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ABSTRACT

Measurements of the intracellular distribution of the activation of
foils by neutrons were made in lattices of 1/4-inch diameter, 1.03% U-235,
uranium rods moderated by heavy water, with bare and cadmium-covered
foils of gold, depleted uranium, lutetium, europium and copper. The
measurements were made in the M.I.T. Heavy Water Lattice Facility with
source neutrons from the M.I.T. Reactor. Two lattices were studied in
detail in this work. The more closely packed lattice had a triangular
spacing of 1.25 inches, and the less closely packed lattice had a triangular
spacing of 2.5 inches. The results of the experiments were compared to
one-dimensional, 30-energy group, THERMOS calculations based on the
available energy exchange kernels. The comparison indicated that the
approximation that the hexagonal cell may be replaced by an equivalent
circular cell (the Wigner-Seitz approximation) can lead to serious dis-
crepancies in closely packed lattices moderated by heavy water. A modi-
fied one-dimensional, and a two-dimensional, calculation were shown to
predict the intracellular activation distribution in the closely packed lattice.

An analytical treatment of the problem of the flux perturbation in a
foil was developed and compared to the experimental results obtained by
using gold foils of four different thicknesses in the lattice cell; the method
was shown to be adequate. An analytical method to treat the effect of leak-
age from an exponential assembly was formulated; the results indicated
that only in small exponential assemblies would leakage be a significant
problem in intracellular flux measurements. A method was developed to
predict the cadmium ratio of the foils used in the lattice cell; comparison
with available measurements with gold foils indicated good agreement
between theory and experiment, except for a lattice having very large ratios
of moderator volume, to fuel volume, e.g., 100:1. Calculations of the fuel
disadvantage factor by the method of successive generations for gold,
lutetium and europium detector foils were compared to the results of
THERMOS calculations, because THERMOS was shown to predict the
experimental distributions. The comparison indicated that the method of
successive generations is a good alternative to the THERMqS calculation,
if all that is required is 17 and the thermal utilization.
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CHAPTER I

INTRODUCTION

1.1 THE M.I.T. HEAVY WATER LATTICE PROJECT

The Department of Nuclear Engineering of M.I.T. with the support

of the United States Atomic Energy Commission, has undertaken a pro-

gram of experimental and theoretical studies of the physics of D 20-
moderated lattices of slightly enriched uranium rods. The emphasis so

far has been on the development of techniques that may lead to a better

understanding of reactor lattices. The work of the M.I.T. Heavy Water

Lattice Project has been summarized in several reports (T3, K1, K9, M2,

P1, W3,_W5, P5, B14).

1.2 THE IMPORTANCE OF THE NEUTRON ECONOMY

One of the major problems in the design of a nuclear reactor is that

of the neutron economy. Neutrons can react with fertile and fissionable

materials in a reactor core at all energies, and a quantitative understand-

ing of these reactions is required to specify the design of the reactor. For

a large class of reactors, the majority of fissions occur at energies in the

neighborhood of the energy corresponding to the moderator temperature,

so that these reactors are called "thermal." The lattices investigated by
M.I.T. fall into this category. To achieve economic power, it is necessary

to predict reactor criticality, core power distribution, core lifetime and

the production of fissionable material (conversion or breeding). These

quantities depend on the reaction rates of neutrons with the materials of
the core, and a knowledge of the neutron economy is required to predict

them.

It has become necessary in the past few years, because of increased
design requirements, to re-evaluate the methods, both analytical and

experimental, that pertain to the study of the neutron economy. The avail-

ability of improved electronic equipment and of digital computers has
made possible more precise evaluations of the methodology of reactor
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physics measurements and calculations. The demands imposed on both

the experimental and theoretical methods have become more stringent as

reactor design becomes more nearly competitive with conventional power

sources. There is, therefore, an incentive to improve the methods in

order to reduce the experimental uncertainty and to uncover systematic

errors in these methods. Recent reviews by Kaplan (K9) and Crandall

(C10, C11) discuss the present status of the methods used to measure and

calculate the reactor parameters related to the study of the neutron

economy. They each conclude that there still remain areas for improve-

ment in both the experimental and theoretical methods.

As examples of this type of research, we may cite recent work at

the Brookhaven National Laboratory, the Savannah River Laboratory and

the Chalk River Laboratory. Measurements involved in our understand-

ing of the capture of resonance neutrons in uranium are receiving much

attention. Thus, Arcipiani, Ricabarra and Ricabarra (Al) have studied

the methods used to measure the U238 cadmium ratio, which is related

to the plutonium production in a reactor. They obtained a systematic

difference in the cadmium ratio of about 3%, depending on whether or not

the foils they used were homogenized (by dissolving them) before they

were counted. Tassan(T5) has considered the measurement of the cadmium

ratio of U 2 3 5 fission in lattices of slightly enriched uranium rods moder-

ated by H 20. He indicates that there is a discrepancy between conversion
2 238

ratios deduced from U and gold cadmium ratio measurements and those

deduced from U238 and U 2 3 5 cadmium ratio measurements. Tunnicliffe et

al. (T6) have developed a method for the determination of the relative

initial conversion ratio based on the coincidence method of neptunium,

which has a precision of ± 1/2%. The measurement of the material buckling

has also been critically examined. Hellens and Andersen (H4) have studied

in great detail the methods used to measure the material buckling in H 2 0-

moderated lattices, and have reported that a difference exists between the
1 variable loading" method and the "flux shape" method used to obtain the

material buckling of exponential assemblies. Graves (G4) has considered

the problem of inferring the material buckling by the "substitution technique"

and concludes that the analytical methods presently used "gave satisfactory

results in all cases."

The M.I.T. Heavy Water Lattice Project has analagous studies under
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way to investigate the methods for possible systematic errors as they may

apply to D 20-moderated lattices. This report deals with the results of one
such study of the experimental and theoretical methods of analyzing the

behavior of thermal neutrons in the lattice cell.

1.3 THE CONTENTS OF THIS REPORT

From the standpoint of reactor design, the quantities of interest in
the thermal energy range are the thermal utilization, f (the ratio of captures
in the uranium to the captures in the cell in the thermal energy range), and
the number of fast neutrons produced per thermal neutron captured in
uranium, 17. It is not possible to measure these quantities directly, but
experiments can be made that yield enough information so that 77 and f
can be inferred from them with some confidence. This report deals with
the kind of experiment made to infer the thermal utilization; it involves
the measurement of the intracellular distribution of the activation of bare
and cadmium-covered foils in a lattice cell. In a lattice cell, the neutron
flux is a function of position and energy. The variation with position is
observed by using foils that are small enough to obtain the fine structure
of the activation distribution. The variation with energy is observed by
performing several separate experiments, each experiment with a set of
foils having an activation cross section different, as a function of energy,
from the cross sections of the other sets of foils. This technique yields
only an integral index of the energy spectrum. The objective of the ana-
lytical methods is to predict these activation distributions. Since the
experiments give, at best, only integral properties of the neutron flux,
they are not absolute tests of the theoretical methods. However, a valid
prediction by a theoretical method gives added confidence in its future use.

Brown (B14) has reviewed several of the methods used to "measure"
the thermal utilization of a lattice cell. The more precise analytical
methods used to predict the activation distribution are discussed in
Chapter III; these methods have been programmed for use with digital
computers. Neutrons in a lattice cell can diffuse through, and be scattered
by, the moderator. A description of the scattering process forms the basis
of the study usually called "Neutron Thermalization." Several reviews of
this subject are available; among them are those of Cohen (C8), Hurwitz
and Nelkin (H16), Nelkin and Cohen (N2), Amaldi (A3) and Nelkin (N5).
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Because of the chemical binding between the atoms of the moderator, the
scattering centers may not accurately be treated as free, monotomic gases.
When the scattering process has been defined analytically, it is necessary
to calculate the spatial dependence (transport) of the neutrons in the cell.
Honeck (H14) has provided a good summary of the methods that are
presently available for both the calculation of the scattering kernel and the
calculation of the spatial dependence.

Chapter II of this report discusses the methods used to measure the
intracellular activation distributions in lattices of 1/4-inch diameter,
1.03% U 2 3 5 , uranium rods moderated by heavy water. Chapter III deals
with the analytical methods used to calculate the activation distributions.
The results of the experiments and the calculations are discussed in
Chapters IV and V. The appendices are intended to implement the dis-
cussions of the text. Included in the report are discussions of energy
exchange kernels, transport methods, leakage effects, flux perturbation
effects, and the cell cylindricalization problem. The experiments were
made to investigate various aspects of the problems discussed in
Chapter III.
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CHAPTER II

EXPERIMENTAL METHODS

2.1 INTRODUCTION

In this chapter, the experimental techniques used to measure the

intracellular activation distributions in reactor lattices are discussed.

The lattices studied were made up of 1/4-inch diameter, 1.03% U235

uranium metal rods on 1.25- or 2.5-inch triangular spacing in a 3- or

4-foot diameter, exponential tank and moderated by 99.8 atom % D 20.

The height of the active fuel was 4 feet. Additional information on the

details of the lattices is given in Appendix F. The experiments required

the preparation of detector foils, the development of foil holders and

cadmium covers, and the establishment of procedures for counting and

data reduction.

2.2 THE M.I.T. LATTICE FACILITY

The intracellular activation distributions were measured in the

M.I.T. Heavy Water Lattice Facility. Cross-sectional drawings of the

facility are shown in Figs. 2.2.1 and 2.2.2. The facility consists of an

exponential tank located above a graphite-lined cavity. Source neutrons

for the exponential tank are reflected upward, by the cavity arrange-

ment, from the MITR thermal column. The details of the cavity

arrangement are discussed by Madell et al. (M2). The M.I.T. Heavy

Water Lattice Facility has been described in previous reports (T3, K1).

2.3 DESCRIPTION OF THE FOILS USED IN THE EXPERIMENTS

Nine sets of 1/16-inch diameter foils were used in the experi-

ments; the relevant properties of the foils are listed in Table 2.3.1.

The foils, metal or alloy, were punched from a sheet of the appropri-

ate material by means of a punch and dye. The dye was made to fit

the punch closely, and was heat treated. The foils were examined and

found to be almost free from burrs. They were weighed individually

on a Fisher precision microbalance (Model 1-912); the scale was read
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TABLE 2.3.1

Properties of the Foils

Average(a) 
(b)

No. of Weight Range Thickness
Foil Set Foils (mg) (mg) (mils)

Dilute Gold 300 0.406± .07% 0.023 3.0± 0.1
(1% gold in 3 mil Al)

2.5 mil Gold 300 2.225± .11% 0.179 2.5± 0.1
(metallic, 99.97% pure)

4.3 mil Gold 300 3.995± .05% 0.125 4.3± 0.1
(metallic, 99.97% pure)

10.2 mil Gold 600 9.497 ± .0 2% 0.201 10.2 ± 0.1
(metallic, 99.97% pure)

5 mil Depleted Uranium 300 3.851 ± .30% 0.868 5.0 ± 0.3
(metallic, 18 ppm U-235)

Lutetium Alloy 300 1.430± .06% 0.065 10.0 ± 0.2
(10 w/o Lu 203 in 10 mil Al)

5 mil Copper 70 3.324 .10% 0.213 5.0 ± 0.2
(metallic)

Lutetium Powder 200 - -

(Lu 2 0 3 -glyptal on 5 mil Al)

Europium Powder 200 - -

(Eu 20 3 -glyptal on 5 mil Al)

(a) The standard deviation from the mean is given.

(b) The range is the maximum weight difference between any two foils
in the set.

to the nearest microgram. The uncertainty for a single weighing was

±0.004 mg, as established by the repeated weighing of a single foil.

The foils, in sets of 300, were arranged in increasing order of

weight and stored in a foil file. Each foil was assigned a number, and

a record of the weights of the foils was punched in IBM cards. Since

each experiment required no more than 70 foils, the weight corrections

applied were always small. The distribution of weights for the set of

4.3 mil gold foils is given in Fig. 2.3.1. After an experiment, the foils

were returned to the file, the numbering system being maintained, and

were used again after at least 10 half-lives in time had elapsed. After

10 half-lives, the activity of a foil decreases to about 0.1% of its original

value.
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The thickness of a sheet from which foils were punched was measured

with a micrometer at several positions; average values of the foil weights

are listed in Table 2.3.1. The uncertainty in thickness was approximately

±0.1 mils for the gold foils. Each sheet was also weighed and the thickness

calculated from the known density and dimensions; the result was found to

agree with the measured thickness, within the uncertainty of the measure-

ments.

Since the foils were all punched with the same punch and dye, there

should be some correlation between the measured weight and thickness.

Figure 2.3.2 indicates that the weight was proportional to the thickness.

If it is assumed that there were no burrs on the foils, the line from the

origin to the best known point, that for the 10 mil gold foils, provides a

way of determining the thickness of the thinner foils from their weights.

With the assumption that the 10 mil gold foils were perfect right circular

cylinders, the diameter of the punch was calculated from the density of

gold and the thickness of the sheet; the nominal punch diameter was

1/16 inch, while the calculation gave 0.060 inch, indicating that the punch

was slightly undersized. A measurement of the diameter with a microme-

ter gave the diameter as 0.059 ± 0.001 inch, but this result should not

affect the interpretation of the experiment.

The powder foils of lutetium and europium were fabricated and inter-

calibrated on a flux wheel by Brown (B14). In the calibration experiment

the foils were irradiated in a tank filled with heavy water, and counted on

the gamma-ray counter used in the experiments. The counting uncertainty

was about one per cent.

2.4 THE FOIL HOLDERS

The small diameter of the rods and the small lattice spacings made

the accurate positioning of the foils difficult. The foil holders used were

improved with time, so that those used in the experiments in the lattice

with the 2.5-inch triangular spacing differed from those used in the lattice

with the 1.25-inch triangular spacing. The differences were minor so far

as nuclear properties are concerned, but made the experiment easier to

do.
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2.4.1 THE LATTICE WITH THE 2.5-INCH TRIANGULAR SPACING

The holder used for the bare and cadmium-covered foils irradiated

in the fuel rod is shown in Fig. 2.4.1. The foils were placed in holes

punched in a 1/4-inch diameter, 10 mil thick foil of 1.03% enriched

uranium. To hold the foils in place, each side of the 1/4-inch foil was

taped with mylar tape, 2 mils thick. The tape also served to prevent

contamination of the foils by fission products. The effect of the mylar

was found to be negligible (see Appendix B).

A schematic diagram of the foil holder used in the moderator is

shown in Fig. 2.4.2. The bare foils irradiated in the moderator were

placed in 1/16-inch holes milled in 12 mil thick aluminum holders, and

were held in place by mylar tape. Brown (B14) has made experiments

that indicate that this thickness of aluminum perturbs the flux by less

than 0.3%. The foil holder was held fast to the rods of the three-rod

cluster by wrapping the attached tabs around the rods and taping them

in place with mylar tape. This procedure provided additional rigidity in

the positioning of the three rods of the cluster.

Foils irradiated in the moderator were covered with cadmium

(20 mils) by putting them in cadmium pill boxes, which were placed in

1/8-inch diameter holes milled in a 12 mil thick aluminum holder.

The boxes were taped to the holder with mylar tape, and the foil holders

were attached to the rods by means of the tabs.

2.4.2 THE LATTICE WITH THE 1.25-INCH TRIANGULAR SPACING

Because of the smaller spacing in this lattice, and the consequent

greater importance of the positioning, the foil holders were improved.

The foils irradiated, bare or cadmium-covered, in the rod were placed

in 12 mil holes milled on both sides of 1.03% U235 uranium button,

60 mils thick and 1/4 inch in diameter, as shown in Fig. 2.4.3. An

aluminum foil, one mil thick, was placed in the hole first to prevent

contamination of the foils by fission products from the uranium button.

The aluminum foils were counted and their activity was found to be

negligible in comparison to the background. The foils were held in the

uranium button with mylar tape, trimmed to the 1/4-inch diameter of

the button. The mylar tape also served to prevent fission products from

the uranium rod from contaminating the foils.
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The holders for the bare foils were fabricated from 12 mil thick

aluminum machined with 1/16-inch holes as shown in Fig. 2.4.4. Mylar

tape was used to hold the foils in position. The sides of the holder in a

line tangential to the outer diameter were bent through 90* to provide the

holder with additional rigidity along the rod-to-rod line. In an experi-

ment, a holder was clipped onto the rods of the three-rod cluster and a

strip of mylar tape was used to hold the foil holder to the cluster.

The holders for the cadmium-covered foils were made from 18 mil

thick aluminum. Each cadmium pill box was placed in an 1/8-inch hole

milled in the holder, recessed 10 mils deep in a 5/32-inch hole centered

in the 1/8-inch hole as shown in Fig. 2.4.5. The boxes were permanently

fixed in position with epoxy resin, and the foils could be loaded and

unloaded without removing the boxes from the holder. Except for the

sizes of the holes milled, the holders for the cadmium-covered foils were

the same as those used for the bare foils.

2.4.3 THE CADMIUM BOXES

It was required that the cadmium boxes for the foils be leak-tight to

water and to thermal neutrons, and that the foils could be removed easily,

without damage to the foil or the box. After considering several designs,

it was decided to use the rivet-like design shown in Fig. 2.4.5.

A sheet of cadmium, 60 mils thick, was taped to an aluminum backing

block with two-sided tape. The aluminum block was clamped in a milling

machine and a number of pill boxes machined at once. Depressions,

1/32 inch in diameter, were milled in the wall of the box to provide an

easy way to pry off the cover. An 1/8-inch inside diameter trepan tool

(a hollow mill) was used to mill the outer diameter of the cadmium pill,

50 mils deep. The final rivet-like cadmium pill box was obtained by

punching the pill from the sheet with a special punch having a hollow center

and an outer diameter of 5/32 inch.

Covers for the boxes were punched from a 20 mil sheet of cadmium

with a 3/32-inch punch. No attempt was made to reuse the covers. The

cadmium boxes epoxied to the holders were intact at the completion of all

the experiments.

A box was filled with an indicator dye and dropped into a beaker of

hydrochloric acid. No change of color was noted until the box had dissolved,
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so that the requirement that the box be leak-tight to water was met.

Cadmium ratio experiments were made in a thermal flux to deter-

mine if the cadmium boxes were leak-tight to thermal neutrons. Bare and

cadmium-covered foils from the 4.3 mil gold foil file were irradiated in

the cavity (see Fig. 2.2.1) and the cadmium ratio was found to be 600± 10%.

Although the experiment does not yield absolute proof that the cadmium

boxes do not leak, the value of the cadmium ratio agrees with values

obtained in other experiments, with gold foils of different diameters and

different cadmium boxes, made by D'Ardenne (D1).

2.5 THE THREE-ROD CLUSTER

The foil holders described in Section 2.4 were loaded in the expo-

nential tank in the three-rod cluster shown in Fig. 2.5.1. The foils irradi-

ated in the fuel were loaded into the central rod. With the exception of the

measurement involving the dilute gold foils, the same positions in the rod

were occupied by the foil holders relative to the active fuel height.

Figures 2.5.2 and 2.5.3 show the positions occupied by the foil

holders. In the experiments in the lattice with the 2.5-inch spacing, only

one type of foil was used per experimental run. As a result of the improve-

ments in the experimental technique, the experiments in the lattice with the

1.25-inch spacing involved the use of two types of detectors per run. All

experiments were repeated at least once. The experiments in each lattice

were completed with the original sets of foil holders, thus attesting to the

durability of the holders.

2.6 COUNTING OF THE ACTIVATED FOILS

In these experiments, y-counting was used in preference to p-
counting. For 1/16-inch foils, it is doubtful that a weight correction would

be meaningful for p-counting. The count rate for p-counting is due to p-
sources near the surface of the foil, because of the short range of p-particles

in the metal foil. Any imperfections in the surface of the foil affect the

count rate so that the foils would have to be calibrated on the p-counter. The

y-counting technique was free from these disadvantages and was used

exclusively.

A Nuclear-Chicago automatic sample changer with a 1/2-inch sodium-

iodide crystal was used to count the foils. A schematic diagram of the



CENTER
ROD

HOLDER

BARE
FOILS

CADMIUM
SLEEVE

HOLDER
FOR THE
CADMIUM
COVERED
FOILS

FIG. 2.5.1. THE THREE-ROD CLUSTER.



FOIL HOLDER (10 MILS)-N

1% U23 5 SPACER (5 MILS)-

FOIL HOLDER (10 MILS)--

URANIUM ROD

1100 ALUMINUM

1/16" FOILS

I,

HOLDER FOR THE
BARE FOILS

CAUMIUM (20 MILS)

60 MIL NAT'LU -

FOIL HOLDER (10 MILS)-
1%U2 3 5 SPACER (5 MILS)

FOIL HOLDER (10 MILS)-
60 MIL NAT'L U
CADMIUM (20 MILS)---

CADMIUM
BOX

'HOLDER FOR THE
CADMIUM COVERED FOILS

FIG. 2.5.2 POSITIONS OF THE FOIL HOLDERS IN THE EXPERIMENTS

IN THE LATTICE WITH THE 2.5-INCH TRIANGULAR SPACING.

5 "f

O



FOIL HOLDER (60 MILS)

FOIL HOLDER (60 MILS)

CADMIUM (20 MILS) d

1% U2 3 5 SPACER (60 MILS) -
FOIL HOLDER B (60 MILS) -

I%U 2 3 5SPACER (60 MILS) -

FOIL HOLDER A (60 MILS) -

1% U2 3 5 SPACER (60 MILS) -

CADMIUM (20 MILS)-

FOILS

TEST POSITION

FIG. 2.5.3 POSITIONS OF THE FOIL HOLDERS IN THE EXPERIMENTS
IN THE LATTICE WITH THE 1.25-INCH TRIANGULAR SPACING.



23

counting equipment is shown in Fig. 2.6.1. The single-channel analyzer

was used for both differential and integral counting. The system was

calibrated each time a run was counted.

The cadmium-covered foils were counted separately from the bare

foils. Monitor foils were used to estimate the counter drift. The time

correction for decay based on the monitor foils was within 0.5% of the

correction calculated from the half-life and the elapsed time. By sepa-

rating the two sets of foils when counting, it was possible to minimize

the contribution to the count rate of the foils in the stack that were out of

the counting chamber.

The preset count setting was adjusted so that a counting time of

5 to 10 minutes was obtained for most of the foils. The printer records

the counting time to the nearest 0.01 minutes, so that a 5-minute counting

time is needed to reduce the error below 0.2%. Since the timing is based

on the 60 cycle per second line voltage, any variation in the voltage cycles

could introduce errors in timing. The Cambridge Electric Light Company

gives the variation of the voltage as ±1/20 cps, 95% of the time and

±1/10 cps, 5% of the time. Hence, the maximum error introduced by the

variation in the voltage is ±0.2%.

When possible, several passes were made for the foils in any given

run to spread any counter drift over all the foils. For example, it seemed

more desirable to count the foils for a total of 100,000 counts in five

passes, at 20,000 per pass, rather than one pass at 100,000.

2.6.1 GOLD

Neutron activation of gold yields Au198, with a half-life of 2.7 days.

The principal gamma radiation is a 412 key gamma ray. Both integral

and differential counting methods were used; the results indicated no sig-

nificant differences between the two methods. The differential method

used was to straddle the 412 key photopeak with a window width corre-

sponding to 90 key. The particular crystal used in the experiments had a

full-width at half-maximum of 70 key. The integral method used was to

set the base line at 320 key, the lowest point of the gamma spectrum just

below the 412 key photopeak. The window was opened so that all gamma

rays above 320 key could be counted.
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2.6.2 LUTETIUM

After a cooling period of 48 hours, the 6.7-day Lu was counted

with the integral method. The base line was set at 45 key, just below the

57 key Hf X-ray peak (B14). The window of the analyzer was opened so

that all gamma rays above 45 key could be counted.

2.6.3 EUROPIUM

The 9.2-hour half-life Eul52 was counted with the integral method.

The base line was set at 80 key, just below the 122 key Sm152 peak (B 14).

The window of the analyzer was opened so that all gamma rays above

80 key could be counted.

2.6.4 DEPLETED URANIUM

The 103 key peak of the 2.3-day Np239 was straddled with a window

width corresponding to 30 key. This procedure was used by Weitzberg (W3).

For the purpose of obtaining backgrounds, unirradiated depleted uranium

foils were counted in various positions in the foil stack of the automatic

sample changer.

2.7 DATA REDUCTION

The data reduction was accomplished with the aid of an IBM 7090

computer, with the ACTIVE code described in Appendix D. The use of

the computer program insured that the calculations could be repeated and

that storage could be provided for the raw experimental data. The ACTIVE

code was designed for operation with the foil files discussed in Section 2.3

and with the automatic sample changer described in Section 2.6. Routine

corrections were made by the code for background, counter dead time,

decay during counting, decay from an arbitrary time and the weight of the

foil.

For the intracellular activation experiments, a height correction

factor was used to correct the activities of the cadmium-covered foils to

activities corresponding to the height of the bare foils in the lattice. The

corrections were based on the axial flux distributions measured by Kim

(K4) and by Harrington (H3). The results of these axial buckling experi-

ments indicated that the cadmium ratio for gold foils was constant in the

region in which the intracellular measurements were made.
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The experimental data were corrected for radial leakage by multi-

plying each experimental activity by a J0-correction factor, based on the

radial flux distribution measured in the buckling experiments by Kim (K4)

and Harrington (H3). The number of cells along a radius of the exponential

tank was large enough so that the greatest correction was less than 3%.
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CHAPTER III

ANALYTICAL METHODS

3.1 METHODS OF SOLUTION OF THE SPACE-DEPENDENT TRANSPORT
EQUATION

The analytical methods needed for the interpretation of the intra-

cellular activation measurements are developed and discussed in this

chapter. The comparison with experiment will be made in Chapter IV.

To predict the subcadmium, intracellular, activation distribution,

it is necessary to be able to calculate the directional flux as a function

of energy and position in the lattice cell. Several computer programs

have been developed to treat the problem numerically, and the more use-

ful ones will be reviewed.

The energy exchange kernel will be considered arbitrary; that is,

only the spatial part of the calculation will be discussed in this section.

The choice of a computer program depends on the amount of computer

time that one is willing to spend; the more nearly exact the method, the

longer the computer time required. Probably the most rapid method

developed so far for computing space-dependent spectra for lattice cells

is the variational method used as the basis for the SWAKRAUM code

developed by Calame and Federighi (C1, C2). By using a non-self-adjoint

variational method, the P 1 spherical harmonic multigroup equations (W2)

are reduced to a few coupled Helmholz equations, the number depending

on the number of trial spectra chosen. The space-dependent neutron

spectrum is taken as a linear combination of the trial spectra. The coef-

ficients of the linear combination are determined from the variational

condition for a stationary absorption rate. The present version of

SWAKRAUM includes an option for treating the spatial calculation in

double spherical harmonic expansion (Y2, Z1) of order unity (double-P 1 )

or P3 for slabs. Further work on the variational method has been done

by Buslik (B15). The basic weakness with the variational method is that

the final solution is sensitive to the choice of the trial spectra.



28

An alternative to the variational method involves the direct, iter-
ative solution of the multigroup P1 equations; ULCER (R1) and SLOP-1
(B9) are good examples of the use of multigroup diffusion theory. The
SLOP-1 code has an option for the double-P 1 or P 3 approximations in
slabs, but the treatment for cylinders is restricted to diffusion theory.
Little incentive exists for extending the spherical harmonic treatment
beyond the P 1 -approximation for cylinders.

The TET code (D4) offers the desired degree of transport approxi-
mation for slabs. The code incorporates a form of the discrete ordinate
method (G3) in that it uses six quadrature angles in the forward and in
the backward directions. This order of approximation is considered to
be equivalent to a double-P 5 approximation. Eventually, the code will
incorporate terms up to the P 3-scattering term, with a P 3 -source; but
the method is not likely to be extended to cylinders in this form.

The Sn method developed by Carlson (C3, C4) has received much
attention in recent years. This method can be considered to be a form
of a discrete ordinate solution to the transport equation. It has been
reported that a version of the SNG code, in the S8 -approximation for
cylinders, has been used with good results (Ml). Another version of the
method has been extended to include the effects of anisotropic scattering
up to the P 3 -scattering component of the energy exchange kernel (A2).

The integral transport method has been programmed by Honeck as
the basis of the THERMOS code (H8). The program treats slabs and
cylinders with the assumption that the scattering is isotropic in the labo-
ratory system. For slabs, Honeck has extended the method to include
the effects of the P 1 -scattering component of the energy exchange kernel
(H9, H12).

The Monte Carlo method probably offers the most nearly exact
method of solution. The accuracy depends on the number of case histories
considered and, therefore, depends on the computer time used; TRAM (P6)
is a good example of a computer program based on this method.

In most of the calculations discussed in this report, the THERMOS
code has been used because of its proven usefulness (B12, B13) and the
possibility of close cooperation with the Reactor Theory Group of the
Brookhaven National Laboratory, where Honeck is developing the method
further. Only the details of the method relevant to the work are considered;
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for a more detailed discussion, the published literature should be consulted

(H5, H6, H7).

The THERM@S calculation involves a direct, numerical solution of

the integral Boltzmann equation for cylinders. It is assumed that the flux

is independent of the axial position and that the boundary of the cylindrical

cell is perfectly reflecting. The cell is divided into concentric regions,

with a maximum of 20 permitted, because of computer storage require-

ments. Thirty thermal energy groups are considered. The source of

thermal neutrons in the cell is usually taken to be that from a spatially

flat, 1/E-distribution above 0.78 ev. The scattering is assumed to be

isotropic, but the scattering kernel is arbitrary. The program reads the

cross section information from a magnetic tape, thus eliminating the

necessity for generating an energy exchange kernel each time a new

problem is considered, and reducing the chance of errors due to the han-

dling of punched cards. The final solution involves a direct iterative

procedure until the scalar flux, *(E,r), converges.

3.2 THE ENERGY EXCHANGE KERNELS FOR HEAVY WATER

The purpose of this section is to investigate the sensitivity of the

spatially-dependent energy spectrum to the scattering model used. Infor-

mation concerning this dependence should be helpful in the interpretation

of the intracellular flux traverses. The energy exchange kernel involves

the details of the scattering probability for neutron transfer from any

initial energy to any final energy when the neutron interacts with a moder-

ator molecule.

The development of the theory began with the work of Wigner and

Wilkins (W4). Assuming that the atoms of the molecule can be treated as

free, monotomic gas atoms, they derived an analytical expression for the

scattering kernel, o (Ei Ef), for neutrons in a gas of atoms of arbitrary

mass. They assumed that a (v r), where vr is the relative velocity between

the neutron and target, is constant. This kernel, with a mass of two, is

valid for a deuterium gas; it will be referred to as the Mass-Two kernel.

Brown and St. John (B11) recognized that they could obtain a solution

for the scattering kernel for the case:

a-svr) = A exp (-c v$), (3.2.1)
s r ~I r
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where A. and c. are constants that can be adjusted to fit the measured
1 1

total scattering cross section for heavy water:

o s(vr) f 0 0 a s(Ei'-Ef) dE . (3.2.2)
0

They tried to account for the chemical binding of the deuterium atoms by

considering the D 20 molecule to be a rigid rotator. With this assumption,

the "effective" mass of D 2 0 to be used as the mass in the free gas model

was 3.595. The scattering kernel used by Brown and St. John will be

referred to as the BSJ kernel or as the Mass-3.595 kernel.

The theory of the scattering kernel was extended by Nelkin (N1,N2,

N3,N4,N5,K7), who developed an incoherent scattering model for the H2 0

molecule, which took into account the effects of chemical binding. He

derived an expression for the differential scattering cross section,

as(E -E ,), where p. is the cosine of the angle between the directions of

the incident neutron and the scattered neutron, which can be expanded in

terms of Legendre polynomials in p.:

a (E-)-Ef,p) = a (EigE ) + s. . . (3.2.3)

The model assumes that the H20 molecule can be treated as a combi-

nation of a translator, a hindered rotator, and vibrational oscillators.

