
THEORY AND
ASSEMBLIES

USE OF SMALL
FOR THE MEASUREMENT OF

by

J. Peak, I. Kaplan, T. J. Thompson

Contrac t AT (30- I) 2344

U.S. Atomic Energy Commission

April 9, 1962

Department of Nuclear
Massachusetts Institute

Engineering

of Technology

Cambridge, Massachusetts

REACTOR

SUBCRITICAL

PARAMETERS

NYO- 10204
MITNE -. 16



MASSACHUSETTS

DEPARTMENT OF NUCLEAR ENGINEERING

Cambridge 39, Massachusetts

THEORY AND USE OF SMALL SUBCRITICAL ASSEMBLIES

FOR THE MEASUREMENT OF REACTOR PARAMETERS

by

J. C. PEAK, I. KAPLAN, and T. J. THOMPSON

April 2, 1962

NYO - 10204

AEC Research and Development Report

UC - 34 Physics

(TID - 4500, 17th Edition)

Contract AT(30 - 1)2 344

U.S. Atomic Energy Commission

INSTITUTE OF TECHNOLOGY



I

I

I



DISTRIBUTION

NYO - 10204

AEC Research and Development Report

UC - 34 Physics

(TID - 4500, 17th Edition)

1. USAEC, New York Operations Office (D. Richtmann)

USAEC,

USAEC,

USAEC,

USAEC,

USAEC,

USAEC,

USAEC,

USAEC,

Division of Reactor Development (P. Hemmig)

New York Patents Office (H. Potter)

New York Operations Office (S. Strauch)

Division of Reactor Development,
Reports and Statistics Branch

Maritime Reactors Branch

Civilian Reactors Branch

Army Reactors Branch

Naval Reactors Branch

10. Advisory Committee on Reactor Physics (E. R. Cohen)

11, ACRP

12. ACRP

13. ACRP

14. ACRP

15. ACRP

16. ACRP

17. ACRP

18. ACRP

19. ACRP

20. ACRP

(G. Dessauer)

(D. de Bloisblanc)

(M. Edlund)

(R. Ehrlich)

(I. Kaplan)

(H. Kouts)

(F. C. Maienschein)

(J. W. Morfitt)

(B. I. Spinrad)

(P. F. Zweifel)

2.

3.

4.

5.

6.

7.

8.

9.



21. ACRP (P. Gast)

22. ACRP (G. Hansen)

23. ACRP (S. Krasik)

24. ACRP (T. Merkle)

25. ACRP (T. M. Snyder)

26. ACRP (J. J. Taylor)

27. - 29. 0. T. I. E., Oak Ridge, for Standard Distribution,
UC - 34, TID - 4500 (17th Edition)

30. - 49. J. C. Peak

50. - 100. Internal Distribution



ABSTRACT

The use of small subcritical assemblies for the measurement
of reactor parameters in the preliminary study of new types of
reactors offers potential savings in time and money. A theoretical
and experimental investigation was made to determine whether
small assemblies could be so used.

Age-diffusion theory was applied to the general case of a
cylindrical subcritical assembly with a thermal neutron source on
one end. The solutions, obtained by the use of operational calculus,
allow calculation of the thermal flux due to the source, the thermal
flux due to neutrons born and moderated in the assembly, and the
slowing down density at any particular age, for any point in the
assembly. Solutions are given for two different source conditions.

Methods of correction for source and leakage effects in small
assemblies were developed for measurements of lattice parameters.
They can be applied by using any valid representation of the thermal
neutron flux and the slowing down density in the vicinity of the
experimental position. The corrections can be tested for consistency
by comparison with the experimental values.

Three dimensionless parameters were shown to characterize
the size of an assembly in terms of its neutron behavior. Three
other measures were advanced by which a proposed experimental
position in a subcritical assembly could be evaluated. Tables
illustrating the use of these parameters and measures were
presented for 128 possible subcritical assemblies.

Experimental measurements were made in nine small
assemblies 16 inches in height and 20 inches in diameter. Slightly
enriched uranium rods of 0. 250 inch diameter served as fuel at
three lattice spacings of 0. 880, 1.128, and 1. 340 inches. Mixtures
of water and heavy water at concentrations of 99. 8, 90. 3, and 80. 2
mole percent D 2 0 were used as moderator at each of the three
lattice spacings.

The following experimental measurements were made in each
assembly: (1) Axial and radial flux traverses with bare and
cadmium covered gold foils. (2) The U 2 3 8 cadmium ratio in a
rod. (3) The U 2 3 9/U 2 3 5 fission ratio in a rod. (4) Intracell flux
traverses with bare and cadmium covered gold foils were made in
six of the nine assemblies.

Comparisons between the theoretical and experimental flux
traverses of the assembly showed good agreement, especially in
view of the small size of the assembly. 238

The corrected measurements of the U cadmium ratios,
and the U 2 3 8/U 2 3 5 fission ratios showed good overall consistency.

Systematic deviations were found between the intracell flux
traverses and the theoretical traverses computed by means of the
Thermos code. They are thought to be due to the particular
scattering kernel used.

The results are promising enough so that further theoretical
and experimental research on small subcritical assemblies is
justified.

This work was done in part at the M. I. T. Computation
Center, Cambridge, Massachusetts.
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1

CHAPTER 1.

INTRODUCTION

1.1 PREFACE

Subcritical assemblies or "exponential assemblies" have several

advantages for the measurement of reactor parameters. They are

smaller than critical assemblies and consequently require less

material. They do not require elaborate control mechanisms and

safety features and, since they usually operate at a much lower flux

level, they do not require as much shielding as a critical experiment

would. Finally, the ratio of moderator volume to fuel volume usually

can be varied with small effort in an exponential assembly.

There are some inherent disadvantages in an exponential experi-

ment. The higher leakage rate, as compared with that in a critical

assembly, may necessitate corrections in some of the measurements.

Source effects, which are totally absent in a critical experiment, may

be troublesome in an exponential experiment. Furthermore, some

kinds of experiments are difficult to do, such as measurements of

control rod worth. Nevertheless, exponential lattices remain useful

tools both for the testing of theory and for reactor design.

Very small subcritical assemblies have been used on several

occasions, although most experimenters have preferred exponential

assemblies that were not far from critical. Wikdahl and Akerhielm

(39) have shown that thermal disadvantage factors could be measured

in a 90 cm by 28 cm by 28 cm assembly of one-inch natural uranium

rods and heavy water placed in the thermal column of the Swedish

reactor R-1. A more extensive series of measurements was made

at the Brookhaven National Laboratory (22, 23) with slightly enriched

uranium rods moderated with water. A "miniature lattice" of 16-inch

long rods in a 12-inch diameter tank was used to determine the cell

properties of the various assemblies. Measurements were made in
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the various assemblies. Measurements were made of the thermal

disadvantage factor, the ratio of U238 fissions to U235 fissions, the

U238 cadmium ratio, and the U235 cadmium ratio in the rods. These

quantities were shown to have the same values as were obtained in a

much larger assembly constructed of the same materials.

Several interesting questions immediately arise when the use

of small exponential assemblies is considered. They include:

1. Can a small exponential assembly be used to obtain infor-

mation that can be applied to a full-scale reactor?

2. Can valid corrections be made for the leakage and source

effects in a small assembly?

3. Where is the best place to make cell measurements inside

a small assembly?

The theoretical development and research reported in the following

pages were motivated by the above questions.

1. 2 MEASUREMENTS IN MIXED MODERATOR LATTICES

An example of a reactor system for which exponential measure-

ments are relatively expensive is one with a moderator mixture of

water and heavy water. The use of such a moderator as a control

feature of a reactor has been suggested by Edlund and Rhode (7). In

their proposed "Spectral Shift" reactor the heavy water moderator

is to be mixed with increasing amounts of water throughout the core

lifetime. The reactivity will then be controlled primarily through

resonance absorption in the fuel rather than with control rods. The

addition of H2 0 will, of course, have secondary effects on the thermal

utilization and the non-escape probabilities. This proposed reac.tor

system offers the potential of very high burnups and high conversion

ratios, and consequent lower fuel charges.

The theoretical problems of mixtures of water and heavy water

are also interesting, especially in the thermal energy region where

chemical binding phenomena are important. Finally, from the stand-

point of the cost of experimentation, the mixing of pure heavy water

with ordinary water leads to a considerable extra expense. For this
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reason, it is desirable to make such experiments in as small an

assembly as possible.

Only a few measurements of cell parameters in lattices moder-

ated with mixtures of water and heavy water have been made until

recently. Finn and Wade (9) made three intracell flux distribution

measurements as part of an effort to find the effect of water con-

tamination on a natural uranium, heavy water lattice. The fuel rods

were one inch in diameter and the volume ratio of moderator to fuel

was 12. 3. They obtained values of the disadvantage factor for 99. 8,

98. 4, and 91. 8 mole per cent D2 0 in the moderator, and found the

measured disadvantage factors to agree with P 3 calculations. They

also reported a series of buckling measurements over the same range

of moderator purity and a fair range of volume ratios. A series of

measurements has been made by the Bab-cock and Wilcox Company.

These experiments, reported by Snidow and others (35), were made in

critical assemblies of 0. 444-inch rods of UO 2 enriched to 4 per cent
235

U ; the ratio of moderator volume to fuel volume was 1. 0. Six

experiments covering a range of D 2 0 concentrations from zero to

76. 7 mole per cent, some with boron poisoning, were made. Lattice

bucklings were measured, as well as the thermal disadvantage factors

and the cadmium ratios of U235 and U238 in the rods. The parameter

ranges selected for experimentation correspond to those of interest

from the standpoint of reactor design. Wittkopf and Roach (40) have

made a theoretical analysis of these data by means of machine calcu-

lations and have obtained reasonably good agreement between theory

and experiment.

Neutron age measurements have been made in mixtures of

water and heavy water by Wade (36) at the Savannah River Laboratory.

These measurements have been used by Goldstein (11) for comparison

with various theoretical treatments; his review paper also included

the results of calculations by Coveyou and Sullivan and by H. D. Brown

on mixtures of water and heavy water. Wade's measurements have

been used recently by Joanou, Goodjohn, and Wikner (19) for compari-

son with a moments calculation, and by Wittkopf and Roach (40) for
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comparison with a Greuling-Goertzel slowing down calculation.

Finally, neutron age measurements have been made in thorium oxide

lattices moderated with mixtures of water and heavy water by

Roberts and Pettus (27, 30). All of the theoretical treatments cited

showed reasonably good agreement with the data, particularly that

of Joanou, Goodjohn, and Wikner, and that of Wittkopf and Roach.

1. 3 SCOPE OF THE EXPERIMENTAL WORK

The availability of a set of quarter-inch diameter rods con-

taining uranium enriched to 1. 143 per cent U235 made possible a

series of experiments with mixtures of water and heavy water as

moderator. These rods had been used previously in experiments

with miniature lattices at the Brookhaven National Laboratory.

Calculations of the resonance escape probability and the thermal

utilization for lattices containing these slightly enriched rods

showed the most variation in the upper values of heavy water con-

centration and at relatively large moderator-to-fuel volume ratios.

Consequently, cell parameter measurements were made in three

different lattices with rod spacings corresponding to moderator-to-

uranium volume ratios of 30. 0, 20. 8, and 12. 0, respectively. At

each spacing, three mixtures of water and heavy water were used,

consisting of 99. 8, 90. 27, and 80.23 mole per cent D2 0, respectively.

Measurements were made, in each of the nine lattices, of the

ratio of fissions in U238 to fissions in U 235, and of the cadmium

ratio of U238 in the rods. Intracell flux traverses were made with

gold foils in the lattices with 90. 27 and 80. 23 mole per cent D2 0.
Finally, axial and radial flux traverses were made across the entire

assembly in each lattice.

The experiments were made in the Small Exponential Assembly,

an experimental apparatus fabricated at M. I. T. by J. Bratten (3). It

was modified somewhat for these experiments, and consisted of an
aluminum tank in the form of a right circular cylinder 21 inches in

height and 20 inches in diameter, together with appropriate grid

plates for the fuel rods. The assembly was equipped with lines and
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valves for filling from heavy water drums, and held about 100 liters

of moderator. It was also equipped with removable fast and slow

neutron shielding and a wheeled stand. The neutron beam port of the

Medical Therapy Facility at the M. I. T. Reactor was used as a neutron

source for the assembly.

1. 4 SCOPE OF THE THEORETICAL DEVELOPMENT

An exponential assembly is distinguished from a critical

assembly of the same material in that it has a higher neutron leakage

rate. The leakage rate prevents the chain reaction from sustaining

itself and consequently a neutron source is required. The Lattice

Facility and the Small Exponential Assembly at M. I. T. are typical

of many such facilities in that each is a right circular cylinder, has

little reflection at the boundaries, and has a large thermal neutron

source at one end.

The theory of the exponential assembly has been limited in the

past largely to determining what reactor quantities may be inferred-

from such experiments, and to determining harmonic, source, and

end corrections for the data. One exception is the work of Barnes

and others (1) at the Argonne National Laboratory in connection with

some exponential experiments performed there on natural uranium

lattices in heavy water. By using two group diffusion theory they

obtained a solution for the general problem of a cylindrical assembly

fed with thermal neutrons from a graphite pedestal. They also gave

an expression for determining the height above the pedestal where the

ratio of the fast to slow neutrons would be found to be constant.

Since both the Lattice Facility and the Small Exponential

Assembly had somewhat different boundary conditions at the source

end than the case considered by Barnes et al, a general treatment

of the exponential assembly with non-reflecting boundary conditions

was carried through with age-diffusion theory. The solution yielded,

at any point in the assembly, the thermal flux due to source neutrons,

the thermal flux due to neutrons born and moderated in the assembly,

and the slowing down density at any particular value of the Fermi age.
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A machine code for the IBM 709 was written to compute these

various quantities. Extensive use of the machine code was made

to determine the corrections to apply to the cell parameters

measured in the Small Exponential Assembly. Furthermore, tables

were prepared, giving values of the flux quality and magnitude and

the extent of the useful experimental region in 128 possible expo-

nential assemblies.

1. 5 USE OF THE "THERMOS" MACHINE CODE

To compare the intracell flux traverses with the best available

theory and to compute average values of certain parameters for the

lattices, extensive use was made of the Thermos machine code for

the IBM 709 developed by Honeck (17). The Thermos code computes

the scalar thermal neutron spectrum as a function of position in a

lattice cell.
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CHAPTER 2.

THEORY OF A SMALL EXPONENTIAL ASSEMBLY

2. 1 INTRODUCTION

The purpose of this section is to present the theory of a small

exponential assembly, and to obtain appropriate corrections to be

applied to measurements made in it. Complete solutions of the

age-diffusion equations are found for two different source conditions

by the methods of operational calculus.

The age-diffusion equations are transformed in the spatial

variables by means of finite Fourier transformations. They are

then solved in terms of the age variable. The result, for each

source condition, yields the solution by application of the inversion

formulas for the Fourier transformations. Experimental verifi-

cation of the formulas is considered.

Correction factors for data measured in small assemblies are

obtained. Finally, the general solutions are applied to large expo-

nential assemblies in order to find the flux quality and magnitude.

2.2 GENERAL SOLUTION FOR A PLANE THERMAL NEUTRON
SOURCE

The following solution is for a homogeneous, subcritical

assembly in the form of a right circular cylinder. A plane thermal

neutron source is incident upon one end. The coordinate system is

shown in Figure 2-1.

If the source neutrons are assumed to belong to one thermal

energy group the diffusion equation for the source group is

Ds 2 s (r, z) - Z s(r, z) = 0 , (2.2-1)

where Ys is the macroscopic absorption cross section for source
a

neutrons and D5 is the thermal diffusion constant.
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H

INCIDENT THERMAL FLUX

FIG. 2 -1 EXPONENTIAL
ASSEMBLY GEOMETRY
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The boundary conditions are:

a. The thermal source neutron flux vanishes at the extrapo-

lated boundaries, so that

4s(r,z)=0 at r=R, and z=H, (2.2-2)

where R and H are the extrapolated radius and height of the assembly,

respectively.

b. The incoming thermal neutron current at the source end,

F(r), is related to thermal flux by

F(r) = -D at z = . (2.2-3)
s Bz .

If the incident current is a plane source independent of r, it may be

expressed as

F(r) = F (a constant) . (2. 2-4)

A finite Hankel transformation can be used to solve equation

(2. 2-1). This transformation is defined (34) in the following way.

If

R
f($j) = f rf(r) J0 (4ir) dr , (2.2-5)

0 0

where

J ($P.R) = 0 , (2. 2-6)
O01

then

2 - J ($ r)
f(r) _ 2 ( ) R 2  (2.2-7)

R i=1 [j 1 R)]2

where the bar is an operational notation indicating the transform of

the function f(r); J0 and J1 refer to the Bessel function of the first

kind, of order 0 and 1, respectively. The transformation fits the

coordinate system of Figure 2-1.

The Laplacian operator V 2 has the following expansion in

circular cylindrical coordinates with no angular dependence:

V 2f _ 8L + Ii]+ .2 f (2.2-8)
ar 2 r 3rj 3z 2
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The Hankel transform of V 2 f is

R
f r[V 2 f(r, z)] J (4i r) dr
0

2- a f(+, z)
R$ f(R, z) J, (,.r) - * f(+, z) + 2 (2.2-9)

11 az2

In the Hankel transformation of equation (2. 2-1), the term V 4 s(r, z)

is transformed as in equation (2. 2-9); but

*s (R, z) = 0 (2.2-2)

because of the boundary conditions. Thus the first term on the right

side of equation (2. 2-9) is zero.

The transformation of equation (2. 2-1) yields

Ds s i, Z)+ a2 as i, z) 0 . (2.2-10)

Rearrangement of this equation gives

82 ($ , z) Es~s 2  
i s (2 Pi, z) .(2.2-11)

az 2  s .

The introduction of the quantity

p= + 2 (2. 2-12)

reduces equation (2. 2-11) to

a2
3 es Ni, Z) 2-2  i s i, Z) . (2. 2-13)

Equation (2. 2-13) is a simple differential equation in the variable z,

for the transformed function 4s. It can be solved to fit the trans-

formed boundary conditions

1s i H) = 0 (2. 2-14)
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and,

F D[= -D 5aZ (2.2-15)

at z = 0.

The solution of equation (2. 2-13) which satisfies equations (2. 2-14)

and (2.2-15) is

sinh (P [H-z])
s (i., z) = Ds _ cosh (pH) (2. 2-16)

Since F, as a plane source, is a constant in the variable r, the trans-

form of F is

R
F($J) = F f r J ( r) dr , (2. 2-17)

0

or,

_FRJI (iR)
F(= FRJ1 (4- R(2.2-18)

Substituting equation (2. 2-18) into equation (2. 2-16) gives

(4 r-FR sinh (P.[H-z])
s Ni, z - p.Ds 1 [j iR)] cosh (P .H) .(2. 2-19)

The solution now can be found by inverting equation (2. 2-19), by

means of the inversion formula, (2. 2-7). The result is

2F 1 [Jo ir) sinh (P Gi[H-z])
Rs (r, z) DR J (iR) cosh (p.H) (2. 2-20)

Equation (2. 2-20) is the general solution, in the plane source

case, for the thermal flux at any point in the assembly due solely to

source neutrons. These neutrons cause fissions, however, and give

rise to fission energy neutrons. Some of the fission energy neutrons

escape while the rest are captured or moderated to thermal energies.

The expressions for the slowing down density and the thermal flux due

to these lattice born and moderated neutrons will be considered next.
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The total thermal flux at any point in the assembly will then be the

sum, at that point, of the source neutron flux and the lattice born

and moderated neutron flux.

The diffusion equation for the lattice born thermal neutrons is,

D V 2 k(r, z) - e,(r, z) + p q(T , r, z) = 0 (2. 2-21)

where a superscript or subscript e indicates quantities pertaining to

the lattice born and moderated neutrons. The Fermi age of the

neutrons to the thermal energy group is represented by r 0 and the

resonance escape probability to thermal energies is denoted by p0.
The slowing down density, q, is for a system with no resonance

absorption, since these absorptions are taken into account in the value

of p0 .
The Fermi age equation for the slowing down density is

2 )q(r, r, z)
V q(r, r, z) = (2. 2-22)

The boundary conditions for the two equations are:

a. Both e (r, z) and q(r, r, z) are zero at the same extrapolated

boundaries z = 0, z = H, and r = R. These conditions assume no

reflection at any boundary and would not be applicable to an assembly
mounted on a thick graphite pedestal. They do correspond to the

experimental condition for the Lattice Facility and the Small Expo-

nential Assembly at M. I. T.

b. The second boundary condition, which links equations

(2. 2-20), (2. 2-21), and (2. 2-22), is

k
q(7, r, z) 0 [ (r, z) + M4 *(r, z) (2.2-23)

at

r=0.

The Hankel transforms of equations (2. 2-2 1) and (2. 2-22) are,

respectively,

2-e
22e ,z e- '4.,z)p(' '., z)- 4 (+ , z + 2 - D + D = 0, (2. 2-24)1 e 1 az e e
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and

2- 2 4(i, i.V z) 4(', 4., z)
-$1 (r,4,z) ' 2 a1 (2. 2-25)

These equations may be transformed again on the z variable by

using a finite Fourier sine transformation. This transformation is

defined in the following way.

If

H
f(n) = f

0
f(z) sin n dz,

f(z) = f(n) sin
n= 1

(nrz)

The finite sine transformation of the second derivative is,

H 2 f (Z)]

f 2
sin n rz

sn( Hf)

n2 2- nn 7r (n)
dz =- 2___

Application of the finite Fourier sine transformation to equations

(2. 2-24) and (2. 2-25) yields, respectively,

2 2n r

H 2
a 0 Io

]- 9 e (i, n) + [- q(T, 4, n) = 0
e- _ e_

, (2.2-29)

2 n2 2
i- - H 2

1 = 0 ,
q(T, *., n) -

where the double bar indicates the doubly transformed function.

Equation (2. 2-30) can be solved in terms of the age variable r,

q = C[exp(-B nil'r) (2. 2-31)

where C is a constant to be determined and

2 ~2 2
B. = P + n r.

i, n i H2 (2. 2-32)

then

(2. 2-26)

(2. 2-27)

(2. 2-28)

and

(2. 2-30)
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B . is the buckling of each mode in the double expansion; when
in

i=n= 1

it reduces to the well known expression

B [2. 405 2 + 2 (2. 2-33)

The constant C in equation (2. 2-31) may be determined from the

boundary condition for r = 0. The double transformation of this

boundary condition, as expressed in (2.2-23), is

(2. 2-34)(0, Lp, n) =O a e

The constant C is equal to the right side of equation (2. 2-34) since,

from equation (2.2-31),

q(0, * , n) = C[exp(O)] = C (2. 2-35)

Thus,

1+ E s in exp(-Bi n2 )T . (2.2-36)
P0 ae 95, n)

Equation (2. 2-36) can be substituted into equation (2. 2-29) to yield

e Pi,? n)

kZa s i, n) exp(-B n r

D 2
e

22 ,
+ n 7 + a

H2 D

k e
exp(-D

(2. 2-37)

B nr)
1, n o)]

The thermal neutron diffusion length, defined as,

2 DeL =-e e
a

(2. 2-38)

together with equation (2. 2-32), may be used to rearrange equation

(i., n) + z S in) .
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(2. 2-37) to the following form:

e =a, (4,., i n) s i n
1 + L2 B

e1,n 1

k exp(-B, n o j
Defining the finite multiplication factor for each mode as

k.exp(-B n o
k. = 2

i, n 1 + L2B.
e i, n

(2.2-40)

yields the result,

E (4,., n)e 1 j (2. 2-41)= Iis i, n)1

The bracketed quantity in equation (2. 2-41) is the sum of the infinite

series,

k. + k2 + k3
1, n i, n i, n

since k. is less than 1. 0 in an exponential assembly.
1, nl

The expression for 4s (i,, n) can be obtained by making a sine

transformation of equation (2. 2-19).

hyperbolic sine function is

H
f [sinh (p.[H-z])]
01

sin (

The sine transformation of the

dz- 2 n7rH [ 2sinh (P H)]
n r + p H

(2. 2-42)

Thus, the sine transformation of equation (2. 2-19) is

= FR(i, n) =R[J( 4DiR)]
is [ n7rH

n2 2 + pH2
J

- sinh (p.H)

cosh (p1H)j

If equation (2. 2-43) is used, equation (2. 2-41) can be written as,

z s

S n)
e 1e

a

1j FRJ R) n7rH[tanh (PH)]

%,.D p 2 2 2 .

n

(2. 2-39)

(2. 2-43)

(2. 2-44)
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This equation may now be inverted twice, by using the inversion

formulas (2. 2-7) and (2. 2-27), to yield the answer,

(r , z ) -= i 1 n 1 0ie ~ eL[R--DIl l Li
a iLk, n i

nr tanh (PiH) ('. /z\

X n2 2 + P2H [tJ 1 (q'iR) J i r) sin (v)
1

(2. 2-45)

Equation (2. 2-45) is the general solution in the plane source case

for the thermal flux at any point in the assembly due solely to neutrons

born and moderated in the assembly.

