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ABSTRACT

A graphite-lined cavity was built at the outer end of

the thermal column of the MIT Reactor. Seven variations of

the material and geometrical arrangement of the cavity were

made. The neutron flux was measured on the top surface and

in the top wall of each variation and also on all surfaces

and in the cavity itself of one of the variations. Absolute

flux, cadmium ratio, and albedo measurements were made. The

experimental results demonstrated that the cavity suitably

modified the magnitude, distribution, and direction of the

neutrons emerging from the thermal column.

A theoretical model was developed to calculate the

magnitude and distribution of the neutron flux on the sur-

faces of a cavity. The values of the view factors and the

albedos, which were necessary to calculate the flux in the

cavities, were obtained from computer programs. The values

of the flux were also calculated by using an electronic

computer.

The calculated values of the flux are in excellent

agreement with the measured values and it is felt that the

use of the theoretical model is justified.
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ERRATA

Correction to Eq. Bl.9, page 218. The following should

be added
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Introduction

In 1959, the Nuclear Engineering Department at M.I.T., with the

support of the Atomic Energy Commission, undertook an experimental and

theoretical study of the nuclear properties of lattices of partially

enriched uranium rods in heavy water. The measurements in this study

are to include: the buckling, the age and thermal diffusion area, the

thermal neutron distribution in the lattice cell, and the various

ratios related to the parameters 6, f, and p. The M.I.T. Reactor

(MITR) provides the neutron source for the experiments.

In planning the experiments, it was decided that the rods should

be suspended vertically in the heavy water to avoid bowing of the rods,

and to facilitate the changing of both the lattice and the detectors in

the lattices. The source neutrons are to enter the tank containing the

lattice from the bottom and the exponential decrease of the thermal

neutron flux will then be along the directionL of the rods, that is,

in the vertical direction. The exponential experiments are conveniently

interpreted and compared to the experiments of other workers, if the

source neutrons are supplied to the lattice in this manner. A problem

arose, however, because the neutrons were available as a horizontal

beam from the thermal column of the MITR. As a solution to this problem,

Dr. T. J. Thompson suggested that a graphite-lined cavity be constructed

in front of the outer end of the thermal column. The neutrons from the

horizontal thermal column would enter the cavity and undergo many

collisions with the graphite walls. Some of the neutrons in the cavity

would diffuse upward through the top graphite wall and serve as a ver-

tical neutron beam to the exponential tank placed above the cavity.

Besides having a vertical direction, it was necessary that the neutron
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source also have a sufficient magnitude and an appropriate distribution

to be used in the various lattice experiments. Since the use of a cavity

to change the direction of a neutron beam has not been investigated in

any detail, it was not known whether the desired magnitude and distribution

could be obtained by means of such a cavity. An experimental study was

therefore undertaken to measure the magnitude and distribution of the

neutrons diffusing upward from the cavity for various arrangements of

the cavity. The first purpose of this study was to determine whether

a cavity is feasible for the prqposed use and, if feasible, to select

the arrangement of the cavity best suited for the M.I.T. experiments.

Other workers with research reactors are likely to meet problems

similar to the one described above and may be interested in using such a

cavity. The particular physical situation, for example, the dimensions,

shape, and purpose of the cavity will, in general, be different for each

reactor. In order that the results of this work may be applicable to

physical situations other than that at the MITR, a theoretical study of

the magnitude and distribution of the neutrons on the surface of a cavity

was made.

The general purpose of the present study is, therefore, to investi-

gate, both theoretically and experimentally, the use of a cavity as a

practical means of extending and modifying a neutron source. The purpose

of the experimental study is to measure the magnitude and distribution

of the neutron flux on a surface of the cavity. The purpose of the

theoretical study is to develop a method of calculating the flux. The

shape of the cavity and the materials forming the surfaces of the cavity

were varied to determine how these factors influence the extension and

modification of the neutron source.
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Since it is only in recent years that there has arisen an interest

in the use of a cavity to extend and modify a neutron source, the terminology

used in this study will be defined, and the behavior of the neutrons in the

cavity will be discussed in some detail. The term "cavity" refers to a

region through which neutrons may pass with a very small probability of

collision. If the region is empty, or is filled with a gas having a long

collision mean free path, the region is considered to be a cavity. In

this study, air, which has a collision mean free path of about 3700 cm,

occupies the cavity. The cavity is completely surrounded by a material

with which the neutrons collide; the cavity and its walls are referred to

as the cavity assembly.

The neutrons enter the cavity from some source: they may diffuse

through a wall into the cavity, in which case, the surface of the wall

bounding the cavity may be called the source; or they may enter the

cavity through a hole in the wall. The actual source of the neutrons

may be a reactor, or a source such as a Pu-Be capsule, placed in the wall

or in the cavity itself. In the present study, the neutrons enter the

cavity by diffusing through the thermal column of the MITR, which forms

one of the walls of the cavity.

After a neutron enters the cavity, it passes through without being

absorbed or scattered and impinges on a wall. The neutron may diffuse

through the wall, it may be absorbed by the wall material, or it may be

scattered back into the cavity. If the neutron does re-enter the cavity,

its energr, direction, and location on the surface of the wall are differ-

ent from what they were when the neutron entered the wall. The neutron,

after re-entering the cavity, continues to collide with the walls of the

cavity until it is finally absorbed in the wall or leaks out of the cavity

3



assembly and is lost. The possibility of extending a neutron source

arises from the fact that neutrons travel without absorption or scatter-

ing in a cavity; and after the neutrons have undergone many collisions

in a cavity assembly, the magnitude, distribution, direction, and

energy spectrum of the source neutrons may be modified considerably.

Many cases may arise, especially in the use of small research

reactors, where the neutron source must be modified for experimental

purposes. The change in direction and distribution of the neutrons from

the MITR in lattice experiments is one example. As another example, a

cavity assembly made of hydrogenous material may be used to provide

neutrons of very low energy from an epithermal beam source. As a third

example, a neutron beam may be extended from a small core of a reactor

to a region outside the biological shield by means of a cavity assembly

and used to irradiate a large sample at the outer end of the cavity.

One criterion of the practicality of the use of a cavity is the

effectiveness with which the neutron source is used; both the magnitude

and spatial distribution of the re-entering neutrons must meet the

requirements of the experiments. Thus, if in using a cavity to modify

the distribution of a neutron source, only a small fraction of the

original neutron source is available in the modified source, the cavity

may not be practical. The difficulty and expense of constructing a

cavity assembly make it important to be able to predict in advance the

performance of the cavity for the use proposed. In this study the

practicality of using a cavity has been determined by building several

cavity assemblies and by determining experimentally the properties of the

resulting neutron flux. The concurrent theoretical studies have shown

that it is possible to predict the behavior of such a cavity.
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The use of a cavity for various purposes has been suggested by

several people independently, including Thompson (1), V*o'lcker (2), Sleeper

(3), and others. Thompson suggested its use as a means of changing the

direction and the extent of a downward directed beam from the reactor

to a horizontal thermal column for irradiation use. V*dlcker discussed

the possibility of using the neutrons from a horizontal thermal column

to feed the bottomiof a vertical exponential tank. He outlined some

possible methods of calculating the flux distribution on the bottom of

the tank but did not give any solutions. Sleeper and later Clark (4)

measured the flux distribution on the surfaces of a cavity into which

neutrons from a Pu-Be source were.being fed. These experiments, however,

were not extensive, and no attempt was made to interpret the measured

distribution theoretically.

From the description of the behavior of neutrons in a cavity and from

past experience with black body radiation from a "hohlraum" (5), it is evi-

dent that the behavior of the neutrons in a cavity is similar in many

respects to that of radiation in an enclosure. B6th neutrons and radiation

travel through a cavity in a straight line and without collision; both

obey the inverse square law; upon striking a wall of the cavity, both are

either transmitted, reflected or absorbed. The energy spectrum of either

neutrons or radiation emerging from a wall depends on the temperature of

the wall.

The similarity between the behavior of neutrons in a cavity and of

radiation in a "hohlraum" will also be seen in the theoretical model

developed in this paper for calculating the magnitude and distribution of

the neutron flux on the surface of a cavity. View factors, which are used

in problems of radiant heat transfer, are used in this paper to calculate

the number of neutrons incident on a surface from all of the other surfaces.
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Lambert's Law can be used to describe the angular distribution both of

neutrons and of radiation leaving a surface. The albedo, defined in this

paper as the ratio of the number of neutrons leaving a wall to the number

entering the wall, is analogous to the emissivity of a wall. The term,

albedo, was first used by astrophysicists for the ratio of reflected to

incident light at the surface of a planet. The term "neutron current" is

the analogue of the term "intensity" used in studies of radiation transfer.

Because of this analogy, the theoretical model developed for the behavior

of neutrons in a cavity may be used for problems of radiation in a cavity.

Radiant heat transfer in a furnace and the transmission of gamma rays

through a duct in a shield are two examples of problems to which this model

may be applied.

The black body radiation from a hohlraum has been extremely useful

in understanding some of the basic principles of radiation. In explain-

ing the energy spectrum for black body radiation, Planck proposed that atoms

are excited by discreet quantities of energy. This, of course, is the basic

idea in quantum mechanics. Since these systems are analogous, it is con-

ceivable that a cavity could also be used to study the factors which in-

fluence the energy spectrum of neutrons.

Saha and Srivastava (5) point out the analogy between black body

radiation and an ideal gas. An analogy also exists between neutrons and

the molecules of an ideal gas in an enclosure. Because of the similarity

in some of the aspects of the behavior of neutrons, radiation, and an ideal

gas in an enclosure, the information obtained from the study of one of

these systems may possibly be applied to one or both of the other systems.

Thompson, Clark, Sleeper and Vdlcker all referred to the cavity as

a "hohlraum" because of the analogy between the two systems. In this paper,

the two terms, "cavity" and "hohlraum", are used interchangeably, without

any difference in meaning. 6



Chapter El

Description of Experimental Facility

Before discussing the experiments, the cavity assembly will be

described in detail. A cross-sectional view of the MITR core, the thermal

column, the cavity assembly, and the exponential tank is shown in Figure

El.l. Descriptions of the MITR and of the lattice assembly have been given

by Thompson (6) and Profio, et al. (7), respectively.

The neutrons originate in the reactor core and diffuse through the

heavy water reflector in the core tank, then through a 52" long, 63" x 63"

graphite thermal column and into .the cavity. The cavity contains air at

room temperature and pressure. Most of the neutrons and gamma rays can be

prevented from entering'the cavity by lowering the cadmium and lead shutters.

Before the cavity assembly was built, a 32"-thick movable thermal column

door was in place at the outer end of the thermal column. This door was

rolled back and a shielded room was constructed at the outer end of the

thermal column with the door forming part of the shielding. The room is

lined with boral to prevent neutron activation of the shield. A new set

of 14"-thick, movable shielding doors is suspended from an I-beam attached

to the side of the biological shield. When these doors are closed, they

are in front of the opening left by the thermal column door and serve to

lower the level of the neutron and gamma radiation entering the cavity.

When the doors are closed and the lead and cadmium shutters are lowered,

the radiation level in the region of the exponential tank is below tolerance

at full power operation of the reactor. Both the shutters and shielding

doors are operated by remote control. The shielding doors are wrapped

with cadmium to prevent neutron activation. A cadmium sheet is also

placed above the shielding doors in the area between the reactor shield

face and the 72" tank to prevent neutrons from streaming into the ex-

ponential tank or the reactor building. Starting at the thermal column

7
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face, the first 32" of the walls of the cavity are covered with boral.

When the shielding doors are open, the next 16" are covered with boral

on the bottom surface (floor of the reactor building) and with cadmium

on the top and side surfaces (the ends of the cadmium-covered shield door).

The geometrical arrangement and the wall material of the cavity

assembly were changed as part of the experimental program, but all of these

changes may be described as variations on a basic cavity assembly. This

basic assembly, which was not changed, is described first and then the

variations are described.

Figures E1.2, E1.3, and El.4 give three views of this basic assembly.

The thermal column door space and shielding doors, shown in the open

position in Figure E1.3, have already been discussed. The floor, side

walls, back wall, and top of the cavity indicated in the figures are made

up of 4" by 4" stringers of reactor grade graphite. The top of the cavity

is normally referred to as the "pedestal". The stringers meet close

tolerances and no gaps exist between the stringers when they are stacked

in the form of a wall or floor. Graphite pins, one-half inch in diameter,

are used to stabilize the layers of graphite stringers in the side and

back walls. The floor is 12" thick and the side and back walls are 16"

thick. The pedestal, with dimensions 16" by 72" by 72", is supported

over the cavity by a 2" by 74" by 90" honeycomb structure.

The honeycomb structure consists of very thin aluminum foil in a form

similar to that of the walls of a honeycomb, held together by resin and

sandwiched between two 0.064" sheets of aluminum. Most of the space

between the aluminum sheets is occupied by air, so that the honeycomb

structure is quite transparent to neutrons while still able to support the

graphite pedestal. The honeycomb is supported in turn by a system of I-beams

and angle irons. A 4" angle iron runs across the top of each side wall and

9
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Figure El.4
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Cross Sectional View of the Basic Assembly
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Figure E1.5 Honeycomb with Pedestal in place.
Note Designation on Front and Back Edges,
and North and South Sides.
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is fastened to the vertical I-beams at both ends. (See Figure E1.3)

Another 4" angle iron, which runs along the top of the back wall, stabilizes

the I-beam structure. The flanges of the angle irons, which are on the

side walls, are 92" apart. The pedestal and honeycomb structure are shown

in Figures E1.5 and E1.6. Note the designation of a front and back edge;

the front edge is the one closest to the face of the thermal column, and

the back edge is the one farthest away. The sides of the pedestal and

honeycomb are labeled "north" and "south" to differentiate between them.

A 1/4" plywood frame is placed around the pedestal, and cadmium is wrapped

around the sides and top of the framed pedestal. The plywood frame pre-

vents the graphite stringers on the top of the pedestal from sliding off

while the pedestal is being moved. The cadmium absorbs any slow neutrons

incident on the sides or top of the pedestal. Steel plates with holes

cut in them are bolted to the side of the honeycomb; turn-buckles are

attached to these plates, and the whole assembly is moved about with the

overhead crane.

Indentations, 1/16" in diameter and about 1/16" deep, were drilled

in the bottom row (lower layer) and the second from the bottom row (upper

layer) of graphite stringers in the pedestal. The location of the stringers

and of the indentations is shown in Figure E1.7. The indentations are used

to hold foils during the irradiations, the details of which will be dis-

cussed later. The foil locations in the upper layer are 8" directly above

those in the lower layer. As will be seen later, the foil locations on

the honeycomb are directly below those in the pedestal so that a vertical

flux transverse may be measured.

Heavy concrete shielding blocks, the first two layers of which were

in place during these experiments, surround the cavity assembly on all

sides. The honeycomb and pedestal must be lifted over the shielding block

12
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wall which forms the sides of the room, and then lowered into place.

During the cavity experiments the exponential tank was not in place; this

did not effect the results of the experiments, while making it easier to

change the geometrical arrangements of the walls.

Assembly I is the basic cavity assembly (Figure E1.2) which has

boral and cadmium in the thermal column and shielding door spaces.

Assembly II is obtained by adding an eight inch thick, graphite "frame"

in the thermal column door space (Figures El.8 and E1.9). Graphite replaces

boral as the wall material in this variation. In Assembly III, the graphite

"frame" is changed into a "tooth" arrangement as shown in Figure E1.10.

The purpose of this variation will be discussed together with the results

of the measurements. A graphite floor, eight inches thick, is extended

into the shielding and thermal column door spaces, and 4" of graphite are

added to the sides and back of the pedestal to form Assembly IV (Figure

E1.11). These four assemblies (I, II, III, IV) are referred to as PARA

assemblies because of the general parallelepiped shape of the cavity.

The next set of variations (Assemblies V, VI, and VII) are all char-

acterized by a rearrangement of the floor. Graphite is added to the floor

of the basic cavity so as to create a stepped inclined surface. This

geometrical variation results in Assembly V (Figure El.12). By smoothing

this stepped arrangement, a 450 inclined plane is obtained and is indicated

by the dotted line in Figure E1.12. A cavity with this stepped arrangement

is referred to as a 450 cavity. Variations to Assembly V are made by add-

ing the graphite "frame" (Assembly VI, Figure E1.13) and graphite "tooth"

(Assembly VII, Figure El.14) to Assembly V. If the inclined plane is re-

moved from Assembly V, VI, and VII, the resulting assemblies are identical

with Assemblies I, II, and III, respectively. With these seven cavity

assemblies, it is possible to study the effect of different geometrical
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arrangements of walls for the same wall material, and the effect of

different wall materials for the same geometrical arrangement.

The cavity has another effect beside that of modifying the neutron

source. The exponential tank has been moved out of the direct line of the

gamma rays emitted from the thermal column, (see Figure E1.1) with the re-

sult that there is a reduction in the number of photoneutrons produced in

the heavy water in the tank and a corresponding reduction in the correction

for these photoneutrons.
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Chapter E2

Discussion of Experimental Program

One purpose of the experimental program was to obtain the data leading

to a selection of the cavity assembly best suited for the M.I.T. lattice

measurements. Measurements were also made to investigate the general

problem of extending and modifying a neutron source by means of a cavity.

The absolute magnitude and distribution of the flux was measured in

the seven cavity assemblies described in Chapter El. Experiments were

also performed to obtain values of the cadmium ratio and the albedo of the

graphite forming the walls of the cavity. It is evident from Figure E1.1

that the neutrons which enter the tank have first passed through the honey-

comb and pedestal. The magnitude and distribution of the flux in the

pedestal, therefore, provide a basis for selecting the most suitable cavity

arrangement. Each of the seven assemblies modified the magnitude and

distribution of the neutron source differently. Since the material and the

shape of the honeycomb and pedestal were the same for all of the assemblies,

the flux on the honeycomb was used to study the modification of the source

produced by each assembly. The influence of the inclined plane, the frame,

and the tooth were determined by comparing the flux on the honeycomb for

the different assemblies.

The magnitude and distribution of the neutron source was also

measured; these measurements were needed to determine the effectiveness

of the cavity assembly, and in the calculation of the flux. The magnitude

and distribution of the flux on all of the surfaces of a cavity and in the

cavity itself were measured to investigate the features of a cavity assembly.

The cadmium ratio measurements indicate the ratio of the thermal to

the fast flux in the assembly. A high value of the cadmium ratio means

that most of the neutrons are thermal, and that the theoretical model can

20



treat the neutrons as being thermal. The values of the albedo of the

cavity were useful in understanding the behavior of the neutrons in the

cavity assembly. The albedo was used in the theoretical model and the

values of the albedo for the walls were needed for the calculation of the

flux.

The flux distribution measurements are discussed in Chapter E3, the

absolute flux measurements in Chapter E4, the cadmium ratio measurements

in Chapter E5, and the albedo measurements in Chapter E6.
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Chapter E3

Flux Distributions in the Cavity Assembly

Flux distributions in the cavity assembly were obtained from activa-

tion measurements. An array of foils was placed in the assembly and was

irradiated for a specified time at a known power level of the reactor.

The activity of the foils was then measured and a flux distribution was

obtained by plotting the counting rates due to the activity.

E3.1 Tabulation of Flux Distribution Experiments

Fifteen experiments were performed to measure the flux distribution

on the surfaces of the cavity, in the pedestal, and in the cavity itself.

The fifteen experiments are listed in Table E3.1, which gives the location

of the foils, the geometrical arrangement of the cavity assembly, and the

total number of foils used in each experiment.

The purpose of Experiment #1 was to measure the distribition of source

neutrons on the face of the thermal column. Source neutrons are those

which enter the cavity for the first time; they have not undergone

collisions in the cavity assembly and then returned to the thermal column

face. In measuring the distribution of the source neutrons, it is important

to insure that no neutrons return to the thermal column face. When this

experiment was performed, the graphite was removed from the thermal column

door space and the cadmium-covered shielding doors were closed. The source

neutrons struck the cadmium covered shielding door or the boral-lined

walls and thus would have had only a very small probability of returning

to the thermal column face.

All of the other Experiments (#2 through #15) were performed with

the shielding doors opened. In Experiments #2 through #13, the flux

distribution was measured on the honeycomb and in the pedestal for all of

the geometrical arrangements of the cavity assembly. The flux distribution
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Table E3.1

List of Experiments which Measure the Flux
Distribution in the Cavity Assemblies

Geometrical
Arrangement

Assembly I

1

2

3 Assembly II

4 Assembly II
(with pedestal
extended in
the back)

5 Assembly III

6 Assembly III

7 Assembly IV

8 Assembly V

9 Assembly V

10 Assembly VI

11 Assembly VI

12 Assembly VII

13 Assembly VII

14 Assembly II

15 Assembly II

Location of Foils

Face of Thermal Column

Honeycomb,

Honeycomb, two layers
of pedestal

i

'I

'I

I,

I,

'I

It

'I

I,

I,

All surfaces of
hohlraum

In hohlraum itself

Total Number of Foils

36 + 2 monitors

36 + 2 monitors

108 + 2 monitors

"1

II

II

I,

I'

'I

I,

'I

I,

150 + 2 monitors

75 + 2 monitors
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was measured for Assembly II on all surfaces and in the cavity itself

in Experiments #14 and #15, respectively.

E3.2 Selection of the Detector

Activation measurements were used to obtain the neutron density.

A movable neutron counter, such as a BF3 tube or fission chamber, would

produce a continuous neutron distribution by scanning the desired surface.

However, the inside surfaces of the cavity assembly are inaccessible when

the honeycomb and pedestal are in place. The 40" concrete shielding on all

sides further complicates the problem of designing a positioning device

to scan the inside surfaces, so a movable counter was not used. Wires,

which could also measure a continuous distribution, were not used because

they would not become sufficiently active in the available flux to give

accurate results.

E3.3 Procedure for the Flux Distribution Measurements

A set of procedures was devised and used in all of the 15 experiments

which measure the flux distribution. The selection of the foil material

and the procedure for preparing and irradiating the foils are given in

Appendix Al of the thesis (8) on which this report is based. The

description of the equipment, the procedure used for counting the foils

and the procedure for reducing the data are given in Appendix A2 of the

thesis. The results of the experiments are expressed in terms of the

absolute flux, abs, incident on the foils at 1MW operation of the MITR.

The following relationships are used in deducting the data for the

flux distribution measurements:

AT +AT
CR(SAT) = PCTBD Ce D(E3.1)

C i-e'C) 1i- e -?R
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Act(rel) CR(SAT) E(rel)-N at 1MW, (E3.2)

$ = K Act(rel) = N *CR(SAT), at 1MW, (E3.3)
abs E CW

a

where

decay constant of the radioactive isotope,

TD = time between the irradiation and the counting of the foil,

TR = irradiation time,

TC = counting time,

PC = preset count,

BGD = background during counting,

CR(SAT)= counting rate due to the saturated activity of the foil,

CR(SAT)= average value for CR(SAT) of a foil,

E(rel)= relative value of the counting efficiency during the

counting of the foil obtained from the count rate of

the RaD+E standard,

N normalization constant for calculating the foil activity

at 1MW operation of the MITR. The quantity, N, was

calculated from the count rate of the monitor foils in

the thermai column,

Act(rel) relative activity of the foil at 1MW operation of the MITR,

K conversion constant between the relative activity and the

absolute flux,

E counting efficiency,

Z a =absorption cross section,

W weight of the foil,

P density of the foil material,

C correction factor for flux depression, self-shielding, and

flux hardening.
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The derivation and discussion of these equations are given in

Appendix A2. The above nomenclature is also used in Chapters E4, E5, and

E6. All of the values of the microscopic cross sections were obtained

from BNL-325 (9), the decay constants and the description of the decay

scheme from Sullivan's Trilinear Charts (10), and the correction factors

and densities from ANL-5800 (11).

E3.4 Errors in the Flux Distribution Measurements

All foils in the assembly were counted three times with a preset

count of at least 10,000. The monitor foils were counted for at least

a total of 100,000 counts. The average count rate was found to be within

the statistical error of the individual counting rates, so any error

introduced by spurious counts was negligible. Equation (E3.3) is rewritten

to include the maximum standard error due to counting statistics.

~ +K r

abs + 0.83% E-(N+ 0.14%) -LE(rel) + 0.58% -

[CR(SAT) + 0.58%] (E3.4)

The standard error of N was based on a total of 100,000 counts of the

monitor foils and their accompanying RaD+E standard foil while the

standard errors of E(rel) and CR(SAT) were based on a total of 30,000

counts. Since the foils were sometimes counted for more than these

number of counts, the standard error of $abs is the maximum error due

to counting statistics.

No standard error is given for the conversion constant, K, for

the absolute flux, or for the weight, W, of the foil. The weight of a

foil was known within 1 x 10~4 gram, so the error was about 3 x 10-3

percent and contributed an insignificant error to 4 abs This study is

interested primarily in comparing the magnitude and distribution of the
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flux in each assembly. Since all of the foils' activities were multiplied

by K, the error in K does not enter into the comparison of the different

values of the flux for different assemblies.

E3.5 Experimental Results

The values of the absolute flux, $ abs' (at 1MW operation of the MITR)

determined in the 15 experiments are listed in Tables E3.2 through E3.36o

The value of tabs for each foil is shown at the same location on the drawing

that indicates the site on the surface where the foil was irradiated. The

values of E(rel), N, and the reactor power at which the foils were irradiated

are also indicated in the tables. Note in the tables the designation of

the sides of the honeycomb and pedestal as the front, back, north side, and

south side.

The values of $abs from Experiment #1 (thermal column face) are plotted

for the six horizontal rows of,.foils in Figures E3.la and E3.lb. The re-

sulting flux distributions show that the neutron source is symmetrical

about the vertical mid-line on the thermal column face. Since each cavity

assembly is also symmetrical about the vertical mid-line, the flux distribu-

tion on the honeycomb surface and in the pedestal should be symmetrical

about the center line from the front to the back edge of the honeycomb.

Examination of the experimental points shows that this is the case. Figure

E3.2 shows the vertical flux distribution on the thermal column face; only

three vertical traverses are shown because of the symmetry about the vertical

mid-line. The average value of the neutron source, obtained by graphical

integration of the flux distribution in Chapter T4, is 1.348 x 109 n/cm 2sec.

The general shape of the distribution of the neutron source may be described

by a function of the form cos x cos y, where x and y are proportional to

the distances in the horizontal and vertical directions, respdctively, from

the center of the thermal column face.
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The values of ab for the foils on the honeycomb in Experiments #2
abs

through #13 are first plotted from the north to the south side of the

honeycomb. In some cases, two sets of measurements were made for the

same arrangement of the cavity assembly; the two sets of values of 'abs

are plotted together, as in Figure E3.3, which includes values of Iabs

from Experiments #10 and #11. A flux distribution symmetrical about the

center line from the front to back edge of the honeycomb is drawn, and

most of the values of the absolute flux lie within 1% of the plotted flux

distribution. The number that appears just to tlhe right of each curve

indicates the distance (in inches) of the foils from the front edge of the

honeycomb.

It seems likely that some of the discrepancies between the two

values of 4 for the assembly are due to differences in the flux at
abs

a given point during the two irradiations. These differences may have

been caused by small changes in the. distribution of the neutron source

which, in turn, were possibly caused by differences -in the positions of

the shim rods in the two experiments.. There is no practical means of

measuring small changes in the distribution of the neutron source during

the irradiation. However, all but a few values of $abs lie close to the

plotted distribution, so that the measured distribution should be accurate

within the statistical errors of the values of 0abs'

Next, the flux distribution is plotted from the front to the back

edge of the honeycomb by using the value of $abs from the symmetrical

flux distributions obtained by plotting the values of Pabs from .the north

to the south side. The flux distribution, 6" from the center line, is

plotted for all seven assemblies in Figure E3.4.

The flux distributions from the north side to the south side of the

honeycomb, at 7" from the front edge and at 67" from the front edge are
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plotted for all seven assemblies in Figures E3.5 and E3.6, respectively.

It is of interest to compare the magnitude and the distribution of

the flux obtained by the use of a cavity with the results that would be

obtained if the cavity were filled with graphite. Figure E3.7 shows the

cavity filled with graphite. The shaded area represents the graphite in

Assembly I. In the representation of the solid graphite region, graphite

was also considered to be added to the thermal column so that the graphite

block has a constant cross-sectional area.

In general, for a finite block of graphite

2Xx e z/Bll-(cz/
(x,y,z) = cos -- cos b i - e ) , (E3.5)

oo a b

where

2 2

2 2 2 2L B a b2

The quantities a, b, and c are the extrapolated dimensions of the graphite

on the x, y, and z directions, respectively. A value of 48 cm is used for

diffusion length of graphite. The magnitude of the neutron source at the

center of the thermal column face, s, has been measured and is equal to

337 9 2
3.37 x 10 n/cm sec (See Table E3. 2). The magnitude of the flux, * , at

this point, when the graphite is placed in the cavity, is calculated from

equation (E3.6).

[rx n -/i -2(c-z)/B 11
S 00 a b (E3.6)

S r itx y -z/Bi1  -2(c-z)/Bll1 ]
0osa acos b e cavity

For the case of a cavity

x = 0, a = 63" + 2(0.7A )t

y =_0, b = 63" + 2(0.7At),

z = z , c = 63" + 0.7 t
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Figure E3.7 Vertical Section of the Graphite-Filled Cavity.
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and for the graphite-filled cavity

x = 0, a = 92" + 2(0.7? ),
t

y = 0, b = 92" + 2(0.At

z = z , c = z + 136 + 0.7.
o o t

Substituting these values in equation(E3.6),one obtains

10 2
+P = 8.06 $ = 2.72 x 10 n/cm sec.
0 S

The flux, $l, (see Figure E3.7) corresponds to the center line flux on the

front of the honeycomb for the cavity assemblies. The value of $) /0) is

calculated from equation (E37).

'/x -(zl-z9)/Bl1 [ -2(c-zi)/Bi1
o /$ = cos - e L1 - e j (E3.7)
1o a

1 - 2(c-zo)/Bll

Substituting

y= 0

x = 30"

z = 54"

c-z= 82" + 0.7?A
1 t

c-z 136" + 0.7

into equat ion (23.8) yields

8 2* = 0.0115 $ = 3.12 x 10 n/cm sec.

The same procedure is used to calculate $2, which corresponds to the flux

on the back of the honeycomb for the cavity assemblies.

-4 6 2
4) = 1.54 x 10 4  = 4.18 x 10 n/cm sec,

It can be seen from Figure E3.4 that the value of $) is a factor of

two smaller than any of the corresponding values of the flux in the cavity

assemblies. The value of 42 is 100 times smaller than its corresponding

value in the cavity assemblies.
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Thus, the magnitude of the flux at the honeycomb is much greater when

the cavity is used than it would be if the cavity were filled with graphite.

The cavity also supplies neutrons with a distribution given approximately

by a double cosine, while the distribution given by solid graphite would

decrease approximately exponentially. Hence, both the magnitude and

distribution of the flux are given more favorably by the cavity assembly.

Next, we consider in detail the effect of the geometrical and material

arrangement of the cavity assembly on the magnitude and distribution of

the neutron flux. We start with the flux distribution from the front to

the back of the honeycomb. Two general characteristics of all of the

cavity flux distributions are a higher value of the flux at the front

than at the back edge of the honeycomb, and a larger gradient in the flux

distribution near the back edge than at any other position. The higher

value of the flux near the front edge is due to a greater contribution of

the neutron source to this region than to the back edge, which is farther

away. The large gradient in the flux distribution near the back edge is

the result of neutron leakage from the back side of the pedestal. The

effect of the leakage from the front side of the pedestal is compensated

by the large contribution from the neutron source. Thus, the magnitude of

the flux at a point on the honeycomb depends on the distance between the

point and the edges of the pedestal, and between the point and the neutron

source.

The effect of the inclined surface may be seen by comparing the flux

distributions in Assemblies I and V, in Assemblies II and VI, and in

Assemblies III and VII. In each case, the flux for the 450 cavity is

higher at the front and lower at the back than the corresponding flux

for the PARA cavity. Thus, the inclined surface of the 450 assemblies

39



produces a flux which has a greater magnitude, on the average, but a less

symmetric distribution than the flux for the corresponding PARA assemblies.

The effect of the addition of the graphite frame and the tooth may

be seen by comparing Assemblies I, II, and III for the PARA cavity, and

Assemblies V, VI, and VII for the 450 cavity. The magnitude of the flux

distribution is increased by a factor of about 1.7 by adding the graphite

frame to Assemblies I and V. The neutrons reflected from the frame con-

tributed only slightly more to the front edge than to the back edge in

Assembly II. However, when the frame is added to Assembly V, the flux on

the front part of the honeycomb is increased more than the flux on the

back edge. The reason for this effect is that the additional flux on

the inclined surface contributes more to the front than to the back of

the honeycomb. This larger contribution to the front part of the honey-

comb in Assembly V is shown by the fact that the flux curves for Assemblies

II and VI cross each other closer to the front edge than do the flux

distributions for Assemblies I and V.

When the tooth is added to the PARA and 450 cavities (Assemblies III

and VII), the flux distribution from front to back becomes more symmetrical.

The tooth reduces the number of source neutrons that strike the front part

of the honeycomb from the thermal column face. The flux distribution of

Assembly III may be described as a "tilted", symmetrical flux distribution

with the back edge only about 10% lower than the front edge. Such a

distribution should be useful as a source for an exponential assembly.

