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FORWARD

The accident at Three Mile Island has impacted upon the global

perception of nuclear safety in a way formally unprecedented. As a

result, government and industry response to the accident has been

prompt and comprehensive. This report represents the first of several

studies sponsored by the Nuclear Safety Analysis Center (NSAC) that
address important nuclear safety issues. In particular, this work
concentrates on developing a methodological framework by which utility

and regulatory engineers can approach the analysis of safety related

problems in a consistent and rigorous fashion.

The goal of this work is to stimulate interest in the establish-
ment of guidelines by which safety analysis can be conducted and also
by which they can be evaluated and finally used to guide the dedision

making process. If such guidelines can be established on a nationwide

joint industry-government basis, much can be gained in reaching con-

census on important issues whether or not they are currently unresolved.

The adoption of logical analytic methods by which to assess licensing
and safety issues - not only in theory but in practice - by establish-

ing a consistent framework to be applied in all cases by all actors
will help the nation to move toward insuring the safe operation of its

nuclear power stations.

It is extremely important that industry and government join

together rather than play adversaries in the process of safety decision

making. This goal can be reached in significant part by the adoption

of on both a federal and industrial level the same analytic framework

for the resolution of nuclear safety issues. This report documents

such an analytic framework; it is proposed that it or a similar version

be considered for use by industry and government in the very near future.

C. D. Heising
Cambridge MA 02139
September 1980
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ABSTRACT

The accident at Three Mile Island (TMI) has led to a thorough

re-evaluation of federal safety regulations and utility operating

procedures in addition to engineered safety features in plant de-

sign. The Nuclear Regulatory Commission has made several recommenda-

tions for changes in nuclear plant design as well as several modifica-

tions to existing operating facilities as outlined in the "lessons

learned" document NUREG-0578. However,' many of these recommendations

have not been analyzed quantitatively to determine the incremental

safety benefit, if any, that may result from their implementation.

Utilities who must take the responsibility for implementing these

new recommendations are in need of a simplified risk-benefit analytic

structure that can provide sound technical backing for positions taken

on licensing and design issues.

This study develops a risk-benefit framework for quantitatively

analyzing generic nuclear safety issues. Existing reliability

analysis methods are used to develop a simplified methodological

framework that nuclear engineers can readily apply to safety issues.

To provide examples of how this framework can be applied, four issues

are separately analyzed:

(i) the anticipated transient without scram (ATWS) issue;

(ii) the containment inerting issue;

(iii) the issue of hydrogen control in PWRs; and

(iv) the issue of the reactor core melt frequency after TMI.

The examples make use of the most recent studies available on each

issue and present original results forthcoming from the analyses
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performed at MIT. Use of WASH-1400 and recent EPRI-NSAC studies are

included. Also, in analyzing the containment inerting problem in BWRs

the Vermont Yankee plant was specifically examined. Reference to the

included nuclear safety analyses should provide nuclear engineers with

detailed examples to guide similar endeavors.

Additionally, a reference handbook on reliability methods de-

signed specifically for nuclear engineers is included as a separate

section of this report. The handbook provides the basic information

required to acquaint nuclear engineers with the principles of safety

reliability analysis. Simple examples on a textbook level are in-

cluded to demonstrate discussed principles.
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I. ANALYTIC METHODS FOR THE RESOLUTION OF NUCLEAR SAFETY ISSUES

In this section, analytic methods for the resolution of nuclear

safety issues are discussed. First, the methods are discussed in the

general context of operations research, the field of research which

applies scientific methods to management problems of decision-making.

Secondly, application of analytic methods to nuclear regulatory prob-

lems is outlined with respect to two broad classes of generic nuclear

safety issues: (i) assessment of human reliability factors, and (ii)

assessment of engineered safety systems. Characteristics of an

analytic framework for generic nuclear safety issue resolution are

also defined and described. Finally, a description of a methodologi-

cal approach for implementing these methods is presented.

A. Scientific Methods of Decision-Making

In the Uiited States today, the energy debate has led to a sub-

debate over how decisions regarding the regulation of technology should

be made. One perspective is that such decisions should be made apart

2,3,4
from the scientific' method. Critics of the scientific method

argue that analysis (particularly in cost-benefit application). fails

to integrate important aspects of policy questions and leads to

erroneous conclusions. Further, they argue that quantitative scien-

tific methods cannot handle ethical issues and instead may obscure

them.

The ethical question has been addressed by proponents of the

scientific method.5-8 These proponents contend that ethics and

science are not separate entities, and that scientific approaches to

issue resolution are, in fact, quite ethical. In defense of cost-

risk-benefit analysis, Maxey has pointed out:
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"What is really at issue in risk assessment methodologies
is not the propriety or impropriety of putting some
callous "dollar value" on human life or injury as a moral
judgment of individual worth, much less of economic losses
to society as a measure of personal expendability. The
public should have long since been confronted with a
threefold ethical justification for cost/risk/benefit
quantifications (emphasis added), namely:

(1) we are in fact maximizing the value we as a
society place on human life when we endeavor to allocate
public monies in such a way as to reduce widespread
hazards, thereby preventing as much loss of life and
protection from injury as possible;

(2) by utilizing this method, we minimize arbitrary,
piecemeal, isolated, selective decisions, and instead aim
at the most socially responsive and responsible process of
decision-making about the cost-effectiveness of finite
resources and public revenues;

(3) with this method we have visible and verifiable
standards for judging the accountability of elected or
appointed officials in their allocation of public monies
in a just and equitable manner."'

Further supporting the use of scientific methods in regulatory

and technological decision making, O'Donnell has pointed out the need

for a cost-benefit perspective in the nuclear regulatory process.

Reviewing the trends of past nuclear regulatory policy, O'Donnell

showed that new regulatory requirements have produced a dramatic im-

pact on the cost of new nuclear plants:9

"Although escalation contributes a significant portion
of the increase in cost, the effect of new regulatory
requirements is the predominant factor (Figure 1) and
has affected the relative advantage of nuclear vis-a-vis
coal-fired electricity production: in 1969, nuclear
enjoyed a 26% advantage over coal; in 1978 this advan-
tage had essentially disappeared. Regulatory require-
ments haveresulted in about 50 NRC-licensed systems
installed on plants currently entering operation; in
1972, 35 such systems were required (Figure 2). The
difference reflects the addition of new safety systems
or the upgrading of certain formerly non-safety systems
to satisfy new NRC requirements. The list now includes
systems such as hydrogen recombiners and safety grade
fuel pooling cooling systems not considered in WASH-1400. "
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Allocation of Plant Cost Increases

ALLOCATION OF PLANT COST
INCREASES 1969 TO 1978

913 |DOLLARS PER KW

COALNUCLEAR

(1969-1978) .Figure 1
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On the basis of his investigations, O'Donnell suggests that a consis-

tent approach to regulatory and government policy be taken by adopting

a uniform standard for cost-benefit analyses.

The history of operations research and the quantitative approach

to decision-making, including regulatory decisions, began in the war

years of the 1940's. Evolving out of defense planning for distribution

and production of wartime equipment and goods, operations research

first dealt deterministically and linearly with resource allocation

problems. George Dantzig, father of linear programming, in recalling

his early memoirs of these times once remarked that his was a linear-

ized world of objective functions subject to constraints of a most

unique nature. Since then, the field has broadened and grown be-

coming both probabilistic and non-linear.

Operations research is applied to problems that concern how to

conduct and coordinate the operations or activities within an organi-

10
zation. The approach of operations research is the scientific

method. The process begins by carefully observing and formulating

the problem and then constructing a scientific typically mathematical

model that attempts to abstract the essence of the problem. It is

then hypothesized that this model is a sufficiently precise represen-

tation of the essential features of the situation so that the conclu-

sions (solutions) obtained from the model are also valid for the real

problem. This hypothesis is then modified and verified by suitable

experimentation. Thus, in a certain sense operations research also

is concerned with the practical management of the organization. Op-

erations research attempts to find the best or optimal solution to the
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NUMlBER OF NUCLEAR PLANT SYSTEMS REQUIRED
TO MEET NRC LICENSING CRITERIA

AT TIME OF OL

BACKITTED SINCE OL

1960 1966

DATE OF OPERATING LICENSE

Number of Nuclear Plant Systems Required to Meet
NRC Licensing Criteria.

..50

40

3

2

0
1972

Figure 2

1978
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problem under consideration. Rather than being content with merely

improving the "status quo", the goal is to identify the best possible

course of action. Although it must be interpreted carefully, the

"search for optimality" is a very important theme in operations

research.

Among the many operations research methods available for deciding

between projects, allocating funds, and determining time schedules, the

probabilistic approach of Bayesian decision analysis emerges as very

promising. The Bayesian perspective of probability asserts that un-

certainty reflects a subjective state-of-mind or state-of-knowledge

lending itself naturally to an interesting viewpoint on the value of

research and development. From this perspective, a decision based on

the best available state-of-knowledge is accomplished through the con-

sultation of experts whose concensus opinion provides a basis upon

which to act. A major benefit of the explicit quantitative approach

is that it synthesizes the opinions of a diverse group. of experienced

experts more effectively than alternative qualitative approaches.

Explicit numerical representation of expert opinion are a regu-

lar input to the evaluation of important problems in the subjective

probability approach. A substantial literature exists recommending

subjective probability judgment as the most appropriate basis for

decision making under uncertainty (see, for example, the work of the

11
Stanford Research Institute's Decision Analysis group ). Much of the

theoretical basis for this approach comes from the influential work of

Reverend Thomas Bayes, a brilliant statistician and thinker who lived

in England during the 1750's (see Section II of this report).



7

Reverend Bayes devised a theorem by which the state-of-information

existing prior to the decision or problem at hand could be updated

with new information gained either through direct experimentation or

upon consultation with experts. The result of the new information

combined with the old is called the posterior information and in

mathematics is usually a probability distribution of some type. Bayes

theorem and its resulting interpretation by others later on provides

the foundation upon which the Bayesian approach to probability and

statistics is based. That is, Bayesians view probability as a re-

flection of our state-of-knowledge of a given phenomenon - if perfect

information were known, than all uncertainty*. would vanish. Bayesians

assert that statements on likelihood, frequencies and probabilities

simply reflect our imperfect state-of-knowledge and that therefore

probability is a "state-of-mind" and not a "state-of-matter". From

this perspective then, the approach of encoding experts' subjective

probability estimates on various important uncertain parameters is

theoretically justifiable. Moreover, in common practice the Bayesian

approach can be shown to be quite representative of what is actually

done in coming to decisions.

The process of probability encoding is one that- usually involves,

intensive interviews of experts by analysts. The SRI Decision Analysis

group has established advanced methods for accomplishing the trans-

formation of expert opinion into the quantitative probability dis-

tributions required to apply decision analysis methods. Spetzler and

Staal von Holstein12 describe the probability encoding methods cur-

rently used by SRI, which are based on several years of experience as
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well as on evidence from experiments. One such method is based on the

use of a probability wheel , which is a disk with two sectors one

blue and the other red with a fixed pointer in the center of the disk.

The disk is spun. finally stopping with the pointer either in the blue

or the red sector. A simple adjustment changes the relative size of

the two sectors and thereby also the probabilities of the pointer in-

dicating either sector when the disk stops spinning. The subject is

asked whether he would prefer to bet either on an event relating to

the uncertain quantity, e.g., that next year's production will not ex-

ceed x units or the pointer ending up in the red sector. The amount

of red in the wheel is then varied until the expert becomes indifferent.

When indifference has been obtained, the relative amount of red is as-

signed as the probability of the event. Use of the probability wheel

is called a "reference process" whereby the subject can relate his

probability judgment to a tangible reference point that more easily

visualizes the encoding process.

In utilizing the Bayesian approach, it is important that the

expertise used in the analysis be carefully scrutinized for validity

and appropriateness; a high-energy physicist is not a nuclear scientist

just as a psychologist is not a sociologist; though the areas are re-

lated, the best available expert in one area must be relied upon over

othersin related but separate areas. Expertise must be incorporated

in such a way as to miimize any overt human biases an individual ex-

pert may harbor and this responsibility is left to the analysts

to ensure.

The use of scientific methods is becoming widely accepted in the

area of regulation particularly in nuclear power applications.
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Economic methods are used extensively to provide estimates on project

potential for benefit. Combined, these approaches can be applied to

assess priorities among any set of competing projects. Expert opinion

and public value judgments can also be quantitatively included in

these analyses to help reflect the best available knowledge and the

past and present attitudes of society. Risk acceptability levels and

perceptions of benefit may also fluctuate with time; these uncertain-

ties can also be handled quantitatively. The results of these analyses

can help guide the regulatory decision making process (they do not re-

place this process). Problems of a political type such as pressures

of suasion by peers and others will still exist; there is no substitute

for our present legal regulatory system. However, greater application

of quantitative approaches can lead to greater acceptance and credi-

bility for such processes helping to minimize undesirable influences.

Properly integrated and exercised, scientific analytic methods can be

powerful and useful in the most complicated of situations.

*B. Application to Regulatory Problems

Two broad classes of generic nuclear safety issues have been

identified as a result of the accident at Three Mile Island (TMI). 13,4

These include:

1. Assessment of Human Reliability Factors (assessing the Value

of Added Improvements in Man-Machine Systems). Given that engineered

safety systems are in place and operable, a more important aspect re-

lated to the final safe operation of a nuclear power plant concerns

the operator's ability to make use of available systems in a correct,

efficient and more importantly, a timely fashion. In order to assess
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the impact of various proposed equipment and/or operations changes in

modifications of the plant (such as inerting Mark I/II reactor contain-

ment structures), it is important to ensure that the human reliability

aspect is adequately analyzed. Therefore, any analytic framework

developed to assess the overall safety impact of a proposed regulatory

change must address human reliability directly within the analysis.

2. Assessment of Engineered Safety Systems (assessing the. Value

of Improvements in the Machine Response to Accidents). Traditionally,

this has been the aspect most studied in system safety evaluations.

While important, the legacy of TMI has indicated the greater signifi-

cance of human-machine interactions perhaps indicating that existing

safety systems are reliable to the degree that human error predominates.

However, the TMI event also revealed some key flaws in machine inter-

actions; the impact of the repairs on the polisher unit in triggering

the initial failure of the feed water pumps is perhaps the most inter-

esting; secondarily, the failure of the pressure relief valve

(PORV) to close after opening is of interest as well as the later

problems related to hydrogen control inside the containment. The NRC

has recommended many changes in relation to these issues,15 and

utilities that must evaluate the impact of such changes on plant opera-

tions must carefully consider the impact of each. Moreover, a system-

atic framework for the analysis of such issues is imperative to de-

velop and to consistently follow.

The principal characteristics that an analytic framework for the

-resolution of nuclear safety issues should possess include:
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(1) Basis in Mathematical Theory (Rigorous). Any method used to assess

accident/failure probabilities should be statistically valid and tested;

likewise, methods used to determine relationships between equipment

failures, man-machine interactions, etc. should also be based on known-

methods. Examples of acceptable approaches include fault or event tree

analysis.

(2) Consistancy of Application (Consistant). The approach and steps

followed in applying 'the procedure should be independent of the problem

analyzed (though, obviously, the results of the procedures will be de-

pendent on the problem).

(3) Facility for Checking Results and Testing Sensitivity (Scrutability).

It is of upmost importance that the framework be easy to comprehend and

logically follow. Calculations should be followable to the end result

allowing for ease in correction. Scrutiny of results relies on the

scrutability of the method employed; the framework for analysis must

facilitate this scrutability. (A major criticism of WASH-1400 was its

16
apparent lack of scrutability .)

(4) Identify the Accident Sequences and Key Interactions Between
Machine-Machine and Man-Machine That Most Impact Upon the Results
of the Aalysis: Ease. of Significant Event Identification
(Revealing)-.

It is imperative that the methodology be able to identify those key

interactions between equipment and operators that most impact upon the

safety assessment. It is important that the method be able to display

these relationships in a clear and understandable manner. Pictorial

graphical descriptions can help facilitate such a display (e.g., fault

trees can satisfy such a criterion if applied in a careful and thought-

ful fashion). Guidelines for the correct application of these methods

are needed to help the analyst proceed in the process.
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(5) Perform Bounding Procedures to Insure the Assessment of Probabilities
is Based on the Best Possible Event Definitions (Completeness).

To a great extent, the assessment of probabilities of event occurrence

rely on the careful definition of the event and its relationship to

other events. Therefore, it is often necessary to break down the event

into its sub-components to try to arrive at those compoients which

facilitate probability definition. Procedures for breaking down events

into sub-components include such methods as "influence diagrams", which

proceed event tree construction. Such modeling tools can help deter-

mine system boundaries, which is often a non-trivial and elusive task

and takes place at the beginning of the analysis. Available bounding

techniques for model construction are included in the method develop-

ment section of this report.

(6) Confirm Probability Estimates Based on Empirical Data With Estimates
Based on Best Available Engineering Judgment (Intuitive).

A procedure is needed to help establish intuitive confidence in model

results; skepticism arises when results are not based on assumptions

and data that agree with experience data. The method must therefore

be capable of incorporating expert judgment.

In short, the framework should be (1) rigorous, (2) consistent,

(3) scrutable, (4) revealing, (5) complete, and (6) intuitive. If all

of the above conditions hold, the method itself will be a useful tool

in utility-government safety assessments.

C. Description of a Methodological Approach

The following methodological approach toward analyzing key

nuclear safety issues is based in part on a Bayesian perspective of

uncertainty. (The Bayesian approach is described in detail in
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Section II, part A of this report). The Bayesian perspective is taken

to make explicit those assumptions and data values that are based on

engineering judgment rather than on experimental evidence since, in

many cases, the experimental data is not available. Also, the Bayesiar

perspective provides a notational mechanism whereby all probability

statements are made relative to a given state-of-information S.

(Notational definitions are also provided in II.A.) As an aid in the

modeling process, the approach suggested here makes use of the tech-

nique of influence diagrams, a procedure described in detail by Owen 18

which permits a better representation of the conditionality and depen-

dence relationship between probabilistic variables. Also, the tech-

nique is well suited for the later structuring of event and/or fault

trees based on the influence diagram.

The methodological approach is now outlined as a series of steps

to be followed by the analyst in the process of dissecting and analyzing

a nuclear safety problem:

Structuring Models of the Interrelationship Between Key Variables

1. Use influence diagrams to identify the significant events

(variables) that affect the problem at hand and identify their

interrelationships;

2. Develop an event tree from the influence diagram to indicate dif-

ferent possible routes to a given consequence;

3. Identify the key uncertainties that must be quantified and the

relevant conditionality relations;
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e.g., Release of radiation to environment
of major order

experience
data base

overpressurization gaseous -
of containment explosion occurs,

degradation of fuel elements reactor core
with release of FP gases temperature increase,

4. Develop fault trees to estimate the probabilities of

events modeled in the event tree;

5. In calculating the TOP event probability, use Bayes theorem

to calculate conditional probabilities;

6. Determine whether human error or mechanical failure is more

likely to dominate in causing failure of systems to respond

when needed; if human error predominates, go to 7;

Modeling of Human Error: Additional Analysis

7. Probability estimates of human reliability may be estimated

on a plant-by-plant basis after acquaintance with plant

personnel and operations procedures are known; advice from

human reliability experts with this information can also be

used to encode probability estimates. Further analysis

involves construction of "human response functions" (step 8);

8. Human response functions can be determined where upper and

lower limits on such functions can be estimated for various

tasks that require performance, e.g.:



15

Block Valve Closed or ECCS
most likely Left On (After Failure of PORV)
value

0
WA

I

10 minutes 2 hrs 5 hrs

Response Time

The above iypothetical distribution measures the probability that the

failure of the PORV is correctly identified and the proper response is

determined in that the block valve is finally closed or the ECCS is

left on i.e., that at least one of the many alternative correct

actions is taken in the indicated time period. (In generic studies,

allowance must be made for possible improvement with time in human

response functions.)

Sensitivity Studies

9. After determining the role of human error in the problem, additional

sensitivity .studies are useful in establishing error bounds on results

and the degree of confidence expressed in the "most likely" or "best"

estimate.

Presentation of Results

10. Graphical and/or pictorial representation of study results should

include the degree of uncertainty and/or error; use of probability vs

consequence graphs is one of the most common methods of result presen-

tation; cost-benefit ratios are another method with respect to- some

baseline value.
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An example of the use of influence diagrams in structuring the

interrelationship between key variables is shown in Figure 3 for the

hydrogen control problem in the event of a class 9 accident. From

this diagram, event trees may be constructed which map the possible

routes available that lead to the top and final event: "release of

radiation to the environment of major order". The influence diagram

helps the analyst determine the major variables of importance and

the chronological sequence of events that can lead to their occurrence.

For example, the event of a gaseous explosion can take place if either

a hydrogen and/or steam explosion were to occur; the iquestion of the

independence of the separate events "hydrogen explosion" and "steam

explosion" can be identified in the diagram as to whether or not an

arrow should be drawn between the two events. *The assumption placed

on the link between the two events will later influence calculations

of the frequency of a gaseous explosion.

Use of the -general framework described here for the structuring

of a safety analysis is applied in Section III.B to the containment

inerting problem. Variations of the general framework are applied to

other examples in Section III. Strict adherence to the ten steps

described above is not necessary to achieve a well performed analysis.

However, a well performed analysis will usually exhibit at least the

following three characteristics:

(1) Structured Model of Event Relationships;

(2) Identification of Key Uncertainties; and..-

(3) Sensitivity Study/Error Analysis.
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II. RELIABILITY AND RISK ANALYSIS METHODS

A. Introduction to Probability Theory

A.1 Viewpoints on Probability

Before the basic equations and concepts of probability theory

are dealt with, it is perhaps more important to begin first by intro-

ducing three different ways of looking at probability and uncertainty.

Each way of looking at probability produces differences in the way in

which probabilities are represented and manipulated and also influences

the engineer in the way in which data is used to derive probability

estimates. There are at least three ways in which probability and

uncertainty are viewed by statisticians. These perspectives are known

as "schools-of-thought" and are often named after the first person who

conceived of them. These schools are:

(i) the CLASSICAL school;

(ii) the BAYESIAN (or SUBJECTIVIST) school; and

(iii) the FISHERIAN school.

To begin with, there is the traditional (or classical) school-

of-thought that claims that uncertainty is a state of nature; i.e.,

that uncertainty is a property of matter and living things. So, just

as an object has a measurable weight, shape and color, the classicists

claim an object also has a measurable uncertainty factor known as a

probability. An example is a coin which, upon being tossed, either

produces a head or a tail. The classicists claim that the coin has a

property of uncertainty or a probability of 0.5 (if fair) of being

either in a heads or tails state. A different coin might exhibit a

different probability of being in these states just as it might exhibit

a different weight, shape or color.
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The Bayesian school-of-thought on uncertainty and probability is

often called the subjectivist school (see Ref. [5]) because instead of

viewing uncertainty as a property of matter, uncertainty is viewed as

a human perception that does not reflect nature so much as it does

cognitive learning processes. Whereas classicists see uncertainty as

a state-of-nature, Bayesians see uncertainty as a state-of-mind. Thus,

since learning and experimentation can often expand horizons and con-

tribute to clarification, uncertainty can actually be reduced through the

learning process. The concept of "up-dating" probability estimates as

new information becomes learned is thus a central tenet of the Bayesian

school.

Finally, the Fisherian school claims that uncertainty resides

neither in the object (observed event) upon which data is based nor

in the data itself (perception of the viewer), but in the mechanism

that transforms the unobservable into the observable. In a sense then,

Fisherians see probability as a measurement of a state-of-transformation

from a certain "true" data point to a certain "observed" data point.

Both true and observed data are certain; the uncertain quantity is the

vector difference between them.

Of the three schools mentioned here, the most prevalent is the

classical school -closely trailed by the Bayesian followed at a much

further distance by the Fisherian school. However, the Bayesian school

is becoming more widely accepted and may in fact become the dominant

theory of statistics in the future. In what follows, both the classical

and Bayesian approaches will be utilized and noted. Also, after present-

ing some basic probabilistic notions, these schools-of-thought will be

returned to and more specific details given (see A.4).
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A.2 Definitions and Notation

Some of the more relevant properties of probabilities are de-

scribed here particularly for the use of Bayes theorem, one of the

more important theorems of probability theory. Beginning with some

notational definitions, we move on to define simple properties of

probabilities, then moving on to Bayes theorem in both classical

and inferential notation.

Let A and B be events; then P(A) and P(B) are the probability

of these events. Some simple probabilistic .properties are as follows:

(U union, "OR"; fl E intersection, "AND")

(1) For A and B disjoint; i.e., if AfB 0 (the empty set), then:

Addition P(AUB) = P(A) + P(B) P(B) + P(A)

(2) For A and B not necessarily disjoint:

P(AUB) = P(A)+P(B) - P(AflB)

where A B
A A

P(T 1 - P(A)
Converse P(B) = 1 - P(B)

P (B) = P (AB) + P (A/B)
I (A) = P (BA) + P(B/\A)

Conditionality [10]: Let A and B be two events such that P (A)-> 0.

Then the conditional probability of B given A written P(B IA) is

defined to be:

P(BIA)P(BIA) =P(A)
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If P(A) = 0 the conditional probability of B given A is undefined.

Independence [101: Two events A and B are independent if and only if

P (AAB) = P (A)P (B)

Definition: P(BjA) = P(B) if AB independent

Example: Suppose that the population of a certain city is 40% male

and 60% female. Suppose also that 50% of the males and 30% of the

females smoke. Find the probability that the smoker is male.

Let M denote the event that a person selected is male and let F

denote the event that the person selected is a female. Also, let S

denote the event that the person selected smokes and let N denote the

event that he .does not smoke. The given information can be expressed

as P(S IM) = 0.5, P(SIF) = 0.3, P(M) = 0.4 and P(F) = 0.6. The problem

is to compute P(MIS). By the definition of conditionality given above:

P(M|S)P(MIS) B(S)

Now P(MnS) = P(M)P(SIM) - (0.4)(0.5)* 0.20 so the numerator can be

computed in terms of the given probabilities. Since S is the union of

the two disjoint sets SAM and SAF, it follows that:

P(S) - P(SAM) + P(SAF)

Since P(SAF) = P(F)P(SIF) = (0.6)(0.3) = 0.18, we see that

P(S) = 0.20 + 0.18 - 0.38.
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Thus

P(MIS) = 0.20/0.38 " 0.53

The problem discussed in this example is a special case of the follow-

ing general situation. Suppose A1, A2 ... A are n mutually disjoint

events with union Q. Let B be an event such that P(B) > 0 and sup-

pose P(BIAK) and. P(AK) are specified for 1 < K < n. What then is

P IB)_?. To solve this problem, note that the AK are disjoint sets

with union n and consequently

B = BA(AJJA2UA3 UA )

= (BAA1)U(BOA2)U ... U(B6A)

n
Thus, P (B) - [ P(BAK)

k-1

But P(AKB) = P(AK)P(B|AK)

so we can write (from the conditionality relation above):

P(A AB)
P(AIB) i

P 2(B)

and substitute in our relationship for P(B) and P(A flB):

P(AIB) = P(A 
)P(B IA i)

I P(BAAK)
k-1
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P(AilB) = P(A i)P(B A )

P (AK)P (B IAK)
k-1

This formula is Bayes Theorem and finds frequent application both in.

probability theory in general and in nuclear safety applications.

Example of Bayes Theorem in Application [10]:

Suppose there are three chests each having two drawers. The

first chest has a gold coin in each drawer, the second chest has a gold

coin in one drawer and a silver coin in the other, and the third chest

has a silver coin in each drawer. A chest is chosen at random and a

drawer opened.

(a) If the drawer contains a gold coin, what is the probability that

the other drawer also contains a gold coin? [Note: the correct answer

is not 1/2].

