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ABSTRACT

Reactor physics parameters were measured in eleven two-region
subcritical assemblies moderated by heavy water. The regions of the
assemblies consisted of nine different lattices of various fuel rod size,
U 2 3 5 enrichment, and spacing. The following parameters were
measured in the assemblies: bare and cadmium-covered gold foil
radial traverses; bare gold foil axial traverses; the ratio of epi-
cadmium to subcadmium capture r tes in U 2 3 8 (P28); and the ratio of
fissions in U238 to fissions in U233(628)-

From analysis of axial traverses at various radial positions, it
was determined that the axial buckling was independent of radial
position in the assemblies.

A method was developed to apply the age equation to the experi-
mental gold foil traverses. This analysis yielded the quantity kEa/P
for each region of the assemblies. Calculated values of Ea and p were
used to obtain values of the infinite multiplication factor from this
parameter. For assemblies of sufficiently large inner regions, the
values of km so found agreed within experimental uncertainty with
independent determinations.

The slowing-down spectra. arising from the age theory analysis
were used to extrapolate two-region assembly measurements of P28 to
critical assembly values. General agreement was found between these
extrapolated values and the results of measurements made in full,
single region lattices.

The heterogeneous expressions for uncollided flux derived by
Pilat were extended to two-region assemblies and used to determine
single rod values of 628 from two-region assembly measurements.
The theory was also used to predict values of 628 for each of the lattices
composing the two-region assemblies. Both the single rod values and
the full lattice predictions agreed within experimental error with
previously reported results.

The determination of material buckling from two-region sub-
critical assemblies is also discussed. Because of the nature of the
assemblies investigated, satisfactory measurements of the material
buckling could not be made.
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Chapter I

INTRODUCTION

1.1 Discussion of Reactor Physics Measurements

The Nuclear Engineering Department at M. I. T. has concluded a

research program, the Heavy Water Lattice Project, on the physics

of D2 O-moderated lattices of natural or slightly enriched uranium

rods. The program was supported by the United States Atomic Energy

Commission with the purpose of extending the understanding of funda-

mental reactor physics in the area of heavy water moderated, slightly

enriched uranium lattices.

Reports from this project have examined techniques for the

determination of material buckling (P1, C5), neutron capture in U 2 3 8

(W2, D1), and the fast fission effect (W1, P2). The spatial behavior of

thermal neutrons (S2) and of fast neutrons (W3) in subcritical lattices

have also been investigated. All of these reports applied to large,

single region subcritical lattices.

An appreciable fraction of the latter part of the work on the

project has centered on methods of obtaining reactor physics parame-

ters from experiments using less fuel than that required for single

region lattices. The methods investigated were use of miniature

lattices (S1, P4), single rod and few rod clusters (P3), and two region

subcritical assemblies. The reason for developing such approaches

can be seen from consideration of the objectives of reactor physics
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measurements and the degree to which these objectives can be most

economically attained by the alternative experimental facilities avail-

able.

The ultimate goal of reactor physics as an engineering tool is to

aid in the design and construction of nuclear power reactors. Measure-

ment of reactor physics parameters for this purpose would ideally be

performed on the operating power reactor core itself. Since this is

obviously impossible, various degrees of approximation to the final

operating core can be considered. The criterion to be applied for a

choice among the alternative facilities and methods must be to obtain

results that are accurate and reliable enough, using the least amount

of fuel and at the lowest expense. A principal consideration must then

be to evaluate the ultimate usefulness of the results considering the

accuracy with which they can be obtained.

For all the experimental assemblies, regardless of size and

subcriticality or criticality, substantial corrections are required to

extrapolate the experimental measurements made in cold, clean

lattices to conditions existing in an operating reactor core. Effects

produced by the operating temperature, pressure, fission product

poisons, control rod gaps, etc. are, in many cases, larger than

spectral adjustments for measurements made in even very small

samples of core material. Consideration of such effects is beyond the

scope of this report, but it should be realized that even exact spectral

matching of the experimental conditions with that of a cold, clean

reactor will still do nothing about possible subsequent errors intro-

duced by extrapolation to operating conditions. A cold, clean reactor
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can only be considered as the initial state of a series of states through

which an operating reactor passes on its way to power. Reactor

parameters characteristic of this initial state, whether derived from

lattices, large or small, critical or subcritical, can only constitute

one point of reference, one core condition -- i.e. clean, room temper-

ature -- for the reactor designer, to be used primarily as checks of

the calculational methods which he employs. Therefore, the accuracy

with which subcritical or critical reactor lattice parameters must be

measured need only to be comparable in magnitude to that of the

method of extrapolation to reactor operating conditions. For example,

measurements of k for lattice cores at M. I. T. have been done with

accuracies of 2 to 3 percent in k, using the best techniques available,

including many developed by the Lattice Project. On the basis of this

experience, members of the project believe that no method of

measurement will lead to results with better than one percent accuracy.

On the other hand, the effective multiplication factor of duplicate cores

for naval reactors made to the same specifications have been said to

vary among themselves by as much as one percent. For reliable core

lifetime estimates for commercial power reactors, improved accuracy

is an economic necessity. There appears to be little hope of achieving

that level of accuracy with any techniques presently available. Still,

measurements of reactor physics parameters in experimental facili-

ties do give guidance to the reactor designer and do, therefore, have

important usefulness.

There is, however, another type of measurement, useful to the

power reactor designer, that can be made. Comparison measurements
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of the nuclear effect of small changes in the core design can be done

accurately and with a basic validity which allows results to be more

easily translated to the operating reactor. Such core changes might

involve substitution of one type of stainless steel for another, or of

zircalloy for aluminum as cladding materials, or small changes in

fuel rod size or enrichment, or slight variations in the composition of

the moderator. If these changes do not drastically alter the overall

behavior of the system, their effects can be measured accurately by

what is virtually differential or perturbation techniques. Accumulated

experience with power reactor design and operation has generated

accurate knowledge of the nuclear behavior of basic power reactor

cores during operation. Much of the interest is now concentrated on

the effects of modifications to these already existing and well under-

stood cores. Thus the studies undertaken at M. I. T. to reduce the fuel

requirements for lattice parameter measurements have a significant

practical importance.

The amount of fuel to be used for the measurement can be the

233
dominant consideration since some fuels, such as U , may be avail-

able in only small quantities when needed, regardless of cost. Even

235
for more readily available U fuels, expensive fabrication costs or

the desire to study differential changes in fuel construction, such as

the effect of changes in cladding material, size of cooling gap, etc.,

may make a small facility advantageous.

The two most common facilities for lattice parameter measure-

ments are the critical and subcritical assemblies. If the subcritical

system is large enough, the spectrum attained in a region reasonably
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far from the source is essentially identical with that of the critical

system. The size of the system required for source effects to be

negligible depends on the type of source and the nature of the lattice

involved. Typical studies in the M. I. T. lattice facility have been con-

ducted on core volumes of about half that required for the critical

system. This substantial fraction of a critical core ensures the

correct spectrum with the use of considerably less fuel, giving the

subcritical facility an inherent advantage over the larger critical

assemblies.

The heavy water, slightly enriched lattices studied at M. I. T.

are well adapted to subcritical measurements. The single region

lattices in the Heavy Water Lattice Facility have been far subcritical,

but the results have been shown to be consistent with the critical and

subcritical results obtained elsewhere and have become well accepted

throughout the world. A large fraction of all the world's measure-

ments of heavy water moderated, slightly enriched uranium reactor

physics parameters for uniform lattices published to date have been

made in this subcritical assembly system.

In an effort to further find ways to reduce the quantity of fuel

required for meaningful lattice parameter measurements, the M. I. T.

Heavy Water Lattice Project began concurrent studies of three alter-

nate approaches to reactor physics measurements. These approaches

included a study of the usefulness of measurements in miniature

lattices, where the equilibrium spectrum is not attained, a study of

single rod and few rod clusters, and a study of two region subcritical

assemblies. All of these methods require considerably less fuel than
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critical or large subcritical assemblies. The results of the studies of

the first two approaches have been previously reported (S1, P4, P3).

It was found that both methods yielded values for the rod integral

parameters (defined in terms of the ratios of capture rates inside fuel

elements and called microscopic parameters in some M. I. T. Lattice

Project reports) in substantial agreement with those from large sub-

critical lattices and with comparable accuracy. However, neither

approach could be used to directly determine the material buckling.

The third approach is the topic of this report and consists of

measurements in two region subcritical assemblies, produced by form-

ing a test region in the center of a surrounding lattice which acts as a

neutron feeding assembly. Conservation of fuel and loading time is

thereby achieved at the expense of spectral deformation. This docu-

ment details the studies made in various two region assemblies. The

components of these assemblies were chosen to test the advantages

and the limitations of this third possible means of obtaining meaning-

ful lattice physics parameters with reduced quantities of fuel.

1.2 Previous Work on Two Region Assemblies

The advantages of small fuel requirements possessed by two

region assemblies were recognized some years ago. Extensive work

has been conducted on the determination of material buckling of the

test region from critical two region experiments. This work has been

done chiefly at Savannah River (G4), Saclay (N1), and Sweden (P5).

Bucklings have also been obtained from two region subcritical assem-

blies (Ll).
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These experiments were generally performed by the method of

progressive substitution. This method consists of a series of critical

height measurements on assemblies with various sizes of test region.

The effect of the variation of test region size on the critical height of

the assembly is analyzed to obtain the test region material buckling.

The results of such experiments have, in general, been good. However,

it was found that meaningful results, particularly for D 20 lattices,

could only be obtained if the regions of the assembly were quite similar

in nuclear characteristics and if very small test regions were avoided.

Spectral corrections to rod integral measurements have not re-

ceived as much attention. Some work has been done using a few-group

computer code to define a volume of the test region of a light water

assembly where necessary corrections to a critical assembly

spectrum would be small (V2). Such assemblies can be constructed

fairly easily for H 2 0-moderated lattices, since the slowing-down and

diffusion lengths are relatively short; but D20 lattice test regions

must be considerably larger in order to approach an equilibrium

spectrum. In most practical size D20 test regions, relatively large

corrections are required for many of the lattice parameters.

1.3 Purpose of This Work

The primary purpose of this investigation is to determine the

usefulness of two region subcritical assemblies for lattice parameter

measurements and to compare this usefulness with that of alternate

approaches such as a miniature lattice experiment of single rod

measurements. To attain this primary objective, methods must be



17

developed which will describe the spatial and energy behaviors of the

neutron population in a two region assembly. Sufficient knowledge of

this behavior is necessary to extrapolate with validity measurements

of rod integral parameters made in a two region assembly to critical

assembly values with which comparisons may be made.

In order to determine the validity of the theoretical analyses by

experimental measurements, two region assemblies were formed

from lattices which had been previously extensively investigated in

single region experiments by the Heavy Water Lattice Project. It was

then possible to compare measurements of the lattice parameters of

each region made in the two region assemblies with those done in the

more appropriate spectrum of the large, single region lattices,

testing the validity of the extrapolation methods and, at the same time,

lending additional confidence to the single region measurements. A

total of eleven assemblies were used in the study. The composition of

these assemblies afforded a quite severe test of the theoretical

analyses.

Measurements were made of the following parameters in the two

region assemblies:

1. p 2 8 = the ratio of the epicadmium to subcadmium capture

rates in U238 averaged over the fuel,

238
2. 628 = the ratio of fast fissions in U to the total number

283
of fissions in U 2 3 5

3. Axial activity distributions of bare gold foils,

4. Radial activity distributions of both bare and cadmium-

covered gold foils.
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1.4 Contents of the Report

Chapter II presents the theory used to describe the neutron distri-

butions. A discussion of material buckling determination is also

included. The experimental facilities and techniques and the two region

assemblies used in the study are described in Chapter III. Reduction of

experimental. data to commonly measured lattice parameters is

described in Chapter IV. Chapter V gives the results of the application

of the theoretical analyses to the experimental measurements. The

conclusions reached on the basis of these results are given in Chapter V

together with recommendations for future work.

A method for calculating the effective resonance integral for U 2 3 8

rods is presented in Appendix A. Appendix B contains descriptions of

computer programs developed for the assembly analyses. Derivations

of formulae for evaluating functions required for an uncollided flux

kernel are given in Appendix C. Appendix D shows the methods used

for calculating necessary lattice parameters. Appendix E contains the

bibliography.



Chapter II

THEORY OF TWO REGION ASSEMBLIES

2.1 Introduction

The usual primary objective of carrying out experiments with a

two region assembly is to determine the nuclear properties of the

inner or test region, knowing those of the outer or reference region.

The properties considered in this report include the ratio of epi-

thermal absorptions to thermal absorptions in U238 (P 2 8 ), the ratio of

fissions in U238 to those in U235 (628), the infinite multiplication

constant (k ), and the material buckling (B ).

An approximation to the neutron spectrum as a function of radius

in the assembly can be generated using a slowing down theory together

with the experimental distribution of thermal and epicadmium activities

k 5a
of gold foils. This analysis also results in a value of 0 for each of

p

the regions. The resulting spectra can then be used to correct ratios

of measured values of resonance to thermal foil activities, such as P28'

to full lattice values. This treatment has particular advantages over

diffusion theory when the thermal diffusion characteristics of the two

regions are greatly different.

In addition, the results of measurements of fast neutron effects

such as those measured by 628 are explained by a heterogeneous

method similar to those used by Pilat (P3) and Higgins (H3).
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Finally, a two-group diffusion treatment has been developed

which will allow calculation of the material buckling of the test region

from the measured axial buckling.

2.2 Application of Age Theory to Two Region Assemblies

Many of the two region assemblies investigated in this study

showed large differences in thermal diffusion characteristics between

the two regions. Attempts to fit the radial distributions to two-group

diffusion theory were unsuccessful, especially near the boundary

between regions. Since the thermal diffusion lengths of neutrons in

the lattices studied were large (10 to 20 cm) in comparison with the test

region sizes, this boundary difficulty could not be easily overcome.

In the following treatment, age theory together with the measured

thermal flux distribution are used to predict the shape of the gold reso-

nance activity distribution. Fitting the experimental data for the slowing
k 2

down densities to the theoretical distribution yields a value of 0 a
p

for each region.

For the assemblies investigated, the slowing down properties do

not differ greatly between regions. The Fermi age varies only from

123 cm 2 to 129 cm 2 . The error introduced in the slowing down density

by assuming the age to be that of pure D 2 0 (125 cm 2) is less than one

percent for a material buckling of 0.001, typical of the lattices involved

in this study. It is therefore assumed that the slowing down properties

are the same in each region. Then the age equation, valid in both

regions, may be written for the whole assembly as:

2q = q (2.1)V a -r
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If it is assumed that the axial buckling is constant across both regions,

then:

2 +T2 q = , (2.2)
r aT

where y2 is the measured axial buckling. The solution of Eq. 2.2 may

be written as:

q(r, T) = q(r, 0) e+(+ 2  (2.3)

In order to evaluate Eq. 2.3, the initial condition of the source at

zero age must be specified. From age theory:

k 7
q(r, 0) = a (r), (2.4)

p t

where 4t is the thermal flux.
k a

The quantity oo a is taken to be constant in each region sepa-
p

rately; this approximation can be motivated by the following consider-

ations.

If

fuel

and

Safuel/ acell

then use of the four-factor definition for k, gives:

k Zoo a , E (2.5)
p f

The fast fission factor c shows a very small variation within a region

(see results of 628 measurements, section 4.3.2). The macroscopic

fission cross section, E, depends on the microscopic properties of
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the cell materials (constant throughout the assemblies) and on the ratio

of fuel volume to moderator volume. This ratio shows a step change at

the boundary between the regions.

The thermal flux distribution can be measured by foil activation,
k a

and the source is then known as a function of radius and k0 a of each
p

region.

In order to use this source in the age equation (Eq. 2.2), it is

convenient to expand the distribution in terms of Bessel functions:

00

q(r, 0) = a aJ(a r), (2.6)
i= 1

where a. satisfies the boundary condition:

J9(a R ex) = 0,

giving:

ai = ji/R ex (2.7)

where j is the ith zero of the Bessel function and R is the extrapo-

lated radius of the assembly. Since the extrapolated radius depends

primarily on the material properties of the outer region, the extrapo-

lated radius measured in a single region experiment on the outer

lattice or calculated from its properties may be used.

The orthogonal properties of the Bessel function together with

Eq. 2.4 are used to evaluate the coefficients of the series.

R kZE
2 ex oo01a. = 2 ex p at(r) r J (a.r) dr

ex 1 i ex

2a (r) r J0 (aa J r) dr
[R J 1 (aR ex) - 0 p 1

+ f Rex ( kOO a) t(r)r J(a r) drj, (2.8)
R p 2
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where the subscripts 1 and 2 refer to the inner and outer regions,

respectively, and R is the radius of the inner region. The coef-

ficients may be written as:

k Z k Z
a. = ja b. + ( a) d. , (2.9)

1 \p/ 1  p 2

where

b = 2 f 4t(r) J0(a r) dr [R J (a R )]2 (2.10)
0

and

d. =2 f ex 4 (r) JR(axr) dr [R J (a.R 2 (2.11)
1 R tro(irex 1 i ex

2.2.1 Slowing Down Density with Equal Resonance Escape Probabilities

For illustration of the method, consider a simplified case in

which the resonance escape probabilities in the two regions are equal

(P1 = P2 = p). A more realistic case will be treated in the next section.

In the present case, the fractional number of neutrons lost at each

resonance is constant across the assembly and the shape of the slowing

down density radial distribution is unchanged by such absorption.

If Eq. 2.6 is inserted into Eq. 2.3, an expression for the slowing

down density is obtained.

k Z (2_ ( 2
q(r,T) = oo) b e J(a r)

k 00 o2_ 2 )
+ (oo a 2 d e (Y i J 0(a ir) .(2.12)

2=1

Below the U238 resonances, absorption in the resonances will decrease
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the neutron density by a factor p, the resonance escape probability.

The neutron density at ages below the U238 resonances is then:

Q(r,T) = pq(r,r)

00 2 2)

= [(k ) 1b.+(k Z) 2 d.]e J0 (a r) (2.13)

i=1

If the radial distribution of the neutron density at a particular

age is measured, a least squares fit of the data to Eq. 2.13 will yield

k Za for each region.

2.2.2 Slowing Down Density with Unequal Resonance Escape

Probabilities

When unequal resonance escape probabilities exist in the two

regions, the treatment of the slowing down process is considerably

more complex. Because of the continuous neutron interchange between

assembly regions during the slowing down process, the resonance

absorption cannot be lumped into a single effective resonance as is

done successfully in many single region applications. To treat the

resonance absorption more realistically, the statistical resonance

region is divided into a number of hypothetical resolved resonances,

and these, together with the actual resolved resonances, are treated

singly. The mathematics involved will be illustrated with the effect of

the highest hypothetical resonance. In the actual calculations, the

number of actual and hypothetical resonances is reduced to 38 to save

computation time. Resonances whose contributions are small are con-

solidated to produce "lumped" resonances having a minimum fractional
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resonance escape probability of about two percent. (The energies of

the lumped resonances are taken as the average of the composite

resonances weighted with their fractional effective resonance

integrals.) The process illustrated below for a single resonance is

therefore repeated 38 times.

The slowing down density above the highest hypothetical reso-

nance is given by Eq. 2.12. Absorption in this resonance will decrease

1
the density by a factor p1 , the partial resonance escape probability for

this resonance. In the inner region:

1 1 i(k oo a 0 b 2_ 2r
Q(r, T 1) = p q(r, T) = pl 1 b 1e (a r)

1 i=1

k 00 oo2_2

+ p (k00a I d. e J (a r) . (2.14)1 \ /2 i=1 01

1
A similar expression with p describes the distribution in the outer

region.

Again, an expansion in terms of Bessel functions will make the

total distribution amenable to the age equation. Equation 2.14 can be

written as:
( 2 2)

Q(r, T) = Z C J0(a r) e for r < R,

and

Q(r, T) = 0 for r > R.

We wish to express Q in a new series:

2 2

Q = g. J (a.r) e ,

where g = 2 f0e rQJ (a r) dr [R J (a R )]2
0 / xl je
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Again, using the orthogonality of the Bessel functions:

[R J 1(aR )]2

2

R

0c
r J (a r) dr

0]i

R
+ Cf r J (a r) J(a r)d

i*j 0

If the Bessel function integrals are denoted by B ,

becomes:

00

i=1

1=1

(2.15)

then Eq. 2.15

C.B.
1 1]

k Z( 0 a)
k a + p d B . (2.16)

The Bessel function integrals are:

B9 = R2[J9(a R)+J (a R)]/ [R J (a R )]2

2R[acJ (a R)J (a R) - a Ji (a R)J0(a R)]

2 - ) [R(a -a)[ exJ (a jR ex)]2

Similar operations on the expression for the slowing down density

distribution in the outer region involve Bessel function integrals from

R to R which will be denoted by D.. .
ex i

D.. = fex rJ2 (a.r) dr = 1 - B.,
33 R 0]3l

R
D.. = f ex r J (a.r) J (a.r) dr = -B..

13 R 0 0] 1]

The final expression for the slowing down density below the resonance

becomes:

B

r .
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ofk Z 001  00

Q(r, T1 T2 a, p b.B.. + p2  b. D.i
j=

kO a 0o 1o ~~ (7 2_ a2)
+ oo p2 - d B. + P1  d D e J .a )

~p 2  
1 i=1 1=1 -ij

(2.17)

Repetition of this process for each U238 resonance will produce a set

of expressions for the slowing down density at any age. Partial reso-

nance escape probabilities can be calculated (see Appendix A) and if the

slowing down density distribution is measured at a particular age, a

least squares fit of the data to the appropriate expression will yield

k Za00 a for each region.
p

2.2.3 Determination of the Slowing Down Densities from Gold Foil

Activation

In order to determine the slowing down density and thermal flux

distributions in the assemblies, bare and cadmium-covered traverses

with gold foils were made in each assembly as described in section 3.4.

Gold has proven particularly convenient for this measurement because

of its single natural isotope, its comparatively large cross section

and moderate half-life. In addition, a prominent resonance at 4.9 ev

makes it suitable for resonance flux measurements.

Contributions to the activity of the gold foils may be considered

to be of three types: thermal, epithermal 1/v, and epithermal

resonance. The thermal flux is assumed to have a Maxwellian energy

distribution, M(E). The epithermal flux is closely approximated by:

<(r, E) = Q(r, ,) (2.18)
S
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where Q(rT) is the neutron slowing down density at an age corres-

ponding to the energy E and is given by Eq. 2.13 or 2.17 or a similar

expression. The epithermal flux is assumed to join the Maxwellian

distribution at an energy of 5 kT (- 0.12 ev).

The activation cross section for gold varies as 1/v throughout

the thermal energy range while in the epithermal energy range,

resonance contributions must be added to the 1/v response. Under

these assumptions, the total activity, At, of a gold foil may be written

as:

0.12 ev .4 ev Q(r T) dE
Atf1/v t(r)M(E) dE+f Q-1/v T) dE

0 1v t .12 ev 1/v s E

+ 00 a Q(r,T) dE + 00  (E) Q(r, T) dE (2.19)
4 4s E res s E

where U-1 /v is the 1/v cross section and Us is the resonance cross

section. Here the epithermal activation has been separated into sub-

cadmium and epicadmium activities with an assumed cadmium cutoff

energy of 0.4 ev.

It is convenient to normalize the epithermal activities to the

slowing down density at the major resonance of Au198 (4.9 ev).

TAu will represent the age of neutrons at this energy.

Integration over the Maxwellian distribution is performed and

the resonance integral replaced by a summation of partial effective

resonance integrals. The result is:



At = 0.886 a 0t(r) + s T
0 tES 0

Q(r, TAu)
+ s ao

00

/ 4

'4 Q(r, T) dE

.12 Q(r, TAu) E 1 . 5

Q(r, T) dE
Q(r, TAu) E1.5

Q(r, TAu)
+ I

Gold
Resonances

Q(r, Tk)

k Q(r, TAu

ERIk= t %. dE
k kth resonance res E

and Tk is the age to the kth resonance of gold.

Finally, non-1/v indexes are defined as follows:

.4 Q(r, T) dE
SC 12 Q(r,TA E 1 . 5

C B 00Q(r, T) dE
CEC fQ(r, Tu E 1.5 'and

(2.21)

In a pure 1/v spectrum the neutron densities are independent of

age and the integration of Eq. 2.21 can be performed directly, giving

CSC = 0.414 and CEC = 0.500.

