NUCLEAR ENGINEERING READING ROOM - M.I.T.

AFCRL-65-787

Nondestructive Analyses of Irradiated MITR Fuel By Gamma-Ray Spectroscopy

> Jerry A. Sovka Norman C. Rasmussen

Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts

Contract No. AF19(604)-7492 Project No. 5620 Task No. 562002 Scientific Report No. 4

MITNE-64

October 1965

Prepared for

Air Force Cambridge Research Laboratories Office of Aerospace Research United States Air Force Bedford, Massachusetts

Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.2800 Email: docs@mit.edu http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Some pages in the original document contain pictures, graphics, or text that is illegible.

Requests for additional copies by Agencies of the Department of Defense, their contractors, and other government agencies should be directed to the:

> DEFENSE DOCUMENTATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA

Department of Defense contractors must be established for DDC services, or have their "need-to-know" certified by the cognizant military agency of their project or contract.

All other persons and organizations should apply to the:

Clearinghouse for Federal Scientific and Technical Information (CFSTI) Sills Building 5285 Port Royal Road Springfield, Virginia 22151

Nondestructive Analyses of Irradiated MITR Fuel By Gamma-Ray Spectroscopy

Jerry A. Sovka Norman C. Rasmussen

Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts

Contract No. AF19(604)-7492 Project No. 5620 Task No. 562002 Scientific Report No. 4

MITNE-64

October 1965

Prepared for

Air Force Cambridge Research Laboratories Office of Aerospace Research United States Air Force Bedford, Massachusetts

NONDESTRUCTIVE ANALYSES OF IRRADIATED MITR FUEL

BY GAMMA-RAY SPECTROSCOPY

by

J.A. Sovka

Submitted to the Department of Nuclear Engineering on 23 September, 1965 in partial fulfillment of the requirement for the degree of Doctor of Science

ABSTRACT

÷

Nondestructive analyses have been made of irradiated MITR fuel elements with a lithium-ion drift germanium gamma-ray spectrometer. Techniques for the preparation of Ge(Li) detectors were developed and are described in detail. Included are descriptions of the apparatus required for satisfactory performance of the spectrometers. Equipment used for scanning irradiated fuel elements in the MITR spent fuel storage tank is described. Gamma-ray spectra from fuel elements having different cooling periods show peaks attributed to the fission products Zr-95, Nb-95, Rh-106, Cs-134, Cs-137, Ba-140, La-140, Ce-144 and Pr-144. Fission product activities were determined from calculations of the intensities of the gamma-rays in the spectra. Spatial variations of fission product content in the elements are shown.

A method for interpreting the experimental results, requiring theoretical predictions of fission product activities in the fuel, is presented. The results of the application of this method include spatial distributions of absolute neutron flux, neutron exposure and total U-235 burnup and irradiation time of the fuel. The operating pattern of each element and the time since its removal from the reactor could also be inferred. Comparison of the results of the present investigations with independent determinations of these quantities showed that the agreement was within the 10% error assigned. Some of the problems and limitations of the method are discussed and suggestions are made for improving the accuracy and precision of the results. Other areas of possible use in reactor physics measurements are indicated.

Thesis Supervisor: Norman C. Rasmussen Title: Professor of Nuclear Engineering

TABLE OF CONTENTS

Page

منهنه

Title Page 1
Abstract 11
Table of Contents
List of Figures v
List of Tables xi
Acknowledgementsxiv
I. INTRODUCTION 1
II. LITHIUM-ION DRIFT GERMANIUM SPECTROMETERS
A. Introduction 5
B. Background Information 6
C. Lithium-Ion Drift Detectors 10
D. Preparation of Lithium-Ion Drift Germanium Detectors 15
E. Description of Associated Equipment 17
F. Operating Characteristics of Ge(Li) Gamma- Ray Spectrometers 25
III. NONDESTRUCTIVE ANALYSES OF IRRADIATED MITR FUEL ELEMENTS USING A Ge(L1) GAMMA-RAY SPECTROMETER
A. Introduction 38
B. Experimental Equipment and Procedure 40
C. Experimental Results 45
D. Interpretation of Results
IV. SUMMARY AND CONCLUSIONS151
V. RECOMMENDATIONS FOR FUTURE WORK
A. Preparation of Ge(Li) Detectors153
B. Investigations of the Irradiation History of Fuel Elements

.

,

Page

•

APPENDIX A.	Preparation of Lithium-Ion Drift Germanium Gamma-Ray Detectors	156
APPENDIX B.	Energies of Calibration Gamma-Rays	166
APPENDIX C.	Gamma-Ray Spectra of Fission Products	167
APPENDIX D.	Description of Experiments to Determine the Best Method of Subtracting Back- ground from Under a Gamma-Ray Peak in Spectra Obtained with Ge(Li) Detectors	174
APPENDIX E.	"GRAPIN", Computer Code to Calculate the Net Counts in a Gamma-Ray Peak	185
APPENDIX F.	Data on Fuel Element Experiments and Results of Calculations of Net Counts of Fission Product Gamma-Rays	201
APPENDIX G.	Description of Computer Codes "NOTSFI" and "NUCON"	215
APPENDIX H.	Fission Product Activities as a Function of Irradiation Time at Constant Flux	234
APPENDIX I.	References	243

LIST OF FIGURES

- _...**s**

Figure	Title	Pag
l	Diagram of p-n Junction Detector	9
2	Impurity Distribution in Crystal After Lithium Diffusion	12
3	Impurity Distribution in Crystal After Drift	12
4	Photon Absorption Coefficients for Photoelectric Effect (τ) , Compton Scattering (σ) and Pair Production (\mathcal{K}) for Silicon and Germanium	14
5	Sketch of Apparatus for Lithium-Drift Process for Germanium Detectors	16
6	Schematic Diagram of Vacuum Chamber and Elec- tronics for Use with Li-Drifted Germanium Gamma- Ray Detectors	18
7	Schematic Diagram of Portable Vacuum System	19
8	Photograph of Portable Vacuum System	20
9	Photograph of Disassembled Dewar	24
10	Photograph of Assembled Dewar and Ion Pump Power Supply	24
11	Co ⁵⁷ Gamma-Ray Spectrum	28
12	Na ²² Gamma-Ray Spectrum	29
13	Cs ¹³⁷ Gamma-Ray Spectrum	31
14	Mn ⁵⁴ Gamma-Ray Spectrum	32
15	Co ⁶⁰ Gamma-Ray Spectrum, C.1 to 1.40 MeV	33
16	Co ⁶⁰ Gamma-Ray Spectrum, 800 to 1400 keV	34
17	ThC" Gamma-Ray Spectrum	35
18	Intrinsic Full Peak Efficiency of Lithium Drifted Germanium Detector 9-19.1, 3.5 mm thick	37
19	MITR Fuel Element	41
20.	Schematic Diagram of Apparatus for Gamma-Ray Scanning of MITR Spent Fuel Elements	44

,

-V-

Title

21	Photograph of Fuel Element in the Scanning Assembly	4 6
22	Photograph of Scanning Apparatus and Electronic Equipment in the Spent Fuel Storage Room	47
23	Low Energy Portion of Gamma-Ray Spectrum of Fuel Element 2M14 after 18 hours Cooling	49
24	Gamma-Ray Spectrum of Fuel Element 2M14 after 18 hours Cooling for ~ 280 to 840 keV	51
25	Gamma-Ray Spectrum for Fuel Element 2M14 after 18 hours cooling, \sim 1500 keV to 2550 keV	52
26	Gamma-Ray Spectrum of Fuel Element 2M14 after 40 hours Cooling, \sim 30C keV to 850 keV	54
27	Gamma-Ray Spectrum (550 keV to 2550 keV) of Fuel Element 2M14 after 40 hours Cooling Time	5 5
28	Gamma-Ray Spectrum of Fuel Element 2Ml4 after 5 days Cooling, \sim 275 keV to 840 keV	5 6
29	Gamma-Ray Spectrum of Fuel Element 2M14 after 18 days Cooling, 560 keV to 830 keV	57
30	Gamma-Ray Spectra of MITR Spent Fuel as a Function of Cooling Time	59
31	Gamma-Ray Spectrum of MITR Fuel Element 2M19 after 9 months Cooling	60
32	Gamma-Ray Spectrum of MITR Fuel Element 2M22 after 1 1/2 years Cooling	62
33	Gamma-Ray Spectrum of MITR Fuel Element 2Ml after 3 1/2 years Cooling	63
34	Relative Axial Distributions of Cs^{137} , Zr^{95} (γ -724) and Cs-134 (γ -605) Activities for MITR Fuel Element 2M19 after 9 months Cooling	67
35	Gamma-Ray Activities for Pr ¹⁴⁴ along Fuel Element 2M19	69
36	Rh^{106} Activity (624 keV γ) along Fuel Element 2M19	70

F	1	gure	
*	-		

.

<u>Title</u>

37	Results of Transverse Scan showing Cs-137, Zr-95 (γ -724) and Cs-134 (γ -605) Activities as a Function of Position Across 2M19	72
3 8	Gamma-Ray Activities of Fission Products Cs-134, Rh-106, Cs-137, Zr-95 and Nb-95 as a Function of Position for a Transverse Scan at 1 in. above Midplane of 2M19	73
39	Results of Transverse Scan using 0.125 in. dia. Aperature in Pb Collimator showing Comparison Between Measured Relative Cs-137 Activity as a Function of Position with Calculated Fraction of Fuel Plate Area seen by Detector through Apera- ture	75
40	Axial Distribution of Cs-137 and Cs-134 (y-604 kev) Activities for Fuel Element 2M22 after 1 1/2 years Cooling Time	77
41	Axial Distributions of Zr-95, Nb-95 and Pr-144 Gamma-Ray Activities for Fuel Element 2M22 after 1 1/2 years Cooling	78
42	Axial Distributions of Pr-144 and Rh-106 Gamma- Ray Activities for Fuel Element 2M22 after 1 1/2 years Cooling	79
43	Transverse Distributions of Gamma-Ray Activities at Axial Midplane of Fuel Element 2M22 after l 1/2 years Cooling	8C
44	Axial Distribution of Cs-137 and Cs-134 (γ -605 keV) Activities for Fuel Element 2-4 after 3 years Cooling Time	82
45	Axial Distribution of Cs-137 and Cs-134 (γ -605 keV) Gamma-Ray Activities for Fuel Element 2M1 after 3 1/2 years Cooling Time	83
46	Transverse (Horizontal) Distributions of Cs-134 (γ -605), Rh-106,(γ -624), Cs-137 and Pr-144 (γ -697) for Fuel Element 2M1 after 3 1/2 years Cooling Time	84
47	Axial Distribution of La-140 Gamma-Ray Activity (1597 keV) for Fuel Element 2M31 after 11 days Cooling	85

48	Correction Factor as a Function of Photon Energy to Include Fuel Self-Absorption, Absorption in Lead and Steel and Detector Efficiency	88
49	Ratio of Cs ¹³⁷ to Cs ¹³⁴ Activities along Fuel Element 2M19	98
50	Ratio of Cs ¹³⁷ Activity to Zr ⁹⁵ Activity along Fuel Element 2M19	9 9
51	Zr ⁹⁵ Activity in MITR Fuel for Intermittent Operation (95 hours on, 73 hours off) as a Function of In-Pile Residence Time for Various Fluxes	112
52	Nb^{95} Activity per Initial U^{235} Atom vs. Total Residence Time for Intermittent Operation (95 hrs. on, 73 hrs. off)	113
53	Cs ¹³⁴ Activity per Initial U ²³⁵ Atom vs. Total Residence Time for Intermittent Operation (95 hrs. on, 73 hrs. off)	114
54	Cs ¹³⁷ Activity per Initial U ²³⁵ Atom vs. Total Residence Time for Intermittent Operation (95 hrs. on, 73 hrs. off)	115
55.	Ba ¹⁴⁰ Activity per Initial U ²³⁵ Atom in MITR Fuel for Intermittent Operation (103/65) as a Function of In-pile Residence Time for Various Neutron Fluxes	116
56	Ce ¹⁴⁴ Activity per Initial U ²³⁵ Atom in MITR Fuel for Intermittent Operation (95 hrs. on, 73 hrs. off) vs. Total In-Pile Residence Time for Various Fluxes	117
57	Number of U^{235} Atoms Remaining per Initial U^{235} Atom, N_{25}/N_{25}^{0} as a Function of Neutron Exposure, Calculated for MITR Fuel	118
58	Ratio of Cs ¹³⁷ to Cs ¹³⁴ Activities vs. Neutron Exposure for MITR Fuel at Various Fluxes for Intermittent Operation (95 hrs. on, 73 hrs. off)	120
59	Ratio of Cs ¹³⁷ to Zr ⁹⁵ Activity, R ₂ as a Function of Neutron Exposure, for Various Fluxes, MITR Intermittent Operation (95 hrs. on, 73 hrs. off)	121

,

6 0	Ratio of Cs ¹³⁷ to Pr ¹⁴⁴ Activities, R, as a Function of Neutron Exposure for Intermittent Operation (95 hrs. on, 73 hrs. off)	122
61	Curves of Neutron Flux vs. Neutron Exposure for Activity Ratios R1 and R2 indicating Method of Solution for Flux and Exposure	124
62	Axial Distribution of Average Thermal Neutron Flux in Element 2M19	126
63	Axial Distribution of Neutron Exposure in Neutrons/kilobarn for Fuel Element 2M19	130
64	Axial Distribution of Thermal Neutron Flux in Fuel Element 2M22	133
65	Ratio of Zr ⁹⁵ Activity for 724 keV Gamma-Ray to Activity of Zr-95 keV Gamma-Ray plus Nb-95 766 keV Gamma-Ray as a Function of Decay Time after Removal from Core	137
66	Zr^{95} Activity per Initial U ²³⁵ Atom at In-Pile Residence Time = 0.79 x 10 ⁸ sec, as a Function of Neutron Flux for Intermittent MITR Operation (95/168)	145
67 _.	Cs^{137} Activity per Initial U^{235} Atom as a Function of Neutron Exposure	147
A.1	Photograph of Furnace used for Lithium Diffusion	1 59
A. 2	Photograph of Apparatus for Drifting of Germanium Diodes	n 162
c.1	Zr ⁹⁵ -Nb ⁹⁵ Gamma-Ray Spectrum	169
c.2	Rh ¹⁰⁶ Gamma-Ray Spectrum	170
C.3	Cs ¹³⁴ Gamma-Ray Spectrum	171
C.4	Ce ¹⁴⁴ -Pr ¹⁴⁴ Gamma-Ray Spectrum, 40-850 keV	172
C.5	Ce ¹⁴⁴ -Pr ¹⁴⁴ Gamma-Ray Spectrum, 650-2200 keV	173
D.1	Gamma-Ray Spectra of Cs ¹³⁷ plus Other Sources; Used in Determining Background Subtraction Method	175

gure		Page
E.1	Gamma-Ray Spectrum for Run J41 (Cs ¹³⁷ (2") + Mn-54(0")showing example of Input Data for the GRAPIN Code	186
H.1	Zr^{95} and Nb ⁹⁵ Activities per Initial U ²³⁵ Atom at Constant Flux vs. Exposure Time	237
н.2	Ru ¹⁰⁶ Activity per Initial U ²³⁵ Atom at Constant Flux vs. Exposure Time	238
H.3	Cs ¹³⁴ Activity per Initial U ²³⁵ Atom vs. Irradiation Time	23 9
H-4	Cs ¹³⁷ Activity per Initial U ²³⁵ Atom vs. Exposure Time at Constant Flux	240
н.5	La ¹⁴⁰ Activity per Initial U ²³⁵ Atom at Constant Flux vs. Exposure Time	241
н.6	Pr ¹⁴⁴ Activity per Initial U ²³⁵ Atom at Constant Flux vs. Exposure Time	242

Page

LIST OF TABLES

,

Table	Title	Page
l	Properties of Silicon and Germanian	7
2	Properties of Fission Products Useful for Gamma-Ray Spectroscopic Studies of Irradiated Fuel	39
3	MITR Irradiated Fuel Element Data	42
4	Attenuation and Detector Efficiency Corrections and Total Correction Factor for Photons Between 60C and 80C keV	87
5	Nuclear Constants used for Calculating Corr- ected Fission Product Ratios	9 0
6	Corrected Ratios of Fission Product Activities R_1 , R_2 and R_3 for Element 2M19, Runs D4 to D27	91
7	Corrected Ratios of Fission Product Activities R_1 , R_2 and R_3 for Element 2M19, Runs D28 to D46	92
8	Corrected Ratios of Fission Product Activities R_1 , R_2 and R_3 for Fuel Element 2M22	94
9	Corrected Ratio of Fission Product Activities R ₁ for Fuel Element 2M1	95
10	Values of Nuclear Data used in Calculating Predicted Fission Product Activities in MITR Fuel Elements	110
11	Summary of Results of Analysis of Fuel Element 2M19 for Flux, Exposure and Irradiation Time	129
12	Summary of Results of Analysis of Fuel Element 2M22 for Flux, Exposure and Irradiation Time	132
13	Results of Analysis of Transverse Scan Viewing Edges of Fuel Plates of 2M19	139
14	Transition Probabilities in Zr ⁹⁵ Decay	
B. 1	Energies of Calibration Gamma-Rays	16,
D.1	Total Counts under Cs ¹³⁷ Gamma-Ray Peak; Cs-137(2")	179

,

-xi-

٨

Tal	ble
	and the second se

D.2	Total Counts under Cs^{137} Gamma-Ray Peak; Cs-137(2") + Mn-54(0")	180
D.3	Total Counts under Cs^{137} Gamma-Ray Peak; Cs-137(2") + Mn-54(2"); Cs-137(2") + Mn-54(4")	181
D.4	Total Counts under Cs ¹³⁷ Gamma-Ray Peak; Cs-137(2") + Na-22(2")	182
D.5	Total Counts under Cs-137 Gamma-Ray Peak; Cs-137(2") + Na-22(4"); Cs-137(2") + Na-22(6")	183
D.6	Summary of Results of "J" Series of Experiments to Determine Method of Subtracting Background from Under Gamma-Ray Peak	184
E.1	Input Data for GRAPIN	187
E.2	Run J41, Input Data for GRAPIN	18 9
E.3	GRAPIN Output for Run J41	190
E.4	Run D4, Input Data for GRAPIN	191
E.5	GRAPIN Output for Run D4	192
E.6	Fortran Listing of GRAPIN	198
F.l	Net Counts of Fission Product Gamma-Rays at Various Positions for Fuel Element 2M19 After Nine Months Cooling Time	202
F.2	Net Counts of Fission Product Gamma-Rays at Various Positions for Fuel Element 2M22 After 1 1/2 years Cooling	207
F.3	Results of Experiments to Determine Reproducibilit of Techniques on Fuel Element 2M22 at 0 in. and Centerline	су 209
F•4	Net Counts of La ¹⁴⁰ Gamma-Rays at 1597 keV for Fuel Element 2M31 After 11 days Cooling	211
F•5	Net Counts for Fission Product Gamma-Rays at Various Positions for Fuel Element 2-4 After 3 Years Cooling Time	213
F.6	Net Counts for Fission Product Gamma-Rays at Various Positions for Fuel Element 2M1	214

Ta	b 1	е
		_

ŝ

G.1	Input Data for NUCON	217
G.2	NUCON Sample Input Data for Cs ¹³⁷	220
G-3	Input Data for NOTSFI	2 21
G.4	Sample Input Data for NCTSFI (Cs ¹³⁴)	233

ACKNOWLEDGEMENTS

During the course of this research, many people have made valuable contributions, without which much of the work would not have been possible. In particular, I would especially like to thank Professor Norman C. Rasmussen for his enthusiastic assistance, advice and guidance throughout all phases of the research. His continuing interest and encouragement were in great part responsible for the achievements made. Special thanks are also offered to Dr. H.W. Kraner of the Radioactivity Center for providing research facilities and for his guidance and help during the development of germanium detectors.

The generous assistance and advice of Mr. F.L. Woodworth and the Reactor Machine Shop personnel are gratefully acknowledged. Thanks are extended for help received from the Reactor Operations staff. Also, thanks are offered to Mrs. B.R. Hites for help with handling and processing of the experimental data. I wish also to thank Professor T.J. Thompson for acting as thesis reader, and for his advice and constructive criticism of the manuscript.

Acknowledgement is made to the U.S. Air Force for providing the funds for this project, and for the research assistantship held during 1964-65. The research assistantship on the Fuel Cycles Project (1962-64) provided by the U.S.A.E.C. is also acknowledged.

Thanks are due to the staff of the M.I.T. Computation Center for providing the computing services required in these investigations.

My most special thanks go to my wife Lynn; first for her typing of the manuscript, but more especially for her patience and cheerful forbearance during the past three years at M.I.T.

-xiv-

NONDESTRUCTIVE ANALYSES OF IRRADIATED MITR FUEL BY GAMMA-RAY SPECTROSCOPY

I. INTRODUCTION

Quantitative data on the irradiation history of a reactor fuel element is often difficult to obtain. Flux distributions are generally determined from foil and/or wire measurements. usually made only at low power prior to initial startup. Furthermore, these foil results may not give the same spatial behavior as seen by the fuel because of different variations of reaction rates with neutron energy and with reactor conditions. Neutron spectral parameters are obtained by similar techniques using cadmium or indium covered foils. Interpretation of these results to ascertain conditions within the fuel itself is often difficult and subject to considerable error. Similarly, determinations of fissile fuel burnup usually include the use of flux distributions and depletion studies based upon computer codes of varying degrees of sophistication. Experimentally, fuel burnup is determined by a number of techniques, nearly all of which require the disassembly of the fuel element and subsequent radiochemical and mass spectroscopic analyses. These latter methods are lengthy, tedious and costly and, in addition, have often not given agreement amongst themselves. A long-term check on the average burnup sustained by a fuel charge can be made with a thermodynamic balance for the reactor system. This, although being nondestructive, is usually too crude to provide satisfactory

-1-

burnup values for individual fuel elements.

Because of the disadvantages of the above destructive methods, nondestructive techniques have often been investigated in order to obtain information about the irradiation performance of fuel It has been recognized that the techniques of gammaelements. ray spectroscopy can supply such information. Various instruments have been used to measure total gamma-activity emitted by the fission products within the fuel. Good agreement was obtained between calculated power distribution and measured gammaactivity for some cores (B2, B10, E1). However, work done on Yankee fuel (N1) reported a 10-15% discrepancy between results of total gamma-activity and results of mass spectroscopy upon samples of fuel. This difference was attributed to the pres-. ence of cobalt impurities in the stainless steel fuel element cladding.

Rasmussen and Cohan (R1) described the use of a 6-meter bent quartz crystal spectrometer in studies of the fission product gamma-ray spectrum in which about 35 fission product gamma-rays were identified. In 1964, Mayman (M3) used the instrument to obtain spatial distributions of certain fission products within the fuel element. However, no definitive results on experimental burnup determinations were possible at that time. An outline of the usefulness of the bent crystal spectrometer in such investigations is included in Rasmussen, Sovka and Mayman (R2). Groshev and Demidov (G2) reported the use of a magnetic spectrometer to study the 2.186 MeV gamma-ray of Ce¹⁴⁴ and quoted burnup values on fuel accurate to $\pm 10^{\circ}$ 6.

-2-

Investigations with NaI scintillation crystals to resolve the gamma-ray spectrum of spent fuel were made by Kristiansen and Røgeberg (K5), but they were able to obtain results of only $\pm 30^{\circ}/_{\circ}$ accuracy. More recently, Diggle and Blackadder (D2) reported results obtained with a NaI crystal of gamma-ray spectra of irradiated fuel showing variations in relative fission product activities with burnup and cooling time. They pointed out that, to obtain absolute estimates of burnup, careful calibrations of the experimental system were required.

Weinzierl (W5) first reported the use of a semiconductor detector in the study of gamma-ray spectra from irradiated fuel elements. A lithium-drift silicon detector, operating in coincidence with a NaI crystal to detect backscattered gamma-rays, was used to resolve the Cs¹³⁷ gamma-ray at 662 keV and thereby infer the total uranium burnup.

However, in the above techniques, the total fuel burnup can be accurately determined only if the spectrometer and fuel element have been properly calibrated. It will be shown by the results of the present investigation that even without absolute calibration, considerable additional information can be extracted from the fission product gamma-ray spectra if the gamma-rays can be sufficiently resolved and their intensities measured.

The following study describes the use of a lithium-ion drift germanium gamma-ray spectrometer to obtain the energy spectra of fission product gamma-rays from irradiated MITR fuel elements. Analysis of these results has yielded determinations of the irradiation history of the fuel, including total neutron exposure,

-3-

absolute neutron flux distributions, irradiation time, operating mode of reactor and cooling time. Included are detailed descriptions of the techniques of preparation of Ge(Li) detectors and of the development of associated equipment necessary for satisfactory performance of the detectors. Gamma-ray spectra of well-known calibration gamma-ray sources are given, along with the spectra of several fission products of interest. The experimental apparatus required for the scanning of MITR fuel elements is described and results of investigations of several elements Interpretation of the results has required the are presented. writing of several computer codes to facilitate data handling Concluding remarks summarize the results and and processing. indicate other possible areas of use of the present methods.

-4-

II. LITHIUM-ION DRIFT GERMANIUM SPECTROMETERS

A. INTRODUCTION

In order to resolve the many gamma-rays emitted by the fission products in a fuel element, gamma-ray spectrometers of relatively high energy resolution are required. The equipment associated with the 6-meter bent quartz crystal spectrometer, built by Kazi, Rasmussen and Mark (K1), can obtain the necessary resolution at energies up to several MeV. However, because of very low efficiencies, no gamma-ray lines were detected above Since the long-lived fission product considered 500 keV (M3). most useful for burnup determinations, Cs¹³⁷, emits a gamma-ray at 662 keV, the use of this spectrometer was not considered further. Instead, development was begun of a solid state detector and of the associated equipment required for its oper-Lithium-ion drift germanium detectors have the necessary at.on. characteristics for use as gamma-ray detectors and, as will be shown later, offer a number of advantages over other types. Thus, development of suitable techniques for their preparation was begun in February, 1962.

This section includes a brief background and historical review of solid state detectors and outlines the reasons for using germanium as the semiconductor material for the detectors. The principles of the lithium-ion drift method are described, along with abridged recipes of techniques used in the present work. More detailed descriptions are presented in Appendix A. The equipment required for the proper preparation and use of the

-5-

detectors is described. A discussion of the operating characteristics of germanium gamma-ray spectrometers is presented along with results of gamma-ray spectra of calibration sources.

B. BACKGROUND INFORMATION

In recent years, semiconductors have been frequently used instead of detecting systems such as scintillation crystals and gas counters. The primary reason for this trend is the fact that semiconductors have an improved efficiency for converting the particle energy into an electrical signal. The absorption of a given amount of energy results in a charge about 10 times larger in such a detector than in a gas counter. In scintillators, inefficiencies in converting light to an electrical pulse result in a signal only 1/100 of that from a semiconductor. Since the energy resolution of a system is dependent upon the ratio of signal-to-noise, the semiconductor detector can yield a resolution about a factor of 10 better than NaI and about a factor of 3 To date, only silicon and germanium better than gas counters. have been applied with reasonable success to nuclear radiation spectroscopy. Some of their relevant properties are given in Table 1.

The first attempt to use semiconductors as radiation detectors was reported by McKay in 1949 (M5) who tried to detect ionizing particles with point contact rectifiers and p-n junctions. However, because of impure crystals, his results were not encouraging. Now, as a result of improvements in transistor technology, many different types of semiconductor detectors are available (D1, I1, M6, T4).

-6-

TABLE 1

PROPERTIES OF SILICON AND GERMANIUM (a, b, c, d)

	Silicon	Germanium
Atomic Number	14	32
Atomic Weight	28	72.6
Density (gm/cm ³)	2.33	4.32
Dielectric Constant	12	16
Energy Gap (eV)	1.09	0.79
Energy/Electron-Hole Pair (eV)	3.6	2.8
Electron Mobility at 25°C (cm ² /v/sec)	1,350	3,900
Hole Mobility at 25 ⁰ C (cm ² /v/sec)	480	1,900

References

- (a) R.A. Smith, "Semiconductors", Cambridge University Press, New York (1959).
- (b) R.A. Smith, "The Wave Mechanics of Crystalline Solids", Chapman and Hall, New York (1961).
- (c) C. Kittel, "Introduction to Solid State Physics", J. Wiley and Sons, Inc., New York (1956).
- (d) N.B. Hannay, ed., "Semiconductors", Reinhold, New York (1959).

The principles of operation of each is essentially similar to a parallel plate ionization chamber and will be exemplified by a silicon p-n junction detector as shown in Fig. 1. Between the n and p type silicon there exists a highly compensated region, called the "depletion region", of width w, having a resistivity corresponding to intrinsic silicon. Ionizing particles striking the depletion region create electrons and holes which drift under the action of the applied field. As the carriers move they induce charge on the n and p regions proportional to the potential difference they traverse, thus giving rise to an external signal. The latter is then usually amplified and subsequently processed to determine the amount of energy deposited in the depleted region by the Particles striking the detector away from the particle. depletion zone create carriers which tend to recombine before diffusing to the junction and therefore give rise to no external charge signal.

The thickness of the depletion layer in p-n junctions can be increased by applying a reverse bias and is given approximately by (M10)

$$w = \frac{\sqrt{\rho V}}{3} \qquad (B.1)$$

where w is the width in microns, ρ is the resistivity of the lightly doped region in ohm-cms, and V is the applied reverse bias voltage. The depletion region thickness determines the maximum particle energy that will be absorbed.

FIGURE I SCHEMATIC DIAGRAM OF A P-N JUNCTION DETECTOR.

1

For a typical silicon detector at 400 V bias, w is about 700 microns, which is sufficient to stop a 10 MeV proton.

Increasing the thickness of the depletion region also reduces the detector capacitance, resulting in improved signalto-noise ratios. The other main factor influencing the signalto-noise ratio is the detector reverse leakage current which is determined mainly by the resistivity of the intrinsic region, which in turn is inversely dependent upon the operating temperature. Much larger depletion layer thicknesses are required for complete absorption of photons; consequently, p-n junction counters are seldom used for gamma-ray spectroscopy. The production of relatively large intrinsic depletion volumes was first accomplished by Pell in 1960 with the lithium-ion drift technique (Pl) outlined in the next section.

C. LITHIUM-ION DRIFT DETECTORS

An intrinsic region can be achieved by the ion drift technique by which donor and/or acceptor ions are drifted in the field of a reverse-biased n-p junction. The drift temperature must be sufficient to make either the donor or acceptor ions mobile but low enough to retain the n-p junction. Donoracceptor ion pairing results in almost complete compensation of each other.

In the present method, Li^+ ions, which are donors, are drifted in p-type silicon or germanium, uniformly doped with acceptor atoms such as boron, gallium or zinc, to a level of N_A acceptors per cc. Lithium is then diffused into the

-10-

crystal to give a surface concentration of N_0 donors per cc where $N_0 \gg N_A$. The donor concentration, N_D as a function of distance into the crystal as shown in Fig. 2, is equal to the acceptor concentration at position x = c, thus creating an n-p junction.

Applying a reverse bias to this n-p junction, thereby creating an electrostatic field near c, causes the positively charged Li⁺ ions to move from the Li-rich side of the junction to the Li-deficient side. Thus, the donor concentration N_D decreases for x < c and increases for x > c, approaching the acceptor concentration N_A , thereby producing an intrinsic region of width w as illustrated in Fig. 3. The resulting structure is known as a p-i-n diode. An extensive theoretical treatment of the ion-drift method, along with experimental verification of the above model is given by Pell (Pl).

The techniques of the lithium-ion drift method were successfully applied to the preparation of thick silicon detectors at a number of different laboratories (B4, M1, M2, G1, E1). Improvements in techniques resulted in decreased drift times and depletion layer thicknesses in silicon of up to 1 cm (M7).

Most applications of silicon p-i-n detectors were for the detection of charged particles, although some measurements were made of gamma-ray spectra (E2, K3). However, these detectors were of limited usefulness at energies above a few hundred keV because the ratio of photopeak area to the area under the Compton distribution was so small. The use of germanium,

-11-

FIGURE 3 IMPURITY DISTRIBUTION IN CRYSTAL AFTER DRIFT

which has a Z of 32, compared with 14 for silicon, offers a great improvement since its photoelectric cross-section is about 40 times that of silicon. A comparison between the two for the photon interactions of photoelectric absorption, Compton scattering and pair production is shown in Fig. 4.

Successful germanium gamma-ray detectors prepared by the lithium-ion drift process, now known as Ge(Li) detectors, were first reported by Freck and Wakefield in 1962 (F3), followed shortly by Webb and Williams in 1963 (W3). The construction of Ge(Li) of sufficiently large volumes (up to $5 \text{ cm}^2 \times 8 \text{ mm}$ thick) for use as practical gamma-ray spectrometers was first carried out by Tavendale in 1963 (T1, T2, T3). These devices obtained photopeak efficiencies of about 0.1% to 1% at 1 MeV while yielding energy resolutions about 10 times better than is possible with the best NaI scintillation spectrometer. Soon after Tavendale's results were reported, a number of other laboratories, including this one, have prepared successful Ge(Li) gamma-ray detectors (G1, H2).

Although the same general procedure is applied to the construction of Ge(Li) detectors, there is considerable variation in specific drifting techniques. Various methods of lithium diffusion are used as well as different drifting ambient conditions. Likewise, final detector completion procedures are dissimilar. In addition, fabrication of good detectors requires many finely detailed techniques which are not reported in the literature and without which extreme difficulties are encountered. For this reason, detailed descript-

-13-

FIGURE 4 PHOTON ABSORPTION COEFFICIENTS FOR FHOTOELECTRIC EFFECT (τ), COMPTON SCATTERING (σ) AND PAIR PRODUCTION (κ) FOR SILICON AND GERMANIUM.

ions of the methods developed in this laboratory are presented in Appendix A, while a brief outline is given in the next section.

D. PREPARATION OF LITHIUM-ION DRIFT GERMANIUM DETECTORS

The germanium used for the fabrication of detectors was supplied by Sylvania Electric Products in the form of p-type, gallium doped, zone-levelled crystals with resistivities between Minority carrier lifetimes were greater than 8 and 44 ohm-cms. 100 μ sec. and dislocation densities were less than 2000/cm². The crystals were cut with a diamond saw to give thicknesses of 5 to 15 mm and cross-sectional areas between 1 and 8 cm². Surfaces were lapped and etched, and a lithium-in-oil suspension was applied to one face. The lithium was then diffused into the crystal in an argon atmosphere at 400-450°C for 10 minutes. Nickel contacts were applied by the electroless plating method (B8, S3), the crystal etched and the resulting n⁺-p diode was tested for resistance characteristics. Satisfactory diodes were then drifted in the apparatus shown schematically in Fig. 5 at approximately 50 to 55°C with DC reverse bias voltages from 200 volts at initial stages down to 30 volts at final stages of drift. The joule heating generated by the diode during the drift was dissipated by boiling of a fluorocarbon liquid (FX78 supplied by the 3M Company) and the heat of the fluorocarbon removed by cooling water in the condenser Depletion depths of $1 \frac{1}{2}$ to 3 mm were obtained after coils. $1 \frac{1}{2}$ to 4 days of drift. Several detectors 4 cm² in area and 1 cm depletion thickness have been prepared with a drift time

-15-

FIGURE 5 SKETCH OF APPARATUS FOR LITHIUM-DRIFT PROCESS FOR GERMANIUM DETECTORS

-16-

of approximately one month. The depth of diffusion and drift were checked with a number of different staining techniques. The p-i-n diode was then etched and tested in vacuo at liquid nitrogen temperatures in the cryostat shown schematically in Fig. 6. Reverse bias currents for satisfactory detectors were between 10^{-8} and 10^{-10} amp. at 100 to 300 volts. Currents higher than 10^{-8} amp. led to excessive noise during operation and thus poor energy resolution. In these cases, the diode was re-etched until the current-voltage characteristics were satisfactory.

E. DESCRIPTION OF ASSOCIATED EQUIPMENT

In order to prepare, test and use Ge(Li) detectors, it was necessary to have available considerable associated equipment. This included a small vacuum system, detector dewars, and various electronic equipment. In this section are described the types of apparatus used in the present work.

1. Vacuum System

Although the detector dewars were kept evacuated when at liquid nitrogen temperatures by a small ion pump, the latter did not have the capability to pump the dewars down from atmospheric pressure to the operating range of 10^{-6} to 10^{-5} mm Hg. Therefore, a small portable vacuum system was constructed for this purpose. A schematic diagram of the system is shown in Fig. 7, while Fig. 8 shows a photograph of the system in operation.

The mechanical pump (CENCO Model HYVAC 14) was shockmounted to reduce vibration. The remaining components were

-17-

FIGURE 6 SCHEMATIC DIAGRAM OF VACUUM CHAMBER AND ELECTRONICS FOR USE WITH LI-DRIFTED GERMANIUM γ -RAY DETECTORS

-19-

1

FIGURE 8 PHOTOGRAPH OF PORTABLE VACUUM SYSTEM

supplied by Vacuum Instruments Corp. (V.I.C.). The 2 in., air-cooled diffusion pump was rated at 150 liters/sec. A liquid nitrogen cold trap was installed to prevent backstreaming of diffusion oil into the dewars. Pressure measurements from atmospheric pressure down to about 1 micron (10^{-3} mm Hg.) were made at positions (A) and (B) with a thermocouple gauge, while system pressures below 1 micron were measured with a Bayard-Alpert type ionization gauge positioned at the outlet from the cold trap (C). A power supply and control panel actuated the gauges. Pressures down to 2 to 5 x 10^{-7} mm Hg. were readily attained for pump-down volumes of several liters.