CHEST CHEST CHEST
(1)(2) (3)

G = Gold coin; S = Silver coin

(b) What is the probability that the second drawer has a silver coin

given the first had a gold coin?

Solution:

Construct a probability space where the events A,, A2 and A3 correspond

respectively to the first, second, and third chest being selected.

These events are disjoint (mutually exclusive) and their union is the

whole space A = (AUA.UA3 ) since exactly one chest is selected. We also

assume that since the chests are being drawn at random, each chest is
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equally likely to be chosen so P(A1 ) = P(A2) - P(A3) = 1/3. Now, let

B be the event that the coin observed is gold. Then: P(BjA1 ) = 1,

P(B|A 2) - 1/2, and P(BIA 3  0.

(a) The problem asks for the probability that the second drawer has a

gold coin given that there was a gold coin in the first. This can only

happen if the chest selected was the first chest, so the problem is

equivalent to computing P(A 1 B):

P(A3)P(BIA,)
P(AP|B) = P( )P(B A)+P(A2 )P (B A 2 )+P(A3 )(B IA3 )

(1/3)(1) 1/3
(1/3)(l)+(1/3)(1/2)+(1/3) (0) 1/3+1/6

1/ -6/9 - 2/3
1/6

(b) The second half asked what the probability would be of the second

drawer having a silver coin given the first had a gold. This can only

happen if chest (2) is chosen, so we must compute P(A2 jB):

P(A2)P(B1A 2)
A2 B) - P(A1)P(BIA )+P(A2)P (BIA2 )+P(A3 )P (B A3)

= (1/3)(1/2) - 1/3
(1/2)

A.3 Inferential Notation

Inferential notation is a nomenclature developed by Howard et al.

[12] to better describe and utilize the Bayesian viewpoint of statistics.

The basic concept of inferential notation is that every probability
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assignment is conditional on some state-of-information, which we may

call S. Then {A|S} = probability of A given state-of-information S.

If x is a random variable, then {x,y|S} is the joint density function

of x and y. The conditional density function of x given y is {xly,S}.

A particularly important state-of-information brought to any problem

is the prior experience defined e. Thus, {AjS} is the prior probability

of the event A and {xje}is the prior probability density of the variable

x. Bayes' Theorem expressed in inferential notation is

{xjy,S} ={ (X}s)=iXtl}
{y S} {y S}

where {xIS} = {xy,S}{yiS} is called the expansion function which

allows knowledge about random variable x to be expressed in terms of

knowledge about another variable y. The expected value or expectation

of the random variable x given state-of-information S is defined as:

<xjS> - f x{xIS}.

Inferential Notation: Probability and Statistics Definitions

A - event

{AIS} = probability of A given state-of-information S

x,y = random variables

{xIS} = density function of x given S

{x,yjS} = joint density function of x and y

(xjy,S} = conditional density function of x given y

{Aje} = prior probability of event A

{xje} = prior probability density function of random variable x

<xJS> = expectation (expected value or mean) of random variable
x given state-of-information A

v <xS> = variance of x
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Operations

{xjy,S} M { X S Bayes' Rule

fxjS} = f {xly,S}{y|S} Expansion
y

<xls> = f <xjy,S>{y|S} Expectation

y

Example: The Coin-Tossing Problem Re-Visited

Let R represent the event of getting a head on the next coin toss

and 0 be the fraction of heads observed after a large number of tosses

n. Since $ is an uncertainquantity, the probability density function

of 0 is defined {OIe}. This is also called the prior distribution on

$ which encodes all prior information known about the coin.

To express H in terms of *, we use the expansion function defined

earlier: {H|S} I f,{H1j0,S}{$fS}.. Given we know $, then {HI$,S} $

would be the best estimate we could make on the probability of getting

a head on the next toss. Thus, {HIS} = f .{$|S} = <OIS> from the defi-

nition of expectation given above, or the expected value of getting a

head on the next toss is $ based on our state-of-information S.

Learning from Observations/Updating the Prior <Distribution

The question arises concerning how knowledge of 0 is changed by

the observation of additional tosses. Suppose an individual observes

an additional head on toss (n+l). From Bayes' Theorem, this new in-

formation effects the new estimate of $ as follows: {$|H}={H$,S}{'IRS}.

-2
We can think of $ as the mean value U with distribution n(x,a /n) as

described by the Frequentist/Fisherian notation. But {HI$,S}=$ from

our earlier discussion, and {H|S}=<*|S>, i.e., the "best guess" we can
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make about the probability of getting a head on the next toss is the

expected value, or 'mean, of the {$|S} distribution. Thus, the pdf for

* given an observation of an additional head "H" is: {$|H,S}I(${$IS}]

<$js> where $ is simply a random variable, {$IS} is the probability

distribution function on $, and <$ S> is the expected value (or mean)

of {0|S}. The pdf for * given the observation of an additional tail

"T" is:

{$IT,S} = ( where (1-$) is a line with slope -1.

Quantititative Example

Suppose we are given a prior density function for the coin-tossing

problem with mean <$IS>-O.5, a=0.05 and prob {.45<H<.55}-.67. Our

prior estimate of $, the fractional number of heads, is <$.|S>=0.5.

Now assume that 100 tosses of the coin are thrown and 54 tosses turn

up heads. Suppose further that we choose to describe the prior dis-

tribution by a beta distribution (this will aid us because the posterior

*-

distribution will also be a beta function). This is done by equating

2
the mean r'/n'=.5 and the variance a =0.0025=((r'/n')(l-r'/n'))/(n'+l).

Solving, we find r'=50, n'=100. Having thus encoded.the prior, the

Beta and gamma functions are often used in Bayesian estimates of the

prior and posterior because they are conjugate families of distribu-

tions; when the prior is a beta or gamma function, the posterior will

be also. (See an application of the gamma distf~ibution in Apostolakis

and Mosleh, "Expert Opinion and Statistical Evidence: An Application

to Reactor Core Melt Frequency", Nuclear Science and Engineering,

Vol. 70, pp. 135-149 (1979).)
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posterior is found by adding the number of heads observed r=54 to the

prior parameter r'=50. Then, the number of tosses n=100 are added to

the prior parameter n'-100. Thus, r"=r'+r=104; n"=n'+n=200. The

posterior is a beta function with mean r"/n"-104/200-0.52 and variance

a -2= (r"/n") (1-r"/n") (n"+l) (.52) (.48) / 201-. 0012.

A.4 Viewpoints on Statistics Revisited

1. The Trequentist (or Classical) School

Define a random variable x to be described by a normal distribu-

tion with mean y and variance a 2; then we can use the following notation

to signify this relationship:

.T a variance
random mean
variable (deterministic)

normal distribution

Suppose we observe n values xi,il...n where each xi is a random vari-

able; then the observed average x is a random variable with probability

distribution function as follows:

2
- axN (y ) where, as n-so,

n

x u n (y,0) or, as the number of observations increases,

the observed mean value x is equal to the idealized "true" value of

the mean y, i.e.,

U x.

lim x = u where x r - is the estimation
n_)WW-1 n
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for the true value of y and is the simple arithmetic average of the

observation values. The expected penalty for using U = x as the esti-

mation for the "true" value of the mean u is:

A 2

n

(Gauss showed that the choice of y - x as the best estimation for the
A 2

mean y minimizes E(y-y) for every value of U. However, Stein s

Paradox describes cases where this might not be true: see Efron,, B.,

et al., "Stein's Paradox in Statistics", Scientific American, 1970).

To the classicists, the variable which is considered to hold

the quality of "uncertainty" is the x variable; the true value of the

mean, V, or the true frequency of an event/object/etc., is a deter-

ministic value known with absolute certainty. This viewpoint cor-

responds to a philosophy that uncertainty is a property of objects:

in nature - just like a coin might have a weight, mass and color,

to the classicists, it also has a property of uncertainty that de-

scribes it; i.e., if it is a fair coin, the value assigned to- the

coin which describes it is 1/2. Thus, absolute certainty exists as

a concept to classicists in that probability becomes a tangible,

measureable quality such as mass, shape or color.

One last note with respect to the classicists; in the 1930's,

J. Neyman developed the concept of confidence intervals. For a normal

-distribution, the probability that the true value for-y lies within

95% of the observed mean value x was established as:

Prob{x - 2a/ < < x + 2a/r} = .95
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The interval [x - 2a//, x + 2a//] is the "95% confidence interval"

for y.

Example: Suppose n=4, a=1 and x =1.2, x2=0.3, x 3=0.7' 4=0.2.

Then x=(.2+0.3+0.7+0.2)/4-2.4/4=.6 and the 95%

confidence interval for y is [-.4, 1.6].

What both Fisherians and Bayesians find controversial about this is

whether the process of inference used by scientists/engineers in

reasoning from noisy data to models is a prpcess that can be handled

by the classical philosophy. For example, the proper interpretation

of a confidence interval is that it covers the true value of y with a

given frequency (say 95%) in a long series of independent repetitions

2
of x N n(y,a /n). Without a long series of independent repetitions

available or possible the relevance of the classical approach is

perhaps questionable.

2. The Fisherian School

A less well known school of statistical thought started by

Ronald Fisher was very popular in the 1940's, although less so today.

A critic of the classical perspective, Fisher proposed a novel theory:

"Randomness lies neither in the data x, or in the 'true
value' of the data y: Rather it lies in the mechanism
which transforms the unobservable P to the observable "

Fisher argued that being concerned about what happens when infinitely

many x values are randomly generated from n(y,a 2/n) with P fixed is

not important. Since there is only one observed value of x in any

single inference problem, the inference process should concentrate on

just that observed value. Fisher was equally hostile toward the

Bayesians because he was familiar with problems in agriculture and
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genetics where assessment of prior distributions is very difficult.

Since he didn't like either approach he developed his own by intro-

ducing something called "normal noise", written . According to

Fisher, uncertainty lies in the normal noise g variable and not in yP

or x. Thus, he derived:

2
x = + 5, i " n(O,a /n)

which can be shown geometrically to be the sum of two vectors. As-

suming v is a known deterministic quantity, the uncertainty is found

in E so when added to y renders the observed fuzzy data point x. Since

2 2
f N n"(0,a /n), then -. N n(0, In) because of symmetry of the normal

distribution about its mean. Thus Fisher showed:

- - 2
yt~x" n(x,a /n)

The value of the true mean y conditioned on the observed point x is a

2
normal distribution with mean x and variance a /n. (As will be shown,

this corresponds to a Bayesian interpretation assuming a flat prior

distribution on x.) The corresponding confidence interval is:

Prob{x - 2a1/ < 1.< x + 2a/vl}xl .95

which Fisher called a "fiducial" (trustworthy) probability statement,

meaning it is obtained as an average over the random transformation

mechanism. The ficudial statement is now considered a fo.rm of Bayesianism



31

or just plain wrong. However, Fisher's ideas on conditional inference

and randomization are still very much in vogue.

3. The Bayesian School

Nuclear engineers have found the statistical concepts developed.

in 1750 by the Reverand Thomas Bayes to be most appropriate for the

problems faced in assessing the safety of nuclear systems. This situ-

ation arises because of the limited data available from the testing of

reactor systems and components such that professional engineering

judgment must be relied upon to establish probability estimates. How-

ever, in most situations, engineering judgments -can be used to establish

a range on probability estimates with a high degree of accuracy. For

example, consider the question of establishing a range on the probability

that your car won't start when you go to use it tomorrow morning; a

range of 10 - 104 /demand seems a reasonable estimate of the limits

on this probability based on experience with the system. The Nuclear

Regulatory Commission (NRC) uses "engineering judgment" routinely in

establishing safety guidelines and regulations. Engineering judgment

combined with quantitative analyses based on that judgment is believed

to be one of the best methods for nuclear safety analysis. The

Bayesian school of statistics provides the theoretical foundation by

which this can be done.

To compare the Bayesian school with that of the Frequentists

and Fisherians, suppose that y itself (i.e., the "true" mean value)

is considered a random variable known to have a normal distribution

with mean "m" and standard deviation "s". Then:

y % n(m, s 2
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2
where m and s are constants known to the analyst. Now suppose an

experiment is run and a particular value for y is found, say x, the

arithmetic mean of the experimental data.- That is, suppose x is con-

sidered an unbiased, normally distributed estimator of y. Then:

- 2
xly " n(y,a /n)

where iliy emphasizes that the distribution is conditional upon tkie

particular value taken by the random quantity y. This last statement

2
is to be compared to the classicist's statement x nu n(y,a /a). Using

Bayes' theorem, it is possible to show that the conditional distribu-

-2 2
tion of y given x is a function of m, x, s , a and n:

y x Nn(m,+ C(x-m), D)

2
where C n/2 and D 2 3

1/s +/a2 1/s +n/a

This last relationship is the ;posterior 'distribution for y1 given the

observed value of X. (This statement would not make sense from the

classicist viewpoint because it is y that is considered fixed - not

the observed point x.) Thus, the major difference between the

classicists and Bayesians is that the classicists see y fixed while x

varies, while the Bayesians see x fixed (for any given experiment)

while y varies.

The Bayesian estimator of the mean V is that quantity which mini-

mizes the conditional expectation of (P-y2*) given the observed value

of x. From the relation for ylx:
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y*(x) = m + C(x-m)

To demonstrate these relations, consider the example of I.Q. testing.

Our prior information is that the mean I.Q. of an average population

is m - 100 with s 15. About 68% of IQ's are between 85 and 115,

about 95% between 70 and 130, etc., i.e.,

y n(100,225)

Suppose now that an IQ test is applied to the American population in

1981, and it is observed that the average score is x - 160, a - 7.5,

what is. now the Bayesian estimate of the mean y? It can be estimated

from:

na2
y*(x) -m + C(x-m), C a2

1/s +/a

2 2
with m-100, s =225, x-160, a=7.5 + a -56.3, n1.

Then

*(160) 100 + C(16 , C 1/56.3 = .018 802
C(160-100), 1/225+1/56.3 .0044+.018 .

or

21
y*(160) =100 + .8(60) - 148; - 44.64 + D 6.7..0224
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That is, the posterior distribution's mean value is 148 (Figure 1).

The Bayesian would say the population has an average I.Q. of 148

instead of 100 where a 95% probability exists that a person tested in

that sample population has an I.Q. between [148-23,148+25] = [134.6,

161.4] where Prob{y*(x)-2Vr<v<y*(x)+2V|Ix} - .95 is the Bayesian

analogue to a 95% confidence interval.

The Frequentists' would observe the same example differently; assume

no prior knowledge of P and observe x "un(r,a n 7.5 and

x = 160. Then yU~ 160 is the best Gaussian estimate of the mean and

the 95% confidence limits are {y-2a/n, y+2a/n) = (145,175). Suppose

that new information is provided indicating that all scores below 100

were reported as 100, although all others were reported correctly.

The Frequentist would still assume y'xa1
60 even given new information.

This apparent defect in the Fiequentist approach is resolved by

Bayesian methods since new information can be used to update existing

prior information.,

If no information, or very little, is available upon which to

base a prior estimate, there are two schools of Bayesian thought about

how to proceed:
*

(1) Objective Bayesians: A flat prior is assumed: y 'n (0,oo).

This represents a prior opinion that is neutral and therefore "objective".

A -2
The Bayesian estimate in this case becomes u*=yvx and yix " n(x,a /n).

The estimator is that of the Frequentists. A problem with this approach

Bayes and Laplace both believed in this approach.
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Figure 1
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is that though the prior is flat for u, it is not for 1.3 or any other

power of y, so expressing ignorance seems to depend on which function

of the unknown parameter one is interested in.

2. Subjective Bayesians: The subjectivists assess a prior

distribution based on "engineering judgment" otherwise referred to in

the literature as "expert opinion". Probability distributions based

on expert judgment and available data can be derived to represent prior

estimates. This approach is not useful for scientists publishing con-

troversial new results because of the subjectivity involved, but is of

considerable benefit to risk analysts, business and R & D managers,

safety assessors, and others - including nuclear engineers.
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B. Statistical Distributions/Importance to Engineering Safety Analyses

B.1 Statistical Distributions

The engineer should become familiar with several statistical dis-

tributions which are commonly used in reliability analyses:

(i) the NORMAL distribution;

(ii) the LOG-NORMAL distribution;

(iii) the WEIBULL distribution;

(iv) the EXPONENTIAL distribution;

(v) the BINOMIAL distribution; and

(vi) the POISSON distribution.

These distributions are often used to probabilistically model the

failure rate of components; for example, in WASH-1400, log-normal dis-

tributions were assumed throughout in modeling failure rates (see

App. II, WASH-1400, pp. 42-43). Important properties of these func-

tions and their behavior are shown in Figures 2 through 7.

B.2 Importance to Engineering Safety Analyses

The importanc'e and relevance of each distribution to engineering

safety analyses is dependent upon the shape of the distribution, its

mathematical properties (i.e., is it part of a conjugate pair of dis-

tributions), its relative utility (i.e., how easy it is to use), and

how well it fits a pattern established by a given set of data.

B.2.1 The Normal Distribution

The normal distribution is probably the most widely used dis-

tribution in science and engineering since it models very well the

behavior of many natural systems. It is symmetric about the mean and

models any process that varies by an additive or subtractive factor.
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Figure 2 The Normal Distribution

y-a y y+a

Probability Density Function (PDF):

f(x) - -L exp - [(~ 1]; - < x < +
2a

Mean, Median, or Mode: y = xf(x)dx

Variance: a = (x-p) 2f(x)dx

To evaluate these parameters tables are used referring to a factor

"t" where"

1 2
P(t) - f - exp(-t /2)dt

o i21t

where when t =0 x = ';t =0 to 1 given:-p to y + a

Figure 3 The Log-Normal Distribution

x

Probability Density Function (PDF):

2af x) - exp - [ n~ 2 V)]; x > 0
(/z2-*jax 2a

Mean: = e+a 2/2x = e

Variance:
2 2

2pi+- aV-=e [e -1]I
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Often, models are constructed that represent combinations of normal

distributions. A common use of the normal distribution in engineering

calculations is in modeling the random error that exists on some un-

certain parameter such as tolerances of electrical components (e.g.,

resistors, capacitors, etc.).

In utilizing the normal distribution, two other distributions

- 2
are made use of: the "chi-squared" distribution (X ) and the

"student's t" distribution. The X2 distribution is used to find the

2
range on the variance a such that

; 2 f 2 -. 2 f
X2 X

where f n-1. The student's t distribution is used to estimate the

range on the true mean y of the normal, and can be used to establish

confidence intervals as follows:

a < A

(The interested reader is referred to Ref. 13 for further information

on the uses of these additional distributions in sampling from a

normal distribution. Statistical tables for the X and t distributions

are provided in the attached Appendix.)

B.2.2 The Log-Normal Distribution

The log-normal distribution is useful because it models well the

mean time to repair of a component; specifically, a component's failure

rate. It is useful in reliability calculations if the x-axis is time.
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Also, its asymmetry at higher values of x is useful for modeling very

uncertain problems where conservatism is added on the high side to ac-

count for a lack- of data or high degree of uncertainty. In WASH-1400,

for example, the failure rate of a component placed on an hourly basis

-- x
was generally estimated to fall between some value 10 to ( 1 0 X) + 10.

The log-normal was found applicable since it is often used when factors

or percentages characterize the variation. The log-normal is a

natural distribution for describing data which can vary by factors in

the same way that the normal distribution is the natural choice when

data can vary by additive or subtractive factors. The use of the log-

normal can be interpreted as viewing the exponent as being the signifi-

cant variable in the failure rate characterization problem.

Some other reasons for using log-normals were given in WASH-1400,

and are quoted here as follows (15]:

"a. The two-parameter nature of the log normal family gives sufficient

flexibility for describing the range variability (to define a unique

log normal distribution, two parameters must be specified; e.g., the

two range end points).

"b. The log normal distribution form, in particular its positive

skewness, can incorporate general reliability associated behaviors of

the assessed data (the positive ,skewness accounts for the occurrence

of less likely but large deviations, such as abnormally high failure

rates due to batch defects, environmental degradation, and other

outlier causing effects).

"c. The assessed data comprise-reliability data in the form of

probabilities (for example, a failure rate is simply a conditional
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probability). If the probabilities are decomposed into products of

probabilities representing requisites for failure, then when the

central-limit theorem is applicable, the log normal is the resulting

distribution. (In this characterization, a failure rate X, for ex-

ample, is decomposed into a product of probabilities P which repre-i

sent occurrences of various causal mechanisms, X = pip2 . If logarithms

are taken, the result follows.)

"d. Related to item b., as an a priori distribution the log normal

gives coverage to errors which can be skewed toward large values. In

general, the average value is greater than the median value, which, in

turn, is greater than the most probable value, thus providing a pro-

tective, positive-type bias which is retained- when the distributions

are propagated. (The larger tails on the log normal account for failure

rates, for example, which can greatly deviate from the estimate for the

average component. The average and median values for the log normal

are, in general, larger than the most probable value, and this behavior

propagates as the distributions are propagated.)

"e. The log normal distribution, under the applicable situations, can

assume a near normal-type shape or a near exponential-type shape and is

thus adaptable in its description.

"f. Finally, the log normal has an established history 'of useful

representation when relative variations (factors) characterize the

random variable. Common examples include stress treatment, Arrhenius

modeling, and log normal regressions, as weiras general reliability-

modeling applications. Its application as a general distribution for

modeling physical and reliability processes is established and has

often been validated.
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Median: x0. 5  ell u [ x - upper bound

= lower bound

2
Mode (most probable value): x e-

Example: Suppose y = 3, a -1:

2
Then, the mean x = eu1  2 e 3+/ 2 - e3  33

and the median x0.5 . e3 - 20

Figure 4 The Weibull Distribution

Probability Density Function (PDF):
(three-parameter Weibull function)

x x-T C-1 x-T C
f (x) - [ (E-T -

0 0 0

where C = Weibull slope or shape parameter
E = characteristic life or scale parameter
T = location parameter

C, E, T are determined experimentally

x
F(x) = ' f(x)dx for T = 0 where

00

f(x) = C-1 C
(X ( ) exp( ]

C
+ F(x) 1- exp[ ] for x > 0

The Weibull function has been used to describe the lifetime of electronic

tubes, antifriction bearings' transmission gears, and mechanical and

electrical components as well as the fatigue of materials.
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"The above items of course do not constitute tenets for the dogmatic

justification of the log normal as the only distribution applicable,

but instead serve as a priori considerations. As a complement to the

agove considerations, from a pragmatic point of view, the log normal

was employed because it was flexible, it was consistent with reliability

and data properties, and it is a standardly employed and straightforward

(null-hypothesis) distribution. Checks and tests of its applicability

to the data of this study did not contradict nor refute these a priori

and pragmatic justifications."

B.2.3 The Weibull Distribution

The Weibull distribution can be used to fit a wide range of data

because of the shape parameters which can be varied to fit the data at

hand. Perhaps the most useful Weibull distribution is the special case

where C=l, the exponential distribution.

Graphical techniques have been used to estimate the parameters

of the Weibull distribution. Special graph paper known as' modified

Weibull probability' paper is utilized to estimate these parameters

graphically. A new statistical test of the goodness-of-fit for the

two-parameter Weibull function has been developed. In addition, if the

test data are censored or not burdened to the end of .design life or to

*
failure, techniques can be used to estimate the Weibull parameters.

*
See W. Weibull, "A Statistical Distribution Function of Wide Applic-
ability", ASME Paper 51-A-6, presented at annual meeting of the
American Society of Mechanical Engineers, Nov. 25-30, 1951; C. Lipson

and N.J. Sheth, "Statistical Design and Analysis of Engineering Experi-

ments", McGraw-Hill Book Co., Inc., New York, 1973; N.R. Mann, "Confi-
dence and Tolerance Bounds and a New Goodness-of-Fit for Two Parameter

Weibull or Extreme Value Distributions with Tables for Censored Samples
of Size 3(1)25", ARL 71-0077, Aerospace Research-Laboratories, May 1971;
A.C. Cohen, "Maximum Likelihood Estimation in the Weibull Distribution
Based on Complete and on Censored Samples, Technometrics 7, (4) 579-

588, November 1965.
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B.2.4 The Exponential Distribution

The exponential distribution can be used in reliability problems

where X is assumed the failure rate of a component to model the high.

failure rate behavior at the end and very beginning of component life

(i.e., the famous "bathtub" curve of time (x-axis) vs failure proba-

bility (y-axis)). For example, for a large number of components, N,

with probability per unit time of failure, e, then dN = -N6 dt is the

dN -et
change in the number of components so - = -edt + N N e . Thus,N o

-et -et
N/N = probability of survival = e , or (1-e ) - probability of

failure. Thus, f (t)dt = (probability of survival) x (probability of

failure)dt = e 6dt, where, if 0 = 1/X and X is near the failure time,

f(t)dt = 1/Xe-t/X. This last function is the exponential distribution

and finds wide application in reliability theory.

B.2.5 The Binomial Distribution

The Binomial distribution is useful for those problems where a

variable can assume only discrete values. An example would be a

"throwing-of-dice" problem; i.e., estimating a probability of 1/6 of

getting a "3" on a roll of a die. The formulas do not work with card

problems for estimating the probability of getting four aces in a row

since, for example,. in these problems, the denominator would also be

changing in the calculation (e.g., 4/52 x 3/51 x 2/50 x 1/49). Thus,

if p and q are both changing, the binomial distribution should not be

used.

B.2.6 The Poisson Distribution

The Poisson distribution is a special case of the binomial dis-

tribution approximating a normal distribution at large values of n,
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Figure 5 The Exponential Distribution

Probability Density Function (PDF):

f(x) = e

(special case of Weibull distribution with C = 1)

Mean:

Variance: V X

The Binomial Distribution
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where 0 < p < 1, n'= positive integer (binomial random variable).

For n=l, P (0) =l-p, P (1)-p and p is called a Bernouilli random- variable.
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Figure 6
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where n is the number of data points taken. It can therefore often be

used for problems where the phenomenon is not known to be strictly

normal (e.g., counts from a scintillation counter). When there is a

series of things contributing to a measurement, then the distribution

derived approaches that of a Poisson, which looks normal when n is

sufficiently large.
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The Poisson Distribution

-1
e =.38 .38
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1

Probability Density Function (PDF):
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Figure 7
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C. Fault and Event Trees/Cause-Consequence Diagrams

Three methods are available for modeling the interactions of

systems and events that can lead to possible accident scenarios with

consequent negative impacts:

(i) Fault trees;

(ii) Event trees; and

(iii) Cause-consequence diagrams.

Each of these methods is now described and examples given.

C.1 Fault Trees

Fault tree analysis (FTA) evolved in the aerospace industry in

the 1960's [3]. As one of the principal methods of systems safety.

analysis, it is a detailed deductive analysis that requires considerable

system information. Best applied during the design stages, it can

identify hazardous conditions and potential accidents in a system design

that can help eliminate costly design changes and retrofits that would

otherwise have to be made later in the system life cycle. Undesirable

consequences, such as a major release of radiation from an LWR con-

tainment, are identified by inductive analysis and/or engineering

judgment-intuition. These events are usually undesired system states

that can occur as a r.esult of subsystem functional faults. These

events can be broad and all encompassing or specific (e.g., failure

to scram).

Fault trees describe the paths by which these undesirable events

can take place. The first step is to define a top undesired event,

called the TOP event. Care and understanding must be taken in this

first step. A fault tree is a model that graphically and logically
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represents the various combinations of possible events, both fault and

normal. An "event" is a dynamic state-of-change that occurs in a

system or piece of equipment. There are two dynamic states for system

elements; the OFF state (indicating the element is working properly)

and the ON state (indicating either the element has failed or is oper-

ating inadvertantly). The time at which the element is on is referred

to as the fault duration time.

