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ABSTRACT

The kinetic behavior of a neutron transport medium which is
irradiated by a burst of fast neutrons has been investigated on the basis
of several theoretical models. Expressions have been derived for the
prompt neutron decay constant of the asymptotic thermal flux in a sub-
critical multiplying system. These expressions relate the decay con-
stant of a subcritical assembly to various parameters of interest.

Pulsed neutron experiments were made with subcritical assem-
blies in the M.I.T. Lattice Facility to measure lattice parameters. The
pulsed neutron method has also been applied to the measurement of
absolute reactivity and the reactivity worth of control rods in far sub-
critical assemblies. Concurrently with the pulsed neutron studies,
steady-state exponential experiments with control rods have also been

undertaken.

Die-away experiments on pure moderator assemblies in the M.I.T.
Lattice Facility were made to measure the thermal neutron diffusion

parameters of heavy water at room temperature and the effect of ther-
mally black rods inserted axially in a cylindrical moderator assembly.
Pulsed neutron runs on unperturbed lattices were used to evaluate such
lattice parameters as km, L 2 , k, fm, B2 , etc. These values are in
agreement, within experimental uncertainties, with the results of steady-
state exponential experiments and of calculations based on the THERMOS
code.

Pulsed neutron experiments on perturbed lattices were made to

find prompt neutron lifetime and the absolute negative reactivity of the
assembly. The worths of control rods have also been measured. The
pulsed neutron and steady-state experiments for the measurement of
the reactivity effect of control rods give results which agree within the
experimental uncertainties. Two-group theory, with no allowance for

absorption in the fast group, is found to underestimate the worth of the
rod by a few per cent. The conditions for the validity of control rod
experiments in exponential assemblies have been considered. Sug-
gestions for extending the techniques developed in this work and for
refining the results have also been included.
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INTRODUCTION

One of the general aims of research in Reactor Physics is the

application and development of a variety of methods of studying the

physics of subcritical neutron multiplying assemblies. The difficulty

of obtaining information about reactor physics from reactors operating

at power has led to the development of more economical methods in-

volving the use of zero-power critical assemblies and exponential

assemblies (1, 2, 3). These have now been supplemented by "miniature"

lattices (4), PCTR-type assemblies (5), two-region substitution experi-

ments (2) and, in the limit, single rod experiments (6) for the investiga-

tion of reactor parameters. The M.I.T. Lattice Research Project is

trying to extend the use of independent, economical methods of obtaining

information about assemblies moderated with heavy water. Lattices of

uranium rods in heavy water are being studied in steady-state exponen-

tial experiments, in miniature assemblies, and in experiments with

single rods or a few rods. The pulsed neutron technique has also been

applied to lattices far below critical, and the present report is the first

extensive summary of the work done at M.I.T. with the technique.

The pulsed neutron technique has the practical advantage (7) that

it can be used in small systems, is comparatively simple and yet capable

of yielding results with satisfactory accuracy even for the reactivity,

which has generally necessitated an operating reactor or a critical assem-

bly. The exploration of ways in which this technique can be used in sub-

critical assemblies is desirable, not only for its practical usefulness

but also for the increased understanding that it affords of the relations

among the various lattice parameters.

The present investigation has for its primary experimental goal

the exploration of the pulsed neutron technique as a means of measuring

lattice parameters and large absolute reactivities in subcritical assem-

blies. To make such a study self-contained, a number of related pulsed

neutron studies on non-multiplying pure moderator systems and on non-

perturbed multiplying systems are necessary. The diffusion parameters

of heavy water at room temperature have been measured in die-away
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pulsed neutron experiments over a wide range of values of the geometri-

cal buckling. These parameters have been used in the interpretation of

measurements of the geometrical buckling of moderator assemblies with

different size absorbing rods inserted along the axis. Die-away experi-

ments have been made in a lattice of uranium rods in heavy water, with

the heavy water at different heights, to study the relationship between

the prompt neutron decay constant and the geometrical buckling for a

simple multiplying system, and to explore the potential of this correla-

tion in yielding values of the various lattice parameters, including k,
and L (the thermal diffusion area). These parameters and the measured

geometrical bucklings from moderator experiments have been used to

evaluate the prompt neutron lifetime in the lattice without and with the

control rods; together with a calculated value of p (the effective yield of

delayed neutrons), the prompt neutron lifetime then provides the propor-

tionality constant relating the prompt neutron decay constant with the

reactivity without and with the individual absorbing rods inserted. The

change in geometrical buckling produced by the control rods in the lattice

assembly has been obtained from the measured decay constants and

lattice parameters. Other pulsed neutron reactivity methods, e.g., the

kp/1 method, have also been examined. Concurrently with these pulsed

neutron experiments, steady-state experiments, involving foil activation

methods, have been made with control rods in the exponential assembly

to measure the reactivity effect of the control rods. The extrapolation

distance of black cylinders has been measured in steady-state exponen-

tial experiments in the moderator. Flux distributions in the radial

direction have been measured (with the control rods in the assembly) to

investigate the conditions under which measurements in exponential

experiments are applicable to critical systems. Intercomparisons be-

tween stationary and pulsed neutron methods, and also with theory, have

been made in an attempt to evaluate the different approaches.

Chapter I traces some of the basic concepts relating to reactor

kinetics parameters and discusses the importance of reactivity studies

and some of the common methods of reactivity measurement. A detailed

theoretical treatment of a neutron transport medium, especially a sub-

critical multiplying system, bombarded by a fast neutron burst, is
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undertaken in Chapter II, and expressions are derived for the decay

constant of the asymptotic thermal flux under different conditions.

These expressions are examined for possible experimental applications

and a literature survey is attempted in Chapter III. Chapter IV relates

to the theoretical basis and applications of exponential experiments

with control rods which produce changes in reactivity. The design,

construction and operation of the experimental equipment are the sub-

ject of Chapter V. Chapter VI presents a brief review and some aspects

of control rod theory. The results of the measurements are presented

and discussed in Chapter VII. Finally, in the last chapter, the main

conclusions from this study are sought and recommendations are made

for future work, indicating the lines along which this investigation can

be continued. The Appendices provide supplementary information about

notation, special computer codes prepared for this work, the theoretical

calculations of lattice parameters, accelerator operation, and some of

the special methods used in the analysis of data for the subcritical

pulsed neutron reactivity determination.
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Chapter I

REACTIVITY: CONCEPT AND MEASUREMENT

A physical system can be conveniently described in terms of a

mathematical formulation that states a basic requirement of continuity.

From such a formulation, the concepts relating to the system and the

parameters defining it are best understood. For a chain-reacting

system, the basic equation is a Boltzmann-type equation of continuity 1 )

which describes the conservation of the neutron population in a closed

fom(2)
region. The equation in its general form can be written as

7T N(r',,u,t) + v . VN(r,,u,t) + t(r,u) vN( r , ,u,t)

u

= f du' f d'v'EZ (r,u') N(r,2,u,t) g (Qi2',u'; 2,u)
u-e e

u
+ f du' f dd'v'Z i(r,u') N(ri',u',t) g (',u';i,u)

u-E.

+ gf(u) f du' f dQi'v'v(u') Z f(ru') N(r,G ,u',t)
0

ext -_' -4.
+ S (r,Q,u,t) , (1.1)

where

N(r,Q,u,t) dr d du = the number of neutrons whose position vectors

lie in the volume element dr about r, whose

velocities lie in the solid angle do about Q

and whose lethargies are between u and

u+du, all measured at time t;

Et (r,u) = the macroscopic total cross-section

= e(r,u) + Z (r,u) + a(r ,u), e , E., and Za being, respec-

tively, the macroscopic elastic scattering, inelastic

scattering and absorption cross-sections;
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ge(',u ';lu) = relative probability of a neutron being left with

velocity parameters (lu) as a result of an

elastic collision before which its velocity

parameters were (0,u

g(Q'u';Q, u) = a similar quantity for inelastic collision;

u - e = lowest lethargy from which neutrons may be elastically

scattered into u;

u - E. = a similar quantity for inelastic scattering;

gf(u) = the relative probability that a fission neutron is born

with lethargy u;

2 f = macroscopic fission cross-section;

v = the number of prompt neutrons produced per fission;

Sext = an external source, including sources of delayed

neutrons.

The vector or directional neutron flux is given by

#(r,U,u,t) = vN(r,,u,t) .

Equation 1.1 may, in general, be written in the form

a N = HN + Sext (1.2)t

where N is the neutron density, and H is an operator which is generally

independent of N and, therefore, linear. H can be split into two parts:

H I - K , (1.3)

where I and K are, respectively, the production and destruction oper-

ators (in the language of Field Theory), such that IN gives the rate of

production of fission neutrons per unit volume and KN gives the rate of

loss of neutrons. If v, the average number of neutrons per fission, is

taken to be independent of lethargy, it is possible to write

I= vJ , (1.4)

so that

H vJ -K. (1.5)
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For the critical or self-sustained steady state, we must have

aN (1.6)
at

without the external source (Sext= 0 ). Thus, the eigenvalue v must

satisfy the equation

v JN - KN = 0. (1.7)c

The lowest value v c is then the value of v required to maintain a steady

chain reaction. The parameter v c is a fictitious value of the number of

neutrons per fission that would render the actual system critical; v, the

actual number of neutrons per fission, must be proportional to v c; i.e.,

v = kv or k = , (1.8)c v
c

where k is a constant characteristic of the system. It is seen from

Eq. 1.7 that k is an eigenvalue of the equation

vJN = kKN . (1.9)

The corresponding adjoint equation is

vJ M = kK'M , (1.10)

where M is the adjoint of N. If dt is the volume element with respect

to which the adjointness is defined, so that f Ndr is the total number of

neutrons in the reactor, we may write:

f MJN dT
k = v (1.11)

f MKN d'r

Before proceeding further, we must state the physical content and

interpretation of these equations. The adjoint function M(r,Q2,u) repre-

sents the importance of a neutron toward maintaining the chain reaction

and may be defined as the neutron content of the system resulting from a

unit, point, monoenergetic, unidirectional neutron source at r with

lethargy u and direction 0. Then, for any general neutron distribution

N - not necessarily satisfying Eq. 1.9 -the quantity v f MJN dT is the rate

of production of neutrons (via fission), weighted by the importance function,
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and integrated over the entire volume of the reactor. Similarly,

f MKN dr is the net destruction rate due to scattering, absorption and

leakage. Thus, the adjoint function M(ri,u,t), which has been intro-

duced above as a mathematical recipe, indicates, physically, that an

importance function must be used to give the proper relative weights

to neutrons in different parts of the reactor.

The constant k defined by Eq. 1.8 is a measure of the departure

of the system from criticality - a state representing the exact balance

between the neutrons born in the system and those lost by and in it; k

is unity for a critical system = 0), greater than unity for a super-

critical system > 0) and less than unity for a subcritical system
/ N I a

(at < 0). This constant k is called' the effective multiplication factor

or the criticality factor of the system. According to Eq. 1.11 and the

above interpretation,

k = Production rate of neutrons through fissions

Net destruction rate due to scattering, absorption and leakage

(1.12)

The rates in the numerator and denominator are weighted by the

importance function. Equation 1.11 has the stationary property so that

the effective multiplication factor depends only on the reactor charac-

teristics v, J, K and is independent of changes in neutron distribution

within the reactor.

The advantage in defining k from this fundamental point of view is

that this concept is readily applicable to any general chain-reacting

system. For systems in which most of the fissions occur in a particular,

limited, energy range, the usual life-cycle point of view defining k in

terms of successive generations, is probably more easily understood.

*The usual practice of designating the infinite medium multiplica-

tion factor by k. and the effective multiplication factor by keff seems

somewhat clumsy. It seems appropriate to designate the infinite medium

multiplication factor by ko and the criticality factor of the finite system

simply by k. This notation is consistent and in line with such designa-
tions as P-, Y etc. However, perhaps the most elegant notation is that of

Weinberg and Wigner( 3 ) who use the term criticality factor as distinct

from the infinite medium multiplication factor k and denote it by C.
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In such cases, however, the two points of view are equivalent and yield

identical definitions. A distinction can be made between the static and

the dynamic criticality factors, and a detailed discussion of these will

be found in Ref. (3).

With the criticality factor k and its constituent rates defined, the

other kinetic parameters can be defined in terms of these. One such

parameter is the reactivity p of the system, given by

p = k 1 (1.13)

For most systems of interest, k ~ 1 and sometimes reactivity is defined

as

ex

We adopt the first definition so that

Production rate - net destruction rate
P Production rate

Net rate of increase of neutron population (1.14)

Production rate

Thus, the reactivity is a measure of the rate of change of the neutron

population, being zero, positive or negative according as the system is

critical, supercritical or subcritical. The quantities k, k and p are

three equivalent measures of the neutron multiplying properties of the

system.

From Eqs. 1.8 and 1.13, we can write

v - v

pc (1.15)

Equations 1.8 and 1.15 are very useful and of general applicability.

When v /v, the ratio of the fictitious to the true yield of fission is used,

those relations may be applied to reactors containing mixtures of

fissionable materials and to multigroup calculations in which fission

neutrons are produced in several groups. Through perturbation theory,

they may be extended to reactors with non-uniform fuel loading.

A measure of the dynamic behavior of the system is the effective

mean prompt neutron lifetime P - usually referred to simply as the
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neutron lifetime - given by:

f MN dT
S= =d' , (1.16)

f MKN dT f MKN dT

where I = f MN dT is the neutron density N, weighted by the importance

function and integrated over the entire volume of the reactor, i.e., the

weighted total neutron population; the denominator is, as before, the

weighted total consumption rate of neutrons. The lifetime 2 is then the

average turnover time of importance or physically, the weighted average

of the time required by a fission neutron to produce another fission.

A kindred parameter is the generation time A introduced by

Hurwitz and given by

f MNdT
A = (1.17)

v f MJNdT vf MJNdT

It may be noted that

k=$. (1.18)

The actual formulation of the various rates depends on the parti-

cular theoretical model employed. The quantities i and A arise in a

natural way in the treatment of reactor kinetics; historically, reactor

kinetics equations were first derived from one-group diffusion theory

and such a treatment affords an insight into the meaning and role of

these parameters. The starting point for reactor kinetics, in this case,

is a balance between the destruction and production probabilities of

neutrons and precursors(5).

dn v[ vZ -Za-DB2] n - vpvE n + XC,
t f(1.19)

dC.
1 _

= vp vEfn - XiC,

where the various symbols have their usual definitions. It is to be

observed that neither production nor destruction can be determined

independently by the kinetic behavior. The definition of each is arbitrary.



1-7

to the extent of an additive term and the only operationally determinable

characteristic of a reactor is its period, the direct consequence of the

difference between the rates of production and destruction.

The kinetics equations can be cast in a form involving either 2 or

A; there seems to be some confusion in the literature, and the terms,

lifetime and generation time, are often used interchangeably. This con-

fusion arises from the fact that 1 and A are equal at the steady state

(k = = 1); in most kinetics problems, I and A are calculated for the

steady state and treated as constant in the solution of the time-dependent

problem. The argument has sometimes been made that, since 2 = 1 (Z )

one should use the kinetics equations with I whenever the absorption

cross-section is nearly constant in the transient, i.e., if one makes

changes in the scattering or fission cross-sections. On the other hand,

A = A( f) and should be used whenever there is a large change in the ab-

sorption cross-section, e.g., in experiments with control rods.

Attempts to clarify the operational and conceptual significance of

reactor kinetics parameters have been made by Hurwitz , Ussachoff(8 )
(6) (5) (7)

Henry(, Lewins and Gozani among others. Lewins has shown that

the formulation of the reactor kinetics equations in a form parametric

in the generation time, is more accurate and simpler to solve than the

corresponding form in the lifetime. The general concept and elementary

expressions for the various reactor kinetics parameters are summarized

in Table 1.1, taken from Ref. (5).

1.2 PHYSICAL SIGNIFICANCE OF REACTOR KINETICS PARAMETERS

The reactivity (as also the criticality factor k and k ) provides a

measure of the over-all neutron economy of a chain-reacting system and,

in this sense, it is a global parameter characterizing the state of the

system as a whole. It is an indicator of the degree of criticality and

hence of the response of the system to external and internal perturba-

tions. The effect on the multiplying properties of the system, of control

rods, of individual fuel elements, of changes in moderator or reflector

configuration, of external probes or external samples, as well as of in-

ternal changes such as temperature variation, fuel depletion or void

formation, is most conveniently expressed in terms of change in the



TABLE 1.1

REACTOR KINETICS PARAMETERS

Parameter Concept Elementary Value

(a) Normalized to destruction:

k effective multiplication

k ex, excess multiplication

1, neutron effective lifetime

production probability

destruction probability

production-destruction

destruction

1

destruction

vvZ 
2

v( a+DB )

v(VZ f- Z-DB2

v(a +DB 2

1

v(Z a+DB2

(b) Normalized to production:

p, reactivity

Pi, fractional precursor yield

A, generation time

production-destruction

production

precursor production

production

1

production

v(v2 -Z a-DB2

VVEf

if

1
VV f

o
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reactivity. A knowledge of these effects is vital to the safe operation of

the reactor, and the study of reactivity is, therefore, a basic aspect of

reactor safety. Moreover, a knowledge of the reactivity may be used to

determine other parameters of the reactor itself or the material proper-

ties of external samples. Theoretically, reactivity may be related to

both the static (e.g., the multiplication factor and its component ingredi-

ents) and dynamic parameters (e.g., the reactor period) and provides a

bridge between reactor statics and reactor dynamics. The study of

reactivity is, therefore, also basic from the point of view of theoretical

understanding.

The magnitude of the reactivity can be specified in several ways.

As a mnemonic aid in fixing the magnitude of p for which delayed

neutrons cease to play a predominant part in determining the reactor

period, the condition known as "prompt criticality" is defined by the

relation:

p =j7, (1.20)

where p is the effective delayed neutron fraction for the particular

system. A unit of reactivity based upon this relationship is called

the "dollar":

$ = , (1.21)

so that a reactivity of 1 dollar (positive) represents the condition of

prompt criticality. Reactivity may also be expressed as a percentage -

one hundred times the numerical value of (k-1). It is frequently more

convenient to use a reactivity expression more closely related to the

reactor period, particularly for small reactivities. For this purpose,

the inverse hour or inhour unit has been defined. A reactivity of 1 in-

hour is that value of p for a given reactor which yields a stable period

of 1 hour. For any period, the reactivity in inhours is

+ Tm pi

_ T+I T+ 1 1+X T R(T) inhours (1.22)
Y+ + 3600 m i R(3600)

3600+ + 3600 +1 1+ 3600 .
1
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In general, 2 and pi depend on the constitution of the reactor.

The true effective lifetime of prompt neutrons in a reactor is made

up of the effective thermal lifetime and the effective fast lifetime. First-

order, two-group perturbation theory gives the following expression for

the prompt neutron lifetime in a finite reactor:

15 +2 2 1-v1 v

= 1 + 2  (1.23)

4OT V -[ v 0 4+vz f202] d-r

where 4 and 42 are respectively the fast and thermal group fluxes and

other symbols have their usual meaning. This expression can be derived

from the basic Eq. 1.16. If the reactor is bare and its properties are

uniform, then Eq. 1.23 can be shown to reduce to

1 2 2 (1.24)
v Z (1+L B ) v I T(l(1 +rB

where Zal is the macroscopic "slowing-down cross-section." The time

required for the neutrons to slow down is usually neglected in thermal

reactors and then we have the simple expression:

I = = ' 2 (1.24a)
vz (1+L B ) 1 + L B

which appears in Table 1.1.

The effective prompt neutron lifetime is an index of the stability

of the system and is an important parameter in judging the safety of a

reactor in case a large increase in reactivity should be introduced

accidentally. For reactivity increments greater than the delayed

neutron fraction ~, the inverse period = 4) is given approximately by

W (1.25)

and the rate of change in such a prompt-critical accident is inversely

proportional to the lifetime 2. It is seen from Eq. 1.25 that 2 depends

on the concentration of fissionable material (Z f); a relatively large

value of 2 can be obtained by having this concentration low with a good
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moderator (e.g., heavy water or graphite). It can also be shown that a

longer lifetime can result if a reactor is surrounded by a large reflector.
Values of the effective neutron lifetime in representative reactors

have been computed, for example, by Pigford et al. 9 . A more precise
expression than Eq. 1.24, based on two-group perturbation theory, has
been derived by Arnold( 1 0 ).

11 1 1 v-1 1
-~ 2)D 1 + v- v- 1 2 2 ; (1.26)

v1 1+'TB 1/7 2 1+L B a2

here I is taken to be the sum of the time required for a neutron to slow

down from fission to thermal energies and the time spent in diffusion

before capture as a thermal neutron.

1.3 NEED FOR THE CONTROL OF REACTIVITY AND METHODS OF

CONTROL

The need for the control of reactivity arises basically in three

ways: (1) as a safety measure; (2) as a design requirement to insure

steady operation against transient and long-term perturbing effects; and

(3) to cause the system to respond to changes in power demand. Any

chain-reacting system that is potentially critical must be provided with

means of controlling the rate of the chain reaction. As the system

comes into operation, it heats up thermally, fissile material is con-

sumed and the fission products, some of which have high neutron capture

cross-sections, accumulate. The latter two effects, and preferably the

first one also, tend to decrease the probability that a neutron will pro-

duce fission. In some cases, pressure changes, voids and the conversion

of fertile to fissile fuel must also be considered. To compensate for

these changes, the reactor must contain enough fissionable material to

ensure criticality when it is in the hot, poisoned, depleted condition.

Hence, at the start-up when the reactor is cold, clean and undepleted, a

degree of potential supercriticality must be present which must be off-

set by the control mechanisms.

It is evident that reactivity control may be brought about in many

ways. The basic methods may be broadly termed "fuel control,"

"moderator control," "absorber control," or "configuration or reflector
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control." Specifically, some of the possible methods are: variation of

the fission cross-section by adjustment of the fuel content of the core;

variation of moderator atom density; change in the neutron capture

cross-section by the introduction or removal of highly absorbing non-

fissionable nuclides called "poisons; " increasing the effective surface-

to-volume ratio, e.g., by reflector movement. The ultimate choice of

methods for control depends upon many factors: reactor type, purpose

of the reactor, physical state of fuel and moderator etc. However,

absorber control is the most commonly used method for maintaining

safe, mechanically efficient control of thermal reactors, while allowing

flexibility for programmed control.

The poison is generally present in lumped form - control "rods"

which are located so as to traverse a major dimension of the core and

which may be positioned at any point between complete removal and

complete insertion. These "rods" may be solid or hollow cylinders,

thin slabs or symmetrical Y-shaped or cross-shaped pieces.

Reactivity control is required (a) when the reactor is not oper-

ating, in order to insure a subcritical condition; (b) during start-up,

shutdown and changes in power level, when small changes in reactivity

are required for the transition to new steady states; (c) during constant

power operation, when all the short- and long-term effects that tend to

change the reactivity must be counterbalanced so as to maintain criti-

cality. In a reactor operating at high power levels, at least three types

of control are normally necessary: (1) emergency shutdown (scramming);

(2) coarse or shim control; and (3) fine control. These categories are

roughly indicative of the order of magnitude of the reactivity changes

which must be provided for.

The worth of a control rod is defined in terms of the change in

the criticality factor k, which the rod is capable of causing. If the

criticality factors without and with the rod inserted be k and k., the

corresponding reactivities are

p=1- 1

(1.27)
1

pg = 1-1
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Customs for specifying worth vary: the worth might be k-k 1 , p -p 1 , or

the deviation of k/k 1 or kl/k from unity. These are nearly equivalent

when small (i.e., p « 1, p 1 << 1) reactivity changes are involved; but when

large reactivity changes are treated, it is important to specify which

definition is used.

1.4 IMPORTANCE OF REACTIVITY STUDIES

The measurement of reactivity is one of the most important

measurements in reactor physics and technology. Whether the chief

concern is reactor safety, design, or operation, experimental research

or theoretical understanding, it is necessary to know how to measure

different forms and varying amounts of reactivity at some stage or

another. Reactivity monitoring is required to assure the safety of

certain operations with reactor fuel, such as reactor loading, approach

to critical and storage under unevaluated conditions.

If the amount, 6k, by which a reactor is subcritical, or the value

of k when it is less than unity, could be determined accurately, the in-

formation would be valuable for use in fuel loading, reloading, and

control-rod calibration. This measurement has recently assumed added

importance because of the accidental occurrence of supercriticality in

SL-1 (ALPR). In general, reactivity measurements arise in conjunction

with criticality or start-up experiments on new systems, calibration of

control rods, estimation of the worth of fuel rods, the comparative study

of different control materials for use as shim or safety devices, the

studies of the dynamic coefficients describing the response of the system

to specific forms of perturbation, changes in the composition of the

system, or to changes introduced from outside.

Apart from the need for measuring the reactivity in connection

with specific problems, the reactivity provides an index of the over-all

neutron behavior in the system and can be used to correlate analytical

results with quantities that are directly measurable. For this reason,

the measurement of reactivity is an interesting and instructive experi-

ment in pure research and constitutes a significant tool for the test of

theoretical models, such as the results of control rod theory, calcula-

tions of prompt neutron lifetime and effective delayed neutron fraction,

results of perturbation theory, and so on.
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1.5 THE MEASUREMENT OF REACTIVITY

Since reactivity is a property of a reactor assembly as a whole, its

measurement involves a change in the assembly which affects it in a

characteristic way. The change is a perturbation which is equivalent to

the addition of a positive or negative reactivity. The measurement of

reactivity is then based either on a differential study of the system with

and without the perturbation or on a study of the transient response to

the perturbation. The first class of methods includes the static or

steady-state methods, while the second includes the transient or dynamic

methods.

1.5.1 Static Methods

The static method involves measurements in one or more steady

states which may be critical or subcritical.

1.5.1.1 The Compensation Method( 1 1 -13). The compensation

method is based on maintaining criticality by counteracting any change

in the reactivity by means of control rods or by introducing uniform

poison into the core. Compensation by control rods is useful for the

relative calibration of control rods. The compensation with an absorber

distributed uniformly throughout the reactor can be interpreted in terms

of the change in thermal utilization:

6k Af a (1.28)

f Ea

The poison calibration can be supplemented by the more direct period

method. The compensation method can also be applied in an exponential

assembly by using a measurement of the subcritical multiplication

constant as a reference point.

1.5.1.2 The Subcritical Inverse -Multiplication Method( 1 4 ,1 5 )

The subcritical inverse -multiplication method, which is especially

adapted to reactivity monitoring, is based on measuring the neutron

multiplication or a quantity roughly proportional to it. The basic re-

quirements for this type of measurement are a neutron source - either

inherent in the fuel assembly or externally applied to it - and a neutron
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detector with an adequate and reliably scaled response to neutrons from

fission. In the absence of photoneutrons, the detector response rate under

equilibrium conditions is proportional to neutron multiplication, and its

reciprocal approaches zero as the fuel assembly is made to approach

delayed critical. If the ratio of the response rate to neutron multiplica-

tion is known, then a single measurement may be sufficient to provide

an index of reactivity.

1.5.1.3 Critical Height Measurement(1 6 ). This method con-

sists in starting with the reactor in a critical state with the moderator

(liquid) level below the level of active fuel in the core. The control rod

is then inserted and the moderator level raised to restore criticality;

the material buckling of the core remains unchanged. The resulting

change in geometrical buckling is related to the reactivity worth of the

control rod: on two-group theory, for a bare cylindrical reactor core

of extrapolated height H,

dp 27r2 M2 + 2-rL2B 2(1.29)
dH -T kH 00

The same type of experiment may be performed in an exponential

assembly by changing a dimension of the assembly so as to yield the

same multiplication constant after rod insertion as before, the assembly

remaining subcritical.

1.5.1.4 Buckling Measurement. For simple control rod con-

figurations, the change in geometrical buckling produced by the insertion

of the rod in a critical or exponential assembly can be measured directly

by mapping the flux distribution. This geometrical buckling change can

then be related to the reactivity worth of the control rod if the reactor

parameters of the unperturbed system are known.

1.5.2 Kinetic Methods

The kinetic methods are based on a measurement of the temporal

response of the neutron population to some change in the system. Basi-

cally, the time behavior of the neutron population is given by a solution

of the reactor kinetics equations. A'general form of this solution is(17,18).
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m 0 . j+Xi S p t
nMt=1SkR + ) enet). k f m p A. ( keff.A

0= 1 + 2 .j 1+
i=1 (j i P1=1 Xi) (1.30a)

for k *1, and

m X .C.i
eff+

SY m 0 Pj +p i p.t S (p.t
n(t) = t + e 3 + (e -1)

p. m

j=0 1+1-( 1 i

(p.+X.) 2j 1+

(1.30b)
for keff = 1

where the p. are the roots of the characteristic equation

p =p(1.31)

Initially, the reactor may be in the near critical state, the positive

prompt critical region, or in the subcritical state. A positive or negative

reactivity change is effected rapidly by some external means and the reac-

tivity to be measured is deduced from the response of a suitable detector.

1.5.2.1 Stable Reactor Period Method(1 9 ,2 0 ,2 1 ,2 2 , 2 3 ). The basic

technique for the calibration of a control rod is based on the measurement

of the positive period resulting from the positive reactivity introduced by

the withdrawal of the rod. The reactor is made critical with the rod

inserted; the rod is then moved out a short distance and after the tran-

sients die out, the stable period is measured. The inhour equation relates

this period to the reactivity introduced during the rod bump, i.e., the dif-

ferential reactivity at the initial position of the rod. To obtain a calibra-

tion curve, it is necessary to determine the differential worth at other

points, and the motion of the rod must be compensated for, in some way.

This experiment cannot be made in an exponential assembly.
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1.5.2.2 Pile Oscillator Method( 2 3 , 2 4 , 2 5 , 2 6 ). The control rod is

oscillated in and out of the core at a frequency of about one cycle per

second, and the oscillating signal generated in an ion chamber is ampli-

fied, rectified and integrated. Since the neutron equations are linear,

the amplitude of the signal is directly proportional to the absorption

introduced. The oscillating component An and the steady-state neutron

density n are related as

An= W(j) A, (1.32)

where -- is the reactivity in dollars and W(jw) is the reactor transfer

function. The latter can be calculated from the kinetics equations (if

the constants involved are known), or determined experimentally by ob-

serving the frequency response to reactivity oscillation of known ampli-

tude.

Other less important methods which depend on measurements in

the near-critical state are the rod-drop-bump (square-wave) method(25,27)

the trapezoid-wave method(27,28) and the electronic simulator method(29,13)

The positive prompt transient method( 3 0 , 3 1 ) is limited to a few special

reactors.

1.5.2.3 The Statistical Method( 3 2 , 3 3 , 3 4 , 3 5 ). The most important

among the statistical methods is the Rossi-a technique which makes use

of the time dependence of detector counts observed in a chain-reacting

assembly at low power. This method is discussed more fully in

Chapter III. The reactivity $, in dollars, is obtained from the experi-

mentally determined, prompt neutron decay constant a, according to the

relation

a cLd. C.(1 -$), (1.33)

where Cadc is established by a single measurement at delayed critical.
d~c. (36)

A recently described method makes use of a fast neutron source,

electronically modulated by a pseudo-random, i.e., "noise-like" waveform.

Reactivity is estimated by examining the impulse response of the reactor,

which is measured by cross-correlating input (source strength) and out-

put (neutron population). A new means of continuously determining the
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''shutdown margin" reactivity via statistical analysis of reactor noise

has recently been suggested( 3 7 , 3 5 )

1.5.2.4 Rod-Drop Technique( 2 2 , 2 3 , 2 5 , 3 8 ). The rod-drop method

provides a convenient measurement of negative reactivity (the integral

worth of a rod). With the reactor exactly critical, the rod is withdrawn

over the range for which the reactivity worth is desired. The control

rod is then rapidly inserted into the core and the resultant power tran-

sient recorded. The results can be analyzed in several ways. One way

is to extrapolate the transient following the rod drop back to the time of

the drop, neglecting the fast transient which dies out in a fraction of a

second. The reactivity worth (in dollars) is then given by

$ = 1 -R (1.34)
R

where R is the ratio of the power level after the rod drop to the power

level before the drop.

Modifications of the standard rod-drop technique include the inte-

gral count method( 3 9 ) in which total neutron count following the rod drop

is measured rather than the post-drop level. In this case,

p n(O) , (1.35)

f n(t) dt 1
0

where the initial neutron density n(O) can be measured by accumulating

counts from a suitable detector from the time of rod drop until the

neutron level becomes constant.

1.5.2.5 The Source-Jerk Technique(2 5 2 3). A neutron source is

placed in the subcritical core of the reactor with the rod inserted, and

the neutron level is noted on the detectors. The source is then removed

in a time that is short compared to the mean life of the shortest delayed

neutron group, and the transient neutron level following the removal is

observed. The analysis of the results is similar to that in the rod-drop

method; when the extrapolation method is used, the reactivity in dollars

is given by
n 1 - n0

$ n 1
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1.5.2.6 The Pulsed Neutron Method(4 0 ,4 1 ,4 2 ). In this method, a

burst of fast neutrons is injected into a subcritical multiplying system,

and the decay of the thermal neutron population is recorded as a function

of time. After neutron thermalization and decay of the higher modes of

the neutron flux, the decay constant a of the fundamental mode can be

measured. The result can be analyzed in several ways which will be

discussed in Chapter III. One way is to obtain the reactivity $ in dollars

from the relation

a. = dc 1 , (1.36)

where the proportionality constant ad.c. = can be determined by a

pulse decay measurement at delayed critical.

1.6 CRITIQUE OF THE METHODS FOR THE MEASUREMENT OF

REACTIVITY

The merit and validity of any particular method of reactivity

measurement depend on the nature and range of reactivity to be measured

and the degree of precision demanded. A general, but brief, critique of

the individual methods will be attempted in this section.

Among the static methods, the simplest is the subcritical multipli-

cation method. This method depends strongly on a knowledge of the har-

monic content, at the measuring point, which is introduced by the source

that maintains the constant neutron flux in the subcritical assembly.

Estimating the effect of harmonics in an actual system may be difficult.

The compensation method is often used for the relative calibration of

control rods. The precision of this method depends either on the

absence of interaction between the different components or the degree

to which these effects are known. It is usually difficult to estimate the

interaction effects. The compensation of reactivity with local absorber

is, therefore, limited to the measurement of small amounts of reactivity.

The stable period method is the most common technique for reac-

tivity measurement. It suffers from the disadvantage that in order to

start with a critical reactor at each position of the control rod, the

motion of the rod being calibrated must be compensated for in some

way; this changes the other parameters and affects the criticality
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analysis. Moreover, quite long wait-times are required to insure that

the asymptotic period is being observed. In fact, the determination of a

detailed multipoint control rod calibration curve by the period method

may require several hours. The pile oscillator method is much faster

because the steady power remains nearly constant and no time is lost

in waiting for the delayed neutrons to return to equilibrium. Compari-

son of the rod oscillator method with the period method and the rod-

drop method has demonstrated that good agreement is possible(2 5 )

However, the pile-oscillator method requires special apparatus for

oscillating the rod and improved instrumentation for detecting the power

oscillations. The method also suffers from the dependence of the signal
(43)on detector location(. This method is useful for comparing control

rods.

Of the statistical methods, the Rossi-a technique is the only one

which has been applied to actual measurements to a significant extent.

This method is generally capable of very good (errors of a few per cent)

precision in determining the prompt neutron decay constant, but is prac-

tical only when small amounts of negative reactivity are to be measured.

The Rossi-a method gives good results in fast systems and can be ex-

tended to somewhat slower systems. However, this method is not con-

sidered practical for thermal reactors. Other statistical methods are

still in early stages of development and cannot be properly evaluated,

Although reactivities ranging from zero at delayed critical to

about -2 dollars can be measured by the inhour method, this method is

not applicable for large multidollar reactivities. For a large negative

reactivity, the period is almost independent of the reactivity, while for

large positive reactivities, the periods are too short to be measurable

by an unrefined method. Large negative reactivities can be measured

by the rod-drop or the source-jerk technique. Both these methods, how-

ever, involve difficulties associated with the measurement of the flux

during the transient produced by dropping the rod or removing the

external source. The difficulty is compounded in the source-jerk

method because at the low flux level present in a subcritical system,
the detector output may be erratic( 3 9 ). In the rod-drop method, if the

motion of the rod changes the flux-distribution in all directions, the
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accuracy of the results may be in doubt. The source-jerk method is just

the converse of the rod-drop method.

The pulsed-neutron-source technique affords a simple, straightfor-

ward, and accurate method of reactivity measurement which is valid over

a wide range of reactivities. This method can give reliable results from

very close to critical to several dollars below critical. In highly

subcritical assemblies, modal and thermalization-time effects may impose

an effective lower limit. In the measurement of very large reactivity

changes (several dollars), it is necessary to correct for the variation in

neutron lifetime. Detailed comparisons( 4 2 , 4 3 ) of the pulsed source tech-

nique with asymptotic period, rod-drop and rod-oscillator methods have

shown good agreement (within a few per cent) for reactivities down to a

dollar below delayed critical. For large values of subcriticality, the

pulsed method has been found to be definitely superior and, in nearly all

cases, it appears to be "more convenient, rapid and straightforward."

Furthermore, the pulsed neutron method is self-contained in the sense

that it provides its own reactivity calibration, usually via a delayed

critical measurement, and does not depend upon supplementary measure-

ments to yield absolute reactivities. As a "by-product" of the reactivity

measurement, one gets a measurement of the prompt neutron lifetime

which is, in itself, a kinetic parameter of major importance. In the pre-

sent work, the theoretical basis of the pulsed neutron method is explored

in detail, and the method is applied to the measurement of reactivities

in far subcritical heterogeneous systems.
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Chapter II

THE PULSED NEUTRON TECHNIQUE:

THEORETICAL TREATMENT OF THE KINETICS OF AN ASSEMBLY

IRRADIATED BY A FAST NEUTRON PULSE

INTRODUCTION

By the Pulsed Neutron Technique is generally meant the body of

methods which utilize short, repetitive bursts of fast neutrons for the

study of the interaction of neutrons with nuclei in a medium. The source

of pulsed neutrons is usually a charged particle accelerator with an

appropriate target. The first pulsed accelerator to be used for neutron

research was the 36-inch Berkeley Cyclotron, as reported by Alvarez,(1 )

who produced neutron bursts from the (d,n) reaction with a beryllium

target, by the modulation of the cyclotron acceleration voltage and studied

the validity of the inverse velocity law down to 30*K for the case of boron.

Since then, the technique has been greatly extended and refined, and

applied to such diverse problems as low and intermediate energy neutron

spectroscopy, the investigation of the diffusion properties of moderating

materials, reactivity measurements in neutron-multiplying systems, and

measurements of the neutron spectra of multiplying and non-multiplying

systems by the time-of-flight method. A brief history of the development

of the technique and some of its ramifications is to be found in Refs. (2, 3),

while Refs. (4, 5, 6) review articles introducing the "state of the art" and

its applications. The relevant volumes of the Proceedings of the Brook-

haven Conference on Neutron Thermalization form a comprehensive

survey of the current status of pulsed neutron research.

The lifetime of the neutrons which comprise a burst of fast neutrons

injected into an assembly can be divided into three more-or-less overlap-

ping regions. During the first region, the moderation or fast-resonance

period, the neutrons are slowed down from the source energy E to about
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0.25 ev and the average energy is high enough, compared to the energies

of the chemical bonds and to the thermal energy, so that the neutrons

interact individually with the atoms of the moderator as if the atoms were

free and at rest. This region is followed by the thermalization or the

transition phase involving slowing down below about 0.25 ev; the atoms

of the medium have a distribution of velocities and, in solids and liquids,

are bound so that neutrons may gain as well as lose energy in collisions

with the atoms. The thermalization process continues until the neutrons

reach an asymptotic energy distribution whose characteristics are

governed by the energy exchange scattering kernel and by the absorption

and leakage in the medium. Finally, in the diffusion or thermal region,

the shape of the asymptotic energy distribution remains unchanged but

the amplitude decreases in time, and the sequence is terminated by

absorption or by leakage of neutrons (thermal) from the medium.

In line with the sequence of events just outlined, pulsed neutron

studies can be broadly classified into the fields of "Asymptotics" and

"Transients." The field of "asymptotics" has to do with the rate at which

the amplitude of the asymptotic neutron distribution (i.e., the thermal flux)

decays with time during the diffusion period. This rate is characterized

by the lowest (zeroth) eigenvalue associated with the decaying pulse and

yields information about the thermal diffusion properties of the medium

including the diffusion cooling coefficient. The field of "transients" deals

with the approach to this asymptotic distribution and the conditions under

which it is attained; this approach is characterized by the first eigenvalue

which is related to the "thermalization time constant." The main interest

centers around the neutron flux and spectrum during the thermalization

process and the investigation of the thermalization properties of the

medium.

A large part of the applications of the pulsed neutron technique

pertains to the asymptotic thermal region and is based on the study of the

time-dependent behavior of the thermal neutron population which dies

away at a fixed rate characteristic of the size (geometrical buckling) and

nature (nuclear properties) of the system studied. A knowledge of the

spatial and temporal neutron distribution in a medium following the injec-

tion of a short burst of fast neutrons is of interest in the analysis and
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interpretation of experiments purporting to measure the neutron transport

and reactor parameters by the pulsed neutron technique. The theoretical

effort in the field has been largely stimulated by the discovery of diffusion

cooling and the related phenomena which throw light on certain neutronic

interactions in systems. The early work on the theory of the slowing

down of neutrons by elastic collisions with atomic nuclei was reviewed

by Marshak;(8) he considered the description of neutrons in time and

energy by means of a spatially independent transport equation with an

instantaneous monoenergetic fast source. The general treatment of the

time-dependent Boltzmann equation with a generalized time varying
(2) (9)

source is reviewed in the comprehensive work of Amaldi. Sykes,

who used a polynomial expansion method applied to the time-dependent

transport equation, treated the time-spread of neutrons of thermal and

intermediate energies at various distances from a pulsed source of fast

neutrons in an infinite moderating and diffusing medium.

Hurwitz and Nelkin used perturbation theory to evaluate the

lowest (zeroth) eigenvalue associated with the asymptotic neutron distri-
(11)

bution during the diffusion period for a heavy gas. Singwi and Kothari

studied this problem by means of the Rayleigh-Ritz variational method

with the assumption of a modified Maxwellian asymptotic energy distri-

bution. Nelkin(12) carried out a similar analysis and introduced the
.(13)

thermalization parameter M2 , the mean-square energy transfer. Singwi

developed a general theory of diffusion cooling without recourse to the

concept of neutron temperature, while Hafele and Dresner (14) applied a

similar analysis for the calculation of the diffusion cooling coefficient in

a monoatomic heavy gas. These studies, as also that of Kazarnovsky et.

al. (15) for the neutron thermalization, were based on the diffusion approxi-
(16)

mation and referred to finite media. Nelkin later studied the non-

diffusion effects by considering the decay of a thermalized pulse according

to transport theory. Singwi(13) and Sj6strand also obtained the non-

diffusion corrections. Time-dependent studies of neutron moderation have

also been undertaken by Waller( 1 8 ) and Eriksson.(19 )

Krieger and Zweifel( 2 0 ) discussed the extension of "asymptotic

reactor theory"(21) to the time-dependent case and obtained the solution

of the time-dependent diffusion equation for a multiplying medium by using
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an arbitrary slowing-down kernel. Fultz(22) made a two-group analysis

of the transient behavior of the thermal flux in a subcritical assembly and

applied it to the analysis of experiments on graphite-uranium systems.

Purohit (23) has developed a general mathematical formalism, based on

a method similar to that of Singwi ,1 3 ) for determining the lower eigen-

values associated with the energy eigenfunctions of a decaying pulse of

neutrons in a general finite medium; his formalism is based on the ex-

pansion of each energy eigenfunction in a complete sum of associated

Laguerre polynomials of the first order. Boffi, Molinari and Parks(2 4 )

have applied Nelkin's(16) analysis of a decaying thermalized neutron

pulse in a non-multiplying system to the discussion of certain aspects of

the persisting neutron distribution in a large subcritical assembly.

Dyad'kin and Batalina(25) have discussed the time dependence of the space-

energy distribution of the neutrons from a pulsed source for certain geo-

physical applications.

In the present work, the main emphasis is on the study of the decay

constant of the fundamental mode of the thermal neutron population follow-

ing the injection of a fast neutron burst - especially in a subcritical multi-

plying system. The different expressions for the basic decay constant,

according to the different generalized theoretical models for the slowing

down and diffusion of neutrons, will be studied, as will the effects of such

factors as the delayed neutrons in multiplying systems. An attempt will,

therefore, be made to investigate the problem from several different

theoretical standpoints and to develop the basic expressions for the ana-

lysis and interpretation of pulsed neutron experiments on subcritical

assemblies. The spatial distributions will also be treated for the investi-

gation of harmonics.

2.1 NON-MULTIPLYING SYSTEMS

2.1.1 Generalized Age-Diffusion Theory Treatment

The space and time-dependent thermal neutron flux in a pure moder-

ator assembly, following the injection of a short burst of fast neutrons, has

been treated by means of one-group and two-group(26) elementary dif-

fusion theories, and the basic expressions for the decay constant of the

fundamental persisting mode of the thermal flux have been obtained. Here,
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a generalized, time-dependent age equation will be used to obtain the

slowing-down density at thermal energies, which gives the source term

for the diffusion equation governing the subsequent thermal neutron

decay. Such a treatment brings out more clearly the details of the

neutron behavior during the slowing-down phase and yields a complete

expression for the time-dependent thermal neutron population in terms

of the original source intensity. The assumptions which generally

underlie an age-theory treatment and the range and limits of validity of

such a theory are well known and are discussed, for example, in Ref. (27).

