MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF NUCLEAR ENGINEERING
 Cambridge, Massachusetts 02139

THE EFFECT OF URANIUM-236 AND NEPTUNIUM-237 ON THE VALUE OF URANIUM AS FEED FOR PRESSURIZED WATER POWER REACTORS
by
D.A. Goellner, M. Benedict and E.A. Mason

December, 1967

For the
U.S. Atomic Energy Commission

Under Contract AT (30-1)-2073

RETURI TO:

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 DEPARTMENT OF NUCLEAR ENGINEERING Cambridge, Massachusetts 02139THE EFFECT OF URANIUM-236 AND NEPTUNIUM-237 ON THE VALUE OF URANIUM AS FEED FOR PRESSURIZED WATER POWER REACTORS

by

D. A. Goellner, M. Benedict and E. A. Mason

For the
U. S. Atomic Energy Commission
inder Contract AT(30-1)-2073

THE EFFECT OF URANIUM-236 AND NEPTUNIUM-237
ON THE VALUE OF URANIUM AS FEED FOR
PRESSURIZED WATER POWER REACTORS

Abstract

Until now uranium fuel for power reactors has consisted principally of the naturally occurring isotopes $U-235$ and $U-238$. This fuel has contained so little reactor-produced $U-236$ that it has been possible to establish a price scale based only on its $U-235$ content. In the future, however, uranium fuel for power reactors may contain significant amounts of $U-236$, and it will be necessary to take the $U-236$ content into account in determining the value of the fuel.

The major economic effects of $U-236$ in fuel charged to a reactor are as a thermal neutron poison and as a target for the production of $N p-237$, with the relative importance of the two effects being governed by the unit price at which byproduct $N p-237$ can be sold. The purpose of this study is to develop procedures for determining the unit value of uranium over wide ranges of isotopic compositions and $N p-237$ prices and to apply the procedures to the case where the uranium is used as feed for typical pressurized water reactor (PWR) fuel flow schemes.

The San Onofre PWR is used as the reference reactor. Two uranium recycle schemes are considered, both of which are examined only under steady-state recycling conditions. In one scheme, recycled uranium is reenriched by blending with uranium feed having high U-235 content, while the other scheme involves the re-enrichment of recycled utanium in a gaseous diffusion plant prior to mixing it with the requisite low-enrichment feed uranium. Steady-state operating characteristics for the reactor and recycle flowsheets were calculated over ranges of feed isotopic compositions using the codes

CELL and MOVE, the latter modified to simulate scatter refueling of the reactor. The effect of U-236 on separative work requirements and the distribution of U-236 in diffusion plant product and tails streams are considerod in detail.

The value of feed uranium having a given isotopic composition and used for a particular fuel flow scheme is determined by requiring that the fuel cycle cost using this feed uranium be equal to the lowest fuel cycle cost which can be obtained for the same fuel flow scheme when feed uranium contains no U-236 and is priced on the AEC scale.

In addition to the basic recycle modes of operation, wherein feed uranium is sent, as purchased, to the fabrication plant, the unit value of feed uranium is also calculated for the case where feed is pre-enriched prior to fabrication and for the case where feed is blended with natural uranium prior to fabrication.

In addition to the effects of isotopic composition, operating mode, and Np-237 price, the effects on unit feed value of changing natural $U_{3} O_{8}$ price, unit costs of fabrication and reprocessing, and Irrecoverable losses during fabrication are also examined.

Two definitions of a U-236 penalty, in dollars per gram of $U-236$, are investigated in an attempt to correlate the feed value results and present the U-236 and Np-237 effects in more tractable form.

ACKNOWLEDGMENTS

This report is based on a thesis submitted by Donald A. Goellner to the Nuclear Engineering Department at Massachusetts Institute of Technology in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Financial support from the U.S. Atomic Energy Commission under contract $A T(30-1)-2073$ and in the form of Mr. Goellner's AEC Fellowship is gratefully acknowledged.

All calculations were performed at the MIT Computation Center.

Thanks are due Dr. Harvey W. Graves of Westinghouse Electric Corporation for information on the San Onofre reactor.

TABLE OF CONTENTS

VOLUME 1

Page

ABSTRACT 2
ACKNOWLEDGEMENTS 4
LIST OF FIGURES 9
LIST OF TABLES 17
I. INTRODUCTION 21
A. Description of Problem 21
B. Scope of Study and Major Assumptions 24
II. SUMMARY OF RESULTS 36
III. REFERENCE REACTOR - SAN ONOFRE PWR 71
A. Reactor Description 71
B. Refueling Scheme 73
C. Reactivity and Depletion Calculation Model 74
D. Procedure for Obtaining Steady-State Recycle Characteristics 76
IV. MODES OF OPERATION 80
A. Basic Recycle Schemes 80

1. Recycle to Fabrication 80
2. Recycle to Diffusion Plant 86
3. Operating Parameters 92
4. Flowsheet Characteristics 94
B. Modified Modes of Operation 109
5. Pre-Enrichment by Gaseous Diffusion 110
6. • Blending with Natural Uranium 113

Page

V. PROCEDURE FOR CALCULATING URANIUM VALUES

A. Basic Principle
B. Fuel Cycle Cost Equations 118

1. Recycle to Fabrication 119
2. Recycle to Diffusion Plant 122
C. Uranium Value Equations 123
3. Recycle to Fabrication-Basic
Scheme 124
4. Recycle to Diffusion Plant - Basic
Scheme 124
5. Pre-Enrichment by Gaseous Diffusion 125
6. Blending with Natural Uranium 127
D. Choice of Economic Parameters 128
E. Description of Calculational Procedures 135
VI. RESULTS 137
A. Minimum Fuel Cycle Costs 137
B. Uranium Values for Basic Recycle Schemes 144
7. Recycle to Fabrication 146
8. Recycle to Diffusion Plant 153
C. Uranium Values for Modified Modes of Operation 160
9. Maximization of Unit Value 163
a. Pre-Enrichment by Gaseous Diffusion 163
b. Blending with Natural Uranium 166C. Effect of Operating Mode onMaximum Unit Value169
10. Recycle to Fabrication 175
11. Recycle to Diffusion Plant 181
12. Effect of Recycle Scheme on
Unit Value 187
VII. PENALTIES AND BENEFITS FROM U-236 AND NP-237 192
A. Definition of U-236 Penalty 192
B. U-236 Penalty Results 193
13. Components of Overall Penalty Curves 193
14. Recycle to Fabrication 199
15. Recycle to Diffusion Plant 204
C. U-236 Penalty Variations 210
D. Indifference Prices for Np-237 221
E. Alternative U-236 Penalty Definition 223
VIII. CONCLUSIONS AND RECOMMENDATIONS 229
A. Conclusions 229
B. Recommendations 232
APPENDICES A-L, pp 236-363, in Volume 2
APPENDIX M. NOMENCLATURE (for Sections I-VIII) 364
APPENDIX N. REFERENCES 373

TABLE OF CONTENTS
VOLUME 2
APPENDICES

Page

APPENDIX A. REFERENCE REACTOR DESIGN CHARACTER
ISTICS 236

APPENDIX B. EQUATION FOR CALCULATING NP-237 BUILDUP 240
APPENDIX C. MOVE CODE - SCATTER REFUELING VERSION 244

1. Description 244
2. Methods Used 248
3. Input Description 256

APPENDIX D. INPUT DATA FOR CELL AND MOVE CODES 263
APPENDIX E. FLOWSHEET CHARACTERISTICS AS FUNCTIONS OF EXTERNAL FEED COMPOSITION R AND Y 272

APPENDIX F. CALCULATION OF AEC PRICE SCALES AND
PLUTONIUM VALUES
APPENDIX G. MINIMUM FUEL CYCLE COST RESULTS 288
APPENDIX H. URANIUM VALUES FOR BASIC RECYCLE SCHEMES 293

APPENDIX I. MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS FOR DIFFERENT MODES OF OPERATION 304

APPENDIX J. EFFECT OF NP-237 PRICE ON U-236 PENALTY 330
APPENDIX K. COMPARISON OF MATCHED-R AND OPTIMUM CONSTANT-KEY-WEIGHT CASCADE CHARACTERISTICS 333

APPENDIX L. FLOWSHEET CHARACTERISTICS AS FUNCTIONS OF REACTOR FEED COMPOSITION R_{R} AND $Y_{R} 340$

VOLUME 1

Fiqure

Page
I. 1 Flowsheet for Recycle of Uranium to Fabrication
I. 2 Flowsheet for Recycle of Uranium to Gaseous Diffusion Plant
II. 1 Effect of Np-237 Price on Minimum Fuel Cycle Cost: High Costs, $L_{F}=0.01$
II. 2 Unit Feed Value - Basic Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=\$ 0 / g$, High Costs, $L_{F}=0.01$
II. 3 Unit Feed Value - Basic Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 60 / \mathrm{g}$, High Costs, $L_{F}=0.01$
II. 4 Unit Feed Value - Basic Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=\$ 0 / g$, High Costs, $L_{F}=0.01$
II. 5 Unit Feed Value - Basic Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=$ $\$ 60 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
II. 6 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / \mathrm{Ib}, C_{N}=\$ 0 / \mathrm{g}$, High Costs, $L_{F}=0.01$
II. 7 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 60 / \mathrm{g}$,
High Costs, $L_{F}=0.01$
II. 8 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 2 b, C_{N}=\$ 100 / \mathrm{g}$, High Costs, $L_{F}=0.01$
II. 9 Maximum Unit Feed Value - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 0 / \mathrm{g}$, High Costs, $L_{F}=0.01$
II. 10 Maximum Unit Feed Value - Recycle to Diffusion Plant: $C_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 60 / \mathrm{g}$, High Costs, $L_{F}=0.01$
II. 11 Maximum Unit Feed Value - Recycle to Diffusion Plant: $C_{U_{3}} O_{8}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 100 / \mathrm{g}$, High Costs, $L_{F}=0.01$
II. 12 U-236 Penalty - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, High Costs, $L_{F}=0.01$
II. 13 U-236 Penalty - Recycle to Diffusion Plant:

$$
C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, \text { High Costs, } L_{F}=0.01
$$

II. 14 Adjusted U-236 Penalty.- Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 b$, High Costs,

$$
\begin{equation*}
L_{F}=0.01 \tag{68}
\end{equation*}
$$

II. 15 Adjusted U-236 Penalty - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, High Costs, $L_{F}=0.01$ IV.l Flowsheet for Recycle of Uranium to Fabrication
IV. 2 Flowsheet for Recycle of Uranium to Gaseous Diffusion Plant

Page

IV. 3 Typical Mass Balance - Recycle to

Fabrication 96
IV. 4 Typical Mass Balance - Recycle to Diffusion Plant
IV. 5 Variation of R_{R} with R and y - Recycle to Fabrication
IV. 6 Variation of y_{R} with R and $y \quad 102$
IV. 7 Variation of Burnup with R and $y \quad 104$
IV. 8 Variation of Feed Rate with R and $Y \quad 105$
IV. 9 Variation of Np-237 Production Rate with R and y
IV. 10 Flowsheet for Pre-Enrichment of Feed by Gaseous Diffusion
IV.ll Flowsheet for Blending of Feed with Natural Uranium
VI.l Effect of Np-237 Price on Minimum Fuel Cycle Cost: High Cósts, $L_{F}=0.01$
VI. 2 Effect of Np-237 Price, Unit Costs, and Fabrication Losses on Minimum Fuel Cycle Cost: $\quad C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$
VI. 3 Unit Feed Value - Basic Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=\$ 0 / g$, High Costs, $L_{F}=0.01$
VI. 4 Unit Feed Value - Basic Recycle to Fabrication: $\quad C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 20 / \mathrm{g}$, High Costs, $L_{F}=0.01$

Page

VI. 5 Unit Feed Value - Basic Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=\$ 60 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
VI. 6 Unit Feed Value - Basic Recycle to

Fabrication: $C_{U_{3} O_{8}}=\$ 6 / 1 \mathrm{~b}, C_{N}=\$ 0 / \mathrm{g}$, High Costs, $L_{F}=0.01$
VI. 7 Unit Feed Value - Basic Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{\mathrm{N}}=\$ 0 / \mathrm{g}$, Low Costs, $L_{F}=0.01$
VI. 8 Unit Feed Value - Basic Recycle to

Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 0 / \mathrm{g}$,
High Costs, $L_{F}=0.002$
VI. 9 Unit Feed Value - Basic Recycle to Diffu-
sion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 0 / \mathrm{g}$,
High Costs, $L_{F}=0.01$
157
VI. 10 Unit Feed Value - Basic Recycle to Diffu-
sion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=\$ 20 / \mathrm{g}$,
High Costs, $L_{F}=0.01$
VI.ll Unit Feed Value - Basic Recycle to Diffu-
sion Plant: $C_{U_{3} 0_{8}}=\$ 8 / 1 b, C_{N}=\$ 60 / \mathrm{g}$,
High Costs, $L_{F}=0.01$
VI. 12 Unit Feed Value - Basic Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 6 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$,
High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
VI. 13 Unit Feed Value - Basic Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 0 / \mathrm{g}$, Low Costs, $L_{F}=0.01$
VI. 14 Variation of $V_{D}\left(R, Y, R_{D}\right)$ with R_{D} and y for $R=0.01$ - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=\$ 0 / g$, High Costs, $L_{F}=0.01$
VI. 15 Tie-Line Representation of Blending with Natural Uranium - Recycle to Diffusion Plant: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=$ $\$ 0 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
VI. 16 Maximum Unit Feed Value - Recycle to Diffusion Plant: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=$ $\$ 0 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
VI. 17 Maximum Unit Feed Value - Recycle to Diffusion Plant: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=$ $\$ 60 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$ 173
VI. 18 Maximum Unit Feed Value at Low R-Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=$ $\$ 60 / \mathrm{g}$, High Costs, ${ }^{\circ} \mathrm{L}_{\mathrm{F}}=0.01$
VI. 19 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 0 / \mathrm{g}$,
High Costs, $L_{F}=0.01$
VI. 20 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 60 / \mathrm{g}$, High Costs, $L_{F}=0.01$
VI. 21 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 100 / \mathrm{g}$, High Costs, $L_{F}=0.01$

Page
VI. 22 Maximum Unit Feed Value at Low R-Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / l b, C_{N}=\$ 60 /$.
g, High Costs, $L_{F}=0.01$
VI. 23 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 6 / 1 \mathrm{~b}, \dot{C}_{N}=\$ 0 / \mathrm{g}$, High Costs, $L_{F}=0.01$
VI. 24 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 10 / 1 b, C_{N}=\$ 0 / g$, High Costs, $\underset{F}{ }=0.01$
VI. 25 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 0 / \mathrm{g}$, Low Costs, $L_{F}=0.01$ 184
VI. 26 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=\$ 0 / \mathrm{g}$, High Costs, $L_{F}=0.002$ 185
VI. 27 Maximum Unit Feed Value - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, C_{N}=$ $\$ 100 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
VI. 28 Maximum Unit Feed Value - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 6 / 1 \mathrm{~b}, C_{N}=$ $\$ 0 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
VI. 29 Maximum Unit Feed Value - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 10 / 1 b, C_{N}=$ $\$ 0 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
VI. 30 Maximum Unit Feed Value - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=$

Page

$$
\$ 0 / \mathrm{g}, \text { Low Costs, } \mathrm{L}_{\mathrm{F}}=0.01 \quad 190
$$

VII.l Components of U-236 Penalty Curve for $y=$ 0.005 - Recycle to Diffusion Plant: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=$ $\$ 8 / \mathrm{lb}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
VII. 2 U-236 Penalty - Recycle to Fabrication:

$$
C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, \text { High Costs, } L_{F}=0.01
$$

VII. 3 U-236 Penalty - Recycle to Fabrication:
$C_{U_{3} O_{8}}=\$ 6 / 1 b$, High Costs, $L_{F}=0.01$
VII. 4 U-236 Penalty - Recycle to Fabrication:
$C_{U_{3} O_{8}}=\$ 10 / 1 \mathrm{~b}$, High Costs, $L_{F}=0.01$
VII. 5 U-236 Penalty - Recycle to Fabrication:
$C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, Low Costs, $L_{F}=0.01$
VII. 6 U-236 Penalty for $y=0.02$ - Recycle to

Fabrication: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$,
High Costs
VII. 7 U-236 Penalty - Recycle to Diffusion

Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 b$, High Costs, $L_{F}=0.01207$
VII. 8 U-236 Penalty - Recycle to Diffusion

Plant: $C_{U_{3} O_{8}}=\$ 6 / 1 b$, High Costs, $L_{F}=0.01208$
VII. 9 U-236 Penalty - Recycle to Diffusion

Plant: $C_{U_{3} O_{8}}=\$ 10 / 1 b$, High Costs, L_{F}. 0.01
VII. 10 U-236 Penalty - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, Low Costs, $\mathrm{L}_{\mathrm{F}}=$ 0.01
VII. 11 Variation of Penalty Level with Np-237 Price: $C_{U_{3} O_{8}}=\$ 8 / 1 b$, High Costs, $L_{F}=$ 0.01
VII. 12 Adjusted U-236 Penalty - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 b$, High Costs, $L_{F}=0.01$

226
VII. 13 Adjusted U-236 Penalty - Recycle to Diffusion Plant: $\quad C_{U_{3} O_{8}}=\$ \dot{8} / 1 \mathrm{~b}$, High Costs, $L_{F}=0.01$

VOLUME 2

C.l Flow Diagram for Scatter-Refueling Version of MOVE249
K. 1 Test Case for Comparison of Matched-R and Optimum Constant-Key-Weight Cascade Performance 334

LIST OF TABLES

Table
VOLUME I
I.l Values for Major Economic Parameters 34
II. 1 Summary of Minimum Fuel Cycle Cost Results
II. 2 Change of Major Fuel Cycle Characteristics with Addition of U-236 to Feed
II. 3 U-236 Penalty Levels, $\bar{\delta}$, and Np-237 Indifference Prices, $\mathrm{C}_{\mathrm{N}}^{0}$61
II. 4 Items Which Govern U-236 Penalty Changes 63
IV.l Summary of Operating Parameters 93
IV. 2 Effect of y on Fuel Cycle CharacteristicsNormalized to Unit Feed108
V.I Summary of Economic Parameters 129
VI. 1 Summary of Minimum Fuel Cycle Cost Results 142
VI. 2 Effect of Recycle Scheme on Maximum Unit Feed Value 191
VII.l Effect of Y on $F(R, Y)$ and $M(R, Y)$ near R^{*} 213
VII. 2 Items Which Govern U-236 Penalty Changes 214
VII. 3 Change of U-236 Penalty with Neptunium Price 218
VII. 4 Change of U-236 Penalty with $\mathrm{U}_{3} \mathrm{O}_{8}$ Price 220
VII. 5 Indifference Prices of Np-237 222
VOLUME 2
D. 1 Input Data for CELL Code265
D. 2 Input Data for MOVE Code - Scatter RefuelingVersion270
E. 1 Weight Ratio of U-235 to U-238 in Reactor Feed Uranium, R_{R} - Recycle to Fabrication 273
E. 2 Weight Fraction of U-236 in Reactor Feed Uranium, Y_{R} - Recycle to Fabrication 274

Page

$$
\begin{aligned}
& \text { E. } 3 \text { Average Discharge Burnup, B - Recycle to } \\
& \text { Fabrication }
\end{aligned}
$$

E. 4 Uranium Feed Rate to Basic Recycle Flowsheet,

F - Recycle to Fabrication
E. 5 Np-237 Production Rate, N - Recycle to

Fabrication
E. 6 Weight Fraction of U-236 in Reactor Feed Uranium, Y_{R} - Recycle to Diffusion Plant
E. 7 Average Discharge Burnup, B - Recycle to Diffusion Plant
E. 8 Uranium Feed Rate to Basic Recycle Flow-. sheet, F - Recycle to Diffusion Plant
E. 9 Np-237 Production Rate, N - Recycle to Diffusion Plant
E. 10 Separative Work for Re-Enriching Spent Uranium, Δ - Recycle to Diffusion Plant282
F.l Effect of $\mathrm{U}_{3} \mathrm{O}_{8}$ Price on AEC Price Scale and Plutonium Value
G. 1 Minimum Fuel Cycle Costs, C_{E}^{*} - High Unit Costs, $L_{F}=0.01$
G. 2 Minimum Fuel Cycle Costs, C_{E}^{*} - Low Unit Costs, $L_{F}=0.01$
G. 3 Minimum Fuel Cycle Costs, C_{E}^{*} - High Unit Costs, $L_{F}=0.002$

Page

H. 1 Uranium Value, $V(R, y)$ - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 10 / 1 \mathrm{~b}$, High Costs, $L_{F}=$
0.01
H. 2 Uranium Value, $V(R, Y)$ - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 b$, High Costs, $L_{F}=$ 0.01

295
H. 3 Uranium Value, $V(R, y)$ - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 6 / 1 b$, High Costs, $L_{F}=$ 0.01

296
H. 4 Uranium Value, $V(R, y)$ - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, Low Costs, $L_{F}=0.01$297
H. 5 Uranium Value, $V(R, y)$ - Recycle to Fabrica-

$$
\begin{aligned}
& \text { tion: } C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, \text { High Costs, } L_{F}= \\
& 0.002
\end{aligned}
$$

H. 6 Uranium Value, $V(R, y)$ - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 10 / 1 b$, High Costs, $L_{F}=0.01$
H. 7 Uranium Value, $V(R, y)$ - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, High Costs, $L_{F}=0.01$
H. 8 Uranium Value, $V(R, y)$ - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 6 / 1 \mathrm{~b}$, High Costs, $L_{F}=0.01$
H. 9 Uranium Value, $V(R, y)$ - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, Low Costs, $L_{F}=0.01$

Page

H. 10 Uranium Value, $V(R, y)$ - Recycle to Diffu-
sion Plant: $C_{U_{3}} O_{8}=\$ 8 / l b$, High Costs,
$L_{F}=0.002$
I. 1 Table Numbers for Maximum Uranium Value Results
$\left.\begin{array}{l}\text { I. } 2 \\ \text { to } \\ \text { I. } 23\end{array}\right\} \begin{gathered}\text { Maximum Uranium Values and Optimum Condi- } \\ \text { tions for Different Economic Conditions }\end{gathered}\left\{\begin{array}{l}308 \\ \text { to } \\ 329\end{array}\right.$
J. 1 Change of U-236 Penalty with Neptunium Price - Recycle to Fabrication 331
J. 2 Change of U-236 Penalty with Neptunium Price - Recycle to Diffusion Plant332
K.l Comparison of Cascade Characteristics Givenby Matched-R and Optimum Constant-Key-Weight Methods 338
L. 1 Table Numbers for Steady-State Flowsheet Characteristics 345
$\left.\begin{array}{l}\text { L. } 2 \\ \text { to } \\ \text { L. } 53\end{array}\right\} \begin{gathered}\text { Steady-State Flowsheet Characteristics for } \\ \text { Various Reactor Feed Uranium Compositions }\end{gathered}\left\{\begin{array}{l}346 \\ \text { to } \\ 363\end{array}\right.$

I. INTRODUCTION

A. Description of Problem

Procedures presently used to determine power reactor fuel cycle costs treat the price of uranium as a function only of its U-235 content and as independent of the amount of $U-236$ present. Until private ownership of enriched uranium was permitted, there was no alternative pricing procedure, because the U. S. Atomic Energy Commission, which had been the only U. S. source of uranium of other than natural enrichment and the only purchaser of uranium discharged from power reactors, set a price scale which considered U-236 as equivalent to U-238 and which made the price dependent only upon the U-235 content of uranium. (1)

Under private fuel ownership, however, the prices at which uranium is purchased need not necessarily be those set by the AEC, because there are alternative sources, including natural uranium and uranium discharged from reactors. Fuel of any enrichment desired for a reactor may be obtained by having the AEC enrich purchased uranium for a toll or fee or by blending purchased uranium of two different enrichments spanning the desired enrichment. These alternatives are available in addition to direct purchase of uranium containing no U-236 from the AEC on the AEC's price scale.

Uranium recovered from discharged reactor fuel will often contain a substantial proportion of $U-236$, owing
to the trend toward higher fuel burnup and repeated recycling of uranium. It will therefore be important to know the isotopic composition of uranium to be purchased and to determine the value of uranium having that particular isotopic composition. This will set the maximum price which could be paid for this uranium without leading to fuel cycle costs any higher than if uranium free of $U-236$ were to be purchased from the AEC on the AEC's price scale.

This price will not be the same as it would be if $U-236$ were taken as being equivalent to $U-238$, for the following reasons:
a. $U-236$ is a neutron poison whereas $U-238$ is a fertile material, so that they affect reactivity lifetime differently;
b. the presence of U-236 increases the amount of separative work expended in a gaseous diffusion plant to produce uranium of a specified $U-235$ content, since separation of U-235 from U-238 is less costly than separation of $\mathrm{U}-235$ from an equal amount of $\mathrm{U}-236$; and
c. the presence of $U-236$ increases the amount of Np-237 produced during irradiation. Neptunium-237 has value as a target material for the production of Pu-238, which is in demand as a radioisotopic power source. There is little doubt that the near-future Pu-238 requirement for space-power applications will be considerable ${ }^{(2)}$ and will result in significant prices for both

Pu-238 and Np-237. Current estimates of fuel cycle costs do not include credits for the sale of $\mathrm{Np}-237$, but recovery of $\mathrm{Np}-237$ from irradiated power reactor fuel will soon be routinely performed by Nuclear fuel Services, Inc., (3) and its sale will tend to improve reactor economics. Increased $\mathrm{Np}-237$ production is thus a favorable consequence of the presence of U-236. The purpose of this study is to establish the value of uranium over wide ranges of isotopic compositions and Np-237 prices, when the uranium is used as feed for a typical pressurized-water reactor (PWR). For this study, "feed" refers to uranium which is purchased as makeup material for a given fuel cycle and which can contain U-236, as well as U-235 and U-238. The effect on feed uranium value of changing $U_{3} O_{8}$ price, unit fabrication and reprocessing costs, and irrecoverable uranium losses is also examined.

The prominence of the PWR in the expanding nuclear power industry justifies its use as a basis for this study. However, the presence of U-236 in feed uranium will affect fuel cycle economics differently for other reactor types and for different fuel management schemes. Although the numerical results reported herein apply to specific cases, the procedures developed could be utilized to estimate feed values for other reactor types and fuel cycles, with only minor revision.

This has been done at $M I T(4,5)$ in other parts of this study conducted under AEC contract AT(30-1)-2073.

The effect of $\mathrm{U}-236$ and $\mathrm{Np}-237$ on the value of uranium feed has not been examined in detail by other workers. The important effects of $\mathrm{Np}-237$ sale on fuel cycle economics and on the specification of fuel management procedures have been recognized for some time ${ }^{(6)}$, but most attention has been concentrated on maximizing Np-237 production, either by core design modifications (7) or by appropriate tailoring of the fuel cycle for this purpose. (8) Estimates have been made of U-236 and Np-237 values based on their use in reactors as target isotopes for the production of $\mathrm{Pu}-238,(9)$ but the economic penalty for having $U-236$ present when $N p-237$ is not sold has not been calculated.

B. Scope of Study and Major Assumptions

The principle used in determining the value of feed uranium having a given isotopic composition is that the fuel cycle cost which results from its use in a specified fuel flow model shall equal the lowest fuel cycle cost which can be obtained for the same fuel flow model when feed uranium contains no $U-236$ and is priced on the AEC price scale. If the price of uranium is set equal to the value so determined, it will be a matter of indifference whether the fuel cycle is fed with uranium of optimum enrichment containing no U-236
priced on the AEC scale or with uranium of a different composition priced according to this principle.

The reference PWR chosen for the study is the 430 MWe (1346 MW thermal) San Onofre reactor. ${ }^{(10)}$ Zircaloy-4 is used as the reference cladding material. To provide a flattened core power distribution, modified four-batch scatter refueling is used as the fuel reloading scheme. This procedure differs from complete scatter refueling (ll) in that fresh fuel is first irradiated in an outer annular region consisting of one quarter of the core volume, from which it is fed scatter-wise to the remaining three quarters of the core.

Two basic fuel cycle flow schemes are considered. The first, shown in Figure I.l, involves the recycle of reprocessed uranium directly to the fabrication plant, where it is blended with purchased feed uranium to form the reactor charge. The second scheme, shown in Figure I.2, involves the re-enrichment of recycled uranium in a gaseous diffusion plant, with subsequent mixing of the requisite feed with the diffusion plant product to form the reactor feed uranium. The nomenclature used is given on the flowsheet diagrams. The full-power output of the plant is P MWe. Flow rates F_{i} are timeaveraged values for uranium at various points. The weight ratio of $U-235$ to $U-238$ is denoted by R_{i}, while

FIGURE I.l Flowsheet for Recycle of Uranium to Fabrication

y_{i} represents the weight fraction of $U-236$ in uranium. Irrecoverable loss fractions are given by $L_{F}, L_{R U}, L_{R P}$, and L_{C}. The use of R and y to describe feed uranium composition, rather than some alternative variables, enables one to examine directly the effect on feed value which results from changes in U-236 content and not from changes in the relative amounts of $U-235$ and $U-238$ present. .

In both schemes, Np-237 and plutonium are sold immediately after reprocessing and uranium is assumed to be recycled, as UO_{3}. The recycling of reprocessed uranium, rather than selling it, is necessary to avoid having to assume a price for this material arbitrarily. [Note: T. Golden ${ }^{(4)}$ has calculated the value of uranium feed for a PWR fuel cycle wherein spent uranium from the PWR is credited at the value it would have as feed for a heavy-water moderated, organic-cooled reactor (HWOCR). Feed values for the HWOCR have been determined by D. Bauhs ${ }^{(5)}$].

Economic analyses are performed only for steadystate operation of the fuel cycle flowsheets since this eliminates an arbitrary choice of operating restrictions for transient cycles and provides a unique common basis upon which to compare the values of feed uranium having different isotopic compositions. The assumption of steady-state operation fixes the period of reactor operation as the mid-1970's.

In Figure I. 2, the condition is imposed that the U-235 to U-238 weight ratio of purchased uranium equals that of recycled uranium product from the diffusion plant, so that $R=R_{R}=R_{P}$. This is consistent with the assumption that the diffusion plant is operated as a "matched-R" cascade ${ }^{(12)}$. In such a cascade, at each point where two streams are mixed, the weight ratios of U-235 to U-238 in the two streams are equal. The distribution of U-236 between the heads and tails streams of the diffusion plant and the effect of U-236 on separative work requirements are accounted for using methods developed by de la Garza et al (12) for such a cascade. For each natural uranium $\left(\mathrm{U}_{3} \mathrm{O}_{8}\right)$ price considered, the corresponding optimum tails weight ratio R_{W} is used, so that zero value is maintained for the tails stream. Due to the impossibility of predicting the composition and size of all possible feed and product streams during a future diffusion plant operation, an assumption which is unavoidable is that the only streams entering or leaving the diffusion plant are those involved in the particular fuel cycle under consideration. At steady-state, the feed uranium purchased serves to replace all uranium isotopes which leave the fuel cycle due to depletion and irrecoverable losses during fabrication and reprocessing. In Figure I.2, the diffusion plant tails stream and the uranium lost during
conversion of UO_{3} to UF_{6} must also be balanced by the feed. The absence of a strong $U-238$ sink in the recycle-to-fabrication flowsheet makes it necessary to have relatively high U-235 concentrations in the feed uranium. As a result the values of R examined for Figure I.l ($R=0.4$ to $R=1.0$) are much higher than for Figure I. 2 ($R=0.02$ to $R=0.08$). The diffusion plant tails stream acts as a strong U-238 sink, but also carries appreciable U-236 from the cycle of Figure I.2. Due to the discharge of tails uranium, higher feed rates are required for Figure I. 2 than for Figure I.l. Consequently, the buildup of $U-236$ throughout the cycle of Figure I.l will exceed that for Figure I.2, per unit of feed.

Uranium flow rates and isotopic compositions throughout both basic recycle schemes can be determined for steady-state operation once R and y are specified for the feed. All depletion and recycle calculations required to predict steady-state characteristics were carried out using the codes CELL ${ }^{(13)}$ and MOVE ${ }^{(14)}$, where MOVE has been modified to include the scatter refueling scheme selected for the reactor. After flowsheet characteristics are determined over ranges of R and y, feed values can be calculated by applying the principle described above.

It is apparent that neither of the basic recycle schemes permit determination of feed value over the
entire range of R important in power reactors, i.e., from $R=0.005$ to $R=15$. Modifications which can be made to either of the basic schemes are shown, with nomenclature, in Figure I.3. By means of these modified operating modes, value can be affixed to feed whose isotopic composition would be otherwise unsuitable for use in the basic recycle schemes; in addition, the value of uranium can often be increased by using it as feed for one of the modified modes rather than for the basic scheme directly. In Figure I.3, the unit value and flow rate of the upgraded feed stream or the blended feed stream are known from the analysis performed for the basic recycle scheme being considered. By an overall value-and-cost balance, the unit value of feed can be calculated for either of the modified modes. In addition to specifying R and y, one extra degree of freedom exists for each modified flowsheet. When feed is pre-enriched in a gaseous diffusion plant (assumed to be operated as a matched-R cascade), the weight ratio of U-235 to U-238 for diffusion plant product R_{D} can be optimized to give the maximum unit value of feed having specified R and y. When feed is blended with natural uranium, giving $R_{B}<R$, the maximum unit value of feed can be maximized by proper choice of the fraction of natural uranium used for blending $\mathrm{F}_{\mathrm{NAT}} / \mathrm{F}$.

In calculating minimum fuel cycle costs for the basic recycle schemes, it is assumed that feed containing

(a) Pre-Enrichment by Gaseous Diffusion

FIGURE I. 3 Modified Modes of Operation
no $\mathrm{U}-236(\mathrm{Y}=0)$ is purchased as UF_{6} on the AEC price scale. However, feed value is determined for uranium in the form of UO_{3}. The assumption is made that the unit costs of converting. UF_{6} to UO_{2} and UO_{3} to UO_{2} are the same.

Table I.l gives values selected for the major economic variables. Since an established price for Np-237 does not exist and since this price is likely to vary considerably before stabilizing at some future date, a range of prices from $\$ 0 / \mathrm{g}$ to $\$ 100 / \mathrm{g}$ is considered. These $N p-237$ prices do not include the cost of recovering $N p-237$, and therefore represent the net credit realized by the operator, per gram of Np-237. A "high unit cost" case uses unit costs of $\$ 60, \$ 40$, and $\$ 6 / \mathrm{kg}$ respectively for fabrication, reprocessing, and shipping, while a "low unit cost" case uses corresponding unit costs of $\$ 40$, $\$ 25$, and $\$ 3 / \mathrm{kg}$. Two loss fractions during fabrication - 0.01 and 0.002 - are examined.

Prices of $\$ 6, \$ 8$, and $\$ 10 / 1 \mathrm{~b}$ are considered for $\mathrm{U}_{3} \mathrm{O}_{8}$. For all diffusion plant operations, the unit charge for separative work is assumed to be $\$ 30 / \mathrm{kgU}$.

For a natural uranium price of $\$ 8 / 1 \mathrm{~b} \mathrm{U}_{3} \mathrm{O}_{8}$ and a charge for separative work of $\$ 30 / \mathrm{kgU}$, the price schedule for enriched uranium is consistent with the AEC price scale in effect in August, 1967.(1) In this

TABLE I. 1

Values for Major Economic Parameters

Reactor inventory (kgU)	53,000
Net electrical power output (MW), P	430
Load factor	0.8
Np-237 price ($\$ / \mathrm{g}$) , C_{N}	variable, between 0 and 100
$\mathrm{U}_{3} \mathrm{O}_{8}$ price (\$/lb), $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$	6,8,10
Cost of separative work (\$/kgU)	30
Fixed charge rate on inventory (yr^{-1})	0.10
Fabrication cost ($\$ / \mathrm{kg}$)	60,40
Reprocessing cost (\$/kg)	40,25
Spent fuel shipping cost (\$/kg)	6,3
Cost of converting UO_{3} to $\mathrm{UF}_{6}(\$ / \mathrm{kg})$	4
Fractional losses:	
Fabrication, L_{F}	0.01,0.002
Reprocessing, uranium $L_{R U}$	0.01
Reprocessing, $\mathrm{Pu}+\mathrm{Np}, \mathrm{L}_{\mathrm{RP}}$	0.01
Conversion of UO_{3} to $\mathrm{UF}_{6}, \mathrm{~L}_{\mathrm{C}}$	0.003

study, when the price of $\mathrm{U}_{3} \mathrm{O}_{8}$ is changed, it is assumed that the optimum tails weight ratio of $\mathrm{U}-235$ to $\mathrm{U}-238$, R_{W}, and the AEC price scale are adjusted to correspond to the new $\mathrm{U}_{3} \mathrm{O}_{8}$ price. For uranium having weight ratio R, the unit price on this scale is given by $C_{A E C}(R)$, \$/kgu. Calculation of R_{W} and $C_{A E C}(R)$ was carried out for each natural uranium price using well-established procedures. (15) Throughout this work, the "AEC price scale"is therefore not necessarily the scale currently used by the AEC, but is the price scale corresponding to a separative work charge of $\$ 30 / \mathrm{kgU}$ and the $\mathrm{U}_{3} \mathrm{O}_{8}$ price under consideration - either $\$ 6 / 1 \mathrm{~b}$ or $\$ 8 / 1 \mathrm{~b}$ or \$10/1b. The credit for fissile plutonium at a given $\mathrm{U}_{3} \mathrm{O}_{8}$ price is taken as $10 / 12$ the price, in $\$ / \mathrm{g}$, of U-235 at 90% enrichment as given by the AEC price scale corresponding to that $\mathrm{U}_{3} \mathrm{O}_{8}$ price.

Uranium value results are correlated and the U-236 and Np-237 effects are presented in more tractable form by calculating a "U-236 penalty," defined as the reduction in total feed value per gram of $U-236$ when $y \mathrm{~kg}$ of U-236 are added to (1-y) kg of $\mathrm{U}-235+\mathrm{U}-238$ at a constant U-235 to U-238 weight ratio.

II. SUMMARY OF RESULTS

Throughout this section, the designation of "reference conditions" will apply to a $\mathrm{U}_{3} \mathrm{O}_{8}$ price $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ of $\$ 8 / 1 \mathrm{~b}$, a fabrication loss fraction L_{F} of 0.01 , and the set of high unit costs, all taken together. Major emphasis is placed on results obtained for these reference conditions, as they are representative of results obtained for other sets of conditions considered and illustrate all important trends.

The minimum fuel cycle cost when feed containing no U-236 is purchased as UF_{6} on the AEC price scale is denoted by C_{E}^{*} and the corresponding optimum $U-235$ to U-238 weight ratio in such feed is given by R^{*}. Table II. 1 presents a summary of results obtained for C_{E}^{*} and R^{*} for all cases examined. The average burnup B which corresponds to R^{*} is also listed. It is important to note the difference in the general level of R^{*} between the two recycle schemes, with R^{*} for recycle to fabrication being considerably higher for the reasons expressed in Section I. A further increase in the level of R^{*} occurs for recycle to fabrication when L_{F} is reduced from 0.01 to 0.002 .

The variation of C_{E}^{*} with the unit price for Neptunium-237 C_{N} is shown in Figure II.l for three $\mathrm{U}_{3} \mathrm{O}_{8}$ prices and for both recycle schemes. For each $U_{3} O_{8}$ price, two major characteristics are apparent:

TABLE II. 1
Summary of Minimum Fuel Cycle Cost Results

$L_{\text {F }}$	Unit Costs	$\begin{aligned} & C_{U_{3}} O_{8} \\ & (\$ / 1 b) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{N}}^{\mathrm{N}} \\ (\$ / \mathrm{CNp}-237) \\ \hline \end{gathered}$		Recycle to Fabrication			Recycle to Diffusion Plant		
					$\begin{gathered} C_{E}^{*} \\ (m / k w h r) \end{gathered}$	R*	$\begin{gathered} B \\ (M W D / T) \\ \hline \end{gathered}$		R*	$\begin{gathered} \mathrm{B} \\ (\mathrm{MWD} / \mathrm{T}) \\ \hline \end{gathered}$
0.01	high	6	54.01	0	1.863	0.571	25682	1.470	0.0318	28232
				60	1.248	0.552	24281	1.292	0.0325	28975
		8	57.41	0	2.028	0.557	24692	1.614	0.0309	26976
				20	1.823	0.551	24250	1.552	0.0311	27191
				60	1.410	0.539	23400	1.429	0.0315	27665
				100	0.996	0.528	22615	1.305	0.0319	28132
		10	60.53	0	2.183	0.545	23851	1.750	0.0300	25855
				60	1.563	0.529	22662	1.559	0.0307	26618
	low	8	52.58	0	1.812	0.497	20481	1.417	0.0270	22599
				60	1.181	0.480	19331	1.237	0.0275	23235
0.002	high	8	54.94	0	2.052	0.694	24360	1.604	0.0307	26742
				60	1.375	0.669	22715	1.417	0.0316	27667

FIGURE II. 1 Effect of Np-237 Price on Minimum Fuel Cycle Cost: High Costs, $L_{F}=0.01$
a. at $C_{N}=0, C_{E}^{*}$ is about 0.4 mills $/ \mathrm{kwhr}$ higher when recycling to fabrication; and,
b. the decrease of C_{E}^{*} with increasing C_{N} is significantly greater for recycle to fabrication so that the values of C_{E}^{*} for both recycle schemes become equal at a price C_{N}^{I} of around $\$ 55 / \mathrm{g}$, at which it is a matter of indifference whether spent uranium is recycled to fabrication or through a diffusion plant. Results for this neptunium indifference price C_{N}^{I} are also given in Table I.l.

These two characteristics can be explained by considering Table I.2, where various steady-state characteristics for Figures I. 1 and I. 2 are given for $y=0$ and $y=0.01$ when R is close to R^{*}. For $y=0$, the substantially higher y_{R} values when recycling to fabrication make it necessary for the reactor feed to have a higher U-235 content, hence higher R_{R}, in order to maintain a reasonable burnup level. This fact plus the loss of value incurred in mixing the feed and recycled uranium streams - which have drastically different U-235 concentrations - lead to higher C_{E}^{*} results for the recycle-tofabrication scheme when $C_{N}=\$ 0 / g$. However, the higher Np-237 production rate at $y=0$ when recycling to fabrication leads to a greater sensitivity of C_{E}^{*} to changes in Np-237 price than for recycle to a diffusion plant and causes the intersection at $C_{N}=C_{N}^{I}$.

When the $N p-237$ price is equal to C_{N}^{I}, it is a matter of indifference which recycle scheme is employed.

TABLE II. 2

Change of Major Fuel Cycle Characteristics with Addition of U-236 to Feed

$$
\left(c_{U_{3} O_{8}}=\$ 8 / 1 b\right)
$$

R_{R}	0.0381	0.0388	0.0403	0.0400	0.03	0.03
Y_{R}	0.0307	0.0380	0.0354	0.0423	0.0050	0.0269
$\mathrm{~B}(\mathrm{MWD} / \mathrm{T})$	24172	22612	24728	22561	26034	17370
$\mathrm{~F}(\mathrm{kgU} /$ day $)$	2.536	2.630	2.182	2.259	29.66	34.33
$\mathrm{~N}(\mathrm{~kg}$ Np/day)	0.109	0.127	0.119	0.136	0.033	0.108
$\mathrm{~F}_{\mathrm{R}} Y_{R} / \mathrm{F}$	0.539	0.688	0.707	0.894	0.007	0.049
$\mathrm{~F}_{\mathrm{R}} / \mathrm{F}$	17.56	18.11	19.96	21.13	1.395	1.806
$\mathrm{~N} / \mathrm{F}$	0.0428	0.0483	0.0545	0.0602	0.0011	0.0031

If C_{N} is less than C_{N}^{I}, it is economically advantageous to recycle uranium to a diffusion plant and permit the discharge of some $U-236$ with the tails stream, while for C_{N} greater than C_{N}^{I}, it is preferable to maximize U-236 retention by recycling to fabrication.

Figures II. 2 through II. 5 show the unit value $\mathrm{V}(\mathrm{R}, \mathrm{y})$ of UO_{3} feed having isotopic composition R, y for both of the basic recycle schemes of Figures I.l and I. 2 when $C_{N}=\$ 0 / g$ and $\$ 60 / g$, using the reference conditions. Results are given at higher values of R for recycle to fabrication than for recycle to a diffusion plant due to the lower U-238 feed requirement of the former. When $C_{N}=\$ 0 / g, U-236$ has effect only as a neutron poison and the reduction of $V(R, y)$ as y increases can be seen at all R for both recycle schemes. However, when C_{N} is increased to $\$ 60 / \mathrm{g}$, the value at each point with $\mathrm{y}>0$ is considerably greater than the corresponding value when $C_{N} \mp$ $\$ 0 / \mathrm{g}$; in fact, for recycle to fabrication (Figure II.3), the feed value at any R increases with increasing y over the y-range investigated. Of course, if y were increased further at a given R, a point would eventually be reached at which the U-236 poisoning becomes so severe that an additional increase of y would then decrease $V(R, y)$, regardless of how high a Np-237 price is

in effect. For recycle to a diffusion plant, results for $C_{N}=\$ 60 / g$ (Figure II.5) show an overlapping of the lines for certain values of y, indicating that the sale of Np-237 at this price is not sufficient to overcome the economic disadvantage of $U-236$ poisoning for all of the (R, Y) points considered. However, for $R>0.04$, the $N p-237$ production per unit of feed is sufficiently high that feed value increases with increasing y over the range of y values considered.

Some characteristics of the $V(R, Y)$ results can be explained very simply. First, $M(R, y)$ is defined as the total fuel cycle cost exclusive of feed costs, in \$/day, when feed has composition R, Y. When U_{6} feed free of U-236 and having U-235 to U-238 weight ratio R is purchased on the AEC price scale at a unit price equal to $C_{A E C}(R)$, then the equation for overall fuel cycle cost $C_{E}(R)$, in mills/kwhr, can be written as

$$
\begin{equation*}
24 L P C_{E}(R)=F C_{A E C}(R)+M(R, 0), \$ / \text { day } \tag{II.1}
\end{equation*}
$$

When feed of composition R, Y is purchased as UO_{3}, the equation for the value of the feed stream, in $\$ /$ day, can be written as follows, by employing the definition of feed value given in Part B of Section I :

$$
\begin{equation*}
F V(R, y)=24 L P C_{E}^{*}-M(R, y) \tag{II.2}
\end{equation*}
$$

Here, C_{E}^{*} is the minimum value of $C_{E}(R)$, which occurs at $R=R^{*}$. By setting $y=0$ in Equation II.2, we can combine
the resulting equation with Equation II. 1 to get

$$
\begin{equation*}
F\left[C_{A E C}(R)-V(R, 0)\right]=24 L P\left[C_{E}(R)-C_{E}^{*}\right] \tag{II.3}
\end{equation*}
$$

Since $C_{E}\left(R^{*}\right)=C_{E}^{*}$ and $C_{E}(R)>C_{E}^{*}$ for $R \neq R^{*}$, we see from Equation II. 3 that

$$
\begin{equation*}
V\left(R^{*}, 0\right)=C_{A E C}\left(R^{*}\right) \tag{II.4}
\end{equation*}
$$

and $V(R, 0)<C_{A E C}(R), R \neq R^{*}$.
Thus, for any set of economic conditions and for either basic recycle scheme, a line representing $V(R, O)$ is tangent to the AEC price scale line at R^{*} and lies below the AEC scale for all other values of R.

Using Equation II.2, an equation for $V(R, y)$ can be written as

$$
\begin{equation*}
V(R, y)=\frac{24 L P C_{E}^{*}-M(R, y)}{F} \tag{II.6}
\end{equation*}
$$

The major components of $M(R, y)$ are approximately proportional to F_{R} and N. For fixed R, the effect on the unit feed value which results from the presence of $U-236$ can be seen by comparing $F, F_{R} / F$, and N / F when $Y=0$ and when $y>0$. These quantities are given in Table II. 2 for both $y=0$ and $y=0.01$ when R is near R^{*}. Since F and F_{R} / F increase with an increase of $y, V(R, y>0)$ will be less than $V(R, O)$ when no credit is taken for the sale of $N p-237$, i.e., when $C_{N}=\$ 0 / \mathrm{g}$. However, N / F also increases with increasing y and, if $C_{N}>0$, this represents a positive effect of increasing y which, for a
sufficiently high C_{N}, could lead to $V(R, Y>0)$ being larger than $V(R, 0)$. In the latter case, the presence of $U-236$ would enhance the value of feed uranium.

The items listed in Table II. 2 will naturally vary with both R and y, but values near R^{*} are of particular importance and indicate the general trends very well.

The $V(R, Y)$ results given for the reference conditions are typical of all other cases considered. As R^{*} changes from one case to the next, the family of curves shifts appropriately to maintain the tangency of $V(R, 0)$ with the AEC price scale at $R=R^{*}$, but the general appearance of the results is the same as in Figures II. 2 through II. 5.

The dropoff of the $V(R, y)$ curves as R approaches the upper and lower ends of the R-ranges in Figures II. 2 through II. 5 indicates that operation according to a basic recycle scheme becomes economically undesirable when R is far from R^{*}. This provides the major incentive for utilizing the modified modes of operation shown in Figure I.3. Using results for $V(R, Y)$, the maximum unit values for feed having composition R, Y were calculated for pre-enrichment by gaseous diffusion and for blending with natural uranium. These unit values are denoted by $V_{D}(R, y)$ and $V_{B}(R, Y)$, respectively. Figure II. 6 shows a superposition of results for $V_{D}(R, y)$,

$\dot{V}(R, Y)$, and $V_{B}(R, Y)$ for recycle to fabrication when the reference conditions are used and when $C_{N}=\$ 0 / \mathrm{g}$. The mode of operation which gives the highest possible unit feed value depends upon the values of R and y being considered. At any (R, y) point, the largest of $V_{D}(R, Y)$, $V(R, Y)$, and $V_{B}(R, Y)$ is defined as $V_{m}(R, y)$ and represents the maximum unit price the PWR operator could afford to pay for this feed without incurring a fuel cycle cost greater than C_{E}^{*}. The line representing $V_{m}(R, y)$ at constant y is made up of segments of the $V_{D}(R, y), V(R, Y)$, and $V_{B}(R, y)$ curves. Except for a rather narrow range of R in the vicinity of R^{*} over which $V_{m}(R, y)=V(R, y)$, the maximum unit feed value is obtained by either preenrichment or blending with natural uranium. For each $y, V_{m}(R, y)$ increases continuously with increasing R, in contrast to the behavior of $V(R, y)$ shown in Figure II.2. The values of R at which $V_{D}(R, Y)$ and $V(R, Y)$ are equal vary with y, as do the values of R at which $V(R, y)$ and $V_{B}(R, Y)$ are equal. The line for $V_{m}(R, 0)$ retains the characteristics of the $V(R, O)$ line of being tangent to the AEC price scale line at R^{*} and lying below the AEC price line for all other R values. Although optimum values of R_{D} and R_{B} were found to be very close to R^{*} when $Y=0$, the cost of converting UO_{3} to UF_{6} and inventory charges during the toll enrichment period force $V_{D}(R, 0)$ to be less than $C_{A E C}(R)$, while the loss of
value incurred when mixing streams of different $U-235$ content results in $V_{B}(R, O)$ being less than $C_{A E C}(R)$. When C_{N} is increased to $\$ 60 / \mathrm{g}$ and to $\$ 100 / \mathrm{g}$, results for recycle to fabrication using the reference conditions are as shown in Figures II. 7 and II.8. For $C_{N}=\$ 60 / g$, the lines are so closely spaced around the AEC price scale that only the $y=0$ and $y=0.04$ lines are given, but the presence of $\mathrm{U}-236$ now increases the maximum feed value over the entire range of R for the values of y considered. At $C_{N}=\$ 100 / \mathrm{g}$, feed value is increased to an even greater extent by the presence of $U-236$. For the reference conditions, maximum unit feed values when recycling to a diffusion plant are given in Figures II.9, II.i0, and II. 11 for $C_{N}=\$ 0, \$ 60$, and $\$ 100 / \mathrm{g}$, respectively. Qualitative trends described for the recycle-to-fabrication case are also apparent for this recycle scheme. Due to the shift of R^{*} to lower values of R, the intersections among $V_{D}(R, Y), V(R, Y)$ and $V_{B}(R, Y)$ now occur much lower in the overall R-range. At $\$ 60 / \mathrm{g}$, the $V_{m}(R, y)$ lines for $y>0$ lie above the $y=0$ line over the entire R-range, representing a drastic change from the intersecting $V(R, y)$ lines shown in Figure II. 5. At each (R, y) point examined, $V_{m}(R, y)$ varies linearly with C_{N} for both recycle schemes. The trends described above for the $V_{m}(R, y)$ results are the same for all other cases considered, with

FIGURE II. 10 Maximum Unit Feed Value - Recycle to Diffusion Plant:

$$
\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 60 / \mathrm{g}, \text { High Costs, } \mathrm{L}_{\mathrm{F}}=0.01
$$

Maximum Unit Feed Value ($\$ / \mathrm{kgU}$)

FIGURE II.ll Maximum Unit Feed Value - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=\$ 100 / g$, High Costs, $L_{F}=0.01$
differences being caused primarily by the changes in R^{*}, as listed in Table II.l, and the corresponding shifts in $V(R, Y)$ results..

The $U-236$ penalty, denoted by $\delta(R, y)$, was defined in Section I as the reduction in total feed value per gram of U-236 when $y \mathrm{~kg}$ of $\mathrm{U}-236$ are added to (1-y) kg of U-235 + U-238 at a constant U-235 to U-238 weight ratio R. This definition can be expressed symbolically as

$$
\begin{equation*}
\delta(R, y)=\frac{(1-y) v_{m}(R, 0)-v_{m}(R, y)}{1000 Y}, \$ / g U-236 \tag{II.7}
\end{equation*}
$$

Results for $\delta(R, y)$ were calculated for various values of y and for a range of R from 0.005 to 15 (fully enriched). Figure II. 12 shows $\delta(R, y)$ for recycle to fabrication when reference conditions are assumed and for $C_{N}=\$ 0, \$ 60$, and $\$ 100 / \mathrm{g}$. The corresponding $\delta(R, y)$ results for recycle to a diffusion plant are given in Figure II.13. For both recycle schemes, $\delta(R, y)$ for both $C_{N}=\$ 60 / g$ and $\$ 100 / g$ is shown to be negative over the entire range of R for all values of y considered. A negative penalty indicates that the presence of $\mathrm{U}-236$ causes a mixture of (I-y) kg of U-235 plus U-238 and $y \mathrm{~kg}$ of $\mathrm{U}-236$ to have a higher total value than the (l-y) kg of U-235 plus U-238 alone. Penalty lines for $y=0.15$ are shown at high R, since uranium having isotopic compositions in this range is often discharged

from research or test reactors and might be available for purchase as feed.

The reasons for the irregular variation of $\delta(R, y)$ with both R and Y are numerous and complex; however, two major sources of irregularity exist. First, the use of $V_{m}(R, y)$ in Equation II. 7 causes $\delta(R, Y)$ for constant y to be calculated first using $V_{D}(R, Y)$, then using $V(R, y)$, and finally using $V_{B}(R, y)$, as R is increased from low to high values. Second, over certain ranges of $R, V_{m}(R, O)$ is obtained by using a different mode of operation than is $V_{m}(R, Y)$ for $Y>0$. These irregular variations are not serious, however, since the primary purpose for calculating $\delta(\mathrm{R}, \mathrm{y})$ is to indicate the general level of the U-236 penalty for different economic conditions and for the two recycle schemes. Consequently, it is convenient to define a "penalty level", $\bar{\delta}$, as the approximate penalty at R^{*}. For recycle to fabrication, the differences between $\delta\left(R^{*}, y\right)$ for various y-values are sufficiently great that $\bar{\delta}$ is arbitrarily based on $y=0.02$. When so defined, δ provides a useful approximate summary of a set of $\delta(R, y)$ results.

Table II. 3 gives values of δ obtained for the various conditions considered. The major effects which influence the variation of δ can be determined by detailed analysis of the penalty near R^{*}. For R near R^{*}, we can assume that $V_{m}(R, y)=V(R, y)$ and then combine

TABLE II. 3

Equations II. 6 and II. 7 to get the following expression for $\delta_{3}(R, y)$, the penalty, based on basic recycle operation alone:

$$
\begin{equation*}
\delta_{3}(R, y)=\frac{24 \operatorname{LPC}_{E}^{*} \beta+\eta}{1000 y} \tag{II.8}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\frac{1-Y}{F(R, O)}-\frac{1}{F(R, Y)} \tag{II.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta=\frac{M(R, y)}{F(R, y)}-\frac{(1-y) M(R, O)}{F(R, O)} . \tag{II.10}
\end{equation*}
$$

F has been written to show dependence on R and $y . B$ influences δ_{3} through the increase in F which occurs with increasing $y . ~ \eta$ is a measure of the change in the total fuel cycle cost exclusive of feed costs, normalized to unit feed, when U-236 is introduced into the feed; hence, η is governed by the increases of quantities such as F_{R} / F (caused by reduced burnup) and N / F (caused by higher U-236 content in reactor feed) which occur when Y is increased, as shown in Table II.2.

Table II. 4 gives a representative sampling of results for $B, 24 L P C_{E}^{*} \beta, \eta$, and $\delta_{3}(R, y)$ when $y=0.01$ for R close to R^{*}. Results for B are governed predominantly by the feed rate level, with B increasing as the general level of F decreases. Thus, B is larger for recycle to fabrication than for recycle to a diffusion plant. Reduction of L_{F} for recycle to fabrication leads to

TABLE II. 4
Items Which Govern U-236 Penalty Changes

$\begin{gathered} \text { Recycle } \\ \text { to } \end{gathered}$	$L_{\text {F }}$	Unit Costs	R	$\begin{aligned} & \mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}} \\ & (\$ / 1 \mathrm{~b}) \end{aligned}$	B	$\begin{gathered} C_{N} \\ (\$ / q N p) \\ \hline \end{gathered}$	$\begin{aligned} & 24 \mathrm{LPC}_{E}^{*} B \\ & (\$ / \mathrm{kqU}) \end{aligned}$	$\begin{gathered} \eta \\ (\$ / \mathrm{kgU}) \end{gathered}$	$\begin{aligned} & \delta_{3}(R, 0.01) \\ & (\$ / q U-236) \end{aligned}$
Fabrication	0.01	High	0.55	8	0.01003	0	167.94	88.16	25.61
						60	116.78	-222.37	-10.56
						100	82.50	-429.00	-34.65
				6	0.01003	0	154.28	86.40	24.07
		Low	0.50	8	0.00956	0	142.92	71.94	21.49
	0.002	High	0.70	8	0.01097	0	185.85	108.95	29.48
Diffusion Plant	0.01	High	0.03	8	0.00425	0	56.63	47.45	10.41
						60	50.14	-58.12	- 0.80
						100	45.80	-128.51	-8.27
				6	0.00413	0	50.13	44.81	9.49
		Low	0.03	8	0.00425	0	49.73	31.54	8.13

lower feed rates and a higher B. Changes of B and C_{E}^{*} from case-to-case lead to differences in the $24 L P C_{E}^{*} B$ contribution to the penalty.

At $C_{N}=\$ 0 / g$, the η contribution is positive and important, but is smaller than $24 \operatorname{LPC}_{\mathrm{E}}^{*}$. As C_{N} becomes larger, the Np-237 credit increases faster for $y=0.01$ than for $y=0$, which leads to smaller η values. At $C_{N}=\$ 60 / \mathrm{g}$ and $\$ 100 / \mathrm{g}, \eta$ is strongly negative and provides the dominant contribution to the penalty. Since both C_{E}^{*} and η decrease with increasing C_{N}, the penalty also decreases as shown.

When $C_{N}=\$ 0 / g$, higher B and C_{E}^{*} for recycle to fabrication provide about $\$ 11 / \mathrm{g}$ of the $\$ 15 / \mathrm{g}$ penalty differential between the two recycle schemes. The remaining $\$ 4 / g$ of the difference is caused by increased sensitivity of η to changes of y for the recycle-to-fabrication scheme. However, as C_{N} increases, the more rapid decrease of C_{E}^{*} (see Figure II.1) and the greater sensitivity of N / F to changes of y serve to reduce $24 L P C_{E}^{*} B$, η, and $\delta_{3}(R, y)$ at a higher rate for recycle to fabrication.

For recycle to fabrication, reduction of L_{F} leads to increased η as well as higher B, as mentioned above, and to an increment of about $\$ 4 / \mathrm{g}$ to the penalty. The increase in η results from a higher sensitivity of burnup to changes of y when R is near R^{*} for the
lower L_{F}. Changes in L_{F} do not significantly affect the characteristics for recycle to a diffusion plant; hence, feed values and penalties were not recalculated for that case.

Detailed penalty results for all cases studied retain the same general appearance as those in Figures II. 12 and II.13, except for shifts in δ. For any (R, Y) point, $\delta(R, Y)$ varies linearly with C_{N}; however, the variation of $\delta(R, Y)$ with $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ is non-linear, although the rather crudely-chosen values for $\bar{\delta}$ in Table II. 3 suggest linearity.

The penalty level has been seen to exhibit the following general characteristics:
a. δ increases as the feed rate requirement decreases;
b. δ decreases as C_{E}^{*} decreases; and
c. δ decreases as C_{N} increases.

The "indifference price" of Np-237, $C_{N}^{O}(R, Y)$, is the value of C_{N} at which $\delta(R, Y)=0$. At this neptunium price the value of uranium feed containing a given amount of U-235 and U-238 is the same whether or not the uranium contains $U-236$; therefore, it is a matter of indifference in purchasing uranium containing U-235 and U-238 at a given price whether the uranium contains U-236 or not. Results calculated for $C_{N}^{O}(R, y)$ fall within the approximate ranges indicated in Table II.3.

For all sets of economic conditions considered, the range of $C_{N}^{O}(R, y)$ is lower for recycle to fabrication. The rate at which $\delta(R, y)$ decreases with increasing C_{N} is sufficiently greater for recycle to fabrication that $\delta(R, Y)$ becomes zero at a lower C_{N}, despite the fact that $\delta(R, Y)$ is substantially higher at $C_{N}=\$ 0 / g$ than it is for recycle to a diffusion plant. It is noteworthy that the $\mathrm{Np}-237$ indifference prices are all between $\$ 34 / \mathrm{g}$ and $\$ 59 / \mathrm{g}$. Consequently, it appears safe to generalize that the U-236 penalty, as defined above, will be positive for $C_{N}<\$ 30 / g$ and negative for $C_{N}>$ $\$ 60 /$ g. Between $C_{N}=\$ 30 / g$ and $C_{N}=\$ 60 / g$, one has to consider the effects of economic conditions and recycle scheme before U-236 can be judged as economically beneficial or as economically undesirable.

Figures II. 12 and II. 13 indicate a substantial decrease in the absolute magnitude of the penalty at constant y as R decreases.toward the low end of the $R-$ range. In this portion of the R-range, $V_{m}(R, y)$ is generally attained by pre-enriching feed in a gaseous diffusion plant. During pre-enrichment, only a fraction α of the U-236 in the feed is retained in the product stream, the remainder being discharged in the tails or lost during conversion of UO_{3} to $\mathrm{UF}_{6}{ }^{\circ}$. As R decreases, a higher fraction of the feed U-236 appears in the tails and α becomes smaller. The penalty variation at low R is related to α. Thus, the absolute magnitude of the
penalty decreases as R decreases in the range in which pre-enrichment is used. In an attempt to remove part of the dependence of the $U-236$ penalty on R, it is logical to define an "adjusted" penalty as

$$
\begin{equation*}
\delta_{A D J}(R, y)=\frac{1}{\alpha} \delta(R, y) \tag{II.1I}
\end{equation*}
$$

which has units of $\$ / \mathrm{g}$ of $\mathrm{U}-236$ reaching fabrication, rather than $\$ / g$ of $U-236$ in feed. Since there is no loss of feed U-236 when using the basic recycle scheme or when blending with natural uranium, then whenever $V_{m}(R, Y)$ is equal to either $V(R, y)$ or $V_{B}(R, Y), \alpha$ is effectively equal to one and $\delta_{A D J}(R, Y)=\delta(R, Y)$.
$\delta_{A D J}(R, Y)$ is plotted against R at constant y in Figures II. 14 and II.15. By comparing $\delta_{A D J}(R, y)$ in these figures with $\delta(R, Y)$ in Figures II. 12 and II.13, it can be seen that variation of $\delta_{A D J}$ with R at low R is much less than the variation of δ with R. In fact, the values of δ given in Table II. 3 may be considered as approximately representative of $\delta_{A D J}$ over the entire range of R, provided the units of δ are taken to be $\$ / g$ of U-236 reaching fabrication. These values of δ may be used in rough estimates of the effect of U-236 on the value of uranium feed for pressurized water reactors.

The results of this study clearly indicate that the operators of PWR systems must be prepared to account for the effect of $U-236$ on their fuel cycle economics when

they become involved in the purchase of previouslyirradiated uranium. Operators of other reactor types would find it advantageous to carry out studies similar to the present one when considering the use of uranium feed containing U-236, before deciding on the price they could afford to pay for such uranium.

It has also been shown that the price at which byproduct $\mathrm{Np}-237$ is sold can strongly influence the cost of power, the value of uranium containing $U-236$, and the selection of an overall fuel-flow scheme. As a result, considerable effort should be expended in an attempt to forecast the market price for Np-237 before specifying a fuel cycle scheme and before establishing limits on the price which can be afforded for feed uranium.

III. REFERENCE REACTOR - SAN ONOFRE PWR

A. Reactor Description

The reference reactor chosen for the study is that of the San Onofre Nuclear Generating Station, which will be jointly owned by the Southern California Edison Company and the San Diego Gas and Electric Company. The plant is expected to attain full power operation early in 1968. ${ }^{(16)}$ The closed-cycle, pressurized light water moderated and cooled reactor was designed by Westinghouse and will generate $1346 \mathrm{MW}(\mathrm{t})$, leading to a net electrical output of $430 \mathrm{MW}(\mathrm{e})$ from the plant. (10)

The core is made up of 157 fuel elements, each composed of 196 metallic tubes positioned in a square lattice by grid assemblies of an "egg-crate" configuration. Of the 196 tubes, 180 contain uranium dioxide and 16 may either contain the individual neutron absorbing rods of a rod cluster control element or be left vacant. Rod cluster control elements are placed in 45 of the fuel elements, and since there are no follower elements, water replaces the absorber rods as the control cluster is withdrawn from the core. The core is arranged to form a unit that is roughly cylindrical in shape, with an active length of 10 ft . and an equivalent diameter of 9.2 ft .

Although the initial loading of the fuel will be clad with Type 304 stainless steel, it is expected that

Zircaloy-4 will be the cladding material used for subsequent loadings. Since this study is based on steady-state recycle operation of the reactor and its fuel cycle, it was decided that Zircaloy-4 cladding would be used here. The core loading is approximately $53,000 \mathrm{~kg}$ of uranium.

Reactivity control is provided both by the rod cluster control absorbers and by boric acid dissolved in the light water coolant. The boric acid concentration is varied to compensate for reactivity effects due to xenon and samarium, fuel depletion and fission product buildup, and change of the primary coolant temperature from shutdown to hot-operating conditions at zero power. The control rod clusters provide control for shutdown margin, Doppler broadening effects, and reactivity changes associated with the programmed increase in the average coolant temperature in the core above the hot, zero power condition.

A detailed listing of reactor characteristics is given in Appendix A. Since a major part of the overall study is to examine the effect of varying uranium feed isotopic composition on the unit feed value, the content of $\mathrm{U}-235, \mathrm{U}-236$, and $\mathrm{U}-238$ in uranium charged to the reactor is not unique but will vary from one feed composition to another. Likewise, the steadystate average discharge burnup will depend on the feed isotopic composition being considered. The variation
of the steady-state reactor feed composition and average discharge burnup with the isotopic composition of feed uranium is discussed in detail in Section IV, Part A.

B. Refueling Scheme

The San Onofre Reactor design will utilize a modified out-in fuel shuffling scheme. For a core of this size, use of normal out-in movement of fuel leads to poor power sharing by the heavily depleted inner region and excessive maximum-to-average power ratios for the equilibrium core. In order to improve the power distribution, Westinghouse ${ }^{(10)}$ has specified that several slightly-depleted fuel assemblies be placed near the center of the core while some of the more highly depleted assemblies are moved towards the outside of the core, the net effect being a more uniformly reactive core. It is difficult to simulate such a refueling procedure without resorting to extremely complex and time-consuming computer codes.

A more-easily simulated refueling scheme and one aso being considered for cores of this size (17) is a modified version of the multibatch scatter refueling scheme devised by Westinghouse for very large (1,000 MWe) reactors (11). This scheme, which was selected for use in this study, differs from complete scatter refueling in that fresh fuel is first loaded into an outer annular ring, from which it is then used as
partially-depleted feed for the remainder of the core, which is fueled according to the scatter procedure. In effect, there is a region refueled scatter-wise, surrounded radially by an annular region which feeds the central region with assemblies that have been irradiated for the period of time between reloadings. This modification tends to provide a flatter power distribution than does complete scatter refueling for the reference design core size ${ }^{(17)}$, since the outer core power production is increased by the fresh fuel located there.

A 4-batch refueling scheme was selected for the study, as this yields about a one-year refueling interval, preferred by most utility companies, for nearoptimum equilibrium refueling operation. As a result, the outer ring occupies one-fourth of the total core volume while the inner scatter region occupies the remaining three-quarters of the core.

C. Reactivity and Depletion Calculation Model

All fuel depletion calculations and predictions of reactor characteristics at the steady-state refueling condition were carried out using CELLMOVE, which is a modified version of FUELMOVE, a fuel management program written at MIT ${ }^{(14)}$. Two space dimensions ($R-Z$ geometry) are utilized in the diffusion theory calculation and energy dependence is described by a
modified two-group model. A Wigner-Wilkins spectrum is calculated below the thermal cutoff energy.

