \cdot 1$	3318.3	166.5	49.7
44	5525.2	RUN 1	2256.5	209.4		2232.8	315.7	
	$5526 \cdot 0$	RUN 2	2188.6	168.1		2344.9	256.0	
	5526.6	RUN 3	1743.9	163.2		1784.3	257.5	
		AVRGE	2063.0	104.7	160.7	2120.6	160.4	171.3
45	5587.2	RUN 1	1097.9	202.1		1327.0	325.2	
	$5585 \cdot 0$	RUN 2	1583.1	167.8		1322.6	264.3	
	5586.0	RUN 3	1819.6	161.0		1412.3	251.0	
		\triangle VRGE	1500.2	102.7	212.4	1354.0	162.8	25.2
46			702.7	194.2		668.3	317.2	
	5710.7	$\text { RUN } 2$	1117.8	161.2		1104.5	259.3	
	5707.9	RUN 3	540.5	151.5		923.5	247.6	
		AVRGE	920.4	98.1	120.3	898.7	159.6	126.5
47	5920.8	RUN 1	4459.3	247.0		4572.5	339.7	
	5920.2	RUN 2	4017.8	191.2		3923.8	266.3	
	5920.8	$\text { RUN } 3$	4624.4	186.8		4586.9	250.0	
		AVRGE	4367.2	121.3	$181 \cdot 1$	4361.1	166.3	218.7
48	6018.3	RUN 1	4291.7	247.6		5034.2	345.2	
	6018.0	RUN 2	4320.3	197.4		4390.7	273.0	
	6016.9	RUN 3	4584.4	195.8		4490.5	269.3	
		AVRGE	4398.8	124.1	93.2	4638.5	172.0	200.0

TABLE AIII(4) (CONTINUED)

			GAUSSIAN METHCD			METHOD OF SUNS		
NC.	ENERGY	REF.	PEAK	ERROR	ERROR	PEAK	ERROR	ERRCR
	KEV		AREA	ESTIM	RESIO	AREA	ESTIM	RESID
49	6101.1	RUN 1	3824.9	$238 \cdot 3$		3669.2	333.4	
	6101.2	RUN 2	3776.7	189.6		3650.2	266.0	
	6102.2	Run 3	3823.0	184.7		4225.9	260.4	
		AVRGE	3808.2	118.7	15.9	3848.4	166.6	188.8
50	6201.1	RUN 1	947.5	196.5		794.0	313.9	
	6198.0	RUN 2	996.6	153.8		880.6	245.9	
	6197.6	RUN 3	828.4	151.3		747.8	247.0	
		AVRGE	$924 \cdot 1$	$97 \cdot 3$	49.9	807.5	156.3	38.9
51	6317.7	RUN 1	2447.2	216.1		2651.9	318.7	
	6316.6	RUN 2	2507.2	173.0		2406.7	254.9	
	6315.7	RUN 3	2556.2	174.4		3075.6	253.2	
		AVRGE	$2636 \cdot 8$	$109 \cdot 1$	160.6	2711.4	160.1	195.4
52	6438.8	RUN 1	878.2	199.9		593.5	319.7	
	6439.0	$\text { RUN } 2$	584.6	151.9		387.6	248.5	
	6440.5	RUN 3	799.7	149.6		660.0	243.5	
		AVRGE	754.2	97.4	87.8	547.0	157.5	ع2.0
53	6708.8	RUN 1	1175.1	205.9		$687 \cdot 2$	322.2	
	6708.7	RUN 2	848.7	156.3		748.2	251.1	
	6709.6	RUN 3	1053.7	152.2		1015.4	242.7	
		$\triangle \mathrm{A} R G E$	$1025 \cdot 8$	100.0	95.3	816.9	158.4	100.8
54	6988.6	RUN 1	749.6	203.4		444.8	325.7	
	6990.0	RUN 2	659.5	159.1		484.1	258.3	
	6990.8	RUN 3	854.7	157.9		657.7	255.3	
		AVRGE	754.6	100.9	56.4	528.9	162.6	65.4

TABLE AIII(4) (CONTINUED)

			GAUSSIAN METHCD			METHOD OF SUNS		
NC.	$\begin{gathered} \text { ENERGY } \\ \text { KEV } \end{gathered}$	REF.	PEAK AREA	ERROR ESTIM	$\begin{aligned} & \text { ERROR } \\ & \text { RESID } \end{aligned}$	$\begin{aligned} & \text { PEAK } \\ & \text { AREA } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERRCR } \\ & \text { RESID } \end{aligned}$
55	7058.5	RUN 1	2455.2	232.5		2199.2	340.0	
	7057.2	RUN 2	2248.9	178.8		2177.4	265.3	
	7054.7	RUN 3	2259.8	179.0		2283.1	268.6	
		AVRGE	2334.6	114.5	80.4	2219.9	169.4	32.3
56	7156.6	RUN 1	Ste. 9	$224 \cdot 5$		653.9	357.6	
	$7160 \cdot 6$	RUN 2	1192.2	173.0		1099.8	273.3	
	7158.1	RUN 3	1087.5	168.8		1013.0	270.3	
		AVRGE	1080.2	107.9	66.9	922.2	175.0	136.5
57			882.2			596.4	362.4	
	$7178 \cdot 0$	RUN 2	1046.3	172.8		955.7	275.5	
	7174.5	$\text { RUN } 3$	1000.1	171.4		$922 \cdot 1$	276.6	
		AVRGE	976.2	110.8	48.9	824.8	177.5	114.6
58		RUN 1	2460.0	253.6		1908.6	378.1	
	7244.0	RUN 2	2818.2	194.7		3213.9	284.0	
	7244.0	$\text { RUN } 3$	2453.4	194.8		2232.6	$2 c 3.4$	
		AVRGE	2577.2	124.8	129.5	2451.7	185.5	392.4
59	7277.7	RUN 1	1661.3	248.5		1369.6	385.7	
	7274.9	RUN 2	1475.1	183.0		1711.1	286.3	
	7275.7	RUN 3	$16 \subseteq 7 \cdot 5$	191.0		1446.5	299.5	
		AVRGE	1612.6	121.0	67.6	1509.0	188.7	103.4
60	7305.0	RUN 1	1856.4	246.9		1752.4	278.7	
	7306.6	RUN 2	1978.5	191.9		1607.2	292.7	
	7307.5	RUN 3	2467.1	193.9		2011.8	290.4	
		AVRGE	2100.7	122.7	186.6	1750.4	186.6	118.3

TABLE AIII(4) (CONTINUED)

			GALSSIAN METHCD			METHCC OF SUNS		
NC.	$\begin{gathered} \text { ENERGY } \\ \text { KEV } \end{gathered}$	REF.	$\begin{aligned} & \text { PEAK } \\ & \text { AREA } \end{aligned}$	$\begin{aligned} & \text { ERPCR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERRCR } \\ & \text { RESID } \end{aligned}$	PEAK $\triangle R E A$	$\begin{aligned} & \text { ERROR } \\ & \text { ESTIM } \end{aligned}$	$\begin{aligned} & \text { ERRCR } \\ & \text { RESIC } \end{aligned}$
61	$7367 \cdot 1$	RUN 1	7654.1	326.1		6956.6	397.6	
	7368.1	RUN 2	6375.4	241.0		6834.7	299.4	
	$7368 \cdot 4$	RUN 3	6484.0	243.1		6366.7	308.0	
		AVRGE	6837.8	157.t	499.4	6719.3	195.1	175.8
62	7694.5	RUN 1	3515.9	279.2		3463.7	396.9	
	7693.8	RUN 2	2728.8	212.0		2296.7	312.7	
	7694.4	RUN 3	3282.4	215.8		3354.4	311.1	
		\triangle RRGE	3209.0	137.2	243.2	3038.3	197.8	372.1
63	7723.8	RUN 1	24761.4	581.9		24562.7	420.4	
	7723.8	RUN 2	24851.0	511.9		24302.1	354.0	
	7723.8	RUN 3	24481.9	479.8		24086.8	338.7	
		AVRGE	24698.1	303.8	111.8	24317.1	215.2	139.0
64			6176.4	$250 \cdot 8$		5433.2	224.3	
	7914.3	RUN 2	6275.8	203.3		6177.3	172.3	
	7914.7	RUN 3	6283.0	202.9		5781.5	181.7	
		AVRGE	0245.1	127.1	34.4	5757.3	112.1	215.0
65	7539.0	RUN 1	1139.3	143.6		1017.t	156.5	
	7934.1	RUN 2	933.4	106.8		923.4	151.2	
	7932.4	$\text { RUN } 3$	$6 \in 2 \cdot 3$	$105 \cdot 6$		612.2	159.4	
		$\triangle \mathrm{VRGE}$	911.7	6s. 3	138.1	851.1	98.2	127.5
66	8508.4	RUN 1	451.8	98.9		278.4	137.2	
	8511.0	RUN 2	4 ¢C. 8	72.8		359.3	99.6	
	8513.3	RUN 3	573.1	78.9		431.2	106.2	
		AVRGE	455.2	48.5	39.0	356.3	66.7	44.2

TABLE AIII(4) (CONTINUED)

			GALSSIAN METHCD			NETHUC CF SUNS		
NC.	ENERGY	REF.	PEAK	ERRCR	ERROR	PEAK	ERROR	ERRCR
	KEV		AREA	ESTIM	RESID	AREA	ESTIM	RESIC
67	8534.7	PUN 1	553.9	104.0		341.3	140.6	
	8533.1	RUN 2	543.1	74.9		558.9	99.8	
	8532.8	RUN 3	658.3	80.4		531.7	102.1	
		AVRGE	598.4	50.4	50.0	477.4	66.8	68.3
6ε	3886.0	RUN 1	1787.4	140.1		1820.0	131.6	
	8881.5	RUN 2	1318.9	97.5		1267.2	101.3	
	8884.2	RUN 3	14.7 .6	100.9		1423. ${ }^{\text {c }}$	98.1	
		AVRGE	1534.6	66.2	136.5	1503.4	64.4	$164 \cdot 6$
69	8997.1	RUN 1	1243.1	11 t. 5		1165.9	109.4	
	8995.4	RUN 2	と¢8.5	83.6		820.2	¢ 2.8	
	89,95.0	RUN 3	¢88.2	83.8		845.6	85.9	
		AVRGE	1043.2	55.4	103.?	943.9	55.7	111.3

Appendix IV

PROMINENT CAPTURE GAMMA RAYS OF THE ELEMENTS AND THEIR MINIMUM MEASURABIE WEIGHTS IN STAINLESS STEET

It was pointed out in Section 3.6, and again later in Sec. 7.2, that any of the characteristic capture gamma rays of an element can be used in the application of equation (3.24) for the evaluation of its minimum measurable weight in a given sample. In order to evaluate the limits of analytical sensitivity, however, consideration was given only to 12 of the most prominent capture gamma rays of each element.

The limits of analytical sensitivity for the detection of 75 elements in stainless steelware given in Chapter VII for the Compton suppression system and the pair spectrometer. In that chapter, however, it is only the data associated with the most effective gamma ray of each element that was reported. This Appendix is devoted, in part, to the presentation of the minimum weight requirements associated with all the 12 gamma rays chosen for each element. The data is presented in a form similar to Table VII(I) where the limits for quantitative determination of Mn were considered. The experimental information required for the application of equation (3.24) is given in Sec.7.2 and will not be repeated here. The results for the Compton suppression system appear in Table AIV(l); those for the pair spectrometer are listed in Table AIV(2).

It was noted in Sec. 7.2 that the minimum weight require-
ments were evaluated under the assumption that interference effects are not present. As an aid to resolving such effects in cases where their presence cannot be neglected, there is presented in Table AIV(3) an ordered list of the prominent capture gamma rays of the elements. The data in this table were extracted from reference [R2]. The intensities were converted to number of gamma rays emitted per gram of element of natural composition per incident thermal neutron $/ \mathrm{cm}^{2}$ by using equation (3.25). In this set of units interference effects may be resolved with less effort since the relative significance of gamma rays originating from different elements may now be evaluated directly.

Recall that in all three tables listed below only twelve gamma rays have been considered for each element. Four of these have energies below 2 MeV and the rest are above this energy limit. Note that $\mathrm{H}, \mathrm{C}, \mathrm{Pb}$ and Bi have less than 12 prominent gamma rays. The symbol D next to the $477.7-\mathrm{keV}$ gamma ray of boron and the $2754.4-\mathrm{keV}$ gamma ray of sodium indicates that these are decay gamma rays and were included accidentally. The symbol E which appears throughout these tables stands for the exponential power on the base 10; thus $0.123 \mathrm{E} 02=12.3$ and $0.123 \mathrm{E}-02=0.00123$.

A complete ordered list which includes all the identified capture gamma rays of 75 elements was publised recently in a separate report [H7].

TABLE AIV(1) COMPTON SUPPRESSION

limits for quantitative deterninaticn

ELEM.	ENERGY	INTENSITY	MIN.AREA		NIN.WT	WT PERCENT
AG	159.5	0.124 E 00	0.319 E	05	0.24E-01	$0.30 E-01$
AG	237.0	$0.477 E-{ }^{1}$	$0.266 E$	05	$0.55 E-01$	$0.70 \mathrm{E}-\mathrm{Cl}$
AG	295.6	$0.198 \mathrm{E}-\mathrm{n}^{1}$	$0.209 E$	05	0.12 E 0	0.15 E On
AG	380.4	$0.129 \mathrm{E}-01$	0.153 E	05	0.16 E 30	0.20 O 20
AG	2048.6	O.169E-02	0.445 E	04	0.15 E 01	0.1 CE 01
AL	248.7	0.392E-03	0.251 E	05	0.65 E 01	0.82 ECl
AL	329.4	$0.333 \mathrm{E}-03$	0.185 E	05	0.66 F 01	C.84E Cl
AL	¢ 83.4	$0.205 \mathrm{E}-\mathrm{C} 3$	0.6665	04	0.93 El	0.11 E 2
AL	1623.1	0.168E-03	0.527 E	04	C.14E 62	0.17 E 02
AL	2967.4	0.323E-03	0.385 E	04	0.11 E 02	C.14E C2
AS	236.7	O.109E-02	0. 266 E	C5	$0.24 E 01$	$0.31 E 01$
AS	259.2	C. 503E-C3	0.205 E	05	0.46 El	0.58 El
AS	472.2	0.147E-02	0.128 E	05	C.13E 01	C.17E O1
AS	1465.9	0.781E-03	0.557 E	04	$0.28 E 01$	0.35 ECl
ΔU	193.5	0.123E-01	0.319 E	C5	C. 24 ECO	0.3 CE OO
$A U$	215.7	0.298E-01	0.299 E	05	0.95E-01	0.12 E 0
$A U$	248.2	$0.165 E-01$	$0.257 E$	C5	$0.15 E^{00}$	$0.20 E 00$
AU	261.5	$0.175 \mathrm{E}-01$	0.237 E	05	$0.14 E$ On	$0.18 E$ CO
B	258.1	0.938E-04	ก. 238 E	C5	C. $26 E 02$	0.33 E 22
B	477.7 D	0.267 E-01	ก.125E	05	$0.74 \mathrm{E}-\mathrm{n} 1$	C. $93 \mathrm{E}-01$
R	497.5	0.126E-03	0.119 E	C. 5	0.15 E 02	$0.15 E O$.
B	501.7	0.1CSE-03	0.118 E	05	0.18 E 02	0.22 E 0
B	2072.7	0.301E-04	2.451 E	04	C. $86 E$ C2	$0.11 E^{03}$
B	2532.3	C. 1 99E-04	0.411 E	04	0.15 O	C.LSE O3
RA	627.5	0.738E-03	0.980 E	C4	$0.26 E 01$	0.33 E O 1
BA	818.7	0.507E-03	0.768 E	04	0.37 E 01	0.47 E 01
BA	1245.9	C.27CE-C3	0.587 E	C4	0.73 E O1	0.93 E 01
BA	1435.5	$0.515 \mathrm{E}-03$	0.566 E	04	0.42 ECl	0.53 E Cl
BA	2186.0	0.123E-03	0.431 E	04	C.21E J2	C.27E 02
ea	2639.4	$0.114 \mathrm{E}-\mathrm{C} 3$	0.4 C 2 E	04	C.28E C. 2	$0.35 \mathrm{E} \mathrm{C2}$
BE	853.5	0.161E-03	0.728 E	04	0.11 E 02	0.14 E 02
BE	2589.9	$0.152 \mathrm{E}-\mathrm{C} 3$	0.403 E	04	C. 20 E C2	$0.26 \mathrm{EC2}$
BR	156.9	0.339E-02	0.320E	05	$0.86 E 00$	0.11 E 01
BR	246.1	0.746E-02	$0.259 E$	05	0.35 E 2 C	C.44E DC
BR	315.9	0.266E-02	$0.191 E$	05	0.83 E 00	0.11 El
BR	1199.1	$0.233 \mathrm{E}-02$	0.596 E	04	C.84E CO	0.11 ECl
C	1261.2	C. 4 C.7E-C.4	0.587 E	C4	0.40 E 02	0.51 E 0
CA	520.0	$0.384 \mathrm{E}-03$	0.114 E	05	C.50E, $\mathrm{Cl}^{\text {l }}$	$0.64 E 01$
CA	726.9	$0.138 \mathrm{E}-03$	0.842 E	04	0.14 E 02	$0.17 \mathrm{E} ~ 02$
CA	1388.3	$0.142 \mathrm{E}-03$	0.579E	C 4	$0.15 \mathrm{EC2}$	0.1 CE 02

TABLE AIV(1) (CONTINUED)
LIMITS FOR QUANTItATIVE DETERNinaticn

ELEN.	ENERGY	intens ity	MIN. AREA		MIN. WT	WT PERCENT
CA	1724.0	$0.136 E-03$	0.495 E	C4	0.17 E 02	$0.21 \mathrm{EC2}$
CA	1942.5	$0.339 \mathrm{E}-02$	0.459 E	04	0.73 ECC	C.S2E OC
CA	2129.8	$0.163 E-03$	0.444 E	04	$0.16 E 02$	$0.20 E 02$
CA	2811.0	n.154E-n3	0.385 E	04	C.22E C2	0.28 E 02
CO	558.6	$0.154 \mathrm{EC2}$	0.107 E	05	0.12E-03	$0.16 \mathrm{E}-03$
CD	651.3	ก.295E 01	0.946 E	C. 4	$0.65 E-03$	0. 2 3E-C3
CD	806.0	C.9ROE 00	0.771 E	C. 4	C.19E-02	$0.24 \mathrm{E}-02$
CD	1364.2	$0.105 E 01$	0.58 CE	04	ก.20E-02	$0.25 \mathrm{E}-02$
CD	2455.8	0.876 C0	0.416 E	C4	$0.34 E-02$	$0.43 \mathrm{E}-\mathrm{C} 2$
CD	2550.1	0.310 EO	0.405 E	04	$0.98 \mathrm{E}-02$	$0.12 \mathrm{E}-01$
CD	2659.8	0.603 ECC	0.391 E	04	C. $52 \mathrm{E}-\mathrm{C} 2$	0.66E-02
$C D$	2767.3	0.279 CO	0.396 E	04	$0.12 \mathrm{E}-\mathrm{O}_{1}$	$0.15 \mathrm{E}-$-1
$C D$	3000.0	C.31CE CC	C. 381 E	C4	$0.12 \mathrm{E}-01$	$0.15 E-C 1$
CE	662.3	$0.903 \mathrm{E}-03$	0.916 E	04	0.21 E 01	0.27 FCl
CE	1436.8	C. 13 CE-0?	0.567 E	C4	0.17 E 02	0.21 E 02
CE	1454.3	$0.104 E-C 3$	C. 561 E	C4	0.21 E 02	$0.27 \mathrm{EC2}$
CE	1810.1	0.142E-03	0.476 E	64	0.16 E 02	0.21 E O2
CE	2041.5	0.254E-C4	0.445 E	c 4	0.86 Ec C2	$0.11{ }^{\text {O }} 03$
CE	2272.3	$2.367 E-04$	0.427 E	C4	$0.73 \mathrm{EC2}$	0.93 E -2
CL	518.3	O.t2CE-01	0.115 E	C5	$0.31 \mathrm{~F}-01$	C. $4 C E-C 1$
CL	1165.4	n.615F-01	0.604 E	04	$0.31 \mathrm{E}-\mathrm{O}$	$0.40 \mathrm{~F}-\mathrm{Cl}$
CL	1951.3	C.121E CC	0.459 E	C4	C. 2CE-C1	$0.26 E-01$
CL	1957.5	$0.853 \mathrm{E}-01$	O. 459 E	C4	0.29E-01	C. $37 \mathrm{E}-\mathrm{Cl}$
CL	2864.4	0.382E-C1	0.385 E	C4	C.91E-01	0.11 O
CO	230.5	0.684E-01	0.282 E	C 5	C. $40 \mathrm{E}-01$	$0.51 \mathrm{E}-\mathrm{Cl}$
CO	277.7	0.59SE-C1	0.224 E	C5	0.40E-01	0.51E-01
CO	556.2	$0.455 \mathrm{E}-\mathrm{Cl}$	0.107 E	05	C.42E-Cl	$0.53 \mathrm{E}-\mathrm{Cl}$
CO	1830.3	$0.191 F-\cap 1$	0.473 E	04	n.12E 00	0.16 ECO
CR	749.2	$0.355 \mathrm{E}-02$	0.8C9E	04	0.52E 00	0.66 ECC
CR	825.1	$0.2 \in 3 \mathrm{E}-\mathrm{C} 2$	0.751 E	C4	$0.21 E$ OC	$0.27 E$ OC
CR	1783.8	$0.195 E-02$	0.480 E	04	0.12 El	0.15 E C1
CR	1898.5	0.137E-C2	0.467 E	04	$0.18 \mathrm{E}^{01}$	0.22 E O
CR	2238.9	$0.268 \mathrm{E}-\mathrm{C} 2$	0.421 E	04	C.G7E CC	$0.62 \mathrm{E}=1$
CR	2321.0	$0.195 \mathrm{E}-02$	0.419 E	8.4	0.14 El	0.1 éE Cl
CS	234.8	0.439E-02	0.274 E	C5	C.tje OC	C.78E CS
CS	308.0	$0.620 \mathrm{E}-02$	0.147 E	05	$0.30 E 00$	0.46500
CS	1300.9	0.750E-C.2	0.583 E	C4	$0.26 E \mathrm{no}$	0.33 E ?
CS	1376.7	$0.414 \mathrm{E}-\mathrm{C} 2$	C. 583 F	C4	C.52F CO	0.65 F OC
CS	2074.2	C.138F-02	0.451 E	C4	0.19 OL	0.24 El
Cu	278.3	0.109E-01	C.222E	05	0.22E 70	$0.28 E C C$
Cu	385.2	0.254F-C2	0.151 F	05	C:79E CO	$0.10 E^{\text {O }}$
CU	608.9	$0.289 E-C 2$	0.100 E	C5	0.67 E OC	0.85 ECC
CU	1672.4	0.423E-03	0.495 E	04	勺.52E 01	$0.66 \mathrm{El}^{1}$

LIMItS for quantitative determinaticn

ELEM.	ENFRGY	Intensity	MIN. AR		MIN.WT	WT PERCENT
OY	185.7	$0.671 E 00$	0.291 E	05	$0.39 E-C 2$	0.4 SE-02
DY	413.2	0.237 ECC	0.142 E	C 5	$0.84 \mathrm{E}-02$	$0.11 \mathrm{E}-01$
CY	497.6	0.150E CO	0.119 E .	05	C. 13E- 1	$0.16 E-31$
DY	538.4	0.244 E 00	0.109 E	05	$0.78 \mathrm{E}-02$	$0 . c ¢ E-C 2$
DY	2067.4	C. $300 \mathrm{E}-0.1$	0.450 E	c 4	0.86F-01	0.11 E 0
OY	2703.4	0.809E-01	0.398 E	04	C.4DE-C1	$0.51 \mathrm{E}-\mathrm{Cl}$
DY	2733.6	0.410E-01	0.393 E	04	$0.80 E-21$	O.lCE OO
DY	2949.5	$0.444 \mathrm{E}-\mathrm{Cl} 1$	ก.381E	04	n.81E-C1	C.ICE OS
ER	285.2	C.683E-C1	0.220 E	05	0.35E-01	0.44E-31
ER	$73 \cap .6$	$0.433 \mathrm{E}-0.1$	0.835E	C4	C.43E-01	C.55E-C1
ER	816.1	3.198 E 0	$0.770 E$	04	C.SCE-02	0.13E-01
ER	914.5	C.25se-Cl	0.687 E	04	0. EGE-01	$0.98 \mathrm{E}-01$
ER	2159.7	$0.287 E-C 2$	C.430E	C4	C.ESF CO	$0.11 E 01$
ER	2341.6	C. $380 \mathrm{E}-02$	$0.425 E$	04	$0.73 E$ OC	C.SEE OC
ER	2668.7	O. $380 \mathrm{E}-02$	$0.395 E$	C4	C.84E C0	C.11E Cl
EU	208.0	0.931 E 0	0.314 E	05	C. 32E-02	$0.40 \mathrm{E}-02$
EU	374.6	0.124 E On	0.157 E	C5	C. 16E-01	2.21E-Cl
EU	1658.6	$0.501 \mathrm{E}-\mathrm{Cl}$	0.502 E	04	$0.44 \mathrm{E}-01$	0.56E-C1
EU	1890.2	0.605E-01	0.469 E	04	0.4TE-01	$0.51 \mathrm{E}-01$
EU	2048.0	$0.363 \mathrm{E}-\mathrm{Cl}$	0.445 E	04	0.70E-C1	$0.88 \mathrm{E}-\mathrm{Cl}$
EU	2053.5	$0.363 \mathrm{E}-01$	$0.446 E$	04	0.71E-01	C.SCE- 31
EU	2412.0	0. $225 \mathrm{E}-01$	$0.422 E$	04	C. 13 ECC	C.16E 00
EU	2697.5	?.449E-n 1	$2.401 E$	04	0.73E-C1	O.S3E-01
EU	2859.7	$0.311 \mathrm{E}-\mathrm{Cl}$	0.385 E	04	$0.11 E 00$	0.14 E 00
F	326.7	C.115E-03	n. 186 E	05	$0.19 E 02$	C.24E 02
F	596.2	9.221E-C.3	0.102 E	05	0.69 El	0.87 E 01
F	1749.0	0.158E-C3	0.490 E	04	$0.14 E^{0} 2$	$0.18 \mathrm{E} ~ 32$
F	1889.5	0.175E-C3	C.468E	04	0.14 E 02	0.18 E -2
F	2452.8	$0.354 E-04$	0.412 E	04	0.82 E 02	D.1CE G3
F	2528.1	$0.292 \mathrm{E}-04$	0.412 E	04	C.10E CZ	0.13 E 03
F	26C1.9	$0.310 \mathrm{E}-\mathrm{C4}$	0.4 CBE	04	0.10 E 03	0.13 E 03
F	2682.8	ก.268F-04	0.401 E	04	C.12E C3	0.15 E 33
FE	352.5	$0.307 E-02$	0.172 E	05	0.70 E 00	
FE	692.1	$0.139 \mathrm{E}-02$	0.900 E	04	0.14 E 01	0.19 F 31
FE	1613.0	0.165E-02	0.525 F	04	0.14 E 01	0.17 E 01
FE	1724.8	0.227E-C2	0.456 E	C4	0.1 CE Cl	C.13E 01
GA	250.9	0.232E-02	0.250 E	05	0.11 El	0.14 E 21
GA	393.7	0.158E-C2	0.148 E	05	C.l3E 01	0.16 ECl
GA	651.0	0.103E-0?	$0.946 E$	C4	$0.19 \mathrm{E}^{01}$	0.24 El
GA	E91.7	$0.276 \mathrm{E}-\mathrm{C} 2$	0. 9COE	04	0.70 E 00	0.88 E 00
GD	780.3	0.253E 01	0.785 E	C4	$0.73 E-03$	$0.53 E-03$
GO	943.7	$0.635 \mathrm{E} \mathrm{O1}$	c. 673 E	C4	0.28E-03	$0.36 E-03$
GO	961.8	0.461 El	0.674 E	C4	C. 4 DE-C3	0.5CE-C3

TABLE AIV(1) (CONTINUED)
LIMITS for quantitative ceterninatica

ELEM.	ENERGY	INTENSITY	MIN.AR	REA	MIN.WT	WT PERCFAT
GD	1185.4	0.888 Cl	0.6 C 3 E	04	C.22E-03	0.28E-03
GD	2107.0	2.374E 00	0.446 E	04	C. 6 CE-C 2	C. 8 عE-C2
GD	2314.4	C. 389 E O	0.418 E	04	0.69E-92	O.88E-C2
GD	2600. 1	0.3898 OO	$0.4 C 8 E$	04	$0.81 \mathrm{E}-02$	$0.10 \mathrm{E}-\mathrm{Cl}$
GO	2678.7	O.464E 00	0.400 E	04	0.7CE-02	0.8 SE-O2
GE	326.1	C.119E-02	$0.186 E$	C5	0.18 E 01	0.23 El
GE	596.0	$0.704 \mathrm{E}-02$	0.102 E	05	C.27E CC	0.35 F CC
GE	868.1	$0.324 E-C 2$	0.721 E	04	0.47 ECC	0.60 E 0
GE	1100.6	$0.189 E-G 2$	0.63 CE	C4	C.1CE CI	0.13 E 01
GE	2013.0	$0.285 E-03$	C. 454 E	04	2.89E Cl	C.11E 02
H	2223.3	C.200E OO	0.431 E	04	0.13E-01	C. 17E-Cl
HF	214.0	$0.20 C E$ CO	0.364 E	C5	0.14E-01	$0.18 \mathrm{E}-01$
HF	325.8	0.223E-n1	0.1875	(i5	0.99F-01	0.12 E 0
HF	120t.4	$0.168 \mathrm{E}-\mathrm{Cl}$	0.591 E	C. 4	0.12 E 00	$0.15 E$ ON
HF	1228.9	0.141E-01	0.589 F	C4	0.14 E ก	0.18 CC
HF	2064.s	0.230E-02	0.450 E	04	0.11 El	C.14E 01
HF	2468.5	0.2SOE-02	0.41 CF	04	C.loe Cl	0.13 ECl
HG	367.8	0.922 E On	0.162 E	0.5	c.23E-02	$0.25 \mathrm{E}-02$
HG	661.1	$0.538 \mathrm{E}-\mathrm{n} 1$	D. 922 E	C 4	$0.35 \mathrm{E}-\mathrm{Cl}$	$0.45 \mathrm{E}-021$
HG	1579.3	2.441E-01	0.528 E	c4	$0.50 \mathrm{E}-\mathrm{Cl}$	0.64E-01
HG	1693.3	0.061E-01	C. 4 S6E	c4	$0.23 \mathrm{E}-\mathrm{Cl}$	0.3 CE-C1
HG	2002.1	$0.853 \mathrm{E}-01$	0.458 E	C4	C.30E-n 1	$0.38 \mathrm{E}-\mathrm{Cl}$
HG	2639.s	C.4E4E-C1	0.402 E	04	$0.66 \mathrm{E}-0.11$	$0.84 \mathrm{E}-\mathrm{C}$:
HO	240.3	0.10DE-01	0.264 E	0.5	O.26E OC	0.33 ECC
HO	290.4	$0.662 \mathrm{E}-02$	0.213 E	C 5	C.35E 00	0.45 E O
HO	426.3	$0.717 \mathrm{E}-02$	C. 137 E	05	0.27 E OC	0.35 E CO
HC	543.2	$0.65 n \mathrm{E}-02$	0.109 E	C5	$0.29 E 00$	0.37 ECC
HO	2118.3	n.831E-C3	0.448 E	0.4	$0.32 \mathrm{E}=1$	0.40 El
HC	2589.9	0.926E-03	0.403 E	C4	0.34 ECl	0.43 ECl
I	291.4	0.311E-02	0.213 E	C 5	C. T6E 00	O.SGE OC
1	336.7	0.265E-02	0.181 E	C5	0.82 E 00	O.lJe Cl
\%	421.0	C. 1c.5E-C2	$0.139 E$	05	0.19 Ol	0.24 F Ol
1	614.2	0.592E-03	O.S90E	04	0.33 F 01	0.42 F Cl
I	1887.9	2. $253 \mathrm{E}-\mathrm{C} 3$	0.467 E	04	C.S5E 01	O.12E 02
IN	273.3	0.734E-01	0.224 E	0.5	$0.33 \mathrm{E}-\mathrm{C} 1$	c.41E-r.1
IN	335.6	C.238E-01	0.182 E	05	$0.92 \mathrm{E}-01$	0.12 E 0
IN	819.3	$0.287 \mathrm{E}-01$	C. 768 E	04	c. $65 E-C 1$?.83E-C1
IN	1752.8	$0.146 \mathrm{E}-01$	0.490 E	04	$0.16 \mathrm{E} ~ 0$	$0.2 c e r c$
IN	2337.4	0.259E-02	0.423 E	C4	0.11 El	0.14 El
IR	217.4	$0.121 E 00$	0.292 E	05	$0.23 E-01$	$0.25 \mathrm{E}-\mathrm{Cl}$
IR	351.8	0.571E-C1	C. 173 E	05	C. $38 \mathrm{E}-91$	0.4 EE-01
IR	418.3	$0.202 \mathrm{E}-\mathrm{Cl}$	0.140 E	05	0.98E-01	0.12 ECO

