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ABSTRACT

The nuclear parameters of a reactor lattice may be determined by
critical experiments on that lattice, by theoretical calculations in which
only cross sections are used as input, or by methods which combine
theory and experiment. Of those methods which combine theory and
experiment, the Single Element Method, abbreviated SEM, is shown to
have great usefulness. As used here, the method combines experiments
on the smallest meaningful unit of fuel - a single fuel element - with a
theory which relates the behavior of a lattice of such elements to the
experimentally determined behavior of the single element. This par-
ticular division of the problem into theory and experiment is useful for
at least three reasons.

First, several parameters which characterize a reactor lattice -
the thermal utilization and resonance escape probability, for example -
often depend strongly and in a complicated manner on the properties of
individual fuel elements, but only depend weakly or in a simple manner
on interactions between the fuel elements. In the Single Element
Method, the largest contribution to these parameters is determined by
measurements on a single fuel element, and only a relatively small
correction to account for the presence of the rest of the fuel elements
need be estimated theoretically. Second, the determination of lattice
parameters in this way represents a desirable saving of time, money,
effort, and material over their determination in critical or exponential
experiments. Third, it is shown that the method provides an excellent
way of correlating the results of experimental measurements, since it
shows what pertinent variables must be used to express the quantity of
interest in a linear or nearly linear fashion.

Values obtained by the SEM for the thermal utilization of lattices
of uranium rods in heavy water are accurate to about 0.3 percent (by
comparison with THERMOS). Values of P28, 628, and C* are obtained
by the SEM for the same lattices to an accuracy of between five and ten
percent (by comparison with experiment). The same method yields
values of 628 with are equally accurate in lattices moderated by light
water. In addition, the theoretical development of the SEM predicts
that P28, 628, C*, and 625 should vary nearly linearly with the inverse
of the unit cell volume (for a fixed size of fuel element). This explains
the experimentally observed behavior and provides an important tool
for the rational correlation of experimental results.
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Chapter I

INTRODUCTION

1.1 THE M.I.T. HEAVY WATER LATTICE PROJECT

1.1.1 Purposes

The Nuclear Engineering Department at M.I.T., under the

sponsorship of the United States Atomic Energy Commission, operates

the Heavy Water Lattice Project for research on the physics of D2 0

moderated reactors. Purposes of the Project are to obtain accurate

measurements of important reactor parameters, to develop additional

theoretical and experimental techniques for solving problems in reactor

physics, and to use the measurements as benchmarks for testing the

new techniques. Published reports which emphasize the careful

measurement of standard reactor parameters are references B1, D1,

P1, S1, W1 and W2; published reports which emphasize the develop-

ment and testing of new techniques are references B2, H1, M1, P2, S2

and W3.

1.1.2 Scope of the Available Results

A large number of consistently measured data have been obtained

on lattices of natural or slightly enriched uranium metal rods in heavy

water. Table 1.1 gives the detailed specifications of these lattices.

This large number of consistently measured data provides an ideal

means for testing new analytical methods, which are desirable both for

correlating the data more efficiently and for permitting accurate interpo-

lation and extrapolation of the data to new lattice configurations. The

search for better analytical techniques has led to the Single Element

Method of interpreting lattice experiments. This interpretation has been

found to provide a clarifying principle which not only facilitates interpo-

lation and extrapolation but also suggests new experiments and new cal-

culational techniques.
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Table 1.1

Uranium Metal Lattices Studied in the

Heavy Water Exponential Assembly at M. I. T.

Concentration
of U-235 Fuel Thickness

in Fuel Rod Diameter Spacing of Al Clad

(Wt. %) (Inches) (Inches) (Inches)

0.711 0.998 4.50 0.028

5.00

5.75

1.027 0.250 1.25 0.028

1.75

2.50

1.143 0.250 1.25 0.028

1.75

2.50

0.947 0.750 2.50 0.028

3.50

5.00
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1.2 THE SINGLE ELEMENT METHOD IN REACTOR PHYSICS

1.2.1 Theoretical Basis

The neutron balance in a system in steady state may be expressed

in several different ways. These methods are equivalent in the sense

that each one accounts for all the neutrons, but they differ in the particu-

lar manner by which the neutrons are enumerated. The balance is often

made on the basis of where in space the neutrons are absorbed, or at

what energy they are absorbed, or in what nuclide they are absorbed.

The single element method enumerates neutrons according to their

place of origin (in space).

In order to compute the neutron balance in this way, a "tool" is

needed - the kernel that gives the flux or reaction rate as a function of

position around a source localized in space. Since reactor lattices are

assembled from fuel elements, it is convenient to use the complete

single fuel element (rather than some small piece of it) as the basic

localized source. The fuel elements used in the experiments reported

here were cylindrical metal rods, but the principles enunciated here

apply equally well to fuel elements of any shape or structure. This

includes fuel elements which consist of individual, homogeneous fuel

rods, fuel elements which consist of clusters of fuel rods surrounded

by coolant or supporting structural material, and fuel elements which

consist of successive annuli or layers of fuel with coolant in the inter-

vening channels. Although the name, "Single Rod Method," might be

more descriptive of the applications reported here, the name, "Single

Element Method," abbreviated SEM, will be used to emphasize the gener-

ality of the method. When the SEM is used, the total flux or reaction

rate at any point in a uniform lattice of such elements is then calculated

by adding up the values of the kernels appropriate to each of the fuel

elements in the system.

A remarkable property of this method, and the reason why the

SEM is useful, is that for a uniform lattice, a detailed knowledge of the

kernel is frequently unnecessary. It will be shown in Chapter II that in

many cases of practical interest, those neutrons which originate "far

enough" away from a particular unit cell result in a net flux (or reaction
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rate) which may be regarded as constant across the cell. The profile of

the total flux (or reaction rate) across the cell is then the sum of this

constant "background" arising from these "distantI neutron sources,

plus one or more rapidly varying terms which represent neutrons

originating in nearby fuel elements. Sometimes the unit cell of interest

is, itself, "far enough" away from other localized sources so that the

total flux (or reaction rate) is essentially constant throughout the cell.

A case frequently found is that in which all fuel elements outside the

unit cell of interest are "far enough" away. In this case, the total flux

(or reaction rate) consists of the "single element" component, whose

magnitude varies throughout the unit cell, and the "lattice" component,

which originates from all other fuel elements in the system and whose

magnitude is essentially constant across the unit cell.

Chapter II will be devoted to a theoretical study showing under

what conditions the flux (or reaction rate) is sufficiently uniform across

a unit cell, as well as how the relationship between the magnitudes of

the uniform background and the single element term may be quanti-

tatively evaluated. Neither the total reaction rate nor its lattice com-

ponent is ever exactly constant throughout a unit cell, so a means of

estimating an upper bound on the deviation from absolute constancy

will be given in Chapter II. It will be shown that in many practical cases

this deviation is less than one percent. Chapter III will explain the

experimental techniques used to measure single element kernels and

related parameters. Chapters IV, V, and VI show how these theoretical

and experimental techniques facilitate the study of reactor physics in

the various regions of neutron energy, including the thermal, resonance,

and fast energy regions. Chapter VII contains a summary of the results

obtained thus far and a list of possible further applications.

1.2.2 Applicability to Various Kinds of Reactors

The theory which has been outlined here could reasonably be

expected to apply to graphite or heavy water moderated lattices, for

which kernels are easily defined because the volume fraction of fuel in

such lattices is small and the reactor consists mostly of moderator.

In lattices moderated by light water, one might expect difficulties
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because the kernel is a strong function of the amount of fuel present.

Nevertheless, the available experimental data indicate that the con-

ceptual separation of effects into "single element" and "lattice" com-

ponents appears to remain valid in most cases. Even though the Single

Element Method may not be adequate for quantitative calculational

purposes in these cases, the qualitative trends predicted by the theory

are still observed. This property offers important aid in the interpre-

tation and presentation of data, as will be shown in Chapter V.

1.2.3 Advantages of the Single Element Method

(1) The Single Element Method permits survey measurements on

new types of fuel to be made with only one fuel element. This repre-

sents a desirable saving of money and material. Measurement of the

kernel around the single fuel element provides a partial check on any

purely theoretical computations which may have been made for the new

element. In theory, at least, measurements using a single fuel element

should be sufficient to establish its behavior in a lattice of any geometry

and size.

(2) The Single Element Method provides an excellent way of corre-

lating the results of experimental measurements. The method shows

what pertinent variables must be used to express the quantity of interest

as a linear or nearly linear function. Further, when the data are pre-

sented in an organized manner amenable to analytic representation, it

should be possible to check their consistency and to reduce the error

attributable to any point.

(3) The use of the Single Element Method results in a theory which

enhances intuitive understanding. It is particularly valuable in studying

the dependence of lattice parameters on the spacing between fuel ele-

ments and on the number of fuel elements in the system. These are just

the areas where the conventional Wigner-Seitz formulation is least

amenable to physical intuition, since few people have an intuitive "feel"

for how the solution to a differential equation changes as the boundary

conditions or domain of definition vary.
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(4) The Single Element Method is applicable to lattices composed

of clusters of fuel rods as well as to those consisting of individual fuel

rods. If the kernel which characterizes each fuel element is determined

experimentally, then the detailed structure of an element causes no

concern. For theoretical purposes, the SEM can be used to establish

the behavior of a single fuel element from the behavior of the individual

fuel rods which comprise it. The behavior of a lattice of such clustered

fuel elements can then be established by applying the SEM once more,

using these composite fuel elements as the basic sources.

(5) The extent to which experimental results and results calcu-

lated by means of complicated theoretical models deviate from the

simple trends predicted by the Single Element Method shows when more

complex effects are important and when they can be ignored.

(6) The Single Element Method is applicable to nonuniform arrays

of fuel elements. In this case, the addition of the kernels can be per-

formed to find the total contribution from all fuel elements in the system.

This is a case which is very difficult to handle using the Wigner-Seitz

formalism.

1.2.4 Previous Work

Other investigators have published both theoretical and experi-

mental studies of the relationships between single fuel elements and

lattices. Where this work is directly pertinent, it is referenced spe-

cifically in the text and listed in Appendix G. A selected bibliography

of other background material in this area. is listed in Appendix I

together with a short commentary.
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Chapter 11

DISCRETE SOURCE REPRESENTATION

AND THE POISSON SUMMATION

2.1 INTRODUCTION

The transport of neutrons within a material medium may be cal-

culated by either of two methods (W7). The method used more often is

based on the treatment of problems in solid state physics by Wigner and

Seitz (W17). The neutron distribution within a particular region is cal-

culated by solving an appropriate equation within that region, with

appropriate definition of the source within the region and with appropri-

ate conditions on the neutron density at the boundaries of the region. In

the alternative discrete source technique of Galanin (G2), the neutron

distribution within a particular region is calculated as the sum of the

appropriate neutron distributions in that region arising from each of the

sources in the entire system. Both methods require some prior know-

ledge of neutron transport in the medium as a whole. The need for this

information is implicit in the word "appropriate" which has been used in

describing the two methods: the Wigner-Seitz technique requires that

the boundary conditions at the edge of the region and the source distri-

bution within the region be known; the discrete source technique requires

that the kernels giving the neutron distribution from each of the individual

sources be known.

The Wigner-Seitz technique has the advantage that in certain rela-

tively simple cases, the source distribution and boundary conditions can

be obtained from the principles of symmetry and neutron conservation

without reference to the material properties of the medium. Con-

versely, its disadvantage lies in the difficulty of formulating correct

source and boundary conditions for cases other than these simple ones.

The method of discrete source representation has the advantage

of being applicable to arbitrarily spaced arrays of sources, and the dis-

advantage that kernels for finite, heterogeneous systems are not always
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easy to define. In many problems of practical interest, these diffi-

culties can be overcome by a reasonable approximation (G2) which will be

explained in the next section. When this is so, the discrete source

technique is applicable to a wider variety of problems than is the

Wigner-Seitz technique, which is limited for practical purposes to

large assemblies of identical fuel elements. A link between the

Wigner-Seitz and discrete source methods is provided by the Poisson

summation formula (M2). The use of this formula makes it possible to

examine the adequacy of the usual Wigner-Seitz assumption of a uni-

form source throughout the unit cells in an infinite array. Such an

investigation has been carried out previously (G2) for the particular

case in which the age theory kernel describes the slowing-down pro-

cess, but in the following analysis the exact form of the kernel will be

left unspecified.

In this chapter, it will be shown with the aid of the Poisson sum-

mation formula that a sufficient condition for a reaction rate to be

effectively constant across a unit cell (in a uniform, infinite array) is

that the magnitude of the kernel which describes the reaction rate

around a single fuel element must nowhere experience a large fractional

change within a distance equal to the spacing between fuel rods. It will

also be shown that even when this condition is not satisfied, the reaction

rate of neutrons originating "far enough" away from the cell of interest

is nevertheless nearly constant across this cell. These two conclusions

will be the basis of the methods used in Chapters IV, V, and VI for the

prediction of lattice parameters from measurements on a single fuel

element, and will make it possible to present the results of measure-

ments in lattices in a parametric form which is both convenient and

heuristically useful.

2.2. THEORY

2.2.1 The Method of Discrete Source Representation

Consider a bare, finite reactor system (critical or subcritical)

consisting of a uniform array of identical fuel elements distributed

throughout an otherwise homogeneous medium. The reaction rate within

a unit cell will be calculated from the relative macroscopic source
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distribution, S(r), in the fuel elements. Let Q'(, ri, E) be the kernel

giving the reaction rate at energy E and position r per source neutron

at r. This kernel depends on the vectors r and r. as well as on the

location of the extrapolated boundaries of the system, where both the

flux and reaction rate are assumed to vanish. This dependence arises

because the probability of a neutron leaking out of the medium before

undergoing the desired reaction depends upon how close to the boundary

the neutron originates and upon how close to the boundary it is expected

to undergo the reaction. Not only is there a paucity of experimental

information on such finite-medium kernels, but its vector dependence

makes Q' difficult to handle mathematically. In order to obtain a more

tractable form, we make a reasonable assumption.

Assumption. The finite-medium kernel Q' may be replaced by

the infinite-medium kernel Q( [ -r , E) if the summation over

the sources is extended over all space by means of the analytic

continuation of the source distribution existing within the actual

system.

The infinite-medium kernel Q depends on the scalar distance between

the source and field points because neither direction nor absolute

location has any significance in a uniform, infinite medium. The

infinite-medium kernel is, by definition, independent of the positions

of any boundaries of the system. It is known (W7) that the assumption

is rigorously correct if the equation describing the neutron transport

is of the parabolic type as is the age equation. For other types of

equations, such as the more rigorous Boltzmann equation, the use of

the assumption is apparently (W7) an approximation but one which is,

nevertheless, reasonable on physical grounds. The total reaction rate

R(r) at point r is:

R(r) = Q'( , rE ), (2.1)
i=1

where N is the number of fuel elements in the system. By the assump-

tion, this expression may be replaced by a sum over Q:
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oo

R(r) = Q( I- 1 , E) S~r ). (2.2)

Because the fuel elements are uniformly spaced and the array extends

to infinity (through the assumption), Eq. 2.2 is most easily evaluated by

means of Poisson's summation formula after the appropriate kernel Q
has been determined.

2.2.2 Kernels for Use with the Method of Discrete Source Representation

The discrete source method, as presented in Eq. 2.1, may be

applied to any problem in neutron transport, but only when kernels for

the particular problem are known to sufficient accuracy can it be used

for purposes of computation. A rigorous determination of the kernels

demands, in effect, a solution to the whole problem: in calculating the

kernels, one must be careful to exclude from the reaction rate at point

j those neutrons which would have reached point j from point k, had they

not already been removed at point k; thus, the true reaction rate at any

point cannot be calculated until the reaction rate at neighboring points is

known. This difficulty is not serious in problems where there are no

strong, localized sinks of neutrons. Under these conditions, the cor-

rections necessary to account for the removal of neutrons at neighboring

points become small perturbations. These conditions are well satisfied

in the high-energy and slowing-down regions of most reactors. The

cross sections in these cases are small enough so that only a small

fraction of the source neutrons is removed at any one position or energy.

Furthermore, neutrons at energies far below the source energy will

have made many collisions, so it is frequently adequate to homogenize

the lattice when calculating the kernel. This does not imply that the

neutron density is uniform, as it would be in an infinite, homogeneous

medium, but only that the medium can be treated as homogeneous for the

purpose of calculating the neutron distribution around a single, localized

source.

When the problem does not involve strong, localized sinks of

neutrons, most kernels have the general shape shown in Fig. 2.1.A.

They decrease monotonically to zero. Such kernels include the first
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collision kernel and those of age theory, one-group diffusion theory,

and multigroup diffusion theory. If energy regions having strong, local-

ized absorption were to be treated, the kernels would not have this

property but would be more like the one in Fig. 2.1.B, which shows a

possible kernel representing absorption at thermal energies around a

single source rod. The nature of this kernel depends strongly on the

positions of the neighboring fuel rods, since these determine the loca-

tions of the absorption peaks in the kernel.

This report will be concerned only with kernels which decrease

monotonically and which describe a reaction or reactions undergone by

all the neutrons, so that in an infinite system no neutrons are lost by

other processes. Such reactions might be called removal reactions, in

general. Besides actual removal or slowing down out of an energy group,

they include absorption and first collision reactions. The application of

the SEM to problems involving strong, localized absorption may be

possible if these positions of strong absorption are thought of as nega-

tive sources. Thus, control rods might be treated by this method.

Such problems will not be considered as within the scope of the present

work.

2.2.3 Application of the Poisson Summation to the Method of Discrete

Source Representation

Poisson's summation formula relates the sum of the values of a

function at an infinite number of equally spaced arguments to a sum

over the Fourier transform of the function. It will be used here to

demonstrate that when the macroscopic source distribution S is the

same in all fuel elements and is normalized to unity, the reaction rate

of Eq. 2.2 may be expressed in the form:

R(r) = V- {F + correction terms}, (2.3)
c

where F is the integral of the kernel over all space and Vc is the volume

of a unit cell.

The basic formula expressing the Poisson summation, applied to

a function of one variable, f(x), is (M2):
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f00)= 00 00
f(am)_

M=-oo pA=-oo -o)

dx e a f(x). (2.4)

For a function of two variables, this becomes:

f(am, On) = 1
ap A=-o 10v=-o -o 0f0

00 27ri +

dx f dy e a (xy)
-00

(2.5)

In practice, f is the kernel K representing, in cylindrical geome-

try, the flux or reaction rate around a line or finite source in an infinite

medium. Consider now the case in which the fuel elements are arranged

in an array of parallelograms. This is only a slight restriction since it

includes square, rectangular, and triangular spacings as special cases.

Take coordinates x and y along two adjacent sides of the parallelogram

as in Fig. 2.2. In an infinite medium, the total reaction rate R at the

field point X, Y is:

R(X, Y) = I Z K ((X-xm)2 + (Y-yn) 2 - 2(X-xm-)(Yyn) cos 6.
m n

(2.6)

Equation 2.6 may be put into a form suitable for Poisson summation by

writing for the source points:

xm = am, (2.7)

(2.8)= bn,

and for the field points:

X = aM,

Y = bN,

(2.9)

(2.10)

where m and n are integers because the source has the periodicity of

the lattice, but M and N may be nonintegral. Here, a and b are the

lengths of the two sides of the parallelogram (i.e., the lattice spacing

in the two directions). In these terms:

m=00 n0

yn
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R(X, Y) = K ( a2(M -m)2+ b 2 (N -n) 2 - 2ab(M-m)(N-n) cos 0 ,

(2.11)

which becomes by means of Poisson summation:

p- 00 00
R(X, Y) = dx f

00 27ri +
a b)

dy e
-00

.K ((Xx)2 +(Y)2 - 2(X-x)(Y-y) cos 0 ). (2.12)

The term with both indices equal to zero may be extracted from the

summation, giving:

R(X, Y) =
1f

0 0
-oo

00

dx f_ dy K (!(X-x) 2 + (Y) 2 - 2(X-x)(Y-y)cos 0)

00 00 00 00 2 7ri +
+ I f dx f dy e

P=-oo v=-00 -00 -00

- K (/(X-x)2 + (Y-y) 2 - 2(X-x)(Y-y) cos )$, (2.13)

where primed summations omit the term with both indices zero.

The kernel is ordinarily normalized so that its integral over all

space is a known number, F:

dAK ((X-x)2 +(Y)2 - 2(X-x)(Y-y) cos 0 = F. (2.14)
all
space

The element of area in this coordinate system is (as may be seen from

Fig. 2.2):

dA = dx dy sin 0, (2.15)

where & is a constant as far as the integrations are concerned. The

kernel normalization integral may thus be rewritten as:

dxf dy K (X-x)2 +(Y) 2 - 2(X-x)(Y-y) cos ) F
sin 0

(2.16)

f,
00

m=-oo n=-o

r.-I ev %
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which, upon substitution into Eq. 2.13, leads to:

00~ 00~ 00 00

R(X, Y) = ab sin F + sin Z dx dy
y=o00 v=-0 -oo -00

2 7ri P+ v

e a ---b(+ ) K (Xx)2 (Y)2 - 2(X-x)(Y-y) cos 0

(2,17)

It is evident from Fig. 2.2 that ab sin 0 is the area of the parallelogram

which is also the area of a unit cell. In a three-dimensional system

with no axial dependence, this is also the volume per unit height Vc of

a unit cell, so that:

R 1F + additional terms}. (2.18)
c

To determine when the additional terms are important, one notes from

Eq. 2.17 that each correction term consists of the integral of the product

of a sinusoid (the exponential) with a positive, monotonically decreasing

function (the kernel). The magnitude of the sinusoid is never greater

than unity, so that the magnitude of each correction term cannot exceed

that of the major term. Further, since the sinusoid is alternately posi-

tive and negative by equal amounts, the integral will tend to vanish

unless the kernel changes magnitude significantly in one period of the

sinusoid. But the periods are precisely fractions of the length of a unit

cell. The largest periods occur when y and v are unity and are equal to

a or b. Thus:

If the kernel nowhere experiences a large fractional change in

magnitude over a distance equal to the maximum dimension of

a unit cell, the additional correction terms are negligible and

the reaction rate is therefore effectively constant within each

unit c ell.

