Mitsuru Maekawa
Massachusetts Institute of Technology
Norman C. Rasmussen
Massachusetts Institute of Technology

William E. Vesely, Jr.
Nuclear Regulatory Commission

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Nuclear Engineering
 Cambridge, Massachusetts 02139

January 1978

Prepared for the U. S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research under contract No. AT(49-24)-0263

Norman C. Rasmussen
Massachusetts Institute of Technology
William E. Vesely, Jr. Nuclear Regulatory Commission

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Nuclear Engineering Cambridge, Massachusetts 02139

January 1978

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research under contract No. AT (49-24)-0263

Mitsuru Maekawa

Submitted to the Department of Nuclear Engineering on July 13, 1976, in partial fulfillment of the requirements of the degree of Doctor of Philosophy.

Abstract

A method is developed for deriving a set of equations relating the public risk in potential nuclear reactor accidents to the basic variables, such as population distributions and radioactive releases, which determine the consequences of the accidents. The equations can be used to determine the risk for different values of the basic variables without the need of complex computer programs and can be used to determine the variable values which are needed to satisfy various risk criteria. The equations will provide considerable savings of time and effort in determining the consequences of the nuclear reactor accidents.

The methodology developed in this study consists of two steps. The first step involves fitting the risk distributions of frequency versus consequence to parametric distributions which contain a small number of parameters. The second step involves deriving the equations which relate the distribution parameters to the basic variables of interest. Regression techniques are used for this second step.

The methodology is demonstrated for examples based on the results of the Reactor Safety Study. The calculated distributions of early fatalities in nuclear reactor accidents and the historical records of fatalities in hurricanes, tornadoes, earthquakes and dam failures are examined to determine an appropriate family of parametric distributions. From these examinations, the Weibull distribution is found to be appropriate for all of the examined events.

A set of equations is then derived which relate the population distribution and the parameters of the Weibull distributions for early fatalities from PWR accidents. The derived equations are straightforward and useful in analyses of population effects on risk. Regression equations relating the parameters to the characteristics of radioactive releases are also derived. The derived equations again are straightforward and useful for evaluating release effects on risk.

Supervisor: Professor Norman C. Rasmussen
Title: Professor of Nuclear Engineering
Supervisor: Dr. William E. Vesely
Title: Special Assistant for Methodology
U.S. Nuclear Regulatory Commission
ABSTRACT i
LIST OF ILLUSTRATIONS viii
LIST OF TABLES xi
ACKNOWLEDGMENTS xiii
CHAPTER I: INTRODUCTION 1
I. 1 Objective of Study 1
I. 2 Basic Concepts of Risk 2
I. 3 Outline of the Approach 7
I. 4 Method of Risk Estimation 9
I.4.1 Outline of Reactor Safety Study 9
I.4.2 Outline of Consequence Model 9
I.4.3 Calculation Conditions for Individual Site 13
CHAPTER II: BASIS FOR FITTING OF RISK DISTRIBUTIONS 15
II. 1 Introduction 15
II. 2 Basis for Selection of Candidate Distributions 16
II. 3 Fitting Technique 17
II.3.1 Method of Moments 18
II.3.2 Method of Least Squares 19
II. 4 Criteria of Adequate Fits 20
II. 5 Summary 21
CHAPTER III: FITTING OF FATALITIES DISTRIBUTIONS OF NUCLEAR AND NON-NUCLEAR RISKS 23
III. 1 Introduction 23
III. 2 Candidate Distributions 23
III.2.1 Selection of Candidate Distributions 23
III.2.2 Exponential Distribution 28
III.2.3 Gamma Distribution 29
III.2.4 Weibull Distribution 30
III.2.5 Lognormal Distribution 32
III. 3 Fitting Techniques 37
III. 4 Fitting of Non-Nuclear Risk Distributions 39
III.4.1 Source of the Data 39
III.4.2 Hurricanes 42
III.4.3 Earthquakes 47
III.4.4 Tornadoes 51
III.4.5 Dam Failures 56
III.4.6 Summary of Fitting of the Non-Nuclear Risk Distributions 60
III. 5 Fitting of Nuclear Risk Distributions 62
III.5.1 Sources of the Data 62
III.5.2 Average of U.S. 100 Reactors 66
III.5.3 PWR Accidents at Site A 70
III.5.4 BWR Accidents at Site B 74
III.5.5 Summary of Fitting of Nuclear Risk Distributions 78
III. 6 Summary and Conclusions 78
CHAPTER IV: BASIS FOR REGRESSION ANALYSIS 81
IV. 1 Introduction 81
IV. 2 Derivation of the Basic Variable Equations 81
IV.2.1 Outline of the Approach 81
IV.2.2 Identification of the Basic Variables 82
IV.2.3 Selection of the Dependent Variables 83
IV.2.4 Assembling of the Data 85
IV.2.5 Formulation of Candidate Equations 86
IV.2.6 Estimation of the Unknown Constants 86
IV.2.7 Test of the Adequacy of the Derived Equations 88
IV.3. Summary 89
CHAPTER V: REGRESSION ANALYSIS OF POPULATION DISTRIBUTION 91
V. 1 Introduction 91
V. 2 Incorporaticn of the Population Distribution in a Risk Model 92
V. 3 Selection of the Dependent Variables 95
V. 4 The Data Base for Regression Analysis 95
V. 5 Formulation of the Regression Model 99
V.5.1 Assumptions and Techniques in the Consequence Model 99
V.5.2 Definition of Transfer Functions 101
V. 6 Regression Fitting 105
V.6.1 Methods for Fitting 105
V.6.1.1 Regression from Data Base of M_{1}, M_{2} and α 106
V.6.1.2 Use of the Averages of Ratios of Fatalities 108
V.6.1.3 Combinations of the Two Approaches 113
V.6.2 Evaluation of $a(r)$ 113
V.6.3 Evaluation of $b\left(r, r^{\prime}\right)$ 117
V.6.4 Evaluation of $c(r)$ 121
V. 7 Examination of the Adequacy of the Regression Equations 125
V.7.1 Predicted Risk Characteristics 125
V.7.2 Predicted Distribution Behaviors 137
V.7.3 Conclusions from the Regression Examinations 144
V. 8 Example of Applications of the Regression Results 146
V.8.1 Application of Regression Results to Siting 147
V.8.2 Numerical Example of Siting 151
V. 9 Summary and Conclusions 155
CHAPTER VI: REGRESSION ANALYSIS OF RADIOACTIVE RELEASE 157
VI. 1 Introduction 157
VI. 2 Radioactive Release Variables 159
VI.2.1 Probability of Occurrence 159
VI.2.2 Time of Release 160
VI.2.3 Duration of Release 160
VI.2.4 Warning Time for Evacuation 160
VI.2.5 Elevation of Release 160
VI.2.6 Energy Content of Release 161
VI.2.7 Release Fractions 161
VI. 3 Selection of the Dependent Variables 164
VI. 4 The Data Base for Regression Analysis 167
VI.4.1 Input Conditions 167
VI.4.2 Derivation of the Constants of the Transfer Functions 167
VI. 5 Formulation of the Regression Model 174
VI. 6 Derivation of the Constants of the Regression Equations 177
VI. 7 Investigation of the Adequacy of the Regression Results 182
VI.7.1 Examination of Individual Results 184
VI.7.2 Examination of the Combined Regression Results 184
VI. 8 Example of Possible Applications of the Regression Results 188
VI.8.1 Evaluation of the Safety Systems 188
VI.8.2 Numerical Example of Application of the Regression Results 190
VI. 9 Summary and Conclusions 193
CHAPTER VII: CONCLUSIONS AND RECOMMENDATIONS 198
VII. 1 Summary and Conclusion 198
VII. 2 Recommendations 200
APPENDIX A: REFERENCES 207
APPENDIX B: NOMENCLATURE 209
APPENDIX C: INPUT DATA FOR CONSEQUENCE CALCULATION OF INDIVIDUAL SITES 219
APPENDIX D: TABLES FOR ESTIMATION OF THE WEIBULL PARAMETERS FROM THE MOMENTS 227
APPENDIX E: COMPARISON OF FITTING TECHNIQUES 234
APPENDIX F: BELL-SHAPED POPULATION MODEL 244
APPENDIX G: EFFECTIVE SOURCE 261
APPENDIX H: REGRESSION RESULTS OF THE CONSTANTS OF $b\left(r, r^{\prime}\right)$ and $c(r)$ WITH REGARD TO RELEASE CHARACTERISTICS 278
BIBLIOGRAPHICAL NOTE 293
FIGURE 1.1 Complementary Cumulative Distribution of Fatalities due to Man-Caused Events 5
1.2 Complementary Cumulative Distribution of Fatalities due to Natural Events 5
1.3 Frequency Distribution of Early Fatalities for U.S. 100 Commercial Nuclear Power Plants 6
1.4 Major Tasts of the Reactor Safety Study 10
1.5 Schematic Outline of the Consequence Model 10
FIGURE 3.1 Histogram of the Early Fatalities Distribution of the Average of the U.S. 100 Reactors (Linear Scale) 24
3.2 Histogram of the Early Fatalities Distribution of the Average of the U.S. 100 Reactors (Logarithmic Scale) 25
3.3 Frequency Distributions of Candidate Families (Linear Scale) 33
3.4 Frequency Distributions of Candidate Families (Logarithmic Scale) 34
3.5 Complementary Cumulative Distributions of Candidate Families (Linear Scale) 35
3.6 Complementary Cumulative Distributions of Candidate Families (Logarithmic Scale) 36
3.7 Complementary Cumulative Distribution of Fatalities due to Hurricanes 45
3.8 Frequency Distribution of Fatalities due to Hurricanes 46
3.9 Complementary Cumulative Distribution of Fatalities due to Earthquakes 49
3.10 Frequency Distribution of Fatalities due to Earthquakes 50
3.11 Complementary Cumulative Distribution of Fatalities due to Tornadoes 54
3.12 Frequency Distribution of Fatalities due to Tornadoes 55
3.13 Complementary Cumulative Distribution of Fatalities due to Dam Failures 58
3.14 Frequency Distribution of Fatalities due to Dam Failures 59
3.15 Complementary Cumulative Distribution of Early Fatalities in the Average of U.S. 100 Reactors 68
3.16 Frequency Distribution of Early Fatalities in the Average of the U.S. 100 Reactors 69
3.17 Complementary Cumulative Distribution of Early Fatalities in PWR Accidents at Site A 72
3.18 requency Distribution 73
3.19 Complementary Cumulative Distribution of Early Fatalities in BWR Accidents at Site B 76
3.20 Frequency Distribution of Early Fatalities in BWR Accidents at Site B 77
FIGURE 5.1 Illustration of the Polar Coordinate System for Describing the Population Distribution 92
5.2 Illustration of the Annular Segments in the Consequence Model 94
5.3 Cumulative Population Distributions of Different Patterns 97
5.4 Transfer Function $a(r)$ for PWR Accidents 115
5.5a Diagonal Component of the Transfer Function $b\left(r, r^{\prime}\right)$ for PWR Accidents 118
5.5b Off-Diagonal Component of the Transfer Function b(r,r') for PWR Accidents 119
5.6 Transfer Functions $c(r)$ and $\gamma(r)$ for PWR Accidents 123
5.7 Test of the Regression Results of the First Risk Moment for $a(r)=a_{1} \cdot \exp \left[-a_{2} \cdot r\right]$ 127
5.8 Test of the Regression Results of the First Risk Moment for $a(r)=a_{1} \cdot \exp \left[-a_{2} \cdot r\right]+a_{3} \cdot \exp \left[-a_{4} \cdot r\right]$ 130
5.9 Test of the Regression Results of the Second Risk Moment for $b\left(r, r^{\prime}\right)=b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \cdot$ $\cdot \exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right]$ 132
5.10 Test of the Regression Results of the Second Risk Moment for $b\left(r, r^{\prime}\right)=\left\{b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \cdot\right.$ - $\left.b_{3} \cdot \exp \left[-b_{4} \cdot\left(r+r^{\prime}\right)\right]\right\} \cdot \exp \left[-b_{5} \cdot\left|r-r^{\prime}\right|\right]$ 133
5.11 Test of the Regression Results of the Normalization Constant for $c(r)=c_{1} \cdot \exp \left[-c_{2} \cdot r\right]$ 135
5.12 Test of the Regression Results of the Normalization Constant for $c(r)=c_{1} \cdot \exp \left[-c_{2} \cdot r\right]+$ $+c_{3} \cdot \exp \left[-c_{4} \cdot r\right]$ 136
5.13 Test of the Regression Results for the Weibull Shape Factor 138
5.14 Test of the Regression Results for the Weibull Scale Factor 139
5.15 Test of the Regression Results for Site \#63 of the Largest Deviation in β 142
5.16 Test of the Regression Results for Site \#39 of the Largest Deviation in η 143
5.17 Test of the Regression Results for the Consequence Magnitude at 10^{-9} per year 145
5.18 Bell-Shaped Model of Population Distribution 148
5.19 Geometry for the Example Siting Problem 152
5.20 Estimate of the First Risk Moment for the Example Siting Problem 154
FIGURE 6.1 Transfer Functions $a^{*}(r)$ for the BWR Release Categories 169
6.2 Diagonal Components of the Transfer Functions $b^{*}\left(r, r^{\prime}\right)$ for the BWR Release Categories 170
6.3 Off-Diagonal Components of the Transfer Functions $b^{*}\left(r, r^{\prime}\right)$ at $r=0.25$ mile for the BWR Release Categories 171
6.4 Transfer Functions $c^{*}(r)$ and $\gamma^{*}(r)$ for the BWR Release Categories 172
6.5 Test of the Regression Results of a_{1} 185
6.6 Test of the Regression Results of a_{2} 186
6.7 Comparison of the Estimated First Risk Moment from Regression with the Consequence Results 187
6.8 Decrease of the Effective Source by the Removal of Iodine 192
6.9 Effect of the Iodine Removal on the Constants of the Transfer Function $a^{*}(r)$ 194
6.10 Effect of the Iodine Removal on the First Risk Moment 195

LIST OF TABLES

TABLE 3.1 Confidence Factors 41
3.2 Estimates of the Parapeters of the Fatalities Distribution in Hurricanes 44
3.3 Estimates of the Parameters of the Fatalities Distribution in Earthquakes 48
3.4 Fatalities of U.S. Major Tornadoes 52
3.5 Estimates of the Parameters of the Fatalities Distribution in Tornadoes 53
3.6 Estimates of the Parameters of the Fatalities Distribution in Dam Failures 57
3.7 Residual Mean Squares of Fitting of the Non-Nuclear Risk Distributions 61
3.8 Estimates of the Parameters of the Early Fatalities Distribution of the Average of U.S. 100 Commercial Reactors 67
3.9 Estimates of Parameters of the Early Fatalities Distribution in PWR Accidents at Site A 71
3.10 Estimates of Parameters of the Early Fatalities Distribution in BWR Accidents at Site B 75
3.11 Residual Mean Squares of Nuclear Risks 80
TABLE 5.1 Spread of Cumulative Population in the 68 Population Distributions 96
5.2 Results of Consequence Calculations of PWR Accidents for 68 Different Population Distributions 98
5.3 Estimates of Parameters of $a(r)$ and Sum of Residual Squares 116
5.4 Estimates of Parameters of $b\left(r, r^{\prime}\right)$ and Sum of Residual Squares 120
5.5 Estimates of Parameters of $c(r)$ and Sum of Residual Squares 124
5.6 Estimates of the Dependent Variables from the Single Exponential Transfer Functions 126
5.7 Estimates of the Dependent Variables from the Double Exponential Transfer Functions 129
TABLE 6.1 Summary of Accidents Involving Core 158
6.2 Weighting Factors of Isotope Groups for Effective Source 165
6.3 Conditions of Additional Consequence Calculations for Regression Analysis 168
6.4 Estimates of a_{1} and a_{2} as the Data Base for the Regression of the Release Variables 173
6.5 Correlation Coefficients of a_{1} and Regressor Variables 176
6.6 Partial F-tests for the Elimination of Insignificant Regressor Variables for $\ln a_{1}$ 179
6.7 Results of t-tests of the Remaining Regressor Variables 179
6.8 Partial F-test of Interaction Terms 180
6.9 Analysis of Variance of Regression Analysis of $\ln a_{1}$ 181
6.10 Regression Analysis of a_{2} 183
TABLE 7.1 Estimates of the Parameters of the Weibull Distribution 201
7.2 Transfer Function Results of PWR Accidents inNortheastern Valley Meteorological Conditions 202
7.3 Summary of the Regression Results of the Radioactive Releases 203

ACKNOWLEDGEMENTS

The author feels particularly fortunate to have worked under the supervision of Professor Norman C. Rasmussen and Dr. William E. Vesely. They provided valuable insights into this problem and offered many valuable comments through this research. The author wishes to acknowledge their patience with the difficulties of communication due to the author's poor English and weak background in statistics.

The help of Professor Lothar Wolf, who served as a thesis reader and provided helpful advice, is appreciated.

This study has been financially sponsored by the U.S. Nuclear Regulatory Commission. Also, the source of the computer programs and the data used in this study has been provided by the Probabilistic Analysis Branch of U.S.N.R.C. The author would like to express the appreciation to their financial and technical support. Specifically, the advice of Dr. Ian B. Wall and Mr. Roger M. Blond are appreciated. The comments of Dr. Peter E. McGrath (Sandia Laboratory) were of great help to this study.

The help of Ms. Donna Dutton by secretarial work is appreciated. Typing of the manuscript was very alby carried out by Ms. Cindi Mitaras and Ms. Clare Egan.

Lastly, the author wishes to acknowledge the encouragement of his parents, Giro and Toshiko, and the spiritual help of Miss Naoko Mima.

CHAPTER I

INTRODUCTION

I. 1 Objective of Study

In October, 1975 the final report of the Reactor Safety Study was published by the U. S. Nuclear Regulatory Commission (Ref. 1). The principal purpose of the Reactor Safety Study was to make a realistic estimate of the public risks that could be involved in potential accidents in commercial nuclear power plants and to provide a perspective to compare them with non-nuclear risks to which our society are already exposed. Though the Reactor Safety Study wes focused on an estimate of the total risk of the nuclear power plants existing or being planned, the risk estimation methods developed in the Study can provide help with regard to decision making involving regulations, site planning, plant design and other areas relating to the safety of nuclear power plants.

To apply risk results in decision making, it is of use to prepare a set of equations that give the relationship between the risks and the basic variables that determine and control the consequences of nuclear reactor accidents. With the risk expressed in terms of the basic variables, decision can be made on the basic variables which give acceptable risk. For example, in selection of a site for a nuclear power plant, the population distribution may be one of the basic variables of interest. Relating the risk to the population distribution would then allow investigation and decision on acceptable population distribution. If this can be done, it may result in considerable savings in time and effort in the decision making process.

The objective of this thesis is to develop a method for obtaining a set of equations that describe the relationship of the public risk in potential nuclear reactor accidents to the basic variables that drive and control the consequences of the accidents. The method will be demonstrated in a limited number of examples based on the results of the Reactor Safety Study.

I. 2 Basic Concepts of Risk

Since risk is a commonly used word that can convey a variety of meanings to different people, certain concepts of risk will be discussed here. A dictionary definition of risk is "the possibility of loss or injury to people and property". The major elements for defining risk will be consequence and likelihood. The following four types of consequences were considered in the Reactor Safety Study.
a. Early fatalities (i.e., fatalities that occur within one year of the accident).
b. Early injuries (i.e., people needing medical care).
c. Late health effects attributable to the accident.
d. Property damage

In this thesis, early Patalities will be studied specifically as an example in developing the method to relate the risk to the basic variables. The developed method may be applicable to other types of consequences.

The likelihood is expressed by the frequency of occurrence of accidents. For frequent events, the frequency can be estimated from the historical records in the past. However, many potential accidents, such as nuclear accidents, occur at such a low frequency that they have not been observed. In these cases the frequency is obtained by calculational models using basic components and system failure data.

Combining the two major elements of likelihood and consequence, risk is then described by the distribution of frequency vs. magnitude of consequence, which will be called "risk distribution" in this thesis. Two expressions of the risk distribution will be used in the following chapters. One is a "frequency distribution" (denoted by $f(x)$, which is defined by:

$$
\begin{equation*}
F\left[x_{a} \leq x \leq x_{b}\right]=\int_{x_{a}}^{x_{b}} f(x) d x \tag{1.1}
\end{equation*}
$$

where $F\left[x_{a} \leq x \leq x_{b}\right]$ is the number of events per unit time that the magnitude of consequence is between x_{a} and x_{b}. Another expression is a "complementary cumulative distribution" (denoted by $\mathrm{F}^{\mathrm{C}}(\mathrm{x})$), which presents the frequency of consequences being greater than the magnitude x. The relation of the two expressions is given by:

$$
\begin{equation*}
F^{C}(x)=\int_{x}^{\infty} f(x) d x \tag{1.2}
\end{equation*}
$$

For example, Figs. 1.1 and 1.2 show the complementary cumulative distributions of early fatalities in nuclear reactor accidents as well as other man-made and naturally occurring risks. Fig. 1.3 shows the frequency distribution of early fatalities in nuclear accidents in a form of a histogram.

The risk distributions can be summarized by certain characteristics of the distributions, (called "risk characteristics" in this study) such as:

1. Frequency at a specific magnitude of consequence :

For example, from Fig. 1.1 the frequency of fatalities being greater than 1,000 is about 10^{-6} per year for 100 nuclear plants, whereas it is 10^{-3} per year for chlorine release.
2. Magnitude of consequence at a specific frequency:

For example, from Fig. 1.1 the number of fatalities at a chance of one in 10,000 years is less than 10 for 100 nuclear plants, whereas it is greater than 5,000 for chlorine release.
3. Risk moments, which is defined by:

$$
\begin{equation*}
M_{t}(\xi)=\int_{0}^{\infty} f(x) \cdot(x-\xi)^{t} \cdot d x \tag{1.3}
\end{equation*}
$$

where
$M_{t}(\xi)$ is the t-th risk moment about ξ. The first risk

Fig. 1.1 Complementary Cumulative Distribution of Fatalities due to dian-Caused Events

Note: From Fig. 1-1 in the Main Report of WASH-1400 (Ref-1)

Fig.1.2 Complementary Cumulative Distribution of Fatalities due to Natural Evevts

Note: From Fig.1-2 in the Main Report of WASH-1400 (Ref-1)

Fig.1.3 Frequency Distribution of Early Fatalities for U.S. 100 Commercial Nuclear Power Plants

Note: Calculated from the results of NAS:-1400 (Ref-1) by $f(x)=\left(F^{C}(x+\Delta x)-F^{C}(x)\right) / \Delta x$.
moment about the origin can be interpreted as an expected magnitude of consequence per unit time. For example, the expected early fatality per year is 4.6×10^{-3} for 100 nuclear power plants and 55,000 for automobile accidents in U. S. (Ref. I).

I. 3 Outline of the Approach

The approach developed in this thesis is presented by two major steps. They are:
(1) The risk distributions are fitted to parametric distributions involving only a small number of parameters. To determine an appropriate parametric distribution, the fatalities distributions of nuclear and non-nuclear risks are examined. Once an appropriate parametric distribution is selected, the entire curve and any risk characteristic can be estimated from the distribution parameters.
(2) A set of equations are derived to relate the distribution parameters to the basic variables of interest. In this study, regression techniques are used to derive the equations.

The fitting of the risk distribution will be studied in Chapters II and III. A general approach of selection of candidate parametric distributions, fitting techniques and criteria of adequate fits will be discussed in Chapter II. In Chapter III an application is given of the fitting techniques and the criteria to the examination of the fatalities distributions of nuclear and non-nuclear risks.

The regression analysis to relate the distribution parameters to the basic variables will be studied in Chapters IV, V and VI. In Chapter IV a discussion will be given of general approaches of the regression techniques. In Chapter V an application will be given of regression analysis relating the distribution parameters to population distribution variables. In Chapter VI another application will be given relating the parameters to radioactive release variables.

In Chapter VII, the methodologies developed in this study are sumarized and a discussion is given of further possible extensions.
I. 4 Method of Risk Estimation

A brief discussion will be made about the methods of risk estimation developed in the Reactor Safety Study, particularly about the consequence model, because the numerical values of the risk estimates in this thesis are based on the results of the consequence calculation. More detailed information about the Reactor Safety Study can be found in WASH 1400 (Ref. 1).

I.4.1 Outline of Reactor Safety Study

The Reactor Safety Study was divided into three major tasks shown in Figure 1.4. Task 1 included the identification of potential accidents and quantification of both the prob ebility and magnitude of the associated radioactive releases to the environment. Task II used the radioactive source term defined in Task I and calculated how the radioactive materials are distributed in the environment and what effects they have on public health and property. Task III compared the risk of nuclear reactor accidents estimated in Task II with a variety of non-nuclear risks to provide a perspective of the magnitude of the nuclear risks.
1.4.2 Outline of Consequence Model

The consequence model was developed in Task II in the Reactor Safety Study to predict the consequences from the radioactive releases defined by Task I. The consequence predictions served as the primary input to Task III. The consequences of a given radioactive release depend upon how the radioactive materials are dispersed in the environment, upon

Fig. 1.S Schematic Outline of the Consequence Model
Note: Reproduced from Fig.4.5 in the Main Beport of WASE-1400 (ref-1)
the number of people and amount of property exposed, and upon the effects of radiation exposure on people and contamination of property. These major elements of the consequence predictions are indicated in Fig. 1.5, which shows the principal subtasks involved in Task II.

The dispersion of the radioactivity is determined principally by the release conditions and the weather conditions at the time of release. The release conditions are described by the release categories. Each one of the release categories identifies the amount of radioactivity released, the amount of heat released with radioactivity, and the elevation of the release. (See Table 6.1 in Chapter 6.)

The standard Gaussian plume model is used to predict the way the radioactivity is dispersed in the atmosphere. The weather data used in the model is obtained from hour by hour meteorological records covering a one year period. Ninety weather samples are taken and each sample is thus assigned a probability of $1 / 90$. The starting times are determined by systematic selection from the meteorological dsta. One quarter of the data points are chosen from each season of the year and half from each group are taken in the daytime. This procedure is used to reduce sampling errors to acceptable levels. The weather stability and wind velocity is assumed to change according to the weather recordings, but the wind direction is assumed not to change.

To determine the population that could be exposed to potential radioactive releases, census bureau data was used to determine the number of people as a function of distance from a reactor in each of the sixteen $22-1 / 2$ degree sectors around each of the 68 sites at which the first 100 reactors now in use or planned are located.

Each reactor was assigned to one of six typical meteorological data sets and a sixteen sector composite population was developed for each set. The grouping of population sectors was performed in such a way that the sectors of high population form seperate sectors and the sectors of low population are grouped into composite sectors with average population of the grouped sectors.

The consequence model calculates the dose from five potential exposure modes; the external dose from the passing cloud, the dose from internally deposited radionuclides which are inhaled from the passing cloud, external dose from the radioactive materials deposited on the ground, the dose from internally deposited radionuclides which are inhaled after resuspension and the internal dose from ingestion of contaminated food.

The potential health effects considered are early fatalities, early illnesses and late health effects. The probabilities of early fatalities are computed by using a dose-effect relationship. For bone marrow dose, the probability of early fatalities varies from 0.01 to 99.99% for doses of 320 and 750 rads respectively with a median value of 510 rads. The number of fatalities are estimated by the number of people exposed to radiation multiplied by the probabilities of early fatalities estimated from dose. Early illnesses and late health effects are estimated in a similar way to early fatalities.

The consequence model also provides for prediction of economical damage due to radioactive contamination. It includes evacuation cost, loss of agricultural crops, decontamination cost, relocation cost and property damage.
I.4.3 Calculation Conditions for Individual Site

The consequence model outlined in the previous subsection was developed in the Reactor Safety Study to estimate the total risk of the first 100 nuclear power plants now in use or planned. The composite population model was generated for these 100 reactors. In this thesis, however, the population distribution of individual sites are used to estimate the risks of nuclear power plants, site by site. The population distributions of the individual sites which this study uses are obtained from the census bureau data (Ref. 2). The following assumptions are made in the individual site calculations.

1. Meteorological data sets typical of the eastern valleys area are used for all of the individual site calculations. The characteristics of the eastern valley meteorological conditions are given in Appendix C.
2. The frequency distribution of the wind direction is assumed to be uniform over 16 directions.
3. The radioactive inventory of 3200 Wht reactor is assumed.
4. The probabilities and magnitudes of radioactive releases are assumed to be the same as used in the Reactor Safety Study (Ref. 1). The estimates in the Reactor Safety Study were based on the analyses of Surry Power Station for PWR's and Peach Bottom Atomic Power Station for BWR's. (See Table C. 2 in Appendix C).

Because of the assumptions listed above, the estimated risks will be different from the "real" risks of the individual reactors. In order
to estimate the "real" risk of a specific reactor, the following data will be required.

1. Meteorological data based on the records observed at the specific site.
2. Radioactive inventory based on the capacity of the specific plant.
3. Estimates of the radioactive releases and their probabilities based on the analysis of the system of the specific plant.

In addition to limitations of the data, the refinement of the consequence model is now under way in U. S. Nuclear Regulatory Commission. Therefore the numerical values in this thesis need further refinement before applying to actual decision making. In this sense, the purpose of this thesis may be interpreted as being one of developing approaches and techniques which are applicable to risk decision, which may be used regardess of the specific data and application.

CHAPTER II
BASIS FOR FITTING OF RISK DISTRIBUTIONS

II. 1 Introduction

Risk is described by a distribution of the frequency of occurrence versus the magnitude of consequence, A risk distribution can be summarized by certain risk characteristics. However, any single risk characteristic alone, such as a risk moment, does not provide a complete information about the risk distribution. For example, the first risk moment about the origin of a fatalities distribution does not give any information whether the fatalities are caused by low frequency large consequence events (such as hurricanes) or high frequency small consequence events (such as auto accidents). Theoretically an infinite number of risk characteristics is required to describe the risk distribution, which results in an infinite number of equations to relate the risk distribution to other basic variables. As a compromise, the risk distribution will be fitted to a parametric distribution which only involves a small number of unknown parameters. Once the parameters have been determined, various risk characteristics can then be derived from the fitted parametric distribution. Also a limited number of equations are sufficient to identify the relationship of the risk distribution to the basic variables. In this chapter, the general approach of fitting will be discussed. The approach will be applied to the fatalities distributions of nuclear and non-nuclear risks in Chapter III.

The fitting approach can be divided into three fundamental steps, i.e., selection of candidate distributions to be examined, estimation
of unknown constants by fitting and determination of adequate fits based on certain criteria. The fundamental steps will be discussed in the following sections.

One of the special characteristics of the risk analysis is that the extreme consequences as well as lesser consequences are of interest. For example, people sometimes view a single large consequence event more unfavorably than numerous small events having the same total number of fatalities. Therefore the extreme consequence, i.e., the tail behavior of the distribution, will be emphasized in selection of the candidate distributions, the fitting techniques and the criteria of adequate fits. The lesser consequence, i.e., main body behavior of the distribution will also be considered to obtain average risk values with small fitting errors.

II. 2 Basis for Selection of Candidate Distributions

A number of candidate parametric distributions will be considered in Chapter III to fit the calculated risk distributions in Figs. 1.1 and 1.2. These calculated distributions to be fitted are called "data distribution" in this thesis. They were obtained by the historical records or by the calculational models using basic component and system failure data. The selection of the candidate parametric distributions will be based on the following considerations:
(1) Domain where the independent variable of the distribution is defined: The domain of the candidate distributions will be determined by the range of the available data. For certain non-nuclear risks, the available historical records are limited to major incidents having consequences greater than
a certain value. The lower end of the domain will be determined by the incident of the smallest consequence recorded or calculated.
(2) Number of modes of the distribution: The mode is a number of peaks in the frequency distribution. When the data distribution is bi-modal and neglecting one of the modes significantly harms the analysis, bi-modal candidate distributions will be considered.
(3) Symmetric or skewed: The skewness is an asymmetric behavior of the frequency distribution. When the distribution peak is to the right of the mean, the distribution is negatively skewed. When the peak is to the left of the mean, it is positively skewed.
(4) Tail behavior: As the tail behavior is of interest in the analysis, a number of candidate distributions with different tail behaviors will be considered for extrapolation sensitivities.
(5) Number of parameters: The distributions with the smaller number of parameters are preferred to keep the model simple.

II. 3 Fitting Technique

Having selected candidate distributions, the values of unknown parameters of the candidate distributions will be estimated from the historical data or calculation results. Various techniques have been developed for obtaining estimates of these unknown parameters. Though the best technique may be different for each of the candidate distributions, two general techniques will be discussed here briefly in context
of fitting to the risk distributions. General discussion about fitting techniques can be found in standard statistics text books (Ref-3, Ref-4, Ref-5 and Ref-6).

II.3.1 Method of Moments

Let a random variable Y have a frequency distribution given by $f_{Y}\left(y: \tau_{1}, \ldots, \tau_{k}\right)$ where $\tau^{\prime} s$ represent its k parameters. Let M_{m} be the m-th moment of $f_{Y}\left(y: \tau_{1}, \ldots, \tau_{k}\right)$ about a given magnitude ξ, that is:

$$
\begin{equation*}
M_{m}=\int(y-\xi)^{m} \cdot f_{Y}\left(y: \tau_{1}, \ldots, \tau_{k}\right) d y \tag{2.1}
\end{equation*}
$$

Clearly, M_{m} is a function of the k parameters and hence M_{m} can be written as:

$$
\begin{equation*}
M_{m}=M_{m}\left(\tau_{1}, \ldots, \tau_{k}\right) \tag{2.2}
\end{equation*}
$$

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample of size n from $f_{Y}\left(y: \tau_{1}, \ldots, \tau_{k}\right)$. The m-th sample moment \tilde{M}_{m} are:

$$
\begin{equation*}
\tilde{M}_{m}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\xi\right)^{m} \tag{2.3}
\end{equation*}
$$

The moment estimators $\hat{\tau}_{j}, j=1, \ldots, k$ of the k-parameters are obtained by solving the following k equations:

$$
\begin{equation*}
\bar{M}_{m}=M_{m}\left(\tau_{1}, \tau_{2}, \ldots, \tau_{k}\right) \quad m=1,2, \ldots, k \tag{2.4}
\end{equation*}
$$

The advantages of this method are that the calculational procedure is simple for many distributions and also the estimate of the first risk moment (average risk value if $\xi=0$) is not affected by fitting because it is used to estimate the parameters. The disadvantage is that the residual mean square which will be defined later is usually larger than that of the method of least squares.
II.3.2 Method of Least Squares

Suppose that there exist n observable variates $Y_{1}, Y_{2}, \ldots, Y_{n}$ with variance σ_{Y}^{2}, which are expressed by:

$$
\begin{align*}
Y_{1} & =G\left(x_{1}: \tau_{1}, \tau_{2}, \ldots, \tau_{k}\right)+e_{1} \sigma_{Y} \\
Y_{2} & =G\left(x_{2}: \tau_{1}, \tau_{2}, \ldots, \tau_{k}\right)+e_{2} \sigma_{Y} \\
& \vdots \\
Y_{n} & =G\left(x_{n}: \tau_{1}, \tau_{2}, \ldots, \tau_{k}\right)+e_{n} \sigma_{Y} \tag{2.5}
\end{align*}
$$

where $G\left(x: \tau_{1}, \tau_{2}, \ldots, \tau_{k}\right)$ is a candidate function with k parameters $\tau_{1}, \tau_{2}, \ldots, \tau_{k},\left\{e_{i}\right\}$ are assumed to be errors observing Y_{i} with $E\left\{e_{i}\right\}=0$, where E refers to the expectation.

Let $y_{1}, y_{2}, \ldots, y_{n}$ be the observed value of the variates. The estimates $\hat{\tau}_{1}, \ldots, \hat{\tau}_{k}$ of the k parameters are obtained by minimizing:

$$
\begin{equation*}
\Delta^{2}=\frac{1}{n-k} \sum_{i}\left[y_{i}-G\left(x_{i}: \tau_{1}, \ldots, \tau_{k}\right)\right]^{2} \tag{2.6}
\end{equation*}
$$

The advantage of this method is that it gives small value of the residual mean square. One of the disadvantages is that it sometimes requires a large computation time. Also the risk moments derived from the estimated parameters are associated with fitting errors.

In applying this method to the fitting of the risk distributions, the following options exist:
(1) The parametric function $G\left(x: \tau_{1}, \ldots, \tau_{k}\right)$ can be fitted to either the complementary cumulative distribution or the frequency distribution.
(2) The function can be fitted to y, $\ln y$, or any other transformation of y .