The fault tree is so structured that the undesired event appears

as the top event (Figure 8). The direct logical antithesis of a fault

tree is known as a success tree (Figure 9). In both cases, the sequence

of events that leads to the undesired event are shown below the top

event and are logically linked to the undesired event by standard OR

and AND gates:

(In the success tree, AND gates replace OR gates and vice-versa.) The

input events to each logic gate that are also outputs of other lo'gic

gates are shown as rectangles EN These events are developed

further until the sequences of events lead to basic causes. The basic

events appear as circles and diamonds on the bottom

of the fault tree and represent the limit of resolution. The circle

represents an internal or primary failure and the diamond represents a

non-primary failure that is not further developed. (For a complete

definition of fault tree components, see Figure 10.)

A complete safety analysis of a nuclear plant requires normally

three levels of fault tree development (Figure 8). The upper level is
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the top structure and includes the top undesired event and lesser

events leading to it. The next level consists of an examination of

system elements from a functional point-of-view. Fault flaws within

each system lead. to the third level where statistical independence of.

the events must be shown. Two events are statistically independent if

one event in no way affects the outcome of the other event.

To perform a quantitative evaluation of the fault tree (that is,

to determine the probability 6f occurrence of the TOP event), failure

probabilities of system components must be. estimated. Then, simple

rules for combining probabilities in AND and OR gates are used to

"fold-back" thre tree to the TOP event. Specifically, the information

required to perform a quantitative analysis is:- (1) a Boolean ex-

pression for the TOP event in terms of the basic events, (2) the

probability of occurrence and the fault duration time for each basic

event, and .(3) the statistical dependence of basic events in the fault

tree. In simple fault trees, the Boolean expression is easily deter-

mined; for the fault tree of Figure 9, the correct Boolean expression

is (P -51 P ps) + P B= P + P 3  P .TOP However, complex trees some-

times require computer codes that can solve fault trees. Also, Monte

Carlo simulation can be used to find the top event. -This is done by

doing a random large number of direct calculations to find a range on

the TOP event probability.

The general steps in constructing a fault tree are as follows [6]:

Step 1. Define the most undesired event. This event, called

the "top event", is the starting point of the fault tree. It is im-

portant that this event be precisely worded so that its interpretation
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will not vary. For a particular fault tree there is one and only one

most undesired event.

Step 2. Define for the main branches of the tree those events

that lead directly to the top event and decide what logic gate should

be used to relate them to the top event of the tree. These events are

deduced from experience and knowledge of what can happen. They should

be kept sufficiently general so that the details of the system can be

developed in subsequent branches.

Step 3. Select one of the branches and deduce its next level of

sub-branches. The manner of deducing these sub-branches is identical

to that used in deducing main branches, and so on throughout the rest

of the tree. The termination of a sub-branch of a tree occurs when

the event being considered is a fundamental event (basic fault) or

when a transfer gate can be used to another sub-tree already developed.

Like any technique, fault tree analysis has its good and bad

points. The problem of oversight and omission is less a problem of

the method than it is of the modeler - even skilled and knowledgable

people make mistakes in applying the method. An increasing number of

trained practitioners can insure redundancy of performed studies helping

to alleviate this problem. Another problem is the modeling of dom-

ponents that have a multitude of possible operating modes; advanced

methods are used to handle such cases. Data limitations are also a

problem; the analysis is only as good as the input data and expertise.

Nevertheless, quantitative evaluations are particularly valuable for

comparing system designs.. Despite some drawbacks, fault tree azalysis

provides a systematic procedure for identifying faults, forcing the

analyst to understand the problem at hand. It is one of the best such

tools available.
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C.2 Event Trees

An event tree is a model that expresses system reliability in

terms of component reliability (4]. It is a process that examines

individually the state of each component in the system and links these

states to outcomes affecting the state of the system. Take, for

example, a system comprised of one component (such as a pump) whose

probability of successful operation is 0.98. The event tree branches

at the nodal points and examines all possible states of the pump. By

convention, desirable outcomes branch upward and undesirable outcomes

branch downward (Figure 10). The event tree is read left to right.

In the example shown (Figure10), if the pump is operable, the system

is successful and the probability that the system is working is equal

to the probability that the pump is working (0.98). The process may

be extended to two components in series, such as a pump and a valve

having reliabilities of 0.98 and 0.95, respectively. If the pump is

not working, the system has failed (even though the valve might not

have). If the pump is working, the valve must then be checked (Figure 11).

The system reliability is thus 0.98 x 0.95 - 0.931 and the system un-

reliability is 0.98 x 0.05 + 0.02 - 0.069. In these calculations,

the pump and valve reliabilities are statistically independent (the

operation of the pump in no way affects the operation of the valve and

vice versa).
*

C.3 Cause-Consequence Diagrams

Cause-consequence analysis (CCA) is a method .of system reliability

and risk analysis and is a combination of both fault and event tree

Cause-consequence analysis has been used as an aid in nuclear power

plant reliability and risk assessment in Scandinavian countries since

its inception in 1971. The material presented here has been derived

in large part from Ref. [2].
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analysis. Its advantages include providing the analyst a means for

displaying the complex relations between consequences and their causes.

The "cause" portions of the cause-consequence diagram are fault trees

with the TOP events being component or system failures that can lead

to various levels of undesired consequence depending on the degree of

mitigation imposed by standby systems. The "consequence" portion of

the diagram illustrates the array of consequences as a function of the

standby system state (failed or unfailed). The diagram illustrates

the relations that preclude or contribute to the probabilities of oc-

currence of the possible consequences that can arise from a particular

TOP event. Symbols used in the CCA are shown in Figure. 12. A sample

cause-consequence diagram is s.hown in Figure 13.

Using the rules applicable to fault trees, calculation of con-

sequence probabilities and risk assessment of consequences can be done

in the cause-consequence diagram. Knowing the probability of occurrence

of the basic events in 'each fault tree, it is possible to calculate the

probability of occu'rrence of each fault tree TOP event in the cause-

consequence diagram. If the branching operators are statistically

independent, then by multiplying probabilities at each branching opera-

tor corresponding to event occurrence (yes) or nonoccurrence (no), an

estimate of the occurrence probability estimate can be obtained. (An

example of such a calculation in a sample cause-consequence analysis is

given in section E.)

The cause-consequence diagram is a more detailed representation

of the relationships between system failures and consequences, and can

in any case be reduced to an event tree. In fact, an event tree is a
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Figure 12 Symbols Used in Cause-Consequence Analysis
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cause-consequence diagram with all fault trees, gates, descriptions, and

delay operators removed. The branching operators are replaced by the

branch points in the event tree. The event tree is more streamlined

than the cause-consequence diagram serving the purpose of brevity.

However, the cause-consequence diagram contains more detailed informa-

tion and is therefore more useful to a systems analyst or design engineer.

Cause-consequence analysis is of major value in that it allows

the analyst to work an otherwise unmanageable problem in in segments.

A standard approach to a typical problem is to determine inductively

the possible consequences and use these as TOP events for an array of

fault tree analyses. One advantage that CCA has is that it provides a

better method. for depicting the many logical combinations of events

that contribute to a particular consequence or group of consequences.

It helps the engineer or analyst to better understand the system by

providing a means by which knowledge can be organized. It further.

provides a model from which probabilities of occurrence of various

consequences can be estimated and from which risk numbers may be ob-

tained for the consequences without loss of causal information as

with event trees. Also, in constructing the cause-consequence dia-

gram, the analyst is given the option of working forward from an event

or backward from a consequence.
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D. Decision Analysis/Risk Analysis and Risk Assessment Methods

The following sections discuss decision analysis (D.1) and other

risk analysis and assessment methods (D.2). Examples of application

are also included.

D.1 Decision Analysis

(i) -The Decision Problem: The Problem Space

Any decision problem can be described in terms of whether it is

deterministic or probabilistic, involves many variables (complex) or

only a few (simple), and is either dependent on time or is static

(deterministic). The problems that are most difficult to analyze are

those that are simultaneously complex, dynamic and probabilistic. Most

problems in the safety-licensing area fall into this latter category.

A mathematical theory that can handle such problems is Bayesian de-

cision analysis. The problem space, shown in Figure 14 indicates the

relationship of such problems with regard to similar problems handled

by other scientific disciplines.

(ii) The Decision Analysis Cycle: Role of R&D in Information Gathering

A decision problem can be analyzed by following the cycle shown

in Figure 15. First, decision alternatives must be defined; for ex-

ample, a problem in reactor safety might decide between two or more

available containment designs. Prior information available on a prob-

lem is used in the deterministic phase to identify which variables

most affect or influence the decision problem when expressed in deter-

ministic terms. For example, in a reactor safety problem the analyst

would like to know how to bound his problem - if he goes into too

great detail, his problem will quickly be too large to handle even on
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the largest of computers. The deterministic phase involves construct-

ing a model, running a few calculations using "best estimates" on in-

herently uncertain parameters to get a feeling for which variables are

most important. It provides a way to limit the size of the final model.

After the important variables and system relations have been de-

termined, a full-blown probabilistic analysis is conducted using de-

cision-event trees, fault-trees, statistics, and other methods. In

the informational phase, sensitivity analysis determines whether one

decision alternative- stochastically- dominates another. If this is the

case, the decision is clear cut. However, in many cases, the results

of the analysis do not give clear cut results because the prior informa-

tion available may not be sufficient to adequately distinguish between

alternatives. The box labeled "decision" also includes the alternative

*
to delay the decision until further information can be provided. Some-

times, decision must be made immediately, and further information

gathering is not possible; other times, the delay that would be re-

quired to update the prior information would be so long (10-50 years)

that the information gathering approach is not practical. The role of

research and development in the decision making process occurs in the

information gathering state; new information from this stage is then

used to repeat the decision analysis. Sometimes, the information

gathering stage must be repeated many times before a decision can be

*
The NRC as does any decision-making organization often must decide be-

tween setting a regulation immediately based upon existing information

or delaying the decision until further information can be gathered to
help clarify matters.
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made; however, at some point delay becomes too costly or impractical

such that the decision has to be made irregardless of the existing

uncertainty.

(iii) Decision Models: Definitions of Event Tree and Outcome Values:
The Axioms of Decision Analysis

The basic construction of a decision model involves construction

of an event tree where the symbol "0 " signifies a decision node;. the

symbol "O" an event node. Branches are used to signify various de-

cision alternatives and possible event outcomes (Figure 16). In a

decision-event tree, the branches represent the process of discretiza-

tion necessary for analytic simplicity and practicality. Most uncertain

events can assume a continuum of final outcomes expressed by their

continuous probability density functions (p .d. f.). Discretization. is

a process by which such p.d.f.'s can be approximated for use in an

event-decision tree.

The axioms of decision analysis are given in Figure 17, and

indicate the relations which must hold given the trees are to be

analyzed logically: an example of a decision-event tree is shown at

the top as .a lottery involving three alternatives with probability

PA' PB C of getting prize A, B, or C as an outcome. These axioms

make up the foundations of decision analysis.

(iv) Probability Encoding

The process of probability assessment is used by the analyst to

encode quantitatively expert opinion (engineering judgment) on various

uncertain parameters. Usually, this process involves questionnaires

or personal interviews of experts. Techniques for probability en-

coding are well established and continually being up-dated [14). The
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Figure 16 Decision Tree Construction
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Figure 17 Axioms of Decision Analysis
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4) MONOTONICITY

IF A> B

PA

THEN
-P B

IF AND ONLY IF

I P >B

DECOMPOSABILITY

PQ

*-PQ B

5)

QH A

P 
T

T B
1-P B



65

experts' opinion is usually encoded as a cumulative probability dis-

tribution indicating, on the y-axis, the probability that the variable

will assume a value greater than or equal to x, expressed on the x-axis.

The process is shown in Figure 18 with an example (Figure 19) of three.-

experts' opinions on the probability of a particular material having a

lifetime greater than or equal to t years. (Sometimes, concensus be-

tween experts is not as evident as in the case shown in the example of

Figure 19.) Finally, a probability encoding form used in such assess-

ments is shown in Figure 20. The process of probability encoding is

routine in some industries such as in the oil industry that employ large

staffs of operations researchers. Often, however, consultants are

called in to perform a company's decision analysis, and several con-

sulting firms which specialize exclusively in decision analysis have

been formed in recent years to meet the growing industrial and govern-

ment demand for such services (e.g., Applied Decision Analysis, De-

cision Focus, etc.).

D.2 Risk Analysis and Risk Assessment Methods

Risk is mathematically defined as a function of probability and

consequence of an event occurrence: R = f(p,q) where R = risk, p =

probability, q = consequence, and f(p,q) is some mathematically defined

function of p and q. In most treatments of risk, the mathematical re-

lation for risk is expressed as a multiplicative linear relationship

between p and q: R = p-q which can be expressed conceptually as follows:

Risk(r) Frequency(p) x Magnitude(q)
Consequences Events Consequences
Unit Time Unit Time) x Event
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Figure 18
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Figure 19 Priors on Material Lifetime
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From utility theory [12], the consequence q can be expressed as a

utility function u(q) which can be a nonlinear function of q. This

function measures the risk preference of an individual or society as a

whole to a wide range of consequence magnitudes. Most utility functions

are concave and represent a risk adverse attitude toward large con-

sequences; i.e., high consequence-low probability accidents are less

acceptable than low consequence-high probability accidents.

A recent Ph.D. thesis at MIT by D. Litai (7] reviews the various

risk analysis and risk assessment methods available, and develops a new

approach to this problem. The various risk analysis methods available

are reviewed in Table I. These include methods that fall under the

broad category of economic risk theory:

(i) risk-benefit analysis;

(ii) cost-effectiveness analysis; and

(iii) method of revealed preferences.

A second broad category of methods includes those that fall under

demographic risk theory:

(i) expressed preference analysis;

(ii) life-expectancy analysis;

(iii) risk-comparison; and

(iv) natural hazards approach.

The characteristics of each of these methods are described in Table I,

including the main features of each, the basic assumptions utilized,

the main advantages and drawbacks followed by examples of successful or

reasonable use of each method and the principle references for each

method.
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Msin features. or
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cost to Reduce Risk (0)
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Masic asumptions
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Hai drawbacks

Examples of
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o Risk and Demeit may
be quatified is
sam units ($)

o Simple convincing
analysis if R-1
data are given

o Difficult to
quantify risk

o Judgment of risk
and benefits is
subjective

o Risk to property or
is cases of simple
injury
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residual risk is acceptable risk and besefit; observed
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o Different correlations ob-
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o Risk need sot be expressed e Risk aed not be expressed
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o Net effects often
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x-rays, radiation
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man-made catastrophi-
cal risks
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risks
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0
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aversive as assumed
by this approach
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relationship (e.g.,
cars)

o Radiation exposure
standards

o Starr (19O - o Otway (1977) a Rowe (1976) *
a Fischboff at al. (1978) o Thompson (1979)
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D.2.1 Economic Risk Theory

Methods included in this group are: "risk-benefit", "cost-

effectiveness" and the "method of revealed preferences".

Risk-Benefit Analysis

The basic assumption of this approach is that risk and benefit

may be expressed and quantified in the same units (same numeraire),

usually taken as dollars. Since a risk may involve various consequences,

it is necessary to price each one of these before they can be summed.*

Unit prices must be assigned to fatalities, injuries, and other con-

sequences as well as to the various benefits that may be associated

with the risk. Since benefits may also be subject to probabilistic

effects, it follows that the expected gain is the net positive outcome,

and the expected loss is the net negative outcome. For the project to

be worthwhile the first must be higher than the latter. The expected

gain is obtained by multiplying all the possible benefits by their

corresponding likelihoods and summing their products up. Likewise,

the expected loss is the sum of the products of all possible deleterious

consequences and their corresponding likelihoods.

Difficulties arise in the quantification process of assigning a

dollar value to fatalities and suffering, among other deleterious con-

-*

sequences. Several utility functions have been proposed to help in

evaluating human life. They may be purely economic in their approach,

A "utility function" is a mathematical descriptor of the way in which

a person (or society) values a particular benefit or cost. A linear

utility function indicates that the preference toward a given cost or

benefit is independent of its absolute magnitude, while non-linear

utility functions reveal either a risk preferring or adverse attitude.
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or involve psychological factors as well. However, no generally ac-

cepted utility function and no generally accepted parameters for any

utility function have yet been found. Placing a dollar value on human

life is still very controversial.

Cost Effectiveness Analysis

Cost effectiveness is a special case of cost-benefit analysis.

Here, the benefit considered is that. of risk reduction. For any project

which involves some risk, it is possible to reduce the risk to almost

any desirable level, but the effort costs money. The question of how

much risk is acceptable has been replaced here by how much society is

willing to pay to avoid a risk. The trade-off point is. defined to be

where R = -1, but to find this point it is necessary to measure risk

and cost in the same.units (i.e., dollars). If risk is measured in

some other way, then the question- how much to invest is open again.

Experience shows that public expenditures for risk aversion

varies from $100 for automobile seat belts to $10 million for removing

'90
Sr from milk for averting one death (7]. No consistent reasoning

behind this practice has been found that could explain these tremendous

variations. So the question of how much to spend remains open.

Revealed Preferences

This method suggests that society has revealed its preferences

toward risk-taking in its present and past behavior. The method is

based upon taking present and past data on the level of risk faced in

various human activities (e.g., work, travel and leisure activities)

and comparing the implied risk preference level between the activities.

Starr suggested such a method in 1968, and this method is expanded upon
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by Litai (7]. Fischoff et al., identified several drawbacks in the

method: "the method assumes that past behavior is a valid predictor of

present preferences, which may not always be true". Even in spite of

the method's drawbacks, the approach suggested by Starr may not be

invalid. As Starr notes: "by trial and error, society has arrived at

an essentially optimum balance between the risk and benefits of any

activity", which may be a valid statement. While it is quite con-

ceivable that this state of balance, or equilibrium, is not a static

but dynamic one, which changes with time as new perceptions of risk

and benefit develop, this shift is quite slow. Many examples abound

which show that in spite of abundant information. and freedom of choice,

societal attitudes have changed very little if any (smoking, contra-

ceptives, alcohol). Thus, it may be that basic relationships should

be updated from time to time, say, every five years, yet they do

represent a certain societal "equilibrium" even if only a temporary

one. It may well be that this equilibrium is not the optimal one, and

that choice is not always rational (smoking provides again a good

example), yet equilibrium it is, and thus, indicates societal

preferences.

D.2.2 Demographic Risk Theory

Demographic risk theory refers to methods that do not actually

attempt to quantify and balance risk against benefit, but seek to find

other ways to determine what level of risk might be acceptable for a

given activity. In particular, risks that have a potential for

fatalities are of concern here, since these are more easily con-

ceptualized, and, therefore, easier to compare. It should be remarked,
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at this point, that perhaps all methods for assessing risk acceptability

are basically risk-benefit analysis. But in demographic risk theory,

the analysis is not carried out explicitly - certainly not in terms of

money - and is hidden in most cases in the subtle comparisons or dis-

tinctions that are made.

Expressed Preferences

This method attempts to avoid the difficulties associated with

the m'ethod of revealed preferences, or risk-benefit methods in general,

by asking people directly what levels of safety they deem acceptable.

This method has been advocated by Otway (1977), and by Fischhoff et al.,

(1978) and. (1979), although it was recognized by them that people may

be baffled by such problems, influenced by the selection and enunciation

of the problems laid before them, prone to change their mind, and

generally inconsistent in their responses. Other deficiencies of

public-poll techniques tend to bias the results of this kind of

analysis.

Life Expectancy Formulations

Bowen (1976), and Thompson (1979) among others have advocated

the use of the life expectancy method which presumably simplifies

decision-making by putting the evaluated risk in the perspective of

its potential influence of the total expected span of man's life. It is

possible by using statistical methods to calculate the effect on life

expectancy of eliminating, or adding a given risk. Thus,: eliminating

the risk of motor vehicle accidents, life expectancy would rise by 0.8

years, and adding the risk of nuclear energy life would be shortened

by 18 seconds (Thompson, 1979). Even if we assume that the risk of
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nuclear energy was 10,000 times higher than the value used in the pre-

vious calculation (taken from the Reactor Safety Study (WASH-1400,

1975), the effect would still be of the order of one day or so, still

a far cry from the penalty we pay for the use of motor vehicles. All.

this would be quite clear from the mortality rates themselves, but this

method of representation adds another perspective which may be of help

sometimes in deciding the question.

Perhaps every technology has had some influence on human life

expectancy, but its assessment is very often intractable. The total

contribution of all human undertakings has obviously so far been

positive, since we now live longer than previous generations did. In

general, then, a project may be deemed acceptable if it contributes a

net positive increment to life expectancy, or at least does not com-

promise it too highly (Figure 2.4). In Figure 2.4 a horizontal ex-

trapolation is used as the limit of acceptability, but this is not

necessarily so.

Risk Comparison

This is the most commonly practiced method of risk assessment.

Frequencies of mortality, morbidity, and other damage are compared

directly between various activities, between one year -and another,

between countries, cities, and the like "in order to encourage some

desired action or reveal some inconsistency". The method assumes that

risks that have been accepted in the past will also be accepted in the

future. (A similar argument has been raised and discussed in con-

nection with the method of revealed preferences.) The method is

often used without due attention to the various factors which govern
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human perceptions of risk, thus comparing, for example, voluntary and

involuntary, immediate and delayed, ordinary and catastrophic, etc.,

risks without discrimination. It may be reasonably thought that only

risks that invoke the same perceptions, which we shall call hence-

forward risks of the same type or category, may be comparable in this

way. (Litai deals directly with this problem in his methodology

formulation.)

Natural Hazard

This is a risk averse app'roach based on the assumption that all

risks are unacceptable unless they are barely perceptible. This may

happen when the risk in question is small compared to a naturally ex-

isting background (cancer), or if the risk-exposure relationship shows

a low threshold level. Examples where such an approach may seem ap-

propriate do exist (radiation exposure risks) but in general, human

behavior again indicates that much higher risks than would be admissible

by this approach are readily acceptable.

D.2.3 An Expanded Revealed Preference Method (Litai [7])

The work of Litai is based upon the method of revealed pref-

erences and defines nine risk conversion factors that affect a risk

comparison assessment. These are:

(i) natural vs manmade risk;

(ii) voluntary vs involuntary risk;

(iii) ordinary vs catastrophic risk;

(iv) delayed vs immediate risk;

(v) necessary vs luxury risk;

(vi) old vs new risk;
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(vii) regular vs occasional risk;

(viii) controllable vs uncontrollable risk; and

(ix) direct vs indirect risk.

These factors influence, for example, a comparison of nuclear with

coal-fired electrical generating 'technology risks (i.e., nuclear is

a man-made involuntary catastrophic risk, while coal is a man-made

involuntary ordinary risk). The method provides a way for combining

delayed with immediate fatalities (e.g., WASH-1400 results have been

combined together in this way by Litai; see Figure 21). Litai ex-

amined past data on various types of risks (data from insurance com-

pany records) and established risk profile histograms that, when

divided into each other for each of the nine dichotomous pairs above,

rendered integral risk conversion factors that can be used to multiply

(or divide) risk numbers so that each cateogry may be compared with

the others.

Litai's work deals with the problem of acceptable risk. Six

such factors were found to be of major importance in risk evaluations

and value judgments: volition, severity, manifestation of effort,

familiarity, controllability, and origin. Three other factors were

also found interesting but less important: necessity, exposure pattern

and benefit factor. Risk distributions for four different risk

categories were developed: immediate and delayed occupational risks,

smoking and homicide, ill-based or historical data available from

insurance companies.

Based .on this work for the spectrum of human physical-mortality

-3 -9
risks examined, mortality risks between 4x10 /person-yr to 10 /

person-year were encountered. The former value relates to the highest
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tolerated human risk, the latter to the lowest magnitude that is,

perhaps, physically possible.

Risk conversion factors based on this work are given in Table II,

where they are compared with results from earlier studies. Litai sug-

gests that risk design criteria could be derived from the methods of

his study which would be compatible with historical U.S. societal

perceptions of the involved risk types. The risk conversion factors

and distributions seem to indicate why society seems to spend "unreason-

able" sums to avert death in some cases while spending much less in

other cases. These observations and the basic consistency of the de-

rived vales are believed to demonstrate the validity of the model re-

sults. However, an accuracy to no better than a factor of two to three

can be claimed for the derived values, and is limited to comparison of

mortality risk only; further work would be required to extend the re-

sults to other forms of risk (e.g., injuries, plant damage and equip-

ment loss, lost work days, indices of harm, etc.)'. Further work could

also be done to investigate the relative importance and globality of

the risk factor categories; others may need to be added (or deleted).

Continued work in these directions may lead to other areas helping to

shed more light on the question of how safe is "safe enough'



Table II

RISK CONVERSION FACTORS FOR RISK PAIRS
(Litai [7])

Characteristic Risk Pairs

Origin

Severity

Volition

Effect

Controllability

Familiarity

Necessity

Exposure

Benefit

Natural/Man-Made

Ordinary/Catastrophic

Voluntary/Involuntary

Delayed/Immediate

Controllable/Uncontrollable

Old/New

Necessary/Luxury

Continuous/Occasional

Clear/Unclear

Litai
(1980)

20

30

100

30

5-10

10

1

1

n/a

Risk Conversion Factors

Rowe
(1977)

10

50

100

20%/yr

100

Starr
(1969)

'1000

Kinchin
(1978)

n/a = not applicable

Otway/
Cohen
(1975)

1-1000

30

00
0
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E. Examples of Annlication to Sample Problems

E.1 Fault and Event Trees

Fault Tree Example

Fault trees are used to calculate the failure probabilities of

engineering systems. An example of such an application is in calcu-

lating the probability that a warehouse fire protection system would

fail to put out a fire on demand. The protection system consists of

pumps, motors, and valves that pump water out of a nearby river. During

a fire, the protection system is designed to quench the flames by

spraying water through a nozzle installed on the warehouse ceiling. A

system diagram is shown in Figure 22.

Question: The task is to construct a fault tree to calculate the

failure probability on demand.

Answer: The solution to this problem is to begin by following the

steps for fault tree construction. The first step is to

define a TOP event.

Examples of a correct description of the TOP event include "Fail

to Put Out Fire on Demand", or "System Fails to Put Out Fire". (In-

complete descriptions would be "No Sufficient H20 Out of Nozzle", or

"Fire Not Put Out", or "System Works But No Fire".)

Next, define events that lead to the TOP event. These include

1. Fire Fails to Trip Detectors (No Signal Out of Detectors);

2. Detector Signals But Motor Fails to Operate;

3. Pump Motor Operates But Fails to Deliver Water Out of Nozzle; and

4. Water Out of Nozzle But Fails to Put Out Fire.
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Then, these events must be broken down into basic events where

probabilities can be meaningfully assigned. Events (1) and (4) are

broken down further for purposes of example (Figure 23). This pro-

cedure would be followed until all four major events were broken down

into basic events; then, the tree would provide the vehicle by which

the probabilities would be combined together mathematically to arrive

at the failure probability corresponding to the TOP event. (An ex-

ample of a simple calculation is given below.)