Two separate codes - CELL (13) and MOVE - are actually involved. First, CELL is used to calculate the fuel isotopic composition and the unit cell characteristics as functions of thermal flux-time for the uranium which is charged to the reactor. The MOVE code then performs the flux distribution calculations throughout core lifetime, using the results from CELL to calculate the flux-time-dependent characteristics at each mesh point in the reactor, and predicts the reactivity lifetime of the core and average discharge burnup. The original version of MOVE ${ }^{(14)}$ provides a variety of fuel management options for discharging, charging, and shuffling fuel between cycles and also for repeating the refueling scheme a sufficient number of times to reach steady-state operation. For the present study, a version of MOVE was written which simulates the 4 -batch modified scatter refueling scheme described above and which automates the approach to steady-state refueling for a fixed reactor feed composition, R_{R} and Y_{R}. Once steady-state refueling has been reached for specified values of R_{R} and Y_{R}, the revised MOVE will calculate all other steady-state flow rates and uranium isotopic compositions throughout the recycle flowsheets of Figures I.l and I.2. The scatter refueling version of $M O V E$ is discussed in more
detail in Appendix C.
The original FUEL ${ }^{(14)}$ code could not be used to accurately predict the time-dependent characteristics of pressurized water reactors. (18) The need to perform a large number of steady-state refueling calculations made it mandatory that a relatively simple and fast, yet reasonably accurate, fuel management program be used. As a result, a number of modifications were made to FUEL by Beaudreau ${ }^{(13)}$ and the CELL code evolved. The agreement of CELLMOVE predictions with both experimental data for the Yankee Reactor and Westinghouse calculations for the San Onofre Reactor was sufficiently close to justify the use of CELLMOVE as the major computational tool for the study. A summary description of the CELL code is given in Reference 41. A modification which was made to CELL in order to correctly represent the buildup of $\mathrm{Np}-237$ is described in Appendix B. D. Procedure for Obtaining Steady-State Recycle Characteristics

Determination of the steady-state fuel flow rates and isotopic compositions which correspond to a specified feed isotopic composition (R and y) is a major part of the analysis for the basic fuel cycle flowsheets shown in Figures I.l and I.2. Steady-state operation of a fuel cycle is reached only when flow rates and compositions at every point in the cycle become invariant with time. Such an operating condition insures that
steady-state refueling of the reactor is in effect, i.e., the fuel fed to the reactor and the fuel discharged both have isotopic compositions which do not vary from one irradiation cycle to the next.

Since only the variation of steady-state flowsheet characteristics with R and y is required for the economic analysis in this study, there is no need to examine the transient cycle characteristics in detail. For both Figures I.I and I.2, the "direct" procedure would be to maintain a fixed feed composition R, Y and to follow successive batches of fuel through the reactor, during recycle, and in the re-enrichment (by gaseous diffusion and/or mixing with feed uranium) step, until the transient period terminates and all fuel batches possess identical histories through the fuel cycle. Such a procedure would permit determination of all steady-state characteristics as functions of R and Y directly. However, the reactor feed composition, described by R_{R} and Y_{R}, then changes from one transient cycle to the next and a separate CELL run would be required for each reactor feed composition, resulting in excessive computer time and data handing requirements for each (R, Y) point considered.

An alternative method of predicting steady-state characteristics which utilizes the CELL code more efficiently has been chosen for the study. For both
recycle schemes, this "indirect" procedure begins with the assumption of R_{R} and Y_{R} values. Using CELLMOVE and keeping this reactor feed composition fixed, the refueling scheme is brought to a steady-state condition. Since R_{R} and Y_{R} are the same for all transient cycles, it is necessary to perform the CELL calculation only once for each approach to steady-state refueling as performed by MOVE. For the steady-state cycle, MOVE calculates the time-averaged reactor feed rate and spent fuel flow rate and then utilizes material balance considerations to determine all other flow rates and uranium compositions throughout both basic recycle flowsheets; hence, the values of R and y which correspond to a fixed reactor feed composition R_{R}, Y_{R} can be determined for both recycle schemes. The disadvantage of this simple procedure is the lack of direct control over the (R, y) points for which the corresponding steady-state flowsheet characteristics are known; however, procedures have been developed for transferring the direct dependence of flowsheet characteristics from R_{R} and y_{R} to R and y. This is discussed further in Section IV, Part A.

A major advantage of the "indirect" procedure is that a set of flowsheet characteristics for both basic recycle schemes can be obtained from a single CELLMOVE calculation for fixed values of R_{R} and Y_{R}. In contrast,
the "direct" procedure would necessitate a complete set of CELLMOVE calculations for each recycle scheme, thereby increasing the overall computer time required for the study even more.

IV. MODES OF OPERATION

A. Basic Recycle Schemes

The two basic schemes considered for recycling spent uranium are described in detail in this section. The two schemes differ in the method utilized for re-enriching the spent uranium prior to its use as feed to the reactor. In the first scheme described, feed uranium is purchased and blended with recycled uranium to form the reactor feed, while the second scheme involves re-enrichment of recycled uranium in a gaseous diffusion plant with subsequent mixing of the requisite feed with the diffusion plant heads stream to form the reactor feed. The two schemes require significantly different feed isotopic compositions to maintain reasonable reactor operation under steady-state recycle conditions. The relative economic advantages and disadvantages of the two schemes depend strongly upon the economic climate and will be discussed in Section VI.

1. Recycle to Fabrication

The flowsheet for this recycle scheme is shown in Figure IV.1. Flow rates indicated at various points in the cycle are steady-state, time-averaged values, based on plant operation at a load factor L and at a net electrical power output of P MW. Note that throughout this study such flow rates are used instead of discrete batch sizes. The reader should not interpret

FIGURE IV.l Flowsheet for Recycle of Uranium to Fabrication
this is an indication of reactor operation with steady, on-line refueling, but rather as a convenience in expressing the uranium requirements of the steadystate flowsheet. The isotopic composition of uranium at various points is described by the U-235 to U-238 weight ratio (R_{i}) and the weight fraction of $U-236$ in total uranium (y_{i}).

Uranium of composition R_{R}, Y_{R} is fed to the reactor at the flowrate F_{R}, is irradiated, discharged, and shipped to a reprocessing plant where plutonium, neptunium, and spent uranium are recovered. Fissile plutonium and Np-237 are sold in nitrate form immediately after their recovery at rates K and N, respectively. Spent uranium of composition R_{S}, Y_{S} is assumed to be converted from UNH to UO_{3} (a form suitable for shipping) at the reprocessing site, and is recycled as UO_{3} at flowrate F_{S} back to the fabrication plant. Losses of uranium ($L_{R U}$), plutonium ($L_{R P}$), and neptunium ($L_{R P}$) occur during reprocessing, as indicated on the flowsheet. Note that R_{S}, Y_{S} is also the composition of uranium in the immediate reactor discharge stream.

In this scheme, the only means available for reenriching the recycled uranium is by blending it with more-highly-enriched feed uranium to form the reactor feed stream. Feed uranium is assumed to be purchased as either UO_{3} or UF_{6} at rate F and with composition R, Y. Feed purchased as UF_{6} would be purchased on the

AEC price scale and would contain no $U-236(y=0)$. Blending, conversion to VO_{2}, and fuel fabrication are carried out with an accompanying uranium loss rate of $F_{R^{L}} F^{\prime}$ Reactor feed uranium is sent from fabrication to the reactor to complete the fuel cycle.

Since we are considering only the steady-state flowsheet, the uranium product from blending feed with recycled spent uranium must have composition R_{R}, Y_{R} and must be obtained at rate $F_{R}\left(1+L_{F}\right)$. The uranium purchased as feed must balance the amounts of $U-235$, U-236, and U-238 in the three uranium "sinks" - depletion during irradiation, reprocessing losses, and fabrication losses.

In order to carry out the fuel cycle economics calculations described later, it is necessary to determine all flowsheet characteristics over a range of feed isotopic compositions, i.e.,for various combinations of R and y. As discussed in Section III-D, it is advantageous to specify R_{R} and Y_{R} and to proceed through the flowsheet to calculate the corresponding values of R and y. This procedure is discussed in detail below.

For a specified R_{R}, Y_{R} combination, the 4-batch scatter refueling scheme is brought to steady-state using the CELLMOVE code, and the values for F_{R}, R_{S}, Y_{S}, $F_{S} /\left(1-L_{R U}\right), K /\left(1-L_{R P}\right)$ and $N /\left(1-L_{R P}\right)$ can be calculated for the discharged fuel. Results for F_{S}, K, and N are simply obtained from:

$$
\begin{align*}
& \boldsymbol{F}_{S}=\left(1-L_{R U}\right)\left(\frac{F_{S}}{1-L_{R U}}\right) \tag{IV.I}\\
& \mathbf{K} \equiv\left(1-L_{R P}\right)\left(\frac{K}{1-L_{R P}}\right) \tag{IV.2}
\end{align*}
$$

and $N=\left(1-L_{R P}\right)\left(\frac{N}{1-L_{R P}}\right)$.
The feed characteristics can be determined by total uranium, U-236, and U-235 mass balance relations for the fabrication plant.

$$
\begin{align*}
& F=\left(1+L_{F}\right) F_{R}-F_{S} \tag{IV.4}\\
& y F=\left(1+L_{F}\right) y_{R} F_{R}-y_{S} F_{S} \tag{IV.5}\\
& \left(\frac{R}{1+R}\right)(1-y) F=\left(1+L_{F}\right)\left(\frac{R_{R}}{1+R_{R}}\right)\left(1-y_{R}\right) F_{R}- \\
& \left(\frac{R_{S}}{1+R_{S}}\right)\left(1-y_{S}\right) F_{S} \tag{IV.6}
\end{align*}
$$

Thus, from the arbitrary choice of R_{R} and y_{R}, complete steady-state flowsheet characteristics can be determined which correspond to the calculated R and y values.

Since the purpose of the study is to determine the value of feed having composition R, y, it is inconvenient to have knowledge of flowsheet characteristics only at scattered points in the $R-y$ plane. By calculating characteristics at a series of $\left(R_{R}, Y_{R}\right)$ points spaced regularly over an $R_{R}-Y_{R}$ grid, a procedure can be developed for transferring the functional dependence
of flowsheet characteristics from R_{R} and Y_{R} to R and y. The steps are described below.
a. Select a value of y for which characteristics are desired.
b. Specify a value for R_{R} (not necessarily a value in the $R_{R}-Y_{R}$ grid).
c. Specify a value for y_{R} and use double Lagrangian interpolation over tables of $1 / F_{R}, R_{S}, Y_{S}$, $\left(1-L_{R U}\right) / F_{S}, K /\left(1-L_{R P}\right)$, and $N /\left(1-L_{R P}\right)$ vs. R_{R} and Y_{R} to determine discharged fuel composition. Interpolation was performed on the reciprocals of F_{R} and $F_{S} /\left(1-L_{R U}\right)$ to avoid difficulty at points of very low burnup, i.e., for very large F_{R} and $F_{S} /\left(1-L_{R U}\right)$.
d. Use Equations IV. 1 through IV. 6 to calculate R, Y, and F .
e. Repeat steps c and d until a value for Y_{R} is obtained which gives the desired y. Since y increases with increasing Y_{R} (as discussed later in this section), the iteration is not difficult.
f. Repeat steps c, d, and e for a series of R_{R} values.
g. Flowsheet characteristics are now known for a series of irregularly spaced values of R and the specified y. Using Lagrangian interpolation, this data can then be used to calculate flowsheet characteristics at each of a series of regularly-spaced R values.
h. Repeat steps b through f for other values of \mathbf{Y} •

The iterations involved can be carried out with little difficulty on the computer, so that the use of the "indirect" method of obtaining steady-state characteristics results in only minor inconvenience.

2. Recycle to Diffusion Plant

The second scheme for recycling spent uranium is shown in Figure IV.2. This flowsheet differs from the one described in the preceding section only in that re-enrichment of the recycled uranium is now performed in a gaseous diffusion plant.

Spent uranium of composition R_{S}, Y_{S} leaves the reprocessing plant as UO_{3} at rate F_{S} and is then converted to UF_{6} preparatory to being fed to the diffusion plant. During conversion, a fraction L_{C} of the converted uranium is lost. The remainder of the $U F_{6}$ is fed to the diffusion plant where it is separated into a heads stream having composition R_{P}, Y_{P} and flowrate F_{P} and a tails stream having composition R_{W}, Y_{W} and flowrate F_{W}. Feed uranium having composition R, Y is purchased at rate F in the form of either UO_{3} or $\mathrm{UF}_{6}{ }^{\text {. }}$ At the fabrication plant, the feed and re-enriched heads streams are mixed, converted to UO_{2}, and fabricated, with an overall loss rate of $F_{R} L_{R}$. Shipment of fabricated elements to the reactor completes the cycle.

FIGURE IV. 2 Flowsheet for Recycle of Uranium to Gaseous Diffusion Plant

In this steady-state flowsheet, the uranium purchased as feed must balance not only the uranium lost due to depletion, reprocessing, and fabrication, but also the amounts of $\mathrm{U}-235, \mathrm{U}-236$, and $\mathrm{U}-238$ lost during conversion of UO_{3} to UF_{6} and the amounts discharged in the diffusion plant tails stream. Later . it will be shown that the tails stream represents a uranium sink which causes drastic differences in the feed stream characteristics required to insure nearoptimum reactor operation for the two basic recycle schemes.

The diffusion plant is assumed to be so operated that, at each point where two streams are mixed, both streams have the same U-235 to U-238 weight ratio. De la Garza, Garrett, and Murphy ${ }^{(12)}$ call a diffusion cascade operated in this way a "matched-R cascade". Analysis of fuel cycle performance is much simpler with matched-R operation of the diffusion plant than with more complex methods which in principle might lead to lower expenditures of separative work, but which for the cases of practical importance in the present work do not reduce separative work significantly below the matched -R results. In Appendix K it is shown that, for the cases dealt with in this study, the use of matched-R operation yields separative work requirements in close agreement with those resulting from a method of cascade operation which is more
efficient but far more complex from an analytical standpoint.

A basic assumption which is unavoidable in performing the study is that, in every diffusion plant operation considered, the only feed, product, and tails streams are those in the fuel cycle being examined; no other material is fed to or taken from the diffusion plant. In actual toll enrichment transactions ${ }^{(19)}$, uranium of known composition is presented to the AEC (e.g., natural uranium or uranium discharged from a reactor) and product having a higher U-235 content is requested. Instead of using the supplied feed material to produce the desired product, the AEC may actually furnish product which was enriched from a different feed material. Thus, lack of control over the U-236 content in the product uranium could result, since the composition of feed streams and other product streams of the diffusion plant will be relatively unpredictable. Due to the impossibility of predicting the composition of all possible feed and product streams of the diffusion plant at some future date, it is necessary to make the above assumption.

The matched-R cascade operates with a "zero-value" tails stream, with the optimum R_{W} determined in the same way (15) as for the "ideal cascade" mode of operation used presently in the AEC enrichment facilities. When the optimum R_{W} is used, the tails stream has zero value
regardless of its U-236 content. (12) The assumption is made that the tails stream always has the optimum R_{W} corresponding to the price paid for natural uranium and the current unit cost of separative work charged by the AEC. If the market price for natural uranium is reasonably stable, this is a realistic assumption.

The calculation of steady-state characteristics for this flowsheet is identical to that described for the recycle-to-fabrication scheme through the calculation of R_{S}, Y_{S}, and F_{S}, i.e., values for R_{R} and Y_{R} are specified and CELLMOVE is used together with Equations IV.1, IV.2, and IV. 3 to calculate $F_{R}, R_{S}, Y_{S}, K, N$, and F_{S}.

The distribution of $\mathrm{U}-236$ in the external streams of a matched-R cascade is governed by (12)

$$
\begin{equation*}
\frac{Y_{P} F_{P}}{\left(R_{P}\right)^{1 / 3}}+\frac{Y_{W} F_{W}}{\left(R_{W}\right)^{1 / 3}}=\frac{Y_{S}{ }_{S}}{\left(I+L_{C}\right)\left(R_{S}\right)^{1 / 3}} \tag{IV.7}
\end{equation*}
$$

Mass balance relations for the diffusion plant are given next for the total uranium, $U-236$, and $U-235$.

$$
\begin{align*}
& F_{P}+F_{W}=\frac{F_{S}}{1+L_{C}} \tag{IV.8}\\
& \mathbf{Y}_{P} F_{P}+Y_{W} F_{W}=\frac{Y_{S} F_{S}}{1+L_{C}} \tag{IV.9}\\
&\left(\frac{R_{P}}{1+R_{P}}\right)\left(1-Y_{P}\right) F_{P}+\left(\frac{R_{W}}{1+R_{W}}\right)\left(1-Y_{W}\right) F_{W}= \\
&\left(\frac{R_{S}}{1+R_{S}}\right)\left(1-y_{S}\right) \frac{F_{S}}{1+L_{C}} \tag{IV.10}
\end{align*}
$$

The matched-R condition which governs the diffusion plant operation is also applied at the point where the feed and diffusion plant heads streams are mixed to form reactor feed, i.e.,

$$
\begin{equation*}
R=R_{P}=R_{R}, \tag{IV.11}
\end{equation*}
$$

so that R and R_{P} are known once R_{R} is specified. Mass balance relations for total uranium and for U-236 can be written for the fabrication plant, as follows:

$$
\begin{align*}
F & =\left(1+L_{F}\right) F_{R}-F_{P} \tag{IV.12}\\
\mathbf{Y} F & =\left(1+L_{F}\right) y_{R} F_{R}-y_{P} F_{P} \tag{IV.13}
\end{align*}
$$

As discussed above, R_{W} is known once the unit cost of separative work and the price of natural uranium have been specified. The remaining unknowns - $y_{W}, F_{W}, Y_{P}, F_{P}$, y , and F - can be determined from Equations IV.7, IV.8, IV.9, IV.10, IV.12, and IV.13. Manipulation of these six equations leads to the following:

$$
\mathbf{y}_{\mathrm{W}}=\frac{\mathrm{A}}{1+\mathrm{A}},
$$

where $A=\frac{y_{S}\left(R_{W}-R_{P}\right)\left(1+R_{S}\right)}{\left(1-y_{S}\right)\left(R_{S}-R_{P}\right)\left(1+R_{W}\right)}\left[\frac{\left(\frac{R_{P}}{R_{S}}\right)^{1 / 3}-1}{\left(\frac{R_{P}}{R_{W}}\right)^{1 / 3}-1}\right]$,
and $\quad F_{W}=\frac{F_{S}\left(1-y_{S}\right)\left(R_{S}-R_{P}\right)\left(1+R_{W}\right)}{\left(1+L_{C}\right)\left(1-y_{W}\right)\left(R_{W}-R_{P}\right)\left(1+R_{S}\right)}$.
(IV.I5)

Knowing Y_{W} and F_{W}, Equations IV.8, IV.9, IV.12, and IV. 13 can be used to calculate F_{P}, Y_{P}, F, and Y, respectively.

Thus, from an arbitrary specification of R_{R} and Y_{R}, all steady-state flowsheet characteristics can be determined which correspond to the calculated value of Y and the specified $R=R_{R}$ value.

Determination of cycle characteristics for points spaced regularly in the $R-Y$ plane is simpler here than for the recycle-to-fabrication scheme, because one has direct control over the values of R examined, as indicated by Equation IV.11. The procedure described in the preceding section applies to the present case with the exception of step g, which can be omitted. By selecting values of R_{R} which adequately cover the range desired for R, there is no need to interpolate flowsheet characteristics to regularly-spaced R values.

This emphasis on obtaining characteristics over a regular R - y grid is justified by the convenience this provides when examining results and, more important, by the need to interpolate some characteristics at non-tabular (R, y) points, as described in later sections.

3. Operating Parameters

In order to determine flowsheet characteristics, values for a number of parameters were assumed, with an attempt made to choose values which might be typical of reactor operation in the mid-to-late 1970's. Table IV. 1 summarizes the values used in the flowsheet analyses.

TABLE IV. 1
Summary of Operating Parameters

Net electrical power output (MW), P 430
Full-power thermal output (MW) 1346
Average load factor, L 0.8
Fractional loss during fabrication, $L_{F} \quad 0.01,0.002$
Fractional losses during reprocessing:

Uranium, $L_{R U}$	0.01
Plutonium and Neptunium, $L_{R P}$	0.01

Fractional loss during conversion of

$$
\mathrm{UO}_{3} \text { to } \mathrm{UF}_{6}, \mathrm{~L}_{\mathrm{C}} \quad 0.003
$$

Unit cost of separative work $(\$ / \mathrm{kgU}), C_{\Delta} \quad 30$
Optimum ratio of $\mathrm{U}-235$ to $\mathrm{U}-238$ in
tails, R_{W} :

$\$ 6 / 1 \mathrm{~b} \mathrm{U}_{3} \mathrm{O}_{8}$	0.0028195
$\$ 8 / 1 \mathrm{~b} \mathrm{U} \mathrm{U}_{3} \mathrm{O}_{8}$	0.0025372
$\$ 10 / 1 \mathrm{~b} \mathrm{U}_{3} \mathrm{O}_{8}$	0.0023173

It was mentioned in Section III that the San Onofre reactor will operate with a net electrical power output, P, of 430 MW . In lieu of detailed load vs. time predictions for this reactor, it was considered reasonable to assume a steady-state average load factor, L, equal to 0.8 .

Fuel losses of 1% during fabrication and 1% during reprocessing were assumed; in addition, it was decided that 0.2%, a figure often used by ORNL ${ }^{(20)}$ in their studies, should be considered as an alternative loss during fabrication. A loss of 0.3% was assumed to occur during the conversion of UO_{3} to UF_{6}.

A major part of this study is to examine the effect on the fuel value results when $C_{U_{3}} O_{8}$, the price of natural uranium as $\mathrm{U}_{3} \mathrm{O}_{8}$, is varied. A change in $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ affects the characteristics of the recycle-todiffusion plant flowsheet for each (R, y) point, since the optimum tails weight ratio also changes.

Calculation of optimum R_{W} for the three $U_{3} O_{8}$ prices is described in Appendix F. The results were based on a unit cost of separative work, C_{Δ}, of $\$ 30 / \mathrm{kgU}$.
4. Flowsheet Characteristics

The effects of $\mathrm{U}_{3} \mathrm{O}_{8}$ price, fabrication losses, and U-236 feed content on major flowsheet characteristics will be described for the two basic recycle schemes,
and major differences between the recycle schemes will be pointed out. A detailed presentation of reactor and flowsheet characteristics, as calculated by CELLMOVE, is given in Appendix L for each R_{R}, Y_{R} combination considered. In addition, major flowsheet characteristics are presented as functions of feed composition, R and y, in Appendix E.

The most basic difference between the two recycle schemes is in the feed characteristics required to maintain reactor operation. This is best seen by comparing isotopic masses throughout both recycle schemes, when the reactor feed is the same in each case. Figures IV. 3 and IV. 4 show mass balances for recycle to fabrication and to a diffusion plant, respectively, with masses normalized to 100 units of $U-236$ in the reactor feed, when $R_{R}=0.04$ and $Y_{R}=$ 0.05. The discharge burnup for this case is 20,600 MWD/MT. Fabrication losses were taken as 1% and diffusion plant operation is based on a $U_{3} O_{8}$ price of \$8/lb. Comparison of these mass balances indicates a number of key points.
a. Due to the large amount of uranium discharged in the tails stream, it is necessary that almost an order of magnitude more feed be purchased when reenrichment is by gaseous diffusion.

Note. All masses normalized to 100 units of $U-236$ in reactor feed; numbers result from specifying $R_{R}=0.04$ and $Y_{R}=0.05$, with 1% loss during fabrication.

FIGURE IV. 3 Typical Mass Balance - Recycle to Fabrication

Note. All masses normalized to 100 units of $U-236$ in reactor feed; numbers result from specifying $R_{R}=0.04$ and $y_{R}=0.05$, with $\$ 8 / l b U_{3} O_{8}$ and 1% loss during fabrication.

FIGURE IV. 4 Typical Mass Balance - Recycle to Diffusion Plant
b. The relatively small discharge of U-235 in the tails stream leads to about the same U-235 feed requirements for both flowsheets; however, the lack of a strong U-238 sink in the recycle-to-fabrication scheme leads to much higher R values ($R=0.554$ in Figure IV.3) than when a diffusion plant is used.
C. Although U-236 tends to be separated more from U-238 than from U-235 during gaseous diffusion, the diffusion plant offers the only strong U-236 sink and its presence in a recycle scheme leads to a significantly lower ratio of $U-236$ mass entering the reactor to U-236 mass in the feed than for recycle to fabrication.
d. The loss streams provide a significant uranium sink in Figure IV. 3 and, due to their appearance in streams of low U-235 to U-238 ratio, appreciably reduce R below the $U-235$ to $U-238$ ratio of above unity in the depletion pseudo-stream. However, the tails stream so dominates the uranium discharged from the other flowsheet that loss streams are a very minor consideration.
e. The amount of $\mathrm{Np}-237$ sold per unit of feed purchased is much greater when blending is used for reenrichment of spent uranium (Figure IV.3) than when the diffusion plant is used (Figure IV.4).

The importance of loss streams in the recycle-tofabrication scheme can be clearly seen by noting the effect of reducing the fabrication loss fraction L_{F} from 0.01 to 0.002:

$\mathbf{L}_{\mathbf{F}}$	0.01	0.002
Fabrication losses		
U-235	0.731	0.146
U-236	1.000	0.200
U-238	18.269	3.654
U	20.000	4.000
Feed		
U-235	36.718	36.133
$U-236$	2.592	1.792
$U-238$	66.331	51.716
U	105.641	89.641
R	0.554	0.699

Most noteworthy is the lower U-238 feed requirement and the associated increase in R from 0.554 to 0.699.

The effect of $\mathrm{U}_{3} \mathrm{O}_{8}$ price on the mass balance of Figure IV. 4 is seen by comparing tails and feed stream compositions given below for $\$ 6 / 1 \mathrm{~b}$ and $\$ 10 / 1 \mathrm{~b}$ with those for $\$ 8 / 1 \mathrm{~b}$ on the flowsheet.

	Tails		Feed	
	$\underline{\$ 6 / 1 b}$	$\$ 10 / 1 \mathrm{~b}$	$\$ 6 / 1 \mathrm{~b}$	$\$ 10 / 1 \mathrm{~b}$
$\mathrm{U}-235$	2.575	2.088	39.404	38.917
$\mathrm{U}-236$	16.749	15.020	19.635	17.906
$\mathrm{U}-238$	913.433	901.259	985.085	972.911
U	932.757	918.367	1044.124	1029.734

As $C_{U_{3} O_{8}}$ increases, R_{W} decreases, and the recycled uranium enters the cascade further from the tails end, so that less uranium is discharged in the tails.

In particular, as R_{W} decreases, the $U-236$ in the tails decreases since U-236 tends to "follow" U-235 rather than U-238 in the cascade.

It is interesting to examine the variation of a few principal characteristics with R and y. The variation of Y_{R}, R_{R}, F, N, and average burnup (B) will be illustrated and discussed briefly. When they are significant, the effects of $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ and L_{F} will be indicated.

Figure IV. 5 shows the variation of R_{R} with R, for three values of y and for both L_{F} values, when recycling to fabrication. Values for R_{R} increase as L_{F} increases since losses occur in streams having high U-238 content. As y increases at fixed R, we see that R_{R} tends to increase somewhat, since the discharge burnup decreases (due to greater U-236 poisoning) leading to higher reactor throughput rates and correspondingly higher loss rates. As R becomes larger, this y effect disappears because the resulting high burnups result in low loss rates.

Figure IV. 6 shows the effect of R and y on y_{R} for both recycle schemes. For both schemes, an increase in R also increases $R_{R}\left(R=R_{R}\right.$ in the diffusion plant case), which leads to greater U-236 production during irradiation and thus to a higher concentration of $\mathrm{U}-236$ in reactor feed. Generally, y_{R} increases more rapidly with increasing Y when the diffusion plant is used

FIGURE IV. 5 Variation of R_{R} with R and y Recycle to Fabrication

FIGURE IV. 6 Variation of y_{R} with R and y
since the U-236 content in the discharged tail increases with y at a rate which is less than linear. Reduction of. L_{F} leads to lower R_{R}, lower $U-236$ production, and lower y_{R} for the same (R, Y) point, when recycling to fabrication. The loss effect is not significant for the diffusion plant case.

In Figure IV. 7 we see expected increases of arerage discharge burnup (B) with increasing R and, due to U-236 poisoning, decreases of B with increasing y. Since a decrease of L_{F} leads to lower R_{R} in the recycle-to-fabrication case, and since an increase in $\mathrm{C}_{\mathrm{U}_{3}} \mathrm{O}_{8}$ leads to higher y_{R} in the diffusion plant case, both conditions would result in reduced B. The results for B give information on F_{R} since a simple inverse proportionality exists between the two quantities:

$$
\begin{equation*}
F_{R}(k g U / \text { day })=\frac{1000}{B}(\text { thermal power, } M W)(\text { load factor }) \tag{IV.16}
\end{equation*}
$$

Thus, as B increases, F_{R} decreases and effects a decrease in all non-depletion streams. This is reflected by the general variation of feed rate, F, illustrated in Figure IV. 8.

Figure IV. 9 illustrates a general increase in the net production rate of $\mathrm{Np}-237, \mathrm{~N}$, as y increases. When no U-236 is present in the feed purchased, N increases monotonically with R, with significantly higher Np-237 production for the recycle-to-fabrication

FIGURE IV. 7 Variation of Burnup with R and y

FIGURE IV. 8 Variation of Feed Rate with R and y

FIGURE IV. 9 Variation of Np-237 Production Rate with R and Y
case. This point is of great importance in an economic comparison of the recycle schemes, as will be seen in Section VI. For higher y values, N first decreases with increasing R (hence, increasing burnup) since the effect of $\mathrm{Np}-237$ absorptions during irradiation becomes larger; however, at sufficiently high R, the absorption rate in U-236 becomes so large that the net $N p-237$ production rate increases with a further increase of R. When L_{F} is decreased, N increases due to a decrease in burnup and reduction of the absorptions in Np-237 produced during irradiation. As $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ increases, N will increase slightly due to an increase in Y_{R}.

Of particular importance in studying the effect of U-236 on the unit value of feed uranium is the change in various flowsheet characteristics with increasing y. Since unit feed value is to be examined, the effect of y on items normalized to a unit of feed is of most interest. Table IV. 2 gives such information when y is increased from 0 to 0.01 for $R=0.03$ in the diffusion plant scheme and for $R=0.55$ for recycle to fabrication. These values of R are close to those which give minimum fuel cycle cost for each flowsheet (as determined in Section VI) when $\mathrm{C}_{\mathrm{U}_{3}} \mathrm{O}_{8}$ $=\$ 8 / 1 b$ and $L_{F}=0.01$.

One can see the marked increase in the amount of U-236 entering the reactor per unit of feed ($\left.\mathrm{F}_{\mathrm{R}} \mathrm{Y}_{\mathrm{R}} / \mathrm{F}\right)$,

TABLE IV. 2
Effect of y on Fuel Cycle Characteristics
Normalized to Unit Feed

$$
\left(C_{U_{3} O_{8}}=\$ 8 / 1 b ; L_{F}=0.01\right)
$$

$$
y=0 \quad y=0.01 \quad \begin{gathered}
\text { Change with } \\
\text { increase in } y
\end{gathered}
$$

Recycle to Fabrication, $R=0.55$:

$\mathrm{F}_{\mathrm{R}} \mathrm{Y}_{\mathrm{R}} / \mathrm{F}$	0.539	0.688	0.149
$\mathrm{~N} / \mathrm{F}$	0.0428	0.0483	0.0055
$\mathrm{~F}_{\mathrm{R}} / \mathrm{F}$	17.56	18.11	0.55
$\mathrm{~K} / \mathrm{F}$	0.1165	0.1152	-0.0013

Recycle to Diffusion Plant, $R=0.03$:

$F_{R} Y_{R} / F$	0.0070	0.0486	0.0416
N / F	0.0011	0.0031	0.0020
F_{R} / F	1.395	1.806	0.411
K / F	0.0089	0.0098	0.0009
Δ / F	0.933	1.122	0.189
F_{P} / F	0.408	0.824	0.416

when y is increased from 0 to 0.01 . The increase is more than three times greater for the recycle-to-. fabrication case, which results in an increase of N/F which is almost three times greater than for the diffusion plant case and leads to increased sensitivity of the unit value of uranium containing $\mathrm{U}-236$ to $\mathrm{Np}-237$ price changes.

The decrease in burnup as y increases effects an increase in $\mathrm{F}_{\mathrm{R}} / \mathrm{F}$. The normalized production of fissile plutonium changes only slightly with increasing y, decreasing because of increased R_{R} (see Figure IV.5) for the recycle-to-fabrication case, and increasing because of reduced burnup, hence reduced plutonium depletion, for the diffusion plant case. For the diffusion plant case, the normalized separative work requirement (Δ / F) and heads stream flow rate ($\left.F_{P} / F\right)$ both increase with y, primarily because of the increase of F_{R} / F. The increase in Δ / F is partially due to the presence of higher $U-236$ levels in the cascade. B. Modified Modes of Operation

In Figure IV. 7 it is apparent that the values for R which result in reasonable burnups fall within a narrow range for both basic recycle schemes. Also, the R-values near the upper and lower ends of both ranges give burnups too high or too low for favorable fuel cycle economics. In order to extend the range of R over which uranium values can be obtained and to provide
alternative means for utilizing uranium feed suitable for basic recycle operation, two schemes have been developed for modifying the isotopic composition of feed uranium before it is fed to a basic flowsheet. Both modifications can be used in connection with either basic recycle scheme. Taken together, these schemes permit calculation of feed value for uranium of any isotopic composition.

1. Pre-Enrichment by Gaseous Diffusion

As shown in Figure IV.10, UO_{3} feed having composition R, Y is purchased at a rate F_{D}. The U_{3} is first converted to UF_{6} and is then fed to a diffusion plant for upgrading. The product stream has composition R_{D}, Y_{D} (of course, $R_{D}>R$) and is fed as $U F_{6}$ to the fabrication plant at rate F. The flowsheet can be completed, as indicated, by considering operation according to either basic recycle, scheme. Tails having composition $\mathrm{R}_{\mathrm{T}}, Y_{\mathrm{T}}$ are discharged from the cascade at rate F_{T}. Since the diffusion plant is operated as a matched- R cascade, R_{T} will have the optimum value corresponding to the values of $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ and C_{Δ} being considered.

When this modified scheme is used with the recycle-to-diffusion plant scheme, one matched-R cascade could be used to upgrade both the feed and spent uranium streams; however, the overall study is carried out in a

FIGURE IV. 10 Flowsheet for Pre-Enrichment of Feed by Gaseous Diffusion
more consistent manner when the basic recycle scheme and the modified modes are analyzed separately, since the basic recycle-to-fabrication scheme excludes diffusion plant operations.

In solving for flowsheet characteristics, four बquations are available - cascade mass balances for total uranium, $U-236$, and $U-235$, and the $U-236$ distribution equation. (12) These are

$$
\begin{equation*}
F+F_{T}=\frac{F_{D}}{I+L_{C}} \tag{IV.17}
\end{equation*}
$$

$$
\begin{equation*}
y_{D} F+y_{T} F_{T}=\frac{y F_{D}}{1+L_{C}} \tag{IV.18}
\end{equation*}
$$

$$
\left(\frac{R_{D}}{1+R_{D}}\right)\left(1-y_{D}\right) F+\left(\frac{R_{T}}{1+R_{T}}\right)\left(1-y_{T}\right) F_{T}=\left(\frac{R}{1+R^{\prime}}\right)(1-y) \frac{F_{D}}{1+L_{C}},
$$

(IV.19)
and $\frac{Y_{D}{ }^{F}}{\left(R_{D}\right)^{1 / 3}}+\frac{Y_{T} F_{T}}{\left(R_{T}\right)^{1 / 3}}=\frac{Y F_{D}}{\left(1+L_{C}\right)(R)^{1 / 3}}$.
A fifth restraint is that F can be calculated, using the results of the basic recycle scheme study, once values for R_{D} and Y_{D} are determined. Eight unknowns are present so there is freedom to choose three quantities arbitrarily. It is desirable to specify values for R and Y so that direct control over the feed composition is retained. The presence of R_{D} to the $1 / 3$ power in Equation IV. 20 makes it convenient to select R_{D} as the third arbitrary quantity. The five remaining
unknowns $-F_{D}, F, Y_{D}, Y_{T}$, and F_{T} - can be calculated from the four equations and knowledge of $F\left(R_{D}, Y_{D}\right)$.

The fact that R_{D} and Y_{D} are not both specified
seems to imply an iterative solution; however, iteration can be avoided by dividing Equations IV. 17 through IV. 20 by F and then solving them for $F_{T} / F, F_{D} / F, Y_{D}$, and Y_{T}. The result for Y_{D} is

$$
y_{D}=\frac{x}{1+x}
$$

where $x=\frac{Y\left(R_{D}-R_{T}\right)(1+R)}{(1-Y)\left(R-R_{T}\right)\left(1+R_{D}\right)}\left[\frac{1-\left(\frac{\left.R_{T}\right)^{1 / 3}}{1-\left(\frac{R_{T}}{R_{D}}\right)^{1 / 3}}\right]}{1}\right]$
Knowing R_{D} and Y_{D}, F can be calculated from the basic recycle flowsheet results described in the preceding section. Next, F_{T} is determined from

$$
\begin{equation*}
F_{T}=F\left[\frac{\left(1-Y_{D}\right)\left(R_{D}-R_{T}\right)(1+R)}{(1-Y)\left(R-R_{T}\right)\left(1+R_{D}\right)}-1\right] \tag{IV.22}
\end{equation*}
$$

Finally, F_{D} and Y_{T} can be found using Equations IV. 17 and IV.18.

Note that for specified values of R and y, R_{D} can be used as a parameter for optimizing flowsheet operation with respect to some desired economic criterion. Further mention of this is made in Section V.
2. Blending with Natural Uranium

In this scheme, shown in Figure IV.11, UO_{3} having composition R, Y is purchased at flowrate F_{B} and is

FIGURE IV. 11 Flowsheet for Blending of Feed with Natural Uranium
blended with natural uranium $\left(R_{\text {NAT }}=0.007161\right.$) purchased at rate $\mathrm{F}_{\mathrm{NAT}}$. The natural uranium stream could be purchased as $\mathrm{U}_{3} \mathrm{O}_{8}$ or UF_{6}, with blending actually performed after conversion to some suitable chemical form at the fabrication plant (this is discussed further in Section V, Part E). The blended stream has composition R_{B}, Y_{B} and flowrate F and becomes the feed stream to either of the basic recycle schemes.

Unlike the other modified operating mode, which serves to increase the ratio of $U-235$ to $U-238$ in the feed, blending with natural uranium results in R_{B} being lower than R and, since natural uranium contains no U-236, causes Y_{B} to be less than Y.

If ϵ is defined as the fraction of blended feed consisting of natural uranium,

$$
\begin{equation*}
\epsilon=\frac{F_{N A T}}{F}, \tag{IV.23}
\end{equation*}
$$

then equations for y_{B} and. R_{B} can be written as

$$
\begin{equation*}
y_{B}=(1-\epsilon) y \tag{IV.24}
\end{equation*}
$$

after taking U-235 and U-236 mass balances at point A and using the following mass balance for total uranium:

$$
\begin{equation*}
F=F_{N A T}+F_{B} \tag{IV.26}
\end{equation*}
$$

For selected values of R and y, ϵ can be specified and Y_{B} and R_{B} calculated from Equations IV. 24 and IV. 25. Using the results of the basic recycle scheme study, F can be determined at the known (R_{B}, Y_{B}) point. Equations IV. 23 and IV. 26 can then be used to calculate $F_{\text {NAT }}$ and F_{B}.

In addition to the freedom of specifying feed composition R and y, an additional degree of freedom is available and is used by specifying ϵ. Thus, for a given (R, Y) point, ϵ can be optimized with respect to a desired economic condition. This is discussed further in Section V.

V. PROCEDURE FOR CALCULATING URANIUM VALUE

A. Basic Principle

The principle to be followed in determining the value of uranium of a given composition R, Y when it is used as feed in a specified fuel flow model is that the overall fuel cycle cost with feed uranium of this composition shall equal the lowest fuel cycle cost which can be obtained for the same fuel cycle when feed uranium contains no $U-236$ and is priced on the AEC scale. If the price of uranium is equal to the value determined in this way, it will be a matter of indifference to the reactor operator whether the fuel cycle is fed with uranium of optimum enrichment, containing no U-236, priced on the AEC scale, or with uranium of some other composition priced according to this principle.

Four basic assumptions have been made in the application of this value principle.
a. Value will be determined for feed uranium as UO_{3}, which is a convenient form for shipping processed uranium.
b. Two kinds of diffusion plants are assumed to be operating. One accepts uranium streams containing U-236 and performs toll enrichment taking into account U-236 effects in the cascade. The second accepts natural uranium feed only and provides the enriched UF_{6} product, free of $U-236$, which is purchased as feed for
the basic recycle flowsheets at a price consistent with the AEC scale.
c. In the economic analysis, it is assumed that U_{6} of any enrichment can be purchased from the AEC without actually supplying natural uranium for toll enrichment; hence, the delay in receiving enriched product from toll enrichment ${ }^{(19)}$ is not incurred for this feed uranium.
d. When more than one unit value can be obtained for uranium having specified composition and used as feed in a particular fuel cycle, the maximum unit value will be used as the criterion for optimizing fuel cycle operation.

B. Fuel Cycle Cost Equations

The equations used to determine minimum fuel cycle costs for the two methods of recycling uranium correspond to the basic recycle schemes shown in Figures IV.I and IV. 2 when feed containing no U-236 is purchased as UF_{6} on the AEC scale. Operation according to either of the modified flowsheets of Figures IV. 10 and IV. 11 would lead to higher fuel cycle costs than for the basic recycle scheme alone since l) pre-enrichment by gaseous diffusion requires a delay between the delivery of diffusion plant feed and the receipt of enriched product, resulting in an additional inventory charge, and 2) blending with natural uranium involves the mixing of
streams having different $U-235$ content and causes a net loss of value which would effect an increase in fuel cycle cost.

1. Recycle to Fabrication

Using the nomenclature given in Section IV, Part 1 (or see Appendix M), the equation for $C_{E}(R)$, the overall fuel cycle cost in mills/kwhr when UF_{6} feed having a U-235 to U-238 weight ratio of R and containing no $U-236$ is purchased on the AEC price scale, is given by:

$24 \mathrm{PLC}_{E}(\mathrm{R})=$	cost of electricity (\$/day)
$F C_{A E C}{ }^{(R)}$	cost of feed
$+F_{R} C_{F}$	cost of fabrication
$+\left(\frac{F_{S}}{1-L_{R U}}+\frac{N+K}{1-L_{R P}}\right)\left(C_{A}+C_{S H}\right)$	cost of reprocessing and shipping
- $1000 \mathrm{KC}_{\mathrm{K}}$	credit for plutonium
- $1000 \mathrm{NC}_{\mathrm{N}}$	credit for neptunium
$+i t_{F}\left(\frac{C_{R}}{1-L_{F}}+C_{F}\right) F_{R}$	interest on inventory during

$+\frac{i I}{2 \times 365}\left[\frac{C_{R}}{1-L_{F}}+C_{F}+\frac{1000\left(K C_{K}+N C_{N}\right)+F_{S}\left(C_{S}-C_{C}\right)}{F_{R}}\right.$
$\left.-\left(\frac{F_{S}}{1-L_{R U}}+\frac{N+K}{1-L_{R P}}\right) \frac{\left(C_{A}+C_{S H}\right)}{F_{R}}\right]$
interest on mean value of reactor inventory
(Equation continued on p. 120)

$$
\begin{aligned}
& +i t_{R U} F_{S}\left[C_{S}-C_{C}-\frac{\left(C_{A}+C_{S H}\right)}{1-L_{R U}}\right] \\
& \text { interest on uranium } \\
& \text { inventory during } \\
& \text { reprocessing } \\
& +i t_{R P}\left[1000\left(K C_{K}+N C_{N}\right)-\frac{(N+K)}{1-L_{R P}}\left(C_{A}+C_{S H}\right)\right]
\end{aligned}
$$

In this equation,
C_{F} is the unit fabrication cost per $k g$ of uranium leaving fabrication and includes the cost of converting UO_{3} or UF_{6} to UO_{2} and the cost of pre-irradiation shipping;
$C_{\text {AEC }}(R)$ is the price of UF_{6} having $\mathrm{U}-235$ to $\mathrm{U}-238$ ratio R, based on the AEC scale, in $\$ / \mathrm{kgU}$;
C_{A} is the unit cost of reprocessing per kg of fuel fed to the plant and includes a charge for converting UNH to UO_{3};
$C_{S H}$ is the unit cost of post-irradiation shipping;
C_{K} and C_{N} are the prices received for fissile plutonium and $N p-237$, respectively, in $\$ / g$;
i is the annual fixed charge rate on working capital;
t_{F} is the average pre-irradiation holdup time for uranium, in years, including the time required for shipping feed or recycled uranium to the fabrication plant;
$t_{R U}$ and $t_{R P}$ are the average post-irradiation holdup times, in years, for uranium and for $\mathrm{Pu}+\mathrm{Np}$, respectively;

I is the total initial uranium loading of the reactor in kg ; and
C_{C} is the unit cost of converting UO_{3} to UF_{6}.
In addition, unit prices of reactor feed, C_{R}, and spent uranium, C_{S}, are needed to compute inventory charges. For this purpose, as a reasonable approximation, these are assigned the same price they would have as UF_{6} on the AEC price scale, with U-236 treated as U-238. Thus, for inventory charges:
a) the value of reactor fuel prior to irradiation is that of fuel elements fabricated from UF_{6} of unit price C_{R}; and b) the value of spent uranium is C_{S} minus the costs of shipping, reprocessing, and conversion to $\mathrm{UF}_{6}{ }^{\text {. }}$ This accounts for the presence of C_{C} in Equation V.I.

The above definition of C_{F} implies that the cost of converting UO_{3} to UO_{2}, per kg of uranium, is taken to be the same as the cost of converting $U F_{6}$ to UO_{2}. Slight differences which might actually exist do not warrant the inclusion of numerous additional items in the cost equations, particularly since this is not a major contributor to the overall fuel cycle cost. In many situations throughout the study, the fabricator
receives streams of UF_{6} and UO_{3} for conversion to UO_{2} and subsequent fabrication, and it is convenient to asign a single, overall cost of fabrication (including conversion) for each kg of uranium shipped to the reactor. In order to secure a homogeneous mixture of any two streams, regardless of their chemical form, it is likely that they would both be put into solution for mixing, after which the homogeneous solution would be converted to UO_{2}. Thus, since neither stream would be converted directly to UO_{2}, the assumption of a single cost of conversion per kg of reactor feed is not unreasonable.

By using Equation $V .1$ to calculate $C_{E}(R)$ for a sufficient number of feed R values, the minimum fuel cycle cost C_{E}^{*} and the corresponding optimum U-235 to U-238 weight ratio R^{*} can be determined for a particular set of economic conditions.

2. Recycle to Diffusion Plant

For this scheme, illustrated in Figure IV.2, the equation for $C_{E}(R)$ is identical to Equation V.l, except that the following cost items must now be included on the right side of the equation: the separative work charge, ΔC_{Δ}; the cost of converting recycled UO_{3} to $\mathrm{UF}_{6}, \mathrm{~F}_{S} \mathrm{C}_{C}$; and the inventory charge on the product from toll enrichment, it $E_{P} C_{D}$.
C_{Δ} is the unit cost of separative work, in $\$ / \mathrm{kgU}$, and Δ is the time-averaged separative work expended in
the matched-R cascade, in kgU/day. This is calculated from ${ }^{(12)}$

$$
\begin{equation*}
\Delta=F_{P} \emptyset_{P}+F_{W} \emptyset_{W}-\frac{F_{S}}{1+L_{C}} \emptyset_{S}, \tag{v.2}
\end{equation*}
$$

where \varnothing_{i}, the separation potential of stream i, is

$$
\begin{equation*}
\emptyset_{i}=\left[2\left(1-y_{i}\right) \frac{R_{i}}{1+R_{i}}+4 y_{i}-1\right] \ln R_{i} \tag{v.3}
\end{equation*}
$$

The time interval, in years, between the delivery of uranium to the AEC for toll enrichment and the receipt of product uranium is given by $t_{E} \cdot C_{D}$, the price of the product from toll enrichment, is needed only for the inventory term and is approximated by the price on the AEC scale which the product would have if U-236 were taken as U-238.

The various assumptions made and nomenclature used for Equation V.l also apply to this case. The minimum fuel cycle cost, C_{E}^{*}, can be determined by varying R until the optimum value, \dot{R}^{*}, is reached.

C. Uranium Value Equations

When the feed uranium is purchased as UO_{3}, and may contain $\mathrm{U}-236$, its unit value is determined from the condition that the net fuel cycle cost which results from its use is equal to the minimum fuel cycle cost, C_{E}^{*}, for the recycle scheme being examined. The equations developed below permit the calculation of unit value for uranium of any composition R, Y when it is used as feed for either recycle scheme.

It was assumed in the preceding section that the unit cost of fabrication, C_{F}, includes conversion of either UO_{3} or UF_{6} to UO_{2}. Thus, the fact that feed is now purchased as UO_{3} rather than as UF_{6} does not necessitate any adjustment to the fuel cycle cost model.

1. Recycle to Fabrication - Basic Scheme

The unit value, $V(R, y)$, of UO_{3} feed having specified R and y can be evaluated from Equation $V . l$ by setting $C_{E}(R)=C_{E}^{*}$, replacing $C_{A E C}(R)$ with $V(R, Y)$, and solving for $V(R, Y)$. Note that all steady-state characteristics now correspond to the specified (R, y) point. $V(R, y)$, in $\$ / \mathrm{kgU}$, is found to be:

$$
\begin{align*}
V(R, Y)= & \frac{1}{F}\left\{24 P L C_{E}^{*}-F_{R} C_{F}-\left(\frac{F_{S}}{1-L_{R U}}+\frac{N+K}{1-L_{R P}}\right)\left(C_{A}+C_{S H}\right)\right. \\
+ & 1000\left(K C_{K}+N C_{N}\right)-i t_{F}\left(\frac{C_{R}}{1-L_{F}}+C_{F}\right) F_{R} \\
- & \frac{i I}{730}\left[\frac{C_{R}}{1-L_{F}}+C_{F}+\frac{1000\left(K C_{K}+N C_{N}\right)+F_{S}\left(C_{S}-C_{C}\right)}{F_{R}}\right. \\
& \left.-\left(\frac{F_{S}}{1-L_{R U}}+\frac{N+K}{1-L_{R P}}\right) \frac{\left(C_{A}+C_{S H}\right)}{F_{R}}\right] \\
- & i t_{R U} F_{S}\left[C_{S}-C_{C}-\frac{\left(C_{A}+C_{S H}\right)}{1-L_{R U}}\right]-i t_{R P}\left[1000\left(K C_{K}+N C_{N}\right)\right. \\
& \left.\left.-\frac{(N+K)}{1-L_{R P}}\left(C_{A}+C_{S H}\right)\right]\right\} \tag{V.4}
\end{align*}
$$

2. Recycle to Diffusion Plant - Basic Scheme Knowing C_{E}^{*} for operation according to this recycle procedure, the unit value, $V(R, Y)$, of feed can be written by including the diffusion plant cost items in

Equation V.4.

$$
\begin{align*}
v(R, Y) & =\frac{1}{F}\left\{24 L P C_{E}^{*}-F_{R} C_{F}-\left(\frac{F_{S}}{1-L_{R U}}+\frac{N+K}{1-I_{R P}}\right)\left(C_{A}+C_{S H}\right)\right. \\
& -\Delta C_{\Delta}-F_{S} C_{C} \\
& +1000\left(K C_{K}+N C_{N}\right)-i t_{F}\left(\frac{C_{R}}{1-L_{F}}+C_{F}\right) F_{R}-i t_{E} F_{P} C_{D} \\
& -\frac{i I}{730}\left[\frac{C_{R}}{1-L_{F}}+C_{F}+\frac{1000\left(K C_{K}+N C_{N}\right)+F_{S}\left(C_{S}-C_{C}\right)}{F_{R}}\right. \\
& \left.-\left(\frac{F_{S}}{1-L_{R U}}+\frac{N+K}{1-L_{R P}}\right) \frac{\left(C_{A}+C_{S H}\right)}{F_{R}}\right] \\
& -i t_{R U} F_{S}\left[C_{S}-C_{C}-\frac{\left(C_{A}+C_{S H}\right)}{1-L_{R U}}\right]+i t_{R P}\left[1000\left(K C_{K}+N C_{N}\right)\right. \\
& \left.\left.-\frac{(N+K)}{1-L_{R P}}\left(C_{A}+C_{S H}\right)\right]\right\} \tag{V.5}
\end{align*}
$$

3. Pre-Enrichment by Gaseous Diffusion

In the analysis of Figure IV.10, it was pointed out that, once the composition R_{D}, Y_{D} of the upgraded feed stream is known, the flowrate of upgraded feed, F, can be determined from the results of the basic recycle scheme tnalysis discussed in Part A of Section IV. Similarj unit value of the upgraded feed stream $V\left(R_{D}, Y_{D}\right) \quad$ determined from the results of the basic theme feed value analysis just described, sinc $\quad d$ feed stream serves as the feed stream for le scheme being considered. The defin. sermits the use of $V(R, Y)$ results for
feed in the form of either UF_{6} or UO_{3}.
By performing a value and cost balance for Figure IV. 10 , we get the following equation:
$F V\left(R_{D}, Y_{D}\right)=\left(1+i t_{C}\right) F_{D} V_{D}\left(R, Y, R_{D}\right)+F_{D} C_{C T}+\Delta_{D} C^{+i t_{E} F V}\left(R_{D}, Y_{D}\right)$
(V.6)
where $V_{D}\left(R, Y, R_{D}\right)$ is the unit value of UO_{3} feed having composition R, Y when upgraded to R_{D};
t_{C} is the time interval between the purchase of UO_{3} and delivery of UF_{6} for toll enrichment;
$C_{C T}$ includes all unit costs incurred during t_{C};
and Δ_{D} is the daily separative work expenditure required for pre-enrichment, as calculated from

$$
\begin{equation*}
\Delta_{D}=F \emptyset_{D}+F_{T} \emptyset_{T}-\frac{F_{D}^{\emptyset}}{1+L_{C}} \tag{V.7}
\end{equation*}
$$

with \emptyset_{i}, the separation potential of the stream having composition R_{i}, Y_{i}, calculated from Equation V. 3 .

Equation $V .6$ can be solved for $V_{D}\left(R, Y, R_{D}\right)$ in the form:

$$
\begin{align*}
V_{D}\left(R, Y, R_{D}\right) & =\frac{1}{\left(1+i t_{C}\right) F_{D}}\left[\left(1-i t_{E}\right) F V\left(R_{D}, Y_{D}\right)-F_{D} C_{C T}\right. \\
& \left.-\Delta_{D} C_{\Delta}\right] \tag{V.8}
\end{align*}
$$

For a specified R and y, flowsheet characteristics and unit feed value can be changed by varying R_{D}, as discussed in Part B of Section IV. The maximum $V_{D}(R, Y$, R_{D}) which can be obtained by varying R_{D} is of principal interest and is defined as $V_{D}(R, Y)$.

4. Blending with Natural Uranium

In Figure IV.ll, the unit value of the blended feed stream is $V\left(R_{B}, Y_{B}\right)$ and is known from results of the basic recycle scheme feed value analysis. Using $\epsilon=\mathrm{F}_{\mathrm{NAT}} / \mathrm{F}$, a dollar-flow balance for the blending process leads to the following equation:

$$
\begin{equation*}
V_{B}(R, y, \epsilon)=\frac{V\left(R_{B}, Y_{B}\right)-\epsilon C_{N A T}}{1-\epsilon} \tag{v.9}
\end{equation*}
$$

where $V_{B}(R, Y, \epsilon)$ is the unit value of UO_{3} having composition R, Y when a fraction ϵ of the blended stream is made up of natural uranium, and $C_{\text {NAT }}$ is the unit price of natural uranium as UF_{6}.

By varying ϵ at constant R and y, R_{B} and y_{B} will change according to Equations IV. 24 and IV.25, and the effect of ϵ on $V\left(R_{B}, y_{B}\right)$ and $V_{B}(R, y, \epsilon)$ can be determined. At the optimum $\epsilon, V_{B}(R, Y, \epsilon)$ will be a maximum, defined as $V_{B}(R, y)$. Obviously, the restriction on ϵ is that $0 \leqslant \epsilon<1.0$.

Although $C_{\text {NAT }}$ is based on UF_{6}, the natural uranium could be purchased as $\mathrm{U}_{3} \mathrm{O}_{8}$ instead of UF_{6}. It is assumed that the cost of converting $\mathrm{U}_{3} \mathrm{O}_{8}$ to UO_{2} is equal to the cost of converting $\mathrm{U}_{3} \mathrm{O}_{8}$ to UF_{6} plus the cost of converting UF_{6} to UO_{2}. Since the fabrication cost C_{F} includes conversion of either UF_{6} or UO_{3} to UO_{2}, and since $C_{N A T}$ equals $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ plus the cost of converting $U_{3} O_{8}$ to $U F_{6}$, we can assign the price $C_{N A T}$ to the natural uranium and still retain a consistent economics model.

D. Choice of Economic Parameters

In selecting values for the economic parameters required for the feed value calculations, an attempt was made to reflect a large-scale expansion of fabrication and reprocessing activity during the 1970's. For some items, more than one value was selected to avoid the choice of a single overly pessimistic or optimistic number.

A complete summary of all items which appear in the feed value equations is given in Table V.l. Pertinent operating parameters listed previously in Table IV. 1 are given again for completeness.

As discussed in Section IV, Part A, three prices for $\mathrm{U}_{3} \mathrm{O}_{8}$ are considered in the study - $\$ 6$, $\$ 8$, and \$10/lb. Variation of $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ not only necessitates adjustment of diffusion plant optimum tails composition, thereby changing flowsheet characteristics, but directly affects all economic parameters which are dependent upon the AEC price scale. Development of the AEC scale for each $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ price, based on a unit cost of separative work of $\$ 30 / \mathrm{kgU}$, is described in Appendix F. The AEC scale is given below as a function of x, the weight fraction of $U-235$, but can be rewritten as $C_{A E C}(R)$ by replacing x with $R /(l+R)$.

$$
\begin{equation*}
C_{A E C}(x)=30\left[(2 x-1) \ln \frac{x}{1-x}+A_{1} x-A_{2}\right] \tag{V.10}
\end{equation*}
$$

TABLE V. 1
Summary of Economic Parameters
Reactor inventory (kgU), I
53,000
Net electrical power output (MW), P 430
Load factor, L
0.8

Np-237 price $(\$ / g), C_{N} \quad$ variable between 0 and 100
$\mathrm{U}_{3} \mathrm{O}_{8}$ price $(\$ / 1 \mathrm{~b}), \mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ $6,8,10$

Fissile Pu price $(\$ / g), C_{K}$:

$$
\begin{array}{rlr}
C_{U_{3} O_{8}} & =6 & 9.01 \\
& =8 & 10.00 \\
& =10 & 10.94
\end{array}
$$

Natural UF_{6} price $(\$ / \mathrm{kgU}), \mathrm{C}_{\mathrm{NAT}}$:

$$
\begin{align*}
\mathrm{C}_{\mathrm{U}_{3} O_{8}} & =6 \\
& =8 \\
& =10
\end{align*}
$$

23.46
28. 75

Cost of separative work ($\$ / \mathrm{kgU}$), C_{Δ}
Fixed charge rate on inventory $\left(\mathrm{yr}^{-1}\right)$, i 0.10
Fabrication cost $(\$ / \mathrm{kg}), C_{F} 60,40$
Reprocessing cost ($\$ / \mathrm{kg}$), C_{A}. 40,25
Post-irradiation shipping cost $(\$ / \mathrm{kg}), \mathrm{C}_{\mathrm{SH}}$:
Recycle to fabrication
6,3
Recycle to diffusion plant $\quad 7,4$
Cost of converting UO_{3} to $\mathrm{UF}_{6}(\$ / \mathrm{kgU}), \mathrm{C}_{\mathrm{C}}$
Cost incurred between purchase of UO_{3} and conversion to $\mathrm{UF}_{6}(\$ / \mathrm{kgU}), \mathrm{C}_{\mathrm{CT}}$

TABLE V. 1
(Continued)
Fractional losses:

where:

$C_{U_{3} O_{8}}$	$\frac{A_{1}}{}$	$\frac{A_{2}}{\$ 6 / 1 b}$
8	366.409	6.86840
10	406.083	6.97415
	443.677	7.06505

The choice of plutonium nitrate price, C_{K}, was governed by current AEC policy ${ }^{(21)}$, which is based on the fuel value of plutonium when substituted for U-235 in thermal reactor fuel. The AEC is currently allowing a credit of $\$ 0$ per gram for fissile plutonium as nitrate, which is $10 / 12$ of the AEC price in $\$ / g$ for U-235 in 90% enriched uranium, with natural uranium priced at $\$ 8 / 1 \mathrm{~b} \mathrm{U}_{3} \mathrm{O}_{8}$ and separative work at $\$ 30 / \mathrm{kgU}$. At natural uranium prices of $\$ 6 / 1 \mathrm{~b}$ or $\$ 10 / 1 \mathrm{~b}$, the price for fissile plutonium is still set at $10 / 12$ of the price of U-235 contained in 90% enriched uranium. This calculation, described in more detail in Appendix F, results in the values for C_{K} shown in Table V.l. Although the price of plutonium in the mid-1970's could be influenced by the higher value of plutonium when used in fast reactors, the above assumption was considered adequate for a study of U-236 and Np-237 effects on uranium value.

The price of natural uranium as UF_{6} was calculated for the three $\mathrm{U}_{3} \mathrm{O}_{8}^{*}$ prices using an equation developed in Appendix F.

$$
\begin{equation*}
C_{N A T}=\left(1+L_{C}^{\prime}\right)\left[(2.2046)\left(\frac{842}{714}\right)\left(1+i t_{C}\right) C_{U_{3} O_{8}}+c_{C T}^{\prime}\right] \tag{V.11}
\end{equation*}
$$

where $C_{C T}^{\prime}=\$ 2.26 / \mathrm{kgU}$ and includes unit costs incurred between the purchase of, $\mathrm{U}_{3} \mathrm{O}_{8}$ and the conversion of $\mathrm{U}_{3} \mathrm{O}_{8}$ to $\mathrm{UF}_{6} \cdot \mathrm{~L}_{\mathrm{C}}^{\prime}$ is the fraction of uranium lost during the conversion of $\mathrm{U}_{3} \mathrm{O}_{8}$ to UF_{6}.

The price received for $N p-237, C_{N}$, is of great importance in the study. Since Np-237 derives its value from its use as a target material for producing Pu-238, the size and stability of the Pu-238 market will strongly affect the Np-237 price. Note that the economics equations do not include any additional cost for recovering $N p-237$, so that C_{N} represents the net credit to the reactor operator from selling Np-237 after payment is made for the costs of its recovery. Both the future price of $\mathrm{Pu}-238$ and the processing and irradiation costs involved in producing Pu-238 from Np-237 are unknown and have been treated as parameters (9) in studies of $\mathrm{Np}-237$ value. For this reason and since the Np-237 price is likely to vary considerably before stabilizing at some future date, it was decided that a range of C_{N} values should be considered. The range chosen for C_{N} is from $\$ 0 / g$ to $\$ 100 / g$ and, as will become evident in Sections VI and VII, is sufficiently broad to indicate all important effects of $\mathrm{Np}-237$ price on PWR fuel cycle economics.

For fabricating UO_{2} fuel elements under conditions predicted for the early 1970^{\prime} s, General Electric (22)
has established a warranted price of about $\$ 85 / \mathrm{kgU}$. This price will probably be reduced by the mid-tolate 1970's due to the anticipated growth of the industry; hence, $\$ 60 / \mathrm{kgU}$ was selected as a reasonable estimate for C_{F}. A more optimistic unit cost of $\$ 40 / \mathrm{kgU}$ was selected as an alternative value for C_{F}. This lower cost is consistent with predictions of about $\$ 43 / \mathrm{kgU}$ made by Battelle-Northwest ${ }^{(23)}$ for a fabrication plant capable of handing 1.0 MT of uranium per day.

A cost of $\$ 40 / \mathrm{kgU}$ was used for fuel reprocessing, based on predictions made by ORNL. (20) A second value for C_{A} of $\$ 25 / \mathrm{kgU}$ was selected by slightly reducing the General Electric ${ }^{(22)}$ warranted price of near $\$ 30 / \mathrm{kgU}$ (where the listed price has been reduced to exclude shipping costs) to account for industry growth.

A post-irradiation shipping cost of $\$ 6 / \mathrm{kg}{ }^{(24)}$ was chosen for recycle to fabrication. For recycle to a diffusion plant, the additional shipment of fuel from the reprocessing plant to the diffusion plant is accounted for by specifying $C_{S H}$ as $\$ 7 / \mathrm{kg}$. Alternative, more optimistic values of $C_{S H}$ are also considered; these are $\$ 3 / \mathrm{kg}$ for recycle to fabrication and $\$ 4 / \mathrm{kg}$ for recycle to a diffusion plant.

The unit cost of converting UO_{3} to $\mathrm{UF}_{6}, \mathrm{C}_{C}$, was specified as $\$ 4 / \mathrm{kgU}$, or slightly less than the standard ${ }^{(25)}$
charge of $\$ 5.60 / \mathrm{kgU}$ for converting UNH to $\mathrm{UF}_{6}{ }^{\circ}$ A $\$ 1 / k g U$ cost of shipping UO_{3} from its point of purchase to the conversion site therefore resulted in $C_{C T}$ being taken as $\$ 5 / \mathrm{kgU}$.

The fixed charge rate on working capital was set at 10% per year, a rate commonly used in fuel cycle studies. (24)

In estimating fuel holdup times, any difference between the refueling interval and the time required to obtain refabricated fuel from reactor discharge was neglected. The pre-irradiation holdup of 130 days $\left(t_{F}=0.356 \mathrm{yr}\right)$ and the interval of 200 days $\left(t_{R P}=0.548 \mathrm{yr}\right)$ between reactor discharge and recovery of nitrates both are consistent with ORNL estimates. (20) By allowing 20 days for the $\mathrm{UNH}-\mathrm{to}-\mathrm{UO}_{3}$ conversion step and an additional 30 days for shipping and conversion of UO_{3} to UF_{6}, the values for $t_{R U}$ of 0.603 yr and 0.685 yr were obtained for recycle to fabrication and recycle to a diffusion plant, respectively.

The time required for toll enrichment was set at 90 days $\left(t_{E}=0.247 \mathrm{yr}\right)$. (19) Shipping of purchased UO_{3} and conversion to UF_{6} was assumed to require 30 days $\left(t_{c}=0.0822 \mathrm{yr}\right)$.

In calculating feed values for various economic conditions, the effect of changing the unit costs C_{F}, C_{A}, and $C_{S H}$ is determined by varying all three at once, rather than individually. Thus, a "high unit cost"
case refers to $C_{F}=\$ 60 / \mathrm{kg}, \mathrm{C}_{\mathrm{A}}=\$ 40 / \mathrm{kg}$, and $\mathrm{C}_{\mathrm{SH}}=$ $\$ 6$ or $\$ 7 / \mathrm{kg}$, while a "low unit cost" case refers to $C_{F}=\$ 40 / \mathrm{kg}, C_{A}=\$ 25 / \mathrm{kg}$, and $C_{S H}=\$ 3$ or $\$ 4 / \mathrm{kg}$. The "high unit cost" condition will be used for most calculations, while the "low unit cost" condition will be used to indicate the effect on unit feed value of a more favorable economic climate.

In summary, the effect on unit feed value is determined when changes in the following items are made:
a. feed uranium isotopic composition (R and y)
b. fuel cycle flowsheet
c. fabrication losses (L_{F})
d. $\mathrm{U}_{3} \mathrm{O}_{8}$ price $\left(\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}\right)$
e. $\mathrm{Np}-237$ price (C_{N})
f. unit cost condition.

Items a through d affect the feed value results not only through the economics equations in this section, but also through their effects on the fuel cycle operating characteristics, as described in Section IV. E. Description of Calculational Procedures

For a specified set of $\mathrm{L}_{\mathrm{F}}, \mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$, and C_{N} values, and for a designated unit cost condition and recycle scheme, the procedure for calculating uranium feed values is briefly outlined below.
a. Consider the basic recycle flowsheet. Specify a value for R_{R} and vary y_{R} until $y=0$, using the
procedures developed in Section IV. Calculate the fuel cycle cost for the resulting flowsheet conditions. Repeat this procedure for other R_{R} values until the minimum fuel cycle cost, C_{E}^{*}, is obtained. The corresponding value for R is the optimum, R^{*}. ($R=R_{R}$ for the recycle - to - diffusion plant scheme).
b. Consider the basic recycle flowsheet. Uranium value results for distinct (R, y) points are obtained using the stepwise procedure outlined in Part A of Section IV for obtaining flowsheet characteristics as functions of R and y, with the insertion of a single step - the calculation of $V(R, y)$ once flowsheet characteristics for a specified (R_{R}, Y point are known.
c. $V(R, y)$ and $F(R, y)$ are known in tabular form suitable for the interpolations required to calculate $V_{B}(R, Y)$ and $V_{D}(R, Y)$. For each (R, Y) point to be examined using pre-enrichment by gaseous diffusion (generally $\left.R<R^{*}\right), R_{D}$ is varied until the maximum $V_{D}\left(R, Y, R_{D}\right)$ is obtained. When blending with natural uranium is considered, \in is varied for each (R, y) point examined (generally $\left.R>R^{*}\right)$ until the maximum $V_{B}(R, Y, \epsilon)$ is determined.

VI. RESULTS

A. Minimum Fuel Cycle Costs

Results obtained for C_{E}^{*} and the corresponding opt_mum conditions are given in detail in Appendix G.