This method will be applied to the fitting of the risk distributions in Appendix E. The logarithmic transformation of the complementary cumulative frequency will be used because the fractional errors of the complementary cumulative frequency have comparable magnitude than the absolute errors.

II. 4 Criteria of Adequate Fits

After the fitting of the data distributions to the candidate parametric distributions is completed, one family of the distributions will be selected for the study of the relationship to the basic variables. The following criteria are proposed for the selection:
(1) The fitted parametric distribution should be within any error spreads associated with the data distribution (for example, within 90% confidence bounds). The data distributions of non-nuclear risks have estimation errors due to the limited number of available historical records. The data distributions of nuclear risks have errors due to the sampling used in the computer program and the uncertainties of the parameters used in the consequence model. The largest discrepancy in the fitted distribution should be within any estimated error bounds of the data distribution.
(2) The fitted distribution should have a small residual mean square, which is defined by:

$$
\begin{equation*}
s^{2}=\frac{1}{n-k} \sum_{i=1}^{n}\left[y_{i}-G\left(x_{i}: \hat{\tau}_{1}, \ldots, \hat{\tau}_{k}\right)\right]^{2} \tag{2.7}
\end{equation*}
$$

where y_{i}, x_{i} are the observed values, $G\left(x: \tau_{1}, \ldots, \tau_{k}\right)$ is a candidate function and $\hat{\tau}_{1}, \ldots, \hat{\tau}_{k}$ are the estimated values of
the parameters. This criterion of the residual mean square can be taken as a relative measure to be used in comparing different possible fits. Specifically in this study, the residual mean square is evaluated for a natural logarithm of the complementary cumulative distribution as:

$$
\begin{equation*}
s^{2}=\frac{1}{n-k} \sum_{i}\left[\ln \tilde{F}_{i}^{C}-\ln F^{C}\left(x_{i}: \hat{\tau}_{1}, \ldots, \hat{\tau}_{k}\right)\right]^{2} \tag{2.8}
\end{equation*}
$$

where x_{i} is the magnitude of consequence of sample data i and \tilde{F}_{i}^{C} is its complementary cumulative frequency. $F^{C}\left(x: \tau_{1}, \ldots, \tau_{k}\right)$ is the candidate distribution. $\hat{\tau}_{1}, \ldots, \hat{\tau}_{k}$ are the estimated values of the parameters. The natural logarithmic transformation is used here because the fractional errors of the frequencies are of more interest than the absolute errors.
(3) Systematic errors should be small. When the tendencies to overpredict or underpredict over the ranges of the data are observed, the fitted distributions cannot be extrapolated to the range where the historical records or the calculation results are not available.

II. 5 Summary

In this chapter, a general approach was presented for selection of a parametric distribution to fit the risk distributions. These risk distributions are obtained by the historical records or by the calculational models. The approach consists of three fundamental steps, i.e., selection of candidate parametric distributions, estimation of the unknown parameters and selection of adequate fitting distributions based on the criteria. The selection of candidate parametric distribu-
tions is based on the number of parameters and the properties of the data distribution, involving the domain of the independent variables, number of modes, skewness and tail behaviors. Two fitting techniques are specifically discussed: method of moments and method of least squares. The method of moments is simple and does not have fitting error of the risk moments, but it usually causes larger residual mean squares than the method of least squares. The method of least squares has small residual mean squares, but requires more computational work and causes fitting errors in the estimates of the risk moments. The criteria of adequate fits are based on the largest deviation, the residual mean squares and the systematic errors.

CHAPTER III
FITIING OF FATALITIES DISTRIBUTIONS OF NUCLEAR AND NON-NUCIEAR RISKS

III. 1 Introduction

The general approach of the distribution fitting is applied to the fatalities distributions of nuclear and non-nuclear events in this chapter. Though nuclear risks are of major interest in this thesis, non-nuclear risks are studied here to find whether both types of risks can be described by the same family of distributions.

In Section III.2, candidate distributions are selected using the general criteria discussed in Section II.2. In Section III. 3 the fitting technique is applied to the selected candidate distributions. The candidate distributions are evaluated by the historical records of non-nuclear risks in Section III. 4 and by the risk estimates of nuclear risks in Section III.5.

III. 2 Candidate Distributions

III.2.1 Selection of Candidate Distributions

The distribution of early fatalities of the average reactor as computed in WASE-1400 (Ref. 1) is shown on different scales as histograms in Figs. 3.1 and 3.2. The following behaviors are observed.
(1) The domain of the independent variaile is positive.
(2) The histogram does not appear to have a mode.
(3) The histogram distribution is positively skewed.

Fig.3.1 Histogran of the Early Fatalities Distribution of the Average of the U.S. 100 Reactors (Linear Scale)

Note: Calculated from the results in WASH-1400 (Ref-1)

Fig. 3.2 Fistogran of the Early Fatalities Distribution of the Average of U.S. 100 Nuclear Eeactors (Logarithmic Scale)

Note: Calculated from the results in WASI-1400(Ref-1)
(4) The histogram distribution has a long tail. The tail behavior appears to be similar to an exponential.

The frequency distributions of other nuclear and non-nuclear risks have similar behaviors to that of the average reactor, as shown in Figs. 3.8, 3.10, 3.12, 3.14, 3.18 and 3.20 later in this chapter. Based on the behaviors of these data, the following four candidate distributions are selected in this study.
(1) Exponential
(2) Gamma
(3) Weibull
(4) Lognormal

The distributions above have the following common properties:
(a) They have no mode or at most one mode.
(b) They are positively skewed.
(c) The above distributions cover different tail behaviors, such as decreasing slower than the exponential, exponentially decreasing and decreasing more rapidly than the exponential.

In fitting these distributions, the following additional considerations are made.

The selection of the domain of the independent variables depends on the availability of data. For certain non-nuclear risks, the available historical records are limited to major incidents that have consequences greater than some value. For example, the records of tornadoes used in this study cover the incidents having greater than 20 fatalities. For the sake of fitting, the lower end of the domain is therefore defined by x_{0} which is the lower limit of the available data. The upper end of the domain is taken to be infinity. Though the fatalities can not exceed some physical limit (such as the population on the earth), the probability beyond that limit will be so small in the candidate distributions that the upper end should not effect the estimate of the parameters and moments.

The integrals of the frequency distributions, such as Fig. 3.1, over the defined domain are not always unity. The dimension of the data are also number of events per unit time. In fitting the distributions, a normalization constant α is therefore introduced, which is defined as the frequency per unit time that the consequences are larger than the lower end of the domain x_{0}. The candidate distribution $f(x)$ will then be defined by the following form:

$$
\begin{equation*}
f(x)=\alpha \cdot \bar{f}(x) \tag{3.1}
\end{equation*}
$$

where $\bar{f}(x)$ is a probability density function, the integral of which over the defined domain is unity. For example, for the exponential, the density $\overline{\mathrm{f}}(\mathrm{x})$ is Given by:

$$
\begin{equation*}
\overline{\mathrm{f}}(\mathrm{x})=\frac{1}{\theta} \cdot \exp \left[-\frac{\left(x-x_{0}\right)}{\theta}\right] \tag{3.2}
\end{equation*}
$$

where θ is a scale factor of an exponential distribution. Then the frequency distribution of the exponential is given by:

$$
\begin{equation*}
f(x)=\alpha \cdot \bar{f}(x)=\frac{\alpha}{\theta} \cdot \exp \left[-\frac{\left(x-x_{0}\right)}{\theta}\right] \tag{3.3}
\end{equation*}
$$

Other candidate distributions also have corresponding probability distributions which have been studied in various fields of statistical analysis. The discussion in this thesis is besed on the unnormalized frequency distributions $f(x)$ rather than the normalized density distribution $\overline{\mathrm{f}}(\mathrm{x})$. Similarly, the term "risk moments" are used in this study because they are the integrals of the unnormalized frequency distribution $f(x)$. From Eq. (3.1), the properties and the risk moments of the unnormalized distribution are simply obtained from those of the densities $\overline{\mathrm{f}}(\mathrm{x})$.
III.2.2 Exponential Distribution

The exponential is defined by:

$$
\begin{equation*}
f(x)=\frac{\alpha}{\theta} \cdot \exp \left[-\left(x-x_{0}\right) / \theta\right] \tag{3.4}
\end{equation*}
$$

where $x \geq x_{0}, x_{0} \geq 0, \alpha>0, \theta>0$.

If α and x_{0} are treated as known constants determined from the area and domain of the data distribution, respectively, then the exponential is a one-parameter distribution with a scale factor θ. The complementary cumulative distribution is given by:

$$
\begin{equation*}
F C(x)=\int_{x}^{\infty} f(x) d x=\alpha \cdot \exp \left[-\left(x-x_{0}\right) / \theta\right] \tag{3.5}
\end{equation*}
$$

The risk moments about x_{0} are given by:

$$
\begin{align*}
& M_{1}=\alpha \cdot \theta \tag{3.6}\\
& M_{2}=2 \cdot \alpha \cdot \theta^{2} \tag{3.7}\\
& M_{m}=\alpha \cdot \theta^{m} \cdot(m+1)! \tag{3.8}
\end{align*}
$$

The exponential with $\theta=1, \alpha=1$ and $x_{0}=0$ is illustrated in Fig. 3.3, $3.4,3.5$ and 3.6 on different scales.
III.2.3 Gamma Distribution

The distribution is defined by:

$$
\begin{equation*}
f(x)=\alpha \cdot \frac{\left(x-x_{0}\right)^{\beta-1}}{\theta^{\beta} \cdot \Gamma(\beta)} \cdot \exp \left[-\frac{\left(x-x_{0}\right)}{\theta}\right] \tag{3.9}
\end{equation*}
$$

where $x \geq x_{0}, x_{0} \geq 0, \alpha>0, \theta>0, \beta>0$ and $\Gamma(\cdot)$ is the Garma function. For given α and x_{0}, the distribution is a two-parameter distribution with a scale factor θ and a shape factor β. When β is integer, the complementary cumulative distribution is given by:

$$
\begin{equation*}
F^{C}(x)=\alpha \cdot \exp \left[-\frac{\left(x-x_{0}\right)}{\theta}\right] \cdot \sum_{j=0}^{B}\left(\frac{x-x_{0}}{\theta}\right)^{j} \frac{1}{\Gamma(j+1)} \tag{3.10}
\end{equation*}
$$

When β is not integer, $F^{C}(x)$ is not expressed by a closed form. The risk moments about x_{0} are given by:

$$
\begin{align*}
& M_{1}=\alpha \cdot \theta \cdot \beta \tag{3.11}\\
& M_{2}=\alpha \cdot \theta^{2} \cdot \beta \cdot(\beta+1) \tag{3.12}\\
& M_{m}=\alpha \cdot \theta^{m} \cdot \beta \cdot(\beta+1) \ldots(\beta+m-1) \tag{2.13}
\end{align*}
$$

If $\beta>1$, the frequency distribution has a mode at $x=x_{0}+\theta \cdot(\beta-1)$. If $\beta=1$, the gama reduces to the exponential. If $\beta<1$, the frequency distribution does not have a mode and is continuously decreasing. If $\beta<1$ and x approaches x_{0}, the frequency distribution goes to infinity, but the integral over any finite range about x_{0} is always finite. The garma has an exponential tail, regardless of the values of β and θ. Its behavior with $\theta=I, \alpha=I$ and $x_{0}=0$ is also illustrated in Figs. 3.3, $3.4,3.5$, and 3.6 for different values of 3 .
III.2.4 Weibull Distribution

The distribution is defined by:

$$
\begin{equation*}
f(x)=\alpha \cdot\left(\frac{\beta}{\eta}\right) \cdot\left(\frac{x-x_{0}}{\eta}\right)^{\beta-1} \cdot \exp \left[-\left(\frac{x-x_{0}}{\eta}\right)^{3}\right] \tag{3.14}
\end{equation*}
$$

where $x \geq x_{0}, x_{0} \geq 0, \alpha>0, \beta>0$ and $\eta>0$.

For given α and x_{0}, the Weibull is a two-parameter distribution with a scale factor η and a shape factor B. The complementary cumulative distribution is given by:

$$
\begin{equation*}
F^{C}(x)=\alpha \cdot \exp \left[-\left(\frac{x-x_{0}}{\beta}\right)^{\beta}\right] \tag{3.15}
\end{equation*}
$$

The risk moments about x_{0} are given by:

$$
\begin{align*}
& M_{1}=\alpha \cdot \eta \cdot \Gamma\left(I+\frac{1}{\beta}\right) \tag{3.16}\\
& M_{2}=\alpha \cdot \eta^{2} \cdot \Gamma\left(1+\frac{2}{\beta}\right) \tag{3.17}\\
& M_{m}=\alpha \cdot \eta^{m} \cdot \Gamma\left(I+\frac{m}{\beta}\right) \tag{3.18}
\end{align*}
$$

If $\beta>1$, the frequency distribution has a mode at $x=x_{0}+\eta \cdot(1-1 / \beta)^{1 / \beta}$. If $\beta=1$, the Weibull reduces to an exponential. If $\beta<1$, the frequency distribution does not have a mode and is continuously decreasing. If $\beta<1$ and x approaches $x_{0}, f(x)$ goes to infinity, but the integral over any finite range about x_{0} is always finite. The rate of decrease in the tail depends on the value of β. If $\beta<1$, the Weibull decreases more slowly than the exponential. If $\beta>1$, the Weibull decreases more rapidly than the exponential. The Weibull behavior with $\eta=1, \alpha=1$ and $x_{0}=0$ is also illustrated for different values of β in Figs. 3.3, $3.4,3.5$ and 3.6 .
III.2.5 Lognormal Distribution

The distribution is defined by :

$$
\begin{equation*}
f(x)=\alpha \cdot \frac{1}{\left(x-x_{0}\right) \cdot \sigma \cdot \sqrt{2 \pi}} \exp \left[-\left(\ln \left(x-x_{0}\right)-\mu\right)^{2} / 2 \sigma^{2}\right] \tag{3.19}
\end{equation*}
$$

where $x \geq x_{0}, x_{0} \geq 0, \alpha>0$, and $\sigma>0$. For given α and x_{0}, the lognormal is a two-parameter distribution with a mean μ and standard deviation σ for the normal variable $\ln \left(x-x_{0}\right)$. The complementary cumulative distribution is given by:

$$
\begin{equation*}
F^{C}(x)=\alpha \cdot \frac{1}{\sigma \sqrt{2 \pi}} \int_{\ell n\left(x-x_{0}\right)}^{\infty} \exp \left[-(\xi-\mu)^{2} / 2 \sigma^{2}\right] d \xi \tag{3.20}
\end{equation*}
$$

The risk moments about x_{0} are given by:

$$
\begin{align*}
& M_{1}=\alpha \cdot \exp \left[\mu+\frac{1}{2} \sigma^{2}\right] \tag{3.21}\\
& M_{2}=\alpha \cdot \exp \left[2 \mu+2 \sigma^{2}\right] \tag{3.22}\\
& M_{m}=\alpha \cdot \exp \left[m \mu+\frac{1}{2} m^{2} \sigma^{2}\right] \tag{3.23}
\end{align*}
$$

The frequency distribution has a mode at $x=x_{0}+\exp \left[\mu-\sigma^{2}\right]$. The tail of the lognormal decreases more slowly than the exponential. The lognormal behavior with $\alpha=1, x_{0}=0, \mu=0$ is illustrated in Figs. 3.3, 3.4, 3.5 and 3.6 for different values of σ.

Fig. 3.3 Frequency Distributions of Candidate Families (Linear Scale)

Fig.3.4 Frequency Distributions of the Candidate Families (Logarithmic Scale)

Fig. 3. 5 Complementary Cumulative Distributions of Candidate Families(Linear Scale)

III. 3

Fitting Techniques
Two candidate fitting techniques were discussed in Section III.3. They are the method of moments and method of least squares. The method of moments is selected in this study because its computation procedure is simple and also because the risk moments will be used to investigate the relation with more basic variables. The moments estimation will be compared with the method of least squares in Appendix E. The method of moments is applied to the candidate distributions in the following way.
(1) Exponential

Since this is a one-parameter distribution the first risk moment about x_{0} is used to estimate the scale factor θ.

$$
\begin{equation*}
\theta=\frac{M_{1}}{\alpha} \tag{3.24}
\end{equation*}
$$

(2) Ganma

The scale factor θ and the shape factor β are estimated from the first two risk moments about x_{0} by solving Eqs. (3.11) and (3.12), which give:

$$
\begin{align*}
& \beta=\frac{M_{1}^{2}}{M_{2} \alpha-M_{1}^{2}} \tag{3.25}\\
& \theta=\frac{M_{2} \alpha-M_{1}^{2}}{\alpha M_{1}} \tag{3.26}
\end{align*}
$$

(3) Weibull

The scale factor η and the shape factor B are estimated from the first two risk moments about x_{0} by solving Eq. (3.16) and (3.17). The quantity β is given by:

$$
\begin{equation*}
\frac{\left[\Gamma\left(1+\frac{1}{\beta}\right)\right]^{2}}{\left[\Gamma\left(1+\frac{2}{\beta}\right)\right]}=\frac{M_{1}^{2}}{M_{2}^{\alpha}} \tag{3.27}
\end{equation*}
$$

A table which evaluates the left hand side of Eq. (3.27) versus values of β is given in Appendix D for a range of $0.1 \leq \beta<1.1$. Also $\Gamma\left(1+\frac{1}{\beta}\right)$ and $\Gamma\left(1+\frac{2}{\beta}\right)$ are given in Appendix D. Using these tables to derive β, η is then estimated by:

$$
\begin{equation*}
\eta=\frac{M_{1}}{\alpha \Gamma\left(1+\frac{1}{\beta}\right)} \tag{3.28}
\end{equation*}
$$

(4) Lognormal

The mean μ and the standard deviation σ of the normal distribution for $\ln x$ are estimated from the first two risk moments by:

$$
\begin{align*}
& \mu=2 \ln \left(\frac{M_{1}}{\alpha}\right)-1 / 2 \ln \left(\frac{M_{2}}{\alpha}\right) \tag{3.29}\\
& \sigma^{2}=\ln \left(\frac{M_{2}}{\alpha}\right)-2 \ln \left(\frac{M_{1}}{\alpha}\right) \tag{3.30}
\end{align*}
$$

III. 4 Fitting of Non-Nuclear Risk Distributions
III.4.1 Source of the Data

The candidate distribution families are fitted here to the historical records of the non-nuclear risks. The purpose of this analysis is to investigate whether non-nuclear and nuclear risks can be described by one distribution family. The non-nuclear risks investigated here are those from hurricanes, earthquakes, tornadoes and dam failures. Except for tornadoes, the historical records are summarized in WASH-1400 (Ref. 1). The historical record of the major tornadoes is listed in the 1976 World Almanac (Ref. 7).

The frequency versus consequence distributions of non-nuclear risks are calculated by ranking the historical observations in a descending order based on the magnitudes of the consequences. The estimates of the complementary cumulative frequency at a specific value x is calculated from the number of observations having consequences greater than the specified value.

$$
\begin{equation*}
F^{C}(x)=\frac{K}{T} \tag{3.31}
\end{equation*}
$$

where $F^{C}(x)$ is the calculated complementary cumulative frequency at x, x is the number of the observations having consequences greater than x and T is the time period in which the observations are recorded, The frequency distribution is calculated by grouping the observations into certain number of the classes based on the magnitude of consequence.

The calculated frequency $f(x)$ is given by:

$$
\begin{equation*}
f(x)=\frac{\Delta k}{T \cdot \Delta x} \tag{3.32}
\end{equation*}
$$

where Δx is the width of the class and Δk is the number of the observations in the class.

The first two risk moments about x_{0} are estimated from the historical records as:

$$
\begin{align*}
& M_{1}=\frac{1}{T} \sum_{i}\left(x_{i}-x_{0}\right) \tag{3.33}\\
& M_{2}=\frac{1}{T} \sum_{i}\left(x_{i}-x_{0}\right)^{2} \tag{3.34}
\end{align*}
$$

The confidence bounds of the calculated complementary cumulative frequencies were estimated in WASH-1400 (Ref. 1). Table 3.1 gives the confidence factors versus the number of the observations having consequences greater than the value of interest. These confidence factors are reproduced from WASE-1400 (Ref. 1). The 95% upper bound is computed by multiplying the estimated complementary cumulative value by the corresponding confidence factor in Table 3.1 and the 5% lower bound is computed by dividing it by the corresponding confidence factor. One of the criteria of the adequate fits discussed in Section II. 3 is interpreted as follows. The largest deviation of the fitted curve should be within the 90% confidence bounds calculated from Table 3.1.

TABLE 3.1

Confidence Factors

No. of observations greater than a particular value	95% Upper bound (a)	5% Lower Bound (b)
1000	1.05	1.05
100	1.2	1.2
50	1.3	1.3
20	1.4	1.5
10	1.7	1.8
5	2.1	2.5
1	4.7	10.4

(a) Estimated frequency should be multiplied by this value to obtain upper confidence bound
(b) Estimated frequency should be divided by this value to obtain lower confidence bound

III.4.2 Hurricanes

The historical records of the fatalities in hurricanes are summarized in Ref. I^{1}. 46 fatal incidents were recorded in 73 years. The estimate of the normalization constant is then,

$$
\alpha=\frac{46}{73 \text { years }}=.63 / \text { year }
$$

Though the fatality of less than 1 is not physically real, the domain of the consequence is taken to be greater than 0 , because it does not cause major errors in the fitting procedure ${ }^{2}$. The risk moments estimated from the data are:

$$
\begin{aligned}
& M_{1}=\frac{1}{73} \sum_{i} x_{i}=172.3 \\
& M_{2}=\frac{1}{73} \sum_{i} x_{i}^{2}=5.64 \times 10^{5}
\end{aligned}
$$

${ }^{1}$ See Table 6.8 in Main Report of WASH-1400 (Ref. 1)
2 The risk moments about $x_{0}=1$ are,

$$
\begin{aligned}
& M_{1}=171.6 \\
& M_{2}=5.64 \times 10^{5}
\end{aligned}
$$

The differences from the risk moments about $x_{0}=0$ are not significant.

From the risk moments, the parameters of the exponential, gamma, Weibull and lognormal distributions are estimated. The parameter of the exponential distribution is estimated from the first risk mament by Eq. (3.22). The parameters of the other distributions are estimated by Eqs. (3.23) through (3.28). The residual mean squares are calculated by Eq. (2.10). The results are sumarized in Table 3.2. The fitted complementary cumulative distributions using the parameter estimates are given in Fig. 3.7 along with the data. The band attached to the data points are the 90% confidence bounds discussed in Section III.4.1. The fitted frequency distributions are given in Fig. 3.8 with the histogram of the data calculated by Eq. (3.32).

The fitted candidate distributions are now evaluated by the criteria discussed in Sections II. 5 and III.4.2.

The exponential distribution in Fig. 3.7 is out of the confidence bounds, overestimating the complementary cumulative frequency (denoted by c.c.f. in the following discussion) by a factor of more than 2 in the range of 10 to 500 fatalities and underestimating the c.c.f. by a factor of more than 100 at the largest consequence of the observed data. The garma distribution is also out of the confidence bounds, underestimating the c.c.f. by a factor of 2 for less than 10 fatalities. The lognormal distribution overestimates the c.c.f. for low consequence range and underestimates it for the largest consequence, but the distribution is within the confidence bounds of the data. The Weibull distribution does not show any apparent systematic error in the range of less than 1000 fatalities, but underestimates the c.c.f. for the largest consequence.

TABLE 3.2

Estimates of the Parameters of the Fatalities

Distribution in Hurricanes

$x=0, \alpha=.630, M_{1}=1.72 \times 10^{2}, M_{2}=5.64 \times 10^{5}$		
Candidate Distribution	Estimates of Parameters	Residual Mean Square
Exponential	$\theta=2.73 \times 10^{2}$	10.9
Gamma	$\beta=.091$	$\theta=3.01 \times 10^{3}$
Weibull	$\beta=.387$	$\eta=7.48 \times 10^{1}$
Lognormal	$\mu=4.37$	$\sigma=2.49$

Fig.3.8 Frequency Distribution of Fatalities due to Hurricanes

The Weibull distribution is within the confidence baunds of the data.
Table 3.2 shows that the Weibull has the smallest residual mean square. The lognormal and gamma are the next. The exponential has the largest residual mean square.

III.4.3 Earthquakes

The historical records of the fatalities were given in Ref. 1^{1}. 12 fatal incidents were recorded in 73 years. The domain is taken to be greater than zero as was done in the hurricane distributions. The estimates of the normalization constant and the first two risk moments are given in Table 3.3. As before, the parameters of the candidate distributions are estimated from the first two risk moments. The results of fitting are given in Table 3.3, Figs. 3.9 and 3.10.

The exponential distribution in Fig. 3.9 is out of the confidence bounds, underestimating the c.c.f. by a factor of more than 100 for the largest consequence. The other three distributions are within the confidence bounds. The gamma distribution in Fig. 3.9 slightly underestimates the c.c.f. for the low consequence region and also for the largest consequence. The lognormal and the Weibull underestimate the c.c.f. for the largest consequence.

The residual mean square of the Weibull is the smallest. The ganma and lognormal are the next. The exponential has the largest residual mean square.

[^0]Table 3.3
Estimates of the Parameters of the Fatalities
Distribution in Earthquakes

> Fig 3.9 Complementary Cumulative Distribution of Fatalities due to Earthquakes

Fig.3.10 Frequency Distribution of Fatalities due to Earthquakes
III.4.4 Tornadoes

The historical records of the major tornadoes in Ref. 7 are sumarized in Table 3.4. 38 incidents were recorded in 47 years that caused more than 20 fatalities. As the records below 20 fatalities are not found in Ref. 7, the domain of the fatalities is taken to be greater than 20. The normalization constant and the first two risk moments about $x_{0}=20$ which are estimated from Table 3.4 are given in Table 3.5. The results of fitting are given in Table 3.5, Figs. 3.11 and 3.12.

The exponential distribution in Fig. 3.11 is out of the confidence bounds of the data, underestimating the c.c.f. by a factor of more than 100 for the largest consequence of the data. The other three distributions underestimate the c.c.f. for the largest consequence, but they are within the confidence bounds of the data. The residual mean square of the Weibull distribution in Table 3.5 is the smallest. The lognormal and the gamma are the next. The exponential has the largest residual mean square.

Table 3.4
Fatalities of U.S. Major Tornadoes
$(1925-1971)(a)$

Number	Date (month/year)	Lives Lost
1	$3 / 25$	689
2	$4 / 65$	271
3	$3 / 32$	268
4	$4 / 36$	216
5	$3 / 52$	208
6	$4 / 36$	203
7	$4 / 47$	169
8	$6 / 44$	150
9	$6 / 53$	116
10	$5 / 53$	114
11	$2 / 71$	110
12	$4 / 45$	102
13	$5 / 27$	92
14	$6 / 53$	90
15	$5 / 55$	80
16	$3 / 42$	75
17	$4 / 27$	74
18	$9 / 27$	72
19	$3 / 66$	61
20	$1 / 49$	58
21	$3 / 66$	57
22	$11 / 26$	53
23	$4 / 42$	52
24	$5 / 57$	48
25	$5 / 30$	41
26	$4 / 29$	40
27	$12 / 53$	38
28	$5 / 68$	34
29	$3 / 48$	33
30	$4 / 67$	33
31	$1 / 69$	32
32	$9 / 38$	32
33	$1 / 46$	30
34	$6 / 58$	30
35	$5 / 60$	30
36	$5 / 70$	26
37	$4 / 70$	21
38	$2 / 59$	

(a) From "The World Almanac and Book of Facts 1976", Newspaper Enterprise Association, Inc.

Table 3.5 Estimates of the Parameters of the Fatalities Distribution in Tornadoes
$x_{0}=20, \alpha=.810, M_{1}=6.62 \times 10^{1}, M_{2}=1.67 \times 10^{4}$

Candidate Distributions	Estimates of Parameters	Residual Mean Square
Exponential $\theta=8.17 \times 10^{1}$.66	
Gamma	$\beta=.479$	$\theta=1.71 \times 10^{2}$
Weibull	$\beta=.708$	$\eta=6.53 \times 10^{1}$
Lognormal	$\mu=3.84$	$\sigma=1.12$

> Fig. 3.11 Complementary Cumulative Distribution of Fatalities due to Tornadoes

Fis.3.12 Frequency Distribution or Fatalities due to
Tornadoes
III.4.5 Dam Failures

The historical records of the fatalities in dam failures are sumarized in Ref. \mathcal{I}^{1}. Eight fatal incidents were recorded in 84 years. The domain is taken to be greater than zero as was done in the distributions of hurricanes and earthquakes. The normalization constant and the first two risk moments are estimated from the historical data in Ref. I. The estimates are given in Table 3.6. The results of fitting are given in Table 3.6, Figs. 3.13 and 3.14.

All of the four candidate distributions underestimate the complementary cumulative frequency for the largest consequence, but they are within the confidence bounds of the data. The residual mean square of the gama distribution is the smallest. The next are the Weibull and the lognormal. The exponential has the largest residual mean square.
${ }^{1}$ See Table 6.12 in the Main Report of WASH-1400 (Ref. 1)

$$
\text { Table } 3.6
$$

Estimates of the Parameters of the Fatalities

Distribution in Dam Failures
$x_{0}=0, \alpha=.0952, M_{1}=3.48 \times 10^{1}, M_{2}=5.07 \times 10^{4}$

| Candidate
 Distribution | Residual
 Mean Square |
| :---: | :---: | :---: |

Exponential	$\theta=3.65 \times 10^{2}$		1.70
Garma	$\beta=.335$	$\theta=1.09 \times 10^{3}$.37
Weibull	$\beta=.608$	$\eta=2.47 \times 10^{2}$.39
Lognormal	$\mu=5.21$	$\sigma=1.38$.57

Fig. 3. 13 Comolementary Cumulative Distribution of Fatalities due to Da』 Failures

Fig.3.14 Frequency Distribution of Fatalities due to Dam Failures
III.4.6 Sumary of Fitting of the Non-nuclear Risk Distributions In the previous sections the candidate distributions have been examined based on the nistorical records of hurricanes, earthquakes, tornadoes and dam failures. From the largest deviation of the fitted distribution from the data, the exponential distribution is found to be inadequate to fit the data of hurricanes, earthquakes and tornadoes. The gama distribution is found to be inadequate to fit the hurricane data. The Weibull and lognormal distributions fit the data within the confidence bounds.

Table 3.7 summarizes the residual mean squares of the fitting. The residual mean squares indicate the order of the adequacy of fitting. The residual mean squares of the Weibull are the smallest for hurricanes, earthquakes and tormadoes. The gamma distribution has the smallest residual mean square in fitting of the data of dam failures.

If a single family of distributions is selected for all of the examined non-nuclear risk distributions, the Weibull is assessed as the distribution which is preferred, because its complementary cumulative distributions are within the 90% confidence bounds of the data and its residual mean squares are the smallest or next to the smallest for all of the studied non-nuclear risk distributions.

Table 3.7
Residual Mean Squares of Fitting of the Non-nuclear Risk Distributions
$\left.\begin{array}{lllll}\hline \begin{array}{c}\text { Type } \\ \text { of } \\ \text { Risk }\end{array} & & \text { Candidate Distributions }\end{array}\right)$
III. 5 Fitting of Nuclear Risk Distributions
III.5.1 Sources of the Data

The candidate distributions are now tested by the early fatalities distributions of nuclear reactor accidents. The distributions investigated here are the average of the first 100 comercial nuclear power plants in U.S. and the distributions for two individual sites. The average distribution is derived from the risk estimates of the first 100 nuclear reactors given in the Reactor Safety Study (Ref. 1).

The distributions of the individual sites are calculated in this thesis using the consequence model under the calculation conditions discussed in Section I.4.3. The population distributions used in the individual site calculations are selected from the population distributions of the 68 sites at which the first 100 commercial power plants are located. The selected two sites noted by A and B are the 3 rd highest and 3 rd lowest respectively when the 68 sites are ranked in a descending order by the cumulative population within 5 miles. The selected two sites can be interpreted as representing the 95% upper and 5% lower bounds of the spectrum of the population distributions. The population distributions of the selected two sites are given in Appendix C. PWR accidents and BKR accidents are calculated seperately in the individual site calculations. Since PWR and BWR accidents have similar early fatalities risk curves, the following combinations are considered to cover the spectra of the population distributions and the reactor types. The calculated cases are PWR accidents at site A and BWR accidents at site B.

The risk distributions and risk moments are calculated by the consequence model. As discussed in Section I.4, the consequence model uses sampling methods in estimating the risk distribution. Let x_{i} and p_{i} be the consequence magnitude and the probability of the sample trial (i). The probability p_{1} assigned to the trial is calculated from the probability of the release, the probability of the wind direction, the probability of the evacuation speed and the number of samples picked from the meteorological records. The complementary cumulative frequency is estimated by the summation of the probabilities of the trials having consequences greater than the specific value as:

$$
\begin{equation*}
F^{C}(x)=\sum_{x_{i} \geq x} p_{i} \tag{3.35}
\end{equation*}
$$

The frequency distribution is also estimated from the consequence results by the summation of the probabilities of the trials having consequences within certain intervals.

$$
\begin{equation*}
f(x)=\frac{x \leq x_{i}<x+\Delta x}{\Delta x} p_{i}=\frac{1}{\Delta x}\left\{F^{C}(x+\Delta x)-F^{C}(x)\right\} \tag{3.36}
\end{equation*}
$$

For all of the nuclear risk curves, the lower end of the domain is taken to be zero. The first two risk moments about the origin are estimated from the consequence results as:

$$
\begin{align*}
& M_{1}=\sum_{i} x_{i} \cdot p_{i} \tag{3.37}\\
& M_{2}=\sum_{i} x_{1}^{2} \cdot p_{i} \tag{3.38}
\end{align*}
$$

In the following sections and the chapters about the nuclear risks the risk moments will always be evaluated about the origin. Unless the reference point to evaluate the risk moments is specified, it should be considered to be about the origin. The normalization constant α is estimated by:

$$
\begin{equation*}
\alpha=\sum_{x_{i}}>0 p_{i} \tag{3.39}
\end{equation*}
$$

The calculated risk distributions have the following two types of errors. One error is due to sampling since the model picks certain number of weather data out of the one year meteorological record. The other type of error is due to the uncertainties of the parameters in the consequence model, such as the probabilities of the occurrences of the releases, the deposition velocities, the dose response relationship, etc.

The sampling error depends on the number of the trials having consequences greater than the specified value. The confidence factors discussed in Section III.4.1 can be applied to determine the magnitude of the sampling errors. From Table 3.1 the probability of the largest consequence has 90% confidence factors of 5 and $1 / 20$. The sampling error is effectively zero for the lower consequences because of the large number of trials having consequences greater than the specified magnitude. Because of the increasing size of the sampling error, the results of the calculation are truncated at the complementary cumulative frequency of $10^{-9} /$ year for both the average distribution of the 100
reactors and the risk distributions at individual sites, as done in the Reactor Safety Study (Ref. 1).

The uncertainties of the parameters are due to the insufficiency of our knowledge about the parameters. For example, the dose-response relationship (the relationship between the dose to the organs and the fatal fraction of population exposed to the radiation) is not precisely known because of the insufficiency of the available data.

For the average risk curve of the 100 reactors the uncertainties due to the above two causes were estimated in WASH-1400 (Ref. 1) to be represented by factors of $1 / 4$ and 4 on the consequence magnitude and $1 / 5$ and 5 on the probabilities. No estimate of uncertainties has been made for the individual site calculations. It can be expected that the uncertainty bounds of the individual site calculations will be larger than those of the average case because of the smaller number of trials involved in the calculations. However, since the sampling error is small compared to the uncertainties of the parameters except for the largest consequence whose probability is below 10^{-9} per reactor year, it is assumed in this study that the uncertainty bounds of the individual site calculations have comparable magnitudes to those of the average of the 100 reactors.
III.5.2 Average of U.S. 100 Reactors

The total risk of the first 100 commercial nuclear power plants were estimated in the Reactor Safety Study (Ref. 1). The risk curves, the risk moments and the normalization constant are derived from the consequence results obtained in the Reactor Safety Study after dividing the probabilities by 100 to get the average of the 100 reactors. The calculated complementary cumulative distribution of early fatalities is given in Fig. 3.15 by the dots. The calculated distribution is not smooth because of the sampling error. The bands attached to the dots indicate the magnitudes of the uncertainties in the consequence calculation. The calculated frequency distribution is given in Fig. 3.16 as a histogram. The calculated risk moments and normalization constant are given in Table 3.8.