Example of Probability Calculations in Fault Trees

(i) "OR" Gate

Question: Event E is related to Eventg A, B, C, and D as shown:

E

"OR"

B c

What is the probability of E if:

(a) PA = O. B = 0.2 PC 0.4 P = 0.5

(b) PA 0.01 B = 0.02 PC D .04 PD =*.0

(c) Derive an expression for the error if the approximation

P P + P + P + P is used (instead of the exactE A B C D

expression) in terms of PA' B' PC, and PD'

Solution:

E A + B + C + D

EA B C D

= 1 - (1-PA)(1P B )(1PC)(l PD)
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(a) PE - 1 - (1-0.1)(1-0.2)(1-0.4)(1-0.5)

= 1 - (0-9)(0.8)(0.6)(0.5)

= 1 - 0.216

= 0.784

- 1 - (1-0.01) (1-0.02) (1-0.04) (1-0.05)

- 1 - (0.99)(0.98)(0.96)(0.95)

(b) PE

x 1 - 0.8848

= 0.1152

(c) PE 1A B C D

1 -(1-PA7 B B1 C D PCD)

1 ,(1-PA B PC D +A B A CPA D

+P++PP P-PABD+ BC B D CODA B C AB D

- ACdPBPDBCPD+A B C D

- (PA +PPD) + -P -PA C-PAD

-P BP C-P BP D-P CP-B C B D C D

+PABC A B D

+PA CPD+PBPCPD

-PA BC D]

when PE is approximated by

PE A B C D

the error is the square bracket terms.
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Example: (a) PE- 0.1 + 0.2 + 0.4 + 0.5 - 1.2

(b) PE E0.01 + 0.02 + 0.04 + 0.05 = 0.12

when Pi have the same order of magnitude, the error 1, 0 (P' 2
At

(ii) "AND" Gate

Question: Event E is related to Events A, B, C, and D as shown:

(assume A, B, C, and D independent events)

E

A B C D

What is the probability of E if:

(a) PA 0.1 P B 0.2, PC O. 4 PD = 0.5

(b) PA 0.01 P B = 0.02, PC = 0'04, PD = 0.05

(c) 'Suppose A, B, C, and D were dependent events.

what would the expression for PE be:

Soluti

P

(a)

(b)

(c)

Then

on:

E =MA - B - C - D AAB/\CAD

E= PA PB & PC D

A B

PE - (0.1)(0.2)(0.4)(0.5) = 4 x 10-

P (0.01).(0.02)(0.04)(0.05) = 4 x 10 C

P(EIA,B,C,D) = P(AIBCD) P(BjACD) P(C ABD) P(DIABC)

P(A)P(BCDIA) . P(B)P(ACDIB)
P(BCD) P(ACD)

P(C)P(ABDIC) . P(D) (ABC(D)
P(ABD) P(ABC)
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P (A) (B) P(C)P(D) P(BCD IA)P(ACDIB)P(ABD IC)P(ABC ID)
- P(BCD) P(ACD) P(ABD) P(ABC)

(Note that given A was independent from B, C and D, then

P(BCD IA) = P(BCD) by definition.

Then the expression for P(E) reduces to P(E) = P(A)P(B)P(C)P(D).

Event Tree Example

Question: Construct an event tree that correctly relates the

functions of each of the following engineered safety

features (ESF) to determine possible event sequences

that could lead to negative consequences.

Begin the tree with the initiating event being a pipe break (PB). The

systems are:

(a) Reactor shutdown or "trip" (RT) to stop significant power genera-

tion due to the fission, process during the LOCA.

(b) Emergency core cooling (ECC) to cool the core to keep the, release

of radioactivity from the fuel into the containment at low levels.

(c) Post accident radioactivity removal (PARR) to remove from the

containment atmosphere the radioactivity that could be released from

the core.

(d) Post accident heat removal (PAR) to remove the core decay heat

from the containment to prevent its overpressure.

(e) Containment integrity (CI) to prevent the radioactivity not re-

moved by PARR from being dispersed into the environment.
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Solution: (from Ref. [15]).

In considering the events involved in a LOCA after the pipe

break that is the initiating event, one must consider the functions

that the ESFs are required to perform. Regardless of the design

details of a particular reactor, the ESFs perform a uniform set of

functions.

The event tree is started by indicating these functions, i,e.,

RT, ECC, PARR, PAHR, and CI, together with the initiating event, pipe

break (PB), as event tree headings, in roughly chronological order.

It proceeds from left to right by the addition under each heading of

branches corresponding to two alternatives: successful performance

of function (upper branch) and failure (lower branch). Af ter the

tree is drawn, paths across it can be traced by choosing a branch

under each successive heading. Each path corresponds to an accident

sequence. Six headings, five of which have two alternatives, result

in a 2n-1 (where n 6) event tree representing 32 accident sequences,

designated Sl to S32. Figure 2S illustrates the design basis LOCA

defined in the regulatory process.

When more headings are used because ESF systems replace the

functional headings,. the number of sequences can be quite large.

Analysis of individual sequences indicates that many of them are il-

logical or meaningless and can be eliminated. In the process of in-

creasing the detail in the headings and eliminating the unneeded se-

quences, continuing attention- must be given to the order of the

headings. Tree development is facilitated when -the order corresponds

generally to the logic of the accident process, i.e., when the headings
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whose failure affects the failure of others are located early in the

tree. The rationale for the order in Fig. 25 is as follows:

(a) RT is listed first because failure to shut down the fission

process during a LOCA could result in high core temperatures and thus

nullify the effectiveness of ECC even if cooling water were provided.

(b) ECC is listed next because cooling determines whether or

not the core will melt. If it does not, the consequences of pipe

break will be very small; but if the core does melt, the potential

consequences can be large and are strongly affected by PARR, PAHR,

and CI.

(c) PARR comes after ECC because its function is to remove any

radioactivity released from the fuel into the containment.

(d) PAHR is put just before CI because the containment has

failure modes that depend on the performance of PAHR (as well as on ECC).

The form of the tree does not imply independence among failure

events. Dependent as well as. independent events can be handled pro-

vided the dependencies are appropriately defined.

Further development of the event tree requires analysis of the

physical processes, such as core melting or overpressurization of the

containment, that could occur when one (or more) of the functions is

not performed. The analysis must include consideration not only of

functional interrelationships but also of the interrelated operational

factors involved with the physical systems provided to perform the

functions. Such analyses are important also in the study of common

mode failures because they define, if properly done, the only sig-

nificant logically permissible sequences (i.e., those that appear in

the event trees) and eliminate all others. Common mode failures need

be considered only for the sequences remaining in the completed event tree.
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E.2 Cause-Consequence Diagrams

A typical examnpla of the use of cause-consequence analysis is in

modeling a loss-of-coolant accident (LOCA) in a typical nuclear power

plant. The cause-consequence diagram for this case is given in

-Figure 24 where the initiating event is a pipe break in the main

coolant system of a PWR. The corresponding event tree is shown in

Figure 25.

E.3 Decision Tree Example: The Weather Prediction Problem

As an example of a decision problem, consider the case where a

person is deciding between locations for a party to be given the next

day. The alternatives are outdoors (0), the porch (P), and indoors

(I). We model this decision as a decision tree with three branches,

one for each alternative location (Figure 26). The possible outcomes

of each decision alternative refer to the weather and are discretized

into two possibilities: sunshine (S) or rain (R). These two weather

conditions are considered mutually exclusive events, so PR 1-P and

vice versa. The probabilities ofthese events are independent of the

decision alternative, but the values placed on them are dependent on

the alternative. For example, if the party takes place outdoors and

it rains, the value to the decision maker is 0 (units of happiness,

dollars, or imagine what you will). However, if it's sunny, the party

will be a tremendous success and the value to the decision maker is

100 units, the maximum he can assign. (Likewise, values are assigned

to the other alternative outcomes.) To analyze which alternative is

"best" (optimal), the expected value of the lottery is calculated by

multiplying the value placed on the outcome by the probability of
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the outcome and summing it together at the event node. For P 0.4

and P =- 0.6, the alternative with the highest expected value is P

(porch), with an expected value of 48 units (compared with 40 for "0"

and 46 for "I") since (0.4) (90) + (0.6) (20) = 36 + 12 = 48.

The question is now asked: "What is the value of knowing for

certain what the weather will be?" In other words, suppose an experi-

ment could be run that guarantees perfect information, what would the

decision-maker be willing to pay to run the experiment? This amount

is called the value of clairvoyance (C in this example). It is calcu-

lated by reversing the event/decision tree around so that the outcomes

to the left-hand side first, and then the optimal alternative that

corresponds to each outcome is chosen representing a kind of "decision

in retrospect". The value at each decision node is thus equal to one

times the value of each alternative, and the expected value of the

decision with clairvoyance equals the probability of each outcome

times the value at each decision node. In this example, EV= (0.4)

(100) + (0.6) (50) 70. Then, C is calculated by subtracting the

expected value of the lottery without clairvoyance (EVNC = 48), from

the expected value with clairvoyance: C = EVC - EVNC 70 48 22.

If the units are dollars, this says the decision maker--is willing to

spend 22 dollars to run the perfect experiment.-

Probability Assessment: Coin Tossing

Consider repeated tossing of a fair coin where H - head, T =

tail. Let n = number of tosses required to complete the first R H H

sequence. For example, consider the sequence H T T H H H T H ... which

.implies n = 6 tosses. Suppose we want to subjectively assess the
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Figure 27 Probability Assessment: Coin-Tossing
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probability distribution function $ where: * = {n < n(f)je} = f,

f = 0-1 and n(f) is the value assumed for n as a function of the fre-

quency value f. We will assess $ at five values of f: 0.01, 0.25,

0.50, 0.75 and 0.99 as follows. Draw a box for each value of f that

we will fill in for n, the number of tosses (Figure 27).

E.4 Risk Analysis and Assessment Methods

An example of the use of risk analysis and assessment methods

is provided here making use of the method of Litai described earlier

in section D.2. (The examples taken here are derived directly from

Litai's thesis [7].)

E.4.1 Nuclear Energy

Nuclear energy, because of the radiation sickness and contamina-

tion problems involved in a major accident, is considered a new type

of risk. Also, it has both immediate and delayed effects. An

"equivalent" one-category representation may be employed by multiplying

the immediate risk by 30, the risk conversion factor in this case, and

adding it to the delayed risk (or dividing the delayed risk by 30 and

adding it to the immediate risk). The sum total must be within the

limits of the respective distribution corresponding to the size of

population at risk ("15,000,000 for 100 reactors, from the Reactor

Safety Study).

WASH-1400 predicted 2 latent fatalities per year among the

15,000,000 exposed population, and one immediate fatality in 20,000

years per reactor, or 1 in 200 years per 100 reactors. The immediate

1 -10
risk is, therefore, 6 = 3x10 per person and year, and the

200x15x10

2 =7
delayed risk is 2 6 = 1.4x10 per person and year. The total



95

-10 -7 -7
weighted delayed risk is 3x10 + 1.4x10 = 1.5x10 , and the

-10 1.4x10~ -9
weighted immediate risk is 3x10 + *30 = 5.3x10 (Figure 21).

Another important conclusion may be drawn from the foregoing

calculation: it seems that the delayed risks are much more important

than the immediate ones. Even after dividing by 30, the delayed risk

is still 15 times higher than the immediate risk. In order to adjust

the curve for the immediate and delayed fatalities related to the 100

nuclear power plants, it must be raised by a factor of N,15. Moreover,

in order to convert it from "new" to "old" (assuming that today it is

still an unfamiliar risk) for direct comparison with the other curves

in Figure 21, it must be weighted by another- factor of N10. Hence, a

total weighting factor of N150 must be applied. This brings the

original curve much closer to the crowded region in the figure where

most other industrial catastrophes are located.

E.4.2 Coal Energy

Coal fueled power plants are an important and growing part of

our electricity production, but these plants can also pollute the air

and water which can kill people.

Pollution is the combined effect of many industrial and domestic

emissions. But when a single source can be identified and blamed for

a large number of fatalities, its risk may be considered catastrophic.

The uncertainty in estimating the effects of a coal power plant on the

surrounding population is large.

Studies indicate that the annual individual mortality risk to

persons living in the vicinity of a 1000 MWe coal power plant may be

anywhere between 10 6 and 3x.10. For an exposed population of size N,
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and for the total number of fatalities due to the plant accumulated

over 30 years (n), the annual risk will be (assuming delayed effects,

and "old" risk, and applying a factor of 2 as in the preceding example)

n < 3x10-6 for n > 500 (catastrophic) This requirement is illus--
30xn -10 for n < 500 (ordinary)

trated in Figure 26 which indicates the acceptable number of fatalities

for various urban sites. This number is about 20 for most urban sites

and may rise to about 30 for very populated areas such as New York City.

Estimates are shown in the figure with their uncertainty bounds. Un-

less the optimistic estimates "prevail" by use of modern effluent

scrubbing systems, coal power may well be up to an order of magnitude

too risky according to the present model. It should be noted that

the horizontal limit line drawn in Figure 28a at n = 500 may be moved

upward or downward - probably by as much as a factor of 2 - depending

on the definition we choose for a delayed catastrophe. Figure 28b

shows the acceptable individual risk corresponding to the limit line

of Figure 28a.. Finally, it should be noted "that the use of Figure 28

is not limited only to coal power plants, but could apply to other

sources of similar risks.
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Appendix

Statistical Tables

Cumulative X2 Distribution

Cumulative Normal Distribution

Cumulative t Distribution

(i)

(ii)

(iii)



TABLE I

CUMULATIVE X2 DISTRIBUTION

(p in %)

P
0.5 1.0 2.5 5.0 10 20 25 30 50

1 0.000 0.000 0.001 0.004 0.016 0.064 0.102 0.148 0.455
2 0.010 0.020 0.051 0.103 0.211 0.446 0.575 0.713 1.386
3 0.072 0.115 0.216 0.352 0.584 1.005 1.213 1.424 2.366
4 0.207 0.297 0.484 0711 1.064 1.649 1.923 2.195 3.357
5 0.412 0.554 0.831 1.145 1.610 2.343 2.675 3.000 4.351
6 0.676 0.872 1.237 1.635 2.204 3.070 3.455 3.828 5.348
7 0.989 1.239 1.690 2.167 2.833 3.822 4.255 4.671 6.346
8 1.344 1.646 2.180 2.733 3.490 4.594 5.071 5.527 7.344
9 1.735 2.088 2.700 3.325 4.168 5.380 5.899 6.393 8.343

10 2.156 2.558 3.247 3 08 4.865 6.179 6.737 7.267 9.342
11 2.603 3.053 3.816 4.575 5.578 6.989 7.584 8.148 10.341
12 3.074 3.571 4.404 5.226 6.304 7.807 8.438 9.034 11.340
13 3.565 4.107 5.009 5.892 7.042 8.634 9.299 9.926 12.340
14 4.075 4.660 5.629 6.571 7.790 9.467 10.165 10.821 13.339
15 4.601 5.229 6.262 7.261 8.547 10.307 11.036- 11.721 14.339
16 5.142 5.812 6.908 7.962 9.312 11.152 11.912 12.624 15.338
17 5.697 6.408 7.564 8.672 10.085 12.002 12.792 13.531 16.338
18 6.265 7.015 8.231 9.390 10.865 12.857 13.675 14.440 17.338
19 6.844 7.633 8.907 10.117 11.651 13.716 14.562 15.352 18.338
20 7.434 8.260 9.591 10.851 12.443 14.578 15.452 16.266 19.337
21 8.034 8.897 10.283 11.591 13.240 15.445 16.344 17.182 20.337
22 8.643 9.542 10.982 12.338 14.e41 16.314 17.240 18.101 21.337
23 9.260 10:196 11.688 13.091 14.849 17.187 18.137 19.021 22.337
24 9.886 10.856 12.401 13.848 15.659 18.062 19.037 19.943 23.337
25 10.520 11.524 13.120 14.611 16.473 18.940 19.939 20.867 24.337
26 11.160 12,198 13.844 15.379 17.292 19.820 20.843 21.792 25.336
27 11.808 12.879 14.573 16.151 18.114 20.703 21.749 22.719 26.336
28 12.461 13.565 15.308 16.928 18.939 21.588 22.657 23.647 27.336
29 13.121 14.256 16.047 17.708 19.768 22.475 23.567 24.577 28.336
30 13.787 14.953 16.791 18.493 20.599 23.364 24.478 25.508 29.336

- ------- - -

P 70 75 80 90 951 97.5 99 99.5 99.9

1 1.074 1.323 1.642 2.706 3.841 5.024 6.635 7.879 10.827
2 2.408 2.773 3.219 4.605 5.991 7.378 9.210 10.597 13.815
3 3.665 4.108 4.642 6.251 7.815 9.348 11.345 12.838 16.268
4 4.878 5.385 5.989 7.779 9 4R8 11.143 13.277 14.860 18.465
5 6.064 6.626 7.289 9.236 -ti.070 12.832 15.086 16.750 20.517
6 7.231 7.841 8.558 10.645 12.592 14.449 16.812 18.548 22.457
7 8.383 -9.037 9.803 12.017 14.067 16.013 18.475 20.278 24.322
8 9.524 10.219 11.030 13.362 15.507 17.535 20.090 21.955 26.125
9 10.656 11.389 12.242 14.684 16.919 19.023 21.666 23.589 27.877

10 11.781 12.549 13.442 15.987 18.307 20.483 23.209 25.188 29.588
11 12.899 13.701. 14.631 17.275 9.o rr21.920 24.725 26.757 31.264
12 14.011 14.845 15.812 18.549 21.026 23.337 26.217 28.300 32.909
13 15.119 15.984 16.985 19.812 22.362 24.736 27.688 29.819 34.528
14 16.222 17.117 18.151 21.064 23.685 26.119 29.141 31.319 36.123
15 17.322 18.245 19.311 22.307 24.996 27.488 30.578 32.801 37.697
16 18.418 19.369 20.465 23.542 26.296 28.845 32.000 34.267 39.252
17 19.511 20.489 21.615 24.769 27.587 30.191 33.409 35.718 40.790
18 20.601 21.605 22.760 25.989 28.869 31.526 34.805 37.156 42.312
19 21.689 22.718 23.900 27.204 30.144 32.852 36.191 38.582 43.820
20 22.775 23.828 25.038 28.412 31.410 34.170 37.566 39.997 45.315
21 23.858 24.935 26.171 29.615 32.671 35.479 38.932 41.401 46.797
22 24.937 26.039 27.301 30.8-13 33.924. 36.781 40.289 42.796 .48.268
23 26.018 27.141 28.429 32.007 35.172 38.076 41.638 44.181 49.728
24 27.096 28.241 29.553 33.196 36.415 39.364 42.980 45.558 51.179
25 28.172 29.339 30.675 34.382 37.652 40.646 44.314 46.928 52.620
26 29.246 30.434 31.795 35.563 38.885 41.923 45.642 48.290 54.052
27 30.319 31.528 32.912 36.741 40.113 43.194 46.963 49.645 55.476
28 31.391 32.620 34.027 37.916 41.437 44.461 48.278 50.993 56.893
29 32.461 33.711 35.139 39.087 42.557 45.722 49.588 52.336 58.302
30 33.530 34.800 36.250 40.256 43.773 46.979 50.892 53.672 59.703

Abridged Version of Table IV from R. A. Fisher and F. Yates: Statistical Tables for
Biological, Agricultural and Medkal Research published by Oliver & lloyd Ltd.,
Edinburgh and by permission of the publishers and authors.



100

TABLE II

CUMULATIVE NORMAL DISTRIBUTION

- p(t), = -)r 1

-0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08- 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0159 0.0199 0.0239 -0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0909 0.0948 0.0987 0.1026 0.1064 9.1103 0.1141
0 0.1179-0.1217 0.1255 0.1293 0.1331 0.136 -0.1406 0.14443 0.1480 0.1517
0.4 0.1555 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 -0.1808. .0.1844 0.1879
0.5 0;1915 0.1930 -0.1985 0.2019 0.2054 0.2088 0.2123 "0.2157 0:2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2356 0.2389 0.2421 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.611 0.2'642 0.2673 0.2703 0.2734 0.2764 0.2793 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3108 0.3133
0.9 0.3159 .0.31:86 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340. 0.3365 0.3389.
1.0 0.3413 0.3437 0.3461 0.3485 -3508* 0.3531 0.3554 0.357T 0.3599 0.3621
1.1 0.3643 .0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 03810 0.3830
1.2 .0.3849 0.3869 0.3888 0.3906 0.3925 0.3943 0.3962 0.3980 0.3997 0.4015
1.3 .0.4032 0.4049 0.4066 0.4082 -0.4099 0.41,15 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0 4194 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 L.4495. C.4505' C.4515 0.4525 0.4535 0.4545

-T. 0.4554 0.4564 0.4573 0~582 0.4591 U.-tjY 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4648 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
4 9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.476-1 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798" 0.4803 0.4808 0.4812 0.48f7
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4874 0.4878 0.4881 0.4884 0.4887 0.4890
2-3 0.4893 04896 0.48981 490i 0.4904 0.4906 0.4909 0.4911 0.4913 0:4916
2.4 0.4918 0.4920 0.4922 .49-24 0.4927 0.4929 0.4930 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 -0.4953 0.4955 0.4956 0.4957 0.4958 0.4960 0.4961 0.4962 0.4963 0.4964-
2.7 0.4965 .0.4966. 0.4967- 0.4968 0.4969 0.4970 .. 4971, 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4986 0.4987 0.4987 0.4988 0.4938 0.4989 0.4989 0.4989 0.4990 0.4990

--3.1 -0.4990 0.4991 0.4991 0.4991 0.4991 0.4992 0.4992 -0.4992 -0.4993 -0.4993
3.2 0.4993- 0.4993 0.4994 .0.4994 0.4994 0.4994 0.4994 0.4995 0.4995. 0.4995
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996
3.4 0.4997 -0.4997 0.4997 0.4997 0.4997 0.4997 0:4997 0.4997 0.4997 0.4998
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TABLE III

CUMULATIVE t DISTRIBUTION

55 60 70 80 90 '(75 97.5 99.5 9.9

1 0.158 0.325 0.727 1.376 3.078 6.314 12.71 S2 T.66 18~6
2 0.142 0.289 0.617 1.061 1.886 2.920 4.303 6.965 9.925 22.30
3 0.137 0.277 0.584 0.978 1.638 2.353 3.182 4.541 5.841 10.20
4 0.134 0.271 0.569 0.941 1.533 2.1- 2.776 3.747 4.604 7.173
S . '.25T ..559-:920 .476- 2.015 2.571 3.365 4.032 5.893
6 0.131 0.265 0.553 0.906 1.440 1.943 2.447 3.143 3.707 5.208
7 0.130 0.263 0.549 0.896 1.415 1.895 2.365 2.998 3.499 4.785
8 0.130 0.262 0.546 0.889 1.397 1.860 2.306 2.896 3.355 4.501
9 0.129 0.261 0.543 0.883 1.383 1.833 2.262 2.821 3.250 4.297

10 0.129 0.260 0.542 0.879 1.372 1.812 2.228 2.764 3.169 4.144
11 0.129 0.260 0.540 0.876 1.363 1.796 2.201 2.718 3.106 4.025
12 0.128 0.259 0.539 0.873 1.356 1.782 2.179 2.681 3.055 3.930
13 0.128 0.259 0.538 0.870 1.350 1.771 2.160 2.650 3.012 3.852
14 0.128 0.258 0.537 0.86& 1.345 1.761 2.145 2.624 2.977 3.787
15 0.128 0.258 0.536 0.866 1.341 1.753 2.131 2.602 2.947 3.733
16 0.128 0.258 0.535 0.865 1.337 1.746 2.120 2.583 2.921 3.686
17 0.128 0.257 0.534 0.863 1.333 1.740 2.110 2.567 2.898 3.646
18 0.127 0.257 0.534 0.862 1.330 1.734 2.101 2.552 2.878 3.610
19 0.127 0.257 0.533 0.861 1.328 1.729 2.093 2.539 2.861 3.579
20 0.127 0.257 0.533 0.860 1.325 1.725 2.086 2.528 2.845 3.552
21 0.127 0.257 0.532 0.859 1.323 1.721 2.080 2.518 2.831 3.527
22 0.127 0.256 0.532 0.858 1.321 1.717 .2.074 2.508 2.819 3.505
23 0.127 0.256 0.532 0.858 1.319 1.714 2.069 2.500 2.807 3.485
24 0.127 0.256 0.531 0.857 1.318 1.711 2.064 2.492 2.797 3.467
25 0.127 0.256 0.531 0.856 1.316 1.708 2.060 2.485 2.787 3.450
26 0.127 0.256 0.531 0.856 1.315 1.706 2.056 2.479 2.779 3.435
27 0.127 0.256 0.531 0.855 1.314 1.703 2.052 2.473 2.771 3.421
28 0.127 0.256 0.530 0.855 1.313 1.701 2.048 2.467 2.763 3.408
29 0.127 0.256 0.530 0.854 1.311 1.699 2.045 2.462 2.756 3.396
30 0.127 0.256 0:530 0.854 1.310 1.697 2.042 2.457 2.750 3.885
40 0.126 0.255 0.529 0.851 1.303 1.684 2.021 2.423 2.704 3.307
60 0.126 0.254 0.527 0.848 1.296 1.671 2.000 .2.390 2.660 3.232

120 0.126 0.254 0.526 0.845 1.289 1.658 1.980 2.358 2.617 3.160
co 0.126 0.253 0.524 0.842 1.282 , 1.960 2.326 2.576 3.090

This table is reproduced from Table III of 16 A. Fisher and F. Yates: Statistical
Tables for Biological, Agricultural and Medical Research published by Oliver & Boyd
Ltd., Edinburgh and by permission of the publishers and authors.
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III. APPLICATION TO UNRESOLVED GENERIC NUCLEAR SAFETY ISSUES

A generic nuclear safety issue refers to an issue that a;oplies

to a reactor system in general and is not specific to a particular

utility plant design. Thus, generic nuclear safety issues are some

of the most important and most difficult .issues to resolve. In some

of these issues, probabilistic means of resolution have been discarded

(as for the ATWS issue by the NRC staff); in others, such analysis

seems to be the only way to resolve the issue since a choice between

mitigation systems must be made. The issue of ATWS is one of the more

famous of the unresolved nuclear safety issues confronting both regu-

lators and the industry. Other issues include decisions on appro-

priate control systems for hydrogen generated in accident scenarios

by metal-water reactions and deciding between various suggested new

containment designs to reduce the likelihood of containment. breaks

during accidents. After Three-Mile Island, attention has also been

placed on human factors engineering and the necessary modifications

required for improved control room design. TMI has forced the NRC

and the industry to take a hard look at many of these unresolved

safety problems; the next several months will be some of the most

active in the licensing-safety area.

This section summarizes the work done at MIT and elsewhere in

applying reliability and probabilistic risk assessment methods to

four unresolved generic nuclear safety issues:

(i) the anticipated transient without scram (ATWS) issue;

(ii) the containment inerting issue;

(iii) the issue of hydrogen control in PWRs; and

(iv) the issue of the reactor core melt frequency
after TMI.
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Summarized here is work done on each of these subject categories indi-

cating what probabilistic studies have concluded with respect to each

area and the additional data and analysis required to reach resolution.

The examples make use of the most recent studies available on each

issue and present original results forthcoming from the analyses

performed at MIT. Use of WASB-1400 and recent EPRI-NSAC studies are

included.

In part A, the ATWS issue is reviewed including the work done

at EPRI by Lellouche et al. and by Garrick and Lowe - UCLA for the

Oyster Creek probabilistic risk study. Data and information on the

recent incident at Brown's Ferry is also summarized and reviewed with

respect to its impact on the ATWS assessment. In part B, the contain-

ment inerting issue is analyzed making use of data and specific systems

design from the Vermont Yankee nuclear power stations and from the

General Electric Co. licensing staff. Part C summarizes' the work

done at MIT on the hydrogen deflagration and detonation problem, par-

ticularly for PWRs.' Models developed to calculate the expected pressure

rise due to a hydrogen burn or explosion are described and results

shown. A comparison of recombiners with other methods for in-containment

hydrogen control in PWRs is also shown. Finally, in part D, a method

for updating estimates of the core melt accident frequency is described

based on Bayesian updating techniques. A sample calculation of such an

updated estimate is performed inclusive of the experience at Three Mile

Island. Reference to these examples of nuclear safety analyses should

provide nuclear safety and licensing engineers with detailed examples

to guide similar such endeavors.
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A. The Issue of Anticipated Transients Without Scram (ATWS)

The issue of anticipated transients without scram, or the ATWS

issue, has been raging in the nuclear industry for over ten years.