This generalizes the result of Galanin (G2), that the slowing-down

density calculated from the age theory kernel is effectively constant

within any unit cell in a lattice whose spacing is much smaller than 27r

times the slowing-down length. The requirement that the slowing-down
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length be much larger than the lattice spacing is a special case of our

condition that the magnitude of the kernel experience only a small

change within any unit cell. As long as the kernel satisfies this con-

dition, the slowing-down density (or reaction rate) is not only effectively

constant throughout any unit cell but is also independent of the shape of

the kernel in space; the first term in Eq. 2.17 depends on the kernel

through the term F which is the integral of the kernel over all space.

When the condition on the kernel is not satisfied, higher terms in

Eq. 2.17 become important and it is only in these higher terms that the

shape of the kernel has any influence.

2.2.4 Estimation of the Error Incurred by Using Only the First Term

in the Poisson Summation

Because the terms in the Poisson summation decrease in magni-

tude rapidly, the error incurred by using only the first (the constant)

term of the summation may be estimated by evaluating the second term.

For convenience, we shall use a one-dimensional lattice with spacing

L. The integration over all space can be rigorously broken up into inte-

grations over individual unit cells. The correction term C(X), which

depends upon the field point X, is then, from Eq. 2.17:

oo (p+1)L/2 2
C(X) = 2 0 J cos 2 K(x-X) dx. (2.19)

p=o pL/

Over each unit cell except the first, K(x-X) is a monotonically decreas-

ing function and may be approximated by a straight line. Within the first

unit cell, K(x-X) is not monotonic and must be approximated by two dif-

ferent straight lines, of the form K(x-X) = cx+d, as shown in Fig. 2.3.

But when c and d are constants:

(p+1)L/2

cos [ cx+d ] dx 0, (2.20)
pL/2

and thus the sole contribution to the correction term arises from the

integration over the first unit cell. Within this cell:

K(x-X)=K(X) + (x-X)I(K')I, x < X, (2.21)

K(x-X)zK(X) - (x-X)I(K')|, x > X2, (2.22)
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where (K') is the average value of the slope of the kernel K over half a

cell's distance from its peak. Then:

X
C(X) = f [K(X)+(x-X)j(K') ] cos 2 dx

-L/2

L/2
+ f [K(X)-(x-X)I(K')I] cos

X

2 rx dx,
L (2.23)

C(X) = I(K') I
X

f
-L/2

dx (x-X) cos 2irx+ I(K') I
L

+L/2

X
dx(X-x) cos ,

L

(2.24)

C(X) = + cos 27X] IK') I

C(X) L 2 I(K') I.

The first (constant) term in the Poisson summation is given by:

f K(x-X) dx < f
-00 -L/2

K(x-X) dx = L(K),

where (K) is the average value of K over the first unit cell. Thus, the

maximum fractional error incurred by using only the first term in the

summation is:

Maximum fractional error (L) 2 I K)
L (K)j

Maximum fractional error -1 (LK')
7r (K)

(2.28)

(2.29)

The ratio (LK')/(K) is the fractional change which occurs in K within

the unit cell surrounding the origin. The error is then smaller than

1/7r2 times this fractional change in the kernel.

(2.25)

(2.26)

(2.27)
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2.2.5 The Use of a Modified Kernel in the Poisson Summation

In some kernels this fractional change is not small, so that a

significant error may be incurred by using only the first, constant

term in the Poisson summation. In particular, high energy neutrons

are closer on the average to their place of origin than are low energy

neutrons, so that kernels relating to high energy neutrons may exhibit

sufficient peaking in space to cause a large error if only the first term

in the Poisson summation is used. In many cases, however, a modi-

fied kernel can be defined which does satisfy the necessary conditions

and which will be shown to have physical significance.

The crucial condition required for the success of this procedure

is that the kernel should decrease monotonically to zero with increas-

ing distance from the source. If this is true, its rate of change also

decreases monotonically to zero. Consider, for simplicity, an infinite,

one-dimensional, uniform lattice with fuel spacing L, and let Fig. 2.4

represent the kernel, K, which describes the reaction rate of neutrons

originating in a single fuel slab in this system.

The total reaction rate at a point xo, within the cell at the origin,

is the sum of the reaction rates of neutrons which reach this position

after originating in the fuel slabs at x 0 , L ± xo, 2L ± x 0 , . . . . To

evaluate the total reaction rate at the point x 0 , we add the values of the

kernel at the points x0 , L ± x , 2L ± x 0 , . . . , as indicated in Fig. 2.4.

Were Poisson summation used directly to evaluate this sum, more than

one term in the Poisson summation would be needed, since K clearly

exhibits a large fractional change in magnitude within the cell at the

origin. The use of several terms is a valid procedure, but it is diffi-

cult to calculate higher terms analytically or to assign any physical

significance to individual terms beyond the first.

These complications are avoided by defining, as shown in Fig. 2.5,

a modified kernel K 1 which is identical with K everywhere outside the

unit cell at the origin but is zero within this cell:

K (x) K(x), Ixj > L/2, (2.30)

K 1 (x) 0, 
(
(2.31)|xj < L/2 .
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Summing the values of K at the same points as before,

(x 0 , L ± x 0 , 2L ± x 0 , . . . ) is now equivalent to calculating the reaction

rate at x , due to neutrons originating in all fuel elements except the

one at the origin. The use of K 1 in Eq. 2.1 thus provides the contri-

bution of all neutrons not produced in the closest fuel element. In par-

ticular, if x 0 coincides with a fuel element position, K, gives the con-

tribution from all fuel elements except that one. This contribution is

sometimes known as the interaction contribution. Because K 1 is

designed specifically to eliminate the rapidly changing part of the

kernel, the sum over K is adequately represented by the first term

in the Poisson summation of K 1. (The abrupt change in K1 where it

drops to zero is permissible because it occurs exactly on the cell

boundary.)

To obtain the total reaction rate at x0, it is necessary to add to

the interaction component the contribution arising from neutrons pro-

duced in the fuel element at the origin - that is, at the fuel element

closest to x 0 . This contribution was omitted from the sum when part

of K was set equal to zero to obtain K Thus, in general:

R(r) = single element contribution + interaction contribution,

(2.32)

and by Poisson summation:

-- 0- F
R(r) = single element contribution + , (2.33)

c

where F1 is the integral of the kernel K 1 over all space or, alterna-

tively, the integral of K over all space outside the cell under consider-

ation. Since

0 < K 1 (x) < K(x), (2.34)

for all x, it follows that:

Fy 1 F . (2.35)

The reaction rate, R(r), defined by Eq. 2.33 is not constant throughout

a unit cell because the single element contribution varies considerably

within a cell, but the interaction contribution to R(r) is constant over

__ __ _.jL
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any unit cell in an infinite system. If the system is finite, the single

element contribution is unchanged; but the interaction contribution

must be multiplied by P, the nonleakage probability between fission

energies and the energy considered, for the macroscopic source mode

used:

F P
1

R(r) = single element contribution + V . (2.36)
c

Equation 2.33 may also be derived from heuristic considerations.

Such a derivation has been carried out approximately in a study of the

fast fission effect by Driscoll (D2). Driscoll divides the neutrons in a

particular fuel element into those originating within that element and

those originating elsewhere. Since the latter neutrons originate at so

many different positions, it is not unreasonable to assume that vari-

ations in their density across the cell of interest average to zero, so

that their density is constant over the cell. The reaction rate of these

neutrons is thus proportional to 1/Vc per source neutron; the constant

of proportionality can be determined from the requirement that, for an

infinite lattice, the total reaction rate within the cell must equal the

total source per fuel element. Thus:

total source reaction rate of neutrons
per = F 1 + f produced in the fuel (2.37)

fuel element_ cell element in the cell

But since there is no leakage, neutron conservation requires:

total source
per K, (2.38)

fuel element all
space

and, by the definition of K:

reaction rate of neutrons

f produced in the fuel ]f K , (2.39)
cell element in the cell cell

so that:
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F =f K - f K =f K (2.40)
all cell all
space space

which is identical with the definition of F, given previously.

The kernel K, although decreasing monotonically to zero, may in

some cases exhibit large changes in magnitude within a region that

includes not only the unit cell at the origin but also a number of sur-

rounding unit cells. In these cases, K 1 should be defined by setting K

to zero over all these unit cells. In effect, this may be considered a

redefinition of the unit cell size in the lattice. The modified kernel

represents the contribution of neutrons originating outside this region,

just as the sum over the kernel shown in Fig. 2.5 represents the con-

tribution made to the reaction rate in the fuel element at the origin by

neutrons originating outside the unit cell at the origin.

2.3 GENERAL RESULTS

The results of this analysis and the conditions under which they

are valid are collected here for convenience. Consider a system large

enough so that the use of the infinite medium kernel is justified. Let

K be the kernel describing the reaction rate of neutrons produced in a

particular fuel element when the system is infinite. Let P be the non-

leakage probability, from fission to the energy considered, for the

actual system.

Theorem A: If the magnitude of K never experiences a large

fractional change over a distance equal to the lattice spacing:

R(r) = . (2.41)
c

Theorem B: If K does experience a large fractional change

within a distance equal to the lattice spacing but nevertheless

decreases monotonically to zero, then:

F P
R(r) = single element components + V (2.42)

c
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The quantities F and F are the integrals of the kernel K, and the modi-

fied kernel K, over all space:

F =f K, (2.43)
all
space

F= f Ki , (2.44)
all
space

where K 1 is zero within those unit cells in which K experiences a large

fractional change in magnitude and is identical to K in all other unit cells.
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Chapter III

EXPERIMENTAL METHODS

3.1 THE M.I.T. LATTICE FACILITY

The M. I. T. Lattice Facility is a shielded, experimental exponen-

tial facility, funded by the Atomic Energy Commission and supplied

neutrons by the M. I. T. Reactor. Only the main features will be

explained here because the details of the assembly and of its supporting

equipment have been amply described in several published reports

(T1, M3, P1). The assembly consists of a cylindrical, aluminum tank

which may be filled with heavy water and into which any number of fuel

rods, up to a complete subcritical reactor lattice, may be inserted

(Fig. 3.1). Two such tanks, three and four feet in diameter, are pre-

sently available. The exponential assembly is fed from the bottom by

neutrons which originate in the M.I. T. Reactor, pass through its hori-

zontal thermal column, and thence into a graphite-lined cavity or

"hohlraum" beneath the exponential tank, as shown in Fig. 3.2. The

cavity serves both to direct the horizontal current of neutrons upward

into the exponential tank and to assure that the energy spectrum of the

source neutrons is highly thermal. In the hohlraum, the measured

cadmium ratio of gold is between 3, 000 and 4, 000 (P1). The sides of

the exponential tank are covered with cadmium, 0.020 inch thick, in

order to bring the thermal flux to zero at the edge as quickly and repro-

ducibly as possible.

The techniques used for a direct measurement of lattice parameters

in the exponential assembly have been adopted from other laboratories

or developed at M. I. T., with the details evolving in response to the

needs and experience of workers on the project (B1, W1, W2, S1, D1).

The experiments reported here were made around a single fuel

element situated vertically along the central axis of the tank. All

measurements were made at a height chosen so that the axial dependence

of the flux was, indeed, exponential.
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3.2 MEASUREMENTS IN THE THERMAL ENERGY REGION

3.2.1 Foils and Cadmium Covers

Gold foils were used to measure the relative activities induced by

neutrons of epicadmium and subcadmium energies. For this purpose,

gold sheet of at least 99.95 percent purity was punched into circular

foils. Measurements as a function of radial position at a fixed height

were made with foils of 0.010-inch thickness and one-quarter-inch

diameter, and measurements as a function of height at a fixed radius

were made with foils of 0.010-inch thickness and one-eighth-inch

diameter. Foils were weighed to an accuracy of about 0.02 percent on

a microgram balance.

Cadmium covers for radial traverses were made from cadmium

sheets of 0.020 ± 0.001-inch thickness. The covers consisted of two

parts. A bottom part, 0.625 inch in diameter, was preformed into a

cup of inside diameter 0.325 inch. The gold foil was placed in the cup

and a top plate, 0.325 inch in diameter, was then pressed-fit above it

into the cup by means of a punch press. The arrangement is shown in

Fig. 3.3. The resulting cadmium covers were adequately shockproof

and leaktight. They could be dropped onto a wooden table from a height

of one foot without opening, and they endured immersions in heavy

water for up to twelve hours with only a negligible fraction showing any

signs of water leakage.

Cadmium covers used in axial traverses were of the type designed

by Simms (Si) and shown in Fig. 3.4.

3.2.2 Foil Holders

Foil holders were fabricated of Type 1100 aluminum. Typical

holders for use in axial and radial traverses are shown in Fig. 3.5. In

each holder, depressions of 0.010-inch depth were milled out at fixed

intervals in order to position bare foils accurately. Slightly wider but

shallower depressions were milled out above them for positioning

cadmium-covered foils. Both bare foils and cadmium pillboxes were

affixed to the holders by using two layers of 0.001-inch-thick Mylar

tape. Before the foils were removed at the end of each irradiation, the
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arrangement was examined visually to insure that no movement of the

foils had occurred, either by relaxation of the Mylar tape or by bumping

of the holder during placement and removal.

The length of each radial foil holder was about one inch less than

the diameter of the tank in which it was used, to facilitate placement

and removal of the holder. A semicircular notch, whose radius was

slightly larger than that of the fuel rod with which the holder was to be

used, was milled out of the side of each radial foil holder. During the

experiments, the single fuel rod was inserted into this notch so that its

position relative to the foil holder was well determined. Notches of dif-

ferent size were made on opposite sides of each holder so that each

radial foil holder could be used (at different times) with fuel rods of two

different sizes.

3.2.3 Experimental Procedure

The single fuel element used in any experiment was suspended by

means of a pin which was fixed through its top adapter and was locked

into position on the girder atop the tank. To ensure that it was vertical,

the fuel element was allowed to hang freely without hitting the bottom of

the tank. Proper placement of the fuel element in the center of the tank

was thus assured as long as the girder was properly aligned.

The axial foil holder was attached to an aluminum rod suspended

from a small, movable, aluminum plate on the girder. Since the single

fuel element used in the experiments was suspended from the center of

the same girder, it was possible to position the foil holder accurately

with respect to the element by simply moving the plate to locations

which were marked in advance on the girder.

The radial foil holder was suspended horizontally by two chains

made of aluminum beads. Each chain was attached one-third of the way

from one end of the holder. The upper ends of the chains terminated in

aluminum blocks which rested on the overhead girder at positions that

were marked beforehand. The chains were checked before each experi-

ment to make sure that both were of the same desired length.

To maintain the purity of the heavy water, all experiments were

inserted and removed from the exponential tank through the glove box
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at its top. In making a typical run, the fuel element was first inserted

into the tank and was hung in position from the girder. The aluminum

block on one end of the radial holder was positioned on the girder, and

the second aluminum block was maneuvered to the other side of the

girder. After the second aluminum block was fixed in position, the first

one was rechecked to be sure it had not moved. The holder was

inspected visually to ascertain that it was hanging horizontally, was not

entangled with the chain, and that the fuel element was fitted into the

notch on the side of the holder. (See Fig. 3.6.) Irradiations lasted up

to twelve hours for cadmium-covered foils, and from one-half to two

hours for bare foils, depending on the reactor power.

3.2.4 Counting Procedure

The activity of the gold foils was recorded by one of the three

automatic counting and sample changing systems in use on the Lattice

Project. They all employed thalium-activated, sodium iodide crystals
198

for counting the 411-key photopeak of Au . Figure 3.7 shows block

diagrams of the electronics in these systems. A single-channel ana-

lyzer was used to straddle the peak, with the baseline set at the lowest

point in the spectrum below the peak. The system was calibrated before

and after each set of runs. Additionally, the ACTIVE (S1) code, which

was used to reduce the raw counting data, uses the known half-life of

gold, so that counter drift would have appeared as a large spread in the

values of the corrected activities of a foil as computed from the indi-

vidual passes.

Each foil was counted in at least two passes, and the accumulated

counts were at least 40, 000 for each bare foil and 20, 000 for each

cadmium-covered foil. This ensured an inherent counting uncertainty

of less than 0.5 percent for the bare foils and 0.75 percent for the

cadmium-covered foils.

The ACTIVE code (Sl) was used to correct the raw counts for back-

ground and deadtime and to reduce the results to relative activity per

milligram of foil at end of irradiation.
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3.2.5 Uncertainties in the Experiment

Uncertainties in the resulting curve of activity as a function of

radius arise from uncertainties in the positioning and in the counting of

the foils. These are independent uncertainties, so at a particular

radius r the uncertainty of the activity A(r) measured at r is:

2 A =A 2 2 + 2 A\ 2 ,
UA() :_ N \Dr Ur~ )zi 31

where UN is the inherent uncertainty in N counts.

For bare foils, the expected errors in position, Ur and Z, are

small because the foils fit into depressions on the holder. The maxi-

mum possible uncertainty in either direction is about 0.3 cm, and an

average positioning uncertainty of 0.15 cm is estimated, due both to

foil misplacement on the holder and to holder misalignment relative to

the source rod.

The order of magnitude of the expected value of aA may then be

calculated from this by making reasonable assumptions about the flux

distribution. For example, one can use the flux distribution character-

istic of a homogeneous exponential and evaluate the radial derivative

halfway between the center and edge of the tank. Then, for a three-foot-

diameter, exponential tank with a typical axial relaxation length of 20

cms, the result is:

UA(r) ~ 0.01 .
(3.2)

A(r)

Thus, the average expected error in each individual point is about one

percent. This result is consistent with the observed variations in

activity between corresponding foils on opposite sides of the fuel element.

3.3 MEASUREMENTS IN THE RESONANCE REGION

3.3.1 Foils Used

Activity resulting from epicadmium absorptions in uranium was

measured by irradiating foils of natural and depleted uranium. These

foils were the standard set used on the Lattice Project and, as such,

they had been carefully punched to avoid burrs or chips at the edges
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(D1, H3). The foils were 0.005 inch thick and were either 0.250 or 0.750

inch in diameter. All foils were of high purity uranium obtained from

Oak Ridge National Laboratory. The depleted uranium foils of one-

quarter-inch diameter had a measured concentration of eighteen atoms

of U 2 3 5 per million atoms of uranium (W1 ). For each experiment, the

foils were weighed with an accuracy of about 0.02 percent on a micro-

gram balance. Because some oxidation of the surfaces of the foils could

occur without being visible to the naked eye, the overall accuracy of the

weights was estimated to be about 0.05 percent, entirely adequate for

these experiments.

3.3.2 Experimental Procedure

The object of these experiments was to measure an activity pro-

portional to the rate of absorption of epicadmium neutrons in a fuel rod.

It was desired to make the measurement as a function of the distance

separating the fuel rod from the source of fission neutrons.

Foils having the diameter of the fuel rod of interest were inserted

between two fuel buttons of the same diameter and one-quarter inch high,

and the whole assembly was covered with cadmium. The fuel buttons

caused the foils to have the same effective disadvantage factor as a fuel

rod but were small enough to contribute only a negligible neutron source

from epicadmium fissions. The buttons were necessary because the

spectrum of neutrons around the source rod was space-dependent,

causing the disadvantage factor also to be space-dependent. Were it

independent of position, the disadvantage factor would have been unim-

portant in obtaining the relative values of the activity needed here. In

practice, catcher foils of depleted uranium were inserted around the

depleted foil to be counted, so that it was not contaminated with fission

products from the neighboring fuel buttons.

The experimental arrangement of such a foil packet is shown in

Fig. 3.8. Cadmium plates were placed above and below the fuel buttons

to prevent neutrons of subcadmium energies from entering the packet,

and after the whole packet was inserted in an aluminum tube, cadmium

sheet was positioned around the tube, at the height of the packet, for the

same purpose. The cadmium was 0.020 inch thick. Aluminum rods were
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placed in the tube, above and below the packet, so that it was situated

a suitable distance from the bottom. The distance of the foil packet

from the top of the tube was measured. The tubing was made of Type

1100 aluminum and was 0.028 inch thick. Foil packets were placed

sixteen inches above the bottom of the tube. This ensured that the

packets were situated in a region where the axial dependence of the flux

was exponential. It was shown experimentally (Chapter IV) that the

axial relaxation length in the single element experiment is independent

of the radius at which foils are exposed in those regions where the

axial dependence is, in fact, exponential. Locating the packet in such

a region thus resulted in an axial leakage that was proportional to the

flux, with a constant of proportionality that was independent of radius.

For each experiment, a fuel rod was inserted into the tank and

was hung vertically at the center, from the girder overhead. The

aluminum tubes were then inserted into the tank and hung from the

girder at the proper distances from the central fuel rod. These dis-

tances were determined by measuring the center-to-center spacing

between the fuel element and each aluminum tube.

Irradiation times lasted from twelve to one hundred hours. The

longer times were preferred because the central fuel rod provided the

only source of neutrons of epicadmium energies and long irradiation

times were needed to achieve countable activities in the foils.

At the end of each irradiation, the aluminum tubes were removed

from the exponential tank and the foil packets were unloaded. At this

time, the cadmium sheet wrapped around the tube was examined to

ascertain that it had not slipped.

3.3.3 Counting Procedure

The depleted uranium foils were gamma-counted for Np 2 3 9

activity. Counting was begun about twelve hours after the end of the

irradiation, so that the U 2 3 9 had sufficient time to decay to Np239 and

in order to allow for the decay of short-lived, highly active fission

products which would have provided a time-dependent background. A

thalium-activated, sodium iodide crystal, one-half inch thick by one

and one-half inches in diameter, was used to detect the 103-key peak
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in the spectrum of Np 239. A single-channel analyzer was calibrated to

straddle this peak, using the 84-key photopeak of Tm170 and the 123-key
57

photopeak of Co7. A block diagram of the counting system is shown in

Fig. 3.9.

All foils were counted at least three times. All count rates were

low enough so that dead-time corrections were negligible.