As before, the parameters of the candidate distributions are estimated from the first two risk moments and the normalization constant (Eqs. (3.35) through (3.39)). The estimates and the residual mean squares are given in Table 3.8. The estimated complementary cumulative distributions and the frequency distributions of the candidate parametric distributions are given in Fig. 3.15 and 3.16 respectively.

Fig. 3.15 shows that the exponential distribution overestimates the complementary cumulative frequency (denoted by c.c.f. in the following) in the range of less than 200 fatalities and underestimates it above 200 fatalities. The estimated consequence magnitude at about 10^{-9} per reactor year is smaller than the consequence results by a factor of 5. The gama distribution underestimates the c.c.f. by a factor of 2 for the range of less than 100 fatalities and overestimates the c.c.f.

Table 3.8 Estimates of the Parameters of the Early Fatalities Distribution of the Average of U.S. 100 Commercial Reactors
$x_{0}=0, \alpha=4.72 \times 10^{-7}, M_{1}=4.60 \times 10^{-2}, M_{2}=6.45 \times 10^{-2}$

Candidate Distribution	Estimates of Parameters		Residual Mean Square
Exponential	$\theta=9.75 \times 10^{1}$		47.07
Gamma	$B=.0783$	$\theta=1.30 \times 10^{3}$. 691
Weibull	$\beta=.371$	$\eta=2.45 \times 10^{1}$. 194
Lognormal	$\mu=3.31$	$\sigma=2.62$. 057

Fig.3.15 Complementary Cumulative Distribution of Early Fatalities in the Average of U.S. 100 Reactors

Fig. 3.16 Frequency Distribution of Early Fatalities in the Average of the U.S. 100 Reactors
between 500 and 2000 fatalities. The lognormal distribution appears not to have systematic errors. Except for the exponential distribution, the other three distributions are within the range of the uncertainties of the consequence model. The residual mean square of the lognormal is the smallest in Table 3.8. The Weibull and gama are the next. The exponential has the largest residual mean square.

III.5.3 PWR Accidents at Site A

The consequence calculation is made in this thesis using the population distribution of Site A in Table C. 5 and the release characteristics of PWR accidents in Table C.3. As discussed in Section I.5.3, the obtained consequence distribution is hypothetical because of the assumptions of the meteorological conditions, the plant capacity and the probabilities of the reactor system £ailures. The assumed conditions are not based on the actual data of the power plant at Site A.

From the consequence calculation, the normalization constant and the first two risk moments are estimated by Eqs. (3.35) through (3.39). The parameters of the candidate functions are estimated in Table 3.9. The estimated candidate distributions are shown in Figs. 3.17 and 3.18 along the calculated distributions by the consequence model. (The calculated distributions are shown by dots in Fig. 3.17 and as a histogram in Fig. 3.18).

Fig. 3.17 shows that the exponential distribution slightly overestimates the c.c.f. in the range between 10 and 500 fatalities and underestimates the c.c.f. in the range greater than 100 fatalities.

Table 3.9 Estimates of Parameters of the Early Fatalities Distribution in PWR Accidents at Site A
$x_{0}=0, \alpha=5.78 \times 10^{-7}, M_{1}=2.72 \times 10^{-4}, M_{2}=5.77 \times 10^{-1}$

Candidate Distribution	Estimates of Parameters		Residual Mean Square
Exponential	$\theta=4.61 \times 10^{1}$		14.28
Gamma	$\beta=.284$	$\theta=1.66 \times 10^{3}$.095
Weibull	$\beta=.570$	$n=2.91 \times 10^{2}$.102
Lognormal	$\mu=5.40$	$\sigma=1.51$.195

Fiz.3.18 Frequency Distribution of Early Fatalities in PNR Accieients at Site A

The lognormal distribution slightly overestimates the c.c.f. in the range between 10 and 200 fatalities and the gama distribution slightly underestimates it in the range less than 300 fatalities. The Weibuli appears not to have systematic errors. The candidate distributions are Within the range of the uncertainties of the consequence calculation but the exponential distribution is less Eavorable than the other three because of the underestimation of the magnitude by a factor of 3 at about 10^{-9} per reactor year. The residual mean square of the gamma distribution is the smallegt in Table 3.9. The Weibull and the lognomal are the next. The exponential has the largest residual mean square.

III.5.4 BWR Accidents at Site B

The consequence calculation is made in this thesis using the population distribution of Site B in Table $C .6$ and the release characteristics of the BWR accidents in Table C.3. The calculated distribution is also hypothetical like the distribution at Site A in the previous section. The results of the fitting are given in Figs. 3.19, 3.20 and Table 3.10.

Fig. 3.19 snows that the exponential distribution sligitly overestimates the c.c.f. in the range between 10 and 100 fatalities. The gama distribution underestimates the c.c.f. for less than 10 fatalities. The lognormal and the Weibull slightly overestimate the c.c.f. in the range between 10 and 50 fatalities. All of the candidate distributions are within the uncertain ranges of the consequence model. The order of preference based on the residual mean squares in Table 3.10 is Weibull, gama, lognormal and exponential.

Table 3.10 Estimates of Parameters of the Early Fatalities Distribution in BWR Accidents at Site B
$x_{0}=0, \alpha=1.61 \times 10^{-8}, M_{1}=9.92 \times 10^{-7}, M_{2}=3.46 \times 10^{-4}$

Candidate Distribution	Estimates of Parameters	Residual Mean Square
Exponential	$\theta=6.17 \times 10^{1}$	2.15
Gamma	$\beta=.214$	$\theta=2.87 \times 10^{2}$
Weibull	$\beta=.513$	$\eta=3.23 \times 10^{1}$
Lognormal	$\mu=3.26$	$\sigma=1.73$

Fis. 3.20 Frequency Distribution of Early Fatalities in
BWF Accidents at Site B

III.5.5 Summary of Fitting of Nuclear Risk Distributions

Based on the fittings for nuclear risks, the exponential is found to be inadequate to fit the average distribution of the U.S. 100 reactors. The residual mean squares in Table 3.11 show the order of preference of the renaining candidate distributions. If a single family of distributions is selected for all of the examined risk curves, the Weibull is assessed as being adequate because its residual mean squares are the smallest or the second smallest for all of the examined risk distributions.

III. 6 Sumary and Conclusions

The approach developed in Chapter II is demonstrated in this chapter to examine the early fatalitios distributions of nuclear and non-nuclear risks. Four candidate distributions are studied, exponential, gama, Weibull and lognormal distributions. They are selected from the considerations of (1) having no mode or at most one mode, (2) positively skewed behaviors (3) different tail behaviors and (4) having only one or two parameters to be estimated. The method of moments is used to estimate the parameters of these distributions.

In order to select a distribution family which adequately describes the fatalities distributions, the historical records of hurricanes, earthquakes, tornadoes and dam failures are examined. The weibull distribution is assessed to be appropriate as a family of distributions that describe the examined non-nuclear risk distributions. For the
calculated nuclear risks from the average of U.S. 100 reactors and from the two individual site calculation results, the Weibull distribution is also assessed to be appropriate. For both nuclear and non-nuclear risks, the Weibull distribution is determined to be the distribution which adequately describes the examined risk curves.

Table 3.11 Residual Mean Squares of Nuclear Risks

Reactor	Candidate Risk Models			
	Exponential	Gamma	Weibull	Lognormal
Average of U.S. Reactors	47.07	. 691	. 194	. 057
PWR at Site A	14.28	. 095	. 102	. 195
BWR at Site B	2.15	. 152	. 107	. 186

CHAPTER IV
BASIS FOR REGRESSION ANALYSIS

IV. 1 Introduction

In the preceding two chapters, the fittings of the risk distributions to the parametric distributions were discussed. The next major step in the analysis is to derive the equations that relate the distribution parameters to the basic variables that drive and control the consequences of the nuclear reactor accidents. In this chapter, a general discussion will be made about derivation of the basic variable equations. The application will then be discussed in the following chapters.

IV. 2 Derivation of the Basic Variable Equations

IV.2.1 Outline of the Approach

In this study the regression analysis approach is used to relate the distribution parameters to the basic variables. For the purpose of presentation, the approach in the analysis can be represented by six fundamental steps. Such a breakdown represents useful means of giving a perspective on the process, although a simple summary of this kind cannot fully describe all the elements in a complex analysis. The six fundamental steps are:
(1) Identification of the basic driving variables to be studied.
(2) Selection of the dependent variables of the regression equations.
(3) Assembling the data to be used in identifying the relationship between the dependent and basic variables.
(4) Formulation of candidate equations relating the dependent and basic variables.
(5) Estimation of the unknown constants in the equations.
(6) Investigation of the adequacy of the derived equations.

Each step is now discussed in context of a risk analysis of the nuclear reactor accidents.

IV.2.2 Identification of the Basic Variables

The following are some examples of the basic variables that would be of interest in a risk analysis of the nuclear reactor accidents:
(1) Population distribution.
(2) Meteorological condition.
(3) Probabilities and magnitudes of radioactive releases.
(4). Evacuation speed and evacuation area in emergency situations of the reactor accidents.

These variables would be of interest in the following decision making and evaluation studies:
(1) The population distributions and the meteorological conditions would be of interest in selection of sites for nuclear power plants.
(2) The probabilities and magnitudes of radioactive releases would be of interest in evaluation of safety systems in a nuclear power plant involving engineering safety features, operation restrictions and maintenance activities.
(3) The evacuation speed and area would be important in emergency planning.

In the regression analysis, the basic variables to be studied are called "regressor variables." The population distribution and the
characteristics of radioactive releases will be studied as regressor variables in the following chapters to demonstrate the regression analysis approach for identifying the dependent and basic regressor variables.

IV.2.3 Selection of the Dependent Variables

The dependent variables can be selected from the risk characteristics or the distribution parameters of the fitted distributions. Since the appropriate family of the parametric distributions has been selected, the other risk characteristics or distribution parameters can be estimated from the selected variables. The following variables can be studied as dependent variables:
(1) Scale factor, shape factor and normalization constant of the fitted parametric distribution.
(2) Risk moments about a specific magnitude of consequence.
(3) Complementary cumulative frequency at a specific magnitude of consequence.
(4) Magnitude of consequence at a specific value of complementary cumulative frequency.
(5) Slope of the tangent of the complementary cumulative distribution at a specific magnitude of consequence.

The selection of the dependent variables is based on the following considerations:
(a) The relationship between the dependent and basic variables can be expressed by fairly simple and straightforward equations.
(b) The selection may depend on the situation being considered in the decision making or evaluation process.

The variables listed above would be of interest in the following situations:
(1) Distribution parameters of the selected parametric distribution: The parameters control the behavior of the distribution. For example, the shape factor β of the Weibull distribution controls the rate of decrease in the tail. The scale factor n of the Weibull distribution represents the magnitude of consequence at a complementary cumulative frequency of α / e, where e is the Euler's constant. The normalization constant represents the frequency that the consequence is greater than the lower end of the domain. When the decision is based on these characteristic quantities, they can be selected as dependent variables.
(2) Risk moments: The first risk moment about the origin will be selected when the decision is based on the expectation of the magnitude of consequence. The second and higher moments about the origin represent the tail behavior of the distribution. When the decision is based on the extreme consequences, the second and higher moments would be of interest.
(3) Complementary cumulative frequency at a specific magnitude of consequence: When the decision is based on the frequency at a specific magnitude (for example, 1000 fatalities), it can be selected as a dependent variable.
(4) Magnitude of consequence at a specific frequency: When the decision is based on the magnitude at a specific complementary cumulative frequency (for example, $10^{-9} /$ year), it can be selected as a dependent variable.
(5) Slope of the tangent of the complementary cumulative distribution: The slope represents the rate of decrease of the frequency. Specifically the slope at the tail would be selected when the extrapolation of the distribution is of interest to the consequences greater than the largest consequence in the historical records or in the calculation results.

When the scale and shape factors are not selected as dependent variables, they will be estimated from the selected dependent variables. For example, the first two risk moments about the origin and the normalization constant will be selected as dependent variables in Chapter 5. The Weibull parameters β and n can be estimated by Eqs. (3.27) and (3.28). Once the Weibull parameters are estimated, we have an entire distribution and can derive any risk characteristic in terms of the parameters. For example, the magnitude of consequence at a specific complementary cumulative frequency F^{c} is give by:

$$
\begin{equation*}
x=x_{0}+\hat{n} \cdot\left[\ln \left(\frac{\alpha}{F^{c}}\right)\right]^{1 / \hat{\beta}} \tag{4.1}
\end{equation*}
$$

where \hat{B} and $\hat{\eta}$ are the estimates by Eqs. (3.27) and (3.28).

IV.2.4 Assembling of the Data

In the risk analysis the data are generally obtained from the historical records or from the calculational model. The data obtained can be certain risk characteristics or risk distributions. To identify the relation to the basic variables, the data must be obtained for different values of the basic variables. A set of the data used for the analysis is called "data base" in this study.

In this thesis the data base is obtained from the consequence
model. For example, in Chapter 5 the first two risk moments and the normalization constant will be calculated by the consequence model for 68 different population distributions. The calculated 68 different sets of the risk moments and the normalization constant will be used in identifying the relationship between the dependent variables and the population distribution.

IV.2.5 Formulation of Candidate Equations

A number of candidate equations with unknown constants are formulated to relate the dependent variables to the regressor variables. Simple and straightforward equations with a small number of unknown constants are desirable. Consider the following two candidate equations:

$$
\begin{align*}
& y=h\left(z_{1}, z_{2}, \ldots, z_{m} \mid \tau_{1}, \ldots, \tau_{k}\right)+\varepsilon \tag{4.2}\\
& y=h^{\prime}\left(z_{1}, z_{2}, \ldots, z_{m} \mid \tau_{1}, \ldots, \tau_{k}, \tau_{k+1}, \ldots, \tau_{k+v}\right)+\varepsilon^{\prime} \tag{4.3}
\end{align*}
$$

where y is the dependent variable and z_{1}, \ldots, z_{m} are the regressor variables. τ 's are the unknown constants and ε and ε ' are the random error variables. Eq. (4.3) has v additional unknowns compared to Eq. (4.2). Generally Eq. (4.3) with ($k+v$) unknowns predict the value of y more accurately than Eq. (4.2) with k unknowns. But Eq. (4.2) is more desirable than Eq. (4.3) because of its smaller number of unknowns. As a compromise the significance of added v unknown constants is tested by the partial F-statistic which will be discussed in the following subsection.

IV.2.6 Estimation of the Unknown Constants

The method of least squares is used to estimate the unknown con-
stants. For example, the unknowns in Eq. (4.2) are estimated by minimizing:

$$
\begin{equation*}
\Delta^{2}=\sum_{i=1}^{n}\left[y_{i}-h\left(z_{1 i}, \ldots, z_{m i} \mid \tau_{1}, \ldots, \tau_{k}\right)\right]^{2} \tag{4.4}
\end{equation*}
$$

where the subscript i refers to the data value prepared in Section IV. 2.4 and n is the total number of the sample data.

Having obtained the estimates $\hat{\tau}_{1}, \ldots, \hat{\tau}_{k}$, the significance of the derived equations are expressed by the F-value defined by:

$$
\begin{equation*}
F=\frac{S_{G}^{2} / k}{S_{R}^{2} /(n-k-1)} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
& s_{G}^{2}=\sum_{i}\left[y_{0}-h\left(z_{l i}, \ldots, z_{m i} \mid \hat{\tau}_{1}, \ldots, \hat{\tau}_{k}\right)\right]^{2} \tag{4.6}\\
& y_{0}=\frac{1}{n} \sum_{i} y_{i} \tag{4.7}\\
& S_{R}^{2}=\sum_{i}\left[y_{i}-h\left(z_{l i}, \ldots, z_{m i} \mid \hat{\tau}_{1}, \ldots, \hat{\tau}_{k}\right)\right]^{2} \tag{4.8}
\end{align*}
$$

If the F-value determined by Eq. (4.5) is larger than the F-value at the predetermined significance level with ($k, n-k-1$) degrees of freedom, the candidate equation Eq. (4.2) is found to be significant to express the variation of the dependent variable of the data. The F-value in Eq. (4.5) is related to the multiple correlation co-efficient $\rho_{\text {m }}$ which is defined by:

$$
\begin{equation*}
\rho_{\mathrm{m}}^{2}=\frac{\mathrm{s}_{\mathrm{G}}^{2}}{\mathrm{~s}_{\mathrm{G}}^{2}+\mathrm{s}_{\mathrm{R}}^{2}} \tag{4.9}
\end{equation*}
$$

The multiple correlation coefficient also indicates the significance of the regression results.

In the preceding section, the compromise between the accuracy of
prediction and the number of unknowns is discussed. Now Eqs. (4.2) and (4.3) are compared. Let $\hat{\tau}_{1}^{\prime}, \ldots, \hat{\tau}_{k}^{\prime}, \hat{\tau}_{k+1}^{\prime}, \ldots, \hat{\tau}_{k+v}^{\prime}$ be the estimates of the unknowns in Eq. (4.3) determined by the method of least squares. The significance of the added v unknowns is examined by the partial F-statistic defined as:

$$
\begin{equation*}
F^{\prime}=\frac{\left[S_{R}^{2}-\left(S_{R}^{2}\right)^{\prime}\right] / v}{\left(S_{R}^{2}\right)^{\prime} /(n-k-v-1)} \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(S_{R}^{2}\right)^{\prime}=\sum_{i}\left[y_{i}-h^{\prime}\left(z_{1 i}, \ldots, z_{m i} \mid \hat{\tau}_{1}^{\prime}, \ldots, \hat{\tau}_{k+v}^{\prime}\right)\right]^{2} \tag{4.11}
\end{equation*}
$$

If the partial F-value in Eq. (4.10) is smaller than the F-value at the predetermined significance level with ($v, n-k-v-1$) degrees of freedom, the added v unknowns can be eliminated and Eq. (4.2) with k unknowns is found to be adequate.

Stepwise regression technique is a method for determining equations with the minimum number of unknowns without decreasing the accuracy in predicting the variation of the dependent variables. It uses the partial F-tests repeatedly by adding or eliminating the unknown constants (or the regressor variables associated with the unknown constants).

Details of the regression techniques and the tables of the F-distribution are found in Ref-8.
IV.2.7 Test of the Adequacy of the Derived Equations

The following criteria are used to investigate the adequacy of the derived equations:
(1) The F-value in Eq. (4.5) or the multiple correlation coefficient in Eq. (4.9) should be large. This criterion can be
taken to be a relative measure to be used in comparing different possible equations.
(2) The error should not be systematic. When the regression estimates of the dependent variables are plotted versus the data values used for regression, the points should lie closely about the 45 degree line and no tendency is observed to overpredict or underpredict various range of the data.
(3) The fitted risk distribution using the derived basic variable relations will be compared to the data distribution.
(4) Various risk characteristics will also be compared using the basic variable relation to determine the fitted risk characteristics.

IV. 3 Summary

The approach for deriving the regression equations is discussed in this chapter. The fundamental elements of the approach are identified as: (l) identification of the basic regressor variables; (2) selection of the dependent variables; (3) assembling of the data; (4) formulation of candidate equations; (5) estimation of the unknown constants; and (6) investigation of the adequacy of the derived equations.

Some of the possible basic variables are identified and two of them will be studied in the following chapters. The dependent variables can be selected from the risk characteristics or the distribution parameters of the fitted distributions. The data used for regression analysis can be obtained from the historical records or the calculational model. In this study they are obtained from the consequence model. The candidate equations with a small number of unknown constants are desired. The
unknown constants are estimated by the method of least squares. The significance of adding or eliminating unknown constants can be tested by the partial F-statistic. The adequacy of the derived equations is examined by: (1) F-value or multiple correlation co-efficient; (2) systematic error in prediction of the dependent variables; (3) comparison of the fitted risk distribution to the data distribution; and (4) comparison of the predicted risk characteristics to those calculated by the consequence model.

CHAPTER V
REGRESSION ANALYSIS OF POPULATION DISTPIBUTION

V. 1 Introduction

In the previous chapter a general procedure of regression analysis was proposed. The procedure will be demonstrated in this chapter in an example in which the population distribution is a basic variable. Since the population distribution is one of the potentially important factors in decisions on sites for nuclear power plants, the equations relating the risk to the population distribution will provide help in decision on an acceptable population distribution.

The example studied in this chapter is the relationship between the population distribution and the early fatalities distribution of FWR accidents in northeastern valley meteorological condition. But the methods developed in this chapter will be generally applicable to other consequences, other types of reactor accidents and other meteorological conditions.

The discussion in this chapter follows the procedure of regression analysis proposed in the prececing chapter. Section V. 2 discusses the population distribution which is the basic variable in this chapter. The selection of the dependent variables is made in Section V. 3 and the data base is prepared in Section V.4. The regression model is formulated in Section V. 5 and the regression fitting is made in Section V. 6 . The adequacy of the cerived equations is examined in Section V.7. An example of decision making involving siting for a nuclear power plant is given in Section V.8.
V. 2 Incorporation of the Population Distribution in a Risk Model

A polar coordinate system is used here to describe the population distribution. The origin is set at the location of the nuclear power plant. The number of people living in $(\Delta r, \Delta \theta)$ at (r, θ) is defined to be:

$$
\begin{equation*}
n(r, \theta) \Delta r \Delta \theta=r \cdot \rho(r, \theta) \Delta r \cdot \Delta \theta \tag{5.1}
\end{equation*}
$$

where $n(r, \theta)$ is the number of people per radian per unit distance and $\rho(r, \theta)$ is the population per unit area.

Fig. 5.1 Illustration of the Polar Coordinate Sustem for Describing the Population Distribution

In the consequence computer model, the population distribution is discretized by dividing a circle of 500 miles radius ${ }^{1}$ into sixteen $22-1 / 2$ degree sectors and dividing a sector into 34 annular segments. Fig. 5.2 illustrates some of the annular segments in the consequence model. Eq. (5.1) is first integrated over a $22-1 / 2$ degree sector in the direction J.

$$
\begin{equation*}
n_{j}(r)=\int_{\frac{\pi}{8}} n(r, \theta) d \theta \tag{5.2}
\end{equation*}
$$

where $n_{j}(r)$ is the population per unit distance at r in a 22-1/2 degree sector in the direction j. Eq. (5.2) is then integrated over r to derive the population in the k-th annular segment from the origin in a sector of the direction j.

$$
\begin{equation*}
N_{j k}=\int_{r_{k-\Delta r_{k / 2}}}^{r_{k+\Delta r_{k / 2}} n_{j}(r) d r} \tag{5.3}
\end{equation*}
$$

where r_{k} is the distance of the midpoint of the k-th segment from the reactor and Δr_{k} is the width of the annular segment. r_{k} and Δr_{k} used in the consequence celculation are listed in Appendix C. The populations in the annular segments are treated as basic regressor variables in this chapter.

[^1]

Fig. 5.2 Illustration of the Annular Segments in the Consequence Model

Abstract

V. 3 Selection of the Dependent Variables

The dependent variables can be selected from the risk characteristics or the distribution parameters listed in Section IV.2.2. In this chapter, the first two risk moments and the normalization constant are selected as the dependent variables, since they have been used to derive the fitted Weibull distributions which have been shown to adequately describe the data distributions of consequence $v s$. frequency. These three variables represent the following behaviors of the distribution. The first risk moment gives the average number of fatalities per unit time. The second risk moment accounts the tail behavior of the distribution. The normalization constant gives the area under the frequency distribution, which is the probability per unit time of consequences being greater than zero.

V. 4 The Data Base for Regression Analysis

A total of 68 different population distributions are used for the regression analysis. The populations correspond to the 68 sites where the 100 reactors are now in use or planned to be located. The populations are calculated from the 1970 census bureau data (Ref. 2). As shown in Table 5.1, the 68 populations have a large spread with regard to the cumulative distribution. The populations also cover different patterns as shown in Fig. 5.3. The regression equations derived from these populations should therefore cover the likely variations which might be consicered in selection of sites for nuclear power plants.

The first two risk moments and the normalization constant are calculated by the consequence computer model for each of the 68 population distributions assuming FWR accidents and northeastern valley

Table 5.1 Spread of Cumulative Population in the 68 Population Distributions

Radius (miles)		Cumulative Population in a Circle (thousands)		
		Highest Distribution	Average of the Distributions	Lowest Distribution
	2	21	1.4	0
	5	62	8.7	0
	10	207	42	1.4
	20	896	214	19
	50	16,485	2,073	171
	100	23,908	6,973	523
	500	108,757	60,302	6,947

Fis. 5.3 Cumulative Population Distributions of Different Patterns

$$
\begin{aligned}
& \text { Note }: \text { Sites } C, A, D, B, E \text { correspond to the } \\
& \text { lst, } 3 \text { ra, } 35 \text { th, } 65 \text { th, } 68 \text { th when } 68 \text { sites } \\
& \text { are raned based on the populations in } \\
& 5 \text { miles. }
\end{aligned}
$$

Table 5.2 Results of Consequence Calculations of PWR Accidents for 68 Different Population Distributions

meteorological conditions.' The results are given in Table 5.2 and will be used as the data base for the regression analysis.

V. 5 Formulation of the Regression Model

Having obtained the data base, the next step in the analysis is to formulate a model that relate the dependent variables M_{1}, M_{2} and a to the populations in the annular segments. To keep the model simple and also to make the results applicable to other geometries, the regression coefficients will be expressed as functions of the distance from the reactor. The functions will be called "transfer functions" in this study. Before defining the transfer functions, some of the assumptions and techniques in the consequence model will be discussed because the forms of the transfer functions are dependent on the assumptions and techniques in the consequence model.
V.5.1 Assumptions and Techniques in the Consequence Model

Only the essumptions and techniques related to the definition of the transfer functions are briefly discussed. A full description of the consequence model can be found in Appendix VI of WASE-2400 (R.ef.1). The discussion of the effects on the transfer functions will be made in the course of defining the transfer functions. With regard to the assumptions and techniques, the following points are important.
(1) A sampling method is used in the consequence model. One trial consists of one radioactive release, one evacuation speed, one starting time of meteorological conditions (stability, precipitation, and wind speed) and one wind direction.
(2) The variables listed above are considered to be independent of each other. The probability assigned to one trail is therefore a product of the probabilities of the individual events.

$$
\begin{equation*}
p_{t}=p_{R} \cdot p_{V} \cdot p_{S} \cdot p_{j} \tag{5.4}
\end{equation*}
$$

where
p_{t} : probability assigned to one trial.
p_{R} : probability of a release occuring.
p_{V} : probability of an evacuation speed being realized. p_{S} : probability assigned to one starting time of meteorological data. As discussed in Section I. 4 , if 90 starting times are selected, each of them is assigned with a probability of $1 / 90$. p_{j} : probsbility of the wind blowing in the specific direction.
(3) The shift of the wind direction in the cownind is not explicitly treated. The radioactive plume travels in the direction in which the wind was blowing at the starting time of release. Therefore for one trial the fatalities occur only in one direction.
(4) The frequency distribution of the wind direction is uniform over the 16 directions. The probability p_{j} in Zq . (5.4) is therefore 1/16. The probability p_{t} assigned to one trial is thus independent of the specific wind direction.
V.5.2 Definition of Transfer Functions

Consider one trial in which the wind is blowing in the direction J. Let $A(r)$ be the ratio of the fatalities per unit r at r to the population per unit r at r in a 22.5 degree sector for the trial. $A(r)$ is a function of the dose to the critical organs and the area covered by the radioactive plume. It is then dependent on the specific release, evacuation speed and meterological condition of the trial, but it is independent of the wind direction. Since the shift of the wind direction is not considered, the total number of fatalities for the trial is given by:

$$
\begin{equation*}
x=\int_{r} A(r) \cdot n_{j}(r) \cdot d r \tag{5.5}
\end{equation*}
$$

The first risk moment is the expectation of x over all trials.

$$
\begin{equation*}
M_{1}=E[x] \tag{5.6}
\end{equation*}
$$

where E refers to an expectation over all trials. From Eq. (5.5), M_{1} is then given by:

$$
\begin{equation*}
M_{1}=E\left[\int A(r) \cdot n_{j}(r)\right] d r=\int E\left[A(r) \cdot n_{j}(r)\right] d r \tag{5.7}
\end{equation*}
$$

Since the frequency distribution of the wind direction is uniform,

$$
\begin{equation*}
M_{1}=\frac{1}{16} \sum_{j} \int E[A(r)] \cdot n_{j}(r) d r \tag{5.8}
\end{equation*}
$$

The first transfer function will therefore be defined as:

$$
\begin{equation*}
a(r)=\frac{1}{16} \cdot E[A(r)] \tag{5.9}
\end{equation*}
$$

Then M_{1} is expressed as:

$$
\begin{equation*}
M_{I}=\sum_{j} \int_{r} a(r) \cdot n_{j}(r) \cdot d r \tag{5.10}
\end{equation*}
$$

As M_{1} is an annual expected number of fatalities, $a(r)$ is an annual expected number of fatalities per individual at distance r. The quantity $a(r)$ can also be interpreted as a probability of death per reactor year for an individual living at distance r.

The second risk moment is an expectation of x^{2}.

$$
\begin{align*}
x^{2} & =\left[\int_{r} A(r) \cdot n_{j}(r)\right]^{2} \\
& =\iint_{r r^{\prime}} A(r) \cdot A\left(r^{\prime}\right) \cdot n_{j}(r) \cdot n_{j}\left(r^{\prime}\right) d r d r \tag{5.11}
\end{align*}
$$

Then,

$$
\begin{equation*}
M_{2}=E\left[x^{2}\right]=\frac{1}{1 \sigma} \sum_{j} \int_{r} \int_{r^{\prime}} E\left[A(r) \cdot A\left(r^{\prime}\right)\right] \cdot n_{j}(r) \cdot n_{j}\left(r^{\prime}\right) d r d r^{\prime} \tag{5.12}
\end{equation*}
$$

The second transfer function $b\left(r, r^{\prime}\right)$ will be defined as:

$$
\begin{equation*}
b\left(r, r^{\prime}\right)=\frac{1}{16} E\left[A(r) \cdot A\left(r^{\prime}\right)\right] \tag{5.13}
\end{equation*}
$$

Then,

$$
\begin{equation*}
M_{2}=\sum_{j} \int_{r} \int_{r^{\prime}} b\left(r, r^{\prime}\right) \cdot n_{j}(r) \cdot n_{j}\left(r^{\prime}\right) d r d r^{\prime} \tag{5.14}
\end{equation*}
$$

The quantity $b\left(r, r^{\prime}\right)$ is the annual expected number of fatalities at r and r^{\prime} per individual at r and r^{\prime} arising from the same accident. It also can be interpreted as a probability that an individual at r and r^{\prime} will both be killed in the same accident.

Finally, the third transfer function $c(r)$ will be defined to relate the nomalization constant α with the population distribution. The constant α is the probablity per reactor year for which the fatalities will be greater than zero.

$$
\begin{equation*}
\alpha=E[H(x)] \tag{5.15}
\end{equation*}
$$

where

$$
\begin{aligned}
H(x) & =1 & & \text { for } x>0 \\
& =0 & & \text { for } x=0
\end{aligned}
$$

Let d_{j} be the closest distance at which people live from a reactor in the direction J .

$$
\begin{align*}
n_{j}(r) & =0 & & \text { at } r<d_{j} \\
& >0 & & \text { at } r=d_{j} \\
& \geq 0 & & \text { at } r>d_{j} \tag{5.16}
\end{align*}
$$

Then,

$$
\begin{align*}
x & =\int_{0}^{\infty} A(r) \cdot n_{j}(r) d r \\
& =\int_{a_{j}}^{\infty} A(r) \cdot n_{j}(r) d r \tag{5.17}
\end{align*}
$$

Now, α is expressed by:

$$
\begin{equation*}
\alpha=E\left[H\left(\int_{d}^{\infty} A(r) \cdot n_{j}(r) d r\right)\right] \tag{5.18}
\end{equation*}
$$

Since it is difficult to express the expectation of H equation in a simple form, an approximation relating α to the closest distance d_{j} will be constructed. The third transfer function $c(r)$ is then defined as:

$$
\begin{equation*}
\alpha=\sum_{j}[c(r)]_{r=d_{j}} \tag{5.19}
\end{equation*}
$$

The adequacy of Eq. (5.19) will be tested by the regression fits.
In the consequence computer model, a circle of 500 miles radius is divided into 16×34 annular segments. The key equations of the transfer functions are then expressed in the discrete geometry of the consequence model by the following equations.

$$
\begin{align*}
& a\left(r_{k}\right)=\frac{1}{16} E\left[A\left(r_{k}\right)\right] \tag{5.20}\\
& M_{1}=\sum_{j} \sum_{k} a\left(r_{k}\right) \cdot M_{j k} \tag{5.21}\\
& b\left(r_{k}, r_{k}^{\prime}\right)=\frac{1}{16} E\left[A\left(r_{k}\right) \cdot A\left(r_{k}^{\prime}\right)\right] \tag{5.22}\\
& M_{2}=\sum_{j} \sum_{k} \sum_{k} b\left(r_{k}, r_{k}^{\prime}\right) \cdot N_{j k} \cdot N_{j k}^{\prime} \tag{5.23}\\
& a=\sum_{j}[c(r)]_{r=r_{k i n}} \tag{5.24}
\end{align*}
$$

where $k_{\min }(j)$ is the closest segment in which the population is greater than zero in the direction j.

The transfer functions $a(r), b\left(r, r^{\prime}\right)$ and $c(r)$ are dependent on the type of consequence, the average weather characteristics and the type of releases, but they are independent of the population distribution. The transfer functions for early fatalities in PWR accidents in northeastern valley meteorological conditions are being studied in this chapter.

To keep the model simple, the transfer functions will be expressed in terms of possible parametric functions which will be tested in the regression analysis. The forms of the functions and the constants to be fitted by the regression analysis will be studied in Section V.6.

V. 6 Regression Fitting

V.6.1 Methods for Fitting

We want to express the transfer functions as parametric functions with a smail number of unknown constants which give adequate fits. Two approaches are studied in order to derive the form and the constants from the consequence calculation. The first approach is to use the data base prepared in Section V. 4 for the 68 sample population and derive $a(r), b\left(r, r^{\prime}\right)$ and $c(r)$ by Eqs. (5.21), (5.23) and (5.24) using regression analysis. The second approach involves calculating the ratio $A\left(r_{k}\right)$ of the fatalities at r_{k} to the population in a sector at r_{k} for each trial from the consequence calculation. Using Eas. (5.20) and (5.23), the average of $A\left(r_{k}\right)$ and $A\left(r_{k}\right) \cdot A\left(r_{k}^{\prime}\right)$ over all the trials will give
$a\left(r_{k}\right)$ and $b\left(r_{k}, r_{k}{ }^{\prime}\right)$ respectively. $a\left(r_{k}\right)$ and $b\left(r_{k}, r_{k}{ }^{\prime}\right)$ can then be fitted to the parametric functions involving the distance r. Though both approaches can give the same results (within fitting errors), each has its own advantages and disadvantages. The two approaches are discussed in more detail in the following subsections.

V.6.1.1 Regression from Data Base of $\mathrm{M}_{1}, \mathrm{M}_{2}$ and α

This approach uses the data base in Section V. 4 and Eqs. (5.21), (5.23) and (5.24). Possible parametric functions are assumed for $a(r), b\left(r, r^{\prime}\right)$ and $c(r)$. Let $h_{a}\left(r \mid a_{1}, a_{2}, \ldots, a_{v}\right)$ be the assumed parametric functions of $a(r)$ with unknown constants $a_{1}, a_{2}, \ldots, a_{v}$. The estimates of the dependent variable M_{1} for the 68 populations are given in Table 6.2. Also the populations in the annular segments $\mathrm{N}_{j k}$ are given for the 68 samples. Since the range of the estimates of M_{1} cover several orders of magnitude, the regression analysis will be based on the natural logarithmic transformation of M_{1}.

$$
\begin{equation*}
\ln M_{1}=\ln \left\{\sum_{j} \sum_{k} h_{a}\left(r_{k} \mid a_{1}, \cdots, a_{v}\right) \cdot N_{j k}\right\}+\varepsilon \tag{5.25}
\end{equation*}
$$

where ε refers to the random error variaible. Using the non-linear regression analysis, the unknown constants a_{1}, \ldots, a_{v} are estimated by minimizing:

$$
\begin{equation*}
\Delta_{a}^{2}=\sum_{i}\left[\ln \left(M_{i}\right)_{i}-\ln \left\{\sum_{j} \sum_{k} h_{a}\left(r_{k} \mid a, \cdots, a_{\nu}\right) \cdot\left(N_{j k}\right)_{i}\right\}\right]^{2} \tag{5.26}
\end{equation*}
$$

where the subscript i refers to the population sample.

