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ABSTRACT

This is the initial annual report in an experimental and theoreti-
cal program to develop and apply single and few element methods for
the determination of reactor lattice parameters.

During the period covered by the report, January 1, 1968 through
September 30, 1968, work was devoted to development and evaluation
of methods for the experimental determination of the heterogeneous
fuel rod parameters r, rl and A. The first of these parameters, the
thermal constant r, is related to the thermal utilization; T7 is the
total fast neutron yield per thermal neutron absorbed; and the epi-
thermal absorption parameter, A, is related to the resonance escape
probability. Exponential tank experiments were completed which
show that r and rl can be measured using foil activation traverses
external to a single fuel element. Numerical experiments were per-
formed using multigroup codes to demonstrate the feasibility of a
proposed method for determination of A. Analytic work focused on
development of methods for calculation of the material buckling, Bm
for full lattices from measured values of F7, rj and A, and on
correction of these parameters for interaction effects.

Work was also initiated with the objective of applying advanced
gamma spectrometric methods using Ge(Li) detectors to the determi-
nation of fuel rod parameters. Capture gamma spectra were
measured for a number of low and high enrichment, and depleted,
fuel specimens. A report was issued on a computer program
developed to extract photopeak energies and intensities from multi-
channel analyzer spectra.
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1. INTRODUCTION

1.1 Foreword

This is the first annual progress report of the Reactor Physics

Project of the Massachusetts Institute of Technology. This project

was initiated January 1, 1968 with the objective of developing and

applying single and few rod methods for the determination of reactor

physics parameters. Development of these methods should increase

the ability to evaluate the reactor physics characteristics of new and

promisingiypes of reactor fuel at very low cost. Work is divided

into two tasks, with two phases in each task.

Task I is concerned with irradiated fuel containing both fission

products and plutonium. Phase I of this work is concerned with

development of techniques, including the use of simulated burned or

recycled fuel (containing plutonium but no fission products). Phase II

will involve use of actual spent fuel.

Task II of the project is devoted to application of single rod

methods to clustered fuel. Phase I is concerned primarily with a

theoretical demonstration of the applicability of such methods, and

Phase II primarily with experimental investigation of selected clean-

configuration experiments.

This report summarizes the work completed through September 30,

1968, which has mainly been concerned with Phase I of Tasks I and II.

1.2 Research Objectives and Methods

The following abbreviated discussion will serve to show the moti-

vation for the specific investigations reported upon in subsequent

chapters of this report and to unify the presentation. All of this work

is based upon heterogeneous reactor theory, which is well known to be

applicable to lattices of low enrichment fuel moderated by heavy water:

reference 1, for example is a recent confirmation of this assertion.
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In heterogeneous reactor theory, a fuel element may be charac-

terized by as few as three parameters:

F = asymptotic thermal flux at rod surface per thermal

neutron absorbed by rod,

l = fast neutrons emitted per thermal neutron absorbed

in the fuel,

A = epithermal absorptions per unit slowing-down density.

Knowledge of these three parameters permits calculation of k :

n(1 -A/V )
k V ~ (1.1)

00 1 + F Z V '
am m

where

Vm = cross-section area occupied by moderator in

a unit cell,

V c = cross-section area occupied by total unit cell,

Zam = mean cross section for neutron absorption by

moderator.

These same three parameters are required as input to hetero-

geneous theory computer programs such as HERESY (2).

Most previous work in the area of heterogeneous reactor physics

has been concerned with methods for calculation of r, rl and A. In the

present work, the emphasis is, instead, on experimental determi-

nation of these parameters using one (or a few) rod(s), and the

concurrent theoretical and numerical work is primarily designed to

help plan or interpret the experiments.

Previous work at M.I.T., summarized in reference 3, has shown

that rl and A can be inferred from in-rod foil activation experiments.

The present work has as its objective the determination of parameters

by means of measurements made on the rod surface or in the

surrounding moderator. This should obviate the need for cutting into

rods containing plutonium and fission products, with the attendant con-

tamination problem.
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Two major parallel experimental approaches are being pursued

in the development of parameter measurement methods. The first

involves classical foil activation, or activity traverse experiments;

the second, high resolution gamma-ray spectroscopy using Ge(Li)

detectors. Both approaches are discussed in subsequent chapters of

this report.

To date, most single rod experiments, and all of those at M.I.T.,

have been concerned with small-diameter (e.g., 0.5 inch) cylindrical

rods and with lattices made up of uniform arrays of such rods, as

might be used in large pressurized or boiling water reactors. Since

most heavy water moderated reactors are of the pressure-tube type,

with more widely separated fuel rod clusters, there is considerable

incentive to extend the work to such systems. In theory, this

extension is simple, since one need only treat each fuel cluster (plus

its surrounding pressure and calandria tubes) as a single "rod" in a

larger, widely-spaced array. In practice, one must show that the

much larger diameter of such "rods" (e.g., 4 inches) and the inhomo-

geneous interior structure does not invalidate the experimental

methods employed. Some preliminary evidence, both theoretical and

experimental, on this question will be discussed in this report.

1.3 Staff

The project staff, including thesis students, during the report

period was as follows:

M. J. Driscoll, Assistant Professor of Nuclear Engineering

T. J. Thompson, Professor of Nuclear Engineering

I. Kaplan, Professor of Nuclear Engineering (on sabbatical since

July 1, 1968)

N. C. Rasmussen, Professor of Nuclear Engineering

F. M. Clikeman, Associate Professor of Nuclear Engineering

A. T. Supple, Jr., Project Technician

J. N. Donohew, Research Assistant (Fall 1968)

J. D. Eckard, Jr., AEC Fellowship, Part-time Programmer

T. L. Harper, AEC Fellowship, Part-time Data Analyst
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Y. Hukai, Pan American Fellowship, Sc.D. Student

C. H. Kim, Research Assistant (Summer 1968)

Y.-M. Lefevre, Research Assistant (Fall 1968)

T. C. Leung, Research Assistant, S.M. Student (Since June 1968)

N. R. Ortiz, Research Assistant (Fall 1968)

C. S. Rim, Research Assistant (Summer 1968)

S. S. Seth, Research Assistant, Sc.D. Student

C. Takahata, Part-time Electronics Assistant (Spring 1968)

1.4 References

(1) Groves, W. E., F. D. Benton, and R. M. Satterfield,
"A Comparison of Heterogeneous Nuclear-Reactor Lattice
Theory with Experiment," Nucl. Sci. Eng., Vol. 31, No. 1,
January 1968.

(2) Klahr, C. N. et al., "Heterogeneous Reactor Calculation
Methods," NYO-2680, 1961.

(3) Heavy Water Lattice Project Final Report, MIT-2344-12,
MITNE-86, September 30, 1967.
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2. CALCULATION OF LATTICE PARAMETERS

S. S. Seth

2.1 Introduction

The ultimate objective of the experimental heterogeneous method

is to measure characteristic fuel parameters using single (or a few)

fuel elements and, from them, to calculate key properties of complete

fuel lattices. The two most important collective properties of the fuel

lattice are the infinite multiplication constant, k,, and the material
2

buckling, B .
m

As noted in Chapter 1, the familiar four-factor formula,

k, = rn'epf, (2.1)

can be rewritten in terms of the heterogeneous theory parameters r7,

A and F:

A = (1-p)V,

1/f - 1 _ A 2.2)
V(1 -v) .Ia V(1 -v) 7 'm(22

am am

where

V = cross-section area of unit cell (i.e., volume per unit

length),

v = volume fraction fuel in unit cell,

E = mean absorption cross section of moderator.

Substitution of the values obtained for r7, e, p and f from Eqs. 2.2

into Eq. 2.1 gives:

k= r(1-A /V) l(1-A /V) (2.3)0 1 + PV(1-v) E+a 1 + A(
am

Equation 2.3 can be modified in a number of respects to improve

its capabilities. First of all, instead of assuming that r7, A and r are
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constants independent of lattice spacing, as is implied by Eq. 2.3, the

small interaction effects can be taken into account. Secondly, a more

accurate relation between P and f can be derived. Finally, since the

material buckling is the quantity which is directly measured in most
2

lattice experiments, it is convenient to relate k, and B . According00 m
to age-diffusion theory,

2
B T

k = e m (1+L 2 B 2 ) (2.4)
oo m

2where the diffusion area, L ,and age, T, can be expressed in terms

of the corresponding moderator properties, L and T
0 0

2 2 A
L = Ll±A

o 1 +A'

T = T(1 - v 2

The following sections of this chapter discuss the results of

applying the preceding equations to experimental data and present

some of the improved theoretical relations derived for the key

variables.

2.2 Correction of I, rj and A for Interaction Effects

Of the three heterogeneous parameters, rj will vary most with

lattice spacing primarily because it has been defined here to include

the fast fission factor. The measured single rod value, rl0 , can be

corrected to include both epithermal fissions in U-235 and fast

fissions in U-238 due to neutrons originating in other fuel elements

by summing up the individual contributions over the entire lattice,

using methods described in reference 1. Following that work, one

obtains the expression:

25 E25

fe 28 28 3_ (2.50 + Vv + 4 v2 28 exp -(2.5)

where

V25 , 28 = fission yields for U-235 and U-238, respectively,
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~25 = 
2 5 25

E = epithermal fission cross section for U-235 = N 25

28 28 28
= cross section for U-238 fast fission = N a

X = mean free path for first-flight neutrons in D 2 O,

(,s = moderating power of D 20,

a = fuel rod radius.

Table 2.1 lists both the input parameters to Eq. 2.5 and the result

obtained from applying Eq. 2.5 to a representative set of natural

uranium lattices. Also shown are experimental full lattice data,

interpreted using methods described by Donovan (2). As is evident,

the corrections to a can amount to several percent and are, there-

fore, worth making. Further, the relatively simple theoretical

expression given in Eq. 2.5 is evidently capable of making this cor-

rection with sufficient accuracy.

TABLE 2.1

Comparison of Predicted and Measured Values of -0 for
One -Inch-Diameter, Natural Uranium Lattices

Lattice Spacing Full Lattice -q Prediction
(Inches) Experiment Using Equation 2.5

4.5 1.44 1.457

5.0 1.42 1.439

5.75 1.41 1.421

oo (Single Rod) 1.37 1.37

Input parameters to Equation 2.5:

y 25 = 2.43 X = 11.36 cm

v28 = 2.83 = 0.18 cm

25 280b = 1.370
fe o

a28 = 0.306 bff
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The other two fuel element characterization parameters, r and A,

vary much less with lattice spacing than does rY. Corrections have

therefore not been included in calculations made to date. There are,

however, several small corrections which are still under consider-

ation. These will be mentioned briefly. Although the Dancoff shadowing

effect is small in widely spaced, D 20-moderated lattices, the effect on

A must eventually be considered. There is also a second correction

due to the increasing non-1/E effect as lattice spacing is decreased.

An expression for this effect on the effective resonance integral (ERI)

has previously been derived for U-238 (3). Since previous work (2)

has also shown that A is directly proportional to the ERI, we may

write:

AA28 28
28 = 0.03 .A .v (2.6)

Equation 2.6 predicts that lattice effects could modify A by several

percent. As noted in Chapter 6, neither the theoretical nor the

experimental work has yet progressed to the point where such small

corrections are warranted.

Finally, the thermal constant F will also vary slightly with pitch,

due to spectral hardening effects. Frech (4) has experimentally

shown that the change in effective neutron temperature is directly

proportional to the volume fraction of fuel; hence, it is conceivable

that a simple correction scheme could be developed to account for

spectral hardening. Again, because there is an irreducible inherent

experimental error of a few percent in the determination of F, it is

questionable whether such sophistication is warranted.

2.3 Improved Expression for Thermal Utilization

The second major weakness of the simple relation, Eq. 2.3, is

that the thermal flux has been assumed constant in the moderator in

relating F and f. This defect is easily remedied by application of

diffusion theory in cylindrical unit cell geometry, assuming a weakly

absorbing moderator. One obtains:
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V v2{221-v}r E V(1-v) + 47rL2 1 , (2.7)

where

L, 0am = diffusion length and absorption cross section for

D 20 moderator,

A = moderator absorptions per fuel absorption.

Comparison of Eqs. 2.2 and 2.7 shows that the latter merely con-

tains a small additive correction (second term on the right-hand side

of the equation). As will be discussed in Chapter 3, Eq. 2.7 permits

one to calculate f from E with quite acceptable accuracy, namely,

within about ± 0.1 percent.

2.4 Calculation of Material Buckling

A computer program, HECKLE, has been written to calculate
2

k and B from single rod parameters, using Eqs. 2.3, 2.4, 2.500 m
and 2.7.