The inclined plane in Assembly VII increases the distribution more at the

front and thus produces a more "tilted", symmetrical distribution.

In Assembly VI, only the floor of the door space is covered with

graphite, with the result that the magnitude of the flux lies between



those of Assemblies I and II. In addition, the pedestal is extended at

the back, resulting in a smaller gradient of the flux near the back edge.

Figures E3.5 and E3.6 show that the flux distribution from the north

side to the south side of the honeycomb is about the same for all of the

assemblies; the magnitude of this flux has been already discussed. The

shape of the flux distribution depends, in part, on the distribution of

the neutron source (cos x cos y) and on the neutron leakage out of the

sides of the square pedestal. Thus, all of the distributions are similar

to a chopped-cosine distribution. In both figures the value of the ratio

of the flux on the center line to the flux 6" from the side edge is shown

at the right of the corresponding curve. The distribution of the flux

from side to side, at 7" from the front edge, is not affected by the in-

clined surface, as can be seen by comparing the flux distributions in

Assemblies III and VII. The values of the flux ratios are approximately

the same for each pair of curves. A slightly higher ratio for the frame

assemblies (I and VII) is due to the reflection of source neutrons by the

frame. As would be expected, the lowest value of the ratio is that for

Assembly IV, in which the pedestal was extended on the sides; since the

pedestal is larger, there is less leakage and a flatter distribution

results.

The flux distributions in Figure E3.6, at 67 inches from the front

edge, have a smaller ratio of the flux on the center line to the flux 6"

from the edge. This result is expected because the neutron source con-

tributes a smaller fraction of the total flux and thus has a smaller in-

fluence on the flux distribution. For example, a large fraction of the

neutrons in Assembly I comes from the back wall and hence does not show

a strong influence of the distribution of the source neutrons. The frame
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assemblies still have a slightly higher ratio than the bare assemblies,

as they did in Figure E3.5.

A question of interest is how much of the flux incident on the honey-

comb is lost in reaching the fundamental mode as the neutrons pass upward

in the pedestal. The flux distributions from the front to the back, 6"

from the center line, of the honeycomb and of the two layers of the

pedestal are plotted for Assemblies II and III in Figures E3.8 and E3.9,

respectively. As would be expected from the distribution on the honeycomb,

the flux distribution in the upper layer of the pedestal of Assembly II is

still slightly higher near the front. Although the magnitude of the flux

on the honeycomb of Assembly II is, on the average, about 10% greater than

that of Assembly III, most of this additional flux is lost in reaching

the fundamental mode.

The flux distribution in the upper layer of the pedestal of Assembly

III was fitted to a double cosine function. The equation for this function

is:

P~~y ~l x18 itx o yco(x,y)= 2.15 x 10 c 10c 10 , (E3.8)

where the x coordinate defines the distance from the middle of the pedestal

layer to the front and back boundaries, in inches, and the y coordinate

defines the distance from the middle to the north or south boundaries of

the pedestal, in inches.

The curves for $(6",y) and $(x,6") are drawn in Figures E3.10a and

E3.10b, respectively, together with the corresponding values of $abs in

the upper layer of the pedestal for Assembly III.

From Figure E3.10 it is evident that the distribution of the flux

in the pedestal is well represented by the double cosine functions obtained
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from equation $3.8). Such a flux distribution is suitable for supplying

neutrons to an exponential assembly whose fundamental mode is defined by

a function of the form, cos x cos y.

The values of the absolute flux on all surfaces of Assembly II,

obtained in Experiment #14, are shown in Table E3.35. The edge labeled

"front" in the drawings is the edge closest to the thermal column face.

The absolute flux has been normalized to agree with the results from

Experiment #2 because of the flux depression in the cavity due to the

foils, but the relative distribution on a given surface should not be

seriously affected by the depression of the flux in the cavity.

Two general observations may be made from these results. First, the

flux distribution is symmetrical about the vertical mid-plane of the

cavity assembly. Second, the flux is almost flat on the floor of the

cavity because the back and side walls reduce the number of neutrons

leaking from the side and back edges of the floor. The same condition

exists on the side and back walls. The neutron flux decreases less rapidly

near the bottoms of the walls than near the tops, because the graphite

floor reduces the leakage from the bottoms of the walls.

The values of $abs for the three arrays of foils irradiated in the

cavity itself (Experiment #15) are given in Table E3.36. The greatest

and smallest values of the flux differ by only 15% in each of the arrays.

However, the influence of the'distribution of the source neutrons is seen

in the fact that the flux is greatest at the middle of the array and

smallest on the outside of the array. The foils whose surfaces faced the

thermal column usually had a slightly higher activity. From these data,

it is concluded that magnitude of the flux in the cavity itself is fairly

uniform, and that the angular distribution of the flux is influenced by
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the source neutrons emitted from the thermal column face.

The practicality of extending and modifying the reactor neutron source

has been established by these experimental results. From the seven arrange-

ments of the cavity assembly, it is seen that a considerable variation in

the magnitude and distribution of the extended source can be obtained by

varying the geometrical arrangement of the assembly.
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Table E3. 2

The Values of $abs x 10-8 Measured on the Face of the Thermal Column

Top

Experiment #1

E(rel) = 1.000

N = 25.000

Power = 40 kw

North
Side

0.841 3M024 3.,745

2.747 14.026 18.451

3.890 20.644 35.5%

3.810

3-. 110

21. 030

15.606

0.807 3.067

30.592

20.176

3.960

3.622 2.727 0.709

18.733 12.533 2.$09

31.605 18.788 3.829

31.411 20,778 4.160

22. 402

5.091

15.848 3.381

3.420 0.856

14" 12" 12" 12" . 12 12" ' 11

Bottom

Sout
Side

1 "

12"

12"

12"

12"



Table E3.3

The Value of $Dabs x 10-8 Measured on the
Honeycomb in Assembly I

Front

Experiment #2

E(rel),= 1.009

N = 46.80

Power = 20 kw

5.396

5.370

5.165

5. 905

5.813

5.462

6. 253

5.875

5.697

6. 268

6.080

5.695
North
Side

6.054

5.770

5.577

5.406

5.421

5.218

4c954

4.782

4.382

5.373

5.117

4.670

South
Side

5.371

5.225

4.853

7"

12"

1

12"1

12"

7"

.-

5.466

5.397

4.709

5.272

5.115

4.635

4.953

4.783

4.359

15" : -| 12"1 :-| 12"1 :: 12"1 12'' 12"

Back

- ,- ;-AUW**6MMMiWMAUW

Honeycomb in Assembly I



Table E3.4

The Values of $abs x 10-8 Measured on the Honeycomb in Assembly II

Experiment

E(rel) = 0

#3

9910

N = 24.77

Power = 40 kw

\-n
0

Front

8.575

8.914

8.415

10.000

9.892

9.280

10.477

10.089

9.662

North
Side

8.354

7.873

6.998

8.973

8.570

7.735

9.202

8.753

7.926

Back

10.416

10.047

9.501

9.772

9.607

9.207

8.560

8.914

8.525

South
Side

12"t
12"

12"

12"

12"

9.032

8.895

7.-976

8.907

8.757

7.638

8.268

7.853

7.042

12"1 im -12"1 1" 415"1 -1 1" -12"1- 12"11 |7



Table E3.5

The Values of $abs x 10-8 Measured in the Lower Layer of the Pedestal in Assembly II

Experiment #3

E(rel),= 0.9853

N,= 24.77

Power -= 40 kw

North
Side

6"'

12"1

12"1

South 12"
Side 1

12"1

12"1

6"

6"

Back



Table E3.6

The Values of $Pabs x 10-8 Measured in the Upper Layer of the Pedestal in Assembly II

Front

Experiment #3

E(rel) = 0.984

N = 24.77

Power = 40 kw

\dl

North
Side

0.910

1.319

1.356

1.288

1.181

0.773

1.470

2.084

2.095

1.994

1.875

1. 167

1.580

2. 230

2. 243

2.174

1.944

1.226

1.564

2. 257

2. 184

2.083

2.008

1.230

1.418

2.053

2.045

1.980

1.854

1.141

0.898-

1.317

1.340

1.253

1.163

0.728.

12"

South +
Side 1

121

12"

6"

Back

6" 12"1 12"1 1 12"1 -1 12"1 -12"1



4 Table E3.7

The Value of tabs x 10-8 Measured on the Honeycomb in Assembly II with the Pedestal Extended in the Back

Experiment #4

E(rel) = 1.001

N = 25.25

Power -= 40 kw

\J1
LA.)

Front

Back

1l"

12"

12"

12"

12"



Table E3.8

The Values of $abs x 10-8 in the Lower Layer of the Pedestal on Assembly II

with the Pedestal Extended in the Back

Experiment #2

E(rel) = 0.991

N,= 25.25

Power = 40 kw

North
Side

Front

T

12"

12"

South 12"
Side

12"

12"1

6"

6"

Back



Table E3.9

The Values of $abs x 10-8 in the Upper Layer of the Pedestal in Assembly II

with the Pedestal Extended in the Back

Front

Experiment #4

E(rel) = 0.998

N = 25.25

Power = 40 kw

\J1

North
Side

0.903

1.360

1.353

1.322

1. 204

0.927

1.492

2.082

2.115

2.022

1.842

1.429

1.539

2.257

2.237

2.150

2.028

1.495

6" 12" 12"

1.528

2.200

2.159

2.077

2.039

1.456

1.382

2.050

2.058

1.964

1.927

1.390

0.877

1.283

1.299

1.240

1.180

0.888,

12" 12" ± - 12"

±
12"1

12"

South 12
Side

12"1

12"1

6"

6"

Back



Table E3.10

The Values of $abs x 10-8 Measured on the Honeycomb of Assembly III

Experiment #5

E(rel) = 1.004

N = 28.23

Power = 40 kw

\-n

Front

6.822

7.996

7.744

7.850

8.511

8.522

8. 199

8.808

8.808

North
Side

7.750

7.366

6.558 -

8.365

8.251

7.306

8.669

8.365

7.520

Back

8. 251

8.759

8.757

8.080

8.489

8.570

6.886

7.953

7.819

South
Side

12"

12"

12"

7"1

8.591

8.240

7.415

8.305

7.971

7.138

7.690

7.394

6.490

1 "- 1 "- 1 " .1 " - I : -12"1 112 1- 15'



Table E3.11

The Values of $Oabs x 10-8 Measured in the Lower Layer of the Pedestal in Assembly III

:.Front

Experiment #5

E(rel) = 1.0107

N = 28.23

Power = 40 kw

North
Side

3.590

4.611

4.466

4.424

4.212

3.199

4.583

5.724

5.856

5.722

5.456

4.077

4.845

6.129

6.034

5.920

5.629

4. 267

4.937

6.166

6.012

5.793

5.525

4.150

4.747

5. 755

5.758

5.526

5.285

4.042

3.449

4.420

4.511

4.316

4.018

3.126

6" Ise ft in 2" 12" Jam 12" - ---

6"

t
12"1

12"

South 12
Side

12"

-12"

6"

6"

Back

12"1 12"1



Table E3.12

The Values of $abs x 10-8 Measured in the Upper Layer of the Pedestal in Assembly III

Front

Experiment #5

E(rel) = 0.9947

N = 28.23

Power = 40 kw

*.7I

North
Side

0.797-

1.220

1.240

1.222

1.107

0.721

1.225

1.906

1.985

1.915

1.804

1.148

1.320

2.017

2.125

2.065

1.864

1.164

1.345

2.021

2.044

2.014

1.847

1.140

1.238

1.870

1.935

1.873

1.758

1.067

6"1 -12" :.. -: 12" 12" : -12"1 -12"

Back

4

0.758

1.193

1.232

1.192

1.087

0.693

12"
t
12"+

12"

12"

6"

South
Side

6"



Table E3.13

The Values of $abs x 10-8 Measured on the Honeycomb in Assembly III

Experiment #6

E(rel) = 1.00(

N = 25.86

Power = 40 kw

.nf

Back

12"

12"

1 "

12"

12"

.- 6- WIN"



Table E3.14

The Values of $abs x 10-8 Measured on the Honeycomb in Assembly IV

Experiment #7

E(rel):= 1.004

N = 25.76

Power = 40 kw

0

Front

6.774

6.946

6.576

7.585

7.321

6.920

7.716

7.519

7.111

7.772

7.402

7.081

7.391

7.239

6.966

North
Side

6.383

6.104

5.568

6.688

6.417

6.060

6.877

6.474

6.228

6.727

6.713

6. 264

6.762

6.529

6.022

15' 12" 12" 12" 2" -12" : 12'11 M 12

Back

6.888

7.046

6.634

South
Side

12"

12"

12"

12"

12"

6.379

6.106

5.566



Table E3.15

The Values of 'abs x 10-8 Measured in the Lower Layers of the Pedestal in Assetibly IV

Front

Experiment #7

E(rel) = 1.001

N = 25.76

Power= 40 kw

North
Side

3.493

4,096

3.881

3.608

3,585

3.021
1

4.104

4.768

41546

4.356

4.222

3.648

4,318

4,816

4.661

4.442

4.311

3.708

4. 256

4.911

4.585

4.396

4.345

3.716

4.100

4.607

4.458

4.307

4.157

3.655

3.472

4.049

3.919

3.656

3.425

2.982

-r
6"

t
12"-
12"

South 12"

Side

12"

12"

6"6" 12" 12"1 12 12' -oo 12"

Back

o



Table E3.16

The Values of Oabs x 10-8 Measured in the Upper Layer of the Pedestal in Assembly IV

Front

Experiment #7

E(rel) = 0.9973

N a 25.76

Power = 40 kw

North
Side

0.774 1.063

1.127 1.582

1.148 1.567

1.073 1.494

1.024 1.411

0.761 1.077

1.113

1.651

1.662

1.596

1.458

1.097

1.143

1.666

1.633

1.525

1.482

1.103

1.072

1.557

1.559

1.470

1.419

1.030

6" 4,4 .-Igo 12" am 12" : - 12"12

Back

0.793

1.112

1.146

1.063

0. 9942

0.737

12"

-7-
611

12"

12"

South 12"

Side

12"t

12"

6"1

6"1



Table E3.17

The Values of $abs x 10-8 Measured on the Honeycomb in Assembly V

Experiment #8

E(rel) = 0.9866

N = 33.14

Power = 30 kw

Front

2' 12"

Back

12"

12"

12"

12"±21



Table E3.18

The Values of $labs x 10-8 Measured in the Lower Layer of the Pedestal in Assembly V

Experiment #8

E(rel).= 1.000

N = 33.14

Power = 30 kw

3. 203

3.259

3. 226

4.128

4.191

4.018

4.314

4.363

4. 226

4. 261

4.340

4.081

4.185

4.045

3.987

3.162

3.172

3.213

North
Side

3.072

2.810

1.956

3.820

3.609

2.592

3.962

3.638

2.659

3.951

3.619

2.628

3.810

3.631

2.562

3.037

2.672

1.908

12" - 12 12 12 2" 15

Back

South
Side

7"

12"

12"

12"

1 "



Table E3,19

The Values of $Vabs x 10-8 Measured in the Upper Layer of the Pedestal in Assembly V

Front

Experiment #8

E(rel) = 1.000

N = 33.14

Power = 30 kw

0.770

1.068

0.934

1.217

1.646

1.440

1. 288

1.781

1.515

1. 214

1.708

1.498

1.149

1.560

1.399

0.762

1.018

0.911

North
Side

0.914

0.905

0.488

1.358

1.393

0.728

1.478

1.440

0.773

1.478

1.494

0.753

1.372

1.368

0.710

0.886

0.868

0.459

15" .12 12" 12 12" 2 151

Back

South
Side

12"

12"

12"

1 "

-,-- -- ,-4 --- 1--,-----,- -- W-9



Table E3.20

The Values of $abs x 10-8 Measured on the Honeycomb in Assembly V

Experiment #9

E(rel) = 1.011

N = 31.32

Power- 30 kw

CY\

Front

5.670

5.760

5.410

6.351

6.087

5.937

6.691

6.392

6.074

6,609

6.437

6.162

6.289

6.182

5.922

5.725

5.863

5.706

North
Side

5.301

4. 720

3.826

5.666

5.281

4.333

5.717

5.421

4.593

5.906

5.365

4.499

5.633

5, 216

4.247

5.277

4.842

3.823

15" 121" 12" 12" 12" 12' 15

Back

South
Side

-v

1"

1 "

12"

------ ------ -_.____,__ law

I



Table E3.21

The Values of 0 abs X 108 Measured in the Lower Layer of the Pedestal in Assembly V

Experiment No. 9

E(rel) = 1.011

N = 31.32

Power = 30 kw

North
Side

6"

3.036 +

12"

3.034

12"

3.020

12"

2o825 South 4
Side 12

2.575+

12"

1.855
6"

6"

Back



Experiment #9

E(rel),= 1.004

N = 31.32

Power = 30 kw

Co

Table E3.22

The Values of $abs x 10-8 Measured in the Upper Layer of the Pedestal in Assembly V

Front

0.776

1.047

0.910

1.199

1.609

1.404

1.315

1.665

1.464

1.229

1.672

1.481

1.128

1.547

1.360

0.741

0.979

0.888

North
Side

South
Side

0.874

0.854

0.465

1.331

1.336

0.712

1.437

1.436

0.747

1.440

1.413

0.745

1.321

1.320

0.696

0.858

0.842

0.451

5" 12" 12" 12" 12" ' 12" - 15"

Back

12"1

12"1

1 21

1



Table E3.23

The Values of $abs x 10-8 Measured on the Honeycomb of Assembly VI

Experiment #10

E(rel),= 0.9907

N:= 36.15

Power = 30 kw

'\

Front

9.133

9.442

9. 163

10.606

10.504

10.038

11.289

10.903

10. 224

North
Side

8.866

7.860

6.253

9.345

8.550

7.063

9.843

8.781

7.376

Back

11. 177

10.861

10. 241

11. 104

10.375

9.986

9. 270

9.632

9.153

South
Side

9.666

8.893

7.281

9.398

8.763

7.028

8.640

7.880

6.183

12"1

12"

1211

-
71"

12

15"1 -:12"1 12"11 :: 12"1 -12"1 121 15'



Table E3. 24

The Values of $Vabs x 10-8 Measured in the Lower Layer of the Pedestal in Assembly VI

Experiment #10

E(rel).= 0.9467

N!= 36.15

Power-= 30 kw

North
Side

Front

6" 12" 12" ' 12" - 1 2 "11 :. - 12"

Back

T

12"

12"

South +20
S ide 42

42
6"

6"

0



Table E3.25

The Values of $abs x 10-8 Measured in the Upper Layer of the Pedestal of Assembly VI

Front

Experiment #10

E(rel) = 0.9573

N = 36.15

Power = 30 kw

Hj North
Side

6"

1. 161

1.803

1.497

1.447

1.368

0. 731

1.779

2.637

2. 276

2. 221

2.089

1. 120

1.901

2.830

2.438

2.429

2. 275

1.185

1.959

2.870

2.452

2.381

2. 261

1.181

1.768

2.586

2. 258

2.195

2.128

1.102

1.099

1.666

1.450

1.425

1. 326

0.718

-T-6"

12"

12"

South 1
Side 12"

12"

12"

6"

6"ow-12"1 -- : - 12"1 12": 12" 12"

Back



Table E3. 26

The Values of $abs x 10-8 Measured on the Honeycomb in Assembly VI

Experiment

E(rel).= 0.

N = 34.82

Power= 30

2" .: 12" 4 ' - 12

#11

9747

kw

.Front

9.185

9.582

9.167
---

10.863

10.525

10.124

11.204

10.985

10.410

10.949

10.753

10.180

North
Side

10.818

10.290

10.150

9.211

9.643

9.167

8.838

7.919

6.290

9.623

8.488

7.188

South
Side

9.913

8.967

7.293

A
7"

12"

1"

12"

12"

if!

9.572

8.769

7.284

9.363

8.416

6.992

8.587

7.860

6.241

Back

15"1 - 12"1 -12"1 1



Table E3.27

The Values of $abs x 10-8 Measured in the Lower Layer of the Pedestal in Assembly VI

Front

Experiment #11

E(rel) = 0.981

N = 34.82

Power= 30 kw

North
Side

6" 12" 12" 12" 12"

5.264

5.868

5.633

5.210

4.766

3.248

7.031

7.441

7.207

6.772

6.171

4.306

7.487

7.952

7.315

7.054

6.443

4.491

7.373

7.843

7.380

6.905

6.277

4.533

7.110

7.225

7.010

6.673

5.991

4. 288

5. 108

5.726

5.541

5.159

4.553

3. 234

:±--12"

12"1

12"1

South 12"
Side

12"

12"

6"

6"

Back



Table E3.28

The Values of $ abs x 10-8 in the Upper Layer of the Pedestal in Assembly VI

Front

Experiment #11

E(rel) = 0.9627

N = 34.82

Power = 30 kw

North
Side

1.178

1.727

1.550

l458

1.446

0. 775

1.825

2.649

2.355

2. 199

2. 271

1. 158

1.965

2.928

2.548

2.434

2.402

1. 224

1.954

2.848

2.487

2. 328

2.384

1. 221

1.131

1.665

1.537

1.850

2.634

2.327

2. 210

2. 259

1. 136

1.403 1

1.420

0.749

12" - |. -121

61"

12"1

South 12"
Side

12"

12"1

6"

6"

Back

6"1 12"1 12"11 12"11-



Table E3.29

The Values of 4$abs x 10-8 Measured on the Honeycomb of Assembly VII

Front
A
7"

Experiment #12 6.917 8,051 8.294 8.527 8.185 7.336

E(rel) = 0,996

N = 23.47 12"

Power 40 kw 7.968 9.129 9.135 9.174 8.695 8.599

12"'

7.858 8.283 8.802 9.091 8.766 8.043

North South
Side Side

7.444 8.367 8.661 8.519 8.513 7.830

1"

6.979 7.564 7.815 8.012 7.630 6.738

12"

5.441 6.215 6.733 6.638 6.123 5.618

15" 12" 12" 12" - 12" 12" 15

Back



Table E3.30

The Values of $abs x 10-8 Measured in the Lower Layer of the Pedestal in Assembly VII

Front

Experiment #12

E(rel) = 0.9960

N= 23.47

Power = 40 kw

North
Side

3.981

4.924

4.958

4.396

3.996

2.711

5.169

6.121

5.905

5.652

5.159

3.524

5.532

6.357

6.331

5.997

5.380

3.727

5.486

6.430

6.230

6.076

5.285

3.593

5.507 3.865

6.137

6.046

5.646

4.977

3.579

4.833

4.6 29

4.411

3.932

2.679

6" - 12"

6"

12"

12"

South 12"
Side

12"

126

6"1

Back

- I N W i -, I I I -.- M-M ., i

12"1 - 12"11 - 12"1 -2"1 a



Table E3.31

The Values of $abs x 10-8 Measured in the Upper Layer of the Pedestal in Assembly VII

Front

Experiment #12

E(rel) = 0.9813

N = 23,47

Power = 40 kw

North
Side

0967

1.559

1370

1.296

1. 278

0. 710

1.479

2.417

2. 148

1. 926

1.981

1.022

1.588

2.583

2. 254

2. 141

2. 262

1.090

1.584

2.446

2. 227

2.086

2.189

1.113

1.464

2.377

2. 106

1.923

2.044

1.040

0.966

1.542

1.356

1. 284

1. 243

0.661

6"

12"

12"

South 12"
Side

12"

12"

Back

6"1 12"1r1 12"1 -12"1 2"1 12' 6"



Table E3.32

The Values of $abs x 10-8 Measured on the Honeycomb in Assembly VII

Front

Experiment #13

E(rel) = 0.9973

N = 26.57

Power = 40 kw

cD

7.158

8.035

7.983

8.181

8.804

8.851

8.653

9.186

9.038

North
Side

7.796

6.882

5.395

8.346

7.623

6.149

8.824

7.938

6.458

Back

8.658

9.100

9.048

8.416

8.892

8.851

7.248

8. 229

8.040

South
Side

12"

12"

12"

12"

12"

8.558

7.992

6.457

8.381

7.794

6.203

7.809

6.961

5.339

,r 1" r -12"1 12"1 MI 12" 1" 12 - - 5



Table E3.33

The Values of $abs x 10-8 Measured in the Lower Layer of the Pedestal of Assembly VII

Front

Experiment #13

E(rel) = 0.9947

N = 26.57

Power= 40 kw

North
Side

6" -- 12" r12"-- 12" - 12" 12"1

3.674

4.659

4.657

4.385

3.786

2.560

4.905

6.069

6.006

5.640

4.969

3.413

5.076

6.503

6.389

5.964

5.311

3.662

5. 235

6.489

6.344

5.918

5.263

3.624

5.047

6.006

6.014

5.635

5.018

3.388

3.680

4.759

4.609

4.315

3.757

2.593

12"

12"

South 12"
Side

12"

12"

6"

Back

kG



Table E3.34

The Values of $abs x 10-8 Measured in the Upper Layer of the Pedestal of Assembly VII

Frnnt-

Experiment #13

E(rel) = 0.9867

N = 26.57

Power = 40 kw

North
Side

0.850

1. 280

1.285

1.237

1.071

0.610

1.313

2.045

2.099

1.929

1.630

0.968

1.409

2. 205

2.175

2.109

1. 824

1.016

1.394

2. 118

2.162

2.004

1. 749

1.005

1.319.

1.977,

2.020

1.854

1.603

0.953

1.179

1. 028

0.578

0.806

1. 243

1.278

6" 12" 12" --- 12"- 12" 12" -4-- 6"

Back

o

6"

12"

12"

South 12"
Side

12"

12"1

41.



Table E3.35

The Values of $abs x 10-8 Obtained in Experiment #14

Top

8.972 9.504 9.131 8.757 8.181 7.864

10.169 9.713 9.435 8.725 8.763 8.991

9.859 10.049 9.435 8.909 8.650 8.434

Side Wall - North

Top

Back

Back

Side Wall - South

81

Front

Front



Table E3.35 (continued)

South Side

North Side

Top

8.375 8.713 9.000 8.894 8.688 8.269

9.194 9.250 9.444 9.375 9.306 9.263

8.981 9.511 9.377 9.364 9.140 8.987

Back Wall

Front

9.868 10.992 11.451 10.066

9.492 9.811 9.766 9.575

8.949 9.134 9.192 9.160

8.432 8.579 8.738 8.700

8.196 8.432 8.445 8.355

7.992 8.279 8.451 8.349

Back

Floor

North Side

South Side

82



Table E3.35 (continued)

North Side

Front

9.225 10.650 10.394 8.725

9.494 10.006 9.844 9.269

9.150 9.413 9.388 8.788

8.856 9.019 9.013 8.431

8.144 8.613 8.750 8.106

7.563 8.263 7.944 7.363

Honeycomb Surface

Top

North Side South Side

Bottom

Thermal Column Face

83

South Side



Table E3.35 (continued)

Top

31.742 27.966

36.796 30.681

36.469 30.362

30.889 27.180

Frame - North Side

Back Front

Top

31.065 27.06

35.471 30.249

35.672 29.709

30.437 26.621

Frame - South Side

BackBack

27.901 31.448 31.441 27.449

33.959 41.617 38.830 31.686

Front

Frame - Top

Front

Frame - Bottom

84

Front Back



Table E3.36

The Values of $abs x 10-8 Obtained in Experiment #15

Top

Front 9.873 9.810 10.476 9.790 10.483
Array

9.914 10.830 10.476 10.310 10.143

10.879 10.574 11.559 10.247 10.310

11.004 10.733 10.997 10.976 11.822

10.920 11.781 11.309 10.511 11.316

Bottom

Top

Middle 9.274 9.599 9.835 9.989 8.942
Array

9.828 9.572 9.523 9.952 9.288

9.544 10.278 10.056 9.419 9.987

10.243 9.862 9.641 10.181 9.689

9.918 9.696 9.696 10.112 9.966

Bottom

85



Table E3.36 (continued)

Top

8.672 8.664 9.228 8.862 8.357

9.345 9.236 9.455 9.389 8.738

9.660 9.843 9.411 9.580 9.638

9.280 9.739 9.441 9.280 9.477

9.748 9.455 9.338 9.514 9.177

Bottom

86

Back
Array



Chapter E4

Absolute Flux

The conversion factor between the absolute flux, abs, and the

relative activity, Act(rel), calculated by Equation E3.2, was obtained

by irradiating a cobalt foil and a copper foil in the same flux. The

absolute disintegration rate of the cobalt foil was measured by coin-

cidence counting, and from the absolute disintegration rate, the absolute

flux which irradiated the cobalt foil was calculated. The conversion

factor was obtained by comparing this absolute flux to the value of

Act(rel) for the copper foil irradiated in the same flux.

E4.1 Irradiation Procedure

A 5 mil, 1" diameter cobalt foil was punched, filed, cleaned and

weighed. It was placed in one of the two locations in the thermal column

used for the copper monitor foils for the flux distribution experiments;

a copper foil was placed in the other position. The two copper monitor

foils used in the flux distribution experiments were found to have the

same activity within 0.5% and thus the flux was the same in both locations

in the thermal column. The procedure for irradiating the copper and cobalt

foils was the same as that used in the flux distribution measurements.

E4.2 Determination of the Absolute Disintegration Rate

After the 10.5 min isomer of Co60 was allowed to decay, the absolute

decay rate was measured by a coincidence counting of the two gammas from

60
Co The coincidence system, built by Mr. A. Weitzberg, counts the photo-

electric peaks due to the 1.17 and 1.33 Mev gamma rays entering the two

detectors of the system. The base line of each channel was set at about

1.0 Mev, with an infinite channel width. The correction for dead time,

which is about 27 .c (12), was negligible for these count rates.
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Table E4.1

Results from Coincidence Countings of 4 tc Co60 Standard

and the Cobalt Foil in the Thermal Column

Total Counts

Channel #1 Channel #2 Coincidence

Absolute
Disintegration

Rate

Background

pLc Source

Co foil

30 min.

60 min.

300 mm

606

173,586

650,343

633 1

195,932

693,432

289

1147

1.635 x 104
dis/sec.

1.082 x 104
dis/sec.

88
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Coincidence counts were also taken for pc Co60. source and for the background.

The equation for the absolute disintegration rate, R abs is

R R
R = 2 (E4.1)as 2R

c

where

R = the count rate in Channel #1 corrected for background,

R2= the count rate in Channel #2 corrected for background,

Rc = coincidence count rate corrected for background.

The results of the coincidence counting are given in Table E4.1.

E4.3 Calculation of the Absolute Flux

Equation(E4.2)gives the standard relationship between the flux

activating a foil and the foil activity for the case of ?T r<<.

(See Chapter E3.4 for the nomenclature):

Act (dis/sec) (E4.2)
s C W E \T

a r
P

The absorption cross section, E , is rewritten as

cxPN

a A (E4.3)

where

Sa =the absorption cross section of Co59

N = Avogadro's number,

A atomic weight of Co5

p = density of cobalt, gm/cm 3

The activation experiments with a 1/v absorber actually measure the

neutron density, n. For these calculations the 2200 m/s, absorption

cross section, aa (2200, is used to obtain the neutron flux :
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Act$ =n v m/s = At(E4. 4)2200 2200 C W Ea (22001 N 0AT (

A

The correction for flux depression, F , and self-shielding, F., were

calculated from the equations given in ANL-5800 (11).

Insertion of the values:

*7 6 -1C = F. F = (1.0134) , = 2.4877 x 10 min
iso sp

a a2200I= 37 barns, Tr = 30 min,

a9
W = 0.5688 gm, A = 59,

23
N = 6.025 x 10 atoms/gm-moles,

Act= 1.082 x 104 dis/dic

into equation(E4.4)yields:

9 2
$2200 7.356 x 10 n/cm sec. at 40 hw.

The relative activity, Act(rel), of the copper foil exposed to the same

flux in the thermal column was calculated from equation(E3.2)and was

found to be 1.0826 x 108 dis/min gm. The conversion factor, K, between

Act(rel) and the absolute flux was found to be

7.356 x 109K == 6795 .
1.0826 x 10

The relative activity of the copper foils was multiplied by K to obtain

the absolute value of the flux in the flux distribution experiments.
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Chapter E5

The Cadmium Ratio Experiment

E5.1 Introduction

The cadmium ratio for gold foils was measured on the thermal column

face, the floor, side and back walls, the honeycomb, and in the pedestal.

The high values of the cadmium ratio obtained on all the surfaces in-

dicated that the neutrons in the cavity are, indeed, thermal. The theoretical

model that will be used later is based on the assumption that all the

neutrons are thermal. The activity of copper, whose cross section does not

display any appreciable low-energy resonances, was considered to be due

only to thermal neutrons, and was therefore used to measure the thermal

flux distribution in the assembly.

E5.2 Selection of the Foil Material

The cadmium ratio was measured with " diameter, 3 mil gold foils,

covered with 20 mil cadmium. Gold is commonly used for cadmium ratio

experiments, and was well suited for this one. A bare gold foil after an

irradiation of 30 minutes at a reactor power of 40 Kw, produced a count

rate of about 5000 CPM, ample for good counting statistics. An accurately

measured thermal cross section of 97 barns and an effective resonance

integral of 1558 barns mean that gold is activated by both epithermal

and thermal neutrons.

E5.3 Foil Preparation

The procedure for punching, cleaning, and weighing the gold foils

was the same as that described for copper foils (see Appendix Al). A

gold foil was placed between two 20 mil cadmium covers and the covers

were pressed tightly together. The cadmium covered foils were inspected



under a magnifying glass to determine whether the cadmium covers completely

sealed off the gold.