The derivation of $b\left(r, r^{\prime}\right)$ is similar to $a(r)$. A candidate function $h_{b}\left(r, r^{\prime} \mid b_{1}, \ldots, b_{v}^{\prime}\right)$ is assumed and the unknown constants b_{1}, \ldots, b_{V} are estimated by minimizing:

$$
\begin{gather*}
\Delta_{b}^{2}=\sum_{i}\left[\ln \left(M_{2}\right)_{i}-\ln \left\{\sum_{j} \sum_{k} \sum_{k^{\prime}} b_{b}\left(r, r^{\prime} \mid b_{l}, \ldots, b_{v}^{\prime}\right)\right.\right. \\
\left.\left.\cdot\left(\pi_{j k}\right)_{i} \cdot\left(\pi_{j k^{\prime}}\right)_{i}\right\}\right] \tag{5.27}
\end{gather*}
$$

Finally let $h c\left(r \mid c_{1}, \ldots, c_{\nu}^{\prime \prime}\right)$ be the candidate function of $c(r)$. The closest segments at which the population are greater than zero are identified for each of the population distributions. The unknown constants are estimated by minimizing:

$$
\begin{equation*}
\Delta_{e}^{2}=\sum_{i}\left[\ln \alpha_{i}-\ln \left\{\sum_{j} \operatorname{bc}_{c}\left(r_{k_{\min }(j)} \mid c_{I}, \ldots, c_{v}{ }^{\prime \prime}\right)\right]\right. \tag{5.28}
\end{equation*}
$$

The above approach has tie following advantages:
(1) The number of population distributions used can be arbitrary as long as the number is greater than or equal to the number of unknown constants. The fitting errors can be decreased by increasing the number of population distributions.
(2) Since the dependent variables M_{1}, N_{2} and α are integrated over distance, their estimates from their consequence program have relatively small sampling errors of the trials.

The disadvantages of this approach are:
(1) A sizable amount of computation time can be required to estimate M_{1}, M_{2} and a by the consequence procram for a larger number of population distributions. For example,
approximate 10 minutes of CPU time on the IBM 360 were required to prepare the data base in Table V.2.
(2) Since the risk moments do not directly suggest appropriate functional forms of the candidate functions, a number of functional forms may need to be tried to find an adequate fitting form.

V.6.1.2 Use of the Averages of Ratios of Fatalities

The second approach involves having the consequence model calculate the ratio of fatalities at the distance r to the population in a 22-1/2 degree sector at r_{k} for each trial. These ratios are then averaged over all trials. The ratio [A_{k}] for the specific trial t is calculated by:

$$
\begin{equation*}
\left[A_{k}\right]_{t}=\frac{\left[\left(\mathbb{N}_{f}\right)_{j k}\right]_{t}}{\mathbb{N}_{j k}} \tag{5.29}
\end{equation*}
$$

where $\left[\left(N_{f}\right)_{j k}\right]_{t}$ is the number of fatalities in the annular segment (j, k) at the trial t and $N_{j k}$ is the population in the annular segment (j, k). As the wind direction is assumed to be independent of the radioactive release, the starting time for the meteorological conditions and the evacuation speed, $\left[A_{k}\right]_{t}$ is consequently independent of the wind direction. Furthermore, $\left[A_{k}\right]_{t}$ can be calculated using one sample population distribution. To avoid the case of $N_{j k}=0$, a uniform population distribution is used as a sample population in this study.

$$
\begin{equation*}
N_{j k}=\frac{\pi}{8} \cdot \rho_{\rho} \cdot r_{k} \cdot \Delta r_{k} \tag{5.30}
\end{equation*}
$$

where ρ_{0} is the population density of the uniform population distribution. Averaging $\left[A_{K}\right]_{t}$ over all the trials, the estimate of $a\left(r_{k}\right)$ is obtained as:

$$
\begin{align*}
a_{k} & =\sum_{t} \cdot\left[A_{k}\right]_{t} \cdot p_{R} \cdot p_{V} \cdot p_{S} \cdot p_{J} \\
& =\frac{1}{16} \sum_{t}\left[A_{k}\right]_{t} \cdot p_{R} \cdot p_{V} \cdot p_{S} \tag{5.31}
\end{align*}
$$

where g's are the probabilities assigned to the individual events in Eq. (5.4).

The estimates of $b\left(r_{k}, r_{k}{ }^{\prime}\right)$ is also obtained from $\left[A_{k}\right]_{t}$ as:

$$
\begin{equation*}
b_{k k}=\frac{1}{16} \sum_{t}\left[A_{k}\right]_{t} \cdot\left[A_{k}^{\prime}\right]_{t} \cdot p_{R} \cdot p_{V} \cdot p_{S} \tag{5.32}
\end{equation*}
$$

The quantity $c\left(r_{k}\right)$ is not derivable by this averaging approach since $c(r)$ is defined by Eq. (5.19) which is used to aporoximate the expectation of E equation in Eq . (5.18). Instead of $c(r)$ another type of approximation can be used.

$$
\begin{equation*}
\alpha=E\left[H\left(\int_{d_{j}}^{\infty} A(r) \cdot n_{j}(r) d r\right)\right] \tag{5.33}
\end{equation*}
$$

a is approximated by:

$$
\begin{equation*}
\alpha \cong E\left[H\left(A\left(d_{f}\right) \cdot n_{f}\left(d_{j}\right)\right)\right] \tag{5.34}
\end{equation*}
$$

By definition of d_{j},

$$
\begin{equation*}
n_{j}\left(d_{j}\right)>0 \tag{5.35}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\alpha \cong E\left[H\left(A\left(d_{j}\right)\right)\right] \tag{5.36}
\end{equation*}
$$

Since the wind direction distribution is uniform,

$$
\begin{equation*}
\alpha \cong \frac{1}{16} \sum_{j} E[H(A(r))]_{r=d_{j}} \tag{5.37}
\end{equation*}
$$

Another transfer function $\gamma(r)$ is defined as:

$$
\begin{equation*}
r(r)=\frac{1}{I \sigma} E[E(A(r))] \tag{5.38}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\alpha \cong \sum_{j}[\gamma(r)]_{r=d_{j}} \tag{5.39}
\end{equation*}
$$

The estimate of $\gamma\left(r_{k}\right)$ is obtained from the consequence calculation by:

$$
\begin{equation*}
r_{k}=\frac{1}{16} \sum_{t}\left[H\left(\left(A_{k}\right)_{t}\right)\right] \cdot p_{R} \cdot p_{V} \cdot p_{S} \tag{5.40}
\end{equation*}
$$

The approximation in Eq. (5.34) assumes that whenever there are fatalities occurring then some of these will most likely occur at the closest distance from the reactor at which people live. Since the complete integral in Eq. (5.33) is approximated by the closest distance in Eq. (5.34), the approximation of Eq. (5.39) can underestimate α. However this appears to be a reasonable approximation and furthermore can be used only to give the functional form of $c(r)$. The estimates of $\gamma(r)$ in Eq. (5.40) will be used to obtain the functional form of $c(r)$. Having obtained the estimates of $a\left(r_{k}\right)$, $b\left(r_{k}, r_{k}^{\prime}\right)$ and $\gamma\left(r_{k}\right)$, they can then be fitted to the parametric functions. The method of fitting will also involve least squares. Suppose $h_{a}\left(r \mid a_{1}, \ldots, a_{v}\right)$ is a candidate function of $a(r)$. The unknown constants are then estimated by minimizing:

$$
\begin{equation*}
\Delta_{a}^{2}=\sum_{k=1}^{K}\left[\ln a_{k}-\ln h_{a}\left(r_{k} \mid a_{1}, \ldots, a_{v}\right)\right]^{2} \tag{5.41}
\end{equation*}
$$

where K is the number of the annular segment in one direction. The natural logerithmic transformation is used in Eq. (5.41) because a varies over several orders of magnitude.

In a similar manner, the unknown constants of the candidate function $h_{b}\left(r, r^{\prime} \mid b_{1}, \ldots, b_{v}\right)$ are estimated by minimizing:

$$
\begin{equation*}
\Delta_{b}^{2}=\sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K}\left[\ln b_{k k}^{\prime},-\ln h_{b}\left(r_{k}, r_{k}^{\prime} \mid b_{1}, \ldots, b_{v}^{\prime}\right)\right] \tag{5.42}
\end{equation*}
$$

Finally, if $\gamma_{\gamma}\left(r \mid \gamma_{1}, \ldots, \gamma_{\nu}^{\prime \prime \prime}\right)$ is the candidate function for $\gamma(r)$, the unknown constants $\gamma_{1}, \ldots, \gamma_{\nu}{ }^{\prime \prime}$ ' are estimated by minimizing:

$$
\begin{equation*}
\Delta_{\gamma}^{2}=\sum_{k=1}^{K}\left[\ln \gamma_{k}-\ln h \gamma\left(r_{k} \mid \gamma_{1}, \ldots, \gamma_{\nu}^{\prime \prime \prime}\right)\right] \tag{5.43}
\end{equation*}
$$

The advantages of this approach are:
(1) The estimates of $a\left(r_{k}\right), b\left(r_{k}, \gamma_{k}{ }^{\prime}\right)$ and $\gamma\left(r_{k}\right)$ from the consequence program can be plotted to suggest appropriate forms for the candidate functions.
(2) Computation time needed to derive $a_{k}, b_{k k}$ ' and γ_{k} can be much smaller then that required to estimate the risk moments and the normalization constants for many population distributions.

The disadvantages are the following:
(1) The estimates $a_{k}, b_{k k}$ ' and γ_{k} can have large sampling errors if smaller number of trias are used in the consequence calculation. The occurrence of precipitation in the plume can especially cause large scattering in the estimates.
(2) $c(r)$ is not derivable by this approach. Instead of $c(r)$, the further approximation involving $\gamma(r)$ is required.

V.6.1.3 Combinations of the Two Approaches

Two approaches for deriving the functional forms and the unknown constants of the candidate functions have been discussed in the preceding two subsections. In this study the two approaches are combined, The method of averaging ratios of fatalities is first used to investigate appropriate forms of the candidate functions. After the candidate functions are selected, the unknown constants are then finally estimated using the risk moments and the normalization constants from the 68 population distribution. This combination approach is used in this study since the regression fits from the 68 population distributions will have the smallest sampling errors and the averaging of ratios involves little computer time to investigate possible candidate functions.

V.6.2 Evaluation of $a(r)$

Based on Eqs. (5.29) and (5.31), the quantities a_{k} 's are estimated by the consequence program. The final estimates are plotted versus miles from a reactor in Fig. 5.4. The scattering of the data points in Fig. 5.4 is due to sampling error. Fig. 5.4 suggests an exponential function as a candidate function:

$$
\begin{equation*}
h_{a}(r)=a_{1} \cdot \exp \left[-a_{2} \cdot r\right] \tag{5.44}
\end{equation*}
$$

Using the data base in Table 5.2, the constants are now derived by the regression using Eq. (5.25). The derived constants a_{1} and a_{2} are given in Table 5.3 with their 90% confidence bounds.

In addition to the exponential, the following candidate functions are also tested:

$$
\begin{align*}
& h_{a}(r)=a_{1} \cdot r^{-a_{2}} \tag{5.45}\\
& h_{a}(r)=a_{1} \cdot \exp \left[-a_{2} \cdot r\right]+a_{3} \cdot \exp \left[-a_{4} \cdot r\right] \tag{5.46}
\end{align*}
$$

The constants are also estimated from the data base in Table 5.2 using Eq. (5.25). The derived constants are also given in Table 5.3.

The sums of the residual squares are calculated by:

$$
\begin{equation*}
S_{R}^{2}=\sum_{i}\left[\ln \left(M_{l}\right)_{i}-\ln \left\{\sum_{j k} \sum_{a} h_{k}\left(r_{k}\right) \cdot N_{j k}\right\}\right]^{2} \tag{5.47}
\end{equation*}
$$

The multiple correlation co-efficients are calculated by Eq. (4.9).
The results are also given in Table 5.3.
Eqs. (5.44) and (5.45) are first compared with each other because both have two unknown constants. From Table 5.3, the exponential function Eq. (5.44) has a larger multiple correlation coefficient than the power function Eq. (5.45). Eq. (5.44) is then preferred as an equation with two unknowns. Eq. (5.46) has two additional unknowns compared to Eq. (5.44). The decrease of the residual squares due to the added unknowns is tested by the partial F-value defined by Eq. (4.10) :

$$
F^{\prime}=\frac{(1.61-.656) / 2}{(.656) /(68-4-1)}=45.8
$$

Since the upper 10% F-value with $(2,63)$ degrees of freedom is 2.39 , the added two unknowns have a statistically significant effect on the variation of the first risk moment. The derived equations having the forms of Eqs. (5.44) and (5.46) are plotted in Fig. 5.4. Fig. 5.4 shows that the double exponential equation (5.46) fits the consequence result better than the single exponential equation (5.44) in the range of

Table 5.3 Estimates of Parameters of $a(r)$ and Sum of Residual Squares

Candidate Function	Estimates of Parameters	90\% Confidence Bounds		Sum of Residual Squares	Multiple Correlation Coefficient	Standard Deviation
		Upper	Lower			
$\mathrm{a}_{1} \cdot \exp \left(-\mathrm{a}_{2} \cdot \mathbf{r}\right)$	$a_{1}=3.51 \times 10^{-8}$	3.87×10^{-8}	3.18×10^{-8}	1.61	. 992	. 155
	$a_{2}=.600$. 621	. 580			
$a_{1} \cdot r^{-a_{2}}$	$a_{1}=1.86 \times 10^{-8}$	2.27×10^{-8}	1.53×10^{-8}	11.85	. 937	. 421
	$\mathrm{a}_{2}=1.994$	2.105	1.883			
$\begin{aligned} & a_{1} \cdot \exp \left(-a_{2} \cdot r\right)+ \\ & \quad+a_{3} \cdot \exp \left(-a_{4} \cdot r\right) \end{aligned}$	$a_{1}=2.12 \times 10^{-8}$	2.51×10^{-8}	1.79×10^{-8}	. 656	. 997	. 099
	$a_{2}=.526$. 550	. 502			
	$a_{3}=8.38 \times 10^{-8}$	1.06×10^{-7}	6.60×10^{-8}			
	$\mathrm{a}_{4}=1.852$	2.198	1.506			

$r<1$ mile and $r>12.5$ miles. These two equations will be further examined in Section V.7.

V.6.3 Evaluation of $b\left(r, r^{\prime}\right)$

Based on Eqs. (5.29) and (5.31), the quantities (b_{kk})'s are eliminated by the consequence program. Since $b_{k k}$ is two-dimensional, the diagonal components (b_{kk}) are plotted in Fig. 5.5(a). The offdiagonal components ($\mathrm{b}_{\mathrm{kk}}{ }^{\prime}$) are plotted versus the distance between r and r^{\prime} for a given value of r in Fig. 5.5(b). Fig. 5.5(a) shows that the diagonal components decrease approximately exponentially. Fig. 5.5(b) shows that the off-diagonal components also decrease approximately exponentially. Since $b\left(r, r^{\prime}\right)$ is symmetrical with respect to r and r^{\prime}, the following candidate function is therefore considered.

$$
\begin{equation*}
h_{b}\left(r, r^{\prime}\right)=b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \cdot \exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right] \tag{5.48}
\end{equation*}
$$

In addition, the following candidate functions are also examined:

$$
\begin{align*}
& h_{b}\left(r, r^{\prime}\right)=b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \cdot \exp \left[-b_{3} \cdot\left(r-r^{\prime}\right)^{2}\right] \tag{5.49}\\
& h_{b}\left(r, r^{\prime}\right)=b_{1} \cdot(r)^{-b_{2} \cdot\left(r^{\prime}\right)^{-b_{2}} \cdot \exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right]} \tag{5.50}\\
& h_{b}\left(r, r^{\prime}\right)=\left\{b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right]+b_{3} \cdot \exp \left[-b_{4} \cdot\left(r+r^{\prime}\right)\right] \cdot\right. \\
& \cdot \exp \left[-b_{5} \cdot\left|r-r^{\prime}\right|\right] \tag{5.51}
\end{align*}
$$

Using the data base in Table 5.2 and Eq. (5.27), the constants of the candidate equations are estimated. The sums of the residual squares and the multiple correlation co-efficients are also calculated. The results are given in Table 5.4.

The multiple correlation co-efficients of Eqs. (5.48) and (5.49) in

Fig.5.5a Diagonal Component of the Transfer Function $b\left(r, r^{\prime}\right)$ for PWR Accidents

Fig. 5.5b Off-diagonal Component of the Transfer Function $b\left(r, r^{\prime}\right)$ for PWR Accidents

Table 5.4 Estimates of Parameters of $b\left(r, r^{\prime}\right)$ and Sum of Residual Squares

Candidate Function	Estimates of Parameters	90\% Confidence Bounds		Sum of Residual Squares	Multiple Correlation Coefficient	Standard Deviation
		Upper	Lower			
$\begin{aligned} & \mathrm{b}_{1} \cdot \exp \left[-\mathrm{b}_{2} \cdot\left(\mathrm{r}+\mathrm{r}^{\prime}\right)\right] \\ & \cdot \exp \left[-\mathrm{b}_{3} \cdot\left\|r-\mathrm{r}^{\prime}\right\|\right] \end{aligned}$	$b_{1}=2.05 \times 10^{-8}$	2.50×10^{-8}	1.68×10^{-8}	5.85	. 986	. 295
	$\mathrm{b}_{2}=.352$. 368	. 341			
	$\mathrm{b}_{3}=.557$. 826	. 287			
$\begin{array}{r} b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \\ \cdot \exp \left[-b_{3} \cdot\left(r-r^{\prime}\right)^{2}\right] \end{array}$	$\mathrm{b}_{1}=2.00 \times 10^{-8}$	2.43×10^{-8}	1.65×10^{-8}	5.92	. 985	. 297
	$b_{2}=.343$. 359	. 327			
	$\mathrm{b}_{3}=.472$. 787	. 158			
$\begin{aligned} & b_{1} \cdot\left(r \cdot r^{\prime}\right)^{-b_{2}} \\ & \quad \exp \left[-b_{3} \cdot\left\|r-r^{\prime}\right\|\right] \end{aligned}$	$\mathrm{b}_{1}=1.38 \times 10^{-8}$	2.05×10^{-8}	9.30×10^{-9}	33.74	. 913	. 710
	$\mathrm{b}_{2}=1.362$	1.462	1.262			
	$b_{3}=.515$	1.138	0			
$\begin{aligned} & \left\{b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right]\right. \\ & \quad+b_{3} \\ & \quad \cdot \exp \left[-b_{4} \cdot\left(r+r^{\prime}\right)\right] \\ & \quad \times \exp \left[-b_{5} \cdot\left\|r-r^{\prime}\right\|\right] \end{aligned}$	$\mathrm{b}_{1}=1.30 \times 10^{-8}$	1.71×10^{-8}	9.83×10^{-9}	3.79	. 991	. 238
	$\mathrm{b}_{2}=.320$. 507	. 133			
	$\mathrm{b}_{3}=1.08 \times 10^{-7}$	1.85×10^{-7}	6.28×10^{-8}			
	$\mathrm{b}_{4}=1.117$	1.459	. 775			
	$\mathrm{b}_{5}=.664$. 933	. 395			

Table 5.4 are approximately equal. The difference in the off-diagonal components between Eqs. (5.48) and (5.49) has an insignificant effect on the multiple correlation co-efficient. The power function Eq. (5.50) has a smaller multiple correlation coefficient in Table 5.4. Among the examined equations of three unknown constants, Eq. (5.48) is selected in this study because of its simple form and larger multiple correlation coefficient.

The effect of the added two unknowns in Eq. (5.51) is tested by the partial F-value:

$$
F^{\prime}=\frac{(5.85-3.79) / 2}{3.79 /(68-5-1)}=16.88
$$

Since the upper 10% F-value with $(2,61)$ degrees of freedom is 2.39 , the added two unknowns have a statistically significant effect on the variation of the second risk moment. The derived equations having the forms of Eqs. (5.48) and (5.51) are shown in Figs. $5.5(\mathrm{a})$ and $5.5(\mathrm{~b})$. Eq. (5.51) fits the consequence results better than Eq. (5.48) in the range of r and $r^{\prime}<1$ mile. Eqs. (5.48) and (5.51) will be further examined in Section V.7.
V.6.3 Evaluation of $c(r)$

Based on Eqs. (5.29) and (5.40), the quantities γ_{k} 's are estimated by the consequence program and the final estimates are plotted in Fig. 5.6. As discussed in Section V.6.1.2, $\gamma(r)$ can underestimate $c(r)$ but it can be expected that $c(r)$ and $\gamma(r)$ can be expressed by the same form of functions. Since Fig. 5.6 suggest an exponential function, an exponential function, an exponential candidate function of $c(r)$ is studied:

$$
\begin{equation*}
h_{c}(r)=c_{1} \cdot \exp \left[-c_{2} \cdot r\right] \tag{5.52}
\end{equation*}
$$

In addition, the following functions are also tested:

$$
\begin{align*}
& h_{c}(r)=c_{1} \cdot r^{-c_{2}} \tag{5.53}\\
& h_{c}(r)=c_{1} \cdot \exp \left[-c_{2} \cdot r\right]+c_{3} \cdot \exp \left[-c_{4} \cdot r\right] \tag{5.54}
\end{align*}
$$

Using the data base in Table 5.2, the constants of the candidate functions are derived. The estimates of the constants, the sums of the residual squares and the multiple correlation coefficients are given in Table 5.5.

The multiple correlation coefficient of the power function Eq. (5.53) is smaller than that of the exponential function Eq. (5.52). The exponential function is then preferred to the power function. The effect of the two additional unknowns in Eq. (5.54) is studied by the partial F-value as:

$$
F^{\prime}=\frac{(.288-.240) / 2}{.240 / 63}=6.3
$$

Since the upper 10% F-value with $(2,63)$ degrees of freedom is 2.39 , the added two unknowns have a statistically significant effect on the variation of the normalization constant. The derived equations (5.52) and (5.54) are compared with the consequence results in Fig. 5.6. Both of the derived equations of $c(r)$ slightly overestimate the plots of γ_{k} 's as discussed in Section V.6.1.2. But the difference between $c(r)$ and γ_{k} 's appears to be small. The double exponential equation (5.54) has a slower rate of decrease than the single exponential equation (5.52) in the range of $r>10$ miles. Eqs. (5.52) and (5.54) will be further examined in Section V.7.

Fig. 5.6 Transfer Functions $c(r)$ and $\gamma(r)$ for PWR Accidents
Note: The lices show the estimates of $c(r)$ and the dots show $\gamma(r)$, which is an approximation
of $c(r)$.

Table 5.5 Estimates of Parameters of $c(r)$ and Sum of Residual Squares

Candidate Function	Estimates of Parameters	90\% Confidence Bounds		Sum of Residual Squares	Mu1tiple Correlation Coefficient	Standard Deviation
		Upper	Lower			
$\mathrm{c}_{1} \cdot \exp \left[-\mathrm{c}_{2} \cdot \mathrm{r}\right]$	$\mathrm{c}_{1}=1.12 \times 10^{-7}$	1.16×10^{-7}	1.08×10^{-7}	. 238	. 999	. 066
	$\mathrm{c}_{2}=.398$. 407	. 390			
$\mathrm{c}_{1} \cdot \mathrm{r}^{-\mathrm{c}_{2}}$	$c_{1}=7.26 \times 10^{-8}$	8.03×10^{-8}	6.57×10^{-8}	4.30	. 979	. 253
	$\mathrm{c}_{2}=1.124$	1.195	1.053			
$\begin{aligned} & \mathrm{c}_{1} \cdot \exp \left[-\mathrm{c}_{2} \cdot \mathrm{r}\right] \\ & \quad+\mathrm{c}_{3} \cdot \exp \left[-\mathrm{c}_{4} \cdot \mathrm{r}\right] \end{aligned}$	$c_{1}=7.61 \times 10^{-8}$	1.38×10^{-7}	4.19×10^{-8}	. 240	. 999	. 060
	$\mathrm{c}_{2}=.346$. 407	. 284			
	$c_{3}=5.63 \times 10^{-8}$	1.09×10^{-7}	2.90×10^{-8}			
	$c_{4}=.784$	1.315	. 253			

V. 7 Examination of the Adequacy of the Regression Equations

The adequacy of the regression equations derived in the previous section is investigated with regard to the predicted risk characteristics and predicted distribution behaviors.

V.7.1 Predicted Risk Characteristics

(1) First Risk Moment M_{1}.

The first risk moment is first estimated from the regression results of the single exponential equation (5.44) for each of the 68 sample population distributions. The regression estimate is given by:

$$
\begin{align*}
\left(M_{1}\right)_{i} & =\sum_{j k}^{\sum \sum} \hat{a}_{1} \cdot \exp \left[-\hat{a}_{2} \cdot r_{k}\right] \cdot\left(N_{j k}\right)_{i} \\
i & =1, \ldots, 68 \tag{5.55}
\end{align*}
$$

where \hat{a}_{1} and \hat{a}_{2} are the derived constants. The estimates by Eq. (5.55) are given in Table 5.6. The estimates are then plotted versus the consequence results in Table 5.2. This plot is shown in Fig. 5.7. If the regression estimates accurately predict the data, the points in Fig. 5.7 should lie about the 45 degree line and no systematic error is observed (i.e., tendencies to overpredict or underpredict various ranges of the data). The largest deviation between the predicted and data first risk moment is a factor of 1.7.

The regression results of the double exponential equation (5.46) are examined in a similar manner. The regression estimates are given by:

Table 5.6 Estimates of the Dependent Variables from the Single Exponential Transfer Functions

```
\(a(r)=a_{1} \cdot \exp \left(-a_{2} \cdot r\right)\)
\(b\left(r, r^{\prime}\right)=b_{1} \cdot \exp \left(-b_{2} \cdot\left(r+r^{\prime}\right)\right) \cdot \exp \left(-b_{3} \cdot\left|r-r^{\prime}\right|\right)\)
\(c(r)=c_{1} \cdot \exp \left(-c_{2} \cdot r\right)\)
```


Fig.5.7 Test of the Regression Results of the First Risk Homent for $a(r)=a_{1} \cdot \exp \left(-a_{2} \cdot r\right)$

$$
\begin{align*}
\left(M_{1}\right)_{i}= & \sum_{j k} \sum_{k}\left\{\hat{a}_{1} \cdot \exp \left[-\hat{a}_{2} \cdot r_{k}\right]+\hat{a}_{3} \cdot \exp \left[-\hat{a}_{4} \cdot r_{k}\right]\right\} . \\
& \left(N_{j k}\right)_{i} \quad i=1, \ldots, 68 \tag{5.56}
\end{align*}
$$

where $\hat{a}_{1}, \ldots, \hat{a}_{4}$ are the derived constants. The estimates by Eq. (5.56) are given in Table 5.7. The estimates are plotted in Fig. 5.8. The largest deviation between the predicted and the data first moment is a factor of 1.3.

The largest deviation of a factor of 1.7 of the estimates by Eq. (5.55) is judged to be acceptable for risk analysis and decision making considering the uncertainties of the consequence model. If more accuracy is required in the risk analysis, the estimates of the double exponential function by Eq. (5.56) can be used. The distribution behaviors will be examined later in this section based on the estimates by Eq. (5.55).
(2) Second Risk Moment M_{2}

The second risk moment is first estimated from the derived regression equation (5.48) for each of the 68 sample population distributions by:

$$
\begin{aligned}
&\left(M_{2}\right)_{i}= \\
& \sum \sum \sum \sum \sum_{k} \hat{b}_{1} \cdot \exp \left[-\hat{b}_{2} \cdot\left(r_{k}+r_{k^{\prime}}\right)\right] \cdot \exp \left[-\hat{b}_{3}\right. \\
&\left.\cdot\left|r_{k}-r_{k^{\prime}}\right|\right] \cdot\left(N_{j k}\right)_{i} \cdot\left(N_{j k^{\prime}}\right)_{i} \quad i=1, \ldots, 68
\end{aligned}
$$

where \hat{b}_{1}, \hat{b}_{2} and \hat{b}_{3} are the derived constants. The predicted second risk moments are given in Table 5.6. The plots of the predicted versus the data second risk moments are given in Fig. 5.9. The points in Fig. 5.9 lie about the 45 degree line and the deviations show no systematic error. The largest

Table 5.7 Estimates of the Dependent Variables from the Double Exponential Transfer Functions

$$
\begin{aligned}
& a(r)=a_{1} \cdot \exp \left(-a_{2} \cdot r\right)+a_{3} \cdot \exp \left(-a_{4} \cdot r\right) \\
& b\left(r, r^{\prime}\right)=\left(b_{1} \cdot \exp \left(-b_{2} \cdot\left(r+r^{\prime}\right)\right)+b_{3} \cdot \exp \left(-b_{4}\left(r+r^{\prime}\right)\right)\right) \\
& c(r)=c_{1} \cdot \exp \left(-c_{2} \cdot r\right)+c_{3} \cdot \exp \left(c_{4} \cdot r\right)
\end{aligned}
$$

Fig.5.3 Iest of the Resressior Eesults of the First Risix Moment for
$a(r)=a_{1} \cdot \exp \left(-a_{2} \cdot r\right)+a_{3} \cdot \exp \left(-a_{4} \cdot r\right)$
deviation between the predicted and data second risk moments is a factor of 2.4.

The regression results of Eq. (5.51) are also examined. The regression estimates are given by:

$$
\begin{align*}
\left(M_{2}\right)_{i} & =\underset{j k k^{\prime}}{\sum \sum}\left\{\hat{b}_{1} \cdot \exp \left[-\hat{b}_{2} \cdot\left(r_{k}+r_{k^{\prime}}\right)\right]+\right. \\
& +\hat{b}_{3} \cdot \exp \left[-\hat{b}_{4} \cdot\left(r_{k}+r_{k^{\prime}}\right)\right] \times \exp \left[-\hat{b}_{5} \cdot\left|r_{k}-r_{k^{\prime}}\right|\right] \cdot \\
& \cdot\left(N_{j k}\right)_{i} \cdot\left(N_{j k^{\prime}}\right)_{i} \quad i=1, \ldots, 68 \tag{5.58}
\end{align*}
$$

The estimates are shown in Table 5.7 and Fig. 5.10. The largest deviation between the predicted and the data is a factor of 1.9.

The largest deviation of a factor of 2.4 of Eq. (5.57) is judged to be acceptable for risk analysis. The distribution behavior will be studied later in this section based on the second risk moment estimated by Eq. (5.57). If further accuracy is required in the analysis, the estimates by Eq. (5.58) can be used.
(3) Normalization Constant α

The normalization constant is estimated from the derived single exponential equation (5.52) for each of the 68 samples by:

$$
\begin{equation*}
\hat{\alpha}_{i}=\sum_{j} \hat{c}_{1} e^{-\hat{c}_{2}\left(d_{j}\right)_{i}} \quad i=1, \ldots, 68 \tag{5.59}
\end{equation*}
$$

where \hat{c}_{1} and \hat{c}_{2} are the derived constants. The results are given in Table 5.6 and Fig. 5.11. The points in Fig. 5.11 do not show any systematic error. The largest deviation is a

$$
\begin{aligned}
& \text { Fig. } 5 \cdot 9 \text { Test of the Regression Sesults of the } \\
& \text { Second aisi homent for } \\
& b\left(r, r^{\prime}\right)=b_{1} \cdot \exp \left(-b_{2} \cdot\left(r+r^{\prime}\right)\right) \cdot \exp \left(-b_{3}\left|r-r^{\prime}\right|\right)
\end{aligned}
$$

Fis. 5.10 Iest of the Resression Results of the Second inst ionert for

$$
\begin{aligned}
b\left(r, r^{\prime}\right)= & \left(b_{1} \cdot \exp \left(-o_{2} \cdot\left(r+r^{\prime}\right)\right)+o_{3} \cdot \exp \left(-b_{4}\left(r+r^{\prime}\right)\right)\right) \\
& \exp \left(-b_{5} \cdot\left|r-r^{\prime}\right|\right)
\end{aligned}
$$

factor of 1.2 .
The double exponential equation (5.54) is also examined. The normalization constant is estimated by:

$$
\begin{align*}
\alpha_{i}= & \sum_{j}\left\{\hat{c}_{1} \cdot \exp \left[-\hat{c}_{2} \cdot\left(d_{j}\right)_{i}\right]+\dot{\hat{c}}_{3} \cdot \exp \left[-\hat{c}_{4} \cdot\left(d_{j}\right)_{i}\right]\right. \\
& i=1, \ldots, 68 \tag{5.60}
\end{align*}
$$

where $\hat{c}_{1}, \ldots, \hat{c}_{4}$ are the derived constants. The estimates are given in Table 5.7 and Fig. 5.12. The largest deviation is a factor of 1.2 .

The largest deviation of a factor of 1.2 of the estimates by Eq. (5.59) is judged to be acceptable considering the uncertainties of the consequence model. The distribution behaviors will be examined later in this section based on the estimates by Eq. (5.59). If more accuracy is required in the analysis, the estimates by Eq. (5.60) can be used.

Since no systematic error is observed in the normalization constant and since the deviations between the predicted and data normalization constants are smaller than those of the first and second risk moments, the approximation of Eq. (5.19) relating α to the closest distance d_{j} at which people live is therefore judged to be adequate for the calculations performed in this study. However it should be noted that this specific example does not prove that the approximation of Eq. (5.19) is valid for other types of consequences and for other types of meteorological models. Careful studies will be required for each different case.

Fis.5.11 Iest of the Resression Results of the Normalization Constant for $c(r)=c_{1} \cdot \exp \left(-c_{2} \cdot r\right)$

V.7.2 Predicted Distribution Behaviors

The next step in assessing the regression results is to test the combined effects of regression errors on the distribution behaviors. The examined regression results are single exponential equations (5.44), (5.48) and (5.52). The distribution behaviors are predicted by the Weibull distribution, the parameters of which are estimated from the regression results.
(1) Weibull Shape Factor and Scale Factor
c The shape factor β and scale factor η are first derived from the regression results of M_{1}, M_{2} and α given in Table 5.6 for each of the 68 samples of the population distributions. Secondly, B and η are then derived from the data values of M_{1}, M_{2} and a given in Table 5.2.

The shape factors from the regression results and the data values are compared in Fig. 5.13. The points lie about the 45 degree line and the deviations do not show systematic error in Fig. 5.13. The largest deviation is 0.14 and 90% of the points are within the bounds of $\pm .08$. The scale factors are similarly compared in Fig. 5.14. The points lie about the 45 degree line and the deviations do not show any systematic error. The largest deviation is a factor of 1.9 and 90% of the points are within factors of 1.4 and $1 / 1.4$.

The deviations of the shape and scale factors are within the uncertainties of the consequence model: further judgement in the acceptability is obtained from the complementary cumulative distributions which are discussed next.

Fig.5.13 Test of the Zesressior Fesults for the
Weibull Shape Factor

Fis. 5.14 Test of the Eegression 2esults for the
Weibull Scale Factor
(2) Complementary Cumulative Distribution

The complementary cumulative distribution is obtained from the shape factor and scale factor estimated from the regression equations for each of the 68 samples, i.e.,

$$
\begin{equation*}
F^{c}(x)=\alpha \exp \left[-\left(\frac{x}{n}\right)^{\beta}\right] \tag{5.61}
\end{equation*}
$$

This derived complementary cumulative distribution is then compared for each of the sample population distributions with the data distribution of consequence vs. frequency calculated by the consequence model. These data curves are obtained directly from the consequence calculation and do not involve fittings to the data values of M_{1}, M_{2} and α. Two of the samples will be specifically discussed here. One is the sample (\#63) which gives the largest deviation of β in Fig. 5.13. The other is the sample ($\ddagger 39$) which gives the largest deviation of η in Fig. 5.14.

Fig. 5.15 compares the predicted complementary cumulative distribution with the data distribution of site (\#63). The predicted distribution underestimates the probabilities between 100 fatalities and 500 by a factor of maximum 1.2 and underestimates the magnitude below $10^{-8} /$ year by a factor of 1.6. The magnitudes of these errors are smaller than the uncertainty ranges of the consequence model, which were estimated to be factors of 5 and $1 / 5$ on the probabilities and factors of 4 and $1 / 4$ for the consequence magnitude. (See Section III.5.1).

