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ABSTRACT

PROMPT ACTIVATION ANALYSIS FOR BORON AND LITHIUM

by

LINCOLN CLARK, JR.

Submitted to the Department of Nuclear Engineering on
August 26, 1963, in partial fulfillment of the requirements
for the degree of Master of Science.

Activation analysis for boron and lithium is not possible
in the usual sense because neither one becomes radioactive
under neutron irradiation. However both have large thermal-
neutron cross sections for the (nca reaction, and activation
analysis is possible if one measures the prompt particles
emitted.

Based on an analysis of the several types and sources of
radiation which would be experienced, including background, it
was decided to employ a gas-flow proportional counter. Optimum
size for discrimination against electrons and betas is a sensi-
tive volume one centimeter in diameter~by one centimeter long.
The walls of the chamber are made from the material to be
analyzed and are thick enough to absorb heavy charged particles
from the structural materials of the counter, thus reducing
the background. The end of the counter is removable for
changing samples. Neutrons for the (n,a) reactions were ob-
tained for most of the work by exposure of the count r in the
"hohlraum" of the MIT Reactor at a flux of 1.14 x 10 neutrons/
cm2 -sec.

The device was calibrated by use of aluminum standards
containing known amounts of boron or lithium. The difference
in the energy spectra makes it possible to determine the
relative amounts of these two elements and, in conjunction
with the count rate, to find the concentration of each in
aluminum. Approximate analyses of aluminum and graphite un-
knowns were made in the region of one part per million boron
plus lithium. An analysis of background effects indicates
that the method should be applicable at concentrations which
are at least a factor of ten or one hundred lower.

Thesis Supervisor: Norman C. Rasmussen
Title: Associate Professor of

Nuclear Engineering

-- 1- ------------------
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SECTION I

INTRODUCTION

A. Activation Analysis of Light Elements

Activation analysis, as the name implies, is performed

by activating the material of interest and then measuring the

radiation which occurs as a result of the activation. Acti-

vation is accomplished by means of a nuclear transformation

whereby a stable nuclide is converted through a known reaction

into an unstable, or radioactive, nuclide. These, fortunately,

emit radiation which is characteristic of the nuclide and

which, on measurement, permits thereby an identification of

the nature and amount of the original stable nuclide present

in the sample being assayed.

The activation may be accomplished either with charged

particles (usually protons, deuterons, or alphas) or with

neutrons.

The availability of nuclear reactors which furnish low-

energy neutrons in great abundance, has stimulated interest

in activation analyses by the (n,7) reaction, and hence a

major part of the work in the field has been along the lines

of neutron activation analysis. Also, there are today accu-

rate and convenient devices for detecting and measuring the

energy and quantity of the gamma radiation usually emitted

when the end products of the (n,7) reaction eventually undergo

decay. It is also possible to analyze the beta particles

emitted in these decays, but such measurements are neither

as convenient nor as precise as measurements of the gamma

radiation. The Activation Analysis Group at Oak Ridge National

Laboratory, in a six-year period ending in 1959, determined

at least 70 of the elements in many different sample materials,

mostly by the neutron activation method followed by gamma

scintillation spectrometry. A tabulation of some of these

applications, the concentrations observed, and the potential

sensitivities, is given by Leddicotte, et al (1).

The well-investigated method of thermal neutron activation
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plus gamma spectrometry is not amendable, however, to analysis

of the light elements, as is indicated by the fact that Leddi-

cotte's listing contains no report of work on elements lighter

than oxygen. Also, Koch (2) gives no references to analyses

using the (n,7) reaction for the light elements up to and in-

cluding oxygen. The reasons are apparent from a study of

the nuclear properties (3) of the light elements, summaries

of which are provided for convenience in Appendices A and B.

Only a few neutron capture processes, essential to the forma-

tion of radioactive nuclides which decay by @ and gamma

emission, are seen to occur. Furthermore, for the (n,7)

reactions, listed in Appendix A, the product in most cases

is either stable or decays by 0 emission with no gamma.

Where gamma's are emitted, the half-life is very short

(0.022 seconds for B1 (n,7)B12 ) or the yield is very low

(as in the cases of N15(n,7)N16 and 018 (n,7)0l9) due to low

natural abundance of the nuclides involved and their small

thermal neutron cross sections.

For other neutron capture reactions, (n,p) and n,a), as

shown in Appendix B, no gamma-emitting nuclides are formed,

and hence gamma spectrometry is again impossible.

The reactions listed in Appendix B may, however, be used

directly. Various means are available for recording the

products of the (n,p) and (n,a) reactions. The material of

interest may be exposed to thermal neutrons while in contact

with photographic film. Mayr (4) (5) used this method to

determine the boron in tissue, exposing the sample, while in

contact with NTA emulsion, to a Po - Be neutron source and

then counting the alpha tracks. .

Another means of detecting these light elements is to

count the reaction products directly with an electronic count-

ing device. Wanke and Monse (6) employed a 100 mc Ra - Be

.neutron source in a paraffin moderator to produce thermal

neutrons for the reactions Li6 (n,a)H3, Blo(n,a)Li7 , and U235

(n,f). An "infinitely thick" layer (thicker than the range

of either reaction product in the film material) containing

a compound of the element to be measured was placed in contact
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with a ZnS screen serving as the phosphor on a photomulti-

plier tube. Pulses from the heavy, ionizing particles were

counted, while the small gamma pulses from- the radium source

were eliminated by means of a discriminator. The objective

here was to determine the isotopic abundance of Li 6, B10 , and

U235.

Fiti, Mantescu, and Costea (7) used a somewhat similar

arrangement to measure boron in minerals. They reported the

determination of concentrations from 15 per cent, with a

0.26 per cent error, to 0.05 per cent, with a 10 per cent

error. They pointed out that the sensitivity of the method

could be increased by use of high neutron flux with proper

protection for the phototube.

Kienberger, Greene, and Voss (8) have used a similar

method to determine Li6/Li. ratios. Detection of the prompt

alpha and H3 particles was again accomplished with a scintilla-

tion counter.

B. Objective of This Investigation

In the last three investigations referred to above,

thermal neutron fluxes on the order of 102 - 103 n/m 2-sec.

were obtained by moderating with paraffin or graphite the

fast neutrons from Po - Be or Ra - Be sources. As suggested

by Fiti, et al, (7) it should be possible to increase the

sensitivity of the method by use of high neutron fluxes.

The objective of the experimental work for this report

has been to design and operate a detector capable of utilizing

the high fluxes (109 - 1010 n/cm2-sec.) in the thermal column

and in the medical therapy room beam of the Massachusetts

Institute of Technology Research Reactor (MITR). The purpose

of this particular detector is to measure trace quantities of

two of the light elements, lithium and boron, by direct count-

ing of the prompt particles from the reactions, Li6 (n,a)H3

and Blo(n,a)Li7 . It was also hoped that it would be possible,

by analysis of the energy spectrum of the particles, to dis-

tinguish between the two reactiohs.

Since one of the limitations of measurements for trace

impurities arises from interference by small amounts of similar
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elements occurring as impurities .in the structural material

of any counter that may be fabricated, it was decided at the

outset to design a counter which would have a chamber lined

sufficiently thick with the material to be assayed for B and

Li that alpha and H3 particles from other B and Li impurities

would not be able to penetrate into the chamber. This, and

other design considerations, led to the selection of a gas-

flow, proportional counter as the type of detector to be

constructed.

For the experimental work, only one chamber-lining

material--aluminum--containing known amounts of boron and

lithium was used in evaluating the feasibility of the method

and in calibrating the counter constructed. A few runs

were also made with a graphite matrix.

C. Sensitivities of Charged-Particle Activation and

Spectrochemical Analysis

For purposes of comparing the sensitivities attainable

by neutron activation analysis with those reported for other

methods, mention of two investigations should be made here.

Gill (9) describes the use of the Harwell Cyclotron to

determine trace amounts of boron in silicon, an analytical

problem of interest in the semiconductor field. By counting

the 0.51 Mev gammas from the P+ decay of Cl and P30, produced

by Bll(p,n)C11 and Si30 (p,n)P30, it is possible to determine

the ratio C11 / 30 with sufficient accuracy so that 0.003 ppm

boron in silicon can be detected.

Davis, et al, (10), describes the use of a high sensi-

tivity flame photometer. Sensitivities for various elements

are given, including a minimum detectable weight for lithium

of 8 x 10 grams and a minimum detectable concentration of

0.5 ppb.

Also, in a description of the historical development of

spectral analysis, Lipis (11) uses boron to illustrate the
-2

increase in sensitivity of this method from 10- per cent in

1946 to 10~8 per cent in 1957.



SECTION II

DISCUSSION OF PROBLEM

A. General Considerations

The design of the detector for measuring boron and

lithium was based on consideration (1) of the desirability of

operating the detector in the reactor at moderately high

neutron fluxes with a capability for frequent changing of

samples and (2) of the various types of ionizing radiations

which would be encountered.

The first consideration required the use of materials

for structural and electrical purposes which would withstand

thermal neutron fluxes on the order of 1010 neutrons/cm 2-sec,

and gamma fluxes on the order of a few hundred roentgens/hour.

For comparatively short exposures to these dose rates,

radiation damage is not an important factor. It would be

if the detector were to be operated in the core of the reactor

at fluxes in excess of 1013 neutrons/cm 2-sec. and 108 r/hour

for gammas (12). Although the possibility of radiation dam-

age, therefore, imposed few limitations, the need to change

samples frequently did affect the choice of materials and

the design. The use of complicated shielding devices was

avoided by making the counter small and constructing it pri-

marily from materials which do not activate appreciably

(e.g. polyethylene) or which have short half-lives (e.g.

aluminum). (The use of a small detector was dictated basi-

cally by other considerations, as explained below.) This

permitted removing the detector from the reactor after a brief

cooling period, in order to change the sample. Materials

that activate like Cu were avoided entirely or kept to a

minimum.

The need to operate the detector in moderately high

fluxes and to remove it for sample changing presented problems

in connection with the use of certain types of devices such

as the scintillation detector, so that they appeared to have

no particular advantages in comparison with a gas-flow
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proportional counter.

A review of the types of radiation which are encountered

in a detector operated under these conditions provides fur-

ther information on the relative suitability of other counters

for this task.