Experimental data were used to evaluate the parameters describing the

rotator and the oscillators.

Honeck (H10) has extended the Nelkin model to D 2 0 by replacing

the experimental data for H20 with those for D2 0. Table 3.2.1 gives a

comparison of the parameters for H2O and D 20. Honeck notes that D2 0

scatters more coherently than H20, but he concludes that the error intro-

duced by the assumption of incoherent scattering should be small for

a s(E i-E f). Figure 3.2.1 shows a comparison of the observed scattering

cross section with the predictions of the Honeck-Nelkin model for D2 0.

The failure to consider the coherent scattering is the cause of the dis-

agreement in the low energy range.

The validity of the energy exchange kernel can be tested experi-

mentally. The differential scattering kernel can be measured directly in

the "Scattering Law" experiments reviewed by Eglestaff (El, E2); Goldman
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TABLE 3.2.1

Constants for H20 and D 2 0

Constant H in H 20 D in D 20

W r, energy of the rotator 0.06 ev 0.05 ev

Wv 1, energy of the 1st vibrator 0.205 ev 0.15 ev

o v2 t"'v3 0.480 ev 0.35 ev

Mt., mass of the translator 18.0 20.0

Mr, mass of the rotator 2.32 4.11

Mvl = Mv2 = Mv3 5.84 4.52

and Federighi (G2) discuss one such comparison. An indirect measure

can be made by comparing the calculated infinite-medium spectra with

the spectra measured by Beyster (B4, B5, B6, B7, B8), Young (Y1) or

Poole (P7, P8, P9). The latter experiments work best for poisoned

moderators because, in a pure moderator, the spectrum is very close

to a Maxwellian distribution regardless of the scattering model assumed.

This comes about because the scattering kernel satisfies the condition of

detailed balance, which places on the kernel the constraint that, in an

infinite medium with no absorption, the spectrum is a Maxwellian distri-

bution at the moderator temperature (W4). For H 2 0 systems, the Nelkin

model leads to results which compare favorably with experiment.

Honeck has considered terms up to order P3 for the differential

scattering cross section of D 20 in calculations of the diffusion coef-

ficient and the diffusion cooling coefficient measured in pulsed neutron

experiments. The comparison of the calculations and the experiment

are discussed by Malaviya and Profio (M3). It seems likely that the

Nelkin model with the Honeck parameters is the best one available for

D20.

The calculated kernels for D 20 are compared in Figs. 3.2.2 and

3.2.3. They are expressed as P(E E f), the probability per unit energy

interval that a neutron of initial energy E will have energy Ef after a

collision with a moderator atom; P(E -)E f) satisfies the normalization

condition, f0 dE P(E ->E =1. P(E +E ) is related to os(E E ) by:
0 ) (ioE)u(Ef
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o- (E - E )
P(Ei-).Ef) = r I(E (3.2.4)

f 1

The curves of Fig. 3.2.2 correspond to an initial energy, E., equal

to 1.44 kTM, where TM is the moderator temperature. At this energy,

the Nelkin kernel is more sharply peaked about E than either of the free

gas kernels. The shapes of the curves are also different, a result which

is not surprising since the Nelkin kernel should predict harder spectra

because of the greater probability of small energy transfers.

At the higher initial energy considered in Fig. 3.2.3, the Nelkin

model differs markedly from the two free gas models. The difference in

the two peak energies of the Nelkin kernel corresponds to the energy

transfer of neutrons that excite the rotational level of the D 20 molecule.

These types of energy transfers are not considered in the free gas model;

consequently, the gas model has only one peak, at the initial energy.

The THERMOS code is restricted to isotropic scattering. In an

effort to estimate the effect of the neglect of the higher order terms of

the scattering kernel, the following approximations were made:

(1) as(E- E f) was multiplied by (1-u) where p. = 2/ 3Aeff with Aeff
as 3.595; this correction will be called the " correction."

(2) The diagonal elements of a (E .E f) were adjusted so that the

numerically integrated value of the kernel would correspond to the

transport cross section, tr(E), as calculated from the Honeck-Nelkin

model:

a *(E.->E.) = -(E.+-E.) -f0 - (E.+E ) dEf AE.. (3.2.5)
s i i s i i 0o si 1 i f f 1

The second procedure appears to be more realistic. (The oxygen of the

D 20 molecule was treated as a free gas of mass 16.)

The THERMOS code, with the various energy exchange kernels dis-

cussed in this section, has been used in calculations made for the lattices

investigated experimentally at M.I.T. The results indicate that the pre-

dicted values for the quantities that can be measured are not significantly

affected by the details of the scattering model. Figure 3.2.4 shows the

calculated spectra for the Nelkin and the Brown-St. John kernels at the

center of a fuel rod in a lattice moderated by heavy water. The spectra
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are nearly indistinguishable. The spectra are normalized so that one

neutron is absorbed in the cell below 0.78 ev.

Tables 3.2.2 to 3.2.5 show the calculated results for the over-all

disadvantage factors for a 1/v-activator, lutetium and europium:

E

f dr f c dE 0-ACT(E) *(E,r)
mod 0 (3.2.6)

E
f dr f c dE UAC1(E) *(E,r)
fuel 0

The upper limit for the integration, E is given in the tables as the cutoff

energy. The values of q and f are also listed, although they cannot be

measured directly for the lattice. The ratio of fissions in plutonium-239

to fissions in uranium-235 is included; it has been calculated on the

assumption that the plutonium has no effect on the spectrum.

The most sensitive measurement in the lattice cell that can be made

conveniently is the intracellular activation distribution. The results of

the calculations are given in Tables 3.2.6 to 3.2.10. Apart from the Mass-

Two kernel, the various kernels gave results that differ by no more than

3% for the activation distribution in the natural uranium lattices, and 2%
235

in the lattices of uranium rods containing 1.03% U

Nelkin (N6) has suggested that the results were insensitive to the

kernel used because the lattices investigated at M.I.T. were well-moderated.

Results of calculations in graphite-moderated lattices are discussed in

Appendix E. Graphite is not as good a moderator as heavy water and the

details of the energy exchange kernel should be more important. The

results of Appendix E indicate that this is the case.

3.3 ANALYTICAL TREATMENT OF THE RADIAL AND AXIAL
LEAKAGE IN AN EXPONENTIAL ASSEMBLY

In this section, a method is developed for calculating the intracellu-

lar flux distribution measured in an exponential assembly. The analysis

should also be helpful in the determination of the size of an exponential

assembly in which the intracellular flux distribution can be "corrected"

to give the distribution in an infinite assembly. It is assumed that the

radial and axial effects are separable. Although the method is specifi-

cally designed for use with the THERMOS code, generalization to other

methods should be simple.



TABLE 3.2.2

Comparison of Calculated Nuclear Properties in
Natural Uranium Rods on a 4.5-Inch

a Lattice of 1.01-Inch Diameter,
Triangular Spacing.

(a) r is the over-all disadvantage factor.

(b) Fissions in plutonium per fission in U 2 3 5

Honeck- Honeck-
Cutoff Mass-Two Brown- Honeck- Nelkin Nelkin

Quantity Energy Kernel St. John Nelkin Kernel, Kernel,
(ev.) Kernel Kernel Diagonal

Correction Correction

{1/v (a) 0.4 1.791 1.770 1.763 1.732 1.750

LLu-176(a) 0.4 1.565 1.543 1.540 1.519 1.528

()Eu-151 0.14 1.950 1.925 1.925 1.890 1.870

f 0.78 0.9846 0.9848 0.9848 0.9849 0.9848

- 0.78 1.334 1.333 1.333 1.332 1.333

-F 1 -F (b)
TyF F (b) 0.78 1.56 1.64 1.62 1.68 1.62
Pu-239) U'-235



TABLE 3.2.3

Comparison of Calculated Nuclear Properties in
Natural Uranium Rods on a 5.0-Inch

a Lattice of 1.01-Inch Diameter,
Triangular Spacing.

(a) r is the over-all disadvantage factor.

(b) Fissions in plutonium per fission in U 2 3 5

Honeck- Honeck-
Cutoff Mass-Two Brown- Honeck- Nelkin Nelkin

Quantity Energy Kernel St. John Nelkin Kernel, Kernel,
(ev.) Kernel Kernel Diagonal

Correction Correction

1/v(a) 0.4 1.820 1.795 1.799 1.760 1.778

Lu-176(a) 0.4 1.590 1.568 1.562 1.535 1.550

CEu-151(a) 0.14 1.980 1.955 1.945 1.918 1.938

f 0.78 0.9824 0.9826 0.9826 0.9828 0.9827

11 0.78 1.335 1.334 1.334 1.334 1.335

2 -F (b) 0.78 1.52 1.59 1.57 1.62 1.58UPu -239/70U -235

- _' - 11--_ _-4-



TABLE 3.2.4

Comparison of Calculated Nuclear Properties in a Lattice of
Natural Uranium Rods on a 5.75-Inch Triangular

1.01-Inch Diameter,
Spacing.

(a) r is the over-all disadvantage factor.

(b) Fissions in plutonium per fission of U2 3 5

Honeck- Honeck-
Cutoff Mass-Two Brown- Honeck- Nelkin Nelkin

Quantity Energy Kernel St. John Nelkin Kernel, Kernel,
(ev.) Kernel Kernel ~~ Diagonal

Correction Correction

1/v(a) 0.4 1.864 1.840 1.835 1.793 1.795

Lu-176(a) 0.4 1.625 1.600 1.595 1.565 1.560

'Eu-151(a) 0.14 2.020 2.000 2.000 1.950 1.952

f 0.78 0.9787 0.9789 0.9789 0.9792 0.9792

rI 0.78 1.338 1.335 1.335 1.338 1.336

-u 3 -F (b) 0.78 1.48 1.53 1.52 1.57 1.56

A
0



TABLE 3.2.5

Comparison of Calculated Nuclear Properties in a Lattice of 0.25-Inch Diameter,
1.03% U 2 3 5, Uranium Rods on a 1.25-Inch Triangular Spacing.

(a) r is the over-all disadvantage factor.

(b) Fissions in plutonium per fission in U 2 3 5

Honeck- Honeck-
Cutoff Mass-Two Brown- Honeck- Nelkin Nelkin

Quantity Energy Kernel St. John Nelkin Kernel, Kernel,
(ev.) Kernel Kernel - Diagonal

Correction Correction

1/v(a) 0.4 1.252 1.245 1.262 1.262 1.260

(a) 0.4 1.183 1.178 1.213 1.192 1.194'Lu -176

Eu-151(a) 0.14 1.291 1.292 1.315 1.313 1.304

f 0.78 0.9774 0.9784 0.9784 0.9784 0.9773

0.78 1.491 1.500 1.505 1.505 1.504

F F (b) 0.78 1.57 1.67 1.66 1.72 1.65
Pu-23 9 1 U -235

I-L



TABLE 3.2.6

Intracellular Activity Distribution Below 0.4 ev. for a 1/v-Activator in a Lattice of
1.01-Inch Diameter, Natural Uranium Rods on a 4.5-Inch Triangular Spacing.

Radial Mass-Two Brown- Honeck- Honeck-Nelkin Kernel, Honeck-Nelkin Kernel,
Point Position Kernel St. John Nelkin Diagonal

(cm.) Kernel Kernel Correction Correction

1 0.000 1.000 1.000 1.000 1.000 1.000

2 0.284 1.018 1.018 1.018 1.018 1.018

3 0.568 1.067 1.066 1.065 1.065 1.066

4 0.853 1.161 1.157 1.156 1.156 1.158

5 1.137 1.332 1.325 1.323 1.322 1.326

6 1.324 1.520 1.508 1.504 1.504 1.509

7 1.658 1.726 1.705 1.699 1.691 1.701

8 2.236 1.920 1.890 1.885 1.864 1.881

9 2.815 2.030 1.996 1.991 1.961 1.983

10 3.394 2.104 2.065 2.062 2.024 2.049

11 3.972 2.164 2.123 2.121 2.078 2.105

12 4.551 2.208 2.166 2.164 2.119 2.147

13 5.130 2.240 2.198 2.196 2.149 2.178

14 5.708 2.265 2.222 2.220 2.175 2.203



TABLE 3.2.7

Intracellular Activity Distribution Below 0.4 ev. for a 1/v-Activator in a Lattice of
1.01-Inch Diameter, Natural Uranium Rods on a 5.0-Inch Triangular Spacing.

Radial Mass-Two Brown- Honeck- Honeck-Nelkin Kernel Honeck-Nelkin Kernel,
Point Position Kernel St. John Nelkin jI Diagonal

(cm.) Kernel Kernel Correction Correction

1 0.000 1.000 1.000 1.000 1.000 1.000

2 0.284 1.018 1.018 1.018 1.018 1.018

3 0.568 1.067 1.066 1.066 1.066 1.066

4 0.853 1.162 1.159 1.157 1.157 1.159

5 1.137 1.334 1.328 1.325 1.325 1.328

6 1.324 1.523 1.513 1.508 1.508 1.512

7 1.699 1.743 1.724 1.718 1.708 1.718

8 2.361 1.939 1.911 1.906 1.881 1.899

9 3.024 2.076 2.043 2.039 2.003 2.026

10 3.686 2.137 2.101 2.099 2.056 2.081

11 4.348 2.199 2.161 2.159 2.111 2.138

12 5.010 2.244 2.204 2.203 2.152 2.180

13 5.672 2.276 2.236 2.235 2.182 2.211

14 6.334 2.299 2.258 2.258 2.206 2.234



TABLE 3.2.8

Intracellular Activity Distribution Below 0.4 ev. for a 1/v-Activator in a Lattice of
1.01-Inch Diameter, Natural Uranium Rods on a 5.75-Inch Triangular Spacing.

Radial Mass-Two Brown- Honeck- Honeck-Nelkin Kernel, Honeck-Nelkin Kernel,
Point Position Kernel St. John Nelkin ~i Diagonal

(cm.) Kernel Kernel Correction Correction

1 0.000 1.000 1.000 1.000 1.000 1.000

2 0.284 1.018 1.018 1.018 1.018 1.018

3 0.568 1.068 1.067 1.067 1.066 1.067

4 0.853 1.163 1.161 1.160 1.159 1.160

5 1.137 1.337 1.333 1.330 1.329 1.330

6 1.324 1.528 1.521 1.516 1.514 1.517

7 1.762 1.770 1.754 1.747 1.734 1.743

8 2.549 1.980 1.955 1.950 1.919 1.936

9 3.336 2.120 2.090 2.087 2.044 2.065

10 4.123 2.189 2.156 2.154 2.104 2.129

11 4.910 2.249 2.214 2.213 2.156 2.183

12 5.697 2.294 2.257 2.257 2.197 2.225

13 6.484 2.325 2.288 2.288 2.226 2.254

14 7.272 2.345 2.309 2.308 2.248 2.276



TABLE 3.2.9

Intracellular Activity Distribution Below 0.4 ev. for a 1/v-Activator in a Lattice of

1/4-Inch Diameter, 1.03% U 2 3 5 , Uranium Rods on a 1.25-Inch Triangular Spacing

Radial Mass-Two Brown- Honeck- Honeck-Nelkin Kernel, Honeck-Nelkin Kernel,
Point Position Kernel St. John Nelkin Diagonal

(cm.) Kernel Kernel Correction Correction

1 0.000 1.000 1.000 1.000 1.000 1.000

2 0.127 1.016 1.016 1.016 1.016 1.016

3 0.254 1.069 1.068 1.067 1.069 1.069

4 0.361 1.173 1.172 1.170 1.180 1.178

5 0.507 1.232 1.230 1.228 1.241 1.239

6 0.717 1.278 1.276 1.273 1.289 1.287

7 0.928 1.306 1.304 1.300 1.317 1.315

8 1.138 1.317 1.316 1.312 1.331 1.328

9 1.349 1.327 1.325 1.322 1.341 1.338

10 1.559 1.339 1.337 1.334 1.354 1.351

C-Il



TABLE 3.2.10

Intracellular Activity Distribution Below 0.4 ev. for a 1/v-Activator in a Lattice of

1/4-Inch Diameter, 1.03% U 2 3 5 , Uranium Rods on a 2.5-Inch Triangular Spacing.

Radial Mass-Two Brown- Honeck- Honeck-Nelkin Kernel, Honeck-Nelkin Kernel,
Point Position Kernel St. John Nelkin Diagonal

(cm.) Kernel Kernel Correction Correction

1 0.000 1.000 1.000 1.000 1.000 1.000

2 0.127 1.015 1.015 1.015 1.015 1.015

3 0.254 1.061 1.061 1.061 1.061 1.061

4 0.361 1.146 1.146 1.146 1.148 1.148

5 0.647 1.217 1.216 1.215 1.218 1.217

6 1.135 1.260 1.258 1.257 1.260 1.260

7 1.622 1.272 1.270 1.270 1.272 1.272

8 1.970 1.279 1.278 1.277 1.281 1.281

9 2.179 1.290 1.288 1.288 1.290 1.290

10 2.388 1.291 1.289 1.289 1.291 1.291

11 2.597 1.292 1.290 1.290 1.292 1.292

12 2.806 1.294 1.292 1.292 1.294 1.294

13 3.015 1.296 1.294 1.294 1.296 1.296

14 3.224 1.297 1.295 1.295 1.296 1.297
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3.3.1 THE RADIAL LEAKAGE

It is assumed that the problem of calculating the spatially dependent

neutron spectrum in the radial direction is separable in space and energy

on a macroscopic level. Brown (B14) has measured subcadmium and epi-

cadmium intracellular flux distributions at different radial positions in a

natural uranium lattice and has found that the variation with radial position

was sufficiently small so that the assumption of separability should intro-

duce no serious errors. Palmedo and Benoist (P2) have made similar

experiments in Aquilon II lattices, but they indicate that the assumption of

separability is not valid.

One problem is to calculate the intracellular flux distribution in an

assembly that is finite in the radial direction only. To correct the

measurements for the finite size of the assembly, the usual procedure is

to divide the experimental activation at a point r by J (ar), where a is

obtained from the measured radial macroscopic flux distribution. It seems

more reasonable, physically, to calculate the intracellular flux distribution

for the finite system, since this is what is actually measured. To do this,

the present calculational schemes must be modified, since they treat an

infinite array. The THERM()S calculation will now be extended to include

the effect of radial leakage from the central cell of the lattice. It will be

assumed that neutrons that leak out of the central cell are absorbed in a

fictitious region bounding the cell as shown in Fig. 3.3.1. The absorption

cross section of the outer region is so defined that the number of neutrons

absorbed is equal to the net number of neutrons that leak out. The leakage

is calculated at every energy by means of diffusion theory, which should be

satisfactory for calculating the macroscopic flux distribution, except in a

very small assembly. For these approximations,

E (E)AR = aD(E) J (aR) (3.3.1)

where a is the radial buckling, R is the equivalent cell radius, AR is the

thickness of the outer, fictitious region, Fa is the absorption cross section

of the fictitious region, J0 and J are the Bessel functions of order zero

and unity, and D is the diffusion coefficient for the cell. It should be noted

that Z AR is a constant for any given lattice. The method can be tested by

varying Za and AR, while keeping the product of the two constant, to
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determine if the calculations give the same absorption rates. This has

been done, and the results indicate that the procedure does not depend on

the choice of AR, so long as AR a R. For the cases studied, AR was fixed

at 0.2 cm.

The radial buckling was taken from the measured values of Palmedo

(P1) and was assumed to be the same at all energies. The diffusion coef-

ficient for D 20 as a function of energy was calculated from the P and P1
components of the Honeck-Nelkin model for the scattering of slow neutrons

in D 20:

D(E) = (3.3.2)

3N2c (E)- 20 (E) + o-s 0 s 1()+Ttr

where -t r, the transport cross section of oxygen, is 3.58 barns, N is the

atom density of oxygen,

or = f dEf f 1 dj a (E -+Ef, ). (3.3.3)
o all E -1

and

O = f dE 1 dp p. U(E -+Ef); (3.3.4)
1 all E -1

os(E -+E ,0) is the differential scattering cross section for D 20. Table 3.3.1

gives the values of D 1 (E) for D 2 0 and for H2 0, calculated from the Nelkin

model and Eq. (3.3.2).

The values for D and 1/3~tr for mixtures of H 20 and D20 averaged

over a Maxwellian spectrum at the moderator temperature (0.0253 ev) are

given in Fig. 3.3.2. Comparisons can be made with the results of integral

experiments, such as pulsed neutron or poisoning experiments, to check

the average value of U. Bauman (B1) quotes a value of 0.84 ± 0.01 cm for

5 1,The calculated value of UD was 0.849 and for 1/3Z tr was 0.826.
Although the agreement is for the average values, the calculations are not

inconsistent with the experiment.

It is necessary to calculate D for the cylindrical cell for use in

Eq. (3.3.1). For the one-velocity case, the problem has been treated by

Selengut (Si), who used an electrical analogy to neutron diffusion and

obtained the result:
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TABLE 3.3.1

Values of the Diffusion Coefficient for H 2 0 and D 2 0 Calculated by the
Nelkin Model for Slow Neutron Scattering

Diffusion Coefficient
(D:cm)

Group Energy (ev) D 2 0 H20

1 0.00025 0.2241 0.02231

2 0.00101 0.3729 0.03994

3 0.00228 0.4657 0.05274

4 0.00405 0.5270 0.06238

5 0.00632 0.5725 0.07043

6 0.00911 0.6111 0.07800

7 0.01240 0.6476 0.08581

8 0.01619 0.6847 0.09434

9 0.02049 0.7236 0.1039

10 0.02530 0.7651 0.1150

11 0.03061 0.8084 0.1276

12 0.03643 0.8506 0.1419

13 0.04276 0.8864 0.1568

14 0.04959 0.9114 0.1705

15 0.05692 0.9267 0.1804

16 0.06517 0.9386 0.1864

17 0.07485 0.9534 0.1906

18 0.08612 0.9739 0.1971

19 0.09919 0.9962 0.2082

20 0.11398 1.015 0.2213

21 0.13123 1.034 0.2326

22 0.15248 1.055 0.2436

23 0.17901 1.073 0.2595

24 0.21241 1.097 0.2750

25 0.25464 1.120 0.2925

26 0.30816 1.145 0.3112

27 0.37598 1.169 0.3358

28 0.46183 1.186 0.3591

29 0.57023 1.197 0.3841

30 0.70666 1.205 0.4080
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(1-npen)
D = D (3.3.5)

n

where

1 0.(.36
En nD +D; (3.3.6)

1 0

p is the volume fraction of the region designated by 0 (the fuel rod here);
n is an index which is 0, 1, or 2 for slabs, cylinders or spheres, respec-

tively. For D much greater than D1, D reduces to 1+ D1 for cylinders.

For the 1-inch natural uranium rods arranged on a 4.5-inch tri-

angular spacing, the value of D is equal to 0.998 D, as calculated from

Eq. (3.3.5). In view of the approximations in the method, it seems reason-

able to take D equal to D, the moderator diffusion coefficient, thus

assuming the rod to be as effective as the moderator. With R equal to

0.2 cm, Eq. (3.3.1) reduces to:

(E) = 5aD 1 (E) Ji(a R)/J (aR) cm'.

As a demonstration of the method, the intracellular flux traverse

was calculated, in the single-velocity approximation, for the natural

uranium lattice of 1.01-inch diameter rods on a 5.75-inch triangular

spacing. The cross sections used were the 2200 m/sec values given in

BNL-325. Figure 3.3.3 shows the results for three values of the radial

buckling. When the radial buckling is equal to zero, the calculation cor-

responds to the infinite case. As the radial buckling increases, the flux

in the moderator decreases. When the calculated flux is divided by

J (ar), as in the procedure usually adopted, the "corrected" flux corre-
0

sponds to the flux in the infinite case.

The revised method with thirty energy groups was next applied to

several lattices studied by the M.I.T. Lattice Project. Experimental

values of the radial buckling were used along with the Honeck-Nelkin

kernel with the diagonal elements adjusted. The results were compared

to the calculated results for the infinite radial lattices by dividing the

finite calculated values by J (ar) for each point r. No noticeable differ-

ence was evident, indicating that the usual "experimental correction" to
the infinite system is justified.

The method also allowed an estimate to be made of the diffusion
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length. If the calculation with the fictitious region gives the thermal utili-

zation in the finite system, f then the radial thermal diffusion length,

L2, is not needed to calculate keff for the lattice. However, Lr may be
defined by the relation:

f
ff = f 0 (3.3.8)

1 + L a 2

r

To obtain a value for L r, two THERMOS calculations must be made, one

for the finite case and the other for the infinite case. Of course, the value

of L2 will be a function of the radial buckling. Table 3.3.2 gives the calcu-
r

lated results for the M.I.T. lattices. A common method for the calculation

of L is to find average values of the absorption and transport crossr2
sections for the cell, and take L equal to 1/37a tr. The values obtained

for 1/3Ea t are included in Table 3.3.2. The values obtained for Lr by

both methods are within 10% for the natural uranium lattices, but are about

20% different for the lattice with rods with 1% U235 Further work in this

area is necessary before more definite conclusions can be reached.

TABLE 3.3.2

Calculated Values of the Thermal Diffusion Length for the M.I.T. Lattices

Lattice U-235 2 L2 Ta 1/37a'tr
Spacing Concentration -2 2 -1 -1 2

(in.) (%) (m ) (cm ) (cm ) (cm ) (cm )

4.50 Natural 14.10 99.4 0.00762 0.397 110.

5.00 Natural 14.12 127. 0.00617 0.400 135.

5.75 Natural 14.20 159. 0.00468 0.403 177.

1.25 1.03 13.83 67.5 0.0103 0.387 83.5

2.50 1.03 - - 0.00302 0.405 273.

3.3.2 THE AXIAL LEAKAGE

In an exponential assembly, neutrons leak into the assembly at the

bottom and out at the top and sides. In this sense, the leakage is a negative

leakage, and the nature of the problem is different from that in a critical
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assembly. Tralli and Agresta (T4) have calculated the flux distribution

and thermal utilization in a critical system by using the P 3 -approximation.

The method developed in this section involves a modification of the

THERMOS code, whereas the radial correction could be treated with the

existing version of the code. THERMOS calculates numerically the trans-

port kernel describing the probability of transfer from a point in a cylin-

der to any other point. The method involves the assumption that the flux

distribution in the axial direction is independent of the axial position. The

probability, F(X), is then calculated that a neutron emitted from an infinite

line source will reach a position d, X mean free paths away:

F(X)= f r/2 ,-X sec 0 cos 0 dO , (3.3.9)
0

d
where X= f d dr, mean free paths. If the axial source distribution is

0
assumed to be exponential from -oo to eo, then the modified probability is:

F(X,a) = f cos h(Xa tan 0) e-X sec 0 cos 0 dO , (3.3.10)
0

where a is , and y is the inverse of the axial relaxation length.

Expansion of Eq. (3.3.10) in terms of the argument of the hyperbolic

cosine indicates that the error introduced by neglecting the variation

of the axial flux distribution introduces only quadratic errors:

F(X,a)= f0?r/2 dO cos 0 e-- sec 0 1 + 2a2 2

0 2

(3.3.11)

The method will give reasonable results only when Z > -y. If any region of

the cell does not satisfy this criterion, the method will not be valid. An

obvious example of such a region is a vacuum.

A table of 2000 values of F(X,a) was prepared by means of numeri-

cal integration by Simpson's rule with 40 intervals, for values of X between

0 and 5 in steps of 0.05, and for a between 0 and 0.5 in steps of 0.025. The

table, which is a 100 X 20 matrix, was stored on magnetic tape for use with

THERMOS. The THERMAS code was modified to interpolate linearly the

value of F(X,a) from this matrix instead of from the linear matrix for F(X).
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To insure compatibility with other versions of THERMOS, the calcu-

lated values of F(X,a) were divided by F(X,0) calculated from the numerical

integration of Eq. (3.3.10) and multiplied by the values used by Honeck for

F(X). This procedure insured that when y = 0, the two codes would give the

same result; it was checked on a test problem and the result indicated that

the two codes were compatible.

Table 3.3.3 compares the values of F(X,0) calculated by Simpson's

rule and Honeck's expansion for F(X). In addition, values of F(X,a), for a

between 0 and 0.5, are included for the direct integration.

TABLE 3.3.3

Calculated Values of F(X,a) for the Axial Correction.

\a* 0.0 0.0 0.1 0.2 0.3 0.4 0.5

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.2738 0.2736 0.2743 0.2766 0.2804 0.2859 0.2933

2 0.08575 0.08549 0.08606 0.08780 0.09083 0.09534 0.1016

3 0.02796 0.02793 0.02823 0.02918 0.03087 0.03346 0.03723

4 0.009362 0.009347 0.009493 0.009950 0.01077 0.01207 0.01405

5 0.003179 0.003178 0.003243 0.003447 0.003823 0.004436 0.005409

Honeck's approximation for F(X) used in the THERMOS code.

It was found that values of F(\,a) are equal to or greater than values

of F(X,0) for the same value of X. Physically, this means that neutrons

have a greater probability of traveling a given distance in the cell, which

would result in a higher moderator flux, since the neutrons have a greater

probability of escaping capture in the rod. Hence, the dip to the center of

the rod from the outer boundary of the cell should be greater in an expo-

nential assembly with y > 0, than in an infinite assembly with -y = 0.

Gamma (-y) was varied from 0.0 to 0.03 cm 1 in the single velocity test

problem, shown in Fig. 3.3.3, with a's of 0, 0.0188, 0.0377, and 0.0754 cm 1

In all cases, the one-group flux distribution was nearly independent of -Y,

but the trend of the dip was, as predicted, slightly greater with increasing

y. For y > 0.03, the dip began to decrease, probably because of the break-

down of the approximations used.
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3.3.3 THE COMBINED EFFECT

The extended and modified THERMPS code was applied to the

lattices investigated by the M.I.T. Heavy Water Lattice Project. The 30-

group Honeck-Nelkin kernel with the diagonal elements adjusted was used.

The radial and axial corrections described above were included. The

lattice of 1-inch diameter, natural uranium rods on a 5.75-inch triangular

spacing should require the greatest corrections, since it was built up

from the largest cell. Table 3.3.4 lists the results of the calculations for

four combinations of a and -y. The values of a and y were either equal

to zero or to the experimental values of Palmedo (P1). When a =0.0377 cm~,

the calculation predicts a 2% difference from the case when a = 0, the infinite

case, in the activation rise to the cell edge. If the value at each radial

position, r, is divided by J (ar), the difference is negligible (less than 0.3%).

It appears reasonable to conclude that the exponential tank used in the

M.I.T. experiments is large enough so that the measured intracellular

activation distribution in the central cell is representative of an infinite

assembly.

TABLE 3.3.4

Radial and Axial Corrected Intracellular 1/v-Activation Distribution
in a Lattice of 1.01-Inch Diameter, Natural Uranium Rods Arranged

on a 5.75-Inch Triangular Spacing.