Fig. 5.16 compares the complementary cumulative distribu-
tion estimated from the regression equations to the data distribution of site（\＃39）．The estimated distribution under－ estimates the probabilities between 300 fatalities and 3000 by a factor of 4 at most．The underestimation of the consequence magnitude is maximum a factor of 3 in the same interval． These errors are also within the uncertainty ranges given for the consequence model．For the other samples examined，the complementary cumulative distributions from regression and the data complementary cumulative distributions agree at least as well as for the samples（ $⿰ ⿰ 三 丨 ⿰ 丨 三 39$ ）and（ $\$ 63$ ）．

The samples other than（ $\ddagger 39$ ）and（ $\$ 63$ ）are now examined with regard to the consequence magnitude at a specific comple－ mentary cumulative frequency．Since the effects of the errors of β and η on the tail behaviors can be large and the tail behaviors are of importance，the consequence magnitudes at $10^{-9} /$ year are selected to test the regression fits．The value of 10^{-9}／year is a truncation point in the consequence model， which was determined by the compromise between accuracy and computation time（Ref－1）．

The consequence magnitude at 10^{-9}／year is first derived for the 68 samples from β and η estimated by the regression results．The percentile is given by：

$$
\begin{equation*}
x_{\left(10^{-9}\right)}=\eta \cdot\left[\ln \left(\frac{\alpha}{10^{-9}}\right)\right]^{1 / \beta} \tag{5.62}
\end{equation*}
$$

The consequence magnitude of $10^{-9} /$ year of the data distribu－ tion are then estimated by interpolation of the adjacent two data points below and above $10^{-9} /$ year．

Fig .5 .15 lest of the Regression Results for Site $\neq 53$ of the Largest Deviation in β

$$
\begin{align*}
& \ln \left[x_{\left(10^{-9}\right)}\right]=\ln \left[x_{\ell}\right]+\frac{\ln \left(10^{-9}\right)-\ln \left(F_{\ell}^{C}\right)}{\ln \left(F_{h}^{C}\right)-\ln \left(F_{\ell}^{C}\right)} . \\
& \cdot\left(\ln x_{h}-\ln x_{\ell}\right) \tag{5.63}
\end{align*}
$$

where the subscripts h and ℓ denote the two adjacent points.
Fig. 5.17 compares the consequence magnitudes estimated from regression to those estimated from the data distributions. The estimates from regression systematically overpredict the estimates of the data distributions. The bias is a factor of 1.2. This error can be due to the fact that the consequence model tend to underestimate the tails of the distributions if sufficient number of trials are not taken. More importantly, the largest deviation is a factor of 2.0 , which is smaller than the uncertainty ranges of factors 4 and $1 / 4$ in the consequence model.

V.7.3 Conclusions from the Regression Examinations

The regression results have been examined for their ability to predict the risk characteristics and distribution behaviors. The equations examined were:

$$
\begin{align*}
& a(r)=3.51 \times 10^{-8} \cdot \exp [-.600 r] \tag{5.64}\\
& a(r)=2.12 \times 10^{-8} \exp [-.526 r]+8.38 \times 10^{-8} \exp [-1.852 r] \tag{5.65}\\
& \left.b\left(r, r^{\prime}\right)=2.05 \times 10^{-8} \exp \left[-.352\left(r+r^{\prime}\right)\right] \cdot \exp \left[-.557 \mid r-r^{\prime}\right]\right] \tag{5.66}\\
& b\left(r, r^{\prime}\right)=\left\{1.30 \times 10^{-8} \exp \left[-.320\left(r+r^{\prime}\right)\right]+\right. \\
& \left.\quad+1.08 \times 10^{-7} \exp \left[-1.117\left(r+r^{\prime}\right)\right]\right\} \cdot \exp \left[-.664\left|r-r^{\prime}\right|\right] \tag{5.67}\\
& c(r)=1.12 \times 10^{-7} \exp [-.398 r] \tag{5.68}
\end{align*}
$$

Fig.5.17 Test of the Regression Results for the Corsequence Vasnituce at 10^{-9} per Year

$$
\begin{equation*}
c(r)=7.61 \times 10^{-8} \exp [-.346 \mathrm{r}]+5.63 \times 10^{-8} \exp [-.784 \mathrm{r}] \tag{5.69}
\end{equation*}
$$

No systematic errors were observed in the prediction of M_{1}, M_{2} and α. The largest deviations were factors of 1.7 for Eq. (5.64), 1.3 for Eq. (5.65), 2.4 for Eq. (5.66), 1.9 for Eq. (5.67), 1.2 for Eq. (5.68) and 1.2 for Eq. (5.69). The equations (5.64), (5.66) and (5.68) with smaller number of unknowns were judged to be acceptable considering the uncertainties of the consequence model.

The predicted distribution behaviors were then examined for Eqs. (5.64), (5.66) and (5.68). No systematic errors were observed for the prediction of β and η. The largest deviations were 0.14 for β and a factor of 1.9 for η. The complementary cumulative distributions for the two samples which showed the largest deviation for β and η were within the uncertainty ranges of the consequence model. The consequence magnitudes at 10^{-9} /year derived from the regressions overestimate those from the data by a factor of 1.2. This factor is not large and is within the uncertainty ranges of the consequence model.

Based on the above results, the derived equations (5.64), (5.66) and (5.68) were therefore judged to be acceptable for risk analysis and decision making.

V. 8 Example of Applications of the Regression Results

Having obtained the regression results, they can then be used to estimate the risk distributions for new situations of different populations without having to rerun the consequence model. Furthermore, because of the explicit relationship of the regression equations (transfer functions), the sensitivity studies and decision making studies are able to be performed in a straightforward manner. The regression
results applied to siting will be discussed here.

V.8.1 Application of Regression Results to Siting

The population distribution is one of the important factors in selection of sites for nuclear power plants. An example is given here for the application of the regression results to the siting studies based on an idealized population distribution. The population model considered is a bell-shaped, gaussian distribution illustrated in Fig. 5.18. The population distribution of a particular city or a town is expressed by the bell-shaped model in Fig. 5.18 and the overall population distribution of a site surrounded by numerous cities and towns can be expressed by the series of the bell-shaped population distributions. A city or a town expressed by the bell-shaped model is called a "population group" in this study.

The population distribution of a particular population group is assumed to be symmetric about its center. Let N_{T} be the total population in the group, R be the distance of its center from the reactor and σ_{R} be the average deviation from the center. 47% of the total population are living within the radius of σ_{R} and 90% are living within the radius of $2 \sigma_{R}$. Using the (r, ζ) co-ordinate in Fig. 5.18, the population per unit area at (r, ζ) is expressed by:

$$
\begin{equation*}
\rho(r, \zeta)=\frac{N_{T}}{2 \pi \sigma_{R}^{2}} \exp \left[-\frac{(r-R)^{2}}{2 \sigma_{R}^{2}}-\frac{\zeta^{2}}{2 \sigma_{R}^{2}}\right] \tag{5.70}
\end{equation*}
$$

From the regression results, the first risk moment is expressed as:

$$
\begin{align*}
M_{1} & =\sum_{j} \int_{0}^{\infty} a(r) \cdot n_{j}(r) d r \\
& =\int_{0}^{\infty} a(r) \cdot\left\{\sum_{j} n_{j}(r)\right\} \cdot d r \tag{5.71}
\end{align*}
$$

Fi玉.5.16 Eell-shaped Kodel of Population Distribution

Let $n_{T}(r)$ be the population in an anulus per unit r at distance r, i.e.,

$$
\begin{equation*}
n_{T}(r)=\sum_{j} n_{j}(r) \tag{5.72}
\end{equation*}
$$

Then,

$$
\begin{equation*}
M_{1}=\int a(r) \cdot n_{T}(r) \cdot d r \tag{5.73}
\end{equation*}
$$

Since the regression equation (5.71) is based on the (r, θ) coordinate, an approximation is made here to estimate $n_{T}(r)$ from $\rho(r, \zeta)$. The integration with respect to θ is approximated by the integration with respect to ζ.

$$
\begin{align*}
\mathrm{n}_{\mathrm{T}}(r) & =\int_{-\infty}^{\infty} \rho(r, \zeta) d \zeta \\
& =\frac{N_{T}}{\sqrt{2 \pi} \sigma_{R}} \exp \left[-\frac{(r-R)^{2}}{2 \sigma_{R}^{2}}\right] \tag{5.74}
\end{align*}
$$

$\mathrm{n}_{\mathrm{T}}(\mathrm{r})$ is also a gaussian distribution. When numerous cities and towns are considered, the overall population distribution is expressed by the series of the gaussian distributions:

$$
\begin{equation*}
n_{T}(r)=\sum_{\ell} \frac{\left(N_{T}\right)_{\ell}}{\sqrt{2 \pi}\left(\sigma_{R}\right)_{l}^{2}} \exp \left[-\frac{\left(r-R_{\ell}\right)^{2}}{2\left(\sigma_{R}\right)_{l}^{2}}\right] \tag{5.75}
\end{equation*}
$$

where the subscript ℓ refers to a specific city or town.
Using the population distribution in Eq. (5.75) and an exponential function for the transfer function $a(r)$, the first risk moment can be estimated to be:

$$
\begin{align*}
M_{1}= & \int_{0}^{\infty} a(r) \cdot n_{T}(r) d r \\
= & \int_{0}^{\infty} a_{1} \cdot \exp \left[-a_{2} \cdot r\right] \cdot\left\{\sum \frac{\left(N_{T}\right)_{\ell}}{\sqrt{2 \pi}\left(\sigma_{R}\right)_{\ell}} \exp \left[-\frac{\left(r-R_{\ell}\right)^{2}}{2\left(\sigma_{R}\right)_{\ell}^{2}}\right]\right\} d r \\
= & \sum_{\ell} a_{1} \cdot\left(N_{T}\right)_{\ell} \cdot \exp \left[-a_{2} \cdot R_{\ell}+\frac{a_{2}^{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}}{2}\right] \times \\
& \times \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}\left(\sigma_{R}\right)_{\ell}} \exp \left(-\frac{\left[r-R_{\ell}+a_{2}^{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}\right]^{2}}{2\left(\sigma_{R}\right)_{l}^{2}}\right) d r \tag{5.76}
\end{align*}
$$

The integral in Eq. (5.76) can be approximated by unity under the following conditions:

$$
\begin{equation*}
R_{\ell}>2\left(\sigma_{R}\right)_{\ell}+a_{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2} \tag{5.77}
\end{equation*}
$$

The discussion of this approximation is given in Appendix F. Then the first risk moment is finally estimated to be:

$$
\begin{equation*}
M_{1}=\sum_{\ell} a_{1} \cdot\left(N_{T}\right)_{\ell} \cdot \exp \left[-a_{2} \cdot R_{\ell}+\frac{a_{2}^{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}}{2}\right] \tag{5.78}
\end{equation*}
$$

The second risk moment and the normalization constant can be estimated in a similar manner. The estimation of these quantities are also discussed in Appendix F. Having obtained the first two risk moments and the normalization constant, the Weibull parameters can then be estimated by Eqs. (3.25) and (3.26). The comparison of the risk distributions derived from the bell-shaped population model to the results of the consequence calculation is also given in Appendix F.

Using the bell-shaped population model and the regression results, such as Eq. (5.78), the investigation can be made on the contributions of the cities and towns to the risk distribution. Alternatively, given the distances, radii and populations of the cities and towns, the decision making studies on selection of sites for nuclear power plants
can be made from the regression results, such as Eq. (5.78) In the following section, a numerical example is given for siting studies.

V.8.2 Numerical Example of Siting

A hypothetical siting problem is discussed here. Though siting problems are generally two-dimensionsal, the situation given here is a one-dimensional case. The two-dimensional problems can be solved by the same approach as in the example here.

The problem is posed as follows:
(1) A nuclear power plant is planned on a line between two large cities A and D in Fig. 5.19. Two towns are located between them. The populations other than the above four are not considered.
(2) The cities and town have bell-shaped population distributions and their distances, radii and populations are given in Fig. 5.19.
(3) Only the early fatalities are considered. The transfer functions previously derived for PWR accidents in the northeastern valley meteorological condition are used.
(4) The site is desired to be selected so as to keep the first risk moment less than that for the average of the first 100 commercial power plants, which is $4.6 \times 10^{-5} /$ reactor year. (See Section III.5.2.)

Set the origin of the axis at the center of the city A as shown in Fig. 5.19. The distance r of a site from the center of the city A is the variable that will be examined. As the site should be between A and D, the constraint is $0<r<R_{D}$. The problem then is to estimate the value of r that keeps the first risk moment less than $4.6 \times 10^{-5} /$ year

Fis. 5.l9 Geonetry for the Example Siting Problem
under the constraint of $0<r<R_{D}$.
From Eq. (5.78), the first risk moment is estimated as the sum of the contributions of the four population groups:

$$
\begin{align*}
M_{1}= & N_{A} \cdot a_{1} \cdot \exp \left[-a_{2} \cdot r+\frac{a_{2}^{2}}{2} \cdot \sigma_{A}\right] \\
& +N_{B} \cdot a_{1} \cdot \exp \left[-a_{2} \cdot\left|r-R_{B}\right|+\frac{a_{2}^{2}}{2} \cdot \sigma_{B}\right] \\
& +N_{C} \cdot a_{1} \cdot \exp \left[-a_{2} \cdot\left|r-R_{C}\right|+\frac{a_{2}^{2}}{2} \cdot \sigma_{C}\right] \\
& +N_{D} \cdot a_{1} \cdot \exp \left[-a_{2} \cdot\left|r-R_{D}\right|+\frac{a_{2}^{2}}{2} \cdot \sigma_{D}\right] \tag{5.79}
\end{align*}
$$

Using the numerical values in Fig. 5.19, and the constants of transfer functions estimated previously in Section V.6.2, the first risk moment is calculated and plotted in Fig. 5.20. The solid line in Fig. 5.20 shows the estimate of the first risk moments as a function of the distance from the center of the city A. The dashed lines show the contributions of each population group. From Fig. 5.20, the distances that satisfy the criteria are estimated to be:

$$
13 \text { miles < r < } 16 \text { miles }
$$

The plant can be selected within this area and will satisfy the imposed criteria.

Even though the example given here is highly restrictive, it shows the methods by which the approaches discussed in this study can be used in decision making involving risk. In more realistic situations, the second risk moment and the complementary cumulative distribution can be used to compare with additional risk criterial. Actual population distributions can also be used, perhaps involving numerical techniques and computer evaluations.

$$
\begin{aligned}
& \text { Fiz.5.20 Estimate of the First Risz Noment for the } \\
& \text { Example Sitins Problem }
\end{aligned}
$$

V. 9 Summary and Conclusions

The regression approach discussed in Chapter 4 was demonstrated in this chapter in which the population distribution was taken to be the basic variable. The early fatalities distribution of PWR accidents in the northeastern valley meteorological condition was used to derive the regression results. In the regression analysis, the first two risk moments and the normalization constant were selected as dependent variables. The data base for the regression analysis was prepared by the consequence computer program using the population distributions of the 68 sites as sample population distributions.

A number of candidate regression equations were studied. The following were judged to be adequate:

$$
\begin{align*}
M_{1}= & \sum \int_{j} a_{1} \exp \left(-a_{2} r\right) n_{j}(r) d r \tag{5.80}\\
M_{2}= & \sum \int_{j} \int_{r^{\prime}} b_{1} \exp \left[-b_{2}\left(r+r^{\prime}\right)\right] \exp \left[b_{3}\left|r-r^{\prime}\right|\right] \\
& \cdot n_{j}(r) n_{j}(r) d r d r^{\prime} \tag{5.81}\\
\alpha= & \sum\left[c_{1} \exp \left(-c_{2} r\right)\right]_{r=d} \tag{5.82}
\end{align*}
$$

The unknown constants in the equations above were estimated by the nonlinear least squares. The derived equations were tested for the predicted risk characteristics and for the predicted distribution behaviors. No systematic errors were observed for the risk characteristics and for the shape and scale factors of the Weibull distribution. The distributions of consequence vs. frequency derived from the regression equations agreed with the results of the consequence calculation within the uncertainty range of the consequence model.

Having obtained the regression results, they can be applied to new
situations for sensitivity studies and decision making investigations. Because of the simple form of the regression equations, the involved calculations are straightforward and do not require consequence code or large computer times. With regard to the new situations, the regression equations were applied to a hypothetical example of decision making involving siting. The location of a site which satisfy the specified criteria was obtained from the regression equations. The example illustrated how the approach of the study can be used in decision making.

CHAPTER VI

REGRESSION ANALYSIS OF RADIOACTIVE RELEASE

VI. 1 Introduction

The methods developed in this study will be applied to another evaluation situation in which the probabilities and magnitudes of radioactive releases are taken as the basic variables. The situation considered in this chapter concerns the evaluation of safety systems in nuclear power plants, involving engineering safety features, operation restrictions and maintenance procedures. Safety systems in nuclear power plants are designed to reduce the probabilities of the occurrences of the accidents or alternatively to reduce the magnitudes of the releases to tne environment. The equations relating the risk to the probabilities and magnitudes of the radioactive releases can then provide valuable information for the evaluations of safety systems.

In the Reactor Safety Study, the spectrum of the radioactive releases was expressed by the release categories shown in Table 6.1. These release categories are composites of numerous accident sequences with similar characteristics. PWR accidents are represented by 9 release categories ${ }^{(1)}$ and BWR accidents are represented by 5 release categories. In the preceding chapters of this thesis, the consequence calculation has been carried out for each of the release categories and the results have been combined to produce the overall risk from potential nuclear accidents. In this chapter each release category is
${ }^{1}$ Since PWR-1 category is subdivided into PWR-1A and PWR-1B due to the difference of energy release, PWR accidents are effectively represented by 10 release categories.

Table 6.1 Summary of Accidents Involving Core

	Probability	TIME Of	duration OF	WATNING: TIME FOR	ELIEVATION Of	CONTA IMMENT Enertiy relisise:	fraction of core inventory released (a)							
	per Reactor-Yr	RELEASE (Hr)	RELE:AS: (Hr)	evacuation (Hr)	(Mcters)	$\left.110^{6} \mathrm{Btu} / 11 \mathrm{x}\right)$	Ke-Kr	Org. 1	1	Cs-Rb	Te-Sb	Ma-Sr	Ru ${ }^{\text {(b) }}$	$L^{(c)}$
PWR 1	9×10^{-7}	2.5	0.5	1.0	25	$520{ }^{(d)}$	0.9	6×10^{-3}	0.7	0.4	0.4	0.05	0.4	3×10^{-3}
EWR 2	8×10^{-6}	2.5	0.5	1.0	0	170	0.9	7×10^{-3}	0.7	0.5	0.3	0.06	0.02	4×10^{-3}
Pioth 1	4×10^{-6}	5.0	1.5	2.0	0	6	0.6	6×10^{-3}	0.2	0.2	0.3	0.02	0.03	3×10^{-3}
PWR 4	5×10^{-7}	2.0	3.0	2.0	0	1	0.6	2×10^{-3}	0.09	0.04	0.03	5×10^{-3}	3×10^{-3}	4×10^{-4}
PWH 5	7×10^{-7}	2.0	4.0	1.0	0	0.3	0.3	2×10^{-3}	0.03	9×10^{-3}	5×10^{-3}	1×10^{-3}	6×10^{-4}	7×10^{-5}
PWH ©	6×10^{-6}	12.0	10.0	1.0	0	H/R	0.3	2×10^{-3}	8×10^{-4}	8×10^{-4}	1×10^{-3}	9×10^{-5}	7×10^{-5}	1×10^{-5}
PWR 7	4×10^{-5}	10.0	10.0	1.0	0	N/A	6×10^{-3}	2×10^{-5}	2×10^{-5}	1×10^{-5}	2×10^{-5}	1×10^{-6}	1×10^{-6}	2×10^{-7}
HWR is	4×10^{-5}	0.5	0.5	N/A	0	N/A	2×10^{-3}	5×10^{-0}	1×10^{-4}	5×10^{-4}	1×10^{-6}	1×10^{-8}	0	0
PWF'9	4×10^{-4}	0.5	0.5	N/A	0	N/A	3×10^{-6}	7×10^{-9}	1×10^{-7}	6×10^{-7}	1×10^{-9}	1×10^{-11}	0	0
hinh 1.	1×10^{-6}	2.0	2.0	1.5	25	130	1.0	7×10^{-3}	0.40	0.40	0.70	0.05	0.5	5×10^{-3}
HWR 2	6×10^{-6}	30.0	3.0	2.0	0	30	1.0	7×10^{-3}	0.90	0. 50	0.30	0.10	0.03	4×10^{-3}
HWR 3	2×10^{-5}	30.0	3.0	2.0	25	20	1.0	7×10^{-3}	0.10	0.10	0.30	0.01	0.02	3×10^{-3}
BWR 4	2×10^{-6}	5.0	2.0	2.0	25	N/A	0.E	7×10^{-4}	8×10^{-4}	5×10^{-3}	4×10^{-3}	6×10^{-4}	6×10^{-4}	1×10^{-4}
BWR 5	1×10^{-4}	3.5	5.0	N/A	150	N/A	5×10^{-4}	2×10^{-9}	6×10^{-11}	4×10^{-9}	8×10^{-12}	8×10^{-14}	0	0

(a) A discussion of the isotopes used in the study is found in Alpendix VI. Background on the isotope groups and release mechanisms is found in Appendix VII.
(L) Includes Mo, Rh, Tc, Co.
(c) Includes Nd, Y, Ce, Pr, La, Nb, Am, Cin, Pu, Np, 2r.
(d) A lower energy release rate than this value applies to fart of the period over which the radioactivity is being released. The effect of lower energy reledse rates on consequences is found in Appendix VI.

Note: Reproduced from TABLE 5-1 in Main Report of WASH-1400(Ref-1)
treated separately to study the consequences of a specific release.

VI. 2 Radioactive Release Variables

The regressor variables are identified from the characteristics of radioactive releases. Though the probability and magnitude are major characteristics of releases, other chacteristics also affect the consequences of radioactive releases, i.e., the time of the release, the duration of the release, the warning time for evacuation, the elevation of the release, and the energy content in the released plume. Table 6.1 shows the characteristics of the release categories of PWR and BWR accidents taken from WASH-1400 (Ref-1). These release data are used to generate the data base for the regression analysis. Each of the variables that characterize the radioactive releases will be discussed in the following subsections.

VI.2.1 Probability of Occurrence

Since the probability of occurrence does not affect the magnitude of consequences, the distribution $f_{q}(x)$ of consequence vs. frequency for a specific release q is expressed as the product of the probability of occurrence P_{q} and the conditional distribution $\mathrm{f}_{\mathrm{q}}^{*}(\mathrm{x})$ given the release q occurs.

$$
\begin{equation*}
f_{q}(x)=P_{q} \cdot f_{q}^{*}(x) \tag{6.1}
\end{equation*}
$$

The regression analysis is based on the conditional distribution $f_{\mathrm{q}}^{*}(\mathrm{x})$ and the probability of occurrence is therefore not included in the regressor variables.

VI.2.2 Time of Release

The time of the release refers to the time interval between the start of the accident and the release of the radioactive materials from the containment building to the atmosphere. The time of the release is used to calculate the initial decay of the radioactivity. Since increasing times reduce the amount of radioactivity released to the environment, the variable is included in the expression for effective source which will be defined in subsection VI.2.7. The time of the release is denoted by (T_{r}) hours.

VI.2.3 Duration of Release

The duration of the release is the total time during which the radioactive materials are emitted into the atmosphere. The duration is used to make it possible to account for the wind meander in long duration releases. The duration is denoted by (T_{d}) hours in the following equations.

VI.2.4 Warning Time for Evacuation

The warning time is the time interval between the awareness of impending core melt and the release of radioactive materials from the containment building. A longer warning time allows more time to evacuate the public to areas where the radiation exposure will be smaller or none. This variable is denoted by (T_{W}) hours in the regression equations.

VI.2.5 Elevation of Release

The elevation of release affects the dispersion pattern of airborne radioactive isotopes in the atmosophere. As the elevation increases, the maximum airborne concentration of radioactivity at the ground level

Abstract

decreases. The variable is denoted by (h) meters in the regression equations.

VI.2.6 Energy Content of Release

When the containment of a reactor breaks, a large amount of energy may be released with the radioactive isotopes in a form of high temperature steam. When the gas is at a high temperature, the radioactive plume will rise due to its buoyancy. The variable is denoted by (E) $10^{6} \times$ Btu/hr in the regression equations.

VI.2.7 Release Fractions

From the large number of isotopes produced in a reactor, 54 radioisotopes were assessed to be of importance in the Reactor Safety Study. The selection was based on quantities (curies), release fractions, radioactive half-lives, emitted radiation types and chemical characteristics. The 54 selected isotopes were grouped into 8 isotope groups based on their chemical behaviors. The release fractions of the core inventories were determined for the 8 isotope groups as given in Table 6.1.

Two approaches for selection of regressor variables are considered with regard to the release fractions. One is to select the release fractions of the eight isotope groups as the basic regressor variables. The isotope groups which have insignificant effect on the consequence can be eliminated, for example, by the stepwise regression method which was discussed in Section IV.2.6. A second approach is to define one variable which is a weighted sum of the release fractions of the eight isotope groups. In this study, the second approach is selected from the following reasons:
(1) Early fatalities are caused by the combined effects of the doses from the eight isotope groups. The decrease of the release fraction of one isotope group can be compensated by the increases of the releases of the other isotope groups.
(2) The release fractions of the eight groups are correlated with each other. For example, in Table 6.1 the release fractions of all of the eight isotope groups for PWR-9 release category are smaller than those for PWR-1 release category, because similar physical processes underly in the release mechanism for all of the isotope groups.

The weighting factors of the release fractions are derived from the physical consideration of the effects on early fatalities. The factors considered are the inventories in the core, the dose conversion factors and the dose-response factors. Since the early fatalities result essentially from the damage to three organs, the weighting factors are first defined for each organ. The organs considered are bone-marrow, lung and gastrointestinal tract. The weighting factor of isotope group (g) for organ (k) is defined to be:

$$
\begin{equation*}
\Omega_{g}^{(k)}=j \text { in group } \sum_{j} \frac{I_{j} \cdot \exp \left[-\lambda_{j} \cdot T_{r}\right] \cdot C_{j}^{(k)}}{(L D)_{50}^{(k)}} \tag{6.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{g}^{(k)}=\text { weighting factor of group (g) for organ (k). } \\
& I_{j}=\text { inventory of isotope (} j \text {) in the core [curies]. } \\
& \lambda_{j}=\text { radioactive decay constant of isotope (} j \text {) [/hour]. } \\
& T_{r}=\text { time of release [hour]. }
\end{aligned}
$$

$$
\begin{aligned}
& C_{j}^{(k)}=\text { dose conversion factor of isotope (} j \text {) to organ (k) } \\
& \quad\left[\mathrm{rem} \cdot \mathrm{~m}^{3} / \mathrm{C}_{i}-\mathrm{sec}\right] \\
& (\mathrm{LD}){ }_{50}^{(k)}=\text { dose to organ }(k) \text { lethal to } 50 \% \text { of the exposed } \\
& \quad \text { population [rem] }
\end{aligned}
$$

When the contribution of the build-up from the parent isotope is significant, the radioactive decay term $\exp \left[-\lambda_{j} \cdot T_{r}\right]$ is corrected to include the build-up term from the parent isotope.

The dose conversion factor in Eq. (6.2) is the sum of the three modes of exposure, which are inhalation dose, ground shine dose and cloud shine dose.

$$
\begin{equation*}
C_{j}^{(k)}=B \cdot\left(C_{I}\right)_{j}^{(k)}+s_{C} \cdot\left(C_{C}\right)_{j}^{(k)}+s_{G} \cdot\left(C_{G}\right)_{j}^{(k)} \cdot\left(V_{d}\right)_{j} \tag{6.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& B=\text { breathing rate }\left[\mathrm{m}^{3} / \mathrm{sec}\right] . \\
& \left(C_{I}\right)_{j}^{(k)}=\text { inhalation dose conversion factor of isotope (} j \text {) } \\
& \text { to organ (k) [rem/ } \left.C_{i}\right] . \\
& s_{C}=\text { shielding factor for cloud shine dose. } \\
& \left(C_{C}\right)_{j}^{(k)}=\text { cloud shine dose conversion factor of isotope (} j \text {) } \\
& \text { to organ (k) [rem } \cdot m^{3} / C_{i} \cdot \text { sec]. } \\
& s_{G}=\text { shielding factor for ground shine dose. } \\
& \left(C_{G}\right){ }_{j}^{(k)}=\text { ground shine dose conversion factor of isotope (} j \text {) } \\
& \text { to organ (k) [rem } \left.\cdot m^{2} / C_{i}\right] \text {. } \\
& \left(V_{d}\right)_{j}=\text { deposition velocity of isotope (} j \text {) [m/sec]. }
\end{aligned}
$$

The effective source for organ (k) is then defined by the sum of the release fractions weighted by the factors $\Omega_{\mathrm{g}}^{(\mathrm{k})}$.

$$
\begin{equation*}
\psi^{(k)}=\sum_{g} \Omega_{g}^{(k)} \cdot q_{g} \tag{6.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \psi^{(k)}=\text { effective source for organ (k) }\left[\mathrm{sec} / \mathrm{m}^{3}\right] . \\
& q_{\mathrm{g}}=\text { release fraction of isotope group (g). }
\end{aligned}
$$

The quantity $\psi^{(k)}$ can be interpreted as being related to the inverse of the atmospheric dispersion factor (X / Q) at a distance where 50% of the exposed population die due to the damage to the organ (k). The weighting factors $\Omega_{g}^{(k)}$ are given in Table 6.2. The discussion on the basis for the definition of the weighting factors and the source data used for deriving the values in Table 6.2 are given in Appendix G.

Since the risks resulting from the damage to the three organs are competing with each other, the overall effective source is defined by the maximum value of the $\left(\psi^{(k)}\right)$'s of the three organs.

$$
\begin{equation*}
\psi=\operatorname{Max}\left\{\psi^{\text {MARROW }}, \psi^{\text {LUNG }}, \psi^{\text {G.I. }}\right\} \tag{6.5}
\end{equation*}
$$

The overall effective source defined above is used in this study as the regressor variable. It is denoted by $(\psi) \times 10^{5} \mathrm{sec} / \mathrm{m}^{3}$ in the regression equations.
VI. 3 Selection of the Dependent Variables

As discussed in Section VI.2.1, the regression analysis is based on the conditional risk distribution given the specific release occurrence. The risk characteristics of the conditional risk distribu-

Table 6.2 Weighting Factors of Isotope Groups for Effective Source

Organ	Isotope Group	Weighting Factor Ω_{8}
Bone Marrow	$\mathrm{Kr}-\mathrm{Xe}$	$5.73 \times 10^{3}+7.90 \times 10^{4} \mathrm{exp}[-.20 \cdot \mathrm{Tr}]$
	$I^{\text {(1) }}$	$7.81 \times 10^{5} \exp [-.058 \cdot \mathrm{Tr}]$
	$\mathrm{Cs}-\mathrm{Rb}$	5.64×10^{4}
	$\mathrm{Te}-\mathrm{Sb}$	2.54×10^{5}
	$\mathrm{Ba}-\mathrm{Sr}$	5.01×10^{5}
	Ru	2.28×10^{5}
	La	1.77×10^{6}
Lung	$\begin{aligned} & \mathrm{Kr}-\mathrm{Xe} \\ & \mathrm{I}^{(1)} \end{aligned}$	$\begin{aligned} & 1.21 \times 10^{2}+1.6 \times 10^{3} \exp [-.20 \cdot \mathrm{Tr}] \\ & 3.35 \times 10^{4} \exp [-.058 \cdot \mathrm{Tr}] \end{aligned}$
	$\mathrm{Cs}-\mathrm{Rb}$	7.43×10^{3}
	$\mathrm{Te}-\mathrm{Sb}$	6.83×10^{4}
	$\mathrm{Ba}-\mathrm{Sr}$	3.32×10^{4}
	Ru	9.53×10^{5}
	La	4.28×10^{6}
G.I. Tract	$\begin{aligned} & \mathrm{Kr}-\mathrm{Xe} \\ & \mathrm{I}^{(\mathrm{I})} \end{aligned}$	$\begin{aligned} & 4.18 \times 10^{2}+8.2 \times 10^{3} \exp [-.20 \cdot \mathrm{Tr}] \\ & 7.70 \times 10^{4} \exp [-.058 \cdot \mathrm{Tr}] \end{aligned}$
	$\mathrm{Cs}-\mathrm{Rb}$	4.08×10^{3}
	$\mathrm{Te}-\mathrm{Sb}$	6.18×10^{4}
	$\mathrm{Ba}-\mathrm{Sr}$	1.69×10^{5}
	Ru	2.92×10^{5}
	La	1.53×10^{6}

tion are defined in a similar manner to those of the overall risk distribution given in Section I.2. For example, the risk moments of the conditional risk distribution about the origin are defined as:

$$
\begin{equation*}
M_{t}^{*}=\int x^{t} \cdot f^{*}(x) \cdot d x \tag{6.6}
\end{equation*}
$$

where M_{t}^{*} is the $t-t h$ risk moments of the conditional risk distribution about the origin.

The normalization constant of the conditional risk distribution α^{*} is similarly defined as:

$$
\begin{equation*}
\alpha^{*}=\int f^{*}(x) \cdot d x \tag{6.7}
\end{equation*}
$$

The transfer functions relating the risk moments to the population variables are also re-defined based on the conditional risk distribution as:

$$
\begin{align*}
& M_{1}^{*}=\sum_{j} \int_{r} a^{*}(r) \cdot n_{j}(r) \cdot d r \tag{6.8}\\
& M_{2}^{*}=\sum_{j} \int_{r} \int_{r^{\prime}} b^{*}\left(r, r^{\prime}\right) \cdot n_{j}(r) \cdot n_{j}\left(r^{\prime}\right) \cdot d r \cdot d r^{\prime} \tag{6.9}\\
& \alpha^{*}=\sum_{j}\left[c^{*}(r)\right]_{r=d_{j}} \tag{6.10}
\end{align*}
$$

The dependent variables of the regression analysis can be selected from the risk characteristics of the conditional risk distribution. In this chapter the transfer functions are again fitted to the parametric functions of the distance r and the constants of the fitted functions are used as dependent variables. The constants are now treated as being functions of the release characteristics. The advantage of the constants of the transfer functions is their independence of the specific population distribution. Therefore the results of the
regression analysis are applicable to any population distribution.
VI. 4 The Data Base for Regression Analysis
VI.4.1 Input Conditions

The release categories of $P W R$ and $B W R$ accidents in Table 6.1 are used as samples of radioactive releases for the regression analysis. A consequence calculation is made for each of the release categories using the northeastern valley meteorological condition and the radioactive inventories of a $3200 \mathrm{MW} /$ th power plant. Early fatalities occur only in eight out of the fifteen release categories. Since eight samples are not sufficient as the data base for the analysis, an additional 20 cases are calculated by changing one regressor variable at a time in the consequence program. The input conditions of the additional calculations are given in Table 6.3. The total 28 cases of calculation are performed. It should be noted that the probabilities of occurrence are assumed to be unity in the calculations in Table 6.3 since the regression analysis is based on the distribution of consequence vs. conditional probability given the accident occurrence.

