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ABSTRACT

A moments method has been developed for the analysis of flux
distributions in subcritical neutron-multiplying assemblies. The
method determines values of the asymptotic axial and radial buckling,
and of the extrapolated height and radius, from foil activation data,
in terms of flux moments defined in the usual sense. Analytic
expressions are derived for the axial and radial buckling and extrapo-
lated dimensions in terms of the flux moments. These expressions
have clear physical meaning and are suitable for the interpretation of
conventional buckling measurements. The method treats the moment
index as a variable parameter and allows freedom in the choice of the
locations of the first and last data points used in the analysis. These
degrees of freedom make it possible to reduce the effects of source
neutrons, flux transients, and higher harmonics. As a result, the
moments method can be applied successfully to very small lattices
("miniature lattices") as well as to large exponential assemblies.

The moments method has been tested, in comparison with the
conventional least-squares curve-fitting method, by applying the two
methods to the analysis of measurements made in several uranium-
heavy water, and uranium oxide-heavy water lattices investigated at
the M. I. T. Lattice Project. In the case of large exponential assem-
blies, the moments method yielded more consistent results than the
curve-fitting method. In the case of miniature lattices, the moments
method made it possible for the first time to determine values of axial
and radial buckling and extrapolated dimensions.
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Chapter I

INTRODUCTION

1.1 THE M.I.T. HEAVY WATER LATTICE PROJECT

The Nuclear Engineering Department at M. I. T., under the

sponsorship of the United States Atomic Energy Commission, has

undertaken a research program, the Heavy Water Lattice Project.

The primary purpose of this project is to carry out experimental

and theoretical studies of the physics of D 20-moderated lattices of

slightly enriched uranium rods.

The results of the program have been summarized in annual

progress reports (H1, H2, H3, H4, H5, H6) and in individual reports.

1.2 THE PROBLEMS IN THE ANALYSIS OF BUCKLING

MEASUREMENTS BY THE CONVENTIONAL CURVE-

FITTING METHOD

Two types of assemblies (or "experiments") have been used in

the experimental determination of the material buckling - one of the

reactor parameters of prime interest to the reactor designer: the

critical experiment (G1, K1) and the exponential experiment (P1, P3,

K9). The latter, because of its economy and safety, has been used

extensively in the investigation of the physics of new reactor types,

and has been especially valuable in the development of thermal

power reactors. Three different methods have been used to obtain

values of the material buckling from exponential experiments: the

flux shape method (K 1), the variable loading method (H7, K1) and the
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substitution method (P4, P7, L3); of these, the flux shape method has

been used most often. When the assembly is cylindrical, as is usually

the case when the moderator is a liquid, this method requires the

accurate determination of the axial and radial bucklings. (In the

exponential experiments at the M. I. T. Lattice Project, cylindrical

tanks three and four feet in diameter, respectively, have been used.)

The flux shape method involves the analysis of axial and radial

foil activation data by means of a curve-fitting method based on the

least-squares principle (R1, P1). The curve-fitting method has worked

reasonably well in large exponential assemblies owing to the availa-

bility of a sufficiently large asymptotic region where the fundamental

mode of the flux distribution predominates. Some questions arise,

however, in connection with the determination of the axial buckling

and the extrapolated height (P1). To see how this comes about, we

recall that the axial flux distribution is given, within the framework

of asymptotic neutron transport theory, by the expression (K4)

O(Z) = A sinh 7(EH - Z) , (1.1)

2A
where A is a normalization constant, 2 is the axial buckling, and H

is the extrapolated height. The essence of the curve-fitting method is

to fit the experimental axial activation data to the theoretical axial

flux distribution given by Eq. (1.1). The fitting process is ac-

complished by linearizing the axial flux distribution with respect to

the three independent parameters A, T, and H through a Taylor

series expansion:

k(z,A,y,H) :: 4(z,A ,y9,TIH) + (A -A 0 ) aA 4(z,A,-y,H)1
0 0

+(T-7Y) 4(,A7H H H) (z,A,,H , (1.2)
aH
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where A , 7, and H are the initially guessed values of the three

parameters with which the iteration is begun. The corrected values

of A, 7, and H are determined by minimizing the flux residual with

respect to A, y, and H. The flux residual is defined as

N 2
)2= Zwi4kx- 4 h , (1.3)
i=1

where the 4exp are the experimental activation data, the 4 h are the

corresponding theoretical flux values given by Eq. (1.2), and the w.

are a set of appropriate weighting factors usually chosen to be the

inverse square fluxes. The minimization is done by setting

8(42 22
_a 2 7 ~ a(AO)2 = 0. (1.4)

3H

These conditions give rise to the defining equations for the new values

of A, T, and H which must be solved simultaneously. Since the method

described depends on the use of only the first order terms of the

Taylor series, it is necessary to repeat the calculation with the new

values of A, 7Y, and H substituted for the intial values of A0. 7Y, and

H 0 . The procedure is repeated until the following convergence cri-

teria are satisfied:

A . ' < El , ' 1 < E , - < E (1.5)A .y.rj
j-1 j- 1  H3

j-1

where e, e 2 and E3 are some small arbitrarily chosen numbers.

This formal least-squares technique is widely used to analyze

experimental data. It is indeed a powerful method but only for

extracting those parameters that are linear, such as the normalization
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constant A in the present case. This is due to the fact that the least-

squares technique is a linearized process; the linearization is neces-

sary because otherwise the defining equations for the parameters of

interest can be solved in practice only with great difficulty. This

limitation has caused trouble in the determination of material buck-

ling: experience has shown that it is difficult to determine the

extrapolated height H consistently (R1, P1). A similar difficulty

arises in curve-fitting the experimental radial flux data when there

is a reflector effect (S2).

The usual way of circumventing the difficulty with the extrapo-

lated height H has been to assume a value for it and to do the least-

squares fitting with regard to the two parameters, A and 7' only.

Since the value of the axial buckling obtained in this way increases

with the assumed value of H, the following procedure has been

adopted to determine the best values of T and H (P1):

(i) First, calculate the axial buckling 72 from a series of

assumed H values with the use of a set of experimental data points,

2and then plot the curve of y vs. H.

(ii) Second, repeat step (i) for modified sets of data points

obtained by dropping points from the ends of the first set. Plot the

results on the same figure.

(iii) The best values of 72 and H are then taken as the inter-

section of the curves as shown in Figure 1.1.

In practice, a unique intersection seldom occurs. In most

2
cases the three -y vs. H curves form a triangle as indicated in

Figure 1.2. In this case the geometric center of the triangle is as-

2sumed to give the best values of y and H. Occasionally, the three
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curves never cross each other, as in Figure 1.3; the experimental

data are then discarded. For the reasons outlined, the consistency in

the determination of axial buckling and extrapolated height is not as

good as is desired. Inconsistencies are indicated, as will be shown in

Chapter III, by the relatively large values of the standard deviations

2
of 7Y and H. It seems likely that the method of data analysis is

responsible (at least in part) for these inconsistencies, and a new

method of data analysis will be applied and examined in this report.

The experimental determination of the extrapolation distance

has been a matter of controversy for some time. In addition to the

difficulty of providing proper conditions for measuring the extrapo-

lation distance, the lack of a consistent scheme for data reduction

has also contributed to the inconsistency of the results that have been

obtained. The importance of experiments with pulsed neutron sources

in reactor physics emphasizes the need for an improved method for

obtaining the extrapolation distance or extrapolated size. In these

experiments, it is essential to understand just what is meant by

"geometric buckling" in an energy-dependent system and the geo-

metric buckling is highly sensitive to the extrapolation distance.

The basic problems involved in the conventional measurements

of the material buckling arise from the presence of a source neutron

contribution and from possible transport and energy effects on the

axial and radial flux distributions. All of these effects can lead to

systematic errors in the measured values of the material buckling.

The usual way of avoiding the difficulties is to use a sufficiently

large assembly so that there will be a region within it where the
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perturbing effects are negligible. But it is sometimes desirable, for

convenience and economy, to use small assemblies in which these

effects may not be negligible. For example, the use of miniature

lattices for measurements of reactor physics parameters instead of

large exponential assemblies is attractive, if feasible (K10,W5).

Peak (P2) and Sefchovich (Sl) have demonstrated the feasibility of

miniature lattices for the measurement of the following parameters:

the ratio p 2 8 of epicadmium to subcadmium capture rates in U-238,

the ratio 625 of epicadmium to subcadmium fission rates in U-235,

the ratio 628 of fast fissions in U-238 to the total number of fissions

in U-235, and the ratio C" of the total capture rate in U-238 to the

total fission rate in U-235. However, it has so far not been possible

to determine the material buckling in the miniature lattices because

of the transport and energy effects and the relatively large contri-

bution of the source neutrons. This shortcoming could be a serious

obstacle in the way of the increased use of miniature lattices.

One of the purposes of the research to be described in this

report has been to try to derive values of the material buckling from

activation data obtained in miniature lattices. Preliminary work

indicated that the failure to obtain any consistent values of the axial

buckling and extrapolated height in a small assembly such as a mini-

ature lattice might be due to the inadequacy of the curve-fitting

method. The reason for the inadequacy is not difficult to understand:

it is the inherent numerical difficulty in convergence associated with

the least-squares technique when three or more independent parame-

ters have to be fitted by the linearized least-squares process (S2).
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In addition, when the assembly under study is small, the neutron flux

cannot be described by means of a simple two-parameter function.

Hence, the development of a theoretical method for buckling analysis

seems necessary: first, to obtain values of the material buckling of

miniature lattices; second, to improve the consistency (i.e., standard

deviation) in the buckling values and extrapolated sizes.

1.3 OBJECTIVES OF THE PRESENT WORK

The main objective of the present work is, then, to develop a

new scheme for extracting buckling values and the extrapolated sizes

from measured activity distributions, a scheme that might be applied

to small assemblies as well as to large exponential assemblies.

The second objective is to study transport and energy effects on

the determination of buckling and to seek criteria for the existence

and location of an asymptotic region in an assembly.

The final objective is to investigate the possibility of the use of

the concept of buckling in small assemblies, and hence to determine if

miniature lattices can be used for the measurement of the material

buckling.

1.4 CONTENTS OF THE REPORT

Chapter II presents arguments that justify the measurement of

the material buckling in small assemblies. Chapter III describes the

new data reduction scheme, the Moments Method, for the analysis of

the axial buckling and extrapolated height. The corresponding

moments analysis for the radial buckling and the extrapolated radius
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is given in Chapter IV. Chapter V treats the application of the

moments method to miniature lattices. Chapter VI discusses the

transport effect on the determination of the buckling. Conclusions

and recommendations for future work are given in Chapter VII.

The appendices consist, in order, of a description of the computer

codes used, Simpson's rule for unequal intervals, the application of

the moments method to a parallelepiped assembly, a finite difference

method for the calculation of geometric bucklings, an error analysis

for the case with reflector effect, a least-squares technique for the

estimate of the coefficient corresponding to the reflector effect, a

measure of the fit of theoretical curves predicted by the moments

method to experimental data points, and bibliography.
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Chapter II

THE JUSTIFICATION OF BUCKLING

MEASUREMENTS IN MINIATURE LATTICES

Attempts to measure the material buckling in small subcritical

assemblies such as miniature lattices have so far not been successful

(P2, S1). In this chapter, the theory of small assemblies will be

investigated further to see if conditions exist under which the material

buckling can be derived from flux measurements in such assemblies.

2.1 FUNDAMENTAL ASSUMPTIONS OF THE CONVENTIONAL

BUCKLING MEASUREMENT

The concept of buckling is well defined within the region of

validity of the First and Second Fundamental Theorems of Homo-

geneous Reactor Theory expressed by Weinberg and Wigner (W1),

or of the asymptotic reactor theory developed by Ferziger and

Zweifel (F1). These treatments supply a theoretical basis for buck-

ling measurements and set conditions for the validity of such

measurements.

The basic assumptions that must be made for the measurement

of material buckling by means of subcritical assemblies have been

discussed by Palmedo (P1) and others (K3, K1). It will suffice here to

review the conditions imposed on the conventional buckling experiment:

(a) The transport effect on buckling should not be so severe as

to break dowrn the diffusion approximation - the asymptotic condition.
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(b) The medium of interest is isotropic and homogeneous so

that the nuclear parameters - cross sections and diffusion coef-

ficients - are independent of position. This condition is listed for

the sake of mathematical rigor. In practice, it is not necessary:

even for a heterogeneous assembly, we can map the flux at points

of symmetry in the moderator region and can describe the envelope

of the flux shape by means of the fundamental mode solution of the

neutron diffusion equation. Thus, as far as the measurement of

material buckling by means of the flux shape method is concerned,

the assumption is satisfied to a good approximation in a hetero-

geneous system.

Under the two conditions stated above, the behavior of a

single group of neutrons far from an external source is governed

by the Helmholtz equation

2 +- 2+
V D( r) + B mD( r) = 0, (2.1)m

2where Bm is the material buckling and

(D r) =r(, Z, 0)

for a cylindrical system. We shall use cylindrical coordinates

throughout the analysis because the miniature lattice experiments

were made in a cylindrical tank. There are an infinite number of

different solutions of an equation of the type of Eq. (2.1). However,

in a limited set of coordinate systems, called separable coordinate

systems for the equation in question, one can find a set of 's with

nodal surfaces which all coincide with the three families of coordi-

nate surfaces. We may then write
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(r) = O(r) 4(z) (O) . (2.2)

The conditions for separable coordinate systems are discussed by

Morse and Feshbach (M2). The separability of Eq. (2.2) has been

verified experimentally, even in miniature lattices (Si). An immedi-

ate consequence of Eq. (2.2) is the fact that the material buckling can

be expressed in terms of the separation constants corresponding to

the fundamental modes; namely,

2 2 2 2
B2 a2 y + B2 , (2.3)

m

where a2 _ d24(r) dr2 = radial buckling, (2.4)

2 _ d 2(z)/dz2 = axial buckling, (2.5)
O(z)

2 2 2
02 d E(0)/d0

B= - 8= azimuthal buckling. (2.6)

The conventional way of measuring the material buckling is

based on the expression (2.3) with the additional assumption that the

2
neutron flux is azimuthally symmetric so that B vanishes. This

assumption is, of course, made merely for convenience; one could

actually determine B by measuring many radial traverses. It

2
usually suffices to measure B in a typical lattice experiment to seee

2
how much it may contribute to the material buckling Bin; its contri-

bution is usually negligible.

(c) The energy transients are insignificant, so that the neutron

flux is separable in space and energy in a sufficiently large region

inside the system of interest - spectral equilibrium.
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(d) The contribution of the external neutron source must be

nullified: either experimentally, so that the neutron flux becomes

characteristic of the lattice under investigation; or it must be sub-

tracted, in accord with an appropriate theoretical analysis.

2.2 JUSTIFICATION OF THE DIFFUSION APPROXIMATION

In6niG (I1), Dresner (D1), and Yip and Zweifel (Y1) have investi-

gated the validity of the Second Fundamental Theorem of Reactor

Theory. Their results indicate that asymptotic reactor theory is

applicable, in the one-speed case, even to systems whose linear

dimensions are of the order of a neutron mean free path. Generally

speaking, the use of asymptotic reactor theory is satisfactory so long

as the asymptotic flux from an external source is a reasonable

approximation to the actual flux. This condition should be achieved,

in principle, for systems larger than a few mean free paths, and

asymptotic reactor theory should therefore be applicable even to

relatively small systems (Y1, Fl).

The assembly for miniature lattice experiments at the M. I. T.

Lattice Project is a thin-walled aluminum tank in the shape of a

right cylinder, 21 inches high and 20 inches in diameter, as shown in

Figure 2.1. Though small in terms of neutron migration length in

heavy water, it is still enough to justify the use of asymptotic reactor

theory according to the results obtained by Yip and others (Y1, I1, D1).

In particular, we shall investigate the gross leakage of neutrons

in the miniature lattices, since neutron leakage is of decisive

importance to small systems in general. We shall establish the
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relationship between the diffusion-theory leakage cross section and

that of asymptotic transport theory. The leakage cross section in

diffusion theory is given by

22
ED IF = D 2 t r ( 2 .7)

where B2 is the geometric buckling and Z tr is the transport cross

section. In asymptotic transport theory, the leakage cross section

is (01)

TR
L z tr

- 1i.

tan 1

ztr

(2.8)

)
We seek the condition under which Eq. (2.8) reduces to Eq. (2.7):

we use the formula

2
tan- x 1 3 + x5 1 7

ta x=x -- _x +-x -- Fx + <.1 . (2.9)

Suppose that B/7tr is sufficiently small so that

tan- 1( )
tr

B

z tr
- B 2

3(tr)
1

Then we may write

ETR
L tr

tr

1

1( B 2
1~ 3\ tr)

L i
+ -11 DIF

(2.10)

In the case of the miniature lattices investigated at the M. I. T. Lattice

Project,

-1

-1
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B z 0.08 cm- , tr 0.40 cm

so that

0.20, and ,tr :2 0.04 1

The condition (2.10) holds, and the diffusion approximation is justified

for the leakage cross section.

A sensitive parameter for testing the existence of an asymptotic

region is the geometric buckling defined in terms of the parameters

a2 and y2 of Eqs. (2.4) and (2.5). The geometric buckling is, in

general, space-dependent but becomes independent of position in an

asymptotic region where only the fundamental flux mode persists. To

show this, let us consider a cylindrical system where the fundamental

mode of the radial flux distribution is given by CJ 0 (ar) and that of the

axial flux distribution is given by A sinh y(E-z). It can be readily

verified by inserting these functions into Eqs. (2.4) and (2.5) that the

radial and axial geometric bucklings do indeed become a 2 and 72

respectively, which are certainly independent of position. However,

in the neighborhood of boundaries, the neutron flux is contaminated

by spatial and/or energy transients, and the geometric buckling varies

with position.

A one-group P 3 calculation of the axial geometric buckling of

the miniature lattice ML3 has been made to examine the transport

effect on buckling (see Chapter VI for details). The result is shown

in Figure 2.2. It is evident that there is indeed an asymptotic region

of about 15 cm where the axial buckling is very nearly constant.

Furthermore, the moments method, which will be described in
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Chapter III, has been used to obtain the axial buckling as a function of

the distance from the source to the first data point (of the same mini-

ature lattice ML3) from the experimental activation data. The result

plotted in Figure 2.3 indicates that the axial buckling does level off in

this lattice, starting at about 13 cm from the source. Figure 2.3 also

shows that for each miniature lattice there is some region in which the

axial buckling is constant or nearly constant.

2.3 JUSTIFICATION OF SPECTRAL EQUILIBRIUM

By definition, the neutron energy spectrum reaches its equi-

librium state if and only if the neutron flux becomes separable in

space and energy. This is, in fact, the essence of the First Funda-

mental Theorem of Reactor Theory. The condition is exactly true in

a homogeneous infinite medium, but it could be met in a bare uniform

reactor over a certain region far from boundaries (W1). The question

of separability requires investigation, however, in finite hetero-

geneous systems. Experiments have been performed by In6nG (12) at

Oak Ridge to test the space-energy separability. He measured the

subcadmium and epicadmium fluxes and showed that only if data near

the boundary (within about 3 to 3.5 inches) of a large critical aqueous

U235 solution were rejected, is the extrapolation distance independent

of energy. The commonly used experimental criterion for space-

energy separability is the constancy of the cadmium ratio as a function

of position (P1, H8, H9). But this criterion may not really provide a

valid condition for the separability of the flux in space and energy; it

will be discussed in section 2.4.
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We now try to estimate the distance in a finite system from

boundaries at which spectral equilibrium may be attained. We start

with the rigorous neutron transport equation under the assumption

that all neutron cross sections are functions of neutron energy only:

E, ) + Et(E) (r,E, )

00

f0

+ f d 'Q' f
-+ 00

dE' M (E) f (E' -+1- E ; ' - 0) (r, E', ')

dE' vZ (E') X(E'- E ;' -+) Er E )

(2.11)

where

S(r, E.,) is the external neutron source,

f(E' -+ E ; ' -+0) is the probability that a neutron with initial

energy E' and direction o' emerges from a scattering

collision with an energy E in dE and a direction 0 in do,

X(E' -- E; O' -- 72) is the probability that a neutron with energy

E in dE and direction 0 in do is emitted in a fission

process induced by a neutron with initial energy E' and

direction 0'.

To cast Eq. (2.11) into a simpler form, we define the collision kernel

zEc(E) g(E'-E; 01'-- -)

(2.12)

by combining the scattering and fission processes. Since the external

source is located at z=O, Eq. (2.11) reduces to

d-'
f -O f

= 3, (E) f (E'-E ; o' -+,- ) + vF, (E) X(E' -E ; 0'-+ )
s
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V 9_ (rE, ) + Zt(E) (r,E, Q)

00

= fn d2'
f0

dE' Z c(E') g(E E ; O' -+ 0) (r, E', o')

for z > 0. (2.13)

In the case of a finite cylinder (as in the miniature lattice experi-

ments) with symmetry about the axis of the cylinder, the leakage

term can be written (D2)

-0 - -1-. 0 r E=c ( + s i n ( O ' - ) a D(rI E, 2)

(2.14)

where 0' is the azimuthal angle corresponding to the direction Q,'.

Suppose that the neutron flux is separable in the spatial coordi-

nates in the following manner:

@(r, E, ) = 4(z, E, ) 4(r, E, 0) E(0,E, ) (2.15)

Substituting Eqs. (2.14) and (2.15) in Eq. (2.13), and then dividing

throughout the equation by Eq. (2.15), we obtain

0r cos(6'-0)

a4(r,E,2)
ar +

E(r, E,)

' 8(0E, ) 4(z,E, 0)
9,EA2 )+ az +F (E)
E)(0, E,3$) z 4(z, E., ) t

dE' Zc(E') g(EI-E ; 1'+-)k- <(r,E', ' -).
4 (r, E, 0)

E(,E', ')

e(o,E, G2)

for z > 0 .
4(z,E, o)

If we assume that the flux is azimuthally symmetric,

a (0, E, 0) = 0

and (0, E', ')

(8, E, )

00

0Q f

(2.16)

(2.17)

+0 z a (r E., Q),
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Even with the above assumption, Eq. (2.16) is still two-

dimensional, and the mathematical treatment is extremely difficult.

But it is possible to break the problem up into two one-dimensional

problems in the following way. First, arrange the experiment in

such a way that the axial flux distribution is measured along the axis

of the cylinder at or near the center r=0 where asymptotic reactor

theory is valid; then

0(r=0, E', ' 1 . (2.18)
4(r=O, E, 0)

Call the radial leakage

4r (r, E, Q)
zLr(E) 0 r cos (O'-0) - , (2.19)

0(r, E, 0)

which may be calculated eithe'r by means of Eq. (2.8), the asymptotic

transport theory result, or by Eq. (2.7), the diffusion theory result.

With the help of Eqs. (2.17), (2.18), and (2.19), Eq. (2.16) then gives

the neutron balance equation for the axial flux distribution

P a 4(z, E, p) + [E) +EZr(E)] (z., E,y)

1 00
= f dp' f dE' c(E') g(E E ;') 4(z, E', '),

-1 0

for z > 0 , (2.20)

where iz'

Second, to obtain the corresponding equation for the radial flux

distribution, we arrange the foil detectors on the plane z=z 0 where

the axial flux has become asymptotic so that

(z=z 0 , E', ')
o~1. (2.21)

4(z=z, E, )
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We call the axial leakage

-TLz(E) =z + (z, E, ) (2.22)
4(z, E, 0)

The negative sign comes from the fact that an external neutron source

is feeding the system in the axial direction, with the result that we

have a net in-leakage of neutrons as far as the radial flux is concerned.

Thus, Eq. (2.16) leads to the following balance equation for the radial

flux:

Or cos(6'-) 4(r, E, r + (E)- Lz(E) E, r

= f di' f dE' 1 (E') g(E'+-E;2'+4 ) 4(rE', ') . (2.23)
r 0 c r r r

r

We first explore the equilibrium condition in the axial flux

distribution. Define

(E) = Et(E) + ZL (E) ; (2.24)

Equation (2.20) becomes

y 4(z, E, + t (E) (z, E, p)

1 00

= f dp' f dE' E (E') g(E'E ; p'-+-E ) (zE', ')
- 0 c

for z > 0. (2.25)

The external source is located at z=0 and will enter as a

boundary condition. To treat the external source effect properly,

we separate the neutron flux into two parts (D2):

(z, E, p) 4 (z, E, ) + c(z, E, y) ,2 (2.26)
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where uc(z, E, M) represents the uncollided flux, while bC(z, E, y)

denotes the collided flux. The uncollided flux satisfies Eq. (2.25)

exactly without the integral term:

P 4uc(z, E, y) + E4(E) Ouc(z, E, y) = 0az

The solution is

fuc( E, ) =A e (E)z/

(2.27)

(2.28)

The constant A is determined by the boundary condition at z=O,

A = 4uc(0, E, y) = Qoq(E) 6(p-1) . (2.29)

Here we have assumed a unidirectional source with a source spectrum

q(E) because this is very nearly the case for the miniature lattice

experiments. Thus, the uncollided flux is given by

-t 
Z 

(E)z

Yuc (z, E, M) = Q q(E) 6 (y - 1) e t (2.30)

where Q is the source intensity. By substituting Eq. (2.26) in

Eq. (2.25), we obtain the neutron balance equation for the collided

flux

a 4 (z, E, y) + E(E) 4c(z, E, )

1 00

=f d yf
-1 0

00
+Qo f

0

dE' Tc(E') g(E'+E; y'+y) 4c(z, E' y')

(2.31)dE' Zc(E') g(E'+E ; y'I q(E') e

We see that the collided flux satisfies the same neutron transport

equation as does the total flux with an additional distributed source

term due to the uncollided flux.
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*
Suppose that the total cross section Et (E) is a slowly varying

t

function of neutron energy so that the last term in Eq. (2.31) may be

written

Q9 e f dE' c(E') g(E-E ; 1-p) q(E') = Q9 e S(E) , (2.32)
0

where

oo

S(E) f dE' Zc(E') g(E'- E; -E+) q(E') , (2.33)
0

and it is the properly averaged total cross section. Then Eq. (2.31)

becomes

y 4c (z, E, g) + Z (E) 4 c(z, E, g)a z

-1 00

(2.34)

It is evident from this equation that the neutron flux characteristic of

the assembly would be the collided flux, which must be separable in

space and energy to achieve spectral equilibrium.

From the study of the Milne problem by means of asymptotic

transport theory (K4), it has been found that the neutron flux far from

the boundary has an asymptotic hyperbolic sine shape, and that this

flux extrapolates to zero a short distance from the physical boundary

of the system. So the desired asymptotic solution of Eq. (2.34) to

establish spectral equilibrium is given by

4 (z, E,g) = sinh 7(H-z) 4$(Eg) , (2.35)asy

where L(E, p) is the angular neutron spectrum, 7 2 is the axial buckling
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('~ being the relaxation length), and H is the extrapolated height.

Insertion of Eq. (2.35) into Eq. (2.34) yields

1 '- tanh Y(H-z) 1 o
-(~y tanh - diy' f dE' Ec(E') g(E'-E ; y'+p) $(E',y')

* 1 0 (

tanh y(H-z) - 1

Qo e z

+ "I_ co0s h -(N-z) - S (E) .(2.36)
*E)

t-tanh 7(H-z) - 1

We can infer from Eq. (2.36) some information concerning

spectral equilibrium. First, since the neutron flux must be positive

and nonzero, it is necessary that

Et(E)L M tanh 7y(H -z) - 1 > 0 . (2.37)

Second, for the neutron spectrum to be characteristic of the lattice

under consideration, the source neutron contribution, that is, the

second term of the right-hand side of Eq. (2.36), must vanish:

[C -

Q S(E) '= 0 .(2.38)e 1 r
cosh y(H-z) 0

Strictly speaking, this condition requires an infinitely large distance

z; but we can meet the condition in a practical sense if

-t z
e 0 (2.39)

cosh (H-z)_
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It is also evident from Eq. (2.36) that, regardless of the spectrum of

the neutron source, the neutron spectrum inside the system should be

always nonseparable when the neutron source contribution is signifi-

cant. This is an inherent disadvantage of exponential experiments.

It is therefore necessary to have a system that fulfills the condition

given by Eq. (2.39) if the exponential experiments to be performed in

that system are to be meaningful. Finally, even if we have satisfied

the condition of Eq. (2.39), the neutron spectrum is still not separable

owing to the boundary effect unless we satisfy the condition

tanh y(H-z) = 1 . (2.40)

The fact that the hyperbolic tangent is a well-behaved function and

approaches its asymptotic value of 1 rapidly (A2) assures us that

the last condition can be satisfied, in practice, without difficulty in

the case of relatively large assemblies. (See Figure 2.4.)

The condition of Eq. (2.40) can, however, be very serious for

the miniature lattices. To see this, we note that the condition is

very nearly met if 7(H-z) > 2.0, since

tanh T(N-z) - 1 - 2 e-2 7(-z) = 1.0 - 0.0366,

and the deviation amounts to only about 4%. For the miniature lattices,

- 1 ~.y 0.08 cm , H = 46 cm,

2.0
(H-z) >' O.08 = 25 cm,

or z < (H - 25) = 21 cm.

This is certainly serious when the total axial length available is only

40 cm. In the full-size M. I. T. lattices, the axial buckling is about
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1500 gB, which leads to

(H-z) > 40 cm,

or z < (128-40) = 88 cm.

In this case, there is no problem since the total axial length available

is about 122 cm.

The condition of Eq. (2.40) is, however, unnecessarily stringent

because space-energy separability is also achieved if

*
t (E)

tanh 7y(H-z) 1 (2.41)

when the function tan-h 7(N-z) cancels in Eq. (2.36). The condition of

Eq. (2.41) is better satisfied by a larger assembly whose 7 is smaller,

as it should be. For the miniature lattices,

t, ( E ) 
0 .4

_gt_._ 0.44 5.5 .
m 0.08

If tanh y(H-z) > 0.728,

r E] tanh y(H-z) > 4.0 > 1 .
-7 I -min

The neglect of 1 in the denominator in the first term on the right side

of Eq. (2.36) leads to a deviation of 25%. This is, of course, an over-

estimate because tanh 7(H-z) is already approaching a constant value

around 0.73. In this case, we have

(H-Z) ' 008 = 11.63 cm,

or z < (H - 11.63) = 46 - 11.63 = 34.37 cm

to achieve spectral equilibrium.
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Table 2.1 gives the values of the axial position where the

neutron flux is nearly free of the boundary effect (and spectral

equilibrium should be attained) for the six miniature lattices

investigated at the M. I. T. Lattice Project. It is seen that about

within 4 or 5 cm from the physical boundary the axial flux can

be nonseparable in space and energy.

With Eq. (2.40), the condition (2.37) becomes

Re [7] < [F (E)] m (2.42)

where [Ft (E)]min is the minimum value of the total macroscopic

cross section corresponding to I = 1, and Re denotes the real part

of y which may, in general, be a complex number. The condition of

Eq. (2.42) assures the existence of a physically realizable solution of

Eq. (2.36) and hence of the axial buckling. The condition (2.42) is

satisfied for the miniature lattices, since it ~ 0.44 cm which well

exceeds the value of 7 (see Table 2.1). This result warrants the

existence of the axial buckling. A formal mathematical proof of the

existence of a relaxation length has been given by S. Kaplan (K5). It

seems clear that the basic problem associated with the miniature

lattices is not the question of the existence of the fundamental eigen-

value, but it is rather that of whether the neutron flux has become

separable in space and energy.

We now turn to the condition (2.39). If we assume that the

source neutron contribution is negligible when

-5tz
e t5

cosh > 10 (Case I) , (2.43)



Table 2.1 The axial position measured from the source
the axial flux in space and energy due to the
for the miniature lattices.*

where the nonseparability of
boundary effect is negligible

Lattice Lattice HN (?-z) Axial position near the boundary to
1ator Spciica -1 reach spectral equilibrium z

Designator Specification (cm ) (cm) (cm) (cm)

ML2 1. 143% enriched 0.0765 47.73 12.16 35.571.25" spacing

ML3 1.143% enriched 0.0830 46.41 11.20 35.212.50" spacing

ML4 1.027% enriched 0.0784 48.46 11.87 36.591.25 spacing

ML5 1.027% enriched 0.0885 47.84 10.50 37.342.50" spacing

ML6 1.027% enriched 0.0795 44.98 11.70 33.281.75" spacing

ML7 1.143% enriched 0.0783 44.72 11.88 32.841.75" spacing

All the fuel rods of the miniature lattices have a diameter of 0.25 inch. The physical length is about
40 cm. The values of 'y and 'i" are obtained by the moments method to be described in Chapter III,
and the details of calculation will be given in Chapter V.
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spectral equilibrium will be attained for most miniature lattices at

about 24 cm from the source (z ~ 24 cm). On the other hand, if we

relax the requirement so that

-tz
e

cosh y(H-z)
(2.44)

then z ~ 18 cm to reach spectral equilibrium.

Table 2.2 gives the detailed results for the six miniature

lattices described in Table 2.1.

Table 2.2 The distance from the source at which spectral
equilibrium is attained in the miniature lattices.

Distance from the Source to
Lattice Lattice Y Reach Spectral Equilibrium

Designator Specification (cm)

(cm~ ) Case I Case II

ML2 1.143% enriched 0.0790 23.38 17.191.25" spacing

ML3 1.143% enriched 0.0835 23.10 16.902.50" spacing

ML4 1.027% enriched 0.0784 23.40 17.201.25" spacing

ML5 1.027% enriched 0.0885 22.76 16.422.50" spacing

ML6 1.027% enriched 0.0801 23.52 17.361.75" spacing

ML7 1.143% enriched 0.0785 23.63 17.501.75" spacing

1< 10~4J, (Case II)J,
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The results listed in Table 2.2 are, in fact, highly conservative

because the external source is actually not unidirectional as was

assumed; there is a certain degree of isotropy in the source, and the

real situation should be more favorable than the results indicate.

Furthermore, the requirements expressed by Eqs. (2.43) and (2.44)

may be still unnecessarily stringent in comparison with the criterion

(2.41). To see this, we note that Eq. (2.39) and Eq. (2.40) reduce to

the following forms for large values of the argument y(H-z):

- [2 z+Y(N-z)]0

2 e = 0 (2.45)

and

2 e- 2 7 (H-z) 0. (2.46)

If tz > -(Y -z) , (2.47)

the first criterion, Eq. 12.45), is more conservative than the second,

Eq. (2.46). Equation (2.47) leads to

z > .(2.48)

For the miniature lattices, Tt - 0.44 cm , - 0.08 cm , and

H - 46 cm; thus, z must be greater than 7 cm for the source effect

to be less serious under the first criterion than the boundary effect

would be under the second criterion. To be more specific, let us

require that

2 [S tz+Y(H-z)] -3 .

then [I t z + 7(- z) ] >. 77 ,
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or z >..-- (7.7 - yH) _ 7.7 - 3.68 - 11.17 cm .- 0.36

We might then conclude that if z > 12 cm, the source effect is

probably insignificant, and that if z < 35 cm, the boundary effect

would be tolerable. These results mean that the region of spectral

equilibrium lies approximately in the range

12 cm < z < 35 cm

for the miniature lattices. This conclusion should be accepted with

the proviso that the neutron spectrum is very nearly, but not exactly,

at equilibrium.

It is interesting to see that the above conclusion does roughly

agree with the measured distributions of the cadmium ratio in the

miniature lattices. A typical distribution is shown in Figure 2.5,

taken from the report by Sefchovich et al. (Si).

We can study the equilibrium condition in the radial direction

with the same procedure. We consider the radial equation, Eq. (2.23).

We define, for brevity,

t (E) = t(E) - ELz(E). (2.49)

In addition, cos (0' - 0) = 1 if the flux is azimuthally symmetric, as

assumed. Equation (2.23) then becomes

0 -(r,E, + Z(E) E,
r or r t r

= f dQ' dE' c(E') g(E'+E ; 0 r , E I) . (2.50)
G2 0

r

The asymptotic solution of this equation for spectral equilibrium is

given by
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< as(r, E, 2r) =r o(ar) - $(E, 0r) ,I

where $'(E, 0 r) is the angular neutron spectrum in the radial direction

and a2 is the radial buckling. Substitution of Eq. (2.51) in Eq. (2.50)

yields

1
$P(E, r

K
for

J (ar)

J0(ar)

t (E)
+ r_ ar

d O'ff
0

dE' I c,(E') g(E'E ; 0 - r) r(E', ') (2.52)

Two important conditions must be imposed if Eq. (2.52) is to be physi-

cally meaningful:

(a) Since the neutron flux must be positive and nonzero, we must

have

J1(ar)

Et (E)

al rl

* * 1
+ (E)

+ a r

J1 (ar)

S0 (ar) (2.53)

(b) For the space-energy separability to hold, as assumed, we

must have

J1 (ar)
1 0, or nearly independent of r.

O ar
(2.54)

We see immediately that only at the center, r=0, does the condition

(2.54) hold exactly. A similar conclusion was reached by Hellens

54

(2.51)

or
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(H7, K8) as a result of calculations made in connection with experi-

ments on reflected, water-moderated lattices at Brookhaven. He

calculated the radial distribution of the flux in a multigroup scheme

and found that deviations from asymptotic behavior persisted all the

way to the center. Hence, the best radial position for measuring the

axial flux distribution is the center of the cylinder (r=O). From a

practical standpoint, however, if

J 1 (ar) Et (E)1 (ar) t(2.55)
J(ar) Ir

only slight nonseparability would be expected. It is evident that the

condition (2.55) is better satisfied in a larger assembly with smaller

a than in a smaller assembly.

To estimate how large the radial distance should be to satisfy

the condition (2.55), let us require that

J (ar) <0 Et (E)
1 ar 0. 1 [ , J (Case I) . (2.56)

Consider, for example, the miniature lattice ML3:

T '(Eth) t(Eth) - Dy 2 = 0.4322 cm -1

rt (Eth) -t (E th) 0.4322 = 4.90.

ao ri .min a 008

Thus, J1 (ar) < 0.490
J 0 (ar) 1

whence r < 0.89 z10 cm.
a
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[ The calculation of these nuclear parameters will be described in

section 6.2.3 of Chapter VI; see Table 6.1 for reference.]

For the purpose of comparison with the case of the axial distri-

bution, let us also relax the condition (2.56) in such a way that

r < 0.25 t, (Case II) . (2.57)
J (ar) -aQ r

We then get

r < 1.225 14 cm.

Recall that the radius of the miniature-lattice system is about

25 cm, so that, in a practical sense, only about half of it is in the

equilibrium region. Table 2.3 gives the radial distances of all the

miniature lattices within which the neutron spectrum is practically at

equilibrium. Once again, the estimate agrees approximately with the

radial distribution of the cadmium ratio, as can be seen in Figure 2.6,

again taken from reference (Si).

For comparison, we investigate the corresponding full-size

lattice denoted as 250 (3-foot-diameter tank):

** -1
t (Eth) 0.444 - (0.802)(0.0025) = 0.442 cm ,
t th

t (Eth 0.4420
a 0.050 8.84,

1() < 0.884,
J0 (ar)

whence

r 1.42 1.2 = 28.4 cm.a .0
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Table 2.3. The radial distance within which the neutron spectrum
is at equilibrium for the miniature lattices.

Lattice Lattice ** * Radial Distance
Desigatr S icat E i o a of Spectral

Designator Specification t Equilibrium (cm)

(cm- ) (cm~ ) Case I Case II

ML2 1.143% enriched 0.4329 0.0871 10.22 14.101.25 spacing

ML3 1.143% enriched 0.4322 0.0883 10.10 13.882.50" spacing

ML4 1.027% enriched 0.4318 0.0870 10.23 14.111.25" spacing

ML5 1.027% enriched 0.4315 0.0934 9.42 13.122.50" spacing

ML6 1.027% enriched 0.4254 0.0872 10.20 14.051.75" spacing

ML7 1.143% enriched 0.4264 0.0870 10.21 14.111.75" spacing

The values

where R is

of the a are calculated with the formula

the extrapolated radius.

, a = 2.4048/R,

This result is again in good agreement with the radial distribution of

the cadmium ratio measured by Harrington in the 3-foot tank (H9), as

shown in Figure 2.7. For the 4-foot tank, r 5 38.8 cm.

We conclude that the miniature-lattice system is really small

as far as spectral equilibrium is concerned.
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2.4 A COMMENT ON THE CADMIUM RATIO

It has been customary to use the constancy of the cadmium

ratio as a criterion for the existence of an asymptotic region in an

assembly in which reactor physics experiments are to be carried

out. It is open to question if this practical criterion suffices to

ensure the existence of an asymptotic region within the assembly.

In this section we shall try first to answer this basic question

from a mathematical point of view and then to discuss it on physical

grounds. We shall also suggest another criterion. We consider the

neutron flux as a function of space, energy, and direction

4 = ) .

The neutron flux expressed in this way may be regarded as a vector.

We separate the flux into two parts, the thermal and epithermal

fluxes:

tot (r, E, 1) = 4th(rE, ) + 40epi(r, E, ) . (2.58)

Since what we measure by the activation technique is an integral

quantity with respect to energy and direction, we integrate Eq. 2.58)

with respect to E and 0:

dJ f dE tot(r.,E, ) =f d f t dE 4th(r, E, i)
47r 0 4ir 0

+ f d2 -' dE 4 (r, EQ) . (2.59)
47r E epith

By definition,

f 00 d E f d 0 (r., E,T) , (2.60)
0 47r
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where i may denote total, thermal, or epithermal, respectively.

Thus,

(2.61)
'(tot() ~ th(r) + ( epi )

The cadmium ratio is defined as

(2.62)R d-Itot~r - th( rR = = + 1 .
cd -

epi epi

The constancy of the cadmium ratio is equivalent to the constancy of

the ratio

p(r)Iepi 'r

-Q*fE th +-- -0
fd dE 4th(r, E, 0)

47r 00 .1. E, P.

drdE (r, E, )
f4 T Eth p

(2.63)

Suppose that the neutron flux is separable in space and energy

so that we may write

(2.64)

Then we have

R =d -tot
Rcd

rdQ j dE 5Ptot (,0
47r 00

fd4 df dE L (E,0 )
th

(2.65)

(2.66)= tot

epi

where C is the ratio of the integrals and is a constant.

Equations (2.62) and (2.66) imply that:

(i) If the neutron flux is separable in space and energy, the

constancy of the Cd ratio requires that the spatial parts of the

4 (r, E,1 0)= ) -+(E, 0) .
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thermal and epithermal neutron fluxes be of the same shape, so that

Ptot r
= constant, independent of r . (2.67)

Pepi(r)

But Eq. (2.66) shows that even if the cadmium ratio is not independent

of the position r, the neutron flux still can be separable in space and

energy.

(ii) On the other hand, if the neutron flux is not separable in

space and energy, the cadmium ratio may be still independent of

position, provided that the scalar thermal and epithermal fluxes defined

in Eq. (2.60) have the same shape, that is,

Dt ot r
= constant, independent of r . (2.68)

e (r)4epi r

It is evident, therefore, that the use of the constancy of the

cadmium ratio as a criterion for the existence of an asymptotic region

is questionable. The cadmium ratio is certainly not a sensitive

parameter, for it is just a ratio of two integral quantities which do

not reveal any differential structure of the neutron flux. A certain

guarantee of spectral equilibrium is that the neutron spectrum be

independent of position. Of course, this is extremely difficult to

determine experimentally, and most workers use the invariance of

the cadmium ratio as a rough test of spectral equilibrium. It would

be helpful to have a more precise criterion.

We see from the discussion in section 2.1 that the geometric

bucklings defined by Eqs. (2.4) and (2.5) are spatially dependent if

spatial and/or energy transients are present, but become independent
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of position when only the fundamental mode of the neutron flux per-

sists. Thus, a sensitive parameter for testing the space-energy

separability would be the spatially-dependent geometric buckling.

To illustrate, suppose the neutron flux is not separable in space

and energy but that it can be represented by a linear combination

of infinitely many separable terms:

00

E)= Z O(r) +i(E) . (2.69)
i=O

2+Now define the geometric buckling, B (r, E), as

22 -b-,

B (r, E) = 2b(r, E) (2.70)
i(r, E)

Substitution of Eq. (2.69) in Eq. (2.70) yields

00

(E) 4 I (r) V
2 i=0 4 (r)

B2(r, E) 00

I= +p (E) 4(r)

i=0
00 ,(2.71)

E (E)4()
i=0

where

22

B2(r) = (2.72)

If energy transients are negligible so that

E) = $9(E) 49(r) ,7
0 0 (2.73)
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2 +-o 2 -othen B (r, E) = B (r) , independent of energy.
g o

This geometric buckling must also be independent of r when all the

spatial transients except the fundamental contained in 4 (r) die out.

This leads to the conclusion that the geometric buckling must be

independent of neutron energy and position in an asymptotic region.

To correlate the theory and experiment more closely, consider

the treatment of nonseparability in a two-group picture:

< E) 0 (E) 40(r) + g (E) (r) , (2.74)

where the subscript o denotes the subcadmium group and the sub-

script 1 represents the epicadmium group. We see immediately that

the neutron flux is not separable if there is a significant number of

epicadmium neutrons whose flux shape is different from that of the

subcadmium neutrons. This situation may arise in a small system

where neutron leakage is so predominant in the neutron balance

equation as to practically decouple the two different groups of

neutrons. Unfortunately, this turns out to be the case for the mini-

ature lattices; the problem will be discussed in greater detail in

Chapter V.