TABLE AIV(1) (CONTINUED)

LIMITS for quantitative deterninaticn

ELEM.	ENERGY	INTENSITY	MIN.AREA		MIN.WT		ht Percent	
IR	1551.t	0.161E-01	0.522E	C4	0.14 E	00	0.18 E	00
IR	2454.2	$0.649 \mathrm{E}-02$	0.414 E	04	C.45E	00	0.57 E	C 0
K	77C.6	0.101E-C1	0.790 E	04	0.18 E	00	0.23 E	00
k	1159.0	$0.190 \mathrm{E}-02$	$0.6 \mathrm{C9E}$	C4	C.10E	01	0.13 E	C 1
K	1617.5	$0.255 \mathrm{E}-02$	$0.526 E$	04	0.89 E	00	0.11 E	01
K	1929.3	0.818E-03	0.454 E	C4	0.29 F	01	0.37 E	01
K	2C73.2	$0.331 E-C 2$	0.451 E	C4	0.78 E	00	0.99 E	00
K	2291.2	0.111E-02	0.422 F	04	C. 24 E	01	0.31 E	C 1
K	2545.9	0.117E-02	0.402 E	C4	$0.26 E$	01	0.33 E	01
LA	219.6	$0.454 \mathrm{E}-\mathrm{C} 2$	C. 2932 E	05	C. 6.62 F	00	0.72E	Cr
LA	289.1	$0.385 \mathrm{E}-02$	0.216 E	05	0.61 F	00	0.78 F	CO
LA	423.2	$0.267 \mathrm{E}-02$	C. 138 E	C5	0.74 E	On	0.93 E	00
LA	722.2	C.121E-02	0.848 E	0.4	0.15 E	01	$0.2 C E$	C 1
LA	2765.3	0.436E-03	0.385 E	04	C.75E	01	0.95 E	01
LI	558.8	0.156E-C3	0.107 F	05	0.12 E	02	C. $16 E$	02
LI	869.1	0.93SE-04	$0.721 E$	0.4	0.22 E	02	0.28 E	C2
LI	S8C. 7	O.S14E-C4	C. 666 E	C4	C. 2CE	02	0.25 E	C2
LI	1891.4	O.851E-C4	C. 469 E	04	0.28 E	02	C. 36 E	02
LI	2032.5	$0.841 \mathrm{E}-03$	0.44 EE	04	0.3 Ce	01	2. 3 EE	C1
LI	2117.4	0.524E-04	0.448 E	C4	0.45 E	02	0.57 E	02
LI	2184.0	O.211E-03	C. 432 E	04	C. 12 E	02	0.16 E	c2
LU	269.4	n.109E-01	$0.229 E$	C5	0.22 E	00	0.28 E	CO
LU	367.5	0.144E-01	0.164 E	C 5	0.15 E	00	0.19 E	$0 \cdot$
LU	458.1	0.477E-C1	0.130 E	05	0.49 E		0.62 E	
LU	762. C	0.1 ITEE-01	0.753 E	C4	0.17 E	00	O. 21 E	20
LU	2056.2	$0.156 \mathrm{E}-\mathrm{C} 2$	0.449 E	04	0.16 E	01	C. 21 E	C1
LU	2051.2	0.192E-02	0.447 E	04	C. 13 E	01	0.17 E	01
MG	390.0	0.876E-04	0.150 E	05	0.23 E	02	0.255	C2
MG	585.2	$0.335 \mathrm{E}-03$	0.102 E	05	0.57 E	Cl	0.725	C1
MG	1129.4	C.111E-03	0.622 E	04	0.17 E	02	0.225	C 2
MG	18 c 8.9	$0.393 E-03$	$0.476 E$	04	0.59 E	2.1	0.75 E	Cl
MG	2828.1	0.557E-03	0.392 F	04	C.62E	01	C.79E	01
MN	212.5	0.877E-02	0.307 E	05	ก.33E	00	0.42 E	00
MN	314.3	0.517E-02	C. 151 E	C5	0.42 E	00	0.54 E	00
MN	1747.0	$0.415 \mathrm{E}-\mathrm{C} 2$	0.490 E	04	0.55 E	CO	O.7CF	CO
MN	1987.6	$0.344 E-02$	0.452 E	C4	0.73 E	00	0.92 E	00
MN	2330.9	$0.456 \mathrm{E}-\mathrm{C} 2$	0.422 F .	C4	C.6CE	00	0.77 E	00
MC	719.5	0.150E-C2	0.851 E	04	0.13 F	01	0.16 E	01
MO	778.4	$0.834 \mathrm{E}-\mathrm{r} 2$	0.786 E	C4	0.22 F	00	C. 28 E	00
MO	849.0	0.296E-C.2	0.735 E	$\bigcirc 4$	0.62 F	00	C.79E.	Or
MO	1.91 .0	C.745E-C3	$0.627 E$	04	0.25 E	01	0.32 E	01
MO	2400.9	0.167E-03	0.416 E	04	C.17E	0 ?	C.2.1E	07
MO	2664.5	$0.215 E-C 3$	0.392 E	04	0.15 E	02	0.15 S	C2

TABLE AIV(1) (CONTINUED)

LIMITS for quantitative determinaticn

ELEM. ENERGY INTENSITY MIN.AREA MIN.WT WT PERCENT

N	253.1	$0.150 \mathrm{E}-\mathrm{C} 3$	0.244E	05	0.17 E 02	C. 21 E 02
N	596.8	0.141E-63	0.101 E	05	0.14 E 02	0.17 E C2
N	1678.6	$0.195 \mathrm{E}-03$	0.494 E	04	0.11 E 02	0.14 E 02
N	1887.9	$0.126 \mathrm{E}-02$	0.467 E	04	0.19 O	0.24 E Cl
NA	472.4	$0.969 E-C 2$	0.128 E	05	0.20 E 0	c. 26 E On
NA	870.6	$0.355 \mathrm{E}-\mathrm{C} 2$	0.720 E	04	0.51 E 00	0.65 E OC
NA	781.1	$0.42 \mathrm{EE}-\mathrm{C} 3$	0.785 E	C. 4	C.43E Cl	0.55 E Cl
NA	1634.4	$0.129 \mathrm{E}-02$	0.517 E	04	C.19E Cl	0.24 ECl
NA	2027.2	C. $277 \mathrm{E}-02$	0.452 E	C4	C.92E 00	0.12 E 01
NA	2517.6	C. $239 \mathrm{E}-02$	C.407E	C4	C.13E 21	$0.16 E 01$
NA	2754.4D	$0.143 \mathrm{E}-01$	0.384 E	04	0.23 E 00	$0.25 E 00$
NA	2862.7	$0.164 \mathrm{E}-\mathrm{C} 2$	0.383 E	C4	$0.21 E 01$	0.27 El
NB	151.0	$0.294 E-02$	0.322 E	05	C.g9E on	0.13 E 01
NB	255.1	$0.143 \mathrm{E}-\mathrm{C} 2$	0.244 E	C5	$0.17 E 01$	0.22 ECl
NB	945.9	0.143E-03	0.674 E	C4	n.13F c2	C.l6E C2
NB	1724.5	0.112E-03	0.495 E	04	0.20 E 02	0.26 E 02
NA	1979.7	0.413E-04	0.458 E	04	$0.61 E 02$	0.77 EC 2
ND	454.5	$0.118 \mathrm{E}-01$	0.131 E	05	$0.17 E 00$	$0.21 E 00$
ND	618.5	$0.513 E-C 1$	0.990 E	04	C. $38 \mathrm{E}-01$	C.4EE-O1
ND	696.7	0.134 EO	$0.899 E$	04	$0.14 E-01$	$0.18 \mathrm{E}-\mathrm{n}_{1}$
ND	814.5	$0.152 \mathrm{E}-\mathrm{Cl}$	C. 7705	04	C.97E-01	0.12 E 00
ND	2371.5	$0.253 E-C 2$	0.413 E	04	C.11E 01	0.14 El
NI	283.1	0.174E-02	$0.221 E$	05	0.14 E 01	0.18 Cl
NI	339.5	$0.145 E-\cap 2$	C. 18 CE	C5	0.15 E Ol	0.19 OL
NI	465.1	$0.676 E-02$	$0.129 E$	C5	O.29E OC	0.37 ECC
NI	877.9	0.201E-02	0.717 E	04	0.91 E 00	0.12 E 0
OS	187.3	0.449E-02	0.307 E	05	0.62 E 00	0.78 CCO
OS	478.3	C.328E-02	$0.125 E$	05	0.60 F 20	0.76 E On
OS	569.3	$0.250 E-C 2$	0.1 C6E	05	0.77 E OC	0.58 C 00
CS	634.0	0.497E-02	0.973 E	c 4	0.39 E OC	$0.5 C E O 0$
OS	2261.3	$0.116 E-C 3$	C. 421 E	04	0.23 E 02	0.29 CL
CS	2458.8	$0.484 \mathrm{E}-\mathrm{C4}$	0.415 E	04	C.GIE 02	Q.77E C2
P	636.2	$0.455 E-03$	0.971 E	C4	C.39E 01	0.5CE Cl
P	1070.6	?.3488-C3	0.634 E	04	0.54 E 01	0.69 El
P	1413.1	0.571E-03	0.566 E	C4	0.37E 01	0.47 ECl
P	1890.0	$0.246 \mathrm{E}-03$	0.469 E	04	$0 . c 9 E=1$	C.12E C2
P	2114.3	$0.282 \mathrm{E}-03$	0.447 E	04	0.93 E 01	0.12 E 0
P	2154.2	$0.620 E-03$	0.433 E	04	C.42E Cl	0.53 E OL
PD	245.7	$0.267 E-02$	0. 25 SE	C5	0.98 E 0	0.12 El
PD	616.1	0.485E-02	0.995 E	04	$0.4 . n E C C$	0.51 ECO
PD	716.9	0.528E-02	0.851 E	04	0.35 E 0	0.45 E 00

TABIE AIV(1) (CONTINUED)
LINITS FOR QUANTITATIVE DETERNINATICN

ELEM.	ENERGY	INTENSITY	MIN.AREA		MIN.WT		PERCENT	
$P D$	1047.9	$0.419 E-02$	C. 638 F	04	0.44 E	00	0.56 E	00
$P D$	2196.9	2.498E-03	C. 430 E	04	C. 52 E	01	0.67 E	01
$P D$	2457.5	$0.461 E-03$	0.415 E	04	0.64 E	01	0.81 E	C1
$P D$	2484.3	C. $466 \mathrm{E}-\mathrm{C} 3$	$0.411 E$	C4	0.64 E	01	$0.81 E$	01
$P R$	178.4	0.3S7E-02	$0.207 E$	05	$0.46 E$	00	0.58 E	OC
PR	645.8	0.753F-03	$0.956 E$	C4	C. 26 E	01	0.33 E	C1
PR	659.8	$0.705 \mathrm{E}-03$	0.893E	04	0.27 E	01	0.35 E	C1
PR	1096.6	0.478E-03	0.655 E	04	0.38 E	01	0.49 E	01
PR	2839.8	$0.304 \mathrm{E}-03$	0.392 E	04	C.11E	02	C. 14 E	02
PT	333.3	0.577E-02	$0.183 E$	05	0.38 E	OO	$0.4 E E$	CC
PT	356.1	C.100E-C1	C. 17 CE	0.5	0.21 E	00	0.27 E	DO
PT	1491.3	C.492E-03	$0.551 E$	C 4	C.45E	01	0.56 E	61
PT	1978.7	O.492E-03	0.460 E	04	0.51 E	Ol	C.65E	01
PT	2C67.8	C. $368 \mathrm{E}-03$	0.450 F	C. 4	?.70E	Cl	0.89 E	01
PT	2311.4	0.513E-C3	0.417 F	0.4	C. 52 F	C. 1	$0.66 E$	01
PT	2469.6	$0.415 E-03$	0.41 nE	04	C.70E	01	$0.89 E$	Cl
R B	476.0	C. $224 \mathrm{E}-03$	0.126 E	05	0.83 E	01	0.11 E	02
RB	556.8	C.658E-C. 3	0.107 E	C5	0.29 E	01	0.37 E	01
RB	872.7	$0.159 E-C 3$	0.719 F	04	C. 115	02	C. 15 E	C2
RB	1030.8	$0.202 \mathrm{E}-03$	0.650 E	$\bigcirc 4$	C.S2E	21	C. 12 E	02
R B	2130.0	0. 22 EE-C4	$0.444 E$	C4	C. 12 E	C3	0.15 E	03
RB	2140.7	$0.236 E-C 4$	$0.435 E$	C 4	$0.11 E$	03	$0.14 E$	C3
R R	2176.8	$0.586 E-C 4$	0.431 E	C 4	$0.44 E$	02	O.56E	22°
RE	209.8	$0.154 \mathrm{E}-01$	2. 307 E	C 5	0.15 S	rec	0.24 F	00
RE	255.4	$0.184 E-C 1$	ก. 244 E	05	$0.14 E$	00	0.17 E	00
RE	291.1	$0.110 \mathrm{E}-01$	C. 213 E	05	C. 21 E	CC	0.27 E	00
RE	317.6	$0.843 \mathrm{E}-\mathrm{O}_{2}$	0.190 E	05	$0.26 E$	no	0.33 E	CC
RE	2004.4	O.103E-02	0.457 E	04	C. 25 E	$\bigcirc 1$	0.31 E	Cl
RH	217.4	$0.935 \mathrm{~F}-0.1$	0.292 F	05	0.30 E		$0.3 E E$	
RH	267.9	O.339E-C1	C. 231 F	C 5	ก. 72 E		0.91 E	
RH	645.0	$0.103 \mathrm{~F}-01$	0.956 E	04	$0.10 E$	00	0.13 E	CR
RH	789.7	$0.120 \mathrm{E}-01$	0. 775 E	C4	C. 15 E	0 C	$0.19 E$	00
RU	475.3	0.151F-C2	$0.126 E$	05	0.13 F	01	D.17E	C1
RU	539.8	$0.231 \mathrm{E}-\mathrm{C} 2$	C.1C9E	05	0.82 E	00	3.1CE	01
RU	630.6	$0.779 \mathrm{E}-03$	0.976 E	04	ก. 25 E	C 1	0.32 E	01
RU	687.1	$0.531 E-03$	0.900 E	04	$0.21 E$	01	$0.2 \in E$	C 1
$R U$	22c8.3	ク.823E-C4	$0.421 E$	04	0.33 E	02	0.42 E	02
RU	2530.4	-. 128E-n3	$0.411 E$	04	C. 24 E	$\bigcirc 2$	O.3CE	02
S	841.1	$0.522 E-02$	$0.744 E$	04	0.35 E	CC	C. 45 E	00
S	1358.5	0.416E-03	0.580 E	C 4	0.50 F	$\bigcirc 1$	0.64 F	01
S	1597.8	0.113E-C2	0. 524 E	C4	0.2TE	01	0.25E	$\bigcirc 1$
S	1890.5	C.681E-03	$0.469 E$	04	$0.36 E$	01	0.45 E	01
S	2379.7	$0.3 C 7 E-C .2$	0.4165	04	C.91E	9 C	0.12 E	01

LINITS FOR QUANTITATIVE CETERMINATION

FLFM.	ENERGY	Intensity	MIN.AREA		MIN.WT	Wt percen
S	2753.2	$0.473 \mathrm{E}-03$	0.384 F	0.4	0.81 El	$0.17 \mathrm{E} \quad 02$
S	2931.1	0.154E-C2	0.379 E	04	0.23 E 01	C. 29E 01
SB	283.1	0.900E-03	0.221 E	05	$0.27 E 01$	C. 34 ECl
$S B$	332.7	$0.100 \mathrm{E}-02$	$0.183 E$	05	0.22 E 01	0.28 El
SB	921.1	0.383E-03	0.688 E	04	0.47 E 01	$0.60 \mathrm{E} ~ \mathrm{OI}$
SB	1402.0	C.318E-03	0.575 E	04	$0.67 \mathrm{E} \mathrm{O1}$	0.85 E 01
SE	2074.2	$0.125 E-r 3$	0.451 E	C4	$0.21 E 02$	C.26E C2
SC	228.6	$0.126 E$ C0	0.280 E	05	$0.22 \mathrm{E}-\mathrm{n}_{1}$	0.27E-01
SC	295.6	0.506E-C1	0.209E	C5	$0.46 \mathrm{E}-01$	$0.5 \varepsilon E-C 1$
SC	627.9	0.226E-01	0.980 E	04	$0.86 E-C 1$	0.11 ECO
SC	1652.0	C.112E-C1	0.495 E	C 4	$0.20 E 00$	O.25E 00
SC	2111.4	0.655E-C2	0.447 E	04	0.4 CE OC	0.5CE CC
SC	2635.6	0.977E-C2	$0.4 C O E$	04	C.32E OO	0.41 ECO
SE	239.6	0.120E-n1	0.264 E	05	C. 22 E CC	C.2EE LC
SE.	520.6	¢.332E-02	0.114 E	05	0.58 E 0	0.74 ECC
SE	613.9	-.122E-C.	0.958 E	04	C.16E CO	C.2CE CC
SE	886.9	0.273F-02	O.714E	04	0.67 E OR	0.85 ECC
SI	246.9	$0.147 \mathrm{E}-03$	0.257E	C5	C. $19 \mathrm{E} \quad 02$	C.22E C2
SI	250.5	0.142E-03	0.250 E	05	0.18 E 02	$0.23 E 02$
SI	1273.2	C.42CE-03	$0.587 E$	C4	C.49E 01	0.61 E 01
SI	1332.2	C.388E-0.4	ก. 577 E	C4	0.53 ECL	C.67E C2
SI	2052.s	?.919F-03	0.447 E	C4	$0.28 \mathrm{E}^{1}$	$0.36 E \mathrm{O}$
SI	2425.c	C.135E-C3	0.42 CE	C. 4	0.22 Ec 2	$0.27 E$ C2
SM	333.9	0.195 E 02	O.183E	05	$0.11 E-03$	$0.14 E-C 3$
SM	439.4	0.107 E 02	0.134E	C5	$0.18 \mathrm{E}-33$	0.23E-C3
SM	737.5	$0.217 E 01$	0.825 E	04	$0.85 \mathrm{E}-0.3$	C.11E-0.2
SM	1169.7	C.103E Cl	$0.605 E$	C4	$0.19 E-02$	0.24r-0.2
SN	2119.9	$0.936 \mathrm{E}-01$	0.448 E	04	$0.28 \mathrm{~F}-\mathrm{Cl}$	$0.36 E-C 1$
SM	2161.0	0.655E-C1	0.429 F	0.4	$0.39 \mathrm{E}-01$	0.5]E-O1
SM	2332.0	$0.398 \mathrm{EC-C1}$	0.422 E	C. 4	0.69E-01	0.8\&E-El
SN	251.9	0.596E-04	C. 250 E	05	0.43 E 02	$0.54 \mathrm{EC2}$
SN	1171.3	0.254E-C.3	0.605 E	04	0.76 ECl	C.STE 01
SN	1229.5	0.221F-03	O.589E	C4	0.89 F 01	0.11 Fc ?
SN	1293.3	0.414E-03	0.582 E	C4	0.49 E 31	$0.62 \mathrm{E} \mathrm{l}^{1}$
SN	2112.7	0.488F-C4	0.447 F	04	C.53E C2	0.68502
SN	2179.0	0.371E-04	0.432 E	04	0.70 E 02	0.8SE C2
SN	2651.7	0.183E-04	0.394 E	04	$0.17 E 03$	C.22E 03
SR	558.5	C. $120 \mathrm{E}-\mathrm{n} 2$	$0.107 E$	05	$0.16 \mathrm{O}^{1}$	0.20 E 01
So	850.4	0.106E-r 2	0.733 E	C4	C. 17E 01	C.22E Cl
SR	997.9	$0.246 E-C 2$	0.703 E	04	0.74 E 0	0.5450 C
SR	1835.9	C. $7 \in 1 \mathrm{E}-\mathrm{C} 2$	0.476E	0.4	$0.31 E 00$	0.35 CCO
SR	2276.9	$0.266 \mathrm{E}-03$	0.428 E	C4	C. 1 JE C2	C.L3E 02
SR	2391.5	0.383E-C3	0.418 E	0.4	0.74 ECl	C.S3E O1

TABIE AIV(1) (CONTINUED)
LIMITS for quantitative deterninaticn
MIN. AREA
TA

TA	271.1	0.205E-01	0.229 ECS	C. 12 E OC	0.15 ECC
ta	297.6	0.406F-02	$0.207 E 05$	0.57 E DO	O.72E 0
TA	361.4	$0.132 \mathrm{E}-\mathrm{C} 2$	0.168E C5	0.16 El	0.20 E Ol
TA	402.5	0.107E-01	0.146E C5	0.19 CO	0.24 ECO
T8	596.6	0.593E-03	0.101 C C5	$0.33 E 01$	0.41 El
TB	1442.6	$0.195 \mathrm{E}-\mathrm{C} 2$	C.559E 04	C.12E 01	0.15 E C1
TB	1685.3	0.662E-03	0.494 E 0	O.34E O1	0.43 El
TB	1745.8	0.819E-03	0.452 EC	0.28 E 01	0.36 ECl
TB	2120.2	$0.349 E-0.3$	$0.448 \mathrm{EC4}$	0.75 E Cl	C.G5E CI
TE	602.9	$0.36 E E-C 2$	O.101E 05	0.53 ECO	0.67 E 0 C
TE	1437.0	0.125F-C2	0.567 F 04	$0.17 E 01$	0.22 E Cl
TE	1487.1	C.12才E-02	D.551E C4	0.18 Cl	0.23 E Cl
TE	1918.9	0.920E-03	$0.455 \mathrm{EC4}$	0.26 El	0.33 E Cl
TE	2039.1	$0.425 E-03$	C.444E C. 4	0.59 ECl	0.75 E Ol
TE	2386.0	$0.270 E-03$	0.42 CE 04	C. 10 E C2	0.13 E O2
TE	2610.5	$0.602 E-03$	$0.404 \mathrm{EC4}$	0.52 ECl	C.67F O1
TE	2747.2	0.1C3E-02	n.353E C4	0.32 El	0.41 ECl
TI	341.7	0.233E-01	0.179 E 05	C. $54 E-01$	C. 12 E 0 C
TI	1391.4	C.498E-C1	C. 58 OE 04	C.43E-01	$0.54 \mathrm{E}-\mathrm{Cl}$
TI	1596.C	0.650E-C2	$0.522 \mathrm{EC4}$	C.34E CC	0.43 ECC
TI	1761.6	0.6C1E-02	0.477E 04	0.37 E 00	0.47 ECC
TL	348.6	$0.310 \mathrm{E}-03$	0.175 G C5	$0.70 \mathrm{E}_{0} \mathrm{Cl}$	C. 88 ECl
TL	737.0	0.242F-03	0.825 F 04	0.77 El	0.97 FCl
TL	873.1	3.259E-03	0.719 O	C.70E Cl	$0.89 E$ Ol
TL	911.1	0.253E-03	0.687 E	0.71 Cl	$0 . \operatorname{SCECl}$
TM	2C5.2	$0.240 \mathrm{E}-\mathrm{Cl}$	O.313E C5	C.12E On	C.15E CC
TM	220.4	0.109E- 0 1	$0.293 E C 5$	C.26E 00	0.33 E 00
TM	237.6	0.319E-01	$0.266 E 05$	0.83E-01	0.10 E OO
TM	565.5	0.979E-02	$0.106 E 05$	0.20 CE OC	0.25 E Cr
TM	2115.2	D.8S8E-03	0.448E 04	$0.29 E 01$	0.37 ECl
v	436.6	$0.409 E-C$?	C. 134 E C 5	C.4gE OC	0.61 E OC
v	645.9	$0.696 E-C 2$	0.956 E 0.4	0.28 E 00	0.35 E Or
V	823.5	$0.267 E-0.2$	0.762 E 04	0.70 E 00	$0.88 E$ CC
V	1777.8	$0.317 \mathrm{E}-02$	$0.481 \mathrm{EC4}$	0.72 E 00	0.92 EO
W	201.2	ก.122E-02.	$0.314 E 05$	0.24 E 01	0.30 F 01
W	551.5	$0.218 \mathrm{E}-02$	$0.1 C 7 E C 5$	0.88 E 00	0.11 ECl
W	772.7	$0.857 E-03$	0.789 O	0.21 E 01	$0.27 E 01$
W	891.5	$0.769 E-03$	0.709 O	0.24 E 21	$0.3 C E C l$
Y	203.2	$0.141 \mathrm{E}-02$	$0.316 \mathrm{EC5}$	0.21 Cl	$0.2 \in \mathrm{FCl}$
Y	455.2	$0.744 E-03$	$0.131 E \sim 5$	0.27 El	0.34 E Ol
Y	574.6	0.978E-C3	$0.104 E 05$	C. 20 E GI	0.25 E Cl

TABLE AIV(1) (CONTINUED)
limits fer quantitative ceterninaticn

ELEM.	ENERGY	Intensity	MIN.AREA		MIN.WT		WT PERCENT	
Y	776.9	0.244E-C2	0.787 E	04	0.76 E	00	0.96 E	00
Y	2546.6	0.205E-03	0.402 E	04	0.15 E	02	0.15 SE	02
Y	2749.5	O.253E-C3	0.390 E	04	0.13 E	22	0.17 E	C2
$Y B$	241.8	0.250E-01	0.257 E	05	0.10 E	00	0.13 E	00
YB	341.9	0.820 E - 2	0.178 E	05	0.26 E	00	0.34 E	00
YB	475.4	-.31CE-C2	$0.126 E$	05	0.64E	CC	0.81 E	OC
YB	636.2	9. $.448 \mathrm{E}-02$	$0.971 E$	c 4	0.43 E	00	0.55 E	CC
YB	2585.0	C.144E-02	$0.45 .5 E$	C. 4	0.22E	01	0.27 E	01
2N	445.7	0.533E-03	0.133 E	C5	c. 37 E	01	C. 47 E	Cl
2N	1007.6	0.297E-03	0.655 E	04	0.62 E	01	0.75 E	C1
2N	1077.5	0.217E-C2	0.631 E	04	0.87 E	00	0.11 E	01
2N	1883.5	N.777E-03	$0.466 E$	c 4	0.31 E	$\bigcirc 1$	0.35 E	C1
2N	2858.2	O.142E-C3	0.386 E	04	0.24 E	02	0.31 E	02
2R	251.2	$0.125 E-03$	0.250 E	05	0.20 E	02	$0.26 E$	c 2
2R	561.0	0.110E-03	0.106 E	05	0.17 E	02	0.22 E	02
2R	S 34.5	0.473E-C3	0.680 F	C4	C. 38 E	Cl	C. 4 ge	01
2R	1404.7	0.108F-03	C. 573 E	C4	0.20 E	02	O. 25 E	02
ZR	2190.9	0.247E-04	0. 430 E	C4	0.11 E	03	0.13 E	22
2R	2654.0	0.299E-C4	0.402 E	C4	C.11E	03	0.14 E	C3
2R	2932.2	$0.152 \mathrm{E}-04$	0.379 E	04	0.23 F	03	0.30E	03