2
Figure 2.1 shows experimental values of B measured usingm

complete lattices of one-inch-diameter, natural uranium fuel rods,

as compiled by Palmedo (5). Also shown is the result of inserting

the following single rod parameters into the HECKLE code:

= 1.37 Reference 2

F = 0.94 cm Chapter 3 of this report

A = 19.0 cm2

L = 0.9437 X 104 cm2 99.75 mol D2O02

T = 119 cm 2  99.75 mol D2 0

Eam = 0.879 X 10 cm 1  99.75 mol% D 2 O

Because of the lack of reliable single rod measurements, the

value of A was estimated using Hellstrand's correlations for U-238,

and corrected to include U-235 absorptions by the method described

in Chapter 6.
2

As can be seen from Fig. 2.1, the values of B calculated fromm
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single rod data and those measured on full lattices are in good agree-

ment.
2

The HECKLE code has also been used to study the effect on B of
m

variations in each of the single rod parameters 1, rl and A. It was
2

found that, in order to determine B within ± 5%, it is necessary tom
know n within approximately ± 1% and F and A within about ± 7%.

Chapters 3 through 6 of this report discuss the progress achieved to

date in developing experimental methods having this capability.

2.5 Future Experimental Work

The problem of applying single rod methods to tightly clustered

fuel has also been looked into, and all indications are (see Chapter 3)

that the methods developed for individual fuel rods can be applied to

clustered fuel. In fact, since there is normally a much wider spacing

between clusters than between individual rods in a uniform lattice, the

values of r7, P and A should vary only slightly with the inter-element

spacing. Clusters comprising 19 and 31 rods (Fig. 2.2) and of a compo-

sition that simulates partially burned natural UO 2 (Table 2.2) are

being fabricated, and experiments to determine the heterogeneous

parameters for these clusters will be undertaken during the coming

year. Full lattices comprising the same fuel have been extensively

investigated (6) both analytically and experimentally by the Savannah

River Laboratory, and their results should provide an excellent basis

for testing the proposed new methods.

TABLE 2.2

Properties of Type B, USAEC-AECL Cooperative Program,
Simulated Burned Fuel

1. Isotopic Composition, wt % of total U + Pu

U-235 U-238 Pu-239 Pu-240 Pu-241 Pu-242

0.30 99.431 0.25 0.016 0.002 0.001

2. Individual Fuel Rods
Pellets: sintered coprecipitated oxide, 95% theoretical density,

0.500 ± 0.002 inch diameter.
Clad: 6063 T6 aluminum, ID 0.507 ± 0.004 inch, wall thickness

0.020 ± 0.002 inch, length 54 inches.
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3. EXPERIMENTAL DETERMINATION OF

THE THERMAL CONSTANT

S. S. Seth and A. T. Supple

3.1 Introduction

Previous work at M.I.T. by Pilat (1) and by Donovan (2) has

demonstrated the feasibility of measuring the thermal constant, I,

using radial foil traverses about a single fuel element. The objective

of the work reported herein was to effect desirable improvements in

both the theoretical and experimental methodology.

3.2 Theory

Careful analysis of the single rod experiment using age-diffusion

theory has led to improved theoretical expressions relating I, rl and

the thermal flux shape. An abbreviated derivation follows.

First, define I as the ratio of the asymptotic thermal flux on the

surface of the fuel rod to the net thermal neutron current into the rod.

By asymptotic flux, we mean the value of the thermal neutron flux in

the moderator extrapolated back to the fuel rod surface using diffusion

theory. Thus,

S= <(a) .(3.1)
27ra 1JI

The thermal neutron balance in the moderator region of a cylin-

drical exponential tank containing a single central fuel rod then

becomes, according to age-diffusion theory:
2 r2_

2 2 7 T th -
4 7th

DV2 (r) - a 4(r) + Dy 2(r) + k(a) e = 0, (3.2)
4
7rTth

where

y2 = axial buckling.
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The following boundary conditions apply:

(a) at the fuel rod surface, r=a,

4(a) - 2ra Dr[ V r=a 0;

(b) at the extrapolated outer boundary, r =R,

O(R) = 0;

(c) at the thermal flux peak in the moderator, r =x,

E -r=x = 0.

The Green's function for this problem is given by:

- K [ Y (ar) - J (aR)1] J0(ag) -YO(a 0

- K [Y (a ) -J (a)3]L J 0 (ar) - YO(ar)

(3.3)

where

a2 _ 2

-1 2  1o(aR)

SY(aR)

and

0 =

1]-

Y (aa) + 27rDr(aa) Y1 (aa)

J 0 (aa) + 27rDr(aa) J 1 (aa)

The radial flux shape in the moderator can then be solved for:

- J (aR)-

LJo(ar)-Y(ar) Y(aR) L 2 (a, r)-L3I(a,r)

- -0 (aR)
+ FY(ar) - OJ(ar) I (r, R) 0(aR)I 1 1 Y (aR) 12 (r, R)

G(r, () =

J (aR)-

0 (aR)

J 0 (aR)

Y0 (aR) r > g

(r) = N 4(a) I
} (3.4)
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where

J (aa) + 27rD(aa) J 1 y(aa)

J (aR) -
4DL Il(a, R) - Y (aR) 12 (a, R)

0

I(u, v) = V J9(a ) e 4 th 2h d
u 0 th

_ 2

V)fv Y4T hd
I 2 (u, v) = fY9(ag) e ~th (27th)

2u 0 th)

By setting the first derivative of Eq. 3.4 (with respect to r) equal

to zero, the thermal constant, r, can be expressed in terms of the

position of the peak in the thermal flux profile at r = x:

7YTthF 1(ax) J1 (ax)y(a)
Se Y 2 (ax) I2(a, x) - I (a, x) - LJ(aa) - Y (ax) o(aa)

Y~~ ~ 1~a -a)21 1 1[0 Y(x

27rD(aa) J (aa) - J (ax) Y 1 (aa)
1 (ax)

(3.5)

Equation 3.5 is the desired relation among the thermal constant

and other known or measurable system parameters. In particular,

it quantifies the relation between r and the measured radial distance

to the thermal flux peak, x, which is the entire basis for the subject

experiment. Before proceeding to a discussion of some experimental

applications, a brief discussion of a few other aspects relevant to the

practical application of Eq. 3.5 are in order.

As shown by Eq. 3.5, r and Yn are not independently determined

in the present experiment. However, detailed numerical studies

have shown that rl has a weak influence on the relation of F to the

peak flux value, x. Therefore, it is possible to use a rough approxi-

mation for rl in determining F.
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A second point to note is that Eq. 3.5 requires knowledge of the
2

radial buckling, a . This can be determined experimentally by y
2 2 a

measuring the axial buckling and applying the relation a = 2 D
2

However, it is also possible to estimate a from the unperturbed radial

buckling a2 = R2

J (ax) Y 0 (a 0 R) (n(-)
0 Y (ax) J 1 (a 0 R) . 2 th, (3.6)

RL1 -rle tI3(ax)j

where

J 1(ax)
13(a, x) Y Y(ax) 12 (a, x) - 1 (a, x)

Note that a appears on both sides of Eq. 3.6; it may, however, be

readily determined iteratively. A simpler but more approximate

expression can also be derived:

'_J Y 0(a 0R) ,
a . a0 - J 1 (a 0 R) R(4DP -Y(aa)) (3.7)

While use of the above expressions is somewhat cumbersome,

since the integrals I and 12 must be evaluated by numerical inte-

gration, it appears necessary to use these more sophisticated relations

instead of the simpler r7 = 0 approximations used by Donovan (2) in

order to obtain sufficient accuracy. Work is continuing to simplify

and systematize the present formalism.

Finally, some work has been done to evaluate the adequacy of

age-diffusion theory in the interpretation of the subject experiment.

In general, the difference between the actual flux peak position and

that implied by age-diffusion theory is much smaller (< 1%) than can

be experimentally measured. This has been checked by numerical

experiments using the computer program ANISN and analyzing the flux

profiles obtained with the diffusion versus S 4 and S8 approximations.

Donovan (2) likewise derived an approximate expression showing that

transport corrections would usually be negligible.
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3.3 Experiments

In order to test the revised analytical procedure, a series of

experiments was performed on the one-inch-diameter, natural

uranium rods used by Pilat and Donovan. The mean result of five

determinations was r = 0.94 ± .05 cm~ . The result which would

have been obtained if the effect of fast neutrons from the rod was

neglected in analyzing the data (i.e., n = 0) is I = 1.3, which is

more than 30% larger than the correct value. Thus, it is clearly

necessary to use the more complicated expressions of the preceding

section to analyze the experimental data.

To test the applicability of a similar approach to fuel rods

arranged in a tight cluster, but treated as a single large fuel "rod,"

a second series of radial gold foil traverses was performed in the

moderator surrounding a seven-rod cluster of 1.99% enriched UO 2
fuel rods. The experiment confirmed that the location of the flux

peak was not affected by the heterogeneous structure of the cluster.

Measurements along radii differing in polar angle by 300 showed no

discernible shift in flux peak location, indicating that the fuel cluster

can be treated as a homogenized cylinder. The value of I was found

as a mean of six measurements to be 0.805 ± 0.12.

The comparatively large uncertainty in the last set of experi-

ments showed the need for further refinements in experimental

technique beyond those described in reference 2. These now include

installation of a submersible light in the exponential tank and

provision of a viewing telescope to check foil holder position.

Results obtained using these refined experimental techniques will be

reported subsequently.

3.4 Relation of the Thermal Constant to the Thermal Utilization

Other theoretical work was carried out to investigate the relation

between the thermal constant, r, and the thermal utilization, f.

While adequate for many purposes, the relation implied in Chapter 1,
1namely, f = 1 ,+ z -V , can be improved upon. For example, the

a m
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following more accurate relation can be derived by application of dif-

fusion theory to a cylindrical unit cell:

1
S V (- 1 (3.8)

am m

In Eq. 3.8, (E-1) refers to the "excess" moderator absorptions per

fuel absorption, i.e. :

(absorption in moderator) - am V m(a)

(absorption in fuel)

Diffusion theory gives the following result (3) for (E-1):

2 21
K 2m(b 2 -a 2 ) FIimb)K (K a) + Ig(Kma)Ki(Kmb)

(E -1) =
2Kma 1 (Kmb)KI(Ka) - 1 1 (Kma)K1 (Kmb)J'

where Km is the inverse thermal diffusion length in the moderator

and 'a', 'b' refer to the fuel and cell radii, respectively. The above

relation may be usefully approximated (3) and expressed in terms of

the volume fraction fuel, v, in the unit cell:

(E-1- V - 3 In v

47rL2 22 (1-v)'
0

Since f is a weak function of P in D 2 0-moderated lattices, (E-2)

can often be ignored when calculating f from P. (However, when cal-

culating r from f, the converse is true and neglecting (E-1) can cause

a large error in r.) Table 3.1 lists values of f calculated using

Eq. 3.8 together with comparable THERM(S results.

The agreement between the numerical and experimental results is

quite good. In fact, since f is so close to unity in such lattices, it

would be very difficult to go more than ± 1% astray in f. However,

because r also appears in expressions for rl (see Chapter 4), it is still

important to measure F with the best possible precision, and this will

be the primary objective of future work in this area.



TABLE 3.1

Comparison of Heterogeneous and THERMOS Results

1.01-Inch-Diameter, Natural Uranium Metal Fuel Rods (F = 0.94 cm~ )

Lattice
Spacing am (E - 1)f" f f (E - 1) f
(Inches) cm

4.5 0.638 X 10-4 0.0012 0.9924 0.9918 0.0020 0.9916

5 0.664 X 10~4 0.0016 0.9902 0.9896 0.0027 0.9890

5.75 0.674 X 10 4 0.0024 0.9865 0.9859 0.0041 0.9848

THERMOS calculation

Calculation using Eq. 3.8, diffusion theory (E-1) value, and r = 0.94 cm

Calculation using THERMOS (E-1) value, Eq. 3.8, and r = 0.94 cm~

-1I
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4. A FOIL ACTIVATION METHOD FOR MEASUREMENT OF 17

T. C. Leung

4.1 Introduction

Although Donovan has reported an in-rod foil activation method

for determination of YI (1), it is an objective of the present work that

all measurements be made outside the fuel rod. In this chapter, a

method involving measurement of the cadmium ratio of gold foils in

the moderator surrounding the test rod is described.

4.2 Definition of r7

There are many definitions of n, and most of them vary only

slightly from one another. In the present work, -q is defined as the

number of fission neutrons produced (by thermal, epithermal and

fast fission reactions) per thermal neutron absorbed in the fuel. It

is important to note that n as defined here includes a fast fission

contribution (e.g., 628) and an epithermal fission contribution (625),

where 628 and 625 are defined as follows:

238
6 _ total U fission rate in fuel 4.128 235.total U fission rate in fuel

235
6 _ epicadmium U fission rate (4.2)25 235subcadmium U fission rate

The governing equation derived by Donovan (1) is:

= ath(1+ 625) 1 + 28f 2 8 f28 (4.3)
th 2525,9th.

where

ith = neutrons due to thermal U 2 3 5 fission per
thermal absorption in the fuel,

v 28 f average number of neutrons produced
per U238 fast fission,
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a'28,f = U 2 3 8 fast capture to fission ratio,

V 25,th = average number of neutrons produced
per U235 thermal fission.