2. Detector Dewars

Considerable time and effort were expended in the development and construction of satisfactory dewars or cryostats required for operating Ge(L1) detectors. The germanium diode must be operated at less than 150° K in order to reduce the reverse bias leakage currents during operation to acceptable levels (less than 10^{-8} amp.). For convenience, liquid nitrogen was used as the coolant and therefore the operating temperature was near 77° K. At the same time, to prevent possible deterioration of detector characteristics due to condensation and frosting of the detector from atmospheric water vapor, it was also kept in a vacuum. These two requirements were met simultaneously with the arrangement in Fig. 6 above.

This design consisted of a 1.3 liter capacity inner vessel suspended by 1 in. diameter, 0.010 in. thick, stainless steel tube, 8 in. long. These dimensions were chosen to minimize

-21-

heat conduction losses along the tube to the top plate. Surrounding this was a 5 in. diameter, 0.030 in. thick cylinder of stainless steel. A connecting tube was welded on the side and fitted with a 3/8 in. NRC Bellows-type vacuum valve. The dewar could be disassembled at both the top and the bottom to allow ease of mounting the detector and easy disassembly for cleaning. Although the stainless steel surfaces were electropolished to reduce radiative losses, an increase in liquid nitrogen hold-time of a factor of 2 could be attained by covering the stainless steel surfaces with highly reflective aluminum foil. The latter has an emissivity of 0.023 compared with 0.110 of stainless steel.

Because of internal outgassing of surfaces and small leakages through the hermitic feed-throughs, it was found necessary to use some means of maintaining the vacuum after removal from the diffusion vacuum system. Small (0.2 to 1 liter per sec.) ion pumps (supplied by Varian Associates) were found to perform this task very adequately, maintaining vacuums of 10^{-6} to 10^{-7} mm Hg. for several months while requiring almost no maintenance. Liquid nitrogen hold times for such conditions were up to 95 hours for 1.3 liters. Average values were about 60-70 hours.

In the earlier models of this design, the electrical feedthrough carrying the signal from the detector was positioned at the top. This required a fairly long (\sim 12 in.) connection to the detector at the bottom of the inner vessel, resulting in a high input capacitance to the preamplifier, and thus decreased energy resolution. In the latest models, the

-22-

connectors were placed at the bottom, thus requiring only a short lead (\sim 3 in. long) from the detector to the preampli-fier.

The dewars, which are now available from A.D. Little, Inc., Cambridge, Mass., are described in considerable detail in (K4). Figure 9 is a photograph of a disassembled dewar showing the Ge(L1) detector in position, while Fig. 10 shows the assembled dewar with the ion pump power supply.

During development of suitable cryostats, a number of different designs were tried, and although not as generally useful as the design described above, may be useful in other types of experiments. The simplest of these consisted of a small chamber surrounding a copper rod. The detector was placed upon the rod, the chamber evacuated and the rod inserted into a glass dewar filled with liquid nitrogen. The main disadvantages of such a system were the frosting up of the leads and the relatively short liquid nitrogen hold time of the dewar. Further, because of air leaks, the detector itself also became frosted over after a lengthy run of several days without reevacuation. However, in the use of this type of detector arrangement, it was found that the detectors could be satisfactorily operated in a dry argon or nitrogen gas atmosphere. This, however, increased the gas conduction heat leak, consequently reducing the hold time. However, it may be possible to use this arrangement in other situations.

For testing of detectors prior to placing in the larger dewars, smaller dewars with rapid evacuation and cool-down times

-23-

FIGURE 9 PHOTOGRAPH OF DISASSEMBLED DEWAR FIGURE 10 PHOTOGRAPH OF

FIGURE IO PHOTOGRAPH OF ASSEMBLED DEWAR AND ION PUMP POWER SUPPLY

Section .

24

were used. The design was basically the same with the detectors positioned on the bottom of the inner vessel in the evacuated space. These chambers were kept evacuated with the vacuum system and were capable of a hold-time of 3-4 hours. One such dewar is shown in Fig. 8 on the portable vacuum system platform.

3. Electronics

Realization of the high energy resolution possible with lithium-ion drift germanium detectors necessitates the use of high quality electronic apparatus to process the signal produced by the detector. In the present work, commercially available units were used. The schematic arrangement of the electronic apparatus was shown in Fig. 6. The signal from the detector was fed to a low noise type preamplifier (CRTEC 103, or 103%L, TENNELEC 110) then to a biased main amplifier (ORTEC 203) and analyzed in a multi-channel pulse height analyzer (Nuclear Data 1024 channels, Model 160; TMC 256, Model CN-110A).

F. OPERATING CHARACTERISTICS OF Ge(L1) GAMMA-RAY SPECTROMETERS

A detailed description of the general characteristics of Ge(L1) detectors is presented by Ewan and Tavendale (T3). Some of their results are included in the following summary. 1. <u>Properties of Ge(L1) Detectors</u>

(a) Temperature Characteristics

To reduce leakage currents, the detectors must be operated at low temperatures. Above 170°K the detector leakage current limits the resolution. Liquid nitrogen provides a convenient temperature (77°K); consequently nearly all Ge(Li) detectors

-25-

are operated at this temperature.

(b) Linearity of Response

Reference (T3) found that Ge(Li) detectors were linear to within $\pm 0.3^{\circ}/_{\circ}$. In the present work, the combination of detector-amplifier-analyzer gave rise to a small differential non-linearity of about 1 to 3%. However, no measurements were made to determine the source of this non-linearity.

(c) <u>Response Time of Detectors</u>

The pulse-rise time of a 3.5 mm diode operated at optimum bias is less than 30 μ sec, although the spectrum contains components with both slow and fast rise time, presumably due to trapping of the carriers.

(d) <u>Bias</u>

Although Tavendale reports measurements of good resolution for reverse bias voltages from 150 to 1000 v., voltages greater than about 300 were seldom required and generally resulted in poor resolution. Typical bias values were ~ 200 v., although some detectors operated best at lower voltages. The optimum bias for a detector was located by determining the voltage that resulted in the best energy resolution for a gamma-ray such as the 662 keV photon from Cs¹³⁷.

(e) Stability of Detector with Time

Germanium detectors that were kept at liquid nitrogen temperatures and in vacuo retained their characteristics with no deterioration in performance after six months. For detectors that had warmed to room temperature, it was necessary to apply an etch treatment to provide clean junction surfaces.

-26-

Otherwise, cooling to liquid nitrogen temperature without etching resulted in leakage currents of 10^{-6} amp. or higher.

Even drifted diodes stored at room temperature for several months have been made to operate satisfactorily following a room temperature drift of ~ 1 day and an etch treatment.

2. Energy Spectra of Calibration Gamma-Rays

In this section the use of Ge(Li) detectors to study the gamma-ray spectra of well-known energy calibration standard sources is discussed. The values of the gamma-ray energies are presented in Table B.1 of Appendix B. The detector used for these measurements (no. 9-19.1) had a depletion depth of 3.5 mm and a cross-sectional area of 1.6 cm². Results were punched on paper tape then on to IBM computer cards which then served as the input data for a curve-plotting program.

(a) <u>Cobalt-57</u>

Figure 11 shows the gamma-spectrum obtained from Co^{57} which emits two gamma-rays at 122.0 and 136.4 keV. The rull width at half maximum (FWHM) was measured to be 3.59 keV (2.9%) for the 122 keV peak.

(b) <u>Sodium-22</u>

Figure 12 gives the gamma-spectrum of Na^{22} with gamma-rays at 511 and 1277 keV and illustrates the intense Compton electron background in addition to the peaks due to photoelectric absorption. This Compton distribution introduces a complication to the use of the Ge(Li) detectors for complex spectra with many gamma-rays, because of the possibility of misinterpretation of a sharp Compton edge for a low-yield gamma-ray. Also, because

-27-

FIGURE II Co⁵⁷ GAMMA - SPECTRUM GERMANIUM LITHIUM DRIFT DETECTOR No. 9 - 19.1 3.5 mm Depletion Depth, 1.6 cm² 200 VOLTS BIAS, 77 ° K

FIGURE 12 - Na²² GAMMA - RAY SPECTRUM GERMANIUM LITHIUM DRIFT DETECTOR No. 9-19.1,35 MM DEPLETION DEPTH, 1.6 CM² AREA, 170 VOLTS BIAS, 77°K

the resolution deteriorates for high count rates, and since the Compton distribution provides the greatest share of the counts, it limits the count rate useable in an experiment. The energy resolution was 6.6 keV at 511 keV and 6.7 keV at 1275 keV.

(c) <u>Cesium-137</u>

The well-calibrated gamma-ray of Cs¹³⁷ at 661.6 keV gives rise to the spectrum shown in Fig. 13. The FWHM obtained was 4.7 keV.

(d) Manganese-54

The spectrum for the 835 keV gamma-ray of Mn⁵⁴ is shown in Fig. 14. A value of 5.1 keV was calculated for the FWHM. (e) Cobalt-60

The complete energy spectrum of Co^{60} is shown in Fig. 15, while an enlarged view of the region near the two gamma-rays at 1173 and 1333 keV is shown in Fig. 16.

(f) Thorium (B+C+C")

Figure 17 shows the high energy portion of the gammaspectrum of Th(B+C+C") where the 2614 keV gamma-ray is due to decay of Tl^{228} . The double escape peak shown in the spectrum at 1592 keV is the result of pair production interactions in which both annihilation photons escape. Because the detector is small, the escape probability for the photons is large. Thus, this peak is considerably larger than either the total absorption or the single escape peak at 2103 keV. The FWHM for the photopeak at 2614 keV was 8 keV.

-30-

FIGURE 13 Cs¹³⁷ GAMMA - SPECTRUM GERMANIUM LITHIUM DRIFT DETECTOR No. 9-19.1 3.5 mm DEPLETION DEPTH, 1.6 cm² 200 VOLTS BIAS, 77°K RUN S8

-3-

4 . . . Na

FIGURE 16 Co⁶⁰ GAMMA-SPECTRUM GERMANIUM LITHIUM DRIFT DETECTOR No. 9-19.1 3.5 mm DEPLETION DEPTH 200 VOLTS BIAS, 77°K

.

FIGURE 17 Th C["] γ RAY SPECTRUM Li-Drifted Germanium Detector No. 9-191 3.5mm Depletion Depth, 1.6 cm² 200 Volts Bias, 77°K 20th October 1964

3. Efficiency

The intrinsic photopeak efficiency of the detector used in these experiments as a function of energy is shown in Fig. 18. The points were obtained with calibrated point sources and a calculated geometry factor. The experimental efficiencies are known to be considerably higher than what would be calculated from the photoelectric cross-section due to re-absorption of some of the Compton-scattered photons (T3).

IGURE IS INTRINSIC FULL PEAK EFFICIENCY OF LITHIUM DRIFTED GERMANIUM DETEC-TOR 9-19.1 3.5 mm THICK 12 NOV., 1964 200 VOLTS BIAS 77° K

III. <u>NONDESTRUCTIVE ANALYSES OF IRRADIATED MITR FUEL</u> ELEMENTS USING A Ge(L1) GAMMA-RAY SPECTROMETER

A. INTRODUCTION

The determination of the irradiation history of spent reactor fuel is generally accomplished by relating physics parameters, such as total neutron exposure, neutron flux and irradiation time, to the measured fission product content in the fuel. The use of gamma-ray spectroscopy for this purpose requires that the fission product being measured emit a gammaray having a unique energy. This property, in combination with the knowledge of the radionuclide's half-period, is usually sufficient for its proper identification in complex gamma-ray spectra from fuel elements. A further desired characteristic is that the gamma-ray energy be high enough to keep selfabsorption losses within the fuel small.

Since not all the fission products available in a freshly irradiated sample of U^{235} have the above desired characteristics, it is necessary to choose the most suitable for further investigation. Table 2 shows a list of some of the fission products, along with some nuclear properties of interest to these studies. The list contains fission products that (a) emit gamma-rays of energies greater than 500 keV so that absorption in the fuel is small, (b) have half-lives greater than a few days and up to 30 years, and (c) have reasonably high fission yields.

The objectives of the experimental studies to be described have been

-38-

FISSIO		HALF	FISSION YIELD, %				
PRODUC	T MeV		THERMAL FISSION		FAST FISSION (c)		
			U ²³⁵ (a)	Pu ²³⁹ (b)	U ²³⁵	Pu ²³⁹	U ²³⁸
Zr ⁹⁵ Nb ⁹⁵	0.724, 0.758 0.766	65 DAYS 35 DAYS	} 6.27	5.06	6.8	5.3	5.7
Ru ¹⁰⁶ Rh ¹⁰⁶	2.66, 2.40, 2.10, 1.55 1.05, 0.624, 0.607, 0513	1.0 YR. 30 SEC	} 0.38	4.04	0.5	6.3	2.7
Cs ¹³⁴ Cs ¹³³	0.605,0.796 none	2.3YR. stable	6.59	Cs ¹³³ (n, y) 5.59	Cs ^{I34} 5.9	_	_
Cs ¹³⁷	0.662	30 Y R.	6.00	5.40	6.2	5.8	6.2
Bo ¹⁴⁰ ∟ _o 140	3.00, 2.520, 1.596) 0.92 , 0.82	13 DAYS 40 HR.	} 6.44	5.47	5.8	5.0	5.7
Ce ¹⁴⁴ Pr ¹⁴⁴	0.079, 0.133 0.697, 1.488, 2.186	285 days 17 min	} 5.62	4.09	4.8	3.7	4.9

TABLE 2 PROPERTIES OF FISSION PRODUCTS USEFUL FOR GAMMA-RAY SPECTRSCOPIC STUDIES OF IRRADIATED FUEL

REFERENCES: (a) TABLE 10, (b) M9, (c) D2

- 39-

. .

- (1) to determine what fission products can be identified from gamma-spectra of irradiated MITR fuel elements with the use of a Ge(Li) spectrometer, and
- (2) to determine the type of information that could be obtained about fuel element irradiation history from the analysis of the Ge(Li) spectrometer data.

The following sections describe the equipment and procedures used in the experimental investigations, the results obtained and the methods used in the interpretation of these results.

B. EXPERIMENTAL EQUIPMENT AND PROCEDURES

1. MITR Fuel Elements

The MITR fuel elements, shown in Fig. 19, are of the standard MTR, plate-type construction, containing 16 fuel plates and two outside dummy plates, each rigidly located in two grooved side plates. The plates, about 24 in. in length, contained an alloy of 93% enriched U^{235} and aluminum 0.020 in. in thickness. clad on both sides with 0.020 in. of aluminum. Spacing between each plate was C.117 in. The outside dimension of the element was approximately three inches square. Gammaray spectroscopic studies were made on six different fuel elements, each having a different irradiation history. In Table 3 are presented some of the known and calculated information about the fuel elements studied: 2-4, 2M1, 2M14, 2M19, 2M22 and 2M31.

2. Scanning Equipment and Procedure

Preliminary investigations on the feasibility of detecting

FUEL PLATE

FIGURE 19 MITR FUEL ELEMENT

TABLE 3

MITR IRRADIATED FUEL ELEMENT DATA

Fuel Element	Data Charged	Data dis- charged	Total Res. Time, Years	Total Expos. Time, 10 ⁸ sec.	Total ^a Energy, MWH	Orig. ^a U-235 Wt., gms.	Final ^a U-235 Wt., gms.	Final ^a U-235 Fract.o, N ₂₅ /N ₂₅	Cooling Time
2M1	4/30/59	1/22/62	2 •7 5		736.20	162.26	123.01	0.758	3yrs.4mos.
2-4	7/11/60	6/1/62	1.90		223.10	104.85	92.96	0.888	3yrs.
2M14	7/10/61	10/30/64	3.25		945.86	161.25	110.82	0.686	Varied
2M19	1/22/62	7/25/64	2,50	0.448	1021.82	161.25	106.78	0.661	281 d.
2M 22	4/24/61	12/2/63	2.60	0.482	1216.60	161.25	96.39	0.597	1 1/2 yrs.
2M31	2/18/63	5/3/65	2.20		1123 #	161.25	104 🛎	C.644 [¥]	11 d.
							* approx	•	

.

(a) Ref. M3.

and identifying radioactive fission products within an irradiated fuel element using a Ge(L1) gamma-ray spectrometer were made upon 2M14. A collimated gamma-ray beam was extracted from the element, which was positioned in the fuel charging flask, by means of a hole through the shielding material (see Ref. M3 for more details). The Ge(L1) detector was placed in the beam path and the gamma-ray spectra were recorded with a 256 channel analyzer (TMC). However, this arrangement did not permit satisfactory scanning of the element and modifications to the fueling flask would have been necessary. Since irradiated MITR fuel was stored in the spent fuel storage tank, a mechanism suitable for scanning the elements underwater was designed and built.

Aschematic diagram, shown in Fig. 20, illustrates the main features of this apparatus. The detector dewar was positioned on a moveable carriage which allowed motion both parallel and normal to the axis of the fuel element. Lead shielding was placed around the detector to reduce background count rates. An air-filled tube 1/2 in. I.D., rigidly attached to the carriage, extended from near the bottom of the dewar, through the water to the surface of the fuel element. This tube permitted a well-collimated beam of gamma-rays to reach the detect-Additional steel and lead collimators with aperature diaor. meters varying between 1/16 and 1/2 in. were placed at the bottom of the tube and near the detector to reduce counting rates to acceptable levels. In addition, 1/8 in. thick lead sheets were placed in the gamma-ray beam to absorb many of the

-43-

FIGURE 20 SCHEMATIC DIAGRAM OF APPARATUS FOR GAMMA-RAY SCANNING OF MITR SPENT FUEL ELEMENTS unused lower energy photons while still allowing the higher energy photons to pass through.

The fuel element to be studied was removed from the storage racks at the bottom of the tank and was placed in a horizontal position on the holding frame about six feet below the surface of the water. A cam mechanism was used to hold the element rigidly against the frame. A photograph showing a fuel element in position for scanning is shown in Fig. 21.

Initially, measurements were made to determine the optimum collimation and shielding for that particular element. Gammaray spectra were then collected for 20 to 80 minutes, depending upon the count rates. Spectra were taken at two inch intervals on the central plane for longitudinal scans, while transverse scans across the element were taken at 1/2 in. intervals at several longitudinal positions. Figure 22 shows a photograph of the arrangement of the equipment in the spent fuel storage room.

C. EXPERIMENTAL RESULTS

Identification of the fission-product parents of the gammarays in a spectrum required relatively precise determinations of the gamma-ray energies. For energy calibrations of fuel element spectra, the gamma-ray standards previously described in Section II were used. Since the energies of the individual fission product gamma-rays were often not known accurately, it was necessary to obtain spectra of the separated fission products of interest with the Ge(Li) spectrometer. The gamma-ray spectra of $2r^{95}$ +Nb⁹⁵. Rh¹⁰⁶. Cs¹³⁴, Cs¹³⁷ and Ce¹⁴⁴+Pr¹⁴⁴ are presented

-45-

FIGURE 21 PHOTOGRAPH OF FUEL ELEMENT IN SCANNING ASSEMBLY

FIGURE 22 PHOTOGRAPH OF SCANNING APPARATUS AND ELECTRONIC EQUIPMENT IN THE SPENT FUEL STORAGE ROOM

in Appendix C, along with the gamma-ray energies determined in these studies.

1. Fission Product Gamma-Ray Spectra from Elements with Different Cooling Periods

(a) Fuel Element 2M14

As mentioned previously, preliminary studies were made upon 2M14 to determine how soon after removal from the core could satisfactorily resolved gamma-ray spectra be obtained. The results were recorded with a 256 channel analyzer and thus, in order to retain a sufficient number of points per gamma-ray peak, the spectrum was obtained in a series of overlapping sections with the use of the biased amplifier. Spectra were obtained after cooling periods of 18 hours, 40 hours, 5 days and 18 days.

(i) Cooling Period of 18 hours:

The low energy (< 300 keV) portion of the gamma-ray spectrum after 18 hours cooling time is shown in Fig. 23. Although a large number of gamma-rays are known to exist in this energy range, they have not been resolved because of the intense Compton electron background due to higher energy gammarays. The shape of this spectrum does not change appreciably with cooling time. Only after cooling periods of two or more years, when most of the shorter-lived fission products have decayed, is it possible to resolve some gamma-rays below 300 keV. Since self-absorption corrections in fuel and water are rather large below these energies, all subsequent investiations were limited to gamma-ray energies greater than about

-48-

FIGURE 23 LOW ENERGY PORTION OF γ-RAY SPECTRUM OF FUEL ELEMENT 2MI4 AFTER 18 HRS COOLING. Ge(Li) DETECTOR No. 9-19.1 -49-

FIGURE 24 y-RAY SPECTRUM OF FUEL ELEMENT 2MI4 AFTER 18 HRS COOLING FOR ~ 280 TO 840 keV Ge (Li) DETECTOR No. 9-19.1

-51-

FIGURE 25 γ -RAY SPECTRUM OF FUEL ELEMENT 2MI4 AFTER 18 HRS COOLING - ~1500 TO 2550 keV Ge (Li) DETECTOR No.9-19.1 structure is apparent in the spectrum compared to that after 18 hours shown in Fig. 24. However, the large number of gamma-rays from short-lived isotopes plus the high Compton background prevents satisfactory resolution of the spectrum. The high energy portion after 40 hours cooling, shown in Fig. 27, is essentially the same as after 18 hours cooling of Fig. 25.

(111) Cooling Period of 5 days:

The middle energy portion of the gamma-ray spectrum after five days cooling time is shown in Fig. 28. More gammarays are now resolved but have not been identified. Further studies are required to provide more definitive results for cooling times less than one week.

(iv) Cooling Period of 18 days:

The effect of the decay of short-lived gamma-emitters can be seen in Fig. 29 which shows the gamma-ray spectrum of 2M14 from about 570 to 835 keV after 18 days cooling. The $2r^{95}$ +Nb⁹⁵ peaks are now well-defined, although they are probably still contaminated by other gamma-rays. The Cs¹³⁷ peak at 662 keV is just discernible above the background, while the peak at 575 keV ($2r^{97}$?) has decreased considerably in intensity. A group of gamma-rays with energies between 810 and 825 keV is also responsible for a broad peak in this region.

(b) Gamma-Scanning in Spent Fuel Storage Tank

The five fuel elements scanned in the spent fuel storage tank setup were 2-4, 2M1, 2M22, 2M19 and 2M31. Typical gammaray spectra of four elements are shown in Fig. 30. The relative

-53-

FIGURE 26 γ -RAY SPECTRUM OF FUEL ELEMENT ZMI4 AFTER 40 HRS COOLING ~ 300 TO 850 keV Ge(Li) DETECTOR No. 9-19.1

FIGURE 27 γ -RAY SPECTRUM (~1550 TO 2530 keV) OF FUEL ELEMENT 2MI4 AFTER 40 HRS COOLING TIME Ge(Li) DETECTOR No. 9-19.1 3.5 MM DEPLETION LAYER, 1.6 CM² -55-

FIGURE 28 y-RAY SPECTRUM OF FUEL ELEMENT 2MI4 AFTER 5 DAYS COOLING ~ 275 TO 840 keV Ge(Li) DETECTOR No. 9-19.1

FIGURE 29 γ -RAY SPECTRUM OF FUEL ELEMENT 2MI4 AFTER 18 DAYS COOLING- ~ 560 TO 830 keV Ge(Li) DETECTOR No.9-19.1 -57-

i

heights of the curves are arbitrary as the purpose of the Figure was to show how the character of the spectra changes with cooling time.

(i) Fuel Element 2M31:

The gamma-spectrum of 2M31, Curve A in Fig. 30, after a cooling time of 11 days, shows resolved peaks for $Ba^{140}+La^{140}$ and $Zr^{95}+Nb^{95}$. Background count rates during these runs were too excessive for high resolution studies because of inadequacy of the six feet of water to provide satisfactory shielding against the high level of radiation from the element. The amount of lead shielding the detector in turn was limited by space and strength of the supporting track.

(11) Fuel Element 2M19:

Curve B of Fig. 30 gives the gamma-ray spectrum of 2M19 after nine months cooling, and shows peaks identified with gamma-rays from $2r^{95}$ +Nb⁹⁵, Rh¹⁰⁶, Cs¹³⁴, Cs¹³⁷ and Pr¹⁴⁴. Most of these occur in the range 500 to 800 keV with only the Pr¹⁴⁴ gamma-ray at 2186 keV contributing to the high energy portion. An enlarged view of the 500-800 keV region is presented in Fig. 31, and shows resolved peaks for Cs¹³⁴ (2.19 yr.) at 605 and 796 keV; Rh¹⁰⁶ (30 sec., daughter of Ru¹⁰⁶, $t_{1/2} = 1.0$ yr.) at 624 keV; Cs¹³⁷ (30 yr.) at 662 keV; Pr¹⁴⁴ (12.5 min., daughter of Ce¹⁴⁴, $t_{1/2} = 280$ days) at 697 keV; $2r^{95}$ (65 days) at 724 keV with two partially resolved peaks for $2r^{95}$ at 758 keV and Nb⁹⁵ (35 days) at 766 keV. For shorter cooling times than about one year, the $2r^{95}$ +Nb⁹⁵ pair provide the major gamma-ray activity in this energy range.

-58-

FIGURE 30 GAMMA-RAY SPECTRA OF MITR SPENT FUEL AS A FUNCTION OF COOLING TIME GERMANIUM LITHIUM DRIFT DETECTOR No 9-19.1 3.5 mm DEPLETION DEPTH 170 VOLTS BIAS, 77°K

CURVE	FUEL ELEMENT	COOLING TIME
А	2M31	I I/2 WEEKS
В	2M19	9 MOS.
С	2M22	I YR 6 MOS.
D	2M I	3 YR 6 MOS.

-

-59-

FIGURE 31 GAMMA-RAY SPECTRUM OF MITR FUEL ELEMENT 2M19 AFTER 9 MONTHS COOLING GERMANIUM LITHIUM DRIFT DETECTOR No. 9-19.2 3.5 mm DEPLETION DEPTH, 1.6 cm² 170 VOLTS BIAS, 77°K RUN D4, 5/5/65

(111) Fuel Element 2M22:

After 1 1/2 years cooling time, as shown in Curve C of Fig. 30 and in Fig. 32, the most prominent peaks are due to Cs^{134} and Cs^{137} , whereas the Zr^{95} +Nb⁹⁵ activity is considerably reduced.

(iv) Fuel Element 2M1:

The element investigated having the longest cooling time, 3 1/2 years, was 2Ml, for which the gamma-ray spectrum is shown in Curve D of Fig. 30 and an enlarged view is given in Fig. 33 for the medium energy range. Cesium-137 provides the major activity, with a smaller contribution from Cs^{134} . However, because of the low burnup attained in 2Ml, there is a proportionally smaller amount of Cs^{134} in this element than in those previously discussed with higher burnups. This is because Cs^{134} is not a direct fission product but is an (n,γ) reaction product of Cs^{133} . Further discussion of this is made in Section IV to follow.

Close examination of some of the peaks indicates the possibility of the presence of other fission product gamma-rays. Both in Fig. 32 and Fig. 33, for elements 2M22 and 2M1, the Pr^{144} peak at 697 keV had a width greater than would be expected from the prevailing experimental energy resolution. It is felt that some other fission product was contributing a gammaray of low intensity at an energy slightly below 697 keV. The low energy tail of the 697 keV gamma-ray in Fig. 33 appears to be due to this other gamma-ray at about 692 keV, with a half-life greater than that of Ce¹⁴⁴ (280 days). Europium-154

-61-

FIGURE 32 GAMMA - RAY SPECTRUM OF MITR FUEL ELEMENT 2M22 AFTER 11/2 YEARS COOLING GERMANIUM LITHIUM DRIFT DETECTOR No. 9-19.1 35mm DEPLETION DEPTH, 1.6 cm² 170 VOLTS BIAS, 77°K RUN HI, 5/19/65

FIGURE 33 GAMMA-RAY SPECTRUM OF MITR FUEL ELEMENT 2MI AFTER 31/2 YEARS COOLING GERMANIUM LITHIUM DRIFT DETECTOR No.9-19.1 3.5mm DEPLETION DEPTH, 1.6 cm² 170 VOLTS BIAS, 77 °K RUN G14, 5/18/65

-63-

(16 yr.) or Eu¹⁵² (12.7 yr.) have gamma-rays in this region, are of low yield and have the necessary long half-lives.

Similar circumstances were noticed for the Rh^{106} peak at 624 keV. Energy determinations of this gamma-ray from a $Ru^{106}+Rh^{106}$ source indicated a value near 622 keV. However, fuel element spectra calibrations gave a value between 623 and 624 keV. It is possible that another peak of lower intensity slightly higher in energy than 622 keV is causing the peak to shift. Figure 33 indicates this possibility as a number of peaks appear to be present in the 623 keV region.

2. Calculation of Gamma-Ray Intensities

In order to determine the fission product activities in the fuel elements, it was necessary to calculate the intensities of their gamma-rays from spectra as shown above. The gamma-ray intensities were then converted to the corresponding activities using known or measured nuclear data. A number of methods have been developed for calculating gamma-ray intensities from scintillation crystal spectrometer results, e.g. spectrum stripping, least squares analysis, etc. (Ol). However, since gamma-ray spectra from Ge(L1) detectors are considerably different than those from NaI crystals, it was not certain that computer techniques developed for the latter would be as successful for the germanium detectors. Similarly, the spectrum stripping method requires using a known intensity of the same gamma-ray source as is present in the unknown. The fission product sources used in these investigations were not available at the time the fuel element spectra were being recorded. Con-

-64-

sequently, this method was not possible. Initial attempts to calculate the intensities with the use of a simple background subtraction method led to inconsistent results. Therefore, a series of experiments were conducted and their results analyzed to determine a satisfactory method for calculating gamma-ray intensities. These experiments and results are described in more detail in Appendix D.

3

The method developed essentially calculates an average integral under the gamma-ray peak using several channels on either side of the peak as end-points. First, an average background is calculated over three or five channels on the high energy side of the peak. Then, a linearly varying background under the peak is assumed using the counts in a channel on the low energy side of the peak as the low energy background value. The net counts contributed by the gamma-ray are obtained by subtracting the total background from the total integral, both being calculated between the two end points. This procedure is repeated using a number of different channels on the low energy side of the peak as one of the end-points, with each resulting in a value for the net number of counts under the Because of statistical fluctuations, the net intephotopeak. gral varies considerably. However, the mean of five or more such adjacent values was shown to yield results reproducible to within about twice the statistical uncertainty.

The above procedure was programmed in FORTRAN for the IBM 7094 and the resulting code, GRAPIN, was used to calculate the net counts under the gamma-ray peaks for the fuel element

-65-

spectra. A listing of GRAPIN, along with a description of input data format is given in Appendix E.

Tables of the net counts under the various fission product gamma-ray peaks as calculated by the code are presented in Appendix F. A graphical presentation and discussions of these data are made in the following section.

3. <u>Spatial Distributions of Gamma-Ray Intensities in MITR</u> <u>Fuel Elements</u>

(a) Fuel Element 2M19

Fuel Element 2M19 was studied more extensively than any of the others because it had the most constant irradiation pattern during its in-pile residence time, having remained in position 17 from the beginning of its operation to its removal. The cooling time of nine months meant that most short-lived isotopes had decayed, while the gamma-ray spectra indicated the feasibility of calculating intensities for a number of the longlived fission products. Consequently, much of the following discussion will be devoted to the analysis and results of the experiments on 2M19.

Each spectrum was recorded for 80 minutes using an aperature diameter of 1/8 inch for the bottom lead collimator and a 0.135 in. thick lead shield across the gamma-ray beam to decrease the low energy photon count rates. The net gamma-ray peak counts for each run are given in Table F.1 in Appendix F.

The relative axial distributions of the counts for Cs^{137} , Zr^{95} (γ -724 keV) and Cs^{134} (γ -605 keV) are shown in Fig. 34. The Cs^{137} activity, having a long half-period, is proportional to the local total fission density, and thus also is a good

-66-

1

ŝ,

FIGURE 34 RELATIVE AXIAL DISTRIBUTIONS OF Cs^{137} , Zr^{95} (γ -724) AND Cs^{134} (γ -605) ACTIVITIES FOR MITR FUEL ELEMENT 2MI9 AFTER 9 MONTHS COOLING

neutron flux indicator. For this reason, the Cs^{137} activity is assymetric about the central midplane because of the flux depression at the top created by the presence of the control rods. Meanwhile, a pronounced peak in the Cs^{137} load is seen at the bottom of the element near the fuel-moderator interface. This corresponds to the increase in the neutron flux in this region due to the decreased neutron absorption in the moderator. Similar distributions were measured for the Cs^{134} and Zr^{95} activities.

The axial distributions of the three gamma-ray activities of Pr^{144} at 697, 1164 and 2186 keV are shown in Fig. 35, while that for the 624 keV gamma-ray peak of Rh^{106} is shown in Fig. 36. Because of the low intensity of the Rh^{106} gamma-ray and the high background, the statistical deviations in the net counts of Rh^{106} are at times larger than the integral; thus meaningful interpretations of the distribution of this fission product were not possible. However, since the yield of the mass 106 chain in Pu^{239} thermal fissions is more than 10 times greater than in U^{235} fissions (see Table 2), the Rh^{106} gammaray peak should be considerably greater in spectra of low enrichment irradiated fuel, in which a significant fraction of the fissions are in plutonium.

The values for the fission product net counts at the fuel midplane appear anomalously high in Figs. 34 and 35. This phenomenon is probably not real but rather is due to electronics. The data at -1 in. (Run D4) and 0 in. (Run D5) were taken soon

-68-

,

-69-

FIGURE 36 Rh^{106} ACTIVITY (624 keV γ) ALONG FUEL ELEMENT 2MI9

-70-

after some vacuum tubes in the preamplifier and amplifier had been replaced. The electronic system thus may not have completely stabilized. Consequently, the absolute values of the fission product activities may be in error. The point at -1 in. was repeated at a later time in Run D18 and gave a lower value, as shown in Table F.1. The ratios of activities should not, however, be greatly in error (see Table 6).

The results of a transverse scan are shown in Fig. 37 for Cs^{134} , Zr^{95} and Cs^{134} at an axial position 1 in. above the fuel midplane. Included is a schematic diagram showing the direction of scanning across the large-area faces of the fuel plates. The results are repeated in Fig. 38 along with those for Rh^{106} , Pr^{144} and Zr^{95} +Nb⁹⁵. Results of similar transverse scans made at 6 in. below and 6 in. above the element midplane are given in Table F.1, Appendix F.

Partial results for a transverse scan in which the detector viewed the edges of the fuel plates are shown in Fig. 39. A 1/8 in. diameter aperature was used in the bottom collimator with 0.135 in. Pb shielding across the gamma-ray beam. Spectra were recorded at intervals of 1/16 in., progressing from near the central plate towards the outer plate. The large variations in the Cs¹³⁷ activity are due to the differing amounts of fuel seen by the detector through the collimating aperature. Shown by the crosses in Fig. 39 is the positional dependence of the calculated ratio of projected area of that part of a fuel plate seen through the aperature to the total projected area of one plate if viewed from the same position. The Cs¹³⁷ and area

-71-

FIGURE 37 RESULTS OF TRANSVERSE SCAN SHOWING Cs^{137} , $Zr^{95}(\gamma - 724 \text{ kev})$ AND $Cs^{134}(\gamma - 605 \text{ kev})$ ACTIVITIES AS A FUNCTION OF POSITION ACROSS FUEL ELEMENT 2M19 AFTER 9 MONTHS COOLING TIME.

FIGURE 38 γ -RAY ACTIVITIES OF FISSION PRODUCTS Cs¹³⁴, Rh¹⁰⁶, Cs¹³⁷, Pr¹⁴⁴, Zr⁹⁵ AND Nb⁹⁵ AS A FUNCTION OF POSITION FOR TRANSVERSE SCAN AT I" ABOVE MIDPLANE OF FUEL ELEMENT 2MI9 -73ratios were normalized in the following way: the lowest value of Cs^{137} counts was chosen to correspond to the smallest area ratio of fuel plate. This value of 8485 from Run D36 was divided by the lowest fuel plate calculated ratio of 0.55. Thus the value of the Cs^{137} ratio was set equal to the plate area ratio at a position $\pm 1/16$ in. from the reference zero line. The other Cs^{137} counts were multiplied by 0.55/8485, and the resulting ratios plotted at the measured distances from the reference zero line. It is seen that the positional variations of both these quantities agree very well, therefore justifying the conclusion that the count rate fluctuations are due to variations in the amount of fuel viewed by the detector and not some other phenomenon.

These results indicate the high spatial resolution attainable with this type of experimental arrangement. Due to the curvature of the plates, it may even be possible to investigate spatial distributions of fission product activities for each individual fuel plate within the element itself using smaller aperature diameters for collimation and a more precise scanning system.

(b) Fuel Element 2M22

The results of axial scans of 2M22 are shown in Fig. 40 for Cs^{137} and Cs^{134} (γ -604 keV). This element had a predicted U^{235} burnup about 20% higher than 2M19. The low value for the fission product counts at the bottom of the element is probably due to the fact that the uranium fuel in some of the plates did not extend to within 1/2 in. of the end of the plate. Included

-74-

FIGURE 39 RESULTS OF TRANSVERSE SCAN USING 0.125 in. DIA. APERATURE IN Pb COLLIMATOR SHOWING COM-PARISON BETWEEN MEASURED RELATIVE Cs¹³⁷ ACTIVITY AS A FUNCTION OF POSITION WITH CALCULATED FRACTION OF FUEL PLATE AREA SEEN BY DETECTOR THROUGH APERATURE

in Fig. 40 are results of measurements made upon the same elements with the 6-meter, bent-quartz crystal spectrometer for the 133 keV gamma-ray of Ce¹⁴⁴ (M3). The Ce¹⁴⁴ counts have been normalized to be equal to the Cs^{137} counts at the The two distributions agree reasonably well. fuel midplane. although the Ce¹⁴⁴ results are lower than the Cs¹³⁷ results near the bottom of the element. This may not be a real phenomenon, but may be caused by the normalization itself. Some differences may be expected since the 133 keV gamma-ray of Ce¹⁴⁴ will be heavily attenuated in the fuel and the results may be representative of only the first few fuel plates. The Cs^{137} gamma-ray, on the other hand, is not absorbed as greatly and therefore represents an integrated effect for the whole element.