The Fermi-age model of neutron transport gives the balance

equation for neutrons of lethargy between u and u+du for an absorbing,

non-multiplying medium as:

2~ a -~1a

D(u) V q(r,u,t) - (u)4(r,u,t) - -X(r, u,t) + S(r,u,t) =v(u) 4(r,u,t)

(2.1)

where D(u) is the diffusion coefficient of the medium for neutrons of

lethargy u:

1
D(u) =-t(u),3tr

X(r,u,t) is the slowing-down density, S(r,u,t) is the external neutron source,

and the other symbols have their usual meaning. The following relation

holds between 4 and X:

X(r ,u,t) = (u) t(u)k(r,u,t) . (2.2)

Substituting Eq. 2. 2 in Eq. 2. 1, we obtain:

2 +_. +_ a
D(u)V X(r,u,t) - Ea(u)X(r,u,t) - 9(u)Zt(u) X(r, u,t) + ((u) t(u)S(r,u,t)

a au
1 a -+

= t X(r,u,t) . (2.3)

The linear term in this equation can be eliminated by means of the

transformation,

q(ru,t) = p(O,u) X(r,u,t) , (2.4)

where

p(O,u) = exp - u a(u') du' (2.5a)
0 ((u')zt(u')
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or, in terms of the energy,

p(E ,E) = exp af (2.5b)
oE ((E')Z t(E'1) E'I

p is just the infinite-medium resonance escape probability as given by

the Fermi slowing-down theory(2 8 ) If there is no absorption (i.e., a= 0),

then q = X.

With the transformation. of Eq. 2.4 and some simplification, Eq. 2.3

becomes:

2 (u)t(u) a (u)Ft(u)
2 - - q(ru,t) + S(r,u,t)

D(u) au D(u)p(O,u)

1 a +

SvD (u) t- q(r,u,t) . (2.6)

If we now introduce the Fermi-age r given by

dr = D(u) du,
z(u)t(u)

or (2.7)

'r(0,u) = fu D(u') du'
0o ((u')zt(u')

in terms of neutron energy, E,

D(E) dEd-r -
S(E)zt(E) E

T(E OE) = - E D(E') dE'

0E ((E')Zt(E') E' -

We can rewrite Eq. 2.6 as

V q(r,u,t) - . q(r,u,t) + 1 1(r, at q(r,Tt) (2.8)V ~ a p(OT ~'~) vD(r) at
where

((u)zt(u)
S(r,r,t) = D (u) S(r,u,t) .
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Equation 2,8 is the generalized, time-dependent age-equation. For our

problem, we particularize the source function as an impulse:

S( 7 ,r,t) = S -0 ( 0) 6(r)6(t) . (2.9)

Thus we have to solve Eq. 2.8 with the source term given by Eq. 2.9. To

this end, we multiply Eq. 2.8 throughout by e-st, integrate with respect

to t from 0 to oo, and define the Laplace Transform pair(29, 32)

f(s) = e- st f(t) dt
0 (2. 10a,b)

f(t) = - lim fV+iU est f(s) ds
27ri --0 O v-iW

Using the physically obvious initial condition q(r,'r,0) = 0, we obtain the

transformed equation:

2 + ->0 +a - - So *(.
V q(r,',s) - -q(r,T,s) - q(r,r,s) 6 (r - r9) 6 (2.11)

E),r p(0,,r)0

We wish to express the spatial dependence of the functions q(r,'r,s)

and S 6(r -r ) in terms of an infinite series of eigenfunctions which form
0 0

a complete orthogonal set. The choice of such a set is, in general, arbi-

trary;(30) but great simplification results if we choose the set generated

by the Helmholtz equation

2 -~ 2
V Q(r) + B Q(r) = 0 . (2.12)

Only those solutions are physically meaningful which vanish at the

extrapolated surface of the assembly. The resulting eigenfunctions

Q (r) corresponding to the eigenvalues B form a complete
mnp mnp

orthogonal set. Hence, we can write, for any arbitrary geometrical

shape,

q(r,',s) = A (r,s) Q (r) , (2.13)
mp mnp mnpmnp

6(r- ) C Q (r), (2.14)
o mnp mnp mnp
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where

Cmnp

6(7-r ) Q (7) dr
v 0 mnp

m2 (r) dr
v mnp

(2.15)

For instance, in cylindrical geometry, with the extrapolated surface

defined by r =R, z= H and the source located at (R ,0,z ), the eigen-

functions are

Qmnp(r,4,z) = JM(P )cosmo sin z, (2.16)

6(r- ) Ji r drr 0Qm(mnR)

f !R
0

J p Lr drM("mn R

f 27r 6 (4) cos m d4o
0

f 27r cos 2 mo do fH
-H

-H

sin2

(z-z 0 ) sin Rzdz

H z dz

4

rR2(2H)

R

1 Jm(mn )
1+60m [J (Pmn 2 sin - z

H o'

where 6 om is the Kronecker delta:

1 for m =0

6 om 0 for m #0

Now, substituting Eq. 2.13 in Eq. 2.11 and remembering that
2 m p()

Qmnp(r
2

=-B mpQ mp(r), we obtain

+(B2 +s -
mnp vD mnp

aAmnp

8al

S Co mnp 6(T)

p(O,'r)

The solution of this linear differential equation in T is:

A (r,s) =

S C
H(T) 0 mnp

p(O,T)
exp f

f
T
0

B 2 + dt}

where H(T) is the Heaviside function,(2 9 )

T > 0

H(r) =

otherwise

with

Cmnp

f R
0

(2.17)

(2.18)

(2.19)

(2.20)
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Substituting for p(O,r) from Eq. 2.5 in terms of r, we get:

Amnp(r,s) = H(T)SoCmnp exp
0 B

If we define

\vD/

a
_D

T fo vD(T) dT

T
T f

a
D(T)d

A (T,S) = H(T)So C exp[- B 2p

Inverting the last expression with respect to t and using the relation,(3 3 )

27ri6(t- a) = lim fV+iW e(t- a)s ds

we get

Amnp(t) = H(T)So Cp expL-B + K 6(t - D ,

Hence, finally:

q(r,T,t) = H(T)Sot - (VD)) zm ,n , p

- B2 +
mnpmp(r) e mnp

(2.24)

where C mnp and Q p are given by Eqs. 2.17 and 2.16, respectively.

Equation 2.24 lends itself readily to a simple physical interpretation.

The expression T/(vD) is the slowing-down time(31) T to age r; thus,

Eq. 2.24 states that for neutrons of any age, the slowing-down density is

zero at all times except at t= T. Moreover, the exponential term in

Eq. 2.24 is

B p
e n

-LB

+ + d)r

(2.21)

then

(2.22)

I I
e s

e -(vD)

(2.23)

(vD) T .

/Z \a
+ \ -J

+)) + ' a)
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In analogy with the thermal decay, the "slowing-down die-away" is also

exponential in time with a decay constant:

A = (vD) B2 + (vD) a, (2.25)mnp mnp D

which is composed of the absorption and leakage rates during slowing

down; (vD) and (Za/D) are given by Eqs. 2.22 with the appropriate value

of T. Equation 2.24 gives q(r,r,t) in terms of the modal distribution of

neutrons which escape leakage and absorption during slowing down. The

thermal slowing-down density is

-A T
q(rT .t) = S0 6 (t-T) C Q (r)e mnp 0 , (2.26)

where T = ro/(vD), the slowing-down time to age T.

Our primary interest is in the thermal die-away phase. The time-

dependent thermal diffusion equation is:

2 +. 1+DV 4(r,t) - a 4(rt) + q(r,T ,t) = - -4(r,t) , (2.27)a 0 vt

and its Laplace Transform is:

DV ~ ai + q-(r,) - S 0a '0 v

If we write

(,s) = Fmnp(s)Qmnp j

we have

DB2 +z +-- = A (TO s);mnp a v mnp mnp '

or, if we write,

X = vDB 2  + v , (2.28)
mnp mnp a

then

v (T ,s) -A T -T 0 s
F (s) = smnp0 = vS C e mnp emnp S +X mp o mnp s+X mnp
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Inverting the Laplace Transform and using the Convolution Theorem,( 3 2 , 33)

we get:

-A T 0  -X (t-x)
F (t) = vS C e mnp f 6(x-T ) e mnp dx

mnp o mnp 0 0

-A T -X (t-T )
=vS C e mnp oe mnp 0

o mnp

-(A -X )T -X t
= vS C e mnp mnp 0 mnp

=voC mn e - (2.30)

Hence, the time-dependent thermal neutron flux is

-(A -X )T -X t-+) -+ ( mnpx mnp )o 0_ mnp
4(rt) = vS 0 EC Q (r) e e .

omnp mnp

(2.31)

We thus also obtain the well-known result that the thermal population

dies away exponentially with the decay constant X p of the particular

mode given by Eq. 2.28.

2.1.2 Physical Treatment of The Thermal Neutron Decay

It is easy to understand physically why the decay of the thermal

flux is exponential, and to derive from purely physical considerations a

simple expression for the decay constant. Consider a finite assembly

of moderator into which a burst of fast neutrons is injected. Suppose

that at time t= 0 the neutrons have been moderated and thermalized, and

that there are N thermal neutrons at t = 0. Then there are only two

processes which can result in a loss of neutrons: absorption and leakage,

and these two events are, to a first approximation, independent. Actually,

leakage affects the spectrum and hence the absorption, but this is a

second-order effect. The probability that a neutron survives absorption
-zax

after travelling a distance x is e . And, since the leakage rate for

any region is -DV 24, we can define an average global "leakage cross-

section" typical of the geometrical dimensions of the assembly and given

by:

2S -DV4 2z 2 : =DB.
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Then the probability for an individual neutron to escape leakage, on the

average, while traversing a distance x is e . . Since the two events

are independent, the 'oint probability is the product of the individual
- X - x

probabilities, i.e., e a ,. e . If the thermal neutrons are considered

monoenergetic with average velocity v, then at time t, x = vt and the

thermal neutron population that survives after time t is given by

-av -E vt
N(t) =N e e

-(vZ +vDB 2)t0

=N e-At

with

2X = va + vDB . B(2.32)

Thus the decay constant is composed of the absorption rate and the leakage

rate corresponding to the two possible mutually exclusive modes of neutron

loss from the system.

2.1.3 Diffusion Cooling

A treatment such as the one just given, which relies on a description

of thermal neutrons as monoenergetic and diffusing without exchanging

energy with the medium, masks the effects due to the energy distribution

of the neutrons in a finite assembly. Such effects were first brought to

light by von Dardel's(34, 35) observation of a non-linearity in the depend-

ence of X on B2 for small moderator assemblies. Qualitatively, this effect

is readily understood on physical grounds. In a moderator assembly with

small dimensions, the main effect which removes neutrons is leakage. If

elementary diffusion theory were applicable, and if the asymptotic neutron

spectrum were a Maxwellian with the moderator temperature, the effects

of leakage would be correctly described by the term D0B2 where D0 is

Maxwellian average of the energy-dependent diffusion coefficient D(E).

However, neither of these conditions is strictly valid. A faster neutron

has a greater probability of escaping from the moderator than a slower
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one, and the moderator continuously and selectively loses neutrons which

are "hotter" than the neutrons inside. This loss is partially compensated

by the coupling through collisions between the neutron gas and the moder-

ator.(5) These two conteracting processes result in a net shift of the

neutron spectrum below the equilibrium Maxwellian distribution; this

shift is larger for greater leakage effects and for poorer thermalization

properties of the moderator. The resultant softening of the spectrum or

"diffusion cooling" tends to reduce the leakage from its simple value
2

D0B Antonov et al.(26) have investigated the mechanism of this effect by

means of a two-group analysis of the diffusion equations; other authors,

referred to earlier, have given more sophisticated treatments. The result

of careful experimental and theoretical work suggests that higher terms
2 4

in B2, especially a B term, have to be considered for small dimensions

of the moderator; a trial expression for the decay constant is of the form:

X=vZ +vDB - CB4 ± FB i
a (2.33)

The coefficient C represents the transport theory corrections to elemen-

tary diffusion theory and the effect of diffusion cooling.( 1 2 )

The phenomenon of diffusion cooling has opened up fresh approaches

to the study of neutron thermalization and has stimulated a great deal of

theoretical activity in the field. The parameter C is related to such

properties of the moderator as the thermalization time and thermalization

power. Experimental studies of diffusion cooling, among other properties,

of a moderator are becoming increasingly important in the understanding

of the role of the moderator in a thermal reactor. The diffusion cooling

effect is also important in multiplying media where spectral effects are

more complicated. However, for multiplying media, as the dimensions

get smaller, other considerations also arise and it becomes questionable

whether the geometrical buckling is a suitable parameter for the descrip-

tion of non-escape probabilities.(36) A recent paper(36a) extends Nelkin's

treatment of diffusion cooling to multiplying media.
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2.2 MULTIPLYING SYSTEMS

The sequence of events following the injection of a fast neutron

burst into a moderated multiplicative system is sketched in Fig. 2.1.

Of the QS fast neutrons (where 0 is a geometrical factor) which enter

the finite assembly in each burst, a fraction QS 0Ps(E 0 Eth) reaches

thermal energies, constituting the "zeroth'' generation of thermal

neutrons (source-emitted). The fast neutrons resulting from these, as

well as the neutrons produced in epithermal and fast fissions, lead

after thermalization to the first generation of thermal neutrons ("lattice"

born). Successive generations of thermal neutrons follow in rapid pro-

gression determined by the generation time for the system. At each

generation, the thermal neutron population changes by a factor keff as

shown in the figure. Hence, if the system is subcritical (k ef< 1), there

is an over-all progressive decay of the population.

It is easy to see that the gross qualitative time-behavior of the

thermal neutron population in a moderated, multiplying, subcritical

system following the injection of a fast neutron burst should be as in

Fig. 2.2. As the source neutrons diffuse through the medium while

slowing down (region I), a maximum is approached at a time depending

on the slowing-down properties of the medium. The amplitude depends

on the source strength and the multiplication factor of the system.

Immediately following the maximum, there occurs a relatively short

region (region II) during which the transients die away and the thermal

flux stabilizes; the fundamental flux mode due to the prompt neutrons

from fission then decays exponentially (region III). Typical values of the

lifetime in moderated systems during this decay of the fundamental mode

are in the millisecond range. This prompt neutron decay is finally fol-

lowed by a much longer decay due to delayed neutron effects (region IV);

on the time scale shown in Fig. 2.2, this delayed neutron tail is nearly

flat because the delayed neutron groups have lifetimes of the order of

seconds rather than milliseconds, At delayed critical, this tail is really

flat (between bursts), for each neutron lost from the system is eventually

replaced; the prompt neutron decay still occurs, however, since the

prompt neutrons do not replace themselves immediately.
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Spanning this gross behavior is the "fine structure" shown in

Fig. 2 .3.(36b) The decaying portion is actually represented by an irregular

descending step function, with a constant step-width given by the prompt

neutron lifetime P. Each of the successive generations is less intense

than its predecessor by a fractional decrement 6, so that the fractional

rate of flux decay is 6/1 sec~. That the decay is exponential, can be

shown in a simple-minded manner by reference to Fig. 2.3. At any stage,

we have

dNr N r+1 r (1-p)k - 1 N (235)
dt r

so that

N(t) = N 0 exp (1-9)k- t .

Thus, the decay is exponential with a decay constant

A = ( -(1- ~k) .(2. 36)

2.2.1 Time Behavior of the Slow Neutron Population; Derivation of the

Basic Expression for the Decay Constant

The relationship between the decay constant and the reactor parame-

ters will now be derived in a more rigorous manner without first going

into the detailed spatial distribution. The following model of the neutron

processes in the system is adopted:

(i) An instantaneous burst of S 0 fast neutrons appears either out-

side or within the system at t = 0.

(ii) The fast neutrons undergo the sequence of events indicated in

Fig. 2,1.

(iii) The slowing-down time in the system is negligible, so that a

thermal flux distribution < 0 (r) is assumed to appear effectively at t= 0.

(iv) The time of flight from the neutron source to the assembly

(when the source is outside) is assumed to be negligible.

(v) The effect of delayed neutrons is not taken into account except

insofar as the prompt multiplication is taken to be (1-p)k9.
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It is also assumed, for simplicity, that the assembly is a bare, homo-

geneous system of some elementary shape. We then wish to determine

the thermal flux 4(r,t) for an arbitrary shape, given that the distribution

at t= 0 is 4(r).
The appropriate time-dependent thermal neutron diffusion equation

is:

22 - la -4.
DV 4(r,t) - Ea4(rt) + (1-p)k a F(B2) 4(r,t) r4(rt) , (2.37)a o a v at'

where the source term is assumed to be entirely due to prompt neutrons;

F(B 2) is the fast non-leakage probability. The boundary conditions are:

4(St) = 0
(2.38)

4(r,0) = 0 (r),

where S represents the extrapolated outer surface of the assembly.

Rewriting Eq. 2.37 as

2 -), 2 _ = 1 a --
V24(rt) + 0(r,t) = 4(r,tt) (2.39)

with

2 = (1-p)k oaF(B2 2
SD - L, (2.40)

we seek solutions of the form

4n(r,t) = Rn(r) T(t) . (2.41)

Then

V 2Rn(r) T' (t) 2 2

R DvT - = -B , (2.42)
n n

2.
where B is a separation constant. Thus we haven

2 * 2 (,3
V R (r) + B R (r) = 0 (2.43)n n n

with

R (S) = 0



2-20

and

Tn(t) + Dv B -2 T(t) = 0,dt n \fln n~t
(2.44)

with T (0) = To. The choice of the separation constant B is such as to
n n n

ensure that the spatial dependence satisfies the Helmholtz equation (2.43).

Equation 2.44 gives

-Dv B2_W 2) t
T (t) =T e n

n n

and the general solution of Eq. 2.37 is:

Dv B 2_ 2) t
#(r,t) = AnRn(r) e n

n

(2.45)

(2.46)

where the A are determined from the initial conditions
n

4,0) 0~ (r) =A n R n(r)

(2.47)

A= f (r) Rn(r) dr.
n v

Here n is a generic symbolic index which stands for all the subscripts.

Now, substituting for w2 from Eq. 2.40, we obtain the time-dependent

flux:

(2.48)4(r,t) = AR n(r) e
n

The thermal flux in the assembly decays exponentially:

#jR,m,n(r~t) ~ e mnt,

and the decay constant of any mode is given by

=vF + vDB 2 nvy a(1-p) koF(B mn)

= vE a 1+L 2  B - ko(l-p)F(B 2

= v (1+L2B 2 ) [1-(l-p)k]

(2.49)

(2.50)

-v[DB 2+E a,-(1-p)kr aF (B 2)]It
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For the fundamental mode 1=m=n=1, B 2 is the geometric buckling B 2

and we have the equation:

= VE a(1+L 2B) [1-(1-p)k] (2.51)

We may write this in several alternative forms:

X = VE (1+L 2 B 2) p - p (2.52)
a 1-p

where

kef -1 k- ...
p = _ k- is the positive reactivity;

k kkeff k

X = vFa + vDB2 _vEfa n p(1-p) F(B2

= vFmod + vDB2 + vE{uel 1--o(1-p)P(B2)} , (2.53)
2 2

where P(B2 )(= pF(B 2)) is the "thermalization probability" or the three-

dimensional Fourier transform of the slowing-down kernel for a point

source in an infinite medium. In terms of the thermal neutron lifetime,

VE a(1+L B

= . ~# (2.54)

Figure 2.4, taken from Ref. 4 with some modifications, illustrates the
2

general variation of X with B

2.2.2 Space and Time Distribution of Thermal Neutrons in a Pulsed

Subcritical System

We next derive an expression for the thermal neutron flux as a

general function of both space and time. This treatment will be helpful

in the planning and analysis of the pulsed neutron experiments. We shall

use a cylindrical assembly as an illustration, but the results are of

general validity. The slowing down is assumed to be on the continuous
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slowing model and other assumptions are the same as in Section 2.2.1;

the delayed neutron effects are ignored except for the designation of the

prompt multiplication as (1-p)k9.

A. Source Neutrons

The fast die-away of the source neutrons in the energy range, say,

14 Mev to 2 Mev, can be considered separately in terms of a removal

cross-section Z and the parameters D 0 representing this range. The

diffusion equation for the source flux 49 is then:

2 +++ 1 a
D V2 4(r,t) - 4(r t) + S(r,t) = -a- o(r,t)

0 0 00 v0 at o0 (2.55)

where

S(r,t) = S 0

6(r-r )6(z-z )&(6)0 0
r

Equation 2.55 can be solved by a method similar to that used in Section

2. 1. 1. A Laplace Transformation gives:

2-D V -Z 0 + S=-40
0 0 0 0 v 0

0

with

0

(r-r0)6(z-z9) 6(e)

r

In analogy with Eqs. 2.13 and 2,14, we set

0(',s) mnp(s)Qmnp

and

6 (r-rmn) CmpQmnp

(2.57)

(2.56)

where the Q m (r) are the eigenfunctions (Eq. 2.16) of Eq. 2.12 as before.

Proceeding along the same lines, we obtain:

mnp s+X ,n,p

4v S

grR2 2H) 1+60

6(r-r0) m, n, p() dr

Q2.l (r) dr
mn,pv

(2.58)

M( Promn R sin- z

J' (P )] 2 H o s+m ,n,p

6(t)
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where

m Vn + v D(mn + ()2j (2.59)

Hence, the space-time dependent source flux is:

0v0 1 -m, (m,n / .n z42 1 +6 r 2 si H z0
rR (2H) m,n,p o,m J (p )

XJ m com sin ze e m,n,pt (2.60)m(Pn-L)cos sin z e

B. Lattice-Born Thermal Neutrons

The diffusion equation for the lattice-born thermal neutrons is

DV 24 (r, z,t) - Y 4 (r, z,t) + pq(r, z; Tr2 ) = I k(r, z,t) , (2.61)

where the diffusion parameters, D and T a, are for thermal neutrons, T2

and p are the Fermi age to thermal energy and resonance escape proba-

bility, respectively; the slowing-down density q is for a system with no

resonance absorption. For simplicity, azimuthal symmetry is assumed

so that the 4-dependence is eliminated.

The slowing-down density is given by the Fermi-age equation:

V 2q(r,z,r) = q(r, z,'r) . (2.62)

The boundary conditions are:

4(S) = 0 = q(S) (2.63)

on the extrapolated boundary and at the source energy (r=0),

k
q(r,z,t; T=0) = (1-p) 0 Za4(t-T) + S 6(r-r ) 6(t) , (2.64)

p a0 0

the slowing-down time T will be assumed to be negligible, the source is

at (r9,z0):

6(r-r )6(z-z )
S 0 (r-r) = r (2.65)
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The above equations will be solved by means of transform techniques:

a Laplace Transform in the time variable t; a finite Hankel Transform in

the space variable r; and a finite Sine Transform in the space variable z.

The Laplace Transform pair has already been defined in Eq. 2.10a,b. The

Laplace Transformation, with respect to t applied to the above equations

and boundary conditions, gives

DV 2 -p(r,z,s) ( a+ ) V + pq = 0 , (2.66)

2q = q (2.67)

q(T=0) (1-p) 0aZ + S 6(r-r9) , (2.68)
p o 0

q(S) = 0 = 0(S) . (2.69)

A finite Hankel Transform(37) pair is defined as follows: if

T(m R rf(r) J( r) dr, (2.70)
0 m

where

J (m R) = 0,

then

2 ccJ (9 r)
f(r) =- Z (m 2 . (2.70a)

R m=1 [JIm R)]

Now, in cylindrical cobrdinates with no angular dependence, the

Laplacian Operator is:

2 a + +

V 2 r ar z2'
or az

and the Hankel Transform of V2 f is:

2

fR r[V2f (r,z)] J (( r) dr = Rgmf(R,z) J mr)- ( (g z
( 0z 2 .

(2.71)
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If then, we take the finite Hankel Transform of Eqs. 2.66-2.68, by virtue

of the boundary condition,

4(R,z) = 0

the first term on the right side of Eq. 2.7 1 vanishes and the transformed

equations are (double bars indicate transformed functions after the appli-

cation of Laplace and Hankel transforms):

2- a2 It
+($( m z +a- + p= 0 ,(.2ln i(9 .,z)± a 2 4- +D.= D (2.72)

2 - a 2 = a
- q( ,z) + q , (2.73)m m a2 aa z

k
q(,=0) = (1-P) 0az + S 6(z-z ) J9(r), (2.74)

p a 0 o o m o02.4

where we have written for simplicity,

i' = a + . (2.75)a a v

Finally, we use the finite Sine Transform with respect to z. This

transform pair(37) is defined as

f(n) = fH f(z) sin nrz dz , (2.76)
0

f(z) = H I (n) sin z (2.77)
H H

n= 1

Observing that

H(2= 2 22
fHaf (z) (n7 n I (78

J z 2 sin z dz=- 2 (n) (2.78)

we obtain the finite Sine Transformation of Eqs. 2.72-2.74:

( + + (m,n) +% P(2' m,n) = 0 , (2.79)

-(I+ n2 2(7,,n) =~ ((r,m,n) , (2.80)
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q(r=0) = (1-s) -a4 + SOJO(m r') sin -z .
p a 00 m H o'

(2.81)

Now, Eq. 2.80 is linear in T and its solution - in conjunction with

the "initial condition" (2.81) - is:

-B2 Tm,n

(2.82)

where we have written

2 2
B n = 2 + n 7 r
Bm,n =m m 2 (2.83)

Substituting from Eqs. 2.82, 2.83 and 2.75 in Eq. 2.79, we get:

(2 k +[ nJ r si
D B +~+J = pi-P)-- Za OO9mo i z e

m,n va V) p a0om Ha

2
B m rm ,n

(2.84)

vpS J ( r ) sin z
0 0 m 0 ) H 0

-B2
e m,n 2

s + m ,n

with
-2

-B T
X vZ + vDB -l-~ vz e M, n 2

m,n a m~n 0 a (2.86)

If we invert the various transforms, using their respective inversion

properties, we finally have:

4(r,z; t) =
J( r ) nr -B 2 r

S pv 42 0 mr sin - z e-m,n

R H m,n (Ji(mR)0

-x t
-J mr) sinni z e m,n

o m H

Also, substituting Eq. 2.85 in Eq. 2.82, we get:

+ 1 S0 m 0
si n7rz )

sn H

whence

m,n,s) = (2.85)

q(r, mn,s) =

(2.87)

s + X
m,n

2
-B n
eM. n

(2.88)

qi(T,9m,n) = 1p a4 + SOJO(9mro) sin -zo e
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and, on inverting the transforms,

4_ S0
R H m , n

-B 2 Tj(

e mn (1-P)k0vz a

J( r )0 m o sin n z J ( r) sin n,

[1 (mR)]2 H o o m H

B2
-B 2

m,n
T -X t

-e m,n + 6(t)

The appearance of the delta function 6(t) is a consequence of neglecting

the slowing-down time.

2.2.3 Generalized Age Treatment with m-Groups of Delayed Neutrons

The differential equation expressing the conservation of thermal

neutrons with the source term given by the Fermi-age model is:

2 +0 +-)+ 1 a +0
DV 4(r,t) - a4a(rt) + pq(r,t,r 2 ) v t -(rt)v at~t (2.90)

where r2 is the age to the thermal group and the slowing-down density

q(r,t,z) obeys the age equation:

V q(r, t,r) - q(r,t,r)

The balance equation for fast neutrons, including delayed neutron

production, is:

k m +

q(r,t.,0) = (1-P) p a(r,t-T) H(t-T) + .C.(r,t) + S06(r)6(t) ,q ~ ~ r ~ t , 0 )= 31 p 3

(2.91)

(2.92)

where w. is the decay constant of the jth delayed neutron precursor, C .
th

is the concentration of the j precursor, T is the slowing-down time

and H(t) is the unit Heaviside function which is zero for negative argu-

ment and unity otherwise; the pulsed source of strength S0 neutrons per

burst is assumed to be located at the origin. The conservation of each

of the m-delayed neutron precursors is expressed by the equation:

k a
Jt pi C (r"'j', t) C C(r, t) (2.93)

q(-,r,z,t) =

(2.89)
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In addition, the boundary conditions at the extrapolated boundary S are:

# (S,t) = 0 = q(S,t,r) = C.(St) . (2.94)

In solving the above equations, we are mainly interested in the

time behavior of the thermal flux. We assume that the slowing-down

density is separable in its variables and can be expressed as:

q(r,t,T) = ' QR n(r) On() Ln(t) , (2.95)

where Qn are constant coefficients, R n(r) are the eigenfunctions of the

Helmholtz equation vanishing on the extrapolated boundary as before;

en (T) and LPn(t) have to be determined; the subscript n is a symbolic

composite subscript which stands for three subscripts in three spatial

dimensions, so that actually,

R (r)EaR (7) ,n mnp

$n(t) mnp(t) , (2.96)

etc.

Now, substituting Eq. 2.95 in Eq. 2.90 and making use of the orthogonality

property of the R n(r), we get

dO (T)
nT 2
dr = -Be (7)

so that

-B 2

0 (n) = e (2.97)

if it is assumed that

en(0) = 1

We further assume the space-time separability of the thermal flux and

each precursor concentration

4(r,t) = R(r) $n(t) ,
n

(2.98)
C.(r,t) = (r) C jn(t)

n
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We also use the relation:

6(r)6(t) = 6(t) D nR (r) , (2.99)

n

where the constant coefficients D n can be evaluated from the orthogonality

of the eigenfunctions R n(r), as in Eq. 2.14.

Substituting Eqs. 2.95, 2.97 and 2.98 into Eq, 2.90 and setting the

coefficient of Rn to zero, we get:

-B 2
-DB - a + pQ e nn 2K(t) = $ n(t) . (2.100)

Again, substituting Eqs. 2.95, 2.97, 2.98 and 2.99 into Eq. 2.92, we obtain

in the same manner:

Q P (t) = (1-p) -aH(t-T) $n(t-T) + .C . (t) + Sn D(t) . (2.101)
n n p an .jn o

We can now eliminate the Qn between Eqs. 2.100 and 2.101, so as to get:

2 2
-B L 2 -B T

- an(1+L2B2 n(t) + (1-p)ko e n 2 aH(t-T) n(t-T) + p e n 2  j C jn(t)

2
-B 2

+ S pD e n 26 nt 1 . (2.102)
o n 6(v t 4n

If we define the effective multiplication factor and the prompt neutron

lifetime for the finite system

2
-Ben 2

k9 e
2 2

1 + L2B2 n
n

(2.103)
1 =
12 2 n

vr a(l+LB n)

and divide Eq. 2.102 throughout by Za(1+L2B ), we get:



-2
n 2p e

-$n(t) + (1-p)k H(t-T ) $(t-T) +

Za(1+L B n)

-B 2

d PSo en

n a(1+L B )

JC jn(t)
j

Dn6(t) .

So far, Eq. 2.93 has not been used; if we substitute in it the expression

(2.98), we also get

k

p ant) - o C Mt) = $ C (t) . (2.105)

Thus, the original set of equations has been reduced to Eqs. 2.104

and 2.105, in $n(t) and C. (t). We next apply the Laplace Transformation

and then eliminate the Cjn* The Laplace-transformed equations are

(assuming $n(0) = 0 = C. (0)):

[I (1-p)k en

-B2
-Bn 2

+ L B n

1 +L n j2
WjC jn(s)

-B2
S 0 pe

Ea(1+L2 B2a n

(2.106)

and

a (s) - (W +s)C (s) = 0

The result of the elimination of C. (s)

(1-s)kn e-sT-1-sP +k

j
W.+s n(s)

3 w

between Eqs. 2.106 and 2.107 is
2-Bn 2

S 0 pe

Ea(1+L B )

Hence

-B2T
S0 pe 

n 2

22 D
(1+L 2B2) na n

1 - (1-s)k e-sT
n n

(2.109)

w. + s
J
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(2.104)

k

@ P (2.107)

Dn .
(2.108)

$n(s) =

J

-sT- 1-sl n]n(s)
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We are interested in the persisting mode of the flux and, therefore,

in the behavior of Pn (t) after long times. Now, according to the Tauberian
(33) n

Theorem, the asymptotic behavior of $n (t) is determined by the pole of

n (s) with the largest real part. Hence, we must investigate the singu-

larities of jn (s); these are given by the zeros of

1 - k (1-p) e -sT + sR - k I P = 0,
n n n 0+s

(2.110)

or, if the slowing-down time is negligible, T -- 0, and

1-k + sI + sk = 0n n n co.+ s (2.111)

which is a polynomial equation of degree (m+1) in s and has (m+1) zeros.
p3.

Furthermore, s decreases continuously as s increases along

the real axis s = - s 2 < 0 while (1-kn+ spn
( as Li (s.+s)2n n

continuously increases linearly as s increases. Consequently, there must

exist one and only one real simple root s= Xn of Eq. 2.111 and, therefore,

a single real simple pole of ' n(s). Moreover, it can be shown that this is

also the pole with the largest real part; i.e., the real part of any complex

root of Eq. 2.111 is less than Xn . Hence, it follows from the Tauberian

Theorem, 3 3 ) that the asymptotic behavior of $ n (t) is given by:

-X t
Sn(t) ~ A e n (2.112)

where A is the residue of 4n(s) at the simple pole s = Xn:
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A = lim {(s+Xn)T(S)}
s--X n

= lim

n

-B 2
S peB n2

22 D
a(1+L2B ) n

d
ds +s2 +skn

(W +s) }s=-X n
2-Bn 2

S 0p eo~p D

(1+L 2B2 n
= a n .B

In + kn 2
j(w.j-X n

Hence we conclude that the thermal flux is given by:

<(rt) = R (r) (t)
n

where

-B 2 T
S 0p en2

D
Z (1+L22 n -X t

~nt = a n n

n + k LL2n n E( -X )2

and X n is the real root of the equation

P3.
1- -k n -X k n W = 0.

n n n nnn

(2.113)

(2.95)

(2.114)

(2.115)

The R (7) are, as before, the eigenfunctions of the Helmholtz equation

which vanish at the extrapolated boundary of the system. The coefficients

D are determined fromn

(2.116)6(r-r0) = D Rn(r),
n
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if the source of pulsed neutrons is located at r = r .
The decay constant X of the fundamental mode (n=1) of the thermal

flux is given as a root of the equation

P.
1 - k - k - k = 0. (2.117)

J

If we define the positive reactivity of the system as

P = k - 1 (2.118)

the above equation becomes

p + X + -0 (2.119)
W i. - X

or, after a slight manipulation,

Hence we have the iterative formula for X:

A p - p + ~(2.121)

where R is the modified thermal neutron lifetime

* =1=1. 1 (2.122)
k k va (1+B 2 L 2

We can also write just in terms of p:

- -p + (2.123)

2.2.4 Two-Group Treatment with m-Groups of Delayed Neutrons

In this section, the neutrons will be divided into two energy groups -

fast (denoted by subscript 1) and thermal (denoted by subscript 2). The

fast group comprises the energy span from fission energy (with an effective
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upper limit of 10 Mev) to thermal:

(2.124)4 p~r,t) = fEfiss 4(E,r,t) dE
E2

The source neutrons, which are usually in the neighborhood of 14 Mev,

are slowed down to the fast group; this slowing down of the source

neutrons was considered in Section 2.2.2A in terms of a source-removal

cross-section Z yielding a source term Z 40 for the fast group.

The two-group balance equations with m-groups of delayed neutrons

can be written in matrix notation:

D -2

P1 D 2 V

0

2

4
+ (1-p)k

0
2/

1

0

a
at

(0

p.k
3 o

0

0

0

a 
0

p0

0
at

2

(2.125)

(2.126)

a 
1p

0)(0

+

They may also be written in the form:

D 1 V 24 - 11 + (1-p)ko 4 2 + F C + E4 = 1 a ,

2 1 a
D 2 V 2 -202 +pF1 4 1  v2 8t 02

k
-C + 4 = aC.

3 i jp aO 2 at j

In these equations, "tup-scattering" (from group 2 to 1) is not considered.

and

(2.127)

(2.128)

C

0)

. C.

0) 0

00

(C



2-36

The solution will be obtained with the aid of the Laplace Trans-

formation. If the initial conditions,

401,2(t=0) = 0 = C (t=0)

are assumed, the spatial dependence is, as usual, determined by the

Helmholtz equation, so that:

2 n = -B 2 '
e1,2 h t e t g

Hence, the transformed equations give, after elimination of C.

D B n+ i+

PE 10 Dl 2 2 +±
p y- D2n+

+ 1-
p+

P I k

s _0
a +v2) 02= 0.

We now define:

n
11

1

{ 2\
I (T

1

v2 2 (1+LnB)

k
0

n
1+L2B 1+7 B 2 )

and eliminate 4 so as to get:

1+sj) 1+sj) - 1- +
1)~~~ (2

j s
kn

w.)k

Following the same procedure as in the last section, we find that the

decay constant X of the fundamental mode of the thermal flux is given

by the real root of the equation:

a2
p 0~2 00'

(2.129)

L 2 ,( (2.130)

prD

S+L 2 B 2 1+rB 2

00

(2.131)

D
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2 +z k = 0 . (2.132)

If the fast neutron lifetime is neglected, fi -z 0,

1 - XP2 - (1-p)k + k =0, (2.133)
3

or, in terms of the reactivity, p k1

p -p - =0. (2.134)

This result may also be written in the iterative form:

x = $ p-p+ (2.135)

where

P = 2 1 1 (2.122)2 - k = k 1 1 B 2L
Ea(1+B 2 L 2 )

Equation 2.135 is the same as Eq. 2.121 of the previous section. Thus,

we see that if the fast neutron lifetime is neglected, the two-group

analysis yields the same equation for the decay constant X as the age-

theory treatment.

2.2.5 Decay Constant for Systems with Significant Resonance Fission

For primarily thermal reactor systems with high fuel enrichment

or low moderator-to-fuel ratio, the contribution to the reactivity of

fissions induced by epithermal neutrons becomes significant. Such an

effect can be taken into account by including a term due to resonance

fission in the usual two-group formulation. It is customary in treating

this effect to use the following definitions:( 3 8 )

k2 =r 2 fp 2 8 p 2 5 , thermal
(2.136)

kr= rip (1-p 2 5 ), resonance.
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where p 2 8 and p 2 5 are the resonance escape probabilities for the fertile

and fissile materials, respectively; the n's correspond to average thermal

and resonance fissions, respectively, and other symbols have their usual

meanings. If p2 and Pr are the respective delayed neutron fractions, then

we can write the two-group equations in the form:

2 -L _1 +01r'+' ' ~ ' -
D 1 V - M 41 + (1-p 2 ) 2. 2 02 + (1-pr)Er128 P25 1 1

and (2.137)

D 2 1, a
D2V 2 2 2 + P2 8 P 2 5 1 1 2

It is assumed here that the resonance captures in fertile material occur

at higher energies than those in the fissile material. If this is not a good

model of the actual process, then p 2 8 in the expression for k, may be

somewhat larger than in the expression for k 2 '
We are interested in the decay constant of the thermal flux and

write:

-x t

4 (, n,(r) e n (2.138)

where, as usual,

V ,12(r) + B 40,2(r) = 0

Substituting Eq. 2.138 in Eq. 2.137 and using the notation previously used,

we get:

-1+B - (1-prr)k - Xn 1 1 + (l-p 2 )ri2 Ef 2 = 0

(2.139)

__ - (+L 2 B 2 _X~ =Y

P28P25 1 - 1 n 2 2

For these equations to have non-trivial solutions, the determinant of the

coefficients must vanish and X n is given by:

1+TB -(1-Pr)kr -n 1 1+Ll2B -_ 2 I 2 )k2 . (2.140)

If we suppose Y1Xn~ 0, then
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1P 2)k2 20
S- - (1+L2 B . (2.141)

n i2 1 - (1-Pr)ko + rB 2n)

This result may be compared with the result without taking account of the

resonance fission effect:

S -p)k -1+L2B2
n 12 1 +TB 2 n)

n

It is also possible to treat this case by the so-called "two-and-one-

half-group" theory proposed by Gelanin (39,40) for stationary systems to

take into account neutron capture and multiplication during the slowing-

down phase.

Fast-group constants for the diffusion coefficients, removal cross-

sections, and Fermi age as used in two-group theory are given in Ref. (41)

for beryllium (with and without the n,2n reaction), graphite, water, heavy

water and beryllium oxide. Sets of constants are also available for two-

group theory in which the effect of fast capture is included for uranium

and UO 2 -water mixtures. More extensive two-group constants (extrapo-

lation distances; diffusion coefficients; cross-sections for absorption,

scattering, fission, slowing-down; absorption-escape probability, diffusion

area, multiplication constant) have been evaluated( 4 2 ) for reactor materials

over a temperature range from 68*F to 3,000*F.

2.2.6 Multigroup Treatment Without Delayed Neutrons

The treatment which provides the greatest accuracy and universality

of application is the one based on the multigroup method. In this method,

the entire energy range of the neutron is divided into various energy inter-

vals and an appropriate differential equation of the one-velocity diffusion

type is used to describe the neutron balance in each group. The formula-

tion of the multigroup method and examples of its use will be found in

Refs. (41-45). In the following, the usual multigroup method will be

extended to the time-dependent case with special reference to a pulsed

multiplying system. The notation employed here is similar to that of

Okrent.(46) The source neutrons are supposed to be in the highest energy

(first) group; the total number of groups is N. The set of equation is then



2-40

of the form:

2 + +± 1 E
D.V #.(r,t) - Z 4.(r,t) + Q (r,t) + yX(r,t) + 6&.S(rt) - - 4.(rt)

j jaj 3 sj lj' a

j= 1, 2,. . N , (2.142)

where:

"aj = total removal cross-section from group j

c+ fj ij ej

"ej' fj = macroscopic capture and fission cross-sections,

respectively, of group j;

F. =macroscopic inelastic removal cross-section from
1J

group j = I i,j-k
k/j

ej = macroscopic elastic removal cross-section from

groupj= Z e,j-+k'
k j

Q + (r,t): total
sj =i,k-j e,k-+j k(,t) = s,k-+j k

k/j k/j

number of neutrons per cm3 per second scattered into

group j from all higher energy groups;

N

X(r,t) = I vk fk k(r,t): fission source distribution;

k= 1

,y. = fraction of fission neutrons born in group j;
i 1j

6 . = Kronecker delta =
1J0 j ;,- 1

S(r,t) = S 6(r-r )6(t) : source neutron pulse.
0 0

Other symbols have their usual meaning (Appendix I). The group constants

are defined as in Ref. (41) and are given in Appendix I.

Equations 2.142 represent N simultaneous equations with appro-

priate cross-sections. When more than one region is considered, the usual

flux continuity relations are set at the boundaries for each group. In
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general, if the analysis is to involve more than one region, the problem

becomes too complex for an analytical solution and high-speed electronic

computers provide the only practical method of obtaining numerical

solutions. For bare systems with certain simplifying assumptions, the

equations are more tractable. One such assumption is that all of the

energy groups have the same spatial distribution, which is equivalent

to assigning a single extrapolation distance to all groups. Even though

there is direct experimental evidence(46) to indicate that the energy

spectrum is not space-independent in bare systems, this simplified

multigroup method does give reasonably good results away from the

boundaries. If, in addition, we assume the usual space-time separability,

we can write

<p(r,t) Rn(r) n n jn(t) (2.143)
n

where the spatial dependence satisfies the Helmholtz equation as before:

2 ---> 2 -a
V R (r) + B R (7) = 0.

n n n

Again, we also let:

(r-r)= PnR n(r
n

so that the coefficients Pn are known as in Eq. 2.14.

Substituting Eqs. 2.143 in Eq. 2.142, we get:

N N
- (DjB 2+ 1s,k--j kn(t) + Yo kzfk kn(t) +6 1 SoPn6 (t)

k/j k=1

1 jn t) , (2.144)

The Laplace transform of these equations gives:

( P N N

( B j+(s) = 6 1jPno +Z s,k-j7kn(s)+ Y vk'fkLikn(s)
k~j k=1

(2.145)
N

Now, I vk fk kn(s) is some known function of s. If we write:

k= 1
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N

vkfk4jkn(s) fn(s),
k= 1

and

2
v.E . +v.D.B2E~nJaj j j n jn

then we can write successively:

PnS + Yf fn(s)
1n s + X 1 ,in

2 fn(s) + ZS 1-+2 Pln(s)
s + X

v2 '

3 fn(s) + E;s,1--3 Tn(s) + Es,2 .- 3 q 2 n(s)
S + X

(2.146)

(2.147)

V
3

et cetera .

Inverting the Laplace transform step by step, we obtain the time-dependent

flux distribution for each group.

To obtain the equation determining the decay constant for each group

in a closed form, we proceed in a slightly different manner. Consider

Eq. 2.144 for t > 0 so that the last term on the left vanishes. Let us write:

-X tn
Y.j (t) -e

(2.148)and

v. . + v.D.B 2
j aj j j n jn

Then Eq. 2.144 gives:

(Xn~ jn jn(t) + v

N

k
k~ej

s,k-+j kn(t) + v j

N

k= 1

Vk zfkkn(t) = 0

1
Introducing the Kronecker delta 6 jk

j0 k

j= k

jPk
, and using the

summation convention,(29) we can write Eq. 2.149 as:

(2.149)

$P2n(s) =

'3n(s) =
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n jn jk+ v sk-j).. jV.j vkfk] Lkn(t) = 0

k~dj k= 1

Sk l2,. N, (2.150)

k=1, 2, . . .N.,
k =1, 2,. . N .

