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ABSTRACT

An investigation of the gamma-ray spectra of several isotopes
from thermal-neutron capture has been carried out. The isotopes
irradiated are Sc 4 5 , Ir 1 9 1, Ir 1 9 3 , Rh 1 0 3 , Dy161, Dy1 6 4 and Hol65.
The instruments that have been employed are a six-meter bent crystal
spectrometer at M.I.T. and a scintillation pair spectrometer at
Brookhaven National Laboratory.

The technique of using the bent crystal spectrometer has been
refined by means of improved development of the photographic emulsion
used as a detector, by means of a formalized data-taking procedure
and by the use of a digital computer to analyze the results in a con-
sistent fashion. The instrument has been used to survey the low-energy
photons from neutron capture by natural scandium, iridium and rhodium.

The scintillation pair spectrometer is coupled to a two-parameter
analyzer and has been used in coincidence studies of neutron-capture
gamma rays from Dy161, Dy1 6 4 and Hol 6 5 . Its operation has been
aided by the use of a digital computer to perform data reduction. An
attempt has been made to perform stripping on the complex gamma-ray
spectra obtained.

The results have been compiled and nuclear energy level schemes
have been proposed for Sc 4 6 , and somewhat tentatively for Dy1 6 5 and
Ho 1 6 6 . Possible additions to the present nuclear energy level schemes
of Rh10 4 and Dy1 6 2 are also presented.

Thesis Supervisor: Dr. Norman C. Rasmussen
Title: Associate Professor of Nuclear Engineering
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CHAPTER 2

INTRODUCTION

2.1

In the original proposal to do this work, it was intended to measure

the capture gamma-ray spectrum of germanium. At that time, the

spectrum was not well known; and, in addition, the information would be

useful as a basis for determination of low-level impurities in that

material by means of analysis of prompt gamma rays. In the course of

the investigation, it was intended hopefully to develop techniques for

resolving complex gamma-ray spectra and so determine the nuclear

energy levels of nuclei formed in neutron capture by the five individual

germanium isotopes that comprise the natural element.

The problem was essentially a determination of the line spectrum

of gamma rays from the absorption of neutrons by a multi-isotope mix-

ture. It was planned in the research work to use two instruments to

measure these gamma rays. One was a six-meter, bent crystal spec-

trometer which had good precision and resolution at low energies. The

other was a scintillation pair spectrometer which had reasonable reso-

lution and efficiency at high energies. It was'hoped to extend upwards

the energy range of the bent crystal spectrometer by using a shielded

scintillation detector instead of an emulsion plate. In this way, it was

expected that a good quantitative measurement of gamma-ray intensity

could be obtained. The details of the original research proposal were

given in Reference N1, and this review of its main features has been

made so as to show how a somewhat different problem was finally under-

taken. Prior to working on germanium, it was decided to test some of

the originally proposed ideas on the element, scandium.

The reasons for selecting scandium were many. It was mono-

isotopic and its absorption cross section of 23 barns was much higher

than the 2.4 barns of germanium. Some knowledge of the level structure

of the capture nucleus, Sc46, was known from (d,p) excitation by Mazari

(M2), and from capture gamma-ray studies by Bartholomew (B4), by
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Groshev (G1), and by Hammermesh (H6). There was also a request by

Fiebiger at Brookhaven National Laboratory for precise measurement

of the low-energy neutron-capture gamma-ray spectrum of scandium,

needed to couple to his coincidence data. Furthermore, the original

bent crystal spectrometer, built at M.I.T., was in use and a new one

needed to be constructed. It did seem more reasonable to test the oper-

ation of the new instrument, when it was built, on a mono-isotopic

element about which some information was already known.

2.2

The new six-meter, bent crystal spectrometer was designed by

the author and built by him and I. U. Rahman, with the latter making

the initial measurement of the capture gamma rays from scandium.

The construction, calibration and operation of this instrument were

described by Rahman (R1). The spectrometer was placed by a port

leading into the thermal column of the M.I.T. reactor, this being the

only port available where there was room for this large instrument.

Unfortunately, the neutron flux available in this port was only

5 X 10 n/cm 2-sec which was very low compared to the value of

1013 n/cm 2-sec available with the original spectrometer (K1). In

addition, the preliminary tests of the shielded scintillation detector

for the bent crystal spectrometer proved to be unsuccessful. There

was too great a noise-to-signal ratio in the energy range of interest

to warrant further testing. Consequently, it was felt that since ger-

manium had a low absorption cross section, that since the flux

available was limited and that since the scintillation detection scheme

had not worked, there was little chance of successfully measuring all

of the low-energy capture gamma rays from germanium by the methods

proposed. The early conclusions were as follows. A much higher flux

would be required to measure the capture gamma rays of germanium

with a bent crystal spectrometer. Secondly, the efficiency of that

instrument was too low to allow its use directly in the detection of

impurities in a sample of low absorption cross section, such as

germanium.
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2.3

The second experimental part of the original program envisaged

the use of a scintillation pair spectrometer to measure the high-energy

gamma rays from the irradiated sample. This instrument was supplied

to M.I.T. and set up in operation by Paik (P1). This instrument, as

supplied, had a rather poor resolution (about 4.5% at 7.6 Mev) and a low

over-all efficiency due to a very small geometrical factor. For measure-

ment of the energy of gamma rays, the instrument did not have, for

instance, the resolving power of a Compton magnetic spectrometer. The

latter instrument has an extremely low efficiency and can be used only

on natural elements because such large sources are rdquired. A useful

area of research for the scintillation pair spectrometer then seemed to

be the measurement of gamma rays from neutron capture by separated

isotopes, or the measurement of coincidences between high-energy and

low-energy gamma rays. In both of these applications, the M.I.T.

instrument had much too small a geometrical efficiency to be used

directly. A program for the development of this instrument was there-

fore initiated.

2.4

Section 2.1 reviewed the original research proposal, and Sections

2.2 and 2.3 discussed briefly the problems encountered in the applica-

tion of the two main instruments to that research. This section discusses

the decisions made as a consequence of these problems and outlines the

area of research that was finally undertaken.

The irradiation of scandium and measurement of its capture

gamma rays was well under way when the decision was made not to

investigate germanium due to the experimental difficulties. There was

already revealed in the experiment then in progress a need for a formal,

but quick, method of analysis of the emulsion plates used as detectors.

Hand calculations were not too feasible when there were more than 30

lines on one plate, and use of a digital computer seemed appropriate.

There was indicated an urgent need for developing the emulsions at

M.I.T. to obtain a quicker inspection of results, and this required the

construction of a refrigerated developing facility. Finally, it was shown

that even the precise measurement of these low-energy gamma rays did
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not allow construction of an unambiguous level scheme of the capture

nucleus. The latter fact showed also that determination of the level

schemes of the nuclei formed from neutron capture by the germanium

isotopes would never have been obtained by irradiation of the natural

element.

It was decided to measure the low-energy capture gamma-ray

spectra of other isotopes, viz., iridium and rhodium, about which some

information was already known, as was the case in scandium. Iridium

was chosen because its separated isotopes were being investigated by

Fiebiger at Brookhaven National Laboratory. The high-energy gamma

rays from neutron capture by natural iridium had been studied by

Groshev (G2). The gamma rays from the decay of Ir 192, which was

formed by irradiation of natural iridium, were precisely measured by

Muller (M3), and it was believed that the irradiated sample would pro-

vide a means of calibrating unknown sources. Rhodium was chosen

because its low-energy level scheme had been investigated by the

reaction, Rh 1 0 3 (d,p)Rh 10 4 , on the M.I.T. Van de Graaff accelerator

and reported by da Silva (Si). In addition, rhodium was mono-isotopic

and had an appreciable thermal-neutron absorption cross section. The

capture gamma rays of rhodium were investigated also by Greenwood

(G4), Buschhorn (B1), Kalinkin (K5), and Gruber (G5).

Considerable effort was put into the development of the scintil-

lation pair spectrometer, principally in increasing the geometric

efficiency and improving the resolution. This effort did not produce

results that were considered good enough, and so was given up. A real,

though insufficient, improvement was achieved in that the efficiency was

raised by a factor of 10, and the resolution was improved to 3.4% at

7.6 Mev by the methods described in Chapter 4. The decision was made

instead to use a similar instrument designed for coincidence work and

coupled to a two-parameter analyzer at Brookhaven National Laboratory

(B.N.L.). For comparison, this instrument could achieve a resolution of

2.5% at 7.6 Mev. The intention was to couple the coincidence studies done

there with the work done on the bent crystal spectrometer at M.I.T. How-

ever, coincidence studies of scandium and iridium had already been made

at B.N.L. For technical reasons described in Chapter 5, rhodium did not

prove to be suitable to allow the high-energy, low-energy coincidence
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measurements to be made on the apparatus at B.N.L. Instead, two further
164 165

isotopes were investigated there, Dy and Ho These two were

selected because natural dysprosium and holmium had been irradiated

and their capture gamma rays measured by Hickson (H1) on the original

bent crystal spectrometer at M.I.T. There was information on the level

structure of the capture nuclei of these isotopes from various sources,

which are detailed in Chapter 7. Dysprosium and holmium were also of

interest since the principal nuclei from their irradiation, Dy165 and
166

Ho , were highly deformed and could be expected to exhibit many rota-

tional excitation levels. Determination of some of the parameters

relating to these rotational bands and other excitational modes would be

useful in understanding nuclear structure. These parameters might be

obtained if the level schemes of Dy165 and Hol66 could be inferred by

combining the data from the two institutions.

At Brookhaven, the two-parameter analyzer gave prodigious

quantities of information that needed to be reduced and plotted. This

had been done by hand and, in order to save time, a computer code was

developed to handle the data. Considerable effort was made to devise

techniques of unfolding the measured pair spectra of neutron-capture

gamma rays. A study of unfolding methods was made; one method was

selected and programmed on a digital computer. Using this method,

preliminary isotopic assignments were made of the high-energy capture

gamma rays of natural dysprosium, that had been measured by Motz (Ml).

The introduction may be summarized by saying that the problem

undertaken required the construction and successful operation of several

instruments and supporting facilities. Data handling methods were

developed for these instruments and applied to measurement of neutron

capture gamma rays. The results were used to formulate nuclear energy

level schemes of the appropriate capture nuclei.
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CHAPTER 3

BENT CRYSTAL SPECTROMETER

3.1 DISCUSSION

Bent crystal spectrometers are well described in the literature

(Dl, K2). A brief description of the instrument used here is given for

the sake of completeness, but more detail is to be found in Reference R1.

3.2 PRINCIPLE AND DESCRIPTION OF THE INSTRUMENT

The principle of the bent crystal spectrometer of the Cauchois

type is as follows. A broad beam of gamma rays is incident upon a

curved quartz crystal. This crystal is a rectangle and is cut such that

planes of high reflectivity are normal to the main crystal face and

parallel to the sides. The planes with Miller indices 310 are used in

this case. The crystal is bent so that these planes all point to a common

focus about six meters away that is called the beta point. The optical

properties of this system are such that if monoenergetic gamma rays

are incident on these internal planes at the appropriate Bragg angle, they

will be reflected to a common point at a small but definite distance away

from the beta point. The locus of these common energy points is a circle,

called the focal circle, whose diameter lies from the beta point to the

center of the bent crystal. A detector then can be placed along this focal

circle at the same horizontal level as the incident beam, and it can be

used to detect the discrete gamma-ray energies in that beam.

The detector used here is an emulsion plate, 12" long by 2" wide,

on which is mounted an Ilford G5 photographic emulsion. Thicknesses

used typically are 600 microns for gamma rays above 70 kev; and

below that energy, a thickness of 100 microns is usually used. The

focussing action of the bent crystal produces a line on the emulsion

plate for each discrete gamma-ray energy. The distance between these

lines is measured on a Gaertner comparator, Type M1205C. If lines

from a well-measured source are put on the plate with the lines from

the unknown source, then the plate can be calibrated and the energies of
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the unknown gamma rays may be determined in a precise manner.

Analysis of the plate is described in detail in Appendix I. The basic

approach is to express the spacing of the calibration lines on the plate in

a linear form. A least-squares fit of the calibration line wavelengths is

made to this linear form of the functional dependence of the spacing. The

coefficients so obtained are used to determine the wavelength and energy

of the unknown lines. The calculations are done on the M.I.T. 7090 digital

computer and provision is made for three cases:

(a) When the plate does not straddle the beta point and has two or

more calibration lines,

(b) When the plate does not straddle the beta point and has only one

calibration line,

(c) When the plate straddles the beta point and has one or more

calibration lines.

The highest precision in wavelength is usually obtained from plates that

straddle the beta point; the reasons are discussed in Appendix I. This is

why considerable effort is made to obtain straddle plates, although the

background level on them is invariably high. This occurs because each

plate takes twice the time of a normal plate, since two images of each

gamma-ray line are taken.

Figure 1 illustrates the general arrangement of the spectrometer

as placed at the 9CH2 port of the M.I.T. reactor, and which leads into the

thermal column. The unknown source is placed at the center of this port

where the flux is 5 X 10 n/cm 2-sec at 2 MW operation. The source is

irradiated and emits prompt gamma rays which are appropriately colli-

mated. Scattered slow neutrons from the source are stopped by a 3/16"-

thick piece of borated plastic attached to a lead collimation brick in the

port box. Fast-neutron shielding comprises a 1"-thick slab of polyethyl-

ene in the beam path. The direct beam is stopped by the line of lead

bricks and the diffracted beam is focussed onto the.focal plate. The

emulsion plate views a diffracted beam whose breadth from geometrical

considerations is equal to that of the unperturbed beam at the focal plate.

This follows because the distance from the image of a ray to the beta

point is exactly equal to the distance of the unperturbed ray from the beta

point, though on the other side.

Figure 2 illustrates the arrangement with some distortion of scale

to show all of the essential features. This figure shows clearly that the
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purpose of the critical brick is to provide final collimation so that the

detector sees none of the direct beam. The purpose of the inner colli-

mator is to prevent the detector from viewing directly the walls of the

port. An over-all picture of the apparatus is given in Fig. 2a.

The efficiency of the instrument is extremely low, and the magni-

tude of its variation with energy should be appreciated when the results

are interpreted. The crystal efficiency is given by Chupp (Cl) in the

following way.

The integrated acceptance angle 0 for a 4 mm-thick crystal and

the 310 planes is

0 = 70 X 10- 2/E2 radians, (3.2.1)

where E is the energy of the incident gamma ray in key, The effective

solid angle Q presented by the crystal to the source is

2Q = dOh/d = Oh/d, (3.2.2)

where d = distance of the source to the crystal, and h = usable vertical

height of the crystal.

If H is the height of the detector and R is the diameter of the

focal circle, then

_Hdh = R+d (3.2.3)

Hence, the ratio TCG of the number of photons seen by the detector to

the number emitted by the source is

S_ 7.0 X 10 2 Hd _ 556 X 10-3 H
T'CG 4r 2 2 .(324

E '2 47d(R+d) (R+d)E (2

The efficiency ne of the Ilford G5 emulsion is taken from the same

reference C1, and is given by the empirical relationship below:

6J2.56 X 10 6 1
rl =0.06 E3 + 1 (3.2.5)

e 3 1 3

This expression applies over the range 100 to 800 key and is adjusted

appropriately outside of it. 7 e here represents the ratio of the energy

absorbed by the emulsion to the amount of photon energy incident upon
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it. The other factor na entering into the efficiency of the system is the

gamma-ray attenuation in the source itself, in the neutron shielding, in

the crystal and in the air path. This factor can be calculated reasonably

well, using the measured gamma-ray attenuation coefficients. For this

calculation, the source is assumed to have an atomic number of 45.

Hence, the over-all efficiency of the system is given by

'7T CG '7e *'7a (3.2.6)

and this is shown in Fig. 3, with Fig. 4 showing the component efficien-

cies. The curve shows two features of note:

(a) The efficiency changes by over 2 orders of magnitude over

the useful operating range.

(b) The maximum efficiency occurs around 75 key.

Intensity measurements on the bent crystal spectrometer are diffi-

cult to make for reasons detailed in Chapter 5. In general, only quali-

tative estimates by eye are made. If a gamma ray is to be detected on

the emulsion, the probability will depend on the intensity of the gamma

ray as well as the efficiency of the system. The lower useful limit of

the instrument seems to be about 30 key for a typical source, although

X rays down to 22 kev have been detected. The upper energy limit of

the instrument arises not only from the reduced efficiency but also from

the difficulty of separating the reflected beam from the direct one. The

background on the emulsion always increases at high energies. The

upper useful limit of-the instrument seems to be about 1.5 Mev, although

Kazi (K2) has measured a 2.2 Mev gamma ray from neutron capture by

hydrogen in the high flux port. Kazi gives a value of 1200 curie hours

needed to detect a 0.511 Mev gamma ray. That value may be combined

with Figure 3 to estimate the number of curie hours required at other

energies.

The resolution of this instrument is energy-dependent and can be

expressed approximately by

Resolution = 10-3 E (kev)% , (3.2.7)

so that it has excellent resolving power over the useful energy range.

The precision should be related to the resolution directly, since the
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standard deviation of the measurement of a line center is usually about
1/20 of the line width. However, uncertainties in the calibration lines
decrease the accuracy of the measurement so that it is expressed
approximately as

-4Precision = 10 E (kev)% . (3.2.8)

3.3 OPERATION OF THE INSTRUMENT

The operation of the spectrometer is not well described in

Reference R1 and so is covered more fully here. The dimensions of
the source and final collimator are such that a view of about 4" is
possible at the focal plate. Exposure ranges are therefore selected at
a spacing of 4" except near the beta point, where the range must be less
if the detector is not to see the direct beam.

Operations are commenced initially with the lead shutter brick
down so that the direct beam is cut off, and with no detector on the focal
plate. The spectrometer is rotated about its pivot until the center line
of the incident beam of gamma rays lies at the center of the range of
interest at point C on the direct beam side of the focal plate. The spec-
trometer frame is locked in this position. If a gamma ray directed
towards C is incident at the correct Bragg angle, it may be reflected

towards point C' which is at the same distance away from the beta point
as C, though on the other side. A string is drawn taut from point D on
the crystal to point E on the focal plate. A line of lead bricks is placed
against this string as indicated in Fig. 2. The shutter brick is raised
and the critical brick is pushed in until the radiation level at point E is
low enough, usually about 2 mr/hr or less. The shutter brick is closed

down again. A string is now drawn from point F on the crystal to point

G which is to be the extremity of the emulsion plate away from the beta
point. Lead bricks are placed on the spectrometer frame up to this

latter string. The purpose of these bricks is to stop side-scattered

gamma rays. In addition, these bricks support shielding over the beam
necessary to stop gamma rays scattered vertically upwards. The
emulsion plate is strapped to the focal plate and the shutter brick is
raised to allow exposure.

Calibration of the emulsion plate in the high energy range is
achieved by exposure to decay gamma radiation from a Ta182 source.
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This tantalum source is located in the port box and is pulled into the

beam center line by means of a wire. This operation is usually done at

the weekend when the reactor is shut down. Calibration of the emulsion

plate in the low energy range is achieved by use of a Picker hot-shot

X-ray machine. The shutter box assembly at the head of the spectrome-

ter is removed, and the X-ray machine is put in its place at the correct

level and shielding placed around. It is found to be more convenient to

use the machine with a simple transmission target instead of the more

efficient reflection target. In this type of usage, a transmission target

is selected of a sample whose X rays are of the desired energy. It is

attached to the front of the X-ray machine beam hole, the machine is

lined up and then set to run over the weekend. Since the beam source

is. now much closer to the crystal face, considerable care must be taken

with shielding to ensure that the emulsion does not see the direct beam.

In determining which material the transmission target must be

made of the following simple rules are useful.

1. The Ka 1 X ray of the target material should be placed about

20 cms away from the edge of the emulsion plate nearest the beta point,

so that the KB X rays will be seen, too.

2. The relationship between gamma or X-ray calibration energy E .

and distance y from the beta point is

=s 3120
y(cms) = (kev). (3.3.1)

The X-ray machine is aimed at a point on the other side of the

beta point that corresponds to the center of the emulsion plate. The lead

bricks that cut off the direct beam must be behind a line drawn from the

crystal to the position of the KB 2 X ray on the emulsion plate.

The practice has been to use two emulsion plates at one time, to

provide insurance against one being broken or improperly processed.

They are covered individually in a household plastic wrapping to prevent

drying out and are then bound together with two separate layers of black

photographic paper. It has been found, however, that below 60 key, the

transmission through the first emulsion plate is small enough that the

image on the second plate is weak. It is felt, therefore that one plate

alone is adequate below 60 key. On the high flux port used by Hickson (Hi),
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in which intensities are 20 times greater, this conclusion is less applic-

able. In addition to the emulsion, an X-ray film is usually mounted just

above the focal plate. The film can be developed quickly and serves to

monitor the primary detector.

It has also been found that at energies above 200 key, a distinct

improvement in contrast can be obtained by using a filter in front of the

emulsion. The filter captures the large number of low-energy gamma

rays from the source, that arise presumably from Compton scattering

in the crystal, while the discrete energies of the reflected beam are

affected little. A convenient filter is sheet cadmium, 0.020" thick.

3.4 PHOTOGRAPHIC EMULSION DEVELOPING SYSTEM

The emulsion plates require special processing because they are

so thick. If the developing time is rapid, compared with the diffusion

time of developer through the emulsion, then very uneven developing will

occur and there will be considerable surface blackening. For this reason,

a refrigerated developing system is required for the emulsion since the

developing rate is much less at low temperatures, relative to the diffusion

rate.

Prior to the installation of this system, the practice had been to

send the plates to California for processing and this resulted in excessive

plate breakage and too great a time lag between. exposure and inspection.

The processing requires a facility that will provide a constant bath

temperature of 5*C and yet can be raised to 23*C within 5 minutes and

lowered back down in the same time. This is needed because developing

is done dry at 23*C after the developer fluid has completely diffused into

the emulsion at 5*C. The latter requirement is the most severe and

essentially determines the refrigerator capacity. The capacity necessary

is excessively large, and so the system has been designed with a large

thermal reservoir and a smaller refrigerator to do the same job.

Figure 5 illustrates the system. It comprises two stainless steel

trays, each with a double-walled bottom. The bottoms of these. trays

are connected to each other and to the refrigerator unit by copper pipes

and with appropriate valving. The refrigerator is a water-cooled unit

and is placed in a cupboard underneath the trays. The refrigeration fluid

that cools the trays is water. The whole system is placed in a stainless
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steel pan and is enclosed in a wooden locker located in the dark room of

the reactor building at M.I.T. Each tray is provided with a drain which

is connected by tygon tubing to the open drain indicated in Fig. 5. The

drain in each tray is closed by screwing a short stainless steel pipe into

the tapped drain hole and by using a screw clip on the tygon tubing. The

fixer tray has a stainless steel coil in its bottom, which is to provide

cooling of the water for washing the emulsions after fixing. A simple

constant head tank provides a constant flow of this wash water when

required, via rubber tubing to a small final nozzle at the mouth of the

tubing. Each tray is provided with a stainless steel cover. The cover

for the fixer tank has a slow-speed electric stirrer mounted in it to

provide agitation during fixing. Neither tray is designed for pressur-

ized operation and care must be taken to prevent mains water pressure

being applied in full to the double-walled bottom of each tray.

The procedure for processing plates is described by Cohan (C2),

who did an extensive literature survey and some experimentation. The

procedure for a 600 micron-thick emulsion is described in detail here

to show the proper use of the developing system. All of the operations

in the dark room must be done in the dark or safe light until near the end

of fixing.

1. The required amounts of developing and fixer fluids are made

up 16 hours prior to commencing the processing. The developer is made

up with distilled water, if possible. These fluids are stored in the

refrigerator in which emulsion plates are stocked.

2. At the same time, the trays are cleaned thoroughly and the fixer

tray is filled with cold water to a depth of 5 cms.

3. The refrigeration system is checked for air leaks. A piece of

rubber tubing is connected from faucet C to the drain. Inlet water is fed

via rubber tubing to. inlet nozzle B with valve 3 in position 2, and trapped

air and excess water are bled off through faucet C. This faucet and valve

3 are switched to their normal positions simultaneously, to prevent either

pressurization or air voids in the system.

4. With the valves all in their normal position #1, as in Fig. 5, the

refrigeration unit is turned on and the system allowed to cool for 16 hours

to its operating temperature of 5*C.
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5. The processing is commenced by putting the cold developing

fluid into the developing tray. The emulsion plates are unwrapped,

labelled if necessary with a scriber and placed with the emulsion up-

wards in the soak bath of cold water in the fixer tray.

6. After soaking for 2-1/2 hours, the emulsion plates are trans-

ferred to the developer tray and allowed to soak for 2 hours.

7. The flow mixer in the darkroom is checked during this interval

to make sure its temperature scale is calibrated properly and it is then

connected to inlet nozzle B.

8. At the end of this time, the developing fluid is drained out and

excess on the emulsions is wiped off carefully with a tissue soaked in

cold water.

9. The refrigerator is turned off temporarily to prevent pressur-

ization of the system during the next operation.

10. All valves are turned to position 2. The bottom of the developer

tank is heated up to 23*C by passing 23*C water from the flow mixer in

through nozzle B and out to the drain from nozzle A. The refrigeration

unit is turned on again so that the fixer tank is kept cool. This is the dry

developing stage.

11. The cold water in the fixer tray is converted to stop bath mix-

ture by the addition of 120 mls of 28% vol acetic acid.

12. Twenty-five minutes after operation 10 has started, the flow

mixer is turned to the fully cold position, and the developer tray is

brought down to mains cold water temperature as quickly as possible.

13. The refrigeration unit is turned off again. Valves 1 and 3 are

turned simultaneously back to position 1. Valve 2 is also turned back to

position 1. The refrigeration unit is turned on again.

14. The stop bath mixture is now scooped up out of the fixer tray

and poured gently into the developer tray and the plates are soaked for

2-1/2 hours in the stop bath.

15. During this interval, the fixer tray is thoroughly cleaned and

is filled with the first batch of fixer fluid.

16. The emulsion plates are then transferred, one by one, to the

fixer tray. Before insertion into the fixer, they are wiped thoroughly but

quickly with tissues soaked in cold fixer, in order to remove surface scum

that arises from the developing. Wiping is best done at this stage while
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the emulsions are reasonably firm, since they are softened by the subse-

quent fixing.

17. The emulsions are soaked in fixer for 3 days. During that time,
part of the fixer is drained off and fresh fixer is added at regular intervals.

This is done until all the required amount of fixer has been used and termi-

nates after about 2-1/2 days. During the fixing, electric stirring is utilized

continuously.

18. After 3 days, washing is commenced. This. is done by passing

tap water into the constant head tank until it overflows in a regular manner.

Water from this little tank is fed through the cooling coil in the bottom of

the fixer tray and then through the final nozzle in the rubber tube into the

tray, itself. This provides a slow flow which gradually dilutes the fixer

which overflows into the drain. The wash flow is about 6 liters/hour.

Washing is carried out for 3 days.

19. The developer tray is cleaned, and the four batches of drying

mixture are made up and stored in the stock refrigerator. The drying

mixtures comprise various amounts of water and ethyl alcohol, and are

needed to dry the emulsion plates which are gros'sly swollen after fixing.

20. The plates are then dried by soaking for two hours in successive

batches of cold drying mixtures which are placed successively in alternate

trays.

21. The plates are then placed on paper towels in front of a fan for

2 days, by which time they are firm enough for handling.

22. A final wipe with pure alcohol at this stage may prove bene-

ficial in removing any remaining surface scum.
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CHAPTER 4

SCINTILLATION PAIR SPECTROMETER

4.1 PRINCIPLE AND DESCRIPTION OF THE INSTRUMENT

A description is given here of the scintillation pair spectrometer

used in the present work and located at Brookhaven National Laboratory.