The double transform of the slowing down density can be

obtained by substituting equation (2. 2-39) into equation (2. 2-36). The

result is

(, , n) = POk 1 as (i, n) exp (-B n7) . (2. 2-46)

Equation (2. 2-43) can be substituted into this expression and the

result inverted twice to yield the solution for the slowing down

density,

kZs00 00 ~ ~ 1+~~k0 a[4F 1 1n~r
q(T, r, z) p RD .] 1-k iJ 2 2 2 20 si=1 n=1 1,n] [ii ] n 7r + @H

Ftanh (p.H)[ /2 1nrz

X 77h ) [exp -B n J (4ir) sin .

(2. 2-47)

Equation (2. 2-47) is the general solution in the plane source case for

the slowing down density at any point in the assembly.
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2. 3 GENERAL SOLUTION FOR A J -SHAPED THERMAL
NEUTRON SOURCE

When the intensity of the neutron current at the source end

is defined by

F(r) = FJ (2. 405r/R), at z = 0

or

F(r) = FJ 0 (@Pr) , (2. 3-1)

the solution of the exponential problem is straightforward. The

procedure is identical to the previous solution for a plane source

through equation (2. 2-16). The Hankel transformation of F(r) for

a J0-shaped source is

R r[FJ2(r)]J O(+ r) dr 2 [J qR)]2
0 (2. 3-2)

=0 , (i#1)

When equation (2. 3-2) is substituted into (2. 2-16) and the result is

inverted, the general solution for the thermal neutron flux due

solely to the J 0 -shaped source is

4) rz) F sinh (pl[H-z]) r 233
Z)=D A cosh IPH (40

s~, ) l cos (piH o 1r~) .(2. 3-3)

The solution procedure for the thermal flux of neutrons born

and moderated in the assembly is identical to that for the plane

source case through equation (2. 2-41). The double transformation

of (2. 2-3) yields

= FR2 F -1- nirH sinh (P 1H)
s i, n) 2 Ds1L 2  2  2H2jcosh(p1H)j J1 (i 1R) , (i=1)

=0, (i*1) . (2. 3-4)

Substitution of equation (2. 3-4) into equation (2. 2-41) and double

inversion of the result gives
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*e(r, z) = tanh (P ni
s a 1 n= 1 1kn _

X [2+ p H2] ( 1 r) sin (T) . (2. 3-5)

Equation (2. 3-5) is the general solution for the thermal neutron

flux due solely to neutrons born and moderated in the assembly in

the case of a J0-shaped source.

The solution for the slowing down density is identical to the

plane source procedure through equation (2. 2-46). Substitution of

equation (2. 3-4) into equation (2. 2-46) and double inversion of the

result gives

q('r, r, z) = D2 [tanh (P1H)] Z 1 - k
o s1n=1 1, n]

X2 2+7 H2 exp(-B, nr] Jo ( 1 r) sin (n)

(2. 3-6)

Equation (2. 3-6) is the general solution for the slowing down

density in the case of a J -shaped thermal neutron source.

The equations for this case can also be obtained directly

from the equations for the plane source case. The plane source

expansion in a Hankel series contains the fundamental J mode

as the first member of the series. Multiplying equations (2. 2-20),

(2. 2-45), and (2. 2-47) by the normalization factor,

Rk~j
2 [Jl Ny R)]

and dropping all but the first member of the Hankel series will

yield equations (2. 3-3), (2. 3-5), and (2. 3-6), respectively. The

normalization factor is obtained by dividing equation (2. 3-2) by
equation (2. 2-18).
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2.4 EXPERIMENTAL VERIFICATION OF THE THEORY

The equations derived in sections 2. 2 and 2. 3 can be tested

experimentally by making flux traverses with foils. The thermal

neutron activation of a very thin 1/v detecting foil such as indium

or gold would be proportional to the sum of the densities of the

source neutrons and the lattice born neutrons. The resonance

activation of the same foil would be proportional to the slowing

down flux at the resonance activation energy. Thus, flux

traverses made with bare and cadmium covered foils along the

central axis of the assembly can be compared with the theory.

The thermal flux is assumed to be a Maxwellian distribution,

M(E), and is joined to the slowing down 1/E flux at 0. 12 ev. The

value of 0. 12 ev corresponds to the commonly used joining point

of 5 kT. The subcadmium 1/v activation of the foil is caused

primarily by the thermal flux, with a small contribution from the

1/E flux between 0. 12 ev and the cadmium cut-off. The epi-

cadmium activation is caused by the resonance absorption of the

foil and by the epicadmium 1/v absorption. A cadmium cut-off

energy of 0. 40 ev was chosen for 0. 020 cadmium covers (38).

The effective subcadmium absorption cross section, per unit

thermal flux, of a foil in the traverse is

0.12 0. 40 *(E)

sub = M(E) ol/v(E) dE + . 12 [t u/v(E) dE

(2. 4-1)

On using the relation for the energy region below the U 2 3 8

resonances,

(E) = , (2.4-2)

equation (2. 4-1) may be written as

osub = 0. 886 ro + [0. 414 o , (2.4-3)

t Js,_
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where 0-0 is the absorption cross section for 2200 m/sec neutrons,

and

t -'e + s (the total thermal flux) (2. 4-4)

The effective epicadmium absorption cross section, per unit thermal

flux, is

00 *(E) 00 (E)
0p=f [ -(r (E) dE + f [ 1 .(E) dE
epi 0 res 0.40 ..t

= q [ERI+o. 5000- ] , (2. 4-5)

*t s

where ERI denotes the effective resonance integral of the foil.

The cadmium ratio, Rf, of a foil at a point (r, z) in the assembly

is then

<r su+ o- .p
Rf= su . ( .2.4-6)

e pi

Substitution of equations (2. 4-3) and (2. 4-5) into equation (2. 4-6)

gives

P q(Tr, r, z) 0. 886
0 r (2.4-7)

*t(r, z) (Es [Rf(r, z) -1 +0. 500 - 0.414

where Tr denotes the age at the resonance energy. If the value of

POg/4t s changes appreciably from the resonance energy to the

epithermal subcadmium energy range, the above relationship will

be in error, to an extent depending upon the relative values of the

ERI and -.

Equation (2. 4-7) can be used for a direct comparison of the

theory with experimental traverses of gold or indium foils. Only

the experimentally determined cadmium ratio for a point of the

traverse and the value of ERI/a 0 are needed to find the experi-

mental value of p0 q/tS for the point. The theoretical value of

POgq/*t s for the same point can be calculated by using the
equations obtained in sections 2. 2 or 2. 3 together with an
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appropriate value of (Es'

The measured values of p0 q and *t for each point of a

traverse also can be compared separately to the corresponding

theoretical values. The measured activity of a foil, after an

irradiation for a time interval T, and following a delay of time

length t before counting, is

activity - NtXo- [exp(-Xt)][1-exp(-XT)] , (2. 4-8)milligram

where X is the counter efficiency and N is the number of foil

atoms per milligram. If

a = NXaro[exp(-Xt)][1-exp(-XT)J , (2. 4-9)

then

subcadmium activation per milligram

$t(r, z) = , (2.4-10)

a 0. 886 + 0.414

- - - S -s

where the quantity p 0 q/t s is determined from equation (2. 4-7)

and the experimental value of the cadmium ratio. Similarly,

Ss[epicadmium activation per milligram]
poq(r,. r, z) = . (2. 4-11)

a r + 0. 50 0

Thus, *t(r, z) and poq(Tr, r, z) can be compared to theory separately

by using the measured activities at (r, z). Such a comparison was

made for flux traverses measured in the Small Exponential Facility.

2.5 CORRECTION OF CADMIUM RATIO MEASUREMENTS TO
CRITICAL ASSEMBLY VALUES

Leakage and source effects can affect a cadmium ratio

measurement made in an exponential assembly. In correcting

such a measurement, the bare critical assembly made of the

same materials is a convenient reference standard.

According to age-diffusion theory, in a bare homogeneous
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critical assembly the slowing down density is everywhere pro-

portional to the thermal neutron flux. The relationship between

the thermal flux and the slowing down density at a foil resonance

below the U238 resonances is

p q(r) = k Za# exp(-B r)] . (2. 5-1)

Equation (2. 4-6) for a cadmium ratio measurement can be

written as

0. 886 + 0. 414[O]

Rf - 1 = (2. 5-2)

+ 0 500]*tj s '0

The relationship between a cadmium ratio measurement made in

a critical assembly and one made in an exponential assembly com-

posed of the same materials is then

~ p q (
0.886 + 0. 414 0,

Fp q (T7)ER
4- ) [""+ 0. 500]

R -1- s - (r0
[f(r, z)-[1 -] (2. 5-3)

Rf~rJ z - 1 Poq(r , r, z)]
0. 886 + 0. 414 P r

Lt(r, z)(I

Pq (r r, z)~ E 5

E$t(r, z) o J o

where the asterisk denotes the critical assembly values. This

equation may be written as
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0. 886 + 0. 414

- s -

Fp q r, r, z)
0. 886 + 0. 414 r

4(r, z) Is-

p r , r, z)

*t(r, z)

p7-r)

*

[Rf (r, z) - 1] .

(2. 5-4)

Equation (2. 5-4) is the desired relation for correcting a cadmium

ratio measurement made at point (r, z) in an exponential assembly

to the critical assembly value. The equations of sections 2. 2 or

2. 3 together with equation (2. 5-1) can be used to calculate the

values of q (Tr)' ' (r r, z,) and 4t(r, z).

The cadmium ratio measurements of most interest, however,
238 235

are those for U and U2. These nuclei have many resonances

which contribute to the epicadmium activation, and equation (2. 5-4)

is inappropriate for such a case. But, if the effective resonance

integral for such a nuclide in a rod can be represented by

n
E RI = -. ,

j=1 3
(2. 5-5)

where o-. is the contribution of each resonance to the total ERI, then
i

equation (2. 5- 3) may be rewritten as

~ - ]0. 886+0. 414

pO ]
0. 886 + 0. 414 Pq0

- z 0*
-~~~ -t o s. ..

0. 5p 0q90- n -Pjqjaj ~
0 + a

t Jozs j=1 - S. 0-

0. 5p 0q 0 n p IqjGo-.
+ q . -

z 0o j=1 Lp .
S- o s - s o0-

where the subscripts o and j denote the energy at which the quantity

denoted by the subscript is to be calculated. The epithermal sub-

cadmium range is indicated by o, and the energy corresponding to
th

the j resonance is indicated by j. The quantity ao refers to the

R -1=

R 1 [Rf-1] ,

(2. 5-6)
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2200. m/sec cross section as previously stated. The quantities

q, lt, and Rf are understood to be functions of position in the

assembly and the functional dependence is omitted for convenience.

The first fraction on the right side of equation (2. 5-6),

enclosed by brackets on the main line, has a value very close to

1. 0, since, in the thermal lattices to which age-diffusion theory

may best be applied, the values of the ratio p 0 q/4Z s are in the

range 0. 05 to 0. 1. Thus, even a 10 per cent difference between

the exponential and critical values of this ratio will change the

value of the first fraction in equation (2. 5-6) by 0. 4 per cent, or

less, from its asymptotic value of 1. 0. This fraction will be set

equal to 1. 0 to simplify the equation.

The experimental quantity most often cited is p 2 8 , the ratio
238of the epicadmium to the subcadmium absorption of U in

the rods. Equation (2. 5-6) may be rewritten to give

q 0. 5o-0 1 qf.

0 ERIJ
- os- s-

p [p-28 ] , (2. 5-7)
pg PO q 0-[0. 5c- n p q

o ERI A Lj~
thwhere f. is the fractional contribution of the j resonance to the

ERI, and where the values of q and are calculated at the position

of the p2 8 measurement in the exponential assembly. Equation

(2. 5-7) is the relationship desired for correcting exponentially

measured values of p2 8 . It can be used for any nuclide with more

than one resonance, and was used for correction of the p2 8 values

measured in the Small Exponential Assembly.

An experimental test of this equation can be made by noting

that the correction depends upon the experimental position of the

test foils, especially in the z direction. Measurements made at

different positions should be identical after correction, however,

for any particular array. For this reason, two measurements,
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each at a different position, were made in all but one of the lattices

tested.

It should be emphasized that in a large exponential assembly

there will exist an asymptotic region in which a cadmium ratio

measurement will have no inherent difference from one made in a

critical assembly. If the slowing down density is actually pro-

portional to the thermal flux, which will occur in a large exponential

assembly over a region sufficiently distant from the source and the

boundaries, then the relationship for the critical assembly applies,

and

p q(T) 2
a = k exp(-Bm) (2. 5-8)

2
where B is the material buckling. Equation (2. 5-1) depends onlym
on the assumption that the slowing down density is actually pro-

portional to the thermal flux and not upon the dimensions of the

system.

When the critical assembly value of p2 8 has been obtained, it

can be used for calculation of the resonance escape probability in

the infinite assembly using the procedure of Kouts (24).

2. 6 CORRECTION OF U 238/U235 FISSION RATIOS TO INFINITE
ASSEMBLY VALUES

238
The ratio 628 is defined as the number of U fissions to the

235
number of U fissions in the rod. It is measured by exposing

depleted and natural uranium foils in a split rod in the lattice. The

fission product activity of the depleted foil is caused by fast neutron
238

fission of U . The fission product activity of the natural foil is
235

caused almost entirely by thermal fission of the U foil atoms.

If a single rod were placed in the moderator, the resulting
238

U fission product activity of the depleted foil would be caused

by fast neutrons arising from thermal fissions in that rod. The

resulting value of 628 is referred to as the "single rod" value. It

depends primarily on the diameter of the rod. If, however, the
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test rod is part of a lattice of rods, fast neutrons arising from

thermal fissions in other rods may reach the test rod and cause

additional U238 fissions in the depleted foil. This effect is known

as the "interaction effect" and may amount to several times the

single rod fast effect at close lattice spacings. The interaction

effect depends mainly on the spacing between the rods in terms

of the mean free path for the fast neutrons. The fast neutrons

causing the interaction effect may arise at some distance from

the test rod, since a fission energy neutron is only removed from

the fast fission energy range by an inelastic collision with a fuel

atom or by a collision with a moderator atom.

The fission energy neutrons which cause fast fission in

U238 will be born in the rods of the lattice with a birth rate

density proportional to the thermal flux. In an infinite assembly

the thermal flux would be the same at identical cell points across

the assembly. If the thermal flux in the actual assembly varied

in the vicinity of the test rod in a linear fashion, the resulting

fission activation of a foil still would be the same as if the

measurement were made in a flat flux. For, the sum of fast

neutrons born at equal distances from the foil in a linear flux

would be identical to the sum of fast neutrons born at the same

distance in a flat flux. In an exponential or critical assembly,

however, the flux distribution is usually not flat or linear, and a

correction must be applied to the measured data to obtain the

value for an infinite lattice.

The variation caused in the value of 628 for a single thin rod

by the thermal flux shape in an exponential assembly is quite small.

It may be safely neglected on geometric considerations alone,

because the fast neutrons reaching the foil must originate in the

same rod at points very close to the foil and, over this small

region, the variation of the thermal flux is nearly linear. A

numerical example is given in Appendix B. The neutrons causing

the interaction effect come from other rods, and their birth rate

density is appreciably different from a linear function over distances
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at which they can still contribute to the interaction effect.

In the lattices considered here, the rods were relatively

thin, being only 0. 250 inches in diameter. They were spaced

in three hexagonal arrays of 0. 880, 1. 128, and 1. 340 inches,

center to center, respectively. In these cases it is a reasonable

approximation to consider the neighboring rods to be line sources

of fast neutrons.

Consider a measurement made at position (0, zf) in an expo-

nential array; the coordinate system is that of Figure 2-1. The

fast flux, 40, arriving at this point from a neighboring rod a

distance rk away is proportional to the thermal flux along the

neighboring rod:

H
(f (0, zf) cc f K (p) *t (rk, z) dz , (2.6-1)

where the point kernel for single collisions is

exp -P
Kp(p) 47rp 2 (2. 6-2)

and

p = [z-z f2+r ]1/2 (2. 6-3)

The macroscopic scattering cross section along the flight path of the
ffast neutron is represented by Z . These equations would also apply

to a bare critical reference assembly or to an infinite assembly, the

only difference being in the limits of integration and in the expression

for the thermal flux. The appropriate thermal flux expressions for

the exponential case could be taken from sections 2. 2 or 2. 3 but that

would lead to undue mathematical labor in the integrations. Good

approximations to the thermal flux, for these purposes at least, are

given in Table 2-1. In this table, y is the inverse of the thermal

neutron relaxation length in the exponential assembly, and is either

measured or estimated from the relationship



Table 2-1

Thermal Flux Shape Approximations

z) Foil Position
Type of Assembly tin Assembly Integration Limits

Exponential j 2. 405r) exp(-y[z-zf]) (0, Z f) H dz

Bare Critical J 2. 405r sin (0, H"/2) f dz
0

Infinite 1 (0,f0) 2 dz



29

2 =[2. 405/R]2 - B 2 , (2. 6-4)
m

2
where Bm is the material buckling of the assembly. The values of
R"and Hare appropriate to the reference model of a bare critical

assembly, and the thermal flux expressions in Table 2-1 are normal-

ized to the value 1. 0 at the experimental position (0, zf).

Since the experimentally determined value of 628 is proportional

to the ratio *f/t and, since equation (2. 6-1) is normalized to the

same thermal flux at the experimental position through the quantities

in Table 2-1, the following expression may be written for the cor-

rection to the bare critical case:

['(O, H'/2)]k

8 k [6281 (2. 6-5)

L k

the summation is over the various sources of fast flux. Correction

to the bare critical case is a little ambiguous since it depends, in

principle, on the reference foil position chosen.

The corresponding relation for correction to the infinite case is

z (0, 0)1
6 k k [628] , (2. 6-6)

2 [ 4 [(0, Zf)]kj
Lk

where the superscript i indicates the theoretical infinite case.

If the single rod value is taken to be identical in both the expo-

nential and infinite assemblies, only the interaction effect need be

corrected for the variation in flux shapes. In such a case the value

of 628 due to the interaction effect may be substituted in place of

628 in the general correction equation (2. 6-6), and the corresponding

summations made over only the fast neutrons from neighboring rods.

The result of this treatment, obtained by using equation (2. 6-1) and

the expressions in Table 2-1, is
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oof0 K([2 r2 1/2d
1 sr 2 kK r21 z
28 28 H 1/2 2. 405r

K {z-z 2+r exp(-y[z-zf]) Jo R-) dz

X 628- 6 . (2. 6-7)

The summations in equation (2. 6-7) are over all neighboring rods

close enough to be considered as contributors to the fast flux at the

foil position. The quantity 6sr is the single rod value, taken to be

identical in the infinite and the exponential lattices.

The integral in the numerator of equation (2. 6-7) may be

written as

0. exp -Z fz2 +r 2]1/2 7/
Pk dz =74rrr /2 exp(-Zrk sec) dO

f 44 z2+r k s0

1Z 1

4rrk [F (r/2, rk , (2. 6-8)

where

z2 + r ]1/2 , (2. 6-9)

sec=

rk

and F (r/2, Ef r) is a tabulated function (31).

The integral in the denominator can be evaluated in two parts,

after taking the J0 (2. 405rk/R) term outside the integral. The pro-

cedure is as follows:



31

H _expf- zlz[ 2+ 1/2 ]exp(-7[z-z ]
dz

0 47r [z-z 2 +r2]

4 r 1 exp(sfrk secO 1--ysin/f) d)
k 0

+ f6 2 exp -Zf r secO 1+7sinG/zf]) dO
0

4 7rrk [F( 1 . Zrk, - / + )F 1 (2 rk s

(2. 6-10)

where

[[z-zfJ]2+rk1/

secv = f (2. 6-11)
rk

0 1 = arctan (zf/rk) (2. 6-12)

and

02= arctan ( r (2. 6-12)
k

The function F 1 is not listed in standard mathematical tables.

A parametric table of the function over a useful range of Z rk and

Y/z fis given in Appendix B; the values were obtained by numerical

integration on the IBM 7090 computer at the M. I. T. Computation

Center.

Equation (2. 6-7), together with the appropriate values for the

functions F and F 1 , is the desired relation for the correction of

exponentially measured values of 628 to the infinite assembly values.

This relation was used for correction of the data obtained in the

Small Exponential Assembly.

A check of equation (2. 6-7) may be made by noting that the
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calculated numerator of the right side of the equation should vary

in direct proportion to the infinite lattice interaction effect

measured in various lattice spacings; the comparison was made

for the data given in this report.

2.7 CORRECTION OF INTRACELL FLUX TRAVERSES TO
INFINITE ASSEMBLY VALUES

These measurements are usually made with foils of a 1/v-

absorber, with and without cadmium covers, to determine the

radial flux dip in the thermal neutron flux in and around a single

rod. The data may then be used to calculate the disadvantage

factor of the cell. The effect of a small exponential assembly

upon these measurements is both spectral and spatial in nature.

If the spectral effects are ignored by assuming a one velocity

thermal neutron model, the spatial effect may be adequately cor-

rected by using the theory developed in sections 2. 2 and 2. 3. It is

common to assume that the over-all spatial neutron distribution

and the localized flux dip near a rod can be separated. This

assumption greatly simplifies the analysis and will be used in this

report even though it is only an approximation.

The cell flux pattern is commonly shown in terms of the

activation of a 1/v detecting foil, with the rod center taken as the

center of the coordinate system. The activation is usually normal-

ized to a value of 1. 0 at the rod center. If the radial coordinate in

a system centered on a test rod is represented by r, a normalized

flux point for a cell would then be represented by S(r), where

v
f Nn(r, v) dv

S = vd (2. 7-1)

f N n(0, v) dv
0

N n(r, v) is the density of neutrons of speed v at radius r from the

rod center.



33

If the assumption is made that the over-all spatial distribution

and the localized flux dip are separable, then the activation of the

foil in an infinite lattice may be found from the equation:

S(r) = t ) [S(r)] , (2. 7-2)
L t(rf, z f)_

where the point (rf, zf) in the exponential assembly corresponds to

the point (r) in a coordinate system centered on the rod. The total

thermal flux, 4t, may be obtained from the equations of sections 2. 2
238 235

or 2. 3. As in the case of the U /U fission ratio, there is no

particular merit in correcting the values to those which would be

measured in a critical assembly. Such measurements, when made

in a critical assembly, are invariably corrected to the infinite case

before being reported.

If the source distribution of the exponential assembly is a

J0-shaped distribution, the above correction is directly proportional

to 1/J 0 (2. 405rf/R), irrespective of where the measurement is made

in the z direction. Even in the case of a plane source, if the

measurement is made at some distance from the source, the higher

modes will have decayed, and the distribution will be very close to

a J0-shaped distribution in the radial direction. This result can be

tested by making a radial flux traverse across the assembly at

equivalent cell points. Such a measurement was made in the lattices

tested in the Small Exponential Assembly.

The effect of the size of the exponential assembly on the thermal

spectrum available at the place of measurement in the assembly can

be divided into two parts. One part is the effect of the presence of

source neutrons. The other part is the increased possibility of

leakage, especially of the higher energy thermal neutrons.

Since the source neutrons are thermal, it is possible that they

will, after some collisions, assume the thermal neutron spectrum

characteristic of the lattice. Nevertheless, it is desirable to make

the measurements at a point where the source neutrons have effect-

ively disappeared and only neutrons born and moderated in the
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assembly are available. An estimate of the relative amount of the

source neutrons available at the test point can be obtained by calcu-

lating the ratio of *e to *s from the equations of sections 2. 2 or 2. 3.

The theory is then quite useful for finding a region for intracell flux

traverses in which there is an adequate flux and a small number of

source neutrons.

The effect of leakage on the thermal neutron spectrum is

beyond the scope of the theory developed, which used a one velocity

thermal neutron model. To estimate this effect, a more sophisti-

cated model must be used. The most useful theory and code for this

purpose is the Thermos code developed by Honeck (17) for the

IBM 7090 computer. The Thermos code was designed primarily for

finding the spectral distribution of thermal neutrons across a cell in

an infinite lattice, but it may be used to estimate the effect of leakage.

The method is discussed in Appendix C.

2.8 BUCKLING MEASUREMENTS IN A SMALL EXPONENTIAL
ASSEMBLY

One of the most useful measurements made in an exponential

assembly is that of the material buckling. This measurement, which

requires an accurate determination of the thermal neutron relaxation

length along the axis of the assembly, cannot be made in a small

assembly because the leakage from the assembly determines the

relaxation length almost independently of the material buckling. This

property may be seen from the formula for estimating the inverse of

the square of the relaxation length along the axis of the assembly:

72 2. 405 2 2 (2. 6-4)

Substitution of the value R=25 cm, as an example of a small assembly,

yields the result

y = [92. 5X10 4 - B 2  (cm) .
m

2 -4 -2
Since a typical value of Bm might be 10. X 10 cm , the inverse
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relaxation length, y, is little affected by changes in the material
2

buckling. Thus, B would be difficult to measure accurately, even
m

without the presence of source and end effects.