The ratio of subcadmium to epicadmium activities is the cadmium

ratio RCd minus one. From Eqs. 2.20 and 2.21:

Q(r, TA)
.886 O t(r) + o SAaC

RCd Q(r,' TAu) Q(r TAu
S ERIAu + o EC

(2.22)

29

where

(2.20)



30

where

ERIAu = I
Gold
Resonances

Q(r, Tk

ERIk Q(r, TAu

A slowing down function is now defined as:

S(r,i) =- 2.22 s 0 t .s

Solving Eq. 2.22 for + gives:

$(r, T) =

(2.23)

(2.24)0.886

(Red1i) (ERI + c
Cd CEC) - CSC

Using the new definitions, Eq. 2.20 for the total thermal activation may

be rewritten as:

(2.25)At(r) = 0.886 + (r, TAu(sC+ CEC+ ERI)] Ot(r)

and 4t, defined as the total thermal flux, is then given by:

At(r)

Nt(r) = I

(2.26)

.886 + (r, TAu(SC+ CEC+ ERIAu)~~ ~ -CC+CE

Algebraic manipulations will produce alternate expressions for 4 and

4t as functions of the epicadmium and subcadmium activities.

0 (r) = subcadmium activation per nuclide
t 0.886 + CEC (r, TAu)

(2.27)

and

(r, T Au =
epicadmium activation per nuclide

ERI + CEC) 0t(r)
0

(2.28)

-
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The experimental quantity obtained from simple counting of gold

foils is proportional to the actual activation, the proportionality

constant being the efficiency of the counter. However, if the bare and

cadmium-covered foils are counted on the same equipment or other-

wise suitably normalized, the cadmium ratio and hence the slowing

down function @i will be absolute values. Use of the relative activities

in Eq. 2.26 or Eq. 2.27 yields a quantity proportional to the thermal

flux. This proportionality is incorporated in the expansion coefficients

calculated with Eq. 2.8. Since, from the definition of LP,

Q(r, T) = E sot(r)+(r, T), (2.29)

the proportionality constant will appear on both sides of Eq. 2.17 and

will not affect the values of ko a

p
The steps in the use of the activation traverses to determine

for each region of the assembly are:
p

1. An axial buckling is found from axial gold traverses

(see section 4.2.3).

2. Gold-cadmium ratios are calculated from bare and

cadmium-covered radial traverses and their monitor

foils (see section 4.2.2).

3. The spectrum is everywhere assumed to be 1/E and the

1/E values of SC' CEC and ERI/o 0 are used.

4. Partial resonance escape probabilities are calculated

for each region.

5. The radial distribution of 4(r,TAu ) and 4(r) are calculated

with Eqs. 2.24 and 2.27.

6. Expansion coefficients are calculated by use of Eq. 2.8.
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7. The results of these calculations are fitted to Eq. 2.17

to give k0 Z /p for each region.

8. The slowing down spectra thus found are used to re-

evaluate Csc, CEC and ERI/o 0 at each point, and steps

5 through 8 are repeated until a convergence limit is

reached.

A computer program has been developed to perform these

calculations and is described in Appendix B.

2.2.4 Correction of Assembly Values of P28 to Full Lattice Values

The ratio p 2 8 of the epicadmium to subcadmium capture rates

in U238 is related to the cadmium ratio of U 2 3 8 inside a fuel rod

by (D1):

P28 R -1 (2.30)
28

where R28 is the cadmium ratio of U 2 3 8. It is also directly related to

p, the resonance escape probability. The simplest equation used to

relate p to p 2 8 is:

p= 1 + p 2 8 fG (2.31)

where f is the thermal utilization factor and G is the ratio of the sub-

cadmium-U238 capture rate to the total thermal absorption rate in the

fuel. This relationship represents a very simple approach, and many

corrections have been applied to the basic equation to include the

effects of fast U238 capture, 1/v capture above cadmium cutoff, and

leakage of neutrons in the fast, resonance and thermal energy groups

(K2). Thus the measurement of p 2 8 is of considerable interest as an
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easily measured and meaningful parameter in lattice experiments. In

a two region assembly, however, the cadmium ratio of U238 inside a

fuel rod varies as a function of radial position and is, in general,

considerably different from that found in a full lattice of the same

composition. The results of the preceding analysis can be used to

correct these values to the full lattice or critical assembly value.

Similar corrections have been successfully applied by previous workers

to subcritical measurements (S1, P4).

Equation 2.22 has been derived in the previous section for the

gold-cadmium ratio. By defining the effective resonance integral for

U238U 28as:

28I = Q(r, rk)
ERI2 ERIk Q(r, T)'

U2 3 8  Au

resonances

the same expression may be written for the U238 cadmium ratio.

In a critical, single region assembly and in a large subcritical

lattice, the slowing down density is given by standard age theory (G3)

as:

k E -B2 7,
c _ oo a m

leading to:

2
k Z -B T

c _ p(T) oo a m (2.32)

2
where B is the material buckling and the superscript c refers to

m

critical assembly values. Note that the slowing down function, e (T),

is independent of position.
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Using this expression for the critical assembly and Eq. 2.22

with the ERI for U238 and the definition of L (Eq. 2.23), a correction

factor is obtained.

c 1
P28 c 1

RCd

ERIc
c 28 + C c

0.886 + 4(r,TAu)CSC Au 2+ EC

KrT ERI28 + C 0.886 + @c(T )Cc P2 8 .

Au + EC

(2.33)

Equation 2.22 does not strictly apply within a fuel rod, since the

spectrum inside the rod is greatly hardened by uranium absorptions

and fissions. Also, a true Maxwellian spectrum does not exist. For

this reason, agreement between the U 238-cadmium ratio given by

Eq. 2.22 and experiment is not to be expected. However, if it is assumed

that the ratio of neutrons of a given energy in the moderator to those in

the fuel is the same in a cell of a two region assembly as it is in a

critical cell, i. e. the disadvantage factors are equal, then the

expression can be used to derive the correction factor given by Eq. 2.33.

2.3 Fast Neutron Distribution and 628

The fast neutron fission ratio, 6 28, is defined as the ratio of the

average total U238 fission rate to the average total U235 fission rate

in the fuel. It is related to the fast fission factor, e, of the four-factor

formula by:
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net number of neutrons produced by all fissions

number of neutrons produced by fissions in U 2 3 5

V1 + 6 v2 8  1 - 28 (2.34)
28 v25

where v28 and v25 are the number of neutrons produced per fission in

238 235
U and U , respectively, and a 2 8 is the ratio of capture to fission

cross sections of U238

It has been shown (W3, P3) that the neutrons responsible for fast

fissions may be considered as those neutrons which have not suffered

a collision since birth. A collision, then, is assumed to decrease the

neutron's energy below the threshold value necessary for fission of

U 2 3 8 . To calculate the uncollided flux at some point, the contributions

of each single rod in the assembly to the flux at that point is summed

over the entire core. Using this heterogeneous principle, the

uncollided flux 4. at a point within the j fuel rod may be written as:

N
= K.. S. + S. K.. , (2.35)

J JJ J i 1 i ]

i=1

where K.. is a removal kernel which relates the source of fast neutrons
13

within rod i to the uncollided flux in the jth rod. The above equation

neglects the effect of finite volume of the fuel rods. The total uncollided

flux in the jth rod can be found by integrating the previous expression

across the rod:

R R N

f0 27rr drf f 0 K..S.(r) 27rr dr + TR2 S. K.. , (2.36)
0 0 0 i=1

i#j



36

where R is the radius of the rod. Here it is assumed that the contri-
0

bution from neighboring rods is constant across the subject rod. The

actual variation of this contribution is very close to linear across the

fuel rod, since the rod diameters considered are small in comparison

to the relaxation length for uncollided neutrons in uranium (- 10 cm).

Thus, integration across the rod using a constant flux equal to that at

the center of the rod introduces little error. The equation is next

normalized to a single fission neutron in rod j:

f0 27r fr dr
H- 0 

f S(r) 27r r dr
0

R
0 K. S .(r) 27r r dr

R

f 
0

0
S (r) 2r Tr dr

N
+ 7rR 2 Z

i

S .K.
i13

R

f 0 S (r) 27r r dr
0

Assume that the first n rods in the assembly are identical with rod j.

Then:

5
45 R

S. - f S.(r) 27r r dr,
s 0
i

i < n, (2.38)

since the source in each rod is proportional to s, the thermal flux.

Rods above n are assumed to have a different radius, R 2 '

4 R
S. = f 2 S.(r) 27r r dr,

i 4s 0
&

P
Rf 0 S (r) 27rr dr,

0

n < i < N

2 S (r) 27r r dr

where P = OR
f S.(r) 27rr dr

0

(2.37)

is
=
1

(2.39)
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and since the value of H for a single rod in an infinite sea of moder-

ator must be:

R
0 K.. S.(r) 27rr dr

HSR _ 0 3 (2.40)
j R

f 0 S.(r) 27rr dr
0

Equation 2.37 becomes:

n Os N s
H = HSR + R2 i Ki + P K. . (2.41)

1#j O. i=n 4-
[i=1 3 _

Pilat (P3) has shown that:

6 25 Zf H (2.42)
28 1 - v 28 Zf H'

The denominator is quite close to unity, so that 628 may be considered

proportional to H and:

N 7]
7rR2 n Oi N

5 = 6SR 1 + 0 K.. + P K. . . (2.43)
28 28 SR . (2. s 3

H. 1#j O- i=n 4-

A single collision transport kernel has been used successfully to

evaluate the interaction effects in heavy water lattices. Woodruff (W3)

assumed a parabolic distribution of fission sources within the fuel rod,

S(r) = 1.0 + b r2, (2.44)

using experimental distributions to determine the value of b. A com-

puter program was developed to numerically integrate the kernel for a

series of cylindrical sources to obtain the uncollided flux distribution



within the fuel rod. Pilat, using the same basic kernel and source

distribution, developed semi-analytic expressions for the integrated

kernel. His expressions have been used in the present study.

Outside a single fuel rod of radius R9 the uncollided flux is

given by:

f R
4SR(r, R0 ,

C 3
+

ER)= A(r, R , R 2 Rr) S2 R R)
R 0R t 2 ( Rr) 2 (ZR, R0 )

Rr)S3 (R, R 0 )
r

C4 (ER OS4 (z R, R0)
+ 2 +

r

where:

00

C (z) fn1

-zt
e dt,

n-1 1 2t -t2

n = 2, 3, 4, ...

R
S (, R) fn. 0

and I (x) is the ith derivative of the Bessel function.
0

At quite small

distances from the rod, smaller than the closest pitch of the lattices

investigated, a line source description suffices for the flux distribution:

SR(r, R, R 2r R 1 o( RR) 27r R S(R) dRoR 0 27r r 0
(2.48)

and

K C2( R( _
ii 2 7r(Ir.-r.I)

0 (E RR) 27rRS (R) dR

R
27rRS .(R) dR

0

Since IO(zRR) is very close to unity in the rods considered, the ratio

of the integrals in the above expression is also close to one.

38

,1 (2.45)

(2.46)

(2.47)

(2.49)

t j~ IQj- 2) (Et) S(t) dt ,0
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Inside the rod, Pilat has shown that:

SR(r,R, R) R(r, r, ZR) + 0SR(r,RO, ZR) , (2.50)

where:

C(1
4SR(r, R, ZR) 1 0 (Er) f 2 (r, R 0 ) + r I (r) f 3(r, R9)

+ r 2 1(2) f (r,R 0 )+. . . , (2.51)
0 4 0

and:

R d

f (r, R 0 ) f 0 C (ER) S(R) dR (2.52)
n o0 r n Rn-2

Evaluation of the various integrals involved in these expressions is

described in Appendix C.

Using Eq. 2.50 for the uncollided flux inside the rod, HSR can

be evaluated by numerical integration, and having defined K , a

measurement of 6 in a two region lattice will then yield 6"" from
28 28

SR
Eq. 2.43. The same equation and the value of 628 can be used to

predict 628 values for full lattices composed of the same type of fuel

rods.

2.4 Determination of Test Region Material Buckling

In work on critical two region experiments, several methods

have been developed for the determination of the material buckling,

2
B2 , of the inner test region (G4). Most of these theories depend on

a series of experiments in which the test region is successively en-

larged and the results of the series of experiments are analyzed for

the difference in buckling between the regions. The experiments in

the present study were not designed as progressive substitution
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experiments, and so attention is restricted here to theories which

might provide results from experiments on a single two region assem-

bly. The following sections describe algebraic manipulations of the

basic diffusion equations to produce expressions amenable to solution

for the test region buckling. Similar expressions have been derived

by others for critical two region facilities (B3).

It will be shown in section 4.3.1 that the axial flux distributions

in the assemblies fit a simple hyperbolic sine distribution over a con-

siderable portion of the assembly height. Since no evidence of higher

harmonics is evident in the axial component of the flux, higher

harmonics must also make only a small contribution to the radial

distribution. Therefore, in the diffusion theory treatments to follow,

the flux distribution in the assemblies is expressed by the lowest

mode solution of the diffusion equation.

2.4.1 One Group Diffusion Theory

The one group diffusion equation is:

V2 + B = 0. (2.53)

This equation has the solution for cylindrical coordinates:

On(r, z) = Cn [o(anr)+ En Yo(anr)] sinh (y(H-z)). (2.54)

If the assembly is subcritical:

2 2 2
n = B ,n + y. (2.55)

In these equations, and subsequent ones in this chapter, n is 1 in the

inner region and 2 in the outer region of the assembly.
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In the inner region, E 1 must be zero since the flux is finite at

the assembly center, and since the flux is zero at the extrapolated

radius of the assembly, E 2 must equal -J 0 (a 2 R ex)/Yo( a 2 R ex). The

usual boundary conditions of continuity of flux and current at the bounda-

ry interface give two equations:

J(a R) = C2 H (a 2R) , (2.56)

and a1 D 1 J1 (a 1 R) = a 2 C 2 D 2 H 1 (a 2 R) , (2.57)

where H 0 (a 2 R) = J 0 (a 2 R) + E 2  ( a 2 R) , (2.58)

H 1 (a 2 R) = J 1 (a 2 R) + E2 Y1 (a 2 R) , (2.59)

and D is the thermal diffusion coefficient. Division of Eq. 2.56 by

Eq. 2.57 and rearrangement gives:

A = D T ,9 . l

where A = 0 (a1 R)/al 1 ( 1 R) , (2.61)

H H(a 2 R)/a 2 H1 (a 2 R) , (2.62)

and D = D 2 /D . (2.63)

2 2
The quantity II depends on the values of R, y and B 2 If these

quantities and the ratio of the diffusion coefficients are known,

Eq. 2.60 can be solved by iteration techniques for al, which will give

the material buckling of the test region by Eq. 2.55.

2.4.2 Two Group Diffusion Theory

One group theory is obviously only a poor approximation to the

processes which take place in a two region assembly. A better
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description should be given by two group theory. The two group dif-

fusion equations are (G3):

2 1 O
Vf,n 2 f,nLfn

2 01

2 s,n L 2  s,n
s,n

k ,n
oOn s,n
pn D f,n s,n

+ D ff n 0 .
s,n

The subscripts s and f are here employed to denote the slow and

fast energy neutron groups, respectively. These equations have the

general solution in cylindrical coordinates (G3):

n (r) = Cn [o(ar)+En o(anr)] + An I(o r)+FnK9(nr)],

s,n (r) = S 1 n Cn [(anr)+En o (anr)]

+ S 2, nAn[I 0onr)+Fn Ko(nr)],

2 = B 2 + 2
n M.9n

2 = B 2 2 + 1/(L 2+L )
n m ,n S.,n f,n

(2.66)

(2.67)

(2.68)

(2.69)

Since both the fast and slow flux are finite at the assembly centerline,

E 1 = F 1 = 0 and the zero fluxes at the extrapolated radius require

E2 (a2R )/Y9(a2R ) and F 2 = -1 0( 2 R )/K9( 02R ex) In

addition to the functions defined by Eq. 2.58 and Eq. 2.59, two new

functions are defined:

M90( 2R) = I 0( 2 R) + F2K902R)

M 1 (0 2 R) = IY0 2 R) - F 2 K9( 0 2 R)

(2.70)

(2.71)

(2.64)

(2.65)

and

where

and

and
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To further condense the equations, the following ratios are defined:

Df = Df, 2 /Df, 1 Ds = Ds, 2 /DS, l' n S2, n /S 1 , n, and

V = S1,2/S1, 1. The continuity of the fluxes and currents at

interface can now be written as:

J +A I =C H +A M
o 1 o 2 0 2 0

the region

VJ 0 + yjVA1 Io = C 2 Ho + y2A 2 Mo,

a 1 J, - 0ASII= Df C 2 2H, - D f0 2 A 2 M 1 ,

(2.72)

a 1VJ - jyVAIj = D sC 2a 2H, - Dsf32 y2A 2M 1 .

The arguments of the functions have been omitted, it being understood

that they are evaluated at the region boundary. Algebraic manipulation

of these four equations and the further substitution of z =Ds/Df will

reduce them to a single an ndental equti

(ylV-1)(V-y 2)

(ylV-y 2 )(V-1)

1-y 1 (z-1)~-
1 -y 2 J +D A

Y1V-y2._s

L 1
_z - 1 ~ - D A
yjV-1 11 s 1

1V -1]l1 + D As

y2(Z -1)] ~

1here Aa- H y 2 D s

where A and H are given by Eqs. 2.61 and 2.62,

(2.73)

and

A 1 = 10 (/R)/PI3(13R)

1 1 = MO(0 2R)/3 2 M 1(3 2R).

Note that in the case of equal diffusion coefficients in the two regions

and

(2.74)

(2.75)
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(i.e. z = Ds = 1), the right-hand side of Eq. 2.73 becomes a function

of the material bucklings of the two regions and the geometry of the

assembly only, while the left-hand side is determined solely by the

material properties of the lattices involved.

In substitution experiments, it is common practice to regard the

left-hand side of Eq. 2.73 as an experimental unknown (B3). It is help-

ful to define this expression as a separate quantity.

S = (ylV-1) (V-y 2 ) /(y 1 V-y 2 ) (V-1) . (2.76)

If the diffusion coefficients can be considered equal in the two regions,

S can be eliminated from the calculations if a series of assemblies is

investigated, each with a different size test region. If only one

assembly is available, S must be evaluated theoretically. Expressions

ior the coupling coefficients are readiy Ue iv oU m1 UIII Lwo gopI UU9

theory (G3):

1 + B2 pn Zf, n
L2 m,n D

S = f, n or s, n (2.77)
1,n k Z 2 1 'o ,n s,n B +

D p m,n L2
f,n n s, n

1 2p
+ B n f, n

L2 m, n D
S2,n s, n or ~ 2 n (2.78)

o, n s,n B +
D p m, n L2

f, nn fn

These equations lead directly to:

1 2+ B
S L2 m, n

y 2, n _ s, n 2 (2.79)
f , nS + B

L2 m, n
f, n
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2
Since L = D n the ratio V may be written as:

B2 + 1
L2 m, 1 L2

V p P2  f, 1 1 (B, L 1  (2.80)
P1 L2 2 z B2 +

fl 2 Bm, 2 +L 2

Equations 2.79 and 2.80 can then be used to evaluate the ratios neces-

sary for the calculation of S by Eq. 2.76, for any value of the test

region buckling. An iteration process can then be used to solve

2
Eq. 2.73 for the proper value of a and hence the material buckling of

the test region.

2.5 Summary

This chanter has presented methods of interpreting two region

assembly measurements to obtain lattice parameters characteristic

of the individual regions comprising the assembly. The remainder

of this report will be concerned with the experimental verification of

the usefulness of these theories.



Chapter III

EXPERIMENTAL APPARATUS AND METHODS

3.1 The M. I. T. Lattice Facility

The two region assemblies were studied in the M. I. T. Heavy

Water Lattice Facility. This facility has been described in previous

reports (e. g. H1).

The subcritical facility uses the thermal column of the M. I. T.

Reactor as a primary source of neutrons. During the present work,

the reactor operated at thermal power levels of two or five megawatts.

Figure 3.1 shows the relationship of the lattice facility to the reactor.

iL gures 3.2. and 3J. 3 ar e v el L and pla-LnAL CL I V of VhV ' ej L L tItIi. c e

facility. Neutrons from the reactor thermal column enter a graphite-

lined cavity or hohlraum and a considerable fraction of them are

reflected upward into the bottom of the exponential tank. A graphite

pedestal directly below the tank is designed to shape the flux entering

the tank to an approximate J0 radial distribution (P1).

The exponential tank is 67-1/4 inches high and either 36 inches

or 48 inches in diameter, depending on the assembly being studied.

The side of the tank is covered with 0.020-inch-thick cadmium, and

the tank is in turn contained in a 72-inch-diameter outer tank.

Fuel rods are supported in the tank from double girders at the

top. The rods are positioned at the desired spacing by tabs on the

upper adapters which fit into notches in the support girders. Lower
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FIG. 3.1
CUT-AWAY VIEW OF THE MIT RESEARCH REACTOR
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adapters, screwed into the bottom of the rods, fit into positioning

holes in a grid plate at the bottom of the exponential tank.

Before each run in the facility, a 1/16-inch-diameter, 0.010-

inch-thick gold foil was placed in a 5/8-inch-diameter sample tube

located in a fixed location in the graphite wall of the cavity opposite

the thermal column. This foil was used to monitor the flux and

irradiation time for each run. The foil was taped on the end of a

1/4-inch-diameter polyethylene rod which was fully inserted into the

sample hole, thus ensuring a standard position for each monitor foil.

The flux distribution in the sample tube is shown in Figure 3.4. It is

seen that the flux shape is flat over several inches at the end of the

tube which further lessens the chance of positioning errors.

3.2 Formation of Two Region Assemblies

The flexiblilty of the Ivi. I. T. lattice faciity anU L1te av ilability

of several types of fuel rods allows the formation of assemblies

varying in center region size, fuel enrichment, fuel rod diameter,

and lattice pitch or spacing.

The diameter of the center region was limited to about one-half

the diameter of the exponential tank to ensure sufficient outer region

for meaningful measurements. This restriction limited the number of

cells in the center region, particularly for lattices of large pitch.

The fuel used in the assemblies was composed of metallic

uranium of natural or low enrichment, clad in Type 1100 aluminum.

These rods were arranged in triangular arrays with spacings corre-

sponding to pitches previously studied in single region lattices. Thus,
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most of the results from two region assemblies can be compared

directly with those made independently on single region lattices.

When the two regions of an assembly differ in pitch, they differ

by a factor of two. Any other ratio would have required the additional

expenditure of time and money for the fabrication of a new girder

system, which was considered unnecessary. Instead, the second

region is easily formed by the insertion (or removal) of alternate fuel

rods from an existing single region lattice. The resulting difference

in the fuel to moderator ratios of the two regions provides a wide

variation in L 2, the thermal diffusion length, and such assemblies

exhibit the greatest variation in the neutron spectra across the

assembly. Other assemblies were formed by substituting rods of

another enrichment or diameter into a single region lattice.

The word assemblyI in tis Ieteer L o asLysteL 0f± fue

rods and moderator containing two regions differing in fuel element

pitch, enrichment or diameter, or some combination of the three. A

list of the two region assemblies studied is given in Table 3.1.

Roman numerals are applied to consecutively number the assemblies

in the order in which they were studied. Table 3.1 also gives the

number of "rings" in each region of an assembly. Rings are defined

as hexagonals of fuel rods about the center rod as shown in Figure 3.5.

Thus, a four-ring assembly such as assembly III has 61 fuel rods in

the center region. The number of rings in the outer region is less

well defined because of the circular shape of the tank. The number of

complete rings in the outer region is given in the table.

Assemblies were chosen to allow the effects of rod size, spacing,



TABLE 3.1

Two Region Assemblies Tested in the M. I. T. Lattice Facility

Assembly
Designation

I

V

II

IV

V

VI

VII

VIII

Ix

xI

Properties Common
to Both Regions

0.25-in.-diameter,
1.027% U-235 fuel

0.25-in. -diameter,
1.027% U-235 fuel

0.25-in. -diameter,
1.027% U-235 fuel

0.25-in. -diameter,
1.027% U-235 fuel

0.25-in. -diameter,
1.143% U-235 fuel

0.25-in. -diameter,
1.143% U-235 fuel

0.25-in. -diameter,
1.75-in. spacing

0.25-in. -diameter,
1.75-in. spacing

2.50-in. spacing

2.50-in. spacing

5.00-in. spacing

Outer Region

9 rings

7 rings

5 rings

4 rings

9 rings

5 rings

7 rings

5 rings

3 rings

5 rings

2 rings

- 1.25-in. spacing

- 1.25-in. spacing

- 1.25-in. spacing

- 2.50-in. spacing

- 1.25-in. spacing

- 1.25-in. spacing

- 1.143% U-235 fuel

- 1.143% U-235 fuel

- 0.75-in.- diameter,
0.947% U-235 fuel

- 0.75-in.-diameter,
0.947% U-235 fuel

- 0.75-in. -diameter,
0.947% U-235 fuel

Inner Region

2 rings' - 2.50-in. spacing

3 rings -

4 rings -

6 rings -

2 rings -

4 rings -

3 rings -

5 rings -

4 rings -

2 rings -

2.50-in. spacing

2.50-in. spacing

1.25-in. spacing

2.50-in. spacing

2.50-in. spacing

1.027% U-235 fuel

1.027% U-235 fuel

0.25-in. -diameter,
1.027% U-235 fuel

0.25-in. -diameter,
1.027% U-235 fuel

2 rings - 1.0-in.-diameter,
natural uranium fuel

c-fl
,,Rings about the central rod.
All spacings are the triangular lattice pitches used.
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center region size and fuel enrichment to be examined in a systematic

way. Assemblies I through VI have regions which differ only in rod

spacing, while the center region size varies with each assembly. The

regions of assemblies VII and VIII have slightly different enrichments,

while in IX, X, and XI both rod size and enrichment differ in the two

regions.