TABLE AIV(2) PAIR SPECTROMFTER

limits for guantitative ceterninatica

ELEM.	ENERCY	INTENSITY	MIN.AREA		MIN.hT		WT PERCENT	
AG	2048.6	0.16 SE-C2	C. 774 E	C3	0.78 E	01	0.S8E	01
AG	4720.2	$0.172 \mathrm{E}-02$	C. C. 3 CE	C3	C. 22 F	C 1	0.28 E	01
AG	5240.2	0.236E-02	0.960 E	03	0.17 E	01	0.21 E	01
AG	5577.9	$0.204 \mathrm{E}-02$	C. 1C2E	04	0.21 E	C1	$0.26 E$	01
AG	5699.7	$0.549 \mathrm{E}-02$	0.106 E	04	$0.81 E$	C	C. 10 E	01
AG	5793.1	$0.366 \mathrm{E}-02$	0.109 E	04	0.12 E	01	0.16 E	01
$A G$	6056.1	$0.408 E-02$	C. 112 E	04	C. 12 E	C1	0.15 E	01
$A G$	7268.9	$0.201 \mathrm{E}-02$	0.134 E	04	0.36 F	01	0.46 E	C 1
AL	1623.1	$0.168 \mathrm{E}-03$	C. 8 C5E	C3	0.19 E	C3	0.25 F	03
AL	2960.4	$0.323 \mathrm{E}-03$	0.846 E	03	0.18 E	02	0.23 F	02
AL	3C34.4	C. $3 \mathrm{C} 5 \mathrm{E}-\mathrm{C} 3$	C. 858 E	03	0.19 F	02	0.24 E	02
AL	3465.5	$0.225 \mathrm{E}-03$	0.88GE	C3	$0.21 F$	C2	$0.26 E$	C2
$\Delta \mathrm{L}$	3591.7	C. $148 \mathrm{E}-03$	0.369 E	03	$0.29 E$	02	0.37 E	C2
AL	4133.7	c. $22.3 \mathrm{E}-03$	C.897E	C3	0.17 E	02	0.22 E	C2
AL	4259.9	$0.213 \mathrm{E}-03$	C.911F	02	C.leE	C2	C. 23 E	C2.
AL	4734.1	$0.183 \mathrm{E}-03$	0.931 E	03	0.21 E	02	$0.26 F$	02
AL	7723.8	0.106E-02	C. 135 E	C4	C. 775	C1	0.57 E	01
A S	4783.0	C. $304 \mathrm{E}-03$	0.927 E	03	0.12 E	02	0.16 E	02
AS	5416.5	0.210E-03	C.1CCE	C4	0.19 E	02	0.25 E	02
AS	5784.7	$0.199 E-03$	0.110 E	04	0.23 E	02	0.2ce	C2
AS	6058.3	C. $224 \mathrm{E}-\mathrm{C} 3$	0.112 E	04	0.22 E	02	0.27 E	02
AS	6294.5	$0.655 \mathrm{E}-03$	0.103 E	04	C. 7 CE	C 1	$0 . \varepsilon$ ¢ ${ }^{\text {e }}$	Cl
AS	68C9.s	$0.105 E-02$	0.111 E	04	0.52 E	Cl	0.66 E	01
AS	6526.1	$0.37 \in E-C 3$	C. 118 E	C4	C. 16 E	C2	0.2 CE	22
AS	7019.5	0.872E-03	0.121 E	04	0.71 E	Cl_{1}	0. SCE	01
ΔU	4189.0	0.134E-02	0.961 E	03	C. 28 E	Cl	0.36 E	01
ΔU	5143.2	0.309E-J2	0.955 E	C3	C. C.7E	CC	0.12 E	01
$A \cup$	571 C .4	C. 3 ¢9E-C. 2	0.167 E	04	0.11 E	01	0.14 E	01
ΔU	5982.8	$0.417 \mathrm{E}-02$	0.113 E	04	C. 12 F	Cl	C. 15 F	01
ΔU	6252.0	0.165E-01	0.102 E	04	0.27 E	00	0.35 E	00
ΔU	6319.1	$0.106 E-01$	C. 1C3E	C4	C. 44 E	C	0.55 E	00
ΔU	6456.8	0.682E-02	0.104 E	04	C. TCE	CO	0.8 Ce	00
$A U$	t51z.1	0.5C5E-C2	C. 166 E	04	0.57 E	00	0.12 E	01
E	2072.7	0.301E-04	0.784 E	03	0.43 E	C3	$0.54 E$	03
B	25こ2.3	0.19 SE-C4	C.822E	03	0.40 E	03	0.51 E	C3
8	3308.0	0. SC9F-C5	0.882 E	C3	C. 55 E	C3	$0.6 C F$	C3
B	3505.0	0.108E-04	0.885 E	03	0.42 E	03	0.54 E	C3
B	4443.0	C. $153 \mathrm{E}-\mathrm{C4}$	C. 939 E	03	0.25 E	03	0.32 E	03
8	4710.2	0.682E-05	0.930E	03	0.55 E	C3	C. TCE	03
B	6759.3	$0.796 \mathrm{E}-05$	0.112 E	04	0.69 E	03	0.87 E	03
8	7005.1	0.966E-05	C. 118 E	C4	C. 63 E	C3	0.8 CE	03
BA	2186.0	$0.123 \mathrm{E}-03$	0.782 E	03	C.89E	02	0.11 E	03
EA	2639.4	$0.114 E-03$	C. 819 E	C 3	C. 63 E	02	0.8 CE	C2
Pa	3641.7	$0.304 E-03$	0.879 E	03	0.14 E	02	0.18 E	C 2
BA	4CSt.3	0. $873 \mathrm{E}-\mathrm{C} 3$	0.908 E	03	0.45 E	01	0.57 E	01

TABLE AIV(2) (CONTINUED)
LIMITS FOR QUANTITATIVE DETERMINATION

ELEM.	ENERGY	INTENSITY	min.A	Rea	MIN.HT		WT PERCENT	
EA	4723.8	$0.114 \mathrm{E}-03$	0.930 E	03	0.33 E	02	0.42 E	C2
BA	573 C .7	0.309E-03	0.106 E	04	0.14 E	02	0.18 E	02
EA	6027.9	$0.457 \mathrm{E}-04$	C. 114 E	04	0.11 E	C3	0.14 E	03
BA	9108.8	$0.210 \mathrm{E}-04$	0.738 E	03	0.33 E	03	0.42 E	C3
BE	2589.9	0.152E-03	C. 8 CSE	C3	0.49 E	C2	0.62 E	02
BE	3368.2	$0.217 \mathrm{E}-03$	0.883 E	03	0.22 E	02	0.28 E	02
BE	3444.4	$0.749 \mathrm{E}-04$	C. 890 E	03	0.63 E	02	0.80 E	02
BE	5958.1	0.127E-03	0.112 E	04	0.38 E	C2	0.48 E	02
BE	6810.0	$0.397 E-03$	0.111 E	04	0.14 E	02	0.17 E	02
BI	4054.7	$0.260 \mathrm{E}-04$	0.894 E	03	0.15 E	03	0.19 E	03
BI	4101.8	$0.174 \mathrm{E}-04$	0.907 E	03	0.22 E	03	0.28 E	03
BI	4171.1	$0.362 \mathrm{E}-04$	C. 8 ¢5E	C3	0.10 E	03	0.13 E	03
BR	5507.7	$0.186 \mathrm{E}-03$	C. 104 E	04	0.23 E	02	0.29 E	02
BR	5914.2	0.363E-03	0.113 E	04	0.13 E	C2	0.17 E	02
BR	6354.7	$0.262 \mathrm{E}-03$	0.101 E	04	0.17 E	02	0.22 E	02
BR	6745.5	0.227E-03	0.111 E	04	0.24 E	02	0.30 E	02
ER	7030.1	0.247E-03	0.121 E	04	0.25 E	C2	0.32 E	02
BR	7076.3	0.267E-03	0.125 E	04	0.24 E	02	0.31 E	02
BR	7420.7	$0.328 \mathrm{E}-03$	0.141 E	04	c.24E	C2	0.31 E	02
BR	7575.8	$0.585 \mathrm{E}-03$	0.143 E	04	0.14 E	C2	0.18 E	02
C	3683.9	$0.542 \mathrm{E}-04$	0. 875 E	C3	0.78 E	02	0.99 E	02
C	4945.2	$0.114 \mathrm{E}-03$	0.967 E	03	0.34 E	02	0.43 E	C2
CA	1724.0	$0.136 \mathrm{E}-03$	0.767 E	C3	C. 17 E	03	0.22 E	C3
CA	1942.5	$0.339 \mathrm{E}-02$	0.771 E	03	0.46 E	01	0.58 E	01
CA	2129.8	C. 163E-03	0.813 E	03	0.75 E	02	0.95 E	02
CA	2811.0	0.154E-03	0.849 E	03	0.42 E	C2	0.54 E	02
CA	3610.2	0.296E-03	0.877 E	03	0.15 E	02	0.19 E	02
CA	4418.9	0.697E-03	C. G51E	C3	0.56 E	C1	0.71 E	01
CA	4749.7	$0.128 \mathrm{E}-03$	0.935 E	03	0.30 E	C 2	0.37 E	02
CA	59CC. 6	C.198E-03	0.113 E	04	0.24 E	02	0.31 E	02
CA	6419.9	$0.182 \mathrm{E}-02$	0.103 E	C4	0.26 E	01	C. 33 E	01
CD	2455.8	0.876 E 00	0.821 E	03	0.c.9E-	C2	0.12 E	-01
CD	2550.1	0.310 E 00	0.822 E	03	0.25 E	01	0.32 E	-01
$C D$	2659.8	C.603E 00	0.834 E	03	0.12 E	01	0.15 E	-01
CD	2767.3	0.279 CO	C. 843 E	03	0.24 E	01	0.30 E	-01
CD	3000.0	0.310 E 00	0.845 E	03	0.18 E	01	0.23 E	- 1
CD	4810.0	0.122 E 0	0.964 E	03	0.32 E	01	0.40 E	-01
CD	5431.4	0.209 O 0	0.991 E	03	0.19 E	01	0.25 E	-01
CD	5823.9	0.451 E 00	0.110 E	04	0.10 E	01	0.13 E	-01
CE	1810.1	$0.142 \mathrm{E}-03$	0.788 E	03	0.14 E		0.18 E	C3
CE	2041.5	0.294E-04	0.773 E	03	0.45 E	03	0.57 E	03
CE	2272.3	$0.367 \mathrm{E}-04$	0.805 E	03	C.28E	C3	0.35 E	03
CE	3018.4	C. $439 \mathrm{E}-04$	0.849 E	03	0.13 E	03	0.16 E	03

244
TABLE AIV(2) (CONTINUED)'

LIMITS FOR QUANTITATIVE DETERMINATION

ELEM.	ENERGY	Intensity	MIN. AREA		MIN.WT		WT PERCENT	
CE	3090.6	$0.342 \mathrm{E}-04$	C. 854 E	C3	$0.16 E$	03	0.20 E	03
CE	3615.8	0.420E-04	0.876 E	03	0.10 E	03	0.13 E	03
CE	4291.2	$0.286 \mathrm{E}-\mathrm{C3}$	0.923 E	03	0.13 E	C2	0.17 E	02
CE	4336.8	$0.133 \mathrm{E}-03$	0.928 E	03	$0.29 E$	C2	0.37 E	02
CE	4766.1	0.499E-03	0.936 E	03	0.76 E	01	0.96 E	01
CL	1951.3	0.121 E 00	0.765 E	03	0.13 E	CC	C. 16 E	00
CL	1557.5	0.853E-01	0.766 E	03	0.18 E	00	0.22 E	00
CL	2864.4	$0.382 \mathrm{E}-01$	0.845 E	03	0.16 E	CC	0.21 E	00
CL	3062.2	C.210E-01	0.858 E	03	0.27 E	00	0.34 E	00
CL	4¢8C.C	$0.215 \mathrm{E}-01$	C. 553 E	C3	0.18 E	00	0.23 E	00
CL	5715.2	$0.261 \mathrm{E}-01$	0.108 E	04	0.17 E	CO	C. 22 E	00
CL	6111.1	0.890E-01	0.107 E	04	0.52 E		0.66 E	-01
CL	6620.1	$0.564 \mathrm{E}-01$	0.106 E	04	C. 89 E	C 1	0.11 E	00
CL	7413.8	$0.481 \mathrm{E}-01$	0.139 E	04	0.16 E	00	0.21 E	00
CL	779C.0	0.374E-01	0.126 E	04	0.21 E	00	0.26 E	00
CO	1830.3	0.191E-01	0.752 E	03	0.97 E	00	0.12 E	01
CO	4029.2	C.621E-C2	C. 909 E	03	0.64 E	00	0.81 E	00
CO	5181.7	$0.839 \mathrm{E}-02$	0.962 E	03	0.46 E	00	0.59 E	co
CO	5660.3	C. $241 \mathrm{E}-01$	C. 1 C 5 E	C4	0.18 E	00	0.23 E	00
CO	6706.0	0.280E-01	0.110 E	04	$0.19 E$	CC	C. 24 E	00
CO	6876.9	0.302E-01	0.115 E	04	0.19 E	00	0.24 E	00
CO	6985.1	$0.110 \mathrm{E}-01$	0.119 E	04	C. 55 E	CC	0.70 E	00
CO	7214.1	$0.177 \mathrm{E}-01$	0.130 E	04	0.39 E	00	0.5 CE	CC
CO	7491.1	$0.113 \mathrm{E}-01$	0.148 E	04	0.74 E	00	0.94 E	00
CR	1783.8	$0.195 \mathrm{E}-02$	0.775 E	03	0.11 E	02	$0.14 E$	02
CR	1898.5	$0.137 \mathrm{E}-\mathrm{C2}$	0.776 E	03	0.12 E	02	0.16 E	02
CR	2238.9	$0.268 \mathrm{E}-02$	0.804 E	03	C. 3 9E	01	0.50 E	Cl
CR	2321.0	0.195E-02	0.810 E	03	0.50 E	01	0.63 E	01
CR	5618.8	$0.124 \mathrm{E}-02$	C. 1 C 6 E	C4	0.35 E	01	0.45 E	01
CR	6645.5	0.190E-02	0.110 E	04	0.27 E	Cl	0.35 E	01
CR	7939.3	C. 41 CE -C2	0.955 E	03	0.15 E	01	0.19 E	01
CR	8512.3	0.198E-02	C. 100 E	04	0.37 E	01	0.47 E	01
CR	8884.1	$0.867 \mathrm{E}-02$	0.981 E	03	0.95 E	00	0.12 E	C1
CR	9720.3	C. $353 \mathrm{E}-02$	0.448 E	03	0.17 E	01	0.22 E	01
CS	2074.2	$0.138 \mathrm{E}-02$	0.785 E	03	0.93 E	01	0.12 E	02
CS	5020.3	C.193E-02	0.957 E	03	0.20 E	01	0.25 E	01
CS	5252.6	$0.122 \mathrm{E}-02$	0.962 E	03	0.32 E	C1	0.41 E	01
CS	5377.2	$0.117 \mathrm{E}-02$	0.980 E	03	0.34 E	01	0.43 E	01
CS	5505.4	$0.946 \mathrm{E}-03$	C. 104 E	C4	0.45 E	01	0.57 E	01
CS	5570.6	$0.151 \mathrm{E}-02$	0.102 E	04	0.28 E	01	0.35 E	01
CS	5637.4	$0.841 \mathrm{E}-\mathrm{C} 3$	C.106E	04	0.52 E	01	0.66 E	01
CS	6051.9	$0.108 \mathrm{E}-02$	0.113 E	04	C.45E	01	0.57 E	01
Cu	1672.4	C. $423 \mathrm{E}-03$	0.775 E	03	0.64 E	02	0.82 E	02
Cu	4320.8	0.518E-03	0.918 E	03	0.73 E	C1	c. 93E	01
Cu	5417.7	$0.737 \mathrm{E}-03$	0.100 E	04	0.55 E	Cl	0.70 E	01

LIMITS FOR QUANTITATIVE DETERMINATION

ELEM.	ENERGY	INTENSITY	MIN. AREA		MIN.WT		PERCENT	
Cu	6599.5	$0.806 \mathrm{E}-03$	C. 106 E	04	C. 62 E		0.79 E	01
Cu	6678.0	0.142E-02	0.110 E	04	0.37 E	01	0.47 E	01
Cu	7251.9	$0.124 \mathrm{E}-02$	C. 133 E	C4	0.58 E	Cl	$0.73 E$	01
CU	7306.2	0.271E-02	0.138 E	04	0.28 E	Cl	0.35 E	01
Cu	7636.6	C. $528 \mathrm{E}-02$	0.143 E	04	0.16 E	01	0.20 E	01
Cu	7914.5	$0.103 \mathrm{E}-01$	C.971E	C3	C. 59 E	00	0.75 E	00
DY	2067.4	C. 300E-01	C. 782 E	03	0.43 E		0.54 E	00
DY	2703.4	$0.809 \mathrm{E}-01$	C. 855 E	03	C. 88 E	01	$0.11 E$	00
DY	2733.6	$0.410 \mathrm{E}-01$	0.842 E	03	0.17 E	00	0.21 E	00
DY	2948.5	0.444E-01	C. 848 E	03	0.13 E	00	0.17 E	00
DY	3444.7	$0.434 \mathrm{E}-01$	0.890 E	03	$0.11 E$		0.14 E	00
DY	5143.8	0.468E-01	0.952 E	03	0.82 E		0.10 E	
DY	5556.9	$0.768 \mathrm{E}-01$	C. 1 C3E	04	0. 55 E		0.70 E	01
CY	5607.3	$0.957 \mathrm{E}-01$	0.105 E	04	0.45 E		0.58 E	
ER	2159.7	$0.287 E-02$	0.790E	03	C. 4 CE	Cl	0.51 E	01
ER	2341.6	$0.380 \mathrm{E}-02$	0.821 E	03	0.25 E	01	0.32 E	01
$E R$	266E.7	C. 380E-02	0.841 E	03	0.19 E	01	0.24 E	01
ER	4109.4	$0.236 \mathrm{E}-02$	C. 9 COE	03	$0.16 E$	01	C. 21 E	01
ER	4921.4	$0.294 \mathrm{E}-02$	0.955 E	03	$0.13 E$	01	0.17 E	01
ER	5-11.6	$0.344 \mathrm{E}-\mathrm{C} 2$	0.973E	03	0.11 E	01	0.15 E	01
ER	6229.0	$0.530 E-02$	0.104 E	04	C. 87 F	CC	$0.11 E$	01
ER	6676.8	0.308E-02	0.110 E	04	0.17 E	01	0.22 E	01
EU	1658.6	0.501E-01	0.775 E	03	0.56 E	00	0.72 E	00
EU	1890.2	C.6C5E-C1	0.778 E	03	0.28 E	00	0.36 E	00
EU	2048.0	$0.363 \mathrm{E}-01$	0.774 E	03	$0.36 E$	00	0.4 EE	CO
EU	2093.5	$0.363 \mathrm{E}-01$	0.796 E	03	0.35 E	00	0.44 E	00
EU	2412.0	C. $225 \mathrm{E}-01$	C. 810 E	03	C. 39 E	00	0.49 E	00
EU	2697.5	0.449E-01	0.858 E	03	$0.16 E$	CC	C. 2 CE	00
EU	2859.7	$0.311 \mathrm{E}-01$	0.847 E	03	0.20 E	00	0.26 E	00
EU	5379.7	$0.225 E-01$	C. 978 E	03	C. 18 E	0 C	0.22 E	00
EU	5918.3	$0.242 \mathrm{E}-01$	0.113 E	04	0.20 E	00	0.25 E	00
EU	6228.5	C. $190 \mathrm{E}-01$	0.104 E	04	0.24 E	00	0.31 E	00
F	1749.0	$0.158 \mathrm{E}-03$	0.762 E	03	$0.14 E$	03	0.18 E	03
F	1889.5	0.175E-C3	0.778 E	03	0.98 E	02	0.12 E	03
F	2452.8	$0.354 \mathrm{E}-04$	0.825 E	03	$0.24 E$	C3	$0.31 E$	03
F	2528.1	0.292E-04	0.822 E	03	0.27 E	03	0.35 E	03
F	2601.9	0.310E-04	C. 819 E	03	0.24 E	03	0.30 E	03
F	2682.8	0.268E-04	0.851 E	03	0.27 E	C3	0.34 E	03
F	3074.4	C. $318 \mathrm{E}-\mathrm{C4}$	C. 860 E	03	0.17 E	03	0.22 E	03
F	3589.3	$0.384 \mathrm{E}-\mathrm{C} 4$	C. 867 E	03	C. 11 E	C3	$0.14 E$	03
F	6017.1	$0.334 \mathrm{E}-04$	0.113 E	04	0.15 E	03	0.18 E	C3
F	E CCC. 7	C. $279 \mathrm{E}-04$	0.107 E	04	0.18 E	03	0.23 E	03
FE	1613.0	0.165E-02	0.803 E	03	$0.20 E$	02	$0.26 E$	02
FE	1724.8	C. $227 \mathrm{E}-02$	0.768 E	03	0.10 E	02	0.13 E	02
FE	4218.8	$0.114 \mathrm{E}-02$	0.911 E	03	$0.34 E$	C 1	0.43 E	01

TABLE AIV(2) (CONTINUED)
LIMITS FOR QUANTITATIVE DETERMINATICA

ELEM.	ENERGY	INTENSITY	MIN. AREA		MIN.WT	hT PERCENT
FE	481 C .3	C. $469 \mathrm{E}-03$	0.964E	03	$0.83 E 01$	$0.11 E 02$
FE	5920.5	$0.234 E-02$	C. 113 E	04	C. $21 E$ C1	$0.26 E C 1$
FE	$6 \mathrm{C1} 18.5$	$0.228 \mathrm{E}-02$	0.113 E	04	$0.21 E 01$	0.27 El
FE	7278.9	C. $13 \mathrm{CE}-\mathrm{C} 2$	C. 135 E	04	C.56E C1	0.72 El
FE	7631.6	$0.768 \mathrm{E}-02$	0.143 E	04	C.11E C1	0.14 ECl
FE	7 ¢45.6	C.626E-02	C. 142 E	C4	0.13 E 01	0.17 El
FE	9298.4	0.109E-02	0.585 E	03	0.55 ECl	$0.70 E 01$
GA	2130.9	C. $552 \mathrm{E}-03$	C. 858 E	C3	C. 97 ECl	0.12 E
G A	4840.5	$0.835 \mathrm{E}-03$	0.973 E	03	0.47 ECl	$0 . \operatorname{COE~} 01$
GA	5155.0	0.853E-03	0.974 E	03	0.46 El	0.59 OL
GA	5339.1	$0.173 \mathrm{E}-02$	C. 976 E	C3	0.23 ECl	$0.29 E 1$
GA	5601.5	$0.121 \mathrm{E}-02$	0.104 E	04	0.35 E 01	0.45 E O1
GA	60C8.0	$0.14 \mathrm{CE}-\mathrm{C2}$	0.113 E	04	0.33 El	0.41 Cl
GA	6111.4	$0.118 \mathrm{E}-02$	0.107 E	04	0.4 CE Cl	$0.50 E 01$
GA	6360.0	$0.313 \mathrm{E}-02$	0.101 E	04	0.15 E 01	0.19 El
GD	2107.0	0.374 E 00	0.802 E	03	$0.33 \mathrm{E}-\mathrm{Cl}$	$0.42 \mathrm{E}-01$
GD	2314.4	0.389 O 0	0.806 E	03	$0.25 \mathrm{E}-01$	$0.32 \mathrm{E}-01$
GD	2600.1	0.389 O 0	0.817 E	C3	0.19E-01	$0.24 \mathrm{E}-01$
GD	2678.7	0.464 E 00	0.847 E	03	0.16E-01	0.2CE-01
GD	5582.t	C.359E 00	0.102 E	04	0.12E-01	$0.15 \mathrm{E}-01$
GD	5902.9	0.704 ECO	$0.113 E$	04	0.68E-02	C. 86E-C2
GD	6419.3	C.329E 00	0.103 E	04	$0.14 \mathrm{E}-01$	0.18E-01
GD	6749.8	C.198E C1	C. 111 E	04	C. $27 \mathrm{E}-\mathrm{C} 2$	$0.35 \mathrm{E}-02$
GE	2013.0	0.285E-03	0.776 E	03	$0.49 \mathrm{E} \quad 02$	$0.62 \mathrm{E} \quad 02$
GE	5450.2	C. $291 E-03$	C. 985 E	03	$0.14 \mathrm{E} \quad 02$	0.18 E 02
GE	5518.3	$0.311 \mathrm{E}-03$	0.104 E	04	0.14 E C2	$0.17 E 02$
GE	6036.7	C. $380 \mathrm{E}-03$	0.114 E	04	0.13 E 02	0.16 E 02
GE	6116.3	$0.415 E-03$	0.107 E	04	$0.11 E 02$	0.14 E 02
GE	6717.9	0.398E-03	0.111 E	04	$0.13 E 02$	0.17 E 02
GE	6915.5	0.321E-03	0.117 E	04	0.18 E C2	$0.23 E 02$
GE	7259.8	$0.264 \mathrm{E}-03$	0.134 E	04	$0.27 E \quad 02$	0.35 E 02
H	2223.3	0.200E 00	C. EC3E	C 3	$0.54 \mathrm{E}-01$	0.68E-01
HF	$2 C \in 4.9$	0.230E-02	0.780 E	03	$0.56 \mathrm{E} \mathrm{O1}$	$0.71 E^{\prime} 01$
+F	2468.5	0.290E-02	0.812 E	03	C. 29 El	$0.36 \mathrm{E} \mathrm{O1}$
HF	4343.5	$0.315 \mathrm{E}-02$	0.936 E	03	0.12 El	0.16 E O1
HF	5418.4	C. 209E-02	O. 100 E	04	$0.20 \mathrm{E} \mathrm{O1}$	0.25 E 01
HF	5505.6	$0.311 \mathrm{E}-02$	C. 1 C4E	C4	$0.14 E \quad 01$	0.17 E 01
HF	5694.4	$0.230 \mathrm{E}-02$	0.106 E	04	0.19 O 1	$0.24 E C 1$
HF	5723.5	C. $797 \mathrm{E}-\mathrm{C} 2$	0.107E	04	0.56 ECO	0.71 E 00
HF	6112.3	$0.262 \mathrm{E}-02$	$0.107 E$	C.4	0.18 Cl	C. $23 E 01$
+G	157C.3	C. $441 \mathrm{E}-\mathrm{Cl}$	C. 832 E	03	0. GOE CO	0.11 E 01
HG	1693.3	$0.961 E-01$	0.770 E	03	0.27 E CC	0.34 E 00
HG	2002.1	0.853E-01	0.777 E	03	0.17 E 00	$0.21 E 00$
HC	2639.9	$0.484 \mathrm{E}-01$	0.820 E	03	0.15 OC	$0.19 E 00$

limits for quantitative determinaticn

LIMITS for quantitative determinaticn

ELEM.	ENERGY	INTENSITY	MIN. AREA		MIN.WT		WT PERC	CENT
K	354t.6	$0.137 \mathrm{E}-02$	0.865 E	03	0.32 E	01	0.41 E	01
K	5380.3	0.236E-02	C. 578 E	C3	0.17 E	01	0.21 E	01
K	5695.6	$0.150 \mathrm{E}-02$	0.1 C6E	04	$0.29 E$	01	0.37 E	01
K	5752.0	C. $142 \mathrm{E}-02$	C.109E	04	0.32 E	01	0.41 E	01
K	7769.0	$0.146 \mathrm{E}-02$	C. 126 E	04	0.52 E	01	0. $\in \in E$	01
LA	27EE.3	0.436E-03	0.846E	03	0.15 E	02	0.20 E	02
LA	3082.6	$0.501 \mathrm{E}-03$	0.856 E	03	0.11 E	02	c.14E	C2
LA	$36 \mathrm{C8.6}$	$0.551 \mathrm{E}-03$	0.876 E	03	0.79 E	01	0.10 E	02
LA	4389.4	0.972E-03	C. 950 E	C3	0.4 CE	Cl	0.51 E	01
LA	4416.3	0.945 E-03	0.951 E	03	0.41 E	01	0.52 E	01
LA	4502.8	0.659E-03	0.917 E	03	0.56 E	01	0.71 E	01
LA	4842.7	$0.276 \mathrm{E}-02$	C. 972 E	03	0.14 E	01	C. 18 E	Cl
LA	$5 C ¢ 7.6$	$0.274 \mathrm{E}-02$	0.936 E	03	0.14 E	01	0.18 E	Cl
LI	1891.4	$0.851 \mathrm{E}-04$	C. 778 E	C3	0.2CE	03	0.25 E	C3
LI	2032.5	0.841E-03	0.769 E	03	0.16 E	02	0.20 E	02
L. I	2117.4	0.584E-04	C. 81 CE	03	$0.21 E$	03	0.27 E	03
LI	2184.0	$0.211 \mathrm{E}-03$	0.786 E	03	0.52 E	02	$0.66 E$	02
LI	3452.7	$0.172 \mathrm{E}-04$	C. 880 E	03	0.27 E	03	0.34 E	03
LI	3585.2	$0.140 \mathrm{E}-04$	0.864 E	03	0.31 E	C3	0.39 E	03
LI	4508.3	$0.135 \mathrm{E}-04$	0.917 E	03	0.28 E	03	0.35 E	03
LI	6C17.3	C.129E-04	C. 113 E	C4	C. 38 E	03	0.48 E	03
LI	7246.7	$0.375 \mathrm{E}-04$	0.133 E	04	0.1 CE	C3	C. 24 E	03
LU	2056.2	0.156E-02	C. 776 E	C3	0.83E	Cl	0.11 E	02
LU	2091.2	$0.192 \mathrm{E}-02$	0.795 E	03	0.66 E	01	0.84 E	01
LU	3852.1	0.151E-C2	0.896 E	03	0.27 E	01	0.34 E	01
LU	5020.4	$0.174 \mathrm{E}-02$	C. 957 E	C3	0.22 E	01	0.28 EE	C1
LU	5320.4	$0.119 \mathrm{E}-02$	0.967 E	03	0.33 E	01	0.42 E	01
LU	5569.6	$0.16 \mathrm{SE}-02$	0.102 E	04	C. 25 E	Cl	0.32 E	01
LU	5601.7	$0.183 \mathrm{E}-02$	0.104 E	04	0.24 E	01	0.30 E	01
Lu	68C3.8	C. 160E-02	0.110 E	04	0.34 E	01	0.43 E	01
MG	1808.9	$0.393 \mathrm{E}-03$	0.788 E	03	0.51 E	02	$0.65 E$	C 2
MG	2828.1	0.557E-C3	0.853 E	03	0.12 E	02	0.15 E	02
MG	3054.1	0.169E-03	0.853 E	03	0.33 E	02	0.42 E	C2
MG	3301.1	$0.116 \mathrm{E}-03$	0.886 E	03	0.43 E	02	0.55 E	C2
MG	3412.6	0.848E-04	0.900 E	03	0.57 E	02	0.72 E	02
MG	3830.7	$0.880 \mathrm{E}-04$	0.896 E	03	0.47 E	C2	0.59 E	C2
MG	3916.7	0.637E-03	0.888 E	03	0.63 E	01	0.79 E	01
MG	5451.8	$0.432 \mathrm{E}-04$	C. 988 E	C 3	C. 94E	C2	0.12 E	03
MG	8154.4	$0.621 \mathrm{E}-04$	0.864 E	03	0.93 E	02	0.12 E	C3
MN	1747.0	0.415E-02	C. 766 E	C3	0.54 E	01	0.69 E	01
MN	1987.6	$0.344 \mathrm{E}-02$	0.778 E	03	0.42 E	01	0.54 E	01
MN	2330.9	0.456E-C2	0.815 E	03	0.21 E	01	0.27 E	01
MN	3408.5	0.492E-02	C.9CIE	03	0.98E	00	0.12 E	01
MN	5014.7	0.807E-02	0.956 E	03	0.48 E	00	0.61 E	00
MN	5527.2	C.101E-01	C. 103 E	04	0.42 E	00	0.53 E	00