2.9 PREPARATION OF TABLES FOR THE GENERAL CASE

In the solution of the exponential problem no restriction on the

size of the assembly was made aside from the requirement that the

assembly be subcritical. It would be expected, however, that the

theory would be even more applicable to large exponential assemblies

than to small ones. By assuming identical diffusion properties for

source and lattice thermal neutrons, the equations developed in

sections 2. 2 and 2. 3 can be simplified somewhat for calculation.

This procedure has made possible the preparation of a set of tables

for general use.

If the thermal source neutrons have the same average diffusion

properties as the thermal lattice neutrons, then

Z = Es , and D = D . (2. 9-1)a a e s

The requirement that the extrapolated height of the assembly be equal

to the extrapolated diameter,

H = 2R, (2. 9-2)

and scaling of the height and radius in terms of the thermal diffusion

length, L,

a = R/L ,

2a = H/L , 
(2. 9-3)

then specifies the size in terms of a dimensionless parameter, a.

For convenience, the roots of the J Bessel series will be

defined as [ii, so that

Jo (4.) = 0 (2. 9-4)

the first members of the set of fii being

2. 4048, 5. 5201, 8. 6537,-



36

Then, from equation (2. 2-6), it follows that

'P.R = p.

Equation (2. 2-12) now can be written as,

2
P1 2 2 a2+

L 2a2

furthermore,

R=a 2 1/2

and

H= 2[a 2+ 2 1/ 2 .

Equation (2. 2-20) can be written as

s(r, z)

F DL

0 1 [sinh 2 [a 2 + 2]

1 +,Fl/2)cosh 2a2+ j
(2. 9-9)

Equation (2. 2-45) can be written as

00 00 4a
.E 1/2i=1 n=1 2ij 2i

tanh 2 [a2 1/2

J, ) Jo (R sin ( H

(2. 9-10)

where

r T 2 2
k., exp - + 4a2

1 +
22

a+n a
a 2 Aa 2

(2. 9-5)

(2.9-6)

(2. 9-7)

(2. 9-8)

1/2

x

)
(2. 9-11)

;

( (r, z)

FV I
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Equation (2. 2-47) can be written as

q(T, r, z) p0 ~ a

F IL i=1 n=1 l 22( 1/2 -i, n n2 2+4 a 2]

tanh (2 [a2+2 1/2 2
X exp -+nr

L 1 1i)L2La2 4a2 )

X IJJ) sin . (2. 9-12)

For the case of a J 0 -shaped source the corresponding equations can

be obtained by taking the first member of the Bessel function series

and multiplying by the normalizing factor,

in each of the three equations, (2. 9-9), (2. 9-10), and (2. 9-12).

Finally, the equation for the critical case, (2. 5-1), may be

rewritten as

q (Nr p 2
)L=]ko exp + 1)] (2. 9-13)
+ a . L a* 4a*

where the parameter a* refers to the critical scaled radius of a

reference bare critical reactor of height equal to the diameter.

For any particular exponential assembly characterized by

k0, r /L 2, and a, the following ratios can be obtained at a given

point in the assembly by using equations (2. 9-9), (2. 9-10), (2. 9-11),

and (2.9-12):

e /4s and a e ++s /poq

where * e/s is the ratio of equation (2. 9-10) to equation (2. 9-9),

and where the second ratio is given by the sum of equations

(2. 9-10) and (2. 9-9) divided by equation (2. 9-12). Furthermore,
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since p0 q*(r)/IZ ' for a bare critical reference assembly can be

obtained from equation (2. 9-13), the quantity

pq(r) /*

poq* (T)/*
can be calculated at any particular value of the age.

The quantities [s/F][D/L], [* e /F][D/L], and [q(T)/FJ[p0 L]

are shown in Figure 2-2 as functions of position along the central

axis of a typical exponential assembly. Figure 2-3 shows the vari-

ation of the correction factor

PO q(7/

with position along the central axis in the same case. The factor is

far from 1. 0 at the source end, owing primarily to the presence of

the thermal source neutrons. As the source neutrons die away in the

assembly the correction factor rises until it overshoots 1. 0 and then

rapidly returns to a value of 1. 0. The variation of the quantity

Rf (0, z) - 1

R f- 1

from equation (2. 5-4) should be the exact inverse of that given by

this curve. Thus, the theory gives a method of predicting the distance

from the source end at which the cadmium ratio becomes constant in

the assembly. The region of the assembly over which the cadmium

ratio is constant is often referred to as the "asymptotic region".

Cadmium ratio traverses are usually used to find this asymptotic

region in an exponential assembly. The theory allows prediction of

the extent of the region before the assembly is built.

Equations (2. 9-9), (2. 9-10), (2. 9-11), (2. 9-12), and (2. 9-13)

were programmed for machine calculation on an IBM 709 computer

and evaluated for a range of values of the parameters, k, T 0/L2

and a. The calculations were made in each case for each of twenty

equally spaced points along the central axis. Positions along the
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central axis are commonly chosen for cell measurements; this

choice also shortened the computational time since

J 0(Li[0J) = 1. 0.

The following information was tabulated for each case studied:

a. The distance from the source end, along the central axis,

where the asymptotic region begins; the point at which this

occurs is called the "asymptotic point".

b. A second point on the central axis, chosen about 30 per

cent of the total length farther into the asymptotic region.

Parameters are given for this point as well as for the

asymptotic point to allow interpolation between the two

points.

c. The ratio of the number of lattice born and moderated

neutrons to the number of source neutrons at each of the

above two points. This ratio is a measure of the quality

of the flux spectrum.

d. The value of the quantity, ke /F][D/L], for each of the

above two points. This ratio is a measure of the thermal

flux available.

The equations were evaluated over the following ranges of

parameters:

a. k of 1. 100, 1. 200, 1. 300, 1. 400.

b. 7 0 /L2 of 0. 250, 1. 0, 2. 0, 3. 0.

c. 7 of 0. 7 r . This value of the age will be in the region of
o 238

the lowest energy U resonances.

d. Source distribution, both plane and J -shaped.

Four values of R/L were evaluated for each possible combi-

nation of k and r 0 /L 2 . These sizes range from just under critical

size downward in each case.

The tabulated values of these quantities in Appendix A should

be of considerable assistance in the future design of exponential

assemblies, as well as in the optimization of present assemblies.



42

2. 10 REMARKS ON THE GENERAL USE OF THE THEORY

The use of age-diffusion theory has some well known

deficiencies. The necessity for homogenization of a heterogeneous

lattice is the most obvious and it would be expected that, as the fuel

becomes thicker and more widely separated, the theory would tend

to break down. The lumping of the thermal neutrons into one velocity

group is also a serious approximation, especially since the probability

of leakage from an assembly depends on the neutron velocity. The

use of age theory is probably not acceptable in the case of water

moderated lattices, but it should be better in the case of moderators

with higher nuclear mass. Finally, the general use of diffusion

theory is only an approximation to the actual case of very small

assemblies with sharp gradients and close boundaries.

The advantages of using age-diffusion theory are also well

known. The chief advantage is the ability to get an exact solution of

the equations for the three dimensional case. However, even the

exact solution presented in this chapter is relatively complex and

requires a computer to evaluate the many cases that might be con-

sidered in an experimental program. Another advantage of the

simple theory is the relatively small number of variables involved,

which makes parametric studies of the general case feasible.

It should be noted, however, that the use of age-diffusion

theory for calculating the differences between lattice parameters

measured in exponential assemblies and infinite lattice values is

much more appropriate than when it is used for calculating the

quantities themselves. In every case where the theory was used

for corrections in this chapter, as well as in the correction for

the U 238/U235 fission ratio, the assumption was made that

desired measurement _ theoretical desired value
exponential measurement theoretical exponential value

and the quantities most likely to vary from the exponential to the
desired case were selected for theoretical calculation. This approach
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is nearly always more accurate than the direct calculation of a

quantity. The experimental measurement gives a reference point

from which deviations for somewhat changed conditions usually

can be calculated accurately using simple theory. This result is

based on the fact that deficiencies in the theory will tend to affect

the exponential and critical calculations in much the same way,

and so tend to cancel out when the ratio is formed.
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CHAPTER 3

EXPERIMENTAL PROCEDURES

3. 1 THE SMALL EXPONENTIAL ASSEMBLY

The small exponential tank, fabricated at M. I. T. by J. Bratten

(3), was modified for these experiments. It is a thin-walled alumi-

num tank in the form of a right circular cylinder, 21 inches high and

20 inches in diameter, with a removable base plate of 1/2 inch thick

aluminum. The tank wall and top are made of 1/16 inch aluminum

sheet. The tank is equipped with a wheeled stand, as well as lines

and valves to allow filling or draining from a 3/4 inch line. Differ-

ent lattices can be studied in the facility provided appropriate grid

plates are available. Figure 3-1 is a sketch of the assembly.

In an experiment, the assembly is positioned under the thermal

neutron beam port in the Medical Therapy Facility of the M. I. T.

Reactor. Fast and slow neutron shields are placed around it and the

entire assembly, with the shielding, is lifted on the hoist to a position

about three feet below the beam port. Figure 3-2 shows the assembly

in the experimental position. Owing to its small size and ease of use,

a wide variety of experiments can be made at small cost.

The irradiation time for each experiment was two hours when

the reactor was at a power of 1. 8 megawatts. At this power level

there was a reasonably flat flux across the top of the assembly. The

flux had a magnitude of about 6 X 108 neutrons/cm2 sec at the center

of the assembly, which slowly fell to about 4 X 108 neutrons/cm2 sec

at the boron carbide shield. The assembly was allowed to sit for

about 90 minutes after irradiation in order to reduce the handling

exposure. It was then removed, the moderator was drained, and the

foils were taken out of the assembly for counting
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3.2 LATTICES TESTED IN THE ASSEMBLY

A set of 290 metallic uranium rods previously used in the
"miniature lattice" experiments at the Brookhaven National Laboratory

was used for these experiments. The rods had a U235 concentration

of 1. 143 per cent, and were 0. 250 inch in diameter. They were

enclosed in aluminum tubes of 0. 318 inch diameter and 0. 028 inch

wall thickness. The rods were 16 inches long and were positioned

by means of grid plates. The three arrays tested were hexagonal,

and had basic center to center rod spacings of 0. 880, 1. 128, and

1. 340 inches, respectively. Since the rods were not long enough to

fill the entire tank, an air space of about five inches was present

from the top of the rods and the moderator to the source end of the

tank. The level of the moderator was maintained by an overflow pipe.

Each grid plate assembly had a removable center array to facilitate

foil handling.

Three moderator mixtures of water and heavy water were used

at each of the above three lattice spacings; they were 99. 8, 90. 27,

and 80. 23 mole per cent D 2 0 in value. The lower values were ob-

tained by using degraded waters from previous fillings of ion exchange

columns as well as by mixing D2 0 with distilled water. The value of

the heavy water content was determined by gravimetric analysis (33).

The tank held about 100 liters of moderator when it was filled to the

level of the top of the rods.

3. 3 MEASUREMENTS MADE IN EACH LATTICE

3. 3. 1 Axial and Radial Traverses of the Tank

To test the equations derived in sections 2. 2 and 2. 3, axial and

radial traverses were made in each lattice. Gold foils, 0. 005 inch

thick and 1/8 inch in diameter were used. The axial foils were taped

in milled recesses one inch apart on an aluminum stick, 1/16 inch by

1/4 inch thick and 17 inches long. Bare and cadmium covered foils

were spaced alternately on the stick; the cadmium covers were 0. 020
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inch thick. The axial stick was taped along a rod in the second row

from the center; thus it was at a distance from the center of 1. 7

times the center to center rod spacing.

The radial foils were taped in milled recesses on a similar

stick, 20 inches long, but were spaced at distances equal to the center

to center rod spacing of each array tested. This insured that the foils

were positioned at the same point of each cell in a radial traverse.

The radial stick was taped to rods on a main diameter of the assembly

and was placed so that each foil was midway between two fuel rods.

The foils were alternately bare and cadmium covered as in the axial

traverse. Figure 3-3 shows the relative position of the sticks in the

removable center array.

The gold foil activities were counted with an automatic Baird

Atomic Gas Flow Geiger Counter.

Consideration is given in section 5. 1. 5 to the possible effect of

the foil holder and cadmium covers on the data. Details of the data

reduction are given in Appendix D.

3. 3. 2 U238 Cadmium Ratio (R2 8 ) Measurement

The average U238 cadmium ratio, R2 8 , was measured for 0. 250
inch diameter rods, with the equipment and technique set up by
A. Weitzberg (38). Two identical foils of uranium depleted to eighteen
parts per million U235 were irradiated, for each ratio measurement,

at equivalent positions in the lattice. The foils were 0. 250 inch in

diameter and 0. 005 inch thick. One foil was placed between two fuel

slugs, with thin (0. 001 inch thick) aluminum catcher foils on either

side to prevent the pickup of fission products from the surrounding

uranium. The other foil was placed in a pill box of 0. 020 inch thick
cadmium, composed of a sleeve 0. 375 inch in length imbedded in the
aluminum cladding and two 0. 250 inch diameter discs which were

placed on either side of the depleted foil. Two buttons of enriched

uranium 0. 094 inch thick were included within the cadmium covers to
minimize the streaming of resonance neutrons from the moderator

through the cadmium. Figure 3-4 shows the foil assembly in the rod.
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Two ratio measurements were made at different heights in all but

one of the lattices, in order to test the theory developed in section

2. 5 and to improve the accuracy of the measurements. The relative

positions at which these measurements were made, together with the

positions for the other measurements, are given with the data.

Figure 3-3 shows the relative positions of all the various foils in the

removable center array.

A time delay of several hours from the end of the irradiation

was observed to allow build-up of Np239 from the 23-minute half life
239

decay of U2. Then the foils were counted alternately in a gamma

spectrometer system of two identical channels. A block diagram of

one channel is shown in Figure 3-6. Details of the system are given

by Weitzberg (38). The spectrometers were set to straddle the

103 key peak of Np239 with window widths of 30 key. The foils were

counted several times over a period of two or three days to verify

that the observed radiation decayed with the proper half life and to

improve the accuracy of the results. Details of the data reduction

are given in Appendix D.

3. 3. 3 U 238/U235 Fission Ratio (628) Measurement

The average U 238/U235 fission ratio, 628, was measured for

0. 250 inch diameter rods by means of the equipment and technique

set up by J. Wolberg (41). A uranium foil depleted to eighteen parts

per million of U235 and a natural uranium foil were irradiated at the

same position in the lattice for each fission ratio measurement. Each

foil was 0. 250 inch in diameter and 0. 005 inch thick. The foils were

covered with thin aluminum catcher foils and placed back to back

between two fuel slugs in a rod. Since the same depleted foil arrange-

ment was used in the measurement of R2 8 and 628, the same bare

depleted foil was used for both measurements; it was only necessary

to determine the activity at different times in the two counting systems.

About 90 minutes after the end of the irradiation, the fission

product gamma activities of the natural and depleted foils were counted

alternately in a gamma ray counter, as shown in Figure 3-7. Details
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of the system are given by Wolberg (41). The bias of the amplifier

was set to reject counts below 0. 72 Mev. The activity of the two foils

was followed for about 1-1/2 hours as it decayed. Details of the data

reduction are given in Appendix D.

3. 3. 4 Intracell Flux Traverse Measurement

Thermal flux traverses were made across a unit cell in each

of the lattices moderated with 90 per cent and 80 per cent D 2 0. Gold

foils, 1/16 inch in diameter and 0. 005 inch thick were positioned in

milled recesses on an aluminum holder 0. 032 inch thick. Similar

foils were covered with small cadmium boxes made of 0. 020 inch thick

cadmium and were positioned on the same holder at equivalent points

in another cell of the lattice. The flux at points inside the rod was

obtained by placing the gold foils in small recesses machined in a

button of the fuel and capped with another button. The epicadmium

activity in the rod was measured by using the same kind of button,

but surrounded with a cadmium pill box like that used for the U 2 3 8

cadmium ratio measurement. The traverses were made along the

two basic directions of the hexagonal cell. Figure 3-5 shows the foil

holder and the foil assembly in the rods.

The gamma activity of the gold foils was counted, at convenient

times after the irradiation by using a gamma spectrometer system

shown in Figure 3-8. The spectrometer was set to straddle the

412 key T-ray peak of gold with a 40 key window. Details of the data

reduction are given in Appendix D.
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CHAPTER 4

RESULTS

4. 1 AXIAL AND RADIAL TRAVERSES OF THE ASSEMBLY

To test the theory developed in section 2. 2, axial and radial

traverses were made in every lattice used. The axial traverses

provide the most informative comparison of the theory with the

experiment. The nine axial traverses are shown in Figures 4-1

through 4-9. The radial traverses were nearly identical and only

one of the traverses is shown (Figure 4-10).

The solid curves on the nine axial traverses were calculated

from equations (2. 2-20), (2. 2-45), and (2. 2-47). The upper curve

in each case represents the total thermal flux along the central axis

corresponding to an incoming source neutron current of one

neutron/cm2 sec. The lower curve in each case represents the

slowing down density at the gold resonance along the central axis,

corresponding to the same incoming current. A plane source was

used for the calculations. For convenience in plotting, each axial

traverse was normalized by multiplying by the appropriate value of

(D/L). This normalization does not affect the shape or spacing of

the curves in any way; it merely makes the value of the total thermal

flux equal to 1. 0 at the extrapolated boundary of the source end of the

lattice. The scale on the right side of each graph pertains to the

slowing down density curve and is smaller by a factor of 10 than the

scale on the left side which pertains to the total thermal flux. The

right scale also has dimensions of cm owing to the normalization

of the slowing down density to the source current. Thermal input

parameters for the calculations were obtained from the Thermos

709 code. All of the input parameters for the calculations are listed

in Table 4-1. The use of the Thermos code itself, and the input data
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Table 4-1

Input Parameters for the Exponential Code

Volume Mod.
Volume Fuel

12.

20.

30.

12.

20.

30.

12.

20.

30.

Extrap.
Radius
(cm)

29.

29.

29.

28.

28.

28.

27.

27.

27.

Extrap.
Height
(cm)

53.

53.

53.

49.

48.

48.

45.

45.

45.

Age to
Thermal

(cm2)

151.

143.

139.

100.

95.

92.

75.

71.

69.

8

2

7

7

5

6

Input parameters
calculations

DO2
D20c

Conc.

99.

99.

99.

90.

90.

90.

80.

80.

80.

dependent upon or inferred from Thermos

Rod
Spacing

8%

8%

8%

3%

3%

3%
2%

2%

2%

0.

1.

1.

0.

1.

1.

0.

1.

1.

880

128

340

880

128

340

880

128

340

(cm)

1.

1.

1.

1.

1.

1.

1.

1.

1.

121

177

281

145

160

182

147

121

079

1.

1.

1.

0.

0.

0.

0.

0.

0.

a
(cm-1)

093

078

070

765

743

731

571

552

542

0.

0.

0.

0.

0.

0.

0.

0.

0.

01815

01255

00953

02251

01550

01196

02556

01779

01395

D2 0

Conc.
Rod

Spacing

Age to
4. 9 ev
(cm2)

99.

99.

99.

90.

90.

90.

80.

80.

80.

8%

8%

8%

3%

3%

3%

2%

2%

2%

0.

1.

1.

0.

1.

1.

0.

1.

1.

880

128

340

880

128

340

880

128

340

117.

110.

107.

80.

75.

73.

61.

58.

56.

6

7

4

9

9

7

3

8

L2
(cm2)

60.

85.

112.

34.

47.

61.

22.

31.

38.
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used to obtain the parameters, are explained in Appendix C.

To obtain satisfactory quantitative agreement between the theo-

retical and the experimental traverses, it was necessary to use as

parameters the extrapolation distance, d a' at the axial boundary and

the value of ERI/o-0 of the gold foils. The values used, as well as the

calculated values of Z and Z a are listed in Table 4-2, and the

results are discussed in section 5. 1.

The radial thermal neutron density distribution shown in

Figure 4-10 is for the 80. 2% D 20-1. 340 inch lattice. The theoretical

curve was calculated by using equations (2. 2-20) and (2. 2-4 5). The

scale is normalized to a value of 1. 0 at the central axis for the funda-

mental J mode.

The experimental points shown on Figures 4-1 through 4-10

were obtained from the activation of gold foils as explained in

section 3. 3. 1. The routine data reduction was made by using

equations (2. 4-10) and (2. 4-11).

4. 2 U238 CADMIUM RATIO MEASUREMENTS

The average U238 cadmium ratio of the rods was measured in

each of the nine lattices. The calculation of the correction factors for

p2 8 was made using equation (2. 5-7) and values of poq/ a computed

by the exponential code. The experimental results, the calculated

correction factors, and the resulting critical assembly values of p 2 8
found are given in Table 4-3. A graph and discussion of the results

are given in section 5. 2.

4. 3 U 238/U 235 FISSION RATIO MEASUREMENTS

The average U 238/U235 fission ratio in the rods was measured

for each of the nine lattices. The calculation of the corrections to

obtain the infinite lattice values was made by using equation (2. 6-7).

The experimental results, the calculated infinite lattice correction

factors, and the resulting infinite lattice values are given in Table 4-4.

A graph and a discussion of the results are given in section 5. 3.
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Table 4-2

Data Used in Comparing Experimental to Theoretical Flux Traverses

Rod d a
Spacing (cm)

0.

1.

1.

0.

1.

1.

0.

1.

1.

880

128

340

880

128

340

880

128

340

6.

6.

6.

4.

4.

3.

2.

2.

2.

55

45

4

2

0

9

4

3

3

da Kt ERI/o

* 3% /
t

(cm)

3.

3.

3.

2.

2.

2.

1.

1.

1.

28

23

21

30

23

19

71

66

63

2.

2.

2.

1.

1.

1.

1.

1.

1.

6.

5.

5.

5.

4.

4.

4.

4.

4.

07

82

10

00

89

60

86

71

22

D 2 0

Conc. (cm')
a

(cm-1)

99.

99.

99.

90.

90.

90.

80.

80.

80.

8%

8%

8%

3%

3%

3%

2%

2%

2%

0.

0.

0.

0.

0.

0.

0.

0.

0.

1617

1703

1741

260

274

280

364

384

392

0.

0.

0.

0.

0.

0.

0.

0.

0.

01815

01255

00953

02251

01550

01196

02556

01779

01395



Table 4-3

Measurements of the Ratio of Epicadmium to Subcadmium Capture in U238 (p2 8)

Distance
from End

(in.)

5.
9.

11.

5.
11.

5.
7.

5.
9.

5.
9.

5.
9.

5.
9.

5.
9.

73
68

28

64
31

71
66

61
58

67
61

72
68

61
57

70
60

0.
1.

1.

0.
1.

1.
2.

0.
2.
0.
2.

1.
12.

1.
5.

0.
3.

42
50

49

29
19

04
37

73
80

60
05

88
1

23
73

95
88

M 28e
Measured

1.36 .
1.90 .

1.45 .

0. 598+.
0.883+.

1. 242+.
1. 462+.

0.647+.
0.809+.

0.506+.
0.653+.

0. 960+.
1.030+.

0.588+.
0.688+.

0. 397+.
0. 446+.

03
10

04

010
023

012
026

007
012

011
020

009
006

012
005

001
003

Corr.
Factor

1.
0.

0.

1.
0.

0.
0.

1.
0.

1.
0.

0.
0.

0.
0.

1.
0.

178
817

860

341
895

971
843

082
885

132
907

919
914

995
920

042
925

1.
1.

1.

0.
0.

1.
1.

0.
0.

0.
0.

0.
0.

0.
0.

0.
0.

C28a
Critical

60 .
55 .

25 .

802 .
790+.

206+.
233+.

700+.
716+.

573+.
592+.

882+.
941*.

585+.
633+.

414+.
413+.

03
08

03

013
021

012
022

007
011

012
019

008
006

012
005

001
003

P28
Best Value

1.58 ±.03

1.25

0. 796

+. 03

+. 012

1. 219+. 013

0. 708+.008

0.582+. 011

0. 941+. 006

0. 633 .005

0. 414+. 002

D 20

Conc.
Rod

Spacing

99.
99.

99.

99.
99.

90.
90.

90.
90.

90.
90.

80.
80.

80.
80.

80.
80.

8%
8%

8%

8%
8%
3%
3%

3%
3%
3%
3%

2%
2%

2%
2%

2%
2%

0.
0.

1.

1.
1.
0.
0.

1.
1.
1.
1.

0.
0.

1.
1.

1.
1.