E5.4 Positioning of the Foil

The experiment was performed in two irradiations, one with all of the

bare foils, and one with all of the cadmium covered foils. The bare and

cadmium covered foils were irradiated separately because the cadmium perturbs

the thermal flux and thus the activity of the bare foils; a perturbation in

the thermal flux has no influence on the activity of the cadmium covered

foil. The bare foils were located on the surfaces of the cavity and in the

pedestal as illustrated in Figure E5.1. The number and the position of each

foil was recorded in the data book. (See Appendix Al of the thesis for the

details of the experimental procedure.) After the bare foils had been

irradiated and removed, the cadmium covered foils were put within 1/8" of

the same location and irradiated. All of the foils were held in place with

mylar tape on the surfaces of the cavity assembly or were placed in the

notches drilled in the graphite stringers of the pedestal.

Two monitor foils were located on the graphite frame in each irradiation;

they measured the neutron flux level in the cavity assembly during each

irradiation. The activities of the bare and cadmium covered foils were

compared on the basis of the same neutron flux by means of these monitor

foils. The irradiation procedure in the cadmium ratio experiments was

identical to that described for the flux distribution measurements.

E5.5 Counting Equipment

The only differences in the counting equipment used in the cadmium

ratio and the flux distribution experiments was that a scintillation

detector was substituted for the gas flow detector and time delay controller.
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Figure E5.1 The Locations on the Walls of the Assembly
- at which the Cadmium Ratio was measured.
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A scintillation detector was used because it is much more sensitive to

gamma rays than to beta particles.

The advantage of counting gamma rays lies in the fact that very

few gammas are absorbed in the 3 mil thick gold foil. Thus, the thickness

of the foil, which may be difficult to measure accurately, does not enter

into the calculations, and the count rate for gamma rays was taken to be

proportional to the weight of the gold foil.

E5.6 Counting Procedure

The cadmium was removed from the covered foils. All of the foils

were cleaned and placed in planchets. The " diameter foils were

positioned in the center of the 1-1/16" diameter planchets and were held

in position with vaseline. The foils irradiated without covers and those

irradiated with covers were counted separately. Two different background

counts were taken, one with only bare foils in the automatic sample

changer, and the other with only cadmium-covered foils in the automatic

sample changer. The activity of the covered foils was very low and an

accurate background was needed to determine this activity. The order in

which the foils were counted, the time at the start of counting, and the

preset count were recorded on the paper tape of the printer. A Co60

standard foil, a gamma emitter, was used to measure any variations in

the counter efficiency. Except for using a Co60 foil instead of a RaDWE

foil as a standard, the procedure for counting the foil was the same as

that described for the copper foils.

E5.7 Data Reduction

The cadmium ratio is the ratio of the activity of the bare foil to

that of the cadmium covered foil, or
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R =Act(rel) bare (E5. 1)cd [Act(rel)] covered

When the expression for the saturated activity, equation(E3.2.)~ is sub-

stituted in equation(E5.1), the resulting equation for the case of the

same value of T is:
r

PC-BGD C___ _ +AT1

TCA ?eT C e D - E(rel)* N/W
J 1-e bare (E5.2)

R = (E.2
cd PC-BGD 7\T C + \T

[ C 1-e J covered

Since the quantity TC is very much less than unity, equation(E5.2)takes

the form:

PC-BGD e D E(rel) * N/W

R = TC I bare (E5.3)
Tcd PC-BGD e MD E(rel) o N/W
T C J covered

The ratio of the counting efficiencies, E(rel) bare for the
E(rel) covered'

bare and covered foils is obtained from the ratio of the counting rates

ofth C6 tadad (SCR bare)of the Co standard, SCR covered) , where SCR is the count rate of the

standard Co60 foil during the counting of the foils. The ratio of the

N bare
normalization constants, N ,re - is equal to the ratio of the count

N coveredCR(SAT)/W 
covered

ratio for the two sets of copper monitor foils, Ee C
[E(rel)* CR(SAT) /W bare

As was the case for copper foils, no dead time correction was

necessary because the count rates did not exceed 20,000 CPM. The values

of the cadmium ratio in the cavity assembly were calculated by using equation

t5.3)and the results are given in Table E5.1.
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Table E5.1

Results of the Cadmium Ratio Measurements

Upper Pedestal

Lower Pedestal

Honeycomb

Floor

Back Wall

Side Wall (north)

Side Wall (south)

Thermal Column
Face

Bare - CPM/gm

967 + 10

2897 + 29

4455 + 45

4426 + 44

4402 + 44

4223 + 42

4219 + 42

9120 + 91

Covered - CPM/gm

1.63 + 1.46

2.90 + 1.49

4.86 + 1.51

3.41 + 1.50

5.62 + 1.52

2.75 + 1.49

2.78 + 1.49

7.36 + 1.54

Cadmium Ratio

593 + 531

999 + 514

917 + 285

1298 + 571

783 + 212

1536 + 833

1518 + 814

1239 + 259
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E5.8 Discussion of Experimental Results

In all cases the count rates of the covered foils were within seven

counts of the background rate of 63.4 + 0.73 CPM. The highest count

rates were obtained on the thermal column face and thus the smallest

uncertainty in the cadmium ratio was in the value of 1239 for the thermal

column face.

Since the source neutrons entered through this surface, the cadmium

ratio of 1239 shows that the source neutrons had a thermal spectrum, and

thus the neutrons on the other surfaces must also have had thermal spectrum.

All of the cadmium ratios were close to 1000, except for those measured

in the back wall and in the upper layer of the pedestal. The uncertainty

in the background and the count rates of the covered foil explain the low

cadmium ratio in the upper pedestal. The cadmium ratio should be highest

in this position and should be higher than that of the source neutrons.

However, an accurate cadmium ratio in the upper pedestal was difficult to

measure because of the small magnitude of the flux. The background rate

was 63.4 + 0.7 CPM; the count rate for the foil in the upper pedestal and

its standard error are: (65.04 + 0.73) + (63.41 + 0.73) = 1.63 + 1.46 CPM.

Since the total activity was so close to the background activity, the foil

activity had a probable error of almost 100 percent.

The standard error in the cadmium ratio on the thermal column face,

which had about ten times more flux, is given by:

9120 + 91
R = = 1239 + 259
cd 7.36 + 1.54

The fact that the lower limit of the cadmium ratio on the thermal column

face was about 1000 shows that the neutrons entering the cavity are thermal,

and thus the neutrons in the entire assembly are thermal.
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Chapter E6

Measurement of the Albedo of Graphite

E6.1 Discussion of the Experiment

The albedo of the material forming the walls of the cavity is used

in the theoretical model (see Chapter T3) for calculating the flux

distribution on the surface of the cavity. The general definition of

the albedo of a medium A is the ratio of the current leaving medium A

to the current entering medium A. If Jout refers to the current leaving

and J. refers to the current entering, the albedo p is defined by the
in

relation:

p = uJ /J. .n (E6.1)
out in

The albedo may refer to the ratio of the current at a point or over

an area on the interface of two media. The albedo of graphite has been

measured by foil activation inside a large slab, with the aid of a

correction for the perturbation caused by the foil; in this case Medium A

and the adjoining medium are both graphite. In the cavity assemblies of

the present study, the adjoining media are graphite and air, and informa-

tion is needed about the albedo of the graphite. An experiment was de-

signed to measure the albedo over the area of a foil on the surface of a

graphite wall in such a way that no correction for the perturbation caused

by the foil was needed.

Consider a wall on which a neutron current, J. , is incident, and

from which a neutron current, J , is leaving. See Figure E6.la. Four

sets of foils were used to measure the ratio of these currents. The

experiment consisted of irradiating each saL of foils at the same place

on a graphite surface. The sets of foils consisted of: (1) a bare gold

foil, (2) a gold foil with a cadmium foil between the wall and the gold
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Figure E6.1 Arrangement of the Foils for the Four

Irradiations of the Albedo Experiments,
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foil, (3) a gold foil between a cadmium foil and the wall, (4) a gold

foil between two cadmium foils. The arrangements are shown in Figure E6.1

with arrows indicating the unperturbed values of J. and J . The currents,in out

J. and J , are considered to be composed only of thermal neutrons. Note
in out

that the cadmium and gold foils have the same diameter. The following nomen-

clature is used:

"Act',' is the activity of the gold foil due to the absorption of neutrons,

"f. i" is the fraction of J. that is absorbed in the gold foil,
in in

"fout' is the fraction of J that is absorbed in the gold foil,
out out

"fast effect" is the activity of the gold foil due to fast neutrons,

"P" is the fraction of J. which contributes to J ; note that Jin
in out'i

and Jout refer to the currents incident on the foil and not on

the entire wall,

"edge effect" is the activity due to neutrons striking the edge of

the gold foils.

In irradiation #1, the activity, Act.1, is due to the fraction of J.in

absorbed, plus the fraction of the perturbed value of Jout absorbed, plus

the fast and side effects. The quantityJ out' however, is reduced by the

fraction of J. which- does not contribute to J because it was absorbed
in out

by the bare gold foil. Then,

Act.1 =.f J. + f (J - f. J. P),+ fast effects +
in in out out in in

edge effects. (E6.2)

Since the .cadmium is assumed to be black to thermal neutrons and trans-

parent to fast neutronsAct.2 is due to f. J. , plus the edge and fast

effects:

100



Act.2 = f. J. + fast effects + edge effects. (E6.3)
in in

Activity #3 (Figure E6.lc) is due to absorption of the perturbed value

of J out Since f . = 1.0 in this case, Act. 3 is given by:out in

Act.3 = (J - PJ. ) + fast effects + edge effects. (E6.4)
out out in

Since no thermal neutrons strike the sides of the gold foil, the activity

in irradiation #4 is:

Act.4 = fast effects + edge effects. (E6.5)

The quantity, Act.4, is subtracted from Act.1, Act.2, and Act.3, resulting

in Act.l', Act.2', and Act.3', respectively.

The ratios of Act.l'/Act.2' and Act.3'/Act.2' are then obtained:

f
Act.l' = 1 out f P (E6.6)
Act.2 f. out

in

and

Act.3' fout - (E6.7)
Act.2' f. P)

in

where p = J /J. .out in

Equations (E6.6)and(E6.7)are combined to eliminate P and to obtain an

expression for P:

(Act.1 - Act.4) (Act.3 - Act.4)
(Act.2 - Act.4) in (Act.2 - Act.4) (E6.8)

fout

f. in
in

If f = f , equation(E6.8)becomes:

out in

(Act.1 Act.4) - n (Act.3 - Act.4)
(Act.2 - Act.4) in (Act.2 - Act.4) (E6.9)

S-f.
in
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If f. is less than 0.10, equation(E6.9)is quite insensitive to the
in

exact value of f. . For example, let
in

Act.1 - Act.4 Act.3 - Act.4
Act.2 - Act.4 Act.2 - Act.4 -

both of which are realistic values. By substituting three values for

f. (0.05, 0.075, and 0.100) into equation(E6.9), the values of 0.8995,
in

0.9009 and 0.9011, respectively, are obtained for the albedo. A change

by 100 percent in the value of f. (0.05 to 0.10) results in a change of
in

less than one percent in the value of the albedo. If the assumption of

f. = f is justified, the albedo on the surface of a graphite slab can
in out

be measured accurately without any corrections for the perturbation of

the currents J. and J o
in out

E6.2 Experimental Procedure

A 3 mil, 2" diameter gold foil was used in the experiments. These

foils result in a high count rate (5000 cpm) and a value of about 0.10

for f. or f . Gold is mainly an absorber and has an accurately
in out

measured absorption cross section for thermal neutrons. Both of these

factors aid in the calculation of fn or f out A 20 mil cadmium foil

was used as a black foil, The gold foils were punched and the burrs were

removed carefully so that the diameter of the gold and cadmium foils were

the same. Each foil was inscribed with an identification number and then

cleaned and weighed. The 20 mil, 4" diameter cadmium foils were attached

to the gold foils with glyptal. The composite foil was examined under a

magnifying glass to insure that the gold was completely covered by the

cadmium foil.

Measurements were made on five surfaces of the cavity assembly: on

the floor, side and back walls, and the bottom of the honeycomb; see
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Figure E6.2 for the foil locations on these surfaces. The albedo experi-

ment was performed in four irradiations, yielding the four activities,

Act.l, Act.2, Act.3, and Act.4. In each of the four irradiations, one

set of foils (see Figure E6.1), some with cadmium covers, was placed on

each of the five surfaces of the cavity assembly. By placing the same

number of bare and cadmium covered foils in the assembly for each irradia-

tion, any small perturbations of the flux in the cavity were the same for

each irradiation. Actually, only a very small perturbation would be

expected from five " diameter foils on different surfaces, but as a

precaution, the same amount of "poisoning" was introduced into each irradia-

tion. The schedule for the irradiation is shown in Table E6.1.

The foils for each irradiation were placed in position with mylar

tape and the location and number of each foil was recorded. The position

of the four foils on each wall was reproductible within 1/8". Two

copper foils were placed on the bottom surface of the graphite frame for

each irradiation and acted as monitors for the flux level in the cavity.

The irradiation procedure was the same as that used for the measure-

ment of the flux distribution (Appendix Al of the thesis). After all four

irradiations were completed, the cadmium was removed from the composite

foils and the glyptal on the gold was dissolved and removed. The foils

were counted in two groups: the first group contained the copper monitor

foils and the gold foils which were bare, or covered on only one side;

the gold foils covered on both sides were counted separately because of

their low activity.

The counting equipment and counting procedure for the foils were

identical with those used in the cadmium ratio experiments discussed in
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Chapter E5, with one exception. A 1/4" thick steel plate was attached

to the end of the scintillation crystal to prevent any beta particles

from being counted. The reason for counting only gamma rays is best shown

by an example. Consider a gold foil which was irradiated with one side

covered with cadmium. Because neutrons enter the foil through only one

surface of the foil, the number of radioactive nuclides, Au 98, falls off

exponentially from this surface. The number of beta rays leaving one

surface exposed to the flux is greater than the number leaving the other

surface because the range of the beta ray is shorter than the thickness

of the foil. The range of the gamma ray is much larger than the thickness

of the foil and the same number leave each surface. The foils were counted

on both sides in the scintillator and found to give the same count rate.

Thus the gamma counting gave a count rate proportional to the total activity

of the foil. A Co60 standard foil was used to correct for any variations in

the counter efficiency.

E6.3 Data Reduction

Since only ratios of activities were required in Equations E6.8 and

E6.9, the absolute values for Act.1, Act.2, Act.3, and Act.4 are not

needed. The correction, N, for the differences in the magnitude of the

flux level in the cavity for the four irradiations was made by means of

the copper monitor foils. The corrections for the self-shielding were

included in f and f out No correction was necessary for the perturba-

tion in the flux caused by the foil. Using the nomenclature as defined

in Chapter E3.4, we get the following equation for the relative activity

of a gold foil:
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T +7AT
PC-BGD TC e +?Td

Act(rel) = N- E(rel) xC-BGD C e d (E6.10)
T -7AT-T
C l-e C l-e r

E6.4 Results and Discussion

The relative activities and the albedo calculated from equation(E6.9),

with f = 0.10, are given in Table E6.2. The values of the albedo

calculated from diffusion theory appear in the last row.

The measured values of the albedo disagree with those calculated from

diffusion theory. An analysis of the counting statistics of the four

activities showed that the probable error in the measured albedo is about

+ 0.025. None of the measured values of the albedo are within 0.025 of

the albedo calculated by diffusion theory. In fact, one value is greater

than unity, contrary to the definition of the albedo. The assumption

that f. = f appears to be the main source of the error in the values
in out

of the albedo. The factors, f. and f , depend on the absorption cross
in out'

section, the thickness of the foil, and also on the angular distribution

of the current incident on the foil. Although no exact information is

available for the angular distribution of J. and J , a rough calcula-
in out

tion can be performed to indicate that the main part of the error results

from the assumption that f. = f
in out

The albedo on two surfaces, the back and north walls, is calculated

for the case of f. = f . The back wall is considered first. Detailed
in out

calculations (see Chapter T5.4) show that about one-third of the neutrons

which strike the foil on the back wall are source neutrons from the

thermal column face. In Figure E6.3, it is seen that these neutrons

strike the foil perpendicularly. By assuming that the other neutrons

(2/3 of J. ) strike the foil isotropically, an effective absorption cross
in
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Table E6.1

The Schedule for the Four Irradiations of the
Albedo Experiments

Honeycomb

bare

one-'side

one-side

bothesides

Back Wall

one-side

one-s ide

both-sides

bare

Floor

one-side

both-side

bare

one-side

North Wall

both-side

bare

one-side

one-side

South Wall

both-side

bare

one-side

one-side

Table E6. 2

The Results of the Albedo Experiment

Act.1--Act.4
Act. 2-Act.4

Act.3-Act.4
Act. 2-Act.4

from Eq.E29

from diff.
theory

Honeycomb

1.762

0.7534

0. 7633

0.9124

Back Floor

2.1313 1.8649

Side Wall
North South

1.8267 1.8310

0.9842 0.7397 0.7728 0.7918

1.1480 0.8788 0.'8327 0.8352

0.9124 0.8926 0.9124 0.9124
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section can be obtained. Since the effective cross section for an isotropic

beam is approximately 2Z (11), the effective cross section E . for J.
in in

on the back wall is:

Z (2/3) (2E ) + 1/3 E = 1.67 Ein a a a

If it is assumed that the Jout is distributed isotropically on the

surface of the foil, E outis:

u= 2E .
out a

The ratio of f . /f is very nearly in , because all the foils havein out
out

the same thickness. Substituting

in 1.67 Z
fout 2.0 Z

into equation (6.8)and using the same values of the activities that

were used in calculating the values of the albedo listed in Table E6.2

and f ., results in an albedo of 0.953.

Roughly one-fourth of the current J. that strikes the foil on thein

side wall (north) is composed of source neutrons. By assuming that all

of the source neutrons are emitted in the center of the thermal column

face, (see Figure E6.4) we find that the cosine of the angle of incidence

of the source neutrons is 0.333. The effective absorption cross section

for a beam is a or 3E for the source neutrons in this case. The
cos $

value of E. is
in

E. = 3/4 (2Z ) + 1/4 (3E ) =2.25 Z .
in a a a

The corrected value for the albedo is obtained by the same procedure as
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used before and is 0.955. The corrected value for the albedo on the

other side wall is also 0.955. By applying the same procedure, corrected

values of the albedo on the honeycomb and the floor are obtained which are

closer to the theoretical values. Even though the method of correcting

the albedo is approximate, it does demonstrate that a significant error

is introduced by assuming that f. = f . The correction is in the
in out

right direction and is approximately of the correct magnitude to explain

the values of the albedo in Table E6.2.

The purpose of the albedo experiment was to measure the albedo at

many points on all of the surfaces, especially near the corners of the

surfaces. The albedo varies most rapidly near the corners where it can

not be accurately calculated by diffusion theory. Unfortunately, the

theoretical model also has its greatest uncertainty at the corners, and

thus the angular distribution of J. calculated from the results of thein

theoretical model may be in serious error. No references were found

which gave the angular distribution for a situation corresponding to

that of J . As long as the angular distribution of J. and J are
out in out

not accurately known, the experimental results cannot be corrected

accurately enough to obtain an albedo with an uncertainty less than +5%.

The uncertainty may be even greater in the corners of the assembly.

An uncertainty of this magnitude is not acceptable and, therefore, a

more precise theoretical method of obtaining the albedo was used; it is

discussed in Chapter T3.
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THEORETICAL SECTION

Chapter TI

Derivation of the Theoretical Model

The aim of this -section is the development of a theoretical model

capable -of predicting accurately the magnitude and distribution of the

neutron flux on the surfaces of a hohlraum or cavity. The equation for

the flux distribution obtained from the theoretical model has been pro-

grammed for an electronic computer and solved for the particular cavity

assemblies in which the flux distributions were measured.

Many problems, both of practical importance and of academic interest,

have been studied successfully in the field of reactor physics. The prob-

lems have involved complicated arrangements of fissionable, fertile,

moderating, poisoning, and structural materials. The method of solution

has ranged from one group diffusion theory to a numerical solution of the

transport equation requiring hours of computer time. It has often been

necessary to determine the neutron flux distributions in these compli-

cated systems. It may be -surprising, then, that the problem of predict-

ing the flux distribution on the surfaces bounding a cavity has received

little attention, especially since this information would be useful in

many reactor physics calculations. While the determination of the trans-

mission of neutrons and gamma rays through certain simple ducts in

shields, and of the effect of gas coolant channels on the flux distribu-

tion in nuclear reactors has been carried out (13 ) by other means, little

has been done to solve this type of problem by calculating the flux dis-

tribution on the surface of a cavity. Because of this lack of previous

study it is necessary to develop, in some detail, a method for predicting

the flux distribution on the surfaces of a cavity.
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The method developed in this thesis is derived from an approximate

equation for the equilibrium current striking the surface. In the inter-

est of a logical development, the exact equation for the equilibrium

current is derived first. In attempting to develop the model, difficul-

ties are encountered at the outset because a neutron travels in a straight

line in a cavity rather than by diffusion due to scattering, so that the

existing solutions of diffusion and transport theory are not applicable to

this problem. Another approach must, therefore, be used.

The system to be studied is a cavity or hohlraum surrounded by a par-

tially reflecting material or materials. In order that the development of

the model be general, the arrangement of the cavity assembly and the

material composition of the walls are not specified at this stage.

Throughout this study, the hohlraum or cavity is the air space itself,

and the cavity or hohlraum assembly is the cavity together with the mater-

ial surrounding it. An incident, or incoming neutron, is one that travels

from the cavity into the surrounding wall material, while a re-entering,

or outgoing neutron, is one that leaves the surrounding material and goes

into the cavity. By the surface of the cavity is meant the -surface of the

wall bounding the cavity. Let r define the position of a point on the

surface of the cavity; let J(r) be the neutron current (n/cm2.sec) inci-

dent on the surface at the point r, and let A(r) (cm2) be the area on

which the current is incident. The quantity J(r) is considered to be a

function of position, r, on the surface, but not of the angular distribu-

tion of the neutrons which comprise the incident current. The number of

neutrons per second incident on A(r) is J(r) A(r). The neutrons that

re-enter the cavity everywhere on the surface contribute in some degree to
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J(r) A(r), and this contribution is expressed mathematically by the equa-

tion:

J(r) A(r) = J(r") K(r,r') dA(r') + S(r') L(r,r') dA(r') (T1.l)

all source
surfaces surface

where

r' is a point on the surface from which neutrons contribute to

J(r) A(r),

J(r') is the neutron current (n/cm2 .sec) incident on the surface at

r',

A(r') is the -area at r' on the surface,

K(r,r") is the kernel defining the contribution that the neutron cur-

rent J(r') makes to J(r); when r and r' are on the same plane

surface, K(r,r') = 0,

L(r,r') is the kernel defining the contribution that the source S(r')

makes to J(r); when r and r' are on the same plane surface,

L(r,r") = 0,

S(r') is the surface distributed neutron source (n/cm2.sec) entering

the cavity at r'.

The number of neutrons that contribute to J(r) from the differential

area dA(r') is given by J(r') K(r,r') dA(r') and S(r') L(r,r') dA(r'), if

dA(r') is on the surface of the neutron source. In equation (Tl.l),

J(r') K(r,r') dA(r') is integrated over all the surfaces of the cavity,

and S(r') L(r,r') dA(r') is integrated over only the surface of the neu-

tron source to obtain the total number of incident neutrons at r.
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To make clear the physical significance of the kernels, K(r,r') and

L(r,r'), the behavior of a neutron in the hohlraum assembly will be de-

scribed. A neutron originates at a point r' on the source surface, and

travels in a straight line through the cavity to another surface; L(r,r')

is the probability that a neutron starting at r' on the source surface

will be incident at the point r on the other surface by traveling in a

straight line, and depends on the relative position of r and r', and also

on the angular distribution of the neutrons leaving the source S(r'). The

neutron, upon reaching the surface, may go through the wall without a col-

lision, or may undergo one or more collisions in the wall. It is either

captured in the wall material, or leaks out of the cavity assembly, or re-

turns to the cavity and then impinges upon another surface. The neutron

continues to undergo collisions and traversals of the cavity until it is

eventually either captured somewhere inside the assembly, or lost outside

of the assembly. The kernel K(r,r") defines the probability that a neu-

tron incident on the surface at r' will return to the cavity, pass through

it, and then impinge upon the surface at r. If a neutron incident at r'

re-enters the cavity by leaving the surface -at r'', for example, the prob-

ability that the neutron will then impinge on the surface at r depends on

the relative position of r and r'', and also on the angular distribution

of the neutrons re-entering the cavity.

Clearly then, the kernels are very complicated functions, and the

integrals would be difficult to evaluate. Even if K(r,r') and L(r,r')

could be expressed as easily integrable expressions, the solution of equa-

tion (T1.) for the current J(r) would still offer a strong challenge for

even a simple cubic cavity such as that shown in Figure T1.1. Each of the

six surfaces has its own coordinate system as shown on the drawing. The
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Figure T1.1 Cubic Cavity with a Coordinate System
for Each Surface.

115



source is located on the surface designated by (l,m) and the equation

(T1.2) can be written for the current incident on the (x,y) surface.

J(x,y) A(x,y) = F J(a,b) K(x,yla,b) dA(a,b)

A(a,b)

+ J(c,d) K(x,yjc,d) dA(c,d) + J(e,f) K(x,yje,f) dA(e,f

A(c,d) A(ef)

+ J(g,h) K(x,yjgh) dA(g,h) + J(l,m) K(x,y jl,m) dA(l,r

A(g,h) A(l,m)

+ J S(l,m) L(x,y|l,m) dA(l,m) (Tl.2)

A(l,m)

Similar equations are written for the other five surfaces, and the neutron

distribution on all surfaces can be obtained from this set of six integral

equations, at least in theory. In practice, however, an equation like

equation (Tl.2) is very difficult to solve, and the problem will be treated

in another way.

Before discussing the method used to solve equation (TL11), it is

worth mentioning an analytical treatment of a problem somewhat similar to

the present one. Simon and Clifford (14 ) derived an expression for the

neutron transmission through a cylindrical duct having partially reflect-

ing walls and open at the two ends. The equation they solved involves an

integration over one variable, the length of the duct, rather than over

two variables dii-each of five surfaces as does equation (T1.2). Their

paper was the only one found that treated analytically the case of multi-

ple scattering from the walls bounding a cavity; the method could not be

used because of the greater complexity of the present problem.



Several methods could be used to calculate the flux distribution on

the surface of a cavity. One method is to simplify equation (Tl.1) by

means of suitable approximations and solve for the equilibrium incident

current. A second method would be to use a Monte Carlo calculation which

follows many neutrons through the cavity assembly and deduces the flux

distribution from the history of the neutrons. In a third method, each

surface could be divided into small areas, all the neutrons in each area

lumped into a group, and the different groups followed around the assem-

bly. A Monte Carlo code, although it can be very accurate, is time-

consuming, and should not be used if another method is available which is

accurate and simpler. The same is true for the method which follows

groups of neutrons in a system in which the neutrons are predominantly

scattered rather than absorbed. In the cavity assemblies treated in this

study each neutron in a group of neutrons would have to be followed, on

the average, through about 10 crossings of the cavity to obtain its com-

plete history, and the calculation would be time-consuming and expensive.

Hence, the method suggested first was used, that is, an approximate solu-

tion of equation (T1l1) was undertaken.

To solve the general equation (Tl.l), the integrals are replaced by

summations:

all surfaces source surface

JiAi = JjAjKji + SA jLji (T1.3)

The quantities A. and Ai are small sub-areas on which the neutron currents

Jj and Ji, respectively, are incident, and Kj. and Lji define the contribu-

tion from Aj to Ai. It is assumed that the incident currents Ji and Jj are

constant over the small sub-areas Ai and A , respectively.
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The kernel Kji is now separated into two factors. The first factor

defines the probability that a neutron, incident on a wall in the sub-area

Aj, will eventually re-enter the cavity, and the second factor defines the

probability that the neutron upon re-entering the cavity will then strike

the sub-area Ai. The first factor is called the albedo, s, and the second

the "view factor", F Since Lji defines the probability that a source

neutron, which enters the cavity through the sub-area Aj, will pass through

it and strike the surface within the sub-area Ai, it is the same, by defin-

ition, as Fji. On substituting Ki = j Fji and Lji = Fji, equation (Tl.3)

becomes:

all surfaces source surface

iAi= s JjAjF + S AjFj (T1.4)

Equation (Tl.4) is the approximate form of equation (T1.1) used to

obtain the flux distribution on the surfaces of the cavity. The sizes of

the sub-areas are chosen to make the variation of the current within each

sub-area small enough so that the summation is a good approximation to the

integration. The magnitude of the variation in the currents that is accept-

able will be discussed in Chapters T2 and T3.

The values of the albedos, view factors, and source terms are com-

puted; then equation (Tl.4) is written for each sub-area on the surface of

the cavity, resulting in a set of simultaneous, algebraic equations. The

number of equations in this set is equal to the number of sub-areas on all

of the surfaces. This set of equations is solved for the unknowns, the

Ji's, from which the flux distribution can be calculated. Before describ-

ing the method of solution and the results obtained, the caiculation of

the view factors, albedos, and the source will be discussed.
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Chapter T2

View Factors

T2.1 Derivation of the General Equation Defining the View Factor

The use of view factors is not new; they have been used extensively

in the field of radiant heat transfer, and it is in this field that most

of the literature (15,16) on the subject is found. Particles and rays

travel in straight lines through a cavity, and the fraction of the radia-

tion transmitted to a given surface bounding a cavity can be obtained by

calculating the proper view factor.

While most books on heat transfer contain graphs of view factors for

various geometrical arrangements of the emitting and receiving surfaces,

the graphs cannot be read with the accuracy needed for the present study.

Hence, expressions -were derived for the view factors required for the

determination of the flux distribution at the surface of a cavity, and

numerical values were calculated on an electronic computer. A derivation

of the general equation for view factors follows; a more complete discus-

sion of view factors is found in Jacob's "Heat Transfer". (17) For sim-

plicity, we shall use the term "radiation", instead of "number of neutrons".

In Figure T2.1, the view factor F12 defines the fraction of the radi-

ation emitted from A1 which reaches A2 , so that Jout A1 F12 is the quantity

of radiation arriving at A 2 from A,. To derive an expression for F1 2 , the

quantity of radiation arriving at A 2 from A1 must first be written in dif-

ferential form. For the case of the surface elements dA1 and dA2 , shown

in Figure T2.2, the radiation striking dA2 is equal to the fraction of the

radiation emitted from dAl at the angle $l multiplied by the probability

of that radiation striking dA2 . Lambert's Law, which states that the
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fraction of radiation emitted from a surface at an angle tj to the normal

to that surface is proportional to cos ti, is assumed to hold. The valid-

ity of this assumption will be discussed at the end of this chapter. The

fraction of the radiation emitted from dAi at the angle 4l is then

Jout cos tj dAl/Tc, where 1/i is a normalization constant; if Jout cos $l dAl

is integrated over a closed surface, the total radiation reaching the

closed surface is i Jout dAl, so that the use of the factor 1/g implies

conservation of radiation. The probability that the radiation will strike

dA2 is given by dw2 , the differential solid angle subtended by dA2 . The

quantity of radiation striking dAl from dA2 is Jin dA2, which is givenby:

J. dA Joutcos t1 dAldW2  (T2.1)in d2

In equation (T2.1),

cos {2 ~2
do2 f 2 ,2 (T2.2)

dw2 r2

where

r is the distance between dAl and dA2 ,

tj is the angle between the normal to dAl and r,

f2 is the angle between the normal to dA2 and r,

Jin is the current of radiation arriving at A 2 from A1 (n/cm2, sec),

Jout is the current emitted from Ai.

Substitution of the expression for dW2 into equation (T2.1) gives

Jout cos ticos $2
Jin dAl =1 'ou 2ost cs dAl dA2- (T 2.3)

2r
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As mentioned earlier, the current incident on a particular sub-area

is assumed constant within that sub-area. It will also be assumed that

the current, Jout, leaving a given sub-area is constant over the sub-area.

The validity of this assumption will be discussed in Section T2.2. Upon

integrating equation (T2.3) over A1 and A2 , the following result is then

obtained:

J A cos $1 cos $2 dl d2
in A2 = Jout 2 (T2.4)

J ~ tr
A 2 A1

Since Jin A2 = jout F1 2 A1 , equation (T2.4) becomes

F12 1 Cos 1 2 dA 2 (T2.5)
Al i itr2

A2 A1

The differential form, F(d1 )2, the view factor from dA1 to A2 is:

cos $cos $
F(dl)2 = dACl dA (T2.6)

A
2

The view factor F1 2 can now be computed for a given geometrical arrange-

ment of A1 and A 2.

View factors are required for thirteen distinct geometrical arrange-

ments of A1 and A 2, and each of these thirteen view factors must be

expressed as a function of the relative positions of A1 and A2 . As an

example of a geometrical arrangement of A1 and A 2 , consider the case of

two squares, A1 and A 2 , each having sides whose lengths are expressed as

multiples of a unit length L, and situated in perpendicular planes (see

Figure T2.3). The view factor, Fl(I,J,K), is expressed as a function of

three quantities, I, J, and K, which define the relative positions of
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Figure T2.3 The Geometrical Arratigement of A and A
K1 K 2

Defined by I, J, and K, for F1(IJ,K).