Point Position a=0.0 a=0.0 a=0.0377 cm~1 a=0.0377 cm

(cm) y=0.0 -y=0.0246 cm~ -Y=0.0 y=0.0246 cm 1

1 0.0 1.0000 1.0000 1.0000 1.0000
2 0.284 1.0185 1.0184 1.0184 1.0183
3 0.568 1.0671 1.0669 1.0666 1.0665
4 0.853 1.1604 1.1598 1.1593 1.1588
5 1.137 1.3309 1.3296 1.3288 1.3276
6 1.324 1.5177 1.5174 1.5146 1.5143
7 1.762 1.7433 1.7457 1.7386 1.7412
8 2.549 1.9362 1.9383 1.9287 1.9310
9 3.336 2.0658 2.0679 2.0547 2.0571

10 4.123 2.1292 2.1314 2.1136 2.1162
11 4.910 2.1834 2.1856 2.1622 2.1650
12 5.697 2.2253 2.2275 2.1970 2.2001
13 6.484 2.2547 2.2570 2.2172 2.2205
14 7.272 2.2761 2.2784 2.2233 2.2271
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3.4 THE PROBLEM OF FLUX PERTURBATIONS FOR FOILS
IN A LATTICE

The activation per unit mass of a foil of finite thickness in a neutron

flux is less than it would be for an infinitely thin foil. The extent to which

the activations are different constitutes the flux perturbation problem for

a foil. Analytical methods used to treat the problem are discussed in

recent review articles by Osborn (01) and Hanna (H2). A serious diffi-

culty with the available methods is their failure to treat the energy-

dependent effects adequately, since the emphasis thus far has been on the

spatial effects. Hanna (H1) has noted this difficulty and has tried to modify

one treatment.

In a lattice cell, the problem is complicated by the variation of the

directional thermal neutron flux with position, energy and solid angle as

well as the variation of the activation cross section of the foil with energy.

To investigate the problem in a cell, an analytical procedure is described,

similar to that discussed by Zweifel (Z3), which treats the energy

dependence more accurately, but lacks the spatial rigor of the method of

Dalton and Osborn (D2, D3). The procedure was used to obtain initial esti-

mates of the effects of the foil perturbation in the interpretation of the

measurements of the intracellular flux distributions.

In the intracellular thermal flux measurements, it is usually assumed

(B14) that the neutron flux perturbation is the same for every foil and that

this effect therefore cancels in any relative measurement. The activation

cross section is simply multiplied by the scalar flux at the position of the

foil and integrated over energy, up to the cadmium cutoff, E c, to obtain

the reaction rate:

E
R(r) = f c 'ACT(E) *(E,r) dE , (3.4.1)

0

where 'ACT(E) is the activation cross section of the foil and 4(E,r) is the

scalar flux at position r. In the analytical procedure used in the present

work, the effect of the flux perturbation is included in the activation cross

section so that there is an explicit distinction, for example, between a

4 mil thick foil and that of a 10 mil thick foil:

Ec
R(r) = f c CT(E) 4(E,r) dE , (3.4.2)

0
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where

GACT(E) = fs s(E) UACT(E), (3.4.3)

and f (E) is the flux perturbation correction factor for the foil as a
function of energy. It is assumed that the flux incident on the foil is not
perturbed by the presence of the foil and that the directional flux is iso-
tropic everywhere. If the presence of the foil perturbed the incident flux,
this effect would have to be included explicitly in the THERMOS calcula-
tion; this type of calculation does not seem to be a possible one at this
time. The assumption is discussed further in Appendix A. Of the two
assumptions, the assumption that the flux is isotropic everywhere is
probably subject to the greater error, since, in a lattice cell, the flux
cannot be isotropic everywhere and currents exist.

If the flux of neutrons of a given energy at the surface of a foil is D,
the directional flux, <( ), where p. is the direction cosine, is 1/4. Let r
be the probability that the neutrons entering the foil will be absorbed.
Then the number of neutrons captured is:

Number captured = Pr - S, (3.4.4)a 4

where S is the surface area of the foil. Ia may be expressed in terms
of escape probabilities by means of the reciprocity theorem (T2):

ra = z a P7, (3.4.5)

where

T is the mean chord length,
Za is the absorption cross section,

and

P is the escape probability of neutrons from a flat, isotropic
source in a non-reentrant volume. Hence the number of neutrons captured
becomes:

Number captured = Ea T S . (3.4.6)a 4

The number of neutrons that would have been captured, had the foil not
perturbed the flux, is:

Number captured when'no perturbation occurs = Za '

(3.4.7)



60

where V is the volume of the foil. The ratio of the number of neutrons

captured by the foil to the number that would be captured by the foil if

there were no flux perturbation, is the neutron flux perturbation factor,

f:
ss

f = a @V = P, (3.4.8)

where use has been made of the relation between I and the volume-to-

surface ratio:

1 = 4V/S. (3.4.9)

Since there is little energy transfer in scattering collisions in foils of

high nuclear mass, and most commonly used foils are of this general

type, the flux perturbation factor derived for monoenergetic neutrons

can be generalized to all energies:

f (E) = P(E) . (3.4.10)

The escape probability for a flat, isotropic source in slabs has been

tabulated by Shiff and Stein (S2), from the results of sensibly exact trans-

port calculations, for various values of the optical thickness, Ett, and the

ratio of the scattering to total cross sections, s /t. An approximation

for P is:

P
0 (3.4.11)

1 - (1-P 0 )
t

where P is the first collision escape probability for the foil. For simple

shapes, P 0 has been tabulated by Case, de Hoffman and Placzek (C5). For

slabs, P 0 can be expressed in terms of the exponential integral of order 3,

E 3 (tt):

1- E 3 tt)
P = . (3.4.12)

o 2Ztt

The validity of the approximation for P given by Eq. (3.4.11) is discussed

by Francis (F_1). He shows that the approximation can be derived either

by means of a variational principle or by the method of successive
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generations. The latter method is used in the calculation of the fast

fission effect (W2). Francis shows that the approximation for P compares

favorably with the results of Schiff and Stein until the optical thickness

exceeds two mean free paths over the range of Es t'
To account for possible increased leakage from the sides of a finite

foil, P 0 is evaluated for a value of t having the same mean chord length

as the finite foil. The equivalent foil thickness used in the calculation of

P is designated as t ; it is related to the actual foil thickness, t, and the

radius of the foil, R, by:

t = t (3.4.13)
1+±t/R'

If R is much greater than t, then t reduces to t, as expected. Table
*

3.4.1 gives the values of t and t adopted in the calculations, for the gold

foils used in the experiments.

TABLE 3.4.1

Values of Equivalent Foil Thickness for 1/16-Inch Diameter Foils

Actual Foil Equivalent Foil
Thickness, t Thickness, t*

(mils) (mils)

2.5 2.3

4.3 3.8

10.2 7.7

*

The effective activation cross sections, -ACT(E), defined by Eq.

(3.4.3), were calculated with the QUICK code, described in Appendix C,

for the 30 energy groups corresponding to those of the THERMOS code,

for the gold foils used in the experiments. Figure 3.4.1 shows the

results of the calculations for the effective cross section as a function

of energy; the results are also tabulated in Tables C.1 to C.10. The

values of f (E) used to calculate -ACT(E) were calculated for a foil ofss AC
thickness t by evaluating P (defined by Eq. (3.4.12)) for a foil of

equivalent thickness t (defined by Eq. (3.4.13)) and substituting P0
into Eq. (3.4.11) for P; fss was shown to be equal to P by Eqs. (3.4.4)

through (3.4.8). The Lu-Al alloy foils, the depleted uranium foils, and
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the copper foils of the foil files discussed in Section 2.3 were found to be

effectively infinitely thin in the thermal energy range. No estimate was

made for the powder foils, because not enough information was available

concerning their physical properties.

When the effective cross sections for the foils have been calculated,

the THERMOS calculation can be used to evaluate the reaction rate for

the foil from Eq. (3.4.2). The THERMOS code computes <(E,r) and

numerically integrates Eq. (3.4.2) for any desired cutoff energy, Ec
Calculations have been made for the lattices investigated by M.I.T. for

the gold foils described in Section 2.3. A cutoff energy of 0.4 ev was used

because the cadmium cutoff for gold corresponds to this energy for the

thickness of cadmium covers used (B14). The results are given in

Tables 3.4.2 and 3.4.3. The calculations indicate that the activation

distribution in the cell is not very sensitive to the thickness of the foil

used. Only about a 1% difference in the activation dip into the rod is

predicted between the infinitely thin foil and the foil 7.7 mils thick (equiva-

lent to the 10.2 mils thick foil). The comparison with the experimental

results will be discussed in Chapter IV.

TABLE 3.4.2

Comparison of the Intracellular Activity Distributions for Gold Foils of
Different Thickness in the Lattice of 1.03% Enriched, 1/4-Inch Diameter

Rods on a 1-1/4-Inch Triangular Spacing.

Radial Infinitely
Point Position Thin 2.3 mil thick 3.8 mil thick 7.7 mil thick

(cm) Foil Foil Foil Foil

1 0.000 0.740 0.743 0.745 0.748

2 0.127 0.752 0.755 0.757 0.760

3 0.254 0.791 0.794 0.795 0.798

4 0.361 0.872 0.873 0.874 0.876

5 0.507 0.916 0.917 0.918 0.919

6 0.717 0.952 0.952 0.953 0.953

7 0.928 0.973 0.973 0.973 0.974

8 1.138 0.982 0.983 0.983 0.983

9 1.349 0.990 0.990 0.990 0.990

10 1.559 1.000 1.000 1.000 1.000
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TABLE 3.4.3

Comparison of the Intracellular Activity Distributions for Gold Foils of
Different Thickness in the Lattice of 1.03% Enriched, 1/4-Inch Diameter

Rods on a 2-1/2-Inch Triangular Spacing.

Radial Infinitely
Point Position Thin 2.3 mil thick 3.8 mil thick 7.7 mil thick

(cm) Foil Foil Foil Foil

1 0.000 0.771 0.775 0.776 0.779

2 0.127 0.782 0.786 0.787 0.790

3 0.254 0.818 0.821 0.822 0.825

4 0.361 0.885 0.886 0.887 0.889

5 0.647 0.938 0.939 0,940 0.940

6 1.135 0.971 0.972 0.972 0.9?2

14 3.224 1.000 1.000 1.000 1.000

Since the calculations for the intracellular activation distributions

are relative to one point in the cell, it is possible that, although the

proper variation of f with energy is predicted, the absolute magnitude

of the factor, f s, for the foil may be in error. The flux perturbation

factor, Tss, was found to be predicted adequately by the procedures

defined in this section; the subject is discussed further in Appendix A.

3.5 THE PREDICTION OF THE GOLD-CADMIUM RATIO IN A
LATTICE CELL

The activity of cadmium-covered foils in a lattice is usually

measured in the intracellular flux measurements simply to subtract it

from the activity of the bare foils to obtain the thermal activity. In the

experiments at B.N.L. (K5,K6), dysprosium was .used. to eliminate the

necessity of measuring the epicadmium activity, since dysprosium has no

strongly absorbing resonances. The epicadmium activity is, however, a

useful piece of information because it is relevant to discussions involv-

ing assumptions of slowing-down density distributions. It may also

suggest an alternative method for the normalization problem for theory

and experiment to be discussed in Chapter IV.

Weitzberg (W3) and Peak (P5) discuss methods that are similar in

nature to the prediction of cadmium ratios for detecting foils. Weitzberg's



65

method was to calibrate the lattice flux by making enough auxiliary experi-

ments in known fluxes to eliminate most of the variables. He assumed the

lattice flux to have a Maxwellian spectrum in the thermal energy range

and to vary as 1/E in the epithermal region. Peak was concerned with the

macroscopic flux in a small exponential facility. He found that to get agree-

ment between experiment and theory, he had to change the value of the ratio

of the effective resonance integral to the 2200 m/sec cross section, ERI'/ 0,

for a given foil from experiment to experiment. In the following discussion,

the emphasis will be on the prediction of the gold-cadmium ratio in a

lattice cell with a minimum number of adjustable parameters.

The thermal activation for a foil can be calculated, for one neutron

absorbed in the cell, from the expression:

E
Ath(r) = f c fss(E) -ACT(E) $(E,r) dE , (3.5.1)

0

where results obtained in Section 3.4 for the effect of flux perturbation

have been used. Since the problem of the shape of the thermal flux is to

be treated in Chapter IV, the cadmium ratio, although it varies across the

lattice cell, will be calculated at the cell edge, at r = Req . Then, Eq. (3.5.1)

becomes:

E
Ath f c fss(E) O-ACT(E) c (E) dE , (3.5.2)

0

where the dependence of Ath on r has been suppressed and Ath is under-

stood to be evaluated at the cell edge.

The epicadmium activity can be expressed by means of a similar

integral extended from E c to infinity, but it is more commonly written as

A .= C - ERI', (3.5.3)
epi

where C is a constant and ERI'is the effective resonance integral for the

foil; C relates the flux to the slowing-down density, q. An approximation(G1)

for C is:

C = q/ s 2;. (3.5.4)

Since it has been required that one neutron be absorbed in the thermal

range in the cell, the slowing-down density must satisfy this normalization.
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If the slowing-down density is spatially flat in the moderator, then

q -Vmod = 1; Vmod is the volume of the moderator. It is assumed that

leakage from the assembly between 4.9 ev and thermal energies is negli-

gible, and that the resonance escape probability between these energies

is unity. The first resonance for gold is at 4.9 ev. Then C is "known"

and Eq. (3.5.3) becomes:

A epi = ERI'/2 s V mod (3.5.5)

The cadmium ratio, Red is, by definition, the ratio of the bare foil

activity to the activity of the cadmium-covered foil:

E

c ss(E) -ACT(E) <p(E) dE

R cd=1+ 0 ERI, (3.5.6)

s mod

The calculation of the ERI for gold by the analytical method of

Cohen and Goldstein (C9) has been made by Kelber (K2). Rather than

interpolate between, and extrapolate from, the results of Kelber, it was

decided to rerun his calculations with his computer code. Table 3.5.1

lists the resonance parameters for gold used in the calculations;

Table 3.5.2 lists the results of the calculations for the effective reso-

nance integrals for gold. The value of the resonance integral, RI, calcu-

lated from the resonance parameters given in Table 3.5.1, was 1555 barns;

the value of the RI measured by Jirlow and Johansson (J2) was 1490 ±

40 barns.

Table 3.5.2 lists the contribution of the first resonance to the

effective resonance integral. The contribution decreases from 95% for

the infinitely thin foil to 88% for a foil 7.7 mils thick. The variation

occurs because the first resonance becomes shielded while the higher

resonances remain almost unshielded as the foil thickness increases.

Even in the larger foils, however, most of the neutrons are captured at

the first resonance. Consequently, it seems reasonable to consider

leakage and resonance escape in the lattice just from the region around

4.9 ev, the energy of the first gold resonance, to thermal energies. Since

the calculations do not include the 1/v-contribution to the total effective

resonance integral, ERI', a total of 0.5 a is added to the calculated
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TABLE 3.5.1

Resonance Parameters for Gold

Resonance Gamma Scattering Peak Cross
Number Energy, E Width, F Width, T n Section, a

(ev) 0 (ev) 7 (ev) (barns)pk

1 4.906 0.125 0.0156 37030.

2 46.5 0.125 0.00013 36.5

3 58.1 0.125 0.013 2655.

4 61.5 0.170 0.11 10460.

5 80.2 0.170 0.15 1655.

6 110.0 0.170 0.009 748.

7 153.0 0.170 0.050 2432.

8 168.0 0.170 0.10 3610.

9 194.0 0.170 0.050 1918.

TABLE 3.5.2

Calculated Effective Resonance Integrals for Gold

Foil * Effective Fractional Total ERI,
Thickness Resonance Contribution (includes 1/v- ERI'

(mils) Integral, ERI of the First contribution) RI'
(barns) Resonance (barns)

12.4 152 0.876 201 0.125

7.7 192 0.881 241 0.150

6.66 205 0.882 254 0.158

3.8 268 0.887 317 0.197

3.33 286 0.888 335 0.208
2.3 340 0.893 389 0.242

2.22 345 0.894 394 0.245

1.66 394 0.898 443 0.275
1.11 473 0.904 522 0.325
0.833 536 0.908 585 0.364

0.555 635 0.915 684 0.426

* 3Density of gold; 19.3 gins/cm
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values of ERI and RI; this amount corresponds to a cadmium cutoff of

0.4 ev.

The measurement of the ERI'involves the irradiation of finite and

infinitely thin foils, bare and cadmium-covered. The experimental ratio

usually given is the ratio of (R cd-1) for the infinitely thin foil to that for

the finite foil. It is usually called the "thickness correction" and will be

designated by K . The value of K in terms of the theoretical values
exp exp

of the quantities involved is:

0

K (Rcd-) ERI' (357)K = (R cd- 1t* f' ss(RI')

where f' is the value of the thermal flux perturbation factor for the

experiment, and ERI' and RI' include the 1/v-contribution. Table 3.5.3

listed the theoretical values of ERI'/(RI' - f' ) which are to be compared

to the experimental values of K . It is assumed that f' is the same

as that for a Maxwellian spectrum. In general, the values of the thermal

flux perturbation factor used by experimentalists have been measured in

thermal spectra that are nearly Maxwellian. For 1/v-absorbers, f' 5 is

not very sensitive to changes in the spectrum.

TABLE 3.5.3

Calculated Values of K
exp

K
Foil ERI' Thermal Flux exp

Thickness* RI' Perturbation ERI'
(ml)Factor, f'I (RI')f's

12.4 0.125 0.750 0.166
7.7 0.150 0.817 0.183
6.66 0.158 0.834 0.189
3.8 0.197 0.889 0.221
3.33 0.208 0.898 0.231
2.3 0.242 0.923 0.262
2.22 0.245 0.926 0.264
1.66 0.275 0.941 0.292
1.11 0.325 0.958 0.339
0.833 0.364 0.967 0.376
0.555 0.426 0.978 0.435

Density of gold; 19.3 gms/cm 3
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Figure 3.5.1 compares the results of experiment to the calculations

for gold foils. The experimental results reported are those of Bauman (B2)

and Jacks (Ji) of the Savannah River Laboratory and Brown (B14) and

Childers (C7) of M.I.T. Childers used the cadmium boxes and foils

described in Section 2.3. Bauman also gives calculated values for K

which agree with his experimental results. The calculations of Kelber,

with the thermal flux perturbation factors calculated by the methods of

Section 3.4, fall significantly below the experimental results. It is diffi-

cult to decide which results were correct, so that the experimental values

of K were used to calculate the cadmium ratio in the lattices. In thisexp
case, Eq. (3.5.6) becomes:

E

V modss fc ACT(E) *(E) dE 0

Rcd _ 0 K , (3.5.8)

RI' expffss a- s

where the variation of K with foil thickness is understood, and Fss is

the flux perturbation factor for the foil in the lattice spectrum. It should

be noted that the ratio of the flux perturbation factors, f/ss /f', enters

into the calculation.

The denominator of Eq. (3.5.8) does not vary from lattice to lattice

if the measurements are made with the same foils. The variation with

lattice spacing is given by the numerator of Eq. (3.5.8):

E
Rcd 1 Vmod Fss c UACT(E) $ (E) dE . (3.5.9)

0

It is essential that the measured values of K be valid for the
exp

lattice in question. If the flux does not vary as 1/E in the region above

the gold resonance, the experimental values of K would not be mean-

ingful since they were measured in a known 1/E-flux.

It is difficult, if not impossible, to measure the resonance flux in

a lattice cell, and it was, therefore, decided to make use of an available

computer program coded by Kier (K3) which allows the calculation of

the resonance flux as a function of space and energy. The calculations

were performed by Kier for an "equivalent" slab problem, since the code

has not yet been modified to treat cylinders. An equivalent slab of fuel



t*, EQUIVALENT FOIL THICKNESS (MG/CM2 ),2V/S

COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES OF

1.0

10

0

IL
0
0

-J

0.
'C

0

0.8

0.6

0.4

0.2

0 400

Kexp.FIG. 3.5.1



71

was defined as having the same mean chord length as the rod (the thickness

of the slab equals the radius of the rod); the moderator thickness of the

slab lattice was taken to be that which gave the same moderator-to-fuel

volume ratio as the rod lattice. The lattice of 1/4-inch diameter, 1.03%

U 235, uranium rods arranged on a 1.25-inch triangular spacing was treated

in the calculation. Only the lowest lying resonance of U238 was considered.

The results are given in Fig. 3.5.2. They indicate that the approximation

of a 1/E-spectrum is valid at the cell edge, if the problem solved is truly

equivalent.

Kelber has indicated some results of calculations where a low-lying

U235 resonance caused interference with the gold resonance. However,

the effect on the ERI for gold was small and it was within the experimental

errors quoted with values of K .

3.6 THE CELL CYLINDRICALIZATION PROBLEM

One of the early approximations in the theory of lattices of cylindri-

cal fuel rods arranged in square or triangular arrays was to replace the

actual unit cell by an "equivalent" cylindrical cell with the same area.

The "equivalent" problem is thus a one-dimensional calculation in which

the flux varies with the radial position and is independent of the azimuthal

angle. This method was used by Wigner and Seitz (W2) in the theory of the

solid state.

Chernick (C6), in connection with early work on water-moderated

lattices, pointed out that the procedure might lead to difficulties when the

lattices are closely packed. Since then, the problem has received varying

amounts of attention. Thie (T1) has examined theoretically the effect of

the approximation. The B.N.L. experimental work on H 20-moderated

lattices of slightly enriched uranium rods has been analyzed by Honeck

(H9) who notes the extent of the error associated with the approximation.

Brown (B14) has suspected that the cell cylindricalization approximation

was the cause of the discrepancy that he observed in a closely-packed

lattice of slightly enriched uranium rods in D2 0.

This section is devoted to an analysis of the problem and the demon-

stration that in closely-packed lattices of slightly enriched uranium rods

in D2 0, the approximation that the cell may be cylindricalized can intro-

duce serious uncertainties into the theory. The comparison with the
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experiments will be discussed in Chapter IV.

We consider first how cell cylindricalization can introduce errors

into the analysis. In an infinite lattice, the condition that there is no net

leakage is expressed mathematically by assuming that the cell boundary

acts as a perfect reflector of neutrons. Neutrons are reflected from the

actual cell boundary, the hexagon, in the case of the triangular array, as

shown in Fig. 3.6.1, with the angle of reflection equal to the angle of inci-

dence. In the usual analytical treatment of the one-dimensional cell,

similar reflection is assumed to occur at the "equivalent" circular

boundary. If a fuel rod is placed in the center of the cell, then there are

paths for which the neutron will never enter the rod, regardless of the

number of times that it is scattered at the circular boundary of the cell.

This possibility is shown in Fig. 3.6.2: if the neutron passes through the

point P at an angle * between 4 c and 180* - 4 c, where *cp is a critical

angle defined by:

$c = arcsin (R /r), (3.6.1)

and where R is the radius of the rod and r is the radial position of the

point P, then the neutron will never enter the fuel rod. This situation

does not arise in the actual cell because of the corners. Newmarch (N7)

was the first to point out this effect of cylindricalization, and concluded

that the moderator flux would be overestimated by this approximation.

It is evident that the circular cell approximation can introduce a

significant error whenever the rod is close to the outer boundary, in

terms of mean free paths. If the cell boundary is far from the rod,

neutrons will be scattered before they undergo many reflections from

the boundary. Consequently, the boundary condition of reflection is not

very important so far as the over-all flux distribution is concerned. A

mean free path in heavy water is approximately an inch, and it is likely

that the poor agreement between theory and experiment observed by

Brown (B14) in the lattice arranged on the 1.25-inch triangular spacing

resulted from the failure of the Wigner-Seitz approximation. The experi-

ments to be described in Chapter IV demonstrate the range of validity of

the Wigner-Seitz approximation in heavy water.

Next, a method is required to minimize the effect of the circular

boundary of the cell while still retaining the simplicity of the one-
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dimensional calculation. To understand the situation, consider a square

cell with the inscribed circle, as shown in Fig. 3.6.3. Although the inscribed

circle is usually not the "equivalent" circle, it allows a simple analysis of

the actual reflection law at the boundary. Figure 3.6.4 is an enlarged

section of the situation at the boundary. The problem is to determine the

variation of the angle of actual reflection, *, with the azimuthal angle, $,

for a fixed angle of incidence, 0, with the circular boundary. Consider a

neutron originating at point P and headed in a direction so that it inter-

sects the circular boundary at an angle of incidence, 0. The reflection at

Q on the circle is, by definition, at equal angles, so that the reflected

neutron leaves the boundary at angle 0. Had the neutron continued along

the direction PQ, it would have intersected the actual boundary (the

square) at point R. The angle the neutron makes with the radius vector

AQ is not 0 but a different angle, 4. For the inscribed circle, 4 = 25- 0

(the circumscribed circle gives = 24'+ 0) until a corner is reached. As

* is varied, keeping the angle of incidence equal to 0, the distribution of

the angle 4 is therefore isotropic in the region between corners.

It would be extremely difficult to include the true reflection law at

the boundary, especially since there is a complication at the four corners

for the square and six corners for the hexagon. However, the isotropic

condition, which has been shown to represent a situation close to the actual

one, can be created artificially at the boundary in the THERMOS code, or

in other ways with the spherical harmonic or Sn methods (H12). Honeck

(H11, H13) discusses the details of the analysis and has developed the

method used to treat the problem.

In the THERMOS code, the isotropic reflection is substituted for the

equal-angle reflection by placing a fictitious region at the outer boundary

of the cell. The properties of the region are defined so that the neutrons

"forget" the angle at which they were incident on this region; they are then

returned to the cell in a very nearly isotropic distribution in angle for any

given angle of incidence. The fictitious region is defined so as to have the

following properties:

(1) No energy transfer is permitted in it (only diagonal elements of

the energy transfer matrix are non-zero),

(2) It is two mean free paths thick,

(3) It is geometrically thin, 0.01 cm,

(4) No absorption is permitted in it.
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This modified one-dimensional (1D) calculation needs a little more com-

puter time than the usual one-dimensional calculation, because of the extra

region that has been added.

Table 3.6.1 lists some of the nuclear parameters calculated with the

two one-dimensional methods, the usual THERMAS and the modified

THERM(bS methods. The energy exchange kernel, in all cases, was the

Honeck-Nelkin model with the diagonal elements adjusted to give the cal-

culated values of Z tr(E).

TABLE 3.6.1

Comparison of Nuclear Parameters for the Lattices with the 1.25-Inch
and 2.5-Inch Triangular Spacings Calculated by the Usual and Modified

THERMQS Methods. The Honeck-Nelkin kernel with the diagonal elements
adjusted was used.

Cutoff 1.25-Inch Spacing 2.5-Inch Spacing
Quantity Energy Usual Modified Usual Modified

(ev) 1D 1D 1D 1D

C1/v(a) 0.4 1.260 1.178 1.228 1.211

CLu-17 6 (a) 0.4 1.194 1.120 1.165 1.150

CEu-151(a) 0.14 1.304 1.215 1.265 1.250

f 0.78 0.9773 0.9782 0.9612 0.9616

r7 0.78 1.504 1.506 1.510 1.510

-F F(b)
U TF (b) 0.78 1.65 1.66 1.40 1.41

(a) C is the over-all disadvantage factor.

(b) This ratio is the ratio of fissions in plutonium-239 to fissions in
uranium-235, assuming that the plutonium has no effect on the
spectra.

To test the validity of the results of the modified one-dimensional

calculation, a two-dimensional (2D) calculation was made for the lattice

of 1/4-inch diameter, 1.03% U 235, uranium rods on a 1.25-inch triangular

spacing. The hexagonal cell was divided into the twelve subsections that

contain all the azimuthal variation, without mirror images; each subsection,

one of which is shown in Fig. 3.6.5, was divided further into generalized
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five-sided figures. For example, the five-sided figure Volume 9 is

bounded by vertices 18, 23, 24, 20 and 19. Boundary lines 1-22, 22-25,

and 25-1 were treated as reflecting boundaries.

The 2D THERMOS calculation was made by using the same energy

exchange kernel as was used for the one-dimensional calculations. A com-

parison of the three results for a 1/v-activator is shown in Fig. 3.6.6.

The modified one-dimensional calculation is seen to be very nearly equiva-

lent to the two-dimensional calculation, and requires only one-fifth the

computer time needed for the two-dimensional version. It is likely that

the modified one-dimensional calculation is sufficiently close to the two-

dimensional calculation that it would be difficult to determine by compari-

son with experiment which is more accurate. However, the usual one-

dimensional THERMOS calculation gives results approximately 8% lower

in the fuel rod than the modified one-dimensional calculation, and this

difference can be observed experimentally.

For the lattice on the 2.5-inch spacing, Fig. 3.6.7 shows that the

modified and usual one-dimensional calculations are nearly indistinguish-

able. Since the cell is larger, the effect of the boundary is smaller than

in the lattice with the 1.25-inch spacing. A two-dimensional calculation

for the lattice with the 2.5-inch spacing was not made because of the agree-

ment of the results obtained with the two one-dimensional calculations.

3.7 THE CALCULATION OF DISADVANTAGE FACTORS BY THE
METHOD OF SUCCESSIVE GENERATIONS

There is considerable interest in the use of methods more accurate

than diffusion theory and less costly than THERMOS to calculate reactor

parameters. One class of useful methods, often referred to as the

"integral transport method" has been reviewed by Fukai (F2). Most of

the integral transport methods are basically similar, and one of the more

accurate of them, the method of successive generations, has been

developed by Stuart and Woodruff (S3).

In the thermal energy range, the quantities of interest are the

thermal utilization, f, and rl. The method of successive generations allows

a reasonably exact calculation to be made for the fuel disadvantage factor.

To complete the calculation of the thermal utilization, diffusion theory can

be used in the moderator, with the boundary condition at the rod-moderator
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interface determined by the integral transport calculation in the rod. One

example of such a solution is given in Appendix A in connection with the

problem of the flux perturbation due to a foil of finite thickness. It is diffi-

cult to find the origin of the use of this method of linking the fuel and

moderator calculations, but it seems to have been in use before Amouyal

et al. (A4) published their results. Such methods are also referred to as

blackness, or thin region, theory (W1).

Honeck (H9) and Brown (B14) have demonstrated that the method of

Amouyal, Benoist and Horowitz (ABH) can give results which agree well

with experiment. However, they used hardened cross sections calculated

with the THERMAS code. It seems desirable to have a simpler method

which does not depend on the use of the more accurate, but expensive,

THERM@S method.

The portion of the calculation that is most sensitive to the analysis

is the fuel disadvantage factor, F, since diffusion theory would be expected

to give reasonable results in the weakly absorbing moderator. A few

assumptions will allow a general tabulation of some useful quantities of

interest. It is assumed that the greater interest lies in the details of the

neutron economy of the fuel rod rather than in the diffusion theory result

in the moderator. Consequently, the subsequent discussion involves the

fuel only.

The directional flux incident on the rod is assumed to be linearly

anisotropic. The fuel is considered to be of large enough mass that no

energy transfer can occur. Scattering and absorption are allowed. If p
is the "blackness" of the rod, then the disadvantage factor, F, of the fuel

is:

F = aR(2-p)/p, (3.7.1)

where R is the radius of the rod and Za is the macroscopic absorption

cross section of the fuel. The calculation of P was broken up into three

regions for three ranges of ER, and has been coded by McGoff (M4) and

modified for use with the QUICK code (see Appendix C).

Region 1 0 ER : 0.1,

2F RP
a o (3.7.2)

(1-P
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P0 = 1- 4ER + -(R) 2 log- + 1(ER)2 (- 0.5772), (3.7.3)

is the first collision probability for a flat, isotropic source.

Region 2 0.1 < ER - 5.0,

P is given by a least-square fit to the results of Stuart and

Woodruff.

Region 3 ER > 5. 0,

2F RP
p a o (3.7.4)

1 - (1-P)

- 1 - 3 (3.7.5)
o 2ER 32(ER) 3

The incident neutron spectrum on the rod was assumed to be a

Maxwellian spectrum at the moderator temperature. This assumption

appears reasonable for heavy water in the lattices of general interest.

THERMOS calculations indicated that the scalar flux was close to a

Maxwellian spectrum everywhere except in the rod.