880
880

128

340
340

880
880

128
128

340
340

880
880

128
128

340
340



Measurements

Table 4-4

ofthe U 238/U235 Fission Ratio (628)

628

Measured

Interaction
Effect

(Exponential)

Interaction
Corr. Factor

±2%

Interaction
Effect

(Infinite)

99. 8% 0. 880

90. 3% 0. 880

80. 2% 0. 880

99. 8% 1.128

90. 3% 1. 128

80. 2% 1.128

99. 8% 1. 340

90. 3%

80. 2%

1. 340

1.340

0.0424± .0013

0.0414± .0012

0.0386± .0012

0.0303± .0030

0.0267± .0008

0.0266± .0008

0.0225± .0007

0.0219± .0007

0.0230±. 0007

0. 0298

0.0288

0. 0260

0.0177

0. 0141

0.0140

0. 0099

0.0093

0.0104

0. 895

0.972

0. 972

0.943

0. 970

0.970

0. 930

0.930

0.930

0. 0266

0.0280

0. 0253

0.0167

0. 0137

0.0136

0. 0092

0.0087

0.0097

Single rod (41)

0. 0392±. 0013

0.0406. 0012

0. 0379±. 0012

0.0293. 0030

0. 0263±. 0008

0. 0262. 0008

0. 0218±. 0007

0.0213 0007

0.0223 0007

0. 0126±. 0003

Average of the three measurements at each spacing

628

(Infinite)

0.0392. 0008

0.0263 0006

1.340 0.0218 ±.0003

D2 0

Conc.
Rod

Spacing
628

(Infinite)

END1

Spacing
(in.)

0. 880

1. 128
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4.4 INTRACELL FLUX TRAVERSES

Thermal and epithermal gold flux traverses were made across

a unit cell in six of the nine lattices. The results are shown com-

pared with the Thermos theoretical flux traverse curves in Figures

4-11 through 4-16. The square points represent a traverse from

the center to a point of the hexagonal cell, and the circular points

represent a traverse from the center along a line normal to a flat

of the cell. The activations are normalized to a value of 1. 0 at the

cell center.
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CHAPTER 5

DISCUSSION OF RESULTS

5. 1 AXIAL AND RADIAL TRAVERSES OF THE ASSEMBLY

5. 1. 1 Theoretical Problems Introduced by the Size of a Small
Assembly

The flux shapes in a small assembly are determined primarily

by the leakage of the neutrons in both the thermal energy region and

in the slowing down region. In a large assembly the multiplication

also has an important influence on the flux shapes. Thus, the size

of a small assembly must be carefully considered in a theoretical

treatment.

It can be seen from section 2. 9 that the size of an assembly

may be completely specified by using the ratios, R/L, H/L, and
2'r0/L2. The first two ratios are simply the extrapolated dimensions

in terms of the thermal diffusion length. The third ratio is a

measure of the leakage during slowing down compared with the thermal

leakage.

The extrapolated dimensions are found by adding an extrapolation

distance to the physical dimensions of the assembly. This is a useful

and justifiable mathematical device which allows the use of simpler

mathematical treatments in describing neutron behaviour in a lattice.

In a large assembly, defined as one which has a radius equal to per-

haps four or more diffusion lengths, the use of an extrapolated

boundary has been shown to give good results in many different

investigations. In small assemblies, such as those considered in

this report (where the radius was as small as 2. 75 thermal diffusion

lengths), the choice of an extrapolated boundary may reflect the

following problems:
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a. It is not entirely correct to use the same extrapolated

boundary at the source end for the thermal flux due to the

source and for the lattice born and moderated thermal

flux. In principle, no extrapolation distance should be

taken at this end for the source flux. Nevertheless, the

same boundary was used for both the source flux and the

lattice born thermal flux in the theoretical treatment in

order to obtain a Fourier sine transform of the source

flux which could be introduced into the lattice born

thermal neutron flux equation.

b. The source flux for these experiments was a non-isotropic

beam rather than an isotropic flux as was assumed in the

theoretical treatment. This non-isotropy would persist

for several mean free paths into the assembly, and the

flux shape might reflect its presence.

c. The extrapolation distance may be different for slowing

down neutrons and thermal neutrons. This problem is a

common one in most treatments of the flux shape inside

an assembly. In the theoretical treatment these extra-

polated boundaries were taken to be the same in order to

use the same Fourier transforms in the different equations.

d. The assembly was not surrounded by a vacuum as was

assumed, but by shields consisting of alternate layers of

paraffin and boron carbide plastic. These shields may

return some of the neutrons and thus increase the apparent

extrapolation distance.

e. The thermal diffusion length may be different for the

energy spectrum of the source neutrons from that of the

lattice born thermal neutron spectrum. Thus, the

apparent size of the assembly may vary, depending upon

the ratio of the source neutrons to the lattice born neutrons.
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All of the above considerations are important since the small size

of the assembly makes every part of the lattice relatively close to

a boundary.

5. 1. 2 Theoretical Traverse Curves

The theoretical axial traverse curves, Figures 4-1 through

4-9, have several interesting features common to all of the nine

lattices. The first feature is the point of inflection found on all

the subcadmium semi-log plots. This inflection point is charac-

teristic of a small exponential assembly and it occurs at the place

where the lattice born thermal flux begins to predominate. The

initial part of the thermal curve, near the source end, is a straight

exponential decay of the thermal source neutrons in the assembly.

The point of inflection is reached when the lattice born and moder-

ated thermal neutrons become a significant fraction of the total

thermal flux. As the number of the lattice born thermal neutrons

becomes larger than the remaining source neutrons, the slope of

the thermal curve changes to become characteristic of the inverse

relaxation length of the multiplying assembly. The sharp downturn

of the thermal curve at the end far from the source is a consequence

of the requirement that the thermal flux extrapolate to zero at that

boundary.

The second interesting feature of the theoretical curves is

the change in the shape of the curves of the slowing down density

as the H2 0 content of the moderator is increased. One effect of

the H2 0 addition is to increase the non-escape probability of both

the slowing down and the thermal fluxes. Thus, the lattice becomes

"larger" in terms of the non-escape probabilities as H2 0 is added,

and the curves of the slowing down density reflect this change. They

change from a rounded form in the "smallest" assemblies which, in

terms of the non-escape probabilities are the 99. 8 per cent D2 0
cases, to a more peaked form. Far from the source, the slowing

down density curve tends to become parallel to the thermal flux

curve. If the physical size of the assemblies had been increased
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also, thus further increasing the non-escape probabilities, the

slowing down density curves would have eventually assumed a shape

parallel to the thermal flux over most of the assembly. These paral-

lel curves are characteristic of large exponential assemblies in

which the thermal flux is proportional to the slowing down density.

In the 99. 8 per cent D 2 0 lattices this proportionality is not approached,

but in the 80. 2 per cent D 2 0 cases, the two curves are nearly pro-

portional over approximately half of the assembly.

5. 1. 3 The Use of the Extrapolated Distance and the Value of ERI/o-0
in Comparison of the Theory with Experiment

The extrapolated distance and the value of ERI/o0 are used as

parameters in the comparison of theoretical with experimental values

for the slowing down density at the gold resonance and the thermal

flux. The effect of using these quantities will be illustrated.

The extrapolation distance affects the position of the theoretical

curves as well as the size of the assembly. If the extrapolation dis-

tance is increased at the source end, the theoretical curves are

shifted toward the source end by approximately the same amount as

the increase in the extrapolation distance. The effect of increasing

the extrapolation distance in a small assembly is illustrated in

Figures 5-1 and 5-2. In Figure 5-1, the theoretical flux shapes

were calculated by using the conventional extrapolation distance of

0. 71Xt on all boundaries. In Figure 5-2, the theoretical flux shapes

were calculated by using an extrapolation distance of 2. OXt at each

end and 1. Ot at the radial boundary. Otherwise, all the input

parameters in each calculation were identical. It can be seen that

the shapes of the curves are little affected by the increase in the

extrapolation distance. The primary effect is to move both of the

curves to the left; this shift is caused by the movement of the source

end to the left when the extrapolation distance is increased.

The value of the quantity ERI/o 0 for the foils used in the

traverse affects the experimental values of the slowing down density.

This is illustrated by Figures 5-2 and 4-3. The calculations leading
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to these two graphs are identical aside from the value used for

ERI/<r ; in Figure 5-2, the value of ERI/o0 is taken to be 4. 52,

and in Figure 4-3 it is taken to be 5. 10. It can be seen from the

two graphs that the effect of the value of ERI/o 0 is to move the

entire set of experimental points for the slowing down density

downward as the value of ERI/o- is increased.

The significance of the values of the extrapolation distance

and ERIE/c0 will be considered in following parts of this section.

5. 1. 4 Detailed Comparison of the Experiments with the Theory

In general, the agreement of the experimental points with

the theoretical curves is good throughout the nine graphs,

Figures 4-1 through 4-9. The correspondence is better than

might be expected in view of the approximations involved in the

application of age-diffusion theory to such small assemblies.

The experimental points, however, show the actual flux shapes

to have real deviations from the theoretical curves. For purposes

of clarity the actual flux points were not connected by lines to show

the experimental flux shapes; however, the experimental errors

were small and a smooth curve can easily be drawn through these

points.

In the three graphs representing the 99. 8 per cent D 2 0

lattices, there is a systematic deviation of the thermal flux points

near the source end from the theoretical thermal neutron curve.

In all of the nine graphs there is a systematic deviation of the

measured slowing down density points near the source end from

the theoretical slowing down density curves. In both cases, the

measured points tend to fall above the theoretical curve. The

values of the extrapolation distance, the deviations of the thermal

and slowing down density curves, and the values of the ERI/0
used for the gold foils will each be considered in detail.
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5. 1. 4. 1 The Extrapolation Distance

The most striking point in the comparison of these curves

with the experimental values is the use of an extrapolation distance

larger than 0. 71?t. The values for the extrapolation distance used

in the nine graphs are given in Table 4-2. The values were chosen,

as demonstrated in section 5. 1. 3, to bring the theoretical flux

shapes into reasonable alignment with the data. The value of the

extrapolation distance for a given lattice, shown in Table 4-2, was

used on both ends, while an extrapolation distance of 1. OXt was used

for the radius when the theoretical curves were calculated.

As mentioned in section 5. 1. 2, the validity of the value of the

extrapolated boundary used in a small assembly is subject to dis-

cussion. The use of larger extrapolation distances in the smaller

assemblies, as shown in Table 4-2, indicates that the conventional

boundary conditions begin to break down in small assemblies, and

that the theory is near the limit of its validity.

One possible explanation of the need to use the larger extra-

polation distance at the source end is the non-isotropy of the source

flux. The same extrapolation distance was used on the end far from

the source as at the source end and may be justified, in part, for

another reason. For structural purposes, there were 1-1/2 inches

of aluminum and moderator between the ends of the uranium rods

and the absorbing boundary at the end of the assembly far from the

source. This material is quite different from a vacuum and tends

to increase the extrapolation distance. The curves are sensitive to

the choice of this boundary only near the last experimental point,

so this effect is important only over a small part of the curve. The

radial boundary condition is discussed in the section dealing with

the radial traverse curve.

5. 1. 4. 2 Deviation of the Theoretical Thermal Flux Curves

The deviation of the thermal flux curves from the measured

points near the source end in the three 99. 8 per cent D 2 0 cases

may be caused by the boundary problem. Another possible cause,
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however, is that the same thermal diffusion length was assumed for

both the source and the lattice born neutrons in the theoretical cal-

culations. This assumption simplified the theory for machine calcu-

lation, as can be seen in section 2. 9, but it may have been unjustified
for the cases in which the assembly was quite small, in terms of

diffusion lengths. In these cases, the source neutrons constituted a

significant part of the total thermal flux everywhere in the lattice.

The effect of this assumption would be less noticeable in the lattices

containing H20 and would help explain why the fit of the thermal data

with theory becomes very good in these "larger" lattices.

5. 1.4. 3 Deviation of the Theoretical Slowing Down Density Curves

The first experimental point on the slowing down density

curves, aside from Figure 4-2, must be regarded to have less

significance than the other points; it represents a measurement

made 1/4 inch closer to the source than the physical end of the

assembly. Regardless of this first point, there is a sharper peak

near the source end in the measured values of the slowing down

density at the gold resonance than in the theoretical curves. This

effect may be due to the value of the age used in the calculations.

The theoretical curve in this region is very sensitive to the value
chosen for the age to the gold resonance energy. To illustrate this,
a sample case was computed with input parameters close to those for

the 90 per cent-1. 128 inch lattice. The results are shown in Figure

5-3; while the slowing down density at zero age is not shown, it

would be directly proportional to the thermal flux. As the age of

the neutron increases, the slowing down density drops rapidly in

value near the source end, owing to escape of the slowing down

neutrons, but it remains relatively constant further inside the

assembly. It follows from this property, illustrated by Figure 5-3,
that all the theoretical slowing down density curves of Figures 4-1

through 4-9 could have been fitted more closely to the experimental

values if values of the age to the gold resonance from 10 per cent to

20 per cent smaller had been used for the theoretical calculation.
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This was not attempted because the present agreement is fairly

good and it has the virtue of a consistent theoretical treatment of

the Fermi age.

Experimental values of the age of fission neutrons to the

indium resonance in H 2 0/D20 mixtures have been obtained by

Wade (36). They are plotted in Figure 5-4. The age from the

indium resonance at 1. 46 ev to thermal energies was obtained

by using a formula derived for a mixture of two species:

2 2
1 n_ _n nn 2  2 nn 2 D

- + - + - + -- (5. 1-1)
mix 1 2 2 D 1 D2

where n. = the mole fraction of species i. This equation can be

obtained from the age equation with the assumption that the values

of the transport and scattering cross sections and the value of

are constant for each of the two species. Since the age from the

indium resonance to thermal energies is only a fraction of the total

age, the use of this equation should not introduce any significant

errors. Table 5-1 shows the data used in equation (5. 1-1) and the

total ages from fission to thermal energies obtained by using the

values from equation (5. 1-1) and Figure 5-4.

The total ages were then corrected for the presence of uranium

and aluminum in the cell by using the approximation of Driggers and

St. John (6):

cell =r [1+2V +V] , (5.1-2)

where V = the volume fraction of the aluminum anda

V = the volume fraction of the uranium.u

This approximation is obtained by assuming that the aluminum does

not moderate the neutrons significantly, and that the inelastic

scattering of uranium is about one half as effective as the elastic

scattering of the moderator. The results are listed in Table 4-1.

In order to obtain values of the age to intermediate energy

levels, including the gold resonance, the following formula was used:
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Table 5-1

Data for the Calculation of the Age to Thermal Energies

in Mixtures of H 2 0 and D 2 0

Age from indium resonance to thermal energies (29).

100% D 2 0

100% H 2 0

20. cm2

1. cm

Thermal transport mean free path (29).

100% D2 0

100% H2 0

2.65 cm

0. 48 cm

Age from indium resonance to thermal energy using equation (5. 1-1),

and the above data.

99. 8% D2 0

90. 3% D2 0

80. 2% D2 0

20. 2cm

11. 1 cm

7. 0 cm

Age from fission energy to indium resonance from Figure 5-4.

110.99. 8% D2 0

90. 3% D2 0

80. 2% D 2 0

2cm

75. 5 cm 2

58. 0 cm 2

Total age from fission to thermal energies.

99. 8% D 2 0

90. 3% D 2 0

130. cm2

86. 6 cm 2

2
80. z2 b. U CM
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T = T res (5. 1-3)r in 2X10 6

..1n 1.46

where in = cell age to the indium resonance. This formula assumes

an average fission neutron energy of 2 Mev, and a constant value of

D/s Z down to the indium resonance energy. The latter assumption

is the more serious one. Unfortunately, there are no experimental

data for the age to resonances other than indium in mixtures of H2 0

and D 2 0, but the reasonably good agreement between the experi-

mental results and the theoretical slowing down curves seems to

indicate that no serious errors are introduced by the use of equation

(5. 1-3).

To obtain correction factors for the U238 cadmium ratios,

values of the age to each of the main uranium resonances must be

calculated. Thus, for the sake of consistency, throughout this report

equation (5. 1-3) was used to calculate the partial ages in each lattice

to the gold and uranium resonance energies. Probably the most

serious deficiency in the input data for the theoretical calculations

is the lack of experimental values to use for ages to resonances

other than indium. The effect of this age approximation on the

correction factor for p2 8 is considered in section 5. 2, and the possi-

bility of improving the treatment by using machine calculations is

discussed in section 6.

5. 1. 4. 4 The Effective Resonance Integral Used for Gold

The -values of the quantity ERI/<o shown in Table 4-2 were

chosen to give a good fit of the data to the theory. The effect of

changing this value, as shown in section 5. 1. 3, is simply to move

the measured slowing down density curve up or down without

changing its shape. The calculated quantity [p 0 q/F] [L/1] must be

multiplied by a while the epicadmium activations must be multi-

plied by Es /[[ERI/o ] + 0. 51 in order to yield the plotted values
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of [pOq/FJ[D/LJ. For this reason, the values of [ERI/-] + 0. 5

are directly proportional to the values chosen for (Zs and inversely

proportional to the values chosen for a . The values of a are

from the Thermos code, and the values of $Zs at the gold resonance

of 4. 9 ev were calculated from the data shown in Table 5-2.

According to the theory of section 2. 4, the value of the quantity

ERI/or0 should be constant for any particular size of foil, thickness

of cadmium cover, and type of counting system. However, some

variation in the apparent value of the ratio, depending upon the lattice

parameters of the assembly in which the foils are activated, is often

noted. A separate direct measurement of the value of ERI/o-0 for

0. 005 inch thick gold foils with 0. 020 inch thick cadmium covers was

made by P. Brown (5) at the M. I. T. Lattice Facility. This measure-

ment was made in an assembly of natural uranium rods one inch in

diameter, triangularly spaced at 4. 5 inches in 99. 8 per cent D2 0. A

foil wheel, suspended in the middle of a lattice from which the three

middle rods had been removed, was used. The foil size, cadmium

covers, and counting system were identical with those used in the

experiments discussed in this report. The value of ERI/r 0 was cal-

culated from Brown's measured values for the cadmium ratios of an

infinitely dilute foil and a 0. 005 inch thick gold foil by using the

formula

R - 1 [ERI/- 0 + 0. 5]

R - [ ERI/- + 0. 5 dil (5. 1-4)

He found the cadmium ratio of the infinitely dilute gold foil (R0 ) to be

2. 78 i 1 per cent and the cadmium ratio of an 0. 005 inch thick gold

foil to be 6. 67 ± 1 per cent. A value of 15. 2 was used for the ratio

ERI/o-0 of the infinitely dilute foil. The value of ERI/o 0 found from

the above equation and data is 4. 42 for a 0. 005 inch thick gold foil.

This value lies among those presented in Table 4-2.

Considering the possible error in the calculated quantities

which affect the values found for ERI/o-0, the values appear reason-

able.
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Table 5-2

Data for the Calculation of Z

Moderator atom Hydrogen

1.0

Scattering cross section
at 4. 9 ev (barns)

Atomic concentration in
99. 8% D 2 0 (barn cm)-1

Atomic concentration in
90. 3% D 2 0 (barn cm)- 1

Atomic concentration in
80. 2% D 2 0 (barn cm)~ 1

20. 0

1. 33 X 10 -

0. 649 X 10 2

1. 33 X 10-2

Deuterium

0. 725

3. 44(P)

-26. 65 X 10 2

6. 02 X 10 2

5. 33 X 10-2

Oxygen

0.12

3. 8

-23. 33 X 10

3. 33 X 10 2

3. 33 X 10- 2

The uranium and aluminum were assumed to have no moderating

effect at 4. 9 ev. Consequently, the values of Zs found for the

moderators were multiplied by the volume fraction of the moder-

ator in the cell.

Rod spacing
(in.)

0. 880

1.128

Volume fraction
of moderator

0. 880

0.929

1.340 0.951
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5. 1. 5 Possible Effects of the Foil Holders and Cadmium Covers

The aluminum foil holders could produce at least two possible

effects on the axial traverses. The first one is that the 0. 030 inch

thick aluminum stick might act as a pipe, transmitting source

neutrons along its length. Such transmission, however, would be

blocked at the first foil which was covered with cadmium and located

1/4 inch closer to the source than the physical end of the assembly.

The second possibility is that the stick might depress or

enhance the slowing down and thermal fluxes along its entire length

because the scattering cross section of aluminum is different from

that of the moderator. Since the foil activation measurements are

relative to each other, this effect would cancel out in the data

reduction.

The cadmium covers on alternate foils might have the effect of

depressing the ratio of subcadmium to epicadmium neutrons at the

bare foils between them on the stick. Such a depression would affect

the value found for the ratio ERI/- , which would be proportionately

higher. Direct measurements by P. Brown (5) of this effect, based

on the use of identical foils and covers, show that it is less than

1 per cent for a one-inch spacing of the bare and cadmium covers;

an error well within the limits assigned to the values of ERI/- 0 in

Table 4-2. Thus, the influence of the aluminum foil holder and

cadmium covers upon these measured traverses appears to be

negligible.

5. 1. 6 Effect of Calculations Along the Central Axis

One small source of error in the theoretical curves is the

radial position of the calculated axial flux curve. In order to save

computer time, the axial traverses were computed along the central

axis. This procedure avoids the evaluation of the Bessel functions,

since all the arguments of the Bessel functions at this point are zero,

and the functions all have the value of 1. 0. The experimental

traverses were actually made at a distance from the central axis of
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1. 7 times the basic center to center rod spacing. The foil stick was

taped to a rod in the second hexagonal ring from the center to avoid

influencing other measurements inside the first ring of rods.

The difference between the theoretical case at the center line

and the theoretical case at the actual experimental radius was

determined for the 80. 2 per cent - 1. 340 inch lattice where the devi-

ation of the two theoretical curves from each other would be greatest.

The average difference between the two theoretical total thermal

curves was less than 1 per cent and the maximum deviation, at the

far end from the source, was less than 3 per cent. Slightly smaller

deviations were found between the two slowing down density curves.

This error was the only known error greater than 1 per cent which

was not corrected for in the theoretical or experimental values given

in this report. It was not corrected because its evaluation would

have involved a complete calculation of the flux curves off the center

axis, and would have involved a large amount of computer time. The

error, caused by this procedure, in the calculation of the p2 8
correction is much smaller, owing to the tendency of similar errors

to cancel out in the ratios used in that calculation. It is considered

in section 5. 2.

5. 1. 7 Radial Traverse of the Assembly

Figure 4-10 shows a typical radial traverse of the assembly.

It was made at a distance of 7. 62 inches inside the assembly from

the actual source end. The rods were spaced at 1. 340 inches in

80. 2 per cent D 20. At the radial traverse position, the ratio of the

lattice born and moderated neutrons to the source neutrons was cal-

culated to be 2. 0. The solid line on the graph represents the theo-

retical total thermal flux and it shows the presence of harmonics

when it is compared with the fundamental J -curve (dotted line). The

experimental flux points agree more closely with the theoretical

curve than with the fundamental J -distribution.
0

An extrapolated boundary of 10. 75 inches was used for the

theoretical calculation. This value, which is the sum of the physical
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radius of 10. 2 inches and one transport mean free path, leads to a

theoretical curve in good agreement with the experiment. The choice

of the extrapolation distance would not affect the J -curve near r = 0.

This extrapolation distance, which- is slightly larger than the con-

ventional value of 0. 71Xt, probably results from reflection of some

of the neutrons by the boron carbide shield around the assembly.

5. 2 U238 CADMIUM RATIO

5. 2. 1 Choice of Best Experimental Value

The values of p2 8 listed in Table 4-3 shown close agreement,

after correction to the critical assembly value, in six of the eight

lattices in which two measurements were made. In the two lattices

in which the corrected measurements disagree beyond the experi-

mental error, the measurement taken for the best value was the one

farther from the source. This choice was made because the correction

factor closer to the source end is more sensitive both to boundary

assumptions and the values chosen for the partial ages. The simple

equation (5. 1-3) was used to estimate the ages to the various uranium

resonances. The effect of an error in the partial age calculations on

the correction factor for p2 8 is discussed in section 5. 2. 2.

5. 2. 2 Effect of Approximations on the Correction Factor

Equation (2. 5-7) was used to evaluate the correction factors;

the variable in the equation which had to be calculated, and which

depends on the value of the age, was the ratio pjq./4. A graph of

this ratio for various ages is shown in Figure 5-5 for the same case

as shown in Figure 5-3. The values of the ratios, for different ages,

do not differ greatly from each other over the last third of the

assembly; hence, a measurement made in that region should be

relatively insensitive to the values used for the age. The measurement

made farther from the source in each case was in that region; thus

the correction factor for the measurement should not be affected

seriously by the age approximation used. For this reason, the
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measurement made farther from the source is preferred over the

measurement closer to the source when the two disagree. The dis-

agreement between the two measurements in the 80 per cent - 1. 128
inch, and the 80 per cent - 0. 880 inch lattices may be caused by the

effect of the age approximation on the correction factor; the effect

may be relatively large on the measurement closer to the source.