VI.4.2 Derivation of the Constants of the Transfer Functions

The methods discussed in Section V.6.1 are used to derive the forms and the constants of the transfer functions. Figs. 6.1 through 6.4 show the consequence calculation results for $B W R-1, B W R-2$ and $B W R-3$ release categories. The following candidate functions are considered for these curves. They are the same functions that were considered for the PWR accidents in Chapter V.

$$
\begin{equation*}
a^{*}(r)=a_{1} \cdot \exp \left[-a_{2} \cdot r\right] \tag{6.11}
\end{equation*}
$$

Table 6.3 Conditions of Additional Consequence Calculations for Regression Analysis

Case No.	Time of Release (hr)	Duration of Release (hr)	Warning Time for Evacuation (hr)	Elevation of Release (m)	Energy Release ($10^{6} \mathrm{Btu} / \mathrm{hr}$)	Release Fractions			
						I	$\underline{\mathrm{Ru}}$	Te	others
1	2.0	0.5	1.5	25	300	. 4	. 5	. 7	BWR-1
2	2.0	0.5	1.5	25	30	. 4	. 5	. 7	BWR-1
3	2.0	0.5	1.5	25	6	. 4	. 5	. 7	BWR-1
4	30.0	3.0	2.0	10	6	. 9	. 03	. 3	BWR-2
5	2.0	0.5	. 5	25	130	. 4	. 5	. 7	BWR-1
6	2.0	0.5	1.0	25	130	. 4	. 5	. 7	BWR-1
7	2.0	0.5	2.0	25	130	. 4	. 5	. 7	BWR-1
8	2.0	0.5	3.0	25	130	. 4	. 5	. 7	BWR-1
9	2.5	0.5	2.0	25	520	. 7	. 4	. 4	PWR-1
10	2.5	0.5	3.0	25	520	. 7	. 4	. 4	PWR-1
11	2.5	0.5	2.0	25	20	. 7	. 4	. 4	PWR-1
12	2.5	0.5	3.0	25	20	. 7	. 4	. 4	PWR-1
13	2.0	1.5	1.5	25	130	. 4	. 5	. 7	BWR-1
14	2.0	3.0	1.5	25	130	. 4	. 5	. 7	BWR-1
15	2.0	0.5	1.5	25	130	. 1	. 5	. 7	BWR-1
16	2.0	0.5	1.5	25	130	1.0	. 5	. 7	BWR-1
17	2.0	0.5	1.5	25	130	. 4	. 1	. 7	BWR-1
18	2.0	0.5	1.5	25	130	. 4	1.0	. 7	BWR-1
19	2.0	0.5	1.5	10	130	. 4	. 5	. 7	BWR-1
20	2.0	0.5	1.5	1	130	. 4	. 5	. 7	BWR-1

$1_{\text {The }}$ release fractions of the other isotopes are the same as in the release categories given here.

Fiz. 6.l Transier Functions $a^{*}(r)$ for the EWr. Eelease

Catezories.

$$
\begin{gathered}
\text { Fia.6.2 Diasonal Components of the Irarsfer Functions } \\
b^{*}\left(r, r^{\prime}\right) \text { for BUE Selease Catesories }
\end{gathered}
$$

Fiz.б. 3 Off-diagonal Components of the Transter Eunctions $b *\left(r, r^{\prime}\right)$ at $r=0.25$ mile for the Evi Release Categories

Table 6.4 Estimates of a_{1} and a_{2} as the Data Base for the Regression of the Release Variables

Calculation Case		a_{1}	a_{2}
PWR-1A		9.13×10^{-3}	. 437
PWR - 1B		1.85×10^{-3}	. 562
PWR - 2		1.73×10^{-3}	. 512
PWR - 3		1.40×10^{-2}	1.600
PWR-4		3.38×10^{-2}	3.390
BWR -1		1.66×10^{-3}	. 451
BWR - 2		3.30×10^{-3}	1.66
BWR - 3		3.50×10^{-3}	3.76
Additional Cases ${ }^{(1)}$:	1	1.57×10^{-3}	. 504
	2	5.75×10^{-3}	. 403
	3	1.87×10^{-2}	. 397
	4	1.21×10^{-2}	1.401
	5	2.11×10^{-3}	. 468
	6	1.87×10^{-3}	. 458
	7	1.47×10^{-3}	. 460
	8	1.28×10^{-3}	. 449
	9	1.49×10^{-3}	. 546
	10	1.29×10^{-3}	. 535
	11	7.77×10^{-3}	. 442
	12	6.93×10^{-3}	. 432
	13	2.15×10^{-3}	. 618
	14	2.48×10^{-3}	. 737
	15	1.63×10^{-3}	. 522
	16	1.55×10^{-3}	. 301
	17	2.23×10^{-3}	. 661
	18	2.29×10^{-3}	. 323
	19	3.10×10^{-3}	. 489
	20	3.22×10^{-3}	. 505

${ }^{1}$ Corresponding to the calculation case number in Table 6.3.

$$
\begin{align*}
& b^{*}\left(r, r^{\prime}\right)=b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \cdot \exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right] \tag{6.12}\\
& c^{*}(r)=c_{1} \cdot \exp \left[-c_{2} \cdot r\right] \tag{6.13}
\end{align*}
$$

For the other releases, the same exponential functions are considered. The estimates of a_{1} and a_{2} for the 28 cases are given in Table 6.4. The estimates of the other constants $b_{1}, b_{2}, b_{3}, c_{1}$ and c_{2} are given in Appendix H. The estimates of the constants are used as the data base for the regression analysis.
VI. 5 Formulation of the Regression Model

The next step is to select candidate equations that relate the dependent variables $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}, c_{1}$ and c_{2} to the regressor variables discussed in Section VI.3. The analysis of the dependent variable a_{1} is discussed in detail. The results of the other regressions are mostly briefly presented.

The following points are considered in the selection of the candidate questions:
(1) The values of the dependent variables $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}, c_{1}$ and c_{2} are positive.
(2) The equations should have as few unknown constants as possible which still adequately fit the distributions of the dependent variables.
(3) The equations with smaller sum of the residual squares and no significant systematic error are desirable.

The relation of the dependent variables and each of the regressor variables is studied first. Table 6.5 shows the correlation co-efficient between the dependent variable a_{1} and each of the regressor
variables. Linear and natural logarithmic transformations are investigated. To have smaller sum of the residual squares, the transformation that gives the largest correlation co-efficient is preferred. Except for the elevation term (h), the natural logarithmic transformations of the regressor variables give larger correlation co-efficients than the linear transformations. Even for the elevation term, the difference of the correlation co-efficients between the two transformations of the regressor variable (h) is less than 0.1. To keep the model as simple as possible, natural logarithmic forms are selected for all of the regressor variables. Since the dependent variable a_{1} should be positive, the following regression model is considered:

$$
\begin{align*}
\ln a_{1} & =k_{01}+k_{11} \cdot \ln h+k_{21} \cdot \ln T_{w}+k_{31} \cdot \ln T_{d}+ \\
& +k_{41} \cdot \ln E+k_{51} \cdot \ln \psi+\varepsilon_{1} \tag{6.14}
\end{align*}
$$

where k_{01}, \ldots, k_{51} are constants to be derived and ε_{1} is the random error variable. Eq. (6.14) does not include the interaction terms. Possible interactions will be tested later.

The candidate equations of the other dependent variables are selected in a similar process. The following equations are thus considered in this study:

$$
\begin{align*}
\ln a_{2} & =k_{02}+k_{12} \cdot \ln h+k_{22} \cdot \ln T_{W}+k_{32} \cdot \ln T_{d}+ \\
& +k_{42} \cdot \ln E+k_{52} \cdot \ln \psi+\varepsilon_{2} \tag{6.15}\\
\ln b_{1} & =k_{03}+k_{13} \cdot \ln h+k_{23} \cdot \ln T_{w}+k_{33} \cdot \ln T_{d}+ \\
& +k_{43} \cdot \ln E+k_{53} \cdot \ln \psi+\varepsilon_{3} \tag{6.16}
\end{align*}
$$

Table 6.5 Correlation Coefficients of a_{1} and Regressor Variables

Dependent Variable	Regressor Variable	Correlation Coefficient
a_{1}	h	-. 466
	1 n h	-. 391
$\ln a_{1}$	h	-. 496
	$\ln \mathrm{h}$	-. 453
a_{1}	T_{w}	. 107
	$1 \mathrm{n} \mathrm{T}_{\mathrm{W}}$. 153
$\ln \mathrm{a}_{1}$	T ${ }_{\text {w }}$. 071
	$1 \mathrm{n} \mathrm{T}_{\mathrm{w}}$. 126
a_{1}	T_{d}	. 380
	1 n T d	. 382
$\ln a_{1}$	T_{d}	. 362
	$\ln \mathrm{T}_{\mathrm{d}}$. 371
a_{1}	E	-. 445
	$\ln \mathrm{E}$	-. 837
$\ln \mathrm{a}_{1}$	E	-. 597
	$\ln \mathrm{E}$	-. 882
a_{1}	ψ	-. 501
	1n ψ	-. 569
$\ln \mathrm{a}_{1}$	ψ	-. 466
	1n ψ	-. 492

(Note): $h=$ elevation of release (m)

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{W}}=\text { warning time for evacuation (hour) } \\
& \mathrm{T}_{\mathrm{d}}=\text { duration of release (hour) } \\
& \mathrm{E}=\text { energy release }\left(10^{6} \mathrm{Btu} / \mathrm{hr}\right) \\
& \psi=\text { effective source }\left(10^{5} \mathrm{~m}^{3} / \mathrm{sec}\right)
\end{aligned}
$$

$$
\begin{align*}
\ln b_{2} & =k_{04}+k_{14} \cdot \ln h+k_{24} \cdot \ln T_{W}+k_{34} \cdot \ln T_{d}+ \\
& +k_{44} \cdot \ln E+k_{54} \cdot \ln \psi+\varepsilon_{4} \tag{6.17}\\
\ln b_{3} & =k_{05}+k_{15} \cdot \ln h+k_{25} \cdot \ln T_{w}+k_{35} \cdot \ln T_{d}+ \\
& +k_{45} \cdot \ln E+k_{55} \cdot \ln \psi+\varepsilon_{5} \tag{6.18}\\
\ln c_{1} & =k_{06}+k_{16} \cdot \ln h+k_{26} \cdot \ln T_{W}+k_{36} \cdot \ln T_{d}+ \\
& +k_{46} \cdot \ln E+k_{56} \cdot \ln \psi+\varepsilon_{6} \tag{6.19}\\
\ln c_{2} & =k_{07}+k_{17} \cdot \ln h+k_{27} \cdot \ln T_{W}+k_{37} \cdot \ln T_{d}+ \\
& +k_{47} \cdot \ln E+k_{57} \cdot \ln \psi+\varepsilon_{7} \tag{6.20}
\end{align*}
$$

where k 's are unknown constants and ε 's are random error variables.
VI. 6 Derivation of the Constants of the Regression Equations

In the previous population regressions a small number of unknowns were involved. Because of the larger number of terms in the regression equations considered here, stepwise regression analysis is used to eliminate the terms which have insignificant effect on the variation of the dependent variables. In the stepwise regression, a partial F-statistic is used to eliminate the terms of insignificant effects, as discussed in Section IV.2.6. The linear multiple regression program in the DCRT Mathematical and Statistical Package of National Institute of Health (Ref-9) is used to calculate the F-values. An upper 10% level is selected as the criterion of elimination of the insignificant terms. Table 6.6 shows the process of elimination in the regression equation of $\left(\ln a_{1}\right)$. The calculated F-value of the warning time term ($1 \mathrm{n} \mathrm{I}_{\mathrm{w}}$) is smaller than the upper 10% F-value with $(1,22)$ degrees of
freedom. The term ($\ln T_{w}$) can then be eliminated. Then the equation without ($\ln \mathrm{T}_{\mathrm{w}}$) is tested.

$$
\begin{align*}
& \ln a_{1}=k_{01}+k_{11} \cdot \ln h+k_{31} \cdot \ln T_{d}+k_{41} \cdot \ln E+ \\
& \quad k_{51} \cdot \ln \psi+\varepsilon_{1} \tag{6.21}
\end{align*}
$$

The partial F-value is calculated again. Similarly, the term ($\ln \mathrm{T}_{\mathrm{d}}$) can also be eliminated. The elimination process is terminated when the partial F-values for the remaining variables are larger than the 10% level. For example, the partial F-value of ($\ln \psi$) shown in Table 6.6 is larger and hence is not eliminated. Additional t-tests are also made, as shown in Table 6.7, to help assure that the remaining terms cannot be eliminated.

From the stepwise regression, the final derived equation of $\ln a_{1}$ is thus:

$$
\begin{equation*}
\ln a_{1}=-2.56-.53 \ln E-.46 \ln h-.40 \ln \psi \tag{6.22}
\end{equation*}
$$

Interaction terms are then considered by adding the product terms to Eq. (6.22). For example, to consider the interaction of ($\ln h$) and ($\ln \psi$) the following equation is studied:

$$
\begin{align*}
\ln a_{1} & =k_{01}^{\prime}+k_{11}^{\prime} \cdot \ln E+k_{21}^{\prime} \cdot \ln h+k_{31}^{\prime} \cdot \ln \psi+ \\
& +k_{41}^{\prime} \cdot \ln \psi \cdot \ln h+\varepsilon_{1}^{\prime} \tag{6.23}
\end{align*}
$$

where $k_{01}^{\prime}, \ldots, k_{41}^{\prime}$ are constants and ε_{1}^{\prime} is the random error variable. Partial F-tests are made again with regard to the product term and are eliminated as shown in Table 6.8.

The significance of the final regression analysis is also tested by the F-value given in Table 6.9, which is related to the multiple

Table 6.6 Partial F-tests for the Elimination of Insignificant Regressor Variables for $\ln a_{1}$

Eliminated Regressor Variable	Difference of Residual Squares by Elimination	Mean of Residual Squares	$\begin{aligned} & \text { Partial } \\ & \text { F-value } \end{aligned}$	F-value at 10\% level (Degrees of Freedom)	
$\ln \mathrm{T}_{\mathrm{W}}$. 027	. 106	. 26	2.95	$(1,22)$
$1 \mathrm{n} \mathrm{T}_{\mathrm{d}}$. 033	. 102	. 32	2.94	$(1,23)$
1n ψ	. 751	. 099	7.59	2.93	$(1,24)$

Table 6.7 Results of t-tests of the Remaining Regressor Variables

Regressor Variable	Regression Coefficient	Standard Deviation of Regression Coefficient	$\underline{\text { t-value }}$ (1)
$\ln \mathrm{E}$	-. 596	. 053	-11.3
$\ln \mathrm{h}$	-. 456	. 091	-4.99
$\ln \psi$. 403	. 147	2.75
$\begin{aligned} & \quad 1_{t=1} \\ & \text { value of } \\ & \text { eliminated } \end{aligned}$	10% level with 24 ler than 1.31, t	egrees of freedon regression varia	If the absolute le can be

Table 6.8 Partial F-test of Interaction Terms

| | Sum of Square
 Attributable to | Mean Square of
 Interaction
 the Interaction
 Term | F-value
 Regression from |
| :--- | :--- | :--- | :--- | | (Degrees of
 Freedom) |
| :--- |

(Note): F-value is 2.94 at upper 10% significance level with degrees of freedom of (1,23).

Table 6.9 Analysis of Variance of Regression Analysis of $\ln a_{1}$

	Degrees of Freedom	Sum of Squares	Mean Squares	$\underline{F-v a l u e}$
Attributable to Regression Analysis	3	21.09	7.03	70.8
Deviation from Regression Analysis	24	2.38	. 099	
Total	27	23.47		
Intercept	-2.56			
Multiple Correlation	. 948			
Standard Error of Estimate	. 315			

correlation co-efficient. As the F-value at upper 0.1% significance level with $(3,24)$ degrees of freedom is 7.55 , the F-value of 70.8 in Table 6.9 shows that the regression equation (6.22) is statistically significant.

The final regression results of a_{1} are therefore:

$$
\begin{equation*}
a_{1}=7.73 \times 10^{-2} \cdot E^{-.53} \cdot h^{-.46} \cdot \psi^{.40} \tag{6.24}
\end{equation*}
$$

The 90% confidence bounds on a_{1} are estimated by $e^{1.645 s}$ and $e^{-1.645 s}$, where s is the standard deviation of $\ln a_{1}$ and is equal to 0.315 .

Similar analyses are made for the other dependent variables. The regression result of a_{2} is given in Table 6.10 and the results of b_{1}, b_{2}, b_{3}, c_{1} and c_{2} are summarized in Appendix H. The final equations obtained are:

$$
\begin{align*}
& a_{2}=2.93 \cdot t_{\mathrm{d}} .^{.23} \cdot \mathrm{E}^{.059} \cdot \psi^{-.98} \tag{6.25}\\
& \mathrm{~b}_{1}=4.16 \times 10^{-2} \cdot \mathrm{~h}^{-.27} \cdot \mathrm{E}^{-.39} \tag{6.26}\\
& \mathrm{~b}_{2}=1.75 \cdot \mathrm{~h}^{.043} \cdot \mathrm{t}_{\mathrm{d}} .19 \cdot \mathrm{E}^{.12} \cdot \psi^{-.99} \tag{6.27}\\
& \mathrm{~b}_{3}=1.45 \cdot \psi^{-.52} \tag{6.28}\\
& c_{1}=8.63 \times 10^{-2} \cdot \mathrm{~h}^{-.37} \cdot \mathrm{t}_{\mathrm{d}}^{-.65} \cdot \mathrm{E}^{-.65} \cdot \psi^{.93} \tag{6.29}\\
& \mathrm{c}_{2}=2.43 \cdot \mathrm{~h}^{-.080} \cdot \psi^{-1.02} \tag{6.30}
\end{align*}
$$

VI. 7 Investigation of the Adequacy of the Regression Results

The regression results of a_{1} and a_{2} are tested individually and collectively as follows. The examination of the other dependent variables is given in Appendix H.

Table 6.10 Regression Analysis of a_{2}

| | | Standard
 Error of
 Regression
 Coefficient | t-value |
| :--- | :--- | :--- | :--- | :--- |

VI.7.1 Examination of Individual Results

The quantity a_{1} is estimated from the regression results Eq. (6.24) for each of the 28 samples of the radioactive releases and is compared with the data in Table 6.5. The estimates and data are plotted in Fig. 6.5. If the regression estimates accurately predict the data, the points in Fig. 6.5 should lie closely about the 45 degree line. As observed the points do lie about the 45 degree line and no systematic error is observed (i.e., tendencies to overpredict or underpredict various ranges of data). The quantity a_{2} is similarly examined in Fig. 6.6 and no systematic error is observed.

Vi.7.2 Examination of the Combined Regression Results

The quantities a_{1} and a_{2} are constants of the transfer function $a(r)$. Possible combined errors are examined by estimating the first risk moments of the sample population distributions using a_{1} and a_{2} derived by the regression. The first risk moment is estimated from the regression results by:

$$
\begin{equation*}
\left(M_{1}^{*}\right)_{i, q}=\sum_{j} \sum_{k}\left(a_{1}\right)_{q} \cdot \exp \left[-\left(a_{2}\right)_{q} \cdot r_{k}\right] \cdot\left(N_{j k}\right)_{i} \tag{6.31}
\end{equation*}
$$

where $\left(M_{1}^{*}\right)_{i, q}$ is the estimate of the first risk moment of the conditional distribution at site i for the release $q . \quad\left(a_{1}\right)_{q}$ and $\left(a_{2}\right)$ are the constants of the transfer function for the release q estimated from the regression results. $\left(N_{j k}\right)_{i}$ is the population in the $k-t h a n n u l a r$ segment in the direction j at the site i. The estimates of the first risk moment is compared with the results of the consequence calculation. The population distributions Site A and Site B are used to evaluate the adequacy of the regression. The results in Fig. 6.7 do not show systematic error and the largest error is a factor of 1.7. In Chapter V

Fig.́. 5 Iest of the Regression Results of a_{1}

Fig.ó.́ Iest of the Regressicn Eesults of a_{2}

Fig.6.7 Comparison of the Estimated First fisi Aoment from Segression with the Consequence Results
the largest error observed in Fig. 5.6 was a factor of 1.7 and was found to be within the uncertainty bounds of the consequence model. Therefore the error in Fig. 6.7 can also be concluded within the error bounds of the consequence model.

Similar examinations are made for the regression results Eqs. (6.26) through (6.30) in Appendix H. The results are found to be adequate.
VI. 8 Example of Possible Applications of the Regression Results Having obtained the regression results, they can then be used for estimating the consequences of radioactive releases of different characteristics without having to rerun the consequence program. For example, in the Reactor Safety Study, numerous accident sequences obtained by the event tree analysis are grouped into the release categories in Table 6.1. Using the regression results, the first two risk moments and the normalization constant for each of the accident sequences in the release category can be estimated without rerunning the consequence program. Because of the explicit relationship of the regression equations, sensitivity studies and decision making studies are also able to be carried out in a straightforward manner. The regression results applied to an evaluation of the safety systems in a nuclear power plant will be particularly discussed here.

VI.8.1 Evaluation of the Safety Systems

The safety systems in a nuclear power plant include engineering safety features, operation restrictions and maintenance activities. They are designed to reduce the risk of the reactor accidents by reducing the probabilities of the occurrences or alternatively by
reducing the magnitudes of radioactive releases to the environment.
To present the application of the regression results to the evaluation of safety systems, a particular accident sequence q is considered. The distribution of consequence versus probability for the accident sequence is given by Eq. (6.1) as:

$$
\begin{equation*}
f_{q}(x)=P_{q} \cdot f_{q}^{*}(x) \tag{6.32}
\end{equation*}
$$

where P_{q} is the probability estimated for the accident sequence q and $f_{q}^{*}(x)$ is the conditional distribution given the accident occurrence.

The regression results allow the first two risk moments and the normalization constant of the conditional distribution $f_{q}^{*}(x)$ to be estimated from the release characteristics of the accident sequence, which involves the release fractions of the core inventories, the elevation of the release, the energy content of the release, the time of the release, the duration of the release and the warning time for evacuation. For example, the constants of the transfer function a^{*} (r) are estimated from the release characteristics by Eqs. (6.24) and (6.25) as:

$$
\begin{align*}
& \left(\mathrm{a}_{1}\right)_{\mathrm{q}}=7.73 \times 10^{-2} \cdot(\mathrm{E})_{\mathrm{q}}^{-.53} \cdot(\mathrm{~h})_{\mathrm{q}}^{-.46} \cdot(\psi)_{\mathrm{q}}^{.40} \tag{6.33}\\
& \left(\mathrm{a}_{2}\right)_{\mathrm{q}}=2.93 \cdot\left(\mathrm{~T}_{\mathrm{d}}\right)_{\mathrm{q}}^{-23} \cdot(\mathrm{E})_{\mathrm{q}}^{.059} \cdot(\psi)_{\mathrm{q}}^{-.98} \tag{6.34}
\end{align*}
$$

Given a population distribution, the first risk moment of the conditional distribution given the accident occurrence is estimated by:

$$
\begin{equation*}
\left(M_{1}^{*}\right)_{q}=\sum_{j k} \sum_{k}\left(a_{l}\right)_{q} \cdot \exp \left[-\left(a_{2}\right)_{q} \cdot r_{k}\right] \cdot N_{j k} \tag{6.35}
\end{equation*}
$$

The first risk moment of the unconditional distribution is then given by:

$$
\begin{equation*}
\left(M_{1}\right)_{q}=P_{q} \cdot \sum_{j k} \sum_{k}\left(a_{1}\right)_{q} \cdot \exp \left[-\left(a_{2}\right)_{q} \cdot r_{k}\right] \cdot N_{j k} \tag{6.36}
\end{equation*}
$$

The second risk moment and the normalization constant of $f_{q}(x)$ are estimated in a similar manner.

If the safety systems are designed to reduce the probability of occurrence P_{q}, the effects of the systems can be evaluated from the regression results, such as Eq. (6.36), because the probability term P_{q} is separated from the effects of the other release characteristics. Given the population distribution and the risk moments of the conditional distribution, criteria can be considered for the probability of the occurrence P_{q} which give the acceptable risk characteristics.

If the safety systems are designed to reduce the magnitude of the release, the effect of the decrease of the magnitude can be estimated from the regression results, such as Eqs. (6.33), (6.34) and (6.36). A numerical example is given in the following subsection about the evaluation of a hypothetical iodine removal system.

The regression results furthermore allow trade-off studiss to be considered between the population distribution, the probability of occurrence and the magnitude of the release. For example, the objective to obtain the acceptable first risk moment in Eq. (6.36) can be achieved by selecting a site of low population or by adding or improving the safety systems, which reduces the probability of occurrence or the magnitude of release. Such trade-off studies can be straightforwardly made from the regression results.

VI.8.2 Numerical Example of Application of the Regression Results

A hypothetical iodine removal system is studied to demonstrate the application of the regression results to the evaluation of the safety
systems. The problem is to express the decrease of the first risk moment in terms of the iodine removal efficiency under the following assumptions:
(1) The release characteristics considered are similar to those of a PWR-2 release category shown in Table 6.1 when no iodine is removed by the system considered.
(2) Only the release fraction of the iodine is affected by the system and the other release characteristics are unchanged by the system.
(3) The population distribution at Site A shown in the Appendix C is used.
(4) Only early fatalities are considered. The regression results derived in this chapter are then applied, which are based on the northeastern valley meteorological condition and radioactive inventories of a $3200 \mathrm{MW}-$ th plant.

Let ω be the iodine removal efficiency of the considered system. As 70% of the iodine inventory in the core is released when no iodine is removed by the system considered, the release fraction of the iodine at the removal efficiency ω is given by:

$$
\begin{equation*}
q_{I}(\omega)=0.70 \quad(1-\omega) \tag{6.37}
\end{equation*}
$$

The effective source term is calculated by Eqs. (6.2) and (6.4) from the iodine release fraction in Eq. (6.37), the release fractions of the other isotope groups in Table 6.1 and the weighting factors in Table 6.2. The calculated effective sources for the three organs are given in Fig. 6.8 as a function of the removal efficiency. Fig. 6.8 shows that the effective source to the bone marrow is dominant over

those of the other two organs. The effective source for the bone marrow is therefore selected as the overall effective source term.

The constants a_{i} and a_{2} of the transfer function $a^{*}(r)$ are estimated by Eq. (6.33) and (6.34) from the overall effective source term in Fig. 6.8 and the other release characteristics of the PWR-2 release category in Table 6.1. The estimated constants a_{1} and a_{2} are given in Fig. 6.9 as a function of the iodine removal efficiency w. From the population distribution at site A, the constants a_{1} and a_{2} in Fig. 6.9 and the probability of occurrence of 8×10^{-6} per reactor year (PWR-2 release in Table 6.1), the first risk moment is estimated by Eq. (6.44). The result is given in Fig. 6.10 as a function of the removal efficiency. Finally, the decrease of the first risk moment by the iodine removal system is also shown in Fig. 6.10 as a function of the removal efficiency.

Fig. 6.10 can be used to evaluate the decrease of the first risk moment when data in the iodine removal efficiency of the system are available. Alternatively, Fig. 6.10 can be used to calculate the required iodine removal efficiency of the system to obtain the acceptable first risk moment.

VI. 9 Summary and Conclusions

The regression approach discussed in Chapter IV was demonstrated in this chapter in which the release characteristics was taken to be the basic variable. The early fatalities distribution in the northeastern valley meteorological condition was used to derive the regression results. The regressor variables are the warning time for evacuation, the duration of the release, the energy content in the released

Fiz. 6. \exists Effect of the Iodine Removal on the Constants of the Trarsfer Function $a^{*}(r)$

Fi天. 6.10 Effect of the Iodine Aemoval on the First Risk roment
plume and the effective source which is a weighted sum of the release fractions. The probability of the occurrence was not taken as a regressor variable by considering the conditional distribution of early fatalities given the accident occurrence. The constants of the transfer functions discussed in the preceding chapter were taken to be the dependent variables.

The lognormal equations, such as given below, were tested.

$$
\begin{align*}
\ln a_{1} & =k_{01}+k_{11} \cdot \ln h+k_{21} \cdot \ln T_{w}+k_{31} \cdot \ln T_{d}+ \\
& +k_{41} \cdot \ln E+k_{51} \cdot \ln \psi+\varepsilon_{1} \tag{6.38}
\end{align*}
$$

The terms that have insignificant effects on the variation of the dependent variables were eliminated by the partial F-test. The final equations obtained are:

$$
\begin{align*}
& a_{1}=7.73 \times 10^{-2} \cdot E^{-.53} \cdot \mathrm{~h}^{-.46} \cdot .40 \tag{6.39}\\
& a_{2}=2.93 \cdot \mathrm{~T}_{\mathrm{d}}^{.23} \cdot \mathrm{E}^{.059} \cdot \psi^{-.98} \tag{6.40}\\
& \mathrm{~b}_{1}=4.16 \times 10^{-2} \cdot \mathrm{~h}^{-.27} \cdot \mathrm{E}^{-.39} \tag{6.41}\\
& \mathrm{~b}_{2}=1.75 \cdot \mathrm{~h}^{.043} \cdot \mathrm{~T}_{\mathrm{d}}^{.19} \cdot \mathrm{E}^{.12} \cdot \psi^{-.99} \tag{6.42}\\
& \mathrm{~b}_{3}=1.45 \cdot \psi^{-.52} \tag{6.43}\\
& \mathrm{c}_{1}=8.63 \times 10^{-2} \cdot \mathrm{~h}^{-.37} \cdot \mathrm{~T}_{\mathrm{d}}^{-.65} \cdot \mathrm{E}^{-.65} \cdot \psi^{.93} \tag{6.44}\\
& \mathrm{c}_{2}=2.43 \cdot \mathrm{~h}^{-.080} \cdot \psi^{-1.02} \tag{6.45}
\end{align*}
$$

Systematic errors were not observed for prediction of the dependent variables and the estimates of the risk characteristics M_{1}, M_{2} and α were found to be within the uncertainty range of the consequence model.

Having obtained the regression results, they can be applied to new situations for sensitivity studies and decision making investigations. Because of the simple form of the regression equations, the involved calculations are straightforward and do not require the consequence codes or large computation time. The regression results were applied to an example of evaluation of a hypothetical iodine removal system. The decrease of the first risk moment was finally expressed as a function of the iodine removal efficiency of the system. The example illustrates how the regression results can be used in evaluation and decision making.

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

VII. 1 Summary and Conclusion

The objective of this thesis is to develop a methodology for deriving a set of explicit equations which relate the public risk in potential nuclear accidents to the basic variables which determine the consequences of the accidents. The equations give insight into the physical relationships which are involved in the accident risks. Once the equations are derived, they can be used for sensitivity analyses and decision making studies without the need of complex computer programs.

The methodology developed in this study consists of two steps. The first step involves describing the consequence versus frequency curve in terms of a parametric distribution having a small number of parameters. The second step involves relating the parameters to the basic driving variables.

A general approach for fitting the consequence versus frequency distributions to the parametric distributions consists of three fundamental steps. These steps are selection of the candidate parametric distributions, estimation of the unknown parameters and determination of adequate fits. The selection of the candidate parametric distributions is based on the properties of the risk distributions including the domain of the independent variables, number of modes, skewness, and tail behavior. The method of moments and the method of least squares are discussed as means of estimating the unknown constants. Criteria of adequate fits are based on the
largest deviation of the fits, systemaṭic errors in the fits and residual mean squares.

The developed approach is demonstrated for the examples of fatality distributions of nuclear and non-nuclear risks. Four candidate distributions are examined: exponential, gamma, Weibull and lognormal distributions. For these examples, the method of moments is used to estimate the unknown parameters. In order to select a distribution family which adequately describes the fatalities distributions, the historical records of hurricanes, earthquakes, tornadoes and dam failures are examined. The calculated risk curves of nuclear reactor accidents are also examined for different population distributions and different types of the accidents. Based on these examinations, the Weibull distribution is determined to be the distribution which adequately describes all these various risk curves. The estimates of the Weibull parameters for the examined curves are summarized in Table 7.1. The lower end of the domain x_{0}, the normalization constant α, the risk moments about x_{0} are determined from the historical data or from the results of consequence calculation. The Weibull shape parameter β and scale parameter η are determined from the first two risk moments, allowing simple and efficient estimation to be performed.

For the second step in the methodology, relating the distribution parameters to the basic driving variables, regression techniques are used in this study. The regression approach consists of 6 fundamental steps. These fundamental steps are: (1) identification of regressor variables, i.e., the basic driving variables to be considered; (2) selection of the dependent variables; (3) assembling the data to be used in the regression; (4) formulation of candidate regression equations
which express the relationship between the dependent and regressor variables; (5) estimation of the unknown constants in the regression equations by the method of least squares; and (6) testing of the adequacy of the derived equations.

The regression analysis approach is demonstrated in two examples. One example uses the population distribution as the basic regressor variable. Three exponential functions (called "transfer functions") are derived which relate the first two risk moments and the normalization constant to the population distribution. Table 7.2 gives the transfer function results which are determined in this study. An application of the derived equations is demonstrated for an example of selection of a site for a nuclear power plant.

The regression approach is demonstrated for another example in which the characteristics of the radioactive releases are treated as the basic regressor variables. The dependent variables are taken to be the constants of the transfer functions determined in the preceding analysis of the population distribution. The lognormal equations which are determined are given in Table 7.3. The derived equations are applied to the evaluation of a hypothetical iodine removal system.

In conclusion, the methodology proposed in this study is found to be appropriate in deriving explicit equations which relate the risk to basic driving variables. The derived equations are fairly simple and straightforward, which allows for simple and straightforward applications to decision making studies and other calculations and evaluations.

VII. 2 Recommendations

The methodology proposed in this study is one attempt at deter-

Table 7.1 Estimates of the Parameters of the Weibull Distribution
$F^{c}(x)=\alpha \cdot \exp \left[-\left(\frac{x-x_{0}}{n}\right)^{\beta}\right] \quad f(x)=\alpha \cdot \frac{\beta}{n} \cdot\left(\frac{x-x_{0}}{n}\right)^{\beta-1} \cdot \exp \left[-\left(\frac{x-x_{0}}{n} 0\right)^{\beta}\right]$

	(1)	(2)				
Events	$\underline{\mathrm{x}}_{0}$	α (1/year)	M_{1}	M_{2}	β	\underline{n}
Hurricanes	0	6.30×10^{-1}	1.27×10^{2}	5.64×10^{5}	. 387	7.48×10^{1}
Earthquakes	0	1.64×10^{-1}	1.53×10^{1}	8.13×10^{3}	. 511	4.84×10^{1}
Tornadoes	20	8.10×10^{-1}	6.62×10^{1}	1.67×10^{4}	. 708	6.53×10^{1}
Dam Failures	0	9.52×10^{-2}	3.48×10^{1}	5.07×10^{4}	. 608	2.47×10^{2}
Average of U.S. Reactors	0	4.72×10^{-7}	4.60×10^{-5}	6.45×10^{-2}	. 371	2.45×10^{1}
PWR Accidents at Site A	0	5.78×10^{-7}	2.72×10^{-4}	5.77×10^{-1}	. 570	2.91×10^{2}
BWR Accidents at Site B	0	1.61×10^{-8}	9.92×10^{-7}	3.46×10^{-4}	. 513	3.23×10^{1}

${ }^{1} x_{0}$ is determined from the smallest consequence in the data.
2_{α} is determined from the number of events having consequences greater than x_{0}.

Table 7.2 Transfer Function Results of PWR Accidents in Northeastern Valley Meteorological Conditions.

Dependent
Variable
Transfer Equations
Constants
First Risk Moment $M_{1}=\underset{j}{\sum} \int a_{1} \cdot \exp \left(-a_{2} \cdot r\right) \cdot n_{j}(r) \cdot d r$
$a_{1}=3.51 \times 10^{-8}$
$a_{2}=.600$

Second Risk
Moment

$$
\begin{array}{rlr}
M_{2} & =\underset{j}{\sum} \iint b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \cdot & b_{1}=2.05 \times 10^{-8} \\
& \cdot \exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right] \cdot n_{j}(r) \cdot n_{j}\left(r^{\prime}\right) \cdot & b_{2}=.352 \\
& b_{3}=.557
\end{array}
$$

Normalization Constant

$$
\alpha=\sum_{j} c_{1} \cdot \exp \left[-c_{2} \cdot d_{j}\right]
$$

$$
c_{1}=1.79 \times 10^{-6}
$$

$$
c_{2}=.398
$$

(Note): (1) $n_{j}(r)$ is the population per unit distance at r in a $22 \frac{1}{2}$ degree sector of the direction j.
(2) d_{j} is the minimum distance at which people live from a reactor in the direction j.