The parameter Yth, the neutron yield per thermal absorption in the

fuel, is, apart from quite small spectral hardening effects, a

constant, independent of lattice spacing. However, the fast fission

and epithermal fission parameters, (628, 625) and thus Y, as defined

in Eq. 4.3 will vary with pitch. If the fuel elements are far apart,

the part of the fast effect due to interaction between adjacent elements

may be negligible; otherwise, the value of 17 must be corrected for

the lattice effect. The present work will be limited to experimental

determination of the infinite-pitch lattice or single rod value of ].

Analytic methods for performing the small corrections due to finite

lattice spacing have already been discussed in Chapter 2.

4.3 Derivation of Expression for rl

Consider Fig. 4.1 which shows a single fuel rod of radius a,

immersed in a cylindrical tank of moderator which is fed from below

by a thermal neutron source. It is assumed that the thermal flux

sufficiently far away from the fuel rod obeys diffusion theory. As

noted in Chapter 3, the heterogeneous thermal constant is defined as

the asymptotic thermal moderator flux at the surface of the rod per

neutron absorbed (per unit length) by the rod.

4th(a)
a- . (4.4)27raJ

Thus, the thermal neutron absorption in the fuel rod is £ , and

the resultant fast neutron source thereby produced is ) .

These fast neutrons emitted by the fuel rod will be slowed down to

produce an epithermal flux field. The slowing-down density, q(r),

at a distance r from the center of the fuel element is, according to

age theory:
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t FUEL ROD EDGE OF TANK

MODERATOR

ASYMPTOTIC (DIFFUSION
THEORY) THERMAL FLUX

PEAK FLUX

4 (X)

ACTUAL FLUX, (r
NCLUDING
TRANSPORT EFFECT

- J, CURRENT
INTO ROD

O(R) =0

4 (a) =ASYMPTOTIC MODERATOR THERMAL FLUX
EVALUATED AT ROD SURFACE

J =NET NEUTRON CURRENT INTO THE FUEL ROD,
n / cm 2 -sec.

a =RADIUS OF FUEL ELEMENT OR " EFFECTIVE"
RADIUS IN CASE OF CLUSTER FUEL ELEMENT

X = RADIAL DISTANCE AT WHICH PEAK FLUX OCCURS
R =EXTRAPOLATED RADIUS OF TANK

FIG. 4.1 SCHEMATIC OF SINGLE FUEL ROD EXPERIMENT IN

EXPONENTIAL TANK
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q(r) = - 4 th(a) el -

-(2
e-(r 2/4T)

4 T

T = age to foil detector resonance energy (in our case,

gold, 4.9 ev),

2 = axial buckling of the exponential tank.

The factor e 7y 2 in Eq. 4.5 accounts for the effect of the axial gradient

e-Yz in the exponential tank.

The slowing-down density can also be expressed relative to the

epithermal flux in the following form:

q(r) = (ZT epi(r) , (4.6)

where

a = average logarithmic energy decrement of moderator D 20,

ET = total cross section of moderator D 2 0.

Combining Eqs. 4.5 and 4.6,

4ep i(r) T 2 T
p = 

4th(a) aITPT
e-(r 2 /47)

47r7

ri = (4rT)(ZT)(r) e(r 2 /4)2 ]

4k (r)
The factor Oepi can be expanded:

4th(a)

epi(r)

4th(a)

_ (r)

4th(r)
4th(r)
4th(a)

an th(r)
and th(a) can be determined if the flux distribution in the exponential

tank is known. This calculation is discussed in Section 4.5.

4, (r)
The quantity , th (r) can be expressed in terms of the cadmium

ratio (R d) of gold foils measured at r:

where

25

(4.5)

or

(4.7)

k (r)

Oth(a)
(4.8)

(4.9)
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#th(r) yt h- = (R -1) (4.10)4 .(r)c . cd o
epi epi

where the subscript o denotes the infinitely thin foil, and

oth = effective absorption cross section integrated

over thermal energies,

gepi = effective absorption cross section integrated

over epithermal energies.

Since practical experiments require finite thickness foils, a self-

shielding correction is necessary to account for foil thickness. The

"thickness correction" designated by K is the experimental ratio of

(R d-1) for an infinitely thin foil to that for the finite foils of

thickness t:

(Rd-i)
K cd (4.11)(R d-1) t

Simms (2) gives a plot of K vs t, comparing different experi-

mental and calculated values of K
exp

Combining Eqs. 4.8, 4.9, 4.10 and 4.11, one obtains the final

expression for rj:

F (47rr)( r) e(r2 _T2 t (r) t ( t . (4.12)
= YY (r /4 'T th (a) gepi K_(Rcd 1) t

4.4 Comparison Method for Determination of t7

An absolute determination of - based on Eq. 4.12 would face

many obvious difficulties, the most serious of which would be the

experimental uncertainties in the large number of parameters

entering into the expression, in particular T, , ZT' ath' Uepi and K.

One way to get around this is by using a comparison method. Using

Eq. 4.12 to define lref for some standard rod (e.g., a natural

uranium rod) and dividing it into the same equation for rj of an

unknown fuel element yields:
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2 2 4th (r)~-

(r L(e(r /4T)-27] L Oth(a) (Rcd-l)t ref (4.13)

ref ref e(r2 /4T) -7 2 T 4th(r)] (Rd- t

ref L4th(a)- ref

Equation 4.13 contains two experimental parameters (W and R d) and

two small theoretical corrections. Their determination will be dis-

cussed in the following sections.

4.5 Determination of 4th(r)/Nth(a) and r

In Chapter 3, Seth has derived expressions for the flux distri-

bution in a cylindrical exponential tank of moderator with a single

fuel element in its center (Eq. 3.4). The expression will not be

repeated here, since all that is required for the present discussion

is the resulting functional dependence:

S(r) = f(r, D, a, a, R, T) , (4.14)

where

T = age from fission to thermal energy in the moderator,

D = diffusion coefficient of the moderator,

a = effective radius of fuel rod,

R = extrapolated radius of exponential tank,

a2 = radial buckling of the perturbed system,

P = thermal constant of the fuel rod.

The first four of these parameters are readily specified and, as

noted in Chapter 3, a2 can also be determined independently. There

remains, then, only the determination of F.

It has been shown in Eq. 4.13 that r7 is directly proportional to P.

In addition, the flux ratio (r)/4(a) also depends on r implicitly

(Eq. 4.14). The accuracy in an rl measurement therefore depends on

an accurate concurrent determination of P.

A theoretical expression relating r to experimentally measurable

quantities has also been derived by Seth in Chapter 3 (Eq. 3.5).
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Functionally,

r = f(rj, D, a, a, x, T). (4.15)

It is interesting to note that r also depends weakly on rl. Thus, in

principle, F and n can be determined only by an iterative process.

For example, P is first approximated by assuming a value for r7.

Using this value of P from Eq. 4.15, r7 can in turn be obtained from

Eq. 4.13, and this new value of r7 can be fed back into Eq. 4.15 to get

a better approximation to P. Fortunately, the coupling between the

two parameters is weak, and one "iteration" usually suffices. Thus,

one can view the two experiments for determination of r0 and r as

independent, since in either case a rough estimate of the one suffices

to allow determination of the other.

As seen from the expression for r in Eq. 4.15, r also depends

on two other quantities: x, the radial distance at which the neutron

flux is maximum, and a as previously defined. The distance, x, can

be measured experimentally by making a radial foil activation

traverse, and this experiment is in fact the basis for the experi-

mental determination of I discussed in Chapter 3. For present

purposes, we need only assert that P can be determined by an inde-

pendent experiment.

The above procedure has been applied to experimental data for a

one-inch-diameter, natural uranium rod. Figure 4.2 shows the flux

ratio versus radial position calculated using Eq. 4.14.

Returning to Eq. 4.13, the next quantity to be determined is the

ratio of exponential terms of the form exp(r2 _4 - 7.2

4.6 Determination of Exponential Correction Factor

In the derivation of the exponential correction factor, age theory

was assumed to hold. However, this assumption is known not to be

exact for heavy water. In order to check that the age theory assump-

tion was adequate, the epithermal group flux near gold resonance

(3.0 ev to 10.0 ev) was calculated using the SRA code (multigroup dif-

fusion theory, see Chapter 7 of this report). The epithermal flux is
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fairly well represented by exp(-r 2/47) in the region of concern as

shown in Fig. 4.3. Based upon these results, it was concluded both

that age theory was applicable and that the effective age to gold

resonance was adequately known.

In the expression for n, errors in the exponential correction

term exp (r2 /4 - Y T) should not be too large, so that errors in T

and r do not significantly compromise the accuracy of rl. The vari-

ance of exp (r2 4 - y 27) is given by

a2 r 2 2+(2 a2 + +22 2 e(r 2/47)-Y7
2T) r ly2 (T2 T

For a 1-inch-diameter, natural uranium rod, typical parameter

values and their uncertainties are:

r = 15.70 cm r = ± 0.05 cm

2 -4 2 -4 2'y = 24.47X 10 cm a 2 = ±0.2X 10 cm

7 = 95 cm 2  a =± 3 cm 2
7

Thus,

e(r2 /47)y 2 = 1.516 a 0.02

The uncertainty is therefore small and acceptable and could be

further reduced by improving the accuracy in 7 and r. The error

due to -y2 is relatively small.

Since r is experimentally fixed and y2 is measured, the expo-

nential correction factor is completely determined upon completion

of the experiment described in the next section.

4.7 Experimental Apparatus and Procedure

The experiments to be described in this section were done in the

exponential tank of the M.I.T. Heavy Water Lattice Facility. This

facility and its use for single rod experiments have been described

in detail in a previously published report (3).
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The method of suspending the fuel rods and foil holders in the

present experiments is shown in Fig. 4.4a. The two foil holders

were placed on opposite sides of the fuel rod, and thus two separate

sets of data could be obtained from each experimental run. Each foil

holder consists of two pieces; the shorter piece connects to the

support girder, and the longer piece supports the gold foils. The two

pieces were pinned together in a flexible joint so that the bottom

pieces would hang vertically straight-down under their own weight.

The support girder is slotted every 1-1/8 inches to permit posi-

tive reproducible location of the foil holders at various radial

positions.

Gold foils were used as activation detectors, since high purity

gold can be readily obtained and because gold has high activation

cross sections for both epithermal and thermal neutrons. The acti-

vation product Au198 emits a gamma ray of 0.411 Mev with a conveni-

ent 2.7-day half-life. Particularly important for the present purpose

is the fact that gold has a large absorption resonance at 4.9 ev, which

makes it ideal for cadmium ratio measurements in a weak epithermal

flux field, as in the present application.

The gold foils used in these experiments were obtained from the

Lattice Facility foil library. Each foil was 1/4 inch in diameter and

about 11 mils thick. These foils had been previously punched,

cleaned, weighed and ordered according to weight. The variation of

weights among the foils was less than 1%. Such uniformity of foils

weight is desirable because it makes certain corrections, such as

gamma self-shielding, negligible.

Foils were mounted alternately in aluminum cans and cadmium

boxes along the foil holders as shown in Fig. 4.4b. The "bare" foils

were mounted in aluminum cans for two reasons. In the first place,

this method of mounting prevented direct contact between the foils

and the mylar mounting tape, thus precluding possible foil contami-

nation or weight loss. Secondly, this technique insured local dis-

placement of the D 20 moderator in a manner equivalent to that

experienced with cadmium boxes. The use of the T-shaped aluminum

foil holder, with the foils facing the fuel rod, reduced the flux
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perturbation due to the holder while still retaining the required

rigidity.

Standard NaI counting equipment was used with an automatic

sample changer. The gold foils were gamma-counted for the 411-key

photopeak. Base line and window settings in the counting system

were established by irradiating a sample foil, and single channel

analyzer settings were selected that passed only the desired part of

the spectrum.

Experimental runs were made on two fuel "elements":

a "reference" rod of 1.01-inch-diameter, natural uranium metal

and an "unknown" 7-rod cluster of 2% enriched, 0.431-inch-diameter,

UO 2 fuel rods.

Foils were placed at a predetermined radial distance, r, from

the fuel rod such that 4th(r) was approximately equal to 4th(a), thus

minimizing the flux ratio correction factor. For each kind of fuel

rod, two separate experimental runs were conducted; since four sets

of cadmium ratio are measured per run, this gave a total of eight

determinations per fuel type. The exposure time was fixed at about

10 hours in order to accumulate sufficient foil activity. Exact irradi-

ation times were unimportant, since only relative activities were of

interest. To insure good statistics, at least 10,000 counts were

collected on each foil. The bare foils, whose activities were too high

to count immediately after irradiation, were allowed to cool for two

or three days to minimize counter dead time corrections. Methods

of analyzing and correcting the data are discussed in the next section.