B. Types of Ionizing Radiation in Detector

When B and Li react with thermal neutrons, they promptly

emit heavy ionizing particles, and it is these which are to

be detected and used as a measure of the amounts of B and Li

present in the material. In addition, however, there are a

number of other interfering sources of ionizing radiations

which must be taken into account. Both types are listed in

Table II-1; items 1-4 are the particles of interest, while

items 5-11 are the interfering radiations. (See following page.)

C. Detector Design

The design objective now consisted of maximizing the

counter response to one or both of Items 1 and 2 and to one

or both of Items 3 and 4. At the same time the response to

Items 5-11 should be minimized.

The necessity of preserving the ionization-pulse height

relationship and the desirability of using gas amplification

led to the choice of a proportional counter. Because alpha-

particle energies were to be measured and for a second reason

discussed below, samples had to be placed inside the detector,

and the need to change these samples frequently dictated the

use of a gas-flow proportional counter.

Use of a proportional counter provides the opportunity

to discriminate against the small background pulses caused by

secondary electrons and beta rays, in favor of the larger

pulses from alphas and other heavy particles. In high fluxes

of betas and gammas, however, a limitation is reached when the

background of betas and gammas becomes so high that pulse pile-

up interferes with the alpha counting. In this application,

therefore, it is important to obtain the maximum possible

ratio of heavy-particle pulse size to electron or beta pulse

size.

"MIN" 911 1 IF IM""PRIMPMRIMM11,11



TABLE II-I

IONIZING RADIATIONS EXPECTED IN COUNTER

Item Particle

1. a

2. L17

3. a

4. H3

5. Electrons

6. Beta rays

7. a, Li7, H3

8. a

9. Fission
fragments

10. Recoil
nuclei

11. a, Li7 , H3

Source

B to be measured, by reaction Blo(n,a)Li7

B to be measured, by reaction B10 (n,a)Li7

Li to be measured, by reaction L16 (n,a)H3

Li to be measured, by reaction Li6 (n,a)H3

Primarily Compton and photoelectrons from
gamma rays of capture, decay, and the
reactor core.

Decay of radioactive nuclides (such as Al28)
formed in matrix of sample or in structural
materials of detector.

B and Li present as impurities in
structural materials of detector.

Uranium and other naturally radioactive
nuclides present as impurities in sample
and in structural materials of detector.

Uranium present as an impurity in the
sample and in structural materials,

Collisions between fast neutrons and
light nuclei of sample and structural
materials.

Contamination of sample or other interior
surfaces with impurities containing
boron or lithium.

.............
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The heavy-particle ionization will be a maximum when

all of the energy of the particle is expended within the sensi-

tive volume of the detector. Fortunately, the ranges of such

particles do not exceed a few centimeters in gases at atmos-

pheric ,pressure, so detectors of such dimensions are reasonable.

It is desirable that the end of a particle 's flight be within

the counter, since the Bragg specific ionization curve shows

that the number of ion pairs formed per unit length is greatest

near.the end of the range. Secondary electrons and beta

rays, on the other hand, even those with moderate energies,

may travel several meters, so that each one will give up

only a fraction of its energy within a gas-filled detector.

The optimum condition then occurs when the sensitive volume

of the detector is just large enough to contain the maximum

range of the heavy particles but no larger, so that electrons

and betas will give up a minimum of their energies.

A study of the energies and ranges of the products of

the reactions of interest, B'Q(n,a)Li7 and Li6 (n,a)H3 .

yields an indication of what the chamber size should be. The

Blo(n,a)Li7 reaction has a disintegration energy of 2790.1

(t1 . 1 ) Kev (13), or 2.79 Mev, where the product nuclei are

left in the- ground state in only 6.52 per cent of the cases (14).

93.48 per cent of the time, the disintegration energy is

2.31 Mev. The Li7 nucleus is produced in an excited state,

but it immediately goes to the ground state with emission of

a 0.477 Mev gamma ray. For the Li 6(n,a)H3 reaction, the dis-

integration energy is 478 6.4(t1.1) Kev (13), or 4.79 Mev.

Data on these reactions is tabulated below. Values for the

last two columns are based on the experimentally known

ranges of alpha particles in air, adjusted by the usual

relationships to account for different properties of the

ionizing particle and the material traversed.

From the table below, and on the assumption that a count-

ing gas is used for which the particle ranges are similar

to those in air, it appears that a chamber with dimensions on

the order of one centimeter will permit all particles except

the tritons to expend their entire energies within the confines

17



of the chamber. As it turns out, it is advantageous to size

the detector so that the tritium does not give up all of

its energy within the chamber.

TABLE 11-2

ENERGIES AND RANGES OF REACTION PRODUCTS

Isotope Reaction
and and Product Kinetic Range in Ran ein

Natural Cross Particles Energy Air (cm.) Al cm.)
Abundance Section (Mev

B1 0  Bl0 (n,a)Li7  a 7% 1.78 0.89 0.55(103)
.18.7% 4000 b..

93% 1.47 0.73 0.45(10-3)

Li7  7% 1.01 0.26 0.16(10 3)

93% 0.84 0.24 0.15(10-3)

Li6  Li6 (n,a)H a 100% 2.06 1.03 o.64(lo-3)
7.5% 945 b. 100% 2.73 6.02 3.7(10~3)

D. Anticipated Counting Rates From All Sources

In order to obtain an indication of how the interfering

radiations listed in Table II-1 might limit the sensitivity

of the detection system, estimates were made of the counting

rates which might result from each source of radiation. For

these estimates it was assumed that the chamber was lined

with aluminum at least 3.7 x,10 cm. thick. This material

was selected for the calculations because it was the one most

extensively used for the experimental work, and this thick-

ness was chosen because it is equal to the range in aluminum

of the 2.73 Mev tritons from L6 (n,a)H3, the longest range of

the heavy particles to be counted.

For purposes of calculation, one part per million (1 ppm)

by weight of boron or of lithium was assumed to be present,
8 2

and a thermal neutron flux of 10 n/cm -sec. was used. The

following Table 11-3 summarizes the data.



TABLE 11-3

SUMMARY OF ANTICIPATED EFFECTS OF IONIZING RADIATIONS

Particle

a
Li7

a
.3

Source

B10 (n,a)Li

L 6 (n,a)H3

Kinetic
Energy (Mev)

1.47(93%)
0.84(93%)
2.06

2.73

Ranges (cm.)

Air

0.73

0.24

1.03
6.02

Al

0.45 x 10- 3

0.15 x 10-3

o.64 x 10-3

3.7 x 10-3

Estimated
2CPM/ppm-cm

at8flux 2of
10 n/cm -sec

101

108

5. e

6. 0

7. a
Li7

H3

8.

9.

10.

11.

a
f.f.

recoil
nuclei

a, Li7,

H3

7's

Al decay

B + Li in

structural

materials

U238 .etc.
U 23 5 (n,f)

fast
neutrons

surface
contamination

.002-.032/cm.
of air
.002- .032/cm.
of air

as above
11

if

5
81 av.

as above
11

It

0-1

0-1

as above

3.5 2.2 x 10-3

2.3 av. 1.4 x 10-3

O(Discrim.)

O(Discrim.)

Low

Low

Low

av.

0.003

0.013

depends on energy spectrum of fast flux

as above as above as above no estimate

H
%.0

uN flifli

Item

1 .
2.

3.
4.
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The kinetic energies of the various particles are listed

in the fourth column, except for the electrons and beta rays,

where the calculated range of energy loss per centimeter of

air is given. The estimates of counting rates, where figures

are given in the righthand column, were later shown by the

experimental runs to be of the proper order of magnitude.

Where no quantitative estimates are given, indications of the

magnitude of the interference were obtained in the experi-

mental work, and these are discussed below under Section IV-E.

The Problem of reducing background due to Item 7, the a,

Li , and H3 particles entering the chamber as a result of

(n,a) reactions by boron and lithium present as impurities

in the structural materials of the detector, was partially

overcome by lining the chamber with the material to be assayed.

This could most easily be accomplished by using a cylindrical

detector and lining the cavity with a sleeve fabricated from

the material being tested. By using a central electrode

supported only at one end, it was possible to close the other

end of the sleeve, again with the material being tested. Heavy

particles from impurity boron and lithium in the structural

materials (other than the test sample) could then enter only

from the anode or from the material holding the anode in

position.

For the counting gas, a mixture of 90% argon-10% carbon

dioxide was used because its constituents have low electron

attachment coefficients, reasonably high drift velocities,

sufficiently high atomic weights so that recoil nuclei were

not a problem (as they would be for 90% argon-10% methane, for

instance), a comparatively low operating voltage, reasonably

low neutron activation, and chemical inertness (15). The

ranges of the a, Li7, and H3 particles to be counted are 16

greater in the A-CO2 mixture than they are in air (Table 11-2).
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SECTION III

FABRICATION

The counter which resulted from the above design considera-

tions and which was used for most of the experimental work

in this investigation is shown in Fig. 1. It is cylindrical

in shape, has a diameter of 0.610", because it was necessary

that it fit into a 0.620" bent tube in the thermal column of

the MITR. This proved just large enough to accommodate a

cavity with a diameter of 1 cm. The anode is a 0.002" tungsten

wire, 1 cm long, so that the sensitive length of the detector

is approximately 1 cm.

In order to permit sample changing, the anode is supported

at only one end. The aluminum plug at the right hand end of

the drawing unscrews so that a sample of the size shown in

Fig. lb may be inserted into the cavity. In this manner, the

sample material itself forms the inside surface of the count-

ing chamber and almost completely surrounds the anode. It

was found that the anode wire was stiff enough for this appli-
cation, but it had the disadvantage that the wire was not

stretched tight and was not supported precisely on the center

axis. A spherical covering was provided to cover the sharp

end of the anode wire which otherwise would be a region of

very high gas multiplication. It was found that sulfur had

the property of adhering to the wire and of assuming a spherical

shape when melted. It was covered with aquadag to make it

conducting.

The shell of the counter was machined from Type 1100

aluminum. In order to avoid galling of the outer surface, it

was covered with a hard coating of aluminum oxide, 0.002"

thick, by an electrolytic process known as "Duralectra."

A combination aluminum and polyethylene plug screws into

the left hand end of the shell. A 7 ft. length of Aljak

No. 21-607 coaxial cable is fixed in position in the aluminum

portion of this plug. This cable has an aluminum jacket which,

while providing some flexibility, reduces the activation which

would otherwise result in standard coax when it is exposed to



6/11/63
Polyolefin
Shrink fit

tubing
(Thermo fit CR)

Al tube for
counting gas
(1/8" O.D.)