Calculations with QUICK gave the disadvantage factor for the fuel

rod as a function of energy. The measurable quantity is not the flux dis-

advantage factor but rather averages of the disadvantage factor with the

activation cross section of the detector foils:

E

c UACT(E) M(E) dE

F E (3.7.6)

c F(E) uA C() M(E) dE
0

where M(E) represents the Maxwellian spectrum. These averages were

computed by using the EDIT subroutine of the THERMOS code, to insure

that comparisons between the two methods would be meaningful. Equation

(3.7.6) gives the ratio of the activation of infinitely thin foil at the surface

of the rod to the average activation of the foil in the rod below a cutoff

energy, Ec
Figures 3.7.1 to 3.7.3 give the results of calculations using

Eq. (3.7.6) for gold, lutetium and europium foils. The foils were assumed
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to be infinitely thin. The calculations were made for rod diameters up to

1.3%, for the concentrations of the rods investigated at M.I.T. and in the

B.N.L. H 20-moderated lattice experiments. Because the activation cross

sections of the detector foils differ as a function of energy, the averages

calculated from Eq. (3.7.6) are different. This result is not possible in

single velocity approximations, such as in the ABH method as it is usually

applied.

It would be quite costly to check every point on Figs. 3.7.1 to 3.7.3

with experiments or more accurate calculations, but use can be made of

those that are already available. THERMOS has been found to predict the

flux shape in the natural uranium lattices investigated by Brown (B14).

It can therefore be assumed that THERMOS is capable of predicting a dis-

advantage factor that agrees with experiment. Table 3.7.1 gives the com-

parison of the calculated results from Eq. (3.7.6) and THERMOS for a -

1/v- activator such as gold foils that are effectively infinitely thin. The

largest disagreement is for the 1-inch diameter, natural uranium rods;

the difference is about 4%. However, the entire set of curves given in

Figs. 3.7.1 to 3.7.3 was generated in half the computer time required for

a single THERMOS calculation. Once the results of Eq. (3.7.6) are

obtained, further calculations, such as those to calculate the over-all

disadvantage factor, no longer require the use of a computer.

The value of r; for the 2-inch diameter, 1.03% U235, uranium rod

was only 0.4% lower than the Maxwellian average value, indicating that

the hardening does not affect the value of r very much. The possibilities

for use of the method of successive generations have by no means been

exhausted and further work in this area is indicated. For example, a

good treatment of oxide-fueled rods has not yet been developed.



TABLE 3.7.1

Fuel Disadvantage Factors for 1/v-Activators Below 0.4 ev

U-235 Successive THERMOS THERMOS PROBLEM
Rod Diameter Concentration Generations Calculation Description

(in.) (%) Calculation

0.25 1.03 1.051 1.061 D 20 Moderator, 1.25" spacing

0.25 1.14 1.056 1.077 D 20 Moderator, 1.25" spacing

0.25 1.03 1.051 1.077 D 20 Moderator, 2.5" spacing

0.25 1.14 1.056 1.090 D 20 Moderator, 2.5" spacing

1.01 Natural 1.226 1.248 D2 0 Moderator, 4.5" spacing

1.01 Natural 1.226 1.253 D20 Mod erator, 5.0" spacing

1.01 Natural 1.226 1.257 D2 0 Moderator, 5.75" spacing

1.10 Natural 1.260 1.200 B.N.L. graphite reactor lattice
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CHAPTER IV

EXPERIMENTAL RESULTS AND COMPARISON

WITH ANALYTICAL METHODS

4.1 THE EXPERIMENTAL RESULTS

A series of intracellular activation measurements has been com-

pleted in lattices of 1.03% U 2 3 5 , 1/4-inch diameter, uranium metal rods

in heavy water. The experiments were designed to investigate various

aspects of the problems discussed in Chapter III. Most of the experi-

ments were made with the gold foils described in Section 2.3, although

foils of depleted uranium, lutetium, europium and copper were also used.

Table 4.1.1 is a listing of the measurements completed and to be discussed

in this chapter.

In the three-rod cluster arrangement used in the experiments, only

the area defined by the three rods was available for experimentation,

which precluded extending the foil holders any further than the boundary

of the cluster. Figure 4.1.1 shows the directions in which experimental

flux traverses were made. For example, the rod-to-moderator traverse

is in the direction from the center rod to the midpoint between the other

two rods of the cluster. The rod-to-moderator traverse would be

expected to yield higher activities in the neighborhood of the equivalent

cell boundary, since the thermal flux level on the rod-to-rod traverse is

decreased by its proximity to the adjacent rod.

The experimental results are tabulated for all the experiments in

Tables 4.1.2 to 4.1.5. The convention adopted in designating runs was to

use "A" for gold foils, "L" for lutetium alloy foils, "E" for europium

powder foils, "DU" for depleted uranium foils and "CU" for copper foils.

The numbering also indicates the chronological order in which the experi-

ments were performed.



TABLE 4.4.1

Summary of Intracellular Activity Distribution Measurements

Diam- Standard (a) Standard Standard (a)
Triangular eter Counting Deviation Deviation Cadmium Deviation

Lattice of Procedure for Sub- for Epi- Ratio for the

Run Detector Foil Spacing Tank DEDifferential cadmium cadmium at the Cadmium
(in.) (ft.) IEIntegral Activity(%) Activity(%) Cell Edge Ratio (%)

A4 2.5 mil thick Au 2.50 4 D 0.6 0.5 9.00 0.7

A4 2.5 mil thick Au 2.50 4 I 0.4 1.0 9.06 1.0

A5 4.3 mil thick Au 2.50 4 D 0.2 0.4 11.2 0.4

A5 4.3 mil thick Au 2.50 4 I 0.2 0.4 11.2 0.5

A6 2.5 mil thick Au 2.50 4 D 0.3 0.4 9.57 0.5

A6 2.5 mil thick Au 2.50 4 1 0.5 0.6 9.50 0.7

A7 4.3 mil thick Au 2.50 4 D 0.3 0.3 11.6 0.4

A7 4.3 mil thick Au 2.50 4 I 0.3 0.4 11.4 0.4

A8 Dilute Au 2.50 4 D 1.9 1.6 3.5 2.0

A9 10 mil thick Au 2.50 4 D 0.2 0.4 13.9 0.4

A9 10 mil thick Au 2.50 4 I 0.2 0.5 13.9 0.4

A10 10 mil thick Au 2.50 4 D 0.2 0.4 14.0 0.5

All 4.3 mil thick Au 1.25 3 D 0.4 0.4 3.78 0.5

A12 10 mil thick Au 1.25 3 D 0.4 0.5 4.51 0.5

A13 10 mil thick Au 1.25 3 D 0.4 0.5 4.56 0.5

A14 2.5 mil thick Au 1.25 3 D 0.8 0.5 3.33 0.7

A15 2.5 mil thick Au 1.25 3 D 0.6 0.5 3.31 0.6

A16 4.3 mil thick Au 1.25 3 D 0.5 0.5 3.81 0.6

A17 10 mil thick Au 2.50 3 D 0.3 0.7 13.7 0.8

(a) Standard deviation for counting only.



TABLE 4.4.1

Summary of Intracellular Activity Distribution Measurements (concluded)

Diam- Standard Standard Standard
. (a) (a)(a

Triangular eter Counting Deviation Deviation Cadmium Deviation
Lattice of Procedure for Sub- for Epi- Ratio for the

Run Detector Foil Spacing Tank D =Differential cadmium cadmium at the Cadmium
(in.) (ft.) I aIntegral Activity (%) Activity (%) Cell Edge Ratio (%)

DU2 Dpl. Uran. 2.50 4 D 0.9 0.4 2.08 0.6

DU3 Dpl. Uran. 1.25 3 D 2.0 0.4 1.322 0.6

DU4 Dpl. Uran. 1.25 3 D 3.0 0.6 1.290 0.8

L2 Lu-Al Alloy 2.50 4 I 1.0 - -

L3 Lu-Al Alloy 2.50 4 I 0.7 - -

L4 Lu-Al Alloy 1.25 3 I 2.2 -

L5 Lu-Al Alloy 1.25 3 I 4.0 -

E2 Eu Powder 2.50 4 I 1.0 - -

E3 Eu Powder 2.50 4 I 1.6 - -

CU1 5 mil thick Cu 1.25 3 I 1.0 2.0 9.50 2.3

(a) Standard deviation for counting only.
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TABLE 4.1.2

SUBCADMIUM ACTIVITY DISTRIBUTIONS FOR THE EXPERIMENTS IN THE LATTICE WITH THE 2.5-INCH TRIANGULAR SPACING

SYMBOL RUN Al RUN A4 RUN A4 RUN A6 RUN Al RUN As RUN AS RUN A7 RUN A? RUN A9 RUN AS RUN A10 RUN A17 0 MIL THICK RUN, L2 RUN L3 RUN E2 RUN E3

RADIAL USED TO DILUTE 2. 5 IL THICK 2.5 MIL THICK 2.5 MIL THICK 2.5 MIL THICK 4.3 MIL THICK 4.3 MIL THICK 4.3 MIL THICK 4.3 MIL THICK 10 MIL THICK 10 MIL THICK 10 MIL THICK 10 MIL THICK DEPLETED LU -AL LU-AL EUROPIM EUROPIUM

(OTON PLOT (S LD GOLD ( OL) (STGOLD GOLD GOLD GOLD GOLD GOLD GOLD GOLD URANIUM ALLOY ALLOT POWDER POWDER

(CM)1 POINT (STRADDLE) (STRADDLE) )DTGA) (TRADDLE) (INTEGRAL) (STRADDLE) (INTEGRAL) (STRADDLE) (INTEGRAL) (STRADDLE) (IN8TEGRAL) (STRADDLE) (STRADDLE) (STRADDLE) (INTEGRAL) (INTEGRAL) (INTEGRAL) (INTEGRAL)

0.??? 0.890 0.838 0.886 0.81 1.805
0.772 0.924
0.799 0.913 0.874 0.879 0.951 1.054
0.790 0.974
0.820 0.921 0.896 0.905 0.597 0.693
0.810 0.973
0.828 0.947 0.899 0.905 0.633 0.??0
0.832 0.981
0.897 0.922 0.929 0.824 0.7?5
0.886 0 .968 0.978 0.93 0 0.894

0.938 0.972 0.967 0.956 0.656 0.727
0.942 0.985 0.971 0.944 0.839 0.935
0.927 0. 9 0
0.978 1.032 0.982 0.977 0.824 0.904
0.967 0.964 0.966 0.995 0.725 1.105
0.981 0.950
1 009 1.017 1.003 0.990 0.829 0.902
0.997 0.989 0.969 1.0930 1.081 1221
0.993 1.026

1.0.5 0.995 1.009 1.03 0.882 0.05
0.989 0 855 0.998 0.971 1.227 0.981
1.001 1.0 25

1.001 1.039 0.99 0.994 1.177 1.332
0.9 0.994 0.99:2 1.0100 0.909 1. 006
0.993 0:.5

1.001 1.032 2.005 1.002 0.901 013
1.005 1.000 0.999 0.997 0.901 1.013
0.989 1.0?0
0.990 0.97 0.992 0.982 0.918 002

0.997 1.022 0.986 0.891 0.020
0.:997 0.984
0.9 1.021 0.999 0.971 0.877 .8

1.0,15 1.018 1.005 1.011 0.94 1.023

1.005 0.944

0.969 0.952 0.946 0.955 0.844 0.943

0.940 0.991

1.040 1.022 0.995 0.879 1.006

(a) "Straddle" indicates the differential conting method.
(b) "Integral" indicates the integral counting method.
(c) The tank size was 3 feet; all other eperiments were made in the 4-foot tank.

TABLE 4.1.3

EPICADMIUM ACTIVITY DISTRIBUTIONS FOR THE EXPERIMENTS IN THE LATTICE WITH THE 2.5-INCH TRIANGULAR SPACING

-. RUN DU2

SYMBOL RUN A8 RUN A4 RUN A4 RUN A6 RUN A6 RUN AS RUN A5 RUN A7 RUN A7 RUN A9 RUN A9 RUN A1O RUN A17(c) 5 MOL THICK

RADIAL USED TO DILUTE 2.5 MIL THICK 2.5 MIL THICK 2.5 MIL THICK 2.5 MIL THICK 4.3 MIL THICK 4.3 MIL THICK 4.3 MIL THICK 4.3 MIL THICK 10 MIL THICK 10 MIL THICK So MIL THICK 10 MIL TRICK DEPLETED

POSITION PLOT GOLD GOLD GOLD GOLD GOLD GOLD GOLD GOLD GOLD GOLD GOLD GOLD GOLD URANIUM

(CM) POINT (STRADDLE) (STRADDLE)) (INTEGRAL) (STRADDLE) (INTEGRAL) (STRADDLE) (INTEGRAL) (STRADDLE) (INTEGRAL) (STRADDLE) (INTEGRAL) (STRADDLE) (STRADDLE) (STRADDLE)

X 0.376 0.103 0.103 0.0930 0.0941 0.0777 0 0773 0.0758 0.0766 0.0587 0.0580 0.0584 0.0672 0.508

0.0 0 0.372 0.099 0.102 0.0960 0.0963 0.0793 0.0090 0.0782 0.0789 0.0598 0.0598 0.0593 0.0689 0.509

X 0.378 0.107 0.108 0.106 0.107 0.0832 0.0819 0.0797 0.0810 0.064 0.0660 0.0611 0.071 0.527
0.158 o 0.362 0.107 0.100 0.106 0.106 0.0865 0.0065 0.0812 0.0920 0.0)6 0.0680 0.0619 0.0724 0.523

X 0.393 0.1 0.1)1 0.20 0.100 0 0.0876 0.0821 0.0830 0.000 0.00654 0.0622 0.0851 0.523
0.187 0 0.398 0.110 0.111 0.106 0 106 0.08304 0.0825 0.0823 0.0827 0.0651 00656 0.0631 0.0181 0.542

X 0.430 0.115 0.114 0.100 0.110 0.0884 0.0873 0.0966 0.0885 0.0682 0.0685 0.0935 0.0708 0.550
0.220 0 0.378 0.11 0.112 0.109 0.109 0.008 0.0881 0.0861 0.08 3 0.000 0.00 0.0807 0.0711 0.553

X 0 414 0.120 0.123 0.115 0.114 0.0981 0.0981 0.0934 0.0942 0.0748 0.0741 0.00765 0.0759 0.892

0.642 0 0.364 0.122 0.123 0.114 0.114 00050 0.0958 0.0930 0.0942 0.0000 0.0001 0.0044 0.0087 0.087

+ 0.406 0.123 0.123 0.1 4 0 .04 0.09 00 0.00920 0.0025 0.0008 0.000 0.0058 0.0759 0.954

X 0.404 0.114 0.123 0115 0.116 0.096 0.0980 0.0953 0.0961 0.0769 0.0071 0.0767 0.0786 0.917

1.486 0 0.409 0.125 0.126 0.115 0.116 0.0971 0.0957 0.0956 0.0964 0.0005 0.0784 0.0002 0.0785 0.90
+ 0.374 0.124 0.124 0.116 0.116 0.0972 0.0976 0.0940 0.0946 0.0011 0.0088 0.0082 0.0002 0.940

X 0.409 0.12 0.126 0.115 0.117 0.100 0.100 00918 0.00 0 0.0082 0.0787 0.0761 0.0784 0.913

2.330 0 0.307 0.126 0.124 0.117 0.118 0.0909 0. 101 0.0937 0.0944 0.0772 0.0773 0.00786 0.0784 0.950
+ 0.415 0.125 0.122 0.117 0.116 0.092 1 0.0985 0.09 0.0946 0.0768 0.0000 0.0776 0.0797 0 .911

0 0.424 0.110 0.114 0.11 0.1 0.097 0.099 0.0 0 0.096 0.0777 0.008 0.0084 00004 0.04

3.175 0 0.412 0.124 0.128 0.116 0.110 0.0975 0.0060 0.0038 0.0)40 0.0006 0.078 0.0000 0.0791 0.94

+ 0.381 0.124 0.121 0.118 0.10 0.0986 0.090 0.0964 0.0967 0.0790 0.0779 0.0745 0.0781 0.949
X 0.411 0.126 0.110 0.117 0.118 0.1 0. 0.100 0.0949 0.095) 0.0767 0.070 0.0770 0.0801 0.925

4010 0 0.001 0.120 0.126 0 110 0.110 0.100 0.098 0.0050 0.0050 0.0000 0.0085 0.0002 0.0784 0.920

+ 0.404 0.10 0.105 0.117 0.116 0.0006 0.0909 0.0000 0.0008 0.0785 0.0089 0.0008 0.0789 0.925

X 0.300 0.130 0.131 0.117 0.117 0.0983 0.090 0.0951 0.0067 0.070 0.0080 0.0081 0.0001 0.021
4.884 0 0.411 0.126 0.125 0.118 0.1 0.102 0.100 0.0951 0.090 0.070 0.0788 0.0091 0.0802 0.014

0 0.458 0.12 0.120 0 0.119 0.09 0.00.4 0.0090 0.09 0.084 0.075 0.0058 0.0775 0.018

X 0.001 0.126 0.126 0.116 0.17 0.00907 0.0954 00907 0.0971 0.078 0.0773 0.0776 0.0793 0.894
5.07 + 0.402 0.124 0.120 0.114 0.014 0.0982 0.0900 0.091 0.0942 0.0766 0.0704 0.0749 0.0751 0.061

5400 0 0.372 0.128 0.100 0.11 0.117 0.096 0.00.) 0.0000 0.0(00 0001 0.0077 0.0760 0.079 0.0

(a) "Straddle" indicates the differential conting method.

(b)"Integral" indicates the integral co g method.
(c) The tank size was 3 feet; all other experiments were made in the 4-foot tank.
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TABLE 4.1.4

SUBCADMIUM ACTIVITY DISTRIBUTIONS FOR THE EXPERIMENTS IN THE LATTICE WITH THE 1.25-INCH TRIANGULAR SPACING

SYMBOL RUNA14 RUNA15 RUNA16 RUNA1l RUNA12 RUNA13 RUN DU3
RADIAL USED TO 2.5 MIL 2.5 MIL 4.3 MIL 4.3 MIL 10.2 MIL 10.2 MIL 5 MIL THICK
POSITION PLOT THICK THICK THICK THICK THICK THICK DEPLETED

(CM) POINT GOLD GOLD GOLD GOLD GOLD GOLD URANIUM

0.814 0.810 0.803 0.817
0.820 0.794 0.801 0.790

0.835 0.836 0.829 0.804
0.831 0.821 0.829 0.803

0.839 0.829 0.812 0.825
0.832 0.829 0.810 0.800

0.825 0.834 0.850 0.852
0.815 0.833 0.848 0.845

0.893 0.905 0.887 0.901
0.903 0.905 0.903 0.880

0.946 0.947 0.953 0.934
0.959 0.936 0.970 0.945
0.947 0.928 0.959 0.952

0.968 0.983 0.976 0.992
0.957 0.975 0.986 0.958
0.976 0.962 0.993 0.978

0.991 0.980 1.000 0.996
0.959 0.999 0.996 0.982
0.990 1.007 1.000 0.991

1.012 1.004 1.001 1.010
1.027 0.998 0.997 1.019
1.008 0.996 0.993 0.986

1.003 0.974 0.977 0.985
0.999 0.975 0.991 1.005
0.974 0.991 0.990 0.979

0.939 0.930 0.950 0.953
0.991 0.999 0.998 1.006
0.968 0.951 0.970 0.972

0.980 0.990 0.980 0.994

0.948 0.974 0.942 0.958
0.973 0.967 0.961 0.957

1.004 0.996 0.994 0.982
0.991 0.985 1.003 0.997

1.001 0.997 1.012 1.012
0.967 0.981 0.993 0.999

0.782 0.806
0.777 0.794

0.813 0.814
0.791 0.794

0.830 0.831
0.812 0.818

0.820 0.859
0.052 0.819

0.870 0.902
0.887 0.911

0.927 0.945
0.934 0.952
0.948 0.942

0.992 0.994
0.984 0.991
0.992 0.987

0.992 0.998
0.992 0.983
1.003 1.019
0.993 0.993
0.990 0.987
1.016 1.006

0.986 1.004
1.026 0.985
1.009 1.021

0.965 0.966
0.994 0.992
0.962 0.979

1.018 1.020

0.954 0.959
0.975 0.971

0.994 1.000
1.000 1.009

1.012 0.983
1.015 1.000

0.796
0.804

0.817
0.789

0.782
0.792

0.896
0.838

0.938
0.958
0.911

0.967
0.946
0.970

1.002
1.018
0.982

1.022
0.990
0.978

0.902
1.003
0.874

0.876
1.028
0.928

RUN DU4 RUN CUt
5 MIL THICK 5 MIL RUN L4 RUN L5
DEPLETED THICK LUTETIUM LUTETIUM
URANIUM COPPER ALLOY ALLOY

0.794
0.815

0.859
0.856

0.869
0.851

0.828
0.819

1.044
1.049
0.946

0.963
1.081
0.894

0.845
0.837

0.878
0.844

0.848
0.857

0.868
0.887

0.952

0.942
0.940
0.960

1.006
0.999
0.995

0.971
0.953

0.919
0.923
0.882
0.914

0.900
0.931

0.937
0.949

0.949
0.926

0.969
0.982

0.909
0.928

0.906
0.918

0.992
0.942

0.914
0.965

0.939
0.965
0.926
0.978

1.028
0.988

1.010 1.006 1.005 0.959
0.959 0.997 1.027 1.023
0.992 0.988

1.000
1.064
0.960
0.736
0.913
0.855

0.954
0.892
0.869

1.009
1.001
0.987

1.003
1.011
1.006

0.956
0.996
0.969

0.950
0.968

1.025
1.012

1.019
1.007

1.000
0.959

0.974
0.992

0.923
1.017

1.008

1.070
0.953

1.012
0.993

1.009
1.008

0.969

(a) Distance from center of adjacent rods.

TABLE 4.1.5

EPICADMIUM ACTIVITY DISTRIBUTIONS FOR THE EXPERIMENTS IN THE LATTICE WITH THE 1.25-INCH TRIANGULAR SPACING

SYMBOL, RUNA14 RUNA15 RUN A16 RUNAl RUNA12 RUNA13 RUN DU3 RUN DU4 RUN CU1
RADIAL USED TO 2.5 MIL 2.5 MIL 4.3 MIL 4.3 MIL 10.2 MIL 10.2 MIL 5 MIL THICK 5 MIL THICK 5 MIL
POSITION PLOT THICK THICK THICK THICK THICK THICK DEPLETED DEPLETED THICK

(CM) POINT GOLD GOLD GOLD GOLD GOLD GOLD URANIUM URANIUM COPPER

0.0 X 0.348 0.392 0.308 0.334 0.217 0.262 0.583 0.672 0.107
0 0.369 0.364 0.319 0.307 0.259 0.246 0.583 0.708 0.101

0.158 X 0.368 0.405 0.314 0.337 0.257 0.270 0.651 0.712 0.103o 0.379 0.378 0.321 0.323 0.256 0.263 0.614 0.722 0.105

0.187 X 0.379 0.406 0.323 0.343 0.258 0.274 0.653 0.737 0.107o 0.384 0.390 0.331 0.324 0.246 0.265 0.642 0.763 0.105

0.237 X 0.389 0.418 0.340 0.346 0.267 0.279 0.856 0.903 0.103o 0.405 0.402 0.334 0.334 0.265 0.272 0.814 1.048 0.106

0.500 X 0.423 0.428 0.348 0.360 0.284 0.286 2.66 2.988 0.118
+ 0.401 0.430 0.348 0.358 0.281 0.281 2.61 3.012

0.601 X 0.421 0.433 0.346 0.357 0.280 0.285 2.82 3.160 0.116
+ 0.424 0.426 0.350 0.361 0.284 0.283 2.82 3.100 0.119
X 0.427 0.435 0.351 0.356 0.284 0.287 3.06 3.398 0.121

1.257 0 0.428 0.430 0.357 0.362 0.283 0.286 3.09 3.449 0.117
+ 0.425 0.434 0.357 0.364 0.285 0.290 3.07 3.426 0.116
X 0.435 0.433 0.355 0.358 0.284 0.287 3.11 3.535 0.117

1.912 0 0.433 0.430 0.350 0.360 0.287 0.288 3.12 3.457 0.119
+ 0.426 0.425 0.357 0.357 0.285 0.293 3.11 3.411 0.115
X 0.423 0.437 0.353 0.357 0.281 0.289 2.86 3.146 0.117

2.567 0 0.430 0.430 0.357 0.360 0.284 0.290 3.20 3.404 0.116
+ 0.424 0.428 0.353 0.354 0.286 2.88 3.193 0.119

3.175 0 0.426 0.432 0.357 0.364 0.284 0.286 3.14 3.442

0.826(a) a 0.425 0.431 0.357 0.362 0.287 0.286 2.94
O 0.425 0.431 0.359 0.359 0.286 0.286 2.95

(a) Distance from center of adjacent rods.

0.0 O0

0.158 O0
Xt

0.187 0

Xt
0.237 0

0.400 +

Xt
0.563 0

+t

0.972 0

+t

1.381 0

+t

1.793 0

+t

2.202 0

+t

2.611 0

3.175 0

fl(a) at0.563 ) A

0.972 (a a

1.,(a) A
1.81 0
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4.2 RESULTS FOR THE GOLD FOILS

4.2.1 Experimental Results

Gold foils of different thickness were irradiated in lattices with 1.25-

and 2.5-inch triangular spacing, respectively. The experimental results

are shown in Figs. 4.2.1 to 4.2.17. The same symbols are used in all of

these figures, and the designations of the different traverses are defined in

the legend given in Table 4.2.1. Unless otherwise mentioned, the differ-

ential counting technique was used.

TABLE 4.2.1

Legend for the Graphs of Intracellular Activation Distributions.

Symbol In Moderator

X Center rod-to-left adjacent rod

+ Center rod-to-right adjacent rod

o Center rod-to-moderator

A Left adjacent rod-to-right adjacent rod, up to the center-line

E0 Right adjacent rod-to-left adjacent rod, up to the center-line

Symbol In Fuel

X Bottom foil holder in the lattice with the 2.5-inch spacing

o Top foil holder in the lattice with the 2.5-inch spacing

X Bottom of 60 mil button in the lattice with the 1.25-inch spacing

o Top of 60 mil button in the lattice with the 1.25-inch spacing

4.2.2 Counting Techniques for Gold

In the early stages of experimentation, it was decided to investigate

whether any differences would occur if both the integral and differential

techniques were used to count the gold foils used in an experiment. The

results of the experiments in which the two counting techniques were used

are tabulated in Tables 4.1.2 and 4.1.4 and plotted for Runs A4, A5 and A9
in Figs. 4.2.2, 4.2.3, 4.2.5, 4.2.6, 4.2.8 and 4.2.9. The values of the cad-

mium ratio at the edge of the cell, obtained with the two counting techniques,
are listed in Table 4.1.1; for no case is the difference greater than 1%,
which is within the uncertainty due to the counting statistics. Since there
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FIG. 4.2.9 GOLD ACTIVITY DISTRIBUTION FOR RUN A 9; 10 MIL THICK GOLD FOILS IN A LATTICE OF
1/4-INCH DIAMETER, 1.03% U-235, URANIUM RODS ON A 2.5-INCH TRIANGULAR SPACING
COUNTED BY THE INTEGRAL METHOD.
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was apparently no significant difference between the results obtained with

the two counting methods, subsequent counting was done with the differ-

ential technique.

The statistical uncertainty given on Figs. 4.2.1 to 4.2.17 is the uncer-

tainty due to counting. In general, several passes were made through the

automatic sample changer to spread any counter drift over all the foils in

the experiment. The counting uncertainty for the experiment was computed

by the ACTIVE code from the experimental data for the saturated activity de-

termined in each pass. The procedure is discussed further in Appendix D.

4.2.3 Azimuthal Symmetry

The use of the three-rod cluster permitted a study to determine if

the lattice was azimuthally symmetric about the center rod, with respect

to the measurement of the intracellular flux traverses. If the lattice is

azimuthally symmetric, the center rod-to-left adjacent rod traverse

should agree with the center rod-to-right adjacent rod traverse. The

usual procedure in making intracellular flux measurements has been to

omit one of the two traverses, under the assumption that the lattice was

azimuthally symmetric.

The results plotted in Figs. 4.2.1 to 4.2.17 indicate that as the foil

thickness (and weight) increases, the scatter of the data decreases. A

plausible explanation for this trend may be that as the foil weight increases,

the weight can be determined more accurately, and the activity of the foil

is less affected by possible damage during handling. To investigate the

lattice symmetry, consider the activities of the foils on the two rod-to-rod

traverses that are most distant from the center rod, and consequently the

foils farthest from each other, The activity of these foils should show the

greatest differences if the lattice is not symmetric. Table 4.2.2 gives the

results for the ratio of the activities of the foils on opposite sides of the

foil holder. For the lattice with the 2.5-inch triangular spacing, the foils

on the left side gave activities about 2% higher than the right side; the

opposite trend is indicated for the lattice with the 1.25-inch triangular

spacing. The lattices were loaded separately and the opposite trend is

therefore not significant.

Two alternative conclusions can be drawn. One is that the lattices

*A discussion of the total experimental uncertainty together with the aver-
aged experimental results is given in Appendix I.



Comparison of the

TABLE 4.2.2

Thermal Activities of Gold Foils Along the Rod-to-Rod Traverse

Ratio, (a) Ratio, (a) Standard
Run Foil Thickness Lattice Spacing Most Distant Next Most Deviation

(mils) (inches) Foil Distant Foil (%

A8 dilute 2.5 1.05 098 .

A4 2.5 2.5 1.015 1.019 0.6

A6 2.5 2.5 1.018 1.000 0.3

A5 4.3 2.5 1.009 0.997 0.2

A7 4.3 2.5 0.997 1.000 0.3

A9 10.2 2.5 1.030 1.010 0.2

A10 10.2 2.5 1.036 1.014 0.2

A17 10.2 2.5 1.030 0.991 0.3

A14 2.5 1.25 0.970 1.029 0.8

A15 2.5 1.25 0.977 0.982 0.6

A16 4.3 1.25 0.979 0.986 0.5

All 4.3 1.25 0.980 1.006 0.4

A12 10.2 1.25 1.003 0.977 0.4

A13 10.2 1.25 0.986 0.983 0.4

(a) The activity of the foil on the left side divided by the activity of the foil on the right side.

'-A
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been asymmetric in an amount corresponding to the measured difference

of two per cent. It seems more plausible, however, that the comparison

given in Table 4.2.2 indicates an inability to make measurements of the

thermal activations that are reproducible to better than one or two per

cent. Unfortunately, there appear to be no other experiments on intra-

cellular flux traverses in which this problem has been investigated. It

is recommended that future intracellular measurements be made with

two symmetric traverses included.

4.2.4 A Comparison of the Experimental and Predicted Values of the
Cadmium Ratio

One of the problems involved in a comparison of theory and experi-

ment for the intracellular traverses is to normalize the theory to the

measurements in such a way that they can be compared reasonably.

Brown (B14) has discussed the method that he used to normalize the theo-

retical activation curve to experiment. He normalized by equating the

average theoretical and experimental activities in a small region near

the edge of the cell, or by a similar process in the neighborhood of the

center of the cell. The activation curve is much flatter in the moderator

near the edge of the cell, so that he concluded that this was probably the

better place at which to normalize. Experimentally, the rod-to-rod and

rod-to-moderator traverses are nearly indistinguishable in the vicinity

of the edge of the cell, so that this procedure is apparently justified.

Because of the extra rod-to-rod traverse used in the present experiments,

more experimental points are available near the boundary of the cell.