It would be of interest to see the extent to which the nonsepa-

rability can affect the axial and radial bucklings and hence the

material buckling of the miniature lattices. To do this, we insert

Eq. (2.74) in Eq. (2.70) and get

K .B () $p(E)4
2~~~ -- B 0. 012 B 0(r) LP 0(E) 0(r)-B (r, E) = B (r) (2.75)

1 + rE)01 Gr)

+ *o(E)4 O(r)
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Measurements in the miniature lattices indicated that

0 .1
*o(E)4 (r)

hence,

2 2 ~ B 1(r) + (E)4 Mr
B2(r E) - B2(r) 1 - 1 - } . (2.76)

g B BO(r) 0 (E) 0 (r)

For the axial bucklings of the miniature lattices, we have

2 2B -y1 epi 0. 5  (see Chapter V)
22

B 7'th

so that

B (z, E) - yth [ 1 - 0.051.

Thus, there may be an uncertainty of about 5 percent in the axial

buckling because of the degree of nonseparability. In the case of

the radial buckling, the situation is somewhat more favorable:

B 2  2
1 2 e 0. 7 5

B2 2
B 'th

2 2
B (r, E) =ath (1-0.025),

with the result that the uncertainty would be about 3 percent.

A general qualitative conclusion that can be drawn is that the

effect of nonseparability is to underestimate the geometric buckling

and overestimate the material buckling. This can be seen from the

following argument:
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2 2-+ 2
Bm = B (r E)- B (z, E)

= (ah-~2h + 0.025(2Yh-ah . (2.77)

But 2 -th > ath; for example, in the miniature lattice ML2,

2
^th 5800 yB,

2
ath - 7200 MB,

and

B2 _ 1400 MB + 115 yB 1400 (1+0.0821) yB.
m

Thus, an error of about 8 percent may be incurred owing to nonsepa-

rability.

The above discussion suggests a more reliable and convincing

criterion for the existence of an asymptotic and equilibrium region,

namely, that the geometric buckling be independent of energy and

position. It is, however, extremely difficult to calculate the spatially

dependent geometric buckling from experimental data owing to the

statistic fluctuation of the data. If the data could be smoothed out

sufficiently, the local geometric bucklings in the axial and radial

directions could be calculated by means of the finite difference

method. The geometric bucklings could then be plotted as functions

of position as sketched in Figure 2.8 for the axial buckling and in

Figure 2.9 for the radial buckling. Appendix D describes a finite

difference method for extracting the buckling values. The region

where the bucklings (a 2 and -2) are independent of position and identi-

cal for the subcadmium and epicadmium neutrons is the asymptotic

region.
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The procedure just described is possible in principle but diffi-

cult in practice. An alternative method is to calculate the buckling

values from experimental activation data by using the Moments

Method (to be developed in the next chapter), and successively drop-

ping data points from the boundaries inward toward the central region.

This process is used for both the subcadmium and epicadmium

neutrons. Then the axial buckling is plotted as a function of the

location of the first data point from the source; and the radial buck-

ling is plotted as a function of the location of the first data point from

the boundary. If there is an asymptotic region, the buckling values

should level off as indicated in Figure 2.3. This procedure has been

applied in the past (H9): with the conventional curve-fitting method

it worked for the radial buckling but is less successful for the axial

buckling because of the way it fixes the "best value" of the axial

buckling. [Recall that at least three different sets of data points

must be used in the curve-fitting method to analyze the axial buckling

and that there is, in general, no uniquely specified first data point.]

With the moments method this procedure is entirely feasible and

simple and saves considerable computer time; it will be used in

Chapter V to obtain the best value of the axial buckling of the mini-

ature lattices.

2.5 CONCLUSIONS

We have discussed in considerable detail the asymptotic and

equilibrium conditions for exponential experiments in general and

the justification of these conditions for the miniature lattices in
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particular. The following conclusions may be drawn from the dis-

cussion:

(a) The existence of spectral equilibrium is a difficult problem

for exponential experiments in general and could be a serious problem

for buckling measurements in the miniature lattices in particular. It

is possible, however, to select (with great care) some appropriate

position inside the miniature lattices where the neutron spectrum is

essentially in equilibrium. This probably explains the reason why
*

those lattice parameters such as p 2 8 , 625, C , etc. which are

measured at a single position could be measured with some success

in the miniature lattices (Si) and why the material buckling could not

be measured. As far as spectral equilibrium is concerned, the mini-

ature lattices investigated at the M. I. T. Lattice Project are marginal

but may just satisfy the necessary conditions. Increasing the diameter

and/or the length of the system would improve the conditions signifi-

cantly because of reduction in neutron leakage. Some kind of optimi-

zation can be made by considering the equilibrium condition, the

asymptotic condition, and economy as functions of size.

(b) The diffusion approximation is generally well satisfied in

heavy water lattices, even in the miniature lattices. The use of the

moments method, which will be described in the next chapter, makes

it possible to reduce significantly the transport effect in buckling

measurements.

(c) The choice of the axial position where the radial flux distri-

bution is to be measured is crucial. It should be inside the asymptotic

and equilibrium region. For the miniature lattices, it is about 30 cm



70

from the neutron source. The axial flux distribution should be

measured, if possible, along the axis of the cylinder, or at least

near the center.

(d) Despite certain advantages of the diagonal buckling method

(H6) recently investigated at the M. I. T. Lattice Project, there may

be some serious problems with data analysis because the experi-

mental data near the corners are not likely to be azimuthally sym-

metric; in addition, there may be a significant degree of nonsepa-

rability of the neutron flux.

(e) The constancy of the cadmium ratio provides only a rough

check of spectral equilibrium. A more sensitive and reliable

criterion would be the invariance of geometric buckling with respect

to position and energy. The development of some method, such as a

finite difference method, for calculating the local bucklings seems

worth investigating.
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Chapter III

THE ANALYSIS OF THE AXIAL BUCKLING AND

THE EXTRAPOLATED HEIGHT WITH THE MOMENTS METHOD

3.1 INTRODUCTION

The shortcomings of the conventional curve-fitting method for

buckling analysis have been discussed in Chapter I. In particular, its

failure to provide consistent values of the buckling in small systems

such as miniature lattices indicates the need for developing a new

technique for buckling analysis. To show one of the difficulties with

the curve-fitting method, curves of the axial buckling vs. extrapolated

height for the miniature lattice ML2 are shown in Figure 3.1. There

is no common intersection among the curves and, consequently, no

way of fixing the best value of the axial buckling. The analysis made

in Chapter II reveals that there should be an asymptotic region in the

miniature lattices but that it may be too small for the curve-fitting

method to be applicable. The measured axial flux distribution con-

sists mainly of the asymptotic distribution predicted by diffusion

theory, but it is contaminated by a significant contribution of source

neutrons as well as by spatial and energy transients (51). Thus, to

infer buckling values from flux shapes in a small assembly, one must

devise a method of eliminating, or at least reducing, the source and

transient effects while retaining the asymptotic part of the flux distri-

bution. To achieve this goal, we must analyze the spatial and energy

transients in the neutron flux. This will be done in Chapter VI.
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A possible method of analyzing the activation data is with the

moments method used by Fermi in his early work on the slowing

down of neutrons in paraffin (F2). This method has been used suc-

cessfully to determine the Fermi age of neutrons in various moder-

ators (B1, A3). Fano and Spencer have applied the method to the

calculation of the deep penetration of X- or T-rays in shields (F3, Cl).

Since the buckling is a measure of neutron leakage, which involves

the mean-square distance r of neutron transport within an assembly,

we may expect the buckling to be related to r2 and hence to the flux

moments that are needed for the calculation of r .

A moments method will be developed in this chapter, with this

motivation in mind, for the axial buckling analysis in miniature

lattices in particular, as well as for full-size lattices. The con-

sistency of this method in the interpretation of axial buckling measure-

ments will be tested by applying the method to several U-D 20 lattices

as well as some UO 2 -D 2 0 lattices. The corresponding moments ana-

lysis of the radial buckling will be described in Chapter IV, while its

application to the miniature lattices will be given in Chapter V.

3.2 THE MOMENTS METHOD FOR THE ANALYSIS OF THE

AXIAL BUCKLING AND EXTRAPOLATED HEIGHT

3.2.1 Theory

We start with the definition of the axial flux moments

b

4n f zn O(z) dz, n = 0,1,2, . , oo. (3.1)
a

The choice of the limits of integration deserves some discussion. If
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one is interested in the calculation of the exact flux moments as

required in the calculation of deep penetration in shields, the entire

space associated with the system of interest must be covered, that

is, a=O and b=H, the physical boundary of the system. But, since

our purpose here is to extract the value of the buckling from the

asymptotic part of the neutron flux distribution, we need to know only

the asymptotic flux moments. Thus, the choice of a and b can be

left open; they will be chosen arbitrarily depending on the first and

last data points selected for the analysis from the experimental data.

The choice of a and b then provides us a way of determining the

boundaries of an asymptotic region as we proposed in Chapter II.

In an asymptotic region, the neutron flux distribution in the

axial direction may be represented by the expression

O(z) = A sinh (H-z) , (3.2)

where A is the normalization constant, 7y 2 is the axial buckling, and

H is the extrapolated height. Now Eq. (3.2) is valid not only in simple

diffusion theory (M1, W1, Li) but also in asymptotic transport theory

(K4, D2). It is, therefore, rigorous under the asymptotic condition

discussed in Chapter II.

When we evaluate the integral (3.1) by substituting Eq. (3.2) in

Eq. (3.1), we get

bn ~ nn-1 ~ nn1

n ~ ~ cosh (H-b) - 2 sinh 7(H-b) + 2 On-2

n n-1

a- cosh 7(H-a) - na sinh (H -a)j, for n > 2 .
7 (3.3)
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To simplify the analysis, it is desirable to have the lower limit

a equal to zero, in which case Eq. (3.3) reduces to the simpler form

,= - - cosh (H'-b') - nb sinh 7('-b') + - -2 (3.4)
n 7Y 272 -

Since this expression for 4' is important to the final result, its justi-

fication should be discussed. Equation (3.4) implies that the axial flux

moments are defined by

bF
= A f z,n sinh 7(H'-z') dz' n = 0, 1, 2, ... oo . (3.5)

n 0

We shall show that the definitions Eq. (3.1) and Eq. (3.5) are equiva-

lent as far as the extraction of 72 and H from experimental data is

poncerned. To do this, we translate the coordinate system along the

z-axis so that the new axial coordinate z' is given by

z' = z - a (3.6)

as indicated in Figure 3.1a. Substitution of Eq. (3.6) into Eq. (3.1)

yields

4nA f(ba) (z+a)n sinh 7[(H-a)-z'] dz'
0

b
= A f (z'+a)n sinh y(H'-z') dz' , (3.7)

0

where b' = (b-a), and H' = (H-a) is the new extrapolated height in the

transformed coordinate system z' . The extrapolated height of the

system under investigation is therefore given by

S= H' + a. (3.8)
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We shall treat the moment index n as a variable integer, which acts

as a weighting factor; it is therefore immaterial whether we use z'

or (z'+a) as the base of the weighting factors of the flux moments.

So we conclude that the definitions Eqs. (3.1) and (3.5) are equivalent

2 ~
for the parameters y and H. We shall use the definition (3.5); for

ease of writing we shall drop the prime but shall bear in mind that

the extrapolated height is actually given by Eq. (3.8).

Our major task is to derive an expression for the axial buckling

2 in terms of various axial flux moments. The essence of the

moments method for the analysis of the axial buckling consists in the

elimination of the functional forms cosh y(H-b) and sinh y(N-b) which

appear in the axial flux moments by means of three independent

equations involving three consecutive moment indices (n-1), n, and

(n+1). To do this, we write the three axial flux moments:

bn-1 ~ (n-1)b (n-1)(n-2)
On-1 ~ - cosh 7(H-b) - 2 sinh (H-b) + 2 On-3

(3.9)

bn ~ nbn-1 n(n-1)
On - - cosh -(H-b) ~ 2 sinh 7(H-b) + 2 n- 2 (3.10)

bn+ - (n+1)bn sin n(n 1)
On+1 ~ - cosh 7(H-b) ~ 2 sinh 7(H-b) + 2 n-1. (3.11)

To eliminate cosh y(H-b) and sinh y(H-b) from these three equations,

we set the determinant
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bn-1 (n- 1)bn-2 - (n-1)(n-2)
~ T 2 n-1 ~ 2 n-3j

- nb n-1--n_ n(n-1) j = 0 (3.12)
TY -y O - Y2 n2

bn+1 (n+1)bn n(n+1)
7 ~ 2 n+1 ~ 2 n-1

or

1 (n-1) 1 - (n-1)(n-2) 4n-1 2 n-3_

b nb Ln ~ n(n-1) n-2 = 0, (3.13)

b2  (n+1)b2  - n(n+1) n-l]

which leads to the result for the axial buckling

2 n(n+1)4n-1 - 2n(n-1)bon-2 +(n-1)(n-2)b2 n-3
7 (n) 2

Kn+1 - 2bon + b 2n-1

n = 3, 4,5,6,. .. , o . (3.14)

The axial buckling is thus determined by the axial flux moments,

the moment index, and the upper limit b. One of the major advantages

of the moments method is that the usual difficulty of assuming a value

of the extrapolated height, H, in order to obtain the axial buckling is

removed. In fact, once the axial buckling has been determined, the

extrapolated height can be calculated from it and various axial flux

moments. To show this, we solve Eqs. (3.10) and (3.11) for

cosh Y(H-b) and sinh Y(H-b):



cosh y(rH-b) =

and

sinh T(N-b) =

bn+1 [no +1 (n+)bo n]b

- [n(n+1 n 1 -(n-1)(n+1)b4n 2]

2y r

- [on+1-bn]
b

- [n(n+1)n-n(n-1)bn 2 ]}
-y

Forming the ratio, we get

tanh Y(H-b) =

-Y

2
'y [no

7y2 [bn~n+1I+ n(n+1) 4n-1- n(n-1)b n- 2

n+1 -(n+1)b n] - n (n+1) On- 1+n(n- 1) (n+1)

n = 2, 3, 4, 5, . . . , 0 oo , (3.17)

whence

~ 1 2[bin~ n+1]+ n(n+1) On-1- n(n-1)bn- 2
H(n)=b+ tanh~- nb 2

ly7'2 [n+1-(n+1)bon]-n 2(n+1)4n-1+n(n-1)(n+1)bn-

n = 2, 3, 4, ... , O . (3.18)

The actual value of the extrapolated height is given by Eq. (3.8):

(Nactual = E(n) + a

where a is the distance from the external source to the first data

point chosen for the analysis.

We can obtain a second expression for the extrapolated height

by deriving an expression for tanh TH instead of tanh Y(,H-b) in terms

of axial flux moments. This is feasible because the zeroth and first
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(3.15)

(3.16)

b n- 2



axial flux moments contain cosh Ty and sinh TH. Thus, we evaluate

the zeroth and first axial flux moments:

40 =[- cosh -(H-b)+ cosh y], (3.19)

1 1
= - cosh y(H-b) - T sinh T(H-b) + -2 sinh TH. (3.20)

Now substitute Eqs. (3.15) and (3.16) in Eqs. (3.19) and (3.20), and

then solve for cosh TH and sinh TH:

s inh TH = b [(n-1) n+1- nb+ bn41
b

cosh TH =

- [n(n+1)(n-1)0 n-1- n 2(n-1)b n-2]1

1 2[nn+-(n+1)b n+bn+1
- n + 1 ) n - (n- 1 )( n b o

(3.21)

(3.22)

Again, we form the ratio and invert the resulting expression for

tanh TH. The result is

1 1 7 2[(n- 1) n+1-nbn+bn 1 .]-n[(n-1)(n+1)4n- 1-n(n-1)b 2n-2
H4(n) =-tanh 7b 2n+

S2[ndn+I-(n+ 1) b n+b n+1 0 ] - n(n+1) [nn 1-(n-1)bn- 2J

(3.23)

We prefer Eq. (3.18) to Eq. (3.23) because Eq. (3.23) determines

H directly through various axial flux moments while, in Eq. (3.18), the

axial flux moments determine the much smaller value of (N-b) with b

being a fixed number. Hence, a larger error is incurred in H by the

use of Eq. (3.23) than by Eq. (3.18). We shall, therefore, use Eq. (3.18)

80
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throughout this work to calculate the extrapolated height. The latter,

together with the extrapolated radius, is important in the interpre-

tation of pulsed neutron source experiments (C2, G1).

Both the axial buckling and the extrapolated height can be

determined by means of the moments method with greater confidence

than with the conventional curve-fitting method because they are

uniquely defined when the moments index is fixed, and because they

can be calculated independently through the axial flux moments.

Moreover, the normalization constant A is not involved because only

ratios of axial flux moments are required to compute the axial buck-

ling and the extrapolated height, and A therefore drops out automati-

cally.

If we could calculate the asymptotic axial flux moments by, say,

the conventional moments method widely used in shielding calculations

(F3, C1, B1), we could obtain the asymptotic axial buckling (hence the

relaxation length) and extrapolated height by means of Eqs. (3.14) and

(3.18). Such a calculation involves knowledge of the theoretical flux.

However, we are concerned with inferring the axial buckling and

extrapolated height from an experimental axial flux distribution. To

do this, the theoretical axial flux moments that appear in Eqs. (3.14)

and (3.18) are replaced by the corresponding experimental axial flux

moments defined as

b
<exp - n A(z) dz, (3.24)

n 0

where A(z) is the experimental axial activation distribution.

The experimental axial flux moments are to be evaluated from
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equally spaced activation data by means of Simpson's rule for numeri-

cal integration. This choice is made because the accuracy of

Simpson's rule is generally good enough for our purposes, while per-

mitting flexibility in the selection of data (R2, H10).

3.2.2 The Choice of the Moment Index

Since the moment index n is treated as a variable parameter,

there are many ways of calculating the axial buckling and extrapolated

height in terms of axial flux moments. Which value of the moment

index n will then yield the best values for the axial buckling and

extrapolated height? We can answer this question in two different

ways: by means of a physical argument and by means of a mathemati-

cal formulation.
p04 2

From a physical point of view, the axial buckling y maybe

interpreted as the inverse square of the relaxation length, which is

essentially the average distance from the external source and bounda-

ries at which the neutron flux distribution becomes independent of

source and boundary effects. In an infinite medium, there are no

source or boundary effects, and the relaxation length is identical to

the diffusion length, L, because the diffusion process describes the

neutron behavior completely. The expression for the diffusion area,

L2, in an infinite medium is given in terms of the mean square

distance, z2, as (M1,Bl,K6)

L2 _ -2 . (3.25)

For a finite medium, the corresponding expression for T2 would be
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expected to be more complicated but may be regarded, in general, as

a function of various spatial moments, z ; namely,

2 2 - 2 n
-y = y (z, z ,.. z ). (3.26)

The functional dependence of -y2 can be obtained from Eq. (3.14) by

dividing the numerator and denominator by the zeroth axial flux

moment 4 ; the result is

2 _ n(n+1)z n-1 - 2n(n-1)bz n-2+(n-1)(n-2)b2 z , (3.27)

zn+1 - 2bzn + b2zn-1

where the average spatial moments z is, by definition,

n Fz n(z) dz 0
z = " = --- . (3.28)

fO(z) dz Oo

To see if Eq. (3.27) for a finite system reduces to Eq. (3.25) for

an infinite medium, we let b - oo and find the limit of y2 (n):

lim Y2 (n) = (n-1)(n-2) z , for n = 3, 4, 5, . , oo. (3.29)
b-woo n-1

z

It is apparent that only if n= 3 does Eq. (3.29) lead to the correct

infinite-medium result:

lim Y (3) = 2 - (3.30)
b-oo ~~

z

or

-2 1 2 2

T (3) = z L

On the basis of this reasoning, therefore, the correct moment
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index to be chosen for the axial buckling analysis should be n=3. One

must not forget, however, that in a finite subcritical assembly there

are spatial and energy transients in addition to the source neutron

contribution. These additional contributions to the (asymptotic) flux

distribution would perturb, to some extent, the result, Eq. (3.14) or

Eq. (3.27), which is based on the asymptotic part of the neutron flux

distribution alone. In other words, the conclusion that n may be

equal to 3 is no longer true when the asymptotic part of the neutron

flux distribution is significantly contaminated by various transients

and by the source contribution.

The discussion up to this stage makes us doubt the applicability

of Eqs. (3.14) and (3.18) to a small assembly where there may be only

a small portion of the flux distribution that is asymptotic. Further-

more, the nature of the spatial and energy transients and the integral

definition of the flux moments combine to make it possible for the

transients and source neutron contribution to partly offset one

another while the asymptotic part of neutron flux distribution remains.

To see this, we have to understand the nature of the spatial and

energy transients. These will be treated in Chapter VI. It suffices to

say here that the transient fluxes appear to be positive near the

source end and negative near the boundary z=H, as sketched in

Figure 3.2 together with the asymptotic part and the source contri-

bution. The corresponding distributions of the asymptotic flux

moments, transient flux moments, and source moments are sketched

in Figure 3.3. The transient flux moments tend to cancel in part; in

addition, they will also offset a part of the source moments depending
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on the weighting factor, i.e., the moment index. Hence, there should

be a certain value of the moment index n that will mostly retain the

asymptotic flux moments while minimizing the contribution of the

source and transient flux moments.

This discussion leads to a mathematical method of determining

the optimum value of n through an error analysis. A formal approach

2 ~is to minimize the probable errors that may be incurred in y and H,

with respect to the moment index n. This procedure will lead to an

equation that determines the optimum value of n. But this approach

is likely to be impractical, if not impossible, primarily because the

dependence of the probable errors on the moment index is not clear.

A practical way to get around this problem is to compute the probable

errors for a series of values of n and then observe the variation of

the error as a fiunctinn of n. The moment index that yields the mini-

mum probable errors is the one to be chosen. Thus, an error analy-

sis is necessary to complete the moments method.

3.2.3 Error Analysis

There are primarily two kinds of errors associated with the

calculation of the axial buckling and the extrapolated height by means

of the moments method: (a) the experimental error, that is, the

error incurred by replacing the theoretical asymptotic axial flux

moments by the corresponding experimental axial flux moments

(this error is, in a sense, a measure of how much the experimental

flux distribution will deviate from the asymptotic); and (b) the

truncation error, that is, the error incurred in the evaluation of the

various axial flux moments by numerical integration.
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The two kinds of errors combine to give the probable error

which will be defined below (see Eq. (3.36)). The probable error is

the error associated with the moments method itself and serves as

a measure of the consistency of the moments method as well as a

tool for selecting the best value of the axial buckling calculated by

the moments method. It is important to distinguish the probable

error from the standard deviation; they are entirely different quanti-

ties. The standard deviation, which is usually reported in the litera-

ture, is a measure of the reproducibility of a certain experiment; it

will be defined in section 3.3.5 (see Eqs. (3.72) and (3.73)). The

terms probable error and standard deviation will be used throughout

the present work; their definitions and meanings should be dis-

tinguished wherever they appear.

2
First, we estimate the probable error in the axial buckling, y

Consider y2 as a function of the axial flux moments:

72 _ 2 (o'1' q 2' '' ' ) . (3.31)

Taking differentials, we obtain

6^2 =6 . (3.32)

j=1 j)

Define the variance in axial buckling, c- 2 in accord with the usual

practice:

.2 1 aT2 ( 64  2 (3.33)

N 2
= C .(6) (3.34)

j=1
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where (,2 2
C. (3.35)

The probable error in T 2 is defined as

N 2

o- 2 = C (64)2 (3.36)
7 j=1

The deviations in the axial flux moments, 64 , arise from two

sources: experimental error and truncation error. If we consider

that the two kinds of errors are independent, we have

2 exp 2 r2
05 0) 6 j~~eP + ( 6 0t) (3.37)

where 6 4 exp is the experimental error in the 4 and 64tr is the64., is hJ

truncation error in the 4 .

The coefficients C. can be obtained by differentiating Eq. (3.14)

with respect to the .. For brevity, we rewrite Eq. (3.14) as

7 2(n) = D(n) (3.38)

where

N(n) = n(n+1) 4n-1 - 2n(n-1)bn-2+(n-1)(n-2)b 2 n-3 (3.39)

and

D(n) = 4n+1 - 2bkn + b2 n-1 (3.40)

Then by differentiation we obtain, assuming that b is a fixed constant,

a2 (n) (n-1)(n-2)b2 (3.41)
84n-3 D(n) '
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-y 2(n) 2n(n-1)b
84n- 2 D(n)

2a-y (n)

C4n-1

(3.42)

[n(n+1)D(n)-b 2N(n)]

[D(n) ]2

y 2(n) 2bN(n)

n [D(n)]2

2-Y (n)
aon+1

(3.43)

(3.44)

(3.45)N(n)

[D(n)] 2

There are five coefficients corresponding to the five axial flux

moments, n-3-' n-2' On-1' On, and bn+1, needed to compute the

axial buckling. They can be combined in a single formula

( 2 2
Cn 84_ 2 (n)an+-r j = 1, 2, 3, 4, 5 .

Since the theoretical axial flux moments 4th can be evaluated

analytically, as in Eq. (3.10), it is possible to calculate the trun-

cation errors incurred in the 4. from the expression

tr =Kth _ th.
6 _ L i]analytical _ 3 ]numerical

integration

(3.47)

integration

The experimental errors in the 4. can be estimated from the
J

relation

e =e x p -

64 j A
(3.48)

where both 4th
J

and 4exp are to be evaluated by numerical integration,
Ji

and A is the normalization constant to be determined.

(3.46)
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The variance in y2 may then be written

o- 2(n) = [ -2(n) + a (n)

- ' -lex p - l -tr

5

.Z n+j-4
j=1

4th4_n+j-4 ~A j

The normalization constant, A, is to be determined by mini-

2
mizing the probable error - 2 or, equivalently, a 2 with respect to

ly -y
A; that is, we set

da 2 2 (n)

y 0
dA

Realizing that (t 2 is independent

formula for A from Eq. (3.50):

A(n) =

5
Cn+j- 4 Qk exp

njj-4 n+j-4
j=1

(3.50)

of A, we obtain the defining

2

(3.51)

C n+j-4 th
nj4 n+j-4

5

j=1

exp
n+j-4)

We can now calculate the experimental errors L - 2] , the

truncation errors - 2] , and hence the probable errors

-I -tr
- 2 (n) with the aid of Eq. (3.49).
4,

The theoretical axial flux moments

must be used to calculate the coefficients Cn+j-4 because of the way

we define the experimental and truncation errors (see Eqs. (3.47)

and 3.48)).

Following the same procedure, we can also estimate the

+ (6tr
n+j-4 I2

(3.49)



probable errors in the extrapolated height, H. To do this, we recall

Eq. (3.18) and write

= H(n-2' n-1' n' n+1;')

Again we differentiate and get

H (= ') 64n+j- 3
j=1 n+- 3

The variance in H is defined as

oy(n) =

H
Hn+j-3 (64 n+j - 3)

n = 2, 3, 4, 5, ... , o0.

+ 67 .,Ya'4

2 + H (67)2 ,
4

where

j = 1, 2, 3, 4, (3.55)
~ j2

H n+j-3 4n0 3

and

HE H . (3.56)

Since we have computed a 2 2 previously, we can determine (6y)

from the relation y = (72 ) ; hence,

1 2 -1/2 2
6y=(-y) 6,

2

(6Y)2 = .
4-y

(3.57)

The calculation of the quantities (64n+j-3)2 remains the same as

before. To compute the coefficients Hn+j-3, we differentiate Eq. (3.18)

with respect to the 4 . For simplicity, we rewrite Eq. (3.18) in the

form
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(3.52)

(3.53)

(3.54)

and



H(n) = b + tanh~ b , n]

where

P (n) -y2[bn~n+1]+ n(n+1) 4n-1 - n(n-1) bon-2 ,

and

Q(n) - 2[n n+ 1 -(n+1)bon] - n2 (n+1) 4n-1+ n(n-1)(n+1) bn-2'

n = 2, 3, 4, . . . , 0o . (3.60)

We again treat b as a constant and obtain the following results by

differentiation:

alH(n)

an-2

n-1

aH(n) _

n

alH(n)
aon+1

n(n- 1)b 2 [ Q(n)+(n+1)P(n)],

[Q2 (n)-y 2b 2P (n)

n(n+1)b [Q(n)+nP(n)

[Q2 (n)- 2 b2 2 (n) [Qn+nP(

2 2

b y 2 [Q(n)+(n+1)P(n)],
[Q2 (n)-2 b 2 (n)

(3.61)

(3.62)

(3.63)

(3.64)
b2

by 2 [ Q(n)+nP(n)],
[Q2 (n)-y 2b 2P 2(n)]

(H-b) + b
7 7

1

[Q2 (n)-72 b 2P 2(n)

fP(n)Q(n) + 2T2Q(n)[bn-n+1] - 27 2P(n)

(3.65)

The variance in the extrapolated heigh

a 2(n)
H

4

j=1

-2exp

A'?Hn+j-3 n+j-3

t, a (n),
H

+ 6 r

is given by

2
+ H

-y

93

(3.58)

(3.59)

22 na2 (n)

472

(3.66)

all(n) _
a7

[no n+1- (n+1)bo n '
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The normalization constant A' for the extrapolation height is

determined by minimizing the probable error in H, that is, setting

da (n)
H =
dA' 0,

which yields the result for A'(n):

4

H41

j=1 n+j-3 n+j -3)

A'(n) =

Hn+j- 3 (n+j-3)

4

3=1

9

(3.68)

-xp3 )

(3.67)

We separate the total probable error in H into the experimental

error and the truncation error and compute the two errors separately.

To do this, we write Eq. (3.66) in the form

= Lu(n) p
-H

+ LU2(n)i,

H tr

exp -2

n+j- 3
A'F.

-t
_n+j -3-]analytical

[2()

+ H - y 2 Jexp
y 4 2

(3.70)

~ n+j-3 numerical

+ H Ly tr
-Y 472

(3.71)

Once again theoretical axial flux moments must be used to com-

pute the coefficients Hn+j-3'

a (n)
H

where

2 (n)
H

4

I
r

H n+j 3 th
n~- .n+j - 3

(3.69)

exp j=1

L 2(n
H

Hn+j-3
- 41

tr j=

_
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3.3 RESULTS

The procedure developed in the preceding section has been coded

as "ABMOMENT" in FORTRAN IV language for the IBM Operating

System 360 computer at the M.I. T. Computation Center. The details

of the code are described in Appendix A. The code has been applied to

several slightly enriched U-D 2 0 lattices and three slightly enriched

UO 2 -D 2 0 lattices investigated at the M. I. T. Subcritical Facility. The

results as well as studies of some of the features of the moments

method will be presented below.

3.3.1 Error Behavior of the Axial Buckling and Extrapolated Height As

Functions of the Moment Index

Since the error behavior of the axial buckling and of the extrapo-

lated height are crucial to the moments method, we study this problem

first. On the basis of the discussion in section 3.2.2, we expect that

there is an optimum value of the moment index that corresponds to the

minimum experimental error in the quantities of interest. This has

been verified for some typical lattices as shown in Figures 3.4 and 3.5.

The optimum value of the moment index for these lattices is in the

neighborhood of 6. It is also evident that the optimum moment indices

for the axial buckling and extrapolated height are very nearly the same.

This result has been found for most of the lattices studied. The trun-

cation errors should increase with the moment index because the

higher the moment index the greater is the truncation error that may

be incurred in the axial flux moments through numerical integration.

This is indicated in Figures 3.6 and 3.7. It is therefore desirable to
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use the lowest moment index provided that the experimental error per-

mits us to do so, but the presence of the source neutron contribution

and various flux transients calls for a higher moment index to reduce

their effects. A compromise must be made between these two kinds of

errors. This can be accomplished through the combined probable

errors defined in section 3.2.3. Figures 3.8 and 3.9 show the behavior

of the combined probable error.

3.3.2 Optimization Study of the Choice of the Number of Data Points

The moments method has another degree of flexibility for the

analysis of the axial buckling and extrapolated height, namely, the

choice of the number of data points. As far as truncation error is

concerned, the more data points are used the smaller the truncation

error will be. However, because of the nature of the moments method

this is not necessarily true for the experimental error. Rather, the

choice of the positions of the first and last data points, that is, the

lower and upper limits in the definition of the axial flux moments, turns

out to be important for the experimental error. This choice provides a

way of locating the boundaries of an asymptotic region, as has been

discussed in section 3.2.1, and hence adds another degree of freedom

to the moments method. Because of the way in which the moments

method eliminates the transient effect and part of the source effect, as

discussed in section 3.2.2, the asymptotic region would be enlarged by

the moments method insofar as buckling experiments are concerned.

This property of the method offers an appreciable advantage over the

curve-fitting method, especially in small assemblies. Tables 3.1 and

3.2 serve to illustrate this advantage of the moments method in the
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Table 3.1. The axial buckling vs. the first and end points calculated by means
of the moments method for the Run R4 measured in a 3-foot tank.

Run R4: 0.947% enriched fuel, 3-inch triangular spacing, 0.387-inch rod diameter.

Number First End Axial Probable Extrapolated Probable
of Bukig2 a %

Data Point Point Buckling Error in -y Height H Error in H

Points (cm) (cm) 72 (yB) (pB) (cm) (cm)

17 101.60 1378 2.91 126.42 0.192

15 96.52 1375 4.94 126.51 0.401

15 91.44 1377 5.85 126.30 0.717

13 86.36 1379 9.41 127.10 1.490

13 81.28 1379 8.67 127.10 1.372

17 20.32 1378 2.91 126.42 0.192

15 25.40 1375 4.94 126.51 0.401

15 30.48 1383 3.66 126.70 0.369

13 35.56 1382 6.58 126.99 0.755

13 40.64 1389 6.19 127.45 0.752

11 45.72 1387 6.93 127.89 0.906

1 yB= 10-6 cm-2



Table 3.2. The axial buckling vs. the first and end points calculated with
the moments method for the Run I0 measured in a 4-foot tank.

RUN IO: 0.947% enriched U fuel, 5-inch triangular spacing, 0.75-inch rod diameter.

Number Axial Probable Extrapolated Probable

of Fis n ukig2 r.

Data Point Point Buckling Error in 7 Height H Error in H

Points (cm) (cm) -y (p B) (gB) (cm) (cm)

17 101.50 286 0.76 125.66 0.052

15 96.42 291 1.13 126.35 0.124

15 91.34 298 0.90 127.04 0.137

13 86.26 292 1.72 126.63 0.257

13 81.18 298 3.72 127.69 0.574

17 20.22 286 0.76 125.66 0.052

15 25.30 291 1.13 126.35 0.124

15 30.38 285 0.67 125.85 0.073

13 35.46 275 4.12 125.24 0.229

13 40.54 276 0.40 125.22 0.023

11 45.62 294 0.74 126.07 0.047

1 pB = -2cm10-6
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case of the full-size exponential assemblies. It is evident from the

results that we can use nearly all the experimental data for the buck-

ling analysis and still get consistent results. Past experience with the

AXFIT code indicated that, to get a consistent value of the axial buck-

ling, the first data point could never be within about 40 cm from the

source and the last data point had to be about 20 cm or more from the

boundary (H9, P1). Figure 3.10 is a schematic diagram of the asymp-

totic regions permitted by the two different methods.

The increased extent of the asymptotic region made available by

the moments method is an indication of the superiority of this method

over the curve-fitting method for the analysis of the axial buckling in

the full-size exponential lattices. It will be shown in Chapter V that

the moments method offers real advantages in the analysis of experi-

ments in miniature lattices.

3.3.3 Application of the Moments Method to Slightly Enriched U-D 20
Lattices

Seven slightly enriched U-D2 0 lattices investigated at the M. I. T.

Lattice Project have been analyzed with the aid of the moments method

(with the code ABMOMENT). A typical good experimental run for each

lattice (a run which yields the most precise value of the axial buckling

with the conventional curve-fitting method and the AXFIT code

developed by Palmedo (P1)) was chosen for the axial buckling analysis

to test the reliability of the moments method. The results for the axial

buckling and extrapolated height are given in Table 3.3 together with the

corresponding values obtained by the AXFIT code. The agreement is

excellent in all cases. The values given for the moments method are



106

ASYMPTOTIC REGION FOR
THE MOMENTS METHOD

[og-ASYMPTOTIC
REGION FOR THE
CURVE - FITTING

METHOD

~40

~~*1

~1O2 ~120 122

D

13

-. z (cm)

FIG. 3.10 ASYMPTOTIC REGION ALLOWED BY THE MOMENTS

METHOD AND THE CURVE-FITTING METHOD.

D
0
(Io

z
0
I-
:D
uJ
z

Z=O ~15



Table 3.3. Values of the axial buckling and extrapolated height analyzed by the moments method
for some U-D 2 0 lattices at the M. I. T. Lattice Project; in comparison with results
obtained with the conventional curve-fitting method.

EXTRAPOLATED

Lattice AXIAL BUCKLING (gB) HEIGHT (cm)

Run Enrich- Spacing Fuel Rod Curve- Curve-
Number ment (Triangular) Diameter Moments Method Fitting Moments Method Fitting

(%) (inches) (inch) T2 (gB) - 2 (MB) -y2 (B) NH4 (cm) o (cm) H (cm)
'Y H

81 1.150 1.25 0.250 972 3.93 987 128.985 0.707 128.0

D2 1.150 1.75 0.250 1006 2.78 1012 131.334 0.408 131.0

92 1.150 2.50 0.250 1391 6.50 1390 125.643 1.824 127.9

D8 0.947 2.50 0.750 1389 3.64 1389 127.260 0.760 129.5

R4 0.947 3.00 0.387 1383 3.66 1387 126.704 0.368 127.3

M3 0.947 3.50 0.750 48.7 5.85 48 125.002 0.302 125.0

10 0.947 5.00 0.750 277 1.61 275 125.286 0.0825 125.5

= Minimum probable error in axial buckling.a- 2

a = Minimum
H

probable error in extrapolated height.

c,
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those that correspond to the minimum probable errors in the axial

buckling and extrapolated height. The probable errors are also

included for the moments method. They were computed with Eqs. (3.49)

and (3.71), and are not to be confused with the usual standard devi-

ations. The excellent agreement confirms the reliability of the

moments method and also indicates that the AXFIT code based on the

curve-fitting method indeed yields very reliable results when a

2
common intersection among the three 2 vs. H curves occurs as in

Figure 1.1.

3.3.4 The Application to the Slightly Enriched UO 2 - D2 0 Lattices

Three slightly enriched UO2-D20 lattices recently investigated

at the M. I. T. Lattice Project have also been analyzed by means of the

moments method with the ABMOMENT code to test its versatility.

Table 3.4 lists the results obtained from some good experimental runs.

Again the agreement between the results of the two methods is very

good, further indicating that both methods are reliable when the experi-

mental data are well representable by the asymptotic flux ( a definition

of a good experimental run). However, if the total neutron flux is con-

taminated by the source neutron contributions and/or various flux

transients, the curve-fitting method might run into trouble like that

illustrated by Figures 1.2 and 1.3. In the latter cases, the moments

method may be expected to yield more consistent results for the

reasons discussed in section 3.2.2. Indeed, we have found that, in

some cases, the moments method still could yield a consistent value of

the axial buckling and of the extrapolated height when the curve-fitting

method failed.



Table 3.4. Values of the axial buckling and extrapolated height analyzed by the moments method
for some U0 2 -D 2 0 lattices at the M. I. T. Lattice Project; in comparison with results
obtained with the conventional curve-fitting method.

EXTRAPOLATED

Lattice AXIAL BUCKLING (yB) HEIGHT (cm)
Run Enrich- Spacing Fuel Rod Curve- Curve-

Number ment (Triangular) Diameter Moments Method Fitting Moments Method Fitting

(%) (inches) (inch) 2 (yB) - 2 (yB) y2 (B) H (cm) a (cm) 'H (cm)
Ty H

42 1.099 3.50 0.431 1623 2.78 1632 135.268 0.680 136.9
(Bare) A

37 1.099 3.50 0.431 1613 1.26 1623 133.671 0.272 134.0
(Cd- A

covered)

75 1.990 3.50 0.431 918 4.586 920 131.535 0.334 131.7
(Bare) A

83 1.990 3.50 0.431 926 4.749 947 134.212 0.299 134.7
(Cd- a

covered)

30 1.099 3.25 0.431 1587 4.623 1595 136.696 0.497 136.0
(Bare)

23 1.099 3.25 0.431 1647 5.433 1640 136.203 0.458 135.8
(Cd-

covered)

= Minimum probable error in axial buckling.Y2

probable error in extrapolated height.a Minimum
H

0
co
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3.3.5 The Study of the Consistency of the Data Analysis

It has been pointed out in Chapter I that the consistency of the

conventional curve-fitting method would be relatively poor because of

the way it fixes the "best values" of the axial buckling and extrapolated

height. To find out whether this is the case, both the ABMOMENT code

and the AXFIT code have been applied to a large number of experi-

mental runs in three different U-D 20 lattices as well as to three

UO2-D 20 lattices. The consistency of each method is measured in

terms of the standard deviations defined as (El):

1 2 2 2
2 /N.z()N- (3.72)

'Y

for the axial buckling, and

/ N -2

N( -1 J i- - (3.73)

for the extrapolated height, where

N
Y _ 7 Y, (3.74)

1 N
AH (3.75)

and N is the number of experimental runs.

The results are given in Tables 3.5 through 3.10. The standard

deviations in the axial buckling and extrapolated height are smaller by

approximately a factor of 2 for the moments method than for the curve-

fitting method. The moments method should, therefore, make it



Table 3.5. Comparison of the consistency of the moments and conventional curve-fitting methods.

Enrichment: 0.947%, Triangular Lattice Spacing: 3.0 inches, Uranium Rod Diameter: 0.387 inch.

Trype MOMENTS METHOD CURVE-FITTING METHOD

of Run Axial Buckling Extrapolated Height Axial Buckling Extrapolated Height
Run Number2~2~

Rm (pB) H (cm) 2 (pB) H (cm)

Axial, P9 1370 131.049 1382 135.30

with Q1 1380 128.263 1332 131.60
bare

foils Q5 1354 127.623 1348 126.60

R4 1360 125.978 1387 127.30

Average 1366 ± 5.7 128.228 ± 1.1 1362 ± 13 130.20 ± 2.03

Axial Q2 1389 127.241 1386 131.10

with Q6 1391 125.208 1384 130.40
Cd-
covered 1387 126.594 1394 127.70

foils Average 1389 ± 1.1 126.348 ± 0.6 1388 ± 3.1 129.40 ± 0.75

The quantities are the 2 atdnstandard deviations in T and H, respectively, defined in Eqs. (3.72) and (3.73).



Table 3.6. Comparison of the consistency of the moments and conventional curve-fitting methods
for obtaining the axial buckling and the extrapolated height for the U-D20 lattice.

Enrichment: 0.947%, Triangular Lattice Spacing: 3.5 inches, Uranium Rod Diameter: 0.75 inch.

Type MOMENTS METHOD CURVE-FITTING METHOD

of Run Axial Buckling Extrapolated Height Axial Buckling Extrapolated Height
Run Number22

72 (yB) H (cm) /2 (pB) H (cm)

L9 44.19 124.295 40 124.5

Axial, M1 33.92 123.919 65 126.3
with
Cd- M3 39.43 124.091 48 125.0
covered
foils M5 26.71 124.044 32 125.0

Average 36.06 ± 3.76 124.087 ± 0.078 46 ± 7.05 125.2 ± 0.3 85

MO 20.48 124.956 5 124.4

Axial M2 20.63 124.942 35 126.6
with
bare M4 17.96 125.007 45 126.5
foils

Average 19.69 ± 0.87 124.968 ± 0.020 28 ± 12.0 125.833 ± 0.51

Standard deviations in
2 a 

r t
7y and H, respectively.

I'



Table 3.7. Comparison of the consistency of the moments and conventional curve-fitting methods
for obtaining the axial buckling and the extrapolated height for the U-D20 lattice.

Enrichment: 0.947%, Triangular Lattice Spacing: 5.0 inches, Uranium Rod Diameter: 0.75 inch.

Type MOMENTS METHOD CURVE-FITTING METHOD

of Run Axial Buckling Extrapolated Height Axial Buckling Extrapolated Height
Run Number 2 2

72 (y B) H (cm) 2 (pB) H (cm)

H6 245.8 123.667 255 124.5

H9 255.2 124.096 261 124.0

Axial, 10 282.4 125.267 275 125.5
with J9 252.5 122.899 260 122.2
bare
foils K1 258.9 124.343 298 125.4

K4 281.6 123.761 250 123.6

K6 279.3 124.406 300 126.2

K7 284.5 125.349 285 124.2

Average 267.5 ± 5.6 124.223 ± 0.290 273.0 ± 6.90 124.45 ± 0.433

H8 268.5 123.679 288 125.8

Axial, J1 299.8 121.113 305 120.2
with J3 285.2 122.707 310 121.9
Cd-
covered J7 271.1 123.687 268 122.2
foils K3 257.0 124.604 247 123.6

K5 268.3 124.503 273 124.8

Average 275 ± 6.2 123.382 ± 0.53 5 282.0 ± 9.75 123.08 ± 0.840

Standard deviations in T 2 and H, respectively.



Table 3.8. Comparison of the consistency of the moments and conventional curve-fitting methods
for obtaining the axial buckling and the extrapolated height for the UO2- -D 20 lattice.

Enrichment: 1.99%, Triangular Lattice Spacing: 3.50 inches, Uranium Rod Diameter: 0.431 inch.

Type MOMENTS METHOD CURVE-FITTING METHOD

of Run Axial Buckling Extrapolated Height Axial Buckling Extrapolated Height
Run Number 2 ~2~

7 (pB) H (cm) 2 (pB) H (cm)

75 918.3 131.535 920 131.7

Axial, 73 914.2 127.524 908 127.6

with 71 918.1 132.971 930 133.7
bare
foils 67 911.8 133.790 906 132.6

62 915.9 132.342 925 133.5

Average 915.7 ± 1.21 13 1.632 ± 1.092 917.8 ± 6.25 131.82 ± 1.120

83 954.1 136.287 947 134.7

Axial, 81 928.5 130.437 864 128.2
with
Cd- 79 950.0 132.690 906 128.2
covered
foils 64 954.3 134.215 930 132.8

Average 946.7 ± 6.17 133.407 ± 1.234 911.8 ± 18.0 130.98 ± 1.650

in 72 and H, respectively.Standard deviations



Table 3.9. Comparison of the consistency of the moments and conventional curve-fitting methods
for obtaining the axial buckling and the extrapolated height for the UO 2-D 20 lattice.