This is a set of N homogeneous simultaneous linear equations in the N

unknowns LPkn(t), and the condition for non-trivial solutions is that the

determinant of their coefficients in Eqs. 2.150 must vanish:

N N
(Xn~ jn)6 jk + vj E s,k--j + v v I k fk = 0 . (2.151)

k=1 k=1

k/j

This characteristic determinantal equation is, in general, a polynomial

of degree N in Xn and yields N roots corresponding to the decay con-

stants of the N energy groups. The functions 4kn(t) are then given by

Eqs. 2.149 and Eq. 2.143 gives the flux distributions.

Multigroup reactor codes, such as the PDQ, can be used to calcu-

late the prompt neutron decay constant for specific systems. 4 7 ) The
(48)

General Atomic Neutron Thermalization group has developed codes

for the computation of X based on the slowing-down equation:

1t(E,t) f (E't) Z(E'+E) dE' - 2(E)[Z(E)+B2D(E)]

+ (1-p)f(E) f .(E',t) Ef(E)v dE' , . (2.152)
0

where f(E) represents the normalized fission spectrum. Equation 2.152

has an asymptotic solution of the form

q*(E,t) = e-At 4(E) , (2.153)

so that

f4 00 (E')[Z(E'-E)+f(E)(1-p)vzf(E')] dE' = 4(E)[Z(E)+B2D(E)- .
0

(2.154)

Thus, X can be interpreted as a negative 1/v absorber which makes the
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system just critical. Integration of Eq. 2.154 over all energies, gives

4 (E )[ (E)+B2 D(E)-(1-Ip)v (E) dE
0 ~ . (2.155)

f v

Equations 2.154 and 2.155 are solved by iteration by splitting the spectrum

into a fast and a thermal part, with an appropriate cut-off energy. The

calculation of the fast spectrum is done by the code GAM 4 9 ) and the

thermal spectrum is computed with the code GATHER.(4 8 )

2.2.7 Four-Group Treatment with One Delayed Neutron Group

As an illustration of the multigroup method developed in the last

section, we consider a four-group treatment including delayed neutron

effects. The neutrons will be divided into four energy groups: source (0);

fast (1) including fission and delayed neutrons; resonance or epithermal (2)

including the slowing-down phase; and, finally, thermal (3). Such a treat-

ment should be well suited to the analysis of under-moderated systems,

which have significant epithermal absorption in the fissile material. For
235

systems with high enrichment in U , for instance, the core size is quite

small and the fission and capture of neutrons by U in the resonance

region cannot be ignored.

The conservation equations for each of the four groups and for the

delayed neutrons can be immediately written down:

D V 249(r,t) - Z949 + S(r,t) = 49 ,

D 02 - E141 + F949 + (1-p 2 )k (1-p) 24 2 + (1-P 3 )k E 34 3 +WC

1 (2.156)

DV2 _

D 2  2 - E202 + E101 = v2 4t 42

2 1 a
D 3  3 - '303 + PZ2 02 = v3 at 03

and
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at0C Crt) =-C+p(1-p) k E22 pko2 (2.157)

Here k and k are the infinite medium multiplication factors for the

neutrons of respective groups. To solve these equations, we proceed

as in the previous section. We write:

4(r t) = Rnr jn(t) ,
n

C(r- t) = P R(r) C (t)
n

(r- R (7)0 n n
n

2Rn* +2 =0.
VR n(r) +BR n(r)=0

with

j = 0, 1, 2, 3

(2.158)

We substitute Eq. 2.154 into Eqs. 2.156 and 2.157 and take the Laplace

transform with respect to t; let

0

J

J .

v

= = 1

v. + vjDjB2 x '
(2.158a)

2
J J J J J

Henceforth, we drop the modal suffix n for simplicity. The result of

performing the stated operations on Eqs. 2.156 and 2.157 is to give:

s + X
0 0

- v + 1jY(s) + EDt4 (s) + (1-p)(1-p2)k 242(s)
1

(2.159)

+ (-p3ko 3 3(S) + WC (S) = 0,

v 2 (S) = S )
v2 v 3 T 3 (s) = p5 2 P2 (s),

3
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and

(w+s)U(s) = (1-p)p2 k 2 2 2(s) + P3k 3F- 3 (s) (2.160)

Eliminating C(s) between the second of Eqs. 2.159 and 2.160, we get:

s + X 1 _W+(1-p
2 )s _

- 1 LY(s) + zoqo(s) + (1-p) i k 2 2(S)

+ (k"3 )s) ko3 q3 3 (s) 0

Next, we eliminate 1 (s) and $ 2 (s) between the last equation and the

remaining of Eqs. 2.159 so as to get:

(s+x 1 )(s+X2 )(s+X 3 )

v 1 v 2 V 3P 12

-( +(1-p3 )S)
W+s

(1-p) + (1-P2 )s)
s+

k 3 3(S) = o s

k 0
s + X 3

pv
3

(2.161)

PS

If we define the effective multiplication factors:

0

= v2 1 2 1 2k

( 1+L B 2 ) (1+L 2B
2 )

(2.162)
0

k 3 =

1+L B 2 ) (1+L 2 B
2 1+L B 2 )

vv 2 v 3 Y 1 2 k 0
12312 33'

we finally obtain

3s) - p(w+(1-P 3 )s )k3] 3(s)
(w+s )(1+- Is )(1+1 2s )(1+1 3s) - (1-p)(W+(1-p2)s )k 2(1+1

pvovlv2V3o E1Z2 o 1 2 1 3
1 + P s (0+s) PS .

0

Thus, the Laplace transform of the time-dependent part of the thermal

flux is given by an expression of the form,

L

(2.163)

k 2 -
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i 3 (s) - f(s) PS . (2.164)
F(s)

This equation can be treated in a manner similar to that used for Eq. 2.109

of Section 2.2.3.

2.2.8 Treatment Based on Time-Dependent Asymptotic Reactor Theory

An extension of the so-called "Asymptotic Reactor Theory" to the

time-dependent case has been used by Krieger and Zweifel( 2 0 ) to investi-

gate the spatial and temporal distribution of thermal neutrons in a multi-

plying assembly. In this section, such an extension will be used to derive

a general equation for the prompt neutron decay constant in terms of the

generalized time-dependent slowing-down kernels including explicitly the

effect of delayed neutrons in the system.

The space- and time-dependent thermal flux, in a multiplying

medium under the diffusion approximation, is given by:

1 a 2 + +
- 4(r,t) - DV 4(r,t) + a4(r,t)

= f (1-p)k(r')E a(r')4(r',t')q (r- r' ,t- t') dr' dt'

+ 1 1 d( r- r'j,t- t') dr' dt'

+S 0 f 6 (r')6(t') qs(|E- 7 ',t-t')dr' dt' , (2.165)

with

a C.(r,t) = -w C .(r,t) + k(r) pi a(r) 4(r,t) . (2.165a)

Here, the time-dependent, slowing-down kernel q(r-' j,t-t') is the proba-

bility per unit volume, per unit time, that a neutron born at (r',t') will

become "thermalized" at (r,t), and the suffixes p, d, s denote prompt,

delayed and source neutrons, respectively. The other symbols have their

usual meaning.

Let the system be homogeneous so that Z a and k are space-independent.

Further, let the system be bare so that 4(r,t), etc. vanish at the extrapolated

boundary, and let us write:
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4(r ,t) = Rn (r)4 (t)

C (rt) = R (r)LPin(t) , (2.166)

and
6(r)6 (t) = aR n(r)6(t)

We substitute Eqs. 2.166 in Eqs. 2.165 and make use of the results

of fundamental theorems of asymptotic reactor theory to simplify the

slowing-down kernels. These theorems are discussed in detail by

Weinberg(21) and by Weinberg and Wigner.(50) After substitution and

simplification, we obtain:

4n(t) + +DBa 0 n(t') q B2,t-t' dt'

+ f zin (t') d (B ,t-t dt'

+Soaq f 6(t) q (B ,t-t') dt' (2, 167)

with

d M(t) = -w in(t) + p k a n (t) ,

where q(B 2 ,t-t') is the Fourier transform of the slowing-down kernel in
n 2

the infinite medium, with Bn as the Fourier transform variable.

If, now, we take the Laplace transform of Eqs. 2.167 with respect

to t and denote the transformed functions by bars, we obtain:

+Za+ DB 2) = (1-p)ka n(s) qp(B s)

+ ii (s) d (B n,S)

+ S an s B,s , (2.168)

and

s n(S) = -W (s) + pikZa n(s)

Now we eliminate in(s) between Eqs. 2.168 and get:
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Soan q B , s
4 (s)(B =s

=s + v +DB - va(1-p) ki(B ,s) + vrakd (B ,s) E Wj

(2.168)

We can now adopt the procedure used in Section 2.2.3 to treat Eq. 2.109.

It is found that the asymptotic behavior of #n(t) is given by

-X t

On(t) ~ An e n

where the decay constant X n is now a root of the equation

+ v( a+DB) - vr a(1-p) k p(B An) + vlIakid Bn ) 1. = 0
1 n

(2.169)

Equation 2.169 can be used with any particular form of the slowing-

down kernel. For example, on the Fermi-age model,

2

q(B2,t) = p e n 6(t-T) , (2.170)

where T is the mean slowing-down time. In this case,

(B,t)= p e sT)

and the general equation, Eq. 2.169, leads to the result (2.111) of Section

2.2.3 for the age theory.

In this chapter, we have derived several expressions for the decay

constant of the neutron population in an assembly irradiated by a burst

of fast neutrons. These expressions are based on different theoretical

models of the neutron processes in the assembly and can be used to study

the effect of a variety of factors which determine the decay constant.

The spatial and temporal distributions are useful in determining the

experimental conditions suitable for the measurement of the decay constant

in any situation. In the next chapter, some of these theoretical results,

especially those based on age theory, will be examined for possible experi-

mental applications.
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Chapter III

THE PULSED NEUTRON TECHNIQUE;

EXPERIMENTAL CONSIDERATIONS AND APPLICATIONS

The asymptotic response of a multiplying system below prompt

critical to a sudden burst of fast neutrons is described by the prompt

neutron decay constant. In the absence of delayed neutron precursors,

the asymptotic neutron population, subsequent to the establishment of

the normal mode, decays in an exponential manner with a decay constant -

ALPHA - called the prompt neutron decay constant. Alpha is an impor-

tant parameter for describing the neutronic behavior in the system, It

provides a convenient and precise measure of the reactivity without the

use of the inhour equation. Like the reactivity, it is a global parameter

of the system, representing the behavior of the system as a whole. How-

ever, it has much wider applicability; unlike the reactivity, it is directly

measurable and can also be calculated with the aid of multigroup codes.

It thus represents an eigenvalue which can, in principle, be both calcu-

lated and measured directly and provides a significant correlation

between experiment and theory. Moreover, it provides a bridge between

the two basic aspects of reactor physics - reactor dynamics and reactor

statics. Although it is basically a dynamical parameter having to do with

the temporal response of the system, the prompt neutron decay constant

can be related theoretically to the static nuclear parameters. It also

relates the microscopic and macroscopic aspects of a heterogeneous

chain reacting system. Further, a knowledge of the effective delayed

neutron fraction ~p in a system and of a at delayed critical enables us to

evaluate the prompt neutron lifetime directly, which is a useful parameter

in safety considerations. Consequently, the prompt neutron decay constant

is an extremely useful parameter in reactor kinetics and its study in any

neutron transport medium is worthwhile and instructive.
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The role and the goals of theory in this study were, in part, the sub-

ject of the last chapter. The experimentalist is concerned first, with the

method or methods that can yield the decay constant of the system under

consideration in the energy range of neutron transport in question and,

secondly, to utilize the theoretical knowledge for relating the decay con-

stant to other parameters of interest with a view to obtaining the maxi-

mum possible information about the system. Also included in the experi-

mental domain is the clear definition of the conditions underlying the

experiments and the factors which bear on the comparison of theory and

experiment.

3.1 METHODS OF MEASUREMENT OF ALPHA

The characteristic prompt neutron decay constant or the eigenvalue
"alpha" is based on the composite or average behavior of a large number

of individual neutron fission chains and can thus be studied experimentally

from two basically different approaches: (1) by observing the decay of

individual chains in succession, and continuing this process until enough

chains have been observed to provide a statistically reliable measure of

alpha or (2) by observing the simultaneous decay of a large number of

neutrons introduced into an assembly as a burst or pulse. The first of

these approaches leads to the Rossi-a and the "variance-to-mean"

(Feynman-a) techniques, while the second approach characterizes the

pulsed neutron techniques.

The Rossi-Feynman a-technique was first suggested by B. Rossi,

and its theory was developed by Feynman, deHoffmann and Serber(1, 2)

and later extended and applied by Orndoff.( 3 ) The method involves count-

ing the time-distribution of pairs of counts, due to neutrons with a common

ancestor, in coincidence. The probability of a neutron count occurring in

a time interval (t, t+At), in a detector sensitive to fissions, following the

occurrence of a count at t= 0, is:

e k 2  2~_(1-k )6
P(t)At = CAt + 2 L v(v- 1 ) + k e-at At, (3.1)

2(v) (1-k )Q - P 1

p p
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where kp = (1-)k is the prompt neutron multiplication factor, CAt is

the chance-coincidence probability, e is the detector efficiency in counts

per fission, and 6 is the effective number of neutrons resulting from a

detector count. The Rossi-a technique requires only a fast response,

sensitive neutron detector, and some type of time analyzer with short

(e.g., microsecond) time-channels to display the decay of prompt neutron

population with time. With such circuits, Rossi-a studies have been

carried out on a number of fast metal assemblies at Los Alamos by

Orndoff;(3) at Argonne by Brunson et al; 4 ) at Oak Ridge by Mihalczo(5)

and at the National Reactor Testing Station, Idaho, critical assemblies

by Brunson et al.(6) The Rossi-a method has also been used for the

measurement of reactivity in fast assemblies.(3, 10)

A related method which also relies on the correlation of neutron

counts is the variance-to-mean measurement which utilizes a pulse counter

to determine repeatedly the number of counts in intervals of duration 'r in

a multiplying system that is either at steady power or is subcritical with

a source present. The ratio of the variance of the number of counts per

interval to the mean is:

2 ~2 -2
a c -(c) =1 + Y , (3.2)
c c

where Y is zero for a random source system with pure Poisson statistics

and no correlation; in general, for a chain-reacting system:(2)

e k 2  1-a r-
p v(v-1) _1 e . (3.3)

(1-k ) (vG ) 2 _ a _
p

This expression has been used by Luckow and Churchill to evaluate Y

experimentally for different gate times T, with k fixed, and then to deter-
p

mine a by a curve-fitting procedure; the method has been used to study

the prompt neutron decay constant of ZPR-IV and ZPR-V at Argonne. An

advantage of the method is the conventional nature of the equipment and

counting technique.

The most direct method of measuring alpha in a subcritical

assembly is by the application of the pulsed neutron technique. A short
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burst of fast neutrons is introduced into the assembly and the emergent

asymptotic flux is recorded as a function of time; to obtain sufficient

counts for statistical accuracy, it is necessary to repeat the process,

the length of an individual run depending upon the intensity of the source,

the repetition rate and the level of accuracy desired. The essential

units in the equipment are a source of neutron pulses, which is usually

the target of a particle accelerator, a detector of thermal neutrons and

a time-analyzer. This technique will be discussed in detail in the follow-

ing pages.

The techniques mentioned have been applied to a large number of

different systems, and the relative merits of the three methods have

been found to depend on magnitudes of the prompt neutron lifetime and

multiplication constant.8) The Rossi-a method is at its best for systems

quite near delayed critical. For slower or far-subcritical systems, the

presence of the factor, k 2 (1-k ), in Eq. 3.1 indicates that the back-
p p p

ground problems will become greater. The time required for sufficient

data accumulation is thus proportional to the prompt lifetime, making the

Rossi-a method prohibitively lengthy for systems with prompt neutron

lifetime of the order of 50 pseconds.

The Feynman-a method relies on more conventional electronic

circuitry, although a large number of gate-count readings must be pro-

cessed to obtain a reliable result. The Feynman method is also best

applicable to systems near delayed critical, as can be seen from the
2 2

factor, k 2 (1-k ) , in Eq. 3.3. Since wr must be near unity for certain
p p

gate times, extension of the method to faster systems would demand a

precise gate-timer for short intervals, and counter dead time would

become a serious problem.

Finally, the pulsed neutron method may be viewed as comple-

mentary to the Rossi-a method for fast systems, since the former is

more easily applied to systems further from delayed critical. This can

be seen from an approximate expression for the ratio of the maximum

neutron flux in the pulsed neutron method, to the source-induced back-

ground, 9 )

e n(1-k )2Tsignal =1+ p T
noise 2pk T_, (3.4)

p p
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where T is the repetition period. This ratio also decreases for longer

mean lives, but this effect can be counterbalanced by cutting down the

repetition rate. The pulsed neutron method can, therefore, be used over

a wide range of prompt lifetimes - from about 0.01 psec for fast assem-

blies to about 1 msec for slower systems. The data processing in the

pulsed neutron method is relatively simple. Against these advantages

is to be weighed the cost of the pulsed neutron source. However, the

pulsed neutron technique can be applied to a wide range and variety of

studies in reactor physics.

Intercomparisons of the Rossi-a and pulsed neutron methods in

their region of overlap, should be especially instructive, although few

such studies have been reported. Passel et al. (9 11) have measured the

prompt neutron decay constants in highly enriched (93.18% U 2 3 5), un-

moderated uranium systems based on methods developed for fast neutron

time-of-flight spectroscopy: Bendt et al.( 1 0 ) have studied prompt periods

from the Godiva fast critical assembly and have obtained good prelimi-

nary agreement between the Rossi-a and pulsed neutron methods. A com-

parison of the Rossi-a and pulsed neutron method for a measurement of

the neutron generation time in the Brookhaven Beam Research Reactor

critical facility, an under-moderated, enriched uranium, heavy water

system, has been made by Price( 1 2 ) The Rossi-a technique has also been

applied recently( 1 3 ) to the measurement of reactivity and neutron lifetime

in a thermal reactor with a neutron lifetime of 173.6 psec.

3.2 APPLICATIONS OF THE PULSED NEUTRON TECHNIQUE TO

MULTIPLYING THERMAL SYSTEMS: A LITERATURE SURVEY

The pulsed neutron technique was conceived and first developed in

relation to pure moderator materials, and most of its applications have

been to the study of the neutron transport characteristics (thermalization

and diffusion) of non-multiplying media. A wide variety of moderating

materials under varying conditions has been treated experimentally. No

attempt will be made to review the literature in this rather extensive

field; the reader is referred to review articles by von Dardel and

Sjbstrand and Beckurts(12) and Volume III of the Proceedings of the

Brookhaven Conference on Neutron Thermalization.(15)
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The application of the pulsed neutron method to multiplying systems

is still in its early stages and its potential usefulness appears to be high;

it should become a standard tool in the study of subcritical assemblies.

The basic technique and the equipment are similar to those used for non-

multiplying systems; the most important experiment is of the thermal

die-away type in which the quantity determined directly is the prompt

neutron decay constant a of the fundamental flux mode. The application,

usefulness and interpretation depend on the purpose of the experiment

and the theoretical model available for the correlation of alpha with other

parameters of interest.

Perhaps the first application of the pulsed neutron experiment to

multiplying systems was by Sj6strand( 1 6 , 17), who introduced a pulsed

neutron source into the Swedish heavy water reactor R-1 while it was

subcritical and studied the prompt neutron lifetime and the reactivity

equivalent of heavy water. He used an "Area" method based on the ana-

lysis of the entire thermal neutron decay curve with its prompt and delayed

neutron counterparts. His work served mainly to introduce the pulsed

neutron technique to the domain of subcritical reactor experiments.

Campbell and Stelson( 1 8 ) pulsed homogeneous aqueous solutions of en-
235

riched uranyl fluoride (U 02F2-H2O) in cylindrical buckets containing
235 (19H20)53.0 and 26.5 g U per liter, respectively. Simmons (19, and Simmons

and King(21) introduced a pulsed neutron method for the measurement of

reactivity based on the relationship between the decay constant and the

criticality factor of the assembly. The proportionality constant - the ratio

of the effective delayed neutron fraction to the prompt neutron lifetime -

was determined by pulsing the reactor at delayed critical and assuming

this ratio to remain constant. Fultz(22) has compared the experimentally

measured decay constants for enriched uranium-graphite systems with

two-group calculations and obtained good agreement at high C:U ratios

(9950:1); for lower C:U ratio, the system may no longer be "thermal" and

the hardened energy spectrum changes the group constants, especially

those of the thermal group. Following the experiments of Campbell and

Stelson(18) at Oak Ridge, de Saussure, Henry and Parez-Belles(23,24)

have measured the reactivity worths of single and clustered fuel elements

in the Bulk Shielding Reactor-I. De Saussure, Silver and Kingston(25) also
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used this method to calibrate the control rods of the Tower Shielding

Reactor-II and to compare it with other methods. Kolar and Kloverstrom

at the Lawrence Radiation Laboratory, Livermore, have made reactivity

measurements with the pulsed neutron method, on a reactor composed of

bare rectangular graphite plates with oralloy foils sandwiched between

them and have compared their results with those obtained with the asymp-

totic period and rod-drop methods; good agreement (within a few per cent)

has been achieved for reactivities down to a few dollars below delayed

critical. Bach and coworkers( 2 7 ) at KAPL have measured the decay con-

stant for a series of polyethylene-moderated subcritical assemblies and

compared them with the decay constant as determined by the 1/v poison

removal method. They used a four-group diffusion calculation with group-

dependent buckling; the agreement is to within 10%. They have also in-

vestigated the neutron spectra in the assembly during the decay of the

persistent spatial mode. Recently, Meister has reported the results

of pulsed neutron experiments on heavy water, natural uranium lattices;

he has compared the measured decay constant and changes in radial

buckling due to insertion of absorbing rods, with the results of simple

two-group calculations involving lattice parameters determined from pre-

vious exponential experiments; the agreement was good in the buckling

range B2 < 25 m- 2. A new method has recently been proposed by Russell

and Garelis( 29 ) for the measurement of the subcriticality of an assembly

by the pulsed neutron method. This method uses the complete decay

response of a repetitively pulsed assembly after a quasi-equilibrium state

has been reached to extract the parameter kp/1, thus obviating the neces-

sity of carrying the assembly to delayed critical. The feasibility of using

a pulsed neutron source in conjunction with detectors and wave analyzers

as a continuous, analog reactivity monitor has recently been pointed out.(30)

3.3 EXPERIMENTS WITH NON-MULTIPLYING SYSTEMS

3.3.1 Diffusion Properties of Moderators

A commonly used application of the pulsed neutron die-away tech-

nique is concerned with the determination of the fundamental mode decay

constant X, for a moderator assembly of elementary shape characterized
2by its geometrical buckling B . This measurement is repeated for several
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assemblies of different dimensions so as to obtain a set of (X,B 2) points.

The relationship

X = vF + D B2 - CB4 + FB -. . ., (3.5)a 0

is then used to extract the values of the coefficients vZ a' D 0 , C, etc.,

usually by means of a least-squares fitting procedure. The series in

Eq. 3.5 can be truncated after as many terms as is warranted by the

experimental data and the accuracy desired.

After the asymptotic decay constants for the fundamental flux modes

have been determined, the main problem is the accurate calculation of the

geometrical bucklings. The buckling for a cylindrical assembly of radius

R and height H according to the commonly used prescription is:

B2  (2.405 )2 7 ~2(36B2 2 40 2+ (H + 2d 2,(3.6)

where

d = E t , (3.7)

and

3D
v

There is some uncertainty in the choice of the proper extrapolation distance,

d. This ambiguity arises from the dependence of d on the size and shape

(E) of the assembly and also from its energy dependence (Xt). For small

assemblies with dimensions comparable to the transport mean-free path,

even very small variations in d can lead to large discrepancies in the

final values of the diffusion parameters.(31) For such cases, special

methods( 3 2 - 3 5 ) must be used in evaluating the extrapolation distance

which take into account not only the dependence on the dimensions of the

assembly but also on its shape. The energy dependence of d can, if neces-

sary, be accounted for by calculating Xt from experimentally measured

scattering cross-section curves and averaging over the asymptotic spec-

trum in the pulsed assembly. This spectrum can be taken to be a

Maxwellian at the moderator temperature although it actually departs

from a true Maxwellian because of diffusion cooling and absorption. When
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the linear dimensions of the assembly exceed five transport mean-free

paths, the buckling values are relatively insensitive to slight variations

in d and the use of Eq. 3.7 with E = 0.71 is adequate.

3.4 Geometrical Bucklings for Assemblies with Complex Shapes

This application of the pulsed neutron method is in some ways the

reverse of the one described in the last section. Once the parameters

vFa, D and C (in Eq. 3.5 truncated after the third term) are determined

as described by experiments on assemblies of well-defined elementary

shape, the same equation can be used to determine the geometrical buck-

ling of an assembly with a complex shape by measuring the decay con-

stant for it. The complex shape can be encountered either with a body

of intrinsic irregular shape for which the solution of the wave equation

vanishing on its periphery poses theoretical difficulties, or with a

system of regular shape which has been distorted by practical require-

ments such as the introduction of control rods, coolant channels, thimbles,

etc.

In particular, the effect of the insertion of absorbers such as control

rods can be studied in moderator assemblies. The control rods effectively

provide an additional (internal) boundary and thereby change the geometri-

cal buckling; this change is a measure of the effectiveness of the control

rod as an absorber. By measuring the decay constant of the assembly

with and without the absorber, the change in geometrical buckling caused

by it can be calculated and compared with theoretical predictions.

Consider a cylindrical assembly of extrapolated dimensions (R,H),

of a moderator for which the diffusion parameters vZ a, D and C have

been previously measured by the (X,B 2) method. The solution of the ordi-

nary diffusion equation which vanishes on the boundary is:

<0 (r,z) = A0 cos { J0 (a 0r) , (3.8)

where the geometrical buckling is given by

2 = 2B0 = CL 0+ (;) (3.9)
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with

J (a0R ) = 0, e. CL 2.405i.e., a R = R. '

If a thermally black cylindrical control rod of effective radius, a, is fully

inserted along the axis, the corresponding equations become (with the

moderator height H maintained constant):

<(r,z) = A cos 11
H

(3.10)
J0 (cLR)

J (ar) -- Y 0(ar) ,
o Y 0(aLR)

where

2 2 + ) 2

and a is now a root of the transcendental equation

J (oR )
J 0 (aa) - 0 Y0(aa) = 0

Y0 (a.R)

(3.11)

(3.12)

then Aa = a.-a 0 can be calculated theoretically. It also follows from

Eqs. 3.9 and 3.11 that:

AB 2 _ A2 ,2

where

AB2 = B2 B ,0

and B2 and B are the roots of the respective equations,0

~=vza + DB -_CB4

xo =vza +DB2 -CB ,

so that

2 _ X

D - C(2B +AB)

The use of the one-group diffusion theory on which Eqs. 3.8 and 3.10 are

based should provide a reasonable first approximation for this thermal

moderator system.

(3.13)

(3.14a,b)

(3.15)
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3.5 PULSED NEUTRON EXPERIMENTS ON UNPERTURBED MULTI-

PLYING SYSTEMS

A multiplying system differs from a non-multiplying one in having

not only multiplication but also additional absorption and neutron inter-

actions occurring over a wide range of neutron energies. The special

features of the multiplying system are characterized by new parameters.

The broad aim of the pulsed neutron experiments with subcritical

systems is to obtain as much information as possible about the system -

both qualitatively and quantitatively.

The most straightforward way is to relate the experimentally

measured decay constant with quantities characterizing the subcritical

system and to exploit this relationship for extracting the reactor

parameters. Several such expressions were derived in the preceding

chapter, some representing generalizations of the simple basic relation-

ship while some were especially germane to particular systems. Since

our main interest is in the study of bare subcritical systems, we invoke

the basic Eq. 2.50 of the last chapter. For the fundamental mode:

2 -2(36
X = Va + B _ a(1-p) k0F(B2 3.16)

where F(B 2) is the fast non-leakage probability; on the age-theory model,

F(B2 e-B2, so that

- 2 + vDB2 - v (1) k eB2r . (3.17)a a o

Before developing some of its applications, it is well to recall the assump-

tions underlying the derivation of Eq. 3.17. The relation is strictly valid

for a bare, thermal, homogeneous system in which the slowing-down phase

is described by the Fermi-age model; the latter differs little from the

result of the two-group model for large sizes (e-B2 ~~ 1/(1+B2 T)). The

delayed neutron effects are not taken into account except for the inclu-

sion of the factor (1-~p) in the multiplicative term. The diffusion cooling

term, which may be important for small systems, is also not included.

Under these conditions, Eq. 3.17 gives X in terms of the parameters Z a'
D, k0 , etc.
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The relation, Eq. 3.17, can be used in several ways. For small
-B2T 2

bucklings, e 1-B 2, so that Eq. 3.17 can be rewritten as:

2 2
X = va + vDB - va (1-p) k 0 (1-B T) (3.18)

= -m + nB , (3.19)

where

a 0(3.19a,b)

n = vD + vra(1-0) Tk .

Of the various unknowns appearing in Eq. 3.18, T and ~ can be calculated

well enough for any multiplying system. If the volume fractions of U and

Al are small in a lattice cell compared to D 2 0, then, since the transport

cross sections of U and D 2 0 are nearly equal, we must have Ztr M for

the moderator. And, since D = Xtr, we also have

D = Dm. (3.20)

The parameter Dm is known from pulsed neutron die-away experiments

on pure moderator. Hence, if m and n are obtained from a least-squares

fit of the (X vs. B 2) data for a subcritical system, Eqs. 3.19 a,b yield the

values of the parameter, vZ a and k,. The velocity v characteristic of the

actual spectrum in the assembly can be evaluated on some assumed model

of the spectrum. Then, since

vE a = vE + v2 , (3. 20a)

and the moderator absorption cross section, Z , is known from the moder-
f ~a

ator experiments, 2Ia for the fuel (this includes fission and capture) can be
a 2

determined. In addition, the diffusion area L for the lattice can be deter-

mined from the relation:

2 vD
L = a (3.21)

a

Since B2 can be calculated from the dimensions, the effective multiplication

factor, 2

k e-B 2
k 0 2 , (3.22)

can also be evaluated. Furthermore, for pure moderator,
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L vD (3.21a)

vE a

and, if we use the relation

L2 = f L2 (3.21b)
m m

we get a value for the thermal utilization, fm, of the moderator. If a

correction is made for the neutron absorption in the fuel rod cladding,

a value of the thermal utilization f can be obtained. If the fuel concen-

tration is significantly large, Eq. 3.21b is modified as follows:( 4 2 )

2 L 2  N UatrU U atrU . (3.21c)
mm m 1N trm Nm trm (

where N and a-tr are, respectively, the atom density and the microscopic

transport cross section. Also, in finite heterogeneous systems, a further

correction can be made to account for the reduced density of the moder-

ator resulting from the presence of fuel channels; this modification

gives:(42)

2 2 V T2
L 2= L2f ( T (3.2 1d)

where VT is the total reactor volume and Vm is the moderator volume.

The above analysis shows that it may be possible to determine k0
2

and L for the lattice from the pulsed neutron experiments. These two

parameters are difficult to determine experimentally and, if they can be

found with satisfactory precision, this result would be a further impor-

tant application of the pulsed neutron method.

From the known values of ko, L2 and T, one can also calculate by

some theoretical model, other quantities of interest such as the material
2

buckling B m the critical dimensions, the leakage probabilities, etc. The
m

value of these parameters can then be compared with the values obtained

with other methods and calculations. Thus, the value of k 0 can be com-

pared with the value calculated from the four-factor formula, and with

the value obtained from the material buckling (from static exponential

experiments), estimated values of r and L2 and a suitable reactor model
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or from PCTR-type measurements. The value of the thermal utilization,
f, can be compared with the results of exponential experiments and cal-

culations based on THERMOS( 3 6 ) or the Amouyal-Benoist-Hurwitz( 3 7 )

method.

Finally, since the relevant parameters have been separately

determined as indicated above, we can evaluate the prompt neutron
2lifetime i, corresponding to a geometrical buckling B :
g

1 =1

vE(1+L2B2 va + vDB
a( g

This value can then be used to obtain the reactivity from the

measured prompt neutron decay constant. 2
In the above analysis, the first-order approximation, eB , 1-B 2 r

has been taken for the sake of illustration. If the measurements involve

assemblies whose dimensions do not warrant such an approximation, it
2may be necessary to include other higher-order terms in B , or to retain

the form e-B2T in Eq. 3.16. The (X vs. B 2) data can be analyzed in

several ways and the validity of any particular method should be checked
2by examining the value of B 2T and estimating the error involved in

making the basic approximation. This point will be discussed in Chapter VII.

3.6 APPLICATION OF THE PULSED NEUTRON METHOD TO

REACTIVITY STUDIES

We have seen that the reactivity and the prompt neutron decay con-

stant are measures of the global characteristics of a multiplying system.

Furthermore, the methods of measuring reactivity depend on the study of

the temporal response of the system to an over-all perturbation. It is,
therefore, to be expected that the pulsed neutron method would be especially

applicable to the study of reactivity. Basically, the pulsed neutron experi-

ment yields the decay curve of the thermal flux in the subcritical assembly.

This curve can be characterized by a decay constant which can be related

to the reactivity through some theoretical model; this treatment is the

basis of the "delayed critical method." Alternatively, the complete decay

curve, itself, can be subjected to an analysis which yields the reactivity;
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this latter scheme leads to the "area" method or to the so-called ks/1

method.

3,6.1 The Delayed Critical Method

The use of the pulsed neutron technique for the measurement of

reactivity has been based largely on the first approach.( 9 . 21, 24, 26)

The relationship between the prompt neutron decay constant and reac-

tivity involves arbitrary definitions. Henry (38)has expressed the

reactor kinetics equations in a form such that the asymptotic decay

constant in the absence of delayed neutrons is given by the relation:

S =-(3.24)

where the ratio of the effective delayed neutron fraction in the system to

the prompt neutron lifetime is the value of X(=X c) when p= 0, i.e., at

delayed critical; p/p is the reactivity in dollars, $, so that Eq. 3.24 may

be rewritten as:

X = X c(1-$) (3.25)

where

X =L- .(3.25a)
c f

Simmons and Bohl(8) at KAPL have made a "null test" of the validity of

Eq. 3.25. Under the constraint of maintaining criticality with no fuel or

moderator changes, they have made considerable rearrangement of

lumped poisons and found no resulting change in Xc (within an experi-

mental accuracy of about 1%) in four different hydrogen-moderated criti-

cal assemblies containing at least partially enriched U235 fuel, and with

bucklings of the order of 0.003 cm- 2 . It is conceivable, however, that

extreme poison rearrangement could alter Xc, The simultaneous addition

of fuel and poison under the constraint of maintaining criticality - such as

the addition of control rod and sufficient additional fuel and moderator to

restore delayed criticality - does change Xc appreciably.(8)

Equation 3.25 can be used in two ways: if the value of the buckling

at delayed critical is known or can be calculated, one can measure X as

a function of moderator level and plot the X vs. B2 curve for a slightly
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subcritical reactor and determine Xc by extrapolation. Then a measure-

ment of X without and with the perturbation will yield the reactivity

equivalent of the perturbation. If, in each of the two separate cases, a

(X vs. B 2) curve is obtained, then the reactivity of the absorber - say,
a control rod - may be obtained directly from the graphs, as shown in

Figure 3.1. The accuracy of this method depends on the precision with
2

which B is known.d.c.
The more commonly used method is to make the calibration

measurement for Xc at some known reactivity, usually by taking the

system to delayed critical (p = 0) and measuring Xc directly. Thereafter,

Xc is assumed to remain constant as the system composition is altered

by the introduction of the perturbation. The reactivity in dollars is then

given by:

$ c .(3.26)
c

The characteristic lifetime I(= 1/X C ), defined -as the ratio of the ratioc
of the prompt neutron lifetime to the effective delayed neutron fraction,

and the reactivity in dollars, $, are both of interest since their values affect

the zero power reactor kinetics.

This method, which has become almost standard practice for the

measurement of reactivity by the pulsed neutron technique, suffers from

at least two disadvantages. First, it is necessary to take the system to

delayed critical and the measurement cannot be made entirely in a sub-

critical assembly. Even in a critical assembly, practical considerations

may preclude the possibility of making a direct Xc-measurement. For

example, near delayed critical, the running reactor produces a large

background of neutrons over which only a small number of decaying

neutrons from the pulsed source is superimposed. Second, the variation

of Xc with reactivity is not taken into account. As remarked earlier, c
is insensitive to the redistribution of lumped poisons in a reactor core

as long as the reactor remains critical without fuel or moderator changes.

But in measurements with reactivity changes of several dollars, a cor-

rection must be made for the variation of Xc with reactivity which may be

caused by variations in the neutron spectrum and flux shape due to the

introduction of the lumped absorber.
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When a critical assembly is made subcritical by the introduction

of a control rod, the geometrical buckling is changed, and the lifetime P

also changes, as can be seen from the one-group expression for the

neutron lifetime:

P2 2(3.27)
vFa(1+L B

At delayed critical, this expression becomes:

P 1 (3.28)
c a (1+L B )

and

1 + L (k -1)

2-M , (3,29)
= L

c 1 + = {k 0 (1-p)-1}
M

I can differ from Ic by as much as 15%. In order further to relate the

change in lifetime with the change in reactivity, we write,

(3.30)
1+ B L

k e-B2 T
k= 0 2(3.31)

1 + B L

From these equations, if we consider the change in each as being due to
2

a change in the geometrical buckling B , then

a _1 k (3,32)
1 + T(1+B 2L ) k

L

Thus, the fractional change in lifetime, which depends on the relative

magnitudes of 'r and L 2, may be significant.

One way of reducing the uncertainty due to the possible change in

lifetime is to use the prompt neutron generation time A instead of the

prompt neutron lifetime I and to employ the relation:
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X = X (1-$) , (3.33)

with

c = ~ .(3.34)

Then, since

k '

and, since the prompt neutron lifetime I changes with reactivity in the

same way as k to a first approximation, A remains nearly constant.

This is especially true if k is changed by a local variation of the absorp-

tion cross section as, for instance, the insertion of a control rod which
2affects i and k in much the same way; if k is changed by varying B

e.g., by varying the moderator height, A remains constant according to

one-group theory and varies only slightly in a two-group approximation.(3 9 )

However, when large absorption changes are affected, thereby disturbing

the flux distribution appreciably, the changes in A may become significant.

3.6.2 The "Area" Method

This method has been used by Sj6strand (16 for measuring the

reactivity equivalent of heavy water and the mean lifetime of thermal

neutrons in the Swedish Heavy Water Reactor R-1. The method is based

on an analysis of the complete decay curve of the neutron density with

time and is useful for a reactor close to criticality when only the funda-

mental mode of the spatial neutron distribution is important. If the repe-

tition time is much shorter than the shortest periods of the delayed neutrons

and the time constant of the reactor is much shorter than the pulse length,

then the neutron density in the reactor will vary with time as shown in

Fig. 3.2. The curve consists of a part due to prompt multiplication of

the same shape, roughly, as the source pulse (rectangular) and a delayed

neutron portion which is nearly flat. If the area of a pulse above the con-

stant value in the figure is denoted by A 1 and the area under the delayed

neutron curve during one period, by A 2 , and if the source strength is

assumed to be a periodic function of time S(t), then, under certain simpli-

fying assumptions, it can be shown that the prompt and total multiplication
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are given by:

A - aS (3.35)
11 - k(1-p3)

A +A aS (3.36)
1 2T T E'

where a is a constant and p is the effective delayed neutron fraction.

Equations 3.35 and 3.36 give directly:

A1  -1 - (3.37)
A2 sk p

where p is the negative reactivity ((1-k)/k) and $ is the reactivity in

dollars.

Thus, if the delayed neutron fraction P is known, the absolute reac-

tivity of a subcritical assembly p can be determined, in principle, by

this method.

This method has not been used much, partly because of the arbi-

trariness involved in the division of the curve into two parts, The errors

arising from this uncertainty for certain reactor systems may be large

enough to render the method unsuitable. Moreover, according to

Keepin, (39a) the simplifying assumptions adopted by Sj6strand do not hold

in practice.

3.6.3 The ks/I Method

A new method has recently been proposed by Garelis and Russell(29)

for the determination of the subcriticality of an assembly directly in terms

of dollars. The method determines the parameter kp/I by using the com-

plete response curve of a repetitively pulsed assembly after the quasi-

equilibrium state has been attained. . This value of ks/1, together with

the usual prompt neutron decay constant measurement, yields the reac-

tivity directly. The analytical model is based on a bare one-group diffusion

treatment with m-delayed neutron precursors, but the applicability of the

result appears to be broader.

Basically, the method is as follows. The equilibrium neutron density

in a pulsed subcritical system, N(r,t), is represented as the sum of two
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contributions: the prompt distribution N and the delayed contribution

Nd. It can then be shown that under certain conditions, the following

relation holds:

rN exp [(-)t] dtf- N dtN d, (3.38)
p 1 p R

where R is the repetition rate. Thus, if the prompt neutron distribution

is known, the above integral relationship determines kp/1 since Nd is

an experimentally observable quantity. The delayed neutron contribution,

Nd, is a constant provided R w, where w is the decay constant of the

shortest lived important precursor. With a constant value of Nd, the

prompt distribution can be determined simply by subtracting this constant

value from the over-all equilibrium pulse shape. When the parameter

(kp/1) is thus known, the reactivity in dollars is given by

[xkQ)]
(3.39)

The above treatment is independent of the spatial modes since the latter

are taken into account.

In general, the restriction on the pulse rate in this technique is

such that w « R <X, where X is the prompt decay constant. The precise

knowledge of the delay tail is crucial if meaningful results are to be

obtained. Since the shape of the delayed contribution cannot be readily

calculated in the general case for arbitrary pulse rates, the assembly

is pulsed at a rate such that R w in order to yield a constant background.

Preliminary experimental evidence(40) seems to indicate that a pulse rate

of R= 10 pps is the lower limit for an assembly that is about a dollar sub-

critical. A simple pulsing technique(40) can be used to obtain the quasi-

equilibrium neutron distribution without the necessity of a constant pulse

strength.

In the actual application of the (ks/1 ) technique, special methods of

data reduction are needed, particularly for extracting the value of (kp/i)

from the integral relationship, Eq. 3.38. These methods are discussed in

Appendix 4, and a computer code developed to facilitate the data reduction

is also described.
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3.7 PULSED NEUTRON EXPERIMENTS ON PERTURBED MULTIPLYING

SYSTEMS

This section is, in fact, a continuation of Section 3.5 and seeks to

explore the usefulness of the pulsed neutron technique in studying the

effect of perturbations such as those caused by control rods in multi-

plying systems. The previous two sections were concerned with a

specific aspect of this problem - the direct measurement of the reac-

tivity of the perturbation. The effects of a perturbation can also be

studied from other points of view, and the results obtained with the

pulsed method can yield results which can be compared with the results

obtained with other experimental methods or with theoretical calculations.

As an example, we consider the effect of control rods as being

described by the change in geometrical buckling they produce in a multi-

plying assembly; this change can be related to the change in the prompt

neutron decay constant. Thus, if we measure the decay constant of a

lattice assembly with (X) and without (X ) a control rod, then the difference,

AX =X -X0Y

can be related to the corresponding difference AB2 through the (X vs. B 2

curve for the assembly. Alternatively, we can use the two-group

expression derived in Chapter II:

2 v(1-p) k0X=vZa +vDB - (3.40)
a (1+TB - f 1)

if the fast neutron lifetime 1 1 is such that Xf << 1, we obtain:

AB2 _ AX (3.41)

vr a(1-p)k kT
vD + 2 2

(1+TB 
)

If the moderator level is maintained constant, then, since

2 2 +

AB2 =A2 . (3.42)
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Thus, Eq. 3.41 relates the change in radial buckling produced by the rod

to the measurable change AX in the prompt neutron decay constant. This

result for Aa2 can then be compared with the result obtained from expo-

nential experiments as discussed in Chapter IV. Moreover, each of
2

these can be compared with the calculated values of Aci. An expression

based on the boundary condition defined in terms of the actual extrapola-

tion distance for the rod has been derived (Chapter VI):

2 S 1
=2- 0.820 Y(pa)+ dp Y (pa)+ (Ko(va)+dvK (va))j (3.43)

where y , v are thre roots of the two-group criticality equation and S,
S2 are the usual coupling coefficients.(4 1 )

The nuclear parameters vD, vZ a' r, k0 , etc., appearing in Eqs. 3.41

and 3.43 can be obtained by the pulsed technique by methods already out-

lined in Section 3.5.

3.7.1 Reactivity Measurements in Subcritical Assemblies by the Pulsed

Neutron Method

We return to the problem of applying the pulsed neutron technique

for the measurement of reactivity. The M.I.T. subcritical facility can-

not be taken to delayed critical and most of the lattices are in the far-

subcritical region so that the standard methods described in Sections 3.6.1

and 3.6.2 are not suitable. Moreover, it is desirable to have a technique

which can be carried in its entirety in a subcritical assembly. Hence,

special methods are needed to evaluate the thermal neutron lifetime and

to relate the prompt neutron decay constant to the subcriticality of the

lattice assembly.