It should be noted that restrictions of space within the facility,

ultimately determined by criticality considerations, made some of the

regions quite small in comparison with the diffusion and slowing down

lengths of the lattice materials.

The word "lattice" as used in this report refers to a system of

fuel and moderator composing one region of an assembly. The lattice

is specified by the fuel rod enrichment, diameter and pitch. Table 3.2

lists the lattices involved in the assemblies and the region in the

assembly in which each lattice was used. The lattices are numbered

with arabic numerals to distinguish them from assembly designations.

3.3 Measurements Made in the Assemblies

Neutron flux measurements made by means of foil detectors in

a subcritical lattice may be roughly divided into traverses to deter-

mine the overall flux shape in the assembly, and determinations of

neu t ron activation inside a fuel rod. Macroscopic traverses in a

single region lattice are made to determine the material buckling.

Such determinations have been made by the various investigators of

the M. I. T. Lattice Project (P1, H2, K1). The usual detector foils

used have beengold foils, although copper foils have also been employed.



TABLE 3.2

Lattices Studied in Two Region Assemblies

Lattice Fuel Rod U-235 Concentration Lattice
Number Diameter in Fuel Pitch Assembly Region

(Inch) (Percent) (Inches)

1 0.25 1.027 1.25 I Outer
II Outer

III Outer
IV Inner

2 0.25 1.027 1.75 VII Inner
VIII Inner

3 0.25 1.027 2.50 I Inner
II Inner

III Inner
IV Outer
IX Inner
X Inner

4 0.25 1.143 1.25 V Outer
VI Outer

5 0.25 1.143 1.75 VII Outer
VIII Outer

6 0.25 1.143 2.50 V Inner
VI Inner

7 0.75 0.947 2.50 IX Outer
X Outer

8 0.75 0.947 5.00 XI Outer

9 1.0 0.71 (natural) 5.00 XI Inner
c.'1
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In an effort to determine the constancy of the material buckling with

neutron energy, cadmium-covered gold foils have also been used. The

results of radial and axial traverses are individually fitted to the one-

group diffusion expression for the flux distribution.

In the two region assemblies, gold traverses, both bare and

cadmium-covered, were made in the radial direction and bare gold

traverses in the axial direction. Previous Lattice Project experience

gained from the buckling measurements in single region lattices was

employed in determining the procedures used for this study. Details

of the procedures are given below.

The value of integral parameter measurements made in the fuel

rods of a two region assembly is directly related to the degree to which

the spectrum in the area of the measurement simulates that of a criti-

cal lattice of the same composition. In order to determine the degree

of spectral similarity in the assemblies, the cadmium ratio of gold in

the moderator was obtained from the radial traverses, and also

parameter measurements were made inside fuel rods at various

radial distances from the assembly center. The parameters chosen

for this purpose were 628, the ratio of fissions in U238 to fissions in

U 235, and R 2 8 , the cadmium ratio of U238 inside a fuel rod. The

former parameter is related to the fast fission factor, c (see section

2.4), and the latter to the resonance escape probability, p (see

section 2.2.4). Both parameters have been measured in single region

lattices for each of the lattices involved in the two region assemblies.

Details of the experimental procedures used for these integral

parameter measurements are also given below.



58

3.4 Gold Traverses

The following sections present the procedures used for the axial

and radial gold foil traverses.

3.4.1 Gold Axial Traverses

During the course of the experimental program, several changes

were made in the technique for positioning foils for axial traverses.

For runs in Assembly I and for part of Assembly III runs, foil holders

designed for 1/16-inch-diameter, 0.010-inch-thick gold foils were

used. These holders were fabricated from aluminum extruded T-stock

and were machined with a series of 1/16-inch-diameter depressions

spaced 1-1/2 inches apart into which foils were placed and secured

with mylar tape. The holder was suspended vertically from the top

support girders of the facility into the moderator rcgion between the

fuel elements. Figure 3.6 shows the holder positioned in the assembly.

In a 1-1/4-inch-pitch lattice, the top of the holder fit snugly between

the upper adapters of two fuel elements and the support girders. With

the 2-1/2-inch spacing, a dummy fuel adapter was placed in the sup-

port girder to mock the 1-1/4-inch spacing and thus ensure proper

positioning of the holder. The use of this dummy adapter is illustrated

in Figure 3.6. The bottom of the holder was inserted through a hole in

the grid plate into which it was guided by thin aluminum strips perma-

nently fastened to the grid plate with epoxy resin. Three positions in

the grid plate were prepared in this fashion: at 3.0, 6.25 and 10.0

inches from the center of the assembly.

Although good results were obtained with this arrangement, it was
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concluded that better positioning with less effort and a greater choice

of radial positions could be obtained by installing foils inside fuel rods.

Although small positioning errors of the foils inside the rod might be

expected to be magnified by the fuel disadvantage factor or variations

of thermal neutron leakage into the foil position could prove to be a

source of error, experiments performed with this foil arrangement

proved to be more consistent than those with the previous foil holders.

Uncertainty in the weights of the foils was reduced at the same time

by employing larger foils of 1/8-inch diameter. This method was

followed throughout the remaining assemblies and is described below.

Experimental rods in the Lattice Project consist of hollow

aluminum tubes of the same inner diameter as the fuel rod fitted with

threaded end caps which simulate the upper and lower adapters of a

regular fuel rod. These rods can then be positioned in the lattice in

the same fashion as the regular fuel rods.

For axial traverses, two-inch-long slugs of fuel, identical in

diameter and enrichment to that of the lattice fuel, were inserted in

an experimental rod. Aluminum planchettes, thirty-two mils thick,

machined to hold 1/8-inch-diameter gold foils, were placed between

the slugs to make up the foil detectors for the axial traverse. A

typical rod contained seventeen foils which were more than sufficient

to cover the exponential portion of the axial distribution.

The center fuel position of the assembly was the standard position

for axial traverses done in this manner, although other fuel positions

were also used. The length of the axial irradiations varied from one to

four hours, depending on the multiplication of the lattice being studied.
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3.4.2 Gold Radial Traverses

Gold foils were positioned in the moderator between rows of fuel

by aluminum foil holders. As in the case of the axial traverses, two

types of foil holders were used.

The first type, used for runs in Assembly I and in part of those

in Assembly III, was machined with a series of concentric circular

depressions of 1/16- and 1/8-inch diameter, which made the holder

capable of accepting bare 1/16-inch-diameter gold foils or 1/8-inch-

diameter cadmium covers. Foil positions were spaced 1-1/4 inches

apart, making a total of twenty-six possible foil positions. The holder

was lowered into the lattice tank using aluminum chains. A notch

close to one end of the foil holder was inserted into a corresponding

notch in a holder support previously attached to a lattice fuel rod. A

seconad unnotch..ed support on a seo f-Quel rod held the other end oP the

holder in the horizontal position. These supports were situated twenty-

four inches above the bottom of the fuel and positioned the holder

parallel to the support girder next to the central fuel element.

The installation of this foil holder into the tank and positive

latching into the support bracket was a difficult and uncertain task.

The second type of holder made considerable improvement in positive

positioning and ease of installation. This holder was also made of

aluminum stock but was suspended from the top girders by aluminum

chain attached to both ends of the holder. Hook-type adapters posi-

tively positioned the holders in the horizontal plane as shown in

Figure 3.7. Several holders of this type were used, the spacing between

foil positions varying with the lattice pitch. In all cases, 1/8-inch-

diameter, 10-mil-thick gold foils were used.
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3.4.3 Counting Method

Gold foils, activated in the above traverses, were counted with a

NaI crystal scintillation counter. The counting technique was the same

for both 1/8-inch and 1/16-inch gold foils. A single channel analyzer

was used to restrict the gamma rays counted to those with energies

above about 320 Kev. This energy corresponds to the minimum in the

gamma-ray spectrum of Au 1 9 8 immediately before the principle

gamma-ray peak of 412 Kev (H7). This setting was chosen in an effort

to minimize the effect of instrument drift on counting results. A typi-

cal counting system is shown in Figure 3.8.

Automatic sample changers facilitated the counting and allowed

several counting passes (usually three) for each traverse. A preset

count, which varied from 20,000 to 100,000 counts, was used for each

foil in each pass. Since at least two such counting arrangements were

available during most of the experiments, each traverse was usually

counted on both systems. After preliminary data reduction, the output

of the counting system with the smaller deviation between passes was

selected for further treatment.

3. 5 U 2 3 8 Cadmium Ratio

The following sections describe the irradiation procedures and

counting methods used in determining the cadmium ratio of U 2 3 8

inside a fuel rod.
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3.5.1 Foil Arrangement

Figure 3.9 shows the foil packet arrangement used in the

measurement of the U 2 3 8 -cadmium ratio. The detector foils were

uranium foils depleted in U235 content to 18 ppm, 0.005 inch thick

and of the same diameter as the fuel rods. Each detector foil was

sandwiched between two depleted uranium catcher foils and the three

foils then placed between two 0.060-inch-thick fuel slugs. This

packet of fuel and slugs was then secured by either a Teflon sleeve or

mylar tape. Previous work (D1) has shown that the two types of

sleeves produced no detectable difference in the results. At each end

of the packet, a 0.020-inch-thick cover foil was placed. These foils

were Type 1100 aluminum for the bare runs and cadmium for the

cadmium-covered runs. The aluminum covers were used to preserve

the positioning of the foils between bare and cadmium-covered runs.

Their effect on the activity of the detector foils has been shown to be

negligible (Dl).

The foil packet, together with its cover foils, were placed

between two fuel slugs in an experimental rod. For cadmium-covered

runs, the rod was wrapped with 0.20 inch of cadmium for one-half inch

on both sides of the detector foil position. The foils were irradiated at

a height of 16 inches from the bottom of the fuel region. Irradiations

of about 6 hours for the bare runs and 12 hours for the cadmium-

covered runs produced sufficient activity in the lattices studied.

Bare runs and cadmium-covered runs were not made simultane-

ously. In order to ensure reproducibility of foil position for a cadmium

ratio determination, the same fuel slugs were used to load the
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experimental rod in both cases. The activities were then normalized,

using the activities of gold monitor foils described in section 3.1.

3.5.2 Counting Method

After irradiation, the U239 formed in the depleted uranium foils

was allowed to decay to Np239 before counting. A minimum cooling

time of four hours was required. The counting system consisted of an

integral-counting probe unit containing a 1/2-inch-thick, 1-1/2-inch-

diameter NaI(T1) crystal and an RCA 6342A photomultiplier; a pre-

amplifier built for the Lattice Project, a Sturrup, Inc. Model 4201 high

voltage supply and a Radiation Instrument Development Laboratory

(RIDL) single-channel spectrometer. The spectrometer consisted of

an RIDL Model 30-19 amplifier, an RIDL Model 33-10 single-channel

analyzer and an RIDL Model 49-25 combination scaler-timer, all

mounted in an RIDL Model 29-1 chassis. A diagram of the counting

apparatus is shown in Figure 3.10. A differential gamma-ray counting

method was used. The 103-Kev peak in the gamma- and X-ray spectrum

of Np 2 3 9 was straddled with a window width corresponding to 38 Kev.

The 84-Kev gamma ray of Tm170 was used to set the lower limit of the

window, and the 123-Kev gamma ray of Co 5 7 , to set the upper limit.

The calibration was made every time the system was used. At least

five counting passes were made with each foil. The average of the cor-

rected counts from all passes was taken as the desired foil activity.
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3.6 628 Measurements

The fast fission ratio, 628, is defined by the relationship

(W1, B1):

628= Average total U 2 3 8 fission rate in the foil
6 =Average total U2 3 5 fission rate in the foil

which may be written as:

CE . a.f(t)- S
628 =P(t) 1 -a - r(t) , (3.1)28 1 - aP- F)

where 25 2

CE is an enrichment correction given by (NF 5QN)28

where the subscript F refers to the fuel material and

N refers to the natural uranium;

a is given by

WN NN 28

where the subscript D refers to depleted uranium;

28

S is the ratio, (Nj ( N)
N F ND

P(t) is the ratio of the measured fission product activity per

U235 fission to the measured fission product activity per U 2 3 8

fission;

I(t) is the ratio of the fission product activity measured in a

foil depleted in U235 to the fission product activity measured

in a foil of natural uranium, with both foils irradiated in the

same neutron flux.

P(t) depends on both the fuel rod diameter and the irradiation

time. However, extensive measurements of P(t) in the exponential

facility at M. I. T. have shown very slight dependence on time or fuel
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rod size (P2, B1). Therefore, P(t) has been taken to be a constant for

each of the assemblies with a value of 1.14 ± 0.02 (Si). The method of

determining P(t) will be discussed in the next section.

3.6.1 Foil Arrangement

The quantity F(t) was measured by irradiating two uranium foils,

one depleted in U 2 3 5 , the other a natural uranium foil. Both foils

were 0.005 inch thick and of the same diameter as the fuel rod. Foil

packets were composed of the two detector foils, each sandwiched

between two uranium "catcher" foils, identical in size and composition

with the corresponding detector foil. (In the case of the one-inch-

diameter fuel, the catcher foils were 0.001-inch-thick aluminum foils.)

The catcher foils prevent the contamination of the detector foils with

fission products produced in uranium of a different U235 composition.

The packet was completed by two 0.060-inch-thick fuel slugs at top and

bottom, and the packet was secured with mylar tape. The packet is

shown in Figure 3.11.

The packet was placed between two fuel slugs in an experimental

fuel, rod at about 16 inches from the bottom of the fuel. The foils were

then irradiated for about 12 hours.

3.6.2 Counting Method

The irradiated foils were allowed to decay for four hours after

irradiation to allow the 23-minute U239 to decay to Np239 and thus pre-

vent the inclusion of the 1.2-Mev beta ray from U239 in the fission

product count. The foils were then counted with a Baird Atomic
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Model 815BL scintillation detector, a Baird Atomic Model 215 linear

amplifier, and a Baird Atomic Model 960 timer. The scintillation

detector contained a 1-3/4-inch-thick, 2-inch-diameter NaI(T1)

crystal, an RCA 6342A photomultiplier and a preamplifier. A sche-

matic diagram is shown in Figure 3.12. The foils were counted for

fission product activity by the integral gamma-ray counting technique

with a baseline corresponding to 0.72 Mev. The 667-Kev and 840-Kev

photopeaks of Cs 1 3 7 and Mn54 respectively, were used to calibrate

the equipment. Each foil was counted a minimum of six times to define

the time dependence of the activity.
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Chapter IV

METHODS OF DATA REDUCTION AND EXPERIMENTAL RESULTS

4.1 Introduction

This chapter describes techniques used for analyses of the raw

data obtained from the experiments described in the preceding chapter.

As a result of these analyses, the data are presented in the form of

commonly measured lattice quantities suitable for testing the theories

developed in Chapter II. The analyses of this chapter include

correction of the counting data, calculation of the axial buckling, gold-

cadmium ratios, 628 and the U 238-cadmium ratios. The results of

these determinations will then be presented.

4.2 Techniques of Data Analyses

The methods used for data reduction have been developed by

various workers on the Heavy Water Lattice Project (S2, D1, P1, W1).

4.2.1 Gold Foil Activation

The gold foil counting data were corrected with the ACT5 com-

puter program written by Simms (S2) and subsequently modified by

Clikeman (C2). This program processes the raw data obtained from

the automatic counters described in section 3.4.3 for activity having a

single half-life. Gold activity, having a half-life of 64.8 hours, is thus

suitable input for the code.
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The program corrects the raw data for:

1. Decay of activity from the time the irradiation ended to the

time at which the counting of the foils begins.

2. Decay of activity during the time interval in which the foils

are being counted.

3. Background.

4. Counter dead time.

5. Foil weight.

Corrections 2, 3, and 4 are applied to each counting pass; corrections

1 and 5 are applied to the average count rate over all the passes. The

average is calculated by weighting the individual results with the

number of pre-set counts for the pass.

The axial and radial bare and cadmium-covered foils used in the

traverses of these lattices together with the monitor foils were ana-

lyzed in this manner. (In general, correction 1 was not applied to the

monitor foils by ACT5 since monitors from several runs were

commonly counted at the same time.)

4.2.2 Gold-Cadmium Ratios

The output from the computer code ACT5 includes punched

cards containing the corrected activities and the statistical counting

error for each foil counted. These cards for a bare and cadmium-

covered set of foils comprising a single run, together with their

respective monitor foils, are used as input to the program AGE

described in Appendix B. The initial part of this program applies

correction 1 to each monitor foil and proceeds to normalize the

traverses to the monitor foil activities. A gold-cadmium ratio for
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each traverse position is calculated from these normalized activities,

together with the counting errors of the individual foils involved.

4.2.3 Axial Buckling

The corrected activities for the axial traverses obtained from

ACT5 were analyzed for the axial buckling of each assembly with the

computer program AXFIT, initially written by Palmedo (P1). The

AXFIT code is basically a least squares fit of the activities to a

hyperbolic sine function:

<(z) = A sinh y (H-z), (4.1)

where H is the extrapolated height of the lattice core and T2 is the

axial buckling. The code fits the activities to the expression for

several values of the extrapolated height supplied as input to the code.

Only points greater than 30 cm from the bottom of the tank were used

and points at the top are successively dropped by the code. Each

time the number of experimental points considered is decreased, a

value of y2 is found for each value of the extrapolated height. Plots

of T2 versus H for each point dropped have a common intersection,

as shown in Figure 4.1. This intersection defines the required value

2
of Y . Note that the intersection of the curves is rather poorly defined

since the slopes of the intersecting lines are not greatly different.

4.2.4 Uranium Foil Activation

The Np239 counts from the activated depleted uranium foils de-

scribed in section 3.5.1 were corrected for the same effects as the

gold foils (section 4.2.1). The bare and cadmium-covered activities

were normalized to the activities of the bare gold monitor foils
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irradiated simultaneously in the hohlraum. A small correction to

account for the different half-lives of Au198 and Np 2 3 9 was also

applied. The corrected neptunium activities were then used to calcu-

late the U 238-cadmium ratio and p 2 8 .

Since the decay of the fission product activity is not given by a

simple exponential, but rather by a sum of exponentials, correction

of the 628 foils described in section 3.6.1 is not as straightforward.

Use was made of the computer program designed for this purpose by

Wolberg (W1). Input to the code includes the uncorrected counts and

the times after irradiation for each count. The data for both depleted

and natural foils are required. After corrections for background and

foil weights are applied, a least squares fit is made to the natural

uranium data to determine the time behavior of its activity. The

natural foil activity at the times of the depleted foil counts is then

estimated from the fitted polynomial. The ratio of depleted activity to

natural activity 1(t) is found for each depleted foil pass. From other

input data, including P(t), the code uses Eq. 3.1 to compute 628*

4.3 Experimental Results

This section presents the results of the analyses of the data

using the techniques described in the preceding section.

4.3.1 Axial Buckling

One of the prime assumptions made in the theory of Chapter II

is the constancy of axial buckling with radial position in the assemblies.

To test this assumption, axial traverses were made at several radial

positions in assemblies II and V. If the assumption is true, then the
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ratio of foil activities at equal heights for pairs of traverses should be

a constant for each assembly and independent of radial position. How-

ever, if a small difference in axial buckling exists, and if an exponen-

tial shape is assumed in both radial positions, then the ratio of foil

activities at equal heights would be:

Act1 (z) Z
Act2(z = A e Az ~ A(1+Ayz) . (4.2)Act 2 Wz

Small differences of axial bucklings should then produce a straight

line for the plot of activity ratio versus height.

Figures 4.2 and 4.3 show the plots of activity ratio versus axial

position for experiments in Assemblies II and V. For the four cases

shown, least squares fits to Eq. 4.2 gave values of A72 of 0.05 ± .05 p1B,

9 ± 2 pB (the first five points were dropped from the fit to produce a

maximum buckling difference), 0.48 ± 0.8 pB, and 0.52 ± 1.5 pB,

respectively. Of the four cases, only one produced a significant

difference in buckling. No reason for this anomalous behavior is

apparent and the traverse must therefore be suspect. In any case, the

difference is within the uncertainty of axial buckling measurements

(approximately 25 piB) and if such a difference did exist, it would not

seriously affect the analyses of the two region assembly.

Axial bucklings for each of the assemblies are presented in

Table 4.1. (The unit for buckling in this table and throughout this

report is the microbuck (pB) equal to 10- 6 inverse square centimeters.)

The axial bucklings measured in full lattices for both the test and

reference regions of each assembly are also given for purposes of
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TABLE 4.1

Axial Bucklings in Two Region Assemblies

Assembly Full Lattice Values Assembly
Designation Test Region Reference Region Axial Buckling

(pB) (pB) (pB)

I

II

III

IV

V

1525

1525

1525

1167

1396

1396

1200

1200

1525

1525

VI

VII

VIII

Ix

X

XI 547

1167

1167

1167

1525

948

948

1192

1183

1281

1299

1051

1112

1006

1074

1204

1200

1013

1013

1395

1395

277 380

Four-foot-diameter lattice tank
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comparison. Uncertainties in the measured values are about 25 pB.

In general, the two region assembly value falls between those of

the corresponding full lattices. Assemblies IX and X are notable

exceptions. A qualitative explanation for this behavior may be obtained

by considering Figure 4.4 which shows the variation of full lattice axial

bucklings with lattice pitch for the 0.75-inch-diameter and 0.25-inch-

diameter fuel rods. (The axial bucklings for this figure were taken

from results of full lattice experiments. The experimental results

were corrected where necessary to a three-foot-diameter lattice tank.)

Since the effect of reducing the fraction of fuel by forming a two-

region assembly should have the same qualitative effect as reducing

the lattice pitch in a single region lattice, the assembly axial buckling

should fall somewhere on a nonlinear curve joining the values of the

lattices composing the assembly. A definite minimum is to be

expected in such a curve, based on consideration of the single region

curves of Figure 4.3. This same effect is not evident in the other

assemblies because the individual lattices are either close to or on

the same side of the inflection in the buckling curve.

4.3.2 Gold Radial Traverses

This section presents the results of bare and cadmium-covered

gold foil traverses made in the radial direction in each of the eleven

assemblies. The first figure for each assembly shows the cadmium

ratio as a function of radial position, while the second figure gives the

epicadmium and subcadmium foil activities on an arbitrary scale.

With the exception of Assembly I, the cadmium ratios for all the
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assemblies are for 1/4-inch-diameter, 0.010-inch-thick gold foils. In

each of these assemblies, at least two traverses of each type were

made and, since foil positions on the holder used were symmetrical

about the holder center, each bare and cadmium-covered foil activity,

with the exception of that for the center foil position, is the result of

counting four foils. This procedure resulted in an average standard

error of approximately one percent for the cadmium ratios.

In Assembly I, only one set of traverses was made with an

unsymmetrical foil holder using 1/16-inch-diameter, 0.010-inch-

thick gold foils. The uncertainty for these cadmium ratios is esti-

mated to be about three percent. The effect of a slight horizontal

misalignment of the foil holder in these runs is apparent from the

oscillation in the resulting cadmium ratios shown in Figure 4.5.

(Alternate cadmium ratios in the traverse were calculated from foils

on one side of the foil holder center.) This uncertainty in positioning,

the nonsymmetry of the foil holder, and the error introduced by

weighing the smaller foils, led to the adoption of the foil holder used

in subsequent assemblies.

In general, the shapes of the experimental curves are not unex-

pected from the composition of the assemblies. In Assembly I, where

the center region has a larger pitch than the outer region, a flattening

of the epicadmium flux in the center region is evident. Fast neutrons

born in this region are relatively few and the contribution of the outer

region to the epicadmium flux is considerable, especially near the

boundary between regions. This tends to flatten the radial distribution.

On the other hand, the greater diffusion length in the center region
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allows the thermal flux to peak. As the center region radius is

increased in Assemblies II and III, the region of flattened epicadmium

flux increases proportionately.

The regions of Assembly IV are reversed from those of the

preceding assemblies. The subcadmium flux is now depleted in the

center region due to higher thermal absorption, and evidence of a

"?reflector" peak formed by the greater moderating properties of the

outer region can be seen just outside the boundary between the regions.