In 1968, a consultant to the Advisory Committee on Reactor Safeguards

(ACRS), which advises the NRC on licensing matters, brought forth a

concern about a potential failure phenomena threatening nuclear power

safety. This concern was over the potential for a simultaneous failure

of the multiple defense system of the reactor scram system while the

reactor was experiencing a normal or abnormal transient event. This

"common mode" failure possibility resulted in the creation of the

acronym ATWS.

Conceptually, an ATWS event might occur whenever the reactor was

scrammed during a transient. The Oyster Creek study2 identifies over

40 possible scram initiating events. Ten of the most important in

the case of a BWR are: (1) high reactor pressure, (2) low reactor

water level, (3) high drywell pressure, (4) high main steam line radi-

ation, (5) main steam line isolation valve closure, (6) low condenser

vacuum, (7) high-high water level in the scram discharge volume, (8)

high-high neutron flux, (9) turbine acceleration (turbine trip), and

(10) stop valve closure. For PWRs, similar events also cause scrams.

The consequences of an ATWS event could be major. Although the

precise definition of a specific ATWS event has been debated, failure

to scram a reactor during a transient event could lead to a major ac-

cident with a subsequent release of large amounts of radiation. The

usual definition employed to define a failure of the scram system in

various safety studies is that between 3 to 5 adjacent control rods
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fail to fully insert to their full position when placed on demand.

The effects on reactivity as a result of such a failure are conserva-

tively estimated to appreciably increase the overall risk of a core

melt scenario. Also, WASH-1400 has pointed out the increased signifi-

cance of an ATWS event for a BWR as compared to a PWR; WASH-1400

identifies an ATWS event as contributing approximately 30 to 40 per-

cent of the total accident risk in a BWR.3

The debate over the significance and probability of an ATWS

event has resulted from the inconclusive nature of operating history

to render an estimate of scram failure frequency that is acceptably

low to the NRC. The NRC perspective on ATWS is found in NUREG-0460,4

prepared by the NRC staff in 1978. In that document, a summary of the

NRC position is presented. Briefly, the NRC position is given in the

following excerpt from that report:

"The significance of ATWS...is that some ATWS events could
result in melting of the reactor fuel and the release of
a large amount of radioactive fission products. The
questions in contention concern whether the probability
of such events is great enough to justify their consider-
ation and if so, what degree of protection is required."

"We estimate that the probability of scram failure, based
on nearly 700 reactor years of operating experience in
foreign and domestic commercial reactors is in the range
of 10~4 to 10-5 per demand. Thus the expected frequency
of ATWS events that could result in serious consequences
is N2x10-4 per reactor-year. We recommend that a safety
objective of 10-6 unacceptable ATWS events per reactor-
year is more appropriate and therefore, that some corrective
measures to reduce the probability or consequences of ATWS
are required."

A utility perspective on ATWS is provided by A. Kimmins of Washington

5
Public Power Supply Systems:
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"...ATWS has not been shown to be a significant problem
and the high estimated costs for mitigation cannot be

justified ... the original issue has escalated from the
need to address a hypothetical concern to a full scale
scenario of abnormal events ... today, we still don' t know

definitely what an ATWS is so how can the design of

nuclear power plants be adjusted to prevent such an

event? The addition of more systems and equipment has

been suggested by the NRC but such "fixes" have the
potential to worsen the net. safety and operability of

plants.

A.1 Analyzing the Occurence of an ATWS Event: Probability Statement

in Inferential and Classical Notation

A.l.1 Definition of ATWS: An ATWS event may occur when the

reactor protection system (i.e., the control rod assemblies) fails to

operate or "scram" completely at the time an anticipated transient

is simultaneously taking place in the reactor. The consequence of

such an event could include core meltdown with subsequent release of

radioactive fission products to the environment in large, significant

amounts. Anticipated transients refer to those conditions of normal

operation which are expected to occur one or more times during the

service life of a plant including such events as loss of all offsite

power and tripping of the turbine generator set.

A.1.2 Occurrence of ATWS Events: The frequency of ATWS events

is the product of the frequency of anticipated transients in the

reactor and the conditional probability of scram failure given the

occurrence of a transient, or:

P(ATWS) = P(AT) P(WSIAT)

where P(ATWS) = probability of an ATWS event

P(AT) - probability of an anticipated transient

(frequency per year)

P(WSIAT) - probability of a scram failure (without
scram event) given an anticipated transient event

= unavailability on demand
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These estimates are placed on a yearly basis. The probability of

failure of the reactor protection system given a transient event

P(WS|AT) is the sum of two components: (i) the probability that the

event occurs and then remains undetected and therefore uncorrected

until tested or challenged, and (ii) the probability that the scram system

fails as a result-of the transient. This can. be expressed mathemati-

cally as:

P(WSIAT) = P(WSJATB) + P(WSIATR)

where P(WS|ATB) = probability that the agram system fails before the
anticipated transient event occurs

P(WSIATR) = probability that the scram system fails as a
result of the anticipated transient event

Experience has shown that P(WS|ATB) >> P(WSIATR) so that most analyses

have neglected P(WSIATR) while concentrating attention on the more

significant component.

A.2 Estimation of Probabilities for Scram System Reliability and.
Anticipated Transients

A.2.1- Scram System Reliability Estimates

The estimation of failure rates for the reactor protection system

from experience data is made difficult because the systems have been

4
very reliable; only one event that can be construed to relate to

*-
scram failure has ever taken place. Although many components and

*1

This was the KAHL event which took place at the 15 MWt BWR KAHL
reactor in Germany in 1963. After the situation was discovered, modi-
fications in quality assurance procedures were instituted by the NRC
and were applied to all plants . It should also be noted that an an-
ticipated transient did not occur at the time of the "without scram"
event at KAHL. There has yet to have been an ATWS event.
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subsystems have failed these systems are designed to be redundant and

capable of performing their safety function even with the occurrence

of single failures. Failure of the common mode type that could cause

all or a significant number of the control rods to fail to insert have

been very rare events indeed.

Two methods have been used to estimate scram system reliability:4

(i) the "system experience method", which evaluates reliability based

on actual experience of the system without identifying specifically

the modes of failure, and (:Li) the "synthesis method", which uses

fault and event trees to identify failure paths and individual com-

ponent failure rates to quantify the estimate of reliability.

A.2.2 The System Experience Approach

On the basis of existing reactor operating data from the U.S.

and similar foreign experience, the system experience approach can

give an estimate of scram system reliability as follows:

{AT,WSe} - {ATje} - {WSIAT,e}

where {AT,WSIeI probability of both an. anticipated transient
(AT) and a failure of the reactor protection
system (WS) occurring simultaneously

(AT e} - frequency of an anticipated transient per year

{WS|AT,e} - probability of having a failure of the reactor
protection system given a demand is placed on
that system by an anticipated transient event

Historical data for the above probabilities is given in the following

table (Table I).

From definition of conditional probability (see II.A).
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Table I

CALCULATION OF ATWS PROBABILITY BASED ON EXPERIENCE DATA (c)

{ATWSJe} = {ATIe} {WSIATe}

Category of Event Estimated Suggested
Range Value6

No. AT (demands) per reactor year {ATIE} .01-10 1.68

No..tests performed per.reactor.year . 20-200 92

-5

Probability of WS per demand {WSIAT,el .38-3.
No. failures to scram completely
total no. demands

. 1 (KAHL Event)
[(659 reactor-yrs)(tests per reactor-yr)
+(659 reactor-yrs)(other scrams per reactor-yr)]
1 (KAHL Event)
(2)(659)(no. tests)

79xlO mean 8.25x10
median 5x-6

{ATWS I e}
(per reactor-year)

mean .64-6.4x10-5
median -5

.39-3.9x10

.i -5
mean 1.39x10
median -6

8.4x10

*
According to EPRI analysis {WS|AT,e} can be estimated by dividing
the historical number of WS events by twice the number of tests

(demands) multiplied by the amount of experience in reactor-years.
There have been 659 reactor years of experience as of 1978; currently,
the total has risen to 850 excluding naval experience . The use of

naval reactor-operating data has been debated and presently the NRC
rejects the notion of using such data for its reliability estimates.4

Inclusion of such data adds another 1500-1600 years of reactor
operating experience to the data base?'

- 6
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A.3 Using the Bayesian Approach to Analyze the System Unavailability
per Demand

A more detailed analysis of the scram system (reactor protection

2
system (RPS)) was carried out for the Oyster Creek BWR plant.

Basically the RPS is made up of five subsystems shown in Figure 1:

(1) sensors, (2) logic, (3) hydraulic control units, (4) control'rod

devices, and (5) scram discharge volume. Each of these systems per-

form a different function in protecting the reactor from undesirable

transients. The sensors first detect the undesirable circumstances

(e.g., high-high reactor pressure or neutron flux) sending electrical

signals to the logic circuitry, which determine whether the signals

are spurious or real. An example of the RPS trip logic is shown in

Figure 2 for the Average Power Range Monitoring (ARPM) sensors. At

Oyster Creek, the logic used in the APRM input circuit is called a

"one-out-of-two-twice" system since the signal must come from either

of two sets of ddal detectors twice and then be matched against the

existence of a signal on the opposite channel.

In a BWR, the signals from the sensors cause the logic circuit

to de-energize as each logic channel is basically a set of relays and

contacts; when a detector senses a parameter out of limit, the input

to the associated logic channel results in a contact being opened.

The resulting open circuit leads to de-energization of a relay which

in turn leads to further de-energization of other relay sets. When

both logic channels are fully de-energized, the logic system causes

power to all scram pilot valves to shut off. Each of the 137 control

rod drives has a hydraulic control unit (HCU) governed by the position
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Figure 1 Reactor Protection System Model (RPS).
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of the scram pilot valve. The two scram pilot valves transfer to an

open position and bleed the instrument air that holds two scram valves

in the closed position. This exerts a change in pressure AP that is

exerted under the control rod piston. Reactor pressure and the AP

drive the control rods the full distance into the core. When this

happens, water is .driven out of the control rod drives and is exhausted

through. the discharge side of the hydraulic control units. The scram

discharge volume, which is -the fifth sub-system, collects the water

from all 137 control rod drives.

Both dependent and independent failure modes of the five sub-

systems were analyzed with fault trees to arrive at histograms on the

failure frequency per demand. The RPS summary fault tree for Oyster

Creek is shown in Figure 3. Results are shown in the figure and indi-

cate that dependent failures outweigh the independent modes of failure.

The largest single contributor to the overall failure frequency is: the

logic sub-system followed by sensor failure, and then by the failure

of 5 out of the 137' control rods to insert fully upon demand. The

scram discharge volume contributes only in a minor way to the total

failure frequency, but note that the dependent and independent failures

are roughly equivalent. The final histograms of the. failure frequency

is shown in Figure 4 and combines the histograms of the five sub-systems.

The Bayesian approach was used in the Oyster Creek study to in-

corporate the existing experiencial data into the calculations of scram

failure per demand.-Because of the uncertainty and debate surrounding

the number of scram failure occurrences and the uncertainty on the

number of total tests of the scram system in the world, the Oyster

Creek study points out (p. A-201):
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"Subjective judgment is inevitable when dealing with
uncertainty. Subjective judgment is essential. All
that the Bayesian approach does is to formalize the
use of judgment and make it visible and explicit so

that inconsistencies will be prevented."

To use the Bayesian approach a prior distribution must be con-

structed. This was done for Oyster Creek by combining the failure

frequency histograms for the five sub-systems (Figure 4).

Next, posterior distributions were calculated from Bayes

theorem (Figure 5) incorporating both the prior distribution derived

from the systems analysis and the available experience data. The ex-

perience data consists of estimates made by EPRI and NRC on the number

of scram failures r experienced out of n test trials in the world to

date. The process of incorporating this data.with the prior estimate

is analogous to the I.Q. problem described in an -earlier section (see II.A.4).

The "r-out-of-n trials" is also analogous to the coin-tossing experi-

ments discussed in earlier.sections where r = number of heads and

n = number of scrams (tests) which have occurred over the lifetime of

the world's nuclear power industry. Results of the analysis for

Oyster Creek are shown in Figure 6. Note the prior distribution de-

rived from the system fault tree analysis and the observed data points

xi. The characteristic mean of the prior and posterior distributions

are also shown.

The final ,result is that the best estimate of the scram failure

frequency per demand is {WSlAT,x}; i.e., the probability distribution

function of having a without scram event (WS) given an anticipated

transient (demand) is conditioned on the observed data x expressed in

composite form. (Note that the inferential notation allows the analyst
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Figure 6 Final Results: Oyster Creek Analysis of RPS Failure.
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to define the probability statement explicitly.) Numerically, the

' -5
expectation of this p.d.f. is <WS|AT,x> 5xlO /demand for Oyster

Creek. However, if it is assumed that two anticipated transients are

likely per reactor year the resulting mean estimate of an ATWS event

-4
at Oyster Creek is 10 per reactor year. This value does not meet

the NRC's desired criterion of 10-6 undesirable ATWS events per reactor

year. This limit can only be reached if each sub-system's failure

frequency is reduced to '10-6. Such'a risk reduction is estimated to

cost several tens of millions of dollars and is particularly expen-

sive and costly for operating plants. Plant outage for extended retro-

fits such as would be required to satisfy the NRC's ATWS guidelines

could run into hundreds of millions of dollars because of the expense

of replacement power. Thus, a possible next step in ATWS analysis is

to do a cost-benefit tradeoff between mitigation system alternatives

and retrofit costs and the expected benefits (or disbenefits) of such

alternatives expressed as the reduction (or increase) in public health

risks.

A.4 The Biowns Ferry Incident

On June 28, 1980 76 of the 185 control rods failed to fully

insert during a routine shutdown at TVA's Browns Ferry Unit No. 3

located at Athens Alabama. The reactor was manually scrammed from

about 30 percent power in accordance with routine shutdown procedures.

The shutdown was initiated to repair the feedwater system. The 76

*At TMI for example over 60% of the expense of the accident is esti-
mated to be due to payments for replacement power.
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control rods that failed to fully insert were all on the east side

of the core.

Following scram discharge volume (SDV) high level bypass and a

short drain period of the SDV, a second manual scram was initiated and-

all partially inserted rods were observed to drive inward but 59

remained partially withdrawn. A third manual scram was made again

following high level in the SDV and bypassing for another short drain

of the SDV with the result that 47 rods remained partially withdrawn.

Following a longer drain of the SDV an automatic scram occurred that

was initiated by a scram discharge volume tank high water level signal

when the scram reset switch was placed in "Normal"; with this scram

all remaining rods fully inserted. The total time elapse from the

initial scram to the time that all rods were inserted was approximately

15 minutes. Core coolant flow, temperature and pressure remained

normal for 'plant conditions. The unit is now shutdown and. additional

testing indicates that a possible cause of the malfunction was the

retention of a significant amount of water in the east bank scram dis-

charge volume.

As a result of this incident, the NRC has required that all BWRs

perform a test of their scram system to identify any safety related

problem as they relate to the scram discharge volume and associated

piping. A subsequent test performed at the Dresden BWR plant revealed

that after manually scramming the reactor the banks of the CRD scram

9
discharge volume were over half full. This was discovered by ultra-

sonic tests. Diagnosis revealed that the suction ball valve on the

scram discharge volume vent line had failed to open. It also revealed
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that the SDV takes too long to vent on one bank when this ball valve

fails due to a long "trickle line" back to the CRD instrument volume.

The NRC therefore required all BWR-3s to cut this vent line (or at

least make a hole in it.) to alleviate the consequences of a valve

failure and consequent failure to scram. They required the vent line

to be cut on both banks of CRDs. General Electric Co..is currently

preparing design changes to the overall SDV system. including an im-

proved suction valve, new drain lines, and direct monitoring of the.

SDV rather than -inferred monitoring via the instrument volume level

It was also discovered that the alarm points on the instrument volume

were mixed (i.e., warning points and scram point reversed). Thus, the

NRC was greatly concerned that the unit had operated in this condition

for so long. Further information on the Dresden tests is available

through the NRC bulletin on these tests.

The tests on the scram system in BWRs may provide additional

.data to confirm or reject the failure rate postulated for the SDV in

the Oyster Creek probabilistic analysis study. The controversey sur-

rounding ATWS will remain until an acceptability criterion on- the fre-

quency of ATWS occurrence can be agreed upon. The NRC staff has-

already decided to resolve the ATWS controversey apart from the analytic

approach since the staff claims10 that the analytic approach renders

too wide a range of answers depending upon the assumptions used. The

industry has argued continually that the analytic approach be emphasized

and that debate surround the assumptions used rather than the quantitative

framework itself. At this time it seems likely that ATWS will con-

tinue as an unresolved issue.
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B. The Issue of Nitrogen Inerting in BWR Primary Containments

B.1 Summary of Study Results

Hydrogen control is important in post-accident situations be-

cause of possibilities for containment rupture because of hydrogen

deflagration or detonation. Post-accident hydrogen generation in BWR

containments is analyzed as a function of engineered hydrogen control

system assumed either nitrogen inerting or air dilution. Fault tree

analysis was applied to assess the failure probability per demand of

each system. These failure rates were then combined with the prob-

ability of accidents producing various hydrogen generation rates to

calculate the overall system hydrogen control probability. Results

indicate that both systems render approximately the dame overall

-2
hydrogen control failure rate on demand (air dilution: 8.3 x 10 -

-2 -2 -3
1.1 x 10 ; nitrogen inerting: 1.3 x 10 - 2 x 10 ). Drywell

entries and unscheduled shutdowns were also analyzed to determine. the

impact on the total BWR accident risk as it relates to the decay heat

removal system. Results indicate that inertiag may increase the

overall risk due to a possible increase in the number of unscheduled

shutdowns due to a lessened operator ability to correct and identify

"unidentified" leakage from the primary coolant system. Further,

possible benefits of inerting due to reduced torus corrosion and fire

risk in containment appear to be dominated by the possible operations

related disadvantages.
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B.2 Introduction

The accident at Three Mile Island (TMI) has led to a reevaluation of

federal safety regulations and utility operating procedures. Because of con-

cern over hydrogen production from zircalloy fuel cladding oxidation in

accidents where fuel temperatures rise substantially, the Nuclear ReguIatory

Commission (NRC) has made several recommendations for change in operating

facilities. One of these recommendations would require all BWR

containment structuresto be inerted with nitrogen. Although most Mark I

BWRs are now inerted, it has not been quantitatively established that publi'

health risk has been reduced by this procedure. Moreover, many utility

engineers remain concerned over the possibility that inerting might actually

increase public health risk. They argue that a readily accessible contain-

ment may be a significant factor affecting accident mitigation. Also,

utilities are concerned that inerting may increase occupational health risks.

Concern over worker safety arises from the replacement of oxygen by nitrogen

in the containment, producing an inhabitable atmosphere.

This study applies probabilistic risk assessment (PRA) methods to

assess the safety impact of containment inerting, comparing the inerting

system with that of the air dilution hydrogen control system installed at

the Vermont Yankee plant. This analysis provides a basis upon which con-

clusions can be drawn concerning the value of containment inerting as a

safety device.

This paper is divided into five sections, discussing first the hydrogen

generation .problem during the Three Mile Island incident, NRC-response to

the incident and previous regulatory history related to inerting, and
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a brief review of the hazards of inerting. The second section discusses

the hydrogen generation problem, mechanisms for hydrogen production,

properties of hydrogen-oxygen mixtures and methods for control in BWRs.

In the third section, a probabilistic framework for analyzing the probability

of controlling post-accident hydrogen in BWRs is.outlined and results

reviewed. In the fourth section, related issues regarding the impact of

containment inerting on reactor safety are also analyzed including the impact

on unscheduled shutdowns, torus corrosion and fire risk. Finally, a dis-

cussion and summary of results follow.

During the accident at TMI, a significant amount of hydrogen was pro-

duced through the oxidation of zirconium cladding as it interacted with

steam. The amount of cladding that reacted is estimated to be between

50 to 70 percent (NSAC(l)). (In the design of hydrogen control systems for

accidents, the design basis had expected less than a .1% metal-water reaction.)

About nine hours into the accident, a pressure pulse of 28 psig was recorded

in the containment building due to a hydrogen burn. The pressure spike was

below the 60 psig design pressure of the containment building, and well below

the expected burst pressure of 160 psig (Wooten et al. [2]). The hydrogen

generated by the large metal-water reaction at TMI and the resulting pressure

increase in the containment were considered in the NRC TMI-2 Lessons-Learned

Task Force (NRC (3]). Recommendations were made for the control of hydrogen

including that all BWR containments should be inerted with nitrogen to pre-

vent hydrogen burns or explosions. Following a prolonged set of hearings, a

memorandum and order were issued in 1974 stating that inerting was not

justified pending the outcome of a full hearing because the evidence presented

showed that inerting creates problems with greater consequences than those it

was intended to solve (Farrar et al. [4]).
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B.3 The Hydrogen Generation Problem

Hydrogen presents two potential threats to containment integrity;

first, increasing the internal gas pressure, and secondly, burning or

exploding when combined with the oxygen present in the containment resulting

in containment failure by overpressurization. Hydrogen can be produced

during an accident by high temperature metal-water reactions between cladding

and reactor coolant, by radiolytic decomposition of water, and by corrosion

of metals by solutions used for emergency cooling or containment sprays.

The main source of hydrogen from metal-water reactions is produced through

the high temperature zircalloy-water and steel-water reactions, which is the

initial source of hydrogen when steam contacts the overheated zircalloy

fuel cladding.
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B.3.1 Pressure Rise Due to Hydrogen Deflagration

The pressure rise due to combustion of hydrogen can be predicted from.

the burning rate, which depends on the geometry of the vessel and velocity

of the propagating flame. The maximum possible pressure rise in a closed

vessel can be determined by assuming complete combustion of hydrogen with no

heat loss to the vessel walls (Slifer et al. [5]). The combustion energy

is absorbed by the mixture of combustion products. The overall energy

balance is:

AU C n (T - T) n [H2]Au

where:

H2  mole fraction of hydrogen

n= total moles of initial mixture

T 0 initial temperature before combustion

AuO combustion energy per mole of hydrogen

AU = internal energy difference

n total moles of final mixture

Cv - average specific heat at constant volume

Tf - temperature of the final mixture

Assuming ideal gas behavior, the ratio of the final pressure P to the initial

pressure P is:
0

nT =(2)
P n T

o o0o
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Solving for T from equation (1) and substituting into equation (2) gives

the maximum pressure rise as:

AP Pf -P Au" [H2]
f~ -0 -2 1 (3)

0 0 CVT(3
max

This result is plotted against the intial percentage of hydrogen for -initial

water vapor concentrations (Figure la). This model can be used to predict

the pressure transients associated with burning of various concentrations.

The pressure transients in a Mark I drywell for hydrogen concentrations of

up to 18 volume percent are also shown (Figure ib).

2.3.2 Methods for Hydrogen Control. in Boi.nk Water Reactora

Several systems have been used to control flammable hydrogen-oxygen

mixtures by maintaining the hydrogen below the flammability limits established

by the regulatory guides (four volume percent hydrogen concentration and

five percent volume oxygen (NRC[6])). Methods besides inerting include

combinations of air dilution systems, recombiners and controlled venting.

Containment inerting consists of purging the containment atmosphere with

nitrogen until the oxygen concentration is below five volume percent during

operation. In the event of an accident, a nitrogen make-up system is acti-

vated to help reduce the hydrogen concentration to four volume percent and

maintain the oxygen concentration below five volume percent. Controlled

venting through the standby gas treatment system (SGTS) is provided to reduce

the pressure inside the containment (Boston Edison [7]).
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In the containment air dilution system (CAD), the atmosphere in the

containment is diluted with air during and after an accident (Wilson and

Slifer [8]). System design is based on the requirement that the containment

atmosphere be maintained below four volume percent hydrogen in the event of

an accident. The system monitors the hydrogen gas concentration and injects

additional air as required to dilute the hydrogen and maintain it below the

flammability limit. Controlled venting is manually initiated when, during

an accident, the pressure reaches half the drywell design pressure of 28

psig (Vandenburgh [9]). Venting of the containment atmosphere occurs only

if after an accident, the hydrogen concentration approaches four volume

percent. Venting times are designed on the basis of dose acceptability

(Commonwealth Edison [10]). Fission product releases are minimized by

passing the vented gas through chemical scrubbers or charcoal filters in

the standby gas treatment system. However, control of noble gas radioactivity

under venting -conditions is very difficult (Keilholtz [11]).

If filtered venting is acceptable, there are a-variety of non-venting

recombiner schemes available.. Chemical recombination of hydrogen is a way

to prevent hydrogen burning and at the same time control increases in hydrogen

pressure. Applied to BWRs, recombiners would need to be more complex and

expensive, requiring a supplementary oxygen supply to consume all the hydrogen

that might be produced. Recombiners can be classified into flame,

catalytic and electrical types (Keilholtz [11]). The principal disadvantages

of flame recombiners is the possibility of extinguishing the flame and

having it "flash back" through the injector. Catalytic recombiners use

a catalytic bed that maintains the gas mixture through chemical recom-

bination below the flammability limits and are now in use in PWRS. Recent

designs include nickel and nickel-chromium oxide com-
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binations supported on aluminum-oxide bases and platinized honeycomb ceramic

disks. Disadvantages include choice of diluent, condensing or non-condensing

reactions, catalyst, preheat temperature, pressure-drop specifications,

vessel materials and number of recombining stages. Electric recombiners use

electric resistance heaters to heat the continuous flow of containment

atmosphere to above the hydrogen-oxygen reaction temperature.

4 - Quantification of the Probability of Controlling Post-Accident
Hydrogen in BWRs

A comparative analysis of the air dilution system (CAD) and the inerting

system (CIS) is made to find the influence on the probability of containment

failure due to post-accident hydrogen generation as a function of control

system installed. In order to assess the overall probability that the CAD

or the CIS systems are capable of handling a given amount of hydrogen

generated during an accident, a set of probabilities need to be calculated.

Fault trees are used to calculate the probabilities of failure on demand,

denoted P f(S), of the CAD and CIS hydrogen control systems. Using probabilities

of -failure of each system, the probability that the systems are available

to work, denoted P (S) and P (S),are defined as follows:

CAD CIS

P (S) 1 - P f(S) (4)

PCIS ( 1 f (S) (5)

The next step in the analysis is to calculate the probability of hydrogen

generation, or percent metal-water reaction, given that an accident occurs.

From WASH-1400, large LOCA accidents in BWRs have a probability of producing
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a core melt of "'u 3x10 /reactor-year (U.S.N.R.C. [12]). For these accidents,

it is assumed that all the zirconium reacts with water to produce hydrogen.

The following important assumption was made in this work based on a linear

interpolation process reflecting our best engineering estimates. For small

-3accidents with probabilities in the range of 3x10 /reactor-year, it is

assumed that the metal-water reaction linearly decreases from about 100% to

almost zero and remains zero over the range of the higher probability yet

less serious actidents (Figure 2a).

The maximum amount of hydrogen produced by a metal-water reaction is

shown (Figure 3). For a 100% metal-water reaction, the maximum hydrogen

concentration in a BWR-.Mark I containment is 72 volume percent. At this

value, the percent metal-water reaction required to reach four volume

percent hydrogen concentration is achieved in four or five minutes, implying

3 3
a generation rate between 144x10 and 180x10 cuft/hr. These values are

the upper bound of the hydrogen generation rate plotted (Figure 2b). The

3.
accident at Three Mile Island generated hydrogen at approximately 100x10

cuft/hr (Batelle Colombus [2]) (Figure 2b).