We start with the basic relationship between X and B2 for a multi-

plying system which we have already used in Section 3.5:

X = v'a + vDB2 - vZa(1- p) k( 0 e -B7 . (3.44)

We rewrite this expression in the form:
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- 2~

X = (vz +vDB 2 L ( (3.45)
a L 1 + L2B7

and introduce the thermal neutron lifetime I and the criticality factor k

for the finite medium:

I = a +1vDB 2 (3.46)

k eB 2
k= 0 , (3.47)

1 + L B

so as to obtain:

1
x = r [ 1-(1-p)k] . (3.48)

This equation relates X to k. Now, if we define the negative reactivity or

the degree of subcriticality as:

p = 1 - k (3.49)
k

then we have:

F = P(3.50)

We notice that this expression can be written as

X = = (1+$) = c(1+$) (3.51)
TA c

which is the relation used in the delayed-critical method described in

Section 3.6.1. The sign before $ in Eqs. 3.51, 3.33 or 3.25 depends on

whether p is taken to be the positive or negative reactivity. Also, at

delayed critical, k= 1 and the prompt neutron lifetime Q and the gener-

ation time A are equal so that Xc may be written as or .

Finally, we have from Eq. 3.50:

P =(3.52)
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which is the basic relationship on which we shall base our method of

reactivity measurement. Here, X is the directly measured quantity in

the experiment and T can be calculated for the assembly under investi-

gation (Appendix 3). It remains to evaluate P.

The parameter P given by Eq. 3.46 may be evaluated from its
2

component parts v' a' vD and B , which can be measured by methods

discussed in Sections 3.4 and 3.5. Since P is evaluated directly in

terms of the actual value of B2 of the system, its variation with reac-

tivity is taken into account. The lifetime I as defined by Eq. 3.46 is

the thermal neutron lifetime; the slowing-down time has been neglected

in Eq. 3.44. For heavy water systems, the slowing-down times are of

the order of 10-5 see while the thermal lifetimes will be seen to be

much greater, so that the approximation is quite good.
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Chapter IV

THEORY AND APPLICATIONS OF

EXPONENTIAL EXPERIMENTS WITH CONTROL RODS

The study of the physics of control in nuclear reactors should,

ideally, involve two steps. First, theoretical methods for the calculation

of the effectiveness of a control rod should be developed, based on

clearly defined assumptions and boundary conditions. Second, paral-

leling the theoretical effort should be an experimental program for the

measurement of control rod worths under conditions which make possi-

ble the critical comparison of the theoretical and experimental results.

Experimental control rod studies are usually undertaken in a

critical facility, a PCTR-type assembly, a pulsed subcritical facility or

an operating reactor. The type and scope of the experiments that can

be made with an exponential assembly are limited. However, certain

control rod measurements in exponential assemblies can be compared

with theoretical predictions in a clearly defined way and also provide

valuable supplemental information which can be used in control rod

studies by other methods. These exponential measurements entail a

considerable saving in time, effort and cost; and it is possible, in some

cases, to extrapolate the results obtained to critical systems. In par-

ticular, for a bare exponential assembly with a single absorbing rod

fully inserted parallel to the central axis, the effect of the rod can be

interpreted in terms of the difference in axial buckling with and without

the rod; this difference is related to the change in radial buckling for

the particular assembly used. If the assembly is large enough so that

the absorbing rod is far from the outer edge and is not, therefore, in-

fluenced by boundary transients (i.e., the extrapolation distance into the

rod is independent of the size of the assembly), then the change of geo-

metrical buckling caused by the rod in the exponential assembly can be

related to the effect in a full-size reactor. In this chapter, an attempt
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will be made to explore the potential usefulness of an exponential

assembly in control rod studies and to develop the theoretical analyses

which can be made the basis of meaningful experiments. The conditions

under which the information obtained from exponential studies can be

applied to a critical reactor are also examined.

Many of the control rod studies so far reported do not provide a

basis for a well-defined comparison between calculated and measured

rod worths. The measurements have usually been dictated by engineer-

ing design requirements and the information obtained is useful mainly

for establishing the control criteria in the specific system under particu-

lar conditions. These measurements have largely been on control rods

whose effectiveness could not be calculated accurately from basic prin-

ciples because of complicated geometrical arrangements or for other

reasons. Only rarely have measurements of control rod effectiveness

been obtained under conditions amenable to rigorous theoretical treat-

ment. Watson-Munro and Persson(2) have reported preliminary

measurements in heavy water systems. Price(3) has described control

rod studies in water-moderated lattices, and Gast(4) has compared the

results of single control rod experiments in rectangular uranium-

graphite critical assemblies. Murray and Niestlie(5) have described

the analysis of a set of control rod measurements in small, enriched

hydrogen-moderated reactors and have examined the effect of fast

neutron boundary conditions. The experiments have underscored the

difficulty of predicting the control rod effectiveness accurately. In the

usual two-group treatment, neglect of neutron absorption in the fast group

tends to underestimate the worth of the rod, but the evaluation of a mean-

ingful extrapolation length for fast neutrons is difficult. While pointing out

the need for further work, Gast(4) notes that opportunities for such

measurements seldom arise, because experimental determinations are

usually carried out in critical systems which tend to be expensive and in

great demand for other experiments. If, therefore, meaningful experi-

ments can be performed in subcritical assemblies, the field of possible

investigation becomes much broader.

Some isolated exponential experiments with control rods have been

reported(2,6) but no detailed systematic studies have been undertaken.
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Recently, Wood (7and James and Till(8) have described control rod

experiments with natural uranium-graphite systems. In the following

sections, simple theoretical analyses of control rods in exponential

assemblies will be presented and possible measurements suggested by

these analyses will be considered.

4.1 ONE-GROUP ANALYSIS OF A MODERATOR ASSEMBLY;

MEASUREMENT OF THE THERMAL EXTRAPOLATION LENGTH

Consider a bare cylindrical exponential assembly of pure moder-

ator of extrapolated radius R with a full-length black cylindrical rod of

actual physical radius, a, placed along its axis. The radial flux is then

given as the solution of the radial part of the one-group, steady-state

diffusion equation in the moderator region (a < r < R),

V24 + B2 =, (4.1)
m

which satisfies the following boundary conditions: at the external

boundary,

4(R) = 0 (4.2)

at the internal boundary (control rod),

d2 _4(a) (4.3)
4'1(a)

where d 2 is the thermal extrapolation length into the rod and 0'(r) stands

for the derivative.

The solution of the radial part of Eq. 4.1 which satisfies Eq. 4.2 is:

J (aLR)
4(r) = A J,(ar) - -Y (ar) (4.4)

Y (aR)

where a2 is the radial buckling which is related to the inverse relaxation

length y (axial buckling 2 ) by the familiar equation,

2 2 2
B = a - y . (4.5)In

Applying the second boundary condition, Eq. 4.3, we get:
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d Y 0 (aR) J 0 (aa) - Y0 (aa) J 0 (aR) (4.6)
2 CL Y I (aa) J 0(aLR) - Y 0(aLR) J 1(a a)

Thus, if we know a, Eq. 4.6 determines the thermal extrapolation length

d2 for a black control rod of radius a.

To determine a., consider the same assembly without the control

rod. The boundary conditions on the flux are changed because the internal

boundary has been removed. Consequently, the flux shape is modified so

that the radial leakage (at both the internal and external boundaries) is

reduced and the relaxation length increases, owing to reduced leakage.

However, the material buckling of the moderator region is unchanged:

2 2 2
Bm a. 0 -yT0 , (4.7)

where a 2(= 2.405 and y are the new radial and axial bucklings.

From Eqs. 4.5 and 4.7, we get:

2 2 2 2
a. = y - y +a.L

0 0

= y+ 2.05 2 . (4.8)

The parameters -y and -y can be determined from the measured axial flux

plots in the exponential tank of pure moderator (say, heavy water) with and

without the rod in question.

4.2 TWO-GROUP TREATMENT OF A MULTIPLYING ASSEMBLY WITH

CONTROL ROD

We apply two-group diffusion theory to a multiplying assembly with

a black control rod along its central axis. The usual two-group equations

in the core are:

D V241 - 1 + ko22 2(4.9)

D 2 V 22 ~ - 20 2 + E141 = 0 . (4.10)
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We seek solutions for 41 and 42 which satisfy:

V2 + B 2 4, = 0 ,

(4.1 1a,b)

V2 2 + B2 2 = 0 ,

where the material buckling B2 is taken to be the same for the two groups.

Equations 4.9, 4.10 and 4.11 yield the consistency condition,

2 2 2
(1+TB )(1+L2B2) = ko , (4.12)

where T = D=/Z and L2 D2 /Z 2 . We then get the two possible values

of the material buckling:

J)2 4( -1 1/2+

2 1 1+ +2
2 7 T L2

(4.13ab)

2v t(+1 )2  4(k -1) 1/2
2V _ + - 72 + 2

2 T T T L2

which are related by

A 2 - v 2  + (4.14)

Equations 4.11 can then be solved in cylindrical coordinates by separation

of variables; separation constants a 1 , y and a 2 ' 12 are obtained, given by:

2 2 2
yA = ai-7,

(4.15a,b)
2 2 2

v 2 - ' 2 '

The solutions are of the form:

R =AJ (a1) + BY (a 1 r) ,
0' 1 0 (4.16)

-y~
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and

R 2  CI o(c2r) + DK o(a2r),
(4.17)

2 2 2 2
Since y and - v are material bucklings, a and y are analogous to radial

and axial bucklings. For a system with no internal boundaries in the axial
2 2 2

direction, there is a single relaxation length, 7 2 = ^2 2

The general solutions for the fast and thermal radial fluxes are of

the form:

=R + R2
(4.18a,b)

2 (r) = S 1R 1 + S 2 R 2

We apply the boundary conditions at the external and internal boundaries:

Se1 (R) = 0 = e 2 (R) , (4.19a,b)

1  d (4.20)
12(a)

2  d (4.21)

From these relations, we obtain:

X1

S = S X2  (4.22)
1 X 2 X2

- d X - d
1 X2 1

where

J (a R)
X -J 0 (a. a)- 0 Y (a a),

Y0(aR) 0 1

(4.23a,b)

I (a 2R)
X =1 (2a) 0 K(a2a),

K O(a2 R)
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S 1 and S2, the coupling coefficients, are related through the equation:

1 2
S - 1-7 v1 L

S1 2' (4.24)
2 -

L

and the primes denote differentiation with respect to a.

4.3 APPLICATIONS OF THE TWO-GROUP ANALYSIS

We now consider the usefulness of some of these results. In

Eq. 4.22, d 2 can be taken as known from the moderator experiments

described in Section 4.1. Other quantities, such as S, S2, X, etc.,
involve the known values of a, R and the parameters L 2 , T, a which

can be calculated or obtained from exponential experiments on unper-

turbed lattices; p 2, v are given by Eqs, 4.13 and

2 2 2

(4.25a,b)
2 2 2

22

Thus, if we measure 7 , the axial buckling in the lattice with the control

rod, the other unknown in Eq. 4.22 is d and we can, therefore, deter-

mine the fast extrapolation length into the rod. For example, when the

control rod contains moderating material, there is a sink for fast neutrons

and d 1 is finite and positive.

Further, if we let d1 -4 d2 (=d), we get, as expected, the result of

one-group theory obtained earlier,

X 1 y 1 Y (aR) J (aa) - Y (aa) J (aR)
o 2=0- 0 - (4, 26)

X a l Y 1 (a a) J (aR) - Y (aR) J I (aa)

A measure of the reactivity worth of the control rod is the change in
2radial buckling a 1 produced by the insertion of the rod in the lattice. We

observe that

2 2 2a 1 0 = p+yo , without the rod;

(4. 27a,b)
2 2 2

a L= yt +'y , with the rod in;
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whence
2 2

Aa = A2 (4.28)

2
Thus, ac2 can be obtained from a measurement of the change in axial1 2
buckling produced by the rod in the lattice. This result for aI can be

compared with the theoretical results based on two-group theory in a

critical reactor (Chapter VI).

The Swedish Reactor Physics Group(2) has utilized the two-group

equation,

k
k= 0 (4.29)2 22

(1+rB )(1+L B

to obtain a measure of the reactivity effect of a control rod from an

exponential assembly. If k1 and k2 are the values of the criticality factor

before and after the insertion of the control rod, then

Ak _ L 2(1+B2) + r(1+L2 B 2) AB2 (4.30)
k 1k2  kA

where

B2 = 2 (B 2+B ,

AB2 = (B 2 -B )

and

Ak = k2 - k .

Special analyses can be developed to apply the exponential experi-

ments to the measurements with partially inserted rods, off-center

eccentric rods and a combination of central and off-center rods to study

the shadowing effect. However, in these cases, the interpretation of the

results is more involved; the exponential assembly is basically unsuited

for such studies and can, at most, provide information to supplement

control rod studies on critical assemblies.
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4.4 THE INTERPRETATION AND VALIDITY OF EXPONENTIAL

EXPERIMENTS WITH CONTROL RODS

The usefulness of the control rod experiments in exponential

assemblies depends on the extent to which these experiments can be

meaningfully interpreted and correlated with similar measurements in

critical assemblies. For this, we must examine the basis of the two

measurements and investigate the conditions under which such corre-

lation is possible. A control rod introduced in a critical assembly alters

the critical buckling and hence the effective multiplication factor; the

magnitude of this change is related to the effectiveness of the rod. This

buckling change can be directly measured, for instance, by increasing

the height of the moderator in the core to restore criticality and relat-

ing the change in height to the buckling change.

The major difference in an exponential assembly from a critical

system is the negative axial buckling which arises from the balance of

neutron production and leakage in the steady state with the deficit being

made good from external sources. Since the form of the radial flux

distribution is the same in the two cases (J (ar)), it seems logical to

describe the effectiveness of the rod in terms of the change in radial

buckling caused by the rod. This is the basis of the steady-state control

rod experiments described earlier; the change in radial buckling is

obtained by relating it to the change in the inverse relaxation length. The

latter affords a suitable parameter for direct measurement because the

introduction of the rod in an assembly leaves unaltered the form of the

axial distribution (e-yz) although the rate of relaxation of the flux changes.

This is similar to increasing the height of the core in a critical assembly

to restore criticality.

In considering the transformation of the change in axial buckling

from an exponential assembly to a full-size reactor, Eq. 4.26 can be used.

Consider also the case where the fast flux is flat at the control rod

surface; i.e., let d -- oo, so that Eq. 4.22 gives

X 2
-r- - d 2

S S 2 (4.31)1 2X 1
-- d

1 2
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A knowledge of d 2 is not needed; it is only necessary to examine how the

terms vary with the radius R of the core. The quantities di, d 2 , a, S1
and S 2 do not depend on R. The term which is most sensitive to the core

radius is X,/X 1 . The variation 2X is small since v2 is relatively

insensitive to R. In a first approximation, therefore, we can use one-

group theory - i.e., Eq. 4.26 - and investigate X 1 /X1 as a function of pR.

An important question concerns the difference in the neutron energy

spectrum in the critical and the exponential cases and the effect due to the

conditions at the external boundary. The latter are important because a

significant part of the control rod worth arises from the increased out-

ward leakage brought about by the change in flux shape due to the intro-

duction of the rod. The exponential experiments are usually analyzed by

the application of bare reactor theory in which a single buckling is assumed

and identical boundary conditions are assigned to neutrons of all energies.

This treatment is based on the assumption that the flux distribution is com-

pletely described by the asymptotic solution of the multigroup equations.

Near boundaries, however, the use of infinite-medium kernels is no longer

valid and the spectrum changes since the leakage rate of neutrons depends

on energy. If the flux shape is changed - as, for instance, by the intro-

duction of a central control rod - the extent of this departure from equi-

librium spectrum could also change. This question has been discussed

by James and Till(8) who argue that the effect should be negligible. If an

exponential assembly is to give information relating to a critical assembly,

it must be large enough for the weighted effect of the boundary regions to

be very small compared with the region over which the asymptotic flux

and spectrum are found. The introduction of the rod should, at most,

change slightly this already small effect. The effect should be negligible

compared with the major change in asymptotic buckling produced by the

rod.

The absorption by the control rod is strongly dependent on neutron

energy for most control rod materials; the insertion of the control rod,

therefore, changes the neutron spectrum in its vicinity, and there is a

resultant change in the multiplying properties of the lattice from the

values characteristic of the asymptotic region of the unperturbed lattice.

This change represents part of the effectiveness of the rod. In a critical
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assembly, the asymptotic region spectrum is regained within a few

mean-free paths from the perturbation and if the measurements in the

exponential assembly are to correspond to the measurements in the

critical system, the same condition must obtain. Hence, a necessary

condition for the results of control rod experiments on exponential

assemblies to be interpretable in terms of the properties of lattice by

simple theory, is that the neutron spectrum which is disturbed in the

vicinity of the rod, should regain its equilibrium (asymptotic region)

distribution within the bounds of the assembly. This condition sets a

limit to the size of the exponential assembly which is suitable for control

rod experiments. A simple way to check this condition in an assembly is

to examine the distribution of cadmium ratio (42/1) over the lattice in

the unperturbed state and with a control rod along its axis.
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Chapter V

EXPERIMENTAL EQUIPMENT

The design and construction of the equipment and the planning of

the experiments were guided by two broad objectives: first, to initiate

control rod research with the M.I.T. exponential facility; and second, to

start a program of pulsed neutron experiments on subcritical assemblies

with emphasis on reactivity studies. The two objectives are, of course,

interrelated, because the pulsed source method provides a reliable way

to measure the reactivity effect of control rods. Exponential experi-

ments involving the measurement of the material buckling and the micro-

scopic reactor parameters on a variety of lattices have been in progress

for some time at the Massachusetts Institute of Technology(1 ,2 ,3 ). A few

modifications were necessary to adapt the subcritical facility for control

rod research. The pulsed neutron research program, on the other hand,

was started ab initio and the whole experimental equipment was set up

with a view to making the pulsed neutron lattice studies a permanent

feature of the general lattice research program.

The experimental work described here falls into three areas, each

of which depends upon a different arrangement and experimental set-up.

The stationary experiments involved the use of the exponential facility

with the operating M.I.T. reactor as the neutron source. The prelimi-

nary pulsed neutron experiments were made mostly in small moderator

assemblies with a Cockcroft-Walton accelerator as the pulsed source.

Finally, the main pulsed neutron experiments were undertaken in the sub-

critical facility with a small, compact sealed tube as the pulsed neutron

source. The equipment used in these different areas will be described

separately.

5.1 STATIONARY EXPERIMENTS: EQUIPMENT

5.1.1 The M.I.T. Subcritical Facility. The M.I.T. subcritical

facility is a cylindrical assembly located in the vicinity of the thermal
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column of the M.I.T. reactor. The facility and its peripheral equipment

and. its use as an exponential assembly for stationary experiments have

been described in some detail in Ref. (1). A cross-sectional drawing is

shown in Fig. 5.1. Aluminum tanks of 60, 48 and 36 inches internal

diameter and 72 inches height can be installed. Into these can be sus-

pended, from adjustable aluminum beams, lattices of uranium rods

(metal or oxide) clad in aluminum, of varying rod-radius, spacing, U 2 3 5

concentration and over-all composition. In operation, the tank is filled

with heavy water to the desired height. Overflow points at 51.25 inches

and at 67.25 inches permit the level to be maintained at the top of fuel

rods, either 48 inches or 60 inches long, respectively. In experiments

conducted at the overflow level, a more uniform moderator temperature

is assured by circulation of the heavy water. The heavy water stays all

the time in a nitrogen atmosphere to prevent degradation by atmospheric

moisture. A glove box arrangement over a 12-inch-diameter plexiglass

cover in the top lid makes possible the installation and experimental

changes in the tank without atmospheric contamination of the heavy water.

The moderator level at any stage can be read off a sight glass indicator

outside the concrete shielding surrounding the whole assembly. The

temperature of the moderator, as measured by a platinum resistance

thermometer at the tank inlet, is continuously recorded. The outside

surface (sides and top) of the lattice tank is covered with 0.020-inch-

thick cadmium to provide a black boundary for slow neutrons.

Fast neutrons from a side of the core of the M.I.T. reactor pass

through removable lead and cadmium shutters and steel "doors" into a

horizontal thermal column; the thermal neutrons then enter a graphite-

lined cavity or "hohlraum." After reflection through 900 effectively,

they enter the flux-shaping graphite pedestal on which the experimental

tank stands with an intermediate aluminum honeycomb structure. The

thermal neutron flux at this position is of the order of 109 n/cm2 /sec.

Adequate safety systems are provided through automatic scrams, alarms,

and an eccentric diagonal control blade. The tank and graphite region

are surrounded by concrete shielding blocks. Outside the shielded room

are located the heavy water storage (and dump) tank, the moderator and

blanket gas piping, and the control panel.
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5.1.2. Preparation of the Control Rods. The type (shape, size,

material composition etc.) of control rod employed in any situation

depends upon the purpose and nature of the reactivity that it is to control.

In general, among the factors that affect the selection of the control rod

material are(4,5) the nuclear properties (the cross-section and its

energy dependence, the depletion or "burn-up" rate); physical and

mechanical properties (strength, ductility, shock-resistance, vibration

and fatique, modulus of elasticity, thermal conductivity); corrosion and

wear considerations; resistance to radiation damage; fabricability and

metallurgical maneuverability and, finally, cost. The shape and size are

to be considered as part of the over-all problem of the particular reactor

design.

If - as in the present case - the purpose is research, i.e., to use

the control rods for experiments designed to test the methods of

measurement of reactivity, the emphasis is on the ability to best inter-

pret the measurements and to provide the type and range of reactivity

variation that best serves the purposes and usefulness of the experiment.

One of the simplest types, and the one that is most amenable to meaning-

ful interpretation, is a thermally black rod, i.e., one which absorbs all

the thermal neutrons incident on it, the reflected current being zero. In

this case, the thermal neutron boundary condition is precisely defined and

the situation lends itself to a simple theoretical treatment. For a cylin-

drical assembly, the most appropriate shape of the rods is cylindrical.

It would also be desirable to incorporate other features; for example,

ease and flexibility in the construction of the rods, which would make it

possible to change their response to the epithermal component of the flux.

Metallic cadmium has been one of the most commonly used control

rod materials because of its availability, low cost, nuclear stability, good

thermal neutron absorption characteristics etc. Especially for low-

temperature applications, its low melting point (321*C), and sharp cut-off

of neutron absorption (at about 0.4 ev) in the near epithermal energy

range make it well-suited. However, its low structural strength makes

it necessary to use another stronger metal to support it either by cladding,

alloying or mechanical means. Cladding also prevents it from corrosion

by the coolant. The absorption cross-section(6) of cadmium for
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2200 meters per second neutrons is 2450 barns per atom. Of its several

isotopes, Cd 1 1 3 with a cross-section of about 20,000 barns contributes

greatest to the absorption; this isotope occurs to the extent of 12.3% in

the naturally occurring element.

Considerations such as those above suggested the fabrication of the

first set of control rods used in the experiments. These were made by

wrapping two layers of 0.020-inch-thick cadmium sheets on Type 6061

aluminum tubes of various diameters. A cross-section of the rods is

shown in Fig. 5.2. The aluminum provides the backir.g, hollow tubular

form and structural strength. The thickness of cadmium (i.e., the number

of layers of cadmium wrapping) was chosen to ensure complete blackness

to thermal neutrons. A convenient criterion for the blackness of a

material of microscopic absorption cross-section oa is given by Stevens(7 )

as

N t = 2 (5.1)

so that the so-called optical thickness is

t= 2
No-

a

Hence, for cadmium, the minimum thickness required for opaqueness

(to thermal neutrons) is

2 X 115

8.6 X 6.02 X 1023 X 2210 X 10- 2 4

~ 0.0192 cm = 0.0077 inch. (5.2)

Thus, the thickness of 0.040 inch provided by the two layers of

wrapping is more than adequate for ensuring thermal blackness. The

free end of the wrapping was soft-soldered and smoothed so that the

rods formed a smooth, clean cylinder. The rods were to be introduced

into the heavy water assemblies during runs not exceeding about twelve

hours (mostly just one to four hours), and for such short contacts with

heavy water, the cadmium does not corrode, provided the rod surface is

wiped and dried of heavy water as soon as it is taken out. However, the

surface of the rods was covered lengthwise with mylar tape so as to pre-

vent direct contact between cadmium and heavy water.
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FIG. 5.2 CROSS- SECTIONAL VIEW OF A THERMALLY BLACK CONTROL ROD
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A choice existed as to whether the inside of the hollow tubes should

be left empty (or filled with a heavy-high z-material) or left to be filled

with moderator. In either case, the blackness to thermal neutrons

remains unaffected; the difference is in the behavior of the fast flux. In

case the tubular control "rod" is empty (or filled with, say, lead), fast

neutrons easily pass through the tube and are little affected by the interior

of the rod, emerging with the same angular distribution as that with which

they entered and without any significant degradation in energy. Analyti-

cally, it is equivalent to a solid control rod problem with a net fast

neutron current of zero at the surface (flat flux), and the fast neutron

extrapolation distance is infinite. If, on the other hand, the rod is filled

with moderator, the theoretical analysis of the control rod worth becomes

more involved. The moderator material within the control tube effectively

serves as a "trap" or sink for fast neutrons; some of the fast neutrons

which enter the tube are thermalized and are then stopped by the ther-

mally black control element on the periphery. This results in a sub-

stantial increase in the over-all worth of the rod. Such moderator-filled,

hollow control rods have been used, for instance, in the MTR 4 ) (hollow,

box-type, rectangular tubes of the absorber material, open at both ends).

They can be theoretically treated by the application of diffusion theory to

the interior of the rod which constitutes an internal boundary for the fast

neutron group.

To provide maximum flexibility in the use of the rods and to simplify

the analysis of the experiments, the control rods for these studies were

built in such a way as to serve a dual purpose. Each rod was left empty

and closed at the bottom end by an aluminum disk which also acts as the

supporting guide. At the center of the disk is a 0.250-inch hole that can

be closed water-tight by a stopper with a neoprene rubber washer. When

the hole is plugged, the hollow inside of the rod is empty. If desired, the

stopper can be removed so as to let the moderator (heavy water) from

the tank fill the rod. Or, with the bottom end closed, the hollow rod can

be filled with any other moderating or control material which is to be

investigated. Thus, the same rods can be employed for the composite

control rod type experiments suggested in Chapter VIII. Not all such

experiments were undertaken in the present work.
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When the rods are empty, their placement in the moderator tends

to make them float, and it is necessary to provide an arrangement with

top and bottom positioners to keep them fixed along the axis against the

lateral and upward thrust of the liquid moderator. For experiments in

the pure moderator tank (no fuel rods), a cross-shaped aluminum struc-

ture with a "cup" at the center was located in the tank as shown in

Fig. 5.3, so that the disks attached to the bottom of each rod could sit

snugly in this cup. At the top, each rod was fixed with a pin which could

fit in a slot made in an aluminum beam spanning the top of the tank.

The positioning of the control rod in the lattice was more problem-

atic as the rod would have to displace several fuel elements. A special

plastic adapter shown in Fig. 5.4 was machined for this purpose. This

rectangular adapter was installed at the top of the girders from which

the fuel elements were hung. Holes and slots, especially milled in the

plastic adapter for the lattice with 1.75-inch spacing, provided for the

correct placement of the central-region fuel elements. A central circu-

lar disk which carried the central fuel rod and the six symmetrically

surrounding fuel rods was removed and the control rod could be intro-

duced through this 4-inch-diameter hole. The bottom of the control rods

could rest in a "cup" at the base of the lattice while the top of the rods

was attached to pins which kept them fixed to the plastic adapter. The

removal and insertion of the fuel and control rods was effected through

the glove box.

It was also possible to remove just the central fuel element and

open a small (1.25-inch-diameter) circular hole around it in the plastic

adapter, so that a 1.25-inch O.D. aluminum thimble could be fixed along

the central axis of the lattice. This thimble was used to run a small

BF 3 detector axially during some of the pulsed neutron runs with the

lattice.

5.1.3 The Stationary Flux Mapping Equipment. The stationary flux

was measured by means of the integral foil method with the foils located

in the moderator region. Gold was chosen as the foil material because of

its good activation characteristics and easy availability in highly pure

metallic form. The foils were placed in specially milled slots in
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FIG. 5.3 ARRANGEMENT FOR POSITIONING THE CONTROL ROD
ALONG THE AXIS IN PURE MODERATOR TANK.
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aluminum foil holders which could be positioned at the desired region in

the assembly in the axial or radial direction. For mapping the epithermal

flux, the gold foils were enclosed in cadmium boxes and attached to alumi-

num foil holders for irradiation.

The data concerning the activation of the detector foils was obtained

by counting the induced gamma-ray activity. Beta counting was not used

because most of the beta activity detected comes from the foil surface,

making it difficult to correct for the weight of the foil. Moreover, even

slight imperfections on the foil surface, such as scratches, increase the

surface area of the foil and lead to spurious results.

A block diagram of the gamma-counting system is shown in Fig. 5.5.

The 1-1/2-inch-diameter, thallium-activated, sodium iodide crystal used

in the scintillation counter had an energy resolution of 10 per cent. The

detector foils, during counting, are located opposite the face of the crystal

housing. The pulses from the photomultiplier - an RCA-6342A -were

amplified with a nonoverloading linear amplifier and fed through a differ-

ential pulse height selector to a decade scaler whose output was auto-

matically printed on tape. This system was coupled with a Nuclear Chicago

automatic sample changer - Model C-11OB - to permit the automatic count-

ing of a large number of foils. The resolving time of the electronic equip-

ment was measured by the two-source method to be 0.15 microseconds.

The activated gold foils were counted by setting the gamma-counting

system to straddle the 411-key Au 1 9 8 gamma-ray peak with a window

width of 60 key.

The scintillation system was recalibrated each time it was used.

Periodic checks for drift were made during the counting of each run;

background counts were taken at frequent intervals.

5.2 EQUIPMENT FOR PRELIMINARY PULSED NEUTRON WORK

The initial pulsed neutron work, preparatory to arrangements for

setting up the pulsing system with the subcritical facility, was done at a

different site where a "target room" was constructed with shielding pro-

vided by 19 inches of borated water (5-gallon cans) and 8 inches of dense

concrete on the sides and 28 inches of borated water on the roof. A

positive ion accelerator had been set up on this site for other studies.



PHOTOMULTIPLIER
RCA/6342A

BA (BAIRD ATOMIC)

RCA (RADIO CORPORATION
OF AMERICA)

NC (NUCLEAR CHICAGO)

FIG.5.5 BLOCK DIAGRAM OF GAMMA COUNTING SYSTEM
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The objective for the use of this equipment was to check out possible

instrumentation and to provide guidelines and experience for the main

pulsed neutron experiments with the exponential assembly. Some work

on heavy water assemblies was also undertaken. This equipment will

be described here only briefly; some of the component parts will be

described in greater detail in the following sections of this chapter.

The pulsed neutron source was a 150-key transformer rectifier

set of Cockcroft-Walton type built by the Texas Nuclear Corporation

and equipped to generate neutrons by the (D,D) and (D,T) reactions; this

accelerator has been described in detail in Ref. (8). The pulsing is

achieved by a reference signal which triggers a square-wave generator

and pulses the deflection voltage. The pulse widths are continuously
4

variable from 1 microsecond to 10 microseconds and the repetition

rates from 10 pulses per second to the point where pulses begin to

overlap. The target of the accelerator was located at the bottom center

of the cylindrical test assemblies in most of the experiments. These

assemblies were jars of glass or aluminum of diameters varying from

15.5 cm to 43.8 cm, filled with 99.75% heavy water to heights of 17.8 cm

to 48.3 cm, thus providing a buckling range of 140 m to 855 m . The

outer surface of the assemblies was covered with 0.020-inch-thick cad-

mium sheets to provide a slow neutron boundary condition. The heavy

water was transferred from the storage vessel to the test assembly in a

nitrogen atmosphere to prevent degradation, and the assembly was then

closed with plastic, leak-tight covers so that the heavy water remained

in a nitrogen atmosphere throughout.

The fast neutrons from the source are thermalized in the assembly

and the thermal flux emerging from the assembly is detected by a 5-inch-

diameter, Li 6-ZnS plastic fluor -mounted on a Dumont 6364 photomulti-

plier tube. The detector is surrounded on the sides by a 0.020-inch-thick

cadmium sheet and is mounted on the axis of the assembly so as to be

exposed to a 5-inch circular window cut in the cadmium cover on the top

of the assembly. The time analysis of the thermal flux is done by a

TMC 256 channel analyzer with a Type 212 pulsed neutron plug-in unit.

The over-all experimental set-up is shown in Fig. 5.6. Figure 5.7

shows a block diagram of the electronic circuit. The primary signal
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from an external pulse generator (EH 130) sets the repetition frequency

and triggers the timing cycle of the TMC analyzer, which then accumu-

lates the pre-burst background for a time interval bAt (the channel width

is At). At the end of this interval, a reference pulse is sent to the acceler-

ator to produce a neutron burst, and after a waiting time of dAt (variable),

the time-dependent signal from the detector is received in the successive

channels. The background ratio b and the delay multiplier d can be

varied in multiples of 2.

5.3 SUBCRITICAL PULSED NEUTRON EQUIPMENT

An important phase of the present program was to bring into oper-

ation a complete pulsed neutron system for use with the subcritical

facility and to decide upon the type of component parts best suited for

this program, taking into consideration the limitations imposed by the

proximity of the operating M.I.T. reactor, the immobility of the exponen-

tial assembly and the restricted conditions caused by the heavy shielding

and other surrounding equipment. It was also necessary to investigate the

special problems created by any interaction between the transients caused

by pulsing the lattice and the operation of the reactor (which was later

found to be nil), the level of neutron and gamma-ray background etc., and

to lay down the operating conditions for performing the pulsed neutron

runs on the subcritical assembly. The factors affecting the choice of the

different components of the pulsed neutron system and the final equipment

will be described in some detail in this section.

5.3.1 The Experimental Assembly. The experimental assembly

for subcritical pulsed neutron work can be an operating reactor which has

been made subcritical by some means(9 , 1 0), a critical assembly, an

exponential facility or an ad hoc subcritical assembly, independently

erected exclusively for pulsed neutron work. A desirable requirement is

flexibility and the freedom for several alternative locations for the source

and the detector. An operating reactor and, to some degree, a critical

assembly are always encumbered by heavy shielding, associated channels,

safety systems and other extraneous equipment. An exponential assembly

fed by the thermal column of a reactor has, in addition, the problems of a



5-17

large neutron and gamma-ray background, and it may be possible to use

it for pulsed work only during reactor shutdown. An exponential pile

with a removable artificial neutron source or an independent subcritical

facility provide the best experimental assembly for pulsed neutron work.

The assembly used in these experiments was the exponential

facility of the M.I.T. reactor, described in section 5.1.1. For pulsed

neutron work, the assembly was isolated from its reactor environment

by closing off the steel doors and the lead shutter, blocking it off from

the neutron flux from the reactor core. Even then, the neutron back-

ground during reactor operation was high enough to cause appreciable

pulse pile-up with a medium-sized BF 3 detector. With a very small

BF 3 counter (0.5 inch X 4 inches) placed inside the assembly along its

axis, the pulsed neutron source did contribute a noticeable exponential

decay even during reactor operation, but the background was high

enough so that the decay could not be monitored over more than two

decades. The M.I.T. reactor operates on a 24-hour weekday basis and

it was decided to make the pulsed neutron runs during reactor shutdown,

during week ends. It was found that there was no effect of the transients

and of pulser operation upon the reactor safety system. The 36-inch-

diameter exponential tank was in place at the time of the pulsed neutron

runs and its side and top were covered with 0.020-inch-thick cadmium.

A circular cadmium plate, 0.020 inch thick and clad in aluminum, was

used to cover the bottom face; during each pulsed neutron run, this

plate was introduced so as to lie at the bottom of the tank. Thus the

whole assembly was surrounded by cadmium to reduce room-return

background and to define the slow neutron boundary condition, basic to

the definition of the geometrical buckling eigen value. In some experi-

ments, a 1.25-inch-O.D. aluminum thimble was installed on the axis and

fixed to a girder or plastic adapter, as discussed in section 5.1.2. A

small BF 3 counter could move in it for some of the measurements.

5.3.2. The Pulsed Neutron Source. In pulsed neutron applications,
the source is almost always the target of a positive ion accelerator, spe-

cifically optimized for one of two nuclear reactions involving the isotopes

of hydrogen - the T(d,n)He4 reaction (14-mev neutrons) or the D(d,n)He 3
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reaction (2.5-mev neutrons); these reactions occur with a fairly low

bombardment energy and are prolific in the production of neutrons; the

reaction cross-section peaks around 100 key, permitting the use of

reasonably inexpensive low-voltage particle accelerators. Other reac-
9 10

tions that have been employed, at high energies, are the Be (d,n)B or

Be9(a,n)C 12 reactions and the (y,n) reaction; in the latter case, the

photoneutrons are produced by brehmsstrahlung from a betatron or

electron linear accelerator striking a heavy metal target (W or U or Pb).

The accelerator types in common use are Cockcroft-Walton, Van de Graaf,

Linac, or a small sealed tube. An example of a non-accelerator type of

pulsed neutron source is the Oak Ridge pulsed reactor core with a

chopped thermal neutron beam from another reactor core .

Although the pulsed neutron sources of the customary type can be

adapted to most of the situations encountered in a wide variety of experi-

mental programs, special features may be desirable or even necessary,

depending upon the type of experiments, the level of precision and prac-

tical considerations. Thus, in time-of-flight studies, the paramount con-

siderations are neutron intensity, short pulse width and high repetition

rates; for fast neutron spectroscopy and the standard type of pulsed

neutron experiments on highly enriched uranium systems, very short

pulses - of the order of nanoseconds, owing to the short decay times of

these systems - and high repetition frequencies are necessary (12); for

pulsed neutron time-dependent studies in the slowing-down and thermal-

ization region, short pulse widths have to be combined with low repetition
(8)rates, with duty cycles of the order of 0.01%

Pulsed neutron sources for reactor or subcritical work are com-

paratively less demanding in these respects. Desirable are high neutron

output and small size, since it is usually necessary to pass channels

through thick shields under rather congested room conditions. The pulse

widths are of the order of a few microseconds; the repetition frequency

must be low - as can be seen from Eq. 3.4 - so as to maintain a reason-

ably good signal-noise (background) ratio. On the other hand, the repe-

tition rate R for applications to reactivity measurements (as in

section 3.6.3) must be such that a > R > w, where w is the decay constant

of the shortest lived precursor. For U 235-fueled thermal systems,
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w - 4.7 sec and it turns out that R must be at least 10. The upper

limit is dictated by the degree of subcriticality and other factors as indi-

cated by Eq. 3.4. Since the size of the reactor or the subcritical assembly

is relatively large usually and an appreciable background neutron source

is always present from previous assembly use (especially photoneutron

sources in Be and D 2 0 systems) and since the repetition rates are to be

comparatively low, the neutron output of the source must be high -

usually of the order of 106 to 10 neutrons per burst - if the run times

are not to be impracticably large; it should, however, not exceed about

1010 n/sec, as this will cause too high counting rates and the corre-

sponding counting losses and multiple pulse pile-up.

Positive ion accelerator neutron sources basically consist of an

ion source, an evacuated accelerating section, focusing optics, a pulsing

mechanism and a target onto which the ions impinge to generate neutrons.

Deuterium gas flows into the ion source where it is ionized in one of

several ways; the most common methods are the application of R.F. fields,

axial force fields as in the Penning Ion Source (PIG) or magnetic mirrors

as in the duo-plasmatron system of ion excitation. The ions are extracted

into the accelerating column and, after acceleration, enter the drift tube,

which has the target at its other end. The ion source beam operates at a

pressure of about a hundred times greater than what is desirable for the

long accelerating tube. Consequently, some of the gas is left unionized

and leaks into the accelerating chamber along with the useful ions. Hence,

if the ions are to travel to the target with a minimum loss of energy by

collision, the amount of the unionized gas must be reduced by the use of

a vacuum pump.

In recent years, a new category of small ion accelerators( 1 3 , 1 4 , 1 5 , 1 6 )

(sealed tubes) has been developed which eliminates the need for this dif-

ferential pressure and permits the realization of a sealed-off neutron

source based on the (D,T) reaction. The acceleration is in one stage and,

owing to the extremely short accelerating section, the entire tube can be

operated at a uniform pressure. These tubes offer considerable saving

in complexity and size, are portable, and safe to handle;- large ion source

apertures and correspondingly large ion currents make it possible to

achieve high neutron output rates. Very high rates of output for
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microsecond pulse durations are possible and the output is continuously

variable. Such small, compact, lightweight, portable tubes encased in

appropriate containers are well-suited for use with reactors and sub-

critical assemblies where mobility and flexibility under rather stringent

conditions imposed by shielding etc. are important considerations. Such

sealed tubes are made commercially by Elliott Brothers of England;

Norelco Phillips of Holland; and Kaman Aircraft Company, Nuclear

Division, of Colorado Springs, Colorado, U.S.A.

The availability of a Cockcroft-Walton type machine at the M.I.T.

reactor for other pulsed neutron studies prompted a detailed consider-

ation 1 7 ) of the feasibility and design of its use with the subcritical

facility, Several possible configurations were considered: addition of

a long beam tube to the accelerator and its introduction through an

opening in the concrete shielding so as to locate the target on the side

of the tank; positioning the accelerator on the top of the concrete

shielding blocks for vertical operation so as to have the target at the top-

center of the tank etc. Apart from the practical difficulties involved in

such arrangements, an estimate of the neutron intensity requirements

all but ruled out the use of this machine with the subcritical facility.

This Texas Nuclear Corporation machine is built with considerable

versatility and flexibility in pulse widths, repetition rates etc. but at the

cost of mobility, ruggedness of movement and operation and, to some

extent, the neutron output.

It was therefore decided to procure a small, compact sealed tube

for subcritical pulsed neutron work and to build a system of pulse-

forming networks and associated equipment for use in conjunction with

the sealed discharge type source tubes that are available. We are in-

debted to Dr. D. R. Bach of K.A.P.L. for communicating his experience

with an Elliott K-tube and for forwarding the circuit diagram for the HV

modulator. The final pulse-forming networks were designed and con-

structed by Mr. D. Gwinn of the MITR Electronics shop staff. Among the

sealed discharge tubes commercially available, the K-tube, built by

Elliott Brothers of England, was first considered. Finally, however, a

Kaman Nuclear tube was brought into active use.

This source is a Type A-810 neutron generator built by Kaman
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Nuclear of Colorado. The basic elements of this tube are shown in

Fig. 5.8. The ion source, which is of the Penning cold cathode type, pro-

duces ions of heavy hydrogen isotopes; these, upon emerging from the

source aperture, are accelerated in the direction of the titanium target

at the right. The tube is filled with a mixture of deuterium and tritium,

providing for the (D,T) reaction. The tritiated titanium target has an

effective diameter of one inch and is located one inch from the lower end

of the accelerator tube package. The target is so shaped and dimensioned

as to secure complete coverage by the ion-beam, permitting optimization

of target loading. Since gas clean-up in the discharge would quickly

exhaust the supply of deuterium gas originally in the tube, a replenisher

of zirconium wire spiraled around a tungsten wire is mounted behind the

ion source. Zirconium absorbs hydrogen and releases it when heated.

Before the tube is sealed off, the zirconium wire is saturated with

deuterium. By varying the voltage across the zirconium filament, it is

easy to adjust the pressure inside the tube; the pressure then remains

constant for long periods of time. The replenishment process is re-

versible and therefore lengthens the life and ease of operation of the tube.

The ion source, accelerating system, target and the replenisher are all

contained in a high strength, hermetically sealed, tubular glass envelope

filled with a 50-50 mixture of deuterium and tritium; ceramic annular

ring-magnets encircle the left two inches of the tube exterior over the

ion source. The whole tube is mounted in an aluminum cylindrical en-

closure (11 inches X 5 inches diameter) filled with dried Shell Oil

Company Diala-AX insulating oil. The tube contains 5 curies of tritium.

The finished tube, its housing and connections are shown in Fig. 5.9.

The target pulse of negative accelerating potential variable between

0 and 120 kv is obtained from a Carad Corporation step-up (1:25) pulse

transformer; the shielded, flexible, high-voltage cable (Times Wire and

Cable Company, Inc., Jan Type RG-19/U-04145) from the transformer to

the source-tube is about 5 feet long. The accelerator assembly and the

transformer are located in the shielded lattice room at the top of the

exponential assembly, while the entire control unit is placed on the reactor

floor about 18 feet below. The control unit supplies pulse voltages for the

neutron tube ion source and for the step-up pulse transformer to the
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target. The control unit is versatile and can also be used with other types

of tubes. It has three independent networks to generate a target pulse, a

plasma pulse and a magnetic field pulse (not needed for the Kaman tube);

a timer circuit fires the pulse networks at prescribed delays relative to

each other. The pulse rate is variable from 1 pps to 10 pps while the

pulse width at half amplitude (shape triangular or approximately Gaussian

on a time scale) can be made approximately 9, 12 or 15 microseconds.

The yield is estimated to be about 10 neutrons per burst, having an energy

of 14.7 mev.

5.3.3 The Detection System. The thermal neutrons which com-

prise the asymptotic neutron spectrum after the stabilization of the flux

in a pulsed assembly have to be processed through an appropriate detec-

tion system before being fed into the time analyzer. Several factors dic-

tate the choice of the detector in a pulsed subcritical assembly. There

is appreciable gamma-ray background from fission products and, unless

some type of compensating mechanism is employed, the detector itself

must be either insensitive to gamma rays or the ionizing radiation on

which it is based must result in a large energy release so that the

gammas can be discriminated against. The repetition rate has to be

kept low but the source intensity is high; the latter may give rise to

pulse pile-up effects leading to the spurious decay of multiple pulses.