Assemblies V and VI are very similar to Assemblies I and III,

differing only slightly in fuel enrichment. Flux shapes are therefore

almost identical.

Very little difference exists between the properties of inner and

outer regions of Assemblies VII and VIII. The traverses in these

assemblies show little difference from those of a single region lattice.

The inner region of Assembly IX is poorer in fuel than the outer

region. In this case, not only is the epicadmium flux flattened in the

center region, but a definite increase is noticeable in Figure 4.22 as

the outer region is approached. The smaller test region of AssemblyX

does not allow any similar increase to be observed in Figure 4.24.

The small differences in enrichment and in fuel size between the

regions of Assembly XI are not sufficient to produce large pertur-

bations in the flux distributions. The larger cadmium ratio in the

outer region, however, is evidence of the lower fuel-to-moderator

ratio.
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4.3.3 U 238-Cadmium Ratios

Cadmium ratios of U238 inside the fuel rods were measured as

a function of radial position in Assemblies III and IV. The results of

these measurements are shown in Figures 4.27 and 4.28. In all other

assemblies, with the exception of Assembly II, measurements were

made in the center fuel rod only, and the results are given in Table

4.2. Each value shown is the average of two independent measure-

ments, and the error quoted is the standard deviation. For compari-

son, the value in a full lattice of test region composition is also given.

These single region values are from reference H5.

The same qualitative tendencies, evident in the gold-cadmium

ratio results, are noticeable for the U238 values. (Compare Figure

4.27 with Figure 4.9 and Figure 4.28 with Figure 4.11.) As would be

expected., the deviation from the single region values is smaller, the

larger the test region, indicating a greater approach to the desired

neutron spectrum.

4.3.4 628 Measured in Two Region Assemblies

Because of other research being done using the M. I. T. Lattice

Facility, the time available for two region assemblies was usually

limited to five days for each assembly. Occasionally, a complete set

of measurements could not be obtained in this time. For this reason,

628 was not measured in Assemblies I, V and VI. Measurements of

628 were made in the central fuel element of all other assemblies. In

most cases, two independent determinations were made for each

assembly. The results are shown in Table 4.3 along with previously
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TABLE 4.2

R28 Measurements in Center Position of Two Region Assemblies

Center
Assembly Lattice Single Region

Designation Designation Two Region Value Lattice

3.84 ± .04

5.48 ± .06

2.28 ± .04

4.07 ± .06

5.21 ± .08

3.08 ± .13

3.43 ± .17

5.03 ± .10

3.40 ± .07

9 3.30 ± .09

5.40 ± .03

5.40 ± .03

2.18 ± .01

5.27 ± .10

5.27 ± .10

3.28 ± .02

3.28 ± .02

5.40 ± .03

5.40 ± .03

3.50 ± .01

I 3

3III

IV 1

V

VI

VII

VIII

6

6

2

2

3

3

Ix

x

XI
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TABLE 4.3

628 Measurements in Center Position of Two Region Assemblies

Center
Assembly Lattice Assembly 628 Full Lattice

Designation Designation Value

3

Average

3

1

0.0192

0.0188

0.0190 0.0183 ± .0007

0.02016

0.01870

Average 0.01943 0.0183 ± .0007

0.0280

0.0272

Average 0.0276

0.0201

0.0201

Average 0.0201

2 (One
measurement)

3 (One
measurement)

0.0198

0.0166

0.0173

0.0193

Average 0.0183

0.0604

0.0595

Average 0.0600

0. 0274 ± .0012

0.0217 ± .0007

0.0217 ± .0007

0.0183 ± .0007

0.0183 ± .0007

0.0596 ± .0017

II

III

IV

VII 2

VIII

Ix

x 3

XI 9
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reported values for the full lattice corresponding to the test region of

the assembly. It is immediately apparent that only small corrections

will be necessary to obtain the full lattice values from the two region

assembly measurements.

In Assemblies III and IX, 628 measurements were made at vari-

ous radial positions. The results are shown in Figures 4.29 and 4.30.

In Assembly III, both regions were composed of 1/4-inch-diameter

fuel rods. The variation in 628 between regions is, therefore, com-

pletely due to differences in interaction with the neighboring rods. In

Assembly IX, the abrupt change in 628 as the region boundary is

crossed is largely due to the difference in the single rod contributions

of the 1/4-inch-diameter rods of the inner region and the 3/4-inch-

diameter rods in the outer region.
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Chapter V

APPLICATION OF THEORY TO EXPERIMENTAL RESULTS

5.1 Introduction

The results of applying the theories presented in Chapter II to

the experimental results of Chapter IV are presented in this chapter.

5.2 Application of Age Theory to Gold Foil Traverses

The experimental bare and cadmium-covered gold foil neutron

flux traverses presented in section 4.3.2 were fitted to the theoretical

expressions developed in section 2.2.2, using the computer program

AGE described in Appendix B. Several simplifications were made

beyond those necessary to the theory. These simplifications will be

discussed before presenting the results of the analyses.

In determining the series representation of the source distri-

bution using Eq. 2.6, some finite limit must be placed on the number

of terms to be used. From preliminary trials, it was found that terms

above the sixth contribute little to the slowing down density even at an

age of 20 sq. cm. Their effect on the final flux distribution at the gold

resonance is negligible. To be conservative, a total of ten terms is

used in the computer program, both for the series expressing the

source distribution (Eq. 2.6) and in those expressing the effect of

resonance absorption (Eq. 2.17).

In Figures 5.1 to 5.11, the solid line labelled T= 0 is the source
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distribution computed directly from the total thermal activation:

k F,
q(0, r) = oo a O(r) . (2.4)

p

The dashed lines are the approximations given by the series expansion

of Eq. 2.6. It can be seen that in assemblies having large differences
k F,

in 0 a between the regions, large oscillations are noticeable in the
p

series approximation; while in assemblies with more alike regions,

the approximation is considerably better. In all cases, the oscillations

are suppressed in the theoretical distributions for neutrons of age

30 cm2 and over, and the oscillations have no noticeable effect on the

final gold resonance distributions.

As mentioned in section 2.2.2, actual U238 resonance absorption

was simplified by two assumptions: (1) The resonance absorption in

the statistical range was treated as a series of hypothetical resolved

resonances, and (2) all resonances, whether actual or hypothetical,

were subject to "lumping" to reduce the number of calculations re-

quired and consequently the computer time.

Adjacent resonances were combined if the sum of their fractional

effective resonance integrals did not exceed approximately two percent.

A weighted average energy was then assigned to the combined

resonances. This process was limited by its nature to resonances with

small contribution to the total absorption process. The statistical

region was treated completely in this manner by assuming a 1/E

dependence for the resonance integral in this region. The large

resonances at low energies which have the largest effect on the slowing

down density distribution at the gold resonance were unaffected by this
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lumping procedure. Table 5.1 gives the resonance data actually used

in the computer calculation. Values in the table were calculated from

the output of the computer program RES, described in Appendix B,

which uses the theory of Appendix A to calculate U238 effective reso-

nance integrals for uranium rods. The uncombined resonance data

are given in Table A.1.

The fractional effective resonance integrals are used in the

program AGE to compute the partial resonance escape probabilities

from the total resonance escape probabilities given in Table 5.2. If

the simple exponential formula for resonance escape probability is

assumed to hold, both for the total and each fractional probability,

then (G3):

p exp N UV ERI , (5.1)

or ln p. = - ERI. , (5.2)
j s VM OM ER 52

and ln p. = f. ln p , (5.3)
J J

where f. is the fractional effective resonance integral for the jth

resonance and p is the total resonance escape probability. To obtain

N U VU U ostnEq. 5.3 from Eq. 5.2 implies that the quantity sVM M is constant

over all resonances. The slowing down power, (Es, is commonly

assumed constant with energy throughout the resonance energy range,

and although the resonance disadvantage factor, i-, will vary with
OM

the strength of the particular resonance, the effect on the more im-

portant resonances is slight.
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TABLE 5.1

Fractional U 2 3 8 Effective Resonance Integrals

Used in Determination of Slowing Down Densities

Resonance Fractional ERI

Energy 2 0.25-Inch 0.75-Inch 1.00-Inch
(Kev) (cm ) Diameter Diameter Diameter

0.00668 97.6 0.30703 0.2680 0.2549

0.0210 89.9 0.13826 0.1191 0.1128

0.0368 86.2 0.11337 0.09807 0.09323

0.0663 82.2 0.04220 0.03491 0.03295

0.0811 80.8 0.01656 0.01589 0.01596

0.0900 80.1 0.00208 0.00280 0.00298

0.1025 79.3 0.03607 0.03028 0.02864

0.1165 78.4 0.01663 0.01705 0.01753

0.1176 76.4 0.01410 0.01467 0.01492

0.1896 75.1 0.02095 0.01758 0.01658

0.2085 74.5 0.01618 0.01780 0.01871

0.2811 72.5 0.01334 0.01400 0.01448

0.3618 70.8 0.01220 0.01315 0.01277

0.4413 69.4 0.01393 0.01450 0.01482

0.5501 68.0 0.01266 0.01416 0.01490

0.6600 66.7 0.01172 0.01338 0.01410

0.7795 65.6 0.01041 0.01214 0.01277

0.9207 64.5 0.00913 0.01082 0.01155

Statistical Region 0.00966 0.01359 0.01477
(20 resonances)

From Equation 5.4



TABLE 5.2

Properties of Lattices Forming Two Region Assemblies

Lattice s a Dth ERI p L2
Designation (cm 1 (cm ) (cm~ ) 28 (cm2 (cm2

1

2

3

4

5

6

7

8

9

0.1724

0.1775

0.1802

0.1724

0.1775

0.1802

0.1655

0.1784

0.1754

0.01132

0.006085

0.003084

0.01193

0.006403

0.003270

0.017753

0.004544

0.006233

0.8251

0.8217

0.8011

0.8494

0.8229

0.8042

0.8547

0.8046

0.8340

6.24

6.24

6.24

6.24

6.24

6.24

4.10

4.10

3.73

0.8441

0.9194

0.9603

0.8441

0.9194

0.9603

0.7100

0.9412

0.9051

72.9

135.0

260.0

71.2

128.0

245.9

48.1

177.1

133.8

129.0

125.0

123.0

129.0

125.0

123.0

128.0

121.0

122.0
1-.
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The age assigned to each U238 resonance of Table 5.1 requires

a relationship between neutron energy and age in D20. Very little

information is available for neutron ages at energies other than that

of the indium resonance. Purity of the D2 0 in the lattice assemblies

during these investigations averaged 99.5%. The age to indium reso-

nance in such a mixture has been measured as 108 ± 3 cm2 (W5).

The value of T for other energies was obtained from the relation (W6):

T(E) = (1.44 ev.) - L In (( ). (5.4)

Here again, use is made of the assumption of constant slowing down

properties over the entire energy range. This is a good assumption

in the region of the major resonances. The area in which it may not

hold (close to fission energies) is also one of small resonance

absorption and is therefore of lesser importance.

Fractional ERI's for Au 1 97 , used to compute the non-1/v

coefficients (Eq. 2.21), were calculated by the theory outlined in

Appendix A. Table 5.3 gives values of the fractional ERI's for Au 1 9

used in the computations. A value of 2.43 barns was taken to be the

ratio of the total effective resonance integral (excluding the 1/v com-

ponent) to the 2200 meter/sec absorption cross section. This value

was used by Simms (S2) for 0.010-inch-thick gold foils and includes

the resonance self-shielding effect in a 1/E flux.

Finally, the radius of the inner region, R, was computed by

substituting for the actual hexagonal shape with a circular one of

equal area, giving:

N 1/2
R = 0.52504 b 1 + I6k ,(5.5)

k=1
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where b is the pitch of the center region in centimeters and N is the

number of rings as defined in section 3.2. The radii used in the cal-

culations are given in Table 5.4.

TABLE 5.3

Fractional Effective Resonance Integrals of Au 1 9 7

for 0.010-Inch-Thick Gold Foils

Resonance Energy Age" Fractional ERI

(ev) (cm2

4.90 99.71 0.8738

46.5 84.6 0.00080

58.1 83.1 0.01827

61.5 82.7 0.05954

80.2 80.9 0.01357

110.0 78.8 0.0059

153.0 76.6 0.0100

168.0 76.0 0.0120

194.0 75.0 0.0066

From Equation 5.4

TABLE 5.4

Inner Region Equivalent Radii for Two Region Assemblies

Assembly Inner Region Assembly Inner Region
Designation Radius Designation Radius

(cm) (cm)

I 14.53 VII 14.20

II 20.28 VIII 22.26

III 26.04 IX 26.04

IV 18.79 X 14.53

V 14.53 XI 29.06

VI 26.04
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5.2.1 Neutron Slowing Down Density Distributions

The results of the least squares fit of the experimental slowing

down densities to the theory of Chapter II are presented in this section.

Table 5.5 gives the values of kZa/p found for each assembly. Good

agreement was obtained between assemblies of different region sizes

except for those having a center region of only two rings (Assemblies

I, V, and X). The values from experiments in these assemblies are

bracketed in the table and were not used to compute the lattice

averages.

The anomalous results found in the assemblies having a two-ring

test region lead to the conclusion that a certain minimum size of test

region is required for meaningful results. The equivalent radius of

these test regions was 14.53 centimeters which is about 1.3 NJY. How-

ever, Assembly VII, which had a smaller equivalent radius but a

larger number of rings, agreed well with its corresponding Assembly

VIII. It should be noted, however, that Assembly VII, unlike the other

small test region assemblies, has equal values for the resonance escape

probability and a small difference in k, a/p between the two regions.

It is not unreasonable that the limit on test region size is a function of

the difference in the neutron sources of the regions (i.e. k Za/p) as

well as the slowing down length. The present set of experiments does

not offer a definitive answer but does indicate that a minimum size

exists.

Figures 5.1 to 5.11 present the experimental points and fitted

curves for the slowing down density at the gold resonance (r = 99.7 cm 2

for typical runs in each of the eleven assemblies. Also shown are the



TABLE 5.5

Values of koZ a/p from Two Region Assembly Experiments

Assembly LATTICE DESIGNATION

Designation 1 2 3 4 5 6 7 8 9

(.01920)

.01688

.01824

.01744

.01586

.01898

.01826

(.00297)

.00410

.00375

.00431

.00420

.00466

.00447

(.01998)

.01917

.00882

.00850

.00869

.00942

.00443
.00429

(.00254)
(.00269)

(.00236)

.00463

.01057
.00998

.01077

.00915

.03171

.03012

(.06228)
(.06355)

.00657 .00851

.00663 .00846

Average .01761 .00885 .00427 .01917 .01011 .00463
to".03091 .00660 .00848

I

II

III

IV

VI

VII

VIII

IX

X

XI

.00427 .01917 .01011 .00463Average .01761 .00885
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distributions of the fission source ('r = 0) and of densities at several

intermediate values of the neutron age. The dashed lines indicate the

series approximations to the source distributions (Eq. 2.6). As

mentioned before, this approximation is best when the two regions are

not greatly different. Assemblies VII (Fig. 5.7), VIII (Fig. 5.8), and

XI (Fig. 5.11) illustrate this conclusion. The step changes in the

source distributions, as indicated in the figures, do not actually exist.

The assumption of a constant value of k Za/p throughout each region

is ultimately based on consideration of properties of a unit cell. This

concept is not strictly applicable in the neighborhood of a boundary,

and the actual source distribution may be closer to the rounded curves

produced by the series expansion at the boundary.

As would be expected, a large step change in the source across

the region boundary is poorly represented by the series. In all cases,

the oscillations in the distributions disappear very quickly as the

slowing down process takes place, and the curves for the age of 30 cm2

are smooth across the assemblies.

As can be implied from these distributions, the neutron energy

spectrum as a function of radius in assemblies with large differences

in k Za/p between regions varies greatly from a 1/E distribution.

Figures 5.12 and 5.13 show the slowing down density versus neutron

age in Assemblies III and IV at several radial positions. These curves

are sections through the curves of Figures 5.3 and 5.4 taken at constant

radial position. The radial positions chosen are foil positions on either

side of the region boundary and those closest to the assemblies' center

and outer radii. In these figures the quantities are presented as smooth
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curves. In reality, discontinuities exist at neutron ages corresponding

to U238 resonance energies. Also, the shape of the curves near the

source energies has been estimated from only a few points. However,

the general trend in the distributions can be seen, and the large

changes in the neutron slowing down spectrum which occur across the

assemblies are obvious. Because of the approximations necessary in

the theory, the large variations at very low values of the age may be

in error, but even at larger values of the age, a significant variation

in the spectral shape can be observed as the assembly is traversed.

5.2.2 Infinite Multiplication Factor

Values of the macroscopic absorption cross section and reso-

nance escape probability were computed for each lattice composing

the two region assemblies. Details of these calculations are given in

Appendix D and the values obtained in Table 5.2.

With these values of Za and p, the infinite multiplication factor,

k , can be calculated from the measured values of k, a/p, using the

theoretically calculated values of the other two parameters. Table 5.6

presents the infinite multiplication factors derived from the two region

assembly measurements. The individual determinations of kEa/p

used for these average values of k, are given in Table 5.5. Note that

the experiments in two-ring assemblies, bracketed in Table 5.5, have

not been used. The errors quoted in the table are the standard errors

of the averages of independent determinations and do not include

possible errors in the calculated quantities. Also given in Table 5.6

are the values of the infinite multiplication factor calculated from age-

diffusion theory (G3):



TABLE 5.6

Values of the Infinite Multiplication Factor, k., from Two Region Assembly Experiments

Age-Diffusion Previously
Lattice Assemblies Average Theory Reported

Designation Considered k (Eq. 5.6) Values

II, III, IV

VII, VIII

II, III, IV, IX

VI

VII, VIII

VI

1

2

3

4

5

6

7

8

9

1.325 ± .08

1.340 ± .07

1.332 ± .09

1.360 (one
measurement)

1.453 ± .13

1.360 (one
measurement)

1.236 ± .04

1.367 ± .01

1.232 ± .01

1.250

1.336

1.367

1.308

1.387

1.402

1.176

1.364

1.218

1.304 ± .02
(Si)

1.375 ± .021
(D1)

1.395 ± .021
(D1)

1.330 ± .027
(H6)

1.393 ± .011
(H6)

1.422 ± .007
(H6)

1.187 ± .027
(H6)

1.379 ± .021
(B2)

1.219 ± .014
(Wi)

IX

XI

XI
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-B 2
e m

k 22 (5.6)
1+ L2B

m

Calculation of the age, r, and the diffusion length, L, is described in

Appendix D. Material bucklings from single region measurements

made by the Heavy Water Lattice Project (H5) were used.

The infinite multiplication factor for each of the lattices has

been reported by previous workers on the project. These values,

and corresponding references, are included in Table 5.6. In general,

the agreement of the results of the present investigation with other

experimental determinations is good within the experimental error.

In the case of the last three lattices, only two determinations of

kocZa/p were made for each lattice. The errors quoted for these

lattices were estimated by inefficient statistics and may be overly

optimistic. Where k, was found from more than one assembly

(lattices 1, 2, 3, and 5), the error is considerably higher, although

inspection of Table 5.5 shows, with the exception of the smallest test

regions, no definite trend between assemblies of varying region sizes

or composition. Because of the larger number of independent determi-

nations, the errors quoted for lattices 1, 2, 3, and 5 are, perhaps,

more indicative of the inherent error in the method. These errors

range from five to nine percent of the value of k, and are considerably

higher than those quoted for other methods of evaluating k,.

5.2.3 Correction of p 2 8 Measurements to Full Lattice Values

In full, single region lattices studied at M. I. T., the thermal flux

distribution can be represented over most of the lattice volume by a
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pure J 0 function (P1, C5). Higher harmonics are not of sufficient

strength to be detected in either the radial or axial directions. The

Bessel function series in the equations of section 2.2 are no longer

required to describe the slowing down density and the slowing down

function of Eq. 2.23 becomes:

k F, -B 2T
p(T) oo a e m (5.7)

(Ep

which is identical with Eq. 2.32 for a critical system. Thus the

absence of higher harmonics in the thermal flux distribution leads to

the conclusion that the slowing down spectrum in the single region

exponential facility closely approximates that of a critical system.

Two region measurements of p 2 8 , corrected by Eq. 2.33, can then be

validly compared with previous measurements in the single region

lattices.

The computer program AGE computes "relative" p 2 8 values

defined by Eq. 2.22 and Eq. 2.30 for each point in the gold foil tra-

verses. Values at actual fuel rod positions are found by interpolation.

The correction factor given by Eq. 2.33 can then be calculated, using

the measured values of ksZa/p listed in Table 5.5.

Table 5.7 gives the measured and corrected values of p 2 8 from

the two region assembly experiments. The corresponding results from

single region lattices are also listed. The two region assembly values

were taken from the measured R 2 8 's given in Table 4.2 and Figs. 4.26

and 4.27. Note the large corrections necessary for measurements in

test regions of small size.

Table 5.8 consolidates the information from the previous table by



TABLE 5.7

Comparison of Corrected Two Region Assembly Measurements of p2 8 with Single Region Results

Assembly Size of Assembly Measured p2 8  Corrected p2 8  Single Region p 2 8
Designation Inner Region Ring"'' (H5)

I 2 0 0.352 ± .005 0.210 ± .003 0.227 ± .001

III 4 0 0.223 ± .003 0.202 ± .003 0.227 ± .001
2 0.242 ± .005 0.193 ± .003 0.227 ± .001
3 0.283 ± .010 0.193 ± .006 0.227 ± .001
4 0.391 ± .015 0.791 ± .031 0.845 ± .007
5 0.585 ± .024 0.820 ± .050 0.845 ± .007

IV 6 0 0.781 ± .021 0.806 ± .021 0.845 ± .007
2 0.719 ± .019 0.785 ± .019 0.845 ± .007
4 0.621 ± .028 0.779 ± .035 0.845 ± .007
6 0.459 ± .020 0.223 ± .009 0.227 ± .001
7 0.324 ± .014 0.214 ± .009 0.227 ± .001
8 0.291 ± .022 0.249 ± .019 0.227 ± .001

V 2 0 0.356 ± .007 0.221 ± .004 0.222 ± .026

VI 4 0 0.238 ± .005 0.216 ± .005 0.222 ± .026

VII 3 0 0.481 ± .036 0.475 ± .036 0.437 ± .003

VIII 5 0 0.412 ± .033 0.383 ± .033 0.437 ± .003

Ix 3 0 0.248 ± .006 0.214 ± .005 0.227 ± .001

X 2 0 0.417 ± .012 0.270 ± .008 0.227 ± .001

XI 2 0 0.435 ± .017 0.415 ± .016 0.401 ± .002

Given in terms of number of rings (see section 3.2).

Ring "0" is center fuel rod. I.
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TABLE 5.8

Full Lattice p 2 8 from Two Region Assembly Measurements

Lattice Average Single Region p 2 8
Designation Corrected p 2 8  (H5)

1 0.796 ± .019 0.845 ± .007

2 0.429 ± .065 0.437 ± .003

3 0.220 ± .026 0.227 ± .001

6 0.218 ± .003 0.222 ± .026

9 0.415 ± .016 0.401 ± .002

listing the average values of the corrected p 2 8 from two region assem-

blies for each of the lattices in which the quantity was measured. With

the exception of lattice 1, the average values of p 2 8 from the two

region experiments agree within experimental error with the single

region determinations.

5.3 Determination of 6SR from Two Region Assembly Measurements
28

Values of 628 measured in the two region assemblies and given

SR
in Table 4.3 and Figures 4.28 and 4.29 were reduced to values of 628

by the method developed in Chapter II.

Fuel rods are spaced about the center rod in a series of hex-

agonal "rings" as shown in Figure 3.5. The summation required for

use of Eq. 2.43 was evaluated by considering the rods in these "rings"

to be on a series of concentric circles centered on the subject rod.

For example, Ring 4 of Figure 3.5 was represented by three circles

as shown in Figure 5.14. The interaction kernel, K , for each circle



FIG. 5.14 DIVISION OF HEXAGONAL FUEL
ARRAY INTO CONCENTRIC CIRCLES
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in the assembly was approximated by the line source description given

by Eq. 2.49. HSR was evaluated by the computer program ROD

described in Appendix B. Values of HSR are given in Table 5.10.

The results of these computations are presented in Table 5.9 for

each fuel rod position in which 628 was measured. Also given are

SR
single rod measurements of 628 reported in reference H5. The aver-

SR8
age values of 628 from Table 5.9 are given in Table 5.10 for each type

of fuel rod used in formation of the two region assemblies. Agreement

of the two region assembly results with single rod experiments is good

within the quoted experimental errors.