Figure T2.4 The Value of Jout is Constant and Equal
to Unity on A.
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A1 and A2 in terms of the unit length, L. The quantity K is the number of

unit lengths between A2 and the intersection of the two perpendicular

planes; J is the number of unit lengths between A1 and the intersection of

the two planes, and I is the number of unit lengths along the line of

intersection of the two planes in which A1 and A2 lie. The quantities I,

J, and K uniquely define the view factor for two areas in perpendicular

planes.

Since there are 13 different geometrical arrangements, the variables

which establish the relative positions of the two areas for each view

factor are defined differently, and are illustrated and defined in the

appropriate drawing of each geometrical arrangement of A1 and A2.

The derivation of the-expressions for the 13 view factors, together

with the drawings of the geometrical arrangements of A1 and A 2 , appear

in Appendix Bl. The computer codes used to evaluate the view factors are

discussed in Appendix B2.

In calculating the flux distribution it is convenient to use one sym-

bol to represent the product of the view factor and the area. The computer

codes, therefore, calculate the product, A1 F1 2 , denoted by the symbol V.

The quantity V is defined for the case of Fl(I,J,K) as:

Vl(I,J,K) = A1 Fl(I,J,K). If the -area A1 is a square whose sides are of

length L, then V(I,J,K) = F(I,J,K). In all further discussion, the term

"view factor" refers to the product A1 F1 2 , unless stated otherwise. The

values of V were calculated and punched on IBM cards which serve as input

data for the calculation of the flux distribution.

T2.2 Discussion of the View Factors

In deriving the general expression for the view factor, equation

(T2.5), two assumptions were made; these will be discussed in this section.
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The first assumption is that the outgoing current, Jout, is constant over

a given sub-area. It is, of course, unrealistic to consider that the

current is constant over one sub-area, and then jumps to another constant

value in an adjacent sub-area, and the question arises as to how much error

is introduced by this assumption. The magnitude of this error is indicated

by the use of two examples. In the first example, we consider the two

squares shown in Figure T2.4. When the outgoing current on A1 has a con-

stant value of unity, the current incident on A2 from A1 is 0.20004. In

Figure T2.5, A1 is divided into sub-areas, and the outgoing current is

varied from 0.95 to 1.05 as shown, but the average value is still unity.

The incident current on A 2 from A1 is now 0.19589, that is, there is a de-

crease -of 2.27 per cent from the previous case. In the second example

(see Figure T2.6), A1 and A2 are farther apart, and the difference in the

current incident on A2 from A1 for the same change in the outgoing current

is 0.7 per cent. In the first example, the two areas were -as close to-

gether as possible, and the contribution of A1 to A2 (about 20 per cent of

the total contribution to A2) is in error by only 2.27 per cent. The con-

tribution from areas two or three units away is in error by less than one

per cent, as shown by the second example. In addition, it will be shown

later that Jout usually does not vary within a sub-area by more than 10

per cent.

From these examples, it is concluded that the total current incident

on a sub-area from all of the other sub-areas on the cavity surface is in

error at most by about 1 per cent owing to a 10 per cent variation of Jout"

In the case of a sub-area near the center of a cavity surface, the nearest

sub-area which contributes to its incident current is two or three units
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away, so that the error in the total incident current is less than 0.7 per

cent. The worst case was used as an example, the case of a sub-area bor-

dering a corner of the cavity surfaces. If all of the sub-areas have a 10

per cent variation in the outgoing current in such a way that all of the

error is in the same direction, the error in the total current incident on

a sub-area in a corner is about one to two per cent. This result can be

obtained by means of the following rough calculation. Twenty per cent of

the incident current is in error by 2.27 per cent, and the rest (80 per

cent) is in error by approximately one per cent, resulting in a 1.25 per

cent error in the total incident current. It may be inferred from these

examples that so long as the sub-areas are made small enough to limit the

variation of the outgoing current to 10 per cent, the error introduced by

assuming a constant outgoing current is acceptable.

The second assumption in the derivation of equation (T2.5) is that

the neutron current leaving a surface has an angular distribution such

that Lambert's Law holds. This law states that the amount of radiation

leaving a surface at an angle # with the normal to the surface is propor-

tional to cos f. According to Jacob (17),diffuse radiation from a surface

has a distribution described by Lambert's Law; in diffuse radiation the

radiant flux density is equally distributed to all directions of the space.

To determine whether or not Lambert's Law may be applied to neutrons leaving

a surface of the cavity, the angular distributions of -two different groups

of neutrons, S and Jout, entering the cavity will be examined.

The source neutrons, S, enter the cavity after diffusing through the

52" long, graphite thermal column. Pigford et al (18) measured the angular

distribution of the neutrons emitted from the surface of a graphite slab

with a neutron source deep inside. They obtained good agreement with the
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theoretical distribution obtained from Placzek's solution (19) of the Milne

problem. Since the source neutrons entering the cavity are emitted from a

large graphite slab with a neutron source deep inside, the angular distri-

bution of these neutrons should be the same as the distribution measured by

Pigford et al and calculated by Placzek. Figure T2.7 presents two angular

distributions, one obtained from Placzek's calculations, and the other from

Lambert's Law. Placzek's distribution shows that the neutrons have a pref-

erentially forward direction. This preference for large values of cos $ is

reasonable. The neutron population in a graphite slab decreases rapidly

near the surface, indicating that some of the neutrons have left the slab

without undergoing a collision near the surface. Because the probability

of escaping through the surface from a distance x within the slab is pro-

portional to e-Et X/Cos $, the neutrons with large values of cos $ are more

likely to escape. Placzek's distribution i-s composed of neutrons which

have made their last collision near the surface and are isotropically dis-

tributed, and neutrons from deeper inside the slab scattered preferentially

forward.

The view factors for the source neutrons should be evaluated by using

the Placzek distribution. But the algebraic form of this distribution is

complicated, and an analytical expression for the view factor cannot be

obtained, An approximate method can, however, be used. When cos + in

equation (T2.5) is nearly constant in the integration over A1 and A2 , the

view factor, derived by using Lambert's Law, can be corrected for Placzek's

distribution in 'the following way. Let V(x,y,z) be a view factor calcu-

lated from equation (T2.5) and let P(cos $) represent Placzek's distribu-

tion. If A1 and A 2 are distant (5 or more units), the view factor

V'(x,y,z) which includes Placzek's distribution may be written:
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V'(x,y,z) = V(x,y,z)
ecos $Pi

Suppose that x = 1, y = 3, and z = 5; a line between the centers of

A1 and A2 forms an angle with the normal whose cosine is 0.8742. From

Figure T2.7, P(cos $) = 1.004, so that

V'(1,3,5) = V(1,3,5) x 1.1484.

The view factors from the thermal column face to the bottom of the

honeycomb were corrected in this way for Placzek's distribution. The re-

sulting correction in the flux at the honeycomb, due to the neutron source

with the reactor operating at 1 Mw, is shown for the case of 12" sub-areas

in Table T2.1, and for 6" sub-areas in Table T2.2. The flux on each of

the surfaces must be corrected, and the correction affects, in turn, the

flux at the honeycomb. The magnitude of this secondary effect depends

upon the particular configuration of the cavity, and will be discussed in

Chapter T5.3, where the results for all the different cavities are given.

The second group of neutrons, represented by Jout, consists of neu-

trons reflected from graphite surfaces, in contrast to those that came

directly from a neutron source deep inside,the graphite thermal column.

The angular distribution of suchi neutrons has not been measured, and we

have not been able to find a theoretical treatment which can easily be

applied to the present problem. A Monte Carlo code was, therefore, writ-ten

for this problem; the code has the same mathematical representation of the

neutron interaction as does the Milne problem, that is, monoenergetic neu-

trons undergoing isotropic scattering in a semi-infinite medium.
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Table T2.1

Correction to the Flux (1xlG 8) on the 12" Sub-areas on the Honeycomb

Due to Placzek's Distribution of the Neutron Source

Front

0.1536 0.2666 0.3272 0.3272 0.2666 0.1536

0.1686 0.2511 0.2955 0.2955 0.2511 0.1686

0.1527 0.2088 0.2143 0.2143 0.2088 0.1527

0.1119 0.1686 0.1673 0.1673 0.1686 0.1119

0.1077 0.1346 0.1459 0.1459 0.1346 0.1077

0.0843 0.1014 0.1085 0.1085 0.1014 0.0843

Back

131



Table T2. 2

Correction to the Flux (1xlU 8) in the 6" Sub-areas on the Honeycomb

Due to Placzek's Distribution of the Neutron Source

(Only one-half of the surface is shown. The other half is symmetric

around the center line,)

Front

0.112 0.180 0.241 0.289 0.318 0.337

0.132 0.191 0.249 0.292 0.323 0.333

0.141 0.191 0.241 0.278 0.293 0.300

0.151 0.191 0.227 0.258 0.262 0.269

0.149 0.185 0.210 0.233 0.232 0.237

0.110 0.166 0.192 0.200 0.194 0.194

0.102 0.138 0.174 0.182 0.176 0.177

0.095 0.126 0.155 0.163 0.158 0.158

0.092 0.123 0.136 0.148 0.152 0.154

0.091 0.105 0422 0.133 0.137 0.141

0.090 0.099 0.105 0.111 0.115 0.120

0.070 0.079 0.092 0.097 0.099 0.100

Back
C
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Since the theory of the Milne problem could be applied successfully to

the problem of the angular distribution of the neutrons emerging from the

surface of a reasonably large block of graphite with a source deep inside,

it was thought that a directly analogous theoretical treatment with only

the source changed should give the information necessary for approximating

the angular distribution of the current re-entering the cavity, Jout. The

Monte Carlo code was applied to the problem of a beam of neutrons with an

isotropic angular distribution incident on the surface of a graphite slab,

and the cosine of the angle of emergence was recorded for each returning

neutron. The justification for the assumption of an isotropic incident

beam will be given below. A complete description of the code is found in

the next chapter. The values of the cosine of the angle of emergence were

divided into ten groups (0.0 to 0,10, 0.10 to 0.20, etc.) and the number

of neutrons in each group was obtained from the output information. The

probability of a neutron emerging in any one of these groups was calculated

and the results were plotted as a function of the cosine of the angle (see

Figure T2.8). The assumed distribution from Lambert's Law is also plotted

along with its average value in each of the ten groups. The average value

of the assumed distribution lies within the standard deviation of the

Monte -Carlo results in five of the groups and is close in two other groups.

Because of limitations on machine time, only 2755 neutrons were used to

calculate the probability, so that the standard deviation is large. How-

ever, the results do show that the calculated distribution is close to

that given by Lambert's Law, and may be approximated by using that law.

It seems reasonable that the neutrons re-entering the cavity should

be more evenly distributed in angle than those which originate from a neu-

tron source deep inside the graphite. The re-entering neutrons consist
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mainly of neutrons that are incident on the surface and are then scattered

just below the surface. This fact is shown by the Monte Carlo results:

one-fourth of the incident neutrons return to the cavity after a single

collision and about two-thirds of the returning neutrons have suffered

less than eight collisions in the graphite. Since most of the neutrons

comprising the outgoing current make their last collision near the surface,

the forward direction is not nearly so preferred as in the -Placzek distri-

bution.

In the cavity assembly for which the flux distribution was calculated,

the neutrons incident upon any sub-area arrive from all of the sub-areas

on the other surfaces. The neutrons may, therefore, be incident on the

sub-area with any angle between 00 and 900. The exact distribution of the

incident neutrons has not been obtained from either the theoretical or

experimental results. The theoretical results do show, however, that the

neutrons are distributed fairly uniformly on all of the surfaces, so that

no angle of incidence should be strongly preferred for any sub-area. As

will be seen in the next chapter, the value of the albedo for graphite is

only slightly affected by the distribution of the incident neutrons. It

may also be argued that the angular distribution of the neutrons leaving

the graphite is also only slightly dependent upon the angular distribution

of the incident neutrons. Because of the limitation on computer time, the

magnitude of this dependence was not investigated. In view of the above

discussion, however, it was thought that the assumption of an isotropic

beam soutce would not introduce any significant error. The excellent

agreement ultimately found between theory and experiment supports this

statement.
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Lambert's Law describes an angular distribution similar to that pro-

duced by the Monte Carlo results and has an algebraic form which allows

for an analytical solution of the view factor equation. Hence, the dis-

tribution of the re-entering neutrons, Jout, is approximated by assuming

that Lambert's Law holds.

At this point it is of interest to return to the first discussion of

the view factor (see Chapter Ti). In deriving equation (T1.4), Lji was

equated to Fji. It may seem that they are equal by definition because

both express the fraction of neutrons (Jout for F and S for Lji) which

leave the sub-area A. and strike the sub-area Ai. They have different

numerical values, however, because Jout and S have different angular dis-

tributions.

T2.3 Testing for Error in the View Factors

Most of the values of Vl and V2 and the values of all of the other

eleven view factors were calculated for the first time in the present

study. To insure that the numerical values of the view factors are cor-

rect, the equations and computer programs were checked in seven ways:

(1) The value of each view factor must lie between 0.0 and 1.0.

Most errors in the equations or computer programs for the view factors re-

sult in a few numbers of a large array which are negative or greater than

unity. All view factors were, therefore, scanned to be sure they lay

within the value of 0.0 and 1.0.

(2) The symmetry of Vl(I,J,K) in the J and K directions and of

V2(I,J,K) and V12(I,J,K) in the I and J directions affords a method of

verifying both the equation and the numerical value of these view factors.

These variables were interchanged in the algebraic and FORTRAN equations
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for Vi, V2, and V12, without altering the form of the equation. The numer-

ical values of each symmetrical pair of these view factors were found to be

identical. The requirement of symmetry was, therefore, fulfilled in these

cases.

(3) The numerical values of all view factors should decrease as the

distance between the two areas increases, if cos $1, and cos $2 remain con-

stant. Several values of each view factor have been successfully checked

for this type of consistency.

(4) The equations for special cases of Vl and V2 appeared in Jacob's

"Heat Transfer". For instance, equation (Bl.3) was written with I = 0,

J 0, K = 0, and was found to agree with the corresponding equation in

Jacob.

(5) The equations (Bl.3) and (Bl.6) were evaluated by hand calcula-

tions for several values of I, J, and K, and compared to the values ob-

tained with the computer; the values were in close agreement. The FORTRAN

equation for each view factor was solved by a hand calculation for a num-

ber of cases and agreed with the computer results. A graphical integra-

tion was performed and found to agree with the numerical integration in the

code for V4(1,1,1).

(6) When the two areas for which the view factor is calculated are

distant, the following approximations may be made:

Vl(I,J,K) = V4(IJ,K) V5(I,J,K)

V2(I,J,K) = V12(IJ,K) V13(I,J,K) - V9(I,J,K)

The results of the computer calculations agreed with these approximations.

(7) The sum of the view factors from all of the sub-areas on a closed

surface to any sub-area is equal to unity. This sum was computed for all

sub-areas in the parallepiped and 450 cavities, for which the flux distribu-

tion was computed; this sum differed from unity by 0.00008000 in the worst

case. 137



Chapter T3

Calculation of the Albedo and Discussion of the Neutron Source

T3.1 Calculation of the Albedo

In equation (T1.4) the number of neutrons arriving at Ai from Aj is

written as Pj Jj Fji Aj, if Aj does not include a source. The view factor,

Fji, is defined as that fraction of the current leaving Aj which is inci-

dent upon Ai. Thus, Pj Jj must represent the magnitude of the current re-

entering the cavity through Aj, and corresponds to Jout in the derivation

of the view factor equation. In this model the term, pj, the albedo, is

then defined as the ratio of the outgoing to incident currents in the sub-

area Aj. The model assumes, therefore, that the current re-entering

through Aj may be expressed as a function of the current incident on Aj

and not of the currents incident on adjoining sub-areas. The validity of

this assumption is discussed later in the chapter.

The albedo for a particular sub-area on the surface of the cavity de-

pends upon several factors. One factor is the nuclear prcperties of the

wall materials, and another is the thickness of the wall. The location of

the sub-area is also a factor: if the sub-area borders the edge of the

surface, the albedo is smaller than if the sub-area is near the center of

the surface. The reason for a smaller albedo near the edges of a surface

is that some of the incident neutrons, instead of re-entering the cavity,

leak through the sides of the wall and escape from the assembly. Since

the albedo depends on where the incident current strikes the surface, it

must be averaged over a sub-area. As was seen in the last chapter, the

angular distribution of the re-entering neutrons is needed in order to

calculate the view factor. Also, the effect of the angular distribution

of the incident current on the numerical value of the albedo is of interest.
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A Monte Carlo code was written (a) to obtain the average value of the

albedo for each of the sub-areas on the cavity surface, (b) to investigate

the validity of expressing the albedo of a sub-area as a function of the

current incident only upon that sub-area, (c) to obtain the angular dis-

tribution of the re-entering current, and (d) to study the effect of the

angular distribution of the incident current.

The following information is printed out by the Monte Carlo code:

(1) The number of neutrons incident at a specified point on the sur-

face of a slab,

(2) The number of neutrons that return through the same surface on

which they were incident,

(3) The location where each neutron leaves the surface,

(4) The cosine of the angle at which each neutron leaves the surface,

(5) The cosine of the angle -at which each neutron strikes the sur-

face.

The code was applied to slabs of various materials and dimensions, and for

various locations of the incident neutrons.

The ratio of (2)/(1) is called the reflectivity in this study. The

reflectivity is then the fraction of neutrons incident at a point on the

surface, which return through the same surface. The albedo of a sub-area,

which was defined earlier in this chapter, is obtained by averaging the

reflectivity over the sub-area. The other information desired of the

Monte Carlo code (b, c, and d) is given directly by the data in groups (3),

(4), and (5) above. The interpretation of this information is discussed

later in the chapter.

The model for neutron interaction used in this code assumes isotropic

scattering in the lab-system for a one-velocity group of neutrons.

139



Graphite scatters neutrons almost isotropically in the lab-system, so. that

isotropic scattering is frequently assumed for graphite. (20) Since the

cadmium ratio measurements (see Chapter E5) show that the neutrons enter-

ing the cavity from the thermal column are well thermalized, it is not

necessary to include slowing down in the code. The model is the same as

that used in the Milne problem, the solution of which has been found to be

accurate for predicting the spatial and angular distribution of neutrons

in a large slab of graphite. The solution of the Milne problem for spa-

tial and angular distribution near the surface of a slab must be accurate

in order to determine the albedo; this has been found to be the case since,

the extrapolated distance -and angular distribution of the flux at the sur-

face are accurately predicted by the solution of the Milne problem. In

view of the above observations, it was thought that a Monte Carlo code

based on this model for neutvon interaction should be able to give the

information listed above.

In the Monte Carlo code, a beam of neutrons is incident on a rectangu-

lar slab and the neutrons are followed, one by one, through the slab until

they leave. No neutron absorption is included in the code because the

slab material was usually graphite which has a very small ratio of absorp-

tion to scattering (5.9 x 10-4). A correction for absorption was made

later, but was less than 1 per cent of the value of the reflectivity. Be-

cause the neutrons are assulned to scatter isotropically in the lab-system,

there is no need to use a center-of-mass coordinate system. The coordin-

ate system used defines the dimensions of the slab and also the positions

of the neutrons in the slab. The surface of the slab on which the neutrons

are incident is divided into squares and the position at which a' neutron



enters and leaves the surface is defined in terms of the square through

which it passes. A drawing of the slab which includes the squares drawn

on the surface and the coordinate system appears in Figure T3.1.

The flow sheet for the code is shown in Figure T3.2. The input data

contain the following information: the number of neutrons to be followed,

the number of squares in the y,z plane, the location of the incident beam,

the dimensions of the squares in collision mean free paths (Et-1 ), the

thickness of the slab in collision mean free paths, and three optional

transfers. The computer first clears the storage locations in which the

history of the neutrons will be recorded. The dimensions of the slab in

the y,z plane and the position of the incident beam are calculated in

terms of collision mean free paths. The incident beam is always located

at the center of the designated squares. Now a neutron is ready to be

followed through the graphite. The initial values of x,y,z, the location

of the beam on the surface (x=0) is stored, and an isotropic or unidirec-

tional beam is selected. The value of cos I , the cosine in the x direc-

tion,is selected from a random number between 0.0 to 1.0 for an isotropic

source. The random number generator is an MIT library subroutine (21)

which produces random numbers between zero and one. The crow flight dis-

tance in collision mean free paths is obtained from the log of a random

number. The other directional cosines, cos $ y and cos $Pz, are randomly

selected by means of the semi-circle technique. (20) From the directional

cosines and the crow flight distance, the location in terms of x, y, and z

of the next collision is calculated. The computer then determines if this

new location is within the slab. If it is, the procedure is repeated

until the neutron escapes. The value of cos $x is randomly selected
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No Tflight distance

Yes

More neutron Calculate Ax, Ay, Az

for this case Calculate new x, y, z

is neutron still in slab *

No

tabulate on exit,
for this surface

through which surface did it exit

y and z x

'K exit front or back

FRONT

tabulate position, number
of collisionand cos $

Figure T3.2 Flow Diagram for the Monte Carlo Code
which Calculated the Reflectivity
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between 1.0 and -1.0. after the first collision. If the neutron is not

within the slab, a test is made to determine the surface through which the

neutron left. If the neutron left the surface on which it was initially

incident before leaving any other surface, the following information is

recorded: the square through which it left, the initial and final value

of cos $X, and the number of collisions which it suffered before leaving.

If the neutron leaves through another surface, it is added to those which

have previously left through that surface. After the information about a

departing neutron has been recorded, the next neutron is followed, start-

ing from the point of incidence on the surface. After the desired number

of neutrons has been followed, the stored history is printed out and the

program gives an option of doing another Monte Carlo calculation or stop-

ping.

One part of the data from the Monte Carlo code predicts the fraction

of the incident neutrons that return through the surface on which they

were incident. The results of the program for different materials, dif-

ferent dimensions of the slab, and different locations of the incident

beam are tabulated in Table T3.1. The final value of the reflectivity has

been corrected for absorption by the procedure described next.

Let the number of collisions which a neutron suffered before return-

ing be n, which is denoted in the code by ICOL and is part of the output

information. The probability, P, that a neutron has suffered n colli-

sions and has not been absorbed is

P = (1-q)n,

where q is the probability of absorption per collision; q is equal to

Ga/at where ca is the average microscopic cross section and at is the



Table T3.1

Values of the Reflectivities for the 21 Cases of the Monte Carlo Code

Case No. Material ET (cm-1)

Dimensions of Slab
(in.)

x y z

Position of Source
(in.)

y z Reflectivity

Reflectivity
(including
absorption)

Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite

Al (Boral)
Cadmium

Hi

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.385
0.098

16
16
16
16
16
16
16
16
12
12
12
12
8
8
8
8
8
8
8

1/8

72
72
72
72
72
72
72
72
72
72
72
72
36
36
36
36
36
36
36
72

72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72

2
2
6
6
6
18
18
30
6
6
18
30
2
2
2
6
6
6
18
18

6
18
6
18
30
18
30
30
18
30
18
30
6
18
30
6
18
30
18
18

0.6870
0.7070
0.8230
0.8660
0.8590
0. 9170
0.9140
0.9220
0.8450
0.8510
0.8900
0.9030
0.6840
0.7010
0.6950
0.8080
0.8320
0.8320
0.8650
0.0480

0.6844
0.7037
0.8189
0.8550
0.8595
0.9065
0.9035
0.9137
0.8393
0.8460
0.8837
0.8944
0.6817
0.6955
0.6925
0.8045
0.8274
0.8280
0.8562
0.0412
0.0005



total microscopic cross section. Since the neutrons are well thermalized,

the absorption cross section is averaged over a Maxwell-Boltzmann distri-

bution at room temperature. For graphite q = 5.908 x 10-4 and, since

q <<, (1-q)n may be approximated by 1-nq:

P = (1-q)n = (1-nq).

The total number of neutrons absorbed is equal to the product of the total

number of collisions and q. If M is the total number of returning neu-

trons, with absorption neglected, and if ni is the number of collisions

suffered by the ith neutron, the number of neutrons, M', which return if

absorption is included, is

M'' Ml - ( ni q]

The results of the Monte Carlo code indicated that when the neutrons

are incident on a graphite surface at a point 30" or more away from any

edge, only one out of 1000 neutrons leak out the side, so that the surface

is essentially infinite in area. For the case of infinite surface area,

reflectivity and albedo are identical. The albedo can be obtained from

diffusion theory for the case of a slab of finite thickness, but of infin-

ite area. The equation for the albedo from diffusicdn theory is:

lout 1 - 2K(D coth Ka

Jin 1 + 2YLD coth Ka '

where

K = 1/L = reciprocal of the diffusion length,

D = diffusion coefficient,

a = thickness of the slab.

If L = 50 cn, and D = 0.01444, which are consistent with the values of
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Oa/us and as used in the Monte Carlo code, the albedo for a 16" thick

graphite slab is 0.9175 and for a 12" thick graphite slab is 0.8991. The

albedo is not sensitive to the value of L: if L - 48, the albedo changes

only by 0.25 per cent. The Monte Carlo code, using 1000 neutrons in each

case, predicts values of the albedo of 0.9137 and 0.8944, respectively,

both of which agree with diffusion theory within the standard deviation of

the"Monte Carlo results (t0.0333).

The value of reflectivity obtained from the Monte Carlo code for

twenty-one different cases is presented in Table T3.1. As mentioned pre-

viously, the albedo, Pj, as it is used in equation (T1.4), is equal to the

ratio of the outgoing to incident current in the sub-area, Aj. Hence, the

reflectivities in Table T3.1 must be -averaged over the sub-areas in such a

way that Pj Ji Ai is equal to the number of neutrons re-entering the sub-

area through Aj. Since Jj is assumed constant over Aj, and pg is consid-

ered to be a function of the current incident only on Aj, the reflectivity

is weighted only with the area A . The values of the reflectivity obtained

frpri the above data are plotted as -a function of thb location of the inci-

dent beams and the average value of the albedo is obtained by a graphical

integration over the sub-area in question.

The reflectivity of an incident beam varies slowly over the surface

of a graphite -slab, with the exception of a neutron beam incident within

6" of an edge of the surface. Because of this slow variation, the graph-

ical integration can be performed accurately. The average values of the

albedo, obtained by the graphical integration o'f the reflectivities, are

given in Figures T3.3 through T3.7 for 8", 12", 16" thick graphite slabs.

The average values of the albedo for the 8" and 16" slabs are given for 4"

147



16"1

.5038 .5962 .6000 .6060 .6060 .6060 .6113 .6113 .6113

.5962 .8063 .8450 .8559 .8559 .8559 .8595 .8595 .8595

.6000 .8450 .8675 .9015 .9015 .9015 .9020 .9020 .9020

.6060 .8559 .9015 .9065 .9065 .9065 .9065 .9065 .9065

.6060 .8559 .9015 .9065 .9065 .9065 .9065 .9065 .9065

.6060 .8559 .9015 .9065 .9065 .9065 .9065 .9065 .9065

.6113 .8595 .90,20 .9065 .9065 .9065 .9137 .9137 .9137

.6113 .8595 .9020 .9065 .9065 .9065 .9137 .9137 .9137

.6113 .8595 .9020 .9065 .9065 .9065 .9137 .9137 .9137

.6113 .8595 .9020 .9Q65 .9065 .9065 .9137 .9137 .9137

K

Figure T3.3 Average Albedo for Surface of a 16" Thick, Infinite Area,
Graphite Slab Divicded into 4" Sub-Areas

Average Albedo is Shown for Each Sub-Area
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.6725 .6801 .6851 .6877 .6877

.8600 .8925 .8935 .8942 .8942

.8925 .9065 .9065 .9065 .9065

.8935 .9065 .9065 .9065 .9065

.8942 .9065 .9065 .9137 .91'37

.8942 .9065 .9065 .9137 .9137

Figure T3.4 Average Albedo for 6" Sub-Areas on a 16" Thick,
Infinite Area Graphite Slab
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.6801 .6851 .6877 .6877 .6877 .6877

.8659 .8669 .8672 .8672 .8672 .8672

.8837 .8837 .8837 .8837 .8837 .8837

.8837 .8837 .8837 .8837 ..837 .8837

.8837 .,8837 .8944 .8944 .8944 .8944

.8837 8837 .8944 8944 8944 .8944

- - tI I

Figure T3.5 The Average Albedo for 6" Sub-Areas on 12" Thick Graphite Slab

Surface of the Slab is Infinite in Area with 16" Border on the Left.
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TI ~
.6213

.5988 .8000 .8100 .8200 .8274 .8274 .8274 .8274 .8274

.6115 .8100 .8425 .8450 .8450 .8450 .8450 .8450 .8450

.6210 .8200 .8450 .8550 .8562 .8562 .8562 .8562 .8562

.6210 .8200 .8450 .8550 .8562 .8562 .8562 .8562 .8562

.6115 .8100 .8425 .8450 .8450 .8450 .8450 .8450 .8450

.5988 .8000 .8100 .8200 .8274 .8274 .8274 .8274 .8274

.5013 .5988 .6115 .6210 .6213 .6213 .6213 .6213 .6213

Figure T3.( Average Albedo for 4" Sub-Areas on the Graphite Frame
which is 8" Thick, 32" Wide, 72" Long
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8"

.5750 .6737 .6863 .6875 .6875 .6875

.6736 .8261 .8394 .8416 .8416 .8416

.6857 .8380 .8554 .8562 .8562 .8562

.6792 .8350 .8485 .8487 .8487 .8487

.6487 .7951 .8100 .8134 .8134 .8134

.1766 .1766 .1766 .1766 .1766 .1766

Figure T3.7

-boral

Average Albedo for 6" Sub-Areas on 8" Thick Graphite Frame (32"x72")

The Bottom Row of Sub-Areas is a Combination of Graphite and Boral.
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and 6" square sub-areas. For the 12" slab, only 6" square sub-areas were

used.

The average values of the albedo given in these figures are used to

assign the proper albedo to the sub-area on the cavity surfaces. As an

example, consider a 6" sub-area on the cavity surface which is 6", 12",

54", and 60", respectively, from the four edges of a 72" by 72", 16" thick

graphite slab. Almost no neutrons leak out the edges which are 54" and 60"

away, so that these dimensions do not effect the albedo. Referring to

Figure T3.4, the average albedo of the sub-area in the same location is

0.8925. In the next chapter, the sub-areas on the surface of cavities of

interest are illustrated and average values of the albedos are assigned to

each sub-area.

The reflectivity for boral and cadmium (Cases #20 and #21) does not

vary significantly over the surface. Because the absorption rate is so

high, the edges which are a few mean free paths from the location of the

incident neutrons have little effect on the reflectivity. The values of

the reflectivity and the albedo were, therefore, taken to be identical for

boral and cadmium.

As mentioned before, the current re-entering.the cavity through a sub-

area is expressed only as a function of the average albedo and Ji, and not

of the current incident in the adjoining sub-area. This assumption was in-

vestigated by using the results in group (3) of the information produced by

the code. The code records the number of neutrons incident at a point

which leave through each square on the surface. These data for Case #8,

described in Table T3.1, are given in Figure T3.8. The percentage of neu-

trons leaving each 4" square is written in the corresponding square. The
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Figure T3.8 Percentage of Re-Entering Neutrons Leaving through each 4" Square

Beam was Incident in Middle of Square through which 62.4% of the
Returning Neutrons Leave. (Data from Case #8 of the Monte Carlo
Code.)
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beam of neutrons is incident on the center of the square, and 62.4 per cent

of the neutrons return to the cavity through this square. Another 16.2 per

cent of the neutrons return through the adjoining squares, so that about

85 per cent of the neutrons re-entering the cavity leave within a radius of

6" from where they entered the slab. The neutrons incident in the surround-

ing sub-areas compensate for those neutrons which do not leave the same sub-

area as they entered, as long as all of the incident currents are of the

same magnitude. As an example of this compensation, consider two cases:

the first is shown in Figure T3.9. A large surface of a 16" thick slab of

graphite is divided into 12" square sub-areas, on each of which there is an

incident current of 1.00. The ratio of the outgoing to incident current

for the shaded sub-area in Figure T3.9 is equal to 0.9137, which is the

same as the average albedo for this sub-area; 79.2 per cent of the return-

ing neutrons were initially incident on that sub-area and the remaining

20.8 per cent were incident on the adjoining sub-areas, which have the same

albedo.

In the second example the only difference is that the magnitude of

the current incident on one of the adjoining sub-areas is changed to 1.10.

The ratio of outgoing to incident current is now 0.9258, or an increase of

1.32 per cent over 0.9137. The effect of the currents incident in adjoin-

ing sub-areas is additive. If the incident currents in two adjoining sub-

areas have values of 1.10, the albedo increases by 2.64 per cent over the

value of 0.9137. The validity of assuming that currents incident on ad-

joining sub-areas do not affect the albedo will be determined by averaging

the values of these currents, and comparing the average to the current in-

cident on the sub-area in question. Since the effect of these currents is
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Figure T3.9 Surface of 16" Thick, Large Graphite Slab,
Divided into 12" Sub-Area.
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additive, a 10 per cent difference in the average value of the currents

and the current in question results in a 1.32 per cent difference in the

assigned value of the albedo. In Section T5.3 the error in the albedo

will be investigated by this method.