The values of the quantity f. also had to be known for the cal-

culation. These could be obtained from the infinite dilution resonance

integral for uranium, if necessary, but it would be more appropriate

to use values for the size of rod actually used in the experiment.

Values of the effective resonance integral for a 0. 250 inch uranium

rod were made available by D. Wehmeyer (37) from machine calcu-

lations performed at the Babcock and Wilcox Company. The formula

of Hellstrand (13), with corrections taking into account the lattice
shielding factor of Bell (2), was used for these calculations. The

results are given in Table 5-3 as well as values for the infinite

dilution resonance integrals.

For the purposes of the correction factor calculations, the

numerous U238 resonances above 66. 3 ev were lumped into one value

assumed to be at 200 ev. The calculations are insensitive to the
energy chosen for these lumped resonances. Since the exponential

code calculates the quantity p0 q/ t a, where po is the total resonance
escape probability, the values obtained from the machine calculations

must be multiplied by the factor p /p , where p. is the resonance

escape probability to the j energy. These partial resonance escape

probabilities were estimated from the formula (10),

-N u uR(E
p.(E) = exp-uuu 'U[ (5. 2-1)

tZ V *~

in which the values of the ERI for a 0. 250 inch rod shown in
Table 5-3 were used. Because of the tendency of similar deviations
in the critical and exponential calculations to cancel each other, as
mentioned in section 2-10, the approximations used for the values of
f. and p have little effect on the correction factors. This was shown
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Table 5-3

Resonance Integrals for U 2 3 8

ERI (32) for Fraction ERI (37) for Fraction
Resonance Infinite of Total. 0. 250 in. of Total.

Energy Dilution diam. rod
(ev) (barns) j (barns) j

(all above
66.3 / 19.5 0.074 7. 915 0.3674
66.3 11.6 0.044 0.614 0.0285
36.9 42.3 0.160 1.722 0.0799
21.0 60.8 0.230 2.740 0.1272
6.7 130.2 0.492 8.551 0.3970

Total 264.4 1.000 21.542 1.0000

by recalculating the correction factors for the two measurements

made in the 80 per cent - 1. 340 inch lattice, with different approxi-

mations for the values of p. and f.. In the first recalculation, the
3J

partial resonance escape probabilities were all taken to be 1. 0, and

the rod values of f. from Table 5-3 were used. In the second recal-

culation, the dilute resonance integral values of f. from Table 5-3

were used and the partial resonance escape probabilities were again

taken as 1. 0. The results are shown in Table 5-4. The changes in

the correction factors are small, despite the large changes in the

values of p. and f..
J J

Since theoretical values were calculated along the central

axis, while the measurements were made in the next adjoining rod,

a systematic error exists in the theoretical values of p 0 q/4t a. The

amount of this error was calculated in the case of the 80. 2 per cent -

1. 340 inch lattice in which the error would be the largest. The error

in the values of p q/Ta was less than 0. 2 per cent at the experi-

mental positions and.is, therefore, negligible.

In using the exponential code to compute the values of p0g/tt a'
a value of k, must be supplied as an input datum. The value of p0
for the calculation of k, thus must be estimated in advance in order

to find the correction factor for p2 8 . Hence, the critical assembly
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Table 5-4

Variation in the Calculated Correction Factor for P28 Depending
on the Values Used for the Fractional Resonance Integral and the
Partial Resonance Escape Probability (80. 2% - 1. 340 inch Lattice)

Distance of measurement
from source end (in.). 5. 70 9. 60

Correction factor using fj
for 0. 250 inch diam. rods 1. 042 0. 925and partial resonance
escape probabilities.

Correction factor using fjfor 0. 250 inch diam. rods 1.048 0.925
and ignoring partial reso-
nance escape probabilities.

Correction factor using fj
for infinite dilution and 1. 081 0. 925ignoring partial resonance
escape probabilities.

value of p2 8 , and the experimental value of p0 derived from it,

depend on the estimated value of p0 . If the experimental value differs

from the previously estimated value, the calculation must be repeated

using the new value of p0 . The iteration converges very rapidly on a

consistent value of p0 since the function p2 8 varies more rapidly than

the value of p0 calculated from it. This iteration procedure was used

for each of the nine lattice calculations reported here. Table 5-5
shows the progress of the iteration for the 99. 8 per cent - 12. 0 inch

lattice.

5. 2. 3 Consideration of Experimental Values

A graph of the values of p2 8 is shown in Figure 5-6. It would
be expected that the change in the values from 0. 2 per cent H 2 0 to
10 per cent H2 0 would be about the same as the change from 10 per
cent H2 0 to 20 per cent H 2 0 for any particular lattice spacing. The

expectation is borne out by the results except for the discrepancy in
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Table 5-5

Progress of the Iteration
to Find the Correction Factor for p2 8

(99. 8% - 0. 880 inch Lattice)

Calculation First Second

k /po 1. 531 1. 531

Estimated p0  0. 682 0. 732

k, used 1.044 1.121

Correction factor calculated
at 5. 73 inches from source 1. 200 1. 178
end.

Correction factor calculated
at 9. 68 inches from source 0. 817 0. 817
end.

Average value of p2 8 found. 1. 59 1. 58

Value of p calculated from 0. 732 0. 735
(5. 2-2).

the 90 per cent - 1. 128 inch lattice. These measurements of p 2 8
are considered to be consistent and in good agreement, with the

exception of that one point. Unfortunately, that particular measure-

ment could not be repeated because the water with 90 per cent D2 0

content had been degraded to 80 per cent; the cost of degrading more

99. 8 per cent D2 0 to make 100 more liters of 90 per cent D 2 0 was

considered prohibitive. The experimental records show, however,

that the result is anomalous. Two measurements were made in the

90 per cent - 1. 128 inch lattice; both of them were low and they

were consistent with each other. Each of the two measurements

was counted twice on different days, and the activity of the foils

agreed with the expected Np239 decay activity to 2 per cent. The

two measured cadmium ratios on each foil agreed with each other

to 0. 4 per cent in one pair and to 1. 2 per cent in the second pair.
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The experimental measurement may be erroneous, but all of the

following variables were eliminated as sources of error through

routine procedures carried out for each experiment or by analysis:

a. Weight difference in the foils. (Corrected. )

b. Previous activation of the foils. (Investigated by counting

the background of each foil before irradiation. )

c. Omission of the cadmium covers. (This would have

raised the value of p2 8 ; not lowered it. )

d. Calibration of the counting equipment. (Calibrated

several hours before counting. The equipment is very

stable over a period of several days. )

e. Counting wrong gamma activity. (Since the calibration

was made with an irradiated U238 foil, and the appropriate

half-life was also obtained, this possibility is unlikely.)

f. Mix-up in lattices or heavy water. (The measurements

of 6 28' made at the same time, were precisely on the

final value. )

g. Wrong correction factor. (This could not account for a

23 per cent discrepancy.)

The measurements appear to be consistently lower than those

which would be expected. For this reason, two values have been

carried throughout the rest of this analysis; an estimated value of

0. 9, and a measured value of 0. 707.

5. 2. 4 Calculation of the Resonance Escape Probability

The calculation of the resonance escape probability from the

measured values of p2 8 depends upon the formula used (38). Two

formulas are used here. The simpler form is

o= 1 + Gfp 2 8  (5. 2-1)

where G is the ratio of thermal neutron absorptions in U238 to
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thermal neutron absorptions in the fuel, and where f is the thermal

utilization. The second form, given by Kouts and Sher (24), is

more complicated; it is consistent with the values of f from Thermos

and with the values calculated for E from equation (5. 3-1). It is,

1 + [[c-1] ' 2 8 /'[v 2 8 -1-a 2 8J 1 2)
o 1 + IfG1 2 13 28[1-6/p28)/[1+6] - (5. 2-2)

where 11, 1 2, and 13 are non-escape probabilities in the fast,

resonance, and thermal regions, respectively. The quantity 6 is

defined in section 5. 4. 4.

Table 5-6 shows the input data for both formulas and the

resulting values of the resonance escape probability. Thermal

parameters were calculated by using the Thermos code. The

values of 6 used in the calculation are from the intracell flux

traverse measurements and are discussed in section 5. 4. 4.

Equation (5. 2-2) takes into account leakage from the assembly

in which the measurement is made. The equation is for measurements

made in a critical assembly or in the asymptotic region of an expo-

nential assembly. In application it is quite different from equation

(2. 5-7), which is to correct measurements made in a non-asymptotic

part of the assembly to critical assembly values. In principle, the
bucklings and, from them, the non-escape probabilities could be cal-

culated from the data available and used in equation (5. 2-2). The

equation then would have to be iterated with the new values of p and
the consequent change in the bucklings and the non-escape probabili-

ties. It would be desirable in such a case to have experimental

measurements of the buckling to use, since the estimated non-escape

probabilities still would have some error in them. Because experi-

mental values of the buckling were not available, the non-escape

probabilities were simply set equal to 1. 0 for the calculations shown
in Table 5-6.
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Table 5-6

Parameters for Calculation of the Resonance Escape Probability

Rod fG (U238 abs.)
Spacing (Thermos)

( 28e
(Measured)

E

(Measured)

6
(Measured)

k2%

2614
2586
2569
2439
2324
2324
2220
2291
2105
1941

1.
1.
0.
1.
0.
0.
0.
0.
0.
0.

58 .03
25 +.03
796 012
219 013
900 (est.)
708 008
582+. 011
941 .006
633. 005
414 002

a28 = 0. 107

v2 8

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

026 ±
018
015
026
018+
018
015+
026
018
015

001
001
001
001
001
001
001
001
001
001

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0725
0515
0396
0625
0406
0406
0300
0452
0330
0263

= 2. 76 + 0. 09

v2 5 =2. 43 ± 0. 03

Results of Resonance Escape Probability Calculations

PO - Eq. (5. 2-1) pO - Eq. (5. 2-2)

707 004
755+. 005
830+. 002
771 002
828 (est.)
859 002
887 002
824+. 002
882+. 002
925 002

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

735 004
774 .005
845+. 002
794 .002
840 (est.)
872 002
895 002
839+. 002
893+. 002
932 002

D 2 0

Conc.

99.
99.
99.
90.
90.
90.
90.
80.
80.
80.

8%
8%
8%
3%
3%
3%
3%
2%
2%
2%

0.
1.
1.
0.
1.
1.
1.
0.
1.
1.

880
128
340
880
128
128
340
880
128
340

D 2 0

Conc.
Rod

Spacing

99.
99.
99.
90.
90.
90.
90.
80.
80.
80.

8%
8%
8%
3%
3%
3%
3%
2%
2%
2%

0.
1.
1.
0.
1.
1.
1.
0.
1.
1.

880
128
340
880
128
128
340
880
128
340

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
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5. 3 U238/U235 FISSION RATIOS

5. 3. 1 Calculation of the Fast Fission Factor

The values listed for 628 in Table 4-4 show reasonably close

agreement for each lattice spacing regardless of the H20 content of

the moderator. This result can be attributed to the fact that the

scattering cross section for neutrons in the fast fission range is

nearly the same for both deuterium and hydrogen. Since the experi-

mental values for a given spacing are practically independent of the

composition of the moderator, they were averaged to obtain the final

result for each spacing. These values were then used to calculate

the fast fission factor from the usual relationship.

E 1+ 628 -2 (5. 3-1)- (v 2 8 -3 1- 2 )
25

in which the following values were used:

v25 = 2.43 + 0.03

v28 = 2.76 +0.09 (25)

a28 = 0. 107 (24) .

The results are given in Table 5-7.

Table 5-7

Fast Fission Factor (E) in 0. 250 Inch Diameter Rods

Rod spacing Average 6 Fast fission
(in.) 28 factor (c)

0.880 0.0392 +.0008 1.026 +.001

1.128 0. 0263 + . 0006 1.018+ .001

1.340 0. 0218 + . 0003 1. 015+ . 001
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5. 3. 2 Consideration of the Correction Factor for the Interaction
Effect

The value of the correction factor for the interaction effect is

less than 1. 0 in all cases. Equation (2. 6-10) shows that it depends

upon the parameters chosen for Zs, the scattering cross section of

the moderator for fast neutrons, and y, the inverse axial relaxation

length. In these small assemblies, the value of -y changes over the

length of the assembly because the relaxation length shifts from one

characteristic of the source neutrons being absorbed to one charac-

teristic of the multiplying medium. This change in the value of 7

introduces the error shown in Table 4-4 in the values of the cor-

rection factor for the interaction effect. The correction factor esti-

mated by using equation (2. 6-7) took into account both the exponential

shape of the thermal flux in the axial direction and the J -shape in

the radial direction. Allowance was made also for the fact that the

measurements were not made upon the central axis but in the next

adjoining rod. Rods were considered to contribute to the interaction

effect and were counted in the summation indicated in equation (2. 6-7)

until the contribution of an individual rod was less than 0. 2 per cent

of the total interaction effect. The summation included 90 rods in the

case of the closest spacing.

The most interesting fact about the correction to the infinite

case for the interaction effect is that the part of the correction due

to the axial exponential flux distribution is always less than 1. 0,

while the part due to the radial flux distribution is always greater

than 1. 0. As can be shown from equation (2. 6-7), the correction

factor is the product of the two parts; thus the deviation of the two

distributions from a flat flux tend to cancel each other in their

influence on the interaction effect. Correction for the J0-shape alone

might be less accurate than making no correction at all if the measure-

ment were made in an exponential assembly. In a large assembly, the

correction for either effect is quite small. In the small exponential

assembly, the exponential effect tends to dominate.
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5. 3. 3 Test of Theory

A test of the theory used in the correction of the interaction

effect was mentioned in section 2. 6. It is made by finding the ratio,

for each lattice spacing, of the numerator of equation (2. 6-7) to the

corrected experimental value of the interaction effect. The results

of this comparison are shown in Table 5-8. The agreement is very

good, almost within the limits of the experimental error, and it

indicates that values of 628 for other spacings of these lattices could

be calculated safely with the use of this equation. In similar lattices,

the value of 628 could be estimated with one measurement of the inter-

action effect at a particular spacing and a measurement of the single

rod value of 628'

Table 5-8

Comparison of the Numerator of Equation (2. 6-7)
to Interaction Effect Found for Infinite Lattices

Interaction
Rod Spacing Numerator Effect for

(in.) of Eq. (2. 6-7) Infinite Case Ratio

0.880 1.190 0. 0266 ± .0008 44.8± 1.4

1.128 0.666 0.0137 +.0006 48.6 + 2.3

1.340 0.441 0.0092± .0004 48.0 ±2.1

5. 3. 4 Comparison with Other Measurements

Figure 5-7 shows the final values of 628 compared with those

obtained at much closer lattice spacings in H 2 0 at the Brookhaven

National Laboratory (23). The two curves show fair agreement,

although they do not look as if they would join in a smooth curve.

The discrepancy may be due to a small difference in the interaction

effect between lattices moderated by H 2 0 and lattices moderated by

a mixture consisting mostly of D 2 0. A very small difference between
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effects in the two moderators probably would be smaller than the

experimental error of the measurements made here which covered

the range only from 80. 2 per cent D 2 0 to 99. 8 per cent D2 0.

5.4 INTRACELL FLUX TRAVERSE MEASUREMENTS

5. 4. 1 Effect of Leakage on the Measurements

It is possible to consider, in an approximate way, the effect

of leakage from the assembly on the theoretical intracell flux traverses

by introducing the leakage term DB2 into the cell calculations as an

additional energy dependent absorption term. The method is discussed

in Appendix C. The theoretical effect upon a relative measurement of

neutron density made with a 1/v absorber such as gold is quite small.

In all nine of the cases computed, the difference was never more than

0. 3 per cent in the theoretical traverses. For this reason, the intra-

cell flux traverses are plotted against the infinite assembly values.

A cadmium cut-off energy of 0. 415 ev was used for the theoretical

calculations.

5. 4. 2 Consideration of the Data

A hexagonal cell has two basic lengths; one from the center to

a point of the hexagon, and the other normal to one of the sides and

passing through the center. Flux traverses were made along both

lengths. The traverse to the cell corner is represented by a square

point on the graphs and the traverse to the cell side is represented by

a circular point. The results for the 90. 3 per cent D20 and 80. 2 per

cent D 20 cases are shown in Figures 4-10 through 4-16. In Figure

4-16, the traverse to the cell side was rejected because of scatter.

Similar measurements were made in the 99. 8 per cent D 20 case;

beta counts were made on these traverses on an automatic gas flow

Geiger counter, but they were too inaccurate to be meaningful. The

cause of the inaccuracies probably was the varying surface area of

the very small foils used in the experiment. The same type of foils

counted on the gamma counter system of Figure 3-8 yielded much
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better results, and this system was used for the cases shown in

Figures 4-11 through 4-16.

Equation (2. 7-2) was used for correction of the traverses to

the infinite assembly. The harmonic content of the radial Bessel

function expansion at the axial position of these measurements was

less than 1. 0 per cent of the fundamental J0 mode. For this reason,

a radial J0 function was assumed to represent the flux distribution

in equation (2. 7-2).

Of the six traverses shown in Figures 4-11 through 4-16, the

agreement with the Thermos calculations is good only in the lattices

with the widest spacing (1. 340 inches). In the tighter lattices, there

is a clear discrepancy between the theoretical and the measured

neutron densities.

5. 4. 3 Possible Causes of the Disagreement Between the Thermos
Calculated Flux Traverses and the Experiments

The explanation of the discrepancy between theory and experi-

ment is not yet known, but some possible causes are listed:

a. In the theoretical calculation, the properties of the mixed

moderator were handled by treating the moderator as a

collection of three atomic gases, hydrogen, deuterium,

and oxygen, with atomic densities equal to their actual

values in the mixture. The scattering properties were

handled by using a Brown and St. John free gas kernel (4)

for the deuterium and oxygen, and a Nelkin kernel (26)

for the bound hydrogen. This treatment is based on con-

sideration of the properties of a molecule of D 2 0 and H2 0.

In the mixture, however, the hydrogen probably is bound

primarily in the form of HDO molecules and the effect that

this might have on the scattering kernels is unknown.

b. In these experiments, the foils were held in a thin alumi-

num holder, 0. 030 inches by 1/8 inch thick. This was

found to have less than 1 per cent effect upon measurements
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made in D20 in an experiment performed by P. Brown (5).

However, at the Brookhaven National Laboratory (23), it

was found that even a small amount of aluminum can cause

a discrepancy in measurements made in H 2 0. In the mix-

tures used here, the aluminum holder should not have been

the cause of the discrepancy since the lowest moderator

D 2 0 content was 80 per cent.

c. The possibility of fission product contamination of the foils

in the rod giving an artificially high value of their activation

was eliminated by using a 0. 001 inch shield of aluminum or

Mylar tape between them and the adjoining pieces of uranium.

d. If the cadmium covers were transmitting thermal neutrons,

the effect on the results would have been in the opposite

direction to that which was found.

e. The effect of cylindricalization of the hexagonal cell in the

theoretical calculation is also a possible cause of the dis-

crepancy between the theoretical and the experimental cases.

This effect, if it is a serious one, would become more pro-

nounced at the smaller spacings, but, it does not seem

reasonable to ascribe the discrepancy to this factor alone.

f. The last possibility is that the neutron flux distribution in

the small assembly may not be representative of that in the

critical assembly and, at the smallest spacings, the experi-

mental flux plots are the least representative. The lattices

with the smallest spacings have the highest absorption in

the cell and, consequently, the highest neutron temperatures.

The presence of source neutrons may then lead to a spectral

distribution in the cell markedly different from that in a

critical assembly, and, hence, to a measurement which is

not comparable with predictions based on Thermos. The

calculated ratio of lattice born neutrons to source neutrons

for each intracell traverse is listed in Table 5-9. This ratio

is the highest in the cases of the greatest discrepancy, which
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seems to be at variance with the possibility just

outlined.

Since the experimental intracell traverses in a small assembly

may be open to question, Thermos calculated values of the thermal

utilization were used for the calculations of section 5. 5 below. The

difference between the experimental and theoretical values of f are

small since most of the neutron absorptions are in the fuel. If the

experimental values of the flux traverse had been used, the values of

f (and kc,) would be about 1. 2 per cent higher in the 80. 2 per cent -

0. 0880 inch lattice.

5. 4. 4 Calculation of 6

One measurement of interest is the cadmium ratio of an infi-

nitely dilute gold foil in the rod. From these data the value of a

parameter, 6, can be obtained, where 6 is defined by the statement

(24): "6/p 2 8 is the fraction of epicadmium capture that is 1/v

capture". It enters into the expression (5. 2-2) which was used for

pO in order to avoid counting epicadmium 1/v absorption in U238n

the resonance escape probability. The value of 6 can be obtained

from the cadmium ratio (R ) of an infinitely dilute gold foil by using

the relationship (24)

6 = 0. 0327[R 0-1] . (5. 4-1)

The values of 6 found for each lattice are listed in Table 5-9. These

values were obtained by first finding the cadmium ratio in the rod

from the gold flux traverses. The experimental points obtained in

the rods were volume-weighted to obtain the cadmium ratio. The

activities measured by gamma-ray counting were converted to

equivalent cadmium ratios measured by beta-ray counting by use of

the following relationship for 0. 005 inch gold foils;

[R f-1] = 0. 764[R f-1] , (5. 4-2)

which was determined by counting identical foils in both the gamma-

ray counter and the beta-ray counter. The cadmium ratios were
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Table 5-9

Experimental Values of 6 from Gold Cadmium Ratios

Distance
2 Rod from End Rf 6

Conc. Spacing (in.) $e's (beta) 2%

99. 8% 0. 880 11. 37 2.4 2.08 0.0725

99. 8% 1. 128 9.57 1.0 2. 58 0.0515

99. 8% 1. 340 9. 65 0.84 3. 31 0.0396

90. 3% 0. 880 11. 39 8. 7 2.49 0.0625

90.3% 1.128 11.28 4.4 3.35 0.0406

90. 3% 1. 340 11. 31 3. 1 4.35 0.0300

80.2% 0.880 11.38 23.0 3.12 0.0452

80.2% 1.128 11.29 10.4 3.98 0.0330

80.2% 1. 340 11.32 6. 3 5. 13 0.0263

corrected to the critical assembly values using equation (2. 5-4).

The cadmium ratio of an infinitely thin foil was then found by using

the relationship (5. 1-4) together with the value of ERI/tr0 listed in

Table 4-2, and by using a value of ERI/0 equal to 15. 2 for the infi-

nitely thin foil. Figure 5-8 is a graph of the results, which appear

to be consistent with each other.

5. 5 CALCULATION OF THE INFINITE MULTIPLICATION
FACTOR OF THE LATTICES

With the data found in the lattices and the results of machine

calculations, it was possible to calculate the infinite multiplication

factor of the lattices. The various quantities entering the calculation

and the results are summarized in Table 5-10. The errors quoted

for the infinite multiplication factor reflect only the experimental

errors of the resonance escape probability and the fast fission factor.

It is interesting to observe the effect of the addition of H 20 to

the moderator. At the smallest lattice spacing of 0. 880 inches, the

infinite multiplication factor is increased by the addition of H 2 0 owing
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to the increase in the resonance escape probability. At the widest

lattice spacing of 1. 340 inches, the infinite multiplication factor is

decreased by the addition of H2 0 owing to the decrease in the

thermal utilization. At the intermediate spacing of 1. 128 inches,

the two effects nearly cancel each other as the H2 0 content of the

moderator is increased.

Table 5-10

Calculated Infinite Multiplication Factor (k.)

D2 0 Rod r7 (Measured) o f kConc. Spacing (Thermos) = . 001 (Measured) (Thermos) 00

99.8% 0.880 1. 529 1.026 . 735 . 004 .976 1. 126 .006

99.8% 1.128 1.536 1.018 .774 .005 .974 1.178 .008

99. 8% 1.340 1. 540 1.015 . 845 .002 .971 1. 282 .003

90.3% 0.880 1.537 1.026 .794 .002 .919 1.151 .003

90. 3% 1. 128 1. 542 1. 018 . 840 .002 . 880 1. 160 .003

90. 3% 1. 340 1. 544 1.015 . 895 .002 . 843 1. 182. 003

80.2% 0. 880 1. 540 1. 026 . 839k. 002 . 866 1. 148L. 003

80.2% 1.128 1.543 1.018 .893 .002 .799 1.121 .003

80.2% 1.340 1.545 1.015 .932+.002 .738 1.079 .002
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6. 1 THEORY OF A SMALL ASSEMBLY - CONCLUSIONS

6. 1. 1 The Size of a Subcritical Assembly

One of the principal purposes of this work was to determine

whether a small lattice could be used for cell measurements without

loss of validity. The theory that has been developed here shows that

the size of an assembly is important only in terms of the scaled
2

dimensions of R/L and H/L, and the ratio r 0 /L . In terms of these

dimensionless parameters, the lattices investigated in this work are

among the smallest ever used. The "miniature lattice" used at the

Brookhaven National Laboratory was actually a "large" assembly in

terms of its scaled dimensions, since H20 was used as its moderator.