Figure 41 shows the axial distributions of $2r^{95}$ (γ -724 keV), the twin peaks of $2r^{95}$ +Nb⁹⁵ and the double escape peak of Pr^{144} at 1164 keV. The $2r^{95}$ results have a relatively large statistical error because of the small size of the photopeak above the high background (see Fig. 31). The Rh¹⁰⁶ and Pr¹⁴⁴ (γ -697 keV) and (γ -2186 keV) axial distributions are given in Fig. 42.

Gamma-ray spectra were not obtained between +10 in. to +11 1/2 in. below the midplane of 2M22. Consequently, no observations were made in the region where the flux peaking would have caused an increase in the fission product activity.

Results of a transverse scan at the axial midplane of 2M22 are presented in Fig. 43. Cesium-137 shows a pronounced dip

-76-

FIGURE 40 AXIAL DISTRIBUTION OF Cs¹³⁷ AND Cs¹³⁴ (γ -604 keV) ACTIVITIES FOR FUEL ELEMENT 2M22 AFTER I¹/₂ YEARS COOLING TIME -77-

FIGURE 41 AXIAL DISTRIBUTION OF Zr^{95} , Nb⁹⁵ AND Pr^{144} γ -RAY ACTIVITIES FOR FUEL ELEMENT 2M22 AFTER $1\frac{1}{2}$ YEARS COOLING -78-

)

FIGURE 42 AXIAL DISTRIBUTIONS OF Pr^{144} AND Rh^{106} γ -RAY ACTIVITIES FOR FUEL ELEMENT 2M22 AFTER I¹/₂ YEARS COOLING -79-

FIGURE 43 TRANSVERSE DISTRIBUTION OF γ -RAY ACTIVITIES AT AXIAL MIDPLANE OF FUEL ELEMENT 2M22 AFTER I 1/2 YEARS COOLING -80-

in the center as one would expect for the flux distribution. Likewise, so does Cs¹³⁴. The other distributions can be considered constant across the element within experimental error.

(c) Fuel Element 2-4

In element 2-4, after a cooling time of three years, only Cs^{137} and Cs^{134} gamma-rays were statistically significant. Their axial distributions are given in Fig. 44. No transverse scans were made.

(d) Fuel Element 2Ml

Gamma-ray spectra were obtained for element 2Ml which had a cooling time of 3 1/2 years. The results are shown in Fig. 45. The results of a transverse scan at the axial midplane are shown in Fig. 46 for Cs^{137} , Rh^{106} , Cs^{134} (γ -604 keV) and Pr^{144} (γ -697 keV).

(e) Fuel Element 2M31

The gamma-ray spectrum for 2M31, which had a cooling time of 11 days, showed significant peaks only for La¹⁴⁰. The 1596 keV photopeak, having the highest intensity, was used in determining the axial distribution of La¹⁴⁰. This is shown in Fig. 47. There is some tendency for flattening at the axial center, with flux peaking near the bottom reflector and flux depression at the top due to control rods.

4. Correction Factors for Gamma-Ray Intensities

Corrections to gamma-ray peak integrals were made to take into account (a) self-absorption of photons in fuel plates and

-82-

FIGURE 45 AXIAL DISTRIBUTION OF Cs^{137} AND Cs^{134} (γ -604 keV) γ -RAY ACTIVITIES FOR FUEL ELEMENT 2MI AFTER 3¹/₂ YEARS COOLING TIME -83-

FIGURE 46 TRANSVERSE (HORIZONTAL) DISTRIBUTION OF Cs¹³⁴ (γ -604), Rh¹⁰⁶ (γ -624), Cs¹³⁷ AND Pr¹⁴⁴ (γ -697) FOR FUEL ELEMENT 2MI AFTER 3½ YEARS COOLING TIME -84--

water, (b) absorption in absorbers placed across the gamma-ray beam to reduce low energy counts, (c) absorption in the stainless steel bottom of the detector dewar and (d) variation of detector efficiency with photon energy. Since photon interaction crosssections decrease with energy in the 500 to 800 keV range, a larger fraction of the higher energy photons, emitted within the fuel, reached the detector than lower energy photons. However, since the detector efficiency also decreases with photon energy, a larger fraction of the lower energy photons striking the detector resulted in a gamma-ray peak compared with higher energy photons. Thus, the overall correction factor remained relatively constant over this energy range.

The self-absorption in the fuel plates and inter-plate water was approximated by assuming that, on the average, each photon that entered the beam hole had traversed about half of the distance across the element. This was assumed to include seven fuel plates, each consisting of 0.040 in. thickness of aluminum cladding and 0.020 in. thickness of U^{235} -Al alloy, plus one dummy plate of aluminum, 0.060 in. thick, plus eight layers of water, each 0.117 in. thick. The bottom of the detector dewar was stainless steel, 0.370 in. thick. Table 4 gives the attenuation coefficients used for each of three energies for lead, water and steel. Included is the fraction of photons <u>not</u> attenuated by each of the above items, the detector efficiency and the overall correction factor. Figure 48 shows a graph of the correction factor as a function of energy.

TABLE 4

ATTENUATION AND DETECTOR EFFICIENCY CORRECTIONS

AND TOTAL CORRECTION FACTOR FOR PHOTONS BETWEEN 600 and 800 keV

		Energy, keV		
	600	662	800	
Attenuation Coefficient, μ , cm	-1			
Aluminum ^(a)	0.211	0.202	0.184	
Water ^(a)	0.090	0.087	0.080	
Lead ^(a)	1.361	1.135	0.931	
Iron ^(b)	0.597	0.572	0.521	
$e^{-\mu x}$ for x=0.135 in. Pb	0.628	0.678	0.727	
$e^{-\mu x}$ for fuel plates	0.774	0.782	0.799	
$e^{-\mu x}$ for water in element	0.800	0 .8 06	0.820	
e ^{-µx} for stainless steel base plate	0.571	0.584	0.613	
Total absorption correction	0.222	0.250	0.292	
Efficiency of detector	0.0102	0.00872	0.00720	
Total correction factor	0.00226	0.00218	0.00210	

References

- (a) R.D. Evans, "The Atomic Nucleus", Ch.25, p.711, McGraw-Hill Book Company, Inc. (1955).
- (b) C.M. Davisson and R.D. Evans, "Gamma-Ray Absorption Coefficients", Revs. Modern Phys. <u>24</u>, 79 (1952).

1

-88-

5. Corrected Ratios of Fission Product Activities

Ratios of fission product activities were calculated for use in subsequent analyses. Each of the gamma-ray peak integrals were corrected for fuel self-absorption, etc. using the corresponding correction factor from Fig. 48. Corrections were also applied, where necessary, for gamma-ray intensities, β -to- γ ratios and internal conversion coefficients. The fission product activities were then corrected for decay since the last irradiation, so that comparisons between theory and experiment were made at the time the fuel was removed from the neutron flux. The various nuclear constants used in these corrections are presented in Table 5.

The fission product activity ratios calculated were

$$R_{1} = \frac{A(Cs^{137})}{A(Cs^{134})}$$
(C.1)

$$R_2 = \frac{A(Cs^{137})}{A(2r^{95})}$$
 (C.2)

$$R_{3} = \frac{A(Cs^{137})}{A(Pr^{144})}$$
(C.3)

where A = corrected activity.

The values of the corrected fission product activity ratios are given in Tables 6 and 7 for 2M19, in Table 8 for 2M22, and in Table 9 for 2M1. No ratios were calculated for elements 2M14, 2M31 or 2-4.

In calculating R_1 , two values of the Cs¹³⁴ activity were available; one obtained from the intensity of the 605 keV

TABLE 5

Fission Product	t1/2	λ,sec. ⁻¹	Branch. Ratio γ/β+γ	Internal Convers. Coeff. $a_T/(1+a_T)$	Energy, keV	No. of γ-rays /disin- tegrtn.
Cs ¹³⁷	30.0 yr.	7.33x10 ⁻¹⁰	(b) 0•92	(c) 0.1066	662	(c) 0.8228
Zr ⁹⁵	65 d. ^(d)	1.234x10 ⁻⁷	(d) 1.0	small	724	(e) 0.417
					758	0.553
Cs ¹³⁴	2.19 (f) 2.19 yr.	9.982×10 ⁻⁹	(g) 1.0	small	605	0.98 ^{g)}
					7 96	(g)
		l			802	0.900
Ce ¹⁴⁴	280 d. ^(d)	2.865×10 ⁻¹⁰				
Pr ¹⁴⁴	17.5 ^(d)	6.60x10 ⁻⁴	(d) 0.02	-	697	(h) 0.016

NUCLEAR CONSTANTS USED FOR CALCULATING CORRECTED FISSION PRODUCT RATIOS

References

- (a) K.F. Flynn, et al, J. Inorg. Nucl. Chem. <u>27</u>, 21-3 (1965).
- (b) R.D. Evans, "The Atomic Nucleus", Ch.6, p.232, McGraw-Hill Book Co., Inc. (1955).
- (c) Calculated from $a_{K}=0.0976$, $a_{K}/a_{L}=5.66$ and $a_{M}=3.85$ from Y. Yoshizawa, Nucl. Phys. 5, 122'(1958). No. of unconverted gamma-rays per gamma-ray decay = 0.8934, therefore no. of gamma-rays per Cs-137 disintegration = (0.92)(0.8934) = 0.8228.
- (d) Nuclear Data Sheets.
- (e) Present work with Ge(Li) detectors, see Section IIID.4.
- (f) W.F. Merritt, et al, Can. J. Phys. <u>35</u>, 16 (1957).
- (g) R.A. Brown and G.T. Swan, Nucl. Phys. <u>68</u>, 325-36 (1965).
- (h) R.L. Graham et. al, Can. J. Phys. <u>36</u>, 1084 (1958).

TABLE 6

CORRECTED RATIOS OF FISSION PRODUCT ACTIVITIES

R1. R2 AND R3

FOR ELEMENT 2M19, RUNS D4 TO D27

Run	Position Below Fuel Midplane, Inches	$R_1 = \frac{A(Cs^{137})}{A(Cs^{134})}$	$R_2 = \frac{A(Cs^{137})}{A(Zr^{95})}$	$R_{3} = \frac{A(Cs^{137})}{A(Pr^{144})}$
D4	-1 &	4.465	0.0712	0.1301
D5	0 🛃	4.753	.0721	.1272
D 6	+ 2 🗜	4.537	.0751	.1263
D7	+4 B	4.707	.0717	.1228
D8	+6 &	5.252	• 0709	.1175
D 9	+8 L	5.263	.0771	.1207
D10	+ 10 b	5.810	•0713	.1016
D11	+ 11 &	7.367	•0750	.1469
D12	- 2 B	4.581	•0750	.1305
D13	-4 &	5.172	•0691	.1145
D14	-6 L	5.704	• 0704	.1218
D15	- 8 Ł	5.985	• 0669	•1149
D1 6	- 10 E	7.299	• 0665	.1136
D17	- 11 E	8.306	.0716	.1516
D19	$-1:\frac{1}{2}"$ OUT	4.943	•0827	.1340
D18	-1 6	4.695	•0757	.1403
D20	- 1:1" OUT	4.642	.0814	.1422
D21	- 1:5" IN	4.686	• 0773	.1453
D22	- 1:1" IN	5.211	.0847	.1836
D23	- 6:1" IN	6.337	• 0804	.1302
D24	- 612" IN	6.114	• 0749	.1454
D25	- 6 b	6.164	.0751	.1132
D26	- 6:2" OUT	6.200	.0766	.1161
D27	- 6:1" OUT	5.366	• 0743	.1114
TABLE 7

CORRECTED RATIOS OF FISSION PRODUCT ACTIVITIES

R1. R2 AND R3

FOR ELEMENT 2M19, RUNS D28 TO D46

Rum	Position Below	$A(Cs^{137})$	A(Cs ¹³⁷)	A(Cs ¹³⁷)
Run	Inches	$^{R_1} - \frac{134}{A(Cs^{134})}$	$^{\text{N}2}$ - A (Zr ⁹⁵)	$^{N_3-}_{A(Pr^{144})}$
D 28	+ 6:1" OUT	6.049	0.0806	0.1371
D29	+ 6: <u>1</u> " OUT	5.446	.0775	.1304
D30	+6 ē.	5.221	.0765	.1710
D31	+ $6:\frac{1}{2}"$ IN	4.938	•0788	.1248
D32	+ 6:1" IN	5.005	•0757	.1320
D33	+11 ¹ /2 &	7.206	•0793	.1512
D34	+ 12 🛃	5.441	.0627	•0674
Element Turned 900		Detector Viewing Edges of Fuel Plates		
D35	-1 Ł	5.013	•0709	
D 36	$\frac{1}{16}$ " out	4.539	•0786	
D37	<u>1</u> " ОUТ	4.529	•0746	
D 38	3 16 " OUT	4.753	•0778	
D39	$\frac{1}{4}$ " OUT	4.009	• 0835	
, D40	5 " OUT	4.406	•0750	
D41	28" OUT	4.392	• 07 49	
D42	$\frac{7}{16}$ " OUT	3.976	•0773	
D43	$\frac{1}{2}$ " OUT	4.544	•0812	
D44	l" OUT	3.911	•0836	
D45	$\frac{1}{2}$ " IN	4.035	.0816	
D46	l" IN	4.046	.0782	

-92-

• • • •

gamma-ray and the other obtained from the 796 keV gamma-ray intensity. The values of R_1 given for 2M19 have been calculated by weighting the results from the 796 keV gamma-ray by two and the 605 keV gamma-ray by one and determining an average

$$R_{1} = \frac{2R_{1}(\gamma - 796) + R_{1}(\gamma - 605)}{3}$$
 (C.4)

This was done because the statistical uncertainties were about twice as great for the intensity of the lower energy Cs^{134} gamma-ray than for the higher energy gamma-ray.

For 2M22, a correction factor was applied to the counts of the 605 keV gamma-ray of Cs¹³⁴ to take into account the presence of the Compton edge of the 796 keV gamma-ray. The ratio of 796 keV gamma-ray counts to the 605 keV gamma-ray counts was calculated for each run for 2M22. Since their intensities were about equal, the ratio should have been near However, because counts from the Compton distribution unity. were included in the 605 keV gamma-ray peak, the ratio was less The average value for Runs H1-H18 was 0.685. than unity. The net counts for the Cs¹³⁴ gamma-ray at 605 keV were then multiplied by 0.685. The corrected value was combined with the counts for the 796 keV gamma-ray and the mean of these was used in calculating R_1 .

For element 2Ml, only the 605 keV gamma-ray of Cs^{134} and the Cs^{137} gamma-ray were recorded.

The axial distributions along element 2M19 for the ratios

TABLE 8

CORRECTED RATIOS OF FISSION PRODUCT ACTIVITIES

R1. R2 AND R3

FOR FUEL ELEMENT 2M22

Run	Position Below Fuel Midplane, Inches	Rl	R ₂	R ₃
Hl	OL	3.727	0.0945	0.1085
H2	-2 b	3.861	0.1231	0.1113
H3	-4 E	4.176	0.0945	0.1197
H4	-6 b	4.497	0.0931	0.1138
н5	- 8 b	5.316	0.0673	0.1171
нб	- 10 E	6.589	0.1129	0.1208
H7	- 11 L	6.416	0.0730	0.1183
н8	+ 2 L	3.878	0.0788	0.1111
Н9	+4 b	4.132	0.1115	0.1234
HIO	+6 b	4.105	0.0822	0.1148
нл	+8 L	4.856	0.1068	0.1280
H12	+ 10 🛃	5.171	0.0943	0.1005
H13	+11 ³ /4ē.	4.963	0.0907	0.1039
H14	<u> </u>	3.840	-	0.1218
H15	0 <mark>늘</mark> " OUT	3.764	0.0817	0.1176
н16	O I" OUT	3.689	0.1112	0.1096
H17		3•735	0.1315	0.1223
H18	Ol"IN	3.772	0.1132	0.1282

TABLE 9

CORRECTED RATIO OF FISSION PRODUCT ACTIVITIES

<u>R</u>1

FOR FUEL ELEMENT 2M1

Run	Position Below Fuel Midplane, Inches	Rl
Gl	-6 L	5•325
G2	- 8 L	8.424
G3	- 10 E	7.206
G4	- 11 E	13.822
G5	-4 E	6.785
GG	- 2 L	5.406
G7	0 L	5.533
G 8	+ 2 Ľ	5.615
G 9	+4 E	6.005
G10	+6 E	6.746
Gll	+ 8 E	6.447
G12	+ 10 č .	7.877
G1 8	0 E	5.845
G19	0 <u>1</u> " out	5•759
G20	0 1" OUT	4.747
G21	$0\frac{1}{2}$ " IN	5.360
G22	0 1" IN	5.979

.

 R_1 and R_2 are shown in Figs. 49 and 50 respectively. It is seen that R_1 varies considerably with position, being lower at the center than elsewhere, whereas R_2 remains relatively constant. The reasons for this unexpected difference will be discussed in the next section, which is devoted to the interpretation of the above results.

D. INTERPRETATION OF RESULTS

1. Introduction

The interpretation and analysis of the above experimental results required theoretical predictions of fission product activities in the MITR spent fuel, utilizing the fission yields, half-lives and genetic relations of the nuclides of The concentration of a fission product in irradiated interest. fuel is a function of a number of parameters; the operating flux level, the irradiation time, the operating pattern and the decay time since removal from the core. A large number of calculations and experimental determinations of fission product activities have been reported in the literature. These have been useful for predicting various properties of fission product mixtures such as heat evolution (B6, W2 and U1), shielding requirements (M8), thermal neutron poisoning (E3, S1, B7, W1) and individual fission product concentrations (B5, F1, However, most of the calculations did not present the H4). results in a form most convenient for the analysis of the present results. Also, recent and more accurate determinations of nuclear constants and fission yields have been reported that were not used in the above calculations. Therefore, it was decided to develop a computer code to calculate values for the solutions describing the fission product concentrations in irradiated MITR fuel.

This section presents the differential equations that describe the rate of accumulation of certain types of fission products and gives the forms of the solution for each.

-97-

FIGURE 49 AXIAL PROFILE OF RATIO OF Cs¹³⁷ TO Cs¹³⁴ ACTIVITIES, AT REMOVAL FROM CORE, FOR FUEL ELEMENT 2M19. (R₁ HAS BEEN CORRECTED FOR ABSORPTION IN FUEL, WATER, DETECTOR EFFICIENCY AND Pb ABSORBERS) -98-

Values of fission product concentrations and activities as a function of irradiation time are predicted for different neutron fluxes. Their use in interpreting the experimental results from fuel element gamma-ray spectra is illustrated with determinations of the spatial distributions of absolute neutron flux, irradiation time and neutron exposure. Comparisons of results obtained by this method are made with independent determinations of these quantities and agreement is shown to be very good. Included are discussions of some of the problems and disadvantages of the analysis with possible remedies and improvements.

2. Predicted Fission Product Concentrations in MITR Fuel

The gamma-ray peaks observed in spectra obtained with the Ge(Li) spectrometer were identified with one of the following fission products: Zr⁹⁵, Nb⁹⁵, Rh¹⁰⁶, Cs¹³⁴, Cs¹³⁷, Ba¹⁴⁰, La^{140} . Ce¹⁴⁴ or Pr¹⁴⁴. These can be divided into three different groups, each having a different mode of production. The first group includes those products that are produced directly in the fission process or are the products of precursors having half-lives much shorter than their own. The second group includes daughters of the first group that are not in secular equilibrium with their parents and have negligible direct fission yield. The third group contains the radioisotopes that have negligible fission yield but are produced by neutron capture reactions on other fission products. More detailed treatment of each of these groups is given in the following sections:

-100-

(a) Group 1 Type Fission Products

The rate of accumulation of Group 1 type of fission products is given by

$$\frac{dN_A}{dt} = N_{25}\sigma_{25}\sigma_A - N_A\lambda_A - N_A\sigma_A^a \phi \qquad (D.1)$$

where
$$N_A$$
 = concentration of nuclide A, atoms/cc
 N_{25} = concentration of U^{235} , atoms/cc
 σ_{25}^{f} = fission cross-section of U^{235} , cm²
 ϕ = absolute neutron flux, n/cm²-sec.
 y_A = fission yield of A, including short-lived
precursors
 λ_A = decay constant of A, sec⁻¹
 σ_A^a = absorption cross-section of A, cm²
t = irradiation time, sec.

The first term on the right-hand side of Eq. (D.1) represents production of A by U^{235} fission, while the second and third terms represent destruction of A by decay and neutron capture, respectively.

For many fission products, the capture cross-section, σ^a is negligibly small and thus, N_A follows Eq. (D.2) -

$$\frac{dN_A}{dt} = N_{25}\sigma_{25}\sigma_{4} - N_A\lambda_A \qquad (D.2)$$

Equation (D.2) applies to the accumulation of Zr^{95} , Ru^{106} , Cs^{137} , Ba^{140} and Ce^{144} . Daughter products such as Rh^{106} ,

La¹⁴⁰ and Pr¹⁴⁴ each have half-lives short enough so that in most cases their activities are the same as that of the parent.

In order to solve Eq. (D.2) and subsequent equations, it is required to know the concentration of U^{235} as a function of time. This has been assumed to follow Eq. (D.3)

$$\frac{dN_{25}}{dt} = -N_{25}\sigma_{25}\sigma_{25}^{a}\phi \qquad (D.3)$$

where σ_{25}^{a} = absorption cross-section of U²³⁵, cm². The solution to (D.3) is given by Eq. (D.4)

$$N_{25} = N_{25}^{0} e^{-\sigma_{25}^{a} \phi t}$$
 (D.4)

where N_{25}^{0} = initial U^{235} concentration at t=0, atoms/cc. Substituting the expression for N_{25} from (D.4) into (D.2) and solving, one obtains the solution for the concentration of A per initial U^{235} atom, assuming $N_{A}=0$ at t=0,

$$\frac{N_{A}(t)}{N_{25}} = \frac{\sigma_{25} \phi y_{A}}{(\lambda_{A} - \sigma_{25} \phi)} \begin{bmatrix} e^{-\sigma_{25} \phi t} & e^{-\lambda_{A} t} \end{bmatrix}$$
(D.5)

However, the MITR operates at constant power for only 55 to $60^{\circ}/_{0}$ of the time and is shut down the remainder. Thus, it was necessary to formulate the solutions to include intermittent operation.

For the period of constant flux operation, the equation

-102-

governing the concentration N_A/N_{25}^{0} , with irratiation time t_a , is given by Eq. (D.6)

$$\frac{N_{A}(t_{a})}{N_{25}^{o}} = \frac{e^{-\sigma_{25}^{a}\sigma_{7}}f_{25}\sigma_{7}}{(\lambda_{A}-\sigma_{25}^{a}\sigma_{5})} \left[e^{-\sigma_{25}^{a}\sigma_{4}} - e^{-\lambda_{A}t_{a}}\right]$$

where

 t_a

+ ---

= irradiation time from the beginning of a particular constant flux period, sec.

(D.6)

 τ = total irradiation time experienced by the U-235 up to beginning of the constant flux period, sec.

$$\frac{N_{A}}{N_{25}^{0}} = \text{concentration of A per initial } U^{235} \text{ atom}$$

at beginning of the constant flux period.

 $\frac{\mathbf{A} \cdot \mathbf{a}'}{N_{25}^{0}} = \text{concentration of } \mathbf{A} \text{ per initial } U^{235} \text{ atom}$ at time t_a , during a constant flux period.

During a shutdown period, the flux is zero and concentration of A per initial U^{235} atom follows (D.7)

$$\frac{\frac{N_{A}(t_{d})}{N_{25}^{\circ}}}{N_{25}^{\circ}} = \frac{\frac{N_{A}}{N_{25}^{\circ}}}{N_{25}^{\circ}} e^{-\lambda_{A}t_{d}}$$
(D.7)
where $\frac{\frac{N_{A}}{N_{25}^{\circ}}}{N_{25}^{\circ}} = concentration of A per initial U^{235} atom at beginning of shutdown period.t_{d} = time since beginning of shutdown period, sec.$

For fuel operated in such an intermittent fashion, the concentration of fission product A per initial U^{235} atom at the end of the Nth cycle, each consisting of a constant flux operating period followed by a zero flux, shutdown period is given by Eq. (D.8)

$$\frac{N_{A}(N^{\text{th}} \text{ cycle})}{N_{25}} = K_{1} \left\{ \sum_{n=1}^{N} \exp\left[-\sigma_{25}^{a} \mathscr{A}(N-n) t_{a} - n\lambda_{A} t_{d} - (n-1)\lambda_{A} t_{a} \right] \right\}$$
(D.8)

where
$$K_1 = \frac{\sigma_{25} \phi y_A}{(\lambda_A - \sigma_{25}^2 \phi)}$$

 t_a = length of accumulation period, sec. t_d = length of shutdown period, sec.

(b) Group 2 Type Fission Products

The concentration of fission products of this type is governed by Eq. (D.9)

$$\frac{dN_B}{dt} = N_A \lambda_A - N_B \lambda_B - N_B \sigma_B^a \phi \qquad (D.9)$$

where A = parent nuclide

B = daughter nuclide.

Of the fission products considered here, only Nb^{95} belongs to this group. Since the absorption cross-section of Nb^{95} is small, the last term in (D.9) is neglected. Thus, for constant flux operation

$$\frac{dN_B}{dt} = N_A \lambda_A - N_B \lambda_B \qquad (D.10)$$

or in terms of initial U^{235} concentration

$$\frac{d}{dt} \left[\frac{N_B}{N_{25}^{\circ}} \right] = \frac{N_A}{N_{25}^{\circ}} \lambda_A - \frac{N_B}{N_{25}^{\circ}} \lambda_B \qquad (D.11)$$

Substituting for N_A/N_{25}^{0} from (D.5) and solving (D.11) for conditions of $N_B/N_{25}^{0}=0$ at t=0, the concentration of B per initial U²³⁵ atom as a function of irradiation time is given by (D.12)

$$\frac{N_{\rm B}}{N_{25}^{\rm o}} = \frac{\lambda_{\rm A} \sigma_{25}^{\rm f} \mathbf{y}_{\rm A} \mathbf{a}}{(\lambda_{\rm A} - \sigma_{25}^{\rm a} \mathbf{a}) (\lambda_{\rm B} - \sigma_{25} \mathbf{a}) (\lambda_{\rm B} - \lambda_{\rm A})} \\ \left[(\lambda_{\rm A} - \sigma_{25} \mathbf{a}) e^{-\lambda_{\rm B} t} + (\lambda_{\rm B} - \lambda_{\rm A}) e^{-\sigma_{25}^{\rm a} \mathbf{a} t} \right] \\ - (\lambda_{\rm B} - \sigma_{25} \mathbf{a}) e^{-\lambda_{\rm A} t} \right]$$
(D.12)

For intermittent operation, Eq. (D.11) also governs the net rate of accumulation of N_B/N_{25}^{0} during the constant flux period, except now N_A/N_{25}^{0} is obtained from (D.6). The number of atoms of B per initial U²³⁵ atom at time t_a after the start of that period follows (D.13)

$$\frac{\frac{N_{B}(t_{a})}{N_{25}^{0}}}{N_{25}^{0}} = \frac{\frac{K_{2}\lambda_{A}}{\lambda_{B} - \sigma_{25}^{0}\beta}}{(\lambda_{B} - \sigma_{25}^{0}\beta)} \left(e^{-\sigma_{25}^{a}\beta t_{a}} - e^{-\lambda_{B}t_{a}}\right)$$

$$+ \frac{\lambda_{A}\left[\frac{N_{A}^{t_{a}=0}}{N_{25}^{0}} - K_{2}\right]}{(\lambda_{B} - \lambda_{A})}\left[e^{-\lambda_{A}t_{a}} - e^{-\lambda_{B}t_{a}}\right]$$

$$= \frac{t_{a}^{a=0}}{(\lambda_{B} - \lambda_{A})}$$

$$+ \frac{N_{B}}{N_{25}} e^{-\lambda_{B}t_{a}}$$
(D.13)

where $K_2 = \frac{\sigma_{25}^{f} \phi y_A e^{-\sigma_{25}^{a} \phi \tau}}{(\lambda_A - \sigma_{25}^{a} \phi)}$ (D.14)

and $\frac{N_B^{t_a=0}}{N_{25}^{o}}$ = concentration of B per initial U²³⁵ atom at beginning of the operating period.

The net rate of accumulation of N_B/N_{25}^{0} during periods of shutdown with $\neq=0$ also follows Eq. (D.11), except that the parent concentration, $N_A(t_a)/N_{25}^{0}$, is governed by Eq. (D.7). Substituting this expression into (D.11) and solving, one obtains, for the concentration of B per initial U^{235} atom during the shutdown period, Eq. (D.15)

$$\frac{N_{B}(t_{d})}{N_{25}^{\circ}} = \frac{\lambda_{B}N_{A}^{\circ}/N_{25}^{\circ}}{(\lambda_{B} - \lambda_{A})} \left[e^{-\lambda_{A}t_{d}} - e^{-\lambda_{B}t_{d}} \right] + \frac{N_{B}^{t_{d}=0}}{N_{25}^{\circ}} e^{-\lambda_{B}t_{d}}$$
(D.15)

-106-

where
$$\frac{N_{B}}{N_{25}^{0}}$$
 = concentration of B per initial U²³⁵ atom
N₂₅ at the beginning of the shutdown period.

(c) Group 3 Type Fission Products

The third type of fission product includes those produced by (n,γ) reactions. Of the fission products identified in the experiments, only Cs^{134} is such a radionuclide. Having a small direct fission yield, it is formed only by the (n,γ) reaction on Cs^{133} which is a stable end-product of the mass 133 fission product chain. The net rate of accumulation of atoms of the third type, per initial U^{235} atom, N_D/N_{25}^{0} , follows Eq. (D.16)

$$\frac{\mathrm{d}}{\mathrm{dt}} \left[\frac{\mathrm{N}_{\mathrm{D}}}{\mathrm{N}_{25}^{\mathrm{o}}} \right] = \frac{\mathrm{N}_{\mathrm{C}}}{\mathrm{N}_{25}^{\mathrm{o}}} \sigma_{\mathrm{C}}^{\mathrm{a}} - \frac{\mathrm{N}_{\mathrm{D}}}{\mathrm{N}_{25}^{\mathrm{o}}} \lambda_{\mathrm{D}} - \frac{\mathrm{N}_{\mathrm{D}}}{\mathrm{N}_{25}^{\mathrm{o}}} \sigma_{\mathrm{D}}^{\mathrm{a}} \right]$$
(D.16)

where
$$\frac{N_{C}}{N_{25}^{o}}$$
 = concentration of stable parent nuclide C
per initial U-235 atom.
 σ_{C}^{a} = absorption cross-section of C, cm²
 σ_{D}^{a} = absorption cross-section of D, cm²

The first term in Eq. (D.13) represents the rate of production of D by the (n,γ) reaction on nuclide C, while the second term represents loss by decay and the third, destruction by neutron absorption. Meanwhile, the concentration of C, with irradiation time at constant flux, is given by

$$\frac{N_{C}}{N_{25}^{0}} = \frac{\sigma_{25}^{f}y_{C}}{(\sigma_{C}^{a} - \sigma_{25}^{a})} \begin{bmatrix} -\sigma_{25}^{a}\phi t & -\sigma_{C}^{a}\phi t \\ e & -\sigma_{25}^{a}\phi t \end{bmatrix}$$
(D.17)

Substituting the expression for N_C from (D.17) into (D.16) and solving for conditions of constant flux and no initial concentration of D atoms, one obtains

$$\frac{N_{D}}{N_{25}^{\circ}} = K_{3} \left[e^{-\sigma_{25}^{a} \not e^{t}} - e^{-(\lambda_{D} + \sigma_{D}^{a})t} \right]$$
$$- K_{4} \left[e^{-\sigma_{C}^{a} \not e^{t}} - e^{-(\lambda_{D} + \sigma_{D}^{a})t} \right] \qquad (D.18)$$

where
$$K_3 = \frac{\sigma_2 \tilde{J}^y c \sigma_c^a \phi}{(\sigma_c^a - \sigma_{25}^a) (\lambda_D + \sigma_D^a \phi - \sigma_{25}^a \phi)}$$
 (D.19)

and $K_{4} = \frac{\sigma_{25}^{f} y_{C} \sigma_{C}^{a} \phi}{(\sigma_{C}^{a} - \sigma_{25}^{a}) (\lambda_{D} + \sigma_{D}^{a} \phi - \sigma_{C}^{a} \phi)}$ (D.20)

Similarly, for intermittent operation, the concentration N_D / N_{25}^{0} follows Eq. (D.21) during the operating period

$$\frac{N_{D}(t_{a})}{N_{25}} = K_{3}^{\dagger} \begin{bmatrix} e^{-\sigma_{25}^{a} \phi t_{a}} & e^{-(\lambda_{D} + \sigma_{D}^{a} \phi) t_{a}} \end{bmatrix}$$
$$- K_{4}^{\dagger} \begin{bmatrix} e^{-\sigma_{C}^{a} \phi t_{a}} & e^{-(\lambda_{d} + \sigma_{D}^{a} \phi) t_{a}} \end{bmatrix}$$
$$+ \frac{N_{C}^{t_{a} = 0} \sigma_{C}^{a} \phi}{N_{25}^{0} (\lambda_{D} + \sigma_{D}^{a} \phi)} \begin{bmatrix} 1 - e^{-(\lambda_{D} + \sigma_{D}^{a} \phi) t_{a}} \end{bmatrix}$$

+
$$\frac{N_{D}}{N_{25}^{\circ}} e^{-(\lambda_{D} + \sigma_{D}^{a} \sigma) t_{a}}$$
 (D.21)

where
$$K_{3}^{\dagger} = K_{3} e^{-\sigma_{25}^{a} \phi \tau}$$
 (D.22)
and $K_{4}^{\dagger} = K_{4} e^{-\sigma_{25}^{a} \phi \tau}$ (D.23)

During the shutdown period, D is given by

$$\frac{N_{D}}{N_{25}}(t_{d}) = \frac{N_{D}}{N_{25}} e^{-\lambda_{D}t_{d}}$$
(D.24)

The above solutions were programmed for two computer codes. One, called NUCON, was used to obtain nuclide concentrations for constant flux operation with no shutdown periods and for Eq. (D.8)Group 1 intermittent operation. The other, called NOTSFI, was used to obtain values for solutions for intermittent operation, with alternating periods of operation and shutdown. The FORTRAN listings of these codes are given in Appendix G along with descriptions of the required input data.

The fission yields and other nuclear constants used in the codes for calculating fission product concentrations are presented in Table 10. The absorption cross-sections used were Westcott "average" cross-section, $\overline{\sigma}^{a}$ (W6) where

$$\overline{\sigma}^{a} = \sqrt{\frac{\pi T_{o}}{4T_{n}}} \hat{\sigma}^{a} = \sqrt{\frac{\pi T_{o}}{4T_{n}}} \sigma_{2200}^{a} (g+rs) \qquad (D.25)$$

-109-

TABLE 10

VALUES OF NUCLEAR DATA USED IN CALCULATING PREDICTED FISSION PRODUCT ACTIVITIES

Nuclide	^t 1/2 (a)	λ,sec ^{-l} (a)	U-235 Thermal Fission Yield 0/0	Cross- Section, barns
Zr ⁹⁵	65 d.	1.234×10^{-7}	6.27 ^(b)	0
_{Nb} 95	35 d.	2.292 x 10 ⁻⁷	0	0 ^(c)
Ru ¹⁰⁶	1.01 yr.	2.175 x 10 ⁻⁸	0.38 ^(b)	0
Rh ¹⁰⁶	30 s.	-	0	0
Cs ¹³³	Stable	0	6.75 ^(d)	30.3 ^(e)
Cs ¹³⁴	2.19 yr.	9.982 x 10 ⁻⁹	0	103.89 ^(e)
Cs ¹³⁷	30.0 yr.	7.33×10^{-10}	6.00 ^(f)	0
Ba ¹⁴⁰	12.8 d.	6.268 x 10 ⁻⁷	6.44 ^(b)	0
La^{140}	40.2 h.	4.79 x 10 ⁻⁶	ο	0
Ce ¹⁴⁴	280 d.	2.865 x 10 ⁻⁸	5.62 ^(b)	0 ^(g)
Pr ¹⁴⁴	17.5 m.	6.60×10^{-4}	0	0
u ²³⁵	-	-	-	$\sigma_{25}^{f=427.45}$ (h)
				σ ₂₅ =511.90

IN MITR FUEL ELEMENTS

References

- (a) See Table 5.
- (b) S. Katcoff, Nucleonics <u>18</u> (11), 201-8 (1960).
- (c) ORNL-3488, Nuclear Chemistry upper limit of ~ 7 barns.
- (d) R.P. Larson, ANL-6900, p.335-340 (1964).
- (e) See Appendix H.
- (f) R.G. Hart, et al, Nuclear Sci. Eng. <u>18</u>, 6-17 (1964).
- (g) P.M. Lantz, Nuclear Sci. Eng. <u>13</u>, 289 (1962)
- (h) Ref. M3.

where $T_0 = 293.6^{\circ} K$

 $T_n = neutron temperature = 383.6^{\circ}K$ for MITR (M3)

Thus,

$$\sqrt{\frac{\pi T_0}{4T_n}} = 0.7753$$
 (D.26)

The use of "average" cross-sections required the use of the average neutron flux \vec{p} to obtain correct reaction rates. The values of U²³⁵ absorption and fission cross-sections are the same as those used by Mayman in his two-group depletion code (M3), so that valid comparisons in burnup predictions could be made. Similarly, the value of Westcott's "r" factor used was 0.0715 calculated by Mayman from experimental data for the MITR fuel supplied by Mathews (M4). Calculation of the Cs¹³³ absorption cross-section is presented in detail in Appendix H. Also included in Appendix H are graphs giving fission product activities per initial U²³⁵ atom for constant flux operation as a function of irradiation time for $2r^{95}$, Nb⁹⁵, Ru¹⁰⁶+Rh¹⁰⁶, Cs¹³⁴, Cs¹³⁷, Ba¹⁴⁰+La¹⁴⁰, and Ce¹⁴⁴+Pr¹⁴⁴.