The effect of the angular distribution of the incident current on the

value of the reflectivity was also investigated. The Monte Carlo code

uses an isotropic beam source, but the current incident on a sub-area

bordering the cavity may favor a particular angle rather than being iso-

tropic. Using the output data of the Monte Carlo code, the incident neu-

trons were placed in one of two groups according to their angle,

cos $x - 0.0 to 0.50 or cos $x - 0.50 to 1.00. The reflectivity for each

group was then determined. Case #8 was again selected as an example. The

reflectivity for the case of an isotropic source, not corrected for absorp-

tion, is 0.9220. The reflectivity for the neutrons with cos $x between

0.0 and 0.50 is 0.9037, while for cos Ox between 0.50 and 1.00 it is

0.9401. This example demonstrates that even an extremely anisotropic

angular distribution of incident neutrons, such as a distribution between

600 and 900, changes the reflectivity by only 2 per cent. The error intro-

duced into the value of the flux at the surface because of a 2 per cent

error in the albedo is about 1 per cent, because the flux is equal to

(1 + p) times the incident current. The effect of the angular distribution

of the incident neutrons on the albedo was, therefore, neglected in this

study.

The last piece of information obtained from the code is the angular

distribution of the returning neutrons. This topic was discussed in the

last chapter which dealt with the view factors.



As a result of the code, a numerical value for the ratio of the out-

going to ingoing currents, pj, can be determined for each sub-area on the

cavity surface, and the validity of expressing Pj as a function of the cur-

rent incident only on Aj was established. Since the pj and Fji have been

evaluated, the only remaining input information is Sj, which describes the

source neutrons.

T3.2 Discussion of the Neutron Source

The values of the flux on the surfaces of a cavity assembly are cal-

culated for a given magnitude and distribution of the neutron source. The

magnitude of the neutron source entering the cavity through the sub-area,

Aj, is equal to the quantity, Sj. The distribution of the source is repre-

sented by a variation of the magnitude of the S's from sub-area to sub-

area. The error introduced into the calculated flux by representing a

continuous distribution of the neutron source by a discontinuous one is

discussed in Section T5.3.

To determine whether the theoretical model can be successfully applied

to the cavity assemblies described in Chapter El, the values of the flux

were calculated for these assemblies. The magnitude and distribution of

the neutron source feeding these assemblies were measured, and the results

of the measurements were used to calculate the values of Sj. The method

and the results of calculating the values of Sj are given in Section T4.5.
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Chapter T4

Calculation of the Flux Distribution

T4.1 Introduction

Now that the calculation of quantities pj, Fji and Sj has been dis-

cussed, equation (Tl.4) can be used to determine the equilibrium values of

the current incident on each sub-area. From the value of the incident

current, the neutron flux for each sub-area, Ai, is calculated by means of

the equation

$= Ji (1 + Pi) (T4.1)

The incident current Ji is constant over Ai, and $i represents a constant

value of the neutron flux in the sub-area Ai.

An equation of the form of equation (Tl.4) may be written for every

sub-area on the cavity surface so that a set of simultaneous equations is

formed. Such a set contains at least 140 equations having as many as 280

terms, and the values of the incident currents are obtained by using an

electronic computer. The set of equations is solved by means of an iter-

ation technique. The solution by matrix reduction of a set of equations

this large takes more time than the iteration technique, and was therefore

not used. Usually only three iterations are required to obtain the required

convergence. Since the solution converges so rapidly, no special techniques

are employed to accelerate convergence.

T4.2 Representation of the Cavity in the Theoretical Model

Before explaining the calculation of the incident current it is neces-

sary to discuss how the geometrical arrangements of the hohlraum or cavity

assemblies in which the flux distribution was measured are represented in

the theoretical model. In the theoretical model, the cavity surfaces are
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divided into sub-areas the lengths of whose sides are expressed integral

multiples of a unit length L. To have an integral number of sub-areas on

each surface, the dimension of the surface must be an integral multiple of

L. If L is chosen equal to 6" or 12", most surfaces meet this requirement

quite closely. The dimensions of the graphite walls which were built out-

side the thermal column door space are integral multiples of 6" and 12".

(Floor, 72" x 72"; side walls, 60" x 72"; back wall, 60" x 72"; honeycomb

surface, 72" x 72".)

The dimensions of the thermal column door space cannot be expressed

as integral multiples of L, so that approximate dimensions must be used in

the theoretical representation. The difference in the dimensions of the

physical assembly and its theoretical representation is shown in Figures

T4.1 and T4.2. The theoretical representation of the cavity assembly is

shown in solid lines. The dashed lines are drawn where the physical and

theoretical representations differ and they indicate the actual dimension

of the assembly. The number of inches written in the figures refers to the

distance between the actual and theoretical representation of a surface.

The dimensions of the assembly are approximated in the door space re-

gion in order that the surfaces of the cavity be continuous; the calcula-

tion of the flux distribution on the surfaces of a cavity is greatly

simplified if the surfaces are continuous. If there are sharp discon-

tinuities in the surface, the solution of the equation for the flux distri-

bution derived in this paper may be difficult to obtain.

In Figure T4.1, the boral-lined walls in the door space are repre-

sented as being continuous with the other walls in the assembly. The

dashed lines in Figure T4.1 indicate that there are differences in the
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Vertical Section

Thermal
Column

Horizontal Section

Figure T4.1 The Theoretical Representation of Assembly I.
Differences between the theoretical and actual
representation is indicated by dashed lines.
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Figure T4.2 The Theoretical Representation of Assembly II.
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representation of the boral-lined walls. Since 96 per cent of the neutrons

which strike the boral-lined walls are absorbed, and thus do not contribute

to the flux on the other surfaces, the approximate dimensions of these

walls do not significantly affect the flux distribution on the other sur-

face.

The theoretical representation of the hohlraum assembly with the

graphite frames in place is shown in Figure T4.2. The surfaces of the

frame are not quite continuous with the other surfaces, and the effect of

this representation on the flux distribution is discussed in Section T5.3,

where the results of the calculations are presented. Since many of the

neutrons striking the graphite frame contribute later on to the flux on

other surfaces, the argument used above for the bare door space does not

apply. The graphite frame (see Figure T4.2) blocks off two inches on the

borders of the thermal column face. However, very few source neutrons are

emitted within 2" of the edge of the thermal column and these entered the

cavity through the frame. The effect of the frame "blocking" off the

thermal- column face on the flux distribution should be very small. The

location and dimensions of the thermal column face in the horizontal plane

are exactly reproduced in the theoretical representation. In the vertical

plane, however, the theoretical location and dimensions of the thermal

column face differ somewhat from the actual ones. The difference in dimen-

sion is corrected in the calculation of the source neutrons emitted from the

thermal column face. The source terms, Sj, are calculated by averaging

the measured distribution of the source neutrons in such a way that the

same magnitude-and distribution of neutrons are emitted from the 63" x 60"

surface of the theoretical representation as were emitted from the 63" x 63"

thermal column face. However, the neutron sources on the thermal column
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face are still located 3" lower in the theoretical representation, and

this difference of 3" is the most serious discrepancy between the actual

assembly and its theoretical representation; the effect of the discrepancy

is discussed together with the results in Section T5.3.

As explained earlier in the experimental section, there are two cavity

arrangements, Assemblies I and V, from which the other geometrical arrange-

ments are obtained by adding graphite. These two cavities are named PARA

and 450, respectively, and are pictured in Figures T4.3 and T4.4, respect-

ively. PARA refers to the parallelepiped arrangement of the cavity, and 450

refers to the 450 inclined plane. The stepped arrangement of graphite

stringers is approximated by an inclined plane in the theoretical model,

because of the difficulty in treating theoretically a stepped arrangement.

The theoretical representation of the PARA assembly is pictured in Figure

T5.5 for the case of the "frame" arrangement. The 450 assembly is identical

except for the inclined plane, which is shown by the dashed line in Figure

T5.5. Note that there is a notch in the back wall. This notch is due to

cadmium-covered angle irons which are used to support the honeycomb.

In order to avoid confusion, a few definitions are repeated. The sur-

face of the cavity refers to that part of the surface of the graphite slab

which bounds the cavity and these bounding surfaces are shown in Figures

T4.3 and T4.4. It is the cavity surfaces which are divided into sub-areas.

Since the slabs overlap -at certain edges, not all of the surface of a

cavity determines the extent of the slab. This can be seen from the draw-

ing of the cavity assembly, where part of the surface of the floor slab is

joined with the back wall. This distinction is important because the albedo

of a sub-area is a function of the location of the sub-area on the surface
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Figure T4.3 Theoretical Representation of the Parallelepiped Cavity.

120"

Figure T4.4 Theoretical Representation of the 450 Cavity.
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of the slab, but not on the surface of the cavity. In determining the

proper albedo, the floor slab, for example, is assumed to continue through

the back wall. Since the back wall is 16" thick, the sub-areas on the

cavity surface are at least 16" from the back edge of the floor surface.

Figures T4.6 and T4.7 show drawings of the walls of the PARA and 450 cavi-

ties, respectively. The surface of the wall which bounds the cavity, that

is, the cavity surface, is divided into 12" sub-areas. The surface of the

slab which does not bound the cavity is shaded in the drawing.

Surface #1 includes the thermal column face (63" x 60") and 4k" of

boral at each side. The graphite in the thermal column is considered to

be infinitely thick. Surface #2 is the surface of the back wall, and in-

cludes the area where the back wall joins with the side walls and the

floor. Note that the side walls are only 8" thick at this point because

of the vertical angle irons. Surface #3 is the top surface, part of which

corresponds to the bottom of the honeycomb. Note that no other walls join

with the top wall as can be seen in Figure T4.5. Surface #4 is the bottom

surface of the hohlraum assembly, which includes the bottom part of the

frame and the floor. The side and back walls join with the floor. Again,

note the notches in the side walls because of the vertical angle irons.

Surface #6 is one of the side walls of the cavity assembly. It includes

the side graphite wall and side of the graphite frame. The floor and back

wall join with the side wall. The coordinate system drawn on each surface

defines the location of the sub-area on the surface. The type of material

and its thickness for each of the walls is noted with the drawings.

T4.3 Selection of Unit Length

As is true in many approximate calculations, a compromise is made be-

tween increased accuracy and the additional time required. The computer
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(a)

(b)

Figure T4.5 Theoretical Representation of Assembly II.

The .dashed line in (a) indicates the
representation of Assembly VI.
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Figure T4.6 The Walls of the PARA Cavity Assembly with 12" Sub-Areas.
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Figure T4,6 (Continued)
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Surface#4 - Bottom Surface
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Figure T4.7 Wallsof the 45' Cavity Assembly with 12" Sub-areas.

Surface #1 and #3 are the same as those in Figure T4.6.
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time required for a calculation is approximately inversely proportional to

the cube of the unit dimension. A solution with L 6" requires 33 min-

utes, or eight times as much computer time as a calculation with L = 12"

(four to five minutes). A calculation with L = 4", the next smallest in-

tegral unit of the cavity dimension, would require over one and one-half

hours of computer time. As will be seen later, the additional accuracy

which would be expected does not justify an hour and a half of computer

time. The flux distribution has therefore been calculated for L = 6" and

L = 12". The effect of the size of the sub-area on the accuracy of the

flux distribution is discussed in Section T5.2.

T4.4 Assignment of the Average Value for the Albedo of a Sub-area

A value of the albedo will now be given for each of the sub-areas.

The type and thickness of the wall material and the location of the sub-

area on the surface of the wall is obtained from Figures T4.6 and T4.7.

With this information the value of the average albedo is obtained from

Figures T3.3 through T3.7 in Chapter T3. The shaded 12" sub-area on sur-

face #3 in Figure T4.6 is used as an example. It borders one edge of the

pedestal and is 24", 36", and 60" away, respectively, from the other three

edges. The material is graphite and it is 16" thick. Referring to Figure

T3.4, one obtains an albedo of 0.7909 for this sub-area.

There are five different assemblies for which the flux distribution

was computed. There are three variations of the PARA cavity and two varia-

tions of the 450 cavity, as shown in Figure T4.8. For each variation, the

surfaces are divided into sub-areas and the value of the albedo is written

in its corresponding sub-area in Figures T4.9 through T4.15. The flux

distribution for the "tooth" arrangement was not calculated for this vari-

ation, because the model cannot treat the case of neutron diffusion through

the "tooth". 171



Thermal
Column

Figure T4.8 Theoretical Representation of Cavity Assemblies

I, II, IV, V, and VI.

Assembly I

Bare Para

Assembly II

Frame Para

I 172



Assembly IV

Extended Floor
and Pedestal

Assembly V

Bare 450

Figure T4.8 (Continued)
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Figure T4.8 (Continued)
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Figure T4.10 The Average Value of the Albedo for 6" Sub-Areas in Assembly II
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Figure T4.12 The Average Value of the Albedo for 12" Sub-Areas in Assembly II
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Figure T4.13 The Average Value of the Albedo in the 12" Sub-Areas in Assembly IV
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Figure T4.13 (continued)
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Figure T4.14 The Average Value of the Albedo for 12" Sub-Areas in Assembly V
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Figure T4.14 (continued)
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Figure T4.15 The Average Value of the Albedo for 12" Sub-Areas in Assembly VI
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T4.5 Calculation of the Neutron Source Terms

The experimental and theoretical results will be compared on the basis

of the same neutron source; the values of the source and the flux on the

honeycomb were both multiplied by the same conversion factor between rela-

tive and absolute flux, so any error in this conversion constant does. not

effect the comparison of the theoretical and experimental results.

The neutron source terms, Sj, for each sub-area on the thermal column

face were calculated from the measured distribution of the neutron source

shown in Figures E3.1 and E3.2. A graphical double integration of the dis-

tribution was performed to obtain an average value of the neutron source

in each sub-area. The symmetry in the neutron source around the vertical

mid-line of the thermal column face was taken into account so that only

half of the values of S were actually calculated. In Figure T4.16 the

positions of the foils which measured the neutron flux are shown on the

72" x 60" surface. The solid lines indicate the location of the 12" sub-

areas, while the dotted lines indicate the boundaries of the thermal col-

umn. As mentioned in Chapter Tl, the neutron source was averaged over the

72" x 60" surface so that the Sj represent the same distribution that was

measured on the 63" x 63" thermal column face. The values of Sj for the

12" and 6" sub-areas are shown in Tables T4.1 and T4.2, respectively.

The theoretical model is based on the assumption that a given Sj is

constant over a sub-area A . From Figures E3.1 and E3.2 it is evident

that the magnitude of the neutron source varies appreciably over the ther-

mal column face. Even for the 6" sub-areas, the variation of the neutron

source over a sub-area Aj may be as high as 50 per cent of the average

value, 6 . A smaller dimension than 6" could not be used for the sub-areas
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Table T4.1

Neutron Source Terms (lxl0 ) for 12" Sub-Areas on Surface #1

The numbers represent the average value of the neutron
source at 1 Mw operation of the M.I.T.R. for each 12" sub-area.

I

2.163 8.652 10.959 10.959 8.652 2.163

3.845 17.544 25.594 25.594 17.544 3.845

4.446 22.110 32.684 32.684 22.110 4.446

3.965 18.505 25.955 25.955 18.505 3.965

2.307 10.190 13.266 13.266 10.190 2.307
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Table T4. 2

Neutron Source Terms (lxlO8 ) for 6" Sub-Areas on Surface #1

The numbers represent the average value of the neutron source
at 1 Mw operation of the M.I.T.R. for each 6" sub-area.

0.131 2.391 4.782 6.457 7.175 7.65,2 7.652 7.175 6.457 4.782 2.391 0.131

0.287 4.543 9.087 12.436 14.348 15.305 15.305 14.348 12.436 9.087 4.543 0.287

0.406 6.217 12.913 17.935 21.044 22.957 22.957 21.044 17.935 12.913 6.217 0.406

0.526 7.533 16.262 23.196 28.218 30.610 30.610 28.218 23.196 16.262 7.533 0.526

0.598 8.250 18.174 25.827 32.523 35.393 35.393 32.523 25.827 18.174 8.250 0.591

0.598 8.393 18.174 25.349 31.567 34.437 34.437 31.567 25.349 18.174 8.393 0.598

0.535 8.083 16.979 23.436 28.457 30.610 30.610 28.457 23.436 16.979 8.083 0.535

0.419 7.175 14.389 19.848 23.196 24.871 '24.871 23.196 19.848 14.389 7.175 0.419

0.281 5.500 10.522 14.348 16.740 17.935 17.935 16.740 14.348 10.522 5.500 0.281

0.143 2.750 5.500 7.652 8.609 9.087 9.087 8.609 7.652 5.500 2.750 0.143
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because of the limitation of computer time. The error introduced by assum-

ing that the neutron source is constant over each sub-area is discussed

with the theoretical results in Section T5.3.

T4.6 Introduction to the Discussion of the Computer Code

The representation of the cavity assemblies has been discussed and

each sub-area has been assigned an average albedo. The computer code is

discussed next. The nomenclature used in the code is defined, and the

general plan for the calculation of the flux distribution is explained. A

detailed description of the code for the 450 cavity appears in Appendix B3.

As was stated in the introduction to this chapter, the incident cur-

rent for each sub-area, Ji, is obtained from a set of simultaneous equa-

tions by means of an iteration technique. The constant value of the flux

for each sub-area is calculated from the value of Ji, and the average value

of the albedo si is obtained from equation (T4-.1).

The nomenclature of the iteration program follows.

Al(I,J) = sub-area on surface #1 at the position I,J = 1,0 unit of area,

J1(I,J) = current incident on Al(I,J) in n/cm 2 .sec,

Cl(I,J) = number of neutrons incident on Al(I,J) per second = Jl(I,J)-Al(I,J),

Tl(4,J) = the current re-entering through Al(I,J) in n/cm2 -sec,

pl(I,J) = average value of the albedo for Al(I,J) = Tl(I,J)/Jl(I,J),

F(IJ) = number of source neutrons entering through Al(I,J) in n/cm 2 .sec,

ALl(I,J) =pl(IJ),

Dl(IJ) = 1 -

Vl(Nl, N2, N3) = view factor x area = Aj Fji.

It should .be noted that the area of a square is unity, of a triangle is 4,

and of a slanted rectangle is 1.414.
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In Chapter T2, the product of the view factor, F(I,J,K) and the area

A was represented by V(I,J,K); this product was calculated and punched on

IBM cards. The convenience of using the product arises from the relation-

ship,

Ai Fij = Aj Fji, (T4.2)

from which, for unit areas, it follows that

Vii = Vji.

The quantity Vij is used to calculate the contribution from Ai to Aj and

also from Aj to Ai and thus only half of the Vij need to be calculated.

Each sub-area A(I,J), and the corresponding values of J, C, T, F, p,

AL, and D, are defined in terms of the coordinate system drawn on the

cavity surfaces in Figures T4.6 through T4.7. The arguments of

Vl(Nl, N2, N3) represent-two pieces of information. First, they define

the relative position of Ai and Aj which, in turn, uniquely define the

value of Vl(Nl, N2, N3); this was seen in Figure T2.3, where the defini-

tion of I, J, and K was given for Fl(I,J,K). Second, Nl, N2, and N3 are

the indices of an indexed variable in a computer program, and consequently

define the storage location of Vl(N1, N2, N3). To understand the indices

of the view factors as they are written in the program, one must be famil-

iar with the definition of the coordinate system used to define each view

factor.

Equation (Tl.4) is rewritten in terms of the above nomenclature with-

out specifying the surface numbers:
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T.

Bottom

Figure T4.16 The Thermal Column Face (dashed lines) and
the Foil Locations (circles) Superimposed
on Surface #1

L

A I(LIM)

K3.

Figure T4.17 Surfaces #1 and #4 with 12" sub-areas
The Coordinates I,J and L,M define the
location of the sub-areas, A4(I,J) and
Al(L,M), respectively

196

A



all other surfaces

C(IJ) = J(I,J) x A(I,J) =

LM

+

source surface

I
LM

T(L,M)-V(Nl, N2, N3)

F(L,M) x V(N4, N5, N6),

T(LM) = s (L,M) x J(L,M) = AL(L,M) x C(L,M). ('4.4)

As an example of the form of these equations as they appear in the FORTRAN

code, the contribution from Surface #1 to Surface #4 is written for the

case of the 450 cavity (see Figure T4.17).

all Al(L,M)

I
LM

[Tl(LM) + F(LM)] Vl(II-LI + 1,6-MJ) +

other surfaces

I
LM

Surface #1, which is the thermal column gace, has source neutrons, F(L,M),

and reflected neutrons, Tl(L,M), entering the cavity. The quantities,

II-LI + 1, 6-M, and J, correspond to the I, J, and K coordinates, respect-

ively, shown in Figure T2.3. For the particular case of I = 4, J = 3,

L = 3, and M = 2, equation (T4.5) has the following form:

C4(4,3) = Tl(3,2) + F(3,2)] Vl(3,4,3) + other surfaces.

Al(3,2) and A4(4,3) appear as shaded sub-areas in Figure T4.17. The equa-

tions for the current incident on all of the surfaces have the same form.
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T4.7 Description of the General Flow Diagram of the Computer Code

Now that the nomenclature of the program has been discussed, the pro-

gram itself is described. Separate programs were written for the PARA and

450 hohlraum, and each contains a main routine and seven sub-routines.

The general flow diagram, shown in Figure T4.18, is identical for both

programs and is discussed first. Parts of the code are discussed in de-

tail in Appendix B3.

The first step in the general flow diagram is the reading of input

data. The V's, AL's, D's, and F's are stored in the computer according to

their indices. Also, the dimensions of the cavity -surfaces, and a few

additional quantities, which will be explained in Appendix B3, are read

into storage. Each re-entering current is given an initial value for the

first iteration. The values of C(I,J) are calculated for the sub-areas on

each surface by using equations such as equation (T4.3). After all of the

C(I,J) have been calculated, they are normalized to preserve a neutron

balance in the cavity. The resulting values of the C(I,J) are converted

into the corresponding values of T(I,J) by means of equation (T4.4). The

new values of T(I,J), calculated from their corresponding C(I,J)'s, are

compared with the assumed values. If each of the new and old T(I,J)

agrees within a specified range, the iteration is completed and the output

information is printed. If the new and old values of the T(I,J) do not

agree, the new values of the T(I,J) are used to calculate a new set of

C(I,J) for each sub-area. A test of agreement is made again, and the

iteration procedure continues until the desired agreement has been obtained.

The symmetry of the incident and re-entering currents permits the

number of calculations to be reduced because the incident currents on only
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Start

Read Input Data

(V's, AL's, D's, F's, dimensions)

Set T(L,M)'s to initial value

Solve for C(I,J) on each surface

Calculate normalizat ion constant

Test for convergence

no convergence

Calculate T(I,J) from normalized values

of C(I,J). Start next iteration.

Print output information

4O
STOP

convergence

Figure T4.18 General Flow Diagram for the Computer Code

that Calculates the Flux Distribution
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half of the sub-areas must be determined. The currents are symmetrical

about a vertical plane running from the middle of the thermal column face

(Surface #1) to the surface of the back wall (Surface #2). This symmetry

results from the fact that the neutron source is symmetrical about the

vertical mid-line on the thermal column face, and the assembly on one

side of the plane of symmetry is identical to that on the other side. The

C(I,J)'s are calculated on only half of Surfaces 1, 2, 3 and 4; C6(I,J) is

calculated for the entire surface, and is identical to C5(I,J) which is

therefore not calculated. This symmetry is present for all of the assem-

blies.
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Chapter T5

Theoretical Results

T5.1 Tabulation of the Results

The values of the flux on the honeycomb were calculated for Assem-

blies I, II, IV, V and VI by means of the computer program described in

the previous chapter. The flux was calculated for 6" and 12" sub-areas in

Assemblies I and II, and for 12" sub-areas in Assemblies I, II, IV, V and

VI. The values were corrected for the forward anisotropy of the angular

distribution of the neutrons as discussed in Section T2.2.

The location of a sub-area, A3(I,J), on the honeycomb and its cor-

responding constant value of flux, $03(I,J), are defined by the coordinate

system (I,J), shown in Figures T5.1 and T5.2 for the 6" and 12" sub-areas,

respectively. The location at which the flux was measured is indicated by

circles in these figures. Note the designation of the sides of the honey-

comb as the front, back, north and south sides. The theoretical values of

$3(I,J) for each of the five cavity assemblies are given in Tables T5.1

through T5.3, as functions of the coordinates (I,J). Since the calculated

flux, $3(I,J), is symmetrical about the mid-line running from the front to

the back of the honeycomb, only the values of $3(I,J) for I = 1 to 3 in

the case of 12" sub-areas and for I = 1 to 6 in the case of 6" sub-areas

are listed.

T5.2 Comparison of the Results for the 6" and 12" Sub-areas

The influence of the size of the sub-area on the value of the calcu-

lated flux may be studied by comparing the results for sub-areas of dif-

ferent size in the same cavity assembly. The values of the flux on the

honeycomb, calculated for 6" and 12" sub-areas in Assembly II, are compared

201



FrontI

Figure T5.1 Location of the 6" Sub-Areas on the Honeycomb,
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Figure T5.2 Location of the 12" Sub-Areas on the Honeycomb, Defined
by the I,J Coordinates. The circles represent the foil locations.
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Table T5.1

The Values of the Flux, $3(I,J) x 168 , in the 6" Sub-Areas

on the Honeycomb of Assembly I

I

1

1 4.314

J

2 4.775

3 4.768

4 4.704

5 4.615

6 4.493

7 4.402

8 4.342

9

10

11

12

4.290

4.207

3.972

3.557

5 62

4.880

5.501

5.587

5.529

5.450

5.359

5.266

5.196

5.141

5.061

4.875

4.122

3

5.218

5.876

5.744

5.662

5.577

5.493

5.422

5.357

5.296

5.234

4.989

4.263

4

5.502

5.947

5.843

5.727

5.626

5.530

5.464

5.405

5.356

5.307

5.158

4.335

5.697

6.082

5.909

5.756

5.661

5.560

5.495

5.440

5.383

5.331

5.191

4.370

5.799

6.146

5.944

5.777

5.674

5.566

5.501

5.448

5.396

5.346

5.210

4.381
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Table T5.2

The Values of the Flux, $3(I,J) x 10, in the 6" Sub-Areas

on the Honeycomb of Assembly II

I

11

1 7.211

2 7.971

3 7.956

4 7.839

5 7.788

6 7.501

7 7.353

8 7.239

9 7.129

10 6.984

11 6.747

12 5.932

2

8.289

9.284

9.377

9.274

9.121

8.954

8.796

8.669

8.553

8.408

8.067

6.797

3

8.903

9.794

9.693

9.517

9.346

9.189

9.048

8.923

8.807

8.685

8.423

7.028

4

9.365

10.092

9.868

9.635

9.438

9.261

9.125

9.006

8.901

8.809

8.531

7.143

5

9.668

10.309

9.996

9.708

9.518

9.325

9.190

9.073.

8.948

8.840

8.594

7.202
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10.052

9.744

9.541
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9.205

9.088
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Table T5.3

The Values of the Flux, $3(I,J) x 1a8, in the 12" Sub-Areas

on the Honeycomb of Assemblies I, II, IV, V and VI

I>

1 2 3

1 4.977 5.638 5.949

2 5.345 5.833 5.945

3 5.238 5.709 5.762

4 5.102 5.612 5.667

5 5.011 5.535 5.597

6 4.621 5.056 5.118

$3(I,J) x 198
Assembly I

I

1 2 3

1 6.278 7.146 7.536

2 6.596 7.253 7.411

3 6.318 6.933 7.018

4 6.021 6.666 6.748

5 5.791 6.448 6.538

6 5.544 6.139 6.261

$3(1,J) x 10
Assembly IV

I

1 2 3

1 9.055 10.465 11.022

2 9.658 10.771 11.040

3 9.377 10.425 10.620

4 8.905 9.974 10.167

5 8.113 9.144 9.336

6 6.520 7.381 7.584

$3(I,J) x 10
Assembly VI
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Table T5.3 (continued)

8.069

8.345

8.253

7.994

7.739

6.962

2

9.210

9.366

9.060

8.830

8.629

7.748

3

9.648

9.536

9.190

8.958

8.739

7.881

$3(I,J) x 1(
Assembly II

I 2

1 2 3

6.048

6.317

6.179

5.957

5.495

4.460

6.392

6.470

6.278

6.059

5.606

4.580

$3(I,J) x 168
Assembly V
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J
1

2

3

4

5

6
1

J

IF

1

2

3

4

5

6

5.283

5.705

5.574

5.313

4.871

3.941



by plotting the values from the front to the back of the honeycomb. The

relationship between the 6" and 12" sub-areas on the honeycomb is shown in

Figure T5.3, in which the solid lines represent the 12" sub-areas, and the

broken lines represent the 6" sub-areas. In comparing the results for the

6" and 12" sub-areas, an average value of the flux in the 6" sub-areas

must be used. For example, the value of $3(3,J) for the 12" sub-areas (see

Figure T5.2) is compared to the average value of -3(5,J) and $3(6,J) for

the 6" sub-areas (see Figure T5,1). The average value of the flux for the

6" sub-areas is obtained by first plotting the values of $3(I,J) from I = 1

to 6 for each value of J; Figure T5.4 shows the value of $3(I,1) plotted

in this manner. The average values of $3(5,1) and $3(6,1), of 03(3,1) and

$3(4,1), and of $3(1,1) and 03(2,1) are taken to be the value of the flux

at 6", 18" and 30", respectively, from the center line of the honeycomb.

The average values of the flux in the 6" sub-areas are obtained for J = 1,

to 12 and plot'ted in Figure T5.5, along with the values of $3(I,J) for the

12" sub-areas,

The values of the flux in the 12" sub-areas which do not border the

edges of the honeycomb agree with the results calculated for the 6" sub-

areas. In this region, the calculated flux distribution does not vary

much within a single 12" sub-area and the use of sub-areas of this ssize

does not introduce any serious errors as compared with the results based

on the use of 6" sub-areas. The results for the 6" sub-areas do,:however,

predict a sharp decrease in the flux within 6" of the edges of the honey-

comb. The value of the flux obtained for a 12" sub-area is an average

value for the sub-area and consequently cannot predict variations in the

flux near the edges of the honeycomb. A discrepancy exists, therefore,
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Figure T5.4 The Values of $3(I,1) for Assembly II
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between the values of flux in the 6" and 12" sub-areas which border the

edges of the honeycomb. The discrepancy is clearly seen in Figure T5.5c,

where the values of the flux for the 12" sub-areas bordering the side of

the honeycomb are about five per cent lower than the values for the 6"

sub-areas.

Although calculations based on the use of 6" sub-areas can predict

more accurately variations in the flux distribution, calculations for the

12" sub-areas have the advantage of using only one-eighth as much computer

time as those for the 6" sub-areas. A large value of the unit length L

and a large sub-area are, therefore, useful for a cavity assembly in which

the flux distribution has no large variations.

T5.3 Discussion of the Applicability of the Theoretical Model

The approximations made in applying the theoretical model to the five

cavity assemblies are discussed next.

In deriving the expressions for the view factors, the neutron current

entering the cavity was assumed to be constant over a single sub-area. In

Section T2.2 it was shown that if the current varies by ten per cent with-

in a sub-area, the resulting error in the calculated flux for any sub-area

is less than one per cent. The two types of currents which enter the

cavity are the re-entering current, T(I,J), and the neutron source, S(I,J).

The distribution of the re-entering currents, which was plotted from

the calculated values of the T(I,J), shows that almost all of the currents

vary by less than ten per cent within either a 6" or a 12" sub-area. The

current varies by 10 to 20 per cent only in those sub-areas which border

the edge of a wall. This relatively large variation is caused by the large

neutron leakage from the edge of a wall. Hence, the variations in the
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re-entering currents in both the 6" and 12" sub-areas produce an error of

less than one per cent in the flux calculated for those sub-areas which do

not border the side or back edges of the honeycomb, and an error of less

than two per cent in the flux for those sub-areas which border the side

and back edge of the honeycomb.

The magnitude of the neutron source varies by as much as 50 per cent

over a 6" sub-area and 100 per cent over a 12" sub-area. As was pointed

out in Section T2.2, the variations of the current entering the cavity

within a sub-area do not cause any significant error in the flux calcu-

lated for sub-areas which are four or five units away. This statement is

supported by the fact that the theoretical flux on the honeycomb for the

12" sub-areas agrees with that for the 6" sub-areas, even though the vari-

ation of the neutron source within a 12" sub-area is twice as great as the

variation within a 6" sub-area.

In the theoretical model it is assumed that the current re-entering

the cavity through a given sub-area is proportional to the current inci-

dent only on that sub-area. It was shown in Chapter T3 that the magnitude

of the current re-entering the cavity through a given sub-area differs

only by about one per cent from that calculated with the theoretical model,

provided that the current incident on the given sub-area is within ten per

cent of the average value of the current incident on adjacent sub-areas.

The values of the incident current, as obtained from the calculations, are

found to comply with the required condition, except for the sub-areas in

the two back corners of the honeycomb. In the latter sub-areas, the inci-

dent current is about 15 per cent lower than the average of the currents

incident in the adjacent sub-areas.
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Only the flux on the honeycomb was corrected for the forward aniso-

tropy of the neutron source; this correction increased the magnitude of

the flux on the honeycomb by one to two per cent. The forward anisotropy,

also affects the flux at the other surfaces of the cavity which, in turn,

would have a (secondary) effect on the flux at the honeycomb. Now-if the

values of the flux on the other surfaces were also corrected for the for-

ward anisotropy of the source neutrons, they would be slightly greater at

the back of the cavity and slightly smaller at the front. The effect of

these corrections should be small, in view of the small effect of the cor-

rection of the neutron source itself, and their effect on the flux at the

honeycomb should tend to cancel. Hence, correcting only the flux on the

honeycomb for the forward anisotropy of the source neutrons seems to be

justified. Since, as will be seen, the flux distributions calculated for

the five cavity assemblies agree with experiment, the correction adopted

does not seem to introduce any discernible error.