An attempt to understand neutron behaviour in a small assembly

led to the equations of sections 2. 2 and 2. 3. These general solutions

of the exponential problem are not limited to small assemblies and

are probably applicable over a wide range of subcritical systems.

Different source conditions can also be treated within the same theo-

retical framework, since only the Fourier transform of the source

condition need be known to solve the exponential problem presented

here.

It is perhaps surprising that the theory gives good agreement

with the flux curves, in view of the small size of the assemblies.

The relatively large extrapolation distances required may indicate

the lower limit of size at which simple boundary conditions can be

used when age-diffusion theory is applied to a small assembly. It

may be possible to extend the theory to even smaller assemblies,

although it is likely that a more sophisticated treatment must then

be used.
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The fit of the theory to the experiments is encouraging and

would seem to indicate that the reactor parameters measured have

validity. However, since larger assemblies of this same enrich-

ment, rod size, and spacing have not previously been investigated,

the question of the significance of the results cannot yet be settled

completely. Further measurements in much larger assemblies of

this general type will be made in the near future at the M. I. T.

Lattice Facility.

6. 1. 2 Corrections for Leakage and Source Effects in a Small
Assembly

Correction methods have been developed for the leakage and

source effects in small assemblies. The equations are given in

sections 2. 5 through 2. 7. This part of the theory is not dependent

on the previous treatment of the exponential problem. It can be

applied by using any valid representation of the slowing down density

and the thermal flux.

The treatment of the correction, to critical assembly values,

of cadmium ratio measurements showed that measurements made

in the asymptotic region of a subcritical assembly should give results

identical with those made in a critical assembly. This theoretical

prediction is not new. The correction for measurements made in a

non-asymptotic region of a small assembly can be tested for con-

sistency if two or more measurements are made in the same assembly.

Application of this test to the p 2 8 data showed good consistency in six

of the eight lattices in which two measurements of p 2 8 were made.

This result is encouraging, and lends confidence to the method of

correction as well to the use of the age-diffusion approximation in

calculation of the slowing down densities and the thermal fluxes.

The theory for correction of the U 238/U235 fission ratio

measurements can also be tested for consistency when measure-

ments are made which differ only in the lattice spacing. This test

was applied to the values of 628 found for the three lattice spacings.

The results again lend confidence to the method of correction. It
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would seem that the correction for the flux shape is applicable to

U 238/U235 fission ratio data measured in any exponential assembly,

although the correction would be quite small in a large assembly.

It is recognized that consistency of these results among the

small assemblies does not represent complete proof of the validity

of the correction method. Further proof must await experimental

measurements in larger lattices.

6. 1. 3 Position of Experiments in a Small Assembly

Three measures have been advanced for the evaluation of

experimental position inside a subcritical assembly. The first is

the determination of the extent of the asymptotic region, when it

exists. If such a region is present, the cell measurements should

be made inside it. By the use of the equations presented in sections

2. 2 or 2. 3, the extent of this region can be found in a proposed

assembly. If such a region does not exist, as was the case in the

lattices investigated for this report, the equations can be used to

estimate the position where the flux variations will be smallest.

The second measure is the ratio of the lattice born and moder-

ated neutron flux to the thermal neutron flux due to the source. The

higher this ratio, the more representative the flux spectrum is of

the lattice. The third measure is the magnitude of the thermal

neutron flux in terms of the entering neutron current. Use of the

equations of sections 2. 2 and 2. 3 provides a means of calculating

values for these two measures and thus a way to evaluate a proposed

experimental position.

In order to demonstrate the use of these measures, a table

giving the above information for 128 possible lattices was prepared

with only minor simplification of the theory. These results, listed

with a sample problem in Appendix A, should be of considerable

help in the future design of subcritical assemblies.
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6. 1. 4 General Conclusions on the Use of Small Assemblies

The use of small assemblies is attractive owing to the ease of

experimentation and the small amount of reactor materials used.
Thus the present studies, carried out in part to determine whether

or not there exists a lower limit to the useful size of a subcritical

lattice, have a practical significance. If valid measurements of
reactor parameters can be made in small subcritical assemblies

it would be possible in the future to save both time and substantial

sums of money in preliminary studies of new types of power reactors.

The results obtained in this study indicate that an important potential

for such economies exists in the use of small subcritical assemblies.

6. 2 THEORY OF A SMALL ASSEMBLY - RECOMMENDATIONS

It is important to make measurements in larger assemblies to

further validate the data of this report and such measurements are

strongly urged. Measurements of this nature, at least in the

99. 8 per cent D2 0 range, are planned for the near future at the

M. I. T. Lattice Facility.

It would be desirable to examine the boundary conditions used

in the present theory. Among the problems which should be investi-
gated are the size of the boundaries depending on the energy and the
origin of the flux, and the effect of a non-isotropic source. Experi-

mental investigation of these boundary conditions might be possible
by the use of incident sources of varying neutron energy.

It also appears desirable to apply more rigorous theoretical

methods, such as multigroup methods, to the problem of small

assemblies.

6. 3 CALCULATIONS AND MEASUREMENTS IN LATTICES
MODERATED BY H2 0 AND D 2 0

6. 3. 1 Conclusions

A summary of the calculated and measured quantities for
lattices moderated by H2 0 and D2 0 is given in Table 5-10. These
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values appear to be reasonably consistent with each other and were

obtained in one of the smallest assemblies ever used for such

purposes.

6. 3. 2 Recommendations

Measurements on assemblies with mixed moderators are

interesting from a theoretical standpoint as well as for practical

reasons, and more basic data are needed.

The measurement of ages to higher resonance energies than

the indium resonance is of particular interest in the development

and use of the theory of this report. These ages may also be cal-

culated by using any of several machine codes. Among these are

the Gam-1 code, (20), and the Corn Pone and the Chronos codes

(12). It would be of interest to compare the results of machine cal-

culations with the simple approximations used in this report for

calculating ages.

It is important to resolve the discrepancies between the

Thermos calculations and the measured intracell flux traverses.

If the particular form of the scattering kernels of the D2 0 and the

HDO molecules are the cause of the discrepancy, a quantum

mechanical approach probably will be necessary to obtain a better

kernel. This problem is a difficult theoretical one, but work on

it is under way at the Brookhaven National Laboratory.

Further measurements can be made with the present equip-

ment and sets of rods. The measurements could be extended

profitably in the direction of smaller lattice spacings and lower

values of the D20 content. Furthermore, the present assembly

could be used for a study of the interaction effect in thin rods,

over a much wider range of lattice spacing and moderator mixtures.
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NOMENCLATURE

SUPERSCRIPTS

e denotes quantity pertaining to neutrons born and moderated

in subcritical exponential lattice.

denotes quantity pertaining to fission energy neutrons.

i denotes quantity pertaining to a theoretical infinite assembly.

s denotes quantity pertaining to source neutrons.

denotes quantity pertaining to a theoretical bare critical
*

assembly (except in the case of v ).

28 238denotes a property of U

25 235denotes a property of U

operational notation indicating the Hankel or Sine transfor-

mation of the function over which the bar is written (except

for I. and the Thermos spectrum averaged quantities

operational notation indicating the double transformation of

the function over which the double bar is written.

SUBSCRIPTS

L denotes quantity pertaining to slightly enriched uranium in

lattice assembly.

D denotes quantity pertaining to depleted uranium metal in foil.

N denotes quantity pertaining to natural uranium metal in foil.

Other subscripts are listed with the particular variables to

which they pertain.
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BRACKETS

[ Square brackets denote multiplication.

() Curved brackets denote the argument of a function.

SYMBOLS

A atomic mass (amu).

A ef effective atomic mass (amu).

a radius in terms of the thermal diffusion length (R/L).

2 -2B n buckling of the i, n mode (cm ).

2 -2
B material buckling (cm ).

C constant from integration (see equation (2. 2-35)).

D thermal diffusion constant for lattice born neutrons (cm).

Ds thermal diffusion constant for source neutrons (cm).

D Thermos spectrum averaged thermal diffusion constant (cm).

da axial extrapolation distance on one end (cm).

E energy (ev).

ERI effective resonance integral (barns).

Eres energy level of resonance (ev).

F(r) incoming thermal neutron source current on end of assembly

(neutrons/cm 2sec).

fF(0, Zs rk) function defined by equation (2. 6-8).
f f)

F(, r, Z f / r ) function defined by equation (2. 6-10).

f the thermal utilization (the fraction of thermal neutrons

absorbed in the fuel).

f. fractional contribution of the j th resonance to the ERI.

G ratio of the thermal neutron absorptions in U238 to the

total absorptions in the uranium.
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H extrapolated height of a cylindrical assembly (cm).

I fission rate in the uranium rod (fissions/cm 3sec).

J () Bessel function of the first kind of order 0.

J,() Bessel function of the first kind of order 1.

K p() point kernel for the uncollided fast flux.

k, infinite multiplication factor.

k. finite multiplication factor for the i, n mode.
1, n

L thermal neutron diffusion length (cm).

L thermal neutron diffusion length for lattice born neutrons (cm).

e 1 non-leakage probability in the fast energy region.

1 2 non-leakage probability in the epithermal energy region.

1 3 non-leakage probability in the thermal energy region.

M(E) Maxwellian neutron energy distribution.

N atomic concentration (atoms/cm3 except in foils where it

represents atoms/cm2 ).

N (r, v) density of neutrons of speed v at radius r from a rod
n 3
center (neutrons/cm ).

n mole fraction of species i.

P geometric probability that a fast neutron will reach a foil.

P(t) ratio of U235 fission product activity to U238 fission

product activity per fission.

p0 resonance escape probability to thermal energies.

th
p. resonance escape probability to the j resonance energy

level.

q(7, r, z) slowing down density in a system with no resonance

absorption at the energy corresponding to age 7,

(neutrons/cm 3sec).
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R extrapolated radius of a cylindrical assembly (cm).

R cadmium ratio of a foil.

Re 0cadmium ratio of an infinitely dilute gold foil

Rr radius of a fuel rod.

R28 cadmium ratio of U238 in a rod.

r radial coordinate in an exponential assembly (cm).

r radial coordinate from a rod center (cm).

rf radial position of a foil (cm).

rk radial distance from one rod to another rod (cm).

S(r) relative thermal neutron density in a cell (normalized

to 1. 0 at the cell center).

T irradiation time (min).

t time delay from the end of the irradiation until count

is made (min).

V volume (cm3 )

Va volume of aluminum in cell (cm 3

Vm volume of moderator in cell (cm 3

Vu volume of uranium in cell (cm3 )

v thermal neutron speed in terms of 2200. m/sec.

v* upper energy cutoff for thermos calculations.

W average difference in weights in D2 0 determination (g).

X dummy variable representing 0.

fY dummy variable representing Zs rk

Z dummy variable representing 7/1 .

z axial coordinate in an exponential assembly (cm).

zf axial position of a foil (cm).
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238
a28 ratio of captures to fissions for fast neutrons in U

a experimental variable defined by equation (2. 4-9).

2 -2
p quantity defined by equation (2. 2-12) (cm ).

y inverse thermal neutron relaxation length (cm )

y(t) ratio of the fission product activity of a depleted foil to

the fission product activity of a natural foil.

6 ratio of 1/v epicadmium capture to thermal capture in
a 238a U 28foil.

628 ratio of U238 fissions to U235 fissions in a rod.

628 single rod value of 628.

c fast fission factor (ratio of neutrons released from fast

fission to neutrons released from thermal fission in a rod).

r; number of neutrons released per thermal absorption in a rod.

0 angular variable.

X radio-active decay constant (min-

t(E) thermal neutron transport mean free path at energy E (cm).

Xt Thermos spectrum averaged thermal neutron transport

mean free path (cm).

roots of the equation J0 (.L) = 0: (The first members of the

series are 2. 4048, 5. 5201, 8. 6537, ..

[ average cosine of the scattering angle per collision.

235v2 5 average number of neutrons released per fission in U

238
* 28 average number of neutrons released per fission in U

6 average neutron logarithmic energy decrement per collision.

7r 3. 14159 .

p distance from origin of fast neutron to foil (cm).
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238
p 2 8 ratio of epicadmium to subcadmium captures in U

pS density of sample in D 2 0 determination (g/cm 3

PH2 0 density of H20 in D2 determination (g/cm ).

3
Pair density of air in D 2 0 determination (g/cm ).

.tha-. contribution of resonance at the j energy level to the

effective resonance integral (barns).

a' microscopic absorption cross section at 2200. m/sec (barns).

es microscopic absorption cross section at a resonance energy
level (barns).

o-epi effective microscopic epicadmium absorption cross

section (barns).

(- sub effective microscopic subcadmium absorption cross

section (barns).

a-1 /v(E) 1/v absorption cross section in the 1/E slowing down

energy region (barns).

"a macroscopic thermal neutron absorption cross section
-1

including fission (cm ).

"c macroscopic thermal neutron capture cross section (cm 1

z f macroscopic thermal neutron fission cross section (cm-1

Etotal macroscopic thermal neutron total cross section (cm~ 1

Za Thermos spectrum averaged macroscopic thermal neutron
a -1

absorption cross section including fission (cm ).

r Fermi age of neutrons (cm2 )

7in Fermi age of neutrons to the indium resonance (cm 2

T Fermi age of neutrons to thermal energies (cm2 ).

Tr Fermi age of neutrons -to a resonance energy (cm 2

<(E) neutron flux at energy E (neutrons/cm 2sec per ev).
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* thermal flux of lattice born and moderated neutrons
2

(neutrons/cm sec).

*)f fast neutron flux (neutrons/cm 2sec).

*s thermal flux of source neutrons (neutrons/cm 2sec).

m average resonance flux in the moderator (neutrons/cm 2 sec).

4*m average resonance flux in the fuel (neutrons/cm 2sec).

*t total thermal flux (neutrons/cm 2sec).

2 th -2
j 2radial buckling of the i mode (cm ).

X counter efficiency.

V 2 Laplacian operator.
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APPENDIX A

QUALITY AND MAGNITUDE OF THE
THERMAL FLUX IN EXPONENTIAL ASSEMBLIES

1. Description of the Tables

The following tables were obtained from equations (2. 9-9),

(2. 9-10), (2. 9-11), (2. 9-12), and (2. 9-13) with the aid of an IBM 709

computer. They apply to a cylindrical subcritical assembly with an

extrapolated height equal to the extrapolated diameter. The lattice

born slowing down and thermal fluxes were assumed to extrapolate to

zero on all the boundaries. The thermal source flux was assumed to
2

be caused by a plane current of F neutrons/cm sec in the plane
2source case and a current of F J (2. 405r/R) neutrons/cm sec in the

0
J source case. The axial distance, z, was measured from the source
0

end.

Two points are given for each lattice which is characterized by
2

the parameters k , r /L , a particular source condition, and a

scaled radius, R/L. The first point is the distance from the source

end, along the central axis, where the asymptotic region begins. This

region is defined to exist where a nuclide with a resonance energy

whose age is 0. 7 r (about 5 to 25 ev) has a cadmium ratio within

1 per cent of what would be measured in a critical assembly. The

second point is chosen along the central axis, about 30 per cent of

the total length farther into the asymptotic region from the first point.

Values of the fluxes at positions between the two points can be found

by interpolation on a semi-log plot.

Two parameters are listed for each of the above two points.

The first parameter is the ratio of lattice born and moderated thermal

neutrons to thermal source neutrons. This dimensionless ratio is a

measure of the quality of the thermal flux. The higher the ratio, the

more nearly representative of a critical assembly the thermal flux is.

The second parameter is the value of the dimensionless ratio,

[be/F][D/L]. This ratio is a measure of the magnitude of the thermal

flux available at the two points evaluated, in terms of the incoming
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current at the source end. The normalizing factor (D/L) must be

known in order to find the absolute value of the lattice born thermal

flux in terms of the absolute value of the thermal current.

2. Sample Case

A sample case to illustrate the use of the tables follows:

Consider a cylindrical subcritical assembly with the calculated

homogeneous properties:

k, = 1. 200

7- = 100. c
0

L2 = 100. c

(Infinite multiplication factor)

M2 (Age to thermal energies)

m2 (Thermal diffusion area)

R = 60. cm (Extrapolated radius)

H = 120. cm (Extrapolated radius)

F = 108 neutrons/cm2sec (Plane source)

D = 1. 0 cm (Thermal diffusion constant)

By using the entering values:

k = 1. 200

7/L = 1. 0

R/L = 6. 0

the following quantities can be obtained from Table A-2:

z/H

4)e /4)s
[ e/F][D/L]

Rcrit /L

Asymptotic Point

0. 30

9. 14

0. 234

Second Point

0.65

263.

0. 0826
9. 39

The following information can be obtained from these data:

1. The asymptotic region begins at

[0. 30][1201 = 36. cm

from the extrapolated source end. At that point, the lattice
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born thermal flux is

[0. 234] [10/1. 0][108] = 2. 34 X 108 neutrons /cm2 see;
the thermal flux due to the source is

[2. 34] [108]/[9. 14] = 0. 256 X 108 neutrons/cm2 sec;

the ratio of the lattice born thermal flux to the total thermal

flux is

9. 14 /[9. 14+ 1. 0] = 0. 89, or 89 per cent.

2. In the asymptotic region, at

[0. 65][120] = 78 cm

from the extrapolated source end, the lattice born thermal

flux is

0. 0826[10/1. 0][108] = 0. 826 X 108 neutrons /cm 2 sec;

the thermal flux due to the source is

[ 0. 826 X 1081/263 = 3.14 X 105 neutrons /cm 2 see;

the ratio of the lattice born flux to the total thermal flux is

263/[263 + 1] = . 996, or 99. 6 per cent.

3. The critical radius is

9. 39[10] = 93. 9 cm

for a height of 2[93. 9], or 187. 8 cm.

Values of the various fluxes for positions between 36 cm and 78 cm

can be obtained from the above data by using a semi-log interpolation.

Since the equations were solved for steps of 0. 05 in the variable

z/H, the asymptotic point for each lattice is given at the first step

where the asymptotic condition holds true.
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Table A-i. Quality and Magnitude of the Thermal Flux in Cylindrical
Exponential Assemblies (k.0 = 1 100).

k = 1. 100 Plane Source

T /L2 R/L Asymptotic Point Second Point

o z/H e/*s Mag. *e z/H *e'/s Mag. *e

5.0 0.15 1.53 0.327 0.70 112. 0.0658
6.0 0.15 2.67 0.433 0.55 148. 0.166

0.25 7.0 0.15 4.52 0.548 0.45 189. 0.319
8.0 0.10 3.04 0. 612 0.40 333. 0. 532

10.20 Crit.

6.0 0.35 11.2 0.154 0.80 502. 0.0231
8.0 0.25 15. 6 0.282 0.60 1580. 0.0961

1.0 10.0 0.20 23.6 0.432 0.50 5610. 0.247
12.0 0.10 6.98 0.634 0.40 13,000. 0.874
13.02 Crit.

8.0 0.35 33.0 0.119 0.65 1400. 0.0376
10.0 0.30 72.0 0.177 0.60 11,600. 0.0676

2.0 12.0 0.25 107. 0.266 0.55 73, 600. 0.134
14.0 0.20 115. 0.427 0.50 401,000. 0. 332
16.00 Crit.

10.0 0. 35 109. 0.0986 0. 75 72,700. 0.0203
12.0 0.25 64.5 0.160 0.55 36,600. 0.0665

3.0 14.0 0.25 225. 0.205 0.55 512,000. 0. 105
16.0 0.20 186. 0.309 0.45 449,000. 0.250
18.50 Crit. I I

k, = 1.100 J -Shaped Source

7 0/L2 R/L Asymptotic Point Second Point

oz / H e*/0s Mag. * z /H * /s Mag. *

5.0 0.15 1.32 0.224 0.70 108. 0.0413
6.0 0.15 2.26 0.302 0.55 138. 0.105

0.25 7.0 0.15 3.76 0.386 0.45 168. 0.203
8.0 0.10 2.47 0.446 0.40 283. 0.339

10.20 Crit.

6.0 0.35 9.95 0.100 0.80 487. 0.0145
8.0 0.25 12.9 0.190 0.60 1430. 0.0605

1.0 10.0 0.20 18.7 0.297 0.50 4700. 0.156
12.0 0.10 5.30 0.450 0.40 10,100. 0.552
13.02 Crit.

8.0 0.35 28.0 0.0774 0.65 1280. 0.0236
10.0 0.30 58.0 0.118 0.60 10,000. 0.0426

2.0 12.0 0.25 82.9 0.179 0.55 60, 300. 0.0841
14.0 0.20 86.1 0.289 0.50 312,000. 0.209
16.00 Crit.

10.0 0. 35 89. 0 0. 0646 0. 75 65, 400. 0. 0127
12.0 0.30 149. 0.0945 0.60 85,600. 0.0351

3.0 14.0 0.25 171. 0.139 0.55 408,000. 0.0658
16.0 0.20 138. 0.210 0.45 336,000. 0.157
18.50 Crit.
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Table A-2. Quality and Magnitude of the Thermal Flux in Cylindrical
Exponential Assemblies (kO, = 1. 200).

k, = 1. 200 Plane Source

7 /L2 R/L Asymptotic Point Second Point

o z/H *'e'/s Mag. * z/H +e'/s Mag. +

3.0 0.25 0.934 0.153 0.85 11.1 0.0180
4.0 0.20 1.60 0.285 0.75 46.8 0.0569

0.25 5.0 0.15 2.00 0.426 0.60 106. 0.187
6.0 0.15 4.14 0.670 0.50 244. 0. 513
7.29 Crit.

5.0 0.40 8.73 0.134 0.75 104. 0.0354
6.0 0.30 9.14 0.234 0.65 263. 0.0826

1.0 7.0 0.25 11.8 0.349 0.55 468. 0.186
8.0 0.15 5.28 0.477 0.50 1280. 0.399
9. 39 Crit.

7.0 0.40 34.2 0.118 0.70 905. 0.0406
8.0 0.35 48.4 0.174 0.65 2660. 0.0712

2.0 9.0 0.30 57.2 0.256 0.60 6930. 0.131
10.0 0.25 57.9 0.389 0.50 6790. 0.299
11.57 Crit.

9.0 0.35 70.1 0. 127 0.65 6580. 0.0498
10.0 0.30 71.4 0.176 0.60 14,400. 0.0842

3.0 11.0 0.30 172. 0.233 0.60 74,200. 0.133
12.0 0.25 146. 0.361 0.50 50, 300. 0.305
13.39 Crit.

k = 1.200 JO-Shaped Source

T /L2 R/L Asymptotic Point Second Point

z/H +e'/s Mag. 4e z/H ,/*4s Mag. + e
3.0 0.25 0.860 0.0982 0.85 11.1 0.0113
4.0 0.20 1.42 0.188 0.75 46.1 0.0356

0.25 5.0 0.15 1.69 0.289 0.60 102. 0.117
6.0 0.15 3.41 0.455 0.50 223. 0. 322
7.29 Crit.

5.0 0.40 8.02 0.0854 0.75 102. 0.0222
6.0 0.35 13.6 0. 136 0.65 249. 0.0518

1.0 7.0 0.30 19.2 0.214 0.60 425. 0.117
8.0 0.15 4.14 0.324 0.50 1110. 0.251
9. 39 Crit.

7.0 0.40 29.9 0.0759 0.70 850. 0.0254
8.0 0.35 40.7 0.112 0.65 2420. 0.0446

2.0 9.0 0.30 46.1 0.167 0.60 6100. 0.0824
10.0 0.25 44.9 0.255 0.50 5660. 0.188
11.57 Crit.

9.0 0. 35 57. 6 0. 0820 0. 65 5880. 0.0313
10.0 0.35 143. 0.104 0.60 12,500. 0.0528

3.0 11.0 0.30 134. 0.152 0.60 62,800. 0.0831
12.0 0.25 109. 0.236 0. 50 40, 400. 0. 192
13.39 Crit.
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Table A-3. Quality and Magnitude of the Thermal Flux in Cylindrical
Exponential Assemblies (kO = 1. 300).

k = 1. 300 Plane Source

T /L 2  R/L Asymptotic Point Second Point

z/H fe/4s Mag. 4e z/H pe/4s Mag. e

2.0 0.40 0. 612 0.0494 0.85 2.18 0.00924
3.0 0.25 1.08 0.176 0.75 10.9 0.0412

0.25 4.0 0.20 1.98 0.352 0.60 32.4 0.159
5.0 0.15 2.86 0.611 0.50 99.7 0.521
6.01 Crit.

4.0 0.55 8.79 0.0681 0.85 36. 8 0.0168
5.0 0.40 11. 1 0.171 0.75 153. 0.0518

1.0 6.0 0.30 12.9 0.331 0.65 481. 0.151
7.0 0.20 10.4 0.624 0.55 1360. 0.542
7. 80 Crit.