The air dilution system is designed to work when the hydrogen concentra-

tion reaches four volume percent, which in the design basis accident occurs

in approximately nineteen hours. If a generation rate of ' 1000 cuft/hr

is assumed, the probability of success of the CAD in controlling the hydrogen

-2
is 1 from equation 4 (fault tree analysis showed a failure rate of 8.3x10 -

1.lx10-2). During normal operations, the CAD system pressurizes the contain-

ment to reduce the hydrogen concentration, and then vents through the standby

gas treatment system to reduce the pressure at a maximum venting rate of

2400 cuft/hr. If the four volume percent hydrogen limit is reached in one

hour, this corresponds to a generation rate of ' 12,000 cuft/hr and a
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probability of accident of A, 3x10~ /reactor-year using the assumed linear

interpolation of Fig. 2a.

As the hydrogen generation rate increases, the probability of accident

decreases (Figure 2a). For low probability accidents, the probability of

the air dilution system being able to handle high hydrogen generation rates

drops almost to zero. For the inerting system, the probability of controlling.

the hydrogen remains at about one during normal reactor operations, since

the hydrogen cannot burn. However, during the 24 hour period prior to

shutdown and after startup when the drywell is not inerted, the probability

of having a combustible mixture increases because the oxygen concentration is

above five volume percent.

B.4.1 -Hydrogen Related Event Tree

The design basis LOCA in a BWR is defined as a double-ended rupture of

the primary coolant recirculation line (U.S.N.R.C. [12]). A small LOCA is

defined as a break in the cooling system of about 1/2 to 2 inches in diameter.

The sequence of events for both large and small LOCAs is very similar, the

differences are in the emergency coolant injection and scram requirements.

A reduced event tree is developed here with emphasis on those sequences that

lead to hydrogen generation and eventually to failure of the containment due

to hydrogen overpressurization (Figure 4).

The initiating event is assumed a rupture in the reactor coolant system

defined as a break in the recirculation lines. The next branch point occurs

at electric power followed by the reactor protection system that provides the

reactor trip in case of an accident. The next branch point occurs at the

vapor suppression system. If the vapor .suppression system fails, the primary

containment fails due to overpressurization. The next event refers to the
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emergency coolant injection system. Failure of this system could leave the

core uncovered long enough to produce significant amounts of hydrogen..

The hydrogen event tree indicates the sequence of events required in

hydrogen control. The first column in the tree relates to the control system

in place (CAD or CIS); if this system is not used or fails on demand, the

hydrogen is not controlled. If the system works and is used, the system may

control the hydrogen mixture. If the combustible mixture is uncontrollable,

the next event in the -sequence will be hydrogen burning. If the hydrogen

burns, the next event is containment failure due to overpressurization. If

there is no rupture or no hydrogen burning, the hydrogen concentration

could increase to the detonation limits (20 volume percent) and explode;

the final event is containment rupture by detonation.

Assuming the combustible mixture is controlled and there is no contain-

ment failure, the core could remain uncovered, increasing the rate of hydrogen

production while building up radioactivity. If the core continues to stay

uncovered, eventually it will start to melt and other events may dominate

the hydrogen problem. The different stages affect the probabilistics of

hydrogen control (Figure 4). In order to assess the probability that the air

dilution or inerting systems can handle the hydrogen generated in an accident,

a detailed analysis was next attempted.

B.4.2 Fault Tree Analysis of 'Hdrogen Control Systems

The potential failure modes of the air dilution and inerting systems

were analyzed and failure probabilities derived using plant specific data

from three utilities, and failure data from WASH-1400 (Tables I and II).

Fault tree analysis was applied to perform the analysis and derive the

failure probability estimates. The following assumptions were made in per-

forming the analysis: (i) independent component failures were considered;

(ii) electric power was assumed operable during the time of the accident;
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Table I

USED IN CONTAINMENT AIR DILUTION SYSTEM
FAULT TREE'

DEMANDEVENT DESCRIPTION FAILURE PER

Loss of Power 1x10-6

Valves drywell 10
wrong position >lxlO

Valves torus
wrong position >110-10

Operator error:
.at leat one valve -10
per line >1x10

Operator fails to -2
stop compressor 1xlO

Compressor fails to
stop 1x10

Sample pump failure 1x10-3

Hydrogen analyzer
wrong concentration lx10

Operator fails to start -2
primary hydrogen analyzer 1xlO

Operator fails to start
secondary hydrogen analyzer 3x10

Hydrogen analyzer start mechanism
mechanism failure 1x10 4

Portable compressor
unavailable when needed 1x1O

No power from diesel- -2
generator 3x10 2

Compressor fails to start 1x10-3

Operator fails to start -2
compressor 1 1i10

Operator fails to start
compressor 2 1x10-

*Error factor is to be used to multiply failure per

upper bound, and to divide

ERROR FACTOR*

30

..

10-

10

10

10

10

10

10

demand to obtain the

10

10

3

10

10



139

Table II

EVENT PROBABILITIES USED IN CONTAINMENT INERTING SYSTEI
FAULT TREE

EVENT DESCRIPTION

Valves between
containment and
make-up subsystem
closed

Oxygen analyzer failure

Operator error: at
least one valve per line

Loss of Power:all valves
closed

Operator fails to open
make-up valves

Make-up valves fails
to open as required

Nitrogen line frezzes

Cryogenic tank breaks

No LN2 trucks supply
4

'Hydrogen -analyzer falu7z

FAILURE PER DEM4AND

1X10_6

1X1076

>1x10 1 0

lxL-61x10

-2-

3x10 4

1x10 8

1x10-8

-3
3x10 3

1x10- 2

ERROR FACTOR*

10

30

10

10

10

10

10

10

*Error factor is to be used
upper bound, and to divide

to multiply failure per demand
it to obtain the lower bound.

to obtain the
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(iii) the stack gas treatment system was assumed operational when required;

(iv) the rare event approximation was used; (v) failure probabilities are

placed on a per demand basis, referring to component unavailability or human

error, and are assumed independent of time; and (vi) point values are used

from fixed data and error propagation follows the procedures of WASH-1400.

For the air dilution system, an additional assumption was made: the failure

probability of the air compressor refers to initial usage with availability

assumed to decrease during the cycling process. For the inerting system,

the assumption was made that the containment is inerted at the time of the

accident; further performance during the accident reflects the individual

design characteristics of the particular inerting system analyzed.

The first step in developing a fault tree is to define a top event.

For the CAD system, the top event is defined as the failure of the system to

maintain the hydrogen concentration below the NRC mandated flammability -limit

of four volume percent (Figure 6a). For the inerting system, the top event

is the failure to maintain both hydrogen and oxygen concentrations below the

NRC mandated flammability limits.

The air dilution system consists of three subsystems: (i) the hydrogen

analyzer system, (ii) the air injection system consisting of redundant air

compressors, and (iii) a manually initiated containment venting system

connected to the stack gas treatment -system. The inerting system consists

of three subsystems designed to function as follows: (i) initial purging

of the primary containment within 24 hours after startup, (ii) providing a
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supply of make-up nitrogen during accidents that produce hydrogen, and

(iii) providing a way to sample the drywell and torus for oxygen concentra-

tion and the drywell for hydrogen concentration.

In the air dilution case, the top event can occur if the injectiori

subsystem fails to provide air to the containment as required. The failure

probability of the injection subsystem could be increased if the sample

subsystem fails to detect the hydrogen concentration correctly. In this

case, the operator would not know when to correctly start the air compressors.

The failure of the sample subsystem takes place with the failure of the

hydrogen analyzers to detect the hydrogen concentration (Figure Ga), or

with the failure of the component pipes, valves, pumps due to malfunction.

The two redundant hydrogen analyzers could fail due to improper calibration.

Another failure mode is the failure of the analyzer to start due to malfunction

or operator error. The air injection system can fail because of failure of

the system air compressors, and the unavailability of a portable compressor

that could be connected to the system in the case of failure of the principal

compressors. However, if at least one of the available compressors work,

failure could still occur due to failure of the air to flow into the contain-

ment due to a rupture or''lug of the connecting air pipes, or valves in

wrong position. The failure of the main compressors is dependent upon one

of more of the following events occurring: power failure, malfunction of the

compressors, operator failure to start the compressors, or failure of the

analyzers to perform on demand.

The inerting system prevents a flammable mixture from developing by

maintaining the: oxygen concentration below five volume percent; a make-up
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system is used during an accident to maintain the oxygen below five volume

percent. Failure of the make-up system can therefore lead to the occurrence

of the top event (Figure 6b). A failure of the sample subsystem to detect

both oxygen or hydrogen concentration affects the failure probability of the

make-up system since the operator would not be able to open the valves of the

make-up system when required. Operator failure to open the make-up valves,

or failure of the valves themselves, leads to failure of the nitrogen

make-up valves to open as required. This event, along with the unavailability

of nitrogen in the system, leads to the failure of the make-up system to

deliver nitrogen to the containment as required. Nitrogen can also become

unavailable due to the rupture of the cryogenic make-up tank, a break in

the pipes connecting the tank to the containment, freezing or plugging of the

pipes, and/or the lack of nitrogen due to unavailability of delivery trucks.

Results of the fault tree analysis indicate that the CAD system has

-3
a median probability of failure on demand of 1.6x10 with a lower bound

of 1.6x10 4 and an upper bound of 1.6x10 2 . This means that there exists

an approximate 99.8% probability that the CAD system would be able to main-

tain the hydrogen concentration below the flammability limit for those

accident sequences that result in a design basis hydrogen generation rate

corresponding to a 1.3% metal-water reaction (approximately 1000 cubic feet

hydrogen per hour). For the inerting system (CIS), the results show a median

-23
probability of failure on demand of 1.3x10 2 with a lower bound of 1x10 3

-1
and an upper bound of lxlO . If the CIS has a redundant nitrogen make-up

system, as is the case of the Peachbottom nuclear power plant (Helwig (131),

the mean probability of failure on demand is reduced to 1.04x10-3 with an

n-2 -4
upper bound of 1x10- and lower bound of lx10O
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B.4.3 Final Results: Probability of Post-Accident Hydrogen Control

Using the probabilities calculated in the previous section, the final,

overall probability that the CAD and the CIS systems are capable of handling

a given amount of hydrogen can be assessed. The hydrogen generation rate

is discretized into "high", "medium" and "low" categories, with the "high"

generation rate corresponding to 180,000 cuft/hr, the "medium" generation

rate corresponding to 12,000 cuft/hir, and the "low" hydrogen generation rate

to AP 1000 cuft/hr (631.5 cuft/hr based on the Vermont Yankee CAD design basis

accident). In order to assess the probability that the CAD system can con-

trol the hydrogen generated in an accident, a probability of zero is

assumed for the "high" generation rates because of the CAD system physical

inability to dilute such large amounts of hydrogen.

. For "medium" generation rates, the problem can be analyzed from two

points of view; first, if it is assumed that the hydrogen is generated in

one hour at 12,000 cuft/hr., the concentration will approach the flammability

limit so the CAD system will maintain the hydrogen concentration below the

flammability limit with a probability of success equal to its availability

(0.9984). Secondly, if the hydrogen is produced at a rate of 12,000 cuf t/hr

over a period longer than one hour, the break point will occur at the

maximum injection and venting capacity of the CAD system (2400 cuft/hr).

In this case, the probability of controlling the hydrogen from reaching the

flammability limit is assumed to be ' .2. For "low" generation rates,

the CAD system availability of .9984 is used. For the inerting system,

probabilities of success of 0~970 (Pilgrim I) and 0.9989 (Peachbottom)

are used for all three hydrogen generation categories as it is assumed

that the hydrogen could not burn in an inerted atmosphere under any

conditions.
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The final failure probabilities for the CAD system to prevent hydrogen

flammability over the range of theoretically possible hydrogen generation

rates are based on the Vermont Yankee CAD system design:

Pf (S/A) CAD - 0.917 8.26x10 -2/demand (6)

to

P f(S/A)CA = 1 - 0.989 1.06x10-2/demand (7)

For the CIS system, the final failure probabilities are, for Pilgrim 1:

P (S/A) 1 - 0.987 1.3x10-2/demand (8)

and, for Peachbottom:

P (S/A)CIS 1 0.998 2.0 xlO -3/demand (9)

These results indicate that both systems have approximately the same

overall probabilities of controlling hydrogen generated during reactor accidents.

Assuming that the "low" hydrogen generation rates have higher probabilities

of occurrence, both systems depend on the reliability of the system' design.

When comparing the probability of success of the Vermont Yankee air dilution

system with the inerting system of Pilgrim 1 for "low" hydrogen generation

rates, the CAD is more reliable than the CIS (Table III). When the CAD is

compared with the CIS of Peachbottom, which has a redundant nitrogen make-up

subsystem, both systems have approximately the same overall hydrogen control

probability.



Table III

PROBABILITIES OF POST-ACCIDENT HYDROGEN CONTROL

HYDROGEN PRODUCTION
RATE

"HIGH"

"MEDIUM"

"LOW"

PROBABILITY OF
ACCIDENT P(A)
(per reactor-)

3x10-5

31-43x10

3x10-3

WEIGHTING FUNCTION
OF P(A)

0.00901

0.09009

0.90090

ASSUMED HYDROGEN
PRODUCTION RATE

PROBABILITY SUCCESS
CAD SYSTEM P(S)

(cubic feet per hr) (per desirn demand)

180,000

12,000

631.5

0.00

0.199 - 0.9984

0.9984

CIS PILGRIM I
. P(S)
(per design demand)

CIS PEACH BOTTOM
P(S)

CAD SYSTEM
P(S|IA)

(per design demand) (per accident)

CIS PILGRIM I
P(SIA)

(per accident)

CIS PEACH BOTTOM
P(SIA)

(per accident)

H - 0.9870

0. 9870 '

0.9989

0.9989

0.9989.L - 0.9870

0.00

0.0179-0.0899

0.89946
0.9174-0.9894

N t(S IA) P(S) W P(A)
EP(SA))

FJ

0.00889

0.08892

0.88919
0.9870

0.0090

0.0899

0.8999
0.9988

Note:
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For medium generation rates, the CAD system can be compared

with the CIS in the same way as for the low case. For low probability

accidents with high hydrogen generation rates, the CAD system cannot

prevent hydrogen deflagration, although it can increase times to

detonation. Inerting can control larger amounts of hydrogen due to

maintaining oxygen concentra'tion below five volume percent. However,

the inerting system is not in operation 24 hours prior to shutdown

and after startup; during this .period, the containment is not pro-

tected against hydrogen generation reducing the overall prob-ability

per reactor-year of hydrogen control.

B. Impact of Containment Inerting on Reactor Safety

Inerting can affect operational procedures with regard to cor-

recting leakage inside the primary containment, thus impacting upon

the probability of various accident initiating events and increasing

the number of unscheduled shutdowns. During normal operation, the

drywell is monitored by the control room. Symptoms requiring im-

mediate and subsequent corrective actions can thus be identified

(Figure r). The major symptom-of a developing problem is an increase

in the primary coolant system leakage rate. Such leaks are annunciated

in the control room through several monitoring systems, including

the drywell unit cooler annunciators, drywell air cooler high drain

flow, and radiation leak detectors. Changes in drywell humidi1 .

and/or significant changes in pressure, along with
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Figure 7. Leaks from Primary Coolant System in Drywell: Operator Procedures in Inerted
and Non-Inerted Containments.
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excessive sump pump operation can also indicate the. evolution of such

a problem (Boston Edison [14]; Vermont Yankee [15]). In order to con-

trol leakage, operator actions must be initiated such as monitoring

the reactor vessel power, pressure and water level, referring to the:

pipe break procedure if appropriate, monitoring the drywell floor and

equipment sump readings, and determining the location of the leak.

When the total unidentified leakage reaches 5 gpm or the identified

leakage reaches 25 gpm, technical specifications require the operators

to shutdown the reactor (Vermont Yankee (16]; Boston Edison [17]).

In the non-inerted case,. drywell entries at power can take place

if the power level is sufficiently reduced to between 50-70% full

power. Entry can take place without recourse to the use of bulky

breathing apparatus. Inspection permits the operators to determine

the seriousness of the problem aiding them in their decision as to

whether to continue operation or to shut down to make major repairs.

The option to make inspections in the drywell during operation can

potentially reduce the number of plant shutdowns, reducing the stress

placed on the system that occurs with shutdown and the probability

of failure of the decay heat removal system. Also, in those cases

where shutdown occurs, unnecessary delays in' startup can

be avoided since inerting is not required.

During inerted containment operation, drywell entries at power

are not permitted by industry practice because of the excessive danger

such entry would represent to plant personnel. Leakage identification

is therefore made more difficult. Technical specifications require

that the operator insure that drywell fans are operating at all times,
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and that the torus temperature is below 80*F. The torus spray system

is initiated if torus pressure should exceed 175 psig as is venting

of the primary containment through the standby gas treatment system

(Boston Edison [14]). Entry usually requires that the containment be

purged until the oxygen concentration reaches 20 volume percent, which

usually requires 24 hours.

.5.1 Anafss: of DrywelEnries: at Power

In order to evaluate the safety aspects involved in the location,

evaluation and isolation of primary system leakage inside the drywell,

it is necessary to know the circumstances under which an entry is made

and its effects on the. overall safety of the plant. Entries have been

made under four different circumstances: (i) entries to perform pre-

ventive maintenance during scheduled shutdown, (ii) emergency situations

wherein the reactor is shutdown due to malfunction of equipment inside

the drywell, (iii) entries during an unscheduled shutdown for inspec-

tion purposes, and (iv) entries after reduction of power as a conse-

quence of monitoring a malfunction inside the drywell that does not

require an immediate shutdown (Thomas [18]). The last three types of

entries are affected by containment inerting. For example, in an

emergency situation requiring an immediate shutdown, entry could be

delayed three to ten hours because of the need to deinert the

containment.

Entries to the drywell have been made at Vermont Yankee at low

power to investigate bonnet leaks in the recirculation valves, and

for inspection of the recirculation pumps to check possible water-to-

oil cavity leaks. During these entries, other malfunctions, such as



152

loose belts, stuck valves and fan failures were discovered and the problems

solved before resuming full-power operation (Vermont Yankee [15]). Entry

data was used as a way to conservatively estimate the leakage rate, which

can translate into estimates on the probability of breaks in the recircula-

tion system (Table IV). Where data was not available, WASH-1400 failure

data was used. The sequence of events that can lead to loss-of-coolant from

the recirculation system is shown in Figure 1.

Using the failure rates of Table IV, the fault tree of Figure S was

quantified to estimate the contribution of valve leakage to the initiation

of a small to medium size LOCA. From Vermont Yankee drywell entry data, the

probability of valve rupture varies between 10-8. and 10 /hr. Uncertainty

in the data implies an overall uncertainty of ±lO. From WASH-1400 failure

data, the same probability is 4x10-8/hr. The contribution from circum-

ferential break, feedwater line break and steam line break is approximately

3x10~9 /hr. The analysis indicates a possible reduction in the LOCA initiation

rate of approximately one order of magnitude from 6x108 /hr to 6x10~9/hr.

This reduction could theoretically be achieved by following the Vermont

Yankee operating procedures for citing and correcting problems accessible

to drywell entries at power.

B.5.2 Effects of Additional Shutdowns on Overall BWR Accident Risk

The possibility that inerting may increase the number of unscheduled

shutdowns can impact upon the overall BWR accident risk by affecting the

probability of failure per reactor year of core melt due to increases in

demands upon the heat removal system. The decay heat removal system is

required to operate to prevent core melt after a reactor shutdown. WASH-1400
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Table IV

LEAKAGE FAILURE RATES FOR VALVES OF THE RECIRCULATION SYSTEM
(65 months period)

LEAKAGE FAILURE RATE
(leak increase/hour)

1. 07x10~4

2.13x1C 5

6.41x10-5

1.00x10-8

*

*

*

* Data from drywell -entries at Vermont Yankee nuclear power. station.

* Data from WASH-1400.

VALVE

RV-43A

RV 53A

RV-43B

RV-53B
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showed that this condition. is included in the transient events that

dominate the releases in almost all the BWR risk categories. The.

probability of failure of the decay heat removal system was determined

-6
in WASH-1400 to be Al.rxlO /r-yr, which can be combined with the

number of total shutdowns. The difference between the number of

shutdowns in a BWR operating with a CAD system and the number of

shutdowns in a BWR operating with an inerted containment- will directly

affect the transient events that are dominant in BWR accident sequences.

To determine this. number, it is necessary to investigate the operational

histories of BWR inerted containment shutdowns that could have been

avoided if the containment had not been inerted. For example, about

three unscheduled shutdowns per year can be expected in a BWR with an

inerted containment with a range of 1 to 6 per year (Table V).

Combining the probability of failure of the decay heat removal

system with the three transients per reactor year yields 4,8xlO /r-yr

for the sequence (Table VI). A reduction in probability of this

sequence directly affects the overall BWR accident risk. According

to WASH-1400, the unavailability of the decay heat removal system is

responsible for A-64.5% of the total risk. A recent EPRI study indi-

cates that the -decay heat removal system is responsible for '%83% of

the total risk (EPRI [19]). Also, recent studies by Buhl [20] and

Bernero [21] show that transient events and their consequences re-

main essentially unaffected by use of non-inerted containments.



Table V

COMPARISON OF EXPERIENCE:INERTED BWRs VS. NON-INERTED BWRs*

' Avg 'No. of
unscheduled

Plant Name entries/yr

% of entries ..
resulting in'V Plants ilormally
plant shutdown . operated with
for repair . shutdowns/vr small leakaae

Entrtes
normally
performed with
plant inerted

Hatch, Unit 1
Cooper
Nine Mile Point, Unit 1
J3runswick, Unit 1
FitzPatrick
Quad Cities, Unit 1
Quad Cities, Unit 2
Peach Bottom, Unit 2
Peach Bottom, Unit 3
Monticello

Pilgrim
Dresden, Unit 2
Dresden, Unit 3
Duane Arnold
Browns Ferry, Unit 1
Browns Ferry, Unit 2
Browns Ferry, Unit 3

Vermont Yankee
Hatch, Unit 2

* From NRC staff position (Butler, 1980).

5
1
3
6
2
4
2
3
4
2

64
100
92
70

100
54
43

100

100
90
90

100

7

No
No
No
No
No
No
No
No
No
No

3.2

2.8
4.2
2
2
1
3
4.
2

3
2.7
1.8
2
3
1
4

.8
9

3

2
2
3.

4

4
9

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes

H0

20--
100

No
No
No
No
No
No
No

' N/A
N/A

----------------------- ------ ------ ------ ----------------------------

-i
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Table VI

-DECAY BEAT REMOVAL SYSTEM PROBABILITY PER NUMBER OF REACTOR
SHUTDOWNS IN A- YEAR

NUMBER OF REACTOR
SHUTDOWNS

1.

2

3

4

5

6

7

8

9

10

PROBABILITY/EACTOR-YEAR
.DECAY HEAT REMOVAL SYSTEM

1.6x10 6

3.2x10
6

-64.8x10

-66.4x10

- -6
8.0x10 6

9.6x10

-5
1.1x10 5

1.3x10 5

-5
1.4x10

x 51.6x10



158

B.5.3 Other Considerations

Two other considerations related to inerting were identified

as having potential benefits: (1) reducing the corrosion rates of

the torus vessel and the termination boxes of the electrical outlets

found in the torus, and (2) reducing the likelihood of fires inside

the drywell. Reduced corrosion in the torus at the Pilgrim I and

Millstone BWR plants has been observed (Musolf [20]; Rosen [21]).

This effect has been attributed to the reduction in the oxygen con-

tent in the torus atmosphere due to inerting. However, a quantita-

tive comparison of corrosion effects between non-inerted and inerted

BWRs has not been made. One safety impact torus corrosion may have

is in producing debris that could clog screens on the ECCS system;

however, only large corrosion rates could produce the size of debris

particle that might pose such a problem. Other utilities have not

observed -reduced corrosion effects indicating that the protective

painted coating ,on the torus surface protects sufficiently against

major corrosion problems, and therefore that the potential advantage

of inerting due to corrosion is not significant (Northeast Utilities

[22]).
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Reduction of fires in the BWR primary containment compartment

was identified as being a significant potential benefit of inerting

(Rosen [21]). Two sources of combustible material reside inside the

primary containment (Holtzclaw [23]; Sawyer [24]): (i) the reactor

recirculation pump fuel oil (50 gallons in each of the two pumps

found on the primary coolant loop), and (ii) the electrical cable,

which is fire resistant but can ignite at high temperatures. A fire

inside the containment can be initiated three ways: (i) oil leak from

the recirculation pump during operation, (ii) during shutdown and

maintenance a welding related oil fire, and (iii) electrical motor

pump fire. All of these events relate to the recirculation pump;

cases (i) and (ii) can potentially lead to a major fire where the

electrical cabling would also be affected; in case (iii), the fire

would be confined to the pump and would result in pump failure. The

last case would not be a: significant problem since adequate cooling

can be maintained by either of the recirculation pumps; in the event

of a simultaneous failure of both pumps, the BWR can be sufficiently

cooled by natural recirculation (Holtzclaw [23])..

The worst .possible scenario involving a fire in the primary

containment would be a loss of both recirculation pumps as a result

of an oil leak for. one pump igniting a fire spreading to the elec-

trical cables, then igniting the second recirculation pump oil supply.

In this scenario, both pumps would be made inoperative requiring

auxiliary cooling systems to ensure adequate cooling. Loss of

primary coolant would not be expected.
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Although a fire in the drywell would result in an additional unscheduled

shutdown, the estimated fire occurrence probability of 1.6x10-2-0-3

per reactor-year (Apostolakis and Kazarians [25]; U.S.N.R.C. (12]) indicates

that the impact on the total number of expected unplanned shutdowns (2-6 per

reactor-year) is negligible. Moreover, since auxiliary coolant system com-

ponents are located exterior to the primary containment, a drywell fire

would not likely lead to a failure of the residual heat removal system because

active components are located exterior to the drywell.

An event tree (Figure ) was constructed to estimate the significant

fire initiation rate on an hourly basis for comparison with the hourly LOCA

initiation rate estimated earlier for the inerted and non-inerted cases

(6xlQ /hr inerted; 6x10~Ihr non-inerted). The effect on the fire initiation

rate of an oil spill collection system installed on each of the two primary

system recirculation pumps was also estimated (Table VII). With the addition

of an oil leak collection system, the estimates of the fire initiation rate

drops from lxo-6 /hr to lxlO 7 /hr in the non-inerted case, compared with

a range of 3x10 /hr to 1.Ox10~- /hr in the inerted case (see Table VII). If

no oil spill collection system is installed in the non-inerted case, the fire

initiation rate is '% 5 times greater than for the inerted case. The installa-

tion of the collection system causes the welding initiated fires to dominate

such that the difference between the inerted and non-inerted cases is small.

Since inerting may result in more unscheduled reactor shutdowns per year,

the fire initiation rate may be less for the non-inerted case by a factor

of 1- 1.08 given that oil collection systems are installed in both cases and

assuming twice as many unscheduled shutdowns per reactor-year for the

inerted case.
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Event Categories

Yearly Fire
Initiation Rates
in LWR Containments
(from Apostolakis
et al.)