This apparatus has been described in an earlier form by Segel (S5) and

Fiebiger (F3). It has been extensively modified by Fiebiger to its

present state, but there is no detailed description available of its

present form and of its operation. This chapter and Appendix IV remedy

the situation.

The principle of the scintillation pair spectrometer may be seen

from Fig. 6. The kinetic energy of the positron and negatron from a pair

interaction of a primary gamma ray in the central sodium iodide crystal

B of the instrument is measured, if the two side crystals simultaneously

detect the 0.51 Mev photons arising from the annihilation of the positron.

The source of gamma rays is from neutron capture by a sample placed

in position, Fig. 6, where the neutron beam from the reactor is perpen-

dicular to the plane of the figure. The fourth crystal, A, used to detect

low-energy coincident gamma rays, is shown placed closely to the source

point in order to provide a high geometric efficiency. The source itself

is placed on the neutron beam center line inside a surrounding teflon tube.

This tube is double-walled and comprises three sections. In the vicinity

of the source, the wall of the tube is packed with lithium carborate

enriched in Li6 to capture scattered neutrons without producing gamma

rays. The wall of the other two sections is filled with cheaper boron for

the same reason. Boron does, however, produce a low-energy photon,

and so it is not desirable to have it in the vicinity of the source.

The source itself consists of a chemically stable form of the iso-

tope under investigation, packed in a suitable container. If the isotope

has a low capture cross section, the container may be aluminum whose

outside diameter is equal to the bore of the teflon tube. If the isotope
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has a reasonably high capture cross section, the container may be a

gelatin capsule mounted on nylon cross wires inside a cardboard sup-

porting tube.

Figure 7 indicates the over-all general arrangement, though not to

scale. The detectors themselves are heavily shielded with lead and

paraffin wax to reduce the external background of neutrons and photons.

The lead shielding has four stepped holes bored through it to the crystal

positions. Placed in these holes are plugs, at the tip of which a small

source may be put in order to calibrate or stabilize the appropriate

crystal. The unperturbed neutron beam is stopped by a beam catcher

comprising borated paraffin wax backed by lead. Primary collimation

of the neutron beam is achieved by 0.5"-diameter lead collimators placed

in the reactor shield. Final collimation is achieved by a removable colli-

mator mounted in a socket on the shielding of the detection system. This

final collimator is 4" long and is made of 2" of lead and 2" of epoxy resin,

loaded with boron carbide. There are several of these final collimators

with different bores ranging from 3 mm diameter to 9 mm diameter, and

it is practice to select the one that gives the desired counting rate in the

crystals. The apparatus is located next to the Brookhaven graphite pile.

The neutron beam is well thermalized and provides a flux of 106 n/cms 2

sec with a cadmium ratio of 50 at the source position. The beam can be

cut off at the reactor shield face by insertion of an 8"-long, steel rod into

the open beam port and then by covering the hole with a boral plate, 1/4"

thick. There are three sodium iodide crystals in the scintillation pair

spectrometer, and when only these three are used, it is termed through-

out this thesis as a singles run. When a coincidence is demanded at the

same time from the fourth crystal, A, it is termed a fourfold run.

An electronic block diagram of the system is shown in Fig. 8.

Since a fourfold run may easily be six days long, it is necessary to elimi-

nate drift that is normally common to scintillation detectors. Stabilizers

of the deWaard type, (W1), are incorporated on each circuit. The

principle of these stabilizers is to sample a peak in the unknown spectrum

and adjust the high voltage of the system to maintain that peak at a pre-

determined pulse height. On the side crystals, which are run by a

common high voltage, the stabilizers feed back instead to the voltage on

the focussing electrode of the photomultiplier tube to achieve the same

effect.
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The amplifiers used are Franklin double delay line clipped units,

and their use permits minimization of spectral distortion from pulse pile-

up. Their cross-over type pulse also permits full advantage to be taken

of the capabilities of the coincidence circuitry.

The coincidence requirements of the system are that fast coinci-

dences are demanded of all four crystals, and that the energy measured

in the two side crystals is 0.51 Mev, which requires two slow coincidences.

The usual fast-slow coincidence circuits are transistorized units designed

by Chase of Brookhaven National Laboratory. Each unit has a single-

channel analyzer built into it which may be switched in, where appropriate,

to meet the slow coincidence requirements. One feature of these units is

that two modes of pulse timing are provided, permitting coincidence

signals to be derived either from the leading edge or the zero transition of

the input signals. The use of the latter, which is possible due to the type

of pulse given by the Franklin amplifier, makes the coincident pulses

independent of signal amplitude and almost independent of discriminator

bias setting. In this way, the variation in fast-coincidence pulse timing

is minimized and a resolving time of about 50 nanoseconds can be

achieved.

If the coincidence requirements are met, the simultaneous pulses

from the pair spectrometer Y and the fourth crystal X are delayed and

then fed with a final coincident pulse to a 64 X 64 two-dimensional pulse

height analyzer. The address of each count is determined then by the

pulse height in the X and Y channels and the count is stored at the appro-

priate point in the 64 X 64 matrix. This analyzer is an early Brookhaven

design with a drum-type memory, and it provides for display of each Y

channel on a scope. There are two window controls on both channels of

the analyzer; and in the usual case, the X channel, used for the A system,

operates with the x1 window; and the Y channel, used for the B system,

operates with the x5 window. Read-out from the analyzer is obtained by

means of a Hewlett-Packard parallel printer at the rate of about

3 numbers/sec. No provision is made on this particular analyzer for

punched paper tape output so that data handling is difficult. The scintil-

lation pair spectrometer is highly developed and gives a resolution of

about 2.5% for an incident 7.6 Mev gamma ray. This high degree of

development has been obtained by the following means:
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(a) Careful selection by the Harshaw Chemical Company of the

central sodium iodide crystal, mounted as an integral unit

without a light pipe, to provide minimum intrinsic resolution.

(b) Optimization of the crystal performance by variation of the

cathode-dynode potential on the photomultiplier, by variation

of the focussing electrode potential and by variation of the

over-all high voltage.

(c) Careful attention to shielding to reduce the external back-

ground and to reduce background arising from scattered

neutrons.

(d) Careful collimation and limitation of the maximum counting

rate in the central crystal.

(e) Selection of side crystals with good resolution so that channel

requirements there may be tight without sacrificing efficiency.

A description of the operation of the instrument is given in Appendix IV.

4.2 SUMMARY OF DATA REDUCTION METHODS

Reduction of the data from two-parameter coincidence runs is done

by an IBM 7090 computer with a code called CAPGAM that will perform

the following operations as desired;

(a) Subtract off background.

(b) Subtract off accidental counts.

(c) Calculate the standard deviation of the corrected count.

(d) Subtract off coincidences in the fourfold runs that arise from

the bremsstrahlung tails of peaks.

(e) Print out and plot the corrected data.

(f) Sum channels in either X or Y directions, and plot and print

out these sums.

(g) Subtract off a normalized average vector from each row to

accentuate differences from a mean. This process is termed

singularization. These differences are plotted and printed out.

(h) Sum singularized channels; print out and plot these sums.

(k) Plot data in subranges to provide effective changes of scale.

Details of the CAPGAM code are given in Appendix III.

Data from singles runs on the scintillation pair spectrometer can

be processed by another code called PAIRSTRIP. This code smooths

the counts and attempts to determine the line spectrum of incident high-
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energy gamma rays. In addition, the code will calculate what the

measured spectrum should be, knowing the incident line spectrum and

the response function of the spectrometer. Details of the PAIRSTRIP

code are given in Appendix II, together with a discussion of its

applicability.
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CHAPTER 5

MEASUREMENTS MADE ON THE BENT CRYSTAL SPECTROMETER

5.1 DISCUSSION OF INTENSITY MEASUREMENTS

Before discussing the energy measurements made on the bent

crystal spectrometer, an explanation is given as to why no detailed study

of the gamma-ray intensities has been made. Intensities are estimated

qualitatively by eye and their range varies from very, very weak to very,

very strong. See Table 1 for example. These qualitative values are

quite useful. It is believed that quantitative estimates made from

measurement of line densities are very inaccurate and the effort cannot

be justified. Instead, it is felt that the qualitative values given and use

of Fig. 3, showing the over-all efficiency of the system, provide suf-

ficiently meaningful answers without unnecessary effort. Since the belief

is a point of contention, the reasons for it are detailed below.

(a) The more intense transitions produce lines that are too dark

to be measured by a photo densitometer. Consequently, line density

measurements must be made by comparison with a set of photographic

density standards. The comparative method has poor precision, even in

a simple case.

(b) The exposure schedule of the emulsion plates is not simple.

In general, it is not as practiced by Cohan (C2), who set his collimating

system such that his whole emulsion plate was exposed at one time with-

out moving either spectrometer frame or critical brick. The plates in

this case are exposed over different length ranges, for different exposure

times, for different amounts of exposure overlaps and for different criti-

cal brick settings. The consequence is that the background along the

plate is extremely variable, particularly in the energy range above 200

key where intensity measurements would be most useful. The density

comparison method depends considerably on background and this factor

produces a very large uncertainty in the measurements.

(c) The view factor for the source depends on the critical brick

setting which is varied, depending on the energy range studied. At high
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energies, the critical brick is moved in considerably; and its position

relative to the beam center line is badly known and this uncertainty

further contributes to the inaccuracy of measurement of the line intensi-

ties.

(d) The source intensity is not well known, due to the uncertainty

in the flux level and due to a large uncertainty in neutron self-shielding

factor. The latter depends on source geometry and cross section and

also the directionality of the neutron current at the sample. The self-

shielding factor cannot be calculated easily or with any real degree of

certainty. This consideration is important only if an attempt is made

to obtain an absolute intensity.

(e) A principal uncertainty is that the relationship between gamma-

ray intensity and line density is not well known.

(f) Each plate may develop differently due to variations in emulsion

thickness or simply by being processed in different batches. Hence, each

plate must be considered separately from the others, and intensity

measurements made on one plate can be related to those on another plate
only by common lines which may be obtained under different exposure con-
ditions. This introduces an uncertainty in one set of measurements rela-

tive to another.

(g) There are also other uncertainties, though of a less important

nature. These arise from uneven development along a single emulsion

plate, from the accuracy with which the integrated reflectivity of the bent

crystal is known, and from the uncertain amount of gamma self-shielding

in the source, related in turn to the pattern of neutron absorption.

5.2 SCANDIUM MEASUREMENTS

The measurements made on scandium were both a reanalysis of the

work of Rahman (R1) plus an extension of the energy range that he covered.

The sample consisted of 36 grams of Sc2O3, doubly encased in aluminum

and placed at the center of the 9CH2 port of the M.I.T. reactor, where the

flux was estimated as 5 X 10 n/cm 2-sec. Neglecting self-shielding, this
produced a source strength of 102 curies. The principle problem in the
measurement of the scandium capture gamma rays was the calibration of
the emulsion plate in the range 30 cms to the beta point. Provision was
made for calibration with a tantalum source located in the port box, since
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the gamma rays from Ta182 had been well measured by Muller (M3) by
means of a bent crystal spectrometer of the Dumond type.

The first set of plates exposed in this range were badly processed

and could not be relied on to give accurate results. This was not realized,
due to the long delay between exposure and inspection, as discussed in

Section 3.4. When the next set of plates was exposed in this range, it was
discovered that the tantalum source had grown too weak to give anything

but the 68 key and 100 key lines. This meant that only one calibration

line (100 key at 31 cms) could be used in the range nearest to the beta

point. The tantalum source could have been removed and reactivated, but
this would have been difficult. The difficulties were that the spectrometer

would have needed to be raised out of the way in order to remove the

plugs in the port box where the tantalum source was located. This would

have had to be done in the presence of a 600 mr/hour beam coming from

the activated scandium source. The earlier insertion of the fresh tantalum

source had proved difficult and had given rise to high dose rates to the

operations personnel. Furthermore, removal of the spectrometer would

have required unbolting of the crystal blocks, and there was no guarantee

that the line-up of crystal and focal plate could be maintained when the

blocks were replaced. The decision was made then to make the calibra-

tion by means of requiring consistency between the measurements taken

on two overlapping plates. One plate ranged from +5 cms to +35 cms

away from the beta point, and the other plate straddled the beta point

-15 cms to + 15 cms. It was hoped, in addition, that the presence of a

cross-over transition would further tie down the energy calibration of

the emulsion plates in this range.

The results obtained in this way were not satisfactory. They had

an uncertainty four or five times larger than what was obtainable by
direct calibration. In addition, no cross-over transition could be found

since no lines above 300 key were observed. It was felt that irradiation

at a higher flux level would be beneficial since the ratio of background-

to-signal would be smaller. There is a general level of 1 to 2 mr/hour

from activated argon in the reactor room, and a shorter irradiation time

would reduce its effect. However, irradiation at a higher flux level could

not be done at the time. The source geometry needed to be modified,

which was impossible with a scandium decay activity of 25 curies. The
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scandium oxide was expensive and a new source could not be easily justi-

fied. In addition, one week of irradiation of a new source in a high flux
46

port would have allowed the accumulation of 30 more curies of Sc

Licensing restricted the total activity of any one isotope at M.I.T. to

50 curies. Finally, there was no high flux port at the M.I.T. reactor that

was available at the time with sufficient room to operate the instrument.

The results obtained by that time, February 1962, were combined with

those of Fiebiger (F2).

The scandium source was removed from the 9CH2 port and stored.

About a year later, when its decay activity was about 2 curies, it was

inserted into the high flux port at which the spectrometer used by Hickson

(HI) was located. Exposure was made on a set of emulsion plates strad-

dling the beta point. On this set, a line was identified as annihilation

radiation which was an excellent calibration. Furthermore, cross-over

transitions were observed and it was thus possible to improve and extend

the results quoted earlier. It had not been expected that annihilation radi-

ation would be seen, since scandium had too low an atomic number for

significant pair creation by self-absorption of its high-energy gamma

rays. The principle mechanism for the source of the annihilation quanta

must then have been pair internal conversion, and was significant in this

case due to the large proportion of gamma rays with high energy in the

decay from the scandium capture state. The probability for pair emission

has been illustrated on Page 226 of Reference El, and simple calculations

have been made for the intensity of the annihilation quanta. For scandium,

an intensity of 7% per captured neutron could have been expected, and the

conclusion was drawn that in the high flux port any normal sample would

have been an adequate source of annihilation radiation in itself.

The final measurements of gamma rays from thermal neutron

capture by scandium are given in Table 1. Figure 9 illustrates two of

the scandium plates. The higher energy one nearest to the beta point

shows the significant variation in background along the plate that leads

to the difficulty in intensity measurement discussed in Section 5.1.

A strong 31 key transition was observed on the scandium plates

and also the plates exposed to the other sources. Hickson (H1) observed

the same transition when using other sources and a different port at the

M.I.T. reactor. This transition has been identified as being from the
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Table 1. Gamma Rays from Thermal-Neutron Capture by Scandium

Energy, key Intensity

52.014

61.788

79.514

88.938

89.821

142.451

146.974

181.918

216.39

227.71

228.65

280.66

295.39

383.74

485.94

539.31

546.55

554.34

584.60

627.12

775.17

± 0.008

± 0.005

± 0.008

± 0.011

± 0.011

± 0.029

± 0.032

± 0.067

± 0.09

± 0.10

± 0.10

± 0.15

± 0.14

± 0.25

± 0.28

± 0.29

± 0.32

± 0.30

± 0.33

± 0.37

± 0.74

M

W

W

VW

W

VVS

VVS

W

VS

VVS

VS

VW

VVS

VVW?

W

W

VW

M

M

M

VVW

Nomenclature for
thesis is as follows:

intensity used in Table 1 and elsewhere in this

S = Strong
M = Medium
W = Weak
V = Very

? = Questionable
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decay of the 31 key level in Al28 and a precision measurement can be

quoted as 30..6415 ± 0.0020 key.

In a separate experiment on another six-meter, bent crystal spec-

trometer away from the reactor, the gamma rays from the decay of Sc 4 6

were measured. This spectrometer frame was not very rigid, and the

results were suspect because they differed so much from those in the

literature. The values measured here are 895.2 ± 2.1 key and 1129.0

± 3.7 key. These can be compared with the measurements of Johansson

(J3) and Lindquist (L3), who obtained 892 ± 3 key and 1118 ± 3 key, and

885 ± 2 key and 1119 ± 3 key, respectively.

5.3 IRIDIUM MEASUREMENTS

The basis for investigating iridium was that a calibration source

was required which had intense, well measured gamma rays above 220

key. The poor calibration of scandium plates had demanded. this. A

220 key gamma ray will just produce a line on both extremals of an

emulsion plate straddling the beta point. Iridium comprises 2 isotopes,
191 193 192

Ir and Ir1. The gamma rays from the decay of Ir have been

well measured by Muller (M3), by means of bent crystal spectroscopy.

In addition, there are strong transitions in the range 300 to 600 key. It

appeared that it would be useful to look at its neutron-capture gamma

rays while this calibration source was being made. In addition, Fiebiger

at Brookhaven National Laboratory was investigating capture gamma rays

of each iridium isotope by coincidence studies.

A 20.3-gram sample of natural iridium was packed in a doubly-

sealed, standard size, aluminum can. The standard can was used because

the geometry of the calibration setup, in which it was to be later employed,

so required it. If neutron self-shielding factors were neglected, then an

activity of 517 curies would have been obtained and this would have mani-

fested itself as a dose rate of at least 120 R/hour at the face of the bent

crystal. It was then with some surprise that a maximum dose rate of

only 6 R/hour was measured. The discrepancy was put down as being due

to large neutron self-shielding and some gamma-ray self-shielding. Con-

sequently, the source was removed and another was put in its place, simi-

lar in external geometry to the scandium source. The second iridium

source comprised 60.3 grams of iridium mixed with 20.2 grams of powdered
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reactor-grade graphite as a dispersive medium. The mixture was packed

in a doubly-sealed, aluminum can and it was much larger than the first

source.

The second iridium source was placed in the middle of the 9CH2

port of the M.I.T. reactor and the neutron-capture gamma rays were sur-

veyed by the bent crystal spectrometer. The range, 22 key to 1 Mev, was

covered in this way over a period of 3 months. Calibration was obtained

internally since the decay gamma rays automatically appeared on the

emulsion plates. Annihilation radiation was also observed which im-

proved the energy calibration. The dosage rate at the crystal face was

only 19 R/hour so that it was clear that neutron self-shielding was still

very large. The results of this survey are given in Table 2.

No isotopic assignment has been made to those gamma rays. It was

felt again that irradiation at a higher flux level would have permitted

higher-energy gamma rays to be observed, but it was not possible to do

this. The irid'ium was costly so that the manufacture of a fresh source

did not seem justifiable. Transfer of the existing large iridium source to

a high flux port required machining of a very radioactive component when

there were no facilities for remote machining readily available. Further-

more, this same source would have exceeded the residual activity limit of

50 curies if it had been placed in the high flux port for the usual minimum

operating period of one week. This minimum operating period arises since

the source must be inserted and withdrawn when the reactor is shut down,
and, generally, the reactor is operated continuously for about 100 hours.

Consequently, no further work has been initiated on the capture gamma

rays of iridium. The poor quality in the measurements is shown by com-

paring Table 2 with the measurements on scandium in Table 1; and it

reflects the flux limitation experienced. It reflects also on the difficulty

of reading extremely dark plates.

No photograph has been shown of an emulsion plate from exposure

to iridium capture gamma rays because the plates were so very dark.

The one plate straddling the beta point had five calibration line pairs.

The analysis of the plate showed that the positional variation in the beta

point from weighted reading errors was 2.5 microns, but the positional

error arising from the weighted variation of each pair was 24.3 microns.

The conclusion drawn was that there must have been a large random error
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Table 2. Gamma Rays from Thermal-Neutron Capture by Iridium

Possible doublet.
192

tIsomeric decay transition in Ir

in the position of each line in addition to the reading error, and this may

have been due to emulsion distortion. New values for gamma rays from

the decay of Ir192 have not been quoted, although they were detected

easily up to 605 key. A precision value of a gamma ray assigned to the

decay of Ir 94 has been measured as 328.72 ± 0.13 key. This may be

compared with the recent value of 328.54 ± 0.04 key measured by

Marklund (M7).

5.4 RHODIUM MEASUREMENTS

Capture gamma rays from rhodium were measured by the bent
104

crystal spectrometer primarily because the nuclear levels in Rh had

been well measured by the (d,p) reaction and it was felt that a precise

measurement of the radiative transitions would lead to a good formula-

tion of the nuclear energy level scheme up to 1 Mev. Experience had
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shown that for a sample with a high absorption cross section, a better

utilization would be obtained if it were mixed with a nonabsorbing spacer

material such as carbon. Consequently, rhodium with an absorption

cross section of 156 barns was treated as such, and the sample com-

prised 24.4 grams of rhodium mixed with 70 grams of powdered graphite.

The sample was packed in a doubly-sealed, aluminum can of the same

design used for scandium and the second iridium sample. It was placed

at the center of the 9CH2 port and irradiated for 3 months. The capture

gamma rays were surveyed over the range 22 key to 1 Mev.

During the irradiation, it was discovered that a similar investi-

gation had been recently carried out by Buschhorn (B1), up to 350 key,

It was decided to carry on the experiment to see if the range could be

extended. Again, the problem of a limited flux was encountered. The

source geometry was therefore changed to permit its insertion into the

high flux port. Unfortunately, the Rh104 formed by irradiation of natural

rhodium decays to Pd104 by the emission of high-energy beta rays which

are nearly all absorbed in the source itself. These beta rays are almost

100% of a group with a maximum energy of 2.44 Mev so that self-heating

was considerable. Hence, the source had to be instrumented with a

thermocouple prior to placement in the high flux port. The temperature

measurements, though of a dubious nature, indicated excessive tempera-

ture levels and so the source was prematurely withdrawn from the

reactor. As a consequence, the extension in energy range over

Buschhorn's measurements was not considerable since exposure time

was so limited. It turned out that this same isotope was simultaneously

under investigation by Gruber (G5), using a bent crystal spectrometer of

the Dumond geometry, and his range and sensitivity were better. The

results then quoted here in Table 3 provide an independent confirmation

of some of Gruber's measurements.

Energy calibration of the high-energy region was obtained by

means of the annihilation radiation and use of Buschhorn's data (B1).

Low-energy calibration was obtained by means of X-ray standards. It

had been intended to use decay gamma rays from iridium as calibration

initially. This was, in fact, done in the low flux port, but double exposures

of lines appeared on the plate. This was put down to a slight movement of

the crystal block and interpretation of that emulsion plate was rendered



Table 3. Gamma Rays from Thermal-Neutron Capture by Rhodium.

Energy, key Intensity Energy, key

645.42

556.12

538.47

447.30

440.59

427.70

420.89

385.25

374.98

371.10

356.87

353.21

333.55

323.88

317.18

305.99

303.69

290.25

288.63

286.18

273.54

269.22

266.71

261.53

0.42

0.31

0.28

0.19

0.17

0.21

0.15

0.13

0.13

0.14

0.13

0.12

0.09

0.09

0.08

0.08

0.08

0.10

0.10

0.08

0.07

0.06

0.06

0.06

From a level in Pd104
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219.94

217.90

215.54

213.08

202.96

200.92

196.17

185.97

180.85

178.84

177.77

169.42

168.36

161.39

157.04

135.22

134.602

127.317

118.212

100.804

97.104

51.421

45.292

0.12

0.04

0.04

0.04

0.04

0.05

0.06

0.04

0.03

0.03

0.04

0.03
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0.03
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0.020
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difficult. It did, however, provide interesting information about emulsion

shrinkage along the plate by comparison of the separation distance

between the double exposures of a single line. These results are given in

Table 4.

Table 4. Separation of Double Exposures on the
Rhodium Emulsion Plate No. 44.

Relative Position cms cms cms cms

Weak exposure 1.7174 11.5212 15.9328 17.1119

Strong exposure 1.3951 11.2113 15.6181 16.7971

Separation 0.3223 0.3099 0.3147 0.3148
±0.0021 ±0.0014 ±0.0008 ±0.0010

Mean separation 0.3154 ± 0.0026 cms

There did not appear to be any correlation between the separation dis-

tances and position on the plate. The variation of the separation was

larger than the reading errors and could be due to emulsion distortion.

The plate with the double exposures was neglected and its range was

not repeated because Buschhorn had covered it adequately. This

explains the absence in Table 3 of measurements between 52 and 97 key.
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CHAPTER 6

MEASUREMENTS MADE ON
THE SCINTILLATION PAIR SPECTROMETER

6.1 TWOFOLD MEASUREMENTS

A series of runs was made, using the apparatus at Brookhaven

National Laboratory, simply as two crystals in coincidence (see Fig. 6),

and measuring their coincident outputs on the two-parameter analyzer.

This was termed a twofold run. The purpose of these runs was to

attempt to determine predominant low energy coincidences independently

of using the system in the typical fourfold arrangement. Furthermore,

when two strong gamma rays of the same energy are in coincidence, the

twofold arrangement indicates this fact without any confusion. The iso-
45 103 161 16416

topes studied in this way were Sc , Rh , Dy , Dy and Ho 1 6 5

The different mode of operating the apparatus from that described

in Appendix IV is noted here. The central crystal whose dimensions

were 1-1/2" in diameter X 3" deep was felt to be too long, and it was

believed that a higher photo-fraction could be achieved with a smaller

crystal. A 1-1/2"-diameter X 1-1/2"-long crystal was put in its place.

The discriminator bias on the B coincidence circuit was reduced nearly

to zero and the coincidence units were set to demand fast coincidences

only of the A and B crystals. Both crystals were stabilized with

external sources, Mn54 on the 3" X 3" A crystal and Cs137 on the

1-1/2" X 1-1/2" B crystal. Calibration of each crystal was made by

means of external sources, and also by self-calibration from the

samples whose coincident gamma rays were to be determined. The

energy range encompassed 0 to 890 key with the B crystal and 0 to

1620 kev with the A crystal. Each run took about 5 or 6 hours, a time

limit reached when the counts in any one channel exceeded the memory

of the analyzer. The live time reading on the analyzer was recorded on

each run. The maximum delay was then inserted into the coincidence

circuit; the analyzer was switched to the subtract mode and the acci-

dentals were directly subtracted for a duration equal to the corre-

sponding live time.



42

The printed output of the analyzer was punched onto cards and

was plotted by the IBM 7090 computer. The output was "singularized"

(see Appendix III), and examination of this data indicated the coinci-

dences listed in Tables 5 to 9. In general, no coincidence has been

listed unless it was seen by both crystals in both directions. The

capture gamma-ray spectra of the isotopes, as seen by the smaller

crystal with no coincidence requirements, are shown in Figs. 10 to

14. The photopeak from the Cs 1 3 7 stabilizing source is to be seen on

each figure.

. The coincidence of back-to-back annihilation quanta was observed

in each run, but it has been excluded from Tables 5 to 9. Interpretation

of the data in these tables has not been easy, since the coincidences

need not have been all from prompt capture but could have been gamma-

ray coincidences following beta decay. In addition, the coincidence of a

gamma ray and either a lead X ray or an X ray from the source itself

further complicated the interpretation. Finally, the output of the ana-

lyzer was not "clean" enough to permit calculation of relative intensities.