6.0 0.45 25. 5 0.101 0. 80 559. 0.0257
7.0 0.40 48.0 0. 166 0.75 2570. 0.0555

2.0 8.0 0.30 37.8 0.305 0.65 5920. 0.159
9.0 0.25 58.6 0.647 0.60 29,800. 0.565
9. 63 Crit.

7.0 0.45 47.4 0.0800 0.75 1220. 0.0262
8.0 0.40 77. 8 0.124 0.70 4230. 0.0497

3.0 9.0 0.35 110. 0.198 0.60 6190. 0.117
10.0 0.30 143. 0. 353 0. 55 17,400. 0.279
11. 16 Crit.

k = 1. 300 J0-Shaped Source

T /L2 R/L Asymptotic Point Second Po nt

z/H te/4s Mag. *e z/H +'e"s Mag. ce

2.0 0.40 0.593 0.0310 0.85 2.17 0.00577
3.0 0.25 0.989 0. 113 0.75 10.8 0.0258

0.25 4.0 0.20 1.74 0.231 0.60 31.5 0.0997
5.0 0.15 2.39 0.407 0.50 93.3 0.327
6.01 Crit.

4.0 0.55 8.48 0.0428 0.85 36.4 0.0105
5.0 0.40 10.2 0. 109 0.75 149. 0.0324

1.0 6.0 0.30 11.1 0.214 0.65 455. 0.0946
7.0 0.25 18.3 0.428 0.55 1230. 0.339
7. 80 Crit.

6.0 0.50 37.9 0.0548 0.80 541. 0.0161
7.0 0.40 41.8 0. 106 0.75 2430. 0.0347

2.0 8.0 0.35 67.0 0.185 0.65 5390. 0.0992
9.0 0.25 45.3 0.415 0.60 26,200. 0.353
9.63 Crit.

7.0 0. 50 75.2 0.0434 0. 80 1870. 0.0127
8.0 0.40 66.1 0.0793 0.70 3900. 0.0311

3.0 9.0 0.35 89.2 0.127 0.60 5440. 0.0735
10.0 0.30 111. 0.226 0.55 14,700. 0.175
11. 16 Crit. I I I I I _I
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Table A-4. Quality and Magnitude of the Thermal Flux in Cylindrical
Exponential Assemblies (k, = 1. 400).

k = 1. 400 Plane Source

7 /L2 R/L Asymptotic Point Second Point

o z/H )e /s Mag. z/H 4e/Is Mag. *

2.0 0.40 0.675 0.0545 0. 85 2.45 0. 0104
3.0 0.25 1.24 0.202 0.70 11.6 0.0650

0.25 4.0 0.20 2.51 0.447 0.55 36.7 0.284
5.0 0.15 6.49 1. 39 0. 50 391. 2.04
5.25 Crit.

4.0 0.55 10.5 0.0817 0.85 46.4 0.0212
1.0 5.0 0.40 14.6 0.223 0.75 230. 0.0781

6.0 0.30 21.1 0.540 0.65 1060. 0.333
6. 86 Crit.

5.0 0.55 20.1 0.0612 0. 85 142. 0.0155
6.0 0.45 32. 9 0. 130 0. 80 817. 0.0376

2.0 7.0 0.35 38.0 0.269 0.70 2810. 0.126
8.0 0.30 90.6 0.731 0.60 10, 500. 0.636
8.49 Crit.

6. 0 0. 55 46. 9 0. 0524 0. 85 555. 0. 0133
7.0 0.45 61.3 0.104 0.80 2880. 0.0298

3.0 8.0 0.40 115. 0.183 0.70 7530. 0.0884
9.0 0.30 90.1 0.402 0.65 37,200. 0.282
9. 85 Crit.

k, =1. 400 J -Shaped Source

T /L2 R/L Asymptotic Point Second Point

o z/H *e'/s Mag. e z/H +e/'s Mag. 4

2.0 0.40 0.654 0.0342 0.85 2.45 0.00650
3.0 0.25 1.14 0.130 0.70 11.5 0.0406

0.25 4.0 0.20 2.20 0.291 0.55 35.3 0.178
5.0 0.15 5.24 0.893 0.50 364. 1.28
5.25 Crit.

4.0 0. 55 10.2 0.0513 0.85 45.9 0.0132
1.0 5.0 0.40 13.3 0.142 0.75 224. 0.0488

6.0 0.30 17.9 0.345 0.65 1000. 0.208
6. 86 Crit.

5.0 0.60 28.0 0.0324 0.85 140. 0.00971
6.0 0.45 29. 7 0.0821 0.80 790. 0.0235

2.0 7.0 0.40 63.1 0.160 0.70 2630. 0.0786
8.0 0.30 72. 7 0.463 0.60 9370. 0.398
8.49 Crit.

6.0 0.55 43.5 0.0330 0.85 540. 0.00829
7.0 0.45 54.2 0.0655 0.80 2750. 0.0186

3.0 8.0 0.40 97.0 0.116 0.70 6930. 0.0553
9.0 0.35 180. 0.255 0.65 33, 100. 0.176
9. 85 Crit.
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APPENDIX B

THE EFFECT OF AN EXPONENTIAL THERMAL FLUX
DISTRIBUTION ON THE MEASUREMENT OF THE

U 2 3 8 /U 2 3 5 FISSION RATIO

1. Single Rod Value

Consider a foil exposed in a rod at position (0, zf) in an expo-

nential assembly with the coordinate system of Figure 2-1. The

geometric probability, P, of a neutron reaching the foil if it is born

at position (0, z) on the center line of the same rod is

27rp [1 - Cos 0]

47rp 2  (B-i)

where

p2 2 2p 2= lz~zf12 + 2

0 = arctan (Rr/[z-zf])

and

R = the radius of the rod

If the neutron were born at a distance of three rod radii away

from the foil, then

z - z f= 3 R

0 = arctan (1/3) 18. 40

and

p = 1. 0 - 0.949 0. 0252

This value can be compared with the probability, P = 0. 500, that a

neutron born just next to the foil will reach the foil. It is evident that

almost all of the neutrons which cause fast fission in the foil in a

single rod measurement are born in the rod at positions within three

rod radii of the foil. For a rod 1/4 inch in diameter, that distance

is 0. 375 inches, or 0. 953 cms from the foil.
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The birth rate density of fission energy neutrons in the rod is

proportional to the thermal flux. In an exponential assembly with

the coordinate system of Figure 2-1, the thermal flux can be assumed

to have an exponential decay in the axial direction and a J -distribution

in the radial direction. For the single rod value, the effect of the J -

distribution may be neglected. The effect that the exponential distri-

bution of the birth rate density has on the number of fast neutrons

arriving at the foil will now be calculated. Consider the sum of fast

neutrons born at three rod radii above and below the foil, in both an

exponential assembly and in an infinite assembly. The ratio of the

sums of the two birth rates is

Birth rate density (infinite) 1. 0 + 1. 0
Birth rate density (exponential) exp(+37R r) + exp(-3R r)

where both the sums were normalized to a birth rate density of 1. 0 at

the foil position. In the Small Exponential Assembly a typical value

of 7, the inverse thermal relaxation length, is

Y = 0. 09 cm~ .

Substitution of this value, together with the radius of 0. 318 cm for a

1/4 inch diameter rod, yields the value

Birth rate density (infinite) = 0. 9963
Birth rate density (exponential)

Thus, the difference between a flat flux and an exponential flux in this

case will change the sum of the birth rate densities at three rod radii

from the foil by less than 0. 4 per cent. Since the origin of nearly all

the fast neutrons causing fast fission in the foil is closer than three

rod radii, the effect of the exponential flux shape on the measured

single rod value of the U 238/U235 fission ratio is negligible. This

would not necessarily be true for thicker rods in the same thermal flux

gradient.

2. The Interaction Effect

The variation in the interaction effect in an exponential assembly

was considered in section 2. 6 and a correction factor for the infinite
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case was obtained as the right side of equation (2. 6-7). Evaluation of

the correction factor involves two integrals denoted by F(r/2, Z rk)
and F1 (0, Z rk, * T/Z ), which are defined in equations (2. 6-8) and

(2. 6-10), respectively. It should be noted that the integral F(r/2, Zs rk)
is merely the special case of Fl(7r/2, Z rk, ±Y/ f) when 7/Z is equal

to zero.

These integrals were evaluated on an IBM 7090 computer over

the following range of parameters:

a. 0 = r/2

b. z frk = 0. 5, 1. 0, 1. 5, 2. 0, 2. 5, 3. 0, 4. 0, 5. 0, 6. 0, 7. 0

c. T/Z = 0. 0, 0. 1, 0. 2, 0. 3, 0. 4, 0. 5, 0. 6, 0. 7, 0. 8, 0. 9s

The values of F for each combination of the above cases are given in

Table B-1. The integrals were evaluated by means of a ten-point

parabolic integration over the variable 0. A twenty-point integration

performed for several of the cases was found to give the same results,

within 0. 2 per cent, as the ten-point integration.

In reading Table B-1, the dummy variables X, Y, and Z are
f fused respectively for 0, I srk and Y/Z . The table is for the variable

X = 7r/2. Values of Fl(7r/2, Y, Z) for various values of Y are found in

a column headed by the particular value of Z. The function F(ir/2, Y)

is thus found under the column headed by Z = 0.

For any particular value of Y and Z, two values of the integral

are listed in each column. The upper value refers to Fl(r/2, Y, +Z),

and the lower value refers to F(.7r/2, Y, +Z), as denoted by the left side

of the table. As indicated in equation (2. 6-10), the correction factor

normally would be evaluated by using the sum of the two values. It

should be noted that the sum of the two values is always greater than

twice the value of F(7r/2, Y). Thus, it can be seen from equation (2. 6-7)

that the exponential character of the thermal flux will always make the

measured interaction effect in an exponential assembly greater than

that which would theoretically be measured in an infinite assembly.



Table B-1

Tabulation of the Functions

F 1 (X, Y,+Z) and F 1 (X, Y, -Z)

(X = 90 Degrees)

Values of Z 0. 0. 10000 0. 20000 0. 30000 0. 40000 0. 50000 0. 60000 0. 70000 0. 80000 0. 90000

F1(X, 0. 5, +) 0. 64280 0. 61598 0. 59144 0. 56886 0. 54798 0. 52859 0. 51052 0.49363 0.47780 0.46292
F1(X, 0. 5, -) 0. 64280 0. 67228 0. 70494 0. 74142 0. 78256 0. 82943 0. 88348 0. 94658 1. 02123 1. 11077

F1(X, 1. 0, +) 0. 32818 0. 30762 0. 28930 0. 27289 0.25811 0. 24473 0.23256 0.22145 0.21128 0. 20194
F1(X, 1. 0, -) 0. 32818 0. 35145 0. 37801 0. 40867 0.44460 0. 48753 0. 54015 0. 60687 0. 69508 0. 81761

F1(X, 1. 5, +) 0. 17627 0. 16231 0. 15021 0. 13962 0. 13030 0. 12203 0. 11466 0. 10805 0. 10210 0. 09671
F1(X, 1. 5, -) 0.17627 0.19250 0.21158 0.23429 0.26174 0.29565 0.33878 0.39617 0.47781 0.60539

F1(X, 2. 0, +) 0. 09714 0. 08814 0. 08050 0. 07394 0. 06828 0. 06333 0. 05899 0. 05514 0. 05173 0. 04867
F1(X, 2. 0, -) 0. 09714 0. 10786 0. 12081 0. 13670 0. 15654 0. 18189 0.21533 0. 26162 0. 33116 0.45077

F1(X, 2. 5, +) 0.05442 0.04875 0.04402 0.04003 0.03664 0.03371 0.03118 0.02896 0.02701 0.02528
F1(X, 2. 5, -) 0.05442 0.06132 0.06986 0.08061 0.09446 0.11279 0.13789 0.17408 0.23108 0.33743

F1(X, 3. 0, +) 0.03085 0.02731 0.02442 0.02201 0.01999 0.01827 0.01679 0.01551 0.01440 0.01342
F1(X, 3. 0, -) 0.03085 0.03523 0.04076 0.04789 0.05735 0.07029 0.08871 0.11642 0.16215 0.25385

F1(X, 4. 0, +) 0.01015 0.00880 0.00773 0.00687 0.00616 0.00556 0.00506 0.00464 0.00427 0.00396
F1(X, 4. 0, -) 0. 01015 0. 01187 0. 01413 0. 01717 0. 02142 0. 02759 0. 03706 0. 05260 0. 08091 0. 14563

F1(X, 5. 0, +) 0.00341 0.00291 0.00251 0.00221 0.00196 0.00175 0.00158 0.00144 0.00132 0.00122
F1(X, 5. 0, -) 0.00341 0.00407 0.00498 0.00624 0.00809 0.01094 0.01561 0.02398 0.04091 0.08490

F1(X, 6. 0, +) 0.00116 0.00097 0.00083 0.00072 0.00064 0.00056 0.00051 0.00046 0.00042 0.00038
F1(X, 6. 0, -) 0.00116 0.00142 0.00177 0.00229 0.00308 0.00437 0.00662 0.01101 0.02089 0.05018

F1(X, 7. 0, +) 0.00040 0.00033 0.00028 0.00024 0.00021 0.00019 0.00017 0.00015 0.00014 0.00012
F1(X, 7. 0, -) 0.00040 0.00050 0.00064 0.00085 0.00118 0.00175 0.00282 0.00508 0.01075 0.03000
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APPENDIX C

USE OF THE "THERMOS" CODE

1. General Description

The Thermos code for the IBM 704/709/7090 computer systems

is particularly convenient for computing thermal parameters. The

code calculates the scalar thermal neutron spectrum as a function of

energy and position in a lattice cell by solving numerically the inte-

gral transport equation with isotropic scattering. A one-dimensional

slab or cylindrical arrangement can be used. Thirty thermal velocity

groups, twenty space points, and five mixtures of ten nuclides can be

used in a calculation. Ten additional nuclides can be used for edit

purposes. The theory of the code and some comparisons of the code

calculations to experimental data have been published (14, 15, 16).

This discussion is limited to the use of Thermos in obtaining homoge-

nized cell parameters for use in the Exponential code. Input parameters

used for these calculations are listed in Table C-1.

2. Calculation of 77

The number of neutrons released per thermal absorption in the

fuel, 7, is defined by the equation

fuel V* 25
v 25 f r dr fo dv v (2 r, v) Nn(r v)

(C-1)

fuel r dr fV* dv v 25 (r, v)+ Z25 (r, v) + Z28_r, v)] N(r, v)
0

where

f dr denotes integration over the spatial variable, r;

f dv denotes integration over the velocity variable, v;
0

is the upper velocity limit of the thermal group;

and

Nn(r, v) is the density of neutrons of speed v at position r.
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While 17 is primarily dependent upon the U235 concentration,

it also depends on the thermal spectrum in the fuel. This variation

with the neutron spectrum can be taken into account when the Thermos

output is used for the calculation of n. The values of the integrals

in equation (C-1) can be obtained in the output by using the fission
cross section of U 2 3 5 in the edit program and the total thermal

absorption cross section including fission, of U235 and U238 in the
primary code calculation.

3. Calculation of f

The fraction of thermal neutrons captured in the fuel, f, is

defined by the equation

fuel v*~dv!fe
fr dr * dv v (fuel r,v) Nn(r, v)

cell v* . (C-2)
rdr f dvv a (r, v) Nn (r, v)

i 0

The denominator gives the total thermal absorption in the cell

through summation of the absorption in each of the i nuclides.

The value of f can be obtained directly from the output of

the Thermos code.

4. Calculation of

The average macroscopic thermal absorption cross section

for the homogenized cell, Z a, is defined by the equation

cell v v.Sf r dr f dv a(riv)Nn~rv
- 1 0

a cell v* . (C-3)
r dr f dv v Nn(r, v)

0

The values of the integrals in equation C-3 can be obtained directly

from the output of the Thermos code.
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5. Calculation of f G

The fraction of thermal neutrons captured in U238 f G, is

defined by the equation

fuel 28
furdr f dv v 28 (r, v) N (r, v)

fG = 0 .
cell cell (C-4)

f r dr f dv v Z (r, v) N (r, v)
0

The value of f G can be obtained directly from the output of the

Thermos code.

6. Calculation of D

The average diffusion coefficient for the homogenized cell,

D, is defined by the equations:

cell
f r dr

Xt (v) cell (C-5)
r dr t (r, v) - Z (r, v) i

-Lotal- Li

and

cell v
f r dr f dv v Xt(v) N n(r, v)

D= cell 0 v* . (C-6)

3 f r dr f dv v Nn(r, v)
0

In equations (C-5) and (C-6), little error is introduced, for these

lattice spacings, if the contribution of the uranium and aluminum

is ignored. Such an approximation also greatly simplified the

preparation of the input data, since only one 30-point energy-

dependent set of values for Xt(v)/3 need then be calculated for each

moderator mixture.

For the purposes of the calculations of Xt(v)/3, the moderator

was assumed to be a mixture of three atomic gases; hydrogen,

deuterium, and oxygen, with atomic concentrations equal to the
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actual atomic concentrations in the mixtures. Because of the vari-

ation of the scattering and transport properties of each of the three

nuclides in the thermal region, a different approach was used in

each case.

a. Oxygen

The following data for oxygen were used in equation (C-5):

a-total s = 3. 58 barns,

= 2/3A,

and

A = 16. 0 (The atomic mass of oxygen).

b. Deuterium

The following data for deuterium were used in (C-5):

rtotal = 2. 75 + 1. 33 exp[-O. 148v 2 ] barns (4),

= 2/[3Aef .,
and

A eff= 3. 595 (The Brown and St. John effective mass

for bound deuterium) (4).

c. Hydrogen

The following data for hydrogen were used in (C-5):

rtotal =s = 22. 7 + 26. 2 exp[-0. 23 v2

1L = 2/[3A ff(v)],
and

A (v) <r(v) 1/2

1 + A v L 80 J (The Radkowsky approximation

for bound hydrogen in H2 0) (8).

With the above equations and data, and by using the nuclide concen-

trations given in Table C-1, the value of Xt(v)/3 was calculated for

each of the thirty energy groups used in the Thermos code, and for

each of the three moderator mixtures. The results are shown in

Table C-2.
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Table C-1. Input

1. Nuclide concentrations:

a. 1. 143% rods

b. Aluminum tubes

c. 99. 8% D2 0

d. 90. 27% D2 0

e. 80. 2% D2 0

2. Slowing down source data:

Used for Thermos Calculations

Nuclide Concentration
(barn cm)-1

0.

0.

Al27

D 2

H 1

016

D 2

H I

016

D 2

H 1

016

a. Spatially flat source throughout cell.

b. High energy scattering cross sections:

Nuclide

U 2 3 8

Al27

H

0005531

04762

0. 0602

0. 06654

0. 000133

0. 03334

0. 0602

0.

0.

00649

03334

0. 05334

0. 01334

0. 03334

Cross section
(barns)

9. 4

1. 5

7. 0

19.

c. All the reduced temperatures were taken as 1. 0.

3. Arrangement (cylindrical):

a. U rod

b. Al tube

c. Moderator (0. 880 in.)
Moderator (1. 128 in.)
Moderator (1. 340 in.)

Space points

3

1

6
6
6

Region thickness
(cm)

0. 3175

0. 0864

0. 7697
1. 1004
1. 3826

4. All cross sections used in the thermal region are tabulated in
BNL 5826 (17).

5. Brown and St. John free gas scattering kernels were used for
deuterium and oxygen (4). The Nelkin kernel for bound hydrogen
was used for hydrogen (28).
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Table C-2

Values of \t(v)/3 in Mixtures
for the Standard Thermos

of D2 0 and H 2 0
Velocity Mesh

Velocity

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
605
72
845
98
1225
2775
455
66
8975
1725
49
855
2725
7475
285

Xt(v)/3

99. 8% D2 0
cm

0.
0.
0.
0.
0.
0.
0.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

979
981
982
985
987
991
995
000
004
011
017
026
031
038
048
055
065
076
089
101
115
130
147
170
186
205
222
238
247
256

The velocities in the above table are
1. 0 kT. They must be multiplied by
in meters/second.

St(v) / 3
90. 3% D 2 0

cm

5830
5851
5878
5920
5970
6035
6112
6199
6297
6406
6514
6644
6788
6934
7092
7251
7434
7651
7886
8136
8389
8703
9025
9407
9737
006
030
050
064
072

in terms of the
2200. to obtain

t(v)/3
80. 0% D2 0

cm

4060
4076
4100
4145
4187
4249
4314
4395
4492
4591
4688
4823
4960
5104
5260
5422
5614
5837
6075
6353
6626
6963
7342
7782
8169
8547
8975
9025
9182
9250

velocity at
their value

Group

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
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The value of the integrals in equation (C-6), and the effect of

leakage on the intracell flux traverses, can be found by introducing

the leakage term, D(v)B 2, into the cell as an absorption term. This

was done at the suggestion of H. C. Honeck, the author of Thermos,

by calculating a value of B2 for each lattice and using it in the input

as a nuclide concentration whose microscopic absorption cross

section was Xt(v)/3. In order to preserve the correct dimensions,

the values of Xt(v)/3 were used in units of cm and those of the syn-
-2

thetic concentration in units of cm .

The result of the introduction of a synthetic absorption term

in the cell to represent the energy dependent leakage probability

was a very slight change in the theoretical relative intracell flux

traverses. The difference between the case with leakage and the

case without leakage was never more than 0. 3 per cent in the theo-

retical traverses. For this reason, the theoretical curves for the

infinite case were used throughout this report. However, the cal-

culations did give values of the ratio

fr dr f dv v Xt(v) B2 N (r, v)

3 f r dr f dv v N (r, v)
0

for each region of the cell. Division of the value of this ratio for

the moderator region by the value of B2 yields a spectrum averaged

value of D, as shown in equation (C-6). These values of D are

given in Table 4-1.
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APPENDIX D

DATA REDUCTION PROCEDURES

1. Axial and Radial Gold Flux Traverses

Each gold foil used in the axial and radial gold flux traverses

was counted for a minimum of 9, 000 counts. Routine data reduction

procedures were then used to correct for the following conditions:

a. varying weight of the foils,

b. time delay before the counting,

c. counter dead time,

d. decay during count,

e. background of counter.

Since the bare and cadmium covered foils alternated on the foil stick,

it was necessary to interpolate values of the cadmium-covered gold

foil activation to find the cadmium ratio at the bare foil position.

This was done by plotting the cadmium activation on two-cycle semi-

log paper. The variation was smooth and the error from the pro-

cedure was within 2 per cent. Equation (2. 4-7) was used to find the

value of pq/*t s5 for each bare foil position.

The thermal neutron flux values could then be determined

from equations (2. 4-9) and (2. 4-10); in order to plot the flux to the

scales used in Figure 4-1, however, a value of the current or flux

at the source end was required. It was found in the course of these

measurements that the flux at the center of the source end, multiplied

by the counter efficiency, (X$(O, 0)) had a numerical value of

[3. 0 0. 2][107 neutrons /cm2 sec. The position used in the Gas Flow

Geiger Counter was the one far from the detector. The value given

above also includes the self-shielding of the 0. 005 inch thick gold

foils.

In the actual data handling for each lattice, the experimental

thermal flux points were aligned with the theoretical curve, thus

determining the value of a for the experiment. This value was then

checked by calculating the value of X*(0, 0) from it. This accounts
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for the error quoted in the value of X$(O, 0), since the value includes

changes in the counter efficiency as well as errors in alignment.

The value of a, so determined, was then applied to the epi-

cadmium data by using equation (2. 4-11) and the appropriate value

of $ s from Table 4-2. The values of ERI/ 1 given in Table 4-1

resulted from fitting the theoretical and experimental curves for

the slowing down density.

2. Epicadmium to Subcadmium Absorption Ratio in U 2 3 8

The depleted U238 foils used in the determination of the

cadmium ratio of U238 in the rods were carefully segregated from
235

the other foils to prevent contamination with U2. They were

graded according to weight in order to minimize the small error

caused by the self-shielding of the Np239 gamma rays during the

counting procedure. Since the foils were reused, a delay of one

month between uses was allowed to reduce the Np239 activity far

below the natural background count of the foils.

Each pair of foils, consisting of a cadmium covered and a

bare foil, was counted in the following order; cadmium covered,

bare, bare, cadmium covered. Counts of the same foil were then

added. Counting in this fashion removes the necessity for corrections

for decay during counting if the count time is small compared with the

half-life. Each count was from 30 to 45 minutes long in order to

obtain better than 1 per cent counting statistics. The counts in the

two channels of the system shown in Figure 3-5 were simply added

after each count. Two or three counts normally were made on each

pair of foils on successive days to improve the data and to check the

half-life of the foils.