limits for guantitative cetermination

ELEM.	ENERGY	INTENSITY	MIN.AR	EA	Min. Wt		WT PERCENT	
MN	6783.7	0.504E-02	0.111 E	04	0.11 E	01	0.14 E	01
MN	7057.9	0.165E-01	0.124 E	04	0.39 E	00	0.49 E	00
Mn	7159.9	$0.883 \mathrm{E}-02$	0.128 E	04	0.77 E	CC	0. C ¢ E	CC
MN	7243.5	$0.175 \mathrm{E}-01$	0.132 E	04	0.41 E	00	0.52 E	CO
MC	2400.9	0.167E-03	0.810 E	03	0.53 E	C2	C.67E	02
MC	2664.5	$0.215 \mathrm{E}-03$	0.837 E	03	0.34 E	02	0.43 E	02
MO	5602.4	$0.128 \mathrm{E}-03$	0.104 E	04	0.34 E	C2	0.43 E	02
MC	5713.1	$0.225 \mathrm{E}-03$	0.108 E	04	0.20E	C2	$0.25 E$	02
MO	6364.6	C. 127E-03	0.102 E	04	0.36 E	02	0.46 E	02
MO	6625.1	0.123E-03	0.107 E	04	0.41 E	C2	0.52 E	02
MO	6919.3	C.579E-03	0.117 E	04	0.10 E	02	0.13 E	02
MO	7527.1	$0.132 \mathrm{E}-03$	0. 148 E	04	0.64E	02	0.82 E	02
N	1678.6	0.195E-03	0.773 E	03	0.14 E	03	0.17 E	03
N	1887.9	$0.126 \mathrm{E}-02$	C. 775 E	C3	0.14 E	02	0.17 E	02
N	3530.5	$0.441 \mathrm{E}-03$	0.889 E	03	0.10 E	02	0.13 E	02
N	4507.6	0.728E-03	C. 917 E	03	0.51 E	01	0.65 E	01
N	5267.1	$0.117 \mathrm{E}-02$	C. SE5E	03	0.33 E	01	0.42 E	01
N	52ct. 7	$0.856 \mathrm{E}-03$	0.975 E	03	0.46 E	01	0.59 E	01
N	5522.C	C.819E-03	C. 1C3E	04	0.51 E	C1	0.65 E	01
N	6321.4	$0.767 \mathrm{E}-03$	0.103 E	04	0.tOE	01	C. 77E	01
N	7299.5	$0.385 \mathrm{E}-\mathrm{C} 3$	C. 137 E	C4	0.19 E	02	C. 25 E	02
NA	1634.4	C. 120E-C2	0.805 E	03	$0.26 E$	02	0.33 E	02
NA	2027.2	C.277E-02	0.774 E	03	0.49 E	01	0.62 E	01
NA	2517.6	0.239E-02	0.823 E	03	0.34 E	01	0.43 E	01
NA	2754.4D	C. $143 \mathrm{E}-01$	C. 846 E	C3	0.47 E	CO	0.6 CE	00
NA	2862.7	$0.164 \mathrm{E}-02$	0.845 E	03	0.38 E	C1	C.48E	01
NA	3058.1	$0.135 \mathrm{E}-02$	C. 855 E	03	0.40 E	01	0.51 E	01
NA	3588.0	$0.242 \mathrm{E}-02$	C. 867 E	03	0.18 E	01	0.23 E	01
NA	3982.0	$0.301 \mathrm{E}-02$	0.896 E	03	0.13 E	01	0.17 E	01
NA	6395.4	C. $359 \mathrm{E}-02$	0.164 E	04	0.13 E	01	0.17 E	01
NB	1724.5	0.112E-03	0.768 E	03	0.21 E	03	0.27 E	03
NB	1979.7	$0.413 \mathrm{E}-04$	0.785 E	03	0.36 E	03	0.46 E	03
NB	4739.7	$0.443 \mathrm{E}-04$	0.932 E	03	0.85 E	C2	0.11 E	C3
NB	5104.2	0.842E-04	0.938 E	03	0.45 E	02	0.57 E	02
NB	5253.6	$0.428 \mathrm{E}-04$	C. 962E	C3	0.SIE	02	0.12 E	03
NE	5496.9	$0.601 \mathrm{E}-04$	0.104 E	04	0.71 E	C 2	0.90 E	02
NB	5895.3	0.631E-04	0.113 E	04	0.76 E	02	0.96 E	02
NB	6830.7	$0.752 \mathrm{E}-04$	0.113 E	04	C.74E	02	0. S4E	C2
NB	7186.1	$0.345 \mathrm{E}-04$	0.129 E	04	0.20 E	03	0.25 E	C3
ND	2371.5	0.253E-C2	C. 821 E	03	0.37 E	01	C. 47 E	01
ND	4790.9	$0.169 \mathrm{E}-02$	0.932 E	03	0.22 E	01	0.28 E	01
ND	4949.0	$0.184 \mathrm{E}-02$	0.964 E	03	0.21 E	01	0.27 E	01
ND	538 C .9	0.178E-02	0.978 E	03	0.22 E	01	0.28 E	01
ND	¢448.2	C. 26 CE-02	C. 981 E	C3	0.15 E	01	0.20 E	01
ND	5521.2	0.225E-02	0.104 E	04	0.19 E	C1	0.24 E	C1

limits for quantitative ceterninaticn

ELEM.	ENEREY	INTENS ITY	MIN.AREA		MIN.WT		WT PERCENT	
ND	6255.9	0.544E-02	0.101 E	04	0.83 E	00	0.11 E	01
ND	6502.1	$0.120 \mathrm{E}-01$	0.106 E	04	0.41 E	00	C. E2E	CO
N I	5816.8	$0.110 \mathrm{E}-02$	0.110 E	04	0.42 E	01	0.53 E	01
NI	6105.0	0.982E-03	0.107 E	04	0.47 E	C1	C.6CE	01
NI	6837.0	$0.562 \mathrm{E}-02$	0.113 E	04	0.10 E	01	0.13 E	01
N I	7536.1	0.233E-02	0.148E	04	C. 36 E	Cl	0.46 E	01
NI	7818.9	0.427E-02	0.118 E	04	0.17 E	01	0.21 E	01
N I	8120.5	C. $164 \mathrm{E}-02$	0.899 E	03	0.36 E	01	0.46 E	01
N I	8533.4	0.884E-02	C.1C1E	04	0.85 E	CC	0.11 E	01
NI	8958.8	$0.197 \mathrm{E}-01$	0.912 E	03	0.41 E	00	0.52 E	CO
CS	$22 \in 1.3$	$0.116 \mathrm{E}-\mathrm{C} 3$	C.8C2E	03	0.88 E	02	0.11 E	03
OS	2458.8	0.484E-04	0.813 E	03	0.17 E	03	0.22 E	C3
OS	4530.7	C. $484 \mathrm{E}-\mathrm{C} 4$	C.911E	03	0.76 E	02	0.97 E	02
OS	4812.8	0.678E-04	0.967 E	03	0.58 E	C2	C. 73E	02
OS	5146.9	C. 17 CE-C3	C. 954 E	03	0.23 E	02	$0.29 E$	02
CS	5274.0	$0.111 \mathrm{E}-03$	0.966 E	03	0.35 E	02	0.45 E	C2
0 S	5684.0	0.775E-04	0.105 E	04	0.56 E	02	0.71 E	02
OS	6587.2	0.436E-04	C. 1C6E	C4	0.12 E	03	0.15 E	03
P	1890.0	0.246E-03	0.778 E	03	0.70 E	02	0.88 E	02
P	2114.3	0.282E-03	0.807 E	03	0.44 E	C2	0.56 E	02
p	2154.2	$0.620 \mathrm{E}-03$	0.802 E	03	0.19 E	02	0.24 E	02
P	3C58.3	C. $239 \mathrm{E}-03$	C. 855 E	03	0.23 E	02	0.30 E	02
P	3522.8	$0.535 \mathrm{E}-03$	0.891 E	03	0.85 E	01	C. 11 E	02
p	3900.3	$0.649 \mathrm{E}-03$	0.880 E	03	0.61 E	01	0.78 E	01
P	4671.3	0.561E-03	C. 943 E	03	0.68 E	01	0.86 E	01
P	6785.3	$0.528 \mathrm{E}-03$	0.111 E	04	0.10 E	02	0.13 E	02
P	7481.2	C. $216 \mathrm{E}-03$	C. 141 E	04	0.37 E	02	0.46 E	02
PB	6736.4	0.255E-04	0.111 E	04	$0.21 E$	03	0.27 E	03
PB	7367.7	$0.476 \mathrm{E}-03$	0.140E	04	0.16 E	02	0.21 E	C2
PD	2196.9	$0.498 \mathrm{E}-03$	0.789 E	03	0.22 E	02	0.28 E	02
PD	2457.5	C. $461 \mathrm{E}-03$	0.817 E	03	0.18 E	02	0.23 E	02
PD	2484.3	$0.466 \mathrm{E}-03$	C. 817 E	03	0.18 E	C2	C. 22 E	02
PD	4794.6	$0.493 \mathrm{E}-03$	0.940 E	03	0.77 E	01	0.58 E	01
PD	5212.9	$0.221 \mathrm{E}-\mathrm{C3}$	C. 974 E	03	0.18 E	02	0.23 E	02
PD	5828.4	$0.371 \mathrm{E}-03$	0.110 E	04	0.13 E	02	C. 16 E	02
PD	6t52.5	c. $163 \mathrm{E}-03$	0.111E	04	0.32 E	02	0.41 E	02
PD	8331.0	$0.724 \mathrm{E}-04$	0.942 E	03	0.91 E	C2	C. 12E	03
PR	2829.8	C. 304E-C3	0.856 E	03	0.21 E	02	0.27 E	02
PR	3652.0	$0.555 \mathrm{E}-03$	0.877 E	03	0.77 E	C 1	C. CEE	01
PR	4692. 2	$0.111 \mathrm{E}-02$	0.945 E	03	0.34 E	01	0.44 E	01
PR	4801.4	$0.574 E-03$	C. 951 E	C3	0.67 E	01	0.85 E	01
PR	5095.9	$0.734 \mathrm{E}-03$	0.939 E	02	0.52 E	C 1	0.66 E	01
PR	5140.2	C. $133 \mathrm{E}-02$	C. 949 E	03	0.29 E	01	0.37 E	01
PR	5665.7	$0.134 \mathrm{E}-02$	C.1C5E	04	C. 32 E	01	0.41 E	01

LIMITS FOR QUANTITATIVE DETERMINATION

EL EM.	ENERCY	INTENSITY	MIN. AREA		MIN.WT		WT PERCENT	
PR	5842.9	$0.468 \mathrm{E}-03$	0.111 E	04	0.10 E	02	0.13 E	02
PT	1978.7	0.492E-03	0.785 E	03	0.3 CE	C2	0.38 E	02
PT	2067.8	0.368E-03	0.782 E	03	0.35 E	02	0.44 E	02
PT	2311.4	$0.513 \mathrm{E}-03$	C. 803 E	C3	0.15 SE	02	0.24 E	02
PT	2469.6	$0.415 \mathrm{E}-03$	0.812 E	03	0.20 E	02	0.25 E	02
PT	5173.4	C. $525 \mathrm{E}-03$	0.953 E	03	0.74 E	01	0.93 E	01
PT	5254.6	$0.144 \mathrm{E}-02$	0.963 E	03	0.27 E	Cl	C. 34 E	C1
PT	$53 \mathrm{C7.0}$	0.344 E-03	0.977 E	03	0.12 E	02	0.15 E	02
PT	5611.4	c. $308 \mathrm{E}-03$	0.106 E	04	C.14E	C2	0.18 E	02
PT	6033.5	$0.326 \mathrm{E}-03$	0.114 E	04	0.15 E	C2	0.15 E	02
RB	2130.0	0.226E-04	C. 813 E	C3	C. 54E	C3	0.69 E	03
RB	2149.7	0.236E-04	0.806 E	03	0.50 E	C3	0.64 E	03
RB	217t.8	$0.586 \mathrm{E}-\mathrm{C4}$	0.794 E	03	0.19 E	03	0.24 E	03
RB	5760.6	$0.313 \mathrm{E}-04$	C. 110 E	04	C. 15E	C3	0.19 E	03
RB	6470.7	$0.262 \mathrm{E}-04$	0.103 E	04	0.18 E	03	0.23 E	03
RB	t 520.2	C. 2 S3E-04	0.103 E	04	0.16 E	03	0.21 E	03
RE	6831.4	$0.308 \mathrm{E}-04$	0.113 E	04	0.18 E	C3	0.23 E	C3
RB	7624.1	C. $987 \mathrm{E}-04$	0.143 E	04	0.85 E	02	0.11 E	03
RE	2004.4	$0.103 \mathrm{E}-02$	0.777 E	03	0.14 E	C2	0.17 E	C2
RE	3153.2	$0.668 \mathrm{E}-03$	0.865 E	03	0.79 E	01	0.10 E	02
RE	4861.0	$0.974 \mathrm{E}-03$	c. S66E	03	0.40 E	01	0.51 E	01
RE	5007.9	0.890 E-03	0.954 E	03	0.43 E	01	$0.55 E$	01
RE	5074.3	C. $134 \mathrm{E}-\mathrm{C} 2$	0.953 E	03	0.29 E	01	0.36 E	01
RE	5137.2	$0.106 \mathrm{E}-02$	C. 948 E	03	0.36 E	01	$0.46 E$	01
RE	5277.7	$0.640 \mathrm{E}-03$	0.967 E	03	0.61 E	01	0.78 E	Cl
RE	5910.2	C. $184 \mathrm{E}-02$	0.113 E	04	C. 26 E	01	0.33 E	01
RH	4510.3	$0.401 \mathrm{E}-02$	0.919 E	03	0.93 E	00	0.12 E	01
RH	5266.2	C.931E-02	0.965E	03	0.42 E	OC	0.53 E	00
RH	5347.2	$0.122 \mathrm{E}-01$	0.978 E	03	0.33 E	OC	0.41 E	OC
RH	5517.2	c.129E-01	C. 113 E	C4	0.37 E	00	0.47 E	00
RH	6046.4	$0.703 \mathrm{E}-02$	0.114 E	04	0.7 CE	CC	0.89 E	00
RH	6C82.8	$0.593 \mathrm{E}-\mathrm{C2}$	0.108 E	04	0.79 E	00	0.10 E	01
RH	6171.8	$0.611 \mathrm{E}-02$	C. 106 E	C4	C. 76 E	CO	0. StE	00
RH	6211.4	0.630E-02	0.104 E	04	0.73 E	00	0.92 E	00
RU	2298.3	0.823E-04	C. 8 CGE	C3	0.12 E	03	C. 15 E	03
RU	2530.4	$0.128 \mathrm{E}-03$	0.822 E	03	0.62 E	02	0.75 E	C2
RU	4351.3	C. $96 C E-04$	C.934E	03	0.40 E	02	0.51 E	02
RU	4627.4	$0.106 \mathrm{E}-03$	0.933 E	03	$0.36 E$	02	0.45 E	C2
RU	5022.8	0.166E-03	0.958 E	03	0.23 E	02	0.30 E	02
RU	6273.7	0.122E-03	C. 104E	C4	0.38 E	02	0.48 E	02
RU	6342.1	$0.128 \mathrm{E}-03$	0.103 E	04	0.36 E	02	0.46 E	02
RU	7102.9	C. $823 \mathrm{E}-04$	C.126E	04	0.80 E	02	0.10 E	03
S	1597.8	$0.113 \mathrm{E}-02$	0.810 E	C3	0.31 E	02	0.40 E	02
S	1896.5	C.681E-03	C.778E	03	0.25 E	02	0.32 E	02

LIMITS FOR QUANTITATIVE DETERMINATION

ELEM.	ENERGY	INTENSITY	MIN. AREA	MIN.WT	WT PERCENT
S	2379.7	$0.307 \mathrm{E}-02$	0.818 E 02	0.3 CE Cl	0.38 ECl
S	2753.2	0.403E-03	C. 846 E 03	0.17 E 02	$0.21 E 02$
S	2931.1	$0.154 \mathrm{E}-\mathrm{C} 2$	$0.852 \mathrm{EC3}$	C.39E Cl	0.50 E 01
S	3220.8	$0.187 \mathrm{E}-02$	0.881 E 03	0.28 E 01	$0.35 \mathrm{E} \mathrm{O1}$
S	3370.4	C. $363 \mathrm{E}-03$	$0.883 \mathrm{EC3}$	0.13 E 02	0.17 E 02
S	4869.8	$0.792 \mathrm{E}-03$	0.963 E 03	0.49 ECl	0.62 E 01
S	542 C .5	$0.408 \mathrm{E}-02$	0.998 E 03	$0.10 \mathrm{E}^{01}$	0.13 El
S	7800.0	C.270E-03	0. $123 \mathrm{EC4}$	$0.28 \mathrm{EC2}$	0.35 E 02
SB	2074.2	0.125E-03	0.785 E 03	0.10 E 03	$0.13 E 03$
SB	5562.9	0.176E-03	$0.103 \mathrm{EC4}$	0.24 E 02	$0.31 E 02$
SE	5684.3	0.897E-04	0.105 E 04	$0.49 \mathrm{EC2}$	0.62 E 02
SB		$0.163 \mathrm{E}-\mathrm{C} 3$	0.113 E 04	0.29 E 02	0.37 E 02
SB	6380.1	$0.141 \mathrm{E}-03$	$0.103 \mathrm{EC4}$	0.33 E 02	$0.42 \mathrm{E} \mathrm{C2}$
SB	6468.1	$0.119 \mathrm{E}-03$	0.103 E 04	0.40 E 02	$0.51 \mathrm{EC2}$
SB	6523.6	$0.321 \mathrm{E}-03$	C.1C4E C4	0.15 E 02	0.19 O
SE	6728.0	$0.217 \mathrm{E}-03$	0.110 E 04	$0.25 \mathrm{EC2}$	0.31 O 02
SC	1692.0	$0.112 \mathrm{E}-01$	C. 770E C3	C. 23 ECl	0.29 ECl
SC	2111.4	$0.655 \mathrm{E}-02$	0.805 E 03	0.19 E 01	0.24 E 01
SC	2635.6	C. S77E-02	0.817 E 03	0.74 E 00	0.94 E 00
SC	4975.1	0.672E-02	C.S57E C3	0.58 ECO	0.73 E 00
SC	6054.9	$0.733 \mathrm{E}-02$	0.112 E 04	0.66 E 00	0.84 ECO
SC	6839.5	C. $155 \mathrm{E}-\mathrm{Cl}$	0.114 E 04	0.36 E 00	0.46 E 00
SC	7635.9	0.829E-02	0.143 E 04	0.10 El	0.13 E 01
SC	8521.6	C. $147 \mathrm{E}-01$	0.101 E 04	0.51 E 00	0.65 E 00
SC	8174.7	0.286E-01	C.878E C3	$0.21 E 00$	0.26 E 00
SE	4565.7	$0.122 \mathrm{E}-02$	0.932 E 03	0.31 El	0.39 E 01
SE	5601.7	$0.202 \mathrm{E}-02$	0.104 EC	$0.21 E^{01}$	0.27 El
SE	6008.0	$0.271 \mathrm{E}-02$	0.113 E 04	0.18 E 01	$0.23 E 01$
SE	$62 \leq 2.7$	C. $142 \mathrm{E}-02$	$0.104 E 04$	$0.32 \mathrm{E} \mathrm{O} ~ 01$	0.41 E Ol
SE	6601.2	$0.404 \mathrm{E}-02$	C.107E 04	0.12 ECl	0.16 E 01
SE	7179.7	$0.154 \mathrm{E}-02$	0.129 E 04	0.44 E 01	0.56 E Cl
SE	7418.7	C. $240 \mathrm{E}-02$	$0.140 \mathrm{EC4}$	C.33E 01	0.42 E 01
SI	2092.9	$0.919 E-03$	0.795 E 03	$0.14 E 02$	0.17 E 02
SI	2425.9	C. 13 5E-03	c. 8C6E C3	0.64 E 02	0.81 E 02
SI	3539.3	$0.273 \mathrm{E}-02$	0.879 E 03	0.16 ECl	C.CIE 01
SI	3661.3	$0.158 \mathrm{E}-\mathrm{C} 3$	0.876 E 03	0.27 E 02	0.34 E 02
SI	4934.3	$0.242 \mathrm{E}-02$	$0.965 \mathrm{EC3}$	C.16E 01	C. 20E 01
SI	5107.3	$0.126 \mathrm{E}-03$	0.941 E 03	0.30 E 02	0.38 E 02
SI	¢ 380.1	C. $433 \mathrm{E}-03$	0.103 E 04	0.11 E 02	0.14 E 02
SI	7199.3	$0.246 \mathrm{E}-03$	0.130 E 04	$0.28 \mathrm{EC2}$	0.36 E 02
SM	2119.8	$0.936 E-01$	0.811 E 03	0.13 E 0 C	0.17 E 00
SM	2161.0	$0.655 \mathrm{E}-01$	0.790 E 03	0.17 E OC	0.22 ECO
SM	2332.0	C. $398 \mathrm{E}-01$	0.816 E 03	0.24 E 00	0.31 E 00
SM	4484.3	$0.398 \mathrm{E}-01$	C. S26E C3	c. 94E-01	0.12 E 00
SM	4809.1	$0.912 \mathrm{E}-01$	0.964 E 03	$0.43 \mathrm{E}-\mathrm{Cl}$	$0.54 E-01$

LIMITS FOR QUANTITATIVE DETERMINATICN

ELEM.	ENERGY	INTENSITY	MIN.AREA	MIN. WT	Wt Percent
SM	5 532.8	C.112E 00	0.103 E 04	$0.38 \mathrm{E}-01$	$0.48 \mathrm{E}-01$
SM	6537.9	0.468E-01	C. 1C4E 04	0.1 CE CC	C.13E 00
SM	7213.0	0.175 E 00	0.130 E 04	$0.40 \mathrm{E}-01$	$0.51 E-01$
SN	2112.7	$0.488 \mathrm{E}-\mathrm{C4}$	C.805E 03	$0.25 \mathrm{E} \mathrm{C3}$	0.32 E 03
SN	2179.0	$0.371 \mathrm{E}-04$	0.796 E 03	$0.30 E 03$	0.38 E 03
SN	2t51.7	C. $183 \mathrm{E}-04$	C. $826 \mathrm{EC3}$	0.39 EC	0.50 E 03
SN	3334.3	0.320E-04	0.879 E 03	0.15 E C3	0.19 E 03
SN	3459.2	$0.177 \mathrm{E}-04$	C. 885 E 03	0.26 E 03	0.33 E 03
SN	5392.5	$0.136 \mathrm{E}-04$	$0.975 \mathrm{E} \mathrm{C3}$	0.29 C C3	0.37 E 03
SN	6268.0	$0.139 \mathrm{E}-04$	0.103 E 04	0.33 E O	$0.42 \mathrm{E} \mathrm{C3}$
SN	9326.1	C. $110 \mathrm{E}-04$	C.581E 03	0.55 E 03	$0.7 C E 03$
SR	1835.9	0.761 E-02	0.758 E 03	0.24 E 01	$0.31 E 01$
SR	227 ¢. 8	0.266E-03	0.805 E 03	0.38 E 02	0.48 E 02
SR	2391.5	0.383E-03	0.810 E 03	$0.23 \mathrm{EC2}$	0.3 CE 02
SR	3009.5	0.448E-03	0.846 E 03	$0.13 \mathrm{E}^{02}$	0.16 E 02
SR	6101.9	$0.295 \mathrm{E}-03$	$0.107 E C 4$	0.16 E 02	0.20 E 02
SR	6267.3	$0.463 \mathrm{E}-03$	0.103 E 04	C.SGE C1	$0.13 \mathrm{E} \mathrm{O2}$
SR	6660.6	C. 46 CE- 03	$0.111 E 04$	0.12 E 02	0.15 E 02
SR	6941.9	$0.282 \mathrm{E}-03$	C.119E 04	C. 21 E 02	0.27 E 02
SR	7527.7	C. $386 \mathrm{E}-03$	0.148 E 04	0.22 E 02	0.28 E 02
TA	4220.6	$0.337 \mathrm{E}-03$	0.911 E 03	C.11E C2	$0.14 \mathrm{E} \mathrm{C2}$
TA	4315.5	$0.299 \mathrm{E}-03$	0.917 E 03	0.13 E 02	0.16 E 02
ta	4483.0	$0.197 \mathrm{E}-03$	C.924E C3	0.15 Cl	0.24 E 02
ta	4617.7	$0.191 \mathrm{E}-03$	0.932 E 03	$0.20 \mathrm{E}^{\text {C2 }}$	0.25 E 02
TA	4781.8	C. 21 CE-03	C.931E 03	0.18 E 02	0.23 E 02
TA	5342.9	$0.172 \mathrm{E}-03$	C. G77E C3	0.23 E 02	$0.29 E 02$
TA	5964.7	$0.451 \mathrm{E}-03$	0.112 E	0.11 E 02	0.13 EC 2
ta	6062.5	$0.273 \mathrm{E}-\mathrm{C3}$	$0.111 E 04$	0.18 E 02	0.22 E 02
TB	1689.0	0.662E-03	0.771 E 03	0.39 E 02	0.50 E 02
TB	1745.8	C. $819 \mathrm{E}-03$	C.769E 03	$0.28 \mathrm{E} \quad 02$	0.35 E 02
TB	2120.2	$0.349 \mathrm{E}-03$	$0.811 \mathrm{E}^{0} \mathrm{~S}$	0.35 E C2	$0.45 \mathrm{E} \mathrm{O2}$
TB	5 C 9.6	$0.471 \mathrm{E}-03$	0.934 E 03	0.80 E 01	0.10 E 02
T ${ }^{\prime}$	5777.2	0.680E-03	0.110E C4	C.68E 01	0.86 E 01
TB	5891.5	$0.924 \mathrm{E}-03$	0.113 E 04	$0.52 \mathrm{E} \mathrm{O1}$	0.66 E 01
TB	5953.7	C. $384 \mathrm{E}-03$	0.113 E 04	0.12 E 02	0.16 E 02
TE	5994.7	$0.453 \mathrm{E}-03$	0.113 E 04	$0.11 \mathrm{EC2}$	C.14E 02
TB	6138.8	0.471 E-03	0.107 E 04	0.10 E 02	$0.13 \mathrm{EC2}$
TB	6218.2	$0.697 \mathrm{E}-03$	$0.103 \mathrm{E} \quad 04$	C.66E 01	0.83 E 01
TE	1918.9	0.920E-03	0.777 E 03	0.18 E 02	0.22 E 02
TE	2 C 39.1	0.425E-03	C. 773 E C3	0.31 E 02	0.40 E 02
TE	2386.0	0.270E-03	0.815 E 03	$0.34 \mathrm{E} \mathrm{C2}$	0.43 E 02
TE	2610.5	$0.602 \mathrm{E}-03$	C.826E 03	0.12 E 02	0.16 E 02
TE	2747.2	$0.103 \mathrm{E}-02$	C.841E C3	0.66 E 01	0.84 E Ol
TE	3544.0	0.270E-03	0.868 E 03	0.16 E 02	0.21 E 02
TE	566E.1	C. $222 \mathrm{E}-03$	$0.105 \mathrm{EC4}$	$0.20 E 02$	0.25 E 02

LIMITS FQR QUANTITATIVE CETERMINATION

ELEM.	ENERGY	INTENSITY	MIN. AREA	MIN.WT	WT PERCENT
TE	6211.1	$0.210 \mathrm{E}-03$	0.104 E 04	0.22 E 02	$0.28 \mathrm{EC2}$
TE	6323.0	C. 7COE-03	$0.103 \mathrm{EC4}$	0.66 E 01	0.84 E 01
TI	1586.0	C.650E-02	0.820 E 03	0.57 E 01	0.73 El
TI	1761.6	C.601E-02	$0.756 \mathrm{E} \mathrm{C3}$	0.36 E Ol	0.45 E 01
TI	3026.8	0.264E-02	$0.854 \mathrm{E} \mathrm{O}^{3}$	0.22 E Cl	C.27E 01
TI	3475.5	$0.178 \mathrm{E}-02$	0.874 E 03	$0.26 E 01$	0.33 E 01
T I	3920.4	$0.132 \mathrm{E}-02$	0.891E 03	C.3CE 01	0.38 E 01
TI	4881.3	$0.431 \mathrm{E}-02$	0.950 E 03	0.89 E 00	0.11 ECl
TI	496t. 6	C. $284 \mathrm{E}-02$	$0.959 E 03$	0.14 E 01	0.17 E 01
TI	6418.0	$0.277 \mathrm{E}-01$	0.103 E 04	0.17 CC	C. 22E 00
TI	6555.6	$0.493 \mathrm{E}-02$	0.105 E 04	0.10 El	0.13 E 01
TI	6759.7	$0.411 \mathrm{E}-01$	0.112E 04	C.13E OC	0.17 E 00
TL	4752.8	$0.194 \mathrm{E}-03$	0.936 E 03	0.19 O	0.25 E O2
TL	4914.2	$0.204 \mathrm{E}-03$	C. S55E C3	0.19 E 02	$0.24 \mathrm{E} \mathrm{O2}$
TL	5180.8	$0.182 \mathrm{E}-03$	0.962 E 03	0.21 E 02	0.27 E 02
TL	5280.5	0.236E-03	C.967E 03	0.17 E 02	0.21 E 02
TL	5603.6	$0.323 \mathrm{E}-03$	0.104 E 04	0.13 E 02	0.17 E 02
TL	5641.9	$0.374 \mathrm{E}-03$	0.105 E 04	0.12 E 02	0.15 E C2
TL	6166.9	C. $204 \mathrm{E}-03$	C. 1 C6E C4	$0.23 \mathrm{E} \mathrm{C2}$	0.29 C C2
TL	6515.2	$0.157 \mathrm{E}-03$	0.104 E 04	0.21 C C2	0.39E C2
TM	2115.2	0.898E-03	C. 8C8E C3	$0.14 \mathrm{E} \mathrm{C2}$	0.18 E 02
TM	4733.2	$0.166 \mathrm{E}-02$	0.931 E 03	0.23 ECl	0.29 Cl
TM	5152.2	C. 166E-02	C. S58E 03	$0.23 \mathrm{E} \mathrm{O1}$	0.30 E 01
TN	5737.2	$0.427 \mathrm{E}-02$	0.107 E 04	$0.10 E 01$	0.13 E Cl
TM	5942.7	C. $418 \mathrm{E}-02$	C. 114 E 04	0.12 E 01	0.15 E 01
TM	6001.6	$0.243 \mathrm{E}-02$	$0.113 \mathrm{EC4}$	C.20E 01	0.25 E 01
TM	6387.4	$0.364 \mathrm{E}-02$	0.104 E 04	0.13 E 01	0.16 ECl
TM	6552.9	0.24 7E-02	0.105 E 04	0.20 E 01	0.25 E 01
\checkmark	1777.8	$0.317 \mathrm{E}-02$	0.770 E 03	0.67 E 01	0.84 E 01
v	5142.2	C. 293E-02	C. 951E 03	0.13 E 01	0.17 El
v	5209.9	$0.332 \mathrm{E}-02$	$0.974 \mathrm{E} \mathrm{O}^{0 .}$	0.12 ECl	C. 15E 01
v	5515.5	$0.574 \mathrm{E}-02$	0.104 E 04	0.74 E 00	0.54 E 00
v	5751.9	$0.524 \mathrm{E}-\mathrm{C} 2$	0.1 CGE 04	C.87E CC	0.11 E 01
v	6464.8	$0.565 \mathrm{E}-02$	0.104 E 04	0.85 ECC	0.11 E 01
v	$\epsilon E 17.2$	C. $112 \mathrm{E}-01$	C.104E 04	0.43 E 00	0.55 E 00
v	6873.9	0.672E-02	0.115 E 04	0.85 ECC	$0.11 E 01$
v	7162.7	$0.822 \mathrm{E}-02$	0.129 E 04	0.83 E 00	0.11 El
W	3470.7	$0.594 \mathrm{E}-03$	0.882 E 03	0.78E Cl	C. CSE 01
w	4249.2	$0.844 \mathrm{E}-03$	0.918 E 03	0.45 E 01	0.58 ECl
W	$4 \in 84.7$	C. $788 \mathrm{E}-03$	C. S4SE C3	0.49 El	0.62 E 01
w	5164.3	$0.123 \mathrm{E}-02$	$0.962 \mathrm{E}^{0} 3$	0.32 ECl	C.4CE 01
w	5261.7	$0.258 \mathrm{E}-02$	C.964E 03	0.15 E 01	0.19 E 01
W	5320.5	0.179E-02	C. SG7E 03	C.22E Cl	0.28 E 01
\ldots	6144.3	0.957E-03	0.107 E 04	0.49 El	0.62 E 01
W	619 C .5	C. $274 \mathrm{E}-02$	C. 105E C4	0.17 E 01	0.21 El

limits fer guantitative ceterminaticn

ELEM.	ENERGY	INTENSITY	MIN. AREA	MIN.WT		WT PERCENT	
Y	2546.6	$0.205 \mathrm{E}-03$	C.821E 03	0.38 E	02	0.48 E	02
Y	2749.5	$0.253 \mathrm{E}-03$	C. $843 \mathrm{EE} \mathrm{C3}$	0.27 E	C2	0.34 E	02
Y	3163.4	$0.114 \mathrm{E}-03$	0.868 E 03	0.46 E	02	0.54 CE	C2
Y	3301.4	0.116E-03	C.886E 03	0.43 E	02	0.55 E	02
Y	4107.5	$0.441 \mathrm{E}-03$	0.900 E 03	0.88 E	Cl	0.11 E	02
Y	4352.4	$0.137 \mathrm{E}-03$	0.933 E 03	0.28 E	02	0.36 E	02
Y	5645.4	C. $138 \mathrm{E}-03$	0.105 E 04	C.31E	02	0.40 E	02
Y	6080.3	$0.643 \mathrm{E}-02$	0.109 CH	0.74 E	00	C. 53 E	CO
$Y B$	2585. C	$0.144 \mathrm{E}-02$	C. 818 E 03	C. 52 E	Cl	0.66 E	01
YE	3087.5	0.149E-02	0.854 E 03	0.37 E	Cl	C.46E	01
YB	36こ2.8	0.191E-02	C.876E O3	0.23 E	01	0.29 E	01
YB	3884.9	0.310E-02	C.880E 03	C. 13 E	01	$0.16 E$	Cl
YB	3929.6	$0.148 \mathrm{E}-02$	0.887 E 03	0.27 E	01	0.34 E	01
YB	4829.6	C.114E-02	C.988E C3	0.35 E	01	0.44 E	01
YB	5265.7	$0.660 \mathrm{E}-02$	$0.965 \mathrm{E}^{03}$	0.59 E	C	C. 75 E	CC
YB	6780.1	0.489E-03	0.112 E 04	0.11 E	02	0.14 E	02
ZN	1883.5	$0.777 \mathrm{E}-03$	0.769 E 03	0.22 E	02	0.28 E	02
ZN	2858.2	$0.142 \mathrm{E}-03$	0.847 E 03	0.44 E	02	0.56 E	02
2N	4137.9	0.178E-03	C. 898 E O3	0.22 E	02	0.27 E	02
ZN	5474.2	$0.384 \mathrm{E}-03$	0.102 E 04	0.11 E	02	0.14 E	C 2
ZN	6867.6	C. 2 C4E-03	0.114 E 04	0.28 E	02	0.35 E	02
ZN	6958.5	$0.325 \mathrm{E}-03$	0.118 E 04	0.18 E	C 2	0.23 E	C2
2N	7069.2	$0.163 \mathrm{E}-03$	0.124 E 04	0.40 E	02	0.50 E	C2
2N	7112.0	C. 163E-03	$0.126 E 04$	0.41 E	02	0.51 E	02
2N	7862.9	0.118E-02	0.102 E 04	0.53 E	C1	C.68E	01
2R	2190.9	$0.247 \mathrm{E}-\mathrm{C4}$	C. 785 E 03	C.44E	C3	0.56 E	03
2 R	2694.0	$0.299 \mathrm{E}-04$	0.859 E 03	0.24 E	C3	0.31 E	03
ZR	2933.2	0.152E-04	0.852 E 03	0.40 E	03	0.50 E	03
2R	3474.7	$0.153 \mathrm{E}-04$	C.874E C3	0.30 E	03	0.38 E	03
2R	4530.3	$0.201 \mathrm{E}-04$	0.911 E 03	0.18 E	03	0.23 E	03
ZR	5262.7	C. $323 \mathrm{E}-\mathrm{C4}$	C.964E 03	0.12 E	03	0.15 E	03
ZR	6295.0	$0.193 \mathrm{E}-03$	C.103E C4	0.24 E	02	$0.30 E$	C2
ZR	8634.2	0.916E-05	0.980 E 03	0.82 E	03	0.10 E	04