Table 5. Low Energy Gamma-Ray Coincidences from Irradiated Sc 4 5

Energies of Coincident Gamma Rays, key Probability

294 ± 5 143 ± 5 Definite
549 ± 17 227 ± 7 Definite
208 ± 8 224 ± 7 Definite

841 ± 18 222 ± 7 Probable

350 ± 13 448 ± 15 Possible
396 ± 16 231 ± 11 Possible
118 ± 13 100 ± 7 Possible
440 ± 20 184 ± 8 Possible

Table 6. Low Energy Gamma-Ray Coincidences from Irradiated Rh 1 0 3

Energies of Coincident Gamma Rays, key Probability

634 ± 20 179 ± 7 Definite

92 ± 7 320 ± 20 Probable
177 ± 13 176 ± 6 Probable
174 ± 9 335 ± 16 Probable

441 ± 24 92 ± 10 Possible
174 ± 7 276 ± 20 Possible
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Table 7. Low Energy Gamma-Ray Coincidences from Irradiated Dyl 6 1

Energies of Coincident Gamma Rays, key Probability

185 ± 7 283 ± 8 Probable

76 ± 4 819 ± 14 Possible
307 ± 8 336 ± 10 Possible
200 ± 6 604 ± 15 Possible
385 ± 13 438 ± 13 Possible

Table 8. Low Energy Gamma-Ray Coincidences from Irradiated Dy 1 6 4

Energies of Coincident Gamma Rays, key Probability

181 ± 5 380 ± 10 Definite

74 ± 5 101 ± 8 Probable

182 ± 8 1100 ± 30 Possible

Table 9. Low Energy Gamma-Ray Coincidences from Irradiated Ho 1 6 5

Energies of Coincident Gamma Rays, key Probability

170 ± 7 234 ± 7 Definite

181 ± 6 450 ± 15 Probable
633 ± 12 191 ± 11 Probable
178 ± 8 320 ± 11 0 Probable

6.2 PAIR MEASUREMENTS

Pair measurements were made, using the scintillation pair

spectrometer at Brookhaven, for the following reasons:

(a) To make isotopic assignments to high energy gamma rays

that had been measured elsewhere more precisely in the irradi-

ation of the natural element.

(b) To determine high energy gamma rays where the statistics

of this instrument were better than those of instruments with

higher resolution.

(c) To provide data for determining the response function of

the system and for checking the feasibility of calculating the

line spectra by the computational methods discussed in

Appendix II.
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The spectrometer was operated without requiring any coinci-

dences in the A crystal. In order to improve the resolution, the normal

1-1/2 " X 3" B crystal of the pair spectrometer was raised up by about

1" from the close position used for the fourfold coincidence work. The

final collimator was selected to keep the total count rate in the B

crystal below 600,000 counts/min. In addition, the width of the single

channel analyzers, that were used on the two side crystals, was reduced

from the usual 30% to about 20%, to further improve the resolution of

the system. Stabilization of the central crystal was achieved by means

of an external Mn 5 4 source. The output of the pair spectrometer was

fed to an RIDL 400 channel analyzer. Calibration of the system was

achieved by using capture gamma rays from iron, which have been well

measured. It was hoped that the stabilization would maintain the energy

calibration over the series of runs though a check was made at the end.

Each run took about 40 hours to obtain good statistics on predominant

peaks. Typical pair count rates under these conditions were 300

counts/min.

Figure 15 shows the measured spectrum from natural iron. Also

shown on Fig. 15, displaced from the measured curve, is a calculated

spectrum. This latter curve was obtained by adjustment of constants

in the functional dependence of the response, and then by multiplying

this response by the input line spectrum and the efficiency. The line

spectrum of iron was derived from measurements made by both

Kinsey (K3) and Ad'yasevich (Al). In general, Kinsey energy values

were used where they were more accurate than those of Ad'yasevich,

but the relative intensity values of the latter were used with three

exceptions since they seemed to be more consistent. The three ex-

ceptions were the intensities of the 8.872 Mev, 7.639 Mev and 7.285 Mev

gamma rays, and the set of intensities, therefore, has been renormalized.

The set of gamma rays used then as the line spectrum of iron is listed

in Table 10.

The comparison between the measured and calculated spectrum,

as shown in Fig. 15, seemed quite good and provided reasonable confi-

dence in the estimation of the response function over the energy range.

Figure 16 shows the estimated response of the system to absorbed

monoenergetic line gamma rays of 2, 4, 6 and 9 Mev. Figure 17 shows
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Table 10. Modified Line Spectrum of High Energy Gamma Rays
from Irradiated Iron.

Energy (Mev) Intensity (Number/1QO Neutrons Captured)

9.298 2.4

8.872 0.8

8.345 0.2

7.639 38.6

7.285 6.5

6.369 0.6

6.015 7.0

5.914 7.7

5.51 0.5

4.908 0.8

4.805 1.8

4.405 1.9

4.220 3.8

4.03 1.2

3.844 2.0

3.72 1.0

3.55 1.2

3.43 3.9

3.24 2.6

3.15 1.8

2.84 1.8

2.73 2.6

2.67 0.9

2.143 1.2

1.80 2.0

1.72 5.6

1.626 5.4

1.530 1.7

1.236 1.3
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an estimation of the line spectrum of iron calculated from the measured

spectrum by the methods described in Appendix II and using the response

function already obtained. Line gamma rays were not obtained, but the

grouping was good enough to show the predominant features listed by

Ad'yasevich with the exception of the separation of the doublet at 6 Mev

and a gamma ray at 8.345 Mev. There were some gamma-ray groups of

low intensity and high energy that were not accounted for. Their energy

and magnitude were not reproducible, so they are not tabulated here.

Figure 18 shows the measured spectrum of holmium, using a

sample consisting of about 1 gram of Ho 2O3 in a large gelatin capsule.

The spectrum has greatly improved statistics over that measured by

Groshev (G2). Despite the poorer resolution, some added features are

indicated which are interpreted as monoenergetic gamma rays or pre-

dominant groups of gamma rays. The energies of these gamma rays

are given in Table 11. These gamma rays are not well resolved and

therefore no intensities are given.

165Table 11. High Energy Neutron Capture Gamma Rays of Ho

Measured Here Measured by Groshev (G2)

Energy, Mev Energy, Mev Intensity

6.073 ± 0.022 6.07 ± 0.03 0.4

5.853 ± 0.031

5.805 ± 0.030 5.79 ± 0.02 1.2

5.554 ± 0.038 5.57 ± 0.03 0.5

5.445 ± 0.036

5.164 ± 0.026 5.13 ± 0.03 0.8

5.073 ± 0.036

4.866 ± 0.026

Intensity is quoted as gamma rays/ 100 neutrons captured.

An attempt was made to resolve the complex spectrum of Fig. 18 into

monoenergetic gamma rays, using the procedure of Appendix II. It was

not possible to resolve the spectrum below 4.5 Mev, and the resolvable

components above that energy were not reproducible from a second
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measured spectrum of holmium. The failure of the computational

methods to resolve even the high energy part of the spectrum was

believed to come from two things. One was that the response function

needed to be known better than it was; the other was that the calcula-

tional method used was not quick enough and comparisons were made

only with an intermediate answer. It was felt that a quicker approach

should be found, which would provide a line spectrum that gave a fit

which was better in the mathematical sense, such as a least squares

fit. It should be added that the holmium capture gamma-ray spectrum

was a difficult case with few prominent resolvable peaks.

Figure 19 shows the measured capture gamma-ray spectrum of
161 161

Dy from a sample comprising about 100 mg of Dy 2 0 in a small203
gelatin capsule. The isotopic purity of the sample is given in Table 12,

together with absorption cross sections measured by House (Hi).

Table 12. Isotopic Purity of Dy161 Sample and
Dysprosium Isotopic Cross Sections.

Atomic Weight Atom % ca Barns % Absorption
in Sample

156 0.1

158 0.1 - -

160 0.59 (130?) 0.1

161 90.0 580 94.9

162 7.75 140 2.0

163 1.10 120 0.2

164 0.56 2750 2.8

Gamma rays or predominant groups can be picked out from Fig. 19 and

are listed in Table 13, though without specifying intensity. A tentative

identification of each gamma ray is made wherever possible. It was

believed that the 2.8% absorption by Dy 1 6 4 in the sample gave rise to

two of the resolvable high energy components in the spectrum.

Figure 20 shows the measured spectrum from Dy 1 6 4 , using a
164

sample comprising about 100 mg of Dy 2 03 in a small gelatin capsule.

The isotopic purity of the sample is given in Table 14. Figure 20 shows
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Table 13. High Energy Neutron Capture Gamma Rays from Dy 1 6 1 Sample.

Energy of Gamma Ray, Mev Isotope Energy, Mev Reference

7.309 ± 0.034 Pb 2 0 8  7.380 K4

7.024 ± 0.033 Dy 1 6 2

6.949 ± 0.046 Dy 1 6 2

6.607 ± 0.035 Dy 1 6 2

6.288 ± 0.031 Dy 1 6 2

5.896 ± 0.032 Dy 1 6 2  5.87 6 doublet M1

5.566 ± 0.026 Dy 1 6 5  5.598 doublet M1

5.360 ± 0.029 Dy 1 6 2

5.158 ± 0.029 Dy 1 6 5  5.147 triplet M1

5.054 ± 0.037 Dy 1 6 2

Table 14. Isotopi c Purity of Dy;164 Sample

the same features indicated by Groshev (Gl). One important point to be

noticed is that the strong 4.954 Mev gamma ray shown by Miotz.(M1) cannot

be assigned to a transition in Dy 164. The high energy end of this isotope

was reasonably well resolved and so seemed to be suitable for a fourfold

run on the pair spectrometer.

Figure 21 shows the measured pair spectrum from natural dys-

prosium. On the same figure are placed part of the calculated spectra

of natural dysprosium, using the data of Motz with and without the

4.954 Mev transition. The calculated spectra were obtained by knowledge

of the incident line spectrum of gamma rays, the efficiency of the system,

Atomic Weight Atom % % Absorption

156 0.02 -

158 0.02 -

160 0.02 -

161 0.40 -

162 1.34 -

163 5.55 0.2

164 92.71 99.8
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the energy calibration and the response function. The agreement

between the measured spectrum and the spectrum calculated with no

4.954 Mev gamma ray was good. The conclusion was drawn that this
12 13gamma ray was from an impurity, probably carbon, since C (ny)C

had a strong 4.95 Mev transition, according to Groshev (G1).

6.3 FOURFOLD MEASUREMENTS OF Dy 1 6 4

Two runs were made on the same Dy164 sample described in the

previous section. The operation and setup were the typical arrange-

ment described in Chapter 4 and Appendix IV. In both cases, both

crystals were stabilized by means of external Mn 5 4 sources. The

range on the scintillation pair spectrometer was about 4.0 to 6.0 Mev

in both cases. The range of the fourth crystal was 0 to 2.3 Mev for

run E10 and was 0 to 1.1 Mev for run E27. The second run was made

because the first one, E 10, indicated that the predominant low energy

coincident gamma rays were below 1.1 Mev. However, E27 run was

limited by the remaining time available during a reactor operating

period and had poor statistics. The results are quoted in Table 15

as combined from these two runs.

It was unfortunate that the low energy calibration was poor: no

external sources under 0.51 Mev were available and self-calibration

was necessary with the data of Hickson (H1). None of the values quoted

in Table 15 were clearly resolved and interpretation was thereby

rendered difficult. Some examples of the information gathered are

given in Figs. 22 and 23. Figure 22 shows the normal pair spectrum

and also the pair spectrum when a coincidence was required in the

fourth crystal. Easily noticeable is the disappearance of the 5.58 Mev

gamma-ray group in the coincidence case, implying transitions to

either the ground state or a state with a measurable lifetime, or to a

state which de-excites almost completely by internal conversion.

Figure 23 shows the spectra in the X channels (fourth crystal) for

alternate Y channels (pair spectrometer), and the difficulty in quoting

clearly resolved coincidences can be understood. Again, due to this

difficulty, no intensities are given.



Table 15. High Energy - Low Energy Gamma-Ray Coincidences
from Irradiated Dy1 6 4 .

High energy
gamma ray

5.58 Mev

5.15 Mev

4.62 Mev

4.10 Mev

3.88 Mev

Coincident low energy gamma rays in key, and remarks.

Essentially no coincidences. The small 170 and 50 key
peaks are probably from the spread of the 5.15 Mev
primary gamma ray.

Broad definite peak whose half width extends from 330
to 540 key. Definite peak of 170 key, slightly broad,
which seems to shift up slightly as primary gamma-
ray energy is reduced. Small 50 key peak.

Broad definite peak whose half width extends from 434
to 594 key. Two possible smeared peaks of 131 and
192 key. Possible peaks at 271 and 358 key. Probable
peak at 615 key.

Definite broad peak at 185 key. Broad definite peak
whose half width extends from 420 to 560 key. Definite
1450 key peak. Broad definite peak comprising perhaps
two gamma rays of energies 968 and 1068 key. Possible
peaks at 754 and 1153 key. Small peak at 1640 key, but
this builds up as the energy of the primary gamma ray
is reduced.

This primary gamma ray is almost off the Y scale, and
coincidences are not well defined. Definite 180 key
peak. Broad definite peak whose center is at about
480 key, Unresolved coincidences up to a resolved
definite peak at 1630 key.

The results are not tabulated in a normal coincidence table because

it is desirable to present as many as possible of the nuances in the data.

6.4 FOURFOLD MEASUREMENTS OF Ho 1 6 5

Two runs were made on the same Ho165 sample described in

Section 6.2, and using the typical arrangement described in Chapter 4.

In the first run, No. A10, the fourth crystal used was the 3" X 3" unit,

and it was stabilized with an external Mn54 source and was allowed to

range from 0 to 2.1 Mev. The singles count rate of this crystal was

2.70 X 10 6/min, while a fourfold coincidence count rate of 28/min was

62
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obtained; so that the statistics of this run were poor. There were no

clearly resolved low energy gamma rays in the fourfold spectrum above

700 key, so it seemed that it would be logical to reduce the scale of the

A crystal so as to allow a better calibration of the low energy peaks. In

addition, it seemed plausible that one could obtain a higher fourfold coin-

cidence count rate in a tighter geometry with a smaller crystal at the

same maximum A singles count rate. Hence, on the next run, No. D9,

the A crystal used was the 1-1/2" X 1-1/2" unit, and it was pushed

closer to the beam center line. This crystal was allowed to range from
1370 to 800 key and it was stabilized with Cs1. In this arrangement, the

A crystal was run at 3.52 X 106 counts/min and the fourfold coincidence

count rate was 60/min. The results from this run have better statistics

and have a better low energy calibration. In both runs, the B crystal of

the pair spectrometer was stabilized with an external Mn54 source.

It did appear later that the count rates were too high, and this

resulted in a high accidental count rate of 6.62%. However, the added

disadvantages of high count rates were a smearing of peaks and a poor

stability. Experience later showed that stability of the system could

not be guaranteed unless the height of the stabilizing photo peak was at

least twice the height of the background. This condition was not achieved
165

in run D9 on Ho , so that it was possible that the gain may have

wandered somewhat during the course of the run. Figure 24 shows evi-

dence of a small gain change between the singles and the fourfold run.

The results were poor for several reasons. Primarily, the high

energy peaks could not be well resolved by the pair spectrometer. In

addition, these peaks were small compared with the large number of

completely unresolved high energy gamma rays, that were outside the

energy range considered but which contributed substantially to the gross

count rate. As a consequence, the number of counts recorded in the ana-

lyzer memory was small compared with the count rates involved, and

the statistics were not good.

The results are illustrated in Fig. 24 and detailed in Table 16. The

figure shows the normal pair spectrum and also the pair spectrum when

a coincidence was required in the fourth crystal. The figure may also be

compared with the holmium spectrum shown in Fig. 18. Comparison with

Fig. 22 shows how poorly the high energy peaks from Hol65 have been
164resolved relative to those of Dy
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Table 16. High Energy - Low Energy Gamma-Ray Coincidences
from Irradiated Ho 1 6 5 .

High energy
gamma ray Coincident low energy gamma rays in key, and remarks.

6.07 Mev Essentially no coincidences. The small 47 and 230 key
peaks are probably from the spread of the 5.82 Mev
primary gamma-ray group.

5.82 Mev Definite 52 key peak.
Probable 120 key peak.
Definite 246 key peak.
Probable 220 key peak spreading in from a primary
gamma ray of lower energy.
Possible 172 key peak.

5.80 Mev Definite 52 key peak.
Definite 226 key peak.
The peak of 246 key is probably all from the spread of
the 5.85 Mev primary gamma ray. Possible 199 and
86 key spreading in from a primary gamma ray of lower
energy.

5.54 Mev Definite 52 key peak.
Unresolvable gamma rays from 80 to 200 key.
Probable double peak comprising gamma rays of
energies 242 and 213 key.
Broad probable peak at 342 key.
Definite broad peak at 438 key.

5.45 Mev The coincidences from this gamma ray cannot be
resolved easily from the 5.54 Mev primary gamma
ray. The coincidence pattern is similar except that
the 242 kev gamma ray is slightly more emphasized
in the double peak. The 342 key peak is somewhat
more pronounced and a probable 504 key peak has
appeared.

5.12 Mev Definite 49 key peak.
Probable 132 key peak.
Possible 170 key peak.
Probable double peak averaging at 230 key.
Definite 287 key peak.
Hint of a 504 key peak.
Unresolvable gamma rays over the whole energy range.

4.87 Mev Definite 47 key peak.
Possible broad 124 key peak.
Possible 185 key peak.
Definite 239 key peak.
Hint of peaks at 276, 359 and 636 key.
Broad probable 404 key peak.
Unresolved gamma rays over the whole energy range.

67



68

CHAPTER 7

LEVEL DIAGRAMS AND SYNTHESIS OF DATA

7.1 LEVELS IN Sc 4 6

The principal information on levels in Sc 46, in existence prior to

this work, is as follows:

(a) Nuclear energy level scheme of Groshev (G2) which is illus-

trated in part in Fig. 25.

(b) Nuclear energy levels obtained by Mazari (M2) using (d,p)

excitation and illustrated in part in Fig. 26.

(c) Measured gamma ray of 142 key with a half life of 20 secs,

reported by Burson (B3).

(d) Coincidence measurements by Fiebiger (Fl) listed in

Table 17.

(e) High-energy gamma rays measured by Bartholomew (B4)

and given in part in Table 18.

Table 17. Coincident Gamma Rays from Irradiated Scandium
Measured by Fiebiger (Fl).

Primary Gamma Ray, Mev 8.83 8.54 8.30 8.175

Coincident Gamma Rays, Mev None 0.230 0.230, 0.310 0.310, 0.150
and 0.090?

Table 18. High Energy Gamma Rays 8.539 i 0.01from Irradiated Scandium ' '
Measured by Bartholomew 8.31 ± 0.02
(B4). 8.175 ± 0.011

7.65 ± 0.03

The measurements listed in Table 17 are not very consistent with

those of (a) above. Furthermore, the Q values for the reaction from
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different sources are at variance. The Q value for Sc 45(d,p)Sc 46is

given by Mazari (M2) as 6.534 ± 0.008 Mev. The Q value for the p(n,y)d

reaction is quoted by Kazi (K2) as 2.225 ± 0.002 Mev; and hence the Q

value for the Sc 45(n,y)Sc46 reaction would be 8.759 ± 0,008 Mev which is

some 90 kilovolts less than the highest, gamma-ray measurement.

After preliminary measurements on the bent crystal spectrometer

had been made, it was decided that the inconsistencies in the above data

could be minimized by presuming the information of Mazari to be correct,

The more intense high-energy gamma rays could then be fed into

appropriate levels in Sc 4 6 to satisfy the coincidence measurements of

Fiebiger. This preliminary level scheme was published with further

information of Fiebiger in Reference F2 and is illustrated in Fig. 27.

The essentials of this scheme have been confirmed by the later measure-

ments on the bent crystal spectrometer given in Section 5.2, which indi-

cate two definite cross-over transitions of 584 and 627 key. Confirma.-

tion of the 142, 582 and 627 key levels has now been made by Rapaport

(R3), whose data in part are given in Table 19. Rapaport also gives a

new Q value for the Sc45(d,p)Sc46 reaction as 6,541 ± 0,008 Mev.

Table 19. Nuclear Energy Levels in Sc 4 6

Measured by Rapaport (R3).

Energy, Mev

0 3

0.051 3

0.140 -

0.227 3

0.279 1

0.444 3

0.577

0.623 -

0.772 3

0.833 3

0.975 3

1.090 1

A slight e = 3 component also
Pse n
Possible doublet
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Furthermore, Bartholomew, in a private communication to Fiebiger,
indicates that the highest energy gamma ray might well be 8.76 Mev

instead of 8.85 Mev. Bostrom (B5) reproduces many of the basic
features of the scheme in an independent set of measurements. Finally,
the low energy coincidence measurements given in Section 6.1 also

support the correctness of the scheme.

The information from all these sources can be put into the level
scheme of Fig. 28, again attempting to minimize remaining incon-
sistencies. A separate experiment has been performed by both Fiebiger

and the author, independently, to show that the transition from the
isomeric state is the lower of the two gamma rays at 145 key. The
results of this experiment are presented graphically as the spectrum
from Sc 4 6 m in Fig. 29 and the calibration curve in Fig. 30. A least

squares fit gives the value of the gamma ray from the decay of the
scandium isomer as 143.3 ± 2.4 key,

The final scheme shows some features of note. A definite decay
pattern is established for the decay of the level reached by means of
the intense 8.175 Mev gamma ray. There is no sure way of deciding

whether the 585 level decays initially by the 295 kev or by the 147 key
gamma ray, so that the alternative to the 289 level is a 438 key level. The
former has been chosen because it is more feasible energetically, and
because it permits Ritz combinations to be made to the 775 and 829 key
levels and agrees with the coincidence data. In addition, Rapaport shows
that the In for the nearby 280 key level is 1 with a small in = 3
component. The fact that a VVS 227.9 key transition feeds the 52 key
level without the decay of that level being observed requires explanation.
Presumably, it must be because the transition is highly converted, and
we note that the internal conversion coefficient would be 5.5 for an E2
transition of this energy. Since the 50 key range on the bent crystal
spectrometer was surveyed only at the low flux port, it might then have
been possible for this other 52 key gamma ray not to have been observed.

7.2 LEVE LS IN Rh 1 0 4

There is at present a considerable amount of information on the
nuclear energy levels of Rh104 - to much, in fact, to be detailed here.
The primary sources of information are as follows:
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(a) (n,y) studies with a scintillation spectrometer by

Greenwood (G4).

(b) (n,y) studies with a scintillation spectrometer by

Kalinkin (K5).

(c) Level studies from the Rh 10 3 (d,p)Rh 1 0 4 reaction

by da Silva (S1).

(d) Bent crystal spectroscopy data by Buschhorn (B1).

(6) Unpublished bent crystal spectroscopy data by

Gruber (G5).

(f) Coincidence information and bent crystal spectroscopy

data of the author, presented in Chapters 5 and 6.

The measurements of (d) above are more precise than those made

here, and have sufficient accuracy that an excellent low level diagram

up to 270 key could be constructed by means of Ritz combinations, which

confirmed the independent studies of (a) and (b) above. Buschhorn's

measurements range only up to 350 key and are superceded by the initial

values of (e) above. Gruber's initial data range up to 790 key and are

generally more accurate and more comprehensive than those reported in

Chapter 5. Consequently, it has not been felt worthwhile to form many

Ritz combinations on the author's data to build up the level diagram.

However, the coincidence information of Chapter 6 allows a few obvious

features to be noted and added to the scheme of Buschhorn.

The probable 176-176 key coincidence implies a level at 350 key

in view of the existence of a well established level at 181 key which

decays directly to ground. The level taken is 358.75 key, since there

is a measured 358.75 key transition and because excellent Ritz combi-

nations can be made with Gruber's data as follows:

(180.86 + 177.88) = 358.74 key

( 97.11 + 261.67) = 358.78 key

The probable coincidence of 92 and 320 key suggests a level at 421 key

since there is a well established level at 97 key above ground. The level

is taken as 420.89 key, since there is a measured 420.89 key transition

and because Ritz combinations can be made with Gruber's data as follows:

(323.88 + 97.11) = 420.99 key

(197.88 + 222.93) = 420.81 key

(213.10 + 207.55) = 420.65 key

(358.75 + 62.14) = 420.89 key
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The possible coincidence of 92 and 441 key suggests a level at 538 key

since there is a well known. level at 97 key. This level is taken as
537.60 kev because Ritz combinations can be made with Gruber's data

as follows:

( 97.11 + 440.59) = 537,70 key

(420.89 + 116.94) 537.83 key

(358.75 + 178.84) 537.59 key

The definite coincidence of 179 and 634 key suggests a level at 824 kev
because there is a definite level at 181 key and because there is a
strong transition of 643.4 key. The value of this level then is 824.2 key,
though it is not substantiated by further Ritz combinations. It is to be
noted here that the author's measurement of that transition is 645.4 key,

which differs significantly from Gruber. Nevertheless, the Ritz combi-

nations above have been made using Gruber's data consistently, since

his better sensitivity allows measurement of transitions used in these
combinations that were not detected by the author,

Figure 31 shows the level diagram formed by combining the

observations above with the basic, scheme of Buschhorn, The absence

of agreement with the (d,p) data is surprising, even when one takes into

account the possibility that the supposed ground state is the 51 key level.

Completion of the level scheme up to 1 Mev may be expected when

Gruber obtains the final measurements.

7.3 IRIDIUM

No attempt has been made to make isotopic assignments to the

capture gamma rays measured on the bent crystal spectrometer and

listed in Table 2. Those measurements were made in the low flux port

of the M.I.T. reactor and, in view of the experience with scandium, the

non-observance of gamma rays above 350 kev does not imply the

absence of strong transitions above that energy. Consequently, it has

not been possible to make Ritz combinations with the values obtained.

Fiebiger, however, has made some fourfold measurements on separated

isotopes of iridium with the Brookhaven scintillation pair spectrometer,

though his results are not yet published. Hopefully, the measurements

made here will be of use in formulating level schemes of the two isotopes,
192 194Ir and Ir . It is worth noting, however, that a precision measurement
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of the gamma ray from Ir 1 9 2m has been obtained as 58.844 ± 0.012 key.

7.4 LEVE LS IN Dy 1 6 2

Information on gamma rays from neutron irradiation of Dy 1 6 1 is
given by Mihelich (M5) and Jorgensen (J1) and is listed in Table 20 with
a tentative identification from the data of Hickson (H1), which was
obtained with natural dysprosium. The gamma-ray coincidences of
Table 7 confirm the level scheme of Jorgensen. The level ordering may
be .well interpreted as a series of rotational excitation levels of a
deformed nucleus based on the ground state single particle level of 0+

The excitation energy EI of these levels can be related to the
total angular momentum I by Eq. (7.4.1).

EI = A(I+1) I - BI 2(+1)2, (7.4.1)

where A and B are constants. The transitions between these levels
have an energy given by

(E 1-E 1-2) = 2A(2I-1) - 4B[(I-1) 3+13] . (7.4.2)

A weighted, least squares fit of the first three transitions is made to
Eq. (7.4.2), using the more accurate values of Hickson to obtain

A = 13.507 key and B = 11.16 ev. The calculated values for the first

five transitions are also listed in Table 20.

Table 20. Measured and Calculated Gamma-Ray Transitions
from Irradiated Dy161.

Previous Calculated
Data Reference Hickson (H1) Value Value

80.80 key M5 80.649 ± 0.019 key S 80.638 key
184.8 key M5 184.942 ± 0.034 key VS 185.029 key
282.8 key M5 282.636 ± 0.084 key S 281.918 key

369.395 ± 0.451 key VVW 367.016 key

442.436 ± 0.645 kev VVW 436.036 kev

936 J1 -- --

1219 J1 - -
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Although the last two transitions of Table 20 are tentative, they are not
impossible. Since the ground state of Dy 1 6 1 is , the capture states
will be 3+ and 2+; it is just possible for the 10+ state to be fed through
four intermediate transitions and the 8+ state to be fed through three
intermediate transitions. These possibilities have been listed because
of the tentative agreement from the coincidence data of Table 7, pro-
vided one makes allowance for smearing of the peaks. The final low
energy level scheme then is given by Fig. 32. The singles spectrum
from the scintillation pair spectrometer provides no assistance in this
level scheme. The binding energy of the last neutron in Dy162 is given
by Johnson (J2) as 8.175 ± 0.050 Mev. No identifiable transition from
Dy 1 6 2 is seen within 1 Mev of this figure.