4.8 Data Analysis and Results

Raw data, as printed out by the automatic counting apparatus,

was reduced to the form of counts per minute per milligram for each

foil irradiated, corrected for background, foil weight, counting time,

dead time and decay during counting.

Since the flux has an exponential distribution in the axial direction,

the ratio of the activities of the two bare foils on a foil holder is
2-yAZ

e , where 2AZ is the separation distance between the bare foils.

Each bare foil was at a distance AZ (2 inches) above its paired
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cadmium-covered foil. Therefore, a multiplicative correction factor

of e AZ must be applied to the activity of each bare foil in order to

correct for the height difference between the bare and cadmium-

covered foils in a pair. It should also be noted that the quantity y

can be determined from the two bare foil activities.

The comparison method for determination of n was discussed in

Section 4.4. Equation 4.13 gives the ratio r7/rlref in terms of ratios

of 's, fluxes and cadmium ratios between the unknown and reference

rods. In the present work, the reference was chosen to be the 1-inch-

diameter, natural uranium rod, and '7ref was defined to be 1.37, based

upon the experimental and theoretical results obtained by Donovan (1).

The previously described experiments were carried out on both

the standard and the unknown. Table 4.1 summarizes the results. In

addition, other necessary information required to obtain rl from

Eq. 4.13 is also given, including the foil position r, the thermal

constant r, the calculated flux ratio and the measured cadmium ratio.

The experimental result, rj = 1.77 ± 0.02, is in good agreement

with the experimental result obtained by Donovan for a single, 2%

enriched rod (1.74 ± 0.09). Correction of the latter value for the

small additional fast fission effect due to clustering would further

improve agreement, but this does not appear warranted in view of

the larger experimental uncertainties.

4.9 Summary and Conclusions

While it is premature to draw definitive conclusions based upon a

single test case, the proposed method for experimental determination

of ri appears to be feasible; it remains to be seen whether the experi-

mental uncertainty can be sufficiently reduced. The foil activation

techniques required are well established in the field of experimental

reactor physics and are easy to master and apply. The theoretical

corrections are small in magnitude.

In particular, the ratio Oth(r) is not a strong function of radius in
Oth(a)

the region where measurements are to be made; thus errors due to

foil holder positioning are small. In the case of a one-inch natural



TABLE 4.1

Experimental Results for rl of 7-Rod Cluster

Experimental r r 074(r) R
Runs cm cm 41 (a) cd 7

Natural
Uranium
(Standard) 15.7 0.9404 1.245 84.02 ± 0.85 1.37 (Defined)

2% Enriched
7-Rod Cluster
(Unknown) 18.5 0.805 0.954 56.23 ± 0.68 1.77 ± 0.02

Note:- Error shown is SDM of experimental results.

a)
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4'th~r)
uranium rod, the maximum ratio of Oth(r) occuring at x, is only

4t h(a)
about 1.3. To keep the thermal flux ratio correction small, r can

be chosen so that 4th(r) is approximately equal to 4th(a). Of course,

r could even be chosen such that 4th(r) = 4th(a) exactly, and the flux

ratio correction factor would be unity. But this is not necessary

4th(r)
since Oth(r) can always be evaluated.

On the other hand, there exist certain disadvantages in this

method, the most important of which is the dependence on a con-

current measurement of I7: one needs a very accurate F measure-

ment since rl is directly proportional to F.

During the coming year, additional applications of the subject

method will be performed in order to further evaluate its utility.
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5. PULSED NEUTRON AND BUCKLING METHODS

N. R. Ortiz and T. C. Leung

5.1 Introduction

It is well known that established pulsed neutron techniques give

useful information about nuclear properties when applied to complete

lattices. Much less work has been done on the application of pulsed

neutron methods to single fuel elements. Previous experimental

work in this area by Kennedy (1) at M.I.T. had proven inconclusive

due to the lack of sufficiently sensitive data analysis techniques.

Recently, however, Papay (2) has greatly improved pulsed neutron

data analysis methods, so that a re-examination of this approach

appeared worthwhile.

Thus, in this chapter, rj will be expressed in terms of the

fractional decrease in time decay constant due to insertion of a

single fuel element into a tank of moderator. The experiments per-

formed by Kennedy (1) will be re-analyzed using the MOMLSQ

computer program developed by Papay (2) to obtain AX, and thus rj.

Finally, an equivalence relation between pulsed neutron and axial

buckling measurements will be derived and evaluated.

5.2 Relation of AX to rl

Simple perturbation theory gives the fractional decrease in X,

due to insertion of a fuel element (1):

AX X - X (Vf-Z )rod 7ra 2 1 (5.1)

(Ya+DB )D 2 0 ( 7rR J (v0)

where

X = time decay constant in pure moderator, D2O,

X' = time decay constant with a fuel element in the D2 0

Z = macroscopic fission cross section of the fuel rod,
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Za = macroscopic absorption cross section of the fuel rod,

or moderator, as noted,

v = number of neutrons emitted per fission,

a = radius of fuel element,

D = diffusion coefficient of the moderator,

R = extrapolated radius of the exponential tank,

v = 2.405.

Denoting rp as the prompt value of r7, and / as the delayed neutron

fraction:

VEf - a = (p- 1)a

where

(5.2)

(5.3)

Applying heterogeneous theory for a line absorber, we can match

neutron losses with the weak central absorber of perturbation theory:

-B 2  2
I e z th l _ (a) = (vE -Z )ira .

\7p / 1 f a o

In other words, the net absorptions per unit unperturbed flux,

(

The factor

e

-2,-B t _z th) k(a) = (v~f-)ra 2

. 0 (zf

(5.4)

0.1 is:

(5.5)

-27-B th
e z hin Eqs. 5.4 and 5.5 accounts for the neutron non-

leakage probability during slowing down to thermal energy in the

axial direction. (The radial leakage probability is negligible for the

centrally located line source.)

Eq. 5.1:

IA

Introducing Eqs. 5.2 and 5.5 into

( -B2Tt
r e -1h1

o0 (Z +DB2 )rR2a o

Solving Eqs. 5.3 and 5.6 for 7 gives:

B 2 -
ri = e z th (1+ )+ TR 2J (1 2 a) a+DB2).r .X

(5.6)

(5.7)

nl = A(1 -0) .
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The flux ratio in Eq. 5.7 is given by the following approximate

relation derived by applying diffusion theory in the case of a weakly

absorbing moderator:

In1
{ _ }a +1 (5.8)

4(a) 2 7rD. '

thus,

B2 ^ 1~

= e z th -1+±+7rJ2 (V I+ r +DB 2 ]R 2 A (5.9)f e 0) 2~l / 27rDi a XJ .

Equation 5.9 is the desired relation for rl in terms of AX and

other known characteristics of the exponential tank and fuel rod.

The value of X for D20 in the exponential tank was measured by

D. Kennedy (1) to be 630 sec . Thus, the present task is to find

AX. This is to be discussed in the next section.

5.3 Evaluation of AX

The fractional decrease in time decay constant, AX, cannot be

obtained accurately by simply taking the difference of two independ-

ently determined time decay constants. However, the technique of

direct comparison between two data sets used by L. Papay (2) in his

MCbMLSQ computer program permits direct determination of AX in

a systematic manner.

The procedure for determining AX is briefly reviewed here. For

a more thorough discussion, see reference 2. The subject method

assumes the count rate data to be represented by an exponential term

plus a background b' as follows:

M(t)= A e-Xt + b? (5.10)

or

Y(t) =M(t) - b' = A e -Xt (5.11)

For two separate runs, (1) and (2):

Y 1 (t) = A 1 e 1 (5.12)

~ 2 t
(5.13)t) = A2 e
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If Eq. 5.12 is divided by Eq. 5.13, there results

Y(t) = A e-AXt, (5.14)

A 1
where A = = constant for any two sets of data and AX = X 1- X2'

A 2
It can be shown that AX can be expressed as a function of the Oth,

1st and 2nd moments by

2M - tM 0
AX M 1 tM 0 (5.15)

M2 tM1

where

M = C.

1 i i)eff

M 2
M 2 = C.(t.) 2

C1
C Ci count rate in the ith channel for the 1st data set

i C2 count rate in the ith channel for the 2nd data set

(t i) ef= effective time from the beginning of the data

analysis to the centroid of the ith channel

(t = effective squared time from the beginning of the data

i eff

analysis to the centroid of the ith channel.

The procedure for determining the "best" value of AX is to per-

form a least square fit of the values of AX. as the initial channel used

in the analysis is varied for an arbitrarily fixed final channel. Thus,

the least square fit is based on the equation

AX. = a + b(AN.), (5.16)
1 1

where AN is the number of channels used in the ith evaluation, and

a and b are determined from the least squares fit and have the form

b = AXAN - AXAN (5.17)

(AN 2) (N) 2
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a = AX - b AN. (5.18)

The "best" fit of the data occurs when b = 0. The output of the

MbMLSQ computer code is a set of values for AX and b for an arbi-

trarily fixed final channel. The set of values for AX and b will vary

slightly as the final channel used in the least square analysis is

varied. A typical plot of AX and b for different arbitrarily fixed final

channels is given in Fig. 5.1. Multiple values of AX can be determined

graphically by locating those points where b = 0 on the b versus final

channel plot (for example, point A in Fig. 5.1) and then reading off AX

for the same abscissa on the AX versus final channel plot (point B in

Fig. 5.1). The reported value of AX is the average of the values of AX

determined at each point where b = 0.

5.4 Results of Pulsed Neutron Experiments

Pulsed neutron experiments were performed by D. Kennedy and

L. Papay at M.I.T. Table 5.1 lists the experimental runs performed.

The change in the prompt neutron decay constant, AX, due to

insertion of the fuel rod, was evaluated by the present authors using

the MbMLSQ computer program as described in the previous section.

The results are given in Table 5.2. One notes immediately that the

results are not consistent with the theory presented in Section 5.2:

since AX decreases (becomes more negative) as enrichment is

increased, Eq. 5.9 would imply that -o also decreases. Also note,

however, that the probable errors are of the same order as the

results.

In any case, a sample calculation will be presented. The follow-

ing values for the M.I.T. exponential tank and a 1-inch-diameter,

natural uranium fuel rod will be substituted in the expression for rl,

Eq. 5.9:

F = 0.94 cm~

0 = 0.0078

D = 0.804 cm

T = 122 cm

a = 1.27 cm
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TABLE 5.1

Single Element Pulsed Neutron Experiments

Run Number Type of Run Remarks Experimenter

1, 2 Moderator D 20 D. Kennedy

3, 4 Single rod in moderator 1-inch natural uranium D. Kennedy

5, 6 7-rod cluster in moderator 1% enriched, UO 2  D. Kennedy

7 Moderator D20 L. Papay

8, 9 19-rod cluster in moderator 2% enriched, UO 2  L. Papay

TABLE 5.2

Average Values of AX

1 2 = 0 X1X= 14.0 Av. 7.1 ± 8.0 Change in AX due to insertion

X 5 -X 6 = -8.0 X - X = 2.2 of 1-inch natural uranium rod
5 6 2 4

X3 4 =--8.2
X -X -6.4

X - X = 12.0 1 5 Av -6.8 8.2 Change in AX due to insertion

8 9 X -X = -7.2 of 7-rod cluster

X7 -X 8 =-14. Av. -23.2 ± 12 Change in AX due to insertion

X -X = -32.0 of 19-rod cluster
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R =47.5 cm

= 1.24 X 10 cm-2

2
7rJ 2(V)= 0.85

B 2-2 += ) 31 X 10-4 cm 2
g \H/\R/

In = In (vR
0

to give

n = [1.067] 1.0078+ 4.84(0.94+1.07) .

From Kennedy's data (1), X = 630 for the pure moderator case. After

the insertion of the 1-inch-diameter, natural uranium rod, AX = 7.0

± 8.0 (from Table 5.2), and thus

ri 1.2 ± 0.2.

This r7 value for the natural uranium rod is about 15% lower than the

accepted value, Y7 = 1.37.

Data for the clustered rods are inconsistent with the theory

since the measured AX decreases with enrichment. The reason for

the discrepancy is not clear; one possibility is that the position of

the detector in the experiments was such that it picked up higher mode

decay constants. To resolve this problem, it is clear that either a

major experimental evaluation would be necessary or an alternate

procedure would have to be adopted. Analytical and numerical studies

were therefore initiated with the results reported in the following

sections.

5.5 Equivalence of Pulsed Neutron and Buckling Experiments

The fundamental mode decay constant describing neutron die-

away for a pulsed neutron experiment performed on a large sub-

critical assembly is given by (3):

X = vZ + vD B2 - VE (1-0) k 2(F(B2 (5.19)
a g a k0

where
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F(B 2) = fast nonleakage probability,

1 = delayed neutron fraction,

B 2 = geometric buckling = B 2 + B 2 for a cylinder.
g r z

If the same assembly is used in a classical exponential experi-

ment,

D-y = +DB2 - Z 1-0) k F(B2 (5.20)
a r a 0

where

-y = exponential die-away constant characterizing the

axial flux dependence.