3.3.4 Data Analysis

Raw counting data were reduced by hand. Corrections were made

for background activity, variations in foil weight and measured vari-

ations in the height of the foils when they were irradiated. The height

correction was based on the measured value of the axial relaxation

length.

The activity of each foil in a pass was corrected to the time at

which the first foil in that pass was counted. The value of the total

activity of each foil was established by adding together the values of its

corrected activity on each pass. This was permissible because only

the relative activities were of interest, and the correction factor for

decay from pass to pass was common to all foils.
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Chapter IV

THE USE OF EXPERIMENTS ON A SINGLE FUEL ELEMENT

TO INFER THE VALUE OF

THE THERMAL UTILIZATION IN A LATTICE

4.1 INTRODUCTION

4.1.1 Purpose of the Investigation

This part of the investigation is meant to provide a technique for

determining the value of the thermal utilization in a uniform lattice by

means of measurements made around a single fuel element. Such a

technique is expected to be useful because the complicating factors

which make it difficult to calculate the thermal utilization by any simple

method are mainly peculiar to an individual fuel element and are insensi-

tive to the presence or absence of neighboring elements. For example,

the transport effects attendant upon the strong absorption in even a

simple, cylindrical rod of uranium cause diffusion theory to give values

of the thermal utilization which are low by as much as two percent (M4).

Similarly, in the A. E. C. superheat critical experiments (P4) under-

taken by General Electric, the presence of light water within an indi-

vidual fuel element causes such a large change in the thermal neutron

spectrum that an ordinary diffusion theory calculation is not valid.

When the distribution of fuel within the element is a function of

only one spatial variable, these problems can be solved (if the neces-

sary basic data are available) by the use of transport theory codes,

such as THERMOS (H4), although the extensive machine time required

by such codes frequently makes them unsuitable for survey computations.

If the fuel distribution within the element is a function of two variables

(as in an element consisting of a fuel bundle), then the efficacy of the

present transport theory codes is doubtful. Thus, it was stated in May,

1965 at Argonne National Laboratory during the Conference (B2) on the

Application of Computing Methods to Reactor Problems that a two-

dimensional THERMOS was considered too unwieldy for production
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purposes. If the problem is somehow reduced to an "equivalent" one-

dimensional problem, one loses the main advantage of a transport

theory calculation - a reasonable assurance that, if the input nuclear

data are correct, the results are correct. In this case, it is difficult

to decide what quantitative error is incurred through the use of the

" equivalent" geometry (Ul). Thus, for elements consisting of 19-rud--

uranium oxide clusters in heavy water, calculated and measured values

of the thermal utilization differed by as much as 3 percent (H5). This

discrepancy was attributed to inadequacies in the scattering kernel

used for heavy water. In graphite, where the scattering kernel is pre-

sumably much more accurate, the disagreement was 0.3 percent (H5).

It is clear that the high accuracy, which is often thought to invariably

result from transport theory calculations of the value of the thermal

utilization, is presently unattainable in many practical applications, either

because of computationai-imitations, geometric complexity, or the lack

of basic nuclear data.

Problems such as these illustrate the need for a method com-

bining an experimental treatment of these "single rod" complications

with a theoretical treatment of the interaction effects between fuel

elements.

The method explained here accomplishes this by characterizing

each element by a single parameter, related to an extrapolation length.

The feasibility of the method is demonstrated by showing that this

parameter can be determined from experiments on a single fuel element

and that its use gives accurate values of the thermal utilization in

lattices containing heavy water as the moderator. The individual fuel

rods available at M. I. T. have been used as the fuel elements in this

investigation. Lattices of these rods in heavy water have been studied

extensively in the exponential assembly at M. I. T. and the values of the

thermal utilizations in them are known accurately.

4.1.2 Methods Used

Galanin (G2) has expressed the thermal utilization in an infinite,

uniform lattice in terms of the ratio r' of the thermal flux at the rod

surface to the net thermal neutron current at the rod surface. Klahr (K2)
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subsequently noted that the use of this definition involves both an

approximation and a computational difficulty. The approximation arises

because the ratio F' is defined in terms of quantities at the surface of

the fuel rod, but it is used with a theory of neutron diffusion which

treats the fuel elements as line sources and sinks. The resulting error

might be expected to be small whenever the effective extrapolation

length is large compared to the radius of the fuel element. Neverthe-

less, it is desirable to eliminate this approximation.

The computational difficulty arises because the relation between

the thermal utilization and the ratio V' depends upon the theory used to

calculate thermal neutron transport in the lattice. If the correct value

of the thermal utilization is to be obtained, then the ratio 1' must be

defined consistently with the method of calculating thermal neutron

transport. If V' is defined in terms of the actual flux at the rod surface,

the method of calculating the neutron transport must predict this flux

accurately. This requires the use of a high-order approximation to the

Boltzmann equation, with all its computational difficulties. Klahr (K2)

observed that both the approximation and the computational difficulties

can be avoided if r' is defined as the ratio of an effective thermal flux

at the center of the fuel element to the net current of thermal neutrons

into the fuel element. The ratio so defined will be denoted by r (without

the prime). The effective thermal flux is that flux which would exist if

all fast neutron sources in the system remained unchanged in all respects

but if, in the calculation of the thermal neutron transport, the fuel ele-

ments were replaced by moderator. Since this definition eliminates the

strong absorption in the fuel elements, diffusion theory is now adequate

to determine this effective thermal flux at the center of the element.

Although it will be demonstrated in section 4.2.2 that the thermal utili-

zation of a lattice may be expressed theoretically in terms of the

effective thermal flux by using diffusion theory, the concept of the

effective flux is of practical use only to the extent that its value can be

inferred from measurements in or around real fuel elements. A pro-

cedure for determining the value of the effective thermal flux from

measurements around a single fuel element immersed in moderator

will be given in section 4.2.1.
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The effective thermal flux as defined here is computationally and

conceptually useful, but no claim is made that in itself it is physically

measurable - nor is it. The sole justification for its use is that it pro-

vides a helpful intermediate between the real flux distribution measured

around a single rod immersed in moderator and the real thermal utili-

zation in a lattice. It is analogous in its function to an output or input

impedance in electronics. Thus, "the output impedance of this ampli-

fier is Z = R + jw/C" does not mean that if the cover is removed, the

amplifier will be found to consist of a resistance R in series with a

capacitor C. The statement means only that the relation between

current and voltage at the output terminals of the amplifier is expressi-

ble in terms of a quantity Z. Similarly, the statement, "the effective

flux at the center of this fuel element is *y," should be interpreted as

meaning only that the relation between the absorption in the element

and the thermal utilization in a lattice of such elements is expressible

in terms of the quantity $9. Just as Z can be calculated from a

knowledge of electrical circuit theory plus a knowledge of the values of

the actual, physical elements used in the amplifier circuit, so c can

be calculated from a knowledge of diffusion theory and nuclear constants.

Just as Z may be a good representation of the amplifier's output

impedance only over a restricted range of frequencies, beyond which

such things as stray capacitances will introduce further terms, so r is

a good representation of the fuel element's behavior in a thermal

neutron spectrum similar to that in which the experimental determina-

tion of r is made.

When a single fuel element is immersed in moderator, the net

thermal neutron current into the element is related to the thermal flux

around the element by the neutron conservation equation. In the work

reported here, measurement of the relative thermal flux has been used

with the conservation equation to deduce the relative net current of

thermal neutrons into the element. The magnitude of the relative flux

which would exist at the center of the element, were the latter replaced

by moderator, is obtained by properly extrapolating the values of the

moderator flux back into the element. Thus, the parameter character-

izing each kind of fuel element in a particular moderator is obtainable
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from experiments on just one such element immersed in moderator. It

will be shown that the values of the thermal utilization calculated from

such experiments are in good agreement with those obtained from more

complicated calculational models.

4.2 THEORY

4.2.1 The Determination of the Single Rod Parameter I? from Experi-

ments on a Single Fuel Rod Immersed in Moderator

The following definitions will be needed:

Jrod - the number of thermal neutrons absorbed by the fuel ele-

ment per unit time and per unit length of element; these

are neutrons whose energies lie below the cadmium cut-

off energy;

E a the subcadmium flux which would exist at the center of the

fuel element if all the fuel elements in the system could be

replaced by moderator without in any way changing the

magnitude or spatial distribution of the slowing-down density

into the energy region of subcadmium energies;

-0

- rod

The effective flux is the solution to a diffusion equation describing

the thermal (subcadmium) flux. This equation differs from the usual

diffusion equation applicable in a lattice in that all fuel elements are

replaced by moderator, but the terms representing the slowing-down

source are left unchanged. The elimination of the fuel elements sup-

presses the flux dip which would otherwise result from neutron absorp-

tion in the fuel elements. The medium is thus homogeneous; if the

slowing-down source into the subcadmium region is constant in space,

so will the effective flux be constant in space. In this lattice, the sub-

cadmium disadvantage factor is unity. For such a lattice, the effective

flux at the center of an element, 4 0, may alternatively be defined as the

value attained by the moderator flux far from the element when it is
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extrapolated to the center of the fuel element position. Since the thermal

flux farfrom the element is insensitive to the presence or absence of

thermal absorption in the element, this latter definition of 49 may be

used to obtain a value of 49 from meaaurements of the real subcadmium

flux around a real fuel element. It has, so far, proved impossible to

verify by theoretical calculations that the result of this procedure of

extrapolation is, in fact, the exactly correct value of 4 0. Nevertheless,

its usefulness is demonstrated by the agreement between values of the

thermal utilization obtained from values of 49 deduced by extrapolation

and values of the thermal utilization obtained from THERMOS.

Consider a single vertical fuel element immersed in moderator at

the center of an exponential assembly fed by a source beneath the assem-

bly. The radial dependence, 0(r), of the thermal flux will be investigated

at a height where the axial flux dependence has its asymptotic form,

sinh y(H-z). The equation describing the radial flux dependence in the

moderator, under the assumption that diffusion theory applies there, is:

2 2_ 2 TEPJ
V R0(r) + (2 2)O(r) + Drod G(r) 0, (4.1)

where:

4 represents the radial dependence of the thermal flux (n/cm 2-sec).

2 1 1
VR represents the radial Laplacian operator, r dr\r d) .

2 1
K = 2 ; L is the thermal diffusion length in the moderator alone

L (cm- 2

D is the diffusion coefficient of the moderator alone (cm).

c is the fast fission factor for the single fuel element.

rl is the total number of fast neutrons produced in the rod by fission
235

in U per subcadmium absorption in the fuel element.

P is the net probability that a fast neutron born in the fuel element

will slow down to subcadmium energies without leaking out of

the exponential assembly or being absorbed in the region of reso-

nance energies. The explicit value of P will not be needed in

what follows, so methods of evaluating P need not be considered.



59

G(r) is the kernel which gives the slowing-down density (cm-2 )

to subcadmium energies per unit of horizontal (radial) area

at the radius r. The kernel is normalized so that:

dA G(r) = 1, (4.2)
A

where A is the cross-sectional area of the exponential

assembly.

2
The inverse diffusion area, K , of the moderator is a known

quantity, and 'y2 is obtained from measurements of the relative axial

dependence of the flux. As used here, the axial relaxation length is

assumed to be independent of radius. This assumption was verified in

several cases by making axial traverses at various radii, as shown in

Fig. 4.1.

Gold foils were used to measure the relative thermal flux, 4,
around the single fuel element. Details of the experimental procedure

rod
are given in section 3.2.2. The value of (r7eP) D could have been

obtained by fitting Eq. 4.1 to these data. However, the direct use of

Eq. 4.1 is inadvisable because of the need to differentiate the experi-

mental data in making the fit, a procedure which is likely to introduce

serious uncertainties. The derivatives were removed from Eq. 4.1 by

integrating as follows:

Replace r by the dummy variable u, multiply by the element of

area 27ru du, and integrate Eq. 4.1 from zero to w:

w du 27ru- du o)+ (,y 2 -iK 2 w du 2ru 0(u)
f u du duf0 0

J u
+ rEP od f du 27ru G(u) = 0. (4.3)D 0

The use of zero as a lower limit of integration is justified if the fuel

element is a line source and sink of neutrons. The parameters which

result from fitting this equation to the experimentally measured flux

will then be parameters appropriate to that line source and sink which

produces the same subcadmium flux distribution as the real fuel element.
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These are the parameters needed to produce a consistent theory, as

discussed in section 4.1.2.

Using the boundary condition that the net current into the fuel

element should equal the number of neutrons absorbed there:

lim 2ru d = rod (44)
u-+0 du D

Eq. 4.3 may be integrated from zero to r to get:

-r D+ ( P D fdw f 2iru G(u) du
0 0

= 2 r (w) dw - 27rrq(r) - 27r(2y 2) f dw f u4(u) du.
0 0 0

(4.5)

Equation 4.5, with r set equal to the values of the radii at which

the various measurements were made, is used to obtain rod and
Jrod D

(reP) D by means of a least-squares fit to the data at the various

radii. For this purpose, a computer program, ONE-ROD, has been

written for the IBM 7094 at the M. I. T. Computation Center. The code

calculates the right-hand side of Eq. 4.5 from the experimental data

and uses the age theory line source kernel to evaluate the double

integral on the left-hand side. The inexactness of the age theory kernel

appears as a variation in the values of rOeP and Jrod/D, depending upon

the number and position of the data points used in the fit. Figure 4.2

shows the typical variation of the output values of these quantities as

the outermost radial data points are successively dropped. If the

kernel were correct, the values of rOeP and J rod /D would be independent

of the number of points used in the fit. The large values of ?jEP result

from using in the fit only a few data points near the rod. These large

values are found because the age theory kernel for a line source is a

poor representation of the slowing-down density in the immediate vicinity of

a real fuel rod of finite radius. It may be seen from Fig. 4.2 that the values

of Jrod/D are less sensitive to inaccuracies, in; the kernel than are the

values of reP. Values of Jrod/D needed for the calculation of the value of

the single element parameter F were obtained as an average of the values
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of Jrod/D resulting from using ten through eighteen points in the fit.

The same data used to obtain the current, J rod into the rod are

also used to obtain 4 , the effective flux at the rod center. For this
0

purpose, the flux around the rod must be presented in a manner which

facilitates its extrapolation back to the center of the rod. The shape of

the flux in space is complicated not only by the absorption in the rod

but also by radial leakage from the side of the exponential assembly.

The latter complication is easily avoided by dividing the relative values

of the flux by J 0 (ar), the asymptotic flux shape far from the rod in the

presence of radial leakage. This procedure effectively removes the

complications caused by the leakage, and the result is found to be a

straight line over a large fraction of the radial extent. Figure 4.3

shows a typical example of this behavior. Absorption in the rod causes

the values to fall below the straight line near r = 0. Edge effects at the

side of the exponential tank cause the measured values to rise above

the straight line at large radii. The nonzero slope of the straight line

is caused by the spatial nonuniformity of the slowing-down source into

the subcadmium energy region. The value of the slope is related to

strength of the fast neutron source in the single fuel rod, but no quanti-

tative relation between the two has been developed.

It is now easy to avoid the flux dip at the rod and to obtain the

value of 40 by extrapolating the straight line back to r = 0. This has

been done by fitting a straight line by a least-squares procedure to the

points resulting when the measured subcadmium activities are divided

by J 0 (ar):

A(r) c +c r (4.6)
J (ar) o 1

To eliminate the flux dip around the rod, points near the rod are dropped

until the resulting straight line exhibits minimum variance of fit. The

constant term in the resulting equation of the form of Eq. 4.6 is then

identified as the relative value of 4 , since it is the value the activity

would have at the center in the absence of the flux dip:

0 = [A(0)]no = J (0)c 0 = c . (4.7)

flux dip
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Because the relative values of Jrod and 40 are both determined from

the same set of data, the constant of proportionality is the same in both,

and their quotient yields the absolute value of r.

4.2.2 The Relationship Between the Thermal Utilization, f, and the

Single Rod Parameter, F

Consider a line source of fast neutrons, normalized to one fast

neutron per unit length, in an infinite sea of moderator. The equation

describing the thermal flux, 4, is:

DV2 FaM4 + G =0, (4.8)

where ZaM and D refer to the moderator. Since this equation describes

the "effective" flux which would exist if there were no fuel rod sinks in

the system, all the neutrons will eventually be absorbed in the moder-

ator. Let 17 have the definition used in this work, the ratio of "effective

thermal flux" at the center of an element to the net current of thermal

neutrons into the element. The net current is identical to the absorp-

tion rate of thermal neutrons in the element. Then the thermal utili-

zation of a lattice of fuel elements in this moderator is:

absorptions in all fuel elements
f = -

absorptions in all fuel elements + absorptions in moderator

(4.9)

The flux is calculated from Eq. 4.8, which describes the case in which

no fuel elements are present in the infinite sea of moderator. All the

neutrons supplied by the source G are therefore absorbed in the moder-

ator, so if G is normalized to one source neutron per second, the

moderator absorption is unity. The parameter r is the ratio of the

thermal flux existing at the center of the element to the thermal ab-

sorption rate in the element. This flux is exactly that given by Eq. 4.8,

so the expression for the thermal utilization, Eq. 4.9, becomes:

1_ 4(r.)
f = i (4.10)

1 +1 4 (ri)
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(since the source is normalized to unity). Here, 4. is defined as the

value of the flux at the center of the i th fuel element. Equation 4.10

provides the relationship between f and r when the summations are

evaluated using Eq. 4.8 to determine the various 4(r ). The sums are

evaluated with the aid of the Poisson summation formula given in

Chapter II:

4(an, bm) =+ (4.11)
n m c p q

where a and b are the dimensions of the unit cell, 4 is the two-

dimensional Fourier transform of 4 with transform variables 27rp/a

and 27rq/b, and A is the area of a unit cell. 4 is easily calculated by

taking the transform of Eq. 4.8. Using the age theory kernel for G,

one obtains:

exp 47r 2 p +q

4(an, bm) = e ( + (4.12)
n m c p q

4 ar2 + + EaMa bM

In most reactor lattices:

27rf > a or b, (4.13)

so that only the p=q=O term is significant. The result of the summation

is:

4(an, bm) = z A ' (4.14)
n m aM c

The relationship given by Eq. 4.10 between f and F now becomes:

1
FA 2

f = c aM , (4.15)
+ A1

c aM

= 1 + Ac aM (4.16)T c aM~
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This is the desired relation between r and f. It differs from that

derived by Feinberg and Galanin in having I where their relation has

(r'+ C 1 ), C 1 being a number dependent upon the fuel to cell volume

ratio. Equation 4.16 has been derived here by using the Poisson sum-

mation, but it can equally well be derived by using the Wigner-Seitz

formalism. It is only necessary to make the same assumption used in

reducing the Poisson summation to a tractable form - that both

dimensions of the cell are much smaller than 27r times the slowing-

down length, so that the slowing-down density is essentially constant

across any unit cell. The slope of the thermal flux is zero at the cell

boundary and, since 4 is computed as before with no sink rod present

in the cell, it follows that 4 is constant:

slowing-down density _ 1 (4.17)

ZaM c aM

The thermal utilization is defined as before:

fuel absorption
f = $(4.18)

fuel absorption + moderator absorption

except that now the definition is on the basis of a unit cell. The result

is:

f = (4.19)
1+

r

or:

1= 1 + rZ A (4.20)
f aM c

The result is the same as was obtained before, but this derivation gives

some clue to why the formula for f differs from that of Feinberg and

Galanin. Their parameter r' accounts for the thermal flux dip at the

fuel element, so that their formula for f must somewhere include an

effective disadvantage factor, which depends on the volume fraction of

fuel. In the present formulation, however, an effective flux is used

which is constant throughout the cell, and so the disadvantage factor

exhibits no dependence on the volume fractions. It was pointed out in
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section 4.1.2 that either formulation is correct, provided the equation

used to relate f and F is consistent with the definition of r.

4.3 EXPERIMENTAL RESULTS - VALUES OF F

Values of the single rod parameter r are given in Table 4.1 for

the fuel elements investigated in this work. The values have been

obtained by means of the procedures of section 4.2. The uncertainties

given in parentheses are the observed standard deviations of the mean

of several independent determinations.

Table 4.1

Values of the Parameter r

for Slightly Enriched Uranium Rods in Heavy Water

Rod Rod Number
Diameter Enrichment of
(Inches) (Wt. %) (cm ) Determinations

0.25 1.14 8.15 ± 1.21 4

0.25 1.03 7.73 ± 0.87 2

0.75 0.947 1.85 ± 0.04 2

1.00 0.711 1.25 ± 0.12 4

Each value of r presented here is peculiar not only to the fuel

element used, but also to the moderator used. The latter dependence

arises because of the definition of F. In Feinberg's original formu-

lation, F' was defined as the ratio of the actual thermal flux at the rod

surface to the net current into the rod. As long as diffusion theory was

used, this r' could be calculated in terms of only the properties of the

fuel element because the diffusion equation describing the conservation

of neutrons within the rod is a second-order differential equation whose

solution involves two constants. These are determined by the conditions

that the total absorption in the rod be equal to the net current into the

rod and that the flux at the surface be 49.
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The parameter I' defined by Klahr (and used here) refers explicitly

to events occurring in the moderator, and thus its value depends upon

the particular moderator used. One of the compensations for this choice

is that there is no longer any need to decide just what constitutes the

"surface" of a fuel element, a question that is both important and diffi-

cult to answer for elements having a complex geometric shape or con-

taining moderator internally. Even if the surface of the fuel element is

well defined, measurements of the flux at the surface are difficult to

make because of the large flux gradient at the surface of the element.

If higher-order approximations than diffusion theory were used,

Feinberg and Galanin's original definition would also depend on the

properties of the moderator. This comes about because more boundary

conditions would be needed to determine the flux distribution within the

fuel element, and these are equivalent to specifying the details of the

angular dependence of the flux at the surface of the fuel element. This

angular dependence is a function of the moderator used.

4.4 INFERRED VALUES OF THE THERMAL UTILIZATION AND

DISCUSSION

Equation 4.16 has been used to compute thermal utilizations from

the values of r in Table 4.1.