7.5 LEVELS IN Dy 16 5

From the singles pair spectrum taken with the scintillation pair
spectrometer, a tentative identification of gamma rays from excited
Dy 1 6 5 has been made. The gamma rays are partially listed in Table 21
with the energy values of Motz (Ml).

Table 21. High Energy Gamma Rays from Irradiated Dy 1 6 4

Measured by Motz (Ml).

Energy, Mev

5.620

5.570

5.463?

5.187

5.151

5.114

4.616

4.463

4.334

4.273

4.124

4.082

3.964

3.886
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Figure 22 indicates clearly that there are essentially no coinci-

dences with either the 5.620 or 5.570 Mev primary gamma rays. Since
1 165 . 7the capture state is $+ and the ground state of Dy is +, a direct

transition to ground is highly improbable. The isomer Dyl65m at
1108 key excitation has a spin -, so that it is reasonable to assume

that one of the above high energy transitions must feed it directly.

Since it is very difficult to postulate a state that is 50 kev below the

108 key level, and is fed directly from the capture state, but which the

isomer may not in turn feed, the 5.620 Mev gamma ray is presumed

to go to the isomeric level. The isomeric state is expected to be the

ground state of a band of rotational excitation levels, whose spins will
1 3 5 7 1be 2 ' 2 5' 2 - and so on. It is very likely that if the 1- level is2 2 2 2

1 3fed by the -!+ capture state, the 1- level will also be fed. Since

rotational-excitation systematics expect such a - level 50 key above

the 1- state, the postulate becomes more reasonable. Hickson (H1)

finds a very strong 50 key transition in the gamma spectrum of irradi-

ated dysprosium by means of bent crystal spectroscopy. That the

50 key transition is not seen in coincidence with the 5.570 Mev gamma

ray, requires explanation. It is presumed that the 50 key transition

is a combination of retarded M1 transition and an enhanced E2 tran-

sition. The over-all internal conversion coefficient will lie between

the extremes of 1.7 for M1 and 27 for E2 which may substantially

depress coincidence observation. In addition, the mean lifetime of

the level may be expected to lie between the extremes of 2 X 10-5 sec

(E2) and 2 X 101 0 sec (Ml), the Weisskopf estimates illustrated on

page 215 of E1. The resolving time of the pair spectrometer is

5 X 10-8 sec which may be less than the mean lifetime of the level

and would further reduce the observable number of gamma-ray

coincidences.

These deductions then imply a Q value of 5.728 Mev for the
164 165reaction Dy (n, y)Dy . In addition, the data of Motz in Table 21

implies a series of directly-fed levels and these are illustrated by

Fig. 33. In addition to these levels, there is foreknowledge of the

rotational band based on the 1- 108 key level, [521] Nilsson orbit.2
Hickson (H1) shows that the levels in this band can be fairly well

fitted by his data as follows:



Dy 165

PROBABLE NUCLEAR ENERGY

FED FROM THE CAPTURE

82

FIG 33.

Dy 65

(Kev)

1842

1764

1646
1604

1455
1394

1265

1112

614
577
541

265

158

108 1-2 Mins

0

LEVELS IN

STATE



83

32 158.570 kev level

5 -_ 161.905 kev level

7
281.826 key level

Hickson also believes he has observed the de-excitation of a rotational
7band based on the + ground state, [633] Nilsson orbit. In general,

though, the spins of the levels in this band are too high to be excited

significantly from the low spin capture state, and so any transitions

in this band are most unlikely to be observed in the coincidence data.
7 _7A transition from the 281.8 kev level to the '+ ground state

is not observed and this is explained by the K selection rule. This

rule states that

K - Kg l X (7.5.1)

or the transition will be K forbidden. Here,

K = total angular momentum of the ground state of the

rotational band;

i = initial;

f = final;

X = multipole order of the- transition.

Mottelson (M6) states that for each degree of K forbiddeness, the life-

time is ten to a hundred times larger.

The problem now is to fit all this level data with the fourfold

coincidence information and the precision measurements of the tran-

sitions from Hickson (H1). The latter would be fitted by means of

Ritz combinations. It has not been possible to do this satisfactorily

because there are too many variants in the level schemes that may be

arrived at in this way. This situation arises because there are many

unresolved double and triple peaks in the coincidence data and the low

energy calibration is not very good. The contrast with the unique

picture derived for the Sc 4 6 level scheme is very distinct. Conse-

quently, a level scheme is presented in Fig. 34 which represents the

combined information mostly from the coincidence work. It is by no
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means unambiguous, but it provides a starting point for fitting the pre-

cision measurements of the transitions, and it allows a basis for the

discussion of some variants.

The best attempt to combine all the information on Dy165 resulted

in the level scheme of Fig. 35, which covers the first 650 kev of nuclear

excitation. It has not been possible to extend this scheme upwards in a

way that allows the precision values of the transitions to be fitted and

yet to satisfy the coincidence data. Consequently, no great confidence

can be expressed in the level scheme of Fig. 35, The level scheme

does fit the measurements fairly well and utilizes some of the strong

transitions in Hickson's data. In addition, the agreement with the

deduced level data of Fig. 34 is not too bad with the exception of the

595.98 key level where a 614 key level had been expected. It is to be

noted that a 632.12 key level can be formed which would decay either

to the ground state or, by a strong 448.12 key transition, to the 184 kev

level. It does not fit the coincidence data too well, but the expected

614 key level could be the combination of the two levels, 596 and 632 key.

Because of the uncertainty in the proposed level scheme, an

extensive interpretation of the levels in terms of single particle levels

or rotational excitations is not made. The coincidence data shows a

strong gamma ray of about 170 key which leads either to the isomeric

level or, more probably, to the ground state, This gamma ray is taken to

be the VVS 184.19 key transition measured by Hickson,. The K selection

rule does not allow the 184 kev level to be in the [521] rotational band,

and it cannot be in the [633] rotational band because its spin and parity
11

would be -+, which cannot be excited in a two-step cascade from the
12
Scapture state. Consequently, the 184 kev level is presumed to be a

5 _single particle level and is probably the -[523] Nilsson orbit.

Mottelson (M6) claims to see this [523] orbit 492 key above the [521]

orbit in 6 8 Er 1 6 7 and 49 kev below in 66 Dy 1 6 1 .

It is not unreasonable, then, to make this identification, though

the [512] orbit would be a second choice, On this basis, it might be

reasonable to identify the 541 key, the 577 key and the 614 kev levels

as the Nilsson orbits .- [512], 3 [521] and .+ [642], not necessarily

respectively, However, if one allows only M1, El and E2 transitions

from the capture state, the levels to which the primary transitions
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1 1 3 3 5
feed may have spins and parities of 1 - , 1 -, -+ and 5+ only. This

5_2 '2 2 '2 2 nyTi
would eliminate the [512] orbit from the above identification. This

tends to suggest that either one of the three primary gamma rays in the
165 1

5.15 Mev group is not from de-excitation of Dy , or the 2- [510] and
3 _

- [512] Nilsson single particle states are the ones at these excited

levels.

7.6 LEVELS IN Ho 166

Schermer (S2) states that 60% of the thermal cross section of
165 165. 7

Ho is to I - 1/2 states. Since the spin of Ho is -, the capture
2 166

state will be 60% 3- and 40% 4-. The ground state spin of Ho is 0-,

so it is extremely unlikely that there is a direct transition to ground

from the capture state. It is desirable then to deduce the binding energy

as a starting point to the construction of a nuclear level diagram.

There is evidence available on the low lying levels in Ho166 from

several sources: beta decay studies by Helmer (H5), neutron capture

studies by Estulin (E2), bent crystal spectroscopy data by Hickson (H1),

and a discussion paper by Gallagher (G3). There are also some level data

from (d,p) excitation by Struble (S3), though these are treated circumspectly

due to their incompleteness; nevertheless, they are reproduced in Fig. 36.

Excluding the data of Hickson, the existing evidence is summarized by the

level diagram of Fig. 38. It is to be noted that 80% of the decay of the 82.5

kev level is to the ground state. Since the E l transition has a conversion

coefficient of about 5, the implication is that the predominant radiation

observed in the decay of that level is a holmium K-series X ray. In

Section 6.4, it was shown that no coincidences were observed with the

6.07 Mev primary gamma ray. This would imply that this gamma ray

excites a level with a significant lifetime or that the decay from this

level is highly converted in the L shell. Conversion by the K shell would

have led to a coincident K-series X ray.

The best choice would seem to be that the 6.07 Mev gamma ray

leads to the 54 key level, which is possible from spin considerations

and satisfies the noncoincidence conditions. This gives a binding energy

of 6.127 ± 0.022 Mev. The 5.85 Mev gamma ray is in coincidence with a

246 key peak and perhaps also a 52 key peak at the same time. This

implies a binding energy of 6.15 Mev which agrees within the error limits.
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With this deduction made, levels could be determined from the energies

of the primary gamma rays, but their energy uncertainty makes this

exercise of little use. Despite this, they are shown in Fig. 37 to be

compared with the values of Struble (S3).

The next step in the construction of the level diagram is to

determine the precise values of the 170 and 190 key levels, using only

the strong transitions that have been measured by Hickson. Several

alternatives are possible. Levels are sought at 274 key and 322 key,
and strong transitions are fitted from these levels to the various

alternatives at 170 key and 190 kev until a precise fit is obtained and

the coincident pattern is established. The same procedure is repeated

for the 573 and 682 key levels. The best fit is the level diagram shown

in Fig. 39. No great confidence can be expressed in this diagram

because it cannot be easily interpreted in terms of rotational levels

and because the low energy coincidence data does not fit too well.

As far as possible, the spins and parities are interpreted in

terms of rotational bands characterized by the asymptotic quantum

number K, which is the projection of the total angular momentum on

the axis of symmetry of the deformed nucleus. It seems reasonable

to interpret the 426, 576 and 671 key levels as the 1+, 4+ and 5+

members of the K = 1[523t 5231] band; since the observed transitions

are permissible in this identification and the spins and parities of the

upper two members allow excitation from the capture state. One

might suppose that the VS 239 key transition from the 576 key level

would not allow significant population of the lower spin members of

that rotational band, but one could look for those 2 + and 3+ states

anyway. A tentative fit can be made with 464 and 512 key levels. The

2+ member can decay to the 82 key level by a VW 381.35 key transition.
In addition, a measured VVW 409.66 key gamma ray fits the decay of

the 2+ 464 key level to the 54 key state.

The 337 key level appears to be well fitted by the 5- assignment

to the K = 0[523t 633t] rotational band. No spins or parities have been

assigned to the other levels because of the tentativeness of this level

scheme. Some of them have few choices though, such as the 275 key
level. Since it is fed by the capture state, probably by an El transition,
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it may be (2-, 2+, 3-, 3+, ... 5- or 5+). Since it decays to 3+, 3-

and 2 - levels again, probably by an E 1 transition, one may suspect

an assignment of 3+ or 3 - to the 275 key level. This level then does

not appear to allow assignment of its last two nucleons to the Nilsson

orbits mentioned earlier.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

8.1

In the course of this thesis, a comprehensive system has been

developed for the determination of neutron-capture gamma-ray spectra

by means of bent crystal spectroscopy. This system includes the physi-

cal equipment to develop emulsion plates exposed on the bent crystal

spectrometer and the perfection of a technique to give good processing.

A systematic approach to the reading of these plates has been developed

and computer codes have been written to perform the analysis of the

readings. In addition, there is now a better understanding of the size

of the source needed in relation to its absorption cross section and the

available neutron flux. The capability to do this kind of work is con-

siderably improved over the state of the art that existed at the commence-

ment of this work, as exemplified by Kazi (K2).

A comparison can be made with the results that are obtained on

the Cauchois type instrument here at M.I.T., and the results obtained

from a Dumond type instrument. The latter instrument is a much more

costly machine because of the expensive and complicated mechanism

required to keep the detector at the correct angle to the crystal as the

crystal itself is rotated. It has the advantages that intensity measure-

ments are readily made and that greater precision can be obtained.

The greater precision occurs because the Cauchois instrument requires

a positive image to be made of the lines. The image is recorded on an

emulsion plate, then removed from the spectrometer for processing.

This allows various distortions to arise in the image by the time it is

read on the comparator. This distortion has been shown to be a random

positional fluctuation of about 20 microns. The effect is shown by com-

paring the author's rhodium data with that of Buschhorn (B1). A new

cold developing method for emulsions is being tried at M.I.T. in order

to minimize the suspected distortion from processing. Preliminary

results have already indicated that the rate at which the emulsion is

dried must also be reduced. The conclusion also has been made that
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intensity measurements made on the Cauchois instrument by means of

photo-density measurements on the emulsion are not at all satisfactory

in the type of irradiations carried out in this work. The reasons are

detailed in Chapter 5.

8.2

The work on scandium revealed how well the information from

the bent crystal spectrometer could be combined with the data from

the scintillation pair spectrometer. The latter instrument, located at

Brookhaven National Laboratory, was developed by Fiebiger into an

extremely capable facility. When coupled to the large two-dimensional

analyzer, it permits a considerable amount of data to be recorded

during any one run. The use of an IBM 7090 digital computer to reduce

these data and to plot them has proved quite helpful and time-saving.

The lack of a punched paper tape output from the analyzer reduces the

efficiency of the system, since read-out time is longer and the output

must be put on cards by hand.

Some conclusions about the operation of the pair spectrometer

should be noted. Primarily, this instrument will give good results

only if it is able to resolve well the high energy gamma rays. Secondly,

the returns in improved statistics by increasing the count rates about

normal limits, (0.6 X 106/min for crystal B and 2 X 10 6/min for crystal

A, see Fig. 6), are not really justifiable. There tends to be some pulse

pile-up and the stability becomes marginal. Finally, operating the

spectrometer with external stabilizing sources proved to be very satis-

factory. It is recommended that some low energy gamma-ray sources

be available for calibrating the A crystal below 500 kev: the lack of
164

such sources was most noticeable on the first run of Dy

8.3

The combination of the data from-the bent crystal spectrometer

and from the pair scintillation spectrometer plus information from

other sources has lead to the construction of a nuclear energy level

scheme for Sc 4 6 . This scheme looks very satisfactory and is, in fact,

the most complete piece of work in this thesis. The level schemes
166 165for Ho and Dy cannot be regarded so highly and must be taken
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as tentative only. The problem with the holmium was that its neutron

capture gamma-ray spectrum was notable for its absence of intense

high energy peaks, and the statistics for the measured runs were very

poor. The problem with the dysprosium was that in both the pair

spectrometer and the A crystal, the peaks comprised unresolved

doublets or triplets and a unique decay pattern could not be estab-

lished. With dysprosium, reasonable confidence may be expressed

that a good scheme will be deduced when some definite levels have

been established between 108 and 540 key, perhaps by (d,p) excitation.

No definite contributions have been made here to the level
162 192 194schemes of Dy , Ir and Ir . Some additions to the existing

level scheme of Rh104 have been noted here, which have reasonable

substantiation. The superior data of Gruber, with a deeper analysis,

should confirm the scheme of Fig. 31 and should provide for con-

siderable extension.

8.4

The response function of the pair spectrometer has been

determined in an empirical fashion, and its energy dependence has

been calculated approximately. It would be extremely desirable to

obtain the response function more accurately. It is suggested that a

series of Monte Carlo calculations be made to calculate the response

of a scintillation pair spectrometer of variable geometry to several

monoenergetic gamma rays. The position and size of the central

crystal of the instrument should be varied so that the optimum size

and geometry may be determined. In addition, the exact functional

dependence of the response may be calculated and a better compari-

son with measurements from an actual system may be made.

With the response function more accurately determined, more

effort may be put into spectrum stripping techniques. The technique

used in this thesis was not successful because it used too much com-

puter time, and the uncertainty in the response did not justify further

effort at the time. It is expected that more satisfactory results from

spectrum stripping will be obtained using the procedure of Trombka

(T1). Basically, his procedure is to determine the energy and intensity

of line gamma rays whose over-all response fits the measured response
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in a least squares manner subject to two restrictions. These re-

strictions are that no negative intensities may appear and that the

number of line components is limited to 40 by computer storage. His

results look most promising for the response of an ordinary scintil-

lation spectrometer. The response of the pair spectrometer is much

better because the peak is narrower on a percentage basis. In addition,

the pair peak contains relatively more area than does the photo-peak

of the scintillation spectrometer. Although the pair spectrometer is

certainly not the most accurate instrument for measuring high energy

gamma rays, it has good resolution coupled to a high efficiency

(2 X 10-4 %). It is therefore able to measure the gamma-ray spectrum

from the irradiation of separated isotopes in normal reactor fluxes,

which can hardly be done with the more precise Compton magnetic

spectrometer. Consequently, it seems very desirable to continue the

spectrum stripping program in the manner outlined above.

8.5

The difficulty in analyzing the neutron-capture gamma-ray

spectrum of a mono-isotopic source is good reason to conclude that

the original idea of irradiating a multi-isotopic source such as ger-

manium, in order to determine the level schemes of the individual

isotopes, was impractical. However, it is feasible to obtain the line

spectrum of a multi-isotope mixture by means of bent-crystal spec-

troscopy, and couple the results to the coincidence measurements

from the scintillation pair spectrometer on each isotope. It is

desirable, however, that there should be one principal isotope whose

macroscopic cross section is 905, of the total cross section. The

experiments performed on the bent-crystal spectrometer at M.I.T.

have shown clearly that competitive results will be obtained only if

one considers sources of reasonably high cross section and places

them in a high flux location (1013 n/cms 2-sec). Elements that lend

themselves to this sort of studies are titanium, manganese, cobalt

silver , indium, cesium, praesodymium , terbium , thulium , lutetium,

tantalum , rhenium, gold and thorium. Those elements marked with

an asterisk may present handling problems, since they will be highly

activated. It is not a truism to state that knowledge of the capture
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gamma-ray spectrum of the principal isotope in these elements will
be useful. It may lead to formulation of the level structure of the
capture nuclei, and this will allow extension and refinement of models
of the nucleus.
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APPENDIX I

DATA REDUCTION METHODS

FOR THE BENT CRYSTAL SPECTROMETER

1.1

In this appendix, the methods of analysis of the emulsion plates

from the bent crystal spectrometer are discussed. The various types

of errors that enter the problem are considered in terms of their mag-

nitude and how they enter the analysis. Finally, a description is given

of the computer codes that have been written to perform these analyses

on the IBM 7090 computer.

As a preliminary, the linearization of the functional dependence of

the wavelengths with position is shown. Figure 40 shows an illustration

of the bent crystal geometry in which the crystal is bent so that its

internal 310 planes, normal to its face, point towards a common focus

called the beta point. The figure also shows that the crystal subtends an

angle a to the beta point. If two gamma rays of the same energy E are

incident upon the crystal edges at the Bragg angle 0, they will be totally

reflected to a point P to which the crystal must subtend the same angle

a. A well known geometrical theorem states that the locus of a point P,

to which two given points subtend a constant angle a, is a circle which

passes through these points. Since this must be true for any section of

the crystal, then any gamma ray of energy E, incident on the crystal at

the Bragg angle 0, will be reflected to point P. This, in effect, is the

principle of the bent crystal spectrometer. It can be seen that the

diameter R of this focal circle is equal to the bending radius of the

crystal. When an emulsion is placed along the focal circle, discrete

lines will appear on it, corresponding to discrete gamma-ray energies

in the incident beam.

If a photon whose wavelength is X, is incident on an internal 310

plane of the crystal at angle 0, it will be reflected at angle 0 if the

Bragg law is satisfied:
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FIG 40. BENT CRYSTAL GEOMETRY
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X = 2d sin ., (.1.1.)

where d is the spacing between the 310 planes. Note that no corrections

to the Bragg angle due to changes of refractive index are necessary in

this geometry. This is because the photon wavelength inside the crystal

changes exactly to compensate for the variation of the refractive index.

Now, from geometrical considerations as seen in Fig. 40,

* = 20, (1.1.2)

R = 2b (I.1.3)

and

a0 + y

where a is the distance from the beta point to a reference position on

the emulsion plate, and y is the distance of a line on the emulsion plate

from the reference position.

Equations (1.1.1) to (1.1.4) are combined to give

= sin (a +y. (1.1.5)

This equation can be linearized to give

y =a 0 + ax (I.1.6)

where

x = arc sin (1.1.7)

and

a =R . (1.1.8)

Although a 1 is a physical quantity, it is more easily calculated than

measured. Calibration of the emulsion plate is made by fitting a

straight line in the least-squares sense to several values of y for

known values of x in order to obtain the coefficients a and a 1 .
The crystal must be bent to a radius equal to the diameter of the

focal circle. The center of the crystal should lie on the focal circle,

but this requirement is not compatible with the first one which is more

important. That the crystal does not lie true on the focal circle gives

rise to a geometrical distortion at large' wavelengths. An expression

for this geometrical error is derived by Dumond (D1) as a wavelength

change,
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cos 6( 1- cos 7) _ _

~ a , for small a and 6, (1.1.9)

Cos + 0

and has a value of about 3 X 10-5 in the worst case. This distortion is

manifested by thicker lines on the emulsion plate. Hence, this geometri-

cal error is automatically taken into account in the analysis, since the

center of these thick lines is more uncertain due to larger reading

errors.

A second geometrical distortion is that as the crystal is bent, the

spacing of the planes nearest the convex edge increases while the spacing

of the planes nearest the concave edge decreases. Consider a point dis-

tance Z from the neutral axis of the crystal towards the convex side.

The spacing of the 310 planes d will be given by

d= d(1+). (I.1.10)

For a line at the same point on the emulsion, the Bragg angle 01 is

0 = (Z (1

Hence, the corresponding wavelength X1 is

X 1 = 2d I sin 01 (1.1.12)

or

X = 2d 1+ Z sin 0. (1.1.13)
1 R) (_1+ Z/R_)

If we expand the sine function in Eqs. (1.1.1) and (1.1.13) in a

Taylor series, neglect the third and succeeding terms in the expansion

and subtract, we get

X - = 2d 3(1.1.14)
3 1+Z/R)3 

i]

Equation (1.1.14) can be simplified by expansion and normalized by

division of the linear expansion of Eq. (1.1.1) to give
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1 -Zo 2

2R (I.1.15)

This factor is very small and will not be greater than 10-5, even at the
largest Bragg angles capable on the bent crystal spectrometer. In

practice, the error is directional and would manifest itself again as a

broadening of the lines on the emulsion plate, so that it is automatically

taken into account as an increased line position error.

A third geometrical error arises from any incorrect positioning

of the focal plate in the original line-up. This type of error will mani-

fest itself by broader lines on the emulsion and a, poorer fit of the

calibration points to Eq. (1.1.6). The latter is a common feature of

errors (a), (b), and (c) below.

Three errors of importance are as follows:

(a) A significant temperature variation between the reactor room

where the plate is exposed and the room where the plate is read. A
temperature difference of 10*C would result in an over-all expansion
of the plate by 30 microns, which is about twice the reading error of
one line. It is considered good practice, therefore, to read the plates
in a room that is air-conditioned as is the reactor.

(b) The uniform stretching of the emulsion from its position on

the circular focal plate to its flat position on the comparator where it

is read. This occurs because the emulsion plate bends about its neutral
axis which lies in the glass and not in the emulsion.

(c) Improper fastening of the emulsion plate. If the plate is not
bound properly on the focal circle, then an error arises since Eq. (1.1.5)

does not truly apply.

These three errors have one thing in common, which is that they

arise because the functional dependence of wavelengths and position is
no longer obeyed rigorously. An error of this type can be seen by the
way the residuals in Eq. (I.1.6) are distributed about the mean line.
Their distribution should be Gaussian if the functional dependence is
correct, but a systematic distribution is suspicious. A chi-squared

test can be performed on these residuals as a check. To some extent,

this type of error is accounted for in the error analysis by the

inclusion of an uncertainty in the crystal plane spacing d. Although

this uncertainty is a real physical uncertainty which further justifies
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its inclusion, it is not necessary mathematically in the analysis. Of the
three errors discussed, (c) is considered the most significant.

A minor error worth mentioning, but not of importance, is the
temperature fluctuation in the reactor room of up to 3*C which may dis-
tort the spectrometer frame. This distortion will broaden the line
thickness, particularly at large Bragg anglesbut is automatically taken
into account by an increased reading error.

A possible error is distortion of the emulsion during developing
and fixing, and for some spectroscopists, this item becomes the residue
of all unknown errors. The distortion implied here is a local distortion
that is not positionally dependent. Kazi (K2) does not report any signifi-
cant emulsion movement from an experiment designed specifically to
check this point. In addition, Cohan (C2) finds a high degree of correla-
tion between front and back plates of any pair, although they were
developed in different batches; and this implies little error due to
development distortion. Nevertheless, there is good evidence presented
in Sections 5.3 and 5.4 to indicate a positional error on each line that is
additional to the reading errors. Whether this is due to emulsion dis-
tortion is not at all clear but its magnitude is about 20 microns.

Errors that are taken into account in the formal computer analysis
are reading errors, uncertainties in the calibration wavelengths,
uncertainty in crystal plane spacing, and a term a-T to account for un-
known errors. a-T is put in the form of an additional position uncertainty
in each line to conform with the treatment by Kazi. It had been intended
originally to average several independent values for a given gamma ray
and obtain the standard deviation from the set and so avoid concern about
unknown errors. This procedure would not have been satisfactory, since
a higher weight would be given to calibration lines with small reading
errors on each plate and incorrect calibration of each plate would be
obtained. Consequently, the positional uncertainty of 20 microns that
has been observed is inserted as " T in each plate analysis.

One further error must be discussed, which is classified as an
unknown error, since it is not taken into account by the error analysis.
This error comes from the variation in backlash of the precision screw
in the comparator. When a set of lines is read, each side of each line
should be read to obtain the central position. In principle, the backlash
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can be avoided by making the measurements all in one direction. In
practice, it is extremely difficult to measure the second edge of a dark
line by moving in the direction across the line. Consequently, the edge
of each line is measured by approaching the line. The backlash of the
comparator screw enters the measurement and directly affects the
measured line widths. However, the analysis makes allowance for a
systematic error of this sort, provided it is constant over the whole
range. Demanding that the backlash be of constant magnitude over the
length of the screw is not a particularly excessive requirement so this
error is not considered significant. Good practice, however, demands
that the backlash be as small as possible, since useful information is
lost by the incorrect measurement of the line width.

1.2

A systematic analysis of the data depends on data being taken in
a systematic manner. Most of the plates are read in the following way:

(a) The plate is inspected visually under a strong light and each
line is marked and labelled. It is easier to observe lines this way
rather than on the comparator because the eye has an integrating effect.

(b) The plate is fastened down temporarily on the comparator,
emulsion side up, and the viewing light is switched on.

(c) A low magnification is selected, usually 0.4 X 6.7, and correct
focus is selected by moving the microscope vertically until no parallax
is observed.

(d) The emulsion is then put against the horizontal adjusting bar,
its lines all within the comparator range, and is lined up. Line-up is
achieved by sweeping the carriage, on which the plate is mounted, per-
pendicular to the screw direction. The emulsion is moved via the
adjusting bar until no movement of the edge of a good line, relative to
the center of the cross hairs in the microscope, is seen. The plate is
then fastened securely to the carriage.

(e) The cross hairs in the microscope are rotated if necessary
until the vertical one is parallel to the edge of the good line.

(f) Ten readings of the plate are taken as follows:
1. The plate is read from left to right near its bottom.
2. The plate is read from right to left near its top.
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3. The plate is moved horizontally a small amount, its line-up

is checked and steps 1 and 2 are repeated.