Now define a reference nonmultiplying state (k, = 0) denoted by

the subscript "o". Then one can show from Eqs. 5.19 and 5.20 that

2changes in X and y 2are related by:

AX- A_ (5.21)
X. 2 2

o y~ +B
oz,o

provided that the average neutron velocity and diffusion coefficient

do not change appreciably between the two states in question.

Equation 5.21 is quite interesting because it suggests that

insofar as the present application is concerned, axial buckling

measurements can be substituted for pulsed neutron experiments.

Moreover, axial buckling measurements can be done far more

rapidly, hence more economically, and with equal if not better

accuracy.

Because of the importance of this conclusion to the future course

of single rod experimentation, additional work was carried out to

validate the applicability of the results. Some previously available

experiments were re-analyzed, and in addition a number of numeri-

cal experiments were performed using the ANISN code described in

Chapter 7.

5.6 Analysis of Buckling Experiments

Malaviya (4) reports both pulsed neutron and buckling data for

two cases of interest: thermally black (cadmium) control rods of

various radii were inserted along the axis of an exponential assembly,
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first containing only pure D 2 0 moderator, and then into a multiplying

lattice. His data are plotted in Fig. 5.2. As predicted by Eq. 5.21,

the relation between X and T2 is linear. The intercept differs for the

two sets of data because two different size tanks (3- and 4-foot

diameter) were used. In Fig. 5.3 the same data are plotted in another

form, namely, as K- versus 2 2 As is evident, Eq. 5.21 is
o y + B0 z

confirmed by the data.

Finally, the data were used to test Eq. 5.9 in the limiting case

rl = 0, when the following rearrangement is valid:

( -1 (Za+DB )R in 1l/a0a

(Xj 0(1 b+ 27rD (5.22)

where

C = constant, predicted to have the value 7rJ (v) = 0.85

according to perturbation theory;

Fb = thermal constant for a black rod, which can be calcu-

lated from the extrapolation distance, d, for the black

rod of radius a:

d
b 27raD'

The following parameter values are appropriate for the subject

experiment:

0 = 0.0078

R = 47.5 cm

a= 0.0506 cm-1

Z +DB = 0.0026 cm-2
a

Substitution of these data into Eq., 5.22 permits determination of

(_- 1 n 1/ a a~.C from the slope of a plot of versus b + in1 0  The
Lb 27rD i

result was found to be C = 0.86, in good agreement with the predicted

value, C = 0.85.

In Section 5.5, the relation between AX and Ay2 was derived using

cross sections homogenized over the exponential facility. Therefore,

the preceding experimental verification of the subject relations for a
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highly heterogeneous case is of particular importance. In order to

obtain additional evidence, a series of numerical calculations were

also performed.

5.7 Numerical Studies

Because no experimental data exist giving both pulsed neutron

and buckling data on identical single fuel rod assemblies, a series

of multigroup calculations was performed to verify the predicted

linear relation between X and -y2 for the case in which rl > 0. The

ANISN computer code was used for this work, as is described in

detail in Chapter 7 of this report. The approach employed was to

calculate the die-away constant X for a simulated pulsed neutron
2

experiment and then to calculate the axial buckling, T , for the same

configuration used as an exponential experiment. Figure 5.4 is a plot

of the results obtained from these calculations. The linear results

show that the extension to multiplying test rods poses no essential

difficulty.

5.8 Summary and Conclusions

The analyses reported in this chapter clearly show that present

pulsed neutron methods are not capable of extracting meaningful data

from single rod experiments. However, for the present purpose,

namely, the determination of rj, the theoretical equivalence of the

pulsed neutron and axial buckling experiment allows one to substitute

the latter method. During the coming year, single rod experiments

will be carried out in the M.I.T. exponential facility in order to test

the practical utility of the axial buckling method. Data will be analyzed

by differential methods similar to those discussed in Section 5.3, and

rj will be determined relative to a known standard.
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6. DETERMINATION OF THE EPITHERMAL PARAMETER, A

Y.-M. Lefevre

6.1 Introduction

The parameter A is defined to be the epithermal absorptions per

unit slowing-down density. It is closely related to the more familiar

resonance escape probability, p:

p = 1 - A/V, (6.1)

where V is the cross-section area of the unit cell.

Donovan (1) has shown how A can be determined from fuel rod

integral parameters such as p 2 8 . His method requires in-rod foil

irradiations, however, which is not compatible with a major objective

of the present work - namely, the use of external measurements to

avoid the necessity for exposing fuel containing plutonium or fission

products. Therefore, it has been necessary to evaluate alternate

approaches for determination of A.

6.2 Numerical Calculations

The close relation between A and the resonance capture proba-

bility, (1-p), as expressed in Eq. 6.1, suggested that A could be

related to the ratio of epithermal fluxes below and above the major

U-238 and U-235 capture resonances. In order to test this hypothesis,

a series of numerical calculations was performed using the ANISN

code described in Chapter 7.

The ANISN code was used to compute 16 group flux traverses

external to a centrally located, single fuel element immersed in D 2 0

moderator in a 3-foot-diameter exponential tank. The element's

diameter was varied to cover the range of current interest

(10 < A < 100 cm2

Two of the epithermal flux groups were then chosen to evaluate
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the proposed experiment for measurement of A. The following con-

siderations governed the choice of groups:

(a) Resonance absorbers must be available to permit experi-

mental realization of the method. For all practical purposes,

this limits consideration to a dozen resonance absorbers and

their corresponding energies (2).

(b) The lower group must be below the large U-238 resonance

at 6.7 ev but above the cadmium cutoff at about 0.4 ev.

(c) The upper energy group must be above the lower four U-238

resonances, which typically account for over 90% of the

resonance absorption. On the other hand, because the

measurement is being made on a single element, the energy

should be low enough to avoid including the effect of first-

flight captures in the rod. Price (3) has shown that as much

as 20% of the epithermal captures can be first-flight for

isolated fuel elements, but that the percentage is far smaller

in full lattices. Another reason for choosing an energy corre-

sponding to multiply-collided neutrons is the potential

applicability of age theory.

The above requirements led to choice of molybdenum and gold as

the two resonance absorbers (resonances at 480 ev and 4.9 ev,

respectively) and to selection of the corresponding groups 9 and 12 in

the ANISN code (100 < E < 550 ev and 3 < E < 10 ev, respectively).

The epithermal flux ratio, R, was then defined as the ratio of group-12

to group-9 fluxes. Figure 6.1 shows plots of R versus radial distance

from the center of fuel rods of various diameters. It can be seen that

beyond about 10 cm from the rod the flux ratio profiles are parallel.

This suggested that experimental determinations of R can be per-

formed at approximately 20 cm from the exponential tank center line

in order to avoid perturbations in flux shape due only to differences in

rod size.

The next step was to examine the variation of the epithermal flux

ratio at r = 20 cm from the rod, R(20), with the epithermal absorption

parameter, A. The value of A was calculated for each case in the
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following manner.

Donovan (1) has derived the following relation between A and the

effective resonance integral for a full lattice:

N - ERI - Vf
A = -, (6.2)

where

(I S= slowing-down power of moderator ~ 0.18 cm ,

N, Vf = atomic concentration and cross-section area of fuel.

Since U-238 and U-235 are the predominant resonance absorbers,

the total A value is given by:

A = [N 2 8 -ER1 2 8 + N 2 5 RI 25] Vf (6.3)

where resonance self-shielding in the dilute U-235 has been neglected.

Seth (5) and others have examined this approximation and found it
25valid; therefore, one can take RI = 420 barns (6). Equation 6.3 then
00

simplifies to:

N28V ERI28
A = fE - ± + 420 (6.4)

L ls ERI28]'

where e is the fuel rod enrichment.

Equation 6.4 was used to calculate values of A for each fuel

type studied. Hellstrand's correlation was used to evaluate the

effective resonance integral (7):

28 A5an 65ERI = 4.25 + 26.8 barns, (6.5)

where S/M = surface-to-mass ratio for fuel rod.

It is important to note that Eqs. 6.1 through 6.5 apply to reso-

nance absorption in a full lattice, while the subject experiment is

to be performed on a single rod. In a full lattice the resonance flux,

4(u), is essentially constant, while at a single rod, 4(u) is pro-

portional to 1/r(u), as predicted by age theory and as confirmed by

the SRA code (see Chapter 7) calculations shown in Fig. 6.2.
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Higgins (8) has shown, however, that if one assumes all absorptions

take place at an effective resonance lethargy, u r' then the preceding

lattice equations still apply, but with V = 47r(u r). If it is assumed

that T(u r) does not vary with fuel properties, then it is still valid to

assume that A is directly proportional to the resonance capture

probability and hence a unique function of the flux ratio R.

Figure 6.3 shows a plot of R(20) versus A: as can be seen, it is

essentially linear. Also shown is a plot of the flux ratio on the

surface of the rod. The variation with A is larger than at a position

20 cm from the rod. However, it is anticipated that surface flux

ratios may be more difficult to interpret due to rod size and internal

structure effects.

6.3 Evaluation of Results

As is shown in Fig. 6.3, for values of A between 10 and 100 cm 2

R(20) varies only between 0.8 and 0.9. Since it should be possible to

measure R(20) with a reproducibility of approximately ± 1% using

conventional foil activation techniques, this would result in a corre-

sponding uncertainty of about ± 10% in A. Fortunately, as can be seen

from Eq. 6.1, the corresponding effect on the resonance escape proba-

bility will be reduced to about ± 1%. Thus, the proposed method

appears feasible but only if careful attention is paid to achieving the

highest precision.

As was the case with the methods for measurement of r7 described

in Chapter 4, the use of the ratio of cadmium-covered gold to

molybdenum activities does not lend itself well to an absolute determi-

nation of A. Instead, a relative measurement again appears best, in

which unknowns are compared to a standard fuel rod such as 1-inch-

diameter natural uranium metal, for which A has been previously

determined. There are also other unresolved problems pertinent to

the proposed method.

One problem which must be considered is the 1/v contribution to

epithermal absorptions in molybdenum: at 20 cm from a single rod,

<0(u) is approximately constant, just as in a full lattice, and therefore
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the epithermal cross section due to 1/v absorptions is approximately

one-half of the 2200 m/sec cross section. For molybdenum, then,

RI(1/v) ~ 0.26 barns, as compared to an infinite dilution resonance

integral of 9 barns (6). Thus, the non-resonant capture contribution

should be small enough to correct for with sufficient accuracy.

Other problems currently under consideration are the effects of

finite source and sink size on the flux ratio. It is not clear, for

example, that rods having different size and composition, but the

same A, will give rise to the same flux ratio. Further ANISN calcu-

lations should help clarify this point. However, even ANISN involves

some gross approximations in that the resonance absorption is

smeared out over rather broad energy bins instead of being very

nearly discrete as in nature.

Exponential irradiation experiments and additional calculations

are planned to complete evaluation of the subject Au/Mo method for

measurement of the epithermal absorption parameter, A, during the

coming year.
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7. NUMERICAL METHODS

J. N. Donohew and J. D. Eckard

7.1 Introduction

In order to facilitate planning and interpretation of single rod

experiments, two available computer codes were modified to permit

numerical experiments on simulated single rod assemblies in an

exponential tank of D 2 0 moderator. Previous chapters have cited

the results of some of these calculations. The purpose of the present

chapter is to explain in more detail the general mechanics of the

calculational methods.

7.2 The Single Rod Assembly (SRA) Code

The SRA code has been described in considerable detail in

reference 1. Basically, it is a multigroup diffusion theory (transport

approximation) code designed to calculate the radial flux behavior in

cylindrical geometry for a single rod assembly, as shown in Fig. 7.1.

The assembly is treated as infinite in the axial dimension, and axial

leakage is accommodated through inclusion of variable axial buckling.

The program is designed to iterate on the axial buckling to achieve a

steady state neutron balance.

Although the internal structure of the code is of no particular

concern to the average user, one unique feature of SRA is worth

pointing out: namely, that it is based on an integral theory formu-

lation of the multigroup equations rather than on the more common

differential-difference formulation.

The cross-section set used with the SRA code to date has been

the LASL (Hansen-Roach) 16-Group Set (2). Resonance self-shielding

in U-238 is taken into account by the following approximate pre-

scription. For all epithermal groups in which no fissioning occurs in

U-238, the absorption cross section is multiplied by the ratio of the
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effective resonance integral to the infinite dilution resonance integral.

The transport cross section is likewise modified to take this reduction

into account. Since there is very little epithermal flux depression in

the fuel for the rather coarse group structure used, this prescription

only slightly overestimates resonance capture in the fuel.