Curves are presented here for the activities per initial U^{235} atom vs. total in-pile residence time for various fluxes for MITR fuel. The intermittent operating conditions assumed for the calculations were 95 hours at constant flux, followed by a shutdown period of 73 hours. The solutions to Eq. (D.6) and Eq. (D.7) for these conditions are shown in Fig. 51 for $2r^{95}$, in Fig. 54 for Cs^{137} , in Fig. 55 for Ba^{140} and in Fig. 56 for Ce^{144} . Similarly, Fig. 52 gives values for Eqs. (D.13)

-111-

FIGURE 51 Zr⁹⁵ ACTIVITY IN MITR FUEL FOR INTERMITTENT OPERATION (95 HRS ON, 73 HRS OFF) AS A FUNCTION OF IN-PILE RESIDENCE TIME FOR VARIOUS FLUXES

(95 HRS ON: 73 HRS OFF)

FIGURE 53 Cs¹³⁴ ACTIVITY PER INITIAL U²³⁵ ATOM vs TOTAL RESIDENCE TIME FOR INTERMITTENT OPERATION (95 HRS ON : 73 HRS OFF) -114-

 Cs^{137} ACTIVITY PER INITIAL U²³⁵ ATOM vs FIGURE 54 TOTAL RESIDENCE TIME FOR INTERMITTENT OPERATION (95 HRS ON: 73 HRS OFF)

FIGURE 55 Ba¹⁴⁰ ACTIVITY PER INITIAL U²³⁵ ATOM IN MITR FUEL FOR INTERMITTENT OPERATION (103/65) AS A FUNCTION OF IN-PILE RESIDENCE TIME FOR VARIOUS NEUTRON FLUXES

FIGURE 56 Ce¹⁴⁴ ACTIVITY PER INITIAL U²³⁵ ATOM IN MITR FUEL FOR INTERMITTENT OPERATION (95 HRS ON : 73 HRS OFF) vs. TOTAL IN-PILE RESIDENCE TIME FOR VARIOUS FLUXES

FIGURE 57 NUMBER OF U²³⁵ ATOMS REMAINING PER INITIAL U²³⁵ ATOM, N₂₅/N₂₅ AS A FUNCTION OF NEUTRON EXPOSURE, CALCULATED FOR MITR FUEL

-118-

and (D.15) for Nb⁹⁵, while Fig. 53 gives values for Cs^{134} using Eqs. (D.21) and (D.24). Those curves not showing the full cycle have been plotted for times corresponding to the end of each shutdown period.

The variation of the number of atoms of U^{235} per initial U^{235} atom from Eq. (D.4), as a function of neutron exposure $\delta \tau$, where τ is the total irradiation time, is shown in Fig. 57. The effect of U^{235} burnup is to cause a maximum in the value of all the fission product activities except Cs^{137} .

Activity ratios as a function of neutron exposure, σr , were calculated and are shown in Fig. 58 for

$$R_{1} = \frac{A(Cs-137)}{A(Cs-134)} = \frac{(N\lambda)Cs-137}{(N\lambda)Cs-134}$$

in Fig. 59 for
$$R_2 = \frac{A(CB-137)}{A(2r-95)} = \frac{(N\lambda)CB-137}{(N\lambda)Zr-95}$$

and in Fig. 60 for
$$R_3 = \frac{A(Cs-137)}{A(Pr-144)} = \frac{(N\lambda)Cs-137}{(N\lambda)Pr-144}$$

The dotted lines in the Figures correspond to the corrected experimental values of these ratios obtained in Run D4 for element 2M19.

The important fact to be noted is the marked difference in behavior with exposure and flux between R_1 and the others. The ratio R_1 decreases with exposure and is relatively unaffected by the flux level except at high exposures, whereas R_2 and R_3 increase with exposure and depend strongly on the

FIGURE 58 RATIO OF Cs137 TO Cs134 ACTIVITIES vs. NEUTRON EXPOSURE FOR MITR FUEL AT VARIOUS FLUXES FOR INTERMITTENT OPERATION, 95 HRS ON, 73 HRS OFF

- 120-

FIGURE 59 RATIO OF Cs¹³⁷ TO Zr⁹⁵ ACTIVITY AS A FUNCTION OF NEUTRON EXPOSURE FOR VARIOUS FLUXES. MITR INTERMITTENT. OPERATION 95 HRS ON, 73 HRS OFF.

FIGURE 60 RATIO OF Cs¹³⁷ TO Pr¹⁴⁴ ACTIVITIES, R₃ AS A FUNCTION OF NEUTRON EXPOSURE FOR INTERMITTENT OPERATION (95 HRS ON: 73 HRS OFF)

-122-

flux level. It is this difference which makes the subsequent analyses possible.

3. <u>Determination of Irradiation History of Fuel Element from</u> <u>Experimental Results</u>

(a) Determination of Absolute Flux and Irradiation Time

The method developed for determining the absolute neutron flux and irradiation time experienced by a fuel element will be illustrated with results from Run D4 for element 2M19. The values of corrected measured activity ratios R_1 and R_2 , as given in Table 6, are shown drawn as dotted lines in Figs. 58 and 59 respectively, where $R_1 = 4.465$ and $R_2 = 0.0712$. The intersections of the experimental dotted lines with the theoretical lines for the various fluxes gives two sets of values of neutron flux and exposure. These two sets are now plotted as flux vs. exposure, as shown in Fig. 61. The intersection of the two curves gives a unique solution for the absolute neutron flux, ϕ , and the total exposure, $\phi\tau$. Hence, the irradiation time consistent with these values follows directly.

For the example given, this method obtains

 $\beta = 2.71 \times 10^{13} \text{ n/cm}^2\text{-sec}$ and $\omega = 1.20 \text{ neutrons/kilobarn.}$ Thus $\tau = 0.443 \times 10^8 \text{ seconds.}$

To improve the accuracy and reproducibility of the method, an enlarged version of Fig. 58 was used while an equivalent plot of R_1 vs. flux for various irradiation times was used instead of Fig. 59.

-123-

The same procedure was then applied to the other values of R_1 and R_2 at different positions along the element. The axial distribution of the absolute average neutron flux" within 2M19 is shown in Fig. 62. Included for comparison are values calculated from results obtained by Mathews (M4) using cobalt wire monitors for a 162-gram element in position 18. These particular results were used because the core positions for 2M19 and Mathews' data were equivalent and in both cases. the initial U^{235} weight in the element was 162 In addition, sufficient axial data points were regrams. ported so that detailed comparisons of axial flux distributions could be made. The cobalt results were obtained when the core was loaded with 105-gram elements in positions 1 through 7, 8, 11, 14 and 17 and with 162-gram elements in positions 9, 10, 12, 13, 15, 16, 18 and 19. The shim-safety rods were at 22.92 inches, the regulating rod was at 20.88 inches and the D₂O temperature was 22.8°C. Relative cobalt wire activity results were taken from Table 4.18.16, p.163 for position 18.M (M4).

Some flux transverses were obtained by Mathews for a

"The cross-sections used in the solutions for fission product activities were "average" values. Thus, in order to obtain corrected reaction rates, an "average" neutron flux must be used. Therefore, the values obtained here represent the average neutron flux defined by

$$\vec{p} = n \vec{\nabla} = n \nabla_0 \sqrt{\frac{4\pi}{\pi T_0}}$$

where $V_0 = 2200 \text{ m/sec.}$ and n = no. of neutrons/cc.

-125-

į

-126-

core poisoned to simulate the effect of fission products. Comparisons of the fluxes would probably be more valid if these results could have been used. However, insufficient data points were available and the core positions were not equivalent to 2M19.

Since the present method obtains a flux value that is an average across the element, the cobalt wire results were corrected for the effect of flux depression within the element. The relative cobalt activity, spatially averaged across 16 fuel plates, was calculated to be 0.70, while the central value at point 18.M was 0.64. Thus the correction factor applied was 0.70/0.64 = 1.095. The maximum relative activity used was 1.558 (M4, p.194) while the maximum value of the absolute average flux used was $2.74 \times 10^{13} \text{ n/cm}^2$ -sec (from M4, p.196, 2.4 x $\sqrt{T/T_0}$ x 10¹³ n/cm²-sec for T = 383.6°K). Therefore, at 1.95 MW the maximum average flux in the core (i.e. in the moderator near the center of the core) from Mathews' results was 5.35 x 10¹³ n/cm²-sec. The corrected flux in the element was then obtained by dividing 5.35 x 10^{13} by 1.558 and multiplying by the corrected relative cobalt activity. For example, at the central midplane,

relative Co activity = 0.64
corrected rel. Co activity = (0.64)(1.095)
= 0.70
... corrected average flux
at position 17 =
$$\frac{(5.35 \times 10^{13})}{1.558} \times 0.70$$

= 2.41 x 10¹³ n/cm²-sec.

-127-
The error assigned in the present calculations is $\pm 10\%$, while the cobalt wire results were quoted to $\pm 5\%$.

As can be seen in Fig. 62, the agreement between the two measurements is within the assigned error. The flux depression at the top of the element due to the presence of the shim control rods is evident in results obtained by the present method but not in the cobalt results.

The axial distribution of neutron exposure in neutrons/ kilobarn for 2M19, as calculated by the above method, is shown in Fig. 63. The results are summarized in Table 11. The average value of exposure obtained by graphical integration was 1.08 n/kb., while the average value obtained for the irradiation time, $\overline{\tau}$ was (0.464 \pm 0.008) x 10⁸ seconds. The actual irradiation time as determined from operating records was (0.448 \pm 0.013) x 10⁸ seconds. The two values differ by 3.6%.

Using the average exposure for the element of 1.08 n/kb., the fraction of U^{235} remaining in 2M19 from Fig. 58 was $N_{25}/N_{25}^{0} = 0.57 \pm 0.06$. The value predicted for this element by MITBURN, a two-group depletion code (M3) was 0.656. The discrepancy between the two values is about 14%. A number of explanations are possible for this discrepancy. It has been found that in comparing the power production from a single element as obtained by experimentally measured thermodynamic balances, to that predicted by the MITBURN for the same element and conditions, the code underestimates the total power produced in the element by as much as 17% in some cases (B13).

-128-

TABLE 11

SUMMARY OF RESULTS OF ANALYSIS

OF FUEL ELEMENT 2M19

FOR FLUX, EXPOSURE AND IRRADIATION TIME

Run	Position Below Fuel Midplane, Inches	Neutron Flux d, 10 ¹³ n/cm ² , sec.	Neutron Exposure ø, n/kb	Irradiation Time T, 10 ⁸ seconds
D4	- 1	2.71	1.20	0.443
D5	0	2.61	1.17	0.446
D6	+ 2	2. 62	1.21	0.461
D7	+ 4	2.61	1.26	0.484
D 8	+ 6	2.42	1.08	0.448
D9	+ 8	2.31	1.19	0.513
DIO	+ 10	2.23	1.17	0.525
וומ	+ 11	1.72	0.84	0.488
D 12	- 2	2.61	1.20	0.461
D13	- 4	2.50	1.09	0.436
D14	- 6	2.30	1.03	0.448
D1 5	- 8	2.29	0.984	0.430
D1 6	- 10	1.93	0.848	0.439
D17	- 11	1.54	0.738	0.479

Average exposure, $\overline{\omega} = 1.08 \text{ n/kb}$.

Mean Irradiation Time, $\overline{\tau} = (0.464\pm0.008)\times10^8$ seconds Actual Irradiation Time = $(0.448\pm0.013)\times10^8$ seconds

1

ĩ

FIGURE 63 AXIAL DISTRIBUTION OF NEUTRON EXPOSURE IN NEUTRONS/KILOBARN FOR FUEL ELEMENT 2MI9 —130—

Thus, in order for the code to obtain the same amount of power from the element, a corresponding larger amount of U^{235} must be burned. Allowing for this correction, the burnup of U^{235} predicted by the code is in reasonable agreement with that obtained by the present method.

Similar calculations for element 2M22 were carried out, and the results are summarized in Table 12. The irradiation time was calculated to be $(0.572 \pm 0.028) \times 10^8$ seconds, compared to the actual exposure time of 0.482×10^8 seconds; an error of less than 19%. The average exposure obtained was 1.23 n/kb., with $N_{25}/N_{25}^{0} = 0.525$. Mayman's code predicted 0.596 for N_{25}/N_{25}^{0} . The absolute thermal flux distribution along the element is given in Fig. 64, including values from Mathews' results^{*}. The uncertainty in the flux values is about 25% because of the large statistical

^M Since element 2M22 was located in position 7 during its final year of operation, Mathews' results for position 7 were used: Table 4.18.4, p.161, line 7.M. However, these results were obtained for a 105-gram element whereas 2M22 is a 162-gram element. Therefore, since flux depression would be greater in 2M22, and the absolute flux lower, Mathews' results were reduced by the ratio of the thermal disadvantage factors for 105- and 162-gram elements. (Table 5.2.6, p.184, copper results for position 1.)

$$\begin{bmatrix} \vec{\sigma}_{m} / \vec{\sigma}_{F} \\ \hline \vec{\delta}_{m} / \vec{\sigma}_{F} \end{bmatrix}_{162 \text{ gm}} = \frac{1.374}{1.51} = 0.911$$

Other calculations were as for 2M19.

-131-

TABLE 12

SUMMARY OF RESULTS OF ANALYSIS

OF FUEL ELEMENT 2M22

FOR FLUX, EXPOSURE AND IRRADIATION TIME

Run	Position Below Fuel Midplane, Inches	Neutron Flux, 0, 10 ¹³ n/cm ² -sec.	Neutron Exposure, œ, n/kb	Irradiation Time, 10 ⁸ seconds
ні	0	2.65	1.41	0.532
H2	- 2	2.13	1.55	0.728
H3	- 4	2•45	1.39	0.567
H4	- б	2.37	1.33	0.561
H5	- 8	2.48	1.05	0.423
Н6	- 10	1.49	1.10	0.738
H7	- 11	2.00	0.96	0.480
H8	+ 2	2.81	1.36	0.484
H9	+ 4	2.21	1.50	0.679
HIO	+ 6	2.62	1.34	0.511
HII	+ 8	2.01	1.13	0.562
H12	+ 10	1.90	1.14	0.600

Average Exposure, $\overline{\omega} = 1.23 \text{ n/kb}$

Mean Irradiation Time, $\overline{\tau} = (0.572\pm0.028)\times10^8$ seconds Actual Irradiation Time = $(0.484\pm0.014)\times10^8$ seconds

FIGURE 64 AXIAL DISTRIBUTION OF THERMAL NEUTRON FLUX IN FUEL ELEMENT 2M22 -133-

deviations in the intensity of the Zr⁹⁵ gamma-ray at 724 It is felt that the poor agreement for irradiation keV. time is in part due to this large uncertainty in Zr⁹⁵ activity. Also, and possibly as important, is the fact that 2M22 did not reside in the same location in the core during its in-pile residence time. It was charged into position 11 where it remained for one year, then was moved to position 7 were it remained for about 1 2/3 years when it was discharged. In addition, during its first four months of in-pile residence, the reactor was operating at 1 MW, after which it began oper-In view of these considerations, the agreeation at 2 MW. ment is as good as could be expected.

Following the same procedures as above, using R₁ and R_3 instead of R_1 and R_2 , approximately the same results for flux, exposure and irradiation time should have been obtained for these elements. However, using the corrected ratios of R_x and R_y , lower values for fluxes and high values for exposure, and thus higher values for the irradiation time were This discrepancy is probably due to errors in the obtained. calculation of the intensity of the Pr¹⁴⁴ gamma-ray at 697 It was noted in Section II that there appeared to be keV. some other gamma-ray present just below 697 keV whose presence would result in a background subtraction larger than necessary. Thus, a low value of Pr¹⁴⁴ activity would be calculated, resulting in a high value for R_3 . This in turn results in solutions for the flux being too low, the exposure being too high, and the irradiation time being too large, as was in fact

-134-

found. To calculate the Pr^{144} activity in the fuel using the 1164 double escape peak or the 2186 keV photopeak, it would be necessary to determine the detector efficiency for these gamma-rays with calibrated sources having gamma-rays near these energies. These were not available ; therefore, no further calculations were made using R_3 .

From Fig. 58 it is seen that, given an approximate value of operating flux, reasonably accurate values of neutron exposure can be determined with R₁ alone. Neutron exposure and U^{235} burnup estimates were attempted for elements 2Ml and 2-4 using ratios of R_1 alone, since there was no appreciable Zr⁹⁵ activity left in either after over three years cooling time. Unfortunately, the values of the corrected ratio, R,, for 2Ml as given in Table 10, fluctuated considerably even between adjacent points, and gave high values for exposure. This is attributed to the uncertainty in calculating the total counts under the Cs¹³⁴ 605 keV peak which is located on the Compton edge of the 796 keV gamma-ray. In addition, it was pointed out in the spectrum for 2-4, Fig. 33, that a gamma-ray of about 597 keV appeared to be present. This other activity would be included in the calculation for Cs¹³⁴ activity, causing an overestimate in the Cs¹³⁴ content and thus in the neutron exposure. The use of the 796 keV gamma-ray would probably have avoided this difficulty. However, it was not recorded in the spectra for all runs.

-135-

(b) Determination of Cooling Time

In the above cases, the cooling time since removal from the core was obtained from records. However, it should be possible to determine this quite accurately from a comparison of a measured gamma-ray spectrum of unknown cooling time with a series of spectra taken after different cooling periods such as shown in Fig. 30.

For fuel which has been operated at constant power for an irradiation time of about one year or more, the $2r^{95}$ and Nb⁹⁵ will essentially be in equilibrium (see Fig. H.1). Upon removal from the core, the ratio of the area under the combined $2r^{95}$ +Nb⁹⁵ to the area under the isolated $2r^{95}$ peak will vary with cooling time as shown in Fig. 65. For intermittent operation, the value of this ratio at the time of removal from the core depends upon the ratio of operating time to shutdown time during in-pile residence. The values for (103 hours on)/(65 hours off) and for (95 hours on)/(73 hours off) are shown on the ordinate. For all cases though, this ratio approaches the equilibrium value of 0.153 and it would not be useful for cooling times greater than three or four months. The experimental ratio determined from 24 different spectra for 2M19 gave an average value of 0.140, or about 8.5% lower than the calculated value using the half-lives and gamma-ray intensities of Zr^{95} and Nb⁹⁵. This is in reasonable agreement since uncertainties in gamma-ray peak integrals could give errors of 5-10%, while

-136-

FIGURE 65 RATIO OF Zr⁹⁵ ACTIVITY FOR 724 keV γ -RAY TO ACTIVITY OF Zr⁹⁵ 758 keV γ -RAY PLUS Nb⁹⁵ 766 keV γ -RAY AS A FUNCTION OF DECAY TIME AFTER REMOVAL FROM CORE OPERATED AT CONSTANT FLUX.

uncertainties in decay constants and gamma-ray intensities could also be as much as $5^{\circ}/6$ in error.

(c) <u>Determinations of Flux and Burnup Distributions Within</u> <u>a Fuel Element</u>

The results of the analysis of the transverse scan of 2M19, in which the edges of the fuel plates were scanned, are summarized in Table 13. The values for the neutron flux vary between 2.78 and 2.41 $\times 10^{13}$. Calculation of the fluxes from results of Table 4.10.12 of Ref. (M4) for the central plate yielded values of 2.19 $\times 10^{13}$ at the center and 3.02 $\times 10^{13}$ at the edge. Because of the integrating effect of the fairly large aperature diameter (1/8 in.) the difference in the fluxes obtained by the present method is not as great as that obtained from the cobalt wire results which are more localized. The present results, falling within the limits of the cobalt wire results, are nonetheless in good agreement with them. A smaller aperature should enable more accurate scans along each individual fuel plate.

4. Discussion of Results

(a) <u>General</u>

In the preceding sections, a method has been described for inferring a fuel element's irradiation history from analyses of gamma-ray spectra obtained with a Ge(L1) spectrometer. The results included determinations of absolute neutron flux, total neutron exposure, U^{235} burnup and ir-

-138-

TABLE 13

RESULTS OF ANALYSIS OF TRANSVERSE SCAN

VIEWING EDGES OF FUEL PLATES

OF 2119

Run	Pos'n Below Fuel Midpl. Inches	Cs ¹³⁷	R ₁	R ₂	in 10 ¹³ n/cm ² ,sec.	o in n/kb	r 10 ⁸ sec.
D35	OL	12,184	5.013	0.0785	2.50	1.13	0.452
D 36	15" OUT	8,485	4.539	0.0786	2.49	1.225	0.492
D37	18" OUT	13,746	4.529	0.0746	2.56	1.205	0.471
D3 8	2" OUT	11,987	4.753	0.0778	2.415	1.197	c. 496
D 39	1 <u>4</u> " out	9,311	4.009	0.0835	2.62	1.365	0.521
D40	5" OUT 16 OUT	14,172	4.406	0.0750	2.63	1.23	0.458
D41	2" OUT	11,692	4.392	C.0749	2.63	1.23	0.468
D42	7" OUT	10,229	3.976	0.0773	2.78	1.31	0.471
D43	$\frac{1}{2}$ " out	14,151	4.544	0.0812	2.41	1.24	0.515

Mean Irradiation Time, $\overline{\tau} = 0.484 \times 10^8$ seconds Actual Irradiation Time = 0.448 \times 10^8 seconds Error = $8^{0/0}$ radiation time. Comparisons with independently obtained data showed good agreement. It should be stressed that the flux obtained by the present method is actually an averaged value, representative of conditions present in the fuel during its in-pile residence. The results, of course, depend more strongly upon the immediate past history than on the distant past. If operating schedules have not been constant, the results obtained may not be the same for different combinations of fission product ratios because of the influence of the fission product half-periods upon the calculations.

One major advantage of the present method, in addition to being nondestructive, is that the results obtained are representative of the irradiation conditions existing within the fuel itself during normal operation (i.e. at operating temperatures. pressures. etc.). Other methods. such as the cobalt wire activity measurements, obtain the flux at positions adjacent to the fuel, and usually not at full operating conditions. Methods that determine the absolute Cs^{137} content in the fuel, such as described in Ref. (W5), will give the total number of fissions, but require a careful calibration of the system. Furthermore, they do not yield the additional information such as can be obtained here. Since these two methods give values for the U^{235} burnup determined in two different ways, a combination of the two This could be done using the same experiwould be useful. mental data from the present apparatus if a calibration of

-140-

the system were made.

It was pointed out that some systematic errors were present in the analysis. In particular, the Cs¹³⁴ activity, calculated from the intensity of the 604 keV gamma-ray, can be considerably overestimated by including counts from the Compton edge of the 796 keV gamma-ray. Because of the importance of this fission product in this method, a more satisfactory way of calculating the net counts under a gammaray peak should be developed.

Also, other fission products, with long half-periods. The Pr¹⁴⁴ appeared to be present in the gamma-ray spectra. activity inferred from the 697 keV gamma-ray was not consistent with theory. This was attributed to the error caused by the presence of a low intensity gamma-ray at about 692 keV from some other fission product. In addition, due to the low intensity of the 697 keV photon, (about 1.6%) accurate determinations are difficult. The use of the 1164 keV double escape peak, with its smaller statistical errors, should improve the accuracy of the Pr¹⁴⁴ calculation. It would then be possible to use the present method for nondestructive analysis of fuel having much longer cooling periods, as well as providing a check on the use of $2r^{95}$ activity as described.

The lack of precise nuclear data for the fission products also presented a problem. Gamma-ray energies have generally not been determined to better than a few kilovolts in the

-141-

best cases and only within ±10 kilovolts for most. For this reason, gamma-ray spectra of the separated fission products considered here were obtained with the Ge(L1) spectrometer. The identification of the many gamma-rays present in a spectrum of an element with a short cooling period is thus a very difficult problem without this data. In addition, accurate values are required for the half-periods of the fission products. Errors in decay constants affect both the theoretically predicted values and the corrected experimental values of fission product activities.

The use of proper cross-sections is also important, especially for the Cs^{133} and Cs^{134} predictions. In the present calculations, no account was taken of flux spectrum hardening due to fission product build-up in the fuel. Because of the high resonance integral of Cs^{133} (RI(∞)=450 barns) this may have a considerable effect for high burnup fuel. Similarly, in this work the Cs^{133} was assumed to be created directly from fission. However, its precursor, Xe^{133} , has a half-period of 5.3 days and an absorption cross-section of 190 barns. This results in about a 2% decrease in the Cs^{133} concentration due to the $Xe^{133}(n,\gamma)$ Xe^{134} reaction.

The use of accurate values for fission yields is likewise very important. It is, however, very difficult to obtain good absolute values experimentally.

The availability of independent measurements of absolute

-142-

flux, irradiation time and calculations of fuel burnup has been valuable in evaluating the accuracy of the present results. In particular, it was found that overall consistency and agreement with all the data was not possible until all the nuclear constants were consistent. One result of this inability to achieve internal consistency was the independent determination of the relative intensities of the $2r^{95}$ gammarays. Conflicting values were reported by different investigators as shown in Table 14.

TABLE 14

Reference	Transition, Percent				
	β 885 keV γ 0 keV	β 396 keV γ 724 keV	β 364 keV γ 758 keV	β 250 keV γ 635 keV	
a	2 <u>+</u> 0.5	55 <u>+</u> 5	43 <u>+</u> 5		
Ъ	0.9	34	53	11	
с	3	43	54		
Present work	3 [*]	41.7 <u>+</u> 2	55•3 <u>+</u> 2		

TRANSITION PROBABILITIES IN Zr⁹⁵ DECAY

* Assumed value taken from Ref. (c).

- (a) Drabkin, et. al, Izvest. Akad. Nauk. SSSR, Ser. Fiz. <u>19</u>, 324 (1955).
- (b) P.P. Zarubin, Akad. Nauk. SSSR, Ser. Fiz. (Trans.) <u>18</u>, 244 (1954).
- (c) P.S. Mittleman, Phys. Rev. <u>94</u>, 99 (1954).

The results of calculations of the intensities from a gammaspectrum of a $2r^{95}$ +Nb⁹⁵ source shown in Fig. C.1 are presented in the bottom line of the Table. These indicate intensity values of 41.7% for the 724 keV gamma-ray and 55.3% for the 758 keV gamma-ray. Agreement is good with results of Mittelman and Zarubin, but not with those of Drabkin. A more satisfactory determination of the intensities would require the radiochemical separation of the Nb⁹⁵ from the source, leaving only the $2r^{95}$ gamma-rays to be measured with a Ge(Li) spectrometer. The fuel element analyses used a value of 41.7% for the 724 keV gamma-ray.

Another factor that had considerable effect on the consistency of the results was the assumed ratio of operating to shutdown times. This was most noticeable for the comparisons of predicted and measured ratios of Cs^{137} to Zr^{95} activities. The Cs^{137} level is not affected appreciably by the shutdowns because of its long half-period (30 yr.). However, the level of Zr^{95} , with a half-period of 65 days, was considerably reduced by the shutdowns. It is felt that the use of R_1 and R_2 alone for analyses of irradiation history could yield misleading results for fuel that experienced an unsteady operating schedule. Therefore, parallel analyses using the ratio R_3 and the $Ce^{144}+Pr^{144}$ chain, with its longer halfperiod of 280 days, would be necessary for obtaining correct information by this method.

The effect of U²³⁵ burnup can be seen in Fig. 66 which

-144-

shows the Zr^{95} activity per initial U^{235} atom as a function of flux at an in-pile residence time of 0.79 x 10⁸ seconds taken from Fig. 51. For fluxes between 3.5 x 10¹³ and 7 x 10¹³ n/cm²-sec, the Zr^{95} activity is essentially constant. Beyond a flux of 5 x 10¹³, the Zr^{95} activity decreases with increasing flux. In MITR fuel, operation at 1.95 MW results in a maximum flux of about 3 x 10¹³. Thus, the Zr^{95} activity is directly related to the flux level for inpile residence times less than about 10⁸ sec. or 3 years.

Similar comments can be made for the use of $Ba^{140}-La^{140}$ activities as indicators of relative flux distribution. Because of the shorter half-period of Ba^{140} relative to Zr^{95} , the effect of U^{235} burnup will be evidenced sooner. Thus, in Fig. 55 the Ba^{140} activity for $\phi = 5 \times 10^{13}$ crosses that for $\phi = 3 \times 10^{13}$ at a shorter irradiation time than for Zr^{95} .

Because of the anomalous behavior of shorter-lived fission products due to fuel burnup, the use of gross gammaactivity scans to infer flux distributions within fuel elements can easily lead to erroneous conclusions, especially for high burnup fuel such as from power reactors.

Meanwhile, Fig. 57, giving the variation of Cs^{137} activity per initial U^{235} atom as a function of neutron exposure, shows that for this fission product, the effect of U^{235} burnup is not great, even for large exposures. Thus, relative Cs^{137} spatial distributions are a good measure of relative flux distributions.

-146-

AS A FUNCTION OF NEUTRON EXPOSURE

(b) Errors

With the present method it is possible to obtain values for the absolute neutron flux and local burnup values accurate to about $\pm 10\%$. The average burnup for the whole element and the irradiation time are probably accurate to ± 5 to 7%. These accuracies are presently limited by errors in the calculation of gamma-ray counts from the spectra, in the values for nuclear constants, and in the graphical solutions for flux and burnup. Measurements made with standard sources, described in Appendix D, and those made upon 2M22, summarized in Table F.3 Appendix F, showed that results could be reproduced, with deviations from the mean being about twice the statistical uncertainty. However, some systematic errors have been pointed out and others may also be present.

The errors are also a function of cooling time of the fuel element. For cooling times of less than two months, the high background due to short-lived fission products introduces statistical uncertainties of 10% or more into calculations of gamma-ray intensities. On the other hand, for cooling times greater than about one year, the $2r^{95}$ activity has decayed to less than 1% of its original level, and again calculation of its gamma-ray intensity will contain more than 10% statistical uncertainty. Improvements should be possible with the use of a computer-coded spectrum stripping method for calculating gamma-ray intensities.

In addition, reduction in the scattered background

-148-

radiation by increasing the detector shielding or lowering the fuel element further into the water should improve results. Similarly, the use of better electronics, with capabilities of higher energy resolution should result in more accurate values for gamma-ray intensities. However, unless some technique is used to reduce the intense Compton background in the 500-800 keV region, such as the use of an anticoincidence arrangement, this work seems to indicate that it will be difficult to reduce the errors to less than 3%, even for the optimum cooling time.

(c) Other Applications of Present Techniques

The high resolution of Ge(Li) spectrometers has been shown to be adequate to resolve some of the fission product gamma-rays in irradiated fuel even after only 18 hours cooling time. The analyses described above, however, required that the fuel have cooled two months or more so that gamma-rays in the 500-800 keV region be satisfactorily resolved. Gamma-ray spectra taken after short cooling periods showed the presence of unidentified fission products that might be useful in similar analyses.

In the determination of reactor physics lattice parameters, measurements using NaI spectrometers are made of fission product activity shortly after irradiation (L2). It is likely that the use of Ge(Li) spectrometers could yield considerably more information. For example, determinations of fast fission effects in U^{238} may be possible with the

-149-

measurement of fission products having differences in yield between U^{235} and U^{238} . Similarly, the present techniques could be applied to irradiated fast reactor fuel in which, besides burnup and average flux determinations, the dependence of fission yields upon neutron energy could be used to study variations in the flux energy spectrum.

The excellent spatial resolution available with the present arrangement indicates that detailed studies could be made of single rods of bundle type elements such as for the CANDU reactor fuel (D3) or the YANKEE reactor fuel (S4).

The difference in fission yield of Ru^{106} between U^{235} and Pu^{239} , as shown in Table 2, might be useful for determining U^{238} to Pu^{239} conversion ratios in low enrichment fuels and thus supply information about resonance capture parameters.

From the short list given above, it is apparent that the application of Ge(Li) spectrometers, with their high energy resolution, to areas of experimental reactor physics could make possible the development of a number of new approaches to the determination of lattice physics variables.

-150-

IV. SUMMARY AND CONCLUSIONS

Nondestructive analyses have been made of irradiated MITR fuel elements with a lithium-ion drift germanium spectrometer to obtain information about the irradiation history of each element. Techniques for the preparation of Ge(Li) detectors were developed and are described in detail. Included are descriptions of the apparatus and equipment necessary for satisfactory performance of the spectrometers. The equipment used for the positional scanning of irradiated fuel elements in the MITR spent fuel storage tank is described. Gamma-ray spectra, in which peaks due to $2r^{95}$, Nb⁹⁵, Rh¹⁰⁶. Cs¹³⁴, Cs¹³⁷, Ba¹⁴⁰, La¹⁴⁰, Ce¹⁴⁴ and Pr¹⁴⁴ fission products were identified, are presented for elements after different cooling periods. Fission product activities were determined from calculations of the intensities of the gamma-rays in the spectra. Spatial distributions of the fission products for a number of fuel elements are shown.

A method for interpreting the experimental results, requiring theoretical predictions of fission product activities in the fuel, is presented. The results of the application of this method include spatial variations of absolute neutron flux, neutron exposure and total U^{235} burnup and irradiation time of the fuel. The operating pattern of each element, and the time since its removal from the reactor, could also be inferred. Comparison of the results of the present investigations with independent determinations of these quantities

-151-

showed that the agreement was within the 10% error assigned. Some of the problems and limitations of the method are discussed and suggestions are made for improving the accuracy and precision of the results. Other areas of possible use in reactor physics measurements are indicated.

V. RECOMMENDATIONS FOR FUTURE WORK

A. Preparation of Ge(Li) Detectors

(1) A number of improvements are required in the techniques of etching the germanium, which in their present form are difficult to control accurately. In order to increase the success rate and also to decrease the time required to properly finish a drifted p-i-n diode, prior to testing at liquid nitrogen temperatures, apparatus should be developed to allow the controlled etching of the diode faces. The use of etchants other than CP4A or the HNO_3/HF mixture (B3) may improve stability of the detector surfaces against contamination.

(2) The use of lower resistivity germanium (about 5 ohmcm) is recommended, so as to permit higher drift temperatures and the possibility of faster drift rates.

(3) It is recommended that efforts be made to determine if there is any way that Ge(Li) detectors can be stored at room temperature for an indefinite period of time without requiring a clean-up and etch treatment. The only requirement for the detector would then be to cool it down to liquid nitrogen temperatures. This could possibly involve some chemical process to stabilize the lithium near the surface and prevent it from diffusing out, in conjunction with some form of encapsulation.

B. Investigations of the Irradiation History of Fuel Elements

(1) A specially instrumented element has been constructed to obtain power production rates by means of a thermodynamic

-153-

heat balance (E4). Results with this element have been used to determine that the power production predicted by the MITBURN code is underestimated. It is recommended that gamma-spectra scans should be made of this element, and the results analyzed by the present method. Accurate comparisons should then be possible of fuel burnup, irradiation time and flux distributions.

(2) It is recommended that a more satisfactory method of calculating the net counts in a gamma-ray peak from complex spectra be developed. This may possibly include recording separated fission product gamma-ray spectra under the same electronic conditions as for the fuel elements. A spectrumstripping calculation would then be made upon fuel element spectra with the use of a computer code.

(3) The computer codes for obtaining values for the solutions of fission product concentrations in irradiated fuel should be revised, condensed and made more efficient. Calculation of the various activity ratios should be made in the program, thus avoiding the hand calculations required at the present time. Computer experiments should be made to determine the magnitude of effects of changes in nuclear constants for the fission products and fuel upon the results of the present method.

(4) The solutions for the flux, neutron exposure and irradiation time are presently obtained graphically. This is time-consuming and can result in systematic errors. Therefore, a computer program should be written which will obtain these quantities and permit a more thorough analysis of each

-154-

fuel element.

(5) The results of calculations with R_1 and R_2 which make use of the ratios of Cs^{137} to Cs^{134} and Cs^{137} to $2r^{95}$ activities in the fuel respectively, should agree with those using R_3 , the Cs^{137} to Pr^{144} activities and R_1 . However, these two approaches did not agree, as discussed in Section III.5. Therefore, it is recommended that the reasons for this disagreement be determined and the use of the Pr^{144} activity in these calculations be developed. This may require the calibration of the detector for the 2186 keV double escape peak at 1164 keV.

(6) Experiments are recommended to determine the lower limit of spatial resolution of the scanning mechanism and thereby investigate the possibility of obtaining absolute flux distributions within the element by making use of the curvature of the fuel plates.

APPENDIX A

PREPARATION OF LITHIUM-ION DRIFT GERMANIUM GAMMA-RAY DETECTORS

The procedures and techniques developed will be described under the following headings: (1) Preparation of crystal for lithium diffusion, (2) Lithium diffusion, (3) Application of nickel contacts, (4) Lithium drifting, (5) Final processing and testing, and (6) Recipes.

1. Preparation of Crystal for Lithium Diffusion

The germanium crystals used for the preparation of detectors were supplied by Sylvania Electric Products in the form of p-type, gallium-doped, zone-levelled ingots, trapezoidal in cross-section, weighing 60 or 120 gms/in. Crystal orientation was with the (1,1,1) plane perpendicular to the ingot axis. Two resistivity ranges have been used with comparable success: 8-10 ohm-cm and 30-45 ohm-cm. Dislocation densities were less than 2000/cm² and minority carrier lifetimes were greater than 100 µsec.