Percentage of
Recorded Fires
Due to Oil Leaks
and Welding

Percentage of Year
Containment
Susceptible to
Indicated Fire
Type*

Inerted Case

(.6 x 10-2)

(.58)
OiL Leaks

(.42)
Welding

Oil Collection
System Installed
on Recirc Pumps
( Failure
Probability of
System Assumed
10-3 per year)
Fire Resistant

(.858)
No

Yes

(:142)

Yes
(.858) No (10-3)

No

Yes (.142)

I

Non-Inerted Case

Yes

(.58) Yes (I)

(1.6 x 10 2)

Oil Leaks

No (.871)
I No (10-3)

(.42)

Welding Yes (.129)

For the inerted case, the containment is only susceptible to fires of any
type during periods of shutdown; likewise ,for the non-inerted case in the
welding event sequence. The percentages were calculated assuming
6 weeks for annual refueling added to the number of unscheduled shutdowns
per year (assumed 4 per year for inerting , 2 per year for non- inerting ).

Figure 9 Event Tree for Fires Initiated Inside BWR Drywell
Containment Structures.

*

4

I

I
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Table VII

SERIOUS FIRE INITIATION RATE PER HOUR IN A BWR DRYWELL
(WITH/WITHOUT OIL LEAK COLLECTION SYSTEM ON RECIRCULATION PUMPS)

Fire
Initiation
Event

Inerted

With

Non-Inerted

Without With Without

1.09 x 10~7

1.5 x 10-10

9.89 x 10-8

1.5 x 107 1.06 x 1~9 - 1.06 x 10- 6

Total 1.09 x i0 7 2.59 x 10 1.01 x 10~ 1.16 x i-6

Welding

Oil Leak
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B.6 Discussion and Sumary

Results of the probabilistic risk assessment indicate that the inerting

and air dilution systems have approximately the same overall probability of

post-accident hydrogen control. Results indicate that both systems render

approximately the same overall hydrogen control probability (air dilution:

.917-.989; nitrogen inerting: .987-.998). Drywell entries and unscheduled

shutdowns were also analyzed to determine' the impact on the overall BWR

accident risk as it relates to the decay heat removal system. Results indi-

cate that inerting may increase the overall risk due to a possible increase

in the number of unscheduled shutdowns due to a lessened operator ability to

correctly identify leakage in the primary coolant system. A reduction in

-8
the LOCA hourly initiation rate of an order of magnitude from 6x10 /hr in

the inerted case to 6x109 /hr in the non-inerted case was estimated in the

non-inerted case due to increased operator ability to inspect and correct

possible LOCA'initiation events.

Possible effects of inerting on torus vessel corrosion rates and dry-

well fires were also examined. Reduced corrosion due to inerting is thought

not to be a significant problem due to the minor positive effect inerting

has on such corrosion.and the large degree of corrosion that would

be required to impact significantly on safety. A probabilistic estimation

of the effect of inerting on the drywell fire initiation rate showed that,

with the installation of oil leak collection systems on the recirculation

pumps, the hourly fire initiation rate is dominated by the contribution due

to welding during shutdown based on experience to date. Since inerting

may result in more unscheduled shutdowns per year, the fire initiation rate

may be less for the non-inerted case by a factor of 1k, 1.08 given oil collec-

tion systems are installed in both the inerted and non-inerted cases, and
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assuming twice as many unscheduled shutdowns per year for the inerted

case. It is therefore recommended that alternative hydrogen control

systems to inerting be investigated and that these studies be under-

taken in conjunction with other class 9 accident mitigation questions.

.
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III.C The Issue of Hydrogen Control in PWRs

C.1 Summary of Study Results

Events at Three Mile Island related to hydrogen production and

deflagration during the post-accident time sequence have led to a re-

examination of the models used for predicting pressure response from

non-condensible gases. In this paper, existing literature on hydrogen

burns and explosions is review and summarized. Additionally, original

models for calculating the pressure increase in containment due to

hydrogen burns and/or explosions are derived and demonstrated. These

models present a more in-depth treatment of physical phenomenon than

exists at the present time, and are being integrated into existing

codes for calculation of the containment pressure history in the event

of a class 9 accident. Also, a brief comparison of hydrogen control

systems for PWR containments is made.

C.2 Introduction

The accident at Three Mile Island has emphasized many aspects of nuclear

safety previously underestimated. One of these aspects relates to the produc-

tion of hydrogen during a reactor accident and its subsequent behavior in

containment. At Three Mile Island, it has been estimated that fifty to

seventy percent of the fuel cladding underwent a metal-water reaction with

an associated large production of hydrogen [1]. During the accident, it was

feared that the hydrogen bubble formed at the head of the reactor vessel

would explode causing a large release of radiation to containment, possibly

leading to failure of the containment. This fear was later shown to be

unfounded because the only oxygen present was due to radiolysis of the coolant

and was not significant enough to permit a hydrogen explosion in the reactor
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head [2]. Some of the hydrogen produced escaped from the reactor vessel,

presumably through the stuck-open pressure relief valve, and collected in the

containment. Nine hours into the accident, a pressure pulse of 28 psia was

recorded at a number of recording stations around the containment [3]. -It

was later deduced that the pulse was due to a hydrogen explosion, but as was

noted by the operators in later testimony, the pulse was unexplained at the

time [4].

Because of the experience at Three Mile Island, greater emphasis has

been placed on the hydrogen problem as it relates to possible burns and

explosions in containment that could lead to containment failure due to

overpressurization with subsequent release of radiation to the environment [5].

In order to develop regulatory guidelines and/or possible plant design

changes, it is imperative that the magnitude and behavior of pressure pulses and

spikes due to hydrogen burns and explosions be investigated. This paper reviews

the existing literature related to hydrogen burns, explosions and production

mechanisms, and then proceeds to describe models of pressure response due to

hydrogen deflagration 'and detonation.

C.3 Hydrogen Burns and Explosions

Hydrogen burning may be initiated when the limits of flaumability are

reached - four percent hydrogen and five percent oxygen. by volume. In a

standard air mixture, the maximum hydrogen concentration that will support

a burn is 76 volume percent. Burning can be maintained if the gas mixture

falls below the flammability limits if the mixture is within those limits

when the burn was initiated. Similarly, an explosion can only be sustained

within the detonation limits. In this paper, "burn" refers to a relatively
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slow rate of reaction ("'2m/sec)while "explode" refers to a very fast rate of

reaction ("11000 m/sec) [6 1:

H2 + 1/2 02 + H20 + energy (1)

The lower detonation limit falls between 18 to 22 volume percent hydrogen

while the upper limit falls between 45 to 65 vol.ume percent hydrogen,

corresponding to an oxygen concentration of nine to twelve volume percent

respectively (Figure 1). Burning leads to a slow increase in gas temperature

and pressure, while in explosions the energy generation rate is so great

that the reaction energy is imparted as kinetic energy to the product molecules

which than slam into the walls of the containment vessel. The change in

momentum, or impulse, is what creates a pressure spike at the containment

surface.

C.&3..l Review of Existing Literature

Hydrogen combustion can vary from separated flames that propagat,e

upward, to coherent flames that propagate uniformly in all directions at

subsonic velocities, 'to supersonic detonation waves [7]. Deflagration,

or simple burning, can produce effects similar to those of explosions.

Deflagration occurs as a chain reaction in which the principal carriers

are the free radicals H, 0, and OH. Ignition occurs in a hydrogen-oxygen

mixture when the rate of production of the chain carriers exceeds the rate

of their destruction [8]. Ignition can occur from sparks from electrical

equipment or discharged accumulated static, or by temperature increases.

Sparks can ignite a mixture below the ,flammability limit but the flames

produced are not self-propagating and are -extinguished when the source of
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ignition is removed. The spontaneous ignition temperture of a hydrogen-air

mixture is 5850 C although below this-temperature, a self-propagating flame

can be produced in a four volume percent mixture [9].

The flame propagates at a velocity dependent upon its direction

resulting from the tendency of the burned gas to rise, and from the hydrogen

concentration. Mixtures with compositions close to the flammability limit

will not burn all of the available hydrogen. As the proportion of hydrogen

in the mixture increases, greater amounts of hydrogen are burned. For

example, only half of the hydrogen in a 5.6 volume percent mixture will burn.

Combustion will hot be complete until the percentage of hydrogen is increased

to 10 percent or more.

Detonation is a rapid and violent process characterized by a chemically

supported shock wave. The velocity of wave propagation is the same as the

velocity of sound in- the burning mixture [8]. The destructiveness of a

detonation is due primarily to the destruction of the shock front, Shapiro

and Moffette [9] show hydrogen detonation limits to occur between 19 and

45 volume percent; hydrogen concentrations within this range will not

necessarily detonate. Experiments have shown that a detonation is more likely

to occur in smaller tubes rather than larger ones, and that a detonation wave can

be converted to that of normal combustion by suddenly widening the tube.

A strong initiating source is also required to produce detonation. The use

of flames or sparks does not produce detonation.
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Experiments were conducted at General Electric [7] to determine the

pressure and temperature responses from hydrogen burning. The experiments

were carried out in a 134 cubic foot vessel, varying the hydrogen concentra-

tion, type of ign.tion source used, location of the igniation of the burn,

and the initial atmosphere pressure, temperature and water vapor content.

In all cases, the experimental results were lower than the theoretical pre-

dictions. The model used to predict the responses is the same as that given

in this paper, using slightly different constants.

The rate of reaction of a bimolecular reaction can be given by

rate a(rate of collision) x (number of molecules with energy > E)

1/2 -E/kTCiT e (2)

where E - activation energy of the reacti on

k Boltzmann's constant

T - gas. temperature.

In -thermal. explosions, ignition is defined as occurring when the heat

generation rate is greater than, or equal to the heat absorption rate:

1/2 -E/kTheat generation rate ctT e volume D

heat absorption rate a(T-T )surface area .(3)

where D -is the density of the gas, T0 is the temperature of the surface of

the vessel, and 4 is the order of the reaction. If at a given temperature

the heat temperature rate is greater .than the heat absorption for all

temperatures, then as time progresses, the temperature will increase,

F""
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increasing the rate of reaction, and the rate of temperature increase. This

is an explosion. If, however, the energy generated is less than the energy

absorbed, the temperature of the gas decreases, lowering the rate of reaction,

and an explosion is impossible to sustain. The minimum temperature that

will support detonation, Tigntion, is where heat generated = heat absorbed

and d/dT heat generation rate - d/dT heat absorption rate. To first order,

T -T kT2/E [10].
ignition 0 0

Strehlow [11] defined five basic types of combustion:

() Vessel Explosions, or Well-Stirred Reactor reactions: these may be

initiated by adiabatic compression, or by adiabatic, but not isentropic

compression by a travelling shock wave;

(ii) Diffusion Flames: these occur in continuous flow chambers, with three

physical distinct regions: unreacted fuel, unreacted oxidizer, and

reacted gases. These two types differ from the rest, in that these

do not involve wave processes;

(iii) Premixed Gas flames;

(iv) Detonation: these are shock induced combustion waves. Their propagation

is fairly independent of vessel geometry and can be initiated by a

flame, spark or shock wave;

(v) Rocket Engine Combustion: this is of importance because of the thrust

production involved.

Experiments were done (6, 12] to measure the effects of various parameters

on the detonation and flammability limits, and their velocities. These

limits and velocities are dependent on the ignition source, geometry of the

vessel, and its surface. The velocity is slowere in narrow, rough tubes

than in wide, smooth tubes. Beyond a certain roughness and narrowness, the

flame is extinguished. The velocity of detonation increases as pressure and
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temperature are increases. The lower flammability limit increases, and the

upper limit decreases with increasing gas temperature. The direction of

change in the flammability limits with changing gas pressure depends on the

gas involved. The limits widen at both ends by increasing the pressure in

a methane-air mixture, narrow at both ends by increasing the pressure in a

carbon-monoxide - air mixture, and in a hydrogen - air mixture, the upper

limit increases and the lower limit remains the same with increasing pressure.

A trial and error method was developed [131 to predict the final con-

ditions from hydrogen combustion. Five equations, from the mass, momentum

and energy conservation, entropy definition, and ideal gas assumption, are

solved simultaneously for five unknowns in the reacted gas, subject to the

mass balance equations.

The mechanics involved in the combustion of hydrogen are not clearly

kown. However, certain characteristics stand out. The rate of reaction

is slow, increasing slightly with increasing pressure, until P1 . the first

explosion limit. This limit is inversely proportional to the vessel diameter.

Addition of inert gases lowers this limit, possibly by "blocking" the surface,

and hindering chain breaking reactions. For pressures in the Explosion

Peninsula, between P 2and P2 the second explosion limit, the rate of reaction

is infinite, and explosion occurs. The second explosion limit is fairly

independent of the surface, and decreases with an increase in the inert gas

concentration. At pressures above P2 the rate of reaction is low, and

increases with pressure until the third explosion limit P3, where the rate

again becomes infinite, and detonations occur.

The actual reactions involved are not agreed upon. One consistent set

of reactions is:

P.-
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O + H 2 -> H20+H (I)

+ 02 -> HO+0 (II)

0 + R2 ->OH+H (III)

R+0 +M-> HO +M (IV)2 2

H02 + H2 ->H 2 02 + H (Va)

2HO > H2 0 2 + 02 (Vb)

R + 02 + "2P2 20 + 02 + OH (Vc)

O2 + H2 20 + 02 + OH (Vd).

H2 02 -> H20 + 0.5 02 (Ve)

At low pressures, (below the first explosion limit) the reactions

occurring are mainly I and III. The rate of reaction follows Arrhenius'

Law (rate a exp(-E/kT)) where E is the activation energy, k is Boltzmann's

constant, and T is the gas temperature.

As the pressure increases, the rate of reaction of II, an endothermic,-

chain initiating reaction, increases, until the rate of steam production is

infinite. At this point, "Isothermal Branching" is taking place, and the

liberation of heat is not important. In the explosion peninsula, the rate

of IV, a trimolecular chain breaking reaction starts to become significant

with increasing pressure, until the second explosion limit, where it "over-

takes" the chain initiating reaction of II, and explosions can no longer be

sustained. At pressures above the third explosion limit, the energy

released from the combustion cannot diffuse fast enough, and the phenomenon

of self heating occurs, which causes an explosive situation [14, 15].

. .
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C.3.2 Production Mechanisms

The production of hydrogen during the course of an accident presents

two potential threats to containment integrity; first, by increasing the

internal gas pressure in the system and secondly, by burning or exploding.

when combined with the oxygen present in the containment atmosphere. The

additional thermal energy produced in the burning or detonation of the

hydrogen raises the pressure inside the containment and eventually can

result in containment failure by overpressurization [6].

Hydrogen can be produced during the course of a reactor accident through

high temperature metal-water reactions between fuel cladding and reactor

coolant, radiolytic decomposition of water, and corrosion of metals by

solutions used for emergency cooling or containment sprays. The main source

of hydrogen from metal-water reactions is produced through the high tempera-

ture iircalloy-water and steel-water reactions. These reactions take place

according to the following relations:

Zr + 2H20 'ZrO2 + 2H2 + heat (5)

Fe(steel) + xH20 + Fe (steel) oxides + xH2 + heat (6)

The initial source of hydrogen in a meltdown is produced in the reaction of

Eqn. (2)- and occurs when steam from water in the pressure vessel contacts

overheated zircalloy fuel cladding. It has been estimated that the rate of

consumption of zircalloy is about 10 percent per 1000 seconds. Figure 2

plots zircalloy consumption as a function of time derived from a comparison

of BWR core heatup calculations [17]. Assuming a conservative constant

consumption rate, all zircalloy would be consumed in less than three hours

and could result in a 72% hydrogen containment concentration. Given that
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the amount of steam decreases with time, the rate of zircalloy consumption

will be lower but using a conservative approach, an upper bound for the

consumption rate can be assessed.

Steel-water reactions (eqn. (3)) could generate massive amounts of

hydrogen. However, experimental studies indicate that iron or steel must

be nearly molten before appreciable reaction with steam occurs. Contact

between large amounts of molten steel and water might cause steam explosions

before the reaction could generate hydrogen.

The radiolytic decomposition of water is a delayed but potentially

significant source of hydrogen. Beta or gamma radiation can cause ionization

and subsequent decomposition of water molecules resulting in hydrogen.

However, the production of large amounts of hydrogen in an accident would

require that high radiation doses be applied to large volumes of water;

8 9
-for example, in the range of 10 to 10 rads applied to the entire water

supply of the reactor. Since it would require several days or weeks to

accumulate such exposures,, this source of hydrogen is considered a .long term

-.rather than an immediate problem.

C.4 Pressure Response Models

Three models were developed to calculate the pressure rise in containment

I
due to a hydrogen burn or explosion. These models are discussed below and

results of calculations shown.

C.4.1 Hydrogen Burn Model

To calculate the pressure rise due to hydrogen burning, a number of

assumptions were made: (i) the model disregards the flammability limits such

that hydrogen can be burned at concentrations varying between 0 to 2.00%,
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(ii) gases are assumed ideal such that PV = nkT and Ah - C (AT),P

(iii) the heat capacity factor Cp is assumed constant for each gas and

(iv) the volume percent of any constituent gas equals the number of moles

of the gas divided by the total number of moles. Also assumed was (v) that

the energy released per mole of hydrogen consumed is independent of the

initial temperature, pressure and gas composition and (vi) none of the

energy released is dissipated to the surrounding structures or the water on

the vessel floor. This is very conservative. Another assumption made was

that (vii) the burning would be slow on the order of several meters/second.

Since it is assumed that there is ideal mixing of the gas, an instantaneous

equilibrium is achieved at all times; hence, tiere are no temperature or

pressure gradients assumed in the vessel. Also assumed was that (viii) all

of the energy released becomes internal energy of' the entire gas mixture.

Also, since during combustion, not all of the hydrogen is consumed (especially

at low initial hydrogen concentrations), "hydrogen concentration" refers to

"consumed-hydrogen concentration".

Under the assumptions listed above, the energy released in a hydrogen

burn is equal to the number of moles of hydrogen consumed times the energy

released per mole consumed:
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Ah nHK (7)

where H = the minimum of either the hydrogen concentration or twice
the volume fraction of consumed hydrogen

K - energy released per mole H20 proc.uced

energy released per mole H2 consumed;

Ah - change in total enthalphy; and

n, - number of moles of gas initially in the vessel.

The final gas mixture (f) consists of (Figure 3):

nf [(S + H) + (1 -S -1.5H)]n (8)

- (1 - .5H)n (9)

where nf - number of moles of gas in the finAl vessel mixture;

S = initial steam volume fraction;

(S+H)n = initial number of moles of steam added to the number of

moles of steam produced; and

(1-S-1.5H)n - initial number of moles of diatomic gas minus the number

of diatomic gas moles consumed.

The energy released by the_ hydrogen burn is distributed in such a way that a

uniform temperature results:

-1
AT - Ah(n ) (10)fp

W H K[(S+H)Cps + (1-S-1.5H)C p2) (11)
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where CP M molar weighted specific heat;
p

C = specific heat of steam;

Cp2 - specific heat of diatomic gas in the final mixture; and

AT = change in temperature.

Since

T =T +AT (12)

P Pn + AP (13)

P fnl RTfV and, (14)

P - n RTi V (15)

then

f P - n T (n T ) (16):

(1 -. 5H)T T (17)

such that

A- Pi [(-.5H) Tf T - 1] (18)

where .Tf, Pf are final temperature and pressure respectively, and

T P are initial temperature and pressure respectively.

Next, calculations were performed utilizing this simple model given

K - 57.8 KcAl/mole steam, C 2 = 0.00695 Kcal/mole-0K, and

C - 0.00794 Kcal/mole-0K. The predictions for room temperature and
pS
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pressure (STP) using a value for K of 67.5 kcal/mole renders agreement

between this model results and that of General Electric (7} with + 3%,

assuming initial conditions at STP were used in the GE model. (GE performed

similar calculations using slightly different values for these constants [18].)

Sensitivity analysis shows that substitution of air by steam lowers

the resulting pressure rise slightly; replacement of half of the total gas

with water vapor drops the pressure by 7%. Adding steam raises the

initial pressure such that the pressure rise (Pf - P ) is smaller even

though the final pressure is higher. For example, adding one volume of

steam 'and 20 vol % hydrogen results in P steam = 29.4 psia,

(P-P i)steam = 74 psia, and Pfsteam . 103 psia compared with (Pf-P ) 77 psia

and Pf 92 psia for the undiluted system. Hence, adding steam results in

a net increase in the final pressure (Figure 4). Increasing the initial

temperature and pressure by the same factor causes the pressure rise to

decrease slightly but causes the final pressure P to be higher than the

final pressure calculated for the case of standard initial conditions.

For example, starting at room temperature and pressure with 20 vol % H2

renders P -P = 77.5 psia; Pf - 92.9 psia compared with results for the

case where the gas mixture is heated initially to 1500OK: Pf-P 77 psia;

Pf - 145.2 psia. Hence, although the differential pressure that results

with heating is less, the final pressure being greater constitutes an

aggrevation of the problem.

C.4.2 Hydrogen Explosion Models

Two models were developed to calculate the pressure increase in con-

tainment due to a hydrogen explosion. The models are based on the same set

of assumptions with the exception that the first model assumes an

infinitesimally small impulse due only to the hydrogen immediately adjacent

to the surface over an infinitesimally short time. The second model con-
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siders the impulse contributions from the entire containment over a finite

time. With this one exception, both models are based upon the following

set of assumptions:

(i) detonation limits are disregarded for calculational purposes, i.e.:

pressures pulses can be predicted across a wide spectrum of hydrogen-

oxygen mixtures;

(11) water vapor is assumed the final product of the hydrogen-oxygen reaction

ozone and peroxide are neglected [15, 13];

(iii) the gas mixture is assumed initially uniformly distributed;

(iv) a spherical detonation front is assumed [7, 8];

(v) upon hitting a surface, the pressure front is assumed extinguished,

the front continues uninterrupted in the other case;

(vi) it is assumed that all of the energy released in the detonation is

converted to kinetic energy of the product steam;

(vii) the velocity distribution of the steam is assumed monoenergetic and

isotropic; thus, the probability of finding a steam molecule of

velocity v(p(v)dv) in a solid angle dQ is (by definition) (see Fig. 5):

p(v)dv - d(vl - v*)dv(l/41T)d2 (19)

where the energy released per mole of H2 divided by the weight per mole of

steam is 1/2 v*2 , v = random variable representing the product steam velocity,

and v* - magnitude of the velocity of the resulting product steam (v* is on

the order of 5000 m/sec), and 6(Ivi - v*) is the Dirac delta function;
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(viii) -the model assumed elastic collisions between the steam molecules

produced in the detonation and any surfaces they bombard with; and

(ix) it is assumed that the energy released per mole of steam produced

is a constant value.

Under these assumptions, the model can be derived as follows. Since.

all of the energy released is assumed to be converted into the kinetic energy

of the product steam:

K 1/2 m v*2  (20)

where K yenergy released per mole of steam produced;

a -mass of mole of steam; and

v* - velocity of the steam molecules.

When the pressure front impacts upon a surface area dA, the momentum transferred

in that collision to the surface within the time interval dt is by definition

(see Fig. 6):

2HDg dt dA(mv*/4) ( 2 '- )n (21)

where H volume fraction of hydrogen consumed;

D = density of gas in volume (moles per unit volume);

g velocity of the detonation front;

ni S outward normal from the surface; and

N outward normal from the detonation front.

The impulse of the front equals the change in momentum, and since the pressure

P is a force per unit area:

P = 1/2 HDg mv*(n -n) (22)
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The time of impact of the pressure pulses at various points on the surface

are not simultaneous and the front travels at supersonic velocities.

A second model was developed to predict the pressure rise due to a

hydrogen explosion. The major difference between this model and the one

described earlier is the way in which the impulse on a given surface area

dL is calculated. In this model, the momentum of the product steam is not

dissipated until after the first collision with the surface, whereas in

model 1, if the steam does not collide immediately with the surface, the

energy is assumed dissipated to the surrounding gas. This assumption affects

the Impulse calculation and the time scale involved. Assuming that all of

the energy released in the explosion initially is transferred into kinetic

energy K of the steam (K - 0.5 mv*2 )-, the total impulse I on an area dA on

the surface is given by (see Figure 7):

I =2mv* f c(w)dA(41|w -u)_ln dw (23)

where c(w) = H-D for w in free volume; 0 otherwise;

w = position in volume V;

m -mass of mole of steam;

u = position on surface; and

n - outward normal from surface.

Since pressure is a force per unit area, or impulse per unit time and area,

the pressure P in the surface produced by the explosion is:

P = 2m* fc(w)n (w-u)(jw-uj)3 (At)- (24)
47r ---
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where At is the time duration of the spike. The duration of the spike is the

same over all of the containment surface, but is not felt at all points at

the same instant (in the sample calculations that follow, the duration of

the pressure rise is " 30 millisec and the maximum time lag " 4 millisec).

C.4.3 Sample Calculations

Sample calculations were performed using both models to estimate the

pressure increases due to hydrogen explosions in a containment structure. The

containment structure is approximated as a cylindrical volume vith height 51 m

and radius (R) 19 m (see Figure 7). The velocity of the 'detonation front is

assumed constant at 1200. m/sec with a 20% H2-80% air mixture at 18 psia and

room temperature. In model 2, an assumption was made that all of the contents

of the vessel are uniformly distributed throughout the volume. To account

for this, c, the effective hydrogen concentration in the vessel is used,

where

a B E-D free volume/total volume.

Two cases were examined in calculating the pressure distribution in containment

due to a hydrogen explosion: (i) at the lateral surface of the containment,

and (ii) at the top of the structure. (These cases were defined in this way

for ease in .calculation.)

C.4.3.1 Case I: Lateral Surface of Containment

Model 1

The surface of interest is on the lateral surface of the containment

(r-R, where R is the radius of the cylinder). In Cartesian coordinates, the

explosion originates at s, 0, z s) and the surface of interest is at

(r cos 9, r sin 9, z r) (Figure 8). The normal to the detonation front at

the surface is:
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(r cos 9, r sin 9, zr) - (s, 9, z )
n - rs

(r cos 9, r sin 9, zr) - (s, 0, zs

r cos 9-s, r sin 9, z -z )r s

(r2+s2 +Az2 - 2rs cos 9)1/2

The normal to the surface at (r cos 9, r sin 9, zr) is:

(r cos 9, r sin 9, Zr) - (O, 0, zr
n r

-s (r cos 9, r sin9, zr) - (0 0, z r)I

(cos 9, sin 9, 0)

Therefore:

r - s cos 9
-s -f 2 2 2 1/2

(r +s +z-2sr cos 9)-

and

P = - HDg mv*
2 -

(r - s cos 9)

(r2 2 )-z )2-2rs cos 9)1/2

For an explosion originating at s = 0, the magnitude of the pulse is a con-

stand as a function of angle 9 and is symmetric about the maximum at Az = 0.

For an explosion originating elsewhere, the maximum pulse is at Az = 0,

9 = 0 or 7r, and is symmetric about Az = 0.

(25)

(26)

(27)

(28)

(29)

(30)
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Model 2

The impulse consists of two components - the impulse from points above

the surface and below the surface. Referring to Figure 9, the impulse above

or below the surface of interest is given as:

212
I Z dA 2cmv* f(4vs2)-1 (cos e cos 0) dL Lde L cos e d# (31)
i-1

where L the distance from a point located in the volume to the surface

e - the angle between the xy plane and the line between the point in

the volume and the surface, and

0 - the angle between the x-y component of the vector between the

point in the volume and the surface of interest, and a radial

vector to the surface of interest.