The cases investigated are described in Table 7.1. Except for

Run 1, which had no rod in the moderator, all runs used a 1.01-inch-

diameter, natural uranium metal rod (with the cladding neglected).

Run 1 was simply a preliminary check on the fidelity of the mathe-

matics and program. As expected, for this run all energy groups

were found to have the same shape, the familiar J0 shape. The value

of the axial buckling, 72 , which gave an effective multiplication ratio

of unity was found to be:

72 = 0.002678 cm -2

One can derive the following relationship between the radial and

axial buckling:

-a2 t 2 (7.1)

(assuming that the thermal flux is much larger than the epithermal

fluxes). For the J shape,

V 2J(ar) = -a2 J(ar) ,

and

a 2 (v )2 = (2.4048 2 cm-2 = 0.0025664. (7.2)
R

For this case,

2 = 0.0001115 cm- 2

Ith

and

72 th = 0.0025665. (7.3)

The near equality of Eqs. 7.2 and 7.3 verifies Eq. 7.1 and also pro-

vides a consistency check on the SRA code.

Figure 7.2 presents the spatial variation of three representative

groups (each normalized to unity at the center). The data for these

plots were taken from Run 2, which involved a moderator purity of
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TABLE 7.1

List of Cases Run

Run (D 2  Cross
No. (D 2 0) + (H 2 0) ?0 Sections Comments

1 0.995 1 Shielded No rod

2 0.995 1 Shielded 1.01-inch rod

3 0.995 0.5 Shielded 1.01-inch rod

4 0.995 0.25 Shielded 1.01-inch rod

5 0.995 0 Shielded 1.01-inch rod

6 1.000 1 Shielded 1.01-inch rod

7 0.990 1 Shielded 1.01-inch rod

8 0.000 1 Shielded 1.01-inch rod

9 0.995 1 Unshielded 1.01-inch rod

10 0.995 0.5 Unshielded 1.01-inch rod

99.5 mole % D 20 and a 1.01-inch diameter, natural uranium metal

rod. The uppermost curve is for the thermal group (group 16), the

middle curve is for an epithermal group (group 13), and the lowest

curve is for the high energy group (group 1). The thermal group has

its maximum at a position r 0 from the fuel centerline. The maxima

for progressively higher energy groups occur nearer the center.

(This is not always a monotonic occurrence: some epithermal groups

have maxima at greater r 0 s than other epithermal groups even

though the former groups represent higher energy neutrons.) As

noted in a previous chapter, calculation of the thermal constant, F,

is based on experimental determination of r 0 using foil activation

techniques.
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Figure 7.3 illustrates the energy-dependent flux at several

positions in the SRA. Flux per unit lethargy (45/Au ) is plotted

against lethargy and normalized so that Z 4. = 1. The fission

X- i
spectrum , likewise normalized, is also given and indicated by

the single dots in the figure. The general behavior of the spectra is

as one would expect: harder in the fuel rod center, becoming more

thermal with distance from the rod. Noting that the ordinate of

Fig. 7.3 is logarithmic, one sees that all the spectra are relatively

thermal, the normalized (group-integrated) thermal flux ranging

from 0.4272 at the rod's center to 0.9899 near the edge of the

assembly. An interesting spectrum occurs at r = 13.13 cm from the

center in the SRA. The epithermal flux 4(u) is nearly constant up to

the six highest energy groups. This means that 4(E), which is equal

to 4(U)/E, is proportional to , and this is essentially the epi-

thermal spectrum seen by a fuel rod in a full lattice. Few-rod

assemblies (with, for example, 3 rods) with rods mutually spaced at

this "critical" distance may be able to take advantage of this phe-

nomenon to simulate a complete lattice.

It is important to know how the experimental parameters depend

upon one another. Therefore, at this point we will examine the

behavior of r9, which is defined as that thermal flux peak radius for

which K (the numerical growth rate) is made equal to unity by vary-

ing y2 (the axial leakage parameter). The variation of r 0 with -Y2 can

be seen in Fig. 7.4, and further, as can be seen in Fig. 7.5, K is in

turn fairly sensitive to y2 so that it is necessary to determine K

quite accurately to maintain accuracy in r . From these two figures,

it is found that

dr d
d o dy -= 2715 cm = 90.5 cm.

d2 dK 30 cm 2

The distance r 0 is about 9.5 cm, so to have r 0 accurate to 1%, one

must calculate K to about ± 0.001. In the calculations, an accuracy

of ± 0.00005 was maintained and, additionally, a linear interpolation

was made to determine r 0 from the values of r 0 corresponding to the
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K's most closely bracketing 1.00000. This information is given in

Table 7.2 together with other pertinent information. It should be

noted that the corresponding experimental precision in determining

r will be about 1% at best.

To obtain the variation of r 0 with Y, the neutron yield per

absorption in fuel, the following procedure has been followed.

The full value of n has been designated as n 0 , and fractions of this

obtained by varying (v- f)th of U-235 have been used to calculate new

r 's. Figure 7.6 depicts the results of this series of calculations.

In all cases, the absorption cross sections have remained unchanged.

The variation of r with (n /n ) is linear, and a measure of the

sensitivity is:

dr
0 = -1.034 cm.

d(- )
no

At the value of r0 for (n /n 0 )=1, this is -0.11% in r0 per percent

(n /no). Thus, r0 is not particularly sensitive to n. However, it is

clear that the effect of - upon r 0 must be taken into account when

determining the thermal constant, P.

Figure 7.7 shows how r 0 varies with the contamination of D 2 0 by

H 20. For values of the ratio of concentrations (H 2 0)(H 2 O)+(D 2 0))

between 0.0 and 0.005, r0 decreases slowly as would be expected,

since the peaking in an H 20 reflector is nearer the interface than in
2 2

a D 2 0 reflector. This is, of course, related to the L of the moder-

ator medium. However, due to the increased absorption in H2 0

compared to D 0, the -2 must be increased to maintain K= 1. As
2' 2

was seen, r 0 is a very sensitive (increasing) function of -y . There-

fore, the downward trend of r0 is halted and r0 begins to increase.

The range of the abscissa from 0.0 to 0.01 covers the range of

interest for D20 assemblies. As can be seen, the variation in r0 is

not significant. As a point of interest, the value of r 0 for 100% H 2 0

was calculated to see if SRA's with a light water moderator are

feasible. As can be seen from Fig. 7.8, -y2 increases by an order of

magnitude to 0.01846. The corresponding r0 , shown in Fig. 7.7, is
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TABLE 7.2

Summary of Results for Runs 1 Through 9

-72 (cm- 2) K r0 (cm) Run No.

No Rod, 99.5% D2 0

0.00268 1.00000 0.0 1

r) /l~o = 1

0.00219 0.99948 9.359

0.00221 1.00000 9.414

0.00225 0.00098 9.517 2
0.00234 1.00267 9.759

0.00249 1.00747 10.170

0.00324 1.04399 12.210

Tq/1o = 1/2

0.00200 0.98146 7.823

0.00260 0.99665 9.691

0.00266 1.00000 9.928 3

0.00268 1.00080 9.985

0.00273 1.00249 10.126

T /no = 1/4

0.00250 0.98274 8.504

0.00280 0.99516 9.800

0.002895 0.99998 10.170 4

0.002895 1.00000 10.183

0.002896 1.00005 10.214

0.00325 1.02618 11.736

T0 /fO = 0

0.00318 1.00586 10.823

0.003133 1.00024 10.516 5

0.003131 1.00000 10.448

(continued)
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TABLE 7.2 (concluded)

'Y2 (cm- 2) K r (cm) Run No.

100% D 2

0.00200 0.99679 9.040

0.00211 0.99859 9.347 6
0.00217 1.00000 9.476

0.00219 1.00045 9.517

99%D 20

0.00200 0.99388 8.936

0.00225 0.99902 9.430

0.00229 0.99994 9.594 7

0.00229 1.00000 9.599

0.00260 1.00850 10.287

100 % H 20

0.014000 0.98127 5.600

0.01820 0.99801 7.149 8
0.01846 1.00000 7.398

0.018699 1.00170 7.632

Unshielded

0.00200 0.98647 9.604

0.00248 0.99975 10.599 9
0.00249 1.00000 10.615

0.00260 1.00326 10.833
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only 2 cm less than for the 100% D2 0 case. This is somewhat

surprising and indicates that the peak of the thermal flux occurs suf-

ficiently far outside the fuel rod to be accurately measured. However,

the large value of 72 means that the axial decay of the flux will be

very rapid, and there will therefore undoubtedly be problems in

achieving sufficent foil activation and an increased sensitivity to foil-

holder tilt.

In conclusion, the SRA code has proven to be a particularly use-

ful tool for studying the single rod experiment. Its only major weak-

nesses are the oversimplified resonance treatment, a disadvantage

shared by all multigroup methods, and the fact that it is based upon

diffusion theory. In order to evaluate the effect of this latter

restriction, the work reported upon in the following section was

undertaken.

7.3 The ANISN Code

The ANISN code is a one-dimensional multigroup transport

program which solves the neutron transport equation for slab,

cylindrical or spherical geometry using the discrete SN approxi-

mation (3). The version used in the present work was adapted from

the original Union Carbide code by workers at Atomics International

for operation on an IBM 360, Model 50H. Further trivial modifi-

cations were necessary to permit its use on the IBM 360, Model 65

at the M.I.T. Information Processing Center: for example, elimi-

nation of the various plotting subroutines. ANISN is an updated

version of the DTF-II code (4). Since reference 3 describes how to

load and run the ANISN program, the present discussion will be

limited to a description of the procedure through which ANISN was

induced to calculate single rod experiments.

Two general types of experiments were simulated: exponential

and pulsed neutron.

Exponential experiments were simulated by adding a fictitious

nuclide to the moderator and fuel regions. The concentration of the
2

fictitious nuclide was taken as the desired axial buckling, y , and the

absorption cross section required as input data in each energy group
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was set equal to minus the group diffusion coefficient calculated for

the other materials in that region. This added a negative leakage

cross section Z. = -D.y 2, to each group in the ensuing calculations.
1 i 2

A series of cases was then run for different values of -y to find the

one which permitted a steady state neutron balance. Note that differ-

ent cross sections are required in regions having different D values;

hence, one separate fictitious element is required for each region.

For pulsed neutron calculations, a similar procedure was

followed. The fictitious nuclide concentration was now taken as the

prompt neutron decay constant X, and the group absorption cross

sections as -1/v, where v is the average neutron velocity for the

group. Here, only one fictitious element is required common to all
2

regions. An axial buckling is also specified, equal to (yr/H) , where

H is the extrapolated assembly height. In both numerical experi-

ments the other cross sections for the fictitious nuclide are set equal

to zero (i.e., transport, fission and intergroup scattering removal),

except for the intragroup scattering cross section, which must be

specified as minus the absorption cross section.

If the above subterfuge is employed, ANISN will correctly cal-

culate single rod exponential or pulsed neutron experiments. The

only caveat worth noting in regard to the output data is the fact that

the eigenvalue quoted by the code is not the required value since it

is based only on neutrons produced by fissile material. It is a simple

matter, however, to calculate the correct multiplication constant as

the ratio of fission rate to absorptions plus leakage in the system

summary output.

As with the SRA code described in the preceding section of this

chapter, Hansen-Roach cross sections were employed as input data,

and a self-shielding correction was applied to U-238 in the epithermal

energy region. Thermal group properties of D 20 and the thermal

neutron velocity were adjusted so as to match known experimental

values of D and vD.

Most of the numerical experiments performed using ANISN have

been discussed in preceding chapters, and the results displayed in
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graphical form. Therefore, only a few selected additional results

will be discussed here. The first is the typical pulsed neutron

experiment in which moderator height (hence axial buckling) is varied

and the prompt neutron decay constant measured at each height. The

results are plotted in Fig. 7.9; as can be seen, the expected linear
2

variation of X with B is indeed obtained.z
A second use of the ANISN code has been to test approximations

made in some of the simple one-group and age-diffusion derivations

employed in previous chapters. Its use to test for transport effects

upon r 0 has already been noted. A second application of this type

involved testing approximations made in establishing the equivalence

of pulsed neutron and axial buckling experiments. For example,

strictly speaking, one must neglect delayed neutrons in the pulsed

neutron experiments, thus reducing k, by the factor (1- 3). Since

1 < 1, this term was set equal to unity in the simple one-group treat-

ment. ANISN calculations performed with and without this correction

for two of the data points plotted in Fig. 7.9 showed that this approxi-

mation was indeed valid: X values of 765 and 608 sec- changed very

slightly, to 762.5 and 609 sec-, respectively, when the (1-0) cor-

rection was applied.