Figure VI.l shows the variation of C_{E}^{*} with C_{N} for three $\mathrm{U}_{3} \mathrm{O}_{8}$ prices and for both recycle schemes, when $L_{F}=0.01$ and when high unit costs are used. For a given $U_{3} O_{8}$ price, two major characteristics are apparent:
a. at $C_{N}=\$ 0 / g$ (no credit for $N p-237$), C_{E}^{*} is about $0.4 \mathrm{mills} / \mathrm{kwhr}$ higher when uranium is recycled to fabrication rather than to a diffusion plant; and,
b. as C_{N} is increased from $\$ 0$ to $\$ 100 / \mathrm{g}, C_{E}^{*}$ decreases significantly for both recycle schemes but with a steeper slope for recycle to fabrication, resulting in an eventual intersection of the lines for the two recycle schemes.

These two characteristics can be explained as follows. In Figure IV.6, the level of U-236 buildup in the reactor feed when $y=0$ is substantially greater when recycle is to fabrication; consequently, it is necessary that more $U-235$ be present in the reactor feed to offset $U-236$ poisoning when recycle is to fabrication, in order to attain similar burnup levels as for the other recycle scheme. The need to purchase more U-235 in the feed when recycling to fabrication

FIGURE VI.l Effect of Np-237 Price on Minimum Fuel Cycle Cost: High Costs, $L_{F}=0.01$
contributes about 0.15 mills/kwhr of the $0.4 \mathrm{mills} / \mathrm{kwhr}$ differential mentioned above. An additional 0.25 mills/ kwhr is incurred when recycling to fabrication because of the loss in overall uranium value which occurs when mixing streams (feed and recycled uranium) having different U-235 weight fraction.

On the other hand, we have seen in Figure IV. 10 that the higher buildup of U-236 in reactor feed leads to a higher $\mathrm{Np}-237$ production rate when recycle is to fabrication and when feed contains no U-236. This fact is responsible for the difference in the slopes of C_{E}^{*} vs C_{N} for the two recycle schemes, and thus causes the intersection mentioned above. The value of C_{N} at which the lines intersect, C_{N}^{I}, represents the Np-237 price at which it is a matter of indifference which recycle scheme is used. For C_{N} less than C_{N}^{I}, it is more economical to recycle uranium to a diffusion plant and permit the discharge of some U-236 with the tails stream, while for C_{N} greater than C_{N}^{I}, it becomes more economical to retain U-236 in the fuel cycle as much as possible by recycling to fabrication.

Due to the strong effect of $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ on the AEC price scale and, therefore, on the cost of feed, C_{E}^{*} for recycle to fabrication will decrease more per unit change in $\mathrm{U}_{3} \mathrm{O}_{8}$ price than for the other scheme.

This brings about a decrease in C_{N}^{I} from roughly $\$ 60 / g$ to $\$ 57 / \mathrm{g}$ to $\$ 54 / \mathrm{g}$ as $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ decreases from $\$ 10 / 1 \mathrm{~b}$ to $\$ 8 / 1 \mathrm{~b}$ to $\$ 6 / 1 \mathrm{~b}$, as shown in Figure VI.l.

The variation of C_{E}^{*} with C_{N} is shown in Figure VI. 2 when $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}$ for two other cases - low unit costs with $L_{F}=0.01$ and high unit costs with $L_{F}=0.002$. By comparing Figures VI.l and VI.2, we see that reducing L_{F} from 0.01 to 0.002 results in an insignificant decrease in C_{E}^{*} when recycling to a diffusion plant. For the recycle to fabrication case, it was shown in Figure IV. 9 that reducing L_{F} leads to generally higher $\mathrm{Np}-237$ production rates; hence, $\mathrm{C}_{\mathrm{E}}^{*}$ decreases somewhat faster with increasing C_{N} for $L_{F}=$ 0.002 than for $L_{F}=0.01$, although C_{E}^{*} results at $C_{N}=\$ 0 / \mathrm{g}$ are very close for both L_{F} values. This steeper slope reduces C_{N}^{I} from $\$ 54 / g$ to about $\$ 52 / g$ when L_{F} is reduced.

As expected, use of lower unit costs decreases C_{E}^{*} significantly - by about 0.2 mills/kwhr. The decrease in C_{E}^{*} is somewhat greater for the recycle-to-fabrication case, which has relatively low optimum burnup levels, and leads to a C_{N}^{I} of about $\$ 52 / \mathrm{g}$ compared with $\$ 57 / \mathrm{g}$ for the high unit cost case.

A summary of C_{E}^{*} values and optimum conditions is given in Table VI.l for representative cases. It is important to note that R^{*} increases with increasing C_{N} for recycle to a diffusion plant but decreases as C_{N}

FIGURE VI. 2 Effect of Np-237 Price, Unit Costs, and Fabrication Losses on Minimum Fuel Cycle Costs: $\quad C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$

TABLE VI. 1
Summary of Minimum Fuel Cycle Cost Results

$L_{\text {F }}$	Unit Costs	$\begin{aligned} & C_{U_{3}} o_{8} \\ & (\$ / 1 b) \\ & \hline \end{aligned}$	$\begin{array}{cc} C_{N}^{I} & C_{N} \\ (\$ / \mathrm{gNP}-237) \\ \hline \end{array}$		Recycle to Fabrication			Recycle to Diffusion Plant		
					$\begin{gathered} C_{E}^{*} \\ (\mathrm{~m} / \mathrm{kwhr}) \end{gathered}$	R*	$\begin{gathered} \mathrm{B} \\ (\mathrm{MWD} / \mathrm{T}) \\ \hline \end{gathered}$	$\begin{gathered} C_{E}^{*} \\ (\mathrm{~m} / \mathrm{kwhr}) \\ \hline \end{gathered}$	R*	$\begin{gathered} \mathrm{B} \\ (\mathrm{MWD} / \mathrm{T}) \\ \hline \end{gathered}$
0.01	high	6	54.07	0	1.863	0.571	25682	1.470	0.0318	28232
				60	1.248	0.552	24281	1.292	0.0325	28975
		8	57.41	0	2.028	0.557	24692	1.614	0.0309	26976
				20	1.823	0.551	24250	1.552	0.0311	27191
				60	1.410	0.539	23400	1.429	0.0315	27665
				100	0.996	0.528	22615	1.305	0.0319	28132
		10	60.53	0	2.183	0.545	23851	1.750	0.0300	25855
				60	1.563	0.529	22662	1.559	0.0307	26618
	low	8	52.58	0	1.812	0.497	20481	1.417	0.0270	22599
				60	1.181	0.480	19331	1.237	0.0275	23235
0.002	high	8	54.94	0	2.052	0.694	24360	1.604	0.0307	26742
				60	1.375	0.669	22715	1.417	0.0316	27667

increases for recycle to fabrication. This is due to a combination of the following:
a. the $\mathrm{Np}-237$ production rate, hence the Np credit, increases more rapidly with increasing R for $\mathbf{y}=0$ when recycle is to a diffusion plant, as seen in Figure IV.9, and
b. at $y=0$, the level of $N p-237$ production is greater by a factor of three for recycle to fabrication, resulting in greater sensitivity of Np carrying Charges to increases in R than for recycle to a diffusion plant.

The net effect is that, when recycling to a diffusion plant, $N p$ credit increases faster than Np carrying charges as R increases, while the reverse is true for the recycle-to-fabrication scheme.

The decrease in R^{*} as $C_{U_{3} O_{8}}$ increases results from the accompanying increase in the AEC price scale. The sensitivity of inventory charges to changes in R is increased, while the effect of a change in R on direct costs - fabrication, reprocessing, etc. - remains the same. Hence, the inventory charge effect makes it more, economical as $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ increases to select feed with somewhat lower U-235 content.

The decrease in R^{*} when one shifts from the high to low unit cost condition is due to the reduced incentive to maintain high burnup. Since the reduction of
direct charges with increasing R is now smaller, it becomes advantageous to reduce R and save on inventory charges.
. One should not infer that the C_{E}^{*} results of this section represent the lowest possible fuel cycle costs for this reactor. They are the minima for the two recycle schemes considered in this study; however, lower C_{E}^{*} could possibly result from the sale of spent uranium to anotherreactor operator, rather than recycling it. T. Golden ${ }^{(4)}$ has determined C_{E}^{*} and uranium feed values for this PWR when spent uranium is credited at the value it would have as feed for a heavy-water moderated, organic cooled reactor.

B. Uranium Values for Basic Recycle Schemes

Results for $V(R, Y)$ are given in detailed tabular form in Appendix H. For both recycle schemes, the following cases were examined: all combinations of $C_{U_{3} O_{8}}=\$ 6, \$ 8, \$ 10 / 1 \mathrm{~b}$ and $C_{N}=\$ 0, \$ 20, \$ 60, \$ 100 / \mathrm{g}$ for $L_{F}=0.01$ and high unit costs; $C_{U_{3} O_{8}}=\$ 8 / 1 b$ and $C_{N}=\$ 0, \$ 60 / g$ for $L_{F}=0.01$ and low unit costs; $C_{U_{3} O_{8}}=\$ 8 / 1 b$ and $C_{N}=\$ 0, \$ 60 / g$ for $L_{F}=0.002$ and high unit costs. The discussion below includes only those cases which indicate an important trend in the results.

A major feature of the $V(R, y)$ results for any set of economic conditions is that the line for $y=0$ is
tangent to the AEC price scale at $R=R^{*}$ and lies below the AEC scale for all other R values. This is a direct result of the principle used in calculating uranium value and can be explained as follows, where the analysis applies to either basic recycle scheme. First, $M(R, Y)$ is defined as the total fuel cycle cost exclusive of feed charges, when feed has composition R, Y. The units of $M(R, Y)$ are $\$ /$ day. Next, the equation for the UO_{3} feed stream value, in $\$ /$ day, can be written (using either Equation V. 4 or V.5) as

$$
\begin{equation*}
F V(R, Y)=24 L P C_{E}^{*}-M(R, Y) \tag{VI.I}
\end{equation*}
$$

Equation $V .1$ for $C_{E}(R)$ can be rewritten as follows:

$$
\begin{equation*}
24 L P C_{E}(R)=F C_{A E C}(R)+M(R, 0) \tag{VI.2}
\end{equation*}
$$

If we set $y=0$ in Equation VI.l to get the value of a feed stream containing no $U-236$, we can use the resulting equation to eliminate $M(R, O)$ in Equation VI. 2 .

This gives

$$
\begin{equation*}
F\left[C_{A E C}(R)-V(R, O)\right]=24 L P\left[C_{E}(R)-C_{E}^{*}\right] \tag{VI.3}
\end{equation*}
$$

Since $C_{E}\left(R^{*}\right)=C_{E}^{*}$ and $C_{E}(R)>C_{E}^{*}$ for $R \neq R^{*}$, we see from Equation VI. 3 that

$$
\begin{equation*}
V\left(R^{*}, 0\right)=C_{A E C}\left(R^{*}\right) \tag{VI.4}
\end{equation*}
$$

and $V(R, 0)<C_{A E C}(R), R \neq R^{*}$.
Note that the elimination of $M(R, O)$ between
Equations VI.I and VI. 2 is possible only because of
our assumption that the unit cost of converting UF_{6} to UO_{2} is the same as the unit cost of converting UO_{3} to UO_{2}.

Since $M(R, O)$ contains inventory charges as well as direct charges, it not only increases as R decreases below R^{*} but also begins to increase at some point as R becomes greater than R^{*}; hence, values of R will erentually be reached in both directions at which $M(R, O)$ equals $24 P L C_{E}^{*}$ and, from Equation VI.l, feed value becomes zero.

1. Recycle to Fabrication

In addition to the characteristics of the $V(R, O)$ results just described, other generalities can be pointed out which aid in interpreting graphs showing $\mathrm{V}(\mathrm{R}, \mathrm{y})$. Equation $V .4$ can be re-written in the following approximate form:
$V(R, y) \approx \frac{b_{1}}{F}-b_{2} \frac{F_{R}}{F}-b_{3} \frac{F_{S}}{F}+b_{4} \frac{K C_{K}}{F}+b_{5} \frac{N C_{N}}{F}$,
where the b 's are constants. For a fixed R, as y increases F will become larger, as was shown in Figure IV.8; also, $\mathrm{F}_{\mathrm{R}} / \mathrm{F}$ increases, K / F decreases, and N / F increases with increasing y, as was indicated in Table IV.2. The ratio F_{S} / F varies in the same way as F_{R} / F, i.e., increases with Y. When $C_{N}=\$ 0 / g$, all the above effects tend to reduce unit feed value as the U-236 content increases. If $C_{N}>0$, the increase of N / F is a
positive effect of increasing y, and for sufficiently high C_{N}, could result in an increase of unit value as the U-236 content of the feed increases; however, this does not mean that unit value would then continue to increase indefinitely with increasing y. At some y value, the poisoning effect of $U-236$ will have sufficiently reduced the burnup level so that the unit value would decrease with any additional increase in y, regardless of how high a $\mathrm{Np}-237$ price is in effect.

The relative magnitude of the effects described above will vary with R, but the qualitative trends hold for any R.

Figures VI.3, VI.4, and VI. 5 show V(R,y) for $C_{U_{3} O_{8}}=\$ 8 / 1 b, L_{F}=0.01$, and high unit costs, when $C_{N}=\$ 0, \$ 20$, and $\$ 60 / \mathrm{g}$, respectively. [Note: the line for $C_{A E C}(R)$ which corresponds to the indicated $\mathrm{U}_{3} \mathrm{O}_{8}$ price is given for comparison purposes on these and all other figures of this section.] In Figure VI.3, where U-236 has effect only as a neutron poison, the reduction of feed value due to the presence of $U-236$ is greatest at the lower end of the R-range, since the poisoning effect becomes relatively smaller as R increases; of course, as y increases, the feed value is reduced for all R. As C_{N} increases, the uranium value increases for any point with non-zero U-236 content; however, for $y=0$, the value decreases with

FIGURE VI. 4 Unit Feed Value - Basic Recycle to Fabrication:

$$
\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 20 / \mathrm{g}, \mathrm{High} \operatorname{costs}, \mathrm{~L}_{\mathrm{F}}=0.01
$$

increasing C_{N} when R is greater than R^{*} and increases when R is less than R^{*}, for the same reasons which cause the reduction of R^{*} as C_{N} increases. At $C_{N}=$ $\$ 20 / \mathrm{g}$, the family of curves has become more closely spaced, and with an increase to $\$ 60 / g$, the curves for non-zero U-236 content all lie above the $y=0$ line, indicating that the presence of $U-236$ increases the value of feed uranium for all y and R examined. At $\$ 60 / \mathrm{g}$, the feed value increases with increasing y over the range investigated. The sensitivity of feed value to Np price. changes becomes greater as y increases because of the increasingly high $\mathrm{Np}-237$ production rates shown in Figure IV.9.

At any (R, y) point, the feed value increases linearly with C_{N}.

Figure VI. 6 shows results when the $U_{3} O_{8}$ price is set at $\$ 6 / 1 \mathrm{~b}$ and when $C_{N}=\$ 0 / \mathrm{g}$. The general appearance of this set of curves is the same as for the $\$ 8 / 1 \mathrm{~b}$ case, except for the general shift downward due to reduction of the AEC price scale and a slight shift to the right due to the increase in R^{*}. Results for $\$ 10 / 1 \mathrm{~b}$ would also be similar to Figure VI. 3 except for an upward shift caused by the higher prices on the AEC scale. Since the AEC price scale is not a linear function of $\mathrm{U}_{3} \mathrm{O}_{8}$ price, the value of feed with a given R and y varies non-linearly with $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$.

FIGURE VI. 6 Unit Feed Value - Basic Recycle to Fabrication: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 6 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$

When the low unit cost condition is assumed and when $C_{N}=\$ 0 / g$, the family of curves is as shown in Figure VI.7. Comparison with Figure VI. 3 indicates an increase of feed value for R less than R^{*} and a decrease of feed value for R greater than R^{*}, when unit costs are reduced. This reflects the smaller reduction of direct costs as burnup increases and the smaller economic penalty of low burnups, when unit costs are reduced.

When fabrication losses are reduced from 0.01 to 0.002 , the feed value curves are shifted to higher R, as indicated by Figure VI.8. Otherwise, the general variation of feed value with R and y is similar to that for the $L_{F}=0.01$ case. One minor difference is the greater decrease in feed value with increasing y in Figure VI. 8.

2. Recycle to Diffusion Plant

The qualitative discussion following Equation VI. 6 must be extended slightly to be applicable for this recycle scheme. From Equation V. 5 , we see that two new terms, $-\mathrm{b}_{6} \Delta / \mathrm{F}$ and $-\mathrm{b}_{7} \mathrm{~F}_{\mathrm{P}} / \mathrm{F}$, must be included in the right side of Equation VI.6. In Table IV.2, an increase in y is seen to cause increases in $F_{R} / F, N / F, \Delta / F$, and F_{P} / F and, in this case, a slight increase in K / F. For the plutonium prices being considered, this increase in K / F will be of slight consequence, and an increase of

FIGURE VI. 7 Unit Feed Value - Basic Recycle to Fabrication: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$, Low Costs, $\mathrm{L}_{\mathrm{F}}=0.01$

FIGURE VI. 8 Unit Feed Value - Bassic Recycle to Fabrication: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.002$

U-236 content at fixed R will lead to a reduction in feed value unless the $\mathrm{Np}-237$ price is sufficiently high for the increased $\mathrm{Np}-237$ credit to override the effects of U-236 poisoning.
' Figures VI.9, VI.10, and VI.ll show how feed value $V(R, y)$ for recycle to a diffusion plant varies with R and y for $C_{N}=\$ 0, \$ 20$, and $\$ 60 / \mathrm{g}$, respectively, when high unit costs are assumed and when $\mathrm{L}_{\mathrm{F}}=0.01$. The strong poisoning effect of U-236 at the lower end of the R-range is apparent in all three figures and forces the feed value to zero at values of R which increase with increasing U-236 content. As C_{N} increases, the increase in feed value becomes larger with increasing R, for constant y. Also, the increased $\mathrm{Np}-237$ production rate which results from higher U-236 content causes the feed value for constant R to increase faster with increasing C_{N} as y becomes larger. These effects cause the overlapping of the lines at $\$ 60 / \mathrm{g}$. In Figure VI.11, an increase of U-236 content enhances the feed value for R greater than 0.035 ; however, for R less than 0.035 the $\mathrm{y}=0.03$ line lies below the $\mathrm{y}=0$ line, indicating that the poisoning effect overrides the additional Np credit when $\mathrm{U}-236$ is present at this concentration. Lines for decreasing y remain above the $\mathrm{y}=0$ line over more of the R-range; however, for R less than 0.0275 , the presence of $\mathrm{U}-236$ at any level will reduce feed value when C_{N} is less than $\$ 60 / \mathrm{g}$.

FIGURE VI. 9 Unit Feed Value - Basic Recycle to Diffusion Plant: $\quad C_{U_{3} O_{8}}=\$ 8 / 1 b$, ज $C_{N}=\$ 0 / \mathrm{g}$, High Costs, $L_{F}=0.01$

FIGURE VI. 10 Unit Feed Value - Basic Recycle to Diffusion Plant:

$$
\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 20 / \mathrm{g}, \text { High Costs, } \mathrm{L}_{\mathrm{F}}=0.01
$$

FIGURE VI. 11 Unit Feed Value - Basic Recycle to Diffusion Plant: $\quad C_{U_{3} O_{8}}=\$ 8 / 1 b$,
$C_{N}=\$ 60 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$

Statements made for the recycle-to-fabrication case concerning the effects of a $\mathrm{U}_{3} \mathrm{O}_{8}$ price change and a unit cost reduction apply here as well. These results are shown for the present recycle scheme in Figures VI. 12 and VI.13, respectively. The effect of reduced fabrication losses on feed value is insignificant here.
C. Uranium Values for Modified Modes of Operation

The fact that all the feed value curves for the basic recycle schemes demonstrate a dropoff toward zero value at both ends of the $R-r a n g e$ indicates that modification of the feed composition prior to its use in the basic flowsheets could improve the unit value at many of the (R, y) points. This is particularly true for feed having so low an R that reactor operation cannot be sustained unless feed is first pre-enriched.

The maximum unit value of feed uranium has been calculated over the entire range of $R[$ depleted $(R=$ 0.005) to fully enriched $(R=15)]$ for various $U-236$ concentrations, for both basic recycle schemes, and for the following cases: all combinations of $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=$相, $\$ 8$, $\$ 10 / 1 \mathrm{~b}$ with $\mathrm{C}_{\mathrm{N}}=\$ 0, \$ 60 / \mathrm{g}$ for $\mathrm{L}_{\mathrm{F}}=0.01$ and high unit costs, as well as $C_{N}=\$ 100 / \mathrm{g}$ for $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=$ $\$ 8 / 1 \mathrm{~b} ; \mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}$ and $\mathrm{C}_{\mathrm{N}}=\$ 0, \$ 60 / \mathrm{g}$ for $\mathrm{L}_{\mathrm{F}}=0.01$ and low unit costs; and, for the recycle-to-fabrication scheme only, $C_{U_{3} O_{8}}=\$ 8 / 1 b$ and $C_{N}=\$ 0 / g$ for $L_{F}=0.002$

FIGURE VI. 13 Unit Feed Value - Basic Recycle to Diffusion Plant:

$$
\begin{aligned}
& \text { Unit Feed Value - Basic Recycle to Diffusion P } \\
& \mathrm{C}_{\mathrm{U}_{3}} \mathrm{O}_{8}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g} \text {, Low Costs, } \mathrm{L}_{\mathrm{F}}=0.01
\end{aligned}
$$

and high unit costs. In Appendix I, detailed unit value results are given and, at each (R, y) point, indication is made as to which mode of operation - preenrichment by gaseous diffusion, basic recycle scheme, or blending with natural uranium - yields the largest unit value. Optimized operating conditions are given when $V_{B}(R, Y)$ and $V_{D}(R, Y)$ are listed.

1. Maximization of Unit Value

a. Pre-Enrichment by Gaseous Diffusion

One important characteristic of the results for $V_{D}(R, y)$ is that the value of feed containing no U-236 is less than the corresponding price on the AEC scale for any R. This can be shown as follows. The general expression given by Equation $V .8$ for the value of the feed stream can be re-written with y, hence y_{D} as well, set to zero:

$$
F_{D} V_{D}\left(R, O, R_{D}\right)=\frac{1}{1+i t_{C}}\left[\left(1-i t_{E}\right) F V\left(R_{D}, 0\right)-F_{D} C_{C T}-\Delta_{D} C_{\Delta}\right]
$$

When $y=y_{D}=0$, the separative work requirement is just the difference in the total value of the product and feed streams, based on the AEC price scale ${ }^{(12)}$, or

$$
\begin{equation*}
\Delta_{D} C_{\Delta}=F C_{A E C}\left(R_{D}\right)-\frac{F_{D}}{1+L_{C}} C_{A E C}(R) \tag{VI.8}
\end{equation*}
$$

Inserting Equation VI. 8 into Equation VI. 7 and rearranging terms gives:

$$
\begin{aligned}
C_{A E C}(R) & -v_{D}\left(R, O, R_{D}\right)=\frac{F}{F_{D}\left(1+i t_{C}\right)}\left\{C_{A E C}\left(R_{D}\right)-V\left(R_{D}, 0\right)\left[1-i t_{E}\right]\right\} \\
& +\frac{C_{C T}}{1+i t_{C}}+C_{A E C}(R)\left[1-\frac{1}{\left(1+i t_{C}\right)\left(1+L_{C}\right)}\right]
\end{aligned}
$$

Since $V\left(R_{D}, O\right)$ can never be greater than $C_{A E C}\left(R_{D}\right)$, the quantity in the curved braces of Equation VI. 9 must be positive for any R_{D}; hence, for a specified $R, C_{A E C}(R)$ is greater than $V\left(R, O, R_{D}\right)$ for any value of R_{D}, including the optimum R_{D}. This leads to the inequality mentioned above,

$$
\begin{equation*}
V_{D}(R, 0)<C_{A E C}(R), \text { for all } R \tag{VI.10}
\end{equation*}
$$

For $Y=Y_{D}=0$ and for a specified R, Equation VI. 9 indicates that $V_{D}\left(R, O, R_{D}\right)$ is maximized when R_{D} is such that the quantity

$$
\frac{F}{F_{D}}\left\{C_{A E C}\left(R_{D}\right)-v\left(R_{D}, 0\right)\left[1-i t_{E}\right]\right\}
$$

is a minimum. Since $\left(1-i t_{E}\right)$ is about 0.975 , the optimum R_{D} can be expected to be very close to R^{*}. Figure $V I .14$ shows the variation of $V_{D}\left(R, O, R_{D}\right)$ with R_{D} for $R=0.01$ in the case of recycle to a diffusion plant. The optimum R_{D} is 0.0309 , which is R^{*} for the case shown. Results for the same case but with $y=0.005$ are also given in Figure VI.14. With the increase in y, the optimum R_{D} increases to about 0.0365 since the presence of U-236 in the diffusion plant product stream necessitates a higher R_{D} in order to assure a reasonably

high $V\left(R_{D}, Y_{D}\right)$.
b. Blending with Natural Uranium

The location of the line for $y=0$ relative to the AEC price scale is one important characteristic of the $\mathbf{V}_{\mathrm{B}}(\mathrm{R}, \mathrm{y})$ results. Some insight is provided by Figure VI.15, which shows the AEC scale for $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$ and the $y=0$ line for the basic recycle-to-diffusionplant scheme, both plotted as functions of x, the weight fraction of $U-235$ in feed uranium. Note that \mathbf{x} is used here rather than R since blending processes are more amenable to description in terms of x, since the "tie-line" representation of blending yields a straight line when weight fractions are used.

Since we seek the conditions which give the maximum unit value of feed having x greater than x^{*}, where $x^{*}=\frac{R^{*}}{1+R^{*}}$, the procedure is to anchor the lower end of the tie-line at $C_{\text {NAT }}$, i.e., at $C_{A E C}\left(x_{\text {NAT }}\right)$, and to draw the straight line (the dashed line in the figure) having maximum slope which touches the basic feed value curve $V(x, 0)$ at some point. If the point of contact between tie-line and basic value curve occurs at x_{0}, then $V\left(x_{0}, 0\right)$ is the unit value of product obtained by mixing natural uranium with uranium having $x>x_{0}$ and having a unit value given by the tie-line of greatest slope. It is apparent that the maximum attainable
(n6x/\$) ənten pəə』 子țun

FIGURE VI. 15 Tie-Line Representation of Blending with Natural UraniumRecycle to Diffusion Plant: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$, High Costs, $L_{F}=0.01$
unit value for any x greater than x_{0} will lie along the line of maximum slope. Blending to a point other than \mathbf{x}_{0} will lead to a lower unit feed value. For $\mathrm{x} \leqslant \mathrm{x}_{0}$, the maximum unit value is obtained by not blending at all, i.e., by keeping the upper end of the tie-line on the $V(x, 0)$ curve, and then at low enough x, by using feed pre-enrichment. Thus, the portion of the tie-line for $x>x_{o}$ (long dashes) represents $V_{B}(x, 0)$ while that for $\mathrm{x}<\mathrm{x}_{0}$ (short dashes) has no practical importance.

Due to the curvature of the AEC scale, particularly
near $X_{\text {NAT }}, X_{0}$ is somewhat greater than $X_{*}^{*}\left(x_{0}=0.0315\right.$ and $x^{*}=0.0300$ for the case shown) ; however, when x^{*} is in the range obtained for recycle-to-fabrication (between 0.3 and 0.4), the curvature near $x_{\text {NAT }}$ becomes less important and x_{0} effectively equals x^{*}. The optimum fraction of natural uranium in the blended product can be written from the tie-line as

$$
\epsilon=\frac{x-x_{0}}{x-x_{N A T}}, \text { for } x \geqslant x_{0}
$$

Thus, as X increases, ϵ also increases and more natural uranium is required for blending; as a result, the loss in value due to mixing streams of different U-235 content becomes greater with increasing x and the $V_{B}(x, 0)$ line diverges from the AEC scale. The corresponding $V_{B}(R, O)$ line behaves the same way, of course.

Close agreement was obtained between $V_{B}(x, 0), \epsilon$, and x_{o} values obtained graphically and those obtained
from the analytical procedure wherein ϵ is varied to obtain optimum conditions. This agreement insures the applicability of the general procedure to cases where $y>0$, which are not amenable to simple geometrical investigation. When $y>0$, the optimum composition of the blended product is still that which maximizes the tie-line slope, but the added complication is that each (R, y) point must be analyzed separately since the blending operation now affects y_{B} as well as R_{B}.

It is interesting to note that, if the uranium used in blending could have any $U-235$ content x_{M} in place of $\mathrm{X}_{\mathrm{NAT}}$, the maximum tie-line slope would occur as X_{M} approaches X^{*} and would be simply the slope of the $C_{A E C}(x)$ line at x^{*}. Although the absolute maximum unit value of feed uranium would be obtained, the amount of feed uranium used in blending would approach zero!
C. Effect of Operating Mode on Maximum Unit Value

It has already been indicated that no single mode of operation will result in the most economically advantageous fuel cycle operation over the entire feed composition range, i.e., the mode of operation which gives the highest possible unit feed value will change as R increases from the depleted to fully-enriched condition. It will be seen that the most economically advantageous mode of operation may also change at a given R as Y increases.

Figure VI. 16 shows a superposition of the lines for $V_{D}(R, y), V(R, y)$, and $V_{B}(R, y)$ overranges of R and y for recycle to a diffusion plant when $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, $C_{N}=\$ 0 / g, L_{F}=0.01$, and for high unit costs. At any (R, y) point, the largest of $V_{D}(R, Y), V(R, Y)$ and $V_{B}(R, Y)$ is defined as $V_{m}(R, Y)$ and represents the maximum unit price which could be paid for this feed without incurring a fuel cycle cost greater than C_{E}^{*} when uranium is recycled according to the scheme being considered. In comparing Figure VI. 16 with the basic value curves of Figure VI.9, the most striking difference is that lines representing $V_{m}(R, y)$ increase monotonically with R for each y-value and lie much closer to the AEC scale when R is far from R^{*}. As R increases from the low to high ends of the range, at constant y, the operating modes which yield $V_{m}(R, y)$ change. For low R values, it is advantageous to pre-enrich feed in a diffusion plant, but as R increases it becomes economically advantageous to operate according to the basic recycle flowsheet. As y increases, the intersection between $V_{D}(R, y)$ and $V(R, y)$ occurs at higher R, reflecting the increased pois oning due to $\mathrm{U}-236$ and the resulting need to increase the U-235 content of uranium fed to fabrication in order to maintain reasonable burnup. Finally, after a rather narrow range in R over which basic recycle operation gives $V_{m}(R, y)$, it becomes

FIGURE VI. 16 Maximum Unit Feed Value - Recycle to Diffusion Plant:

$$
\begin{aligned}
& \text { Maximum Unit Feed value }- \text { Recycle to Dlitusion } \\
& \mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}, \text { High Costs, } L_{\mathrm{F}}=0.01
\end{aligned}
$$

advantageous to blend feed with natural uranium for the remainder of the R range, although for points immediate to the intersection of $V(R, Y)$ and $V_{B}(R, y)$ the amount of natural uranium required for blending is so small that blending might not actually be practical. Results for $V_{B}(R, y)$ are given in Appendix I for R up to 15 , but the graph was terminated at $R=0.08$ for convenience.

Figure VI. 17 shows how an increase from $C_{N}=\$ 0 / g$ to $C_{N}=\$ 60 / g$ affects the results of Figure VI.l6. Only the lines for $y=0$ and $y=0.02$ are shown in Figure VI. 17 since all lines are so closely spaced, but it is apparent that for $C_{N}=\$ 60 / \mathrm{g}$ the presence of $\mathrm{U}-236$ increases maximum feed value over the entire range of R. This might be questioned since the $y=0.02$ line for $V_{D}(R, Y)$ is terminated at $R=0.02$ but the enlarged view of the low-R range shown in Figure VI. 18 shows that the $\mathrm{y}=$ 0.005 line lies above the $y=0$ line everywhere and the same can be expected for $y=0.01$ and $y=0.02$. At the tails abundance ratio of $R=R_{W}=0.0025372$, the unit feed value must be negative for all y. The lines for $y=0.01$ and $y=0.02$ were terminated because extension to lower R would have led to Y_{D} being greater than 0.04 and would have required extrapolation of the basic value results, $\dot{V}(R, y)$, which extend only up to $y=0.04$.
Maximum Unit Feed Value ($\$ / \mathrm{kgU})$

R
FIGURE VI. 17 Maximum Unit Feed Value - Recycle to Diffusion Plant:
$\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 60 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$

The fact that the $V_{m}(R, y)$ lines for $y>0$ now lie above the $y=0$ line represents a drastic change from the intersecting basic value lines of Figure VI.ll. The sharp dropoff of the feed value lines for $y>0$ at low R, caused by excessive U-236 poisoning and resulting low burnups, is averted by pre-enriching the feed to a level suitable for maintaining high burnup.

Intersection of $V(R, Y)$ with $V_{B}(R, Y)$ occurs at higher R for $C_{N}=\$ 60 / g$ than for $\$ 0 / g$, since $V(R, y)$ has been shown to increase with C_{N} more rapidly as R increases, thus making it economically advantageous to operate according to the basic recycle scheme over a wider range of R at $C_{N}=\$ 60 / \mathrm{g}$.

An important observation is that the change in $\mathbf{V}_{\mathrm{m}}(\mathrm{R}, 0)$ when C_{N} increases from $\$ 0 / \mathrm{g}$ to $\$ 60 / \mathrm{g}$ is less than 0.5% over the entire R range - from 0.005 to 15 as can be seen from the tabulated results in Appendix I.

Although we have illustrated the effect of operating mode on unit feed value by using recycle-to-diffu-sion-plant results, the trends indicated are similar for recycle to fabrication with minor differences which will be pointed out in the next section.

2. Recycle to Fabrication

In Figures VI.19, VI.20, and VI.21, results corresponding to $C_{N}=\$ 0, \$ 60$, and $\$ 100 / \mathrm{g}$ are given for

FIGURE VI. 19 Maximum Unit Feed Value - Recycle to Fabrication: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}$, $C_{N}=\$ 0 / g$, High Costs, $L_{F}=0.01$

FIGURE VI. 21 Maximum Unit Eeed Value - Recycle to Fabrication: $\quad C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$,
$\mathrm{C}_{\mathrm{N}}=\$ 100 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
the three modes of operation when $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{~L}_{\mathrm{F}}=$ 0.01, and for high unit costs. The shift of R^{*} to much higher values than for the recycle-to-diffusionplant case makes it economically advantageous to utilize the pre-enrichment mode over a much wider range of R when using this recycle scheme; however, the position of the basic value curves at such high R-values reduces the range over which $V_{m}(R, Y)$ is obtained by blending with natural uranium.

As before, the lines for $y>0$ were terminated at the low-R end in order to avoid extrapolation of the basic value tables, which in this case extended up to $y=0.10$. However, at $C_{N}=\$ 60 / \mathrm{g}$, it is apparent from Figure VI. 20 and from the enlarged view of the low-R range shown in Figure VI. 22 that the presence of U-236 increases the maximum attainable feed value over the entire range of R for the values of Y considered. Figure VI. 21 shows how an increase of C_{N} to $\$ 100 / g$ leads to even greater enhancement of feed value when U-236 is present in increasingly high concentrations.

The shifts in the intersection points between $V(R, Y)$ and $V_{B}(R, Y)$ as C_{N} increases are not so apparent for this recycle scheme, since R^{*} becomes smaller with increasing C_{N} and since $V(R, Y)$ does not show strong preferential increase with increasing R.

As in the recycle-to-diffusion-plant case, the change in $V_{m}(R, 0)$ when C_{N} changes from $\$ 0 / g$ to $\$ 100 / g$

FIGURE VI. 22 Maximum Unit Feed Value at Low R-Recycle to Fabrication: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 60 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
at constant R is very small - less than 1.0% near R^{*} and less than 0.2% for $\mathrm{a} l \mathrm{ll}$ other R .

When $C_{U_{3} O_{8}}$ is changed from $\$ 8 / 1 \mathrm{~b}$ to $\$ 6 / 1 \mathrm{~b}$ and to $\$ 10 / 1 b$, with $C_{N}=\$ 0 / g$, the results are shown in Figures VI. 23 and VI.24, respectively. Figure VI. 25 shows results for the low unit cost condition, again at $C_{N}=\$ 0 / g$. These results exhibit the same trends and have differences caused only by changes in R^{*} and by general upward or downward shifts caused by the effect of $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ on the AEC price scale. When fabrication losses are 0.002 instead of 0.01 , the increase of R^{*} leads to a shift of the $V(R, y)$ curves to higher R and the desirability of pre-enriching feed over a wider range of R. This is indicated in Figure VI. 26, for the high unit cost condition, $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, and $C_{N}=\$ 0 / \mathrm{g}$.

3. Recycle to Diffusion Plant

Figures VI. 16 and VI. 17 showed results for $V_{D}(R, Y)$, $V(R, Y)$, and $V_{B}(R, Y)$ for $C_{N}=\$ 0 / g$ and $\$ 60 / g$ when $C_{U_{3}} O_{8}$ $=\$ 8 / 1 \mathrm{~b}, \mathrm{~L}_{\mathrm{F}}=0.01$, and for high unit costs. The corresponding results for $C_{N}=\$ 100 /$ g are shown in Figure VI.27, which indicates the significant increase in the feed value at all R as the $U-236$ content becomes greater. The range of R over which it is economically advantageous to operate according to the basic recycle flowsheet is wider at $C_{N}=\$ 100 / g$ than for either $C_{N}=\$ 0 / g$ or $C_{N}=\$ 60 / g$ and becomes wider

FIGURE VI. 23 Maximum Unit Feed Value - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 6 / 1 \mathrm{~b}, C_{N}=\$ 0 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$

FIGURE VI. 24 Maximum Unit Feed Value - Recycle to Fabrication: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 10 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$, High Costs, $\mathrm{I}_{\mathrm{F}}=0.01$

Maximum Unit Feed Value ($\$ / \mathrm{kgU}$)

FIGURE VI. 27 Maximum Unit Feed Value - Recycle to Diffusion plant:
$\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 100 / \mathrm{g}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
as y increases at $C_{N}=\$ 100 / g$.
Changes in the price of $\mathrm{U}_{3} \mathrm{O}_{8}$ and the unit cost condition shift R^{*} and the general position of the $V(R, y)$ results, but do not affect the general trends described previously. Results for $C_{U_{3} O_{8}}=\$ 6 / 1 b$ and $\$ 10 / 1 \mathrm{~b}$, with $C_{N}=\$ 0 / \mathrm{g}$ and high unit costs, are shown in Figures VI. 28 and VI. 29, respectively, while Figure VI. 30 shows results for the low unit cost condition when $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$ and $C_{N}=\$ 0 / \mathrm{g}$.
4. Effect of Recycle Scheme on Unit Value

The maximum value of uranium of a given isotopic composition depends strongly on the recycle scheme selected by the PWR operator. In Table VI. 2 the maximum unit values of some typical feed materials when used in connection with the two recycle schemes are compared for $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{~L}_{\mathrm{F}}=0.01$, high unit costs, and for both $C_{N}=\$ 0 / g$ and $C_{N}=\$ 60 / g$. It is important to remember that R^{*} is near 0.03 and 0.55 , respectively, for recycle to a diffusion plant and to fabrication.

FIGURE VI. 29 Maximum Unit Feed Value - Recycle to Diffusion plant:

$$
\mathrm{C}_{\mathrm{U}_{3} O_{8}}=\$ 10 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}, \text { High Costs, } \mathrm{I}_{\mathrm{F}}=0.01
$$

(Ω Бx/\$) ənten pəəa fṭun unuṭxew

FIGURE VI. 30 Maximum Unit Feed Value - Recycle to Diffusion Plant:
$\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$, Low Costs, $\mathrm{L}_{\mathrm{F}}=0.01$

VII. PENALTIES AND BENEFITS FROM U-236 AND NP-237
A. Definition of U-236 Penalty

The concept of a U-236 penalty was developed to provide a convenient way of expressing the effect of U-236 on feed value which would be less dependent upon R and Y than are the unit values themselves. The $U-236$ penalty $\delta(R, y)$ is defined as the reduction in total value per gram of $U-236$ when $y \mathrm{~kg}$ of $\mathrm{U}-236$ are added to ($1-\mathrm{y}$) kg of $\mathrm{U}-235$ plus $\mathrm{U}-238$ having $\mathrm{U}-235$ to $\mathrm{U}-238$ weight ratio R. This definition can be written in symbolic form as:

$$
\delta(R, y)=\frac{(1-y) V_{m}(R, 0)-V_{m}(R, y)}{1000 y}, \$ / g U-236
$$

(VII.1)

Note that maximum unit feed values, regardless of the operating mode required to obtain them, are used at points (R, O) and (R, y) in obtaining $\delta(R, Y)$. A negative penalty indicates that the presence of U-236 causes a mixture of (1-y) units of $\mathrm{U}-235$ plus $\mathrm{U}-238$ with y units of U-236 to have a higher total value than the (1-y) units of $U-235$ plus $U-238$ alone.

Other definitions are possible for the U-236 penalty, but the one given above has proven to be more convenient and less arbitrary than others considered. One alternative definition of some interest is discussed at the end of Section VII.

B. U-236 Penalty Results

Results for $\delta(R, y)$ have been obtained for all points having $y>0$ which were considered in the feed value maximization portion of the study and are listed in the tables of Appendix I.

1. Components of Overall Penalty Curves

The use of V_{m} in the penalty definition, Equation VII.1, permits the situation wherein $V_{m}(R, O)$ and $V_{m}(R, Y)$ could correspond to operation according to two different modes. It has been shown in Section VI, Part C, that the R-value at which $V_{D}(R, Y)$ and $V(R, Y)$ intersect will generally be different for each value of y considered. The same is true of the intersection between $V(R, Y)$ and $V_{B}(R, Y)$. As a result, $\delta(R, y)$ could be based on $V(R, 0)$ and $V_{D}(R, Y)$ over a limited range of R, at constant Y, while other combinations such as $V_{B}(R, O)$ and $V(R, Y)$ can arise in the penalty calculations, as is obvious from examining the curves of $V_{m}(R, Y)$ shown earlier.

It is instructive to examine penalty results based on the following modified definitions:

$$
\begin{align*}
& \delta_{1}(R, y)=\frac{(1-y) V_{D}(R, 0)-V_{D}(R, y)}{1000 y}, \tag{VII.2}\\
& \delta_{2}(R, y)=\frac{(1-y) v(R, 0)-V_{D}(R, y)}{1000 y}, \tag{VII.3}\\
& \delta_{3}(R, y)=\frac{(1-y) v(R, 0)-V(R, y)}{1000 y}, \tag{VII.4}
\end{align*}
$$

$$
\begin{align*}
\delta_{4}(R, y) & =\frac{(1-y) V_{B}(R, 0)-V(R, y)}{1000 y} \tag{VII.5}\\
\text { and } \quad \delta_{5}(R, y) & =\frac{(1-y) V_{B}(R, 0)-V_{B}(R, y)}{1000 y} \tag{VII.6}
\end{align*}
$$

These modified penalties are plotted in Figure VII.I for the recycle-to-diffusion-plant case for $y=0.005$, $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$, and high unit costs. The entire range of R is shown, from low- to fully-enriched ($R=15$) uranium. By comparing the lines for $y=0$ and $y=0.005$ in Figure VI.16, we can see how the overall line for $\delta(R, 0.005)$, as defined by Equation VII.l, is composed of segments of the individual δ_{i} lines plotted in Figure VII.l. The use of $V_{m}(R, 0)$ and $V_{m}(R, 0.005)$ in the definition of $\delta(R, y)$ causes the overall $\delta(R, 0.005)$ line to follow δ_{1} until δ_{1} intersects δ_{2}, after which δ follows δ_{2} until δ_{2} intersects δ_{3}, and so on.

The construction of the penalty curves presented later in this section was not carried out by separate calculation of all the component δ_{i} lines, but instead is accomplished by determining $\delta(R, Y)$ from $V_{m}(R, Y)$ results at discrete (R, y) points. As a result, the irregularities which are unavoidably present in all penalty curves will not be presented quite as accurately as above, since the discrete (R, y) points chosen do not necessarily correspond to intersection points between $V_{D}(R, y), V(R, y)$, and $V_{B}(R, y)$. For example, the very small segment where $\delta=\delta_{4}$ would not be seen in a normal penalty curve, while the $\delta=\delta_{2}$ segment and the

$\begin{array}{ll}\text { FIGURE VII. } 1 & \text { Components of U-236 Penalty Curve for } y=0.005- \\ \text { Recycle to Diffusion Plant: } C_{U_{3} O_{8}}=\$ 8 / 1 b, C_{N}=\$ 0 / g, \text { High Costs, } L_{F}=0.01\end{array}$
details near the intersection of δ_{2} and δ_{3} are not always exact. The detailed irregularities in the penalty curves are not of great practical importance, however.

Except for the $\delta=\delta_{1}$ segment, the penalties for all R fall within a narrow band centered at about $\$ 10 / \mathrm{g}$. The nature of the $\delta=\delta_{1}$ segment can be examined in the following way. Using Equation V.8, expressions for $V_{D}(R, O)$ and $V_{D}(R, Y)$ can be obtained and are inserted into Equation VII. 2 to give an expression for $\delta_{1}(R, Y)$. If ($1-i t_{E}$) and ($1+i t_{C}$) are both approximated by unity and if the difference between Δ_{D} / F_{D} for $y=0$ and for $y>0$ is neglected, then $\delta_{1}(R, y)$ can be written as

$$
\delta_{1}(R, y) \cong \frac{(1-y)\left[\frac{F}{F_{D}} V\left(R_{D}, 0\right)\right]_{y=0}-\left[\frac{F}{F_{D}} V\left(R_{D}, y_{D}\right)\right]_{y>0}}{1000 y}
$$

(VII.7)

Another reasonable assumption is that F / F_{D} is only slightly different for $\mathrm{y}=0$ and $\mathrm{y}>0$. A much cruder approximation is that the optimum value of R_{D} is the same for $y=0$ and $y>0$; furthermore, this optimum R_{D} is taken as R^{*}, since it was shown in Section VI, Part Cl, that R^{*} is very close to the optimum R_{D} when $y=0$. This last approximation is reasonable for low y, but becomes cruder as y increases. By utilizing these assumptions, Equation VII. 7 can be rewritten as

$$
\delta_{1}(R, y) \cong \frac{F}{F_{D}}\left[\frac{(1-Y) V\left(R^{*}, 0\right)-V\left(R^{*}, Y_{D}\right)}{1000 y}\right] \cdot(V I I .8)
$$

The bracketed quantity in Equation VII. 8 can be approximated by $\delta_{3}\left(R^{*}, y_{D}\right) y_{D} / y$ when the difference between (I-y) and ($1-Y_{D}$) is neglected. Equation VII. 8 then becomes

$$
\delta_{I}(R, Y) \cong \frac{F Y_{D}}{F_{D} Y} \delta_{3}\left(R^{*}, Y_{D}\right)=\alpha \delta_{3}\left(R^{*}, Y_{D}\right), \quad \text { (VII.9) }
$$

where α is the fraction of the total $U-236$ contained in the feed uranium which remains in the upgraded feed stream leaving the diffusion plant. The remainder of the U-236 is either discharged in the tails stream or is lost during conversion of UO_{3} to $\mathrm{UF}_{6}{ }^{\text {. }}$

When $\delta_{3}\left(R^{*}, Y_{D}\right)$ varies sufficiently slowly with y_{D}, then, within the limitations of the various approximations made in reaching Equation VII.9, $\delta_{1}(R, y)$ will vary almost directly with α. Therefore, the decrease in δ_{1} with decreasing R which is obvious in Figure VII.l is due in large part to the fact that α decreases with decreasing R, i.e., the fractional loss of $U-236$ in the tails stream increases when feed is introduced to the diffusion plant at a point nearer to the tails end.

Another feature of Figure VII. 1 is that δ_{5} becomes effectively constant as R increases. Furthermore, under certain conditions δ_{5} will tend to approach the same constant value regardless of the value of y being examined. This can be shown by first inserting
expressions for $V_{B}(R, 0)$ and $V_{B}(R, y)$, obtained from Equation V.9, into Equation VII. 6 to give the following general equation for $\delta_{5}(\mathrm{R}, \mathrm{y})$:

$$
\delta_{5}(R, y)=\frac{(1-y)\left[\frac{V\left(R_{B}, 0\right)-\epsilon C_{N A T}}{1-\epsilon}\right]_{y=0}-\left[\frac{V\left(R_{B}, y_{B}\right)-\epsilon C_{N A T}}{1-\epsilon}\right]_{y>0}}{1000 y}
$$

Next, it is assumed that for high R the maximum unit values for $\mathrm{y}=0$ and $\mathrm{y}>0$ are achieved by blending to the same R_{B}; in addition, R_{B} is taken as R^{*} since it was shown in Section VI, Part Cl, that optimum blending for $\mathrm{y}=0$ occurs when R_{B} is only slightly greater than R^{*}. With this assumption, it is reasonable to take the optimum values of ϵ as the same for both $y=0$ and $y>0$, so that Equation VII. 10 can be approximated at high R by

$$
\begin{equation*}
\delta_{5}(R, y) \cong \frac{1}{1-\epsilon}\left[\frac{(1-Y) V\left(R^{*}, 0\right)-V\left(R^{*}, Y_{B}\right)}{1000 y}\right] \tag{VII.11}
\end{equation*}
$$

From Equation IV. 24, (l- \mathcal{C}) can be replaced by Y_{B} / y; also, the bracketed quantity in Equation VII.ll can be approximated by $\delta_{3}\left(R^{*}, y_{B}\right) Y_{B} / Y$ when the difference between (l-y) and ($1-y_{B}$) is neglected. The approximation for $\delta_{5}(R, y)$ at high R then becomes

$$
\begin{equation*}
\delta_{5}(R, y) \cong \delta_{3}\left(R^{*}, y_{B}\right) \tag{VII.12}
\end{equation*}
$$

Since y_{B} becomes nearer to zero as R increases, and if $\delta_{3}\left(R^{*}, Y_{B}\right)$ is affected only slightly by small y_{B} variations, $\delta_{5}(R, y)$ will approach constancy at sufficiently high R, independent of y, provided the approximations which lead
to Equation VII. 12 are valid.
2. Recycle to Fabrication

In examining the penalty curves shown in this section and the following section, the reader is cautioned against attaching importance to all detailed variations. All $V_{m}(R, y)$ data result from one or more interpolation procedures and, when modified operating modes are involved, non-zero convergence criteria are applied during the feed value maximization processes. Inaccuracies which can result when taking differences between $V_{m}(R, y)$ data could possibly alter real (but unimportant) trends in the penalties shown; thus, the penalty curves should be used only to indicate broad trends and the general level of the $U-236$ penalty for various economic conditions.

In Figure VII.2, penalty results are shown for the $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{I}_{\mathrm{F}}=0.01$, high unit cost case, for three Np-237 prices - \$0, \$60, and $\$ 100 / \mathrm{g}$. The negative penalties for $C_{N}=\$ 60 / g$ and $C_{N}=\$ 100 / g$ indicate that the presence of $U-236$ in feed enhances the value of $U-235$ plus U-238. The difficulty of assigning a single meaningful penalty at each C_{N} is obvious, but it is convenient to arbitrarily define a "penalty level", δ, as the approximate penalty at R^{*}. For recycle to a diffusion pant, $\delta\left(R^{*}, y\right)$ does not show a strong variation with y and a representative δ can be selected with little difficulty. For recycle to fabrication, however, the
effect of y on $\delta\left(R^{*}, y\right)$ is strong enough to necessitate the choice of a single y, value as a basis for selecting万. The choice of $y=0.02$ appeared to give the most representative values of δ for this recycle scheme.

The strong effect of increasing C_{N} is indicated by a reduction of δ from $\$ 25.5 / \mathrm{g}$ to $-\$ 10 / \mathrm{g}$ to $-\$ 33.5 / \mathrm{g}$ as C_{N} increases from $\$ 0 / \mathrm{g}$ to $\$ 60 / \mathrm{g}$ to $\$ 100 / \mathrm{g}$. The dependence of $\delta(R, y)$ on C_{N} is investigated in more detail in Part C of this section. The dependence on y becomes more pronounced as C_{N} increases, which indicates that Np-237 production increases at a less-than-linear rate with increasing Y. For $R<0.5$, the loss of $U-236$ in the diffusion plant tails stream tends to reduce the penalty below the "penalty level" for $C_{N}=\$ 0 / g$; however, for $C_{N}=\$ 60 / \mathrm{g}$ and $C_{N}=\$ 100 / \mathrm{g}$, this loss of U-236 serves to increase the penalty as R decreases below 0.5 , since the presence of U-236 in the upgraded feed stream is now economically beneficial. All lines approach constant penalties as R becomes large, but the assumptions which lead to Equation VII. 12 are apparently not strictly valid for this recycle scheme, particularly at $C_{N}=\$ 60 / \mathrm{g}$ and $\mathrm{C}_{\mathrm{N}}=\$ 100 / \mathrm{g}$.

Figures VII. 3 and VII. 4 give results for $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=$ $\$ 6 / 1 \mathrm{~b}$ and $\$ 10 / 1 \mathrm{~b}$, respectively, at both $C_{N}=\$ 0 / \mathrm{g}$ and $\$ 60 / \mathrm{g}$. The penalty curves retain the same general appearance as for the $\$ 8 / 1 \mathrm{~b}$ case, but δ decreases as

FIGURE VII. 3 U-236 Penalty - Recycle to Fabrication: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{R}}=\$ 6 / 1 \mathrm{~b}$, High Costs, $\mathrm{I}_{\mathrm{F}}=0.01$
$C_{U_{3} O_{8}}$ decreases. For $C_{N}=\$ 0 / \mathrm{g}$ and $\$ 60 / \mathrm{g}$, respectively, δ results for $C_{U_{3} O_{8}}=\$ 6 / 1 \mathrm{~b}$ are about $\$ 24 / \mathrm{g}$ and $-\$ 11.5 / \mathrm{g}$ while for $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 10 / 1 \mathrm{~b}$, these become $\$ 27 / \mathrm{g}$ and $-\$ 8.5 / \mathrm{g}$. The variation of $\delta(\mathrm{R}, \mathrm{y})$ with $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ is considered in more detail in Part C of this section.

Penalties for the low unit cost case, at $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=$ $\$ 8 / \mathrm{lb}$, are shown in Figure VII.5. The penalty levels of $\$ 21.5 / \mathrm{g}$ and $-\$ 13.5 / \mathrm{g}$, at $\mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$ and $\$ 60 / \mathrm{g}$, respectively, are about $\$ 4 / \mathrm{g}$ lower than for the corresponding high unit cost cases.

In Figure VII.6, it is shown that a decrease of I_{F} from 0.01 to 0.002 effects an increase in δ from $\$ 25.5 / \mathrm{g}$ to $\$ 30 / \mathrm{g}$.

3. Recycle to Diffusion Plant

Figure VII. 7 shows $\delta(\mathrm{R}, \mathrm{y})$ results for $\mathrm{C}_{\mathrm{N}}=\$ 0$, $\$ 60$, and $\$ 100 / \mathrm{g}$ for the $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / \mathrm{lb}, \mathrm{L}_{\mathrm{F}}=0.01$, high unit cost case. For the three C_{N} values, δ now decreases from $\$ 10 / \mathrm{g}$ to $-\$ 1.5 / \mathrm{g}$ to $-\$ 9 / \mathrm{g}$, levels which are significantly smaller in magnitude than for recycle to fabrication, for reasons discussed in the next part of this section. For each C_{N} value, $\delta(R, y)$ tends to lose both its R and y dependence as R becomes very large, which indicates that the assumptions inherent in Equation VII. 12 are more generally valid for this recycle scheme.

Results for $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 6 / 1 \mathrm{~b}$ and $\$ 10 / 1 \mathrm{~b}$ are shown in Figures VII. 8 and VII.9, respectively. For $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=$ $\$ 6 / 1 \mathrm{~b}$, δ decreases to $\$ 9 / \mathrm{g}$ and $-\$ 2.5 / \mathrm{g}$ at $\mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$ and

FIGURE VII. 8 U-236 Penalty - Recycle to Diffusion Plant: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 6 / 1 \mathrm{~b}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$

$\$ 60 / \mathrm{g}$, while the corresponding penalty levels for $C_{U_{3} O_{8}}=\$ 10 / 1 \mathrm{~b}$ are $\$ 11 / \mathrm{g}$ and $-\$ 0.5 / \mathrm{g}$. .

When the low unit cost condition is employed, with $C_{U_{3} O_{8}}=\$ 8 / 1 b, \delta$ decreases by about $\$ 1.5 / \mathrm{g}$ to $\$ 8.5 / \mathrm{g}$ and $-\$ 2.5 / \mathrm{g}$ for $\mathrm{C}_{\mathrm{N}}=\$ 0 / \mathrm{g}$ and $\$ 60 / \mathrm{g}$, respectively. Results for this case are shown in Figure VII.10.

It is interesting to note that, in general, for this recẏcle scheme the presence of U-236 in increasing concentration tends to decrease $\delta(R, y)$ slightly in the region where the blending-with-natural-uranium mode is utilized, whereas $\delta(R, y)$ increases with increasing y for recycle to fabrication. The reason for this is extremely complex but is due in part to the fact that, when recycling to a diffusion plant, as y increases the tendency to blend to increasingly high R_{B} is stronger than for recycle to fabrication. Reference to Figures VI. 3 and VI. 9 indicates that this tends to reduce the difference between $V\left(R_{B}, 0\right)$ for $y=0$ and $V\left(R_{B}, Y_{B}\right)$ for $y>0$ as compared with the situation wherein R_{B} changes slightly or not at all as y increases.
C. U-236 Penaity Variations

The major effects which influence the variation of ס can be determined by a detailed analysis of the penalties near R^{*} for representative cases. From Equation VI.l, an expression for $V(R, y)$ can be written as

$$
V(R, Y)=\frac{24 L P C_{E}^{*}-M(R, Y)}{F(R, Y)}
$$

where F has been written to show dependence on R and Y. Using Equations VII. 4 and VII.13, the following relation can be formed:
$1000 y \delta_{3}(R, y)=(1-y)\left[\frac{24 L P C_{E}^{*}}{F(R, 0)}-\frac{M(R, 0)}{F(R, 0)}\right]-\frac{24 L P C_{E}^{*}}{F(R, y)}+\frac{M(R, y)}{F(R, y)}$.
(VII.14)

Equation VII. 14 can be written in condensed form as

$$
1000 y \delta_{3}(R, y)=24 L P C_{E}^{*} B+\eta,
$$

(VII.15)
where

$$
\begin{equation*}
B=\frac{1-y}{F(R, 0)}-\frac{1}{F(R, y)} \tag{VII.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta=\frac{M(R, y)}{F(R, y)}-\frac{(1-y) M(R, 0)}{F(R, 0)} \tag{VII.17}
\end{equation*}
$$

The " B effect" thus arises from the increase in F with increasing y, while η is a measure of the change in the total fuel cycle cost exclusive of feed costs, normalized to unit feed, when U-236 is introduced into the feed. It should be noted that M includes any credit realized from the sale of $\mathrm{Np}-237$.

Table VII. 1 lists information required in this analysis for a representative sampling of cases. Results for $F(R, Y)$ and $M(R, y)$ are given for both $y=0$ and $y=0.01$ and at values of R sufficiently near R^{*} to insure that $\delta_{3}(R, y)$ is reasonably close to δ for each case. Using this information, the results for B, $24 L P C_{E}^{*} B, \eta$, and $\delta_{3}(R, 0.01)$ which are given in Table VII. 2 were obtained.

TABLE VII. 1
Effect of y on $F(R, y)$ and $M(R, Y)$ near R^{*}

Recycle to	L_{F}	Unit Costs	R	$\begin{aligned} & C_{U_{3}} O_{8} \\ & (\$ / 1 b) \\ & \hline \end{aligned}$	$\begin{gathered} F(R, 0) \\ (\mathrm{kgU} / \mathrm{day}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { F(R,0.01) } \\ & \text { (kgU/day) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{N}} \\ (\$ / \mathrm{qNp}) \\ \hline \end{gathered}$	$\begin{aligned} & 24 L P C_{E}^{*} \\ & (\$ / \text { day }) \\ & \hline \end{aligned}$	$\begin{aligned} & M(R, 0) \\ & (\$ / \text { day }) \end{aligned}$	$\begin{aligned} & M(R, 0.01) \\ & (\$ / \text { day }) \\ & \hline \end{aligned}$
Fabrication	0.01	High	0.55	8	2.536	2.630	0	16744	6300	6698
							60	11643	1203	650
							100	8225	-2195	-3381
				6	2.536	2.630	0	15382	6020	6406
		Low	0.50	8	2.704	2.804	0	14958	4525	4848
	0.002	High	0.70	8	2.182	2.259	0	16942	6448	6854
Diffu- sion Plant	0.01	High	0.03	8	29.66	34.33	0	13325	6074	8589
							60	11798	4559	3229
							100	10777	3549	-345
				6	29.86	34.45	0	12133	5792.	8160
		Low	0.03	8	29.66	34.33	0	11702	4526	6269

```
TABLE VII. 2
Items Which Govern U-236 Penalty Changes
```

$\begin{gathered} \text { Recycle } \\ \text { to } \\ \hline \end{gathered}$	$L_{\text {F }}$	Unit Costs	R	$\begin{aligned} & C_{U_{3}} O_{8} \\ & (\$ / 1 b) \\ & \hline \end{aligned}$	B	$\begin{gathered} \mathrm{C}_{\mathrm{N}} \\ (\$ / \mathrm{qNp}) \\ \hline \end{gathered}$	$\begin{aligned} & 24 \mathrm{LPC}_{\mathrm{E}}^{*} \mathrm{~B} \\ & (\$ / \mathrm{kgU}) \end{aligned}$	$\begin{gathered} \eta \\ (\$ / \mathrm{kgU}) \\ \hline \end{gathered}$	$\begin{aligned} & \delta_{3}(R, 0,01) \\ & (\$ / q U-236) \end{aligned}$
Fabrication	0.01	High	0.55	8	0.01003	0	167.94	88.16	25.61
						60	116.78	-222.37	-10.56
						100	82.50	-429.00	-34.65
				6	0.01003	0	154.28	86.40	24.07
		Low	0.50	8	0.00956	0	142.92	71.94	21.49
	0.002	High	0.70	8	0.01097	0	185.85	108.95	29.48
Diffusion Plant	0.01	High	0.03	8	0.00425	0	56.63	47.45	10.41
						60	50.14	-58.12	- 0.80
						100	45.80	-128.51	- 8.27
				6	0.00413	0	50.13	44.81	9.49
		Low	0.03	8	0.00425	0	49.73	31.54	8.13

The value for B is governed predominantly by the feed rate level, with B increasing as the general level of F decreases. Consequently, B is larger when recycling to fabrication than for recycle to a diffusion plant. Also, for recycle to fabrication, reduction of L_{F} leads to lower feed rates and higher B.

As C_{N} increases, C_{E}^{*} decreases and the $24 L P C_{E}^{*} B$ contribution to the penalty becomes smaller. Obviously, any change in conditions which reduces C_{E}^{*} without significantly affecting B will decrease the $24 L P C_{E}^{*} \beta$ contribution. Such changes are the lowering of either unit costs or $\mathrm{U}_{3} \mathrm{O}_{8}$ price. Conversely, $24 \mathrm{LPC} \mathrm{E}_{\mathrm{E}}^{*} \beta$ is increased by any change which increases B but which does not affect C_{E}^{*}, a condition approximated by reducing L_{F} for recycle to fabrication.

The major terms in M / F, such as F_{R} / F and N / F, were shown in Table IV. 2 to increase with increasing y. Thus, at $C_{N}=\$ 0 / g$, the η contribution to the penalty is positive and important, although not as large as $24 L P C_{E}^{*} ß$. As C_{N} becomes larger, the Np-237 credit increases faster for $y=0.01$ than for $y=0$, which leads to decreasing η values. At $C_{N}=\$ 60 / g$ and $\$ 100 / \mathrm{g}, \eta$ is strongly negative and provides the dominant contribution to the penalty. Since both $24 L P C_{E}^{*} B$ and η decrease with increasing C_{N}, the penalty also decreases, but becomes negative at a higher C_{N} than does η.

When $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ changes, η is affected only slightly; however, a decrease of $C_{U_{3}} O_{8}$ reduces C_{E}^{*}, thereby reducing the penalty. Conversely, an increase of $C_{U_{3}} O_{8}$ results in a penalty increase.

When unit costs are lowered, C_{E}^{*} decreases, and since the increase of F_{R} / F caused by an increase of Y has less of an economic effect under these conditions, η also decreases. The effect is to decrease the penalty below that obtained for the high unit cost case.

For recycle to fabrication, reduction of L_{F} leads to a higher B, as mentioned above, but also leads to increased η since the effect of increasing y on burnup is greater near R^{*} when the lower L_{F} is used (see Figure IV.7). The cumulative effect is an increase in the penalty.

At $C_{N}=\$ 0 / g$, the penalty level is about $\$ 15 / g$ larger for the recycle-to-fabrication scheme than for recycle to a diffusion plant. About $\$ 11 / g$ of this differential results from the higher B and the higher C_{E}^{*} for recycle to fabrication. The remaining $\$ 4 / g$ results from the difference between η values caused by the higher sensitivity of $Y_{R} F_{R} / F, F_{R} / F$, etc., to changes of Y in the case of recycle to fabrication.

However, as C_{N} increases, the more rapid decrease of C_{E}^{*} and the greater sensitivity of N / F to changes of y (see Table IV.2) serve to reduce both $24 L P C_{E}^{*} B$ and η at a faster rate for recycle to fabrication. The
penalty is therefore more sensitive to C_{N} for that scheme than for recycle to a diffusion plant.

The preceding discussion indicates that the penalty level exhibits the following general characteristics:
a. δ increases as the feed rate requirement decreases;
b. δ decreases as C_{E}^{*} decreases; and
c. δ decreases as C_{N} increases.

The reduction of U-236 penalty with unit increase of C_{N} has been calculated at a number of (R, y) points for both recycle schemes. Detailed results are given in Appendix J and a sampling of these calculated coefficients is given in Table VII.3. For the $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=$ $\$ 8 / l \mathrm{~b}$, high unit cost case, average coefficients were calculated over the interval $C_{N}=\$ 0 / g$ to $\$ 60 / \mathrm{g}$ as well as the interval $C_{N}=\$ 0 / g$ to $\$ 100 / g$. At each (R, y) point considered, the coefficients for these two C_{N} intervals were virtually the same, and it can be concluded that the U-236 penalty for a given feed composition R, y varies linearly with $N p-237$ price. Coefficients for the recycle-to-fabrication cases are larger than for recycle-to-diffusion plant, for the reasons mentioned above.

The linear variation of $\delta(R, Y)$ with C_{N} also implies linear variation of $V_{m}(R, y)$ with C_{N}. It was

TABLE VII. 3

Recycle to	Change of	U-236 Penalty with Neptunium Price \$8/lb; $L_{F}=0.01$; high unit costs) $-\frac{\Delta 6(R, Y)}{\Delta C_{N}}, \frac{\$ / q U-236}{\$ / g N p-237}$						
		y^{R}	0.01	0.03	0.06	0.5	2	15
Fabrication	0,60	0.01		0.333	0.422	0.600	0.621	0.624
		0.04				0.555	0.589	0.599
		0.15					0.512	0.546
	0,100	0.01		0.332	0.421	0.600	0.622	0.627
		0.04				0.555	0.589	0.600
		0.15					0.512	0.545
Diffusion Plant	0,60	0.005	0.121	0.190	0.200	0.194	0.194	0.193
		0.02		0.177	0.205	0.197	0.195	0.195
		0.15					0.205	0.204
	0,100	0.005	0.121	0.190	0.201	0.195	0.195	0.194
		0.02		0.178	0.207	0.198	0.196	0.195
		0.15					0.207	0.205

mentioned in Part C of Section $V I$ that for fixed $U_{3} O_{8}$ price, unit cost condition, loss fractions, and recycle scheme, results for $\nabla_{m}(R, 0)$ are very nearly independent of C_{N} for C_{N} up to $\$ 100 / g$. For fixed R and y, the derivative of $\delta(R, Y)$ with respect to C_{N} is constant and if $V_{m}(R, 0)$ is assumed invariant with C_{N} we can use Equation VII.l to get

$$
\begin{equation*}
\frac{\mathrm{d} \delta}{\mathrm{dC}}=-\frac{1}{1000 \mathrm{y}} \frac{\mathrm{dV}_{\mathrm{m}}}{\mathrm{dC}_{\mathrm{N}}}=\text { constant } \tag{VII.18}
\end{equation*}
$$

Hence, $V_{m}(R, y)$ for other $N p-237$ prices can be obtained by linear interpolation or extrapolation (to at least $C_{N}=\$ 100 / g$) of the results obtained at two C_{N} values. The non-linear behavior of the AEC price scale with changes in $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ will generally introduce the same non-linearity into any quantity which is either directly or indirectly dependent upon it. Although the values for δ given above indicate a linear variation of penalty with $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$, δ values have been selected in a rather crude manner for the purpose of indicating the broad trends which occur and cannot be used to prove that linearity does or does not exist. When examined in detail, the actual non-linear variation of $\delta(R, y)$ with $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ can be ascertained and is indicated in Table VII.4, where the average change in $\delta(R, Y)$ per anit change of $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ is given for the interval $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=$ $\$ 6 / 1 \mathrm{~b}$ to $\$ 8 / 1 \mathrm{~b}$ as well as for the interval $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}$ to $\$ 10 / 1 \mathrm{~b}$. Coefficients are given for $\mathrm{y}=0.01 \mathrm{at}$

TABLE VII. 4
Change of U-236 Penalty with $U_{3} \mathrm{O}_{8}$ Price ($y=0.01: C_{N}=\$ 0 / g ; L_{F}=0.01$; high unit costs)

Recycle to	$\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}} \text { Range }$	$R=0.01$	$\frac{\Delta \delta(R, y)}{\Delta C_{U_{3} O_{8}}}, \frac{\$ / q u-236}{\$ / 1 b \mathrm{U}_{3} \mathrm{O}_{8}}$				
	$\left(\$ / 1 \mathrm{bU}_{3} \mathrm{O}_{8}\right)$		0.03	0.06	0.5	2	15
Fabrication	6,8		0.660	0.785	0.845	0.820	0.825
	8,10		0.625	0.705	0.785	0.785	0.785
Diffusion	6,8	0.380	0.480	0.495	0.490	0.485	0.480
	8,10	0.365	0.430	0.465	0.445	0.440	0.460

various R values. For both recycle schemes, the coefficients for the two $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}$ intervals differ significantly at each R value, which is sufficient proof of the aforementioned non-linearity.
D. Indifference Prices for $\mathrm{Np}-237$

The "indifference price" for $\mathrm{Np}-237, C_{N}^{O}(R, y)$, is defined as the price at which the $U-236$ penalty $\delta(R, Y)$ is zero. At this neptunium price the value of uranium feed containing a given amount of $U-235$ and $U-238$ is the same whether or not the uranium contains $U-236$; therefore, it is a matter of indifference in purchasing uranium containing U-235 and U-238 at a given price whether the uranium contains U-236 or not.