Values of the macroscopic absorption cross section of the moder-

ator have been obtained from the THERMOS code (H4) and are listed in

Table 4.2. These values are smaller than the values computed for a

Maxwellian spectrum at the temperature of the moderator (20*C to 25*C).

In Table 4.3, the values of the thermal utilization obtained by the present

method are compared with values obtained from THERMOS. The

THERMOS values are taken as standard because the subcadmium flux

profiles obtained from THERMOS are in excellent agreement with the

experimental results. It is evident that the method presented here is

adequate to determine the thermal utilization to at least 0.5 percent for

uniform lattices consisting of single rods in heavy water.

The present method, like all techniques for determining values of

the thermal utilization, requires that the absorption cross section of the

moderator be known. In contrast to other techniques, however, it does



Table 4.2

Geometric and Nuclear Parameters Used in Calculation of the Thermal Utilization

Concentration Macroscopic Volume of
of U-235 Diameter Lattice Volume Absorption Unit Cell Per

in the Rod of Rods Spacing Fraction f Mod ecton Unit Height

(Wt. %) (Inches) (Inches) of Fuel aM (cm2

1.14 0.25 1.25 0.03628 0.914 X 10~4 8.729

1.75 0.01851 0.971 17.11

2.50 0.009069 1.082 34.92

1.03 0.25 1.25 0.03628 0.917 8.729

1.75 0.01851 0.975 17.11

2.50 0.009069 1.007 34.92

0.947 0.75 2.50 0.0816 1.016 34.92

3.50 0.0416 1.108 68.42

5.00 0.0204 1.162 139.64

0.711 1.00 4.50 0.04571 0.642 113.13

5.00 0.03702 0.654 139.68

5.75 0.02799 0.667 184.73

From THERMOS
c4J



Table 4.3

Values of the Thermal Utilizationl for Lattices of Slightly Enriched Uranium Rods in Heavy Water

Concentration Percentage
of U-235 Rod Lattice Value of the Thermal Utilizationt Difference*

in Rod Diameter Spacing

(Wt. %) (Inches) (Inches) From Eq. 4.17 From THERMOS In f In (1-f)

1.14 0.25 1.25 0.9935 0.9927 0.08 11

1.75 0.9866 0.9852 0.14 9

2.50 0.9701 0.9673 0.29 9

1.03 0.25 1.25 0.9939 0.9923 0.16 21

1.75 0.9873 0.9844 0.29 19

2.50 0.9735 0.9678 0.59 18

0.947 0.75 2.50 0.9935 0.9947 0.13 23

3.50 0.9861 0.9884 0.23 20

5.00 0.9708 0.9748 0.41 16

0.711 1.00 4.50 0.9910 0.9911 0.01 1

5.00 0.9887 0.9890 0.03 3

5.75 0.9848 0.9847 0.01 1

Obtained from Eq. 4.16 with the values of r from Table 4.1 and cross sections from Table 4.2.

From the THERMOS values.

Including the cladding with the fuel.
I,
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not require that the absorption cross section of the fuel be known, since

this absorption rate is contained implicitly in J. This circumstance

lessens the need for an accurate calculation of hardened thermal group

cross sections, since the spectrum is usually much less hardened in the

moderator than in the fuel. This is illustrated by Table 4.4 which lists

some values of the effective temperature increase (obtained from

THERMOS calculations) for the lattices studied here. The effective

temperature is defined here as the temperature of that Maxwellian dis-

tribution which yields the same thermal absorption cross section as

that obtained from THERMOS. Because the values of the thermal utili-

zation in heavy water lattices are near unity, an error of x percent in

the moderator absorption, 1 - f, becomes an error of about x(1-f) per-

cent in f. For these reasons, a simple estimate of the spectral harden-

ing in the moderator should be sufficiently accurate in calculating f by

Comparison of

Table 4.4

Average Neutron Temperature Increases

in Fuel and Moderator

Concentration
of U-235 Lattice Moderator Fuel

in Fuel Rod Spacing

(Wt. %) (Inches) AT (*C) AT (*C)

0.947 2.50 128 208

3.50 61 132

5.00 26 93

1.143 1.25 88 119

1.75 44 73

2.50 21 49

1.027 1.25 85 114

1.75 42 69

2.50 21 46

*
Temperature differences are relative to physical temperature of

moderator and were obtained from THERM S.
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this technique. For example, an error of 10 percent in the moderator

absorption cross section leads to an error of only 0.2 percent in thermal

utilization when f is about 0.98 .

4.5 APPLICABILITY TO OTHER MODERATORS

The conceptual basis of the method presented here can be applied

to other moderators as well as to heavy water. Its practical value

depends upon the extent to which errors in the measurement of r are

affected by the properties of the moderator and upon the extent to which

errors in r will affect the values of the thermal utilization in various

moderators.

Table 4.1 shows that I has been determined to better than about

12 percent in most cases. As the thermal utilization decreases, I

must be known with increasing accuracy in order to retain a given

accuracy in f. Table 4.5 shows the standard deviation in r which will

yield 0.5 percent standard deviation in f (assuming no other uncertain-

ties). It is evident that the observed values of the standard deviations

in the 1's reported here are consistent with the observed inaccuracies

in the values of the thermal utilization derived therefrom and shown in

Table 4.3. If the uncertainty in r can be reduced by a factor of five

(to about 2.5 percent), then it should be possible to obtain the thermal

utilization to within 0.5 percent for many lattices in graphite and most

lattices of fuel clusters in heavy water.

Table 4.5

Accuracy Required in the Parameter r to Attain a Given Accuracy
in the Value of the Thermal Utilization

Thermal Standard Deviation of Standard Deviation of

Utilization, r for 0.5% Accuracy r for 0.25% Accuracy
f in f in f

0.98 25% 12%

0.90 4.5 2.3

0.85 2.8 1.4

0.80 2.0 1.0

0.75 1.5 0.7
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Because the determination of I' requires considerable analysis of

the raw data, the uncertainty in its final value reflects not only experi-

mental but also theoretical uncertainties. Most of these uncertainties

appear in Jrodwhichis evaluated (from Eq. 4.4) as the small difference

between two large numbers.

The experimental contributions to this uncertainty arise from

uncertainties in the activities of the foils (because of the statistical

nature of radioactive decay), from inaccuracies in the positioning of

the foils on the holder, and from inaccuracies in the positioning of the

holder relative to the fuel element. Their effects are difficult to

assess analytically because of the complicated relation between Jrod
and the observed activities. All foils gave at least 40, 000 counts and

corrections for epicadmium activation were only a few percent of the

total activity, so that the standard deviation of the net count for each

foil was, at most, 0.5 percent, and usually less. If necessary, it can

be further reduced by accumulating a larger number of total counts for

each foil. Such uncertainties, therefore, are not a limiting factor in

the determination of r. Errors in positioning can be minimized by

careful design and experimental procedures. It is particularly

important to keep the foil holder horizontal, since a tilted holder intro-

duces spurious flux gradients which affect the calculation of J rod It

should be possible to position the foils more accurately and more

reproducibly in a solid moderator than in water, thus reducing the

experimental contribution to the uncertainty in r.

The theoretical uncertainty arises in the choice of a slowing-

down kernel, G, for use in Eq. 4.4. The age theory kernel used in this

report provides only a fair representation of the spatial distribution of

the slowing-down density in heavy water, whereas in graphite, it is a

good approximation. The error in r incurred by the use of age theory

should thus be much smaller for graphite than for heavy water.

On the basis of this discussion, it is concluded that the method

discussed here has a high probability of being useful in graphite as well

as in heavy water. The use of graphite requires greater accuracy in

the determination of F, but in graphite, both the experimental and theo-

retical situations are conducive to attaining the increased accuracy.
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It is not clear whether the method presented here will yield good

results in light water. The small values of the slowing-down and

diffusion lengths in light water will increase the experimental diffi-

culties. The question can only be settled by an actual experiment.

The method presented here is expected to apply equally well to

fuel elements consisting of clusters of individual fuel rods. The flux

distribution in the moderator around such an element depends on the

azimuthal angle considered, but this azimuthal dependence should be

negligible at distances beyond a scattering mean-free path (about one

inch in D 2 0 and C) from the element. Since the present method employs

the flux in the moderator at distances beyond a mean-free path, the use

of clustered fuel elements requires no new techniques. The impedance

analogy from electronics is again applicable here. Just as a complex

circuit, when viewed from a particular set of terminals, may be

representable by a single impedance, so a complex, clustered fuel

element, when viewed from the moderator, may be represented by a

single parameter F.



76

Chapter V

THE USE OF EXPERIMENTS ON A SINGLE FUEL ELEMENT

TO INFER CADMIUM RATIOS IN LATTICES

5.1 INTRODUCTION

5.1.1 Purpose and Importance of This Section of the Investigation

The values of the ratios of epicadmium to subcadmium reaction

rates in a reactor lattice are of interest for at least two reasons.

First, quantities of practical importance, such as the multiplication

factor for an infinite lattice and the initial conversion ratio, may be

expressed in terms of these ratios (W12). Second, the values of the

ratios depend on the flux spectrum in the reactor, and the ability of a

theoretical model to predict such ratios is a measure of the adequacy

of the model for treating other similar problems. The method explained

here makes it possible to obtain values of the ratios by making a theo-

retical interpretation of the results of an experiment on a single fuel

element. The method is of particular interest because it not only pro-

duces accurate values of the ratios but also shows how they depend in

a simple way on the various parameters of the lattice. The latter

property of the method facilitates the interpolation and extrapolation

of measured values of the ratios.

The ratios of interest, p 2 8 , 625, and C , are:

238
P2 8  average epicadmium U 238 capture rate in fuel

average subcadmium U capture rate in fuel

235
6 average epicadmium U fission rate in fuel
625 235

average subcadmium U fission rate in fuel

* aveage otal238
C* 235raetoa capture rate in fuel

average total U fission rate in fuel
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5.1.2 Methods Used

The techniques of Chapter II are used to evaluate the ratios by

choosing an appropriate kernel and summing the fluxes originating

from all fuel elements in the system. Since epithermal events, such

as resonance capture or fission, typically involve neutrons of several

different energies, and since the proportion of neutrons involved at

each energy depends on the particular process considered, it is desir-

able to determine the kernel experimentally. This is the principal

purpose of the single element experiment, in which the relative activity

resulting from a particular absorption process is measured at various

distances from the single element. The kernel so obtained may be

applied to lattices insofar as the slowing-down properties of the moder-

ator are unaffected by the presence of the additional fuel rods com-

prising the lattice. This is an excellent approximation in the heavy

water lattices studied at M. I. T. because the volume fraction of fuel is

usually less than five percent in these lattices, and above 100 key the

slowing-down properties of uranium are quite similar to those of heavy

water. Because the volume fraction of fuel is usually small in graphite-

moderated reactors, the same method is expected to give good results

in graphite-moderated reactors, too. Furthermore, it was shown in

Chapter II that, under certain conditions, the slowing-down density in

a large uniform reactor is independent of the particular kernel de-

scribing the slowing-down process. Thus, it should be possible to

apply the same technique to many uniform reactors moderated by light

water, even though the kernel may be known only approximately because

it depends upon the lattice spacing.

5.2 THEORY

5.2.1 Assumptions

(1) It is assumed that throughout the intermediate energy region

the flux per unit energy, O(E), and the slowing-down density, q(E), are

related by:

4(E) = q(E) . (5.1)
ZSE
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This assumption is used to normalize the relative absorption rates

around the single element in order to obtain the absorption rate per

source neutron. The normalization requirement is that the integral

over all space of the slowing-down density around the single element

must equal the number of source neutrons produced in the element.

(2) It is assumed that the kernel measured around the single

element is a good approximation to the infinite medium kernel. This is

true if the measurement is made in a system much larger than the char-

acteristic dimension of the slowing-down kernel.

5.2.2 Derivation of the Formulas for the Ratios

These assumptions will now be used in a detailed derivation of

the formula for p2 8 in a large, uniform lattice. The derivations of

formulas for 625 and C are similar and will be discussed only insofar

as they differ from the development of the formula for p 2 8 '

Nomenclature

T(r.) E subcadmium absorption rate per unit length in a fuel element

at r. noreilzed to unity at the fuel element of interest.

Q'(r ,. E) the slowing-down density past energy E at position r

per unit fission neutron created at ri; this is the

finite medium kernel, which is a function of the

vectors r and r..

Q( r ri, E) the slowing-down density past energy E at position

r per unit fission neutron created at ri when the

medium is extended to infinity; this is the infinite

medium kernel, which is a function of the scalar

distance I r i l.

238
A . epicadmium absorption rate in U per unit length in the

ep1
fuel element of interest.

238
N number density of U atoms in the fuel elements.

28

riE(r ) net number of fast neutrons produced per subcadmium

absorption in the fuel element at r,.
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V F volume of a fuel element per unit length.

V C volume of a unit cell per unit length.

q(r, E) - slowing-down density at r past energy E.

Ec = cadmium cutoff energy.

28 238
(al/v(E) 1/v component of the microscopic U absorption cross

section.

28 238
a (E) resonance component of microscopic U absorption
Res

cross section.

r28 2200 m/sec value of 28(E).

238
A = subcadmium absorption rate in U per unit length in the
sub-

fuel rod of interest.

The slowing-down density at r is the sum of the slowing-down

densities from all the fission sources (i.e., all the fuel elements) in the

system:

number of
elements
in system

q(r, E) = Q'Q(r, rE) r 5E(C) T() . (5.2)

i=1

As shown in Chapter II, the finite medium kernel Q' may be

replaced by the infinite medium kernel Q if the sum is extended over

an infinite system:

00

q(r, E) = Q(|Ir - id , E) T(r i) EC~r) . (5.3)
1=1

The U238 activity resulting from epicadmium absorptions is:

A p =r) fE <0(r, E ) N28VF 8  (E)+o (E)} dE, (5.4)
E

c

which may be related to the slowing-down density by assumption (1),

with the result:
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A (r) = N 2 8VFrE E

00 00 Q(Ir - r.I, E) T(r)

fE i-=1 zsE
c1

28 28 (E)}dE.
{1/v(E)+oRes

(5.5)

It has been assumed that the lattice is uniform, so that rnE is not a

function of position and may therefore be removed from the summation.

It was shown in Chapter II that if the spacing between fuel rods is

small enough so that the fractional change in Q over the length of one

unit cell is always small, then:

0=1
(5.6)Q(r - |,E) T(r ) ~

1V c

where P is the nonleakage probability from fission to energy E.

if an average value of P is used:

N 2 8 VFP 00
epi Vc c

8 (E)+ 2 (E)}

s
dE.

Then

(5.7)

For most moderators, (Es ) in the resonance region is independent of

energy, so:

-qEN 2 8 VF P

Aepi= g DV
Ec

00
8 (E)+o 2 8 (E)} dE (5.8)

The integral in Eq. 5.8 has been evaluated by Weitzberg (W10)

with E 0.4 ev:c

00 28 28 dE_ 28 ER 2 8

(f ulv(E)+o (E)}l 0. 5 a-2 + ERI28
c Res E o
c

(5.9)

In order to determine p 2 8 , it is also necessary to calculate the

subcadmium absorption in the fuel rod at r. This is:

( 28

sub 28 25

a +,a SC

(5.10)

where:
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is the ratio of the values of the cross sections averaged over the sub-

cadmium spectrum in the fuel element. For simple types of fuel rods,

it is adequate to average the cross sections over a Maxwellian distri-

bution. Because the quantity of interest is a ratio, errors due to

spectrum changes will tend to cancel. It follows that:

A . riEPN V {0.5 028 + ERI 2 8}
P = epi 28 F o. (5.11)~28 A -sub 28

s c 25 +28
a a S

This must be modified slightly, as discussed below, to account for the

competing effects of the various processes occurring.

The term representing 1/v absorption was derived under the

assumption that the epithermal spectrum is P/E per fast source neutron.

The 1/E dependence is a good approximation in a thermal reactor, but

the magnitude must be multiplied by a correction factor to account for
238

flux depletion due to resonance absorption in the U . In a 1/E

spectrum, about 75 percent of the epicadmium 1/v absorption occurs

between the cadmium cutoff (about 0.4 ev) and 6 ev, whereas the lowest

resonance in U238 lies at 6.7 ev. It is therefore reasonable to assume

that although the flux seen by the 1/v cross section is 1/E, its magni-

tude is reduced by a factor of p, the U238 resonance escape probability.

To a first approximation, the magnitude of the correction factor is

therefore assumed to equal p. The 1/v absorption in U238 is typically

only a few percent of the resonance capture. This is evident if the
28 28

magnitudes of the 0.5 00 and the ERI terms in Eq. 5.11 are com-
0 238

pared. For rods of one-quarter-inch diameter, the 1/v capture in U

is about eight percent of the resonance capture, so that this approximate

correction should be adequate for most purposes.

It must also be recognized that neutrons absorbed in resonances

have a nonleakage probability different from that of neutrons absorbed
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in 1/v captures because these two events occur largely at different

energies. Thus, the single nonleakage probability, P, should be re-

placed by a PRes and a P 1 /v . With these corrections, the formula

for p 2 8 becomes:

N 28VF 28 281
?UE gs c {0.5uo P 1 /v p +PRe ERI }

p 2 8  s c . (5.12)

28 + z25
a a S

A similar expression will now be derived for 6 25. In the same

way that Eq. 5.8 was derived, the number of epicadmium fissions in

U235 per subcadmium capture in the fuel element is

rjEpN25 VF P25

s c

the number of subcadmium fissions in U235 per subcadmium absorption

in the fuel element is

25
f

2 5 + E 28 '
a a SC

The ratio of these two terms gives the formula for 6 25

N2 5VFP 25 25
U~ ( V ERI

6 25 s c (5.13)

55
f

25 22
a +za SC

Here, ERI25 is the resonance integral for fission in U235 and is defined

to include both the smooth and resonance components of the fission cross

section above the cadmium cutoff. The nonleakage probability for

neutrons which cause epicadmium fission is denoted by P25. As always,

p denotes the probability of a neutron escaping resonance capture in
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U28. The use of p here is based on the assumption that most of the

epicadmium fission in U 2 3 5 occurs at energies below that of the lowest
2

resonance in U 38. This is a reasonable assumption because the

smoothly varying cross section for fission in U235 has a significant

magnitude at energies just above the cadmium cutoff (about 0.4 ev) and

so makes a large contribution to the fission resonance integral. As

more data become available on the distribution in energy of the various

contributions to ERI 25 it will become possible to develop more accu-

rate expressions to use here in place of p.

The quantity C is defined as the ratio of the absorption in U238
235 238

to the fission in U2. The epicadmium absorption in the U of the

fuel rod per subcadmium absorption in the fuel rod is given by Eq. 5.8.

The subcadmium absorption in the U238 of the fuel rod per subcadmium

absorption in the fuel rod is

28
a

28 + 25)
a a/SC

The fission in the U235 of the fuel rod per subcadmium absorption in

the fuel rod is

z25

8 f25 (1+6 25).

a a )SC

In terms of these expressions, the ratio C is:

z28 iEL ryeVFN 2 8 2
a + 80.5 a pP +P ERI 2 8

28 +25 fZ V 01/v Res

C a a SC. (5.14)
25

28 f25 (1625)

a +,a )SC
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5.2.3 The Functional Dependencies of p28625, and C

Equations 5.12 through 5.14 show that, for a fuel rod of fixed

size, p 2 8 , 625, and C vary linearly with the volume fraction of fuel

in the cell. Strictly speaking, -0, e, and the cross-section ratios are

also functions of the fuel rod spacing; e because of the interaction

contribution to fast fission in a lattice, and -0 and the cross-section

ratios because the subcadmium spectrum depends on the fuel rod

spacing. These variations are second-order effects in comparison

with the change in volume fraction. The linear relationships have

been noted in measurements of p2 8, C , and 625 at M. I. T. (M5) and in

measurements of p2 8 at the Argonne National Laboratory (A4).

The linear relationships are important because they facilitate

interpolation and because they provide a simple way of checking the

consistency of experimental data. Figures 5.1 to 5.4 show that this

linearity is found in many different kinds of lattices. This result is to

be expected, since it was shown in Chapter 11 that, regardless of the

particular kernel used, the i/Vc term arises whenever the slowing-

down density is essentially uniform across a unit cell. For uranium

metal lattices in light water, the metal (fuel) to water ratio, VF/VH20

rather than VF /Vc has been used as the abscissa. This accounts

approximately for the variation of tEs with lattice spacing, a large

effect in H20 lattices. Since the fuel has no significant elastic slowing-

down power, (E of a unit cell is proportional to the volume fraction of

moderator in the cell, VH /Vc. Thus, the term, F,
H 2 0s V

Eqs. 5.12 through 5.14 is proportional to VF/VH20. The data for

Figs. 5.1 to 5.4 were taken from the references listed therein and were

plotted in the linear form by the present author. The straight lines may

be interpreted directly in terms of the quantities discussed in Chapter II.

The intercept represents the value of the ratio of interest in a cell of

infinite size; it is thus the "single element" component mentioned in

Chapter II. The increase in the value of the ratio as the size of a unit

cell is decreased results from the increased "lattice contribution" to

the reaction rate. The near-linearity of the curves shown here illus-

trates the usefulness of the SEM treatment for obtaining experimentally
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based values of the ratios with a minimum of effort. When the curves

can be assumed to be exactly linear, experimental measurements on

lattices at two different spacings completely determine the position of

the line and therefore the values of the ratio for all other lattice

spacings. One such experimental measurement can even be on the

"lattice" whose spacing is infinite - that is., on a single fuel element

immersed in a large sea of moderator. It will be shown in Chapter VI

that the fast fission ratio exhibits a similar linearity. At least four

important reactor parameters may thus be determined for any lattice

spacing of a particular kind of fuel element by means of an experiment

on a single such fuel element and an experiment on just one lattice of

this kind of fuel element.