With the exception of Run A8 involving the dilute gold foils, the points at

the cell edge were within approximately 2% of each other, as indicated in

Tables 4.1.2 and 4.1.4. A shift in the theoretical curve along the relative

activity scale could change the over-all curve by only 2%, if the shift is

restricted to the experimental points farthest away from the average.

However, when a second experiment is made, the normalization may

be somewhat arbitrary, because of the possibility that the shape of the

thermal activations are the same while the cadmium ratios are different.

For the duplicate experiments made here, however, the cadmium ratios

were within the statistical uncertainty, and this possibility did not actually

occur.
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At first, it was believed that an alternative method of normalization

could be used. If the cadmium ratio could be predicted, it would be possible

to normalize the theoretical results to the experimental epicadmium activity,

which is constant in the moderator. Thus, it would not be necessary to

decide whether to normalize the thermal activation at the cell edge or at

the cell center. The average epicadmium activity in the moderator for all

the experimental points in a typical run (Al1) is within 2% of the experi-

mental point farthest from the average. Unfortunately, the additional

experimental quantities needed to predict the cadmium ratio are not avail-

able to better than 5%, as discussed in Section 3.5, so that any such normal-

ization would be valid only to about 5%.

It seems more desirable, as an additional test of the analytical

methods, to predict the cadmium ratio in the lattice and see how it com-

pares with the experimental value, and to normalize the experiment at

the cell edge, as before. To predict the cadmium ratio, the values of the

quantities in Eq. (3.5.8) must be known. For gold, there is some question

about the proper values of the effective resonance integrals, ERI', as dis-

cussed in Section 3.5. The values chosen for K are listed in Table 4.2.3

along with the other parameters used to calculate the cadmium ratio.

Table 4.2.3 also compares the calculated and experimental values of the

cadmium ratio which have been measured to date by the M.I.T. Lattice

Project. The lattices with (triangular) spacings of 4.5, 5.0 and 5.75 inches,

respectively, contained natural uranium rods, 1.0 inch in diameter; the

remaining data are the results of the measurements in the lattices of

slightly enriched uranium.

The predicted values for (R cd- 1) are understood to include a 3%

uncertainty in the resonance integral and a 3% uncertainty in K [the

ratio of (Rcd- 1) for the infinitely thin gold foil to (Rcd- 1) for the finite

gold foil in a 1/E-flux]. The experimental values of (R d-1) have an

uncertainty of about 2%, owing to the uncertainty in the axial flux measure-

ments. The predicted values for the natural uranium lattices compare

well with experiment. The results for the closely packed lattices of

slightly enriched uranium indicate that the predictions have not been as

successful. It is possible that the values of the resonance integral, RI',

and (Es are not correct. The value of RI' chosen, 1605 barns, was calcu-

lated from the resonance parameters listed in Table 3.5.1, which is within



TABLE 4.2.3

Comparison of Predicted Values of the Cadmium Ratio at the Cell Edge
for Gold Foils with the Experimental Values

Volume of
Foil Equivalent Moderator, _ (a) (c) (d) R 1Lattice Thick- Foil Vmod thUACT (b) ERI' R -1 cd (e)

Spacing ness Thickness 3cd Experi- Difference
(in.) (mils) (mils) (cm /cm) o exp o Predicted mental (%)

4.50 2.0 1.97 107.3 0.915 0.317 ± 1% 4.80 3.49 3.57 ± 2% -2.2

5.00 2.0 1.97 133.1 0.940 0.317±1% 4.80 4.46 4.50±2% -0.9

5.75 2.0 1.97 178.9 0.952 0.317 ± 1% 4.80 6.05 5.96 ± 2% +1.5

1.25 2.5 2.3 8.21 7.377 0.29±3% 4.35 2.36 2.32±3% +1.7

2.50 2.5 2.3 34.4 7.466 0.29 ± 3% 4.35 10.0 8.28 ± 4% +20.

1.25 4.3 3.8 8.21 7.125 0.24 ± 3% 3.46 2.87 2.79 ± 2.5% +2.8

2.50 4.3 3.8 34.4 7.196 0.24 ± 3% 3.46 12.1 10.4 ± 3.0% +16.

1.25 10.2 7.7 .8.21 6.5'92 0.22 ± 3% 2.93 3.14 3.48 ± 2.5% -9.8

2.50 10.2 7.7 34.4 6.630 0.22±3% 2.93 13.2 13.0 ±2.5% +1.5

(a) Defined in Eq. (3.5.8)

(b) K is the experimental ratio of the cadmium ratio, Rcd, minus one for the infinitely thin foil

to that for the finite thickness foil.

(c) ERI'I/ is the total effective resonance integral divided by the 2200 m/sec value of a0 -1 ACT
(d) Calculated from Eq. (3.5.8); ZEs = 0.17 cm~.

(e) Predicted value minus experimental value divided by experimental value in per cent.
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3% of the experimental value quoted by Jirlow and Hohansson (J2). The

value of gEs, 0.17 cm- 1 , was chosen to fit the results for the natural

uranium lattices. In any case, (Es is a constant for heavy water and is

independent of the lattice spacing.

Table 4.2.4 shows the variation of the gold cadmium ratio with

lattice spacing, with the properties of the foil and heavy water treated as

independent parameters. If the variation predicted by Eq. (3.5.9) is

correct, the value of (Rcd- exp/Vmod ACT4th should be independent of

the lattice spacing. The results indicate that there is again good agree-

ment for the natural uranium lattices, but the results for the lattices with

slightly enriched uranium could not be improved by simply adjusting the

foil or heavy water properties.

Variation with

TABLE 4.2.4

Lattice Spacing of the Gold Cadmium Ratio
at the Cell Edge

Foil
Thickness

(mils)

2.0

2.0

2.0

VmodaACT~th

(Relative) (a) (R cd) exp

0.979 3.57 ±2%

1.25 4.50± 2%

1.69 5.96 ± 2%

(Rd-1)(cd lexp

VmodACT th

3.65

3.60

3.52

1.25

2.50

1.25

2.50

2.5

2.5

4.3

4.3

1.25 10.2

2.50 10.2

(a) Defined in Eq. (3.5.8).

0.605

2.56

0.584

2.47

0.541

2.28

2.32± 3%

8.28±4%

2.7 9 ± 2.5%

10.4± 3%

3.48± 2.5%

13.0± 2.5%

3.83

3.22

4.77

4.20

6.43

5.70

The volume ratios for the lattices are given in Table 4.2.5. The

volume ratio of moderator-to-fuel, Vmod /Vfuel, in the enriched uranium

lattice with the 2.5-inch triangular spacing was 108, almost three times

as large as in any of the other lattices studied. It is not evident at this

Lattice
Spacing

(in.)

4.50

5.00

5.75
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TABLE 4.2.5

Volume Fractions of Lattices Studied

Rod
Diameter

(in.)

1.010

1.010

1.010

0.250

0.250

U-235
Concen-
tration
of the

Fuel Rod

Natural

Natural

Natural

1.03%

1.03%

Triangula
Spacing

(in.)

4.50

5.00

5.75

1.25

2.50

Volume of Volume Volume
r Moderator Fraction Fraction Vod

3 of the of the V(cm /cm) Fuel Moderator fuel

107.6 0.0456 0.951 20.9

134.1 0.0370 0.961 26.0

179.2 0.0280 0.970 34.8

8.21 0.0363 0.942 25.9

34.4 0.0091 0.983 108.0

TABLE 4.2.6

Measurements of the Cadmium Ratio at the Cell Edge
in the Lattice of 1/4-Inch Diameter, 1.03% U-235
Uranium Rods on a 1.25-Inch Triangular Spacing

Cadmium Ratio Cadmium Ratio
t, Foil Thickness (intracellular (independent

(mils) measurement) measurement)

2.5

4.3

10.2

3.32 L 2%

3.7 9 2%

4.48 2%

3.45± 1%

3.76 ± 1%

4.61 ± 1%

time whether the disagreement observed is with the theoretical treatment

for this lattice, or the more closely packed lattice with the 1.25-inch

spacing. What Table 4.2.4 indicates is that no simple adjustment of the

foil or heavy water properties can bring all the results into agreement,

It is possible that the experimental cadmium ratios measured in the

intracellular activation measurements are incorrect. Separate, independ-

ent checks of the gold-cadmium ratio were made by using the same foils

and cadmium boxes described in Chapter II. In connection with the axial

buckling experiments, Harrington (H3) measured the cadmium ratio with

10.2 mil thick gold foils in the lattice with the 1.25-inch spacing; he found

Rcd equal to 4.5± 2%. The value of the cadmium ratio measured in the
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intracellular experiments was 4.48 ± 2%. Other separate measurements

of the cadmium ratio made at symmetrical positions in the lattice at the

same height are listed in Table 4.2.6. The results indicate that the cad-

mium ratios measured in the course of an intracellular activation

measurement are acceptable.

4.2.5 Comparison of THERMOS Calculations with Experiment

Figures 4.2.1 to 4.2.17 include the calculated results for the intra-

cellular activation distributions. The energy exchange kernel used in all

cases was the Honeck-Nelkin kernel with the diagonal elements of the

matrix adjusted to give the calculated values of Etr(E). The activation

cross sections used are the effective values for gold foils discussed in

Section 3.4 and in Appendix C. The gold foils of different thickness are

distinguished from one another by their effective cross sections. Where

possible, the activation distribution for a 1/v-activator is also included;

a 1/v-cross section corresponds to infinitely thin gold foils. The modi-

fied one-dimensional calculation gives very nearly the same results as

the two-dimensional calculation, as shown in Fig. 3.6.6. It is not clear

that a statistical comparison between theory and experiment would be

any more meaningful than conclusions reached by inspection of the results;

the latter method was therefore used.

The use of the dilute gold foils has been found to be unsatisfactory;

the irradiation time required was 100 hours, compared to the 5 to 8 hours

required for the thicker foils. The experimental scatter, shown in

Fig. 4.2.1, is too great to justify their continued use in this type of experi-

ment. It is possible that the gold content varies from foil to foil, and per-

haps an intercalibration by means of a foil wheel technique would have

been preferable to weighing. Such a calibration would have required an

unusually long irradiation time in the exponential tank, and it appeared

more advantageous to use larger foils instead.

The results of the entire set of experiments with gold foils indicate

that the corrections applied in the present work for the flux perturbation

due to the use of finite foils are adequate. The results obtained by using

the 10.2 mil thick gold foils are consistently lower than those obtained with

the 2.5 and 4.3 mil thick gold foils. The 10.2 mil thick gold foils were

originally used with the idea of perturbing the flux as much as possible,
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and it is surprising that the results agree as well as they do.

The experiments with the 2.5 and 4.3 mil thick gold foils give results

that agree best with the modified one-dimensional THERM(OS calculations.

A difference of about 2% in the activation of the foils at the center of the

fuel rod is the average discrepancy between theory and experiment for

these foil sizes.

The comparison of the results for the two lattice spacings indicates

that the largest single discrepancy between theory and experiment was due

to the assumption that the cell could be cylindricalized. The modified one-

dimensional calculation predicted the activation shape in both lattices.

The usual one-dimensional calculation gives substantially the same result

in the lattice with the 2.5-inch triangular spacing as the modified one-

dimensional calculation. However, the one-dimensional calculation agrees

neither with experiment nor with the modified one-dimensional calculation

for the lattice with the 1.25-inch triangular spacing.

In the lattice with the 1.25-inch triangular spacing, an additional

traverse was made, the adjacent rod-to-adjacent rod traverse, as shown

in Fig. 4.1.1. The experimental points are reflected in the graphs along

the one-dimensional scale by maintaining their distance from the center of

the adjacent rod. The reflections give the same shape as the rod-to-rod

traverses from the center rod.

The epicadmium activations of the gold foils were spatially constant

in the moderator, as far as could be determined. The activation shape in

the rod was almost the same as that of the subcadmium activation. It is

believed that this is a result of shielding of the 4.9 ev resonance of gold

by the 6.7 ev resonance of U-238; no attempt to calculate the epicadmium

activation shape in the rod has been made.

4.3 THE USE OF OTHER DETECTOR FOILS

Experiments have also been made with detectors of depleted uranium,

lutetium, europium and copper. The results of the experiments are shown

in Figs. 4.3.1 to 4.3.9. The experiment with copper foils was a joint effort

with D'Ardenne (D1); the results are shown in Fig. 4.3.1. Copper was

treated as a 1/v-activator, since the foils used were not self-shielded; the

average flux perturbation was estimated,by the methods developed in

Appendix A, to be less than 2%. The activity levels for the cadmium-covered
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foils were only twice the background level. The subcadmium activation

was 3% higher than the THERMOS calculation at the center of the fuel rod.

The depleted uranium foils were irradiated in the lattice to investi-

gate the epicadmium activation distribution. Figures 4.3.2 to 4.3.6 show

the results obtained for the Np239 activity. The subcadmium activation

distributions in the lattice with the 1.25-inch triangular spacing show a

substantial scatter; the subcadmium activation was only 35% of the total

activation. The subcadmium activation shapes are probably determined

best when the cadmium ratio is greater than 3, as they were for the

experiments with the gold foils. The epicadmium activation distributions

indicate that the moderator flux was depleted somewhat in uranium-238

resonance neutrons in the vicinity of the rod. The gold experiments, on

the other hand, gave flat epicadmium distributions in the moderator, even

near the fuel rod. The large dip in the activation of the depleted uranium

foils within the rod is due to the shielding effect of the uranium of the rod.

A second experimental run in the lattice with the 2.5-inch triangular

spacing was not completed because of experimental difficulties.

The results obtained by using europium powder foils are listed in

Table 4.1.2; they were not plotted because the scatter was too large. No

epicadmium activity was detectable. The scatter probably wbs a result

of the low counting rates (as low as twice the background in Run E2) and

the nature of the foils themselves. The foils were fabricated from Eu2 03
powder by Brown (B14). It was noticed in these experiments that the back-

ground level of the irradiated foil was 10% higher than background 100 hours

after irradiation, probably because of activation of some contaminant in the

foil.

The experimental results for the lutetium alloy foils are shown in

Figs. 4.3.7 to 4.3.9; the comparison with the THERMOS calculations are

also included. The lutetium foils were effectively infinitely thin. The

results in the lattice with the 2.5-inch triangular spacing have less scatter

than those in the lattice with the 1.25-inch triangular spacing. No epi-

cadmium activity was detectable. The most likely cause of the scatter was

the low counting rates. Longer irradiations (more than 30 hours) might

have yielded better results, as in the experiments in the lattice with the

2.5-inch triangular spacing.
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The motivation involved in irradiating foils such as lutetium and

europium which have non-1/v-cross sections was to obtain data more

sensitive to the "hardening" of the energy spectrum than the results

obtained using gold. However, the alloy or powder foils have been largely

unsatisfactory for the intracellular traverses in lattices requiring small

foils, although the alloy seems to give the better results. Brown (B14)

has been more successful with the larger powder foils that he used in

lattices of 1-inch diameter, natural uranium rods.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

A series of intracellular activation distribution measurements made

by Brown (B14), in lattices of 1-inch diameter, natural uranium rods

moderated by heavy water, were in agreement (about 2%) with one-dimensional

THERMOS calculations. But when measurements were made in a lattice of

1/4-inch diameter, 1.03% U235 , uranium rods on a 1.25-inch triangular

spacing, the predicted activation distribution near the center of the fuel rod

fell 8% below the experimental distribution. Brown suspected that the most

likely cause for this discrepancy was the failure of the approximation in the

calculation that the hexagonal cell could be replaced by an equivalent circu-

lar cell, the cell cylindricalization, or Wigner-Seitz, approximation. From

the results discussed in this report, it has been established that this

approximation was, indeed, the cause of the discrepancy.

It was first shown that a change in the scattering model, or the use

of simple prescriptions to account for the effects of anisotropic scattering,

had a relatively insignificant effect on the calculated intracellular activation

distributions for D 20-moderated lattices. The Honeck-Nelkin model for

D 20, with a simple adjustment of the diagonal elements (for anisotropic

scattering) seems adequate for future calculations in D 20-moderated lattices.

A similar study for lattices of natural uranium rods in graphite, discussed

in Appendix E, indicates that the details of the scattering model are more

important in that type of lattice than in heavy water lattices. The magni-

tudes of the effects of flux perturbation by foils and leakage from the tank

were shown to be too small to account for the observed discrepancy. The

one-dimensional THERMOS calculation agreed with the experimental intra-

cellular activation distribution in the (wider) lattice with the 2.5-inch tri-

angular spacing (1/4-inch diameter, 1.03% U 235, uranium rods), which

indicates that the cell cylindricalization approximation in the tighter lattice

with the 1.25-inch triangular spacing could be the source of the observed

discrepancy. Finally, a two-dimensional calculation,for which the cell

cylindricalization approximation is not made, agreed with experiment in
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the lattice with the 1.25-inch triangular spacing. It may be concluded,

therefore, that the approximation that the cell can be cylindricalized can

lead to the serious discrepancies between theory and experiment for

closely-packed lattices moderated by heavy water.

The two-dimensional THERMOS calculation requires about five

times as much computer time as the one-dimensional calculation.

Honeck (H1_3), in the course of studies of H 20-moderated lattices,

suggested a method for modifying the one-dimensional calculation so

that it would reproduce the result of the two-dimensional calculation for

the intracellular activation distribution, but without the corresponding

increase in computer time. The method, which involves replacement of

the equal-angle reflection condition at the cell boundary by an isotropic

reflection condition, was applied to D 20-moderated lattices; the results

indicate that the modified one-dimensional calculation predicted the

intracellular activation distributions as well as the two-dimensional

calculation did, The limits of applicability of the modified one-

dimensional calculation should be investigated in future work.

The results of the experiments with gold foils of different thickness

indicate that the analytical methods developed in this work to treat the

flux perturbation problem are adequate; gold foils, as thick as 10 mils,

were used in some of the experiments. In the experiments, the gold foils,

2 and 4 mils thick, gave the best balance of irradiation time, count rate,

accuracy of foil weight and correction required for flux perturbation so that

their future use is recommended.

The analytical results indicated that leakage would not be a serious

problem for the smaller (3-foot diameter) exponential tank used at M.I.T.

It is possible that future work in small exponential assemblies, such as

those studied by Peak (P5), may require significant leakage corrections.

However, the discrepancy between theory and experiment that Peak

observed for the intracellular activation distributions in the miniature

lattice was probably due to the failure of the cell cylindricalization approxi-

mation.

A method of normalization of theory and experiment was suggested

that was based on the prediction of the cadmium ratio of the foils used in

the intracellular activation distribution measurements. However, it was

found that uncertainties in the effective resonance integrals of the foils
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are too large, so that the method will require additional work before it

could replace the usual methods of normalization of the subcadmium acti-

vation distribution at either the center or the edge of the cell.

The epicadmium intracellular activation distribution has received

little attention in the past. Measurements with depleted uranium foils

have been made to provide some additional data in this area. The results

with gold foils indicated that the flux at the gold resonance (4.9 ev) is

spatially flat in the moderator. The distribution of activities of depleted
238

uranium foils indicated that the resonance flux at the U resonance

energies was depressed in the vicinity of the fuel rod. Future work to

determine the fine structure of the resonance flux, such as the work at

Chalk River (T7), should prove useful.

The use of wire detectors has been considered as a means of

obtaining greater detail in the rod, and the use of wire probes would

permit comparison with the results obtained with foils. It seems reason-

able to require, as a basis of comparison that the foil and the wire have

the same weight and mean chord length. On this basis, a wire, about

1/4 inch long and 1/128 inch in diameter, would be required if the com-

parison is to be with a foil, 1/16 inch in diameter and 4.3 mils thick.

The experimental difficulties involved in using such thin wires would be

considerable, but such experiments seem to be worthwhile and should be

considered further.

One of the difficulties involved in using detector foils having non-

1/v-activation cross sections in the thermal energy range is that the

available nuclides having this property do not occur in a convenient

metallic form, such as gold. It appears worthwhile to improve the

methods of fabrication of powder foils to make possible the use of a wider

class of foil material that would otherwise be difficult or expensive to use.
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APPENDIX A

THE THERMAL NEUTRON FLUX PERTURBATION PROBLEM

The flux perturbation factor is the ratio of the neutron activation of

a foil of finite size (for which the flux is perturbed) to that of the same

foil if there were no flux perturbation. In practice, it is not possible to

achieve the latter condition, and it has become common procedure to use

the so-called infinitely thin foil, i.e., a foil thin enough that it does not

significantly perturb the flux. The activity ratio, corrected for the

weights of the foils, is the flux perturbation factor. This appendix is

intended to provide a more general discussion than that of Section 3.4,

where the problem was introduced.

For a foil in a large cavity, the neutron flux perturbation factor is

equal to the escape probability, P, as derived in Section 3.4. When the

foil is in a diffusing medium, the flux perturbation is larger, since the

incident neutron flux is perturbed. Much of the recent analytical and

experimental work has involved the case of a foil in a diffusing medium,

because of its importance in practical situations.

Bothe (B10) seems to have been the first to treat the flux pertur-

bation problem in a diffusing medium. His first method was to use inte-

gral transport theory in the foil to obtain the self-shielding effect and

diffusion theory in the moderator to obtain the depression of the total

flux at the foil surface as compared with the flux at infinity. The combi-

nation of these two effects is the flux perturbation effect. Although the

result is presumably well-kinown, it seems desirable to indicate how it

was derived and to note the approximations used.

The integral transport theory calculation of the disadvantage factor

has been reviewed by Fukai (F2). The disadvantage factor, F, is the ratio

of the flux at the surface of the foil to the average flux in the foil. Theys

(T2) has derived the disadvantage factor for an incident isotropic

directional flux as:

2 - r'
F = _ a (A.1)

a
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where a = Z t* and r (sometimes called the blackness, P, of the absorb-
a a a

ing body) is the probability that a neutron entering the foil isotropically

will be absorbed. From the reciprocity theorem (T2), ra = 2a P, where

P is the escape probability for neutrons from a flat, isotropic source in

the foil. Then, Eq. (A.1) becomes:

F= -a . (A.2)

In most experiments, the foil is much smaller than any dimension of

the experimental assembly, and it seems reasonable to assume that the

foil is better approximated as a sphere than as an infinite slab in compari-

son to the external medium. To make the problem amenable to solution,

it is assumed that the foil may be replaced by a sphere having the same

volume-to-surface area as the foil: in this case, the radius of the sphere,
3

R, is equal to 3 t*.

The solution of the diffusion equation which satisfies the boundary

condition that the flux at infinity be finite, with a constant source density

everywhere, is:

(r) 1-Ae (A.3)
*oo r

where A is an arbitrary constant and r, is the inverse of the diffusion

length. Since the boundary condition at the surface of the foil is known

from the integral transport calculation, A can be determined. The result

for the flux at the surface of the foil is:

*(R) 1(A.4)
00 a R f1\1 + 2F D \cR+1/

The total flux perturbation factor, f 5 , is the ratio */*:

f = = 1 (A.5)ss * F a R f1
1 + 2F D \iR+1/

On substituting for R in terms of t* and using Eq. (A.2) for F, */*
becomes:
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f ==(A. 6)
ss *oo 1 + a 3it*+2

To put Eq. (A.6) in more familiar terms, replace D by Xtr/3 and K, by

1/L:

P
f = =2L (A.7)
ss *oo0 1 + Pa 3t+2 -1

a Xtr 3*2

Hanna (H1) writes Eq. (A.7) as:

f = .1 = -F(1+e) . (A. .8)
s s *o 1+ gaP

He defines (1+E) as the correction for the edge effect. A simple correction

for the edge effect is included in the calculation of fss [Eq. (A.7)] by evalu-

ating P for a slab of effective thickness, t*, which has the same mean

chord length as the actual foil.

Comparison of the denominators of Eqs. (A.7) and (A.8) gives:

= t* 2L
g = 2L + 3t* 19)tr

For heavy water, Xtr is approximately 2.5 cm and L is approximately

100 cm; the foil thickness is of the order of mils, and g = -1. Then

Eq. (A.7) reduces to:

f = -i= =F 1- (A. 10)
ss P P F

The result would have been obtained, had the external flux depression been

neglected; there appears, therefore, to be an inconsistency, since the flux

perturbation factor should have reduced to P., not 1/F. The assumption

that the incident flux could be calculated by diffusion theory apparently

caused the inconsistency. Wachspress (W1) discusses a similar situation

in his work on thin region theory.

Bothe also derived another expression for g for when t* < tr, and

obtained the result:

g = 0.68 t*/x tr(1 (A. 11)
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in terms of the variables defined here. For 10 mil thick gold foils in heavy

water, the effect of the diffusing medium on the flux perturbation factor is

only 0.3% of the effect in a vacuum. Hence, the escape probability, P,

should be a good approximation for T/p for D 2 0. Others (R2) have tried

to modify Eq. (A.8) by calculating g with varying degrees of rigor. Dalton

(D2), rather than approach the problem from the more conventional

methods, has computed directly numerical solutions of the Boltzmann

equation.

To compare the analytical methods with experiment, it is necessary

to take into account the energy dependence of the cross sections. The

experiment is usually made in a flux that is close to a Maxwellian spectrum,

M(E), at the moderator temperature. Dalton simply uses the flux-averaged

cross sections in his single velocity method. The simplicity of the spatial

dependence implicit in the escape probability approximation allows a more

rigorous approach to the energy dependence. The activation of the foil of

finite thickness is:

E
Activation of the finite foil = f c FUACT(E) M(E) dE , (A.12)

0

where E c is the energy of the cadmium cutoff. The activation of the

infinitely thin foil (P= 1) is:

E
Activation of the infinitely thin foil = f c 'ACT(E) M(E) dE.

0
(A.13)

The flux perturbation factor for the finite foil is the ratio of Eqs. (A.12)

and (A.13):

E

Ec PUACT(E) M(E) dE

Flux Perturbation Factor, f = 0 E

f c UACT (E) M(E) dE
0

(A. 14)

Calculations for fss based on Eq. (A.14) for gold, cobalt and copper

foils have been made with the QUICK code described in Appendix C. The

results of these calculations are shown in Fig. A.1. The values of fss
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calculated from Eq. (A.14) for gold foils are compared in Table A.1 to the

values of fss calculated, using cross sections, at a neutron speed of

2200 m/sec. The results of this comparison indicate that the values of

f calculated with 2200 m/sec cross sections are consistent with the
SS

energy average, f 5 .

TABLE A.1

Comparison of Values of the Flux Perturbation Factor
Calculated by Using 2200 m/sec Cross Sections and

by Assuming an Incident Maxwellian Spectrum

Foil Value of f Value of f

Thickness, t* Using 2200 m/sec Calculated
(mils) Cross Sections from Eq. (A.14)

2.3 0.927 0.923

3.8 0.894 0.889

7.7 0.823 0.817

20.6 0.665 0.661

The experimental data available for H2O provide a stringent test

of these calculations because Xtr for H20 is less than Xtr for D20, and,

therefore, the flux perturbation should be greater in H20 than in D2 0.

Zobel (Z2) has made experiments with gold foils of various thickness in

an H20 medium. Figure A.2 shows the comparison of the experimental

results of Zobel, with the calculated values of Dalton, and with the values

calculated from Eq. (A.14). The results of Dalton's calculations with

flux-averaged cross sections agree with the experiment within the quoted

experimental uncertainty. The escape probability method of Eq. (A.14)

gives results that are 6% higher than experiment for a 10 mil thick gold

foil. It is possible that Dalton's result would be sensitive to the cross

sections used. However, Dalton's method has no provision for any

spectrum variation. In any event, the escape probability method should

give better results for D20 than H20 with no greater error than that which

occurred in the comparison with Zobel's experiment.
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APPENDIX B

EFFECTS OF FOIL INTERACTION AND MYLAR TAPE

Four experiments were made to investigate the possible effects, on

the foil activations in the moderator, of the presence of the mylar tape and

of the interaction between adjacent foils. The experiments were made in

the test position of the three-rod cluster in the lattice with the 1.25-inch

triangular spacing during measurements of intracellular flux traverses.

The three-rod cluster is shown in Fig. 2.5.1 and the location of the test

position in Fig. 2.5.3.

The foil holders in the moderator were similar to those used

throughout the experiments in the lattice with the 1.25-inch triangular

spacing. The design of the foil holder is shown in Fig. B.1. The holders

were fabricated from aluminum, 12 mils thick, and foils from the file of

4.3 mil thick gold foils were used. The rod-to-moderator traverse section

was eliminated because no foils were to be irradiated in this direction.

The lattice was assumed to be azimuthally symmetric; the validity of this

assumption has been discussed in Chapter IV. In the case of symmetry,

if there are no perturbations on either side of the holder, the activities of

the foils located in symmetrical positions should be the same. It is

assumed that when a perturbation is introduced on one side of the holder,

the effect is negligible on the other side.

The first experiment was designed to investigate the effect of the

mylar tape used throughout the experimental program. A special holder,

with foil holes on the left side and 6 mil deep holes on the right side was

fabricated from 12 mil thick aluminum. A single strip of 2 mil mylar tape

was placed over the foils on the right side of the holder. Eight strips of

mylar tape were placed on the left side, four each on top and bottom. The

left side, therefore, had eight times as much mylar covering the foils than

did the right side. The object of the experiment was to see if this large

quantity of mylar would perturb the flux.

The results of the first experiment are given in Table B.1. The

maximum difference occurred at a radial position of 2.61 cm, with the
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TABLE B.1

Ratios of Foil Activities for 4.3 mil Thick Gold Foils In the Test Position of the Three-Rod Cluster

Radial Ratio of (a) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Run All Run A16
Position Foil Activity

(cm) for: SD, i 0.3% SD, ± 0.6% SD, ± 0.4% SD, ± 0.4% SD, 0.5% SD, ± 0.6%

0.563 #1/#2 0.992 0.998 0.999 0.997 0.986 0.995

0.972 #3/#4 1.010 1.004 0.994 0.994 1.010 0.987

1.381 #5/#6 0.998 0.995 1.006 0.981 1.003 0.998

1.793 #7/#8 1.005 - - - 1.017 1.006

2.202 #9/#10 1.008 0.995 0.998 1.015 1.004 0.990

2.611 #11/#12 1.013 1.011 1.000 0.989 0.985 0.985

(a) Numbers refer to Fig. B.l.
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foil in position 11 (see Fig. B.1) having an activity 1.013 ± 0.3% higher

than the foil in position 12. This ratio is approximately what would be

expected from a typical experiment involving no perturbation. For com-

parison, gold intracellular experiments, Runs All and A16, are included

in Table B.1. Since these experiments were performed in the same

lattice using 4.3,mil thick foils, they are examples in which no perturba-

tion was introduced intentionally. It may be concluded, therefore, that

the mylar had a negligible effect on the activation of the foils.

Experiments 2, 3 and 4 were designed to investigate the inter-

action between adjacent foils spaced about 1/6 inch apart. In experiment

2, foil position 7 was occupied by a cadmium foil, 1/16 inch in diameter

and 20 mils thick. Position 7 was not occupied in experiment 3. In

experiment 4, position 8 was empty and position 7 had the same cadmium

foil. This rotation was made to eliminate some of the possible variables.

Experiments 2 and 3 compared a cadmium foil to an empty position on the

same side of the holder, while experiments 2 and 4 compared them on

opposite sides. The results are listed in Table B.1. The ratios of foil

activities adjacent to position 7 show that in no case was the perturbation

detectable above the normally expected deviations as exemplified by the

results of Runs All and A16.