Another test of the theory is available by comparing values of 628

for full lattices predicted by Eq. 2.43, using the average values of

628 from the two region measurements with the results of 628 measure-

ments in full single region lattices (H5). Such a comparison is presented

in Table 5.11. The agreement is very good in all cases except for

lattice 8. This lattice, together with lattice 7, was composed of 0.75-

inch-diameter rods. From Table 5.10, it is seen that the two region

value of 6 SR for this type fuel rod is in poorest agreement with the
28

SR
single rod experiment. If the single rod experimental results for 628

are used, Eq. 2.43 predicts values of 628 for lattices 7 and 8 of

0.0634 ± .0025 and 0.0450 ± .0018, respectively, which are in better

agreement with single region values, indicating that experimental

rather than theoretical error is responsible for the poor agreement.



148

TABLE 5.9

6 SR Calculated from 628 Measurements in Two Region Assemblies

Two Single

Measured Region Rod
Assembly Assemgly 6 SSR SR
Designation Ring ' 28 28 28

II

III

IV

VII

VIII

0

0

1

2

3

4

5

7

0

0

0

0

1

2

3

4

5

6

0

0

2

4

IX

X

XI

0.0190

0.0194

0.0206

0.0197

0.0222

0.0214

0.0250

0.0271

0.0276

0.0201

0.0198

0.0166

0.0194

0.0178

0.0194

0.0209

0.0523

0.0548

0.0183

0.0600

0.0601

0.0430

0.0163

0.0168

0.0178

0.0169

0.0188

0.0172'

0.0164

0.0164

0.0161

0.0148

0.0146

0.0142

0.0164

0.0148

0.0152

0.0133

0.0393

0.0362

0.0146

0.0559

0.0564

0.0393

0.0163

0.0163

0.0163

0.0163

0.0163

0.0163

0.0163

0.0163

0.0163

0.0147

0.0147

0.0163

0.0163

0.0163

0.0163

0.0163

0.0426

0.0426

0.0163

0.0577

0.0577

0.0426

Ring "0" is the central fuel rod.
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Average Values of

TABLE 5.10

6 from Two Region Assembly Measurements28

Rod Percent Average
Diameter 235 H SR Aveag Single Rod

U Two Region 6 SR
(Inches) 6 28

0.250 1.027 0.3677 0.0162 ± .0015 0.0163 ± .0012

0.250 1.143 0.3677 0.0147 ± .0013 0.0145 ± .0015

0.750 0.947 0.9428 0.0383 ± .0026 0.0426 ± .0017

1.01 0.71 1.9916 0.0562 ± .0005 0.0577 ± .0022

Equation 2.40

TABLE 5.11

628 for Full Lattices Predicted from Two Region Experiments

Lattice
Designation

1

2

3

4

5

6

7

8

9

Predicted 628
(Eq. 2.43)

0.0289 ± .0027

0.0212 ± .0020

0.0186 ± .0017

0.0262 ± .0023

0.0199 ± .0018

0.0169 ± .0015

0.0584 ± .0039

0.0415 ± .0027

0.0603 ± .0005

Single Region
Measurement (H5)

0.0274 ± .0012

0.0217 ± .0007

0.0183 ± .0007

0.0264 ± .0040

0.0204 ± .0030

0.0164 ± .0010

0.0615 ± .0021

0.0489 ± .0017

0.0596 ± .0017
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5.4 Determination of the Test Region Material Buckling

2
To determine the test region material buckling, Bm, by the

methods presented in Chapter II, the only experimental quantity re-

2
quired is 7 , the axial buckling of the assembly. This quantity is

determined from analysis of the axial gold foil traverses as discussed

in section 4.2.3 and the results of measurements in each of the two

region assemblies as presented in Table 4.1.

The one group diffusion theory analysis of section 2.4.1 requires

the equivalent radius of the test region, the material buckling of the

outer region and the ratio of diffusion coefficients to define the parame-

ters of Eq. 2.60. The equivalent radius of each assembly is given in

Table 5.3, and Table 5.2 lists the thermal diffusion coefficients evalu-

ated by the method discussed in Appendix D. Equation 2.60 can then

be solved by iteration for the material buckling.

The two group approach of section 2.4.2 requires considerably

more input. Calculation of the thermal diffusion length, L, and the

resonance escape probability, p, is described in Appendix D, and the

values used in the computations are given in Table 5.2. The fast dif-

2
fusion length, Lf , is taken as equal to the age to thermal energy, T,

given in Table 5.2. The use of the Fermi. age for the fast diffusion

length is a common assumption of two group theory (W6, G3). In

some applications, it is found necessary to adjust its value to attain

agreement with experimental flux distributions. However, applications

of similar two group diffusion treatments to critical two region assem-

blies have shown the final result to be only weakly influenced by the

2
value used for L (G4, Ll), and the value of the age to thermal
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energies has normally been employed.

The average diffusion coefficient for the fast group is defined

as (E1):
E

f o D n(E) O(E) dE

D = th (5.8)
f~n E

f0 (E) dE
Eth

If the energy distribution of flux can be represented by a 1/E distri-

bution, the expression becomes:

E
f 0 D(E) dE/E
E

D = th (5.9)
f,n ln E/Eth

where Eth is thermal energy and E 0 an average neutron source energy.

The expression for the Fermi age with an energy-independent slowing

down power, (E, Z is:

E
7 1 0 D(E) dE/E . (5.10)

th 3 s Eth

The ratio of fast neutron diffusion coefficients for the two regions is

then:

D =f 2 - 2( Zsi 
(5.11)

f D fs1 2

The assumptions of a 1/E spectrum and constant slowing down power

introduce error into Eq. 5.11. The spectra obtained from age theory

analysis (Figs. 5.12 and 5.13) show that the actual coefficient must

vary over each region and the calculation of a more accurate average
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coefficient would be quite difficult. The actual parameter in Eq. 2.73

which involves D is z, defined as Ds/D . The quantity z is used as

a correction factor to the right-hand side of the equation, its effect

being proportional to I z-11. The largest value of the quantity I z-11

for the assemblies considered was 0.06 which affected the test region

buckling by a maximum of 25 yB from the case of equal diffusion coef-

ficients. Further refinements of the calculation of D would affect the

bucklings even less and, in view of the results to be presented, it was

concluded that further correction to Df was not warranted.

Table 5.12 presents the results of both the one- and two-group

analyses for the material buckling of the test region. The results of

single region measurements of the material buckling for each region

of each assembly are also given in the table. The values are taken

from Ref. H5.

The poor agreement of most of the two region assembly results

with those of single region experiments is obvious. The best agree-

ment occurs with Assemblies VII, VIII, and XI. Assembly VIII

differed from VII only in having a larger test region and gave a result

closer to the full lattice value. All three of these assemblies had little

difference in resonance escape probability between regions. Inspection

of the table shows that the greater the difference in resonance escape

probabilities between the two regions, the poorer the agreement of the

two group result with the single region value.

This conclusion agrees with experience of other workers on two

region assemblies (G4, N1, C4). The factor S given by Eq. 2.76 cannot

be accurately calculated using the infinite lattice values for the



TABLE 5.12

Test Region Material Bucklings from Two Region Assembly Experiments

Resonance
Escape Reference Test Region Material Buckling (gB)

Assembly Test Probability Region, One Group Two Group Single,
Designation Region Ratio Buckling' Analysis Analysis Region

Lattice P2 /P 1  (yB) (Eq. 2.60) (Eq. 2.73)

I 3 0.879 1195 1138 1025 891

II 3 0.879 1195 1183 910 891

III 3 0.879 1195 1037 1013 891

IV 1 1.14 891 1300 1349 1199

V 6 0.879 1444 1159 880 1000

VI 6 0.879 1444 1260 1211 1000

VII 2 1.00 1405 1398 1259 1200

VIII 2 1.00 1405 1250 1224 1200

IX 3 0.739 969 1316 1171 891

X 3 0.739 969 1777 1378 891

XI 9 1.040 1130 872 907 865

I."

Cil
C4

From Ref. H5
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resonance escape probabilities. In an infinite lattice, the resonance

absorption in a fuel rod can be considered the sum of the absorption of

neutrons born in the rod itself plus the absorption of neutrons born in

surrounding rods. All these absorptions do not depend on the intensity

of the fission source since the lattice is infinite. However, with two

connected lattices, some rods of one lattice are partially surrounded

by rods of the other lattice and, if the fast source differs between

lattices, the absorption of the boundary rods will be different from

that of an infinite lattice. This is particularly true for test regions

of small size.

The progressive substitution method attempts to evade this

problem by treating S as an experimental unknown. At least two

assemblies of different test region size must then be studied and ana-

lyzed to yield the material buckling. But S is not entirely independent

of test region size (N1), the deviations from a constant value being

greater for small size test regions.

The present set of assemblies was analyzed as progressive sub-

stitution experiments by plotting the right-hand side of Eq. 2.74 versus

material buckling for each of the assemblies. The curves for

Assemblies II and III intersected at 875 MB. However, Assembly I,

which had a small test region of the same composition, failed to inter-

sect with the curves for either of the other assemblies. The curve for

Assembly V, which also had a small test region, failed to intersect

with that of Assembly VI. Assemblies VII and VIII, where troubles

with resonance escape are least, intersected at a value of 1175 gB for

the test region buckling. The full lattice value is 1200 gB. Finally,
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Assemblies IX and X gave a common value of 1010 gB for the test

region buckling, which is somewhat better than analyses of the sepa-

rate assemblies (Table 5.12) but still quite far from the single region

value of 891 yAB.

From these results, it is concluded that the combination of large

differences in resonance escape probabilities between lattices com-

posing most of the assemblies and small test region sizes prevents

meaningful buckling determinations for the majority of the lattices

involved in these particular assemblies. This conclusion is in agree-

ment with experience at Saclay (N1): "It is really necessary to know

the details of the resonance capture in the two lattices exactly in order

to be able to interpret the measurement very correctly. This is why

we think there is an important difficulty, at least in the case of heavy

water lattices . . . . It is this difficulty which makes it necessary not

to limit the experiment to replacing only a small number of rods. In

summary, there is always interest in proceeding so that the pertinent

parameters should not be too different between the lattices compared."



Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions on the Results of the Present Study

In order to examine the usefulness of two region subcritical

facilities for lattice parameter measurements, theories which

describe the behavior of the neutron population in the assemblies

were required. Several attempts to apply two group diffusion

equations to the experimental flux distributions were made, including

direct fit to the theoretical solutions and a moments method of

extracting bucklings, similar to that used in single region lattices

(C5). Because of boundary problems present in the assemblies and

the interaction between regions during the slowing down process,

none of these attempts was successful. The theory which proved

most valuable for describing the behavior of neutrons in the slowing

down region was age theory, which has also been successfully applied

to D 20 miniature lattices at M. I. T. (P4, S1). Interaction between the

regions of the assemblies during the slowing down process was satis-

factorily described by this theory. The variety of the assemblies

studied provided a rather severe test of this result. The lattices

which were used to form the assemblies offered a considerable range

of resonance and thermal absorption properties (see Table 5.2).

Further, these lattices were combined to produce assemblies with the

full range of differences between regions possible with the lattices
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available. These differences in region properties are visually evident

in the source distributions of Figures 5.1 through 5.11. The disconti-

nuities in these curves are proportional to the ratios of kZa/p for the

two regions. These ratios varied from 1.1 for Assemblies VII and VIII

to 7.2 for Assemblies IX and X.

The ratio p 2 8 of epicadmium to subcadmium capture rates in

U238 was used to test the validity of the age theory's spectral pre-

dictions. These spectra were used to correct p 2 8 measurements made

at various radial positions in the two region assemblies to critical

lattice values. The corrected p 2 8 's were then compared with full,

single region results. The success of this comparison provides a con-

siderable confidence that the slowing down density distributions result-

ing from the age theory analysis are correct.

Similar corrections for p 2 8 have been developed by Sefchovich (S1)

for heavy water moderated miniature lattice assemblies, using age-

diffusion theory. In addition, Sefchovich applied corrections to the

parameter C , defined by the relation:

averge ttal238
C_= average total U capture rate in the fuel (6.1)

average total U 2 3 5 fission rate in the fuel

Again, a ratio of resonance to thermal reaction rates is required.

Although the application of basic age theory differed from the present

study in many respects, the success of the p 2 8 and C corrections in

the miniature lattices and of the p 2 8 corrections in the two region

assemblies would imply that similar corrections for C from two

region assemblies would lead to valid C values.
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The parameter directly determined from the age theory analysis

of the experimental traverses is kZa/p. By using calculated values

of Za and p, the infinite multiplication factor, k,, can be determined.

Comparison of the two region results with values from other sources

shows that two region assemblies can be used to evaluate this parame-

ter if the size of the inner region is larger than some minimum value.

For the present set of experiments, inner regions of at least seven

cells in diameter were required. This minimum size appears to be a

function of the properties of the lattices composing the assembly. The

present set of experiments is insufficient to determine the nature of

this dependence, but it is not unreasonable to suppose that it is a

function of the age to thermal energies in the assembly as well as the

difference in k,,E a/p between regions.

Table 6.1 lists previously reported values of k determined

experimentally by a variety of methods during the course of the M.I.T.

Heavy Water Lattice Project (Dl, W1, H2, B2). Details of the methods

are given in the referenced reports. The results of the present study

are included in the table for comparison. It can be seen that the uncer-

tainties of the present work are comparable with those of pulsed source

techniques, but are considerably higher than the four-factor formula or

the added absorber methods. Both of these methods, however, require

considerable fuel inventory and experiment assembly time.

The assumptions inherent in age theory make its application to

fast neutron phenomena doubtful. Instead, a heterogeneous approach

was used to describe the fast neutron distribution. Predictions by this

theory of 6 and 628 for critical lattices using experimental



TABLE 6.1

Values of the Infinite Multiplication Factor, k

SOURCE OF VALUES FOR k

Lattice Two-Region Four-Factor Pulsed Source Pulsed Source Added
Designation Assembly Formula (Age-Diffusion) (Two-Group) Absorber

1 1.325 ± 0.08 1.304 ± 0.020

2 1.340 ± 0.07 1.375 ± 0.021

3 1.332 ± 0.09 1.395 ± 0.021

4 1.360 (one 1.330 ± 0.027 1.330 ± 0.035 1.315 ± 0.03
meas.)

5 1.453 ± 0.13 1.393 ± 0.026 1.437 ± 0.070 1.389 ± 0.054 1.416 ± 0.011

6 1.360 (one 1.422 ± 0.028 1.445 ± 0.077 1.389 ± 0.054 1.429 ± 0.007
meas.)

7 1.236 ± 0.04 1.154 ± 0.023 1.097 ± 0.036 1.151 ± 0.036 1.187 ± 0.027

8 1.367 ± 0.01 1.427 ± 0.021 1.379 ± 0.020

9 1.232 ± 0.01 1.219 ± 0.014
j.

01
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measurements of 628 in the two region assemblies proved very success-

ful even when the corrections required were large.

It may be mentioned that the agreement of the two region assembly

values of 628 and p 2 8 with single region measurements has given

additional confidence to the accuracy of the single region lattice results.

As mentioned before, the two region assemblies used for this

present study were purposely formed to provide a severe test of theo-

retical models. In the case of the test region material buckling

determinations, this test criterion proved to be too strict. Although

age theory can satisfactorily treat the interaction of the regions during

the slowing down process, diffusion theory, used for the buckling ana-

lyses, apparently fails to do so in most cases. Therefore, the present

study can only re-enforce conclusions of previous investigators:

Satisfactory buckling measurements can only be made in two region

assemblies which have sufficiently large test regions whose properties

do not differ drastically from those of the reference region.

It should be noted that the success of age theory to describe the

present assemblies is dependent on a close similarity of the two

regions' slowing down properties. If an assembly were formed from

lattices with different moderators, the present analysis could not be

applied.

6.2 General Conclusions on Two Region Assemblies

The results of this study have shown that two region subcritical

assemblies can be used to obtain rod integral parameters, such as 628'

p 2 8 , and C, characteristic of the lattice material. These values can
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be obtained with an accuracy comparable with that of measurements in

full subcritical lattices. In addition, values of the infinite multipli-

cation factor, k., can be found, but with considerably higher uncer-

tainty than achieved by alternate procedures such as individual

determination of the four factors r7, e, p and f, or the method of added

absorbers.

In common with both the miniature lattice and single rod measure-

ments, the determination of the material buckling from the two region

lattices presents serious difficulties. However, unlike the other two

methods, previous workers have found that the material buckling is

attainable if the regions of the assembly are sufficiently similar in

their nuclear properties.

There is no inherent reason why the treatment presented here

could not be applied to lattices composed of U233 or plutonium isotopes.

For such cases, where the fuel supply is limited, the use of a two

region assembly with an outer region composed of fuel of the more

abundant isotope, U 235, may offer an attractive method of determining

lattice characteristics, especially if an outer neutronically similar

region could be formed which would allow a material buckling determi-

nation. These outer regions could be selected from a series of well-

calibrated lattices on the basis of spectral indices which would assure

a sufficient degree of matching with the test core. This type of approach

could be particularly useful in evaluating the nuclear effects of small

changes in core or fuel design. Since the two region assembly yields

rod integral parameters of validity and accuracy equal to those of the

miniature lattice or the single rod measurement, the added advantages
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of buckling measurements and its particular suitability for design vari-

ation studies would increase its relative attractiveness.

6.3 Recommendations for Future Work

Although the present application of age theory to the two region

assemblies considered in this report has produced valid results in

most cases, the failure of the theory to completely describe assemblies

with small test regions requires additional investigation. Future work

could be centered on the nature of this limitation.

The area of buckling measurements in two region subcritical

assemblies could not be adequately covered by the present investigation.

Experiments similar to those made on the present assemblies could be

applied to assemblies restricted to lattices of similar properties.

Methods of correcting calculated values of S (Eq. 2.76) might be

developed possibly by heterogeneous theory, or progressive substi-

tution techniques might be applied. If the latter course is used, care

should be taken to avoid test regions of small size.



Appendix A

EFFECTIVE RESONANCE INTEGRAL FOR U 2 3 8

A.1 Theory

As mentioned in section 2.2.2, a lumped resonance energy for

U238 is not sufficient for the application of age theory to two region

assemblies. Fractional resonance escape probabilities must be used

for at least the more important resonances and for this fractional

effective resonance integrals must be available.

Calculation of the resonance integrals for the various sized rods

used in the assemblies was performed by the computer program RES

described in Appendix B. This code uses the technique first developed

by Wigner (W4) and modified by Chernick and Vernon (Cl).

Two approximations to the resonance structure have been

commonly adopted. The first one considers very narrow resonances

widely spaced apart and is known as the Narrow Resonance (NR)

approximation. Under this assumption, the resonance integral over

a single Breit-Wigner resonance is given by (V1):

I
I(NR) = 1/2 (A.1)

a r o-

where

I o = 7r/2 (rn/Er o0 is the infinitely dilute resonance integral;

a- is the moderator cross section per fuel atom;
p
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rn is the neutron width at half resonance;

r is the total width at half resonance, = r + r
n y

r is the gamma width at half resonance;

Er is the resonance energy;

p is the ratio of peak resonance cross section to potential

scattering cross section in the fuel given by:

P = 47r C I' /.r a

where: ( is the DeBroglie wavelength of the neutron with energy Er;

and a is the potential scattering cross section in the fuel taken

to be 10 barns.

The NR approximation is poor for the lower energy resonances

of the heavy absorbers. For these it is better to assume an infinitely

heavy absorber leading to the NRIA (narrow resonance, infinitely

heavy absorber) formula:

0
(NRIA) = 1 2 . (A.2)

1 + P 4

Chernick and Vernon (Cl) show that the above equations for

homogeneous systems become identical to those for heterogeneous

systems if the moderator cross section per fuel atom is replaced by

S/4Nf V where Nf is the atomic density of U238 in the fuel and Vf is

the fuel volume. Further, if the Breit-Wigner resonance is allowed

to have a Doppler broadening, temperature effects can also be

included. The modifications lead to:

I(NR) (x,) dx (A.3)

X1 + + X + 1 ) p )
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and

I(NRIA) = 00 (x, 0) dx (A.4)

01 +e(x )

where X = 4Vf/S is the mean chord length in the fuel rod in units of

mean free path at the resonance, and 5j is the Doppler-broadened

2
Breit-Wigner shape which is a function of 0 =4 E 0 kT/Ar2. In ref. Al,

the integral

J(9- 1 /2 $) ' 00 4i(e,x) dx (A.5)2Af i 1 + A

is tabulated. The resonance integrals can then be written in terms of

the tabulated function as:

I(NR) = 10Xl J 0- 1/2, , (A. 6)

{1 rn/r) (+ /
p X + 1 p1+ n

21 0XF r. 1 2 ~
I(NRI1A) = 2I 1 -e-1/2 Ar ~.(A. 7)

P rT L

To calculate the contribution of each resolved resonance to the

resonance integral, a choice must be made between the two models

above. A more recent approach (G2) has been to use the Intermediate

Resonance (IR) model which uses a linear combination of the two

earlier approximations. The accuracy required for the present appli-

cation did not warrant the added complications introduced by the use

of this modification. Consequently, previous workers' choice of

models was followed by using the NRIA model for six prominent reso-

nances and considering all other resonances to be narrow and widely

spaced (NR).
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The region of unresolved resonances (E > -1 Kev) must also be

treated. Vernon (V1) found the total resonance integral above 30 Kev

and the p-wave interactions down to one Kev are negligibly different

from infinite dilution. His recommendation of a constant contribution

of 1.6 barns to the effective resonance integral from these effects

was adopted.

Contributions from the s-wave interactions are estimated by:

02 30OKev
=0.82 INR(E) dE, (A.8)

1 Kev

using the average values of 'n and r in the resolved resonance range.

D is the spacing between resonances in the statistical range, and the

correction factor of 0.82 is applied to account for statistical fluctu-

ations in rn, r and D.

238
Data for the U resonances used in the calculations were

obtained from ref. V1.

A.2 Effective Resonance Integrals Calculated by Computer Code RES

The results of the computation outlined above for the fuel rod

types used in the two region assemblies are given in Table A.1.

It is of interest to compare the total effective integrals thus

obtained with a standard recipe for resonance integrals. Table A.2

shows this comparison with the well-known formula of Hellstrand (H4):

ERI = 2.81 + 24.7(S/M)1/2 . (A.9)

The agreement is quite good, leading to considerable confidence in the

use of the fractional ERI's computed from the program's output.



TABLE A.1

Effective Resonance Integrals for Uranium Rods

Peak Infinite
Resonance Neutron Cross Dilution Fuel Rod ERI (barns)

Energy Width Section ERI 0.25-Inch 0.75-Inch 1.0-Inch
(ev) (ev) (barns) (barns) Diameter Diameter Diameter

6.68 0.00148 22119 127.95 5.1702 2.9693 2.5676
21.0 0.009 33210 61.108 2.3283 1.3193 1.1364
36.8 0.033 40535 42.563 1.9091 1.0867 0.9392
66.3 0.023 18975 11.059 0.7107 0.3868 0.3320
81.1 0.0021 2525 1.2031 0.2789 0.1761 0.1608
90.0 0.00008 94 0.04026 0.0350 0.0310 0.0300
102.5 0.065 18427 6.9469 0.6074 0.3355 0.2886
116.5 0.015 8466 2.8079 0.2800 0.1889 0.1766
145.6 0.0008 563 0.14948 0.0887 0.0648 0.0604
165.2 0.0035 1963 0.45917 0.1488 0.0978 0.0899
189.6 0.135 11616 2.3673 0.3528 0.1948 0.1670
208.5 0.055 8628 1.5991 0.1453 0.1082 0.1042
237.5 0.032 6198 1.0084 0.1272 0.0890 0.0843
264.5 0.00023 91 0.01332 0.0118 0.0108 0.0105
274 0.027 4972 0.70121 0.1097 0.0753 0.0709
291 0.019 3899 0.51775 0.1032 0.0691 0.0645
311.5 0.001 326 0.04050 0.0298 0.0242 0.0231
348 0.045 4837 0.53713 0.0803 0.0574 0.0547
377 0.0015 397 0.04068 0.0293 0.0236 0.0224
398.5 0.010 1888 0.18311 0.0660 0.0405 0.0284
411 0.017 2589 0.24339 0.0709 0.0479 0.0447
435 0.014 2171 0.19284 0.0640 0.0371 0.0326
455 0.0007 158 0.01345 0.0117 0.0105 0.0102
464 0.007 1243 0.10352 0.0490 0.0358 0.0341
479 0.0045 840 0.06781 0.0392 0.0294 0.0276
490 0.001 208 0.01637 0.0138 0.0122 0.0118
519 0.037 3013 0.22435 0.0528 0.0372 0.0353

I.

C.)