Type 1100 Al shell
Al 203 hard surface

(Duralectra) t-

Gas
passages

Removable
plug for
changing
samples

ALJAK
Coax

No. 21-607
(0.325" O.D.)

.002", Sulfur
Tungsten tip,
Anode aquadag

coating

DRAWING OF GAS-FLOW PROPORTIONAL COUNTER

0.397"
- .190",

1.250" l A

FIG. lb. STANDARD SAMPLE

0.497" diam.

r~~u
i\ 0.031" hole

for gas flow

I,
aq 1.250" -P.

FIG. 1c. CADMIUM-WRAPPED SAMPLE

SCALE
1:2

FIG. la.

F.



23

neutrons. The center conductor is copper, but it did not

build up to troublesome activities during the test runs.

The center conductor passes through the polyethylene portion

of the plug to an aluminum rod which serves to join it

electrically to the anode and also to support the latter in

position. This support extends about 1 cm into the cavity,

so that heavy ionizing particles from boron or lithium

impurities at the end of the chamber will not reach the sensi-

tive portion. A teflon wafer separates the polyethylene

from the chamber, so that recoil protons cannot enter.

The counting gas is brought to the chamber through one

of a pair of 1/8" O.D. aluminum tubes. The gas passes through

a drill hole in the polyethylene to a circular groove in the

face of the plug. 0.031" diameter holes are provided in the

teflon wafer and are drilled at an angle so that any knock-on

protons passing through them will be directed toward the anode

support. Electrons from any ionization which occurs inside

the chamber should be collected without multiplication on

the anode support. The gas then passes through the chamber,

out through a .031" hole at the end, through passages in the

end plug, and back around the outside of the chamber by means

of several grooves cut on the inside surface of the counter

shell. It leaves the counter through a circumferential

groove in the polyethylene, two drill holes, and the other

piece of aluminum tubing. Buna N 0-rings provide gas seals

at both ends of the counter shell. The gas was under a

pressure of a few inches of water. Epoxy resin was used to

improve the gas tightness of the joint where the coax and

the aluminum tubing enter the counter. Expanded polyolefin

tubing (Thermofit CR) was heat shrunk over the coax and

aluminum tubing, which provided a smooth, non-galling surface

and which made it easier to slide the counter through the

bent tube which passes through the reactor shielding.

Most of the samples used in the test runs were made from

aluminum spectrochemical standards, purchased from the Aluminum

Company of America. One set of standards contained known amounts

of boron, ranging from 5 to 290 parts per million. A second

set contained lithium ranging from 5 to 280 parts per million.



It was arbitrarily assumed that there was a standard error of

5 parts per million in the analyses furnished by the company.
Two cylinders of the type shown in Figure lb were

machined from each of the standards. Since the surfaces

undoubtedly became contaminated during the machining operations,

the finished pieces were etched for about 5 minutes at

70-750 C in a 3.7% hydrochloric acid solution. They were

rinsed with distilled water, soaked in acetone, given a final

rinse in acetone, drained and dried.

In addition to the aluminum standards described above,

cylinders were also made from an aluminum blank obtained

from ALCOA and from a 99.9999% aluminum ingot, the boron and

lithium contents in both cases being unknown.

In hopes of finding a material which would have lower

boron or lithium content than the aluminum, graphite from

two sources was used for making additional samples. Two

pieces were machined from a bar of reactor grade graphite.

In addition, two bars of graphite manufactured by National

Carbon Company for use as spectroscopic electrodes were used

to make additional samples.

In order to determine, if possible, the extent of the

background caused by recoil nuclei, the thermal flux entering

the cavity was reduced as much as possible by wrapping several

of the standards in 0.020" thick cadmium. A cylinder of this

type is illustrated in Figure lc.

The characteristics of the detector were determined with

an alpha source which had been made by depositing about 10

grams of U235 in the form of U308 on an aluminum foil, which

was then fitted to the inside of a cylinder drilled to the

same dimensions as the standard samples described earlier.

In order to determine whether or not the counter might

be overloaded by a high flux of secondary electrons, a gold-

lined sample was also fabricated. Since gold has a high

atomic number, the density of photoelectrons is greatly

enhanced over that for an all-aluminum chamber. The gold was

0.006" thick, and so an aluminum cavity was made in the usual

manner except that the inside diameter was 0.012" larger than

normal in order to allow for the thickness of the gold. Photo-

graphs of the counter and samples appear in Figure 2.



FIG.. 2 GAS-FLOW PROPORTIONAL COUNTER

a.(Upper Left) ASSEMBLED COUNTER.

b.(Lower Left) DISASSEMBLED; REMOVABLE
END PLUG AT LEFT, SAMPLE TO BE COUNTED
AT BOTTOM.

c.(Upper Right) ALUMINUM AND GRAPHITE
SAMPLES READY FOR OPERATION IN COUNTER
(SOME SAMPLES CADMIUM WRAPPED).
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SECTION IV

OPERATION

A. Instrumentation

The following electronic equipment was employed:

Proportional amplifier - Baird-Atomic, Inc., Model 255
Scaler - Baird-Atomic, Inc.,, .Model 132

Oscilloscope - Tektronix, Inc., Model 541

Pulse height analyzer - Technical Measurement Corporation,

Model CN-110

The linearity of the above system was determined by intro-

ducing a calibrated, negative pulse to the preamplifier input,

measuring the output to the analyzer with the oscilloscope,

and noting the channel in which the pulses (most of them) were

stored. A Radiation Counter Laboratories Precision Pulse

Generator, Model 20900, was used to supply the calibrated pulse

(60 cps, about 1 ps rise time, 20 ms decay, and 0 - 100 my

amplitude). On recording the preamplifier output (TMC input)

and TMC channel number as shown in Figure 3, the curves inica.

good linearity up to 12 - 14 my, beyond which saturation in

the preamplifier (or possibly an impedance change in the input

circuit of the scaler, the scope, or the analyzer) causes the

curves to flatten out. This was considered to be of no

consequence, since data was collected primarily in the analyzer

channels up to No. 60 or 70.

B. Irradiation Facilities

Most of the experimental data was obtained during exposure

of the counter to neutron fluxes in the "hohlraum" of the MIT

Reactor. Preliminary runs were made in the neutron beam of

the medical therapy room below the reactor. The standard

pile of the Nuclear Reactor Physics Laboratory was also used

for preliminary work and later for calibration of the detector

and thus of the neutron fluxes in the pile oscillator tube.

The "hohlraum" is a flux-shaping, graphite-lined cavity (16)

at the end of the reactor thermal column. A section through

the reactor and the exponential facility is shown in Figure 4.

_ '_ Rm 111,11 "Pill"oll spi"W "111W.Rp- I - " , A I I
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Fig. 4 View of M.I.T. Research Reactor Showing Major
Components and Experimental Facilities
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The original thermal column has been extended by adding a heavy

water exponential facility of that side of the reactor.

Neutrons from the core.diffuse through 14" of graphite, across

a 10" gap, through 38" of graphite, and finally into an

empty space which has roughly the shape of a parallelepiped.

The empty volume is 130" long, 72" wide, and, for the most part,

60" high. For the last 72", the two sides and bottom are

lined with graphite 12" thick, and the end has a lining 16"

thick. The purpose of the hohlraum is to cause neutrons coming

from the thermal column to diffuse upwards through another

graphite layer, 16" thick, at the top of the cavity, into a

heavy water exponential tank situated above the hohlraum.

Figure 5 is a horizontal section through the reactor core and

the exponential facility. It also shows the lattice tank,

which is actually located several feet above the level of the

reactor core and the hohlraum.

The pile oscillator tube is located in a shielding plug

in a port labelled 12CH1 in Figure 5. An aluminum tube, illus-

trated in Figure 6 and Figure 7, extends 32" through the bio-

logical shield, 18" through an air space between the shielding

and the graphite lining of the hohlraum, 16" through the

graphite, and then for 4 1/8" into the cavity. The total

tube length, from shield face to the end in the hohlraum, is

70 1/8". The interior length is 69 3/8", due to a plug at

the hohlraum end, and it has an inside diameter of 0.620".

The outer end of the tube, where it passes through the shield-

ing, is bent somewhat to prevent radiation streaming. This

permits the insertion and removal of samples, including the

detector, without a need for plugs or other shielding devices.

Calibration of the thermal flux in the oscillator tube will

be described below in this subsection.

The neutron beam of the medical therapy room was used

for the initial exposures of an early model of the counter to
9 10 2

relatively high flux levels, 109 - 1010 neutrons/cm -sec. This

was a convenient facility for the preliminary work, since this

model was too large to fit into the oscillator tube. Integral

bias curves were run for the aluminum standards containing 25
and 290 ppm boron, and for the reactor-grade graphite.

110
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The standard pile in the Nuclear Reactor Physics Labora-
tory (18) was very useful for the initial work in checking out
the operation of the counters and later in providing a cali-
bration for the counter, which was then used to calibrate the
thermal neutron flux in the pile oscillator tube.

The standard pile is illustrated in Figure 8. It is
constructed of nuclear-grade graphite stringers, recessed at
appropriate points to permit insertion of foils, counters, and
neutron sources. It is 86.5" high and has a 60" x 60"

horizontal cross section. It is covered with a 0.020"

cadmium sheath to reduce room return.

Neutrons for the standard pile were obtained from several

(up to a maximum of five) plutonium-beryllium neutron sources

inserted 13" up from the base of the assembly. Each source

had one curie of plutonium and emitted approximately

1.6'x 10 neutrons per second.

For purposes of calibrating the- counter, it was equipped

with the aluminum standard containing 290 ppm boron and

then exposed in each of two locations in the standard pile.

The flux levels in these positions had previously been

measured by Reilly (18) and found to be as follows:

Distance Thermal
Above Neutron

Position No. Source Flux

5 34.0 6.30 x 10-3

11 89.3 1.04 x 10~3

The counter was calibrated in both of these positions
in order to determine whether or not fast neutrons from the
sources might have a significant effect. If there was such
an effect, it was obscured by variations in other conditions.
The energy spectra of particles counted by the detector during
the calibration runs in the standard pile are given in Figure 9.
The curves show the counts per minute recorded in each analyzer
channel plotted against the channel number, indicated at the
bottom, and against the approximate energy given up within
the sensitive volume of the chamber, indicated at the top.
(The relationship between channel number and pulse energy is
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discussed below in the next subsection.)