The data were corrected for varying weights of the foils and

the background of the foil and counter by using routine data reduction.

It was not necessary to make counter dead time corrections because

of the relatively low count rates. The background of the foil was

substantially greater than that of the counter. These backgrounds

were determined in advance by counting the foils before they were

irradiated.
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The two or three measurements of the cadmium ratio of

each pair of foils were averaged to find the final value. The spread

in these values determined the error quoted for the quantity p2 8 ;
the normal statistical criteria for the deviation from the mean of

two or three measurements were used. The value of p2 8 was then

found from the formula

P28 R 2 8 -1

3. U 238/U235 Fission Ratio

The quantity 628 is defined by the relation

128

28 25
L

where I28 and I25 are the fission rates of U238 and U 235, respectively,

and where the subscript L indicates quantities pertaining to the lattice

uranium.

If a depleted (D) and a natural (N) foil are irradiated in the rod,

the ratio y(t) of their fission product gamma activity will be

I28 +125Pt)
'YM=D D~t

t 28 25 M
IN IN(t)

The quantity P(t) is the ratio of U235 fission product activity to that

of U238 per fission. P(t) may depend on the length of the irradiation

and the counter bias, and also on the time delay between the end of

the irradiation and the start of counting.

If the assumptions are made that:

N 28[~28-|
128= NLDJ
N N 28

D
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N 25[25]

I 25 DN
D N25

N

N2 5 [,25

I25L N25
N

and

N2 8 [,28

I 28L N28
D

where N is the atomic concentration, then the following relationship

can be found:

N28 N N25-

25 28 y(t) 25
NL ND NN

628 28 P(t) . (D-1)

1 -' (t)
. -ND-

Equation (D- 1) is the relationship between the experimentally

measured value of y(t) and the desired quantity, 628, when the

measurement is made in a slightly enriched fuel rod with natural

and depleted foils. Use of the values;

N25 /N28 = 0. 01172 for the 1. 143% (by weight) enriched U,

N2 5  28 18-Xi6ND /N2 = 18. X 10 for the depleted foil metal,

N 5 /N2 8 = 0. 00719 for the natural foil metal,

as well as the relationship,

28 25 = 28 + N25 = N28 + N25
N N D D L L
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reduces equation (D-1) to

[0.60882 (t) - 0 .00151 1 M
628 1. 0 - -0. 993 y(t) JPt628 = ( ]p) t

P(t) must be separately determined. In these experiments,

the same counter bias and irradiation time was used throughout.

The value of P(t) was determined by Wolberg (41) who used the

same equipment and bias setting for the counter. A graph of P(t)

is shown in Figure D-1. The solid line is the determination by

Wolberg. The dotted line shows where the graph was extended

backward in time by using a relative measurement. The value of

P(t) shows no change, within the experimental error, over this

time interval.

In a typical experiment, the depleted and natural foils were

irradiated back to back in a split fuel rod. They were protected

from fission product pickup by very thin aluminum foils. The

foils were not counted until two hours after the end of the irradi-

ation to allow the activity associated with the 23-minute half-life

decay of U239 to decay. The depleted and the natural foils were

alternated in the counter. Ten-minute counts were made of the

depleted activity and three-minute counts were made of the natural

activity. The usual background and weight corrections were made

on the fission product activity curves obtained.

In order to compare the activity of the depleted and the

natural foils at the same time after the end of the irradiation, the

activity of one of the foils must be interpolated. The midtime of

each count can be taken accurately as the time at which the activity

was measured. The natural activity was chosen for interpolation

because it always gave a smooth, slowly changing curve on a semi-

log plot. The formula

-A [t -t 2]/[ti-t2I
A. = A2

w e f A2

was used for interpolation; A 1 and A 2 are the activities associated
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with times t 1 and t 2 ; A is the activity at a time t. between ti and t2'
The formula is the equivalent of making a linear interpolation on a

semi-log plot.

The activities of the two foils were usually counted for a

period of about two hours. Each pair of measurements made during

that time constituted one measurement of 7(t). After reduction to

628, the group of measurements was treated in a normal statistical

manner to obtain the quoted errors.

4. Intracell Gold Flux Traverses

The small foils and the cadmium covers used for these

traverses are tedious to handle. Careful attention to the smallest

experimental details is necessary to make traverses across small

cells.

Each gold foil used in these traverses was counted for a

minimum of 10, 000 counts in the case of the bare foils, and at

least 5, 000 counts in the case of the cadmium covered foils.

Routine data reduction procedures were then used to correct for

the following conditions:

a. varying weights of the foils,

b. time delay before the counting began,

c. decay during counting,

d. background of the counter,

e. a J correction for the flux shape.

The counting rates invariably were too low to require a dead

time correction for the gamma-ray spectrometer. Because of the

design of the foil holder, shown in Figure 3-5, two sets of measure-

ments were made along each of the two traverse directions in the

cell. Since the two sets of measurements for each traverse were

in opposite directions from the center of the cell, they compensated

for any small amount the foil holder might have been out of level,

and they also improved the data. The two sets of data were aver-

aged for each traverse.
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The reduction of the bare and epicadmium activities was

carried out at first by using equations (2. 4-10), (2. 4-11), and

(2. 4-7), as was done in the case of the axial and radial gold flux

traverses. In the case of the intracell flux traverse, it was

found that the use of these equations, which correct the sub-

cadmium, epithermal activation of the bare foil, was not neces-

sary. The difference in the result between using these equations,

and simply subtracting the epithermal activation from the bare

activation was less than 1 per cent in the most extreme case.

Since this is within the experimental error in the intracell flux

traverses, the simpler method of just subtracting the epithermal

from the bare activation to find the subcadmium activation was

used for all of the intracell traverses. The reason for so small

a difference is that the cadmium ratio from the center of the cell

to the outer edge of the cell does not vary by more than about

12 per cent in the most extreme case.

To avoid reflecting small errors from the epicadmium

curves into the subcadmium curves during the subtraction of the

epicadmium activities from the bare activities, an average value

of the epicadmium activity for all points of 0. 445 inches, or

farther, from the center of the rod was used. All the epicadmium

activations at 0. 445 inches, or farther, from the center of the rod

were averaged to obtain that mean value for each lattice. The epi-

cadmium activation was invariably flat, within the experimental

error, at this distance from the center of the rod.

The data were compared with the theoretical flux traverses

by normalizing the two curves at the center of the rod.
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APPENDIX E

THE EXPONENTIAL AND CRITICAL CODES

1. The Exponential Code

The Exponential code numerically evaluates equations

(2.9-9), (2.9-10), and (2.9-12). The restriction that the height

of the assembly is equal to the diameter was not incorporated

in the code, and the computation can be made with any ratio

of height to diameter.

The Exponential cod'e includes an approximate check for

a critical condition, and also computes two critical quantities

listed in the output description. These critical quantities are

only approximations for comparision purposes and should not

be used for other calculations, as in equations (2. 5-4) and

(2. 5-7). Critical quantities for these equations should be

computed using the Critical code in the second section of this

appendix.

Fifteen terms are allowed in the J - expansion and

twenty terms are allowed in the sine expansion. Values of the

three equations will be computed for as many as twenty

equally spaced points along the central axis of the assembly.

The computation requires about 0.2 minutes per case

using the IBM 7090 computer and about 1.0 minutes per case

using the IBM 709 computer.

All input numbers are dimensionless. The first column

in the input card listing, which follows, is the card number.

The second column is the FORMAT as it appears in the code.

The third column is the LIST of the input statement in the

code, and the fourth column is a description of each item.

The carriage of the printer is assumed to operate under

program control.
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The input cards are as follows:

1.2. (8F9.4) UI The first fifteen roots of the equation
3.4 J 0 ()=O (i.e. 2.4048, 5.5201, 8.6537,

11.7915.....) followed by

B1 the first fifteen values of J )

(i.e. 0.5191, -0.3403, 0.2715,

-0.2325.....). Two blank fields

will be left on the fourth card.

5. (2F10.4, A The ratio of the extrapolated radius

to the thermal diffusion length (R/L).

Y The ratio of the extrapolated height

to the extrapolated radius (H/R).

615) JOBNO An identification number.

ITOP Number of terms to be used in the

J0 - expansion, (< 15).

NTOP Number of terms to be used in the

sine expansion, (< 20).

KTOP Number of evenly spaced points on

the central axis (not counting z=0),

at which the equations are to be

evaluated, (< 20).

INST 1 The code will print intermediate

results if INSTI = 2. The code will

not print intermediate results if

INSTI = 1.

INST2 Same as INST 1.

6. (9F8. 5) XKIN Values of k to be used, (> 1. 0).

No more than nine values may be

listed.

7. (9F8.4) TAUO Values of the ratio 7/L2. No more

than nine values may be listed.

8. (9F8. 4) TAUI Values of the ratio T/L2. No more

than nine values may be listed.
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A case will be computed for each combination of a

value of k and -r/L 2 . The value of T/L 2 used in each case

will be taken from the corresponding field on card 8 as the

value of TO/L 2 on card 7.

The printed output will be about 5300 lines for each

case if both INST I and INST2 have a value of 2. If the two

items have the value of 1, the final output will be 30 lines

for each case.

The output is labeled and largely self explanatory. The

column headings have the following meaning:

K edit point along the central axis.

SUMFS [*s/F][D/L]

SUMF1 [*)e/F][D/L]

SUMQ [poq/F] [L]

(F 1/FS) *0 /*)s
(F1+FS)/Q Z a/p q

A "P" following each of the above, (e.g. SUMFSP) indicates

that the value is for a plane source. A "J" following each of

the above indicates that the value is for a J - source.

The two values, CRIT ABS RATE/PQ and CRIT RADIUS,

are only approximations for comparision purposes and should

not be used for calculations. These two quantities can be

accurately calculated using the Critical code. Otherwise, the

numbers listed by the Exponential code should be accurate

evaluations of the equations to at least 0. 1 per cent.

2. The Critical Code

The Critical code finds the value of the quantity, B 2 L 2 ,

from the equation

k exp( - B

1+L2B

The value is then used to numerically evaluate equation (2. 9-13)

for an assembly with a height equal to the diameter.
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A simple iteration technique is used to solve the

transcendental equation. The technique could undoubtedly be

improved by using an extrapolation procedure. Up to 50

iterations are allowed before the iteration is terminated.

This code was used to find the values of the scaled

critical radius listed in Appendix A and the values of the critical

ratios used in equations (2. 5-4) and (2. 5-7). The asymptotic

regions listed in Appendix A were found by comparing the values

of Za gp q* computed by the Critical code with the values of

the same quantity computed by the Exponential code.

The computation requires about 0. 05 minutes per case

using an IBM 709 computer. All numbers on the input cards

are dimensionless. The input cards are as follows:

1. (72H--) Hollerith identification.

2. (E 10. 5, DEL Iteration criterion. The critical

equation is iterated until the difference

between the right and left sides of

the equation is less than DEL.

315) NKI Number of values of k to be used,

(<7).

NTAU Number of values of T./L 2 to be

used, ((7).

NTAU1 Number of values of T/L 2 to be

used, ((7).

3. (7F10. 6) XKI Values of k0 .

4. (7F10.6) TAU Values of 7- L 2

5. 7F10. 6) XTAU Values of )T 0 .

A scaled critical radius,(R*/L), will be computed for each

combination of a value of k and T/L 2 . The value of a 0

will then be computed for each value of 7/70 listed in the

input.

The printed output will be two lines for each critical

case. The value of ZaC*/p oq* will be printed directly under the

value of XTAU. The number of iterations required will be underIT.
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Fortran Listing of the Exponential Code

DIMENSION T A UO(9), T A U1(9), XKIN(9), U 1(1 5), B (1 5), B(1 5),
C (15), D(1 5), E(15, 20), F(1 5, 20), G(15, 20), H(15, 20), FSSINH
(15, 20), FSP( 15, 20), SUMFSP(20), F1P( 15, 20, 20), F 1SIN(20, 20),
SUMF 1P(20), CP(15, 20, 20), SUMP(20), FSJ(20), SUMF 1J(20),
SUMcJ(2 0), KROW(2 0), F1XFSP(20), F1XFSJ(2 0), FXOP(2 0), X(15)

I FORMA T(2F10. 4, 615/9F8. 5/(9F8. 4))
2 FORMAT(8F9.4)
4 HSINEF(X, Y)=EXPF(X*((1. 0-Y))/2. 0- 1. 0/{2. 0*EXPF(X*(1. 0-Y)))
6 HTANF(X)=(1. 0- 1. o/EXPF(2. o*X))/(1. 0+ 1. /EXPF(2. 0*X))

READINPUTTAPE 4,2,Ul,B1
7 READINPUTTAPE 4, 1, A, Y, JOBNO, ITOP, NTOP, KTOP, INST 1,

INST 2, XKIN, TA UO, TAU 
PI=3.141 5927
ZERO=0. 0
IZERO=0
FSPO=ZERO

8 DO 14 I=1, ITOP
B(I)=2. 0*(SQRTF(A**2+Ul(I)**2))
X(I)=Y*B(I)/2. 0
IF(X(I)-20. 0)9, 11, 11

9 C(I) =(A *HTANF(X(I)))/(U(I) *B1(I)*B(I))
D(I)=1. o/HSINEF(X(I), ZERO)
GO TO 13

11 C(I)=A/(Ul(I)*B(I)*B(I))
D(I)=ZERO

13 FSPO=F SPO+4. 0* C(I)
10 DO 12 N=1,NTOP

TEMPN=FLOATF(N)
E(I, N)=(8. 0*TEMPN*PI)/(TEMPN**2*PI**2+Y*Y*(A**2+

Ul(I)**2))
F(I, N)=(Ul(I)/A)**2+(TEMPN*PI/(Y*A))**2

12 CONTINUE
14 CONTINUE

XNORM=U1(1)*B1(1)/2. 0
FSJO=2. o*U1(1)*B1(1)*C(1)
FLKTOP =FLOAT F(KTOP)

16 FORMAT(15H1 JOHN PEAK NO.110, 9H,RADIUS=F8.4, 7H,ITOP
=I2, 7H, NTOP=I2, 7H, KTOP=I2,/11H K INFINIT=9F8. 5,/11H

TAU ZERO=9F8.4,/11H TAU ONE=9F8.4,/15F8.4/15F8.4)
WRITEOUTPUT TAPE2, 16, JOBNO, A, ITOP, NTOP, KTOP, XKIN,

TAUO, TAU1, U1, B1
165 FORMAT(23H RATIO OF HT TO RADIUS=F7.4)

WRIT EOUTPUTTAPE2, 165, Y
GOTO(20, 17), INST 1

17 WRITEOUTPUTTAPE 2, 18, NTOP
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18 FORMAT(107HOVALUE OF B(I), C(I), D(I), (I ACROSS) AND
E (I, N), F(I, N), (I ACROSS, N DOWN) WHERE TOP VALUES
ARE I=15, N=I2)

19 FORMAT(8E15.5/E16.5,6E15.5)
WRITEOUTPUTTAPE 2, 19, B, C,D, ((E(I, N), I=1,1 5), N= 1, NTOP

), ((F(I, N), I=1, 15), N=1, NT OP)
20 DO 90 L=1,9

IF(XKIN(L)-O. 0)92, 92, 22
22 DO 88 J=1, 9

IF (TAUO(J)-O. 0)88, 88, 24
24 XKFIN=XKIN(L)/((1. O+F(1, 1))*EXPF(TAUO(J)*F(1, 1)))

ACRIT =SQRTF(8. 2514*(1. 0+TAUO(J))(1. 0/(XKIN(L)-1. 0)))
IF(XKFIN-1. 0)25, 84, 84

25 DO 26 K=1,KTOP
SUM FSP(K)=ZE RO
SUMF 1P(K)=ZERO
SUMOP(K)=ZE RO
SUM F 1 J(K)=ZE RO
SUMOJ(K)=ZERO

26 CONTINUE
DO 42 I=1, ITOP
DO 38 N=1, NTOP
G(I, N)=T A UO(J)*F(I, N)
IF(G(I,N)-20. 0)30, 30, 28

28 G(I,N)=ZERO
GOTO 32

30 G(I, N)= 1. o/EXPF(G(I, N))
32 H(I,N)=TAUl(J)*F(I,N)

IF(H(I, N)-20. 0)36, 36, 34
34 H(I, N)=ZERO

GOTO 38
36 H(I, N)=1. o/EXPF(H(I, N))
38 CONTINUE

DO 40 K=1,KTOP
TEMPK=FLOATF(K)
IF(X(I)-20. 0)39, 41, 41

39 FSSINH(I, K)=HSINEF(X(I), TEMPK/FLKTOP)*D(I)
GOTO 47

41 BXKXKT=X(I)*TEMPK/FLKTOP
IF(BXKXKT-20. 0)43, 45, 45

43 FSSINH(I, K)=1. 0/EXPF(BXKXKT)
GOTO 47

45 FSSINH(I, K)=ZERO
47 FSP (I, K) =4. 0*C(I)*FSSINH(I, K)

SUMFSP(K)=SUMFSP(K)+FSP(I, K)
40 CONTINUE
42 CONTINUE

DO 60 K=1,KTOP
TEMPK=FLOATF(K)
DO 58 N=1, NTOP
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TEMPN=FLOATF(N)
F ISIN(N, K)=SINF(TEMPN*PI*TEMPK/FLKTOP)
DO 56 I=1, ITOP
IF(G(I, N))44, 44, 46

44 FIP(I,N,K)=ZERO
GOTO 48

46 F 1P(I, N, K)=E (I, N)*C(I)*F 1SIN(N, K)/((F(I, N)+1. 0)/(XKIN(L)*
G(I, N))- 1. 0)

48 SUMF IP(K)=SUMF1P(K)+F 1P(I, N, K)
IF(H(I, N))50, 50, 52

50 QP(I, N, K)=ZE RO
GOTO 54

52 OP(I, N, K)=E (I, N)*C(I)*F 1SIN(N, K)*H(I, N)/(1. O/XKIN(L)-
G(I, N)/(1. 0+F(I, N)))

54 SUMQP(K)=SUMQP(K)+qP(I, N, K)
56 CONTINUE

SUMF 1J(K)=SUMF 1J(K)+XNORM*F1P(1, N, K)
SUMQJ(K)=SUMQ J(K)+XNORM*QP(1, N, K)

58 CONTINUE
KROW(K)=K
FSJ(K)=XNORM*FSP(1, K)

60 CONTINUE
KDIM=KTOP- 1
DO 62 K=1, KDIM
F 1XFSP(K)=SUMF 1P(K)/SUMFSP (K)
F 1XFSJ(K)=SUMF 1J(K)/FSJ(K)
FX2 P(K)=(SUMF 1P(K)+SUMFSP(K))/SUMOP(K)
FXQ J(K)=(SUMF 1J(K)+FSJ(K))/SUMQP(K)

62 CONTINUE
FXQC =EXPF(TAU 1 (J)*(XKIN(L) -1. 0)/(1. 0+TAUO(J)))/XKIN(L)
XMUL= 1. 0/(I. 0-XKFIN)
GOT O (74, 66), INST 2

66 WRITEOUTPUTTAPE 2, 64, XKIN(L), TAUO(J), TAU 1(J), A,
NTOP, KTOP

64 FORMAT(10HOK INFIN= F8. 5, 12H, TAUO/L**2=F8.4, 12H,
TAUI/L**2=F8.4, 4H, A=F8.4,/104HOVALUE OF G(I,N),
H(I, N), FSSINH(I, K), FSP(I, K), (I ACROSS, N OR K DOWN),
THEN F1P(I,N,K) AND QP(I,N,K),/98H(I ACROSS, N DOWN,
FOR EAC H K), T HEN F 1SIN(N, K), (N AC ROSS, K DOWN),
WHERE TOP VALUES ARE I=15, N=I2,4H, K=12)

WRITEOUTPUTTAPE 2, 19, ((G(I, N), I=1, I5), N=1, NTOP),
((H(I, N), I=1, 15), N=1, NTOP), ((FSSINH(I, K), I=1, 15), K=1, KTOP
), ((FSP(I, K), I=1, 15), K=1, KTOP), (((F 1P(I, N, K), I=1, 15), N=
1, NTOP), K=1, KTOP), (((QP(I, N, K), I=1, 15), N=1, NTOP),
K=1, KTOP)

72 FORMAT(10E12.4/E 13.4, 8E12.4,E10. 3)
WRITEOUTPUTTAPE 2,72, ((F 1SIN(N, K), N=1,20), K=1, KTOP)

74 WRITEOUTPUTTAPE 2,75, XKIN(L), TAUO(J), TAU1(J), A, Y
75 FORMAT(1OH1K INFIN=F8. 5, 12H, TAUO/L**2=F8..4, 12H,TA

Ul/L**2= F8.4,4H, A=F8.4, 24H, RATIO OF HT TO RADIUS
=F7.4)
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76 FORMAT(9HOK FINIT=F9. 5, 7H, MULT=E 11. 5, 19H, CRIT
ABS RATE/PQ=E 11. 5, 14H, CRIT RADIUS=E 11. 5)

WRITE OUTPUTTAPE 2, 76, XKFIN, XMUL, FXOC, ACRIT
78 FORMAT(120HO K SUMFSP SUMF1P SUMOP

(F1/FS)P (F1+FS)/QP FSJ SUMF1J SUMoJ
(Fl /FS)J (F1+FS)/QJ)

WRITEOUTPUTTAPE 2,78
80 FORMAT(1H012,E11.4,E58..4/(1HOI2,2E11.4, 3E12. 5,E11.4,

4E 12. 5))
82 FORMA T(1HOI2, 2E 11. 4, E 12. 5, E 35.4, 2E 12. 5)

WRITEOUTPUTTAPE 2,80, IZERO, FSPO, FSJO, (KROW(K),
SUMFSP(K), SUMF 1P(K), SUMOP(K), F1XFSP(K), FXQP(K),
FSJ(K), SUMFlJ(K), SUMQ J(K),F 1XFSJ(K), FXOJ(K), K= 1,
KDIM)

WRITEOUTPUTTAPE 2,82, KTOP, SUMFSP(KTOP), SUMF IP
(KTOP),SUMCP(KTOP),FSJ(KTOP), SUMF 1 J(KTOP),
SUMCJ(KTOP)

GOTO 88
84 WRITEOUTPUTTAPE 2,75, XKIN(L), TAUO(J), TAUl(J), A
86 FORMAT(37HOTHE CASE IS OVER CRITICAL, K FINITE=

F9. 5, 14H, CRIT RADIUS=E 11. 5)
WRITEOUTPUTTAPE 2,86 XKFIN, ACRIT

88 CONTINUE
90 CONTINUE
92 WRITEOUTPUTTAPE 2, 94, JOBNO
94 FORMAT(22HOJOHN PEAK, END OF NO.I10)

CALL EXIT
END(1, 1, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0)
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Fortran Listing of the Critical Code

DIMENSION XKI(7), TAU(7), XTAU(7), NIT(7, 7), A(7, 7),
CHECK(7, 7), TAU1(7, 7, 7), ANS(7, 7, 7)

1 FORMAT(E 10. 5, 315)
2 FORMAT(7F10.6)
4 FORMAT(72H

)
5 READINPUTTAPE 4, 4

READINPUTTAPE 4, 1, DEL, NKI, NTAU, NTAU I
READINPUTTAPE 4,2, XKI, TAU, XTAU
DO 18 I=1, NKI
DO 16 J=1, NTAU
BL 2 =(XKI(I) - 1. 0)/(TAU(J)+1.0)
DO 10 K=1, 50
BL2X=XKI(I)/(EXPF(BL2*TAU(J))*(1. 0+BL2))
IF(ABSF(1. O-BL2X)-DEL)6, 6, 8

6 BL2=BL2X*BL2
NIT (I, J)=K

8 BL2=BL2X*BL2
NIT(I, J)=K

10 CONTINUE
12 A (I, J)=S0RT F(8. 2 514/BL2)

CHECK(I, J)=XKI(I)/(EXPF(BL2*TAU(J))*(1. 0+BL2))
DO 14 L=1,NTAUI
TAUI(I, J, L)=XTAU(L)*TAU(J)
ANS(I, J, L)=EXPF(BL2*TAUl(I, J, L))/XKI(I)

14 CONTINUE
16 CONTINUE
18 CONTINUE

WRITEOUTPUTTAPE 2,4
WRITEOUTPUTTAPE 2,20, (XTAU(L), L=1, NTAU1)

20 FORMAT(50HOKINFINITE TAUTHERM IT K FINITE
CRIT RADIUS7F10. 6)

22 FORMAT(HOF9.6,F1O.6,I5,F12.7,E13.5,7F10.6)
DO 26 I=1, NKI
DO 24 J=1,NTAU
WRITEOUTPUTTAPE 2, 22, XKI(I), TAU(J),NIT (I, J), CHECK

(I, J), A(I, J), (ANS(I, J, L), L=1, NTAU1)
24 CONTINUE
26 CONTINUE

CALL EXIT
END(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0)