4. The plate is moved horizontally a small amount, its line-up

is checked and step 1 is repeated.

5. The plate is then rotated by 180* , its line-up is checked

and steps 1 to 4 are repeated.

(g) The distances of the center of each line, relative to the center

of one good line, are then calculated by hand for each set of readings.

These data are inspected for gross reading errors and arithmetic errors.

Discrepancies looked for are an excessive range in the readings of one

line and bad line widths. For reference, the readings of a good line

should not range by more than 150 microns. The width of a good gamma-

ray line is usually 250 to 450 microns, though an X-ray line may be up

to 800 microns in width. This hand calculation is considered desirable

at this stage because some judgment is required by the interpreter, which

is difficult to program into the computer.

(h) The emulsion is 30 cm long and the comparator range is

25 cm. It is thus possible for some lines to be outside the comparator

range. These lines are measured in another set of readings plus one

good line in the original set. The distances between these lines and the

one good line are calculated for each plate reading. These distances are

then added to consecutive readings of the good line in the original set.

In this way, the greater uncertainty of the extra lines is reflected in their

larger reading errors.

1.3

The computer adjusts each set of readings to a common reference

point, which is the centroid of the sum of the good lines. This centroid

has the property that the sum of the square of the residuals at the good

lines is a minimum. Let there be M good lines on the plate. Any line

whose central position is g. will have been read N times. The ith ad-
th1

justed reading of the j line is given by

N M M
,jV V ij ij + g . (1.3.1)

11i 4 gZ -' gjjjgij



110

In this connection, a good line implies a line that is strong enough

to be well read. In practice, a very dark line can prove difficult to read

accurately. In addition, a line that is extremely weak and uncertain may

have small reading errors because its identifying mark was measured

instead. It can scarcely be classed as a good line either. The criterion

for a well-read line is that the range of its readings is less than 150

microns. The readings are then averaged, so that the mean reading f

of the jth line is given by

N
f.= 1 g! . (1.3.2)

The variance of the mean of these readings is

2 1 N 2S(f= N(N-1) Nj (1.3.3)

and a(f.) is the standard deviation of f .

The uncertainty in the mean position of each line is increased by

errors either unknown or unmeasured but whose standard deviation is
threpresented by a positional error aT. Hence, the variance of the k

line becomes

2 2 2
m (yk k) + T (I34)

with yk now replacing fk'

1.4

In this section, the analysis for a plate with two or more cali-

bration lines on it is discussed, type (a) of Section 3.2.

From Section I1, the linearized relationship for the position of

line k was obtained as

-a 0 + a 1 xk k (1.4.1)

The coefficients, a and a1 , are obtained from the solution of the normal

equations relevant to the set of Eq. (1.4.1). The normal equations are

obtained by multiplying each member of Eq. (1.4.1) by its weight wk, by

multiplying by the coefficient of a or a and adding the set. This gives
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-ao NfL wk +a 1 NfL wk NCL w (1.4.2)
k k k

and

-aON L W x +a 1 NtL WX2 = N L (1.4.3)

k k k

where NCL is the number of calibration lines. The weight wk associ-

ated with each equation is the inverse of the sum of the variances in

each equation, normalized by the sum of all the variances, i.e.,

1 N L 1wk 1 (1.4.4)
ck k k

with

T = 2(yk)+a l_2 (k). (1.4.5)

a2 yk) is defined by Eq. (1.3.4) and a- 2(xk) by Eq. (1.4.6) below if we

assume no correlation between errors in Xk and d.

S2( 2 (Xk) + 0-2 (d) ( 4d2-X ). (I.4.6)

Since a 1 appears in the weighting function, direct solution of Eqs.

(1.4.2) and (1.4.3) is difficult and they are consequently solved by

iteration on a 1 .

If Eqs. (1.4.2) and (1.4.3) are rewritten in matrix form, we obtain:

B 1 1  B12 -a ~ E1
(1.4.7)

B 21 B 22 a I E 2

where

B 1 = NL wk = 1, (I.4.8)
k

B12 B 2 1 = wkk (1.4.9)
k

Nt L 2
B22 w kx (1.4.10)

k



NCL

E 1 =
k

wkyk '

and

N L

E 2 k w k kyk .

The solution of Eq. (1.4.7) is

B 12 E2 D 22E 1

where D is the determinant of the B matrix and is given by

D = B 1 B22 B12 B21'

Hence,

E a + aoB 2
a1 B .2

Using a 1 and a0, the wavelength Xm

m = 2d sin a mj1,

of the unknown line is

(I.4.16)

thn
where um = the mean comparator reading of the center of the m

unknown line. The error in X is obtained as follows. On differenti-

ating Eq. (1.4.16), we get

a9+um
6X =2 sino ma 6dm Ka1 )

+ 2d cos
a +u

0 m
a )

K

6a+ 6u
0 m
a
1

_ (a0+um)6a 1
2-

a1

(1.4.17)

We may square both sides of this equation and ignore cross product

terms of uncorrelated variables. Replacing the squared-error terms

by the square of the standard deviation gives

2 (X M, 4a- 2 (d) sin2 (a m +

(a +uM) 2 ,r2 (a1)+ o4m 4
a1

4d2 cos2
a+u

oam

I 2 () + o2 (ur)

2 +K. a1

2ro(a 0 ) (a)- (a +u M)

3
a1
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(1.4.11)

(1.4.12)

(1.4.13)

(1.4.14)

(1.4.15)

(1.4.18)
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In Eq. (1.4.18), 0.2(urm) is the variance in urm due to both reading and un-
known errors analogous to a-2(k) of Eq. (1.3.4).

A correlation factor r between a and a1 now appears because those
parameters are obtained from the same information. We now calculate
c(a ), 0.(a1 ) and r for substitution into Eq. (1.4.18). It is simpler to quote
the results than derive them here from the general expression given by
Hildebrand (H3, Page 266).

2 (a ) 22 (1.4.19)

k

2 By
2 (a ) 11 (1.4.20)

k -k

The correlation factor r can be derived in our case from a more general
expression given by Cohan (C3, Page 243). It is

B1 2
r =2 (1.4.21)

2B/B22 11

If the calibration lines provide a poor fit to Eq. (1.4.1), then the residuals
given by

R =a yk - a xk (1.4.22)

may be comparable to the error a-k associated with the parameters in
that equation. (See Eq. 1.4.5.) Consequently, the weighted mean-square

2error, (wE )m, given by

2 1
(wE2 =m N (1.4.23)

k 2
k

is replaced by the estimate below, as indicated by Hildebrand (H3, Page
267), if the latter is larger.

(wE2 m NL R (1.4.24)(NCL-2)k wkk
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Clearly an estimate such as this is not possible when only two calibration

lines are used.

1.5

The analysis for the case in which only one calibration line is

available, type (b) of Section 3.2, is now considered. In this case, the

focal length of the bent crystal a1 and its standard deviation o-(a 1 ) must

be fed in as input parameters. In general, these parameters will be

available from cases with two or more calibration lines. a is immedi-
0

ately determined as

a0 = a arc sin (X - y 5,1

using the nomenclature of the last section and X = calibration line wave-

length at position y .
Differentiating Eq. (I.5.1), we obtain

6x X X6d>
6a =6a arcsm ) - 6y + al j 0

0 1d 0. 1 2d 2

-2 1/2

"o_2d_

(1.5.2)

or

6X% - 26d sin(+y (a +y0 )
6a0 = al a ,Iy + 2 0 6a

2d cos a___ a 1

The wavelength of an unknown line Xm is determined from

as before, and we can substitute for 6a 0 into Eq. (1.5.4) to

(I.5.3)

Eq.

find

(1.4.16)

mas

6m = 26d sin 
-a m)

ain +y9 0 a O+um)
sin Qa ) c a

cos +YO)1,

+ 2d co s (a +uj K6um- 6yo) + 6~ai (y _u)
0 m1

a 
c+um6xo Cos a m) Cos

0~ a

aO+yo>
a1 (I.5.4)

(I.5.1)
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We now square both sides of the above equation and treat all variables as

independent parameters. Replacing the squared-error terms by the

square of the standard deviation gives

4 2(d) sin2 um-o +
2 ao+yo al

Cos a
1a

4d 2 C2 a+um

a2 C 2 /a +um )2 (x ) cos~u~N
0 a,

os a)

~22 22 0) + a (um) o (a I)

2 + (y0-um
a 1a

(I.5.5)

1.6

In this section, the case is considered in which there is at least

one calibration line and there is at least one pair of known or unknown

lines straddling the beta point of the bent crystal spectrometer, i.e.,

case (c) of Section 3.2.

If we have NCLP calibration line pairs denoted by Yi and Y2i and

NULP unknown line pairs denoted by U y and U 2j we can obtain a0 of

Eq. (1.1.6) in the following way:

AO = (Y ±Y
i 2 ii 2i

AO. =. (U 1 i+U 2 )

(1.6.1)

(1.6.2)

Hence, we get

a -
0

NCLP

.i

NULP
w.AO. + w.AO.

1j J J
(1.6.3)NP

Iwk
k

NP = NCLP + NULP (1.6.4)

1 NP
wk 2

k k

2
m(x )

2

where

and

1
ck

(1.6.5)
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Here, Tk is shorthand for o-(y ) and a-(u.), with these defined here as

T2 1[2(Y )+a2(Yi) (1.6.6)

and

T2(u) r-2(U )+a2(U)] (I.6.7)

In addition, we obtain

2 (a ) = 1 (1.6.8)( 0 ) NP1

k Tk

Equations (1.6.6) and (1.6.7) are derived from Eqs. (1.6.9) and (1.6.10),

respectively:

= (Y 1 .Y 2 i), (1.6.9)

u. = (U 1 .- U 2 j). (1.6.10)

If these pairs of lines do not straddle the beta point consistently, we

express T2 (a ) in terms of the residuals Rk as in Eq. (1.6.11) if the
0k

latter is larger:

NP
1 w kR k

2 k
T (a 0 ) NP , (I.6.11)

(NP-1) 1 wk
k

where

Rk = AOk - a (1.6.12)

Because the pairs of lines do not straddle the beta point exactly in

practice, there is an additional uncertainty in the mean distance from

the beta point to the average pair line. This added uncertainty is
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accounted for by replacing -2 (y.) and T2(u ) from Eqs. (1.6.6) and (1.6.7)

by { 2 (y)+G 2 (ao)} and {. 2 (u )+- 2 (a)}, respectively.

From Eq. (1.6.9) we have the distance of a paired calibration line

from the beta point. Equation (1.6.13) gives the distance of a single cali-

bration line from the beta point as

y = z. + a 0 , (1.6.13)

.thwhere z is the mean reading for the j single calibration line. The

variance of this distance is given by

a.2 2 + 2 (a0). (1.6.14)

The distance of an unknown single line u and its variance are defined

JJsimilarly to y above. We can now calculate a 1 of Eq. (I.1.6) as

NCL

k
a1 N L , (1.6.15)

Lipk~k
k

where x is defined in Eq. (1.1.7) and the weighting function pk is defined

by

1

pkNL (1.6.16)

k 0.k

with a-k defined by Eq. (1.4.5). In addition, NCL is the effective number of

calibration lines and comprises the sum of NCLP calibration line pairs

and NCLS calibration line singles.

A solution to Eq. (1.6.16) is found by iterative methods since p is a

function of a1 . The variance of a is then given by

0.2 (a ) = 2 (1.6.17)
NkL xk

k 9-k
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Here again, if a1 is not well fitted in the procedure, the variance of a1
is replaced by that in Eq. (1.6.18) if the latter is larger.

2

N~L -vai: pk

a"2 (a )= k L ' .
(NCL-1) N Pk

k

We now obtain the wavelength of unknown lines Xm as

X =2d sin (--
m Ka1J

(1.6.18)

(1.6.19)

Differentiating, we obtain

6X = 26d sin + 2d cosm a 1) ~_ 
um6a 

.

L-, a 1 1

If we now square both sides of the above equation and replace squared-

error terms by the appropriate variances, the variance of Xm
given by

a2 (x)= 4T 2 (d) sin2 _m
mal

2

+ 4

a1
cos m 2(u) +

ai m

It is to be noted that there is no correlation between um and a 1.

1.7

Having calculated the wavelength X m of an unknown line and its

standard deviation .(X m), a conversion to energy Em must be made.

This conversion is

E K

m
(1.7.1)

where K is the conversion coefficient and -(K) is its standard deviation,

the values being given in Table 23. The variance of Em is given by

02(Em)= 1[E [ 2(X ) + a2 (K)]

m

(1.6.20)

is then

(1.6.21)

(1.7.2)
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In addition to calculating the total uncertainty of the unknown lines

Em, a section is built into the computer codes for each case which cal-

culates the standard deviation of E in the absence of reading errors
m

and is denoted by SG. It has proved useful in that it shows that generally

most of the calculated error arises from the uncertainty in the wave-

length of the-unknown lines and not from the reading errors.

No formal procedure has yet been devised for interpretation of the

final values. If there are several values for one line, some sort of

averaging procedure must be used to give a final answer. As mentioned

before, the difficulties are that the standard deviation of the mean of

several values is generally larger than the standard deviation of any

one; and the values obtained on a front and back emulsion plate are by

no means independent. In addition, some values may be suspect because

the residuals are not placed randomly about the calibration lines for the

plates from which those values come. In view of these factors, evalu-

ation of the final values is necessarily subjective and cannot be formal-

ized. Where possible, though, a mean is obtained from the sum of the

individual values weighted with the inverse of their calculated variance.

That is,

2
_i a- (X.)

S1 , (1.7.3)

21

where X. is the ith value of wavelength of the same line, T(X ) is its cal-

culated standard deviation and NV is the number of values of the one

line. The variance of . is obtained as

2

2 - i
W ( = NV (1.7.4)

(NV-1)Z 2
i a- (X.)

If only one value is obtained for a line, its standard deviation will be

increased by a suitable factor usually between 2 and 3.
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1.8

In this section, the inputs to the three codes for the three types of
analysis are discussed. The order of the cards is as follows:

(a) Computation center identification card.

(b) Execution card.

(c) Binary cards representing the code instructions for the

particular analysis type involved.

(d) Data indicator card.

(e) Data cards comprising the input information.

Card (a) above is a generalized identity card and has the following format:
*Problem number-programmer number, system type, run type,
estimated time, maximum time, maximum number of lines out-

put, maximum number of cards output.

The format above must be written with the following general rules:
1. * in Column 1.

2, Each field must be separated by a comma.

3. Blanks may be used freely.

The following specific rules must also be observed:

1. Problem and programmer numbers must be separated by

a hyphen.

2. System type is FMS for monitor runs.

3. Admissable run types are DEBUG, TEST and RESULT.
(The latter would generally be used in this case.)

4. Numerical values in the last four fields must all be integers.
5. Any room remaining after the last field may be used for

comments.

An example of the above format is:

* M1876-646, RESULT, 1,2,1000,20 Mixed Batch.

Card (b) instructs the monitor to have the job executed and has an
asterisk in Column 1 and the word XEQ punched in Columns 7 to 9.

Card (d) informs the monitor that data follow, and has an asterisk
in Column 1 and the word DATA punched in Columns 7 to 10. The data
cards contain the input information for the particular analysis type
involved. They are written in one of the following formats:
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1. Hollerith, H.

2. Alphanumeric, A.

3. Fixed point, F.

4. Integer, I.

Hollerith and alphanumeric data comprise English letters, Arabic numerals

and other characters that appear on the key punch machine. Fixed point

data are numbers that must be written with a decimal point. The location

of these numbers in their field is immaterial, though. Integer numbers

have no decimal point and must be placed at the right-hand side of their

field.

The data cards for the three types of analysis (a), (b), (c) of Section

3.2 can be described in terms of the following blocks:

A, Identity card.

B. Control card.

C. Instrument parameter cards.

D. Calibration line positions.

E. Wavelength cards.

F. Unknown line positions.

Table 22 details this description. Samples of the input data for the three

case types are given, followed by a sample of the output information as

taken from the punched cards. Fortran listings are included of all the

computer codes written to perform analysis of the bent crystal spec-

trometer data.

L9

In this section, a detailed list of constants and physical parameters

is given, together with the references.

Table 23 details crystal parameters and conversion factors. Table

24 details wavelengths of the gamma rays and X rays used as calibration

standards. Sometimes the references quote the gamma rays in terms of

energy, and conversion to wavelength in xu is made by the conversion

factor K in Table 23.
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Table 22. Input for Computer Analysis of Bent Crystal Spectrometer Data

Item

Identification. Plate number,
isotope, energy range, date,
etc.

A

B

Input
Input
Form

H

Code
Symbol

NOCASE

NOCASE

NOCASE

NR

NCL

NGUL

NCLS

NGUL

NBUL

NCLP

NBUL

NPRNT1

a

b

c

a,b,c

a

b

c

a

b

c

a

b

c

a

c

c

c

1-10

1-10

1-10

11-20

21-30

21-30

21-30

31-40

31-40

31-40

41-50

41-50

41-50

51-60

51-60

61-70

71-80

Case type number (a) = 1

Case type number (b) = 2

Case type number (c) = 3

Number of readings. Can be
between 2 and 24.

Number of calibration lines.

Number of good unknown lines.

Number of calibration line
singles.

Number of good unknown lines.

Number of bad unknown lines.

Number of calibration line
pairs.

Number of bad unknown lines.

Print option number.

NPRNTI = 0 or -ve. Punch
out final data on cards.

NPRNT1 = 0. Print out all
useful data.

INPRNT11= 1. Print out less
of the intermediate data.

INPRNT1|> 1. Print out no
intermediate data.

Number of good unknown
line singles.

Print option number.

Number of good unknown line
pairs.

Number of bad unknown lines.

Print option number.

Block

I NGULS

UnitsCase

a,b,c

I

I

I

I

Column
Number

1-72

NPRNT1

NGULP

NBUL

NPRNT1
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Table 22. (continued)

Column Input Code
Block Case Number Item Form Symbol Units

C ab,c 1-12 Estimate of focal circle F Al cms
diameter.

a,b,c 13-24 Standard deviation of focal F SIGA1 cms
circle diameter.

a,b,c 25-36 Spacing of crystal planes F D xu
used. d.

a,b,c 37-48 Standard deviation of F SIGD xu
spacing d.

a,b,c 49-60 Positional uncertainty from F SIGT cms
unknown errors. <rT'

b 61-72 Wavelength of the single F WVLNTH xu
calibration line.

b 1-12 Standard deviation of F SIGWL xu
wavelength.

D a 1-72 Reading I of calibration line F Z(I,J) cms
J in a field width of 12 at 6
readings to a card for I= 1 to
NR. A fresh card for each
new line J on the emulsion is
used.

b 1-72 As in (a) above. Pair lines F Z(I,J) cms
come first and must be con-
secutive with the more posi-
tive value of the pair follow-
ed by the less positive one.

a,b 1-48 Identification card for the set A DNAM(J,K) -
of readings of calibration line
J placed behind each set,
[Z(I,J), I= 1, NR].

E a,c 1-12 Wavelength #1 corresponding F WVLNTH(I) xu
to calibration line #1, (single
or pair).

13-24 Standard deviation of wave- F SIGWL(I) xu
length #1.

Repeat the above two items F WVLNTH(J) xu
in order for J = 2 to the total F SIGWL(J) xu
number of calibration wave-
lengths at 6 readings to a
card in a field width of 12.
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Table 22. (concluded)

Block Case

F a,b

c

a,b,c

Column
Number

1-72

1-72

1-48

Item

Reading I of unknown line J in
a field width of 12 at 6 read-
ings to a card for J = 1 to the
total number of unknown
lines. A fresh card for each
new line on the emulsion is
used. Good lines come
before the bad lines.

As in (a) and (b)
lines come first
consecutive with
value of the pair
smaller.

above. Pair
and must be
the larger
before the

Identification card for the
set of readings of unknown
line J placed behind each
set [W(I,J), I= 1, NR] .

Input
Form

F

F W(I,J)

A IDNAME(J,K)

Table 23. Crystal Parameters and Conversion Factors.

Item Value Reference

Spacing of 310 planes in quartz at 68*C. 1177.67 xu L2

Standard deviation of item above. 0.02 xu L2

Conversion coefficient of wavelength to 12372.44 p. 270
energy, K of Eq. (1.7.1). kev -xu C3

Standard deviation of the item above. 0.16 key -xu p. 270
C3

Conversion coefficient of angstrom to 1.002039 X 10 p. 267
Siegbahn x unit xu/A C3

Standard deviation of the item above. 0.000014 X 10

xu/ A

p. 267
C3

cms
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Table 24. Wavelength Standards

Source Value in xu Reference

Annihilation radiation 24.2132 ± 0.0004 p. 269, C3

Ta182 67.74 key 182.638 ± 0.018 M3

100.09 key 123.599 ± 0.014

113.66 key 108.849 ± 0.013

116.40 key 106.283 ± 0.013

152.41 kev 81.171 ± 0.012

156.37 kev 79.116 ± 0.012

179.36 kev 68.974 ± 0.011

Ir192 604.53 key 20.464 ± 0.020 M3

588.40 key 21.025 ± 0.010

467.984 key 26.435 ± 0.004

316.462 key 39.092 ± 0.004

308.454 key 40.107 ± 0.004

295.942 key 41.803 ± 0.004

205.736 kev 60.131 ± 0.011

Rh 1 0 4 333.557 key 37.0924 ± 0.0034 B1

266.750 key 46.3822 ± 0.0037

217.915 key 56.7764 ± 0.0112

215.489 key 57.4156 ± 0.0102

186.045 kev 66.5024 ± 0.0100

180.859 kev 68.4093 ± 0.0053

169.402 kev 73.0360 ± 0.0104

134.617 kev 91.9084 ± 0.0052

127.318 key 97.1775 ± 0.0059

100.796 key 122.747 ± 0.0060

97.114 key 127.402 ± 0.0041

85.355 key 144.952 ± 0.0060

51.422 kev 240.604 ± 0.0078
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Table 24. (concluded)

Source Value in xu Reference

W Ka2 213.382 ± 0.010 I1, C5

W Ka1 208.571 ± 0.010 11

W Kp 3  184.795 ± 0.010

W Kp 183.991 ± 0.010

W Ks 179.049 ± 0.010

Ta Ka2 219.846 ± 0.010 I1, C5

Ta Ka 1  215.050 ± 0.010

Ta Kp 1  189.693 ± 0.010

Ir Ka 2  195.494 ± 0.010 I1, C5

Ir Ka 1  190.648 ± 0.010

Ir K P3  169.016 ± 0.010

Ir Kp 1  168.193 ± 0.010

Ir Kp 1 163.613 ± 0.010

Ba Ka 2  388.861 ± 0.010 Il, C5

Ba Ka 1  384.313 ± 0.010

Ba K P3  340.797 ± 0.010

Ba Kp 1  340.102 ± 0.010

Ba KP 2  332.074 ± 0.010

Cs Ka 2  403.996 ± 0.010 I1, C5

Cs Ka 1  399.461 ± 0.010

Cs K P3  354.317 ± 0.010

Cs Kp1 353.633 ± 0.010



J.M.NEILL. SCANDIUM-46. PLATE 52.
3 10 3

592.0
20.9956
20.9917
7 VVS GOOD
0.

0.5
20.9945
20.9911
295 PLATE
0.

0. 0.
17 M GOOD 295 PLATE
24.8178
24.8141
2 VVS GOOD
27.5338
27.5177
1 VW GOOD
16.5637
16.5615

10 W GOOD
41.926
24.2132
24.1025
24.0964
3 VVS GOOD
24.0449
24.0398
4 VS GOOD
21.5395
21.5301
6 W GOOD
16.8753
16*8628
9 M GOOD
16.2414
16.2379

11 W GOOD
16.0908
16.0850

13 M GOOD
15.795]
15*7943

14 M GOOD
15.4348
15.4370

15 M GOOD
23.0019
22.9802
5 VVW BAD
18.5717
18.5689
8 VVWQ BAD
16.1723
16.1637

12 VW BAD
14.4990
14.4935

16 VVWQ BAD

24.8152
24.8156

216 PLATE
27.5317
27*5238

182 PLATE
16.5664
16.5583
511 PLATE
0.045

0.0004
24.0980
24.0975
227 PLATE
24.0425
24.0397
228 PLATE
21.5392
21.5341

PLATE
16*8693
16.8665

PLATE
16*2460
16.2339

PLATE
16.0Q84
16.0827

PLATE
15.8001
15.7953

PLATE
15.4377
15.4340

PLATE
22.9954
22.9820

PLATE
18.5759
1805651

PLATE
16.1701
16.1613

PLATE
14.4986
14.4820

PLATE

1177.67
20.9950
20.9927
52. SC-46.
0.
0.

52. SC-46.
24.8191
24.8159
52. SC-46.
27.5321
27.5200
52. SC-46.
16.5654
16.5603
52. SC-46.
57.194

24.1014
24.0989
52. SC-46.
24.0444
24.0422
52. SC-46.
21*5408
21.5301
52. SC-46.
16.8741
16.8646
52. SC-46.
16.2418
16.2341
52. SC-46.
16.0860
16.0871
52. SC-46.
15.8040
15.7929
52. SC-46.
15.4378
15.4350
52. SC-46.
23.0000
22.9810
52. SC-46.
18.5787
18.5652
52. SC-46.
16.1714
16. 1653
52. SC-46.
14.5036
14.4889
52. SC-46.

RUN 1.
1
0.02

20.9919
20.9904

0.
0.

24.8151
24.8122

27.5336
27.5199

16.5655
16.5567

0.038

24.0986
24.0961

24.0405
24.0401

21.5386
21.5320

16.8706
16.8670

16.2431
16.2305

16.0867
16.0789

15.7958
15.7912

15.4378
15.4293

22.9935
22.9811

18.5755
1805635

16.1680
16.1514

14.4949
14.4885

RANGE 180 TO -300 KEV.
8 0

0.0020
20.9952

0.

24.8180
.

27.5320
.

16. 5631

68.011

24.1026

24.0444

21.5414

16.8722

16.24-15

16.0879

15.7978

15.4402

22.9967

18.5780

16.1695

14.4947

SAMPLE INPUT
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4

20.9930

0.