Enrichment: 1.099%, Square Lattice Spacing: 3.25 inches, Rod Diameter: 0.431 inch.

Type MOMENTS METHOD CURVE-FITTING METHOD

of Run Axial Buckling Extrapolated Height Axial Buckling Extrapolated Height
Run Number 2

SB) H (cm) 72 (pB) H (cm)

35 1603 130.316 1623 139.3

30 1587 135.398 1595 136.0

Axial, 17 1590 133.114 1602 134.5with
bare 15 1587 132.650 1576 132.5
f oils

13 1608 135.708 1628 137.5

Average 1595 ± 4.43 133.437 ± 0.985 1605 ± 9.49 135.96 ± 1.177

32 1613 139.185 1655 143.0

Axial, 27 1622 135.524 1640 138.5
with
Cd- 23 1647 136.203 1640 135.8
covered
foils 14 1625 138.987 1610 130.1

Average 1627 ± 7.28 137.475 ± 0.941 1636 ± 9.48 136.85 ± 2.710

* 2
Standard deviations in 7 and H, respectively.



Table 3.10.

Enrichment:

Comparison of the consistency of the moments and conventional curve-fitting methods
for obtaining the axial buckling and the extrapolated height for the UO2-D 20 lattice.

1.099%, Triangular Lattice Spacing: 3.50 inches, Fuel Rod Diameter: 0.431 inch.

Type MOMENTS METHOD CURVE-FITTING METHOD

of Run Axial Buckling Extrapolated Height Axial Buckling Extrapolated Height
Run Number 2 ~p2 )

ly (pB) H (cm) y (B) H (cm)

58 1627 136.911 1633 141.9

54 1617 139.667 1633 142.0

Axial, 49 1630 136.357 1638 138.5
with 44 1624 135.387 1639 138.0bare
f oils 42 1623 135.268 1632 136.9

39 1633 136.782 1619 134.5

Average 1625 ± 2.32 136.729 ± 0.652 1632 ± 2.91 138.633 ± 1.192

56 1630 139.892 1642 136.4

41 1603 133.328 1590 132.9
Axial,
with 48 1630 131.809 1575 130.3
Cd-
covered 47 1622 139.672 1629 142.4
foils

37 1613 133.671 1623 134.0

Average 1620 ± 5.16 135.674 ± 1.705 1612 ± 12.52 135.20 ± 2.05

in y and H, respectively.

M.

Standard deviations



117

possible to obtain values of the axial buckling and extrapolated height

from a smaller number of measurements and with greater confidence

than is possible with the conventional curve-fitting method.

3.4 DISCUSSION AND CONCLUSIONS

The study of the moments method described in this chapter for

a variety of reactor lattices has shown that it provides a superior

data reduction scheme for the analysis of the axial buckling and

extrapolated height. Although the moments method has been tested

only for heavy water lattices, it should be applicable equally well to

light water lattices as well as to lattices moderated by graphite or

beryllium because the moments method by itself does not impose any

limitation on the type of moderator. It is expected that the moments

method should be even better for the analysis of measurements of the

diffusion length or relaxation length in pure moderator. We may also

expect that such experiments can be made in small assemblies with

the moments method available. This may turn out to be an appreciable

advantage when it is not possible to use a large system.

The only serious drawback of the moments method, if any,

arises when the number of experimental data available is relatively

small, say less than 5, because the truncation errors incurred in the

flux moments become predominant; but in such a case the least-

squares curve-fitting method is also less reliable. For the axial buck-

ling, this drawback does not present a serious problem because it is

usually easy to have more than 10 experimental data points even in the

miniature lattices (16 axial flux data have actually been obtained). In
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the case of the radial buckling, however, the problem could become

serious, particularly when the lattice spacing is large, because only

a relatively small number of data points, say 5 or 7, may be available.

This problem will be discussed in detail in the next chapter.

We close this chapter by summarizing some advantages of the

moments method:

(a) The moments method for the analysis of the axial buckling and

extrapolated height provides a way of reducing the source and

boundary effects which become so severe in a small assembly

such as a miniature lattice as to reduce seriously the value of

the conventional curve-fitting method.

(b) The moments method avoids the necessity of assuming a value

of the extrapolated height to begin the calculation of the axial

buckling. The value of the extrapolated height computed by the

curve-fitting method is less reliable and, in fact, quite indefi-

nite in some cases. In contrast, the moments method does not

require a value of the extrapolated height to calculate the axial

buckling but is, in fact, able to obtain the extrapolated height

once the axial buckling has been computed.

(c) The moments method yields a smaller standard deviation and is,

therefore, more consistent in the interpretation of buckling

measurements than the least-squares curve-fitting method

primarily because of the reasons stated in (a) and (b).

(d) The moments method provides more information about the

physics of neutron behavior inside the assembly than the curve-

fitting technique which is primarily only a mathematical tool
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(as discussed, for example, in section 3.2.2).

(e) The moments method makes possible the determination of the

boundaries of an asymptotic region in the axial direction

through the choice of the lower and upper limits in the definition

of the axial flux moments.

(f) The moments method makes available a greater stretch of the

asymptotic region for buckling measurements. This advantage

will prove to be important in the case of small assemblies.
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Chapter IV

THE ANALYSIS OF THE RADIAL BUCKLING AND

EXTRAPOLATED RADIUS BY THE MOMENTS METHOD

4.1 INTRODUCTION

The moments method has been shown to be superior to the con-

ventional curve-fitting method in the analysis of the axial buckling and

extrapolated height. It remains uncertain whether this is also true in

the case of the radial buckling. In this chapter we shall develop a

moments method for the analysis of the radial buckling. The moments

method will be used in two different ways: as a direct method and as

an iterative method.

In general, the radial buckling can be inferred from experimental

activation data by means of the least-squares curve-fitting method with

reasonable consistency owing to the fact that a reasonably good esti-

mate of the radial buckling is available from the size of the assembly

through the relation (K6, M1)

a 2 = (2.4048)2 (4.1)
R

where R=R+0.7104 Atr is the extrapolated (or effective) radius, and

Xtr is the transport mean free path. Problems arise, however, in the

determination of the linear extrapolation distance from the experi-

mental radial activation distribution: the experimental results

extracted by the curve-fitting method are always larger than the

theoretical result 0.7104 Xtr given by asymptotic transport theory
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(H8, H9, H4), as will be seen later in this chapter. There is, therefore,

a difficulty in the interpretation of exponential experiments (H7), as

well as in the determination of the geometrical buckling in the pulsed

neutron source experiments (Gl). The problem is especially serious

in small assemblies (Si) and is a general concern in reactor physics

(K2, K7, K8). The basic difficulty underlying this problem is probably

the presence of energy transients due to spectral inequilibrium and of

spatial transients due to transport effects in the neighborhood of the

boundaries. These effects are relatively small in large systems but

can be important in small assemblies. For example, Windsor (W4)

has demonstrated the significant effect of energy transients on the

determination of the radial buckling when the buckling value is greater

than 50 m- (i.e., 5000 [B) in a U-H 2 0 lattice.

In this chapter we shall, therefore, be concerned with the

development of a moments method for the analysis of the radial buck-

ling and extrapolated radius (hence the linear extrapolation distance)

with two objectives in mind:

(a) To see if the consistency of the moments method is again

better than that of the least-squares curve-fitting method,

as was the case for the axial buckling.

(b) To find out if the method of data analysis is responsible,

in part, for the sizable discrepancy existing between the

experimental and theoretical values of the linear extrapo-

lation distance.

The moments method will again be tested with data from the

lattices used in the previous chapter; the method will be applied to

the miniature lattices in Chapter V.
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4.2 DIRECT MOMENTS METHOD

4.2.1 Theory

To parallel the approach in Chapter III, we define the radial flux

moments as

R

n = f rn4(r) dr , (4.2)

where 0(r) is the radial flux distribution, and R is some appropriately

chosen radial distance near the boundary which determines the boundary

of the radial asymptotic region. In the actual calculation, R is deter-

mined by the position of the last data point of the radial activation

distribution selected for the analysis of the radial buckling.

The definition (4.2) can be justified by the following argument.

We start with the assumption, common to all techniques of analyzing

buckling data, that the radial flux, 4(r), satisfies the diffusion equation

-DV 2(r) + (Z - vF3 )4(r) = 0 , (4.3)

where the nuclear constants have their usual meanings. Physically

speaking, the radial buckling is a measure of the radial leakage of

neutrons, which becomes increasingly important as the distance from

the radial boundary decreases. This implies that the radial leakage of

neutrons per unit volume and per unit time, -DV 2(r), should be

weighted more heavily as the radial distance from the center increases.

The choice of the factor rn as a weighting factor does just this.

Assuming azimuthal symmetry, we consider the element of

volume at r, 27rr dr dz, as shown in Figure 4.1. For convenience, let

us set |dz = 1 so that the element of volume becomes 27rr dr. The
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FIG. 4.1 THE ELEMENT OF AREA IN
CYLINDRICAL COORDINATES.
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number of neutrons that leak out of the assembly at the position r in

the radial direction per unit time is given by -DV 24(r) - 27rr dr; it is

to be weighted by rn to account for the relative importance of different

locations. Hence, we focus on the quantity rn[-D7 2 40(r)] 27rrdr. To

include all the possible neutron leakages at all radial positions, we

integrate the quantity over radial distance,

r n[-DV 2 4O(r)] 27rr dr. (4.4)
0

But Eq. (4.3) gives -DV 2 O(r) = (vZ fEa ), and Eq. (4.4) becomes

Rn+
2r(VZf -Za) f r n+14 (r) dr (4.5)

0

Since we shall use the ratios of radial flux moments to calculate

the radial buckling, as will be seen later, the common factor

27r(vf -Fa) will cancel so that we can drop it without loss of generality.

Finally, it is immaterial whether rn+1 or rn is used as the weighting

factor because we shall treat the moment index n as a variable

parameter. We thus arrive at the definition of radial flux moments

given by Eq. (4.2).

To derive the relationship between the radial flux moments and

the radial buckling, a2, we assume that

O(r) = Ar o(ar) ; (4.6)

this shape must describe the asymptotic radial flux distribution in order

to justify radial buckling measurements. Again, the normalization

constant Ar will not enter into the calculation of a 2, so we need con-

sider only the normalized radial flux moments,
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R
S= rrnJ (ar) dr , n= 1, 3, 5, ... ,odd. (4.7)

0

Only moments with odd indices are defined because the even radial flux

moments cannot be evaluated analytically in closed form owing to the

integration properties of Bessel functions (W3).

The flux value at the center of the assembly does not play a role

in the calculation of $n as its weight is zero. This proves to be helpful

because central flux data are not available owing to the presence of a

fuel rod. In addition, the true center of the system is usually not

sharply defined. This causes a difficulty in the conventional curve-

fitting method which is avoided in the moments method.

To evaluate Eq. (4.7), we use the identities (W3, A2):

f xJ(x) dx = xJ1 (x) , 
(4.8)

x Xn+1J0(x) dx= - fxn 0 Wdx + xn+1( x)+ nx nJ1x)W (4.9)

The essence of the direct moments method is to eliminate the

functional forms J (ax) and J1(ar) by means of three equations corre-

sponding to the (n-2)th, nth, and (n+2)th radial flux moments:

(3) 2  R n- 2  n3) Rn-3

n-2 2 in-4 + a 1 (aR)+ 2 0(aR) , (4.10)
aa

P ( n-2 J(aR)+ - 9(aR) (4.11)
S 2  n-2 a 1 2 (aR) , (4.11)

(+12 R n+2  (n )Rn+1
n)- ' +. j (aR) + (nl) j (aR) ,(4.12)

~n+2 2 n a 1 2 0

n = 1, 3, 5, . . . , oo
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To eliminate J0(aR) and J 1 (aR), set the determinant

Rn-2 3)Rn-3

Rn (n-1)Rn1

a 2

R n(n- 1)Rn1
a a 2

Rn+2 (n+1)Rn+1
a 2

Fn-2

L n +

Hn+2

,(n- 3)2+ a 2  
n-4

(n-1) 2

+ 2 n-2

+ a2 n

= 0, (4.13)

which yields the result

2 (n+1) 2n - 2R 2(n-1)2 n-2 + R 4(n-3)2 n-4

In+2 + 2R R 4n-2

for n = 5, 7, 9, .. , 00. (4.14)

To infer the radial buckling a2 from the foil activation data, we

define the experimental radial flux moments as

R
exp =0

0
r nA(r) dr ,

where A(r) is the measured foil activation distribution. The experi-

mental radial buckling is then obtained from Eq. 4.14) by replacing

the theoretical radial flux moments by the corresponding experimental

radial flux moments. Once the radial buckling has been obtained, the

extrapolated radius, R, can be readily calculated from the relation

(K6, M1),

~~ 2.4048
R= 2 (4.16)

a kfl

(4.15)
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The linear extrapolation distance, d, is then given by

d= R - R, (4.17)

where R is the physical radius of the system in question.

We could relax the definition of the radial flux moments as given

by Eq. (4.7) at the expense of analytical elegance. From the standpoint

of numerical calculations, there is no reason to restrict the moment

index to odd integers. Thus, if we were to start with the definition

R

f rnO(r) dr; n = 0, 1,2,3,..., oo (4.18)
0

we would arrive at the following result for the radial buckling, for

O(r) = AJ0(ar):

2 (n) n2nn - 2R(n- 1)2 n-2 + R 2 (n-2) 2 4j3}

-$n+l + 2 Rn - R2 n-1

for n= 3, 4, 5, ... , .

The lowest possible moment index is actually 2. In this case, we would

have

2 41 1- 2RL$
a (z) = (4.20)

3 2Ry 2 R b 1-LP3 + R2 - R2 I

Equation (4.20) should be preferable to Eq. (4.19) when only a few data

points are available, for then the truncation error incurred in the

numerical integration will predominate. This procedure was not used

in the present work, but it is a possible one.

The choice of the moment index is again determined by the mini-

mum probable error in radial buckling as found by means of the error

analysis; this problem will be considered in the next section.
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4.2.2 Error Analysis for the Radial Buckling and Extrapolated Radius

We shall use the same procedure that was used for the axial

buckling and extrapolated height in Chapter III. Recall Eq. (4.14) and

write

2 2aV = aV ($ -'n2 +). (4.21)

Taking the differential, we obtain

2 4 aa2(n)

a n 2 - 6n+2j-6

2
Define the variance in a as

C.2(n)
a

(4.22)

(4.23)
4

= Bn+2j-6(6$n+2j- 6)
2

j=1

where

n+2j- 62 -6 2,
j = 1, 2, 3, 4 ;

a- 2 is then the probable error in the radial buckling.
a

To compute the coefficients B n+2j-6 we rewrite Eq. (4.14)

a2(n) ,(n)

where

F(n) = (n+1)2 n - 2R 2(n-1) 2 n-2 + R 4(n-3) 2 n-4

G(n)= -$n+ 2 + 2R 2n - R 4' n-2 ;

here R is a constant fixed by the choice of the last data point. By dif-

ferentiation, we obtain the results:

(4.24)

as

(4.25)

(4.26)

(4.27)
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a2(n) _

8Pn-4

a 2(n) _

n-2

aa 2(n)

aPn+2

(n-3)2 R4
G(n)

-2(n-1)2 R 2G(n) + R4 F(n)

[G(n) 2

(n+1) 2G(n) - 2R 2F(n)

[ G(n)12

F(n)

[G(n) ]2

(4.28)

(4.29)

(4.30)

(4.31)

We consider again that the deviations in the radial flux moments

are primarily composed of the experimental error, 6 L exp and the trun-

cation error,
tr

6q4'. . These errors are defined as

6exP -h

P xp-

A .,r

and

tr =F[th]
r h L ]analytical

integration
- [th ]numerical

integration

respectively, where th are the theoretical radial flux moments,
4i

(4.33)

and

Ar is the normalization constant to be determined. The variance in a

may be written then

9

.2 (n) =
a j=1

B6 n-6 n2-6

exp 2
_n+2j-6

A r

The normalization constant Ar is determined by setting

da 22(n)
a
dA 0

r

(4.32)

+2 (4.34)

(4.35)
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to minimize the probable error in the radial buckling, a 2* Equation

(4.35) leads to the expression for Ar

4 2

1B +exp. Bn+2 j- 6 (Ln+2j- 6 )
j= 1

A (n) = (4.36)

B L th exp
Z= n+2 j-6( n+2 j-6)(Lpn+2j-6

Notice that theoretical radial flux moments must be used to compute

the coefficients Bn+2 j-6, j= 1, 2, 3, 4 to be consistent with the defi-

nitions of the experimental and truncation errors.

The probable error in the extrapolated radius depends completely

on a 2. Their relationship can be found by taking the differential of
a

Eq. (4.16):

~ 2 -3/2 26R = -1.2024 (a ) a(4.37)

Hence the variance in R is given by

2 1.4458 2a (n) = *23 a 2(n), (4.38)
R (a ) a

and the probable error in the extrapolated radius is given by

Cr n) -1.2024a (nn = 2 3/2 2() .(4.39)
R a

The same error estimate can also be made when the definition of

Eq. (4.18) is used. The results are formally the same except for the

expressions for the coefficients B. in which the moment indices would

be changed appropriately.

Computer experience has indicated that the truncation errors

incurred in the higher flux moments could so predominate, because of
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the relatively few data points available for the numerical integration,

as to reduce seriously the efficacy of the direct moments method.

This will be shown later in Tables 4.1 and 4.2. We can avoid this

problem by taking advantage of the fact that the radial buckling is

more or less fixed by the simple formula of Eq. (4.1). An effort will,

therefore, be made to improve the accuracy in the radial buckling by

trying to determine the necessary correction to the value given by

Eq. (4.1) by means of an iterative moments method rather than by

trying to determine the radial buckling itself.

4.3 THE ITERATIVE MOMENTS METHOD

The iterative moments method is an iterative scheme which

repeatedly corrects the radial buckling given by Eq. (4.1) by means of

the experimental radial flux moments until a consistent value is

obtained for the radial buckling.

4.3.1 Theory

Consider the asymptotic radial flux distribution given by Eq. (4.6).

Suppose a2 is a good approximate value to the desired radial buckling

2
a . We can expand the radial flux 4(r) in a Taylor series around the

initial value a
0

d
4(r, a) 0(r, ) + (a- ) -a d (r,a) + . . . (4.40)

a=a
0

Ar{ Jo(aor) - (a-a 0)rJ 1 (a 0r01. (4.41)

The radial flux moments defined in Eq. (4.2) become
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R

n ~ A r f rn[ Jo(aor) - (a-a 0 )rJ 1 (aor)} dr, n = 1, 3, 5, ... , odd.

0
(4.42)

Again we restrict the moment index to odd integers because none of the

even radial flux moments can be evaluated in closed form. We should

like to eliminate the normalization constant Ar by using the ratio of

any two independent radial flux moments. The choice of these two

radial flux moments is again arbitrary and would be governed by the

results of the error analysis. The moments that yield the minimum

probable error in the radial buckling should be the final choice. Unfortu-

nately, owing to the arrangement of the fuel rods, the number of points

at which measurements of the radial activation can be made is deter-

mined by the spacing of the lattice under study. For lattices of rela-

tively wide spacing, the number of data points available is about six,

and a significant truncation error in the radial buckling will be

expected if we try to use higher radial flux moments. We are, there-

fore, limited to the lower radial flux moments and shall use the first

three moments $1, $3, and $5. On using Eqs. (4.8) and (4.9) together

with the formulas

f J(x) dx = -Jo(x) (4.43)

and

f xnJ 1 (x) dx = -xnJ 0 (x) + n f xn-1J0 (x) dx, (4.44)

we obtain the three lowest possible radial flux moments

L= Al J 1 (a0 R) - (o) F , (4.45)
10 r o ao



$3 ArI

'5 = Ar!

G a 0H]

U -a-a V

where

F = -R 2J (a R) + -R j(aR
0 0 a0 0

G Jo(aOR)

a

H = R2( 8

0

U= 4R 2
2a

+ R
a

0

SR2 - J(a R)
2a

(a R)+ R2

64
-4
0

- J(aR)

0

+R 4 - 16R 2 (aR)
a 1 0

V = -R2 R4+ 192
a 0

24R 2
2a

ae 0
+ 6

a
0

( + R 4
4

a 0

16R 2 ) (aR)
2
0)

The essence of the iterative moments method is to determine the

quantity ( ao ) by means of experimental radial flux moments, and

hence correct the radial buckling repeatedly until a convergent value

is obtained. This can be achieved by taking the ratio of any two radial

flux moments given by Eqs. (4.45), (4.46) and (4.47). There are three

possible cases:

G ( 0 H
0o

(4.53)
R j ( R)
a lo

0
F
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(4.46)

(4.47)

(4.48)

,$ (4.49)

(4.50)

(4.51)

(4.52)

Case 1 13

1P

,



Sa-a

0 =
1

(4.54)

H3 RJ1)F]
G P 1 aR)

H - ---' F]
LP1

whence

Case 2

whence

Case 3

whence

TT- 0

1 J (aR)o 00

a-aj

S0

U -

a

- (aa 0a) F

(4.58)
V - -- F]

The new radial buckling, a 2, is

2 W 2-a -2
a (i) = a 1+ ,

then given by

i = 1, 2, 3 .(

Since the method depends on the use of only the first-order term

of the Taylor series, it is necessary to repeat the calculation with the

2 2newly computed a 1 replacing the initial value a 0. The procedure is

134

a-a

U -a0 V

( = ao
G - H

5

-aU - L)G

_V )2 V - --5 H]
I 3

(4.55)

(4.56)

(4.57),

P5 Rj (a R)]

(4.59)
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repeated until the following convergence criterion is satisfied:

2 2
a. (i) -a.(i)

2+1 < e, i = 1, 2, 3, (4.60)
.i

where E is some arbitrarily chosen small number, say 10-4.

In this treatment we have terminated the Taylor expansion at the

first-order term for simplicity, but this is by no means a limitation;

we can actually extend the treatment to higher-order terms at the cost

of increased complexity. We would then obtain a higher-order poly-

nomial equation for the quantity a 0 ) which could be solved numeri-

cally without difficulty. In contrast, a procedure of this kind would be

more difficult for the least-squares curve-fitting method in which it is

necessary to determine the normalization constant and the parameter a

simultaneously. However, the extension to higher-order terms of the

Taylor expansion turns out to be unnecessary when J (ar) represents

the actual radial flux distribution reasonably well; Eq. (4.1) then gives

a very good approximate value for the radial buckling.

An error analysis is now needed for the iterative moments

method to select the best of the three possible cases considered above.

4.3.2 Error Analysis

To compute the probable error in a2, we differentiate Eq. (4.59):

6a2(i) 1i+ 0 62 +22 1+ ( o)j ,) 6 (4.61)

2
where the value of a appearing in Eq. (4.61) is not the initial value we

0
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have chosen to start the iteration, but is rather the value that precedes

2 2
the final convergent value of a . We define the probable error in a as

the magnitude of 6a 2(i):

-2 = 6a 2 (i) ~2a 2  1+ - 6 ea (4.62)

2
since 6a ~ 0 when the iteration converges under the criterion, Eq. (4.60);

0

2 is composed primarily of the possible deviations in the ratios
a

S/$k (j, k= 1, 3, 5). Now,

265. .

k Lk $2k

2

(65 2 + 2 (4.63)
vk LJPk k

where

~ exp-

6i. th (4.64)
6+,k jk ~ A' ,r4.4

th
tj k are the theoretical radial flux moments calculated analytically so

that there is no truncation error involved, and exp are the experi-j, k

mental radial flux moments calculated numerically. Thus, the

deviations 6 j, k in Eq. (4.64) consist of the truncation error incurred

in the numerical integration as well as the departure of the experi-

mental data from the theoretical asymptotic flux given by Eq. (4.6).

The normalization constant Ar is determined by minimizing the

2
total probable error in a , i.e., by setting



da 2
dA r u2

which leads to the result

( th 2 2 + (,x)2 ( 2th)

j, k= 1, 3, 5.
(h 2 L k ]J~

The deviations 6 ( )
o 1

and (4.58) by differentiation:

1 i a9R) F G

a3 0

H - -- F]
1

th)2 [ 1jhLP , xp]

can be obtained from Eqs. (4.54),

(Y3)

-y;Y

H

R
a0 J 1(a R) }6Q13j

6Lp -- ,

-G HLU - Go]
5 2

V H] -Q H

R 3 -- '

1 i a R)

$5 0
- +~ ~R

V - ) F]
I P1

F U-
(LI5\
1\j)

R
a

0

V - )

4.4 THE OFF-CENTER EFFECT

In the calculation of the radial buckling, we are faced with a

possible "off-center effect" because the arrangement of the fuel rods

does not allow the determination of the activation at the actual center

of the assembly, as indicated in Figure 4.2.
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(4.65)

r
(4.66)

(a-a
-a

6 aa00

(a-a
6

o 0

(4.56),

(4.67)

(4.68)

6 a-a
S 3 )

J (a R)j

-2

F

6 -. (4.69)

-2

-56 (3

The off-center effect

- FP3
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arises in the calculation of the experimental radial flux moments. To

take this effect into account, we recall the assumption (Chapter II) that

the radial flux distribution is azimuthally symmetric. We can then pro-

ject the measured values of the activation on the x-axis on to the real

radial axis r, as shown in Figure 4.2. To obtain the experimental

radial flux moments along the radial axis r, we simply integrate the

measured fluxes over r with unequal intervals, although the intervals

are equally spaced on the x-axis. Simpson's rule may be used for the

numerical integration, but the unequal-interval formula must be used;

it is given in Appendix B. The off-center effect is generally small for

large assemblies but may be significant in small assemblies.

Owing to the definition of the radial flux moments given by

Eq. (4.2), we can use half of the measured radial activation data, as is

evident from Figure 4.2. Throughout the present work, the arithmet.c

mean of the two activation data at the corresponding radial positions

will be taken for the calculation of the radial flux moments. In most

experiments, it turned out that foils at equal distances from the center

of the assembly, but on opposite sides of the assembly, showed unequal

activities (the differences being greater than those to be expected from

counting statistics) owing primarily to the tilt of the foil holder (H9):

one side of the foil holder is closer to the external neutron source than

the other. An example is given in Figure 4.3. Harrington Hq) nas

shown that the desired radial activity in such a case is the arithmetic

average of the two observed activities.
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4.5 SOME FEATURES OF THE MOMENTS METHOD FOR THE

ANALYSIS OF THE RADIAL BUCKLING

The analysis of radial buckling has been a challenging problem

for some time (H7, W4, K8) because of spatial transients and energy

transients associated with the asymptotic and equilibrium conditions

discussed in Chapter II, and because of the reflector effect and hetero-

geneity effects (K8,N1). It is of great interest, therefore, to see if the

use of the moments method can reduce various transient effects on the

radial buckling as was the case with the axial buckling.

First, it is advisable to distinguish the higher spatial harmonics

from the various transients. By spatial transients, we mean the

extraneous contributions to the flux that arise from transport effects

near the source and boundaries; these are sometimes called "current

transients" (D3). Examples are the additional solutions, other than the

fundamental, to the balance equation for the zeroth moment of the

Legendre polynomials in the Pn approximation. By an energy transient

is meant those eigen-functions besides the fundamental mode that are

present because of spectral inequilibrium; for example, the additional

solutions, other than the fundamental, to the balance equation of the

zeroth moment of the Laguerre polynomials in the Ln approximation.

Finally, we define the spatial harmonics as those eigen-functions, in

addition to the fundamental, of the diffusion equation itself. These are

separate from the transport effect which gives rise to the so-called

current transients defined previously. In this section, we shall con-

centrate on the effect of the harmonic modes and leave the correspond-

ing effect of various transients on the buckling determination to

Chapter VI where they will be studied in greater detail.
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We recall, for this purpose, that the complete solution of the

diffusion equation (4.3) for a bare system is (W1, K6, S1, P2):

00

<(r) = A .J (a.r)

j=1

00

=A 1 J 0 (a 1 r) + A J0(a r)

j-2 i i

= [Fundamental Mode] + [Harmonic Modes], (4.70)

where

2.4048 (4.71)
R

5.5201
2(4.72)

R

8.6537
a 3  ~ , (4.73)

R

11.7915 74)
4 ~R

etc.

The fundamental is the dominant mode, and the harmonics are

usually small in large assemblies such as the M. I. T. Subcritical

Assembly (P1). However, the effect of harmonic modes appears in

small assemblies such as the miniature lattices. This is especially

the case when the external neutron source contains various harmonics.

Sefchovich made a harmonic analysis of the source distribution for the

miniature lattices and concluded that the higher harmonics had a

measurable contribution, with the third harmonic being the most sig-

nificant (S1). His results are tabulated for reference:
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Harmonic Index, j Harmonic Coefficients, A.

1 0.94130

2 -0.01455

3 0.03055

4 -0.01395

5 0.01679

6 -0.00316

7 0.00838

8 0.00184

9 0.00855

The higher harmonics of the source undoubtedly excite the spatial

harmonics of the radial flux in the miniature lattices in addition to the

fundamental mode. The quantitative study of this effect will be taken up

in the next chapter.

To see the effect of harmonic modes on the radial flux distribution,

we sketch the distribution of the higher harmonics as well as that of the

fundamental in Figure 4.4. The corresponding moments distributions of

the fundamental mode and of the harmonic modes are shown in Figure

4.5. It is evident that the integral definition of the radial flux moments

again tends to reduce the higher harmonics and to extract mostly the

asymptotic radial flux depending on the choice of the moment index.

The harmonic modes are particularly influential near the boundary

where the asymptotic flux decreases rapidly. Aside from the trun-

cation error, the moments method would allow the use of more experi-

mental data in the neighborhood of the boundary than the curve-fitting

method. This is expected to be helpful in obtaining better results for



144

1.0

A 1 J0(a Ir)

0.8

z

c~ct

~0.6

z
0 o

:D
-

-J A J(a r)

0.0

-0.2
0.2 0.4 0.6 0.8 1.0

R 11(EXTRAPOLATED RADIUS)

FIG. 4.4 THE FUNDAMENTAL MODE AND THE HIGHER HARMONICS
OF RADIAL FLUX DISTRIBUTION.



145

0.8

LUi

LiU

0.6

0.4

0.2

0.0

-0.2

-0.41 
0 0.2

FIG.4.5 DISTRIBUTION

0.4 0.6 0.8
- r /R

OF THE FLUX MOMENTS OF THE

1.0

FUNDAMENTAL MODE AND THE HARMONIC MODES.
NOTICE THAT THE AREAS UNDEH THE CURVES
ARE THE MOMENTS OF VARIOUS MODES.



146

the linear extrapolation distance than can be obtained with the curve-

fitting method.

Finally, we mention the reflector effect, which is usually pro-

nounced in a two-region lattice or a reflected assembly (P4, R2, S2).

In such an assembly the radial flux cannot be fitted by the simple

J (ar) and one has to take into account the I (or) term. This will be

discussed in the next section.

4.6 THE REFLECTOR EFFECT

In a reflected cylindrical assembly, the radial flux is given by

two-group theory as (K6, M1, S2)

0(r) = Ar (ar) +c 0 (or)], (4.75)

where 12 is the transient buckling corresponding to the reflector effect,

and c is a coefficient which weights the 10 term relative to the J0

term. The other parameters have the same meanings as before.

We shall adopt the iterative moments method to infer the desired

radial buckling a2 from the experimental radial flux moments. To do

this, we regard the radial flux as a function of the parameters a, 0,

and c, and expand it in a Taylor series around some appropriate initial

set (a 0 , Po, c 0 ) that is supposed to be a good approximation to the true

values of a, 0, and c:

d
4(r, a, 1, c) ~ (r, a0 , , c0 ) + (a-a ) da (r, a, 13, c)

d
+ (0-0) d4(r, a, , C)

+ (c-c) 4(r, a, 1, c) . (4.76)
0 c 

a0 1 0 , c 0
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Now,

d

a-kr ,( , I a 0 (3 I 0 c 0

d4(r,dc a, 0, c)
la 0 ,( 0 .,c 0

= -A rJ (a r) ,

= Arc rI ( r) ,

= Ar I (o r) .

(4.77)

(4.78)

(4.79)

Thus the radial flux is given approximately by

O(r, a, 0, c) ~ Ar [Jo ar)+c I (1 r)I - (a-a )rJ (a r)

+ c (0-0 0)rI (P 0r)+(c-c )I ( 1r)}. (4.80)

Substituting Eq. (4.80) in Eq. (4.2), we obtain the first three odd radial

flux moments:

aa a 0
1 = RA 1 aR) +c I W R) F+c( f ,

3+cg -

$15 = Ar U+cu-

where F, G, H,

a-a \

0a I

(a-a)

H+c h
o 0

(4.82)

(4.83)v} ,

U, and V are given by Eqs. (4.48) through (4.52), and

f = R2I 0(3 R) - 2R I W(R)
00

2R 2 - (P R) + R
g-2 o((oR)0( 0 0

I 1 0(3R) (R 2 +

(4.81)

(4.84)

(4.85)

$P3 = A r f

V+c 0



h = R2 (R 2 + I) - (+R 2 + 4)i(PO R)

_4R 

2

2
03

v = R2 R4+

R2 +8I
R+

192 + 24R 2'1,(P
4 2 0o"
0 0/)

R) + R + R4 + 1(R)

R) - R 6 +R 4+ I 1( R) .

O\4\ ,1 0

0R

The ratios 4j 31,

respectively:

(

(

5 3, and $ 5 / 1 yield the following three equations,

h - f]

H- )F ]

G J3 R1 (aOR)

H -F

- c V- -

g- (9) IiW R)

-H - (-)F

(4.89)

u - ( 3 g -

c V - 5 H-C(LP

U G5

V - H

(4.90)
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(4.86)

(4.87)

(4.88)

0-o



( a
c -0)- 5

V -V 5 F

U - ( )RJ (aoR)

V -) F

u

c

V

5 R R)
T1 0 -

-K5
F1

We can solve these three equations for the three unknowns

and c. For ease of writing, we set0,

Bi= Gj-
R

0
J0(aR)]

B2 = H (3) F]

B = h -K."f].

SL k.1) I

3 [J

B =J V - h ,

B5 = v- ,

B6= G U,

B7 = g-
'Ip3 

R ,T, op
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( a 0),
0

(4.91)

(4.92)

(4.93

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)



B8= 5) j - u ,

B = V (> F1

B 10 = v - f ,

B1 1 = U - Jp(acR)j

B 1 2 = u -

Simultaneous solution of Eqs. (4.89), (4.90) and (4.91) yields:

B
1

B2

B
3

B2

B
6

B
4

B
5

B4

B 
1 1

B 9

B
1 0

9

B
3

B2

B
5

B4

B
1 0

B 
9
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(4.99)

(4.100)

(4.101)

(4.102)

I 10oR)j (4.103)

B
7

B2

B
8

B4

Sa-a
0

B
1 2

B 9

B
7

B2

A

A
(4.104)

B
8

B4

B
1 2

B
9

(L) R1 TO
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1
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2
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6

B4
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7
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2

B
8

B4

B 1 2
B 9

B 1 1

B
9

A

B 3

B2
1

1

1

B 1

B2

B 5

B 4

B
1 0

B 
9

B 6

B4

B 1 1

B 9

A

A3
3

- A-

The corrected radial buckling a2 is given by

a2 = a 2
0
E l

a-a -2
+ (a 0 , )

and the corrected transient buckling 0 2 is given by

2-#2 = 0 + o-0 -
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(4.105)

(4.106)

(4.107)

(4.108)
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The procedure must be repeated until the following convergence

criteria are satisfied:

aj+1 - a, j+1 ~j c1j 1 - c

a. <i , < < E + c C, (4.109)

where c1 , E2, and E3 are some arbitrarily specified small positive

numbers.

Numerical experience indicates that the iteration on the parame-

ter 3 converges slowly and even diverges in some cases depending

upon the initial guess on 3. This result is probably due to the non-

linear nature of the parameter 3 as well as the divergent behavior of

the modified Bessel function I (or) for large arguments (W3, A2). A

similar difficulty has been reported by Serdula (S2). A common way of

avoiding this problem is to use only those data in the central region

where the reflector effect is negligible. This is, however, not always

feasible, especially in a small assembly, because only a few data

points are available.

We prefer to determine the parameter / by means of the two-

group criticality equation indirectly and iterate on a and c alone. We

assume that two-group diffusion theory gives a good representation of

the reflector effect. The criticality equation in the two-group theory

gives rise to two roots for the material buckling (K6):

B2 1 1 1 +/(+ 1 2 + 4(koo 41) (4.110)
ml 2 2 2

L L2 L1 L2 L L2

and

Bm2 -1 (+ + + 2 4(k -1)

m2 2 Li L2) iT L 2 L L2
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2 D1 2 D2
where L 2 is the diffusion area, L2 2 is the age, and k is the1 1 2 2
multiplication factor for an infinite medium; Biml is the usual

m2material buckling corresponding to the fundamental mode, while B2

is the transient buckling corresponding to the reflector effect. Under

the assumption of the azimuthal symmetry of the neutron flux, the two

roots of the material buckling can be expressed in terms of the axial

and radial bucklings:

2 2 2
Bm1 = a -7 , (4.112)ml

and

B2 =W2 2). (4.113)m2

The sum of Eqs. i4.112) and (4.113) yields

0 2 ( 2 + 2 + a 2 - 272 (4.114)

the addition of Eqs. (4.110) and (4.111) gives

-(B 2 +B 2  )2 + (4.115)

1 2

Thus,

2 1 1 2 2
3 (i2+12 + - 272. (4.116)

2
The transient buckling /2 is therefore determined by the radial

and axial bucklings as well as the diffusion area and Fermi age (or

slowing-down area). To calculate #2 , we assume that L and L are1 2

known and that the axial. buckling T2 has been obtained by, say, the

moments method in Chapter III. The value of /2 is thus corrected in

2accordance with the radial buckling a.



154

Another way of deriving /2 is to eliminate y2 between Eqs. (4.112)

and (4.113):

[2 (B 2

m2- 2

2 + 2
L 1L 2

4(koc, 1)
+L 2L2

1 2

2
-0!e (4.117)

This formula requires the knowledge of k and may be undesirable

when k, is not well known. Since we can obtain y2 with good accuracy,

we prefer Eq. (4.116) to Eq. (4.117).

On fixing /2 through the two-group criticality equation as

Eq. (4.116), we then use Eqs. (4.89)

quantities a 0) and c without the
0

a a

o0

B 7
-c -

B2

and (4.90) to determine the

terms involving -
0

B1

2

and

B
8

B 4

B
6

B 4

Solving Eqs. (4.118) and (4.119) for

B1 B 7
2 B 2

B6 B 8
B B

1
B

7

2

B 8

B4
1

a 0
and c, we get:

BB -B B 

_ 1 8B 7 , B2B8
B4B -B2B8

(4.118)

(4.119)

a-a )

0 (4.120)
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and

1 B 1
4

B
6

1 B4  (B1 B +B 2 B 6)
c= (4.121)

B 7  (B4B7+B 2 B 8

B 8
1 B6

B7

Thus we iterate the calculation on the parameters a and c alone; the

iteration is terminated when the convergence criteria given by

Eq. (4.109) are met.

The consistency of the method can be tested by means of an error

analysis following the same procedure as section 4.3. The derivation is

tedious and is given in Appendix E.

There is some difficulty in guessing the value of c at the begin-

ning of the iteration. To avoid this difficulty, we shall estimate the

value of c from the experimental data by means of a least-squares

technique; this procedure is described in Appendix F.

4.7 RESULTS

The direct moments method and the iterative moments method

have been coded as RADBUCK and RAMBLER, respectively, in

FORTRAN IV language for an IBM Operating System 360 Model 65

computer at the M. I. T. Computation Center. These codes are
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described in Appendix A and have been applied to the same slightly

enriched U-D 2 0 and UO2-D 20 lattices as were analyzed in the calcu-

lation of the axial buckling in Chapter III. We present the results in

the following subsections.

4.7.1 Application to the Slightly Enriched U-D 2 0 Lattices

Four different slightly enriched, triangular, U-D 20 lattices

investigated in the M. I. T. Subcritical Facility have been analyzed by

means of the iterative moments method with the RAMBLER code and

also by means of the direct moments method with the RADBUCK code.

Both the radial buckling and the extrapolated radius (hence the linear

extrapolation distance) are computed. The results are given in

Tables 4.1 through 4.4 for the radial buckling and in Tables 4.5

through 4.8 for the extrapolated radius and linear extrapolation

distance. The average value of a number of experimental runs and its

standard deviation are calculated by means of Eqs. (3.72) through (3.75)

2 r 2 -.
with 7 and H replaced by a and R, respectively. The corresponding

values of a and R computed by the curve-fitting method with Palmedo's

RADFIT code are also included for comparison. The standard devi-

ations obtained with the moments method are again smaller by as

much as a factor of about 2 in some cases than those obtained with the

curve-fitting method. This result indicates that the internal consistency

of the moments method is greater than that of the conventional curve-

fitting method in the interpretation of the radial buckling measurements,

just as it is in the case of the axial buckling. The values of the radial

buckling inferred by means of the moments method are consistently
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about 40 pLB or 50 pjB larger than the corresponding values obtained

with the curve-fitting method. The difference is appreciably greater

than the experimental error quoted and seems to be related to the

method of data analysis. It is difficult to resolve this apparent dis-

crepancy quantitatively, but it may be explained qualitatively:

(a) The curve-fitting method has been found to be sensitive to the

position of the true center of the cylindrical assembly (P1). A differ-

ence as large as 100 pB has been obtained with the RADFIT code by

varying the position of the center by one or two centimeters in the case

of full-size lattices, and the difference can be even greater (a few

hundred pB) in the case of the miniature lattices (to be seen in

Table 5.2). The moments method described in the present chapter

removes this difficulty by giving a zero weight to the flux at the center

on the physical reasoning that the radial leakage of neutrons is zero at

the center. (b) Another possible cause of the discrepancies is the

truncation error incurred in the numerical integration involved in the

moments method, but this error should be small, if the iterative

moments method is used, as is implied by the relatively small values

of the computed probable error in the radial buckling. (See Table 4.4,

for example.) The probable error is expected to be small because the

iterative moments method computes a correction term 0) which is

a much smaller number than the radial buckling itself, and therefore

the value of a2 obtained with the iterative moments method is insensi-

tive to the truncation error incurred in the calculation of the various

radial flux moments. In any case, the values obtained by means of the

moments method are in better agreement with the theoretical
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asymptotic value given by Eq. (4.1) than are those obtained with the

curve-fitting method. This can be seen by comparing the results of the

analysis listed in Tables 4.1 through 4.8 with the theoretical values of

a2 and R for the 3-foot tank and 4-foot tank, respectively:

3-Foot Tank: Physical Radius = 45.72 cm

Xtr = 2.60 ± 0.06 cm at thermal energy

R = 47.50 cm

a = 2560 pB

4-Foot Tank: Physical Radius = 60.96 cm

Xtr = 2.60 ± 0.06 cm at thermal energy
r

R = 62.81 cm

a = 1463 pB

Because of the good agreement with the theoretical value of the

radial buckling, the moments method makes it possible to compare the

(usually controversial) experimental values of the linear extrapolation

distance with the theoretical values. To this end, we list a range of

values of the transport mean-free path which may characterize the

lattices investigated in the present work:

For thermal neutrons (H8, H9, P2, S1, B3),

Xtr = 2.40 to 3.20 cm,

d = 0.71 Xtr = 1.71 to 2.27 cm.

For epithermal neutrons (thermal to 180 Kev) (A4),

Xtr = 3.72 to 3.95 cm,

d = 0.71 Xtr = 2.64 to 2.80 cm.
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it is evident that the agreement is satisfactory.

Finally, the values of the radial buckling and extrapolated radius

extracted by means of the iterative moments method and the direct

moments method agree well with each other, although the probable

error incurred with the direct moments method is appreciably greater

than that of the iterative moments method.

4.7.2 Application to the Slightly Enriched UO2-D 20 Lattices

The RAMBLER code has also been applied to the three slightly

enriched UO 2-D2 0 lattices analyzed in Chapter III for the axial buck-

ling. Here, only the iterative moments method has been used because

only five data points are available in most measurements, and the

direct moments method usually incurs a large truncation error as has

been shown in section 4.7.1. The results, paralleling those of section

4.7.1, are presented in Tables 4.9 through 4.14. The conclusions are

similar to those reached in section 4.7.1.

All the results obtained except those for the lattice with square

spacing are calculated with Case 1 of the iterative moments method

described in section 4.3 because this case yields the smallest probable

errors in the radial buckling among the three cases. For the UO 2-D2 0

lattice with square spacing, Case 2 gives the smallest probable errors.

Case 2 not only yields a smaller probable error but also provides a

value of the radial buckling much closer to the theoretical value.

There are also consistent significant differences between the

values of the radial buckling inferred by means of the moments method

and those obtained with the curve-fitting method. The reasons are
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believed to be associated with the methods used for the analysis of the

experimental data as have been discussed in section 4.7.1. Neverthe-

less, the values extracted by means of the moments method are in

better agreement with the theoretical values.

It is also evident that, for each of the two triangular UO 2 -D 2 0

lattices, there is a difference of about 50 yB between the value of the

radial buckling obtained with bare foils and that obtained with cadmium-

covered foils (the radial buckling for epicadmium neutrons). The

corresponding difference is about 75 pB for the square UO2-D2 0

lattice. The differences may be indicative of a slightly nonasymptotic

spectrum in these lattices.

We are now in a position to compute the values of the material

buckling of all the lattices we have investigated so far. This will be

done in the next section.