Perhaps the most important single conclusion which may be

drawn from the ANISN code results is that since transport effects

are found to be negligible, the simpler SRA code can be used in the

future for most numerical experiments involving single rod assemblies.
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8. GAMMA SPECTROSCOPY

Y. Hukai, T. L. Harper and N. C. Rasmussen

8.1 Introduction

The ultimate objective of the work described in this chapter is

to extract useful reactor physics data from fuel rod gamma spectra

obtained using high resolution semiconductor spectrometers. In

particular, it is to be determined whether relative fertile and fissile

capture and fission rates can be measured, from which it may be

possible to extract heterogeneous parameters such as rl. This par-

ticular application of Ge(Li) gamma spectroscopy is still in an early

stage of development, but sufficiently encouraging results have been

obtained at M.I.T. and elsewhere (1) to indicate that a considerable

amount of information can be obtained from this approach.

During the report period, work was carried out in two primary

areas: measurement of gamma-ray spectra and analysis of gamma-

ray spectra. In the first category, a Ge(Li) gamma spectrometer

was set up in front of MITR beam port 4TH1 to permit measurement

of the prompt and delayed gamma spectra emitted by fuel rods. Non-

coincident, triple coincidence, and Compton suppression modes of

operation are possible with this apparatus (2). The other major

problem encountered in the use of gamma-ray spectroscopy for the

determination of reactor physics parameters occurs in the analysis

of the data obtained. Typically, one must deal with many photopeaks

and a high Compton background. Sonstelie, for example, found this

problem to be the major factor limiting the development of a new

method for measurement of 628 (the ratio of U-238 to U-235 fissions)

using Ge(Li) gamma-ray spectroscopy (3). Therefore, work has been

initiated to extend computer methods previously developed at M.I.T.

(4) to such data. Substantial success has already been achieved, in that

the results presented in this chapter were analyzed using the subject

program. A topical report was issued describing the program:
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T. Harper, T. Inouye and N. C. Rasmussen,

"GAMANL, A Computer Program Applying Fourier Transforms

to the Analysis of Gamma Spectral Data." MIT-3944-2,

MITNE-97, August 1968.

8.2 Experimental Measurements

Most of the work during the report period was concerned with

setting up, adjusting and debugging the spectrometer and associated

shield cave in front of a thermal neutron beam port at the MITR. A

number of runs have been made, however, to obtain standard prompt

capture gamma spectra for the individual fertile and fissile nuclides,

and a series of oxide fuel rods have been irradiated to examine com-

bined gamma spectra.

Capture gamma spectra have been measured for highly depleted

uranium metal (18 ppm U-235) and for high purity ThO2 powder. A

typical spectrum, for Th-232, is shown in Fig. 8.1. Tables 8.1 and

8.2 present the resolved gamma peak energies and intensities

obtained by data analysis with the computer code GAMANL. As can

be seen, some 24 lines were resolved in the U-238 spectrum and 43

in the Th-232 spectrum. These data have been compared with other

results reported in the literature by Sheline et al. (5) and by Groshev

(6). The agreement is, in general, good. These results are

encouraging since they suggest it will be possible to use prompt

gamma spectroscopy for conversion ratio measurements. The strong

4.059 meV line of U-238, which occurs approximately 10 times for

every 100 captures, should prove particularly useful.

Fuel rod irradiations have also yielded interesting results. A

series of half-inch-diameter, UO 2 fuel rods having various U-235

enrichments (1.1, 1.3, 1.6 and 2.0 percent) were irradiated in the

thermal beam port facility and their prompt gamma spectra analyzed.

In addition to the characteristic fertile and fissile nuclide spectra, all

displayed a prominent line at 693.1 keV. This has now been identified

as coming from the inelastic scattering of fission neutrons by Ge-72

in the Ge(Li) detector crystal. Moreover, since Ge-71 does not exist
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for Uranium-238

84

Peak
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

TABLE

Capture Gamma Rays

Energy
(keV)

523.9

540.3

553.9

562.4

580.7

612.2

661.7

683.7

708.5

1498.1

1889.1

2999.8

3196.1

3312.0

3583.0

3611.5

3637.5

3844.6

3938.0

3988.8

4042.7

4059.7

4170.1

4659.8

Intensity
(Per 100 captures)

1.67

2.31

6.54

1.10

1.40

3.68

1.03

1.19

1.28

1.41

3.09

0.60

0.71

0.56

2.14

0.81

0.77

0.54

1.05

1.03

0.49

9.06

0.46

0.28
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TABLE 8.2

Capture Gamma Rays for Thorium-232

M.I.

Peak Energy
Number (keV)

1 300.3

2 335.4

3 458.5

4 472.8

5 522.7

6 558.7

7 566.8

8 578.1

9 584.0

10 628.7

11 666.5

12 681.7

13 715.8

14 1582.8

15 2202.5

16 2315.8

17 2824.7

18 2860.4

19 3148.9

20 3172.2

21 3197.2

T.

Intensity
(Per 100
captures)

0.88

1.16

0.63

1.57

0.56

0.59

1.59

0.72

0.69

0.69

0.74

0.66

0.52

0.61

0.48

0.89

0.69

0.71

0.89

0.30

0.43

Groshev (Ref. 6)

Energy Intensity
(MeV) (Per 100

captures)

(Continued)
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TABLE 8.2 (Concluded)

Peak
Number

Groshev (Ref. 6)

Energy Intensity
(MeV) (Per 100

captures)

M.I.T.

Energy Intensity
(keV) (Per 100

captures)

3229.0 0.42

3292.3 0.27

3325.9 0.27

3341.5 0.49

3377.9 0.34

3397.9 0.66

3435.8 0.68

3448.1 0.53

3472.8 1.75

3509.5 0.48

3527.7 0.63

3602.4 0.28

3634.5 0.15

3755.4 0.26

3802.1 0.14

3863.2 0.16

3946.3 0.71

4044.5 0.24

4072.6 0.20

4202.1 0.15

4246.6 0.19

4944.7 0.21

0.6

1.1

0.4

0.5

0.3

0.3

3.45

3.53

3.75

3.94

4.25

4.92
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in nature, there is no background due to thermal neutron capture in

the detector. Thus, it is possible to use the Ge(Li) crystal as a

fission neutron yield detector as well as a capture gamma detector.

This may make it feasible to measure both v and rj using a single

detector system. Figure 8.2 shows a plot of the fast neutron-induced

signal versus fuel rod enrichment. The excellent results suggest

that this method may also prove useful as an enrichment measurement

device.

Work has also been done on the prompt capture plus fission gamma

spectra of highly enriched U-235 and Pu-239. The stray neutron back-

ground and dense line spectra have so far thwarted acquisition of suf-

ficiently useful data. Feasibility studies are also under way to

evaluate whether a spectrometer can be installed in the D 2 0 exponen-

tial tank to permit eventual use of this approach in direct in-pile

single rod experiments.

8.3 Data Analysis

Since, as noted in the introduction, a detailed report has been

issued describing the subject data analysis procedures, the present

discussion will be limited to an abbreviated synopsis.

The computer code developed for this work is a modification of a

precursor used to analyze capture gamma-ray spectra obtained with

the MIT triple coincidence spectrometer (2). The general objective

of the program is to automatically locate all spectral peaks and

determine their center and area (energy and intensity). The method

employed is an improved version of the Fourier transform method

described in reference 4. Four steps are involved: data smoothing

by rejecting high frequency components in the Fourier transformed

data; background subtraction; resolution improvement by factoring

in the response characteristics of the detector (7); and finally,

determination of the energy and intensity of the peaks.

A key feature of the latest code modification is the use of the fast

Fourier transform algorithm described by Cooley and Tukey (8).

The program, designated GAMANL, is written in FORTRAN IV

for the IBM 360, Model 65 computer. Complete analysis of a typical
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4096 channel spectrum requires about 75 seconds. In addition to the

present application, the program has also been used under another

government contract in the analysis of a wide variety of gamma-ray

spectra (9), with very satisfactory results.

The four major steps in the data analysis are as follows:

1. Data Smoothing

The smoothing of the observed data is accomplished by a Fourier

analysis technique similar to that often used to separate the signal

from the noise in communication theory. In communication theory,

a function of time is transformed into frequency space, multiplied by

an appropriate filter function and then transformed back into time

space. In the present case, the original data is a function of energy

or, more exactly, a function of channel number, so the transformation

is into inverse channel number space. By analogy, we shall call this

"energy frequence space," and use the symbol w which has units of

radians/channel for the variable.

To describe the method mathematically, let the observed data

f(E) be represented as the sum of two components

f(E) = s(E) + n(E) (8.1)

where s(E) is the true spectral information and n(E) is the noise,

which in this case is due principally to random fluctuations in the

number of counts in a channel. The Fourier transform of f(E), de-

noted F (), can be written in the usual notation as

F(w) = f f(E) e-ioE dE (8.2)
-00

or

F(M) = S(W) + N() , (8.3)

where S(W) and N(w) stand for the Fourier transforms of the com-

ponents of f(E).

The success of the method depends upon S(w) and N(w) being dif-

ferent functions so that a filter function can be chosen which will

eliminate at least part of N(w) without seriously affecting S(w).
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Fortunately, this is true in most spectra since the spectral peaks are

spread over a number of channels, and so S(w) is made up principally

of low frequencies. The noise, on the other hand, is channel-to-

channel fluctuations and so N(w) contains many higher frequencies.

Thus, there will be a significant difference in N(W) and S(w) for cases

when the spectral peaks are several or more channels wide and the

method will be applicable.

Let us define the inverse transform

s(E) - f F() P() e dw, (8.4)
27r _ w L d

-00

where P(w) is the filter function and s(E) will be a smoothed version

of the original spectrum. The method of choosing P(w) is discussed

later. For simplicity, we have expressed all the transforms in their

integral form; however, when the technique is applied to discrete

data, the transformations must be used in their discrete form.

2. Background Subtraction

In most cases, the spectral peak sits on a background which

must be subtracted in order to accurately determine the peak area.

This background is the result of a number of processes in the source

and in the detector, and it often cannot be expressed accurately ana-

lytically. We have found that to a good approximation the background

can be represented as a slowly varying function which connects all

the minima in the smoothed data s(E). Care must be exercised in

applying this definition, however, since the minima which occur in

the case of partially resolved peaks must be excluded. This is

accomplished by setting a maximum value for the slope of the back-

ground. When the slope connecting two successive minima exceeds

this maximum value, the minima are ignored and the background

line is connected to the next minima which will give an acceptable

slope. The smoothed background subtracted data are designated g(E).
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3. Resolution Improvement

In complicated spectra such as those from (n, -y) reactions, there

are a number of cases where lines are only partially resolved. In

order to determine the peak centers accurately, it would be helpful

to have a higher energy resolution. Because of our knowledge of the

response of the detector to a monoenergetic gamma ray, the mathe-

matical limit of resolution is somewhat better than the apparent limit

usually expressed as the FWHM (full width of half maximum) of a

peak. The detailed theory underlying this method has already been

described in the literature by Inouye (7) where it was applied to NaI

spectra. Here we briefly restate the results and show their applica-

bility to Ge(Li) spectra as well. To understand the method, let us

consider Eq. 8.5:

00

g(E) = h(E-E') j(E') dE', (8.5)
-00

where g(E) is the smoothed, background subtracted data, which can

be expressed analytically as the above integral, where h(E-E') is the

response function of the detector and j(E') is the incident spectra

which in this case may be considered to be a series of 6 functions in

energy as expressed in Eq. 8.6:

j(E') = Z A. 6(E'-E i) . (8.6)

Since Eq. 8.5 is a convolution integral, its transform can be

expressed as

G(w) = H(w) J(w) . (8.7)

Now, since we can experimentally determine g(E) and h(E'-E), we

can calculate G(W) and H(w) and can therefore determine j(E), the

incident spectrum as shown by Eq. 8.8:

j(E) = G(M)/H(w) eiwE dw

S 00 G(w) W() e iwE dw , (8.8)
-00
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1
where W(W) H(w) is the resolution improvement filter function. The

problem in practice is that g(E) has some noise in it, since the

smoothing processes eliminate only part of noise n(E) and the back-

ground subtraction also introduces some error. Thus, there is no

function W(w) which will exactly reproduce the input 6 functions.

Nevertheless, as will be evident in the next section, it is possible to

obtain a significant increase in the apparent resolution using this

procedure. The principal thing which limits this procedure is the

statistical accuracy of the original data.

4. Peak Selection and Intensity Determination

The peak selection is accomplished by identifying each maximum

in the smoothed, background subtracted data g(E). The peak center

is obtained by finding the point of zero slope of a second-order fit to

the top of the peak. The accuracy of this procedure was checked by

comparing the results for a number of peaks to those obtained by

finding the centroid of a Gaussian which had been fit to the peak by a

least squares method. The results agreed within ± 0.1 channels on

peaks with a a = 1.5 channels. In terms of energy, this was an accu-

racy of about ± 0.2 keV and was considerably better than the overall

reproducibility of about 0.7 keV of typical runs. However, where

greater accuracy is required, more sophisticated peak fitting methods

could be used. The peak center in channel number is converted to

energy using calibration lines of known energy and a correction is

made for the small nonlinearities of the system.