The fact that the presence of the cadmium foil cannot be detected

indicates that the foils do not interact, since a cadmium foil should have

a greater effect than a gold foil in a thermal flux (75% of the captures in

the gold were at energies below the cadmium cutoff). Although the foils

were quite close together, they were laid flat on the holder. In this

position, the solid angle subtending one foil by another was much smaller

than that if they had been placed vertically, facing each other. Unlike

H 20-moderated lattices, D 20-moderated lattices are less affected by
local perturbations, because thermal neutrons can travel farther in D2 0
than in H 20 (the scattering cross section of H2O is much greater than

the scattering cross section in D 2 0). This expectation was verified by

the experiments in which a cadmium foil, 20 mils thick, had no notice-

able effect on a neighboring gold foil 1/6 of an inch away.
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APPENDIX C

THE QUICK CODE

The QUICK code was programmed to calculate disadvantage factors

and escape probabilities as functions of energy. The punched card output

from the program can be used as cross section input to the THERM(OS

code. The program was written so that it could be expanded for use with

arrangements other than slabs by the interchange of subroutines in the

binary running deck. At present, the code has capabilities for slabs and

cylinders.

McGoff (M4) has coded a subprogram, CYLDIP, which calculates

the disadvantage factor for cylinders by means of a method based on the

results of Stuart and Woodruff (S3). In the analysis, it is assumed that

the incident directional flux is linearly anisotropic, consistent with dif-

fusion theory. The subprogram was modified for use with the QUICK

code. CYLDIP is restricted to the calculation of the disadvantage factor.

Subroutine DPRESS was programmed to calculate disadvantage

factors and escape probabilities for slabs. The approximations used are

discussed in Section 3.4 and Appendix A. For an isotropic incident

directional flux, the disadvantage factor, F, is related to the escape

probability, P:

1 P .1(C.1)
F

P
p 0 (C.2)

1- (1-P)

1 - 2E3 (t)

P= 2Et ,(C.3)

where E 3 (Et) is the exponential integral tabulated by Case, deHoffmann

and Placzek (C5) for optical thickness, Et. The exponential integrals

were calculated by Subroutine EI, originally coded by Honeck for use in



150

the THERMCOS code. The subroutine was found to give the same results as

those tabulated by Case, deHoffmann and Placzek.

For convenience, the output of the QUICK code is such that the acti-

vation cross section has been multiplied by the escape probability. The

result is an effective cross section for the nuclide in question for the foil

size used:

0 CT(E) = Pc-ACT(E) . (C.4)

An estimate of the flux perturbation factor, f , for the foil in a Maxwellian

spectrum is included as part of the output:

E A C (E) M(E) dE
f 0 E (C.5)

A CT(E) M(E) dE
0

where EMAX is the upper energy limit. A similar calculation is performed

with the inverse of the disadvantage factor:

c-ACT(E) = 1-ACT(E), (C.6)

'g EMT 7T ACT
E

f CT(E) M(E) dE
E - 0 (C.7)fEMAX UACT (E) M(E) dE

0

The running deck of QUICK consists of the main program, QUICK,

and DPRESS and EI for slab calculations or CYLDIP for calculations

involving cylinders. The FORTRAN listings of the program are given

along with the input instructions; a test problem is included. Results of

calculations for metallic gold foils (slabs) are included in Tables C.1 to

C.10.
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TABLE C.1

Effective Activation Cross Sections for 0.5 mil Thick Gold Foils

Activation Effective Activation Cross Sections
Group Energy Cross Section

(ev) u/ACT o (a) ACT/Foro (b) pACT o (c)

1 0.00025 10.0000 9.3018 8.7026
2 0.00101 5.0000 4.7770 4.6139
3 0.00228 3.3333 3.2205 3.1455
4 0.00405 2.5000 2.4308 2.3878
5 0.00632 2.0000 1.9528 1.9250
6 0.00911 1.6667 1.6322 1.6127
7 0.01240 1.4286 1.4022 1.3878
8 0.01619 1.2500 1.2291 1.2180
9 0.02049 1.1111 1*0941 1.0853

10 0.02530 1.0000 0.9858 0.9787
11 0.03061 0.9091 0.8971 0.8912
12 0.03643 0.8333 0.8231 0.8181
13 0.04276 0.7692 0.7603 0.7561
14 0.04959 0.7143 0.7065 0.7028
15 0.05692 0.6667 0.6597 0.6565
16 0.06517 0.6231 0.6169 0.6141
17 0.07485 0.5814 0.5760 0.5735
18 0.08612 0.5420 0.5372 0.5351
19 0.09919 0.5051 0.5008 0.4990
20 0.11398 0.4711 0.4674 0.4658
21 0.13123 0.4391 0.4358 0.4344
22 0.15248 0.4073 0.4045 0.4033
23 0.17901 0.3759 0.3735 0.3724
24 0.21241 0.3451 0.3430 0.3421
25 0.25464 0.3152 0.3134 0.3127
26 0.30816 0.2865 0.2850 0.2844
27 0.37598 0.2594 0.2581 0.2576
28 0.46183 0.2341 0.2330 0.2326
29 0.57023 0.2106 0.2098 0.2094
30 0.70666 0.1892 0.1885 0.1882

(a) u0 is the activation cross section at 2200 m/sec.

(b) F is the disadvantage factor for an incident, isotropic flux.

(c) P is the escape probability from a flat, isotropic source of neutrons
in the foil.
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TABLE C.2

Effective Activation Cross Sections for 1.0 mil Thick Gold Foils

Group Energy

(ev)

1
2

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0,00'n025
0.00101
0.00228
0.00405
0.00632
0.00911
0.01240
0.01619
0.02049
0.02530
0.03061
0.03643
0.04276
0.04959
0.05692
0.06517
0.07485
0.08612
0.09919
0.11398
0.13123
0.15248
0.17901
0.21241
0.25464
0.30816
0.37598
0.46183
0.57023
0.70666

Activation
Cross Section

UACT/ 
O (a)

10.0000
5.0000
303333
2.5000
2.0000
1.6667
1.4286
1.2500
1.1111
1.0000
0.9091
0.8333
0.7692
0.7143
0.6667
0.6231
0.5814
0.5420
0.5051
0.4711
0.4391
0.4073
0.3759
0.3451
0.3152
0.2865
0.2594
0.2341
0.2106
0.1892

Effective Activation Cross Sections

UACT/ Fro
(b)

8.9324
4.6509
3*1537
2.3885
1.9233
1.6102
1.3851
1.2154
1.0828
0.9764
0.8891
0.8161
0.7542
0.7011
0.6550
0.6127
0.5722
0.5339
0.4978
0.4648
0.4334
0.4024
0.3717
0.3414
0.3121
0.2839
0.2572
0.2322
0.2091
0.1880

PcACT Oo

7*8891
4.3513
3.0130
2.3069
1.8700
1.5727
1.3573
1*1939
1.0657
0.9625
0.8775
0.8064
0.7459
0.6939
0.6487
0.6071
0*5674
0.5297
0.4942
0.4616
0.4307
0.4000
0.3696
0.3397
0.3106
0.2827
0.2562
0.2314
0.2085
0.1874

(a) u0 is the activation cross section at 2200 m/sec.

F is the disadvantage factor for an incident, isotropic flux.

P is the escape probability from a flat, isotropic source of neutrons
in the foil.

(c)

(b)

(c)
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TABLE C.3

Effective Activation Cross Sections for 2.3 mil Thick Gold Foils

Group Energy

(ev)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.00025
0.00101
0.00228
0.00405
0.00632
0.00911
0.01240
0.01619
0.02049
0.02530
0.03061
0.03643
0.04276
0.04959
0.05692
0.06517
0.07485
0.08612
0.09919
0.11398
0.13123
0.15248
0.17901
0.21241
0.25464
0.30816
0.37598
0.46183
0.57023
0.70666

Activation
Cross Section

@ACT 
o (a)

10.0000
5.0000
3.3333
2.5000
2.0000
1.6667
1.4286
1.2500
1.1111
1.0000
0.9091
0.8333
0.7692
0.7143
0.6667
0.6231
0.5814
0.5420
0.5051
0.4711
0.4391
0.4073
0.3759
0.3451
0.3152
0.2865
0.2594
0.2341
0.2106
0.1892

Effective Activation Cross Sections

UACT /Fo
(b)

8.2249
4.4172
3.0291
2.3088
1.8670
1.5679
1.3520
1*1886
1.0606
0.9576
0.8730
0.8021
0.7420
0.6902
0.6453
0.6040
0.5644
0.5270
0.4917
0.4593
0.4286
0.3981
0.3679
0.3382
0.3093
0.2815
0.2552
0.2305
0.2077
0.1868

P7ACT/ o

6.4161
3.8363
2.7442
2.1395
1.7547
1.4880
1.2921
1.1421
1.0234
0.9272
0.8476
0.7807
0.7236
0.6743
0.6313
0.5917
0.5537
0.5176
0.4836
0.4522
0.4224
0.3928
0.3633
0.3343
03060
0.2788
0.2530
0.2287
0.2062
0.1856

(a) U is the activation cross section at 2200 m/sec.

(b) F is the disadvantage factor for an incident, isotropic flux.

(c) P is the escape probability from a flat, isotropic source of neutrons
in the foil.

(c)
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TABLE C.4

Effective Activation Cross Sections for 2.5 mil Thick Gold Foils

Group Energy

(ev)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.00025
0.00101
0.00228
0.00405
0.00632
0.00911
0.01240
0.01619
0.02049
0.02530
0.03061
0.03643
0.04276
0404959
0,05692
0606517
0O7485

0608612
0.09919
0.11398
0.13123
0.15248
0.17901
0.21241
0.25464
0.30816
0#37598
0.46183
0.57023
0.70666

Activation
Cross Section

UACTI 
o (a)

10.0000
5.0000
3.3333
2*5000
2.0000
1.6667
1.4286
1.2500
1.1111
1.0000
0.9091
0.8333
0.7692
0 7143
0.6667
0.6231
05814
65420
0. 5051
0.4711
0.4391
0.4073
0.3759
0.3451
0.3152
042865
0.2594
0.2341
0.2106
0.1892

Effective Activation Cross Sections

UACT/Fo
(b)

8.1376
4.3896
3.0146
2.2995
1.8604
1.5630
1.3481
1.1854
1.0580
0.9554
0.8711
0.8005
0.7405
0.6889
066441
06029
05635
0.5261
0.4910
0.4586
0.4280
0.3976
0.3675
0.3378
03089
042812
062549
0.2303
0.2075
o01866

PxACT Oo

6.2538
3.7761
2.7120
2.1191
1.7405
1.4775
1.2840
1.1356
1.0181
0.9228
0.8438
0.7774
0.7207
0 46718
666291
045898
0#5520
0i5161
0.4822
0.4510
0.4213
0.3918
0.3625
0.3336
O.3055
02783
0.62526
062284
062060
641854

(a) ao is the activation cross section at 2200 m/sec.

F is the disadvantage factor for an incident, isotropic flux.

P is the escape probability from a flat, isotropic source of neutrons
in the foil.

(c)

(b)

(c)
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TABLE C.5

Effective Activation Cross Sections for 3.8 mil Thick Gold Foils

Group Energy

(ev)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.00025
0.00101
0.00228
0.00405
0.00632
0.00911
0.01240
0.01619
0.02049
0.02530
0.03061
0.03643
0.04276
0.04959
0.05692
0.06517
0.07485
0.08612
0.09919
0.11398
0.13123
0.15248
0.17901
0.21241
0.25464
0.30816
0.37598
0.46183
0.57023
0.70666

Activation
Cross Section

o-ACTI 
(a)

10.0000
5.0000
3.3333
2.5000
2.0000
1.6667
1.4286
1.2500
1.1111
1.0000
0.9091
0.8333
0.7692
0.7143
0.6667
0.6231
0.5814
0.5420
0.5051
0.4711
0.4391
0.4073
0. 3759
0.3451
0.3152
0.2865
0.2594
0.2341
0.2106
0.1892

Effective Activation Cross Sections

UACT/Foo9
(b)

7.5692
4.2166
2.9245
2.2421
1.8198
1.5323
1.3239
1.1658
1.0416
0.9415
0.8591
0.7901
0.7313
0.6808
0.6368
0.5964
0.5576
0.5209
0.4863
0.4544
0.4243
0.3943
0.3645
0.3353
0.3068
0.2794
0.2534
0.2290
0.2064
0.1857

PUACTIo

5.3170
3.4116
2.5132
1.9921
1.6516
1.4113
1.2326
1.0944
0.9843
0.8944
0.8197
0.7566
0.7026
0.6558
0.6149
0.5771
0.5407
0.5061
0.4734
0.4432
0.4144
0.3858
0.3573
0.3291
0.3016
0.2751
0.2498
0.2261
0.2041
0.1838

(a) 0 is the activation cross section at 2200 m/sec.

(b) F is the disadvantage factor for an incident, isotropic flux.

(c) P is the escape probability from a flat, isotropic source of neutrons
in the foil.

(c)



156

TABLE C.6
Effective Activation Cross Sections for 4.3 mil Thick Gold Foils

Activation Effective Activation Cross Sections
Group Energy Cross Section

(ev) (ACT! o (a) ACTI/Foo (b) 7UACT o (c)

1 0.00025 10.0000 7.3506 5.0076
2 0.00101 5.0000 4.1522 3.2842
3 0.00228 3.3333 2.8916 2.4421
4 0.00405 2.5000 2.2213 1.9461
5 0.00632 2.0000 1.8051 1.6191
6 0.00911 1.6667 1.5213 1.3870
7 0.01240 1.4286 1.3152 1.2136
8 0.01619 1.2500 1.1587 1.0791
9 0.02049 1.1111 1.0357 0.9717

10 0.02530 1.0000 0.9365 0.8838
11 0.03061 0.9091 0.8548 0.8107
12 0.03643 0.8333 0.7863 0.'7488
13 0.04276 0.7692 0.7280 0.6957
14 0.04959 0.7143 0.6778 0.6498
15 0.05692 0.6667 0.6341 0.6095
16 0.06517 0.6231 0.5940 0.5723
17 0.07485 0.5814 0.5555 0.5365
18 0.08612 0.5420 0.5189 0.5024
19 0.09919 0.5051 0.4846 0.4701
20 0.11398 O.4711 0.4529 0.4402
21 0,13123 0.4391 0.4229 0.4118
22 0.15248 0.4073 0.3931 0.3835
23 0.17901 0.3759 0.3635 0.3553
24 0.21241 0.3451 0.3343 0.3274
25 0.25464 0.3152 0.3060 0.3001
26 0.30816 0.2865 0.2787 0.2738
27 0.37598 0.2594 0.2528 0.2488
28 0.46183 0.2341 0.2285 0.2252
29 0.57023 0.2106 0.2060 0.2033
30 0.70666 0.1892 0.1854 0.1832

(a) ao is the activation cross section at 2200 m/ sec.
(b) F is the disadvantage factor for an incident, isotropic flux.
(c) P is the escape probability from a flat, isotropic source of neutrons

in the foil.
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TABLE C.7

Effective Activation Cross Sections for 7.7 mil Thick Gold Foils

Activation Effective Activation Cross Sections
Group Energy Cross Section

(ev) uACT/ O(a) UACT/FO (b) - 'ACT o(c)

1 0.00025 10.0000 6.0536 3.5838
2 0.00101 5.0000 3.7708 2.6382
3 0.00228 3.3333 2.7027 2.0668
4 0.00405 2.5000 2.1042 1.6976
5 0.00632 2.0000 1.7235 1.4408
6 0.00911 1.6667 1.4601 1.2520
7 0.01240 1.4286 1.2672 1.1074
8 0.01619 1.2500 1.1197 0.9931
9 0.02049 1.1111 1.0032 0.9004

10 0.02530 1.0000 0.9089 0.8237
11 0.03061 0.9091 0.8310 0.7592
12 0.03643 0.8333 0.7655 0.7041
13 0.04276 0.7692 0.7096 0.6566
14 0.04959 0.7143 0.6614 0.6151
15 0.05692 0.6667 0.6194 0.5786
16 0.06517 0.6231 0.5807 0.5447
17 0.07485 0.5814 0.5436 0.5119
18 0.08612 0.5420 0.5083 0.4805
19 0.09919 0.5051 0.4750 0.4506
20 0.11398 0.4711 0.4443 0.4229
21 0.13123 0.4391 0.4152 0.3965
22 0.15248 0.4073 0.3863 0.3700
23 0.17901 0.3759 0.3575 0.3435
24 0.21241 0.3451 0.3291 0.3172
25 0.25464 0.3152 0.3014 0.2914
26 0.30816 0.2865 0.2748 0.2665
27 0.37598 0.2594 0.2495 0.2426
28 0.46183 0.2341 0.2257 0.2200
29 0.57023 0.2106 0.2036 0.1990
30 0.70666 0.1892 0.1834 0.1796

(a) 0 is the activation cross section at 2200 m/sec.

(b) F is the disadvantage factor for an incident, isotropic flux.

(c) P is the escape probability from a flat, isotropic source of neutrons
in the foil.
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TABLE C.8

Effective Activation Cross Sections for 10.2 mil Thick Gold Foils

Activation Effective Activation Cross Sections
Group Energy Cross Section

(ev) ACT o (a) (ACT/Foo (b) P"ACT o (c)

1 0.00025 10.0000 5.2440 2.9268
2 0.00101 5.0000 3.5125 2.2953
3 0.00228 3.3333 2.5777 1.8556
4 0.00405 2.5000 2.0287 1.5530
5 0.00632 2.0000 1.6717 1.3348
6 0.00911 1.6667 1.4219 1.1706
7 0.01240 1.4286 1.2374 1.0426
8 0.01619 1.2500 1.0956 0.9401
9 0.02049 1.1111 0.9832 0.8562

10 0.02530 1.0000 0.8920 0.7861
11 0.03061 0.9091 0.8164 0.7268
12 0.03643 0.8333 0.7527 0.6759
13 0.04276 0.7692 0.6983 0.6317
14 0.04959 0.7143 0.6514 0.5930
15 0.05692 0.6667 0.6104 0.5589
16 0.06517 0.6231 0.5726 0.5270
17 0.07485 0.5814 0.5363 0.4961
18 0.08612 0.5420 0.5017 0.4664
19 0.09919 0.5051 0.4691 0.4381
20 0.11398 0.4711 0.4391 0.4118
21 0.13123 0.4391 0.4105 0.3865
22 0.15248 0.4073 0.3820 0.3612
23 0.17901 0.3759 0.3538 0.3358
24 0.21241 0.3451 0.3259 0.3106
25 0.25464 0.3152 0.2986 0.2857
26 0.30816 0.2865 0.2724 0.2616
27 0.37598 0.2594 0.2474 0.2385
28 0.46183 0.2341 0.2239 0.2166
29 0.57023 0.2106 0.2022 0.1962
30 0.70666 0.1892 0.1821 0.1773

(a) 0 is the activation cross section at 2200 m/sec.

(b) F is the disadvantage factor for an incident, isotropic flux.

(c) T is the escape probability from a flat, isotropic source of neutrons
in the foil.
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TABLE C.9

Effective Activation Cross Sections for 12.4 mil Thick Gold Foils

Activation Effective Activation Cross Sections
Group Energy Cross Section

(ev) UACT o (a) UACT/F90 (b) .gACT .o (c)

1 0.00025 10.0000 4.6306 2.4990
2 0.00101 5.0000 3.2941 2.0501
3 0.00228 3.3333 2.4714 1.6983
4 0.00405 2.5000 1.9650 1.4428
5 0.00632 2.0000 1.6286 1.2528
6 0.00911 1.6667 1.3903 1.1068
7 0.01240 1.4286 1.2130 0.9914
8 0.01619 1.2500 1.0760 0.8980
9 0.02049 1.1111 0.9670 0.8208

10 0.02530 1.0000 0.8783 0.7560
11 .0.03061 0.9091 0.8046 0.7007
12 0.03643 0.8333 0.7424 0.6531
13 0.04276 0.7692 0.6893 0.6116
14 0.04959 0.7143 0.6433 0.5751
15 0.05692 0.6667 0.6031 0.5428
16 0.06517 0.6231 0.5660 0.5126
17 0.07485 0.5814 0.5304 0.4832
18 0.08612 0.5420 0.4965 0.4549
19 0.09919 0.5051 0.4644 0.4278
20 0.11398 0.4711 0.4348 0.4026
21 0.13123 0.4391 0.4067 0.3783
22 0.15248 0.4073 0.3787 0.3540
23 0.17901 0.3759 0.3508 0.3295
24 0.21241 0.3451 0.3232 0.3051
25 0.25464 0.3152 0.2963 0.2810
26 0.30816 0.2865 0.2704 0.2576
27 0.37598 0.2594 0.2457 0.2351
28 0.46183 0.2341 0.2225 0.2137
29 0.57023 0.2106 0.2009 0.1938
30 0.70666 0.1892 0.1811 0.1753

(a) u0 is the activation cross section at 2200 m/sec.

(b) F is the disadvantage factor for an incident, isotropic flux.

(c) P is the escape probability from a flat, isotropic source of neutrons
in the foil.
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TABLE C.10

Effective Activation Cross Sections for 20.6 mil Thick Gold Foils

Activation Effective Activation Cross Sections
Group Energy Cross Section

(ev) UACT/ o (a) OrACT/ Fo (b) 7gACT o (c)

1 0.00025 10.0000 3.1165 1.5981
2 0.00101 5.0000 2.6075 1.4527
3 0.00228 3.3333 2.1163 1.2863
4 0.00405 2.5000 1.7513 1.1417
5 0.00632 2.0000 1.4852 1.0223
6 0.00911 1.6667 1.2865 0.9241
7 0.01240 1.4286 1.1336 0.8425
8 0.01619 1.2500 1.0129 0.7739
9 0.02049 1.1111 0.9153 0.7156

10 0.02530 1.0000 0.8349 0.6655
11 0.03061 0.9091 0.7675 0.6220
12 0.03643 0.8333 0.7102 0.5838
13 0.04276 0.7692 0.6610 0.5501
14 0.04959 0.7143 0.6181 0.5201
15 0.05692 0.6667 0.5806 0.4933
16 0.06517 0.6231 0.5458 0.4679
17 0.07465 0.5814 0.5122 0.4431
18 0.08612 0.5420 0.4802 0.4189
19 0.09919 0.5051 0.4498 0.3956
20 0.11398 0.4711 0.4218 0.3737
21 0.13123 0.4391 0.3950 0.3525
22 0.15248 0.4073 0.3682 0.3311
23 0.17901 0.3759 0.3416 0.3094
24 0.21241 0.3451 0.3152 0.2875
25 0.25464 0.3152 0.2893 0.2659
26 0.30816 0.2865 0.2644 0.2446
27 0.37598 0.2594 0.2405 0.2241
28 0.46183 0.2341 0.2181 0.2045
29 0.57023 0.2106 0.1972 0.1860
30 0.70666 0.1892 0.1779 0.1688

(a) 0 is the activation cross section at 2200 m/sec.

(b) F is the disadvantage factor for an incident, isotropic flux.

(c) P is the escape probability from a flat, isotropic source of neutrons
in the foil.
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Input Instructions for QUICK

Card Type

1

2

3

4

5

6

7

8

9

10

Format

(12A6)

(I5)

(7E10.5)

(7E 10.5)

(315)

(7E 10.5)

(7E 10.5)

(7E10.5)

(I5,E10.5)

(7E10.5)

List

72 characters to be used for the problem

identification.

IX; the number of velocity groups; if IX is

zero, the problem terminates; a maximum

of 30 groups is permitted.

V(I), I=1, IX; the velocity mesh.

DV(I), I=1, IX; the velocity intervals.

NACT; if NACT=0, the activation cross

section varies as 1/v.

NABS; if NABS=0, the absorption cross

section varies as 1/v.

NSCAT; if NSCAT=0, the scattering cross

section is constant.

If NACT was zero, a single number, the

cross section at v 0 ; if not, the activation

cross section, 7 per card until IX is reached.

If NABS=0, a single number, the absorption

cross section at v 0 ; if not, the absorption

cross sections, 7 per card, until IX is

reached.

If NSCAT=0, a single number, the scattering

cross section; if not, the scattering cross

section at each velocity point, 7 per card,

until IX is reached.

NTIMES; the number of different thickness

to be calculated.

DENSY; the density of the material.

TH(I), I=1, NTIMES; the thickness to be cal-

culated; a maximum of 10 is permitted.

GO TO CARD TYPE 1. TWO BLANK CARDS WILL TERMINATE THE RUN.



MAIN PROGRAM QUICK

QUICK CALLS DPRESS OR CYLDIP

* LIST 8
* LABEL
CQUICK PROGRAM CALCULATES SELF-SHIELDING FACTORS

DIMENSION SIGACT(30),SIGA(30),SIGS(30),TH)10),FO(30,10),F1(30,10),
IHOL(30),XSECA(30,10),XSECB(30, 10)DV(30),PHI(30)
DIMENSION V(30)

10 FORMAT(1415)
12 FORMAT(12A6)
16 FORMAT(lH1,12X,12A6)
18 FORMAT(lH0,12X,52HINVERSE DISADVANTAGE FACTORS FOR ISOTROPIC INCID

lENCE )
19 FORMAT(lHO,12X,5OHSELF-SHIELDING FACTORS BASED ON ESCAPE PROBABILI

iTY )
20 FORMAT(7E10.5)
25 FORMAT(lHO,12X,5HGROUP,2X,6HENERGY,10(4H TH=F6.4))

33 FORMAT(15,E10.5)
40 FORMAT(12XI4,2XF8.5,1oF1o.5)
60 FORMAT(18HPO CASE THICKNESS=F6.4,5X,7HGROUPS=I3)
70 FORMAT(7F10.4)
80 FORMAT(18HEP CASE THICKNESS=F6.4,5X,7HGROUPS=I3)
90 FORMAT(lH ,12X,12HGROUP ENERGY,10X,5H XSEC,12X,3HDPO,11X,4HPBAR)
91 FORMAT)lHO,12X,1OHTHICKNESS=FB.5)
92 FORMAT(lHO,50X,23HEFFECTIVE CROSS SECTION)
95 FORMAT(12XI4,F9.5.3F15.4)
1 CONTINUE

READ 12,(HOL(I)1,=1,12)
READ 10,IX
IF(IX)199,199,69

69 CONTINUE
READ 20,(V(I),I=1,IX)
READ 20,(DV(I),I=1,IX)
ASUM=0.0
DO 510 I=1,IX
B=V(I)*V(I)
PHI(I)=B*EXPF(-B)
PHI(I)=PHI(I)*V(I)*DV(I)

510 ASUM=ASUM + PHI(I)
READ 10,NACTNABSNSCAT

C NACT=0,XSEC IS 1/V
C NABS=0,XSEC IS 1/V
C NSCAT=0,SXSEC IS CONSTANT

IF(NACT)100,102,100
100 READ 20,(SIGACT(I),=1,IX)

GO TO 106
102 READ 20,A

DO 104 I=1,IX
104 SIGACT(I)=A/V(I)
106 CONTINUE

PQ=0.0
DO 520 1=1,1X

520 PQ=PQ+PHI(I)*SIGACT(I)
PQ=PQ/ASUM
IF(NABS)108,110,108

108 READ 20,(SIGA(I),I=1,IX)
GO TO 114

110 READ 20,B
DO 112 I=1,IX

112 SIGA(I)=B/V(I)
114 CONTINUE

IF(NSCAT)116,118,116
116 READ 20,(SIGS(I),1=1,IX)

GO TO 122
118 READ 20,C

DO 120 I=1,IX
120 SIGS(I)=C
122 CONTINUE

READ 33,NTIMESDENSY
READ 20,)TH(I),I=1,NTIMES)
DO 1000 J=1sNTIMES
DO 900 I=19IX
XA=SIGA(I)*TH(J)*DENSY
XS=SIGS(I)*TH(J)*DENSY
CALL DIP(XAXSFDPOPBAR)
F0(IJ)=FDPO
Fil(,J)=PBAR

900 CONTINUE
1000 CONTINUE

PRINT 16,(HOL(I)1,=1,12)
PRINT 18
PRINT 25,(TH(I),I=1,NTIMES)
DO 130 1=1,IX
B=V(I)*V(I)*0.0253

130 PRINT 40.IB,(FOIJ),J=1,NTIMES)
PRINT 16,(HOL(I)1=1,12)
PRINT 19
PRINT 25,(TH(I),I=1,NTIMES)
DO 140 1=1,IX
B=V(I)*V(I)*0.0253

140 PRINT 40,I,B,(Fl(IJ),J=1,NTIMES)
DO 300 J=1,NTIMES
DO 300 I=1,IX
XSECA(I,J)=SIGACT(I)*F0(IJ)

300 XSECB(IJ)=SIGACT(I)*Fl(IJ)
PUNCH12,(HOL(I),=1,12)
DO 310 J=1,NTIMES
PUNCH 60,TH(J),IX

310 PUNCH 70,(XSECA(IJ),I=1,IX)
DO 320 J=1,NTIMES
PUNCH 80,TH(J)1,IX
PUNCH 70,(XSECB(IJ),1=1,IX)

320 CONTINUE
DO 330 J=1,NTIMES
PRINT 16,(HOL(I),1=1,12)
PRINT 91,TH(J)
PRINT 92
PRINT 90
BSUM=0.0
CSUM=0.0
DO 319 I=1,IX
BSUM=BSUM+PHI(I)*XSECA(I ,J)
CSUM=CSUM+PHI(I)*XSECB(I,J)
B=V(I)*V(I)*0.0253

319 PRINT 95,IB,SIGACT(I) *XSECA(IJ),XSECB(IJ)
BSUM=BSUM/ASUM
CSUM=CSUM/ASUM
PRINT 98,PQ,8SUMCSUM

98 FORMAT(/12X,13HMAX. AVER = ,3F15.4)
AX-BSUM/PQ
BX=CSUM/PQ
PRINT 99,AXBX

99 FORMAT(/12X,21HFLUX DPRESS FACTOR = ,7X,2F15.4)
330 CONTINUE

GO TO 1
199 CONTINUE

CALL EXIT
END



* LISTB
* LABEL

CCYLDIP
SUBROUTINE DIP(XAXSFISOFP1)
DIMENSION C(4,16)
IF (N) 20.10,20

10 N=1
Cf1,1)-1.9239
C(1,2)=4.1524
C(1,3)-.75139
C(1,4)=-1.5
C(1,5)=2.0198
C(16)=-2.0469
C(1.7)=.0087506
C(1.8)=.018832
C(1,9)=1.1056
C(1,10)=-1.9788
C(1,11)=.95011
C(1912)=-.082311
C(1,13)=2.6419
C(1,14)=-7.7384
C(1915)=6.3019
C(1,16)=-1.1875
C(4,1)=.64427
C(4,2)=-5.4605
CC4,3 1=15. 119
C( 4,4 -13.063
C(4,5)--20.54
C(4,6)=211.4
C(4,7)=-602*67
CC 4,8)1=521. 33
C(499123. 771
C(4,10)--195.49
C(4,11)=528.16
CC4,12)=-450.34
C(4,13)=-5.5277
C(4,14)=44.63
C(4,15)=-122.24
C(4,16)=105.97
C2,1)=.11009
C(2,2)=-1.69
C(2,3)=4.1539
C(2,4)=-2.6879
C(2,5)=2.0945
C(2,6)=-4.4897
C(2,7)=8.7384
C(2,8)=-8.3451
C(2.9)=1.165
CC(2910)= 3.8918
C(2 11)=-21 129
C(2,12)=20.942
C(2,13)=1.2353
C(2,14)=-8.0142
C(2,15)=18.164
C(2,16)=-14.435
C(3,1)=-.14535
C(3,2)=.41075
C(393)=-.32558

SUBROUTINE CYLDIP

C(3,4)=.058606
C(3,5)=1.3831
C(3,6=.25993
C(3,7)=-2.8592
C(3,8)=1.2193
C(3,9)=1.2044
C(3,10)=-1.0316
C(3,11)=-1.4214
C(3,12)=1.2406
C(3,13)=-.056999
C(3,14)=-.39361
C(3,15)=.70542
C(3,16) =-.24843

20 X=XA+XS
IF(X)21,21,22

21 FP1=1.0
GO TO 200

22 CONTINUE
SR=XS/X
IF (X-.1l) 30,30,40

30 TEMP-1.-1.3333333*X+0.5*X*X*(LOGF(2./X)+.672784)
PO=2.*X*TEMP
Pl=1.-TEMP
GO TO 60

40 IF (X-5.) 70,70,50
50 PO=1.-.1875/(X*X)

Pl=1.-.437*X**(-.408)
60 BETA=(1.-SR)*PO/(1.-SR*P1)

GO TO 130
70 IF (X-2.) 90,90,80
80 IF (SR-0.6) 85,85,50
85 M=4

GO TO 120
90 IF (X-.5) 11091109100
100 IF (SR-0.6) 105,105,107
105 M=2

GO TO 120
107 M=3

GO TO 120
110 M=1
120 X2=X*X

X3=X2*X
X4=X3*X
SR2=SR*SR
SR3=SR2*SR
BETA=(C(M,1)+C(M,2)*SR+C(M,3)*SR2+C(M,4)*SR3)*X4+
1(C(M,5)+C(M,6)*SR+C(M,7)*SR2+C(M,8)*SR3)*X+
2(C(M,9)+C(M,1O)*SR+C(M,11)*SR2+C(M,12)*SR3)*X2+
3(C(M,13)+C(M,14)*SR+C(M,15)*SR2+C(M,16)*SR3)*X3
BETA=1.-1./(1.+BETA)

130 IF (BETA) 140,140,150
140 BETA=1.E-10
150 FP1=XA*(2.-BETA)/BETA

FP1=1.0/FP1
200 CONTINUE

FISO=1.0
RETURN
END



SUBROUTINE DPRESS

DPRESS CALLS El

TEST RUN FOR QUICK

* LIST8
* LABEL
CDPRESS OCTOBER 24,1962

SUBROUTINE DIP(XAXSFDPOFP1)
DIMENSION ENX(10)
NX=4
XT=XA+XS
IF(XT)10,10,20

10 FDPO=1.0
FP1*1.0
GO TO 1000

20 CONTINUE
CALL EI(XT#NXENX)
PE=(1.0-2.O*ENX(3))/(2.O*XT)
PC-1.0-PE
G=1.0+(XA/XT)*(PC/(1.0-PC)-XT)
FDP0-1.0/G
PBAR=PE/(I1.O-(XS/XT)*(1.0-PE))

C PBAR-PROB. THAT A NEUTRON WILL
FPl=PBAR

1000 CONTINUE
RETURN
END

ESCAPE FOR A FLAT - ISOTROPIC BIRTH

* DATA
SELF-SHIELDING FOR METALLIC GOLD SLABS PBAR CASE

30
.10000E+00.20000E+00.30000E+00.40000E+00.50000E+00.60000E+00.70000E+o
.BOOOE+00.90000E+001.OOOE+001.1000E+001.2000E+001.3000E+001.4000E+00
1.5000E+001.6050E+001.7200E+001.8450E+001.9800E+002.1225E+002.2775E+00
2.4550E+002.6600E+002.8975E+003.1725E+003.4900E+003.8550E+004.2725E+00
4.7475E+005.2850E+00
.10000E+00.1000E+00.10000E+00.10000E+00.10000E+00.10000E+00.10000E+00
.10000E+00.10006E+00.10000E+00.10000E+00.10000E+00.10000E+00.10000E+00
.10000E+00.11000E+00.12000E+00.13000E+00.14000E+00.14500E+00.16500E+00
.19000E+00.22000E+00.25500E+00.29500E+00.34000E+00.39000E+00.44500E+00
.50500E+00.57D00E+00

D 0 0
1.0
98.8
1.3

2 0.059
0.0194 0.0259

END DATA FOR GOLD CASE

SUBROUTINE El

EI

LISTS
LABEL

SUBROUTINE -EI-
1 SUBROUTINE EI(XNXENX)

DIMENSIONENX(10)
5 IF(NX)6,6,1O
6 NX.1
10 IF(X)30,30,50
30 ENX(1)1.OE+30

IF(NX-1)150,150.35
35 D0401=2.NX

A-FLOATF(I)
40 ENX(I)-1./(A-1.)