On the other hand, to achieve good statistics in a reasonable time, the

over-all efficiency and the thermal neutron sensitivity must be high. A

desirable feature which is met, in practice, by most detectors is that

the detector scatter very few neutrons back into the experimental assem-

bly. The size of the detector is also sometimes an important consider-

ation. If the detector is to be located inside the assembly - as is usually

the case at least for a few runs, to check the detector location dependence

of the neutron decay - the detector must be small, compact, flexible and

easily movable. If the detector is to be located outside, its shape and

size may have to be determined by the conditions needed to suppress

spatial harmonics. Another factor is the dead time of the system; the

neutron counter must have a time response consistent with the minimum

channel widths which are to be used.
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If the detector is to be stationed outside the assembly only, a

scintillation fluor with a neutron interacting "nuclear host" material

imbedded in the crystal in conjunction with a photomultiplier tube pro-

vides a fast detection system with a good enough efficiency although

discrimination against gamma rays is a problem. The latter can be

avoided by the use of a phosphor like ZnS(Ag) (with a Li or uranium
(18)

compound) which has a large "alpha-beta ratio" , provided the pile-

up of the gamma pulses may be neglected. Noble gas scintillation

counters have a very low dead time and are quite insensitive to gamma

radiation. Another possibility is to use loaded plastic or liquid scintil-

lators whenever feasible. Erickson et al.(l9) have described the use

of a DuMont 6292 photomultiplier with a borated cathode; such neutron

detectors have now been made commercially available and have been

used by Simmons and King( 2 0 ) for pulsed neutron experiments on the

KAPL FP4 reactor. The a-particles from the B 10(n,a)Li reaction

enter the Cs-Sb photocathode layer and produce electron emission di-

rectly. This counter has a high neutron sensitivity and an extremely

low dead time. Other scintillation detectors that have been used for

subcritical pulsed neutron work include a Li 6I(Eu) crystal with a

CBS-7817 photomultiplier tube( 2 1 ,2 2 )

However, when the intent is to allow flexibility so that neutron

detection can also be done inside the assembly - as in the present case -

the large-sized scintillators with phototubes are unsuitable. Perhaps

the best compromise is represented by detectors based on the (n,a)

reaction or the fission reaction, in each of which the energy release per

reaction is quite large. Fission chambers are well suited for high

temperature work. The B 10(n,a) reaction, because of its high cross-

section, simple energy dependence over a wide range, high specific ion-

ization and the large energy of the resultant charged particles, provides

a good basis for thermal neutron detection, for example, in the form of

boron-trifluoride-filled gaseous detectors. Ordinarily, BF 3 counters are

insensitive to gamma radiation, and the thermal neutron sensitivity can

be increased by enriching the boron in the B10 isotope and increasing

the pressure of the filling gas. Their main disadvantage is that they are

quite slow. However, the count rates in our assemblies were expected
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to be relatively low; this fact, together with the commercial availability

of BF 3 proportional counters in a variety of sizes, prompted the decision

to use this type of detector in the present studies.

The size, shape, location and configuration of the detector and the

nature of its coupling with the experimental assembly are determined by

considerations of neutron intensity, harmonics suppression, perturbation

effects and practical feasibility. It is desirable to provide some flexi-

bility so as to ensure the constancy of the measured decay constant with

respect to the nature and location of the detector. The source was to be

located, in most runs, on the axis of the cylindrical assembly, so that the

harmonic modes having radial nodal planes through the axis were not

excited for reasons of symmetry. It was attempted to manipulate the

axial harmonics by using long BF 3 counters and positioning them in such

a way as to span a large part of the fundamental mode while at the same

time integrating out (annulling) the other harmonics after the manner

sketched in Fig. 5.10. Since the source was located on the top-center of

the assembly and the bottom was inaccessible because of the presence of

the pedestal, shielding etc., only two alternative ways were open for

locating the detector: either the inside of the tank, or outside, along the

lateral periphery. Several detector arrangements were investigated.

The first consisted in stacking longitudinally a bank of eight long

(25 inches X 2 inches) BF 3 counters along the side of the experimental

tank with the height and position adjusted in such a way that the unwanted

axial harmonics are integrated out, and yet a profitably large portion of

the fundamental is spanned (Fig. 5.10). The counters were housed in an

aluminum box which was mounted so as to be exposed to an 18-inch X

20-inch window cut in the cadmium covering of the tank; the outside of

the box was covered with cadmium. The counters were individually

covered with thin plastic so as to insulate them from the tank-ground;

the signal from the individual detectors was summed before being fed

into the pre-amplifier. However, such a bank proved to be too sensitive

and considerable pulse pile-up could be observed on the oscilloscope.

This bank was therefore replaced by a single, long BF 3 tube similarly

positioned with respect to harmonics in the tank.

It was desirable to have an alternative detection system for two
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reasons. First, two different detection arrangements provide an independ-

ent check of the measured decay constant, ensuring that the latter decidedly

pertains to the fundamental mode and is uniquely characteristic of the

experimental assembly. Second, the above arrangement is unsuitable for

those runs in which the level of heavy water - and hence the size of the

assembly - is changed, as was necessary in some cases. In another ar-

rangement, a channel was installed on the external side of the tank so that

a small BF 3 tube (0.5 inch X 4 inches) could be moved inside it. However,

the neutron detection efficiency was found to be inadequate and this ar-

rangement was unsatisfactory for the source intensity available. Finally,

a 1-inch-I.D. aluminum thimble was fixed along the axis of the cylindrical

assembly and the small BF 3 counter was run inside it. This arrangement

proved to be highly satisfactory, giving flexibility, good detection

efficiency, harmonics examination etc.; it also made possible the study of

introducing such perturbations in the assembly.

Thus, two detection systems were finally provided; these are shown

in Fig. 5.11. The long BF 3 counter (N. Wood Model G-20-20, active
a 10

volume 20 inches X 2 inches diameter, B enrichment 96%, filling

pressure 40 cms Hg) was mounted on the side of the tank so as to be

exposed to a narrow slot in the cadmium surrounding the tank and covered

on the outer side with cadmium. This detector was used with an RIDL

(Model 31-7) pre-amplifier located about three feet from it. The other

arrangement employed a small BF 3 tube (N. Wood model, 0.50-inch
10

diameter, 4.0-inch active length, 40 cms Hg filling pressure, B enrich-

ment 96%) guided by a thin aluminum thimble (1.25-inch O.D.) mounted

along the axis of the tank. The BF 3 tube was covered with thin plastic to

insulate it from the thimble and tank. A 7-foot-long cable, well shielded

with braided wire, passed through an airtight stopper plugged in a hole on

the upper side of the tank and connected the detector to a pre-amplifier

placed just outside the tank; the pre-amplifier was also insulated from

tank-ground by thin plastic. A schematic diagram of this pre-amplifier

is included in Fig. 5.12. The amplifier-scaler (RIDL Models 30-19 and

49-30) and the high-voltage supply (R1DL Model 40-9) were located on

the reactor floor 18 feet below. The pulses from the detector were

monitored on an oscilloscope. The dead time of the detection systems
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was determined to be of the order of two microseconds.

For moderator and simple lattice runs, when the heavy water was

at its full height in the tank, both the detection systems could be used

and compared. When runs were made with the control rod located along

the axis, only the long external detector could be used. For runs where

it was necessary to vary the level of heavy water, the small BF 3 tube in

the thimble alone was used. The effect of positioning it at different

heights along the axis was also studied. However, in actual runs, the

small BF 3 counter was located halfway up the level of heavy water.

5.3.4 The Time Analysis System. The basis of time analysis and

the principle of operation of a time analyzer are described in detail in

Ref (23). Basically, the purpose is to map a time-profile of the decaying

flux by recording numbers which are proportional to the neutron density

at marked intervals of time. In general, the time analyzer must be of

the multichannel type and should have between 40 and 100 channels at

least, each variable in width between 10 microseconds and 5 milliseconds.

A number of strictly digital analyzers for this type of work have been

developed( 2 4 -2 7 ). An important requirement for such an analyzer is a

reasonably low dead time which should be smaller than 5 microseconds.

The counting rates obtained from the detector-amplifier-

discriminator system are often low enough to warrant time analysis by

a time-to-height converter in conjunction with a multichannel pulse-

height analyzer, although care must be taken to ensure adequate linear-

ity and stability. A special system having high stability and a linearity

to within 1% has been recently described by Beck-Urts(2 8 )

The analyzer used in this work - and one which should be appro-

priate for general thermal reactor systems - was a fully transistorized

TMC-256 channel analyzer including the Model CN-110 digital computer

used with a Type 212 pulsed neutron plug-in unit. (These are manufac-

tured by Technical Measurements Corporation, North Haven, Connecticut,

U.S.A.) This analyzer consists (22) of a 16-binary scaler for buffer

storage of incoming signals, a ferrite-core magnetic memory with a

storage capacity of 256 words of 16 binary bits each, and appropriate

switching circuitry. "Live" analogue display of the memory contents is
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provided via a built-in oscilloscope.

The purpose of the Type 212 plug-in unit is to convert the usual

energy scale of the analyzer into a time scale, so that the 256 memory

addresses are sequentially sensitized to become time channels with a

total count capacity of 1,048,575. The 255 channels (2-256) are analysis

channels and are of equal duration A, adjustable from 10 to 2560 micro-

seconds in multiples of 2. The first channel accumulates pre-burst

background, and its width is independently variable as 2n A with

n = 1, 2, . . . 8. The channel width is set by a 100-kc crystal oscil-

lator with a specified accuracy of ± 0.02 per cent from 0*C to 50*C. The

time resolution of the analyzer is about 80 nanoseconds for registering

detector pulses in buffer storage. This resolving time is specifically

that of a pulse-shaping trigger circuit at the entrance of buffer storage.

All "read and write" operations between buffer and memory are relegated

to a 10-microsecond dead time gap separating the end and the beginning

of successive channels.

Data are extracted from the memory via a transmission system

and recorded by a Hewett-Packard digital recorder which prints out the

counts and channel number on a tape. Continuous live data display on

the analyzer oscilloscope conveniently allow observation of the progress

of an experiment.

5.3.5 The Over-All Pulsed Neutron Circuitry. The block diagram

of the experimental arrangement and the data recording system are

shown in Fig. 5.13. The time sequence of the logic operation is as follows.

The initiating master-sync signal for the pulsing sequence is generated by

an external oscillator (composed of a Tektronix Type 162 Waveform

Generator and Type 163 Pulse Generator; the latter shapes the trigger

pulse). This system trigger signal is applied to the Type 212 plug-in

unit of the analyzer and immediately sensitizes its pre-burst background

(first) channel; the width of this background channel is variable independ-

ently of the other channels. Upon the closing of the background channel,

the analyzer sends out a pulse - the source trigger - which is used to fire

the pulsed neutron source. Simultaneously, a variable time delay of

duration 2 nA (where n = 1, 2, 3, . . . 8; A:channel width) is initiated in
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the time analyzer so that after the neutron source is fired, an appropri-

ate "waiting time" (also variable as 2 n A) is provided to allow a stable

spatial flux distribution to be established. [Actually, there is also a

target delay variable continuously from 0 to 100 [isec between the firing

of the source and the appearance of the target pulse (and therefore the

neutron pulse); thus the net or actual waiting time is reduced by the pre-

set target delay.] Thereafter, the remaining channels open in succession

and accept counts from the detector. As the last channel in the memory

is sensitized, the entire pulsing sequence is ended until another trigger

signal is supplied by the repetition rate generator. The analyzer circuit

prevents overlapping of sweep time with the repetition period.

The inner mechanism of this sequence is provided in the oper-

ational characteristics of the analyzer itself. Upon receipt of the system

trigger from the repetition rate generator, a gate is opened to the fast

trigger circuit which precedes the 16-binary buffer storage; the subse-

quent incoming signals from the detector are stored in the buffer, and

kept there until the end of the channel, when the gate closes. The accumu-

lated counts are then removed from buffer storage and deposited into

ferrite core storage; this process takes 5 sec which is half the 10- 1 isec

dead time between successive channels. Before the opening of the first

channel, the analyzer selects the proper address in ferrite core storage,

extracts the counts therein and loads them into the buffer store, which

accounts for the other 5 jsec; thereafter, the gate to the trigger circuit

opens and any incoming data are added onto that, as long as the channel

is open. At the end of the channel, the buffer contents go back into the

appropriate address in the ferrite core, the data in the next address are

transferred to the buffer and so on.

The cycles are repeated at the pre-set repetition rate defined by

the oscillator, and the data from each cycle are accumulated and summed

in the analyzer. At the end of the run, the printer prints out the output in

the form of a tape giving the channel number and the number of counts in

each channel.

A photograph of the control panel and a part of the associated equip-

ment is shown in Fig. 5.14.



Fig. 5.14 The Control Panel of the Accelerator
and the Associated Equipment
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Chapter VI

CONTROL ROD THEORY: CALCULATION OF CONTROL ROD WORTH

The theory of control has, as one of its goals, the evaluation of the

strength or worth of a control device, e.g., a control rod, under given

static conditions. The theory of control rods is especially interesting

because in and near control elements, the approximate diffusion theory

methods break down and more accurate transport theory methods have

to be considered. The complexity of these methods makes it necessary

to use "recipes" involving corrections obtained from transport theory to

calculate neutron distributions in a chain-reacting system containing

control elements. Thus, the control element may be characterized by a

local property which is used in a diffusion theory calculation, along with

the properties of the rest of the system, to obtain the gross effect of the

element on the reactor.(1 ) This separation is based on the assumption

that the local property is independent of the properties of the rest of the

system. The local property can take the form of boundary conditions at

a boundary which may or may not coincide with the control element sur-

face; an extrapolation distance derived from transport theory may be

used here. This representation leads to a boundary value problem for

the complete system. Alternatively, the local representation can be

simulated by fictitious cross-sections for a part of the system, leading

to a multi-region, few-group diffusion calculation. In either case, the

local representation can also be used with perturbation theory. In the

next section, some of the methods used in control rod theory will be

reviewed and evaluated.
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6.1 A REVIEW AND CRITIQUE OF METHODS USED IN CONTROL

ROD THEORY

As part of this general investigation, a critical review of the litera-

ture on the physics of control was undertaken to evaluate the current

status of control rod theory. The principal results of reactor control

statics are reviewed in several works(2-7) and will not be repeated here.

Bibliographical material can be found in Refs. (1,2,7,8).

Most of the methods used in control rod theory to date are based
(7,10-14) (7 10,14-19)

on diffusion theory, either in one-group, two-group, '0'

multigroup (920-22) or age-diffusion (23) form. This is so in spite of the

fact that the approximations inherent in diffusion theory are particularly

poor when applied to control rods which present problems of abrupt

changes in cross-sections and diffusion constants and complex shape

involving thin regions and sharp corners (in non-cylindrical rods). Many

different problems have been treated: single rods (central or off-center)

with different control characteristics, partially inserted rods, arrays of

rods, control devices with such shapes as thin slabs and crosses, the

influence of a reflector, etc.

Within the framework of diffusion theory, various mathematical

methods have been used to obtain more accurate solutions in specific
(24 25)

cases. These include variational methods, ' perturbation
(11.126.927)theory, the Weiner-Hopf technique, infinite series expansions

of the flux in two-dimensional geometry, 2 8 ) the Fourier transform
(11)technique, etc. The boundary condition in the diffusion equation may

be treated by expressing the inverse logarithmic spatial derivative of the

flux at the control rod surface in terms of the extrapolation distance which

can be calculated in ideal cases. 2 4 ,2 9 ,3 0 ) The boundary condition may

also be treated by means of variational methods applied to the integral

transport equation, with perturbation theory for cylindrical rods of small

radii and a Weiner-Hopf analysis for large radii. Another method pur-

porting to improve upon the errors arising from the application of diffusion

theory near a black rod, is to use an effective radius in the case of cylindri-

cal rods (or equivalent cylinders for other shapes); the effective radius

may be expressed in terms of the extrapolation distance.
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Perturbation theory can be applied to the control rod problem(8) in

three ways. First, the reactivity effect of a control rod in a reactor can

be calculated; the usual theory converges only for weak perturbations,

but may be extended to strong perturbations by the method of analytic

continuation in the space of perturbations,(31) Second, the boundary per-

turbation method can be used to compute the effect of an energy-dependent

extrapolation distance. Third, this method can be applied to the calculation

of the effect on reactivity due to the alteration of the effective boundary by

the presence of a partially inserted rod.

An alternative to the boundary value approach is the so-called

poison cell method or the use of the principle of equivalence.(32 ,3 3 ) A

region of the core containing the control rod is assumed equivalent to a

homogeneous multiplying medium of the same volume with a new multi-

plication factor and a new migration area. The equivalence principle is

valid when: 1) there is a large number of rods ("supercells") in a regular

lattice; 2) the surrounding medium may be considered homogeneous;

3) the rods are small compared to the region they control; and 4) fast and

slow neutrons behave similarly. These are also the conditions for the

validity of the cell theory. Although this method by-passes the problem

of boundary conditions, it is still based on a diffusion theory solution of

the equivalent problem. The division of the calculation into a local calcu-

lation to determine short range control element effects and a full reactor

calculation is made by defining a local control element cell. The cell

calculation can be made in great detail to determine fictitious cross-

sections to use for a second calculation which represents the cell as a

homogeneous region. A variety of methods may be used for the cell

region; for example, two-dimensional, one-group, Monte Carlo program

TUT(34) has been developed for some problems at the Bettis Atomic

Power Division of Westinghouse.

Since a control rod or a group of control rods in a heterogeneous

reactor produces a "defect" in an otherwise perfect lattice, any method

of estimating control rod effectiveness in which the reactor is homoge-

nizd wll e smewat(6) (35)nized will be somewhat inaccurate. Feinberg has pointed out that the

heterogeneous sink method may be applied to the problem of control rods.

The neutron flux at any point is regarded as a superposition of the effects
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of the fuel element sources and control rod sinks. Such a superposition

is representable by a lattice sum, which can be easily evaluated for a

regular lattice. For a reactor with regularly placed control rods, the

lattice sum can be treated numerically. In general, however, the calcu-

lations are tedious, and, for practical work, the methods in which the

reactor is homogenized are more tractable.

The shortcomings of most of these methods stem mainly from the

approximations inherent in the diffusion theory. The methods involving

the use of the logarithmic derivative, the effective rod radius and the

principle of equivalent poison in a cell, all suffer from the diffusion theory

approximations. The more sophisticated mathematical techniques,
mentioned earlier, usually result in errors which are consistently smaller

than the basic error involved in the use of the diffusion theory approxima-

tiQn. Despite the basic inadequacies of diffusion theory, it has been widely

used because of its simplicity and wide applicability. An example of a

machine calculation scheme involving a combination of transport and

diffusion theory is to be found in Ref. (36).

There are several methods which might be tried to improve on

diffusion theory. For example, a transport theory solution in a purely

absorbing rod might be combined with a P3-solution in the core region

through appropriate boundary conditions. An iterative solution of the

integral transport equation could be attempted by using the Liouville

method.(8,37,39) The use of spatial moments, with an accompanying
(39)moment inversion technique, has not been applied to control rod

problems. Comparisons of theoretical methods for control rod solutions

have generally been concerned with different formulations of the diffusion

theory equations(15,16) rather than with the estimation of the accuracy of

a method with respect to a rigorous solution.

The effectiveness of a control rod in a reactor is determined by
(3)factors which are conveniently subdivided into two groups. The first

contains effects of the shape and material of the rod itself and the region

immediately surrounding it. The second contains the effects of additional

control rods, if any, and of reactor size, shape and constitution. Corre-

sponding to this general grouping, the calculation of control rod effective-

ness proceeds in two steps. The first is devoted to a determination of an
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effective rod radius or extrapolation distance to describe the effect of an

individual rod on the neutron flux in its vicinity. Then the diffusion

equation can be solved for a particular reactor and rod arrangement.

The buckling B 2 of the system is determined as usual from the require-

ment that the secular determinant must vanish. Once the buckling is

known, it is possible to find the infinite multiplication factor, ko, which

would restore the reactor to criticality with the rod inserted. This yields

the change in reactivity, 6k, produced by the insertion of the rod. An

example of this general method is the treatment by Murray and Niestli16)

of single rods with different boundary conditions.

6.2 TWO-GROUP TREATMENT OF A CENTRAL CONTROL ROD WITH

THE EXTRAPOLATION LENGTH BOUNDARY CONDITION

A central control rod may be treated under two-group theory by

applying the boundary condition for thermal neutrons in terms of an

effective radius at which the flux vanishes. However, for rods of small

radius, the extrapolated surface lies outside the rod and, according to

the usual definition (R' = R 0 - d), the effective radius is negative. This

complicates the calculation of the rod worth from the two-group expression.

In this section, the central control rod will be treated by a similar method

involving boundary conditions for the thermal group neutrons as defined by

an extrapolation distance. The fast flux will be assumed to be flat at the

surface of the rod.

Consider a cylindrical, bare, homogeneous reactor of extrapolated

radius R and height H which has a thermally black control rod of actual

physical radius a, along the full length of its axis. As usual, the r and z

variables are separable in the solution to the Helmholtz equation and the

radial parts of both the slow and fast neutron flux are given as the solutions

of the equation:

V 20(r) + a2 0(r) = 0 (6.1)

2 (7)
where a is either root of the two-group characteristic equation:



2 =1

-2L(

2 4(k 1) 1/2
+- + 02L '

L r L
L +

L

T(1 +
2

L

4(k -1) 1/2
+ L2

both p2 and v2 are positive if k > 1. The solutions to Eq.

ponding to these two values of ac2 are:

ZI(r) = J (pr) + AY(Mr) ,

6.1 corres-

(6.3a,b)
Z 2 (r) = CJ 0 (vr) + K0(vr) ,

and the radial parts of both the fast and the slow flux are linear combi-

nations of these two solutions.

The fluxes vanish at the extrapolated outer boundary so that:

J (MR)
Z (r) = J9(Pr) - Y(R) Y(r)

and

Z 2 (r) = K0(vr)

If we write:

p, = p90 + p,

where p0 is the value of pA

that

(6,4a,b)

K (vR)

- 0 (vR) 0 (vr).

(6.5)

(7)
in the unperturbed reactor, it can be shown

2
+ 1.22 2 0 '

(6.6a,b)
Z 2 (r) K 0 (vr) .

The fast flux is given by:

<(r) = ZI(r) + AZ 2 (r)

and, if the fast flux is assumed to be flat at the rod surface, we have:

6-6

(6.2a,b)

Z 1 (r) J9(pr)



= 0, at r = a.
dr

If we apply this condition to Eq. 6.7 ,and use the results:

for pa< 1, J1(pa) -+ 0 ,

Y2(a) - - (0.116 + In ,

K9(p a) -+ 0.116 + In ,

(6.9)

we get:
2

A = - 1.22 .' 2
2 7r

(6.10)

We are chiefly interested in the thermal flux; the radial part of this is

given by

(r) = S Z 1 (r) + AS 2 Z 2 (r) , (6.11)

where S and S 2 are the usual coupling coefficients, given by:

1 D 1
S1 -- D2 L 2

(6.12a,b)and

D(1
82 ~r T 2 ' L2-

2
v )1

so that

S 2

S1

+ p2
L

- 2 -

L2

Using Eqs. 6.6 and 6.10, we get from Eq. 6.11:

(6.13)

2
= S2 Jo(pr) + 1.22 2 o(pr)

p0

S1 - K (vr)7T 0 1i

Now, we apply the boundary condition for the thermal flux in terms

of the extrapolation length d, into the rod:

6-7

(6.8)

(6.14)

+ y ,j1
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d = (r) ,(6.15)
$'(r)aPWr=a

where p'(r) denotes derivative with respect to r. Substituting for $(r)

from Eq. 6.14 in Eq. 6.15 and simplifying, we get:

1.22 2 J0(pa) + dpJ 1(pa)

Po + SYpa 2
Y0(pM a+ dY7rp) 1-(K0(va)+ dvK (va))

(6.16)

Now, for pa < 1, J (Pa) -+ 1 and J1 (Pa) -+ 0. Hence, we finally have:

2 = - 0.820 Yo(pa) + dpY (pa) + _ (K (va) + dvK (va))J2 01 1rS

(6.17)

This expression gives the fractional change in the radial buckling

caused by the rod, explicitly in terms of the extrapolation length d. The

excess multiplication Ak controlled by the rod can be obtained from the

relation:

Ap2  Ak
2 4 2 2 . (6.18)

yP p2( L 2+ -)

Eq. 6.17 will be used for comparison with the results of pulsed

neutron and steady-state experiments with a central cadmium rod in a

multiplying assembly.
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Chapter VII

RESULTS AND DISCUSSION

The theoretical treatment of a pulsed neutron multiplying system,

undertaken in Chapter II, was explored in the following chapter with a

view to seeking relations that might lend themselves to experimental

analysis and interpretation, and a number of possible experimental

studies suggested themselves. Chapter IV explored a similar goal with

respect to the exponential experiments with control rods. A description

of the experimental equipment demanded by the suggested experiments

was the subject of Chapter V. It is the purpose of the present chapter

to incorporate this material in the actual measurements and analyses.

This chapter will, therefore, be devoted to an attempt to describe the

experimental conditions and procedures, to investigate the effect of

special experimental variables, to check the internal consistency of the

data and to obtain qualitative and quantitative results. The results will

be analyzed, interpreted and discussed; wherever possible, they will be

compared and correlated.

7.1 PULSED NEUTRON EXPERIMENTS ON NON-MULTIPLYING

MEDIA IN THE EXPONENTIAL TANK: GENERAL PROCEDURES

IN PULSED NEUTRON EXPERIMENTS

The first set of experiments with the new accelerator and pulsed

neutron instrumentation was undertaken with only heavy water in the

tank of the exponential facility. The 36-inch-diameter, aluminum tank

was in place at the time, and the sides and top were covered with 0.020-

inch-thick cadmium; an aluminum-clad circular plate of cadmium of the

same thickness covered the bottom of the tank during the use of the

facility for pulsed neutron work. Heavy water, in a nitrogen atmosphere,

could be pumped up from a storage tank to any desired height up to

52 inches, and the level could be read on an external sight-glass indicator,
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correct to within 0,20 cm, The temperature of the heavy water was

recorded continuously by means of a platinum resistance thermometer.

The pulsed neutron runs were made with the M.I.T. reactor shut down -

during weekends and periods of reactor maintenance - so that the

neutron and gamma-ray backgrounds were minimal, The first few

experiments were devoted to establishing a systematic procedure for

the determination of the characteristic decay constant of the fundamental

thermal flux mode and to an examination of the effects of some of the

experimental variables on the measured decay constant. These experi-

ments and their analysis will be described in the next section.

7.1.1 Study of the Diffusion Characteristics of Heavy Water at Room

Temperature

It was thought desirable to improve our knowledge of the diffusion

parameters of heavy water; there have been relatively few pulsed neutron

die-away experiments on heavy water, and these have been restricted to
(1,2,3) 2= - 2 - 2

small assemblies,(2 in the buckling range B2= 140 m to 1200 m

having linear dimensions smaller than ten times the transport mean-free

path. In these cases, the extrapolation distance may be as large as 15

per cent of a linear dimension with the result that there may be signifi-

cant systematic errors if the extrapolation distance deviates from the

value 0.71 Xtr. Moreover, the absorption cross-section of heavy water

is so small that it can only be measured, with such pulsed neutron experi-

ments, in very large assemblies, corresponding to the buckling range in

which the higher order terms in the X vs. B2 relationship may be neglected.

The availability of a relatively large quantity of heavy water and of

the pulsed neutron system associated with the exponential facility made

it possible to conduct such experiments, A knowledge of the diffusion

parameters of heavy water is needed in the determination of the geo-

metrical buckling of the moderator assembly with the control rods and

in the evaluation of the prompt neutron lifetime as discussed in Section

3.5. These diffusion parameters are so sensitive to the isotopic and

chemical purity that they should be determined for the particular sample

of heavy water used in a sequence of experiments.
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Before proceeding with the actual runs, attention was devoted to

establishing criteria for the selection of the asymptotic decay constant

characteristic of the experimental assembly. The measured decay

constant was checked for reproducibility, variation with "waiting time"

and detector position (which affect the quality and content of the higher

harmonics), channel width (which enters in the dead-time correction),

repetition rate (which affects the delayed neutron and background cor-

rection), discriminator setting (which reveals if there is any significant

pulse pile-up) and, finally, the perturbation introduced by the thimble

and detector when these are placed inside the assembly.

The raw data from the analyzer in any die-away experiment con-

sist of the total number of counts in successive channels. Each set of

data is treated by an IBM-7090 code, EXPO,which has been written as

part of this program, to facilitate the reduction of the data from pulsed

neutron experiments (Appendix 2). This code fits the corrected experi-

mental counts vs. time data to a single exponential plus a constant back-

ground, i.e., to an expression of the form:

n = A e-Xt + B , (7.1)

and computes, by means of a weighted, least-squares iterative technique,

the values of the parameters X, A and B, together with their associated

uncertainties. As shown in the listings of the code, the counting loss for

each channel (Ith) is calculated as:

Corrn (I) = (Tdead)(Q(I)) (7.2)
(Pulsno)(Width)

where Q(I) is the experimental number of counts in Ith channel, Tdead is

the dead time, Pulsno is the total number of bursts (trigger pulses) and

Width is the channel width. The corrected number of counts is then given

by:

P(I) = (7.3)
1 - Corrn (I)

The code also sets the time at the middle of each channel:

T(I) = (Chdel) X (Width) - Tdel + (Spac) X (I- 0.5) ,7 (7.4)
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where Chdel is the delay multiplier, Tdel is the "target delay" (see

Chapter V, Section 5.3.5), and Spac(= Width+Gap) is the total spacing

between channel ends. The weights are based on the Poisson statistical

errors in the numbers of counts and are given by:

WT(I) = 1 . (7.5)
[P(I)]1/2

The code then fits P(I) against T(I) in a three-parameter fit of the form

of Eq. 7.1 and computes the decay constant X and the background cor-

rection B together with their standard errors. In analyzing the data,

the code has provisions to drop the initial channels one by one and to

calculate the decay constant for fewer channels each time, thus effec-

tively varying the "waiting time" between the injection of the burst and

the start of the data analysis along the decay curve. The effect on the

decay constant of dropping the points from the other end can also be

studied with the code.

In all the runs, the delay multiplier on the time-analyzer was set

at its minimum value, d = X 2, and the target delay at its maximum value,

100 psec (Section 5.3.5), so that almost the entire decay curve was

obtained. Thus, for example, with a channel width of 80 psec and the

maximum target delay 100 psec, only the first 60 psec (= 80X2- 100) of

the decay curve were left out, On the basis of an over-all dead time of

2 psec, the count-loss corrections amounted to a maximum of less than

1.0 per cent,

The source was always positioned at the top lid of the tank on the

central axis, this location prevents the excitation of higher azimuthal

flux modes. It would have been desirable to place the source in other

positions with respect to the assembly and to investigate the effect, if

any, on the measured decay constant. However, with the fixed exponential

assembly tank, other positions for the source were either inaccessible or

impractical. Typical decay curves obtained by plotting the background-

subtracted number of experimental counts (corrected for counting losses)

against time are shown in Fig. 7.1 for two different detectors located

differently. The lower curve was obtained by the use of the small BF 3
counter running in a thimble along the axis and located at half the total

heavy water height. The effect on the decay, of varying the counter
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position axially, was also investigated and found to be significant; this

point will be discussed more fully in a later section on experiments with

the lattice. The upper curve in Fig. 7.1 is based on the other detection

arrangement (Fig. 5.11b) with the long BF 3 counter located on a side of

the tank and external to it.

It is evident from the figure that the initial profiles of the two curves

are markedly different, as is to be expected from the different harmonic

effects. However, as soon as the higher space and energy modes have

decayed and the flux has stabilized, each curve assumes a single expo-

nential behavior and the two curves have the same slope, characteristic

of the decay of the fundamental mode. With the reactor shut down, the

background with these moderator assemblies was almost negligible with

the discriminator setting chosen, and it was possible to monitor the decay

of the fundamental mode over about two decades.

The variation of the decay constant with the waiting time, as obtained

from the computer code, is shown in Fig. 7.2 for each of the two above

detector configurations. As the waiting time is increased, so as to exclude

more of the initial time interval during which the harmonics are important,

the changes in the resultant decay constant become progressively smaller;

finally, each curve levels off, showing little fluctuations in the decay

constant, and the two curves merge to give a single, unique value for the

decay constant which corresponds to the persisting mode. The first point

at which the decay constant assumes its constant value gives the waiting

time required for the particular assembly; this point corresponds, on the

decay curve, to the point at which a single exponential behavior begins.

These considerations establish the criteria which permit the selection of

a unique value for the asymptotic decay constant that is independent of the

judgment of the experimenter.

The uncertainties shown for the decay constant are the statistical

errors arising from the least-squares fitting. The errors in the final

value of the decay constant were always less than 1 per cent, The repro-

ducibility (based on three repeat runs) was found to be within the experi-

mental uncertainties. The dependence of the decay constant on other

experimental variables was also investigated. No significant effects were

observed when the analyzer channel width (changed to 40 psec, 80 psec,
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160 psec), the repetition rate (10 and 5 pulses per second) or the discrimi-

nator setting (at three different readings on the dial) were varied. The

perturbation introduced by placing the thimble and small BF 3 counter in-

side the experimental assembly was studied by using the long, external

BF 3 detector and measuring the decay constant with and without the

central thimble and/or the small BF 3 counter along the axis of the

assembly. The resulting correction was found to be very small.

After the completion of these preliminary studies of the factors

determining the final decay constant, the formal measurements were

made of the diffusion parameters of heavy water at room temperature.

These consisted of obtaining the fundamental mode decay constants for

moderator assemblies of varying dimensions. The size of the assembly

(in the 36-inch-diameter tank) was varied by changing the moderator

height; since the level had to be varied, the external BF 3 counter was

not suitable and, in all these runs, the small BF 3 detector tube running

along the central thimble was used, its position in each case being fixed

at half the moderator height. At least ten different heights were investi-

gated varying from 55.7 cm to 132.7 cm. The waiting time was found to

vary from about 1 msec to about 2.2 msec from the smallest to the largest

sizes, respectively.

The final measured values of the decay constant X together with the

standard errors 6X, corresponding to the various sizes of the moderator

assemblies and the computed values of the geometrical buckling are shown

in Table 7.1. The geometrical buckling was calculated in each case from

the inner tank radius R = 45.72 cms and the indicated heavy water height H

according to the relation:

B2 1 2.405 + 2 (7.6)B= 'H+ d) +H 2d (7.6

The extrapolation distance d was assumed to be given by:

d = 0. 7 10 Xtr 3D (7.7a,b)
v

where the value of D was derived from the experimental data as will be

discussed below.
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TABLE 7.1

Measured Decay Constant X as a Function of

Geometrical Buckling B2 for 99.60% Heavy Water at 21*C

Height of D 2 0 Geometrical Buckling Decay Constant

H,cm B2 -2 X, sec

132.7 30.10 598.9 ± 5.2

123.2 31.87 649.2 ± 5.5

112.5 33.07 675.5 ± 5.1

102.4 34.54 700.6 ± 6.1

91.5 36.70 738.4 ± 6.7

81.1 39.56 795.4 ± 7.0

71.5 43.34 867.3 ± 7.0

65.7 46.42 926.4 ± 8.1

59.8 50.46 1004.0 ± 9.5

55.7 54.11 1073.3 ± 9.9
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The X vs. B2 data from Table 7.1 are plotted in Fig. 7.3. The vari-

ation is almost linear except at higher buckling values where the effect of
2

higher order terms in B , especially the diffusion cooling term, becomes

noticeable. The upper six points are plotted separately in Fig. 7 .3a, show-

ing more clearly the effect of diffusion cooling in small assemblies.

Two IBM-7090 computer codes have been prepared to facilitate the

reduction of (X,B 2) data for the extraction of the diffusion parameters

(Appendix 2). One of these, the DEECEE code, performs a two-parameter,

weighted, least-squares fit of the form:

X= + DB 2 -CB 4 , (7.8)

by means of an iterative procedure to calculate D and C together with

their standard errors. The code takes the actual physical dimensions of

the assemblies as input data and a calculated value of N0 as an input

parameter and computes the geometrical bucklings from an assumed

initial value of D in Eq. 7.7b. A fit of these buckling values against X

then yields D and C; the new value of D is then used to compute the

value of the buckling again from Eqs. 7.6 and 7.7 and a new fit is made.

The process is repeated until self-consistent values are obtained. The

value of the average velocity characteristic of a Maxwellian spectrum, is

taken in the code to be:

- 2 5(T l/2
v =-X 2.2 X 10 2) cm/sec, (7.9)

where T is the absolute temperature, in degrees Kelvin, of the moderator.

The second code, DIFFN, makes a three-parameter fit of the form

of Eq. 7.8 in a similar manner and computes from the data the values of

all three parameters X 0(=vra ), D and C along with the associated errors.

This code is useful in the analysis of the (N,B 2) data, if the latter cover a

wide enough buckling range and if they pertain to a moderator for which

the diffusion parameters are large enough so that the allowable uncertain-

ties warrant a three-parameter analysis.
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7.1. 1. 1 Determination of the Diffusion Parameters of Heavy Water

Finally, to obtain the values of vr a' D and C from the experi-

mental data, first the upper six points corresponding to the high buckling

range (Fig. 7.3a)were treated to a weighted, least-squares fit of the form

of Eq. 7.8 by using the DEECEE code. The value of the infinite medium

decay constant X\ was computed for 99.60 mole per cent heavy water

(sample analyzed at the Savannah River Laboratory) according to the

relation:

X = 2.2 X 105 NDL20P D2O+(1-p)H2]0 . (7.10)

Here, ND20 is the number of heavy-water molecules per cm 3 aD20 and

H 2 0 are, respectively, the 2.2 X 105 cm/sec microscopic absorption

cross-section of heavy and light water and p is the heavy-water concen-

tration. The value of X as calculated above represents a Maxwellian-

averaged value. The values of the 2.2 X 105 cm/sec absorption cross-

sections used were: aD20 = .0012 barn and aH20 = 0.66 barn (Ref. 4).

For 99.60 mole per cent D 2 0, this yields a value of , = 26,6 sec .

With this value of X 0 , the least-squares fit of the (X ,B ) data yields the

following values for D and C:

5 2 -1
vD = (1.961 ± 0.020) X 10 cm sec ,

(7.1la,b)
5 4 -1

C = (4.87 ± 0.31) X 10 cm sec .

The temperature of the heavy water was 20* C.

The complete set of (X,B 2) data in Table 7.1 was then analyzed.

An analysis by means of the DIFFN code showed that the buckling values

did not represent a wide enough range to permit a three-parameter fit.

A two-parameter fit of the form:

X = vZa + vDB 2 - CB 4 , (7.12)

with the value of C obtained above in Eq. 7.11b, was therefore attempted,

yielding the values:
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viia = (27.0 ± 5.0) sec~ , (7.13a,b)

vD = (1.967 ± 0.023) X 105 cm2 sec .

The values of vD in Eqs. 7.1la and 7.13b are consistent within the limits

of the uncertainties. Hence, the final values of the thermal neutron dif-

fusion parameters of 99.60 mole per cent heavy water at 20 0 C for the

buckling range investigated (30-55 m- 2), are:

vi a = (27.0 ± 5.0) sec~ ,

vD = (1.967 ± 0.023) X 105 cm 2 sec 1  (7.14a,b,c)

C = (4.87 ± 0.31) X 105 cm4 sec~ .

These values are compared in Table 7.2 with the values obtained by other

investigators in the literature. While the present work was in progress,

Meister and Kussmaul(5) reported the results of their pulsed neutron die-

away experiments for the measurements of the thermal neutron diffusion

parameters of 99.82 mole per cent heavy water at 220 C, based on a wide

buckling range (13 m-2 to 470 m- 2). Their results are also included in

Table 7.2. The values of vD and C from the present work are in good

agreement with those of Meister and Kussmaul, The somewhat lower

value of vD is due to the difference in the concentration of heavy water.
-1l

Although the value of vZa = (27.0 ± 5.0) sec is consistent with the value

X = 26.6 sec calculated from nuclear cross-sections for 99.60 per cent

D 2 0, it is not very significant because of its large uncertainty.

7.2 PULSED NEUTRON EXPERIMENTS IN MODERATOR WITH

CONTROL RODS

The values of the diffusion parameters obtained in the last section

were used to evaluate the geometrical buckling of cylindrical moderator

assemblies modified by placing individual absorbing rods along the central

axis. In these experiments, the 36-inch-diameter tank was used, filled

with heavy water to a height of 132.5 cm; an overflow vent on the side of

the tank allowed the level of heavy water to be maintained constant during

the run. In all the runs, the long, external BF 3 counter was used for the

detection of thermal neutrons. The rods were fixed at the top and bottom

so as to be located exactly along the vertical axis of the assembly.



TABLE 7.2

Comparison of the Thermal Neutron Diffusion Parameters of Heavy Water

D
From the value of D( ) = (0.827 ± 0.010) cm, using _ 2 X 2.2 X 105 cm sec

C.T'
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The thermal neutron decay curves of the assembly with and without

a typical rod (7.94 cm diameter) along the axis are shown in Fig. 7.4. A

significant change in the decay constant is evident. Altogether, seven

different rod sizes were investigated. The results are summarized in

Table 7.3. The values of the geometrical buckling B2 are found by solv-

ing Eq. 7.8 as a quadratic in B 2 , with the values of the parameters deter-

mined experimentally in the last section. Figure 7.5 shows a graph of the

change in buckling produced by the rod as a function of its diameter, and

compares the results with a theoretical curve. The latter is obtained on

the basis of one-group theory with values of the extrapolation distance for

the thermal flux in the rods obtained from measurements in exponential

experiments (Section 7.6.1.1). The agreement is fair, although one-

group theory somewhat overestimates the effectiveness of the rod in

changing the buckling.

The results listed in Table 7.3 will be used later in the evaluation

of the thermal neutron lifetimes for the different configurations and the

values of p/;-.

7.3 PULSED NEUTRON EXPERIMENTS WITH THE LATTICE FOR

THE DETERMINATION OF ITS REACTOR PARAMETERS

The first multiplying system to be fully investigated with the

methods developed in Section 3.5 was a lattice of slightly enriched

uranium fuel rods moderated by heavy water. The U235 concentration

was 1.03 per cent and the 0.25-inch-diameter fuel rods clad in aluminum

of thickness 0.028 inch were arranged in a triangular lattice with a

spacing of 1.75 inches. The actual fuel length was 48 inches, so that in

the lattice there was a bottom reflector of 2.5 inches, including aluminum

end plugs, adapter and the grid plate. The entire lattice was placed in a

tank of inner diameter 36 inches. This tank was also used in the moder-

ator experiments described in the two preceding sections and the over-all

experimental arrangement and detection systems used were the same.

When the small BF 3 counter was used along the axis in the assembly, the

central thimble replaced the single central fuel element and was surrounded

by six fuel rods as shown in Fig. 7.6. The change could be made with the
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TABLE 7.3

Measured Decay Constant of a Cylindrical Pure Moderator Assembly

with Thermally Black Rods of Different Radii Along the Axis

Fractional Change

Decay Geometrical Change of of Buckling

Constant Buckling Buckling Aa 2X 10-2

X, sec B2 -2 AB2 m 2 2'

594.1 ± 4.0 29.02 ± 0.22

670.3 ± 4.3 33.12 ± 0.24 4.10 ± 0.32 16.11 ± 1.2

728.5 ± 4.2 35.97 ± 0.24 6.95 ± 0.32 27.12 ± 1.2

757.3 ± 5.1 37.49 ± 0.25 8.47 ± 0.33 33.05 ± 1.3

789.8 ± 5.4 39.22 ± 0.26 10.20 ± 0.34 39.80 ± 1.3

813.7 ± 6.0 40.58 ± 0.26 11.56 ± 0.34 45.10 ± 1.3

848.1 ± 6.4 42.37 ± 0.27 13.35 ± 0.35 52.08 ± 1.4

875.5 ± 6.4 43.83 ± 0.28 14.81 ± 0.36 57.78 ± 1.4
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aid of a hole in the top plastic adapter especially fabricated for this

purpose and for control rod experiments. The circular cadmium plate

clad in aluminum was allowed to rest in and cover the bottom of the

tank so that the whole assembly was surrounded on the outside surface,

including the top, with 0.020-inch-thick cadmium.

The effect on the measured decay constant, of the detector location

and waiting time was investigated first. Figure 7.7 shows the thermal

neutron decay curves (corrected for count losses and background)

obtained with the long external detector and with the small detector placed

axially at half the moderator height inside the assembly. As in the case of

the moderator runs, although the initial slopes are markedly different,

each gives the same asymptotic decay constant after the initial flux stabi-

lization region is excluded from the analysis. This result is shown in

Fig. 7.8 in which the decay constant for each run is shown as a function

of the waiting time. The decay constant approaches the constant value

from different directions, and the delay time is about the same in the two

cases.

The variation of the decay constant with the axial position (height)

of the small BF 3 detector is more interesting and instructive. From

physical intuition and symmetry considerations, it would appear that the

most natural location for the detector is at half the moderator or assembly

height. This expectation is borne out since only in this case does the decay

constant approach a constant value with a reasonable waiting time, and this

constant value is the same as that obtained with the long external detector.