For comparison with the curves of the standard pile runs,

the average of four runs made in the hohlraum, with the same

counter and standard, is also shown.

The run in Position No. 5 and both runs in Position No. 11,

together with the corresponding count rates obtained on the

Model 132 scaler, have all been used to determine the neutron

flux in the pile oscillator tube in the reactor. At the usual

operating position (25 3/4" back from the inner end of the

tube the thermal neutron flux is calculated to be 1.14 ± 0.18)
5 2

x 10 neutrons/cm -sec. At a point 1 3/4" back from the inner

end of the tube (due to the length of the detector, this

represents the innermost position for which the flux could

be measured) the flux was found to be (1.71 0.27) x 109

neutrons/cm 2-sec. These flux values and others along the tube

are plotted in Figure 10. For comparison with the flux

curve, the graphite and shielding configurations at the end

of the hohlraum are sketched on the graph. The reason for

selecting 25 3/4" as the usual operating position will be

discussed below in Subsection C.

C. Counter Characteristics

A typical characteristic curve of alpha counting rate

as a function of operating voltage is shown in Figure 11.

A-CO and A-CH were both run to confirm the fact that there2 4
should be no significant differences in the counter performance.

(A-CH  is used later to investigate the effect on count rate

of recoil nuclei caused by fast neutrons.) An operating

voltage of 1400 volts was employed for normal operation.

Figure 12 illustrates the effect on counting rate of

diameter of the spherical tip used to cover the sharp end of

the anxde wire. A diameter of 0.052"was selected for general

use.

A characteristic curve.for 100% carbon dioxide is shown

in Figure 13. Since a much higher anode voltage, about 2400

volts, is required, insulation breakdowns were frequently

experienced, and this gas was not used.

No accurate method was available for calibrating the
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multichannel analyzer with respect to the energy given up by

a particle passing into or through the chamber. Only a

rough. calibration was possible, based on a combination of

experimental results.

Some useful information was gained by measuring the energy

spectrum of the alpha particles emitted by the internal

uranium-235 source used for the characteristic .curve runs..

These energy spectra were measured on several occasions,

ostensibly under similar conditions, and yet significantly

different results were obtained on each of five runs.

Figure 14 presents these results. There seems to be no ready

explanation for the apparently chronological progression of

the peak, and of the entire curve, toward higher channel

numbers. It is possible that there may have been a gradual

change in the configuration of the source itself, of the

anode position, of the overall system gain, or of some other

parameter. Additional investigation would be helpful here.

Immediately after the July 11, 1963, measurement of

the alpha spectrum with 90% A-10% C02, the counting gas was

changed to 90% A-10% CH 4 , and another run was made for

comparison. The results are shown in Figure 15, the A-CO 2
curve being a repeat of that in Figure 14. There is some

question concerning the validity of the differences in these

curves, because the A-CH plot is quite similar to the aver-

age of the A-CO2 curves of the preceding graph. It was not

believed important, from the point of view of this activation

analysis work, to investigate this question further.

The above energy spectra for the uranium-235 source,

with A-CO 2 gas, provide one basis for the energy calibration

of the multi-channel analyzer. The energy spectra measured

for the boron and lithium standards, to be discussed later,

also provide a basis for an energy calibration. The overall

average of the data utilized for this purpose is 0.026 Mev/
channel with a standard error on the order of 0.005 Mev/channel.

This was the calibration used for determining the energy scale

at the top of all the analyzer energy-spectrum graphs.

It was important to know how ionizing events which occur

MRF'
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in the detector, whether or not large enough to be recorded

as counts, might affect the performance. For instance, for

pluses large enough to be recorded, the observed count rate

may be less than the true count rate due to resolving time

losses. Also, the creation, even by pulses too small to be

counted, of many ion pairs per unit time may result in a

space charge if the positive ions did not migrate quickly

enough away from the anode wire. The consequent reduction in

gas amplification alters the energy spectrum and reduces the

count rate.

Runs were first made at a number of positions in the

oscillator tube, and the resulting energy spectra were com-

pared to see if the count rates changed proportionately in

all channels as the counter position and flux level varied.

By plotting the results on semi-log graph paper, it was a

simple matter to compare the curves and to see if the shapes

were the same, merely displaced from each other by constant

amounts in all channels.

Some of the spectrum data taken during the calibration

run for the oscillator tube are plotted in Figure 16. These

curves illustrate the distortion which occurs at the higher

count rates. The slopes of the top curves are slightly
greater than those at the lower flux levels, but most obvious

is the rapid decrease in count rate in the high channel

numbers for flux levels above 10 neutrons/cm -sec. These

curves were made with the aluminum standard containing 290 ppm

boron, so that high count rates for alpha and Li pulses were

obtained (613,620 CPM, corrected). The effect of space

charge on gas amplification is especially apparent in the

reduction of pulse height and, consequently, channel number

for the top two curves. There is little change in the shape

of the curve for fluxes below 10 neutrons/cm 2-sec.

It is conceivable that the different shapes for the

curves of Figure 16 might not be a function of counting rate

but rather might be due to a change in the radiation spectrum

(both neutrons and gammas) as the counter was moved from the
hohlraum, into the graphite wall, and then into the region

"'MRPROM"W"m IMW
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between the wall and the shielding.

In an effort to determine the magnitude of the counting

error which might be introduced by the distortion of the energy

spectrum and also to see if the sa.me distcrtio".n w',ould occur

if the counter were operated in a single position but at

different flux levels, a run was made with the counter located

at the inner end of the tube, and the flux was varied bi

having the reactor reduce power in a series of steps. The

same counter and aluminum standard (290 ppm boron) were used

as in the runs for Figure 16. Although the decay gammas

from the reactor core would prevent the radiation spectrum

from being entirely proportional to reactor power, this run

had the advantage of eliminating any effect which might result

from a change in position.

The results of the run are plotted in Figure 17. It is

apparent that the same distortion occurs for the higher count

rates. The fact that the lower curves of Figure 17 extend

to higher channel numbers before dropping off sharply, in

contrast to the upper curves of Figure 16, which were run at

the same position, eliminates change in position as being

responsible for the change in shape. It now appears likely

that counting rate, or at least ionization rate in the chamber,

is responsible for the distortion.

It will be noted that the flux level for the top curve

of Figure 17 is only 8.42 x 10 neutrons/cm 2-sec., as compared

to a flux of.1.71 x 109 neutrons/cm 2-sec. measured for the

innermost position of the oscillator tube during the calibra-

tion run. It was learned after the run made with reduced

reactor powers that the cadmium shutter on the reactor thermal

column had closed about half way as the result of a faulty

operating mechanism. The corrected count rates indicate

that the flux level at full power (2000 KW) was only 49.2%

of the level obtained with the shutters fully open. As dis-

cussed above, the energy spectrui' distortion for the upper

curves was evident -even with the reduced flux levels.

Because of the distortion resulting from the higher fluxes,

the counter was generally operated at a position where the

W-- , 1 - 11 - 1- . "', .1111, . ......... I- -.......---
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center of the chamber was 25 3/4" from the inside end of the

oscillator tube (24" back from the innermos t operating

position for the counter). As indicated in Figures 10 and 16,
+8 2_the flux at this point was 1.14 (+ 0.18) x 10 neutrons/cm -sec.

As may be seen from Figure 10, this position lies between the

shielding and the 16" graphite lining for the back of the

hohlraum. In general, this region is an 18" air space, but

the oscillator tube itself lies within a 4" x 4" graphite

stringer reaching from the shielding to the end of the tube.

For all of the aluminum standards containing boron and

lithium, the counting rates were high enough (a low of 587 CPM
for 5 ppm boron) to provide good counting statistics in a

reasonable length of time, 1-20 minutes.

On the subject of space charge in the detector, the

magnitude of the effect will depend upon the number of

ion pairs created per unit time and not necessarily on the

count rate. Figure 18 is an example of spectrum distortion

occurring at count rates as low as 2,143 CPM, as compared

to 613,620 CPM for the 290 ppm boron standard. Spectra and

count rates were taken for both cases while the detector was

operating at the innermost position in a flux of 1.71 x 109

neutrons/cm -sec. In the former case, the sample was No. S-b

(99.9999% Al) with less than 1 ppm boron plus lithium. Even

with its comparatively low count rate, the spectrum of Sample

No. S-b drops off faster in a flux of 1.71 x 109 neutrons/cm -sec

than it does in a flux of 1.14 x 10 . As may be seen in

Figure 18, the same is true of a sample of reactor-grade

graphite, Gr-b, for which the counting rate was only 4,715 CPM

at the higher flux. An even more striking example is shown

in Figure 19, in which are plotted the energy spectra for

a gold sample operated at the above two flux levels.

Even though the pure aluminum and graphite samples show

irregularities in the energy spectra which are not apparent

in the aluminum standards containing higher amounts of boron

or lithium, nevertheless, the effects of space charge are

clearly evident. The high ionization necessary to produce

this space charge can be explained, in the absence of a high
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alpha count rate, by the fact that photoelectrons and

Compton recoils (and pair production) from gamma radiation

create a very high electron flux in the detector, particularly

for the operating positions near the inner end of the oscillator

tube. In addition, decay betas from the aluminum parts of

the detector constitute a further source of ionization within

the counter.

The densities of electron and beta pulses for various

counter positions are shown in Figures 20a, b, and c. The

high density for the usual operating position (25 3/4") is

an indication that there must be many multiple coincidences

for the innermost position, Figure 20c. If 105 large electron

and beta pulses per second is considered to be a conservative

minimum at the 25 3/4" position, the rate for the innermost
6

position appears to be well in excess of 10 pulses per

second. Since the maximum count rate for the 290 ppm boron

standard was about 104 CPS (613,620 CPM) and since the largest
th

electron pulses were roughly 1/50 the size of the largest

alpha pulses, the ionization due to the electrons and betas

is seen to be at least double the ionization due to the alphas.

When the resulting space charge is large enough, the pulse

heights of the heavy particles are reduced, and a distortion

of the energy spectrum occurs.