The limits of integration for 0 are [0m 0m] where, using the law of

sines (.agaidn-r - R):

sin 0 (r) v sin (r-2 Om)(L cos e) (32)

which yields:

cos #m L(2r) cos e (33)

or

1/2
sin0 [0 1 - 2(2r)-2 cos2 9] (34)

Thus:

2 1/2
I E dA2cm* (2w) dL cos2 e [(l-L 2(2r)-2 cos2 9) ] de (35)
i-1
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Now, z 1 z -zr and z2 = zr9 Gm = sin 1 z/L for

L > z , or 1/2 for L _< z ; 9 = cos 2r/L for L > 2r, or 0 for L > 2r;

and L2 m = Z2 + (2r) 2. Thus:
a, i

2 92 dAc*2 dc2 2 -2
E dA cmv*'(r)- dLj Cos 9 (1-.L (2r)
i-1

21/2
cos 0) dL (36)

Alternately, by reversing the order of integration, with L max(G) = z sin 9

for 0 > 0* and 2r cos 7 for G _< *, and tan * - z (2r) ,

2 * 1
IZ dA 2cmv* [f '(2)

jm 0

2 2r(cos 9)
cos e de f

0

1/2

(1-L2 (2r)-2 Cos

-1 z sin G
(2) Cos de f

0

1/2

(1 - L2 (2r) Cos 9)

2 -1/2
I E da 2cmv* [0.25r z z + (2r)2

i-1

+ 0.5nr1
1i/2

rf
-1 2 2 2 1/2

cos 9 (z(2r) cot 9 (1-z (2r) cot 9)

+ sin~A (z(2r)~ cot e))]

w/2

+f

dL

±

or

dL] (37)

G i

(38)
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This equation was evaluated by numerical methods to derive results. The

maximum pressure rise is felt at z = 0.5 z max, and the pressure rise is

symmetric about z = 0.5 z *. Keeping the volume fixed and z/z fixed,
max max

the maximum preseure rise is felt at R/z between R/z 0.8-MAX max

(for z/zMA - 0) and R/zmaX 0.65 (for z/z - 0.5).

C.4.3.2Case II: Top Surface of Containment

Model 1

The surface of interest is on the top of the cylinder Cr - R). In

Cartesian coordinates, the surface of interest is at (r cos 9, r sin 9, zr

where z- 0 or 51 m. The normal to the surface at these points is given by:
r-

- (0,0,1), zr - 51 m (39)

(0,0,-i), z- 0 (40)
r

The normal to the detonation front at the- surface is analogous to case 1

(see equations 25 and 26), and

P 1HgMV* 2 s r 241/
2 (r2 + L2 + (z-z) - 2rL cos 8)1/2

The maximum pressure pulse is felt at r - L 9 = 0. The variation in the pulse

magnitude increases with increasing s and decreasing 1zs - zr .
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Model 2

The surface of interest is the end of the cylinder at a radius r = R.

The distance L between the surface and a point in the volume is

L (P cos 9 - rL) 2 + ( sin G)2 + z2 where the fraction of the momentum

in the z direction is zL 1 . Thus:

2w R zmax 21 -1
I =dA 2cmv* f p de f dp f dz (4r L) zL (42)

0 0 0

2w l 1/2 221/2
= dA 2cmv* f (4w) dG {(R2 2-2R r cos 9) -(R +r2-z -2R r cos 9)

max
0

-r + (r2 2 1/2 + L r cos G log [((R +r-2R r cos G)1/2 + R -r cos'9)

1/2
(r- r cos 9) ((r2 2 1/2  r cos G)(R2 + r2 + z 2  2R r cos 9)max max

+R -r cos 9)]} (43)

This integral was then evaluated numerically. The maximum pressure pulse for

a given R/z ratio is at r = 0. The maximum pulse is felt at R/z
max max

between 0.55 (for r = 0) andi 0.35 (for r = R).

Results of the model calculations are shown in Figure 10 for models 1

and 2, case I; and Figure 11 for models 1 and 2, case II. Since model 2

time averages the impulse on a surface to determine the pressure, and differences

in the duration of the impulse to different surfaces is neglected, there is

no angular dependence on the magnitude of the predicted pressure rise. (Model

1 does assume an angular dependence.) The impulse delivered to any surface

is independent of the origin of the explosion. The duration, however, is not

independent. The numbers shown in these figures are calculated for an
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Figure 11 'Results of Hydrogen Explosion Pressure
Calculations for Case II (Top Surface
of Containment)
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explosion initiated at the center of the vessel. To determine the pressure

response due to an explosion originating at a radius s and height z, the

2 2 1/2 2 2 -1/2
numbers shown here must be multiplied by [(19+s) + ze] [19 + 25.25

where z* is the maximum of either (50.5-z) or z. This factor varies between

0.5, for an explosion originating at a corner of the vessel, and 1.0, for an

explosion originating at the center of the vessel.

-C.5 Summary and Further Discussion

A-comparison was made of the maximum predicted pressure pulse due to a

hydrogen detonation with that due to a hydrogen burn (Figure 12). In comparing

the calculated values for the pressure rise, it is important to note that

the pressure spike from the explosion would be added to the overall pressure

rise in the vessel. In the calculations, the minimum value of the initial

hydrogen concentration still within the detonation region was used along with

a low value of 1200 rM/sec for the detonation velocity. The calculated pressure

spike for the explosion is thus 92 psia using the first model lasting for an

infinitesimally small time; the second model calculates a pressure pulse of

91 psia lasting about 30 milliseconds (Figure 12).

It is informative to compare these results with the only truly relevant

datum - the .pressure spike experienced at Three Mile Island. The predictions

are approximately three times higher than the actual spike, This seems to

imply that both models are quite conservative in the upward direction, since

higher pressures may be predicted than actually occur.

The ratio of the predictions of model 1 to model 2 is independent of

the initial conditions. For a given geometry, the predictions of both of

the models for the pressure rise varies as the product of the concentration

of the hydrcgen and the velocity of detonation. At hydrogen concentrations
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between twenty and thirty percent by volume, the detonation velocity is

greater than 1200 m/sec [6]. Therefore, in that region, the pressure rise

increases faster than linear. The burning model predicts pressure rises

roughly proportional to the consumed hydrogen concentration. Hence, at.

higher initial hydrogen concentrations, the pressure rise predicted by the

burning model will not be so large relative to the predictions of the

explosion models.

While both models 1 and 2 predict approximately the same maximum

pressure spike, they do not predict the same momentum transfer. Model 2 is

more intuitive and physically correct, although it involves substantially

more computer time to calculate the numerical integration. (The time required

to predict the pressure rise at one point of the surface using model 2 is

0.1 seconds of CPU time on the Honeywell MULTICS system.) The momentum

transfer is a function of the entire volume of the containment, Model 1

neglects momentum, except from the steam that is produced immediately adjacent

to the surface of interest. Model 2 includes the contribution of the

momentum froni the entire volume over a finite time while the transfer in

model 1 is over an infinitely short time. By doubling all of the dimensions

of the containment and keeping the same gas conditions, model 2 predicts

an impulse per unit area that is two times as large over a duration that is

also two times as long. The impulse varies as the cube of the length, the

area goes as the square of the length, and the time goes as the length;

hence, the impulse per unit .area doubles as does the time, and since

pressure = impulse/area-time, the pressure rise remains the same.

To conclude, hydrogen burn and detonation mechanisms and pressure response

models have been reviewed in this article. Calculations were performed to

calculate the expected pressure rise due to either a hydrogen burn or

explosion in containment with the containment structure approximated as a
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cylinder of height 50.5 m and radius 19 m. As mentioned earlier, the

assumption in the burning model that no energy is absorbed by the sur-

roundings is very conservative. This fits in with the experimental

results from General Electric [7]. We are still searching the litera-

ture for experimental data on hydrogen explosions in large vessels.

Most of the experiments performed have been in narrow tubes with

diameters of the order of centimeters, -an order of magnitude narrower

than the case at'hand. Therefore, conclusions are difficult to draw

from this data as the experimental volume is not comparable to that

of an LWR containment.
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III.D Applying Bayes' Theorem to Update the Estimate of the
Reactor Core Melt Frequency After TMI

D.1 Summary of Study Results

A study was performed to investigate the limitations on the use

of Bayes' theorem for updating probability estimates, particularly as

applied to update estimates of the reactor core melt frequency. A

Bayesian approach was taken in the earlier work of Apostolakis and

Mosleh to assess the reactor. core melt frequency, particularly with

concern placed on the impact of critical judgment on RSS estimates [6].

This study examines the validity of this approach to probability up-

dating using the experience at Three Mile Island as an additional

data point by which past estimates can be modified. The specific

numerical results of this study are representative only.

The main conclusions of the study are:

(1) Bayes' theorem is a concensus forming tool. It reduces

uncertainty and therefore should not be used when there is dis-

agreement about data validity;

(2) The relative importance of the prior and new evidence

depends on the relative uncertainty of the distributions chosen to

represent that data. The posterior is most influenced by the more

peaked of either the prior or likelihood distributions and will

result in less uncertainty than either of the two original distri-

butions; and

(3) Operating experience apparently contributes less to the

results than does engineering judgment.
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These considerations combined with a desire to understand the

applicability of a Bayesian approach toward assessing uncertainty has

lead to the present work. By adopting a Bayesian or subjectivist ap-

proach [5], expert opinion and experiencial data can be combined to

render useful and interesting results. Such an approach was taken

earlier by Apostolakis and Mosleh to assess the reactor core melt

frequency. particularly with concern placed on the impact of critical

judgment on RSS estimates [6].

This paper is divided into three sections: the first reviews

Bayes' theorem and the results of the Apostolakis and Mosleh paper

and relates these results to the present work. .The main section deals

with the impact of Three Mile Island and reactor operating experience

on estimates of the reactor core melt frequency. Caveats concerning

the application of Bayes' theorem are also discussed. Finally, over-

all conclusions are drawn.

D.2 Introduction

The use of Bayes' Theorem to update estimates of the reactor core

melt frequency was undertaken by Apostolakis and Mosleh. This paper is

motivated by questions concerning Bayes' Theorem and numerical appli-

cations to problems. In particular, it is of interest to determine what

data and information contributes the most in these applications, and

how such applications should be used and interpreted, and what con-

clusions from such a practice are justified.
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D.3 A Review of Bayes Theorem

The use of Bayes theorem and its application to problems of

risk assessment in the nuclear field has been expanded upon by several

authors [6,7,8,9]. In this work, a special inferential notation is

utilized following the work of Howard et al. at the Stanford Research

Institute [10]. This notation defines a conditional state, e, known

as the prior information existing at the time the calculation is made.

New evidence is noted here by the-letter- B and refers generally to

real life experience expressed in terms of a model or probability dis-

tribution. The core melt frequency is treated as an uncertain quantity,

denoted X , where j refers to a particular interval falling in a range

of possible values on X (i.e., 0 to 1). With these definitions, Bayes

theorem becomes:

jP( rr ,P(BX)

where P(x |B,e) a probability that the core melt frequency is
in the range of X. given new evidence .B is
applied against a prior estimate of the core
melt frequency distribution, e;

P.( je) probability that the core melt frequency is
in the range of. X. given original prior
information e; ana

P(Bj 4)X probability of new evidence B occurring
given that the actual core melt frequency

is X..

Bayes theorem can be used as a method for modifying an estimate based

on new evidence. The prior information e refers to a "state-of-

information" based on some existing data, opinion or engineering
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judgment and therefore P(X Ie) is the prior estimate of the prob-

ability that the reactor core melt frequency X will be in the range

specified by X.

D.4 Apostolakis and Mosleh

The work by Apostolakis and Mosleh [6] also used conjugate dis-

tributions in applying Bayes theorem to assess a posterior distribu-

tion reflecting both expert and critical opinion concerning the re-

sults of the RSS. Reactor operating. experience was used as the prior

information and a Gamma distribution was applied to reflect this in-

formation. The probability of a core melt based on this infbrmation

-2
being greater than 1.5x10 was found to be less than 1%; that is, an

expected value of one in "67 reactor years. An estimate of the mean

of 9.7x10 was found based on .03 melts per 310 commercial reactor

years of experience.

Using a Poisson distribution based on the RSS and its critics,

Apostolakis and Mosleh determined that the likelihood distribution

reflected an increase in the RSS estimate by a factor of ten such that

-5 -4
the mode went from 1.5x10 /reactor-year to 1.5x10 /reactor-year.

Then, a value for X the reactor core melt frequency was chosen such

that the probability of X being greater than this value is no more

than 5% (i.e., X - 7.lxlO4 /reactor-year). Using a transformation of

variables to y and K, the results shown in Figure 1 were derived,

where a = yK + 1; S - c/X* - r*/T*. The prior, likelihood and posterior

distributions on X. the core melt frequency per reactor-year are

shown in Figure 1 as derived by Apostolakis and Mosleh. Controversy

later arose [11,12,13] over how such distributions should .be construc-

ted and which set of data most correctly represents the prior
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Estimates of Reactor Core Melt Frequency
Apostolakis and Mosleh [6].

120012
Tr(X) 120 - 0.8

I'(0.12)

.056

exp -120 X)

.034
I

10~4 5x1d4

.03

-. 02

.01

x:
0

LUJ

0

104

10

10

L(&)=0.Ol

X)

5xlO~4

Figure 1

106

from

I0
0ox
a..

I

.0
0
0

LU

x



206

information since building poor representations of the prior can

render unreasonable results. The work of Apostolakis and Mosleh

demonstrates an interesting approach and is modified and expanded upon

in this work.

D.5 Calculations

D.5.1 Prior Distribution

In this work, to arrive at prior distributions reflecting ex-

isting knowledge with regard to the core melt frequency X estimates

and uncertainty factors were assigned as shown in Table I. Five dif-

ferent distributions are shown broken into ten intervals falling be-

tween 0 and -= on the x axis. (Use of the ten interval notation facili-

tates later computations.) A . log -normal distribution was assigned to

model the prior information, which consists of the reactor safety

study and the composite of the critics noted in the work of Apostolakis

and Mosleh (6]. Beginning with the RSS and assuming an uncertainty of

a factor of ± 5 and the. critics composite a weighted RSS + critics

estimation for the prior was derived in such a way that the relative

weight assigned to the validity of the RSS equals that of all critics

combined (i.e., the weighting factors are normalized to sum to one).

The uncertanity factors associated with the critics estimates are

conjectural. and represent the authors' best estimates only. A re-

vised RSS + critics distribution was next derived (see fourth row in

TableI) based on the authors' subjective assessment to produce a more

realistic probability-estimate at high values for X . This revised

prior is compared with the RSS estimate. itself modified to include

an uncertainty of ±10 (fifth row in Table I). The major difference



Table I

CORE MELT FREQUENCY

PRIOR DISTRIBUTIONS

A 1:10-5 -5
1:10

-4
2: 10 4 10 8:10 2:10

-3
4:10-3

Interval 1 2 3 4 5 6 7 8 9 10

-5
RSS: 5 x 10 a .009 .040 .451, .261 .161 .061 .014 2x10 lxl0-5 6x10-6
35 factor of 5

Critics Compositeb .005 .011 .094 .088 .117 .135 .143 .167 .096 .143

Weighted RSS + .007 .025 .273 .174 .139 .098 .079 .086 .048 .071
Criticsc

Revised RSS + .007 .025 .303 .205 .171 .129 .100 .049 .010 .001
Criticsd

-, -5
RSS: 5 x 10 e .050 .075 .375 .190 .149 .090 .046 .020 .004 .001
x factor of 10

a) All factors are 90% confidence intervals.

b) Critics estimates from reference 6 --

Union of Concerned Scientists: 7.5 x 10. 20; Hsieh & Okrent: 6.4 x 10 10; EPA: 1 x 10 1

0

EPA: 1.5 x 10-3 20. Averagerl probabilities in each interval.

c) Weighted so Reactor Safety Study equals all critics combined.

d) Subjectively revised to produce more realistic probability at high X.

e) Suggested as reasonable by Prof. N.C. Rasmussen, MIT.

1 0

5: 10-6 5 10
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between the RSS and the critics is in the estimate of the mean; the

critics consistently place their estimates factors of 10-30 higher

than the RSS. The revised RSS + critics estimate for the prior dis-

tribution on X reduces X and X10 spreading the likelihood over the

X -X intervals. This reflects, in our opinion, a more reasonable

estimate of the prior distribution since even critical appraisal shows that

-1 will not be as high as the unrevised estimate.

D.5. -Likelihood Function

New evidence B defined as r* is a function of the number of

"observed" melts in T* reactor years of commercial experience fol-

lowing Apostolakis and Mosleh [6]:

(2)

A modified Poisson distribution was used to describe the likelihood

function. P(BIX) for four different combinations of values for r*

and T* (Table II):

P(r*. IX) e( T*)r
* ) -r(r*+l) jT*) (3)

where r(r*+l) Gamma function (r(l.06) .96874). Results of this

procedure are shown in Table II. Note that the larger the background

of experience (i.e., as T + a), the more peaked becomes the Poisson

distribution for the likelihood function about the ratio r*/T* (in

-5 -1
our calculations, r*/T* is set at m,9.7xl0 yr ).



Table II

CORE MELT EXPERIENCE DISTRIBUTIONS

( = 9.7 x 10-5yr

Interval 1 2 3 4 5 6 7 8 9 10

Core Melt 4x10 -6 3x 5 8xl0-5 15x1O 3x1O 6x104 1210-3 -3 5x10-3
Frequency 1 U 81xX

T 3 .831 .847 .875 .888 .885 .863 .803 .680 .400 .219
T 310 yrs

*
- 06.718 .747 .798 .820 .816 .775 .671 .482 .167 .050

T = .1240 yrs .558 .603 .688 .727 .719 .649 .486 .251 .030 .003
T - 140 yr

.24
=2480 yrs .360 .421 .548 .612 .598 .487 .273 .073 .001 8x10-6

* *t
r = "observed" number of core melts

T* total reactor years of operation

r(r*+1) E Gamma function (r(l.06) - .96874)

r
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D.5.3 Sample Calculation of Posterior

A typical calculation of the posterior distribution on X reflect-

ing both RSS + critic prior information and commercial operating ex-

perience in the likelihood function is shown in Table III. This par-.-

ticular calculation also includes the impact of Three Mile Island in

the experience base as reflected in the likelihood function. One cal-

culation was made to answer the question- what would be the posterior

if the probability of a meltdown at Three Mile Island was about the

same as at Browns Ferry when the fire incident occurred (14]; using

Apostolakis and Mosleh's estimate for the Browns Ferry incident of

.03, then r* = .06.with T* the number of commercial years of experi-

ence as of 1979 of about 620 reactor-years (620 years was chosen be-

cause it doubles Apostolakis and Mosleh's estimate of reactor ex-

perience while retaining the same ratio for r*/T*. Also EPRI has

used this number in their ATWS work (see section III.A))..

The procedure followed is also shown in Table III: (i) estimate

the prior using the appropriate calculations and assumptions (i.e.,

here based on the RSS + critics viewpoints weighted for relative

validity), (ii) calculate the likelihood of a core melt as reflected

in the cumulative reactor experience to date placing subjective proba-

bility estimates on any events that may be construed to have come

reasonably close to a core melt (i.e., Browns Ferry and/or Three Mile

Island), (iii) multiply the prior with the likelihood P(X je)P(BIX.)

for each range of X and sum, and (iv) divide EP(X le)P(B.IX) into

P(X i)P(BIX) to arrive at the posterior distribution P(XB,e) .



Table III

EFFECT OF TMI "INDUSTRY" ESTIMATE

(P T = 0.03)

Interval 1 2 3 4 5 6 7 8 9 10 E

Core Melt -6 -6 -5 -5 -4 -4 -4 -3 -3 -3
4x10 8x10- 3x10 8x10- .5x0 3x10 6xlO l.2xl0- 3x10- 5x10-

Frequency A

Weighted P(a le) .0073 .025 .273 .174 .139 .098 .079 .086 .048 .071
RSS+Critics

* - .06 P(B|X ) .718 .747 .798 .820 .816 .775 .671 .482 .167 .050
T = 620 yr

P(X les)P(BIX) .005 .019 .218 .143 .113 .076 .053 .041 .008 .004 .680

P(XAIBse) .007 .028 .321 .210 .166 .112 .078 .060 .012 .006
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D.6 Results

D.6.1 Impact of Three Mile Island

Two cases were examined in computing a posterior distribution on

X; use of a "reasonable" estimate for the probability of TMI having

become a core melt accident of P "' 0.10 such that r* = -.03 + .10=

.13, (ii) use of a critics estimate on PTMI = .75 such that r*

.03 + .75 = .78, and (iii) use of an "industry" estimate of P .03

*
(discussed in II.C above). Results of the calculations are shown in

Tables IV and V for the "reasonable" and "critic's" estimate of P.,

and are compared to the "industry" result in Figure 2. (Note that in

these calculations, the weighted RSS + critics estimates for the prior

distribution is utilized.) The results show that the "industry" and

"reasonable" estimates do not change the estimate on the core melt

frequency much when compared with the prior estimate but that the

"critic's". estimate does considerably. The median values of each of

the resulting posterior distribution are shown in Figure 2 for the

"industry" (I), "reasonable" (R) and "critic's" (C) estimates; an

order of magnitude difference in X is seen between the industry and

critic viewpoints.

D.6.2 Impact of Reactor Operating Ex erience

The impact of the number of reactor years of commercial oper-

ating experience T* on the posterior estimate is shown in Figure 3

for T* = 310, 620, 1240, and 2480 reactor-years. The effect is to

These values for PT are chosen more for example than on any more

profound base of justification. Thus, results are representative
only.
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peak the distribution about lxl04 and to sharpen the cut off at the

upper end of X. This assumes r*/T* stays constant at 9.7x10-Shr

thus allowing for a proportionate increase in the number of events

related to core melt.

D.6.3 Bayesian Combination of RSS and Critics

When Reactor Safety Study estimated Amedian- 5x10-5 with the

critics estimate varying up to a factor of 30 higher. In part III.A

of this paper, the RSS and critic estimates for X the core melt fre-

quency were combined into a prior estimate on X.-- It is also pos-

sible to apply Bayes theorem to arrive at a posterior distribution

based on a combination of the RSS and critics distributions on X. The

result of such a calculation is shown in Figure 4. Note that the re-

sulting posterior (i.e., RSS + critics composite distribution) ex-

hibits less uncertainty than either the RSS or critics distribution

on X. Because of this seeming reduction in uncertainty, the use of

Bayes theorem as a method for arriving at a composite distribution

to be used as a representation for the prior distribution does not

seem warranted. Details of the Bayesian calculation for arriving at a

composite of the RSS + critics are given in Table VI.

D.6.4 Caveats in Applications of Bayes Theorem

The preceding example serves to illustrate the care that must be

taken in applying Bayes theorem for purposes of probabilistic esti-

mation. Careful interpretation of results using the Bayesian approach

can eliminate many possible pitfalls. In applying Bayes theorem,

it is important to note that the theorem itself treats all existing

data and expert opinion equally as valid and that in many cases the
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resulting posterior will exhibit a lesser degree of uncertainty than

either the prior or likelihood functions. That is why the composite

RSS + critics distribution derived above using the Bayesian approach

exhibited less uncertainty when in fact the actual controversial

nature of the validity of either the RSS or critics estimates would

imply a wider spread for the composite distribution.

To illustrate this result a simple example is now given.

Suppose an uncertain variable e is estimated by both subject A and

subject B. Suppose that A estimates 6 to fall between 1 and 4 and B

estimates 8 to fall between 4 and 7. If A and B are both equally

legitimate sources of information (i.e., A and B's estimates are of

equal validity), then the resulting nari-ow posterior distribution on e

as shown in Figure 5 is a proper composite of the two distributions.

However, if the interpretation of A and B is that either estimate

could be wrong, then a more proper composite might be a distribution

that peaks between 4 and 5 but includes the possibility that e can

still fall between 0 and 7. The point of this exercise is to caution

against applications of Bayes theorem when A and B's estimates are

not totally independent unbiased estimates. In the case of the reactor

core melt frequency controversy this observation may hold especially

valid since the critics estimates are simple multiples of the RSS re-

sults and are clearly dependent estimates.

D.7 Conclusions/Further Discussion

In applying Bayes theorem to estimation problems the following

points should be noted: (i) the posterior distribution will likely

exhibit a lesser degree of uncertainty than either the prior or
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likelihood distributions, (ii) because of (i), Bayes theorem may not

be useful for arriving at composites of distributions that reflect

controversial opinions as the resulting composites represent concensus,

and (iii) the relative importance of the prior and likelihood functions

on the- posterior is reflected in the spread or variance of the respec-

tive distributions. In- the particular application addressed here,

specifically the impact of TMI on the reactor core melt frequency x,

we find that estimates on the probability that TMI approached.a core

melt (P M) of between .03-.10 did not shift the RSS estimate sig-

nificantly £15]. On the other hand, if one perceives TMI as a "near

miss" (i.e., P > .75), the core melt frequency is shifted upward.

Bayes theorem can be a useful tool for providing a mathematical

framework to update probabilistic estimates in the light of new ex-

perience and experimental data. However, it must be used with common

sense.



Figure 2 Effect of TMI on Posterior Distribution for Core Melt Frequency.
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Figure 3 Effect of Operating Experience on the Core Melt Frequency Estimate.
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Figure 4 Bayesian Calculation of the RSS and Critics Composite Distribution.
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Figure 5 Caveats in Applying Bayes Theorem: A Simple Example.
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Table IV

EFFECT OF TMI - "REASONABLE" ESTIMATE

(P - 0.10)

Interval 1 2 3 4 5 6 7 8 9 10

Core Melt 4x10-6  8x10-6  3x1O- 8x105 l.5x10 4  3xlO 6x10 1.2x10-3 3xlO-3 5x10-3
Frequency

Weighted P(X |e) .0073 .025 .273 .174 .139 .098 .079 .086 .048 .071
RSS+Critics

r*0= .13 P(B'X .487 .531 .622 .685 .712 .710 .645 .487 .180 .056
Tm620 yr

P(X |E)P(BIX) .004 .013 .170 .119 .099 .070 .051 .042 .0086 .0040 .5798

P( IBc) .007 .022 .293 .205 .171 .121 .088 .072 .015 .007

0



Table V

EFFECT OF TMI - "CRITICS" ESTIMATE

(P TMI 0.75)

Interval 1 2 3 4 5 6 7 8 9 10 E

Core Melt 4x10-6  8x10-6  3x10-5  8x10-5  1.5x10 3x10 4  6x10 1.2x10-3 3x10- 3  5x10-3

Frequency j

WeSightcs P(Xis) .0073 .025 .273 .174 .139 .098 .079 .086 .048 .071

r .78 P(B X
T* 620 yr .010 .017 .047 .099 .154 .241 .344 .407 .273 .118

HJ

P(X IE)P(BIXA) 7x10 5  4x10 .0130 .0172 .0214 .0236 .0272 .0350 .0131 .0084 .1592

P(X B, ) .0004 .0025 .0816 .1080 .1344 .1482 .1708 .2198 .0823 .0528



Table VI

CORE MELT FREQUENCY ESTIMATE:

REACTOR SAFETY STUDY MODIFIED BY CRITICS COMPOSITE

Interval 1 2 3 4 5 6 7 8 9 10

Core Melt AxO-6 8x-6 3l-5 8xO-5 1.x-4 3l-4 6xl..4 l.x-3 3O-3 5x0-3
Frequency 4x10 8x10 3x10 8x10 1.5x10 3x10~ 6xl 1.2x10 3x10 5x10

RSS 5x10 5  E) .009 .040 .451 .261 .161 .061 .014 2x10 1x10-5 6x10-6
Sfactor of 5 2xOj'' 61

Critics P(BIX) .005 .011 .094 .088 .117 .135 .143 .167 .096 .143Composite j

PXl)(I .x -5 4 -4 -5 - 7 -7
P(A )P (BA ) 4.8x10-5 4.3x10 .042 .023 .019 .0083 .0021 3.4x10 9.6x10 1.4x10 .0950

P(k JB,e) .0005 .0045 .444 .242 .198 .087 .022 .0004 lxlO-5 1.5x10-6
jJ
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