Table 7.3 Summary of the Regression Results of the Radioactive Releases ${ }^{(1)}$

Transfer Functions ${ }^{(2)}$	Regression Equations ${ }^{(3)}$
$M_{1}=p \cdot \sum_{j} \int_{r} a_{1} \cdot \exp \left(-a_{2} \cdot r\right) \cdot n_{j}(r) d r$	$\begin{aligned} & a_{1}=7.73 \times 10^{-2} \cdot E^{-.53} \cdot h^{-.46} \cdot \psi^{.40} \\ & a_{2}=2.93 \times t_{d} \cdot 23 \cdot E^{.059} \cdot \psi^{-.98} \end{aligned}$
$\begin{aligned} M_{2}= & P \cdot \sum_{j} \int_{r} \int_{r^{\prime}} b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \cdot \\ & \cdot \exp \left[-b_{3} \cdot\left\|r-r^{\prime}\right\|\right] n_{j}(r) n_{j}\left(r^{\prime}\right) d r d r^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{b}_{1}=4.16 \times 10^{-2} \cdot \mathrm{~h}^{-.27} \cdot \mathrm{E}^{-.39} \\ & \mathrm{~b}_{2}=1.75 \cdot \mathrm{~h}^{.043} \cdot \mathrm{t}_{\mathrm{d}} \cdot 19 \cdot \mathrm{E}^{-.99} \\ & \mathrm{~b}_{3}=1.45 \cdot \psi^{-.52} \end{aligned}$
$\alpha=P \cdot \sum_{j} c_{1} \exp \left[-c_{2} \cdot d_{j}\right]$	$\begin{aligned} & c_{1}=8.63 \times 10^{-2} \cdot h^{-.37} \cdot t_{d}^{-.65} \cdot E^{.93} \\ & c_{2}=2.43 \cdot h^{-.080} \cdot \psi^{-1.02} \end{aligned}$
$1_{\text {The }}$ northeastern valley meteorological conditions are assumed.	
$\begin{aligned} & { }^{3} t_{d}=\text { duration of the release (hours), } \mathrm{E}=\text { energy content in the plume }\left(10^{6} \mathrm{Btu} / \mathrm{hr}\right), \\ & \mathrm{h}=\text { elevation of the release (meters), } \psi=\text { effective source }\left(10^{5} \mathrm{~m}^{3} / \mathrm{sec}\right) . \end{aligned}$	

mining basic relationships which can be used in risk evaluations and decision making situations involving risks. The methodology is demonstrated for only one type of consequence (early fatalities), one meteorological condition (northeastern valley sites) and two sets of basic variables (population distribution and radioactive releases). Further studies will be required to develop broader results, such as considering other types of consequences, other meteorological conditions, and other basic variables. As consequence models and computer programs change, the regression relationships will also need to be reevaluated to determine updated results.

The methodology may also be applicable to evaluation of non-nuclear risks, such as dam failures. Relating the risks to the basic variables of interest may provide help in decision making and risk evaluations in these situations. Further studies are recommended to determine the feasibility of applying the methodology to these different situations.

With regard to the more detailed recommendations, the following studies are specifically recommended:

Chapter II and Chapter III

(1) Only two general fitting techniques were discussed in this study. However a large number of other techniques have been developed and the most appropriate technique may depend on the candidate parametric distributions. For example, a linear estimator of the Weibull distribution with the logarithmic transformations of dependent and independent variables is discussed in Ref-6. Further studies are recommended to test other techniques of fitting parametric distributions to the consequence versus frequency risk distributions.
(2) Four candidate distributions were examined to fit the risk curves. Other distributions should also be investigated to determine their feasibility and particular advantages and disadvantages.

Chapter V

(3) The transfer function $c(r)$ that relates the normalization constant with the closest distance at which people live to the reactor was defined in Section $V .5$ as an approximation of the expectation of the H equation. In the example case of the fatalities distribution of PWR accidents, the error of this approximation was found to be within the uncertainty range of the consequence model. However in other situations, this approximation may not be appropriate. Therefore, further studies are required to define the transfer function that relates the normalization constant with the population distribution for a wider variety of consequences.

Chapter VI

(4) The effective source was defined for early fatalities in Section VI. 2 because the interaction effects of the release fractions of various isotope groups are not simple. For other types of consequences, however, one or two isotope groups may have dominant effects on the magnitude of consequence. For example, the property damage may be dominated by the release fraction of the Cs group. In these cases, the selection of the release fractions as regressor variables may be appropriate. Further studies are recommended in
studying basic regressor variables for the analysis of a wide variety of consequences.

APPENDIX A

REFERENCES

1. U.S. Nuclear Regulatory Commission. Reactor Safety Study--An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, WASH-1400 (NUREG-75/014). Washington: U.S. Nuclear Regulatory Commission, October, 1975.
2. U.S. Department of Commerce. Master Enumeration District List with Coordinates. Washington: U.S. Department of Commerce, 1970.
3. A. Hald. Statistical Theory with Engineering Applications. New York: John Wiley \& Sons Inc., 1951.
4. A.E. Green and A.J. Bourne. Reliability Technology. New York: Wiley-Interscience, 1972.
5. C.R. Rao. Linear Statistical Inference and Its Applications. New York: John Wiley \& Sons Inc., 1965.
6. N.R. Mann, R.E. Schafer and N.D. Singpurwalla. Methods for Statistical Analysis of Reliability and Life Data. New York: John Wiley \& Sons Inc., 1974.
7. The World Almanac 1976. New York: Newspaper Enterprise Association Inc., 1976.
8. N.R. Draper and H. Smith. Applied Regression Analysis. New York: John Wiley \& Sons Inc., 1966.
9. Computer Center User's Manual, DCRT. Washington: National

APPENDIX B

NOMENCLATURE

Since this thesis is related to various different fields, such as statistics, meteorology, health physics, etc., it is sometimes difficult to achieve a consistency about the notation. The nomenclature is thus given here for each chapter.

Chapter I

```
F number of events per unit time
Fc complementary cumulative frequency (number of events per
    unit time)
    frequency per unit time per unit consequence
    risk moment
    order of the risk moment
    consequence magnitude
    integration interval
    reference magnitude for the evaluation of the risk
    moment
```

Chapter II

E	expectation
e_{1}, \ldots, e_{n}	random error variables
f	frequency distribution
F^{c}	complementary cumulative distribution
\tilde{F}_{i}^{C}	complementary cumulative frequency of the data i
G	candidate parametric function
i	subscript denoting the data to be fitted

k

M
\tilde{M}
m
n
s^{2}
\mathbf{x}
x_{i}
Y
Y_{i}, y_{i}
Δ^{2}
ξ
σ_{Y}
$\tau_{1}, \ldots, \tau_{k}$
$\hat{\imath}_{1}, \ldots, \hat{\imath}_{k}$
number of parameters risk moment of the candidate distribution risk moment estimated from the data to be fitted order of the risk moment number of the data residual mean square of the estimated equation independent variable observed value of the independent variable random variable
observed value of Y
residual mean square to be minimized for the method of least squares
reference point for the evaluation of the risk moments standard deviation of the random variable Y
parameters of the candidate function
estimates of the parameters

Chapter III

F^{c}	complementary cumulative frequency
f	frequency distribution (number of events per unit time per unit consequence)
$\overline{\mathbf{f}}$	normalized density distribution (number of events per unit consequence)
M_{1}	first risk moment about the lower end of the domain
M_{2}	second risk moment about the lower end of the domain
$\mathrm{M}_{\text {m }}$	$m-t h$ risk moment about the lower end of the domain
m	order of the risk moment
p	probability assigned to the sample data or the trial in the consequence calculation

T	time period in which the historical records are available for non-nuclear risks
x	magnitude of consequence
x_{0}	lower end of the domain of x
$\Delta \mathrm{x}$	interval of the consequence magnitude for the calculation of the frequency distribution from the historical records or from the consequence results
α	normalization constant
β	shape factor of the gamma distribution or the Weibull distribution
Γ	Gamma function
η	scale factor of the Weibull distribution
θ	scale factor of the exponential distribution or the gamma distribution
K	number of historical observations having consequences greater than the specified magnitude
Δk	number of historical observations having consequences in the certain range of the magnitude Δx
μ	mean of the normal variate $(\ln x)$ of the lognormal distribution
ξ	reference magnitude for evaluation of the risk moment
σ	standard deviation of the normal variate ($\ln \mathrm{x}$) of the lognormal distribution

F	F-value for the evaluation of the significance of the regression equation
F^{\prime}	partial F-value for the evaluation of the significance of the added unknown constants
F^{c}	complementary cumulative frequency
h	candidate regression equation
mumber of parameters	

n	number of the data for regression
S_{G}^{2}	sum of squares attributable to regression
S_{R}^{2}, S_{R}^{2}	sum of residual squares
x	magnitude of consequence
x_{0}	lower end of the domain of x
y	dependent variable
Y0	average of y-values of the data
z	regressor variable
α	normalization constant
8	shape factor of the Weibull distribution
Δ^{2}	sum of residual squares to be minimized in the regression analysis
$\varepsilon, \varepsilon^{\prime}$	random error variables
η	scale factor of the Weibull distribution
v	number of added unknowns in the regression equation
ρ_{m}	multiple correlation coefficient
τ	unknown constants in the candidate equations
$\hat{\tau}$	estimates of τ by regression

Chapter V

A ratio of the fatalities to the population for a specific trial

Ak ratio of the fatalities to the population in the k-th annular segment for a specific trial
transfer function that relates the first risk moment to the population distribution
a_{1}, \ldots, a_{v} unknown constants of the candidate function of $a(r)$
$\hat{a}_{1}, \ldots, \hat{a}_{v}$ estimates of a_{1}, \ldots, a_{v} by regression
$a_{k} \quad$ the average of A_{k} over all the trials

b	transfer function that relates the second risk moment to the population distribution
$b_{1}, \ldots, b_{v}{ }^{\prime}$	unknown constants of the candidate function of $b\left(r, r^{\prime}\right)$
$\hat{b}_{1}, \ldots, \hat{b}_{\nu}$,	estimates of $b_{1}, \ldots, b_{\nu^{\prime}}$ by regression
$\mathrm{b}_{\text {kk }}$,	the average of [$A_{k} \cdot A_{k}$,] over all the trials
c	transfer function that relates the normalization constant α to the closest distance of population from the reactor
$c_{1}, \ldots, c^{\prime}{ }^{\prime}$	unknown constants of the candidate function of $c(r)$
$c_{1}, \ldots, c_{v^{\prime \prime}}$	estimates of $c_{1}, \ldots, c_{v^{\prime \prime}}$, by regression
d	closest distance at which people live from a reactor
E	expectation over the trials
$\mathrm{F}^{\text {c }}$	complementary cumulative frequency
$\mathrm{F}_{\mathrm{h}}^{\mathrm{c}} \mathrm{F}_{\ell}^{\mathrm{c}}$	complementary cumulative frequencies of the two adjacent data points in the consequence results below and above 10^{-9} /year
F^{\prime}	partial F-statistic for the evaluation of the added unknowns
H	unit step function
h_{a}	candidate function of $a(r)$
h_{b}	candidate function of $b\left(r, r^{\prime}\right)$
h_{c}	candidate function of $c(r)$
h_{γ}	candidate function of $\gamma(r)$
i	subscript denoting the sample data
j	subscript denoting the wind direction
K	number of segments considered in the consequence model
k, ${ }^{\prime}$	subscript denoting the segment
$\mathrm{k}_{\text {min }}$	the closest segment at which people live
\&	subscript denoting the population group in the bellshaped population model
M_{1}	first risk moment about the lower end of the domain

M_{2}	second risk moment about the lower end of the domai
N	population in an annular segment
N_{f}	fatalities in an annular segment
N_{T}	total population in a population group in the bellshaped population model
n	population per unit distance per radian
n_{j}	population per unit distance in a 22.5 degree section in the direction j
n_{T}	population per unit distance in an annulus of unit width
P_{j}	probability of the wind blowing to the direction j
p_{R}	probability of occurrence of release
${ }^{\text {P }}$ S	probability assigned to a specific sample of the weather data
P_{t}	probability assigned to a specific trial
P_{v}	probability assigned to a specific evacuation speed
R	distance from the origin to the center of the bellshaped population group
R_{B}, R_{C}, R_{D}	distance from the origin to the center of the population groups B, C and D respectively
r	distance from the origin
r_{k}	distance from the origin to the center of the annular segment
Δr_{k}	width of the k -th annular segment
S_{R}	sum of residual squares
t	subscript denoting the trial
\mathbf{x}	magnitude of consequence
$\mathrm{x}_{\mathrm{h}}, \mathrm{x}_{\ell}$	consequence magnitudes of the two adjacent points in the consequence results below and above the complementary cumulative frequency of 10^{-9} /year
α	normalization constant
β	shape factor of the Weibull distribution

Chapter VI

a^{*}	transfer function relating the condition first risk moment M_{1}^{*} to the population distribution
a_{1}, a_{2}	parameters of the exponential function to fit $a^{*}(r)$ B^{*}
b_{1}, b_{2}, b_{3}	transfer function relating the conditional second risk moment M_{2}^{*} to the population distribution
C_{C}	dose conversion factor involving three modes of exposure
C_{G}	dose conversion factor for cloud shine dose

c_{1}, c_{2}	parameters of the exponential function to fit $c^{*}(r)$
d	closest distance at which people live from the reactor
E	energy content in the released plume
f	frequency distribution
E^{*}	conditional frequency distribution given the release occurrence
g	subscript denoting the isotope groups for the evaluation of the release fractions
h	elevation of radioactive release
I	inventory of radioactivity in a reactor core
j	subscript denoting the isotope
k	subscript denoting the organ in a body
$\mathbf{k}_{01}, \mathbf{k}_{0}$	$, k_{57}$
$\mathrm{k}_{0}^{\prime} \mathrm{l}^{\text {, }}$ ¢	,$\left.k_{57}^{\prime}\right\}$ constants in the regression equations
(LD) 50	a dose that causes deaths to 50% of the exposed population
M_{1}^{*}	```first risk moment of the conditional distribution f*(x) given the accident occurrence about the lower end of the domain```
M_{2}^{*}	```second risk moment of the conditional distribution f*(x) given the accident occurrence about the lower end of the domain```
M_{t}^{*}	t-th risk moment of the conditional distribution given the accident occurrence
N	population in an annular segment
n_{j}	population per unit distance in a 22.5 degree sector in the direction j
P	probability of occurrence of release
Q	released amount of radioactivity
q	subscript denoting a specific release
q_{g}	release fraction of the isotope group g
q_{I}	release fraction of iodine

r	distance from the origin
s	standard deviation of the estimate of the dependent variable
${ }^{s}$ C	cloud shine shielding factor
s_{G}	ground shine shielding factor
T_{d}	duration of the release
T_{r}	time of the release
T_{w}	warning time for evacuation
t	subscript denoting the order of the risk moment
V_{d}	deposition velocity
x	consequence magnitude
α^{*}	normalization constant of the conditional frequency distribution $\mathrm{f}^{*}(\mathrm{x})$ given the accident occurrence
$\varepsilon_{1}, \ldots, \varepsilon_{7}$	random error variables
λ	radioactive decay constant
X	ground level airborne concentration of radioactivity
ψ	effective source
Ω	weighting factor for effective source
ω	iodine removal efficiency

Chapter VII

a
a_{1}, a_{2} parameters of the exponential function fitted to $a(r)$
b
transfer function relating the second risk moment to the population distribution
b_{1}, b_{2}, b_{3} parameters of the exponential function fitted to $b\left(r, r^{\prime}\right)$
c
transfer function relating the first risk moment to the population distribution
transfer function relating the normalization constant to the closest distance at which people live
c_{1}, c_{2}
parameters of the exponential function fitted to $c(r)$
closest distance at which people live from a reactor

E
F^{c}
h
j
k, k^{\prime}
M_{1}
M_{2}
n_{j}

P
r
T_{d}
x
x_{0}
α
ψ energy content of the released plume complementary cumulative frequency elevation of release subscript denoting the direction subscript denoting the segment first risk moment about the lower end of the domain second risk moment about the lower end of the domain population per unit distance in a 22.5 degree sector in the direction j
probability of occurrence of release
distance from the origin duration of release
magnitude of consequence
lower end of the domain of x
normalization constant
shape factor of the Weibull distribution scale factor of the Weibull distribution
effective source

APPENDIX C

INPUT DATA FOR CONSEQUENCE CALCULATION OF INDIVIDUAL SITES

Major input data for the consequence calculation of the individual sites are summarized in this appendix. Since most of the input data for the individual site calculations are the same as those for the calculation of the first 100 commercial nuclear power plants performed in the Reactor Safety Study, only the data of specific importance in the individual site calculations are given in this appendix. The input data which are not given here are found in Appendix VI of WASH-1400 (Ref-1.

The characteristics of the northeastern valley meteorological condition are given in Table C.l. All of the calculations of the individual sites in this study are based on this meteorological condition.

The inventories of the radioactive isotopes in Table C. 2 are used in this study. The inventories in Table C. 2 were calculated in the Reactor Safety Study, assuming a $3200 \mathrm{MW}-\mathrm{th}$ PWR core at a time of just prior to refueling after the operation at a constant specific power density of $40 \mathrm{MW} / \mathrm{kg} \mathrm{U}$. BWRs have approximately the same inventories as PWRs.

The release characteristics of $P W R$ and $B W R$ accidents are given in Table C.3. The calculation results in Chapter III and Chapter V are based on the overall risks from the release categories in Table C.3. In Chapter VI, these release categories provide the data base for the regression analysis.

The geometry for the population distribution used in the consequence code is given in Table C.4. The population distributions of

Site A and Site B are given in Tables C. 5 and C.6, respectively, as examples of the population distributions used in this study. They correspond to the 3rd highest and 3rd lowest, respectively, when the 68 sites considered in this study are ranked in a descending order based on the cumulative populations within 5 miles. These population distributions are used in Chapters III and VI and Appendix F as the examples for demonstrating the methodologies.

Table C. 1 Joint Frequency Distribution for Thermal Stability, Windspeed, and Rain for Northeastern Valley Meteorological Condition

Thermal Stability	Rain	Wind Speed (m/s)								$\frac{\text { Summation }}{\%}$
		0-1	1-2	2-3	3-4	4-5	5-6	6-7		
		\%	\%	\%	\%	\%	\%	\%	\%	
A	No rain	1.83	2.93	2.69	2.52	2.17	1.42	1.14	1.54	16.50
	Rain	0.09	0.06	0.03	0.05	0.00	0.01	0.00	0.01	
B	No rain	0.49	0.34	0.26	0.21	0.25	0.15	0.06	0.15	1.92
	Rain	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
C	No rain	0.51	0.49	0.49	0.31	0.34	0.27	0.23	0.40	3.13
	Rain	0.01	0.05	0.02	0.00	0.00	0.00	0.00	0.01	
D	No rain	6.06	4.52	4.84	3.54	2.68	2.33	1.22	2.57	29.87
	Rain	0.37	0.51	0.41	0.19	0.10	0.10	0.10	0.23	
E	No rain	7.61	5.64	4.77	3.45	2.45	1.18	0.88	1.70	30.15
	Rain	0.53	0.54	0.57	0.39	0.16	0.06	0.06	0.17	
F	No rain	8.11	4.86	2.51	1.21	0.50	0.31	0.15	0.17	18.44
	Rain	0.25	0.10	0.09	0.08	0.07	0.01	0.01	0.00	
Summation	-•••	25.87	20.05	16.61	11.85	8.85	5.83	3.85	7.10	100.00

(Note): From Table VI-5-2A in Appendix VI of WASH-1400 (Ref-1).

TABLE C. 2 Initial Activity of Badionucildes in the Nuclear Reactor Core at the Time of Iypothetical Accident

N0.	Radionuclide	Radioactive Inventory source (curies $\times 10^{8}$)	Half-Life (days)
1	Cobalt-50	0.0078	72.0
2	Cobe $1 t-60$	0.0029	1,920
3	Krypton-85	0.0056	3.950
4	Krypton-853	0.24	0.183
5	Krypton-87	0.47	0.0528
6	Rrypton-88	0.68	0.117
7	Rubidium-86	0.00026	18.7
8	Strontium-89	0.94	52.1
9	Strontium-90	0.037	11.030
10	Strontive-91	1.1	0.403
11	Yterium-90	0.039	2.67
12	Yterinume91	1.2	59.0
13	Eirconive 95	1.5	65.2
14	2irconive97	1.5	0.71
15	Wiomiver 95	1.5	35.0
16	Molybdemum-99	1.6	2.8
17	Technetium-994	1.4	0.25
18	muthenius-103	1.1	39.3
19	Ruthenitu-105	0.72	0.185
20	merhenit-106	0.25	366
21	Rhealium-105	0.49	1.50
22	cellurium-127	0.059	0.391
23	sellurium-127m	0.011	109
24	Telluriva- 129	0.31	0.048
25	Tellurium-129m	0.053	0.340
26	Te12urivili31a	0.13	1.25
27	Tellurivo-132	1.2	3.25
28	Antimeny-127	0.061	3.88
29	Antimony-129	0.33	0.179
30	Iodine-131	0.85	8.05
31	Todine-132	1.2	0.0958
32	Tealine- 133	1.7	0.875
33	Sodine-134	1.9	0.0366
34	Tedine-135	1.5	0.280
35	Xeaon-133	1.7	5.28
36	ranou-135	0.34	0.384
37	Casium-134	0.075	750
38	ceaivel 136	0.030	13.0
39	Ceniv-137	0.047	11.000
40	cariv-140	1.6	12.8
41	Eanthany 140	1.6	1.67
42	Cerive-141	1.5	32.3
43	Ceriva-143	1.3	1.38
44	Cerivis-144	0.85	284
45	Srateodymium 143	1.3	13.7
46	Meodymium-147	0.60	11.1
47	Mepluaiver 239	16.4	2.35
48	Plutonkive-238	0.00057	32,500
49	Flutenitr-239	0.00021	8.9×10^{6}
50	P1uteativ-240	0.00021	2.4×10^{6}
51	piuconitio-241	0.034	
52	Anericium-241	0.000017	1.5×10^{5}
53	Curiu -242	0.0050	163
54	Curium-244	0.00023	6,630

Table C. 3 Release Characteristics of PWR and BWR Accidents

	Probability		duration of	WARNING TIME FOR FVAC13TTON	EI,EVATION OF RELEASE	CONTAINMENT enertiy rele:AsE	FRACTION OF CORE INVENTORY RELEASED ${ }^{(a)}$							
category	per Reactor- Yr	$\begin{aligned} & \text { RELEASE } \\ & (\mathrm{Hr}) \end{aligned}$	Release: (Hr)	evacuation (Hr)	Mcters)	$\left(10^{6} \mathrm{Btu} / \mathrm{hr}\right)$	Xa-Kr	Org. I	1	Cs-Rb	'fe-Sb	$\mathrm{Bd}-\mathrm{Sr}$	$\mathrm{Ru}^{\text {(b) }}$	$\mathrm{La}^{(\mathrm{c})}$
PWR 1	9×10^{-7}	2.5	0.5	1.0	25	$520{ }^{\text {(d) }}$	0.9	6×10^{-3}	0.7	0.4	0.4	0.05	0.4	3×10^{-3}
PWR 2	8×10^{-6}	2.5	0.5	1.0	0	170	0.9	7×10^{-3}	0.7	0.5	0.3	0.06	0.02	4×10^{-3}
Pidr 3	4×10^{-6}	5.0	1.5	2.0	0	6	0.4	6×10^{-3}	0.2	0.2	0.3	0.02	0.03	3×10^{-3}
PWR 4	5×10^{-7}	2.0	3.0	2.0	0	1	0.6	2×10^{-3}	0.09	0.04	0.03	5×10^{-3}	3×10^{-3}	4×10^{-4}
PWR 5	7×10^{-7}	2.0	4.0	1.0	0	0.3	0.3	2×10^{-3}	0.03	9×10^{-3}	5×10^{-3}	1×10^{-3}	6×10^{-4}	7×10^{-5}
PWR \%	6×10^{-6}	12.0	10.0	1.0	0	N/A	0.3	2×10^{-3}	8×10^{-4}	8×10^{-4}	1×10^{-3}	9×10^{-5}	7×10^{-5}	1×10^{-5}
PWR 7	4×10^{-5}	10.0	10.0	1.0	0	N/A	6×10^{-3}	2×10^{-5}	2×10^{-5}	1×10^{-5}	2×10^{-5}	1×10^{-6}	1×10^{-6}	2×10^{-7}
HWH 8	4×10^{-5}	0.5	0.5	N/A	0	N/A	2×10^{-3}	5×10^{-6}	1×10^{-4}	5×10^{-4}	1×10^{-6}	1×10^{-8}	0	0
PW\% 9	4×10^{-4}	0.5	0.5	N/A	0	N/A	3×10^{-6}	7×10^{-9}	1×10^{-7}	6×10^{-7}	1×10^{-9}	1×10^{-11}	0	0
EWR 1	1×10^{-6}	2.0	2.0	1.5	25	130	1.0	7×10^{-3}	0.40	0.40	0.70	0.05	0.5	5×10^{-3}
HWR 2	6×10^{-6}	30.0	3.0	2.0	0	30	1.0	7×10^{-3}	0.90	0.50	0.30	0.10	0.03	4×10^{-3}
日WR 3	2×10^{-5}	30.0	3.0	2.0	25	20	1.0	7×10^{-3}	0.10	0.10	0.30	0.01	0.02	3×10^{-3}
Ewn 4	2×10^{-6}	5.0	2.0	2.0	25	N/A	0.6	7×10^{-4}	8×10^{-4}	5×10^{-3}	4×10^{-3}	6×10^{-4}	6×10^{-4}	1×10^{-4}
BWR 5	1×10^{-4}	3.5	5.0	N/A	150	N/A	5×10^{-4}	2×10^{-9}	6×10^{-11}	4×10^{-9}	8×10^{-12}	8×10^{-14}	0	0

(a) A discussion of the isotopes used in the study is found in Appendix VI. Background on the isotope groups and release mechanisms is found in Appendix VII.
(b) Includes Mo, Rh, Tc, Co.
(c) Includes Nd, Y, Ce, Pr, La, Nb, Am, Cm, Pu, Np, 2r.
(d) A lower energy release rate than this value applies to part of the period over which the radioactivity is being released. The effect of lower energy release rates on consequences is found in Appendix VI.

Note: From Table 5-1 in the Main Report of WASH-1400 (Ref-1)

Table C. 4 Geometry for the Population Distribution in the Consequence Model

Segment Number	$\begin{aligned} & \text { Distance to } \\ & \text { Midpoint (miles) } \end{aligned}$	Width of Segment $\Delta r_{\text {(miles) }}$	$\begin{aligned} & \text { Outer Radius } \\ & \text { (miles) } \\ & \hline \end{aligned}$
1	. 25	. 5	0.5
2	. 75	. 5	1.0
3	1.25	. 5	1.5
4	1.75	. 5	2.0
5	2.25	. 5	2.5
6	2.75	. 5	3.0
7	3.25	. 5	3.5
8	3.75	. 5	4.0
9	4.25	. 5	4.5
10	4.75	. 5	5.0
11	5.50	1.0	6.0
12	6.50	1.0	7.0
13	7.75	1.5	8.5
14	9.25	1.5	10.0
15	11.25	2.5	12.5
16	13.75	2.5	15.0
17	16.25	2.5	15.0
18	18.75	2.5	20.0
19	22.5	5.0	25.0
20	27.5	5.0	30.0
21	32.5	5.0	35.0
22	37.5	5.0	40.0
23	42.5	5.0	45.0
24	47.5	5.0	50.0
25	52.5	5.0	55.0
26	57.5	5.0	60.0
27	62.5	5.0	65.0
28	67.5	5.0	70.0
29	77.5	15.0	85.0
30	92.5	15.0	100.0
31	125.	50.0	150.0
32	175.	50.0	200.0
33	275.	150.0	350.0
34	425.	150.0	500.0

Table C． 5 Population Distribution of Site A

Olitea	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊中＊＊＊＊＊＊＊＊＊中＊＊＊＊＊＊＊＊＊＊＊						DIRECTION									NNW
（MILES）	N	NNE：	NE：	ENE	E	ESE	SE	SSE	S	SSW	SW	WSH	ω	WNW	NW	
－． 5	C	9	5	0	0	0	0	0	0	0	0	0	0	0	0	2
1.0	c	0	517	c	0	0	0	0	0	0	0	0	0	0	0	0
1.5	0	0	0	0	1394	c	C	C	0	0	0	0	0	0	0	0
2.1	142C	n	r	0	0	0	0	C	0	0	0	0	569	1518	0	1335
2.5	－	856	0	0	0	0	0	0	0	0	777	0	0	0	0	0
$3 . C$	0	43	0	u	0	0	C	c	0	0	0	0	0	0	0	1239
3.5	A23	1 Cl 9	2396	0	1542	C	c	C	0	0	0	0	941	1679	977	0
4.0	＋	0	2867	5689	1179	0	C	0	3	0	0	0	0	0	0	968
4.5	i	0	5799	748	1 C 20	0	0	c	0	0	0	0	0	0	0	0
5.0	0	652	6775	889	0	0	0	0	0	0	0	0	0	0	0	0
6.0	434	2726	7278	0175	182	C	0	c	0	0	0	399.	1042	0	1547	0
7.1	915	858	4592	2204	0	0	c	0	0	0	0	0	0	0	0	0
月． 5	$\stackrel{+}{4}$	42.6	193 A	3566	759	c	0	0	0	0	0	0	1139	2384	0	108 A
1C．t	2261	1599	364	1940	1600	462	0	0	0	0	0	45	2168	0	0	550
12.5	7541	6208	2030	9518	522	C	C	c	0	781	0	1134	5121	3957	0	0
15.0	M121	10939	3052	3205	1413	C	C	0	0	0	0	0	3457	3289	1020	1453
17.5	1688	26107	0	3373	1893	0	0	c	0	0	832	0	2311	2460	0	488
2 2．0	1787	1754	1211	15319	$4 C 89$	0	0	C	886	24	3784	0	9029	2805	3160	4504
25.0	2170	10065	2446	6318	1647	0	1096	696	6530	4509	4692	0	9365	4610	5858	3685
10．C	21879	3800	1452	4621	963	0	0	C	1970	4416	6247	0	13674	13305	11742	926日
15.0	19621	1152A	1476	5753	545	489	0	0	\bigcirc	A304	4202	0	34394	36574	40040	12437
415.0	6610	14936	1371	22436	2499	C	0	0	0	6514	13068	0	178010	83520	156970	69793
$45 . C$	61 AL	11700	55024	41517	0	0	c	\cdots	0	865	14037	48	132151	59762	322301	42205
－19． 0	1915	1：741	121117	72295	0	0	0	0	0	0	14988	15546	112374	172335	60077	48224
5\％．0	24863	35130	321284	53334	0	0	0	0	0	0	32641	32222	217120	43673	30237	58590
$6 C .0$	15H3日	26910	205818	109403	0	0	0	0	0	c	73549	54202	99506	16039	30356	187016
05.0	27124	5：616	67253	41739	0	0	0	0	0	0	68147	100013	51920	13529	26717	175737
16.5	24593	$2 ¢ 3493$	$86 C 26$	132811	0	0	0	0	0	0	95166	220161	123614	16902	2410	84775
45.0	19121	354533	$5 C 0129$	62444	11301	c	0	\because	0	0	141653	1090240	183464	4383 A	15469	90053
$1:(0.1)$	76311	478113	1686529	78092	1481	0	0	c	0	0	0	5815452	454492	163701	92020	54689
156.0	156574	H84875	389710	38010	3774	0	0	0	2	0	476429	8233114	417610	184469	800860	133377
20.9	109916	33.907	C	0	0	0	0	0	0	0	593538	5159235	107930	194843	289926	137918
3 scor	15t． 70	244386	814	0	0	0	0	0	0	\bigcirc	1414621	6884925	1254929	2440634	419873	313433
500.0	C	0	0	C	0	0	0	0	5	165363	2855303	1465250	7580584	1325597	0	$\stackrel{3}{*}$

Table C． 6 Population Distribution of Site B

OUTER RACIUS																
（MILES）	）N	NNE	NE	ENL	t	ESt	St	SSE	S	SSW	SW	WSW	ω	WNH	NH	NNW
$\therefore 5$	J	0	c	0	0	C	0	c	0	0	0	0	0	0	0	0
1.0	0	0	0	0	0	c	C	2	0	0	0	0	0	0	0	0
1.5	c	2	0	0	0	9	0	0	3	0	0	0	0	0	0	0
2.0	c	0	c	0	0	0	0	9	0	0	0	0	0	0	0	0
2.5	0	0	0	c	0	C	C	6	0	0	0	0	0	0	0	J
3.0	0	0	c	0	3	0	c	0	0	0	0	0	0	0	0	0
3.5	c	0	c	0	0	C	0	2	7	0	0	0	0	0	0	0
4.0	C	0	C	0	0	0	0	c	0	3	0	0	0	0	0	0
4.5	0	0	こ	C	3	0	C	C	B 7	0	0	0	0	0	0	0
5.0	－	0	0	C	0	0	0	C	0	0	0	0	0 915	0	0	0
6.7	1396	0	C	0	0	1250	0	$?$	c	0	0	0	915	0	0	0
7.0	C	0	0	0	0	0	0	0	0	0	0	264	0	0	0	$?$
A． 5	\bigcirc	\cdots	C	\checkmark	0	C	0	0	0	0	1024	0	0	0	0	5
10.0	C	0	0	1358	0	C	0	$1 C 29$	0	1303	240	0	555	845	0	0
12.5	$?$	J	c	0	1457	9	C	C	2421	0	720	0	0	0	0	0
15.0	1112	0	$1 C^{20}$	5723	0	1326	0	0	0	0	1076	1505	785	5	0	r
11.5	$\stackrel{+}{6}$	0	0	A44	0	C	0	2073	0	0	1067	0	6792	538	461	0
20.0	\％	＇）	340	0	0	1134	716	5214	2023	0	0	965	4613	452		0
25.0	15．4？	912	C	2111	3433	2280	49557	21187	3124	2862	558	971	1836	1201	2226	1031
30.0	4546	1585	2185	639	850	4482	142541	32266	1808	5307	921	1008	0	4281	1306	129
35.0	3225	4226	3270	951	！246	1841	14461	2769	2430	4858	5725	466	1415	9390	1139	16076
$40^{\text {¢ }}$	473	1899	267\％	1020	2310	883	2933	1813	617	1613	1293	1653	2930	6307	3663	1654
45.0	2378	1157	21842	5785	12451	450	4882	3998	2339	1491	4011	3982	2511	15274	2869	3532 5894
3 CO	9160	41479	1235	4312	5423	3375	5112	3463	2952	1062	3169	5476	25979	891	5818	5894
35.9	4944	11168	4725	3189	1334	152 22	2403	2330	3237	7397	3534	31009	9807	7425	14667	6995 31089
60.0	9046	4476	4088	3924	3164	14833	1897	7613	2135	27118	0	2703	4640	6880 9285	73877	31089 8565
65.9	2137.2	37443	15888	4761	8190	38280	$4 C 76$	25449	1934	19384	10425	3619	15285	9285	28138	8565 16944
1 C .0	96446	176732	15226	2218	9966	5824	5462	6355	5966	35117	48355	669	3398 48286	41898 180558	12737 71267	16944 51179
45.0	75129	175670	25076	24004	4 4351	19418	21406	14176	14363	32871	91314	8517	41286	180558	71267	51179
1ごった	84419	121590	37974	50060	59293	32545	12044	19270	15311	14005	24007	13037	31294	59540	39494	17099
$15 i .0$	222115	546817	257343	309093	172937	103C35	296588	81053	64769	71130	84538	122658	193617	68705	233763	162022
200.0	179711	285104	655395	268252	162641	3310	0	1302	221572	99781	317577	973929	726125	148461	486811	390124
35 c .01	1134357	913554	14950A4	1429043	171310	0	$?$	0	895335	509657	659040	1035683	1867137	1563248	95220210	1034462
suc．s 7	7626447	3120437	6465520	1285	\bigcirc	0	0	c	2568382	111300	519240	1094509	1655700	1181767	33375215	5305572

APPENDIX D

TABLES FOR ESTIMATION OF THE WEIBULL PARAMETERS FROM THE MOMENTS

For the convenience of the calculation of the Gamma functions in estimating the Weibull parameters, the following quantities are given as functions of β in the range $.1 \leq \beta<1$.1.