GOT0150
50 IF(X-75.I80,60,60
60 D0701-1.10
70 ENX(I)=0.

GOT0150
80 A=EXPF(-X)

IF(X-1.0)90,120,120
90 B-LOGF(X)

IF(X-0.001)100,100,110
100 ENX(1)=X-B-0.577215665

GOT0130
110 ENX(1)=-.577215665-B+X*(1.+X*(-.25+X*(.055555555+X*(-.010416666+X*

1(.16666666E-2+X*(-.23148147E-3+X*(.28344669E-4+X*(-.31001981E-5+X*
2.30619240E-6))))))))
GOT0130

120 B='.2372905+X*(4.53079235+X*(5.1266902+X))
C.2.4766331+X*(8.6660126+X*(6.1265272+X))
ENX(1)= (A/X)*B)/C

130 IF(NX-1)150,150,135
135 D01401=2,NX

B=FLOATF(I)-i.
140 ENX(I)-(A-X*ENX(I-1))/B
150 CONTINUE

RETURN
END

C
C
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APPENDIX D

THE ACTIVE CODE

The ACTIVE code was designed to process the automatic counter

data for activity decaying with a single half-life. The code consists of

three subroutines so designed that the code can handle constant of time

counting or constant total number of counts by the interchange of one sub-

routine. At present, only the latter has been coded.

Since the measurements allow the repeated use of foils, the pro-

gram was designed to read in the entire foil "library" and select the

weights (or calibrations) of the foils used in the experiment, eliminating

the need for punching the weight information more than once. The code

punches the library at the end of each run for future use.

The running deck consists of four subprograms, ACTIVE, PRNTO,

CALC and MICRO. ACTIVE is the main program, performing the handl-

ing of the foil weight library. PRNTO prints out the foil weight library,

when desired. Subroutine CALC applies the counting corrections to the

data from the automatic sample changer; it also normalizes the data by

dividing the count rate by the foil weight or calibration. MICRO, if

desired, will apply an over-all time correction to all the foils, and a J0
and axial correction to individual foils. The output of MICRO has been

found particularly useful for the data reduction for the intracellular flux

traverses.

The output activities from CALC are corrected for decay from time

zero, decay during counting, background, deadtime and foil weight. When

several passes through the automatic sample changer are made, the aver-

age count rate is used. The average is calculated by weighting the indi-

vidual results with the number of preset counts for the pass. An estimate

of the standard deviation, -, of this average is made by taking the square

root of the sums of the squares of the deviations of each pass from the

average weighted by the number of counts in the pass and divided by the

number of passes:
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Average CR = cgCRP, (D.1)

and

.2 = ~ (CR -Average CR) 2  (D.2)

where

C. counts in the ith pass (D.3)
i total counts

The average a/CR for all foils should be approximately equal to the

reciprocal of the square root of the total preset counts. This was found

to be the case in nearly all the runs in which the foil activities were at

least ten times the background rate. Table D.1 gives a comparison between

the average deviation calculated from the deviations of individual passes

from the 4'1/CTOTAL*
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TABLE D.1

Deviations for the Counting of Gold Foils

(c) 1

Run Uncertainty CNo. T(a) (b) No. of No. of TOTALTechnique Type Foils Passes (%) (%)

A4 I B 37 6 0.24 0.28
A4 I C 29 2 1.5 1.0
A5 D C 29 3 0.58 0.40
A5 D B 37 4 0.42 0.17
A5 I B 37 3 0.17 0.20
A5 I C 29 3 0.29 0.40
A6 D C 29 5 0.54 0.44
A6 D B 37 5 0.34 0.22
A6 I B 37 3 0.35 0.40
A6 I C 29 6 0.54 0.57
A7 D C 29 5 0.31 0.31
A7 D B 37 6 0.21 0.20
A7 I B 37 4 0.15 0.17
A7 I C 29 3 0.34 0.40
A8 D C 29 4 1.48 1.58
A8 D B 37 3 1.01 1.29
A9 D C 29 6 0.35 0.40
A9 D B 37 6 0.17 0.14
A9 I B 37 6 0.15 0.14
A9 I C 29 6 0.48 0.40
A10 D B 29 4 0.66 0.50
A10 D B 37 5 0.34 0.15
All D C 24 6 0.37 0.40
All D B 35 4 0.38 0.25
A12 D C 23 5 0.36 0.44
A12 D B 35 5 0.64 0.31
A13 D C 26 5 0.43 0.44
A13 D B 35 4 0.21 0.25
A14 D C 26 4 0.41 0.50
A14 D B 35 4 0.56 0.50
A15 D C 26 5 0.43 0.44
A15 D B 35 3 0.27 0.40

(a) "I" indicates the integral counting method; "D" indicates the
differential method.

(b) "B" indicates bare foils; "C" indicates cadmium-covered foils.
(c) a- is based on Eq. (D.2).
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Input Instructions for ACTIVE

Card Type

1

Format

(215)

(15,E12.5,55H)

(6E 12.5)

(72H_)

(215)

(4(I5,E10.5))

(2I5,6E10.5)

List

NORUNS; number of runs with this nuclide.

If NORUNS is equal to zero, the program

calls EXIT. Repeat card Types 4 to 11,

NORUNS times.

NOHITS; if NOHITS is equal to zero, MICRO

will not be called.

LMAX; total number of foils in the foil

weight library, if any.

DKAY; decay constant for this nuclide.

Skip this card if LMAX was equal to zero.

WT(L), L=1, LMAX; the weight of the L

foil (use three decimal places maximum

for printout purposes).

A zero in column one for printer control and

any legal characters up to column 72. Columns

2-72 will be recorded with the output.

LNEW; total number of new foils added to

library or replaced in the foil library. The

maximum number of foils may not exceed

1000 without changing the program.

NPRIN; if zero PRNTO will not be called.

If LNEW=0, skip to card Type 7.

L,WT(L); L is the number of the foil added

or replaced and WT(L) is its weight. L may

exceed LMAX, but must be less than 1000 and

greater than zero. Repeat LNEW times.

Skip this card if LNEW=0.

NMAX; number of foils per pass (c 1000).

NPASS; total number of passes (-6).

7
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Card Type

8

9

10

Format

(6E10.5)

(6E10.5)

(1415)

List

ROT; rotation time of the sample changer;

that is, the time interval between the time

the counter stops counting and time it begins

with the next foil.

BG, BG1; the background is allowed to vary

linearly. The rate is BG + BG1 * TIME.

SEPT, SLOPE; the deadtime, r, is assumed

to vary linearly with the count rate: T =

SEPT + SLOPE * CTRATE.

COUNTS(J), J=1, NPASS; total number of counts

for the Jthpass.

DELAY(J), J=1, NPASS-1; time delay

between the last foil and the recycled first

foil. If DELAY(J) is zero, then it is assumed

to be equal to ROT * (NMAX + 1).

ND(I), I=1, NMAX; the number corresponding

to the Ith foil in the pass. If the 1 2 th foil in

the foil library is counted in the 3 0 th position,
ND(30) would be 12.

CT(I,J) I=1, NMAX;

foil of the Jth pass.

start a new card for

counting time for the Ith

The first foil, I=1, must

each pass. Repeat J times.

IF NOHITS (CARD TYPE 1) WAS ZERO, SKIP CARDS 12 AND 13.

(I5,E10.5)

(2E10.5,10I5)

NCARDS; number of cards to be read by

micro after this one.

TMCFR; time correction factor.

HTFR; height correction.

JOCFR; J -correction.

NW; number of foils to which HTFR, JOCFR

and TMCFR are to be applied.

WD(I), I=1, NW; counting position of the foils

to which corrections are to be applied. A

11 (7E10.5)

12

13
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zero skips a line in the output.

GO TO CARD TYPE 4 NORUNS times.

GO TO CARD TYPE 1 for different foil library.



* LIST8
* LABEL
CACTIVE PROGRAM BY RICHARD SIMMS MAY 15,1963

DIMENSION WT(1
0
00),ND(100),CT(100,6),SATCT(100,6),RELTM(1

0 0,6 )DIMENSION DELAY(6),COUNTS(6),DIF(6),AVCT(10
0 ),MD(20)DIMENSION HOLR(11),ADENT(12)

COMMON WTNDCTSATCTRELTMDELAYCOUNTSDIFAVCTMDHOLRADENT
COMMON DKAYLMAX,NMAXNPASS

1 READ 10,NORUNSNOHITS
C NORUNS=NO. OF RUNS OF A SINGLE ISOTOPE
C A BLANK CARD TERMINATES RUN

IF(NORUNS)100,100,102
100 CALL EXIT
102 CONTINUE

DO2J=1,1000
2 WT(J)=0.0

C PROGRAM NOW READS IN FOIL LIBRARY
READ 12,LMAXDKAY,(HOLR(I),I=1,11)

C DKAY-DECAY CONSTANT, LMAX=NUMBER OF FOILS IN THE FOIL LIBRARY
IF(LMAX)110,110,104

104 IF(LMAX-1000)108,108,106
106 PRINT 14

CALL EXIT
108 CONTINUE

READ 169(WT(L),L=1,LMAX)
110 CONTINUE

MAX=LMAX
201 READ 18,(ADENT(I),I=1,12)

PRINT 20,(ADENT(I)91=1,12)
C NEW FOILS ADDED OR REPLACED

READ 10,LNEWNPRIN
C IF NPRIN IS ZERO, THE PRINT OUT OF THE LIBRARY WILL BE OMITTED

NAM=L NEW
IF(LMAX+LNEW)120,120,121

120 PRINT 22
CALL EXIT

121 IF(LNEW)150,150,122
122 IF(LNEW-1000)124,124,123
123 PRINT 24

CALL EXIT
124 CONTINUE

PRINT 26
140 READ 28,MAA.MB,B,MCCMDD

PRINT 30,MAAMBBMC,C.MDD
IF(MD)125,125,130

125 IF(MC)126,126,132
126 IF(MB)136,136,134
130 WT(MD)=D

MAIN PROGRAM ACTIVE

IF(MD-MAX)132,132,131
131 MAX=MD
132 WT(MC)=C

IF(MC-MAX)134,134,133
133 MAX=MC
134 WT(MB)=B

IF(MB-MAX)136,136,135
135 MAX=MB
136 WT(MA)=A

IF(MA-MAX)138,138,137
137 MAX=MA
138 CONTINUE

NAM=NAM-4
IF(NAM)142,142,140

142 CONTINUE
C MAX=MAX NO. OF FOILS TO DATE
150 CONTINUE

IF(MAX-1000)4,4,3
3 PRINT 32

CALL EXIT
4 CONTINUE

LMAX=MAX
IF(NPRIN)210,210,206

206 CALL PRNTO(WTMAX)
C PRNTO PRINTS OUT LIBRARY
210 CONTINUE

CALL CALC
IF(NOHITS.)220,220,215

215 CALL MICRO
220 CONTINUE

NORUNS=NORUNS-1

IF(NORUNS) 200,200,201
200 PUNCH 12,MAX9DKAY,(HOLR(I),I=1,11)

PUNCH 16,(WT(I),I=1,MAX)
GO TO 1

10 FORMAT(615)
12 FORMAT(15,E12.5,11A5)

14 FORMAT(27H1LIBRARY EXCEEDS 1000 FOILS)
16 FORMAT(6E12.5)
18 FORMAT(1X,11A6,1A5)
20 FORMAT(lH1,1OX,21HANALYSIS OF FOIL DATA,1OX,11A6,1A5)

22 FORMAT(15HONO FOILS GIVEN)
24 FORMAT(24HOFOILS ADDED EXCEED 1000)
26 FORMAT(11X,20HFOIL WEIGHTS CHANGED/11X,4(4X,1HI,12X,2HWT))
28 FORMAT(4(15,1PE14.5))
30 FORMAT(llX,4(15,1PE14.5))
32 FORMAT(24HOTOTAL FOILS EXCEED 1000)

END

IRA" EWAN*



SUBROUTINE CALC

* LIST8
LABEL

CCALC PROGRAM BY RICHARD SIMMS MAY 18,1963 FOR PRESET COUNTS
SUBROUTINE CALC
DIMENSION WT(1000).ND(100),CT(10096)SATCT(10096)RELTM(100.6)
DIMENSION DELAY(6),COUNTS(6).DIF(6).AVCT(100),MD(20V
DIMENSION HOLR(11)*ADENT(121
COMMON WTNDCT.SATCTRELTM.DELAYCOUNTS.DIF.AVCT.MD.HOLRADENT
COMMON DKAY.LMAXvNMAX.NPASS
READ 10. NMAX.NPASS.ROT.BGBG1SEPTSLOPE
READ 629(COUNTS(I),1=19NPASS)
READ 62,(DELAY(I),I=1NPASS)
READ 12,(ND(1)I1=19NMAX)
DO 100 J=1.NPASS

100 READ 14,(CT(I,J),I=1,NMAX)
C ND IS THE NUMBER OF THE FOIL COUNTED IN THE I-TH POSITION
C WT- FOIL WEIGHT
C CT=COUNTING TIME
C ROT = ROTATION TIME OF AUTOMATIC SAMPLE CHANGER
C RELTM=RELATIVE TIME
C SATCT = COUNTS PER UNIT TIME PER UNIT WEIGHT AT TIME ZERO
C BACKGROUND=BG+BG1*TIME CPM
C DEADTIME= SEPT+SLOPE*COUNTRATE
C DELAY= DELAY TIME BETWEEN CYCLES
C COUNTS= TOTAL NUMBER OF COUNTS FOR THE J-TH PASS

PRINT 20q(ADENT(I),I=1,12)
PRINT 19*(JsJ=16)
DO 21 I=1,NMAX

21 PRINT 179I9ND(I)#(CT(I.J)9J=19NPASS)
RS=0.0
J=1

1000 DO 110 I=19NMAX
'RELTM(IJ)=RS
A=COUNTS(J)/CT(1I.)J
DTIME=SEPT+SLOPE*A
BGR=BG+BG1*RELTM(ItJI)
REALK=COUNTS(J)/(1.0-DTIME*A)-BGR*CT(1,J)
IF(DKAY)502,501,502

501 A=1.0
B=CT(I.J)
CA-1.0
GO TO 503

502 CONTINUE
A=EXPF(DKAY*RELTM(IPJ))
B=1.0-EXPF(-DKAY*CT(IJ))
CA=DKAY

503 CONTINUE
M=ND( I)
SATCT(I.J)= CA*REALK*A/(B*WT(M))

110 RS=RELTM(IIJ)+CT(IJ)+ROT
IF(J-NPASS)112.114114

112 RS=RS+FLOATF(NMAX)*ROT
IF(DELAY(J))204.204.200

200 CONTINUE
RS=RELTM(NMAX,J)+CT(NMAXJ)+DELAY(JI

204 CONTINUE
J=J+1
GO TO 1000

114 CONTINUE
IF(NPASS-3)300,300.301

300 M-NPASS
GOT0302

301 M-3
302 CONTINUE

PRINT 20q(ADENT(I).Im112)
PRINT 60,BG#BG1SEPT.SLOPE.DKAY
PRINT 4029(COUNTS(J).J-1M)
PRINT 40
DO 120 I=1NMAX
L=ND( I)

120 PRINT42.I.ND(I).WT(L),(RELTMtlJ),SATCT(IJ).J-1lM)
IF(NPASS-3)306*306.304

304 CONTINUE
PRINT 20,(ADENT(I),I=1912)
PRINT 60.BGBG1SEPTPSLOPE.DKAY
PRINT 402,(COUNTS(J).J=4,NPASS)
PRINT 40
D0 122 I=1NMAX
L=ND( I)

122 PRINT42,I.ND(I),WT(L),(RELTM(IJ),SATCT(I.J).J24NPASS)
306 CONTINUE

DEVE=0.0
B=0.0
DO 307 J=1NPASS
B=B+COUNTS(J)

307 CONTINUE
PRINT 20.(ADENT(I),1=1,12)
PRINT 80q(J.J=1.6)
D0921=1.NMAX
A=0.0
DO90J=1.NPASS

90 A=A+SATCT(IJ)*COUNTS(J)
A=A/B
AVCT(I)=A
DO 91 J=1NPASS

91 DIF(J)=SATCT(I9J)/A-1.0
SUMSQ=0.0
DO 411 K=1,NPASS

411 SUMSQ=SUMSQ+DIF(K)*DIF(K)*COUNTS(K)
SUMSQ=SUMSQ/(B*FLOATF(NPASS))
SUMSQ=SQRTF(SUMSQ)
DEVE=DEVE+SUMSO

92 PRINT 81,I.ND(I).ASUMSQ.(DIF(J),J=1,NPASS)
DEVE-100.0*DEVE/FLOATF(NMAX)
PTDEV=100.0/SQRTF(B)
PRINT 85,DEVE9PTDEV

10 FORMAT(215,6E10.5)
12 FORMAT(1415)
14 FORMAT(7E10.5)
17 FORMAT(215,6F14.3)
19 FORMAT(10HO I ND(I),6(7X,5HCT(IlllH)))
20 FORMAT(lH1,1OX.21HANALYSIS OF FOIL DATA,1OX,11A6lA5)
40 FORMAT(5HO I.5H L.9X.5HWT(L),3(10X,4HTIME8X6HCTRATE))
42 FORMAT(215.OPF14.5,3(OPF14.2,1PE14.5))
60 FORMAT(18H0BACKGROUND RATE = 1PE12.5,3H + 1PE12.5, 5H*TIME/

111H DEAD TIME=lPE12.5,3H + 1PE12.5,7H*CTRATE/
217H DECAY CONSTANT = 1PE12.5)

62 FORMAT(7E1O.5)
80 FORMAT(1OX.10H I NO..7X914HAVERAGE CTRATE,5Xt9HSUMSQ**.5,5X96(

13X94HDIF(I291H)))
81 FORMAT(10X.215,5X.lPE14.5.7X.0PF9.5.5XOP6F1o.5)

402 FORMAT(24X93(5Xs9HCOUNTS = 1PE14.5))
85 FORMAT(IHO.26X#38HTHE GRAND AVERAGE OF THE DEVIATIONS IS F9.5,

19H PERCENT./27X*46HTHE INVERSE OF THE SORT OF THE TOTAL COUNTS IS
2F9.599H PERCENT.)
RETURN
END



SUBROUTINE PRNTO

* LISTS
* LABEL
CPRNTO
C PROGRAM PRINTS OUT AN ARRAY

SUBROUTINE PRNTO(FW.NMAX)
DIMENSIONFW(1000),WORD(4),IWD(4)
J=1

200 IF(NMAX-J*200)204,204.202
202 J-J+1

GO TO 200
204 NPAGE=J

MX=NMAX-200*(NPAGE-1)
J=1

206 IF(MX-J*50)210,210,208
208 J-J+1

GO TO 206
210 NCOLM=J

NW=MX-50*(NCOLM-1)
C NPAGE=NUMBER OF PAGES
C NCOLM=NUMBER OF COLUMNS ON LAST PAGE
C NW-NUMBER OF WORDS IN THE LAST COLUMN

MX=O
212 IF(NPAGE-1)230,230.214
214 NPAGE=NPAGE-1

PRINT 614
PRINT 616
DO 218 M-1950
DO 216 J=194
JX=50*(J-1)+MX+M
WORD(J)=FW(JX)

216 IWD(J)=JX
PRINT 618*(IWD(J),WORD(J),J=1,4)

218 CONTINUE
MX-MX+200
GO TO 212

230 PRINT 614
PRINT 616
DO 240 M=1,NW
NC=NCOLM
DO 238 J=19NC
JXW50*(J-1)+MX+M
WORD(J)=FW(JX)

238 IWD(J)=JX
PRINT 618v(IWD(J),WORD(J).J=1NC)

240 CONTINUE
NCaNCOLM-1
IF(NC)321.321.319

319 CONTINUE
NW=NW+1
IF(NW-50)10.10.20

10 CONTINUE
DO 242 M=NW,50
DO 241 J=1,NC
JX=50*(J-1)+MX+M
WORD(J)=FW(JX)

241 IWD(J)=JX
PRINT 618,(IWD(J),WORD(J),J=1,NC)

242 CONTINUE
321 CONTINUE
20 CONTINUE

618 FORMAT(20X,4(14,F10.391OX))
614 FORMAT(IH1,30X,12HFOIL WEIGHTS)
616 FORMAT(IHO,19X,4(4H NO.,4X96HWEIGHTo1OX) I

RETURN
END

* LISTS
* LABEL
CMICRO PROGRAM BY R. SIMMS 5/18/63

SUBROUTINE MICRO
DIMENSION WT(1000),ND(100),CT(100,6),SATCT(1006)RELTM(1006)
DIMENSION DELAY(6),COUNTS(6),DIF(6),AVCT(100),MD(20)
DIMENSION HOLRI11),ADENT(12)
COMMON WTND.CTSATCTRELTMoDELAYCOUNTS.DIFAVCTMDHOLRADENT
COMMON DKAY9LMAXNMAXNPASS
READ 10.NCARDSoTMCFR

C NCARDS IS THE NUMBER OF CARDS OF CORRECTIONS TO BE READ IN
C TMCFR IS THE TIME CORRECTION FACTOR

PRINT 12,(ADENT(1),I=1,12)
PRINT 14,TMCFR
PRINT 16
DO 200 1=1NCARDS
READ 18,HTFR9BJOFRoNW,(MD(J)tJ=1,NW)

C HTFR IS THE HEIGHT CORRECTION FACTOR
C BJOFR IS THE J-ZERO CORRECTION FACTOR
C NW IS THE NUMBER OF FOILS HAVING THIS SET OF CORRECTIONS
C MD(J) IS.THE COUNTING POSITION TO WHICH THE CORRECTIONS APPLY
C MD(J) IS THE COUNTING POSITION TO WHICH THE CORRECTIONS APPLY
C A ZERO COUNTING POSITION SKIPS A LINE

A=HTFR*BJOFR*TMCFR
DO 140 J=1,NW
L=MD(J)
IF(L)1059105,110

105 PRINT 20
GO TO 140

110 CONTINUE
CTRATE = A*AVCT(L)
PRINT 22,ND(LIAVCT(L),HTFRBJOFRCTRATE

140 CONTINUE
200 CONTINUE

RETURN
10 FORMAT(15,E1O.5)
12 FORMAT(lHl1,0X921HANALYSIS OF FOIL DATA1OXllA69lA5)
14 FORMAT(lH0,10X,30HTHE TIME CORRECTION FACTOR IS F10.5)
16 FORMAT(lH010X,8HFOIL NO.95X18HAVERAGE COUNT RATE#5X,9HHT FACTOR.

15X910HJ-0 FACTOR,5X,13HCORR. CT RATE)
20 FORMAT(lH )
18 FORMAT(2E1O.5,1015)
22 FORMAT(14Xl5,9XlPE12.5,7X*OPF9.5,5X*OPF10.s56X1lPE12.S)

END

SUBROUTINE MICRO



TEST RUN FOR THE ACTIVE CODE

10 MIL GOLD FOIL LIBRARY
01 0.94060E 01 0.94060E 01
01 0.94190E 01 0.94200E 01
01 0.94250E 01 0.94250E 01
01 0.94320E 01 0.94330E 01
01 0.94360E 01 0.94370E 01
01 0.94450E 01 0.94450E 01
01 0.94500E 01 0.94500E 01
01 0.94530E 01 0.94540E 01
01 0.94590E 01 0.94590E 01
01 0.94600E 01 0.94600E 01
CD COVD 10 MIL GOLD 1.25-IN
1
5 0.25

10000.0
40.0
10000.0

40 41 42 43 44 45 46
5 6 7 8 9 10 11

9 7.36 7.38 7.13
4. 6.71 6.83 5.95
0 6.00 6.02 6.03

6.02
7.92
7.46
6.26
6.28
8.29
7.56
6*43
6*47
8.44
7.83
6.62
6.66
8.70
8.17
6.81
6*72

8
0.485
0.485
0.453
0.453
0.453
0.453
0.453
0.453

0

6.03
7.60
6.92
6.16
6.15
7.72
7.06
6.32
6.53
8.08
7.42
6.60
6.68
8.31
7.72
6.76
6.85

0.8542
1.0
1.0001
1.0002
1.0010
1.0024
1.0043
1.0066
1.0060

7.46
6.97
6.28

7.72
7.28
6.48

8.04
7.53
6.57

8.32
7.62
6.82

9
4
4
4
4
4
2
2

1
0
11
12
13
14
18
22

7.34
6.41
6.19

7.51
6.45
6.57

7.76
6.66
6.64

8.00
6.86
6.85

2
9
0
15
16
17
0

23

0.

0.*
0.

94080E 01 0.94130E 01 0.94150E 01
94200E 01 0.94220E 01 0.94230E 01
94280E 01 0.94280E 01 0.94280E 01
94350E 01 0.94350E 01 0.94350E 01
94410E 01 0.94430E 01 0.94440E 01
94470E 01 0.94490E 01 0.94490E 01
94510E 01 0.94510E 01 0.94510E 01
94540E 01 0.94550E 01 0.94550E 01
94600E 01 0.94600E 01 0.94600E 01
94600E 01 0.94650E 01 0.94650E 01
ITCH 3-FT TANK 5/7/63

10000.0 10000.0 10000.0

47 48
13 14

7.30
6.03
6.05

7.50
6.25
6.22

7.75
6.33
6.38

8.07
6.54
6.68

8.26
6.76
6.85

3
10
19
20
21
0

4
0
0
0
0
0

49 1 2 3 4

7*32
6.01
6.04

7.76
6.10
6.23

7.87
6.34
6.35

8.02
6.65
6.63

8.55
6.94
6.87

7.61
6.10
6.01

7.87
6.17
6.23

8.33
6.47
6.39

8.47
6.79
6.65

8.76
6.94
6.88

0 5 6 7 8

* DATA
1 1

60 0.17830E-03
0.94000E
0.94160E
0.94240E
0.94300E
0.94360E
0.94450E
0.94500E
0.94530E
0.94560E
0.94600E

ORUN A12
0

23
10000.0
0.0

7.6
7.2
6.0
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APPENDIX E

GRAPHITE-MODERATED LATTICES

From the results of Chapter III, it appeared that the details of the

energy exhange kernel were not important in the intracellular flux calcu-

lations. The Nelkin kernel gave very nearly the same result as the

Brown-St. John kernel for the heavy water-moderated lattices studied.

The availability of Parks' kernel for graphite prompted a study of some

graphite-moderated lattices for which experimental data were already

available. The calculations were performed by Kyong (K8) who used the

THERMOS code.

Parks' kernel for graphite takes into account the effects of the

crystalline binding in graphite. The details of this scattering model are

discussed by Parks (P3, P4). The kernel was generated for use with

THERMOS by Suich (S4) who used the SUMMIT code (B3). The diagonal

elements of the energy exchange kernel have been adjusted so that the

integrated kernel will give the observed scattering cross section given

in BNL-325 (H15). The diagonal adjustment does not destroy the detailed

balance requirement implicit in the energy exchange kernel, since the off-

diagonal elements of the kernel are unaffected.

Comparisons between the results obtained with Parks' kernel and

with the free gas kernel are shown in Figs. E.1, E.2 and E.3; the free gas

models used correspond to mass-12 and mass-27. The results indicate

that Parks' kernel cannot be duplicated by simply increasing the mass in

the free gas model. The quantity, P(Ei -- E f), is the probability per unit

energy interval of transfer from initial energy, E., to a final energy, E .

When the target nuclei are stationary, P(E -->E ) is a constant between E.

and aE . The target nuclei should appear stationary at high neutron energy.