(a) A thin blade, high speed, diamond saw was used to cut the ingot into slices 5 to 15 mm in thickness. Initial development was carried out on parallelopiped samples, each 5 mm thick and about 1 cm². Therefore, each slice required further sawing. Presently, no additional sawing is done and the slices are processed in their trapezoidal configuration.
(b) The slice was lapped on all sides with water slurries of

-156-

600 and 1000 mesh silicon carbide powders", taking care to wash the crystal with water after such step. The crystal was then ultrasonically cleaned in a hydrocarbon solvent and washed in methanol and deionized water.

(c) The crystal was etched in CP4A (see Section D.6) for three minutes. The reaction was quenched by diluting the acid solution with deionized water, decanting and repeating. Care was required to prevent exposure of the crystal to the air until all the etchant had been washed away. Failure to do so resulted in the formation of a dull, white film on the surface of the germanium which was found to be deleterious to the proper performance of the crystals.

(d) If smooth, mirror-like surfaces had not resulted, another etching step was performed. One of the large area faces was then lapped with 1000 mesh slurry, washed, ultrasonically cleaned, and rinsed in methanol and water.

2. Lithium Diffusion

(a) A thin uniform layer of a lithium-in-oil suspension^{MM} was applied to the lapped face with a tapered glass rod.

(b) The crystal was then placed on a quartz plate located

³⁶ Supplied by A.B. Beuhler Ltd., Evanstown, Ill.

Deionized water was obtained by passing water from the main supply through two resin cartridges supplied by Barnstead Still and Sterilizer Co., Boston 31, Mass., a mixed resin to remove anions and cations and a resin to remove organic matter.

Supplied by Lithium Corp. of America. 30% Li - 2% oleic acid, remainder mineral oil.

inside the 2 in. I.D. Vycor glass tube that passed through a muffle furnace, shown in Fig. A.1. The furnace was preheated to about 450°C before the diffusion was to take place. Argon gas was kept flowing through the tube during this and all subsequent steps in the diffusion process. The temperature inside the tube and on the quartz plate near the crystal was monitored with Chrome-alumel thermocouple junctions. (c) The quartz plate was positioned within the furnace so that the temperature of the crystal was near 200°C, thus evaporating the mineral oil and leaving behind the lithium powder.

This occurred within a few minutes.

(d) The crystal was then located in the furnace at a temperature of about 425°C for 10 minutes, allowing the lithium to diffuse into the crystal.

(e) The quartz plate was positioned outside the furnace (but still within the tube) and the crystal was allowed to cool for about 1/2 to 1 hour, with the argon gas flow continuing.

3. Application of Nickel Contacts

(a) After cooling, the loose lithium was scraped off and the crystal was placed into methanol then water. The remaining excess lithium reacted with the water which usually resulted in a pitted surface that appeared not to harm the subsequent performance of the diodes.

(b) The lithium-rich surface and the opposing large area surface were lapped with 800 mesh powder, the crystal was washed, cleaned and rinsed with methanol and water.

A.3

(c) The crystal was dipped in concentrated HF acid for one minute and the acid was diluted and decanted in the usual manner.

(d) It was then placed into an electroless nickel plating solution (see Section A.6) that had been preheated to 95° C. Additional ammonium hydroxide was added as required to keep the solution bright blue in color (pH>8). Satisfactory plating was accompanied by rapid evolution of bubbles (of H₂ gas) from the lapped surfaces of the crystal. It was removed after three to five minutes and the surface resistance of the nickel contacts was measured with an ohm-meter. If the resistance was greater than 2 ohms, the crystal was placed back into the plating bath for two more minutes. The crystal was then washed thoroughly and dried.

(e) The four sides of the crystal were lapped with 1000 mesh powder, washed, cleaned, and rinsed, leaving nickel contacts only on the two opposing large area faces.

(f) Apiezon wax, dissolved in trichloro-ethylene, was applied to the nickel contacts and allowed to dry.

(g) The crystal was given two three-minute etches in CP4A, and two or more two-minute etches in a 2:1 mixture of HNO_3 : HF acids. At this stage, it was usually possible to observe the n⁺-p junction between the lithium-rich n⁺ region and the original p-type region. The latter was etched by the 2:1 mixture at a faster rate than the n⁺ region. Approximately 1/2 to 1 mm diffusion depths were usually observed.

A.4

(h)The protective wax was dissolved from the nickel contacts with trichloroethylene and the crystal washed with methanol The resulting p-n+ diode was tested for resistand water. ance with an ohm-meter. Reverse and forward resistances were dependent upon the size of the diode and the resistivity of Typical values for satisfactory diodes the p-type germanium. made from 40 ohm-cm material, 5 mm thick, 4 cm^2 in area, were 500Ω and 4Ω for reverse and forward resistances respectively. A diode having a low reverse resistance was rediffused with lithium and the subsequent steps repeated. Satisfactory diodes were now ready for the drifting process.

4. Lithium Drift Process

(a) The lithium-ion drifting was carried out in the apparatus shown previously in Fig. 5. A photograph of this equipment is presented in Fig. 4.2 showing a 15 mm thick, 4 cm² crystal being drifted. A reverse bias voltage was applied from a D.C. power supply capable of an output of 500 volts and 1.5 amperes. The joule heating generated by the reverse current flowing through the diode was dissipated by boiling of the fluorocarbon liquid FX-78³⁶ at 52°C. Some diodes have been drifted at power rates up to 150 watts for a short period of time. Normal rates were between 50 and 100 watts, with voltages between 50 and 200 volts.

(b) As the drift progressed, the diode reverse resistance decreased. Consequently, the bias voltage was reduced to keep

* Supplied by the 3-M Company.

A.5

FIGURE A.2 PHOTOGRAPH OF APPARATUS FOR DRIFTING GERMANIUM DIODES

the power dissipation constant.

(c) Depletion depths were measured by removing the diode from the drift unit and placing it into a 0.5N solution of copper sulfate with a reverse bias of 1 to 10 volts, depending on the size. The copper plated only on to the p-type material, thus indicating the depth of the lithium compensation. Drift rates varied considerably with the type of germanium, the size of the diode and initial reverse resistance. However, a typical depletion layer thickness of 3 mm was attained in 2-4 days of drifting for a 4 cm² diode. Several detectors of 1 cm depletion layer thickness have been prepared with drift times of about one month.

(d) When a suitable depletion layer thickness had been reached, the diode was transferred from the high temperature drift unit to a lower temperature drift unit (10-20°C) for about 24 hours. Reverse bias voltages were adjusted so that the reverse current was kept below 50 ma.

5. Final Processing and Testing of Germanium p-i-n Diodes

(a) Following the low temperature drift, the sides of the diode were lapped with 1000 mesh powder, washed etc., and the nickel contacts covered with Apiezon wax.

(b) The diode was etched in the usual way, twice in CP4A (3 min. each) then three to five times in 2:1 HNO_3/HF mixture (1 1/2 to 2 min. each). Usually, both the p-i junction and the i-n⁺ junction were made visible at this stage because of the preferential etching of the different regions.
(c) The wax was removed with trichloroethylene and the crystal was washed thoroughly in methanol and water and dried. (d) It was then placed into position inside a dewar as described in Section II. The dewar was evacuated with the portable vacuum system and the inner vessel was cooled with liquid nitrogen. A reverse bias voltage (current < 20 ma) was generally kept applied to the diode during the cooling period to ensure complete compensation of the impurities in the depleted layer.

(e) Reverse current readings for successful detectors were between 10^{-8} and 10^{-10} amperes for 100 to 300 volts bias. Currents higher than this led to excessive noise during operation and thus poor energy resolution. In these cases, the diode was brought to room temperature, re-etched and tested again at liquid nitrogen temperature until the current characteristics were satisfactory.

6. <u>Recipes</u>

High purity, transistor grade reagents were used whereever possible.

- (a) <u>CP4A Etchant</u>
 - 2 parts conc. HNO.
 - 1 part HF (30%)
 - 1 part Acetic Acid
 - 1 ml/l Bromine

A.7

- (b) <u>2:1 HNO₃:HF</u> 2 parts conc. HNO₃ 1 part HF (30%)
- (c) <u>Electroless Nickel Plating Solution</u> (B8, S3)

Nickel Chloride	NiCl ₂ .6H ₂ 0	30 gm/l
Sodium Hypophosp hi te	NaH2PO2.H20	55 gm/1
Ammonium Citrate	(NH4)2H.C6H507	65 gm/1
Ammonium Chloride	NHACI	50 gm/1

 NH_4OH was added until the solution turned from green to blue (pH 8 to 10). It is recommended that NH_4OH be added during the plating process in sufficient quantity to maintain the blue color. The optimum plating time is three to six minutes at $95^{\circ}C$.

APPENDIX B

ENERGIES OF CALIBRATION GAMMA-RAYS

TABLE B.1

Source	Energy (keV)	Reference
Co ⁵⁷	122.05 <u>+</u> 0.05	(a)
Co ⁵⁷	136.40 <u>+</u> 0.06	(a)
Hg ²⁰³	279 . 16 <u>+</u> 0.02	(b)
Na ²²	511.006 <u>+</u> 0.005	(c)
ThC "	583.139 <u>+</u> 0.023	(a)
Cs ¹³⁷	661.595 <u>+</u> 0.076	· (e)
Mn ⁵⁴	834.9 <u>+</u> 1.1	(f)
c° ⁶⁰	1173.226 <u>+</u> 0.040	(d)
Na ²²	1275.0 <u>+</u> 0.8	(g)
0°60	1332.48 <u>+</u> 0.05	(a)
ThC"	2614.47 <u>+</u> 0.10	(a)

References

(a) E.L. Chupp, Phys. Rev. <u>109</u>, 2036 (1958).

(b) C.J. Herrlander and R.L. Graham, Nuclear Phys. 58, 544 (1964).

(c) Electron rest mass from 1963 atomic constants.

(d) G. Murray, et al, Nuclear Phys. <u>63</u>, 353 (1965).

(e) R.L. Graham, et.al, Nuclear Instr. Methods 2, 245 (1960).

(f) R.R. Wilson, et al, Phys. Rev. <u>125</u>, 1655 (1962).

(g) Present work; measured with Ge(Li) detector.

APPENDIX C

GAMMA-RAY SPECTRA OF FISSION PRODUCTS

1. $2r^{95} + Nb^{95}$

The gamma-ray spectrum of a Zr^{95} +Nb⁹⁵ source is shown in Fig. C.1. The energies obtained for each of the primary photons is indicated on the curve. Results of the calculations of the relative intensities of the two Zr^{95} gamma-rays were shown in Table 14, which also includes values obtained by previous investigators.

2. Ru¹⁰⁶+Rh¹⁰⁶

Ruthenium-106 (1.0 yr.) decays by β^- with no gammas to Rh¹⁰⁶ (30 sec.) which is a gamma-emitter. The gamma-spectrum of Rh¹⁰⁶ is shown in Fig. C.2. A large number of high energy gamma-rays appear to be present. However, they are of such low intensity that no peaks are clearly identifiable above 1.5 MeV. Because of low source strength, statistics were poor and resolution was decreased by gain shifts in the amplifier.

3. Cs¹³⁴

Figure C.3 shows the gamma-ray spectrum of Cs¹³⁴ (2.19 yr.). Similar results using a Ge(Li) spectrometer have been published in Ref. (g) of Table 5 where the intensities and gammaray energies presented in Table 5 were given. The present results taken with Detector 9-19.1 have a FWHM of about 5 keV at 800 keV, compared with less than 3 keV in the above reference.

C.1

-167-

For this reason, the weak gamma-ray at 802 keV is not properly separated from the 796 keV gamma-ray.

4. $Ce^{144} + Pr^{144}$

The low energy region of the gamma-ray spectrum of Ce^{144} decay (280 d.) results in four low-energy gamma-rays at 53.0, 79.4, 100.0 and 133.5 keV. The decay of Pr^{144} (17 m.) gives gamma-rays at 697 keV, 1488 keV and 2186 keV with a double escape peak at 1164 keV as shown in Fig. C.5.

GERMANIUM LITHIUM DRIFT DETECTOR No. 9-19.1, 3.5 MM DEPLETION DEPTH, 1.6 CM² AREA, 170 VOLTS BIAS, 77°K

FIGURE C.2 - Rh¹⁰⁶ GAMMA - RAY SPECTRUM GERMANIUM LITHIUM DRIFT DETECTOR No. 9-19.1, 3.5 MM DEPLETION DEPTH, 1.6 CM² AREA, 170 VOLTS BIAS, 77°K

•

APPENDIX D

DESCRIPTION OF EXPERIMENTS TO DETERMINE THE BEST METHOD OF SUBTRACTING BACKGROUND FROM UNDER A GAMMA-RAY PEAK IN SPECTRA OBTAINED WITH Ge(L1) DETECTORS

The "J" series of experiments were conducted and analyzed to determine the most satisfactory method of subtracting the background from beneath a gamma-ray peak to yield the net counts due to the gamma-ray. The procedure was as follows: The gamma-ray spectrum from a Cs¹³⁷ source was recorded for a period of time. With the Cs¹³⁷ source in the same position, another source was brought near the detector and new spectra of the two sources were again recorded for the same length of time. The additional source provided a Compton background beneath the photopeak of Cs¹³⁷. The spectral shape of this background was different for each of the secondary sources, while its intensity could be varied by changing the source-to-detector distance. Figure D.1 shows typical results obtained for (a) Cs¹³⁷ at 2". (b) Cs¹³⁷ at 2" plus Mn⁵⁴ at 0" (where 0" was a convenient reference point approximately 4" from the Ge(Li) detector). (c) Cs¹³⁷ at 2" plus Mn^{54} at 2" and (d) Cs^{137} at 2" and Na^{22} at 2".

The analysis of the gamma-ray spectra consisted of the following:

(1) The background at the high energy side of the photopeak was calculated by an arithmetic average of the

-174-

FIGURE DI Y-RAY SPECTRA OF Cs¹³⁷ PLUS OTHER SOURCES; USED IN DETERMINING BACKGROUND SUBTRACTION METHOD.

-175-

counts in three or five adjacent channels and assigning the average values to the middle channel of this set.

- (2) The counts in a channel on the low energy side of the peak were taken as the background at this point. A straight line relationship was assumed between the low energy side channel and the high energy side channel chosen in (1) above, and the arithmetic average of the background counts per channel was calculated.
- (3) The total counts under the peak including background was calculated using the two background channels on either side of the peak as end points.
- (4) The net counts in the peak were obtained by subtracting the total background (average background per channel from (2) times the number of channels) from the total counts from (3).
- (5) A number of other low energy background channels were chosen and the same procedure repeated. Each resulted in a value for the net counts in the gamma-ray peak.
- (6) The average of all these values of net counts was calculated from the channel about 20 keV below the maximum in the gamma-ray peak to the channel about 8 to 10 keV below the maximum.

Although individual gamma-ray peak counts varied by as much as $\pm 10^{\circ/\circ}$ because of statistical variations, the averaged quantity was reasonably constant. Tables D.1, D.2, D.3, D.4

-176-

D.2

and D.5 show the results of this procedure for different source combinations. In general, the deviations of the experimental results from the mean were about twice that expected from statistical uncertainties.

As can be seen from a summary of the results shown in Table D.6, the maximum deviation from the mean value of Cs^{137} activity was - 9.0% and occurred for the $Cs^{137}(2")$ and $Mn^{54}(0")$ group of experiments.

It appears from the results that the method of subtracting background is dependent upon the slope of the background beneath the peak being integrated. Some improvement in the accuracy of obtaining absolute photopeak count rates could probably be made by assuming a higher order type equation for the background, rather than linear as done here. This was not tried.

Instead, the assumption was made that the method described above underestimates the net counts under the gamma-ray peak by 30/0. The corrected values were thus obtained by multiplying by 1.03. The maximum deviation was then $-6.3^{\circ}/_{\circ}$ for the Cs¹³⁷(2") + Mn⁵⁴(0") runs. Since the statistical uncertainties were $\pm 2.1^{\circ}/_{\circ}$, the experimental procedure and method of analysis gave results that had deviations of about three times the statistical uncertainties. If Run J40 is neglected, this factor reduces to about 2 rather than 3.

This error is probably smaller if ratios of gamma-ray peak counts are calculated, especially if the gamma-rays are near one another and have approximately the same background level and

-177-

spectral shape. It was thus concluded that the above method gave satisfactory results for the calculation of net counts under a gamma-ray peak. Based on this method, a computer code, to be described in Appendix E, was written for the analysis of the fuel element spectra.

.

*

t

TABLE D.1 TOTAL COUNTS UNDER CB¹³⁷ GAMMA-RAY PEAK

Source = $C B^{137}(2")$

Lower Energy Channel Limits For Calculating Average No. of Counts in Peak	Run J42	Run J43	Run J44	Run J45	Run J46	Run J53	Average			
- 19 to - 7 - 9			8455 8694 8850	8223 8479 8660			8339 8587 8 7 55			
- 8	8600	0h57			8 40 8	8519	8464 8527			
-18 to $-9-10$	86 78	8506			8571	8636	8598			
- 17 to - 7 - 9	8397 8668	8257 8 40 2	8351 8616 8789	8114 8397 8600			8233 8417 8615			
- 7	8355	8204			8295	8 4 65	8330			
-16 to $-8-9$	8445	0211			8472	86 00	8536			
- 15 to - 7 - 9	8298	8160	8481 8664	8279 85 0 6			8305 8585			
- 14 to - 9 -11					8170 8368	83 70 8522	8270 8445			
- 13 to - 9			85 80	8366			8473			
Average	8491	8322	8669	8403	8381	8519				
Mean = 8461										

Statistical Uncertainty = $\pm 1.4^{\circ/o}$

Max. Deviation from Mean = $+ 4.6^{\circ}/\circ$

TOTAL COUNTS UNDER CB137 GAMMA-RAY PEAK

Source =
$$Cs^{137}(2") + Mn^{54}(0")$$

Lower Energy Channel Limits For Calculating Average No. of Counts in Peak	Run J39	Run J40	Run J41	Average for J39 J40 and J41	Average for J39 and J41
- 18 to - 9	7917	7235	7781	7644	7849
-10	7941	7215	7753	7636	7847
- 17 to - 7	7861	7354	7724	7646	7793
- 9	7988	7358	7819	7722	7904
- 16 to - 7	7919	7453	7769	7 714	78 44
- 8	7999	7473	7834	7769	7917
- 15 to - 7	7926	7508	7830	7755	7878
			Mean =	= 7698	7862

Statistical Uncertainty = $\pm 2.1^{\circ}/_{\circ}$

Max. Deviation from Mean = $-6.0^{\circ}/_{\circ}$

Max Deviation from Mean if J40 Excluded = $-3.0^{\circ}/_{\circ}$ **D.**6

TOTAL COUNTS UNDER CB137 GAMMA-RAY PEAK

Lower Energy Channel Limits For Calculating	Sc Cs- +Mr	ource -137(n-54(8= 2") 2")	Average	2 Ce +N	Source 9-137 (n-54)	88= (2") (4")	Average
Average No. of Counts in Peak	J47	J48	J4 9		J 50	J51	J52	
- 19 to - 7 - 9 -11					8358 8505 8591	8262 8395 8470	8103 8217 8292	8240 8371 8450
- 18 to - 8 -10 -12	8127 8300 8381	8142 8311 8430	8131 8298 8322	8133 8303 8377				
- 17 to - 7 - 9 -11					8301 8469 8569	8207 8357 8443	8089 8226 8325	8198 8350 8445
- 16 to - 8 -10 -12	8013 8293 8402	8042 8230 8364	8083 8284 8311	8069 8269 8358				
- 15 to - 7 - 9 -11					9253 8454 8589	8146 8323 8429	8039 8201 8329	8145 8325 8448
- 14 to - 8 -10	7966 8213	7935 8157	7968 8203	7956 8191				
			Mean	= 8207			Mean	= 8330
Statistical Un	1.60/0	Stat	Unc	y =	<u>+</u> 1.5°/0			
Max. Deviation	from	Mean	n = +	3.30/0	Max.	Dev.	=	- 3.5°/0

TOTAL COUNTS UNDER CB137 GAMMA-RAY PEAK

Sources =
$$Cs^{137}(2^{"}) + Na^{22}(2^{"})$$

Lower Energy Channel Limits For Calculating Average No. of Counts in Peak	Run J54	Run J55	Average
- 19 to - 7	8410	8425	8 41 8
- 9	8614	8599	8607
- 17 to - 7	8309	8313	8311
- 9	8535	85 01	8518
- 15 to - 7	81 84	8136	8160
- 9	8440	8327	8384
		Me	an = 8400

Statistical Uncertainty = $1.8^{\circ}/_{\circ}$

Max. Deviation from Mean = $-3.1^{\circ}/_{\circ}$

.

TOTAL COUNTS UNDER CB137 GAMMA-RAY PEAK

Lower Energy Channel Limits For Calculating	Sour Cs-13 +Na-2	ce8= 7(2") 2(4")	Average	Sour Cs-13 +Na-2	Ce8 = 7(2") 2(6")	Average	
Average No. of Counts in Peak	f k J56 J57			J 58	J 59		
- 19 to - 7	8369	8153	8261	8452	8 407	8 44 5	
- 9	8533	8310	8422	8614	8529	85 7 2	
- 17 to - 7	8286	80 7 5	8181	8392	8329	8361	
- 9	8469	82 4 9	8359	8532	8461	8497	
- 15 to - 7	8182	7980	8081	8305	8227	8266	
- 9	8387	8177	8282	8461	8368	8 41 5	
		Mean	= 8426				

Statistical Uncertainty = $\pm 1.7^{\circ}/_{\circ}$ St. Unc'y = $\pm 1.6^{\circ}/_{\circ}$ Max. Deviation from Mean = $-3.4^{\circ}/_{\circ}$ Max. Dev'n = $-2.4^{\circ}/_{\circ}$

SUMMARY OF RESULTS OF "J' SERIES OF EXPERIMENTS

TO DETERMINE METHOD OF SUBTRACTING BACKGROUND

FROM UNDER GAMMA-RAY PEAK

Sources	Mean Average	Statistical Uncertainty 0/0	Maximum Deviation From Mean 0/0	Deviation From Mean Cs-137(2") 0/0	Corrected Mean	Deviation of Corrected Mean from Mean Cs-137(2 ^H) 0/0
Cs ¹³⁷ (2")	8461	<u>+</u> 1.4	+ 4.6	0.		
$Cs^{137}(2^{H}) + Mn^{54}(0^{H})$	7698	<u>+</u> 2.1	- 6.0	- 9.0	7929	- 6.3
Cs ¹³⁷ (2")+Mn ⁵⁴ (0")	7862	<u>+</u> 2.1	- 3.0	- 7.1	8098	- 4.3
$Cs^{137}(2^{H}) + Mn^{54}(2^{H})$	8207	<u>+</u> 1.6	- 3.3	- 3.0	8453	0.1
$Cs^{137}(2") + Mn^{54}(4")$	8330	<u>+</u> 1.5	- 3.5	- 1.5	85 80	+ 1.4
Cs ¹³⁷ (2")+Na ²² (2")	8400	<u>+</u> 1.8	- 3.1	- 0.7	8652	+ 4.6
Cs ¹³⁷ (2")+Na ²² (4")	8264	<u>+</u> 1.7	- 3.4	- 2.3	8512	0.6
Cs ¹³⁷ (2")+Na ²² (6")	8426	<u>+</u> 1.6	- 2.4	+ 0.2	8679	+ 2.6

* Neglecting Run J40

-184-

D.10

APPENDIX E

"GRAPIN", COMPUTER CODE TO CALCULATE THE NET COUNTS IN A GAMMA-RAY PEAK

A computer code, called "GRAPIN" was written to calculate the net counts in a gamma-ray peak by the method described in The input data includes the counts per channel Appendix D. for a gamma-ray spectrum obtained with a multichannel pulse height analyzer. Up to 1025 channel values can be read in. although only those near the gamma-ray peak are required. A number of control parameters must also be given, specifying the gamma-ray source, the channels to be used for background subtraction. etc. as is described in Table E.1. As an example of the input data required, the results from Run J41. described in Appendix D, were used. Figure E.1 shows a plot of the spectrum, and includes identification of the control parameters that are referred to in Table E.1.

The input data for Run J41 are shown in Table E.2, while the GRAPIN code output is given in Table E.3. To show an example of the input parameters used for analysis of fuel element gamma-ray spectra, the data for Run D4 from element 2M19 is given in Table E.4 and the output is presented in Table E.5. A FORTRAN listing of the code is given in Table E.6.

E.1

-186-

TABLE E.1

INPUT DATA FOR "GRAPIN"

Card	Column	Name	Format	Description	Fig. E.1 Symbol
1	1 - 72	-	A	Identification	-
2	1-6	NCHI	I	Channel no. of first value of counts per channel.	A
	7-12	NCHL	I	Channel no. of last value of counts per channel. NCHL must be 1025.	J
	13-18	NR UN	I	Control number: if more runs to follow, NRUN=1 if this is last or only run of series, NRUN=0.	
	19-24	N P A N	I	Number of gamma-ray peaks to be analyzed.	
3 to 2+M	1-72	CPC(I) I	Values of counts per channel from channel NCH1 to NCH. Each card con- tains 8 values of CPC(I) in Format 8(F6.0,1X). Total no. of cards = $\frac{NCHL-NCH1}{8} = M$	
3+M	1-6	NPEAK	I	Control number of gamma- ray peak to be analyzed. Gamma-ray NPEAK (a) $Cs^{1,74}(605keV)$ 1 (b) $Rh^{106}(624keV)$ 2 (c) $Cs^{137}(662keV)$ 3 (d) $Pr^{144}(697keV)$ 4 (e) $Zr^{95}(724keV)$ 5 (f) $Zr^{95}(758keV)$ + Nb95(766keV) 6 (g) $Cs^{134}(796keV)$ 7 (h) $Pr^{144}(1164keV)$ 8 (i) $Pr^{144}(2186keV)$ 9 (j) $La^{140}(1498keV)$ 10	

TABLE E.1 (cont'd.)

Card	Column	Name	Format	Description	Fig.E.1 Symbol
				Gamma-rayNPEAK(k) La140(1597keV)11(1) La140(2520keV)12	
3+M	7-12	NLLO	I	Channel no. at which low energy background sub- traction is to begin	В
	13 -1 8	NLUP	I	Channel no. at which low energy background is to end.	E
	19-24	NBGHE	I	Channel no. to be used for high energy back- ground.	н
	25 - 30	KLOB	I	Number of channels <u>below</u> NBGHE to be used for calculating average high energy background.	G
	31-36	KHIB	I	No. of channels <u>above</u> NBGHE to be used for calculating average high energy background.	I
	37-42	JAY	I	No. of channels <u>above</u> NLLO at which averaging for net peak counts is to begin.	σ
	43-48	KAY	I	No. of channels <u>below</u> NLUP at which averaging for net peak counts is to begin.	D

v

TABLE E.2

RUN J41 INPUT DATA FOR GRAPIN

S'IN I	41.55	FRIES.	CS 137.	2 INCHE	S - MN	<u>TAB</u> 54, 0 I	<u>LE_E.3</u> NCH±S	GRAPI	IN_OUTPU	T FOR R	UN J41					
NJ. OF	FIRST	CHANNEL	NO. 01	F LAST C	HANNEL	NRUN	NPA	N								
	552			599		1	1									
CH. NO.	. VA	LIES DE S		NTS PER			,									
552		5 727	728	729	708	704	6 32	607	577	512	500	418	421	416	361	341
568	31) 329	332	332	303	358	373	409	475	624	846	1113	1395	1509	1345	1141
584	85	8 601	418	301	217	184	157	183	170	172	102	110	103	[]]	100	
NPEAK 3	NLLD 552	NLJP 578	NBGHE 592	KLOB 590	KH18 594	11 11	K 4Y									
CESIUM	-137 GA	MMA RAY	AT 661.6	5 KEV												
ND. OF	COUNT	S OF ABO	VE FISSI	LON PROD	UCT ACT	TIVITY A	S A FUNC	TION OF	- LOWER	CHANNEL	. LIMIT					
го сн г	.IM T	DT COUNTS	5 BK GC	COUNTS	NET	FP COUN	TS FP+	ERROR	FP-	ERROR						
552		23384		18118		5266		5470		5062						
553		22669		17916		4753		4954		4552						
554		21942		17488		4454		4653		4256						
556		21214		16221		4170		4371		596U 4072						
557		19777		15710		4067		4755		3878						
558		19073		14014		5059		5261		4877						
559		18441		13189		5252		5430		5075						
56 J		17834		12306		5528		5702		5355						
561		17257		10893		6364		6532		6196						
562		16745		10366		6379		6543		6214						
563		16245		8802		7443		7601		7285						
564		15827		8552		7275		7431		7119						
565		15406		8187		7219		7372		7065						
566		14990		7152		7838		7987		7689						
567		14629		6627		8002		8147		7856						
568		14288		5985		8303		8445		8161						
. 569		13979		5974		8004		8146		7863						
570		13649		5759		7890		8029		7750						
5/1		13317		5509		7808		7945		7671						
572		12785		4954		8031		8165		7897						
573		12682		5268		7414		7548		7280						
574		12324		5147		7177		7309		7045						
575		11951		5200		6751		6882		6620						
576		11542		5472		6070		6200		5939						
574		11357		6342		4725		4857		4593						
יסזיכ אנו ∩⊷	COUNTS	10443		1011		2832		2966		2698						
101 UF	00.413	JF AUJVE	r i 3 3 10	IN PRJOU	JI AUTI	VIIV, A	VERAGED	OVER LO	DWER LIM	IT CHAN	INELS S	63 TO	572 =	778	1	

BACKGROUND CJUNTS PER CHANNEL ON HIGH ENERGY SIDE OF PEAK, BGHE = 169

-19c-

TABLE E.4

RUN D4 INPUT DATA FOR GRAPIN

1 RUN C	04. FE 2	2M19, 25	5 INCHE	S, CENT	ER-LINE	. снз 5	6-199	
56	199	1	7	_				
005310	004734	004400	004137	003907	003809	003702	003663	000063
003468	003518	003395	003416	003422	003289	003369	003395	000071
003228	003492	003558	003809	003566	003185	002763	002665	000079
002595	002578	002538	002541	0)2476	002543	002628	002421	000087
002355	002293	002263	002264	002167	002186	002178	002186	000095
002191	002201	002139	002210	002238	002211	. 002309	002408	000103
002627	002853	003308	004544	005354	004541	. 002866	001897	000111
001670	001613	001668	001588	001545	001668	001618	001587	000119
001608	001598	001580	001496	001622	001572	001746	001857	000127
001796	001602	001457	001442	001439	001442	001468	001532	000135
001532	001578	001601	001702	001872	002117	002529	002804	000143
002261	001654	001379	001345	001341	001393	001391	001410	000151
001510	001565	001563	001632	001713	001827	002169	002525	000159
003087	003645	003813	003627	004149	005412	007146	006749	000167
003966	001741	001042	000872	000848	000868	000813	000824	000175
000790	000886	000865	000939	000960	001093	001265	001498	000183
001442	001214	000930	000847	000786	C 00777	000734	000725	000191
000732	000752	000748	000671	000731	000688	000684	000718	000199
1	59	73	80	79	81	2 3		
2	80	85	90	89	91	0 1		
3	86	101	113	112 1	14	2 5		
4	116	125	131	130 1	32	2 2		
5	131	139	148	146 1	50	υ 3		
6	147	156	173 2	171 1	75	0 5		
7	173	180	191	190]	72	0 2		
IRUN D	4, FE 21	M19, 25	INCHES	CENTE	R-LINE.	CHS 376	5-415	
376	415	1	1					
000 465	000473	000453	000420	000463	000441	000433	000449	000383
000463	000449	000441	000427	000505	000468	000494	000497	000391
000500	000521	000569	000686	000786	000923	001006	000945	000399
000749	000541	000464	000440	000417	000381	000390	000388	000407
000 39 1	000375	000358	000406	000384	000376	000365	000430	000415
8	376	395	407 4	+C4 4	15	ົງ 4	_	
IRUN D	4, FE 2	M19, 25	INCHES	CENTE	R-LINE.	CHS 960	-1007	
960	1007	0	1	000010		• • • • • • •		
000010	000011	000008	000011	000013	000013	000015	000016	000967
000008		000005	000008	000005	000015	000019	000014	000975
000011	000022	000011	000016	000014	000016	000024	000028	000983
000025	000030	000042	000050	000051	000076	000093	000101	000991
000108	000118	000102	000051	000021	000005	000004	000004	000999
000001	000002	000005	000004	000001	000003	000001	000004	001007
9	960	983	999 6	998 10	07	ઝ 10		

•>

1

.

.

TABLE E.5 GRAPIN OUTPUT FOR RUN D4

RUN D4, FE 2019, 25 INCHES, CENTER-LINE, CHS 56-199

NC. CF F	IKSI CH	A NEL	NC. OF	ELAST C	CHANNEL	NRUN	NP	ΔN								
	56			197		1		7								
CH. NO.	VALO	JES DE	RAN COUN	ITS PER	CHANNEL,	CPC(1)										
56	5310	4734	4400	4137	3917	3.309	3702	3663	3468	3518	3395	3416	3422	3289	3369	3395
72	3?28	3492	3358	33.)	3560	3185	2763	2665	2595	2578	2538	2541	2476	2543	2628	2421
88	2355	2293	2263	2264	2167	2186	2178	2106	2191	2201	2139	2213	2238	2211	2309	2438
104	2627	2853	3308	4544	5354	4541	2866	1897	1670	1613	1668	1588	1545	1668	1618	1587
120	16.)8	1593	1587	1496	1622	1572	1746	1857	1796	1602	1457	1442	1439	1442	1468	1532
136	1532	1579	1601	17.2	1872	2117	2529	2804	2261	1654	1379	1345	1341	1393	1391	1410
152	151.	1565	1563	1632	1713	1827	2169	2525	3587	3645	3813	3627	4149	5412	7146	6749
168	3966	1741	1542	872	849	868	813	824	790	686	865	939	960	1993	1265	1498
194	1442	1214	430	347	786	777	734	725	732	752	748	671	731	688	684	718
NPEAK	NLLO	NEUP	NHGHE	KLOs	<hi3< td=""><td>JAY</td><td>KAY</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></hi3<>	JAY	KAY									
1	59	73	80	77	31	2	3									

CESIUM-134 GAMMA RAY AT 614 KEV

NO. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY AS A FUNCTION OF LOWER CHANNEL LIMIT

LC CH LIM	TOT COUNTS	RKGD COUNTS	NET FP COUNTS	FP+ERROR	FP-ERROR
59	75351	74246	11:5	1491	718
60	71214	68456	2753	3131	2384
61	673.7	. 64217	3.9	3453	2728
62	53498	59930	3509	3860	3157
63	59796	56481	3315	3656	2974
64	56133	51680	4447	4776	4119
65	52665	49.45	3620	3939	3301
66	49147	45757	47.90	4396	3783
67	45752	42201	3551	3848	3255
68	42336	39225	3111	3396	2825
69	38914	3541_	3504	3777	3231
73	35625	32899	2726	2988	2444
71	32256	3(238	2218	2467	1968
72	28361	26283	2579	2313	2343
73	25633	24419	1214	1439	991

ND. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY, AVERAGED OVER LOWER LIMIT CHANNELS 61 TO 70 = 3496

BACKGROUND COUNTS PER CHANNEL ON HIGH ENERGY SIDE OF PEAK, BGHE = 2613

NPEAK NLLO NLUP NPGHE KLOB "HIM JAY KAY 2 85 85 9 89 91 1

RUTHENIUM-116 GAMMA RAM AT 624 KEV

NO. OF COUNTS OF ABOVE FISSION PROPUGT ACTIVITY AS A FUNCTION OF LOWER CHANNEL LIMIT LC CH LIM TOT COUNTS HERE COUNTS NET FP COUNTS FPHERE R FPHERER

8) 07231 26776 455 688 223

-192-

116	25794	23923	1066	2289	1643
117	24249	23355	- 94	1112	676
113	22541	2144 1	1122	1443	323
119	2 263	19715	1,49	145	1 47
120	11 37 6	1 . 7 ") :	1244	050
121	1 1 1 1 1	. 7 .	1.1.4	1712	445
122	1:11	1514		1 1 1 1	363
123	16.30	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.127	1104

LO CH LIM TOT COUNTS PROD COUNTS NET EP COUNTS EPHEROR EPHEROR

NO. OF COUNTS OF AMOVE FISSION PRODUCT ACTIVITY AS A FUNCTION OF LOWER CHANNEL LIMIT

PRASEODYMIUM-144 GAMMA RAY AT 607 KEV

4 116 125 131 13 132 2 2

NPEAK NELO NEGP NEGHE KEOB (HIB JAY KAY

HACKGROUND COUNTS PER CHANNEL ON HIGH ENERGY SIDE OF PEAK, AGHE = 1653

NC. CF	COUNTS OF ABOVE	FISSICN PRODUCT	ACTIVITY,	AVERAGED OVER LO	DWER LIMIT CHANNELS	88 TO	96 ≖	15243
101	38201	25199	13102	13354	12851			
109	42439	27219	13221	13481	12961			
				1,,,,,,	1,1,2,			

00	12121	24441	12224	12200	11001
87	69493	54963	14530	14883	14177
88	67272	52069	15:03	15349	14657
89	64717	49292	15425	15763	15388
90	52424	4696	15464	15795	15133
91	62161	45015	15146	15470	14922
92	57377	41991	159-6	1672?	15590
93	55730	4 281	15449	15758	15139
94	53544	38283	15261	15564	14958
95	51366	36445	14921	15217	14625
96	49187	34572	14658	14897	14319
97	46989	32736	14253	14535	13970
98	44798	30315	14473	14747	14177
9 9	42649	29952	13697	13964	13429
105	47439	27219	13221	13481	12961
	20.21				

NO. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY AS A FUNCTION OF LOWER CHANNEL LIMIT. LC CH LIM TOT COUNTS HKGD COUNTS NET FP COUNTS FP+ERROR FP-ERROR

12224

CESIUM-137 GAMMA RAY AT 661.6 KEV

7

24636

22553

81

82

D.(

.