TABLE AIV(3)

TWELVE OF THE MOST PROMINENT CAPTURE GAMMA RAYS OF 75 ELEMENTS LISTED IN TERMS OF INCREASING GAMMA RAY ENERGY

ENERGY (KEV)	$\begin{aligned} & \text { INTENSITY } \\ & (P / G-N / C M 2) \end{aligned}$	ELEMENT	ENERGY (KEV)	$\begin{gathered} \text { INTENSITY } \\ (P / G-N / C M 2) \end{gathered}$	ELEMENT
178.4	$0.40 E-02$	PR	283.1	$0.17 E-02$	NI
185.7	0.67 E 00	DY	283.1	0.90E-03	SB
187.3	$0.45 \mathrm{E}-02$	OS	285.2	$0.68 \mathrm{E}-01$	ER
191.0	$0 \cdot 29 E-02$	NB	289.1	$0.38 \mathrm{E}-02$	LA
193.5	$0 \cdot 12 \mathrm{E}-01$	AU	290.4	$0.66 \mathrm{E}-02$	HO
196.9	$0.34 \mathrm{E}-02$	BR	291.1	$0.11 \mathrm{E}-01$	RE
199.5	0.12 E 0	AG	291.4	$0 \cdot 31 E-02$	
201.2	$0 \cdot 12 \mathrm{E}-02$	W	295.6	$0.51 \mathrm{E}-01$	SC
203.2	$0.14 \mathrm{E}-02$	Y	295.6	0.20E-01	AG
205.2	$0.24 \mathrm{E}-01$	TM	297.6	0.41E-02	TA
208.0	0.93 E 0	EU	299.2	$0.50 \mathrm{E}-03$	AS
209.8	$0 \cdot 15 E-01$	RE	308.0	$0.62 \mathrm{E}-02$	CS
212.5	$0.88 \mathrm{E}-02$	MN	314.3	$0.52 \mathrm{E}-02$	MN
214.0	0.20 E 00	HF	315.9	$0.27 \mathrm{E}-02$	BR
215.7	$0.30 \mathrm{E}-01$	AU	317.6	$0.84 \mathrm{E}-02$	RE
217.4	$0.93 \mathrm{E}-01$	RH	325.8	$0.22 E-01$	HF
217.4	0.12 E 00	IR	326.1	$0 \cdot 12 \mathrm{E}-02$	GE
219.6	$0.45 E-02$	LA	326.7	$0.11 \mathrm{E}-03$	F
220.4	$0.11 \mathrm{E}-01$	TM	329.4	$0.33 \mathrm{E}-03$	AL
228.6	0.13 E 00	SC	332.7	$0 \cdot 10 \mathrm{E}-02$	SB
230.5	$0.68 \mathrm{E}-01$	CO	333.3	$0.58 \mathrm{E}-02$	PT
234.8	$0.44 \mathrm{E}-02$	CS	333.9	$0.19 \mathrm{E} ~ 02$	SM
236.7	$0.11 \mathrm{E}-02$	AS	335.6	0.24E-01	IN
237.0	$0.48 \mathrm{E}-01$	AG	336.7	$0.26 E-02$	
237.5	$0.32 \mathrm{E}-01$	TM	339.5	$0 \cdot 14 \mathrm{E}-02$	NI
239.6	$0.12 \mathrm{E}-01$	SE	341.7	$0.23 \mathrm{E}-01$	TI
240.3	$0 \cdot 10 \mathrm{E}-01$	HO	341.9	$0.82 \mathrm{E}-02$	YB
241.8	$0.25 \mathrm{E}-01$	YB	348.6	$0.31 \mathrm{E}-03$	TL
245.7	$0.27 \mathrm{E}-02$	PD	351.8	$0.57 \mathrm{E}-01$	IP
246.1	$0.75 \mathrm{E}-02$	BR	352.5	$0 \cdot 31 E-02$	FE
246.9	$0 \cdot 15 \mathrm{E}-03$	SI	356.1	$0 \cdot 10 \mathrm{E}-01$	PT
248.2	$0.17 E-01$	AU	361.4	$0 \cdot 13 \mathrm{E}-02$	TA
248.7	$0.39 \mathrm{E}-03$	AL	367.5	$0 \cdot 14 \mathrm{E}-01$	LU
250.5	$0 \cdot 14 \mathrm{E}-03$	SI	367.8	0.92 E 00	HG
250.9	$0.23 \mathrm{E}-02$	GA	374.6	$0 \cdot 12 \mathrm{E} 00$	EU
251.2	$0.12 \mathrm{E}-03$	ZR	380.4	$0.13 \mathrm{E}-01$	AG
251.9	$0.60 E-04$	SN	385.2	$0.25 E-02$	cu
253.1	$0.15 \mathrm{E}-03$	N	390.0	$0.88 \mathrm{E}-04$	MG
255.1	$0.14 \mathrm{E}-02$	NB	393.7	0.16E-02	GA
255.4	$0.18 \mathrm{E}-01$	RE	402.9	0.11E-01	TA
258.1	$0.94 \mathrm{E}-04$	B	413.2	0.24 E 00	DY
261.5	$0.17 E-01$	AU	418.3	0.20E-01	IR
267.9	$0.34 \mathrm{E}-01$	RH	421.0	0.10E-02	1
269.4	$0 \cdot 11 E-01$	LU	423.2	$0 \cdot 27 \mathrm{E}-02$	LA
271.1	$0.20 E-01$	TA	426.3	$0 \cdot 72 \mathrm{E}-02$	HO
273.3	$0.73 \mathrm{E}-01$	IN	436.6	$0.41 E-02$	\checkmark
277.7	$0.60 \mathrm{E}-01$	CO	439.4	0.11 E 02	SM
278.3	$0 \cdot 11 E-01$	Cu	445.7	0.53E-03	ZN

TABLE AIV(3) (CONTINUED)

ENERGY (KEV)	$\begin{gathered} \text { INTENSITY } \\ (P / G-N / C M 2) \end{gathered}$	ELEMENT	ENERGY (KEV)	$\begin{aligned} & \text { INTENSITY } \\ & (P / G-N / C M 2) \end{aligned}$	ELEMENT
454.5	$0.12 \mathrm{E}-01$	ND	645.8	$0.75 \mathrm{E}-03$	PR
455.2	$0.74 \mathrm{E}-03$	Y	645.9	$0.70 \mathrm{E}-02$	V
458.1	$0.41 \mathrm{E}-01$	LU	651.0	0.10E-02	GA
465.1	$0.68 \mathrm{E}-02$	NI	651.3	0.29 E 01	CD
472.2	$0.15 \mathrm{E}-02$	AS	661.1	0.54E-01	HG
472.4	$0.97 \mathrm{E}-02$	NA	662.3	0.90E-03	CE
475.3	$0.15 \mathrm{E}-02$	RU	687.1	$0.93 \mathrm{E}-03$	RU
475.4	$0.31 E-02$	YB	691.7	$0.28 \mathrm{E}-02$	GA
476.0	$0.22 \mathrm{E}-03$	RB	692.1	$0.14 \mathrm{E}-02$	FE
477.7	$0.27 \mathrm{E}-01$	B	696.7	0.13 E 00	ND
478.3	$0.33 \mathrm{E}-02$	OS	699.8	$0.70 E-03$	PR
497.5	$0.13 \mathrm{E}-03$	B	716.9	$0.53 \mathrm{E}-02$	PD
497.6	0.15 E 00	DY	719.9	$0.15 \mathrm{E}-02$	MO
501.7	0.11E-03	B	722.2	$0 \cdot 12 \mathrm{E}-02$	LA
518.3	$0.62 \mathrm{E}-01$	Cl	726.9	$0.14 \mathrm{E}-03$	CA
520.0	$0.38 \mathrm{E}-03$	CA	730.6	$0.43 \mathrm{E}-01$	ER
520.6	$0.33 E-02$	SE	737.0	$0.24 E-03$	TL
538.4	0.24 E 00	DY	737.5	0.22 E 01	SM
539.8	0.23E-02	RU	749.2	$0.35 \mathrm{E}-02$	CR
543.2	$0.65 E-02$	HO	762.0	$0 \cdot 11 \mathrm{E}-01$	LU
551.5	$0.22 \mathrm{E}-02$	W	770.6	$0.10 \mathrm{E}-01$	K
556.2	$0.45 \mathrm{E}-01$	CO	772.7	$0.86 \mathrm{E}-03$	${ }^{*}$
556.8	$0.66 \mathrm{E}-03$	RB	776.9	$0.24 \mathrm{E}-02$	Y
558.5	$0.12 \mathrm{E}-02$	SR	778.4	0.83E-02	MO
558.6	0.15 E 02	CD	780.3	0.25 E 01	GD
558.8	$0 \cdot 16 E-03$	LI	781.1	0.43E-03	NA
561.0	0.11E-03	ZR	789.7	$0 \cdot 12 \mathrm{E}-01$	RH
565.5	$0.98 \mathrm{E}-02$	TM	806.0	0.99 E 0	CD
569.3	$0.25 \mathrm{E}-02$	OS	814.5	$0 \cdot 19 E-01$	ND
574.6	$0.98 \mathrm{E}-03$	Y	816.1	$0 \cdot 19 \mathrm{EO}$	ER
585.2	$0.33 \mathrm{E}-03$	MG	818.7	0.51E-03	BA
596.0	$0.70 E-02$	GE	819.3	$0.29 E-01$	IN
596.2	$0.28 \mathrm{E}-03$	F	823.5	$0.27 \mathrm{E}-02$	\checkmark
596.6	0.59E-03	TB	835.1	0.86E-02	CR
596.8	$0.14 \mathrm{E}-03$	N	841.1	$0.52 \mathrm{E}-02$	S
602.9	$0.37 \mathrm{E}-02$	TE	849.0	$0 \cdot 30 E-02$	MO
608.9	$0.29 \mathrm{E}-02$	Cu	850.4	$0 \cdot 11 E-02$	SR
613.9	$0.12 \mathrm{E}-01$	SE	853.5	0.16E-03	$B E$
614.2	$0.59 \mathrm{E}-03$	1	868.1	$0.38 \mathrm{E}-02$	GE
616.1	$0.48 \mathrm{E}-02$	PD	869.1	0.84E-04	LI
618.5	$0.51 \mathrm{E}-01$	ND	870.6	$0.35 \mathrm{E}-02$	NA
627.5	$0.74 \mathrm{E}-03$	BA	872.7	$0.16 E-03$	RB
627.9	$0.23 \mathrm{E}-01$	SC	873.1	$0.26 E-03$	TL
630.6	0.78E-03	RU	877.9	0.20E-02	NI
634.0	$0.50 \mathrm{E}-02$	OS	886.9	0.27E-02	SE
636.2	$0.49 \mathrm{E}-03$	P	891.5	0.77E-03	W
636.2	$0.45 \mathrm{E}-02$	YB	897.9	0.25E-02	SR
645.0	0.19E-01	RH	911.1	0.25E-03	TL

TABLE AIV(3) (CONTINUED)

ENERGY (KEV)	INTENSITY (P/G-N/CM2)	ELEMENT	ENERGY (KEV)	INTENSITY ($P / G-N / C M 2$)	ELEMENT
914.5	$0.26 E-01$	ER	1570.3	$0.44 \mathrm{E}-01$	HG
921.1	$0.38 \mathrm{E}-03$	SB	1586.0	$0.65 \mathrm{E}-02$	TI
934.5	0.47E-03	ZR	1591.6	0.16E-01	1 R
943.7	0.63 E 01	GD	1597.8	0.11E-02	S
945.9	$0.14 \mathrm{E}-03$	NB	1613.0	$0.16 \mathrm{E}-02$	FE
961.8	0.46 El	GD	1617.5	$0.25 \mathrm{E}-02$	K
980.7	0.91E-04	LI	1623.1	$0.17 E-03$	AL
983.4	$0.20 E-03$	AL	1634.4	$0 \cdot 12 \mathrm{E}-02$	NA
1006.6	$0.48 \mathrm{E}-03$	PR	1658.6	0.50E-01	EU
1007.6	$0.30 \mathrm{E}-03$	2N	1672.4	$0.42 \mathrm{E}-03$	Cu
1030.8	$0.20 E-03$	RB	1678.6	$0.19 \mathrm{E}-03$	N
1047.9	$0.42 \mathrm{E}-02$	PD	1689.0	$0.66 E-03$	TB
1070.6	$0.35 E-03$	P	1692.0	0.11E-01	SC
1077.5	$0.22 \mathrm{E}-02$	ZN	1693.3	$0.96 E-01$	HG
1091.0	$0.74 \mathrm{E}-03$	MO	1724.0	$0 \cdot 14 \mathrm{E}-03$	CA
1100.6	$0 \cdot 19 \mathrm{E}-02$	GE	1724.5	0.11E-03	NB
1129.4	0.11E-03	MG	1724.8	0.23E-02	FE
1159.0	$0.19 \mathrm{E}-02$	K	1745.8	0.82E-03	TB
1165.4	$0.61 E-01$	CL	1747.0	0.41E-02	MN
1169.7	$0.10 E^{01}$	SM	1749.0	$0.16 \mathrm{E}-03$	F
1171.3	$0.25 E-03$	SN	1752.8	$0.15 \mathrm{E}-01$	IN
1185.4	0.89 El	GD	1761.6	$0.60 E-02$	TI
1199.1	$0.23 \mathrm{E}-02$	BR	1777.8	0.32E-02	V
1206.4	$0.17 \mathrm{E}-01$	HF	1783.8	$0.19 \mathrm{E}-02$	CR
1228.9	$0 \cdot 14 \mathrm{E}-01$	HF	1808.9	$0.39 E-03$	MG
1229.5	$0.22 \mathrm{E}-03$	SN	1810.1	$0.14 \mathrm{E}-03$	CE
1245.9	$0 \cdot 27 E-03$	BA	1830.3	$0.19 E-01$	CO
1261.2	$0.50 E-04$	C	1835.9	$0.76 E-02$	SR
1273.2	0.42E-03	SI	1883.5	$0.78 \mathrm{E}-03$	2N
1293.3	0.41E-03	SN	1887.9	$0.13 E-02$	N
1300.9	$0.79 \mathrm{E}-02$	CS	1887.9	$0.25 \mathrm{E}-03$	I
1332.2	0.39E-04	SI	1889.5	$0.17 E-03$	F
1358.5	0.42E-03	S	1890.0	0.25E-03	P
1364.2	0.10E 01	CD	1890.2	0.60E-01	EU
1376.7	0.41E-02	CS	1890.5	0.68E-03	S
1381.4	0.50E-01	TI	1891.4	0.85E-04	LI
1388.3	$0.14 E-03$	CA	1898.5	0.14E-02	CR
1402.0	$0.32 \mathrm{E}-03$	SB	1918.9	0.92E-03	TE
1404.7	0.11E-03	2R	1942.5	$0.34 \mathrm{E}-02$	CA
1413.1	$0.57 \mathrm{E}-03$	P	1929.3	0.82E-03	K
1435.5	$0.51 E-03$	BA	1951.3	0.12 E 00	CL
1436.8	$0.13 E-03$	CE	1957.5	0.85E-01	$C L$
1437.0	$0.12 E-02$	TE	1978.7	0.49E-03	PT
1442.6	$0.18 \mathrm{E}-02$	TB	1979.7	0.41E-04	NB
1454.3	$0.10 E-03$	CE	1987.6	$0.34 E-02$	MN
1465.9	$0.78 \mathrm{E}-03$	AS	2002.1	0.85E-01	HG
1487.1	$0 \cdot 12 \mathrm{E}-02$	TE	2004.4	$0.10 \mathrm{E}-02$	RE
1491.3	$0.49 \mathrm{E}-03$	PT	2013.0	0.28E-03	GE

TABLE AIV(3) (CONTINUED)

ENERGY (KEV)	$\begin{gathered} \text { INTENSITY } \\ (P / G-N / C M 2) \end{gathered}$	ELEMENT	ENERGY (KEV)	$\begin{gathered} \text { INTENSITY } \\ (P / G-N / C M 2) \end{gathered}$	ELEMENT
2027.2	0.28E-02	NA	2330.9	$0.46 \mathrm{E}-02$	MN
2032.5	$0.84 \mathrm{E}-03$	LI	2332.0	0.40E-01	SM
2039.1	0.42E-03	TE	2337.4	$0.26 E-02$	IN
2041.5	$0.29 \mathrm{E}-04$	CE	2341.6	0.38E-02	ER
2048.0	$0 \cdot 36 \mathrm{E}-01$	EU	2371.5	$0.25 \mathrm{E}-02$	ND
2048.6	0.17E-02	AG	2379.7	$0.31 \mathrm{E}-02$	S
2056.2	$0.16 \mathrm{E}-02$	LU	2386.0	$0.27 E-03$	TE
2064.9	$0.23 E-02$	HF	2391.5	$0.38 \mathrm{E}-03$	SR
2067.4	$0 \cdot 30 E-01$	DY	2400.9	$0.17 \mathrm{E}-03$	MO
2067.8	$0.37 \mathrm{E}-03$	PT	2412.0	$0.22 \mathrm{E}-01$	EU
2072.7	$0.30 E-04$	8	2425.9	0.13E-03	SI
2073.2	0.33E-02	K	2452.8	0.35E-04	F
2074.2	$0 \cdot 12 \mathrm{E}-03$	SB	2454.2	0.65E-02	IR
2074.2	$0.14 \mathrm{E}-02$	CS	2455.8	0.88 E 00	$C D$
2091.2	$0.19 E-02$	LU	2457.5	0.46E-03	PD
2092.9	$0.92 \mathrm{E}-03$	SI	2458.8	0.48E-04	OS
2093.5	$0.36 E-01$	EU	2468.5	$0.29 E-02$	HF
2107.0	0.37 E 00	GD	2469.6	$0.41 E-03$	PT
2111.4	$0.65 \mathrm{E}-02$	SC	2484.3	$0.47 \mathrm{E}-03$	PD
2112.7	0.49E-04	SN	2517.6	$0.24 \mathrm{E}-02$	NA
2114.3	$0.28 \mathrm{E}-03$	P	2528.1	0.29E-04	F
2115.2	$0.90 E-03$	TM	2530.4	0.13E-03	RU
2117.4	0.58E-04	LI	$2532 \cdot 3$	0.20E-04	B
2118.3	$0.83 \mathrm{E}-03$	HO	2545.9	0.12E-02	K
2119.8	$0.94 \mathrm{E}-01$	SM	2546.6	0.20E-03	Y
2120.2	$0 \cdot 35 \mathrm{E}-03$	TB	2550.1	0.31 E 00	CD
2129.8	$0 \cdot 16 E-03$	CA	2585.0	0.14E-02	YB
2130.0	$0.23 \mathrm{E}-04$	RB	2589.9	0.93E-03	HO
2149.7	$0.24 \mathrm{E}-04$	RB	2589.9	0.15E-03	$B E$
2154.2	$0.62 \mathrm{E}-03$	P	2600.1	0.39 E 00	GD
2159.7	$0.29 E-02$	ER	2601.9	0.31E-04	F
2161.0	$0.65 \mathrm{E}-01$	SM	2610.5	0.60E-03	TE
2176.8	$0.59 \mathrm{E}-04$	RB	2635.6	$0.98 \mathrm{E}-02$	SC
2179.0	$0.37 \mathrm{E}-04$	SN	2639.4	0.11E-03	BA
2184.0	$0.21 E-03$	LI	2639.9	$0.48 \mathrm{E}-01$	HG
2186.0	$0 \cdot 12 \mathrm{E}-03$	BA	2651.7	0.18E-04	SN
2190.9	0.25E-04	2R	2659.8	0.60 E 00	CD
2196.9	$0.50 \mathrm{E}-03$	PD	2664.5	$0.21 \mathrm{E}-03$	MO
2223.3	0.20 E 00	H	2668.7	$0.38 \mathrm{E}-02$	ER
2238.9	$0 \cdot 27 \mathrm{E}-02$	CR	2678.7	0.46 E 00	GD
2261.3	$0.12 \mathrm{E}-03$	OS	2682.8	0.27E-04	F
2272.3	$0.37 E-04$	CE	2694.0	0.30E-04	2R
2276.8	0.27E-03	SR	2697.5	$0.45 \mathrm{E}-01$	EU
2291.2	0.11E-02	K	2703.4	$0.81 \mathrm{E}-01$	DY
2298.3	0.82E-04	RU	2733.6	$0.41 \mathrm{E}-01$	DY
2311.4	0.51E-03	PT	2747.2	0.10E-02	TE
2314.4	$0.39 E 00$	GD	2749.5	0.25E-03	Y
2321.0	0.19E-02	CR	2753.2	$0.40 \mathrm{E}-03$	S

TABLE AIV(3) (CONTINUED)

ENERGY (KEV)	INTENSITY (P/G-N/CM2)	ELEMENT	ENERGY (KEV)	INTENSITY (P/G-N/CM2)	ELEMENT
2754.4 D	0.14E-01	NA	3522.8	$0.53 \mathrm{E}-03$	p
2765.3	$0.44 \mathrm{E}-03$	LA	3530.5	$0.44 \mathrm{E}-03$	N
2767.3	0.28 E 00	CD	3539.3	$0.27 E-02$	SI
2811.0	$0.15 \mathrm{E}-03$	CA	3544.0	0.27E-03	TE
2828.1	$0.56 \mathrm{E}-03$	MG	3546.6	$0.14 \mathrm{E}-02$	K
2839.8	$0.30 E-03$	PR	3585.2	0.14E-04	LI
2858.2	$0.14 \mathrm{E}-03$	2N	3588.0	0.24E-02	NA
2859.7	$0.31 \mathrm{E}-01$	EU	3589.3	$0.38 \mathrm{E}-04$	F
2862.7	$0 \cdot 16 E-02$	NA	3591.7	0.15E-03	AL
2864.4	$0.38 \mathrm{E}-01$	CL	3608.6	$0.55 E-03$	LA
2931.1	$0.15 \mathrm{E}-02$	S	3610.2	$0 \cdot 30 E-03$	CA
2933.2	$0.15 \mathrm{E}-04$	ZR	3619.8	0.42E-04	CE
2948.5	$0.44 \mathrm{E}-01$	DY	3632.8	0.19E-02	YB
2960.4	$0.32 \mathrm{E}-03$	AL	3641.7	0.30E-03	BA
3000.0	0.31 E 00	CD	3652.0	0.55E-03	PR
3009.5	$0.45 \mathrm{E}-03$	SR	3661.3	$0 \cdot 16 E-03$	SI
3018.4	$0.44 \mathrm{E}-04$	CE	3683.9	0.54E-04	C
3026.8	$0.26 E-02$	TI	3830.7	0.88E-04	MG
3034.4	$0.30 E-03$	AL	3852.1	$0.15 \mathrm{E}-02$	LU
3054.1	0.17E-03	MG	3876.6	$0.21 E-02$	IN
3058.3	$0.24 \mathrm{E}-03$	P	3884.9	$0.31 \mathrm{E}-02$	YB
3062.2	$0.21 E-01$	Cl	3900.3	0.65E-03	P
3074.4	$0.32 \mathrm{E}-04$	F	3916.7	$0.64 \mathrm{E}-03$	MG
3082.6	0.50E-03	LA	3920.4	$0.13 \mathrm{E}-02$	TI
3087.5	$0 \cdot 15 E-02$	YB	3929.6	$0.15 \mathrm{E}-02$	YB
3090.6	$0.34 \mathrm{E}-04$	CE	3982.0	$0.30 E-02$	NA
3098.1	$0 \cdot 13 \mathrm{E}-02$	NA	4029.2	0.62E-02	CO
3130.9	$0.55 \mathrm{E}-03$	GA	4054.7	0.26E-04	BI
3153.2	$0.67 E-03$	RE	4096.3	0.87E-03	BA
3163.4	0.11E-03	Y	4101.8	0.17E-04	BI
3220.8	0.19E-02	S	4103.3	0.11E-03	1
3301.1	$0 \cdot 12 E-03$	MG	4107.5	$0.44 \mathrm{E}-03$	Y
3301.4	0.12E-03	Y	4109.4	$0.24 \mathrm{E}-02$	ER
3308.0	0.91E-05	8	4133.7	0.22E-03	AL
3334.3	$0.32 E-04$	SN	4137.9	$0.18 \mathrm{E}-03$	2 N
3368.2	$0.22 \mathrm{E}-03$	BE	4171.1	0.36E-04	BI
3370.4	$0.36 \mathrm{E}-03$	S	4189.0	0.13E-02	$A \cup$
3408.5	$0.49 \mathrm{E}-02$	MN	4218.8	0.11E-02	FE
3413.6	$0.85 \mathrm{E}-04$	MG	4220.6	$0.34 \mathrm{E}-03$	TA
3444.4	$0.75 E-04$	$B E$	4227.5	$0.26 E-02$	IN
3444.7	$0.43 \mathrm{E}-01$	DY	4249.2	$0.84 \mathrm{E}-03$	W
3459.2	$0 \cdot 18 \mathrm{E}-04$	SN	4259.9	0.21E-03	AL
3465.5	$0.22 E-03$	AL	4291.2	0.29E-03	CE
3470.7	$0.59 E-03$	W	4315.5	$0.30 E-03$	TA
3474.7	$0.15 \mathrm{E}-04$	ZR	4320.8	0.52E-03	CU
3475.5	$0.18 \mathrm{E}-02$	TI	4336.8	0.13E-03	CE
3492.7	0.17E-04	LI	4343.5	$0.31 \mathrm{E}-02$	HF
3505.0	0.11E-04	B	4351.3	0.96E-04	RU

TABLE AIV(3) (CONTINUED)