5.2.4 Use of the Resonance Escape Probability in the Expressions

28 and C

Equations 5.12 and 5.14 can be put into more general form because

a term in each of them is directly related to the resonance escape proba-

N28 F 28.
bility, p. The expression, ERI , in these equations represents

the resonance capture rate per fast source neutron (in a uniform,

infinite system). This is equal to 1 - p, so that Eqs. 5.12 and 5.14 may

be rewritten as:

'0.5 a P N28 F + PR -P)0 1/vlEV +5 5Res-
s c

P28 28 (5.15)

a
25 + z 28
a. a SCSC

( "28 N Va )28 F
25 +Z28 rl~-~ Res + 0. 5 a 0 ecpP1/v gz S Va +a s)c

C SC . (5.16)
25

2 5 f28 (1 + 625)

a a )SC
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This change in the form of Eqs. 5.12 and 5.14 is advantageous

because the ERI2 8 used in them is difficult to calculate. The flux

spectrum in a lattice is not exactly a 1/E spectrum, both because of

the Dancoff effect and because the capture in each resonance depletes

the spectrum found at lower resonances. Equations 5.12 and 5.14

remain correct if the ERI28 used in them is calculated or measured

for the spectrum of interest rather than for a 1/E spectrum. The

Dancoff effect causes a reduction in the resonance integral and the

magnitude of this reduction can be calculated from theory (A5, S5). The

change in the ERI caused by depletion of the spectrum relative to a 1/E

spectrum because of the resonance absorption itself cannot be found

without a detailed calculation of the neutron spectrum in the lattice of

interest. Such a calculation requires a large digital computer (K3). In

lieu of such a detailed calculation, a good approximation to the value of

the resonance escape probability may be calculated using the resonance

integral appropriate to a 1/E spectrum in the formula (B5,W13):

NV F 28
-N V (ERI) 1/E

p = e s c . (5.17)

In this report, the resonance escape probability will be evaluated

with Eq. 5.17. However, Eqs. 5.13, 5.15, and 5.16 for 625' P2 8 , and

C are expressed in general terms and do not presuppose the use of any

particular formula to find the value of the resonance escape probability,

p. In using these formulas, the reader is therefore free to evaluate p

by whatever means is felt to be most accurate for the particular problem

under consideration.

5.3 EXPERIMENTAL RESULTS

The formulas derived in section 5.2 showed that knowledge of the

slowing-down kernel is frequently unnecessary in computing the slowing-

down density in uniform lattices. Nevertheless, the kernel must be

known in order to calculate nonleakage probabilities and for use in situ-

ations not covered by the simple approximations used in section 5.2.

The results of this section show that in heavy water the slowing-down
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density at the effective energy of resonance capture in U238 is fairly

well described by age theory.

The age theory kernel is completely determined by only one

parameter, the effective age 7 2 8 , to resonance capture. To determine

this age, foils of depleted uranium were irradiated in cadmium-covered

foil packets immersed in heavy water around a single, bare fuel rod,

which acted as a line source of fission neutrons. The experimental

details are described in section 3.3.

Figures 5.6 to 5.8 show the relative values of the resulting Np 2 3 9

activity in the foils, which is proportional to the capture rate in U

Although each graph has only a few data points, age theory can be used

to correlate the data within the region from about 3 or 4 cms to about

20 cms from the source. The effective age has been determined in each

case from a least-squares fit of the logarithm of the activity to radius

squared over this region. There were not enough data points at large

radii to enable the age to be calculated as one-sixth r2. However, the

age so determined would be somewhat larger than the age as determined

here, since at large radii the data points fall above the fit straight line.

Although it is evident that age theory correlates the data fairly well in

the region considered, the use of a more complicated kernel might

result in improved accuracy.

The good agreement between the values of the ages found by using

different size foils and source rods indicates that their finite sizes

have little effect on the measured age. Sefchovich (S3) has also shown

theoretically that to a first approximation the finite extent of the source

rod has no effect. The consistency of the various results is further

illustrated by plotting on the same graph, Fig. 5.9, all the data obtained

between 3 and 20 cm radius. Within the experimental error, they all

fall on the same straight line in the region from 3 to 20 cm radius,

where 75 percent of the total slowing down occurs.

Table 5.1 lists the values of the age, 7 2 8 , obtained from each of

the experiments. It is of interest to determine what energy corresponds

to the average value of 'r2 8 . Since age theory does not apply rigorously

to heavy water, it is not true that:

r(E) = D dE (5.18)

EF s
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Table 5.1

Values of the Experimentally Determined Age

to Resonance Capture in U 2 3 8

Effective Age
Source Rod Source Rod Foil to Resonance
Diameter Enrichment Diameter Capture

(Inches) (Wt. TO) (Inches) (cm2 )

1.00 0.711 0.250 69 ± 5

0.75 0.947 0.750 67

0.25 1.143 0.250 64 ± 3

Allipoints between 6 and 18 cm: 67 ± 3

where EF is the average energy of fission neutrons. However, it is

reasonable to assume that the difference in age corresponding to two

nearby energies is given approximately by:

E1
AT ~ c ln -

2
(5.19)

where the constant c is determined to fit experimental data. The

constant c has been found by using measured values of the age to the

indium (W14) and gold (S4) resonances.

* (4.91 ev) = 95 ± 3 cm2

* (1.44 ev) = 109 ± 3 cm2

The data are:

(5.20)

(5.21)

These yield a value of:

C = 11.4 ± 3.45 cm2 (5.22)

so that:

TAU - T 2 8 = 95 - 67 = 11.4 ln (E 2 8 /1.44), (5.23)

or:

E = 57 .3 4ev(5.24)
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Despite its large uncertainty, this experimentally determined value is

in agreement with previous theoretical estimates of 25 ev (Cl) and

100 ev (T2).

5.4 INFERRED VALUES OF THE VARIOUS RATIOS IN UNIFORM
LATTICES

Equations 5.15 and 5.16 of section 5.2, with the experimentally

determined value of the age to resonance capture, have been used to

infer values of p 2 8 and C* in uniform lattices. Table 5.2 lists the

material constants and measured values of the ages used in these cal-

culations.

Values of the resonance escape probability for use in these

formulas were calculated from Eq. 5.17. The Dancoff corrected

effective resonance integral for use in Eq. 5.17 was calculated for each

lattice with the aid of Strawbridge's metal-oxide correlation (S5). This

correlation is based on the fit of an equivalence formula to measured

resonance integrals. For uranium metal rods at room temperature,

the correlation is:

ERI = 0.561 + 2.638x, (5.25)

D '1/2
x = 10.7 P + (5.26)

o 
( 

N228
K o o)J

where:

P is the probability that neutrons born in the rod with a uniform

source distribution will escape the rod without scattering;

.R is the mean chord length in the fuel rod;

D eff is the effective shielding factor for the lattice, here

approximated by Wigner's rational approximation:

D = 1 - 1 + z1 A ; (5.27)
tm m

ztm is the total cross section of the moderator;

1m is the mean chord length per unit cell, in the moderator.



Table 5.2

Geometric and Nuclear Constants Used in the Calculation of the Ratios

Concentration Slowing-Down 25 25

of U-235 in Lattice Volume Power of Cell a f

Fuel Rod Spacing Ratio Us z25 28 25 +28 re

(Wt. %) (Inches) VF/Vc (cm) a a SC SC

1.027 1.25 0.03628 0.179 0.2873 0.6101 1.5192

1.75 0.01851 0.182 0.2852 0.6115 1.5164

2.50 0.009069 0.184 0.2832 0.6122 1.5147

1.143 1.25 0.03628 0.179 0.2619 0.6282 1.5707

1.75 0.01851 0.182 0.2610 0.6296 1.5643

2.50 0.009069 0.184 0.2606 0.6304 1.5607

0.711 4.50 0.0448 0.180 0.3646 0.5413 1.3663""

5.00 0.0363 0.180 0.3649 0.5408 1.3661

5.75 0.0274 0.180 0.3651 0.5404 1.3481

Values of e from

Values of E from

ref. B3.

ref. W12.

Q0
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For single rods, this correlation is in excellent agreement with

Hellstrand's results for both metal and oxide rods. In addition, it

agrees well with measured values in homogeneous mixtures of uranium

and moderator.

The calculated values of ERI and resonance escape probability

for the lattices studied here are shown in Table 5.3. For lattices of

1.027 percent enriched uranium, these resonance escape probabilities

are in excellent agreement with those obtained from measurements of

P28 (Dl) with the formula of Kouts and Sher (K4).

Table 5.4 compares the calculated values of p2 8 and C with

results obtained directly from experiments in the large exponential

facility at M. I. T., as well as with values obtained by theoretical ex-

trapolation from experiments in the miniature lattice facility at M. I. T.

These results are also plotted in Figs. 5.10 to 5.13. In these figures,

points which would otherwise lie too close together to resolve have

been separated by slight horizontal displacements.

Table 5.5 gives the percent difference in the values obtained by

the present method and by extrapolation from miniature lattice results,

utilizing the values measured in the large lattice as a basis for com-

parison. This shows that values obtained from the miniature lattice

are generally slightly more accurate than those obtained by the method

presented here, but it is not clear that the difference is significant.

There are some anomalies in these results. Thus, considering

p2 8 , for each method the errors exceed five percent in three cases. In

two of these cases, the 1.25-inch spacing and 2.50-inch spacing lattices

of 1.143 percent fuel (superscript A in Tables 5.4 and 5.5), both methods

differ in the same direction from the values obtained in the large expo-

nential. This suggests that the actual error may lie more in the experi-

ment results than in the calculation. In fact, the inferred values for

these lattices are in much better agreement with each other than with

the experiments. Reference to Table 5.2 shows that in going from

1.027 percent to 1.143 percent, all the factors in Eq. 5.15 change in

such a way as to increase p2 8 . This increases the likelihood that the

experimentally measured value of p28 for the 1.143 percent, 1.25-inch

lattice is in error, since it lies below the value for the corresponding

1.027 percent lattice.



Table 5.3

Values of the Resonance Integral and Resonance Escape Probability

Used in the Calculation of Lattice Ratios

Effective
Concentration Lattice Fuel Rod Resonance Integral U-238 Resonance,,

of U-235 Spacing Diameter ERI2 8  Escape Probability

(Wt. %) (Inches) (Inches) (Barns)

1.027 1.25 0.250 16.95 0.8500

1.75 0.250 17.32 0.9201

2.50 0.250 17.58 0.9599

1.143 1.25 0.250 16.95 0.8500

1.75 0.250 17.32 0.9201

2.50 0.250 17.58 0.9599

0.711 4.50 1.00 11.40 0.8684

5.00 1.00 11.40 0.8931

5,75 1.00 11.40 0.9189

From Strawbridge's metal-oxide correlation (Eq. 5.25).

From exponential formula (Eq. 5.17).
0
0



Table 5.4

Values of p28,the Ratio of Epicadmium to Subcadmium Capture in U-238,

and of C , the Ratio of Capture in U-238 to Fission in U-235,

for 1/4-Inch-Diameter, Uranium Metal Rods in D2 0

P28 C
Concentration Lattice Volume Direct Extrapo- Single Direct Extrapo-

of U-235 in Spacing Ratio Experiment .ation Element Experiment .ation Element
Vue co LMatce Mto (Epntil (Miniatu eto

(WtF R (Inches) VF/Vc (Exponential) (Exponential) Lattice) Method

1.027 1.25 0.03628 0.8453 0.856 0.7853B 0.8028 0.820 0.7991

1.75 0.01851 0.4373 0.425 0.4207 0.6345 0.646 0.6433

2.50 0.00907 0.2272 0.242 0.2170 0.5506 0.568 0.5527

1.143(2) 1.25 0.03628 0 . 8 1 3 0A 0.861 0.8750 0.773 0.733 0.7391

1.75 0.01851 0.4710 0.476 0.4678 0.617 0.594 0.5888

2.50 0.00907 0.2220A 0.251 0.2412 0.490 0.506 0.5049

(1) "Direct Experiment" values from ref. D1.

(2) "Direct Experiment" values from ref. M5.

A, B, C: See discussion in text.

0
I.
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Table 5.5

Percentage Differences Between Values of p 2 8 and C Determined by Measurement

in Exponential Assembly, and Values Determined by Extrapolation from Measurements

in Miniature Lattice or by the Single Element Method

p 2 8 Percent Differences C Percent Differences

Enrichment Pitch VExtrapolation Single Extrapolation Single
F/Vc from Miniature Element from Miniature El ement

(Wt. %) (Inches) Lattice Method Lattice Method

1.027 1.25 0.03628 +1.3 -7.1B +2.1 -0.5

1.75 0.01851 -2.8 -3.8 +1.8 +1.4

2.50 0.00907 +6.5 -4.5 +3.2 +0.4

1.143 1.25 0.03628 +5.9A +7.6A -5.2 -4.4

1.75 0.01851 +1.1 -0.7 -3.7 -4.6

2.50 0.00907 + 1 3 .1A +8.6A +3.3 +3.0

A, B, C: See discussion in text.
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When applied to the 1.25-inch lattice of 1.027 percent enrichment

(superscript B in Tables 5.4 and 5.5), the present method gives much

too low a value, but the result obtained from the miniature lattice is in

good agreement with experiment. Similarly, in the case of the 2.50-inch

lattice of 1.027 percent enrichment (superscript C in Tables 5.4 and 5.5),

the value from the miniature lattice is much too large, but the method of

this paper yields a value in fair agreement with experiment.

Measured and inferred values of C generally fall within five per-

cent of one another and are generally in better agreement than are the

values of p2 8 . This result probably reflects the large single rod contri-

bution to C* compared to the negligible single rod contribution to P28'

Thus, in Figs. 5.10 to 5.13 the values of the intercepts are significant

fractions of the lattice values for C but not for p 2 8 . In the method pre-

sented here, the single rod contribution to C consists mostly of the

subcadmium capture (the first term in Eq. 5.16), which is calculated

from THERMOS and is thus expected to be accurate. The miniature

lattice measurement, of course, includes the single rod contribution,

and only the interaction contribution is adjusted by the theoretical ex-

trapolation. Thus, both approximate techniques are expected to give

more accurate results for quantities containing a large single rod con-

tribution, and this is in fact observed.

There is no simple, arbitrary correction which could be applied

to the results calculated by the present method to improve their agree-

ment with the measured values. In the case of the lattices of 1.027 per-

cent enriched uranium, an increase in the resonance integral would

improve the agreement in p 2 8 but would lessen the agreement in C . If

the experimental values are accepted as correct, then for lattices such

as these the method presented here can evaluate p28 to within five to

eight percent, and C to less than five percent.

Values of p 2 8 and C* for lattices of one-inch-diameter, natural

uranium rods in heavy water are given in Table 5.6 and Figs. 5.14 and

5.15. In this case, values extrapolated from miniature lattice measure-

ments were not available. Agreement between measured and calculated

values is better than for the one-quarter-inch diameter rods. The

uncertainties in the values of p 2 8 and C are comparable. The theory



Table 5.6

Values of p2 8 , the Ratio of Epicadmium to Subcadmium Capture in U-238,

and of C, the Ratio of Captures in U-238 to Fissions, for

One-Inch-Diameter, Natural Uranium Metal Rods in D2 0

P28 C
Lattice Volue Direct Single Direct Single

Experiment Element Percent Experiment Element Percent
(Inches) VcF (Exponential) Method Difference (Exponential) Method Difference

4.50 0.0448 0.507 0.516 +1.8 1.017 1.001 -1.6

5.00 0.0363 0.401 0.417 +4.0 0.948 0.950 +0.2

5.75 0.0274 0.310 0.315 +1.6 0.859 0.884 +2.9

"'Direct Experiment"' values from ref. M6.

CO
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should apply equally well to one-inch-diameter and one-quarter-inch-

diameter rods, but experiments with the larger rods are expected to

be more accurate. Thus, the good agreement between theory and

experiment for the large rods may indicate that some of the difficulty

with the smaller rods is experimental more than theoretical.

5.5 INFERRED VALUES OF THE U235 FISSION RESONANCE
INTEGRAL

Equation 5.13 has been solved for the fission resonance integral,

ERI25,

25

625 25+ 28

ERI2 5  , N a V a SC (5.28)
25 F

rcE V 25Ps c

This equation has been used to obtain ERI25 from measured values of

625, calculated values of p from Table 5.3, and other nuclear and

geometric constants from Table 5.2. The resulting values of the fission

resonance integral are given in Table 5.7. These are generally con-

sistent with one another. The average fission resonance integral, 284

barns, is in good agreement with the infinite dilution integral of

274 ± 10 barns given in the latest edition of BNL-325 (H8). This sup-

ports the often-heard conjecture that in lattices of slightly enriched

uranium the U235 behaves as if infinitely dilute, with no noticeable

effects resulting from the presence of U 2 3 8
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Table 5.7

Values of Resonance Integrals for Fission in U-235,
as Determined from Measurements of 625

Concentration
of U-235 in Lattice Volume ERI 2 5

Fuel Rod Spacing Ratio FISS

(Wt. %) (Inches) VF/Vc (Barns)

1.0270)

1. 43(2)

0.711 (3)

1.25

1.75

2.50

1.25

1.75

2.50

4.50

5.00

5.75

0.03628

0.01851

0.009069

0.03628

0.01851

0.009069

0.0448

0.0363

0.0274

278

300

344

286

300

275

262

256

231

Average (with observed standard deviation of the mean):

50

12

41

52

14

120

10

22

9

281 ± 11

Values of

Values of

Values of

625 from

625 from

625 from

ref. D1.

ref. M5.

ref. M6.

(1)
(2)

(3)
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Chapter VI

A SINGLE ROD INTERPRETATION

OF UNCOLLIDED FLUX MEASUREMENTS

6.1 INTRODUCTION

Several experimenters have measured the macroscopic (W8, B3,

W9) and intracellular (W8, K1) distributions of uncollided fission

neutrons in exponential and critical assemblies. Woodruff (W8) has

summarized the evidence that the various foils used in these experi-

ments are sensitive mainly to uncollided fission neutrons. Of special

importance, because it is related to the fast fission ratio, is the

quantity 628, whose dependence on fissions in uranium-238 is generally

(W10) assumed to occur only through uncollided fission neutrons.

Woodruff (W8) has also shown that the first collision kernel in a cylin-

der provides an excellent representation of the intracellular distri-

butions when the contributions from all fuel rods in the system are

summed to give the total flux at any point.

In this chapter, the results of Chapter II are used to evaluate this

sum conveniently, by separating it into two physically meaningful com-

ponents. To do this, it is necessary to have some information about

the kernel representing the uncollided flux around a single fuel rod

producing fast neutrons. A semi-analytic representation of this kernel

will be developed in terms of an infinite series which converges quickly for

most problems. It will then be shown that the change in magnitude of the

kernel near the fuel rod is so large that theorem A of Chapter II does

not apply. However, the kernel decreases monotonically to zero with

increasing distance from the source, and its rate of change is slow

outside the unit cell in which the source is situated, so that the results

of theorem B of Chapter II are applicable. Thus the uncollided flux

within a unit cell in a large array consists of a single-rod component

whose magnitude varies within the cell and an interaction component

whose magnitude is essentially constant throughout the cell. The
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variation, within a unit cell, of the uncollided flux computed with this

theory is found to be in good agreement with the relative activities

measured in intracellular traverses by Woodruff. In addition, the cal-

culated absolute values of the uncollided flux per source neutron are

used to calculate 628, with results which are in excellent agreement

with the measured values.

6.2 THEORY

6.2.1 Semi-Analytic Form of the First Collision Kernel for a Cylin-

drical Fuel Rod

It will be assumed that there is no axial variation of the source

strength.

Nomenclature

R 0 Fuel rod radius,
-0.

r radius vector of the field point where the flux is to be evaluated,

th
r. E radius vector of the i fuel rod,

N total number of fuel rods in the system,

s(R) = relative source distribution within each fuel rod (normalized

to unity at R = 0),

ER - removal cross section.

The first-flight kernel giving the uncollided flux at r resulting

from a unit annular source at R is derived in Appendix A and has been

used in purely numerical form by Woodruff (W8). It is:

00

GA(R, r) = R f K (Z ry) I(FR Ry) dy, r > R, (6.1)

GB(R, r) = fi K o(ERRy) Io(R ry) dy, r < R. (6.2)

It is shown in Appendix B that GA(R, r) may be evaluated in semi-

analytic form by using integral representations of the Bessel functions

and doing the y integrations first, with the result:
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GA(R, r) = C 2 (Rr)+( IRR) C 3 (Rr)

(R 2 I +

GB(R, r) = 2 rR 2 RR)+ r)I(ZRr) C3 (RR)

+ 2 I90 (ZRr)+I2( Rr)1C(Z
2 4 RR+..,

Here, In is the modified Bessel function of the first kind and

The C functions are defined by the relations:
n

r < R.

(6.4)

of order n.

00 -zt
C (z)= f - dt,

1 tn-1 1-t 2
n = 2, 3, 4, ...

and have been evaluated numerically. Graphs and tables of the first few

Cn functions are given in Appendix D.

This representation of the kernels has the advantage that, once

tables of the Cn functions have been calculated, the computation of the

uncollided flux around a fuel rod of any size with any (cylindrically

symmetric) source distribution within it is reduced to a hand calcu-

lation. The series converges quickly because of the presence of higher

powers of (fR) in succeeding terms and because C n is a decreasing

function of n. The C2 term is usually the dominant one so that survey

computations may be done with only this term.

The kernel 4SR(r, R, ZR), which gives the uncollided flux at r

around a single fuel rod of radius R0 , is obtained from Eqs. 6.1 and 6.2

by integration over R with the proper source distribution, s(R), within

the fuel rod:

(6.6)
R

4SR(r, RO, ER) = fo dR 2irRG(R, r) s(R).
0

This integration has been done with the parabolic source distribution

recommended by Woodruff, who showed that it was a good represen-

tation of the thermal flux distributions measured at M. I. T. (W8). The

result is:

(6.5)

. )
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A 1 C3 (zRr)S3 (R, R0 )
4SR(r, R 0 , R R)) + r

+ C4 (zRr)S 4 (zR, R) + r R (6.7)
2 +

r

B A
4SR(r, R 0 , R SR(r, r,R + 1(Rr) f2 R, R9, r)

+ rI1(zRr) f 3 R, R 0 , r) + ... , r < R . (6.8)

The Sn and Fn functions are defined by means of integrations over the

source distribution within the rod. The defining integrals and specific

formulas for the first few Sn and Fn are given in Appendix E. Except

when r=R0 , Eq. 6.7 converges rapidly, so that two or three terms, at

most, are needed. When r = R0 , the higher terms may contribute about

10 percent of the total, but this contribution is well-approximated by

the techniques developed in Appendix E. Five or six terms are usually

needed in Eq. 6.8.