24.8243

27.5256

16.5626

0.025

24.1009

24.0449

2105372

16.8681

16.2414

16.0863

15.7979
0

15.4367
0

22.9880

18.5671

16 .1655
0

14* 49l)17



Identificationxkm

67*9976
57.1786
54.3145
54.0871
49.8858
44.0820
32.2422
25.4465
24.2219
22.9314
22.6386
22.3201
21*1635
19.7244
15.9609
41.9133

18
21

2
2

0.0210
0.0183
0.0174
0.0174
0.0181
0.0154
0.0139
0.0123
0.0120
0.0121
0.0126
0.0118
0.0118
0.0115
0.0122
0.0138

Arclength

17.0305
14.3202
13.6027
13.5458
12.4934
11.0397
8.0744
6.3725
6.0658
5.7426
5.6693
5.5895
5.2999
4.9395
3.9970

10.4966

SAMPLE OUTPUT

E

181.9540
216.3825
227.7928
228.7503
248.0154
280.6687
383.7344
486.2131
510.7962
539.5425
546.5191
554.3184
584.6112
627.2663
775.1728
295.1915

128

a-(EM)

0.0562
0.0692
0.0732
0.0737
0.0900
0.0984
0.1651
0.2360
0.2523
0.2855
0.3043
0.2942
0.3247
0.3664
0*591,0
0.0973

2 PLATE
6 PLATE
27 PLATE
28 PLATE

PLATE
PLATE
PLATE
PLATE

11 PLATE
PLATE
PLATE
PLATE
PLATE
PLATE
PLATE

295 PLATE

VW GOOD
VVS GOOD
VVS GOOD

VS GOOD
VVW BAD

W GOOD
VVWQ BAD

M GOOD
W GOOD
W GOOD

VW BAD
M GOOD
M GOOD
M GOOD

VVWQ BAD
M GOOD

5

1
2
3
4
5
6
8
9

10
11
12
13
14
15
16
17

52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52

SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
SC-46.
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C MAIN PROGRAM NO 1
DIMENSION Z(80,24),WVLNTH(80),SIGWL(80) W(80,24),PART(24),Y(80),

1 SIGY2(80),SIGY(80),U(80),SIGU2(80),SIGU(80),SIN1(80),SGNG(80),
2 WVLN2(80) ,SIGW2(80) ,X(80),SIGX2(80),SIGX(80) ,SIG2(80),SIGXY2(80),

3 GISXY2(80),WT(80),DLM(80),SIN2(80),COS2(80),SG2(80),SGDLM2(80),
4 S'G(80),SGDLM(80),ENERGY(80),RES(80),RES2W(80),DNAM(80,8),DNAME(80
5,8),ARCLN(80)

C THIS PROGRAivM ANALYSES EMULSION PLATES WHICH DO NOT STRADDLE THE

C BETA POINT, AND HAVE TWO OR MORE CALIBRATION LINES.
NIT=4
NOT=2
CON=12372.44
SGCON2=0.0256

3 WRITE OUTPUT
4 FORMAT (50H1

WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT

TAPE
BENT-C

T-APE
TAPE
TAPE
TAPE
TAPE
TAPE
TAPE

NOT ,4
RYSTAL GAMMA-RAY SPECTROMETER DATA ANALYSIS)
NOT,700
NOT ,-710
NOT,720
NOT,725
NOT,730
NOT,740
NOT,750

WRITE OUTPUT TAPE NOT,760
WRITE OUTPUT TAPE NOT,770

C STATEMENTS 5 TO 102. READ THE INPUT DATA AND WRITE THEM OUT.

5 READ INPUT TAPE NIT ,6

6 FORMAT (72HO PROBLEM
1 IDENTIFICATION

10 READ INPUT TAPE NIT,20,NOCASENRNCLNGULNBULNPRNT1
20 FORMAT(6110)
25 READ INPUT TAPE NIT,40,Al,SIGAl,D,SIGDSIGT
28 FORMAT (8A6)
29 FORMAT (lH1)

DO 32 J=1,NCL
READ INPUT TAPE NIT,40,

32 READ INPUT TAPE NIT,28,
40 FORMAT (6E12.6)

READ INPUT TAPE NIT,40,

NPRNT=XABSF(NPRNT1)
NL=NGUL+NBUL

50 FORMAT (6E14.5)
DO 52 J=1,NL

(Z(J,I),I=1,NR)
(DNAiA(JK),K=1,8)

(WVLNTH(J),SIGWL(J),J=1,NCL)

READ INPUT TAPE NIT,40,(W(J#I),I=1,NR)
52 READ INPUT TAPE NIT,28,(DNAME(JK),K=1,8)

WRITE OUTPUT TAPE NOT,29
WRITE OUTPUT TAPE NOT,6
WRITE OUTPUT TAPE NOT,60

55 FORMAT (6F14.5)
60 FORMAT (61HO NOCASE NR NCL NGUL

1NPRNT1)
WRITE OUTPUT TAPE NOT,20,NOCASE,NR,NCL,NCULNBULNPRNT1
WRITE OUTPUT TAPE NOT,70

70 FORMAT (70HO Al SIGAl D

1 SIGT
WRITE OUTPUT TAPE NOT,55,Al,SIGA1,D,SIGDSIGT
WRITE OUTPUT TAPE NOT,80

80 FORMAT (84HO WVLNTH SIGWL WVLNTH

2 WVLNTH SIGWL

WRITE OUTPUT TAPE NOT,55,((WVLNTH(J),SIGWL(J)),J=1,NCL)
IGO=1

88 WRITE OUTPUT TAPE NOT,90

NBUL

SIGD

SIGWL



90 FORMAT (28HO (Z(JI),I=1,NR),J=1,NCL)
DO 92 J=1,NCL
WRITE OUTPUT TAPE NOT,55,(Z(JI),I=1,NR)

92 WRITE OUTPUT TAPE NOT,28,(DNAM(J,K),K=1,8)
WRITE OUTPUT TAPE NOT,100

100 FORMAT (27HO (W(J,I),I=1,NR),J=1,NL)
DO 102 J=1,NL
WRITE OUTPUT TAPE NOT,55,(W(JI),I=1,NR)-

102 WRITE OUTPUT TAPE NOT,28,(DNAME(JK),K=1,8)
GO TO (105,150),IGO

105 IF (NOCASE-1)550,108,550
C STATEMENTS 108 TO 130. ADJUST READINGS TO A
108 FNCL=FLOATF(NCL)

FNR=FLOATF(NR)
DIV=FLOATF (NCL+NGUL)
SUM=0.
DO 120 I=1,NR
PART(I )=0.
DO 110 J=1,NCL

110 PART (I)= PART(I)+Z(JI)
DO 115 J=1,NGUL

115 PART(I)-=PART(I)+W(JI)
120 SUM=SUM+PART(I)

SUM=SUM/FNR.
DO f30 I=1,NR
ADD=(SUM-PART(I))/DIV
DO 125 J=1,NCL

125 Z(J,I)=Z(JI)+ADD
DO 128 J=1,NL

128 W(J,I)=W(JI)+ADD
130 CONTINUE

IF (NPRNT)140,140,150
140 WRITE OUTPUT TAPE NOT,145
145 FORMAT(26HlADJUSTED POSITIONS BELOW.)

IGO=2
GO TO 88

C STATEMENTS 150 TO 200. OBTAIN AVERAGE VALUE

C STANDARD DEVIATIONS.
150 CALL AVRGE (ZNCLNRYSIGYSIGY2)
200 CALL AVRGE (WNLNR,U,SIGUSIGU2)

IF (NPRNT-1)210,210,230
210 WRITE OUTPUT TAPE
211 FORMAT (11OH1Y(J)

1 SIGY(J
WRITE OUTPUT

212 FORMAT (110H
1 SIGU(J

214 WRITE OUTPUT
215 FORMAT (25HO

WRITE OUTPUT
WRITE OUTPUT

220 FORMAT (24HO
WRITE OUTPUT

= ST
TAPE
U(J)

= ST
TAPE

Y(
TAPE
TAPE

U
[APE

STATEMENTS 230 TO
POINT

230 SIGT2=SIGT*SIGT
JGO=1
D2=D*D
D24=4.*D2,
SIGA12=SIGA1*SIGAl
TWOD=2.*D

COMMON REFERENCE POINT

S OF Z AND W, AND THEIR

NOT,211
= AVERAGE READING OF CALIBRATION LINE J IN CMS

ANDARD -DEVIATION OF Y(J) IN CMS

NOT ,212
= AVERAGE READING OF UNKNOWN LINE J IN CMS
ANDARD DEVIATION OF U(J) IN CMS
NOT,215
J),SIGY(J),J=1,NCL)
NOT,55,(Y(J),SIGY(J),J=1,NCL)
NOT,220
(J),SIGU(
NOT,55,(

J),J=1,NL)
U(J),SIGU(J),J=1,NL)

320. CALCULATE THE WEIGHTS OF EACH CALIBRATION
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C
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C
C
C

SIGD2=SIGD*SIGD
SIGD24=4.*SIGD2
DO 260 J=1,NCL
WVLN2(J)=WVLNTH(J)*WVLNTH(J)
SIGW2(J)=SIGWL(J)*SIGWL(J)
X(J)=ARCSN(WVLNTH(J)/TWOD)
SIGX2(J)=(SIGW2(J)+WVLN2(JI*SIGD2/D2)/(D24-WVLN2(J))
SIGX(J)=SQRTF(SIGX2(J))

260 SIG2(J)=SIGY2(J)+SIGT2
IF (NPRNT)265,265,290

265 WRITE OUTPUT TAPE NOT,268

268 FORMAT (24HO X(J),SIGX(J),J=1,NCL)
WRITE OUTPUT TAPE NOT,50,(X(J),SIGX(J),J=1,NCL)

290 AT1=Al
MANY=0

300 A12=Al*Al
TOTAL=0.
ADD=0.
DO 310 J=1,NCL
DATA=Al2*SIGX2(J)
SIGXY2(J)=SIG2(J)+DATA
GISXY2(J)=1./SIGXY2(J)
ADD=ADD+1*/DATA

310 TOTAL=TOTAL+GISXY2(J)
DO 320 J=1,NCL

320 WT(J)=GISXY2(J)/TOTAL
STATEMENTS 326 TO 345. CALCULATE THE LEAST SQUARE VALUE OF TH

FOCAL LENGTH Al, AND THE DISTANCE AO FROM THE BETA POINT TO T

ZERO REFERENCE OF THE MEASUREMENTS.

326 CALL REDUCE(WT,X,Y,NCLAOAlSIGA02,SIGA12,TOTALRCRELT)
MANY=MANY+1
IF (ABSF( 1.-ATl/Al )-2.E-7)360,360,330

330 IF (MANY-20)345,332,332
332 IF (ABSF(1.-AT1/Al)-l.E-5)360,360,335
335 WRITE OUTPUT TAPE NOT ,338
338 FORMAT (52HONO CONVERGENCE ON Al. IOkE THAN 20 ITERATIONS.

WRITE OUTPUT TAPE NOT,340

340 FORMAT(70HO AO ATl Al SIGA

1 SIGAl2
WRITE OUTPUT TAPE NOT,50,A0,AT1,Al,SIGA02,SIGAl2

JGO=2
GO TO 362

345 ATl=Al
GO TO 300

360 WRITE OUTPUT TAPE NOT,361,MANY
361 FORMAT (6HOMANY=12)

WRITE OUTPUT TAPE NOT,570
WRITE OUTPUT TAPE NOT,580
WRITE OUTPUT TAPE NOT,590

362 WRITE OUTPUT TAPE NOT,363
363 FORMAT (18HO WT(J),J=1,NCL)

WRITE OUTPUT TAPE NOT,55,(WT(J),J=1,NCL)
GO TO (364,5),JGO

364 IF (NCL-2)379,379,366
C STATEMENTS 366 TO 380. CALCULATE CALIBRATION

C TERMS
366 WE2MN1=1./TOTAL

WE2MN2=0.
DO 370 J=.1,NCL
RES(J)=Y(J)+AO-Al*X(J)
RES2W(J)=WT(J)*RES(J)*RES(J)

E
HE

02

RESIDUALS AND ERROR
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370 WE2MN2=WE2MN2+RES2W(J)
WE2MN2=WE2MN2/FLOATF(NCL-2,
IF (WE2MN2-WE2MN1)375,375,372

372 WRITE OUTPUT TAPE NOT,373
373 FORMAT (42HOTHE RESIDUALS ARE LARGER THAN THE ERRORS.)

RATIOP=WE2MN2/WE2MN1
SIGA02=SIGA02*RATIOP
SIGA12=SIGA12*RATIOP
TOTAL=l./WE2MN2

375 WRITE OUTPUT TAPE NOT,376
376 FORMAT (15HORES(J),J=1,NCL)

WRITE OUTPUT TAPE NOT,50,(RES(J),J=1,NCL)
WRITE OUTPUT TAPE NOT,377

377 FORMAT (28HO WE2MN1 WE2MN2
WRITE OUTPUT TAPE NOT ,50,WE2MN1,WE2MN2

379 RATIO=TOTAL/ADD
SIGAO=SQRTF(SIGA02)
SIGAl=SQRTF(SIGA12)
SGA02=SIGA02*RATI-0
SGA12=SIGA12*RATIO
SGAO=SQRTF(SGA02)
SGA1=SQRTF(SGA12)

380 SGAL=SQRTF(SGA12)
STATEMENTS 381 TO 480. CALCULATE THE WAVELENGTH AND EN
UNKNOWN LINES, AND THEIR STANDARD DEVIATIONS.
A12=Al*Al
N1=NL

381 DO 480 J=1,N1
ARCLN(J)=AO+U(J)
DATA= ARCLN(J)/Al
SIN1(J)=SINAC(DATA)
DLM(J)=TWOD*SIN1(J)
SIN2(J)=SIN1(J)*SIN1(J)
COS2(J)=1.-SIN2(J)
SG2(J)=SIGD24*SIN2(J)
SQUARE=DATA*DATA
DATAR=D24*COS2(J)/A12
SGDLM2(J)=SG2(J)+DATAR*.(SIGA02+SIGU2(J)+SIGT2+SQUARE*S

1 RCRELT*DATA*SIGAO*SIGA1)
SG2(J)=SG2(J)+DA.TAR*(SGA02+SQUARE*SGA12-2.*RCRELT*DATA
SG(J)=SQRTF(SG2(J))
ENERGY(J)=CON/DLM(3)
SGDLM(J)=SQRTF(SGDLM2(J))

ERGY OF THE

IGA12-2.*

*SGA0*SGAl)

480 SGNG(J)=SQRTF(SGDLM2(J)*ENERGY(J)*ENERGY(J)+SGCON2)/DLM(J)
WRITE OUTPUT TAPE NOT,500

500 FORMAT (114H.1 DLM SGDLM SG ARCLN ENERG
lY SGNG IDENTIFICATION
WRITE OUTPUT TAPE NOT,502,(DLM(K),SGDLM(K),SG(K),ARCLN(K),ENERGY(K
1),SGNG(K),(DNAME(KL),L=1,8),K=1,N1)

502 FORMAT (Fll.4,2F11.6,2F11.4,F11.6,'8A6)
IF (NPRNT1.)503,503,508

503 PUNCH 504,(DLM(K),SGDLM(K),ARCLN(K),ENERGY(K),SGNG(K),(DNAME(KJ),

504
508
510
515

1 J=1,6),K=1,N1)
FORMAT (F9.4,F8.4,F9.4,F10.4,F8.4,6A6)
IF (NPRNT-1)510,510,5
WRITE OUTPUT TAP.E NOT,515
FORMAT (70HO AO SIGAO Al SIGAl

.1 RCRELT)
WRITE OUTPUT TAPE NOT,55,A0,SIGA0,AlSIGAlRCRELT
IF (NCL-2)5,5,518

518 DO 520 J=1,NCL

132
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U ( J) =Y ( J)
SIGU(J)=SIGY(J)
DO 520 K=1,8

520 DNAME(JK)=DNAM(JK)
N1=NCL
JGO=1
NPRNT=2
GO TO 381

550 WRITE OUTPUT TAPE NOT,560
560 FORMAT (58HO YOU HAVE THE WRONG CASE NUMBER. ANALYSIS IS DISCONTIN

lUED)
GO TO 5

570' FORMAT (11OHO WT(J) = WEIGHT OF CALIBRATION POINT J IN CMS
1 RES(J) = RESIDUAL AT CALIBRATION POINT J IN CMS

580 FORMAT (110HO WE2MN1 = MEAN WEIGHTED SQUARE OF ERRORS AT THE CALIB
1RATION POINTS IN CMS2

590 FORMAT (110HO.WE2MN2 = MEAN WEIGHTED SQUARE OF RESIDUALS AT THE CA

1LIBRATION POINTS IN CMS2
700 FORMAT (110HONOCASE = PROBLEM TYPE NUMBER

1 NR = NUMBER OF READINGS OF EACH LINE

710 FORMAT (110H NCL = NUMBER OF CALIBRATION LINES
1 NGUL = NUMBER OF GOOD UNKNOWN LINES

720 FORMAT (110H NBUL = NUMBER OF BAD UNKNOWN LINES
1 NPRNT1 = PRINT OPTION NUMBER

725 FORMAT(111H AO = DISTANCE FROM THE BETA POINT TO THE ZERO REFERENC

1E OF THE MEASUREMENTS IN CMS

730 FORMAT (110H Al = DIAMETER OF FOCAL CIRCLE IN CMS

1 SIGAl = STANDARD DEVIATION OF Al IN CMS

740 FORMAT (110H D = ATOMIC PLANF SPACING IN CRYSTAL IN XU

1 SIGD = STANDARD DEVIATION OF D IN XU
750 FORMAT (110H SIGT = UNCERTAINTY IN EACH LINE MEASUREMENT FROM EMUL

iSION SHRINKAGE,GEOMFTRICAL EFFECTSETC IN CMS
760 FORMAT (110H WVLNTH(J) = WAVELENGTH OF CALIBRATION LINE J IN XU

1 SIGWL(J) = STANDARD DEVIATION OF WVLNTH(J) IN XU

770 FORMAT (110H Z(JT) = READING I OF CALIBRATION LINE J IN CMS

1 W(JI) = READING I OF UNKNOWN LINE J IN CMS

END
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C MAIN PROGRAM NO 2
DIMENSION Z(24),W(80,24),PART(24),U(80),SIGU2(80),DLM(80.),SIGU(80)
1,SGDLM2(80),SGDLM( 80), ENERGY(80),SGNG(80),SG2(80),SG(80)
2 ,ZD(8O,24),YD(80),SIGYD(80),SIGYD2(80),DNAM(8),DNAME(80,8),ARCLN(
3 80)

C THIS PROGRAM ANALYSES EMULSION PLATES WHICH DO NOT STRADDLE THE

C BETA POINT AND HAVE ONLY ONE CALIBRATION LINE.
NIT=4
NOT=2
CON=12372.44
SGCON2=0.0256

3 WRITE OUTPUT TAPE NOT,4

4 FORMAT (50H1BENT-CRYSTAL GAMMA-RAY SPECTROMETER DATA ANALYSIS)
WRITE OUTPUT TAPE NOT,700
WRITE OUTPUT TAPE NOT,710
WRITE OUTPUT TAPE NOT,720
WRITE OUTPUT TAPE NOT,725
WRITE OUTPUT TAPE NOT,730
WRITE OUTPUT TAPE NOT,740
WRITE OUTPUT TAPE NOT,750
WRITE OUTPUT TAPE NOT,760
WRITE OUTPUT TAPE NOT,770

C STATEMENTS 5 TO 102. READ THE INPUT DATA AND WRITE THEM OUT.

5 READ INPUT TAPE NIT 96
6 FORMAT (72HO PROBLEM

1 IDENTIFICATION )
10 READ INPUT TAPE NTT,20,NOCASENRNGULNBULNPRNT1
20 FORMAT (5110)
25 READ INPUT TAPE NTT,40,Al,SIGAlDSIGDSIGTWVLNTHSIGWL
28 FORMAT (8A6)
29 FORMAT (iH1)

READ INPUT TAPE 'NIT,40,(Z( I),I=1,NR)
32 READ INPUT TAPE NIT,.28,(DNAM(K),K=1,8)
40 FORM.AT (6E12.6)

NPRNT=XABSF (NPRNT1)
NL=NGUL+NBUL

50' FORMAT (6E14.5)
DO 52 J=1,NL
READ INPUT TAPE NIT,40,(W(JI),1=1,NR)

52 READ INPUT TAPE NIT,28,(DNAIE(J,K),K=1,8)
WRITE.OUTPUT TAPE NOT,29
WRITE OUTPUT TAPE NOT,6
WRITE OUTPUT TAPE NOT,60

55 FORMAT (6F14.5)
60 FORMAT (50HO NOCASE NR NGUL NBUL NPRNT1)

WRITE OUTPUT TAPE NOT,20,NOCASENR,'NGUL ,NBULNPRNT

70 WRITE OUTPUT TAPE NOT,80
80 FORMAT (98HO Al SIGAl D SIGD

1 SIGT WVLNTH SIGWL
WRITE OUTPUT TAPE NOT,85,Al,SIGAl ,D,SIGDSIGT ,WVLNTHSIGWL

85 FORMAT (7F14.5)
IGO=1

88 WRITE OUTPUT TAPE NOT,90
90 FORMAT (16HO Z(I),I=1,NR)

WRITE OUTPUT TAPF NOT,55,(Z(I),I=1,NR)
WRITE OUTPUT TAPE NOT,28,(DNAM(K),K=1,8)

98 WRITE OUTPUT TAPE NOT,100
100 FORMAT. (27HO (W(J,I),I=1,NR),J=1-,NL)

DO 102 J=1,NL
WRITF OUTPUT TAPF NOT,50,(W(JI),I=1,NR)

102 WRITE OUTPUT TAPE NOT,28,(DNAME(JK),K=1,8)



GO TO (105,150),IGO
105 IF (NOCASE-2)55C,108,550

C STATEMENTS 108 TO 130. ADJUST READINGS TO A COMMON
108 FNR=FLOATF(NR)

SUM=0.
DIV=FLOATF(NGUL)+1.
DO 120 I=1,NR
PART(I)=Z(I)
DO 115 J=1,NGUL

115 PART(I)=PART(I)+W(JI)
120 SUM=SUM+PART( I)

SUM=SUM/FNR
M=1
DO 130 I=1,NR
ADD=(SUM-PART(I))/DIV
Z (I)=Z(I)+ADD
ZD(M,1)=Z(I)
DO 128 J=1,NL

128 W(J,I)=W(J,I)+ADD
130 CONTINUE

IF (NPRNT)140,140,150
140 WRITE OUTPUT TAPE NOT,145
145 FORMAT(26HlADJUSTED POSITIONS bELOW.)

REFERENCE POINT

IGO=2
GO TO 88
STATE.MENTS 150 TO 200. OBTAIN AVERAGE VALUES OF Z AND W, AND THEIR
STANDARD DEVIATIONS.

150 CALL AVRGE (ZDl,NR,YDSIGYDSIGYD2)
Y=YD(M)
SIGY=SIGYD(M)
SIGY2=SIGYD2(M)

200 CALL AVRGF (W,NLNR,U,SIGUSIGU2)
IF (NPRNT-1)210,210,230

210 WRITE OUTPUT TAPE NOT,211
211 FORMAT (11OHl Y = AVERAGE READING OF CALIBRATION LINE IN CMS

1 SIGY = STANDARD DEVIATION OF Y IN CMS
WRITE OUTPUT TAPE NOT,212

212 FORMAT (110H U(J) = AVERAGE READING OF UNKNOWN LINE J IN CMS
1 SIGU(J) = STANDARD DEVIATION OF U(J) IN CMS
WRITE OUTPUT TAPE NOT,214

214 FORMAT (28HO Y SIGY
WRITE OUTPUT TAPE NOT,50,YqSIGY
WRITE OUTPUT TAPE NOT,220

220 FORMAT (24HO U(J),SIGU(J),J=1,NL)
WRITE OUTPUT TAPE NOT,50,(U(J),SIGU(J),J=1,NL)
STATEMENTS 230 TO 250. CALCULATE THE WAVELENGTH AND ENERGY OF THE
UNKNOWN LINES, AND THEIR STANDARD DEVIATIONS.

230 SIGD2=SIGD*SIGD
B2=D*D
SIGT2=SIGT*SIGT
SIGTWO=2.*SIGT2
SIGD24=4.*SIGD2
Al2=Al*Al
A14=Al2*Al2
SIGA12=SIGA1*SIGAl
TWOD=2.*D
D24=4.*D2
EX=WVLNTH/TWOD
EX2=EX*EX
OMEX2=1.-EX2
FACT=ARCSN(EX)

135
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AO=Al*FACT-Y
DATA=D24*OMEX2/A12
SIGWL2=SIGWL*SIGWL
N1=NL+1
U(Ni)=Y
DO 240 K=1,8

240 DNAME(N1,K)=DNAM(K)
DO 250 J=1,Nl
ARCLN(J)=AO+U(J)
X=SINAC(ARCLN(J)/Al)
X=SINAC((AO+U(J))/Al)
X2=X*X
YD=Y-U(J)
YD2=YD*YD
COSX2=1.-X2
SINYD=SINAC(YD/Al)
SINYD2=SINYD*SINYD
DLM(J)=TWOD*X
SG2(J)=(SIGD24*SINYD2+SIGWL2*COSX2)/OMEX2+D24*COSX2*YD2*SIGA12/A14
SGDLM2(J)=SG2(J)+D24*COSX2*(SIGY2+SIGU2(J)+SIGTWO)/A12
SGDLM(J)=SQRTF(SGDLM2(J))
ENERGY (J-) =CON/DLM ( J)
SGNG(J)=SQRTF ( SGDLi2 (J) *ENERGY(J) *ENERGY (J) +SGCON2) /DLM(J)

250 SG(J)=SQRTF(SG2(J))
WRITE OUTPUT TAPE NOT,500

500 FORMAT (114H1 DLM SGDLM SG ARCLN ENERG

lY SGNG IDENTIFICATION
WRITE OUTPUT TAPE NOT,502,(DLM(K),SGDLM(K),SG(K),ARCLN(K),ENERGY(K
1),SGNG(K),(DNAME(KL),L=1,8),K=1,N1)

502 FORMAT (Fll.4,2Fil.6,2Fll.4,Fll.6,8A6)
IF (NPRNT1)503,503,508

503 PUNCH 504,(DLM(K),SGDLM(K),ARCL.N(K),ENERGY(K),SGNG(K),(DNAME(KJ),
1 J=1,6),K=1,N1)

504 FORMAT (F9.4,F8.4,F9.4,F10.4,F8.4,6A6)
508 WRITE OUTPUT TAPE NOT,510,AO
510 FORMAT (12HO A=F1O.4)

GO TO 3
550 WRITE OUTPUT TAPE NOT,560
560 FORMAT (58HO YOU HAVE THE WRONG CASE NUMBER. ANALYSIS IS DISCONTIN

lUED)
GO TO 3

700 FORMAT (110HONOCASE = PROBLEM TYPE NUMBER
1 NR = NUMBER OF READINGS OF EACH LINE

710 FORMAT.(36H NGUL = NUMBER OF GOOD UNKNOWN LINES)
720 FORMAT (110H NBUL = NUMBER OF BAD UNKNOWN LINES

1 NPRNT1 = PRINT OPTION NUMBER
725 FORMAT(111H AO = DISTANCE FROM THE BETA POINT TO THE ZERO REFERENC

1E OF THE MEASUREMENTS IN CMS
730 *FORMAT (110H Al = DIAMETER OF FOCAL CIRCLE IN CMS

1 SIGAl = STANDARD DEVIATION OF Al IN CMS

740 FORMAT (110H D = ATOMIC PLANE SPACING IN CRYSTAL IN XU
1 SIGD = STANDARD DEVIATION OF D IN XU

750 FORMAT (110H SIGT = UNCERTAINTY IN EACH LINE MEASUREMENT FROM EMUL

lSION SHRINKAGEGEOMETRICAL EFFECTS,ETC IN CMS
760 FORMAT (110H WVLNTH = WAVELENGTH OF CALIBRATION LINE IN XU

1 SIGWL = STANDARD DEVIATION OF WVLNTH IN XU

770 FORMAT -(110H Z(I) = READING I OF CALIBRATION LINE IN CMS

1 W(J,I) = READING I OF UNKNOWN LINE J IN CMS

END
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C MAIN PROGRAM NO 3
DIMENSION Z(80,24),WVLNTH(80),SIGWL(80),W(80,24),PART(24),Y(80),

1 SIGY(80),STGY2(P0),U(80),SIGU(80),SIGU2(80),5(80),AOP(80),
2SG'A0P2(80),SGA0P(80),SIGS2(80),STGS(80),R(80),SIGR(80)9STGR2(80),
3 WVLN2(80) ,X(8O),SIGW2(80),SIGX2(80),SIGX(80),SIG2(80),SIGXY2(80),
4 GISXY(80), WT(p0),SIN1(80),DLM(80),SIN2(80),COS2(80),R2(80),
5SG2(80),SGDLM(80),SLM2(80),SG(80),ENRGY(80),SGNG(80)9GISXY2(80)
6 - RES(80),RES2W(80),DNAM(80,8),DNAIE(80,8)

C THIS PROGRAM ANALYSES EMULSION PLATES THAT STRADDLE THE BETA POINT

NOT=2
NIT=4
CON=12372.44
SGCON2= .0256

3 WRITE OUTPUT TAPE NOT,4

4 FORMAT (50H1BENT-CRYSTAL GAMMA-RAY SPECTROMETER DATA ANALYSIS)

WRITE OUTPUT
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WR ITE-

C STATE

TAPE NOT,700
TAPE NOT,710
TAPE NOT,715
TAPE NOT,720
TAPE NOT,725
TAPE NOT,730
TAPE NOT,740
TAPE NOT,750
TAPE NOT,760
TAPE NOT,770
TO 102. READ THE INPUT DATA AND WRITE THEM OUT.