4.8 THE MATERIAL BUCKLING

In this section we shall calculate the values of the material buck-

lings of the three U-D 2 0 lattices and of the three UO 2 -D 2 0 lattices by

2
means of Eq. (2.3), without the component B :

B 2  - a 2  _ 2 (4.122)
m

This is permissible if the neutron flux is azimuthally symmetric. The

2
possible contribution of the component B has been investigated experi-

mentally for the M. I. T. Exponential Assembly by measuring the radial

buckling at different angles 0 and was found negligible (P1, H8). At the

M. I. T. Lattice Project, the values of the radial buckling of each lattice
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have actually been inferred from a number of radial flux traverses

measured at different azimuthal angles. The fact that the differences

observed are within the experimental uncertainty indicates the validity

of the assumption of azimuthal symmetry.

The results for the U-D 20 lattices are given in Table 4.15, while

those for the UO 2-D 20 lattices are given in Table 4.16. The corre-

sponding results obtained with the curve-fitting method are included

for comparison. The values of the standard deviation quoted are calcu-

lated by combining the standard deviations in the radial and axial buck-

lings (B2, P 5):

EJE 22 + E2,2 (4.123)
B a -Ym

where e denotes the standard deviation.

The standard deviation in the material buckling measurement

analyzed by the moments method is smaller by approximately a factor

of 2 than that of the curve-fitting method, indicating that the moments

method is more consistent than the curve-fitting method for the analy-

sis of the material buckling. However, the values of the material

buckling inferred by the moments method are consistently larger than

those obtained by the curve-fitting method (45 to 150 pB). The differ-

ences come, in large part, from the difference in the values of the

radial buckling (discussed in section 4.7.1). It is difficult to judge

which method is more accurate. The best way of testing the two dif-

ferent methods would be to compare the values obtained in the critical

experiments. It has not, so far, been possible to make such a com-

parison.
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4.9 CONCLUSIONS

In this chapter we have developed the iterative moments method

and the direct moments method for the analysis of the radial buckling

and extrapolated radius. The two methods are equivalent and should

yield the same value of the radial buckling whenever the truncation

error is not significant. If the number of data points is relatively

large, the direct moments method is superior because it gives a

unique definition for the radial buckling and no iteration is necessary.

When only a few data points (say, < 7) are available, the iterative

moments method is not only preferable but, in fact, is necessary.

The method converges very rapidly; in most cases, two or three iter-

ations are sufficient. When nine or more data points are available,

the two methods give practically the same results. (See Tables 4.1

and 4.3.)

The values of the radial buckling of all the lattices studied in the

present chapter, which are extracted by means of the moments method,

are consistently about 40 yB to 100 pB greater than those inferred by

means of the curve-fitting method. In each case, the value obtained

with the moments method agrees better with the theoretical value given

by Eq. (4.1) than the curve-fitting method and is more consistent for the

analysis of the radial buckling. As a consequence, it is possible to

obtain a consistent value of the linear extrapolation distance experi-

mentally and to compare it with the theoretical value predicted by

asymptotic neutron transport theory. The cause of a discrepancy

between the two methods of analyzing the radial buckling is not well

understood, but some possible reasons were discussed in section 4.7.1.
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Analogous systematic discrepancies, due to the use of different methods

for the analysis of the radial buckling (and hence the material buckling)

of light water-moderated lattices, have been found at the Brookhaven

National Laboratory (H7). The analysis of the radial buckling has been

the major problem associated with the measurement of the material

buckling by means of exponential experiments and is still a problem of

concern. A study of both the experimental techniques as well as the

theoretical methods used in connection with this problem seems still

necessary.

It seems reasonable to conclude that the moments method is a

more consistent scheme for analysis of both the axial and radial buck-

lings than the conventional curve-fitting method.



Table 4.1. Radial buckling values for 0.75-inch-diameter, 0.947% U 2 3 5

uranium rods in a 3.5-inch triangular lattice, moderated by
temperature of 27 0C. Density of uranium = 18.9 gm/cm 3 .

enriched,
D20 at a

Iterative Moments Direct Moments Curve-Fitting
Method Method Method

Type of Experimental 2 * 2 u 2
Detector Run Number a 2 a 2 a

(pB) (pB) (pB) (pB) (pB)

K9 1467 0.012 1467 45.6 1399

LO 1466 0.005 1463 45.7 1416

Bare L2 1454 0.006 1454 46.0 1398
gold
foils L6 1440 0.013 1442 46.4 1382

L7 1456 0.008 1455 46.0 1425

Average 1457 ± 4.9 1456 ± 4.4 1404 ± 8

Li 1435 0.015 1434 46.7 1398

Cadmium- L3 1426 0.027 1425 46.9 1380
covered L5 1436 0.021 1435 46.6 1412
gold
foils L8 1426 0.024 1425 47.0 1388

Average 1431 ± 2.8 1430 ± 2.6 1395 ± 7

2 - Ametnolfu fi daaaii~i~£~±
U 2s the probable error
a in section 4.3.

in a associated with the

Standard deviation of the mean of a number of experimental runs (not to be confused with the

probable error aa2 '

methnod of data analysi ete 1-) Ui~



Table 4.2. Radial buckling values for 0.75-inch-diameter, 0.947% U 2 3 5 enriched,
uranium rods in a 5-inch triangular lattice, moderated by D 2 0 at a
temperature of 27*C. Density of uranium = 18.9 grams/cm3

Iterative Moments Direct Moments Curve-Fitting
Method Method Method

Type of Experimental 2 2 2
Detector Run Number a a2 a o2 a

(pB) (pB) (pB) (pB) (pAB)

G9 1448 0.002 1459 100.5 1408
H2 1458 0.002 1468 99.8 1420
H5 1458 0.003 1469 99.7 1415
I 1 1437 0.006 1450 101.3 1394
I 2 1447 0.006 1460 100.5 1404

Bare I 3 1463 0.010 1474 99.4 1425
gold I 4 1467 0.029 1595 89.7 1437
foils I 5 1457 0.007 1468 99.8 1412

I 6 1452 0.011 1463 100.3 1413
J2 1432 0.001 1444 101.8 1387
J4 1432 0.005 1444 101.8 1389
J5 1430 0.004 1441 102.0 1388
J8 1464 0.002 1474 99.4 1428
KO 1459 0.005 1470 99.7 1418

Average 1450 ± 3.4 1470 ± 10 1410 ± 4

H3 1431 0.0003 1439 102.3 1396Cadmium- H4 1426 0.004 1436 102.5 1387

gold foils H7 1435 0.013 1444 101.9 1396

Average 1430 ± 2.5 1440 ± 2.3 1393 ± 3

2 is the probable error in a2 defined in section 4.3.

Standard deviation of the mean of a number of experimental runs. Cnf



Table 4.3. Radial buckling values for 0.387-inch-diameter, 0.947% U 2 3 5

uranium rods in a 1.5-inch triangular lattice moderated b
temperature of 26*C. Density of uranium = 18.9 grams/cm .

enriched,
D 2 0 at a

Iterative Moments Direct Moments Curve-Fitting
Method Method Method

Type of Experimental a2 2 a2 - 2 a 2
Detector Run Number

(pB) (yB) (yB) (yB) (p B)

N4 2427 0.059 2424 45.0 2375

N6 2416 0.088 2414 45.1 2373

Bare N7 2426 0.081 2425 45.1 2382

gold N9 2416 0.095 2414 45.2 2373
f oils

P3 2430 0.051 2425 44.9 2390

P6 2425 0.079 2423 45.0 2374

Average 2424 ± 2.4** 2421 ± 2.3 2378 ± 3

N3 2415 0.117 2410 44.9 2364

Cadmium- N5 2396 0.143 2391 45.2 2347

covered PO 2389 0.132 2387 45.4 2335

gold foils P2 2390 0.145 2387 45.3 2342

P4 2405 0.129 2399 45.0 2354

Average 2399 ± 4.9 2395 ± 4.5 2348 ± 5

a-a2 is the probable error in a 2 defined in section 4.3.

* *
Standard deviation of the mean of a number of experimental runs.
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Table 4.4. Radial buckling values for 0.387-inch-diameter, 0.947% U enriched,

uranium rods in a 3-inch triangular lattice moderated by D 2 0 at a
temperature of 25*C. Density of uranium = 18.9 grams/cm 3 .

Iterative Moments Curve-Fitting
Method Method

Type of Experimental 2 a2 2
Detector Run Number a 2a

(pB) (pB) (pB)

Q9 2606 0.178 2446

R1 2596 0.108 2444
Bare R3 2576 0.090 2415
gold
foils R6 2607 0.076 2473

R8 2586 0.111 2448

Average 2594 ± 5.9 2445 ± 9

Q4 2522 0.021 2346

Q7 2567 0.055 2420

Cadmium- RO 2523 0.013 2375

covered R2 2546 0.035 2399

gold foils R5 2567 0.021 2348

R7 2558 0.042 2427

Average 2547 ± 8.4 2386 ± 15

a- 2 is the probable error in a2 defined in section 4.3.

Standard deviation of the mean.



Table 4.5. Values of the extrapolated radius and linear extrapolation length for 0.75-inch-diameter,
0.947% U-235 enriched, uranium rods in a 3.5-inch triangular lattice, moderated by D 2 0
at a temperature of 27*C. Density of uranium = 18.9 grams/cm3 .

Extrapolated Radius Linear Extrapolation

Type of Experimental (cm) Distance (cm)

Detector Run Number Iterative Curve- Iterative Curve-
Moments Fitting Moments Fitting
Method Method Method Method

Bare
gold
foils

K9

L0

L2

L6

L7

62.776

62.809

63.077

63.364

63.031

64.40

63.99

64.39

64.70

63.75

1.816

1.849

2.117

2.404

2.071

3.44

3.03

3.43

3.74

2.79

63.011 ± 0.110 64.20 ± 0.173 2.051 ± 0.106 3.24 ± 0.17

Cadmium-
covered
gold foils

63.583 ± 0.062 64.45 ± 0.156 2.623 ± 0.06 3.49 ± 0.16

Average

L1

L3

L5

L8

63.485

63.689

63.468

63.692

64.39

64.75

64.03

64.50

Average

2.525

2.729

2.508

2.732

3.43

3.79

3.07

3.54

cc



Table 4.6. Values of the extrapolated radius and linear extrapolation distance for 0.75-inch-diameter,
0.947% U-235 enriched, uranium rods in a 5-inch triangular lattice, moderated by D 2 0 at
a temperature of 27 0 C. Density of uranium = 18.9 grams/cm 3 .

Extrapolated Radius Linear Extrapolation

Type of Experimental (cm) Distance (cm)

Detector Run Number Iterative Curve- Iterative Curve-
Moments Fitting Moments Fitting
Method Method Method Method

Bare
gold
foils

Cadmium-
covered
gold foils

G9
H2
H5
I 1
1 2
1 3
1 4
1 5
1 6
J2
J4
J5
J8
KO

Average

H3
H4
H7

Average

63.192
62.970
62.988
63.428
63.211
62.872
62.592
63.004
63.103
63.553
63.551
63.603
62.854
62.966

63.135 ± 0.081

63.578
63.677
63.486

63.580 ± 0.055

64.15
63.80
64.00
64.49
64.20
63.71
63.50
64.02
64.02
64.55
64.53
64.54
63.70
63.99

64.09 ± 0.095

64.48
64.55
64.48

64.50 ± 0.067

2.232
2.010
2.028
2.468
2.251
1.912
1.632
2.045
2.143
2.593
2.591
2.643
1.894
2.006

2.175 ± 0.081

2.618
2.717
2.526

2.620 ± 0.055

3.190
2.840
3.040
3.540
3.240
2.750
2.540
3.060
3.060
3.590
3.570
3.580
2.740
3.030

3.130 ± 0.095

3.520
3.590
3.520

3.540 ± 0.067

Co



Table 4.7. Values of the extrapolated radius and linear extrapolation distance for 0.387-inch-diameter,
0.947% U-235 enriched, uranium rods in a 3.0-inch triangular lattice, moderated by D2 0 at
a temperature of 25*C. Density of uranium = 18.9 grams/cm3 .

Extrapolated Radius Linear Extrapolation

Type of Experimental (cm) Distance (cm)

Detector Run Number Iterative Curve- Iterative Curve-
Moments Fitting Moments Fitting
Method Method Method Method

Q9 47.110 48.72 1.390 3.00

R1 47.199 48.70 1.479 2.98

Bare R3 47.383 49.10 1.663 3.38

fols R6 47.102 48.40 1.382 2.68

R8 47.294 48.74 1.574 3.02

Average 47.218 ± 0.054 48.71 ± 0.092 1.498 ± 0.054 2.99 ± 0.09

Q4 47.886 49.75 2.166 4.03

Q7 47.461 49.00 1.741 3.28

Cadmium- RO 47.876 49.40 2.156 3.68

covered R2 47.662 49.20 1.942 3.48
gold foils R5 47.467 49.70 1.747 3.98

R7 47.544 48.80 1.824 3.08

Average 47.649 ± 0.079 49.30 ± 0.141 1.929 ± 0.079 3.58 ± 0.14

0



Table 4.8. Values of the extrapolated radius and linear extrapolation distance for 0.387-inch-diameter,
0.947% U-235 enriched, uranium rods in a 1.5-inch triangular lattice, moderated by D2 0 at
a temperature of 26*C. Density of uranium = 18.9 grams/cm 3 .

Extrapolated Radius Linear Extrapolation

Type of Experimental (cm) Distance (cm)

Detector Run Number Iterative Curve- Iterative Curve-
Moments Fitting Moments Fitting
Method Method Method Method

Bare
gold
foils

N4

N6

N7

N9

P3

P6

48.816

48.921

48.820

48.922

48.781

48.832

49.35

49.-38

49.29

49.38

49.21

49.36

3.096

3.201

3.100

3.202

3.061

3.112

3.63

3.66

3.57

3.66

3.49

3.64

48.849 ± 0.024 49.30 ± 0.031 3.129 ± 0.022 3.58 ± 0.031

Cadmium-
covered
gold foils

49.098 ± 0.051 49.73 ± 0.051 3.378 ± 0.051 4.01 ± 0.051

Average

N3

N5

PO

P2

P4

48.933

49.131

49.200

49.189

49.035

49.56

49.74

49.82

49.76

49.60

Average

3.213

3.411

3.479

3.469

3.315

3.84

4.02

4.10

4.04

3.88

-ZJ



Table 4.9. Values of the radial buckling for 0.431-inch-diameter, 1.99% UG2
(density of 10.2 grams/cm ) in a 3.5-inch triangular lattice,
moderated by D2 0 at a temperature of 30*C.

Type of Experimental RADIAL BUCKLING (pB)

Detector Run Number Iterative Moments Curve-Fitting
Method Method

65 2544 2457

69 2439 2342
Bare
gold 72 2542 2458
foils

82 2528 2504

86 2562 2531

Average 2523 ± 23.1 2458 ± 32.4

61 2467 2361

Cadmium- 74 2467 2365
covered
gold foils 84 2455 2344

Average 2463 ± 3.9 2357 ± 6.5



Table 4.10. Values of the radial buckling for 0.431-inch-diameter, 1.099%
U0 2 rods (density of 10.2 grams/cm 3 ) in a 3.5-inch triangular
lattice, moderated by D 20 at a temperature of 26 0C.

Type of Experimental RADIAL BUCKLING (pB)
Detector Run Number Iterative Moments Curve-Fitting

Method Method

36 2570 2486

Bare 40 2552 2465
gold
foils 46 2546 *

60 2540 *

Average 2552 ± 6.5 2476 ± 11

38 2436 2324

Cadmium- 43 2436 *
covered
gold foils 45 2414 2311

Average 2429 ± 7.3 2318 ± 7

Not listed in the 1968 Lattice Project Annual Report.

-21
c.4,



Table 4.11. Values of the radial buckling for 0.431-inch-diameter, 1.099%
U0 2 rods (density of 10.2 grams/cm 3 ) in a 3.25-inch square
lattice, moderated by D2 0 at a temperature of 30*C.

Type of Experimental RADIAL BUCKLING (pB)
Detector Run Number Iterative Moments Curve-Fitting

Method Method

12 2579 2484

20 2568 2475

Bare 24 2541 2453
gold
foils 29 2584 2490

34 2564 2474

Average 2567 ± 7.4 2475 ± 6.3

11 2324 2255

Cadmium- 16 2379 2304

old fos 26 2374 2306

31 2365 2305

Average 2361 ± 12.2 2293 ± 13

-1



Table 4.12. Values of the extrapolated radius and linear extrapolation distance for 0.431-inch-

diameter, 1.99% U0 2 rods (density of 10.2 gm/cm 3 ) in a 3.5-inch triangular lattice,
moderated by D 2 0 at a temperature of 30*C.

Extrapolated Radius Linear Extrapolation
(cm) Distance (cm)

Type of Experimental (cm) Distance_(cm)

Detector Run Number Iterative Curve- Iterative Curve-

Moments Fitting Moments Fitting
Method Method Method Method

Bare
gold
foils

65

69

72

82

86

47.675

48.695

47.699

47.834

47.513

48.50

49.75

48.49

48.02

47.81

1.955

2.975

1.979

2.114

1.793

2.78

4.03

2.47

2.30

2.09

47.883 ± 0.935 48.514 ± 1.51 2.163 ± 0.935 2.794 ± 1.51

Cadmium-
covered
gold foils

48.460 ± 0.09 49.58 ± 0.22 2.740 ± 0.09 3.86 ± 0.22

Average

61

74

84

48.422

48.422

48.537

Average

49.50

49.48

49.75

2.702

2.702

2.817

3.78

3.76

4.03

-zI



Table 4.13. Values of the extrapolated radius and linear extrapolation distance for 0.431-inch-
diameter, 1.099% U02 rods (density of 10.2 gm/cm3) in a 3.5-inch triangular lattice,
moderated by D 2 0 at a temperature of 26*C.

Extrapolated Radius Linear Extrapolation

Type of Experimental (cm) Distance (cm)

Detector Run Number Iterative Curve- Iterative Curve-
Moments Fitting Moments Fitting
Method Method Method Method

36 47.439 48.22 1.719 2.50

Bare 40 47.603 48.46 1.883 2.74
gold
foils 46 47.658 * 1.938 *

60 47.720 * 2.000 *

Average 47.605 ± 0.021 48.34 i 0.12 1.885 ± 0.021 2.62 i 0.12

38 48.728 49.90 3.008 4.18

Cadmium- 43 48.723 3.003
covered
gold foils 45 48.945 50.02 3.225 4.30

Average 48.798 ± 0.018 49.96 ± 0.06 3.078 ± 0.018 4.24 ± 0.06

Not listed in the 1968 Lattice Project Annual Report.



Table 4.14. Values of the extrapolated radius and linear extrapolation distance for 0.431-inch-

diameter, 1.099% U0 2 rods (density of 10.2 gm/cm 3 ) in a 3.25-inch triangular lattice,
moderated by D2 0 at a temperature of 30*C.

Extrapolated Radius Linear Extrapolation
(cm) Distance (cm)

Type of Experimental (cm) Distance_(cm)

Detector Run Number Iterative Curve- Iterative Curve-
Moments Fitting Moments Fitting
Method Method Method Method

Bare
gold
foils

12

20

24

29

34

47.350

47.452

47.703

47.309

47.488

48.21

48.31

48.50

48.20

48.32

1.630

1.732

1.983

1.589

1.768

2.49

2.59

2.78

2.48

2.60

47.460 ± 0.031 48.31 ± 0.023 1.740 ± 0.031 2.59 ± 0.023

Cadmium-
covered
gold foils

49.498 ± 0.133 50.22 ± 0.17 3.778 i 0.133 4.50 ± 0.17

Average

11

16

26

31

49.887

49.299

49.357

49.447

50.70

50.10

50.02

50.04

Average

4.167

3.579

3.637

3.727

4.98

4.38

4.30

4.32

-~1



Table 4.15. Values of the material buckling of the slightly enriched, uranium-fueled and heavy
water-moderated, triangular lattices obtained by means of the moments method
and the conventional curve-fitting method.

MOMENTS METHOD CURVE-FITTING METHOD

Lattice Fuel Rod Material Standard Material Standard
Enrichment Spacing Diameter Buckling Deviation Buckling Deviation

(%) (inches) (inch) B2 (pB) e (pB) B2 (pB) E (pB)
m B 2  m B 2

m m

1228 8.2 1083 15.8
0.947 3.00 0.387

1159 8.5 998 15.3

1437 4.9 1376 14.4
0.947 3.50 0.750

1394 4.7 1349 9.9

1183 6.6 1137 8.1
0.947 5.00 0.750

1156 6.7 1111 10.4

The top values are those for bare gold foils.

The bottom values are those for cadmium-covered gold foils.



Table 4.16. Values of the material buckling of the slightly enriched U02-D20 lattices
at the M. I. T. Lattice Project obtained by means of the moments method
and the conventional curve-fitting method.

MOMENTS METHOD CURVE-FITTING METHOD

Lattice Fuel Rod Material Standard Material Standard
Enrichment Spacing Diameter Buckling Deviation Buckling Deviation

(%) (inches) (inch) B (B) e (pB) B (B) e (IB)
m B2m B 2

m m

1607 23.2 1540 32.8

1.990 3.50 0.431
A 1517 7.7 1445 19.0

926 6.9 844 11.4
1.099 3.50 0.431

809 8.9 706 14.4

972 8.6 870 11.2
1.099 3.25 0.431

734 14.2 657 16.1

The top values are those for bare gold foils.

The bottom values are those for cadmium-covered gold foils.
I.-1
Co
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Chapter V

APPLICATION OF THE MOMENTS METHOD

TO THE MINIATURE LATTICES

5.1 INTRODUCTION

The use of small subcritical assemblies for the measurement of

reactor parameters has appeared attractive for some time. Wikdahl

and Akerhielm (W5), in Sweden, used miniature lattices to measure

disadvantage factors in single rods and clusters of UO2 rods in D2 0.

Relatively small assemblies were also used by Kouts and coworkers

(K10) at the Brookhaven National Laboratory to measure quantities

related to k, in lattices of slightly enriched U-metal rods in ordinary

water. Peak (P2) and Sefchovich (S1) at M. I. T. demonstrated the

feasibility of using U-D 2 0 miniature lattices to measure intracellular

flux distributions as well as lattice parameters such as p2 8 , 628' 625'
*

C , etc. In all cases the results were encouraging.

At the M. I. T. Lattice Project, Sefchovich (S1) tried to infer

values of the axial and radial bucklings (and hence the material

buckling) from measured flux shapes in miniature lattices by means

of the conventional curve-fitting method but failed to obtain consistent

results. The main difficulty seemed to be the axial buckling; the

presence of an external source, the effect of the boundary, and the

relatively short length of the miniature lattice assembly combined to

make the axial flux distribution deviate from the asymptotic hyperbolic
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sine shape over a considerably wide region as indicated in Figure 5.1

for a typical miniature lattice ML4. This behavior was also observed

in the other miniature lattices studied. Up to about 24 cm from the

source, the axial flux was significantly contaminated by the source

neutron contribution and by flux transients due to transport and/or

energy effects. As a consequence, the curve-fitting method always

yielded a value for the axial buckling that is considerably larger than

the theoretical value. This result is illustrated in Figure 5.2 for the

miniature lattice ML2. No common intersection is observed and hence

there is no way of determining a unique value of the axial buckling and

extrapolated height. Table 5.1 lists the results obtained with the

AXFIT code developed by Palmedo (P1) for the cases of the 16-point fit,

10-point fit, and 6-point fit corresponding to Figure 5.2. It is evident

from Table 5.1 that in all of the cases analyzed with the AXFIT code

the value of the axial buckling turns out to be larger than 8000 pB with

a probable error in the fit of 170 pB to 490 pB. The results obtained

with the AXFIT code are physically unreasonable because the value of

the axial buckling obtained with the AXFIT code is greater than that of

the radial buckling (the theoretical value of which is about 7600 yB), so

that a negative value is obtained for the material buckling.

In the analysis of the radial flux distribution in the miniature

lattices, the harmonic and reflector effects also present a problem in

that the experimental activation data near the boundary are greater

than the values corresponding to the asymptotic J function, as shown

in Figure 5.3. The RADFIT code written by Palmedo (P1) has also

been used to infer values of the radial buckling of the ML2. The
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Table 5.1. Values of the axial buckling of the miniature lattice ML2 for the subcadmium

activation data calculated with the AXFIT code developed by Palmedo (P1).

AXIAL BUCKLING AND DEGREE OF FIT

Assumed Values 16-Point Fit 10-Point Fit 6-Point Fit

of Extrapolated Axial Degree Axial Degree Axial Degree
Height, H Buckling of Fit Buckling of Fit Buckling of Fit

(cm) (pB) (pB) (pB) (pB) (pB) (pB)

43.4

43.9

44.4

44.9

45.4

45.9

46.4

46.9

47.4

47.9

48.4

48.9

8735

8864

8987

9102

9209

9307

9398

9480

9555

9623

9684

8871

487

425

373

330

294

265

239

218

200

184

170

420

379

8674

8750

8818

8879

8934

8983

9028

9068

9103

9136

9165

8206

376

351

328

308

290

274

259

246

233

222

211

344

8023

8082

8135

8183

8227

8266

8301

8333

8361

8387

8411

10118

398

378

359

343

327

313

299

287

275

264

253

178

49.4 8986 8271 323 10143 169

8271 323 10143 16949.4 8986
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results for the 8-point fit, the 7-point fit, and the 6-point fit are given

in Table 5.2. It is evident that a difference of 1000 pB can be obtained

by varying the position of the center for different numbers of data

points. Furthermore, the best value (6643 pB) obtained with the

RADFIT code is about 1000 pB smaller than the theoretical value

(about 7600 pB) calculated from Eq. (4.1). This discrepancy may be

due to the presence of harmonic modes in addition to the fundamental,

since the source used for the measurements in the miniature lattices

contains a measurable fraction of various harmonic modes, as has

been shown in section 4.5 of Chapter IV. The harmonic modes will be

investigated further in section 5.3. The reflection of neutrons from

outside the assembly may also contribute to the discrepancy; this

possibility will also be studied in section 5.3.

In Chapter II we have investigated the asymptotic condition in the

miniature lattices by studying the asymptotic solutions of the neutron

transport equations. The results seem to indicate the existence of an

asymptotic region which may be too small for the curve-fitting method

to be applicable, but may be sufficient for the moments methcd. It will

be shown in section 5.2 that this is indeed the case.

Some features of the moments method seem to imply that this

general method may be applied to the miniature lattices with some hope

of success. In this chapter we shall try to derive values of the

material buckling of the miniature lattices by inferring the values of

the axial buckling and the radial buckling by means of the moments

methods described in Chapters III and IV. In particular, we shall

exemplify some important features of the moments methods discussed



Table 5.2. Values of the radial buckling of the miniature lattice ML2 for
activation data calculated with the RADFIT code developed by

the subcadmium
Palmedo (P1).

RADIAL BUCKLING AND DEGREE OF FIT

Radial Shift 8-Point Fit 7-Point Fit 6-Point Fit
of Center Radial Degree Radial Degree Radial Degree
Position Buckling of Fit Buckling of Fit Buckling of Fit

(cm) (pB) (pB) (pB) (pB) (pB) (pB)

-1.00 7176 0.66 X 10-3 6310 0.23 X 10-3 6803 0.23 X 10-3

-0.75 7149 0.41 X 10-3 6437 0.13 X 10-3 6806 0.13 X 10-3

-0.50 7113 0.23 X 10-3 6553 0.56 X 10-4 6779 0.58 X 10-4

-0.25 7067 0.1 X 10-3 6659 0.14 X 10-4 6724 0.17 X 10~4

0.00 7012 0.4 X 10~4 6752 0.64 X 10-5 6643 0.49 X 10-5

+0.25 6949 0.36 X 10~4 6832 0.35 X 10~4 6538 0.20 X 10~4

+0.50 6877 0.85 X 10~4 6898 0.1 X 10-3 6412 0.60 X 10-4

+0.75 6796 0.19 X 10-3 6949 0.2 X 10-3 6267 0.12 X 10-3

+1.00 6710 0.34 X 10-3 6984 0.36 X 10-3 6107 0.20 X 10-3
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in the preceding two chapters by making some numerical experiments.

The purpose of these "experiments" is to shed some light on the appli-

cability of the moments methods in the presence of flux transients,

harmonic modes, and reflected neutrons.

The specifications of the six miniature lattices to be analyzed in

the present chapter are described in Table 5.3.

5.2 THE EXTRACTION OF THE AXIAL BUCKLING

5.2.1 A Preliminary Study of the Source and Transport Effects

Before we apply the moments method described in Chapter III to

experimental activation data of the miniature lattices, it seems de-

sirable to test the moments method with a set of theoretical flux values

with two objectives in mind:

(a) To see if the ABMOMENT code based on the moments

method can reproduce the input values of the axial buckling

and the extrapolated height corresponding to the set of

theoretical flux values.

(b) To investigate the applicability of the moments method in

the presence of significant transport and source effects.

The total axial flux distribution of a subcritical assembly in the

presence of the source effect, the energy effect, and the transport

effect may be described by the general expression

00 - 7 z 00

<0 (z) = A S1 S e t,g + sinh t (H1 -z) + c. sinh t ( i-z) ,
g=1 i=2

(5.1)

where the source neutron contribution consists of infinitely many terms

corresponding to infinitely many energy groups of source neutrons; Sg
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Table 5.3. Description of the Miniature Lattices'

U235 Triangular Denomination
Concentration Lattice of

of Fuel Spacing Lattice

(%) (Inches)

1.143 1.25 ML2

1.143 1.75 ML7

1.143 2.50 ML3

1.027 1.25 ML4

1.027 1.75 ML6

1.027 2.50 ML5

All the lattices are moderated by 99.75 mole percent D 2 0.
Fuel rods are 0.25 inch in diameter in aluminum tubes of
0.318-inch O. D.
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represents the contribution of the gth group of source neutrons relative

to the asymptotic flux (the second term in Eq. (5.1)), while the third

term represents the flux transients, with the c being the coefficients

of the transients relative to the asymptotic contribution. In a one-

group P 3 approximation, Eq. (5.1) reduces to

4 = A S e t+sinh 7 H z)+c sinh Y3 (H 3 z) , (5.2)

2
where -y is the axial buckling corresponding to the asymptotic flux and

2
H is the corresponding extrapolated height; y3 is the axial buckling

corresponding to the transient flux and H 3 is the position where the

transient flux vanishes. These quantities, as well as the constants S1

and c, can be determined by means of the spherical harmonics method

(P6, C1, D2) together with Marshak's boundary conditions. Since the

derivation is too lengthy to be presented here, we shall give only the

final quantitative result obtained with Eq. (5.2) for one miniature

lattice (say, IvIL3) for illustration and refer the reader to section 6.2.3

of Chapter VI for details. Equation (5.2) leads to the following quanti-

tative expression for the relative total axial flux distribution of ML3

(see Eq. (6.104)):

A z)= 11.053 e-0.4476z + sinh [0.08072(41.715-z)]

+ 0.1025 e-15.994 sinh [0.8804(22.89-z)], (5.3)

2
where z is in centimeters. The asymptotic axial buckling -y1 is then

2 2 -2
7 = (0.08072) = 0.0065163 cm- or 6516.3 pB,

and the extrapolated height is

H = 41.715 cm.



191

Table 5.4 lists the theoretical values of the asymptotic flux and of the

relative total flux as functions of the axial distance, computed with

Eq. (5.3).

The theoretical values of the asymptotic flux listed in Table 5.4

have been used to extract the values of the asymptotic axial buckling

and the extrapolated height by means of the moments method as applied

in the code ABMOMENT. The purpose of this calculation is to test the

ability of the moments method to reproduce the theoretical values. The

results are

2
= 6518 ± 8 pB,

and

H = 41.711 ± 0.01 cm,

respectively, in excellent agreement with the input values

(T = 6516.3 pB and H = 41.715 cm). The errors quoted are the probable

errors incurred in the analysis with the moments method per se, not

the experimental uncertainties.

To see the extent to which the source and transport effects can

affect the calculation of the axial buckling and extrapolated height with

the moments method, the ABMOMENT code has also been used to ana-

lyze the theoretical values of the total axial flux in Table 5.4 by select-

ing the locations of the first and last data points. The results are

2 ~
given in Table 5.5. The last two cases yield values of T and H 1 that

agree with the corresponding exact asymptotic values within the

probable errors quoted. The results of Table 5.5 are also plotted in

Figure 5.4 for ease of comparison.

It seems reasonable to conclude that the moments method can



Table 5.4. Values of the asymptotic axial flux and the total axial flux
of the miniature lattice ML3 as functions of the axial

distance in a one-group P 3 approximation.

Normalized Relative Total
z (cm) Asymptotic Flux Axial Flux

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

1.45004

1.22536

1.04893

0.89129

0.75760

0.64382

0.54594

0.46361

0.39263

0.33178

0.27991

0.23538

0.19697

0.16373

0.13475

0.10931

0.08671

0.06639

0.04778

0.03044

0.01388

2.88331

1.73135

1.24568

0.96989

0.78953

0.65688

0.55130

0.46581

0.39354

0.33215

0.28006

0.23544

0.19699

0.16374

0.13475

0.10931

0.08671

0.06638

0.04773

0.03009

0.01186

192



Table 5.5. Reduction of the source and transport effects on the extraction of the axial buckling and

the extrapolated height for the miniature lattice ML3 by means of the ABMOMENT code.

Number First Last Axial Probable Extrapolated Probable
of Data Data Buckling Error in Height Error in

Data Point Point 2 2 ~H ~H
Points 1 1 1
Used (cm) (cm) (pB) (pB) (cm) (cm)

19 2.0 38.0 7023 3843 42.006 7.080

19 4.0 40.0 6554 49 41.615 0.030

17 8.0 40.0 6547 48 41.623 0.030

13 14.0 38.0 6496 41 41.667 0.035

13 16.0 40.0 6508 34 41.680 0.029

The probable error is the error that may be incurred in the quantity of interest in the analysis

by means of the moments method (not to be confused with the experimental uncertainty usually

expressed in terms of a standard deviation of the mean).

(0
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reproduce theoretical values of the axial buckling and extrapolated

height; the method can be applied successfully to the miniature lattices

if care is taken in the choice of the first and last data points.

5.2.2 Application of the Moments Method to the Miniature Lattices

Axial activation data have been obtained with bare and cadmium-

covered gold goils in the miniature lattices at 16 locations with suc-

cessive separations of one inch (Si). Since the source effect is the

major problem, we analyze the measured axial flux data by dropping

the first data point from the source successively, until we obtain a

nearly constant value of the axial buckling (as we proposed in section

2.4 of Chppter II). This is probably the most satisfactory way of

removing the source effect: for when the axial buckling becomes inde-

pendent of the location of the first data point, the axial flux distribution

is free not only of the source neutron contribution but also of other

transients. If this were not the case, the axial buckling would vary

with position, according to the analysis in section 2.4. In this chapter,

therefore, we shall adopt the point-dropping procedure together with

an error analysis to derive the best values of the axial buckling of the

miniature lattices.

The method outlined has been applied to the analysis of the acti-

vation distributions of the six miniature lattices; the moments method,

in the form of the ABMOMENT code, has been used to infer the best

value of the axial buckling. The results are given in Table 5.6 for the

activation data with bare gold foils; in Table 5.7 the results are given

for the activation data with cadmium-covered gold foils, and in

Table 5.8 for the subcadmium activation data. The variation of the



Table 5.6. Values of the axial buckling and the extrapolated height for the activation of bare gold foils
of the six miniature lattices investigated at the M. I. T. Lattice Project, fueled with slightly
enriched uranium and moderated by heavy water.

Lattice
Designator

ML 2

ML7

ML3

ML4

ML6

ML5

Fuel
Enrich-
ment

(%)M

1.143

1.143

1.143

1.027

1.027

1.027

Lattice Fuel Rod
Spacing Diameter

(Inches)

1.25

1.75

2.50

1.25

1.75

2.50

(Inch)

0.25

0.25

0.25

0.25

0.25

0.25

Axial
Buckling

-y (yB)

5844.1

6139.5

6984.4

5760.2

6425.7

7294.7

Probable
Error

aY2 (p B)

69.1

35.2

72.4

78.4

69.8

98.2

Extrapolated
Height

H (cm)

47.725

44.721

46.408

47.135

44.976

46.955

Probable
Error

H (cm)

0.197

0.052

0.169

0.110

0.113

0.257

I,
(0



Table 5.7. Values of the axial buckling and the extrapolated height for the activation
of Cd-covered gold foils of the six miniature lattices, fueled with slightly
enriched uranium and moderated by heavy water.

Fuel Probable Probable
Lattice Enrich- Lattice Fuel Rod Axial Error Extrapolated Error

Designator ment Spacing Diameter Buckling Height

(%) (Inches) (Inch) y (pB) 2(B) H (cm) H (cm)

ML2 1.143 1.25 0.25 4226.8 87.0 47.379 0.127

ML7 1.143 1.75 0.25 3484.1 82.5 45.058 0.068

ML3 1.143 2.50 0.25 3386.3 69.4 46.709 0.084

ML4 1.027 1.25 0.25 4285.5 82.2 47.015 0.111

ML6 1027 1.75 0.25 3464.6 66.6 45.124 0.056

ML5 1.027 2.50 0.25 3312.8 72.7 46.480 0.084

I'

-J



Table 5.8. Values of the axial buckling and the extrapolated height for the subcadmium
activation data of the six miniature lattices, fueled with slightly enriched
uranium and moderated by 99.75To D 20.

Fuel Probable Probable
Lattice Enrich- Lattice Fuel Rod Axial Error Extrapolated Error

Designator ment Spacing Diameter Buckling Height - (cm)
(%) (Inches) (Inch) 72 (yB) 72 (yB) H (cm) H

ML2 1.143 1.25 0.25 6398 80 47.180 0.234

ML7 1.143 1.75 0.25 6285 165 44.440 0,625

ML3 1.143 2.50 0.25 6934 152 45.628 0.186

ML4 1.027 1.25 0.25 6252 234 47.864 0.350

ML6 1.027 1.75 0.25 6404 71 43.786 0.270

ML5 1.027 2.50 0.25 7380 84 46.021 0.095

j.
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axial buckling for the epicadmium neutrons as a function of the location

of the first data point from the source is presented in Figure 5.5. The

results for the axial buckling obtained from the activation of bare gold

foils have been given in Figure 2.3 and are repeated in Figure 5.6.

The values of the axial buckling obtained with the activation data of

cadmium-covered gold foils do not become quite constant even at 24 cm

from the source, while the corresponding values obtained with the acti-

vation data of bare gold foils level off at about 15 cm from the source.

The shapes of the two curves turn out to be much as expected from the

qualitative discussion in section 2.4.

A sizable difference between the value of the axial buckling for

the activation of bare gold foils and that for the activation of cadmium-

covered gold foils is observed, in contrast to the smaller difference

obtained from measurements in the corresponding full-size lattices.

This result may be indicative of a nonasymptotic neutron spectrum in

the miniature lattices: the subcadmium and epicadmium fluxes may not

be separable in space and energy. But the investigation in section 2.3

seems to indicate that the effect of spectral inequilibrium should be too

small to account for the large differences observed here in the minia-

ture lattices. A more convincing explanation might be the loose coup-

ling of the subcadmium neutrons and the epicadmium neutrons owing to

the large neutron leakage. To see how this might come about, we

apply two-group diffusion theory. The neutron balance equation is

[Neutron Leakage] + [Neutron Absorption] = [Neutron Production],

which becomes, in two-group theory,

-D1V240 + Zal01 1 + S1 (5.4)
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and

-D2 V2 2 + Za2 2 2 + S2 (5.5)

where the subscript 1 denotes the epicadmium group, the subscript 2

denotes the subcadmium group, and the constants have their usual

meanings; in particular, S represents the external source and P

stands for the production of neutrons due to fissions and the slowing-

down process.

The coupling between the two groups of neutrons is established

by the slowing-down process and fissions through the production terms

P and P 2 . Now, if the assembly is so small that the leakage terms

dominate in the neutron balance equations, 4 and 02 are loosely

coupled and behave nearly independently. An analogous behavior

would be expected in a highly absorbing system when the absorption

terms dominate the neutron balance equation. If the assembly is both

very small and highly absorbing, the two groups of neutrons may be

entirely decoupled. On the other hand, if the system is sufficiently

large, and if the neutron absorption is weak, the groups of neutrons

are strongly coupled through the production terms; the eigenvalues

corresponding to the fundamental modes for the various groups of

neutrons become the same.

To show that the fast and slow neutron groups are loosely coupled

in the miniature lattices, we choose ML3 for illustration:

za2 = 0.00406 cm~ ,

vzf2 = 0.00493 cm~

D2 = 0.804 cm ,
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D = 1.130 cm,

'rth = 124 cm .

These numbers are taken, or derived, from the report by Sefchovich

et al. (Si) except the value of D which is taken from Ref. M4.

Under the assumption that fast neutrons are produced by thermal

fissions alone, the production terms may be written

P1 = vEf202

and

P2 = r 1'

where Zr is the removable cross section and p is the resonance escape

probability. We can estimate the removable cross section from the

expression (Ml)

D= 1 _1.130 -1

r th 12 = 0.00912 cm

For the purpose of illustration, we choose p= 0.9. We then have

the ratio of the production term to the sum of the leakage and absorption

terms of the thermal group:

P 2 (00 K'D 0.79 .

-D 2 72 + Za2 2 XD 2+ (02

Foil activation data obtained with bare gold foils and with cadmium-

covered gold foils in the miniature lattice indicate that the ratio of the

subcadmium to epicadmium activity ranges from 4 to 12 (S1):

~z 0.1 ~ 0.25,
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and

P2

2 0.079 ~ 0.197
-D 2 V 22 + 2 22

Thus the two groups of neutrons in ML3 are indeed loosely coupled;

this implies that the subcadmium group has to be supplied mainly by

the external source to maintain a steady state.

5.3 THE EXTRACTION OF THE RADIAL BUCKLING

5.3.1 A Preliminary Study on the Nature of the Radial Flux

Distribution in the Miniature Lattices

The radial activation distributions, measured with bare and

cadmium-covered gold foils, in the miniature lattice ML7 have been

shown in Figure 5.3. The experimental points agree well with the

theoretical J (ar) curve for r < 15 cm, but deviate from the J function

near the boundary. The deviation of the epicadmium activation distri-

bution is greater than that of the subcadmium activation distribution.

It seems evident that the subcadmium and epicadmium neutrons have

different flux shapes (and hence different values of the radial buckling

and extrapolated radius). We can think of at least four reasons for this:

(a) Energy Effect

The radial buckling depends on the linear extrapolation

distance d through the relationship:

2 (2.4048 2 (5.6)
a \R +d ,

where R is the physical radius. The fact that d is a function of neutron
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energy indicates that different groups of neutrons have different values

2 2
of the radial buckling. Since dei > d a < asb asepicm subcd' aepicd subcd

Figure 5.3 implies. This fact is practically hidden in a large assembly

whose radius R is much greater than the linear extrapolation distance

d, and d has little effect on the buckling. But d is important in the

determination of the radial buckling in a small assembly such as a

miniature lattice. To illustrate, let us take the miniature lattice ML7

as an example:

R = 25.40 cm,

dsubcd = 2.176 cm (from Ref. Si)

The results obtained in Chapter IV for the linear extrapolation

distance of several full-size lattices indicate that d epicd can be larger

than dsubcd by as much as 0.6 cm. If we use this value, we have

depicd = 2.776 cm,

and

2 ( 2.4048 \2
asubcd \25.4 + 2.176) 7610

while

2 (2.4048 2
aepicd \25.4 + 2.776/ = 7300MB.

The values of the radial buckling of the subcadmium and epicadmium

neutrons may differ by 300 pB because of the energy dependence of the

linear extrapolation distance.

(b) Reflector Effect

The miniature-lattice assembly is bare with respect to sub-

cadmium neutrons but not with respect to epicadmium neutrons because
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the tank containing the lattices was surrounded by a sheet of cadmium

and two 3-inch-thick layers of paraffin (Si). (See Figure 2.1.) The

effect of neutron reflection in such a case can be studied by means of

the albedo concept. The linear extrapolation distance in the presence

of the reflector effect is increased by a factor given by (G2)

(d)reflect _ 1 + 
(5.7)

(d) ~1 - 0 '
vacuum

where (d)vacuum is the linear extrapolation distance without neutron

reflection, (d)reflect is that with neutron reflection, and / is the

albedo defined as the ratio of the number of neutrons reflected from

a medium surface to the number of neutrons incident upon it. The value

of g for the miniature lattice assembly is difficult to determine. In the

diffusion approximation, the albedo 3 is given by (A3)

1 - tL ln (1 - 1/ZtL) (5.8)

-1 - EtL ln (1 - 1/E2tL)

where L is the diffusion length and Zt is the macroscopic total cross

section. In the case of weak absorption (5tL> 1), we may expand the

logarithm and obtain the result (W7, H13)

# - 4 a (5.9)
di At

where Za is the macroscopic absorption cross section. For pure

paraffin, Za /t = 1/180, and / = 0.827. This value of / is actually too

high because there are two sheets of cadmium and a sheet of borated

plastic between the two layers of paraffin (see Fig. 2.1). The paraffin

tends to soften the spectrum of fast leakage neutrons through
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moderation, while the cadmium and borated plastic absorb some of the

moderated leakage neutrons. Consequently, the effective value of the

ratio Za t for the escape neutrons in the actual reflector would be

much larger than that for pure paraffin. To estimate the value of 3 in

our case, we plot the value of 1 as a function of the ratio a /t in

Figure 5.7 with Eq. (5.9). The value of the albedo decreases rapidly as

the neutron absorption increases. For example, suppose that the

presence of the cadmium sheets and the borated plastic makes Ea t

0.1; then / 3 0.2, and

1+ _ 1.2 1
1 - 0.8 1.5

Thus we have

(d)reflect = 1.5 (d)vacuum = 1.5 X 2.776 = 4.16 cm,

and

2 )r {2.4048 2
aepicd eflect 25.4+4.16) = 6620

2
which is about 1000 pB less than asubc d Although this example may

overestimate the reflector effect, it indicates the importance of this

effect in a small assembly. Table 5.9 gives three cases for the re-

flector effect; the influence is significant.