ENERGY (KEV)	$\begin{aligned} & \text { INTENSITY } \\ & (P / G-N / C M 2) \end{aligned}$	ELEMENT	ENERGY (KEV)	$\begin{gathered} \text { INTENSITY } \\ (P / G-N / C M 2) \end{gathered}$	ELEMENT
4352.4	$0.14 \mathrm{E}-03$	Y	4921.4	0.29E-02	ER
4389.4	$0.97 \mathrm{E}-03$	LA	4934.3	$0.24 \mathrm{E}-02$	SI
4416.3	$0.94 \mathrm{E}-03$	LA	4943.5	0.91E-02	IR
4418.9	$0.70 E-03$	CA	4945.2	0.11E-03	C
4443.0	$0 \cdot 15 E-04$	8	4949.0	$0.18 \mathrm{E}-02$	ND
4483.0	$0.20 E-03$	TA	4950.2	$0.44 \mathrm{E}-03$	I
4484.3	0.40E-01	SM	4966.6	0.28E-02	T I
4502.8	$0.66 \mathrm{E}-03$	LA	4969.4	$0.47 \mathrm{E}-02$	IN
4507.6	$0.73 \mathrm{E}-03$	N	4975.1	$0.67 \mathrm{E}-02$	SC
4508.3	0.13E-04	LI	4980.0	$0.21 E-01$	CL
4510.3	0.40E-02	RH	5007.9	$0.89 \mathrm{E}-03$	RE
4530.3	0.20E-04	2R	5014.7	$0.81 E-02$	MN
4530.7	$0.48 \mathrm{E}-04$	OS	5020.3	$0.19 E-02$	CS
4565.7	$0.12 \mathrm{E}-02$	SE	5020.4	0.17E-02	LU
4617.7	$0.19 \mathrm{E}-03$	TA	5022.8	$0.17 \mathrm{E}-03$	RU
4627.4	$0.11 \mathrm{E}-03$	RU	5050.2	$0.60 E-01$	HG
4671.3	$0.56 \mathrm{E}-03$	P	5074.3	0.13E-02	RE
4684.7	$0.79 \mathrm{E}-03$	W	5082.8	0.69E-03	HO
4692.2	$0.11 \mathrm{E}-02$	PR	5093.7	$0.33 \mathrm{E}-03$	1
4710.2	$0.68 \mathrm{E}-05$	B	5095.9	$0.73 \mathrm{E}-03$	PR
4720.2	$0.17 \mathrm{E}-02$	AG	5097.6	$0.27 \mathrm{E}-02$	LA
4723.8	$0.11 \mathrm{E}-03$	BA	5099.6	$0.47 \mathrm{E}-03$	「B
4733.2	0.17E-02	TM	5103.4	$0.45 \mathrm{E}-02$	IN
4734.1	$0.18 \mathrm{E}-03$	AL	5104.2	$0.84 \mathrm{E}-04$	NB
4739.5	$0 \cdot 76 E-01$	HG	5107.3	$0 \cdot 13 E-03$	SI
4739.7	$0.44 \mathrm{E}-04$	NB	5137.2	$0 \cdot 11 \mathrm{E}-02$	RE
4749.7	$0 \cdot 13 E-03$	CA	5140.2	$0.13 \mathrm{E}-02$	PR
4752.8	0.19E-03	Ti	5141.1	$0.42 \mathrm{E}-02$	IN
4766.1	0.50E-03	CE	5142.2	0.29E-02	-
4774.9	0.47E-02	IN	5143.8	$0.47 \mathrm{E}-01$	DY
4781.8	$0.21 E-03$	TA	5146.9	0.17E-03	OS
4783.0	0.30E-03	AS	5148.2	$0 \cdot 40 E-02$	AU
4790.9	$0.17 \mathrm{E}-02$	ND	5152.2	0.17E-02	TM
4794.6	0.49E-03	PD	5164.3	$0.12 E-02$	
4801.4	$0.57 E-03$	PR	5173.4	0.52E-03	PT
4809.1	0.91E-01	SM	5180.8	$0.18 \mathrm{E}-03$	TL
4810.0	0.12 E 00	$C D$	5181.7	$0.84 \mathrm{E}-02$	CO
4810.3	0.47E-03	FE	5181.9	0.83E-03	HO
4812.8	$0.68 \mathrm{E}-04$	OS	5195.0	0.85E-03	GA
4829.6	$0.11 E-02$	YB	5197.8	0.57E-03	I
4840.5	$0.83 \mathrm{E}-03$	GA	5209.9	0.33E-02	v
4842.5	$0.58 \mathrm{E}-01$	HG	5211.6	$0.34 \mathrm{E}-02$	ER
4842.7	$0.28 \mathrm{E}-02$	LA	5212.7	0.71E-03	HO
4860.2	$0.85 \mathrm{E}-02$	IR	5212.9	0.22E-03	PD
4861.0	$0.97 E-03$	RE	5240.2	0.24E-02	AG
4869.8	$0.79 \mathrm{E}-03$	S	5252.6	0.12E-02	CS
4881.3	$0.43 \mathrm{E}-02$	TI	5253.6	$0.43 \mathrm{E}-04$	N8
4914.2	$0.20 \mathrm{E}-03$	Ti	5254.6	$0 \cdot 14 \mathrm{E}-02$	PT

TABLE AIV(3) (CONTINUED)

ENERGY (KEV)	$\begin{gathered} \text { INTENSITY } \\ (P / G-N / C M 2) \end{gathered}$	ELEMENT	ENERGY (KEV)	INTENSITY (P/G-N/CM2)	ELEMENT
5261.7	0.26E-02	W	5601.7	0.18E-02	LU
5263.7	0.32E-04	2R	5601.7	$0.20 E-02$	SE
5265.7	$0.66 \mathrm{E}-02$	YB	5602.4	$0 \cdot 13 \mathrm{E}-03$	MO
5266.2	$0.93 \mathrm{E}-02$	RH	5603.6	$0 \cdot 32 \mathrm{E}-03$	TL
5267.1	$0.12 \mathrm{E}-02$	N	5607.3	$0.96 E-01$	DY
5274.0	$0.11 E-03$	OS	5611.4	0.31E-03	PT
5277.7	$0.64 \mathrm{E}-03$	RE	5618.8	$0 \cdot 12 \mathrm{E}-02$	CR
5280.5	0.24E-03	TL	5637.4	$0.84 \mathrm{E}-03$	CS
5296.7	0.86E-03	N	5641.9	0.37E-03	TL
5307.0	$0.34 \mathrm{E}-03$	PT	5645.4	$0 \cdot 14 \mathrm{E}-03$	Y
5320.4	$0.12 \mathrm{E}-02$	LU	5658.1	$0.74 \mathrm{E}-01$	HG
5320.5	$0.18 \mathrm{E}-02$	W	5660.3	$0.24 \mathrm{E}-01$	CO
5339.1	0.17E-02	GA	5665.7	$0.13 \mathrm{E}-02$	PR
5342.9	$0.17 \mathrm{E}-03$	TA	5667.2	$0.18 \mathrm{E}-01$	IR
5347.2	$0.12 \mathrm{E}-01$	RH	5668.1	0.22E-03	TE
5377.2	0.12E-02	CS	5684.0	$0.77 \mathrm{E}-04$	OS
5379.7	$0.22 \mathrm{E}-01$	EU	5684.3	0.90E-04	SB
5380.3	$0.24 \mathrm{E}-02$	K	5694.4	$0.23 \mathrm{E}-02$	HF
5380.9	$0.18 \mathrm{E}-02$	ND	5695.6	$0 \cdot 15 \mathrm{E}-02$	K
5392.5	0.14E-04	SN	5699.7	0.55E-02	AG
5416.5	$0.21 \mathrm{E}-03$	AS	5710.4	$0.40 E-02$	AU
5417.7	$0.74 \mathrm{E}-03$	CU	5713.1	0.22E-03	MO
5418.4	$0.21 E-02$	HF	5715.2	$0.26 E-01$	CL
5420.5	$0.41 \mathrm{E}-02$	S	5723.5	$0.80 \mathrm{E}-02$	HF
5431.4	$0.21 E 00$	CD	5730.7	$0 \cdot 31 \mathrm{E}-03$	BA
5448.2	0.26E-02	ND	5737.2	$0.43 \mathrm{E}-02$	TM
5450.2	$0.29 \mathrm{E}-03$	GE	5751.9	$0.52 \mathrm{E}-02$	\checkmark
5451.8	$0.43 \mathrm{E}-04$	MG	5752.0	$0.14 \mathrm{E}-02$	K
5474.2	$0.38 \mathrm{E}-03$	ZN	5760.6	0.31E-04	RB
5496.9	0.60E-04	NB	5763.1	$0.85 \mathrm{E}-03$	HO
5505.4	$0.95 E-03$	CS	5777.2	0.68E-03	TB
5505.6	0.31E-02	HF	5782.6	0.12E-01	IR
5507.7	0.19E-03	BR	5784.7	$0.20 E-03$	AS
5515.5	$0.57 \mathrm{E}-02$	\checkmark	5793.1	$0 \cdot 37 \mathrm{E}-02$	AG
5518.3	0.31E-03	GE	5813.4	$0 \cdot 17 E-02$	HO
5521.2	$0.22 \mathrm{E}-02$	ND	5816.8	$0 \cdot 11 E-02$	NI
5527.2	$0 \cdot 10 E-01$	MN	5823.9	0.45 E 00	CD
5532.0	$0.82 \mathrm{E}-03$	N	5828.4	0.37E-03	PD
5532.8	$0.11 E 00$	SM	5842.9	0.47E-03	PR
5556.9	$0.77 E-01$	DY	5886.2	0.16E-03	SB
5559.6	$0.31 \mathrm{E}-03$	I	5891.5	0.92E-03	TB
5562.9	$0.18 \mathrm{E}-03$	SB	5891.9	0.63E-02	IN
5564.6	$0.12 \mathrm{E}-01$	IR	5895.3	0.63E-04	NB
5569.6	$0.17 E-02$	LU	5900.6	0.20E-03	CA
5570.6	$0.15 \mathrm{E}-02$	CS	5902.9	0.70 E 00	GD
5577.9	$0 \cdot 20 \mathrm{E}-02$	AG	5910.2	0.18E-02	RE
5582.6	0.36 E 00	GD	5914.2	$0 \cdot 36 E-03$	BR
5601.5	0.12E-02	GA	5917.2	0.13E-01	RH

TABLE AlV(3) (CONTINUED)

ENERGY (KEV)	INTENSITY (P/G-N/CM2)	ELEMENT	ENERGY (KEV)	INTENSITY $(P / G-N / C M 2)$	ELEMENT
5918.3	$0.24 \mathrm{E}-01$	EU	6267.3	0.46E-03	SR
5920.5	$0.23 E-02$	FE	6268.0	0.14E-04	SN
5942.7	$0.42 \mathrm{E}-02$	TM	6273.7	0.12E-03	RU
5953.7	0.38E-03	TB	6294.5	0.65E-03	AS
5957.7	$0.20 E-01$	IR	6295.0	$0 \cdot 19 E-03$	2 R
5958.1	$0.13 \mathrm{E}-03$	BE	6307.4	0.30E-03	1
5964.7	$0.45 \mathrm{E}-03$	TA	6319.1	$0 \cdot 11$ E-01	AU
5966.9	$0.17 E 00$	HG	6321.4	$0.77 E-03$	N
5982.8	$0.42 \mathrm{E}-02$	AU	6323.0	$0.70 E-03$	iE
5994.7	$0.45 \mathrm{E}-03$	TB	6342.1	$0 \cdot 13 E-03$	RU
6001.6	$0.24 \mathrm{E}-02$	TM	6354.7	0.26E-03	BR
6008.0	$0.27 \mathrm{E}-02$	SE	6360.0	$0.31 E-02$	GA
6008.0	$0.15 \mathrm{E}-02$	GA	6364.6	$0 \cdot 13 E-03$	MO
6017.1	$0.33 \mathrm{E}-04$	F	6380.1	$0.14 \mathrm{E}-03$	SB
6017.3	$0.13 \mathrm{E}-04$	LI	6380.1	0.43E-03	SI
6018.5	$0.23 \mathrm{E}-02$	FE	6387.4	0.36E-02	TM
6027.9	0.46E-04	BA	6395.4	0.36E-02	NA
6033.5	$0.33 E-03$	PT	6418.0	0.28E-01	TI
6036.7	$0.38 \mathrm{E}-03$	GE	6419.3	0.33 E 00	GD
6046.4	$0 \cdot 70 E-02$	RH	6419.9	$0 \cdot 18 \mathrm{E}-02$	CA
6051.9	$0 \cdot 11 \mathrm{E}-02$	CS	6456.8	$0.68 \mathrm{E}-02$	AU
6052.1	$0.59 \mathrm{E}-03$	HO	6457.8	0.67E-01	HG
6054.9	$0.73 \mathrm{E}-02$	SC	6464.8	$0.56 \mathrm{E}-02$	V
6056.1	0.41E-02	AG	6468.1	0.12E-03	SB
6058.3	$0 \cdot 22 \mathrm{E}-03$	AS	$6470 \cdot 7$	0.26E-04	RB
6062.5	$0.27 E-03$	TA	6502.1	$0 \cdot 12 \mathrm{E}-01$	ND
6080.3	$0.64 \mathrm{E}-02$	Y	6512.1	$0.50 \mathrm{E}-02$	AU
6081.8	$0.18 \mathrm{E}-01$	IR	6515.2	$0 \cdot 16 E-03$	TL
6082.8	$0.59 \mathrm{E}-02$	RH	6517.2	0.11E-01	V
6101.9	0.29E-03	SR	6520.2	0.29E-04	RB
6105.0	0.98E-03	NI	6523.6	0.32E-03	SB
6111.1	$0.89 E-01$	CL	6537.9	0.47E-01	SM
6111.4	$0.12 \mathrm{E}-02$	GA	6552.9	$0.25 E-02$	TM
6112.3	0.26E-02	HF	6555.6	0.49E-02	TI
6116.3	0.41E-03	GE	6587.2	0.44E-04	OS
6138.8	0.47E-03	TB	6599.5	0.81E-03	Cu
6144.3	0.96E-03	W	6600.7	$0.28 \mathrm{E}-04$	F
6166.9	0.20E-03	TL	6601.2	0.40E-02	SE
6171.8	0.61E-02	RH	6620.1	$0.56 \mathrm{E}-01$	CL
6190.5	0.27E-02	W	6625.1	$0.12 E-03$	MO
6211.1	0.21E-03	TE	6645.5	0.19E-02	CR
6211.4	0.63E-02	RH	6652.5	0.16E-03	PD
6218.2	0.70E-03	TB	6660.6	0.46E-03	SR
6228.5	0.19E-01	EU	6676.8	0.31E-02	ER
6229.0	$0.53 \mathrm{E}-02$	ER	6678.0	$0.14 \mathrm{E}-02$	CU
6232.7	$0.14 \mathrm{E}-02$	SE	6693.0	0.28E-03	
6252.0	0.16E-01	AU	6706.0	0.28E-01	CO
6255.9	$0.54 \mathrm{E}-02$	ND	6707.9	0.40E-03	UE

TABLE AIV(3) (CONTINUED)

ENERGY (KEV)	$\begin{gathered} \text { INTENSITY } \\ (P / G-N / C M 2) \end{gathered}$	ELEMENT	ENERGY (KEV)	$\begin{gathered} \text { INTENSITY } \\ (P / G-N / C M 2) \end{gathered}$	ELEMENT
6728.0	$0.22 E-03$	SB	7268.9	0.20E-02	AG
6736.4	$0.25 E-04$	PB	7278.9	$0 \cdot 13 \mathrm{E}-02$	FE
6745.5	$0.23 E-03$	BR	7299.5	$0.38 \mathrm{E}-03$	N
6749.8	$0.20 E 01$	GD	7306.2	0.27E-02	CU
6759.3	$0.80 E-05$	B	7367.7	0.48E-03	PB
6759.7	0.41E-01	TI	7413.8	$0.48 \mathrm{E}-01$	CL
6780.1	$0.49 \mathrm{E}-03$	$Y B$	7418.7	$0.24 \mathrm{E}-02$	SE
6783.7	$0.50 \mathrm{E}-02$	MN	7420.7	0.33E-03	BR
6785.3	$0.53 E-03$	P	7421.2	0.22E-03	P
6803.8	$0.16 \mathrm{E}-02$	LU	7491.1	0.11E-01	CO
6809.9	$0.10 \mathrm{E}-02$	AS	7527.1	0.13E-03	MO
6810.0	$0.40 E-03$	BE	7527.7	$0 \cdot 39 E-03$	SR
6830.7	$0.75 \mathrm{E}-04$	NB	7536.1	0.23E-02	NI
6831.4	$0.31 E-04$	RB	7575.8	0.58E-03	BR
6837.0	$0.56 \mathrm{E}-02$	NI	7624.1	0.99E-04	RB
6839.5	$0.15 \mathrm{E}-01$	SC	7631.6	0.77E-02	FE
6867.6	$0.20 E-03$	2N	7635.9	$0.83 \mathrm{E}-02$	SC
6873.9	$0.67 \mathrm{E}-02$	V	7636.6	0.53E-02	CU
6876.9	$0.30 \mathrm{E}-01$	CO	7645.6	$0.63 \mathrm{E}-02$	FE
6915.5	$0 \cdot 32 \mathrm{E}-03$	GE	7723.8	$0.11 \mathrm{E}-02$	AL
6919.3	$0.58 \mathrm{E}-03$	MO	7769.0	$0.15 \mathrm{E}-02$	K'
6926.1	$0 \cdot 38 \mathrm{E}-03$	AS	7790.0	$0.37 E-01$	CL
6941.9	$0.28 E-03$	SR	7800.0	0.27E-03	S
6958.5	0.32E-03	ZN	7818.9	0.43E-02	NI
6985.1	$0.11 \mathrm{E}-01$	CO	7862.9	$0 \cdot 12 \mathrm{E}-02$	2N
7005.1	0.97E-05	B	7914.5	$0.10 E-01$	CU
7019.5	0.87E-03	AS	7939.3	$0.41 \mathrm{E}-02$	CR
7030.1	0.25E-03	BR	8120.5	0.16E-02	NI
7057.9	0.16E-01	MN	8154.4	0.62E-04	MG
7069.2	0.16E-03	ZN	8174.7	$0.29 E-01$	SC
7076.3	$0.27 E-03$	BR	8331.0	0.72E-04	PD
7102.9	0.82E-04	RU	8512.3	$0.20 \mathrm{E}-02$	CR
7112.0	0.16E-03	ZN	8531.6	$0 \cdot 15 \mathrm{E}-01$	SC
7159.9	0.88E-02	MN	8533.4	$0.88 \mathrm{E}-02$	NI
7162.7	0.82E-02	\checkmark	8634.2	0.92E-05	ZR
7179.7	0.15E-02	SE	8884.1	$0.87 \mathrm{E}-02$	CR
7186.1	$0.34 \mathrm{E}-04$	NB	8998.8	0.20E-01	NI
7199.3	$0.25 E-03$	SI	9108.8	0.21E-04	BA
7213.0	0.17E 00	SM	9298.4	0.11E-02	FE
7214.1	0.18E-01	CO	9326.1	0.11E-04	SN
7243.5	0.17E-01	MN	9720.3	$0 \cdot 35 \mathrm{E}-02$	CR
7246.7	0.37E-04	LI	9882.9	$0.13 \mathrm{E}-02$	SE
7251.9	$0.12 \mathrm{E}-02$	Cu	10827.7	$0.48 \mathrm{E}-03$	N
7259.8	0.26E-03	GE			

Appendix V

COMPUTER CODES

In this Appendix are presented the listings of the various computer codes that have been used extensively in the present thesis. It is believed that the information included in the codes is sufficient to enable interested readers to follow the various computational operationswithout difficulty. The programs are written in FORTRAN IV language for the MIT 360/65 computer.

The codes and their functions are as follows:

(1) ARTSPEC

This code computes normally distributed random numbers with a given mean and given standard deviation on which may be superimposed Gaussian peaks of specified height, width and channel number. It smooths the data by the method of Fourier transforms and any number of filter functions. It calculates means and standard deviation overaspecified range of channels. Both smoothing and statistical analysis may be applied to data supplied externally. The program calls Subroutines GAUSS and FOURT.

(2) Subroutine GAUSS

This subroutine computes a normally distributed random number with a given mean and standard deviation. It was supplied by the MIT computational center. It calls Subroutine RANDU (also supplied by MIT) and uses 12 random numbers to compute normal random numbers by the central limit theorem.

The result is then adjusted to match the given mean and standard deviation.

(3) Subroutine RANDU

Subroutine RANDU computes normally distributed random real numbers between 0 and 1.0 and random integers between zero and 2^{31}. Each entry uses as input on integer random number and produces a new integer and real random number. This subroutine uses the power residue method discussed in the IBM manual C20-8011, Random Number Generation and Testing, and will produce 2^{29} terms before repeating. It was supplied by the MIT computational center and is specific to the MIT $360 / 65$ computer.
(4) POLYFIT

This code has been written to perform the least-squares fit described in Appendix AII. It is capable of fitting the width-energy data to a p-order polynomial. p can be any number but computational accuracy limits its value to a maximum of 5 or 6. It calls subroutine MINV for the evaluation of the inverse matrix coefficients and the value of the determinant.

(5) Subroutine MINV

This subroutine was supplied(also)by the MIT computational center. It inverts a matrix by the standard GaussJordan method. The determinant is also calculated.
(6) WTANAL

The code WTANAL, for weight analysis, analyses the constituents of a given spectrum for a number of elements supplied as input by operating on data obtained with the GAMANL code. Use is made of the energies and intensities of all the gamma rays of the elements that are believed to be present in the sample. The program, working on each element separately, selects from the list those gamma rays whose energies are within specified limits and whose intensities are larger than a given value. The energies of the selected gamma rays are then compared to those in the spectrum for possible correspondence. Whenever an element which could have produced an observed gamma peak in the spectrum is found, the weight of the element is calculated. If through such a procedure the origin of a gamma ray is assigned to more than one element the symbols of the interfering elements are listed. In its present form the program does not resolve interfering effects.

(7) MINIMUM

The code has been written for the evaluation of the peak area limiting levels in a given spectrum and the minimum weight requirements for a number of elements supplied as input. Use is made of the energies and intensities of the elements examined. The experimental conditions under which the spectrun in question was obtained must also be supplied. The program calls subroutine BAKSUB for evaluation of the background continuum.
(8) Subroutine BAKSUB

This subroutine, which is also used by GAMANL with a slight modification in the COMMON card, performs the subtraction of the background continuum from the spectral information. Its method of operation was described in Sec. 3.3.

The GAMANL code, which was used in this thesis more extensively than ony other of the codes listed above, may be found in Reference [HI]. The same report also includes the subroutine FOURT for the fast Fourier transforms employed in smoothing the data. FOURT is also called by ARTSPEC.

In the pages that follow are presented the listings of these codes in the order they were discussed.

```
C COMPUTER PRCGRAM 'ARTSPEC:
C COMPUTES NORMALLY CISTRIBUTED RANDOM NUMBERS WITH A GIVEN MEAN
4 CONT INUE
READ(5,5) IX,NUMRUN,N,IPEAK, ISAME,AMB,S
5 FORMAT(3X,I7,4I5,2F1C.C)
IX MUST CONTAIN AN OCC INTEGER NUMBER WITH NINE OR LESS DIGITS ON THE FIRST ENTRY TO GAUSS.
NUMRUN IS THE REFERENCE NUMBER
N IS THE NUMBER OF RANCCM DATA PCINTS TO be GENERATED, AMB IS
their mean and s their standard deviation
\(\mathrm{N}+1\) MUST BE EVEN AND A POWER OF 2 fOR FASTEST RESULTS.
IPEAK LESS THAN ZERC = DATA MUST BE SUPPLIED
IPEAK = O IMPLIES PROGRAM PRODUCES RANDOM DATA WITHOUT PEAKS. I PEAK GREATER THAN ZERO, PROGRAM PRODUCES RANDOM DATA ON WHICH ARE SUPERIMPOSEC IPEAK NUNBER OF PEAKS. \(\operatorname{IXI}=I X\)
IF(IPEAK) 30,26,6
6 continue
PROGRAM SUPERINPOSES IPEAK PEAKS CN BACKGRCUND DATA OF SPECIFIED mean, each peak having its parameters read in as input data.
```

C USE ISAME=1 TO SUPERIMPOSE ON THE BACKGRCUND IPEAK PEAKS ALL CF
C SAME HEIGHT AND SAME WICTH AND A FIXED NUMBER OF CHANNELS APART. IF(ISAME) 7,7,9
7 CONTINUE
$\operatorname{READ}(5,8)$ (CHAN(I), HT(I), SGMA(I), I = 1 , IPEAK)
8 FORMAT (3F10.2)
GOTC 12
9 READ 5,10) CHANL, HT1,SGNA1, CCHAN
10 FORMAT (4F10.2)
DO $11 \mathrm{~J}=1$, IPEAK
HT(J) $=H T 1$
SGMA(J) $=$ SGMAI
CHAN(J) $=$ CHAN1 + FLCAT $(J) *$ DCHAN
11 CONTINUE
C
12 DC $17 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{GH}=0.0$
CO $16 \mathrm{~K}=1$, IPEAK
$C B=C H A N(K)$
$C A=F L O A T(J)$
$E X=(C A-C E) *(C A-C E) /(2.0 * S G M A(K) * S G M A(K))$
IF(EX - 15.C) $13,13,16$
$13 \mathrm{GH}=\mathrm{GH}+H T(K) * E X P(-E X)$
16 CONTINUE
$A M=A M B+G H$
$S=S Q R T(A M)$
CALL GAUSS(IX,S,AM,V)
17 TBK(J) = V
C
WRITE (6,18) NUMRUN,IXI
 WRITE $(6,19)$ IPEAK
19 FORMAT (1HC, $15 x$, 'NUNBER CF PEAKS SUPERINPCSED', I5) WRITE 6,21$)(I, C H A N(I), H T(I), S G M A(I), I=1, I P E A K)$

```
    21 FORMAT(1HO,15X, 'NC.',I5,10X,'CHANNEL NO.',F10.1,10X,'HEIGHT',
        1FF10.1.10X, 'S.D.',F10.21
        WRITE(6,22)
    22 FORMAT(1HO)
        GO TO }3
C
C
    26 CONTINUE
        PRCGRAM PRODUCES N RANDCM DATA PCINTS OF SPECIFIED MEAN AND S.D.
C IF S IS LESS OR EQUAL TO O IT IS SET EQUAL TO SGRT(AM)
        IF(S) 27,27.28
    27 S = SQRT(AMB)
    28 CONTINUE
        GENERATION CF THE RANCON NUMBERS
        AM = AMB
        DO 29 J = 1,N
        CALL GAUSS(IX,S,AN,V)
    29 TBK(J) = V
        WRITE(6,18) NUMRUN,IX1
        GO TO 33
C
C
C STATISTICAL ANALYSIS ANC SMCOTHING NAY BE APPLIED TO DATA SUPPLIED
    30 READ(5,31) (TBK(J), J=1,N)
    31 FORMAT (7X,7(F6.0,1X)/(8(F6.0,1X)))
        WRITE(6,32)NUMRUN
    32 FORMAT(1H1,35X, 'RANDOM DATA FED IN', I 7)
C
C
    3 3 \text { CONT INUE}
        STORE ORIGINAL DATA FCR MULTIPLE SNOCTHING PROCESSES.
        DO 34 J = 1,N
    34 TBL(J) = TBK(J)
        USE MRPT TC CHECK IF CRIGINAL DATA HAS ALREADY BEEN TRANSFORMED.
```

```
        MRPT = 0
    35 CONTINUE
        PRINTOUT OF ORIGINAL AND SMOOTHED DATA.
        LK = N/10
        DO 37 J = 1,LK
        JU = J*10
        JL= JU-9
C
        JU IS THE CHANNEL NUNBER fOR EVERY TENTH fOINT
        WRITE(6,36) (TBK(I),I=JL,JU),JU
    36 FORMAT(2X,1C(F9.2,2X),16)
    37 CONT INUE
        JA = JU+1
        WRITE(6,38) (TBK(I), I=JA,N)
    38 FORMAT(2X,1O(F9.2,2X))
C
READ(5,39) IPUNCH,IAVRG,MINAV,MAXAV,ISNUTH
    39 FORMAT (515)
C IPUNCH GREATER THAN ZERO PUNCHES CUT RANDOM AND SMOOTHED DATA.
        IF(IPUNCH) 41,41,40
    40 WRITE(7,31) (TBK(I),I=1,N)
        IAVRG GREATER THAN ZERC CALCULATES MEAN AND STANDARD DEVIATION
        BETWEEN CHANNELS MINAV AND MAXAV. GROUPS DATA INTO IAVRG SUBGROUPS
        USE IAVRG = I*9 + 1, I = 1,2,3,\ldots..
    41 IF(IAVRG) 60,60,42
        STATISTICAL ANALYSIS APPLIED TO ORIGINAL AND SMOOTHED DATA.
        COMPUTATION OF THE MEAN AND STANDARD DEVIATION
    42 SUMX1 = 0.0
        SUMX2 = O.C
        NT = MAXAV - MINAV + 1
        DO 44 J = NINAV, MAXAV
    44 SUMX1 = SUMX1 + TBK(J)
        AVR = SUMXI/FLOAT(NT)
```

```
        DO 45 J = NINAV, MAXAV
    45 SUMX2 = SUMX2 + (TEK(J) - AVR)**2
            SDPTS = SQRT(SUMX2/FLCAT(NT-1))
C GROUPING OF DATA INTO IAVRG SUBGROUPS.
C PCINTS LYING 4.5 S.D. FROM THE MEAN ARE EXClUDED.
    DO 47I = 1,IAVRG
    S = SQRT(AVR)
    DX = 9.0*S/FLOAT(IAVRG-1)
    X = AVR + EX*FLOAT(I - (IAVRG+1)/2)
    GRUP(I) = x
    IGRUP(I) = 0
    DO47 J = MINAV, MAXAV
    Y = TBK(J)
    IF(ABS(X-Y-0.01) - CX/2.C) 4t,47,47
    46 IGRUP(I) = IGRUP(I) + 1
    47 CONTINUE
C
    WRITE(6,52)
    WRITE(6,53) NT, MINAV, MaXAV
    WRITE(6,54) AM
    WRITE(6,55) AVR
    WRITE(6,56) S
    WRITE(E,57) SDPTS
    WRITE (6,58)
    WRITE(6,59) (GRUP(I), IGRUP(I), I = 1,IAVRG)
    52 FORMAT(1H1,35X, 'STATISTICAL ANALYSIS')
    53 FORMAT(1HO,10X,'NUMBER OF DATA PCINTS = ', IT,'BETWEEN CHANNELS ',
    1 [7, ' AND ', I7)
    54 FORMAT(1HO,10X,'MEAN (READ IN) = 'F10.2)
    55 FORMAT(1HO,1OX,'CALCULATED MEAN = 'F1O.21
    5 6 ~ F O R M A T ( 1 H C , 1 0 X , ' S . D . ~ R E A D ~ I N ~ = ~ F 1 0 . 2 )
    57 FORMATIIHO,10X,'CALCULATED S.D. = 'F10.2)
    58 FORMAT(1HC,10X, 'DATA GRCUPING')
    59 FORMAT (25X,F10.2, 5X, IG)
```

```
O
C
    60 CONTINUE
    ISMUTH LESS than O prcgram returns te the first read statement.
IF ISMUTH IS LESS THAN O RETURN TO THE FIRST READ STATEMENT
C IF ISMUTH = O, CALL EXIT
C IF ISMUTH = I SMOOTH THE DATA
    IF(ISMUTH) 4,100,61
    61 CONTINUE
        WT ARRAY cata reac in.
        READ(5,62) SIGB, NWTE, hTCl
    62 FORMAT(F5.C,I5, F5.C)
    WTCI IS THE AMPLITUDE OF THE FILTER FUNCTION BEFORE THE CUTOFF
    mWtb is the chanNel number corresponding to the filter cutoff.
    Sigb is the standard deviatidon dF the gaussian in the cutoff.
    FOURIER TRANSFCRM CF ORIGINAL DATA AND PRINTOUT.
        NUM = N + 1
        TBK(NUM) = C.C
        IF(MRPT) 65,65,77
    6 5 \text { CONTINUE}
        DO 68 I = 1,NUM
        CATA(I) = CMPLX(TBK(I),0.0)
    6 8 \text { CONTINUE}
        FAST FCURIER TRANSFORM ON DATA.
        CALL FOURT (DATA,NUM,1,+1,+1,0)
C
        DO 7C I = 1,NUN
        AR = REAL(DATA(I))
        AI = AIMAG(CATA(I))
        TBK(I) = SQRT(AR*AR + AI*AI)
        tbk IS USEC TC STORE THE MAGNITUDE OF EACH TRANSFORMED POINT.
        7C CONTINUE
```

```
        W8=6.2831873/FLOAT(NUM)
    NUM2 = NUM/2 + 2
    PRINT OUT OF TRANSFORMED DATA.
    WRITE(6,71) W8
    71 FORMAT (1H1,26H DELTA CMEGA IN RACIANS = ,FlO.6)
    WRITE(6,72)
    72 FORMAT (1H,19H TRANSFCRM INTEGRAL)
    WRITE(6,73) (TBK(I),I=1,NUM2)
    73 FCRMAT (1H ,10E11.4)
C
    IF(MRPT) 74,74,79
    74 CONTINUE
        STORE ORIGINAL TRANSFCRMED DATA FOR REFILTERING.
        DC 75 I = 1,NUM
    75 DATA2(I) = DATA(I)
        GO TO 79
    77 CONTINUE
        RECALL ORIGINAL TRANSFORMED DATA.
        DO 78 1 = 1,NUM
    7 8 ~ D A T A ( I ) ~ = ~ D A T A Z ( I ) ~ ( \% )
C
    79 CONTINUE
        MRPT = 1
        evaluation of the filtering data.
        NUP = NUM/2
        SIGB2 = 2.C*SIGB*SIGB
        WT(NUM) = WTCl
        DO 8C I = 1, NWTB
        J = NUM - I
        WT(I) = WTCL
    80 WT(J) = WT(I)
        DO 82 1 = MWTB, NUP
        J = NUM - I
        EX2 = (I-MWTB)*(I-MWTB)
```

```
        WT(I) = WTCl*EXP(-EX2/SIGB2)
    82 WT(J) = WT(I)
    FILTERING THE TRANSFORMED DATA WITH WT(I).
    DC 84 I = 1,NUM
    84 DATA(I) = DATA(I)*WT(I)
C
C INVERSE FOURIER TRANSFCRN
    CALL FOURT(DATA,NUM,1,-1,+1,0)
C
    DO 85 I = 1,NUM
    AR = REAL(CATA(I))
    AI = AIMAG(DATA(I))
    TBK(I) = SQRT(AR*AR + AI*AI)/FLOAT(NUM)
    dIVIDING by NUM is to CORRECTlY nCRMALIZE THE OUTPUT dATA.
        8 5 \text { CONTINUE}
    IF(ISMUTH - 1) 94,94,86
    94 WRITE(6,95) NUMRUN
    95 FCRMAT(1HI,1OX,'SMCOTHED DATA OF RUN NO ', [5)
    WRITE(6,96) SIGB,NWTB,WTC1
    96 FCRMAT(1HO,'SIGB = ',F6.1,' MWTB =',I5,' hTCl =',F5.21
    GO TO 35
    100 CALL EXIT
    END
```