6.2.2 Calculation of the Total Uncollided Flux Within a Unit Cell

The kernel 4SR' giving the uncollided flux around a single fuel

rod, has been evaluated for rods of one-quarter-inch and three-quarter-

inch diameter, respectively, in heavy water. The kernels given in

Eqs. 6.7 and 6.8 are defined on the assumption that the medium is

homogeneous. This is nearly true in lattices of uranium and water,

whose fast removal cross sections are similar. Hence, in computing

4SR' the heterogeneity has been approximately accounted for by defining,

for each r, an effective removal cross section which gives approxi-

mately the correct optical path length between r and the source. This

effective removal cross section is identical with that used by Woodruff

(W5):

R0(zR)FUEL + (r-R0)(ER)MOD
"EFF(r) r , r > R9, (6.9)

"EFF(r) = (R)FUEL, r <R. (6.10)

To calculate the actual removal rate of uncollided neutrons at any point,

the uncollided flux at that point should be multiplied by the actual
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removal cross section at that point, not by ZEFF. The only use to

which ZEFF should be put is that for which it was specifically designed

to enable one to use in a heterogeneous system a kernel defined for a

homogeneous system.

Figures 6.1 and 6.2 show the single rod kernels computed with

this procedure. The dimensions of the smallest unit cell used at M. I. T.

with each kind of fuel rod are also marked on the figures. It is evident

that 4SR undergoes a large change within the unit cell immediately sur-

rounding the source rod but that its variation within the other unit cells

is not large. Since 4SR decreases monotonically to zero, all the con-

ditions of theorem B of Chapter II are satisfied, except that the kernel

used here expresses the uncollided flux rather than the reaction rate.

Thus:

F P
S(r) = kSR(r) + V (6.11)

c

with:

00

F1 = f 27rr 4SR(r) dr, (6.12)
R
c

where R is the radius of a unit cell. Since the total number of neutrons
c

produced by the single rod is equal to the number which would be removed

throughout the medium, were it infinite, we have:

R R
fo 2irRs(R) dR = (fR) f 0 27rr4SR dr

0 FUEL 0

00

+ (ER) f 27rr4SR dr, (6.13)
MOD R

0

so that:

R R
F 1 0 27rRs(R) dR - f o 2 7rSR(r) dr

RM 0 FUEL 0
MOD

R

- (ERMc 27r4SRk(r) dr . (6.14)
MOD R
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Thus, F 1 can be evaluated if #SR is known.

The nonleakage probability P, by which the interaction contribution

must be multiplied when the system if finite, may be calculated for a

macroscopic source distribution which satisfies the wave equation. This

is not a restriction since any source distribution can be expanded in

eigenfunctions of the wave equation and, in particular, the source distri-

bution in a bare reactor satisfies the wave equation directly. This first-

flight nonleakage probability is then (W 11):

P= arctan 3TF B 2 , (6.15)

3T FB 2

where B2 satisfies:

V2S + B2S = 0. (6.16)

The age 7F is defined as one-sixth the effective mean square distance a

neutron travels to first collision. If the medium is homogeneous, this is

equivalent to (W11):

T = , (6.17)

R

where ZER is the average removal cross section of the medium.

6.2.3 Calculation of 628 in Single Fuel Rods and in Lattices

To compute 628 from the preceding results, it is assumed that

only uncollided fission neutrons can cause fast fission. Then the

number of first generation fast fissions produced per unit length in a

fuel rod by one fast neutron from fission in U 235is:

R
H =f 0  f 27rr dr, (6.18)

0

or from Eq. 6.11:

R E FPV
H = Z 0 dr 27rr 4SR(r) + V F (6.19)

f0 SRc

where:
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71 = fast fission cross section of uranium fuel,

V = volume of fuel rod per unit length.

If we define:

R0

OSR 0V fROSR(r) 27rr dr, (6.20)

f - 0(r) 27rr dr, (6.21)
F 0

Eq. 6.19 becomes:

H = EfVF (SR + V =TVF f. (6.22)
c

These H fast fissions are not distributed within the fuel rod in the same

way as the U 2 3 5 fissions from which they resulted. But 628 is small in

a thermal reactor, so that the fractional contribution of later fast neutron

generations to 628 is also small. Under these conditions, it suffices to

compute the contribution of these later generations by using the same

source shape as for the first generation. The total number of fast

fissions produced is then:

Total number of fast fissions =H+v H2 + 2 H 3 +
Fast neutrons from U 2 3 5 fission 2 8  2 8

(6.23)

H
1-H'(6.24)1 - v28 H'

where v28 is the number of fast neutrons produced per fast fission in
238 2

U , averaged over the fission spectrum. The total number of fast

fissions per fission in U235 is then:

6 ~v 25H (.5
628 = 1 - v 2 8 H (6.25)

On expanding the denominator and using Eqs. 6.19 and 6.20 to separate

into single rod and interaction components, we get:
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628 ~ (v251fVF SR(1+v28'fVFiSR)} + v2 5 'fF P(1+2v 28 fV FVSR) F
c

(6.26)

The term in braces in Eq. 6.26 is the value of 628 in a single,

isolated fuel rod. The second term is the interaction contribution to

628, which depends upon the spacing. In this expression, only terms

through the first power in 1/Vc have been retained. When 1/Vc is

changed for a given fuel rod size, the only other terms which vary are

F 1 and P, and they vary by only a few percent. Hence, Eq. 6.26 pre-

dicts that 628 should be approximately linear with 1/Vc, a relation

which has been observed experimentally.

6.3 RESULTS AND COMPARISON WITH EXPERIMENT

6.3.1 Lattices Studied at M. I. T.

The theory just developed has been applied to some of the lattices

which have been studied at M. I. T. Figures 6.3, 6.4 and 6.5 show the

relative uncollided flux in lattices consisting of one-quarter-inch diame-

ter, 1.027% enriched uranium rods in heavy water, as calculated from

the present theory and as measured by Woodruff. Table 6.1 explains

the symbols on the graphs. Table 6.2 gives the cross sections used in

the calculation. These are similar to those recommended by Woodruff

and, like his, have been chosen to yield the best agreement between the

theoretical and experimental microscopic traverses. The value of

Table 6.1

Symbols Used on the Graphs of Relative Activity in Figs. 6.3-6.6

115 115..
X In (n, n') In 1m Activity

o U 2 38(n, f) Activity

V Ni 58(n, p) Co58 Activity

] Zn64 (n, p) Cu64 Activity

-- Relative uncollided flux from semi-analytic calculation

[( )0.1 m-1 . Z) -0.085 cm- 1
(ER FUEL=0.1cm~, GR MOD = c

All experimental data are from reference W8.
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Table 6.2

Nuclear Data Used in Uncollided Flux Calculations

(ZR)FUEL = 0.100 cm~

(Z RD 2 0 = 0.085 cm~

(ZR)H 2 0 = 0.105 cm~

(ZR)CLAD = 0

v25 =2.45

V 28 =2.84

z= 0.0146 cm-1

0.085 cm for the moderator removal cross section is somewhat lower

than the value of 0.0899 recommended by Woodruff. The difference is

not considered significant because both values are only estimates of the

best value of the cross section. The difficulty in assessing the relative

accuracy of the measurements made with each of the four different

reactions used to measure the fast flux precluded the use of a least

squares method to obtain the "best" value of the cross section. Figure

6.6 shows the relative uncollided flux in a lattice of three-quarter-inch

diameter, 0.947% enriched uranium rods in heavy water. The same

values of the cross sections also lead to good agreement here.

Values of 628 for these lattices have been computed by means of

Eq. 6.25. These, along with the experimentally determined values, are

listed in Table 6.3 and are shown in Figs. 6.7 and 6.8. It is evident

that the values of 628 calculated with the present theory are in excellent

agreement with the measured values, both for single rods and lattices.

This suggests that 628 can be calculated for any lattice by means of the

theory presented here if the effective removal cross sections in fuel

and moderator are known. As the present examples show, these cross

sections can be obtained by fitting microscopic traverses made with

foils (preferably of U 2 3 8 ) sensitive only to uncollided neutrons. The

traverses may be made either in a lattice or around a single rod im-

mersed in moderator. Those made in a lattice are preferable because
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Table 6.3

Values of 628 for Slightly Enriched Uranium Rods in Heavy Water

Fuel Rod Fuel Rod Fuel Rod (a) (b). 00 (c)
Diameter Enrichment Spacing (VF/Vc) 628 628 628
(Inches) (%) (Inches) (Expt.) (Calc.) (Calc.)

1.03 0.0133
±0.0004

1014 
0.0151 0.0140 0.0140

±0.0004

1.03 0.0183
±0.0007

1.14 2.50 0.009069 0.0164 0.0166 0.0167

±0.0010
0.25

1.03 0.0217
±0.0007

1.75 0.01851 0.0204 0.0200 0.0203
1.14 ±0.0030

1.03 0.0274
±0.0012

1.14 1.25 0.03628 0.0265 0.0265 0.0270

±0.0070

S0.00 0.0383 0.0383

5.0 0.0204 0.0489 0.0425 0.0428±0. 0017
0.75 0.947

3.5 0.0416 0.0516 0.0490 0.0494
±0. 0032

2.5 0.0816 0,0615 0.0631 0.0640
±0. 002 1

(a) From refs. M7 and B3.

(b) From calculations made with the semi-analytic method. Leakage in
lattices of finite spacing assumed the same as in critical system.

(c) From calculations made with the semi-analytic method, with no
leakage correction.
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the ratio of the activity at the center of the rod to the activity at the

edge of the cell is especially sensitive to the moderator removal cross

section. Furthermore, cross sections for reactions with uncollided

neutrons are small, so that low activity and poor counting statistics

may present a problem in the single rod experiment. If the fuel rod is

large enough, however, an accurate traverse can be made around it

and the cross sections may be obtained from it.

6.3.2 Applications to Light Water Systems

The theory of section 6.2 has also been applied to lattices of

slightly enriched uranium rods in light water which have been investi-

gated experimentally at Brookhaven National Laboratory. Table 6.2

gives the cross sections used in the calculations. The removal cross

section of uranium has not been changed from the value used in the

calculations for heavy water lattices. For the light water, a removal

cross section of 0.105 cm~ has been used. This is the value recom-

mended by Woodruff as giving the best agreement between a calculation

based on the UNCOL code and the measured microscopic distribution

in a lattice of three-eighths-inch rods in light water.

For fuel rods of one-quarter-inch diameter, there are no

measurements of uncollided flux with which the theory can be compared,

but many measurements of 628 have been made at Brookhaven. Figure

6.9 and Table 6.4 provide a comparison of these measured values of

628 with the values obtained from the theory of section 6.2. Agreement

is generally good, although the theoretical curve may have a slightly

smaller slope than the experimental points indicate. This difference

might be alleviated by the use of slightly different cross sections in the

theoretical calculations. The experimental values of 628 are nearly

linear with the volume fraction of fuel in the unit cell, as predicted by

Eq. 6.26.

Figure 6.10 is a comparison of the values of 628 for these lattices,

as predicted by various theories. The present theory, which involves

only hand calculations, gives good agreement with the results of the

more complicated, and time-consuming, calculations made with the

Monte Carlo and multigroup collision probability methods.
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Table 6.4

Values of 628 in Light Water Lattices

0.25-Inch-Diameter Rods,9 1.03% Enriched

Water to Uranium Fuel to Cell 628 60
Volume Ratio Volume Ratio Experimental Values 28

V V FCalculated by the
(Hellens- Semi-Analytic

u c Honeck)''' (Erdik) Method

1.5 0.3211 0.140 0.132 0.134

2.0 0.2767 0.114 0.108 0.115

3.0 0.2167 0.089 0.082 0.0898

4.0 0.1781 0.069 0.067 0.0746

From reference H9.

From reference El.

I'
C~3
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Chapter VII

SUMMARY AND RECOMMENDATIONS FOR FURTHER WORK

7.1 INTRODUCTION

In the previous chapters, it has been shown that the Single Element

Method of analyzing reactor physics problems produces both useful

numerical results and considerable insight into the reactor physics

processes occurring in thermal nuclear reactors. This final chapter

contains a summary of the results which have been established, together

with suggestions for applications to related problems. The chapter will

conclude with some comments on the possibility of using these methods

to treat other problems in reactor physics.

7.2 THEORETICAL METHODS

The theoretical foundation of the Single Element Method was pre-

sented in Chapter II. It was pointed out there that the reaction rate at

any point in a unit cell can be viewed as the sum of the reaction rates of

neutrons originating in each separate fuel element of the system.

These individual reaction rates are simply values of the same kernel

function, evaluated at a different argument for each source element

and weighted with the relative production rate in that element. The

kernel represents the reaction rate per source neutron as a function of

distance from the single fuel element providing the source of neutrons.

It was then shown that in a large uniform lattice, the sum can be evalu-

ated analytically if the kernel satisfies the important condition that it

be a monotonically decreasing function of distance from the single fuel

element providing the neutron source. When this condition is satisfied,

only the first few terms need be summed explicitly. These terms

represent the contribution of neutrons originating from the fuel element

in the unit cell where the reaction rate is to be evaluated and from fuel

elements in nearby unit cells. The Poisson summation was used to
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demonstrate that the sum of all the remaining terms gives a result

which is effectively constant throughout the unit cell considered. The

number of terms which must be summed explicitly equals the number

of unit cells, surrounding and including the one of interest, in each of

which the magnitude of the kernel suffers a large fractional change.

Two special cases of this result are particularly simple and important.

They are useful for a large number of problems in reactor physics.

In the first special case, there are no unit cells within which the

kernel experiences a large change in magnitude; thus, the total reaction

rate in the unit cell of interest is effectively constant. This state of

affairs is found for neutrons in the epithermal energy region of many

thermal reactors. The slowing-down density in these reactors is often

assumed to be constant within a unit cell, both in treating resonance

absorption and in calculating the slowing-down source into the region of

thermal energies.

The second special case is that in which the kernel changes magni-

tude significantly only within the unit cell of interest itself. When this

is so, the reaction rate in that cell may be expressed as the sum of a

space-dependent term and a space-independent term. The space-

dependent term is the kernel which represents the reaction rate of

neutrons originating from the fuel element contained in the cell of inter-

est; the space-independent term is a constant which represents the con-

tribution of neutrons originating outside the cell of interest. These are

usually denoted as the "single rod" and "lattice" contributions (H9),

although there have heretofore been no systematic attempts to calculate

their magnitudes from first principles. It was shown in Chapter VI that

the distribution of fast neutrons in reactors moderated by light or heavy

water is well described by these two terms.

The results of Chapter II thus provide a generalization of the usual

assumption that the slowing-down density is constant throughout a unit

cell. They show what conditions are required for any reaction rate to be

effectively constant across a unit cell, and also what space dependence

must be included when these conditions are not met.

Chapters IV, V, and VI comprised the application of this method

to the thermal, resonance, and fast neutron energy regions.
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7.3 APPLICATIONS IN THE THERMAL REGION

In Chapter IV, an expression was deduced for the value of the

thermal utilization in a uniform lattice in terms of a parameter r, per-

taining to an individual fuel element. This parameter, which is analo-

gous to an impedance, is the ratio of a flux to current. The flux is that

subcadmium flux which would exist at the center of the element if all

fast neutron sources in the system remained unchanged but if, in the

calculation of the subcadmium neutron transport, all fuel elements

were replaced by moderator. The current is the actual current of sub-

cadmium neutrons into the element. The parameter depends upon the

particular moderator in which the fuel is placed but is essentially inde-

pendent of neighboring fuel elements and of the boundaries of the system.

It was shown in section 4.2.1 that, in heavy water, values of this

parameter can be obtained from experiments around a single fuel rod

immersed in moderator. Values of the thermal utilization obtained by

this method for lattices of cylindrical, uranium metal rods are given

in Table 4.3. On the average, they agree with those obtained from

THERMOS to within about 0.3 percent. For these lattices, the method

presented here may not be quite as accurate as the ABH method or

methods such as THERMOS which solve a discrete form of the transport

equation. In lattices composed of more complex fuel elements, the

method presented here becomes increasingly attractive because the

transport equation becomes increasingly difficult to solve efficiently (in

terms of computer time and core storage) as the geometric complexity

increases; the single element method characterizes the whole fuel ele-

ment by the experimentally measured parameter r and is thus practi-

cally indifferent to the internal structure of the element. In the single

element treatment, any lack of cylindrical symmetry inside the fuel

element is accounted for in the experimentally measured parameter r

and need not be considered explicitly in calculating values of the thermal

utilization.

It is recommended that the applicability of the single element

method to clustered fuel elements in heavy water be verified experi-

mentally. The elements used for the single element experiment should

have been fully investigated in lattices, so that measured values of the
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thermal utilization are available for comparison. A comparison should

also be made with various theoretical methods of calculating values of

the thermal utilization of the clusters.

It was pointed out that the SEM is expected to be useful, too, in

determining values of the thermal utilization in graphite-moderated

lattices but that its usefulness for lattices containing light water is un-

certain. These applications should be investigated experimentally and

theoretically.

7.4 APPLICATIONS IN THE RESONANCE REGION

In Chapter V, the SEM expression for the slowing-down density

in a unit cell was related to the flux by the assumption that 4=q/9 E.

By this means, expressions were derived for the values of the ratios

p 2 8 , 625., and C in a large, uniformly spaced lattice. The ratios are

defined in section 5.1.1. Three results of interest were obtained.

First, these expressions show that in a large,'uniform, heavy

water lattice, all three ratios are nearly proportional to 1/Vc, the

reciprocal of the volume of a unit cell. It was pointed out that this is

of great usefulness in evaluating experimental results because values

of a particular ratio, for the same fuel elements at different lattice

spacings, should lie on a nearly straight line when plotted against 1/Vc'

This dependence makes it easier both to discern bad or doubtful data

and to interpolate experimental values to other lattice spacings. A very

useful approximation consists in assuming that the line is exactly

straight so that, to establish its position, experiments need be done at

only two different lattice spacings. Once determined, the line can be

used to estimate values of the ratio of interest for the same fuel ele-

ments at any other lattice spacing. It was pointed out that a further

saving can result if one of the "lattices" used to establish the position

of the line is that lattice for which the abscissa, 1/Vc, is zero. The

physical realization of such a "lattice" is a single fuel element im-

mersed in a large amount of moderator. Thus, measurements on a

single fuel element can contribute to the experimental estimation of

p 2 8 , 625, and C in lattices. That such a procedure is indeed feasible

is evident from an examination of Figs. 5.10 through 5.15.
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The second result of interest is that the formulas derived in

Chapter V for p 2 8 and C may be used to evaluate these ratios directly

from calculation. The required data for this purpose are: a) the value

of the effective age 'r2 8 to resonance capture in U 238; b) the values of

the ratio of cross sections averaged over the subcadmium energy

spectrum in the fuel; c) the value of re, the effective number of fast

neutrons produced per thermal absorption in the fuel. The age T28

was obtained from an experiment around a single fuel element and was

found to be reasonably independent of the size of fuel rod used; values

of ia were obtained from THERMOS; values of e were obtained from

Chapter VI. The values of p 2 8 and C computed in this way were found

to agree to about 5 percent with values measured in the large exponen-

tial at M. I. T.

The third result of interest is that values of 625 measured in

lattices in the large exponential at M. I. T. can be used with the

single element formula to obtain values of the fission resonance

integral of U235 in lattices. Values of the fission resonance integral

found in this way exhibited no systematic trend with lattice spacing.

The average value was in excellent agreement with the infinite

dilution value given in the Second Supplement to the Second Edition

of BNL-325.

Several plots of data obtained at other laboratories for different

moderators were included in Chapter V. The expected linear depend-

ence was observed in all cases.

The single element expressions for the ratios involve the ERI's
238

for resonance capture in U . These vary with the lattice spacing.,

but no extensive set of measurements has ever been made in heavy

water lattices. It is therefore recommended that a program be insti-

tuted to measure resonance integrals in lattices. The effect of the

lattice spacing is small but should be resolvable in a careful experi-

ment designed for that purpose. In one-quarter-inch-diameter rods,

for example, theory (S5) predicts that the resonance integral changes

from 17.77 barns for an isolated rod to 16.95 barns in a lattice with a

triangular spacing of 1.25 inches. The values obtained for the resonance
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integrals should be compared with values from Kier's theoretical cal-

culation (K3).

7.5 APPLICATIONS IN THE HIGH ENERGY REGION

In Chapter VI, a semi-analytic expression for the first-flight

kernel was developed. Using the methods of Chapter II, it was shown

that the uncollided flux within a unit cell in a large, uniform array may

be expressed as the sum of a single element component, arising in the

fuel element contained in the cell of interest, and a lattice component,

arising from all other fuel elements in the system. Throughout the unit

cell of interest, the lattice component is constant and inversely pro-

portional to cell volume. The constant of proportionality varies slightly

with lattice spacing and may be determined, as shown in section 2.2.5,

from an integration over the single element component.

Formulas expressing the spatial dependence of the single element

component were developed in Appendix B by an expansion of the first-

flight kernel for infinitely long annular sources. The expansion is use-

ful in obtaining numerical results and also shows clearly how the

kernel for an annular or cylindrical source reduces to that for a line

source at large enough distances from the source. This expansion was

used in section 6.3 to evaluate the single element and lattice contri-

butions to the uncollided flux in the heavy water lattices studied at

M. I. T. The predicted spatial dependence of the uncollided flux agrees

well with that obtained experimentally by G. Woodruff (W8). This flux

was used with a theoretically developed fission cross section to compute

values of 628 in these lattices. The results are in good agreement with

the measured values, as shown in Table 6.3. Because of its dependence

on the uncollided flux, 628 was shown theoretically to exhibit a linear

dependence on the inverse of unit cell volume, and this was verified in

Figs. 6.7 and 6.8 by comparison with the results of experiments made

in the exponential assembly.