NPEAK NELO NEUP NPGHE KEOK KHIR JAY KAY 3 86 171 113 112 114 2 5

50007

24257

21651

BACKGROUND COUNTS PER CHANNEL ON HIGH ENERGY SIDE OF PEAK, BGHE = 2273

	83	19521	19257	263	46-	66			
	84	16979	16623	356	540	173			
	85	145.3	14449	54	224	-116			
NC.	CF	COUNTS OF ABOVE	FISSION PRODUCT	ACTIVITY,	AVERAGED OVER	LOWER LIMIT CHANNELS	80 TO	84 =	372

379

4.7

617

616

1 25 0.0

15A

198

110/1

АРЕАК ALLO VLOP 23GHE KLOB КНІВ JAV КАУ 7 173 137 191 197 192 0 7

BACKGROUND COUNTS PER CHANMEL ON HIGH ENERGY SIDE OF PEAK, BGHE = 845

154	51394	2438	34314	346.51	34027			
154	53394	2438.	34314	34611	34027			
155	56831	23532	33300	33581	33116			
156	55199	23022	32177	32457	31997			
NC. OF	COUNTS OF ABOVE	FISSION PRODUCT	ACTIVITY,	AVERAGED OVER	LOWER LIMIT CHANNELS	147 TO	151 =	37889

37:97

38895

37994

37742

39471

38277

37382

37136

NO. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY AS A FUNCTION OF LOWER CHANNEL LIMIT LC CH LIM TOT COUNTS BKGD COUNTS NET FP COUNTS FP+ERROR FP-ERROR

38784

33586

37688

37430

ZIRCENIUM-95 GAMMA AT 757 KEV PLUS VIRBIUM-95 GAMMA AT 766 KEV

29565

28414

27975

26932

BACKGRO	DUNG COL	UNTS PE	R CHANN	EL ON H	IGH ENER	GY SIDE	OF PEAK,	83HE =	1370	
NPEAK 6	NLLO 147	NLUP 156	NHGHE 173	KLOH 171	5000 175	J 1 1	K 4 Y 5			

132 23596 23975 5721 5952 5499	
133 24157 22494 5663 5888 5438	
134 26715 21233 5432 5651 5212	
135 25247 21313 4934 5148 4721	
136 23715 18862 4953 5263 4647	
137 2.2183 17637 4496 4696 4297	
133 2 16 5 16 339 4 266 4 4 58 4 673	
139 10704 15359 3645 3830 3460	
NC. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY, AVERAGED OVER LOWER LIMIT CHANNELS 131	TO 136 =

LO CH LIM TOT COUNTS HKGD COUNTS NET FP COUNTS FP+ERROR FP-ERROR

NO. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY AS A FUNCTION OF LOWER CHANNEL LIMIT

ZIRCONIUM-95 GAMMA RAY AT 724 KEV

63349

67-04

65663

64273

. . .

NPEAK NLLO GLUP GAGHE KLOB PHIB JAY KAY 5 131 139 148 146 150 1 3

BACKGROUND COUNTS PER CHANNEL OF HIGH END GY SIDE OF PEAK, BGHE = 1446

	124	1 3 394	12772	127	981	663				
	125	11472	10563). 9	1 157	761			•	
NC.	CF	COUNTS OF ABOVE	FISSION PRODUCT	ACTIVITY,	AVERAGED OVER LOWER	LIMIT CHANNELS	118 10	123 =	114	2

5389

147

148

149

15)

CESIUM-134 GAMMA RAY 796 KEV // NO. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY AS A FUNCTION OF LOWER CHANNEL LIMIT

173	18256	15184	3072	3255	2889			
174	17388	1389	3498	3675	3321			
175	16575	13212	3363	3536	3191			
176	15751	12163	3589	3755	3421			
177	14961	12122	2839	3003	2674			
178	14075	11167	29:18	3067	2749			
179	13210	10851	2359	2514	2204			
180	12271	10142	2129	2279	1979			
NC. CF	CCUNTS OF ABOVE	FISSION PRODUCT	ACTIVITY,	AVERAGED OVER	LOWER LIMIT CHANNELS	173 TO	178 =	3211

FP-ERROR

. . . .

BACKGROUND COUNTS PER CHANNEL ON HIGH ENERGY SIDE OF PEAK, BGHE = 730

.

LO CH LIM TOT COUNTS BKGD COUNTS NET FP COUNTS FP+ERROR

۰.

•

BACKG	ROUND COUNTS PER	CHANNEL ON HIGH	ENERGY ST	DE OF PEAK, AGH	E = 388	
NC. OF	COUNTS OF AHOVE	FISSION PRODUCT	ACTIVITY,	AVERAGED OVER	LOWER LIMIT CHANNELS	376 TO 391 =
395	3116	6994	1132	1255	1009	
394	8625	6702	1983	2107	1859	
393	92.16	6821	2385	2512	2259	
. 392	9706	7107	2599	2728	2469	
391	17273	7.526	2677	2910	2544	
390	1 697	7942	2755	2892	2619	
389	11165	8136	3.29	316R	2890	
388	11670	8934	2736	2 87 9	2592	
387	12097	956 2	3535	3679	3391	
386	12538	9124	3414	3562	3267	
385	12987	9632	3357	3567	3206	
384	13450	10217	3233	3387	3079	
383	1 3 9 9 9	19468	3471	3587	3275	

FP-ERROR LO CH LIM TOT COUNTS BEAD COUNTS NET FP COUNTS FP+ERROR

PRASEODYMIUM-144 DOUBLE ESCAPE PEAK AT 1164 KEV (FOR 2186 KEV GAMMA) NO. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY AS A FUNCTION OF LOWER CHANNEL LIMIT

CH. NO. 376 392 408	VALU 465 500 391	ES OF 473 521 375	RAW COUM 453 569 358	42 - 636 436	Ct ANNEL 463 786 384	CPC(1 441 923 376	433 1056 365	449 945 430	463 749 00	449 541 00	441 464 99	427 440 00	505 417 00	468 361 00	494 390 00	497 388 00
NPE AK 8	NLL() 376	NLUP 395	NHGHE 407	KL03 474	KHIS 415	YAL	KAY 4									

. .

	376			4]	5		1	1
н.	NO.	VALUES	OF B	NAW COUNTS	PER	CHANNEL.	CPC(1)	

NPAN NC. OF FIRST CHANNEL NO. OF LAST CHANNEL NRUN

RUN D4, FF 2M19, 25 INCHES, CENTER-LLIF, CHS 376-415

-196-

161 19

IC. OF FI	RST CHANNEL	NO. 0F	LAST C	HANNEL	NRUN	NPAN										
96			1007		÷	1										
														÷		
H. NO. 960 976 992	VALUES OF 10 11 11 22 108 118	RAW COUN 8 11 132	TS PER 11 16 51	CFANNEL, 13 14 21	CPC(I) 13 16 5	15 24 4	16 28 4	8 25 1	11 30 2	5	8 50 4	5 51 1	15 76 3	19 *93 1	14 101 4_	· · · · ·
NPEAK ' 9	NLLO NLUP 960 983	N&GHE 999	KLD6 998	КНІВ. 1 7	JAY 3	KAY 10									_	
PRASEODY	MIUM-144 GAM	ма кау а	T 2186	KēV				• 1								
ND. OF C	CUNTS OF ABC	VE FISSI S BKGD	CN PROD	DUCT ACTI	VITY AS P COUNTS	A FUNCT	ION OF	LOWER CHA FP-ERR	NNEL LI	4IT						
960	1205		253		947		985	90	9							
961	1195		271		924		962	88	6							
962	1184		207		977	1	514	94	5							
963	1176		257		919		357						+			
					-		7,51		1							
964	1165		286		879		917	84	1							
964 965	1165 1152		286 278		879 874		917 912	84 83	1 6							
964 965 966	1165 1152 1139		286 278 334		879 874 835	•	917 912 873	80 84 83 79	1 1 6 7							
964 965 966 967	1165 1152 1139 1124		286 278 334 312		879 874 835 812	•	917 912 873 850	88 84 83 79 77	1 6 7 4							
964 965 966 967 968	1165 1152 1139 1124 1108		286 278 334 312 174		879 874 835 812 934	• • •	917 912 873 850 969	88 84 83 79 77 89	1 6 7 4 8							
964 965 966 967 968 969	1165 1152 1139 1124 1108 1100		286 278 334 312 174 215		879 874 835 812 934 385		917 912 873 850 969 921	88 84 83 79 77 89 84	1 6 7 4 8 8							
964 965 966 967 968 969 96 9 970	1165 1152 1139 1124 1108 1100 1289		286 278 334 312 174 215 118		879 874 835 812 934 385 971	1	917 912 873 850 969 921 905	88 84 83 79 77 89 84 93	1 1 6 7 4 8 8 8 6							
964 965 966 967 968 969 969 970 971	1165 1152 1139 1124 1158 1100 1089 1084		286 278 334 12 174 215 118 158		879 874 835 812 934 385 971 926	1	917 912 873 850 969 921 905 961	88 84 83 79 77 89 84 93 89	1 1 6 7 4 8 8 8 6 1							
964 965 966 967 968 969 970 971 97 2	1165 1152 1139 1124 1100 100 1089 1084 1076		286 278 304 312 174 215 118 158 111		879 874 835 812 934 385 971 926 965	1	917 912 873 850 969 921 905 961 200	83 84 83 79 77 89 84 93 89 93	1 6 7 4 8 8 6 1 1						•	
964 965 966 967 968 969 970 971 972 973	1165 1152 1139 1124 1108 1100 1084 1076 1071		286 278 334 312 174 215 118 158 111 242		879 874 835 812 934 385 971 926 965 829	1	917 912 873 850 969 969 921 905 961 900 866	83 84 79 77 89 84 93 89 93	1 1 6 7 4 8 8 6 6 1 1 3						•	
964 965 966 968 969 970 971 972 973 973 974	1165 1152 1139 1124 1158 1100 1089 1084 1076 1071 1056		286 278 334 312 174 215 118 158 111 242 285		879 874 835 812 934 885 971 926 965 829 771	1	917 912 873 855 969 921 969 961 961 9866 808	83 84 83 79 77 89 84 93 89 93 77	1 1 6 7 4 8 8 6 1 1 3 5						•••	
964 965 966 967 968 969 970 971 972 973 974 975	1165 1152 1139 1124 1108 1100 1084 1076 1071 1056 1037		286 278 334 312 174 215 118 158 111 242 285 211		879 874 835 934 934 971 926 965 829 771 825	1	917 912 873 855 969 921 969 961 966 866 808 868	684 83 79 77 89 84 93 93 79 73	1 1 6 7 4 8 8 6 1 1 3 5 5					- - -	•	
964 965 966 967 968 969 970 971 972 973 973 975 975 976	1165 1152 1139 1124 1108 1100 1084 1076 1071 1056 1037 1037		286 278 334 312 174 215 118 158 111 242 285 211 167		879 874 835 812 934 385 971 926 965 829 771 825 856	1	917 912 873 855 969 921 905 961 900 866 808 861 891	83 83 79 77 89 84 93 89 79 73 79 73 89	1 1 6 7 4 8 8 6 1 1 3 5 0 2					•	•••	
964 965 966 967 968 969 970 971 972 973 974 975 976 976 977	1165 1152 1139 1124 1100 1089 1084 1076 1071 1076 1071 1037 1023 1012		286 278 334 312 174 215 118 158 111 242 285 211 167 236		879 874 835 812 934 385 971 926 965 829 771 825 856 726	1	917 917 912 873 855 969 921 905 9061 900 866 808 808 8361 891 762	83 84 83 79 77 89 84 93 84 93 79 73 79 84	1 1 6 7 4 8 8 6 1 1 3 5 0 2 0						•••	
964 965 966 968 969 970 971 972 973 974 975 976 976 978	1165 1152 1139 1124 1158 1100 1084 1076 1071 1056 1037 1023 1012 990		286 278 334 174 215 118 158 111 242 285 211 167 236 153		879 874 835 812 934 385 971 926 965 829 771 825 856 856 837	1	917 917 912 873 855 969 921 969 921 965 961 900 866 808 808 808 808 808 808 808 808 8	83 84 83 79 77 89 84 93 89 79 73 79 82 69	11674886111350203					- - -	• •	
964 965 966 968 969 970 971 972 974 975 976 976 978 978	1165 1152 1139 1124 1108 1100 1089 1084 1076 1076 1077 1023 1012 999		286 278 334 174 215 118 158 111 242 285 211 167 236 198		879 874 835 934 935 971 926 965 829 771 825 856 726 837 781	1	917 912 873 855 969 921 905 961 900 866 808 808 808 801 891 762 871	684 83 79 77 89 84 93 89 93 73 73 89 89 89 89 89 89 80 89 80 80 80 80 80 80 80 80 80 80 80 80 80	116748861113502036						•	
964 965 966 967 969 970 971 972 977 975 977 977 978 977 978 978 978	1165 1152 1139 1124 1108 1100 1089 1084 1076 1071 1056 1071 1023 1012 990 979 963		286 278 334 312 174 215 118 158 111 242 285 211 167 236 153 196 169		879 874 835 934 935 971 926 965 829 771 826 856 726 837 781 784	1	917 912 873 855 969 921 905 961 900 866 808 8061 801 801 801 801 801 801 801 801 801 80	684 83 79 77 89 84 93 89 79 73 79 73 82 69 84 84 87 82 74	1167488611135020360	•				•	•••	
964 965 966 967 968 970 970 971 977 977 977 978 977 978 979 979 983 981	1165 1152 1139 1124 1108 1100 1084 1076 1071 1056 1071 1023 1012 990 979 963 949		286 278 374 312 174 215 118 158 111 242 285 211 167 286 153 198 169 185		879 874 835 812 934 385 971 926 965 829 771 826 826 726 837 781 799	1	917 917 917 917 917 917 912 85 95 95 95 95 95 95 95 95 95 95 95 95 95	83 84 83 79 77 89 84 93 79 84 93 79 73 79 85 80 74 76	1 1 6 7 4 8 8 6 1 1 3 5 3 2 3 3 6 0 6	•				•	•	
964 965 966 968 969 970 971 972 977 977 977 977 977 977 978 977 978 978	1165 1152 1139 1124 1100 1089 1084 1076 1071 1056 1071 1056 1037 1023 1012 995 979 963 949 933		286 278 334 174 215 118 158 111 242 285 211 167 236 153 196 169 185 242		879 874 835 934 385 971 9265 829 771 825 856 837 781 794 7691	1	917 917 912 873 855 969 921 962 962 962 9661 900 866 808 8691 762 871 815 871 815 828 328 328	83 84 83 79 77 89 84 93 79 83 79 73 79 82 69 74 76 80 74	1 1 6 7 4 8 8 6 1 1 3 5 3 2 3 3 6 0 6 7	•				•	•••	

BACKGROUND COUNTS PER CHANNEL ON HIGH ENERGY SIDE OF PEAK, HGHE = 3

. N

5

-197-

TABLE E.6

FORTRAN LISTING OF "GRAPIN"

c c	GRAPIN, CODE TO CALC THE NET INTEGRAL UNDER A GAMMA RAY PEAK DUE TO A KNOWN RADIONUCLIDE, INCLUDING BACKGROUND SUBTRACTION, FOR
C	SPECTRA OBTAINED WITH LITHIUM DRIFT GERMANIUM DETECTORS DIMENSION CF 2(1025), TCH(1025), BKCH(1025), FPTOT(1025),
	1ERSQ(1025), ERR(1025), FPTOP(1025), FPTCM(1025)
	5 RFAD 2
	2 FORMAT(72H
	1
	READ 8, NCH1, NCHL, NRUN, NPAN
8	FORMAT(416)
	READ 9. (CPC(I), I=NCH1.NCHL)
9	$FORMAT(8(F6 \cdot 0 \cdot 1X))$
•	PRINT 2
	PRINT 50. NCHI.NCHL.NRUN.NPAN
50	FORMATIGIHOND. OF FIRST CHANNEL NO. OF LAST CHANNEL NRUN
50	1×10^{-1} (77 × 14 · 19 × 14 · 12 × 13 · 7 × 13))
55	FORMAT (52HOCH, NO, VALUES OF RAW COUNTS PER CHANNEL (PC(I))
22	
	J = N(H1 + 12)
59	
60	
	(F (NCHE-JEND))()))))))
61	JCHAN+JCHAN+16
	JBEG=JBEG+16
	JEND=JEND+16
	GO TO 59
10	RFAD 12 NPEAK NELO NEUP NBGHE KEUB KHIDI JAI KAT
12	FORMAT (816)
C	CALCN OF HIGH ENERGY PART OF BACKGROUND BEEGW GRAMMA FEARFOODE
10	
~	SUMMATION OF TOTAL COUNTS HNDER PEAK
C	SUMMATION OF TOTAL COUNTS ONDER LEAR
~ ~	
20	NO OF COUNTS UNDER THE PEAK AS A FUNCTION OF LOWER
Ċ	NUL OF COUNTY UNDER THE FEAR AS A FOREITOR OF EDUCA
(_	
2 E	
27	NO OF RACKGROUND COUNTS AS A FUNCTION OF LOWER CHAN'IEL LIMIT
C	NUL OF BACKGROUND COUNTS AS A FORCETON OF EACH CHARTER ET
~ ~	
30	NO TOE COUNTS OF EISSION PRODUCT ACTIVITY AS A FUNCTION
	NU OF CUURTS OF FISTING PRODUCT ACTIVITY AS A FUNCTION
C	CHM4=A.
	JUNTEVE

-198-

	DO 36 J=NLLO,NLUP
	FPTOT(J) = TCH(J) - BKCH(J)
	FRSQ(J) = TCH(J) + BKCH(J)
35	FRR(J) = SORTE(FRSQ(J))
	FPTOP(A) = FPTOT(A) + FRP(A)
36	FPTOM(1) = FPTOT(1) - FRR(1)
.0	
4.0	
40	
4 5	
70	CONNATION DEAK INCLUTION OF INCOMPLETE KIND ATTACT AND
10	FORMATIO/HUNFFAR NEED NEUF NOUME REUD RHID DAT RAT
	CO TO (90.81.82.83.84.85.86.87.88.80.90.91NPFAK
P O	
801	EOPMAT(33H) CESTUM-134 GAMMA RAY AT 604 KEV//)
001	
01	
811	FORMAT(38H RUTHENIUM-106 GAMMA RAY AT 624 KEV //)
011	GO TO 700
82	
821	FORMAT(35H CESTUM-137 GAMMA RAY AT 661.6 KEV $//$)
021	CO TO 700
02	DDINT 931
י ה פ א ו	FORMATIANH DRASEODYMIUM-144 GAMMA RAY AT 697 KEV 771
071	CO TO 700
0/	
04 841	ECOMATISH TIRCONTUM-95 GAMMA RAY AT 724 KEV //N
041	CO TO 700
85	DPINT 851
851	FORMATIGAH ZIRCONTUM-95 GAMMA AT 757 KEV PLUS NIOBIUM-95 GAMMA AT
1001	1766 KEV //)
86	PRINT 861
861	FORMAT(33H0 CESTUM-134 GAMMA RAY 796 KEV //)
001	
87	PRINT 871
871	FORMAT(72H PRASEODYMIUM-144 DOUBLE ESCAPE PEAK AT 1164 KEV (FOR
	12186 KFV GAMMA) //)
	GO TO 700
88	PRINT 881
881	FORMAT(40H PRASEODYMIUM-144 GAMMA RAY AT 2186 KEV //)
	GO TO 700
89	PRINT 891
891	FORMAT(68H LANTHANUM-140 DOUBLE ESCAPE PEAK AT 1498 KEV (FOR 2520
	IKEV GAMMA) //)
	GO TO 700
90	PRINT 901
901	FORMAT(37H LANTHANUM-140 GAMMA RAY AT 1597 KEV //)
	GO TO 700
91	PRINT 911
911	FORMAT (37H - LANTHANUM-140 GAMMA RAY AT 2520 KEV //)

-199-

• 1
- 700 PRINT 71
- 71 FORMAT(86H NO. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY AS A F IUNCTION OF LOWER CHANNEL LIMIT) PRINT 711
 - 711 FORMAT(79HOLO CH LIM TOT COUNTS BKGD COUNTS NET FP COUNTS IFP+FRROR FP-FRROR //)
 - DO 72 J=NLLO,NLUP
 - 72 PRINT 75, J, TCH(J), BKCH(J), FPTOT(J), FPTOP(J), FPTOM(J)
 - 75 FORMAT(17,5(6X,F8.0)) PRINT 77,NAVLO,NAVHI,FPAV
- 77 FORMAT(85H NO. OF COUNTS OF ABOVE FISSION PRODUCT ACTIVITY, AVERAG 1ED OVER LOWEP LIMIT CHANNELS ,14,4H TO ,14,3H = ,F8.0) PRINT 78, BGHE
 - 78 FORMAT(68H0 BACKGROUND COUNTS PER CHANNEL ON HIGH ENERGY SIDE OF P 1FAK, BGHF = , F8.0) NPAN=NPAN-1
 - IF(NPAN) 781,781,780
- 780 60 10 10
- 781 IF(NRUN) 785,785,784
- 784 GO TO 5
- 785 CALL EXIT
 - FND

. . . .

APPENDIX F

DATA ON FUEL ELEMENT EXPERIMENTS AND RESULTS OF CALCULATIONS OF NET COUNTS OF FISSION PRODUCT GAMMA-RAYS

1. Fuel Element 2M19

Gamma-ray spectra from 2M19 were obtained in the "D" series of experiments (May 5 to 11, 1965). An 1/8 in. dia. aperature collimator was used in the bottom position of the gamma-ray beam tube and a lead absorber, 0.135 in. thick, was placed in the beam. The 1.6 cm² area n⁺ contact of the detector was orientated normal to the photon beam. Each spectrum was recorded for 80 minutes. Analyzer dead time was a maximum of 4 to 6% at the fuel midplane position.

The results of the GRAPIN code used for calculating the net counts of fission product gamma-rays are presented in Table F.1 in the chronological order of the experiments. The following gamma-ray peaks were analyzed: Cs^{134} at 605 keV and 796 keV, Rh^{106} at 624 keV, Cs^{137} at 662 keV, Pr^{144} at 697 keV, Zr^{95} at 724 keV, the partially resolved peaks of Zr^{95} at 758 keV and Nb⁹⁵ at 766 keV, and the double escape peak at 1164 keV and photopeak at 2186 keV of Pr^{144} .

-201-

.

TABLE F.1 NET COUNTS OF FISSION PRODUCT GAMMA-RAYS AT VARIOUS POSITIONS FOR FUEL ELEMENT 2M19 AFTER NINE MONTHS COOLING TIME

Run	Position Below Fuel Midplane, Inches	Ca ¹³⁴ at 605 keV	Cs ¹³⁴ at 796 keV	Rh ¹⁰⁶ at 624 keV	Cs ¹³⁷ at 662 keV
D4	-1 ē.	3496 <u>+</u> 312	3211 <u>+</u> 183	319 <u>+</u> 232	15,243 <u>+</u> 346
D 5	0 L	3665 <u>+</u> 362	3079 <u>+</u> 183	434 <u>+</u> 232	16 ,0 12 <u>+</u> 345
D 6	+ 2 🛍	3364 <u>+</u> 351	3048 <u>+</u> 158	231 <u>+</u> 216	14,771 <u>+</u> 340
D7	+4 ē.	3094 <u>+</u> 349	2934 <u>+</u> 162	455 <u>+</u> 210	14,528 <u>+</u> 332
D 8	+6 č .	2964 <u>+</u> 339	2410 <u>+</u> 155	195 <u>+</u> 219	13,987 <u>+</u> 326
D9	+8 ēL	2413 <u>+</u> 330	2629 <u>+</u> 163	231 <u>+</u> 213	13,861 <u>+</u> 318
DIO	+ 10 ē.	1913 <u>+</u> 314	2384 <u>+</u> 155	128 <u>+</u> 201	13,179 <u>+</u> 303
D11	+ 11 ē.	2223 <u>+</u> 307	1885 <u>+</u> 154	262 <u>+</u> 190	13,743 <u>+</u> 296
D12	- 2 E	3205 <u>+</u> 345	2964 <u>+</u> 170	553 <u>+</u> 221	14,404 <u>+</u> 331
D13	-4ē.	2638 <u>+</u> 337	25 88<u>+</u>17 0	398 <u>+</u> 218	13,921 <u>+</u> 325
D14	-6 đ.	2066 <u>+</u> 325	2334 <u>+</u> 162	11 <u>+</u> 202	13,158 <u>+</u> 312
D15	- 8 52.	1824 <u>+</u> 311	1947 <u>+</u> 157	427 <u>+</u> 202	11,762 <u>+</u> 300
D16	- 10 z	1648 <u>+</u> 300	1479 <u>+</u> 150	603 <u>+</u> 238	11,566 <u>+</u> 282
D17	- 11 ē.	1117 <u>+</u> 262	1261 <u>+</u> 134	374 <u>+</u> 170	10,355 <u>+</u> 255
D18	-1 E	3454 <u>+</u> 370	2866 <u>+</u> 176	206 <u>+</u> 215	14,778 <u>+</u> 350
D19	- 1 ¹ 2, OUT	3556 <u>+</u> 370	2753 <u>+</u> 178	493 <u>+</u> 222	15,259 <u>+</u> 336
D20	- 1:1" OUT	3785 <u>+</u> 367	2919 <u>+</u> 170	308 <u>+</u> 220	15,212 <u>+</u> 330
D21	$-1:\frac{1}{2}$ IN	3485 <u>+</u> 370	2998 <u>+</u> 177	192 <u>+</u> 220	15,256 <u>+</u> 334
D22	- 1:1" IN	3371 <u>+</u> 369	2788 <u>+</u> 178	-48 <u>+</u> 223	15,972 <u>+</u> 330
D23	- 6:1" IN	2598 <u>+</u> 345	1951 <u>+</u> 163	105 <u>+</u> 208	13,987 <u>+</u> 325
D24	$-6:\frac{1}{2}$ IN	2233 <u>+</u> 323	2096 <u>+</u> 165	-107 <u>+</u> 211	13,527 <u>+</u> 314
D25	-6 E	2110 <u>+</u> 324	1904 <u>+</u> 165	-79 <u>+</u> 210	12,551 <u>+</u> 313
D26	$-6:\frac{1}{2}$, OUT	1967 <u>+</u> 300	2108 <u>+</u> 168	47 <u>+</u> 212	13,173 <u>+</u> 314
D27	- 6:1" OUT	2289 <u>+</u> 345	2505 <u>+</u> 160	+0 <u>+</u> 209	13,444 <u>+</u> 322

۰,

TABLE F.1 (cont'd.)

	and the second					
Run	Pos'n Below Fuel Midpl. Inches	Pr¹⁴⁴ at 697 keV	2r ⁹⁵ at 724 keV	Zr ⁹⁵ -Nb ⁹⁵ at 760 keV	Pr ¹⁴⁴ Doub.Escape at 1164 keV	Pr ¹⁴⁴ at 2186 keV
D4	-1 2	1142 <u>+</u> 210	5389 <u>+</u> 238	37,501 <u>+</u> 313	3297 <u>+</u> 175	893 <u>+</u> 38
D5	5 0	1227 <u>+</u> 185	5591 <u>+</u> 240	38,298 <u>+</u> 315	3315 <u>+</u> 175	904 <u>+</u> 46
D 6	+ 2 B	1140 <u>+</u> 191	4956 <u>+</u> 235	36 , 320 <u>+</u> 308	2927 <u>+</u> 171	805 <u>+</u> 36
D7	+4 E	1153 <u>+</u> 202	5099 <u>+</u> 230	36,191 <u>+</u> 305	2837 <u>+</u> 162	736 <u>+</u> 36
D 8	+6 E	1161 <u>+</u> 198	4965 <u>+</u> 226	35,278 <u>+</u> 298	2 4 57 <u>+</u> 164	741 <u>+</u> 34
D9	+ 8. 🛍	1120 <u>+</u> 191	4528 <u>+</u> 220	33,809 <u>+</u> 290	2674 <u>+</u> 159	719 <u>+</u> 35
D10	+ 10 B	1265 <u>+</u> 184	4656 <u>+</u> 212	33,265 <u>+</u> 281	2128 <u>+</u> 156	679 <u>+</u> 36
D11	+ 11 B	912 <u>+</u> 175	4616 <u>+</u> 207	33,182 <u>+</u> 278	2610 <u>+</u> 152	711 <u>+</u> 33
D12	- 2 B	1076 <u>+</u> 202	4834 <u>+</u> 231	35,990 <u>+</u> 304	2674 <u>+</u> 170	796 <u>+</u> 35
D13	-4 E	1185 <u>+</u> 212	5071 <u>+</u> 225	34,066 <u>+</u> 297	2617 <u>+</u> 168	831 <u>+</u> 37
D14	-6 E	1053 <u>+</u> 205	4702 <u>+</u> 220	32,298 <u>+</u> 289	2638 <u>+</u> 1 6 0	765 <u>+</u> 36
D15	- 8 L	998 <u>+</u> 197	4429 <u>+</u> 212	30,679 <u>+</u> 277	2537 <u>+</u> 157	696 <u>+</u> 33
D1 6	- 10 ē.	993 <u>+</u> 182	4379 <u>+</u> 198	29,451 <u>+</u> 265	22 9 5 <u>+</u> 150	643 <u>+</u> 32
D17	- 11 &	666 <u>+</u> 159	3641 <u>+</u> 176	23,404 <u>+</u> 240	1924 <u>+</u> 132	506 <u>+</u> 30
D1 8	-1 b	1027 <u>+</u> 216	4912 <u>+</u> 233	35,508 <u>+</u> 303	3106 <u>+</u> 170	820 <u>+</u> 37
D19	$-1:\frac{1}{2}$, OUT	1110 <u>+</u> 220	4645 <u>+</u> 233	35,024 <u>+</u> 307	3110 <u>+</u> 170	862 <u>+</u> 36
D20	- 1:1" OUT	1043 <u>+</u> 210	4705 <u>+</u> 211	34,871 <u>+</u> 300	3007 <u>+</u> 165	849 <u>+</u> 37
D21	$-1:\frac{1}{2}$ IN	1024 <u>+</u> 218	4967 <u>+</u> 232	35 ,881<u>+</u>30 6	3174 <u>+</u> 170	828 <u>+</u> 35
D22	- 1:1" IN	848 <u>+</u> 215	4748 <u>+</u> 229	34,577 <u>+</u> 303	2657 <u>+</u> 167	807 <u>+</u> 36
D23	- 6:1" IN	1047 <u>+</u> 200	4378 <u>+</u> 215	32,782 <u>+</u> 286	2534 <u>+</u> 157	658 <u>+</u> 33
D24	$-6:\frac{1}{2}$ IN	907 <u>+</u> 205	4546 <u>+</u> 220	32,134 <u>+</u> 287	2638 <u>+</u> 159	648 <u>+</u> 35
D25	- 6 1	1081 <u>+</u> 200	4186 <u>+</u> 219	31,188 <u>+</u> 287	2562 <u>+</u> 158	752 <u>+</u> 33
D26	$-6:\frac{1}{2}$ OUT	1106 <u>+</u> 191	4329 <u>+</u> 217	31,369 <u>+</u> 287	2665 <u>+</u> 161	740 <u>+</u> 36
D27	- 6:1" OUT	1177 <u>+</u> 200	4549 <u>+</u> 214	31,809 <u>+</u> 282	2633 <u>+</u> 157	700 <u>+</u> 34

•

TABLE F.1 (cont'd.)

Run	Position Below Fuel Midplane, Cs ¹³⁴ at Inches 605 keV		Cs ¹³⁴ at 796 keV	Rh ¹⁰⁶ at 624 keV	Cs ¹³⁷ at 662 keV		
D28	+ 6:1" OUT	2871 <u>+</u> 356	2236 <u>+</u> 169	166 <u>+</u> 215	15,075 <u>+</u> 320		
D29	+ 6: <u>1</u> " OUT	2727 <u>+</u> 347	2588 <u>+</u> 170	437 <u>+</u> 217	14,288 <u>+</u> 324		
D30	+6 L	2916 <u>+</u> 357	2518 <u>+</u> 170	337 <u>+</u> 218	13,960 <u>+</u> 323		
D31	+ $6\frac{1}{2}$ " IN	3086 <u>+</u> 358	2989 <u>+</u> 168	377 <u>+</u> 215	14,808 <u>+</u> 323		
D32	+ 6 1" IN	3383 <u>+</u> 354	2744 <u>+</u> 165	212 <u>+</u> 213	15,023 <u>+</u> 319		
D33	+11 <u>1</u> &	2662 <u>+</u> 316	2155 <u>+</u> 153	301 <u>+</u> 200	16,605 <u>+</u> 301		
D34	+12 b	361 <u>+</u> 192	405 <u>+</u> 115		2,046 <u>+</u> 194		
	TRANSVERSE SCAN VIEWING EDGES OF FUEL PLATES						
		AT - 1 INCH	BELOW FUEL	MIDPLANE			
D35	Þ	2076<u>+</u>3 28	2475 <u>+</u> 164	172 <u>+</u> 213	12,184 <u>+</u> 330		
D 36	16" OUT	1994 <u>+</u> 299	1506 <u>+</u> 161	120 <u>+</u> 196	8, 485 <u>+</u> 306		
D37	2" OUT	2697 <u>+</u> 340	2986 <u>+</u> 170	630 <u>+</u> 218	13,746 <u>+</u> 344		
D 38	3" OUT	2536 <u>+</u> 328	2186 <u>+</u> 170	395 <u>+</u> 211	11,987 <u>+</u> 320		
D39	$\frac{4}{16}$ OUT	2265 <u>+</u> 310	2084 <u>+</u> 164	436 <u>+</u> 202	9,311 <u>+</u> 314		
D40	5" OUT	3172 <u>+</u> 390	2851 <u>+</u> 170	321 <u>+</u> 219	14,172 <u>+</u> 340		
D41		2430 <u>+</u> 325	2554 <u>+</u> 169	439 <u>+</u> 209	11,692 <u>+</u> 330		
D42		2585 <u>+</u> 313	2232 <u>+</u> 164	207 <u>+</u> 204	10,229 <u>+</u> 320		
D43		3073 <u>+</u> 339	2758 <u>+</u> 171	366 <u>+</u> 217	14,151 <u>+</u> 325		
D44	l" out	3743 <u>+</u> 349	3335 <u>+</u> 175	615 <u>+</u> 220	14,784 <u>+</u> 347		
D45	$\frac{1}{2}$ " IN	1841 <u>+</u> 304	1997 <u>+</u> 162	99 <u>+</u> 196	8,270 <u>+</u> 295		
D 46	או "ב	3194 <u>+</u> 333	2671 <u>+</u> 165	577 <u>+</u> 211	12,675 <u>+</u> 318		

F.5

TABLE F.1 (cont'd)

Run	Pos'n Below Fuel Midpl. Inches	Pr¹⁴⁴ at 697 keV	Zr ⁹⁵ at 724 keV	Zr ⁹⁵ +Nb ⁹⁵ at 760 keV	Pr ¹⁴⁴ at 1164 keV	Pr ¹⁴⁴ at 2186 keV		
D 28	+ 6:1" OUT	1072 <u>+</u> 208	4707 <u>+</u> 220	33,104 <u>+</u> 294	2830 <u>+</u> 160	732 <u>+</u> 36		
D29	+ 6: <u>1</u> " OUT	1068 <u>+</u> 208	4640 <u>+</u> 222	33,498 <u>+</u> 295	2707 <u>+</u> 160	743 <u>+</u> 35		
D30	+6 b	796 <u>+</u> 212	4595 <u>+</u> 227	34,196 <u>+</u> 296	2702 <u>+</u> 160	751 <u>+</u> 35		
D31	+ $6:\frac{1}{2}"$ IN	1157 <u>+</u> 210	4733 <u>+</u> 223	34,359 <u>+</u> 295	2626 <u>+</u> 163	746 <u>+</u> 34		
D32	+ 6:1" IN	1110 <u>+</u> 200	4995 <u>+</u> 217	34,489 <u>+</u> 290	2123 <u>+</u> 155	744 <u>+</u> 33		
D33	+11 <u>2</u> ē.	1071 <u>+</u> 190	5269 <u>+</u> 206	37,297 <u>+</u> 283	2762 <u>+</u> 155	738 <u>+</u> 38		
D34	+ 12 L	29 <u>5+</u> 127	821 <u>+</u> 140	5,666 <u>+</u> 169	1218 <u>+</u> 112	319 <u>+</u> 22		
	TRANSVERSE SCAN VIEWING EDGES OF FUEL PLATES AT -1 INCH BELOW FUEL MIDPLANE							
D35	0	909 <u>+</u> 191	4330 <u>+</u> 219	28,952 <u>+</u> 283	2659 ±161	732 <u>+</u> 34		
D 36	$\frac{1}{16}$, OUT	764 <u>+</u> 184	2719 <u>+</u> 197	19,533 <u>+</u> 258	2491 <u>+</u> 151	727<u>+</u>3 3		
D37	$\frac{1}{8}$ OUT	806 <u>+</u> 196	4639 <u>+</u> 225	33,124 <u>+</u> 296	2889 <u>+</u> 163	686 <u>+</u> 33		
D 38	2" OUT	892 <u>+</u> 193	3880 <u>+</u> 217	28,664 <u>+</u> 283	2541 <u>+</u> 164	698 <u>+</u> 35		
D39		628 <u>+</u> 187	2807 <u>+</u> 210	22 ,402<u>+</u>27 8	2794 <u>+</u> 160	668 <u>+</u> 34		
D40	16" OUT	933 <u>+</u> 197	4756 <u>+</u> 222	32,769 <u>+</u> 290	2677 <u>+</u> 164	776 <u>+</u> 35		
D41		895 <u>+</u> 192	3931 <u>+</u> 216	26,950 <u>+</u> 280	2536 <u>+</u> 162	714 <u>+</u> 33		
D42	7" OUT	904 <u>+</u> 188	3331 <u>+</u> 20 9	23,547 <u>+</u> 268	2653 <u>+</u> 161	682 <u>+</u> 35		
D43	$\frac{1}{2}$ " OUT	951 <u>+</u> 196	4388 <u>+</u> 221	31,925 <u>+</u> 292	2674 <u>+</u> 162	713 <u>+</u> 33		
D44	l" OUT	1011 <u>+</u> 196	4454 <u>+</u> 224	33,525 <u>+</u> 299	2998 <u>+</u> 167	825 <u>+</u> 38		
D45	1/2" IN	764 <u>+</u> 181	2552 <u>+</u> 206	20,493 <u>+</u> 261	2385 <u>+</u> 158	65 0<u>+</u>3 5		
D46	l" IN	844 <u>+</u> 190	4083 <u>+</u> 217	30,507 <u>+</u> 284	2594 <u>+</u> 160	678 <u>+</u> 36		

2. Fuel Element 2M22

Spectra from 2M22 were obtained in the "H" series of experiments (May 19 to 21, 1965). The bottom collimator had a 1/8 in. aperature diameter and 0.135 in. Pb absorber was placed in beam. Eighty (80) min. runs were made. Other experimental conditions were as given in F.1 above.