The effect of placing the small BF 3 counter at several heights along

the axis was also studied. Thermal flux decay curves in three typical

cases, with the detector at the midway point, and 7 inches above and below

it, are shown in Fig. 7.9. It is seen that in the latter two cases, a very

long time is needed for the flux to show a persisting single-exponential

behavior; by this time, the fundamental mode has decayed to such an extent

that the remaining portion of the curve is statistically unreliable. In the

upper position, the proximity of the fast source interferes with the quick

establishment of a fundamental mode. The above observation is strengthened

by considering the variation of decay constant with waiting time in the three

cases, as shown in Fig. 7.10. While the decay constant for the central
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position assumes a constant value at about 2.2 msec, in the other two

cases it continues to vary slowly and seems to tend to the constant value

of the middle curve.

As an independent study, the effect of harmonics was further investi-

gated by mapping the axial flux at different stages of the stabilization of

the flux in the assembly. By moving the small BF3 counter successively

to five different positions along the axis and measuring the prompt neutron

flux decay in each case, the axial flux distribution 4(z.,t) was obtained at

different times. An attempt was made to normalize these runs by keeping

the total number of bursts the same and maintaining the absolute source

strength constant. However, no special means were provided to ensure

normalization; a separate monitor detector can be used for this purpose.

The axial flux distribution at different times after the burst is shown in

Fig. 7.11 which brings out several interesting features. Just after the

injection of the fast neutron burst from the source (at t = 105 p1s), we have

a highly skew flux distribution which peaks near the top of the tank, i.e.,

near the location of the source. The peak gradually moves toward the

center of the tank and the distribution approaches a symmetrical normal

mode. This phenomenon begins at about the value t= 2.3 msec and con-

firms the earlier independent observation of a waiting time of about 2.2

msec at the full heavy water height.

The effect of the perturbation introduced by the thimble, the detector,

etc. was also examined. The heavy water was kept at the full height of

130.5 cm, and the external long BF 3 counter was used. The decay constant

was measured with and without the thimble and/or the small BF3 counter

and with and without the central fuel element in place along the axis. The

effect of removing the central thimble is to change the measured decay

constant by as much as 1.5 per cent. The small BF 3 counter or the central

fuel element by themselves do not produce any significant effect on the decay

constant. The correction due to the introduction of the thimble is small and

will be considered later in the discussion on sources of errors.

The delayed neutron decay was studied by locating the small BF 3
detector at half the core height and running at a repetition rate of one pulse

per second with a channel width of 1280 psec. The pulsed source was in

operation for some time before this run was started. Since the assembly



t=2355p

w
z
zU

3 0

t=3525ps

t=4625ps

15 20 25 30 35 40
~- Z (INCHES)

FIG.7.I SPATIAL THERMAL FLUX DISTRIBUTION IN AXIAL DIRECTION

p (z ,t) AT DIFFERENT TIMES t AFTER BURST IN THE

MULTIPLYING ASSEMBLY



7-27

was far subcritical, the statistics of the delayed neutron tail were very

poor and no distinct delayed neutron contribution from the assembly was

noticeable. The over-all variation in the delayed neutron tail was less

than 3 per cent within a 100-msec timing cycle and could be considered

as a constant background to be subtracted from the observed counts. The

background intensity can be determined from the pre-burst background,

i.e., the first, channel (Section 5.3.4) of the time analyzer, and the corrected

prompt neutron flux <(t) can be determined. The background intensity can

also be obtained from the code EXPO (Appendix 2) which reduces the experi-

mental data or by averaging the counts in the end channels of the decay

curve.

After these auxilliary studies, the main runs were made and the

prompt neutron decay constant X was measured as a function of the geo-
2

metrical buckling, B , corresponding to different heights of the moderator

in the assembly. In every case, the small BF3 counter was located at half

the moderator height and the asymptotic decay constant determined by the

methods described above. In all, eleven different points were obtained for

the (X, B 2) data. The results are shown in Table 7.4 and the X vs. B2 curve

is plotted in Fig. 7.12.

The points are found to lie approximately on a straight line, especially

in the lower buckling range, thus supporting qualitatively the conclusion

drawn from the theoretical study (Section 3.5). In Fig. 7.13, the (X vs. B 2

curves for the pure moderator assembly and the subcritical lattice system

are shown on the same graph. This figure brings out the mutually counter-

acting effects of additional absorption and multiplication due to the intro-

duction of the lattice in the pure moderator tank.

7.3.1 Evaluation of the Lattice Parameters

In this section, we follow the methods outlined in Section 3.5 and

utilize the data obtained so far, from the pulsed neutron runs on pure

moderator and lattice assemblies, to obtain quantitative information about

the lattice. For this analysis, we need the values of the effective delayed

neutron fraction j :and the neutron age to thermal r for the lattice; the

calculation of these quantities for the lattice is shown in detail in Appendix 3.

The parameter p is calculated by taking into account, also, the delayed
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TABLE 7.4

Measured Prompt Neutron Decay Constant as a Function of

Buckling for the Lattice of 0.25-Inch-Diameter, 1.03% U235 Uranium Rods

with a Triangular Spacing of 1.75 Inches

Moderator Height

H cm

130.2

122.0

110.7

101.5

90.7

80.5

75.4

70.6

65.8

60.8

55.6

Buckling

B2 m-2

31.26

31.95

33.31

34.50

36.89

39.78

41.71

43.81

46.48

49.78

54.22

Prompt Decay Constant

X sec

713.6 ± 6.5

741.5 ± 6.4

787.3 ± 7.0

826.2 ± 7.2

902.5 ± 8.1

1001.0 ± 8.9

1052.2 ± 8.7

1126.1 t 10.0

1199.5 ± 11.1

1294.5 ± 11.8

1427.0 ± 13.1



1500 1

1400-

1300-

1200-

1100 -

S1000

900-

80C-

700-

0 10 20 30 40 50 60 70 B2  r6 2

FIG. 7.12 PROMPT NEUTRON DECAY CONSTANT X AS A FUNCTION OF BUCKLING B2 , FOR THE LATTICE
OF 0.25-INCH DIAM, 1.03 % U23 RODS IN HEAVY WATER WITH A TRIANGULAR SPACING OF 1.75
INCHES



-e-MULTIPLYING ASSEMBLY

----- PURE MODERATOR ASSEMBLY

/

/

I' / /

A'
/

1'
/

/

30 40 50 60

FIG.7.13 VARIATION OF THE MEASURED DECAY CONSTANT X WITH GEOMETRICAL BUCKLING B2 FOR A

MULTIPLYING AND A NON-MULTIPLYING ASSEMBLY.

140C

130C-

1200-

100[-

TI

10C -

80C -

700-

600[--

0

,U(

10 20 70 B2 nifp p

I



7-31

photoneutrons in heavy water; and - is corrected for light-water contami-

nation, inelastic scattering and the reduced moderator volume. We have

the following values:

p = 0.00783
(7.12a,b)

= 120.0 ± 3

We transcribe the data obtained earlier from moderator runs:

v-mod = 2.0*50 _e
a =s(7.13a,b)

52
vD = (1.967 ± 0.023) X 10 cm /sec

Finally, if the X vs. B2 data from runs on the subcritical assembly

(Fig. 7.12) are fitted to an expression of the form:

X=-m + nB - qB , (7.14)

we get:

m = vyi (1-p)ko-1) = (467.2 ± 23.7) sec~

- 5 2 -n vD + v a(1- p)k 0 T = (4.203± 0.048) X 10 cm sec 1

1 2 6 4 -1q = a va(1- p)k 0T= (13.2 ±2.5) X 10 cm sec

(7.14a,b,c)

In the range of values of the buckling covered by the data, a typical value

of B 2r is 0.4, and it is necessary to include the term in B4 in the approxi-

mation e- B2,r 1 - B 2T + B 4 , so that Eq. 3.17 for the decay constant2 2
reduces to Eq. 7.14. The X vs. B2 points are very well represented by the

fitted curve with the values of Eqs. 7.14a,b,c and Eq. 7.14 is adequate.

From Eqs. 7.14a and 7.14b, we get for the total absorption cross

section in the lattice:

v n-D -i n, (7.15)
a T

and, using the values given above, we get:

-1
k (7 16)V2 = (1 +65.5) sec
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From Eqs. 7 13a and 7.16, we obtain the macroscopic absorption cross

section for the fuel as:

-fuel -modvE a = VZ a - v a =(1369.1±65.7) sec
a a a

We also have, from Eqs. 7.14a and 7.14b, the expression for the prompt

infinite multiplication factor:

(1- O)k = n - vD , (7.18)
(n- vD) - my

which can be written as:

1 1- (7.19)
(1- p)k0 (n- VD)

Putting in the values of the constants m, n, vD and T, we get:

(1-O)ko = 1.335 ± 0.026 , (7.20)

from which, by using Eq. 7.12a, we get:

k = 1.345 ± 0.026 . (7.21)

The diffusion area in the moderator (99.60 mole per cent heavy water) is

given by:

L = = ( 7280 ± 138) cm2 (7.22)m v-MvZ a

As discussed in Section 3.5, we assume that since the fuel concentration
mod

is low, D D . Then the diffusion area in the lattice is given by:

L2 = (140.9 ± 6.9) cm . (7.23)
v Z a

The moderator thermal utilization, fm, is given as:

f = 2 = 0.0193 ±0.0037, (7.24)

m
so that,

fU + fA m = 0.9807 ±0.0037, ((7.25)
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where fAl represents the neutron absorption by the cladding.

If we use the value of the "thermal utilization" for the cladding

given by the THERMOS code,

fAe = 0.015 , (7.25a)

then Eq. 7.25 yields the thermal utilization for the lattice:

f =1 - fAl - m = 0.9657 ± 0.0037

Actually, it can be shown(8) that Eq. 7.24 contains six other terms which

are negligible provided Nm " NU, i.e., if the fuel concentration is low.

In the present case, VM/VU = 52.4 and the combined contribution of these

terms amounts to about one per cent in fm'
Now, the basic equation for the decay constant of the subcritical

system is:

-2- -B -r(726
v=Zv + vDB - vZ (1-)k e . (7.26)

a a o

For the subcritical assembly with full heavy water height, we have from

Table 7.4,

X = (713.6 + 6.5) sec~ and B2 = 31.26 X 10~4 cm-2

(7.27)

Using these values and those of vD and vZa from Eqs. 7.13a, 7.16, in

Eq. 7.26, we get:

2
(1- )k e- = 0.929 ± 0.064 . (7.28)

0

We also have from the value of L2 in Eq. 7.23 the thermal non-leakage

factor,

22 = 0.694 ± 0.011 . (7.29)
1 +L B

Hence, from the last two equations, we get the prompt multiplication

factor (effective):

2
k e-B r

(1-0) 2 2 = 0.645 ± 0.046 , (7.30)
1 +L2B
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whence,

k e-B 2

k =_ 0 = 0.650 ± 0.046 . (7.31)
1 + L2B2

Furthermore, the prompt neutron lifetime is:

= 2 = (497.3 + 16.4)psec . (7.32)
vZ + vDB

a

2
The prompt-critical buckling B , corresponding to X = 0, is given by

PC' 2
solving Eq. 7.14 as a quadratic in B , with the values of m, n and q

from Eqs. 7.14a,b,c:

2
B2 = (1152 + 53) pB. (7.33)

PC

Finally, the material buckling for the subcritical assembly may be

obtained from the two-group equation:

2 1/2
B 2  1 -(r+L2 + (T+L ) +4(k -1)TL2 (7.34)

m 2TL 2-0

with the values, obtained earlier:

2 2 2
T =(120 + 3) cm , L =(140.89 6.7) cm

k = 1.3451 + 0.025

we get:

2
B =(1250 72)pBm

We can also use the age-theory transcendental equation instead of
2

Eq. 7.34 to evaluate the material buckling Bm
Finally, the last of Eqs. 7.14 can be used to obtain a rough value

for the neutron age in the lattice. If we put in the values of vza,(1-i5)k ,

etc. from above, in Eq. 7.14, we get:

T = 118 ± 20 .

The uncertainty is large but this does show that the value,

T = 120 ± 3, that has been used is reasonable.

These results will be discussed and evaluated in a later section.
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7.4 PULSED NEUTRON EXPERIMENTS ON PERTURBED MULTI-

PLYING SYSTEMS

The next set of experiments, following the analysis outlined in

Section 3.7, involved the measurement of the prompt decay constant of

the subcritical assembly, perturbed by the full insertion of a single

control rod along the axis. The same lattice was used as for the

measurements described in Section 7.2. However, to make room for a

control rod along the axis, the seven central fuel elements were removed

and a 4.0-inch-diameter circular hole was opened in the special plastic

adapter (Fig. 7.6). The fabrication of the control rods and the arrange-

ment for positioning them along the axis rigidly, are described in Section

5.1.2. The control rods in all these experiments were hollow and empty,

being closed at the bottom. The heavy-water level was maintained

constant at the overflow line (132.5 cm). The detection system with the

long, external BF 3 counter fixed longitudinally on the side of the tank

(Section 5.3.3, Fig. 5.11b) was used throughout these runs. The pulsed

neutron source was placed on the top lid of the tank along the axis and

the assembly was surrounded on all sides by 0.020-inch-thick cadmium.

At the end of each run, the time analyzer was allowed to sweep for about

10 minutes after the source was shut off so as to ensure the conditions

for a quasi-equilibrium (Section 3.6.3); these same runs could then be

used for the application of the ks/P method (ibidem). The repetition rate

was 10 pulses per second and the time analyzer channel width was 80 psec.

The delay multiplier of the time analyzer was set at X2 and the target

delay (Section 5,3.5) at its maximum value, 100 psec, so that all but the

first 60 psec of the decay curve could be mapped.

Cadmium control rods of seven different sizes were used and the

decay constant was measured in each case. The results are shown in

Table 7.5. The change in decay constant AX, with respect to the unper-

turbed lattice (without the seven central fuel elements), is related to the

change in buckling caused by the rods, according to the relation (Section 3.7):

AB2 = - 2 " (7.35)

vD + v a(1- 3)k r e-B r



TABLE 7.5

Measured Prompt Neutron

Different Radii Along the

Decay Constant and the Change in Buckling Due to Cadmium Rods of

Axis; Lattice of 0.25-Inch Diameter, 1.03% U235 Uranium Rods in

Heavy Water, with a Triangular Spacing of 1.75 Inches

Prompt Decay
Constant

X, sec~

689.9 ± 4.0

771.1 ± 5.1

846.5 ± 5.4

879.7 ± 6.1

935.0 ± 7.0

963.9 ± 7.7

997.5 ± 8.2

1029.9 ± 9,0

Change in
Decay Constant

AX, sec

81.2 i 6.4

156.6 t 6.72

189.8 t 7.3

245.1 i 8.0

274.0 8.7

307.6 ± 9.1

340.0 ± 9.8

Change in
Buckling

AB2 _ 2(10- cm -2

2.300 ± 0.18

4.436 ± 0.19

5.387 ± 0.21

6.943 ± 0.23

7.762 ± 0.24

8.714 ± 0.26

9.632 ± 0.28

Fractional
Buckling Change

A X 10-2

8.97 ± 0.7

17.30 ± 0.7

21.02 ± 0.8

27.09 1 0.9

30.28 ± 0.9

34.00 ± 1.0

37.58 ± 1.1

Rod
Radius

cm

None

0.635

1.295

1.714

2.209

2.667

3.327

3.969

H
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The values of the parameters occurring in Eq. 7.35 have been obtained

earlier - either through measurement or calculation. The buckling B 2

refers to the unperturbed lattice. Since the height of the core is main-

tained constant in all the runs, AB2 is also the change in the radial

buckling caused by the rod:

AB2 = A2 . (7.36)

The last column in Table 7.5 shows the value of the fractional change in
2 2

radial buckling Ac2 /a 2 , caused by the rods of different sizes. In Fig. 7.14,
2 20

AC2/a is plotted against the rod radius. These results will later be com-

pared with the results of steady-state experiments and two-group

calculations.

The value of the geometrical buckling with the control rod in the

assembly from Table 7.3, and the value of the prompt neutron decay

constant from Table 7.5, may be used to evaluate the prompt neutron

lifetime P, the parameter p/ and the negative reactivity of the assembly

with the rod in place. The results are shown in Table 7.6. The value of
-1 -1

the parameter 5/ is seen to vary from 15.6 sec to 17.6 sec over the

range of reactivity studied. The negative reactivity, or the degree of sub-

criticality of the lattice in any configuration, is calculated from the prompt

neutron lifetime and the measured decay constant by the relation (Section

3.7.1);

p .(7.37)

The values of p for the lattice in the unperturbed state and with the control

rods of different sizes individually inserted, are shown in the next to last

column of Table 7.6. Finally, the last column of this Table 7.6 shows the

reactivity worth, Ap, of the rods as measured by the change of subcriti-

cality caused by the rod in the unperturbed assembly. The values of Ap

are plotted in Fig. 7.15 as a function of the control rod radius. The points

lie on a smooth curve of the general shape expected from theoretical

considerations.
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TABLE 7.6

Prompt Neutron Lifetime and Reactivity for the Perturbed Lattices,

Measured by the Pulsed Neutron Method

Negative
Prompt Inverse Prompt Reactivity

Rod Geometrical Neutron Lifetime Decay _ fiRod
Radius Buckling Lifetime Parameter Constant ( _ Worth

2 -2 -1 1
(a:cm) (B :m-) (1: isec) sec~ (X:sec )-

None 29.02 ± 0.22 502.7 ± 16.3 15.58 ± 0.50 689.9 ± 4.1 0.519 ± 0.02

0.635 33.12 ± 0.24 490.3 ± 15.9 15.97 ± 0.51 771.1 ± 5.2 0.595 ± 0.03 0.076 ± 0.007

1.295 35.97 ± 0.24 475.0 ± 15.4 16.48 ± 0.53 846.5 ± 5.4 0.659 ± 0.03 0.140 ± 0.008

1.714 37.49 ± 0.25 469.4 ± 15.2 16.68 ± 0.54 879.7 ± 6.1 0.690 ± 0.04 0.171 ± 0.009

2.209 39.22 ± 0.26 463.3 ± 15.0 16.90 ± 0.55 935.0 ± 7.0 0.750 ± 0.04 0.231 ± 0.009

2.667 40.58 ± 0.26 458.2 ± 14.6 17.08 ± 0.55 963.9 ± 7.7 0.777 ± 0.04 0.258 ± 0.009

3.327 42.37 ± 0.27 451.1 ± 14.5 17.35 ± 0.56 997.5 ± 8.5 0.804 ± 0.04 0.285 ± 0.010

3.969 43.83 ± 0.28 445.9 ± 14.4 17.56 ± 0.57 1029.9 ± 9.0 0.835 ± 0.04 0.316 ± 0.010

CAD

CD3
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7.5 PULSED NEUTRON EXPERIMENTS ON SMALL ASSEMBLIES OF

PURE MODERATOR

In the early stages of the pulsed neutron work of the present

investigation, a Cockcroft-Walton type accelerator was used in several

die-away experiments involving different assembly configurations and

detection systems based on varying means of suppressing the harmonics,

to extract the fundamental mode decay. The purpose of these experi-

ments was primarily to test the over-all pulsing, detection and analyzing

circuitry and to gain experience in the selection of appropriate experi-

mental pulsing parameters, preparatory to setting up the main pulsed

neutron system in conjunction with the exponential facility. However, a

few experiments were done on small assemblies of moderator -

especially heavy water - to study their thermal neutron diffusion charac-

teristics, It was originally intended to compare the results from these

runs on heavy water to those from die-away runs with the large expo-

nential tank and compare the diffusion parameters based on different

buckling ranges, However, the heavy water sample had an uncertain history

in various experiments with a resulting uncertainty in its purity. Hence,

although it was useful for our early experiments, a valid comparison of

the results obtained could not be made with those obtained in the later

experiments in the exponential tank.

The equipment used for these experiments has been described in

Section 5.2 (Fig. 5,6). The test assemblies were cylindrical jars of glass

or aluminum, with diameters varying from 15.5 cm to 43.8 cm, filled with

heavy water to heights of 17.8 cm to 48.3 cm, thus providing a buckling

range of 140 m to 855 m The outer surface of each assembly was

covered with 0,020-inch-thick cadmium sheets. The heavy water was

transferred from the storage vessel to the test assembly in a nitrogen

atmosphere to prevent degradation and the assembly was subsequently

closed with plastic, leak-tight covers so that the heavy water remained in

a nitrogen atmosphere throughout. The pulsed neutron source was a 150-

KV Cockcroft-Walton type accelerator equipped to generate neutrons by

the (DD) reaction. The pulse widths used varied from 5 psec to 12 psec

and the repetition rate from 500 pulses per sec to about 670 pulses per

sec. The fast neutrons from the source were allowed to thermalize and
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the asymptotic thermal flux emerging from the assembly was detected by

a 5-inch, Li 6-ZnS plastic fluor mounted on a Dumont 6364 phototube. The

detector was surrounded on the sides by a 0.020-inch cadmium sheet and

was mounted on the axis of the assembly so as to be exposed to a 5-inch-

diameter circular window cut in the cadmium cover on the top of the

assembly. The target was located on the axis of the assembly at the

bottom. Thus, the harmonic modes having radial nodal planes through

the axis were not excited for reasons of symmetry. The complete elec-

tronic circuit is shown in Fig. 5.7.

The analysis of the data was done in a manner similar to that

described in Section 7.1; the EXPO code was used to extract the funda-

mental mode decay constant from the experimental data. With the source-

detector configuration described above, the variation of the decay constant

with waiting time was also studied. An example of this variation for a

typical assembly is shown in Fig. 7.16; it is seen that as the fundamental

mode is approached, the decay constant assumes a constant, unique value.

The uncertainties in the final value of the decay constant were between

1 and 2 per cent as given by the fitting procedure. The reproducibility

in repeated runs was within these uncertainties. The waiting time varied

from about 150 psec for the smallest to about 200 psec for the largest

assemblies.

The final values of the decay constant X and the corresponding geo-

metrical buckling B2 are shown in Table 7,7. The buckling was calculated

according to the prescription of Eqs. 7.6 and 7.7. The curve of X vs. B2

is shown in Fig. 7.17. The effect of diffusion cooling is evident at larger

values of the bucklings. Finally, the data from Table 7.7 were fitted to

an expression of the form of Eq. 7.8 by a least-squares iterative pro-

cedure, with the code DEECEE described earlier. A value of X0 =

26.6 sec~ , based on a calculation for an assumed concentration of

99.60 mole per cent D 2 0, was used. The experimental points are well

represented by the least-squares-fitted curve, thus suggesting that the

role of a higher B -term in the X vs. B2 relationship (7.8) is, at most,

very small. The values of the two parameters from the least-square fit

are: 5 2
vD = (1.790 * 0.016) X 10 cm /sec

5 2 (7.38ab)
C = (3.581 0.360) XK 10 cm /sec.
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TABLE 7.7

Measured Decay Constant as a Function of Buckling

for Small Cylindrical Assemblies of Heavy Water

Buckling Measured Decay Constant

B2 m-2 X, sec~

140

180

347

549

625

854

2448.5 ±

3154.4 ±

5812.7 ±

9045.8 ±

10117.5 ±

12520.9 ±

31,5

42.7

55.3

112.8

184.3

301.9

Radius

R, cm

Height

H, cm

21.907

19.367

12.224

10.160

10.160

7.779

48.260

40.640

40.640

22.860

17.780

17.780
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The temperature of the heavy water was 210 C. The value of C is in

agreement with that of Ganguly and Waltner(3) (Table 7.2) based on

measurements in a comparable buckling range. The value of vD is

decidedly lower than expected. However, the validity of any quantita-

tive comparison of these values is somewhat doubtful in view of the

uncertainty in the purity of the heavy water sample used in these runs.

7,6 STEADY-STATE EXPONENTIAL EXPERIMENTS WITH CONTROL

RODS

In this section, the analysis developed in Chapter IV will be applied

to obtain information about control rods in exponential experiments. The

subcritical facility was used as an exponential assembly with the thermal

column of the MITR as the neutron source. Experiments were done with

the exponential tank filled with heavy water alone, and with the lattice.

7.6.1 Moderator Experiments

7.6.1.1 Measurement of the Extrapolation Distance For Black

Cylinders. The extrapolation length of a thermally black cylindrical rod

was determined by relating it to the change in axial buckling produced by

the rod in an assembly of pure moderator irradiated by a stationary

thermal neutron source. The measurements were made for black rods

of different diameters. In a bare cylindrical assembly of moderator of

extrapolated radius R, with a black cylindrical rod placed along its axis,
the radial flux is given under one-group diffusion theory as:

J 0(aR)
4(r)=A J (ar) - J )Y(ar) . (7.39)

o Y 0(aR)

When this expression is inserted in the equation defining the extrapolation

distance d, the result is:

d 0(r) _ 1 Y0 (aR)Jo(aa) - Y (aa)J (aR)
d _- _ .0(7.40)

4(r) r=a 1(aa)J (aR) - Y (aR)J (aa)

Thus, if a is known, Eq. 7.40 gives d for a rod of radius a. The parameter

a can be determined by measuring the axial buckling of the moderator
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assembly with (-y) and without (-y 0 ) the rod along its axis and observing

that the material buckling is not changed by the introduction of the addi-

tional boundary. Then:

2 2 2 2 2
Bm= a -y = a 0 -y 0 ,

2 2 2
a =C 0 + Ay (7.41a,b)

The measurements were made in the 48-inch-diameter tank in the

M.I.T. exponential facility. The tank was filled with heavy water (99.70

mole per cent, temperature 200 C) up to a height of 52 inches and fed at

the bottom with neutrons from the thermal column of the MITR. The

axial buckling was measured in each run by activating 0.25-inch-diameter,

0,010-inch-thick gold foils attached to aluminum foil holders, and mapping

the axial flux. After irradiation, the foils were gamma-counted by setting

the counting system (Section 5.1.3, Fig. 5.5) to straddle the 411-key Au 1 9 8

gamma-ray peak with a window width of 60 key.

Figure 7.18 shows the axial flux distribution in the moderator tank

without the rod (continuous curve) and with a typical (2.10-inch-diameter)

cadmium rod along the axis (dashed curve). The measured flux is ade-

quately represented by a single exponential in both measurements and the

change in the slope produced by the rod can be measured with satisfactory

precision. The axial buckling was calculated from the axial flux with the

help of an IBM-7090 code AXFIT. The errors given by the least-squares

fit are of the order of 0.25 per cent.

The results are listed in Table 7.8. The corresponding values of the

radial buckling calculated from Eq. 7.41b and the values of d computed

from Eq. 7.40 are also given. The value of the extrapolated core radius R

is obtained by augmenting the actual physical radius by the extrapolation

distance for a "plane" boundary:

R = R0 + 0.71045 XX tr(D2 0), (7.42)

with

Xtr(D2O) = 2.5 cms. 9 (7.42a)

The errors in d are due to uncertainties in -y and amount to about 2 per

cent. The values of d (cm) are plotted as a function of the radius of the
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TABLE 7.8

Measured Extrapolation Distance of Thermally Black Rods

Rod Axial Buckling Radial Buckling Buckling Change Extrapolation

Radius 7y Parameter, a Aa2 _ 2 Distance, d
-6 -2 -3 -1 -6 -2

cm 10 cm 10 cm 10 cm cm

0.635 1732 ± 4 41.43 238 2.82 ± .08

1.295 1882 ± 4 43.20 388 2.62 ± .07

1.714 1968 ± 3 44.19 474 2.44 ± .06

2.209 2055 ± 4 45.16 561 2.29 ± .05

2.667 2128 ± 5 45.96 634 2.20 ± .05

3.327 2225 ± 5 47.01 731 2.11 ± .05

3.969 2315 ± 5 47.96 821 2.02 .05

Axial buckling of moderator assembly without rod: = 0.001494 .0000038
0:
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black cylinder in Fig. 7.19.
2 2

Figure 7.20 shows the variation of Act2 /a2 with rod radius. For
0

small values of the radius, the variation is approximately linear as is

to be expected on simple theoretical grounds, as will now be shown. The

radial flux distribution in the tank without the rod is:

S(r) = A 0 J0 ( L0 r) . (7,43)

If an absorber is introduced along the axis of the assembly, the asymptotic

part of the radial flux may be written as:

(r) = A[ J0 (Qr)+CY0 (ar)] , (7.44)

where

J (aR)
C = (7.45)

Y (a.R)

For small values of the rod radius, we can write:

= 0 + AL . (7.46)

After some simplification, we obtain:

C2 Y(a9R)
0~L 0 0

a9 a9RJy(a9R)

= 2C 0.510 = 0.817 C (7.47)
2.405 X 0.519 .

On the other hand, the strength of the perturbation, C, is proportional to

the strength of the (negative) source represented by the absorber, i.e.,

C ~ (27ra) 2a4o(a) . (7.48)

From Eqs. 7.47 and 7.48, it follows that

Aa 2 c a (7.49)
2

ao0

Thus, for small values of the rod radius, the fractional buckling change,

in a pure moderator assembly, should vary linearly with the rod radius.
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The extrapolation distance can also be obtained from pulsed neutron

experiments (Section 7.2) which yield the change in buckling AB2 (=Aa 2

due to the rod. The results of the two methods agree within experimental

uncertainties.

7.6.1.2 Mapping of the Radial Flux with the Control Rod in a Moder-

ator Assembly. The validity of the above method depends on the accuracy

with which the parameter a can be determined from Eq. 7.41b. To check

this condition, the experimental radial flux was plotted for each of two

typical rod sizes and was compared with that given by Eq. 7.39 with the

value of a calculated from Eq. 7.41b. The agreement was good, as is evi-

dent from Fig. 7.21.

7.6.2 Exponential Experiments with Control Rods in Multiplying

Assemblies

7.6.2.1 Measurements Based on Axial Flux Distributions. In this

section, the analysis presented in Chapter IV will be further applied to

measure the change in buckling caused by the rod in an exponential sub-

critical assembly. These experimental runs were done in the 36-inch-

diameter, exponential tank, with 0.25-inch-diameter uranium rods contain-

ing 1.03 per cent U 235, arranged in a triangular lattice with a spacing of

1.75 inch. The seven central fuel elements were removed to make room

for the control rod (Fig. 7.6). The latter was introduced through a top

plastic adapter and positioned along the axis of the assembly in the manner

described in Section 7.3. An axial foil folder of aluminum could be fixed

in an off-center position in the moderator region between fuel rods. Gold

foils, 0.010 inch thick and 1/8 inch in diameter, were attached to the foil

holder. The lattice was irradiated with thermal neutrons from the thermal

column of the MITR. After irradiation, the foils were gamma-counted as

described in Section 5.1.3. The experimental counts were corrected for

dead time, long-term drift, background, foil weights, decay during count-

ing, etc., and the final axial distribution was obtained for the unperturbed

lattice and for the lattice with each of seven different size rods individually

placed along the axis. An example of the axial distribution is shown in

Fig. 7.22. In a large enough region, the harmonic content is negligible and

the data are fitted well by a single exponential. The change in the slope of

the curve, caused by the placement of the rod, is seen to be significant.
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The value of the fundamental axial buckling y2 was calculated in

each case by fitting the axial flux distribution <( z) to the function

A sinhy(h- z), by means of a least-squares fit. This is done by an

IBM-7090 computer code AXFIT. Thus, the experiments give directly

the change in axial buckling produced by a control rod. The conversion

of result to the equivalent change in radial buckling is based on the theory

discussed in Section 4.2. The results are given in Table 7.9. The unper-

turbed lattice refers to the lattice without a control rod and without the

seven central fuel rods. The fractional change in radial buckling caused

by the rod, as measured in this steady-state exponential experiment, is

compared in Table 7. 10 with the results of pulsed neutron experiments.

The results of the two methods agree within the experimental uncertain-

ties, although these uncertainties are somewhat larger in the steady-

state case.

7.6.2.2 Examination of the Flux Spectrum: Radial Runs. As dis-

cussed in Section 4.3, a necessary condition for the results of exponential

experiments such as those above, to be analyzed in terms of the properties

of the lattice by simple theory, is that the neutron spectrum, which is per-

turbed near the rod, should recover its asymptotic value within the bounds

of the assembly. To examine this condition, radial flux distributions were

measured in the unperturbed and perturbed assemblies with bare and

cadmium-covered gold foils. The 0.010-inch-thick, 1/8-inch-diameter,

gold foils were attached to a horizontal aluminum foil holder placed along

a chord of the tank so as just to graze the control rod in the perturbed

assembly. This configuration and the setting of the foils with respect to

the fuel rods and the control rod are shown in Fig. 7.23. Cadmium boxes

providing a cadmium sheath 0.020 inch thick were used to obtain the acti-

vation above the cadmium cut-off energy. The foil holder was placed suf-

ficiently far from the bottom (neutron source) so that the measured flux

distribution was representative of the lattice spectrum; in previous

exponential runs, it was found that at 60 cm and 108 cm above the bottom

of the tank, good fits to a J (ar) were obtained.

Figure 7.24 shows the radial flux distribution, with bare gold foils,

in the assembly with and without the largest (8.0 cm diameter) control



TABLE 7.9

Buckling Change Produced by Axial Cadmium Rods of Different Radii in the Multiplying Assembly,

Measured in Exponential Experiments

Rod Radius Axial Buckling Change of Buckling Fractional Buckling Change

(cm) 2 - 2 2 2 -2 a 2

0

None 12.148 ± 0.18

0.635 14.340 ± 0.21 2.192 ± 0.28 0.092 ± 0.012

1.295 16.188 ± 0.23 4.040 ± 0.29 0.170 ± 0.012

1.714 17.068 ± 0.25 4.920 ± 0.31 0.207 ± 0.013

2.209 18.513 ± 0.26 6.365 ± 0.32 0.268 ± 0.013

2.667 19.468 ± 0.28 7.320 ± 0.33 0.308 ± 0.014

3.327 20.365 ± 0.29 8.217 ± 0.33 0.346 ± 0.014

3.969 20.912 ± 0.29 8.764 ± 0.34 0.369 ± 0.014



TABLE 7.10

Comparison of the Fractional Buckling Change Caused by Axial Cadmium Rods

of Different Radii in the Lattice, by Pulsed Neutron and Steady-State Experiments

Rod Radius Steady-State Experiment Pulsed Neutron Experiment

(cm) A 2  A 2
2 2

0 i0

0.635 0.092 ± 0.012 0.089 ± 0.007

1.295 0.170 ± 0.012 0.173 ± 0.007

1.714 0.207 ± 0.013 0.210 ± 0.008

2.209 0.268 ± 0.013 0.271 ± 0.009

2.667 0.308 ± 0.014 0.303 ± 0.009

3.327 0.346 ± 0.014 0.340 ± 0.010

3.969 0.369 ± 0.014 0.376 ± 0.010
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rod along the axis. The distribution with cadmium-covered gold foils is

shown in Fig. 7.25. The effect of the rod on the flux distribution and the

difference between the subcadmium and epicadmium flux distributions

are both evident from these two figures. The slight bulging of the flux

caused by the rod at the outer edge of the tank is also observed, as pre-

dicted by theory.

To examine more clearly the influence of the rod on the cadmium

ratio, the gold-cadmium ratio was calculated, from the measured flux,

at every point in the assembly with and without the rod. In Fig. 7.26,

the cadmium ratio is plotted as a function of the radial distance from

the axis. The hardening of the spectrum, as indicated by the decrease in

the cadmium ratio, near the rod is well illustrated; however, the cadmium

ratio returns to its unperturbed value at about 7 inches from the axis in

this 18-inch-radius tank. Thus, the main condition for the validity of the

results, viz., the recovery of the unperturbed spectrum (at least as indi-

cated by the gold-cadmium ratio) within the bounds of the assembly, is

well satisfied. The small rise in the cadmium ratio in the unperturbed

case near the axis is due to the moderator region left by the removal of

the seven central fuel rods. There is also seen in both the perturbed and

unperturbed cases a significant hardening of the flux near the outer edge

of the tank, illustrating the variation of leakage with neutron energy, as

discussed in Section 4.4.

7.7 DISCUSSION OF THE RESULTS

The preliminary investigation of the conditions governing the

thermal neutron decay curves in non-multiplying and multiplying

assemblies has provided criteria for the determination of the funda-

mental mode decay from the experimental data. Figure 7.11 shows the

approach to a normal axial mode after the injection of the burst. For
-2

assembly sizes corresponding to a buckling of about 30 m , waiting

times of the order of 2.2 msec are adequate for flux stabilization.

Under suitable conditions, the measured decay constant of the funda-

mental mode is independent of the size and location of the detector.

For a detector along the central axis, the best position is at half the
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core height; in this position the measured decay constant agrees with that

based on a detection system with an external, long counter- located so as

to suppress some of the axial harmonics. The measured decay constant

is also independent of the other, pulsing parameters, e.g., the repetition

rate, channel width, discriminator setting, etc., over a wide range of these

variables. The dead time corrections amount to less than one per cent.

For the lattice investigated, a pulse repetition rate of 10 gives a delayed

neutron tail that is practically flat.

The pulsed neutron die-away experiments on pure moderator in the

36-inch-diameter tank have yielded the values of the diffusion parameters

for 99.60 mole per cent heavy water at room temperature (21* C). The

values of vD and C are in good agreement with those of Meister and

Kussmaul(5) based on measurements over a wider buckling range. The

somewhat smaller value of vD in the present work is thought to be due to

the larger concentration of H2 0 in the sample of moderator used. The

data for the larger bucklings are analyzed separately in a two-parameter

fit to give vD and C, while the entire buckling range is used to obtain the

parameters v2a and vD. The values of vD from the two analyses are found

to be in agreement, as is to be expected if consistent results are to be

obtained. The value of vZa (27.0 ± 5.0) is consistent with the value com-

puted, from the cross sections, for 99.60 mole per cent D 20. However,

the uncertainty in the measured value of vZa is large, owing to the inade-

quate buckling range covered by the data which makes the extrapolation of

the X vs. B2 curve to zero buckling uncertain. The errors can be reduced

by using larger assemblies and more intense sources. If the configuration

of source and detector is to be the same as in these experiments, a Fourier

analysis of the experimental decay curve for large assemblies should

further reduce the uncertainty in the fundamental mode decay constant.

The errors shown are the standard deviations.

The values of the diffusion parameters for pure moderator obtained

above are used in Section 7.2 to determine the geometrical buckling of a

bare, cylindrical moderator assembly which is perturbed by the intro-

duction of a single, full-length, absorbing rod along the axis. Cadmium

rods of seven different sizes have been used. The introduction of the rod
2

causes a significant change in the decay constant X. The bucklings (B)
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are obtained by solving the basic equation relating X and B2 and using the

experimentally determined values of the parameters occurring in this

equation. Figure 7.5 shows the change in buckling caused by rods of vary-

ing radii. The results are compared with the theoretical curve given by

one-group theory; the experimental data and the theoretical curve agree

to within a few per cent.

The X vs. B2 curve for a multiplying system has been obtained by

varying the moderator height for the lattice of 0.25-inch-diameter, 1.03%

U235 metal rods with a triangular spacing of 1.75 inches. When these

data are fitted to an expression of the form, X = -m + nB2 - qB 4, the

polynomial coefficients yield the values of vZ and k9, if the value of vD

from moderator runs and calculated values of p and T are used. The

values of several other lattice parameters are derived from the quantities

measured in the pulsed neutron runs on moderator and multiplying systems.

The values of these parameters are listed in Table 7. 11 and compared,

wherever possible, with the values obtained from other sources -, either

the THERMOS code(17,18) or steady-state experiments on the subcritical

lattice.

The value of k is compared with the value of 1.345 ± 0.03 obtained

from the four-factor formula, with the value of r; obtained from the

THERMOS code (corrected for the epithermal effect by the GAM code),

f from THERMOS, and p and E from quantities related to these parame-

ters, measured in steady-state exponential experiments by D'Ardenne

(10) 2
and Bliss. The value of the material buckling B is also compared-

m(11)
with the result of steady-state exponential experiments. As seen from

Table 7.11, the values of lattice parameters, obtained by the pulsed neutron

method, agree within the experimental uncertainties with the value from

other sources, wherever these are available. The uncertainties in k9 in

the present work, which are about 2 per cent, are larger than those usually

obtained in k measurements by other methods. For example, Meister(1 2 )

reports errors of about one per cent in k from exponential experiments

on heavy water lattices. Experiments with heavy water lattices in PLATR
(13)

and PCTR have yielded k with stated errors of less than one per cent.
(14)0

Brooks et al. have measured k with uncertainties of less than half a
0

per cent in PLATR experiments with uranium carbide lattices in heavy



TABLE 7,11

Comparison of the Values of Lattice Parameters Obtained by the Pulsed Neutron Method

with Those Obtained by Other Methods; Lattice with 0.25-Inch-Diameter, 1.03% U2 3 5

Metal Rods in a Triangular Spacing of 1.75 Inches

Parameter

k
0

L cm

fm

k psec

vZ sec~a

k

Value Obtained
by the

Pulsed Neutron Method

1.345 ± 0.026

140.9 ± 6.9

0.0193 ± 0.0037

0.9657 0.0037

497.3 t 16.4

1396.1 ± 65.5

0.650 0.046

Value Obtained
by

Other Source

1.35 ± 0.03

134.7

0.016

0.015

0.9673

Name of Source

*

THERMOS and SSEE

THERMOS

THERMOS

THERMOS

THERMOS

1152 ± 53

1250 ± 72B 2 cm- 2
m

1235 ± 25

SSEE stands for Steady-State Exponential Experiments

B 2

pc
-2

cm

SSEE
C,,
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water. Donahue et a(15,16) have measured the infinite multiplication

factor of a wide range of natural uranium, graphite lattices in the PCTR,

with a standard deviation of a few tenths of a per cent.

However, the results - summarized in Table 7.11 - of these die-

away experiments on the subcritical assembly have demonstrated the

application of the pulsed neutron technique for the measurement of several

parameters of interest of the lattice. Of particular significance among

these are the infinite multiplication factor k and the diffusion area L2

of the lattice, because these two parameters are especially difficult to

measure in simple experiments. Measurements with the PCTR(15) or

PLATR( 1 4 , 1 6 ) involve elaborate and expensive equipment. The uncertain-

ties in k 0 by the pulsed neutron method can be reduced, as will be dis-

cussed below and it is expected that they can be brought down to about

one per cent.

An important question bearing on the application of this technique

concerns the range of bucklings needed to be covered and the size of the

multiplying assembly that is adequate for the investigation of the lattice

parameters by the pulsed neutron method. The size of the assembly and

the buckling range affect the degree of precision in the final values of the

derived parameters and the type of analysis to be used in the reduction of

data. In the present measurements, the assembly was far subcritical

(about 65 dollars) and the analysis based on the approximation,

22e-B2T ~l-B 2 + B 2 4

represented the experimental data well. However, uncertainties in the
2

final values of the lattice parameters (L , k ) still amount to a few per

cent, and it should be advantageous to use a larger assembly, e.g., one

with a 4-foot-diameter tank. Small assemblies are unsuitable for several

reasons. At very large bucklings, the effect of diffusion cooling becomes

increasingly significant. This effect is not fully understood for multiply-

ing systems and, supposing that the diffusion cooling coefficient for the

multiplying system is the same as for pure moderator, the effect is sig-

nificant at sufficiently large values of the geometrical buckling. The

diffusion cooling effect in the thermal spectrum is caused by the prefer-

ential leakage of faster neutrons and results in a decrease of the average
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diffusion constant vD, as it is known from a pure moderator. In a multi-

plying medium, diffusion cooling may also have some effect on other

parameters, such as e and k0 in addition to vD. Although no detailed

information, on neutron spectra for small assemblies, is available, it is

expected that for very high bucklings the neutron spectrum changes and

approaches the moderator spectrum, since multiplication and absorption

processes are overcome by thermal neutron leakage. It is well to limit

the measurements to the range of bucklings for which the diffusion cooling

effect can be ignored. Moreover, as noted in Chapter II, for small multi-

plying assemblies the simple interpretation of buckling breaks down and

the escape probabilities depend not only on the dimensions (geometrical

buckling) but also on shape. Further, in small assemblies in which the
V

fuel concentration is low (VM >> 1 , the multiplicative contribution to the
kvU

thermal neutron decay rate becomes less important and the decay constant

is relatively insensitive to the parameters characterizing multiplication.

It is expected, from general considerations, that assemblies between 10

and 30 dollars subcritical for any system should provide results with good

accuracy; but this possibility should be investigated further experimentally.

The results of the evaluation of the prompt neutron lifetime 1 and

the absolute negative reactivity p for the perturbed lattices is shown in

Table 7.6. The parameter y/2 is found to vary from 15.6 to 17.6 over the

range of reactivity studied. The uncertainties in p amount to about 5 per

cent. The last column of Table 7.6 gives the reactivity worth of the control

rods as defined in terms of the difference Ap from the degree of sub-

criticality of the unperturbed lattice. The variation of Ap with rod radius

is shown in Fig. 7.15 and the general shape is as predicted by theory.

The errors in Ap are due to uncertainties in the measured decay constant.