It was pointed out that the only parameter appearing in the single

collision kernel is the removal cross section of the moderator. This

can be determined from an experimental measurement of the uncollided
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flux distribution near a single element immersed in moderator and can

then be used in the calculation of 628.
The same method was used in analyzing experiments on uranium

metal rods in light water. Again, the resulting values of 628, shown in

Fig. 6.9, were in good agreement with the experimental results.

The method presented here is extremely useful, since it yields

results having an accuracy comparable to more complicated methods

but requiring only a modest amount of time and computation. Even if

more complicated models, such as Woodruff's UNCOL code (W8), are

employed, the use of the expansion presented (in Appendices B and E)

for the first-flight kernel should save considerable computer time.

7.6 SUMMARY AND SUGGESTIONS FOR FURTHER APPLICATIONS

It has been shown that use of the single element method is advan-

tageous in several ways. First, it permits the data to be presented in

a particularly lucid and meaningful way. Second, it suggests methods

by which values of various parameters in lattices may be obtained by

experiments on single fuel elements. Such experiments have the ad-

vantage of automatically including any complicating effects which may

arise because of the complex structure of an individual fuel element.

Third, the single element method suggests new and useful computa-

tional procedures for evaluating reactor parameters theoretically.

Of the advantages suggested in Chapter I for the Single Element

Method, only its applicability to clustered fuel elements and to non-

uniform arrays has not been demonstrated here. Because the method

works so well for lattices of individual fuel rods in heavy water, its

use should be investigated for lattices of clustered fuel elements in

heavy water. The possibility of analyzing nonuniform arrays by the

Single Element Method may be particularly valuable in considering

multiregion reactors. The theoretical analysis in Chapter II suggests

that a region which is far enough from the unit cell of interest con-

tributes only a space-independent background to the neutron density

within that cell.

The applicability of the Single Element Method to the regions of

thermal and resonance energies in light water reactors ought to be
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investigated. The results of Klahr et al. (K2) on the use of self-

consistent kernels obtained from experiments on full lattices and the

straight lines which appear in Figs. 5.1 to 5.3 of the present report

suggest that the SEM will prove useful. It is not yet clear just

how accurately kernels for light water lattices can be obtained from

experiments on single fuel rods, and this problem should be studied

by experiment.

Finally, the SEM may be useful in studying the reactor physics

of fuel which has undergone considerable burnup. This would be

especially valuable because the high radiation levels of such fuel pre-

clude the use of full exponential or critical assemblies for detailed

studies in reactor physics.
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Appendix A

DERIVATION OF THE FIRST COLLISION KERNEL

FOR AN INFINITELY LONG ANNULAR SOURCE

IN A HOMOGENEOUS MEDIUM

The first collision kernel expressing the uncollided flux from an

annular source of infinitesimal thickness will be derived, starting with

the first collision kernel for a point source. The kernel for a line

source will be derived first, and from it the kernel for an annular

source will be derived. The system is assumed to be infinitely long in

the axial direction; the source is uniform along its length and is

normalized to one source neutron per unit length of source. The

medium is homogeneous, with a removal cross section of Z.

Consider the geometry shown in Fig. A.1. The line source lies

along the z axis. The kernel G (r), representing the uncollided flux at

radius r, may be expressed as an integral over the kernel for a point

source:

*dz e- Z
G (r)= F.ze (A.1)

-o47rp 2

By means of the relation:

2 2 2z =p -r , (A.2)

Eq. A.1 may be put into the form of an integral over z:

G (r) = 2 dp pe , (A.3)
r 2 2 2

4rp p -r

and with the further substitution:

u = 2 (A.4)
r

the expression for the kernel becomes:

1 "" du e-Eru
G (r) -=7 (A.5)

1 2
ru u -1



-Eru 00
e ru Zf dy e-Eruy

ru 1

which may be introduced into Eq. A.5, with the result:

G (r) =0 -- du Z
I 27r u2 _ 1

dy e-Eruy (A.7)

When the order of integration is interchanged in Eq. A.7, one gets:

G (r) - 2 dy
1 71

du e-Eryu

2u - 1

But the zeroeth order modified Bessel function of argument z is defined

as (W5):

K 0(z) = S
1

du e-zu

2
u -l1

(A.9)

so that:

00

G (r) = A f
1

dy K 0 (Ery),

which is the desired expression for the line kernel and agrees with that

given by Weinberg and Wigner (W4).

The first collision kernel for an annular source may be expressed

as an integral over line source kernels. Consider the geometry shown

in Fig. A.2. The kernel G(R, r), giving the uncollided flux at r from an

annular source of unit strength and of radius R, is:

27r
G (w) RdO

G(R, r) = 2

f
(A.11)

RdO

where the denominator effects the normalization to unit source strength.

By means of the cosine law:

w2 = R2 + r - 2Rr cos6, 0

But:

144

(A.6)

(A.8)

(A.10)

(A. 12)
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FIG. A.1 GEOMETRIC CONFIGURATION USED IN DERIVING THE
FIRST FLIGHT KERNEL FOR A LINE SOURCE

R

r.

FIG. A2 GEOMETRIC CONFIGURATION USED IN DERIVING THE
FIRST FLIGHT KERNEL FOR AN ANNULAR SOURCE
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and Eq. A.10, the kernel for the annular source may be expressed as:

G(R, r) 2
(27r) 0

d0
1

K (Zwy) dy,0

G(R, r) = 2 27r
(27r) 0

dOS
1

K (y R 2 + r2 - 2Rr cos 0 ) dy. (A. 14)

When the order of integration is changed, this becomes:

G(R, r) = 2 dy 2r
(27) 1 0

dO K 0(y NR 2 + r 2 - 2Rr cos 0 (A.15)

But by the addition theorem for Bessel functions (W16):

TF/'.fT~2l2C1 hI~\ 00

K 2y R+r 2 - 2Rr cos 0 )= m
0( ZYN~r-m=- oo

cos mo.

(A.16)

When this result is substituted into Eq. A.15 and the integration over 0

is done, only the m=0 term will yield a nonzero result because:

27r

0
dO cos mO =

0 ,9

27r,

m =±1, ±2,

m= 0

The result is:

GA(R, r)= 1 K 0 (Ery) I 0 (ERy) dy,

which is the desired result and agrees with the form given by Weinberg

and Wigner (W4). This kernel is labelled with the subscript "A" to

denote that it is valid only when r > R.

When r < R, the roles of R and r must be interchanged in the

addition theorem, Eq. A.12. The net result is to interchange r and R

in the final form of the kernel:

GB(R, r) = dy K (ZRy)
B 1

I 0 (Ery) dy,

(A.13)

(A.17)

r > R, (A.18)

r < R. (A.19)

K m(Eyr) I m(ZyR)
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Appendix B

SEMI-ANALYTIC FORM OF THE FIRST COLLISION KERNEL

FOR AN ANNULAR SOURCE IN A HOMOGENEOUS MEDIUM

The first collision kernel describes the spatial dependence of the

uncollided flux from a unit source in a homogeneous medium. In

Appendix A, an exact but numerically intractable expression was

derived for the first collision kernel in the case of an annular source

of infinitesimal thickness and infinite length. The source distribution

along the length of the annulus was assumed to be uniform. In this

appendix, the exact expression for the kernel will be reduced to a

numerically useful and physically meaningful approximation. There

are three cases:

Case A. Field Point Outside the Annular Source

The kernel, as derived in Appendix A, is:

GA(R, r) = dy K 0 (Ery) I(ERy), r > R. (B.1)

For the Bessel functions, we substitute the integral representations

(W5):

K (Ery) = dt e , (B.2)
0 1 t2_1

I (ZRy) = 1 dx e- .(Ry)x (B.3)
o -1 1- 20~ -T x2

Doing the integration over y in Eq. B.1 now gives:

z 1 +1 dx e-2Rx 0 dt e-rt 1
GA(R, r) ~ 27r 1 2Rx + rt

(B.4)
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We now use the expansion:

ERx + Ert Ert(1+ R)

+2
ZRx + Zrt rt

which is valid since:

because:

R r,

t > 1, 9

and the expansion:

1 _ 1

t -1 t1-I

= 12 4

2I
)\t

3

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

( ) n

+

(2n-1)(2n-3).

2 n n1

(B.10)

When the resulting expressions are grouped according to powers of x,

the result is:

GA(R, r) = 1
'+1 -E x~

e
- 1 

2 1-1 1x

-Ert

dt e2
1+ 1( 2 + A (-1)4 +

(Rx 0C0c
>ri

+ Rx 2

-ert
e t3 1 +

e

1 t

2 4
+ -Ui-

( 2

t 1

+

34
+

(B.11)
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With the definition:

Cn(z) =
1

- zt
dt e

t n
f 1+

G)2 4 31)4
+ 80

the kernel becomes:

GA(R, r) = 1 1r
+1

-1

dx e-ERx

1 2 ~C2 (Er)
- )C 3 (r)

+ (Rx2 2 C 4 (Er) + ... + (-1)n(x n Cn+ 2 (Er) + . .

But from Eq. B.3 defining the integral representation of I
follows:

.
(B.13)

there

k -zx
dxx e

_1 

k d
= (-1) k [I(z)].

dzk 0

GA(R, r) = r (ZR) C (E r) + Ir ( 3(Er)

+ (i) 2 I"(ZR) C 4 (Er) + ...

+ ( )n (B.15)n)(ER) n+2 (ZEr) +

Each function here is the weighted sum of an infinite series of exponen-

tial integrals. The convergence of this sum is examined in Appendix F.

The derivatives of the Bessel functions can be expressed in terms

of the Bessel functions, themselves, by using (Al):

(k)(Z) = -k -k+2 () I- k+4+ . . . + (k ,k kk (B.16)

and:

I-k(Z) = Ik(z),

+
. ) . (B.12)

1 S+1
-1

Thus:

(B.14)

(B. 17)
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so that the first few derivatives become:

I' (z) =

I (z) + I2(z)
I''(z) = 2 ,

( 2

IFIF W 3I 1(z) + I 3(z
0 4

(IV) (
0

31 0 (z) + 412(z) + 14(z)

8

(B.18)

(B.19)

(B.20)

(B.21)

Case B. Field Point Enclosed by the Annular Source

The kernel, as derived in Appendix A, is:

GB(R, r) = 2
1

dy K0 (FRy) I 0 (Zry),

This is just the form given in Eq. B.1, except that R and r have been

interchanged. However, r is now smaller than R, so that all the pre-

vious manipulations are still valid and GB may be obtained by inter-

changing R and r in Eq. B.15:

GB(R,r) = 2(ZR)I9(Zr)+()

2

(B.23)

Case C. Semi-Analytic Form of the Line Source First-Flight Kernel

The annular source kernel reduces to a line source kernel when

the radius of the annulus is zero. Alternatively, from the definition of

the line source kernel given in Appendix A:

G(r) 
27r 17ydy K 0(Ery),

r < R . (B.22)

C3(ER) I' (Er)

(B. 24)

+( n (n)r ) I0 (Zr) C (ZR) +
R n+2
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it is clear that:

G (r) = GA(0, r) . (B.25)

From Eq. B.15, this is:

C2(r
G (r) = 2 .r (B.26)

2 7rr

This form of the kernel displays clearly the line singularity at

r =0. C 2 (Er) accounts for attenuation by removal, since the total geo-

metric attenuation appears in the denominator.
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Appendix C

PROPERTIES OF THE FIRST COLLISION KERNELS

AND OF THE C FUNCTIONS USED IN THE
n

SEMI-ANALYTIC FORMS OF THE KERNELS

Several useful properties of the first collision kernels derived in

Appendix A and of the Cn functions defined by Eq. B.12 will be demon-

strated. These properties follow trom mathematical manipulations of

the defining expressions.

Property (i):

C n(z) is a positive, smooth, monotonically decreasing function of

z. This is clear from the definition:

C n(z) = ,S1 dt e-zt

tn-1 4t2 _ 1
(C.1)

Property (ii):

(C.2)

The defining integrals show that the integrands are everywhere

positive and the integrand used for C n(z) is always larger than or equal

to that used for Cn+1(z).

Property (iii):

C n(z) dz = C n+1(Z).

The integral definition of Cn(z) may be rewritten as:

o dt e-zt

1 tn-1 t2 -1

C (z) dz = dz
Z n

(C.3)

(C.4)

Interchanging the order of integration proves the result.

oo

C n+1 (z) < C n(z).
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Property (iv):

dCn+1(z) dCn(z)

dz dz (C.5)

This is proved by differentiating Eq. C.3 with respect to z to get:

dC (z)

Cn+1 (z) = d (C.6)

replacing n by n+1 to get:

dC n+1(Z)
C n+ 2 (z) n+1 , (C. 7)

and noting that theorem (ii) proves that:

C n+2 (Z) < C n+1(z) . (C. 8)

The theorem now follows from the fact that the C functions are always

positive so that:

I Ck(z)I = Ck(z). (C. 9)

Property (v):

C 2 (0) = 7r/2, (C.10)

C 3 (0) = 1, (C.11)

C 4 (0) = 7r/4. (C.12)

These can be evaluated directly from integration formulas (H2)

after setting z = 0 in the defining integrals.

Property (vi):

At large enough distances, the uncollided flux around a finite,

cylindrical source has the same shape as that around a line source.

That this must be so is clear from physical principles, but not ob-

vious from the integral form of the kernels as given in Weinberg and

Wigner (W4).
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The flux around the finite source is:

R

#F 0 27rRGA(R, r) s(R) dR; (C.13)
0

that around the line source is:

4 = G,(r). (C.14)

A comparison of the semi-analytic forms of GA and G, given in Eqs.

B.15 and B.26 shows that the first term of GA has the same spatial (r)

dependence as G and that when r>> R, the remaining terms of GA are

negligible. This shows that the flux shape will be the same as for the

line source, although its magnitude will differ by a factor of
R

f 0 I (ER) 27rRs(R) dR. However, I (ER) differs negligibly from unity,o0
except for very large sources. Thus, if the finite and line sources are

normalized to the same source strengths, not only their asymptotic

flux shapes but also their asymptotic flux magnitudes will be equal.

The semi-analytic form of GA may be used to determine quanti-

tatively the difference for any source shape and rod size.

Property (vii):

o

fC 2 (z) dz = 1 . (C.15)

This follows from the principle of conservation of neutrons; the total

neutron removal rate around a unit (per unit length) line source must

be one. Thus:

00

f 27rrZG (r) dr = 1, (C.16)
0

00 C 2 (Zr)f 27rr 2 dr = 1. (C.17)
0 27rr

Let:

w = Er, (C.18)
so that:

dw = E dr. (C.19)
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Then:

C 2 (w) dw = 1,

This agrees with the value obtained using:

0O

o
C 2 (w) dw = C 3 (0),

from property (iii),

(C.21)

together with the value of C 3 (0) obtained by direct

integration.

Property (viii):

For large values of z, the asymptotic formula for C n(z) is:

-z
C (z) -z (C.22)

n 2

It is evident from the defining integral:

C (z) =
10

-zt
dt e

tn-1 t2 _

that, as z increases, the major contribution to the integral becomes

increasingly concentrated near t = 1. Thus, if the integral is written:

C (z) =
n1

(C.24)dt e ,_

tn-1 t+1 4t-1)

then the expression in parentheses is quickly varying near t=1 while the

rest is slowing varying, so that t may be replaced by one in the slowing

varying part. Making the substitution:

t - 1 =W,

then yields:

-Z
C n(z) ~ e

nF 2

(C.25)

-WZ
dw e

w
(C.26)

(C.27)C (z) fte
n 2 qz

00

0

as stated.

(C.20)

(C.23)
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Appendix D

CALCULATION OF THE Cn FUNCTIONS USED

IN THE SEMI-ANALYTIC EXPRESSIONS

FOR THE FIRST COLLISION KERNELS

The Cn functions are defined by Eq. B.12 as:

(oo -zt

Cn(z) =- dt e
n L)1 t n

3 )4( 2
+ +

1 (D.1)

which is the expanded form of:

oo -zt

C (z) = dt e .

n 1 tn 2

T his is, in turn, equivalent to:

C n(z) = 1
n i1

-zt
dt e

tn-1 t2 -i

The C functions have been evaluated
n

with Eq. D. 1 in its most general form

bO dt -zt
Cn(z) = t e

n L)1 t

+

for n = 2, 3, and 4 by starting

f1+ 1(12

(2k-1)(2k-3) . . . (1)

2 k !

(i)2k
\t

n(z) = k 0k En+2k(z)

where E.(z) is the exponential integral (A2). The series in Eq.

(D.4)

(D.5)

D.5 is

barely convergent; in fact, neither the coefficient series alone nor the

exponential integral series alone is convergent. That the series in

Eq. D.5 does indeed converge can be proved by use of the following

theorem (W6):

(D.2)

(D.3)

+ +( .4
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"A series u + u + u + ... , in which lim n+1 = 1, will be
1 2rroo n

absolutely convergent if a positive number c exists such that

(D.6)ulim nI+1 -
1 = -1 - c.

n-oo un J
-Z

Using the asymptotic formula (A3), En+2kz ~ z + n + 2k' valid for

large values of n+2k, one gets:

i ak+1 En+ 2 (k+l)limk- aE -12
k-oo k n+2k

lim' k f e -z (z+n+2k)
=lim k(z+n+2k+2) e -zk--o

(2k+1)(2k-1) ... (1)

2k+1 (k+1) 1

2 kk !
(2k-1)(2k-3)

(D.7)

z+n+2k (2k+1)
k-oo kz+n+2k+2 2(k+1) -

= -1 - .

Thus, c = - and the series

Equation D.5 has been

converges.

used in a FORTRAN program to evaluate

C n(z) for representative values of z and for n= 2, 3, 4. Because of the

slow convergence, 5000 terms in the series were used. This is a suf-

ficient number to yield the values of C 2 (0), C 3 (0), C 4 (0) to better than

one percent (by comparison with the exact values in Appendix C).

Further, the asymptotic formula for En+2k shows that for k > 5000 and

for reasonable values of z:

-z -z
(D.10)E W( e e

n+2kZ z + n+ 2k n2k

Since ak is independent of z, the error e n(z) incurred by omitting terms

beyond the five-thousandth is:

e (z) e -z
k=5001

ak

n + 2k
(D.11)

But the sum is just e n(0), which for n = 2, 3, 4 is known because the

(D.8)

(D.9)
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exact values have been calculated by direct integration. Thus:

E n(z) ~ e-Z n(O) . (D.12)

Figure D.1 shows the behavior of C 2 (z), C 3 (z), and C 4 (z) for

small values of z. It may be seen that these are smooth functions,

amenable to simple interpolation. A short table of the same functions

is given by Table D.1.

Table D.1

Values of the C Functions
n

Used in the Semi-Analytic Forms of the First-Flight Kernels

z

0

.03

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

Correct to at

C 2 (z)

1.571

1.424

1.358

1.221

1.111

1.017

0.935

0.863

0.798

0.740

0.687

0.639

C 3 (z)

1.000

0.947

0.920

0.855

0.797

0.744

0.695

0.650

0.609

0.570

0.535

0.502

C 4 (z)

0.786

0.748

0.730

0.685

0.644

0.606

0.570

0.536

0.505

0.475

0.448

0.422

least 1%.

C (z) = dt e-

n tn-1 t2 -
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Appendix E

COEFFICIENTS IN THE SEMI-ANALYTIC FORM

OF THE SINGLE ROD FLUX

The uncollided flux at radius r around a single homogeneous fuel

rod of radius R 0 is obtained by integrating the kernels GA or GB
(defined in Appendix A) over the source distribution s(R) within the rod.

For field points outside the rod, denoted by subscript or superscript

4SR(r,ROE =

R
f 0 GA(R, r) 2irRs(R) dR,

0
r > R , (E.1)

and for field points inside, denoted by subscript or superscript "B":

B(r, R, r

SR 0 0

R
GA(R, r) 2irRs(R) dR + f 0 27rRGB(R, r)s(R) dR,

r
(E. 2)

B A C
SR(r,RO, ) = 4SR(r, r, ) + 4SR(r, R 0 , ),

where:

(E.3)

4SR(r,RO,) =

R

f 0 27rRGB(R, r) s(R) dR.

The origin of coordinates is at the center of the fuel rod. When the

semi-analytic form of the kernels defined in Appendix B is used, the

result of the integrations is:

A1 C 3 (E2r)S 3 (Z, R 0 )A(r, R Z) = 1 C2(Zr)S2(Z, R9) + r
~SR r0 r~ ( F 2 r 2 9 o r

C 4 (Er)Sg4(Z, R0)
+ 2 0+

r

C5 (E r)S 5 (Z, R 0 )

3 +r

r > R0, (E.5)

(E. 4)

..
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pSR(r, R 0 , E) = I (Er)f2 (r, R) + rI(Er)f 3 (r, R 0 )

2
+ - [I9(Er)+I 2 (r)]f 4(r, R) +

The coefficients in these expansions are:

u
S 2(u) = f

U

uS3 (u) = f

u

S (u) = f

S5(u) = f

RI0 (R)s(R) dR,

R 21 (R)s(R) dR,

3
{I (ER)+I 2 (R)} s(R) dR,

4

{31I1(ZR)+I 3 (R)} s(R) dR,

u5

S 6 (u) = R {31 (FR)+4I 2 (ZR)+Ig(ER)} s(R) dR,
0

u 6
S (u) = fR {10I1 (R)+5I 3 (ER)+I5 (FR)} s(R) dR,

S (u) = fuR I (j-2) (ER) s(R) dR,
0 o

S (u) = f R I-( 2)
+(j 2)-

r < R90

(E. 6)

(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

(E.12)

(E.13)

(j-2)+2(FR)

(_22)+ (22 -(j-2)+4(ZR) + +(j-2)(R s(R) dR,

(E.14)

R

f 2 (r, R 0 ) = fr 0 C 2 (ER)
r

R
f3(r, R) = fr C 3 (ER)

r

and:

s(R) dR,

s(R) d ,

(E.15)

(E.16)
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* ~RR

f* R 0  dR(E18
fk(r, RO) = f Ck(R) s(R) k-2 (E.1)

r R
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Appendix F

COMPUTER PROGRAM ONE-ROD

This code is used to compute values of Jrod/D and IEP Jrod/D

from values of relative subcadmium activity at various distances from

a single fuel element at the center of a cylindrical exponential facility.