TABLE A.1 (concluded)

Effective Resonance Integrals for Uranium Rods

Peak Infinite
Resonance Neutron Cross Dilution Fuel Rod ERI (barns)

Energy Width Section ERI 0.25-Inch 0.75-Inch 1.0-Inch
(ev) (ev) (barns) (barns) Diameter Diameter Diameter

536 0.054 3337 0.24059 0.0483 0.0348 0.0333
557 0.001 182 0.01267 0.0111 0.0099 0.0096
581 0.042 2826 0.18796 0.0459 0.0326 0.0310
596 0.066 3182 0.20633 0.0412 0.0302 0.0290
605 0.0006 102 0.00654 0.0061 0.0057 0.0056
621 0.039 2571 0.15998 0.0430 0.0306 0.0290
629 0.009 1109 0.06811 0.0356 0.0264 0.0249
662 0.125 3286 0.19182 0.0317 0.0244 0.0238
680 0.0013 192 0.01092 0.0096 0.00867 0.0084
695 0.053 2559 0.14226 0.0362 0.0262 0.0251
710 0.017 1499 0.08156 0.0351 0.0263 0.0251
723 0.0147 1347 0.07199 0.0335 0.0250 0.0240
732 0.00425 524 0.02766 0.0202 0.0164 0.0156
766 0.009 910 0.04593 0.0272 0.0207 0.0196
782 0.003 362 0.01788 0.0145 0.0123 0.0118
792 0.011 1016 0.04956 0.0277 0.0210 0.0198
825 0.06 2238 0.10484 0.0291 0.0213 0.0205
855 0.13 2561 0.11573 0.0232 0.0178 0.0174
859 0.06 2150 0.09670 0.0277 0.0204 0.0196
867 0.0022 246 0.01099 0.0096 0.0085 0.0082
896 0.0013 146 0.00629 0.0058 0.0054 0.0053
909 0.09 2249 0.09562 0.0237 0.0178 0.0173
928 0.037 1685 0.07017 0.0270 0.0199 0.0190
940 0.195 2460 0.10111 0.0188 0.0148 0.0146
960 0.09 2130 0.08573 0.0223 0.0167 0.0162
983 0.001 1035 0.00407 0.0038 0.0036 0.0036
995 0.4 2465 0.09574 0.0150 0.0127 0.0298

Stat. region greater than 1 Kev 3.2527 3.0115
C.
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TABLE A.2

Effective Resonance Integrals of U2 3 8

Fuel Rod Diameter Effective Resonance Integral (Barns)

(Inch) From Eq. A.9 Computer Program

0.25 17.07 16.84

0.75 11.04 11.08

1.00 9.94 10.07



Appendix B

COMPUTER PROGRAMS

B.1 Introduction

The programs described in this appendix have been written to

perform the calculations required for the two region assembly

analyses. All programs have been written in the FORTRAN IV

language for use on the MIT IBM-360 computer.

B.2 Description of the Computer Program RES

The computer program RES, written for the calculation of the

U 2 3 8 effective resonance integral, uses the theory outlined in

Appendix A. The program consists of a main section and four function

subroutines. Input data are read into the main program which calls

the function XNR to compute the partial effective resonance integrals

for the narrow resonances and the function XNRIM for the infinite

mass resonances. The integration of the narrow resonances over the

statistical region is performed by Gaussian numerical integration with

QG10, a subroutine supplied with the IBM-360 computer. The function

subroutine FXNR supplies QG10 with the partial resonance integrals

required for the integration as calculated by the subroutine XNR.

Values of the Doppler-broadened Breit-Wigner function are supplied

by XINT which interpolates between values in a table from Ref. Al

given as input to the program. (The subroutines ATSM, ALI and ATSE
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are part of the IBM Scientific Subroutine Package and are described

in Ref. S3.)

It should be noted that the program was specifically designed

for cylindrical fuel rods of low enrichment. (The rods are assumed

to be pure U 2 3 8.) Slight modification would allow a variable density

to be employed.

B.2.1 Input Specification for RES

The input data are given below in the order required. The

names of the variables for each FORMAT statement are given,

followed by the required FORMAT in parentheses, and then by a brief

description of the variable.

1. DIAM (E12.5)

DIAM is the diameter of the fuel rod in inches.

2. NRIM, GG, D (12, 2E12.5)

NRIM is the total number of infinite mass resonances.

GG is the gamma width at half resonance corresponding to P

in section A.1. This is assumed constant over the reso-

nance region.

D is the average spacing between resonances in the statistical

region.

3. F(I), H(I) I=1, NRIM (6E12.5)

th
F(I) is the energy of the i infinite mass resonance (ev).

H(I) is the neutron width at half resonance for this resonance

corresponding to En in Eq. A.4 (ev).
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4. NR (I5)

NR is the total number of resolved narrow resonances.

5. E(I), G(I), I=1,NR

E(I) is the energy of the ith resolved narrow resonance.

G(I) is the neutron width at half resonance for this resonance

corresponding to Fn in Eq. A.3 (ev).

6. B(J), J=1, 13 (6E 12.5)

The array B is composed of values of 0-1/2 taken in ascending

order from the table of Ref. Al.

7. (A(I,J) J=i, 13), 1=1, 28 (6E12.5)

The array A contains the values of k=iln A/In 2 taken in order

from the table of Ref. Al.

B.2.2 FORTRAN Listing

The FORTRAN listing of the program RES is given below.
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CALCULATES PARTIAL EFFECTIVE RESONANCE INTEGRALS FOR U-238
METAL RODS
REF-VERNON,'RESONANCE INTEGRALS OF U-238', NUCL. SCI. AND

IN

ENG.-T,
252-259(1960)

DIMENSION A(28,13),E(100),G(100),F(100),H(100),B(13)
COMM3N AGGSQNCONDGAVE,B

C
C INPUT -- FUEL SPECIFICATION

READ(5,1) DIAM
1 FORMAT(6E12.5)
WRITE(6,2) DIAM

2 FORMAT(1H1,' EFFECTIVE RESuNANCE INTEGRAL FOR
LETER RODS#)

C
C INPUT U-238 RESONANCE PARAMETERS
C INFINITE MASS RESONANCES

READ(5,3) NRIMGG,D
READ(5,1) (F(I) ,H(I),I=1,NRIM)

C NARROW RESONANCES
READ(5,3) NR

3 FORMAT(12,2E12.5)
READ(5,1) (E(I),G(I),I=1,NR)
READ(5,1) (B(J),J=1,13)
READ(5,1) ((A(IJ),J=1,13),1=1,28)
WRITE(6,4)

4 FORMAT(' ENERGY NEUTRUN
1' WIDTH SIGMA

C
SUM=0.0
ERI=0.0
SQ=1.0/(20.0*0.0473*DIAM*1.27)

C CALCULATION OF INFINITE MASS RESONANCES
DO 6 I=1,NRIM
ERI=ERI*XNRIM(F(I),H(I))

6 SUM =SUM*H(I)
C CALCULATION OF NARROW RESONANCES

NCOND=1
DO 5 I=1,NR
ERI=ERI*XNR(E(I),G(I))

5 SUM=SUM*G(I)
C

NCOND=2
C
C CALCULATION OF

EXTERNAL FXNR
X=NR*NRIM

STATISTICAL REGION

GAVE=SUM/X
CALL QG10(I.0E*03,3.0E*04,FXNRX)
AN AVERAGE CORRECTION FACTOR OF 0.82 IS
CONTRIBUTION OF THE STATISTICAL REGION
X=0.82*X/D*1.6
WRITE(6,T) X

7 FORMAT(' STAT. REGION GREAIER THAN IKE
ERI*ERI*X
WRITE(6,8) ERI

PEAK
INF. DIL.

',F 10.5,'

ERI

INCH DIAM

ERI'/
LATTICE')

APPLIED TO THE

V',TlXEl2.5)

CRES
C
C
C
C
C

C
C
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8 FORMAT(1HO,' TOTAL EFFECTIVE RESONANCE INTEGRAL * ,F10.5)
STOP
END

FUNCTION XNR(EG)
DIMENSION A(28,13),B(13)
COMMON AGGSQNCONDGAVEB
GAMMA=GG*G
SQIG=SQRT(2317.18/E)*GAMMA
SIGO=2603640.0*G/(E*GAMMA)
XINF=3.14159*GG*SIGO/(2.0*E)
BETA=SIGO/10.0
XK=BETA*(1.O-3/(GAMMA*(SQ*1.0)))/(SQ*1.0)
XNR=XINF*XINT(SQIG,1.O/XK)
GO TO(1,2),NC3ND

1 WRITE(6,3) E,G,SIGOXINFXNR
2 RETURN
3 FORMAT(1X,5E12.5)

END

FUNCTION XNRIM(EG)
DIMENSION A(28,13),B(13)
COMMON AGGSQNCONDGAVE,8
GAMMA=GG*G
SQIG=SQRT(2317.18/E)*GAMMA
SIGO=2603640.0*G/(E*GAMMA)
XINF=3.14159*GG*SIG0/(2.0*E)
BETA=SIGO/10.0
XK=GG*BETA/(GAMMA*SQ)
XNRIM=XINF*XINT(SQIG,1.0/XK)
WRITE(6, 3) EGSIGOXINF,XNRIM

3 FORMAT(IX,5E12.5)
RETURN
END

FUNCTION FXNR(E)
DIMENSION A(28,13),B(13)
COMMON AGGSQNCONDGAVEB
FXNR=XNR(E,GAVE)
RETURN
END

FUNCTION XINT(X,Y)
DIMENSION A(28,13),ARG(28),VAL(28),D(28),E(13),B(13),T(28)
COMMON AGGSQNCONDGAVEB
W =ALOG(Y*1.OE*05)/ALDG(2.0)
DO 1 1=1,28
00 2 L=1,13

2 E(L)=A(I,L)
CALL ATSM(X,B,E,l3,1,ARGVAL,13)

1 CALL ALl(XARGVALT(I),13,0.01,IER)
CALL ATSE(W,4.0,O.5,T,28,1,ARGVAL,28)
CALL ALI(WARG,VAL,XINT,28,0.01,IER)
XINT=2.0*Y*XINT/3.14159
RETURN
END
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B.3 Description of Computer Program AGE

The application of age theory to two region assemblies is

described in section 2.2. The code AGE was written to perform these

calculations. The workings of the code may be divided into several

steps:

1. Parameters describing the materials and geometry of the

assembly are read in together with the axial buckling and the results

of bare and cadmium-covered gold foil radial traverses together with

their corresponding monitor foils. The axial buckling is determined

from axial traverses by the code AXFIT (see section 4.2.3). The gold

foil activities are submitted in the form of output from the code

ACTIVE (see section 4.2.1). A more complete description of the input

quantities and the required formats is given in the next section.

2. The subroutine RATIO corrects the monitor foils for decay

during the period between the end of irradiation and the start of

counting. The gold-cadmium ratio for each point in the traverse is

calculated together with the standard error derived from the errors of

the traverse foils and the monitors. (The subroutine DELAY, origi-

nally written by R. Simms and modified by F. Clikeman, is used to

compute the number of hours between the end of irradiation and the

start of monitor foil counting.) The radial foil position from the

center of the foil holder, bare and cadmium-covered activities, the

cadmium ratio and its error are printed for each foil position.

3. For symmetrical foil holders, the activity at each radial

point is taken as the average of the activities on each half of the holder.
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This procedure minimizes any error due to deviation of the holder

from the horizontal position. If the holder is not symmetrical, each

foil is considered separately. In either case, the activities are

normalized to unity for the epicadmium activity of the center foil.

Distances from the assembly center are calculated from the foil

positions on the foil holder and the perpendicular distance of the

holder from the assembly center.

4. Using the effective resonance integral for the gold foils and

the slowing down power, Zs , for each region, which are supplied as

input to the code, the slowing down function, qP, and total thermal flux

are calculated by Eqs. 2.24 and 2.27.

5. Fractional effective resonance integrals for U238 for each

resonance and the total resonance escape probability are read in for

each of the regions of the assembly. The neutron ages corresponding

to the U238 resonances are also supplied.

6. Expansion coefficients defined by Eqs. 2.10 and 2.11 are

computed for the first ten terms of the series. The necessary inte-

gration is performed by ten-point Gaussian integration using the sub-

routine QG10, a scientific subroutine supplied with the IBM-360

computer (S3). The function PRODUT supplies the product of the

appropriate Bessel function and the thermal activation to QG10, the

thermal activations being found by Lagrange interpolation among the

measured values. The resulting coefficients are printed as output.

7. Resonance absorption is included by modifying the expansion

coefficients at each resonance energy as described in section 2.2.2.



177

The integrals of Bessel function products are computed by the function

subprogram BESS, using IBM-360 subroutines to compute the neces-

sary Bessel functions.

8. The slowing down from the lowest U238 resonance to the

principal gold resonance is included in the expansion coefficients.

th 2 2
(I. e., the j coefficient is multiplied by exp(7 -a. )AT, where A- is

j

the difference between the ages of the U238 resonance and that of gold.)
k Z k E

The coefficients of (koo a and (koo a) given in Eq. 2.17 are

determined for each point in the traverse by summing the first ten

terms in the series involved. (The summation is performed by the

subroutine MATRIX.)

k a
9. The quantity oo a for each region is found by a least squares

p
fit to Eq. 2.17. This fit is performed by the subroutine FITZ, which

was originally written to do a fit of experimental data to an

n-dimensional straight line. This subroutine also evaluates the

standard error in the fit of the data to the straight line and the error

in each of the coefficients.

10. Using the results of the least squares fit, non-1/v parame-

ters, CSC and CEC, are calculated by Eq. 2.21. Because of the dis-

continuities in the slowing down density at the U 2 3 8 resonances, the

total integral in this equation is the sum of integrals evaluated analyti-

238
cally between each pair of U resonances.

11. The new values of CSC and CEC are used to recalculate the

slowing down function, $Au' and the total thermal activation . Steps 9,
k Z

10 and 11 are repeated until the fractional change in the 0o a values
p

is less than 0.1%.
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12. If desired, slowing down densities are calculated for neutron

ages defined by the input to the code. The subroutine DENS does these

ka
calculations using the final values of for each region. The

p
results are printed.

13. The results of the analysis are used to compute relative

values of p 2 8 at each point in the traverse from Eq. 2.23. The absorp-

tion in each resonance is computed separately using the fractional

ERI's supplied as input to the program. Equation 2.23 becomes:

(r, TAu Q(r, L( k) ) (ERI + CEC]
(rTAu) k 'Q(r., Tu o) 28+Ca

p 2 8 (r) = 28 0, (B.1)
0.886 + 4$(r, TAu) CSC

where fk is the fractional ERI at age Tk and the indicated summation

- 238 /ERI_._
is over all resonances ot U -. The value of ( ERI is supplied as

28
input and is assumed the same as that of an infinite lattice. The

values of the relative p 2 8 's are printed as output.

14. The input to the code specifies the maximum number of

traverse points to be dropped. Points at the outer boundary of the

assembly are dropped successively and steps 9 through 13 are repeated.

B.3.1 Input Specification for AGE

The input specifications are given below in the order required.

The names of the variables for each format statement are given,

followed by the required FORMAT in parentheses, and then by a brief

description of the variable.
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1. NFOIL, IBOUND, NDROP, DIST, GAMMA2, OUT (315, 3E12.5)

NFOIL is the number of foils in each traverse. The program

will not accept traverses which differ in the number or position

of the foils. The maximum number of foils is 50.

IBOUND is the serial number of the first foil in the outer

region, counted from the center foil outward.

NDROP is the maximum number of points to be dropped for a

least squares fit.

DIST is the perpendicular distance in centimeters of the foil

holder from the assembly center.

GAMMA2 is the axial buckling in inverse square centimeters

as determined by AXFIT from axial traverses in the assembly.

OUT is the physical outer radius of the assembly in centimeters.

2. NTRES, NTAU, RAD, REXT

NTRES is the number of U

(215, 2E12.5)

resonances to be included in the

analysis. Maximum value is 100.

NTAU is the number of neutron ages for which neutron densities

are to be calculated. Maximum value is 20.

RAD is the radius of the inner region in centimeters.

REXT is the extrapolated radius of the assembly in centimeters.

3. TA(I), I=1, NTAU (7E 10.5)

The array TA contains the neutron ages at which slowing down

densities are to be calculated.

4. G(I), I=1,18 (18A4)

Identification in alphanumeric characters of the cadmium-

covered traverse. A 1 is placed in column 1 for carriage control.

Columns 2 to 72 may contain any alphanumeric characters. These

will be printed with the output from the code.



5. AV(J), Z(J), ERR(J), J=1, NFOIL (E12.5, F12.4, E12.5)

AV(J) is the counts of the jth foil corrected to the end of the

irradiation. Foil positions are assumed to be consecutively

numbered from one end of the foil holder to the other.

Z(J) is the distance in centimeters of the jth foil from the foil

holder center.

ERR(J) is the counting error of the j thfoil.

The format of this card type is compatible with the punched

output of the code ACTIVE (see section 4.2.1).

6. TM2 (E12.5)

TM2 is the half-life of gold-198 in hours.

IDA T E(1, I), (IDATE (J, I J=3, 5), I=1, 2

IDATE(2, 1), IDATE(1, 1), IDATE(3, 1), IDATE(4, 1), and IDATE(5, 1)

are the day, month, year, hour, and minute at the time of the

end of the irradiation. When I=2, the same quantities are given

to define the start of counting the monitor foil.

8. XMON, ERRM (E12.5, 12X, E12.5)

XMON is the monitor counts corrected to the beginning of

counting.

ERRM is the counting error of the monitor foil.

9. Card types 4 to 8 are repeated for the bare gold traverse.

column 1 of card type 4 is omitted.

10. RES, SL1, SL2, TAU, ERI1, ERI2

The 1 in

(6E12.5)

RES is ERI/o 0 for the gold foils. No 1/v component is included.

SL1 and SL2 are the slowing down powers, Es for the inner

and outer regions, respectively.
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ERI 1 and ERI 2 are ERI/ou for U238 in the rods of the inner

and outer regions, respectively.

11. E01 and E02 (2E12.5)

EO1 and E02 are the energies of the thermal neutrons in ev. in

the inner and outer regions, respectively.

12. P1, P2 (2E12.5)

P1 and P2 are the total resonance escape probabilities in the

inner and outer regions, respectively.

13. F1(I) I=1,NTRES (6E 12.5)

F2(I)TI=1, NTRES (6E12.5)

F1 2nd F2 are the fractional effective resonance integrals for

U238 in the rods of the inner and outer regions, respectively.

This resonance information must be supplied in order of

decreasing resonance energy.

14. TRES(I), I=1,NTRES (6E12.5)

TRES(I) is the neutron age to the ith resonance of U 238as

defined in card type 13.

15. AU(I) I=1, 9 (6E12.5)

AU(I) is the fractional effective resonance integral for the ith

resonance of Gold-198.

16. TAUR(I) I=1, 9 (6E12.5)

TAUR(I) is the neutron age to the ith resonance of Gold-198 as

defined in card type 15.

B.3.2 FORTRAN Listing of AGE

The FORTRAN listing of the program AGE is given below.
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CAGE
CAPPLICATION OF AGE THEORY TO TWO REGION LATTICES
C

DIMENSION G(18),RO(50),PHI(50,2),Y(50),X(50),F1(100),F2(100), TA
1(20),XINT(50,50),BC(10),DC(10),VA(50),T(50),U(50),V(10,50),
2DD(10),DRES(10),XRAD(10,10),XREX(10,10),RR(50),SS(50),HP(10),AU(9)
3,TAUR(9),Cl(50),C2(50),RA(50)
DIMENSION AV(50),ERR(50),AVC(50),Z(50),AT(50),R(50),ALPHA(50),
1TRES(100),8(10,100),D(10,100),BES(50,10),BB(2)
COMMON AV,ERR, INEX,AVCNFOIL,Z,VA,T,IBESSMTALPHAGAMMA2,BES,
1TRESB,DBBMX,RNTRES

C INPUT
EFUNF(T)=EXP(16.11810*(2.0-T)/6.726)

602 INDEX=O
READ(5,1) NFOIL,1BOUNO,NDROPDISTGAMMA2,OUT
IF( NFOIL) 114,603,114

114 READ(5.,2030) NTRESNTAURADREXT
READ(5,2031) (TA(I),I=1,NTAU)

2030 FORMAT(215,3E10.5)
2031 FORMAT(7E10.5)

1 FORMAT(315,4E12.5)
14 INDEX=INDEX*1

READ (5,103) (G(I),I=1,18)
WRITE(6,103) (G(1)91=1,18)
READ(5,2) (AV(J),Z(J),ERR(J),J=1,NFOIL)

2 FORMAT(E12.5,F12.4, E12.5)
CALL RATIO
DO 22 1=1,NFOIL

22 RO(I)= SQRT(DIST**2*(Z(I))**2)
IF(Z(1)-Z(NFOIL))32,31,32

32 MX=NFOIL
DO 38 I=1,MX
PHI(I,INDEX)=AVC(I)
X(I)=Z(I)

38 R(I)=RO(I)
GO TO (43,44),1NDEX

31 MX=(NFOIL*1)/2
DO 18 I=1,MX
MI=NFOIL-I*1
JL=MX-I*1
PHI(J1,INDEX)=0.5*(AVC(I)*AVC(MI))
X(Jl)=Z(I)

18 R(JI)=RO(I)
GO TO (43,44),INDEX

43 XNORM=PHI(1,1)
44 DO 42 I=1,MX
42 PHI(IINDEX)=PHI(I,INDEX)/XNORM

GO TO (14,15),INDEX
C
C CALCULATION OF SLOWING DOWN FJNCTIONS AND TOTAL THERMAL ACTIVITIES

15 READ(5,400) RES,5LlSL2,TAU,ERI1,ERI2
READ(5,400) E01,E02
E01=SQRT(E01)
E02=SQRT(E02)
WRITE(6,105)

105 FORMAT(lHO,10X,21HNORMALIZED ACTIVITIES/3X,6HRADIUS,8X,7HEPI-CAD,
17X,7H TOTAL )
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WRITE(6,106) (R(I),PHI(I,1),PHI(I,2),I=1,MX)
106 FORMAT(1X,3F12.5)
400 FORMAT(6E12.5)

DO 30 I=1,MX
RAT=PHI(I,2)/PHI(I,1)-1.0
Y(I)=0.886/(RAT*(RES*0.5)-0.414)

30 AT(I)=(PHI(1,2)-PHI(I,l))/(0.886*0.414*Y(I))
WRITE(6,107)GAMMA2,OUTRES, TAUSL1,SL2

107 FORMAT(IX,'MEASURED AXIAL RELAXATION LENGTH =',E12.5,/' ASSEMBLY R
1ADIUS =',F12.5,/' GOLD RESONANCE INTEGRAL =',F12.5,/1 AGE TO GOLD
2 RESONANCE =',F12.5,/* SLI =',E12.5,' SL2 =',E12.5)
READ(5,400)
READ(5,400)
READ(5,400)
READ(5,400)
READ(5,400)
READ(5,400)
WRITE(6,80)

80 FORMAT(lX,'

P1,P2
(Fl( I ),1=
(F2( 1) ,=

(TRES( I),I
(AU( I), I=
(TAUR( I),
PI ,P2
RESONANCE

1,NTRES)
1,NTRES)
=1, NTRES)
1,9)
1=1,9)

ESCAPE PROBABILITIES'/' INNER REGION *',F12.
15,' OUTER REGION =',F12.5)
ALPI=ALOG(P1)
ALP2=ALOG(P2)

401 FORMAT(F12.5,E12.5)
WRITE (6,404)

404 FORMAT(9HO RADIUS,2X,18HTHlERMAL ACTIVATION,5X,21HSLOWING DOWN FUN
ICTION)
WRITE (7,401) (R(I),AT(I),1=1,MX)
WRITE(6,425) (R(I),AT(I),Y(I),I=1,MX)

425 FORMAT(F10.5,3X,E12.5,5X,E12.5)
405 FORMAT(FI0.5,3X,E12.5,5XE12.5,5X,F1O.5)

MT=MX*2
VA(1)=AT(2)
T(1)=-R(2)
DO 70 I=1,MX
K=I*l
VA(K)=AT(I)

70 T(K)=R(I)
VA(MT)=0.0
T(MT)=REXT

C
C EXPANSION OF ZERO AGE SLOWING DOWN

EXTERNAL PROD
WRITE(6,502) REXT

502 F3RMAT(23HIEXTRAPOLATED RADIUS
ALPHA( 1)=2.404825/REXT
ALPHA(2)=5.520078/REXT
ALPHA( 3)=8.653727/REXT
ALPHA( 4)=11.79153/REXT
ALPHA(5)=14.93091/REXT
ALPHA(6)=18.07106/REXT
ALPHA( 7)=21.21164/REXT
ALPHA( 8)=24.35247/REXT
ALPHA( 9)=27.49348/REXT
ALPHA(10)=30.63460/REXT
WRITE(6,503) RAD

503 FORMAT(19HOBOUNDARY RADIUS IS,
DO 33 J=1,10

DENSITY IN TERMS OF J-0 FUNCTIONS

IS,F12.5)