Results for $C_{N}^{O}(R, y)$ are given in Table VII. 5 for representative (R, y) points, for both recycle schemes, and for various economic conditions. $C_{N}^{O}(R, y)$ is a measure of the relative economic importance of $\mathrm{U}-236$ as a neutron poison and as a target material for the production of $\mathrm{Np}-237$, and is the ratio of the penalty at $C_{N}=\$ 0 / g$ to the rate of decrease of the penalty with increasing C_{N}. By comparing $C_{N}^{O}(R, y)$ results, it is possible to judge the relative strengths of the poisoning and Np-237 effects under different conditions. As an example, $C_{N}^{O}(R, Y)$ results for the recycle-to-diffusion-plant case are higher than for recycle to fabrication, despite the fact that the penalty level

TABLE VII. 5
Indifference Prices of Np-237

$$
\left(L_{F}=0.01\right)
$$

Unit Costs	$\begin{aligned} & C_{U_{3}} o_{8} \\ & (\$ / 1 b) \end{aligned}$	$\begin{gathered} \text { Recycle } \\ \text { to } \\ \hline \end{gathered}$	Y^{R}	$\mathrm{C}_{\mathrm{N}}^{\mathrm{O}}(\mathrm{R}, \mathrm{y}), \$ / \mathrm{g} \mathrm{Np}-237$						
				0.01	0.03	0.06	0.2	0.5	2	15
High	6	Diff Pl	0.01	46.84	52.25	45.61	48.35	49.13	49.46	49.52
			0.02		49.56	43.68	47.00	48.41	49.13	49.28
		Fab	0.01		42.30	42.06	40.58	39.49	37.66	37.21
			0.02			42.32	41.85	40.67	38.93	38.18
	8	Diff Pl	0.01	50.55	55.71	49.16	52.18	53.03	53.36	53.54
			0.02		53.72	47.15	50.68	52.23	53.02	53.12
			0.15						48.20	49.39
		Fab	0.01		45.61	45.30	43.25	42.28	40.07	39.72
			0.02			45.97	45.00	43.43	41.41	40.69
			0.15						45.21	44.94
	10	Diff P1	0.01	54.10	58.29	52.52	55.67	56.38	56.91	57.11
			0.02		57.52	50.36	54.15	55.67	56.57	56.87
		Fab	0.01		48.80	48.30	45.75	44.88	42.49	42.07
			0.02			49.32	47.90	46.04	43.82	43.07
Low	8	Diff Pl	0.01	45.27	43.81	42.89	42.65	42.50	42.19	42.36
			0.02		48.01	41.61	42.92	42.65	42.38	42.42
		Fab	0.01		40.33	39.34	36.57	35.13	34.25	34.02
			0.02			40.75	38.59	36.62	35.11	34.61

at $C_{N}=\$ 0 / g$ is significantly higher in the latter case. The rate at which $\delta(R, y)$ decreases with increasing C_{N} is sufficiently greater for the recycle-tofabrication case that $\delta(R, Y)$ becomes zero at a lower C_{N}. This is illustrated in Figure VII. 11 , where the variation of the penalty level, $\bar{\delta}$, with C_{N} is shown for both recycle schemes.

All $C_{N}^{O}(R, y)$ results, regardless of the recycle scheme considered, fall within the rather narrow range of $\$ 34 / \mathrm{g}$ to $\$ 59 / \mathrm{g}$; furthermore, all results for recycle to fabrication are between $\$ 34 / \mathrm{g}$ and $\$ 50 / \mathrm{g}$, while the range of $\$ 41 / g$ to $\$ 59 / g$ includes all results for recycle to a diffusion plant.

E. Alternative U-236 Penalty Definition

In an attempt to remove some of the extreme variation of the $\delta(R, y)$ curves at low R values, an alternative U-236 penalty was investigated. Equation VII.9 suggests that, if the requisite assumptions are valid for a particular case, $\delta(R, y)$ will vary directly with α over the δ_{1} portion of the penalty curve. A logical sṫep is to define an "adjusted $U-236$ penalty", $\delta_{A D J}(R, Y)$, as follows:

$$
\begin{equation*}
\delta_{A D J}(R, Y)=\frac{1}{\alpha} \delta(R, Y) \tag{VII.19}
\end{equation*}
$$

This effectively changes the penalty basis from one gram of U-236 in the feed purchased to one gram of U-236 which is fed to fabrication. When $V_{m}(R, Y)$ is

224

FIGURE VII. 11 Variation of Penalty Level with Np-237 Price: $\quad \mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}$, High Costs, $\mathrm{L}_{\mathrm{F}}=0.01$
obtained by either blending with natural uranium or by basic recycle scheme operation, α can be defined as unity and $\delta(R, y)=\delta_{A D J}(R, y)$. Results for $\delta_{A D J}(R, y)$ were calculated for all (R, y) points at which $\alpha<1.0$ and are listed, along with the values of α, in the tables of Appendix I.

Figures VII. 12 and VII. 13 show the results for $\delta_{A D J}(R, y)$ for recycle to fabrication and to a diffusion plant, respectively, for $\mathrm{C}_{\mathrm{U}_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}, \mathrm{~L}_{\mathrm{F}}=0.01$, and high unit costs. Comparison with the $\delta(R, Y)$ results shown in Figures VII. 2 and VII. 7 indicates the improvement made in "flattening" the penalty curves. For the recycle-to-fabrication scheme, substantial variation of $\delta_{A D J}(R, y)$ with both R and y still exists for $R<R^{*}$, although the variation is noticeably less than for $\delta(R, y)$. However, dependence upon R and y for $R<R^{*}$ is significantly weaker for $\delta_{A D J}(R, y)$ than for $\delta(R, Y)$ in the case of recycle to a diffusion plant. The assumptions leading to Equation VII. 9 are certainly more valid in the latter case. Figure VII.l3 gives surprisingly uniform $\delta_{A D J}(R, y)$ results at each C_{N}, particularly when one considers the extremely complex interactions between modes of operation which govern the $V_{m}(R, Y)$ results.

The degree of "flattening" achieved by the use of $\delta_{A D J}(R, y)$ does not affect the values of δ given earlier,

but it becomes more meaningful to use a single $\bar{\delta}$ value to characterize a set of $\delta_{A D J}(R, Y)$ results. In such a case, δ would have units of $\$ / \mathrm{g}$ of $\mathrm{U}-236$ reaching fabrication, rather than $\$ / g$ of $U-236$ contained in feed.

Although $\delta_{A D J}(R, Y)$ has advantages over $\delta(R, y)$ under certain conditions and despite the insight gained by examining $\delta_{A D J}(R, y)$, it is desirable to base the U-236 penalty on U-236 contained in the feed uranium purchased. As a result, the major emphasis has been placed on the $U-236$ penalty defined as $\delta(R, y)$.

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

The results of this study clearly indicate that operators of PWR systems must be prepared to account for the significant effects of $U-236$ on their fuel cycle economics when they consider the purchase of previously irradiated uranium. It has also been shown that the price at which the $\mathrm{Np}-237$ produced during irradiation is sold can strongly influence the cost of power, the value of uranium containing $U-236$; and the selection of an optimum fuel-flow scheme.

When uranium containing no $U-236$ is purchased on the AEC price scale, the minimum fuel cycle cost will vary strongly with the unit price of $N p-237$ and the fuel flow scheme used. In general, when the $\mathrm{Np}-237$ price is low, it is economically preferable to select a fuel flow scheme which minimizes the buildup of U-236 in reactor feed uranium; conversely, when the $\mathrm{Np}-237$ price is high, the flow scheme which maximizes the concentration of U-236 in reactor feed uranium gives the lowest fuel cycle cost. The present work shows that, if the $\mathrm{Np}-237$ price is less than about $\$ 55 / \mathrm{g}$, it is economically advantageous to recycle uranium to a gaseous diffusion plant and permit the discharge of some U-236 with the tails stream; however, for $\mathrm{Np}-237$ prices above about $\$ 55 / \mathrm{g}$, it is preferable to maximize

U-236 retention and $\mathrm{Np}-237$ production by recycling uranium directly to fabrication.

When no credit is received for the Np-237 produced during irradiation, $U-236$ acts only as a neutron poison and its presence in feed uranium causes the maximum unit value of feed to be less than the unit value of feed having the same $U-235$ to $U-238$ weight ratio but containing no U-236. However, as the price of Np-237 increases, the additional production of Np-237 which results from the presence of U-236 causes the unit value of any feed uranium containing U-236 to increase. For Np-237 prices above $\$ 60 / g$, the presence of U-236 results in a unit feed value which is higher than the corresponding value of feed containing no U-236, for any U-235 to U-238 weight ratio in the feed (R).

Except for a narrow range of R near the optimum ratio R^{*}, the maximum unit feed value is obtained by properly adjusting the isotopic composition of the feed prior to using it as makeup material for the basic fuel flow scheme. This is true whether the feed does or does not contain U-236 and whether the price of $\mathrm{Np}-237$ is low or high. When feed has R significantly lower than R^{*}, its maximum unit value is obtained by pre-enriching it in a gaseous diffusion plant to a ratio nearer R^{*}; on the other hand, if R is significantly greater than R^{*}, the maximum unit feed
value is obtained by blending the feed with natural uranium to give a ratio near R^{*}.

Feed value results and the effects of U-236 and Np-237 can be effectively correlated by defining a U-236 penalty $\delta(\mathrm{R}, \mathrm{y})$ as the reduction in total value per gram of $U-236$ when $y \mathrm{~kg}$ of $\mathrm{U}-236$ are added to $1-Y$ $k g$ of $U-235+U-238$ at a constant U-235 to U-238 ratio. The value of the penalty at $R=R^{*}, \delta$, provides a meaningful estimate of all $\delta(R, y)$ results calculated for a particular case. Results for δ may be used in rough estimates of the effect of U-236 on the value of uranium feed for PWR's. Typical values for δ at Np-237 prices of $\$ 0, \$ 60$, and $\$ 100 / \mathrm{g}$, respectively, are $\$ 10,-\$ 1.5$, and $-\$ 9 / G U-236$ when recycling to a diffusion plant and $\$ 25.5,-\$ 10$, and $-\$ 33.5 / \mathrm{g} \mathrm{U}-236$ when recycling to fabrication, all based on a $U_{3} O_{8}$ price of $\$ 8 / 1 \mathrm{~b}$. The change in δ from one set of conditions to another can be characterized as follows:
a. δ increases as the feed rate requirement decreases;
b. δ decreases as the minimum fuel cycle cost decreases; and
c. δ decreases as the price of $\mathrm{Np}-237$ increases.

When no credit is received for $\mathrm{Np}-237, \delta$ is
about $\$ 15 / \mathrm{g}$ U-236 higher for recycle to fabrication than for recycle to a diffusion plant, due primarily to
the lower feed rate requirement and higher minimum fuel cycle cost of the former scheme. However, the Np-237 production rate per unit of feed is much more sensitive to changes of the U-236 feed content in the case of recycle to fabrication, so that δ decreases with increasing Np-237 price more rapidly than for recycle to a diffusion plant.

At a $\mathrm{Np}-237$ price of C_{N}° the presence or absence of U-236 is without effect on the value of a given quantity of $U-235$ plus $U-238$. All results for C_{N}° fall within the range $\$ 30 / \mathrm{g}$ to $\$ 60 / \mathrm{g} \mathrm{Np}-237 . \mathrm{C}_{\mathrm{N}}^{0}$ is a measure of the relative economic importance of $U-236$ in feed uranium as a neutron poison and as a target material for the production of $\mathrm{Np}-237$. Typically, a C_{N}^{O} value of $\$ 43 / g \mathrm{~Np}-237$ for recycle to fabrication corresponds to $C_{N}^{O}=\$ 52 / g \mathrm{~Np}-237$ for recycle to a diffusion plant. It can be concluded that the economic effect of feed U-236 as a poison relative to its economic effect as a Np-237 precursor is greater for recycle to a diffusion plant than for recycle to fabrication.

B. Recommendations

It is recommended that a limited study be made of how U-236 would affect uranium feed value if the unit cost of separative work were substantially different from the value of $\$ 30 / \mathrm{kgU}$ used in this work.

Additional work on correlating the feed value results obtained in this study could lead to even more useful and meaningful parameters than the $U-236$ penalties defined herein. Many other definitions of a "U-236 penalty" could be examined in an attempt to present the effects of $\mathrm{U}-236$ and $\mathrm{Np}-237$ in a form which has little or no significant dependence on feed isotopic composition. Careful consideration of the factors which govern the change of δ from case to case might lead to a penalty definition which also eliminates the strong dependence on the fuel flow scheme used and the economics parameters selected.

It would be of interest to estimate the effect on the results presented herein if other diffusion plant feed and product streams were assumed to be present during the toll enrichment operations encountered in the present study. The choice of a composition and size for each extraneous stream would be extremely arbitrary and would negate the uniqueness of results obtained. However, if procedures could be developed to simulate the dilution of $\mathrm{U}-236$ in the product stream without detailed specification of these extraneous streams and without incurring excessive error in estimating separative work costs, the arbitrariness of the results might be minimized.

Another complex, but useful, study would be the determination of unit feed value throughout the period
of transient flowsheet operation prior to the attainment of a steady-state recycling condition. A simple, yet tedious, procedure for including transient cycle effects would be to require that the levelized fuel cycle costs over the plant life be the same whether feed of optimum enrichment containing no $U-236$ is purchased on the AEC price scale for all cycles or feed having a.specified isotopic composition is purchased for all cycles. However, when the same feed composition is specified for all cycles, the recycle of $\mathrm{U}-236$ would result in significant differences in average burnup between transient and steady-state cycles, whether feed does or does not contain U-236. An alternative procedure might be to calculate the value of feed having composition R and y on a batch-to-batch basis by forcing the fuel cycle cost for each batch, when formed from the use of such feed, to equal the minimum fuel cycle cost which could be obtained if the same batch were formed instead from feed containing no U-236 and priced on the AEC price scale. A considerable amount of thought would be required before a procedure giving meaningful, consistent, and non-arbitrary transient-cycle feed values could be established.

Operators of other reactor types would find it advantageous to carry out studies similar to the present one when considering the use of uranium feed containing U-236, before deciding on the price they
could afford to pay for such uranium. The procedures described herein can easily be adapted to other fuel flow schemes and reactor types.

Considerable effort should be expended in an attempt to forecast the market price for $\mathrm{Np}-237$ before specifying a fuel flow scheme and before establishing limits on the price which can be afforded for feed uranium.

Appendices A through L, pages 236-363, are bound in Volume 2.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF NUCLEAR ENGINEERING

Cambridge, Massachusetts 02139 .

THE EFFECT OF URANIUM-236 AND NEPTUNIUM-237 ON THE VALUE OF URANIUM AS FEED FOR PRESSURIZED WATER POWER REACTORS APPENDICES

by

D.A. Goellner, M. Benedict and E.A. Mason

December, 1967

For the
U.S. Atomic Energy Commission

Under Contract AT (30-1)-2073

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 DEPARTMENT OF NUCLEAR ENGINEERING Cambridge, Massachusetts 02139THE EFFECT OF URANIUM-236 AND NEPTUNIUM-237 ON THE VALUE OF URANIUM AS FEED FOR PRESSURIZED WATER POWER REACTORS

APPENDICES

by

D. A. Goellner, M. Benedict and E. A. Mason

$$
\text { December, } 1967
$$

For the
U. S. Atomic Energy Commission

Under Contract AT(30-1)-2073

TABLE OF CONTENTS
Page

APPENDIX A. REFERENCE REACTOR DESIGN CHARACTER-	
ISTICS	236

APPENDIX B. EQUATION FOR CALCULATING NP-237 BUILDUP 240
APPENDIX C. MOVE CODE - SCATTER REFUELING VERSION 244

1. Description 244
2. Methods Used 248
3. Input Description 256

APPENDIX D. INPUT DATA FOR CELL AND MOVE CODES 263
APPENDIX E. FLOWSHEET CHARACTERISTICS AS FUNCTIONS OF EXTERNAL FEED COMPOSITION R AND Y 272
$\begin{array}{ll}\text { APPENDIX F. CALCULATION OF AEC PRICE SCALES AND } \\ & \text { PLUTONIUM VALUES }\end{array}$
APPENDIX G. MINIMUM FUEL CYCLE COST RESULTS . 288
APPENDIX H. URANIUM VALUES FOR BASIC RECYCLE SCHEMES

293
APPENDIX I. MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS FOR DIFFERENT MODES OF OPERATION 304

APPENDIX J. EFFECT OF NP-237 PRICE ON U-236 PENALTY. 330
APPENDIX K. COMPARISON OF MATCHED-R AND OPTIMUM CONSTANT-KEY-WEIGHT CASCADE CHARACTERISTICS

APPENDIX L. FLOWSHEET CHARACTERISTICS AS FUNCTIONS OF REACTOR FEED COMPOSITION R_{R} AND $Y_{R} 340$
APPENDIX M. NOMENCLATURE (for Sections I-VIII) 364
APPENDIX N. REFERENCES 373

LIST OF FIGURES

Page
C.l Flow Diagram for Scatter-Refueling Version of MOVE249
K. 1 Test Case for Comparison of Matched-R and Optimum Constant-Key-Weight Cascade Performance

LIST OF TABLES

D. 1 Input Data for CELL Code 265
D. 2 Input Data for MOVE Code - Scatter Refueling Version 270
E. 1 Weight Ratio of U-235 to U-238 in Reactor Feed Uranium, R_{R} - Recycle to Fabrication 273
E. 2 Weight Fraction of U-236 in Reactor Feed Uranium, Y_{R} - Recycle to Fabrication 274
E. 3 Average Discharge Burnup, B - Recycle to Fabrication 275
E. 4 Uranium Feed Rate to Basic Recycle Flowsheet, F - Recycle to Fabrication276
E. 5 Np-237 Production Rate, N - Recycle to Fabrication277
E. 6 Weight Fraction of U-236 in Reactor Feed Uranium, Y_{R} - Recycle to Diffusion Plant 278
E. 7 Average Discharge Burnup, B - Recycle to Diffusion Plant
E. 8 Uranium Feed Rate to Basic Recycle Flowsheet, F - Recycle to Diffusion Plant . 280
E. 9 Np-237 Production Rate, N - Recycle to Diffusion Plant
E. 10 Separative Work for Re-Enriching Spent Uranium, Δ - Recycle to Diffusion Plant 282
F.l Effect of $\mathrm{U}_{3} \mathrm{O}_{8}$ Price on AEC Price Scale and Plutonium Value
G. 1 Minimum Fuel Cycle Costs, C_{E}^{*} - High Unit Costs, $L_{F}=0.01$
G. 2 Minimum Fuel Cycle Costs, C_{E}^{*} - Low Unit Costs, $L_{F}=0.01$
G. 3 Minimum Fuel Cycle Costs, C_{E}^{*} - High Unit Costs, $L_{F}=0.002$
H. 1 Uranium Value, $V(R, y)$ - Recycle to Fabrication: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 10 / \mathrm{lb}$, High Costs, $\mathrm{L}_{\mathrm{F}}=$ 0.01
H. 2 Uranium Value, $V(R, y)$ - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, High Costs, $L_{F}=$ 0.01
H. 3 Uranium Value, $V(R, y)$ - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 6 / 1 b$, High Costs, $L_{F}=$ 0.01
H. 4 Uranium Value, $V(R, y)$ - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 b$, Low Costs, $L_{F}=0.01$
H. 5 Uranium Value, $V(R, y)$ - Recycle to Fabrication: $C_{U_{3} O_{8}}=\$ 8 / 1 b$, High Costs, $L_{F}=$ 0.002
H. 6 Uranium Value, $V(R, y)$ - Recycle to Diffusion Plant: $C_{U_{3}} O_{8}=\$ 10 / 1 b$, High Costs, $L_{F}=0.01$
H. 7 Uranium Value, $V(R, y)$ - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}$, High Costs, $I_{F}=0.01$
H. 8 Uranium Value, $V(R, y)$ - Recycle to Diffusion Plant: $C_{U_{3} O_{8}}=\$ 6 / 1 b$, High Costs, $L_{F}=0.01$
H. 9 Uranium Value, $V(R, y)$ - Recycle to Diffusion Plant: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}$, Low Costs, $L_{F}=0.01$
H. 10 Uranium Value, $V(R, y)$ - Recycle to Diffusion Plant: $\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}$, High Costs, $L_{F}=0.002$
I. 1 Table Numbers for Maximum Uranium Value Results 305
$\left.\begin{array}{l}\text { I. } 2 \\ \text { to } \\ \text { I. } 23\end{array}\right\} \begin{gathered}\text { Maximum Uranium Values and Optimum Condi- } \\ \text { tions for Different Economic Conditions }\end{gathered}\left\{\begin{array}{l}308 \\ \text { to } \\ 329\end{array}\right.$
J. 1 Change of U-236 Penalty with Neptunium Price - Recycle to Fabrication331
J. 2 Change of U-236 Penalty with Neptunium Price - Recycle to Diffusion Plant332
K. 1 Comparison of Cascade Characteristics Given by Matched-R and Optimum Constant-KeyWeight Methods

Page

L. 1 Table Numbers for Steady-State Flowsheet Characteristics345
$\left.\begin{array}{l}\text { L. } 2 \\ \text { to } \\ \text { L. } 53\end{array}\right\} \begin{gathered}\text { Steady-State Flowsheet Characteristics for } \\ \text { Various Reactor Feed Uranium Compositions }\end{gathered}$ $\int 346$ $\left\{\begin{array}{l}\text { to } \\ 363\end{array}\right.$

APPENDIX A

REFERENCE REACTOR DESIGN CHARACTERISTICS

With few exceptions, the characteristics of the San Onofre PWR are listed below exactly as they are given in the reference design report ${ }^{(10)}$, which presents detailed information only on the initial core loading. Since the initial loading utilizes SS-304 cladding, it .was necessary to adjust certain design characteristics in order to represent correctly the core design for subsequent cycles when Zircaloy-4 cladding is used. When SS-304 is replaced by Zircaloy-4, the same fuel pin outer diameter (0.422 in) is maintained, but the cladding thickness is increased from 0.0165 in. to 0.0243 in. (17) With the same diametral gap (0.0055 in.) for both claddings, the use of Zircaloy-4 leads to a pellet diameter of 0.3685 in., while the pellet diameter with SS-304 cladding is specified as 0.3835 in. Since no other changes in core design were noted ${ }^{(17)}$ when Zircaloy4 is used in place of $S S-304$, the volume fractions of coolant and structural material in the core remain unchanged. The volume fractions of cladding, void, and UO_{2} were adjusted for the changes in dimensions mentioned above. The total core loading is reduced from 57,400 kgU to $53,000 \mathrm{kgU}$ when Zircaloy-4 is used in place of SS-304 as cladding.

The listing of reference characteristics is given below.

Plant Capacity:

$$
\begin{array}{lr}
\text { Total heat output, MW } & 1346 \\
\text { Net plant efficiency, \% } & 31.9 \\
\text { Net electrical output, MW } & 430
\end{array}
$$

General Characteristics:Total core area (inside core baffle),$f t^{2}$66.4
Equivalent core diameter, ft 9.2
Active core length, ft 10
Length-to-diameter ratio of core 1.09
Fuel weight, kgU 53,000
Core power density
KW/liter of core 71.6
$\mathrm{KW} / \mathrm{kg}$ of U 25.3
Number of fuel assemblies 157
Number of rod-cluster-control rods 45
Control rod material

$$
\mathrm{Ag}-\mathrm{In}-\mathrm{Cd}
$$

Coolant Conditions:
Nominal system pressure, psia 2100
Pressure drop, psi
Across core 18.8
Across vessel, including nozzles 33
Flow rate, lbs/hr
TotalThrough active core$76.9 \times 10^{6}$$70 \times 10^{6}$
Flow area for active core, $f t^{2}$ 33.2Average velocity along fuel rods,ft/sec13.1

Temperatures, ${ }^{\circ}{ }_{F}$
Inlet 552.8
Outlet, core average 601.6
Outlet, vessel average 597.6
Average film coefficient, BTU/hr-ft ${ }^{2}{ }^{\circ}{ }^{\circ} \mathrm{F} \quad 5080$
Average film temperature difference, O_{F}

Heat transfer surface area, $f t^{2} \quad 31,200$
Average heat $f l u x, B T U / h r-f t^{2} \quad 143,400$
Average linear power generation, kW/ft 4.64
Fuel Rod Specifications (cold dimensions):
Outside diameter, inches 0.422
Cladding material Zircaloy-4

Cladding thickness, inches 0.0243
Diametral gap, inches 0.0055
Pellet diameter, inches 0.3685
Rod array in assembly 14×14
Lattice pitch, inches 0.556
Fuel rods per assembly 180
Number of rod-cluster-control pin
positions per assembly
Total number fuel rods in core 28,260

Hydraulic diameter of unit cell, ft
0.0426

Additional water gap between assemblies,

$$
\text { inches } 0.019
$$

Core Volume Fractions:	
Fuel $\left(\mathrm{UO}_{2}\right)$	0.3119
Zircaloy-4	0.0878
Water	0.5807
Inconel	0.0044
SS-304	0.0057
Void	$\underline{0.0095}$
	1.0000

APPENDIX B

EQUATION FOR CALCULATING Np-237 BUILDUP
The production of $\mathrm{Np}-237$ during irradiation results from the following reactions:

The CELL code ${ }^{(13)}$ considers the production of $\mathrm{Np}-237$ from captures in U-236 alone, and neglects the contribution from ($n, 2 n$) reactions on U-238. However, other studies ${ }^{(32)}$ have shown that the $(n, 2 n)$ reaction on U-238 can be a significant source of Np-237; therefore, a modification of the $\mathrm{Np}-237$ buildup equation used in CELL was made in order to account for this additional source. The resulting equation, which is discussed in detail below, was incorporated into the version of CELL used in the present study and in the studies performed by T. Golden (4) and D. Bauhs ${ }^{(5)}$.

When the delay in the decay of $\mathrm{U}-237$ to $\mathrm{Np}-237$ is neglected, the differential equation for the $N p-237$ atom density N_{13} as a function of thermal flux-time θ can be written as:
$\left.\frac{d N_{13}}{d \theta}=N_{6} \bar{\sigma}_{a, 6}-N_{13} \bar{\sigma}_{a, 13}+\frac{q P_{1}}{\emptyset}\left[<1-p_{6}>-<1-p_{13}\right\rangle\right]+\Phi$.
(B.1)

Terms in this equation are defined as follows.
\mathbf{N}_{6}
$\bar{\sigma}_{a, 6}, \bar{\sigma}_{a, 13}$
q / \varnothing
P_{1}
$\left\langle 1-p_{6}\right\rangle,\left\langle 1-p_{13}\right\rangle$

历
atom density of U-236
spectrum-averaged thermal absorption cross-sections for U-236 and Np-237, respectively slowing down density per unit thermal flux fast non-leakage probability resonance absorption probabilities for U-236 and Np-237, respectively the number of $(n, 2 n)$ reactions on $U-238$ per unit volume per unit time per unit thermal flux.

When Φ is omitted in Equation B.l, the resulting equation is the one used in Reference 13 and the terms defined above are calculated as described therein. Determination of Φ is described below.

The following expression can be established:
$\frac{\text { fissions in } U-238}{\text { cc-sec-unit thermal flux }}=\left(\frac{q}{\emptyset}\right) \frac{\epsilon-1}{\epsilon\left(\eta 8^{-1)\left(1+\alpha_{8}\right)}\right.}$,
where ϵ is the fast fission factor, η_{8} is the number of fast neutrons produced per fast neutron absorbed in $\mathrm{U}-238$, and α_{8} is the capture-to-fission ratio of $\mathrm{U}-238$ for fast neutrons. If the flux per unit energy is given by $\emptyset(E)$, and if energy-dependent ($n, 2 n$) and fission cross-sections for $U-238$ are given by $\sigma_{n, 2 n}^{28}(E)$
and $\left.\sigma_{F}^{2} \xi_{E}\right)$, respectively, then the ratio of $(n, 2 n)$ reactions on U-238 to fissions in U-238 can be written:
$\frac{\mathrm{U}-238(n, 2 n) \text { reactions }}{\text { fissions in } U-238}=\frac{\int_{0}^{\infty} \sigma_{n, 2 n}^{28}(E) \varnothing(E) d E}{\int_{0}^{\infty} \sigma_{F}^{28}(E) \varnothing(E) d E}=\frac{\bar{\sigma}_{n, 2 n}^{28}}{\sigma_{F}^{28}}$,
(B. 3)
where $\bar{\sigma}_{n, 2 n}^{28}$ and $\bar{\sigma}_{F}^{28}$ are the spectrum-averaged crosssections. By taking the product of Equations B. 2 and B.3, the following expression for Φ is obtained:

$$
\begin{equation*}
\Phi=\left(\frac{q}{\emptyset}\right) \frac{(\epsilon-1) \bar{\sigma}_{n, 2 n}^{28}}{\epsilon\left(\eta_{8}-1\right)\left(1+\alpha_{8}\right) \bar{\sigma}_{F}^{28}} \tag{B.4}
\end{equation*}
$$

Pearlstein (33) has calculated $\bar{\sigma}_{n, 2 n}^{28}$ by weighting $\sigma_{n, 2 n}^{28}(E)$ with the following fission spectrum approximation suggested by Cranberg ${ }^{(34)}$:

$$
N(E)=0.454 e^{-\frac{E(M e V)}{0.965}} \sinh \sqrt{2.29 E(M e V)}, \quad \text { (B.5) }
$$

where $N(E)$ has units of neutrons per unit energy. His assumption that the flux energy distribution $\varnothing(E)$ is proportional to the source energy distribution $N(E)$ is warranted in this application since threshold energies of the ($n, 2 n$) and fission reactions in $U-238$ are about 6 MeV and 1 MeV , respectively. Pearlstein obtained the following result:

$$
\bar{\sigma}_{n, 2 n}^{28}=\frac{\int_{0}^{\infty} \sigma_{n, 2 n}^{28}(E) N(E) d E}{\int_{0}^{\infty} N(E) d E}=0.015 \text { barns }
$$

Data for $\sigma_{F}^{28}(E)$ were taken from Reference 35 and were similarly weighted by $N(E)$ in order to calculate the corresponding $\bar{\sigma}_{F}^{28}$ value. The result obtained is as follows:

$$
\begin{equation*}
\bar{\sigma}_{F}^{28}=\frac{\int_{0}^{\infty} \sigma_{F}^{28}(E) N(E) d E}{\int_{0}^{\infty} N(E) d E}=0.29685 \text { barns } \tag{B.7}
\end{equation*}
$$

Parabolic integration was used to evaluate the integrals in this equation.

The following result is then obtained:
$\frac{\bar{\sigma}_{n, 2 n}^{28}}{\bar{\sigma}_{F}^{28}}=\frac{0.015}{0.29685}=0.05053$,
so that the number of $(n, 2 n)$ reactions in $U-238$ is equal to about 5% of the number of fast fissions in U-238.

By combining Equations B. 8 and B. 4 with Equation
B.1, the Np-237 buildup equation can be written as:

$$
\begin{array}{r}
\frac{d N_{13}}{d \theta}=N_{6} \bar{\sigma}_{a, 6}-N_{13} \bar{\sigma}_{a, 13}+\frac{q}{\emptyset}\left[p_{1}\left(\left\langle 1-p_{6}\right\rangle-\left\langle 1-p_{13}\right\rangle\right)+\right. \\
\left.\frac{0.05053(\epsilon-1)}{\epsilon\left(\eta_{8}-1\right)\left(1+\alpha_{8}\right)}\right] \tag{B.9}
\end{array}
$$

which is the expression used in all CELL calculations performed for the present study.

APPENDIX C

MOVE CODE - SCATTER REFUELING VERSION

1. Description

The MOVE code (14) utilizes CELL output in order to calculate reactivity and flux distribution changes during fuel irradiation. Lattice characteristics are transferred to MOVE as functions of thermal flux-time either by means of cards punched by CELL or by magnetic tape records written by CELL. The thermal flux distribution is calculated using a two-dimensional, modified 2-group diffusion theory calculation performed in R-Z geometry. As irradiation proceeds, a record is kept of the thermal flux-time at each point, thereby permitting the rapid determination of fuel composition and macroscopic lattice characteristics using the functions generated by CELL. Thus, knowledge of the fluxtime at a given space point implies knowledge of the lattice characteristics at that point as well. The code provides a number of options on the type of scheme used to control excess reactivity throughout core lifetime. When the end-of-life point is reached, the reactor may be refueled according to one of several standard fuel shuffling schemes. The code also provides for the repetition of irradiation cycles a sufficient number of times to achieve steady-state refueling. A fuel cycle cost calculation can be performed, if desired. The assumptions, analytical techniques, and operating procedures for MOVE are described in considerable detail
in report NYO-9715(14). MOVE is written in Fortran II and requires a 32,000-1acation memory.

In order to use MOVE for the present study, two major changes were required. First, a provision for 4-batch modified scatter refueling was incorporated and second, the point-wise calculation of lattice characteristics was adjusted to simulate the "mixing" of different fuel batches throughout the region refueled scatterwise. As discussed in Section III, fresh fuel is charged to an outer radial annulus which occupies onefourth the core volume. After irradiation for one cycle in this annulus, the fuel is placed uniformly throughout the inner three-quarters of the core, occupying positions left vacant by the discharge of fuel elements irradiated for a total of four cycles in the core. After they are placed in the inner, "scatter" portion of the core, fuel elements remain in place for three subsequent cycles before being discharged from the reactor.

Since the "revised" MOVE requires that the fuel charged to the outer annulus must have the same isotopic composition for all cycles leading to steady-state refueling, only a single value of thermal flux-time is needed at each point in the outer annulus in order to calculate lattice characteristics. However, within the "scatter" region of the core, three batches of fuel
elements are present, each characterized by its period of residence within the core. Due to the coarse mesh point specification permitted by MOVE (10 points radially and 15 points axially), it is convenient to assume that, at any point within the "scatter" region, lattice characteristics can be taken as the arithmetic average of the lattice characteristics at that mesh point for the three batches of fuel. It is necessary, therefore, to retain three thermal fluxtimes at each mesh point in the scatter region, each flux-time enabling the calculation of lattice characteristics for the fuel batch to which it corresponds. What is done, in effect, is to assume that each batch of fuel fed to the inner core region is "scattered" in a sufficiently uniform manner to permit local homogenization of lattice properties at each mesh point. The validity of such an assumption depends upon the relative sizes of the core and the fuel elements, but such a procedure is necessary to simulate scatter refueling in MOVE. This homogenization is discussed analytically later in this appendix.

At the end of each irradiation period, refueling can easily be simulated by setting the flux-time equal to zero (fresh fuel) at all points in the outer annulus and by properly adjusting the three flux-time values at each point in the scatter region, using a procedure to be described.

The refueling procedure can be terminated after a specified number of cycles or can be continued until a sufficient number of cycles have been examined that the flux-times characterizing two successive discharged fuel batches are all within a specified tolerance, i.e., until steady-state refueling is attained. For the steady-state refueling conditions, the code will calculate all characteristics for the basic uranium-recycle flowsheets shown in Figures IV.1 and IV.2, using the analytical procedures described in Section IV.

It is not necessary to start a MOVE run with fresh fuel throughout the core, i.e., with zero flux-time at all mesh points. The attainment of steady-state refueling can be expedited by specifying a starting fluxtime distribution which more closely approximates that of the steady-state cycle.

In its revised form, the MOVE code is highly problemoriented, in that many options available in the original version are excluded when they are not necessary for the present study. In particular, no other refueling procedures are available except the modified scatter scheme described above. Also, the fuel cycle cost calculation is not included in the revised version since the economics analysis for this study is not performed until data from all steady-state refueling calculations are obtained. The input data requirement has been modified and is described in detail at the end of this appendix.

Despite these modifications, very little of the theory and analysis and none of the basic philosophy of the original version of MOVE has been affected.

Figure C.l shows the broad logical flow of control in the revised MOVE. Items of particular interest are marked by underscored numbers and are discussed in more detail in Part 2 of this appendix.

2. Methods Used

The underscored numbers in Figure C.l mark steps where major deviations from the description of MOVE in NYO-9715 ${ }^{(14)}$ occur. The steps so indicated are discussed below.
́. Consider the calculation of a lattice property, denoted by \bar{P}, for a general mesh point at which thermal flux-times of $\theta(1), \theta_{(2)}$, and $\theta(3)$ are known. These flux-times correspond to fuel irradiated in the core for 1, 2, and 3 cycles prior to the start of the cycle being considered. If the value of the lattice property for a flux-time of θ is given by $P(\theta)$, then the data supplied by CELL is in the form $P\left(\theta_{1}\right), P\left(\theta_{2}\right), \ldots, P\left(\theta_{L}\right)$ corresponding to flux-time values of $\theta_{1}, \theta_{2},--\infty, \theta_{L}$. Using Lagrangian interpolation ${ }^{(26)}$, the value for P at some flux-time θ can be determined from

$$
\begin{equation*}
P(\theta)=\sum_{i=1}^{L} L_{i}(\theta) P\left(\theta_{i}\right), \tag{C.I}
\end{equation*}
$$

where the Lagrangian coefficient $L_{i}(\theta)$ is given by

FIGURE C.l Flow Diagram for Scatter-Refueling Version of MOVE

$$
\begin{equation*}
L_{i}(\theta)=\frac{\left(\theta_{1}-\theta\right)\left(\theta_{2}-\theta\right)--\left(\theta_{i-1}-\theta\right)\left(\theta_{i+1}-\theta\right)---\left(\theta_{L}-\theta\right)}{\left(\theta_{1} \theta_{i}\right)\left(\theta_{2}-\theta_{i}\right)--\left(\theta_{i-1} \theta_{i}\right)\left(\theta_{i+1} \theta_{i}\right)--\left(\theta_{L} \theta_{i}\right)} . \tag{C.2}
\end{equation*}
$$

Equation C.l can be used to evaluate P at each of the flux-times $\theta_{(1)}, \theta_{(2)}$, and $\theta_{(3)}$ and \bar{P} can then be determined by simple arithmetic averaging since all fuel batches in the core have equal volume.

$$
\begin{equation*}
\bar{P}=\frac{1}{3}\left[P\left(\theta_{(i)}\right)+P\left(\theta_{(2)}\right)+P\left(\theta_{(3)}\right)\right] \tag{c.3}
\end{equation*}
$$

If Equations C.l and C. 2 are combined with Equation C.3, the following expression for \bar{P} is obtained:

$$
\begin{equation*}
\bar{P}=\sum_{i=1}^{L} \bar{L}_{i} P\left(\theta_{i}\right) \tag{C.4}
\end{equation*}
$$

where the modified Lagrangian coefficient \bar{L}_{i} is given by $\bar{L}_{i}=\frac{\sum_{k=1}^{3}\left(\theta_{1}^{-\theta}(k)\right)\left(\theta_{2}^{-\theta}(k)\right)---\left(\theta_{i-1}^{-\theta}(k)\right)\left(\theta_{i+1}-\theta_{(k)}\right)---\left(\theta_{L}-\theta(k)\right)}{3\left(\theta_{1}-\theta_{i}\right)\left(\theta_{2} \theta_{i}\right)--\left(\theta_{i-1} \theta_{i}\right)\left(\theta_{i+1}^{-\theta_{i}}\right)--\left(\theta_{L}-\theta_{i}\right)}$
(C.5)

Equations C. 4 and C. 5 can be used at any point in the core, if values for $\theta_{(1)}, \theta_{(2)}$, and $\theta_{(3)}$ are properly assigned. For points within the "scatter" region, these values will generally be different due to the different residence time of the three batches of fuel present. However, in the outer annulus only fresh fuel is irradiated so that lattice properties could be determined by retaining only a single flux-time value at each point. This is done in effect by maintaining the condi-
tion that $\theta_{(1)}=\theta_{(2)}=\theta_{(3)}$, so that Equations C. 4 and C. 5 yield the correct result at points throughout the outer annulus, as well.
2. In the original version of MOVE (14), the procedure for calculating the pointwise flux distribution includes the solution of a system of difference equations by means of a modified crout reduction scheme described by Shanstrom. (27) However, Richardson (28) has modified the solution of the difference equations by using the "extrapolated Liebmann" method ${ }^{(29)}$, rather than the Crout reduction scheme. Although results given by the two procedures are the same, the Liebmann version was used in the scatter-refueling version of MOVE.
3. To describe the preparation of starting fluxtimes for the next cycle from the flux-times at the end of the previous cycle the following nomenclature is used:

IRL, the total number of radial mesh points; JZL, the total number of axial mesh points; A_{i}, area of annual ring associated with radial mesh point i;

NSRB, the number of the outermost mesh point in the scatter region;
$\theta_{(k)}^{i}, \quad$ flux-time at start of next cycle at radial point i and axial point j where $k=1$ denotes least-exposed fuel, $k=2$ denotes fuel of intermediate exposure, and $k=3$ denotes fuel of highest previous exposure; and
$\mathbf{r}_{(\mathbf{k})}^{\ddagger}$, flux-time at end of previous cycle, with same notation as above.

The inner scatter region includes radial mesh points from $i=1$ to $i=N S R B$, while the outer annulus includes points from $i=N S R B+1$ to $i=I R L$. As mentioned in the discussion of 1 above, the condition that $\gamma_{(i)}^{i}, j=$ $\gamma_{(2)}^{i}, j=\gamma_{(3)}^{i}, j$ is true for all points in the outer annulus.

The batch of fuel discharged from the reactor during refueling is characterized by the flux-times $\gamma^{i}(3)$ with i ranging from 1 to $N S R B$ and j ranging from 1 to JZL. The first steps in simulating the refueling are as follows:

$$
\theta_{(3)}^{i}, \gamma_{(2)}^{i},
$$

and $\quad \theta_{(2)}^{\mathbf{i}, \mathbf{j}}=\gamma_{(1)}^{\mathbf{i}, \mathbf{j}}$,
for $i=1$ through $i=N S R B$ and for $j=1$ through JZL. In simulating the transfer of fuel from the outer annulus to the scatter region, the area-averaged flux-time at a given axial mesh point number (j) in the outer annulus is transferred to all points in the scatter region at that same axial mesh point number. This is indicated symbolically as follows:

$$
\theta^{i}, j=\frac{\left.\sum_{n=N S R B+1}^{\operatorname{IRL}} A_{n} \gamma^{n}, j\right)}{\sum_{n=N \operatorname{NSRB}+1}^{\sum_{n}} A_{n}},
$$

where i ranges from 1 to NSRB and j ranges from 1 to JZL. The refueling simulation is completed by setting $\theta_{(i)}^{i}, j=\theta_{(2)}^{i}, j=\theta_{(3)}^{i}, j=0$ for $i=N S R B+1$ through $i=I R L$ and for $j=1$ through $j=J Z L$, since fresh fuel is added to the outer annulus for the start of the next cycle.
4. After steady-state refueling has been attained, the isotopic compositions and time-averaged flow rates throughout the two basic recycle flowsheets, shown in Figures IV. 1 and IV.2, are calculated by using the equations developed in Part A of Section IV. One has the option to read in up to 10 values for the optimum tails U-235 to U-238 weịght ratio and the code will calculate a separate set of characteristics for each value, in the case of recycle to a diffusion plant. 3. Input Description

The nine basic types of input data used for the sicatter-refueling version of MOVE are described below. Definitions of all variables are given along with the limitations on their size and the format in which they are to be punched on cards. Reference 14 contains more elaborate definitions for many of the variables. Some definitions refer to the variable ZETA, which is used in CELL as the size of the flux-time step, in neutrons/ barn, for the step-wise solution of the nuclide concentration equations. The input data described below must be supplied exactly in the order given.
a. Title card:

All 72 columns are available for use.
b. Floating point data:

This data is punched on four cards in 6El2.8 format.
$R(I), I=1,10$ outer radii for each radial mesh area, cm; even if less than 10 radial mesh points are used, lo•data fields should be allotted.

H
DELR
DELH
ZSYM
active height of core, cm radial reflector savings, cm
axial reflector savings, cm
axial symmetry control; if $=0.0$, core is assumed to be axially symmetric around midplane; if $\neq 0$, full core height calculation is performed initial thermal leakage estimate, cm^{-1} initial fast non-leakage probability estimate
core average power density, kW/l
flux iteration convergence criterion; when $\Delta \emptyset \mid / \varnothing<E R R O R$ at all points, flux iteration has converged
end-of-life convergence criterion; when $k_{\text {eff }}$ with no control poison is within CRIT \pm DELCRT, the cycle is terminated and the reactor refueled (CRIT is defined next).

CRIT the no-control $k_{\text {eff }}$ desired at the end of each cycle, normally 1.0

ZET2

F

TIGG maximum number of iterations permitted for flux calculation; a number >50 is usually satisfactory

SSCVG convergence criterion for attainment of steadystate refueling; when $|\Delta \theta| / \theta<$ SSCVG for all points of two successive discharged fuel batches, steady-state is attained.
c. Fixed point data:

The following data is punched in 2413 format.
LOCPRP(1) relative location on binary tape of the CELL code output which is to be used by MOVE; if NRT=0 (see below), this field can be left blank

NSRB the number of the outermost radial meshpoint in the scatter region; must be <9

IRL total number of radial mesh points; must be $>$ NSRB but $\leqslant 10$

JZL total number of axial mesh points; must be $\leqslant 15$
NCYCM maximum number of cycles to be run in an attempt to attain steady-state refueling

NTHETP $=0$, print out flux-time distribution at start and end of each cycle; $\neq 0$, bypass printout

NCP >0, punch starting flux-time distribution for (NCP+l)st cycle at end of NCPth cycle; $=0$, bypass punching of cards.

NRT logical number of the binary tape containing CELL code results; if $=0$, data is read in from cards punched by CELL

IPOIS poison management control parameter;
$=1$, uniform poison removal
$=2$, radial zone poison removal
=3, axial bank poison removal
NPOISR number of radial mesh points, starting at the outer edge of core, containing no control poison

NPØISZ number of axial mesh points, starting at the end, containing no control poison

ITRATE maximum number of iterations permitted in obtaining the correct amount of control poison to give a poisoned $k_{\text {eff }}$ within 1.0 ± 0.005
IPRTl $\neq 0$, print out flux and power distributions at each flux-time step; $=0$, bypass printout but see IPRT3 below

IPRT2 $\neq 0$, print out detailed results from all subroutines; $=0$, bypass printout; generally $=0$

IPRT3 $\neq 0$, print out flux and power distributions at start and end of each cycle; $=0$, bypass printout

IPSPPR $\neq 0$, print out values of lattice properties at each mesh point whenever they are calculated;
$=0$, bypass print out; generally $=0$

IPSGMW $\neq 0$, print out control poison macroscopic absorption cross-section at each mesh point; $=0$, bypass print out

INORMP >0, normalized control poison absorption crosssection read in for each mesh point; $=0$, set to 1.0 at each point; <0, current values go unaltered

IABSP >0, absolute (fixed) poison macroscopic absorption cross-section read in for each mesh point; $=0$, set equal to zero at each point; <0, current values go unaltered

ITHET > 0, flux-times normalized to the CELL value for ZETA are read in at each point to start the calculation; $=0$, flux-times set equal to zero at each point; >0, current values go unaltered

NEWTHP $=0$, print out flux-time distribution at start of steady-state cycle and punch flux-times on cards suitable for subsequent input to $\mathrm{MOVE} ;=1$, print only; $=2$, bypass both printout and punching
d. CELL data:

If NRT $=0$, read in a block of cards containing
CELL punched output, including the heading card punched by CELL.

If NRT > 0, skip this part and go on to "e".
e. Normalized control poison data:

If $I N O R M P>0$, read in pointwise values for the control poison macroscopic absorption cross-section
arbitrarily normalized, i.e., in relative units. These are read in as ($(\operatorname{SIGMWN}(I, J), I=1,10), J=1, J Z L)$ in 6E12. 8 format.

If INORMP $\leqslant 0$, skip this part and go on to " f ".
f. Absolute poison data:

If IABSP >0, read in pointwise values for the fixed-poison macroscopic absorption cross-section as ($(\operatorname{SIGMWA}(I, J), I=1,10), J=1, J Z L)$ in 6E12.8 format. If $I A B S P \leqslant 0$, skip this part and go on to " g ".
g. Starting flux-time data:

If ITHET > 0, read in three flux-times for
each mesh point as (($(\operatorname{THETA}(I, J), I=1,1 C) ; J=1,15), K=1,3)$.
in 6El2.8 format. These flux-times are normalized to
the CELL value for ZETA. The THETA block is. preceded by a heading card as punched by MOVE. Note that THETA(I, J, K) corresponds to $\theta_{(k)}^{\dot{i}, j}$ as defined in part 2 of this appendix. If ITHET $\leqslant 0$, skip this part and go on to " h ".
h. Data for recycle calculations:

The first card contains the following six items in 6E12.8 format.

PTH reactor thermal power output, MW
PF average plant load factor
FRLFB fraction of fuel lost during fabrication, based on fabricated product

FRLC fraction of fuel lost during conversion of UO_{3} to UF_{6}, based on converted product

FRLRU fraction of uranium lost during reprocessing, based on uranium fed to, reprocessing plant

FRLRP fraction of $N p+p u$ lost during reprocessing, based on $N p$ and $P u$ fed to reprocessing plant The second card contains the following single item in 12 format.

NTAR the number of tails U-235 to U-238 weight ratios to be considered for the recycle-to-diffusion-plant flowsheet; must be $\leqslant 10$

The third and, if necessary, fourth cards contain the following in 6El2.8 format.
$R W(N), N=1, N T A R$ the tails $U-235$ to $U-238$ weight ratio values to be considered
i. Data for a subsequent case:

If only one case is to be run, the input cards are complete after " h ". Any number of cases can be run consecutively. If a second or subsequent case is to be run, the following cards are required:
(1) title card - all 72 columns available;
(2) one card with format 7I3, containing LOCPRP(1), NRT, NCP, NCYCM, ITHET, INORMP, and IABSP, all as defined previously in "c". Other fixed-point input and all floating-point input remains unchanged in storage.
(3) Repeat " d " through " h " for the new case.

APPENDIX D

INPUT DATA FOR CELL AND MOVE CODES

Input data for typical CELL and MOVE cases are listed in Tables D. 1 and D.2, respectively. For symbol definitions, refer to Reference 13 for CELL and to Appendix C of this work for MOVE (scatter refueling version). Sources used for obtaining many of the input data are noted in the tables, while comments regarding several of the input values are given below. Unless otherwise specified, input data describing the reactor and its operation were obtained from the information given in Reference 10.

The input data listed corresponds to the use of reactor feed uranium having a U-235 to U-238 weight ratio of 0.03 and a weight fraction of $\mathrm{U}-236$ equal to 0.01. Atom densities for uranium isotopes were calculated using a mass density of $10.2 \mathrm{~g} / \mathrm{Cc}$ for UO_{2}. ${ }^{(10)}$

The following microscopic cross-section information
is required by CELL:
SAO(K) absorption cross-section, $2200 \mathrm{~m} / \mathrm{sec}$;
$\operatorname{STR}(K)$. $(1-\bar{\mu}) \sigma_{S}$ for thermal neutrons;
ESSR(K) slowing-down power, $\xi \sigma_{S}{ }^{R E S}$; and
RINT(K) resonance integral, infinite dilution.
For these items, the following subscript designations were made:

$$
\begin{aligned}
\mathrm{K}= & 1 \quad \mathrm{UO}_{2} \\
& 2 \text { Zircaloy-4 }
\end{aligned}
$$

$3 \quad \mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{H}_{2} \mathrm{O}$
5 Inconel
*
6 SS-304
7 Void
8 Not Used
The thermal and resonance cross-section libraries used by CELL are described in Reference 13.

The nine radial mesh points for MOVE were specified in such a way that the outer annulus loaded with fresh fuel has one-fourth of the total core volume and the inner scatter region has three-fourths of the core volume.

Uniform poison removal was selected as the control scheme in MOVE, since this procedure is a good representation of the actual soluble poison control method to be used for the San Onofre reactor. (10)

For MOVE, the radial (δR) and axial ($\delta \mathrm{H}$) reflector savings were assumed to be equal and were determined from the following equation:

$$
B_{g}^{2}=\left(\frac{2.405}{R+\delta R}\right)^{2}+\left(\frac{\pi}{H+2 \delta H}\right)^{2}
$$

where the geometric buckling B_{g}^{2}, the equivalent core radius R, and the active core height H are given in Reference 10 as $0.000362 \mathrm{~cm}^{-2}, 140.13 \mathrm{~cm}$, and 304.8 cm , respectively. The result obtained is $\delta R=\delta H=7.5 \mathrm{~cm}$.

TABLE D. 1
Input Data for CELL Code
NOTE: Numbers in parentheses after input values refer to source references.

ANIN(5) $=0.00066796$ atoms/barn-cm
ANIN(6) $=0.00023067$
ANIN(7) $=0.0$
ANIN (8) $=0.021984$
$\operatorname{ANIN}(9)=0.0$
$\operatorname{ANIN}(10)=0.0$
$\operatorname{ANIN}(11)=0.0$
ANIN(12) $=0.0$
$\operatorname{ANIN}(13)=0.0$
ACLD $=0.04326$ atoms $/$ barn-cm
$\mathrm{ACOL}=0.02399$ atoms $/$ barn-cm
RAD $\quad=0.4680 \mathrm{~cm}$
$\mathrm{RI}=0.7968 \mathrm{~cm}$
$R 2=0.5359 \mathrm{~cm}$
$T C=0.06096 \mathrm{~cm}$
ZLAT $=0.0$
VFF $\quad=0.31190$
VFVD $=0.00938$
VFCLD $=0.08776$
$\mathrm{VFCOL}=0.49502$
VFEX $=0.09594$
VEM(1) . $=0.89286$

```
\(\operatorname{VEM}(2)=0.04634\)
\(\operatorname{VEM}(3)=0.05984\)
\(\operatorname{VEM}(4)=0.00096\)
\(\operatorname{VEM}(5)=0.0\)
ANN(1) \(=0.02399\) atoms/barn-cm
ANN (2) \(=0.0837\)
\(\operatorname{ANN}(3)=0.0881\)
ANN (4) \(\quad=0.0\)
ANN (5) \(\quad=0.0\)
DIFAC(1) \(=1.0\)
DIFAC(2) \(=1.0\)
DIFAC(3) \(=1.0\)
DIFAC(4) \(=1.0\)
\(\operatorname{DIFAC}(5)=1.0\)
SAO(1) \(=0.0\) barns (not used)
\(S A O(2)=0.18\)
(39)
SAO (3) \(=0.664\)
(36)
\(\operatorname{SAO}(4)=0.664\)(36)
SAO (5) \(=4.21\)
\(\mathrm{SAO}(6)=2.99\)
(39)
\(\mathrm{SAO}(7)=0.0\)
SAO (8) \(=0.0\)
STR(1) = 16.5 barns
(37)
STR(2) \(=7.88\)
(37)
\(\operatorname{STR}(3)=50.5\)
(38)
\(\operatorname{STR}(4)=50.5\)
(38)
\(\operatorname{STR}(5)=13.8\)

\begin{tabular}{|c|c|c|}
\hline PIIN & \(=0.9815\) & \\
\hline POWERD & \(=71.6 \mathrm{kw} / 1\) & \\
\hline PDNLIM & \(=400.0 \mathrm{kw} / 1\) & \\
\hline ENNFIS (1) & \(=201.0 \mathrm{MeV} /\) fission & (13) \\
\hline ENNFIS (2) & \(=203.0\) & (13) \\
\hline ENNFIS (3) & \(=211.0\) & (13) \\
\hline ENNFIS (4) & \(=213.0\) & (13) \\
\hline SFAC(1) & \(=0.79808\) & (13) \\
\hline SFAC(2) & \(=0.76846\) & (13) \\
\hline XEADJ & \(=1.0\) & \\
\hline SMADJ & \(=1.0\) & \\
\hline FPFCTR & \(=1.0\) & \\
\hline ZETA & \(=0.0002\) neutrons/barn & \\
\hline EVCUT & \(=0.625 \mathrm{eV}\) & \\
\hline B22 & \(=0.000362 \mathrm{~cm}^{-2}\) & (10) \\
\hline EPSI & \(=0.0\) & \\
\hline RI8CHK & \(=0.0\) & \\
\hline IL & \(=63\) & \\
\hline NRES & \(=68\) & \\
\hline NUMPOZ & \(=30\) & \\
\hline NUMSPA & \(=2\) & \\
\hline NWILK & \(=1\) & \\
\hline NPOICK & \(=1\) & \\
\hline NPT & \(=3\) & \\
\hline NWT & \(=9\) & \\
\hline ISKIP & \(=0\) & \\
\hline INPUT & \(=1\) & \\
\hline
\end{tabular}
```

IPRNT. = 1
IPRTI = 0
IPRT2 = 0
IPRWLK = 0

```
POISON \((I)=0.018514 \mathrm{~cm}^{-1}, I=1,30\)
Thermal cross-section data
(13)

Lethargy increments
Resonance cross-section data (13)

Wigner-Wilkins startup data

TABLE D. 2
Input Data for MOVE Code - Scatter Refueling Version \(R(1)=15.168 \mathrm{~cm}\)
\(R(2)=30.336\)
\(R(3)=45.504\)
\(R(4)=60.672\)
\(R(5)=75.839\)
\(R(6)=91.007\)
\(R(7)=106.175\)
\(R(8)=121.343\)
\(R(9)=140.130\)
\(R(10)=0.0\)
\(\mathrm{H}=304.8 \mathrm{~cm}\)
DELR \(=7.5 \mathrm{~cm}\)
DELH \(=7.5 \mathrm{~cm}\)
\(Z S Y M=0.0\)
DBSQU \(=0.0001267 \mathrm{~cm}^{-1}\)
PFAST \(=0.9815\)
PDENAV \(=71.6 \mathrm{kw} / 1\)
ERROR \(=0.005\)
DELCRT \(=0.001\)
CRIT \(=1.0\)
ZET2 \(=0.0002\) neutrons/barn
\(\mathrm{F}=1.5\)
TIGG \(=200.0\)
SSCVG \(=0.015\)
\(\operatorname{LOCPRP}(1)=1\)

NSRB \(=8\)
```