A photograph of typical alpha pulses is shown for compari-

son in Figure 20d. (The position of the trace was raised so

that the sweep to the right of the pulses would be partly

cut off by the top deflection plate of the cathode ray tube,

thereby reducing the intensity in that region enough to

permit photographing. This did not alter the appearance of

the trace.)

There were times when small changes in counting rates

were noted during consecutive runs under simiiar conditions,

and it was thought that an increasing flux of decAy betas

from aluminum in the detector might be the cause of the change.

This possibility was investigated by rapidly inserting the

counter, with the 290 ppm boron standard, into the innermost

position (highest flux). A series of 0.10-minute counts and

50

...............
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FIG. 20a ELECTRON PULSES OBSERVED IN 99.9999% ALUMINUM
SAMPLE, S-b. 6 2
FLUX(at 46 3/4") 1.13 x 10 NEUTRONS/CM-SEC
HORIZONTAL SWEEP: 10 ps/cm.
VERTICAL DEFLECTION: 0.01 v/cm.

FIG. 20b SAME, EXCgPT FLUX INCREASED TO
1.14 x 10 NEUTRONS/CM2 -SEC
(USUAL OPERATING POSITION, 25 3/4")



52

FIG. 20c SAME AS FIGURE 20a, EXCEPT FLUX
INCREASED TO 1.71 x 109 NEUTRONS/CM 2 -SEC
(INNERMOST OPERATING POSITION, 1 3/4")

FIG. 20d ALPHA PULSES OBSERVED IN ALUMINUM
STANDARD B-2a (290 ppm BORON
FLUX (at 25 3/4' ): 1.14 x 10 NEUTRONS/CM -SEC
HORIZONTAL SWEEP: 2 ps/cm.
VERTICAL DEFLECTION: 0.2 v/cm.
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observations of the energy spectra were then made over a

14-minute interval while the activity of the aluminum-28

(half life 2.3 minutes) was building up to saturation. The

single curve of Figure 21 represents three 0.10-minute runs

made (1) immediately after insertion, (2) two minutes after

insertion, and (3) 14 minutes after insertion. The results

of all three runs were identical, indicating that the contri-

bution of the aluminum-28 decay betas to the space charge

effect is not important.

It was pointed out earlier in this subsection that the

effect of space charge on the pulse height might reduce the

accuracy of the observed count rates. Since the "live time"

feature of the TMC analyzer cannot compensate for this type

of error, it was felt necessary to determine the magnitude

of any error which might result from the space charge effect.

Data from the runs discussed above were further analyzed

to determine the magnitude of errors in the observed counting

rates. This was done for the Model 132 Scaler as well as

for the TMC Analyzer. The calculations show that the count

rates observed on the scaler must be increased to ~compensate

for an average dead time of 0.317 x 10-6 seconds/count. This

requires a 14.6% increase in the observed count rate of

397,900 CPM in order to obtain the true count rate of

458,950 CPM for the 290 ppm boron standard operating in the

highest flux.

In the case of the TMC Analyzer, it would be expected

that the "live time" feature would compensate for system dead

time, but also that the effect of space charge would reduce

the observed count rate to a figure somewhat below the true

count rate. However, the calculations show that the observed

count rate is higher than the true count rate, so that a

"live time" correction, calculated to be approximately
-60.283 x 10-6 seconds/count, must be applied to the observed

rates but in a direction opposite to that of the usual dead-

time correction. This error more than compensates for any

loss in counts which might result from the reduction in

pulse height due to space charge. At the maximum observed count

IR"W"
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EFFECT OF ALUMINUM-28 DECAY BETAS ON ENERGY SPECTRUM
OF ALUMINUM STANDARD B-2a (290 ppm BORON)
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rate of 743,120 CPM, a 17.5% correction is required, which
reduces the value to 613,620 CPM. At the usual operating
position (25 3/4"), the "live time" corrections do not exceed
1%, and therefore, no ,corrections have been applied to the
TMC data taken at that point. For TMC data involving count
rates higher than those measured at 25 3/4", such as the
pile oscillator tube flux calibration, the "live time"
correction factor has been applied.

Selection of the point at 25 3/4" from the inner end of
the tube as the usual operating position had not only the
advantage that corrections to the observed count rates could
be neglected but also the favorable aspect that the slope of
the flux curve is somewhat flatter than it is in adjacent
regions of higher flux.

D. Results of Measurements on Aluminum Standards

In general, as mentioned earlier, the energy spectrum
was measured for each of the samples run in the proportional
counter during operation in the hohlraum.

For the early runs in the medical therapy room beam,
however, only integral bias curves were determined for the
samples. The results of such runs are shown in Figure 22
for two aluminum standards containing boron, two aluminum
standards containing lithium, ,an aluminum "blank," and a
sample of reactor-grade graphite. Of primary interest are
the similarities in the shapes of the boron curves and the
distinct differences between the boron and the lithium.
These differences led to the use of a multi-channel analyzer
in the expectation that the differences would be more pronounced
in energy distribution curves than in the integral bias curves.
Such was the case, as will be seen below in this subsection.

Other results of interest are the integral bias curves
plotted in Figure 23. These runs were made with the boral
shutter of the medical therapy beam closed and with the detector
enclosed in a 1 1/4" inside diameter sleeve of borated plastic.
The double boron shield was intended to reduce thermal neutrons
practically to -zero in an effort to bring out the effects, if

Mm''MR4 I R M"Mil""110.1 PIRO 11 FIRWRRRINRM
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FIG. 22 INTEGRAL BIAS CURVES FOR SAMPLES
RUN IN MITR MEDICAL THERAPY ROOM

(FEBRUARY 12-13, 1963)
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10,000

ALUMINUM 290ppm B(B-2a, b)

ALUMINUM 280ppm Li(Li-2a,b)

1,000 REACTOR GRAPHITE (Gr-a,b)

100 ALUMINUM 25ppm B(B-la, b)

0 ALUMINUM 5ppm Li(Li-la,b)
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DISCRIMINATOR SETTING - VOLTS

FIG. 23 INTEGRAL BIAS CURVES FOR SAMPLES IN
FAST NEUTRON FLUX OF MEDICAL THERAPY ROOM

(FEBRUARY 12, 1963)
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any, of fast neutrons. It is believed that such an effect is

evident because these curves differ substantially from the

previous curves of Figure 22, which were run without any

neutron shields. In addition to having count rates several

orders of magnitude less than those of the unshielded runs,

the second set of curves shows the following differences:

1) The ratio of count rates for the 290 ppm boron to

those for the 25 ppm boron is about two instead of

10-12. The same reduction in count rate ratio holds

true for the lithium standards. If pulses in the

detector were coming only from the thermal neutron

reactions, the ratios should be the same in both

figures.

2) The curves for the-shielded runs are comparatively

straight at the higher discriminator settings and

do not show a corresponding drop-off at a setting

of 1.2 volts.

3) Each curve for the shielded runs shows a distinctly

steeper slope in the region of 0.3-0.5 volts discrim-

inator setting than it does at the higher settings.

4) The graphite curve now shows a higher count rate

than the aluminum with low concentrations of boron

or lithium.

It would be of interest to identify the various factors

contributing to the count rates of the shielded runs. Use of

a multi-channel analyzer and runs with materials of different

atomic weights would help in this respect. For the purposes

of this investigation, however, it is sufficient to note'tthat

effects probably caused by fast neutrons were evident and

that the presence of such effects was confirmation of the

desirability of operating in a more nearly thermalized region

of the reactor.

All of the runs in the hohlraum were made with the use

of a multi-channel analyzer, and the results are presented

in the form of pulse energy distribution curves (energy

spectra) rather than in the form of integral bias curves.

In this subsection, only the results of runs with the
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aluminum standards containing known amounts of boron or lithium

are presented, the results for high purity aluminum and graphite

samples being given in later subsections. The data is based

only on runs made in the "usual operating position" (25 3/4"

from the inner end of the pile oscillator tube). The counting

rate errors did not exceed 1%, and so corrections have not

been made in the observed data.

Energy spectra were determined for 12 aluminum standards

containing boron, two samples for each of six boron concen-

trations. One to four runs were made with each sample, and

the total count rates were averaged to obtain the values

given in the following table.

TABLE IV-1

SUMMARY OF ALUMINUM STANDARDS

WITH BORON

Analysis No. of Average
(ppm.). Runs (CPM

290 4 37,829 2,130

180 4 23,851 613

120 2 14,942 250

50 2 7,101 22

25 4 2.,770 - 127

5 2 587- 15

The energy spectra for each of the above runs was plotted.

An average curve was then drawn for each concentration, and

the results are shown in Figure 24.
Primary features of these curves are that they are

essentially straight lines up to 1 Mev approximately, the slopes

are identical for all except the 5 ppm standard, the shapes

are otherwise similar except again for the 5 ppm standard, and

the spacing is approximately that which would be expected from

I I- - - 11 11 1 MwMR MM"01W'.11m, F MIM . .1. 1.,- 1 1 - - 11 . -
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the analyses.

The standard deviations shown in Table IV-1 reflect the

count' rate variation which was frequently noted from run to

run, and which may have been due to slight differences in

detector position, operating voltage,--hohlraum flux level,

surface condition of the sample, etc. In all but one of

the 18 runs, the counting time was long enough so that the

standard deviation for the run was not greater than 1%,

and it was generally much less.

The standard error in the value of the slope is 1% or

better, except for the lowest curve, which is approximately 3%.

Based on the estimate, given in Table 11-3, of the count-

ing rates for boron in aluminum, the following count rates

per square centimeter of effective chamber surface might be

expected for the flux level used in these runs, 1.14 0.18) x
5 2

10 neutrons/cm -sec,

Ionizing Energ CPM/cm 2 of surface
Particle (Mev 5 ppm B 290 ppm B

1.47 434 25, 200

Li7  0.84 143 8,300

577 33,500

These values are quite close to the observed count rates but,

since the effective surface area of the chamber is probably

at least 3 cm2 and since it was assumed in the calculation

that every particle entering the chamber would be counted,

even though it might have very low energy, it appears that

the actual counting efficiencies are only about one third of

the assumed values.

7% of the alpha and Li7 particles have energies of

1.78 Mev and 1.01 Mev respectively, a fact which was ignored

in the estimate of counting rates for Table 11-3 and summarized

above. However, these higher energy particles contribute to

the shape of the curve, particularly to the maximum energies

observed. Indeed, the 1.78 Mev alphas were taken into account
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in establishing the energy calibration of the system. In

view of the fact that particles of four different energies

contribute to the energy spectra, it is probably fortuitous

that the curves appear as straight lines up to 1 Mev.