The results of the reactivity effect of control rod in terms of the

fractional buckling change Aa /a caused by the rod in the lattice, are

shown in Tables 7.5 and 7.9. This quantity has been obtained both in

pulsed neutron and steady-state experiments. The results of the two

methods are compared in Table 7.10 and Fig, 7.27; the two agree within

the experimental uncertainties, although the uncertainties are somewhat

larger in the steady-state experiments. Figure 7.27 also shows the
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curve for Ac2 t2 as given by a two-group theory expression:

0Ac=t - 0.820 Y9(pa)+dy ~a+ (Ko(va)+dvK(va))j ,

derived in Chapter VI, based on flat boundary conditions for the fast

neutron group. The experimental points agree with the theoretical curve

for small values of the rod radius; for large rods, the theory underesti-

mates the worth of the rod by a few per cent; this is believed to be due

to the neglect of fast absorption in the two-group treatment.

One of the necessary conditions for the validity of the exponential

experiments, as discussed in Section 4.4, is that the spectrum in the

assembly which is perturbed by the introduction of the rod, should be

regained within the assembly. This condition is investigated in Section

7.6.2.2 by determining the cadmium ratio along a radius of the exponen-

tial assembly with and without the largest control rod. As seen from

Fig. 7,26, the spectrum, as indicated by the cadmium ratio, regains its

unperturbed value well within the bounds of the lattice.

Some of the ways in which the results obtained in this chapter can

be improved and the techniques extended, will be suggested in the next

chapter.
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Chapter VIII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the present work and the conclusions

that can be drawn from it. Some ways are suggested in which the pre-

cision of the results can be improved and the techniques extended;

recommendations are made for future investigations along the lines

initiated in this work.

8.1 SUMMARY AND CONCLUSIONS

The theoretical work in this study has been concerned mainly with

the determination of certain properties of neutron transport media bom-

barded by pulses of fast neutrons. A pure moderator has been treated

by a generalized time-dependent age theory, and expressions have been

derived for the slowing-down and thermal die-away rates. Multiplying

systems have been treated according to several theoretical models to

study the space- and time-dependent thermal flux in pulsed assemblies

and to derive expressions for the prompt neutron decay constant in dif-

ferent situations. It has been found that the asymptotic prompt neutron

decay constant can be related in several ways to parameters character-

izing the multiplying system and quantitative information about reactor

systems can be obtained in this way.

The theoretical analysis of an exponential assembly with a control

rod has shown the possibility of making steady-state measurements of

control rod effectiveness in subcritical assemblies for simple control

rod configurations. The conditions under which the information obtained

from exponential experiments with control rods can be analyzed in terms

of simple theory and related to critical system studies have also been

considered.

The experimental program has proceeded along two lines - pulsed

neutron and steady-state studies. The conditions affecting the measurement



8-2

of the fundamental mode decay constant in pulsed assemblies have been

investigated, as have the effects of several experimental variables, types

and location of detector, etc. Computer codes have been written to facili-

tate data reduction in pulsed neutron experiments. Experiments in a 36-

inch-diameter tank have yielded values of the diffusion parameters of

99.60 mole per cent heavy water at room temperature. The values of

vD based on different ranges of values of the buckling are found to be

consistent. The relatively large uncertainty in the value of vZa has

indicated the need for future experiments on larger assemblies of heavy

water. The values of the diffusion parameters have been used to evalu-

ate the geometrical buckling of a cylindrical moderator assembly modi-

fied by placing a single absorbing rod along the axis. The changes in

buckling due to rods of different radii agree with calculations based on

one-group theory.

A significant aspect of the present work has been the use of the

pulsed neutron technique to obtain information about the lattice parame-

ters of subcritical systems. This has been accomplished by means of

thermal die-away experiments on subcritical assemblies of varying core

height, combined with the use of theoretical relations between X and B 2

to analyze the experimental data. By combining the results of these

experiments with those on pure moderator assemblies and using calcu-

lated values of and r, the values of a number of lattice parameters,
2 2 2

e.g., k , L , L f m, k, B m etc., can be obtained. The results for the
o m m m

parameters k and L are of special interest because these quantities

are difficult to measure in simple experiments. The values of these

parameters by the pulsed neutron method are found to be in agreement,

within the experimental uncertainties, with the results of exponential

experiments and THERMOS calculations, wherever such comparisons are

possible. However, the uncertainties in the values of these parameters

obtained in the present experiments (which were made on assemblies far

below critical) are somewhat larger than those obtained by other methods.

The advantages of the pulsed neutron method make it worthwhile to extend

the technique to larger systems to reduce the uncertainties, and to try to

improve the methods used in the present study.

Pulsed neutron measurements of the prompt neutron decay constant
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in perturbed lattices can yield the prompt neutron lifetime and the abso-

lute negative reactivity when combined with the lattice parameters

determined as described above. This procedure makes use of the explicit

relation between the prompt neutron decay constant X and reactivity p.

The uncertainties in p, which amount to less than 5 per cent, arise mainly

from the error in 1; the latter can also be reduced by improving the pre-

cision of the lattice parameters.

The effect of a control rod on the reactivity of a lattice has been

obtained by relating the change in prompt neutron decay constant due to

the insertion of the rod to the change in buckling caused by the rod and

expressing the effect in terms of the fractional change in radial buckling.

This effect has also been measured in exponential (steady-state) experi-

ments by foil activation techniques and the results of the two methods

agree within the experimental uncertainties. The latter are somewhat

larger in the steady-state case. A comparison of these results with those

of a two-group theoretical treatment, with no allowance for fast absorption,

shows that this theory somewhat underestimates the effectiveness of the rod,

especially for large rod sizes.

In exponential experiments, radial and axial flux plots were made in

the assembly with and without a control rod. The radial flux in the moder-

ator with a central control rod is given well by a one-group theory using

the value of the radial buckling derived from axial runs. A measurement

of the cadmium ratio along a radial direction of the lattice with and without

an axial control rod showed that the perturbation in the neutron spectrum

(at least, as indicated by the cadmium ratio) due to the insertion of the rod,

does not extend over the whole range of the assembly. This property

ensures a necessary condition for the validity of the control rod experi-

ments in exponential assemblies.

8.2 RECOMMENDATIONS FOR FURTHER WORK

The present investigation began the pulsed neutron portion of the

work of the M.I.T. Lattice Project and demonstrated the utility of this

technique in the measurement of reactor parameters (including reactivity)

and control rod worths in the subcritical assembly. Consequently, a large

part of the effort was devoted to setting up the apparatus and "establishing
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the technique." The latter constituted the main goal of the investigation,

rather than the application of the method to different lattices for the

purpose of compiling data. The measurements reported here can be

applied to other lattices and to other types and configurations of control

rods. In addition, effort should be directed toward improving the pre-

cision of the results and to extending the method to the determination,

if possible, of additional properties of multiplying systems. Some sug-

gestions along these lines will be made in the following sections.

8.2.1 Experiments on Moderator Assemblies

New experiments on moderator assemblies should be directed

toward improving the precision in the values of the diffusion parameters

and a more detailed examination of the effects of experimental variables

on the measured decay constant of the fundamental mode, especially in

larger assemblies. The first step should be die-away experiments in the

4-foot-diameter tank, which will allow a wider range of values of the geo-

metrical buckling. Other types and configurations of the detector can also

be examined, e.g., a large BF 3 counter, movable in an external tube on a

side of the tank. When the detector is placed in a thimble along the axis,

a modal analysis method can be used for very low bucklings. According

to this method, the neutron flux decay 4(z ,t) is measured at (N-1) equi-
H

distant axial detector positions, z N i[H:effective height, i=1,2,...(N-1)]

and then the Fourier coefficents of the axial flux distribution are obtained

from the relations:

00

4(z ,t) Ak(t) sin z ,

k= 1

Ak(t) = Ako e k

A*(t) = 2 (z ,t) sin ik

i=1

By plotting Ak t)against t, we can determine the decay constants X of the
th s m

k spatial mode. The parameter A , for instance., can be used to evaluate
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the thermalization time constant. Time-space distributions can also be

obtained by using an external detector to count capture gamma rays from
(2)

a small absorber moved about in the moderator.

The study of the effect of the location of the source on the decay

constant should be instructive. With a localized source and a localized

detector, it may be possible to investigate the reciprocity condition

experimentally.

An interesting experiment would be to apply the pulsed neutron tech-

nique to the measurement of the neutron age in heavy water. Two methods

have been used for measuring the age of neutrons from a pulsed neutron
_(3)source in- a medium. One of these has been described by Ramanna et al.

who have determined the age in water by using the relation between the

initial thermal neutron density and a geometrical factor characterizing
(4)the moderator. The other method has been described by Frank and used

by Dlouhy(5) to measure the neutron age in graphite. This method makes

use of the slowing-down kernel in the medium to obtain an expression for

the age -r(t) in terms of the thermal neutron density at different positions

in the medium at a certain time t.

The availability of mixtures of H20 and D 2 0 at different D20 concen-

trations would permit pulsed neutron measurements of the diffusion charac-

teristics of the mixture as function of the concentration of D20, Apart from

its intrinsic interest, the results may be of interest in the future develop-

ment of spectral-shift reactors.

The sensitivity of the diffusion parameters of heavy water to isotopic

and chemical purity can be utilized as a routine check on the sample of

heavy water. The parameter vD should be sensitive to hydrogen (H) concen-

tration, while vX depends on both hydrogen and other absorption. Rela-

tively small assemblies of the moderator are needed to measure vD.

With an appropriate set-up, a standard procedure can be established to

keep a regular check on the sample of heavy water, used, for instance, in

lattice experiments.

The pulsed neutron method may also be applied to the study of hetero-

geneous absorption and the measurement of buckling for complex geometri-

cal shapes; such effects may be introduced by the presence of voids, or by

the introduction of absorbing rods. The latter studies may include the
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effects of partially inserted or diagonal rods. Such studies might be used

to evaluate the results of perturbation theory and other theoretical methods

for solving the wave equation in a region of complex shape.

8.2.2 Pulsed Neutron Experiments on Subcritical Assemblies

A great deal of work can be done with pulsed neutron experiments

on subcritical assemblies, extending and improving upon the measurements

reported in this investigation. It would be desirable to have a separate,

independent subcritical facility exclusively for pulsed neutron work. This

possibility is suggested to increase the efficiency of scheduling and experi-

menting at the M.I.T. Lattice Project. Availability of spare exponential

tanks, large quantities of heavy water and several sets of fuel rods and

other lattice equipment should make it relatively easy to set up a second

subcritical facility, independent of the reactor. This would simplify and

improve the experiments and broaden the type of measurements that can

be undertaken with ease. Congestion by shielding and channels would be

avoided as would interference or background from the proximity of the

reactor. Greater flexibility and a wider choice in the locations of the source

and detection system would be possible. The same type of lattice can sub-

sequently be used in the exponential experiments so that the possibility of

comparison of the pulsed neutron and steady-state experiments will not be

lost. A separate lattice for pulsed neutron experiments would also make

possible a more detailed and diversified investigation of the experimental

variables affecting the determination of the fundamental mode decay constant.

The pulsed neutron experiments in the exponential facility are now limited

to week ends and periods of reactor shutdown; this limitation would also

be removed.

An interesting study could be based on a measurement of the spatial -

vertical and radial - flux distributions in the pulsed subcritical assembly.

One possible method is the gamma-ray scanning of the fuel elements with

an appropriate discriminator base line setting. The flux profile along the

vertical axis can be obtained by scanning the central fuel element after

pulsing. The radial flux distribution can be obtained by making a scan

along a horizontal plane at the location of the highest activity. The radial

distribution in a pulsed assembly from theoretical considerations is a J0
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function, and a fitting of the experimental flux profile can yield a "dynamic

radial buckling" which can be compared with the radial buckling from

steady-state distributions; information about the difference in spectra

and the extrapolation distance in the two cases might also be obtained.

The form of the axial flux distribution can be studied with different loca-

tions of the source and with different thicknesses of reflectors.

The application of the X vs. B2 experiments on a lattice to the

measurement of its reactor parameters should be explored further by

using larger assemblies and covering a wider range of values of the

buckling. As noted in the last chapter, such measurements should reduce

the uncertainties in the values of the parameters. In larger assemblies,

the errors involved in the calculation of the bucklings are also smaller.

Other methods of analyzing the (X,B 2) data than the one used in this work

should also be tried. For example, by fiting the (X,B 2) points to an

expression of the form, X = a+bB2 +ce-B ', in a three-parameter fit (with

a calculated value of -r), it may be possible to determine vD for the lattice.

A fit to the two-group expression (Chapter II) instead of the age theory

relation could also be attempted.

Another possibility is to use the values of the lattice parameters

and group constants - either calculated or from steady-state exponential

experiments - and to compare the measured values of the prompt decay

constant with the value calculated on the basis of different theoretical

models, treated in Chapter II. Such a procedure for lattices with different

values of VM/VU, different U235 concentration, and varied lattice spacing

will give information about the sensitivity of the calculation of the prompt

decay constant to the theoretical model. The prompt neutron decay con-

stant computed from multigroup codes can also be compared with measured

values. The contribution of delayed neutrons should be examined. The effect

of the dependence of the lattice parameters on the buckling, arising from

such factors as a possible anisotropy introduced by heterogeneities in the

lattice, significant reflector thickness, the diffusion cooling effect, etc.

should also be investigated. The assumption, D Dim, can be examined by

correcting the diffusion constant due to "voids" of uranium in a lattice.
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8.2.3 Reactivity and Related Studies

The techniques developed in this work should be applied to the study

of a variety of control rods under different conditions and compared with

the results of calculation based on specific theoretical models. The effect

of partially inserted rods, diagonal and off-center rods, and of multiple

rods to study the shadowing effect, should also be investigated. Moderator-

filled control rods or "flux traps," B 4 C rods, and composite and discrete

layer types of rods should be studied. An example of the last type is a

control rod with a core of boron surrounded by a layer of cadmium. The

boron would provide epithermal absorption and the cadmium absorption

in the thermal range would reduce the amount of helium generated in the

boron, thereby increasing the useful rod life. The convenience of the pulsed

neutron method would make it easy to investigate control rods of various

absorber materials, e.g., different rare earths, or combinations of these

elements. The other types of control rods mentioned above may provide

better means of studying the fast neutron boundary conditions on the rod

surface; the fast neutron extrapolation distance can be measured in expo-

nential experiments as discussed in Chapter IV.

Some of the other methods of measuring reactivity (Chapter I)

should also be studied and compared in the region of their common

validity. The rod drop, source-jerk, and new statistical methods (noise

analysis, pseudo source modulation, etc.) should be especially useful in

this regard. The recently proposed kp/1 method (Section 3.6.3) should

be studied further. The preliminary investigation of this method in this

work (Appendix IV) seems to indicate that it is not applicable to systems

as far below critical as those used here. The main reason seems to be

the small contribution of the delayed neutrons to the decay curve, on the

complete analysis of which, the method is based. Thus, a larger system

closer to criticality would be advantageous. Once the validity of several

methods in yielding results on reactivity in agreement is established,

this agreement could be used to obtain the values of other parameters,

e.g., the effective delayed neutron fraction ~ for a lattice.

There is a great need for a set of systematic measurements of con-

trol rod worths in critical assemblies, for, in the final analysis, it is the

critical assembly which provides the "true" value of the rod worth against
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which any theoretical value or the results of measurements by other

methods should be compared. The lack of such experiments is a serious

obstacle to the correlation of theory and experiment in control rod

studies. If the data on the measured rod worths in critical assemblies

are available, then the various methods with the same type of rod and

an exponential or subcritical assembly of the same constitution would

provide a valuable basis for the needed quantitative correlation.

It is suggested that the role of the prompt neutron decay constant

as an independent parameter, characterizing a multiplying system, be

examined more closely. It is becoming increasingly apparent that the

reactivity is an unsuitable parameter in several ways; its interpreta-

tion in situations involving large changes in the multiplication charac-

teristics of the system, and the distinction between static and dynamic

reactivity are far from clear. Moreover, reactivity is not directly

measurable; the operationally meaningful quantity is the reactor period.

For these and other reasons, it is to be expected that reactivity might

be replaced by other parameters; a serious contender for this role is

the prompt neutron decay constant. As an example of a practical situ-

ation, the usual criticality studies based on inverse multiplication

experiment can be replaced by pulsed neutron studies of the prompt

neutron decay constant.

Along with the experimental programs of the measurement of

control rod worths, new methods in the area of control rod theory should

also be investigated. Analytical and machine calculation methods based

on the more accurate transport theory and combinations of transport

theory with multidimensional diffusion theory are especially needed.

Some of the possible approaches are suggested in Chapter VI. Also

desirable would be a theoretical method that seeks to relate the effect

of control rods in terms of the change, not in reactivity, but in the prompt

neutron decay constant, so as to make possible a more direct and valid

comparison between theory and experiment.

It is expected that a continuation of the efforts initiated in this

investigation would further extend the techniques, improve the results,

and lead to a better over-all understanding of the physics of subcritical

lattices, in line with the basic goal of any study in the field of reactor

physics.
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Appendix 1

NOMENCLATURE

a

B2

B2

m

B 2
pc
C

D

d-r

E

f

fm

f(E)

T(s)

F(B)

g (Q u)

g (u)

Radius of control rod (cm)

Background from the decay curve

Geometrical buckling (cm- 2

Material buckling (cm-2 )

Prompt critical buckling (cm- 2

Diffusion cooling coefficient (cm4 sec~ )
thConcentration of precursors from which the i group

of delayed neutrons arise (cm)-3

Extrapolation distance (cm)

Diffusion coefficient (cm2 sec~ )

Element of volume (cm 3

Energy (ev)

Thermal utilization

Moderator "thermal utilization"

Normalized fission spectrum

Laplace Transform of f(t)

Fast non-leakage probability

Relative probability of a neutron being left with velocity

parameters (Q,u) as a result of an elastic collision

before which its velocity parameters were (o,'u')

Relative probability that a fission neutron is born

with letharge u



A2

H

H(-r)

J

0

K

k

k

k
p

K

kr

29

L 2

M

M 2

N(ro,u t)

p

P

q

q( r-r ',t-t')

Operator in Eq. 1.2; also height (cm)

Heaviside function

Operator in Eq. 1.2

Operator in Eq. 1.4

Bessel function of first kind of order zero

Operator in Eq. 1.2

Effective multiplication factor or criticality factor

Infinite multiplication factor (k.)

Prompt neutron multiplication factor

Modified Bessel function of second kind of order zero

Thermal criticality factor

Resonance criticality factor

Prompt neutron lifetime (sec)

Infinite medium neutron lifetime (sec)

Diffusion area (cm 2

Adjoint of the neutron density N

Migration area (cm2 )

The number of neutrons whose position vectors lie in

the volume element dr about r, whose velocities lie in

the solid angle do about 0 and whose lethargies are

between u and u + du, all measured at time t

Resonance escape probability

Probability that a neutron generated in a uranium slug

will undergo a collision before leaving the slug

-3
Slowing-down density with absorption (cm )

Probability per unit volume, per unit time that a neutron

born at (r ',t') will become thermalized at (r,t)
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Q(I)

Qsj

r

R

s

S

$

S1'9 2

t

T

T(I)

u

v

V

WT

Y0

z

Greek Symbols

2

p

2
-y

6

6(r-r0)

6..
13

-2Radial buckling (cm-2

thDelayed neutron fraction for the i group

Effective delayed neutron fraction

Axial buckling (cm-2 )

Ratio of U 2 3 5 fast fissions to U235 thermal fissions

Direct delta function

Kronecker delta

Experimental number of counts in Ith channel

3
Number of neutrons per cm per second scattered into

group j from all higher energy groups

Position vector

Radius of cylindrical assembly (cm)

Laplace Transform variable

External source

Reactivity in dollars

Coupling coefficients

Time variable (sec)

Slowing-down time (sec)

Time corresponding to the Ith channel of time analyzer

Lethargy

Velocity (cm sec )

Volume (cm3 )

Weights in least-squares fitting

Modified Bessel function of first kind

Radial flux
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E

17

0( r)

x

A

xt
2 2

V

Cc

p
2

2..

'13

ej

2aj

T

X(o,u,t)

X( r,t)

Fast fission factor

Number of neutrons released per thermal absorption

in fuel

Radial flux

Decay constant of the fundamental mode of the thermal

flux in a pulsed assembly (sec )

Neutron generation time

Transport mean-free path (cm)

Buckling from two-group criticality equation (cm- 2

Average number of fast neutrons released per slow

neutron fission

Parameter in Eq. 1.6

Average logarithmic energy decrement per collision

Reactivity

Macroscopic cross-section (cm~ )

Macroscopic inelastic removal cross-section from
-1

group j (cm )

Macroscopic elastic removal cross-section from
_l

group j (cm )

Total removal cross-section from group j (cm~ )

Neutron age (cm )

Vector neutron flux

Neutron flux

Laplace transform of 4

Finite Hankel transform of 4

Finite sine transform of 5

Slowing-down density without absorption

Fission source distribution
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Decay constant of the delayed neutron precursor (sec

A unit vector in the direction of motion of the neutron

Geometrical factor (Fig. 2.1)

Subscripts and Superscripts

a Absorption

A, Refers to cladding region

e Elastic scattering

fuel Fuel region

i Inelastic scattering

.th
J -energy group

Leakage

M, mod Moderator region

s Scattering

t Total

1 Fast group (as in 41)

2 Thermal group (as in 02
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Appendix II

COMPUTER CODES

The availability of an IBM-7090 computer made possible a rapid,

complete and efficient analysis of the experimental data. Several com-

puter codes were developed in the course of this investigation for the

reduction of data in different phases of this work. The description and

Fortran listings of some of these programs are included in this appendix.

A2.1 THE EXPO CODE

In any pulsed neutron experiment of the die-away type, the raw

experimental data consist of a series of counts taken over equally spaced

time intervals. Superimposed on the decay is a background which is

almost constant in time, if the room return following a pulse has died

away. One is interested in the decay rate of the fundamental or normal

mode which persists after the higher modes have decayed away; each

mode decays in an exponential manner. Thus, the problem is to isolate

the portion of the decay data which is in the fundamental mode and to

analyze it for a single exponential plus a constant background, i.e., for

the functional form,

n(t) = a + b e-Xt

The basic quantity of interest is the decay constant X of this mode.

If sufficient time has not been allowed before the opening of the

first analysis channel, the first few channels will contain harmonics

resulting in a departure from a single exponential decay. The isolation

of the fundamental mode will involve excluding these initial channels

from the analysis. It is also instructive to study the effect of excluding

the end-channels. Hence, whatever method is adopted for the reduction

of data, should have provision for dropping successively points from

both ends so as to select the "best" time interval for analysis. It will be

seen that the choice of the point at which the analysis is started is of
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considerable importance, while the decay constant is relatively insensitive

to the choice of the point at which the analysis is terminated.
The best approach to the reduction of data appears to be a weighted,

least-squares fitting of the counts (y.) versus time (ti) data to an expression
of the form,

-Ct.
1

y = A + B e J (A2.1)

so that the parameters A, B, C are determined from the condition that
the sum of thp weighted squares of residuals,

M -Ct. 2
SW y- A + Be , (A2.2)

i=N

is to be a minimum. (M-N) is the total number of data points used in the
analysis and W. is the statistical weight of the y. data point.

A2.1.1 Theoretical Basis of the Code

The IBM-7090 code EXPO fits a set of up to 300 points to the curve
(A2.1) by the least-squares technique and computes the parameters A, B,
C together with the associated standard deviations of the estimates of A,
B, C, due to uncertainties in the measured data.

The code minimizes the expression (A2.2) by means of an iterative
scheme. We can express the functional form of the "true" counts at each
time-point, as

-Ct.
f (A,B,C) yi = A.+ B e

-(C +c)t.
=(A +a) +(B +b) e 1

0 0

where a, b, c are small increments on A 0 , B 0 , C , the initial estimates
of A, B, C; a rough estimate of A0 , Bo, C can be obtained from a plot of
the data. The least-squares technique may be applied directly only to
parameters in a linear relationship. In order to apply it to (A2.1), we
must linearalize the function f by expanding it in a Taylor series about
the point (A0 , B0 , C ):
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af.
f (A,B,C) - F (AO,BIC) + a

0

af.
a +

0

af.
b + aC

0

(A2.3)

where each partial derivative is evaluated at the initial point (A9, BO,C 0 )

and

a A -A 0 , b B-B , c= C-C 0 .

If we define

af.

aA

then

0
i Pi.,

af.
1B Vi

af.

ac
(A2.4)1 W

0

p. = 1 ,

-C t.
v. = e

-C t.
S=-Bo t e 01

(A2.5)

As Eq. A2,3 is linear in a, b, c, the method of weighted least-

squares fit may be used to minimize Eq. A2.2 which now takes the form,

W y-A 0 -B 0 e

i

-C t. -C t.
o -a-be 0 +cB t.e

0 1

The resulting solutions for a, b, c are then the corrections which

are applied to the initial guesses, Ao,BO,C 0 , to obtain the next set of

estimates. The process is then repeated until some pre-set convergence

criteria are satisfied. The final results do not depend on the initial

guesses; i.e., the method gives a unique set of values, independent of

the first estimates. The number of iterations necessary to arrive at the

final answer depends on the initial estimates as well as the convergence

criteria.

The deviations of the experimental points y, from the fitted curve

f. are given by:

2C t.o 1 (A2.6)



d. = y. - f.(A ,B ,C ) - ap. - bv. - cw.,

1 1 1 1 O 1 1

where

.= y. - f(A 0,B ,C .
1 1 1 O O 0

The simplest form of the least-squares principlp now requires that

the quantity,

6 2 M W.d
1 1

(A2.8)

i=N

be minimizecd with respect to the parameters A, B, C so that the normal

equations determining a, b, c, are:

0 = 2 = Wi(4.-api-bvi-Cwi)pi
i

0 = B 62=a= B 6

0 = --ac
2

6=

W 1 (1-api-bv-Co) vi ,

W (45-api-bv -Coi)w .
i

F = W 4 , U = W pi , V = W v , W .= Wi og,

and follow the convention that a repeated index implies summation, i.e.,

(U.V.) = U.V.

then the normal equations become:

a(U.U.) + b(U.V.) + c(U.W.) (F.U.) ,11 1 1 1 1 1 1

a(U.V.) + b(V.V.) + c(V.W.) = (F.V.) , (A2.10)
11 11 1 1 11

a(U.W.) + b(V.W.) + c(W.W.) = (F.W.) .1 1 1 1 1 1 1 1

A9

(A2.7)

If we set

(A2.9)
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These linear equations can be solved for a, b, c so as to yield:

(F U ) (U V ) (U W )

(F V i) (Vi V i) (Vi W )

(F W ) (V W ) (Wi W )

a=
D

(U iU ) (F U ) (Ui W )

(U V ) (F 1V1 ) (V W )

(U W ) (F W ) (Wi W )

D

(U U ) (U. V (F U )

(U V ) (V. V (F V )

(U W ) (V W ) (F W )

D

(A2.11)

(A2.12)

(A2.13)

with

(U U ) (U V V) (U W )

D =(U V ) (Vi V ) (Vi W )d

(U W ) (Vi W ) (Wi W )

(A2-. 14)
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In terms of the minors of the determinant D,

D = (V V )(XW W ) (V W ) 2

D 12 =(V W )(Ui W )d (Ui V i)(Wi W )d

D 13 =(U V i)(Vi W )d (U W i)(Vi V )d

D 22:_= (U U i)(Wi W )d (U W, )2

D 23:_= (U V )(XU W ) (U W i)(Vi W )d

2
D 3 = (U U )(V VW) - (U V ) V

a, b, c are given as:

(A2.15)

+ (F V )D 1 2 + (F W )D 1 3

D

C =

(F U )D1 2 + (F V )D2 2 + (F W )D23

D

(F U )D 1 3 + (F V )D 2 3 + (F W )D33

D

D = (U U )D11 + (U V )D 1 2 + (U W )D 1 3

Now a, b, c are the first-order corrections

A 0 , B 0 , C 0 . The new estimates are

(A2.16)

(A2.17)

to the initial guesses

A 1 = A0 + a , B B0 + b, C 1= C + c .

As the method is based upon retaining only the first-order terms

in the Taylor expansion (A2.3), it is necessary to repeat the calculation,

starting with A , B , C as the initial guesses. The process is to be

repeated until adequate convergence is reached, as defined by c , 2' C:3 :

An - An-1
A

n
1 '

Bn - n-1
B

n
<C 2 '

Cn - Cn-1
C 3

n

(A2.18)

with

.r
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where c 1' c2' 3 are arbitrarily small quantities which may be specified

in the code input.

It is also desirable to determine the standard deviations and

probable errors of A, B, C. For this, we must carry out the above

analysis with (a+6a), (b+6b), (c+6c) substituted for a, b, c. Then the esti-

mates of error in A, B, C due to uncertainties in y. are:

D D D
AA = -D AC= D (A2.19)

The standard deviations of the estimates of A, B, C are given by:

2 2 2
a =4A M-3' B ABC M-3

(A2.20)

A2.1.2 Description of the Code

The EXPO code adapts the above analysis in a main program and

translates it into the FORTRAN language in the form of instructions

punched out on cards. The successive steps in the logic are displayed

in the flow chart outlined in Fig. A2.1. The detailed operation of the code
can be best understood with the aid of this block diagram and the complete
FORTRAN listings which are included at the end of this section.

As discussed in Section 7.1.1, the code corrects the experimental
number of counts in each channel for counting losses:

P(I) = QM (A2.21)
1 - CORRN(I)

and determines the time corresponding to each channel:

T(I) = (CHDEL) X (WIDTH) - TDEL + (SPAC) X (1-0.5). (A2.22)

The weighting of the points is based on the Poisson statistical errors in
the number of counts:

WT(I)= 1/2 (A2.23)
[ P(I)]1/
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Fig. A2.1 Flow Chart for the EXPO Code
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The code then fits P(I) against T(I) in a three-parameter fit of the form

of Eq. A2.1 and computes the decay constant C and the background cor-

rection B, together with their standard deviations. In analyzing the

data, the code has provisions to drop the initial channels one by one and

to calculate the decay constants for fewer channels each time. The effect

of dropping points from the other end can also be studied. At any stage,

if the convergence criteria are satisfied or the iteration limit is reached,
the quantities of interest are printed out.

A2.1.3 Vocabulary of the EXPO Code

Symbol in Code Definition-of Symbol
Designation
in Section

A2.1.1

Run number

Last run of a series

Last point included in analysis

First point included in analysis

Number of points used

Number of iterations to be used

ITSFNL

AZERO, BZERO
CZERO

EPS1, EPS2, EPS3

Limit of iterations

First guesses for
A, B, C

Convergence criteria
e1 , 2' 3

XTRA, XTRB
XTRC

Multiples of a, b, c used as
correction factors to A, B, C

DELTM, DELTAB,
DELTAC

WIDTH Channel width

Time pointsT(I)

Q(I) Experimental no. of counts at t

Weighting factorWT(I)

SUMUU

NORUN

LASTRN

MFINAL

NINITL

MN1

ITS

M

N

a, b, c

t.

y.

w.
1

EuUU.(U.iU.)
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Symbol in Code Definition of Symbol

SSQRES

FIT(I)

DIFFR(I)

U( I), V4), W( I)

DELA, DELB, DELC

EXP. FLUX

FIT FLUX

TAU

Theoretical no. of counts at t

Deviation of Exp. from Theor.
no. of counts at t.

Probable errors in A, B, C

Experimental no. of counts at t

Theoretical no. of counts at t

Neutron lifetime

Designation
in Section

A2.1.1

62

A + Be

U1' V, W1

1/C

Dead time

Total number of bursts

Corrected no. of counts

Delay multiplier

Target delay

Total spacing between channel-ends

TDEAD

PULSNO

P(I)

CHDEL

TDEL

SPAC



LISTINGS FOR CODE EXPO

* LIST 8
* LABFL
C BIMAL K. MALAVIYA * PULSED NEUTRON DATA REDUCTION
C THIS PROGRAM CALCULATES THE PARAMETERS AB9C FROM THE LEAST

C SQUARES FIT TO N=A+B(EXP(-CT))
CEXPO

DIMENSION Q(300),P(300),F(300),T(300).U(300)oV(300).W(300),WT(300)
1.FIT(300),DIFFR(300) HYEXPO(300),CORR(300) CORRN(300)

1 FORMAT (1H1,4X945H B.K.MALAVIYA * PULSED NEUTRON DATA REDUCTION)
WRITE OUTPUT TAPE 291
CALL CLOCK(2)

2 FORMAT (1X.613)
5 FORMAT (lX.F7.0.F9.0#F12.7,3F8.6)
3 FORMAT (1X,7F9.0)
7 FORMAT (12HORUN NUMBER 14)
8 FORMAT (1X,2F7.l#2F6.1)
9 FORMAT (1X92E12.4)

10 FORMAT (1X,3F5.2)
4 READ INPUT TAPE 4.2,MNNORUN.LASTRNNINITLMFINAL

READ INPUT TAPE 4,2,ITSFNL
READ INPUT TAPF 4.10.XTRAXTRB.XTRC
READ INPUT TAPF 4#3o(Q(I),I=1,M)
WRITE OUTPUT TAPE 297,NORUN
READ INPUT TAPE 4,5,AZEROBZEROCZERO.EPSlEPS2,EPS3
READ INPUT TAPE 4.89WIDTHGAPCHDELTADEL
READ INPUT TAPE 499,PULSNO#TDEAD
SPAC=WIDTH+GAP
DO 27 I=N#M

22 CORRN(I)=( (I)*TDEAD)/(PULSNO*WIDTH)
IF(CORRN(I)-.001)25,25.23

23 P(I)=Q(I)/(1.-CORRN(I))
GO TO 26

25 P(I)=Q(I)
26 T(I)=(CHDEL*WIDTH-TADEL)+SPAC*(FLOATF(I)-.5)

PA=1.0/P(I)
WT(I)=SQRTF(PA)

27 CONTINUE
28 A=AZERO

B=BZERO
C=CZERO

29 ITS=O
291 DO 30 I=NM

PETA=-C*T(I)
30 HYFXPO(I)=FXPF(RFTA)

SUMUU=0.0
SUMUV=0.0
SUMUW=0.0
SUMVV=0 .0
SUMVW=0.0
SUMWW=0.0
SUMFU=0.0
SUMFV=0.0
SUMFW=0.0
SSORES=0.0



DO 35 I1NtM
U(I)=WT(I)
V(I)=HYEXPO(I)*WT(I)
W(I)u-B*(T(I))*HYEXPO(I)*WT(I)
FIT(I)=A+B*HYFXPO(I)
DIFFR(I)=P(I)-FIT(I)
F(I)=(P(I)-FTT(I))*WT(I)
SUMUU=SUMUU+U(I)**2
SUMUV=SUMUV+U(I)*V(I)
SUMUW=SUMUW+U(I)*W(I)
SUMVV=SUMVV+V(I)**2
SUMVW=SUMVW+V(I)*W(I)
SUMWW=SUMWW+W(I)**2
SUMFU=SUMFU+F(I)*U(I)
SUMFV=SUMFV+F(I)*V(I)
SUMFW=SUMFW+F(I)*W(I)
SSQRES=SSQRES+F(I)**2

35 CONTINUE
D11=SUMVV*SUMWW-SUMVW**2
D22=SUMUU*SUMWW-SUMUW**2
D33=SUMUU*SUMVV-SUMUV**2
D12=SUMVW*SUMUW-SUMUV*SUMWW
D13=SUMUV*SUMVW-SUMUW*SUMVV

_D23=SUMUV*SUMUW-SUMVW*SUMIJU
DOM=SUMUU*Dll+SUMUV*D12+SUMUW*D13
DELTAA=(SUMFU*Dll+SUMFV*D12+SUMFW*D13)/DOM
DELTAR=(SUMFU*D12+SUMFV*D22+SUMFW*D23)/DOM
DELTAC=(SUMFU*D13+SUMFV*D23+SUMFW*D33)/DOM
IF (ABSF(DELTAA)/A-EPS1)36,36,39

36 IF (ABSF(DELTAB)/B-EPS2)37,37,39
37 IF (ABSF(DELTAC)/C-EPS3)40,40,39
39 A=A+XTRA*DELTAA

B=B+XTRB*DELTAB
C=C+XTRC*DELTAC

369 FORMAT (lH0,6E12.4)
WRITE OUTPUT TAPE 2,369,(AgB,CDELTAADELTABDELTAC)
IF(ITS-ITSFNL)391,392392

391 ITS=ITS+1
GO TO 291

393 FORMAT(30HOTERMINATED ON ITERATION LIMIT)
392 WRITE OUTPUT TAPE 2,393

40 EM=M
ZIP=SORTF(SSRES/(EM-3.0))*0.6745
DELA=SQRTF(Dll/DOM)*ZIP
DELB=SQRTF(D22/DOM)*ZIP
DELC=SQRTF(D33/DOM)*ZIP
TAU=1.0/C
MN1=M-N+1
DO 500 I=NM

500 CORR()=P(I)-A
70 FORMAT (T3,21H ITERATIONS WERE USED)
41 FORMAT (F7.OF9.0,3XF12.3,3XF12.3,3XF12.3)

46 FORMAT (60HO TIME EXP. FLUX FIT FLUX DIFFR CORP
1 FLUX)

42 FORMAT (lHO,2X,18HDECAY CONSTANT(C)=F12.7,1Xl2HINVMICROSEC.,3X,5H
lDPLC=F10.4)

48 FORMAT (lHO,2X,2HA=F7.0,2X,2HB=F9.O.4X5HDELAE1O.42X,5HDELB=E1O.
14)

47 FORMAT (lHO,2X,4HTAU=F9.3glX,9HMICROSEC.)
71 FORMAT (21H EPSILONS USED=FOR AF8.6,7H FOR BF8.6,7H FOR CF8.6)

721 FORMAT (14,17H POINTS WERE USED)



WRITE OUTPUT
43 WRITE OUTPUT
44 WRITE OUTPUT

WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT
IF (N-NINITL

401 N=N+1
GO TO 29

TAPE
TAPE
TAPE
TAPE
TAPE
TAPE
TAPE
TAPE

2o46
2,41,(T(I),P(I),FIT(I),DIFFR(I),CORR(I) ,I NM)
2,42,(CDELC)
2,48,(ABDELADELB)
2,47,(TAU)
2,70,(ITS)
2,721,(MN1)
2,71,(EPS1,EPS2,EPS3)

)401,402,402

402 IF (M-MFINAL)404,404,403
403 M:M-1

GO TO 29
404 CONTINUE
405 FORMAT (10HOF I N I 5)

WRITE OUTPUT TAPE 2,405
45 IF (LASTRN-NORUN)52,52,50
50 GO TO 4
52 CALL EXIT

END
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A2.2 THE .DIFFN CODE

In certain applications of the die-away pulsed neutron technique for

the study of the diffusion characteristics of a pure moderator, the experi-

mental data consist of a set of values of the asymptotic decay constant Xi,
2

corresponding to different values of the buckling B . A fit is then to be

made to an expression of the form:

X. = A + DB -CB, (A2.24)
1 1 1

to extract the values of the diffusion parameters A, D and C.

An IBM-7090 code DIFFN was developed for this purpose. This
2

code fits a set of up to 50 X vs. B points to an expression of the form

of Eq. A2.24 and determines the parameters A, D and C, together with

the associated errors, by using a weighted, least-squares technique in

an iterative scheme. The weighting of the points is done according to

the relation:

W.= (A2.25)
1Ax.'

where AX. is the uncertainty in X. (given by the EXPO code). The theo-

retical basis of this code is similar to that of EXPO, described in Section

A2.1.1.

The buckling is calculated from the input dimensions of the cylin-

drical assembly, according to the relation:

2 2.405 \2 2_(A2.\2
B =1 2 +d + (H, (A2.26)

where

d = 0.710 t

3D

v

v =-X 2.2 X 105

The code starts with an initial value of D specified in the input and
2

calculates the geometrical bucklings B which are then used with X. in the
1 1
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2
fitting process, so as to yield values of A, D and C. The bucklings B

are recalculated using the new value of D, and a new fitting is made.

The process is repeated until self-consistent values are obtained.



LISTINGS FOR CODE DIFFN

* LIST 8
* LABEL
C BIMAL K. MALAVIYA * PULSED NEUTRON DATA REDUCTION
C THIS PROGRAM CALCULATES THE PARAMETERS ADC FROM THE LEAST
C SQUARES FIT TO Y=A+D*X-C*(X**2) , WHERE
C X=(2.405/(R+E))**2 + (3.14159/(H+2*E))**2 AND
C E=0.710446*T , T=3*D/V , V=2*220000/SQRTF(PAI) 9 PAI=3.14159
CDIFFN

DIMENSION Y(50),B(50),F(50),U(50) ,V(50),W(50),WT(50).FIT(50),DIFFR
1(50),R(50) ,Z(50)
1 FORMAT (1H1,2X,51H B.K.MALAVIYA * CALCULATION OF DIFFUSION PARAMET
1ERS)

WRITE OUTPUT TAPE 2.1
CALL CLOCK(2)

2 CORMAT (1X,713)
5 FORMAT (1X,3F10.4,3F8.6)
I -FORMAT (IX,2F7.3)
7 FORMAT (12HOPUN NUMBFP 14)
8 FORMAT (1X,7F10.2)

10 FORMAT (1X,4F5.2)
4 READ INPUT TAPE 4,2,MNNORUNLASTRNNINITLMFINAL

READ INPUT TAPE 4,?,1TSFNL
READ INPUT TAPE 4,10,XTRAXTRDXTRC
READ INPUT TAPE 4,89(Y(I),I=NM)
READ INPUT TAPE 4,8,(S(I),I=NM)
WRITE OIJTPUT TAPE 2,7,NORUN
READ INPUT TAPE 4,5,AZERO,DZFROCZEROEPSleEPS2,EPS3
READ INPUT TAPE 4,3,((R(I),Z(I)),I=N,M)
DO 27 I=NM
WT(I)=1.o0/( I)

27 CONTINUE
28 A=AZFRO

D=DZERO
C=CZERO

29 ITS=0
PAI=3.14159
VEE=2.0*220000.0/SQRTF(PAI)
TRAM=3.0*D/VEE
E=0.710446*TRAM

291 00 26 I=NM
26 B(1)=(2.405/(R(I)+E))**2+(3.14159/(Z(I )+2.0*E))**2
30 SUMUU=0.0

S UMUV= 0 .0
SUMUW=f'.0
SUMVV=0.0

SUMWW=0.,
S UMFU= 0 .0
SUMFV=0 .0
SUMFW=0.0
SSORES=0.O
DO 35 I=NM
U(I)=WT(I)
V(I)=B(I)*WT(Il)



W( t)m-(B( I)**21*WTt I)
FlT(t)uA4D*B(I)-C*(Bf1)**2)
DlFFR( I)mY(H I Tl
F( I)mfY( I)-FI1'( ) )*WT'~ I
SUMUUwSUMUU+U( I)**2
sumUu.usUMUV+U( I)*V( I)
sumtjtJWSMUW+U( I)*Wfl)
SUMVV=SUJMVV+V( I)**2
SUJMVW*='UMVIA+V( I )*W.( I)
SUMWW=SUMWW4W( I)**2
SUMFU=S;UMFU+F( I)*UU1)
SUJMFVeSUMFV+F( I)*/( I)
S(-JYFW=,SUM FW+F ( I ) *W ( I )
SSO0R=SSRFS+F(TI)**2

15 CONTINUE
r)i l=51UMVV*S'UMWW-SUMVW**2
!)22 =SUM UtJ* SLIM WW- SUMUW** 2
D33=SUMUU* SUMVV-SUMIJV**2
D)12=SUM\/*SUMUW-SUMUV*SUMWW
IA =,;. !MUjV* sUMVW-SUMUW*SUMVV

0)23 =SUM UV* '-UM UW- SUMVW* SUMUU
DOM=SUMUUJ*nl1 +SUMUV*D12+SUMUW*D13
DELTAA= (SU;MFII*D11+SU~tMFV*D12+.SUMFW*D13) /DOM
DELT A r= (SUM FtJ*f)12+SI.MFv*D22+SUMFW*D23 )/DOM
F)FLTAC= CSUJMF!-J*D)11 +S(UMFV*D23+S;UMFW*D33) /DOM
I F (ARSF( DFLTAA) /A-IFPS1 )36,36,39

36 IF (ARSFC DPLTAD) /D-FPS2)37,37,39
17 IF (AP F(flLTAr) /C-FPS3)4040939
39 A=A+XTPA*DPLTAA

r)= F)+XT PI)) ELT AD
C=C+XTRC*DELTAC

369 FORMAT(6E12*4)
W,.RITE OUTPUT TAPE 2,3699(ADCDELTAADELTADDELTAC)
IF(C TS- ITSFNL) 391 ,lq2 392

391 T T!,=II + 1
GO TO 291

393 FOPMAT(3lHnTERMINATED ON ITERATION LIMIT)
392 'WRITTF OUTOUT TAPP 2,393
40 FM=M

7TP=SORTF(SSOPFS/(FM-3J1))*O.6745
DFLA=S0RTF(D1 1/FOM)*7 IP
DFLD= QRTF(D22/DOM)*7 IP
F)FLR= ORTr- (r)2/DO(M)*7IP
' T(nMA=A/V7F

70 FORMAT (11921H ITERATIONS WERE USED)
41 FORMAT (Flt'4,3XE1Ct44XE1O.4,2XE1O.4)
42 FOPMAT (lH~,?X,2HA=EIO%4o4X,2HF)=ElO.4,4X,2HC=E~o.4)
46 FORMAT (48HC' B'JCKLTNG EXP DECONS FIT DECON.S DIFFR)
47 FORMAT (2X ,5HDFLA=F1(O.4,2X,5HD)FLD=E1O.492Xo5HDELC=E1O.)4)
48 FOPMAT (2X ,6HSTIGMA=F1 0.o4,lOX, 3HDO=F7.4)
71 FORMAT (21H FPSILONS tIJS.FD=FOR AF8*6,7H FOR DF8.6o7H FOR CF8.6)

721, FORMAT ( T3,17H POINTS W1ERF USED)
I IPITT OIITPH-T TLIP~ ?946

43 WAIITE OUTPUT T.APE 2,419,R(I),Y(I),FIT(I),DIFFR(I),IzNM)
44 WIAPIT P( 11 ?T P 1 JT T AD0F 2942,9( A ),C(7)

WR~ PI TE OL IT D.J T TAPP ?,t47 9( r) cL A,9F ) D r L C
,OT TF 0! IT P!' T T A D C?",4P9 (SCiOMAF)0)

1.1rT T 9- mIITD I IT TAPP 2,7(0,(TT!S)
V? PT TF 0 UTO UT T AP P 29721,g(MN1)



WRTT0 rJTPUT TAPF 2971,(FPSIFPS2 FPC3)

IF (N-NTNITTL) L,&O40 2402
401 N=N+1

GO TO 70
4n2 IF (M-MFINAL)44404,403

4n3 M=M-1
GO TO 2P

4r'4 CONTINUE
4nr FORMAT (10HF I N I r)

WRITE OUTPUT TAPF ?,405
45 IF (LASTRN-NORUN)52,52,50
50 GO TO 4
52 CALL FXIT

END
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A2.3 THE DEECEE CODE

In certain applications, it is necessary to attempt a two-parameter,

rather than a three-parameter, fit to the X vs. B2 data. A fit is made to

the expression:

x = x + DB. - CB (A2.27)
1 0 1 1

where X is fixed (input parameter) and the fitting procedure yields the

values of the two parameters D and C.