	SUBROUTINE GAUSS(IX,S,AM,V)	gaus	390
C		gaus	50
C	PURPOSE	GAUS	60
C	CCMPUTES a normally distributeo random number with a given	gaus	70
C	mean and stancard ceviaticn	gaus	80
C		gaus	90
C	USAGE	gaus	100
C	CALL GALSSIIX,S,AN,V)	GAUS	110
C		gaus	120
C	descripticn of parameters	GAUS	130
C	IX -IX MUST CONTAIN AN ODD Integer number with nine or	gaus	140
C	LESS DIGITS ON THE FIRST ENTRY TO GAUSS. THEREAFTER	gaus	150
C	It will contain a unifcrnly distributed integer random	gaus	160
C	number generated by the subroutine for use on the next	gaus	170
C	entry to the subroutine.	gaus	180
C	S - the desired standard deviation cf the normal	gaus	190
C	distrieution.	gaus	200
C	am -the desired mean cf the ncrnal distribution	galls	210
C	\checkmark-the value of the computed normal random variable	gaus	220
C		gaus	230
C	REMARKS	gaus	240
C	this sueroutine uses randu which is machine specific	gaus	250
C		gaus	260
C	SUBroutines and function subprograms required	gaus	270
C	RANDU	gaus	280
C		gaus	290
C	NETHCD	gaus	300
C	USES 12 UNIFCRN RANDCN NUNEERS TC COMPUTE NORMAL RANDOM	gaus	310
C	Numbers by Central limit theorem. the result is then	gaus	320
C	adjusted tc natch the given nean and standard deviation.	GAUS	330
C	THE UNIFORM RANDOM NUMBERS COMPUTED WITHIN THE SUBRCUTINE	gaus	340
C	are fiund by the pewer residue method.	gaus	350
C		gaus	360
C	-	gaus	370


```
SLBROUTINE RANDU(IX,IY,YFL) RAND 540
PURPOSE 
    COMPUTES UNIFCRMLY DISTRIBUTED RANDCM REAL NUMBERS BETWEEN RAND }7
    O AND 1.0 ANC RANCOM INTEGERS BETWEEN ZERO AND RAND 80
    2**31. EACH ENTRY USES AS INPUT AN INTEGER RANDCM NUMBER RAND SO
    ANC PROCUCES A NEW INTEGER AND REAL RANDOM NUMBER. RAND 100
USAGE
    CALL RANOU(IX,IY,YFL)
DESCRIPTICN OF PARAMETERS
    IX - FOR THE FIRST ENTRY THIS MUST CCNTAIN ANY ODD INTEGER RAND 160
                NUMBER WITH NINE OR LESS DIGITS. AFTER THE FIRST ENTRY,RAND 170
                IX SHOULD BE THE PREVICUS VALUE CF IY COMPUTEO BY THIS RAND 180
                SUBROUTINE. RAND 190
    IY - A RESULTANT INTEGER RANCCM NUMBER REQUIRED FOR THE NEXTRAND 200
                ENTRY TO THIS SUBROUTINE. THE RANGE CF THIS NUMEER IS RAND 210
                EETWEEN ZERO AND 2**21
                            RANO 220
    YFL- THE RESULTANT UNIFCRMLY DISTRIEUTED, FLOATING POINT, RAND 230
                RANDOM NUMBER IN THE RANGE O TC 1.0 RAND 240
RAND 250
REMARKS RAND 260
    THIS SUBROUTINE IS SPECIFIC TO SYSTEM/360 AND WILL PRODUCE RAND 270
    2##29 TERNS REFCRE REPEATING. THE REFERENCE BELDW DISCUSSESRAND 280
    SEEDS (65539 HERE), RUN PRCBLEMS, AND PROBLEMS CONCERNING RAND 290
    RANLCN DIGITS USING THIS GENERATION SCHEME. MACLAREN AND RAND 30O
    MARSAGLIA, JACN 12, P. 83-89, DISCUSS CONGRUENTIAL RAND 310
    GENERATION METHODS AND TESTS. THE USE OF TWC GENERATORS OF RAND 320
    THE RANCU TYPE, ONE FILLING A TABLE AND ONE PICKING FROM THERAND 330
    TABLE, IS CF BENEFIT IN SCNE CASES. 65549 HAS BEEN RAND 340
    SUGGESTED AS A SEED WHICH HAS EETTER STATISTICAL PROPERTIES RAND 350
    FOR HIGH ORDER BITS OF THE GENERATED DEVIATE. RAND 360
    SEEDS SHOULD BE CHOSEN IN ACCORDANCE WITH THE DISCUSSION RAND 370
```

GIVEN IN THE FEFERFNCE RELCW. ALSO, IT SHOULD BE NOTED THATRAND 380 IF FLOATING POINT RANDON NUNBERS ARE DESIRED, AS ARE RAND 390 AVAILABLE FROM RANCU, THE RANDOM CHARACTERISTICS OF THE RAND 400 FLOATING POINT DEVIATES ARE MODIFIED AND IN FACT THESE RAND 410 DEVIATES HAVE HIGH PROBABILITY CF HAVING A TRAILING LCW RAND 420 CREER ZERO BIT IN THEIR FRACTIONAL PART. RAND 430

RAND 440
SUBROUTINES AND FUNCTICN SUBFRCGRANS REGUIRED RAND 450 NONE

RAND 460
RAND 47 C
METHOD
RAND 480
PCWER RESICUE METHOD DISCUSSED IN IBM MANUAL C20-8011, RAND 4 GC RANDON NUMBER GENERATICN AND TESTING RAND 500

RAND 510

- RANO 520

RAND 530
$I Y=I X \neq 65539 \quad$ RAND 550
IF(IY)5,6,6 RAND 560
5. $I Y=I Y+2147483647+1 \quad$ RAND 570
$\epsilon \quad \mathrm{YFL}=\mathrm{I} Y$
RAND 580
$Y F L=Y F L * .4656613 E-G$
RAND 590
RETURN RAND 600
END R10

```
C COMPUTER CODE 'POLYFIT:
C LEAST-SQUARES FITTING THE WICTH-ENERGY EQUATION
C
        DIMENSION E(100),W(100),WT(100),HT(100),SDWID(100)
        DIMENSICN WFO(50), EO(50),CF(50),MACA(50),LACA(50),
        1 AO(50), FA(5C), WIDCL(100), WIDER(100), WIDDF(100),WIDRS(100)
    95 CCNTINUE
        READ(5,1CC) A, NACA
    00 FORMAT (2I5)
        REAC(5,105) (E(I),W(I),SCWIC(I),WT(I),HT(I),I=1,N)
    105 FORMAT((10X,F10.2,3(2X,F8.4),2X,F8.2))
        N IS THE NUMBER OF POINTS TO BE LEAST-SQUARES FITTED
        E IS the ENERGY, W IS tHE WIDTH, WT IS tHE WEIGHT AND HT THE
        HEIGHT
        SDWID IS The stancarc ceviation in the width, in kev
    WRITE(6,202)
```



``` WRITE (6,203)
    203
        FORMATIIHC, PEAK NC. ENERGY KEV WIDTH KEV
    l SD-KEV WEIGHT HEIGFT')
        WRITE(6,2C5) (I,E(I),W(I),SDWID(I),WT(I),HT(I),I = I,N)
    205 FORMAT(15X,15,5X,F10.2,5X,F1C.3,5X,F10.3,5X,F10.3,5X,F10.2)
C
    206 CONTINUE
    WRITE(6,207)
    207 FORMAT(1HI,2CX,'RESULTS CF LEAST-SGUARES FIT')
    EVALUATION OF THE SUM(WIDTH*WEIT*ENERGY**J) COEFFICIENTS.
    DC 215 I = 1,NACA
    SUMWE = 0.0
    DO 210 J = 1, N
    K=1-1
    EGM = E(J)/10000.0
    210 SUMWE = SUMWE + WT(J)*W(J)*EGM**K
```

WEC(I) = SUMhE
215 CONT INUE
C
DO $21 \epsilon \mathrm{I}=1$, NACA
$J=1-1$
WRITE(6,218) J, WEO(I)
218 FORMAT(1HC,5X,'SUM(WEIGHT*WIDTH (KEV)*ENERGY(1OMEV)**',I2,') = ${ }^{\prime}$,
1 E12.51
216 CONTINUE
C
C EVALUATICA (F THE SUM(WEIGHT*ENERGY**K) COEFFICIENTS
NACB $=2 *$ NACA -1
DO $225 \mathrm{I}=1$, NACB
SUME $=0.0$
DO $220 \mathrm{~J}=1$, N
$K=1-1$
$E G M=E(J) / 10000.0$
220 SUME = SUME + WT(J)*EGM**K
EO(I) = SUME
22 continue
C formation of the coefficient matrix.
DC $230 \mathrm{I}=1$, NACA
DO $230 \mathrm{~J}=1$, NACA
$K=(I-1) * N A C A+J$
$L=I+J-1$
$230 \mathrm{CF}(\mathrm{K})=\mathrm{EC}(\mathrm{L})$
232 CONT INUE
PRINTCUT CF ORIGINAL NATRIX CCEFFICIENTS.
WRITE (6,235)
235 FCRMAT(1HO, 5X, ' COEFFICIENTS OF ORIGINAL MATRIX')
240 FORMAT(8(5X,E12.5))
CO 245 I $=1$, NACA
$\mathrm{J}=(\mathrm{I}-1)$ *NACA +1
$K=J+N A C A-1$

```
        WRITE(6,24C) (CF(L), L = J,K)
    245 CONTINUE
C
call minvicf,NaCa,CTN,laca,maCa)
c subrcutine minv calculates the inverse of the coefficient matrix.
        WRITE(6,25C) DTN
    250 FORMAT(1HO,5x,' VALUE OF DETERMINANT = ',E12.5)
        WRITE (6,255)
    255 FORMAT(1HC, 5x, : COEFFICIENTS OF INVERTED NATRIX')
        DO 260 I = 1, NACA
        J = (I-1)*NACA + I
        K = J + NACA - 1
        WRITE(6,240) (CF(L), L = J,K)
    260 CONTINUE
C EVALUATION OF THE LSF CCEFFICIENTS
        DO 28C I = 1, NACA
        SUMAO = 0.0
        DO 270 L = 1, NACA
        J = (I - 1)*NACA + L
    270 SUMAO = SUMAO + CF(J)*WEO(L)
        AO(I) = SUMAO
    280 CONTINUE
        WRITE(6,282)
    282 FORMAT(1HC,5X, 'EQUATICN OF LEAST-SGUARES FIT')
        WRITE(6,283)
    283 FORMAT(1HO, 5X, 'FWHN(KEV) =')
        DO 286 I = 1, NACA
        J = I - 1
        WRITE(6,284) AO(I), J
    284 FORMAT(16X,E12.5,'*ENERGY(1OMEV)**',I2)
    286 CCNTINUE
        evaluation of the rMS ERROR IN fitting the data
```

```
        QWAP = O.C
        DC 290 I = 1, ^
        EGM = E(I)/10000.0
    SUMFW = 0.0
    DO 285 J = 1,NACA
    K=J-1
    285 SUMFW = SUMFW * AO(J)*EGM**K
        WIDCL(I) = SUNFW
        QWIP = W(I) - WIDCLII)
        WIDDF(I) = GWIP
        WIDRS(I) = WT(II*CWIP*QWIP
        QWAP = QWAP + WIDRS(I)
    290 CONTINUE
        DGF = N - NACA
        S = SQRT(QWAP/DGF)
        WRITE (6,291) S
    291 FORMAT(1HO,5X,'SQRT(SUN WEIGHTED RESIDUALS/DEGREES OF FREEDOM) =
    1 !,E12.51
C
C EVALUATION OF THE ERRORS IN THE FIT.
    CO 300 I = 1,N
    EGM=E(I)/10000.0
    DO 294 K = 1, NACA
    L = K - 1
    294 FA(K) = EGN**L
    SUMA = 0.0
    DC 296 J = 1, NACA
    DO 296 K = 1, NACA
    L=(J-1)*NACA +K
    296 SUMA = SUMA + FA(J)*FA(K)*CF(L)
    WIDER(I) = S*SQRT(SUMA)
    300 CONT INUE
C
    WRITE(6,305)
```

```
    305 FORMAT(1H1, 45X. 'CONPARISON BETVEEN CRIGINAL AND FITTEC CATA')
        WRITE (6,306)
    306 FORMATIIHC,' NO PEAK ENERGY PEAK WIDTH S.D.(WIOTH)
    1 WEIGHT WIDTHFIT WIDTH DIFF RESIDUALS CONF INTRVL')
        WRITE(6,310) (I,E(I), W(I), SCWID(I), WT(I), WIDCL(I),WIDDF(I),
        1 WIDRS(I), WIDER(I), I = 1,N)
    310 FCRMAT(16X,15,5X,F10.2,7(3X,F10.5)1)
C
        READ(5,315) NACA
    315 FCRMAT(I5)
C USE THIS STATEMENT TC PERFORM DIFFERENT DEGREE FITS TO THE DATA.
        IF(NACA) 325,95,206
    325 CONTINUE
        CALL EXIT
        END
```

```
SURROUTINE MINV(A,N,D,L,N)
```



```
    C IN COLUNA 1 ShCULC bE REMOVEC FROM THE DOUBLE PRECISION MINV 390
    STATEMENT WHICH FOLLOWS.
    DOUBLE PRECISION A,D,BIGA,HCLC
        the C muSt alSC be REmOVED frcm dCUBLE PRECISION STATEMENTS
        APPEARING IN OTHER ROUTINES USED IN CCNJUNCTION WITH THIS
        ROUTINE.
        THE DOUBLE PRECISION VERSION DF THIS SUBROUTINE MUST ALSO
        CONTAIN COUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT
        1C MUST BE CHANGEE TO DABS. MINV 500
        MINV 510
        MINV 520
        SEARCH FCR LARGEST ELEMENT
        MINV 530
        SEARCH FCR LARCEST ELEMENT MINV 540
    C=1.0
    MINV 550
    NK=-N
    DO 8C K=1,N
    NK}=NK+
    L(K)=K
    M(K)=K
    KK=NK+K
    BIGA=A(KK)
    DO 20 J=K,N
    I Z=N*(J-1)
    DO 2C I =K,N
    I J=IZ+I
10 IF( ABS(BIGA)- ABS(A|IJ))| 15,20,20
15 BIGA=A(IJ)
    L(K)=I
    M(K)=J
20 CONTINUE
```

```
C INTERCHANGE ROWS
C
        J=L(K)
        IF(J-K) 35.35,25
    25 KI=K-N
        DO 30 I=1,N
        KI=KI+N
        HCLD=-A(KI)
        JI=KI-K+J
        A(KI)=A(JI)
    30 A(JI) =HCLC
C
C INTERCHANGE COLUMNS
C
    35I=M(K)
        IF(I-K) 45,45,38
    38 JP=N*(I-1)
        DO 40 J=1,N
        JK=NK+J
        JI=JP+J
        HCLD=-A(JK)
        A(JK)=A(JI)
    40 A(JI) = HOLD
C
C DIVIDE COLUMN BY MINUS PIVCT IVALUE CF PIVOT ELEMENT IS
C CONTAINED IN BIGAI
C
45 IF(BIGA) 48,46,48
    46 C=0.0
    RETURN
    48 DO 55 I=1,N
    IF(I-K) 50,55,50
    50 IK=NK+I
MINV 730
MINV
MINV }75
MINV }76
MINV }77
MINV }78
MINV 790
MINV 800
MINV 810
MINV 820
MINV }83
MINV 840
MINV 850
MINV 860
MINV 870
MINV 880
MINV 890
MINV 900
MINV 910
MINV 920
MINV 930
MINV 940
MINV 950
MINV 960
MINV }97
MINV 980
MINV 990
MINV1000
MINV 1010
MINV1020
MINV1030
MINV1040
MINV1050
MINV1060
```

```
        A(IK)=A(IK)/(-BIGA)
    55 CONTINUE
C
C RECUCE Natrix
C
    DO 65 I=1,N
        IK=NK+I
        HOLD=A(IK)
        IJ=I-N
        DO 65 J=1,N
        IJ=I J+N
        IF(I-K) 60,65,60
    60 [F(J-K) 62,65,62
    62 KJ=IJ-I+K
        A(IJ)=HCLD*A(KJ)+A(IJ)
    6 5 \text { CONTINUE}
C
C
C
DIVIDE RCW RY PIVCT
        kJ=k-n
        DC 75 J=1,N
        KJ=KJ+N
        IF(J-K) 70,75,70
    70 A(KJ)=A(KJ)/BIGA
    7 5 \text { CONTINUE}
C
C PRODUCT CF PIVCTS
C
    D=D*BIGA
C
C
```

```
C FINAL RCW AND CClUNN interchange
C
    K=N
    100 K=(K-1)
    IF(K) 150,150,105
    105 I=L(K)
    IF(I-K) 12C,120,1C8
    108 JG=N*(K-1)
    JR=N*(I-1)
        CO 110 J=1,N
        JK=JG+J
        HOLD=A(JK)
        JI=JR+J
        A(JK)=-A(JI)
    110 A(JI) =HOLD
    120 J=M(K)
        IF(J-K) 100,100,125
    125 KI=K-N
        CC 130 I=1,N
        KI=KI+N
        HOLD=A(KI)
        JI=KI-K+J
        A(KI)=-A(JI)
    130 A(JI) =HOLD
        GO TO 100
150 RETURN
        END
        RETURN
```

 MINV1410
 MINV1420
MINV1430
MINV1440
MINV1450
MINV1460
MINV1470
MINV 1480
MINV1490
MINV1500
MINV1510
MINV1520
MINV 1530
MINV1540
MINV1550
MINV 1560
MINV1570
MINV1580
MINV 1590
MINVI 600
MINVI610
MINV1620
MINV1630
MINV1 640
MINV 1650
MINV1660
MINV1670
MINV 1680

C COMPUTER CODE 'WTANAL'
C ELEMENTAL AAALYSIS THRCUGH PRCMPT GAMMA SPECTROSCOPY
C PROGRAM ANALYZES THE CCNSTITUENTS CF A GIVEN SPECTRUM FOR A NUMBER
C OF ELEMENTS SUPPLIED AS INPUT, BY OPERATING ON THE GAMANL OUTPUT.
DIMENSION REF(18), ES(5C0), ER(500), AREAG(500), SES(2000),
1 SER(2000), SAREA(2000), EFFCY(50), NPEAK(25), ELM(25), AW(25),
2 SIGMA(25), ATMIN(25), ETMIN(25), ETNAX(25), DENG(25), ET(25,300),
3 AT(25,300), SM(2000), LS(2C00), SELM(2000), SET(2000),SAT(2000),
4 INTRF(2000), SELMX(2000,10)
$\operatorname{READ}(5,90)$ (REF(I), $I=1,18)$
90 FORMAT(18A4)
USE THIS Statement for reference number and other information READ(5,95) NS, FLUXT, SLDAN
95 FCRMAT (15,2E10.4)
ns is the number cf peaks in the spectrun to be analyzed
fluxt is the integrated flux (neutrons/sguare cm)
C FLUXT IS THE INTEGRANGLE
$\operatorname{READ}(5,100)$ (ES(I), ER(I), AREAG(I), I = 1, NS)
100 FORMATI8X,F1C.2, 16X,F10.2,3X,F10.2)
ES = PEAK ENERGY, ER = ERROR PERCENT, AREAG = GAUSSIAN AREA READ(5,105) J2, FIRENG, DELENG
105 FORMAT(I5,2F5.0)
J2 = NUMBER OF POINTS IN EFFICIENCY ARRAY
$\begin{array}{ll}\text { C FIRENG }=\text { FIRST ENERGY (KEV) USED IN EFFICIENCY CALCULATION } \\ \text { C DELENG } & =\text { EAERGY DIFFERENCE BETWEEN EFFICIENCY POINTS }\end{array}$
$\operatorname{READ}(5,110)$ (EFFCY(I), $I=1, \mathrm{~J} 2)$
110 FORMAT(7EIC.3)
EFFCY = EFFICIENCY OATA ARRAY $\operatorname{READ}(5,115) \mathrm{NEL}$
115 FORMAT(15)
NEL = NUMBER CF ELEMENTS USED IN THE ANALYSIS
DO $1401=1$, NEL
REAC(5,120) NPEAK(I), ELM(I), AW(I), SIGMA(I), ATMIN(I), ETMIN(I),

```
    l ETMAX(I), DENG(I)
    120 FORMATII 5,3X,A2, GF10.2)
        ELM = ELEMENT EXANINED
    NPEAK = NUMBER OF TABULATED PEAKS FOR THIS FLEMENT
    AW = ATONIC WEIGHT, SIGNA = THERMAL NEUTRON ABSORPTION X-SECTION
    ATMIN = MIN VALUE CF PEAK INTENSITY USEARLE FOR ANALYSIS
        ETMIN AND ETMAX SPECIFY THE ENERGY RANGE OF THE SPECTRUM
        DENG = MAX DIFF BETWEEN SANPLE AND TABULATED ENERGIES FOR POSSIBLE
                AGREEMENT
        NPK = NPEAK(I)
        READ(5,125) (ET(I,K), AT(I,K),K=1,NPK)
    125 FORMAT(2(10X,F10.2))
ET = TAEULATEC ENERGIES CF SPECIFIED ELEMENT
C AT = TABULATED INTENSITIES (GAMNAS/100 NEUTRON CAPTURES)
    140 CONTINUE
C
C PRINTOUT OF PERTINENT INFORMATION
        WRITE(6,145) (REF(I), I = 1,18)
    145 FORMAT(1H1, 25X, 18A4)
    WRITE(6,15C) FLUXT, SLDAN
    150 FCRMAT(1HO, 10X, "FLUX*TIME (N/CM*CM) = ', E11.4,10X, SOLID ANGLE
    l= ', Ell.4)
        WRITE(6,155) FIRENG, DELENG
    I55 FORMAT(IHO,10X,'EFFICIENCY DATA INITIAL ENERGY (KEV) = ',F6.0,
    1 5X, 'DELTA ENERGY (KEV) = ,FG.O)
        WRITE(6,160) (EFFCY(1), I = 1,J2)
    160 FCRMAT(1HC, 1CX,'EFFICIENCY ARRAY:/( 10X,10E10.3))
        WRITE(6,165)
    165 FCRMAT(1HO, 25X, ELEMENTS FOR WHICH SPECTRUM IS ANALYZED')
        WRITE(6,170)
    170 FORMAT(1HO,7X,' NO PEAKS ELEMENT AT WEIGHT SIGMAIBARNS
    1) MIN INT MIN ENERGY NAX ENERGY ENERGY DIFF'I
        WRITE(6,175) (NPEAK(I), ELM(I),AW(I),SIGMA(I),ATMIN(I), ETMIN(I),
    1 ETMAX(I), CENG(I), I = 1,NEL)
```

```
    175 FORMAT((10X,I5,8X,A2,6(5X,F10.2))!
C
C ONLY THE PEAKS OF EACH ELEMENT WHICH LIE WITHIN THE SPECIFIED
C RANGE OF THE SPECTRUM AND WHOSE INTENSITIES ARE LARGER THAN THE
C SPECIFIED VAlUE ARE EXANINED.
    DO 200 I = 1, NEL
    KN=0
    NPK = NPEAK(I)
    DO 195 K = 1, NPK
    IF(ET(I,K) - ETMIN(I)) 195,180,180
    180 IF(ET(I,K) - ETMAX(I))185,185,195
    185 IF(AT(I,K) - ATMIN(I)) 195,195,19C
    190 KN = KN + 1
        ET(I,KN)=ET(I,K)
        AT(I,KN) = AT (I,K)
    195 CONTINUE
    NPEAK(II)=KN
    200 CONT INUE
C
C PART ONE - CORRESPCNLENCE EETWEEN SAMPLE AND TABULATED PEAKS
C EACH GAMMA RAY IN THE SPECTRUN IS CHECKED WITH THE TABULATED
C ENERGIES OF ALL THE CESIRED ELEMENTS FOR POSSIBLE CORRESPCNDENCF.
    WRITE(6.205)
    205
    FORMAT(1H1, 4CX, 'DETECTED ENERGIES AND PCSSIBLE CCNSTITUENTS')
    WRITE{6,210)
    210 FORMATIIHC,4X, NUMBER SANPLE ENGY SANPLE AREA ERROR P.C.
    1 ELEMENT TABLE ENGY TABLE INT. WT(GRAMSI')
    L=0
    Y = FLUXT*SLDAN*C.OCEC23
    DC 265 IS = 1, NS
    INTF = 0
    EGAM = ES(IS)
C EVALUATICN CF THE SYSTEM EFFICIENCY AT THIS ENERGY
    IEGAN=2
```

```
    215 XEGAM = DELENG*FLOAT(IEGAM-11 + FIRENG
    IF (XEGAM-EGAM) 220,220,225
    220 I EGAM=IEGAM+1
        GO TO 215
    225E1 = XEGAM - DELENG
        E2=XEGAM
        E3 = XEGAM + DELENG
        G1=EFFCY(IEGAM-1)
        G2=EFFCY(IEGAM)
        G3=EFFCY(IEGAM+1)
        D12=(G2-G1)/(E2-E1)
        D23=(G3-G2)/(E3-E2)
        D123=(D23-D12)/(E3-E1)
        GX=G1+(EGAN-E1)*D12+(EGAM-E2)*(EGAN-E1)*D123
C
    GX SECOND ORDER INTERPOLATED EFFICIENCY AT GAMMA ENERGY EGAM.
    WRITE(6,230) IS, ES(IS), AREAG(IS), ER(IS)
    230 FORMATI1H,5X,I5,3(5X,F1O.2))
        DO 250 I = 1, NEL
        NPK = NPEAK(I)
        DO 250 K = 1, NPK
        IF(ABS(ES(IS)-ET(I,K))- DENG(I)) 235,235,250
    235 L = L + 1
        INTF = INTF + I
        SM(L) = AREAG(IS)*AW(I)/(GX*SIGMA(I)*AT(I,K)*Y)
C THE FOLLOWING PARAMETERS ARE STCRED IN NEW ARRAYS FOR THE SECOND
C PART DF THE ANALYSIS.
    LS(L) = IS
    SES(L) = ES(IS)
    SAREA(L) = AREAG(IS)
    SER(L) = ER(IS)
    SELM(L) = ELM(I)
    SET(L) = ET(I,K)
    SAT(L) = AT(I,K)
    WRITE(6,240) SELM(L), SET(L), SAT(L), SM(L)
```

```
    240 FORMAT(1H ,6CX,8X,A2,5X,F1C.2,5X,F1O.2,5X,E10.4)
    250 CONTINUE
C
    StORING THE symbCl CF the elements which interfere with each other
    IF(INTF) 2\epsilon5,265,252
    252 DC 260 INT = 1, INTF
        LK = L + 1 - INT
        INTRF(LK) = INTF - 1
        JK = 0
        DO 260 JA = 1, INTF
        IF(JA - INT) 255, 260, 255
    255 JK = JK + 1
        LJ=L + 1 - JA
        SELMX(LK,JK) = SELM(LJ)
    260 CONTINUE
    265 CONTINUE
C
C PART TWO - ORDERING THE SAMPLF CONSTITUENTS ELEMENT WISE
        WRITE(6,270)
    270 FORMAT(1H1, 35x,'CRDERING THE IDENTIFIED PEAKS ELEMENT WISE')
    WRITE(6,272)
    272 FORMATIIHO,4X,'NUMBER SAMPLE ENGY SANPLE AREA ERROR P.C.
        l ELEMENT TABLE ENGY TABLE INT. WT(GRAMS) INTE
    2RFERENCE')
        DO 305 K = 1, NEL
        WRITE(6,275)
    275 FORMAT(1HO,/)
        DO 305 I = 1,L
        IF(ELM(K) - SELM(I)) 305,280,305
    280 IA = INTRF(I)
        IF(IA) 285,285,295
    285 WRITE(6,29C) LS(I), SES(I),SAREA(I),SER(I),SELM(I),SET(I),SAT(I),
        1 SM(I)
    290 FORMAT(1H ,5X,I5,3(5X,F1O.2),11X,A2,5X,F1O.2,3X,F1O.2,9X,E10.4)
        GO TO 305
```