In the case of lithium in aluminum, energy spectra were

determined for 10 standards samples, two samples for each of

five concentrations. One to three runs were made for each

sample, so that two to four usable determinations were

available for each concentration. The average count rates

are given in the table below.

TABLE IV-2

SUMMARY OF ALUMINUM STANDARDS WITH LITHIUM

Analysis No. of Avera e
(pm) Runs (CPM

280 2 46,200 982

130 2 22, 931 - 73

40 2 7,422 + 27,

15 2 2,4oo - 27

5 4 1,236 98

As for the boron, an average curve was drawn for.

each set of runs, and the results are shown in Figure 25.

It is immediately obvious that the shape of the curves is

quite different from those for boron. In particular, the

slope of the straight portion of each curve between about

0.3 Mev and 0.8 Mev is much steeper, and there is a fairly

sharp bend at about 1 Mev. Above 1.5 Mev, the curves turn

downward again and, like the boron, drop quickly to zero.

Again, like the boron, the shapes of the curves are identical

and the count rates are approximately proportional to the

lithium concentration, except for the 5 ppm standard. The

magnitude of the experimental errors is comparable to that

of the errors for boron.

. ,, m . , "- 1j1pq1g4.p1' . ImIF111,0111M
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Based on the estimate, given in Table 11-3, the follow-

ing count rates per square centimeter of effective chamber

surface might be expected for the flux level used in these

runs.

Ionizing Ener Rane CPM/cm 2 of surface
Particle Ei Ae-C0cm) 5 ppm Li 280. ppm -Li

a 2.06 1.21 91 5,100

H3  2.73 6.98 526 29,500

617 34,600

As for the boron, it appears that the counting efficiencies

are about one third of the values assumed for Table 11-3.

The shapes of the lithium curves can be explained on

the basis of the alpha and triton energies and ranges listed

above. The high count rate, low energy portion of the curve

is a combination of alpha and triten pulses, primarily the

latter. Although the tritons entering the chamber will have

energies up to 2.73 Mev, calculation shows that the maximum

energy lost in traversing the chamber will be 0.8 - 0.9 Mev.

Therefore, the tritons do not contribute to the count rate at

the high energy end of the curve. An alpha particle, travelling

obliquely across the chamber, could lose all of its energy

and give rise to a 2.06 Mev pulse. The TMC was usually

operated on one quarter of its memory (64 channels), but

extrapolation of the curves does indicate a maximum pulse

height of about 2 Mev. It should be pointed out that the

channel numbers corresponding to the knee of the lithium

curve and to its maximum were two of the four points used to

determine an energy calibration for the system.

It is evident that, within the ranges of the standards

measured, it should be possible, using the count rate obtained

on an aluminum unknown containing only boron or only lithium,

to estimate the concentration of whichever element is present.

If an energy spectrum curve is determined as well, it should

be possible, because of the significant difference between them
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for boron and lithium, to distinguish between the two elements

and, furthermore, to estimate the ratio in which the two occur.

Figure 26 shows calibration curves for boron in aluminum

and for lithium in aluminum. These are based on the standards

listed in Tables IV-1 and IV-2, and the errors shown in those

tables are indicated for several of the points where they

are large enough to plot.

Since the relationship between count rate and concentra-

tion is a straight line, it is possible to determine an

average figure for the slope of the line in each case. This

can be read approximately from the plot for each of the two

elements in Figure 26. It is also possible to make a calcula-

tion which converts each measurement to a count rate per

part per million of boron or of lithium and then weights each

such quotient according to its standard error in order to

obtain a mean value. These calculations lead to the following

results:

130 - 3 CPM/ppm of boron in aluminum

169 - 4 CPM/ppm of lithium in aluminum

E. Interference From Other Ionizing Radiation

It is important to review the results of the experimental

runs previously discussed and also a few special measurements

made specifically to determine the effect and magnitude of

the interference from the various unwanted radiations listed

in Table I1-3.

The fact that electrons are a prolific source of ioniza-

tion in the detector is evidenced by the clutter on the oscillo-

scope sweeps. The rate at which they enter the chamber can

be visualized by inspection of Figure 20b, which shows at

least one medium or large pulse for every ten microseconds

or so along the sweep, with no way of knowing how many

smaller pulses are occurring coincidently with the larger ones.

Interference from electrons would result when multiple coinci-

dences create pulses large enough to pass the discriminator
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of the Model 132 Scaler or to be registered in the lowest

sensitive channels of the TMC Analyzer. In the latter case,

such pulses should be evidenced by high count rates in the

lowest channels, but no indications of this situation were

noted. If it did occur, it should be apparent in the curves

of Figure 18, where the count rate due to boron and lithium

is low and where operation in the innermost position would be

most favorable for multiple pile-up of electron pulses.

In Figure 19, for the gold-lined cavity, the effect of

space charge is most pronounced. The count rate indicates

that the gold was relatively free of boron and lithium, as

was expected, and so the ionization causing the space charge

must have been due almost entirely to electrons. The cross

section for the photoelectric interaction of gamma rays with

electrons increases rapidly with the atomic number of the

absorber, being proportional to the fourth or fifth power

(depending upon the photon energy) of Z (19). Consequently,

the electrons resulting from the photoelectric effect are in

the range of 1,400-8,000 times as dense for the gold sample

as for the aluminum samples. Although the energy spectrum

for the gold is badly distorted, the ratio of total count

rate at 1.71 x 109 neutrons/cm 2-sec. to count rate at 1.14 x

10 8neutrons/cm 2-sec. and the ratio of the count rates for

the lowest channels, where electron pulses would be recorded

if there was much pile-up, are both equal to or less than 15,

the ratio of the neutron fluxes. The opposite would be

expected if electrons were not being effectively eliminated

from the counting.

Beta rays from the decay of aluminum in the counter did

not appear to contribute any detectable effects. As described

in Subsection IV-C and illustrated in Figure 21, the build up

of 2.3-minute aluminum-28 did not affect the energy spectrum

of the 290 ppm boron standard. Based on the evidence of the

two preceding paragraphs, pulse pile-up of light ionizing

particles, including beta rays, does not contribute to the

count rate even though serious distortion of the energy

spectrum may occur.
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An additional attempt was made to observe the effects of

interfering radiations which are not the result of (n,g)

reactions by reducing as much as practical the thermal neutron

flux in the sensitive volume of the detector. This was accom-

plished by surrounding some of the samples, both aluminum

and graphite, with 0.020" cadmium as described in Section III.

The effect of this would be to reduce the counts from boron

and lithium in the sample, in the structural materials, and

in surface contamination. It would also reduce counts from

fission fragments, and would reduce the number of decay betas

from aluminum-28. However, it would not reduce the number of

electrons, the alphas from the decay of naturally radioactive

isotopes in the aluminum or graphite, or the recoils of

nuclei struck by fast neutrons. It would in fact be expected

to increase the first of these as the result of an increased

number of capture gammas coming from the cadmium and also

as the result of penetration of the 0.028" aluminum cavity

wall by the photoelectrons generated in greater quantity

(proportional to Z -Z5) in the cadmium than they would be

in aluminum. Electrons having energies greater than 0.5 Mev

will penetrate the 0.028" aluminum.

The extent to which the (n,a) reactions were eliminated

was measured by comparing the count rates for the 290 ppm

boron and for the 280 ppm lithium with and without cadmium

wrapping. The results, shown in Table IV-3, indicate that

the wrapping was about 99% effective.

Table IV-3 also shows the reduction in count rates when

the 99.99995/ aluminum and the electrode-purity graphite are

cadmium-wrapped. The reduction by only 95% may have been

due to the fact that the shielding was less effective for

these three samples, but the consistency of the results makes

this quite unlikely. As will be seen later, the alphas from

naturally radioactive isotopes are relatively unimportant,

which leaves electrons and recoil nuclei as the only possible

explanations for the fact that the count rates in these

three samples were not'also reduced by 99%.
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TABLE IV.-

EFFECT OF CADMIUM SHIELD ON COUNT RATES

Not Shielded Cd Covered
Analysis Sample Sample % of

(ppm No, CPM No. CPM Unshielded

290 B B-2a,b 37,829-2,130 B-2c 473t7 1.25-0.07

280 Li Li-2ab 46,200 982 Li-2c 417t6 0.90t0.02

99.9999% Al S-a,b 132t 16 S-c 7.4-0.2 5 .6to.7

Graphite Gr-c,d 137- 14 Gr-e,f 5.7-0.3 4.2-0.5

Electrons do not appear to be a logical explanation

in cases where the energy is not seriously distorted, as

was pointed out earlier in this Subsection. Figure 27

shows the energy spectra for the boron and lithium with and

without cadmium. The addition of cadmium changes the shape

little, if any, although the electron flux in the chamber

should be increased, as stated above. The increase, however,

is not enough to distort the energy spectrum significantly

and certainly not to the extent that it was distorted in

Figure 18 and 19, for aluminum and gold. Electron pulse

pile-up would be expected to contribute to the count rate

only in the lowest channels. The energy spectra for the

cadmium-wrapped aluminum and graphite samples (S-c and Gr-e),

Figure 28 and Figure 29 show relatively high count rates in-

the lower channels, but the entire curves show count rates

higher than 1% of the unshielded materials (S-a, S-b and

Gr-c, Gr-d). (In Figure 29 the averages of five adjacent

channels have been plotted for channels above No. 15 in

order to reduce the scatter of the points.) Consequently, it

is believed that electrons may be ruled out as contributing

to the relatively high count rates of the 99.9999% aluminum

and the electrode graphite samples with the cadmium shielding.

The effects of recoil nuclei were investigated briefly

for hydrogen. The cadmium covered sample of 99.9999% aluminum
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was counted both with 90% A-10% Co2 and with 90% A-10% CH  for

flux levels of 1.14 x 10 and 1.71 x 109 neutrons/cm2 see,

At the lower flux, the run with each gas was 20 minutes long,

and at the higher flux the runs were 10 minutes long. In

each case, in order to eliminate possible variables, half the

counting with A-CO2 was carried out just before the A-CH run,

and the other half followed immediately afterwards. The

results are tabulated below.