The area under a single peak is found by summing all the counts

between successive zeros in the background subtracted data.

Multiplets, where there are nonzero minima between successive

zeros, are treated separately. In this case, two or more Gaussian

functions of appropriate width, and centered at the positions

determined by using the resolution improvement technique, are fitted

to the data. The total counts in the multiplets are then divided in pro-

portion to the amplitudes of the Gaussians which best fitted the data.
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8.4 Application of Data Analysis Method

To determine the proper smoothing filter function, it is useful to

plot IF((o)| vs. w. Such a plot for two typical 4096 channel spectra is

shown in Fig. 8.3. The x's represent a run where the gain was

adjusted to produce a channel width of 0.971 keV. The circles repre-

sent a lower gain which gave a 2.063-keV channel spacing. The

approximate shape of the components of F(w) are shown as the solid

lines. As expected, in the 0.971-keV run where the peaks contain

more channels, the signal component S(w) contains less high frequen-

cies. The filter function must be of a form that passes frequencies

below the break in the curve but eliminates those frequencies above

the break where the noise component N(&.) dominates. A filter function

shape that was found to work well is shown in Fig. 8.4. The three

different curves represent functions with different cutoffs. A Gaussian

shape used to reduce the curve from unit to zero has a - = 128. It is

important that the filter function be a smoothly varying function in

order that oscillations not be introduced in the inverse transformation.

To illustrate the effect of changing the cutoff frequency, those data

used to obtain the 0.971 keV/channel curve of Fig. 8.3 were processed

using the three different filter functions shown in Fig. 8.4. A portion

of the 4096 channel spectrum showing the effect of each of these filter

functions on a doublet is shown in Fig. 8.5. The cutoff that begins at

412 (496) rad/channel is the one predicted from Fig. 8.3, and it

produces considerable smoothing action without decreasing the peak-

to-valley ratio in the doublet. Careful analysis also revealed that the

peak centers were not shifted by the smoothing process. As expected,

the function with the higher cutoff does not produce as much smoothing

and the very low cutoff produces so much smoothing that considerable

spectral information is lost.

The proper choice of the resolution-improvement filter function,

W(w) = 1/H(w), where H(w) is defined by Eq. 8.8, is somewhat more

difficult than the choice of the smoothing filter function. By trial and

error, it has been found that a Gaussian plus a constant is a very satis-

factory function for accomplishing the desired result. This function
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has four adjustable parameters: the center, amplitude, standard

deviation of the Gaussian and the constant, all of which must be opti-

mized for the data being analyzed. Once this is done for runs of a

given gain, it works equally well for subsequent runs at approximately

the same gain.

In order to demonstrate the method, the doublet of Fig. 8.5 was

recorded under conditions which produced a much worse energy

resolution in the system. The original data from this run in the

region of the doublet are shown in Fig. 8.6. Figure 8.7 shows the

results of smoothing and background subtraction as described above.

The curve marked IG(w)I in Fig. 8.8 is the transform of the smoothed,

background subtracted data. This was multiplied by the function W(W)

and the inverse transformation produced the doublet shown in Fig. 8.9.

Note that although a dramatic increase in resolution is possible,

the process introduces small fictitious peaks on either side of the

doublet. The result is that the technique is fine for examining a spe-

cific doublet to determine its components, but it cannot be applied in

this drastic a manner to the entire spectrum without introducing a

number of small spurious peaks which will interfere with the identifi-

cation of real, small peaks. In addition, the area under a peak is

sometimes changed by a spurious peak from a nearby true peak. In

practice, therefore, all peaks are identified and their areas, centers

and widths determined prior to the second transformation. Then

those peaks with widths greater than expected are examined by the

above process to locate the position of their components. The ampli-

tude of the components is then determined by adjusting them to best

fit the unresolved doublet in the smoothed data.

It has been found that if the function W(w) is not properly chosen,

it can shift the position of the components by as much as one to two

channels in data of the type shown here. It is necessary, therefore,

to test the function prior to using it. The check that has been used

consists of locating the peak centers of the single isolated peaks of

the spectrum as described earlier and then performing the transfor-

mation using the proposed W(w). If there is no resulting shift in the

centers of single isolated peaks, then the function is assumed to be

satisfactory.



18

16- OBSE

14

12

10

8-

6-

4

2

0
3140 3150 3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260

CHANNEL NUMBER

FIG. 8.6 THE OBSERVED DATA OF AN UNRESOLVED DOUBLET FROM A 4096 CHANNEL

SPECTRUM HAVING A 0.724 -keV CHANNEL WIDTH

0

z

z

0

0

wco



18 111111 
II

16 SMOOTHED DATA

14

12--
0

8

6-

2 --

3140 3150 3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260

CHANNEL NUMBER

FIG. 8.7 THE DOUBLE T OF FIG. 8.6 FOLLOW ING SMOOTHING AND BACKGROUND
SUBTRACTION

co
co



100

106 _

IG (w).

10 5  IG (w)l

104

2/102 ---

W (w) 10

00 200 300

w IN UNITS OF 2r = .001534 RAIN

FIG. 8.8 THE UPPER CURVE lG(w)l IS THE ABSOLUTE VALUE OF

FOURIER TRANSFORM OF THE SMOOTHED BACKGROUND

SUBTRACTED DATA OF THE 0.724 - keV / CHANNEL
SPECTRUM. THE LOWER CURVE W(o) IS THE

RESOLUTION IMPROVEMENT FILTER FUNCTION USED TO

PRODUCE FIG. 8.9. II/H (w) IS T HE INVERSE OF TH E

T RANSFOR M OF A SINGL E S PEC T RAL PEA K.



18 1 1 1 1

16 RESOLUTION IMPROVED DATA

14

12
0

u -j

zz

28-

z

0 6

4

2

0
3140 3150 3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260

CHANNEL NUMBER

FIG.8.9 THE UNRESOLVED DOUBLET OF FIG. 8.6 SHOWING THE EFFECT OF THE FOURIER

TRANSFORMATION USING THE FILTER FUNCTION W (w) SHOWN IN FIG.8.8.

THE SMALL PEAKS ON EITHER SIDE ARE SPURIOUS PEAKS INTRODUCED

BY THE TRANSFORMATION PROCESS



102

A computer code, GAMANL, has been developed for carrying out

the gamma spectra analysis discussed above. One of the problems

encountered with the use of the Fourier transform equations in their

usual form is that N2 computation operations are required where N

is the number of points in energy space, i.e., the number of channels

in the spectrum. This means that for N = 4096, the computing time

becomes quite long, being on the order of one-half hour. Two methods

have been used to greatly reduce this computation time. The first

method used was to section the data into n smaller segments and to 2
take the transform of each segment separately. This results in n()

operations and reduces the computation time by a factor of - .

For a section length of 16 channels flanked by 10 and 11 channels on

each side to correct for end effects, the sectioning method for

N=4096 channels required 256 (37)2 operations or time reduction of a
2

facorof256(37)2 _ omafactor of 2216 as compared to the direct method.
(4096)2 21 "

The second method used the Fast Fourier Transform (FFT) as

developed by Cooley and Tukey (8). The time required by the FFT'to

transform N energy points is N(log 2 N), which reduces the compu-

tation time by a factor of log 2 N/N as compared with the usual trans-

formation. Thus, for a 4096 channel spectra, the time used by the

FFT is log 2 4096/4096 = 1/256 of the direct transform. In addition,

it gives a complete set of Fourier coefficients in o space useful in the

filter function determination. The sectioning does not give these coef-

ficients in as convenient a form.

The program GAMANL is written in FORTRAN IV for use on the

M.I.T. IBM 360, Model 65 computer. The complete analysis of a

4096 channel spectrum requires less than 100 seconds.

In addition to the present application, the above program has also

been used under another government contract in the analysis of a wide

variety of gamma-ray spectra, including some 150 very complex

capture gamma-ray spectra (9), with very satisfactory results. The

most important feature of the program is the data smoothing technique

which enables peak centers and the average background to be

determined with reasonable accuracy by rather simple methods. To
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get the maximum information from a spectrum, the smoothing tech-

nique should be combined with some of the more sophisticated peak

analysis methods. However, for most applications the shorter,

simpler methods described here seem adequate.

Work is continuing to optimize the program to suit the specific

needs of the present work, for both prompt and decay gammas

emitted by irradiated fuel rods.
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APPENDIX A

BIBLIOGRAPHY OF PUBLICATIONS ON

HETEROGENEOUS REACTOR THEORY

AND SINGLE ROD METHODS

In this bibliography we list a selection of references which deal

with various aspects of heterogeneous reactor theory and single fuel

element neutronics. A brief comment is included on each.

1. Barden, S. E. et al., "Some Methods of Calculating Nuclear
Parameters for Heterogeneous Systems," Proc. 1958 Geneva
Conf., P/272. Application of heterogeneous method to finite
arrays of rectangular shape.

2. Blaesser, G., "An Application of Heterogeneous Reactor Theory
to Substitution Experiments," P/42/52, IAEA Symposium,
Amsterdam, 1963. The method avoids many difficulties
which are typical of homogenized treatment as, for example,
determination of coupling constants.

3. Corno, S. E., "Interpretazione Teorica delle Esperienze di
Moltiplicazione Neutronica su un Solo Elemento di
Combustible," Energia Nucleare, 10, 11 (1963). A highly
theoretical application of small source theory to the
problem of a single rod in an exponential pile. (Series of
three articles.)

4. Corno, S. E., "Theory of Pulsed Neutron Experiments in Highly
Heterogeneous Multiplying Media," in Pulsed Neutron
Research, Vol. II, IAEA, Vienna, 1965. A theory of pulsed
neutron experiments applicable to a single fuel element.

5. Donovan, R., "Measurement of Heterogeneous Parameters,"
MIT-2344-12 (1967). Calculations based on measurements
on a single element using foil techniques.

6. Durrani, S., E. Etherington and J. Ford, "Determinations of
Reactor Lattice Parameters from Measurements on a Single
Fuel Element Channel," APC/TN 1054. Another application
of the method in (30) below.

7. Estabrook, F. B., "Single Rod Exponential Experiments,"
NAA-SR-925, p. 13. Reports other data on same experi-
ments as in (12).
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8. Feinberg, S. M., "Heterogeneous Methods for Calculating
Reactors," Proc. 1955 Geneva Conf., P/669. One of the
original and basic theoretical papers on heterogeneous
methods.

9. Galanin, A. C., "The Thermal Coefficient in a Heterogeneous
Reactor," Proc. 1955 Geneva Conf., P/666. One of the
original and basic theoretical papers on heterogeneous
methods.

10. Graves, W. E. et al., "A Comparison of Heterogeneous Nuclear-
Reactor Lattice Theory with Experiment," Nucl. Sci. Eng.,
31, p. 57-66 (1968). Comparison is made for thermal neutron
densities and critical geometric bucklings.

11. Hassit, A., "Methods of Calculation for Heterogeneous Reactors,"
Progress in Nuclear Energy, Series I, Vol. II, p. 271- 313
(1958). Describes the "mesh method" of solving the two group
diffusion theory equations within the moderator region of the
heterogeneous system using finite difference equations.

12. Heinzman, 0. W. and S. W. Kash, "Intracell Flux Distributions for
an Extensive Series of Heavy Water, Uranium Rod Lattices,"
NAA-SR-1548 (August 1956). Reports radial flux traverses
about 1-inch-diameter single rods.

13. Higgins, M. J., "Fuel Rod Interaction Kernels," MIT-2344-12
(1967). Describes experimental determination of the rod
interaction kernels and methods that can use these kernels
to predict integral parameters for entire lattices.

14. Horning, W. A., "Small Source Model of a Thermal Pile,"
HW-24282 (1957). An early attempt at an analysis that
could be used to relate theory and experiment.

15. Jonsson, A., "Heterogeneous Calculation of Fast Fission,"
AE-42 (Feb. 1961). An exact calculation of the collision
probabilities is included.

16. Jonsson, A. and G. Naslund, "Heterogeneous Two Group Diffusion
Theory for a Finite Cylindrical Reactor," AE-57 (June 1961),
and other internal reports. Describes the basis for the com-
puter code HETRO.

17. Jonsson, A. and G. Naslund, "Theory of Application of Hetero-
geneous Methods for D2 0 Reactor Calculations," Proc. 1964
Geneva Conf., P/683. Extension of heterogeneous methods
to finite cylindrical systems.

18. Klahr, C. N. et al., "Heterogeneous Calculation Methods,"
NYO-2680 (June 1961). A final report on small source reactor
physics calculations using the HERESY code.



106

19. Lanning, D. D., "Heterogeneous Reactor Critical Conditions
Using Small Source Theory," TID-7532, Part 1 (1957).
The application of heterogeneous analysis using age theory,
to reactors containing control rods.

20. Leslie, D. C. and A. Jonsson, "Improvements to the Theory of
Resonance Escape in Heterogeneous Fuel," Papers I and II,
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