In the representation of the cavity assembly used in the calculations,

the thermal column face was assumed to be 3" higher on Surface #1 than it

actually is., This discrepancy is small compared to the dimensions of the

thermal column face, and is also small compared to the distance between

the thermal column face and the honeycomb. It seems probable, therefore,

that the discrepancy would introduce, at most, a small error in the dis-

tribution of source neutrons, and we would expect intuitively that the

effect on the flux at the honeycomb would be small. A similar argument

applies to the "frame".

From the above discussion, it is concluded that the theoretical model

may be applied to the five assemblies in which the flux was calculated. A

maximum error of about two per cent is expected in the calculated flux on
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the honeycomb for the sub-areas which do not border the edge of the honey-

comb. Although no exact calculations can be made, the error in the flux

for the sub-areas which border the back and side edge of the honeycomb

should not be very much greater. If an error of one to two per cent is

allowed for the convergence of the flux in the computer code (Appendix B2),

an estimated maximum error of three or four per cent seems reasonable in

the theoretical flux for the sub-areas which do not border the honeycomb.

T5.4 Analysis of the Theoretical Flux Distribution

The effects of the geometrical and material arrangement of the cavity

assembly on the magnitude and distribution of the flux at the honeycomb

have been discussed in the presentation of the experimental results (see

Section E3.6). These effects will now be analyzed in greater detail by

considering the computer results.

The direct contribution of the source neutrons to the honeycomb and

the neutron leakage from the sides of the pedestal are two major influences

on the flux distribution on the honeycomb surface. The flux due to the

direct contribution of the neutron source to the honeycomb is obtained

with the aid of the computer code, and will be known as the "source" flux.

The "reflected" flux due to the neutrons reflected from the walls of the

assembly is obtained by subtracting the "source" flux from the total flux

on the honeycomb. In Figures T5.6a and T5.6b the distribution from the

front to the back of the honeycomb is plotted for the total flux, $3(3,J),

the "source" flux, and the "reflected" flux, in Assemblies I and II,

respectively, for the case of 12" sub-areas. The "reflected" flux in-

creases considerably with the distance from the front of the honeycomb in

Assembly I. The calculations show that few neutrons from the thermal
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column face of the boral-lined door space contribute to the "reflected"

flux on the honeycomb, which is therefore due mainly to the contribution

of the flux in the back part of the cavity assembly.

The influence of the "frame" on the "reflected" flux can also be seen

in Figure T5.6b. The increase in the "reflected" flux with the distance

from the front of the honeycomb is much smaller in Assembly II than in I;

neutrons reflected from the frame add to the contribution of the "reflected"

neutrons in other parts of the cavity assembly to produce an almost flat

"reflected" flux on the honeycomb. Neutron leakage from the front and back

edges of the pedestal lowers the values of $3(3,1) and $3(3,6) (see Figure

T5.2), so that the distribution is not flat near the edges of the honeycomb.

The distribution of the flux from the north side of the honeycomb to

the south side is plotted for Assemblies I and II in Figure T5.7. The dis-

tribution of the "reflected" flux is almost uniform for Assembly I, while

the distribution of the "reflected" flux for Assembly II is similar to

those of the "source" and total flux. The difference in the distribution

of the "reflected" flux for Assemblies I and II is due to the reflection

of the source neutrons from the frame to the honeycomb.

The effect of neutron leakage was determined by calculating the flux

for the case in which there is no neutron leakage from the sides of the

cavity walls. This is accomplished by using a constant value of the albedo

for all the sub-areas on a surface. The results given by the computer code

for the case of a constant albedo is shown for Assembly V in Figure T5.8.

The dashed lines represent the flux for a constant albedo, and the solid

lines represent the flux for the actual arrangement of Assembly V, with

varying albedo. The flux for both cases is plotted from front to back

(J = 1 to 6). and from side to side (I = 1 to 6) in Figures T5.8a and T5.8b,
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Figure T5.7 The Values of the Total, "Reflected" and "Source" Flux Plotted
from Side to Side for Assemblies I and II.
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respectively. In both figures, the flux for constant albedo is greater in

magnitude and more flat in distribution than is the flux which includes

neutron leakage. The effect of the neutron leakage is emphasized by the

large difference between the values of the flux near the edges of the

honeycomb.

The theoretical results show that neutron leakage from the sides of

the wall, and the boral and cadmium lining in the door space reduce the

magnitude of the flux on the honeycomb. The flux was calculated for an

idealized cavity in which there is no neutron leakage from the sides of

the wall, no boral, and cadmium bordering the cavity. Figure T5.9 shows

how this assembly would look. An albedo of 0.90 was assigned to all of

the sub-areas of the cavity surfaces. Since there is no neutron leakage

from the sides of the walls and no neutron absorbers bordering the cavity

in this case, the flux on the honeycomb should be the maximum obtainable

flux for a wall material having an albedo equal to 0.90. The flux distri-

bution for this idealized cavity, shown in Figure T5.10, is plotted from

the front to the back of Surface #3. The magnitude of the flux on the part

of Surface #3 corresponding to the honeycomb (48" to 120" in Figure T5.10)

is 2.5 to 3.0 x 109 n/cm 2 sec, which is three times greater than the flux

measured in any of the experiments. The distribution in Figure T5.10 is

also fairly flat over the surface of the honeycomb; the calculations

showed that the source neutrons contribute about five per cent to the

total flux on the honeycomb.

The value of 0.90 for the albedo was selected arbitrarily. Since the

magnitude of the flux on the honeycomb is approximately proportional to

the factor, 1/1-p,(see Appendix B3, equation B3.4) equation (T5.1) may be

used to approximate the flux for another value of the albedo.
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Figure T5.9 Vertical Section of the Idealized 450 Cavity Assembly.
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$1PO$ (T5. 1)

If a value of 0.92 were used for the albedo in calculating the flux in the

idealized cavity, the magnitude of the flux would be 25 per cent greater

than that calculated by using a value of 0.90. This example illustrates

the large influence that neutron leakage and neutron absorbers, such as

boral and cadmium, have on the flux in a cavity.

T5.5 Comparison of Theory and Experiment

The theoretical and experimental results are compared by plotting the

theoretical and experimental values of the flux from the front to the back

of the honeycomb. The foils were located 6", 18", and 30" from the center

line of the honeycomb (see Figure T5.3). The corresponding values of the

theoretical flux in the 6" sub-areas are obtained by the method described

in Section T5.2 of this chapter. The values of the flux, $3(I,J), calcu-

lated for 6" sub-areas in Assemblies I and II, are shown together with the

flux measured in these assemblies in Figures T5.ll and T5.12, respectively.

The circles represent the measured values of the flux and the horizontal

lines represent the theoretical values of the flux for each J at a given

distance from the center line of the honeycomb. The curve is the flux dis-

tribution obtained by connecting the centers of the horizontal lines.

The maximum error in the experimental values of the flux is about one

per cent (see Chapter E3.5), while the error in the theoretical results

has been estimated as about three to four per cent. All but two of the

experimental points are within two per cent of the theoretical flux dis-

tribution in the two figures, so that the experimental and theoretical

values of the flux are in excellent agreement for these two cases.
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The values of the flux for 12" sub-areas were calculated for Assem-

blies I, II, IV, V, and VI. The flux was measured at the points which cor-

respond to the center of the 12" sub-areas (see Figure T5.3). The

experimental and theoretical results are compared by comparing the values

of $3(I,J) for the 12" sub-areas with the flux measured at the center of

the sub-areas.

The theoretical and experimental results for Assemblies I, II, IV, V,

and VI are plotted in Figures T5.13 through T5.17, respectively. The

theoretical results are represented by horizontal lines and the experi-

mental results by circles. Since the values of the flux calculated for

the 12" sub-areas cannot describe the flux distribution near the front and

back edges of the honeycomb (see Section T5.2 of this chapter), continuous

curves are not drawn. However, the distribution can easily be visualized

for the 12" sub-areas which do not border the front or the back edges.

The agreement between theory and experiment is good. Except for

Assemblies I and VI, the values of the flux calculated in the sub-areas

which do not border the side and front edges agree with experiment to with-

in two per cent. The close agreement between the theoretical and experi-

mental flux in the sub-areas bordering the back edge is fortuitous, since

the theoretical model was shown to be most uncertain in this region. The

values of the flux calculated for the sub-areas bordering the side of the

honeycomb, $3(1,J), are consistently lower than the corresponding experi-

mental value, as was expected. The values of $)3(1,J) are also consistently

lower than the corresponding values for the 6" sub-areas, which, in turn,

agree with the values of the flux measured in Assemblies I and II. Even

though a discrepancy does exist near the edges, the theoretical and experi-

mental values differ by only about five per cent in most cases.
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The shape of the flux distribution calculated for the 12" sub-area in

Assembly I agrees with experiment, but the magnitude is greater by the

factor 1.03 than it should be to achieve a neutron balance (see Appendix

B2). Only in this case did the values of C3(I,J) converge before an accur-

ate neutron balance was obtained. The difference appears to be attributa-

ble, at least in part, to this effect. The theoretical values of the

flux in Assembly VI are consistently greater than the experimental values.

The gradient of the flux in Assembly VI is greater than the gradient for

any other assembly. The subject of the flux gradients in a sub-area was

discussed in Section T5.3 of this chapter. Most of the experimental and

theoretical values for Assembly VI agree to within the ± five per cent

which is approximately the total error in the theoretical and experimental

results.

The above comparison shows that theoretical and experimental values

of the flux agree to within three per cent in most cases. The greatest

difference between theory and experiment occurred in the case of Assembly

VI, where there was a difference of about five per cent. Since the larg-

est error in the theoretical results may be expected in this case, a dis-

crepancy of five per cent still represents good agreement between the

theoretical and experimental values of the flux. The theoretical model

also correctly interprets the effects of the inclined plane, the frame,

and the edges of the pedestal; these effects were discussed in Section

E3.6. The close agreement between theoretical and experimental results

supports the statement that the theoretical model can be applied success-

fully to these five cavity assemblies.
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Appendix B1

Derivation of the Expressions for the Thirteen View Factors

Bl.1 View Factor for Squares in Perpendicular Planes - VI(I,J,K) (See

Figure Bl.1)

Let

u,= A + t + y,

v = C + S,

z = B + x.

The quantity A is the distance between the two squares along the line of

intersection of the perpendicular planes. The quantities B and C are the

distances between the intersection of the planes and A1 and A 2, respec-

tively. From Figure Bl.la, it can be seen that

cos $)1 = v/r,

cos $2 = z/r,

r2= u2 + v 2 + z2

dA2 = dsdt = dvdu.

Substitution of these values into the equation for the view factor F(dl)2

from dAi to A 2 equation (T2.6) gives:

L L y + L + A L + C

F - 1 u z dsdt 1dv v d v (Bl.1)
F(dl)2 - Iu2 + + v2]2  f d v2 + u2 + z2 2

0 0 y + A C

The double integration is straight-forward.

F(dl)2 1 [ 1 tan-1 (y+L+A) . 1 tan 1  (L+A+y)
FTdl =" -- tan- -tan

(C2+z2) (C2 +z 2 ) [(L+C)2+z2 [(L+C)2+z2]I

- 1 tan- (A+y) + 1 tan- (A+y) (Bl.2)

(C 2+z 2) (C 2 +z 2 ) [(L+C)2+z21  [(L+C)Z+z2 I
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A,

(a)

I = A/L*= number of units between A and A2 along line of intersection
of two planes.

J = B/L = number of units between A1 and intersection of planes.

K = C/L = number of units between A2 and intersection of planes.

AA

Figure Bl.1 The Geometrical Arrangement of
A, and A2 for Vl(IJ,K).
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Remembering that

L L

F(dl)2 dA1 =
1
Al

F(di)2 dxdy, and letting I = A/L, J = B/L,

0 0

and K = C/L, we get the final expression for F1 2:

2n Af'F12 = 2Tr

(J+K)
(I+2)

ctn 1

Vl(I,J,K) = (1+2)2 (J+lK2 ctn-1

I1(1+2)

(J+K) (J+1)2(K+1 2 (J+1)
(1+2) (I+2) ct(

(1+2)

2+(K+ 1) 2]
1+2)

+ [(j2+(K+1)2
(1+2)

ctn-l [j2+(K+1)2] 
}

(1+2)
+2(1+1)2

(J 2 +K2 ) -n

(1+1) ctn

E(J+1)2+K2] -l

(1+1) ctn

(J+ 1)2+K2]42
01+1)

+[(J+1)2+(K+1)2]4 -l
+14tn)

(J+ 1) 2+ (K+ 1)2]
(1+1)

[J2+(K+1) 2]12

(I+1)

(J+1) 2+(K+1) 2] 4

[j2+(K+) 2] +

(1+1) +
2 __2+(K+1)_ cn 2+(K+ 1) 2

12 1{[2+K1)2]2 ctn 1l

ct j1 1) 2+ K+ 1)2]'1 (2+K2) -l 2)
___ ___ ___ __ '2__ _ (J + +K_

I -_ I ctn-

(J+1)2+K2]4 1[(j+_) 2+2]4
+ 1)ctn] +

(I+1)2 1(1+1) 2+J2+K2]2( 1) 2+
+ I (;1) 2+ (J+ 1) 2+K2]2([,

(J+1
+ 4

+(K+ 1
+ 2

42

.2
(1+2)2
4

in {[(1+ 2) 2+(J+1) 2+K2] (1+2) 2+J 2+(K+1) 2
1

n (1+2) 2+J2+K21[(I+2) 2+ (J+1) 2+ (K+1) 2J

(J+1) 2 +(K+1) 2]

1) 2 +J 2 +(K+1) 2] f
in 2 (J+1) 2+K2+(I+1) 2]2[(J+1)2+(K+1) 2+(I+2) 2][(J+1) 2+(K+1).2+2]

[(J+1) 2+K2+(I+2) 2] [(J+1) 2 +(K+1) 2+(+) 2]2 [(J+1) 2+K 2+ 12

n 2 (J+1) 2+(K+1) 2+(I+2) 21[j2+(K+1) 2+(+1) 22 [(J+1) 2+(K+1) 2+12]
In 2+(K+1) 2+(1+2) 2 (J+1)2+(K+1) 2+(1+1) 2 2 [j2+(K+1) 2+, 2]

in 2+ (J+1) 2+K2[12+J2+(K+1) 2]
I 2+ J2+K2] [12+(J+1) 2+(K+1) 2]
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J2 2+K2+ (1+2)2 2+K1)+ 122 2+2K'

+ in [(1+1)2+ 2+K2 2[(I+2)2+(K+1) 2+j [(K+1)2 22}

+ K2 in [J2+K2+(I+2)2][ 2+J 2+K21[(J+1) 2+(I+1)2+K2]2 (B.3)
4 n (J+1)2+K2+(1+2)2 j+1)2+K 2(+1)2(

On examining equation (Bl.3), it can be seen that J and K may be inter-

changed without changing the expression; there is symmetry between the J

and K direction. Since I, J, and K define the relative positions of the

two squares in the rectangular coordinate system in terms of integral

multiples of L, the dimension of the square (see Figure Bl.lb), the speci-

fication of I, J, and K makes possible the calculation of the view factor.

Bl.2 View Factor for Squares in Parallel Planes - V2(I,J,K)

Referring to Figure Bl.2a, we let

u = y + A + t,

v= x + B + s,

C =C,

where A and B are the distances between the two squares in the horizontal

and vertical directions, respectively, and C is the distance between the

two parallel planes. Then:

r2 = u2 + v2 + C2

cos $1 = cos $)2 = c/r,

and

L L

1 dA 2 1 f dudv
(dl) 2 2 2 2 12 2

C + + 1 C2 + + 1
A2  C2 C2 a a C2  C2

The integration could not be done in this form, so the coordinate system is

changed to polar; see Figure B1.3. In the new system,
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Al

AA2

(a)

A2

I' (b)

I = A/L = number of unit lengths between A and A2 in the horizontal
direction.

J = B/L = number of unit lengths between A and A in the vertical
direction. 1 2

K = C/L = number of unit lengths between the two parallel planes.

Figure.Bl.2 Arrangement of A and A
1 2

for V2(I,J,K).

236



P2 = u2/C2 + v2/C2

and

dA2 = dpde.

The integration over a square in polar coordinates must be done in three

parts:

F = 1f(dl)2 =

A
2

2 G2

dpd6 1 f dpd6 +
2 + 1)2 T :2 + 1)2

1~ Gi

P4 64

I f dpd6 +(2 + 1)2

A3 63

It'6 6 
dpd6

~ff (p2 + 1)2

P5 695

(Bl.4)

where we have introduced the limits of integration,

61 = tan- 1 x+B
L+A+y

62 = tan- x+ By+A

63 = tan- x+B
y+A

64 = tan-
1 x+B+L
y+A+L

65 = tan-
1 x+B+L

y+A+L

6= tan- 1 x+B+L
y+A

PI x+B

1 C sin 6

2 +A+L
C cos 6

C cos 6

y+A+L
4 C cos 6

C cos &

x+B+L
6 C sin 6

The integration yields

F(dl) 2 x+B an-4
Fd) (x+B)2+C21 [ t

[(x+B)2+C21 - tan (x+B)2+C2
y+A+L - ny+A

+ (y+A+L) [tan_1 (x+B+L) - tan 1  x+B 2]-'

[(y+A+L)2+C2]7 (y+A+L)2+C2]-2 (y+A+L) 2
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+ (y+A) tan x+B - (x+B+L)

[(y+A) 2+C2] t [(y+A) 2+C2]4 - ta [(y+A) 2+C2

+ (x+B+L)

(x+B+L) 2+C2]

[n (x+B+L) 
2+C2 1 - tan-1 (+B+L)2+C2]

y+A y+A+L

To obtain F1 2 , F(dl)2 must be integrated over A,:

L L

F1 2 = F(dl)2 dA1 = f F(dl)2 dxdy.

Al 0 0

When these integrations are performed and when we set I = A/L, J = B/L,

K = C/L, F1 2 takes the form:

27t A1 F 1 2 (I,J,K) = 2it V2 (I,J,K) = (1+2) f2 (J+1)2+K2 tan-1 (j+ 1+K

2 1(J 2+K2) 2 LJ+ 2) 2+K2] 'I
- (J2+K2 tan- 1+2 2- (J+2) 2+K2 t an 1+2

(J2 +K2 -1 t 1 2 + (J+ 2)2+K 2 tan-1(J+2+K

+ 2(I+1) -

rJ 12 K ] ) I' r 1+K

- 2 (J+1)2+K2]- tan-- (+1 2+K2 + (J+2) (12+K 2) 2 ctn 2+ 2

+ [(I+2)2+K2 ctn- [(1+2) 2+K2 - 2 [(1+1)2+K2]% ctn-1 (1+1 +K

{)2 (I+1)2+K2 J+2 2
+2(,J+1) 12(+) ]2c tn- 1-(+)K2 (I2+K ) ctn- I+K 2)

J~l Ja-

(I+2)2+K2 c etn-1 (1+2) 2+K2J% (J+1)2+K2j% tan
1 [(J+1) 2+K2J

2) 2 ( 2 2) - 2 -1 J + 2 2
(J+K)2 tan-l(J+K r2)2+K1 > tan K(JJ2

(I+2) 2+K2] ctn-1 (1+2 2+K2 + (12+K2) ctn ( 2+K2)
J
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A 2

I)
I I
I I
I I
I I
I I

C C,

Figure Bl.3 Relationship between Rectangular and
Polar Coordinates for Area A2 '

Figure Bl.4 Surfaces of the 450 Cavity.
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2[11)2K2 2 2 2
-2 (I+1) 2+K2  ctn- +1 2+K2 - In [K"+(I+2) +J +

2 2+(1+1) 2 2 K2+I2+J+1)2 2[K2+]+2) 2+(J+1)2 2[K2+(1+1)2+j 2
2 l K2+(I+1) 2+(J+1) 2 ]4 K2+(J+22+ 2  2+(I+2) 2+(J+2) 2 [K2+ 2+J2]

(Bl.6)

The quantities I, J, and K again express the relative position of the two

squares A1 and A2 , in parallel planes, in terms of integral multiples of L

(see Figure Bl.2b). Note that in equation (Bl.6), I and J may be inter-

changed without changing the equation, as would be expected from consider-

ing the interchange of I and J in Figure Bl.2. The symmetry existing in

the expressions for Vl and V2 is useful, because it is necessary to calculate

only about half of the view factors, resulting in a considerable saving of

computation time.

The view factors Vl and V2 are the only ones needed to calculate the

flux distribution for a cavity in the shape of a parallelepiped, since all

sub-areas are either in parallel or perpendicular planes. However, the

cavity with an inclined surface required other view factors besides VI and

V2. When the surfaces of the cavity shown in Figure Bl.4 are divided into

sub-areas, the latter are squares, triangles, or rectangles, which do not

all lie in parallel or perpendicular planes. The determination of the flux

distribution in this type of assembly requires 13 independent view factors,

two of which have already been derived, V1 and V2. Of the remaining eleven,

four can be obtained from equation (T2.5) -th -the aid of a numerical inte-

gration. The last seven are obtained by expressing them in terms of the

first six view factors. Considerable difficulty was experienced in obtain-

ing these view factors, an example of the limitations on obtaining accurate
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view factors for a cavity with a complicated shape. Approximate methods of

obtaining the view factors and the flux distribution would be needed for

such a cavity.

Bl.3 View Factor between a Square and a Triangle in a Perpendicular Plane

with the Triangle at the Same or Higher Elevation than the Square,

V4(I,J,K). (See Figure B1.5.)

The quantity A is the difference in elevation between the square and

the triangle where the elevation is defined as the direction parallel to

the line of intersection of the perpendicular planes. The quantities B and

C are the distances from the line intersection of the planes and the tri-

angle, A2 , and the square, A1 , respectively.

Let

v C + s,

u = t + A - y,

z = B + x;

then

cos $ u/v,

cos $2 z/v,

r= u2 + v2 + z2

Substitution of these expressions into equation (T2.5) results in an

integral identical to that in equation (Bl.1), so that the result is the

same. However, in the integration over A2 , which is a triangle, a series

of terms is obtained for which the integral cannot be found. The view

factor for this case is:
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A2

(a)

I separation of A and A2 along the line of intersection of
the two planes In units of L.

J = separation of A, and intersection of the two planes in units of L.
K = separation of A and intersection of the two planes in units of L.

(b)L

AA

Figure B1.5 Arrangement of A and A2 for V4(I,J,K).
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L L-y

2g Al F1 2 = 2g V4(A,B,C) = it JF(d2)1 dA2 =

A2

2A ta

(L+A)

n-i
A

(B2+C2)

tan- 1  (L+A)

B +(L+C

I
0 0

(L+A) tan- (L+A) - A-L) t
(B 2+C2 ) 2

- 2A tan-1 A +
2 2[B

2 +(L+C)2] %

F(d1)2 dxdy (B 2+C 2)%

an- (A-L)
(B2+C2) }

+

+B+(L+C)

(A-L) tan 1  (A-L)2
[B 2+(L+C)

+ (L+A) In
(L+A) 2 +B 2+ (L+ C) 2 ]

(L+A) 2+B2+C
+ in

(A-L) 2+B 2+ (L+C)2 (L+C)2  n

(A-L) 2 +B2 + C2 4

A 2

4
+ A2+B2+(L+)2 1 2,

l(L+ A) 2+B 2+(L+ C)2 1[A-L) 2+B2+ (L+ C),2 1

In A+B 2+C2 + In
[A2+B2+(L+C)2 4

{(L+A) 2+B2+C2] [A2+B2+(L+C)2] [(A-L)2+B2+C2]

2C2 L+A) 2 2+(L+C)2 AL)+B 2 C)2

[(L+ A) 2+ B 2+C2] [(A-L)2+B2+c2

(A2+B2+c C)2

L

+ f (L+B-y) 2C2 1

0

-1ctn (L+ B-y) +C2%

+ (L+A-y) in [(L+A-y)2 + (L+B-y) 2 + c2] - (L+B-y) 2+(L+C)2 1
-

[(L+B-y 2+ (L+C) 2]
L+A-y

_i+BY) 2 C2]-2[(L+B 2+2
A-y

[(L+B-y) 2+ (L+C)
A-y

_ L+ y) In (L+A-y)2+(L+B-y) +(L+C) 2
2

- [(L+B-y) 2+C2 ]

(Aiy) In [(A-y)2+(L+B-y)2+C + (L+B-y) 2+(L+C)2]

2 + (A-y) In
2

(A-y)2+(L+B-y)2 21I 2 2 ±+ I) dy.

(B1.7)

The equation for V4(I,J,K) is obtained by rewriting equation (Bl.7)

with I = A/L, J = B/L, and K = C/L.
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Since the last integration (Bl.7) could not be done analytically, a

numerical integration was performed. Examination of the functions involvd,

and also of the results of the previous two view factors, indicated that the

integrand could be expressed by a second order curve, and Simpson's rule

was, therefore, used to evaluate the integral.

Bl.4 View Factor between a Square and a Triangle in Perpendicular Planes

with the Triangle at a Lower Level - V5(1,J,K). (See Figure Bl.6.)

It is of interest to note that V4 and V5 are not the same. The sym-

metry observed between squares in perpendicular planes is not present here.

The view factor is obtained by the procedure used in the last case. The

quantities A, B, and C are defined as they were for V4. Simpson's rule was

used to perform part of the second integration. The expression obtained

for F 1 2 is:

22- -1 L+A -1
2-A A1 F 1 2 = 2: V5(A,B,C) = (B +C 2(L+A) tan L+A - (2L+A) tan

(B +C )

(2L+A) - A tan-1  A + B2+(L+o)2] A tan-1 A - 2(L+A)
(B +C2 )2 (B +C ) L B2+(L+C)2 ]

n-1 (+ (2L+A) tan-1  (2L+A) (2L+A)2 n (2L+A) 2+B 2+(L+) 2

B 2+(L+C)2 %B 2+(L+C) 2 12 4 (2L+A) 2+B 2+C 2

-2 F 222 2 2 2
(L+A2 (L+A) +B2+C A A2+B2+(L+C) 2

2 LL+A)2+B2+(L+C) 2 4 A2+B 2+C2

B2i - 2 12 222[2 C ]
In B2+(L+A) +(L+C) 2BLB2+c(2L+A) 2+C2 B2+A2+C2

[B+(L+A) 2+C 2 2 2+(2L+A) 2+ (L+C) 2 2 2+(L+C) 2

+ (L+C) 2 In +(L+A) 2+B 2+L+C) 2 2 + ln L(2L+A) 2+B2 2 A2+B2+C2
4 _ [A2+B2+ (L+C)2 2 2L+A) 2+B2+ (L+C) 2 1 4 1(L+A) 2+B 2+C 2 12
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A2

(a)

I = separation of A and A along the line of intersection of the1 2
intersection of the two planes in units of L.

J = separation of A2 and intersection of the planes in units of L.

K = separation of A and intersection of the planes in units of L.

A,
Ii
I -

(b)

Figure Bl.6 The Arrangement of A and A2 for V5(I,J,K).
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L

+ (L+B-y)2+C ctn-1 (L+B-y) +C2 + (L+A+y) I((L+A+y)2+(L+B-y) 2+C2

L+A+y 2 [(L+A+y) 2+(L+B-y) +(L+C)2

- (L+B- .y)I22 2 ctn- 1 (L+By) 2+C2 + .(L+B-y) 2+(L+C)2] %2 ctn -1 l(L+B-v)+(L+C)2

+ (A+y) in (A+y) 2+ (L+B-y) 2+ (L+C) 2 (L+B-y) 2+(L+C)2 ctn-1 (L+B-y)2+(L+C)2 dy
2 [(A+y)2+(L+B-y) 

2 +C2  / L+A+y

(Bl.8)

The equation for V5(I,J,K) is obtained by substituting I = A/L, J = B/L,

and K = C/L into equation (Bl.8).

B1.5 View Factor between a Square and a Triangle in Parallel Planes -

V12(I,J,K) and V13(I,J,K). (See Figures B1.7 and B1,8.)

For this arrangement, V12 and V13 are two distinct view factors, as

was the case for the square and triangle in perpendicular planes. The view

factors are shown in Figures Bl.7 and Bl.8; V12, shown in Figure Bl.7, will

be derived first. The quantities A, B, and C, are defined for V12 and V13

in the same way as for V2.

The integration over A2 , with polar coordinates, yields the same re-

sult as the integration for squares see equation (Bl.5) . Again, a

numerical integration must be performed for the evaluation of F1 2 -

2x A, F = 27 A, V12(AB,C) = (BF+C2 (L+A) ctn-1 -L+A)
12 (+(B2+C2

- 2A ctn-1  A + (A-L) ctn-1 (A-L) + r(L+A) 2+ C2 2L+B) tan-1  (2L+B)

(B2+C2) (B2+C2) L L+A)2+C2

- 2(L+B) tan-1 (L+B) + B tan- 1 B + (A +C2 ) [2(L+B) tan-1 (L+ B )

I(L+A) 2+C2] [(L+A) 2+C21 (A2+ C2k
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I-
A

A
LI/A,

Figure Bl.7 The Arrangement of A and A for V12(I,J,K).
f i2

I = horizontal separation of A and A2 in units of L.

J = vertical separation of A 1and A 2in units of L.
K = distance separation between the two parallel planes in units of L.

A Z
L

1A

IJ, and K are identical for those

L for V12(IJ,K).

Figure Bl.8 The Arrangement of A1 and A2 for V13(I,J,K).
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'- 1 -B- B tan 2 2 (2L+B)
(A +C )2

tan-1 (2L+B)
(A2 2 %(A +C ) 2

+ [(L+B) 2+C2 2 2A ctn- A

l(L+B) 2+ C2

-1 (A-L) -1 (-L+A) A 2 [,2+C +2L+ B) 2
- (A-L) ctn 1  (+ - (L+A) ctn 1  (L+) C J+ ln! 2 2+ 2

1( L+B)±C] t(L+B) 2+0 C [A+ 2 B2

(L+A)2
4

+ (2L+B) 
2

4

(L+A)2+C2+(2L+B)2 (A-L)2 (A-L)2+C +(L+B) 2

in(LL+A) 2+C 2+ (L+B) 2 4 (A-L)2+C 2+B 2

'[2 2 21 2 B2  (B 2
(2L+B)2+C2+(L+A (L+B)2 n (L+B)2+C +(L+A + n (B2+C2+A)

in (2L+B)2+C2+A2 4 (L+B) 2+C 2+ (A-L)2 B2+C+(A-L)2

C +B2+A2]3 [C2+( )+(A-L 2+(L+B) 2 (L+A)23 [C2+ (2L+B) 2+ (L+A)21

[ lC 2+B 2+(L+A) 2]2 [C 2+B 2+(A- L) 2 ] [+2+(2L+B) 2+A2 ]
L

+f [(2L+A-x)
2+C21 ctn-1 (2L+A C2 -tn-1 -(2L+A 2+C2]

0

+C2 L+A-x 2+C2 -1 (L+A-x 2+C2 1
1

"[(L+A-x) + 2 (ctni L + c 11 -ctn- L+B i x

)

(x+B+L) in (x+B+L)2+(2L+A-x)2+C2]

2 [(x+B+L) 2+ (L+A-x) 2 +C 2

(x+B) ln (x+B)2+(L+A-x)2+C2] dx
2 (x+B 2

(Bl.9)

The equation for V12(I,J,K) is obtained by substituting I = A/L, J = B/L,

and K = C/L into equation (Bl.9).

The derivation of the second view factor, V13(I,J,K), is the same as

that for the first.