295 WRITE(6, 300) LS(I), SES(I), SAREA(I), SER(I), SELM(I), SET(I), SAT(I), 1 SM(I), (SELNX(I,IC), IC $=1, I A)$
300 FORMAT(1H, $5 \mathrm{X}, \mathrm{I} 5,3(5 \mathrm{X}, \mathrm{F} 10.2), 11 \mathrm{X}, \mathrm{A} 2,5 \mathrm{X}, \mathrm{F} 10.2,3 \mathrm{X}, \mathrm{F} 10.2,9 \mathrm{X}, \mathrm{E} 10.4$,
$12 X, 6(A 2,1 \times 1)$
305 CONTINUE
CALL EXIT
END

```
C COMPUTER PROGRAM MINIMUM
c evaluation of minimum detectable areas and minimum detectable
C WEIGHTS IN A KNOWN BACKGROUND.
    COMMON TBL(4096), TBK(4096),DTS(4096)
    COMMON IPUNCH,JREAD,JPRINT, JPUNCH
    DIMENSION EGAM(50), AINT(50), EFFCY (50), REF(50)
    JREAD = 5
    JPRINT = 6
        JPUNCH = 7
C
    READ(5,90) (REF(I), I = 1, 18)
    90 FORMAT(18A4)
        USE THIS STATEMENT FOR REFERENCE NUMBER AND OTHER INFORMATION
        READ(JREAD,95) NUMRUN, NOCHAN, IMAX,DCR
    95 FORMAT(315,F5.0)
        NUMRUN IS THE SPECTRUM RUN NUMbER, NOCHAN IS THE NUMbER OF CHANNELS
        IN THE SPECTRUM, imAX IS the chanNEL Number at Which the backgrdund
        SUBTRACTION BEGINS, AND DCR IS THE SLOPE CRITERION USED IN BAKSUB.
        READ (JREAD,100) (TBK(I), I=1, NOCHAN)
    100 FORMAT (7X,7(F6.0,1X)/(8(F6.0,1X)))
        tbk IS the data arRaY. EGAMI aND EGAM2, ARE tHE ENERGIES DF THE TWO
        CALIBRATION GAMMA RAYS AND IPI,IP2 ARE THEIR POSITIONS IN THE
        SPECTRUM, IN CHANNEL NUMBERS.
        READ (JREAD,102) EGAM1,IP1,EGAM2,IP2
    102 FORMAT (4X,F6.1,4X,I6,4X,F6.1,4X,16)
        READ(5,105) J2, FIRENG, DELENG
    105 FORMAT(15,2F5.0)
        J2 = NUMBER OF POINTS IN EFFICIENCY ARRAY
        FIRENG = FIRST ENERGY (KEV) USED IN EFFICIENCY CALCULATION
        DELENG = ENERGY DIFFERENCE BETWEEN EFFICIENCY POINTS
        READ(5,110) (EFFFCY(1), I = 1, J2)
    110 FORMAT(7E10.3)
    EFFCY = EFFICIENCY DATA ARRAY
    READ(JREAD,1121 AO, A1, A2
```

```
    112 FORMAT(3F10.3)
C AO, Al, AND A2 ARE THE CONSTANTS DETERMINING THE SYSTEM RESOLUTION
    READ(JREAD, 112) C1, C2
C USE THESE CONSTANTS IN THE EQUATION FOR A(MIN)
    READ(5,114) FLUXT, SANGLE,FACTR
C FLUX IS THE INTEGRATED FLUX, AND SANGLE IS THE SOLID ANGLE.
C FACTR IS USED TO MULTIPLY THE INPUT TBK DATA, IF SO DESIRED, AFTER
C
    114 FORMAT(2E10.4,F10.3)
    READ(5,112) ELIM1, ELIM2, SMPLW
C ELIMI AND ELIM2 ARE ENERGY LIMITS WITHIN WHICH THE ANALYSIS IS DONE.
C SMPLW IS THE SAMPLE WEIGHT, IN GRAMS
C EVALUATION OF THE ENERGY-CHANNEL CONVERSION FACTOR
    SLP = (EGAM2 -EGAM1)/FLOAT(IP2-IP1)
C
C PRINTOUT OF PERTINENT INFORMATION
120
    WRITE(6,120) (REF(I), I = 1,18)
    FORMAT(1H1, 25X, 18A4)
    122
    FORMAT (1HO,4X,9H RUN NO =,I5,5X,22H NUMBER OF CHANNELS = , I5)
    URITE (JPRINT,123) IMAX
    123 FORMAT (5X,41H CHANNEL NUMBER SLOPE CRITERION (IMAX) = ,I5)
    WRITE (JPRINT,125) DCR
    125 FORMAT(5X,51H SLOPE CRITERION FOR BACKGROUND IN UNITS OF SQRT OF,
    114H BACKGROUND = . F6.21
    WRITE (JPRINT,130) SLP
    130 FORMAT (' '.4X,' ENERGY PER CH.NO (KEV) = .FF.3)
    WRITE (JPRINT,149) SANGLE,FLUXT
    149 FORMAT (' ',4X,' SOLID ANGLE RADIANS = *,E10.4,2X,' FLUXT = .,
        1 E10.4)
        WRITE(JPRINT,150)
    150 FORMAT(1HO, 2OX, EQUATION DF LEAST-SQUARES FITTED FWHM')
    WRITE(JPRINT, 152) A0, Al, A?
```

```
    152 FORMAT ('0.,10X,' FWHM(KEV)=',F9.3,' + ,FF.3.
    1 * *E(1OMEV) + *,F9.3,:*E(1OMEV)**2 !)
        WRITE(JPRINT, 153) C1, C2
    153 FORMAT( 1HO, 10X, ' AREA(MIN) = ,F8.4, *WIDTH*(1.0 + SQRT(1. + ',
        1 F7.3,'*BACKGROUNDI)'/I
        WRITE(6,155) FIRENG, DELENG
    155 FORMAT(1HO,5X, EFFICIENCY DATA INITIAL ENERGY(KEV) = *F6.O,
        1 5X, 'DELTA ENERGY (KEV) = ', F6.0)
        WRITE(6,160) (EFFCY(I), I = 1,J2)
    160 FORMAT(1HO, 10X, 'EFFICIENCY ARRAY:/( 10X,10E10.3))
        WRITE(6,165) FACTR
    165 FORMAT (1HO,5X, 'INPUT SPECTRAL DATA AND FLUXT WERE MULTIPLIED BY',
        1 F10.31
C
C SUBROUTINE BAKSUB IS CALLED FOR THE EVALUATION OF THE BACKGROUND
CALL BAKSUB(NOCHAN,IMAX,DCR)
C
        DO 170 I = 1. NOCHAN
    170 TBL(I)= TBL(I)*FACTR
        FLUXT = FLUXT*FACTR
        ISUM = 50
C
    175 READ(5,95) ILINE
C ILINE IS THE NUMBER OF GAMMA RAYS OF THE ELEMENT CONSIDERED.
        IF(ILINE) 260,260,180
    180 WRITE(6,185)
    185 FORMAT (1H )
        ISUM = ISUM + 1
        WTLIM = 1000000.
        READ(5, 190) (EGAM(I), AINT(I), ZET, I = 1, ILINE)
    190 FORMAT (10X,F10.1,10X,E9.2, 13X, A2)
C EGAM(I) AND AINT(I) ARE THE ENERGIES AND INTENSITIES OF THE
```

```
C GAMMA RAYS DF THE ELEMENTS. zET IS THE ELEMENTAL SYMBOL.
C
C EVALUATION DF THF LIMITS FOR QUANTITATIVE DETERMINATION
        DO 250 J = 1, ILINE
        IF(ISUM - 49) 210,210,195
    195 WRITE(6,200)
    200 FORMATI1HI,///30X,' LIMITS FOR QUANTITATIVE DETERMINATION')
        WRITE(6,205)
    205 FORMATI1HO, 15X, ELEM. ENERGY INTENSITY MIN.AREA MI
        IN.WT WT PERCENT',ll
        ISUM = 0
    210 CONTINUE
        EGA = EGAM(J)
        IF(EGA - ELIM1) 250,250,215
    215 IF(EGA - ELIM2) 220,220,250
    220 CONTINUE
        IPX = (EGA - EGAM1)/SLP
        IPY = IPX + IPI
C IPY IS THE POSITION IN THE SPECTRUM CORRESPONDING TO AN ENERGY EGAM(I).
C bG IS THE VALUE OF THE baCKGROUND AT IPY. IT IS MODIFIED TO
C A CHANNEL ENERGY CONVERSION OF 2 KEV PER CHANNEL.
        BG = TBL(IPY)*2.0/SLP
        EGM = EGA/10000.0
        W = (AO + Al*EGM + A2*EGM*EGM)/2.0
C W IS THE SYTEM RESOLUTION IN CHANNELS.
C AMIN IS THE PEAK AREA DETERMINATION LEVEL
        AMIN = C1*W*(1. + SQRT(1.0 + C2*BG))
C
C EVALUATION OF EFFICIENCY
    IEGAM=?
    225 XEGAM = DELENG*FLOAT(IEGAM-1) + FIRENG
    IF (XEGAM-EGA) 230,235,235
    230 IEGAM=IEGAM+1
    GO TO 225
```

```
    235 E1 = XEGAM - DELENG
        E2= XEGAM
    E3 = XEGAM + DELENG
    G1=EFFCY(IEGAM-1)
    G2=EFFCY(IEGAM)
    G3=EFFCY(IEGAM+1)
    D12=(G2-G1)/(E2-E1)
    D23=(G3-G2)/(E3-E2)
    D123=(D23-D12)/(E3-E1)
    GX=G1+(EGA -E1)*D12+(EGA -E2)*(EGA -E1)*D123
    GX IS THE EFFICIENCY OF THE DETECTOR AT EGAM(II. IT IS
    OBTAINED BY A SECOND ORDER INTERPOLATION.
    EVALUATION OF MINIMUM DETECTABLE WEIGHT
    WTMIN = AMIN/(AINT(J)*GX*FLUXT*SANGLE)
    EVALUATION OF WEIGHT PERCENT
    WTPC = WTMIN* 100.0/SMPLW
    WRITE(6,240) ZET,EGA,AINT(J),AMIN,WTMIN,WTPC
    240
    FORMAT(1H,18X,A2,2X,F8.1,3X,E10.3,3X,E10.3,2X,E10.2,2X,E1O.2)
        ISUM = ISUM +1
C IDENTIFICATION OF THE OPTIMUM GAMMA RAY FOR ELEMENTAL ANALYSIS.
    IF(WTPC -WTLIM) 245,245,250
    245
    WTLIM = WTPC
        ENER = EGA
        AINTN = AINT(J)
        AMINN = AMIN
        WTMNN = WTMIN
    250 CONTINUE
C
    WRITE{7, 255) ZET, ENER,AINTN,AMINN,WTMNN,WTLIM
        FORMAT(5X,A2,2X,F8.1,3X,E10.3,3X,E10.3,2X,E10.2,2X,E10.2)
        GO TO 175
        END
```

```
        SUBRDUTTINE BAKSUB (NOCHAN,IMAX,DCR)
C SUBROUTINE BACKSUB PERFORMS THE BACKGRDUND SUBTRACTION ON ARRAY
C TBK. THE ORIGINAL TBK ARRAY IS REPLACED BY THE BACKGROUND
C SUBTRACTED ARRAY.
    COMMON TBL(4096), TBK(4096),DTS(4096)
    COMMON IPUNCH,JREAD,JPRINT,JPUNCH
C
    WRITE (JPRINT,498)
    4 9 8
    FORMAT(1HI,40X,37H CHOSEN MINIMA AND SLDPE BETWEEN THEM)
    WRITE (JPRINT,499)
    4 9 9 \text { FORMAT(20X,29H NO. L CH. LEFT MIN,}
        142H RIGHT MIN SLOPE BASE PNTS-AV.I
C
        JJ = NOCHAN - 1
        DO 302 I = 1,JJ
    302 DTS(I)=TBK(I+1)-TBK(I)
C IMAX LOWER LIMIT ON SLOPE CRITERION.
    LA = IMAX + 1
    M2 = IMAX + 2
    M3 = IMAX + 3
    I = IMAX + 4
    ILOOP = 0
    IMIN = 0
    IAVL = 1
C
    333 XM=DTS(I)*DTS(I-1)
        DB=DTS(I)-DTS(I-1)
        IF (XM) 305,305,303
    305 IF (DB) 303,303,304
    304 CONTINUE
c
c examining the minima of adjacent peaks for possible multiplets.
C LA IS THE ACCEPTED MINIMUM ON THE LEFT-HAND-SIDE OF THE PEAK.
C
    M1,M2 AND M3 ARE THE NEXT THREE MINIMA CONSIDERED.
```

```
C B2MT IS THE MEASURED VALUE OF THE BACKGROUND AT POINT MZ, AN
c b2me is the value it would have had it been on the la to ml line.
C SIMILAR REMARKS FOR B3ME.
C IF THE GRADIENT OF THE LA TO MI LINE IS NEGATIVE THE TEST
C FOR MULTIPLETS IS APPLIED TO ONLY THE FIRST TWO MINIMA MI & M2
C WHEN THE GRADIENT IS POSITIVE THE MINIMA CONSIDERED FOR THE FIT
C ARE M1,M2 AND M3.
C THE VALUES (B2ME - B2MT) AND (B3ME - B3MT) MUST SATISFY
C CERTAIN CRITERIA IF POINT MI IS TO BE ACCEPTED AS A POSSIBLE
C MINIMUM IN THE LINEAR BACKGROUND FIT.
C IF THE CRITERIA ARE NOT MET THE ANALYSIS CONTINUES WITH M2 NOW
C BECOMING MI, M3 BECOMING M2 AVD THE VEWLY CALCULATED NEXT MINIMUM
C BECOMING M3. THE PROCEDURE IS REPEATED TILL THERE IS A MAXIMUM
C DF five peakS betheen la and ml, the test being ignored thereafter
C
    310 M1 = M2
        M2 = M3
        M3 = I
        GRAD1 = (TBK(M1) - TBK(LA))/FLOAT(M1-LA)
        B2ME = TBK(LA) + GRADI*FLOAT(M2-LA)
        B2MT = TBK(M2)
        IF(GRAD1) 370,370,371
    370 IF(B2ME-B2MT) 308,308,365
    DCR IS READ IN AND HAS A vALUE OF APPROXIMATELY 1.0
    365 CRIT = DCR*SQRT(B2MT*FLOAT(M2-M1))
        IF(B2ME - B2MT - CRIT) 308,308,366
    371 B3ME = TBK(LA) + GRADI*FLOAT(M3-LA)
        B3MT = TBK(M3)
        CRIT2 = DCR*SQRT(B2MT*FLOAT(M2-M1))
        IF(ABS(B2MT - B2ME) - CRIT2) 309,309,366
    309 CRIT3 = DCR*SQRT(B3MT*FLOAT(M3-M1))
    IF(ABS(B3MT - B3ME) - CRIT3) 308,308,366
    366 ILOOP = ILOOP + 1
    IF(ILOOP - 5) 303,308,308
```

```
C
C ONCE MI IS CHOSEN, ITS VALUE TBKIMI) IS AVERAGED BY WEIGHING
C IT EQUALLY HITH THE VALUES IN THE NEARBY FIVE CHANNELS, TWO
C ON EACH SIDE. THESE HOWEVER MUST BE WITHIN ONE STANDARD DEVIATION
    308 LL = M1
        ILOOP = 0
        x = 0.0
        TBSQ = SQRT(TBK(LL))
        IAVM = 5
        IAV = 0
        DO 603 IV = 1,IAVM
        LIV = LL - (IAVM+1)/2 + IV
        TC = ABS(TBK(LIV) - TBK(LL))
        IF(TC - TBSQ) 602,602,603
    602 I AV = IAV + 1
        X = X + TBK(LIV)
        TB = X/FLOAT(IAV)
    603 CONTINUE
C
        TBK(LL) = TB
        IAVR = IAV
C
C LA IS LOWER CHAN NO LIMIT FOR LINEAR BACKGROUND FIT.
C LL IS UPPER CHAN NO LIMIT FOR LINEAR BACKGROUND FIT.
533 LB=LA+1
LX=LL-1
C LBASE IS THE NUMBER OF CHANNELS OCCUPIED BY THE PEAK (FIRST CH=0)
    LBASE = LL - LA
C QSLOP IS THE SLOPE BETWEEN THE TWO MINIMA OF A PEAK
    QSLQP = (TBK (LL)-TBK(LA))/FLDAT (LBASE)
C TBL IS A DUMMY ARRAY USED FOR CALCULATING THE BACKGROUND.
TBL(LA)=TBK(LA)
IMIN = IMIN + 1
```

```
            IF (LBASE - 8) 550.551.551
    551 CONTINUE
    WRITE (JPRINT,500) IMIN,LA,TBK(LA),TBK(LL),QSLOP,LBASE,IAVL,IAVR
    500 FORMAT (20X, 17,3X,I6,3X,F9.2.3X,F9.2,3X,F9.3,3X,3I5)
    550 CONTINUE
C BACKGROUND - LINEAR FIT.
    DO 306 IK=LB,LX
    306 TBL(IK)=(TBK(LA)*FLOAT (LL-IK)+TBK(LL)*FLOAT (IK-LA))/
        1FLOAT (LL-LA)
            MZ = LA
            LA=LL
    IAVL = IAVR
C
    303 IF (I-JJ) 334,335,335
    334 I= I +1
    G0 TO 333
C
C THE LAST FOUR PEAKS ARE CONSIDERED TO BE SINGLETS. NO AVERAGING
C IS APPLIED
    335TBL(MZ) = TBK(MZ)
    TBL(M1) = TBK(M1)
    TBL(M2) = TBK(M2)
    TBL(M3) = TBK(M3)
    TBL(NOCHAN) = TBK(NOCHAN)
    TBL(1)= FLOAT(MZ)
    TBL(2) = FLOAT(M1)
    TBL(3) = FLOAT(M2)
    TBL(4) = FLOAT(M3)
    TBL(5) = FLOAT(NOCHAN)
    DO 311 IM = 1,4
    LA = TBL(IM)
    L B = L A + 1
    LL=TBL(IM+1)
    LX = LL - 1
```

```
        DO 307 IK=LB,LX
    307 TBL(IK)=(TBK(LA)*FLOAT (LL-IK)+TBK(LL)*FLOAT (IK-LA))/
        1 FLOAT (LL - LA)
    311 CONTINUE
C
            00 404 I = 1,IMAX
            TBL(I) = TBK(I)
            TBK(I) = 0.0
            DTS(I) = 0.0
            IF (TBL(II) 405,404,404
    4 0 5 ~ T B L ( I ) ~ = ~ 0 . 0 ~
    404 CONTINUE
            DO 401 I = IMAX,NOCHAN
            TBK(I)=TBK(I) - TBL(I)
            DTS(I-1) = TBK(I) - TBK(I-1)
C CORRECTION FOR NEGATIVE VALUES.
            IF (TBL(I)) 406,407,407
4 0 6 ~ T B L ( I ) ~ = ~ 0 . 0 ~ 0
4 0 7 \text { CONTINUE}
    IF(TBK(I)) 403,403,401
    4 0 3 ~ T B K I I I ~ = ~ 0 . 0 ~ 0
    4 0 1 ~ C O N T I N U E
        RETURN
        END
```


REFERENCES

[Al(a)] S.E.Arnell, R.Hardell, A.Hasselgren, L. Jonsson and O.Skeppstedt, "Thermal Neutron Capture Gammas Measured with Ge(Li)-Spectrometers and Internal Reactor Targets", Nucl. Instr. and Methods 54 (1967), p 165
[Al(b)] S.E.Arnell and E.G.Nadjakov, "Thermal Neutron Capture Gamma Measurement with a Three-crystal Pair Spectrometer with Internal Target", Nucl. Instr. and Methods 24 (1963), p 185
[B1] G. A. Bartholomew and M. R. Gunye, "Gamma-Gamma Angular Correlation Measurements of Thermal Neutron Capture Gamma Rays in Cr-53 and Cr-54", Can. J. Physics 43, p 1128 (1965)
[Cl] R. L. Caldwell, W. R. Mills, Jr., L.S. Allen, P. R. Bell, and R. L. Heath, "Combination Neutron Experiment for Remote Analysis", Science, 152, p457 (1966)
[C2] D. F. Covell, "Determination of Gamma Ray Abundance Directly from the Total Absorption Peak", Anal. Chem. 31, No 11, p1787 (Nov 1959)
[C3] C. L. Carnahan, "A Method for the Analysis of Complex Peaks Occuring in Gamma Ray Pulse Height Distributions", Nucl. Instr. and Methods 30, p165(1964)
[C4] Lloyd A. Currie, "Limits of Qualitative Detection and Quantitative Determination", Anal. Chem 40, No. 3, pp 586-592 (1968)
[C5] M. Ciampi, L. Daddi and V. D'Angelo, "Fitting of Gaussians to Peaks by a Maximum Probability Method", Nucl. Instr. and Meth. 66, pp 102-104 (1968)
[C6] D. Comar, C. Crouzel, M. Chasteland, R. Riviere and C. Kellershohn, "The Use of Neutron-Capture Gamma Radiation for the Analysis of Biological Samples", Nucl. Appl. 6, pp 344-351 (April 1969)
[DI(a)] L. Daddi and V. D'Angelo, "Evaluation of Peaks in Nuclear Spectroscopy", Nucl. Instr. and Meth. 42, pp 134-136 (1966)
[Dl(b)] L. Daddi and V. D'Angelo, "Statistical Fluctuations in Nuclear Spectrometry Peaks", Int. J. Applied Rad. and Isotopes 19, pp 407-410 (1968)
[El] G. T. Ewan and A. J. Tavendale, Can. J. Phys. 42, p 2286 (1964)
[E2] N. D. Eckhoff, "A Study of Variance-Covariance Matrix for Gamma Ray Spectra", Nucl. Instr. and Meth. 68, pp 93-102 (1969)
[E3] Ahmed Elkady, "Identification of Gold in Mixtures by Neutron Capture Gamma Rays", Trans. Am. Nucl. Soc. Vol 12, No. 1, p 42 (1969)
[G1] Margaret B. Glos, "Activation Analysis Ready for Routine Use", Nucleonics 23, No. 6, p 62 (1965)
[G2(a)] R. C. Greenwood and J. Reed, "Scintillation Spectrometer Measurements of Capture Gamma Rays from Natural Elements", Proc. Modern Trends in Activ. Anal., 1961 Int. Conf., College station, Texas, Dec. 1961
[G2(b)] R. C. Greenwood et al.. "Use of Neutron Capture Gamma Rays from A Lunal-Surface Compositional Analysis", Trans. Am. Nucl. Soc. 6, p 179 (1963)
[G3] B. W. Garbrah and J. E. Whitley, "Determination of Boron by Thermal Neutron Capture Gamma-ray Analysis", Anal. Chem. 39, No. 3, p 345 (March 1967)
[G4] Groshev et al., "De-Excitation of Ni Nuclei after Thermal Neutron Capture", Fiz. 3, pp 444-8 (March 1966)
B. C. Greenwood, "Elemental Analysis using the Neutron Capture Gamma-Ray Technique with a Ge(Ii) Detector", Trans. Am. Nucl. Soc. 10, 1, p28 (1967)
H. D. Graber and D. D. Watson, "A Method for the Anam lysis of Pulse Height Spectra", Nucl. Instr. and Meth. 43, pp 355-360 (1966)
[G7] B. W. Garbrah and J. E. Whitley, "Assessment of Neutron Capture Gamma-Ray Analysis", Int. J. of Applied Radiation and Isotopes, Vol 19, pp 605-614 (1968)
R. B. Galloway, "Criteria for Evaluating Background Suppression Techniques in Nuclear Spectroscopy based on Consideration of Statistical Accuracy", Nucl. Inst. and Meth. 55, pp 29-33 (1967)
T. Harper, T. Inouye and N. C. Rasmussen, "GAMANL, A Computer Program Applying Fourier Transforms to the Analysis of Gamma Spectral Data", MITNE-97, Aug. 1968
J. N. Hanson, "Investigation of High Resolution Gammay Ray Spectrometer", SM Thesis, Massachusetts Inst. of Tech. Dept of Nucl. Eng., Aug. 1965
[H3] R. G. Helmer, R. I. Heath, M. Putnam and D. H. Gipson, "Photopeak Analysis Program for Photon Energy and

Intensity Determinations", Nucl. Instr. and Meth. 57, pp 46-57 (1967)
[H4] B. Hammermesh and V. Hummel, Phys. Rev. 88, p 916 (1952)
[H5] H. C. Van de Hulst and J. J. M. Reesinck, "Line Breadths and Voigt Profiles", Astrophysics J. I06, pp 121-127 (1947)
[H6] Bertram Hui, S.M. Thesis, MIT, Dept of Nucl. Eng., September 1969
[H7] J. N. Hamawi and N. C. Rasmussen, " Neutron-Capture Gamma Rays of 75 Elements Listed in Terms of Increasing Gamma Ray Energy", MITNE-105, 1969 (prepublication)
[H8] T. L. Harper, "Determination of Thermal Neutron Capture Ggmma Yields", Ph.D. Thesis, MIT Dept. of Nucl. Eng., July 1969 (MITNE-104)
[H9] Y. Hukai, Ph.D. Thesis, MIT Dept. of Nucl. Eng., in progress.
[II] T. L. Isenhour and G. H. Morrison, "Modulation Technique for Neutron Capture Gemma Ray Measurements in Activation Analysis", Anal. Chem 38, 2. pp 162-167 (Feb 1966)
[I2(a)] T. Inouye and N. C. Rasmussen, "A Computer Method for the Analysis of Complex Gamma-Ray Spectra", Trans. Am. Nucl. Soc. 10, 1, p 38 (1967)
[I2(b)] T. Inouye, T. Harper and N. C. Rasmussen, "Application of Fourier Transforms to the Analysis of Spectral Data", Nucl. Instr. and Meth. 67, pp 125-132 (1969)
[II] J. M. A. Leniham, "Trace Elements in Biomedical Research", Nucleonics 23, 1, p 50 (Jan 1965)
[L2] H. R. Lukens, "Elemental Survey Analysis by Neutron Activation: Simplified Estimation of Upper Iimits", Anal. Chim. Acta, pp 9-16́(1966)
[L3] W. G. Lussie and J.L. Brownlee, Jr., "The Measurement and Utilization of Neutron-Capture Gamma Radiation", Proc. Modern Trends in Act. Anal., Int. Conf. College Station, Texas, pp 194-199 (1965)
[I4] A. Liuzzi and B. S. Pasternack, "Analysis of MultiChannel Gamma Ray Spectrometer Data with Adjustement for Gain and Baseline Discrepancies, Nucl. Instr. and Meth. 57, pp 229-236 (1967)
[L5] S.M. Lombard, T. L. Isenhour, P. H. Heintz, G. L. Woodruff and W. E. Wilson, "Neutron-Capture GammaRay Activation Analysis. Design of Apparatus for Trace Analysis", Int. J. Applied Radiation and Isotopes 19, pp 15-22 (1968)
[M1] H. L. Malm, A. J. Tavendale and I. L. Fowler, Can. J. Physics 43, p7 (1965)
[M2] T. C. Martin, S. C. Mathur and I. L. Morgan, "The application of Nuclear Techniques in Coal Analysis", Int. J. Applied Rad. and Isot. 15, 6, pp 331-338 (1964)
[M3] J. W. Mandler, "Utilization of High-Yield Americium-Beryllium-Curium Neutron Source for in Situ Elemental Analysis", Trans. Am. Nucl. Soc. 10, $1, \mathrm{p} 30$ (1967)
[M4] M. A. Mariscotti, "A Method for Automatic Identification of Peaks in the Presence of Background and its Application to Spectrum Analysis", Nucl. Instr. and Meth. 50, pp 309-320 (1967)
[M5] H. T. Motz and E. Jurney, Argonne Nat. Lab, Report WASH-1044(1963)40
[OI(a)] V. J. Orphan and N. C. Rasmussen, "A Pair Spectrometer Using a Large Coaxial Lithium-Drifted Germanium Detector", Trans. Nucl. Science, IEEE, Vol. NS-I4, No. I, (Feb. 1967)
[OI(b)] V. J. Orphan and N. C. Rasmussen, "Study of Thermal Neutron Capture Gamma Rays Using a Lithium Drifted Germanium Spectrometer", MITNE-80, Jan 1967
[02] V. J. Orphan and N. C. Rasmussen, "A Ge(Li) Spectrometer for Studying Neutron Capture Gamma Rays", Nucl. Instr. and Meth. 48, pp232-295 (1967)
[P1] J. Pauly, G. Guzzi, F. Girardi and A. Borella, "Application of Gamma Ray Spectrometry and Computer Techniques to the Determination of the Minimum Detectable Content of Trace Elements in Neutron Activated Materials, Nucl. Instr. and Meth. 42, ppl5-25 (1966)
[P2] S. G. Pussin, J. A. Harris and J. M Hollander, "Ap= plication of Lithium-drifted Germanium Gamma-Ray Detectors to Neutron Activation Analysis", Anal. Chem. 37, No. 9, pll27 (1965)
[RI] W. C. Reinig, "Advantages and Applications of Cf^{252} as a Neutron Source", Nucl. Applications 5, No. 1, p 24 (1968)
[R2] N. C. Rasmussen, Y. Hukai, T. Inouye and V. J. Orphan "Thermal Neutron Capture Gamma Ray Spectra of the Elements", MITNE-85, Jan 1969 (AFCRI-69-0071)
[R3] N. C. Rasmussen and Y. Hukai, "The Prompt Activation Analysis of Coal Using Neutron Copture Gamma Rays", Trans. Am. Nucl. Soc. 10, 1, p 29 (1967)
[S1] 0. I. Sumbaev et al., "Investigation of the Excited States of $\mathrm{Rh}-104,104$ by Observation of Gamma Rays from the (n, γ) Reaction", Izv. Akad. Nauk, SSSR, Ser. Fiz. 29, p 739-59 (1963)
[S2] G. L. Schroeder, H. W. Kraner and R. D. Evans, "Li-thium-drifted Germanium Detectors: Applications to Neutron Activation Analysis", Science 151, pp 815817 (1966)
[S3(a)] R. F. Stewart, "Nuclear Measurement of Carbon in Bulk Materials", Proc. Seventh Nat. ISA Conf. on Instrumentation for the Iron and Steel Industry, March 15-16, 1967, No. 2-1, and Trans. ISA vol. 6, No. 3, Sept 1967, pp 200-208
[S3(b)] R. F. Stewart and W. L. Farrior, Jr., "Nuclear Measurement of Carbon in Fly Ash", Proc. Fly Ash Utilization Symposium. BuMines Inf. Circ. 8348, p 262 (1967)
[S4] David P.Simonson, "Prompt Gamma Ray Spectra produced by Neutrons from a Pu-Be Source", SM Thesis, MIT Dept. of Nucl. Eng., August 1968
[TI] A. J. Tavendale and G. T. Ewan, Nuclear Instr. and Meth. 25, p 185 (1963)
[T2] J. I. Trombka, R. L. Schmadebeck, "A Method for the Analysis of Pulse-Height Spectra Containing Gain Shift and Zero-Drift Compensation", Trans. Am. Nucl. Soc. 10, 1, p 33 (1967) (also in Nucl. Instr. and Meths. 62, pp253-261, 1968)
[T3] G. E. Thomas, D. E. Blatchley and L. M. Bollinger, "High-Intensity Neutron Capture Gamma-Ray Facility", Nucl. Instr. and Meth. 56, pp325-337 (1967)
[VI] P. Van Assche et al., "Low-Energy Level Scheme of Sc-46 Deduced from the $45 \mathrm{Sc}(\mathrm{n}, \mathrm{y}) 46 \mathrm{Sc}$ Capture Gamma Rays", Nucl. Physics 84, pp 661-672 (1966)
[WI] R. E. Wainerdi, "Activation Analysis Finds its Place in the Life Sciences", Nucleonics 22, No.2, p67 (1964)
[W2] O. A. Wasson, K. J. Wetzel and C.K. Bockelman, "Gamma Rays from Thermal Neutron Capture in Cl, V, Mn and Co", Physical Rev. 136, No. 6B, p BI 640 (1964)
[W3] K. J. Wetzel, "Recoil Broadening of Secondary Transitions in Neutron-Capture Gamma-Ray Cascades", Argonne National Laboratory, prepublication.
[W4] John R. Wolberg, "Prediction Analysis", Book, D. Van Nostrand Co. Inc., Princeton, 1967
[Y] H. P. Yule, "Mathematical Smoothing of Gamma Ray Spectra", Nucl. Inst. and Methods 54, pp61-65 (1967)