The reflection of neutrons from outside the lattice gives rise to

an 10 (or) term in addition to the asymptotic J 0 distribution (K6). We

can estimate quantitatively the importance of the neutron reflection

relative to the asymptotic flux by fitting the radial activation data with

the function

O(r) = A[J0(ar) +cI( or)] (5.10)
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Table 5.9. Effect of the epicadmium neutron reflection from outside the miniature lattices on the

calculation of the radial buckling for epicadmium neutrons. (a epi)
vacuum

= 2.776 cm.

Albedo e 2a2pi)
epi reflect ereflect vacuum epi

(cm) (pB) (pB) (pB)

0.05 3.072 7100 7300 200

0.10 3.397 6970 7300 330

0.20 4.160 6620 7300 680

*
2

zAa
e pi

va(acuum re(a2 fe

c>



210

by means of a least-squares technique on the basis of relative flux

values; this technique is described in Appendix F. The results for the

coefficient c are given in Table 5.10 for data obtained with both the

bare and cadmium-covered foils. In most cases, the value of the coef-

ficient c is about 0.05 or less but can be significant for the data points

near the boundary owing to the rapid increase of the I function near

the boundary.

Fortunately, the iterative moments method developed in

Chapter IV can reduce the contribution of the harmonic modes and the

I term through the choice of the moment index and the position of the

last data point. We shall demonstrate this property of the iterative

moments method in the next section by means of some numerical

"experiments." In addition, transport effects near the boundary give

rise to a negative I contribution (see section 6.3 for reference) that

would cancel part of the positive I contribution due to the reflector

effect.

(c) Transport Effects

Spatial transients may be excited in the neighborhood of

boundaries due to transport effects. The effect of the spatial transients

on the determination of the radial buckling will be studied quantitatively

by means of the spherical harmonics method in section 6.3.3. It suf-

fices to mention here that radial spatial transients are negative in

nature and can be expressed in terms of an I function. The resulting

spatial transients tend to reduce the reflector effect.
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Table 5.10. Values of the coefficient of the I term relative to the
fundamental mode of the radial flux distributions in the
miniature lattices.

Lattice Coefficient c

Designator Bare Cd-covered

ML2 0.0032 0.0202

ML3 0.0470 0.0540

ML4 0.0005 0.0038

ML5 0.0531 0.0627

ML6 0.0023 0.0069

ML7 0.0033 0.0092
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(d) Harmonic Effects

Sefchovich (Si) has shown that the source for the miniature

lattice experiments contains a measurable amount of harmonics, as

discussed in section 4.5. We therefore expect harmonics to be excited

in the radial flux distributions of the miniature lattices. To investigate

the extent of these harmonic modes, a radial harmonic analysis must be

made for a cylinder. We suppose that the measured radial activation

distribution O(r) may be represented by

00

A(r) = A J-1 r), (5.11)

j=1 R

where A. is the coefficient of the jth harmonic, and the p. are the roots

of the transcendental equation

J (p ) = 0 . (5.12)

To estimate the coefficients A. from the experimental activation data

O(r), we multiply both sides of Eq. (5.11) by rJ (-k r and integrate

over r from r=0 to r=R:

R co Rr) J ( Mkr) dr f0"
r0(r A r J9 t r J j r dr . (5.13)

0 R j=1 R R

The Bessel function J has the orthogonality properties (A2):

f tJ0(amt) J9(ant) dt = 0, if m * n , (5.14)

and

z tJ (t) dt = J L j(z) + J(z)]. (5.15)
0
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The right-hand side of Eq. (5.13) therefore reduces to a single term

corresponding to j=k:

R
f r4(r)J(

0 0
r) dr = Ak f rJ 2 (-

R

SAk 2
2 ("'k
0Fi

whence

2
Ak =

R2 J2 (_k R)
SR

R/p
f R r4(r)J (
0 R

R )

k = 1, 2,3, ... , . (5.17)

The value of R is arbitrary and is fixed by the choice of the last data

point used for the harmonic analysis.

Since we are interested in the relative importance of the harmonic

modes with respect to the fundamental, we normalize the coefficient of

the fundamental so that A 1 = 1 and

k(r) = J9 2.4048 r) +
ak oQ R

r) (5.18)
k=2

where

+ J2(2.4048
RA k

ak A
1

2(2.4048
0R

R R

0
rO(r)J - -

R
r) dr

S2 (Pk R
J R

k = 2, 3, 4, . . . , 0 .0 (5.19)

The integral in Eq. (5.19) is to be evaluated numerically by means of a

rectangular rule described in Figure 5.8.

r) dr

R + R } (5.16)

r ) dr,

+J 2

R

R )

2 k
+ J Pk-

R

The RADIAL HARMONICS
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code of Sefchovich (Si), which computes the integral, has been modified

according to Eq. (5.19) for the case of unequal intervals to make the

harmonic analysis for the miniature lattices. The results are given in

Table 5.11 for the activation of bare gold foils and in Table 5.12 for the

activation of cadmium-covered gold foils. It is evident that the har-

monic modes make a measurable contribution to the radial activation

data obtained with both bare and cadmium-covered gold foils. For the

lattices ML2, ML4, ML6, and ML7, the second, the third, and the

fourth harmonics are the most significant, amounting in some cases to

as much as 10 percent. For the lattices ML3 and ML5 with 2.5-inch

lattice spacing, the seventh harmonic is the largest, while the fourth

and sixth harmonics are also significant; the seventh harmonic may

amount to about 15 percent.

To see how the harmonic modes may affect the extraction of the

radial buckling from the radial flux shape, the fundamental mode as

well as the first three harmonic modes of the lattice ML2 are drawn

approximately to scale in Figure 5.9. The corresponding distributions

of the moments of the various harmonic modes are sketched in

Figure 5.10. It is evident that the harmonic moments tend to cancel

one another while the fundamental moment is retained. Furthermore,

the higher the order of the harmonic mode, the greater is the extent of

cancellation of the moment of the mode owing to the decrease of the J

function from cycle to cycle (W3, A2). The fact that only the higher

harmonics are troublesome in the miniature lattices ML3 and ML5

probably explains the reason why the ratio of the flux moments $341

yields a better value of the radial buckling than the ratio $ 5 / 3 for ML3



Table 5.11. Values of the coefficients of the various harmonic modes relative to the fundamental
mode of the bare radial activation distribution of the miniature lattices.

Lattice
Designator

Aj ML2 ML3 ML4 ML5 ML6 ML7

Coefficient

1.0000

0.0257

0.00661

0.0589

-0.0283

0.0759

0.1440

1.0000

0.0700

-0.0640

0.0538

-0.00802

-0.000095

0.0120

1.0000

0. 0374

0.00688

0.0590

-0.0231

0.0738

0.1454

1.0000

0.0985

-0.0676

0.0454

0.0093

0.00612

0.0123

1.0000

0.0984

-0.0696

0.0488

0.0104

0.00084

0.0132

I.

1.0000

0.0730

A 
1

A 2

A
3

A 
4

A
5

A
6

A
7

-0.0634

0.0538

-0.0110

0.00105

0.0168



Table 5.12. Values of the coefficients of the various harmonic modes relative to the fundamental
mode of the epicadmium radial activation distribution of the miniature lattices.

Latt ic e
Designator

A jML2 ML3 ML4 ML5 ML6 ML7

Coefficient

A 1  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

A 2  0.0585 0.0148 0.0500 0.00339 0.0849 0.0849

A 3  -0.0656 0.0145 -0.0710 0.0155 -0.0686 -0.0637

A4  0.0559 0.0542 0.0607 0.0628 0.0529 0.0490

A 5  -0.0105 -0.0284 -0.0082 -0.0305 0.00808 0.00664

A 6  0.00363 0.0783 0.00035 0.0752 0.00074 0.00960

A 7 0.0167 0.1387 0.0163 0.1363 0.0122 0.0110

I.
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and ML5 (as will be seen in the next section): a moment with lower

index weighs the data points near the boundary less heavily than a

moment with higher index. The same explanation may account for the

analogous results obtained in Chapter IV for the full-size lattices:

the ratio $ 3/LP1 gives a better value of the radial buckling for the

U-D 20 and UO2-D 20 lattices with a triangular spacing, while the ratio

$5 3 yields a better value for the U0 2 -D 2 0 lattices with a square

spacing. The harmonics seem to contribute more in the case of the

square lattices than in the case of the triangular lattices.

The fact that the iterative moments method involves significant

cancellation of the contributions of the harmonic modes is crucial for

the applicability of the method to a small assembly. We shall study

this property further together with the reflector effect in section 5.3.2.

Finally, the results of the harmonic analysis are sensitive to the

choice of the last data point as well as to the value of the extrapolated

radius. The position of the last data point (i.e., the value of R appear-

ing in Eq. (5.19)) determines the contribution of the harmonic modes.

The results listed in Tables 5.10 and 5.11 were obtained with the use

of the theoretical value of the extrapolated radius, R =R+0.71 Xtr'

taken from Reference S1.

5.3.2 The Reduction of the Harmonic and Reflector Effects by the

Iterative Moments Method

In this section we shall test two important characteristics of the

iterative moments method by means of some numerical experiments:

(a) The ability of the method to reproduce input values of the

radial buckling and the extrapolated radius,



221

(b) The reduction of the harmonic and reflector effects.

To this end, we make up a set of artificial data with the fundamental

mode alone, J (2.4048 r) ; and another set of artificial data according
R

to the formula

<b(r) = J 2.4048 r + k ak JoK0/ r) + c Io(or) , (5.20)

with a2 = 0.07, a =-0.06, a4 = 0.05, a -5 0.01, a 6 = 0.001, a7 = 0.017,

c = 0.02, = 0.1, and R = 27.50 cm. These values, chosen in accord

with Tables 5.10, 5.11, and 5.12, are representative of the miniature

lattices; so the results should be sufficient for our purpose. The two

sets of artificial data are given in Table 5.13.

The RAMBLER code based on the iterative moments method

described in section 4.3 has been used to analyze the two sets of arti-

ficial data. The results for the radial buckling and the extrapolated

radius are given in Table 5.14 for the data from the fundamental mode

alone; the results for the data including the harmonics and the reflector

effect are given in Table 5.15. The exact values of the radial buckling

and the extrapolated radius corresponding to the fundamental mode are

also included for comparison. We see that the iterative moments

method can reproduce the input values of the radial buckling and the

extrapolated radius in the case of a pure J distribution within the

practical accuracy of a computer. Furthermore, this method can also

yield satisfactory values of the radial buckling and the extrapolated

radius, even in the presence of the harmonic and reflector effects,

when the moment index and the position of the last data point are

chosen in accordance with the method developed in section 4.3.



Table 5.13. Two sets of artificial data based on Equation 5.20
and the fundamental mode.

jr. (c M) 0J(2.4048 r)
i R j)

1

2

3

4

5

6

7

8

9

0.00

2.54

5.08

7.62

10.16

12.70

15.24

17.78

20.32

22.86

25.40

10

11

12 27.50

1.000000

0.987640

0.951183

0.892010

0.811565

0.714850

0.600330

0.480050

0.351612

0.223891

0.099272

0.000000

1.088000

1.057801

0.998755

0.938338

0.856571

0.754307

0.640388

0.508471

0.355270

0.227691

0.138355

0.080124
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Table 5.14. Values of the radial buckling and the extrapolated radius
analyzed by the RAMBLER code for the artificial data
based on the fundamental mode alone.

Number of Position of Radial Extrapolated
Data Points Last Data Point Buckling Radius R

Used (cm) a 2 (pB) (cm)

7 17.78 7695.3 27.414

9 22.86 7672.7 27.454

11 27.50 7663.5 27.471

The exact value of the radial buckling is 7656.3 pB.

The exact value of the extrapolated radius is 27.50 cm.

Table 5.15. Values of the radial buckling and the extrapolated radius
analyzed by the RAMBLER code for the set of artificial data
with the presence of the harmonic and reflector effects.

*j **
Number of Position of Radial Extrapolated
Data Points Last Data Point Buckling Radius N

Used (cm) a 2 (p B) (cm)

7 17.78 7582.8 27.616

9 25.40 7564.1 27.650

11 27.50 7678.7 27.443

The exact value of the radial buckling corresponding to the funda-
mental mode is 7656.3 pB. The curve-fitting method yields 7817 pB.

The exact value of the extrapolated radius corresponding to the
fundamental mode is 27.50 cm.
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To see if the iterative moments method extracts the asymptotic

J function from the total radial flux distribution, another numerical

experiment has been performed by deliberately describing the radial

activation distribution by means of the function

(r) = A [J0(ar) + c J0(or)]; (5.21)

here a 2 is the radial buckling, 2 is an artificially introduced

"buckling" which might correspond to some harmonic mode, and c is

a coefficient giving the contribution of the function J0 (Pr) relative to

the desired function J (ar). An iterative moments method similar to

that developed in section 4.6 for the reflector effect was used to infer

2 22
a , /3 , and c from the experimental data. The initial value of a2 was

calculated by Eq. (4.1) and that of P2 was chosen arbitrarily. For each

2chosen initial value of 3 , the following results were obtained whenever

the iteration converged:

2 2

and

c ~ 1.0

These results mean that the iterative moments method yields a

single J0 function whose radial buckling is a 2 when it is applied to the

analysis of the measured radial activation distribution in a miniature

lattice. The results of the two numerical examples imply that the

moments method does indeed have the property of reducing the effect

of the harmonic modes and the reflector effect. In contrast, the curve-

fitting method tends to emphasize the harmonic and the reflector

effects, especially in the neighborhood of the boundary.
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In conclusion, the iterative moments method developed in

section 4.3 can be applied to the miniature lattices provided that the

value of the moment index and the position of the last data point are

varied; the best values of the radial buckling and extrapolated radius

are determined by means of an error analysis as described in

section 4.3.

5.3.3 Application of the Iterative Moments Method to the Miniature

Lattices

The iterative moments method was chosen to extract the values

of the radial buckling of the miniature lattices from the foil activation

data because only a few data points are available. The RAMBLER

code was used for the analysis. It turns out that the use of the ratio of

the fifth to third flux moments yields a smaller probable error and

hence a better value of the radial buckling for all of the miniature

lattices except ML3 and ML5. For the latter, the ratio of the third to

first flux moments gives a smaller probable error.

Owing to differences in the lattice spacing, eight radial data

points were available for the miniature lattices ML2 and ML4, six

data points for the miniature lattices ML6 and ML7, and only five

data points for ML3 and ML5. In each lattice the radial activation

distributions of the bare gold foils and the cadmium-covered gold foils

were measured at two different axial positions: one at 6.75 inches

from the source and the other at 9.75 inches from the source. One

experimental run was made for each of the six lattices. For the

lattices ML2 and ML4, the inner seven data points and the outer seven
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data points were used in separate calculations of the radial buckling in

order to remove the boundary and harmonic contributions. The results

for ML2 and ML4 are given in Tables 5.16 and 5.17, respectively. A

similar procedure was used for the lattices ML6 and ML7: both the

inner five data points and the outer five data points were used to

extract the values of the radial buckling by means of the iterative

moments method. The results are given in Tables 5.18 and 5.19 for

ML6 and ML7, respectively. For the lattices with 2.5-inch spacing,

ML3 and ML5, all five data points were used. The results are given in

Tables 5.20 and 5.21 together with the results for the other lattices;

the latter values are obtained from Tables 5.16 through 5.19 by taking

the average of various runs at different axial positions. Tables 5.20

and 5.21 give the best values of the radial buckling and extrapolated

radius of the miniature lattices obtained by means of the iterative

moments method. These values will be used to calculate the values of

the material buckling in the next section. The corresponding values of

the radial buckling and extrapolated radius for the subcadmium

neutrons are given in Table 5.22.

The results obtained by means of the iterative moments method

are consistent. The use of the ratio of the fifth moment to the third

moment seems to reduce most the effect of the harmonic modes. This

is indicated by the small difference between the values of the radial

buckling obtained by using the outer data points and the inner data

points. It seems reasonable to conclude that the harmonic modes and

the reflector effect have a measurable contribution to the radial flux

shapes and that the use of the iterative moments method reduces the
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harmonic contribution to the extent that all the experimental data can

be used; the outermost data point was only about 2 cm from the

boundary.

For the purpose of comparison, we list the theoretical values of

the radial buckling and extrapolated radius for the miniature lattice

ML2 for thermal neutrons:

Physical radius = 25.40 cm,

Transport mean-free path, Xtr = 3.534 cm (Ref. B3, p. 182),

Extrapolated radius = 27.910 cm,

Radial buckling = 7420 yB.

It is seen that the theoretical value of the radial buckling is greater

than the experimental value for the bare gold foils (see Table 5.20) by

about 400 pB for this lattice ML2. As a consequence, the experimental

value of the extrapolated radius is approximately 1 cm larger than the

theoretical value. The discrepancy is probably due to the fact that the

theoretical value is only good for the thermal neutrons, while the

experimental value includes both thermal and epithermal neutrons. The

presence of epithermal neutrons tends to increase the extrapolated

radius and hence to decrease the radial buckling. To see this, two

typical sets of subcadmium data for the miniature lattice ML2 have

been analyzed by the iterative moments method. The results are tabu-

lated for convenience of discussion:

Radial Buckling Extrapolated Radius
(pB) (cm)

7310.1 28.127

7367.4 28.017
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These values agree reasonably well with the theoretical value for

thermal neutrons.

Significant discrepancies, ranging from 600 pB to 1200 yB, have

been observed between the values of the radial buckling obtained from

the activation of bare gold foils and of cadmium-covered gold foils.

(Compare Tables 5.20 and 5.21.) We have shown in section 5.3.1 that

the energy dependence of the linear extrapolation distance may intro-

duce discrepancies as large as 300 yB. Another contribution may be

due to differences in the reflection of subcadmium and epicadmium

neutrons from the wall of the room back into the assembly containing

a miniature lattice. One reason for such a difference is the presence

of two thick layers of paraffin around the assembly. The contribution

due to the reflection of epicadmium neutrons may be as much as

700 yB, as is shown in Table 5.9. It would seem desirable to replace

the paraffin by a good absorber of epicadmium neutrons.



Table 5.16. Values of the radial buckling and the extrapolated radius of the miniature lattice ML2

calculated with the RAMBLER code based on the iterative moments method.

ML2: 1.143% enriched fuel, D 2 0 moderated, 1.25-inch lattice spacing.

OUTER DATA POINTS USED INNER DATA POINTS USED

Type of Run Extrapolated Extrapolated

Detector Number Radial Buckling Radius Radial Buckling Radius
2 * ~ 2

a (y B) 9c 2 (pB) R (cm) a (pB) -a2 (yB) R (cm)

ML2A 7124.2 0.0036 28.491 6996.6 0.0388 28.750

Bare ML2B 7063.0 0.0161 28.614 7868.0 0.0273 27.111
gold
foils ML2C 6919.1 0.0127 28.911 6817.4 0.0250 29.125

ML2D 6917.9 0.0203 28.913 6896.1 0.0078 28.750

Cd- ML2E 6455.1 0.0179 29.931 6381.9 0.0190 30.103
covered

fold ML2F 6480.5 0.0372 29.873 6456.8 0.0360 29.928
f oils

*
The a's are the probable errors defined in section 4.3, not the standard deviations.

They are devised for the choice of the best values of the radial buckling.



Table 5.17. Values of the radial buckling and the extrapolated radius of the miniature lattice ML4
calculated with the RAMBLER code based on the iterative moments method.

ML4: 1.027% enriched fuel, D 2 0 moderated, 1.25-inch lattice spacing.

OUTER DATA POINTS USED INNER DATA POINTS USED

Type of Run Extrapolated Extrapolated
Detector Number Radial Buckling Radius Radial Buckling Radius

a 2 (yB) 9a2 (pB) R (cm) a2 (pB) a-a2 (pB) R (cm)

Bare ML4A 7084.3 0.0053 28.571 6884.2 0.071 28.984

gold
foils ML4B 6975.6 0.022 28.793 6846.9 0.040 29.062

Cd- ML4C 6585.0 0.0056 29.635 6550.3 0.059 29.713
covered
gold
foils ML4D 6337.3 0.015 30.721 6292.6 0.033 30.315

The -'s are the probable errors defined in section 4.3, not
They are devised for choosing the best values of a 2 .

the standard deviations.



Table 5.18. Values of the radial buckling and the extrapolated radius of the miniature lattice ML6
calculated with the RAMBLER code based on the iterative moments method.

ML6: 1.027% enriched fuel, D 20 moderated, 1.75-inch lattice spacing.

OUTER DATA POINTS USED INNER DATA POINTS USED

Type of Run Extrapolated Extrapolated
Detector Number Radial Buckling Radius Radial Buckling Radius

2 (B -a2 (2 - (caI (B) 9a2 (MsB) Ri (cm) a (piB) Ua2 (pB) R (cm)

Bare
gold
foils

ML6A

ML6B

ML6C

Cd-
covered
gold
foils

ML6D

ML6E

7267.0

7228.4

7221.8

6560.5

6393.1

0.0092

0.0101

0.0127

0.0102

0.0227

28.210

28.285

28.298

29.690

30.076

7029.6

7209.5

7192.2

6615.8

6620.9

0.014

0.010

0.014

0.0098

0.0076

28.682

28.322

28.356

29.566

29.554

The u's are the probable errors defined in section 4.3, not
They are devised for choosing the best values of a 2 .

the standard deviations.

I.



Table 5.19. Values of the radial buckling and the extrapolated radius of the miniature lattice ML7
calculated with the RAMBLER code based on the iterative moments method.

ML7: 1.143% enriched fuel, D 2 0 moderated, 1.75-inch lattice spacing.

OUTER DATA POINTS USED INNER DATA POINTS USED

Type of Run Extrapolated Extrapolated
Detector Number Radial Buckling Radius Radial Buckling Radius

2 * ~ 2
a (pB) -a2 (pB) R (cm) a (yB) -a2 (pB) R (cm)

ML7A 7107.7 0.0210 28.524 7439.9 0.0215 27.880

Bare ML7B 7072.3 0.0193 28.596 7427.6 0.0221 27.903
gold
foils ML7C 7195.4 0.0100 28.350 7287.6 0.0217 28.170

ML7D 7191.1 0.0072 28.358 7222.6 0.0096 28.296

Cd- ML7E 6433.3 0.0095 29.982 6070.6 0.0230 30.865
covered
gold
foils ML7F 6393.0 0.0158 30.076 6430.0 0.0103 29.990

*
The a's are the probable errors defined in section 4.3, not the standard deviations.
They are devised for the choice of the best values of the radial buckling.



Table 5.20. Average values of the radial buckling and the extrapolated radius of the six miniature
lattices calculated with the RAMBLER code for the activation of bare gold foils.

Lattice Fuel Lattice Fuel Rod Radial Standard Extrapolated Standard
Designator Enrichment Spacing Diameter Buckling Deviation Radius Deviation

2 1
(%) (Inches) (Inch) a (pB) Ea2 (MB) R (cm) E (cm)

R

ML2 1.143 1.25 0.25 7006 52 28.732 0.107

ML7 1.143 1.75 0.25 7344.8 53 28.062 0.102

ML3 1.143 2.50 0.25 7930.4 123 27.007 0.211

ML4 1.027 1.25 0.25 7030 54 28.682 0.333

ML6 1.027 1.75 0.25 7239 14 28.264 0.027

ML5 1.027 2.50 0.25 8242.3 56 26.489 0.130

*
The average of the two radial flux traverses at two different axial positions.



Table 5.21. Average values of the radial buckling and the extrapolated radius of the six miniature
lattices calculated with the RAMBLER code for the activation of cadmium-covered
gold foils.

Lattice Fuel Lattice Fuel Rod Radial Standard Extrapolated Standard
Designator Enrichment Spacing Diameter Buckling Deviation Radius Deviation

(%) (Inches) (Inch) a (yB) Ea2 (yB) R (cm) E (cm)
R

ML2 1.143 1.25 0.25 6468 13.0 29.902 0.054

ML7 1.143 1.75 0.25 6413 20.0 30.029 0.217

ML3 1.143 2.50 0.25 7291.2 - 28.163 -

ML4 1.027 1.25 0.25 6461 124 30.178 0.738

ML6 1.027 1.75 0.25 6619 2.5 29.555 0.001

ML5 1.027 2.50 0.25 7033 - 28.676 -

The average of the two radial flux traverses at two different axial positions.



Table 5.22. Average values of the radial buckling and the extrapolated radius of the six miniature
lattices calculated with the RAMBLER code for the activation of subcadmium neutrons.

Lattice Fuel Lattice Fuel Rod Radial Standard Extrapolated Standard
Designator Enrichment Spacing Diameter Buckling Deviation Radius Deviation

2 j
(%) (Inches) (Inch) a (PB) Ea2 (pB) R (cm) Ce (cm)

R

ML2 1.143 1.25 0.25 7210 76 28.325 0.151

ML7 1.143 1.75 0.25 7670 65 27.462 0.128

ML3 1.143 2.50 0.25 8002 158 26.887 0.267

ML4 1.027 1.25 0.25 7188 63 28.364 0.127

ML6 1.027 1.75 0.25 7519 60 27.735 0.155

ML5 1.027 2.50 0.25 8389 42 26.256 0.100

The average of the two radial flux traverses at two different axial positions.

C."
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5.4 THE MATERIAL BUCKLING OF THE MINIATURE LATTICES

We now obtain the values of the material buckling for the minia-

ture lattices from the difference between the radial buckling and the

axial buckling:

2 2 2
B =a -7 .m

The results are listed in Table 5.23 for the activation data obtained

with bare gold foils. The values for the corresponding full-size expo-

nential lattices measured at the M. I. T. Lattice Project as well as

those calculated by means of the two-group criticality equation

(Eq. (4.111)) are also included for comparison. The agreement is good

for the miniature lattices ML3, ML4, and ML5. For the other three

lattices ML2, ML6, and ML7, the values of the material buckling are

about 200 pB to 400 yB lower than the values for the corresponding

full-size lattices. The discrepancies seem to come largely from the

uncertainties in the values of the radial buckling because of the

presence of the four possible effects discussed in section 5.3.1. The

results presented in this chapter are derived from single measure-

ments on each lattice and hence should be considered preliminary.

More measurements are needed before the reasons for the discrepancies

can be firmly established. Nevertheless, the methods of analysis

developed in this report have made it possible, for the first time, to

infer values of the material buckling from measurements in miniature

lattices.

According to the results shown in Figure 5.5, the values of the

axial buckling corresponding to the distribution of epicadmium neutrons

do not approach a constant value even at 25 cm from the source.



Table 5.23. Values of the material buckling of the six miniature lattices calculated with the
RAMBLER code together with the values of the corresponding full-size lattices
and the two-group theoretical values.

Experimental
Material Buckling Theoretical

Type of Lattice Fuel Lattice Fuel Rod Miniature Full-Size Two-Group
Detector Designator Enrichment Spacing Diameter Lattice Lattice Material

(00) (Inches) (Inch) B 2 (MB) 2 Buckling
m Bm (yB) (yB)

ML2 1.143 1.25 0.25 1162 1444 1525

ML7 1.143 1.75 0.25 1205 1405 1485

Bare ML3 1.143 2.50 0.25 946 1007 1050
gold
foils

ML4 1.027 1.25 0.25 1270 1177 1400

ML6 1.027 1.75 0.25 813 1200 1320

ML5 1.027 2.50 0.25 948 891 960



238

Hence, no asymptotic value of the axial buckling can be deduced; the

values given in Table 5.7 are "nonasymptotic" values. For this reason,

we do not present any values of the material buckling as obtained from

experimental data for epicadmium neutrons.

It is evident from Figure 5.6 that the miniature lattice assembly

is large enough so that the subcadmium neutrons can attain an asymp-

totic distribution. The cadmium ratio is sufficiently large so that the

total neutron density also seems to approach an asymptotic distribution

even though the epicadmium neutrons do not. The asymptotic region is

too small for the conventional curve-fitting method to be applicable but

seems large enough for the moments method. Since the theoretical

values of the material buckling given in Table 5.23 are actually those

for the thermal neutrons, we have calculated the values of the material

buckling for the subcadmium neutrons. Table 5.24 gives the results of

such a calculation. The results for the 1.75-inch and 2.50-inch lattices

(ML6, ML7, ML3, and ML5) agree better with the theoretical values

cited as well as with the corresponding values obtained from full-size

exponential lattices. For the more tightly packed lattices ML2 and

ML4, the results appear to be too low primarily due to apparently

larger values of the axial buckling obtained. (Compare Tables 5.6 and

5.8.)

5.5 CONCLUSIONS

In this chapter we have analyzed both the axial and radial buck-

lings (and hence the material buckling) of the miniature lattices by

means of the moments methods developed in Chapters III and IV. The

applicability of the moments methods to the miniature lattices has been



Table 5.24. Values of the material buckling for the subcadmium neutrons of the miniature lattices
calculated with the RAMBLER code together with the values of the corresponding full-
size lattices and the two-group theoretical values.

Experimental
Material Buckling Theoretical

Lattice Fuel Lattice Fuel Rod Miniature Full-Size Two-Group
Designator Enrichment Spacing Diameter Lattice Lattice Material

(0) (Inches) (Inch) B 2(pB) B (pB) Buckling
m m (B

ML2

ML7

ML3

ML4

ML6

1.143

1.143

1.143

1.027

1.027

1.25

1.75

2.50

1.25

1.75

0.25

0.25

0.25

0.25

0.25

812

1385

1068

936

1115

1444

1405

1007

1177

1200

1525

1485

1050

1400

1320

2.50 0.25 1009 891 960ML5 1.027
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tested by comparing the values obtained with the values of the material

buckling of the corresponding full-sized exponential lattices as well as

with theoretical values. The reasonably good agreement found shows

that measurement of the material buckling can be made in miniature

lattices, although with less precision than in a large exponential

assembly. The conventional curve-fitting method cannot be used for

the analysis of the data for the miniature lattices; the moments

methods developed in the present work turn out to be applicable to

miniature lattices as well as to full-size exponential assemblies.

For the analysis of the axial buckling of the miniature lattices,

the source effect is the most troublesome. The choice of the first data

point at 20 cm from the source yielded the best results for the bare-

foil data in the sense that the value of the axial buckling become very

nearly independent of position at this point for most of the miniature

lattices; a reasonable number of data points were still available for

the analysis. The values of the axial buckling for the epicadmium data

did not level even at a distance of 25 cm from the source (see

Figure 5.5).

On the other hand, for the analysis of the radial buckling of the

miniature lattices, the harmonic and reflector effects seem to disturb

the radial flux shape near the boundary. Fortunately, the iterative

moments method developed in section 4.3 reduces the harmonic and

reflector effects simultaneously to an important extent. Further analy-

sis showed that the radial harmonics are more important than the

reflector effect. The use of the ratio of the fifth to third flux moments

instead of the ratio of the third to first flux moments for the analysis
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of the radial buckling yields consistent results for all the miniature

lattices except ML3 and ML5; in the latter cases, the ratio of the third

to first flux moments yielded a better value of the radial buckling. The

difference is probably due to differences in the relative contributions of

different harmonic modes.
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Chapter VI

STUDY OF THE EFFECT OF SPATIAL TRANSIENTS

ON BUCKLING MEASUREMENTS BY MEANS OF

THE SPHERICAL HARMONICS METHOD

6.1 INTRODUCTION

In Chapter II we mentioned that spatial transients can be excited in

the neighborhood of the source and boundaries owing to the directional

dependence of the neutron flux. These transients are sometimes called

"current transients" (D3) and are much less persistent than the asymp-

totic flux - the fundamental mode.

Similarly, the nonseparability of neutron flux in space and energy

can excite extraneous fluxes which are often called "energy transients"

(W1, B4). These usually die out within a short distance from the source

and boundaries.

The spatial and energy transients are generally negligible in a

well-thermalized large assembly, but they can cause difficulties in

small assemblies such as the miniature lattices. Little work has been

done on the possible effects of these flux transients on the determi.-

nation of buckling values from activation data by means of the flux-

shape method. Hellens and Anderson (H7) made a four-group analysis

of the radial buckling in water-reflected, light-water moderated,

uranium metal-fueled lattices and found that energy transients can be

serious in the neighborhood of the interface between the core and the

reflector. Windsor (W4) demonstrated the effect of the energy transients
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on the determination of the radial buckling in H 20-U lattices and found

that the energy effects start to appear when the value of the radial buck-

ling becomes greater than about 5000 puB.

In this chapter we shall investigate the effect of the spatial

transients on the determination of the buckling by means of the flux-

shape method. The spherical harmonics method (C1, P6, D2, K11, N2, T1)

will be applied to the miniature lattice ML3 in a one-group P 3 approxi-

mation. No attempt will be made here to study the effect of the energy

transients, although further research is needed on that general problem.

6.2 THE USE OF THE SPHERICAL HARMONICS METHOD FOR

THE STUDY OF SPATIAL TRANSIENTS IN THE AXIAL FLUX

DISTRIBUTION

6.2.1 General Theory

This section is concerned with the solution of the time-independent,

linear neutron transport equation in the z-direction:

yz O (z, E, y) + Et (z,) E) 4(z, E, y)

1 oo

= f dp' f dE' c(z, E'-E ; p0) 4(z, E', p') , (6.1)
-1 0

where all the quantities have been defined in section 2.3 of Chapter II;

the integral term combines the scattering and fission processes, and

the EDc denotes the collision kernel. Equation (6.1) is valid under the

assumption that the radial part of the neutron flux is asymptotic at the

radial position where the axial flux distribution is measured.

Figure 6.1 is a sketch of the experimental arrangement. The radial
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flux distribution is truly asymptotic at r=O; but it is practically asymp-

totic in the neighborhood of the axis, as we have verified in section 2.3.

The external neutron source is located at z=O and will enter as a bounda-

ry condition. The radial leakage is included in the modified total cross

*
section t defined by Eq. (2.16).

Another assumption is necessary before we can solve the equation,

Eq. (6.1): the medium under consideration is homogeneous and iso-

tropic. The nuclear cross sections are then independent of position

and the scattering kernel is a function of the angle 00= cos (Q - 0Z)

alone. The presence of fuel rods violates the assumption; but, if a

properly homogenized set of nuclear cross sections is used for the flux

calculation, and if the axial flux distribution is measured at positions

in the moderator region about which the flux is symmetric, the

assumption represents a good approximation.

To account for anisotropic scattering in an approximate fashion,

the collision kernel c(E'-+E ;p ) is expanded in a truncated series of

Legendre polynomials:

Z (E'+E;o) = { (2m+1 Z (E'+E) P (6.2)
c 0) \ 2 /cm m o

m=0

where, because of the orthogonality of the Legendre polynomials,

1

E (cmE') = 27r f_ d 0 P m(o ) C(E'+E ; y ) . (6.3)

In the case of a multiplying assembly, Z cm(E'-E) is composed of two

terms corresponding to scattering and fission, respectively:



1
Zcm(E'-E) 2 f7r 1 dy P o ) s (E') f(E'-E ;p)

1
+ 27r dp Pm (o) vE f(E') X(E'+E ;p0)

= Es(E') fm(E'+E) + vE Z(E') Xm(E'-E)

f m(E'+E)

and

Xm(E'+E)

1
=27r f dp0 P ( ) f(E'-E E;p),

-1 a m

= 27r
1

f dyp P (Po ) X(E'-E ; p)

for m = 0
X o(E'-E)

0 other

because the fission neutrons are emitted isotropically. The use of the

addition theorem for the Legendre polynomials (Cl) together with

Eqs. (6.3) and (6.1) yields the equation

y 4(z, E, p) + Z *(E) 4(z, E, y)a z

M

m=0

2m+1 P f dy' Pm')
-1 M

00

0 dE' Zcm(E'+E) 4(z, E', p')

for z > 0 . (6.7)

To treat the source effect, we separate the neutron flux into two parts,

the uncollided flux and the collided flux:

4(z, E, ) u(z, E,) + c(z, E,p) (6.8)

The uncollided flux satisfies Eq. (6.7) with the integral term set equal

to zero:

p u(z, E, p) + Z (E) 4(z, E,y) = 0 .9

246

here,

(6.4)

(6.5)

wise,
(6.6)

(6.9)
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The solution is

*

-Zt (E) z/
uc(z, )=A e t (6.10)

Since the external source is very nearly unidirectional, we can express

the source as

S(z=0, E, P) = Q9S(E) 6(y-1) ,9 (6.11)

where Q is the source intensity, and S(E) is the energy distribution of

the source neutrons. The boundary condition at z=O gives

A = 4uc(0,E ) = Q S(E) 6(y-1)

The uncollided flux may then be written as

- Zt (E) z/p1
4uc (z, E, p) = Q S(E) 6(p-1) e

(6.12)

(6.13)

The balance equation for the collided flux can be obtained by

substituting Eq. (6.8) into Eq. (6.7).

P - c(z,az

M

m=0

M
+ I

m=0

The result is

E,y) + Z (E) 40c(z, E,y)

2m+1 P
2 )/ (V

1
f dy'Pm (I')
-1 m

0

f0
dE'Tcm(E'-+E) 4c(z,E',p')

2m+1 P (p) f0 dE' Zc(E'-+,E) Q S(E') e
2 / m 0 cm o

*
-Zt (E')zt

We see that the uncollided flux in the integral term acts as a distributed

source for the collided flux.

Equation (6.14) can be solved approximately by means of several

methods: for example, the multigroup PN method, the multigroup BN

method, the multigroup SN method. Since we are concerned with the

(6.14)
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spatial transients caused by the directional dependence of the neutron

flux, we shall use the multigroup PN method. First, the

flux is expanded in a series of Legendre polynomials:

Sc(z, E, y) =
m=O

directional

2m+1 (z, E) P .W2/ pm~ m (6.15)

Inserting the expansion (6.15) in Eq. (6.14), we find that

2m+1 P (p) 4. (z, E) + Z*(E) Pm(p)4 (z, E)

m=O

M

m=0

- oo

~ 0

00

+ P (p) Q 0 f
0

dE' Z cm(E E) (z, E

*
-Et (E')z

dE' Z (E'+-'E) S(E') e 1
cm

(6.16)

To derive the equation for each Legendre moment, we multiply

Eq. (6.16) by Pn(p) and integrate over p. The term in pP MOp is

eliminated by use of the recurrence formula

pP (p) =
m

(m+1)Pm+1(p) + mP 1G)

(2m+1)

The orthogonality property of the Legendre polynomials,

1
f1dy P (p) P (p)=
-1 m n

0

2
2m+1

if m # n

if m = n ,

leads to the PN equations

(6.17)

(6.18)
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00

=f
0

00
dE2 cZ(E 'oE) ) c (z.PE?) +Q0 f

-Z (E') z
dE' Z cn(E'1-+1-E) S(E') e t

(0 < n < oo) . (6.19)

An approximate solution is obtained by truncating this infinite set of

equations by setting

S((z, E) = 0 (n > N) . (6.20)

The multigroup treatment of the energy dependence of the neutron

flux consists in dividing the energy scale into a finite number of energy

groups and in defining the nth Legendre moment of the g th-group

directional flux as

4 (Z)=n,g

Ef g-

E
dE 4((z, E) (6.21)

g

where E < E < E _ for the gth group. Thus, if we integrate Eq. (6.19)

over E from E to E , we arrive at the multigroup PN equations

n+1 _d 4c z + n d c Z)+ * c (Z)2n+ 1 dz n+1,g 2n+ 1 dz On-1,g t n, g

G
+QZ

g =1

?
cn

_* g'z
te , (0 n,<N;1 g,<G),

(6.22)

where G represents the total number of energy groups, N is the order

of the PN approximation, and Sg is the fraction of source neutrons that

are in the gth group. The calculation of the group constants has recently

been discussed by Pomraning (P6).

G

g
cn c (en n~g

2n +1 +1 c (z, E) + 2n+ 1 -1c(z,' E) + Z *(E) 4 (z,5 E)

In general, these constants are
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weighted flux averages of the quantities of interest in a particular group.

The weight function is sometimes chosen as the adjoint flux. The choice

of unity as the weight function leads to the following expressions for the

group constants:

E
f ' dE Z (E) 4 (E)

E
(6.23)

t E
g1 dE 4c(E)

n
g

and

E E
fEg1dE ~ dE' c(E'+E) (E')
E Ecn

gg E = E 1 . (6.24)
cn E

E ,

Since the conventional flux shape method for analyzing buckling

measurements is based on the total flux distribution, we shall focus

on the calculation of the integral quantity for the gth energy group,

1
(z) f 4c(z, p) dy

g -1 g

00 (2m+1 4 (z) Pm(p) dp
f1 m=0 2 m~

c (z) 1 g G (6.25)
0, g

owing to the orthogonality of the Legendre polynomials Eq. (6.18).

Hence, the calculation of the total neutron flux is identical to the

calculation of the zeroth Legendre moment of the directional flux.

By spatial transients we mean the extraneous contributions

to the asymptotic flux that arise from transport effects near the
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source and boundaries. Examples are the additional solutions, other

than the fundamental, to the balance equation for the zeroth moment of

the Legendre polynomials in the PN approximation. With this definition

of the spatial transients, the multigroup PN equations we have derived

can be used to calculate the spatial transients as well as the eigen-

values corresponding to the spatial transients for each energy group.

Such a calculation should help us understand some of the problems

associated with the flux shape method for the analysis of the axial

buckling or, equivalently, of the relaxation length. To show this, we

consider the PN approximation with N odd. The equations (6.22) for

the gth group can be rewritten in the form

G G -E? 9 z

( , S1g e(Z+9 9 t

g =1 g 1

4 (z) + Z 00 Fc()+ 4 (z) = Q 4g ,()+g ee

g'= 1G .. E*9 z

N d c (z d -d *g1c (z)g, c

4 (z) +$ 4 (z) + Z 49 (z)= 4 (z)+Q O et

g' =1

2N-1 diz N,g z) 2N-1 dz-2,g(z)+ t 4N-1,g~z

G _E*9 z-

Gd()2d c ) 1:*(z)+QoSg e t +

T = z- gg zi - 19 t 2 c 1

g'=1

G _EK'
N d c -1,ggzc )z++ () g (z)+9 g'=1

(6.26)
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The elimination of all the higher Legendre moments except the zeroth

in the gth group as well as all the Legendre moments in the other groups

yields an ordinary differential equation of order (2G+N+1) for 4 (z)

This equation may be written in the form

dn n-1 n-2

0 n c (z) +a d n- 1c (z)+a d 4 c (z)+ .. + a 40 (c = f(z)
dzn 0, 1 dz 0,g 2 dzn- 2 0,g n ,g

(6.27)

where N = 2G+N+1, and the coefficients a 's are made up of the group

constants. The inhomogeneous term f(z) comes from the external

source contribution. The axial buckling or the relaxation length,

characteristic of the assembly of interest, is determined by the coef-

ficients a is through the characteristic equation of the scalar flux

4c (z

a7n + a yn-1 +... + an-1y + an = 0, (6.28)

where the value of y2 that corresponds to the most persistent mode is

the axial buckling (to be inferred by means of the flux shape method)

and the corresponding value of y~ is the relaxation length. Notice that

n=2G+N+1 is always an even number when N is odd, so that Eq. (6.28)

can be solved for 72 directly. The values of y always appear in pairs:

for a positive value of -y there exists always a negative value of 7 with

the same magnitude. This result also implies the existence of a

solution of the type

(c 1 e-z+c 2 e Yz =A sinh Y(H-z)

There are 2G+N+l) solutions of this type for the flux 4 (z); the
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most persistent one is the asymptotic solution, often called the funda-

mental mode; we denote the corresponding eigenvalue by 71. The

solutions corresponding to the characteristic equation (6.28) are the

homogeneous solutions for c (z); there is also a particular solution

corresponding to the inhomogeneous term f(z). The complete solution

for g (z) can be written in the general form:

(2G+N+1\
2,'

c (z) = A1 sinh Ty -z) + A sinh 7 (H -z) + p(z)

i=2

= [Asymptotic Flux] + [Spatial Transients]

+ [Source Neutron Contribution] . (6.29)

6.2.2 The Boundary Conditions

The specification of the boundary conditions for obtaining the

complete solution of the type Eq. (6.29) is crucial and difficult. The

usual zero-flux boundary conditions at both ends of the assembly are

not enough to permit the determination of all the coefficients that

appear in Eq. (6.29). If we next consider just the collided flux and

assume that the directional collided flux vanishes at the boundaries,

the exact boundary conditions are

S(0, )=0 for y> 0 (6.30)

and

4 (Hp)= 0 for < 0. (6.31)

These two equations provide an infinite number of conditions (since

there are infinitely many possible values of p) which cannot be all
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exactly satisfied in an approximation of finite order. We shall there-

fore use Marshak's boundary conditions (D2):

1 4 c( 0 , ) P 2n-1(p) dp 0 at z = 0, (6.32)
0 g

and

- (H,p) P2n-1(M) dp 0 at z = H (6.33)

where n = 1, 2, 3, ... , . It is evident that there are just enough

boundary conditions for the determination of the coefficients in a PN

approximation.

6.2.3 A One-Group P 3 Approximation

We wish, at this point, to separate the problem of the spatial

transients from that of the energy transients. We shall, therefore,

reduce the number of energy groups to one, and treat the spatial

problem for the case of monoenergetic neutrons. For exploratory

purposes, and to keep the problem amenable to analytic treatment,

we shall use the lowest order Pn approximation that will help us

understand the transport effects, namely, the P 3 approximation.