2 -1 (L+A)
2TA F1 2  2iTcVl3(A,BC) = (B2+C2 (+) ctn 221 12 ~(B+ C2)3-

(2L+A)(2L+A) 2 2 A)

(B 2+ C 2) 2

-A ctn A 1ctC[A A - 2(L+A) ctn-1 (L+A) 2
(B2 2 L [(L+B)% 2  ctn i (L+) +C
(B +C ) L( [L+B) 2 +C2 ] [L+B) +C j
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+ (2L+A) ctn 1

- (2L+B) tan 1

+(A 2+C2 ) B

(2L+A)

(L+B) 2+C 211

(2L+B)

[(L+A) 
2+C2 %

tan-1 
B

an (A2+ C2) 2

C 2(L+B) tan-1 (L+B)[(L+ A) 2 2
[an-'(L+A)2+C 2 ]2

B tan-1 B
( L+A) 2+C2 I

- 2(L+B) tan-1 -L+B)-_ + (2L+B)
(A2+ C2)

tan- 1  2L+B)
(A2 C j2

+ (2L+A)
2

4

+
4

InL 2L+A) 2+B 2+C2

[(2L+A) 2+(L+B) 2+C2 ]

in A2 +(L+B) 2+C2 ]

[A2+ (2L+ B)2+ C 2]

+ (2L+B)2
4

(L+A)2

4
L+A)2+(2L+B) +C2

i (L+A) 2+B 2+C 2 I

In A2 +(2L+B)2+C2

[(L+A) 2+(2L+B) +C )
)

(L+B) (2L+A) 2+ (L+B) 2+C2 + (L+A) 2+B2+C2

4 [+(L+B) 2+C 2 _(2L+A)2+B2+C2

C2 (L+A)2+B2+C2]3 L2+ (L+B) 2+C2]3 [(2L+A) 2(L+B) 2+C2 [(L+A) 2+ (2L+B) 2+c2 1

+ in (2L+A)2+B 2+C 2 [(A2+B 2+C2] 2 (L+A)2+(L+B) 2+C2]4 [A2 +(2L+B) 2+C2]
L

F L ~+22C2 2

+ f [(L+B-y)2+C 2 1 tan-1 (L+B-y+ 2 - (L+B-y) 2+C 2  tan 1  (L+B- 2+C

0~

21,1,

+ (2L+B-y)2+C2] tan-1 (2L+By)2+C2] %- 2L+B-y) 2+C2 tan- 1 [(2L+B-y) 2+C2]3
+ (2+B~+G tny+ A I kL+Y L+ A+y

(L+A+_ ) n (L+A+y) 2+ (2L+B-y) 2+C2 +
+ 2 - n ( L+B-y) 2+C2+(L+A+y)2 1 (y+A) In (L+B-y) 2+(v+A) 2+c2]

2 (2L+B-y) 2+C2+(y+A)

+ f ('fl (2L+A-x) 2 1 c2] r 2 -iI2L+A-x)
+ (2L+A-x) +C2 ctn-1 (L+B+x) -(2L+A-x)2+C2% ctn-1 x+B

0~

+ I(L+A-x) 2+C2 ctn-1 (L+A-x +C L+A-x) 2+C2 % ctn-1 (L+A- +C2
L ix+B 1( L+ B+x

+ (L+B+x)
2

2
ln 2L+A-x) 2+(L+B+x)2+C 2]+

L+A-x) 2+ (L+B+x)2+C2 I

(x+B) ln (x+B) 2+(L+A-x)2+C2]

2 x+B)2+(2L+A-x) 2+C

(Bl. 10)
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To determine V13(I,J,K), substitute I = A/L, J = B/L, and K = C/L into

equation (Bl.10).

Bl.6 View Factor for Two Triangles in Parallel Planes - V9(A,B).

(See Figure Bl.9.)

It will be recalled that the second integration over the area of a

triangle for V4, V5, V12, and V13 could not be done analytically. In the

case of two triangles, the integration in equation (T2.5) cannot be done

over either A1 or A2 , so that another method is used. Figure Bl.10 shows

two triangles whose sides are one unit long, in parallel planes, two units

apart. In Figure B1.11 the triangles have been divided into sub-areas, so

that the sides are now five units long, and the triangles are ten units

apart. The view factor from one sub-area to another can now be approxi-

mated because the distance between them is much greater than their own

dimensions (ten times greater). It is evident from Figure T2.2 that if r

is large compared to the dimensions of A1 and A 2 , cos $1, cos $2, and r

are almost constant over the range of integration. In this case, equa-

tion (T2.5) shows that F1 2 is directly proportional to A2 for constant

values of r, cos $1, and cos $2. Hence, the view factor from a square or a

triangle to a triangle in a distant parallel plane is very nearly one-half

of the view factor from a square or triangle to a square in the same posi-

tion. Let the sub-scripts t and s denote a triangle and square, respec-

tively. The following relationships hold if the areas are a large distance

apart:

Fts Fss,

Fst 2 Fss,

Ftt L2Fss,
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A = distance separating the two parallel
Olanes in units of L.

B horizontal and vertical separation
of A and A in units of L.

Figure Bl,.9 Arrangement of A and A2 for V9(A,B).
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Iuvit

A z

I

Figure B1.10 Two Triangles, A1 and A., of Unit Dimension

and Two Units Away.

G UVI I*e

A,

Figure Bl.11 The Two Triangles in Figure B1.1O are
Divided into Sub-Areas.
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where

Fts is the view factor from a triangle to a square,

Fst is the view factor from a square to a triangle,

Ftt is the view factor from a triangle to a triangle,

Fss is the view factor from a square to a square.

The method used in the calculations will be illustrated for the two

triangles shown in Figure B1.11. Let Ji (a constant) represent the den-

sity of the radiation leaving A1 ; the total amount of radiation reaching

A 2 is J1AiF 1 2. The quantity of radiation emitted from sub-area Ai in A1

and striking all of the sub-areas in A2 is given by the summation

A2

J1 A F . (Bl.11)

Summing equation (B1.11) over all of the sub-areas in A1 and equating the

result to JiAiF 1 2 yields

A1  A2
JiA1 F1 2  ( 1Ai F1 )

or

A1  A 2

AlF12 = V9 = (Ai Z Fij) (Bl.12)

i j

The right side of equation (Bl.12) can be evaluated by using the approxi-

mations given above for the values of Fij. The description of the com-

puter code which carries out this computation is given in Appendix B2.
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B1.7 View Factors V6, V7, V8, V10, Vll, V14 (see Figures Bl.12 through

Bl.17)

The view factors V6, V7, V8, V10, V14, cannot be obtained by inte-

grating equation (T2.5) over A1 and A 2 , but they can be evaluated from the

view factors which have already been calculated. This method will be

demonstrated for V6, shown as the view factor between the two shaded areas

in Figure Bl.18. The view factors from A1 to all of the other areas ex-

cept A 2 are known. The sum of the view factors from A1 to all of the

areas is equal to unity, because the radiation must strike some area in

this closed space. Therefore V6 can be obtained by subtracting the sum of

the other view factors (Vl's, V2's, V12's) from unity. After the view

factor from A1 to A 2 has been evaluated, the view factor from A1 to A 3

(see Figure Bl.19) can be calculated by the same procedure. This process

is carried out until an array of required values of V6 has been obtained.

The view factors V7, V8, V10, Vll, and V14 are obtained in the same way.
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A,

L.

L
A2

Figure B1.12 Arrangement of A and A2 for Vll(I,J,K).

I = separation of A and A2 along the line of intersection of the two
planes in units of L.

J = separation of A2 from the intersection of the planes in units of 1l L.
K = separation of A from the intersection of the two planes.

I = separation of A and A2 along the line of intersection
in units of L.

J = separation of A from the intersection of the planes
in units of L.

K = separation of A2 from the intersection of the
planes. in units of I7T L. . "",L "

I

Figure Bl.13 Arrangement of A and A2 for V14(I,J,K).
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YYi --

L
separation of A and A2 along the line o
intersection of the two planes in units
of L. 1 1

J = separation of A from the inter-
section of the Iwo planes in
units of L.

K = separation of A2 from the
intersection of the two
planes in. units of 4F-L.

S

Figure Bl.14 Arrangement of A and A2 for V8(I,J,K).

AJs
J=s

t
tv

eparation of A and A2
Long the line of inter-
ection of the two planes
n units of 41 L.

eparation of A from

ie intersection of the
wo planes in units of L.

Figure B1.15 Arrangement of A and A2 for VlO(I,J).
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L
LA,

uL
I

Figure Bl.16 Arrangement of A and A2 for V6(I,J,K).

I = separation of A from the intersection of two planes in units of L.

J = separation of A1 and A2 in the vertical direction in units of L.
K = beparation of A2 from the intersection of the two planes in units of L.

L
I,J,K are defined the same
as for V6(I,J,K) except A
is lower than A2 for
V7(IJ,K).

Figure B1.17 Arrangement of A and A for V7(I,J,K).1 2
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Al

Figure Bl.18 Enclosed Space Used to Calculate V6(3,3,1)
between A and A 2.

Figure Bl.19'- Enclosed Space Used to Calculate V6(3,3,2)
between A and A3'
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Appendix B2

Computation of the View Factors

In Appendix B1, a mathematical expression or a method of evaluation

was obtained for each of the view factors. In this appendix, the computer

programs used to calculate the required array of these view factors are

described. An array, as it is defined in computer terminology, refers to

all of the numbers stored in the computer under one symbol. For example,

VI(I,J,K) is evaluated for various values of I, J, and K, and resulting

numbers are stored under the symbol VI. This group of numbers is referred

to as the array of Vl(I,J,K). The results from these programs are written

on magnetic tape, or punched on IBM cards and are used as input data in the

calculation of the flux distribution.

Each view factor is defined as a function of the relative position of

the two areas, e.g., VI(I,J,K). Before a program can be written, the

values of I, J, and K for which the view factor is to be computed must be

determined. The quantities I, J, and K are expressed in units of L, just

as the dimensions of the surfaces of the cavity are. Once the dimensions

of the cavity are set, the values of I, J, and K for all of the view factors

are determined. For example, let the dimensions of a cavity in the shape of

a parallelepiped be 10 x 12 x 20 in units of L. To calculate the view

factor between all of the squares in perpendicular planes, Vl(I,J,K) must

be computed for values of I from 1 to 20, J from 1 to 20, and K from 1 to

12. See Figure B1.1 for the coordinate system for Vl(I,J,K).

The flow sheet for the program which evaluates Vl(I,J,K) and V2(I,J,K)

is shown in Figure B2.1. These view factors are calculated by a straight-

forward evaluation of equations (Bl.3) and (Bl.6), respectively. The pro-

grammer specifies, by means of the input data card, the values of I, J, and
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Read In>ut Data

\/
Calculate 4he arrays
of general functions

4/
Compute arrays of V1

and V2 by substituting
in proper general functions

4/
Write output data on
cards, tape and paper

Figure B2.1 Flow Diagram for Vl(I,J,K) and V2(I,J,K)
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K for which equations (Bl.3) and (Bl.6) are solved. These equations are

rewritten in FORTRAN language in terms of four general functions, and an

array of each of these general functions is computed DO LOOPS for the spe-

cified values of I, J, and K, and is stored in the computer. The array of

Vl and V2 is then produced by substituting the correct general functions

into the FORTRAN equation and the resulting answers are either punched on

IBM cards or written on magnetic tape.

The equations for V4(I,J,K), V5(I,J,K), V12(I,J,K) and V13(I,J,K) are

similar to those for Vl and V2, except that some terms have to be evaluated

by numerical integration. The equations are rewritten in FORTRAN language

in terms of general functions. The terms of the equation, which have been

integrated over A1 and A2, are written as functions of I, J, and K, and

the arrays of the general functions for these terms are calculated and

stored in the computer. The variables of the terms under the integral

sign are I, J, K, and u, where u is the variable of integration, so that

the general functions for these terms must have the same variables. Let

f(I,J,K,u) represent such a general function, and let g(I,J,K) represent

the integral of f(I,J,K,u). According to Simpson's rule,

f(IJK,u) du = 1 [fo + fn + 4(fl + f3 --- + fn - 1) + 2(f2 + ... f4 + fn - 2)] Au

0

= g(IJ,K), (B2.1)

where

n = number of spacings,

Au = width of the spacing.

The function f(I,J,K,u) is integrated numerically by Simpson's rule over

the variable u for all of the required values of I, J, and K. To obtain
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the number of spacings needed for an accurate numerical integration, a

small array of V4, V5, V12, and V13 was calculated for two cases, n = 10

and n = 20. The effect of changing the spacing, n, from 10 to 20 on the

numerical value of a view factor is less than one part in 100,000 and

n= 10 was therefore used, saving computer time without loss of accuracy.

The resulting array of g(I,J,K) is stored in the computer. The view

factors are then calculated for the desired values of I, J, and K by sub-

stituting the appropriate numbers from the arrays of general functions

previously calculated. The flow diagram for the calculation of V4, V5,

V12, and V13 is shown in Figure B2.2. The input data tell the computer

the values of I, J, and K, for which the general functions and view factors

are calculated, the spacing, Lu, and the number of spacings, n, used in the

numerical integration. The program first computes the desired arrays of

the general functions and, using these numbers, solves the view factor

equation for the required values of I, J, and K. The view factors are then

punched on IBM cards and also printed on paper.

The view factor V9(A,B) is evaluated by programming equation (Bl.12)

which is discussed in some detail because of the logic involved in the pro-

gram. The flow sheet is shown in Figure B2.3. In equation (Bl.12) Fij is

approximated from values of V2, so that V2 is part of the input data. The

dimensions of A1 and A 2, the distance between A1 and A2, and the total area

of the triangles, all in units of L, are also read into the program. The

pairs of indices, I,J and L,M, designate the sub-areas on A1 and A2 ,

respectively, as shown in Figure B2.4. The summations in equation (Bl.12)

over A1 and A 2 are made by letting L and M range through their values for

each value of I and J. For each set of (L,M) a check is made to determine
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Input Data

\1
Calculate general functions

for integrated terms

4/
Numerically integrate array
of other general functions

4/
Substitute in appropriate

general functions for
V4, V5, V12 and V13

Output on cards and paper

Figure B2.2 Flow Diagram for V4, V5, V12 and V13
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Input Data
V2 and dimensions

Vary L and M for
every value of I and J

are sub-areas triangles,
or squares

\V T T
E E V2<-SQ to SQ-

E 2V2<-SQ to TRI

E V2 <-TRI to SQ

E 1V2-TRI to TRI

V9 = E(E Fss + E Fst + E Fts + 1E Ftt)/Ai

OUTPUT

Figure B2.3 Flow Diagram for V9(A,B)
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L

Al

Figure B2.4 Areas A and A with Their Respective
Coordinate Sysfems.

V6(I,J,K)

Figure B2.5 Enclosed Space used to Calculate V6(I,J,K)
is shown with the Coordinate Systems for
Each Surface.

265

J



if the sub-area is a triangle or a square. A similar check is made for

each I,J set to determine if Fst, Fss, Fts, or Ftt is the proper view

factor. Each of the four view factors is summed separately, and when the

double summation is completed, these four sums are substituted into equa-

tion (Bl.12). The array of V9 is punched on IBM cards and also written as

output information. The accuracy of this method is demonstrated by con-

sidering an example in which the triangles are divided into 55 sub-areas

(10 divisions along each side of the triangle). The view factor Fss,(or

V2), which is known accurately, makes up 67% of the terms, while Fst, Fts,

and Ftt make up 33% of the terms in the summation. Since Fst and Ftt equal

one-half of Fss, Fss contributes about 75% of the numerical value of V9.

The maximum error expected in the approximate values of Fst, Fts, and Ftt

is one per cent. The magnitude of the error is obtained by comparing the

values of V2 to V12 or V13 for the same I, J, and K. The maximum error in

V9 would then be 0.25 per cent, since Fss contributes a very small error.

The method of calculating V6, V7, V8, V10, Vll and V14 was described

by using V6 as an example, and V6 is used again to illustrate the logical

steps of the program which computes all of these view factors. The coor-

dinate system for V6, defining the relative position of the two areas, A1

and A2 , is shown in Figure Bl.16. In Figure B2.5 the coordinate systems

which define the position of the sub-areas in the enclosed volume are drawn

on all surfaces, but the sub-areas are not shown in order to simplify the

drawing. (See Figure Bl.19 for the drawing which includes the sub-areas.)

The flow diagram for the computation of V6(I,J,K) is shown in Figure B1.6.

Input data include the values of I, J, and K, for which V6(I,J,K) is com-

puted, and the view factors Vl, V2, V4, V5, V9, V12, and V13. In this
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Input Data
V's and I,J,K's

Set I,J,K <

Sweep A(a,b)
SUM1 = E V1

Sweep (c,d)
SUM2 = E V1

Sweep A(e,f)
SUM3 = E V1

Sweep A(g,h)
SUM4 ,= V2 + V12

\4/
Sweep A(l,m)
SUM5Z Vi

N

SUM6 = V6(I,J,N)

where N < K

r Complete Array of I,J,K's

1/
OUTPUT

\/ - 6

V6(IJ,K) = 1.0 - SUMi

Figure B2.6 Flow Diagram for View Factor V6(I,J,K)
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example, I = 3, J = 3, and K = 2, and only Vl, V2 and V12 are needed. The

sum of the view factors from Al to all of the other sub-areas except A2 and

A3 is computed by sweeping the sub-areas in A(a,b), A(c,d), A(e,f), A(g,h)

and A(l,m). To this sum is added V6(3,3,1), which has already been calcu-

lated, and the final sum is subtracted from unity, giving the value for

V6(3,3,2), which is then stored in the computer. Another set of values for

I, J, and K is selected, and the process is repeated until the complete

array of V6(I,J,K) is obtained. This array is punched on IBM cards and is

written as output data.

268



Appendix B3

Detailed Flow of the Code for the 450 Cavity

To clarify the detailed description of the code, a particular case

will be used as an example. It is the 450 cavity with 12" sub-areas, and

has essentially the same method of solution as the PARA geometry with 6"

and 12" sub-areas. The flow diagrams for the main routine, and the seven

sub-routines are given in Figures B3.1 through B3.8, which illustrate the

flow for both the 450 and PARA arrangements. A detailed flow diagram for

the calculation of the C(I,J) for the 450 and PARA arrangements is given

in Figures B3.9 and B3.10, respectively, and this is the only section of

the code where the two programs differ significantly. The code is written

in as general a way as possible, so that the flux distribution can be ob-

tained for any dimension of the cavity for which view factors are available.

The sections of the code for the 450 cavity will be described in the same

order as they are used by the computer.

The main routine first calls in SOPNOR (Figure B3.1), which reads the

view factors from cards into storage. The value of each view factor is

stored according to the indices which, in turn, correspond to the spatial

variables I, J, K of the view factor V(I,J,K). Next, the main program

stores the following data which have been punched on cards by the programmer.

(1) The dimensions of the cavity surfaces

Kl = number of unit lengths along the 72" dimension = 6,

K2 = number of unit lengths along the 60" dimension = 5,

K3 = number of unit lengths along the 120" dimension = 10,

K4 = number of unit lengths along the J dimension of surface #4 = 5,

K5 = K2 + K4 + 1 11,
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K6 = Ki + 1 = 7,

K7 = K2 + 1 = 6,

K8 = K3 + 1 = 11,

K9 = K4 + 1 = 6,

K10 = %K1 = 3,

K11 = distance the graphite frame extends from the thermal column

face; if the frame is not present, K11 = 0

(2) Optional transfers ITRAN 1, ITRAN 2, and ITRAN 3

(3) Input constants

ERROR = allowed error in the convergence of the T(I,J)'s,

AL = constant factor for the final value of $(I,J),

A = constant value for source neutrons,

CON = initial assumption for the values of the T(IJ),

D = total number of source neutrons being fed into the hohlraum per

second on one side of the plane of symmetry.

Next, ITRAN 1 selects a constant feed, A, or a variable one which is

read from IBM cards.

ALBEDO (Figure B3.2) is called, and this sub-routine reads in the

values of AL and D, according to their indices. The indices I, J refer,

for example, to the value of AL l(I,J) and Dl(I,J) for Al(I,J), the sub-

area with coordinates I, J on surface #1. Because of symmetry, only the

sub-areas on one side of the plane of symmetry need to be assigned a value

for AL(I,J) and D(I,J). Sub-routine TEST 1 (Figure B3.3) then sets the

T(I,J)'s equal to their initial values, CON or zero. If the material

bounding the sub-area is made of graphite, T(I,J) is set equal to CON. If

the material is cadmium or boral, T(I,J) is taken to be zero. The
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dimensions of the surfaces, denoted by K1 through K11, serve as limits on

the DO LOOPS and as control parameters, so that each T(I,J) is assigned the

correct dimension and the proper initial value, zero or CON. The first

iteration can now begin. The storage locations, which will contain the

C(I,J), are cleared by setting them equal to zero. The I and J indices

sweep the surfaces for which the values of C(I,J) are calculated, while the

L and M indices sweep the surfaces which are contributing to C(I,J). The

re-entering current, therefore, is denoted by the L, M indices, such as

Tl(L,M). The equations for Cl(I,J), C2(I,J), C3(I,J), C4(I,J) and C6(I,J)

have the same form as equation (T4.3), which was given earlier as an ex-

ample. The indices I, J, L and M are generated in DO LOOPS whose upper

limit is set at the maximum value needed to sweep the largest surface. For

12" sub-areas, the upper limits are I = 5, J = 10, L = 6, and M = 10. Be-

fore sweeping any surface, the indices are checked to insure that they do

not exceed the dimension of the surface. C6(I,J) is calculated from the

values of T5(L,M), T4(L,M), T3(L,M), T2(L,M), Tl(L,M), F(L,M) and the

proper view factors, as illustrated by equation (T4.3). Sometimes the

shape of the sub-area (triangle or square) and its relative position must

be determined in order to select the proper view factor. As an example,

consider the contribution from A5(L,M) to A6(I,J). If both A5(L,M) and

A6(I,J) are squares, V2 is used. If one is a triangle and the other a

square, V12 or V13 is used, depending on the relative position of A5 and

A6 (see Figures B1.7 and Bl.8); if both are triangles, V9 is used. A set

of parameters, Ll through L10, which are evaluated for each value of I, J,

L, and M, control the flow of the program so that dimensions of surfaces

are not exceeded and the proper type of view factor is selected. Another
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set (Nl through N22) are the indices of the view factors and are deter-

mined from the relative position of A(I,J) and A(L,M), as defined by the

view factor's coordinate system. After C6(I,J) is calculated for a par-

ticular set of I, J and L, M, C4(I,J), C5(I,J), C2(I,J) and Cl(I,J) are

calculated by sweeping the surfaces which contribute to their incident

current. For each set of I and J the indices L and M sweep all of the

surfaces, and the results are printed. This procedure continues until all

of C(I,J)'s have been calculated.

One requirement placed on the values of T, C, and F is that a neutron

balance must be preserved. In the first two iterations, the assumed

values for T(I,J) usually do not preserve this balance, so that a normal-

ization factor, CON 2, is calculated to force a neutron balance; sub-

routine NORMAL (Figure B3.4) performs this function.

The neutron balance equation is:

Surface 1 all surfaces all surfaces

Al(I,J) x F(I,J) + A(I,J) x T(I,J) = A(I,J) x J(I,J)

I,J I,J I,J

all surfaces

C(IJ) (B3.1)

I,J

This equation states that the number of neutrons entering the cavity (the

source neutrons and reflected neutrons) is equal to the total number leav-

ing the cavity.

Since

A(I,J) x T(I,J) = p(IJ) x C(I,J), (B3.2)
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and since D was defined earlier as the total number of source neutrons per

second,

Surface 1

D Al(I,J) x F(I,J), (B3.3)

I,J

equation (B3.1) may be rewritten as

all surfaces

D = C(I,J) [1 - p(I,J) . (B3.4)

IJ

Recalling that D(I,J) = 1 - p(I,J), we may define the normalization constant

CON 2 as:

D
CON 2 = (B3.5)

all surfaces

Z. C(I,J) x D(I,J)

I,J

Note that D, the total number of source neutrons/sec, is a non-indexed con-

stant, while D(I,J) can be distinguished from D because it is an indexed

variable. Sub-routine NORMAL calculates CON 2 by obtaining the product,

C(I,J) x D(I,J), for each sub-area on all of the surfaces. D is divided

by the sum of these products and the resulting value of CON 2 is printed

out. The quantity, CON 2, represents the number by which all of the

C(I,J)'s and T(I,J)'s must be multiplied in order to obtain a neutron bal-

ance. After the third iteration, the value of CON 2 usually differs from

unity by less than 1%. Besides indicating that the magnitude of T(I,J)

and C(I,J) is consistent with the neutron balance, a value of CON 2 close

to unity is a check on the consistency of the equations for C(I,J) and the

data, F(I,J), AL(I,J) and D(I,J). The value of CON 2 for the first
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iteration depends upon the value of CON which was used. The second itera-

tion usually produced a value of CON 2 which differs from unity by about 5%.

After the second iteration, the magnitude and distribution of the T(I,J)

and C(I,J)'s are close to their final values, and therefore, CON 2 is quite

close to unity for the following iterations. After CON 2 has been obtained,

a test of the degree of convergence is made by CURIN (Figure B3.5); CURIN

converts the values of C3(I,J) which have just been calculated to their

corresponding values of T3(I,J) by means of the equation:

T3'(I,J) = C3(I,J) x AL3(I,J) x CON 2. (B3.6)

T3'(I,J) is compared to the T3(I,J) which was assumed to calculate C3(I,J).

If the difference between the two is within a defined range, ERROR, the

iteration is completed. If not, another iteration is performed. The test

of convergence is made for the T3(I,J)'s on the bottom surface of the honey-

comb, that is, for T3(I,J) with I = 1 to 3, and J = 5 to 10 for this example.

Since the flux distribution on the bottom of the honeycomb is the most

important result desired from the code, the values of the T3(I,J) on the

honeycomb were used as the criteria for convergence. The results of a

code which tested for the convergence of all T(I,J)'s showed that all but a

few of the T(I,J)'s converge in the same iteration in which the T3(I,J)'s

converge, and that the additional iterations, which might be needed to

obtain convergence of the last few T(I,J)'s, do not change the values of

T3(IJ).

A few T(I,J)'s, which do not significantly effect the value of the

flux on the honeycomb surface, might require one or two additional itera-

tions for convergence, which is equivalent to as much as 22 minutes of



computer time. Therefore, the criterion of convergence was based only on

the values of T3(I,J) without sacrificing accuracy and with a considerable

saving in computer time.

CURIN converts the C3(I,J) to their corresponding T3(I,J) by means of

equation (T6.3). It then compares the difference of each T3'(I,J) and

T3(I,J) to the quantity, ERROR, for each set of I, J. If any one of the

differences exceeds the magnitude of ERROR, this fact is noted by changing

the value of KON 3 from zero to one. The quantity, KON 3, is a number

introduced in CURIN to control the flow in the program. After KON 3 has

been changed, the rest of the T3'(I,J)'s are calculated, but the convergence

test for these T3'(I,J)'s is omitted. After the calculations are completed

in CURIN, the main program determines if another iteration is required by

checking the value of KON 3. If it is zero (convergence obtained), the

results are printed out in FINAL (see Figure B3.7). FINAL converts the

values of T3(I,J) on the honeycomb into values of the absolute flux $(I,J)

by means of the relationship

$3(IJ) = AL C3(IJ) + T3(IJ) = T3(I,J) xl AL3(I,J) x AL, (B3.7)

where AL converts the relative flux into absolute flux. Recall the T3(I,J)

was multiplied by CON 2 in CURIN. FINAL sweeps the honeycomb surface by

means of I and J DO LOOPS, and prints out the resulting values of $3(I,J).

Then the dimensions of the system, initial constants, AL, A, CON, D, and

ERROR, and a few values of AL(I,J) and D(I,J) are printed by the main pro-

gram. These numbers identify the cavity assembly for which the flux was

solved.
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If KON 3 is equal to unity, the desired convergence has not been

reached, and another iteration is performed. The new set of T(I,J) are

calculated from the value of C(I,J) resulting from the last iteration in

sub-routine RESET (see Figure B3.6). RESET multiplies each C(I,J) by the

appropriate AL(I,J) and CON 2, except for the C3(I,J) which have already

been changed to T3(I,J) in CURIN, and stores the results in the correct

T3(I,J). All of the surfaces are swept by I and J indices, which define

the quantities in the equation:

T(IJ) = C(IJ) x AL(I,J) x CON 2. (B3.8)

After this new set of T(I,J) has been obtained, the program transfers the

control to the beginning of the iteration where the C(I,J) are set equal

to zero.

New values of the C(I,J) are calculated and the procedure continues

until all T3(I,J) on the honeycomb converge.

During the testing of the code, several values of ERROR were used to

investigate the convergence. After the third iteration, most T3(I,J)

agreed within 2% of their values obtained from the second iteration. Most

T3(I,J) from the fourth iteration are within - 1% of their values from the

third iteration. Only the T3(I,J) near the back wall converge slowly.

After three iterations, the difference in these T3(I,J)'s is about 3%.

The difference is still about 2% after the fourth iteration. A single

iteration may take as long as 11 minutes (depending upon the value of L),

so that a compromise has been made. The quantity, ERROR, is selected so

that the maximum difference of T3(I,J) from successive iterations will be

3%. This value of ERROR usually requires three or four iterations and re-

sults in an error of 1 to 2% for most T3(I,J). The T3(I,J)'s which cor-

respond to sub-areas not bordering the back or side edges of the honey-

comb surface are within 1% of their exact solution.



CALL SOPNOR

READ INPUT DATA
(Dimensions of hohlraum, constants)

CALL ALBEDO

CALL TESTIl

SET ALL C(I,J) = 0

\4/
CALCULATE C(I,J) FROM T(I,J)'s

C6(I,J) from T5, T4, T3, T2, Ti, F

C4(I,J) from T6, T5, T3, T2, Ti, F

C3(I,J) from T6, T5, T4, T2, T1, F

C2(I,J) from T6, T5, T4, T3, T1, F

Cl(I,J) from T6, T5, T4, T3, T2

CALL NORMAL

CALL CURIN

S KON3 ZERO OR ONE

ONEI CALL RESET ZERO

CALL FINAL

CALL EXIT

Figure B3.1 Flow Diagram of Main Routine, 450 and PARA Cavities

277



SUBROUTINE SOPNOR

4/
READ IN VIEW FACTORS

(((V(I,J,K) ,I=1,Ml) ,J=1,M2) ,K=lM3)

WRITE OUT A FEW V's
AS A CHECK

RETURN

Figure B3.2 Flow Diagram of Subroutine SOPNOR, 450 and PARA Cavities

SUBROUTINE ALBEDO

READ IN AL(I,J)'s

((AL(I,J),I=1,Ml),J=l,M2)

READ IN D(I,J)'s

((D(I,J),I=1,Ml),J=1,M2)

RETURN

Figure B3.3 Flow Diagram of Subroutine ALBEDO, 450 and PARA Cavities
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SUBROUTINE TEST 1

SWEEP ALL SURFACES

DO A3(IJ),A4(I,J) border

graphite or boral boral

\/
graphite

T3(I,J)=CON

T4(I,J)=CON

T3(I, J

T4(I,J

DO A5(IJ),A6(IJ) border

graphite or boral 
boral

1~graphite

T5(I,J)=CON

T6(I,J)=CON

T5(I,J)=0.0

T6(IJ)=O.O

T1(I,J)=CON

T2(I, J)=CON

RET RN

Figure B3.4 Flow Diagram of Subroutine TESTl for 450 and PARA Cavities
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SUBROUTI E NORMAL

SET SUM1,2,3 = 0.0

SWEEP ALL SURFACES

SUM1 = Z C6(I,J) x D6(I,J)

SUM2 = Z C3(I,J) x D3(I,J) + C4(I,J) x D4(I,J)

SUM3 = Z Cl(I,J) x Dl(I,J) + C2(I,J) x D2(I,J)

CON2 = D/ UMl+SUM2+SUM3

WRITE OUT CON2,SUM1,SUM2&SUM3

RETtRN

Figure B3.5 Flow Diagram of Subroutine NORMAL for 450 and PARA Cavities

SUBROUTINE CURIN

KON3=0

SWEEP HONEYCOMB, A3(I,J)

C3(I,J) = C3(IJ) x AL3(I,J) x CON2

zero " is KON3 one or zero one

-- ERROR3= IT3(I, J) -C3(I, J)l

no is ERROR <=ERROR3 yes_

KON3=ONE

CONTINUE

RETURN

Figure B3.6 Flow Diagram of Subroutine CURIN for 450 and PARA Cavities
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SUBROUTINE RESET

SWEEP ALL SURFACES on one side of plane of symmetry

T6(IJ) = C6(I,J) x ALl(I,J) x CON2

T5(IJ) = T6(IJ)

T4(IJ) = C4(I, J) x AL4(I,J) x CON2

no .is A3(I,J) on botom of honeycomb yes

-T3(I,J) = C3(IJ) x AL3(I,J) x CON2

T3(IJ) C3(I,J)

T2(IJ) = C2(I,J) x AL2(I,J) x CON2

Tl(IJ) = Cl(I,J) x ALl(I,J) x CON2

use symmetry for T4(I,J), T3(I,J), T2(I,J), Tl(I,J)

RETURN

Figure B3.7 Flow Diagram of Subroutine RESET for 450 and PARA Cavities

SUBROUTINE FINAL

SWEEP HONEYCOMB, A3(I,J)

43(I,J) = T3(IJ) 1  AL3(IJ)

WRITE OUT $3(IJ)

RETURN

Figure B3.8 Flow Diagram of Subroutine FINAL for 45 and PARA Cavities
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Calculation for C6(I,J), I=1,5,J=1,10 when A6(I,J) is a square

Contribution from A3(I,M) L=1,6),M=1,10)

T3(L,M)xVl

Contribution from A5(L,M) L=1,5),M=1,10

is A5(L,M) a square or triangle

TRI SQ

Check position of A5(L,M) T5(L,M)xV2

T5(L,M)xVl2 V5(L,M)xV13

Contribution from Al(L,M) L=1,6),M=1,5)

Tl(L,M)+F(L,M) Vl

Contribution from A2(LM) L=1,6)M=1,5)

Check position of A2(L,M)

V TV
T2(LM)xV6 T2(L,M)xV7

Contribution from A4(L,M) L=1,6)M=1,5)

T4(L,M)xVl

on to C3(I,J)

Figure B3.9 Flow Diagram of Code which Calculates C(I,J) for 450 Cavity
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Calculation of C6(I,J) I=1,5),J=1,10) when A6(I,J) is a triangle

Contribution from A3(I,J) L=1,6)M=1,10)

Check position of A3(I,J)

T3(LiM)xV9 T3(LiM)xV5

Contribution from A5(L,M) L=1,5),M=1,10

is A5(L,M) a square or triangle
RI

T5(L,M)xV9 Check position of A5(L,M)