5 READ INPUT TAPE NIT ,6

6 FORMAT (72HO PROBLEM
1 IDENTIFICATION )

10 READ INPUT TAPE NIT,20,NOCASENRNCLS,NCLPNGULSNG
20 FORMAT (8110)

NCL=NCLS+NCLP
25 READ INPUT TAPE NIT,40,AlSIGAl,D,SIGD,SIGT

28 FORMAT (8A6.)
29 FORMAT (lH1)
30 FORMAT(5E14.6)
32 NX1=2*NCLP

NX2=NX1+NCLS
DO 35 J=1,NX2
READ INPUT TAPE NIT,40,(Z(J,I),I=1,NR)

35 READ INPUT TAPE NIT,28,(DNAM(JK),K=1,8)
40 FORMAT (6E12.6)

READ INPUT TAPE NIT,40,(WVLNTH(J),SIGWL(J),J=1,NCL)

NPRNT=XABSF(NPRNTl)
NUL=NGULS+NBUL
NL=NUL+NGULP
NX3=2*NGULP
NX4=NX3+NUL
NX5=NX3+NGULS

50 FORMAT (6E14.5)
DO 52 J=1,NX4
READ INPUT TAPE NTT,40,(W(JT),=1,NR)

52 READ INPUT TAPE NIT,28,(DNAME(JK),K=1,8)
55 FORMAT (6F14.5)

WRITE OUTPUT TAPE NOT,29
WRITE OUTPUT TAPE NOT,6
WRITE OUTPUT TAPE NOT,60

60 FORMAT (80HO NOCASE NR NCLS NCLP

1NGULP NBUL NPRNT1)
WRITE OUTPUT TAPE NOT,20,NOCASENRNCLS,NCLPNGULS,

1 NPRNT1

JLP ,NBUL,NPRNT1

NGULS

NGULPNBUL,

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

MENTS 5
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WRITE OUTPUT TAPE NOT,70
70 FORMAT (70HO Al SIGAl D SIGD

1 SIGT
WRITE OUTPUT TAPE NOT,55,AlSIGAlDtSIGDSIGT
WRITE OUTPUT TAPE NOT,80

80 FORMAT (84HO WVLNTH SIGWL WVLNTH SIGWL
1 WVLNTH SIGWL
WRITE OUTPUT TAPE NOT,55,((WVLNTH(J),STGWL(J)),J=1,NCL)
IGO=1

88 WRITE OUTPUT TAPE NOT,90
90 FORMAT (30HO (Z(JI),I=1,NR),J=1,NX2 )

DO 92 J=1,NX2
WRITE OUTPUT TAPE NOT,55,(Z(JI),I=lNR)

92 WRITE OUTPUT TAPE NOT,28,(DNAM(JK),K=1,8)
WRITE OUTPUT TAPE NOT,98

98 FORMAT (28HO (W(JT),I=1,NR),J=1,NX4)
DO 102 J=1,NX4
WRITE OUTPUT TAPE NOT,55,(W(J,1),T=1,NR)

102 WRITE OUTPUT TAPE NOT,28,(DNAME(JK),K=1,8)
GO TO (105,150),IGO

105 IF (NOCASE-3)550,108,550
C STATEMENTS 108 TO 130.'ADJUST READINGS TO A COMMON REFERENCE POINT
108 DIV=FLOATF(NCLS+NG7ULS+2*(NCLP+NGULP))

SUM=0.
FNR=FLOATF(NR)
SIGD2=SIGD*SIGD
SIGT2=SIGT*SIGT
TWOD=2 .*D
SIGA12=SIGA1*SIGAl
D2=D*D
D24=4.*D2
SIGD24=4.*SIGD2
AT1.=A1
MANY=0
DO 120 I=1,NR
PART(I)=0.
DO 110 J=1,NX2

110 PART (I)= PART(i)+Z(J,I)
IF(NX5)120,120,114

114 DO 115 J=1,NX5
115 PART(I)=PART(I)+W(JI)
120 SUM=SUM+PART(I)

SUM=SUM/FNR
DO 130 I=1,NR
ADD=(SUM-PART(I))/DIV
DO 122 J=1,NX2

122 Z(JT)=Z(JT)+ADD
DO 126 J=1,NX4

126 W(J,I)=-W(J,I)+ADD
130 CONTINUE

IF (NPRNT)140,140,150
140 WRITE OUTPUT TAPE NOT,145
145 FORMAT(26H1ADJUSTED POSITIONS BELOW.)

IGO=2
GO TO 88

C STATEMENTS 150 TO 200. OBTAIN AVERAGE VALUES OF Z AND W, AND THEIR
C STANDARD DEVIATIONS.
150 IF (NCLP)162,162,152
152 DO 155 J,=1,NCLP

JP=2*J
DO 155 K=1,8



155 DNAM(JK)=DNAM(JPK)
158 IF (NCLS)162,162,159
159 DO 160 J=1,NCLS

JP1=J+NCLP
JP2=J+NX1
DO 160 K=1,8

160 DNAM(JP1,K)=DNAM(JP2,K)
162 IF (NGULP)180,180,164
164 DO 167 J=1,NGULP

JP=2*J
DO 167 K=1,8

167 DNAME(JK)=DNAME(JPK)
NK=NBUL+NGULS
IF (NK)180,180,170

170 DO 173 J=1,NK
JP2=J+NX3
JP1=J+NGULP
DO 173 K=198

173 DNAME(JP1,K)=DNAME(JP2,K)
180 CALL AVRGE (ZNX2,NR,Y,SIGYSI.GY2)
200 CALL AVRGE (WNX4,NRUSIGUSIGU2)

IF (NPRNT-1)210,210,230
210 WRITE OUTPUT TAPE NOT,211
211 FORMAT (11OH1Y(J) = AVERAGE READING OF CALIBRATION LINE J IN CMS

1 SIGY(J) = STANDARD DEVIATION OF Y(J) IN CMS

WRITE OUTPUT TAPE NOT,212
212 FORMAT (110H U(J) = AVE.RAGE READING OF UNKNOWN LINE J

1 SIGU(J) = STANDARD DEVIATION OF U(J) IN CMS

214 WRITE OUTPUT TAPE NOT,215
215 FORMAT (26HO Y(J),SIGY(J),J=1,NX2

WRITE OUTPUT TAPE NOT,55,(Y(J),SIGY(J),J=1,NX2)
WRITE OUTPUT TAPE NOT,220

220 FORMAT (25HO U(J),SIGU(J),J=1,NX4)
WRITE OUTPUT TAPE NOT,55,(U(J),SIGU(J),J=1,NX4)

C STATEMENTS 230TO 242. CALCULATE THE DISTANCE AO

C POINT TO THE ZERO REFERENCE OF THE MEASUREMENTS

C DEVIATION.
230 SIGA02=0.

IF(NCLP)233,233,231
231 DO 232 J=1,NCLP

J2=2*J
J2Ml=J2-1
S(J)=0.5*(Y(J2M1)-Y(J2))
AOP(J)=0.5*(Y(J2M1)+Y(J2))
SGAOP2(J)=0.25*(SIGY2(J2M1)+SIGY2(J2))
SIG52(J)=SGAOP2(J)
SGAOP2(J)=SGAOP2(J)+0.5*SIGT2
SGA0P(J)=SQRTF(SGAOP2(J)

232 SIGA02=SIGA02+1./SGAOP2(J)
233 IF (NGULP)236,236,234
234 DO 235 J=1,NGULP

J2=2*J
J2Ml=J2-1
JPNCLP=J+NCLP
AOP(JPNCLP')=0.5*(U(J2M1)+U(J2))
R(J)=0.5*(U(J2M1)-U(J2))
SGA0P2(JPNCLP)=0.25*(SIGU2(J2M1)+SIGU2(J2))
SIGR2(J)=SGAOP2(JPNCLP)
SGAOP2(JPNCLP)=SGAOP2(JPNCLP)+0.5*SIGT2
SGAOP(JPNCLP)=SQRTF(SGAOP2(JPNCLP))

235 SIGA02=SIGA02+1./SGAOP2(JPNCLP)

IN CMS
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236 A0=0.
NLAST=NCLP+NGULP
DO 238 J=1,NLAST

238 A0=A0+A0P(J)/SGA0P2(J)
AO=AO/SIGA02
FNL=FLOATF(NLAST-1)
SGRA02=0.
DO 239 J=1,NLAST

239 SGRAO2=SGRA02+(AOP(J)-Ao)**2/SGAOP2(J)
SGRA02=SGRA02/(FNL*SIGA02)
SIG.A02=1./SIGA02
WRITE OUTPUT TAPE NOT,240

240 FORMAT (28HO SIGA02 SGRA02
WRITE OUTPUT TAPE NOT,50,SIGA02,SGRA02
IF (SIGA02-SGRA02)241,242,242

241 SIGA02=SGRA02
242 SIGA0=SQRTF(SIGA02)

IF (NPRNT1-1)243,243,245
243 WRITE OUTPUT TAPE NOT,244
244 FORMAT (43HO ((AOP(J),SGAOP(J)),J=1,NLAST),AOSIGAO)

WRITE OUTPUT TAPE NOT,55,((AOP(J),SGAOP(J)),J=1,NLAST),AOSIGAO
245 IF (NCLP)248,248,246
246 DO 247 J=1,NCLP

SIGS2(J)=SIGS2(J)+SIGA02
SIGS(J)=SQRTF(SIGS2(J))

247 SIGS24 J)=SIGS2(J)+0.5*SIGT2
248 IF (NGULP)251,251,249
249 DO 250 J=1,NGULP

SIGR2(J)=SIGR2(J)+SIGA02
SIGR(J)=SQRTF(SIGR2(J))

250 SIGR2(J)=SIGR2(J)+0.5*SIGT2
251 IF (NCLS)265,265,252
252 DO 260 J=1,NCLS

JPNCLP=J+NCLP
JPNX1=J+NX1
S(JPNCLP)=Y(JPNX1)-AO
DATA=SIGY2(JPNX1)+SIGA02
SIGS(JPNCLP)=SQRTF(DATA)

260 SIGS2(JPNCLP)=DATA+SIGT2
265 IF (NUL)272,272,268

STATEMENTS 268 TO 320. CALCULATE THE WEIGHTS OF EACH CALIBRATIO
POINT.

268 DO 270 J=1,NUL
JPNX3=J+NX3
JNGULP=J+NGULP
R(JNGULP)=U(JPNX3)-A0
DATA=SIGU2(JPNX3)+SIGA02
SIGR(JNGULP)=SQRTF(DATA)

270 SIGR2(JNGULP)=DATA+SIGT2
272 DO 280 J=1,NCL

WVLN2(J)=WVLNTH(J)*WVLNTH(J)
X(J)=ARCSN(WVLNTH(J)/TWOD)
SIGW2(J)=SIGWL(J)*SIGWL(J)
SIGX2(J)=(SIGW2(J)+WVLN2(J)*SIGD2/D2)/(D24-WVLN2(J))

280 SIGX(J)=SQRTF(SIGX2(J))
IF (NPRNT-1)293,293,300

293 WRITE OUTPUT TAPE NOT,295
295 FORMAT (18HO WT(J),J=1,NCL)
300 A 12= A 1 *A 1

TOTAL=0.
NT=0
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ADD=0.
DO 310 J=1,NCL
DATA=Al2*SIGX2(J)
SIGXY2(J)=SIG52(J)+DATA
GISXY2(J)=1./SIGXY2(J)
ADD=ADD+1*/DATA

310 TOTAL=TOTAL+GISXY2(J)
DO 320 J=1,NCL

320 WT(J)=GISXY2(J)/TOTAL
IF (NPRNT-1)321,321,326

321 WRITE OUTPUT TAPE NOT,55,(WT(J),J=1,NCL)
C STATEMENTS 326 TO 345. CALCULATE THE FOCAL LENGTH Al.

326 Al=0.
DEN=0.
DO 328 J=1,NCL
FACT=WT(J)*X(J)
Al=Al+FACT*S(J)

328 DEN=DEN+FACT*X(J)
Al=A1/DEN
MANY=MANY+1
SIGA12=1./(TOTAL*DEN)
IF (ABSF(1.-AT1/Al)-2.E-7)360,360,330

330 IF (MANY-20)345,332,332
332 IF (ABSF(1.-AT1/A1)-1.E-5)360,360,335
335 WRITE OUTPUT TAPE NOT ,338
338 FORMAT (52HONO CONVERGENCE ON Al. MORE THAN 20 ITERATIONS.

WRITE OUTPUT TAPE NOT,340
340 FORMAT(70HO AO ATl Al SIGA02

1 SIGAl2
WRITE OUTPUT TAPE NOT,50,A0,AT1,AlSIGA02,SIGA12
GO TO 5

345 ATl=Al
GO TO 300

360 WRITE OUTPUT TAPE NOT,361,MANY
361 FORMAT (6HOMANY=12)

WRITE OUTPUT TAPE NOT,570
WRITE OUTPUT TAPE NOT,580
WRITE OUTPUT TAPE NOT,590

362 WRITE OUTPUT TAPE NOT,363
363 FORMAT (18HO WT(J),J=1,NCL)

WRITE OUTPUT TAPE NOT,55,(WT(J),J=lNCL)
C STATEMENTS 366 TO 380. CALCULATE CALIBRATION RESIDUALS AND ERROR

C TERMS
WE2MN2=0.
IF (NCL-1)379,379,366

366 WE2MN1=1./TOTAL
DO 370 J=lNCL
RES(J)=(S(J)-Al*X(J))
RES2W('J)=WT(J)*RES(J)*RES(J)

370 WE-2MN2=WE2MN2+RES2W(J)
WE2MN2=WE2MN2/FLOATF(NCL-1)
IF (WE2MN2-WE2MNl)375,375,372

372 WRITE OUTPUT TAPE NOT,373
373 FORMAT (42HOTHE RESIDUALS ARE LARGER THAN THE ERRORS.)

SIGAl2=SIGA12*WE2MN2/WE2MN1
TOTAL-=l*/WE2MN2
IF (NPRNT-1)375,375,377

375 WRITE OUTPUT TAPE NOT,376
376 FORMAT (l5HORES(J),J=1,NCL)

WRITE OUTPUT TAPE NOT,50,(RES(J),J=1,NCL)

377 WRITE OUTPUT TAPE NOT,378



378 FORMAT (28HO WE2MN1
WRITE OUTPUT TAPE NOT

379 RATIO=TOTAL/ADD
Al2=Al*Al

WE2MN2
,50,WE2MN1,WE2MN2

SGAl2=SIGA12*RATIO
DATAR=SGAl2*D24/(Al2*A12)
SIGAO=SQRTF(SIGA02)
SIGAl=SQRTF(SIGA12)

380 DATA=SIGAl2/A12
C STATEMENTS 390 TO 500. CALCULATE THE ENERGY AND WAVELENGTH OF

C UNKNOWN LINES AND THEIR S'TANDARD DEVIATION.
390 DO 400 K=1,NL

SIN1(K)=SINAC(R(K)/Al)
DLM(K)=TWOD*SIN1(K)
SIN2(K)=SIN1(K)*SIN1(K)
COS2(K)=l.-SIN2(K)
R2(K)=R(K)*R(K)
SG2(K)=SIGD24*SIN2(K)
SGDLM2(K)=SG2(K)+D24*COS2(K)*((SIGR2(K)+R2(K)*DATA)/Al2)
SGDLM(K)=SQRTF(SGDLM2(K))
SG2(K)=5G2(K)+R2(K)*DATAR*CQS2(K)
SG(K)=SQRTF(SG2(K))
ENERGY(K)=CON/DLM(K)

400 SGNG(K)=SQRTF(SGDLM2(K)*ENERGY(K)*ENERGY(K)+SGCON2)/DLM(K)
WRITE OUTPUT TAPE NOT,500

500 FORMAT (1l4H1 DLM SGDLM SG ARCLN

lY SGNG IDENTIFICATION
WRITE OUTPUT TAPE NOT,502,(DLM(K),SGDLM(K),SG(K),R(K),ENERGY(
1 SGNG(K),(DNAME(KL),L=1,8),K=1,NL)

502 FORMAT (Fil.4,2Fll.6,2Fli.4,Fll.6,8A6)
IF (NPRNT1)503,503,506

503 PUNCH 5049(DLM(K),SGDLM(K),R(K),ENE.RGY(K),SGNG(K) ,(DNAME(KJ)
1 6),K=1,NL)

504 FORMAT (F9.4,F8.4,F9.4,Fl0.4,F8.4,6A6)

THE

ENERG

K),

KJ=1,

506 IF (NT)5,508,5
508 IF (NPRNT-1)510,510,5
510 WRITE OUTPUT TAPE NOT,515

515 FORMAT (53HO AO
WRITE OUTPUT TAPE NOT,520

520 FORMAT (4F14.5)
WRITE OUTPUT TAPE NOT,535

535 FORMAT (25HO S(J),SIGS
WRITE OUTPUT TAPE NOT,55,
WRITE OUTPUT TAPE

540 FORMAT (24HO
WRITE OUTPUT TAPE
NL=NCL
DO 544 J=1,NCL
R(J)=S(J)
SIGR2(J)=SIGS2(J)
DO 544 L=1,8

544 DNAME(JL)=DNAM(J

SIGAO
,A0,SIGAO,AlSIGAl

(J),J=1,NCL)
(S(J),SIGS(J

NOT,540
R(J),SIGR(J),J=l

NOT,55,(R(J),SIGR(J

Al

,J=lNCL)

,NL)
,J=1,NL)

NT=1
GO TO 390

550 WRITE OUTPUT TAPE NOT,560
560 FORMAT (58HO YOU HAVE THE WRONG CASE NUMBER. ANALYSIS IS DISCONTIN

lUED)
GO TO 5

570 FORMAT (110HO WT(J) = WEIGHT OF CALIBRATION POINT J IN CMS

1 RES(J) = RESIDUAL AT CALIBRATION POINT J IN CMS

580 FORMAT (110HO WE2MN1 = MEAN WEIGHTED SQUARE OF ERRORS AT THE CALIB
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SIGAl)
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1RATION POINTS IN CMS2
590 FORMAT (110HO WE2MN2 = MEAN WEIGHTED SQUARE OF RESIDUALS AT THE CA

1LIBRATION POINTS IN CMS2
700 FORMAT (110HONOCASE = PROBLEM TYPE.NUMBER

1 NR = NUMBER OF READINGS OF EACH LINE
710 FORMAT (110H NCLS = NUMBER OF CALIBRATION LINES (SINGLES)

1 NCLP = NUMBER OF CALIBRATION LINES (PAIRS)
715 FORMAT (110H NGULS =-NUMBER OF GOOD UNKNOWN L.INES (SINGLES)

1 NGULP = NUMBER OF GOOD UNKNOWN LINES (PAIRS)
720 FORMAT (110H NBUL = NUMBER OF BAD UNKNOWN LINES

1 NPRNT1 = PRINT OPTION NUMBER
725 FORMAT(111H AO = DISTANCE FROM THE BETA POINT TO THE ZERO REFERENC

1E OF THE MEASUREMENTS IN CMS
730 FORMAT (110H Al = DIAMETER OF FOCAL CIRCLE IN CMS

1 SIGAl = STANDARD DEVIATION OF Al IN CMS

740 FORMAT (110H D = ATOMIC PLANE SPACING IN CRYSTAL IN XU
1 SIGD = STANDARD DGVIATION OF D IN XU

750 FORMAT (110H SIGT = UNCERTAINTY IN EACH LINE MEASUREMENT FROM EMUL

lSION SHRINKAGEGEOMETRICAL EFFECTS,ETC IN CMS
760 FORMAT (110H WVLNTH(J) = WAVELENGTH OF CALIBRATION LINE J IN XU

1 SIGWL(J) = STANDARD DEVIATION OF WVLNTH(J, IN XU
770 FORMAT (110H Z(JI) = READING I OF CALIBRATION LINE J IN CMS

1 W(JI) = READING I OF UNKNOWN LINE J IN CMS
END
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FUNCTION SINAC(W)
W2=W*W
SINAC=W*(1.0-W2.*(1.666666667E-1-W2*(8.333333333E-3-W2*1.984126984E

1-4)))
RETURN
END

FUNCTION ARCSN(W)
W2=W*W
ARCSN=W*(1.+W2*(1.666666667E-1+W2*(0.075+W2*(4.464285714E-2+W2*(

1 3.291428571E-2+W2*(2.237215909E-2+W2*1.735276442E-2))).)))
RETURN
END

SUBROUTINE AVRGE (VAR,M,N,VSIGVSIGV2)
DIMENSION VAR(80,24)t,V(80),SIGV(80),SIGV2(80)
FN=FLOATF(N)
DENOM=FN*(FN-1.)
DO 30 J=1,,M
V ( J)=0.
SIGV2 (J) =u.
DO 20 I=1,N

20 V(J)=V(J)+VAR(JI)
V(J)=V(J)/FN
DO 25 I=1,N

25 SIGV2 (J) =S IGV2 ( J)+ (VAR (J, I ) -V ( J) ) **2
SIGV2 (J) =SIGV2 (J) /DENOM

30 SIGV(J)=SQRTF(SIGV2(J))
RETURN
END

SUBROUTINE REDUCE (WT,X,Y,NCLAOAlSIGA02,SIGA12,TOTALRCRELT)
DIMENSION WT(80),X(80),Y(80)
B11=0.
B12=0.
B22=0.
E)=0.
E2=0.
DO 10 J=1,NCL
Bll=Bll+WT (J)
PART=X(J)*WT(J)
B12=B12+PART
B22=B22+PART*X(J)
El=El+WT ( J)*Y ( J)

10 E2=E2+PART*Y(J)
DET=Bll*B22-B12*B12
A0=(E2*B12-El*B22)/DET
Al=(Bil*AO+El)/B12
DIVD=DET*TOTAL

SIGA02=B22/DIVD
SIGA12=Bll/DIVD
RCRELT=B12/SQRTF(B22*Bll)
RETURN
END
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APPENDIX II

SPECTRUM ANALYSIS

OF THE SCINTILLATION PAIR SPECTROMETER

II. 1

In this appendix, methods are discussed of determining the line

spectrum of gamma rays incident on the scintillation pair spectrometer.

In particular, the operation of a code PAIRSTRIP is described in which

one particular method is programmed for the IBM 7090 digital computer.

The problem is discussed by Mollenauer (M4) for the case of an

ordinary sodium iodide crystal, but whose equations have more general

application. He shows that the measured complex spectrum C can be

related to the line spectrum N of incident gamma rays and the response

function of the system R by

C = R X N . (II.1.1)

In theory, the matrix R can be inverted to allow calculation of N as

N = R X C . (II.1.2)

In practice, this procedure is not suitable because R is not well enough

known and because there are statistical fluctuations in C. The matrix

inversion procedure will invariably produce large fluctuations between

positive and negative values in the vicinity of the peaks. Examples of

this are shown by Chertok (C4). The cause of these errors is discussed

by Burrus (B2) who states that it is due to error amplification when the

basic equations are solved exactly. What is required then is a solution

of Eq. (II.1.1) in which no negative values of N are allowed. An iterative

method developed by Scofield (S4) and used by Mollenauer (M4) provides

such a solution.

Denote successive approximations to the incident line spectrum

by Ni and to the calculated complex spectrum by C. The procedure

then is as follows:

Set N as the observed spectrum Co, and now apply in succession:
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C. = R XiN (II.1.3)
1 1

C0)

pJ (II.1.4)
(C

J

where (C ).i s the jth element in C., and
iJ 1

(Ni+ 1 . (N. X p. (II.1.5)

In principle, this procedure is to be applied for a sufficient number of

times until satisfactory convergence of C. to C is obtained. In practice,1 0
it has been found that a higher convergence rate is achieved if p is re-

placed by p2 after the first iteration. A review of this and other methods

is given by Heath (H4).

This method can be used for any instrument in which the response

is known well enough, and in which no gamma rays are incident on the

detector with an energy greater than the range of the measured spectrum.

In addition, proper normalization requires that the range of the measured

spectrum extends down to zero energy. These conditions can be met by

the pair scintillation spectrometer. The problem that remains then is to

determine the response matrix R.

11.2

Let us consider the processes that take place in the scintillation

pair spectrometer, before attempting to calculate the response function.

The interaction of interest, which is selected by means of the electronic

circuitry, is one in which a high energy gamma ray has a pair inter-

action in the central sodium iodide crystal of the instrument. An

electron pair is created, and each electron of the pair slows down to

deposit its kinetic energy in the primary crystal. The positron of the

pair annihilates and the two annihilation photons are absorbed completely

in the two side crystals.

For a given gamma-ray energy, the number of ion pairs formed by

the electrons shows statistical fluctuations and the number of optical

photons produced will vary about an average value. The number of

optical photons impinging on the photo cathode will vary in a statistical

manner, due to self-absorption in the crystal, which in turn depends on
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the position at which the electron pair was created and on the directions

taken by the electrons in that pair. In addition, the number of ion pairs

formed by a positron of a given energy may differ from that of an

electron of the same energy, due to their different collision cross sections.

The original interaction produces an electron pair with the total energy

of the incoming gamma ray less pair formation energy (1.02 Mev) and

the very small recoil energy of the nucleus, but there is no single energy

distribution between the members of that pair. The energy distribution

law for the pair is illustrated on page 704 of Reference El. Consequently,

the number of photo-electrons produced at the photocathode will fluctuate

in a statistical manner for an incoming gamma ray of a particular energy.

Before reaching the analyzer, the amplitude of the fluctuations is further

increased by instrumental responses, which include photomultiplier tube

intrinsic resolution, fluctuations in the high voltage supply, and noise in

the preamplifier and amplifier. At best, the analyzer would produce a

Gaussian peak as the response of the system to gamma rays of a constant

energy.

There are other interactions which complicate the response. Both

electrons being of high energy may create bremsstrahlung. Low energy

bremsstrahlung may be reabsorbed in the primary crystal but high energy

bremsstrahlung may well escape from the system. Re-absorption of low

energy quanta further increases the statistical fluctuations due to the non-

linearity of the optical output of the sodium iodide crystal at low energies.

The escape of the high energy quanta adds a tail to the low energy side of

the primary Gaussian peak. The positron may annihilate in. flight and

remove energy from the central crystal, and yet the more energetic

annihilation photons may still be captured by the side crystals and satisfy

each of the two single channel analyzers. There is a possibility that one

of the electrons may be energetic enough that it is not stopped inside the

crystal so that the remaining energy is lost. These mechanisms provide

a further contribution to the tail.

The peak may be distorted by an interaction of one or both annihi--

lation photons in the primary crystal, but which leaves the Compton

scattered photon enough energy that the channel requirements on both

side crystals are still satisfied. Finally, there remains the possibility

that under the tight geometrical arrangement of the crystals, the pair
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scintillation spectrometer may absorb, perhaps only partially, a low

energy photon that is coincident with the primary high energy gamma ray.

All of these processes are folded into a Gaussian distribution due to the

statistical nature of the response of the system.

Exact calculation of the functional dependence of the response and

efficiency of the instrument is very difficult and has not been attempted.

It would be desirable instead to have measured the response for a range

of monoenergetic gamma rays and calculate a response function empir-

cally from these measurements. In practice, no such source of mono-

energetic gamma rays was available. Decay sources usually provide low

energy photons (below 3 Mev) and prompt activation produces a whole

spectrum of gamma rays. Methods that can be used to produce mono-

energetic photons are annihilation of positrons in flight and crystal

monochromation, and neither method could be obtained readily.