The details of such an experiment are described in Chapter III and the

notation is defined in Chapter IV.

Input is of the "programmed" kind, in which each fixed point

variable is associated with a given location in one array, and each

floating point variable is associated with a given location in a second

array. Input is provided to the program by punching on cards the value

of each variable and the location of the variable in the array. This is

convenient because only the values which are different from those used

in the previous case need be provided. For each case, all fixed point

input must precede all floating point input. Each case must contain at

least one card of fixed point input and one card of floating point input.

Each card may contain values for up to five variables, which will be

stored consecutively in the input array. Thus, separate cards must be

used for values which are not to be stored consecutively. The input

format is as follows:

Col. 2 Number of input values given

on this card in Cols. 13-72.

Cols. 9-12 13 format; array location of the

variable corresponding to the

input value in Cols. 13-24 of

this card.

Cols. 13-72 5112 or 5E12.8 format; values

for up to 5 variables, which will

be stored consecutively in the

input array.
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The array locations for the input variables are:

Fixed Point Array Locations

1

2

3

8

Floating Point Array Locations

1

61

101

51

52

53

54

Variable

Run number.

Case number.

Number of data points.

0 Unity weighting factor used.

1 Use weighting factors from input

cards (see floating point location

60).

Variable

Radius of the foil closest to the fuel

rod; radii of the other foils are

entered consecutively after this.

Relative weight assigned to the

activity of the foil closest to the fuel

rod; weights for the other foils are

entered consecutively after this.

Activity of the foil closest to the

fuel rod; activities of the other

foils are entered consecutively

after this.

2 2
Value of (Y -c ); see Chapter IV

for definitions of these quantities.

Value of the age from fission to

thermal in the moderator.

Initial value of the activity to be

used in the integration.

Always set to 1.0 .

Restriction: The number of data points may not exceed 40.



*

*

C
C

(ARRAY(61),W)

LIST
LABEL
REVISION TO ONE ROD TD FIT ONLY PART OF POINTS
INCLUDES VARIABLE PHI AT ZERO
EUUIVALENCE (IARRAY(9),IFIRST),(IARRAY(10),ILAST),
DIMENSIONW(40),DIF(40)
COMMON IFIRSTILAST,IP

1 CALL INPUTE
flf122K=1.,21
ARRAY(150)=ARRAY(56)4=LOATF(K-1)*(ARRAY(57)-ARRAY(

22 CALL INTONE(AAA)
ARRAY(150)=0.O
CALL INTTWO
CALL INTONE(ABqAC)
CALL INTSOR
IP=ILAST-IFIRST+1
CALL MATR
CALL VECTR
CALL PHIT(SDWUIP, 2,ICDIF)

SQUERR=0.0
D0113I=1,IP

113 SQUJERR=SQUERR+DIF(I)**2
122 SQUFRR=SQUFRR

GOTO1
END
LIST
LABEL

CMATR
SUBROUTINE MATR
DIMENSIONW(40),DIF(40)
EQUIVALENCE (IARRAY(9),IFIRST),(IARRAY(10),ILAST),(ARRAY(61),W)
COMMON IFIRST.ILASTIP
D0221=1 IP
II I=IFIRST+I-1
S(I 1)=-R(III)

22 S(I,2)=R(III)-SOURCE(III)
999 RETURN

END
* LIST
* LAEEL
CVECTR

SUBROUTINE VECTR
DIMENSIONW(40),DIF(40)
EQUIVALENCE (IARRAY(9),IFIRST)

COMMON IFIRSTILASTIP
PI=3.1415927
DO221=1,IP
III=IFIRST+I-1

22 D(I)=2.*PI*(AA(III)-A-SQ*AC(III
999 RETURN

END

LI ST
LABEL

CSQFW
* SYMBOL TABLE

SUBROUTINE SQFIT
DIMENSION R(50),A(50) S(50,2),STU2,50) STST2FZISTSIt2,219
1D(50),AA(50),AC(5O),f3(50),SOURCE(50),U(50),DIF(50),DATCAL(50),
2ARRAY(150) ,IARRAY(10T
EQUIVALENCE(ARRAY(1),R(1)),(ARRAYt101),A(l)),(ARRAY(51),ASQ),
1(ARRAY(52),TAU),(ARRAY(53),REFF),(IARRAYCl),NRUN),(IARRAY(2),NUM),
2(IARRAY(3),IMAX),(IARRAY(4),IDATA),(IARRAY(5),ISOUR),(IARRAY(6),IA
3) t-IARRAY(74titt (IARRAYt8).Ie)st (IARRAY(9) ,-fDrtitf-ARRAYt1OYIE)

165

56) ) /20.0

*

*

*

,(IARR AY(10),ILAST),(ARRAY(61),W)

)-R(III)*A(IIIT)
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COMMON RASDAAACABSTSTS,STSIiUvDATCALDIFSQUERRvM,IMAX,
1ASQSOURCETAUIDATAISOURIAIBICIDIEREFFNRUNNUM
D-IMENSION SEMI(50)
DIMENSION WS(50,2),WC(50),W(40)
COMMON WSqWD
EQUIVALENCE (ARRAY(61)9W(1) )
M=2

C GET S TRANSPOSE
D0221=1,M
D022J=1, IB

22 ST(IJ)=S(JI)
C
C GET WS
C

IF(IC) 25,23,25
?3 DO24I=19IMAX

D024J=1,M
24 WS(IJ)=S(IJ)

GOT029
25 D0271=1,IMAX

D027J=1,M
27 WS( IJ)=W(I)*S(19 J)

C
C MULTIPLY BY S

C
79 DO331=1,M

0033 J=1,M
STS(IJ)=0.O
D033K=19 IB

33 STS(IJ)=STS(IJ)+ST(IK)*WS(KJ)
C
C GET STS INVERSE
C THIS FORMULA FOR 2X2 MATRIX ONLY
C

DET=STS(1,1)*STS(2,2)-STS(1,2)*STS(2,1)
STSI(1,1)=STS(2,2)/DET
STSI(2,2)=STS(1,1)/DET
STSI(1,2)=-STS(1'2)/DET
STSI(2,1)=-STS(2,1)/CET

C
C GET WD
C

IF(IC)37,35,37
35 D036I=1,IMAX
36 WD(I)=D(I)

GOT041
37 D039I=1,IMAX
39 WD(I)=W(I)*D(I)

C
C MULTIPLY BY DATA VECT2R
c

41 D044 I=1M
SEMI (I) =0.0
nO44K=1, 1B

44 SEMI (I)=ST( I,K)*WD(K)+SEMI ( T)
C
C MULTIPLY STS INVERSE 6Y SEMI TO GET UVECTOR
C U IS VECTOR TO BE FOLND
C

DO 55 I=1M
U( I )=0.0
DO 55 K=1,M

55 U(I)=U(I)+STSI(IK)*SEMI(K)
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999 RETURN
END
LfST

* LABEL
* SYMBOL TABLE

SUBROUTINE INTSOR
DIMENSION R(50),A(50), S(50,2),ST(2,5O),STS(2,2),STSI(2,2),

1D(50),AA(50),AC(50),f3(50),SOURCE(50),U(5C),DIF(50),DATCAL(50),
PARRAY(150) ,IARRAY(10)
EQUIVALENCE(ARRAY(1),R(1)),(ARRAY(101) ,A(f))(ARRAY(51),ASQ),
1(ARRAY(52),TAU),(ARRAY(53),REFF),(IARRAY(1),NRUN),(IARRAY(2),NUM),
2(IARRAY(3),IMAX),(IARRAY(4),IDATA),(IARRAY(5),ISOUR),(IARRAY(6),TIA
3) ,(IARRAY(7),13b),(IARRAY(8),IC),(IARRAY(9),ID),(IARRAY(10) ,IE)

COMMON R,A,S,D,AAACABST,STSSTSIUDATCALDIFSQUERR,M,IMAX,
1ASQSOURCETAUIDATAISOURIA, IICIDlEREFFNRUNNUM

DIMENSION T(50),X(50)
C DOUBLE INTEGRAL OF SLOWING DOWN (AGE) SOURCE)

C
PI=3.1415927
COEF=SQRTF(PI*TAU)
Al=*3480242
A2=-.0958798
A3=.7478556
P=.47047
D0221=1,IMAX
X(I)=.5*R(I)/SQRTF(TAU)

T(I)=1.0/(1.0+P*X(I))
POLY=T(I)*(Al+T(I)*.(A2+A3*T(I)))

22 SOURCE (I)=COEF*(1.0-POLY*EXPF(-X(I)*X(I)))
999 RETURN

END
* LIST

* LABEL
* SYMBOL TABLE

SUBROUTINE INTTWO
DINC7NSION R(50),A(50), S(50,2),ST(2,50),STS(2,2),STSI(2,2),
1D(50),AA(50),AC(50),AB(50),SOURCE(50),U(50),DIF(50),DATCAL(50),
2ARRAY(150) ,IARRAY(10)
EQUIVALENCE(ARRAY(1),R(l)),(ARRAY(101),A(1)),(ARRAY(51),ASQ),
1(ARRAY(52),TAU),(ARRAY(53),REFF),(IARRAY(1),NRUN),(IARRAY(2)NUM),
2(IARRAY(3),IMAX),(IARRAY(4),IDATA),(IARRAY(5),ISOUR),(IARRAY(6),IA
3),(IARRAY(7),IB),(IARRAY(8),IC),(IARRAY(9),ID),(IARRAY(10),IE)
COMMON RASDAAACABSTSTSSTSIUDATCAL,DIF,SQUERR,M,IMAX,
1ASQ.,SOURCETAU,IDATAISOURIA,IBICIDIE,REFFNRUNNUM

DIMENSION E(50)
C COMPUTES INTEGRAL(U*A(U))DU FROM ZERO TO W WHERE

C W IS THE SET R(I)

C USES INTONE
DO 22 I=1,IMAX

22 E(I)=R(I)*A(I)
CALL INTONE(EAB)

999 RETURN
END
LIST
LABEL

* SYMBOL TABLE,
SUBROUTINE INTONE(GSUM)
DIMENSION R(50),A(50), S(50,2),ST(2,50),STS(2,2),STSI(2,2),

1D(50),AA(50),AC(50),AB(50),SOURCE(50),U(50),DIF(50),DATCAL(50),
2ARRAY(150) ,IARRAY(1C)

EQU IVA LENC E (ARR AY (A1R (1) F), ( (1 01)A (1)), ) N ( (ARRAY( 5 1)AS ),
1(ARRAY(52),TAU),(ARRAY(53),REFF),(IARRAY(l),NRUN),(IARRAY(2),NUM),
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2(IARRAY(3),IMAX),(IARRAY(4),IUATA),(IARRAY(5),IOUkR),(IARRAY(6),iA
3),(IARRAY(7),IB),(IARRAY(8),IC),(IARRAY(9),ID),(IARRAY(10),IE)
COMMON R,A,S,D,AAACABSTSTSSTSI,U,DATCAL,DIF,SQUERRM,IMAX,
1ASQSOURCETAUIDATAISOURIA,IBICIDIEREFFNRUNNUM
DIMENSION G(50),SUM(50)

C COMPUTES INTEGRAL (G(U)DU) FROM ZERO TO W WHERE W IS rHE SET

C R(I) USES TRAPEZOIDAL RULE
SUM(1)=(Gil)+ARRAY(150))*R(1)/2.
D0221=2,IMAX

22 SUN(I)=SUM(I-1)+(G(I)+G(I-1))*(R(I)-R(I-1))/2.
999 RETURN

END
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Appendix H

LIST OF SYMBOLS

A Activity of a foil.

238
A epi Epicadmium absorption rate in U per unit length in the

fuel element of interest.

Asub Subcadmium absorption rate in U238 per unit length in the

fuel element of interest.

a Lattice spacing.

B 2  Material buckling.

b Lattice spacing.

C(X) The error incurred in the calculated value of the reaction

rate at point X in a uniform, infinite, slab lattice when only

the first term in the Poisson summation is used.

* 23823
C Ratio of the total U capture rate in the fuel to the U 2 3 5

fission rate in the fuel.

c A constant.

co A constant.

c 1A constant.

D Diffusion coefficient.

D eff Effective shielding factor for a lattice in Strawbridge's

formulation of the resonance integral.

d A constant.

E Energy of a neutron.

Ec Cadmium cutoff energy.

EF Average energy of fission neutrons.

E 2 8  Average energy of neutrons captured in the resonances of

U238
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ERI 2 5  Effective resonance integral for epicadmium fission in U

including the contribution of the smooth fission cross section.

ERI2 8  Effective resonance integral for epicadmium absorption in
238

U , excluding the 1/v component.

(ERI)lE Value of ERI28 in a 1/E flux spectrum.

F The integral of the kernel K over all space, the integration

being over the variable representing the field point.

F 1  The integral of the kernel KI over all space, the integral

being over the variable representing the field point.

f Thermal utilization.

fk(r,R ) Coefficient defined in Appendix E.

G(r) The kernel giving the slowing-down density to subcadmium

energies per unit of area (in the radial plane) at radius r

from the center of a fuel element.

GA(R,r) Kernel giving the uncollided flux at radius r around an

infinitesimally thick annular source at radius R (r > R).

GB(Rr) Kernel giving the uncollided flux at radius r around an

infinitesimally thick annular source at radius R (r < R).

G (r) Kernel giving the uncollided flux at radius r around a line

source at the origin.

H Integral of the total uncollided flux over the volume of a fuel

element.

Jrod Net current of subcadmium neutrons into a fuel element, per

unit length of element.

K(r) Kernel representing, in cylindrical geometry, the flux or

reaction rate at radius r around a line or finite source in

an infinite medium.

K 1 (r) Kernel which is identical to K except within those unit cells

in which K experiences a large fractional change in magni-

tude. Within these unit cells, K1 is zero.
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L Lattice spacing in a uniform, infinite, one-dimensional

system.

P_ 0Mean chord length in a fuel rod.

I m Mean chord length in the moderator, per unit cell.

M A real number.

m An integer.

N A real number.

N28 Density of U238 atoms in a fuel element.

n An integer.

P Nonleakage probability.

P 1Probability that a fission neutron does not leak out of the

system before reaching the effective energy at which 1/v
.238

capture in U occurs.

PRes Probability that a fission neutron does not leak out of the

system before reaching the effective energy at which
.238

resonance capture in U occurs.

P Probability that neutrons born in a fuel rod with a uniform

source distribution will escape the rod without scattering.

p Resonance escape probability.

Q(r, r , E) Kernel giving the reaction rate at r of neutrons having

energy E and born at r .

Q(|j r , E) Kernel giving the reaction rate at r of neutrons having

energy E and born at r. in an infinite medium.

q(E) Slowing-down density past energy E.

R Radius of an annular source.

R( r) Reaction rate at position r.

R Radius of a cylindrical fuel rod.

r Radius vector to field position.
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th
r. Radius vector to position of i source.

r Radius.

S Macroscopic source distribution.

S.(ZR ) Coefficient defined in Appendix E.

s Source distribution within a cylindrical fuel rod.

th
T(r ) Absorption rate of subcadmium neutrons in the i fuel

element, normalized to unity at the fuel element of interest.

VF Volume of a fuel element, per unit length.

V Volume of a unit cell, per unit length.
c

VH2O Volume of water per unit length of a unit cell, in a light

water lattice.

X Coordinate of field point.

x Resonance parameter defined by Eq. 5.26.

X x coordinate of mth fuel element.

Y Coordinate of a field point.

yn y coordinate cf nth fuel element.

r Ratio of the subcadmium flux at the surface of a fuel element

to the net current, J rod' of subcadmium neutrons into the

element.

.' Ratio of 40 to J .o ~rod~

y Inverse of the axial relaxation length in an exponential assembly.

2
VR Radial Laplacian.

625 Ratio of epicadmium to subcadmium fission rates in a fuel

element.

238
628 Ratio of the fission rate in U of a fuel element to the

235
fission rate in U in the same element.

E Fast fission factor.

ri Number of fast neutrons produced directly by one subcadmium

absorption in a fuel element.
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6 An angle.

K Inverse of the thermal diffusion length in the moderator.

1. An integer.

v An integer.

v 25 Average number of neutrons produced by one U235

v28 Average number of neutrons produced by one U238 fission.

Average logarithmic energy decrement.

p 2 8  Ratio of the epicadmium to subcadmium capture rates in
238U

Macroscopic removal cross section.

s Macroscopic scattering cross section.

"am Macroscopic absorption cross section of the moderator.

"EFF Effective removal cross section of heterogeneous medium

(defined in Eqs. 6.9 and 6.10).

Macroscopic fission cross section of a fuel element.

R Macroscopic removal cross section.

"tm Macroscopic total cross section of moderator.

28 238
9 l/v(E) Microscopic cross section for 1/v capture in U

28 28
a-2 2200 m/s value of a1 /(E).
28

o 28(E) Microscopic cross section for capture in the resonances of
Res 238U

aA(r) Standard deviation of the activity A(r).

aN Standard deviation of the observed number of counts, N.

a r Standard deviation of the uncertainty in radial positions of

foils.

a Standard deviation of the uncertainty in axial positions of

foils.



179

Neutron age.

28 Age from fission to the effective energy at which neutrons
238

are captured in the resonances of U .

TAu Age from fission to the energy of the lowest resonance of
1 9 7

Au.

F Effective age from fission to first collision.

4(E) Neutron flux as a function of energy.

O(r) Radial dependence of the subcadmium flux around a fuel

element immersed in moderator.

40 Value of the subcadmium flux which would exist at the center

of a fuel element if all fast neutron sources in the system

remained unchanged, but if in calculating the subcadmium

neutron transport the properties of all fuel elements were

replaced by those of the moderator.

OSR(r) The uncollided fast flux at radius r around an infinitely
long, cylindrical fuel element which is the source of neutrons.
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APPENDIX I

BIBLIOGRAPHY

In this bibliography we list a selection of references which deal

with various aspects of single fuel element neutronics, but which were

not cited as specific references in the body of the report. A brief

comment is included on each.

1. Corno, S. E., "Interpretazione Teorica Delle Esperienze di
Moltiplicazione Neutronica su un Solo Elemento di Combustible,'
Energia Nucleare, 10, 11, (1963). A highly theoretical appli-
cation of small source theory to the problem of a single rod in
an exponential pile. (Series of three articles.)

2. Feinberg, S. M., "Heterogeneous Methods for Calculating
Reactors," Proc. 1955 Geneva Conf., P/669. One of the original
and basic theoretical papers on heterogeneous methods.

3. Galanin, A. D., "The Thermal Coefficient in a Heterogeneous
Reactor," Proc. 1955 Geneva Conf., P/666. One of the original
and basic theoretical papers on heterogeneous methods.

4. Horning, W. A., "Small Source Model of a Thermal Pile,"
HW-24282 (1957). An early attempt at an analysis that could be
used to relate theory and experiment.

5. Corno, S. E., "Theory of Pulsed Neutron Experiments in Highly
Heterogeneous Multiplying Media," in Pulsed Neutron Research,
Vol. II, IAEA, Vienna, 1965. A theory of pulsed neutron experi-
ments applicable to a single fuel element.

6. Lanning, D. D., "Heterogeneous Reactor Critical Conditions
Using Small Source Theory," TID-7532, Part 1 (1957). The appli-
cation of heterogeneous analysis using age theory, to reactors
containing control rods.

7. Meetz, K., "Exact Treatment of Heterogeneous Core Structures,"
Proc. 1958 Geneva Conf., P/968. A theoretical paper which
develops a mathematical formalism for such problems.

8. Zink, J. and G. Rodeback, "The Determination of Lattice
Parameters by Means of Measurements on a Single Fuel Element,
NAA-SR-5392 (1960). Actual experiments on a single fuel rod are
used to infer parameters of graphite uranium lattices, with best
results in the thermal energy region. Also reported in Nucl. Sci.
Eng., 9, p. 16-25 (1961).
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9. Durrani, S., E. Etherington, and J. Ford, "Determinations of

Reactor Lattice Parameters from Measurements on a Single Fuel

Element Channel," APC/TN 1054. Another application of the
method in (8)above.

10. G. W. Rodeback, C. H. Skeen and J. W. Zink, "Single Element
Measurements," Trans. Amer. Nuc. Soc., 2_, 1, June 1959.
A preliminary report on (8).

11. 0. W. Heinzman and S. W. Kash, NAA-SR-1546, August 1956,
"Intracell Flux Distributions for an Extensive Series of Heavy

Water, Uranium Rod Lattices." Reports radial flux traverses

about 1-inch diameter single rods.

12. F. B. Estabrook, NAA-SR-925, p. 13, "Single Rod Exponential
Experiments." Reports other data on same experiments as in

(11).

13. B. Pershagen, G. Andersson and I. Carlvik, "Calculation of

Lattice Parameters for Uranium Rod Clusters in Heavy Water

and Correlation with Experiments," ICPUAE, Geneva 1958,
Vol. 12. An example of the application of the Poisson summation

in heterogeneous lattices.
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ERRATA

Correction

Delete Fig. 5.5 ... page 90a.

Change 0.060" fuel to 0.250" fuel.

Equation 4.12: insert minus sign in front of argument
of exp.

Paragraph 1, line 4 and paragraph 3, line 2: change Eq. 4.4
to Eq. 4.5.

Equation 5.14: note nearly illegible factor of r following
plus sign in numerator.

3rd line from bottom: omit subscript "A" on G(R, r).

5th line from bottom: change reference from (W5) to (W8).

Page

8

49

66

74

83

114

116
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