TABLE IV-4

EFFECT OF HYDROGEN IN COUNTER

Neutr n Flux Count Rate
(n/cm -sec.) Gas (CPM)

1.14 x 108 A-CO 2  7.1 t 0.6

A-CH4  10.1 - 0.7

1.71 x 109 A-CO2  34.9 t 1.9
2+

A-CH4  59.2 2.4

A significant increase in count rate with A-CH4 is

noted at both flux levels. The energy spectra are plotted

in Figure 30 and show that the increase in rate is due to

additional counts in the first few channels. Since only

the gas was changed and since the counting characteristics

of the gases were found to be very similar (Subsection IV-C),

it is concluded that t he replacement of oxygen by hydrogen

in the counting gas was responsible for the increased count

rate and the change in energy spectrum.

Except at the low energy end, the change in gas did not

appear to change the spectrum. The low counts made an accurate

comparison difficult; there was considerable scatter of the

points even though the average of five adjacent channels was

plotted, except for the first few channels where the count

rate was higher. The effect of space charge at the higher

flux was evident, however, the cadmium causing the high flux

......... .........
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curve to drop to zero about 10 channel numbers before the low
flux curve.

The graphite curves, Figure 29, show a departure at the
low energy end, from the otherwise relatively straight plot
up to about Channel No. 50. The possibility that this might
be the result of recoil carbon nuclei or possibly pile-up
or electron pulses was considered. In either case, the plot.

for the cadmium covered graphite should also show the effect,

but much more prominently. At Channel No. 10, the unshielded

electrode graphite (Gr-c, Gr-d) shows an increase of 3 to

4 CPM above what would be expected from a straight slope. If
due to electron pulse pile-up or to recoil nuclei, this effect

should also appear undiminished in the spectrum of the shielded

sample. The count rate for the shielded sample, however, is
only 0.5 CPM. The effect is probably due, therefore, to the

manner in which the energy spectra of the individual (n,a)
reaction products combine to form the total energy spectrum.

It would be of considerable interest to pursue further

the question of the effects of fast flux, particularly in this

region of the reactor, because this may be the factor which

limits the sensitivity of the prompt activation analysis

method for boron and lithium.

No attempts were made to determine the effects of boron

or lithium which might be contained in the structural-material.
3 7It is believed that a, H3, and Li particles from these

sources would enter the sensitive volume of the chamber only

from the tungsten anode, the aluminum anode holder, the sulfur

tip on the end of the anode, the aquadag coating on the tip,

or the counting gas. The aluminum anode holder represents the

largest area and could be fabricated in a future counter from

a material like the 99.9999% aluminum (instead of type 6061,

which probably would have a higher boron and lithium content).

In addition, it could be made with a smaller surface area.

However, it will be noted in Tables IV-1 and IV-2 that the

count rates per part per million for the 5 ppm and 25 ppm
boron standards and for the 15 ppm lithium standard were below

the mean values of 130t3 CPM/ppm for boron and 169-4 CPM/ppm

W I I, IMM I 11RIMMMMIRMPIP IMMOMM11 1
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for lithium. With the possible exception of the 5 ppm lithium
standard, there does not appear to be any bias toward a higher
count rate in the low concentration range covered by the
standards, such as might be expected if the structural materials
were contributing a constant amount to the observed count
rates. For measurements at some lower concentration, however,
such as 0.1 or 0.01 ppm, this could be a consideration.

Contamination of the sample surface was believed to be
the cause of inconsistent results in several cases. Several
standard samples were re-etched when they gave relatively
high count rates. In all but one case, the 290 ppm boron

standard (B-2b), a remeasurement then gave results which were
consistent with other data. While surface contamination
did not prove to be a major problem in the work with the
standard samples, the results for the one case mentioned
above indicate that it could cause difficulty even in the
range of concentrations covered by the standards, and it
undoubtedly would require further investigation if the

sensitivity of the method were to be extended below the

present range.

It was estimated in Table 11-3 that the background count
due to emission of alpha particles by naturally radioactive

isotopes in the matrix materials'would amount to a count rate
on the order of 0.003 CPM/cm2 of chamber surface, or about
0.01 CPM for this detector. Actual counting of alpha

particles from six of the aluminum samples gave an average

rate of 0.0017 - 0.0003 CPM, well below the smallest count
rates due to boron and lithium.

The background counting rate due to fission fragments

from uranium-235 in the aluminum and in the graphite was

measured for several samples, some of the runs being made at

reduced anode voltages. At 1200 v. the (n,a) reaction

products fell in Channels No. 6-17, with fission pulses spread
from this point all the way to Channel No. 95. Figure 31
shows a comparison of the energy spectra for aluminum standard
Li-lb (5 ppm lithium) made with operating voltages of 1400 volts

and 1200 volts.

741-lv - 51, Offlopp"MMOMM . - 1 .1 1 1 1 11 "1 . - I - 11j- 11 . .1 :___ . -
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PULSE HEIGHT - MEV
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Results for a few samples are listed below giving the
8

fission count rate converted to a flux of 1.14 x 10 neutrons/
2cm -sec., for comparison with the (n,a) reaction products

count rate, shown in the right hand column.

TABLE IV-5

SUMMARY OF FISSION FRAGMENT COUNT RATES

Fission a, H
Material Sample Fragments and Li

No. (CPM) (CPM)

Aluminum, 5 ppm Li Li-lb 0.23 - 0.03 1,236 -- 98

Aluminum "blank" 0-b 0.09 0.03 451 + 31

Aluminum, 99.9999% S-b 0.09 0.03 133 16

Graphite, reactor Gr-b 0.07 - 0.02 298 - 25

Graphite, electrode Gr-d 0.05 - 0.01 137 - 14

In all oases, the count rate due to fission fragments

is well below 0.1% of the count rate due to boron and lithium,

showing that this is not a source of interference in the

measurements. If the sensitivity of the method were extended

to the range of a few parts per billion, fission fragment

counts might have to be taken into consideration. Even here

they could be readily eliminated simply by using for the

count rate an integrated count of the (n,a) reaction

product spectrum, omitting the higher energy fission fragments,

as was actually the case in most of the experimental runs

where only one quarter of the TMC memory was utilized.
2

If an effective surface area of 3 cm for the cavity is

assumed, the 0.013 CPM/cm2 at 10 neutrons/cm -sec. estimated

in Table 11-3 converts to 0.04 CPM which is closely confirmed

by the experimental results.

It is evident from the foregoing that this detector,

in addition to its design purpose of measuring trace amounts

of boron and lithium, is also capable of making much more

sensitive and accurate measurements of trace quantities of

"PRI"
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fissionable nuclides.

F. Activation Analysis of Unknown Samples

In the case of mixtures of boron and lithium in aluminum,

it is possible to determine the concentration of each element

by measuring first the slope of the energy spectrum in the

region between 0.3 Mev and 0.9 Mev, approximately, which gives

the ratio of boron to lithium, and second using the slope

and the count rate in one of the channels to find the concen-

trations of each element.

General analytical expressions for this purpose are

developed in the following manner.

Let nB = ppm boron

nLi

(C B)p

(CB + Li) p

= ppm lithium

= CPM for boron in Channel No. p, etc.

= CPM for mixture of boron and lithium in
Channel No. p.

p = first channel number (lower) used to
determine slope.

q = second channel number (upper) used to
determine slope.

(CB/nB)p = CPM/ppm boron in Channel No. p, etc.

The logarithmic slope is given by:

A ln/channel = - {( in )

p

in

nB
p

nB + (H

S- ln
4- p CB nB CLi

nB nLi + nLi)

nLi]}
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We can solve for the ratio nB/nLi, with the following result:

C Lq C e (q-p)Aln/chan.

n (Li rLi
nB PnL KnLi

Li ~ OB (B (q-p)Aln/chan.

nB nrB)
p q

Substitution of the mean calibration values of CPM/ppm for

this particular detector and use of the term Aln, or more

specifically Aln (CB + Li), which is equivalent to -(q-p)Aln/
channel (since Aln/channel always has a negative value),

give the expression:

nB 13.5 - 0.67 eAln (CB + Li)

nLi 5.1 - 2.03 enin (CB +Li

When an energy spectrums has been recorded (using the

same experimental conditions), it is necessary only to sub-

tract the natural log of the counts per minute in Channel No. 35

from the natural log of the counts per minute in Channel No. 10,

(Aln), substitute in the above expression, and evaluate to get

the ratio of boron to lithium in the sample, (nB/nLi).

The concentration of each element is obtained by use of

the following balance:

(B + Li B +(Li n~i

p p

which is solved to get:

(CB + Li)

B B +(1 Li
p nB/nLi nLi

..........
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(CB + Li)
and N = CB + U(L

Li nB C B + Li
nLi nB/ - nLi

p p

Substitution of mean values gives:

n (CB + Li) 10
B 5.1 + - 13.5

nBnLi

(CB + Li)10

-- .- 5.1 + 13.5
nLi

The counts per minute recorded in Channel No. 10 and the

previously d'termined ratio nB/nLi are now substituted into

the last two expressions to obtain the concentration of each

element.

'The analytical expressions may be employed, in slightly

different form, td develop values for a table of slopes and

count rates which may be used, with the same slope and count

rate information for an unknown composition as is required

for the analytical expressions, in order to determine the

concentrations of boron and lithium in aluminum.

The results off measurements and tests to determine the

effect and magnitude of the interference from undesired

ionizing particles did not reveal any obstacles to using the

described method of prompt activation analysis at concentra-

tions somewhat below the lower limit of the range of standard

aluminum samples studied. As mentioned in Section III, several

types of high purity aluminum and graphite were obtained, and

these were analyzed in the manner described above.
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The samples tested were:

Sample
Materialt Code Description

Aluminum 0-a, 0-b ALCOA "blank"

Aluminum S-a, S-b 99.9999%

Graphite Gr-a, Gr-b MIT Reactor graphite

Graphite Gr-c, Gr-d Spectroscopic electrodes

The boron and lithium concentrations in the above samples
were not available.

The energy spectrum for each of the samples was determined,

the averages of the spectra having been given earlier in
Figures 28 and 29. Use of the analytical expressions gives
a boron to lithium ratio of 8.1. The other two expressions

then give values of 2.9 - 1.0 ppm boron and 0.4 0.4 ppm
lithium, with the errors coupled so that one value decreases

when the other-increases.