IRL = 9
JZL = 15
NCYCM = 12
NTHETP = 0
NCP=8
NRT=9
IPOIS = 1
NPOISR = 0
NPOISZ = 0
ITRATE = 20
IPRTI = 0
IPRT2 = 0
IPRT3 = 1
IPSPPR = 0
IPSGMW = 0
INORMP = 0
IABSP = 0
ITHET = 0
NEWTHP = 0
PTH = 1346.0 MW
PF = 0.8
FRLFB = 0.01
FRLC = 0.003
FRLRU = 0.01
FRLRP = 0.01
NTAR=3
RW(1) = 0.0023173
RW(2) = 0.0025372
RW(3) = 0.0028195

```

\section*{APPENDIX E}

FLOWSHEET CHARACTERISTICS AS FUNCTIONS OF
EXTERNAL FEED COMPOSITION \(R\) AND \(Y\)
The tables included in this appendix give the major steady-state characteristics of the two basic recycle flowsheets at all ( \(R, y\) ) points considered, where \(R\) is the weight ratio of \(U-235\) to \(U-238\) in the feed uranium for the basic recycle scheme and \(y\) is the weight fraction of \(U-236\) in the feed uranium. For recycle to fabrication, results for the weight ratio of \(U-235\) to \(U-238\) in reactor feed uranium \(R_{R}\) (Table E. 1 ), weight fraction of \(U-236\) in reactor feed uranium \(Y_{R}\) (Table E. 2 ), average discharge burnup B (Table E.3), feed uranium flowrate F (Table E.4), and \(N p-237\) production rate \(N\) (Table E.5), are presented. For each of these characteristics, results are given for fabrication loss fractions, \(L_{F}\), of 0.01 and 0.002 .

For recycle to a diffusion plant, results are given for \(y_{R}\) (Table E.6), B (Table E.7), F (Table E.8), N (Table E.9), and for the separative work expended in re-enriching recycled spent uranium (Table E.lO). Results for each of these characteristics are given for three \(\mathrm{U}_{3} \mathrm{O}_{8}\) prices, \(C_{U_{3} O_{8}}-\$ 6 / 1 b, \$ 8 / 1 b\), and \(\$ 10 / 1 \mathrm{~b}\). at \(C_{U_{3} O_{8}}=\$ 8 / 1 b\), results for \(Y_{R}\) are given for both \(L_{F}=0.01\) and \(L_{F}=0.002\). Other characteristics are given only for \(L_{F}=0.01\). Since the condition \(R_{R}=R\) is imposed for this recycle scheme, results for \(R_{R}\) are not given explicitly.

\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(=-40\) & . 45 & . 50 & . 55 & .60 & .65 & .70 & :75 & -80 & 590 & 1.00 \\
\hline 0. & . 02645 & . 02985 & .03370 & . 03810 & .04289 & . 04793 & J05324 & . 05921 & 606563 & . 0794 & \\
\hline . 01 & .02748 & . 033089 & . 03472 & . 09877 & .04318 & . \(04881{ }^{-1}\) & ग05361 & . \(05594{ }^{-1}\) & . 06755 & . \(07 \overline{7917}\) & . \(0994 \overline{4} \overline{7}\) \\
\hline . 02 & . 02863 & . 03198 & . 03562 & .03946 & .04386 & \(.0487{ }^{-1}\) & .05395 & . 05959 & .06561 & .079922 & .0943 \\
\hline . 04 & . 03073 & . 03387 & .03724 & . 04107 & . 04546 & . 05026 & .05548 & . 06108 & 606695 & . 0797 & \\
\hline . 0.6 & .03350 & . 03655 & . 04001 & .04416 & . \(04 \overline{81} 13\) & . 05256 & .05752 & . \(0 \overline{6} \overline{277}\) & 6068 ¢ 45 & -07977 & 09443 \\
\hline . 08 & . 037709 & . \(5 \overline{4009}\) & . \(04 \overline{4776}\) & . 04775 & . 05152 & .05537 & 206049 & . 06619 & .07199 & . 08 ¢ \(\overline{27} \overline{7}^{-1}\) & . 09.0585 \\
\hline . 10 & .03913 & . 04270 & . 04646 & . 05053 & . 05506 & . 06015 & .06578 & . 07167 & . 07513. & . 08469 & . 09823 \\
\hline
\end{tabular}
\(\qquad\)
Fabrication Loss \(=0.002\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(\mathrm{R}=.50\)} & \multicolumn{10}{|l|}{} \\
\hline \multicolumn{12}{|l|}{Y} \\
\hline 0. & . 02575 & . 02867 & . 03207 & .02595 & . 040.27 & . 04479 & 104947 & . 05454 & 606048 & . 0733 & \\
\hline . 01 & . 02646 & . 02935 & -03270 & .03628 & \(.0400 \overline{3}\) & .04417 & 1048 & & & & \\
\hline . 02 & .02744 & .03022 & .03333 & & & .04417 & . 04898 & . 05447 & .05984 & . \(0772 \overline{2} 0\) & . 08664 \\
\hline . 04 & . 02908 & . 03190 & .03333 & . 03659 & . 04010 & .04431 & .04890 & . \(05339{ }^{\circ}\) & 605931 & . 07148 & .088580 \\
\hline . 04 & . 02908 & . 03190 & -03468 & . 03766 & . 04111 & . 04518 & . 04974 & . 05475 & 606017 & . 0.7087 & . 08388 \\
\hline . 06 & . 03234 & . 03479 & .03747 & . 04064 & . 04453 & . 04754 & j05104 & . 05563 & . 06044 & . \(07 \overline{7} 150\) & -0̄8̄言 \\
\hline . 08 & . 03375 & . 037779 & .04111 & . 04405 & .04695 & . 05015 & J05399 & .05867 & -06044 & -07150 & .08461 \\
\hline . 10 & . 03886 & . 04165 & \({ }^{6} 04452\) & .04763 & . 05114 & & & & 606408 & . 07416 & .08289 \\
\hline & & & & & .05114 & . 05523 & 206004 & . 06543 & .07114 & . 07610 & .08435 \\
\hline
\end{tabular}

TABLE E. 2 Weight Fraction of U-236 in Reactor Feed
Uranium, \(y_{R}\) - Recycle to Fabrication

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
R=.40
\]} & .45 & . 50 & . 55 & .60 & . 65 & \multirow[t]{2}{*}{.70} & \multirow[t]{2}{*}{875} & \multirow[t]{2}{*}{. 80} & \multirow[t]{2}{*}{\(890^{-}\)} & \multirow[t]{2}{*}{1.00} \\
\hline 0. & . 0242 & & & & & & & & & & \\
\hline & . 0242 & . 0262 & . 0283 & . 3307 & . 0332 & . 0358 & . 0386 & 10416 & 0448 & & \\
\hline . 01 & . 0317 & .0337 & . 0358 & . 0380 & . 0405 & . 0432 & & & & . 6514 & . 0600 \\
\hline .02 & . 0400 & 60419 & . 0439 & . 0461 & . 04.08 & . 05515 & . 04554 & .0492 & .0525 & .00600 & .0895 \\
\hline . 04 & . 0573 & . 0593 & . 0615 & . 6.641 & . 0671 & . 05704 & . 0545 & .0579 & . 0614 & -6̄696 & . 079 ¢̇ \\
\hline .06 & . 0777 & .0801 & . 0829 & . \(\times \frac{8}{6}\) 2 & .0890 & . \(0.072{ }^{\text {a }}\) & .0740
.0959 & 80780 & . 0820 & . 0908 & . 1008 \\
\hline . 08 & . 1015 & . 1036 & . 1066 & . 1099 & . 1129 & .1159 & & .0999 & . 1044 & 61143 & .1252 \\
\hline . 10 & . 1222 & . 1257 & . 1294 & .1334 & . 1378 & & \(\cdot 1203\) & 11251 & . 1300 & . 1390 & .1499 \\
\hline & & & & & . 37 & . 1425 & . 1476 & 11527 & . 1559 & 61648 & .1760 \\
\hline
\end{tabular}
___
Fabrication Loss \(=0.002\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(r=.50\)}} & \multirow[t]{2}{*}{. 55} & \multirow[t]{2}{*}{. 60} & \multirow[t]{2}{*}{. 65} & \multirow[t]{2}{*}{.70} & \multirow[t]{2}{*}{. 75} & \multirow[t]{2}{*}{. 80} & \multirow[b]{2}{*}{. 85} & \multirow[b]{2}{*}{. 90} & \multirow[b]{2}{*}{1300} & \multirow[b]{2}{*}{1.10} \\
\hline & & & & & & & & & & & \\
\hline 0. & . 0274 & . 0291 & . 0311 & . 0332 & . 03.54 & . 0379 & . 0403 & 60431 & & & \\
\hline . 01 & . 0347 & . 0364 & . 0383 & . C 402 & . 0423 & . 0447 & .0403 & . 0431 & . 0459 & . 0523 & . 0606 \\
\hline . 02 & . 0428 & . 0445 & . 0462 & . 0480 & & . 0447 & . 04.72 & . 0503 & . 0534 & 60607 & . 0.696 \\
\hline . 04 & . 0603 & . 0619 & & -0480 & . 0501 & . 0527 & . 0555 & .0586 & . 0621 & . 0699 & . \(079 \overline{9}\) \\
\hline & & .0619 & . 0638 & .^659 & . 0685 & . 0715 & . 0749 & 20787 \({ }^{\circ}\) & .0828 & . 0907 & \\
\hline . .08 & . 0814 & . 0835 & . 0859 &  & .0921 & . 0943 & . 0969 & . 1007 & -10̄䂙 & & -1004 \\
\hline . 08 & . 1037 & . 1374 & . 1104 & .1131 & -1158 & . 1187 & . 1223 & & -1048 & 61143 & -1254 \\
\hline . 10 & .1276 & .1308 & . 1343 & .1381 & . 1422 & . 1467 & & 11267 & . 1318 & \(\underline{14} \overline{1} \overline{0}\) & -1493 \\
\hline & & & & & . 1422 & . 2467 & . 1515 & \$1567 & . 1621 & .1680 & . 1769 \\
\hline
\end{tabular}


TABLE E. 4 Uranium_Feed_Rate to Bebic Recycle_Flowsheets

\section*{F (kgU/day) - Recycle to Fabrication}
\(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}=.50\) & . 55 & . 60 & . 65 & . 70 & . 75 & . 80 & . 85 & . 90 & 1.00 & 1.10 \\
\hline \multicolumn{12}{|l|}{\(\underline{y}\)} \\
\hline 0. & 2.7693 & 2.5648 & 2.4049 & 2.2803 & . 2.1825 & 2.1068 & 2.0477 & 1.9991 & 1.9536 & 1.8878 & 1.8477 \\
\hline . 01 & 2.8798 & 2.6643 & 2.4940 & 2.3616 & 2.2592 & 2.1771 & 2.1105 & 2.0554 & 2.0087 & 1.9377 & 1.8923 \\
\hline . 02 & 2.9866 & 2.7618 & 2.5844 & 2.4460 & 2.3378 & 2.2508 & 2.1788 & 2.1188 & 2.0682 & 1.9901 & 1.9393 \\
\hline . 04 & 3.2132 & 2.9662 & 2.7731 & 2.6227 & 2.5031 & 2.4044 & 2.3213 & 2.2510 & 2.1916 & 2.1023 & 2.0381 \\
\hline . 06 & 3.3989 & 3.1457 & 2.9489 & 2.7921 & 2.6606 & 2.5565 & 2.4680 & 2.3885 & 2.3225 & 2.2191 & 2.1441 \\
\hline . 08 & 3.5699 & 3.3257 & 3.1243 & 2.9591 & 2.8230 & 2.7093 & 2.6107 & 2.5257 & 2.4529 & 2.3385 & 2.2546 \\
\hline . 10 & 3.7708 & 3.5053 & 3.2899 & 3.1150 & 2.9708 & 2.8489 & 2.7447 & 2.6553 & 2.5780 & 2.4605 & 2.3695 \\
\hline
\end{tabular}

\section*{TABLE E. 5 Np-237 Production Rate, N (kg Np/day) -}

Recycle to Fabrication


Fabrication Loss \(=0.002\)


TABLE E. 6 WEIGHT FRACTION OF U-236 IN REACTOR FEED
URANIUM, \(y_{R}\) - RECYCLE TO DIFFUSION PLANT


TAble e. 7 AVERAGE discharge burnup, B (MWD/T) -
RECYCLE TO DIFFUSION PLANT
( \(L_{F}=0.01\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{Cu}_{3} \mathrm{O}_{8}\) & \(y \sim R\) & 0.02 & 0.025 & 0.03 & 0.035 & 0.04 & 0.045 & 0.05 & 0.055 & 0.06 & 0.065 & 0.07 & 0.075 & 0.08 & 0.09 & 0.10 \\
\hline \multirow[t]{7}{*}{* 6/LB} & 0 & & & & & 363 & 40973 & 45307 & 49304 & 52733 & 56011 & 58908 & 61510 & 63880 & & \\
\hline & 0.005 & 13508 & \[
\begin{aligned}
& 20332 \\
& 16093
\end{aligned}
\] & \[
\begin{aligned}
& 26240 \\
& 21625
\end{aligned}
\] & 26516 & 31215 & 35656 & 39786 & 43573 & 47015 & 50218 & 53211 & 56018 & 58678 & & \\
\hline & 0.01 & 6686 & 12555 & 17740 & 22405 & 26801 & 30903 & 34718 & 38286 & 41685 & 4932 & 47966 & 50869 & 53662 & 58351 & 61791 \\
\hline & 0.015 & 4357 & 9761 & 14564 & 19011 & 23084 & 26840 & 30356 & 33724 & 37040 & 40205 & 43211 & 46104 & 48881 & 53631 & 57801 \\
\hline & 0.02 & 2633 & 7429 & 11934 & 16102 & 19900 & 23424 & 26762 & 29988 & 33157 & 36042 & 38957 & 41746 & 44390 & 49204 & 53780 \\
\hline & 0.03 & & & 7758 & 11478 & 14770 & 17774 & 20751 & 23674 & 26513 & 29243 & 31839
25992 & 34278
28281 & 30501 & 34676 & 38336 \\
\hline & 0.04 & & & 5059 & 8132 & 10981 & 13686 & 16187 & 18747 & 21228 & 23640 & 25992 & 28281 & 30 & 6 & \\
\hline \multirow[t]{6}{*}{\# \(8 / L B\)} & 0 & 13370 & 20160 & 26034 & 31283 & 36113 & 40667 & 44981 & 48958 & 52365 & 55625 & 58511 & 61114 & 63496
58196 & & \\
\hline & 0.005 & 9449 & 15815 & 21312 & 26173 & 30840 & 35248 & 39345 & 43104 & 46532 & 49728 & 52716 & 26 & 196 & & \\
\hline & 0.01 & 6423 & 12227 & 17370 & 22010 & 26368 & 30426 & 34201 & 37740 & 41128 & 44370 & 47398 & 50300 & 5309 & 57778 & 61312 \\
\hline & 0.015 & 4103 & 9421 & 14169 & 18584 & 22616 & 26333 & 29818
26230 & 33164
29440 & 36464
32582 & 39598
35416 & 42594
38311 & 4.5476
41077 & & & 53122 \\
\hline & 0.02 & 2447 & 7052 & 11526
7392 & 15642 & 19405 & 22907
17264 & 26230
20213 & 29440
23106 & 32582
25915 & 354611 & 38311
31173 & 33581 & 436936 & 40542 & 45007 \\
\hline & 0.03
0.04 & & & 7392
4792 & 7741 & 10512 & 13176 & [ & 18192 & 20639 & 23028 & 25360 & 27630 & 29827 & 33934 & 37469 \\
\hline \multirow[t]{7}{*}{*10/LB} & 0 & 13252 & & & 31072 & 35876 & 40410 & 44707 & 48667 & 52055 & 55298 & 58177 & 60781 & 63172 & & \\
\hline & 0.005 & 9251 & 15579 & 21047 & 25884 & 30525 & 34904 & 38973 & 42709 & 46125 & 49315 & 52300 & 55112 & 57789 & & \\
\hline & 0.01 & 6204 & 11953 & 17058 & 21678 & 26003 & 30026 & 33766 & 37282 & 40661 & 43897 & 46921 & 49821 & 52612 & 57294 & 60906
56747 \\
\hline & 0.015 & 3897 & 9136 & 13839 & 18224 & 22223 & 25909 & 29371 & 32700 & 35984 & 39090 & 42076 & 44947 & 47695
43107 & 47931 & 56147 \\
\hline & 0.02 & 2308 & 6732 & 11185 & 15255 & 18989 & 22475 & 25786 & 28980 & 32099 & 34892 & 37771 & 40516 & 43107
35230 & 47931
39917 & S4328 \\
\hline & 0.03 & & & 7098 & 10693 & 13898 & 16843 & 19767 & 22635 & 25415 & 28083 & 30616 & 32999 & 29271 & 33319 & 36748 \\
\hline & 0.04 & & & 4582 & 7417 & 10116 & 12741 & 15258 & 17736 & 20156 & 22525 & 24840 & 27093 & 29271 & 33319 & 36148 \\
\hline
\end{tabular}

TABLE \(\equiv .8\) URANIUM FEED RATE TO BASIC RECYCLE FLOWSHEET, F (KG U/DAY) - RECYCLE TO DIFFUSION PLANT
\[
\left(L_{F}=0.01\right)
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{C}_{3} \mathrm{O}_{8}\) & \(y \quad R\) & 0.02 & 0.025 & 0.03 & 0.035 & 0.04 & 0.045 & 0.05 & 0.055 & 0.06 & 0.065 & 0.07 & 0.075 & 0.08 & 0.09 & 0.10 \\
\hline \multirow[t]{7}{*}{* \(6 / L B\)} & 0 & 2 & 36.7584 & 9.8555 & 25.4126 & 22.2777 & 19.9257 & 18.0908 & 16.6317 & 15.4732 & 14.5407 & 13.7041 & 12.9922 & 12.3771 & & \\
\hline & & & & 32.1992 & 27.23:4 & 23.7066 & 21.0844 & 19.0690 & 17.4803 & 16.2005 & 15.1385 & 14.2329 & 13.4572 & 2.7832 & & \\
\hline & & & 43.36312 & 34.4501 & 28.8978 & 25.0465 & 22.2188 & 20.0538 & 18.3381 & 16.9350 & 15.7573 & 14.7767 & 13.9348 & 13.2029 & 12.0220 & 11.1213 \\
\hline & 0.015 & 67.0804 & 46.5455 & -6.5598 & 30.4363 & 26.3024 & 23.2946 & 20.9888 & 19.1487 & 17.6329 & 16.3748 & 15.3190 & 14.4141 & 13.6305 & 12.3649 & 11.3786 \\
\hline & 0.02 & 75.1281 & 49.8679 & 38.7120 & 32.0279 & 27.5692 & 24.3282 & 21.8434 & 19.8708 & 18.2701 & 16.9674 & 8427 & . 883 & , 058 & 12.7112 & \\
\hline & 0.03 & & & 43.0532 & 35.0199 & 29.9152 & 26.2751 & 23.4867 & 21.2816 & 19.4968 & 18.0266 & 16.7991 & 15.7635 & 14.8825 & 13.3943 & 12.2108 \\
\hline & 0.04 & & & 47.1061 & 37.8080 & 32.0747 & 28.0077 & 25.0684 & 22.6438 & 20.6996 & 19.1004 & 17.7591 & 16.6174 & .634 & . 03 & 12.8104 \\
\hline \multirow[t]{7}{*}{\$8/LB} & 0 & 48.6582 & 36.4369 & 29.6594 & 25.2846 & 22.1889 & 19.8606 & 18.0411 & 16.5933 & 15.4436 & 14.5130 & 13.6818 & 12.9734 & 12.3605 & & \\
\hline & 0.005 & 54.4464 & 39.9149 & 32.0467 & 27.1325 & 23.6390 & 21.0384 & 19.0377 & 17.4586 & 16.1840 & 15.1231 & 14.2207 & 13.4468 & 12.7738 & & \\
\hline & 0.01 & 60.3504 & 43.1676 & 34.3290 & 28.8156 & 24.9950 & 22.1888 & 20.0378 & 18.3297 & 16.9291 & 15.7530 & 14.7736 & 13.9323 & , 20 & & \\
\hline & 0.015 & 66.9739 & 46.4059 & 36.4727 & 30.3799 & 26.2708 & 23.2781 & 20.9804 & 19.1443 & 17.6317 & 16.3787 & 15.3230 & 14.4183 & 13.6352 & 12.3684 & 11.3779 \\
\hline & 0.02 & 75.2314 & 49.8528 & 38.6956 & 32.0275 & 27.5715 & 24.3271 & 21.8389 & 19.8668 & 18.2715 & 16.9755 & 15.8511 & 14.8926 & . 0 & & \\
\hline & 0.03 & & & 43.0563 & 35.0138 & 29.9142 & 26.2759 & 23.4898 & 21.2873 & 19.5052 & 18.0377 & 16.8128 & 15.7792 & & & \\
\hline & 0.04 & & & 47.1568 & 37.8708 & 32.1419 & 28.0669 & 25.0887 & 22.6658 & 20.7211 & 19.1201 & 17.7770 & 16.6336 & 15.6498 & 14.0525 & 8358 \\
\hline \multirow[t]{6}{*}{* \(10 / \mathrm{LB}\)} & 0 & 48.2294 & 36.2008 & 29.5162 & 25.1919 & 22.1252 & 19.8144 & 18.0063 & 16.5667 & 15.4234 & 14.4940 & 13.6667 & 12.9608 & \[
12.3494
\] & & \\
\hline & 0.005 & 54.1246 & 39.6408 & 31.9418 & 27.0643 & 23.5939 & 21.0089 & 19.0188 & 17.4465 & 16.1752 & 15.1146 & 14.2142 & -14 & 12.7688
13.2019 & & \\
\hline & 0.01 & 60.1369 & 43.0426 & 34.2519 & 28.7633 & 24.9641 & 22.1733 & 20.0319 & 18.3286 & 16.9292 & 15.7539 & 14.7750 & 13.9336
14.4254 & 13.6423 & 12.0205
\[
12.3739
\] & \[
\begin{aligned}
& 11.1136 \\
& 11.3795
\end{aligned}
\] \\
\hline & 0.015 & 66.9732 & 46.3337 & 36.4281 & 30.3529 & 26.2588 & 23.2746 & 20.9806
218433 & 19.1462 & & \[
16.3864
\] & 15.3304
15.8619 & \[
14.9037
\] & 13.6423
14.0810 & \[
12.7294
\] & 11.6560 \\
\hline & 0.02 & 75.3568 & 49.9006 & 38.7165
43.0821 & 32.0516 & 27.5898
29.9262 & 24.3372
26.2863 & 21.8433
23.5003 & 19.8699
21.2989 & 18.2783
19.5183 & 16.9866
18.0524 & 15.8619
16.8290 & 15.7964 & 14.9163 & 13.4248 & 12.2420 \\
\hline & \[
0.03
\] & & & \[
\begin{aligned}
& 43.0821 \\
& 47.2344
\end{aligned}
\] & 35,0258
37.9608 & 29.9262
32.2327 & 28.1458 & 25.1118 & 22.6896 & 20.7436 & 19.1405 & 17.7951 & 16.6500 & 15.6652 & 14.0693 & 12.8594 \\
\hline
\end{tabular}

TABLE E. 9 NP-237 PRODUCTION RATE, \(N\) (KG NP/DAY) -
RECYCLE TO DIFFUSION PLANT
( \(L_{F}=0.01\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{Cu}_{3} \mathrm{O}_{8}\) & \(\square \quad R\) & 0.02 & 0.025 & 0.03 & 0.035 & 0.04 & 0.045 & 0.05 & 0.055 & 0.06 & 0.065 & 0.07 & 0.075 & 0.08 & 0.09 & 0.10 \\
\hline \multirow[t]{7}{*}{*6/LB} & 0 & 0.0264 & 0.0287 & 0.0313 & 0.0340 & 0.0365 & 0.0389 & 0.0412 & 0.0434 & 0.0459 & 0.0469 & 0.0497 & 0.0526 & 0.0552 & & \\
\hline & 0.005 & \[
0.0722
\] & 0.0683 & 0.0668 & 0.0668 & 0.0670 & 0.0674 & 0.0682 & 0.0693 & 0.0706 & 0.0719 & 0.0735 & 0.0751 & 0.0765 & & \\
\hline & 0.01 & 0.1179 & 0.1090 & 0.1039 & 0.1010 & 0.0990 & 0.0978 & 0.0971 & 0.0969 & 0.0969 & 0.0972 & 0.0976 & 0.0981 & 0.0985 & 0.1002 & 0.1033 \\
\hline & 0.015 & 0.1598 & 0.1483 & 0.1405 & 0.1350 & 0.1310 & 0.1282 & 0.1263 & 0.1249 & 0.1235 & 0.1226 & 0.1219 & 0.1214 & 0.1210 & 12 & 0.1226 \\
\hline & 0.02 & 0.1944 & 0.1853 & 0.1750 & 0.1673 & 0.1616 & 0.1575 & 0.1544 & 0.1519 & 0.1494 & 0.1480 & 0.1464 & 0.1452 & 0.1441 & 0.1432 & 3 \\
\hline & 0.03 & & & 0.2395 & 0.2292 & 0.2214 & 0.2155 & 0.2102 & 0.2055 & 0.2015 & 0.1981 & 0.1952 & 0.1928 & 0.1907 & 0.1866 & 0.1832 \\
\hline & 0.04 & & & 0.2923 & 0.2840 & 0.2757 & 0.2684 & 0.2622 & 0.2563 & 0.2510 & 0.2463 & 0.2421 & 0.2384 & 0.2351 & 0.2297 & 0.2257 \\
\hline \multirow[t]{7}{*}{* \(8 / L B\)} & 0 & 0.0279 & 0.0302 & 0.0328 & 0.0355 & 0.0380 & 0.0404 & 0.0427 & 0.0449 & 0.0474 & 0.0485 & 0.0513 & 0.0541 & 0.0568 & & \\
\hline & 0.005 & 0.0754 & 0.0712 & 0.0696 & 0.0694 & 0.0694 & 0.0698 & 0.0706 & 0.0716 & 0.0728 & 0.0742 & 0.0757 & 0.0772 & 0.0786 & & \\
\hline & 0.01 & 0.1224 & 0. 1133 & 0.1079 & 0.1047 & 0.1025 & 0.1011 & 0.1004 & 0.1000 & 0.0999 & 0.1001 & 0.1004 & 0.1007 & 0.1011 & 0.1028 & 0.1056 \\
\hline & 0.015 & 0.1647 & 0.1535 & 0.1455 & 0.1396 & 0.1353 & 0.1324 & 0.1303 & 0.1287 & 0.1271 & 0.1261 & 0.1253 & 0.1247 & 0.1242 & 0.1247 & 0.1253 \\
\hline & 0.02 & 0.1985 & 0.1914 & 0.1806 & 0.1726 & 0.1667 & 0.1623 & 0.1589 & 0.1562 & 0.1535 & 0.1521 & 0.1504 & 0.1490 & 0.1478 & 0.1467 & 0.1456 \\
\hline & 0.03 & & & 0.2461 & 0.2358 & 0.2278 & 0.2217 & 0.2160 & 0.2111 & 0.2069 & 0.2033 & 0.2003 & 0.1978 & 0.1955 & 0.1911 & 0.1876 \\
\hline & 0.04 & & & 0.2980 & 0.2909 & 0.2828 & 0.2754 & 0.2689 & 0.2628 & 0.2573 & 0.2524 & 0.2480 & 0.2441 & 0.2406 & 0.2350 & 0.2310 \\
\hline \multirow[t]{7}{*}{* \(10 / L B\)} & 0 & 0.0291 & 0.0314 & 0.0341 & 0.0367 & 0.0393 & 0.0417 & 0.0439 & 0.0462 & 0.0487 & 0.0499 & 0.0527 & 0.0554 & 0.0581 & & \\
\hline & 0.005 & 0.0781 & 0.0737 & 0.0719 & 0.0716 & 0.0716 & 0.0719 & 0.0726 & 0.0735 & 0.0747 & 0.0761 & 0.0775 & 0.0790 & 0.0803 & & \\
\hline & 0.01 & 0.1262 & 0.1169 & 0.1113 & 0.1079 & 0.1055 & 0.1040 & 0.1031 & 0.1027 & 0.1024 & 0.1025 & 0.1027 & 0.1030 & 0.1033 & 0.1049 & \\
\hline & 0.015 & 0.1687 & 0.1579 & 0.1497 & 0.1435 & 0.1390 & 0.1359 & 0.1336 & 0.1319 & 0.1302 & 0.1291 & 0.1282 & 0.1275 & 0.1269 & 0.1272 & 0.1277 \\
\hline & 0.02 & 0.2016 & 0.1966 & 0.1854 & 0.1771 & 0.1709 & 0.1663 & 0.1628 & 0.1598 & 0.1570 & 0.1556 & 0.1538 & 0.1523 & 0.1511 & 0.1497 & 0.1484 \\
\hline & 0.03 & & & 0.2514 & 0.2413 & 0.2332 & 0.2268 & 0.2210 & 0.2159 & 0.2115 & 0.2078 & 0.2047 & 0.2020 & 0.1996 & 0.1949 & 0.1912 \\
\hline & 0.04 & & & 0.3026 & 0.2966 & 0.2888 & 0.2813 & 0.2745 & 0.2683 & 0.2626 & 0.2575 & 0.2529 & 0.2489 & 0.2453 & 0.2396 & 0.2355 \\
\hline
\end{tabular}

TABLE E. 10 SEPARATIVE WORK FOR RE-ENRICHING SPENT
URANIUM, \(\triangle\) (KG U/DAY) - RECYCLE TO
DIFFUSION PLANT
\[
\left(L_{F}=0.01\right)
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{Cu}_{3} \mathrm{O}_{8}\) & \(y \sim R\) & 0.02 & 0.025 & 0.03 & 0.035 & 0.04 & 0.045 & 0.05 & 0.055 & 0.06 & 0.065 & 0.07 & 0.075 & 0.08 & 0.09 & 0.10 \\
\hline \multirow[t]{7}{*}{\#6/LB} & 0 & 34.6897 & 28.3484 & 25.2361 & 23.4012 & 22.1448 & 21.1736 & 20.3871 & 19.7845 & 19.4133 & 19.0675 & 18.8153 & 18.6124 & 18.4348 & & \\
\hline & 0.005 & 43.7794 & 34.9079 & 30.5395 & 27.9545 & 26.0009 & 24.5083 & 23.3646 & 22.4865 & 21.8047 & 21.2343 & 20.7381 & 20.3020 & 19.9070 & & \\
\hline & 0.01 & 52.2366 & 41.1224 & 35.4673 & 32.0054 & 29.5320 & 27.6906 & 26.2690 & 25.1247 & 24.1544 & 23.3047 & 22.5945 & 21.9623 & 21.3915 & 20.5385 & 19.9658 \\
\hline & 0.015 & 60.0948 & 46.7206 & 39.9056 & 35.6282 & 32.7391 & 30.6160 & 28.9467 & 27.5530 & 26.3299 & 25.2816 & 24.3844 & 23.5896 & 22.8813 & 21.7859 & 20.9128 \\
\hline & 0.02 & 67.5348 & 52.0607 & 44.1006 & 39.1283 & 35.7917 & 33.3053 & 31.3224 & 29.6718 & 28.2672 & 27.1452 & 26.0907 & 25.1681 & 24.3600 & 23.0269 & 21.9039 \\
\hline & 0.03 & & & 51.8197 & 45.3926 & 41.2770 & 38.2420 & 35.7546 & 33.6814 & 31.9339 & 30.4501 & 29.1845 & 28.1023 & 27.1757 & 25.4561 & 24.0068 \\
\hline & 0.04 & & & 57.3875 & 50.4942 & 45.8785 & 42.3262 & 39.7751 & 37.3702 & 35.3640 & 33.6471 & 32.1526 & 30.8376 & 29.6735 & 27.7266 & 26.2244 \\
\hline \multirow[t]{7}{*}{* \(8 / \angle B\)} & 0 & 38.3147 & 31.2279 & 27.6819 & 5.5514 & 24.0709 & 22.9203 & 21.9879 & 21.2671 & 20.8004 & 20.3767 & 85 & 19.7770 & 19.5373 & & \\
\hline & 0.005 & 48.0734 & 38.2365 & 33.3117 & 30.3550 & 28.1285 & 26.4284 & 25.1210 & 24.1083 & 23.3105 & 22.6385 & 22.0554 & 21.5420 & 21.0780 & & \\
\hline & 0.01 & 57.0921 & 44.8372 & 38.5216 & 34.6136 & 31.8365 & 29.7698 & 28.1690 & 26.8731 & 25.7689 & \(24.8024^{\circ}\) & 23.9954 & 23.2783 & 22.6330 & 21.6584 & 20.9739 \\
\hline & 0.015 & 65.4540 & 50.7638 & 43.2034 & 38.4296 & 35.2076 & 32.8328 & 30.9595 & 29.3950 & 28.0287 & 26.8679 & 25.8654 & 24.9800 & 24.1936 & 22.9631 & 21.9710 \\
\hline & 0.02 & 73.0919 & 56.4827 & 47.6879 & 42.1773 & 38.4481 & 35.6545 & 33.4277 & 31.5865 & 30.0372 & 28.8093 & 27.6440 & 26.6276 & 25.7402 & 24.2608 & 23.0143 \\
\hline & & & & 55.6822 & 48.6623 & 44.1372 & 40.7815 & 38.0417 & 35.7665 & 33.8551 & 32.2363 & 30.8577 & 29.6790 & 28.6679 & 26.7945 & 25.2269 \\
\hline & 0.04 & & & 61.2957 & 53.9815 & 48.9987 & 45.1188 & 42.2384 & 39.6225 & 37.4352 & 35.5619 & 33.9327 & 32.5025 & 31.2407 & 29.1453 & 27.5518 \\
\hline \multirow[t]{7}{*}{* \(10 / \mathrm{LB}\)} & & 41.4839 & 33.7406 & 29.8128 & 27.4222 & 25.7448 & 24.4372 & 23.3773 & 22.5532 & 22.0030 & 21.5108 & 21.1163 & 20.7853 & 20.4916 & & \\
\hline & 0.005 & 51.8393 & 41.1491 & 35.7319 & 32.4468 & 29.9804 & 28.0982 & 26.6475 & 25.5168 & 24.6174 & 23.8560 & 23.1970 & 22.6163 & 22.0923 & & \\
\hline & 0.01 & 61.3496 & 48.0886 & 41.1895 & 36.8874 & 33.8436 & 31.5792 & 29.8208 & 28.3918 & 27.1701 & 26.1021 & 25.2104 & 24.4194 & 23.7092 & 22.6282 & 21.8469 \\
\hline & 0.015 & 70, 1485 & 54.3077 & 46.0885 & 40.8780 & 37.3614 & 34.7629. & 32.7082 & 30.9929 & 29.5020 & 28.2451 & 27.1505 & 26.1861 & 25.3319 & 23.9832 & 22.8878 \\
\hline & 0.02 & 77.8543 & 60.3642 & 50.8415 & 44.8551 & 40.7724 & 37.7025 & 35.2586 & 33.2498 & 31.5748 & 30.2533 & 28.9915 & 27.8937 & 26.9376 & 25.3304 & 23.9769 \\
\hline & 0.03 & & & 59.0278 & 51.5015 & 46.6217 & 42.9857 & 40.0265 & 37.5764 & 35.5231 & 33.7872 & 32.3101 & 31.0470 & 29.9065 & 27.954 & 26.2854 \\
\hline & 0.04 & & & 64.6880 & 57.0459 & 51.7590 & 47.5963 & 44.3685 & 41.5713 & 39.2269 & 37.2176 & 35.4714 & 33.9412 & 32.5950 & 30.3723 & 28.7024 \\
\hline
\end{tabular}

\section*{APPENDIX \(F\)}

\section*{CALCULATION OF AEC PRICE SCALES \\ AND PLUTONIUM VALUES}

This appendix contains four parts, presented in logical sequence. In order, these deal with the effects of \(\mathrm{U}_{3} \mathrm{O}_{8}\) price on the cost of natural \(\mathrm{UF}_{6}\), the optimum tails composition, the AEC price scale, and the unit value of fissile plutonium.
1. Cost of natural uranium as \(\mathrm{UF}_{6}\)

The price of natural \(\mathrm{U}_{3} \mathrm{O}_{8}, \mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}\), is in units of \(\$ / 1 \mathrm{~b} \mathrm{U}_{3} \mathrm{O}_{8}\). It is more convenient to work with \(\mathrm{C}_{\mathrm{NAT}}\), the cost of natural uranium as \(\mathrm{UF}_{6}\) in \(\$ / \mathrm{kgU}\). The current value of \(C_{\text {NAT }}\) is \(\$ 23.46 / \mathrm{kgU}^{(1)}\) and corresponds to a \(\mathrm{U}_{3} \mathrm{O}_{8}\) price of \(\$ 8 / 1 \mathrm{~b}\). With this information and an assumed economics model, \(C_{\text {NAT }}\) can be determined for other values of \(\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}\).
- Let \(t_{C}\) be the period of time between the purchase of \(\mathrm{U}_{3} \mathrm{O}_{8}\) and the completion of conversion to \(\mathrm{UF}_{6}\), in years, and define \(C_{C T}^{\prime}\) as the total of all unit costs incurred during \(t_{C}\), in \(\$ / k g U\). If \(L_{C}^{\prime}\) is the fractional loss of uranium during conversion of \(\mathrm{U}_{3} \mathrm{O}_{8}\) to \(\mathrm{UF}_{6}\), based on the product from conversion, then ( \(1+\mathrm{I}_{\mathrm{C}}^{\prime}\) ) kgU must be purchased in \(\mathrm{U}_{3} \mathrm{O}_{8}\) form per kgU obtained as \(\mathrm{UF}_{6}{ }^{\circ}\) If \(i\) is the annual fixed charge on working capital, then the following equation can be written for \(C_{N A T}\) :
\[
C_{N A T}=\left(1+L_{C}^{\prime}\right)\left[2.5998\left(1+i t_{C}\right) C_{U_{3} O_{8}}+C_{C T}^{\prime}\right], \quad \text { (F.1) }
\]
where 2.5998 represents the ratio of \(\mathrm{lbs} \mathrm{U}_{3} \mathrm{O}_{8}\) to kgU . Using \(C_{\text {NAT }}=\$ 23.46 / \mathrm{kgU}\) and \(C_{U_{3} O_{8}}=\$ 8 / 1 \mathrm{~b}\) along with the following assumed values
\[
\begin{aligned}
i & =0.1 / \text { year } \\
t_{C} & =30 / 365 \text { years } \\
L_{C} & =0.01
\end{aligned}
\]
a value of \(\$ 2.26 / \mathrm{kgU}\) can be calculated for \(C_{C T}^{\prime}\) from Equation F.I. Equation F.l can be reduced to the form
\[
\begin{equation*}
C_{N A T}=2.647 \mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}+2.281 \tag{F.2}
\end{equation*}
\]

Using this equation, the following results are obtained:


8
10
\(\mathrm{C}_{\text {NAT }}\)
\(\$ 18.17 / \mathrm{kgU}\)
23.46
28.75
2. Optimum tails composition
- Let \(x_{W}\) represent the weight fraction of U-235 in tails uranium from the diffusion plant and define \(C_{\Delta}\) as the unit cost of separative work in \(\$ / \mathrm{kg}\). The weight fraction of \(U-235\) in natural uranium is \(X_{F}\). The optimum value of \(x_{W}, x_{W}^{O}\), is determined by trial-and-error from the following equation \({ }^{(15)}\) :
\[
\begin{equation*}
\frac{C_{N A T}}{C_{\Delta}}=\left(2 x_{F}-1\right) \ln \frac{x_{F}\left(1-x_{W}^{0}\right)}{x_{W}^{0}\left(1-x_{F}\right)}+\frac{\left(x_{F}-x_{W}^{0}\right)\left(1-2 x_{W}^{0}\right)}{x_{W}^{0}\left(1-x_{W}^{0}\right)} . \tag{F.3}
\end{equation*}
\]

The weight ratio of \(U-235\) to \(U-238\) corresponding to \(x_{W}^{O}\) is found from
\[
\begin{equation*}
R_{W}^{\circ}=\frac{x_{W}^{0}}{1-x_{W}^{\circ}} \tag{F.4}
\end{equation*}
\]

Using \(C_{\Delta}=\$ 30 / \mathrm{kgU}\) and \(\mathrm{x}_{\mathrm{F}}=0.00711\) together with the values of \(C_{\text {NAT }}\) given in Part 1 , the following results are obtained using Equations F. 3 and F.4:
\(\frac{C_{U_{3} \mathrm{O}_{8}}}{\$ 6 / 1 \mathrm{~b}}\)
8
10

0.0028116
0.0025308
0.0023119

0.0028195
0.0025372
0.0023173
3. AEC price scale

Let \(x\) represent the weight fraction of U-235 in uranium and denote the unit price of \(\mathrm{UF}_{6}\) on the AEC price scale by \(C_{A E C}(x)\), in \(\$ / k g U\). For this study, the AEC price scale is assumed to change according to the equation \({ }^{(15)}\)
\(c_{A E C}(x)=C_{\Delta}\left[(2 x-1) \ln \frac{x\left(1-x_{W}^{0}\right)}{x_{W}^{O}(1-x)}+\frac{\left(x-x_{W}^{0}\right)\left(1-2 x_{W}^{0}\right)}{x_{W}^{\circ}\left(1-x_{W}^{0}\right)}\right]\) (F.5)
when changes in \(U_{3} O_{8}\) price, hence changes in \(X_{W}^{0}\), are made. Equation \(F .5\) can be rewritten in the equivalent form
\[
\begin{equation*}
C_{A E C}(x)=C_{\Delta}\left[(2 x-1) \ln \frac{x}{1-x}+A_{1} x-A_{2}\right], \tag{F.6}
\end{equation*}
\]
where
\[
\begin{equation*}
A_{1}=2 \ln \frac{1-x_{W}^{O}}{x_{W}^{\circ}}+\frac{1-2 x_{W}^{O}}{x_{W}^{O}\left(1-x_{W}^{\circ}\right)} \tag{F,7}
\end{equation*}
\]
and
\[
\begin{equation*}
A_{2}=\ln \frac{1-x_{W}^{\circ}}{x_{W}^{\circ}}+\frac{1-2 x_{W}^{\circ}}{1-x_{W}^{\circ}} . \tag{F.8}
\end{equation*}
\]

When \(C_{\Delta}=\$ 30 / \mathrm{kgU}\), the following results for \(A_{1}\) and \(A_{2}\) are obtained by using the \(x_{W}^{0}\) values reported in Part 2:

\(\$ 6 / 1 b\)
8
10

366.409
406.083
443.677
\(\xrightarrow{\mathrm{A}_{2}}\)
6.86840
6.97415
7.06505
4. Unit value of fissile plutonium

At present, the AEC \({ }^{(21)}\) values one gram of fissile Pu in nitrate form at \(10 / 12\) of the price of one gram of U-235 contained in \(90 \%\) - enriched uranium ( \(x=0.9\) ) based on the AEC price scale. For this study, it has been assumed that the unit value of fissile \(\mathrm{Pu}, \mathrm{C}_{\mathrm{K}}\), in \(\$ / g\), is given by the following equation:
\[
\begin{equation*}
C_{K}=\frac{10}{12} \times \frac{C_{A E C}(0.9)}{0.9} \times \frac{1}{1000} \tag{F.9}
\end{equation*}
\]

Using this equation and the expressions for \(C_{A E C}(x)\) given in Part 3, the following results are obtained for \(c_{\Delta}=\$ 30 / \mathrm{kgU}:\)


8

10
\(\frac{C_{\text {AEC }}(0.9)}{\$ 9740 / \mathrm{kgU}}\)
10808
11820
\(\quad \begin{aligned} & \mathrm{C}_{\mathrm{K}} \\ & \$ 9.01 / \mathrm{gPu} \\ & 10.00 \\ & 10.94\end{aligned}\)

A summary of the results obtained in this appendix is given in Table F.l.

TABLE F.I
Effect of \(\mathrm{U}_{3} \mathrm{O}_{8}\) Price on AEC Price Scale and Plutonium Value
\(C_{\Delta}=\$ 30 / \mathrm{kgU} \quad C_{A E C}(x)=30\left[(2 x-1) \ln \frac{x}{1-x}+A_{1} x-A_{2}\right], \quad \$ / \mathrm{kgU}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& C_{U_{3}} O_{8} \\
& (\$ / 1 b) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{C}_{\mathrm{NAT}} \\
(\$ / \mathrm{kqU}) \\
\hline
\end{gathered}
\] & \[
\mathbf{x}_{\mathrm{W}}^{\circ}
\] & \(\mathrm{R}_{\mathrm{W}}{ }^{\text {( }}\) & \({ }^{\text {A }}\) & \(A_{2}\) & \[
\begin{gathered}
C_{K} \\
\left(\$ / \mathrm{gP}_{\mu}\right)
\end{gathered}
\] \\
\hline 6 & 18.17 & 0.0028116 & 0.0028195 & 366.409 & 6.86840 & 9.01 \\
\hline 8 & 23.46 & 0.0025308 & 0.0025372 & 406.083 & 6.97415 & 10.00 \\
\hline 10 & 28.75 & 0.0023119 & 0.0023173 & 443.677 & 7.06505 & 10.94 \\
\hline
\end{tabular}

\section*{APPENDIX G}

MINIMUM FUEL CYCLE COST RESULTS
All minimum fuel cycle costs and corresponding optimum operating conditions calculated for the two basic recycle flowsheets are given in the three tables of this appendix. The minimum fuel cycle cost \(C_{E}^{*}\) is based upon the use of feed uranium which contains no U-236 and which is purchased as \(\mathrm{UF}_{6}\) on the AEC price scale.

Table G.l gives results for both recycle schemes when the high unit cost condition is imposed and for a fabrication loss fraction \(L_{F}\) equal to 0.01 . Table \(G .2\) gives results for low unit costs and \(L_{F}=0.01\). Finally, Table G. 3 gives results for the high unit cost condition when \(L_{F}=0.002\). Each table presents results for \(\mathrm{U}_{3} \mathrm{O}_{8}\) prices, \(C_{U_{3} O_{8}}\), of \(\$ 10, \$ 8\), and \(\$ 6 / 1 \mathrm{~b}\) and for \(\mathrm{Np}-237\) prices, \(C_{N}\), ranging from \(\$ 0 / \mathrm{g}\) to \(\$ 100 / \mathrm{g}\) in steps of \(\$ 20 / \mathrm{g}\). In each table and for each \(\mathrm{U}_{3} \mathrm{O}_{8}\) price, results are also given at one non-integral value of \(C_{N}\), which represents the \(\mathrm{Np}-237\) price at which \(C_{E}^{*}\) is the same (within a reasonable tolerance) for both recycle schemes. Since these non-integral values of \(C_{N}\) were obtained by linear interpolation of \(C_{E}^{*}\) vs \(C_{N}\) results, the results for \(C_{E}^{*}\) for the two recycle schemes are not exactly the same.

In addition to \(C_{E}^{*}\), the optimum weight ratio of \(U-235\) to U-238 in the \(\mathrm{UF}_{6}\) feed purchased, \(\mathrm{R}^{*}\), is given, as are
the corresponding values for the weight ratio of U-235 to U-238 in the uranium fed to the reactor \(R_{R}\), the weight fraction of \(U-236\) in the uranium fed to the reactor \(Y_{R}\), and the average discharge burnup \(B\) (MWD/T). For recycle to a diffusion plant, \(R_{R}\) is not given explicitly in the tables, but operation according to this recycle scheme is such that \(R_{R}=R^{*}\) at the optimum condition, so that results for \(R_{R}\) are given implicitly.
table g. 1 minimum fuel cycle costs, Ce \(^{*}\) (MILLS/KWHR) - HIGH UNIT COSTS,
\(L_{F}=0.01\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\left(\begin{array}{cc}
\mathrm{C}_{3} \mathrm{O}_{8} \\
(\#) \\
(\mathrm{B})
\end{array}\right.
\]} & \multirow[b]{2}{*}{\[
\left|\begin{array}{c}
\left.C_{N}\right) \\
(\# / G N P)
\end{array}\right|
\]} & \multicolumn{5}{|c|}{RECYCLE TO FABRICATION} & \multicolumn{4}{|l|}{RECYCLE TO DIFFUSION} \\
\hline & & \(C_{E}^{*}\) & \(R^{*}\) & \(R_{R}\) & \(y_{R}\) & BURNUP & \(C_{E}^{*}\) & \(R^{*}\) & \(y_{R}\) & BURNUP \\
\hline \multirow[t]{7}{*}{10} & 0 & 2.183050 & 0.545488 & 0.03768 & 0.030462 & 23850.5 & 1.750193 & 0.03000 & O05340 & \\
\hline & 20 & 1.1976703 & 0.53957 & 0.03714 & 0.030179 & 23431.6 & 1.686461 & 0.03032 & 0.005400 & 26205.2 \\
\hline & 40 & 1.769934 & 0.534443 & 0.03664 & 0.029916 & 23040.5 & 1.622690 & 0.03048 & 0.005429 & 26379.7 \\
\hline & 60 & 1.562758 & 0.528668 & 0.03616 & 0.029663 & 22662.1 & 1.558856 & 0.03070 & 0.005471 & 26617.5 \\
\hline & 60.53 & 1.557262 & 0.528442 & 0.03614 & 0.029652 & 22646.3 & 1.557162 & 0.03072 & 0.005474 & 26639.4 \\
\hline & 80 & 1.355191 & 0.523456 & 0.03570 & 0.029419 & 22296.8 & 1.494966 & 0.03100 & 0.005527 & 26941.2 \\
\hline & 100 & 1.1472510 & 0.518180 & 0.03524 & 0.029175 & 21928.9 & 1.430997 & 0.03126 & 0.00557 & 27219.3 \\
\hline \multirow[t]{7}{*}{8} & & 2.028046 & 0.557334 & 0.03878 & 0.031038 & 24692.4 & 1.613926 & 0.03086 & 0. 00515 & 26975.6 \\
\hline & 20 & 1.822566 & 0.551118 & 0.03820 & 0.030734 & 24250.4 & 1.552394 & 0.03106 & 0.005196 & 27191.2 \\
\hline & 40 & 1.616631 & 0.545052 & 0.03764 & 0.030441 & 23819.6 & 1.490752 & 0.03128 & 0. 00523 & 27428.9 \\
\hline & 57.41 & 1.437004 & 0.540018 & 0.03718 & 0.030200 & 23462.8 & 1.437035 & 0.03146 & 0.00526 & 27621.9 \\
\hline & 60 & 1.440254 & 0.539137 & 0.03710 & 0.030158 & 23400.4 & 1.429039 & 0.03150 & 0.005275 & 27664.7 \\
\hline & 80 & 1.203448 & 0.533597 & 0.03660 & 0.029895 & 23009.1 & 1.367227 & 0.03172 & 0.005316 & 27898.8 \\
\hline & 100 & 0.996229 & 0.527991 & 0.03610 & 0.029631 & 22614.6 & 1.305330 & 0.03194 & 0.005357 & 28132.5 \\
\hline \multirow[t]{7}{*}{6} & & & & & & & & & & 28232.2 \\
\hline & 20 & 1.6588777 & 0.564545 & 0.04010 & 0.031726 & 25205.0 & 1.410500 & 0.03202 & 0.004960 & 28445.9 \\
\hline & 40 & 1.453721 & 0.558186 & 0.03886 & 0.031079 & 24753.0 & 1.351322 & 0.03224 & 0.004999 & 28679.9 \\
\hline & 54.01 & 1.309862 & 0.553483 & 0.03842 & 0.030849 & 24418.5 & 1.309801 & 0.03244 & 0.005036 & 28890.7 \\
\hline & 60 & 1.248285 & 0.551549 & 0.03824 & 0.030755 & 24281.0 & 1.292032 & 0.03252 & 0.005050 & 28975.2 \\
\hline & 80 & 1.042380 & 0.545487 & 0.03768 & 0.030462 & 23850.5 & 1.232630 & 0.03274 & 0.005090 & 29206.9 \\
\hline & 100 & 0.836020 & 0.539357 & 0.03712 & 0.030168 & 23416.0 & 1.173123 & 0.03296 & 0.005129 & 29437.6 \\
\hline
\end{tabular}

TAble G. 2 Minimum FUEl Cycle Costs, \(C_{E}^{*}\) (MILLS/KWHR) - LOW UNIT COSTS,
\[
L_{F}=0.01
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{5}{|c|}{RECYCLE TO FABRICATION} & \multicolumn{4}{|l|}{RECYCLE TO DIFFUSION PLANT} \\
\hline \[
\begin{aligned}
& \mathrm{Cu}_{3} \mathrm{O}_{8} \\
& (\# / L B)
\end{aligned}
\] & \[
\begin{gathered}
C_{N} \\
(\$ / G N P)
\end{gathered}
\] & \(C_{E}^{*}\) & \(R^{*}\) & \(R_{R}\) & \(y_{R}\) & BURNUP & \(C_{E}^{*}\) & \(R^{*}\) & \(y_{R}\) & BURNUP \\
\hline \multirow[t]{7}{*}{10} & 0 & 1.958708 & 0.485672 & 0.03254 & 0.027716 & 19717.2 & 1.547046 & 0.02650 & 0.004726 & 1845.5 \\
\hline & 20 & 1.748188 & 0.480085 & 0.03210 & 0.027473 & 19348.1 & 1.484663 & 0.02676 & 0.004769 & 22155.8 \\
\hline & 40 & 1.537345 & 0.4751861 & 0.03172 & 0.027262 & 19027.3 & 1.422286 & 0.02688 & 0.004790 & 22297.7 \\
\hline & 55.48 & 1.373953 & 0.471794 & 0.03146 & 0.027117 & 18806.8 & 1.373966 & 0.02702 & 0.004814 & 22463.2 \\
\hline & 60 & 1.326213 & 0.4707430 & 0.03138 & 0.027072 & 18738.7 & 1.359850 & 0.02702 & 0.004814 & 22463.2 \\
\hline & 80 & 1.114815 & 0.466509 & 0.03106 & 0.026892 & 18465.6 & 1.297374 & 0.02722 & 0.004848 & 22698.7 \\
\hline & 100 & 0.903181 & 0.462491 & 0.03076 & 0.026723 & 18208.3 & 1.234860 & 0.02742 & 0.004882 & 22933.1 \\
\hline \multirow[t]{7}{*}{8} & 0 & 1.811838 & 0.497074 & 0.03346 & 0.028218 & 20480.9 & 1.417422 & 0.02700 & 0.004499 & 22598.6 \\
\hline & 20 & 1.602026 & 0.490674 & 0.03294 & 0.027935 & 20050.5 & 1. 357377 & 0.02722 & 0.004534 & 22859.6 \\
\hline & 40 & 1.391826 & 0.485168 & 0.03250 & 0.027694 & 19683.7 & 1.297298 & 0.02738 & 0.004561 & 23047.8 \\
\hline & 52.58 & 1.259429 & 0.481618 & 0.03222 & 0.027539 & 19449.0 & 1.259472 & 0.02748 & 0.004578 & 23164.9 \\
\hline & 60 & 1. 181275 & 0.479829 & 0.03208 & 0.027462 & 19331.2 & 1.237148 & 0.02754 & 0.004588 & 23235.3 \\
\hline & 80 & 0.970409 & 0.474926 & 0.03170 & 0.027251 & 19010.4 & 1.176940 & 0.02774 & 0.004621 & 23469.0 \\
\hline & 100 & 0.759259 & 0.470480 & 0.03136 & 0.027061 & 18721.6 & 1.116669 & 0.02794 & 0.004654 & 23701.6 \\
\hline \multirow[t]{8}{*}{6} & 0 & 1.655897 & 0.510724 & 0.03460 & 0.028833 & 21412.8 & 1.280762 & 0.02750 & 0.004212 & 23380.0 \\
\hline & 20 & 1.446980 & 0.503602 & 0.03400 & 0.028510 & 20924.3 & 1.223386 & 0.02772 & 0.004246 & 23639.1 \\
\hline & 40 & 1.237594 & 0.496829 & 0.03344 & 0.028207 & 20464.4 & 1.165936 & 0.02800 & 0.004291 & 23966.5 \\
\hline & 49.41 & 1.138928 & 0.493888 & 0.03320 & 0.028077 & 20266.2 & 1.138883 & 0.02808 & 0.004303 & 24059.8 \\
\hline & 60 & 1.027782 & 0.490674 & 0.03294 & 0.027935 & 20050.5 & 1.108415 & 0.02820 & 0.004322 & 24199.3 \\
\hline & 80 & 0.817586 & 0.485167 & 0.03250 & 0.027694 & 19683.7 & 1.050811 & 0.02840 & 0.004354 & 24430.9 \\
\hline & 100 & 0.607045 & 0.479829 & 0.03208 & 0.027462 & 19331.2 & 0.993137 & 0.02846 & 0.00436 & 24500.1 \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

TAble G. 3 Minimum fuel cycle costs, Cé (MILLS/KWHR) - HIGH UNIT COSTS, \(L_{F}=0.002\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{5}{|c|}{RECYCLE TO FABRICATION} & & \multicolumn{4}{|l|}{RECYCLE TO DIFFUSION PLANT} \\
\hline \[
\begin{aligned}
& C_{U 3} \mathrm{O}_{8} \\
& (\# / L B)
\end{aligned}
\] & \[
\begin{gathered}
C_{N} \\
(\# / G N P)
\end{gathered}
\] & \(C_{E}^{*}\) & \(R^{*}\) & \(R_{R}\) & \(y_{R}\) & Burnup & & \(C_{E}^{*}\) & R* & \(y_{R}\) & BURNUP \\
\hline \multirow[t]{7}{*}{10} & 0 & 2.208383 & 0.682903 & 0.03876 & 0.034640 & 23620.8 & & 1.739199 & 0.03020 & 0.005499 & 26009.4 \\
\hline & 20 & 1.982520 & 0.674625 & 0.03804 & 0.034261 & 23079.7 & & 1.674596 & 0.03038 & 0.005533 & 26205.3 \\
\hline & 40 & 1.755831 & 0.666720 & 0.03736 & 0.033904 & 22561.7 & & 1.609922 & 0.03054 & 0.005562 & 26379.4 \\
\hline & 57.93 & 1.551898 & 0.6594270 & 0.03674 & 0.033578 & 22083.7 & & 1.551893 & 0.03072 & 0.005598 & 26573.2 \\
\hline & 60 & 1.528312 & 0.658480 & 0.03666 & 0.033536 & 22021.6 & & 1.545193 & 0.03078 & 0.005609 & 26638.1 \\
\hline & 80 & 1.299965 & 0.650597 & 0.03600 & 0.033188 & 21506.1 & & 1.480403 & 0.03106 & 0.005662 & 26938.6 \\
\hline & 100 & 1.070806 & 0.643076 & 0.03538 & 0.032861 & 21016.2 & & 1.415533 & 0.03132 & 0.005713 & 27215.7 \\
\hline \multirow[t]{7}{*}{8} & 0 & 2.052099 & 0.694272 & 0.03976 & 0.035167 & 24359.9 & & 1.604126 & 0.03070 & 0.005241 & 26741.6 \\
\hline & 20 & 1.827376 & 0.686100 & 0.03904 & 0.034787 & 23829.2 & & 1.541725 & 0.03112 & 0.005319 & 27195.0 \\
\hline & 40 & 1.601804 & 0.677393 & 0.03828 & 0.034388 & 23260.9 & & 1.479270 & 0.03134 & 0.005358 & 27431.7 \\
\hline & 54.94 & 1.432741 & 0.671148 & 0.03774 & 0.034104 & 228520 & & 1.432571 & 0.03150 & 0.005388 & 27602.7 \\
\hline & 60 & 1.375372 & 0.669055 & 0.03756 & 0.034009 & 22714.7 & & 1.416743 & 0.03156 & 0.005399 & 27666.7 \\
\hline & 80 & 1.148073 & 0.666010 & 0.03684 & 0.033631 & 22161.2 & & 1.354114 & 0.03178 & 0.005442 & 27899.9 \\
\hline & 100 & 0.919913 & 0.652279 & 0.03614 & 0.033262 & 21616.0 & & 1.291397 & 0.03202 & 0.005487 & 28153.8 \\
\hline \multirow[t]{8}{*}{6} & 0 & 1. 885967 & 0.708657 & 0.04104 & 0.035844 & 25284.5 & & 1.460902 & 0.03170 & 0.005005 & 28047.5 \\
\hline & 20 & 1.662549 & 0.699462 & 0.04022 & 0.035440 & 24694.9 & & 1.401083 & 0.03208 & 0.005072 & 28453.2 \\
\hline & 40 & 1.4382264 & 0.690422 & 0.03942 & 0.034988 & 24110.2 & & 1.341182 & 0.03230 & 0.005112 & 28686.4 \\
\hline & 51.75 & 1.306081 & 0.684960 & 0.03894 & 0.034735 & 23754.9 & & 1.305937 & 0.03248 & 0.005146 & 28875.4 \\
\hline & 60 & 1.213087 & 0.681070 & 0.03860 & 0.034556 & 23501.2 & & 1.281165 & 0.03258 & 0.005164 & 28980.7 \\
\hline & 80 & 0.987006 & 0.672077 & 0.03782 & 0.03446 & 22912.8 & & 1.221034 & 0.03280 & 0.005204 & 29211.5 \\
\hline & 100 & 0.760014 & 0.663438 . & 0.03708 & 0.033757 & 223465 & & 1.160793 & 0.03304 & 0.005248 & 29462.2 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{APPENDIX H}

URANIUM VALUES FOR BASIC RECYCLE SCHEMES
The unit value of uranium used as feed for basic recycle scheme operation, \(V(R, y)\), is given in the tables of this appendix for all sets of economic conditions considered. Results are given for both recycle schemes over ranges of \(R\) and \(y\), where \(R\) is the weight ratio of U-235 to U-238 in feed uranium and \(y\) is the weight fraction of \(U-236\). The units for \(V(R, y)\) are \(\$ / \mathrm{kg}\).

Results for recycle to fabrication are given in Tables H.l through H.5. For the high unit cost condition ("high costs") and a fabrication loss fraction \(L_{F}\) of 0.01, Tables H.1, H.2, and H. 3 give results which correspond to \(\mathrm{U}_{3} \mathrm{O}_{8}\) prices \(\left(\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}\right)\) of \(\$ 10,8\), and \(\$ 6 / 1 \mathrm{~b}\), respectively. For \(\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}\), results are given by Table H .4 for the low unit cost condition ("10w costs") with \(L_{F}=0.01\), and by Table H. 5 for high unit costs with \(L_{F}=0.002\). In each table, uranium values are listed at more than one Np-237 price \(C_{N}\).

Tables H. 6 through H. 10 give \(V(R, y)\) results for recycle to a diffusion plant for economic conditions which correspond, in the same order, to those of Tables H.l through H. 5.

TABLE H. 1 Uranium Value, \(V(R, y)\) - Recycle to Fabrication:
\(\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 10 / 1 \mathrm{~b}\), High Costs, \(\mathrm{L}_{\mathrm{F}}=0.01\)
(\$/kgU)
\(c_{N}=\$ 0 / 8 \quad \mathrm{~Np}-237\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(R=.40\) & . 45 & . 50 & . 55 & .60 & .65 & .70 & .75 & . 80 & .90 & 1.00 \\
\hline \(Y\) & & & & & & & . \(\cdot\). & & & & \\
\hline 0. & 3161.66 & 3744.80 & 4190.09 & 4515.58 & 4722.87 & 4820.33 & 4826.82 & 4777.56 & 4666.58 & 4261.03 & 362t.52 \\
\hline . 01 & 2835.39 & 3419.83 & 3878.64 & 4199.90 & 4412.26 & 4531.24 & -4567.18 & 4537.87 & 4445.48 & 4076.80 & 3480.31 \\
\hline . 0 ? & 2532.03 & 3113.26 & 3566.31 & 3883.40 & 4104.77 & 4236.85 & 4292.32 & 4281.51 & 4211.43 & 3874.05 & 3342.77 \\
\hline . 04 & 1923.17 & 2497.16 & 2928.39 & 3247.61 & 3480.75 & 3638.69 & 3726.75 & 3749.40 & 3703.16 & 3452.98 & 3020.20 \\
\hline . 06 & 1430.30 & 1946.26 & 2343.78 & 2664.36 & 2895.23 & 3066.73 & 3178.24 & 3220.32 & 3205.31 & 3018.44 & 2664.30 \\
\hline . 08 & 1012.86 & 1469.27 & 1849.17 & 2151.70 & 2371.95 & 2523.95 & . 2642.30 & 2695.72 & 2699.13 & 2589.65 & 2320.75 \\
\hline .10 & 485.19 & 965.64 & 1342.44 & 1636.92 & 1868.68 & 2042.49 & -2157.39 & -2215.49 & 2234-18 & 2154.68 & 1941.51 \\
\hline
\end{tabular}
\(\mathrm{C}_{\mathrm{N}}=\$ 20 / \mathrm{g} \mathrm{Np}-237\)


\[
\mathrm{C}_{\mathbf{N}}=\$ 20 / \mathrm{g} \mathrm{~Np}-237
\]

\section*{\(R=.40 \quad .45 \quad .50 \quad .55 \quad .60\)}
\(r\)
2821.21
2633.58
3176.64
3021.25
2069.72 1770.52 1520.65 1125.121646 .84
3635.60
3456.41
\[
3063.87
\]
\[
2705.62
\]
\[
2405.70
\]
2059.4
4118.52
3941.68
4316.82
4143.37
\begin{tabular}{ll}
4411.26 & 4419.59 \\
4256.18 & 4289.71
\end{tabular} 4097.23 4149.42
3766.623853 408
\(3441.83 \quad 3555.83\)
\(3121.25 \quad 3249.00\)
2831.432959 .61

\(C_{N}=\$ 60 / \mathrm{g} \mathrm{Np}-237\)
.65
.70
4359.444342 .22
4442.15 4443.9
\(4521.23 \quad 4543.68\)
\(4659.11 \quad 4723.08\)
\(4762.50 \quad 4867.12\)
4822.294955 .0
4846.994986 .33
\(C_{N}=\$ 100 / \mathrm{g} \mathrm{Np}-237\)
.55
.60

4180.40
4232.62
4292.46
4345.23
4371.57
4322.08
4357.30
4421.3
4518.6
4590.3
4636.0
4627.1
\(\$ 100 / \mathrm{g} \mathrm{Np}-237\)
\begin{tabular}{llll}
4372.39 & 4262.73 & 3874.03 & 3285611 \\
4258.98 & 4169.616 & 3816.82 & 3283.89 \\
4137.94 & 4069.93 & 3746.95 & 3248.28 \\
3875.71 & 3832.09 & 3594.08 & 3186.86 \\
3601.61 & 3591.40 & 3417.63 & 3083.72 \\
3309.98 & 3321.29 & 3235.55 & 2990.94 \\
3028.94 & 3070.39 & 3030.65 & 2841.50
\end{tabular}

 3472.7 3520.78 3529.56
\[
3544.01
\]
3550.76

3422
.012914 .20
. 50
.
.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(R=.40\) & . 45 & . 50 & . 55 & . 60 & . 65 & . 70 & . 75 & . 80 & 690 & 1.00 \\
\hline \multicolumn{12}{|l|}{r} \\
\hline 0. & 2433.99 & 2973.09 & 3388.04 & 3695.43 & 3897.12 & \(4 \mathrm{CO1.22}\) & 4024.80 & 3997.37 & 3911.77 & 3582.49 & 3068.94 \\
\hline . 01 & 2268.26 & 2810.84 & 3237.17 & 3538.10 & 3741.37 & 3.862 .22 & 3909.81 & 3897.28 & 3829.93 & 35.33.02 & 3052.25 \\
\hline . 02 & 2113.75 & 2656.14 & 3078.02 & 3375.68 & 3587.82 & 3720.75 & 3785.02 & 3789.93 & 3742.17 & 3473.57 & 304 F .40 \\
\hline . 04 & 1763.64 & 2310.44 & 2723.54 & 3023.33 & 3264.63 & 3425.60 & 3521.99 & 3558.76 & 3533.25 & 3341.44 & 2992.57 \\
\hline . 06 & 1499.63 & 2208.58 & 2404.07 & 2726.79 & 2959.73 & 3135.99 & 3257.38 & 3314.68 & 3319.90 & 3187.97 & 2908.00 \\
\hline . 08 & 1283.93 & 1751.45 & 2141.32 & 2452.67 & 2684.58 & 2849.40 & 2984.29 & 3056.96 & 3082.44 & 3627.19 & 2826.20 \\
\hline . 10 & 919.92 & 1425.16 & 1826.94 & 2145.82 & 2400.68 & 2596.09 & 2732.22 & 2812.55 & 2859.67 & 2844.02 & 2695.50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{\(\mathrm{C}_{\mathrm{N}}=\$ 60 / \mathrm{g} \mathrm{Np-237}\)} \\
\hline & \(R=.40\) & . 45 & . 50 & . 55 & . 60 & . 65 & . 70 & . 75 & . 80 & . 90 & 1600 \\
\hline \(\gamma\) & & & & & & & & . & & & \\
\hline 0. & 2483.53 & 3014.01 & 3413.74 & 3699.34 & 3876.55 & 3956.25 & 3954.54 & 3893.66 & 3765.04 & 3350.81 & 2802.43 \\
\hline .01 & 2553.63 & 3092.18 & 3502.63 & 378?.84 & 3961.66 & 4C54.84 & 4070.92 & 4021.00 & 3918.08 & 3546.23 & 3016.30 \\
\hline . 02 & 2615.74 & 3160.69 & 3571.85 & 3854.01 & 4044.CO & 4151.18 & 4185.96 & 4158.39 & 4070.37 & 3733.41 & 3240.39 \\
\hline . 04 & 2633.66 & 2297.28 & 3636.11 & 3951.3C & 4178.04 & 4324.11 & 4398.28 & 4408.34 & 4353.69 & 4098.54 & 3674.13 \\
\hline . \(\mathrm{C6}\) & 2690.38 & 3258.65 & 3695.96 & 404?.48 & 4287.20 & 4462.31 & 4574.58 & 4617.41 & 4602.95 & 4417.84 & 4077.32 \\
\hline . 08 & 2745.09 & 3301.15 & 3752.30 & 4152.31 & 4368.53 & 4555.78 & 4695.91 & 4761.48 & 4775.88 & 4710.21 & 4475.04 \\
\hline . 10 & 2585.69 & 3204.67 & 3698.67 & 4082.39 & 4392.85 & 4 E16.71 & 4764.24 & 4846.16 & 4927.99 & 4946.11 & 4768.49 \\
\hline & \multicolumn{11}{|c|}{\(C_{N}=\$ 100 / \mathrm{g} \mathrm{Np-237}\)} \\
\hline & & & & & & & & & & & \\
\hline & \(R=.40\) & . 45 & . 50 & . 55 & .60 & .65 & . 70 & .75 & . 80 & +90 & 1.00 \\
\hline \multicolumn{12}{|l|}{Y} \\
\hline 0. & 2528.23 & 3049.62 & 3433.72 & 3657.15 & 3849.56 & 3904.59 & 3877.33 & 3782.80 & 3610.98 & 3123.48 & 2529.10 \\
\hline . 01 & 2834.38 & 2368.43 & 3762.56 & 4021.69 & 4175.74 & 4240.98 & 4225.30 & 4137.77 & 3999.09 & 3551.40 & 2972.70 \\
\hline . \(\mathrm{C2}\) & 3143.29 & 366010.34 & 4060.35 & 4324.67 & 4494.20 & 4575.34 & 4580.38 & 4520.13 & 4403.65 & 3986.02 & 3431.90 \\
\hline . 04 & 3499.55 & 4099.56 & 4543.73 & 4863.98 & 5085.86 & 5216.76 & 5268.47 & 5251.58 & 5167.59 & 4848.78 & 4348.57 \\
\hline .06 & 3877.26 & 4504.46 & 4983.22 & 5355.21 & 5809.42 & 5783.12 & 5886.02 & 5914.17 & 5879.83 & 5641.21 & 5242.89 \\
\hline . 08 & 42.2 .62 & 4846.80 & 5358.91 & 5754.27 & 6047.52 & 6256.96 & 6402.08 & 6480.35 & 6463.44 & 6387.07 & 6117.44 \\
\hline .10 & 4248.04 & 4985.37 & 5566.27 & 6026.54 & 6380.31 & 6632.38 & 6791:09 & 6874.38 & 6990.76 & 7042.36 & 6835.30 \\
\hline
\end{tabular}


TABLE H. 5 Uranium Value, \(V(R, y)\) - Recycle to Fabrication:
\[
\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / 1 \mathrm{~b}, \text { High Costs, } \mathrm{L}_{\mathrm{F}}=0.002
\]

\(C_{\mathbb{N}}=\$ 60 / \mathrm{g} \quad \mathrm{Np}-237\)


TABLE H. 6 URANIUM VALUE, \(V(R, y)\) - RECYCLE TO DIFFUSION PLANT:
\(C_{U_{3} O_{8}}=\# 10 / L B, H I G H\) COSTS, \(L_{F}=0.01\)
(\$/KGU)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & & 0.02 & 0.025 & 0.03 & 0.035 & 0.04 & 0.045 & 0.05 & 0.055 & 0.06 & 0.065 & 0.07 & 0.075 & 0.08 & 0.09 & 0.10 \\
\hline & (\$/G NP) & & & & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{\(\bigcirc\)} & 0 & 110.33 & 207.52 & 274.80 & 325.26 & 364.36 & 394.42 & 416.18 & 429.48 & 433.79 & 431.08 & 422.64 & 407.75 & 386.93 & & \\
\hline & 20 & 109.76 & 207.06 & 274.76 & 325.83 & 365.56 & 396.17 & 418.37 & 432.10 & 43717 & 434.15 & 426.76 & 412.95 & 393.16 & & \\
\hline & 60 & 108.58 & 206.11 & 274.65 & 326.91 & 367.90 & 399.62 & 422.69 & 437.29 & 443.85 & 440.23 & 434.92 & 423.28 & 405.52 & & \\
\hline & 100 & 107.37 & 205.10 & 274.47 & 327.91 & 370.15 & 402.96 & 426.89 & 442.35 & 450.40 & 446.16 & 442.93 & 433.45 & 417.71 & & \\
\hline \multirow[t]{4}{*}{0.005} & 0 & 22.25 & 143.61 & 217.56 & 270.52 & 312.24 & 344.15 & 367.05 & 381.40 & 387.51 & 387.39 & 381.28 & 369.49 & 352.37 & & \\
\hline & 20 & 38.00 & 161.57 & 237.24 & 291.85 & 334.79 & 367.69 & 391.46 & 406.65 & 413.57 & 414.24 & 408.91 & 397.75 & 381.05 & & \\
\hline & 60 & 69.47 & 197.46 & 276.57 & 334.48 & 379.85 & 414.70 & 440.22 & 457.09 & 465.62 & 467.86 & 464.07 & 454.19 & 438.32 & & \\
\hline & 100 & 100.90 & 233.29 & 315.84 & 377.03 & 424.82 & 461.61 & 488.87 & 507.41 & 517.53 & 521.34 & 519.09 & 510.47 & 495.43 & & \\
\hline \multirow[t]{4}{*}{0.01} & 0 & -94.90 & 72.97 & 159.49 & 218.78 & 262.61 & 294.97 & 318.07 & 333.32 & 341.62 & 344.45 & 340.70 & 331.59 & 317.29 & 271.01 & 202.83 \\
\hline & 20 & -65.74 & 107.71 & 198.07 & 260.43 & 306.60 & 340.89 & 365.67 & 382.35 & 391.73 & 395.52 & 392.53 & 383.91 & 369.81 & 324.78 & 258.96 \\
\hline & 60 & -7.43 & 177.17 & 275.20 & 343.68 & 394.53 & 432.68 & 460.81 & 480.37 & 491.89 & 497.61 & 496.10 & 488.47 & \[
474.76
\] & \[
432.22
\] & \[
371.11
\] \\
\hline & 100 & 50.84 & 246.58 & 352.26 & 426.86 & 482.37 & 524.37 & 555.85 & 578.27 & 591.93 & 599.55 & 599.53 & 592.88 & 579.54 & 539.48 & 483.08 \\
\hline \multirow[t]{4}{*}{0.015} & 0 & -275.04 & -6.74 & 99.07 & 167.42 & 214.04 & 247.42 & 271.51 & 288.33 & 298.68
37257 & 302.77
37803 & 301.20
377.49 & 294.18 & \[
\begin{aligned}
& 281.72 \\
& 359.16
\end{aligned}
\] & 240.47
319.59 & \[
\begin{aligned}
& 181.87 \\
& 261.88
\end{aligned}
\] \\
\hline & 20 & -236.60 & 42.14 & 154.64 & 227.83 & 278.23 & 314.78
449.45 & 341.61 & 360.67
50530 & 372.57
520.30 & 378.03
528.47 & 377.49
530.02 & \[
\begin{aligned}
& 371.21 \\
& 525.18
\end{aligned}
\] & \[
\begin{aligned}
& 359.16 \\
& 513.95
\end{aligned}
\] & \[
\begin{aligned}
& 319.59 \\
& 477.74
\end{aligned}
\] & \[
\begin{aligned}
& 261.88 \\
& 421.82
\end{aligned}
\] \\
\hline & 60 & -159.74 & 139.87 & 265.74 & 348.60
469.31 & 406.56
534.81 & 449.45
58404 & 481.74
621.78 & 505.30
649.82 & 520.30
667.90 & 528.47
678.78 & 530.02
682.40 & \[
\begin{aligned}
& 525.18 \\
& 679.01
\end{aligned}
\] & \[
\begin{aligned}
& 513.95 \\
& 668.59
\end{aligned}
\] & \[
\begin{aligned}
& 477.74 \\
& 635.72
\end{aligned}
\] & 421.82
\[
1581.56
\] \\
\hline & 100 & -82.91 & 237.57 & 376.79 & 469.31 & 534.81 & 584,04 & 621.78 & 649.82 & 667.90 & 678.78 & 682.40 & 679.01 & 668.59 & 635.72 & \\
\hline \multirow[t]{4}{*}{0.02} & 0 & -562.21 & -113.21 & 31.71 & 111.44 & 163.51 & 200.72 & 228.06 & 247.46 & 259.24 & 262.75 & 262.99 & 257.39 & 245.81 & 20978 & 158.51 \\
\hline & 20 & -519.46 & -52.84 & 101.41 & 188.11 & 245.69 & 287.55 & 318.92 & 341.61 & 355.68 & 361.85 & 363.75 & 359.46 & 348.90 & 314.75 & 263.76 \\
\hline & 60 & -433.96 & 67.87 & 240.77 . & 341.42 & 409.99 & 461.18 & 500.57 & 529.84 & 548.50 & 5\$99.98 & 565.19 & 563.53 & 554.98 & 524.62 & 474.17 \\
\hline & 100 & -348.49 & 188.54 & 380.08 & 494.65 & 574.22 & 634.72 & 682.13 & 717.98 & 741.21 & 757.99 & 766.50 & 767.46 & 760.92 & 734.32 & 684.40 \\
\hline \multirow[t]{4}{*}{0.03} & 0 & & & -140.27 & -12.09 & 56.89 & 102.13 & 135.99 & 160.63 & 177.31 & 186.78 & 189.45 & 185.49 & 174.96 & 147.79 & 103.98 \\
\hline & 20 & & & -47.74 & 93.18 & 172.02 & 225.65 & 266.32 & 296.59 & 318.04 & 331.63 & 337.88 & 337.02 & 329.09 & 304.92 & 262.94 \\
\hline & 60 & & & 137.30 & 303.68 & 402.25 & 472.64 & 526.91 & 568.46 & 599.46 & 621.26 & 634.66 & 640.02 & 637.28 & 619.10 & 580.77 \\
\hline & 100 & & & 322.29 & 514.12 & 632.40 & 719.55 & 787.42 & 840.23 & 880.76 & 910.77 & 931.32 & 942.88 & 945.33 & 933.12 & 898.42 \\
\hline \multirow[t]{4}{*}{0.04} & 0 & & & -362.90 & -169.58 & -70.97 & -6.79 & 36.15 & 67.65 & 89.29 & 103.22 & 110.67 & 112.33 & 108.58 & 85.25 & 39.73 \\
\hline & . 20 & & & -256.89 & -43.57 & 69.85 & 146.26 & 199.32 & 239.71 & 268.86 & 289.21 & 302.18 & 308.67 & 309.20 & 293.23 & 254.27 \\
\hline & - 20 & & & --44.89 & - 208.41 & 351.46 & 452.32 & 525.63 & 583.78 & \[
627.95
\] & . 661.11 & 685.14 & 701.28 & \[
710.35
\] & \[
709.13
\] & \[
683.26
\] \\
\hline & 100 & & & 167.06 & 1460.34 & 633.01 & 758.31 & 851.85 & 1927.75 & 986.94 & 1032.90 & 11067.98 & 1093.77 & 11111.38 & 1124.87 & \\
\hline
\end{tabular}

TAbLE H. 7 URANIUM VALUE, \(V(R, y)\) - RECYCLE TO DIFFUSION PLANT:
\(\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / \mathrm{LB}\), HIGH COSTS, \(L_{F}=0.01\)
( \(\$ / K G U)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y\) & \(\mathrm{CN}_{N}{ }^{\text {R }}\) & 0.02 & 0.025 & 0.03 & 0.035 & 0.04 & 0.045 & 0.05 & 0.055 & 0.06 & 0.065 & 0.07 & 0.075 & 0.08 & 0.09 & 0.10 \\
\hline & (\$/G NP) & & & & & & & & & & & & & & & \\
\hline 0 & 0 & 90.10 & 181.19 & 244.45 & 292.13 & 329.26 & 358.01 & 379.12 & 392.44 & 397.45 & 395.92 & 389.13 & 376.33 & 358.03 & & \\
\hline \multirow{7}{*}{0.005} & 20 & 89.45 & 180.66 & 244.35 & 292.64 & 330.41 & 359.75 & 381.33 & 395.11 & 400.89 & 399.02 & 393.32 & 381.66 & 364.43 & & \\
\hline & 60 & 88.12 & 179.53 & 244.07 & 293.56 & 332.62 & 363.10 & 385.60 & 400.31 & 407.63 & 405.07 & 401.52 & 392.12 & 377.05 & & \\
\hline & 100 & 86.72 & 178.33 & 243.69 & 294.36 & 334.69 & 366.30 & 389.72 & 405.33 & 414.17 & 410.92 & 409.50 & 402.35 & 389.4 & & \\
\hline & 0 & 9.15 & 122.41 & 191.67 & 241.48 & 281.00 & 311.52 & 333.73 & 348.00 & 354.61 & 355.39 & 350.71 & 340.74 & 325.85 & & \\
\hline & 20 & 24.23 & 139.64 & 210.61 & 262.07 & 302.83 & 334.35 & 357.45 & 372.59 & 380.04 & 381.62 & 377.76 & 368.50 & 354.10 & & \\
\hline & 60 & 54.34 & 174.03 & 248.42 & 303.17 & 346.38 & 379.88 & 404.76 & 421.62 & 430.74 & 433.91 & 431.69 & 423.83 & 410.40 & & \\
\hline & 100 & 84.40 & 208.34 & 286.14 & 344.16 & 389.81 & 425.28 & 451.92 & 470.49 & 481.26 & 486.00 & 485.43 & 478.94 & 466.4 & & \\
\hline \multirow[t]{4}{*}{0.01} & 0 & -97.74 & 57.29 & 137.96 & 193.43 & 234.92 & 265.88 & 288.27 & 303.33 & 311.90 & 315.43 & 312.89 & 305.40 & 293.16 & 252.27 & 190.59 \\
\hline & 20 & -69.57 & 90.80 & 175.20 & 233.71 & 277.53 & 310.43 & 334.50 & 351.01 & 360.70 & 365.25 & 363.51 & 356.57 & 344.58 & 305.00 & 245.95 \\
\hline & 60 & -13.27 & 157.76 & 249.63 & 314.20 & 362.67 & 399.41 & 426.83 & 446.24 & 458.16 & 464.73 & 464.59 & \[