F12. 5)



IBESS=J
CALL QG10(0.0, RADPRODXIN)
XINT(J, 1)=XIN
CALL QG10(0.0,REXT,PRODXIN)
XINT(J,3)=XIN
CALL Q310(RAD, OUTPROD,XIN)

33 XINT(J,2)=XIN
WRITE(6,410)
DO 60 J=1,10
CALL BESJ(ALPHA(J)*REXT,
HP(J)=2.0/(REXT*RJ)**2
B(J,1)=XINT(J,1)*HP(J)
D(J,1)=XINT(J,2)*HP(J)
Z(J)=XINT(J,3)*HP(J)

60 WRITE(6,400) ALPHA(J),B(
410 F3RMAT(42HOCOEFFICIENTS

1 1HB,1OX,1HD)

1,RJ,0.lE-05,IER)

J,1),D(J,1),Z(J)
OF bESSEL FUNCTION EXPANSION/6H ALPHA,8X,

C CALCULATION OF BESSEL FUNCTIONS
DO 2012 I=1,MX
DO 2013 J=1,10
CALL BESJ(R(I)*ALPHA(J),0,RJ,0.1E-05,IER)

2013 BES(IJ)=RJ
2012 CONTINUE

C
C CALCULATION OF INTEGRALS OF BESSEL FUNCTION PRODUCTS

00 2000 1=1,10
CALL BESJ(RAD*ALPHA(I),0,RJ,O.1E-05,IER)
CALL BESJ(RAD*ALPHA(1),1,BJ,0.IE-05,IER)
XRAD(I,1)=RAD**2*(RJ**2*BJ**2)/2.0

2000 XREX( 1,1)=1.0/HP(I)-XRAD(1,1)
DO 2001 1=1,9
K=I*1
DO 2001 J=K,10
XRAD(I,J)=BESS(ALPHA(I),ALPHA(J),RAD)
XREX(I,J)=-XRAD(TJ)
XRAD(J,I)=XRAD(IJ)

2001 XREX(JI)=XREX(IJ)
DO 2002 1=1,10
DO 2002 J=1,10
XRAD(1,J)=XRAD(1,J)*HP(I)

2002 XREX(I,J)=XREX(I,J)*HP(I)
DTAU=TRES( 1)
00 2111 K=1,NTRES
DO 2003 1=1,10
BC(I)=B(I,K)*EXP((GAMMA2-ALPHA(I)**2)*DTAU)

2003 DC(I)=D(I,K)*EXP((GAMMA2-ALPHA(I)**2)*DTAU)
PP=EXP(F1(K)*ALPI)
QQ=EXP(F2(K)*ALP2)
00 34 1=1,10
B(IK*1)=0.0
D(I,Ktl)=O.0
DO 34 N=1,10
B(1,K*l)=B(I,K*1)*BC(N)*(PP*XRAD(I,N)*QQ*XREX(IN))
D(I,K*1)=D(I,K*1)*DC(N)*(PP*XRAD(IN)*QQ*XREX(I,N))

34 CONTINUE
2111 DTAU=TRES(K*1)-TRES(K)

184
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C
C CALCULATION OF EXPANSION COEFFIENTS AT GOLD RESONANCE

DTAU=TAU-TRES( NTRES)
M=NTRES*l
DO 82 1=1,

82 AV(I)=B(I,
CALL MATRI
DO 83 1=1,

83 AV(I)=D(I,
CALL MATRI

10
M)*EXP((GAMMA2-ALPHA(
X(AV,RR)
10
M)*EXP( (GAMMA2-ALPHA(
X(AVSS)

C
C LEAST SQUARES FIT r

DO 2004 I=1,MX
V( 1,1 )=RR( I)

2004 V(2,1)=SS(I)
WRITE(6,84)

84 FORMAT(lHO,' SERI
WRITE(6,400) (Vt1,
A0=0.0
50=0.0
NDROP=NDROP*l
DO 85 NR=1,NDROP
MA=MX-NR*l
NP=NR-1

I)**2)*DTAU)

I)**2)*DTAJ)

0 SLOWING DOWN FUNCTION

ES SUMMATIONS')
1),V(2,I),I=1,MX)

DTAU= TAU-TRES(NTRES)
WRITE(6,86) NP

86 FORMAT(1H1,I5,' POINTS DROPPED')
3007 DO 2017 I=1,MX

IF(I-IBOUND)2015,2016,2016
2015 SL=SL1

GO TO 2017
2016 SL=SL2
2017 U(I)=Y(I)*AT(I)*SL

CALL FITZ(VU,2,MABB,DD)
WRITE(6,87) (BB(I),DD(I),I=1,2)

87 FORMAT(' (K*SIGMA/P)l =',Fi0.5,lH(,E12.5,1H),' (K*SIGMA/P) ='9
1F10.5,1H(,E12.5,1H))
EPS1=ABS(BB(1)-AO)/BB(1)
EPS2=ABS(BB(2)-BD)/BB(2)
AO=BB(l)
B0=BB(2)

C SPECTRAL CORRECTION OF EPI CADMIUM ABSORPTIO
DO 3001 1=1,10
CA=6.726*(GAMMA2-ALPHA(I)**2)
BS=0.0
00 3002 Jw1,NTRES
AS=BB(1)*B(I,J)*BB(2)*D(1,J)
XLL=EFUNF(TRES(J))
IF(J-1) 3003,3003,3004

3003 UL=EFUNF(0.0)
GO TO 3002

3004 UL=EFUNF(TRES(J-1))
3002 BS=BS*UL**CA*(AS/XLL**(.5*CA)-AS/UL**(.5*CA))

AS=BB(1)*B(I,M)*BB(2)*D(I,M)
UL=EFUNF(TRES(NTRkES))
UI=UL
XLL=0.4
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BS=BS*UL**CA*(AS/XLL**(.5*CA)-AS/UL**(.5*CA))
Z(I)=BS*EO1/(.5*CA)
UL=0.12
HP(I)=UI**CA*(AS/UL**(.5*'A)-AS/XLL**(.5*CA))*EO1/(.5*CA)

3001 BC(I)=AS*EXP((GAMMA2-ALPHA(I)**2)*DTAU)
CALL MATRIX(BCAV)
DO 303 I=1,MX

303 AVC(I)=0.0
DO 302 1=1,9
CALL DENS(TAUR(I),RR)
DO 302 J=1,MX

302 AVC(J)=RES*AU(I)*RR(J)/AV(J)*AVC(J)
CALL MATRIX(ZRR)
CALL MATRIX(HPSS)
WRITE(6,3008)

3008 FORMAT( RATIOS OF 1/V ABSORPTIONS TO GOLD RESONANCE ABSOPTIONS')
00 3005 1=1,MX
IF(I-IBOUND)300,301,301

301 RR(I)=E02*RR(I)/E01
SS(I)=E02*SS(I)/E01

300 Cl( I)=RR(I)/AV(I)
C2(I)=SS(I)/AV(I)
WRITE(6,405) R(I),Cl(I),C2(1),AVC(I)
RAT=PHI(1,2)/PHI(1,1)-1.0
Y(I)=0.886/(RAT*(AVC(I)*C1(I))-C2(I))

3005 AT(I)=(PHI(1,2)-PHI(Il))/(0.886*C2(I)*Y(I))
WRITE(6,404)
WRITE(6,425) (R(i),AT(I),Y(I),i=1,MX)
IF(EPS1.LE.0.001.AND.EPS2.LE.O.001) GO TO 3006
GO TO 3007

3006 DO 2010 N=1,NTAU
CALL DENS(TA(N),AV)
WRITE(6,7) TA(N)

7 FORMAT(lHO,' SLOWING DOWN DENSITY AT',F10.5,' SQ. CM.')
2010 WRITE(6,807) (R(I),AV(I),I=1,MX)

C
C CALCULATION OF RELATIVE RHO-28

WRITE (6, 806)
806 FORMAT(lHO,'RELATIVE VALJES OF RHO-28')

DO 801 1=1,10
Z(I)=O.0
DO 801 L=2,M

801 Z(I)=(BB(1)*B(I,L)*BB(2)*D(IL))*Fl(L-1)*Z(I)
CALL MATRIX(ZRR)
IB=IBOUND-1
DO 802 I=1,IB
RHO=(:1(I)*AV(I)*ERI1*RR(I))/(0.886*AT(I)*SLI*C2(I)*AV(I))

802 WRITE(6,807) R(I),RHO
DO 803 1=1,10
Z(I)=0.0
DO 803 L=2,M

803 Z(I)=(BB(1)*B(1,L)*BB(2)*D(IL))*F2(L-1)*Z(I)
CALL MATRIX(ZRR)
DO 804 I=IBOUNDMX
RHD=(C(I)*AV(I)*ER2*RR())/(0.886*AT(I)*SL2*C2(I)*AV(I))

804 WRITE(6,807) R(I),RHO
85 CONTINUE
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807 FORMAT(lX,F12.5,E12.5)
GO TO 602

603 STOP
103 FORMAT(18A4)

END

SUBROUTINE RATIO
CRATIO CALCULATION OF CADMIUM RATIOS - J. GOSNELL

DIMENSION ERAV(50),RAT(50),ERA(50),RATIO(50),ERRAT(50),IDATE(5,2)
DIMENSION AV(50),ERR(50),AVC(50),Z(50)
COMMON AV,ERRINDEXAVCNFOILZ
READ(5,1)TM2
READ(5,2) (IDATE(2,1),IDATE(1,1),(IDATE(JI),J=3,5),1=1,2)
WRITE(6,12) (IDATE('2,I),IDATE(1,I),(IDATE(JI),J=3,5),I=1,2)

12 FORMAT(' END OF RUN',Il0,'/',12,'/*,12,Il0,'.',12/' MONITOR FOIL
1 COUNTED',Il0, /',12,'/',12,Il0,'.',12)
CALL DELAY(IDATEDLAYTM)
READ(5,3) XMONERRM
DEKAY=ALOG(2.0)/TM2
CORR=XMON* EXP(DEKAY*DLAYTM)
WRITE(6,103) CORR

103 FORMAT(' MONITOR FOIL CORRECTED COUNTS',2XE12.5)
ERRC=ERRM* EXP(DEKAY*DLAYTM)
DO 4 I=INFOIL
AVC(I)=AV(I)/CORR
ERAV(I)= SQRT((ERR(I)/AV(I))**2*(ERRC/CORR)**2)
GO TO (5,4),INDEX

5 RAT(I)=AVC(I)
ERA(I)=ERAV(I)

4 CONTINUE
GO TO (8,9),INDEX

9 WRITE(6, 100)
DO 10 I=1,NFOIL
F=RAT(I)
IF(F)20,21,20

21 RATIO(I)=0.0
ERRAT(I)=0.0
GO TO 10

20 RATIO(I)=AVC(I)/RAT(I)
ERRAT(I)=RATIJ(I)* SQRT(ERAV(I)**2*ERA(I)**2)

10 WRITE(6,101) Z(I),RAT(I),AVC(I),RATIO(I),ERRAT(I)
8 RETURN
I FORMAT(E12.5)
2 FORMAT(2(515,5X))
3 FORMAT(E12.5,12XE12.5)

100 F3RMAT(13HOHOLDER POSIT,5X,7HEPI-CAD,7X,7H TOTAL ,5X,9HCAD RATIO,8
1X,5HSIGMA)

101 FORMAT(lX,F12.5,4(2X,E12.5))
END

SUBROUTINE DELAY ( IDATE, DLAYTM
C DELAY

DIMENSION M(12), IDATE(5,2), IDA

IOATE(I,K) I=MO4TH, DAY, YEAR,
TIME K=2=START OF COUNT TIME

Y(2)

HOUR, MINUTE K=1=END OF
C
C
C
C

IRRAD.

DELAY I

DELAY 2
DELAY 3
DELAY 4
DELAY 5
DELAY 6

)
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DERTERMINATION OF THE NUM3ER OF DAYS FROM THE BEGINNING OF THE
YEAR TO (1) THE END OF IRRADIATION TIME AND (2) THE START OF THE
COUNT TIME. A CHECK FOR LEAP YEAR IS ALSO INCLUDED.

M( 1) = 00
M( 2) = 31
M( 3) = 59
MC 4) = 90
M( 5) = 120
M( 6) = 151
M( 7) = 181
MC 8) * 212
M( 9) = 243
M(10) = 273
M(11) = 304
M(12) = 334
DO 550 K=1,2
J = IDATE(1,K)
IDAY(K) = M(J)
YEAR = FLOAT(
XYEAR=INT(YEAR)
IF ( XYEAR - YE

0 IF ( IDAY(K) -
0 IF (IDATE(1,K)
0 IDAY(K) = IDAY(
0 CONTINUE

IF ( IDAY(2) -
1 YFAR = FLOAT(

XYEARmlNT(YEAR)
IV ( XY[AR - YE

3 1OA Yt ?6) * I DAY(
C0 T1 5

4 lDAY(C ) * IDAY(
5 OlFDAY W (DAY

TOTUUR U 24.0
1 * FLDAT(IDAT
DLAYTM = DIFDAY

* IDATE(2,K)
IDATE(3,K)) / 4.0

AR ) 550, 510, 550
60 ) 550, 520, 540
- 2)550, 550, 540
K) * 1

IDAY(1) ) 1, 5, 5
IDATE(3,1) ) / 4.0

AR ) 3, 4, 3
?) * 364

) t 366
(1) - IDAYCl) - 1 ) * 24

- FLAT(TDATE(4,1)) - FL0AT(IUATE(5,1))
E(4,2)) * FLOAT(IDATE(5,2)) / 60.0
* TOTOUR

DLAYTM IS THE TIME DIFFERENCE BETWEEN THE STOPPING OF THE
IRRADIATION AND THE START OF THE FOIL COUNTING. THE TIME
HOURS

RETURN
END

FUNCTION BESS(A,B,R)

CALCULATES INTEGRAL OF BESSEL FUNCTION PRODUCT

CALL BESJ(A*R,0,AJ0,0.lE-05,
CALL BESJfB*R,0,BJ0,0.lE-05,
CALL BESJ(A*R,1,AJ1.0.lE-05,
CALL BESJ(B*R,1,BJI,0.lE-05,
BESS=R*(A*AJI*BJO-B*BJ1*AJO)
RETURN
END

C
C
C
C

DELAY36
DELAY37
DELAY3
DELAY39
DELAY40

60.0 DELAY41
DELAY42
DELAY43
DELAY44
DELAY45

IS IN DELAY46
DELAY47
DELAY48
DELAY49
DELAY50

[ER)
IER)
IER)
[ER)
/(A**2-B**2)

DELAY 7
DELAY 8
DELAY 9
DELAY10
DELAYLI
DELAY12
DELAY 13
DELAY14
DELAY15
DELAY16
DELAY 17
DELAY18
DELAY19
DELAY20
DELAY21
DELAY22
DELAY23
DELAY24
DELAY25

DELAY28
DELAY29
DELAY30
DELAY31
DELAY32
DELAY33

51
52
54
55

C
C
C
C
C

C
C
C
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FUNCTION PROD(X)
C DEFINES FUNCTION TO BE INTEGRATED FOR BESSEL FUNCTION EXPANSION

C
DIMENSION VAL(50),T(50)
DIMENSION AV(50),ERR(50),AVC(50),Z(50),AT(50),R(50),ALPHA(50)
COMMON AVERRINDEXAVCNFOIL,2,AT,R,IBESSMXALPHA

C
CALL ATSM(X,R,ATMX,1,T,VALMX)
CALL ALI(X,T,VAL,Y,MX,0.lE-04,IER)
CALL BESJ(ALPHA(IBESS)*X,0,RJ,0.lE-05,IER)
PROD=Y*RJ*X
RETURN
END

SUBROUTINE DENS(TAU,Q)
DIMENSION A(10),Q(50)
DIMENSION AV(50),ERR(50),AVC(50),Z(50),AT(50),R(50),ALPHA(50),
1TRES(100),B(10,100),D(10,100),BES(50,10),BB(2),VA(50),T(50)
COMMON AV,ERR,INDEXAVC,NFOILZ,VA,T,IBESSMTALPHAGAMMA2,BES,

ITRES,B,0,BB,MX,R,NTRES
DO 1 K=1,NTRES
IF(TAU-TRES(K)))1111,1

1 CONTINUE
K=NTRES*l

11 IF(K-1)4,4,5
4 TB=0.0

GO TO 12
' f 11 * t tA 4I K~ C I~

3 A(J) (BfA ( l)*B J,K)*BB(2)*D(J,K))*EXP((GAMMA2-ALPHA(J)**2)*(TAU-TR)
1)

CALL MATRIX(A,Q)
RETURN
END

SUBR3UTINE MATRIX(A,C)
DIMENSION A(10),C(50)
DIMENSION AV(50),ERR(50),AVC(50),Z(50),AT(50),R(50),ALPHA(50),

ITRES(100),B(10,100),D(1O,100),BES(50,10),BB(2),T(50),VA(50)
C3MMON AVERRINDEXAVCNFOIL,Z,VA,T,IBESSMTALPHAGAMMA2,BES,
ITRES,B,D,BBMX,R,NTRES
DO 1 I=1,MX

1 C(I)=0.O
DO 2 1=1,MX
DO 2 J=1,10

2 C(I)=C(I)*A(J)*BES(I,J)
RETURN
END

SUBROUTINE FITZ(X,Y,N,MT,A,SIGMA)
DIMENSION X(10,90),Y(50),A(10),SIGMA(10),B(10),C(10,10),Z(50),R(10),
1),CC(10,10)

C DOES A LEAST SQUARES FIT TO A STRAIGHT LINE

C Y(I)=A(I)X(1,1)*A(2)X(2,I)*............*A(N)X(N,1)
C THE A'S ARE THE CJNSTANTS TO BE EVALUATED FROM EXPERIMENTAL VALUES

C OF THE VARIABLES Y AND X'S.
C MAXIMUM OF 50 SETS OF EXPERIMENTAL POINTS IN 10 DIMENSIONS
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M=MT
WRITE(6,200)

16 DO 1 J=1,N
R(J)=0.0
B(J)=0.o
DO 1 K=1,N

1 C(JK)=0.o
CC(J,K)=0.0
DO 2 J=1,N
DO 2 I=1,M
B(J)=Y(I)*X(J,I)*B(J)
00 2 KIl,N
CC(J,K)=X(J,I)*X(K,I)*C(J,K)

2 C(J,K)=X(J,I)*X(K,I)*C(J,K)
KS=0
CALL SIMQ(CB,N,KS,10)

DETERMINATION OF GOODNESS
DO 8 JulN

8 A(J)u8(J)
SUM =0.0
DO 5 I=lM
ZCI)=O.0
DO 6 Ju1,N

6 Z(I)=A(J)*X(J,I)*Z(I)
ERR=Y(I)-Z(I)
WRITE(6,100) Y(I),Z(I),ER

5 SUM*SUM*ERR**2
XMvFLOAT(M)
SIGMAY=SQRT(SUM/(XM-2.0))
WRITE (6,101 )SIGMAY

100 F3RMAT(lX,3E12.5)

OF FIT

C ESTIMATION OF ERROR FOR EACH CONSTANT
17 DO 3 I=1,M

DO 4 J=1,N
DO 4 K=1,N
B(J)=X(J,I)

4 C(J,K)=CC(J,K)
KS=0
CALL SIMQ(C,B,N,KS,10)
DO 3 K=1,N

3 R(K)=B(K)**2*R(K)
DO 7 K=1,N

7 SIGMA(K)=SIGMAY*SQRT(R(K))
RETURN

200 FORMAT(18HOLEAST SQUARES FIT)
101 FORMAT(44H DEVIATION OF POINTS FROM A STRAIGHT LINE = ,E12.5)

END
C SIMQ 001
C .................................................................. SIMQ 002
C SIMQ 003
C SUBROUTINE SIMQ - OBTAINED FROM THE MIT COMPUTATION CENTER SIMO 004
C SIMO 005
C PURPOSE SIMQ 006
C OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS, SIMQ 007

C

R
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AXzB

USAGE
CALL SIMQ(A,B,N,KSM)

SIMQ
S IMQ
SIMQ
S I MQ
SIMQ

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C CHANGING THE DIMENSIONS OF A. SIMQ
C SIMQ
C ....................... .............
C SIMQ

SUBROUTINE SIMQ(A,8,NKSM)
DIMENSION A(MM),B(1)

FORWARD SOLUTION
SIMQ
S I MQ
SIMQ
SIMQTOL=0.0

DESCRIPTION OF PARAMETERS SIM0
A - MATRIX OF COEFFICIENTS STORED COLUMNWISE. THESE ARE SIMQ

DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS SIMQ
M BY M. SIMQ

B - VECTOR OF ORIGINAL CONSTANTS (AT LEAST OF LENGTH N). THE SIMO
FIRST N PLACES ARE REPLACED BY FINAL SOLUTION VALUES, SIMO
VECTOR X. SIMQ

N - NUMBER OF EQUATIONS AND VARIABLES SIMQ
KS - OUTPUT DIGIT SIMQ

0 FOR A NORMAL SOLUTION SIMQ
1 FOR A SINGULAR SET OF EQUATIONS SIMQ

M - NUMBER OF ROWS AND COLUMNS FOR A AS DIMENSIONED IN THE SIMQ
CALLING PROGRAM. SIMQ

SIMQ
REMARKS SIMQ

MATRIX A MUST BE GENERAL. SIMO
IF MATRIX IS SINGULAR , SOLUTION VALUES ARE MEANINGLESS. SIMQ
AN ALTERNATIVE SOLUTIUN MAY BE OBTAINED BY USING MATRIX SIMQ
INVERSION (MINV) AND MATRIX PRODUCT (GMPRD). SIMO

SIMQ
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED SIMQ

NONE SIMQ
SIMQ

METHOD SIMQ
METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL SIMQ
DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGINGSIMQ
ROWS WHEN NECESSARY TO AVOID DIVISION BY ZERO OR SMALL SIMQ
ELEMENTS. SIMO
THE FORWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN SIMQ
N STAGES. THE BACK SOLUTTON FOR THE OTHER VARIABLES IS SIMO
CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION SIMQ
VALUES ARE DEVELOPED IN VECTOR B, WITH VARIABLE 1 IN 8(1), SIMO
VARIABLE 2 IN 8(2),........, VARIABLE N IN B(N). SIMQ
IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0, SIMO
THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS SIMQ
TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT. SIMO

SIMO
THIS PROGRAM IS AN ADAPTATION OF THE VERSION IN THE S/360 SIMQ
SCIENTIFIC SUBROUTINE PACKAGE. THIS PROGRAM PERMITS THE SIMQ
PROGRAMMER TO DIMFNSION THE MATRIX A GREATER THAN N BY N- SIMQ
A CONDITION IMPOSED BY THE SIMQ IN SSPLIB--HENCE SEVERAL SIMQ
VALUES OF N MAY BE USED IN THE CALLING PROGRAM WITHOUT SIMQ

C
C

008
009
010
011
012
013
014
015
016
01T
018
A18
019
020
021
022
A22
822
023
024
025
026
027
028
029
030
031
032
033
034
035
036
03T
038
039
040
041
042
043
044
045
A45
845
C45
D45
E45
F45
G45
046
047
048

051
052
053
054
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KS=O SIMQ 055
DO 65 J=1,N
JY=J*l SIMQ 058
BIGA=O SIMQ 060
00 30 I=J,N

C SIMQ 063
C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN SIMQ 064
C SIMQ 065

IF (ABS(BIGA)-ABS(A(IJ)))20,30,30
20 BIGA=A(I,J)

IMAX=I
30 CONTINUE
C SIMQ 071
C TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) SIMQ 072
C SIMQ 073

IF(ABS(BIGA)-TOL) 35,35,40 SIMQ 074
35 KS=1 SIMQ 075

RETURN SIMQ 076
C SIMQ 077
C INTERCHANGE ROWS IF NECESSARY SIMQ 078
C SIMQ 079
40 DO 50 K=J,N

SAVE=A(J,K)
A(J,K)=A(IMAX,K)
A(IMAX,K)=SAVE

C SIMQ 088
C DIVIDE EQUATION BY LEADING COEFFICIENT SIMQ 089
C SIMQ 090
50 A(J,K)=A(J,K)/B[GA

SAVE=B(IMAX) SIMQ 092
B(IMAX)uB(J) SIMQ 093
B(J)=SAVE/BIGA SIMO 094

C SIMQ 095
C ELIMINATE NEXT VARIABLE SIMQ 096
C SIMQ 097

IF(J-N) 55,70,55 SIMQ 098
55 DO 65 IX=JYN SIMQ 100

IT=J-TX SIMQ 102
DO 60 JX-JYN SIMO 103

60 A(IX,JX)=A(IX,JX)-(A(IX,IX*IT)*A(IX*IT,JX))
65 B(IX)=B(IX)-(B(J)*A(IXIX*IT))
C SIMO 108
C BACK SOLUTION SIMO 109
C SIMO 110

70 NY=N-1 SIMQ 111
IT=N*N SIMO 112
DO 80 J=sNY SIMQ 113
IB=N-J SIMQ 115
IC=N SIMQ 116
DO 80 K=1,J SIMQ 117
B(IB)=B(IB)-A(IBIC)*B(IC)

80 IC=IC-1 SIMQ 120
RETURN SIMQ 121
END SIMO 122
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B.4 Description of the Computer Program ROD

This program computes the ratio of the total uncollided flux to

the total fission source within a fuel rod in an infinite sea of moder-

ator. This ratio, HSR is:

0 2 7r 4SR(r) r dr [ o (r., r, R R(r, R, r dr
H_ _fSR 

R) _ 0 L S R - R
R RR0-

f0 27r S(r) r dr f 0 S(r) r dr
0 0

(B.2)

A C
where SR and 4SR are defined by Eqs. 2.44 and 2.50. Output from

the program also presents the values of the uncollided flux at various

points within the fuel rod.