In a similar manner, the concentrations for the 99.9999%
aluminum are found to be 0.4 t 0.3 ppm boron and 0.5 T 0.2 ppm
lithium.

The analytical expressions cannot be used directly for

determining the concentrations of boron and lithium.in

graphite, because the equipment was calibrated for tests on

aluminum as the matrix. The counting efficiency will be

different, and it might be that the slopes of the curves

will not be quite the same for the same ratios of boron to

lithium. The latter uncertainty can be resolved only by

making measurements of the energy spectra on- standard samples

of graphite containing known boron or lithium concentrations.

An estimate tan be made of the counting efficiency, however.

Calculations taking into account the particle ranges in graphite

and in aluminum show that counting rates for a given concen-

tration of boron or lithium in the former are only 67% of
the counting rates in the latter. The energy spectra for

the graphite samples in Figure 29 leads then to an analysis

.. I,
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of 1.6 t 1.2 ppm boron and 1.4 T 0.5 ppm lithium for the

reactor grade graphite (Gr-a, b) and to 0.5 t 0.4 ppm
boron and 0.8 + 0.3 ppm lithium for the electrode graphite.

G. Limit of Sensitivity of the Present Counter

The various sources of interference which limit the sensi-
tivity should be considered in the light of the determinations

made on the several aluminum and graphite samples tested and
of the low count rates achieved (without a determination of
concentration) on the cadmium-wrapped samples. These results

are summarized by Figure 32, a log-log plot of the above

measurements. The two lines are drawn with slopes of 130 CPM/ppm
for the boron and 169 CPM/ppm for the lithium. They are

drawn solid in the range of the ALCOA aluminum standards, the
results for which are plotted on the graph. Along the dashed

portion of the line the results for the aluminum and graphite
unknowns are plotted. The low count rates achieved by eliminat-
ing about 99% of the thermal neutrons are indicated by the

arrows near the lower end of the dashed lines. In view of the
fact that slopes for the energy spectra of these cadmium-wrapped

samples were measurable, Figures 28 and 29, (although the

accuracy of such a measurement is admittedly unknown), it may

be anticipated that some kind of a determination could be made
on aluminum or graphite which contained less than 0.1 ppm of
boron and/or lithium, such an amount corresponding to the

reduced count rates achieved by the cadmium shielding. If

aluminum or graphite standards having known concentrations in
the range of 0.1 - 0.001 ppm could be obtained, predictions

of the sensitivity would be facilitated.

The limit of sensitivity of the present counter will

depend upon the magnitude and frequency of ionizing events which

occur in the counter in addition to the a, H3, and Li parti-

cles from the boron and lithium to be measured. Electronic

disturbances which give the appearance of heavy ionizing

particles should also be taken into account,

The ionizing radiations summarized in Tables II-1 and
11-3 are listed again below for the purpose of consolidating

the experimental data relating to each item. The count rates
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given are for the counter and samples used (effective area

of chamber about 3 cm 2 ) and for the neutron flux in the usual

operating position of the pile oscillator tube in port 12CH1,

measured at 1.14 x 108 neutrons/cm2 -sec

TABLE IV . 6

SUMMARY OF COUNT RATES MEASURED IN DETECTOR

Items Particle

1. a

2. Lif
3. CL

4. H3

5. e~

6.

7. aL

L7J
H3

8.
9.

10.

11.
12.

a

f.f.
recoil
nuclei

a, Li7, H3

Source

B to be assayed

Li to be assayed

Gammas
Al decay
B and Li in structural
materials

U23, etc.
U235 (nf)
Fast neutrons

Surface contamination
Electronic noise

Count Rate

130 3 CPM/ppm

169 4 CPM/ppm

Zero

Zero

Not determined

0.01 CMP max.

0.23 CPM max.

6 CPM max.

Not determined

0.20 CPM max.

It appears that the count rates due to interfering radia-

tions which were measured as part of this investigation were

at most 4% of the count rates for boron and lithium at a

concentration of one part per million,

It is believed that this percentage, for the items measured,

can be made much smaller. The electronic noise, at 0.20 CPM

maximum, gave an average count rate of 0.09 CPM, and the fact

that there were extended periods of much quieter operation

would indicate that this source of interference could probably

be rendered negligible in comparison to other causes of counts,

The fission fragment background can be almost completely

eliminated by counting only pulses having energies of 2 Mev

1-ffl- M11 1M.Mmm.11116" JR P"p, I - - 11 - - - -", -
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and below, excluding the high energy fission pulses.
It is difficult, however, to estimate the sensitivity

of this analytical method without further information on the
effects of Items No. 7, 10, and 11. No constant component,

such as would be expected if Item No. 7 were important, was
noted in the counting rates at concentrations down to 5 ppm.
If present, such an effect would not be expected to become

dominant for at least another factor of ten, at which point,

if necessary, greater care in the selection and preparation

of anode materials should improve the sensitivity still

further.

The extent to which surface contamination of the samples

interfered with the accuracy of the determinations is not
known. It apparently occurred and was corrected with little
effort in several cases, but not in another. The irregulari-

ties in some of the low count rate curves, such as the

99.9999% aluminum in Figure 18, particularly at the higher

flux, suggest possible surface contamination with boron or

lithium. However, there seems to be no reason why, with the

focusing of some attention on this problem, it should become

a serious limitation on the sensitivity of the method for at

least another factor of ten or one hundred below one part

per million.

The effect of fast neutrons was investigated directly

only with respect to hydrogen. The introduction of a very

small amount of this element as part of the counting gas

caused an increase in the count rate of 3 CPM. Due to the

fact that there are comparatively large quantities of aluminum

or graphite surrounding the chamber, when these materials

are being tested, it is not clear how the count rate is

affected by the recoil nuclei of such atoms struck by fast

neutrons. If there is such an effect on these moderately

heavy nuclei, it very likely would be the result of first

collisions by fission neutrons (or at least fission neutrons

which have suffered only a glancing collision and hence lost

little of their original energy). The number of these strik-

ing the counter could be appreciably reduced if it were possible
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to locate the counter at some position in the heavy. water
exponential tank, or perhaps in the pedestal under the tank,
so that fission neutrons would have to make at least one
large-angle collision before reaching the counter.

It is primarily the uncertainty in estimating the effects
of fast neutrons and the further uncertainty regarding the
possibility of improving the situation (if it should prove
to be a limiting factor) that make it difficult to estimate
the potential sensitivity of this prompt activation analysis
method, If we assume that the effect has a magnitude of
the same order as the effect on hydrogen (3 CPM), or that
most of the counts for the high-purity aluminum and graphite
with cadmium covers (perhaps 80% of 7.4 GPM and 5.4 CPM,
Table IV-3) are due to fast neutrons, then the sensitivity
would be limited to the region of 0.1 ppm and would depend on
how accurately the slope of the energy spectrum could be
determined in the presence of the recoil nuclei.

In a flux of 1.14 x 10 neutrons/cm 2-sec., 2% accuracy
in the total count rate for concentrations of one part per
million can be obtained in just under 20 minutes of counting,
and it is possible to make a reasonable measurement of the
slope of the energy spectrum. If the possible sources of
interference can be controlled, a reduction in iconcentration
to 0.1 ppm or 0.01 ppm can be gained by extending the count-
ing time a corresponding amount (or by accepting less
accuracy with shorter counting times).

An increase in flux level will, of course, increase
the count rates. However, it will be recalled that distortion
of the energy spectrum, which affects slope measurements,

began to take place at fluxes above 10 neutrons/cm -sec.
for aluminum. For materials of higher atomic number, the
increased electron flux and consequent space charge might
force the use of a flux level below 10 neutrons/cm -see.
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SECTION VI

APPENDICES



APPENDIX A - TABLE A-1

POSSIBLE NEUTRON-GAMMA REACTIONS FOR LIGHT ELEMENTS (3)

Element Reaction

H H 2(n,7 )H2

H 2(n,7Y) H3

He3 (n,7)He4

He (n,Y)He5

Natural
Abundance

of Reactant

99.985%
0.015%

1.3(10 )
100%

Thermal Neutron
Cross Section

(barns)

0.330

0.57(10-3)

n.r. *

Half-life
of Product

stable

12.26 yr.

Mode of Decay
(Energy in lvev)

3~(0.018)

stable

0

Li Li6 (n,7y)Li

L17(n,7)Li8

Be Be 9 (n,7)Be1 0

B B o(n,7y)B l

B (n,7)B12

C C12 (n,7)C1 3

Cl3 .(n,7y)C 1

N N1 (n,7 N15

N15(n,y)N16

0 016 (n,y) 07
017 (n,7)0 18

0 1(n,7)019

7.5%
92.5%

100%

18.7%
81.3%

98.89%
1.11%

99.635%
0.365%

99.759%
0.037%

0,204%

n.r.

0.033

0.01

n.r.

<0.05

0.0033
0.0007

0. 10

o.024(l03

n.r.

n.r.

O.21(1 )

stable

0.86 sec.

2.5(10 6)yr.

stable

0.022 see.

stable

5.6-(lo3)yr .

stable

7.36 see.

stable

stable

29.4 sec.

-(13-90%,
7 n.r.

1'(0.557)

+ others)

1~(13.4-98% + others)
7(0.43-1.7%)

P~(0.156)

r~ several)
7(6.13,7.10)

r~(2.9-70%, 4.5-30%)
7(several)

* not reported 00

He
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APPENDIX B - TABLE B-1

SUMMARY OF (n,p) AND (na) REACTIONS FOR WHICH THERMAL CROSS SECTIONS ARE GIVEN (3)

Element Reaction

He He 3 (n,p)H3

Li Li6 (n,a)H3

B Bl0 (n,a)Li7

B 0 (n,p)Belo

N N14 (n,p)C14

0 017(na)C14

Natural
Abundance

of Reactant

1.3(10~4 )%

7.5%

18.7%
18.7

99.635%

0.037%

Thermal Neutron
Cross Section

-(barns)

5.4(103 )

945

4(lo3)

( 0.2

1.76

0.5

Half-life Mode of Decay
of Product (Energy in Mev)

12.26 yr.

12.26 yr.

stable

2.5(10 6 yr.

5.6(lo3 )yr.

5.6(lo3 )yr.

(0.018)

s~(0.018)

-(0.557)

P~(o.156)

s~(o.156)

%D00
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