An approach to obtain the response function that remains is to

assume one R a(E,V), which is dependent on gamma-ray energy E and

pulse-height V. This assumed response is multiplied by a series of

separable unknown coefficients to obtain

R = R (E,V)(a +a V+a V (b +b E+b (.2.1)a 0'o 2 o)b 1E 2 E

In principle, one may insert the above in Eq. (II.1.1), run several differ-

ent samples of known N and measure their spectra C. A least squares

fit to the coefficients a. and b. of Eq. (11.2.1) may be obtained and the

assumed functional dependence of the response may be modified, and

the process can be repeated if necessary. This approach has not been

used because the line spectrum of gamma rays from prompt activation

is not well known. The other reason is that this approach would have

required considerable programming and experimentation to obtain the

response function R to an indeterminate accuracy, and R was then to be

used in the procedure of Section 11.1 which was unproven in this case.

The effort required did not seem justifiable.

The method actually used is more empirical. The efficiency is

assumed to be proportional to the pair cross section of the high energy

gamma ray. The response of the instrument is taken as a Gaussian

peak with a variable resolution, plus triangular and exponential tails

on the low energy side of the peak with variable parameters. These
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tails are smoothed in to the peak center to avoid discontinuities. From

data of Rose (R2) based on gamma rays from excitation by charged parti-

cles, it can be shown that the ratio of the areas of the two tails to the

area of the peak varies approximately as E ' where E is energy. If

the area of the triangular tail is At and the exponential tail is Ae , we may

write

(At+A )/A oc E 1 '7  (11.2.2)

where Ap is the area of the Gaussian peak. This fact provides a basis

for the arbitrary division of the energy dependence of At and A. . This

division is represented by the following equations:

At =PEA (11.2.3)

and

A = P E 2 A , (11.2.4)
e 2 p'

where P and P2 are constants.

Figure 41 illustrates the components used to describe the response

of the instrument. Using the nomenclature of Fig. 41, we obtain

A = wh = 1.065 REh , (11.2.5)
p 4In2 p p

where w is the width at half maximum and R is the resolution of the

peak. Also,

A =$Eh (11.2.6)t 2 t*

If the exponential tail is described as

h' = h e- 2(E-E')/E (11.2.7)e e

where C2 is an adjustable parameter fed into the computer, then

h E
A =e (11.2.8)e C2

Now

A 1E h- 2 t - E (11.2.9)
p p1.6REh 1
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Smoothing Section (ht + h e)

FIG 41. BASIC ELEMENTS DESCRIBING THE RESPONSE OF

THE SCINTILLATION PAIR SPECTROMETER
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or

ht(121)
- = 1.065 X 2 X P 1 . (.2.10)

p

Now put

C = 1.065 X 2 X P 1  (11.2.11)

where C is a constant fed into the computer; and since

h'
t E(11.2.12)

t

we obtain

h'
= CRE' (11.2.13)

p

The above equation is programmed directly into the computer. Now

A h EAe _ e E -= PE 2  
(11.2.14)

A C X 1.065 REh 2
p 2p

or

h2
= C2X 1.065 P2RE2. (11.2.15)h 2 2p

Put

CI =C 2 X1.065 X P 2  (11.2.16)

where C is a constant fed into the computer, so that we obtain

h

= CRE2  (11.2.17)
p

which is also programmed directly into the computer.

The resolution R of the peak may be expected to vary inversely

with the square root of the number of optical photons created in the

crystal. Since the optical output is proportional to the energy deposited

in the crystal, the assumed functional dependence of R is taken as

R = a + + . (11.2.18)

The third term is added as a convenience. It was found that although the

first two terms of Eq. (11.2.18) would fit high-energy data well and also
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low-energy decay photons, the resolution predicted for low-energy

quanta on the pair scintillation spectrometer was too small. The

smearing of the actual peaks may have arisen from capture of coinci-

dent gamma rays, but the problem could be treated very easily by the

addition of the c/E term above.

Figure 42 illustrates the variation of R with 1/^ZIf from the

original calibration by the Harshaw Chemical Company, and from the

data of Olness (01). Both curves can be well fitted by the first two

terms of Eq. (11.2.18). The dotted curve is the one that has been used

for the reasons described above. The constants describing these

curves are given in Table 25.

Table 25. Parameters for the Energy Dependence of the Resolution
of the Scintillation Pair Spectrometer.

Ro = a + b/E Ro = a + b/NAE5 + c/E

a 0.82, 1.35 0.70

b 5.44 3.30

c - 6.00

The values of C, C and C2 have been adjusted so that a reasonable

convergence of the calculated spectrum and measured spectrum of gamma

rays from irradiation of iron is obtained. The values finally used are in

Table 26, below.

Table 26. Parameters for the Response Function
of the Scintillation Pair Spectrometer.

C C 1 C 2

0.60 0.07 15.5

Figure 15 shows the degree of convergence between the measured and

calculated spectrum of gamma rays from irradiation of iron. The agree-

ment provides reasonable confidence in the calculated response function.

The resolution improvement of the second curve has been obtained
by the optimization procedure described in Section 4.1.
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The calculated response of the instrument to monoenergetic gamma rays

is shown in Fig. 16.

The program for the computer is written so that it can either per-

form the operations indicated by Eqs. (11.1.3) to (11.1.5), or it can calculate
an "observed" spectrum from the known line spectrum. In the former

case, some smoothing is desirable to eliminate some of the statistical

fluctuations without losing information. Smoothing by a third-degree,

five-point, least squares formula is used as taken from page 296 of

Reference H3. In this process, five consecutive points are used to ob-

tain the smoothed value for the third point of the five. Smoothed values

are used for points 1 and 2, and raw data are used for points 3 to 5.
The final two and initial two points in the spectrum are smoothed by the
specialized formula of Reference H3.

The energy calibration of the spectrum in the 400 channel analyzer

is made by means of a third-order polynomial of the form,

E = a I + aI 1 a2 2 + a31 , (11.2.19)

where I is the channel number. The use of the second- and third-order

terms is necessitated because a distinct deviation from a straight line

is observed at high energies while below 5 Mev, the calibration is well

represented by a straight line.

11.3

The input for the PAIRSTRIP code is described in this section.

The card order is the same as that in Section 1.8, [(a) to (e)], but the

binary cards (c) and the data cards (e) now refer to this code. Data

cards comprise the following blocks:

A Identification of runs

B Program type control card

C Parameters for energy calibration and response determination

D Control parameters

E Observed spectrum data

F Energies and intensities of the known line spectrum

Table 27 details the description of these blocks in which the format is

that of Section 1.8.
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Table 27. Input for the PAIRSTRIP Code

Block
Column
Number Item

Input
Form

Code
Symbol Units

A 1-60 Identification A DENOTE(K) -

A 1-60 More identification A

B 1-10 The number of gamma rays of I NEP
the known set to be used to
calculate an "observed" spec.-
trum NEP will be zero if the
line spectrum is to be calcu-
lated from a measured
spectrum.

C 1-10 AE = a of Eq. (11.2.19) E AE Mev

11-20 BE = a1 " " E BE Mev

21-30 CE = a " " " E CE Mev

31-40 DE =a 3 " " E DE Mev

41-50 ARTE = a " " (11.2.18) E ARTE

51-60 BRTE = b " " E BRTE %(Mev) 1/2
61-70 CRTE = c " E CRTE % Mev

71-80 C of Eq. (11.2.13) E C Mev

C 1-10 C1 " " (11.2.17) E C1 Mev 2

11-20 C ' " (II.2.7) E C2 -

D 1-10 Number of iterations to be I NUMLT
made, described by Eqs.
(11.1.3) to (11.1.5)

E 1-80 The number of counts in each F COUNT (I),
channel starting with zero and I = 1,400
going to the 400th channel.
Sections D and E will be read
only if NEP = 0.

F 1-10 Energy of monoenergetic F ENERGY(K) Mev
gamma ray K

11-20 Intensity of monoenergetic F ENUM(K) -
gamma ray K

31-80 Repeat items above in order
for K = 1 to K = NEP.
Section F will be read only
if NEP#0.
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APPENDIX III

DATA REDUCTION METHODS FOR THE BNL APPARATUS

III. 1

This appendix describes the handling methods used on the twofold

and fourfold coincidence data obtained from the scintillation pair spec-

trometer at Brookhaven National Laboratory. The data from the 64 X 64

two-parameter analyzer is obtained on a printed paper tape via a Hewlett

Packard parallel printer. The information on this tape is transferred by

hand onto cards prior to processing by an IBM 7090 digital computer. A

code called CAPGAM has been written for this computer which will per-

form the following operations as requested:

1. Subtract off background.

2. Subtract off accidental counts.

3. Calculate the standard deviation of the corrected count.

4. Subtract off coincident counts arising from the bremsstrahlung

tails of high energy gamma rays detected by the pair

spectrometer.

5. Print out and plot the corrected data, in subranges if desired.

6. Sum channels in either X or Y directions, and plot and print out

these sums.

7. Subtract off a normalized average vector from each row to

accentuate differences from the mean. This process is termed

singularization. These differences are plotted out and printed.

8. Sum singularized channels, and print out and plot these sums.

Background for the case in question may be post- or prerecorded

for a given live time TB of the analyzer. The corrected counts Nc are

related to the actual counts Na, to the background counts N B and the live

time ratio R T in the following way:

N = Na - NBRT (III.1.1)

where

T

a (III.1.2)
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and T is the live time taken to record N . Since further corrections toa a
the data are small, the standard deviation of the corrected counts r(N c
is represented quite accurately by

a (Nc) = Na + NBR T . (111.1.3)

In practice though, background corrections have not been made in this

way.

Fourfold runs generally have extremely low background count

rates relative to the true count rate. This is because the scintillation

pair spectrometer does not easily detect the gamma rays originating

from the reactor that are Compton scattered into the instrument. These

scattered gamma rays have, in general, too low an energy to interact by

pair formation. The principal background in the fourfold cases arises

from neutrons scattered by the source and captured by the surroundings,
including the central sodium iodide crystal of the instrument. If the

background were to be measured, the source should be replaced by a

non-absorbing scattering material. In the past, carbon has been used,

but the count rates are low compared with the singles count rate of the

pair spectrometer and probably negligible in the fourfold coincidence

case.

In the case of twofold coincidence runs, background subtraction is

easier if made directly in the analyzer itself. A twofold run takes about

7 hours and it is easy to put the analyzer in the subtract mode, put in a

carbon scatterer and run the system for the same live time.

Accidental counts may be subtracted directly in the analyzer as

in the case of twofold runs, a procedure which is described in Chapter 4.

Alternately, accidental counts may be subtracted by computational

means as in the case of fourfold runs. The gross accidental count rate

is measured and its ratio R to the true fourfold coincidence count rate isa
obtained. The accidental count rate is a function of the position in the

count energy matrix, but it is proportional to the singles count in either

the X or the Y directions. Hence, the accidental count in X channel, i,

and Y channel, j, is n. . and is given by
1,3

R S .S .
n. a x,1 y,J N. (111.1.4)

. . x,1 y, j
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where S and S represent the singles counts in the X and Y directions.
x y

N.. is the true fourfold count in X channel, i, and Y channel, j. This

expression will be true only if the analyzer counts all of the true fourfold

counts. The analyzer has the feature that channel zero in either direction

holds all counts that do not fall below the analyzer range" If the analyzer

range is set so that no true counts lie outside its upper end, then Eq.

(111.1.4) will be an accurate representation of the accidental counts.

Summing channels is a simple operation, easily performed by the

computer, and it is done to improve the statistics for inspection in the

direction opposite to that of the summing direction.

In the case of twofold data, there are very many true coincidences

which arise from Compton interactions in both crystals. The consequence

is that the true coincident peaks of interest sit on a large quantity of coin-

cident counts spread uniformly over the range. The peaks of interest can

be accentuated by subtracting off an average count obtained from each

side of it, but this necessitates a pre-inspection of the output data and

some preliminary interpretation. A. more systematic approach is to sub-

tract from each column an average vector normalized to the sum of that

column. In practice, it is desirable to leave a quantity that is mostly

positive so the normalized average vector is multiplied by a diminution

factor DF of about 0.95. This process is called singularization and can

be represented by the following equation in which the singularized count

N' is related to the actual count N by

i=64 j=64
N.. N.

i. 1(j.131=11J=1
N. =N. .- DF (111.1 5)

13 13 i=64 j=64
N ZN

i=1 j=1

If desired, these singularized. counts may be summed. in small groups to

improve statistics and may be plotted as such, operations which are also

performed by the computer.

Interpretation of the fourfold data is complicated by the tails of the

peaks from the scintillation pair spectrometer. These tails permit the

coincident spectrum of the peak to be observed at a different energy point,

where it may be greater than the true coincident spectrum at the point.
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A systematic way of removing the coincidences from these bremsstrah-

lung tails is desired which does not require a pre-inspection of the data.

The method used depends on obtaining a good knowledge of the response

function of the pair spectrometer. Define G to be the number of counts

in channel i which arise from gamma rays whose energy corresponds to

channel j and which have one count in that channel. Then the coincidences

from bremsstrahlung tails can be subtracted off by pretending that the

count in each Y channel arises directly from a true peak. Hence, the cor-

rected counts are given by

N. = N. - N . - G , (III.1.6)ik ik ij kj'

where k goes from I to m and where

m = j - S: R. (111.1.7)

and R. = resolution of a peak whose center lies in channel j, in units of

numbers of channels and S is an empirical factor, usually about 0.8.

The operation indicated by Eq. (III.1.6) is carried out with j made

to vary from 64 to 1, so that essentially a stripping process is performed.

The function G is obtained by the methods discussed in Appendix II. It

has been shown that a reasonable approximation to the response function

of the system is obtained if it is considered to comprise a Gaussian peak

and triangular and exponential tails.

To subtract the tails off, the peak is replaced by the area of one

channel, which means that the peak area Ap is given by

A = h B , (III.1.8)
p p

where hp is the number of counts in the channel and B is the energy

width of one channel or the slope of the energy calibration line. In

general, the nomenclature of Section 11.2 is used here. Substitute the

expression for Ap into Eq. (11.2.3), together with Eq. (11.2.6), and obtain

At Eh
~ h B ~ 1 E . (111.1.9)~hB 1
p p

But P 1 is known from Eq. (11.2.11) so that we get

ht_ 2B.C B; C (111.110)
h = 2 X 1.065 - 1.065

p
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Now put
B CD =- (111.1. 11)

and get

h'
t D-E'=D .P (III.1.12)

p
for the triangular tail, and this is programmed directly into the computer.

Substitute the expression for A into Eq. (11.2.4) together with

Eq. (11.2.8) and obtain

A h E
eg = 2E. (111.1.13)A7Ch B 2
p 2 p

But P 2 is known from Eq. (11.2.16), so that we get

h BEC 2 1 BEC 1
h 1.065 C - 1 065 (11'1-4)

p 2
Now put

BC

1 1.065

and get

el ( E-E'
=D 1E exp - 2 E (111.1.16)

p

for the exponential tail, and this is programmed directly into the computer.

111.2

In this section, some examples of the operations performed by the

computer are given.

Figure 43 shows the counts in one channel from irradiation of

scandium as obtained and as singularized data. Both sets of data are

taken as plotted by the computer which, in this example, has selected

the largest scale possible over a 20-channel range in the X direction.

The singularized data indicates that the peak in Y channel No. 6 is a

photo peak coincidence while the peak in Y channel No. 21 is not. The

example illustrates the positive identification of a coincidence between

a 150 key gamma ray in the X range and a 300 key gamma ray in the Y

range.
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Figure 44 shows the sum of all counts in X channels plotted

against the Y channel in a fourfold run on the irradiation of Dy164
One case shows the ordinary corrected data and the other case shows
the same data with bremsstrahlung tails removed. The peaks are
somewhat more distinct in the latter case.

111.3

The input for the CAPGAM code is described in this section.
The card order is the same as that described in Section 1.8, (a) to
(e), but the binary cards (c) and the data cards (e) now refer to this
code.

Data cards comprise the following blocks:

A. Identification of runs.

B. Output from two-parameter analyzer.
C. Operational parameters and numbers.

D. Stored background counts, if any.
E. Singles counts in each direction.

Table 28 details the description of these blocks in which the
format is that of Section 1.8.



20-

18-

16-

14-

12-

0-

I' 20 30 40

Y Channel Number

FIG 44. FOUR-FOLD COINCIDENCE GAMMA-RAY SPECTRUM,

AS OBTAINED,

REMOVED

AND WITH BREMSSTRAHLUNG

163

Dy' 64 (n,g) SPECTRUM

7 AGAINST Y

Bremsstrahlung Tails Present

SBremsstrahlung 
Tails

RemovedA

8-C
C
a

-C
0

6-

4-
GJ

0

U

LN

0-
b 50 60

TAILS

I I a



164

Table 28. Input for the CAPGAM Code

Column Input Code
Block Number Item Form Symbol Units

A 1-60 Identification A DENOTE(K)

A 1-60 More identification A

B 1-77 Counts in X channel I of each Y F COUNT(I,J)
in sets channel J. 64 numbers at 11 to

of 6 a card so that the sixth card has
cards only 9 numbers on it.

C 1-10 Operation request #1. If positive, F OP(1)
subtract off the background to be
read in later. The value of OP(1)
is the ratio of the live time taken
to record total counts to that for
the background counts.

C 11-20 Operation request #2. If positive, F OP(2)
subtract off the accidental counts.
The value of OIP(2) is the ratio of
the accidental count rate to the
total count rate,

C 21-30 Operation request #3. If positive, F OP(3)
the output is plotted on a loga-
rithmic scale instead of a linear
scale.

C 31-40 Operation request #4. If positive, F OP(4)
print out the standard deviation of
each corrected count.

C 41-50 Operation request #5. If zero, F OP(5)
plot out and print the corrected
counts in both the X and the Y
directions.

C 51-60 Operation request #6. If positive, F OP(6)
sum channels as specified later,
then print out and plot these sums,

C 61-70 Operation request #7. If nonzero, F OP(7)
singularize the corrected counts.
If negative, sum the singularized
channels as specified later. In
both cases, the results are
printed out and plotted.

C 71-80 Operation request #8. If positive, F OP(8)
subtract off coincidences arising
from bremsstrahlung tails.
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'Table 28 (continued)

Column Input Code
Block Number Item Form Symbol Units

C 1-8 AE E AE Mev

C 9-16 BE E BE Mev/channel

C 17-24 Diminution factor DF E DF

C 25-32 S of Equation (II.1.7) E S

C 33-40 ARTE E ARTE %

C 41-48 BRTE See Tables 25 and 26 E BRTE (Mev) 1/21

C 49-56 C for suggested. values E C

C 57-64 C1 of these items. E C1

C 65-72 C2 E C2

C 1-10 The number of values of ND I NND
that must be read in where ND
are summing instructions
described below.

C 11-20 The number of values of NSR I NNSR
that must be read in where NSR
are plotting instructions
described below.

C 1-3 Sum starting in this channel. I ND(1)

C 4-6 Sum for this total number of I ND(2) -

channels.

C 7-9 Advance the start channel of I ND(3)
the sum at one-channel inter-
vals until this channel is
reached,

ND(I) numbers come in sets of
3 at 24 to a card in a field width
of 3, and a total of 72 numbers is
allowed,, ND refers to a summa-
tion of Y channels until 3 con-
secutive values of ND are set as
zero. After that, ND refers to a
summation of X channels until
the process is terminated by 3
more consecutive zero values
of ND.
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Table 28 (concluded)

Column Input Code
Block Number Item Form Symbol Units

C 1-3 Initial channel number for sub- I NSR(1)
range plotting.

C 4-6 Final channel number for sub- I NSR(2)
range plotting.

NSR(I) numbers come in sets
of 2 at 24 to a card in a field
width of 3, and a total of 72
numbers is allowed.

D 1-77 Background counts in the same F BKGRND(I,J)
In sets format as B. There are no D

of cards unless OP(1) is positive.
6 cards

E 1-77 Singles count in the Xdirection F SCNTX(I)
In one with the format of B.
set of
6 cards

E 1-77 Singles count in the Ydirection F SCNTY(J)
In one with the format of B. There
set of are no E cards unless OP(2)

6 cards is positive.



167

APPENDIX IV

BROOKHAVEN SCINTILLATION PAIR SPECTROMETER

OPERATING PROCEDURE

IV.1

The procedure for operating the Brookhaven scintillation pair

spectrometer on a typical fourfold run is described in this appendix.
Extensive reference is made here to the description of the apparatus

in Chapter 4, and to Figs. 6 to 8.

The electrical equipment is turned on but no stabilizers are

hooked in, and the neutron beam from the reactor is blanked off. A
minimum warm-up time of 6 hours is allowed. The high voltages on

each crystal have, in general, been set to a value designed to produce

the best resolution and these levels are not changed throughout the

run. It will have already been determined which energy ranges in the

A and B crystals (see Fig. 6) are to be investigated. Stabilization of

the B crystal is probably the most important feature of the setting-up

procedure. It is considered desirable not to introduce more extrane-

ous sources than necessary, once it is stabilized. Consequently, the

procedure described here provides for the A crystal to be set up first.
The A system is set to produce the desired energy range on the X

channel of the two-parameter analyzer. This is done by changing the

gain of the A amplifier, making sure that the range does not exceed

the amplifier cut-off limit. Rough calibration of this range is obtained
by insertion of sources in the A calibration sample hole. A stabilizing

source for the A crystal is then selected, making sure its pulse height

is less than 75% of the cut-off limit of the amplifier; and this source
is placed near to the A crystal by attaching it to the end of the heavy

lead plug in the shielding surrounding A. The A stabilizer is then
hooked in.

The procedure for hooking in the A or the B stabilizer is as

follows. The channel width of the single-channel analyzer, built into
the stabilizer, is set approximately equal to the line width of the
stabilization peak. The delayed signal which normally goes to the
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two-dimensional analyzer is fed to an oscilloscope, and a signal from the

channel position of the stabilizer analyzer is fed to the external trigger

position of the oscilloscope. Under these conditions, the channel position

of the stabilizer can be readily seen. Changing now to internal triggering,

the position of the stabilizing pulse can also be seen. The procedure then

is to adjust the base line of the stabilizer-analyzer until the two pulse

heights match. The mode switch of the stabilizer is switched from count

rate to the integrate mode. The sweep of the stabilizer is then set to

vary the base line by an amount equal to the line width of the stabilization

peak, and final adjustments to the base line are made. The count range is

turned to the maximum and the mode switch of the stabilizer is turned to

the stabilize mode. Inspection of the oscilloscope indicates whether stabi-

lization has been achieved. The stabilization source must clearly have

been selected so that its peak height does not fall outside the range of the

stabilizer-analyzer.

IV.2

A final collimator of the correct bore is now selected. This is

done simply by inserting the unknown source at its correct position,

opening the neutron beam, and checking the count rate in the A crystal.

The collimator is selected usually to provide the A crystal with a total

maximum count rate of 2 to 2-1/2 X 106 counts/min. During this pro-

cess, care must be taken to ensure that the A crystal remains stabilized.

To achieve this, the external stabilizing peak must be at least twice as

large as the counts around it from the (n,y) reaction on the isotope in

question. It is sometimes possible or necessary to use a slightly larger

final collimator and to adjust the position of the source in the cross wires

to achieve the desired maximum count rate.

With this done, a quick check of the total count rate in the B crystal

is made to ensure it is not excessive. The neutron beam is then blanked

off and the unknown source is removed from the apparatus. Attention is

now paid to the pair spectrometer. In general, stabilization by an external

source is used. Its advantage over the prompt source is that it keeps the

system stable in the event of a shutdown by the reactor. It is possible

that if the system were stabilized on the unknown source, the re-startup

of the reactor could lead to stabilization on a different peak with the
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consequent loss of the information gathered prior to the shutdown. In

addition, stabilization by an external source permits energy calibration

measurements to be made when the neutron beam is blanked off and

when the crystals are already stabilized. The disadvantage of external

source stabilization is that it reduces the useful count rate.

Stabilization of the two side crystals, C and D, is now obtained by

insertion of Na22 into their respective calibration sample holes, and

appropriately adjusting their respective amplifiers and stabilizer-

analyzers. The base lines and channel widths for the two slow coinci-

dence requirements are now set, these being independent of the C and

D stabilizers. A channel width of 25% of the base-line setting is about

normal.

The gain of the B amplifier is now changed to obtain the correct

gain for the B system. It is desired that the spectrum, seen on the Y

channel of the two-dimensional analyzer, represents the gamma energy

range required. One suitable way is to insert some natural iron into the

source position, put in the 7 mm-bore final collimator and unblock the

neutron beam. The B system is run as a pair spectrometer and attention

is paid to the distinct peaks at 6.00 Mev and 7.64 Mev in the iron. The

gain of the B amplifier is changed to obtain the desired separation of

these peaks. During this process, the base level of the Y channel must

be adjusted to keep these two peaks in the range of the analyzer. When

this is complete, the position of the Y-channel base level is computed for

the energy range of the unknown source and is appropriately moved. If

possible, the position of one of these iron peaks, if it comes in this range,

is checked to ensure the correct setup. Then the B system is stabilized,

using a suitable source placed in the calibration sample hole. When this

is done, the gain of the B amplifier and the Y-channel base level control

are rechecked. The neutron beam is then blocked off and the correct

final collimator is reinserted. Final calibration of the A system is now

made, using samples placed in the A calibration sample hole in the

absence of neutron capture gamma rays. These single runs are made

by putting the operation switch on the analyzer to the singles position,

by disconnecting the signal lead to the analyzer from the B system and

by appropriately switching in only the correct coincidence requirements
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on the coincidence circuitry. A calibration is also taken with the unknown

source in position with the neutron beam unblocked, both as an A singles

run and also as a run in which a fast coincidence with B is required.

IV.3

When the calibration of the A system is complete, the slow-

coincidence requirements are optimized. Essentially, this means varying

the base line of the single-channel analyzer on each side crystal until the

maximum count is obtained. It is most easily done in the absence of the

neutron beam, since the 0.51 Mev peak from Na 2 2 is much sharper than

the peak seen in the presence of the spectrum coming from neutron

capture by the unknown source.

When this is done, the unknown source is reinserted into position,

the neutron beam is unblocked and the two Na22 sources are removed

from the side-crystal calibration sample holes. A check is made to see

that all of the detection systems are properly stabilized. A singles run

is then made of the pair spectrum from the unknown source. This is

done by switching in the correct coincidence requirements, by discon-

necting the signal lead from the A system to the two-dimensional ana-

lyzer, by putting the operation switch on the analyzer to the singles

position, and by putting the display switch to reverse so that the Y channel

is displayed horizontally. After the pair spectrum has been taken, it is

checked to see that it covers the desired energy range. Hopefully, it will

provide the self-calibration of the B crystal.

The signal leads to the analyzer are reconnected, the operation

switch is turned to the coincidence position, and the display switch is put

to the normal position. The stabilizers are all rechecked. Count rate

checks are then made of the pair count rate;kA, B, C, and D singles count

rates; A + B coincidence count rate; C and D channel count rates; the

fourfold count rate and the accidental fourfold count rate. The latter is

obtained by switching in a fixed delay in B and turning the variable delays

in A and B in the opposite directions.

The coincidence requirements for the fourfold run are then switched

in, the stabilizers rechecked again, the switch positions on the two-

dimensional analyzer are rechecked and the fourfold run is then allowed

to begin. During the run, a continuous monitor of the fourfold count rate

is kept by a subsidiary scaler. Print-outs of the accumulated data are
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taken each day to observe any drifts, and the stabilizers are checked

frequently. When the fourfold run is completed, a final, quick pair

run is taken and the A system is recalibrated in the manner described

earlier.
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