The various integrals and functions required for the calculation

of the uncollided flux are evaluated by the methods described in

Appendix C.

B.4.1 Description of the Main Program

The main program does the following steps:

1. The first ten binomial coefficients, A(n,m), are calculated for

future use by the formula (A2):

A(n,m) = n . (B.3)
m! (n-m)!

The necessary factorials are calculated by the function subroutine FAC.

2. The following input is supplied to the program:
00

a. 26 values of the integral f K (t) dt, taken from the tabu-
0

lation of reference A2 covering values of x from 0.0 to 0.25.

(This is a sufficient range to include all rod sizes involved in

the two-region assemblies.)
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b. The fuel rod radius, the coefficient b of the parabolic

source distribution (Eq. 2.44), and the macroscopic removal

cross section for the uncollided flux in the fuel.

3. The Cn functions (Eq. 2.46) at the rod radius are calculated

for values of n from 2 to 12. C 2 (ER 0 ) is found by interpolation in

the supplied table. The remaining functions are generated by the

equations of Appendix C, using the IBM-360 subroutines (S3) to com-

pute the required Bessel functions.

4. Integration across the rod is performed by eight-point

Gaussian numerical integration, using IBM subroutine QG8 (S3). The

required products of radius and flux within the fuel rod are supplied by

the function subroutine FASPHI, described in the next section.

5. The integral of the parabolic source distribution is evaluated

and the program prints the total uncollided flux, the total fission

source, and the ratio HSR as output.

B.4.2 Description of the Subroutine FASPHI

For each point within the rod stipulated by the Gaussian integra-

tion, FASPHI computes the uncollided flux and supplies the product of

the flux and radius to QG8. The steps in the calculation are:

1. I 1(Er is assumed zero and I 1 0 (Er) is taken to be unity.

Lower order Bessel functions are calculated by backward recurrence:

In1 = In 1 + 2n In(x) . (B.4)
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The results are normalized to the true values by using the relationship

(A2):

e = I(x) + 2 x) +2 2 (x) + . . . (x) + . . . (B.5)

2. The derivatives of the Bessel functions are found from (A2):

I(k) (x) Ink(x) + A(k,1)In k+2 (x) + A(k,2)In-k+4

+ . . . I n+k , (B.6)

where k = 0, 1, 2, . .

and the A array is composed of the binomial coefficients calculated in

the main program.

3. The C_, S., and f, functions are evaluated by the formulae
I I J K'

derived in Appendix C.

4. 4Ar, r, ) and 4 C(r, R, Z,) are evaluated by Eq. 2.45 and

Eq. 2.51 and their sum, equal to the uncollided flux at the required

radius, is printed as output.

5. The flux is multiplied by the radius and the product returned

to program QG8.

B.4.3 Input Specification for ROD

The input data specifications are given below in the order

required. The names of the variables for each format statement are

given, followed by the required FORMAT in parentheses, and then by

a brief description of the variable.

1. CC(I), I=1, 26 (6E 12.5)
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00
The array CC contains values of the integral f
increasing from 0.0 in increments of 0.01.

2. RO, B, SIGMA

x
K (t) dt with x

(3E12.5)

B- is the radius of the fuel rod in centimeters.

B is the coefficient of the parabolic fission source distribution,

Eq. 2.44.

SIGMA is the macroscopic removal cross section of the fuel for

uncollided flux.

B.4.4 Fortran Listing of ROD

The Fortran listing of the program ROD is given below.
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CROD
C CALCULATES TOTAL UNCOLLIDED FLUX IN A SINGLE ROD

DIMENSION A(ll,10),D(12),CC(26),ARG(26),VAL(26)
COMMON SIGMAB,RO,A,CC,D,DO

C
C CALCULATION OF BINOMIAL COEFFICIENTS

DO 1 N=1,10
NN=N*l
DO 1 KK=1,NN
K=KK-1

1 A(KKN)=FAC(N)/(FAC(N-K)*FAC(K))
C
C INPUT

READ(5,100)
READ(5,102)
DO 85 IRUN=
READ(5,100)
WRITE(6,101

C

(CC(I),I=l,26)
NRUN

1,NRUN
RO,B,SIGMA
RO,B,SIGMA

C CALCULATION OF C FUNCTIONS
Z=SIGMA*RO
CALL BESK(Z,0,D(1),IER)
CALL BESK(Z,1,DO,IER)
CALL ATSE(Z,0.0,0.005,CC,26
CALL ALI(Z,ARGVAL,0(2),26,
D(3)=Z*(DO-D(2))
DO 2 N=4,12
XN=N

AT ROD RADIUS

,1,ARG,VAL,26)

1.OE-06, IER)

2 DIN)= XN-3.0)*D(N-2h/( XN-2.0)*(IN 3)-DN-1 ))/XN-2 0)

EXTERNAL FASPil
CALL QG8(0.0,RO,FASPHIY)
X=FASPHI(RO)
WRITE(6,103) Y
S=RO**2/2.0+B*RO**4/4.0
WRITE(6,104) S
R=Y/S
WRITE(6,105) R

100 FORMAT(6E12.5)
101 FORMAT(lHl,' FUEL ROD RADIUS

IS IN ROD GIVEN BY 1.0 * ',Fi0.
20SS-SECTION IS',F10.5)

102 FORMAT(15)
103 F3RMAT(IHO,'TOTAL UNCOLLIDED F
104 FORMAT( HO,'TOTAL FISSIONS IN
105 FORMAT(1HO,'RATIO OF TJTAL UNC
85 CONTINUE

STOP
END

IS',Fl0.5/'
5,'*R**2/ 

DISTRIBUTION OF FISSION
FAST NEUTRON REMOVAL CR

LUX IN ROD =',E12.5)
ROD =',E12.5)
OLLIDED FLUX TO FISSIONS =',F10.5)

FUNCTION FAC(N)
COMPUTES N FACTORIAL

FAC=1
IF N)

1 DO 3

.0
1,

1=1
2,1

C

C
C



XI= I
FAC=FAC*XI
RETURN
END

FUNCTION FASPHI(X)
DIMENSION XI(ll),A(11,10),C(12),CC
l,S(12),G(12) ,H(12),F(12),D(12),DI(
COMMON SIGMA,B,RO,A,CC,D,D0

CALCULATION OF FIRST TEN MODIFIED
KIND BY BACKWARD RECURRANCE
Z=X*S IGMA
XI( 10)=1. 0
XI ( 11)=0.0
DO 1 J=1,9
K=9-J*l
XK=K

1 XI(K)=2.0*XK*XI(K*1)/7*XI(K*2)
SUM=XI(1)
DO 2 J=2,10

2 SUM=SUM*2.0*XI(J)
XNORM=EXP(Z)/SUM
DO 3 J=1,11

3 XI(J)=XNORM*XT(J)
WRITE(6,100) A
WRITE(6,101) (XI(J),,J=1, 10)

(26),ARG(26),VAL(26),V(12),U(12)
10)

BESSEL FUNCTIONS OF FIRST

C
C CALCULATION OF BESSEL FUNCTION DERIVITIVES

DO 6 J=1,10
DI(J)=0.0
N=J*l
K=-J-2
DO 4 L=1,N
K=K*2
IF(K)5,T7,7

5 LL=-K*l
GO TO 4

7 LL=K*l
4 DI(J)=DI
6 DI(J)=DI

WRITE (6,

(J)*A(L,J)*XI(LL)
(J)/(2.0**J)
103) (DI(J),J=1,10)

C
C CALCULATION OF C INTEGRALS

CALL BESK(Z,0,C(l),IER)
CALL BESK(Zl,1,COIER)
CALL ATSE(Z,0.0,0.005,CC,?6
CALL ALI(Z,ARGVAL,C(2),25,
C(3)=Z*(CO-C(2))
DO 8 N=4,12
XN=N

8 C(N)=(XN-3.0)*C(N-2)/(XN-2.i
WRITE(6,102) (C(N)t N=1,12)

C
C CALCULATION 3F V INTE3RALS

V(12)=O.0
DO 9 J=1,9

,1,ARGVAL,26)
I.OE-06,IER)

0)+Z*(C(N-3)-C(N-1))/(XN-2.0)

3
2
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C
C
C



K=12-J
9 V(K)=Z*(DI(K-2)-V(K*1))/FLOAT(K)

V(2)=Z*(XI(1)-V(3))/2.0
XNORM=XI(2)/V(2)
DO 10 J=2,10

10 V(J)=V(J)*XNORM
WRITE (6,106) (V( I), 1=2, 10)

C
C CALCULATION OF U INTEGRALS

U(12)=0.0
DO 11 J=1,9
K=12-J

11 U(K)=Z*(DI(K-2)-U(K*1))/FLOAT(K*
U(2)=Z*(XI(1)-U(3))/5.0
XNORM=(XI(2)-2.0*XI(3)/Z)/U(2)
DO 12 J=2,10
U(J)=U(J)*XNORM

C
C CALCULATION OF S INTEGRALS

12 S(J)=(V(J)*X**(J-1)*B*X**(J*1
WRITE(6,107) (U(J),J=2,10)
WRITE(6,108) (S(J),J=2,10)

2)

(J) )SIGMA

C
C CALCULATION OF G FUNCTIONS

G(1)=(X*CO-RO*DO)/SIGMA
G(2)=RO*D(2)-X*C(2)-SIGMA*G(1)
G(3)=C(1)-D(1)-SIGMA*G(2)
DO 13 J=4,12

13 G(J)=(C(J)/X**(J-3)-D(J)/RO**(J-3)-S
WRITE(6,105) (G(J),J=1,12)

C
C CALCULATION OF H INTE3RALS

H(5)=2.0*(C(1)-D(1))/3.0*C(3)-D(3)*(

DO 14 1=1,5
K=6-1

IGMA*3(J-1))/FLOAT(J-3)

C(5)-D(5))/3.0

14 H(K-1)=(C(K)/X**(K-5)-D(K)/RO**(K-5)-H(K)*FLOAT(K-5))/SIGMA
DO 15 1=6,12

15 H(I)=(C(I)/X**(I-5)-D(I)/RO**
WRITE(6,109) (H(I),=1 1, 2)

(I-5)-SIGMA*H(I-1))/FLOAT(I-5)

CALCULATION OF F
DO 16 1=1,12

16 F(I)=G(I)*B*H(I)
WRITE(6,110) (F(I

INTEGRALS

),=1,12)

CALCULATION OF PHIA
PHIA=0.0
DO 17 J=2,10

17 PHIA=PHIA*C(J)*S(J)/X**(J-1)

CALCULATION OF PHIC
PHIC=XI(1)*F(2)
DO 18 J=3,12

18 PHIC=PHIC*DI(J-2)*F(J)*X**(J-2)
FASPHI=PHIA*PHIC
WRITE(6,111) PHIA,PHIC,FASPHI
FASPHI=FASPHI*X

199

C
C

C
C

C
C

)*U
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RETURN
100 FORMAT(IHO,F10.5,4H CM.)
101 FORMAT(2H I,8E12.5/5X,4El2.5)
103 FORMAT(3H DI,8E12.5/5X,2E12.5)
102 FORMAT(2H C,8E12.5/5X,4E12.5)
106 FORMAT(2H V,9E12.5)
107 FORMAT(2H U,9E12.5)
108 FORMAT(2H S,9E12.5)
105 FORMAT(2H G,8E12.5/5X,4E12.5)
109 FORMAT(2H H,8E12.5/5X,4E12.5)
110 FORMAT(2H F,8E12.5/5X,4E12.5)
111 FORMAT(X,'FLUX',3E12.5)

END
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EVALUATION OF UNCOLLIDED FLUX INTEGRATED KERNELS

C.1 Introduction

Pilat (P3) has derived the following semi-analytic expressions

for the uncollided flux arising from fissions in an infinitely long

cylindrical source of radius R9:

A I C 3 (Er)S3 (, R 0 )
k (r, R9, E -) C2(Er)S2(,R) +rSR r of 2 2 o0 r

C 4 (EZr)S 4 (, R 0 ) C 5 (Er)S5 (E, R)
+ 2 + 3

r r

r > R , (C.1)

and

k R(r, R , Z) =OSR(r, r, Z) + SR(r, R9, Z) , r R, (C.2)

where

4SR(r, R9, Z) I (Mr) f 2 (r, R 0 ) + r I ()(zr) f 3 (r, R9)

2 4

oo -zt

C (z)Ef 0 dt e , (C.4)
1 tn-1 t 2 -1

S.(F, u) Jf Ri- I Q-2)(ER) S(R) dR (C.5)
j 0 0
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fk(r, R ) - ( R) S(R) dR (C.6)
k 0) f- Ck(~RS k-2'

r R

I (x) ith derivative of I (x),

and S(R) is the source distribution within the cylinder of radius R .

The purpose of this appendix is to present some mathematical

properties of these integrals which can be used to facilitate their

numerical evaluation.

C.2 The Cn Functions

The C functions have been evaluated by Pilat, using an infinite
n

series representation in terms of exponential integrals. Because of

the slow convergence of the series, 5000 terms of the series were

found to be necessary to produce sufficient accuracy.

A more convenient method is developed here by deriving a

recurrence relationship. To do this, the defining relationship, Eq. CA,

is integrated by parts:

oo

-zt 2 -zt t - 1 e t t2

n n + n nn+
t 1 t 1 t

The first term vanishes at both limits of integration and rearrangement

of the remaining terms gives:

~ 0 -zt 0 -zt

C (Z) = z f e f e

L tn-2 t _ y 1 tn Vt2

0 -zt f00 -zt ~

1 tn-1§t>_i 1 t n+1 t -J1
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Using the definition of the Cn function, Eq. C.4, and the

j=n+2, gives:

(j- 2 )C (z) = z [Cj 3 (z) - C _ (z)] + (-3)Cj (Z) ,

which is the required recurrence relationship.

It remains to define the first three Cn functions:

00 d -z t

C 1(z) f dte -K9(z) ,
1 t2_ 0

substitution,

(C.7)

(C.8)

C2(z) = 0 dt e zt

1 t t

7r/ 2

0

-z sec 0 dO =

o-zt
C 3 (z)= f dt e

1 t2 J2 -1

0O -zt
e

2 -3/2(t -1)

00 -zt

1 2 1/2t(t -1)

= zK 1 (z) - zC 2 (z), (C.10)

where K0(z) and K 1 (z) are modified Bessel Functions of the Second

Kind which, along with the integral of K 0 , are tabulated functions (Al).

Values of the C functions, calculated by the above method, are
n

given in Table C.1.

C.3 The S. Functions

In order to define relationships for these functions, it is neces-

sary to stipulate the source distribution, S(R). Following Woodruff

(W3), a parabolic fission source in the rod is assumed.

S(r) = 1 + br2 = 1 + b ,

and

00

fz
K (t) dt , (C.9)

(C. 11)
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TABLE C.1

Values of the Cn Functions

x C 2 3 4 (x) C 5 (x) C 6(x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

1.57080

1.47024

1.39738

1.33496

1.27029

1.22863

1.18194

1.13853

1.09791

1.05972

1.02368

0.98955

0.95714

0.92631

0.89691

0.86883

0.84169

0.81626

0.78889

0.76794

0.74520

0.72334

0.70230

0.68204

0.66252

0.64369

1.00000

0.96969

0.94100

0.91373

0.88760

0.86252

0.83842

0.81522

0.79286

0.77129

0.75046

0.73033

0.71086

0.69203

0.67380

0.65615

0.64002

0.62246

0.60736

0.59079

0.57566

0.56098

0.54672

0.53288

0.51943

0.50637

0.78540

0.76570

0.74660

0.72806

0.71004

0.69254

0.67554

0.65900

0.64292

0.62728

0.61206

0.59726

0.58285

0.56882

0.55516

0.54186

0.52861

0.51630

0.50378

0.49204

0.48038

0.46901

0.45793

0.44714

0.43662

0.42636

0.66667

0.65116

0.63601

0.62129

0.60691

0.59288

0.57920

0.56586

0.55284

0.54014

0.52775

0.51565

0.50385

0.49234

0.48110

0.47013

0.46007

0.44897

0.43912

0.42881

0.41908

0.40959

0.40032

0.39127

0.38291

0.37380

0.58905

0.57587

0.56300

0.55043

0.53814

0.52615

0.51443

0.50298

0.49179

0.48086

0.47018

0.45975

0.44956

0-43959

0.42986

0.42035

0.41086

0.40197

0.39297

0.38442

0.37594

0.36765

0.35955

0.35164

0.34384

0.33634



205

where z = Er. The parameter b depends on the character of the fuel

rod and has been determined experimentally by Woodruff for the

various rods used in the assemblies.

Use of the source distribution given by Eq. C.11 in the definition

of the S. functions, Eq. C.5, yields:

-1
S.(u)

J
V.(u) +

J
bu j 1 U (u),

J
(C.12)

where:

V.(u) = 1
J (Zu) 1

and

U.(u) = +
(zu) 0

z - QIj-2)(z) dz,

i+l (i-2)
z Ij-2 dz.

0

Again, integration by parts gives easily calculated relationships for

the new functions:

V. = I(j
j 0

(C.13)

and

(C.14)U (u) = Ij- 3)(u) -
j 0

Direct integration is used to define the starting functions:

V2(u) = 11(u) and U 2 (u) = 11 (u) - 2 I2 (u)/ Zu ,

which, together with Eqs. C.13 and C.14,define the set of functions

needed to evaluate S.(u).

(C.15)

(j-l)Vjj/zu,

(j)U. _Mu/zu.
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C.4 The fk Functions

The fk function is treated in the same fashion as the S function

above. Insertion of the same source distribution, Eq. C.11, into the

defining equation, Eq. C.6, generates two auxilliary functions:

fk(r, R0 ) =gk(r, R ) + bhk(r, R 0 ), (C.16)

where

R 0 Ck(5r)

kr k-2 dr
r r

and

R 0 Ck(Er)
hk(r,RO) = k-i dr.

r r

Since C'(z) = -Ck-(z), integration by parts gives:

C (r) C n(ER 0)
(k-3)gk(r, RO) = k-3 nk-3 -~kgn- 1 (r,R 0 ), (C.17)

r R90

C (Er) C (ER )

k-5hkR = nk-5 n k-5 k-1
r Ro

The initial functions are found by direct integration to be:

g 3 (r, R 0 ) = 0 (Zr) - K0(ZR0) + C 3 (Er) - C 3(ER 0 ), (C.19)

h 5 (r, R 0 ) = K (Zr) -2 K (ERo) + C 3 (Er) - C 3 (ER)

+C C(r) - (FR). (C.20)- 5 (' 5 5o

With these functions as starting points, the relationships, Eqs. C.17

and C.18, will generate the other functions needed to evaluate the fk

functions.



Appendix D

CALCULATION OF LATTICE PARAMETERS

D. 1 Introduction

Use of either the age theory or diffusion theory analyses pre-

sented in Chapter II requires calculation of several parameters which

are properties of the lattice composition. This appendix presents the

methods used to numerically evaluate these parameters. The values

of the parameters, calculated by these methods and used in the two

region assembly analyses, are listed in Table 5.2.

D.2 Age to Thermal Energies, r

The procedure used to calculate the age to thermal energies is

given by Galanin (G1). This method accounts for the increase in age

over that of a pure moderator due to the moderator displacement by

fuel and cladding. The inelastic scattering by uranium, which parti-

ally compensates for this increase, is also included.

Ignoring for the moment the inelastic scattering by uranium, the

age to thermal energy may be defined as:

E 1 dE (D.1)

Eth s tr

where E th and E denote thermal and source energies, respectively,

and Z tr is the transport cross section. The slowing down power, (Es'

for a mixture is:
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(D.2)
=

and the transport cross section is:

(D.3)
tr tri 1

where u. is the volume fraction of the ith material. Substitution of
1

Eq. D.2 and Eq. D.3 into Eq. D.1 gives:

1 fE
'r = u u 1k f

Eth

j k>j

1 dE

k tr

j k>j

1

E

f 0
E th

(D.5)

(D.6)
1 dE

3k tr

The parameters Ajk have been determined by Galanin (G1), and a table

of their values for materials of interest is given in Ref. Al.

Finally, the formula of Weinberg and Wigner (W6) is used to

account for inelastic scattering in the fuel:

T = 7 - 1 - )P , (D.7)
0 T0)o e 1 _

where -r is the age of neutrons that have undergone one collision;

a. and -e are the inelastic and elastic scattering cross sections for
1

or

(D.4)

1

0

where

A k
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virgin neutrons, respectively; and P is the probability that a virgin

neutron will undergo its first collision in the fuel. Values for all

these parameters are given in Ref. W6.

D.3 Slowing Down Power, (Es

The cell-averaged slowing down power, E s, is given by (Al):

(Fs)F VF + Ms)C VC + (s)M VM (D.8)
s V F+VC+VM

where

(F sM = O + 2 y(Es)D + 2 (1-y)( s)H . (D.9)

The subscripts F, C, and M refer to the fuel, clad and moderator,

respectively. The subscripts 0, D, and H stand for oxygen,

deuterium, and hydrogen, respectively, and y is the mole fraction of

D 20 in the moderator. The average concentration of D 20 in the

moderator was 99.5 mole percent during the course of the experiments.

Values of the slowing down power for pure materials were taken from

Ref. El.

D.4 Thermal Neutron Cell Properties, Za, Dth, L2

The parameters for thermal neutrons listed in Table 5.2 were

were calculated from the output of the computer code THERMOS

(H8, H9). This code has been successfully applied to D 20-moderated

lattices studied at M. I. T. Details of the application to these lattices

are given in Ref. S2.

The code solves for the intracellular neutron density distribution

in both space and energy, using integral transport theory. The cell,
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which is assumed to be in an infinite medium, is divided into concentric

regions. These regions are assigned compositions corresponding to the

fuel, air-gap, clad and moderator. The source of thermal neutrons is

assumed to be a spacially constant, 1/E distribution above 0.78 ev.

Scattering is assumed to be isotropic but the scattering kernel is arbi-

trary. Since it has been shown (S2) that the best results are obtained

with the extension of the Nelkin kernel to D 2 0 made by Honeck (H10),

this kernel was used for the present work.

The output of the code of interest for the present application

consists of total reaction rates, Rx, and volume-integrated-flux, ,

for each region of the cell. The definitions of these quantities for the

.th. .

x x 11 - f0 Nr )Z()d D 0

= V = fdr vN(r, v) dv. (D.11)
1 0

In these equations, Z represents the cross section for the reaction of
x

th
interest; V is the volume of the i region; is the average flux in

the region; N(r, v) denotes the neutron density as a function of position

and neutron velocity; v represents the upper limit of the velocity

range considered.

In terms of these output quantities, the lattice parameters

required for the present analyses become:

Ri
E = , (D.12)a,

i
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__ zi
D = - ,_

th 35tr 3 R r
i

2

L_ 1 G .J

35a tr 3 Ra Rtr
i i

(D.13)

(D.14)

D.5 Total Resonance Escape Probability, p

The resonance escape probability for the lattices was calculated

by the exponential formula (El):

p = exp -

L

1

V MMsM F + (E-1)
NF F ERI

where the subscripts F and M refer to the fuel and moderator,

respectively, and the functions F and E

KFRF
2

are given by:

0 FRF)

11(KFRF)

and

K M(RM RF2
M RF

2R F

L 0(K MRF) K1(KRM) + KO(KMRF) I1(KMRM)

1 (KMRM) K1(KMRF) - K 1(KMRM) 1 (KMRF)

(D.17)

RF is the radius of the fuel rod and RM is the cylindricalized radius of

the fuel cell, equal to 0.52504 b, where b is the triangular pitch of the

lattice. Values for KF and KM were taken from Ref. El. Effective reso-

nance integrals were calculated by Eq. A.9 and are given in Table A.2.

2~
I

(D.15)

(D.16)
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