Hence, we shall derive expressions for the axial buckling, the total

axial flux distribution, the extrapolated height, and the geometric

buckling in the one-energy group, P 3 approximation.

Equation (6.22) for G=1 and N= 3 gives the following set of

equations:
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*

d * ~ z
dz 01(z) + (t~ qe(z) = Q c e

2d (Z)

3 d Oc~
5 dz 3

+ d (Z)

+ 2 4 (Z)

3d (Z) +7 T-

+c+ ( c1)4{(z)

+ (* - c2) (Z)

=Q oEc3

= Qorc1

*

t ze

= QorFc2 ez

*

t ze

where

ecn n s Xnvf, 

for n = 0

otherwise

(6.36);

in particular, f1 = 1 and fI - 11 te scaLering is not sLrUngly aisLbU-

tropic, we may assume that fn = 0 for n > 2. Under this assumption,

the elimination of 4 (z), 4 (z), and 4 (z) from Eq. (6.34) yields a fourth-

order differential equation for the scalar flux 4 C(z):
0

d4

dz 4 o(z)

2
- a d c(z) + b~c(z) = f(z)

dz2 oz
(6.37)

where

f(z) = * - t z

9 tO e

+ [8 Esz +*tr(vz +s
35 t[0s t tr f s

a = 2a 5z

(6.38)

(6.39)+ 3t za vE ) +2 E *(a ),

(6.34)

1

n 0

and

(6.35)

1
f n f dp 0f ) P no)- 1

( - c3 3()

4(Z* 2

5 t ) (Vzf+z,
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and

b 5 * ( 2

b = 3E tr( t) (a-vE ) . (6.40)

A. The Axial Buckling

For the homogeneous solution of Eq. (6.37), we seek a solution of

the form eYz where T satisfies the characteristic equation

-y - aY + b = 0,

Y2 [a± a2 -4b

(6.41)

(6.42)

The value of 72 with smaller magnitude is the asymptotic axial buckling;

2*
the other value of y is the eigenvalue corresponding to the transient flux.

The complete solution for the flux 4 c(z) is given by
0

*

e +A, e
i

-- iz
+ A, e

7 3 z -73z
+ Ae + A, e

a I

where

S2=[a - Ia 2 -4b

7 a + 1 a 2 -4b ]

asymptotic axial buckling

transient axial buckling ,

and

35 * 2

S =

EtZ* -art* +b)

4 * 78 * Z sv
5 z ~t (Vzf +Zs )+ - - [ ' r(zf+ )

or

c (Z) S0c)= S
0o o0

(6.43)

(6.44)

(6.45)

(6.46)
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The coefficients A. are to be determined by the boundary con-

ditions. The use of Eqs. (6.32) and (6.33) for n = 1 and 2 yields the

following four boundary conditions:

4c (0) 2(0 + c (0) =0

4 (0) -50C(0) -84c(0) =0,

c (H) - 24(H) + c (H) 0

4 c (H) - 54c(H) + 80C(H) 0

(6.47)

(6.48)

(6.49)

(6.50)

It is seen that the determination of the coefficients by means of

Marshak's boundary conditions requires the knowledge of the higher

Legendre moments. However, the solutions for , 4,

be obtained readily through Eq. (6.34):

FA, Ti z A 2 ~7 lz A 34 z)=-( a~ fI ,e - - e + e
a I 1Y 73

L~ J 1

+ [So(a-vf)-Qo(vf+zs)] . e

t

and 4c can3

7 3 z A 4 -7 3 z
7e
'Y 0

*

.

z
t 3(6.51)

-7 1 Z
+A2 e

N e^3z +A
7 3 (A3 e 4Age

73 Z)
*

_ t z
* e

t

(6.52)

and

4 (z) = 31

t

M (A
7 1 z
e -A e Z +N(A 3 e 3 -Ae -7 3z j]

where

13 tr az - fV j
M=-71 a -f6.4

M
=7-4 (z) (A 1 e

7 1 z

3
7

P

t

t z
e

(6.53)

(6.54)M = 71 -
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-t (T , (6.55)
N = 3 - 3 (Ea-v f)],(.5

p = Q s(3+ )+ 3 , (6.56)

L t -

and S0 is given by Eq. (6.46). Substitution of Eqs. (6.43), (6.51), (6.52),

and (6.53) into Eqs. (6.47) through (6.50) gives four simultaneous

equations for the four unknowns A 1 , A 2 , A and A4.

*
y H -71yH ' 3H -Y3 H H

A e + A2x2 e + A3 x3 e + A Xe = q1 e ,

*
ly H -Y H 73H -73H H

Alp, e + A2 p 2 e + A3 3 e + A p e = q 2 e

A 1 x 2 + A 2 x 1 + A3 x4 + A4x3 q3

A p 2 + A 2 p 1 + A 3 P4 + A p 3  q 4 , (6.57)

where

1 - v- - ](6.58)

1 vra)4 1 j

M1 + (vZ - - (6.59)

F2 SN]f-a

X3 = 1 - - (Vz - a) - (6.60)

x= 1 + (vf -)z -N (6.61)

p = 1 + 5 M + ] (6.62)

t

p= 1 + 5 M -- 24 ] (6.63)

t-



+ 5 N + 24,N

t

N 24 N]
+5- -,

t -

(2K-v )-g-= a -

t

1] S 2(v~2f+-L2)2 - s Qo
t

5
4

P (6.66)

(6.67)
2= + 0 +

t

(v z2f+ ) Q

S*

5+ 5 P

t

(6.68)
3= - L2 a f + 1 so + 2

t

q = 9 + . (6.69)

t

The set of simultaneous equations Eq. (6.57) can be solved for the A. by

means of Cramer's rule. The results may be written in the form

A.= (i= 1, 2, 3, 4)

x2 e

p 2 e

p1

1

e

P3 e

-Y3 H

-73H

P4
e

x4

P4 p3

(6.70)

~ - (X1 p3 -x 3p 1) e
(y 3 -7 1)H

e

P3 = 1i

p4 = 1

259

(6.64)

(6.65)

where

1

p1 e

x 3

+(2P3~ 3p 2) (6.71)



(c L *9)H( E~b)(dEX)d X +

H~~~~ (£tiIA)(Nb-Ed~b)(TdSX-Ed TN)

Eb

N:V

Ha~d

H Ek

1.

alb-
H*

HLA

(gAJ9)
H(%~£~(Edlb- x Zb)('dLN-EdIN) +

=Iv

(sXV -db(dE -dX

Td Nb

Lb

a1.

H Ek.
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H Ek
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-yH

P2 e

x1

p 1

*
-EtH

q e

EtH
q 2e

4e-3

-7 3 H

P4 e

q3

P4

(XP2 2P1 )(q 3 P3 -q 4 x 3)

+ (l p 3 3p1 )(q 1p1- q2 e1 e- - 1)H (6.74)

2 e

p2 e

p 1

1

3

P3 e

-4

q 1 e

*

-Zt H
q2 e

p 4

P4

(71+73) H

(7 3 -7 1)H
(X~p-X~2)(4X2q~p) (.75

1l H

7 H
P e

A3

Xe

+H
Ple

A4=

- (x lP3~ 3p 1( 4 x1~- q3p1

+ (X 2P3~ 3P2 )(q4 x2~ q3P2) (6.75)
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B. The Total Axial Flux Distribution

The total axial flux is, by definition,
*

1 1 -
4e(z) = f dy 4(z, y) = f dp[uc (Z)+c(Z, ) = Q e t + 4c Z)

-1 -1

-E z ~ 1 Ti 2 ~1z~ ~ A3 3 Ag-z
= (QO+SO)e + e + e + e + Ae.

(6.76)

Here the first term is the source neutron contributions, the second

term represents the asymptotic axial flux distribution, and the third

term is the spatial transient in the one-group P 3 approximation. It

is advisable to express the asymptotic flux and the transient flux in

terms of hyperbolic functions. To do this, recall that

e±'z = cosh z ± sinh Tz . (6.77)

Thus,

sy.(z)~ A 1 _1Tz A -7 1 z

0 e A

(A2 12 (A 1+ 2 )2 (A 1+A 2)

A (A 2 -A 1) 2  1 2 2

- 2 2 sinh 7-z .)

2 (A 1 +A 2

Now, define

(A 1 +A 2sinh 71- 
12

- _ ,

cosh -yz

(6.78)

(6.79)
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then

c o s h =s 2 f _
cosh y ,= J1 + sinh yH 1

~2 2
J(A 2A 1)- (A 1 -i-A 2

(6.80)

Equation (6.78) reduces to

12
4asy.(z) = 12sinh yH-z).
00 A sih^ HZ

Similarly, we can express the transient flux as

2 J-A3 4
t (z) A sinh 7 3(H 3 -z)

where

A3 +A 4)
sinh 73H3 ~ .

2 -A3A4

(6.81)

(6.82)

(6.83)

It can be shown either by a numerical calculation or by the expressions

given by Eqs. (6,71) through (6.75) that

A1  .
- negative,

A3 .
A negative,

- positive ;

A4 .
- positive

These results must be true if the expressions, Eqs. (6.81) and (6.82)

for the asymptotic flux and the transient flux, respectively, are to be

physically meaningful; for then the factors -~A1 A 2 and -A3A4
A A

are real. To avoid confusion, we write

and
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~ 1 A 2  A1  2

3JAI

-A 3 A4 ~JAIA4

which is positive and real,

, which is positive and real.

The total axial flux becomes

-Z z 2 IA, - 2 ~A
<b(z) = (QO+S ) e + JAI sinh 7 1 (H Z)

2 IA3. IA4~
sinh -y3 (H 3 -z) . (6.84

C. The Extrapolated Height

Equation (6.79) suggests a way of calculating the extrapolated

height H 1 for the asymptotic axial flux:

~ 1 _ _1 1 2
H - sinh (6.85

JiA 1 H IA!1~1 j
This expression includes the boundary effect as well as the source

effect and is, consequently, more suitable for estimating the extrapo-

lated height of a miniature lattice than the usual formula given by the

asymptotic transport theory

H = H + 0.7104 Xtr (6.86

)

F)

which neglects the source effect.

and

)
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Another formula for the extrapolated height H can be obtained

by forming the ratio of Eqs. (6.79) and (6.80):

S= 1 tanh .(1) (6.87)

The functional form is exact; the approximations enter in the calcu-

lation of the A.. Equation (6.87) is similar to the expression for the

extrapolated height derived by means of the moments method in

Chapter III, namely, Eq. (3.23).

Equation (6.83) also suggests a way of calculating the axial

position at which the transient flux vanishes:

1 .i1 (A3 4)
3 = sinh' (6.88)
3 7

3 I3

or, alternatively,

/A .4A

3 = tanh . (6.89)

D. The Axial Geometric Buckling

We have shown in Chapter II that the geometric buckling is a

sensitive parameter for testing the asymptotic condition; when the

2
axial flux becomes asymptotic, the geometric buckling is equal to TY .

We shall estimate the position at which the geometric buckling

2
becomes equal to y. To do this, we define the geometric buckling

as

B2(z) 1 d (Z) (6.90)
g o0(Z) dz2 0
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Substitution of Eq. (6.84) into Eq. (6.90) yields

2

1 +

,Y1

F 2 (z)

F 1 (z)

+ F 2 (z)
1 +F(z)

*2

+ 2

7 1

(QO+S) t z

F 1 (z)

(Q +S ) -Et z
+ t ( e

+ Z

} (6.91)

(6.92)F 1 (z) = 2  sinh y1 (H 1 -z) ,
JII

2 A
F 2 (z) = 2 I sinh y 3 (H 3 -z) (6.93)

In the neighborhood of the boundary, z=H, Eq. (6.91) reduces to

B2 7
B- (z It

*
-Et z

When e

21F
I..

2

2
1

F 2 (z)
0 and F 2(z) 0, weF 1 (Z)

F 2 (z)]

I F (z)
1 1'I

have the asymptotic condition

B 2(z)
g

T 2 = independent of z
1

E. Numerical Calculations for the Miniature Lattice ML3

The miniature lattice ML3 was chosen for the quantitative study

of the effects of the spatial transient and the source contributions on

the determination of the asymptotic axial buckling.

B 2(z)
g

2

where

and

(6.94)7 1
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(i) Calculations of the Macroscopic Nuclear Cross Sections and

Diffusion Parameters

The homogenized set of macroscopic nuclear cross sections is

calculated by means of the formula

-F - -C - -M
Z VF F + j V CC + F VMOM (6.95)

VF F+VCkC+VMkM

where

j = a for the macroscopic absorption cross section,

j = s for the macroscopic scattering cross section,

j = f for the macroscopic fission cross section,

j = tr for the macroscopic transport cross section,

j = t for the macroscopic total cross section,

and the superscripts F, C and M stand for fuel, cladding and moder-

ator, respectively. The average macroscopic cross sections for the

ith region, the 2, were computed with the THERMOS code which gives

v

F V fdrf dv vN(r, v) Z (v) (6.96)
1 0

th
where V. and 4. are the volume and the average flux in the i region,

1 1

respectively; the average flux is given by:

*
v

V = fdr f dv vN(r, v). (6.97)
1 0

In Eqs. (6.96) and (6.97), N(r, v) denotes the neutron density as a

function of space and velocity, and v* represents the upper limit of

the velocity range under consideration. To account for the fast
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fissions in U2 3 8 as well as the epicadmium fissions in U 2 3 5 , the

-F
average macroscopic fission cross section I was calculated from

the formula

-F -25 - 28
f = e5f (1+625)(1+628) + (1-o)2f , (6.98)

where e is the concentration (atom fraction) of U235 in the fuel and the

quantities 625 and 628 have been defined in Chapter I. To correct for

238
the epicadmium capture in U , the average macroscopic absorption

cross section in the fuel F was defined asa

-F -25 + -28
a a a (l+P 2 8)

where p 2 8 is the ratio of the epicadmium to subcadmium capture rates

in U238 averaged over the fuel.

The diffusion length L was computed from the formula

1
L= _(6.100)

^J3
a tr

and the diffusion coefficient D from

D = . (6.101)
tr

The radial leakage of neutrons was taken into account by defining

the "leakage cross section" in the diffusion approximation:

z~r = Da2 = D 2.4048 2 =0.00614 cm~1

r mp R

The modified macroscopic absorption cross section including the radial

leakage is then
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= + r = 0.0102 cm ,
a a Lr

and the modified macroscopic total cross section becomes

Z Z + Z = 0.44713 cm-1
t s a

The values of the homogenized nuclear cross sections and diffusion

parameters are listed in Table 6.1 together with measured values

of the quantities 6 25' 628, and p28'

Table 6.1. Values of the parameters used in the one-group P3
calculation for the miniature lattice ML3.

ML3: 1.143% enriched uranium fuel, D 2 0 moderated,
and 2.50-inch triangular spacing.

Parameter Value

a (cm~ ) 0.00406

F *(cm ~) 0.01020
a

(cm- ) 0.00203

s (cm- ) 0.43693

Zt (cm~) 0.44713

Ztr (cm~ 1) 0.41456

D (cm) 0.80407

L (cm) 15.70500

V 2.430

yA 00.116

VM/VF 108.34

R (cm) 27.522

p2 8 1 0.2510

628 (1) 0.0174

625 (1) 0.0153

the report by Sefchovich et al. (Si).(1) Taken from
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(ii) Calculation of the Axial Buckling (or the Eigenvalues)

The axial bucklings corresponding to the asymptotic flux and

the transient mode were calculated by means of Eqs. (6.44) and (6.45);

the coefficients a and b were calculated from Eqs. (6.39) and (6.40).

The results are:

a = 0.7816619 cm-2

b = 0.00505104 cm-4

= 0.00651627 cm-2

72 = 0.775146 cm-2
3

where y = 6516.3 pB is the asymptotic axial buckling. The corres-
1

ponding value obtained by means of the moments method from the

experimental data is 6984.4 yB (see Table 5.7 of Chapter V). The dis-

crepancy is probably due mainly to the uncertainty in the various cross

sections, especially the transport cross section. The effect of uncer-

tainties in cross sections is aggravated by the fact that the asymptotic

2
axial buckling Y 1 is calculated as the small difference between two

relatively large numbers. For the lattice ML3,

1 = 2- 2 -b

= 0.39083097 - 0.3843147 = 0.00651627 cm

It is evident that small uncertainties in the various cross sections

2
could lead to a significant error in the value of T . This example

emphasizes the importance of measurements of the axial buckling.

The same argument applies to the determination of the material

buckling. Another contribution of the discrepancy may come from the

inadequacy of low-order approximate theory used - the one-group P 3

approximation - and particularly from the boundary conditions.
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(iii) Calculation of the Total Axial Flux Distribution

Equation (6.84) was used to calculate the total axial flux

distribution. The physical height used in this calculation was 40 cm,

the actual height of the miniature lattices.

obtained for the constants in Eq. (6.84):

S9 = 2.084316 Q9

A = 177.762 Q e

A2= -234.249 Q e

The following values were

31.988

38.446

A 3 = 8.28496 Q ,

A = -52.8974 Q e
38.446 - 37.0314 Q

A = -54.8102 e38.446 + 31.5633 e31.988

Since only a relative flux distribution is needed for the analysis

of the axial buckling by the moment method, the total axial flux in

Eq. (6.84) was normalized with respect to the asymptotic axial flux:

[<b(z)] rel.

(QO+S 0 )

2 A 1 - A 21

- z
e + sinh Ty(H 1-z) + c sinh -3(H3-z)

(6.102)

where

IA 3 1 . 41
c =

The extrapolated height was calculated from Eq. (6.85):

(A 1 +A 2)

2 TA-11IA21

14.50 ,

31.988e
0

(6.103)
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and

* 1 1 3.3674 -4.1 m
H sinh (14.50) =41.715 cm.

The corresponding value, obtained with the ABMOMENT code through

the analysis for a set of theoretical values calculated by Eq. (6.102),

was 41.711 cm. The good agreement confirms the reproducibility of

the ABMOMENT code. The exact value predicted by the asymptotic

transport theory is given by

N1 = H + 0.7104 Xtr

= 40.0 + 0.7104 .(2.4122) = 41.713 cm,

which agrees very well with the value computed by means of Eq. (6.85).

The experimental value of H has been obtained in section 5.3 of

Chapter V (see Table 5.7):

(AH)xp = 46.408 cm,
exp.

which is greater than the theoretical value. The discrepancy may be

attributed to the presence of a layer of D20 at the bottom of the cylindri-

cal tank during the course of experiments (Si). By taking into account

the reflector savings, the value of the extrapolated height was calculated

to be 48.476 cm (Si), which is in better agreement with the experimental

value. Similarly, for the transient flux, we have

.ihy ~A 3 +A 4 ) 1 52.957 19.223
smnh T73H3 = ~_ - 20.92 v

2 1A31 A41

since ~ r
~hy 0 1 73H3 ~

sinh T73 H3 -f e for 7 3H 3 >
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e3 H3 52.957 19.223 20.151
e = 2.92ee

and

a ~20.151 _ 20.151 = 22.888 cm.
3 - 0.8804

The transient flux should therefore vanish near the middle of the

assembly. We finally obtain for the total relative flux:

[<O(z)]rel. ~" 11.053 e-0.4476z + sinh[0.08072(41.715-z)]

+ 0.1025 e-15.994 sinh [0.8804(22.888-z)]. (6.104)

The total flux distribution just obtained is plotted on a semilog scale in

Figure 6.2. Table 6.2 lists theoretical values of the asymptotic flux,

the transient flux, the source neutron contributions, and the total axial

flux.

(iv) Calculation of the Geometric Buckling

The geometric buckling was calculated from Eq. (6.91); the

results are listed in Table 6.3 and are plotted in Figure 6.3. The same

figure has been shown previously in Chapter II as Figure 2.2. It is

seen that the geometric buckling should become very nearly independent

of position at about 20 cm from the source and should remain constant

to about 34 cm where the boundary effect begins to appear. The result

indicates that there should be an asymptotic region of about 15 cm in

the miniature lattice ML3.
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-o-ASYMPTOTIC FLUX

x-X-x TOTAL FLUX
x SOURCE NEUTRON CONTRIBUTIONS

0--- TRANSIENT FLUX

I I I I I I I I I I I I I II I I I i I I I I I I I
0 10 20 30 40

DISTANCE FROM THE SOURCE,z (cm)

FIG. 6.2 DISTRIBUTIONS OF THE ASYMPTOTIC FLUX, THE

TRANSIENT FLUX , THE SOURCE NEUTRON CONTRIBUTIONS,
AND THE TOTAL FLUX OF THE MINIATURE LATTICE

ML3 IN A ONE-GROUP P3 APPROXIMATION.
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Table 6.2. Values of the theoretical fluxes calculated with
Equation 6.104 for the miniature lattice ML3.

ML3: 1.143% enriched fuel, D 2 0 moderated,
2.50-inch spacing.

z
(cm)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

Transient
Flux

0.327973

0.051635

0.009676

0.001665

0.000286

0.000049

Source Neutron
Contribution

1.105300

0.454352

0.187072

0.076929

0.031645

0.013009

0.005361

0.002201

0.000910

0.000371

Asymptotic
Flux

1.450040

1.225363

1.048927

0.891293

0.757596

0.643821

0.545935

0.463609

0.392627

0.331776

0.235376

0.196969

0.163733

0.134754

0.109312

0.086710

0.066386

0.047784

0.030442

0.013884

v . v U .L tIL0

0.000063

0.000024

0.000009

Total
Flux

2.883313

1.731350

1.245675

0.969887

0.789527

0.656879

0.551296

0.465810

0.393537

0.332147

A 'OAAr-O

v . daLUvd U

0.235439

0.196993

0.163742

0.134754

0.109312

0.086710

0.066375

0.047727

0.030093

0.011858

-0.000011

-0.000057

-0.000349

-0.002026
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Table 6.3. Values of the geometric buckling as a function of axia4
position in terms of the asymptotic axial buckling 71
for the miniature lattice ML3.

Axial Position

z (cm) 2

0.0 25.8000

2.0 12.3200

4.0 6.3800

6.0 3.5600

8.0 2.2350

10.0 1.5950

12.0 1.2900

14.0 1.1400

16.0 1.0690

18.0 1.0332

20.0 1.0162

22.0 1.0080

24.0 1.0036

26.0 1.0016

34.0 0.98037

36.0 0.85920

38.0 -0.3765

40.0 -19.1500
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ML3: 1.143% ENRICHMENT
D20 MODERATED
2.50 INCH SPACING

y 2 =ASYMPTOTIC AXIAL BUCKLING

0.9K-

0.8

0 5 10 15 20 25 30 35 40
DISTANCE FROM THE SOURCE Z (cm)

Fig. 6.3 DISTRIBUTION OF THE AXIAL GEOMETRIC BUCKLING AS A
FUNCTION OF THE DISTANCE FROM THE SOURCE OF THE
MINIATURE LATTICE ML3 IN A ONE-GROUP P3
APPROXIMATION.
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6.3 A SPATIAL TRANSIENT ANALYSIS OF THE RADIAL FLUX

DISTRIBUTION BY MEANS OF THE SPHERICAL HARMONICS

METHOD

6.3.1 Introduction

A complete spherical harmonics solution of the Boltzmann

equation for neutron transport in an infinite homogeneous cylinder has

been obtained by Kofink (K11). Tralli and Agresta (T1) have also

worked out the corresponding solution for a cylindrical cell of finite

height. Noble (N2) has studied some conditions for the unsymmetric

spherical harmonics method in cylindrical geometry. In this section

we shall apply the spherical harmonics solution to the miniature-

lattice assembly for the analysis of radial spatial transients.

6.3.2 General Theory

We wish to analyze the radial flux distribution measured in a

plane where the axial flux distribution has become asymptotic. We

shall assume that the axial leakage of neutrons is accounted for by

means of an axial leakage cross section as in section 2.4 of Chapter II.

We may then consider that the radial flux distribution is independent

of z. We assume further that the system is well thermalized so that

a one-group treatment is sufficient. Under these assumptions, the

Boltzmann equation for monoenergetic neutron transport in a cylinder

has the form (K11, T1, N2):

sin F cos a - sin a ] f(r, 0, 4)+ f(r., ,)
L ar r

= f d4 f dO sin Ec(p ) f(r,6,4) , (6.105)
0 0
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where Z is the modified macroscopic total cross section including

the axial leakage as given by Eq. (2.42), c (P ) is a kernel which com-

bines the scattering collisions and the fission events, and y =

To derive the spherical-harmonics component form of the

Boltzmann equation (6.105), we expand the flux and the kernel in terms

of the associated spherical harmonics PIm

0o -rx

f (r, 0, <0) = E
1=0 m=-.e

(6.106)fm(r) P

and

00

where, with the help of the addition theorem,

P Y(P ) = pP (')

(6.107)

(6.108)

We use the orthogonality property of the associated spherical harmonics

fdo P () P 'm' 2 +1 6 6 , (6.109)

where the 6 are the Kronecker deltas, and the recursion relations (N2)

sinG e Pm 2 -'+1 [(2Y-1)CImP-1,m+1()-(2R+3)A m +1,m+1

(6.110)

sinG e'o P () = 2 +1 [(2,+3)B P+ (0)-(2-1)D P-,-

(6.111)

cos P m 2 [(21+3)E P (')+(21-1)FR Pe - ,'

(6.112)

m=-.R
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to obtain the following set of the spherical harmonics equations (K11,

N2, T 1):

A m[d+m+1f+1,m+l(r) - Bm.L - m-1 f (r)

C d +m+1if -,m+1(r)+ D - m-1]

4 7r c~ Y r)0
+ 1 -+1 m(r) = 0,

t

f-1,m-1(r)

(6.113)

where

A -

B =-

Ck

D
Rm

(Q+m+1)(Y+m+2)

2(2R+3)

(Y- m+1)(.e-m+2)

2(2Y+3)

(6.114)

(6.115)

(6.116)
(f -m -1) (Y - M)

= 2(ki2 (2.R- 1)

2(+m-1)(+m)

= 2(2i-1)
(6.117)

Instead of solving the set of equations (6.113) directly, we adopt

the usual approach of assuming a solution of the form

f m(r) = AiRjm(a) Im(aj tr) + A 2 Km(a) K(a r) (6.118)

where A, A 2 are two arbitrary constants, the coefficients Rim(a) and

Spm(a) are functions of some arbitrary parameter a, and I m, Km are

the modified Bessel functions. Substituting Eq. (6.118) into Eq. (6.113)

and comparing coefficients of like terms obtains recursion relations

for the coefficients Rem(a) and Sm(a):



281

a[ AmRj+1m+1(a) - BRmRC+1,m-1(a) - Cy mR -m+1

+D R, -1,m-1 PRj (6.119)

and

S -= (-1)m R , (6.120)

where

= 1 + . (6.121)

t

The symmetry condition f(r, 0, 4) = f(r, 0, -4) requires that

f m(r) = (-1)mf (r) , (6.122)

and hence

Ry -m(a) =(-1)m R M(a) (6.123)

The eigenvalue, a, of the problem is obtained from Eq. (6.119),

and the spherical harmonics moment f (r) of the directional radial

flux is given by Eq. (6.118). The eigenvalue a may be real, imaginary,

or complex depending on the composition of the medium.

We shall use the Marshak boundary conditions as an approxi-

mation to the exact boundary condition: Marshak's conditions require

that the inward angular flux at a free surface r=R vanish. In the

present problem the conditions may be written:

37r/ 2
f d4 f d sin G f(R, 0, 4) P = 0,

7r/2 0

(6.124)S =1.,3, 5, .. . ,odd ; m = 0, 1,2, . . ., Y-.
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6.3.3 A P 3 Approximation for Linearly Anisotropic Scattering

In a P 3 approximation for the case of linear anisotropic scattering

(Ec.= 0 for P > 2), ten homogeneous equations in ten unknowns are

obtained for the R, (a) in Eq. (6.119) by setting R (a) = 0 for . > 3.

In order for a nontrivial solution to exist, the determinant of the coef-

ficients of the R (a) must vanish, and the following roots of the

resulting characteristic equation are obtained (N2, T1):

= 35g) 1 - 1 -08 (6.125)
(35g)

2_ /(35g)'~ 1 0 + ~ o~ 2
2 18) 1- 2 , (6.126)

(35g)

a 3 = 7 , (6.127)

2 350,(6.
a 4  (80+) (6.128)

where

S + + (4 + 270+ . (6.129)

2
The lowest eigenvalue, a 1 , corresponds to the asymptotic radial buck-

ling, and the other eigenvalues correspond to the spatial transients in

the radial flux due to the transport effect.

In the case of the miniature lattices, a must be negative to have

2a physically realizable solution, and the other a. are positive. These

statements will be verified in a calculation that will be made later in

this section. We must also satisfy the condition

f (r) * oo at r = 0 ,
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which rules out the terms K (r) and Y m(r). Thus, the spherical har-

monics moment fIm(r) for the miniature lattices in a P 3 approximation

can be written as

f m(r) = A R (a1 ) Jm ( 1a, r)

4 *

+ A R m(a) Im(al r)

i=2
(6.130)

In the measurement of the radial buckling, we are concerned with the

total radial flux alone. This is, with the aid of the orthogonality

property, Eq. (6.109), of the associated spherical harmonics:

f(r) = f(r,.i2) dT
47r

oo +

1=0 m=- e

=47r f (r) . (6.131)

Thus, we need to consider only the moment f O(r), and Eq. (6.130)

reduces to

f OO(r) = A 1 R 0 0 (a) J0 a1 |Zt r

4
+ A.R (a )I (a r)

i=2 1 00 0 i t
(6.132)

where the coefficients R (a ) have been found by Noble (N2) and

Tralli (T1) to be:

R (ja ) SR 0 0 (a 2) = 1,.

and

R (a3) = R (aG) = 0 .

f Y-m(r) P 1m('2) d 0
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Finally, we have

** * *
f (r)= A J (I a1 It r) + A 2 I (a 2 t r) (6.133)

We see that the transport effect may give rise to an I

radial flux even in a bare assembly.

To determine the relative importance of the I

term in the total

term in Eq. (6.133)

with respect to the J 0 term, that is, the ratio A 2 /A,, we apply

Marshak's boundary conditions, Eq. (6.124), for the cases of P 1 1

P3,1 because these are the only combinations that can involve the

constants A 1 and A 2 (N2).

obtained:

Two boundary conditions at r=R are thus

For P 1

for P 3,1:

fo

1 7
4 oo 16 20

f + f = 011 8 20 8 22=

f +
48 22

821f3
21 31 = 0 .

To evaluate the f we need to know the coefficients R (a.).

Table 6.4 lists the values of the R (ai) from Ref. (N2) for the P 3

approximation. Equations (6.134) and (6.135) lead to the two equations:

A 1 b1 J0 (1a
* *

I Et* R) +

and

A 1 C1 J 0(a I t *R)

** 
A 2b 2Io(a 2 Dt R)

* *
+ A 2 C 2I(a 2 t R)

* *
+ A 3b 3 I (a 3 t R) = 0,

+ A3 C3 I (a 3 *R) = 0 ,

where

i=1, 2 ,b =1 + R F- a ) - R2 + ) + R2 (a),1 3 11 i R2 3 ,

3 8 2

1 R7 (a)-- (c =+ 16 20 i 48 22 i
+ 21 R 3 1 (a ) i= 1, 2 , (6.140)

and

(6.134)

(6.135)

(6.136)

(6.137)

(6.138)

(6.139)
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Table 6.4. Values of the coefficients, R Im(a ), in P3 Approximation

R m(a ) R m(a3) RIM(a )

i = 1, 2

0 0 1 0 0

1 0 0 0 1

1 1 30 a /a, N 2  0 0

2 0 -a N 1 0

2 1 0 0 5a 4 M/ NI

2 2 aN N /2 7/a 24 0

3 0 0 0

3 1 -343a 2 N /10 7/2a 3 f 0

3 2 0 0 50N/ -

3 3 3a3 N/2hF5 7/2, 3 r5 0

2 2al ( a2  2

(ai- 3/39 0 1 -700)

a i(ai- 7)

a3 =a = 7

(i= 1,2)

M =
a 4 a4

a
1

N.
1

ag4 = a4
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and

c3 = - R 2 2 (a 3 ) + 21 R 3 1 (a 3 ) . (6.141)

Eliminating the A 3 Io(a 3 ** R) term from Eqs. (6.136) and (6.137), we

obtain

** **

1 bc 3J(1a1 t R) + A 2 b 2 c 3 a 2 t R)

** **
=A c b3 0 (ai Iz t R) +A 2 c2 b3 I (a2 t R) (6.142)

whence

(A2)
A 1

J ( **
oOa I zt R)

Io(a 2 Z * R)

(b 1 c 3 -c 1 b 3)
(b 2 c 3 -c 2 b 3).

A. The Radial Geometric Buckling

We define the radial geometric buckling as

B (r) =- f(r) dr2 fo(r)

Substitution of Eq. (6.133) into Eq. (6.144) yields

1

2
Br(r) = a

2

2) 2
A 2

(a Z**
oa2t r)

**
(la It Zr)

o(a2 t r)

* *

JOa I Z**r)

where a 2= a 1 2 >* 2 is the asymptotic radial buckling. This

expression enables us to locate the radial position at which the spatial

transient is negligible and B (r) ~ a 1 2, independent of position.
r 1 Iidpneto oiin

(6.143)

(6.144)

, (6.145)

1+ 
A 1)
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B. Numerical Calculations for the Miniature Lattice ML3

(i) Calculation of the Eigenvalues

We shall use the cross section data listed in Table 6.1 for the

following calculations. In particular,

~ ~- 2  -1
" = zt - DT = 0.43575 cm

Eco =s + Vf = 0.44186 cm-1

-1
" c =i 0 = 0.05069 cm

Thus, we have

= - 11.730=1 -47r c

t

1 - 7P*

(t

and

= 0.5125 .

From Eq. (6.129) we get

g = - 13.02 .

The eigenvalues, a , can be calculated by means of Eqs. (6.125)

through (6.128). First, the square-root term is

10803 f
1 o1 = /1.003125714 = 1.0015616 ,

(35g)

so that

= - 0.039484

= 50.5995

-7.

-1.6162

2a1

2
a2

2
a 3

2
a4
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Only a2 is negative as mentioned earlier. This indicates that a 1 corre-

sponds to a solution in terms of the J function since

I90(ila 1 r) = J 0 a 1 r) , i = 4--1 .

The asymptotic radial buckling in the P 3 approximation is then given by

a2 * 2 = (0.039484) -(0.43575)2

= 0.0074973 cm-2 or 7497.3 pB . (6.146)

The expression (6.146) is expected for the asymptotic radial buckling

because of the way in which we defined the eigenvalue a 1 in Eq. (6.133)

for the asymptotic solution of the scalar radial flux. For comparison,

we recall that the radial buckling, in diffusion theory, is given by the

expression

(a 2  _ (2.4048 2 (6.147)
diff . R + d

with d= 0.7104 X tr The value of (R+d) for the miniature lattice ML3 is

27.522 cm (see Table 6.1), and we obtain

(a 2diff. = 0.0076348 cm-2 or 7634.8 pB

which is 138 pIB higher than the value resulting from the P 3 approxi-

mation. The usual difficulty associated with the expression Eq. (6.147)

is the uncertainty involved in the value of d, the linear extrapolation

distance: in a small assembly the radial buckling is sensitive to the

value of d.

The value of the material buckling in the P 3 approximation is

just the difference between Eq. (6.146) and Eq. (6.44):

2 2 2
m a
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2The value of -y has been calculated to be 6516.3 pB in section 6.2.3.

Thus, we have

2
B = 7497.3 - 6516.3 = 981 pB

m

which agrees reasonably well with the experimental values: 1007 pB

in the full-size lattice and 946 pB in the miniature lattice.

(ii) Calculation of the Radial Flux Distribution

The radial scalar flux distribution in the P 3 approximation

is given by Eq. (6.133) which can be rewritten as

A2 **

f,(r) = A1 J 0(a I 1t r) + Ay o a2 t r)

where the ratio A 2 /A, is given by Eq. (6.143) and is found to be

( ~ -108 e-78.8

(A _/

Table 6.5 lists the values of the relative radial flux, f 9(r)/Al, as a

function of the radial distance. Because of the large argument in the

10 term, the following asymptotic formula for the 10 function is used

in the calculations:

Ix) 0.3989 ex , (6.148)
NJ X

for X > 10. It is seen that the spatial transient is negative, and is

important only within a centimeter or two from the physical boundary.

This general result has also been observed in the study of Milne's

problem. The negative nature of the spatial transient in the radial flux

distribution could be helpful in reducing the reflector effect somewhat.
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Table 6.5. Values of the relative radial flux f, o(r)/A 1 as a function
of radial distance in a P 3 approximation for the miniature
lattice ML3.

r (A 2) ** f (r)

(cm) J(a t r)A 1 a 2 t r) 1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

22.4

23.0

23.4

24.0

24.4

25.0

25.4

1.000000

0.992020

0.969690

0.933470

0.883660

0.821100

0.747400

0.664980

0.574900

0.479100

0.380600

0.281470

0.258158

0.226880

0.199680

0.116800

1.00000

0.99202

0.96969

0.93347

0.88366

0.82110

0.74740

0.66498

0.57490

0.47910

0.38060

0.28160

0.25863

0.22970

0.20898

0.17810

0.16098

0.13180

0.11036

-0.0

-0.0

-0.0

-0.0

-0.0

-0.0

-0.0

-0.0

-0.0

-0.0

-0.0000003

-0.000130

-0.000472

-0.002820

-0.009300

-0.061300

-0.202000

-1.334900

-4.860000
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(iii) Calculation of the Radial Geometric Buckling

For the miniature lattice ML3, Eq. (6.145) becomes

2 1+1.388X 105 e 7 a.8 I(3.1Or)
B (r) J (0.0865r)

2 X 102 e- 7 8 . 8 10 (3.1Or) '

J 0 (0.0865r)

The values of the radial geometric buckling are listed in Table 6.6 at

different radial distances from the center. The results are also plotted

in Figure 6.4. It is evident that the geometric buckling is a highly

sensitive parameter for testing for the asymptotic condition. In the

particular miniature lattice ML3, the asymptotic region in the radial

direction is given by 0 < r < 22 cm. The spatial transient resulting

from the transport effect has a substantial effect on the geometric

buckling only within a centimeter or two from the physical boundary.

6.4 SUMMARY AND CONCLUSIONS

We have made separate spatial transient analyses for the axial

and radial flux distributions by means of the spherical harmonics

method. In both cases, a general theory was presented, but only a

one-group P 3 approximation was used to calculate the eigenvalues, the

total flux distribution, and the distribution of the geometric buckling

for the miniature lattice ML3.

We can draw several conclusions from the results obtained:

(a) The transport effect does not seem to perturb the measure-

ment of either the axial or radial buckling in the miniature lattice ML3,

when the flux shape method is used, except within a few total mean free
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Table 6.6. Values of the radial geometric buckling as a function
of radial distance for the miniature lattice ML3.

Radial Position Radial

r (cm)

0.0

4.0

8.0

12.0

14.0

16.0

18.0

20.0

22.0

22.4

23.0

23.4

24.0

Geometric

B 2(r)/a 2

1. 000000

1.000000

1.000000

1.000000

1.000000

1.000000
1.000000

1.000092

1.059700

1.234800

2.601600

5.954000

67.200000

Buckling
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paths from boundaries. Similar results should also be expected for the

other miniature lattices although the transport effect may be more

annoying for a tightly packed lattice because of the greater absorption

of neutrons. The transport effect should be more severe in a light

water lattice than in a heavy water lattice owing to larger neutron ab-

sorption in H20 and to the greater anisotropic neutron scattering in

H20.

(b) The spherical harmonics method yields expressions for the

asymptotic axial and radial bucklings and, therefore, provides a way

of calculating the values of these quantities in the presence of transport

effects. However, the uncertainties involved in the nuclear data may

lead to a significant error in the calculation of the asymptotic eigen-

values as we have shown. This difficulty emphasizes the importance of

measurement of the asymptotic eigenvalues.

(c) A theoretical calculation of the flux distributions by means of

the spherical harmonics method is, in general, faced with a difficulty

in the boundary conditions. Although Marshak's boundary conditions

appear to be the most convenient ones to use, they may not be suitable

for all assemblies, depending on the composition of the assembly.

Miniature lattices provide a good assembly for the study of boundary

conditions.

Finally, we mention the energy transients arising from the non-

separability of the neutron flux in space and energy. It should be

possible to study these transients with the aid of expansions in terms of

Laguerre polynomials (W2). This type of analysis would provide a

parallel to the use of the spherical harmonics method in the study of

spatial transients.
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Chapter VII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

7.1 SUMMARY

The asymptotic conditions associated with buckling measurements

in a subcritical assembly have been investigated, and practical criteria

have been established for locating the asymptotic regions for the axial

and radial flux distributions. These conditions have been derived from

the neutron transport equations (Chapter II). They should be useful in

the design of an exponential assembly for the measurement of the

material buckling and also for the measurement of other lattice parame-

ters.

Motivated by the difficulty of the conventional curve-fitting

method in the analysis of the axial buckling and the extrapolated height,

we have developed a moments method for these purposes (in Chapter III)

and have applied it to several full-size lattices as well as to the mini-

ature lattices studied at M. I. T. The results indicate that the moments

method is more consistent than the curve-fitting method for the determi-

nation of the axial buckling and the extrapolated height. The standard

deviations in these quantities have been reduced by as much as a factor

of 2 by the use of the moments method.

An iterative moments method and a direct moments method have

been developed for the analysis of the radial buckling (Chapter IV).

These methods have been applied to several lattices and have turned
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out to be more consistent than the curve-fitting method. These two

methods are equivalent but the iterative moments method is much less

affected by the truncation errors incurred in the numerical integration

required to evaluate the flux moments. The consistency of the methods

makes it possible to determine experimental values of the linear

extrapolation distance and to compare them with the theoretical values

predicted by asymptotic neutron transport theory.

Finally, a spatial transient analysis has been made for both the

axial and radial flux distributions by means of the spherical harmonics

method. A general theory has been given in both cases; a one-group

P 3 approximation was used to analyze quantitatively the miniature

lattice ML3, and was found sufficient. For the analysis of the spatial

transients, the use of geometric buckling as a parameter for testing

the asymptotic conditions has been found to be useful and sensitive.

The application of this concept revealed that the miniature lattices do

possess a certain asymptotic region although it may be small.

7.2 CONCLUSIONS

Several conclusions can be drawn from the present work:

(a) The moments methods developed in this work have several

advantages over the conventional curve-fitting method: better con-

sistency, clearer physical meaning, and considerable saving in the

computer time needed for data reduction. The advantages are particu-

larly marked in the analysis of the axial buckling and the extrapolated

height because of the uncertainties in the determination of the "best

values" of these quantities by means of the curve-fitting method.



297

The moments method has the surprising property described in

Chapter III of increasing the extent of the asymptotic region available

for the analysis of the axial buckling. As a consequence, the moments

method is applicable to a relatively small assembly such as the mini-

ature lattices where the curve-fitting method fails completely.

(b) The moments methods do have an inherent disadvantage with

respect to the curve-fitting method, namely, the truncation error

incurred in the evaluation of the flux moments through a numerical

integration. In the analysis of the axial buckling, the truncation error

was found to be insignificant if the number of experimental data is

greater than 11. For the analysis of the radial buckling, this inherent

disadvantage can be troublesome because of the relatively small

number of experimental data available. The difficulty is greatly

reduced by the use of the iterative moments method, described in

section 4.3. This method computes, for the experimental data, the

correction to the theoretical value predicted by diffusion theory.

(c) Comparing the moments methods with the curve-fitting

method on a general basis, we conclude that (i) for the analysis of the

axial buckling and the extrapolated height, the moments method de-

veloped in Chapter III is preferable to the conventional curve-fitting

method because the latter cannot determine the values of the axial

buckling and extrapolated height independently even in full-size lattices;

but (ii) for the analysis of the radial buckling, the curve-fitting method

is probably preferable when experimental data are well representable

by the asymptotic flux distribution and if the number of the experi-

mental data is relatively small.
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(d) With respect to the feasibility of making buckling measure-

ments in miniature lattices, it is difficult to draw a firm general con-

clusion owing to the small number of experimental results available.

However, the measurement of the material buckling for the total

neutrons density (subcadmium and epicadmium) seems feasible with

the moments method on the basis of single measurements which have

been made in each of six miniature lattices. From the studies in

Chapters II and VI, we suggest that the following improvements be

made in the experimental arrangement at the M. I. T. Lattice Project:

(i) Make the source as nearly isotropic as possible by, say,

placing some scattering medium such as D 20 between the source

and the lattice.

(ii) Make the assembly bare to both subcadmium and epi-

cadmium neutrons.

(iii) Make the radial flux traverse at an axial position which

lies in the range 25 cm < z < 35 cm.

(iv) Increase the diameter of the assembly, if possible.

(e) The basic problems associated with the buckling measure-

ments in the miniature lattices appear to be the source effect and the

energy effect. The former can be reduced considerably by the use of

the moments method developed in Chapter III. The transport effect

alone does not seem to disturb the asymptotic fluxes seriously

(Chapter VI). This implies the applicability of diffusion theory to the

miniature lattices. As for the energy effect, an energy transient analy-

sis by means of Laguerre polynomial expansion technique seems worth

making and is recommended for further research.
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(f) According to the First Fundamental Theorem of Reactor

Theory expressed by Weinberg and Wigner, the material buckling is

the same for all neutron energy groups, provided that the extrapolation

distance is independent of energy. That this last assumption is not

valid is evident from the energy dependence of transport cross sections

and has also been observed in measurements of the material buckling,

both in the full-size lattices (Chapters III and IV) and in the miniature

lattices (Chapter V). Therefore, the First Fundamental Theorem is

valid, to a good approximation, only in a large system where the vari-

ation of the extrapolation distance with energy is unimportant. When

the variation of the extrapolation distance with energy cannot be

neglected, a multigroup analysis would require a buckling that varies

from group to group. The question then arises: can the energy-

dependent values of the buckling be averaged to produce a value that

would correspond to the actual critical size of the reactor? This

question is especially important in fast reactors where it is usually

difficult to show that the neutron flux can be separated in space and

energy.