An IBM-7090 code DEECEE was developed for this analysis. This

code fits a set of up to 50 X vs. B2 points to an expression of the form of

Eq. A2.27 and determines the values of the parameters D and C, together

with their standard deviations, by an iterative, least-squares method.

The operation of this code is similar to that of DIFFN and is easily under-

stood from its Fortran listings which are included here.

A2.4 OTHER CODES

Other major computer programs that have been written in the

course of this work include the following:

The code RWORTH calculates the control rod worth according to the

relation (Section 6.2),

2 S

2 = -0.820 Y (pa)+dpY 1(pa)+ S (K 0 (va)+dvK 1 (va)) . (A2.28)

The code PEACE calculates the extrapolation distance d from the

relation (Section 4.1),

d 1 (aR) J0(aa) - Y 0(aa) J 0 (aR) (A2.29)
a Y (aa) J0(aR) - Y0(aR) J1 (Cta)

The code ASOKA calculates the relative radial flux distribution 4(r)

according to the relation (Section 4.1),

J 0 (aR)
4(r) = (ar)- Y (ar) . (A2. 29a)

0 Y0(QR) 0
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LISTINGS FOR CODE DEECEE

* LIST 8
* LABEL
C BIMAL K. MALAVIYA * PULSED NEUTRON DATA REDUCTION
C THIS PROGRAM CALCULATES THE PARAMETERS D AND C FROM THE LEAST
C SQUARES FIT TO Y = YO + D*X - C*(X**2) s WHERE
C X=(2.405/(R+E))**2 + (3.14159/(H+2*E))**2 AND
C E=0.710446*T , T=3*D/V , V=2*220000/SQRTF(PAI) 9 PAI=3.14159
C YO CAN BE GIVEN ANY VALUE IN THE INPUT DATA
CDFECFF

DIMENSION Y(50),B(50),F(50),V(50) W(50),WT(50
1R(50),Z(50),S(50)

1 FORMAT (1H1,2X,51H B.K.MALAVIYA * CALCULATION
1ERS)
WRITE OUTPUT TAPE 2,1
CALL CLOCK(2)
FORMAT (1X
FORMAT (1X
FORMAT (lX,
FORMAT (12H
FORMAT (1X,
FORMAT (1X,
FORMAT (1X,
READ INPUT
READ INPUT
READ INPUT
READ INPUT
READ INPUT
READ INPUT
WRITE OUTPL
READ INPUT
READ INPUT

713)
2E10.4,2F8.6)
2F7.3)
ORUN NUMBER 14)
7F10.2)
F7.3)
4F5 .2)

),FIT(50),DIFFR(50),

OF DIFFUSION PARAMET

TAPE 4,2,MNNORUNLASTRNNINITLMFINAL
TAPE 4,2,ITSFNL
TAPE 4,10,XTRDXTRC
TAPE 4,8,(Y(I),I=N,M)
TAPE 4,8,(S(I),I=NM)
TAPE 4,9,YO
T TAPE 2,7,NORUN
TAPF 4,5,DZERO,CZROEPS2,FPS3
TAPE 4,3,((R(I),Z(I)),I=NM)

DO 27 I=NM
WT(I)=1.0/S(I)

27 CONTINUE
28 D=DZERO

C=CZERO
29 ITS=0

PAI=3.14159
VFEF=2.0*220000.0/SQRTF(PAI)
TPAM=3.O*D/VEE
=0o.710446*TRAM

291 DO 26 I=NM
26 B(I)=(2.405/(R(I)+F))**2+(3.14159/(Z(I)+2.0*F))**2
30 SUMVV=0.0

SUMVW=0.0
SUMWW=0.0
SUMFV=0.0
SUMFW=O.0
SSQRES=0.0
DO 35 I=NoM
V(I)=B(I)*WT(I)
W(I)=-(B(I)**2)*WT(I)
FIT(I)=YO+D*R(I)-C*(B(I)**2)
DIFFR(I)=Y(1)-FIT(I)

2
5
3
7
8
9

10
4

,
,



F(I)=(Y(I)-FIT(I))*WT(I)
SUMVV=SUMVV+V(I)**2
SUMVW=SUMVW+V(I)*W(I)
SUMWW=SUMWW+W(I)**2
SUMFV=SUMFV+F( I )*V(I)
SUMFW=SUMFW+F(I)*W(I)
SSORES=SSQRES+F(I)**2

35 CONTINUE
DOM=SUMVV* SUM WW-SUMVW**2
DEL TAD= (SUMFV*SUMWW-SUMFW*SUMVW) /DOM
DELTAC= (SUMFW*SUMVV-SUMFV*SUMVW) /DOM
IF (ARSF(DFLTAD)/D-EPS2)37,37,39

37 IF (ABSF(DPLTAC)/C-EPS3)40,40,39
39 D=D+XTRD*DFLTAD

C=C+XTRC*DFL TAC
369 FORMAT(6E12.4)

WRITE OUTPUT TAPE 2,369,(DCDELTADDELTAC)
IF(ITS-ITSFNL)391,392,392

391 ITS=ITS+1
GO TO 291

393 FORMAT(30HOTERMINATED ON ITERATION LIMIT)
392 WRITE OUTPUT TAPE 2,393
40 EM=M

ZIP=SQRTF(SSORES/(EM-2.O))*0.6745
DELD=SQRTF(SUMWW/DOM)*ZIP
DELC=SQRTF(SUMVV/DOM)*ZIP
DO=D/VEE
MN1=M-N+1

70 FORMAT (13,21H ITERATIONS WERE USED)
41 FORMAT (E10.4,3XE1O.4,4XE10.4,2XE10.4)
46 FORMAT (48HO BUCKLING EXP DECONS FIT DECONS DIFFR)
42 FORMAT (1HO,2X,2HD=E1O.4,7X,2HC=E10.4)
48 FORMAT (1H0,2X,5HDELD=E10.4,4X,5HDELC=E10.4)
71 FORMAT (21H EPSILONS USED FOR DF8.6o7H FOR CoF8.6)
75 FORMAT (4HlY0=F5.2#13X93HD0=F7.4)

721 FORMAT (13#17H POINTS WERE USED)
WRITE OUTPUT TAPE 2,46

43 WRITE OUTPUT TAPE 2,41,(B(I),Y(I),FIT(I),DIFFR(I),I=NM)
44 WRITE OUTPUT TAPE 2,42,(DC)

WRITE OUTPUT TAPE 2,48o(DELDDELC)
WRITE OUTPUT TAPE 2,#75,(YO,DO)
WRITE OUTPUT TAPE 2,70,(ITS)
WRITE OUTPUT TAPE 29721,(MN1)
WRITE OUTPUT TAPE 2#71,(EPS2.EPS3)
IF (N-NINITL)401,402,402

401 N=N+1
GO TO 29

402 IF (M-MFINAL)404,404,403
403 M=M-1

GO TO 29
404 CONTINUE
405 FORMAT (10HOF I N I 5)

WRITE OUTPUT TAPE 2,405
45 IF (LASTRN-NORUN)52,52,50
50 GO TO 4
52 CALL EXIT

END
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Appendix III

CALCULATION OF THE NEUTRON AGE AND

EFFECTIVE DELAYED NEUTRON FRACTION FOR THE LATTICE

As discussed in Section 3.5, the interpretation of the pulsed neutron

(X,B 2) cka for a subcritical assembly involves a knowledge of the neutron

age r to thevrpal and the effective delayed neutron fraction 3 for the lattice.

This appendix discusses the methods of evaluating these parameters.

A3.1 CALCULATION OF THE NEUTRON AGE IN A LATTICE

The experimentally measured quantity in the measurement of the

slowing-down area is the neutron age in a pure moderator - usually from

fission energies to indium resonance (1.44 ev). For heavy water, a

measurement of (109 ± 3) cm2 as the age to 1.44 ev is taken as the

basis for calculation. For age to lower energies, we can use the relation(4 )

Ar = 4.94 Yn (1.44/E) . (A3.1)

The age to thermal of 99.75 mole per cent D 20 at 20*C is found tobe

(125 ± 3) cm , For other D 20 concentrations or temperatures, correc-

tions can be applied to obtain the value of T. The age increases as the

inverse square of the L 2 0 density:

2

T T PRO (A3.2)

and the correction due to a change "6c" in the H 2 0 concentration is given

by (3).:

AT = -r6p. (A3.3)

In calculating the age in a multiplying heterogeneous assembly, it

is necessary to consider the effect of the non-moderator constituents on

the age. In general, the presence of.fuel and structural materials tends

to increase the age. The inelastic scattering in uranium, on the other
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hand, can be quite effective in decreasing the age by moderating the

neutrons out of the fission energy spectrum. Several empirical formulae
(4,5)

are available for taking account of these effects.

A neutron generated in a uranium slug has a certain probability of

undergoing an inelastic collision with a uranium atom. If we denote by

T the age for a neutron which has not made an inelastic collision and by

T 1 the age for a neutron which has done so, then a mean value of the age

is given by

T T 1 1P +T P,
0 a i+a 1Y o +

T 1- 1 Y y P (A3.4)
0 T 0 ai +ae

where a. and a are the inelastic and elastic cross-sections, respec-
1e

tively, in uranium; P is the probability that a neutron generated in a

uranium slug will undergo a collision before leaving the slug. For heavy

water(3) Ir /To = 0.7. Tables of P can be found in Ref. (6).

Finally, a correction is made due to "voids" in the moderator since

the elastic scattering in materials other than D 20 of volume V does not

result in energy loss. This yields the relation

7 U. V2
T = T 1 -1 - 1P + 0 , (A3.5)

o T o ai+ae V 1

where V is the volume of non-D 2 0 constituents.

For a lattice of 0.25-inch-diameter, 1.03% U 2 uranium rods in

heavy water with a triangular spacing of 1.75 inches, using the values of

the constants from Refs.(5) and (3), Eq. A3.5 yields

T = (120 ± 3) cm2

A3.2 EVALUATION OF THE EFFECTIVE DELAYED NEUTRON

FRACTION

The effective delayed neutron fraction p is a parameter of major

interest in reactor kinetics. It is the basis of the dollar unit of reac-

tivity and its knowledge is essential for the analysis and interpretation
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of reactivity measurement. Physically, it is given by

Effective production rate of precursor

Precursor rate

Thus, # is an index of the margin of reactor control available (larger p,

greater is the margin of control) and is related to safety considerations.

The "effective" delayed neutron fraction f, for an actual chain-

reacting system, differs from the delayed neutron fraction of any fission-

ing species for several reasons. The delayed neutrons are emitted with

an energy spectrum lower (average energy 240-450 kev) than that of

fission neutrons (average energy about 2 mev). In a finite assembly,

therefore, the delayed neutrons are less likely to leak out than the fission

neutrons, and it is necessary to assign greater importance or "worth" to

delayed neutrons. According to Hurwitz, the ratio is just the

probability of a delayed neutron to produce fission divided by the proba-

bility of a prompt neutron to cause fission. For a simple reactor, this

probability is given by the ratio of the non-leakage probabilities of the

respective types of neutrons. Thus, for a bare reactor, according to age

theory,

.e -B 2 Ti

p. 2 f'
i -B T

where the superscripts f and i refer to fission and ith delayed group

neutrons. The amount by which J is increased depends on the nature of
(7)

the moderator and the buckling of the reactor. Gwinn has considered

the magnitude of this increase for several systems. For a large heavy

water assembly, this effect is small.
238 (2)

Another correction is due to fast fission in U . Hellens has

suggested an expression of the form:

P p25 28
- 1 1 v 28 6

i P 28+ 25 28
o e V

th
where P. and P 0 are the non-leakage probabilities of the i delayed

10

neutron group and for fission neutrons, respectively; 6 is the ratio of

U 2 8 fast fissions to U25 thermal fissions and other symbols have their
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usual meaning. The magnitude of this correction is usually to increase

p by the fast fission factor E .

The computation of p for a system containing a mixture of isotopes

is based on perturbation methods(8) and is usually carried out by multi-

group diffusion or transport theory codes. Thus, for a uranium-fueled

system, an average value of p is

p = F 25P25 + F 28P28

235
where F 2 5 is the fraction of all neutrons which come from U fission

25 235
and F 2 8 is the corresponding quantity for U fission. Kear and

Rudermann(S9 have calculated F 2 5 and F 2 8 using three group fluxes

averaged over the fuel-bearing region supplied in the PDQ output

together with the homogenized values of vTCf for each group. Combining
(5)

these with values

p 2 5 = 0.0064 ± 0.0003

P28 = 0.0157 ± 0.0012

they have obtained a value of 0.00652 for p, for slightly enriched (1.3% U25

uranium heavy water system.

modeatedby havy ate(10)
In systems moderated by heavy water (and also beryllium or

its compounds), there is another important contributory source of

"delayed" neutrons - the photoneutrons produced in the moderator by the

gamma activity from fission products. In kinetics calculations, photo-

neutrons can be considered simply as additional groups of delayed neutrons

having decay constants X and group fractions p . Due allowance must be

made for build-up factors for each group (1 - e Xjt) where t is the effec-

tive irradiation time, and for relative photoneutron effectiveness.
235

The yield of photoneutrons for U fission products has been
(10)

measured in heavy water by Bernstein et al. The decay constants

and yields for the principal groups of delayed(5) and photoneutrons (10)

are summarized in the following table.
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Delayed Neutrons Photoneutrons

i X sec 1  p. X 104 i X sec p. X 104

1 0.0124 2.25 7 0.277 1.980

2 0.0305 15.50 8 1.69 X 10-2 0.622

3 0.111 14.32 9 4.8 X 10-3 0.213

4 0.301 29.57 10 1.5 X 10-3 0.105

5 1.13 9.88 11 4.28 X 10~4 0.063

6 3.00 3.52 12 1.17 X 10~4 0.071

13 4.38 X 10-5 0.010

14 3.64 X 10- 6  0.003

From this table,

14

p Z p. = 0.00781

1=1

Williams(12,12a) has reported avalue of 0.00783 for the total effective

delayed neutron fraction in a D 20-moderated reactor.

The effective delayed neutron fraction p has also been measured

experimentally by several investigators(13-16) The experimental

methods are reviewed in Ref. (15). From a combination of the reactivity

measurement of a heavy water reactor by two methods, Kilchle( 1 6 ) has

derived a value for the effective delayed neutron fraction,

-2~z(0.783 ±0.018)X 10



A33

References

1. J. W. Wade, Nuclear Sci. and Eng. 4, 12 (1958)

2. H. Etherington (Ed.), Nuclear Engineering Handbook, McGraw-
Hill Book Company, Inc., New York (1958).

3. A. D. Gelanin, Thermal Reactor Theory, Pergamon Press,
New York (1960).

4. J. A. Thie, Heavy Water Exponential Experiments Using ThO2 and
UO 2, Pergamon Press, New York (1961).

5. L. J. Templin, Reactor Physics Constants, 2nd Ed., ANL-5800 (1963).

6. K. M. Case, F. de Hoffmann and G. Placzek, Introduction to the
Theory of Neutron Diffusion, Vol. I, U. S. Government Printing,
Washington (1953).

7. R. Gwinn, ORNL-2081, 84 (1956).

8. L. N. Ussachoff, Proc. Int. Conf. on the Peaceful Uses of Atomic

Energy, Geneva, Vol. 5, P/656, p. 503 (1955).

9. G. H. Kear and M. H. Rudermann, GEAP-3937 (1962).

10. C. E, Cohn, Nuclear Sci. and Eng. 6, 284 (1959).

11. S. Bernstein et al., Phys. Rev. 71, 573 (1947).

12. H. T. Williams, ORNL, CF-51-12-122.

12a, P. Meyer and W. C. Ballowe, GEAP-4019 (1962).

13. T. F. Ruane et al., Trans. Am. Nuclear Soc. 1, No. 2, 142 (1958).

14. J. D. Kengton, R. Perez-Belles and G. De Saussure, Nuclear Sci.
and Eng. 12, 505 (1962).

15. T. F. Ruane, Nucleonics 20, No. 10, 94 (1962).

16. M. Kichle, Symposium on Exponential and Critical Experiments,
Amsterdam, P/SM-42/6 (Sept. 1963).



A34

Appendix IV

APPLICATION OF THE kp/i METHOD

The recently proposed "kp/1" method for the measurement of the

reactivity of an assembly has been described in Section 3.6.3. The

method is based on the fact that the equilibrium neutron density N(r,t)

in a pulsed subcritical system is composed of a prompt neutron contri-

bution Np and a delayed neutron part Nd which are, under certain con-

ditions, related by the equation:

f 0 0N exp L( ks t] dt - f 0 0 N dt N d (A4.1)

where R is the repetition rate of the source. Hence, knowing the prompt

neutron distribution N (t) from the experimental curve, the above integral

relationship determines kp/i, since Nd is known from the experiment.

Once ks/1 is known, the reactivity can be obtained from the relation:

$ (A4.2)
(kp/)

In general, the restriction on the pulse repetition rate is such that

w < R < X, where L is the decay constant of the shortest lived precursor.

This method was applied to the lattice studied in this investigation,

with and without a control rod. These runs are described in Section 7.4.

A repetition rate of 10 per second was used. The channel width was

80 psec; the delay multiplier was set at X 2 and the target delay was

100 psec. The time analyzer was allowed to sweep for about 10 minutes

after shutting off the source, to ensure the conditions for a quasi-

(1)equilibrium.

However, the results of the application of this method are incon-

clusive and this preliminary study seems to indicate that the method is

not applicable to assemblies as far below critical as the ones used here.

In the application of this method, a precise knowledge of the delay tail is
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crucial. If the assemblies are too far subcritical, the delayed neutron

contribution may be so insignificant as to make an accurate determina-

tion of Nd in Eq. A4.1 difficult. Another reason might be that the repe-

tition rate of 10 per sec, used in these runs, is too low, even though it

satisfies the condition mentioned earlier. The KAMAN pulsed neutron

tube is limited to a repetition frequency of about 10; it may be possible(2)

to run it at 12 pulses per second. It would be desirable to explore fur-

ther the applicability of this useful method in the range of far subcriti-

cality and the investigation is expected to be continued.

The analysis of the data in this method is based on the extraction

of the value of ks/1 from the integral relationship, Eq. A4.1. An IBM-

7090 computer code was brought into operation for this purpose. It is

included here for future investigators. I am indebted to Dr. P. Meyer

of the Vallecitos Atomic Laboratory, California, for useful discussions

of this method and for his having communicated the original version of

the code EDPUNS.

The code is based on the following procedure:

Let N(i) be the corrected counts and calculate

TN (i) -1
N(i-1) = N (i) i = 2,3 . , + 1.

Let t(i) be the time corresponding to N(i). This is given by

t(i-1) = mdAt - td + (i-1)p + (i-3/2)At, i = 2, 3, . . . , I + 1

Let

n = N(i) -nt

and calculate

t(I) N[t(I)]
(1) I1 ftI n (I) dr + -60 pa-10

where the integrand can exclude the points (0. - 1). Calculate

-6 NtI](10 6pt(I))
(2) I = t(I) n e(10 pr) dr + N[t(I)]e

2 f p. -(6.0 1 10 -(a-p)
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where the above integrand is subjected to the same restrictions as in (1).

Calculate

pcorr = p nd
10 6R(I2 1 '

if I p corr - p I < e , then proceed to the next step.

recalculate (2), using pcorr* Calculate

( - pcorr)

If not, return to (2) and

Pcorr

and stop. Print the input and the iterates on p. Also print $.

The operation of the code and the input instructions are best under-

stood from the Fortran listings, which are included in this appendix.
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LISTINGS FOR CODE EDPUNS

* LIST 8
* LABEL
C * PU
CEDPUL

EQUIVALENCF
1, ( SS( 1),
2, ( SS( 2).
3, ( SS( 3),
4, ( SS( 4),
5, ( SS( 5),
6, ( SS( 6),
7, ( SS( 7),
8, ( SS( 8),
9, ( SS( 9),
EQUIVALENCE

1, SSC( 41)
2, C SS( 341)
3, ( SS( 641)

LSED NEUTRON SOURCE

INT
NOCH
PCAP
TAU
DT
R
DM
TD
RHO

XN (1)
YN 1)
ZN (1)

55(
SS(
SS(
SS(
5(
SS(
SS(
SS(
SS(

SS(
SS(

SS(
SS(

COMMON SS
DIMENSION XN(300), YN(3C),

10)' ND
11), ALPHA
12), P
13), E
14), PINE
15), ALDER
16), BIRCH
17), TERM1
18), AREAl
19), A2
30)' AREA2
941)o TN(l)

1241), MO(1)
1246)9 MC(1)

SS(20), A1
SS(21), AREAX
SS(22), VALUEl
SS(23), KLANK
SS(24), KOUNT
SS(25), LL
SS(26)o AREAZ
55(27), EXPCT
SS(28), CEDAR# C
SS(29), TERM2

SS(31), VALUE2
55(1251), PC(1)
5S(1351)9 HOL(1)
SS(1361),BOSH(1)

ZN(300)o TN(300), MO(5), M

DIMENSION PC(100), HOL(10), BOSH(100), SS(1500)
C THE ARRAY IJKLMN IS INTENDED TO BE USED AS A PATCHING ARE

DIMENSION IJKLMN(50)
CALL CLOCK(2)

C GLOSSARY OF PROGRAMMING SYMBOLS
C INPUT
C TAU CHANNEL RESOLVING TIMF, MICROSECONDS
C DT CHANNEL WIDTH, MICROSECONDS
C FCAP TOTAL NUMBER OF BURSTS
C INT CHANNFL NUMBER FOR INTEGRATION LIMIT

C R PULSE RATE, PULSES PER SECOND

C DM DELAY MULTIPLIER
C TD TIME DELAY FROM CLOSING TO SOURCE BURST, MICRO SECO

C RHO CHANNEL GAPg MICROSECONDS

C DN AVERAGE DELAYED BACKGROUND
C CN AVERAGE DELAYED BACKGROUND FOR CALCULATING P

C ALPHA PROMPT MODE DECAY CONSTANT, RECIPROCAL SECONDS

C P INITIAL APPROXIMATION OF (KB/L), RECIPROCAL SECONDS

C E ERROR CRITERION ON P

C MO(5) CHANNEL NUMBERS OF COUNTS TO BE OMITTED
C HOL(10) COMMENT ON THE FIRST LINE OF INPUT

C XN(300) RAW COUNTS PER CHANNEL

C
C
C
C
C
C
C
C
C
C

C(5)

NDS

COMPUTED
YN(300) TIME AND BACKGROUND CORRECTED COUNTS
ZN(300) EXPONENTIALL CORRECTED COUNTS

TN(300) TIMES CORRESPONDING TO YN AND ZN

PC(C100) P ITERATES
BOSH(100) DELTA ITERATES
VALUF1 VALUE OF EQUATION 1 ( 11 )
VALUF2 VALUE OF EQUATION 2 ( 12 )
DOLLAP VALUE OF EQUATION 4 ($)

CFNTS VALUF OF (APLHA-P)/R

,
,
,

)
)

)

EA
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C
C GLOSSARY OF SUBROUTINES
C
C DATCH INTERPOLATES OMITTED VALUES
C
C SIM INTEGRATES USING SIMPSONS RULE
C
C CASE READS CASE CARD BEARING ACCOUNTING INFORMATION
C
C ERRSYS RECOVERY POINT FOR A SYSTEMS INPUT ERROR.
C EG, A LETTER OF THE ALPHABET IN AN INTEGER FIELD
C
C COMCC EVALUATES EQUATION 2 (12) USING THE CURRENT VALUE FOR P
C
C
C * IX = NO OF ERRORS
C * ITAPB = SYMBOLIC OUTPUT TAPE
C * ITAPA = SYMBOLIC INPUT TAPE

ITAPB=4
ITAPOT=2
LL = 50
GO TO 4

1 WRITE OUTPUT TAPE ITAPOT, 1001
1001 FORMAT( 46HO PROBLEM WAS HALTED BECAUSE OF AN INPUT ERROR

5 FORMAT (12HORUN NUMBER 14)
1005 FORMAT (lX,213)
1050 FORMAT (2X,15,15,10A6)
1052 FORMAT (2X,5E12.4)
1054 FORMAT (2X,2E12.4,5I5)
1058 FORMAT (IX,7F9.0)

4 READ INPUT TAPE 4,1005,NORUNLASTRN
READ INPUT TAPF 4,1050,INTNOCH,(HOL(I),I=110)
READ INPUT TAPE 4,1052,PCAPTAUDT,R,DM
READ INPUT TAPE 4,1052,TDRHOCNDNALPHA
READ INPUT TAPE 4,1054,PE,(MO(J),J=1,5)
WRITE OUTPUT TAPE 2#5,NORUN
WRITE OUTPUT TAPE ITAPOT, 1003, (HOL(I),I=110), INT, NOCH,

1 PCAP, TAU, DTRDM, TD, RHO, CN, DN, ALPHA# PE, (MO(J),J=1,5)
1003 FORMAT( 1HO, 20X, 26HPULSED NEUTRON SOURCE DATA / 1H09 10A6/

121HO INTEGRATION LIMIT =,lOX,15 / 22HO NUMBER OF CHANNELS =,9X,15
2 /20HO NUMBER OF BURSTS =9 11X, E17.9 / 18HO RESOLVING TIME = 13X
3,E17.9 / 17HO CHANNEL WIDTH =, 14X, E17.9 / 14H0 PULSE RATE =, 17X
4,E17.9 /20HO DELAY MULTIPLIER =, 1lX, E17.9/14HO DELAY TIME , 17X
5,E17.9 /15H0 CHANNEL GAP =, 16X, E17.9 / 25HO DFLAYFD BACKGROUND(1
6) =, 9X, E17.9 / 25HO DELAYED BACKGROUND(2) =99X, E17.9
7 /31HO PROMPT MODE DECAY CONSTANT , E17.9 /19HO P APP
8ROXIMATION =, 12X9 E17.9 /19H0 ERROR CRITERION =, 12X, E17.9 /
918HO OMITTFD POINTS =, 1X, 515
NOCH = INT + 1
IF( P - ALPHA ) 3, 1, 1

3 IF(NOCH-257) 2,1,1
C * READ CHANNEL COUNTS

2 RFAD TNPUT TAPF 4,1058,(XN(I),I=lNOCH)
C * TEST INPUT VALUES

IF( DT * PCAP ) 1, 1. 6
6 IF( ALPHA ) 1, 1, 7
7 IF( F ) 1, 1, A
P IF( TNT ) 1, 1, 9
9 IF( TNT - NOCH ) 10, 1, 1
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10 DO 12 I a lo 5
IF( MO(I) ) 19 129 11

11 CONTINUE
IF( MOI) - INT ) 129 129 1

12 CONTINUE
C * COMPUTF CORRECTED COUNTS, TIMES, ETC.

PINE = TAU / DT / PCAP
ALDER= ( OM + 0.5 ) * DT + RHO - TD
BIRCH= RHO + DT
IF(BIRCH) 1, 1 13

13 CONTINUE
DO 14 I = 1 INT
YN(I) = XN(I+1) / C 1.0 - PINE * XN(I+1)
TN(I) = ALDER
ALDPR = ALDFP + RIRCH

14 CONTINUE
C * INTERPOLATE VALUES FOR OMITTED POINTS

CALL PATCH( MO, YN, INT )
C * COMPUTE LAST TERM OF EQUATION (1)

TERM1 = YN(INT) * 1000000.0 / ALPHA
C * COMPUTE INTEGRAL OF EQUATION (1)

AREAl = SIM( YN9 19 INT9 BIRCH )
A2 = ( YN(1)/TN(1) - YN(2)/TN(2) ) / TN
Al = YN(1)/TN(1) - A2 * TN(1)

- DN

(1) - TN(2) )

CC
CC * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
CC

IF( Al ) 98, 979 97
97 IF( A2 ) 9, 99, 98
98 A2 = 0.0

Al = YN(1) / TN(1)
99 CONTINUE

CC
CC * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** **

CC
AREAX = ( 0.5*A1 + A2/3.0*TN(1) ) * TN{1) * TNC1)

C * COMPUTE VALUE OF EQUATION (1)
VALUE1 = AREA1 + TERM1 + AREAX
CALL COMCC
RIIl = R*(VALUE2-VALUF1)/1000000.0
PC(1) = P
ROSH(1) = CN - RIll
PC(2) = P*CN / Rill
IF( PC(2) - ALPHA ) 16, 15, 15

15 PC(2) = ( ALPHA + PC(1) ) / 2.0
16 P = PC(2)

CALL COMCC
R112 = R*(VALUE2-VALUE1)/1000000.0
BOSH(2) = CN - R112
PC3) = (PC(1)*BOSH(2)-PC(2)*ROSH(1))/(ROSH(2)-BOSH(1))
IF( PC(3) - ALPHA ) 18, 17, 17

17 PC(3) = ( ALPHA + PC(2) / 2.0
18 P = PC(3)

CALL COMCC
BOSH(3) = CN - R*(VALUE2-VALUEl)/1000000.0

C
C A B C A*R B *C
C + + + + NO - BOTH +

)
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++- + - YES
+ + - YES
+ + YES

+ + - + YES
+ - - YES

- - + + - YES
+ + NO -BOTH +

19 IF( BOSH(J) * ROSH(J-1) ) 121, 119, 119
119 IF( BOSH(J-1) * BOSH(J-2) ) 1219 1209 120
120 PC(J+l) = (PC(J-1)*BOSH(J)-PC(J)*BOSH(J-1))/(BOSH(J)-8OSH(J-1))

GO TO 122
121 CONTINUE

PC(J+1) = BOSH(J)*(PC(J-2)*BOSH(J-1)-PC (-1)BOSH(J-2
1
2
3

/ (BOSH(J-1)-BOSH(J-2))
- ROSH(J-1)*(PC(J-2) *DOSH(J)-PC(J)*BOSH(J-2))

/ (BOSH(J)-BOSH(J-2)) ) / (BOSH(J)-BOSH(J-1)
122 CONTINUE

IF( PC(J+1) - ALPHA ) 21, 20, 20
20 PC(J+1) = ( OC(J) + ALPHA ) / 2.0
21 IF( APSF( PC(J+1) - PC(J) ) - E ) 33, 22s 22
22 J = J + 1

IF(J-LL) 23, 23, 34
23 P = PC(J)

CALL COMCC
BOSH(J) = CN - R*(VALUE2-VALUE1) 1000000*0
GO TO 19

33 J = J + 1
34 KLANK = J - 1

P = PC(J)
DOLLAR = ( ALPHA - P ) / D
CENTS = ( ALPHA - P ) * 1000000.0 / R

C * EDIT COMPUTED VALUES
WRITE OUTPUT TAPE ITAPOT, 1035, P. DOLLAR, CENTS# (PC(I),I

1035 FORMAT(5HO P =,E20.9,5X,8HDOLLAR =,E209,5X,13H(ALPHA-P)/R
1 E20.9 / 1HO, 13X, 10HP ITERATES /// 10( lx, 5E20.9 / ) )
WRITE OUTPUT TAPE ITAPOT, 1075, ( BOSH(I)o I = lo KLANK

1075 FORMAT( 15HO DELTA VALUES /// 10( IX, 5E20.9 / ) )
WRITE OUTPUT TAPE ITAPOT, 1111, AREAX, AREAl, TERM1, AREAZ

1s TERM2, A], A2
1111 FORMAT( 11HOEQUATION 1,11X,7HTERM1 =,E20.9,10H TERM2 #,E

1 10H TERM3 =oE2n.9 /
2 11HOEQUATION 2llX,7HTERM1 =,E20.9,10H TERM2 =9E
3 10H TERM3 =#E20.Q /
4 9HOPARABOLA,16X,4HA1 =,E20.9,6X,4HA2 =,E20.9
5 1H0,20X,4HTIME,13X,9HRAW COUNT,9Xs15HCORRECTED COUNT#6X,
614HEXP-CORR COUNT / 1H
DO 222 I = 1 INT
JJJ = 1+1
WRITE OUTPUT TAPE ITAPOT, 2222, TN(I), XN(JJJ),YN(I),ZN(I)

2222 FORMAT(lH ,1OX, 4E20.9)
222 CONTINUE
405 FORMAT (10HOF I N I S

WRITE OUTPUT TAPE 2,405
45 IF (LASTRN-NORUN)52,52,50
50 GO TO 4
52 CALL EXIT

END
SUBROUTINE PATCH ( MO, YN, INT
DIMENSION MO(5), YN(300)

1 ,J)

* AREA2

20.9,

20o9,

C
C
C
C
C
C
C
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DIMENSION ISAVE(6)
C * PARABOLIC INTERPOLATION OF VALUES TO BE REPLACED IN AN ARRAY
C * MO AN ARRAY OF INDEX NUMBERS REPRESENTING THE SPECIFIC

C * ELEMENTS TO BE REPLACED
C * YN AN ARRAY OF VALUES TO BE PATCHED BY PARABOLIC INTERPo

C * INT THE NUMBER OF ELEMENTS WITHIN YN TO BE CONSIDERED IN THE

C * PATCHING INTERPOLATION.
C * FIRST, SET THE NUMBER OF POINTS TO BE USED IN THE INTERPOLATION

MAX = 3
C * FIND THE HALF-WAY POINT

N INT / 2
C * EXAMINE IN TURN EACH OF THE FIVE POINTS FOR OMISSION

DO 100 NN = 1, 5
C * IF THE INDICATED OMISSION IS ZFRO, SKIP IT.

IF( MO(NN) ) 100, 100, 5
5 NEXT = MO(NN)

C * INITIALIZE TO ZERO THE NUMBER OF POINTS SELECTED
KO'JNT = 0

C * INITIALIZE TO ZERO THE NUMBER OF STEPS TO THE LEFT AND TO THE

C * RIGHT OF THE OMITTED POINT
JL = 0
Jp = 0

C * NOW TEST TO SEE IF THE OMITTED POINT IS IN THE LEFT OR RIGHT
C * SIDE OF THE DATA

IF( NEXT - N ) 15, 10, 10

C * PREPARE TO CHECK POINTS TO THE LEFT OF THE OMITTED POINT

10 JL = JL + 1
INDEX = NEXT - JL

C * QUESTION - HAS THIS POINT EXCEEDED THE LIMITS OF THE DATA

C * IF SO, ADD A POINT TO THE RIGHT INSTEAD
IF(INDEX) 15s 15o 11

C * QUESTION - IS THE POINT BEING CHECKED IN THE LIST OF
C * OMITTED POINTS. IF SO# CHECK THE NEXT ONE.

11 DO 12 I = 1, 5
IF( MO(I) - INDEX )12, 10, 12

12 CONTINUE
C * COUNT, SAVIE, AND TEST FOR COMPLETION

KOUNT = KOUNT + 1
ISAVF(KOUNT) = INDEX
TF(KOINT-MAX) 15, 30, 3

C *
C * PREPARE TO CHECK POINTS TO THE RIGHT OF THE OMITTED POINT

15 JR = JR + 1
INDFX = NEXT + JO

C * QUESTION - HAS THIS POINT FXCEEDED THE LIMITS OF THE DATA

C * IF SO, ADD A POINT TO THE LEFT INSTEAD
IF( INDFX - TNT ) 16, 16, 10

C * UJFSTION - IS THF POINT RFING CHECKED IN THE LIST OF

c * OMITTED POINTS. IF SO, CHECK THE NFXT ONE.
16 DO 17 1 = 1, 5

IF(MO(I) - INDEX) 17, 15, 17
17 CONTINUE

C * COUNT, SAVE, AND TEST FOR COMPLETION
KOUNT = KOUNT + 1.
ISAVE(KOUNT) = INDEX
IF(KOUNT-MAX) 10, 30, 30

r *
C * NOW OBTAIN THE VALUES TO BE USED IN DETERMINING THE COEFFICIENTS
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OF THF PARAROLA

X I
X2
X
I
Y1 I
I
Y2
I
Y3 0

NOTE -
FLOATF(
FLOATF(
FLOATF(
ISAVE(I
YN(I)
ISAVF(2
YN(I)
ISAVE (3
YN(T)

THIS VFPSION DROVIDES AN EXACT FIT THROUGH 3 POINTS
ISAVP(1) )
ISAVE(2) )
ISAVE(3) )

*

* DETERMINE THF VALUES FOR THE COEFFICIENTS Y=AO+A1*X+A2*X*X
A2 = ( (Y1-Y2)/(X1-X2) - (Y1-Y3)/(X1-X3) ) / (X2-X3)

Al = (Yl-Y2) / (Xl-X2) - A2 * (X1+X2)
A0 = Yl - Al * X1 - A2 * XI * Xl

X = FLOATF(NEXT)
YN(NEXT) = AO -+ Al * X + A2 * X * X

1(f CONT I NUF
ETUPN

F Ki r)

FUJNrTION TM( A, N, Ms H

* SIMPSONS RULE INTEGRATION. REF - NUMERICAL MeTHODS IN

* ENGINEERING, SALVADORI + RARON, 1952, PAGES 72 - 75

* A THE ARRAY OF VALUES
* N THE STARTINr, ELEMENT WITHIN A
* M THE LAST ELEMENT OF A TO BE INTEGRATED

* H THE STEP 517E ( WIDTH OF VERTICAL STRIP OF HEIGHT A(M)

DIMFNSION A(10)
I M - N
I =L/2
L =L -2* I
IF( L ) 1, 2, 1

1 M = M- I
2 SIIM = 0.0

DO 3 1 = N, M
51UM = SU1M + A(T)

' CONTINJF
NS = N + 1
DO T I = NS, M,

SUM = rUM + A(I)
4 CONTINUE

SUM = ( SUM + SUM
IF(L) 5, 6, 5

5 M = M + 1
CUM = !IM + 005 *

A STM = I'IM

SUO!!T INF COMCC
FOUTVA LCNCC

1, ( S 1 1), INT
2, ( S ( ?), NOCH
3, ' 55( 3), PCAP

4, 4 ( 4, TAU
r, ( CS( 5), frT
6, ( S5( 6), P
7, ( SC( 7), DM

2

- A(N) - A(M) ) * H / 3.0

H * ( A(M) + A(M-1) )

.S(
SS(
cSS
SS
85(

55(
SS(

10),

12),
13),

14), t
15)
16),
17)

ND
ALPHA
P
E
PI N
AL DFR
RTRCH
TFRM1

*

*

*4

sS(
SS(

SS(55(
SS(
SS(1

20)
21)
22)
23)
24)
25)
26)
27)

Al
ARFAX
VALUE1
KLANK
KOUNT
L!
AREAZ
EXPCT

=
=
=
=
=
=
=
=
=

)

)

)

)

)
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8, ( SS( 8), TD ), ( SS(18), AREAl )# ( SS(2

9, S,( 9), RHO ), ( SS(19), A2 ), SS(2
EQUTVALFNCF ( SS(30), AREA2 )o (C55(31

1, C SS( 41), XN(1) ), ( SS( 941)t TN(1) ), ( SS(1
2, ( SS( 341), YN(1) ), C SS(1241), MO(1) )o C SS(1
3, ( SS( 641), ZNC1) ), ( S(1246), MC(1) ), SS(1
COMMON SS
DIMENSION XN(300), YN(300), ZN( 300)o TN(300)9 MO(
DIMENSION PC(100), HOL(10), BOSH(100)o 55(1500)

C THE APRAY IJKLMN IS INTENDFD TO BE USED AS A PATCHIN
DIMFNSION IJKLMN(50)

C * COMPUTE EXPONENTIALLY CORRECTED COUNTS
16 CEDAR = 000001 * P

DO 17 T = 1, TNT
ZN(I) = YN(I) * EXPF( CEDAR * TN(I)

17 CONTINUE
C * COMPUTE EQUATION (2)

CXPCT = CXPF( C * TN(1)
APEAZ =(A1*FXPCT*(TN(1)-1.O/C) + Al/C )/C + A2 / C
1 (EXPCT* ( (TN(1)-2.0/C)*TN(1) + 2.0/C/C ) 2.0/C/C
TE:M2 = YN(TNT) * 1()0000.0 * EXPF( CEDAR * TN(INT)

1 / ( ALOHA - P )
ARFA2 = STM ( 7N, 19 TNT, RIPCH )
VALUF2 = ARPA7 + AREA2 + TFRM2
OCTURIN

8), CEDARo
9), TERM2
)o VALUE2
251)9 PC(1)
351)o HOL(1
361)9BOSH(l

5), MC(5)

G AREA

*

C)

)
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Appendix V

ACCELERATOR OPERATION

A description of the KAMAN pulsed neutron source tube and the

accelerator set up for use with the subcritical assembly, has been given

in Chapter V. Schematic diagrams of the electronic circuits and the

pulse-forming networks are on file in the MITR Electronics Shop. For

the benefit of the prospective operator of this equipment, the normal

operating procedures are summarized below:

1. All cables between control racks, transformer and source tube

are connected before energizing the equipment.

2. The various controls are adjusted as follows:

Filament, Ion Source, Target and Field Power:

Deuterium Replenisher Current:

I

Oscilloscope power:

All adjustable High Voltages:

Pulse Mode:

Pulse Spacing:

OFF

CCW or
previous setting

OFF

CCW

Continuous manual

1 sec

3. The power cord is connected.

4. The filament and 'scope power are turned ON.

5. Replenisher current is adjusted to about 1.1 amp or to previous

setting.

6. The pressure is allowed to stabilize for several minutes. The

pressure indicator is adjusted to (18± 3) yA by manipulating the

replenisher current. This indicator must not be allowed to ex-

ceed full scale. The pressure responds very slowly, so changes

Counter clockwise.
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in replenisher current should be made in steps of 0.05 amp or less,

allowing pressure to stabilize each time.

7. After a delay of about 7 minutes, the HVREADY light comes on.

8. The Ion Source supply is turned ON and adjusted to about 2.5 to

3.0 KV.

9. The Time Analyzer (TMC) unit is put on COUNT so that the source

trigger is ON.

10. The oscilloscope is connected to ION SOURCE CURRENT and the

manual push-button (on Tektronix 162 Waveform Generator) is

depressed intermittently and the shape of the waveform on the

'scope is examined:

Proper waveform:

D2 Pressure too low:

D2 Pressure too high:

Note: The target voltage should not be run on if pressure is too high.

Observation of the Ion-Source current waveform gives running infor-

mation on deuterium pressure. The pressure meter is inoperative

during machine -pulsing.

, F1
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11. The Target Supply is turned ON (one switch on the main rack and

one on the Supply). Target supply voltage is run up slowly to about

3 KV.

12. The 'scope is connected to TARGET VOLTAGE through the 4: 1

divider.

13. The manual push-button is again depressed to check target voltage

waveform:

Proper Waveform:

14.- The D 2 pressure is rechecked and adjusted, if necessary.

15. The control on Tektronix 162 Waveform Generator is switched to

RECURRENT PULSING.

16. Monitoring the Target Voltage on the 'scope, the voltage is slowly

increased to about 5.5 KV or until the waveform indicates 100 KV

peak, whichever is first. The calibration of the 'scope scale must

be checked.

17. The Ion Source waveform is checked again and the deuterium

pressure is adjusted, if necessary (the pressure meter should

read ZERO during operation).

18. The pulsing conditions are selected and the experimental run may

be begun.

The Ion Source voltage and the Target voltage are mutually

adjusted so as to optimize neutron output as indicated by the rate

of data collection in the analysis channels of the time analyzer.

During the run, a periodic check is made of the deuterium pressure

by monitoring the Ion Source current. The Target voltage should

also be checked from time to time. If, at any stage during the run,

the data accumulation has to be temporarily suspended or the Source
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Trigger output is to be stopped, the Target voltage must first be

lowered down to zero. Too long continuous runs tend to heat up

the source tube; a check on the temperature can be kept by

attaching a thermocouple to the housing of the tube.

19. On shutdown, first the Target Power supply and then the Ion Source

Power supply are turned down and OFF. The deuterium current

may be turned down to zero. The filament and 'scope power are

switched OFF. A check should be made of radiation levels before

entering the target area, although in pulsed operation, this is

seldom of concern.