The net fission product gamma-ray counts calculated by GRAPIN are presented in Table F.2 for Cs^{134} , Rh^{106} , Cs^{137} , Zr^{95} , Nb^{95} and Pr^{144} .

The results of four experiments to determine the reproducibility of techniques are shown in Table F.3. Before each of these runs, the scanning mechanism was moved in lateral and transverse directions then repositioned at the fuel midplane centerline (0 in. **c**). Spectra were recorded for 40 min.

The mean values for each gamma-ray are given along with maximum and mean deviations of the individual values from the mean. In all cases, the mean deviation was less than 1.5 times the statistical uncertainty of the calculation for the net counts. The maximum deviation for one case was 2.8 times the statistical error (Run H23, Cs^{137}), but for the others was less than this. It was concluded that the experimental techniques and the method of calculating gamma-ray intensities enabled results to be reproduced with uncertainties on the average being about twice the statistical uncertainties.

-206-

TABLE F.2

NET COUNTS OF FISSION PRODUCT GAMMA-RAYS AT

VARIOUS POSITIONS FOR FUEL ELEMENT 2M22

AFTER 12 YEARS COOLING

Run	Position Below Fuel Midplane, Inches	Cs ¹³⁴ at 605 keV	Rh ¹⁰⁶ at 624 keV	Cs ¹³⁷ at 662 keV	Pr ¹⁴⁴ at 697 keV
Hl	O ē.	7788 <u>+</u> 288	689 <u>+</u> 163	25,055 <u>+</u> 280	1172 <u>+</u> 155
Н2	- 2 b	7103 <u>+</u> 285	462 <u>+</u> 164	24,172 <u>+</u> 277	1148 <u>+</u> 151
нз	-4 E	6350 <u>+</u> 272	740 <u>+</u> 159	22,646 <u>+</u> 270	1001 <u>+</u> 148
H4	-б ё .	5198 <u>+</u> 259	505 <u>+</u> 152	21,351 <u>+</u> 257	992 <u>+</u> 142
H5	- 8 L	4298 <u>+</u> 238	565 <u>+</u> 142	19,898 <u>+</u> 245	898 <u>+</u> 133
н6	- 10 ē.	3326 <u>+</u> 220	439 <u>+</u> 131	18,448 <u>+</u> 227	807 <u>+</u> 125
H7	- 11 E	3536 <u>+</u> 216	36 0<u>+</u>129	20,067 <u>+</u> 225	897 <u>+</u> 121
н8	+ 2 B	7351 <u>+</u> 287	665 <u>+</u> 166	24,248 <u>+</u> 280	1154 <u>+</u> 152
н9	+4 E	6857 <u>+</u> 281	571 <u>+</u> 161	24,475 <u>+</u> 277	1048 <u>+</u> 151
ніо	+6 🛍	6728 <u>+</u> 271	356 <u>+</u> 156	23,547 <u>+</u> 268	1084 <u>+</u> 149
нл	+8 č .	5214 <u>+</u> 259	448 <u>+</u> 151	22 , 909 <u>+</u> 260	946 <u>+</u> 142
н12	+ 10 E	5041 <u>+</u> 245	418 <u>+</u> 143	22,802 <u>+</u> 251	1199 <u>+</u> 133
H13	+113 2	2167 <u>+</u> 181	178 <u>+</u> 109	9,852 <u>+</u> 183	501 <u>+</u> 108
H14	OE	7238 <u>+</u> 288	421 <u>+</u> 166	24 , 148 <u>+</u> 278	1049 <u>+</u> 160
н15		7181 <u>+</u> 290	591 <u>+</u> 166	24,651 <u>+</u> 281	1108 <u>+</u> 155
H16	O:1" OUT	8365 <u>+</u> 292	596 <u>+</u> 166	26 , 955 <u>+</u> 283	1300 <u>+</u> 158
H17	0:1/2" IN	7584 <u>+</u> 289	532 <u>+</u> 167	24,747 <u>+</u> 282	1070 <u>+</u> 154
н18	O:1" IN	8047 <u>+</u> 289	416 <u>+</u> 165	26,511 <u>+</u> 282	1093 <u>+</u> 151

,

TABLE F.2 (cont'd.)

Run	Pos'n Below Fuel Midpl. Inches	Zr ⁹⁵ at 724 keV	2r ⁹⁵ +Nb ⁹⁵	Cs ¹³⁴ at 796 keV	Pr ¹⁴⁴ at 1164 keV	Pr ¹⁴⁴ at 2186 keV
ні	о в	464 <u>+</u> 140	3232 <u>+</u> 174	4774 <u>+</u> 173	1836 <u>+</u> 142	476 <u>+</u> 28
Н2	- 2 E	358 <u>+</u> 140	3050 <u>+</u> 171	4944 <u>+</u> 168	2015 <u>+</u> 140	488 <u>+</u> 29
H3	-4 ēL	437 <u>+</u> 136	2814 <u>+</u> 167	4184 <u>+</u> 164	1902 <u>+</u> 137	422 <u>+</u> 28
H4	- 6 B	418 <u>+</u> 128 ·	2651 <u>+</u> 160	3879 <u>+</u> 155	1675 <u>+</u> 131	414 <u>+</u> 36
H5	- 8 b	539 <u>+</u> 122	2695 <u>+</u> 151	2920 <u>+</u> 146	1588 <u>+</u> 127	374 <u>+</u> 28
H6	- 10 E	298 <u>+</u> 114	2381 <u>+</u> 140	2109 <u>+</u> 136	1320 <u>+</u> 118	362 <u>+</u> 25
H7	- 11 2	501 <u>+</u> 108	2841 <u>+</u> 136	2478 <u>+</u> 130	1404 <u>+</u> 119	342 <u>+</u> 25
н8	+ 2 ēL	561 <u>+</u> 139	2793 <u>+</u> 177	4760 <u>+</u> 172	1893 <u>+</u> 142	498 <u>+</u> 31
Н9	+ 4 E	400 <u>+</u> 139	2837 <u>+</u> 170	4584 <u>+</u> 171	1714 <u>+</u> 142	-
HIO	+6 🛍	522 <u>+</u> 131	2855 <u>+</u> 169	4378 <u>+</u> 163	1875 <u>+</u> 138	464 <u>+</u> 28
нл	+ 8 L	391 <u>+</u> 129	3070 <u>+</u> 160	3819 <u>+</u> 156	1965 <u>+</u> 131	471 <u>+</u> 28
H12	+ 10 2	441 <u>+</u> 123	2823 <u>+</u> 152	3457 <u>+</u> 147	1701 <u>+</u> 127	407 <u>+</u> 30
H13	+11 ³ "&	198 <u>+</u> 97	1024 <u>+</u> 117	1626 <u>+</u> 116	953 <u>+</u> 102	269 <u>+</u> 23
н14	OE	-	-	4896 <u>+</u> 171	1817 <u>+</u> 146	491 <u>+</u> 30
н15		550 <u>+</u> 139	2915 <u>+</u> 172	5345 <u>+</u> 172	1896 <u>+</u> 141	5 20<u>+</u>2 9
н16	O:1" OUT	442 <u>+</u> 140	3232 <u>+</u> 172	5718 <u>+</u> 172	1916 <u>+</u> 142	496 <u>+</u> 30
H17	$0:\frac{1}{2}"$ IN	343 <u>+</u> 140	2992 <u>+</u> 173	5188 <u>+</u> 172	1882 <u>+</u> 140	541 <u>+</u> 31
н18	O:1" IN	427 <u>+</u> 135	2942 <u>+</u> 170	5449 <u>+</u> 168	1810 <u>+</u> 140	488 <u>+</u> 30

TABLE F.3

RESULTS OF EXPERIMENTS TO DETERMINE

REPRODUCIBILITY OF TECHNIQUES

ON FUEL ELEMENT 2M22 AT O IN. AND CENTERLINE

Run	Cs ¹³⁴ at 605 keV	Cs ¹³⁷	Pr ¹⁴⁴ at 697 keV	Zr ⁹⁵ +Nb ⁹⁵	Cs ¹³⁴ at 796 keV
H22	2 4 18 <u>+</u> 178	7906 <u>+</u> 154	472 <u>+</u> 84	950 <u>+</u> 94	1730 <u>+</u> 94
H23	2188 <u>+</u> 178	8434<u>+</u>15 8	484 <u>+</u> 84	941 <u>+</u> 94	1720 <u>+</u> 94
H24	2148<u>+</u>17 9	7854 <u>+</u> 154	249 <u>+</u> 84	683 <u>+</u> 100	1888 <u>+</u> 94
H25	2613 <u>+</u> 179	7785 <u>+</u> 158	518 <u>+</u> 84	663 <u>+</u> 98	1733 <u>+</u> 94
Mean	2342	7995	431	809	1768
Max. Deviation	+ 271	+ 439	- 182	- 146	+ 120
Mean Deviation	174	220	91	136	60

3. Fuel Element 2M31

Gamma-ray spectra were obtained for 2M31 about 11 days after its removal from the reactor flux (May 14-15, 1965). Background radiation levels near the detector were high (> 300 mr/hr) because the six feet of water was insufficient to provide adequate shielding against the high levels of fission product activities in the element. The amount of lead shielding placed around the detector dewar was limited by the strength of the scanning carriage. The energy resolution of the detector was consequently rather poor due to the high count rates. Collimators at the bottom and the top of the beam tube had aperature diameters of 1/16 in. and 1/4 in. respectively. A total of 0.52 in. of lead shielding was placed in the beam to reduce low energy count rates. Twenty minute runs were made.

Only the La¹⁴⁰ gamma-ray peak at 1597 keV was recorded. The results of the intensity calculations are given in Table F.4.

-210-

TABLE F.4 NET COUNTS OF Le¹⁴⁰ GAMMA-RAYS

AT 1597 KeV FOR FUEL ELEMENT 2M31

AFTER 11 DAYS COOLING

Run	Position Below Fuel Midplane, Inches	La ¹⁴⁰ at 1597 keV
E 12	- 8 b	5230 <u>+</u> 138
F1 3	- 10 🛍	4934 <u>+</u> 130
E14	- 11 B	4247 <u>+</u> 120
E1 5	- 6 E	5519 <u>+</u> 138
E 16	-4 b	5743 <u>+</u> 142
El 8	- 11 B	4148 <u>+</u> 120
E 19	- 10 Ł	4646 <u>+</u> 127
E 20	- 8 L	4986 <u>+</u> 134
E21	-6 b	5369 <u>+</u> 135
E 22	-4 E .	5553 <u>+</u> 140
E 23	- 2 L	5696 <u>+</u> 149
E 24	0 Ł	5745 <u>+</u> 142
E 25	+2 č .	5873 <u>+</u> 153
E 26	+4 ਵ.	5866 <u>+</u> 142
E 27	+6 ē.	5517 <u>+</u> 147
E 28	+8 ē.	5541 <u>+</u> 139
E 29	+ 10 🛃	5428 <u>+</u> 143
E30	+ 12 č.	783 <u>+</u> 81

-211-

4. Fuel Element 2-4

Spectra from 2-4 were obtained in the "F" series of experiments (May 16-17, 1965). Because of the long cooling time of this element (3 years), most of the fission product activities had decayed. To obtain acceptable count rates for the Cs^{137} gamma-ray, no collimators were installed in the beam. Thus, the only collimation was provided by the internal diameter of the beam tube which was 1/2 in. A lead absorber, 0.135 in. thick, was placed in the beam to reduce low energy gamma-ray counts. Each run was 20 min. long.

Table F.5 gives the net counts at various positions for fission product gamma-rays due to Cs^{134} , Rh^{106} , Cs^{137} and Pr^{144} .

5. Fuel Element 2M1

Element 2Ml was analyzed in the "G" series of experiments (May 17-18, 1965). The bottom collimator had a 1/8 in. dia. aperature. No lead absorbers were used in the beam. Forty min. runs were made.

Table F.6 presents the results of calculations of gammaray peak counts for Cs^{134} , Rh^{106} , Cs^{137} and Pr^{144} .

TABLE F.5

NET COUNTS FOR FISSION PRODUCT GAMMA-RAYS

AT VARIOUS POSITIONS FOR FUEL ELEMENT 2-4

Run	Position Below Fuel Midplane, Inches	Cs ¹³⁴ at 604 keV	Rh ¹⁰⁶ at 624 keV	Cs ¹³⁷ at 662 keV	Pr ¹⁴⁴ at 697 keV
F8	O ēl	1853 <u>+</u> 135	520 <u>+</u> 87	30,851 <u>+</u> 207	529 <u>+</u> 59
F 9	- 2 L	1711 <u>+</u> 131	482 <u>+</u> 85	29,644 <u>+</u> 205	5 70<u>+</u>55
F10	-4 2	1729 <u>+</u> 126	480 <u>+</u> 83	28,741 <u>+</u> 202	571 <u>+</u> 53
F11	-6 đi	1304 <u>+</u> 121	343 <u>+</u> 80	26,919 <u>+</u> 191	540 <u>+</u> 53
F 12	- 8 L	1215 <u>+</u> 115	403 <u>+</u> 77	25,391 <u>+</u> 189	495 <u>+</u> 51
F 13	- 8 L	1290 <u>+</u> 116	36 0<u>+</u>78	25,446 <u>+</u> 188	494 <u>+</u> 50
F14	- 10 E	903 <u>+</u> 113	322 <u>+</u> 77	24,838 <u>+</u> 186	337 <u>+</u> 50
F15	- 11 &	406 <u>+</u> 78	123 <u>+</u> 58	11,318 <u>+</u> 126	
F 16	+ 2 🕹	16 7 5 <u>+</u> 134	438 <u>+</u> 87	30,610 <u>+</u> 208	528 <u>+</u> 60
F 17	+4 🖻	1504 <u>+</u> 133	296 <u>+</u> 87	30,087 <u>+</u> 205	570 <u>+</u> 55
F1 8	+6 ē .	1229 <u>+</u> 130	325 <u>+</u> 86	29 , 454 <u>+</u> 203	<u>487±</u> 56
F1 9	+8 2	1418 <u>+</u> 127	331 <u>+</u> 82	28,180 <u>+</u> 199	510 <u>+</u> 55
F 20	+ 10 E	1180 <u>+</u> 124	366 <u>+</u> 82	27,937 <u>+</u> 198	487 <u>+</u> 53
F21	+ 12 L	4	10	913 <u>+</u> 46	17
F 22	OL	1850 <u>+</u> 133	369 <u>+</u> 86	30,089 <u>+</u> 207	568 <u>+</u> 57
F23	O ČL No Pb	2886 <u>+</u> 163	629 <u>+</u> 106	45,270 <u>+</u> 254	738 <u>+</u> 70

AFTER THREE YEARS COOLING TIME

TABLE F.6

NET COUNTS FOR FISSION PRODUCT GAMMA-RAYS

AT VARIOUS POSITIONS FOR FUEL ELEMENT 2M1

Run	Position Below Fuel Midplane, Inches	Cs ¹³⁴ at 605 keV	Rh ¹⁰⁶ at 624 keV	Cs ¹³⁷ at 662 keV	Pr ¹⁴⁴ at 697 keV
Gl	-6 E	586 <u>+</u> 92	84 <u>+</u> 52	6336 <u>+</u> 111	96 <u>+</u> 43
G2	- 8 ē.	336 <u>+</u> 86	42 <u>+</u> 45	5747 <u>+</u> 104	68 <u>+</u> 41
G3	-10 ē.	374 <u>+</u> 80	2 <u>+</u> 42	5472 <u>+</u> 100	59 <u>+</u> 37
G4	-11 č	213 <u>+</u> 79	15 <u>+</u> 44	5978 <u>+</u> 101	65 <u>+</u> 35
G 5	-4 ē.	479 <u>+</u> 90	-11 <u>+</u> 53	6599 <u>+</u> 114	54 <u>+</u> 40
G6	- 2 E	636 <u>+</u> 94	15 <u>+</u> 49	6981 <u>+</u> 116	94 <u>+</u> 45
G7	0 62.	628 <u>+</u> 96	9 <u>+</u> 55	7056 <u>+</u> 117	100 <u>+</u> 43
G8	+2 🖬	621 <u>+</u> 94	44 <u>+</u> 50	7080 <u>+</u> 117	47 <u>+</u> 45
G9	+4 ē.	563 <u>+</u> 93	27 <u>+</u> 52	6 8 65 <u>+</u> 116	101 <u>+</u> 42
GIO	+6 L	477 <u>+</u> 90	21 <u>+</u> 47	6534 <u>+</u> 112	91 <u>+</u> 41
G11	+8 L	494 <u>+</u> 90	59 <u>+</u> 50	6467 <u>+</u> 109	80 <u>+</u> 40
G12	+10 L	397 <u>+</u> 80	43 <u>+</u> 47	6350 <u>+</u> 107	98 <u>+</u> 37
G18	0 ē .	601 <u>+</u> 97	21 <u>+</u> 54	7133 <u>+</u> 115	52 <u>+</u> 44
G19	$0 \frac{1}{2}$ " OUT	636 <u>+</u> 100	48 <u>+</u> 54	7437 <u>+</u> 118	72 <u>+</u> 42
G 50	O l" OUT	807 <u>+</u> 100	73 <u>+</u> 51	7779 <u>+</u> 122	75 <u>+</u> 42
G 21	0 1/1 IN	666 <u>+</u> 95	16 <u>+</u> 55	7248 <u>+</u> 120	62 <u>+</u> 42
G22	0 1" IN	635 <u>+</u> 95	12 <u>+</u> 48	7709 <u>+</u> 120	67 <u>+</u> 42

-214-

•

APPENDIX G

DESCRIPTION OF COMPUTER CODES "NOTSFI" AND "NUCON"

1. Introduction

Two computer codes were written to obtain numerical solutions for the equations describing fission product concentrations in irradiated fuel as given in Section IIID. The first code, called NUCON, was intended to be more general and was to have included fission products from both plutonium and uranium. However, only the solutions for constant flux operation and U^{235} fission were programmed. Satisfactory agreement and consistency could not be obtained for the experiment results using the constant flux solutions. It was then necessary to take into account the intermittent operation of the MITR fuel.

The NUCON code was modified to calculate solutions only to Eq. (D.8) for the concentrations of Group 1 type fission products during intermittent operation. Since the code was becoming too large and unwieldy for the Computation Center Timesharing System, it was decided to write a second code, called NOTSFI, for the intermittent operation solutions. The fuel was assumed to undergo a number of equal cycles, each consisting of an irradiation period during which the neutron flux was constant, and a shutdown period during which the flux was zero. The input data required for the NUCON code is described in Section 2 following, while that for the NOTSFI code is described in Section 3.

2. Input Data for NUCON

Fertile and fissile isotope concentrations are calculated

-215-

in the first part of the code; therefore cross-sections for U^{235} , U^{238} and the plutonium isotopes are required. The equations governing the concentrations of the fuel isotopes were taken from Ref. (Bl2). The yields and cross-sections for the fission products are included in a separate subroutine called CONST, and were given in Table 11. Complete FORTRAN listings are given after the description of input data given in Table G.1. An example of input data for the Cs¹³⁷ concentrations and activities per initial U^{235} atom is given in Table G.2.

3. Input Data for NOTSFI

The format specifications for the input data are given in Table G.3. An example of the form of input for Cs^{134} solutions is presented in Table G.4. The FORTRAN listing of the NOTSFI code is also included.

TABLE G.1

INPUT DATA FOR "NUCON"

Card	Column	Name	Format	Description	
1	1-72	-	A	Identification.	
2	1-3	NFFI	I	If NFFI=1 solutions obtained for nuclide concentrations for U-235, Pu-239, Pu-240 and Pu-241	
				if NFFI=0 no solutions obtained for fertile and fissile isotopes.	
	4-6	NFPI	I	If NFPI=1 solutions obtained for fission product concen- trations	
		i i		if NFPI=0 no solutions obtained.	
	7-9	NGP	I	No. of group of fission product for which solution is desired.	
				NGP=1 for Ru-106, Cs-137, Zr-95, Ba-140 and Ce-144.	
				NGP=2 for CB-134.	
				NGP=3 for Nb-95, La-140 and Pr-144.	
	10-12	NRUN	I	NRUN=0 data for only one run	
				NRUN=1 data for another run to follow.	
	13-15	NFP	I	No. of fission product.	
				NFP Fission Product 1 Zr-95 2 Nb-95 3 Ru-106 4 Cs-133 5 Cs-134 6 Cs-137 7 Ba-140 8 La-140 9 Ce-144 10 Pr-144	
2	16-18	nonss	I	NONSS=1 intermittent operation. <u>Solutions for NGP=1 only</u> . NONSS=0 Constant flux solution.	

-217-

•

TABLE G.1 (cont'd.)

Card	Column	Name	Format	Description
	IF N	onss = (D	
3	1-12	TIN	E	Initial time at which solutions are made, in seconds.
	13 - 24	TAU	E	Total irradiation time, seconds.
	25 - 36	TDEL	E	Time increment to be used in calculations, seconds. (Use 1.0E+05)
	37- 48	PHI	E	Absolute thermal neutron flux, n/cm ² -sec.
	49-60	ENRIC H	E	N _{25/N28} (B12)
	61 - 72	Pl	E	Fast non-leakage probability (B12)
4	1-12	Р	E	Resonance escape probability.
	13 - 24	EPSI	E	Fast fission factor, .
	IF NO	N85 = 1		
3	1 -1 2	TACC	E	Length of accumulation period, seconds.
	13-24	TDEC	E	Length of shutdown period, sec- onds.
	25-36	CYCLES	E	Total number of cycles, each having 1 TACC and 1 TDEC.
	37-48	PHI	E	Absolute thermal neutron flux, n/cm ² -sec.
	49-60	ENRICH	E	N _{25/N28}
	61-72	Pl	E	Fast non-leakage probability.
4	1-12	P	E	Resonance escape probability.
	13-24	EPSI	E	Fast fission factor, .
5	1-12	S IG25	E	σ_{25}^{a} , cm^{2}
	13-24	S IGF 25	E	σ_{25}^{f} , cm ²

TABLE G.1 (concl'd)

Card	Column	Name	Format	Description
6	25 - 36	SIG28	E	σ_{28}^{a} , cm^{2}
	37-48	SIG40	E	σ_{40}^{a} , cm ² (Pu ²⁴⁰)
	49-60	SIG41	E	σ_{41}^{a} , cm ² (Pu ²⁴¹)
	61-72	SIGF41	E	σ_{41}^{f} , cm ²
	1-12	8I G49	E	σ_{49}^{a} , cm ² (Pu ²³⁹)
	13-24	SIGF49	E	σ_{49}^{f} , cm ²
	25-36	ETA25	Е	η ₂₅
	37-48	ETA49	E	ν ₄₉
	49-60	ETA41	E	γ_{41}
	61-72	ALFA25	E	$\alpha_{25} = \frac{\alpha_2 5}{\sigma_{25}}$
7	1-12	ALFA49	E	$\alpha_{49} = \alpha_{4} \frac{9}{\sigma_{4}}$
		1		

...

TABLE G.2

"NUCON" SAMPLE INPUT DATA FOR Cs137

1 SAMPLE INPUT DATA FOR NUCON, FOR CS-157 0/ 1 1 1 6 1 3.4250E 05 2.6286E 05 1.50J0E 02 1.0000E 13 7.5270E-02 1.0000E 00 0.9000E 06 1.0500E 00 5.11960E-22 4.27450E-22 2.21000E-23 1.01470E-21 1.17040E-21 1.61106L-21 1.59260E-21 9.4060JE-22 2.04700E 00 1.594860E 00 2.15590E 00 0.1975/E 00 0.48654E 00

i.

TABLE G.3

INPUT DATA FOR "NOTSFI"

Card	Column	Name	Format	Description
1	1 - 72	-	A	Identification.
2	1-3	NGP	I	No. of fission product group for which solution is desired.
				NGP=1 for Ru-106, Cs-137, Zr-95, Ba-140 and Ce-144.
				NGP=2 for Cs-134.
				NGP=3 for Nb-95
	4-6	NFP	I	No. of fission product; see Table G.1.
	7-9	NRUN	I	NRUN=0 data for one run only.
				NRUN=1 data for another run to follow.
3	1-12	SI G25	E	σ_{25}^{a} , cm ²
	13-24	SIGF25	E	σ_{25}^{f} , cm ²
	25-36	PHI	E	Neutron flux, ø, n/cm ² -sec.
	37-48	SIGFP (4)	E	σ^{a} for Cs ¹³³ , cm ²
	49-60	SIGFP (5)	E	σ^{a} for Cs ¹³⁴ , cm ²
4	1-12	CYCLES	E	No. of cycles for which solutions are desired.
	13-24	TACC	E	Length of accumulation cycle at constant flux, seconds.
	25-36	TDEC	E	Length of shutdown cycle at $\phi=0$, seconds.
	37-48	DELTA	E	Solutions are printed out during constant flux period after each time increment DELTA, in seconds. The quotient TACC/DELTA must equal an integer.

.

TABLE G.3 (concl'd.)

Card	Column	Name	Format	Description
4	49-60	DELTD	E	Solutions are printed out during shutdown period after each time increment DELTD, in seconds. The quotient TDEC/DELTD must equal an integer.
	61-72	TIN	E	Time after t=0 when fission product concentrations and acti- vities are first calculated, in seconds.

FORTRAN LISTINGS OF "NUCON" AND "CONST"

```
NUCON, CODE TO CALCULATE FISSION PRODUCT CONCENTRATIONS IN NUCLEAR
      REACTOR FUEL, RELATIVE TO U-235 AT TIME ZERO, AS A FUNCTION OF
C
      TIME, FLUX, AND OTHER PARAMETERS
      DIMENSION SIGFP(20), DLAM(20), Y25(20), Y49(20)
      COMMON SIG25, SIGF25, SIG40, SIG41, SIGF41, SIG42, SIG49, SIGF49, ALFA25,
     1ALFA49, ETA25, ETA49, ETA41, SIGFP, DLAM, Y25, Y49, NGP, NFP
      CALL CONST
    5 READ 10
   10 FORMAT(72H
     1
                                        ١
      READ 15, NFFI, NFPI, NGP, NRUN, NFP, NONSS
   15 FORMAT(613)
      PRINT 10
      PRINT 20, NFFI, NFPI, NGP, NRUN, NFP, NONSS
   20 FORMAT(51HO
                    NFFT
                              NFPI
                                               NRUN
                                                        NFP
                                                                  NONSS
                                       NGP
                                                                          11
     1(17, 2X, 16, 417)
      IF (NONSS) 21,21,23
   21 READ 22, TIN, TAU, TDEL, PHI, ENRICH, P1, P, EPSI
   22 FORMAT (6E12.4)
      PRINT 25, TIN, TAU, TDEL, PHI, ENRICH, P1, P, EPSI
                                                TDEL
   25 FORMAT(98HU
                       TIN
                                    TAU
                                                               PHI
                                                                          ENRI
                                          EPSI
                 P1
                              P
     1CH
                                                     //(8E12•4))
      GO TO 31
   23 READ 24, TACC, TDEC, CYCLES, PHI, ENRICH, P1, P, EPSI
   24 FORMAT (6E12.4)
      PRINT 241, TACC, TDEC, CYCLES, PHI, ENRICH, P1, P, EPSI
                                                                 TACC
  241 FORMAT(32HO INTERMITTENT REACTOR OPERATION //93H
     1 TDEC
                    CYCLES
                                  PHI
                                             ENRICH
                                                             P1
                                                                          Ρ
      2
              EPSI
                       //(8E12.4))
   31 READ 35, SIG25,SIGF25,SIG28,SIG40,SIG41,SIGF41,SIG49,SIGF49,ETA25,
     1ETA49, ETA41, ALFA25, ALFA49
   35 FORMAT(6E12.5)
      PRINT 36
   36 FORMAT(56H0 CROSS SECTIONS USED FOR FISSILE AND FERTILE ISOTOPES
     1
       11)
      PRINT 37,51G25,S1GF25,S1G40,S1G41,S1GF41,S1G49,S1GF49,ETA25,ETA49,
      1ETA41, ALFA25, ALFA49, SIG28
   37 FORMAT(120H0
                      SIGA25
                                    SIGF25
                                                 SIGA40
                                                              SIGA41
                                                                           SIG
                                          ETA25
     1F41
                SIGA49
                             SIGF49
                                                       ETA49
                                                                    ETA41
      2//(10E12.5)// 36H0
                             ALFA25
                                          ALFA49
                                                        SIG28
                                                                 //(3E12.5))
      GAM=1.- ETA49*FPSI*P1*(1.-P)
      C1= (ENRICH*SIG28)/(SIG49*GAM)
      C2= (SIG25*ETA25*EPSI*P1*(1.-P))/(SIG49*GAM-SIG25)
      C3= (ENRICH*SIG28*ALFA49)/(SIG40*GAM*(1•+ALFA49))
      C4= (ETA25*EPSI*P1*(1.-P)*SIG25*SIG49*ALFA49)/((1.+ALFA49)*(SIG25
     1-SIG49*GAM)*(SIG25-SIG40))
      C5=(C3*SIG40)/(SIG 49*GAM-SIG40)
      C6= (C3*SIG40)/SIG41
      C7 = -(C4 * SIG40) / (SIG25 - SIG41)
      C8 = -(C5 \times SIG40) / (SIG49 \times GAM - SIG41)
      C9 = ((C3+C4+C5)*SIG40)/(SIG40-SIG41)
      IF (NFFI) 70,70,40
   40 IF (NONSS) 41,42,41
   41 PRINT 411
  411 FORMAT(45H1 NFFI AND NONSS BOTH NONZERO, NO EXECUTION
                                                                    )
                                          -223-
```

C С

```
GO TO 900
42 PRINT 45
45 FORMAT(97HOCONCENTRATIONS OF FERTILE AND FISSILE ISOTOPES IN FUEL
  1AFTER BURNUP IN FLUX PHI, FOR TIME, TAU
                                                  //76H TAU, IN SECONDS
       U-235
                        PU-239
                                         PU-240
                                                          PU-241
                                                                   111
  1
   T = T T N
   TFIN=TAU
   TIN2=10.*TIN
   TDEL2=TDE1
46 CN25=EXPF(-SIG25*PHI*T)
   CN49= C1+C2*CN25-(C1+C2)*EXPF(-SIG49*GAM*PHI*T)
   CN40=C3+C4*CN25+C5*EXPF(-SIG49*GAM*PHI*T)-(C3+C4+C5)*EXPF(-SIG40*
  1PHI*T)
   CN41=C6+C7*CN25+C8*EXPF(-SIG49*GAM*PHI*T)+C9*EXPF(-SIG40*PHI*T)
   1-(C6+C7+ C8+C9)*EXPF(-SIG41*PHI*T)
   PRINT 50, T, CN25, CN49, CN40, CN41
 50 FORMAT(E12.4.4E13.5)
   IF (TFIN-T) 70,70,60
60 IF (TIN2-T) 62,62,64
62 TDEL2= 10.*TDEL2
    TIN2= 10.*TIN2
64 T=T+TDEL2
   GO TO 46
 70 IF(NFPI) 900,900,75
 75 GO TO (80,300,500),NGP
    GROUP 1 TYPE FISSION PRODUCTS(ZR-95,RU-106,CS-133,CS-137,BA-140
    •CE-144)
80 GO TO (81,525,82,83,525,84,85,525,86,525),NFP
81 PRINT 811
811 FORMAT(57H0 ZR-95 CONCENTRATION IN FUEL AFTER BURNUP FOR TIME TAU
        //)
  1
   GO TO 100
82 PRINT 821
821 FORMAT(57H0 RU-106 CONCENTRATION IN FUEL AFTER BURNUP FOR TIME TAU
           11)
   1
   GO TO 100
 83 PRINT 831
831 FORMAT(58H0 CS-133 CONCENTRATION IN FUEL AFTER BURNUP FOR TIME TAU
  1
       11)
   GO TO 100
 84 PRINT 841
841 FORMAT(58H0 CS-137 CONCENTRATION IN FUEL AFTER BURNUP FOR TIME TAU
           11
   1
    GO TO 100
 85 PRINT 851
851 FORMAT(58H0 BA-140 CONCENTRATION IN FUEL AFTER BURNUP FOR TIME TAU
   1
            11)
   GO TO 100
 86 PRINT 861
861 FORMAT(58H0 CE-144 CONCENTRATION IN FUEL AFTER BURNUP FOR TIME TAU
             11)
   1
100 IF (NONSS) 101,101,150
101 PRINT 103
103 FORMAT(118H0
                 TAU, SEC.
                                 FP125
                                              FP149
                                                           FP141
   1 FPITOT
                   AFP125
                                 AFP149
                                                AFP141
                                                              AF1TOT
```

C C

```
-224-
```

```
11)
    2
 199 FP1TOT=0.
     T = T I N
     TDEL2=TDEL
     TIN2=10.*TIN
     FP125=0.
      FP149=0.
      AFP141=0.
      FP141=0.
     C15=(SIGF25*Y25(NFP)*PHI)/(DLAM(NFP)-SIG25*PHI)
 105 FP125=C15*( EXPF(-SIG25*PHI*T)-EXPF(-DLAM(NFP)*T))
     AFP125=FP125*DLAM(NFP)
     AFP149=FP149*DLAM(NFP)
      FP1TOT=FP125+FP149+FP141
      AF1TOT=FP1TOT*DLAM(NFP)
      PRINT 110, T, FP125, FP149, FP141, FP1TOT, AFP125, AFP149, AFP141, AF1TOT
 110 FORMAT(E12.4,8E13.5)
     IF (TFIN-T) 115,115,112
 112 IF(TIN2-T) 113,113,114
 113 TDEL2=10.*TDEL2
      TIN2=10.*TIN2
 114 T = T + T D F L 2
      GO TO 105
 115 IF (NRUN) 900,900,120
 120 GO TO 5
  150 PRINT 151
  151 FORMAT(103HO REACTOR OPERATION NOT CONTINUOUS, TRES = TOTAL IN-PIL
     1E RESIDENCE TIME, BURNUP TIME, TAU = TACC*CYCLES //61H CYCLE NO.
     3 TRES, SEC.
                    TAU. SEC.
                                    FP125
                                                  AFP125
                                                           11)
      X1 = (SIGF25*Y25(NFP)*PHI)/(DLAM(NFP)-SIG25*PHI)
      X2 = EXPF(DLAM(NFP)*TACC)
      X4 = 1.0/X2
      X3 = X1 \times X2 \times (EXPF(-SIG25 \times PHI \times TACC) - X4)
      D = SIG25*PHI*TACC -DLAM(NFP)*(TACC+TDEC)
      CNUM=1.
      SUM1 = FXPF(D)
      TRES =TACC+TDEC
      TAU=TACC
  155 FP125=X3*EXPF(-SIG25*PHI*TACC*CNUM)*SUM1
      AFF125= FP125*DLAM(NFP)
      PRINT 160, CNUM, TRES, TAU, FP125, AFP125
  160 FORMAT(F7.C, 3X, 2E12.4, 2E13.5)
      CNUM=CNUM+1.
      SUM1 = SUM1+EXPF(CNUM*D)
      IF (CYCLES-CNUM) 170,165,165
  165 TRES= CNUM*(TACC+TDEC )
      TAU = CNUM*TACC
      GO TO 155
  170 IF (NRUN) 900,900,175
  175 GO TO 5
C
     GROUP 2 TYPE FISSION PRODUCTS (CS-134)
  300 T = TIN
      TDEL2=TDEL
      TIN2=10.*TIN
      AFP249=0.
```

-225-

```
FP249=0.
      PRINT 304
  304 FORMAT(57HO CS-134 CONCENTRATION IN FUEL AFTER BURNUP FOR TIME TAU
           // 92H0 TAU, SEC.
                                   FP225
                                                 FP249
                                                               FP2TOT
     1
     1 AFP225
                       AFP249
                                      AF2TOT
                                                 11 )
      C20=SIGF25*Y25(4)*SIGFP(4)*PHI
      C21 = SIGFP(4) - SIG25
      C134 = DLAM(5) + SIGFP(5)*PHI
      C22= C134- SIGFP(4)*PHI
      C23= C134-SIG25*PHI
      C24 = C20/(C21*C22*C23)
  310 FP225= C24*(C21*PHI*EXPF(-C134 *T)+C22*EXPF(-SIG25*PHI*T) -C23*
     lEXFF(-SIGFP(4)*PHI*T))
      FP2TOT = FP225 + FP249
      AFP225= FP225*DLAM(5)
      AF2TOT= FP2TOT*DLAM(5)
      PRINT 315, T, FP225, FP249, FP2TOT, AFP235, AFP249, AF2TOT
  315 FORMAT( E12.4,6E13.5)
      IF (TFIN-T) 325,325,320
  320 IF (TIN2-T) 321,321,323
  321 TDEL2= 10.*TDEL2
      TIN2 = 10 \cdot TIN2
  323 T= T+TDEL2
      GO TO 310
  325 IF (NRUN) 900,900,330
  330 GO TO 5
C
      GROUP3 TYPE FISSION PRODUCTS (NB-95, LA-140, PR-144)
  500 T=TIN
      TIN2=10.*TIN
      TDEL2=TDEL
      FP349=0.
      PRINT 505
  505 FORMAT(75HO GROUP 3 FISSION PRODUCT CONCENTRATION IN FUEL AFTER BU
     1RNUP FOR (IME TAU // 92HO TAU, SEC.
                                                  FP325
                                                                FP349
     2 FP3TOT
                      AFP325
                                     AFP349
                                                    AF3TOT
                                                               111
      C30= DLAM(NFP-1)*SIGF25*Y25(NFP-1)*PHI
      C31= DLAM(NFP-1) -SIG25*PHI
      C32 =DLAM(NFP) -SIG25*PHI
      C33 =DLAM(NFP) -DLAM(NFP-1)
      C34 = C30/(C31 + C32 + C33)
  510 FP325= C34*(C31*EXPF(-DLAM(NFP)*T) +C33* EXPF(-SIG25*PHI*T) -C32*
     1EXPF(-DLAM(NFP-1)*T))
      FP3TOT = FP325 + FP349
      AFP325= DLAM(NFP)*FP325
      AFP349= DLAM(NFP)*FP349
      AF3T0T=DLAM(NFP)*FP3T0T
      PRINT 515, T, FP325, FP349, FP3TOT, AFP325, AFP349, AF3TOT
  515 FORMAT( E12.4,6E13.5)
      IF (TFIN-T) 525,525,520
  520 IF (TIN2-T) 521,521,523
  521 TDEL2= 10•*TDEL2
      TIN2 = 10 \bullet TIN2
  523 T = T + TDEL2
      GO TO 510
  525 IF (NRUN) 900,900,530
```

-226-

530 GO TO 5 900 CALL EXIT END

.