7.3 RECOMMENDATIONS FOR FUTURE WORK

7.3.1 The Analysis of Energy Transients

An analysis of energy transients due to spectral inequilibrium in

a small subcritical assembly would supply valuable information as to

how far the energy transients would penetrate into the assembly of

interest. It might then be possible to locate the boundaries of the

asymptotic region in a quantitative way. Such an analysis should be
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useful in the choice of an appropriate position for measuring the various

lattice parameters. Very little work has been done in this area. A

possible approach would be the use of a Laguerre polynomial expansion

technique (W2, T2) analogous to the spherical harmonics method for the

analysis of the spatial transients (Chapter VI). The solution for the

zeroth Laguerre moment, together with the use of geometric buckling

as a parameter for testing the asymptotic conditions as suggested in

Chapter II, would yield information about the energy transients. An-

other approach which combines the transport effect as well as the

energy effect is the use of the multigroup spherical harmonics method

as described in section 6.2.1.

7.3.2 An Optimization Study on the Design of a Subcritical Assembly

The ultimate aim of such a study is to determine the lower limit

to the useful size of a subcritical assembly for a valid measurement of

reactor parameters. Some work has been done by Peak (P2) in this

area. However, his work which is based on age-diffusion theory is by

no means complete.

A more rigorous approach would be to use the multigroup spheri-

cal harmonics method as described in section 6.2.1 to determine the

total flux distribution and hence the dependence of the geometric buck-

-ling on position for assemblies of different size. An alternative

approach would be to treat the energy effect and the transport effect

separately: an analysis of the energy transients as recommended in

section 7.3.1 should yield the asymptotic condition with respect to

spectral equilibrium; and a spatial transient analysis as done in

Chapter VI should provide the asymptotic condition with respect to the

transport effect.
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7.3.3 Further Experimental Work on Buckling Measurements

More measurements of the axial and radial flux distributions are

needed to permit firmer conclusions with respect to the feasibility of

the measurement of the material buckling in miniature lattices.

Some improvements of the miniature lattice facility, as suggested in

section 7.2, might help.
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Appendix A

COMPUTER PROGRAMS

The computer codes developed in the present work for the

analysis of the axial and radial bucklings by means of the moments

methods are described in this appendix. A general description of

each code is given first, followed by the input data required, an

IBM-FORTRAN IV listing, and a sample input deck.

A.1 THE ABMOMENT CODE

A.1.1 General Description

The ABMOMENT code was programmed in FORTRAN IV language

for the IBM Operating System 360 Model 65 computer at the M. I. T.

Computation Center. The code is composed of a main program and two

subroutine subprograms: HELENA and SAMSON.

The subprogram HELENA computes the axial flux moments from

the activation data with the second-order Simpson's rule for equal

intervals (Appendix B or Ref. L2) and also computes the values of the

axial buckling and extrapolated height for various integral values of the

moment index from Eqs. (3.14) and (3.18). The lowest value of the

moment index is 3 and the highest value allowed by the code is 10.

This was done to save computer time in evaluating higher flux moments

but is not an intrinsic limitation; the procedure can be modified easily

if necessary. Experience has shown that when the value of the moment

index is greater than 8, the truncation error incurred in the numerical

integration becomes so important that a moment index larger than 10 is

useless.
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The subprogram SAMSON calculates the experimental errors,

the truncation errors, and the combined probable errors associated

with the axial buckling and the extrapolated height, for a series of

values of the moment index in accordance with the error analysis

described in section 3.2.3. This provides a way of determining the

best values of the axial buckling and the extrapolated height.

The amount of computer time required depends on the maximum

value of the moment index used and the number of data points chosen.

A typical run for a set of 15 experimental data points and a maximum

moment index of 8 requires 10 seconds or less. This is considerably

smaller than the amount of computer time required by the AXFIT code

(P1) owing to the necessity of analyzing as many as 50 cases in one

computer run.

A.1.2 Input Data for the ABMOMENT Code

Card 1 (Format (A5, 13, 2F10.4, F8.2, F11.4, 15)). The following

quantities appear, in order, on this card:

RUN is the experimental run number for the set of data being

analyzed;

N is the number of data points submitted and must be ODD;

ENRICH is the enrichment in percent of the fuel;

DELZ is the spacing in centimeters between any two successive

data points equally spaced;

PITCH is the lattice spacing in inches;

ZB is the axial distance from the source, in centimeters, corre-

sponding to the first data point chosen for the analysis;

NM is the maximum value of the moment index desired, the high-

est allowable value being 10.
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Card 2 (Format (6F12.6)). The following quantities appear, in

order, on this card:

A(I) are the relative experimental activation data. They are read

in on successive cards according to the specified format until N

data have been stored in the memory of the computer.
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A.1.3 FORTRAN IV Listings of the ABMOMENT Code

//ABMOMBNT JOB (M2940,5551,10,5000,200),'H.S.CHENG',MSGLEVEL=1
//STEP EXEC FORCLGPARM.C=(EBCDICDECKMAP)
//C.SY9N D *
C AXIAL BUCKLING CODE 'ABMOMENT' H.S.CHENG
C THIS CODE IS BASED ON DIRECT MOMENTS METHOD FOR THE ANALYSIS OF

C THE AXIAL BUCKLING AND THE EXTRAPOLATED HEIGHT. SIMPSON'S RULE FOR

C EQUAL INTERVALS IS USED TO EVALUATE THE AXIAL FLUX MOMENTS.
DIMENSION A(50), AM(50), FM(50,50), FMM(50,50), F(50,50), C(50,10)

1, H(50,.10), TRE(50,10), EXPE(50,10), EXPEH(50,10), GAMSQ(50), GAM(

250), EXTH(50),. CEXTH(50), VARG(50), VARGT(50), VARH(50), VARHT(50)

34 DEVG(50), DEVGT(50), DEVH(50), DEVHT(501, AZERO(50), AZEROH(50),
4 CNUM(50), DENO(50), SUMN(50), SUMD(50), SUMHN(50), SUMHD(50), X(5
50), Z(50), R1(50), R2(50), D2(50), 04(50), CDD(50), HEA(50), ZSQDS
6(50), SUM(50),. ARGN(50), ARGD(50), ARG(50), Y(50), V1(50), V2(50),
7 V3(50), CNUMG(50), DENOG(50), SUMF(50), HN(50), HD(50), GBSQ(50),

8 SUMH(50), SUMHT(50), PQ1(50), PQ2(50), SUMFM(50,50), GSQTH(30),
9HTH(30), GAMTH(30), CDEVA(50), CDEVR(50), CVARA(50), CVARR(50)

COMMON A,. AM, FM, FMM, F, C, H, TRE, EXPE, EXPEH, GAMSQ, GAM, EXTH

14 CEXTH, VARG, VARGT, VARH, VARHT, DEVG, DEVGT, DEVH, DEVHT, AZERO

2, AZEROH,. N, K, DELZ, CNMl, CNM2, ZSQ, DZ4, ZB, C2, C4, B, V1, V2,

3 V3, GBSQ, ZSQDS, D2, D4, RI, R2, X, Z, CNUM, DENO, CDD, HEA, ARGN

4!, ARGO, ARG, HN, HD, PQl, PQ2, NM, COEVA, CDEVR, CVARA, CVARR,
5G9QTH, GAMTH, HTH

10 FORMAT(1H1,20X19H PROGRAM 'ABMOMENT//)
20 PORMAT(lHO,114HDETERMTNATION OF THE OPTIMAL VALUES OF MOMENTS INDE

IX FOR THE CALCULATION OF AXIAL BUCKLING AND EXTRAPOLATED HEIGHT//)

30 FORMAT(A5,13,2F10.4,F8.2,F11.4,15)
35 PORMAT(6F12.6)
40 FORMAT(5H RUN=A5,13H ENRICH(()=F7.4,13H PITCH(IN)=F6.3,12H D

IELZ(CM)=F7.4,4X,7HZB(CM)=F8.4)
50 PFORMAT(IH0,20H INPUT ACTIVITY DATA)
52 FORMAT(IHO,5(13,F1O.6,2X)/(1HO,5(1X,12,F1O.6,2X)))
56 FORMAT(1HO,34HCOMPUTED RESULTS OF MOMENTS METHOD)

60 FORMAT(lHO,1OX,6HMOMENT,7X,14HAXIAL BUCKLING,7X,19HEXTRAPOLATED HE

IIGHT)
70 FORMAT(1OX,.6H INDEX,12X,6H(CM-2),18X,4H(CM))
71 FORMAT(lHO,12X,1HI,13X,8HGAMSQ(I),15X,8HCEXTH(I))
80 FORMAT(1HO,1lX,I2,1OX,1PE13.6,12XIPE13.6)
90 FORMAT(IH1,39HCOMPUTED RESULTS OF EXPERIMENTAL ERRORS//)

91 PORMAT(H0,31H THE THEORETICAL AXIAL BUCKLING)
94 FORMAT(1H0,36H THE THEORETICAL EXTRAPOLATED HEIGHT)

110 FORMAT(IHO,2X,6HMOMENT,7X,18HSTANDARD DEVIATION,7X,21HSTANDARD DEV
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ILATION IN,7Xl1HVARIANCE IN,7X,18HVARIANCE IN EXTRA-)
120 FORMAT(2X,6H INOEX,8X,17HIN AXIAL BUCKLING,8X,19HEXTRAPOLATED HEIG

1HT,9X,14HAXIAL BUCKLING,4X,14HPOLATED HEIGHT)
130 PORMAT(1HO,4X, 1HI4X,7HDEVG(I),20X,7HDEVH(I),19X,7HVARG(I),1OX,7H

IVARH(L).)
140 FORMAT(IHO,3XI.2,13XIPE13.6,14X,1PE13.6,12X,1PE13.6,5X,1PE13.6)
180 FORMAT(lH1,37HCOMPUTED RESULTS OF TRUNCATION ERRORS//)
190 FORMAT(1HO,2X.6HMOMENT,7XI8HSTANDARD DEVIATION,7X,21HSTANDARD DEV

1LATION IN,7X,11HVARIANCE IN,7X,18HVARIANCE IN EXTRA-)
210 FORMAT(2X,6H INDEX,8X,17HIN AXIAL BUCKLING,8X,19HEXTRAPOLATED HEIG

IHT,9X,14HAXIAL BUCKLING,4X,14HPOLATED HEIGHT)
220 FORMAT(1HO,4X,1HI,14X,8HDEVGT(I),20X,8HDEVHT(I),19X,8HVARGT(I),l0X

1,8HVARHT( II)
270 FORMAT(IHO,3X,I2,13X,1PE13.6,14X,1PE13.6,12X,1PE13.6,5XlPE13.6)
610 FORMAT(1H1,65HCOMPUTED RESULTS OF COMBINED ERRORS(EXPERIMENTAL PLU

11 TRUNCATION)//)
620 FORMAT(IHO,2X,6HMOMENT,7X,18HSTANDARD DEVIATION,7X,21HSTANDARD DEV

1LATION IN,7X,11HVARIANCE IN,9X,18HVARIANCE IN EXTRA-)
630 FORMAT(2X,6H INDEX,8Xl7HIN AXIAL BUCKLINGT7X,19HEXTRAPOLATED HEIG

1HT,9X,14HAXIAL BUCKLING,6X,14HPOLATED HEIGHT)
640 FORMAT(1HO,4X,1HI,14X,8HCDEVA(I),18X,8HCDEVR(I),18X,8HCVARA(I),1OX

I ,8HCVARR(I )
650 FORMAT(1HO,3X,1I2,l1X,PE13.6,13X,1PE13.6,12X,1PE13.6,7X,1PE13.6)

JfANNE = 101
6 REA[)

READ
WRITE
WRITE
WRITE
WRITE
WRITE
WR I T E
C AL L
WRITE
WRITE
W RI T E
WRI TE
WRITE
WRITE

(5,30) RUN,
(5,35) (A(I)
(6.10)
(6,20)
(6,40) RUN,
(6,.50)
(6,52) (I,A
(6.56)

HELENA
(6.60)
(6,70)
(6,71)
(6,80) (I,
(6,90)
(6,40) RUN,

WRITE (6.110)
WRITE (6,120)
WRITE (6,130)
CALL SAMSON
WRITE (6.140) (1,
WRITE (6,180)
WRITE (6,40) RUN,
WRITE (6.190)
WRITE (6,210)
WRITE (6,220)
WRITE (6,270) (I,
WRITE (6,610)
WRITE (6,40) RUN,
WRITE (6,620)
WRITE (6w630)
WRITE (6.640)
WRITE (6,650) (I,
WRITE (,6,91)

N, ENRICH, DELZ, PITCH, Z8,
,I=1,N)

ENRICH, PITCH, DELZ, Z8

(I),I=1,N)

NM

GAMSQ(I), CEXTH(I), 1=3,NM)

ENRICH, PITCH, DELZ, LB

DEVGII), DEVH(I), VARG(I), VARH(I), I=3,NM)

ENRICH, PITCH, DELZ, ZB

DEVGr(I), DEVHT(I), VARGT(I), VARHT(I), I=3,NM)

ENRICH, PITCH, DELZ, ZB

CDEVA(I), CDEVR(I), CVARA(I), CVARR(I),I=3,NM)
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WRITE (6,52) (J, GSQTH(J), J=3,NM)
WRITE (6,94)
WRITE (:6,52) (J, HTH(J), J=3,NM)
00 TO 6
END
SUBROUTINE HELENA

C CALCULATLON OF MOMENTS, AXIAL BUCKLING AND EXTRAPOLATED HEIGHT

DIMENSION A(50), AM(50), FM(50,50), FMM(50,50), F(50,50), C(50,10)

1, H(50,10), TRE(50,10), EXPE(50,10), EXPEH(50,10), GAMSQ(50), GAM(

250), EXTH(50), CEXTH(50), VARG(50), VARGT(50), VARH(50), VARHT(50)

3, DEVG(501, DEVGT(50), DEVH(50), DEVHT(50), AZERO(50), AZEROH(50),
4 CNUM(50)., DENO(50), SUMN(50), SUMD(50), SUMHN(50), SUMHD(50), X(5

50), Z(50), Rl(50), R2(50), 02(50), D4(50), CDD(50), HEA(50), ZSQDS

6450),. SUM(50), ARGN(50), ARGD(50), ARG(50), Y(50), VI(50), V2(50),
7 V3(50), CNUMG(50), DENOG(50), SUMF(50), HN(50), HD(50), GBSQ(50),
8 SUMH(50), SUMHT(50), PQI(50), PQ2(50), SUMFM(50,50), GSQTH(30),

9HTH(30), GAMTH(30), CDEVA(50), CDEVR(50), CVARA(50), CVARR(50)

COMMON A, AM, FM, FMM, F, C, H, TRE, EXPE, EXPEH, GAMSQ, GAM, EXTH

1, CEXTH, VARG,. VARGT, VARH, VARHT, DEVG, DEVGT, DEVH, DEVHT, AZERO

2, AZEROH, N, K, DELZ, CNMI, CNM2, ZSQ, DZ4, ZB, C2, C4, B, V1, V2,

3 V3, GBSQ, ZSODS, D2, 04, Ri, R2, X, Z, CNUM, DENO, CDD, HEA, ARGN

4, ARGO,. ARG, HN, HO, PQL, PQ2, NM, CDEVA, CDEVR, CVARA, CVARR,

5GSQTH, GAMTH, HTH

C CALCULATLON OF EXPERIMENTAL MOMENTS AM(I) BY SIMPSON'S RULE

K = (N-3)/2
CNM1 = N-1
CNM2 N-2
?SQ DELZ*DELZ
02 = CNM1**2
C4 = CNMI**4
B : CNMI*DELZ
074 = 1./(DFLZ**4)
00 17 J=1,12
SUM ( J )=O.O
DO 18 1=1,m

18 3UM(J)=SUM(J)+4.*A(2*I)*EXP((J-1)*ALOG(2.*1-1.))+2.*A(2*1+1)*EXP((
1J-1)*ALOG(i2.*t))
IF(J .GT. 1) GO TO 19
AM(1)=1./3.*(A11)+SUM(1)+4.*A(N-1)+A(N))
GO TO 17

19 V1(J)=(J-11*ALOG(CNM1)
V2(J).=(J-1 *ALOG(CNM2)
V3(J) =(J-2 *ALOG(CNM1)
AM(J)=1./3.*(SUM(J)+4.*A(N-1)*EXP(V2(J))+A(N)*EXP(V1(J)))

17 CONTINUE
WRITE (6,290)

290 FORMAT(lH0.20HEXPERIMENTAL MOMENTS)
WRITE (6,310) (IAM(I),I=1,12)

310 FORMAT(1H0,5(I3,2X,1PE13.6,3X)/(1HO,5(1X,12,2X,1PE13.6,3X)))
C CALCULATLON OF AXIAL BUCKLING, GAMSQ(I)

00 21 I=3,NM
CNUMG(I) ; 1*(I+1)*AM(I)-2.I*( I-1)*CNM1*AM(1-1)+(I-I)*(I-2)*C2*AM(

11-2)
DENOG(I); AM(I+2)-2.*CNM1*AM(I+1)+C2*AM(I)
GAMSQ(I)s CNUMG(I)/(ZSQ*DENOG(I))
GAM(I)s SQRT(GAMSQ(I))

C CALCULATLON OF EXTRAPOLATED HEIGHT, CEXTH(I)
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ARGNA L);=GAMSQ(I)*ZSQ*(CNMl*AM(I)-AM(I+1))+I*(I-1)*AM(I-1)-(I-1)*(I
1-2)*CNMI*AM(I-2)
ARGD( I)=GAMSQ( I )*ZSQ*( (I-1) *AM( 1+1)-I*CNMI*AM( I) )-I*( I-1)**2*AM(I-

ll)+I*(I-1)*(I-2)*CNM1*AM(I-2)
ARG(I)=iGAM(I).B*ARGN(I)/ARGO(I)
Y4I )=t 1.+ ARG( I))/( 1.-ARG( I))

C CHECK THE ARGUMENT
IF(Y(L) .LE. 0.) GO TO 3
EXTHAI);= B+0.5*ALOG(Y(I))/GAM(I)

C ZB IS THE DISTANCE FROM THE BOTTOM TO THE FIRST POINT OF INPUT

C DATA CHOSEN IN THIS BUCKLING CALCULATION
CEXTH4 I ) ZB + FXTH(I)

21 CONTINUE
RETURN

3 WRITE (6,9
9 FORMAT(14H0,20HTROUBLESOME ARGUMENT)

RETURN
END
SUBROUTINE SAMSON

C ESTIMATE OF EXPERIMENTAL AND TRUNCATION ERRORS IN AXIAL BUCKLING

C AND EXTRAPOLATED HEIGHT
DI.MENSION A(50), AM(50), FM(50,50), FMM(50,50), F(50,50), 6(50,10)
1, H(5010),. TRE(50,10), EXPE(50,10), EXPEH(50,10), GAMSQ(50), GAM(
250), EXTH(50),. CEXTH(S0), VARG(50), VARGT(50), VARH(50), VARHT(50)
3', DEVG(50), DEVGT(50), EVH(50), DEVHT(50), AZERO(50), AZERJH(50),
4 CNUM(50), DENO(50), SUMN(50), SUMD(50), SUMHN(50), SUMHD(50), X(5
50), Z(50)., R1(50), R2(50), D2(50), D4(50), CDD(50), HEA(50), ZSQDS

6(50),. SUM(50),. ARGN(50), ARGD(50), ARG(50), Y(50), VI(50), V2(50),
7 V3(50), CNUMG(50), DENOG(50), SUMF(50), HN(50), HD(50), GBSQ(50),
8 SUMH(50), SUMHT(50), P01(50), PQ2(50), SUMFM(50,50), GSQTH(30),
9HTH(30), GAMTH(30), CDEVA(50), CDEVR(50), CVARA(50), CVARR(50)

COMMON A, AM, FM, FMM, F, C, H, TRE, EXPE, EXPEH, GAMSQ, GAM, EXTI
1, CEXTH,, VARG, VARGT, VARH, VARHT, DEVG, DEVGT, DEVH, DEVHT, AZERD
2, AZEROH,. N, K, DELZ, CNMI, CNM2, ZSQ, DZ4, ZB, C2, E4, B, V1, V2,
3 V3, GBSQ, ZSQDS, 02, D4, RI, R2, X, Z, CNUM, DENO, CDD, HEA, ARG4

4, ARGD, ARG, HN, HD, PO1, PQ2, NM, CDEVA, CDEVR, CVARA, CVARR,
5GSQTH, GAMfH, HTH
DO 23 J=3,NM

C GENERATION OF THEORETICAL INPUT DATA F(J,I)
DO 27 I=1,N

27 F(J,I);=.SLNH(GAM(J)*EXTH(J)-(I-1)*GAM(J)*DELZ)
C CALCULATLON OF THEORETICAL MOMENTS BY SIMPSON'S RULE USING F(J,!)

DO 28 L=1,w12
9tMFM(J,L)=0.0
DO 29 M=1,K

29 9UMFM(J,Ll)SUMFM(J,L)+4.*F(J,2*M)*EXP((L-1)*ALOG(2.*M-1.))+2.*F(J,
12*M+1)*EXP((L-1)*ALOG(2.*M))
LF(L .GT. 1) GO TO 41
PM(J,1)=I./3.*(F(J,1)+StJMFM(J,1)+4.*F(JN-1)+F(J,N))
GO TO 28

41 FM( J,L)=1./3.*(SUMFM(JL)+4.*F(J,4-1)*EXP(V2(L))+F(J,N)*EXP(Vl(L))
1)

28 CONTINUE
C CALCULATLON OF ANALYTICAL MOMENTS FMM(J,I)

X(J)= GAM(J)*(EXTH(J)-B)
Z(J)=.GAM(J )*EXTH(J)
R1(J) 1./;(GAMI J)*DELZ)
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R2(J);1./(IGAMSQ(J)*ZSQ)
PMM(J1)R1(J)*(-COSH(X(J))+COSH(Z(J)))
FMMIJ,2)h-CNM1*R1(J)*COSH(X(J))-R2(J)*SINH(X(J))+R2(J)*SINH(Z(J))
DO 42 1=3,12

42 FMM(J,.I )=.-R1(J)*EXP(Vl( I) )*COSH(X(J) )-( I-1)*R2(J)*EXP(V3( I) )*SINH(
1X( J ))+( T-1 ):*(I1-2)*R2(J)*FMM(JI1-2)
ONUM(,J)=J*J+1)*FMM(J,J)-2.*J*(J-1)*CNM1*FMM(J,J-1)+(J-1)*(J-2)*Z

2

1.*FMM (J 9J-2 ):
DENO(J)=FMM(J,.J+2)-2.*CNM1*FMM(JJ+1)+C2*FMM(J,J)
G9QTH(J)CNUM(J)/(ZSQ*DEN3(J))
GAMTH(J )SQRT('GSQTH(J))
D2(J) = DENO(J)**2
D4(J) =sDENO( J)**4

CDD (J);=CNUM (J);**2/D41 J)
C CALCULATLON OF COEFFICIENTS C(J,I) FOR AXIAL BUCKLING

C(J-2,1);DZ4*((J-1)*(J-2))**2*C4/D2(J)
C(J-1,2)sDZ4*4.*(J*(J-1))**2*C2/D2(J)
C(J,3):=DZ4*(J*(J+1)*DENO(J)-C2*CNUM(J))**2/D4(J)
C ( J+1 ,4): DZ4*4.*C2*CDD( J)
O(J+2,5)=DZ4*CDD(J)

C 9VALUATION OF NORMALIZATION CONSTANT AZERD(J) FOR AXIAL BUCKLING
SUMN(J)=0.0
DO 43 1=1,5

43 9UMN(J)=SUMN(J)+C(J+1-3,I)*AM(J+1-3)**2
SUMD(J)=C?.O
DO 44 1=1*5

44 9UMD(J);=9UMD(J)+C(J+1-3,I)*AM(J+1-3)*FM(JJ+I-3)
AZERO(J)lSUMN('J)/SUMD(J)

C 8STIMATE OF TRUNCATION ERRORS IN MOMENTS
DO 46 1=1,5

46 TRE(J+I-3,I)=FMM(J,J+1-3)-FM(JJ+1-3)
C ESTIMATE OF EXPERIMENTAL ERRORS IN MOMENTS

00 47 1=1,5
47 EXPE(J+I-3,d)=;FM(J,J+1-3)-AM(J+1-3)/AZERO(J)

VARGT(J) O.O
DO 48 1=1,5

48 VARGT(J)sVARGT(J)+C(J+I-3,I)*TRE(J+1-3,I)**2
DEVGT(J)iSQRT(VARGT(J))-
VARG(J)=O.0
DO 49 1=1,5

49 VARG(J)=VARG(J)+C(J+1-3,1)*EXPE(J+1-3,I)**2
DEVGIJ)=SQRT(VARG(J))

C CALCULATION OF COEFFICIENTS H(JI) FOR EXTRAPOLATED HEIGHT

HN(J)=,GAMSO(J)*ZSQ*(CNM1*FMM(JJ)-FMM(JJ+1))+J*(J-1)*FMM(J,J-1)-
1(J-1 )*(J-21*CNM1*FMM(J,J-2)
HO(J)sGAMSQ(J)*ZSQ*((J-1)*FMM(J,J+)-J*CNM1*FMM(J,J))-J*(J-1)**2*F

1MM(J,J-1),J*(J-1)*(J-2)*CNM1*FMM(J,J-2)
GBSQ( J)=GAMSQCJ)*B*B
HEA(J);=HD(J)*HD(J)-GBSQ(J)*HN(J)*HN(J)
Z9QDS(J)hZSQ/(HEA(J)*HEA(J))
PQ1(J)(HDfJ)+J*HN(J))**2
PQ2(J).l(HD(J)4'(J-l)*HN(J))**2
H(J-2,1) =i((J-1)*(J-2))**2*C4*PQ1(J)*ZSQDS(J)
H(J-1,2)h(J*(J-1))**2*C2*PQ2(J)*ZSQDS(J)
H(J,3);GBSQ(J)L**2*PQ1(J)*ZSQDS(J)
HIJ+l,4)kGBSQ(J)*GAMSQ(J)*ZSQ*PQ2(J)*ZSQDS(J)
H(J,5).=4(-(EXTH(J)-B)/GAM(J)+B/(GAM(J)*HEA(J))*(HN(J)*HD(J)+2.*GAMS



310

1Q(J)*ZSQ*HD(J)*(CNM1*FMM(JJ)-FMM(JJ+1))-2.*GAMSQ(J)*ZSQ*H4(J)*(
2(J-1iFMM(J,J41)-J*CNM1*FMM(J,J))))**2

C EVALUATION OF NORMALIZATION CONSTANT AZERJH(J)
SOMHN(J)=0.-O
DO 61 1=E,4

61 SUMHN(J)sSUMHN(J)+H(J+I-3,1)*AM(J+I-3)**2
SDMHD(J ) i0.O
DO 62 1=1#4

62 9UMHD(J)sSUMHD(J)+H(J+I-3,1)*AM(J+I-3)*FM(J,J+1-3)
AZERO4( J).*SUMHN( J )/SUMHD( J)

C ESTIMATE OF EXPERIMENTAL ERRORS IN MOMENTS
DO 63 I=1.v4

63 EXPEH(J+I-3, I)=FM(J,J+I-3)-AM(J+I-3)/AZERJH(J)
9UMHT(J)-O.0
00 64 1=1,4

64 SUMHT(J)SUMHT(J)+H(J+I-3,I)*TRE(J+I-3,I)**2
VARHT(J)=iSUMHTJ)+H(J,5)*VARGT(J)/(4.*GAMSQ(J))
DBVHT(J)=,SQRT(VARHT(J))
9UMH( J):=O.O
DO 66 I*L,4

66 90kMH(J):=SUMH(J)+H(J+I-3,I)*EXPEH(J+I-3,I)**2
VARH(J)=SUMH(J)+H(J,5)*VARG(J)/(4.*GAMSQ(J))
DBVH(J)=SQRT(VARH(J))

C CALCULATION OF COMBINED ERRORS IN AXIAL BUCKLING
C AND EXTRAPOLATED HEIGHT

CVARA(J)=VARG(J)+VARGT(J)
CVARR(J)=VARH(J)+VARHT(J)
CDEVA(J)=SQRT(CVARA(J))
CDEVR(J)=SQRT(CVARR(J))

23 CONTINUE
RETURN
END

A.1.4 Sample Input Deck

ML5 13 1.0270 2.5400 2.50 8.8900 8

0.465590 0.373470 0.286780 0.239050 0.181480 0.149180

0.114120 0.093793 0.073366 0.058854 0.044442 0.033527

0.022638
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A.2 THE RAMBLER CODE

A.2.1 General Description

The RAMBLER code was programmed in FORTRAN IV for the

same type of computer according to the iterative moments method de-

scribed in section 4.3. The code computes the values of the radial

buckling and the extrapolated radius as well as the probable errors in

these quantities.

The code consists of a main program and four subroutine sub-

programs: MOMENT, CASE 1, CASE 2, and CASE 3. The subroutine

MOMENT computes the radial flux moments by means of the second-

order Simpson's rule for unequal intervals described in Appendix B.

The subroutines CASE 1, CASE 2, and CASE 3 calculate the values of

the radial buckling and the extrapolated radius as well as the probable

errors in these quantities in accordance with the three cases con-

sidered in section 4.3.

A.2.2 Input Data for the RAMBLER Code

Card 1 (Format (A5, 13, 2F10.4, F8.2, F10.4)). The following

quantities appear, in order, on this card:

RUN is the experimental run number for the set of data being

analyzed;

N is the number of data points submitted and must be ODD;

ENRICH is the fuel enrichment in percent of the lattice being

analyzed;

RODIA is the diameter of the fuel rod in inches;

PITCH is the lattice spacing in inches;

ALPH(1) is the initial guessed value in cm- 1 of the square root of

the radial buckling calculated by means of Eq. (4.1).
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Card 2 (Format (6F12.6)). The following quantities appear, in

order, on this card:

A(I) are the relative experimental activation data. They are read

in on successive cards according to the specified format until N data

have been stored in the memory of the computer.

Card 3 (Format (6F12.5)). The following quantities appear, in

order, on this card:

R(I) are the radial positions, in centimeters, corresponding to

the various experimental data points being analyzed. They are read in

on successive cards according to the specified format until N values

of the radial positions have been stored in the memory of the computer.



A.2.3 FORTRAN IV Listings of the RAMBLER Code and a Sample Input Deck 313

C RADIAL BUCKLING CODE #RAMBLER' H.S.CHENG
C THIS CODE IS BASED ON THE ITERATIVE MOMENTS METHOD FOR THE
C EXTRACTICN CF THE RADIAL BUCKLING AND THE EXTRAPOLATED RADIUS
C FROM FOIL ACTIVATION CATA

DIMENSION A(50),ALPH(20),ALPHSQ(20),R(30),H(30),W(30),SUMR(5),RMEX
IP(5),RMTH(5),AJO(20),AJ1(20),D1(2')),D2(20),D3(20),G(20),HD(20)JF(2
20),U(20),V(20),D4(20),DELADA(20),DELASQ(20),DELRMt5)
COMMCN A, R, H, W, ALPH, ALPHSQ, RMEXP, RMTH, G, DELADA, DELRMI
IDELASC, AJC, AJ1, DI, D2, D3, D4, HO, F, R4, ARGC, U, V, EXTR, M,
2RATICl, RATIO2, RATIO3, RSQ, N, 81, 821 B4, 86' AZERC, SIGASQ,SIGR

1 FORMAT(1H1,20X18H PROGRAM 'RAMBLER'//)
2 FORMAT(1HOE7H THE CALCULATION OF RADIAL BUCKLING ANC EXTRAPOLATED

1 RACIUS BY ITERATIVE MOMENTS METHOD//)
3 FORMAT(A5,13,2F10.4,F8.2,2F10.4)
4 FORMAT16F12.6)
5 FORMAT(5H RLNkA5,19H ENRICH(PERCENT)2F7.4,13H PITCH(IN)=P6J3,
113H RODIA(IN)=F7.4//)

6 FORMAT(1H0,27H INPUT RADIAL ACTIVITY DATA)
7 FORMAT(1H0,4(13,F1O.6,2X)/(lHh5(1X,I2,F1O.6,2X)))
8 FORMAT(1H1,2lHTHE ITERATICN RESULTS//)
9 FORMAT(1HO,27H INPUT RADIAL POSITION DATA)
10 FORMAT(10H ITERATION,4X,15HRADIAL BUCKLING,4X,13HCORRECTION LNI
11 FORMAT(3X,5t-INDEXBX,9HALPHSQ(J),7Xl5HRADIAL BUCKLING)
12 FORMAT15X,EIJ11X,6H(CM-2),1DX,12HDELALPHSQ(J)I
13 FORMAT136X#EH(CM-2))
14 FORMAT(1H0,37HTHE FINAL CCNVERGENT RADIAL BUCKLING=1PE13.6,2X,25H1

INVERSE SQUIRE CENTIMETER)
15 FORMAT(1HO,38HTHE CORRFSPCNDING EXTRAPOLATED RADIUS=1PE13.6,2X411H

iCENT IMETERS)
16 FORMAT(iHO,37HTHE DEGREE OF FIT IN kADIAL BUCKLING=1PE13.6,2X,25H1

INVERSE SQUtRE CENTIMETER)
17 FORMAT(IHO,41HTHE DEGREE OF FIT IN EXTRAPOLATED RADIUS=1PE13.642X4

111HCENTIMETERS)
20 FORMAT 1HO,27HTHE NORMALIZATION CONSTANT=1PE13.6)
22 FORMAT16F12.5)
T1 FORMATI1HO,33HCASE1,THIRD TO FIRST MOMENT RATIO//I
72 FORMAT(1H1,34HCASE2, FIFTH TO THIRD MOMENT RATIO//)
73 FORMAT(lHI,34HCASE3, FIFTH TO FIRST MOMENT RATIO//)

C THE FCLLCWING STATEMENT IS DUMMY
HELEN1.0O

21 REAC (5,3) RUN* N, ENRICH, RODIA, PITCH, ALPH(1)
REAC (5,4) (A(I), I=19N)
READ (5,22) (R(I),I=lN)
WRITE (6,1)
WRITE (6,2)
WRITE (6,5) RUN, ENRICH, PITCH, RODIA
WRITE (6,6)
WRITE (6,7) (I,A(I),I1,N)
WRITE (6,9)
WRITE (6,7) (IR(I),IilN)
CAtt MOMENT
WRITE (6,8)
WRITE (6,71)
WRITE (6,5) RUN, ENRICH, PITCH, RODIA
WRITE 06,1C)
WRITE 16,11)
WRITE (6,12)

Th
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WRITE (6,13)
CALL CASE1
WRITE 16,14) ALPHSQ
WRITE (6,15) EXTR
WRITE (6,16) SIGASQ
WRITE (6,17) SIGR
WRITE 16,2C) AZERO
WRITE (6,72)
WRITE (6,5) RUN, EN

WRITE (6,1C)
WRITE (6,11)
WRITE (6,12)
WRITE (6,13)
CALL CASE2
WRITE (6,14) ALPHSQ

WRITE (6,15) EXTR

WRITE (6,16) SIGASQ
WRITE 46,17) SIGR
WRITE 16,20) AZERO
WRITE 16,T3)

WRITE 16,5) RUN, EN

WRITE (6,1C)
WRITE (6,11)
WRITE (6,12)
WRITE (6,13)
CALL CASE3
WRITE (6,14) ALPHSQ

WRITE (6,15) EXTR

WRITE (6,16) SIGASQ
WRITE (6,117) SIGR
WRITF (6,20) AZERO
GO TC 21
END
SUBRCLTINE POMENT

(MI

RICH, PITCH, RODIA

(MI

RICH, PITCH, RODIA

(M)

C CALCLLATICN OF THE EXPERIMENTAL RADIAL FLUX MOMENTS
C BY MEANS OF SIMPSON'S RULE FOR UNEQUAL INTERVALS

DIMENSION A(50),ALPH(20),ALPHSQ(20),R(30)tH(30),W(30),SUMR(5),RMEX
1P(5),RMTH(5),AJ2(20),AJ1(20),1(20),D2(2O,D3(20),G(20),HD(20).F(2
20),U(20),V(20),D4(23),DELADA(20),DELASQ(20),DELRM(5)
COMMCN A, R, H, W, ALPH, ALPHSQ, RMEXP, RMTH, G, DELADA, DELRM4
IDELASC, AJO, AJl, D1, D2, D3, 04, HD, F, R4, ARGC, U, V, EXTR, M,
2RATIC1, RATIO2, RATIO3, RSQ, N, 81, B2, B4, B6t AZERC* SIGASQSIGR

K = (N-1)/2
H(1)=R(1)
00 26 I=2,N

26 H(I)=RtI)-R(I-1)
DO 23 1=1,K
W(2*I)k(-H(2*I+1)**2+10.*H(2*)*H(2*1+1)-H(2*I)**2)/(Ht2*I+1)+H(

2 *

11 ))
W(2*I+1)=(7.*H(2*I+1)**2-4.*H(2*I+1)*H(2*I)+H(2*1)**2)/(2.*(H(

2 *I*

11)+H(2*1)))
23 CONTINUE

00 24 J=1,5,2
SUMR (J)=C .0
DO 25 I=2,K

25 SUMR(J)=SURR(J)+W(2*I)*A(2*I)*EXP(J*ALOG(R(2*I1))4,(W(2*I+1)+W(2*1-
11))*A(2*I-1)*EXP(J*ALCG(R(2*1-1)))
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RMEXP(J)=0.3333333*(SUMR(J)+W(3)*A(1)*EXP(J*ALOG(R(1)))+W(2)*At2)*
1EXP(J*ALOG(R(2)))+W(N)*A(N)*EXP(J*ALOG(R(N)))4J0.5*R(1)*A(1)*EXP(Je
2ALOG(R( 1)))

24 CONTINUE
RATIClfRVEXF(3)/RMEXP(1)
RATIC2=RMEXF(5)/RMEXP(3)
RATIC3kRMEXF(5)/RMEXP(1)
WRITE (6,27)

27 FORMAT(IHO,42HEXPERIMENTAL RADIAL FLUX MOMENTS, RMEXP(I))
WRITE 16,28) (I,RMEXP(I),I=1,5,2)

28 FORMAT11H3, (13,2X,1PE13.6,3X)/(lHO,5(lX,12,2XIPE13.6,3X)))
WRITE (6,33)

33 FORMAT(IHO,23HTHE FLUX MOMENTS RATIOS)
WRITE (6,34) RATIO1, RATIO2, RATIO3

34 FORMAT(1HO,18HRMEXP(3)/RMEXP(1)=1PE13.6,3X,18HRMEXP(5)/RMEXP(3)=lP
1E13.6,3X,18t-RMEXP(5)/RMEXP(1)=1PE13.6)
RETURN
END
SUBRCLTINE CASEL

C CALCULATION OF THE RACIAL BUCKLING AND THE EXTRAPOLATED RADIUS
C BY MEANS OF THE ITERATIVE MOMENTS METHOD WITH THE THIRD TO FIRST
C MOMENT RATIC.

DIMENSION A(50),ALPH(20),ALPHSQ(20),R(30),H(30),W(30),SUMR(5),RMEX
1P(5),RMTH(5),AJD(20),AJ1(20),D1(20),02(20),D3(20),G(20),HD(20)4F(2
20),U(20),V(20),D4(20),DELADA(2C),DELASQ(20),DELRM(5)
COMMCN A, R, H, W, ALPH, ALPHSQ, RMEXP, RMTH, G, DELADA, DELRM4
IDELASC, AJO, AJl, D1, D2, D3, D4, HD, F, R4, ARGC, U, V, EXTR, M,
2RATIC1, RAT102, RATIO3, RSQ, N, O1, B2, B4, B6, AZERC, SIGASCSIGR
ALPHSC#I).ALPH(1)**2
RSQ = R(N)**2
DELASQI ):Q0.0
DO 29 J=1,17
ARGA=ALPH(J)*R(N)
CALL BESJ(ARGA,0,BJ,1.0E-08,IER)
AJO(J)*BJ
CALL BESJ(APGAtBJ,l.0E-08,IER)
AJ1 ( J)kBJ
Dl ( J )=RSQ*AJQ( J)
02(J)=R(N)*AJ1(J)/ALPH(J)
03(J)l./ALFHSQ(J)
G(J)=2.*03(J)*D1(J)+D24J)*(RSQ-4.*D3(J))
HD(J)=D1(J)*(8.*D3(J)-RSQ)04.*D2(J)*(RSQ-4.*D3(J))
F(J)= -D1(J) + 2.*D2(J)
Bl=G(J)-RATO11*D2(J)
B2=HC(J)-RAT IOl*F(J)
DELACA(J)El/B2
ALPH(J+1)AALPH(J)*(1+CELADA(J))
ALPHSQIJ+1)=ALPH(J+1)0*2
DELASQ(J+1)=ALPHSQ(J)*DELADA(J)*(2.+DELADA(J))
M= J+1
IF(ABSIDELACA(J)) .LT. 1.0E-04) GO TO 200

29 CONTINUE
200 WRITE (6,3C) (I, ALPHSQ(I), DELASQ(I), I=1,M)
30 FORMAT41HO,3X 12,8XlPE13.6,5XlPE13.6)

EXTR=2.4C48/ALPH(M)
C THE CEGREE CF FIT IS EVALUATED BY THE ESTIMATE OF ERRORS IN THE
C EXPERIMENTAL RADIAL FLUX POMENTS.
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C CALCLLATICN OF THE THEORETICAL RADIAL FLUX MOMENTS
RMTH(1)=D2(-1)-DELADA(M-I)*F(M-1)
RMTH(3)=G(P-1)-DELADA(M-1)eHD(iM-1)
CCE=(-D2(M-1)*82+F(M-1)*B1)/82**2
CC =ABS(CCE)
AZERC-RMT(1)**2*RMEXP(3)**2+RMTH(3)**2*RMEXP(1)**2)/(RMTH(1)4*

2 *

1RMTH(3)*R EXP(3)+RMTH(1)*RMEXP(1)*RMTH(3)**2)
DELRM(1)=RMIH(1)-RMEXP(1)/AZERC
DELRM(3)=RIOH(3)-RMEXP(3)/AZERO
DELF = DELRP(3)**2/RMTH(1)**2 + RMTH(3)**2*DELRM(1)**2/RMTH(1)4*4
DELY =CC*SCRT(OELF)

C SIGASC IS TIE DEGREE CF FIT FOR THE RADIAL BUCKLING
SIGASC = 2.*ALPHSQ(M)*(1.4DELADA(M-1))*DELY
SIGR l.2024*SIGASQ/ALPH(M)**3
RETURN
END
SUBRCUTINE CASE2

C CALCLLATION OF THE RACIAL BUCKLING AND THE EXTRAPOLATED RADIUS

C BY MEANS CF THE ITERATIVE MOMENTS METHOD WITH THE FIFTH TO THIRD

C MOMENT RATIC.
DIMENSION A(50),ALPH(20),ALPHSQ(20),R(30),H(30),W(30),SUMR(5),RMEX

1P(5),RMTH(5),AJ2(20),AJ1(20),D1(20),D2(20),D3(20),G(20),HD(
2 0 ).IF( 2

20),U(20),V120),D4(20),DELADA(20),0ELASQ(20),DELRM(5)
COMMCN A, R, H, W, ALPH, ALPHSQ, RMEXP, RMTH, G, DELADA, DELRM4

1DELASC, AJC, AJ1, D1, 02, D3, 04, HD, F, R4, ARGC, U, V, EXTR, M,

2RATIG1, RATIO2, RATIO3, RSQ, N B1, 2, B4, B6i AZERCt SIGASQSIGR

ALPHSC(1);ALPH(1)**2
RSQ = R(N)**2
R4=RSC*RSC
DELASC(1)=0.0
DO 29 J=1,17
ARGA=ALPH(J)*R(N)
CALL 8ESJ(ARGA,0R,BJ,1.OE-08, IER)
AJO(J)tkBJ
CALL PESJ(APGA,1, BJI.OE-08, IER)
AJI ( J )tBJ
Dl(J)=RSQ*AJO(J)
D2(J)=R(N)*AJ1(J)/ALPH(J)
D3(J)=1./ALFHSQ(J)
D4( J )=D3(J)**2
G(J)=2.*D3(J)*D1(J)+D2(J)*(RS-4.*D3(J))
HD(J)1O(J)*(B.*D3(J)-RSQ)+4.eD2(J)*(RSQ-4.*D34J))
F(J)= -D1(J) + 2.*D2(J)
U(J)=C2(J)*(64*D4(J)+R4-16*RSQ*C3(J))+4*D1(J)*D3(J)*(RSQ-8*D3(J))
V(J)=6*D2(J)*(64*D4(J)+R4-16*RSC*D3(J))-D1(J)*ER4I192eD4(J)-

2 4 4RSQ
1*D3(J))
84=V(J)-RAT102*HD(J)
86=U(J)-RAT102*G(J)
DELACAIJ)=e/B4
ALPH(J+1)aALPH(J)*(1.40ELADA(J))
ALPHSC(J+I)=ALPH(J+1)**2
DELASC(J+1)= ALPHSQ(J)*DELADA(J)*(2.+DELADA(J))
M= J+1
IF(ABODELACA(J)) .LT. 1.OE-04) GO TO 300

29 CONTINUE
300 WRITE 16,13) (IALPHSC(I),DELASQ(I),IalM)
13 FORMATf1HO,2X,12,8X,1PE13.6,5X,1PE13.6)
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EXTR=2.4C48/ALPH(M)
C THE CEGREE CF FIT IS EVALUATED BY THE ESTIMATE OF THE ERRORS IN
C THE EXPERIVENTAL RADIAL FLUX MOMENTS.
C CALCLLATION OF THEORETICAL RADIAL FLUX MOMENTS

RMTH(3)=G(M-1)-DELADA(M-1)*HD(M-1)
RMTH(5)=UIM-1)-DELADA(M-1)*V(M-1)

CCE=(-G(M-1)*B4+HD(M-1)*86)/B4**2
CC = ABS(CCE)
AZERC=(RMTt-(3)**2*RMEXP(5)**2+RMEXP(3)**2*RMTHI5)**2)/(RMTH(3)0*2*
1RMTH(5)*RMEXP(5)+RMTH(5)**2*RMTH(3)*RMEXP(3))
DELRV(3)=RPTH(3)-RMEXP(3)/AZERC
DELRP(5)=RP1H(5)-RMEXP(5)/AZERO
DELF=DELRM(5)**2/RMTH(3)**2+RMTH(5)**2eDELRM(3)**2/RMTH(3)**4
DELY=CC*SCR1 (DELF)

C SIGASC IS Tf-E DEGREE CF FIT FOR THE RADIAL BUCKLING
SIGASC = 2.*ALPHSQ(M)*(1.+DELADA(M-1)).DELY
SIGR=1.2C24*SIGASQ/ALPH(M)**3
RETURN
END
SUBRCLTINE CASE3

C CALCULATICN OF THE RACIAL BUCKLING AND THE EXTRAPOLATED RADIUS
C BY MEANS OF THE ITERATIVE MOMENTS METHOD WITH THE FIFTH TO FIRST
C MOMENT RATIC.