458.75
\] & 447.26 & 410.26 & 356.45 \\
\hline & 100 & 42.97 & 224.66 & 323.96 & 394.59 & 447.69 & 488.26 & 519.02 & 541.32 & 555.44 & 564.04 & 565.47 & 560.71 & 549.71 & 515.28 & 466.68 \\
\hline \multirow[t]{4}{*}{0.015} & 0 & -260.40 & -15.94 & 82.13 & 145.88 & 189.86 & 221.61 & 244.73 & 261.12 & 271.61 & 276.49 & 275.95 & 270.43 & 259.95 & 223.61 & 170.91 \\
\hline & 20 & -222.85 & 31.44 & 135.98 & 204.49 & 252.20 & 287.09 & 312.93 & 331.57 & 343.64 & 349.88 & 350.42 & 345.66 & 335.62 & 301.04 & 249.48 \\
\hline & 60 & -147.79 & 126.16 & 243.62 & 321.63 & 376.79 & 417.95 & 449.22 & 472.35 & 487.57 & 496.52 & 499.20 & 495.95 & 486.77 & 455.72 & 406.4-1 \\
\hline & 100 & -72.77 & 220.81 & 351.18 & 4388.67 & 501.27 & 548.69 & 585.37 & 612.98 & 631.34 & 642.98 & 647.79 & 646.04 & 637.71 & 6 & 563.08 \\
\hline \multirow[t]{4}{*}{0.02} & 0 & -523.85 & -110.70 & 20.41 & 94.57 & 143.24 & 178.15 & 204.01 & 222.69 & 234.56 & 238.96 & 240.11 & 235.95 & 226.35 & 194.76 & 149.04 \\
\hline & 20 & -481.60 & -51.94 & 88.26 & 169.21 & 223.26 & 262.75 & 292.57 & 314.51 & 328.67 & 335.62 & 338.43 & 335.58 & 326.98 & 297.41 & 252.13 \\
\hline & 60 & -397.13 & 65.51 & 223.90 & 318.41 & 383.22 & 431.86 & 469.59 & 498.03 & 516.75 & 528.79 & 534.91 & 534.67 & 528.07 & 502.52 & 458.12 \\
\hline & 100 & -312.69 & 182.91 & 359.46 & 467.52 & 543.07 & 600.84 & 646.46 & 681.40 & 704.68 & 721.78 & 731.20 & 733.57 & 728.95 & 707.41 & 663.85 \\
\hline \multirow[t]{4}{*}{0.03} & 0 & & & -137.74 & -19.91 & 44.08 & 86.25 & 118.15 & 141.68 & 157.97 & 167.67 & 171.11 & 168.42 & 159.60 & 136.36 & 98.10 \\
\hline & 20 & & & -47.20 & 82.83 & 156.38 & 206.75 & 245.32 & 274.39 & 295.37 & 309.10 & 316.05 & 316.42 & 310.20 & 289.96 & 253.45 \\
\hline & 60 & & & 133.82 & 288.25 & 380.92 & 447.67 & 499.57 & 539.70 & 570.03 & 591.82 & 605.79 & 612.27 & 611.22 & 596.98 & 563.94 \\
\hline & 100 & & & 314.77 & 493.59 & 605.36 & 688.47 & 753.68 & 804.87 & 844.55 & 874.38 & 895.36 & 907.93 & 912.06 & 903.77 & 874.20 \\
\hline \multirow[t]{4}{*}{0.04} & & & & -344.19 & -163.59 & -72.22 & \(-13.12\) & 25.33 & 55.25 & 75.94 & 89.47 & 97.03 & 99.32 & 96.71 & 75.22 & 37.89 \\
\hline & 20 & & & -239.58 & -39.82 & 65.84 & 136.81 & 185.02 & 223.59 & 251.62 & 271.45 & 284.45 & 291.48 & 293.06 & \[
280.73
\] & \[
247.56
\] \\
\hline & 60 & & & -30.42 & 207.65 & 341.87 & 436.58 & 504.30 & 560.16 & 602.88
953.99 & 635.27
99895 & 659.14
1033.67 & 675.66
1059 & \[
\begin{aligned}
& 685.60 \\
& 1077.96
\end{aligned}
\] & 687.56 1094.18 & \[
\begin{aligned}
& 666.73 \\
& 1085.67
\end{aligned}
\] \\
\hline & 100 & & & 178.68 & 455.05 & 617.82 & 736.25 & 823.46 & 896.61 & 953.99 & 998.95 & 1033.67 & 1059.66 & 1077.96 & 1094.18 & 1085.67 \\
\hline
\end{tabular}

TABLE H. 8 URANIUM VALUE, V \((R, y)\) - RECYCLE TO DIFFUSION PLANT:
\(C_{U_{3} O_{8}}={ }^{*} 6 / L B, H I G H\) COSTS, \(L_{F}=0.01\)
(\#/KGU)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y\) & R & 0.02 & 0.025 & 0.03 & 0.035 & 0.04 & 0.045 & 0.05 & 0.055 & 0.06 & 0.065 & 0.07 & 0.075 & 0.08 & 0.09 & 0.10 \\
\hline & (\%/GNP) & & & & & & & & & & & & & & & \\
\hline 0 & 0 & 69.03 & 153.48 & 212.39 & 257.05 & 292.02 & 319.35 & 339.71 & 353.00 & 358.69 & 358.37 & 353.30 & 342.68 & 327.00 & & \\
\hline \multirow{7}{*}{0.005} & 20 & 68.29 & 152.84 & 212.18 & 257.45 & 293.08 & 321.01 & 341.87 & 355.66 & 362.15 & 361.44 & 357.48 & 348.06 & 333.52 & & \\
\hline & 60 & 66.75 & 151.50 & 211.67 & 258.14 & 295.09 & 324.20 & 346.05 & 360.82 & 368.89 & 367.42 & 365.67 & 358.60 & 346.36 & & \\
\hline & 100 & 65.15 & 150.06 & 211.04 & 258.69 & 296.93 & 327.21 & 350.03 & 365.77 & 375.40 & 373.14 & 373.59 & 368.87 & 58.90 & & \\
\hline & 0 & -4.28 & 100.18 & 164.36 & 210.76 & 247.89 & 276.87 & 298.29 & 312.44 & 319.53 & 321.23 & 318.01 & 309.94 & 297.37 & & \\
\hline & 20 & 9.99 & 116.53 & 182.41 & 230.45 & 268.83 & 298.82 & 321.15 & 336.19 & 344.15 & 346.65 & 344.31 & 337.02 & 325.03 & & \\
\hline & 60 & 38.49 & 149.15 & 218.42 & 269.74 & 310.59 & 342.60 & 366.73 & 383.54 & 393.24 & 397.32 & 396.75 & 390.99 & 380.13 & & \\
\hline & 100 & 66.92 & 181.68 & 254.31 & 308.90 & 352.20 & 386.20 & 412.13 & 430.68 & 442.11 & 447.75 & 448.93 & 444.69 & 434.95 & & \\
\hline \multirow[t]{4}{*}{0.01} & 0 & -100.24 & 40.98 & 115.32 & 166.67 & 205.60 & 235.02 & 256.61 & 271.43 & 280.25 & 284.45 & 283.15 & 277.35 & 267.23 & 232.00 & 177.14 \\
\hline & 20 & -73.30 & 73.00 & 150.97 & 205.32 & 246.56 & 277.91 & 301.18 & 317.47 & 327.45 & 332.73 & 332.28 & 327.10 & 317.30 & 283.42 & 231.50 \\
\hline & 60 & -19.46 & 136.99 & 222.19 & 282.53 & 328.40 & 363.57 & 390.18 & 409.39 & 421.68 & 429.12 & 430.38 & 426.42 & 417.25 & 386.07 & 339.99 \\
\hline & 100 & 34.32 & 200.90 & 293.30 & 359.62 & 410.08 & 449.06 & 479.00 & 501.12 & 515.69 & 525.28 & 528.23 & 525.47 & 516.92 & 488.41 & 448.15 \\
\hline \multirow[t]{4}{*}{\(\cdot 0.015\)} & 0 & -244.23 & -25.38 & 64.38 & 123.15 & 164.27 & 194.27 & 216.35 & 232.26 & 242.84 & 248.47 & 248.98 & 245.00 & 236.56 & 205.36 & 58.84 \\
\hline & 20 & -207.85 & 20.17 & 116.16 & 179.59 & 224.38 & 257.48 & 282.26 & 300.41 & 312.61 & 319.60 & 321.23 & 318.05 & 310.08 & 280.73 & 235.63 \\
\hline & 60 & -135.14 & 111.21 & 219.63 & 292.37 & 344.50 & 383.80 & & 436.59 & 452.00 & 461.72 & 465.57 & 463.96 & 456.92 & 431.26 & 388.98
54201 \\
\hline & 100 & -62.48 & 202.18 & 323.01 & 405.04 & 464.48 & 509.95 & \[
54 E .46
\] & 572.58 & 591.19 & 603.62 & 609.66 & 609.63 & 603.50 & 581.50 & 542.01 \\
\hline \multirow[t]{4}{*}{0.02} & 0 & -479.87 & -108.54 & 8.57 & 76.73 & 121.78 & 154.27 & 178.54 & 196.41 & 208.31 & 213.63 & 215.71 & 213.01 & 205.45 & 178.50 & 138.56 \\
\hline & 20 & -438.36 & -51.79 & 74.15 & 148.89 & 199.20 & 236.17 & 264.33 & 285.42 & 299.61 & 307.35 & 311.09 & 309.71 & 303.14 & 278.34 & 239.04 \\
\hline & 60 & -355.36 & 61.67 & 205.24 & 293.14 & 353.94 & 399.87 & 435.80 & 463.32 & 482.07 & 494.64 & 501.69 & 502.92 & 498.32 & 477.81 & 439.79 \\
\hline & 100 & -272.42 & 175,05 & 336.23 & 437.28 & 508.55 & 563.41 & 607.10 & 641.04 & 664.33 & 681.72 & 692.06 & 695.89 & 693.25 & 677.00 & 640.23 \\
\hline \multirow[t]{4}{*}{0.03} & 0 & & & -134.43 & -27.88 & 30.73 & 69.62 & 99.36 & 121.65 & 137.46 & 147.34 & 151.56 & 150.20 & 143.22 & 124.00 & 91.47 \\
\hline & 20 & & & -46.41 & 71.77 & 139.60 & 186.46 & 222.73 & 250.44 & 270.83 & 284.66 & 292.31 & 293.94 & 289.53 & 273.36 & 242.50 \\
\hline & 60 & & & 129.57 & 270.99 & 357.26 & 420.06 & 469.35 & 507.89 & 537.44 & 559.14 & 573.65 & 581.27 & 581.99 & 571.89 & 544.36 \\
\hline & 100 & & & 305.46 & 470.12 & 574.80 & 653.52 & 715.82 & 765.17 & 803.86 & 833.42 & 854.78 & 868.37 & 874.21 & 870.14 & 845.92 \\
\hline \multirow[t]{4}{*}{0.04} & 0 & & & -323.13 & -157.36 & & & 14.16 & 42.30 & 61.93 & 75.00 & 82.65 & 85.56 & 84.11 & 68.59 & 35.67 \\
\hline & 20 & & & -220.43 & -36.48 & 60.56 & 125.72 & 169.59 & 206.12 & 232.90 & 252.12 & 265.10 & 272.66 & 275.30 & 266.69 & 239.53 \\
\hline & 60 & & & -15.10 & 205.21 & 329.63 & 4.17.75 & 480.35 & 533.64 & 574.72 & 606.22 & 629.85 & 646.71 & 657.52 & 662.70 & 647.04 \\
\hline & 100 & & & 190.16 & 446.81 & 598.59 & 709.64 & 790.96 & 861.00 & 916.36 & 960.14 & 1994.40 & 11020.53 & 11039.51 & 11058.45 & 1054.26 \\
\hline
\end{tabular}

TABLE H. 9 URANIUM VALUE, \(V(R, y)\) - RECYCLE TO DIFFUSION PLANT:
\(C_{U_{3} \mathrm{O}_{8}}=\# 8 / L B\), LOW COSTS, \(L_{F}=0.01\)
(\#/KGU)


TABLE H. 10 URANIUM VALUE, \(V(R, y)\) - RECYCLE TO DIFFUSION PLANT:
\(C_{U_{3} \mathrm{O}_{8}}=\$ 8 / \mathrm{LB}, \mathrm{H}_{\mathrm{I}} \mathrm{HH}\) COSTS, \(L_{F}=0.002\)
\((\$ / K G U)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y\) & \(C_{N} R\) & 0.02 & 0.025 & 0.03 & 0.035 & 0.04 & 0.045 & 0.05 & 0.055 & 0.06 & 0.065 & 0.07 & 0.075 & 0.08 & 0.09 & 0.10 \\
\hline \multirow{3}{*}{0} & (\%/GNP) & & & & & & & & & & & & & & & \\
\hline & 0 & 89.16 & 180.92 & 244.44 & 292.25 & 329.46 & 358.28 & 379.42 & 392.73 & 397.69 & 396.12 & 389.25 & 376.38 & 358.01 & & \\
\hline & 60 & 87.21 & 179.23 & 244.01. & 293.66 & 332.86 & 363.45 & 386.05 & 400.83 & 408.22 & 405.82 & 402.35 & 393.03 & 378.04 & & \\
\hline \multirow[t]{2}{*}{0.005} & 0 & 5.15 & 120.77 & 190.69 & 240.80 & 280.48 & 311.07 & 333.27 & 34-7.51 & 354.08 & 354.85 & 350.09 & 340.07 & 325.13 & & \\
\hline & 60 & 52.11 & 173.97 & 249.04 & 304.20 & 347.68 & 381.37 & 406.4-1 & 423.42 & 432.69 & 436.10 & 434.02 & 426.28 & 412.96 & & \\
\hline \multirow[t]{2}{*}{0.01} & 0 & -111.04 & 52.87 & 135.33 & 191.57 & 233.34 & 264.39 & 286.78 & 301.82 & 310.41 & 313.94 & 311.37 & 303.85 & 291.54 & 250.45 & 188.99 \\
\hline & 60 & -22.36 & 157.08 & 250.77 & 316.25 & 365.21 & 402.27 & 429.98 & 449.67 & 461.84 & 468.66 & 468.72 & 463.08 & 451.75 & 415.33 & 362.09 \\
\hline \multirow[t]{2}{*}{0.015} & 0 & -305.83 & \(-25.87\) & 76.68 & 142.09 & 186.70 & 218.74 & 242.03 & 2.58 .55 & 269.11 & 273.88 & 273.35 & 267.79 & 257.20 & 220.76 & 168.35 \\
\hline & 60 & -186.33 & 122.48 & 244.42 & 324.22 & 380.29 & 422.11 & 453.97 & 477.63 & 493.22 & 502.46 & 505.50 & 502.56 & 493.64 & 4.63 .34 & 4-14.66 \\
\hline \multirow[t]{2}{*}{0.02} & 0 & -663.04 & -136.87 & 9.90 & 87.42 & 137.60 & 173.41 & 199.86 & 218.89 & 230.86 & 235.03 & 236.23 & 231.99 & 222.19 & 190.67 & 145.19 \\
\hline & 60 & -527.48 & 48.93 & 222.09 & 320.14 & 386.86 & 436.93 & 475.81 & 505.14 & 524.40 & 537.08 & 54.3 .74 & 543.97 & 537.75 & 513.07 & 469.42 \\
\hline \multirow[t]{2}{*}{0.03} & \[
0
\] & & & \[
\begin{array}{r}
-171.67 \\
115.61
\end{array}
\] & \[
\begin{aligned}
& -38.36 \\
& 28587
\end{aligned}
\] & \[
\begin{gathered}
30.64 \\
384424
\end{gathered}
\] & \[
\begin{aligned}
& 75.27 \\
& 4.5432
\end{aligned}
\] & 108.70
508.53 & \[
\begin{aligned}
& 133.19 \\
& 550.37
\end{aligned}
\] & \[
\begin{aligned}
& 150.04 \\
& 582.07
\end{aligned}
\] & \[
160.03
\] & 163.58
619.99 & 160.90
627.39 & & & \\
\hline & \[
60
\] & & & 115.66 & \[
285.87
\] & \[
384.24
\] & 4.54 .32 & 508.53 & \[
550.37
\] & \[
582.07
\] & \[
605.00
\] & 619.99 & 627.39 & \[
627.16
\] & \[
614.37
\] & \[
582.69
\] \\
\hline \multirow[t]{2}{*}{0.04} & 0 & & & -434.00 & -213.82 & -107.00 & -39.45 & 6.42 & 38.42 & 60.76 & 75.63 & 84.23 & 87.28 & 85.12 & 65.51 & 24.27 \\
\hline & 60 & & & -99.67 & 180.12 & 331.12 & 435.46 & 512.23 & 571.52 & 617.05 & 651.84 & 677.77 & 696.10 & 707.66 & 712.42 & 694.13 \\
\hline
\end{tabular}

\section*{APPENDIX I}

MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS
FOR DIFFERENT MODES OF OPERATION
The tables of this appendix list the maximum unit value of feed uranium over wide ranges of feed isotopic composition and also summarize the optimum operating conditions at those isotopic compositions for which the maximum unit values are given corresponding to either pre-enrichment by gaseous diffusion or blending with natural uranium. Where applicable, \(U-236\) penalty results are also listed in the tables.

For both recycle schemes, the weight ratio of U-235 to U-238 in the feed uranium, \(R\), was varied over the range from \(R=0.005\) (depleted uranium) to \(R=15\) (fullyenriched uranium). The weight fraction of \(U-236\) in feed uranium, \(y\), is varied between zero and 0.04 for recycle to fabrication and between zero and 0.02 for recycle to a diffusion plant. For each value of \(y\) considered, the range of \(R\) examined was terminated at the low end at a value of \(R\) below which it would be necessary to extrapolate tables for the unit value and flowrate of the diffusion plant product stream during pre-enrichment by gaseous diffusion. Results were also obtained for \(y=0.15\) at \(R=2,6\), and 15 , for both recycle schemes.

Table I.l provides a summary of the conditions applicable to each of the remaining 22 tables of the appendix. In addition to the recycle scheme considered, each table is characterized by: a fabrication loss

TABLE I. 1
Table Numbers for Maximum Uranium Value Results
\begin{tabular}{|c|c|c|c|c|c|}
\hline Table & Recycle to & Fab. Loss Fraction,
\(\qquad\) \(\underline{L}\) & Unit Costs & \[
\begin{gathered}
\text { Natural } \\
\mathrm{U}_{3} \mathrm{O}_{8} \text { Price, } \\
\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}} \\
(\$ / 1 \mathrm{~b}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Neptunium } \\
\text { Price, } \\
C_{N} \\
(\$ / q N p) \\
\hline
\end{gathered}
\] \\
\hline I. 2 & Fabrication & 0.01 & High & 8 & 0 \\
\hline I. 3 & Fabrication & 0.01 & High & 8 & 60 \\
\hline I. 4 & Fabrication & 0.01 & High & 8 & 100 \\
\hline I. 5 & Fabrication & 0.01 & High & 6 & 0 \\
\hline I. 6 & Fabrication & 0.01 & High & 6 & 60 \\
\hline I. 7 & Fabrication & 0.01 & High & 10 & 0 \\
\hline I. 8 & Fabrication & 0.01 & High & 10 & 60 \\
\hline I. 9 & Fabrication & 0.01 & Low & 8 & 0 \\
\hline I. 10 & Fabrication & 0.002 & Low & 8 & 60 \\
\hline I. 11 & Fabrication & 0.002 & High & 8 & 0 \\
\hline I. 12 & Fabrication: P & Pre-enrichme at low R, fo I. 11 above. & nt by cases & seous diffus described b & \begin{tabular}{l}
on, \(y=0\) \\
I. 2 to
\end{tabular} \\
\hline I. 13 & Fabrication: \(\quad \mathrm{B}\) & Blending wi high R, for I.ll above. & n natur cases & 1 uranium,y scribed by & \[
\begin{aligned}
& .15 \text { at } \\
& 2 \text { to }
\end{aligned}
\] \\
\hline I. 14 & Diffusion Plant & \(t \quad 0.01\) & High & 8 & 0 \\
\hline I. 15 & Diffusion Plant & \(t \quad 0.01\) & High & 8 & 60 \\
\hline I. 16 & Diffusion Plant & \(t \quad 0.01\) & High & 8 & 100 \\
\hline I. 17 & Diffusion Plant & \(t \quad 0.01\) & High & 6 & 0 \\
\hline I. 18 & Diffusion Plant & \(t \quad 0.01\) & High & 6 & 60 \\
\hline I. 19 & Diffusion Plant & \(t \quad 0.01\) & High & 10 & 0 \\
\hline I. 20 & Diffusion Plant & \(t \quad 0.01\) & High & 10 & 60 \\
\hline I. 21 & Diffusion Plant & \(t \quad 0.01\) & Low & 8 & 0 \\
\hline I. 22 & Diffusion Plant & \(t \quad 0.01\) & Low & 8 & 60 \\
\hline I. 23 & Diffusion Plant & \[
\begin{aligned}
& \text { t: } \quad \text { Blending } \\
& y=0.15 \\
& \text { by } I .14
\end{aligned}
\] & \begin{tabular}{l}
with \\
high \\
o I. 22
\end{tabular} & atural urani \(R\), for cases above. & described \\
\hline
\end{tabular}
fraction \(L_{F}\) of either 0.01 or 0.002 ; a \(U_{3} O_{8}\) price \(C_{U_{3}} O_{8}\) of \(\$ 6, \$ 8\), or \(\$ 10 / 1 \mathrm{~b}\); a \(\mathrm{Np}-237\) price \(C_{N}\) of \(\$ 0, \$ 60\), or \(\$ 100 / g\); and the unit cost condition - either "high cost's" or "low costs" - in effect.

The optimum value of \(R\) when feed contains no \(U-236\) and is priced on the AEC scale, \(R^{*}\), is given for convenience on each table. At each \((R, y)\) point considered, the "mode" of operation used is designated by \(D, B\), or \(B L\), where \(D\) denotes pre-enrichment by gaseous diffusion, \(B\) refers to basic recycle operation, and \(B L\) represents blending with natural uranium. For the indicated "mode", the maximum obtainable unit feed value, in \(\$ / \mathrm{kgU}\), is listed next as. "value". For some ( \(R, y\) ) points, results are given for more than one mode of operation in order to show the transition between the modes of operation which yield the highest unit feed value as \(R\) increases.

For the pre-enrichment and blending modes, the three items listed after "value" are the feed stream flowrate (denoted by "kgU/D") at the optimum operating condition, the weight ratio of \(\mathrm{U}-235\) to \(\mathrm{U}-238\) in the product stream from either the pre-enrichment or blending process (denoted by \(R_{P R O D}\) ), and the weight fraction of \(U-236\) in the product stream (denoted by \(Y_{P R O D}\) ). The results for \(R_{\text {PROD }}\) and \(Y_{\text {PROD }}\) correspond to optimum flowsheet operation.

The final entry for \(y=0\) points is the optimum ratio of natural uranium to product uranium (listed as \(\epsilon\) ) when the blending mode is examined. For points having y \(>0\), this entry is extended to " \(\alpha\) or \(\epsilon\) ", with \(\epsilon\) listed whereever the blending mode is examined and with \(\alpha\), the fraction of U-236 contained in the feed which is discharged in the product stream from the diffusion plant, listed wherever the pre-enrichment mode is examined.

For points having \(y>0\), the final two entries are the \(U-236\) penalty \(\delta\) and the "adjusted" \(U-236\) penalty \(\delta_{A D J}\), both with units of \(\$ / \mathrm{g} \mathrm{U}-236\).

TABLE I. 2 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO FABRICATION:
\(C_{U_{3} g_{9}}={ }^{*} 8 / L B, C_{N}={ }^{*} 0 / G, H_{1 G H}\) COSTS, \(L_{F}=0.01 \quad\left(R^{*}=0.557\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y R\) & & 0.03 & 0.06 & 0.10 & 0.15 & Q20 & 0.25 & Q30 & 0.35 & 0.40 & 0.45 & -0. & )- & -0.5 & \(\longrightarrow\) & 0.6 & 0.8 & 1.0 & 2 & 6 & 15 & \\
\hline & & & & & & & & & & & & & & & & & & BL & BL & BL & BL & \\
\hline 0 & Mode & D & D & D & D & D & D & D & D & D & D & D & \(\frac{B}{37959}\) & \(\frac{B}{411749}\) & \(\frac{B L}{4116.79}\) & BL 4357.06 & BL75.08 & BL & 7792.76 & 10036.45 & 0982.76 & \\
\hline & Value 2 & 229.37 & 528.56 & 913.87 & 1364.41 & 1780.74 & 2165.59 & 252200 & 2852.81 & 3160.59 & 3447.58 & 3715.80 & 3795.42 & 4117.49 & 4116.79 & 2.399 & 2.018 & 1.790 & 1.338 & 1.038 & 0.9483 & \\
\hline & \(\mathrm{kc} / \mathrm{ld}\) & 33.71 & 16.58 & 10.14 & 7.009 & 5.462 & 4.540 & 3.928 & 3.492 & 3.166 & 2.912 & 2.710 & & & 2.536 & 2.399 & 2.018 & 1.790 & 1.338 & 1.038 & 0.9483 & \\
\hline & \(\mathrm{R}_{\text {Preod }} \mathrm{O}\) & 0.556 & 0.556 & 0.556 & 0.556 & 0.556 & 0.556 & 0.556 & 0.556 & 0.556 & 0.556 & 0.556 & & & \(\frac{0.548}{0}\) & 0.561 & 0.561 & 0.560 & 0.560
0 & \(\frac{0.562}{0}\) & \(\frac{0.558}{0}\) & \\
\hline & Ypeod & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & 0 & 0 & 0 & & & \(\bigcirc\) & 0 & 0 & 0 & 0467 & & & \\
\hline & \(\epsilon\) & & & & & & & & & & & & & & 0.0018 & 0.043 & 0.194 & 0.286 & 0.467 & 0.585 & 0.623 & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.01 & MODE & D & D & D & D & D & D & D & D & D & D & D & B & B & BL & \\
\hline & VALue & 75.26 & 332.32 & 694.31 & 1129.57 & 535.74 & 1912.75 & 226264 & 587.81 & 289062 & 317316 & 3437.32 & 3503.72 & 3820.21 & 3824.04 & 4062.28 & 4873.01 & 5521.37 & 7466.14 & 9688.28 & 10625.24 & \\
\hline & KGUD & 41.13 & 18.97 & 11.17 & 7.545 & 5.807 & 4.789 & 4.122 & 3.6497 & 3.299 & 3.028 & 2.813 & & & 2.628 & 2.482 & 2.080 & 1.842 & 1.370 & 1.060 & 0.9670 & \\
\hline & \(R_{\text {PROD }}\) & 0.594 & 0.585 & 0.576 & 0.568 & 0.565 & 0.562 & 0.562 & 0.559 & 0.559 & 0.559 & 0.559 & & & 0.549 & 0.561 & 0.561 & 0.563 & 0.559 & 0.561 & 0.558 & \\
\hline & 4 PROD & 0.0860 & 0.0506 & 0.0339 & 0.0247 & 0.0199 & 0.0169 & 0.0149 & 0.0134 & 0.0122 & 0.0114 & 0.0107 & & & 0.0100 & 0.0096 & 0.0081 & 0.0072 & 0.0054 & 0.0042 & 0.0038 & \\
\hline & 人aR \(\in\) & 0.6677 & 0.7762 & 0.8421 & 0.8872 & 0.9155 & 0.9358 & 0.9511 & 0.9636 & 0.9737 & 0.9822 & 0.9895 & & & 0.0013 & 0.042 & 0.193 & 0.282 & 0.464 & 0.583 & 0.621 & \\
\hline & \(\delta\) & 15.18 & 19.10 & 21.04 & 22.12 & 22.72 & 23.12 & 23.41 & 23.65 & 23.84 & 23.99 & & 25.38 & & 25.23 & 25.12 & 25.03 & 24.98 & 24.87 & 24.78 & 24.77 & \\
\hline & \(\delta_{A D}\) & 22.73 & 24.61 & 24.99 & 24.93 & 24.82 & 24.71 & 24.61 & 24.54 & 24.48 & 24.42 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & BL & BL & BL & BL & \\
\hline 0.02 & MODE & & D & D & D & D & D & D & D & D & D & D & B & B & BL & BL59.45 & BL6307 & S205.81 & & & 1026294 & \\
\hline & Value & & 174.54 & 496.16 & 901.45 & 1290.61 & 1656.29 & 1997.76 & 2316.23 & 613.43 & 2891.09 & 3150.98 & 3210.31 & 3521.80 & 3521.57 & 3759.45 & 4563.07 & 5205.81 & 1303 & 9334.76 & & \\
\hline & kGU/D & & 20.95 & 12.10 & 8.079 & 6.164 & 5.053 & 4.327 & 3.819 & 3.443 & 3.153 & 2.923 & & & 2.725 & 2.572 & 2.147 & 1.895 & 1.403 & 1.082 & 0.9870 & \\
\hline & \(R_{\text {PCOD }}\) & & 0.656 & 0.591 & 0.585 & 0.579 & 0.576 & 0.571 & 0.571 & 0.568 & 0.568 & 0.565 & & & 0.549 & 0.566 & 0.564 & 0.562 & 0.564 & 0.561 & 0.564 & \\
\hline & \(y_{\text {PROD }}\) & & 0.1030 & 0.0670 & 0.0494 & 0.0399 & 0.0340 & 0.0298 & 0.0269 & 0.0247 & 0.0229 & 0.0215 & & & 0.0200 & 0.0193 & 0.0162 & 0.0144 & 0.0108 & 0.0084 & 0.007 & \\
\hline & \(\alpha_{\text {OR }}\) & & 0.7706 & 0.8407 & 0.8855 & 0.9141 & 0.9343 & 0.9501 & 0.9622 & 0.9726 & 0.9811 & 0.9888 & & & 0.00068 & 0.036 & 0.189 & 0.280 & 0.459 & 0.581 & 0.615 & \\
\hline & \(\delta\) & & 17.17 & 19.97 & 21.78 & 22.73 & 23.30 & 23.69 & 23.98 & 24.20 & 24.38 & & 25.46 & 25.67 & & 25.52 & 25.43 & 25.36 & 25.19 & 25.04 & 25.01 & \\
\hline & \(\delta_{\text {AD }}\) & & 22.28 & 23.75 & 24.60 & 24.87 & 24.94 & 24.93 & 24.92 & 24.88 & 24.85 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.04 & MODE & & & & D & D & D & D & D & D & D & D & B & B & BL & BL & BL & BL & BL & BL & \(B L\) & \\
\hline & Vame & & & & 523.74 & 4869.44 & 1196.36 & 61507.95 & 1803.21 & 2081.80 & 2344.17 & 2591.15 & 2608.34 & 2921.74 & 2920.10 & 3159.53 & 3941.53 & 4569.39 & 6457.47 & 8616.87 & 9527.72 & \\
\hline & KGU/D & & & & 8.981 & 6.793 & 5.539 & 4.724 & 4.152 & 3.729 & 3.406 & 3.149 & & & 2.924 & 2.760 & 2.287 & 2.011 & 1.475 & 1.130 & 1.028 & \\
\hline & \(\mathrm{R}_{\text {ProD }}\) & & & & 0.600 & 0.591 & 0.591 & 0.591 & 0.588 & 0.585 & 0.585 & 0.582 & & & 0.548 & 0.581 & 0.576 & 0.572 & 0.570 & 0.567 & 0.563 & \\
\hline & 4 PRROD & & & & 0.0971 & 0.0790 & 0.0679 & 0.0602 & 0.0544 & 0.0499 & 0.0465 & 0.0436 & & & 0.0399 & 0.0392 & 0.0330 & 0.0293 & 0.0220 & 0.0171 & 0.0156 & \\
\hline & \(\alpha\) ORG & & & & 0.8840 & 0.9128 & 0.9327 & 0.9479 & 0.9604 & 0.9708 & 0.9793 & 0.9869 & & & 0.0025 & 0.020 & 0.174 & 0.268 & 0.450 & 0.573 & 0.611 & \\
\hline & \(\delta\) & & & & 19.65 & 21.00 & 22.07 & 22.83 & 23.39 & 23.81 & 24.14 & & 25.88 & 25.78 & & 25.58 & 25.66 & 25.67 & 25.59 & 25.45 & 25.39 & \\
\hline & \(\delta_{\text {ADI }}\) & & & & 22.23 & 23.01 & 23.66 & 24.08 & 24.35 & 24.53 & 24.65 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLEI 3 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.

> RECYCLE TO FABRICATION:
\(C_{U_{3} O_{8}}=\$ 8 / L B, C_{N}=\$ 60 / G, H 1 G H\) COSTS, \(L_{F}=0.01 \quad\left(R^{*}=0.539\right)\)


TABLE I. 4 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO FABRICATION:
\(C_{U_{3} O_{8}}=\$ 8 / L B, C_{N}=\$ 100 / G, H I G H\) COSTS, \(L_{F}=0.01 \quad\left(R^{*}=0.528\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
y_{1}^{R}
\] & & 0.03 & 0.06 & 0.10 & 0.15 & 0.20 & 0.25 & 0.30 & 0.35 & 0.40 & -0.4 & 5 & -O. & - & -0. & 5 & 0.6 & 0.8 & 1.0 & 2 & 6 & 15 \\
\hline 0 & Mode & D & D & D & D & D & D & D & D & D & D & B & D & B & B & BL & BL & BL & BL & BL & \(B L\) & BL \\
\hline & Value 2 & 229.39 & 528.61 & 913.96 & 1364.53 & 1780.902 & 2165.78 & 2522.22 & 2853.06 & 160.86 & 3447.88 & 3446.81 & 3716.12 & 3841.84 & 4108.25 & 4115.71 & 4352.97 & 5170.24 & 5824.08 & 7785.47 & 10027.09 & 10972 \\
\hline & KGU/D & 33.69 & 16.57 & 10.14 & 7.006 & 5.460 & 4.538 & 3.926 & 3.491 & 3.164 & 2.911 & & 2.709 & & & 2.535 & 2.396 & 2.016 & 1.789 & 1.337 & 1.037 & 0.9475 \\
\hline & \(\mathrm{R}_{\text {Prod }}\) & 0.529 & 0.52 .9 & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & & 0.529 & & & 0.531 & 0.532 & 0.531 & 0.531 & 0.531 & 0.531 & 0.531 \\
\hline & Yprod & 0 & \(\bigcirc\) & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & 0 & 0 & & 0 & & & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) \\
\hline & \(\epsilon\) & & & & & & & & & & & & & & & 0.023 & 0.076 & 0.223 & 0.311 & 0,485 & 0.600 & 0.635 \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.01 & Mode & D & D & D & D & D & D & D & D & D & D & B & D & B & B & BL & BL & BL & \(B L\) & BL & BL & BL \\
\hline & Value & 407.69 & 753.28 & 163.38 & 1633.11 & 2061.96 & 245530 & 2817.69 & 152.83 & 3463.83 & 3753.22 & 574.23 & 102325 & 4150.15 & 4413.72 & 4434.08 & 4670.52 & 5484.04 & 6134.02 & 8081.39 & 10304.60 & 1124200 \\
\hline & kGU/D & 41.18 & 18.94 & 11.14 & 7.526 & 5.794 & 4.781 & 4.115 & 3.645 & 3.295 & 3.025 & & 2.810 & & & 2.625 & 2.478 & 2.077 & 1.839 & 1.368 & 1.058 & 0.9660 \\
\hline & R Proo & 0.603 & 0.568 & 0.544 & 0.532 & 0.526 & 0.526 & 0.526 & 0.523 & 0.524 & 0.524 & & 0.523 & & & 0.529 & 0.529 & 0.528 & 0.527 & 0.531 & 0.531 & 0.531 \\
\hline & \(y_{\text {freod }}\) & 0.0867 & 0.0498 & 0.0328 & 0.0238 & 0.0191 & 0.0162 & 0.0143 & 0.0129 & 0.0118 & 0.0110 & & 0.0103 & & & 0.0097 & 0.0092 & 0.0078 & 00069 & 0.0052 & 0.0040 & 0.0037 \\
\hline & Lor \(\in\) & 0.6671 & 0.7777 & 0.8453 & 0.8911 & 0.9199 & 0.9400 & 0.9553 & 0.9679 & 0.9779 & 0.9864 & & 0.9939 & & & 0.025 & 0.078 & 0.224 & 0.312 & 0.482 & 0.598 & 0.633 \\
\hline & \(\delta\) & -18.06 & -23.00 & -25.86 & -28.22 & -29.89 & -31.12 & -32.07 & -32.83 & -33.46 & -33.98 & & & -34.67 & & -35.95 & \(-36.11\) & -36.55 & 36.82 & -37.38 & -37.78 & -37.90 \\
\hline & \(\delta_{\text {AD }}\) & -27.07 & -29.57 & -30.59 & -31.67 & -32.49 & \(-33.11\) & -33.57 & -33.92 & -34,22 & -34.45 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.02 & MODE & & D & D & D & D & D & D & D & D & D & B & D & B & B & BL & BL & BL & BL & BL & BL & \(B L\) \\
\hline & VALLE & & 921.32 & 1376.74 & 864.04 & 2299.21 & 2696.97 & 3063.82 & 3402.99 & 3717.48 & 4009.87 & 4015.81 & 4282.46 & 4428.30 & 4699.93 & 4705.23 & 4941.98 & 5155.50 & 6404.53 & 8345.01 & 10555.34 & 14864 \\
\hline & KGU/D & & 20.89 & 12.09 & 8.066 & 6.153 & 5.040 & 4.316 & 3.809 & 3.434 & 3.145 & & 2.916 & & & 2.722 & 2.565 & 2.141 & 1.891 & 1.401 & 1.080 & 0.9852 \\
\hline & \(\mathrm{R}_{\text {Prod }}\) & & 0.618 & 0.579 & 0.568 & 0.559 & 0.544 & 0.538 & 0.535 & 0.532 & 0.529 & & 0.529 & & & 0.534 & 0.532 & 0.531 & 0.530 & 0.531 & 0.531 & 0.531 \\
\hline & \(y_{\text {PRod }}\) & & 0.1000 & 0.0663 & 0.0486 & 0.0391 & 0.0329 & 0.0288 & 0.0260 & 0.0238 & 0.0220 & & 0.0207 & & & 0.0196 & 0.0185 & 0.0156 & 0.0139 & 0.0104 & 0.0081 & 0.0074 \\
\hline & \(\alpha \mathrm{OR} \in\) & & 0.7735 & 0.8418 & 0.8872 & 0.9162 & 0.9378 & 0.9538 & 0.9664 & 0.9769 & 0.9858 & & 0.9932 & & & 0.019 & 0.074 & 0.220 & 0.307 & 0.480 & 0.596 & 0.630 \\
\hline & \(\delta\) & & -20.16 & -24.05 & -26.34 & -27.70 & -28.73 & -29.60 & -30.35 & -30.99 & & -31.84 & & -33.16 & & -33.59 & -33.80 & -34.43 & -34.85 & -35.76 & -36.44 & 36.65 \\
\hline & \(\delta_{\text {ADI }}\) & & -26.06 & -28.57 & -29.69 & -30.23 & -30.64 & -31.03 & -31.41 & -31.72 & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.04 & Mode & & & & D & D & D & D & D & D & D & B & D & B & B & BL \\
\hline & Value & & & & 2236.28 & 82721.37 & 3146.10 & 3526.71 & 3872.70 & 4190.41 & 4484.17 & 4417.54 & 7757.18 & 4874.33 & 5200.18 & 5198.93 & 5438.78 & 6240.47 & 6882.26 & 8806.79 & 10996.28 & 11917.0 \\
\hline & \(\mathrm{K}(\underline{1} / \mathrm{D}\) & & & & 8.996 & 6.795 & 5.533 & 4.717 & 4.145 & 3.723 & 3.399 & & 3.143 & & & 2.924 & 2.755 & 2.282 & 2.005 & 1.470 & 1.127 & 1.026 \\
\hline & \(R_{\text {Pred }}\) & & & & 0.615 & 0.594 & 0.582 & 0.576 & 0.571 & 0.568 & 0.565 & & 0.562 & & & 0.548 & 0.567 & 0.556 & 0.543 & 0.535 & 0.530 & 0.530 \\
\hline & yprod & & & & 0.0984 & 0.0792 & 0.0673 & 0.0594 & 0.0535 & 0.0491 & 0.0456 & & 0.0427 & & & 0.0399 & 0.0386 & 0.0323 & 0.0283 & 0.0211 & 0.0164 & 0.0150 \\
\hline & 人ORE & & & & 0.8826 & 0.9125 & 0.9337 & 0.9495 & 0.9622 & 0.9726 & 0.9815 & & 0.9892 & & & 0.0025 & 0.035 & 0.193 & 0.292 & 0.472 & 0.591 & 0.626 \\
\hline & \(\delta\) & & & & -23.16 & -25.29 & -26.67 & -27.63 & -28.34 & -28.90 & \(-29.36\) & & & -29.65 & \(-31.23\) & & -31.50 & -31.93 & -32.28 & -33.32 & -34.26 & -34.58 \\
\hline & \(\delta_{\text {AD }}\) & & & & -26.24 & -27.72 & -28.56 & -29.10 & -29.45 & -29.71 & -29.91 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 5 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.

> RECYCLE TO FABRICATION:
\[
C_{U_{3} O_{3}}=\# / L B, C_{N}=\$ O / G, H I G H \text { COSTS, } L_{F}=0.01 \quad\left(R^{*}=0.571\right)
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \({ }_{4}{ }^{R}\) & & 0.03 & 0.06 & 0.10 & 0.15 & 0.20 & 0.25 & 0.30 & 0.35 & 0.40 & 0.45 & 0. & \(\mathrm{O} \longrightarrow\) & 0 & \(\square\) & -0. & - & 0.8 & 1.0 & 2 & 6 & 15 \\
\hline & & & & & & & & & & & & D & B & D & B & B & BL & BL & BL & BL & BL & BL \\
\hline 0 & MIODE & D & D & D & D & D & D & D & D & D & D & & & & & & & & & 7005.69 9 & 9023.72 & 9874.59 \\
\hline \multirow[t]{7}{*}{} & Value & 199.05 & 466.67 & 812.59 & 12:7,72 & 1592.42 & 1935.99 & 2260.05 & 2558.14 & 2835.52 & 3094.24 & 3336.03 & 33.72 .97 & 3562.51 & 3691.11 & 3904.91 & 3915.12 & 4651.44 & 1792 & 1340 & 1039 & 9874,58 \\
\hline & KGU/D & 34.07 & 16.67 & 10.18 & 7.024 & 5.471 & 4.546 & 3.933 & 3.496 & 3.169 & 2.915 & 2.712 & & 2.546 & & & 2.401 & 2.020 & 1.792 & & & . 94 \\
\hline & \(\mathrm{R}_{\text {PROD }}\) & 0.571 & 0.571 & 0.571 & 0.571 & 0.571 & 0.571 & 0.571 & 0.571 & 0.571 & 0.571 & 0.571 & & 0.570 & & & 0.574 & 0.574 & 0.574 & 0.576 & 0.574 & 0.578 \\
\hline & \(y_{\text {PROD }}\) & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & & 0 & & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & 0 & \(\bigcirc\) & \(\bigcirc\) \\
\hline & \(\epsilon\) & & & & & & & & & & & & & & & & 0.028 & 0.182 & 0.274 & 0.456 & 0.579 & 0.614 \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.01 & MODE & D & D & D & D & D & D & D & D & D & D & D & B & D & B & B & EL & BL & BL & BL & BL & BL \\
\hline \multirow[t]{8}{*}{} & Value & 59.46 & 286.73 & 609.99 & 000.29 & 365.23 & 704:32 & 2019.21 & 2312.03 & 2584.77 & 2839.30 & 3077.33 & 3102.31 & 3300.40 & 3413.45 & 3628.83 & 3641.71 & 4370.90 & 4954.08 & 6703.30 & 8701.84 & 9544.3 \\
\hline & KGU/D & 41.52 & 19.09 & 11.22 & 7.568 & 5.820 & 4.798 & 4.129 & 3.655 & 3.304 & 3.033 & 2.816 & & 2.640 & & & 2.486 & 2.083 & 1.844 & 1.372 & 1.061 & 0.9686 \\
\hline & \(R_{\text {PROD }}\) & 0.603 & 0.615 & 0.597 & 0.588 & 0.582 & 0.579 & 0.579 & 0.576 & 0.576 & 0.576 & 0.573 & & 0.573 & & & 0.577 & 0.577 & 0.578 & 0.576 & 0.574 & 0.578 \\
\hline & YPROD & 0.0858 & 0.0516 & 0.0343 & 0.0250 & 0.0201 & 0.0171 & 0.0151 & 0.0136 & 0.0124 & 0.0116 & 0.0108 & & 0.0102 & & & 0.0098 & 0.0082 & 0.0073 & 0.0055 & 0.0042 & 0.0039 \\
\hline & 人or \(\in\) & 0.6529 & 0.7642 & 0.8334 & 0.8804 & 0.9102 & 0.9313 & 0.9471 & 0.9602 & 0.9707 & 0.9795 & 0.9875 & & 0.9942 & & & 0.024 & 0.178 & 0.270 & 0.454 & 0.577 & 0.61 \\
\hline & \(\delta\) & 13.86 & 17.53 & 19.45 & 20.52 & 21.13 & 21.53 & 21.82 & 22.05 & 22.24 & 22.40 & & 23.69 & & 24.08 & & 23.48 & 23.40 & 23.35 & 23.23 & 23.16 & 23. \\
\hline & \(\delta_{\text {AD }}\) & 21.23 & 22.94 & 23.34 & 23.31 & 23.21 & 23.12 & 23.04 & 22.96 & 22.91 & 22.87 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & B & B & BL & BL & BL & BL & BL & BL \\
\hline 0.02 & MODE & & D & D & D & D & D & D & D & D & D & D & & & & & & & & & & 9209.89 \\
\hline \multirow[t]{8}{*}{} & Value & & 145.04 & 427.89 & 790.78 & 1139.26 & 1467.45 & 1774.24 & 2060.56 & 2327.88 & 2577.78 & 2811.72 & 2829.04 & \(\frac{3031.12}{2740}\) & 3134.31 & 3357.41 & 336036 & 2.151 & 4.899 & \(\frac{1.406}{}\) & 1.083 & 0.9882 \\
\hline & KGU/D & & 21.06 & 12.16 & 8.112 & 6.183 & 5.066 & 4.337 & 3.827 & 3.450 & 3.158 & 2.928 & & 2.740 & & & 2.578 & 2.151 & & & & 0.578 \\
\hline & R Prod & & 0.679 & 0.618 & 0.615 & 0.603 & 0.597 & 0.591 & 0.588 & 0.588 & 0.585 & 0.585 & & 0.582 & & & 0.586 & 0.583 & 0.581 & 0.581 & 0.574 & 0.0078 \\
\hline & \(y_{\text {PROD }}\) & & 0.1040 & 0.0682 & 0.0505 & 0.0406 & 0.0346 & 0.0304 & 0.0274 & 0.0251 & 0.0233 & 0.0219 & & 0.0206 & & & 0.0197 & 0.0171 & 0.265 & 0.449 & 0.575 & 0.609 \\
\hline & \(\chi\) QRe & & 0.7593 & 0.8315 & 0.8777 & 0.9080 & 0.9293 & 0.9458 & 0.9588 & 0.9693 & 0.9785 & 0.9861 & & 0.9931 & & & 2385 & & 23.70 & 23.55 & 23.44 & 23.36 \\
\hline & \(\delta\) & & 15.61 & 18.42 & 20.13 & 21.07 & 21.64 & 22.03 & 22.32 & 22.55 & 22.73 & & 23.82 & & 24.15 & & 23.85 & 23.77 & 23.70 & 23.55 & & \\
\hline & \(\delta_{\text {AD }}\) & & 20.56 & 22.15 & 22.93 & 23.20 & 23.29 & 23.29 & 23.28 & 23.26 & 23.23 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & D & B & D & B & B & BL & BL & BL & BL & BL & BL \\
\hline 0.04 & MODE & & & & \(\frac{D}{44937}\) & \(\frac{D}{749.79}\) & D 1043.54 & D 1323.89 & D88.95 & D 838.76 & 2074.00 & 2295.55 & 2265.34 & 2504.29 & 2572.30 & 2805.78 & 2805.66 & 3508.17 & 4072.28 & 5769.23 & 7710.78 & 8529.9 \\
\hline \multirow[t]{8}{*}{} & VALE & & & & 449.37 & 749.79 & 1043.54 & 1323.89
4.740 & 1588.95 & 1838.76 & 3.415 & 3.158 & 2265.34 & 2.948 & & 2805. & 2.766 & 2.293 & 2.016 & 1.479 & 1.132 & 1.031 \\
\hline &  & & & & 0.679 & 0.606 & 0.615 & 0.621 & 0.618 & 0.615 & 0.612 & 0.609 & & 0.606 & & & 0.598 & 0.596 & 0.595 & 0.590 & 0.586 & 0.584 \\
\hline & \(y_{\text {PRED }}\) & & & & 0.1029 & 0.0798 & 0.0692 & 0.0617 & 0.0558 & 0.0512 & 0.0476 & 0.0446 & & 0.0422 & & & 0.0399 & 0.0337 & 0.0300 & 0.0225 & 0.0174 & 0.0159 \\
\hline & \(\alpha_{\text {OR }}\) & & & & 0.8721 & 0.9077 & 0.9275 & 0.9427 & 0.9556 & 0.9664 & 0.9755 & 0.9835 & & 0.9904 & & & 0.0017 & 0.156 & 0.250 & 0.438 & 0.564 & 0.602 \\
\hline & \(\delta\) & & & & 17.99 & 19.47 & 20.45 & 21.14 & 21.67 & 22.08 & 22.41 & 23.56 & & & 24.28 & 23.83 & & 23.93 & 23.95 & 23.91 & 23.80 & 23.74 \\
\hline & \(\delta_{A D}\) & & & & 20.63 & 21.45 & 22.05 & 22.42 & 22.68 & 22.85 & 22.97 & 23.96 & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 6 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO FABRICATION:
\(C_{U_{3} \theta^{-}}{ }^{*} 6 / L B, C_{N}={ }^{*} 60 / G, H_{I G H} \operatorname{COSTS}, L_{F}=0.01 .\left(R^{*}-0.552\right)\)


TABLE I. 7 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS

> RECYCLE TO FABRICATION:
\[
C_{U_{3} O_{8}}=\$ 1 O / L B, C_{N}=\$ 0 / G, H I G H \text { COSTS, } L_{F}=0.01 \quad\left(R^{*}=0.545\right)
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y^{R}\) & & 0.03 & 0.06 & 0.10 & 0.15 & 0.20 & 0.25 & 0.30 & 0.35 & 0.40 & 0.45 & -0. \(\$\) & 0 & -0.5 & \(5 \longrightarrow\) & 0.6 & 0.8 & 1.0 & 2 & 6 & 15 & \\
\hline \(\bigcirc\) & MODE & D & D & D 1010 & D 1503.68 & D 1959.44 & 238058 & D70.48 & 3132.30 & 3468.87 & & & 4190.09 & 4515.58 & 4515.61 & 4775.73 & 5671.79 & 6388.67 & 8539.17 & 109969911 & 12.03352 & \\
\hline \multirow[t]{6}{*}{} & VALNE 2 & 258.37 & \(\frac{587.47}{1652}\) & \(\frac{1010.12}{10}\) & 1503.68 & 1959.44 & 238958 & 2770.48 & 3132.30 & 3.164 & 2.911 & 2.709 & 4190.09 & & 2.536 & 2.397 & 2.017 & 1.789 & 1.337 & 1.038 & 0.9480 & \\
\hline & KGV/D & 33.44 & 16.52 & 10.12 & 6.999 & 5.456 & 4.536 & 3.925 & \(\frac{3.490}{0.544}\) & 0.544 & 0.544 & 0.544 & & & 0.548 & 0.550 & 0.550 & 0.549 & 0.550 & 0.549 & 0.551 & \\
\hline & R prod & 0.544 & 0.544 & 0.544 & 0.544 & 0.544 & 0.544 & 0.544 & 0.544 & 0 & 0 & 0 & & & 0 & \(\bigcirc\) & \(\bigcirc\) & 0 & 0 & \(\bigcirc\) & 0 & \\
\hline & \({ }_{\text {SPROD }}\) & 0 & O & 0 & & & & & & & & & & & 0.0018 & 0.055 & 0.205 & 0.295 & 0.473 & 0.591 & 0.626 & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.01 & MODE & D & D & D & D & D & D & D & D & D & D & D & B & B & BL & \\
\hline \multirow[t]{8}{*}{} & VALUE 9 & 91.45 & 376.45 & 775.10 & 1252.92 & 1698.16 & 2111.04 & 2494.01 & 2849.80 & 3181.02 & 3490.01 & 3778.87 & 3878.64 & 4199.90 & 4203.54 & 4461.34 & 5349.21 & 6059.41 & 8189.41 & 10623.33 & 11649.79 & \\
\hline & KSUld & 40.80 & 18.88 & 11.14 & 7.530 & 5.796 & 4.783 & 4.117 & 3.647 & 3.296 & 3.026 & 2.811 & & & 2.628 & 2.480 & 2.079 & 1.840 & 1.369 & 1.059 & 0.9666 & \\
\hline & \(\mathrm{R}_{\text {PRoD }}\) & 0.579 & 0.568 & 0.559 & 0.553 & 0.547 & 0.547 & 0.547 & 0.547 & 0.544 & 0.544 & 0.544 & & & 0.549 & 0.547 & 0.550 & 0.549 & 0.550 & 0.549 & 0.551 & \\
\hline & \(y^{\text {Prase }}\) & 0.0857 & 0.0501 & 0.0334 & 0.0244 & 0.0195 & 0.0166 & 0.0146 & 0.0132 & 0.0121 & 0.0112 & 0.0105 & & & 0.0100 & 0.0094 & 0.0080 & 0.0071 & 0.0053 & 0.0041 & 0.0038 & \\
\hline & 人lar \(\in\) & 0.6804 & 0.7855 & 0.8492 & 0.8926 & 0.9203 & 0.9396 & 0.9543 & 0.9661 & 0.9762 & 0.9844 & 0.9915 & & & 0.0013 & 0.057 & 0.203 & 0.294 & 0.470 & 0.589 & 0.624 & \\
\hline & \(\delta\) & 16.43 & 20.51 & 22.49 & 23.57 & 24.17 & 24.57 & 24.88 & 25.12 & 25.32 & 25.48 & & 26.95 & & 26.69 & 26.66 & 26.59 & 26.54 & 26.44 & 26.37 & 26.34 & \\
\hline & \(\delta_{A D}\) & 24.15 & 26.11 & 26.48 & 26.41 & 26.26 & 26.15 & 26.07 & 26.00 & 25.94 & 25.88 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.02 & MODE & & D & D & D & D & D & D & D & D & D & D & B & B & BL & BL & BL & BL & BL & 8L & BL & \\
\hline \multirow[t]{8}{*}{} & VALUE & & 204.59 & 561.81 & 1008.02 & 1435.61 & 1836.86 & 2211.21 & 256010 & 2885.52 & 3189.45 & 3473.96 & 3566.31 & 3883.40 & 3883.41 & 4139.08 & 5019.23 & 5723.20 & 7833.96 & 024501 & 1261.73 & \\
\hline & KGU/O & & 20.77 & 12.06 & 8.060 & 6.152 & 5.044 & 4.321 & 3.814 & 3.438 & 3.149 & 2.919 & & & 2.725 & 2.569 & 2.144 & 1.893 & 1.402 & 1.081 & 0.9860 & \\
\hline & \(\mathrm{R}_{\text {PREO }}\) & & 0.585 & 0.573 & 0.568 & 0.562 & 0.559 & 0.556 & 0.553 & 0.553 & 0.553 & 0.547 & & & 0.549 & 0.553 & 0.550 & 0.548 & 0.549 & 0.549 & 0.551 & \\
\hline & Ypres & & 0.0978 & 0.0662 & 0.0487 & 0.0393 & 0.0335 & 0.0294 & 0.0265 & 0.0243 & 0.0226 & 0.0211 & & & 0.0200 & 0.0190 & 0.0160 & 0.0142 & 0.0106 & 0.0083 & 0.0076 & \\
\hline & \(\alpha\) ORE & & 0.7841 & 0.8478 & 0.8911 & 0.9187 & 0.9383 & 0.9533 & 0.9654 & 0.9752 & 0.9834 & 0.9912 & & & 0.00068 & 0.05 & 0.202 & 0.29 & 0.468 & 0.587 & 0.621 & \\
\hline & \(\delta\) & & 18.56 & 21.41 & 23.28 & 24.23 & 24.81 & 25.19 & 25.48 & 25.70 & 25.88 & & 27.00 & & 27.09 & 27.06 & 26.96 & 26.88 & 26.72 & 26.60 & 26.56 & \\
\hline & \(\delta_{\text {ADS }}\) & & 23.67 & 25.25 & 26.13 & 26.37 & 26.44 & 26.42 & 26.39 & 26.35 & 26.32 & & & & & & & & & & & \\
\hline & & & & & & & & & & & D & D & B & B & BL & \\
\hline 0.04 & MODE & & & & \(\frac{D}{601.77}\) & \(\frac{D}{983.10}\) & D 1342.76 & D 1685.29 & D 2009.66 & 2315.57 & 2603.50 & 2874.43 & 2928.39 & 3247.61 & 3246.85 & 3498.07 & 4355.64 & 5043.91 & 7112.57 & 9477.66 & 10475.16 & \\
\hline \multirow[t]{8}{*}{} & VALE & & & & 601.71 & \(\frac{983.10}{6.778}\) & 1342.76 & 1685.29 & 2009.66 & 3.723 & 3.399 & 2814.43 & 288.39 & 224.6) & 2.924 & 2.754 & 2.283 & 2.008 & 1.473 & 1.128 & 1.027 & \\
\hline & R \({ }_{\text {PReD }}\) & & & & 0.582 & 0.576 & 0.576 & 0.571 & 0.571 & 0.568 & 0.565 & 0.565 & & & 0.548 & 0.564 & 0.560 & 0.558 & 0.553 & 0.548 & 0.550 & \\
\hline & \(y\) ypeco & & & & 0.0959 & 0.0781 & 0.0671 & 0.0592 & 0.0536 & 0.0491 & 0.0456 & 0.0429 & & & 0.0399 & 0.0385 & 0.0324 & 0.0288 & 0.0216 & 0.0167 & 0.0153 & \\
\hline & dore & & & & 0.8897 & 0.9173 & 0.9365 & 0.9517 & 0.9635 & 0.9735 & 0.9820 & 0.9891 & & & 0.0025 & 0.038 & 0.189 & 0.280 & 0.460 & 0.582 & 0.617 & \\
\hline & \(\delta\) & & & & 21.04 & 22.45 & 23.56 & 24.36 & 24.93 & 25.36 & 25.70 & & 27.35 & 27.18 & & 27.17 & 27.23 & 27.23 & 27.13 & 26.99 & 26.93 & \\
\hline & \(\delta_{A D}\) & & & & 23.65 & 24.47 & 25.16 & 25.60 & 25.87 & 26.05 & 26.17 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 8 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO FABRICATION:
\(C_{U_{3} \mathrm{O}_{8}}=\# 10 / L B, C_{N}=\# 60 / G\), HIGH COSTS, \(L_{F}=0.01 \quad\left(R^{*}=0.529\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(4{ }^{R}\) & & 0.03 & 0.06 & 0.10 & 0.15 & 0.20 & 0.25 & 0.30 & 0.35 & 0.40 & -0. & - & -0. 5 & O & -0. & - & 0.6 & 0.8 & 1.0 & 2 & 6 & 15 \\
\hline & & & & & & & & & & & & B & D & B & B & BL \\
\hline 0 & MODE & D & D & D & D & D & D & D & D & D & D & B 728 & 407610 & 421427 & 4506.13 & 4513.27 & 4773.29 & 5668.88 & 6385.35 & 8534.80 & 0991.29 & 12027.63 \\
\hline \multirow[t]{6}{*}{} & VaLue 2 & 258.39 & 587.50 & 1010.17 & 1503.7519 & 1959.54 & 238969 & 2710.61 & 3132.44 & 3469.03 & 3782.843 & 3792.87 & 4076.10 & & 4506.14 & & & & 1.789 & 1.337 & 1.037 & 0.9475 \\
\hline & KGUD 3 & 33.44 & 16.52 & 10.12 & 6.999 & 5.456 & 4.536 & 3.925 & 3.490 & 3.164 & 2.911 & & 2.709 & & & 2.535 & 2.396 & 2.016 & 1.789 & 1.337 & 1.037 & 0.9475 \\
\hline & \(\mathrm{R}_{\text {Prod }}\) & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & 0.529 & & 0.529 & & & 0.531 & 0.532 & 0.531 & 0.531 & 0.531 & 0.531 & 0.531 \\
\hline & \(y_{\text {Preo }}\) & 0 & 0 & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & 0 & 0 & 0 & 0 & & 0 & & & \(\bigcirc\) & 0 & \(\bigcirc\) & 0 & 0 & 0 & \(\bigcirc\) \\
\hline & ¢ & & & & & & & & & & & & & & & 0.023 & 0.076 & 0.223 & 0.311 & 0.485 & 0.600 & 0.635 \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & , & D & D & D & D & D & B & D & B & B & BL \\
\hline 0.01 & MODE & D & D & D & D & 201520 & & & 3189.28 & 3525.22 & 3838.18 & 3829.04 & 4130.44 & 4262.96 & 4552.24 & 4567.98 & 4826.39 & 715.82 & 6426.89 & 8558.45 & 10992.90 & 12019.64 \\
\hline \multirow[t]{7}{*}{} & VALE 2 & 293.47 & 631.31 & 1058.59 & 1556.80 & 2015.20 & 2437.52 & \(\frac{2827.12}{4.114}\) & 3.644 & 3.295 & 3.025 & & 2.810 & & & 2.625 & 2.478 & 2.077 & 1.839 & 1.368 & 1.058 & 0.9660 \\
\hline & KGU/O & 40.84 & 18.87 & 11.12 & 7.519 & 0.191 & 4.179 & 4.114 & \(\frac{3.644}{0.526}\) & 0.526 & 0.526 & & 0.526 & & & 0.529 & 0.529 & 0.531 & 0.531 & 0.531 & 0.531 & 0.531 \\
\hline & \(\mathrm{R}_{\text {PROD }}\) & 0.588 & 0.562 & 0.541 & 0.532 & 0.529 & 0.5163 & 0.0143 & 0.0129 & 0.0118 & 0.0110 & & 0.0103 & & & 0.0097 & 0.0092 & 0.0078 & 0.0069 & 0.0052 & 0.0040 & 0.0037 \\
\hline &  & 0.0863 & 0.0498 & 0.0328 & 0.8948 & 0.9223 & 0.9420 & 0.9568 & 0.9686 & 0.9783 & 0.9866 & & 0.9937 & & & 0.025 & 0.078 & 0.221 & 0.309 & 0.482 & 0.598 & 0.633 \\
\hline & \(\delta\) & -3.77 & -4.97 & -5.85 & -6.81 & -7.53 & -8.06 & -8.48 & -8.82 & -9.09 & -8.32 & & & -9.08 & & -9.98 & -10.08 & -10.36 & -10.54 & -10.90 & -11.15 & -11.23 \\
\hline & \(\delta_{\text {ADJ }}\) & -5.55 & -6.32 & -6.87 & -7.61 & -8.16 & -8.56 & -8.86 & -9.11 & -9.29 & -8.43 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & D & B & B & BL \\
\hline 0.02 & Mode & & D & D & D & D & D & D & D & D & D & & D & B2936 & & & & & 6443.21 & 8561.49 & 10977.54 & 11995 \\
\hline \multirow[t]{8}{*}{} & VALUE & & 656.14 & 1092.82 & 1587.76 & 2042.68 & 2463.33 & 2852.80 & 3213.95 & 3549.51 & 3862.11 & 3857.76 & 453.94 & 4293.69 & 4586.64 & 592.18 & 4849.76 & 5135.66 & 643.21 & & 1080 & 119958 \\
\hline & KGUD & & 20.81 & 12.06 & 8.056 & 6.148 & 5.037 & 4.315 & 3.808 & 3.434 & 3.145 & & 2.916 & & & 2.721 & 2.565 & 2.14 & . 891 & 1.401 & 1.080 & 0.9852 \\
\hline & \(\mathrm{R}_{\text {PRCD }}\) & & 0.600 & 0.571 & 0.562 & 0.553 & 0.541 & 0.535 & 0.532 & 0.532 & 0.529 & & 0.529 & & & 0.532 & 0.532 & 0.531 & 0.530 & 0.531 & 0.531 & 0.531 \\
\hline & \(Y_{\text {Preco }}\) & & 0.0991 & 0.0661 & 0.0485 & 0.0389 & 0.0328 & 0.0288 & 0.0259 & 0.0238 & 0.0220 & & 0.0207 & & & 0.0196 & 0.0185 & 0.0156 & 0.0139 & 0.0104 & 0.0081 & 0.0074 \\
\hline & \(\alpha\) ORE & & 0.7828 & 0.8480 & 0.8917 & 0.9197 & 0.9403 & 0.9557 & 0.9679 & 0.9776 & 0.9862 & & 0.9933 & & & 0.022 & 0.074 & 0.220 & 0.307 & 0.480 & 0.596 & 0.630 \\
\hline & \(\delta\) & & -4.02 & -5.14 & -5.70 & \(-6.12\) & -6.51 & -6.88. & -7.21 & -7.50 & -7.25 & & & -8.19 & & -8.46 & -8.60 & -9.01 & -9.28 & -9.87 & -10.30 & 10.4 \\
\hline & \(\delta_{\text {ADW }}\) & & -5.14 & -6.06 & -6.39 & -6.65 & -6.92 & -7.20 & -7.45 & -7.67 & -7.35 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & B & BL \\
\hline 0.04 & 4 MODE & & & & D & D & \(\frac{D}{251413}\) & D 289779 & \(\frac{D}{3252.27}\) & D 3581.37 & D 3887.95 & \(\frac{B}{3830.95}\) & - 4174.36 & B 4284.81 & 4611.28 & 4610.75 & 4864.87 & 5735.69 & 6433.44 & 8524.53 & 10907.32 & 1910.6 \\
\hline \multirow[t]{8}{*}{} & VALWE & & & & 1630.40 & 2095.53 & 3.2514.13 & \(\frac{2897.79}{4.712}\) & \(\frac{3252.27}{4.142}\) & 3.721 & 388.95 & 3830.95 & 3.141 & 4284.81 & 4611.28 & 2.924 & 2.752 & 2.280 & 2.004 & 1.470 & 1.127 & 1.026 \\
\hline & KGIO & & & & 0.600 & 0.579 & 0.571 & 0.568 & 0.565 & 0.562 & 0.559 & & 0.556 & & & 0.548 & 0.556 & 0.546 & 0.540 & 0.535 & 0.530 & 0.530 \\
\hline & \(y_{\text {Preod }}\) & & & & 0.0974 & 0.0783 & 0.0668 & 0.0590 & 0.0533 & 0.0488 & 0.0453 & & 0.0425 & & & 0.0399 & 0.0381 & 0.0319 & 0.0282 & 0.0211 & 0.0164 & 0.0150 \\
\hline & \(\alpha_{\text {OR }}\) & & & & 0.8880 & 0.9170 & 0.9370 & 0.9521 & 0.9641 & 0.9742 & 0.9827 & & 0.9901 & & & 0.0025 & 0.047 & 0.202 & 0.294 & 0.472 & 0.591 & 0.626 \\
\hline & \(\delta\) & & & & -4.67 & -5.36 & -5.72 & -5.95 & -6.13 & -6.28 & -6.17 & & & \(-5.98\) & -6.96 & & -7.06 & -7.34 & -7.59 & -8.28 & -8.89 & -9.10 \\
\hline & \(\delta_{\text {AD }}\) & & & & -5.26 & -5.85 & \(-6.10\) & -6.25 & -6.36 & -6.45 & \(-6.28\) & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 9 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.

\section*{RECYCIE TO FABRICATION}
\(C_{U_{3} O_{8}}=\$ 8 / L B, C_{N}=\# O / G\), LOW COSTS, \(L_{F}=0.01 \quad\left(R^{*}=0.497\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y \cdot R\) & & 0.03 & 0.06 & 0.10 & 0.15 & 0.20 & 0.25 & 0.30 & 0.35 & 0.40 & -0.45 & - & -0.5 & \(0 \longrightarrow\) & 0.55 & 0.6 & 0.8 & 1.0 & 2 & 6 & 15 & \\
\hline \(\bigcirc\) & Mode & D & D & D & D & D & D & D & D & D & D & B & B & BL & \\
\hline & Vame & 229.44 & 528.70 & 914.11 & 1364.76 & 1781.18 & 2166.13 & 2522.62 & 2853.51 & 3161.35 & 3448.413 & 3544.98 & 3858.54 & 3858.50 & 4111.38 & 4348.41 & 5164.79 & 5817.90 & 7777.18 & 10016.53 & 10961.06 & \\
\hline & KGU/D & 33.74 & 16.59 & 10.15 & 7.015 & 5.467 & 4.544 & 3.931 & 3.495 & 3.169 & 2.915 & & & 2.704 & 2.536 & 2.397 & 2.017 & 1.790 & 1.337 & 1.038 & 0.9481 & \\
\hline & R \(\mathrm{R}^{\text {Proo }}\) & 0.497 & 0.497 & 0.497 & 0.497 & 0.497 & 0.497 & 0.497 & 0.497 & 0.497 & 0.497 & & & 0.499 & 0.502 & 0.501 & 0.502 & 0.500 & 0.499 & 0.502 & 0.499 & \\
\hline & \(y_{\text {PROD }}\) & 0 & 0 & \(\bigcirc\) & 0 & 0 & 0 & \(\bigcirc\) & 0 & 0 & 0 & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & \\
\hline & \(\epsilon\) & & & & & & & & & & & & & 0.0015 & 0.059 & 0.111 & 0.252 & 0.338 & 0.506 & 0.615 & 0.650 & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.01 & MODE & D & D & D & D & D & D & D & D & D & D & B & B & BL & BL & BL & \(B L\) & BL & BL & BL & BL & \\
\hline & NALUE & 95.35 & 360.41 & 727.62 & 1164.96 & 1571.68 & 1948.76 & 2298.60 & 2623.69 & 2926.38 & 3208.81 & 3280.50 & 3605.13 & 3605.89 & 3856.46 & 4091.08 & 4899.15 & 5545.63 & 7485.06 & 9701.69 & 10636642 & \\
\hline & KGU/D & 40.88 & 18.87 & 11.12 & 7.522 & 5.794 & 4.781 & 4.116 & 3.647 & 3.297 & 3.027 & & & 2.803 & 2.625 & 2.478 & 2.077 & 1.839 & 1.368 & 1.059 & 0.9662 & \\
\hline & \(R_{\text {PROD }}\) & 0.518 & 0.509 & 0.503 & 0.503 & 0.503 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & & & 0.499 & 0.502 & 0.504 & 0.502 & 0.503 & 0.504 & 0.502 & 0.505 & \\
\hline & \(y_{\text {PROD }}\) & 0.0800 & 0.0468 & 0.0313 & 0.0230 & 0.0186 & 0.0158 & 0.0139 & 0.0125 & 0.0115 & 0.0107 & & & 0.0100 & 0.0094 & 0.0089 & 0.0075 & 0.0067 & 0.0050 & 0.0039 & 0.0036 & \\
\hline & XORG & 0.6738 & 0.7835 & 0.8498 & 0.8945 & 0.9227 & 0.9432 & 0.9586 & 0.9709 & 0.9810 & 0.9896 & & & 0.00081 & 0.058 & 0.108 & 0.250 & 0.333 & 0.500 & 0.613 & 0.645 & \\
\hline & \(\delta\) & 13.18 & 16.30 & 17.73 & 18.62 & 19.17 & 19.57 & 19.88 & 20.13 & 20.34 & & 22.90 & & 21.41 & 21.38 & 21.38 & 21.40 & 21.41 & 21.43 & 21.47 & 21.50 & \\
\hline & \(\delta_{\text {ADJ }}\) & 19.56 & 20.80 & 20.86 & 20.82 & 20.78 & 20.75 & 20.74 & 20.73 & 20.73 & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.02 & MODE & & D & D & D & D & D & D & D & D & D & B & B & BL & \\
\hline & Value & & 220.18 & 550.66 & 966.06 & 1361.17 & 1730.18 & 2073.59 & 2393.19 & 2691.03 & 2969.09 & 3030.44 & 3353.25 & 3353.22 & 3601.60 & 3833.97 & 4634.22 & 5274.28 & 7194.23 & 9388.17 & 10313.68 & \\
\hline & \(\mathrm{kGU} / \mathrm{D}\) & & 20.70 & 12.04 & 8.038 & 6.135 & 5.031 & 4.311 & 3.806 & 3.432 & 3.144 & & & 2.907 & 2.719 & 2.563 & 2.140 & 1.890 & 1.400 & 1.080 & 0.9852 & \\
\hline & \(\mathrm{R}_{\text {Prop }}\) & & 0.515 & 0.515 & 0.506 & 0.506 & 0.503 & 0.503 & 0.503 & 0.503 & 0.503 & & & 0.500 & 0.505 & 0.504 & 0.505 & 0.503 & 0.503 & 0.502 & 0.505 & \\
\hline & \(Y_{\text {Preod }}\) & & 0.0909 & 0.0622 & 0.0455 & 0.0369 & 0.0314 & 0.0278 & 0.0251 & 0.0230 & 0.0214 & & & 0.0200 & 0.0189 & 0.0179 & 0.0151 & 0.0134 & 0.0100 & 0.0078 & 0.0072 & \\
\hline & \(\alpha O R \in\) & & 0.7829 & 0.8484 & 0.8941 & 0.9224 & 0.9428 & 0.9582 & 0.9705 & 0.9806 & 0.9892 & & & 0.00016 & 0.055 & 0.107 & 0.245 & 0.331 & 0.498 & 0.611 & 0.642 & \\
\hline & \(\delta\) & & 14.90 & 17.26 & 18.57 & 19.22 & 19.63 & 19.93 & 20.16 & 20.35 & & 22.18 & 21.41 & & 21.38 & 21.37 & 21.36 & 21.36 & 21.37 & 21.40 & 21.41 & \\
\hline & \(\delta_{\text {ADJ }}\) & & 19.03 & 20.34 & 20.77 & 20.84 & 20.82 & 20.80 & 20.77 & 20.75 & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.04 & Mode & & & & D & D & D & D & D & D & D & B & B & BL & \\
\hline & Value & & & & 630.49 & 981.09 & 1316.68 & 1636.55 & 1938.76 & 2222.98 & 2489.91 & 2536.72 & 2846.13 & 2845.80 & 3089.04 & 3316.32 & 4100.33 & 4728.00 & 6610.60 & 8761.01 & 9668.24 & \\
\hline & kGU/d & & & & 8.912 & 6.756 & 5.510 & 4.699 & 4.130 & 3.710 & 3.388 & & & 3.123 & 2.914 & 2.741 & 2.273 & 2.000 & 1.469 & 1.126 & 1.025 & \\
\hline & R \(\mathrm{R}_{\text {PROD }}\) & & & & 0.515 & 0.518 & 0.515 & 0.512 & 0.509 & 0.509 & 0.506 & & & 0.499 & 0.507 & 0.506 & 0.505 & 0.506 & 0.507 & 0.507 & 0.505 & \\
\hline & \(y_{\text {Preod }}\) & & & & 0.0896 & 0.0736 & 0.0630 & 0.0556 & 0.0502 & 0.0462 & 0.0428 & & & 0.0399 & 0.0380 & 0.0359 & 0.0304 & 0.0270 & 0.0204 & 0.0159 & 0.0145 & \\
\hline & \(\alpha_{\text {OR }} \epsilon\) & & & & 0.8930 & 0.9209 & 0.9413 & 0.9570 & 0.9697 & 0.9798 & 0.9888 & & & 0.0018 & 0.051 & 0.102 & 0.241 & 0.324 & 0.490 & 0.603 & 0.638 & \\
\hline & \(\delta\) & & & & 16.99 & 18.22 & 19.07 & 19.63 & 20.02 & 20.30 & & 21.66 & 21.45 & & 21.45 & 21.45 & 21.45 & 21.43 & 21.39 & 21.37 & 21.36 & \\
\hline & \(\delta_{\text {ADS }}\) & & & & 19.03 & 19.78 & 20.26 & 20.51 & 20.65 & 20.72 & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 10 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO FABRICATION:
\(C_{U_{3} O_{8}}={ }^{*} \delta / L B, C_{N}={ }^{*} 60 / 6\), Low CosTs, \(L_{F}=0.01 \quad\left(R^{*}=0.480\right)\)


TABLE I.II MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO FABRICATION:
\(C_{U_{3} \mathrm{O}_{8}}=\$ 8 / \mathrm{LB}, C_{N}=\$ \mathrm{O} / \mathrm{G}, \mathrm{HIGH} \operatorname{COSTS}, L_{F}=0.002 \quad\left(R^{*}=0.694\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y{ }^{R}\) & & 0.03 & 0.06 & 0.10 & 0.15 & 0.20 & 0.30 & 0.40 & 0.50 & 0.55 & 0.60 & -0.6 & 5 & & - & -0. & \(5 \longrightarrow\) & 0.8 & 1.0 & 2 & 6 & 15 \\
\hline 0 & MODE & D & D & D & D & D & D & D & D & D & D & D & B & B & BL & B & BL & BL & \(B L\) & BL & BL & BL \\
\hline \multirow[t]{7}{*}{} & VALUE 2 & 229.34 & 528.51 & 913.80 & 1364.30 万 & 1780.602 & 2521.81 & 3160.353 & 3715.52 & 3966.71 & 4202.43 & 4424.07 & 4548.78 & 4808.36 & 4808.41 & 4953.23 & 5007.095 & 5194.85 & 5851.72 & 7822.58 & 10074.32 & 11024.60 \\
\hline & kGU/D 3 & 33.68 & 16.56 & 10.13 & 7.003 & 5.457 & 3.924 & 3.163 & 2.708 & 2.542 & 2.405 & 2.288 & & & 2.182 & & 2.095 & 2.019 & 1.791 & 1.339 & 1.039 & 0.9493 \\
\hline & \(\mathrm{R}_{\text {Prod }}\) & 0.697 & 0.697 & 0.697 & 0.697 & 0.697 & 0.697 & 0.697 & 0.697 & 0.697 & 0.697 & 0.697 & & & 0.698 & & 0.700 & 0.698 & 0.697 & 0.698 & 0.695 & 0.701 \\
\hline & 4 Preod & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & & & 0 & & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) \\
\hline & \(\epsilon\) & & & & & & & & & & & & & & 0.0021 & & 0.040 & 0.076 & 0.181 & 0.388 & 0.526 & 0.565 \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.01 & MODE & D & D & D & D & D & D & D & D & D & D & D & B & B & BL & B & BL & BL & BL & BL & BL & BL \\
\hline \multirow[t]{8}{*}{} & VALEE 5 & 54.78 & 303.84 & 662.75 & 1094.71 & 1500.85 & 2232.89 & 2866.82 & 3418.53 & 3668.16 & 3902.38 & 4122.59 & 4200.88 & 4465.21 & 4494.15 & 4639.06 & 4693.55 & 4881.12 & 5536.95 & 7499.86 & 9738.96 & 1068268 \\
\hline & \(\mathrm{KGU} / \mathrm{D}\) & 41.72 & 19.11 & 11.25 & 7.592 & 5.833 & 4.130 & 3.302 & 2.813 & 2.637 & 2.491 & 2.367 & & & 2.255 & & 2.163 & 2.083 & 1.843 & 1.371 & 1.060 & 0.9676 \\
\hline & \(\mathrm{R}_{\text {Preod }}\) & 0.857 & 0.762 & 0.759 & 0.744 & 0.729 & 0.712 & 0.706 & 0.703 & 0.703 & 0.703 & 0.700 & & & 0.698 & & 0.704 & 0.702 & 0.701 & 0.703 & 0.702 & 0.701 \\
\hline & \(4_{\text {Preod }}\) & 0.1025 & 0.0580 & 0.0391 & 0.0285 & 0.0228 & 0.0169 & 0.0139 & 0.0121 & 0.0114 & 0.0109 & 0.0104 & & & 0.0100 & & 0.0096 & 0.0093 & 0.0082 & 0.0062 & 0.0048 & 0.0044 \\
\hline & \(\alpha O R \in\) & 0.6532 & 0.7637 & 0.8278 & 0.8724 & 0,9010 & 0.9370 & 0.9594 & 0.9753 & 0.9816 & 0.9872 & 0.9925 & & & 0.0016 & & 0.036 & 0.073 & 0.177 & 0.382 & 0.521 & 0.562 \\
\hline & \(\delta\) & 17.23 & 21.94 & 24.19 & 25.59 & 26.19 & 26.37 & 26.19 & 25.98 & 25.89 & 25.80 & & 30.24 & & 26.62 & & 26.35 & 26.18 & 25.63 & 24.45 & 23.46 & 23.17 \\
\hline & \(\delta_{A D}\) & 26.38 & 28.73 & 29.22 & 29.33 & 29.07 & 28.14 & 27.30 & 26.64 & 26.38 & 26.13 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.02 & MOOC & & D & D & D & D & D & D & D & D & D & D & B & B & BL & B & BL & BL & BL & BL & BL & BL \\
\hline \multirow[t]{8}{*}{} & VALE & & 143.41 & 432.44 & 836.70 & 1223.82 & 924.86 & 2536.98 & 3074.00 & 3318.19 & 3547.92 & 3764.34 & 3835.52 & 4114.02 & 4113.26 & 4307.39 & 4318.23 & 4504.55 & 5157.29 & 7114.58 & 9346.18 & 10285.0 \\
\hline & KGU/D & & 20.83 & 12.27 & 8.138 & 6.210 & 4.358 & 3.464 & 2.938 & 2.749 & 2.592 & 2.461 & & & 2.338 & & 2.244 & 2.159 & 1.904 & 1.407 & 1.083 & 0.9878 \\
\hline & \(R_{\text {PROD }}\) & & 0.762 & 0.821 & 0.759 & 0.762 & 0.753 & 0.744 & 0.735 & 0.729 & 0.726 & 0.724 & & & 0.699 & & 0.723 & 0.721 & 0.713 & 0.709 & 0.701 & 0.701 \\
\hline & \(y_{\text {Preod }}\) & & 0.1106 & 0.0788 & 0.0564 & 0.0460 & 0.0345 & 0.0285 & 0.0247 & 0.0233 & 0.0221 & 0.0212 & & & 0.0200 & & 0.0196 & 0.0189 & 0.0167 & 0.0125 & 0.0096 & 0.0088 \\
\hline & \(\alpha \Delta R \in\) & & 0.7637 & 0.8241 & 0.8714 & 0.8987 & 0.9339 & 0.9564 & 0.9727 & 0.9795 & 0.9853 & 0.9905 & & & 0.0012 & & 0.021 & 0.057 & 0.167 & 0.377 & 0.518 & 0.560 \\
\hline & \(\delta\) & & 18.73 & 23.15 & 25.02 & 26.06 & 27.33 & 28.01 & 28.36 & 28.46 & 28.52 & & 31.11 & 29.91 & & & 29.44 & 29.32 & 28.87 & 27.58 & 26.33 & 25.92 \\
\hline & \(\delta_{A D}\) & & 24.53 & 28.09 & 28.71 & 29.00 & 29.26 & 29.29 & 29.16 & 29.06 & 28.95 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & BL & & BL \\
\hline 0.04 & 4 MODE & & & & D & D & D & D & D & D & D & D & B & D 329494 & B 33793 & \(\frac{B}{3610.22}\) & BL 3 C & BL90.07 & B417.10 & 6310.05 & 8492.87 & BL \({ }_{\text {B417.18 }}\) \\
\hline & Rereop & & & & 0.875 & 0.824 & 0.815 & 0.759 & 0.762 & 0.762 & 0.762 & 0.759 & & 0.759 & & & 0.747 & 0.758 & 0.755 & 0.737 & 0.723 & 0.716 \\
\hline & Yproo & & & & 0.1159 & 0.0928 & 0.0706 & 0.0570 & 0.0501 & 0.0475 & 0.0452 & 0.0433 & & 0.0417 & & & 0.0399 & 0.0388 & 0.0345 & 0.0257 & 0.0198 & 0.0180 \\
\hline & 人ore & & & & 0.8643 & 0.8946 & 0.9296 & 0.9553 & 0.9706 & 0.9769 & 0.9825 & 0.9877 & & 0.9922 & & & 0.0023 & 0.029 & 0.137 & 0.358 & 0.504 & 0.549 \\