T5(L,M)xVl2 T5(L,M)xVl3

Contribution from Al(L,M) L=1,6),M=1,5)

Check position of Al(L,M)

Tl(L,M) F(L,M) xV4 Tl(L,M)+F(L,M) xV5

Contribution of A2(L,M) L=1,6),M=1,5)

T2(L,M)xVlO

Contribution of A4(L,M) L=1,6)M=1,5)

T4(L,M)xVll

on to C3(I,J)

Figure B3.9 (continued)
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Calculation of C3(I,J) I=1,3) J=1,10)

Contribution of A5(L,M) and A6(L,M) L=1,5),M=1,10)

is A5(L,M),A6(L,M) a square or t iangle
SSQ TRI

T5(L,M)+T6(L,M) xV1 Check position of A5(L,M),A (L,M)

T5(L,M),T6(L,M)xV4 T5(L,M),T6(L,M)xV5

Contribution from Al(L,M),A2(L,M),A4(L,M), L=1,6),M=1,5)

ITl(L,M)+F(LM) *Vl+T2(L,M)xV8+T4(L,M)xV2

on to Cl(I,J),C2(I,J),C4(I,J)

Calculation of Cl(I,J) I=l,3),J=l,5)

Contribution from A3(L,M) L=l,6),M=l,l0)

T3(L,M)xVl

Contribution from A5(L,M),A6(L,M) L=l,5),M=l,l0)

is A5(L,M),A6(L,M) a square or triangle

SQ TRI
T5(L,M),T6(L,M)xVl Check position of A5(L,M),A6(L,M)

T5(L,M),T6(L,M)xV4 T5(LM),T6(L,M)xV5

- Contribution from A2(L,M),A4(L,M) L=1,6),M=1,5)

T2(L,M)xV8+T4(L,M)xVl i

CONTINUE

Figure B3.9 (continued)
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T5 (I

a

Calculation of C2(I,J) I=1,3),J=1,5)

Contribution from A3(L,M) L=1,6),M=1,10)

T3(L,M)xV8

Contribution from A5(L,M),A6(L,M) L=1,5),M=1,10)

is A5(L,M),A6(L,M) a square or trian le

TRI SQ

,M),T6(L,M)xV1O Check position of A5(L,M),A6(L,M)

T5(L,M),T6(L,M)xV6 T5(L,M),T6(L,M)xV7

Contribution of Al(L,M),A4(L,M) L=1,6)M=1,5)

Tl(L,M)+F(L,M) xV8+A4(LM)xVl4

CONTINUE

Calculation of C4(I,J) I=1,3) J=1,5)

Contribution from A3(L,M) L=l,6'),M=l,10)

T3(L,M)xV2

Contribution from A5(L,M),A6(L,M), L=1,5),M=l,10)

is A5(L,M),A6(L,M) a square or triangle

SQ TRI

T5(L,M) ,T6(L,M)xVl T5(L,M),T6(L,M)xVll

Contribution from Al(L,M),A2(L,M) L=1,6),M=1,5)

Tl(L,M)+F(L,M)] Vl+T2(L,M)xVl4

CONTINUE

Figure B3.9 (continued)
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Calculation of C6(I,J) I=1,Kl) J=1,K3)

Contribution from A5(L,M) L=1,Kl),M=1,K3)

T5(L,M)xV2(K2 units away)

Contribution from A3(L,M),A4(L,M) L=l,K2),M=1,K3)

T3(L,M)xVl+T4(L,M)xVl

Contribution from Al(L,M),A2(L,M), L=l,K2),M=1,Kl)

Tl(L,M)+F(L,M) xVl+T2(L,M)xVl

Calculation of T3(I,J),T4(I,J) I=1,K4),J=1,K3)

Contribution from A4 L,M) L=1,K2),M=1,K3)

T4(L,M)xV2(K1 units away) or,
T3(L,M)xV2(K1 units away)

Contribution from A5(L,M),A6(L,M), L=1,Kl),M=1,K3)

T5(L,M)xVl+T6 (L,M)xVl

Contribution from Al(L,M),A2(L,M), L=l,K2),M=1,Kl)

Tl(L,M)+F(LM)] xVl+T2(L,M)xVl

Calculation of Tl(I,J),T2(I,J). I=1,K4),J=1,K2)

Figure B3.10 Flow Fiagram of the Code which Calculated C(I,J)
for PARA Cavities
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Contribution from A5(L,M),A6(L,M), L=1,K1),M=1,K3)

T5(L,M)xVl+T6(L,M)xVl

Contribution from A3(L,M),A4(L,M), L=1,K2),M=1,K3)

T3(L,M)xVl+T4(L,M)xVl

Contribution from Al(L,M) L=1,K2),M=1,K1)

Tl(L,M)+F(L,M xV2(K3 away) or
T2(I,J)x (K3 away)

.8

Figure B3.10 (continued)
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Appendix Al

Al.1 Selection of the Foil Material

The foil material was selected with due consideration to the follow-

ing requirements. The material should: (1) form a durable foil, (2) pro-

duce only a small perturbation in the neutron flux on the surface of the

cavity, (3) have an absorption cross section and a half life which result

in a count rate of at least 3000 cpm at the time the foil is counted,

(4) be free from impurities which would contribute to the count rate,

(5) possess a half life short enough so that the foils may be used for

other experiments, (6) be a gamma or beta ray emitter, and (7) be reason-

ably inexpensive. The irradiation of the foils was limited to about half

an hour at a power level of 40 kilowatts, which is equivalent to a flux of

106 to 107 n/cm sec in the cavity assembly. The time limitation was due

to the scheduling of other experiments at the reactor; the power level of

40 kilowatts produced the maximum allowable radiation dose rate in the

reactor room since there was no shielding above the cavity when the experi-

ments were done.

A minimum count rate of 350Q cpm at the time of counting was chosen

so that all of the foils might be counted within a reasonable time. In

most experiments three sets of 36 foils were irradiated simultaneously.

Each of the 108 foils was counted three times with a preset count of at

least 10,000. If an average of three minutes is allowed for 10,000 counts

(about 3500 cpm), the time required to count all 108 foils is 16 hours.

Thus, the half life of the foil material must be long enough to produce

sufficient activity after 16 hours, and short enough to allow the foils

to be used again. The desirability of using a foil several times is empha-

sized by the fact that 1800 foils were irradiated in the course of the
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experiments. Copper meets these requirements more satisfactorily than any

other material. Although copper has an absorption cross section of only

three barns, the requirement of a 3500 cpm count rate can be met by using

a foil 1" in diameter and 26 mils thick.

A1.2 Preparation of the Foils

The foils were punched out of a long, 2" wide strip of high-purity,

commercial, rolled sheet copper. Strips of different thicknesses, 23 mil

and 26 mil, were used, but the 23 and 26 mil foils were never used in the

same irradiation. The thickness of a copper strip was found to be con-

stant within the sensitivity of a micrometer. The foils were punched with

a 1" diameter punch and die set, and any burrs resulting from the punching

were filed off. The foils were then flattened in a press so that they

would lie flat against the surface of the cavity assembly during the irrad-

iation, and would lie flat against the bottom of the counting trays during

the counting. An identification number was inscribed on each foil; the

26 mil foils were distinguished by an "A" preceding the number, while the

23 mil foils had a "C" preceding the number. Next, the foils were washed in

acetone to remove any foreign material which might have contributed to the

foil activity. After the foils were cleaned, they were weighed twice on a

Fisher Scientific Gram-atic balance, which gave the weight to 10-5 gram,

and the two weights were within one part in 104. The average of the two

weights was recorded in a ledger with the foil number. Ninety-five per

cent of the foils' weights were within a per cent of the average weight,

and all were within 2 per cent of the average weight for the "A" and "C"

groups of foils. The variation of weight was due to the difference of sur-

face area rather than the thickness of the foil. A two per cent difference
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in weight can be accounted for by the difference in the amount of filing

required to remove the burrs from the edges of the foils.

An inventory of 400 copper foils was maintained for the flux distri-

bution experiments. Each foil was used several times, and a record was

kept of the date on which each foil was irradiated. Before performing an

experiment the records were checked to determine if the foils' activity

had decayed below a detectable level. A period of 12 days is sufficiently

long between irradiations of the same copper foil.

The neutron density in the cavity assembly was obtained from the

activity of an array of foils. The density was measured on the thermal

column face, on the honeycomb, and in the pedestal for all geometrical

arrangements, and on all the surfaces and in the cavity for one geometri-

cal arrangement. The array of foils for measuring the neutron source on

the face of the thermal column is shown in Figure Al.l. The arrays for

the bottom of the honeycomb, the bottom layer and the second from the bot-

tom layer of the pedestal are shown in Figures A1.2 and A1.3, respectively.

The arrays for measuring the neutron density on all of the surfaces appear

in Figure A1.4. The arrays of foils in the cavity itself are pictured in

Figure A1.5, which shows three arrays of foils, each containing five verti-

cal strings of foils. The arrays were 24" apart, and the strings of an

array were 12" apart. The arrays of foils were supported at the top by a

length of cord strung between the side walls, and were positioned on the

bottom with a piece of mylar tape. Five foils were placed 12" apart and

6" from each end of the strings. Three different orientations of the

foils shown in Figure Al.6 were: UP, with the sides of the foil facing

the floor and honeycomb; FRONT, with the sides of the foil facing the
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Figure A1.1 Foil Locations on Thermal Column Face.
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(a) Side Wall (72" x 60"),
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e

Irront
(b) Back Wall (72" x 60")
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Figure Al.4 Foil Locations on All Surfaces of Aseembly II.
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Figure A1.4 (Cbntinued)
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Figure A1.5 Location of the Foils for Experiment #15.

Top Cor
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C
K

Mylar Tape c-vp
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0* Side-3

Front - 2

Mylar Tape

Bottom Tape

Figure A1.6 Orientation of the Foils on a String

in Experiment #15.
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thermal column and back wall; and SIDE, with the sides of the foil facing

the side walls. The orientation, denoted by numbers 1, 2, and 3, is shown

in Figure A1.7 for each array.

A1.3 Positioning the Foils for Irradiation

The foils for all of the surfaces of the cavity (thermal column face,

honeycomb and other surfaces) and for the cavity itself were prepared for

the irradiation in the same manner; the foils in the pedestal needed no

special preparation.

In describing the pedestal in Chapter El, the array of notches in the

two layers of graphite stringers was shown in Figure E1.7. The clean foils

were taken from storage, put in order according to their identification

numbers, and the order was recorded in the data book. The foils were

always handled with tweezers to prevent contamination. The foils were

then placed in the pedestal in the same order in which they had been laid

out, with their identification number face up so that the arrangement

could be checked. The graphite stringers could easily be slid out from

the pedestal so that there was no necessity for unpiling the graphite to

put the foils in place. After the arrangement of the foils had been

checked, the wooden frame and cadmium wrapping were placed around the

pedestal

Positioning the foils on the surfaces of the assembly was slightly

more complicated than it was for the pedestal. The clean foils were laid

out in the desired arrangement, which was recorded in the data book. Each

foil was wrapped with tissue paper and then mylar tape, which kept the

tissue in place. The identification number of the wrapped foil was writ-

ten in ink on the mylar tape. In the wrapping process care was taken to
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remember which side of the foil was inscribed with the identification num-

ber, so that the same side would be used for writing the number on the

tape. After the foils were wrapped they were placed on a 1" mylar tape.

For the array on the honeycomb six 78" long strips of 1" mylar tape were

laid out on a table. Six foils were placed, with the identification num-

ber face up on each tape, 12 inches apart, starting 9" from each end. A

72" length of mylar tape, adhesive side down, was pressed on top of the

78" strip with foils, leaving three inches on each end of the 78" tape ex-

posed. An ink line was drawn 2" from each end of the string of foils.

The distance between the two lines is 74", which corresponds to the 74"

length of the honeycomb. Each of the six strings of foils was assembled

in this manner to produce an array of 36 foils. A number was written on

one end of each of the six strings. The number of the string and the

identification number of the foils on the strings were recorded in the

data book.

The honeycomb was raised about five feet off the ground and the

strings of foils were attached to the bottom surface by means of a 3"

piece of exposed mylar tape placed at each end. The six strings were

positioned parallel to the 74" dimension of the honeycomb and 12" apart.

The outside strings were 15" from the sides of the honeycomb (see Figure

A1.2 for the arrangement of the tape and foils on the bottom of the

honeycomb).

The strings could be positioned accurately. There were red pencil

marks on the bottom surface of the honeycomb, 12" apart, starting 15"

from the side, to act as guides for the strings. Each string had two

markings 74" apart to position the foils on the honeycomb correctly.

The strings were tightly stretched so that the foils did not sag. Three
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strips of mylar tape, placed on top of the six strings of foils along the

90" dimension of the honeycomb, kept the strings of foils in place. When

the honeycomb was put into place, a 72" square area of the bottom of the

honeycomb, indicated by the dotted lines in Figure A1.2, bordered the

cavity. The foils were 12" apart, starting 6" from the side and back

walls of the hohlraum assembly. A string of foils was identified by the

number written on one end of the tape and this number was checked with the

data book to insure that the foils were in the correct order on the honey-

comb.

By following this procedure and by checking the foil arrangement dur-

ing these operations, the correct location of the foils on the honeycomb

was assured; also, the side of the foil on which the identification number

was inscribed was always against the bottom surface of the honeycomb. It

should be recalled that the foils were placed in the pedestal with the

inscribed side of the foil facing upward, so that both the foils on the

honeycomb and in the pedestal had the same orientation during the irradia-

tion.

The foils on the thermal column face were prepared and positioned by

the same method as was used for the honeycomb.

The strings of foils for the other surfaces (graphite) were made of

only one strip of mylar tape. The strings of foils were attached to the

cavity surfaces with the adhesive side of the strip. Except for using one

strip of mylar tape instead of two for making a string of foils, the pro-

cedure was the same as that used for the honeycomb or thermal column face.

The foils which were placed in the cavity itself were wrapped in tis-

sue paper and mylar tape, and their numbers were written on the tape. The

arrangements of the foils, shown in Figure A1.5, were constructed in the
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cavity assembly itself. Three cords were stretched across the side walls,

24" apart and 12" from the back wall, and five 10' lengths of mylar tape

12" apart were suspended from each cord. The foils were attached to the

10' length of mylar tape as shown in Figure A1.8. The two ends of the 10'

tape were secured to the floor by a strip of mylar tape running between

the side walls.

Appendix A2

A2.1 Irradiation Procedure

After the foils were placed in the assembly they were irradiated for

a specified time interval at a given power level of the reactor. The re-

sults of all of the irradiations were compared on the basis of the same

neutron source. Since the source neutrons originated in the reactor core,

the magnitude of the neutron source was proportional to the reactor power.

The relative magnitude of the neutron source was measured in two ways:

with the ppammeter in the control room of the reactor (which is cali-

brated in terms of reactor power); with a set of monitor foils which meas-

ured the neutron flux in the thermal column. The ppammeter measures the

current from a compensated ion chamber located near the reactor core. The

ammeter is calibrated weekly with the thermal power recorder at 1 Mw oper-

ation, and each calibration agrees with the earlier ones within two or three

per cent.

The two monitor foils were placed in the thermal column through an

access hole in the reactor top. The foils were located on the top surface

of the thermal column, 28" from the thermal column face and 36" from the

core tank. The foils were located far enough away from the reactor core

to be insensitive to the small variations in the flux distribution in the
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core region from experiment to experiment. The control rod positions var-

ied from experiment to experiment, and caused small variations in the flux

distribution within the core. Thus, the activity of the monitor foils

gave the relative magnitude of the neutron source without being affected

by the variations of the flux in the cavity assembly and reactor core from

one irradiation to the next. The readings from the pgammeter determined

the approximate value of the reactor power during the irradiation but were

not used in the calculation of the flux distribution.

All of the irradiations of the foils which measured the flux distri-

bution in the cavity assembly followed the same procedure. The foils were

put in place, and the honeycomb with the pedestal on top was lowered into

position on the top of the side walls. The monitor foils were placed in

the thermal column and the shielding doors and lead shutters were opened

(except in experiment #1, when the shielding door remained closed). The

reactor power was raised to the desired level, indicated by the pammeter.

The cadmium shutter was closed during all of these operations so that the

foils in the thermal column and cavity assembly had not yet become activ-

ated. At the specified power, all shim rods were at the same height and

the regulating rod was withdrawn 12 to 15 inches. When all these steps

had been completed, the cadmium shutter was opened and the time was re-

corded. When the time for the experiment had expired, the'cadmium shutter

was closed; the shutter takes approximately 20 seconds to open or close.

While the shutters were opening and closing some neutrons were entering

the cavity. Since the duration of the experiment was timed from the start

of the opening to the start of the closing of the cadmium shutters, no

correction was made for the time required to open or close the shutters.
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After the cadmium shutter had closed, the lead shutter and shielding doors

were closed. The reactor power was decreased to a few watts, and the

honeycomb was lifted out of the cavity assembly by means of the overhead

crane. The locations of the foils were checked with the recorded posi-

tions in the data book as the foils were removed. The two monitor foils

were removed from the thermal column and stored in a lead cave on the

reactor top. The foils were highly radioactive (about 5 r/hr) and were

allowed to cool for three or four days before being counted.

The times at the beginning and the end of the irradiation were re-

corded in the reactor log book and in the data book. This information was

used in reducing the data obtained from counting the foils.

Shortly after the irradiation was completed, the activity of the

foils was measured with the gas flow proportional counter described next.

A2.2 Description of the Counting Equipment

The gas flow proportional counting equipment is manufactured by

Nuclear Chicago Corporation. It consists of a Model D-47 gas flow counter,

Model T3 time delay, Model C01118 printing time, Model C-11018 automatic

sample changer, Model D47P preamplifier, and Model 186 decade scaler. The

preliminary test of the counting equipment indicated that the line voltage

in the counting room was variable. A Sorenson A.C. voltage regulator

(Model FRLD 750) was placed in the circuit and stabilized the line voltage.

The room temperature in the counting room, which varied between 700 and 800 F,

affected the counting efficiency. The small variations in counting effi-

ciency were corrected by means of a standard Ra D + E sample which is dis-

cussed in the section describing the counting of the foils. A plateau de-

termination was made by using a radioactive copper foil. The high voltage

was set at 2100 volts, the sensitivity at 5 mev, and the preamplifier gain at 5.
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A2.3 Background

Before counting, the background was measured with and without the

foils in the automatic sample changer. The background count was always

between 15 and 20 CPM, regardless of the activity (within the limits of

the actual foil activities) of the foils in the sample changer. The varia-

tion of 5 CPM in the background rate is negligible compared to the count

rate of the foil activity (at least 3500 CPM) and a constant value of 20

CPM was used for the background.

A2.4 Copper Activation

Both natural isotopes of copper, Cu
6 3 (69.1%) and Cu6 5 (30.9%), under-

go an (n,7) reaction with thermal neutron absorption cross sections of

4.3 b and 2.1 b, respectively. The half life of Cu6 6 is 5.5 min, and the

Cu6 6 was allowed to decay before the foil was counted. Cu6 4 decays by

P-, P+ and y emission with a 12.81 hour half life; the positrons give rise

to two annihilation gammas. Most of the pulses in the gas flow counter were

due to the P~ particles, but a few were caused by the gamma rays interacting

with the chamber walls and the gas. Because of its short 12.81 hour half

life, the activity of Cu64 practically disappears in 12 days, and the foils

may be used again. This property is quite advantageous, in view of the fact

that 12 experiments with 110 foils each were made in 12 weeks.

A2.5 Procedure for Counting the Foils

The automatic sample changer holds, at most, 38 planchets (foil

holders). When more than 37 foils (plus the standard Ra D + E source) were

activated in an experiment, the foils were divided into groups; the group

having the least active foils was counted first, and then the next active

group was counted, and so on.
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The foils from experiment #1 were counted in three groups. The moni-

tor foils were counted last, three days after the irradiation. The 36

foils in the thermal column face were divided into two groups because of

the large differences in their activities (a factor of 50 between some

foils). The foils from experiments #2 through #13 were counted in the

following order: (1) the 36 foils from the upper layer of the pedestal,

(2) the 36 foils from the lower layer, (3) the 36 foils from the honeycomb

surface, and (4) the two monitor foils. The activity of the foils from

experiments #14 and #15 was about the same for all foils and the order of

counting was arbitrary.

The foils which had been wrapped in tissue paper and mylar tape were

removed from their wrappings with scissors and tweezers, and laid out in

numerical order. The number on the mylar tape was checked with the identi-

fication number of the foil to be sure that they were identical and on the

same side of the foils. The foils in the pedestal, which were not wrapped,

were washed in acetone and laid out in numerical order. They were then

placed in planchets with their identification numbers face up, and the

planchets were stacked in the automatic sample changer. The 1" diameter

foils fit into the planchets with a 1/32" clearance. The planchets were

positioned directly beneath the detector during counting. Since the foils

could not move in the planchets, the foils were always located in the same

position during counting. The foils were counted in ascending order of

their identification numbers. The standard Ra D + E foil was also put in

the sample changer with each group of foils.

Before any foils were counted, the counter measured the background

activity and the activity of the standard foil for at least an hour. The
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background and the standard foil count rates were checked from the output

of the printing timer. The counting of the foils followed if the count

rates of the background and the standard foil were close to their normal

values of 20 CPM and 8000 CPM, respectively. If these count rates did not

agree with their normal values, the cause of.the discrepancy was found and

corrected.

The foils were counted for a specified number of counts instead of

for a specified time. The time required to reach this preset number of

counts was printed on a paper tape in hundredths of a minute. The settings

of the counting equipment (voltage, gain, sensitivity, preset count), the

order in which the foils were counted, and the time at the start of count-

ing was written on the paper tape. The preset count was at least 10,000,

and sometimes as high as 100,000 if the foils were active enough to be

counted in a reasonable length of time (about 3-4 minutes maximum). After

all of the foils of one group had been counted three times, they were re-

moved from the automatic sample changer. The order in which they were

counted was compared with the order which had been written on the tape as

a final check. The same procedure was used in counting the other groups

of foils.

A2.6 Reduction of the Data

The activity of a foil is related to the unperturbed flux, $abs, at

the surface of the foil by the standard equation for the case of a single

radioactive nuclide.

CWEa _g
Act(Tr) = p a abs(l - e ), (A2.1)
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where

Act(Tr) is the activity of a foil after Tr minutes of irradiation in

disintegration/sec,

C is the correction factor for flux depression, flux hardening, and

self-shielding,

W is the weight of the foil (gm),

,ois the density of the foil material (gm/cm3 ),

Ea is the macroscopic cross section (cm-1 ) averaged over the energy

spectrum of the flux,

A is the decay constant on the nuclide (minutes-1).

If the time of irradiation is much longer than the half life (0.693/A)

of the nuclide, the resulting activity is the saturated activity, Act(sat).

CWEa
Act(sat) = CWa abs. (A2.2)

After an irradiation of Tr minutes, and a cooling period of Td minutes,

the activity of the foil, Act(TrTd), is:

Act(TrTd) = Act(Tr) e dabs 1Td ~ a - \Tr) e7\Td (A2.3)

After a cooling period of Td minutes, the foil is counted with a detector,

having an efficiency of E. A preset count of PC requires the detector to

count for Tc minutes. The average count rate is - , and the average
c

PC - BGD
foil activity during counting is E , where BGD is the background

ETc Tc

during counting. A correction for decay during counting, - re-

1 - e1

lates the average activity to the activity at the start of counting:

(PC - BGD) \Tc
Act(TE Td)T(A2.4)

E Tc -T c1 - e
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Equations (A2.3) and (A2.4) are combined to obtain an expression for $abs-

41ab C W 1 (PC - BGD) A\Tc eTd. (A2.5)
aS CW Za ( Ar* E Tc -?\Tc

1i - e r T 1 - e~\c

It can be seen from equation (A2.2) that

Act(sat) = (PC - BGD) .T e2Td (A2.6)
ETc ( - e1Tc - e-Tr

CR(sat) is the count rate due to the saturated activity of the foil at the

start of counting and is expressed as:

CR(sat) = E A(sat) (PC - BGD) -\Tc e ATd (A2.7)
i- e(i - e-\Tr

so that

$tabs = a CR(sat)/W. (A2.8

E C

The quantity, CR(sat)/W, is calculated from the known values of Tc,

Tr, Td PC, BDG, W and/p. The average value of CR(sat)/W from the three

countings is represented by CR(sat)/W. The value of $abs for each foil is

obtained from the following relationship:

$'abs = K - N E(rel) CR(sat)/W K - Act(rel), (A2.9)

where

K is the conversion constant between Act(rel) and $abs,

N is the quantity which normalizes CR(sat) to a standard value of the

neutron source,

E(rel) is the relative counting efficiency of the detector.
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The quantity, K, is the same for all of the foils if the terms, Ea/fp

and C, in equation (A2.8) are the same for all foils. The activity of a

1/v absorber is a function of the density and not the energy distribution

of the neutrons. The energy distribution of the flux, $abs, does not

affect the value of Ea//b because copper is a 1/v absorber with no low-

energy resonances. Hence, the factor Ea/p is identical for all the foils.

The factor C is a correction for flux depression self-shielding and flux

hardening. Equations exist in the literature for the flux depression and

self-shielding factors (11), but are only applicable to foils surrounded

by a diffusing medium. The foils on the honeycomb do not satisfy this

condition, since one side of the foil faces the cavity. A method is de-

veloped below with which the activity of a copper foil is corrected for

flux depression and self-shielding.

Consider the copper foil shown in Figure A2.1. The unperturbed

values of the current, Ji and J 2, are incident on Surfaces #1 and #2, re-

spectively. The quantity F represents the ratio of the perturbed current

to the unperturbed current at the surface of the foil. The neutrons of

the perturbed currents are absorbed in the copper foil and the resulting

p~ activity is counted.

Surface #1 FiJl Ji

Surface #2 F
F2j2 J2

Figure A2.1

A Copper Foil Being Irradiated

by the Perturbed Current, FlJl and F2J 2 ,

on Surfaces #1 and #2, Respectively

308



Since the detector is not sensitive to gamma rays, it is assumed that the

gamma rays do not contribute to the count rate. The P~ particles have a range

of only 3 mils in the 26 mil copper foil, so that, on the average, only

those p particles emitted within 3 mils of the surface of the foil facing

the detector produce pulses in the detector. The quantity M is defined as

a quantity proportional to the number of p~ particles leaving Surface #1

of the foil, and thus is also proportional to the count rate due to the

foil. Corrections for detector efficiency and the areas of the foil are

not included here, since this quantity M is used to investigate only the

flux depre.ssion and self-shielding.

Equation (A2.10) defines M in terms of the unperturbed currents, Jl

and J2, and the effective absorption cross section, E.

M = (Fi Ji El + f F 2 J2 E2),
(A2. 10)

where f is the fraction of F 2J 2 which passes without absorption from Sur-

face #2 to a plane three mils from Surface #1.

On defining P = Ji/J 2, equation (A2.10) becomes:

(M/Ji) = Fl Fl + f F2 E2/p. (A2.11)

If the value of (M/Jl) is identical for all of the foils in the cavity

assemblies, the corrections for flux depression and self-shielding are

identical for all foils. The values of (M/Ji) were calculated for the

foils in the pedestal and on the front and back edge of the honeycomb. In

the flux distribution experiments, care was taken to insure that the side

of a foil facing upward in the assembly was the same side of the foil

which faced the detector during the counting. In these calculations, Sur-

face #1 refers to the surface of the foil facing upwards during the irradia-

tions.
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The quantity F for this 26 mil copper foil in the graphite pedestal

is 0.996. (11) The depression of the flux in the cavity, due to foils on

the surface of the cavity, is approximated by using equation (B3.4) in

Appendix B3, according to which the flux in the cavity is proportional to

the factor, 1 The ratio of the perturbed to unper-

L Ai(1 - pi)
all surfaces

turbed flux in the cavity is then,

Ai(l - Pi)

F = all surfaces (A2.12)
Ai(l - Ti)

all surfaces

where s = the albedo of area A , on which the foils are located.

The value of pi is approximated by equation (A2.13).

Pi a (An pn + Ac sc)/Ai,

where the subscript n refers to the area not covered by foils, and the

subscript c refers to the area covered by a foil.

The value of .the albedo, sC, is obtained by assuming that:

PC = t2

where t is the fraction of the Ji or J2 which passes through the foil

without absorption.

In experiments #2 through #13, 36, 1" diameter, copper foils were

placed on the 72" x 72" honeycomb surface. The value of F for these ex-

periments was calculated by using the values,

si = 0.90 An = 1.96 square feet

pn = 0.90 Ac = 278 square feet

t = 0.90

in the above equations; the result is F = 0.9882.
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The effective absorption cross section, E, is a function of the ab-

sorption cross section, Ea, and the angular distribution of the current

striking the foil. If the current is isotropic, E = 2Ea- If the current

is that of a unidirectional beam of neutrons, E = Ea/cos $, where 4 is the

angle of incidence of the beam with the foil. The factor f is defined as:

f = e-EL (A2.14)

where L = 23 mils for the 26 mil thick foil.

The quantity M/Ji is calculated first for the foils in the graphite

pedestal. The currents, Ji and J2 , are assumed to be isotropic. On using

F1  F2 = 0.996,

P= 0.90,

E2 1l =2as

f = 0.89,

the result is:

- = 3.962 E
1 a-

Next the quantity (M/Ji) was calculated for the foils on the bottom

of the honeycomb for Assembly II. Surface #1, the side of the foil facing

the detector, is also the side of the foil facing the honeycomb during the

irradiation. The current J, is assumed to be isotropic, so El 2Ea. The

current J2 is due to two groups of neutrons, those arriving directly from

the neutron source and those reflected by the walls. By letting ns and nr

equal the fractions of source and reflected neutrons, respectively, equa-

t'ion (A2.1l) may be rewritten as:

M F2
=Fl Ei + ns(f E2D + nr(f E2D (A2.15)
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The fractions, ns and nr, are obtained from the results of an appropriate

computer program (see Section T5.4). The reflected neutrons, nrJ2, are

assumed to be incident isotropically on the foil, while the cosine of the

angle of incidence, cos $), for nsJ 2 is calculated by assuming that all of

the source neutrons are emitted at one point on the thermal column face.

The quantity (M/J1 ) is calculated for the foil on the front of the

honeycomb in Assembly I by inserting the values,

F1 = 0.996, ns = 0.51, fs = 0.885,

F2 = 0.998, nr = 0.49, fr = 0.890,

= 0.91, cos $~1 = 2.06, E2r = 2Ea,

E2s = 2.06 Ea,

into equation (A2.15), which then yields:

(M/Ji) front = 3.97 Ea-

For the foils on the back of the honeycomb in Assembly I the results were:

F1 = 0.996, cos $~l = 3.00, fr 0.890, fs = 0.840,

F2 = 0.998, ns = 0.12, E2r= Za, (M/Ji)back = 4.04 Ea.

p = 0.91 nr = 0.88, E2s = 3Ea,

The values of (M/Ji) for the foils between the front and back edges

of the honeycomb lie between 3.97 Ea and 4.04 Ea for Assembly I. The

values of (M/Jl) for the foils in frame and tooth assemblies also lie be-

tween 3.97 and 4.04. Thus, the values of (M/Ji) for the foils on the

honeycomb in all of the assemblies differ by only + one per cent from an

average value of 4Za. The correction factors for flux depression and self-

shielding, therefore, are practically identical for all of the foils.

The detector efficiency may vary slightly due to the variation of the

room temperature, and this change in detector efficiency is corrected by
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using the count rate of the Ra D + E sample. The average value of CR(sat)

for the three countings of a foil, CR(sat), is normalized by the average

value of the count rate of the Ra D + E sample for the same three count-

ings. A count rate of 8000 CPM is used as a normalization constant for

the Ra D + E foil, so the relative counting efficiency, E(rel), is then:

E(rel) = 8000 (A2.16)
STD

where STD is the average count rate of the Ra D + E foil during the three

countings of each group of foils.

The activities of the foils must be compared on the basis of the same

neutron source. The activity of the two monitor foils from each experiment

is proportional to the strength of the source. In each experiment the

activities of the foils in the cavity assembly are compared on the basis of

a standard activity for the monitor foils. The latter activity is obtained

by multiplying the average activity of the monitor foils from experiment #1

by a factor of 25. Since experiment #1 was run at 40 kw, the standard

activity is the activity which the monitor foils in experiment #1 could have

at one Mw power. The activity, MAct, of a monitor foil from an experiment

is defined by relation:

MAct = E(rel) - CR(sat)/W, (A2.17)

where CR(sat) is the average value of CR(sat) from the three countings of

the monitor foils. The standard activity, SMAct, is therefore:

SMact = 25 MAct from experiment #1. (A2.18)

The quantity, E(rel) CR(sat)/W, for each foil in the assembly is normal-

ized to the same neutron source by means of the normalization constant, N,

defined as
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N = S .Act (A2.19)
MAct

The quantity, Act(rel), for a foil represents the relative value of the

foil's activity due to the unperturbed neutron flux that strikes the foil

at one Mw operation of the MITR.

The conversion factor, K, between the relative activity, Act(rel) and

absolute value of the flux, $abs, is obtained in Chapter E4.

No correction for the dead time of the counter is necessary in reduc-

ing these data. The highest count rate that was measured was about 20,000

CPM. The equipment has a dead time of 1 x -10~7 minutes, so that the dead

time correction is at most 0.002.
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