DIMENSION M(53),ALPH(20),ALPHS(20),R430),H(30),W(30),SUMRI5),RMEX
IP(5),RMTH(5),AJI(20),AJ1(20),D112O),D2(20),D3(20),G(20),HD(20)F(2
20),U(20),V(20),D4(20),DELADA(20),DELASQ(20),0ELRM(5)
COMMCN A, R, H, W, ALPH, ALPHSQ, RMEXP4 RMTH, G, DELADA, DELRMJ
IDELASC, AJC, AJ1, D1, 02, D3, 04, HD, F, R4, ARGC, U, V, EXTR, M,
2RATIC1, RATIO2, RAT103, RSQ, N, B1, 82, B4, B6 AZERC, SIGASC1SIGR
ALPHSCi1)=ALPH(1)**2
RSQ = R(N)*m2
R4=RSC*RSC
DELASCfI 1)=0.0
DO 29 J=1,11
ARGA=ALPH(J)*R(N)
CALL BESJ(ARGA,0,BJ,1.0E-08,IER)
AJO(J)*BJ
CALL BESJ(ARGA,1,BJl.OE-08,IER)
AJi (J)kBJ
D1( J );RSQ*AJO( 3)
D2(J)*R(N)*AJ1(J)/ALPH(J)
D3( J )=l./ALFHSQ(J)
D4( J )=D3 (J) **2
G(J)=2.*C3(J)*D1(J)+D2(J)*(RSQ-4.*D3(J))
HD(J)=Dl(J)*(8.*D3(J)-RSQ)+4.*D2(J)*(RSQ-4.*D3(J))
F(J)= -Dl(J) + 2.*02(J)
U(J)=D2(J)*(64*D4(J)+R4-16*RSQ*D3(J))+4eD1(J)*D3(J)*(RSQ-8*D313))
V(J)=6*D2(J)*(64*D4(J)+R4-16*RSQ*D3(J))-D1(J)*(R44192*D4(J)-24#RSI
1*D3(J))
B3=U(J)-RATI03*D2(J)
B5=V(J)-RATIO3*FiJ)
DELADA(J)=03/B5
ALPH(J+1)=AL FH(J)*(1+CELADA(J))
ALPHSC(J+1)=ALPH(J+1)**2
DELASC(J+1)=ALPHSC(J)*DELADA(J)*(2.+DELADA(J))
M- J+1
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IF(ABSIDELACA(J)) .LT. 1.OE-04) GO TO 200
29 CONTINUE

200 WRITE (6,30) (I, ALPHSQ(I), DELASQ(I), l1,M)
30 FORMATO1HO,3X 12,8X,1PE13.6,5X,1PE13.6)

EXTR=2.4048/ALPH(M)
THE CEGREE CF FIT IS EVALUATED BY THE ESTIMATE OF ERRORS IN THE
EXPERIMENTAL RADIAL FLUX MOMENTS.
THE CALCULATION OF THEORETICAL RADIAL FLUX MOMENTS
RMTH(1)=D2(-1)-DELADA(M-1)*F(M-1)
RMTH(5)=U(P-1)-DELADAIM-1)*V(M-1)
CCE=(-D2(M-I)*B5+F(M-1)*B3)/B5**2
CC=AeSICCE)
AZERC=IRMTH(1)**2*RMEXP(5)**2+RMTH(5)**2*RMEXPI1)**2)/(RMTH(1)#
IRMTH(5)*RMEEP(5)+RMTH(1)*RMEXP(1)*RMTHI5)**2)
DELRP(1)=RMTH(l)-RMEXP(1)/AZERO
DELRV(5)=RPTH(5)-RMEXP(5)/AZERO
DELF = DELRP(5)**2/RMTH(1)**2 + RMTH(5)**2*DELRM(1)**2/RMTH(1)4
DELY - CC*SCRT(DELF)
SIGASC = 2.uALPHSQ(M).(1.4DELADA(M-1))*DELY
SIGR = 1.2024*SIGASQ/ALPH(M)**3
RETURN
END

/*
//C.SYSIN CD

VL6 5 1.C;27C 0.2500 1.75
1.108940 1.041130 0.925120
2.31336 6.69833 11.13103

LJ 11 1.143C 0.2500 1.75
0.987640 0.951183 0.892010
0.480C50 0.351612 0.223891
2.540C0 5.0800C 7.62000

17.78tC 2C.32000 22.86000
/*

0.0880
0.679740
15.57074
0.0882
0.811565
0.099272
10.16000
25.40000

0.459610
20.01280

0.714850
0.0000C
12.70000
27.49600

0.600330

15.24000

C
C
C

*20

*4
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A.3 THE RADBUCK CODE

A.3.1 General Description

The RADBUCK code was programmed in FORTRAN IV for the

same type of computer according to the direct moments method de-

scribed in section 4.2. The code consists of a main program and two

subroutine subprograms: JOANNE and ROCK. The subprogram

JOANNE computes the radial flux moments with the second-order

Simpson's rule for unequal intervals given in Appendix B and also

computes the values of the radial buckling and the extrapolated radius

for various values of the moment index. The lowest allowable value of

the moment index is 3 and the largest permissible value is 9. The

radial positions that correspond to the experimental data points are

calculated with the formula

R(I) = ID 2 + (I-1) 2 (DE LX) 2 , I = 1, 2, 3, ... , N. (A.1)

where DELX is the equal spacing between any two successive data points

that are positioned on an off-center line as shown in Figure A.1, and D

is the distance from the central data point to the center of the cylinder.

If the foils are not arranged in this manner, the program can be easily

modified by treating R(I) as input data.

The subprogram ROCK calculates the probable errors in the

radial buckling and the extrapolated height for various values of the

moment index, and hence provides a way of determining the best values

of the radial buckling and the extrapolated radius.

The amount of computer time is about 10 seconds or less per case.
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FIG. A.1 CONFIGURATION OF THE FOIL ARRANGEMENT
FOR RADIAL FLUX TRAVERSES.
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A.3.2 Input Data for the RADBUCK Code

Card 1 (Format (A 5, 13, 2F10.4, F8.2, 14, F 10.4)). The following

quantities appear, in order, on this card:

RUN is the experimental run number for the set of data being

analyzed;

N is the number of data points submitted and must be ODD;

ENRICH is the fuel enrichment in percent of the lattice being

analyzed;

DELX is the spacing in centimeters between any two successive

data points equally spaced;

PITCH is the lattice spacing in inches;

NM is the highest value of the moment index desired; the maxi-

mum value built in the code is 9 and the value of NM must be odd;

D is the distance in centimeters from the central data point to

the center of the cylinder (see Figure A.1).

Card 2 (Format (6F12.6)). The following quantities appear, in

order, on this card:

A(I) are the relative experimental activation data with the first

data being the centermost data point. They are read in on successive

cards according to the specified format until N data have been stored

in the memory of the computer.
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A .3.3 FORTRAN IV Listings of the RADBUCK Code

//RADBUCK JOB (M2940,5551,10,5000,200),'H.S.CHENG',4S3LEVEL=1
//STEP EXEC FORCLGPARM.'=(EBCDICDECKMA3)
//C.SYSIN DD *
C RADIAL BUCKLING CODE 'RADBJCK' H.S.CHENG
C THIS CODE IS BASED ON DIRECT M3MENTS METH3D F3R THE AALYSIS OF
C THE RADIAL BUCKLING AND EXTRAPOLATED RADIJS. SIMPSON'S RJLE FOR
C UNEQUAL INTERVALS IS USED TO EVALUATE THE RA)IAL FLUX MOMENTS.

DIMENSION A(50), RM(50), FM(50,50), FMM(53,50), F(50,50), SUM(53),
1 CNUMA(50), DENOA(50), ALPHSQ(50), ALPH(50), EXTR(50), Y(50,50), 8
2ESSO(50,50), SUMF(50,50), SUMFM(50), FMO(50), Z(50), BJ0(53), BJI(
350), CNUM(50), DENO(50), D2(50), D4(50), :(50,10), SJ4MA(53), SJM3
4A(50), AZERO(50), TRE(50,10), EXPE(50,10), VARAT(50), VAIAP(50), V
5ARRT(50), VARRP(50), DEVAT(50), DEVAP(50), DEVRT(50), DEVRP(50), :
6DEVA{50), CDEVR(50), CVARA(50), VARR(50), SJ'4F(50), VI(53), V2(5
70), R(50), H(50), W(50), SUMR(50)
COMMON A, RM, FM, FMM, F, N, K, C4MI, CN42, XSQ, R, 12, 14, ALPASJ
1, ALPH, EXTR, AZERD, TRE, EXPE, VARAT, VARAP, VARIT, VARRP, DEVAT,
2 DEVAP, DEVRT, DEVRP, DX4, CDEVA, CDEVR, :VARAh, CVARR, DELX, NM, A
3M0, H, W, C, BJO, BJl, D

10 FORMAT(1H1,20X18H PROGRAM 'RADBUCK'//)
20 FORMAT(IHO,73H CALCULATI3N OF RADIAL BUCKLING AND EXTIAPJLATED RAD

lIUS BY MOMENTS METHOD//)



323

30 FORMAT(A5,13,2FlO.4,F8.2,14,FI0.4)
40 FORMAT(6F12.6)
50 FORMAT(5H RUN=A5,13H E41ICH(I)=F7.4,13H PIT'H(IN)zF6.3,12H 3

1ELX(CM)=F7.4)
9 FORMAT(lHO,27H INPUT RADIAL POSITION DATA)

60 FORMAT(lHO,27H INPUT RADIAL ACTIVITY DATA)
70 FORMAT(IH0,5(13,F1O.6,2X)/(1HO,5(IX,12,FID.6,2X)))
80 FORMAT(lHO,37HCOMPUTED RESULTS OF SUBROUTINE J)ANNE//)
90 FORMAT(1H0O1X,6HMOMENT,7Xi5HRADIAL BUCKLI4G,7X,19HEXTRAPDLATE) A

1ADIUS)
100 FORMAT(1OX,6H INDEX,12X,64(CM-2),18X,4H(CM))
110 FORMAT(1HO,12X,1H1,13X,9HALPHSQ(I),15Xt7HEXTR(I))
120 FORMAT(IHO,11X,12,10X,1PE13.6,12X,1PE13.6)
130 FORMAT(1HI,39HCOMPUTED RESULTS OF EXPERIMENTAL ERIORS//)
140 FORMAT(1H0,2X,6HMOMENT,7X,18HSTANDARD DEVIATIO4,7X.211STANDARD )EV

IIATIDN IN,7X,11HVARIANCE IN,9X,18HVARIANCE I4 EXTRA-)
150 FORMAT(2X,6H INDEX,8X,18HIN RADIAL BUCKLI4G,7X,19HEXTlAP3LATED A)

11US,9X,15HRADIAL BUCKLIN4G,5X,14HPDLATED RADIJS)
160 FORMAT(1H0,4X,1HI,14X,8HDEVAP(I),19X,8HDEVRP(I),16X,8VAI&P(!),13X

1,8HVARRP(I))
170 FORMAT(1HO,3X,12,11X,1PE13.6,13X,1PE13.6,12X,1PE13.6,8X,1PE13.6)
180 FORMAT(1HO,37HCOMPUTED RESULTS OF TRUNCATIO4 ERRORS)
190 FORMAT(1HO,2X,6HMOMENT,7Xl8HSTAJDARD DEVIATI'J,7X,211STA43ARD DEV

1IATION IN,7Xl1HVARIANCE IN,9X,18HVARIANCE 14 EXTRA-)
200 FORMAT(2X,6H INDEX,8X,18HIN RADIAL BU.KLI4G,7X,19HEXTAAPDLATED RA)

1IUS,9X,15HRADIAL BUCKLING,5X,14HPJLATED RADIUS)
210 FORMAT(IHO,4XlHI,14X,8HDEVAT(I),19X,8HDEVRT(I),16X,89VARAT(I),13X

1,8HVARRT(I))
220 FORMAT(lHO,3XI2,11X,1PE13.6,13XlPE13.6,12X,1PE13.6,9X,1PE13.6)
610 FORMAT(LHO,65HCOMPUTED RESULTS OF COMBINED ERR3RS(EXPERIMENTAL PLU

IS TRUNCATION))
620 FORMAT(1H0,2X,6HMOMENT,7X,18HSTANDARD DEVIATI3N,7X,214STA43ARD DEJ

1IATION IN,7X,11HVARIANCE I4,9X,18HVARIANCE 14 EXTRA-)
630 FORMAT(2X,6H INDEX,8X,18HIN RADIAL BU KLING,7X,19HEXTAAP3LATED RA3

11US,9X,15HRADIAL BUCKLING,6X,14HP3LATED RADIUS)
640 FORMAT(IHO,4X,1HI,14X,8HCDEVA(I),18X,8HCDEVR(I),18X,88CVARA(I),13X

1,8HCVARR(I))
650 FORMAT(1H0,3X, 2,11XlPE13.6,13X,1PE13.6,12X,1PE13.6,7X,IPE13.6)

NORMAN = 17
6 READ (5,30) RUN, N, EN4RIC4, DELX, PITCH, 4M, D

READ (5,40) (A(I),I=1,N)
WRITE (6,10)
WRITE (6,20)
WRITE (6,50) RUN, ENRICH, PITCH, DELX
WRITE (6,60)
WRITE (6,70) (I,A(I),I=1,9)
WRITE (6,9)
WRITE (6,70) (I,R(I),I=1,9)
WRITE (6,80)
CALL JOANNE
WRITE (6,90)
WRITE (6,100)
WRITE (6,110)
WRITE (6,120) (1, ALPHSO(I), EXTR(I), I=3,NM,2)
WRITE (6,130)
WRITE (6,50) RUN, ENRICH, PITCH, DELX
WRITE (6,140)
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WRITE (6,150)
WRITE (6,160)
CALL ROCK
WRITE (6,170)
WRITE (6,180)
WRITE (6,190)
WRITE (6,200)
WRITE (6,210)
WRITE (6,220)
WRITE (6,610)
WRITE (6,620)
WRITE (6,630)
WRITE (6,640)
WRITE (6,650)

(I, DEVAP(I), DEVRP(I),

(I, DEVAT(I),

VAAP (I), VARRP(I),I=3,NM,2)

DEVRT(I), VARAT(I), VARRT(I),I=3,NM,2)

GO TO 6
END
SUBROUTINE JOANNE
CALCULATION OF RADIAL M3MENTS, RADIAL BUCKLI4G AND EXTRAPDLATED

RADIUS BY MOMENTS METHOD
DIMENSION A(50), RM(50), F4(50,50), FMM(50,50), F(50,50), SUM(5D),

I CNUMA(50), DENOA(50), ALPHSQ(50), ALPH(50), EXTR(50), Y(50,50), 3

2ESSO(50,50), SUMF(50,50), SUMFM(50), FMO(50), Z(50), BJO(50), BJI(

350), CNUM(50), DENO(50), D2(50), D4(50), W(50,10), SJUNA(53), SU4)

4A(50), AZERO(50), TRE(50,10), EXPE(50,10), VAIAT(50), VARAP(50), q

5ARRT(50), VARRP(50), DEVAT(50), DEVAP(50), DEVRT(50), DEVIP(50), :

6DEVA(50), CDEVR(50), CVARA(50), CVARR(50), SJ4F0(50), V1(50), V2(5

70), R(50), H(50), W(50), SUMR(50)
COMMON A, RM, FM, FMM, F, N, K, CNM1, CNM2, XSQ, R, 2, 14, ALP4S

1, ALPH, EXTR, AZERO, TRE, EXPE, VARAT, VARAP, VARRT, VARIP, DEVAT,
2 DEVAP, DEVRT, DEVRP, DX4, CDEVA, CDEVR, :VAlA, AVARR, DELX, NM, A
3MO, H, W, C, BJO, BJ1, D
K - (N-1)/2
XSQ=DELX*DELX
DSQ=D*D
DO 21 I=1,N

21 R(I)=SQRT(DSQ+(I-1)**2*XSQ)
R2=R(N)**2
R4=R(N)**4
H(1)=D
DO 22 I=2,N

22 H(I)=R(I)-R(I-1)
DO 23 I=1,K
W(2*I)=(-H(2*I+1)**2+10.*H(2*1)*H(2*I+1)-H(2*1)**2)/(H(2*I+1)+H(2*

11))
W(2*1+1)=(T.*H(2*1+1)**2-4.*H(2*I+1)*H(2*I)+H(2*I)**2)/(2.*(H(2*1+
11)+H(2*I)))

23 CONTINUE
DO 24 J=1,11,2
SUMR(J)=0.0
DO 25 1=2,K

25 SUMR(J)=SUMR(J)+W(2*I)*A(2*I)*EXP(J*ALOG(4(2*I)))+(W(2*I+1)+4(2*I-
11))*A(2*1-1)*EXP(J*ALOG(R(2*1-1)))
RM(J)=1./3.*(SUMR(J)+w(3)*A(1)*EXP(J*ALOG(R()))+W(2)*A(2)*EXP(J*A
1LOG(R(2)))+W(N)*A(N)*EXP(JALOG(R(N)))+0.5*R()*A(1)*EXP(J*ALOG(1(
21))))

24 CONTINUE
WRITE (6,16)

C
C

(1, CDEVA(I), CDEVR(I), CVAAA(I), :VARM(),I=3,NM,2)
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16 FORMAT(1HO,34HEXPERIMENTAL RADIAL MOMENTS, RM(I))
WRITE (6,17) (I,RM(I),=1,11,2)

17 FORMAT(1HO,5(13,2X,1PE13.6,3X)/(1HO,5( XI2,2XIPE13.6,3X)))
C CALCULATION OF RADIAL BUCCLING, ALPHSQ(I)

ALPHSQ(3)=(16.*RM(3)-8.*R2*RM(l))/(-RM(5)+2.*R2*M(3)-R4*R(i))
ALPH(3)=SQRT(ALPHSQ(3))
EXTR(3)=2.4048/ALPH(3)
DO 18 I=5,NM,2
CNUMA(I)=(1+1)**2*RM(I)-2.*(I-1)**2*R2*RM(I-2)+(I-3)**2*44*RM(I-4)
DENOA(I)=-RM(I+2)+2.*R2*R4(I)-R4*RM(I-2)
ALPHSQ(I)=CNUMA(I)/DENOA(I)
ALPH(I)=SQRT(ALPHSQ(I))

C CALCULATION OF EXTRAPOLATED RADIUS, EXTR(I)
EXTR(I)=2.4048/ALPH(I)

18 CONTINUE
RETURN
END
SUBROUTINE ROCK

C ESTIMATE OF EXPERIMENTAL AND TRUNCATION ERRORS IN RADIAL BU:KLIN3
C AND EXTRAPOLATED RADIUS

DIMENSION A(50), RM(50), FM(50,50), FMM(50,50), F(50,50), SJM(50),
I CNUMA(50), DENOA(50), ALPHSQ(50), ALPH(50), EXTR(50), Y(50,50), 3
2ESSO(50,50), SUMF(50,50), SUMFM(50), FM0(50), Z(50), BJD(50), BJ1(
350), CNUM(50), DENO(50), 02(50), 04(50), C(50,10), SU'4A(50), SUM3
4A(50), AZERO(50), TRE(50,10), EXPE(50,10), VARAT(50), VARAP(50), V
5ARRT(50), VARRP(50), DEVAT(50), DEVAP(50), DEVRT(50), DEVRP(50), Z
6DEVA(50), CDEVR(50), CVARA(50), CVARR(5O), SUMFO(50), V1(50), V2(5
70), R(50), H(50), W(50), SUMR(50)
COMMON A, RM, FM, FMM, F, N, K, %NM1, CNM2, XSQ, R, R2, R4, ALPHS
1, ALPH, EXTR, AZERO, TRE, EXPE, VARAT, VARAP, VARRT, VARRP, DEVAT,
2 DEVAP, DEVRT, DEVRP, DX4, CDEVA, CDEVR, ZVARA, CVARR, DELX, NM, I
3M0, H, W, C, BJO, BJ1, D

C GENERATION OF THEORETICAL INPUT DATA F(IJ)
DO 71 I=3,NM,2
DO 72 J=1,N
YY1=ALPH(I)*R(J)
CALL BESJ(YY1,OBJ,1.DE-0BIER)
F(IJ)=BJ

72 CONTINUE
C CALCULATION OF THEORETICAL MOMENTS FM(IJ) BY SIMPSON'S RULE

DO 73 L=1,11,2
SUMF(IL)=0.0
DO 74 M=2,K

74 SUMF(1,L)=SUMF(I,L)+W(2*M)*F(I,2*4)*EXP(L*ALDO(R(2*M)))+(W(2*M+1)+
1W(2*M-1))*F(I,2*M-1)*EXP(L*ALOG(R(2*M-1)))
FM(IL)=1./3.*(SUMF(1,L)+4(3)*F(li,)*EXP(L*AL33i(R(1)))+W(2)*F(1,2)

1*EXP(L*ALOG(R(2)))+W(N)*F(I.N)*EXP(L*ALOG(R(N))))
73 CONTINUE

C CALCULATION OF ANALYTICAL MDMENTS FMM(I,J)
Z1=ALPH( I )*R(N)
CALL BESJ(Z1,0,BJ,1.0E-08,IER)
BJO(I)=BJ
CALL BESJ(Z,1,BJ,1.0E-08,IER)
BJ1(I)=BJ
FMM( I1)=R(N)*BJ1(I)/ALPH(I)
DO 31 J=3,11,2

31 FMM(I ,J)=EXP(J*ALOG(R(N) ))*BJI( I )/ALPH( I)+(J-1)*EXP( (J-1)*ALOG(R(N
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1)))*BJO(I)/ALPHSQ(I)-(J-1)**2*FMM(1,J-2)/ALPHSQ(J)
C CALCULATION OF COEFFICIENTS C(I)

IF(I .EQ. 3) GO TO 96
CNUM(I)=(I+1)**2*FMM(1,1)-2.*(I-1)**2*R2*FM4(I,1-2)+(1-3)**2*R4*FM
1M(I,1-4)
GO TO 97

96 CNUM(I)=16.*FMM(I,3)-8.*R2*FMM(I,1)
97 DENO(I)=-FMM(I,I+2)+2.*R2*FMM(I,I)-R4*FMM(I,I-2)

D2(1)=DENO(I)**2
D4(1)=DENO(I)**4
C(I-2,1)=(I-3)**4*EXP(8*ALDG(R(N)))/02(I)
C(1,2)=R4*(-2.*(1-1)**2*DEIO(I)+R2*CNJM(I))**2/D4(I)
C(1+2,3)= ((1+1)**2*DEN0(I)-2.*R2*CNUM(I))*.2/D4(I)
C(I+4,4)=CNUM(I)**2/D4(1)

C EVALUATION OF NORMALIZATIN CONSTANT AZERJ(I)
IF(I .EQ. 3) GO TO 51
SUMNA(I)=O.O
DO 32 J=1,4

32 SUMNA(I)=SUMNA(I)+C(I+2*J-4,J)*RM(1+2*J-6)**2
SUMDA(I )=0.0
DO 33 J=1,4

33 SUMDA(I)=SUMDA(I)+C([+2*J-4,J)*RM(I+2*J-6)*FM(I,I+2*J-6)
AZERO(I)=SUMNA(I)/SUMDA(I)

C ESTIMATE OF TRUNCATION ERRORS IN MOMENTS
DO 34 J=1,4

34 TRE(I+2*J-4,J)=FMM(I,I+2*J-6)-FM(I,I+2*J-6)
C ESTIMATE OF EXPERIMENTAL ERRORS IN MOMENTS

DO 35 J=1,4
35 EXPE(I+2*J-4,J)=FM(I,I+2*J-6)-RM(I+2*J-6)/AZER3(I)

C CALCULATION OF VARIANCE AND STANDARD DEVIATION IN RADIAL BUCKLIN3
VARAT( I )=0.0
DO 36 J=1,4

36 VARAT(I)=VARAT(I)+C(I+2*J-4,J)*TRE(I+2*J-4,J)**2
VARAP(I)=O.0
DO 37 J=1,4

37 VARAP(I)=VARAP(I)+C(1+2*J-4,J)*EXPE(I+2*J-4,J)**2
GO TO 57

51 SUMNA(3)=C(3,2)*RM(1)**2+C(5,3)*RM(3)**2+C(7,4)*RM(5)**2
SUMDA(3)=C(3,2)*RM(1)*FM(3,1)+C(5,3)*RM(3)*FM(3,3)+C(7,4)*R4(5)*FM
1(3,5)
AZERO(3)=SUMNA(3)/SUMDA(3)
DO 52 J=2,4

52 TRE(I+2*J-4,J)=FMM(I,1+2*J-6)-FM(I,1+2*J-6)
DO 53 J=2,4

53 EXPE(I+2*J-4,J)=FM(I,I+2*J-6)-RM(I+2*J-6)/AZERO(3)
VARAT( 3)=0.0
DO 54 J=2,4

54 VARAT(3)=VARAT(3)+C(I+2*J-4,J)*TRE(I+2*J-4,J)**2
VARAP(3)=0.0
DO 55 J=2,4

55 VARAP(3)=VARAP(3)+C(I+2*J-4,J)*EXPE(1+2*J-4,J)**2
57 DEVAT(I)=SQRT(VARAT(I))

DEVAP(I)=SQRT(VARAP(I))

C CALCULATION OF VARIANCE AND STANDARD DEVIATION IN
C EXTRAPOLATED RADIUS

DEVRT(I)=1.2024*DEVAT(I)/ALPH(I)**3
DEVRP(I)=1.2024*DEVAP(I)/ALPH(I)**3



VARRT(I)=DEVRT(I)**2
VARRP(I)=DEVRP(I)**2
CALCULATION OF COMBINED ERRORS
AND EXTRAPOLATED RADIUS
CVARA(I)=VARAT(I)+VARAP(I)
CVARR(I)zVARRT(I)+VARRP(I)
CDEVA(I)=SQRT(CVARA(I))
CDEVR(I)=SQRT(CVARR(I))

71 CONTINUE
RETURN
END

IN RADIAL BUCKLING

A.3.4 Sample Input Deck

N5 11 0.9470 3.8100 1.50 7 2.1996

1.135600 1.121400 1.113100 1.046100 0.998070 0.909060

0.820020 0.707990 0.606440 0.487050 0.366530

C
C
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Appendix B

SIMPSON'S RULE FOR UNEQUAL INTERVALS

Suppose that we have an arbitrary function y=y(x). If we expand

the function around the point x=x. into a local power series, making

use of the method of central differences according to Stirling's formula

(L2,H10), we obtain

y(x.+t) = y(x ) +2 

2

6x 2 2
i x.

I

+ t 2(t2 -1)
24

64y

6x 4 x.
1

+

where the notation 6 stands for the central difference. The local area

under the curve y=y(x) for the second-order Simpson's rule is obtained

by truncating the higher order terms than the second in Eq. (B.1) (refer

to Figure B.1):

f i+1 y(x)dx=

i-1

fh i+1

hI

y(x +t) dt ~

+ h +
x.

I

f y x )+t
-h.

I

+ h+1

where

hi+1
2 /)- Y( xi -

h

2 /
1
li(hi+1 +h.)

2 yi+1 ~i-1)

(h + h.2 i+1 i

2
+ t(t -1)

6

3

6x

(B.1)

6y + t

Ix

} dt

6x 2

Sy
6x

X.
1

(B.2)

X.
I

and

(B. 3)

~- Y( i )(h i+1 +h )

2
+h 3 y

S6x2
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XN

DIAGRAM OF THE CURVE y = y(x)
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y(x +hi) - 2y(x )+ y(xhi-hi1)

(hi++h)2

Yi+1 - 2yi + yi~i .

(hi+h )21 + 2

Here, the notation yi y(x ) has been used for ease of writing.

Equation (B.2) then becomes

A y Y(h +hi+) + !-yi+1~yi-1)(hi+1-h )

(B.4)

+ yi+1-2yi+y
h+ - h. h. + h2
) + 1 ( h +h1 ) I i

i i+1
(B.5)

As a check, let us consider the case of equal intervals; setting

h = h = h, we obtain
i+1 i

(B.6)

which is the familiar Simpson's rule for equal intervals. The total area

under the given curve from x to xN is then

XN

A f y(x) dx
-x1

N11

2/

(N-1

i= 1

A 2i

+ 2i+1~72i-1)(h2i+1

h2 h h2
h2i+1-h2i+1h2i +2i)

+ y2i+1 2 y2i+y2i-1

(N-1)
(h2i+1 +h2i)

{w 2 i+l y 2 i-l+y2i+1]+w2iy2i} ,I
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1

}
i=1

(B.7)

-h2i)



331

where

7h2 - 4h h + h2
2i+1 2i 2i+1 2i

-h2 +10h h h2
2i+1 2i 2i+1 2i

(h 2i+h2i+1

We can rewrite Eq. (B.7) in the following form convenient for numerical

calculation:

A ~ [ w 3y 1 +w 2y 2 +wNyN]

(N-1) /2

+ 2
i=2

[(w2i+1+w2i-1) y2i- 1 +w 2 iy 2 i]. (B.10)

This is the second-order Simpson's rule for unequal intervals.

w2i+1

and

(B.8)

(B.9)w .i =
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Appendix C

A MOMENTS METHOD FOR PARALLELEPIPED ASSEMBLIES

In a rectangular-parallelepiped critical or subcritical assembly,

the flux distribution in one direction normal to the axis is given by a

cosine function:

(C.1)4(x) = A cos (B x) ,

where B is the corresponding buckling.
x

Define the flux moments as

(C.2)
On xO(x) dx

0

where a is the half width of the assembly. Substitution of Eq. (C.1)

into Eq. (C.2) yields, after integration, the expression for the nth flux

moment:

n
n = sin (B a) +

x

n-1
na cos (B a) -

B 2  x
x

n(n-1) 
n-2

Bx

(C.3)

The (n-1)th and (n+1)th flux moments are readily obtained:

n-i

On-1 - an-1 sin (B xa)
x

+ (n-1) n-2 cos (B a)
B

(n-1)(n-2) 
n

B2
x

(C.4)

n+ 1
On1=a -s in (B xa) +

x

(n+1) an cos (B a) - n(n+1) n
B 2  B

x x

and

(C.5)
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Eliminating sin (B a) and cos (B a) from Eqs. (C.3), (C.4) and (C.5), we

get
2

2 n(n+1) On-1 - 2an(n-1) 4n-2 + a (n-1)(n-2) 43n-3
Bn 2

x ~ 43n+1 + 2a43n - a 43n-1

n = 3, 4, 5,..., oo . (C.6)

The extrapolated size length is then obtained from the formula

(C.7)

B 2IRx

The best value of B2 is to be determined through an error analysis. To
x

this end, define the variance of the transverse buckling as

Cn+j-4 (64n+j-4 )2

( B2 2

n43 J j = 1, 2, 3, 4, 5 .

The calculation of 6 4n+j-4 is the same as that described in section 3.2.3.

2

B 2
x

=16B 12

5

j=1

where

(C.8)

C =n+j-4
(C.9)
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Appendix D

A FINITE DIFFERENCE METHOD FOR THE

EVALUATION OF BUCKLING VALUES

We have shown in Chapter II that the geometric buckling is, in

general, position-dependent but becomes independent of position when

the neutron flux becomes asymptotic. This leads to a way of determin-

ing the asymptotic bucklings through the geometric bucklings:

B 2 (Z) V2 Oz) ,(D. 1)
z 4(z)

and

B2(r) - 2 (D.2)
r 4(r)

We refer here to a subcritical assembly.

The evaluation of the second derivative is the central problem of

this method. There are several ways to do this: for example, the

central difference method, the forward difference method, and the back-

ward difference method (Cl). Experience has shown, however, that

values obtained by these methods are not quite accurate. We shall,

therefore, investigate a different method based on the least-squares

principle.

Suppose that a number of local experimental data can be repre-

sented by a theoretical curve of the form

A(x) = a + bx + cx2 , (D.3)

where the coefficients a, b, c are to be determined from the experi-

mental data by means of a least-squares technique. To this end,
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we form the difference

(AA)2 = [A (x)
j=-N

2-A.] (D.4)

Here we have chosen (2N+1) experimental data at equal spacings for

the evaluation of the geometric buckling:

A- A-(N- 1) ... , A_ , A., A 1 ,..., A N-i AN'

The notation A . stands for A(x+jh) with h being the spacing between

any two successive experimental data points. To determine the coef-

ficients a, b, c, we substitute Eq. (D.3) in Eq. (D.4) and then minimize

the difference (AA)2 with respect to a, b, and c:

(AA) _ 8(AA)2
aa - b

a (AA) - 0
a c'

(D. 5)

Solving the three equations simultaneously for the coefficient b, we

obtain

j=N
SjA.

j=-N J

N
2 1 j 2 h

j=1

(D.6)

at the central point x=O. Now, differentiating Eq. (D.3) with respect

to x, we obtain

dA(x) = b + 2cx
dx

so that

dA(x)
dx I x=O

(D.8)

(D.7)

= b .
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The derivative at the central point x=O is thus given by Eq. (D.6). To

evaluate the second derivative at x=O, we apply the same procedure

once more to the set of the first derivative. The following result is

readily obtained:

+N
Yjb

2 j=-N
V2A(x) x0= ,(D.9)x=O N

2 j 2 h

j=1

where b is given by Eq. (D.6). In the calculation of Eq. (D.9), the

choice of N is important. Although it is desirable to have a large

value of N from the standpoint of numerical calculation, we must also

consider the possible contamination of the experimental data near the

boundary by transient fluxes. An appropriate value of N is then N=2.

In this case, we obtain the result:

B(x) 0 2 [4A_ +4A-3 +A 2 -4A_ -10A -4A +A 2 +4A 3 +4A].
100h 1 2 3

(D.10)

Equation (D.10) has been used to calculate the values of the axial buck-

ling for several U-D 2 0 lattices at the M. I. T. Lattice Project. The

results are given in Table D.1 together with the values obtained by the

moments method (Chapter III) and the curve-fitting method. The agree-

ment among the three different methods is generally good.



Table D.1. Comparison of the calculation of axial bucklings from experimental data
by means of various methods for slightly enriched uranium-D 2 0 lattices.

Lattice AXIAL BUCKLING, y (pB)
Fuel Triangular Fuel Rod Run. Finite

Enrichment Spacing Diameter Number Difference Moments AXFIT
(%) (Inches) (Inch) Method Method Code

1.150 1.75 0.25 D2 1026 1006 1012

1.150 2.50 0.25 92 1385 1391 1390

1.150 1.25 0.25 81 1026 976 987

0.947 2.50 0.75 D8 1395 1389 1405

0.947 5.00 0.75 H9 225 254 260

0.947 5.00 0.75 J1 329 306 304

C~3
C.'3
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Appendix E

ERROR ANALYSIS FOR SECTION 4.6

Equation (4.121) gives the quantity

a -a B B - B EB7
( 1.8 671)

0 B4 B 7 B2B8

where the B. are given by Eqs. (4.93) through (4.100). The radial buck-
I

ling a2 is given by

a2 = a (1+x) , (E..2)
0

where

B 1 B 8 - B6 B 7
B B 7- B 28.(E.3)

By differentiation, we obtain

6a2 = (1+x)2 6a + 2a (1+x) 6x = 2a (1+x) 6x , (E.4)

where 6a ~ 0 when the iteration converges. The deviation 6x is readily
0

obtained as

B
86x = -b- 6B,

NB 8  NB 7  B 7
+ 2 B 2 - 2 6B 4 - 6B 6D D

+ 2 6B 7

(B1
+ D + NB

2 6B 8D2 8
(E.5)

where

N = (B B -B6B7) , (E.6)

and

D = (B4 B 7-B 28)

(B6
~ D 5

(E. 7)
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The 6B. are obtained from Eqs. (4.93) through (4.100) and are:

6B = - J (a R) 6 ,

6B = - F6 ,

5

6B2 = -H6-

B4 = #36~)

6B 6 = G 6 ()

6B 7 = - RI R) 6 ,

and

6B g6 . (E.8)

Here the deviations in the flux moments ratios are to be calculated by

means of Eqs. (4.64) and (4.65).

The probable error in the radial buckling is defined as

o- =|6a2 = a2|(1+x)|-6xj. (E.9)
a2 0

To compute the 60/, we need to know the normalization constant A r. It

can be determined by setting

dA = 0 (E.10)
r

to minimize the probable error. This leads to the following results:



(a1+a2+a5) Lth 2  2 2 ]2 +(a3+a 4+a6) [(ph)2 exp)2 2 2exp)2

(w h3
A-

r (a 1 +a2 +a5) (th 2  th exp) + (Lh) 2 (th exp) + (a3+a4+a 6) L h) 2  th exp) + (th) 2 (thexp)

( th 41) ( 3 L33 1 L th) 4 ( 3 R 55 3 3

(E.11)

where a B 8) 2 (aR)

0

a 2 = (N 8)
2 F 2

2

a 3 = H2

ag = B G 2

B 6 NB 2 2A
a5 = + 2 R) ,

a6 + 2
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Appendix F

AN ESTIMATE OF THE COEFFICIENT C

BY MEANS OF A LEAST-SQUARES TECHNIQUE

Suppose that the radial flux distribution is describable by the

function

0(r) = A[J0(ar)+ c 1 0 (or)]. (F.1)

We wish to estimate the coefficient c from experimental activation data.

A formal way would be to fit the data to the curve (F.1) with respect to

the four parameters A, a, c, and 0 independently by means of a least-

squares technique. This is difficult and inconsistent as we have

mentioned in section 4.6. We, therefore, assume that both a and P are

known from the two-group criticality equation and estimate the coef-

ficient c from a set of flux ratios to avoid the determination of the

normalization constant A. This is sufficient for the purpose of esti-

mating the initial value of c to begin the kind of iteration suggested in

section 4.6. The set of flux ratios is formed with the flux at or near

the center 49 as the basis: 4 /49 , j= 1,2,3, ... , N. To apply the

least-squares principle, we form the residual of the flux ratios:

N ~# ~~4 - 2
Ax = {- (F.2)

j=1 f o-- xp th.1

where the subscript exp denotes the experimental flux ratios and th

stands for the theoretical values. To determine c, set d(Ax) = 0 todc

minimize the residual. This leads to the following result:
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J (ar )
c 0 0)

o= (3ro)

N

-=
0* 00 (0r. J 0(ar~f 0F74.\

exp

N I (fr.) J9(ar.)

1 I(or0) ~ J(ar 0 ) Jj=1 t- -

0 (O3r.j)
SI (or )

I 0#r)

J (ar.)~

J(ar 0 )j
(F.3)

exp

where r is the radial position corresponding to the base flux 40,

r corresponds to the flux 4 .

and
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Appendix G

A NOTE ON THE MEASURE OF THE DEGREE OF FIT

OF THE ASYMPTOTIC FLUX DISTRIBUTIONS DERIVED FROM

EXPERIMENTAL DATA BY MEANS OF THE MOMENTS METHOD

In this appendix we shall compare the moments method and the

curve-fitting method in terms of the flux residual defined as

2 N 4exp) 2

(A4) =- w (4h i (G.1)
i=1

where the 4 h are the theoretical flux values, the 4 x are the experi-

mental activation data, A is a normalization constant to be determined,

and the w are a set of appropriate weighting factors. The value of the

flux residual, as defined in Eq. (G.1), is often used by experimenters

as a measure of "goodness of fit."

To determine the normalization constant A, we minimize the

flux residual with respect to A by setting

d (A)2 = 0 (G.2)

If we choose unity as the weighting factors, Eq. (G.2) leads to the

expression for A:

N 2

i= 1
A= (G.3)

N

z th 0exp
i= 1
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In the case of the axial flux distribution, the asymptotic theoreti-

cal flux values are given by

th = sinh (H-z , i = 1, 2, 3, . .. , N , (G.4)

2
where 72 is the axial buckling and H is the extrapolated height. For the

radial flux distribution, the corresponding theoretical flux values are:

th = J (ar.) , i = 1, 2, 3, .. . , N , (G.5)
1 0 1

where a2 is the radial buckling.

To compare the moments method and the curve-fitting method in

terms of the flux residual defined above, we chose from Chapters III

and IV a number of experimental runs for which the two methods

yielded significant differences in the values of the buckling. The

results obtained for the flux residuals in nineteen experimental

measurements of the axial buckling are given in Table G.1; those for

seventeen measurements of the radial buckling are given in Table G.2.

It is evident that in the case of the axial buckling the moments method

yields smaller values of the flux residual than does the curve-fitting

method for all the runs except J3 and 83. In the case of the radial

buckling, the moments method yields either comparable or larger

values of the flux residual than the curve-fitting method. This may be

due to the small number of data points available for the analysis for

radial flux traverses.

It may be advisable in the future to incorporate the calculation of

the flux residual into the ABMOMENT, RAMBLER, and RADBUCK

codes as an additional criterion for the choice of the moment index.



Table G.1. Comparison of the moments method and the curve-fitting method for the analysis
of the axial buckling and the extrapolated height in terms of the flux residual.

MOMENTS METHOD
Run 2 Flux

Number Resiua
(pB) (cm) Residua]

P9

R4

Q1

J3

H8

K4

K6

K1

92

Ml

M2

M4

83

62

35

27

58

47

44

For the lattice

1370

1360

1380

285

269

282

279

259

1391

34

21

18

954

916

1603

1622

1627

1622

1624

specifications

131.05

125.98

128.26

122.71

123.68

123.76

124.41

124.34

125.64

123.92

124.94

125.01

136.29

132.34

130.32

135.52

136.91

139.67

135.39

of these runs,

0.1310

0.2180

0.0896

0.0026

0.0007

0.0015

0.0031

0.0016

0.1072

0.0009

0.0001

0.0001

0.0767

0.0069

0.0864

0.3493

0.2010

0.0789

0.1892

refer to

CURVE-FITTING METHOD
2 T1

(pB)

1382

1387

1332

310

288

250

300

298

1390

65

35

45

947

925

1623

1640

1633

1629

1639

Tables 3.3 through 3.7.

(cm)

135.30

127.30

131.60

121.90

125.80

123.60

126.20

125.40

127.90

126.30

126.60

126.50

134.70

133.50

139.30

138.50

141.90

142.40

138.00

Residual

0.2210

0.2250

0.1420

0.0024

0.0012

0.0017

0.0035

0.0041

0.1278

0.0031

0.0003

0.0009

0.0682

0.0100

0.2460

0.5590

0.3210

0.1184

0.2601



Table G.2. Comparison of the moments method and the curve-fitting method for
the analysis of the radial buckling in terms of the flux residual.

Moments Method Curve-Fitting Method

Run 2 Flux 2 Flux
Number a Residual a Residual

(pB) (pB)

N7 2426 0.00071 2382 0.00050

P6 2425 0.00092 2374 0.00051

N3 2415 0.00017 2364 0.00015

PO 2389 0.00017 2335 0.00035

K9 1467 0.00255 1399 0.00150

L8 1426 0.00061 1388 0.00041

L5 1436 0.00033 1412 0.00031

I 1 1437 0.00038 1394 0.00017

J2 1432 0.00046 1387 0.00013

H7 1435 0.00073 1396 0.00032

Q9 2605 0.00095 2446 0.00011

R6 2606 0.00070 2473 0.00015

11 2324 0.00131 2255 0.00180

86 2562 0.00029 2531 0.00034

82 2528 0.00300 2504 0.00323

69 2439 0.00075 2342 0.00026

31 2365 0.00033 2305 0.00032

For the lattice specifications of these runs, refer to Tables 4.1 through 4.11.
C~3
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ERRATA

Page Correction

90 In Eq. (3.46) change n+j-r to n+j-4

127 In Eq. (4.20) change a 2(z) to a2 (2)

136 Line 6: Change 0 2 to a2a a

144 Abscissa title of Fig. 4.4: change R to r/R

153 In Eq. (4.114) change 0 to B on right-hand side of

equation (twice)

213 In the denominator of Eq. (5.17) enclose all terms

following,R2 in brackets

246 In the last term of Eq. (6.9) replace 0 by Ouc

256 In Eq. (6.46) enclose the last three terms, begin-

ning with - ... , in brackets

264 In Eq. (6.84) precede the term on the second line

by +

284 In Eq. (6.137) replace C by c (three times)

286 In the last line on the page, replace Ia1 l2 by a2

289 On line 9 enclose all terms following A1 in brackets