Figure E.3 shows that even at an initial neutron energy of 14.8 kTM, the

motion of the moderator contributes to the scattering process. In the low

energy range (0.04 kT M)shown in Fig. E.1, the lattice vibrations cause the

"steps" on the curve. Neutrons of energy 0.04 kTM are capable of being

upscattered to energies corresponding to the lattice vibrational energies.
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A set of THERMOS calculations was made for the lattice cell corre-

sponding to the original BNL Brookhaven reactor lattice cell. The BNL

cell consisted of a 1.1-inch diameter, natural uranium rod clad in an
2.

aluminum jacket, in an air channel 36 cm in area. Six aluminum fins

were attached to each rod. The rod sat, horizontally, on the fins, slightly

off-center. The calculation was made by assuming that the rod could be

placed in the center of the cell; the free gas kernel (mass-12) and Parks'

kernel were used. The results of the calculations and the intracellular

Dy164 activation measurements of Price for the BNL cell (P10) are shown

in Fig. E.4. Parks' kernel gives results that are in better agreement with

experiment and which are significantly different from those calculated with

the mass-12 kernel. However, neither of the calculations predicted the

activations in the air gap. The Dy 1 6 4 foils were placed on the aluminum

fin, which might have had an effect on the shape of the activation curve.

It seems more likely that the calculation in the air channel is somewhat

in error.

Figures E.5, E.6 and E.7 show the calculated neutron spectra for

Parks' and the mass-12 kernels at the cell center, air-graphite interface

and the cell edte of the BNL lattice cell. The spectra are normalized to

one neutron absorbed in the cell. Again, a difference is evident between

the two models, with Parks' kernel predicting the harder spectra.

To investigate the effects of the air gap, a set of GLEEP experi-

ments (Li) was analyzed with THERMOS, and with the two kernels. The

lattices consisted of 1-inch diameter, natural rods on a 7-inch square

spacing and moderated by graphite. The lattice experiments were run as

exponential measurements in the thermal column of the GLEEP reactor.

The width of the air channel was varied by inserting graphite sleeves into

the air space. Experiments were made for air gaps having diameters of

1.5, 2.0, 2.75 and 3.75 inches. Both bare and cadmium-covered manganese

wires were irradiated. The results are shown in Figs. E.8 to E.11. The

wires were irradiated along the rod-to-rod traverse, which should give

activations slightly smaller than those calculated with THERMOS. However,

there still remains about a 5% discrepancy between the experiments and the

calculations with Parks' kernel at the edge of the cell. It is thought that

either the presence of the air channel or the assumed slowing-down source

distribution in the calculations (flat source) is the cause of the observed

discrepancies.
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APPENDIX F

DATA INPUT FOR COMPUTER CALCULATIONS

The physical properties of the lattices studied are listed in Table F.1.

The 30-group cross section set used by the THERMOS code and in the other

calculations are tabulated in BNL-5826 (H8). The velocity mesh used for

the 30-energy group calculations is given in Table F.2. The velocity mesh

is the "standard" mesh used by THERMOS.

TABLE F.1

Properties of the Lattices Studied

1.03% U235
Property Natural Uranium Uranium Metal

Metal Rod Lattices Rod Lattices

Fuel Rod Diameter (in.) 1.010 0.250

Aluminum Clad Thickness (in.) 0.028 0.028

Aluminum Tube O.D. (in.) 1.080 0.318

Heavy Water Purity (%) 99.75 99.75

N 2 5 (atoms/cm-barn) 0.0003454 0.0004975

N 2 8 (atoms/cm-barn) 0.04759 0.04734

ND (atoms/cm-barn) 0.06623 0.06623

NH (atoms/cm-barn) 0.0001507 0.0001507

N0 (atoms/cm-barn) 0.03319 0.03319
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TABLE F.2

Thirty Energy Group Mesh Spacing
Used in the Multigroup Calculations.

Group Velocity (a)

1
2
3
4
5
6
7
8
9

,10
11
12
13
i4
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.10000
0. 20000
0.30000
0.40000
0.50000
0.60000
0.70000
0.80000
0.90000
1.00000
1 . 1000'0
1.20000
1.30000
1 40000
1.50000
1.60500
1.72000
1.84500
1.98000
2.12250
2*27750
2.45500
2s66000
2.89750
3.17250
3.49000
3.85500
4.27250
4.74750
5*28500

Velocity Increments (a)

0.10000
0.10000
0.10000
0.10000
0.10000
0.10000
0.10000
0.10000
0.10000
0.10000
0 .:10000
0.10000
0z 1000
0.10000
0. 10000
0.11000
0.12000
0.13000
0.14000
0.14500
0.16500
0.19000
0.22000
0.25500
0.29500
0.34000
0.39000
0.44500
0.50500
0.57000

Energy
(ev)

0.00025
0.00101
0.00228
0.00405
0.00632
0.00911
0.01240
0 .01619
0.02049
0 .02530
'0 03061
0.03643
O64276
0404959
0.05692
0&06517
0.07485
0.08612
0.09919
0.11398
0.13123
0.15248
0.17901
0.21241
0.25464
0.30816
0.37598
0.46183
0.57023
0.70666

(a) In units of v (2200 m/sec).
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NOMENCLATURE

one -dimensional

two-dimensional

effective value

average value

A ff

Aepi
A.

1

Ath

a

B 2m
C

CR

CTOTAL

D

D
0.D

d

E

E f

E.

ERI

ERI'

F

F(X)

F(X,a)

f

f ss
g
Jo(x)

J1 (x)

Brown-St. John effective mass

epicadmium activation

a constant used in Eq. (3.2.1)

subcadmium activation

parameter defined in Eq. (3.5.3)

material buckling

a constant used in Eq. (3.5.3)

count rate

total number of counts

diffusion coefficient

diffusion coefficient of fuel

diffusion coefficient of moderator

distance

energy

final energy of scattered neutron

initial energy of neutron

effective resonance integral

ERI with the 1/v-contribution

disadvantage factor

probability defined by Eq. (3.3.9)

probability defined by Eq. (3.3.10)

thermal utilization

flux perturbation factor

a function defined by Eq. (A.8)

Bessel function of the zeroth order of the argument, x

Bessel function of the first order of the argument, x
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1D

2D
*



Kexp
kTM

L

T
M(E)

mod

N(E,r)

P n
P

0

P(E +*E f)

q
R, R
AR

r

RI

RI'

Rcd

R(r)

S
Sn
TM

t

t*

tr

V

Vmod

v

vr

a

p

I'a

Resonance parameter defined by Eq. (3.5.2)

moderator temperature

diffusion length

mean chord length

Maxwellian spectrum

moderator

neutron density at r and E

spherical harmonic approximation of order n

escape probability for a neutron originating from a flat,
isotropic source in a body, for a pure absorber

escape probability, scattering not necessarily zero

probability of transfer from E. to Ef
slowing-down density

radius

incremental radial distance

radial position

resonance integral

RI with the 1/v-contribution

cadmium ratio

reaction rate at r

surface area

Carlson's Sn-approximation

moderator temperature

foil thickness

effective foil thickness

abr. for transport

volume

moderator volume

velocity

relative velocity

radial buckling

p-ray
volume fraction

blackness

capture probability
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7
AR

e'C
rCi

x

tr

7a

xT(t,s,a,ACT)

a(t,s, a, A CT)

0-tr

c (E -+E f,)

Us(E -E f)

o-s (Eg~Ef)
1

or (vr)

r

T

$c

*'

axial buckling

y-ray

incremental radial distance

over-all disadvantage factor

number of fast neutrons per capture in uranium

angle

inverse diffusion length

a constant used in Eq. (3.2.1)

number of mean free paths

number of transport mean free paths

direction cosine

average logarithmic decrement

optical thickness

3.14159

macroscopic cross section (total, scattering, absorption

or activation)

microscopic cross section (total, scattering, absorption

or activation)

transport cross sections

2200 m/sec value of a-

differential scattering cross section

scattering kernel

first Legendre component of the differential scattering

cross section

scattering cross section for a relative velocity, vr
standard deviation

deadtime

flux

a critical angle

azimuthal angle

frequency



193

APPENDIX H

REFERENCES

Al Arcipiani, B., D. Ricabarra and G. H. Ricabarra, "A Note on the
Measurement of the U 2 3 8 Cadmium Ratio," Nuclear Sci. and
Eng., 14, 3, (1962).

A2 Alexander, J. H. and G. W. Hinman, "Anisotropic Scattering in
DSN," Trans. Am. Nuclear Soc., 5, 2, 408 (1962).

A3 Amaldi, E., "The Production and Slowing Down of Neutrons,"
Handbuch der Physik, 38, 2, Springer-Verlag, Berlin (1959).

A4 Amouyal, A., P. Benoist, and J. Horowitz, "A New Method for
the Determination of the Thermal Utilization Factor of a
Cell," J. Nuclear Energy, 6, 79 (1957).

B1 Bauman, N. P., "The Neutron Diffusion Coefficient in D 0 Between
20*C and 220*C," Trans. Am. Nuclear Soc., 5, 1, 42(1962).

B2 Bauman, N. P., "Resonance Integrals and Self-Shielding Factors
for Detector Foils," DP-817, January, 1963.

B3 Bell, J., "SUMMIT - An IBM 7090 Program for Computation of
Crystalline Scattering Kernels," GA-2492 (1962).

B4 Beyster, J. R., W. M. Lopez, R. E. Nather and J. L. Wood,
"Measurement of Low Energy Neutron Spectra," Trans. Am.
Nuclear Soc., 2, 2 (1959).

B5 Beyster, J. R., W. M. Lopez and R. E. Nather, "Integral Neutron
Thermalization," TID-11064 (1959).

B6 Beyster, J. R., J. L. Wood, R. B. Walton and W. M. Lopez,
"Measurements of Low Energy Spectra," Trans. Am.
Nuclear Soc., 3, 1 (1960).

B7 Beyster, J. R., J. L. Wood and H. C. Honeck, "Spatially Dependent
Neutron Spectra," Trans. Am. Nuclear Soc., 3, 2, (1960).

B8 Beyster, J. R., et al., "Measurements of Neutron Spectra in Water,
Polyethylene, and Zirconium Hydride," Nuclear Sci. and Eng.
9, 168 (1961).

B9 Bohl, H., and E. Gelbard, "SLOP - 1: A Thermal Multigroup
Program for the IBM 704," WAPD-TM-188 (1960).

B10 Bothe, W., "Zur Methodik der Neutronensonden," Zeits f. Physik,
120, 437 (1943).

B11 Brown, H. D., and D. S. St. John, "Neutron Energy Spectrum in
D 20," DP-33 (1954).



194

B12 Brown, P. S., I. Kaplan, A. E. Profio, and T. J. Thompson,
"Measurements of Spatial and Spectral Distributions of Thermal
Neutrons in Heavy Water Natural Uranium Lattices," Proceed-
ings of the Brookhaven Conference on Neutron Thermalization,
BNL-719 (1962).

B13 Brown, P. S., P. F. Palmedo, T. J. Thompson, A. E. Profio and
I. Kaplan, "Measurements of Microscopic and Macroscopic
Flux Distributions in Natural Uranium, Heavy Water Lattices,"
Trans. Am. Nuclear Soc., 5, 1 (1962).

B14 Brown, P. S., T. J. Thompson, I. Kaplan and A. E. Profio,
"Measurement of the Spatial and Energy Distribution of
Thermal Neutrons in Uranium, Heavy Water Lattices,"
NYO-10205 (1962).

B15 Buslik, A. J., "The Description of the Thermal Neutron Spatially
Dependent Spectrum by Means of Variational Principles,"
to be published in the Bettis Technical Review.

C1 Calame, G. P., F. D. Federighi, and P. A. Ombrellaro, "A Two-
Mode Variational Procedure for Calculating Thermal Diffusion
Theory Parameters," Nuclear Sci. and Eng., 10, 31 (1961).

C2 Calame, G. P., and F. D. Federighi, "A Variational Procedure for
Determining Spatially Dependent Thermal Spectra," Nuclear
Sci. and Eng., 10, 190 (1961).

C3 Carlson, B. G., "Solution of the Transport Equation by Sn
Approximations," LA-1891 (1955).

C4 Carlson, B., and G. Bell, "Solution of the Transport Equation by
the Sn Method," Proceedings of the Second United Nations
International Conference on the Peaceful Uses of Atomic
Energy, 15, 535 (1958).

C5 Case, K., F. de Hoffmann, and G. Placezek, "Introduction to the
Theory of Neutron Diffusion, Part I," U.S. Government
Printing Office, Washington, D.C. (1953).

C6 Chernick, J., "Results of Univac Survey of the Thermal Utilization
of BNL Experimental Lattices," BNL-1797 (1954).

C7 Childers, K., personal communication.

C8 Cohen, E. R., "Neutron Thermalization Theory," Proceedings of
the First United Nations International Conference on the
Peaceful Uses of Atomic Energy, 5, 405 (1956).

C9 Cohen, E. R., and R. Goldstein, "Theory of Resonance Absorption
of Neutrons," Nuclear Sci. and Eng., 13, 132 (1962).

C10 Crandall, J. L., "Status of the United States Effort in D 0 Reactor
Physics," DP-787 (1962). 2

C11 Crandall, J. L., "Efficacy of Experimental Physics Studies on
Heavy Water Lattices," DP-833 (1963).

D1 D'Ardenne, W., personal communication.



195

D2 Dalton, G. R., and R. K. Osborn, "Flux Perturbations by Thermal
Neutron Detectors," Nuclear Sci. and Eng., 9, 198 (1961).

D3 Dalton, G. R., "The Effects of Anisotropy on Neutron Detector Flux
Depression," Trans. Am. Nuclear Soc., 5, 1 (1962).

D4 Dawson, C., "T.E.T. - a Thermal Energy _Transport Code," coded
at the David Taylor Model Basin, unpublished.

D5 Doerner, R. C. and F. H. Helm, "Flux Perturbations by Detecting
Foils," ANL memorandum (1961).

El Egelstaff, P., S. Cocking, R. Royston and I. Thorson, "The Thermal
Neutron Scattering Law for Light and Heavy Water," IAEA
Vienna Conference on Inelastic Scattering, Paper IS/P/ 10 (1960).

E2 Egelstaff, P., et al., "On the Evaluation of the Thermal Neutron
Scattering Law," Nuclear Sci. and Eng., 12.

F1 Francis, N. C., J. C. Stewart, L. S. Bohl, and T. J. Krieger,
"Variational Solutions to the Transport Equation," in Progress
in Nuclear Energy, Series I, Vol. 3, The Stonebridge Press,
Bristol, England (1959).

F2 Fukai, Y., "Comparison of Flux Ratio Calculations in Lattices by
Integral Transport Theory," Nuclear Sci. and Eng., 13,
345 (1962).

G1 Glasstone, S. and M. Edlund, The Elements of Nuclear Reactor
Theory, D. Van Nostrand Company, Inc., Princeton, New Jersey,
(1952)Y

G2 Goldman, D., and F. Federighi, "A Comparison of Calculated and
Experimental Thermal Energy Exchange Cross Sections,"
Trans. Am. Nuclear Soc., 4, 1 (1961).

G3 Goertzel, G., "The Method of Discrete Ordinates," Nuclear Sci.
and Eng., 4, 581 (1958).

G4 Graves, W. E., "Analysis of the Substitution Technique for the
Determination of D 20 Lattice Bucklings," DP-832 (1963).

H1 Hanna, G. C., "The Depression of Thermal Neutron Flux and Density
by Absorbing Foils," Nuclear Sci. and Eng., 11, 338 (1961).

H2 Hanna, G. C., "The Neutron Flux Perturbation Due to an Absorbing
Foil; a Comparison of Theories and Experiments," Nuclear
Sci. and Eng., 15, 325 (1963).

H3 Harrington, J., personal communication.

H4 Hellens, R. L. and E. Andersen, "Some Problems in the Interpre-
tation of Exponential Experiments," IAEC Symposium on
Exponential and Critical Experiments (1963).

H5 Honeck, H. C., "A Method for Computing Thermal Neutron Distri-
butions in Reactor Lattices as Functions of Space and Energy,"
Sc.D. Thesis, Massachusetts Institute of Technology, June, 1959.



196

H6 Honeck, H. C., "The Distribution of Thermal Neutrons in Space and
Energy in Reactor Lattices. Part I: Theory," Nuclear Sci. and
Eng., 8, 193 (1960).

H7 Honeck, H. C., and I. Kaplan, "The Distribution of Thermal Neutrons
in Space and Energy in Reactor Lattices. Part II: Comparison
of Theory and Experiment," Nuclear Sci. and Eng., 8, 203 (1960).

H8 Honeck, H. C., "THERMOS, a Thermalization Transport Theory Code
for Reactor Lattice Calculations," BNL-3826 (1961).

H9 Honeck, H. C., "The Calculation of the Thermal Utilization and
Disadvantage Factor in Uranium Water Lattices," IAEA
Conference on Light Water Lattices, June, 1962.

H10 Honeck, H. C., "An Incoherent Scattering Model for Heavy Water,"
Trans. Am. Nuclear Soc., 5, 1 (1962).

H11 Honeck, H. C., "Some Methods for Improving the Cylindrical
Reflecting Boundary Condition in Cell Calculations of the
Thermal Neutron Flux," Trans. Am. Nuclear Soc., 5, 2 (1962).

H12 Honeck, H. C., "The Calculation of the Thermal Utilization and
Disadvantage Factor in Uranium Water Lattices," submitted
for publication in Nuclear Sci. and Eng., in May, 1963 (also
called BNL-7047).

H13 Honeck, H. C., "Boundary Conditions for Cylindrical Cell Calcu-
lations," to be published.

H14 Honeck, H. C., "A Review of the Methods for Computing Thermal
Neutron Spectra," an invited paper presented at ANS June,
1963 Meeting in Salt Lake City, Utah.

H15 Hughes, D. J., and J. A. Harvey, "Neutron Cross Sections," BNL-325.

H16 Hurwitz, H., M. Nelkin, and G. Habetler, "Neutron Thermalization: 1.

Heavy Gaseous Moderator," Nuclear Sci. and Eng., 1, 280 (1956).

J1 Jacks, G. M., "A Study of Thermal and Resonance Neutron Flux
Detectors," DP-608 (1961).

J2 Jirlow, K., and E. Johansson, "The Resonance Integral of Gold,"
J. Nuclear Energy Part A: Reactor Science, 11, 101 (1960).

K1 Kaplan, I., A. E. Profio, and T. J. Thompson, "Heavy Water Lattice
Project Annual Report," NYO-10208, September, 1962.

K2 Kelber, C. N., "Resonance Integrals for Gold and Indium Foils,"
Nucleonics, 20, 8 (1962).

K3 Kier, P., personal communication concerning calculations made
at the M.I.T. Computation Center.

K4 Kim, H., personal communication.

K5 Kouts, H., et al., "Exponential Experiments with Slightly Enriched
Uranium Rods in Ordinary Water," Proceedings of the First
United Nations International Conference on the Peaceful Uses
of Atomic Energy, paper 600 (1955).



197

K6 Kouts, H., and R. Sher, "Experimental Studies of Slightly Enriched
0.6-inch Diameter Metallix Uranium, Water Moderated Lattices,"
in Progress in Nuclear Energy, Series II, Reactors, Vol. 2,
Pergamon Press, London (1961).

K7 Krieger, T. J., and M. S. Nelkin, "Slow-Neutron Scattering by
Molecules," Phys. Rev., 106, 290 (1957).

K8 Kyong, S. H., personal communication.

K9 Kaplan, I., "Measurements of Reactor Parameters in Subcritical
and Critical Assemblies; A Review," NYO-10207 (1962).

Li Lloyd, J. M., and J. E. C. Mills, "The Fine Structure Thermal
Neutron Distribution in Natural Uranium-Graphite Lattices,"
AERE RP/R 1825.

M1 MacDougall, J. D., "Application of Scattering Law Data to the Calcu-
lation of Thermal Neutron Spectra," Proceedings of the
Brookhaven Conference on Neutron Thermalization, BNL-719
(1962).

M2 Madell, J. T., T. J. Thompson, A. E. Profio, and I. Kaplan, "Spatial
Distribution of the Neutron Flux on the Surface of a Graphite-
Lined Cavity," NYO-9657 (1962).

M3 Malaviya, B. K., and A. E. Profio, "Measurements of the Diffusion
Parameters of Heavy Water by the Pulsed-Neutron Technique,"
Trans. Am. Nuclear Soc., 6, 1 (1963).

M4 McGoff, D., personal communication.

N1 Nelkin, M. S., "Neutron Thermalization in Water," Trans. Am.
Nuclear Soc., 2, 2 (1959).

N2 Nelkin, M. S., and E. R. Cohen, "Recent Work in Neutron Thermal-
ization," in Progress in Nuclear Energy, Series I, Vol. 3,
Pergamon Press, London (1959).

N3 Nelkin, M. S., "The Scattering of Slow Neutrons by Water,"
Phys. Rev., 119, 791 (1960).

N4 Nelkin, M. S., "Slow Neutron Inelastic Scattering and Neutron
Thermalization," GA-1689 (1960). (Also presented at the IAEA
Symposium on Inelastic Scattering of Neutrons in Solids and
Liquids, Vienna, October (1960).)

N5 Nelkin, M. S., "Neutron Thermalization," in Nuclear Reactor Theory,
Proceedings of Symposia in Applied Mathematics, Vol. 11,
American Mathematical Society, Providence (1961).

N6 Nelkin, M. S., personal communication.

N7 Newmarch, D., "Errors Due to the Cylindrical Cell Approximation
in Lattice Calculations," Atomic Energy Establishment Winfrith
Report AEEW-R34 (1960).



198

01 Osborn, R. K., "A Discussion of Theoretical Analyses of Probe-
Induced Thermal Flux Perturbation," Nuclear Sci. and Eng.,
15, 245 (1963).

P1 Palmedo, P. F., I. Kaplan, and T. J. Thompson, "Measurements of
the Material Bucklings of Lattices of Natural Uranium Rods
in D2 0," NYO-9660 (1962).

P2 Palmedo, P. F. and P. Benoist, "Interaction of Macroscopic Flux
and Fine Structure in Heterogeneous Reactors," IAEA
Symposium on Exponential and Critical Experiments (1963).

P3 Parks, D. E., "The Calculation of Thermal Neutron Scattering
Kernels in Graphite," GA-2438 (1961).

P4 Parks, D. E., "The Effects of Atomic Motions on the Moderation
of Neutrons," Nuclear Sci. and Eng., 9, 4, 430 (1961).

P5 Peak, J. C., I. Kaplan, and T. J. Thompson, "Theory and Use of
Small Subcritical Assemblies for the Measurement of
Reactor Parameter," NYO-10204 (1962).

P6 Pfeiffer, R. A., and W. W. Stone, "TRAM for the Philco 2000,"
KAPL-M-RPC-1.

P7 Poole, M. J., "Measurement of Neutron Spectra in Moderator and
Reactor Lattices. Aqueous Moderators," J. Nuclear Energy,
5, 325 (1957).

P8 Poole, M. J., "Measurement of Neutron Spectra in Reactors,"
ORNL-2739 (1958).

P9 Poole, M. J., M. S. Nelkin, and R. S. Stone, "The Measurement and
Theory of Reactor Spectra," in Progress in Nuclear Energy,
Series I, Vol. 2, Pergamon Press, London (1958).

P10 Price, G. A., "Thermal Utilization Measurements," BNL-1992 (1954).

R1 Rhodes, W. A., and D. Vargofcak, "ULCER and QUICKIE, Multigroup
Diffusion Theory Programs for Thermalization Studies," Trans.
Am. Nuclear Soc., 5, 1 (1962).

R2 Ritchie, R. H., and H. B. Eldridge, "Thermal Neutron Flux
Depression by Absorbing Foils," Nuclear Sci. and Eng.,
8, 300 (1960).

S1 Selengut, D. S., "Diffusion Coefficients for Heterogeneous Systems,"
HW-60220 (1959).

S2 Schiff, D., and S. Stein, "Escape Probability and Capture Fractions
for Gray Slabs," WAPD-149 (1956).

S3 Stuart, G., and R. Woodruff, "Method of Successive Generations,"
Nuclear Sci. and Eng., 3, 331 (1958).

S4 Suich, J. E., "Temperature Coefficients in Heterogeneous Reactor
Lattices," Ph.D. Thesis, Massachusetts Institute of Technology
(1963).



199

T1 Thie, J., "The Failure of Neutron Transport Approximations in
Small Cells in Cylindrical Geometry," Nuclear Sci. and Eng.,
9, 286 (1961).

T2 Theys, M. H., "Integral Transport Theory of Thermal Utilization
Factor in Infinite Slab Geometry," Nuclear Sci. and Eng., 7,
58 (1960).

T3 Thompson, T. J., I. Kaplan, and A. E. Profio, "Heavy Water Lattice

Project Report," NYO-9658 (1961).

T4 Tralli, N., and J. Agresta, "Spherical Harmonics Calculations for a
Cylindrical Cell of Finite Height," Nuclear Sci. and Eng., 10, 2
(1961).

T5 Tassan, S., "Cadmium Ratios of U235 Fission in Slightly Enriched
Uranium, Light Water Moderated Lattices," Nuclear Sci. and
Eng., 16, 2 (1963).

T6 Tunnicliffe, P. R., D. J. Skillings, and B. G. Childley, "A Method for
the Accurate Determination of Relative Initial Conversion Ratios,"
Nuclear Sci. and Eng., 15, 3 (1963).

T7 Turner, R. B., et al., "The Slowing-Down Spectrum in a CANDU-Type
Reactor," Nuclear Sci. and Eng., 16, 1 (1963).

W1 Wachspress, E. L., "Thin Regions in Diffusion Theory Calculations,"
Nuclear Sci. and Eng., 3, 2 (1958).

W2 Weinberg, A. M., and E. P. Wigner, The Physical Theory of Neutron
Chain Reactors, The University of Chicago Press, Chicago (1958).

W3 Weitzberg, A., I. Kaplan, and T. J. Thompson, "Measurements of
Neutron Capture in U 2 3 8 in Lattices of Uranium Rods in Heavy
Water," NYO-9659 (1962).

W4 Wigner, E. P., and J. E. Wilkins, "Effect of Temperature of the
Moderator on the Velocity Distribution of Neutrons with
Numerical Calculations for H as Moderator," AECD-2275 (1944).

W5 Wolberg, J. R., T. J. Thompson, I. Kaplan, "A Study of the Fast
Fission Effect in Lattices of Uranium Rods in Heavy Water,"
NYO-9661 (1962).

Y1 Young, J. C., G. D. Trimble, J. R. Brown, D. H. Houston,
Y. D. Naliboff, and J. R. Beyster, "Neutron Spectra in Multiplying
and Non-Multiplying Media," Trans. Am. Nuclear Soc., 5, 2 (1962).

Y2 Yvon, J., "La Diffusion Macroscopique des Neutrons, Une Methode
d'Approximation," J. Nuclear Energy, 4, 305 (1957).

Z1 Ziering, S., and D. Schiff, "Yvon's Method for Slabs," Nuclear Sci.
and Eng., 3, 635 (1958).

Z2 Zobel, W., "Experimental Determination of Flux Depression and Other
Corrections for Gold Foils Exposed in Water," Trans. Am.
Nuclear Soc., 5, 1 (1962).

Z3 Zweifel, P. F., "Neutron Self-Shielding," Nucleonics, 18, 11 (1960).



200

APPENDIX I

AVERAGED EXPERIMENTAL RESULTS

After completion of this report, it was suggested by Professor

T. J. Thompson that it would be possible to obtain an improved estimate

of the experimental uncertainties by averaging the results from several

experiments, although the measurements involved the use of foils that

differed in thickness. This addendum is a discussion of the results ob-

tained by averaging the gold activation distributions in each of the two

lattices studied.

In each lattice, there were four experiments involving the use of

foils; these experiments are considered to yield representative results.

The experiments were made with the 2.5 and 4.3 mil thick gold foils.

The results given in Tables 4.1.2 and 4.1.4 were averaged, assuming

that the individual points had equal weights. Since the experiments were

performed with foils of similar properties and were counted with about

the same accuracy, each experiment should carry about the same weight.

The averaged results are given in Tables I.1 and 1.2 and are plotted in

Figs. I.1 and 1.2. The uncertainty "E" given at each position is the

standard deviation of the average:

n th~(Ath)

i=1 n(n-1)

where in all cases there were four measurements (i.e., n=4). The aver-

age of the standard deviations for all points in a lattice was about 0.7%.

It is of interest to compare the values of E in Tables I.1 and 1.2 with the

values of the standard deviation for counting statistics only as given for

the subcadmium activity in Table 4.4.1 (p. 92). The average value of E

is only slightly greater (approximately 0.2%) than the counting statistics.

This very small increase is due to other experimental uncertainties, such
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TABLE 1.1

Subcadmium Activation Distribution Based on the Average of
the Experiments with Gold Foils in the Lattice with

the 1.25-inch Triangular Spacing

Radial Position
(cm)

0.000

0.158

0.187

0.237

0.400

0.563

0.972

1.381

1.793

2.202

2.611

Symbol Used
to Plot Point

0
X
0
X
0
X
0
X

X
0

X

X

X

X

X
0

Average
Activity*

0.807
0.802
0.826
0.821
0.826
0.820
0.840
0.835
0.894
0.897

0.945
0.957
0.946

0.980
0.969
0.977

0.992
0.984
0.997

1.007
1.010
0.996

0.985
0.992
0.983

0.943
0.998
0.965

*Average based on Runs All, A16, A14 and A15.

E

± 0.003
i 0.006
i 0.008
± 0.006
± 0.005
± 0.008
± 0.007
± 0.007
± 0.005
± 0.006

± 0.004
± 0.008
± 0.007

± 0.005
± 0.007
± 0.006

± 0.004
± 0.009
± 0.004

± 0.003
± 0.008
± 0.005

± 0.007
± 0.006
i 0.004

± 0.005
i 0.003
± 0.005
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TABLE 1.2

Subcadmium Activation Distribution Based on the Average of
the Experiments with Gold Foils in the Lattice with

the 2.50-inch Triangular Spacing

Radial Position
(cm)

0.000

0.158

0.187

0.237

0.400

0.563

1.085

1.607

2.130

2.652

3.175

4.046

4.916

5.786

5.499

Symbol Used
to Plot Point

X
0
X
0

0X
0
x
+

0

0

+

0

0

+

0

0

+

0

X

0

X

0

+

X0

O+

X
O+

X0

*Average based on Runs A4, A5, A6 and A7.

0.785
0.791
0.816
0.811
0.810
0.825
0.836
0.836
0.892
0.886

0.931
0.931
0.936

0.969
0.976
0.971

0.997
0.995
0.994

0.994
0.999
0.995

0.998
1.001
0.998

1.001
1.002
0.996

0.992
1.005
0.999

0.989
1.010
0.985

0.943
0.933

0.997

± 0.004
± 0.004

± 0.008

Average
Activity*

i±
i±
i±
i±
i±
i±
i±

i±
i±

i±

i±
i±

i±

t±
i±

i±

t±
±

i±

t±
i±

i±

i±
i±

i±

t±
±

i±

i±
i±

i±

t±
i±

E

0.007
0.010
0.006
0.008
0.007
0.007
0.006
0.004
0.010
0.004

0.006
0.005
0.005

0.002
0.005
0.005

0.009
0.004
0,004

0.004
0.006
0.004

0.005
0.007
0.003

0.005
0.003
0.003

0.005
0.005
0.003

0.004
0.003
0.005
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as the positioning of the foils for both irradiation and counting. There

seems to be no other significant trend in the data based on the average

results.

A comparison with the results of THERM(OS calculations are

included in Figs. I.1 and 1.2. The conclusions based on the individual

experiments also apply to the results based on the averages. Those

conclusions are summarized in Chapter V.