\hline & \(\delta\) & & & & 20.22 & 24.24 & 26.44 & 27.36 & 27.98 & 28.23 & 28.45 & 31.63 & & & 30.90 & 29.91 & & 29.92 & 30.01 & 29.99 & 29.46 & 29.16 \\
\hline & \(\delta_{A D}\) & & & & 23.39 & 27.10 & 28.44 & 28.64 & 28.83 & 28.90 & 28.96 & 32.02 & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 12
Maximum Uranium Values and Optimum Conditions
Recycle to Fabrication \(-y=0.0\) :
Pre-Enrichment by Gaseous Diffusion
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(L_{\text {F }}\) & Unit Costs & \[
\begin{aligned}
& C_{U_{3}} O_{8} \\
& (\$ / 1 b) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{C}_{\mathrm{N}} \\
\left(\$ / \mathrm{q}^{\mathrm{Np}}\right) \\
\hline
\end{gathered}
\] & R & \[
\begin{aligned}
& V_{D}(R, 0) \\
& (\$ / \text { kqU) }
\end{aligned}
\] & \[
\begin{gathered}
F_{D} \\
(\mathrm{kqU} / \mathrm{day}) \\
\hline
\end{gathered}
\] & \(\mathrm{R}_{\mathrm{D}}\) \\
\hline \multirow[t]{9}{*}{0.01} & High & 8 & 0 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
3.00 \\
39.22
\end{array}
\] & \[
\begin{aligned}
& 366.7 \\
& 121.6
\end{aligned}
\] & \[
\begin{aligned}
& 0.556 \\
& 0.556
\end{aligned}
\] \\
\hline & & & 60 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
3.00 \\
39.23
\end{array}
\] & \[
\begin{aligned}
& 366.6 \\
& 121.6
\end{aligned}
\] & \[
\begin{aligned}
& 0.538 \\
& 0.538
\end{aligned}
\] \\
\hline & & 6 & 0 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
0.42 \\
30.99
\end{array}
\] & \[
\begin{aligned}
& 414.3 \\
& 126.4
\end{aligned}
\] & \[
\begin{aligned}
& 0.571 \\
& 0.571
\end{aligned}
\] \\
\hline & & & 60 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
0.42 \\
30.99
\end{array}
\] & \[
\begin{aligned}
& 413.9 \\
& 126.3
\end{aligned}
\] & \[
\begin{aligned}
& 0.550 \\
& 0.550
\end{aligned}
\] \\
\hline & & 10 & 0 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
5.71 \\
47.30
\end{array}
\] & \[
\begin{aligned}
& 336.7 \\
& 118.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.544 \\
& 0.544
\end{aligned}
\] \\
\hline & & & 60 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
5.71 \\
47.30
\end{array}
\] & \[
\begin{aligned}
& 336.7 \\
& 118.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.529 \\
& 0.529
\end{aligned}
\] \\
\hline & & 8 & 100 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
3.00 \\
39.23
\end{array}
\] & \[
\begin{aligned}
& 366.6 \\
& 121.6
\end{aligned}
\] & \[
\begin{aligned}
& 0.529 \\
& 0.529
\end{aligned}
\] \\
\hline & Low & 8 & 0 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
3.00 \\
39.24
\end{array}
\] & \[
\begin{aligned}
& 367.1 \\
& 121.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.497 \\
& 0.497
\end{aligned}
\] \\
\hline & & & 60 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
3.00 \\
39.25
\end{array}
\] & \[
\begin{aligned}
& 367.6 \\
& 121.9
\end{aligned}
\] & \[
\begin{aligned}
& 0.479 \\
& 0.479
\end{aligned}
\] \\
\hline 0.002 & 2 High & 8 & 0 & \[
\begin{aligned}
& 0.005 \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{r}
2.99 \\
39.21
\end{array}
\] & \[
\begin{aligned}
& 366.4 \\
& 121.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.697 \\
& 0.697
\end{aligned}
\] \\
\hline
\end{tabular}

Recycle to Fabrication - \(\mathrm{y}=0.15\) :
Blending with Natural Uranium
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(L_{\text {F }}\) & Unit Costs & \[
\begin{gathered}
c_{U_{3}} \mathrm{O}_{8} \\
(\$ / 1 \mathrm{~b})
\end{gathered}
\] & \[
\begin{gathered}
C_{N} \\
(\$ / \mathrm{g} N \mathrm{~N})
\end{gathered}
\] & R & \[
V_{B}(R, 0)
\]
\[
(\$ / \mathrm{kgU})
\] & \[
\begin{gathered}
\mathrm{V}_{\mathrm{B}}(\mathrm{R}, 0.15) \\
(\$ / \mathrm{kgU})
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{F}_{\mathrm{B}} \\
(\mathrm{kgU} / \mathrm{day})
\end{gathered}
\] & \(\mathrm{R}_{\mathrm{B}}\) & \(Y_{B}\) & \(\epsilon\) & \[
\begin{gathered}
\delta(R, 0.15) \\
(\$ / q U-236) \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{27}{*}{0.01} & \multirow[t]{21}{*}{High} & \multirow[t]{6}{*}{8} & \multirow[t]{3}{*}{0} & 2 & 7792.76 & 3154.32 & 1.912 & 0.594 & 0.0891 & 0.406 & 23.13 \\
\hline & & & & 6 & 10036.45 & 4902.52 & 1.437 & 0.588 & 0.0701 & 0.532 & 24.19 \\
\hline & & & & 15 & 10982.76 & 5656.10 & 1.299 & 0.588 & 0.0644 & 0.571 & 24.53 \\
\hline & & & \multirow[t]{3}{*}{60} & 2 & 7788.29 & 7755.44 & 1.916 & 0.610 & 0.0905 & 0.397 & -7.57 \\
\hline & & & & 6 & 10030.90 & 9740.45 & 1.438 & 0.595 & 0.0706 & 0.529 & -8.09 \\
\hline & & & & 15 & 10976.78 & 10562.93 & 1.299 & 0.588 & 0.0644 & 0.571 & -8. 22 \\
\hline & & \multirow[t]{3}{*}{6} & \multirow[t]{3}{*}{0} & 2 & 7005.69 & 2723.42 & 1.915 & 0.605 & 0.0900 & 0.400 & 21.54 \\
\hline & & & & 6 & 9023.72 & 4293.69 & 1.442 & 0.614 & 0.0719 & 0.520 & 22.51 \\
\hline & & & & 15 & 9874.59 & 4973.01 & 1.304 & 0.616 & 0.0662 & 0.559 & 22.80 \\
\hline & & & \multirow[t]{3}{*}{60} & 2 & 7001.32 & 7349.23 & 1.923 & 0.631 & 0.0923 & 0.385 & -9.32 \\
\hline & & & & 6 & 9017.99 & 9151.52 & 1.442 & 0.614 & 0.0719 & 0.520 & -9.91 \\
\hline & & & & 15 & 9868.37 & 9895.62 & 1.304 & 0.616 & 0.0662 & 0.559 & -10.05 \\
\hline & & \multirow[t]{6}{*}{10} & \multirow[t]{3}{*}{0} & 2 & 8539.17 & 3562.80 & 1.906 & 0.574 & 0.0873 & 0.418 & 24.64 \\
\hline & & & & 6 & 10996.99 & 5483.49 & 1.434 & 0.576 & 0.0692 & 0.538 & 25.76 \\
\hline & & & & 15 & 12033.52 & 6311.61 & 1.297 & 0.574 & 0.0635 & 0.577 & 26.11 \\
\hline & & & \multirow[t]{3}{*}{60} & 2 & 8534.80 & 8142.78 & 1.913 & 0.600 & 0.0896 & 0.403 & -5.92 \\
\hline & & & & 6 & 10991. 29 & 10303.60 & 1.434 & 0.576 & 0.0692 & 0.538 & -6.41 \\
\hline & & & & 15 & 12027.63 & 11201.55 & 1.297 & 0.574 & 0.0635 & 0.577 & -6.52 \\
\hline & & \multirow[t]{3}{*}{8} & \multirow[t]{3}{*}{100} & 2 & 7785.47 & 10821.10 & 1.920 & 0.621 & 0.0914 & 0.391 & -28.02 \\
\hline & & & & 6 & 10027.09 & 12953.54 & 1.438 & 0.595 & 0.0706 & 0.529 & -29.54 \\
\hline & & & & 15 & 10972.78 & 13820.39 & 1.299 & 0.588 & 0.0644 & 0.571 & -29.96 \\
\hline & \multirow[t]{6}{*}{Low} & \multirow[t]{3}{*}{8} & \multirow[t]{3}{*}{0} & 2 & 7777.18 & 3622.82 & 1.894 & 0.517 & 0.0819 & 0.454 & 19.92 \\
\hline & & & & 6 & 10016.53 & 5396.45 & 1.426 & 0.516 & 0.0647 & 0.569 & 20.78 \\
\hline & & & & 15 & 10961.06 & 6166.25 & 1.290 & 0.515 & 0.0594 & 0.604 & 21.00 \\
\hline & & & \multirow[t]{3}{*}{60} & 2 & 7772.59 & 8110.44 & 1.898 & 0.540 & 0.0842 & 0.439 & -10.02 \\
\hline & & & & 6 & 10010.44 & 10129.60 & 1.428 & 0.533 & 0.0660 & 0.560 & -10.80 \\
\hline & & & & 15 & 10954.13 & 10963.82 & 1.291 & 0.527 & 0.0603 & 0.598 & -11.02 \\
\hline \multirow[t]{3}{*}{0.002} & \multirow[t]{3}{*}{High} & \multirow[t]{3}{*}{8} & \multirow[t]{3}{*}{0} & 2 & 7822.58 & 2786.34 & 1.948 & 0.871 & 0.1092 & 0.272 & 25.75 \\
\hline & & & & 6 & 10074.32 & 4300.59 & 1.464 & 0.821 & 0.0843 & 0.438 & 28.42 \\
\hline & & & & 15 & 11024.60 & 5047.51 & 1.323 & 0.815 & 0.0773 & 0.484 & 28.82 \\
\hline
\end{tabular}

TABLE I. 14 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO DIFFUSION PLANT:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(4 R\) & & 0005 & 0.01 & 0.015 & 0.02 & O & & -0. & \(\cdots\) & & 0.035 & \(\rightarrow\) & 0.04 & 0.05 & 0.06 & 0.08 & 0.1 & 0.2 & 0.5 & 1.0 & 2 & 6 & 15 \\
\hline & & & & & & & & & & & & & & & & & & BL & BL & BL & BL & BL & BL \\
\hline 0 & MOOE & D & D & D & D & D & B & D & B & D & B & BL & BL & BL & BL & BL & BL \({ }^{\text {c }}\) & & 3321.41 & 5006.37 & 669093 & 8616.71 & 9427.84 \\
\hline \multirow[t]{7}{*}{} & Value 3 & 3.14 & 39.66 & 84.30 & 131.98 & 181.10 & 181.19 & 23095 & 244.45 & 276.41 & 292.13 & 293.45 & 340.41 & 43299 & \(\frac{523.82}{13.43}\) & 700.44 & 87.939 & \(\frac{1636.52}{4.166}\) & 2.036 & 1.349 & 1.010 & 0.7828 & 0.7164 \\
\hline & kSU/D 3 & 3237 & 107.4 & 64.61 & 46.33 & 36.20 & & 29.75 & & 25.37 & & 24.89 & 21.20 & 16.40 & 13.43 & 9.925 & 7.939 & 4.166 & 0.0324 & & & 0.0327 & 0.0330 \\
\hline & \(\mathrm{R}_{\text {Prod }} \mathrm{O}\) & 0.0309 & 0.0309 & 0.0309 & 0.03090 & 0.0309 & & 0.0308 & & 0.0352 & & 0.0326 & 0.0326 & [0.0325 & 0.0325 & \(\frac{0.0325}{0}\) & \(\frac{0.0327}{0}\) & 0.0325 & 0.0324 & 0.0326 & 0.0328 & 0.0327 & 0.0330 \\
\hline & \(y_{\text {PRPOP }}\) & 0 & \(\bigcirc\) & 0 & 0 & 0 & & 0 & & 0 & & 0 & 0 & 0 & \(\frac{0}{0.508}\) & 0 & 0, 0 & 0.847 & 0.926 & 0.950 & 0.963 & 0.971 & 0.973 \\
\hline & \(\epsilon\) & & & & & & & & & & & 0.086 & 0.221 & 0.398 & 0.508 & 0.636 & 0.707 & 0.847 & 0.926 & 0.950 & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & BL \\
\hline 0.005 & MODE & D & D & D & D & D & B & D & B 1916 & \(\frac{D}{22774}\) & \(\frac{B}{241.48}\) & BL1.72 & 288.16 & & & & & 576.64 & 3252.98 & 4929.46 & 6605.59 & 8521.78 & 9328.8 \\
\hline \multirow[t]{7}{*}{} & VAШEE- & -12.93 & 9.56 & 46.61 & 89.17 & 134.51 & 122.41 & 181.43 & 191.67 & 227.74 & 241.48 & 24.172 & 288.16 & 379.92 & 414.02 & 10.26 & 8.154 & 4.235 & 2.058 & 1.361 & 1.017 & 0.7884 & 0.7214 \\
\hline & KGU/0 & 413.6 & 12.6 .3 & 73.26 & 51.42 & 39.59 & & 32.20 & & 27.22 & & 26.92 & 22.67 & 17.28 & 14.02 & 10.0327 & 8.154 & 0.0325 & 0.0324 & 0.0326 & 0.0328 & 0.0327 & 0.0330 \\
\hline & \(\mathrm{R}_{\text {proon }}\) & 0.0400 & 0.0365 & 0.0350 & 0.03410 & 0.0332 & & 0.0329 & & 0.0352 & & 0.0339 & 00040 & 0.0031 & 0.0025 & 0.0018 & 0.0015 & 000077 & 0.0324 & 0.00025 & 000019 & 0.00014 & 0.000 0.97 \\
\hline & \(Y_{\text {Prod }}\) & 0.0243 & 0.0137 & 0.0097 & Q00761 & 0.0063 & & 0.0054 & & 0.0050 & & 0.0048 & 0.193 & 0.385 & 0.501 & 0.632 & 0.706 & 0.846 & 0.925 & 0.950 & 0.962 & 0.971 & 0.973 \\
\hline & ¢ Lorec & \begin{tabular}{l}
0.3366 \\
\hline 3.21
\end{tabular} & 19.6213 & 7.7643 & |88561 & - 9.16 & & 0.9739 & 10.31 & 0.995 & & 10.06 & 10.11 & 10.18 & 10.23 & 10.27 & 10.29 & 1034 & 10.36 & 10.38 & 10.38 & 10.38 & 10.37 \\
\hline & \(\delta_{A D S}\) & 9.56 & 9.62 & 9.75 & 9.85 & 9.91 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & BL & & BL \\
\hline 0.01 & MODE & & D & D & D & D & B & \(\frac{D}{136.41}\) & \(\frac{B}{137.96}\) & D 181.60 & \(\frac{8}{193.43}\) & BL 193.43 & BL & \(\frac{B 29.42}{}\) & - 418.40 & S92.15 & 76005 & 1517.28 & 3184.80 & 4852.74 & 6520.39 & 8426.91 & 9229.9 \\
\hline \multirow[t]{7}{*}{} & | \({ }^{\text {VAWE }}\) (kGU/D & & -18.57 & \(\frac{12.46}{81.17}\) & 50.68 & 9251 & 57.29 & \(\frac{136.41}{34.46}\) & 137.96 & 181.60 & 193.43 & 193.43 & 24.22 & 18.27 & 14.69 & 10.62 & 8.381 & 4.310 & 2.080 & 1.373 & 1.025 & 0.7941 & 0.7265 \\
\hline & KGU/D & & 143.0 & 0.039 & 0.0373 & 4. 0.7265 & & 0.0356 & & 0.0352 & & 0.0350 & 0.0353 & 0.0346 & 0.0341 & 0.0334 & 0.0329 & 0.0327 & 0.0324 & 0.0326 & 0.0328 & 0.0327 & 0.0329 \\
\hline &  & & 0.0304 & 0.0212 & 0.0164 & 0.0135 & & 0.0115 & & 0.0100 & & 0.0100 & 0.0086 & 0.0065 & 0.0052 & 0.0038 & 0.0030 & 0.0016 & 000075 & 0.00050 & 0.00038 & 0.00029 & 0.00023 \\
\hline & \(\alpha_{0 R} \in\) & & 0.6018 & 10.7450 & 0.8382 & 0.9034 & & 0.9556 & & 0.9957 & & 0.00017 & 0.138 & 0.347 & 0.475 & 0.622 & 0.702 & 0.845 & 0.925 & 0.950 & 0.962 & 0.971 & 0.973 \\
\hline & \(\delta\) & & 5.78 & 7.10 & 8.00 & 8.69 & & & 10.40 & & 9.71 & & 9.78 & 9.93 & 10.02 & 10.13 & 10.19 & 10.28 & 10.34 & 10.36 & 10.36 & 10.37 & 10.36 \\
\hline & \(\delta_{\text {ADS }}\) & & 9.60 & 9.53 & 9.54 & 9.62 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & BL & BL & BL & BL & BL \\
\hline 0.02 & MODE & & & & D & D & B & D & B & D & B & BL & & & & \\
\hline \multirow[t]{9}{*}{} & VALUE & & & & -26.37 & 9.86 & -110.70 & 49.72 & 20.41 & 91.16 & 94.57 & 94,46 & 144.12 & 233.29 & 320.41 & 490.13 & 654.50 & 1400.31 & 3049.23 & 4699.81 & \(\frac{6350.44}{1.042}\) & 337.48 & 0324 \\
\hline & KGU 4 D & & & & 65.00 & 48.64 & & 38.84 & & 32.28 & & 32.02 & 27.17 & 20.11 & 15.98 & 11.40 & 8.890 & 4.466 & 2.129 & 1.397 & 1.042 & 0.8057 & 0.736 \\
\hline & \(\mathrm{R}_{\text {Preco }}\) & & & & 0.0477 & 70.0421 & & 0.0403 & & 0.0394 & & 0.0350 & 0.0380 & 0.0369 & 0.0361 & 0.0353 & 0.0344 & 0.0332 & 0.0327 & 0.0326 & 0.0328 & 0.0327 & 0.0329 \\
\hline & \(y_{\text {Preod }}\) & & & & 0.0394 & 40.0301 & & 0.0252 & & 0.0220 & & 0.0200 & 0.0188 & 0.0141 & 0.0113 & 0.0081 & 0.0063 & 0.0032 & 0.0015 & 0.0010 & 0.00076 & 0.00059 & 90.00054 \\
\hline & \(\alpha_{0 R} \in\) & & & & 0.7950 & 0.8750 & & 0.9289 & & 0.9702 & & 0.0017 & 0059 & 0.293 & 0.435 & 0.593 & 0.684 & 0.841 & 0.923 & 0.949 & 0.962 & 0.971 & 0.973 \\
\hline & \(\delta\) & & & & 7.79 & 8.39 & & 9.49 & & & 9.65 & & 9.47 & 9.55 & 9.65 & 9.82 & 9.94 & 10.17 & 10.29 & 10.32 & 10.33 & 10.35 & 10.34 \\
\hline & \(\delta_{A D}\) & & & & 9.80 & 9.59 & & 10.22 & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 15 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO DIFFUSION PLANT:
\(C_{U_{3} O_{8}}=\$ 8 / L B, C_{N}=\$ 60 / G, H I G H\) COSTS, \(L_{F}=0.01 \quad\left(R^{*}=0.0315\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
y R
\] & & 0.005 & 0.01 & 0.015 & 0.02 & 0.025 & 0 & & - & O35 & & -0. & \(\longrightarrow\) & 0.05 & 0.06 & 0.08 & 0.1 & 0.2 & 0.5 & 1.0 & 2 & 6 & 15 \\
\hline \(\bigcirc\) & MODE & D & D & D & D & D & D & B & D & B & BL & B & BL & \(B L\) \\
\hline \multirow[t]{7}{*}{} & Value & 3.14 & 39.65 & 84,29 & 131.97 & 181.09 & 23093 & 244.07 & 277.86 & 293.56 & 294.14 & 332.62 & 341.22 & 434.04 & 525.11 & 702.18 & 872.81 & 640.65 & 3329.92 & 5019.07 & 6708.45 & 8638.94 & 9451.80 \\
\hline & kGU/D 3 & 323.8 & 107.4 & 64.62 & 46.34 & 36.20 & 29.76 & & 25.37 & & 25.02 & & 21.32 & 16.49 & 13.50 & 9.981 & 7.974 & 4.186 & 2.048 & 1.354 & 1.013 & 0.7854 & 0.7160 \\
\hline & \(\mathrm{R}_{\text {Preo }} 0\) & 0.0315 & 0.0315 & 0.0315 & 0.0315 & 0.0315 & 0.0314 & & 0.0352 & & 0.0333 & & 0.0334 & 0.0333 & 0.0333 & 0.0334 & 0.0334 & 0.0333 & 0.0334 & 0.0332 & 0.0333 & 0.0332 & 0.0329 \\
\hline & \(y_{\text {Preab }}\) & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & & \(\bigcirc\) & & \(\bigcirc\) & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline & \(\epsilon\) & & & & & & & & & & 0.059 & & 0.197 & 0.379 & 0.493 & 0.624 & 0.700 & 0.843 & 0.923 & 0.949 & 0.962 & 0.971 & 0.973 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \multirow[t]{9}{*}{0.005} & Mode & D & D & D & D & D & D & B & D & B & BL & B & BL \\
\hline & Vawe & 6.20 & 45.78 & 91.46 & 139.32 & 188.32 & 237.93 & 248.42 & 287.31 & 303.17 & 303.16 & 346.38 & 349.63 & 441.12 & 531.17 & 706.67 & 876.07 & 1639.33 & 3319.71 & 5000.21 & 6681.14 & 8601.91 & 9410.66 \\
\hline & KGU/D & 417.1 & 126.6 & 73.35 & 51.47 & 39.63 & 32.23 & & 27.22 & & 27.13 & & 23.00 & 17.51 & 14.19 & 10.35 & 8.223 & 4.266 & 2.071 & 1.366 & 1.021 & 7.912 & 0.7211 \\
\hline & \(\mathrm{R}_{\text {Proo }}\) & 0.0450 & 0.0879 & 0.0362 & 0.0353 & 0.0344 & 0.0341 & & 0.0352 & & 0.0350 & & 0.0356 & 0.0349 & 0.0345 & 0.0340 & 0.0339 & 0.0336 & 0.0334 & 0.0332 & 0.0333 & 0.0332 & 0.0329 \\
\hline & Yprob 0 & 0.0266 & 0.0141 & 0.0100 & 0.0078 & 0.0064 & 0.0055 & & 0.0050 & & 0.0050 & & 0.0044 & 0.0033 & 0.0027 & 0.0019 & 0.0015 & 0.00080 & 0.00039 & 0.00026 & 0.00019 & 0.00015 & 0.00013 \\
\hline & \(\alpha_{0 r \in}\) & 0.3273 & 0.6159 & 0.7583 & 0.8491 & 0.9162 & 0.9654 & & 0.9957 & & 0.00090 & & 0.130 & 0.342 & 0.468 & 0.614 & 0.693 & 0.840 & 0.922 & 0.949 & 0.962 & 0.970 & 0.973 \\
\hline & \(\delta\) & -0.61 & -1.27 & -1.52 & -1.60 & -1.63 & & \(-1.11\) & & \(-2.10\) & & & -2.02 & -1.85 & -1.74 & -1.60 & -1.52 & -1.38 & -1.29 & -1.25 & -1.25 & -1.23 & -1.22 \\
\hline & \(\delta_{A D}\) & -1.86 & \(-2.06\) & -2.00 & -1.88 & -1.78 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \multirow[t]{9}{*}{0.01} & Mode & & D & D & D & D & D & B & D & B & BL & B & BL \\
\hline & Value & & 50.03 & 97.70 & 147.61 & 197.96 & 248.29 & 249.63 & 298.49 & 314.20 & 314.19 & 362.67 & 363.22 & 453.36 & 541.94 & 714.94 & 882.41 & 1639.67 & 3310.27 & 4981.92 & 6654.23 & 8565.19 & 9369.76 \\
\hline & KGU/D & & 144.8 & 81.61 & 56.24 & 42.81 & 34.52 & & 28.94 & & 28.81 & & 24.71 & 18.58 & 14.93 & 10.78 & 8.500 & 4.348 & 2.094 & 1.383 & 1.029 & 7.971 & 0.7263 \\
\hline & \(R_{\text {preod }}\) & & 00485 & 00421 & 0.0391 & 0.0379 & 0.0368 & & 0.0364 & & 0,0350 & & 0.0383 & 0.0372 & 0.0364 & 0.0355 & 0.0349 & 0.0340 & 0.0334 & 0.0337 & 0.0334 & 0.0332 & 0.0329 \\
\hline & YPRED & & 0.0339 & 0.024 & 0.0170 & 0.0139 & 0.0118 & & 0.0103 & & 0.0100 & & 0.0095 & 0.0071 & 0.0057 & 0.0041 & 0.0032 & 0.0016 & 0.00078 & 0.00052 & 0.00038 & 0.00030 & 0.0002 \\
\hline & 人ORE & & 0.5844 & 0.7330 & 0.8293 & 0.8956 & 0.9482 & & 0.9878 & & 0.00017 & & 0.051 & 0.289 & 0.431 & 0.592 & 0.680 & 0.837 & 0.922 & 0.948 & 0.961 & 0.970 & 0.973 \\
\hline & \(\delta\) & & -1.08 & -1.42 & -1.70 & -1.87 & & -0.80 & & -2.30 & & & -2.54 & -2.36 & -2.21 & -1.98 & -1.83 & -1.54 & -1.36 & -1.30 & -1.29 & -1.26 & -1.25 \\
\hline & \(\delta_{\text {AD }}\) & & -1.85 & -1.94 & -2.05 & -2.09 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{0.02} & MODE & & & & D & D & D & B & D & B & BL & B & \(B L\) & BL & \(B L\) & BL & BL \\
\hline & VALUE & & & & 15432 & 209.50 & 261.47 & 223.90 & 312.95 & 318.41 & 318.19 & 383.22 & 383.15 & 478.08 & 567.30 & 738.28 & 902.32 & 1645.22 & 3294.00 & d 4947.33 & 6601.58 & 8492.66 & 9289.5 \\
\hline & KSU/D & & & & 65.24 & 49.22 & 39.19 & & 32.48 & & 32.02 & & 27.56 & 20.71 & 16.37 & 11.61 & 9.053 & 4.521 & 2.150 & 1.408 & 1.046 & 0.8090 & 0.7417 \\
\hline & \(R_{\text {Proco }}\) & & & & 0.0494 & 0.0485 & 0.0456 & & 0.0429 & & 0.0350 & & 0.0399 & 0.0410 & 0.0396 & 0.0381 & 0.0371 & 0.0350 & 0.0341 & 0.0337 & 0.0334 & 00333 & 0.0339 \\
\hline & \(y^{\text {PPRCD }}\) & & & & 0.0404 & 0.0336 & 0.0278 & & 0.0235 & & 0.0200 & & 0.0200 & 0.0160 & 0.0126 & 0.0089 & 0.0069 & 0.0034 & 0.0016 & 0.0011 & 0.00078 & 0.00060 & 0.00056 \\
\hline & 人ORE & & & & 0.7895 & 0.8498 & 0.9048 & & 0.9523 & & 00017 & & 0.0016 & 0.199 & 0.370 & 0.554 & 0.654 & 0.830 & 0.919 & 0.947 & 0.961 & 0.970 & 0.972 \\
\hline & \(\delta\) & & & & -1.25 & -1.60 & -1.11 & & & -1.51 & & -2.44 & & -2.63 & -2.63 & -2.51 & -2.35 & -1.87 & -1.53 & -1.43 & -1.36 & -1.33 & -1.34 \\
\hline & \(\delta_{\text {AD }}\) & & & & -1.58 & -1.88 & -1.23 & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 16 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO DIFFUSION PLANT:
\(C_{U_{3} O_{8}}=\$ 8 / \mathrm{LB}, C_{N}=\# 100 / G, H I G H\) COSTS, \(L_{F}=0.01 \quad\left(R^{*}=0.0319\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y{ }^{R}\) & & 0.005 & 0.01 & 0.015 & 0.02 & 0.025 & -0. & & & 0.035 & & 0. & \(\longrightarrow\) & 0.05 & 0.06 & 0.08 & 0.1 & 0.2 & 0.5 & 1.0 & 2 & 6 & 15 \\
\hline & & & & & & & & & & & & & & & & BL \\
\hline \(\bigcirc\) & MODE & D & D & D & D & D & D & B & D & B & BL & B & BL & BL & BL & 70336 & 874.29 & & 3335.59 & 5027.71 & 6719.94 & 8653.609 & 9469.88 \\
\hline \multirow[t]{7}{*}{} & VALE 3 & 3.14 & 39.65 & 84.28 & 131.96 & 181.07 & 2309 & 243.69 & 278.67 & 294.36 & 294.61 & 334.69 & 341.78 & 434.75 & 525.98 & 703.36 & 874.29 & 1643.46 & 2.053 & 1359 & 1.018 & 0.7900 & 0.7206 \\
\hline & kGU/D 3 & 323.8 & 107.4 & 64.62 & 46.35 & 36.21 & 29.76 & & 25.37 & & 25.10 & & 21.38 & 16.55 & 13.55 & 10.01 & 8.002 & 4.204 & 2.053 & . 359 & & & \\
\hline & \(\mathrm{R}_{\text {prod }} 0\) & 0.0318 & 0.0318 & 0.0318 & 0.031810 & 0.0318 & 0.0320 & & 0.0352 & & 0.0338 & & 0.0339 & 0.0339 & 0.0339 & 0.0338 & 0.0339 & 0.0339 & 0.0337 & 0.0337 & 0.0340 & . 0341 & 0339 \\
\hline & Y MPEOD & \(\bigcirc\) & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & & 0 & & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & \(\bigcirc\) \\
\hline & fpred & & 0 & & & & & & & & 0.041 & & 0.182 & 0.367 & 0.481 & 0.618 & 0.694 & 0.839 & 0.922 & 0.948 & 0.961 & 0.970 & 0.972 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \multirow[t]{9}{*}{0.005} & MODE & D & D & D & D & D & D & B & D & B & BL & B & BL \\
\hline & VALUE & 19.24 & 70.01 & 121.43 & 172.85 & 224.30 & 27574 & 286.14 & 326.90 & 344.16 & 344.14 & 389.81 & 391.39 & 482.67 & 572.60 & 748.07 & 917.54 & 1681.72 & 3364.79 & 5048.08 & 6731.89 & 8655.87 & 9467.89 \\
\hline & KEU/D & 420.5 & 126.7 & 73.42 & 51.51 & 39.66 & 32.25 & & 27.22 & & 27.13 & & 23.20 & 17.65 & 14.29 & 10.43 & 8.267 & 4.286 & 2.080 & 1.376 & 1.026 & 0.7959 & 0.7258 \\
\hline & \(R_{\text {Peco }} 0\) & 0.0494 & 0.0388 & 0.0371 & 0.0359 & 0.0353 & 0.0347 & & 0.0352 & & 0.0350 & & 0.0369 & 0.0361 & 0.0356 & 0.0351 & 0.0347 & 00343 & 0.0341 & 0.0342 & 0.0340 & 0.0341 & 39 \\
\hline & Y & 0.0287 & 0.0144 & 0.0102 & 0.0080 & 0.0066 & 0.0056 & & 0.0050 & & 0.0050 & & 0.0045 & 0.0034 & 0.0028 & 0.0020 & 0.0016 & 0.00082 & 0.00040 & 0.00026 & 0.00020 & 0.00015 & 0014 \\
\hline & \(\alpha\) Ore & 0.3212 & 0.6127 & 0.7539 & 0.8451 & 0.9105 & 0.9614 & & 0.995 & & 0.00090 & & 0.091 & 0.314 & 0.447 & 0.599 & 0.684 & 0.836 & 0.920 & 0.947 & 0.961 & 0.969 & 0.972 \\
\hline & \(\delta\) & -3.22 & -6.11 & -7.51 & -8.31 & -8.83 & & \(-8.73\) & & -10.20 & & & -10.26 & -10.02 & -9.85 & -9.64 & -9.52 & -9.30 & -9.18 & -9.10 & -9.11 & -9.11 & -9.07 \\
\hline & \(\delta_{\text {ADS }}\) & -10.02 & -9.97 & -9.96 & -9.83 & -9.70 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & BL \\
\hline \multirow[t]{9}{*}{0.01} & MODE & & D & D & D & D & D & B & D & B & BL & B & BL & BL & BL & - 79813 & & & & & & & \\
\hline & Valne & & 96.62 & 155.33 & 212.52 & 268.49 & 9323.08 & 323.96 & 376.63 & 394.59 & 394.58 & 447.69 & 447.68 & 537.67 & 625.92 & 798.36 & 965.47 & 1722.56 & 3395.13 & 1.3889 & 1.034 & 0.8018 & 2.7310 \\
\hline & kGU/D & & 145.7 & 82.07 & 56.36 & 42.87 & 34.56 & & 28.96 & & 28.81 & & 24.98 & 18.79 & 15.08 & 10.87 & 8.560 & 4.372 & 2.103 & 1.388 & 1.034 & 0.0341 & 0.0339 \\
\hline & \(\mathrm{R}_{\text {Preo }}\) & & 0.0515 & j0.0453 & 0.0403 & 0.0388 & 0.0376 & & 0.0370 & & 0.0350 & & 0.0399 & 0.0389 & 0.0380 & 0.0368 & 0.0360 & 0.0348 & 0.0341 & 0.0342 & 0.0341 & 0.0341 & 0.03398 \\
\hline & \(y_{\text {PRCCO }}\) & & 0.0356 & 0.0238 & 0.0174 & 0.0142 & 0.0120 & & 0.0105 & & 0.0100 & & 0.0100 & 0.0075 & 0.0060 & 0.0043 & 0.0033 & 0.0017 & 0.00089 & 0.00053 & 0.00040 & 0.00031 & 00029 \\
\hline & \(\alpha_{\text {ORE }}\) & & 0.5776 & 0.7218 & 0.8237 & 0.8909 & 10.9435 & & 0.9841 & & 0.00017 & & 0.0029 & 0.249 & Q 402 & 0.574 & 0.668 & 0.832 & 0.920 & 0.9 & 0.96 & . 969 & 0.9 \\
\hline & \(\chi^{\prime \prime}\) & & -5.74 & -7.19 & -8.19 & -8.92 & & -8.27 & & -10.29 & & -10.93 & & -10.73 & -10.52 & -10.20 & -9.99 & -9.55 & -9.29 & -9.21 & -9.17 & -9.16 & -9.12 \\
\hline & \(\delta_{\text {AD }}\) & & -9.94 & -9.96 & -9.94 & -10.01 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & BL \\
\hline \multirow[t]{9}{*}{0.02} & MODE. & & & & D & D & D & B & D 46325 & B 467.52 & \(\frac{B L}{467.22}\) & B 53 & BL & BL 647.17 & BL 736 & BL 907.24 & O70.85 & 811.51 & 3459.88 & 5114.73 & 6771.30 & 8665.56 & 9464.48 \\
\hline & VAWE & & & & \(\frac{274.83}{65.28}\) & 3345.21 & 405.93 & 359.46 & \(\frac{463.25}{32.69}\) & 467.52 & \(\frac{467.22}{32.02}\) & 543.07 & 27.56 & 21.42 & 16.68 & 11.76 & 9.148 & 4.557 & 2.159 & 1.413 & 1.051 & 0.8138 & 0.7417 \\
\hline & R PROD & & & & 0.0497 & 70.0515 & 50.0503 & & 0.0465 & & 0.0350 & & 0.0399 & 0.0465 & 0.0424 & 0.0399 & 0.0387 & 0.0361 & 0.0348 & 0.0343 & 0.0341 & 0.0342 & 0.0339 \\
\hline & \(y_{\text {Prood }}\) & & & & 0.0406 & 0.0352 & 20.0300 & & 0.0250 & & 0.0200 & & 0.0200 & 0.0184 & 0.0137 & 0.0094 & 0.0073 & 0.0035 & 0.0017 & 0.0011 & 0.00080 & 0.00062 & 0.00056 \\
\hline &  & & & & 0.7886 & 0.8398 & 10.8872 & & 0.9365 & & 0.0017 & & 0.0016 & 0.077 & 0.317 & 0.528 & 0.636 & 0.823 & 0.917 & 0.946 & 0.960 & 0.969 & 0.972 \\
\hline & \% & & & & -7.28 & -8.39 & -8.36 & & & -8.94 & & -10.41 & & \(-11.06\) & -11.03 & -10.90 & -10.70 & -10.05 & -9.55 & -9.38 & -9.29 & -9.25 & -9.20 \\
\hline & \(\delta_{\text {AD }}\) & & & & -9.23 & -9.99 & -9.42 & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 17 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO DIFFUSION PLANT:



TABLE I. 18 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO DIFFUSION PLANT:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y{ }^{R}\) & & 0.005 & 0.01 & 0.015 & 0.020 & 0.025 & -0. & & & 0.035 & & - 0.0 & 4 \(\rightarrow\) & 0.05 & 0.06 & 0.08 & 0.1 & 0.2 & 0.5 & 1.0 & 2 & 6 & 15 \\
\hline \(\bigcirc\) & MODE & D & D & D 7 & 112.52 & 156.13 & & 211.67 & 243.81 & 258.14 & 258.16 & 295.09 & 299.90 & 382.19 & 462.93 & 619.93 & 771.21 & 1451.99 & 2949.68 & 4447.39 & 5945.107 & 7656.01 & 8378.66 \\
\hline \multirow[t]{6}{*}{} & VALUE & 0.54 & \(\frac{31.38}{1112}\) & 70.41 & 112.52 & 156.13 & 29.97 & 21.67 & 25.49 & & 25.37 & & 21.61 & 16.72 & 13.69 & 10.11 & 8.084 & 4.244 & 2.077 & 1.375 & 1.027 & 0.7986 & 0.7288 \\
\hline & KGU/D 36 & 364.5 & 111.2 & 65.90 & 46.9536 & 36.55 & 29.972 & & 25.49 & & 0.0347 & & 0.0347 & 0.0346 & 0.0347 & 0.0347 & 0.0347 & 0.0346 & 0.0348 & 0.0347 & 0.0348 & 0.0350 & 0.0349 \\
\hline & \(\mathrm{R}_{\text {PreD }} 0\) & 0.0326 & 0.0326 & \(\frac{0.0326}{0}\) & 0.03260 & 0.0326 & 0.0326 & & 0.0352 & & 0.0347 & & 0.034 & 0 & O & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & 0 & 0 & 0 & 0 \\
\hline & 8 PRCD & - & 0 & \(\bigcirc\) & \(\bigcirc\) & 0 & - & & O & & 0.011 & & 0.157 & 0.349 & 0.466 & 0.606 & 0.685 & 0.835 & 0.919 & 0.946 & 0.960 & 0.969 & 0.971 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.005 & MODE & D & D & D & D & D & D & B & D & B & BL & B & BL \\
\hline \multirow[t]{8}{*}{} & VAWE & 4.18 & 39.05 & 79.60 & 122.281 & 166.08 & 210.49 & 218.42 & 255.16 & 269.74 & 269.72 & 310.59 & 311.82 & 392.91 & 472.73 & 628.30 & 778.45 & 1455.12 & 2944.93 & 4435.02 & 5925.17 & 7627.64 & 8346.57 \\
\hline & KGU/D & 467.3 & 130.7 & 74.66 & 52.07 & 39.96 & 32.43 & & 27.32 & & 27.23 & & 23.31 & 17.76 & 14.39 & 10.50 & 8.346 & 4.325 & 2.100 & 1.387 & 1.036 & 0.8044 & 0.7340 \\
\hline & \(\mathrm{R}_{\text {preo }} 0\) & 0.0456 & 0.0388 & 0.0371 & 0.03620 & 0.0356 & 0.0350 & & 0.0352 & & 0.0350 & & 0.0371 & 0.0365 & 0.0361 & 0.0355 & 0.0355 & 0.0350 & 0.0348 & 0.0347 & 0.0347 & 0.0350 & 0.0349 \\
\hline & \(y_{\text {Preco }}\) & 0.0265 & 0.0143 & 0.0102 & 0.00800 & 0.0066 & 10057 & & 0.0050 & & 0.0050 & & 0.0046 & 0.0035 & 0.0028 & 0.0020 & 0.0016 & 0.00084 & 0.00041 & 0.00027 & 0.00020 & 0.00016 & 0.00014 \\
\hline & Chore & 0.2867 & 0.5891 & 0.7389 & 0.8345 & 0.9032 & 0.9570 & & 0.9956 & & 0.00090 & & 0.085 & 0.305 & 0.438 & 0.593 & 0.675 & 0.832 & 0.918 & 0.946 & 0.960 & 0.968 & 0.971 \\
\hline & \(\frac{\square}{}\) & -0.73 & -1.57 & -1.91 & -2.06 & -2.15 & . & -1.56 & 0.995 & -2.57 & & & -2.68 & -2.53 & -2.42 & -2.29 & \(-2.22\) & -2.08 & -2.00 & -1.97 & -1.96 & -1.98 & -1.96 \\
\hline & \(\delta_{A D 1}\) & 2.55 & -2.67 & -2.58 & -2.47 & \(-2.38\) & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.01 & MODE & & D & D & D & D & D & B & D & B & BL & B & BL \\
\hline \multirow[t]{8}{*}{} & Value & & 45.12 & 88.26 & 133.13 & 178.34 & 223.54 & 222.19 & 268.65 & 282.53 & 282.52 & 328.40 & 328.40 & 408.28 & 486.80 & 640.16 & 788.59 & 1459.84 & 2940,92 & 4423.13 & 5905.62 & 759958 & 8314.76 \\
\hline & KGU/D & & 149.6 & 82.99 & 56.82 & 43.12 & 34.72 & & 29.06 & & 28.90 & & 25.01 & 18.81 & 15.12 & 10.93 & 8.606 & 4.410 & 2.127 & 1.399 & 1.044 & 0.8103 & 0.7393 \\
\hline & R PROD & & 0.0497 & 0.0432 & 0.0400 & -0.0388 & 0.0379 & & 0.0373 & & 0.0350 & & 0.0398 & 0.0386 & 0.0380 & 0.0370 & 0.0363 & 0.0355 & 0.0351 & 0.0348 & 0.0348 & 0.0850 & 00349 \\
\hline & \(y_{\text {PREOD }}\) & & 0.0343 & 0.0228 & 0.0172 & 0.0141 & 0.0120 & & 0.0105 & & 0.0100 & & 0.0099 & 0.0074 & 0.0060 & 0.0043 & 0.0034 & 0.0017 & 0.00083 & 0.00054 & -0,0040 & 0.00032 & 0.0002 \\
\hline & \(\alpha 0 \mathrm{R} \in\) & & 0.5574 & 0.7129 & 0.8146 & 0.8843 & 0.9384 & & 0.9813 & & 0.00017 & & 0.0059 & 0.255 & 0.402 & 0.571 & 0.665 & 0.828 & 0.917 & 0.946 & 0.959 & 0.968 & 0.971 \\
\hline & \(\delta\) & & -1.41 & -1.86 & -2.17 & -2.38 & -1.40 & & & \(-2.70\) & & \(-3.15\) & & -2.99 & -2.85 & -2.64 & -2.51 & -2.24 & -2.07 & -2.02 & -2.00 & -2.01 & -1.99 \\
\hline & \(\delta_{A D}\) & & -2.53 & -2.61 & -2.66 & -2.69 & -1.49 & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.02 & 2 MODE & & & & D & D & D & B & D & B & BL & B & BL. & BL \\
\hline \multirow[t]{9}{*}{} & VALUE & & & & 145.45 & 195.81 & 243.15 & 205.24 & 290.01 & 293.14 & 292.91 & 353.94 & 353.85 & 439.98 & 518.63 & 669.91 & 815.27 & 473.82 & 2935.38 & 4400.93 & 5867.55 & 7544.32 & 2251.92 \\
\hline & KGU/D & & & & 65.78 & 49.61 & 39.42 & & 32.60 & & 32.02 & & 27.56 & 21.00 & 16.56 & 11.75 & 9.173 & 4.583 & 2.178 & 1.429 & 1.061 & 0.8224 & 0.7500 \\
\hline & \(\mathrm{R}_{\text {Probo }}\) & & & & 0.0494 & 40.0497 & 70.0468 & & 0.0441 & & 0.0350 & & 0.0399 & 0.0431 & 0.0411 & 0.0395 & 0.0387 & 0.0365 & 0.0355 & 0.0353 & 0.0348 & 0.0351 & 0.0349 \\
\hline & \(4_{\text {PREOD }}\) & & & & 0.0402 & 20.0341 & 100283 & & 0.0240 & & 0.0200 & & 0.0200 & 0.0169 & 0.0132 & 0.0093 & 0.0073 & 0.0036 & 0.0017 & 0.0011 & 0.00082 & 0.00064 & 0.0005 \\
\hline & \(\alpha 0 \in \in\) & & & & 0.777 & 0.8369 & 0.8943 & & 0.9438 & & 0.0017 & & 0.0016 & 0.153 & 0.341 & 0.534 & 0.636 & 0.821 & 0.915 & 0.944 & 0.959 & 0.968 & 0.971 \\
\hline & \(\delta\) & & & & -1.76 & -2.14 & -1.79 & & & -2.01 & & \(-3.00\) & & -3.27 & -3.25 & -3.12 & -2.97 & -2.54 & -2.23 & -2.12 & -2.07 & -2.07 & -2.04 \\
\hline & \(\delta_{A D}\) & & & & -2.26 & -2.56 & \(-2.00\) & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

RECYCLE TO DIFFUSION PLANT:
\(C_{U_{3} O_{8}}{ }^{*} 10 / \mathrm{LB}, C_{N^{*}}^{*} 0 / 6\), HiGH COSTS., \(L_{F}=0.01 \quad\left(R^{*}=0.0300\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(y{ }^{R}\) & & 0.005 & 0.01 & 0.015 & 0.02 & 0.025 & O. & \(3 \longrightarrow\) & & 0.035 & \(\rightarrow\) & 0.04 & 0.05 & 0.06 & 0.08 & 0.1 & 0.2 & 0.5 & 1.0 & 2 & 6 & 15 & \\
\hline 0 & MODE & D & D & D & D & D & D & B & D & B & BL & \\
\hline \multirow[t]{7}{*}{} & Value & 5.88 & 47.78 & 97.75 & 150.71 & 205.05 & 260.06 & 274.80 & 308.26 & 325.26 & 328.08 & 380.14 & 482.78 & 583.48 & 779.29 & 967.98 & 1817.07 & 3685.09 & 5553.12 & 7420.81 & 9555.68 & 10455.34 & \\
\hline & kGU/0 & 298.1 & 104.6 & 63.68 & 45.90 & 35.96 & 29.61 & & 25.27 & & 24.62 & 20.98 & 16.23 & 13.28 & 9.827 & 7.847 & 4.124 & 2.018 & 1.334 & 0.9955 & 0.7747 & 0.7086 & \\
\hline & \(\mathrm{R}_{\text {Peop }}\) & 0.0300 & 0.03000 & 0.0300 & 0.03000 & 00300 & 0.0302 & & 0.0352 & & 0.0316 & 0.0316 & 0.0316 & 0.0315 & 0.0317 & 0.0316 & 0.0317 & 0.0317 & 0.0316 & 0.0314 & 0.0318 & 0.0320 & \\
\hline & Ypead & 0 & 0 & 0 & \(\bigcirc\) & 0 & 0 & & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & \\
\hline & \(\epsilon\) & & & & & & & & & & 0.119 & 0.249 & 0.419 & 0.526 & 0.647 & 0.719 & 0.852 & 0.928 & 0.952 & 0.965 & 0.972 & 0.974 & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0005 & MODE & D & D & D & D & D & D & B & D & B & BL & \\
\hline \multirow[t]{8}{*}{} & VALuE- & -13.39 & 13.78 & 55.78 & 103.33 & 153.71 & 205.66 & 217.56 & 255.66 & 270.52 & 271.50 & 323.03 & 424.85 & 524.88 & 719.53 & 907.18 & 1751.86 & 3610.32 & 5469.06 & 7327.47 & 9451.51 & 10346.63 & \\
\hline & KGUP 3 & 382.8 & 123.4 & 72.35 & 51.01 & 39.38 & 32.07 & & 27.15 & & 26.62 & 22.41 & 17.09 & 13.85 & 10.13 & 8.060 & 4.188 & 2.034 & 1.346 & 1.003 & 0.7803 & 0.7136 & \\
\hline & R preol & 0.0397 & 00359 & 00344 & 0.0332 & 0.0326 & 0.0320 & & 0.0352 & & 0.0327 & 0.0323 & 0.0320 & 0.0317 & 0.0315 & 0.0316 & 0.0315 & 0.0314 & 0.0316 & 0.0314 & 0.0318 & 0.0320 & \\
\hline & Yproop & 0.0244 & 0.136 & 00097 & 0,075 & 0.0062 & 0.0053 & & 0.0050 & & 0.0046 & 0.0039 & 0.0030 & 0.0024 & 0.0018 & 0.0014 & 0,00074 & 000036 & 0.00024 & 0.00018 & 0.00014 & 0.00013 & \\
\hline & \(\alpha 0 R \in O\) & 0.3683 & 0.6423 & 0.7790 & 0.8686 & 0.9318 & 0.9815 & & 0.9957 & & 0.079 & 0.227 & 0.409 & 0.522 & 0.649 & 0.718 & 0.852 & 0.928 & 0.952 & 0.964 & 0.972 & 0.974 & \\
\hline & \(\delta\) & 3.85 & 6.75 & 8.30 & 9.33 & 10.06 & & 11.17 & & & 10.99 & 11.04 & 11.10 & 11.14 & 11.17 & 11.19 & 11.22 & 11.26 & 11.26 & 11.25 & 11.28 & 11.29 & \\
\hline & \(\delta_{\text {ADI }}\) & 10.45 & 10.51 & 10.65 & 10.74 & 10.80 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.01 & MODE & & D & D & D & D & D & B & D & B & BL & BL & BL & \(B L\) & BL & \\
\hline \multirow[t]{8}{*}{} & VALUE & & -17.82 & 17.69 & 60.66 & 107.34 & 156.10 & 159.49 & 205.98 & 218.78 & 218.78 & 269.33 & 369.40 & 468.10 & 660.90 & 847.21 & 1687.05 & 3535.90 & 5385.16 & 7234.23 & 9347.44 & 10238.03 & \\
\hline & KGU/D & & 139.8 & 80.30 & 55.71 & 42.53 & 34.37 & & 28.85 & & 28.76 & 24.03 & 18.09 & 14.53 & 10.49 & 8.286 & 4.257 & 2.056 & 1.357 & 1.011 & 0.7859 & 0.7186 & \\
\hline & \(R_{\text {Prabo }}\) & & 0.0415 & 0.0385 & 0.0368 & 0.0359 & 0.0350 & & 0.0352 & & 0.0350 & 0.0345 & 0.0336 & 0.0330 & 0.0321 & 0.0319 & 0.0315 & 0.0314 & 0.0316 & 0.0314 & 0.0318 & 0.0320 & \\
\hline & Yprep & & 0.0303 & 0.0210 & 0.0162 & 0.0133 & 0.0113 & & 0.0100 & & 0.0100 & 0.0084 & 0.0063 & 0.0050 & 0.0036 & 0.0029 & 0.0015 & 0,0072 & 0.00048 & 0.0033 & 0.00028 & 0.00026 & \\
\hline & \(\alpha 0 R \in\) & & 0.6226 & 07598 & 0.8485 & 0.9114 & 0.9613 & & 0.9957 & & 0.00017 & 0.162 & 0.371 & 0.496 & 0.639 & 0.714 & 0.852 & 0.928 & 0.952 & 0.964 & 0.972 & 0.974 & \\
\hline & \(\delta\) & & 6.51 & 7.91 & 8.85 & 9.57 & & 11.26 & & 10.60 & & 10.70 & 10.86 & 10.95 & 11.06 & 11.11 & 11.18 & 11.23 & 11.24 & 11.24 & 11.27 & 11.28 & \\
\hline & \(\delta_{\text {ADO }}\) & & 10.46 & 10.41 & 10.43 & 10.50 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 0.02 & MOOE & & & & D & D & D & B & D & B & \(B L\) & BL & \\
\hline \multirow[t]{9}{*}{} & Vaues & & & & -24.60 & 16.68 & 60.89 & 31.71 & 106.75 & 111.44 & 111.34 & 165.16 & 264.12 & 360.79 & 548.98 & 731.26 & 1558.78 & 3387.57 & 52.17 .77 & 7048.02 & 9139.63 & 10021.16 & \\
\hline & KEU/D & & & & 64.80 & 48.43 & 38.78 & & 32.26 & & 32.04 & 27.06 & 19.98 & 15.86 & 11.28 & 8.817 & 4.412 & 2.106 & 1.382 & 1.027 & 0.7974 & 0.7289 & \\
\hline & \(R_{\text {Prece }}\) & & & & 0.0488 & 0.0415 & 0.0400 & & 0.0388 & & 0.0350 & 0.0374 & 0.0361 & 0.0353 & 0.0342 & 0.0336 & 0.0320 & 0.0317 & 0.0315 & 0.0314 & 0.0318 & 0.0319 & \\
\hline & 4 Preod & & & & 0.0402 & 0.0298 & 0.0251 & & 0.0217 & & 0.0200 & 0.0185 & 0.0138 & 0.0110 & 0.0078 & 0.0061 & 0.0030 & 0.0015 & 0.00097 & 0.00072 & 0.00057 & 0.00052 & \\
\hline & pore & & & & 0.8010 & 0.8835 & 10.9337 & & 0.9746 & & 0.0017 & 0.077 & 0.311 & 0.450 & 0.608 & 0.693 & 0.848 & 0.926 & 0.951 & 0.964 & 0.972 & 0.974 & \\
\hline & \(\delta\) & & & & 8.61 & 9.21 & 10.42 & & & 10.50 & & 10.37 & 10.45 & 10.55 & 10.74 & 10.87 & 11.10 & 11.19 & 11.21 & 11.22 & 11.25 & 11.25 & \\
\hline & \(\delta_{\text {AOM }}\) & & & & 10.75 & 10.42 & 11.16 & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 20 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO DIFFUSION PLANT:
\(C_{U_{3} O_{8}}=\$ 10 / L B, C_{N}=\$ 60 / G, H / G H\) COSTS, \(L_{F}=0.01 \quad\left(R^{*}=0.0307\right)\)


TABLE I. 21 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO DIFFUSION PLANT:
\[
C_{\mathrm{U}_{3} \mathrm{O}_{8}}=\$ 8 / \angle B, C_{N}=\# O / G, \text { LOW COSTS, } L_{F}=0.01 \quad\left(R^{*}=0.0270\right)
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline y. & & 0.005 & 0.01 & 0.015 & 0.02 & O. & \(25 \rightarrow\) & & 0.03 & & -0. & \(35 \rightarrow\) & 0.04 & 0.05 & 0.06 & 0.08 & 0.1 & 0.2 & 0.5 & 1.0 & 2 & 6 & 15 \\
\hline & & & & & & & & & & & & & & BL \\
\hline \(\bigcirc\) & MOde & D & D & D & D & D & B & D & B & BL & B & BL & BL & BL & BL & BL & 858 & 161247 & 327231 & 4931.91 & 6590.97 & 8488.90 & 9288.64 \\
\hline \multirow[t]{7}{*}{} & VALue 3 & 3.20 & 39.83 & 84.59 & 132.38 & 181.61 & 191.51 & 228.03 & 241.94 & 242.73 & 278.93 & 289.43 & 335.69 & 426.89 & \(\frac{516.37}{13.01}\) & 690.35 & 7.678 & 4.038 & 1.975 & 1.309 & 0.9736 & 0.7573 & 0.6909 \\
\hline & KGU/D 3 & 323.7 & 107.4 & 64.61 & 46.34 & 36.20 & & 29.75 & & 29.25 & & 24.11 & 20.54 & 15.89 & 13.01 & 9.622 & 7.678 & 4.038 & 0.0283 & 0.0284 & 0.0279 & 0.0282 & 0.0280 \\
\hline & \(\mathrm{R}_{\text {prop }}\) & 0.0267 & 0.0267 & 0.0267 & 0.0267 & 0.0267 & & 0.0302 & & 0.0283 & & 0.0282 & 0.0282 & 0.0282 & \(\frac{0.0283}{0}\) & 0.0283
0 & \(\frac{0.0281}{0}\) & 0,0283 & 0.0283 & 0.0284 & 0 & 0 & 0 \\
\hline & yPROD & 0 & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & & 0 & & 0 & & 0 & 0.352 & 0.499 & 0.588 & 0.695 & 0.758 & 0.872 & 0.938 & 0.958 & 0.970 & 0.976 & 0.978 \\
\hline & \(\epsilon\) & & & & & & & & & 0.075 & & 0.239 & 0.352 & 0.499 & 0.588 & 0.695 & 0.758 & 0.872 & 0.938 & 0.958 & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & B1 & BL & BL & BL & BL & BL \\
\hline 0.005 & Mode & D & D & D & D & D & B & D & B & BL & B & BL & 486894 & & 340821 & \\
\hline \multirow[t]{8}{*}{} & Value- & -10.84 & 13.23 & 51.37 & 95.15 & 41.79 & 145.66 & 187.73 & 200.04 & 200.69 & 238.43 & 247.54 & 293.90 & 385.11 & 474.44 & 647.90 & 814.91 & 1565.92 & 3217.56 & 4868.94 & S20 & 0708.26 & \({ }^{204956}\) \\
\hline & KGU/D 4 & 411.5 & 126.1 & 73.15 & 51.29 & 39.43 & & 32.15 & & 31.42 & & 25.48 & 21.50 & 16.45 & 13.39 & 9.834 & 7.819 & 4.086 & 988 & 1.3 & 0.9808 & 0.7626 & 0.6956 \\
\hline & \(\mathrm{R}_{\text {peso }} 0\) & 0.0356 & 0.0318 & 0.0297 & 0.0285 & 0.0273 & & 0.0302 & & 0.0280 & & 0.0276 & 0.0275 & 0.0274 & 0.0275 & 0.0277 & 0.0276 & 0.0280 & 0.0279 & 0.0279 & 0.0279 & 0.0282 & 0.0 \\
\hline & Y peap 0 & \(0 \cdot 221\) & 00123 & 0,0085 & 0.0066 & 0.0054 & & 0.0050 & & 0.0046 & & 0.0037 & 0.0031 & 0.0024 & 0.0020 & 0.0015 & 0.0012 & 0.00063 & 0.00031 & 0.00020 & 0.00015 & 0.00012 & 0.00019 \\
\hline & - \(\alpha\) Or \(\in\) O & 0.3447 & 0.6424 & 0.7964 & 0.8962 & 0.9724 & & 0.9953 & & 0.084 & & 0.259 & 0.372 & 0.515 & 0.602 & 0.703 & 0.763 & 0.873 & 0.938 & 0.959 & 0.969 & 0.976 & 0.978 \\
\hline & \(\delta\) & 2.80 & 5.28 & 6.56 & 7.31 & & 8.98 & & & 8.17 & & 8.09 & 8.02 & 7.93 & 7.87 & 7.80 & 7.76 & 7.70 & 7.68 & 7.66 & 7.55 & 7.65 & 7.59 \\
\hline & \(\delta_{A D J}\) & 8.12 & 8.22 & 8.24 & 8.16 & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & BL \\
\hline 0.01 & MODE & & D & D & D & D & B & D & \(\frac{B}{158.27}\) & \(\frac{B L}{158.28}\) & B 200.66 & BL & BL9.96 & BL & BL 429.98 & 603.46 & 770.24 & 518.66 & 3162.62 & 4806.04 & 6449.23 & 8327.30 & 9119.68 \\
\hline \multirow[t]{7}{*}{} & VALUE & & -10.70 & 21.57 & 60.66 & 103.20 & 96.06 & 147.85 & 158.27 & 158.28 & 200.66 & 27.83 & \(\frac{249.96}{23.13}\) & \(\frac{340.67}{17.32}\) & 13.91 & 10.09 & 7.978 & 4.133 & 2.008 & 1.324 & 0.9881 & 0.7679 & 0.7003 \\
\hline & \begin{tabular}{l} 
KGU/O \\
\hline \(\mathrm{R}_{\text {ProD }}\) \\
\hline
\end{tabular} & & 0.0373 & 10.0344 & [0329 & 42.0318 & & 0.0308 & & 0.0300 & & 0.0305 & 0.0295 & 0.0283 & 0.0278 & 0.0275 & 0.0274 & 0.0277 & 0.0279 & 0.0279 & 0.0279 & 0.0282 & 0.0280 \\
\hline & PPROD & & 0.0276 & 10.0191 & 0.0148 & 0.0121 & & 0.0102 & & 0.0100 & & 0.0084 & 0.0069 & 0.0051 & 0.0041 & 0.0030 & 0.0023 & 0.0013 & 0.00062 & 0.00041 & 0.00031 & 0.00024 & 000020 \\
\hline & \(\alpha\) ORE & & 0.6182 & 0.7675 & 0.8637 & 0.9341 & & 0.9902 & & 0.00004 & & 0.156 & 0.311 & 0.493 & 0.595 & 0.705 & 0.765 & 0.875 & 0.938 & 0.959 & 0.969 & 0.976 & 0.978 \\
\hline & \(\delta\) & & 5.01 & 6.22 & 7.04 & 8.64 & & & & 8.20 & & 8.22 & 8.24 & 8.20 & 8.12 & 8.00 & 7.92 & 7.77 & 7.70 & 7.66 & 7.58 & 7.67 & 7.61 \\
\hline & \(\delta_{A D}\) & & 8.10 & 8.10 & 8.15 & 9.25 & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & BL \\
\hline 0.02 & 2 MODE & & & & D & D & B & D & B & BL & B & BL & BL & & & & & & 3051.51 & 4679.02 & 6306.21 & 8164.81 & 8949.80 \\
\hline \multirow[t]{8}{*}{} & VALE & & & & -5.22 & 32.68 & -28.56 & 672.97 & 68.86 & \(\frac{68.87}{38.69}\) & 124.35 & 124.40 & \(\frac{168.90}{26.29}\) & 256.16 & \(\frac{342.21}{15.37}\) & 110.85 & \(\frac{67.10}{8.430}\) & 4.249 & 2.041 & 1.347 & 1.003 & 0.7787 & 0.7100 \\
\hline & KGU/D & & & & 64.10 & 10.0374 & & 38.64 & & 38.69 & & \(\frac{31.91}{0.0345}\) & 0.0336 & 19.41 & 0.0309 & 0.0292 & 0.0282 & 0.0275 & 0.0276 & 0.0280 & 0.0279 & 0.0282 & 0.0281 \\
\hline & \% \({ }_{\text {PROD }}\) & & & & 0.0337 & 0.0274 & & 0.0230 & & 0.0200 & & 0.0197 & 0.0162 & 0.0119 & 0.0094 & 0.0064 & 0.0049 & 0.0025 & 0.0012 & 0.00083 & 0.00062 & 0.00049 & 0.0004 \\
\hline & \(\alpha 06 \in\) & & & & 0.8293 & 30.8983 & & 0.9537 & & 0.00004 & & 0.017 & 0.188 & 0.403 & 0.532 & 0.679 & 0.754 & 0.875 & 0.938 & 0.958 & 0.969 & 0.976 & 0.978 \\
\hline & \(\delta\) & & & & 6.75 & 7.75 & & 8.25 & & & & 7.96 & 8.00 & 8.11 & 8.19 & 8.24 & 8.19 & 7.94 & 7.77 & 7.71 & 7.65 & 7.72 & 7.65 \\
\hline & \(\delta_{\text {AD }}\) & & & & 8.14 & 8.63 & & 8.65 & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE I. 22 MAXIMUM URANIUM VALUES AND OPTIMUM CONDITIONS.
RECYCLE TO DIFFUSION PLANT:
\(C_{U_{3} O_{8}}=^{*} 8 / L B, C_{N}={ }^{*} 60 / 6\), Low CosTs, \(L_{F}=0.01\) ( \(R^{*}-0.0275\) )


TABLE I. 23 Maximum Uranium Values and Optimum Conditions
Recycle to Diffusion Plant - y=0.15:
Recycle to Diffusion Plant - \(y=0.15\) :
Blending with Natural Uranium
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(L_{\text {F }}\) & Unit Costs & \[
\begin{gathered}
{ }^{\mathrm{C}_{3} \mathrm{O}_{8}} \\
(\$ / 1 \mathrm{~b}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
C_{N} \\
(\$ / q N p) \\
\hline
\end{gathered}
\] & R & \[
\begin{aligned}
& V_{B}(R, 0) \\
& \left(\$ / k^{\prime} U\right)
\end{aligned}
\] & \begin{tabular}{l}
\[
V_{B}(R, 0.15)
\] \\
(\$/kgU)
\end{tabular} & \[
\begin{gathered}
\mathrm{F}_{\mathrm{B}} \\
(\mathrm{kgU} / \mathrm{day})
\end{gathered}
\] & \(\mathrm{R}_{\mathrm{B}}\) & \(\mathrm{Y}_{\mathrm{B}}\) & \(\epsilon\) & \[
\begin{array}{r}
S(R, 0.15) \\
(\$ / g U-236) \\
\hline
\end{array}
\] \\
\hline \multirow[t]{21}{*}{0.01} & \multirow[t]{6}{*}{High} & \multirow[t]{3}{*}{8} & \multirow[t]{3}{*}{0} & 2 & 6690.93 & 4204.51 & 1.317 & 0.0350 & 0.0071 & 0.953 & 9.88 \\
\hline & & & & 6 & 8616.77 & 5821.98 & 1.000 & 0.0345 & 0.0054 & 0.964 & 10.02 \\
\hline & & & & 15 & 9427.84 & 6506.71 & 0.9073 & 0.0342 & 0.0049 & 0.967 & 10.05 \\
\hline & & & \multirow[t]{3}{*}{60} & 2 & 6708.45 & 6065.02 & 1.339 & 0.0374 & 0.0077 & 0.949 & -2.42 \\
\hline & & & & 6 & 8638.94 & 7676.02 & 1.016 & 0.0368 & 0.0059 & 0.961 & -2.22 \\
\hline & & & & 15 & 9451.80 & 8357.81 & 0.9179 & 0.0359 & 0.0052 & 0.965 & -2.16 \\
\hline & & \multirow[t]{3}{*}{6} & \multirow[t]{3}{*}{0} & 2 & 5925.06 & 3699.65 & 1.332 & 0.0362 & 0.0074 & 0.951 & 8.91 \\
\hline & & & & 6 & 7630.51 & 5132.97 & 1.009 & 0.0352 & 0.0056 & 0.963 & 9.02 \\
\hline & & & & 15 & 8351.14 & 5739.50 & 0.9160 & 0.0351 & 0.0051 & 0.966 & 9.06 \\
\hline & & & \multirow[t]{3}{*}{60} & 2 & 5945.10 & 5508.90 & 1.358 & 0.0392 & 0.0081 & 0.946 & -3.04 \\
\hline & & & & 6 & 7656.01 & 6936.98 & 1.029 & 0.0384 & 0.0062 & 0.959 & -2.86 \\
\hline & & & & 15 & 8378.66 & 7541.74 & 0.9311 & 0.0377 & 0.0055 & 0.963 & -2.80 \\
\hline & & \multirow[t]{3}{*}{10} & \multirow[t]{3}{*}{0} & 2 & 7420.81 & 4685.69 & 1.302 & 0.0337 & 0.0068 & 0.955 & 10.81 \\
\hline & & & & 6 & 9555.68 & 6480.52 & 0.9877 & 0.0331 & 0.0052 & 0.966 & 10.95 \\
\hline & & & & 15 & 10455.34 & 7240.24 & 0.8936 & 0.0325 & 0.0046 & 0.969 & 10.98 \\
\hline & & & \multirow[t]{3}{*}{60} & 2 & 7435.03 & 6589.44 & 1.325 & 0.0362 & 0.0074 & 0.951 & -1.80 \\
\hline & & & & 6 & 9572.57 & 8375.02 & 1.003 & 0.0352 & 0.0056 & 0.963 & -1.59 \\
\hline & & & & 15 & 10475.70 & 9130.19 & 0.9104 & 0.0351 & 0.0051 & 0.966 & -1.51 \\
\hline & & \multirow[t]{3}{*}{8} & \multirow[t]{3}{*}{100} & 2 & 6719.94 & 7330.78 & 1.355 & 0.0392 & 0.0081 & 0.946 & -10.79 \\
\hline & & & & 6 & 8653.60 & 8936.06 & 1.026 & 0.0384 & 0.0062 & 0.959 & -10.54 \\
\hline & & & & 15 & 9469.88 & 9615.73 & 0.9282 & 0.0377 & 0.0055 & 0.963 & -10.44 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{6}{*}{Low}} & \multirow[t]{3}{*}{8} & \multirow[t]{3}{*}{0} & 2 & 6590.97 & 4370.84 & 1.252 & 0.0288 & 0.0056 & 0.963 & 8.21 \\
\hline & & & & 6 & 8488.90 & 5996.19 & 0.9433 & 0.0277 & 0.0041 & 0.973 & 8.13 \\
\hline & & & & 15 & 9288.64 & 6681.81 & 0.8552 & 0.0275 & 0.0037 & 0.975 & 8.09 \\
\hline & & & \multirow[t]{3}{*}{60} & 2 & 6604.37 & 6119.96 & 1.293 & 0.0324 & 0.0065 & 0.957 & -3.37 \\
\hline & & & & 6 & 8504.89 & 7716.65 & 0.9723 & 0.0308 & 0.0047 & 0.969 & -3.25 \\
\hline & & & & 15 & 9307.04 & 8394.17 & 0.8840 & 0.0308 & 0.0043 & 0.971 & -3.22 \\
\hline
\end{tabular}

\section*{APPENDIX J}

EFFECT OF NP-237 PRICE ON U-236 PENALTY
The tables of this appendix give the magnitude of the change of the \(U-236\) penalty \(\delta\) when the price of \(N p-237\) per gram, \(C_{N}\), is increased by specified amounts. Table J.l and Table J. 2 give results for recycle to fabrication and recycle to a diffusion plant, respectively. Units for the quantity tabulated are given as negative in the tables to indicate that \(\delta\) decreases as \(C_{N}\) increases.

Various sets of economic conditions are considered. The unit cost condition and the price of natural \(\mathrm{U}_{3} \mathrm{O}_{8}\left(\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}\right)\) are varied, and \(C_{N}\) is increased either from \(\$ 0 / \mathrm{g}\) to \(\$ 60 / \mathrm{g}\) or from \(\$ 0 / \mathrm{g}\) to \(\$ 100 / \mathrm{g}\) (column marked \({ } \mathrm{C}_{\mathrm{N}}\) Limits"). Results are given for various values for the weight ratio of U-235 to U-238 in feed uranium \(R\) and for the weight fraction of U-236 in feed uranium \(y\).

TABLE U. 1 CHANGE OF U-236 PENALTY WITH NEPTUNIUM PRICE -
RECYCLE TO FABRICATION
\(\left(-\frac{\$ / G U-236}{\$ / G N P-237}\right)\)


TABLE U. 2 CHANGE OF U-236 PENALTY WITH NEPTUNIUM PRICE -
RECYCLE TO DIFFUSION PLANT
\(\left(-\frac{\$ / G U-236}{\$ / G N P-237}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline UNIT COSTS & \(\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}\) & \(C_{N}\) LIMITS & \(y-R\) & 0.005 & 0.01 & 0.02 & 0.03 & 0.04 & 0.06 & 0.10 & 0.5 & 1.0 & 2 & 6 & 15 \\
\hline & ( \((\% / L B)\) & ( \((\mathrm{l} / \mathrm{GNP}\) ) & & & & & & & & & & & & & \\
\hline HIGH & 8 & 0,60 & \[
\begin{aligned}
& 0.005 \\
& 0.02 \\
& 0.15
\end{aligned}
\] & 0.064 & 0.121 & \[
\begin{aligned}
& 0.167 \\
& 0.151
\end{aligned}
\] & \[
\begin{aligned}
& 0.190 \\
& 0.177
\end{aligned}
\] & \[
\begin{aligned}
& 0.202 \\
& 0.198
\end{aligned}
\] & \[
\begin{aligned}
& 0.200 \\
& 0.205
\end{aligned}
\] & \[
\begin{aligned}
& 0.197 \\
& 0.205
\end{aligned}
\] & \[
\begin{aligned}
& 0.194 \\
& 0.197
\end{aligned}
\] & \[
\begin{aligned}
& 0.194 \\
& 0.196
\end{aligned}
\] & \[
\begin{aligned}
& 0.194 \\
& 0.195 \\
& 0.205
\end{aligned}
\] & \begin{tabular}{l}
0.194 \\
0.195 \\
0.204
\end{tabular} & \begin{tabular}{l}
0.193 \\
0.195 \\
0.204
\end{tabular} \\
\hline & & 0,100 & \[
\begin{aligned}
& 0.005 \\
& 0.02 \\
& 0.15
\end{aligned}
\] & 0.064 & 0.121 & 0.167
0.151 & 0.190
0.178 & \[
\begin{aligned}
& 0.204 \\
& 0.199
\end{aligned}
\] & \[
\begin{aligned}
& 0.201 \\
& 0.207
\end{aligned}
\] & 0.198
0.206 & \[
\begin{aligned}
& 0.195 \\
& 0.198
\end{aligned}
\] & \[
\begin{aligned}
& 0.195 \\
& 0.197
\end{aligned}
\] & \[
\begin{aligned}
& 0.195 \\
& 0.196 \\
& 0.207
\end{aligned}
\] & \[
\begin{aligned}
& 0.195 \\
& 0.196 \\
& 0.206
\end{aligned}
\] & \begin{tabular}{l}
0.194 \\
0.195 \\
0.205
\end{tabular} \\
\hline & 6 & 0,60 & \[
\begin{aligned}
& 0.005 \\
& 0.02 \\
& 0.15
\end{aligned}
\] & 0.055 & 0.112 & 0.159
0.145 & 0.182
0.172 & \[
\begin{aligned}
& 0.197 \\
& 0.192
\end{aligned}
\] & \[
\begin{aligned}
& 0.194 \\
& 0.199
\end{aligned}
\] & 0.192
0.199 & 0.190
0.192 & 0.190
0.191 & \[
\begin{aligned}
& 0.189 \\
& 0.190 \\
& 0.199
\end{aligned}
\] & \[
\begin{aligned}
& 0.190 \\
& 0.191 \\
& 0.198
\end{aligned}
\] & \[
\begin{aligned}
& 0.190 \\
& 0.190 \\
& 0.198
\end{aligned}
\] \\
\hline \[
1
\] & 10 & 0,60 & \[
\begin{aligned}
& 0.005 \\
& 0.02 \\
& 0.15
\end{aligned}
\] & 0.072 & 0.128 & \[
\begin{aligned}
& 0.174 \\
& 0.156
\end{aligned}
\] & \[
\begin{aligned}
& 0.197 \\
& 0.181
\end{aligned}
\] & \[
\begin{aligned}
& 0.207 \\
& 0.204
\end{aligned}
\] & \[
\begin{aligned}
& 0.204 \\
& 0.210
\end{aligned}
\] & \[
\begin{aligned}
& 0.201 \\
& 0.210
\end{aligned}
\] & \[
\begin{aligned}
& 0.198 \\
& 0.201
\end{aligned}
\] & \[
\begin{aligned}
& 0.197 \\
& 0.200
\end{aligned}
\] & \[
\begin{aligned}
& 0.197 \\
& 0.198 \\
& 0.210
\end{aligned}
\] & \begin{tabular}{l}
0.198 \\
0.200 \\
0.209
\end{tabular} & \begin{tabular}{l}
0.197 \\
0.198 \\
0.208
\end{tabular} \\
\hline Low & 8 & 0,60 & \[
\begin{aligned}
& 0.005 \\
& 0.02 \\
& 0.15
\end{aligned}
\] & 0.062 & 0.119 & \[
\begin{aligned}
& 0.163 \\
& 0.148
\end{aligned}
\] & \[
\begin{aligned}
& 0.190 \\
& 0.172
\end{aligned}
\] & \[
\begin{aligned}
& 0.187 \\
& 0.193
\end{aligned}
\] & \[
\begin{aligned}
& 0.184 \\
& 0.197
\end{aligned}
\] & \[
\begin{aligned}
& 0.182 \\
& 0.192
\end{aligned}
\] & 0.181
0.182 & \[
\begin{aligned}
& 0.181 \\
& 0.181
\end{aligned}
\] & \[
\begin{aligned}
& 0.179 \\
& 0.181 \\
& 0.193
\end{aligned}
\] & \[
\begin{aligned}
& 0.180 \\
& 0.181 \\
& 0.190
\end{aligned}
\] & \[
\begin{aligned}
& 0.179 \\
& 0.180 \\
& 0.189
\end{aligned}
\] \\
\hline
\end{tabular}

\begin{abstract}
APPENDIX K

COMPARISON OF MATCHED-R AND OPTIMUM

CONSTANT-KEY-WEIGHT CASCADE CHARACTERISTICS
Studies by de la Garza (30) have shown that the
\end{abstract} discrepancy between separative work in a "matched-R" cascade \({ }^{(12)}\) and in more efficient modes of operation becomes greater as the U-236 content of diffusion plant feed increases. Consequently, to see if significant error might have been made by using the matched- \(R\) method in this study, one of the cases with the highest \(U-236\) content in diffusion plant feed was examined using the "optimum constant-key-weight" method of diffusion plant operation. (30) It has been shown by de la Garza \({ }^{(30)}\) that the optimum constant-key-weight method yields a separative work requirement much closer to the absolute minimum than does the matched- \(R\) method. As a result, if the separative work calculated by the matched- \(R\) method and the optimum constant-key-weight method are not significantly different for the case examined, it may be concluded that the separative work calculated by the matched-R method is sufficiently close to the minimum for all other cases as well.

The case examined is shown in Figure K.l. The nomenclature used is summarized at the end of the appendix. As usual, \(R_{i}\) and \(Y_{i}\) refer to the weight ratio of U-235 to U-238 and the weight fraction of U-236, respectively, in the uranium stream denoted by


FIGURE K.l Test Case for Comparison of Matched-R and Optimum Constant-Key-Weight Cascade Performance
i, while \(F_{i}\) is the time-averaged uranium flow rate. The value indicated for \(R_{W}\) is optimum for a \(U_{3} O_{8}\) price of \(\$ 8 / 1 \mathrm{~b}\) and a unit separative work charge of \(\$ 30 / \mathrm{kgU}\). The values indicated for \(R_{S}, Y_{S}\), and \(F_{S}\) apply to uranium discharged from the \(P W R\) when \(R_{R}=0.10\) and \(y_{R}=0.20\) for the reactor feed uranium. \(R_{p}\) is specified as 0.10. From the known values of \(R_{S}\) and \(Y_{S}\), the weight fractions of \(U-235, x_{S}\), and \(U-238, z_{S}\), in the spent uranium were calculated and are indicated in the figure. The remaining unknowns are \(Y_{P}, F_{P}, Y_{W}\), and \(F_{W}\). Of particular interest is a comparison of results for separative work, for \(Y_{P}\), and for \(F_{P}\) when the matched\(R\) and optimum constant-key-weight methods are applied to the test case. For the matched-R case, the procedure used in calculating \(Y_{P}, F_{P}, Y_{W}\), and \(F_{W}\) is described in detail in Part A. 2 of Section IV, while the separaEive work \(\Delta\), in \(k g U / d a y\), is calculated using Equation V. 2.

Following Mitchell's work (31), the principal equations for the optimum constant-key-weight cascade can be written in terms of the fraction \(A_{i}\) of component i in the feed which is recovered in the product as:

U-235: \(\quad A_{5}=\frac{F_{P}\left(1-Y_{P}\right) R_{P}}{F_{S} x_{S}\left(1+R_{P}\right)}=\frac{1-e^{-(M-235) N_{S}}}{1-e^{-(M-235) N_{T}}}\)

U-236: \(\quad A_{6}=\frac{F_{P} Y_{P}}{F_{S} Y_{S}}=\frac{1-e^{-(M-236) N_{S}}}{1-e^{-(M-236) N_{T}}}\)
\[
\begin{align*}
& \text { U-238: } A_{8}=\frac{F_{P}\left(1-Y_{P}\right)}{F_{S} z_{S}\left(1+R_{P}\right)}=\frac{1-e^{-(M-238) N_{S}}}{1-e^{-(M-238) N_{T}}}  \tag{K.3}\\
& \Delta=2.25 F_{S}\left[\frac{x_{S}\left(A_{5} N_{T}-N_{S}\right)}{M-235}+\frac{Y_{S}\left(A_{6} N_{T}-N_{S}\right)}{M-236}+\frac{z_{S}\left(A_{8} N_{T}-N_{S}\right)}{M-238}\right] \tag{K.4}
\end{align*}
\]

In these equations, \(N_{S}\) is the product of the number of stripping stages and the enrichment factor for isotopes differing by one mass number, while \(N_{T}\) is the product of the total number of stages and the enrichment factor for isotopes differing by one mass number. \(M\) is the cascade "key weight" and is defined as the arithmetic mean of the mass numbers of the two "key" components, i.e., the two components whose weight ratio is matched at each point in the cascade where two streams are mixed. The key components need not be physically real isotopes, as "dummy" components can be assumed present. The matched-R cascade is actually a constant-key-weight cascade having \(M=236.5\), with the key components being U-235 and U-238.

For each of a series of assumed values for \(M\), Equations K.1, K.2, and K. 3 can be used together with cascade mass balance relations for \(\mathrm{U}-235, \mathrm{U}-236\), and total uranium to determine \(N_{S}, N_{T}, F_{P}, Y_{P}, F_{W}\), and \(Y_{W}\), and \(\Delta\) can be calculated from Equation K.4. The value of \(M\) which gives minimum \(\Delta\) is denoted by \(M^{*}\), and the cascade operating with a key weight of \(M^{*}\) is the optimum constant-key-weight cascade.

Calculated results are given in Table K.1. The close agreement between the separative work requirements and the values of \(F_{P}\) and \(y_{P}\) for the matched- \(R\) method and the optimum constant-key-weight method for this high-y \(y_{S}\) case indicates that no significant error has been introduced by using the matched-R method throughout this work.

\section*{Nomenclature}
\(A_{5}\) fraction of the U-235 contained in the feed which is recovered in the product
\(A_{6}\) fraction of the \(U-236\) contained in the feed which is recovered in the product
\({ }^{A} 8\) fraction of the \(U-238\) contained in the feed which is recovered in the product
\(F_{P}\) time-averaged flow rate of uranium for the product stream from the diffusion plant, kgU/day
\(F_{S}\) time-averaged flow rate of uranium for the feed stream to the diffusion plant, kgU/day
\(F_{W}\) time-averaged flow rate of uranium for the tails stream from the diffusion plant, kgU/day

M
M* optimum constant "key weight" of the cascade
\(N_{S}\) product of the number of stripping stages and the enrichment factor for isotopes differing by one mass number
\(N_{T}\) product of the total number of stages and the enrichment factor for isotopes differing by one mass number
```