.

•

.

CURRALITING CONCT	
SUBROUTINE CONST	01 8401301
COMMON SIGPP(20) DLAM(20) T25(20	0/9/49/20) CE41.SIG42.SIG40.SIGE49.ALEA25.
CUMMUN 516259516F259516409516419510	GF41951G42951G49951GF479ALFA259
	M912391499110F911FF
SIGFP(4) = 54.00E - 24	
SIGFP(5) = 103.89E-24	
$DLAM(1) = 1 \cdot 2340F - 07$	
DLAM(2) = 2.2920E-07	
$DLAM(3) = 2 \cdot 1/50E - 08$	
DLAM(4) = 0	
DLAM(5) = 9.983E - 09	
DLAM(6) = 7.33E-10	
$DLAM(7) = 6 \cdot 268E - 07$	
DLAM(8) = 4.79E-06	
DLAM(9) = 2.865E - 08	
DLAM(10) = 6.60E = 04	
$Y_{25}(1) = 0 \cdot 0.627$	
Y25(2)=0	
Y25(3)=0.0038	
$Y_{25}(4) = 0 \cdot 0 \cdot 0 \cdot 7$	
$Y_2^{(5)} = 0$	
$Y_{25}(6) = 0.060$	
Y25(7)=0.0644	
$Y_2 \cap (8) = 0 \bullet$	
12h(10)=0 V(0(1)=0 050(
Y49(1)=0.0000	
$(4^{-}(2)^{-})_{\bullet}$	
Y49(4)=0.0553	
Y49(5)=0	
$Y_{49}(5) = 0.0540$	
4 - 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	
Y49(8)=0.	
$Y_{49}(9) = 0.0409$	
Y49(10)=0.	
RETURN	

END

FORTRAN LISTING OF "NOTSFI"

```
NOTSFI, CALCULATES FISSION PRODUCT CONCENTRATIONS FOR REACTOR
C
С
      OPERATING CONDITIONS OF CONSTANT PHI FOR A PERIOD , TACC,
      FOLLOWED BY A PERIOD , TDEC, WNEN PHI=C, THEN REPEATS
C
         DIMENSION SIGFP(20), DLAM(20), Y25(20), Y49(20)
      COMMON SIG25, SIGF25, SIG40, SIG41, SIGF41, SIG42, SIG49, SIGF49, ALFA25,
     1ALFA49,ETA25,ETA49,ETA41,SIGFP,DLAM,Y25,Y49,NGP,NFP
      COMMON AND DIMENSION STATEMENTS INCLUDE CONSTANTS FOR PU FISSION
C
      CALL CONST
      READ 2
1
      FORMAT(72H
2
                                         )
     1
      READ 3, NGP, NEP, NRUN
3
      FORMAT (313)
      READ 4, SIG25, SIGF25, PHI, SIGFP(4), SIGFP(5)
      FORMAT (5E12.5)
4
      READ 5, CYCLES, TACC, TDEC, DELT, DELTD, TIN
5
      FORMAT(6E12.4)
      PRINT 2
      PRINT 6,NGP,NFP,NRUN
      FORMAT(19HO NGP NFP NRUN //(315))
   6
      PRINT 14, SIG25, SIGF25, PHI, SIGFP(4), SIGFP(5)
   14 FORMAT(64HO
                      SIG25
                                   SIGF25
                                                 PHI
                                                         SIGA CS-133 SIGA CS-
               //(5E12.5))
     1134
      PRINT 7, CYCLES, TACC, TDEC, DELTA, DELTD, TIN
    7 FORMAT(72HO
                      CYCLES
                                    TACC
                                                  TDEC
                                                              DELTA
                                                                           DELT
     1 D
                TIN
                         //(6E12.4))
      CNUM =1.
      T = T I N
      TRES=TIN
      TAU=TIN
      PRINT 8
    8 FORMAT(32HOINTERMITTENT REACTOR OPERATION // 95H TACC=ACCUM PERIO
     1D, TDEC=DECAY (PHI=0) PERIOD, TRES=TOTAL IN-PILE RESIDENCE TIME, TAU=BU
     2RNUP TIME
                       11)
      GO TO (9,100,200),NGP
9
      FPA25Z=0.
10
      PRINT 12
12
      FORMAT(20H
                   ACCUMULATION STEP
                                          11)
      PRINT 13
                                 Т
                                               TRES
                                                                TAU
                                                                              Т
   13 FORMAT(120HC CNUM
     1 A U 1
                    FPA25Z
                                    FA25
                                                  AFA25Z
                                                                   AFA25
                                                                             11
     2)
      R1= (SIGF25*Y25(NFP)*PHI)/(DLAM(NFP)-SIG25*PHI)
\mathbf{C}
      ACCUMULATION STEP
20
      TAU1=TACC*(CNUM-1.)
      W1 = R1 \times EXPF(-SIG25 \times PHI \times TAU1)
25
      EX25=EXPF(-SIG25*PHI*T)
      FXA1 = FXPF(-DLAM(NFP)*T)
      FA25=W1*(EX25-EXA1) +FPA25Z*EXA1
      AFA25=FA25*DLAM(NFF)
      PRINT 30, CNUM, T, TRES, TAU, TAU1, FPA25Z, FA25, AFA25Z, AFA25
30
      FORMAT(F6 \cdot 0 \cdot 8E14 \cdot 6)
      T=T+ DFLTA
      TRES=TRES+DELTA
      TAU=TAU+DELTA
```

```
IF (TACC-T) 40,35,35
  35
      GO TO 25
C
      DECAY STEP WITH PHI=0
40
      T=0.
      TRES=TACC*CNUM + TDEC*(CNUM-1.)
       TAU=TACC*CNUM
      FPA257=FA25
      PRINT 45
      FORMAT(21H DECAY STEP, PHI=0.
45
                                          11)
      PRINT 13
44
50
      FXA1=FXPF(-DLAM(NFP)*T)
      FA25=FPA25Z*TXA1
      AFA25=FA25*C_AM(NFP)
      AFA25Z=FPA25Z*DLAM(NFP)
      PRINT 55, CNUM, T, TRES, TAU, TAU1, FPA25Z, FA25, AFA25Z, AFA25
55
      FORMAT(F6.0.8E14.6)
      T=T+DFLTD
      TRES=TRES+DELTD
      IF (TDFC-T) 65,60,60
60
      GO TO 50
      CNUM=CNUM+1.
65
      IF (CYCLES-CNUM), 67,68,68
      60 TO 900
67
68
      FPA257=FA25
      AFA25Z=FPA25Z*DLAM(NFP)
       TRFS=(TACC+TDFC)*(CNUM-1.)
       TAU=TACC*(CNUM-1.)
      T=0.
      GO TO 10
C
      GROUP 2 FISSION PRODUCT= CS-134
100
      FPC257=0.
      FPD257=0.
      PRINT 8
      TAU1=TACC*(CNUM-1.)
120
      R2= Y25(4)*SIGF25*EXPF(-SIG25*PHI*TAU1)/(SIGFP(4)
     1 - 516251
      PRINT 12
      PRINT 130
      FORMAT(60H CNUM, T, TRES, TAU, TAU1, FPC25Z, FC25, FPD25Z, FD25, AFD25Z, AFD
130
     125 //)
      FX25=EXPF(-SIG25*PHI*T)
140
      EX33=EXPF(-SIGFP(4)*PHI*T)
      EX34 = EXPE((-DLAM(5)-SIGFP(5)*PHI)*T)
      FC25=R2*(EX25-EX33) +FPC25Z
      Z2 = R2*SIGFP(4)*PHI
      W1 = Z2/(DLAM(5) + (SIGFP(5) - SIGFP(4)) + PHI)
      W_2 = Z_2/(DLAM(5) + (SIGFP(5) - SIG25) + PHI)
      W3 = FPC25Z*SIGFP(4)*PHI/(DLAM(5)+SIGFP(5)*PHI)
      FD25 = (W1-W2-W3 + FPD25Z) * EX34 + W2* EX25 - W1* EX33 + W3
      AFD25Z=FPD25Z*DLAM(5)
      AFD25=FD25*C'_AM(5)
      PRINT 150, CN JM, T, TRES, TAU, TAU1, FPC252, FC25, FPD252, FD25,
     1AFD25Z AFD25
      FORMAT(F6.0
150
                    •8E14•6/2E14•6)
      T=T+DELTA
```

```
TRES=TRES+DELTA
      TAU=TAU+DELTA
      IF (TACC-T) 160,155,155
      GO TO 140
155
      FPC252=FC25
160
      FPD25Z=FD25
      AFD25Z = FPD25Z + DLAM(5)
      T=0.
      TRES=TACC*CNUM+TDEC*(CNUM-1.)
      TAU=TACC*CNUM
      PRINT 45
      PRINT 175
      FORMAT(60H CNUM, T, TRES, TAU, TAU1, FPC25Z, FC25, FPD25Z, FD25, AFD25Z
175
     1.AFD25
               11)
      ED25=FPD25Z*EXPF(-DLAM(5)*T)
180
      AFD25Z = FPD25Z + DLAM(3)
      AFD25=FD25*DLAM(5)
      PRINT 181, CNUM, T, TRES, TAU, TAU1, FPC25Z, FC25, FPD25Z, FD25,
     1AFD25Z • AFD25
      FORMAT(F6.0.8E14.6/2E14.6)
181
      T=T+DELTD
      TRES=TRES+DELTD
      IF (TDEC-T) 190,185,185
      GO TO 180
185
      FPD25Z=FD25
190
      T=0.
      TRES=(TACC+TDEC)*CNUM
      TAU=TACC*CNUM
      CNUM=CNUM+1.
      IF (CYCLES-CNUM)191,192,192
      GO TO 900
191
192
      GO TO 120
      GROUP 3 TYPE FISSION PRODUCT =NB-95
C
      FPA25Z=0.
  200
      FPB257=0.
      PRINT 213
       FORMAT (73H CNUM, T, TRES, TAU, TAU1, FPA25Z, FA25, AFA25Z, AFA25, FPB25Z
213
     1FB25, AFB25Z, AFB25 //)
      PRINT 12
210
       TAU1=TACC*(CNUM-1.)
       R1 = (SIGF25*Y25(1)*PHI)/(DLAM(1)-SIG25*PHI)
       W1= R1*EXPF(-SIG25*PHI*TAU1)
       CON1 =W1*DLAM(1)/(DLAM(2)-SIG25*PHI)
      CON2= (DLAM(1)*(FPA25Z-W1))/(DLAM(2)-DLAM(1))
      EX25=EXPF(-SIG25*PHI*T)
220
       EXA1 = EXPF(-DLAM(1) * T)
       EXB2 = EXPE(-DLAM(2) + T)
       FB25=CON1*(EX25-EXB2) +CON2*(EXA1-EXB2)+FPB25Z*EXB2
       AFB25 = FB25 + DLAM(2)
       AFB25Z=FPB25Z*DLAM(2)
       FA25=W1+(EX25-EXA1)+FPA25Z*EXA1
       AFA25=FA25+DLAM(1)
       AFA25Z=FPA25Z*DLAM(1)
       PRINT 230, CNUM, T, TRES, TAU, TAU1, FPA25Z, FA25, AFA25Z, AFA25, FPB25Z,
      1FB25, AFB25Z, AFB25
```

220	EORMAT/E6 - 0 - 8E14 - 6/4E14 - 6)		
230	$T = T + DFI T \Delta$		
	TE (TACC-T)240.235.235		
225			
2.2.2	EDB257-EB25		
24			
(CON2-(DLAM(2)*EPA257)/(DLAM(2))	-DI AM(1))	
	DDINT 45		
250	FYA1 - FYDE(-DLAM(1) + T)		
2.50			
	= FR25 = CON3 + (FXA1 = FXB2) + FPB257 + FPB25	XB2	
	$AEA25 = EA25 + DI \Delta M(1)$		
	AEB25 = EB25 + DLAM(2)		
	ΔΕΔ257=EPΔ257+DLΔM(1)		
	ΔFB257=FPB257*DI ΔM(2)		
	PRINT 230, CNUM, T, TRES, TAU, TAU1	,FPA252,FA25,AFA252,AF	A25, FPB25Z,
	1FB25 • AFB25Z • AFB25		
	T=T+DELTD		
	TRFS=TRES+DELTD		
	IF(TDEC-T) 260,255,255		
255	GO TO 250		
260	CNUM=CNUM+1.		
	T = 0 ●		
	<pre>TRES=(TACC+TDEC)*(CNUM-1.)</pre>		
	TAU=TACC*(CNUM-1.)		
	EPA257=FA25		
	FPB25Z=FB25		
	IF (CYCLES-CNUM) 900,270,270		
270	GO TO 210		
900	IF (NRUN) 901,905,901		
901	GO TO 1		
905	CALL EXIT		
	FND		

TABLE G.4

SAMPLE INPUT DATA FOR "NOTSFI" (Cs¹³⁴)

1 SAMPLE INPUT DATA FOR NOTSFI CODE, FOR CS-134 2 5 0 5.11900E-22 4.27450E-22 1.00000E 13 3.03000E-23 1.03890E-22 1.5000E 02 3.4200E 05 2.6280E 05 3.4200E 05 2.6280E 05

APPENDIX H

FISSION PRODUCT ACTIVITIES AS A FUNCTION OF IRRADIATION TIME AT CONSTANT FLUX

Numerical values to the solutions of the equations expressing the variations in fission product activities with time at constant flux were obtained with the code NUCON and are presented graphically in this Appendix. The nuclear data used in these calculations, and those for intermittent reactor operation, were presented in Table 11. The calculation of the Cs^{133} and Cs^{134} absorption cross-sections will be outlined in detail because of the importance of these fission products to these investigations.

The Cs¹³³ absorption cross-section used was 30.3 barns and was obtained from Eq. (H.1) (W6).

$$\overline{\sigma}^{a} = \sqrt{\frac{\pi T_{o}}{4T_{n}}} \hat{\sigma}^{a}$$
(H.1)
$$= \sqrt{\frac{\pi T_{o}}{4T_{n}}} \sigma^{a}_{2200}(g+rs)$$
(H.2)

where $\sqrt{\frac{\pi T_0}{4T_n}} = 0.7753$ (see Eq. D.26) $\sigma_{2200}^{a} = 29$ barns (H3) g = 1.00 r = 0.0715 (M3) s = 4.887Thus, $\overline{\sigma}^{a} = (0.7753)(29)[1.00 + (0.0715)(4.887)] = 30.3$ barns.

The value of the factor "s" was calculated from Eq. (H.3) (W6)

$$s = \sqrt{\frac{4T_n}{\pi T_o}} \frac{I_{eff}}{\sigma_{2200}} - bg \qquad (H.3)$$

H.2

where I_{eff} = effective resonance integral, barns = 230.4 barns b = 1.176 (W6) σ_{2200} = total cross-section for 2200 m/sec neutrons, barns = $\sigma^{4} + \sigma^{8}$ where σ^{8} = scattering cross-section, barns = 20 barns (E5)

Thus, $\sigma_{2200} = 49$ barns.

The effective resonance integral for Cs^{133} in MITR fuel of 230.4 barns was estimated from a measured value for the infinite dilution resonance integral in the following way: The effective resonance integral of U^{238} , if it were present in the MITR fuel, was calculated from Eq. (H.4) (W4)

$$I_{eff} = \left[2.8 + 25\left(\frac{S}{M}\right)^{\frac{1}{2}} \right] barns \qquad (H.4)$$

where S = effective surface area of fuel plate, cm²

M = mass of fuel per plate, gm. Since the fuel elements are closely spaced, it was assumed that on the average, the effective surface area was equal to one-half of the total fuel plate area. Thus

$$S = 367.1 \text{ cm}^2$$

and $I_{off}(U^{238}) = 143.3 \text{ barns}$

The infinite dilution resonance integral of U^{238} is

____235-
$RI(\infty)(U^{238}) = 280 \text{ barns (W4)}$

Then

$$\frac{I_{eff}(U^{238})}{RI(\infty)(U^{238})} = 0.512$$
(H.5)

It was then assumed that I_{eff} for Cs^{133} would be the same fraction of its $RI(\infty)$ as that obtained for U^{238} in Eq. (H.5). That is

$$I_{eff}(Cs^{133}) = 0.512 RI(\infty)(Cs^{133})$$

where $RI(\infty)(Cs^{133}) = 450$ barns (V1). Thus, $I_{eff}(Cs^{133}) = 230.4$ barns.

The value of the Cs¹³⁴ absorption cross-section used was 103.89 barns and was calculated from (H.1) where

$$\hat{\sigma}^{a}$$
 (Cs¹³⁴) = 134 barns (B9)

The solutions to Eq. (D.5) were obtained for $2r^{95}$, shown in Fig. H.1, Ru^{106} , shown in Fig. H.2 and Cs^{137} , shown in Fig. H.4. The solutions to Eq. (D.12) were obtained for Nb^{95} , shown also in Fig. H.1 and for Pr^{144} , shown in Fig. H.6. The Cs^{134} solutions for Eq. (D.18) are shown in Fig. H.3.

FIGURE H.I Zr⁹⁵ AND Nb⁹⁵ ACTIVITIES PER INITIAL U²³⁵ ATOM AT CONSTANT FLUX vs. EXPOSURE TIME

FIGURE H.2 Ru¹⁰⁶ ACTIVITY PER INITIAL U²³⁵ ATOM AT CONSTANT FLUX vs. EXPOSURE TIME

FIGURE H.4 Cs¹³⁷ ACTIVITY PER INITIAL U²³⁵ ATOM vs. EXPOSURE TIME FOR VARIOUS FLUXES AT CONSTANT FLUX LEVEL

FIGURE H.5 La¹⁴⁰ ACTIVITY PER INITIAL U²³⁵ ATOM AT CONSTANT FLUX FOR VARIOUS FLUXES vs. EXPOSURE TIME

FIGURE H.6 Pr144 ACTIVITY PER INITIAL U235 ATOM AT CONSTANT FLUX FOR VARIOUS FLUXES vs. EXPOSURE TIME

APPENDIX I

REFERENCES

- Bl. N.A. Baily, R.J. Grainger and J.W. Mayer, "Capabilities of Lithium Drifted p-i-n Junction Detectors when used for Gamma-Ray Spectroscopy", Rev. Sci. Instr., 32, 865 (1961).
- B2. M.L. Batch, R.M. Ball, R.H. Lewis and R.H. Freyberg, Jr. (Cons. Ed.), "Mid-Life Power Distribution in the Indian Point Reactor", Trans. Am. Nuclear Soc., 7, 494 (Nov., 1964).
- B3. F.J. Biode, Ed., "Transistor Technology", D. Van Nostrand Co. Inc., Princeton, J.J., Vols. 2 and 3 (1958).
- B4. J.L. Blankenship and C.J. Borkowski, IRE Trans. Nuclear Sci., <u>NS-9</u>, 181 (1962).
- B5. J.O. Blomeke and M.F. Todd, "Uranium-235 Fission Product Production as a Function of Thermal Neutron Flux, Irradiation Time and Decay Time, 1, Atomic Concentrations and Gross Totals", ORNL-2127 (Nov., 1958).
- B6. L.B. Borst, "Estimates of Amount of Radiation and of Accompanying Energy Liberation from Fission Products", Paper 34 in Radiochemical Studies: The Fission Products, NNES, vol IV-9, Book 1, p.344, McGraw-Hill, New York (1951).
- B7. J.L. Buckner, "Effective Fission Product Absorption Cross Sections", M.Sc. Thesis, MIT Dept. of Nuclear Eng. (Sept., 1960).
- B8. A. Brenner, "Electroplating Comes of Age", Metal Finishing, 52 (11), 68 (1954).
- B9. J.G. Bayly, F. Brown, G.R. Hall, and A.J. Walter, J. Inorg. and Nuc. Chem., 5, 259 (1958).
- BlO. R.M Ball, et. al., "Indian Point Reactor Core "A" Gamma-Scan Results", BAW-1295 (July, 1964).
- Bll. R.A. Brown and G.T. Ewan, "Study of the Decay of Cs¹³⁴ with a High Resolution Ge(Li) Gamma-Ray Spectrometer", Nucl. Phys., 68, 325-36 (June, 1965).
- Bl2. M. Benedict and T.H. Pigford, "Nuclear Chemical Engineering", McGraw-Hill Book Co., Inc., New York (1957).
- B13. S.T. Brewer, MIT Dept. of Nuclear Eng., Course 22.42 Project. Private Communication.

- Cl. F.H. Clark, "Decay of Fission Product Gammas", NDA-27-39, (Dec., 1954).
- Dl. G. Dearnaley and D.C. Northrop, "Semiconductor Counters fcr Nuclear Radiations", J. Wiley, Inc., (1963).
- D2. W.R. Diggle and W.H. Blackadder, "Gamma Scanning for Burnup", Nucleonics 23, 71 (March, 1965).
- D3. "Douglas Point Nuclear Generating Station", Atomic Energy of Canada Ltd., AECL 1596 (1962).
- El. M.C. Edlund, et. al., "Determination of Power Distribution in the CETR by Measurement of La-14C Activity", BAW-164, Lynchburg, Va., (Sept., 1961).
- E2. J.H. Elliot, Nuclear Instr. Meth. 12, 60 (1961).
- E3. T.R. England, "Time-dependent Fission Product Thermal and Resonance Absorption Cross-Sections", WAPD-TM-333 (Jan., 1965).
- E4. L.R. Enstice, Jr., "Heat Transfer Study of an MIT Reactor Partial Plate Fuel Element", MIT Dept. of Nuclear Eng., S.M. Thesis (June 1965).
- E5. H. Etherington, Ed., "Nuclear Engineering Handbook", McGraw Hill, New York (1958).
- FI. I.L. Faller, T.S. Chapman, and J.M. West, "Calculations on U-235 Fission Product Decay Chains", ANL-4807 (May, 1952).
- F2. H.J. Fiedler, L.B. Hughes, T.J. Kennet, W.V. Prestwich, and B.J. Hall, "Large Volume Lithium Drifted Germanium Gamma-Ray Detectors", Report, McMaster University, Hamilton, Ontario (June, 1965).
- F3. D.V. Freck and J. Wakefield, Nature 193, 669 (1962).
- Gl. F.S. Goulding and W.L. Hansen, "Automatic Lithium Drifting Apparatus for Silicon and Germanium Detectors", Univ. of California, Lawrence Radiation Lab. Report UCRL-11261 (Feb., 1964).
- G2. L.V. Groshev and A.M. Demidov, "Determination of Fuel Element Burn-up using a Magnetic Gamma-Spectrometer", IAEA Translation 63-0051 (1962).
- H1. N.B. Hannay, Ed., "Semiconductors", Reinhold, New York (1959).
- H2. W.L. Hansen and B.V. Jarrett, "Techniques for the Fabrication of Lithium Drifted Germanium Detectors", UCRL-11589 (Aug., 1964).

H3.

- H4. H.F. Hunter and N.E. Ballow, Nucleonics 9 (5), C2-7 (1951).
- Il. IRE Transactions on Nuclear Science, Proceedings of the Seventh Annual National Meeting "Solid State Radiation Detectors", Oct. 3-5, 1960, <u>NS-8</u>, (Jan. 1961).
- Kl. A.H. Kazi, N.C. Rasmussen, and H. Mark, "Six-Meter Radius Bent-Crystal Spectrograph for Nuclear Gamma-Rays", Rev. Sci. Instr. <u>31</u>, 983-87 (Sept., 1960).
- K2. C. Kittel, "Introduction to Solid State Physics", J. Wiley and Sons, Inc., New York (1956).
- K3. L. Koch, J. Messier, and J. Valin, "N-I-P Silicon Junction Detectors", IRE Trans. Nuclear Sci. <u>NS-8</u>, 43 (Jan., 1961).
- K4. H.W. Kraner, J.A. Sovka and R.W. Breckenridge, Jr., "An Efficient Dewar for Lithium-Drifted Germanium Detectors". To be published in Nuclear Instr. Methods.
- K5. P. Kristiansen and T. Røgeberg, "Non-Destructive Analysis of Irradiated Fuel Elements", Final Report, Research Contract No. 47 between IAEA and IFA, Kjeller, Norway, (1962).
- L1. C.J.L. Lock, "Fission Product Formation in a Homogeneous Power Reactor", AERE-C/R-1715 (June, 1955).
- L2. D.D. Lanning, I. Kaplan, and F.M. Klikeman (Ed.), "Heavy Water Lattice Project Annual Report", MITNE-60 (Sept., 1964).
- Ml. H.M. Mann, J.W. Haslett, and F.J. Janarek, IRE Trans. Nuclear Sci. <u>NS-9</u>, 43 (1962).
- M2. J.W. Mayer, N.A. Baily, and H.L. Dunlap, IAEA Conference on Nuclear Electronics, Belgrade, Jugoslavia (May, 1961).
- M3. S.A. Mayman, "Fuel Burnup in the MITR", M.Sc. Thesis, MIT Dept. of Nuclear Eng. (June, 1964).
- M4. R.L. Mathews, "Flux Distributions in the MIT Reactor", Ph.D. Thesis, MIT Dept. of Nuclear Eng. (Aug. 1964).
- M5. K.G. McKay, (a) "A Germanium Counter", Phys. Rev. <u>76</u>, 1537 (Nov., 1949). (b) "Electron-hole Production in Germanium by Alpha Particles", Phys. Rev. <u>84</u>, 829 (Nov. 1951).

- M6. G.L. Miller, W.M. Gibson, and P.F. Donovan, "Semiconductor Particle Detectors", Ann. Rev. Nuclear Sci. <u>12</u>, 189 (1962).
- M7. G.L. Miller, B.D. Pate, and S. Wagner, "Production of Thick Semiconductor Radiation Detectors by Lithium Drifting", IEEE Trans. Nuclear Sci., <u>NS-10</u>, 220 (Jan., 1963).
- M8. J. Moteff, "Fission Product Decay Gamma Energy Spectrum", APEX-134 (1953).
- M9. D.A. Marsden and L. Yaffe, "Mass Distribution in Thermal Neutron Fission of Pu-239", Can. J. Chem. <u>43</u>, 249-67 (Jan. 1965).
- MIO. G.L. Miller, W.L. Brown, P.F. Donovan, and I.M. Mackintosh, "Silicon p-n Junction Radiation Detectors", IRE Trans. Nuclear Sci. <u>NS-7</u>, 185 (1960).
- Nl. R.J. Nodvik, "Evaluation of Gamma Scanning as a Tool for Determining Fuel-Burnup Distributions in Large Power-Reactor Cores", Trans. Am. Nuclear Soc. <u>8</u>, 103 (June, 1965).
- Ol. G.D. O'Kelley, Ed., "Applications of Computers to Nuclear and Radiochemistry", Proc. of Symposium, Gatlinburg, Tenn. Oct. 17-19, 1962, NAS-NS 3107.
- Pl. E.M. Pell, (a) "Ion Drift in an n-p Junction", J. Appl. Phys. 31, 291 (1960). (b) "Effect of Li-B Ion Pairing on Li⁺ Ion Drift in Si", J. Appl. Phys. 31, 1675 (1960). (c) "Semiconductor Nuclear Particle Detectors", National Academy of Sciences Report NAS-NSS 32, Publication 871, p.136 (1961).
- R1. N.C. Rasmussen and M.D. Cohan, "Analysis of Radiations from Spent Fuel Elements using a Bent-Crystal Spectrograph", Trans. Am. Nuclear Soc. <u>5</u>, 24 (June, 1962).
- R2. N.C. Rasmussen, J.A. Sovka, and S.A. Mayman, "The Nondestructive Measurement of Burnup by Gamma-Ray Spectroscopy", Paper SM-67/45, presented at IAEA Conference on Management of Nuclear Materials, Vienna, Austria, Aug. 30-Sept. 3, 1965.
- Sl. J.B. Sampson, et. al., "Poisoning in Thermal Reactors due to Stable Fission Products", KAPL-1226 (Oct., 1954).
- S2. R.A. Smith, (a) "Semiconductors", Cambridge University Press (1961) (b) "Wave Mechanics of Crystalline Solids", Chapman and Hall (1961).

- S3. M.V. Sullivan and J.H. Eigler, "Electroless Nickel Plating for Making Ohmic Contacts to Silicon", J. Electrochem. Soc. <u>104</u>, 226 (1957).
- S4. W.E. Shoupp, R.D. Coe, and W.C. Woodman, "The Yankee Atomic Electric Plant", PUAE UN Conference, P-1038, 8, 492 (1958).
- T1. A.J. Tavendale, Electronique Nucleaire (O.E.C.D., Paris), 235 (1963).
- T2. A.J. Tavendale and G.T. Ewan, Nuclear Instr. Methods <u>26</u>, 183 (1963).
- T3. G.T. Ewan and A.J. Tavendale, "High Resolution Studies of Gamma-Ray Spectra using Lithium-Drift Germanium Gamma-Ray Spectrometers", Can. J. Phys. <u>42</u>, 2286 (Nov., 1964).
- T4. J.M. Taylor, "Semiconductor Particle Detectors", Butterworths, Inc., (1963).
- Ul. S. Untermeyer and J.T. Weills, "Heat Generation in Irradiated Uranium", AECD-3454 (Feb., 1952).
- Vl. R. Vidal, "Mesure des Integrales de Resonance d'Absorption", CEA-R-2486 (July, 1964).
- W1. W.H. Walker, "Fission Product Poisoning", CRPP-626 (Jan., 1956); "Yields and Effective Cross-Sections of Fission Products and Pseudo-Fission Products", CRRP-913 (AECL 1054), (March, 1960); "Fission Product Poisoning from the Fast Fission of U-238", CRRP-1090 (AECL-1537), (June, 1962); "The Effect of New Data on Reactor Poisoning by Non-Saturating Fission Products", AECL 2111, (Nov., 1964).
- W2. K. Way and E.P. Wigner, "Rate of Decay of Fission Products", Paper 43 in "Radiochemical Studies: The Fission Products", NNES, Vol. LV-9, Book 1, p.436, McGraw-Hill, New York (1951); Phys. Rev. <u>70</u>, 115 (1946); Phys. Rev. <u>73</u>, 1318 (1948).
- W3. P.P. Webb and R.L. Williams, Nuclear Instr. Methods 22, 361 (1963).
- W4. A.M. Weinberg and E.P. Wigner, "The Physical Theory of Neutron Chain Reactors", Eq. (19.3) p.661, University of Chicago Press (1958).

1

- W.5 P. Weinzierl, et al, "Burn-up Determination of Nuclear Fuel by High Resolution Gamma-Spectroscopy", UN Conference Paper A/CONF.28/P/399 (May, 1964).
- W6. C.H. Westcott, "Effective Cross-section Values for Well Moderated Thermal Reactor Spectra", 3rd Edition, AECL 1101 (July, 1962).

Security Classification

1. ORIGINATING ACTIVITY (Corporate author) Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 2a. REPORT SECURITY CLASSIFICA Unclassifed 3. REPORT Security CLASSIFICA Unclassifed 2b. GROUP 2b. GROUP 2b. GROUP 3. REPORT TILE Nondestructive Analyses of Irradiated MITR Fuel by Gamma-Ray Spectroscopy 2b. GROUP 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific Report Interim 5. AUTHOR'S) (Last name, initial) Sovka, Jerry A. Rasmussen, Norman C. 5. REPORT DATE October 1965 7a TOTAL NO. OF PAGES 248 7b. NO. OF REFS 70 8a CONTRACTOR GRANT NO. AF19(604)-7492 9a ORIGINATOR'S REPORT NUMBER'S) MITNE-64								
77 Massachusetts Avenue 2b. GROUP Cambridge, Massachusetts 2b. GROUP 3. REPORT TITLE Nondestructive Analyses of Irradiated MITR Fuel by Gamma-Ray Spectroscopy 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific Report Interim 5. AUTHOR'S) (Last name, first name, initial) So vka, Jerry A. Rasmussen, Norman C. 6. REPORT DATE October 1965 7a TOTAL NO. OF PAGES 248 7b NO. OF REFS 70 8a. CONTRACTOR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S) MITNE-64 9a. ORIGINATOR'S REPORT NUMBER(S) MITNE-64								
Cambridge, Massachusetts 3. REPORT TITLE Nondestructive Analyses of Irradiated MITR Fuel by Gamma-Ray Spectroscopy 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific Report Interim 5. AUTHOR'S) (Last name, first name, initial) So Vka, Jerry A. Rasmussen, Norman C. 6. REPORT DATE October 1965 7a TOTAL NO. OF PAGES 248 6. REPORT DATE October 1965 70 8a CONTRACTOR GRANT NO. AF19(604) -7492 6. PROJECT AND TASK NO.								
Nondestructive Analyses of Irradiated MITR Fuel by Gamma-Ray Spectroscopy *. DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific Report Interim 5. AUTHON'S) (Last name, first name, initial) Sovka, Jerry A. Rasmussen, Norman C. 6. REPORT DATE October 1965 7a TOTAL NO. OF PAGES 248 70 8a CONTRACTOR GRANT NO. AF19(604)-7492 b. PROJECT AND TASK NO.								
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific Report Interim 5. AUTHOR'S) (Last name, first name, initial) So vka, Jerry A. Rasmussen, Norman C. 6. REPORT DATE October 1965 7a TOTAL NO. OF PAGES 248 70 8a. CONTRACTOR GRANT NO. AF19(604)-7492 b. PROJECT AND TASK NO.								
 S. AUTHOR(S) (Last name, first name, initial) Sovka, Jerry A. Rasmussen, Norman C. Report pate October 1965 Report pate October 1965 Contractor grant no. AF19(604)-7492 AF19(604)-7492 AF19K NO. 								
Sovka, Jerry A. Rasmussen, Norman C.								
6. REPORT DATE 7a TOTAL NO. OF PAGES 7h NO. OF REFS October 1965 248 70 8a CONTRACT OR GRANT NO. 9a ORIGINATOR'S REPORT NUMBER(S) AF19(604) -7492 MITNE-64 b PROJECT AND TASK NO. MITNE-64								
8a CONTRACT OR GRANT NO. 9a ORIGINATOR'S REPORT NUMBER(S) AF19(604)-7492 MITNE-64 b PROJECT AND TASK NO. MITNE-64	74 NO. OF REFS							
b. PROJECT AND TASK NO.								
5620-02								
c. DOD ELEMENT 61445014 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)								
681301								
10. AVAILABILITY/LIMITATION NOTICES Qualified requestors may obtain copies of this report								
for Federal Scientific and Technical Information (CFSTI), Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151.								
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Hq. AFCRL, OAR (CRW)	12. SPONSORING MILITARY ACTIVITY Ha, AFCRL, OAR (CRW)							
United States Air Force L.G.Hanscom Field, Bedford, Ma	United States Air Force L.G.Hanscom Field.Bedford.Mass							
^{13.} ABSTRACT Lithium drifted Ge solid state γ ray detectors have								
been developed and applied to the problem of nondestruc-								
tive analysis of spent reactor fuel. The energy resolu-								
to 800 keV range and made possible the identification of								
γ rays from Co-134, Cs-137, Rh-106, Nb-95, and Zr-95 in								
this energy region. Ratios of intensities of these γ								
rays were used to determine average flux and irradiation								
of these measurements agreed with other independent								
measurements well within the 10% error assigned. The								
technique developed provides a useful method for determin-								
has been operated at low enough temperatures so that								
fission product migration has not taken place.								

DD FORM 1473

Security Classification

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C			
	ROLE	wт	ROLE	WΤ	ROLE	WT		
Gamma ray spectroscopy								
Burnup								
Nondestructive Analysis								
Spent reactor fuel								
INSTRUCTIONS								
1. ORIGINATING ACTIVITY: Enter the name and address 10. AVAII	LABILIT	Y/LIMITA	TION NO	OTICES:	Enter an	y limi-		

Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica-tion, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PACES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. 8c. & 8d. PROJECT NUMBER: Enter the appropriate subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Quali-fied DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indi-cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the tech-nical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reand the information in the paragraph, represented as (TS), (S), (C) are all (TS), (S), (C) are all (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. How-ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Security Classification