 TABLE K.l
 Comparison of Cascade Characteristics Given by
 Matched-R and Optimum Constant-Key-Weight Methods

```

Note: Conditions for test case are specified in Figure K.l
\begin{tabular}{lcc}
\begin{tabular}{c} 
Cascade Operating \\
Method
\end{tabular} & \(\frac{\text { Matched-R }}{\text { Mey }}\)
\end{tabular}\(\quad\)\begin{tabular}{c}
\(\frac{\)\begin{tabular}{c}
\text { Optimum Constant- } \\
\text { Key-Weight }
\end{tabular}}{} \begin{tabular}{l} 
Key Weight \\
Separative Work,
\end{tabular}
\end{tabular}

> kgu/day
31.755
31.726

U-236 Fractions:
\begin{tabular}{lll} 
Product, \(Y_{P}\) & 0.27105 & 0.27123 \\
Tails, \(Y_{W}\) & 0.04741 & 0.04682
\end{tabular}

Uranium Flowrates:
\begin{tabular}{lll} 
Product, \(F_{P}\) & 27.1242 & 27.1337 \\
Tails, \(F_{W}\) & 11.2093 & 11.1998
\end{tabular}
\(R_{p}\) weight ratio of \(U-235\) to \(U-238\) in the product stream from the diffusion plant
\(R_{R}\) weight ratio of \(U-235\) to \(U-238\) in the reactor feed uranium
\(R_{S}\) weight ratio of U-235 to U-238 in the feed stream to the diffusion plant
\(R_{W}\) weight ratio of \(U-235\) to \(U-238\) in the tails stream from the diffusion plant
\(x_{S}\) weight fraction of \(U-235\) in the uranium feed stream to the diffusion plant
\(Y_{P}\) weight fraction of \(U-236\) in the uranium product stream from the diffusion plant
\(Y_{R}\) weight fraction of \(U-236\) in the reactor feed uranium
\(Y_{S}\) weight fraction of \(U-236\) in the uranium feed stream to the diffusion plant
\(Y_{W}\) weight fraction of \(U-236\) in the uranium tails stream from the diffusion plant
\(z_{S}\) weight fraction of \(U-238\) in the uranium feed stream to the diffusion plant
\(\Delta\) average daily separative work requirement of the cascade, kgu/day

\section*{APPENDIX L}

FLOWSHEET CHARACTERISTICS AS FUNCTIONS
OF REACTOR FEED COMPOSITION \(R_{R}\) AND \(Y_{R}\)
The tables of this appendix contain detailed reactor and basic recycle flowsheet characteristics under steadystate operating conditions for all reactor feed isotopic compositions considered. Results are presented as printed out by the scatter-refueling version of the MOVE code. Definitions for all variables appearing in the tables are given on subsequent pages. Under "Calculated Results", the first block of data given is common to all recycle flowsheets for a fixed reactor feed isotopic composition. Recycle flowsheet characteristics are then given for each of a series of \(R W\) values, where \(R W\) is the weight ratio of U-235 to U-238 in the tails stream from the diffusion plant used to re-enrich recycled spent uranium. Note that when "None" is entered under RW, results given are for the recycle-to-fabrication case (Figure IV.I); otherwise, recycle to a diffusion plant is implied (Figure IV.2). In addition to the values of RW established in Appendix \(F\) corresponding to \(\mathrm{U}_{3} \mathrm{O}_{8}\) prices of \(\$ 10, \$ 8\), and \(\$ 6 / 1 \mathrm{~b}\), results are given for \(R W=0.0032052\), which is the optimum value corresponding to a \(\mathrm{U}_{3} \mathrm{O}_{8}\) price of \(\$ 4 / 1 \mathrm{~b}\) and a charge for separative work of \(\$ 30 / \mathrm{kgU}\) 。

Definitions for all output variables are given below. Where applicable, the symbol used in the recycle flowsheets
shown in Figures IV. 1 and IV. 2 is given in parentheses following the definition of the output variable to which it corresponds.

B \(\quad\) Average discharge burnup, MWD/T
F Time-averaged flowrate of makeup uranium fed to fabrication plant, kgU/day (F)

FP. Time-averaged flowrate of uranium in product stream from diffusion plant used to re-enrich recycled uranium, \(\mathrm{kgU} / \mathrm{day}\left(\mathrm{F}_{\mathrm{p}}\right.\) )

FR Time-averaged flowrate of uranium fed to reactor, kgU/day ( \(\mathrm{F}_{\mathrm{R}}\) )

FRLC Fractional loss of uranium during conversion of \(\mathrm{UO}_{3}\) to \(\mathrm{UF}_{6}\), based on product from conversion ( \(L_{C}\) )

FRLFB Fractional loss of uranium during fabrication, based on fabricated product ( \(L_{F}\) )

FRLRP Fractional loss of Pu and Np during reprocessing, based on material fed to reprocessing plant ( \(L_{R P}\) )

FRLRU Fractional loss of uranium during reprocessing, based on uranium fed to reprocessing plant ( \(L_{R U}\) )

FS Time-averaged flowrate of uranium leaving reprocessing plant, kgu/day ( \(\mathrm{F}_{\mathrm{S}}\) )

FSP Time-averaged flowrate of uranium discharged from reactor, kgu/day
\begin{tabular}{|c|c|}
\hline FW & Time-averaged flowrate of uranium in tails stream from diffusion plant used to re-enrich recycled uranium, kgu/day ( \(\mathrm{F}_{\mathrm{W}}\) ) \\
\hline KEFF & Multiplication factor at start of steady-state cycle, with equilibrium xenon and samarium but with no control poison \\
\hline NTAR & Number of RW values (see RW below) to be considered for the recycle-to-diffusion plant scheme \\
\hline PF & Average load factor for power plant \\
\hline PTH & Full-power thermal output from reactor, MW \\
\hline R & Weight ratio of \(U-235\) to \(U-238\) in makeup uranium fed to fabrication plant (R) \\
\hline RP & Weight ratio of \(U-235\) to \(U-238\) in product stream from diffusion plant used to re-enrich recycled uranium ( \(R_{P}\) ) \\
\hline RR & Weight ratio of \(U-235\) to \(U-238\) in uranium fed to reactor ( \(R_{R}\) ) \\
\hline RS & Weight ratio of U-235 to U-238 in uranium leaving reprocessing plant ( \(\mathrm{R}_{\mathrm{S}}\) ) \\
\hline RW & Weight ratio of U-235 to U-238 in tails stream from diffusion plant used to re-enrich recycled uranium ( \(\mathrm{R}_{\mathrm{W}}\) ) \\
\hline TCYC & Time interval between reactor refuelings, days \\
\hline TOTINV & Total mass of uranium in reactor at start of steadystate cycle, kgu \\
\hline
\end{tabular}

TRES Residence time in reactor for fuel charged, days

WCH5 Mass of \(U-235\) in batch charged to reactor during refueling, kg

WCH6 Mass of \(\mathrm{U}-236\) in batch charged to reactor during refueling, kg

WCH8 Mass of U-238 in batch charged to reactor during refueling, kg

WK Time-averaged flowrate of fissile plutonium leaving reprocessing plant, kg/day (K)

WKP Time-averaged flowrate of fissile plutonium leaving reactor, kg/day

WN Time-averaged flowrate of Np-237 leaving reprocessing plant, kg/day (N)

WNP Time-averaged flowrate of \(N p-237\) leaving reactor, kg/day
\(X \quad\) Weight fraction of \(U-235\) in makeup uranium fed to fabrication plant

Y Weight fraction of \(U-236\) in makeup uranium fed to fabrication plant (y)

YP Weight fraction of \(U-236\) in product stream from diffusion plant used to re-enrich recycled uranium ( \(y_{p}\) )

YR Weight fraction of \(U-236\) in uranium fed to reactor ( \(Y_{R}\) )
YS Weight fraction of U-236 in uranium leaving reprocessing plant ( \(y_{S}\) )

Weight fraction of U-236 in tails stream from diffusion plant used to re-enrich recycled uranium ( \(y_{W}\) )

A key to the numbering of the 52 cases considered is given on the following page, with each case characterized by specified values for \(R_{R}\) and \(Y_{R}\), the weight ratio of \(U-235\) to U-238 in reactor feed uranium and the weight fraction of U-236 in reactor feed uranium, respectively. The 52 tables are then given in numerical order.

TABLE L. 1 Table Numbers for Steady-State
Flowsheet Characteristics
\begin{tabular}{l|c|c|c|c|c|c|c|c|c|}
\hline 0.0 & 2 & 7 & 12 & 18 & 25 & 32 & & & \\
\hline 0.01 & 3 & 8 & 13 & 19 & 26 & 33 & & & \\
\hline 0.025 & 4 & 9 & 14 & 20 & 27 & 34 & 39 & & \\
\hline 0.04 & 5 & 10 & & & & & & & \\
\hline 0.05 & 6 & 11 & 15 & 21 & 28 & 35 & 40 & 45 & \\
\hline 0.08 & & & 16 & 22 & 29 & 36 & 41 & 46 & 50 \\
\hline 0.12 & & & 17 & 23 & 30 & 37 & 42 & 47 & 51 \\
\hline 0.20 & & & & 24 & 31 & 38 & 43 & 48 & 52 \\
\hline 0.28 & & & & & & & 44 & 49 & 53 \\
\hline
\end{tabular}

TABLE L. 2 Steady-State Flowsheet Characteristics
\(R_{R}=0.02 ; Y_{R} \geq 0.0\)


> TABLE L. 5 Steady-State Flowsheet Charecteristics
> \(R_{R}=0.02, y_{R}=0.04\)

INPUT DATA


CALCULATED RESULTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{R R}=\) & .19999941E-01 & WK= & . 58959675 E 00 & WCH5 & . 24945995 E & 03 & KG & \(\mathrm{B}=3613.39\) \\
\hline YR \(=\) & . \(39999929 \mathrm{E}-01\) & WN= & . 17427508E 00 & WCH6 & . \(53010293 E\) & 03 & KG & \(\mathrm{KEFF}=1.01889\) \\
\hline \(F R=\) & . 29800237E 03 & FS \(=\) & . 29300788 E 03 & WCH8 & . 12473034 E & 05 & KG & \\
\hline FSP \(=\) & . 29596755 E 03 & RS \(=\) & . \(16259996 \mathrm{E}-01\) & TOTINV= & .53010387E & 05 & KG & \\
\hline WKP = & .59555228 E 00 & YS \(=\) & \(.40278074 \mathrm{E}-01\) & TRES & .17788579 E & 03 & DAYS & \\
\hline VNP \(=\) & .17603544 E 00 & & & TCYC & .44471446E & 02 & DAYS & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RW & R & Y & F & & \(x\) & Yw & FW & & RP & Yp & FP & \\
\hline NONE & 1.77496E-01 & 2.97800E-02 & 7.97452 E & 00 & 1.46251E-01 & & & & & & & \\
\hline \(2.31730 \mathrm{E}-03\) & \(1.99999 \mathrm{E}-02\) & 1.57401E-02 & 6.81353 E & 01 & \(1.92992 \mathrm{E}-02\) & 1.34888E-02 & 5.92844 E & 01 & 1.99999E-02 & 4.70988E-02 & 2.32847E & 02 \\
\hline 2.53720E-03 & 1.99999E-02 & 1.62730E-02 & \(6.89341 E\) & 01 & 1.92887E-02 & 1.41302E-02 & \(6.00831 E\) & 01 & \(1.99999 \mathrm{E}-02\) & 4.70484E-02 & 2.32048E & 02 \\
\hline \(2.81950 \mathrm{E}-03\) & \(1.99999 \mathrm{E}-02\) & \(1.69334 \mathrm{E}-02\) & 6.99877 E & 01 & 1.92758E-02 & 1.49231E-02 & 6.11368 E & 01 & \(1.99999 \mathrm{E}-02\) & \(4.69887 \mathrm{E}-02\) & 2.30995E & 02 \\
\hline 3.20520E-03 & 1.99999E-02 & 1.77995E-02 & 7.14817E & 01 & 1.92588E-02 & 1.59595E-02 & \(6.26308 E\) & 01 & \(1.99999 \mathrm{E}-02\) & \(4.69146 \mathrm{E}-02\) & 2.29501E & \\
\hline
\end{tabular}


TABLE L. 8 Steady-State Flowsheet Characteristics
\[
R_{R}=0.025, y_{R}=0.01
\]


IAPEF DATA


Calculatec reslets



TABLE L. 11 steady-state Flowsheet Characteristics


TABLE Lel2 Steady-State Flowsheet Characteristics
\[
R_{R}=0.03, Y_{R}=0.0
\]


TABLE L. 13 Steady-State Flowsheet Characteristics
\[
R_{R}=0.03, y_{R}=0.01
\]



TABLE L. 15 Steady-State Flowsheet Characteristics
\[
R_{R}=0.03, y_{R}=0.05
\]

INPLT DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PTH \(=\) & 1346.0 & MW(T) & \(\mathrm{PF}=\) & . 800 & NTAR \(=\) & 4 & & \\
\hline FRLFB \(=\) & . 010 & & PRLC \(=\) & .003 & FRLRU= & .010 & FRLRP: & . 010 \\
\hline \[
R h(I)
\] & \[
\begin{aligned}
& I=1, N 1 \\
& 0231730
\end{aligned}
\] & TAR \(=\) & 3720 & . 00 & & 320 & & \\
\hline
\end{tabular}

Calculatec results



TABLE L. 17 Steady-State Flowsheet Characteristics
\[
R_{R}=0.03, y_{R}=0.12
\]

I NPEUT DATA






TABLE L. 21 Steady-State Flowsheet Characteristics
\[
R_{R}=0.04 ; y_{R}=0.05
\]

INPUT DATA

galculated results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & . \(40000054 \mathrm{E}-01\) & WK= & .31897362E 00 & WCH5 & .48407789E & 03 & KG & B & \(=20621.87\) \\
\hline YR & .50000020E-01 & WN= & . \(15447073 E 00\) & WCH6 & . 66242181 E & 03 & KG & KEFF & \(=1.07111\) \\
\hline FR & .52216408E 02 & FS \(=\) & .49980520E 02 & WCH8 & . 12101931 E & 05 & KG & & \\
\hline FSP \(=\) & . 50485375 E 02 & RS \(=\) & . 20850818E-01 & TOTINV= & . 52993722 E & 05 & KG & & \\
\hline WKP = & . 32219558 E 00 & \(Y S=\) & . \(51405369 \mathrm{E}-01\) & TRES & . 10148864 E & 04 & DAYS & & \\
\hline WNP \(=\) & . 15603104 E 00 & & & TCYC & . 25372159 E & 03 & DAYS & & \\
\hline RW & R & & F & X & & W & & FW & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline NONE & 5.53547E-01 & 2.45327E-02 & 2.75805 E 00 & 3.47570E-01 & & & & & & \\
\hline \(2.31730 \mathrm{E}-03\) & \(4.00001 \mathrm{E}-02\) & \(1.73886 \mathrm{E}-02\) & 2.68845 E 01 & \(3.77928 \mathrm{E}-02\) & 1.63548E-02 & 2.39769 E 01 & 4.00001E-02 & 8.39111E-02 & 2.58541 E & \\
\hline 2.53720E-03 & \(4.00001 \mathrm{E}-02\) & \(1.80233 \mathrm{E}-02\) & 2.70481 E 01 & \(3.77684 \mathrm{E}=02\) & 1.70729E-02 & 2.41406E 01 & \(4.00001 \mathrm{E}-02\) & 8.36667E-02 & \(2.56904 E\) & 01 \\
\hline 2.81950E-03 & \(4.00001 \mathrm{E}-02\) & \(1.88051 \mathrm{E}-02\) & 2.72602 E Ol & 3.77383E-02 & \(1.79563 \mathrm{E}-02\) & 2.43526 E 01 & \(4.00001 \mathrm{E}-02\) & 8.33765E-02 & 2.54784 E & \\
\hline 3.20520E-03 & \(4.00001 \mathrm{E}-02\) & \(1.98229 \mathrm{E}-02\) & 2.75537 E 01 & 3.76992E-02 & \(1.91043 \mathrm{E}-02\) & 2.46462E 01 & \(4.00001 \mathrm{E}-02\) & 8.30156E-02 & 2.51849 E & \\
\hline
\end{tabular}


TABLE L. 23 Steady-State Flowsheet Characteristics
\[
R_{R}=0.04, y_{R}=0.12
\]


IABLE L. 24 Steady-State Flowsheet Characteristics
\(R_{R}=0.04, y_{R}=0.20\)
INPLT DATA


calculatec. Results



NONE \(\quad 6.59439 E-01 \quad-6.98458 E-02 \quad 1.83419 E 00 \quad 4.25142 \mathrm{E}-01\)





TABLE L. 29 Steady-State Flowsheet Characteristics
\[
R_{R}=0.05, y_{R}=0.08
\]


TABLE L. 30 Steady-State Flowsheet Characteristics
\[
R_{R}=0.05, \mathrm{y}_{\mathrm{R}}=0.12
\]


TABLE L. 31 Steady-State Flowsheet Characteristics
\[
R_{R}=0.05, y_{R}=0.20
\]

IAPLT DATA


\section*{calculatec resllis}




TABLE L. 34 Steady-State Flowsheet Characteristics


TABLE L. 35 Steady-State Flowsheet Characteristics

\section*{\(R_{R}-0.06, y_{R}=0.05\)}



TABLE L. 37 Steady-State Flowsheet Characteristics


\title{
TABLE L. 38 Steady-State Flowsheet Characteristids \(R_{R}=0.06, y_{R}=0.20\)
}

InPUT dATA

NONE
\(\begin{array}{ll}2.31730 \mathrm{E}-03 & 5.99998 \mathrm{E}-02 \\ 2.53720 \mathrm{E}-0.3 & 5.99998 \mathrm{E}-02\end{array}\)
\(2.81950 \mathrm{E}-03 \quad 5.99998 \mathrm{E}-02\)
3.20520E-03 5.99998E-02
1.53325E-01
\(1.53325 \mathrm{E}-01 \quad 4.00994 \mathrm{E} 00 \quad 3.02371 \mathrm{E}-01\) \(6.84524 \mathrm{E}-02 \quad 2.40099 \mathrm{E} 01 \quad 5.27289 \mathrm{E}-02\) \(\begin{array}{llll}\mathbf{7 . 9 9 9 9 4 E - 0 2} & 2.41313 E & 01 & 5.26413 \mathrm{E}-02 \\ 7.18932 \mathrm{E}-02 & 2.42864 \mathrm{E} 01 & 5.25341 \mathrm{E}-02\end{array}\) \(\begin{array}{llll}7.18932 \mathrm{E}-02 & 2.42864 \mathrm{E} & 01 & 5.25341 \mathrm{E}-02 \\ 7.43395 \mathrm{E}-02 & 2.44972 \mathrm{E} & 01 & 5.23957 \mathrm{E}-02\end{array}\)



TABLE L. 41 Steady-State Flowsheet Characteristics
\[
R_{R}=0.08, Y_{R}=0.08
\]

calculateo results



TABLE L. 43 Steady-State Flowsheet Characteristics
\[
R_{R}=0.08, Y_{R}=0.20
\]
- Inpuz data



TABLE L. 44 Steady-State Flowsheet Characteristics
\[
R_{R}=0.08, y_{R}=0.28
\]


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & 26E O1 & & & & & & \\
\hline \(2.53720 \mathrm{E}-03\) & \(1.00000 \mathrm{E}-01\) & \(1.04819 \mathrm{E}-02\) & 1.11408 E 01 & 8.99564E-02 & 1.52996E-02 & 9.18949 E 00 & \(1.00000 \mathrm{E}-01\) & 1. & E \\
\hline 2. \(21950 \mathrm{E}-03\) & \(1.00000 \mathrm{E}-01\) & \(1.10953 \mathrm{E}-02\) & 1.11769 E 01 & 8.99007E-02 & 1.60239E-02 & \(9.22557 E 00\) & 1.00000E-O & \(1.15143 \mathrm{E}=01\) & 6.67512 E 00 \\
\hline
\end{tabular}



-EALCULATEO-RESULFS-







\section*{APPENDIX M}

NOMENCLA TURE

B
\(C_{A}\)
\(C_{A E C}(R) \quad\) Price of \(\mathrm{UF}_{6}\) containing no \(\mathrm{U}-236\) and having U-235 to U-238 weight ratio \(R\), based on the AEC scale, \(\$ / \mathrm{kgU}\)
\(C_{C} \quad\) Unit cost of converting \(\mathrm{UO}_{3}\) to \(\mathrm{UF}_{6}, \$ / \mathrm{kgU}\) fed to conversion
\(C_{C T} \quad\) Cost incurred between purchase of \(\mathrm{UO}_{3}\) and end of conversion to \(\mathrm{UF}_{6}\), excluding inventory charges, \$/kgU purchased
\(C_{D} \quad\) Price of product from toll enrichment of recycled uranium, based on the AEC scale with U-236 considered as \(U-238, \$ / k g U\)
\(C_{E}(R) \quad\) Fuel cycle cost when feed containing no U-236 and having U-235 to U-238 weight ratio \(R\) is purchased as \(\mathrm{UF}_{6}\) on the AEC price scale, mills/kwhr

Minimum fuel cycle cost realizable when feed containing no \(U-236\) is purchased as \(U F_{6}\) on the AEC price scale, mills/kwhr
\begin{tabular}{|c|c|}
\hline \(C_{F}\) & Unit cost of fabrication, including conversion of \(\mathrm{UO}_{3}\) or \(\mathrm{UF}_{6}\) to. \(\mathrm{UO}_{2}, \$ / \mathrm{kgU}\) fabricated \\
\hline \(\mathrm{C}_{\mathrm{K}}\) & Price of fissile plutonium, \$/g \\
\hline \(\mathrm{C}_{\mathrm{N}}\) & Price of Np-237, \$/g \\
\hline \(C_{N}^{I}\) & Price of Np-237 at which the minimum fuel cycle \(\cos t C_{E}^{*}\) is the same for both recycle to fabrication and recycle to a diffusion plant, \(\$ / \mathrm{g}\) \\
\hline \(C_{N}^{O}(R, y)\) & Price of \(\mathrm{Np}-237\) at which the \(U-236\) penalty \(\delta(R, Y)\) equals zero, \(\$ / \mathrm{g}\) \\
\hline \(\mathrm{C}_{\text {NAT }}\) & Cost of natural uranium as \(\mathrm{UF}_{6}, \$ / \mathrm{kgU}\) \\
\hline \(\mathrm{C}_{\mathrm{R}}\) & Price of reactor feed uranium, based on the AEC price scale with \(U-236\) considered as \(U-238, \$ / k g U\) \\
\hline \(\mathrm{C}_{S}\) & Price of spent uranium, based on the AEC price scale with U-236 considered as U-238, \$/kgU \\
\hline \(\mathrm{C}_{\text {SH }}\) & Unit cost of post-irradiation shipping, \(\$ / \mathrm{kg}\) fuel shipped \\
\hline \[
\mathrm{C}_{\mathrm{U}_{3} \mathrm{O}_{8}}
\] & Price of natural uranium as \(\mathrm{U}_{3} \mathrm{O}_{8}, \$ / 1 \mathrm{~b} \mathrm{U}_{3} \mathrm{O}_{8}\) \\
\hline \(C_{\Delta}\) & Unit cost of separative work, \(\$ / \mathrm{kgu}\) \\
\hline F & Time-averaged flowrate of makeup uranium fed to fabrication plant, kgU/day \\
\hline \(\mathrm{F}_{\mathrm{B}}\) & Time-averaged flowrate of feed uranium to be blended with natural uranium, kgU/day \\
\hline \(F_{\text {D }}\) & Time-averaged flowrate of feed uranium to be pre-enriched by gaseous diffusion, kgU/day \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{F}_{\text {NAT }}\) & Time-averaged flowrate of natural uranium to be blended with feed uranium, kgu/day \\
\hline \(\mathrm{F}_{\mathrm{P}}\) & Time-averaged flowrate of uranium product stream \\
\hline & from the diffusion plant used to re-enrich \\
\hline & recycled uranium, kgU/day \\
\hline \(\mathrm{F}_{\mathrm{R}}\) & Time-averaged flowrate of uranium fed to reactor, \\
\hline & kgU/day \\
\hline \(\mathrm{F}_{S}\) & Time-averaged flowrate of uranium leaving \\
\hline & reprocessing plant, kgU/day \\
\hline \(\mathrm{F}_{T}\) & Time-averaged flowrate of uranium tails stream \\
\hline & from the diffusion plant used for pre-enrichment \\
\hline & of feed uranium, kgu/day \\
\hline \(\mathrm{F}_{\mathrm{W}}\) & Time-averaged flowrate of uranium tails stream \\
\hline & from the diffusion plant used to re-enrich \\
\hline & recycled uranium, kgu/day \\
\hline i & Fixed charge rate on working capital, \(\mathrm{yr}^{-1}\) \\
\hline I & Total initial loading of uranium in reactor, kg \\
\hline K & Time-averaged flowrate of fissile plutonium \\
\hline & leaving reprocessing plant, kg/day \\
\hline L & Average load factor for power plant \\
\hline \(L_{C}\) & Fractional loss of uranium during conversion of \\
\hline & \(\mathrm{UO}_{3}\) to \(\mathrm{UF}_{6}\), based on product from conversion \\
\hline \(L_{C}^{\prime}\) & Fractional loss of uranium during conversion \\
\hline & of \(\mathrm{U}_{3} \mathrm{O}_{8}\) to \(\mathrm{UF}_{6}\), based on product from conversion \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(L_{F}\) & Fractional loss of uranium during fabrication, \\
& based on fabricated product \\
\(L_{R P}\) & Fractional loss of Pu and Np during reprocessing, \\
& based on material fed to reprocessing plant \\
\(L_{R U}\) & Fractional loss of uranium during reprocessing, \\
& based on uranium fed to reprocessing plant
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathrm{R}_{\mathrm{P}}\) & Weight ratio of U-235 to U-238 in product stream from the diffusion plant used to re-enrich recycled uranium \\
\hline \(\mathrm{R}_{\mathrm{R}}\) & Weight ratio of \(U-235\) to \(U-238\) in uranium fed to reactor \\
\hline \(\mathrm{R}_{S}\) & Weight ratio of \(U-235\) to \(U-238\) in uranium leaving reprocessing plant \\
\hline \(\mathrm{R}_{T}\) & Weight ratio of U-235 to U-238 in tails stream from the diffusion plant used for pre-enrichment of feed uranium \\
\hline \(\mathrm{R}_{\mathrm{W}}\) & Weight ratio of U-235 to U-238 in tails stream from the diffusion plant used to re-enrich recycled uranium \\
\hline \({ }^{t}{ }_{C}\) & Time interval between purchase of \(\mathrm{UO}_{3}\) or \(\mathrm{U}_{3} \mathrm{O}_{8}\) and completion of conversion to \(\mathrm{UF}_{6}\), years \\
\hline \(t_{E}\) & Time interval between delivery of uranium to the AEC for toll enrichment and receipt of product uranium, years \\
\hline \(t_{F}\) & Average pre-irradiation holdup time for uranium, years \\
\hline \(t_{\text {RP }}\) & Average post-irradiation holdup time for plutonium and neptunium, years \\
\hline \(t_{\text {RU }}\) & Average post-irradiation holdup time for uranium, years \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(V(R, y)\) & Unit value of \(\mathrm{UO}_{3}\) having \(\mathrm{U}-235\) to \(\mathrm{U}-238\) weight ratio \(R\) and \(U-236\) weight fraction \(y\), when used as feed for a basic recycle scheme, \(\$ / \mathrm{kgU}\) \\
\hline \(V_{B}(R, Y)\) & Maximum unit feed value of \(\mathrm{UO}_{3}\) having \(\mathrm{U}-235\) to U-238 weight ratio \(R\) and U-236 weight fraction \(y\), when blended with natural uranium, \(\$ / k g U\) \\
\hline \(V_{B}(\mathrm{R}, \mathrm{y}, \epsilon)\) & Unit feed value of \(\mathrm{UO}_{3}\) having \(U-235\) to \(U-238\) weight ratio \(R\) and \(U-236\) weight fraction \(y\), when blended with natural uranium to form blended product containing weight fraction \(\epsilon\) of natural uranium, \$/kgU \\
\hline \(V_{D}(\mathrm{R}, \mathrm{y})\) & Maximum unit feed value of \(\mathrm{UO}_{3}\) having U-235 to U-238 weight ratio \(R\) and U-236 weight fraction \(y\), when pre-enriched by gaseous diffusion, \(\$ / \mathrm{kgU}\) \\
\hline \(\mathrm{V}_{\mathrm{D}}\left(\mathrm{R}, \mathrm{y}, \mathrm{R}_{\mathrm{D}}\right)\) & Unit feed value of \(\mathrm{UO}_{3}\) having \(\mathrm{U}-235\) to \(\mathrm{U}-238\) weight ratio \(R\) and \(U-236\) weight fraction \(y\), when pre-enriched by gaseous diffusion to a U-235 to U-238 weight ratio \(R_{D}, \$ / k g U\) \\
\hline \(\mathrm{V}_{\mathrm{m}}(\mathrm{R}, \mathrm{y})\) & The largest of \(V(R, y), V_{B}(R, y)\), and \(V_{D}(R, y)\) for uranium having \(U-235\) to \(U-238\) weight ratio \(R\) and U-236 weight fraction \(y\), \(\$ / \mathrm{kgU}\) \\
\hline x & Weight fraction of U-235 in uranium for which unit feed value is to be determined \\
\hline y & Weight fraction of U-236 in uranium for which unit feed value is to be determined \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(Y_{B}\) & Weight fraction of U-236 in product stream from blending feed uranium with natural uranium \\
\hline \(Y_{\text {D }}\) & Weight fraction of \(\mathrm{U}-236\) in product stream from the diffusion plant used for pre-enrichment of \\
\hline & feed uranium \\
\hline \(Y_{P}\) & Weight fraction of \(U-236\) in product stream from the diffusion plant used to re-enrich recycled \\
\hline & uranium \\
\hline \(Y_{R}\) & Weight fraction of U-236 in uranium fed to reactor \\
\hline \({ }^{\prime}{ }_{S}\) & Weight fraction of \(\mathrm{U}-236\) in uranium leaving reprocessing plant \\
\hline \(Y_{T}\) & Weight fraction of U-236 in tails stream from the \\
\hline & diffusion plant used for pre-enrichment of feed \\
\hline & uranium \\
\hline \(Y_{W}\) & Weight fraction of U-236 in tails stream from the \\
\hline & diffusion plant used to re-enrich recycled uranium \\
\hline \(\alpha\) & Fraction of total U-236 contained in feed uranium \\
\hline & which is present in product stream from the diffu- \\
\hline & sion plant used for feed pre-enrichment \\
\hline B & Parameter used in U-236 penalty analysis and \\
\hline & \[
\text { defined by Equation VII. } 16 \text {, (kgU/day) }{ }^{-1}
\] \\
\hline \(\delta(R, Y)\) & U-236 penalty for uranium feed having U-235 to \\
\hline & U-238 weight ratio \(R\) and \(U-236\) weight fraction \(y\), \\
\hline & \$/g U-236 in feed; defined by Equation VII.1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\delta_{A D J}(R, Y)\) & Adjusted U-236 penalty for uranium feed having U-235 to U-238 weight ratio \(R\) and \(U-236\) weight fraction \(y, \$ / g\) U-236 in feed stream to fabrication plant; defined by Equation VII. 19 \\
\hline \(\overline{0}\) & U-236 penalty level, i.e., approximate value of \(\delta(R, y)\) at \(R=R^{*}, \$ / g U-236\) in feed \\
\hline \(\Delta\) & Average separative work requirement for re-enriching recycled uranium, kgU/day \\
\hline \(\Delta_{D}\) & Average separative work requirement for pre-enrichment of feed uranium, kgU/day \\
\hline \(\epsilon\) & Weight fraction of natural uranium in product from blending feed uranium and natural uranium \\
\hline \(\eta\) & Parameter used in U-236 penalty analysis and defined by Equation VII.17, \$/kgU \\
\hline \(\emptyset\) & Separation potential of uranium stream for which unit feed value is to be determined \\
\hline \(\emptyset_{\mathrm{D}}\) & Separation potential of product stream from the diffusion plant used for pre-enrichment of feed uranium \\
\hline \(\emptyset_{P}\) & Separation potential of product stream from the diffusion plant used to re-enrich recycled uranium \\
\hline \(\emptyset_{S}\) & Separation potential of uranium leaving reprocessing plant \\
\hline \(\emptyset_{T}\) & Separation potential of tails stream from the diffusion plant used for pre-enrichment of feed uranium \\
\hline
\end{tabular}

Separation potential of tails stream from the diffusion plant used to re-enrich recycled uranium

\section*{APPENDIX N}

\section*{REFERENCES}
1. "Special Nuclear Materials - Base Charges, Special Charges, Specifications and Packaging", Federal Reqister, 26, 4765 (1961).
2. Nuclear Industry, 13(4), 20-21 (1966).
3. Nuclear News, 10(6), 18 (1967).
4. T.C. Golden, "The Effect of U-236 on the Value of Fuel Used in Thermal Reactors," MIT, SM Thesis in Nuclear Engineering (September, 1967).
5. D.J. Bauhs, "The Effect of U-236 on the Value of Uranium Used as Feed for a Heavy Water Moderated Organic Cooled Reactor," MIT, SM and Nucl.E.. Thesis in Nuclear Engineering (June, 1967).
6. J.A. Ransohoff, "Impact of Isotope Sales on Fuel Cycle Costs and Practices," Vol. 3, Proceedings AIF, 1964 Annual Conference, 180-186.
7. J.A. Ransohoff and J.A. Defelice, "A Proposed Process for Producing Large Quantities of \(\mathrm{Np}-237\) and Pu-238 in Commercial Power Reactors," Trans. Am. Nucl. Soc., 8(2), 334 (1965).
8. R. Nilson and C.W. Showalter, "A Model to Optimize Pu-238 Production by Fuel Recycle," in DP-1066 (VOI. II), 39-52 (1966).
9. D.E. Deonigi and E.A. Eschbach, "Production and Indifference Pricing of Transuranium Isotopes, in DP-1066 (Vol. II), 3-38 (1966).
10. "San Onofre Nuclear Generating Station - Reference Core Design, WCAP-3269-7 (1965).
11. "1000 MWe Closed-Cycle Water Reactor Study," WCAP-2385 (1963).
12. A. de la Garza, G.A. Garrett, and J.E. Murphy, "Some Value Functions for Multicomponent Isotope Separation Application tif a Unit Cost Scale for Uranium-235, 236, 238 Mixtures, K-1455 (1960).
13. J.J. Beaudreau, "Development and Evaluation of the Point Depletion Code CELL," MIT, SM Thesis in Nuclear Engineering (June, 1967).
14. N.B. McLeod, et al, "The Effect of Fuel and Poison Management on Nuclear Power Systems," NYO-9715 (1961).
15. M. Benedict and T.H. Pigford, Nuclear Chemical Engineering, McGraw-Hill Book Co. Inc., New York (1957).
16. Nuclear News, \(10(6), 33\) (1967).
17. H.W. Graves, Jr., Personal Communication (October, 1965).
18. P.F. Menezes, "Comparison of Observed and Predicted Performance of the First Core of the Yankee Reactor", MIT, SM Thesis in Nuclear Engineering (September, 1964).
19. "Uranium Enrichment Services - Proposed Criteria", Federal Reqister, 30, 12550 (1965).
20. M.W. Rosenthal, et al, "A Comparative Evaluation of Advanced Converters," ORNL-3686 (1965).
21. "Plutonium and Uranium Enriched in \(U^{233}\)-Guaranteed Purchase Prices," Federal Register, 30, 3886 (1965).
22. General Electric Price Handbook, Section 8803, Atomic Power Equipment - Nuclear Fuel (October, 1966).
23. J.B. Burnham, L.G. Merker, and D.E. Deonigi, 'Comparative Costs of Oxide Fuel Elements," BNWL-273 (1966).
24. J. Vallance, "Fuel Cycle Economics of Uranium-Fueled Thermal Reactors, " A/Conf. 28/P/247 (September, 1964).
25. "Treatment of Certain Nuclear Materials - Charges", Federal Reqister, 23, 1707 (1958).
26. F.B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill Book Company, Inc., New York (1956).
27. R.T. Shanstrom, M. Benedict, and C.T. McDaniel, "Fuel Cycles in Nuclear Reactors," NYO-2131 (1959).
28. M.C. Richardson, "The Effects of Changing Economic Conditions on Energy Costs in Zircaloy-4 Clad Pressurized Water Reactors," MITNE-27 (1962).
29. M. Clark and K.F. Hansen, Numerical Methods of Reactor Analysis, Academic Press, New York (1964).
30. A. de la Garza, "A Generalization of the Matched Abundance Ratio Cascade for Multicomponent Isotope Separation," K-1527 (1962).
31. R.C. Mitchell, "A Study of Alternative Cascades for Three Component Isotope Separation," MIT, SM Thesis in Nuclear Engineering (October, 1966).
32. B.F. Rider, et al, "Accurate Nuclear Fuel Burnup Analysis - Sixteenth Quarterly Progress Report: September 1965 - November 1965," GEAP-5060 (1965).
33. S. Pearlstein, "Analysis of ( \(n, 2 n\) ) Cross Sections for Nuclei of Mass A > 30," BNL-897 (1964).
34. L. Cranberg, et al, Phys. Rev., 103, 662 (1956).
35. J.R. Stehn, et al, "Neutron Cross Sections: Volume III, \(Z=88\) to 98," BNL-325, 2nd ed., Supp. No. 2 (1965).
36. J.R. Stehn, et al, "Neutron Cross Sections: Volume I, \(\mathrm{Z}=1\) to 20," BNL-325, 2nd ed., Supp. No. 2 (1964).
37. "Reactor Physics Constants," ANL-5800, 2nd ed. (1963).
38. "Westinghouse Nuclear Design Procedure Manual," (1959).
39. R.F. Barry, "LEOPARD - A Spectrum Dependent Non-Spatial Depletion Code for the IBM-7094," WCAP-3269-26 (1963).
40. M. K. Drake, "A Compilation of Resonance Integrals," Nucleonics, 24(8), 108 (1966).
41. D.A. Goellner and J.J. Beaudreau, "Summary Description of the Fuel Depletion Code CELL, \({ }^{\text {D }}\) MINE-89 (January, 1968).```