Table D.1: $\quad\left[\Gamma\left(1+\frac{1}{\beta}\right)\right]^{2} / \Gamma\left(1+\frac{2}{\beta}\right)$
Table D.2: $\quad \Gamma\left(1+\frac{1}{\beta}\right)$
Table D.3: $\quad \Gamma\left(1+\frac{2}{\beta}\right)$

Table D． 1 Table for Estimation of Weibull Parameters $\left(\Gamma\left(1+\frac{1}{\beta}\right)\right)^{2} / r\left(1+\frac{2}{\beta}\right)$

β	0.0	0.001	0.002	0.00 .3	0.004	0.005	0.006	0.001	0.008	0.009
0.10	5．413F－06	6．179E－06	7．035t－06	7．989E－06	9．050E－06	1．023E－05	$1.153 \mathrm{E}-05$	1．297E－25	1．456t－05	1．630E－05
0.11	1．022E－05	2．032E－05	2．262E－05	2．513E－05	2．781E－05	3．084E－05	3．408E－05	3．759E－05	4．138E－05	4．549E－05
0.12	$4.993 E-05$	5．471E－05	5．986E－05	6．539E－05	7．133E－05	7．770E－05	8．452E－05	9．182E－05	9．962E－05	1．019E－04
0.13	1．168E－04	1．262E－04	1．363E－04	1．469E－ 134	1．582E－04	1．702E－04	1．829E－04	$1.764 \mathrm{E}-04$	2．106E－04	2．255E－04
0.14	2．414r－04	2．580E－04	2．756E－04	2．941E－04	3．135E－04	3．339E－04	$3.553 \mathrm{E}-04$	3．77AE－04	$4.013 \mathrm{E}-34$	4．260E－04
0.15	4．518E－04	4．788E－04	5．070E－04	5．364E－04	5．671E－04	5．992E－04	6．326E－04	$6.674 E-04$	7．036E－04	7．412E－04
0.16	7．304E－04	H．211E－04	8．633E－04	9．072E－04	9．527E－04	9．99AE－04	1．049E－03	$1.099 E-03$	$1.152 f-23$	1．206E－0
0.17	1．262E－0	1．320E－03	1．380E－03	1．442E－03	1．505E－03	1．571E－03	1．639E－03	$1.109 \mathrm{E}-\mathrm{J}$	1．781E－03	1．855E－03
0.18	1．432r－03	2．010E－03	$2.091 E-03$	2．174E－03	2．260E－0．3	2．34AE－03	$2.438 \mathrm{EE-03}$	2．531E－03	2．626E－03	2．723E－03
0.19	2．923E－03	2．926E－03	3．031E－03	3．139E－03	3.24 E－03	1．362E－03	3．478E－03	3．596E－03	3．718E－03	3．842E－03
0.20	3．960E－03	4．098E－53	$4.230 \mathrm{E}-03$	$4.365 E-03$	$4.5 C 3 E-03$	$4.644 E-03$	$4.788 E-03$	$4.935 E-33$	5．085E－23	5．238E－03
0.21	5．394［－03］	5．553E－03	5．715t－03	5．880E－C3	6．048E－03	6．219E－03	3．393E－03	6．571E－03	6．752E－03	6．936E－03
0.22	7．123E－0，	7．313E－03	1．5015－03	7．703E－63	7．903E－03	R．107E－03	A．313E－03	8．523E－03	8．737E－03	$8.953 \mathrm{E}-03$
0.23	$9.173 \mathrm{E}-03$	9．396E－03	9．623E－03	$9.853 E-03$	1．009E－02	1．032E－02	1.056 E－02	1．081E－02	$1.105 \mathrm{E}-02$	$1.130 E-02$
0.24	1．156t－32	1．182E－02	1．208E－02	1．234E－02	1．261E－02	$1.28 \mathrm{BE}-02$	$1.315 E-02$	$1.343 E-02$	$1.371 E-02$	1．400E－02
0.25	1．429E－02	1．45AE－02	$1.487 \mathrm{E}-02$	1．517E－1．2	1．547E－02	1．578E－02	1．609E－02	$1.640 \mathrm{E}-02$	1．672E－02	1．704E－02
0.26	1．736E－02	1．769E－02	1．802E－02	1．835E－02	1．869t－02	1．903E－02	1.93 7E－02	1．972E－02	$2.007 \mathrm{E}-32$	2．042E－02
0.21	2．078E－02	2．114E－02	2．151E－02	2．187E－i12	$2.224 E-02$	2．262E－02	2．300E－02	2．33AE－02	2．376k－02	2．415E－02
0．2H	2．454E－02	2．494E－02	2．534E－02	2．574E－02	2．614E－02	2．655E－02	2．696E－02	2．738E－02	2．180E－02	2．022E－02
3.24	2．854E－02	2．901E－02	2．950E－02	2．993E－02	3．037t－02	3．081E－02	3．126F－02	1．17JE－02	1．216E－J2	3．261E－02
0.30	3．307E－02	$3.351 \mathrm{E}-02$	$3.399 \mathrm{E}-02$	3．445E－02	3．492E－02	3．540E－02	3．587E－02	3．635E－02	$3.693 E-02$	$3.132 \mathrm{E}-02$
0.31	3．780c－02	3．829E－02	3．879E－02	3．92AE－02	3．978E－02	4．029E－02	$4.019 E-02$	$4.130 E-02$	4．181E－02	$4.232 E-02$
0.32	$4.284 E-02$	4．336E－02	$4.388 \mathrm{E}-02$	4．441E－02	4．474E－02	4．547F－02	$4.600 E-02$	$4.554 E-02$	4．708f－32	4．762F－02
0.13	4．816E－02	4．87IE－02	4.926 E－02	4．981E－02	5．037E－02	5．093E－02	5．169E－02	5．205E－02	5．262［－02	5．319E－02
0.34	5．376F－02	5．433E－02	5．491E－02	5．549E－02	5．607t－02	5．665E－02	5．724E－02	5．782E－32	5．A42t－02	5．H01E－C2
0.35	5．960E－02	6．020E－02	6．OAOE－02	6．140E－02	6．201f－02	6．262E－02	6．323E－02	6．384E－02	6．445E－02	6．501E－02
0.36	6．569E－02	6．631E－02	6．693E－02	6．155E－02	6．B18E－02	6．A81E－02	6．944E－02	7．009E－02	7．571E－02	7．135E－02
0.37	7．199E－02	1．263E－02	1．327E－02	7．392E－C2	7．457E－02	1．522E－02	7．581E－02	7．652t－02	7．71At－02	1．783E－02
0.38	7．849E－02	1．915E－02	1．982E－02	8．04日E－02	0．115E－02	0．181E－02	0．24日E－02	0．316E－02	8．313E－J2	8．450E－0？
0.19	8．518c－02	8．586E－02	0．654E－02	0．722E－02	8．790E－02	8．859E－02	8． $928 \mathrm{E}-02$	8．995E－02	9．065t－02	$9.135 E-07$
0.40	$9.204 \mathrm{E}-02$	9．273E－02	9．343E－0？	9．413E－02	9．483F－02	9．553E－02	9．623E－02	9．593E－02	$9.754 t-02$	9．A34F－02
0.41	$9.905 E-02$	9．976E－02	$1.005 E-01$	1．012E－U1	1．019E－01	1．026E－01	$1.033 E-01$	$1.043 \mathrm{E}-01$	1．040E－01	1．055E－01
0.42	1．062E－01	$1.069 E-01$	1．076E－01	1．084E－01	1．091E－01	1．098E－01	$1.105 E-01$	1．113E－01	1．120t－01	1．127E－01
0.43	$1.135 E-01$	$1.142 E-01$	1．149t－01	1．157E－01	1．164E－01	1．171E－01	1．179F－01	1．18SE－01	1．144E－01	1．201E－01
0.44	1．208E－01	1．216E－01	1．223E－01	1．231E－CI	1．238E－01	1．246E－01	1．253E－01	1．261E－01	1．268E－01	1．276E－01
0.45	1．2A3E－01	1．291E－01	$1.298 \mathrm{E}-01$	1．306E－U1	1．313E－01	1．321t－01	1．328E－01	$1.336 E-91$	1．344E－01	1．351E－01
0.46	1．359E－91	$1.366 F-01$	1．314t－01	1．382E－01	1．389E－01	1．397E－01	1．404E－01	1．412E－01	1．420E－31	1．42TE－01
0.67	1．435E－01	$1.443 E-01$	1．450E－01	1．458E－01	1．466E－01	1．473E－01	1．481E－01	1．484E－01	1．496E－01	1．504E－01
0.48	1．512E－01	1．519E－01	1．527E－01	1．535E－C1	1．543E－01	1．550t－01	1．558E－01	1．566E－01	1．574t－01	1．581E－01
0.49	1．5H9E－O1	1．597E－01	$1.605 \mathrm{E}-01$	1．612E－01	1．620E－01	1．623E－01	1．636E－01	1．643E－01	1．651E－J1	1．659E－01
0.50	1．667E－01	1．674E－01	1．682E－01	1．690E－01	1．698E－01	1．706t－01	1．713E－01	1．121E－01	1．729E゙SL	1．737E－01
0.51	1．745F－01	1．752E－01	1．760E－01	1．768E－01	1．776E－01	1．784E－01	1．791E－01	1．799E－01	1．807E－01	1．A15E－01
0.52	$1.823 E-01$	$1.830 \mathrm{E}-01$	$1.838 \mathrm{E}-01$	1．846E－01	1．854E－01	1．862E－01	1．870E－01	1．871E－01	$1.885 \mathrm{E}-01$	$1.893 \mathrm{E}-\mathrm{Cl}$
3.53	1．901E－01	$1.904 E-01$	1．916E－01	1．924E－01	1．932E－01	1．940E－01	1．948E－01	1．956E－01	1．963E－01	1．971E－01
0.54	$1.979 E-01$	1．987E－01	$1.995 E-01$	2．002E－01	2．010E－01	2．01 AE－01	2．026E－01	2．034E－01	2．041t－91	2．049E－01
0.55	$2.057 \mathrm{~F}-01$	2．065E－01	$2.073 \mathrm{E}-01$	2．080F－01	2．088E－01	2．096E－01	2．104E－01	2．112E－01	2．119E－01	$2.127 E-C l$
0.56	2．135E－01	2．143E－01	2．151E－01	2．158E－O1	2．166E－01	2．174E－01	2．182E－01	2．190E－01	2．191E－01	2．205E－01
0.57	$2.213 \mathrm{E}-01$	2．221E－01	2．228E－01	2．236E－G1	2．244E－01	2．252E－01	2．259E－01	2．267E－01	2．275E－01	2．283E－01
0.58	$2.290 \mathrm{E}-31$	2．294E－OL	2．306E－01	2．314E－01	2．121E－01	2．129E－01	2．337E－01	2．344E－01	2．352E－31	2．360E－O1
0.59	2．368C－01	2．375E－01	2．383E－01	2．391E－Ct	2．398E－01	？．406E－01	$2.414 E-01$	2．421E－31	2．429E－01	2．437E－01

Table D. 1 (continued) $\left(\Gamma\left(1+\frac{1}{\beta}\right)\right)^{2} / \Gamma\left(1+\frac{2}{\beta}\right)$

B	0.0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.60	2.445E-01	2.452E-01	2.460E-01	2.468E-01	2.475E-01	2.483E-01	2.490E-01	2.499E-01	2.506E-01	2.513E-01
0.61	2.521E-01	2.529E-01	2.536E-01	2.544E-01	2.551E-01	2.559E-01	2.567E-01	2.574E-01	2.582E-91	2.589E-01
0.62	2.591E-01	2.605E-01	2.612E-01	2.620E-01	2.627E-01	2.635E-01	2.642E-01	$2.659 E-01$	2.658E-01	2.665E-01
0.63	2.673E-01	2.680E-01	2.688E-01	2.695E-01	2.703E-01	2.710E-01	$2.718 \mathrm{E}-01$	$2.125 E-01$	2.733E-01	2.740E-01
0.64	$2.748 \mathrm{E}-01$	$2.755 E-01$	$2.763 E-01$	2.770E-01	2.778E-01	2.785E-01	2.793E-01	$2.800 \mathrm{E}-01$	$2.807 \mathrm{E}-01$	2.815E-01
0.65	2.822E-01	$2.830 E-01$	2.837E-01	2.845E-01	2.852E-01	2.A59E-01	2.867E-01	2.874E-01	2.881E-51	2.889E-01
0.66	2.896E-01	$2.904 E-01$	2.911E-01	2.918E-01	2.926E-01	2.933E-01	$2.940 E-01$	2.949E-01	2.955E-01	2.962E-01
0.67	2.970E-01	$2.977 E-01$	2.984E-01	2.992E-01	2.999F-01	3.006E-01	$3.013 E-01$	$3.321 f-31$	$3.028 E-01$	3.035E-01
0.68	$3.042 E-01$	$3.050 E-01$	3.057E-01	3.064E-01	$3.071 E-01$	3.079E-01	3.086E-01	3.293E-01	3.100E-51	3.107E-01
0.69	3.115E-01	3.122E-01	3.129E-01	3.136E-01	3.143E-01	3.150E-01	3.158E-01	$3.165 E-01$	$3.172 t-01$	$3.179 E-01$
0.10	3.186E-01	3.193E-01	$3.200 E-01$	3.207E-01	3.214E-01	3.222E-01	3.229E-01	$3.236 E-01$	$3.243 E-01$	$3.250 E-01$
0.71	$3.257 E-01$	$3.264 E-01$	3.271E-01	3.278E-01	3.245E-01	3.292E-01	3.299E-01	3.306E-01	$3.313 \mathrm{E}-01$	$3.32 C E-01$
0.12	$3.327 E-01$	$3.334 E-01$	3.341E-01	3. 34BE-Cl	3.355E-01	3.362E-01	$3.369 E-01$	$3.376 E-01$	3.383E-01	3.390E-01
0.13	$3.396 E-01$	7.403E-01	$3.410 \mathrm{E}-01$	$3.417 \mathrm{E}-\mathrm{UL}$	3.424E-01	3.431E-01	$3.438 \mathrm{E}-01$	$3.445 E-01$	$3.452 t-01$	3.458E-01
0.74	$3.665 t-01$	3.472E-01	3.479E-01	3.486E-01	3.493E-01	3.497E-01	3.506E-01	$3.513 \mathrm{E}-31$	$3.520 E-31$	3.527E-01
0.15	$3.533 \mathrm{E}-01$	$3.540 E-01$	$3.547 E-01$	3.554E-01	3.560E-01	3.567E-01	3.574E-01	3.58JE-01	$3.587 E-01$	3.594E-01
0.76	$3.601 E-01$	$3.607 E-01$	3.614E-01	3.621E-01	$3.627 E-01$	$3.634 E-01$	$3.641 E-01$	$3.647 E-01$	3.654E-01	$3.661 E-01$
0.17	3.667E-01	$3.674 E-01$	$3.680 \mathrm{E}-01$	3.687E-01	$3.694 E-01$	3.700E-01	3.707E-01	3.113E-01	3.720E-J1	$3.727 E-01$
0.78	$3.733 t-01$	$3.740 E-01$	3.746E-01	3.753E-01	$3.759 E-01$	3.765E-01	3.772E-01	3.77 EE-O1	$3.785 E-01$	3.792E-01
i. 19	3.79HE-01	$3.805 E-01$	3.81IE-01	3.818E-01	3.824E-01	3.831E-01	$3.837 E-01$	3.843E-01	$3.850 E-01$	3.856E-O1
0.90	3.663E-01	$3.859 E-01$	3.875E-01	3.882E-01	3.888E-01	3.A95E-01	3.901E-01	3.907E-01	$3.914 \mathrm{E}-31$	3.920E-01
0.81	$3.926 E-61$	$3.933 E-01$	$3.939 \mathrm{E}-01$	3.945E-01	3.952E-01	3.958E-01	$3.964 E-01$	3.77JE-01	3.977E-01	$3.983 \mathrm{E}-01$
0.42	3.9A9E-01	3.996E-01	4.002E-01	4.008E-01	4.014E-01	$4.020 E-01$	$4.027 E-01$	4.033E-01	4.039E-01	$4.045 \mathrm{E}-01$
0. 83	$4.051 E-01$	$4.058 E-01$	$4.064 E-01$	$4.070 \mathrm{E}-01$	$4.076 E-01$	4.082E-01	4.0A8E-01	4.095E-01	4.101E-J1	6.107E-01
0.84	$6.113 \mathrm{~F}-01$	$4.119 E-01$	$4.125 E-01$	$4.131 E-01$	4.137E-01	$4.143 E-01$	$4.150 E-01$	$4.155 E-01$	$4.162 E-31$	$4.168 \mathrm{E}-01$
0.85	4.174E-01	$4.180 \mathrm{E}-01$	$4.186 \mathrm{E}-01$	4.192E-01	$4.198 E-01$	$4.204 E-01$	$4.210 \mathrm{E}-01$	$4.216 \mathrm{E}-91$	4.222E-01	4.22AE-01
0.86	$4.234 E-01$	$4.240 E-01$	$4.246 E-01$	4.252E-01	4.25AE-01	$4.263 E-01$	4.269E-01	$4.275 E-01$	$4.281 E-01$	4.287E-01
0.97	$4.293 E-01$	4.299E-01	$4.305 E-01$	4.311E-01	$4.317 E-D 1$	$4.322 \mathrm{E}-01$	$4.328 \mathrm{E}-01$	4.334E-01	4.340E-31	4.346E-01
0.88	$4.352 \mathrm{E}-01$	4.357E-01	$4.363 E-01$	4.369E-01	4.3755-01	4.381E-01	$4.386 E-51$	$4.392 \mathrm{E}-01$	4.398E-01	4.404E-01
0.89	4.409E-01	$4.415 E-01$	$4.421 E-01$	4.427E-01	4.4.32t-01	4.438E-01	$4.444 E-01$	$4.450 E-01$	$4.455 E-01$	4.461E-01
0.90	$4.467 \mathrm{E}-01$	$4.472 E-31$	$4.478 \mathrm{E}-01$	4.484E-01	4.489E-01	4.495E-01	4.501E-01	$4.506 E-01$	$4.512 \mathrm{E}-31$	4.517E-01
0.91	$4.523 E-01$	4.529E-01	$4.534 E-01$	4.540E-01	$4.5455-01$	4.551E-01	$4.557 E-01$	4.562E-01	4.568E-01	$4.573 E-01$
0.42	$4.574 E-01$	4.584E-01	$4.590 E-01$	4.595E-01	4.601E-01	$4.606 E-01$	4.612E-01	4.617E-01	$4.623 E-01$	$4.628 \mathrm{EF-01}$
0.93	4.634E-01	4.639E-01	$4.645 E-01$	4.650E-01	4.656E-01	4.661E-01	$4.666 E-01$	$4.672 E-01$	$4.671 \mathrm{E}-91$	4.683E-01
0.94	$4.638 E-O 1$	4.694E-01	$4.699 E-01$	4.704E-01	4.110E-01	$4.715 E-01$	$4.720 E-01$	4.726E-01	4.731 E -J1	4.736E-01
0.95	$4.742 \mathrm{E}-01$	4.747E-01	4.752E-01	4.75日E-01	4.763E-01	$4.769 E-01$	$4.774 \mathrm{E}-01$	$4.779 E-01$	$4.784 E-11$	4.799E-01
0.96	4.795E-01	4.800E-01	4.805E-01	4.811E-CI	$4.816 E-01$	4.821E-01	4.826E-01	$4.831 E-01$	$4.837 E-31$	4.842E-01
0.97	4.867E-OL	4.852E-01	4.957E-O1	4.863c-01	$4.868 E-01$	4.873E-01	$4.878 \mathrm{~F}-01$	4.883E-51	$4.888 t-31$	4.894 E-01
0.99	4.899E-01	$4.904 E-01$	$4.909 E-01$	4.914E-01	$4.719 \mathrm{E}-01$	$4.924 E-01$	$4.929 E-01$	$4.934 E-01$	$4.940 E-01$	4.945E-01
0.99	$4.950 \mathrm{E}-01$	$4.955 E-01$	$4.960 \mathrm{~F}-01$	4.965E-01	4.970E-01	$4.975 E-01$	$4.980 E-01$	$4.985 E-01$	$4.990 E-01$	$4.995 E-01$
1.00	5.000E-01	5.005E-01	5.010E-01	5.015E-01	5.020E-01	5.025E-01	5. 030E-O1	5.035E-J1	5.040E-01:	5.045E-01
1.01	5.050r-01	5.055E-01	5.060E-01	$5.064 E-01$	5.069E-01	5.074t-01	5.079E-01	5.084E-01	5.089E-01	5.094E-01
1.02	5.099E-01	5.104E-01	$5.108 \mathrm{E}-01$	S.113E-01	5.11AE-01	5.123E-01	5.128E-01	5.133E-01	5.137E゙-01	5.142E-01
1.03	$5.147 E-01$	5.152E-01	5.157E-01	5.162E-01	5.166E-01	5.171E-01	5.176E-01	5.181E-01	$5.185 \mathrm{E}-31$	5.190E-01
1.04	5.145E-01	5.200E-01	5.204E-01	5.209E-01	5.214E-01	$5.219 E-01$	5.223E-01	5.228E-01	5.233E-01	$5.237 E-01$
1.05	5.242E-01	5.247E-01	5.251t-01	5.256E-01	5.261E-01	9.265E-01	5.270E-01	5.275E-01	5.279E-01	5.2A4E-01
1.06	5.289E-01	5.293E-31	5.298E-01	5.303E-01	5.307E-01	5.312E-01	5.316E-01	5.321E-01	5.325E-01	5.330E-01
1.07	5.335E-01	5.339E-01	5.344E-01	5.34BE-01	5.353E-01	5.357E-01	5.352E-01	5.365E-01	5.371E-01	5.375E-01
1.08	5.380E-01	5.384E-01	5.389E-01	5.393E-01	5.398E-01	5.402E-01	5.407E-01	5.411E-01	5.416E-01	5.420F-01
1.09	5.425E-01	5.429E-01	5.434E-01	5.438E-01	5.443E-01	5.447E-01	5.451E-01	5.456E-01	5.450E-31	5.465E-01

Table D． 2 Table for Estimation of Weibull Parameters $\Gamma\left(1+\frac{1}{\beta}\right)$

B	0.0		0.001		0.002		0.003		0.004		0.005		0.006		0.007		0.008			
0.10	3.629 E	06	$2.876 E$	06	$2.292 E$	06	$1.837 E$	06	$1.479 E$	06	$1.197 E$	06	9.736 E	25	$7.955 E$	05	$6.529 E$	05	5．382E	05
0.11	$4.455 E$	05	3．703E	05	$3.091 E$	05	2．589E	05	$2.177 E$	05	1．83AE	05	1．557E	05	1．323E	05	1．128t	05	$9.652 E$	04
0.12	8.283 F	04	7．131E	04	$6.157 E$	04	5．332E	04	$4.630 E$	04	$4.032 E$	04	$3.520 E$	04	3.082 E	04	$2.705 E$	04	$2.380 E$	04
0.17	$2.099 E$	04	1．855E	04	$1.644 E$	04	1．459E	04	1．299F	04	1.158 E	04	$1.035 E$	04	$7.267 E$	03	A．315E	03	$7.474 E$	03
0.14	6.1315	03	$6.073 E$	03	$5.489 t$	03	4．970E	03	4.507 FE	03	4．094E	03	$3.126 E$	03	$3.395 E$	03	$3.099 E$	03	2.83 .3 E	03
0.15	2.5945	03	$2.378 E$	03	$2.183 E$	03	$2.007 E$	03	1．848E	03	1．703E	03	1．512E	03	1.4515	33	$1.345 E$	03	$1.246 E$	03
0.16	$1.155 t$	03	1．073E	03	9.975 E	02	9．283E	02	A．650F	02	0.069 E	02	1．533E	02	7.040 E	02	$6.587 E$	02	$6.169 E$	02
0.17	5.7828	02	$5.426 E$	02	$5.095 E$	02	4．790E	02	$4.506 E$	02	$4.243 E$	02	$3.999 E$	02	3.712 E	02	$3.561 E$	02	$3.364 E$	02
0.18	3.181 E	02	$3.010 E$	02	2.8515	02	2．702E	02	2．562E	02	$2.432 E$	02	2．304E	02	$2.195 E$	22	2．0月7E	02	$1.286 E$	02
0.19	1．892E	02	1．AD IE	02	$1.719 E$	02	$1.640 t$	02	1．566F	02	1．696E	02	$1.430 E$	22	1.357 F	02	1．308t．	02	1.253 E	02
0.20	1.200 E	02	1．150E	02	$1.103 E$	02	1．058E	02	1.016 E	02	$9.759 E$	01	－． 37 BE	01	$9.016 E$	01	$8.673 E$	01	$8.346 E$	01
0.21	A． 036 E	01	7．740E	01	$7.459 E$	01	$7.191 E$	01	6．936E	01	6．693E	01	$6.461 E$	01	$6.239 E$	01	6.028 E	01	$5.826 E$	01
0.22	$5.533 t$	01	5．449E	01	$5.272 E$	01	5．104E	01	4.942 t	01	4.78 AE	01	4.640 F	01	$4.493 E$	01	$4.361 t$	01	$4.231 E$	01
0.23	$4.106 E$	01	$3.986 E$	01	3.870 c	01	3．759E	01	$3.653 E$	01	$3.551 E$	01	3．452E	01	$3.357 E$	01	$3.266 E$	01	3.179 E	01
0.24	$3.094 E$	01	$3.013 E$	01	$2.935 E$	01	2.8545	CI	2．786E	01	2．116E	01	2.648 E	01	2.583 E	31	$2.520 t$	01	$2.459 E$	01
0.25	2.400 E	01	$2.343 E$	01	2．2月8E	01	2． 235 E	01	$2.184 E$	01	$2.134 E$	01	2.086 E	01	2.034 E	31	$1.994 E$	01	$1.451 E$	01
0.26	1.909 E	01	1.868 E	01	$1.828 E$	01	1．790E	0.1	1．753E	01	1．716E	01	$1.691 E$	01	1．647E	01	1．614E	31	1．5B2E	01
0.27	1.551 E	01	$1.521 E$	01	1.492 E	01	$1.463 E$	（1）	$1.436 E$	01	1．409E	01	$1.383 E$	01	1.357 E	21	1.333 E	01	1．309E	01
0.28	1．285E	01	$1.263 E$	01	$1.240 E$	01	$1.219 E$	U1	1．198E	01	1.177 E	01	1.158 E	01	1.138 F	01	1.119 E	31	$1.101 E$	01
0.29	1.083 E	01	$1.065 E$	01	1.048 E	01	1.032 E	01	1．015E	01	9．997E	00	$9.842 E$	05	$9.571 E$	33	$9.544 E$	00	$9.401 F$	00
0.10	9.261 F	00	$9.124 E$	00	B．990t	00	8．859E	do	A．732E	n0	H．607E	00	8．485E	00	H．363E	00	8.250 E	00	A． 136 E	00
0． 11	0．024E	00	7.916 E	00	7．809E：	00	7． 705 E	no	7.603 E	00	7.503 E	00	7．406E	00	$7.310 E$	03	7.217 t．	00	$7.125 E$	00
0.32	1． 335 E	00	6.448 E	00	$6.862 E$	00	6.778 E	10	$6.695 E$	00	6．614E	00	$6.535 E$	05	$6.457 E$	00	$6.381 t$	00	$6.307 E$	10
0.33	$6.234 E$	00	$6.162 E$	00	$6.092 E$	00	6．023E	00	5.955 E	00	5．889E	00	5．824E	00	5．763t	90	$5.677 E$	00	$5.636 E$	00
0.34	$5.515 E$	00	$5.516 E$	00	5.458 E	OC	5．401E	co	$5.345 E$	00	$5.290 E$	00	$5.236 E$	00	$5.183 E$	00	$5.131 E$	00	$5.079 E$	00
0.35	5．029E	00	$4.980 E$	00	$4.931 t$	00	4．883E	u0	4.836 F	00	$4.790 E$	00	4．745E	00	4.700 f	03	4.657	00	$4.614 E$	00
0.16	$6.511 E$	00	$4.530 E$	00	$4.489 E$	00	4．448E	no	$4.409 E$	00	4.370 E	00	4．331E	00	$4.294 E$	00	$4.256 E$	00	$4.220 E$	00
0.37	G．1A4E	00	4.14 AE	00	4.114 E	00	$4.079 E$	00	$4.045 E$	00	4.012 E	00	3．979F	00	$3.747 E$	00	$3.915 E$	00	3.884 E	00
0.38	3.853 E	00	$3.823 E$	00	3.793 E	00	3．764E	10	$3.715 E$	00	3．706E	00	3.678 E	05	$3.650 E$	00	$3.623 E$	00	$1.596 E$	00
0.39	3.569 E	00	3.543 F	00	$3.517 E$	CO	3.492 E	00	$3.467 E$	00	3．442E	00	3.418 E	00	1．394E	00	$3.370 E$	00	$3.346 E$	Cu
0.40	$3.323 E$	00	$3.301 E$	00	3.218 F	00	$3.256 E$	00	$3.234 E$	00	$3.213 E$	00	3.1716	00	$3.170 t$	05	3.150 t	00	$3.129 E$	00
0.41	$3.109 E$	00	T．0A9E	00	3.070 F	00	3．050F	00	$3.031 t$	00	3.012 F	00	$2.994 E$	00	$2.975 E$	00	$2.957 E$	00	2.93 9E	00
0.62	2． 321 E	00	$2.904 E$	00	$2.886 E$	OC	2.8695	00	2．月53E	0 C	$2.835 E$	00	2．a20E	00	2．933E	00	2.787 F	00	$2.771 E$	00
0.63	2.756 E	no	2．740E	00	$2.725 E$	00	2．710E	00	$2.695 E$	00	2.680 E	00	2.666 E	05	$2.651 E$	00	2.63715	00	2.6235	00
0.44	$2.609 t$	00	$2.595 E$	00	2.582 E	00	2．568E	00	$2.555 E$	00	$2.542 E$	00	2．529E	00	$2.516 E$	00	$2.504 E$	00	$2.491 E$	00
0.45	$2.479 E$	00	$2.466 E$	00	$2.454 E$	00	2.442 F	60	2.430 E	00	$2.419 E$	00	$2.407 E$	00	$2.396 E$	on	2．3n4E	00	$2.373 E$	00
0.66	2．362f	00	$2.351 E$	00	2.340 E	00	2．329E	60	$2.319 E$	00	2．308E	00	2.298 E	03	$2.287 E$	00	$2.217 E$	00	2.2675	00
0.47	$2.257 E$	00	$2.247 E$	00	$2.238 E$	00	2.2285	00	2.218 A	00	$2.209 E$	00	$2.199 E$	00	$2.190 E$	03	$2.181 t$	00	2.172 F	00
0.48	$2.163 E$	00	$2.154 F$	00	$2.145 t$	00	$2.136 E$	00	2.128 E	$n 0$	2.119 E	00	$2.111 E$	00	$2.102 E$	00	$2.094 E$	00	$2.086 E$	00
U． 49	$2.017 E$	00	$2.069 E$	00	$2.061 F$	00	$2.053 E$	00	$2.046 E$	00	2.038 E	00	2.030 E	00	$2.022 E$	93	$2.015 E$	00	$2.007 E$	00
0.50	$2.000 E$	00	1.993 E	00	$1.985 E$	00	1．978E	00	$1.971 E$	00	1．964E	00	$1.957 E$	00	1.950 E	00	$1.943 E$	05	$1.936 E$	00
0.51	$1.930 E$	00	1.923 E	00	1.916 E	00	1.910 E	00	$1.903 E$	00	$1.897 E$	00	1.890 E	00	$1.884 E$	00	1.878 E	00	1．971E	00
0.52	1．865E	00	1．959F	00	1.853 E	00	$1.847 E$	00	1.8415	00	$1.835 E$	00	$1.829 E$	05	$1.823 E$	00	1.818 E	00	1．812E	00
0.53	1.806 E	00	1.80 IE	00	1.795 t	00	1．790E	00	$1.784 E$	00	$1.179 E$	00	1．713E	00	1.768 E	00	1.763 C	00	$1.757 E$	00
0.54	1．752E	00	1．747E	00	1．742F	00	$1.737 E$	00	1．732E	00	$1.127 E$	00	$1.722 E$	23	$1.717 E$	00	1．712E	00	$1.707 E$	00
0.55	1.702 E	00	1.6985	00	$1.693 E$	00	1．68AE	00	$1.684 E$	00	$1.679 E$	00	$1.674 E$	00	1.670 E	00	$1.665 E$	00	$1.661 E$	00
0.56	1．657E	00	1.652 E	00	1.648 E	00	$1.643 E$	00	$1.639 E$	00	$1.635 E$	00	$1.631 E$	05	$1.627 E$	00	1.6225	00	1.618 E	00
C． 57	1.614 E	00	1.610 E	00	$1.606 E$	00	1.602 E	00	1.598 E	00	1．594E	00	1.590 E	03	$1.586 E$	00	1.583 E	00	$1.579 E$	00
0.58	1.575 E	00	$1.571 E$	00	1.567 E	00	$1.564 E$	CO	1．560E	00	$1.556 E$	00	1．553E	35	1.549 E	29	1.546 E	00	$1.542 E$	00
0.	1.538 F	00	1.535 E	00	． 5	00	1． 5.2 AE	00	1． 525 E	00	1．521E	00	1.518 E	05	1.5	00	$1.511 E$	00	1．508E	

Table D. 2 (continued) $\Gamma\left(1+\frac{1}{\beta}\right)$

β	0.0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	009
0.50	1.505E 00	1.501E 00	1.498 E 00	1.495E 00	1.492 EO	1.489 O 0	1.485 EJ	1.482 E 00	$1.479 E 00$	1.476 E
0.61	$1.673 E 00$	1.470E 00	$1.467 E 00$	$1.464 E 00$	$1.461 E 00$	1.458 EO	1.455 E 00	1.452E 35	1.449E 00	$1.446 E$
0.62	1.444E 00	$1.441 E 00$	1.438 E 00	$1.435 E 00$	$1.432 E 00$	1.430E 00	1.427E 00	1.424 EO	1.421E 00	1.419 E
0.63	$1.416 E 00$	$1.413 E 00$	1.411E 00	1.408 ECO	$1.406 E 00$	$1.403 E 00$	1.400 EJ	$1.393 E 00$	$1.395 E 00$	1.393 E
0.64	1.390 E 00	$1.38 A E 00$	1.385 F 00	1.383E 00	1.3A1E 00	1.378E 00	1.376100	$1.373 E 00$	1.371E 00	1.364 E
0.65	$1.366 E 00$	$1.364 E 00$	1.362 E 00	1.359E CO	1.357E 00	$1.355 E 00$	$1.353 E 00$	1.350E 00	1.348 C 00	1.346 E
0.66	1.344E 00	$1.341 E 00$	$1.339 E 00$	1.337E 10	1.335500	1.333E 00	1.331E 05	$1.329 E 00$	1.327E 00	$1.324 E$
0.57	1.322E 00	1.320F 00	1.318 t 00	1.316E 00	1.314t 00	$1.312 E 00$	1.310F 00	1.30 HE OO	$1.306 E 00$	1.304 E
0.58	$1.302 E 00$	1.300E 00	$1.299 E 00$	1.291E CO	$1.295 \equiv 00$	$1.293 E 00$	$1.291 E 05$	$1.284 E 00$	$1.287 E 00$	1.285E
0.69	$1.284 E 00$	1.282E 00	1.280 E 00	1.278E 00	$1.276 E 00$	$1.275 E 00$	1.273t 00	1.271E 03	1.269E 00	1.268 E
0.70	1.266500	1.264E 00	1.262E 00	$1.261 E 00$	1.259E 00	$1.257 E 00$	$1.256 E 00$	$1.254 E 00$	$1.252 E 00$	1.251 E
0.11	1.249E 00	1.247E 00	1.246t 00	1.244E 00	$1.243 E 00$	1.241E 00	1.239 E 00	1.233 E 00	$1.236 E 00$	$1.235 E$
0.12	1.233 E 00	$1.232 E 00$	$1.230 E 00$	$1.229 E$ vo	1.227E 00	$1.226 E 00$	1.224 E 00	$1.223 E 03$	$1.221 E 00$	$1.220 E$
0.71	$1.218 E 00$	1.217E 00	1.215000	1.2145 00	1.212E 00	$1.211 E 00$	1.210E 03	1.25 HE 00	1.207E 00	$1.205 E$
0.74	1.204E 00	1.203E 00	$1.201 E 00$	1.200E 00	$1.199 E 00$	$1.197 E 00$	$1.176 E 0 J$	$1.195 E 00$	1.193E 00	1.192 E
0.15	1.191E 00	1.189E 00	1.188 C 00	1.187E 10	$1.185 E 00$	$1.184 E 00$	$1.183 E 00$	1.182E 39	1.180t 00	1.179F
0.76	1.178 E 00	1.177E 00	1.175 E 00	1.174E CO	$1.173 E 00$	$1.172 E 00$	1.171E $0 J$	1.164500	1.16AE 00	$1.167 E$
0.77	$1.166 E 00$	1.165E 00	1.163 E 00	1.162E U0	1.161E 00	$1.160 E 00$	1.159 E 05	1.158 EO	1.157t 00	$1.155 E 0$
0.78	$1.154 E 00$	1.153E 00	1.152E 00	1.151E 00	1.150100	$1.149 E 00$	1.14日E 00	$1.147 E 00$	1.146 E 00	$1.144 E$
0.79	$1.143 E 00$	1.142E 00	$1.141 E 00$	1.140E 00	$1.139 E 00$	1.13 AE 00	1.137E 05	$1.136 E 00$	$1.135 E 00$	1.134 E
0.85	1.133E 00	1.132E 00	1.131t 00	1.130F 00	$1.129 E 00$	1.128E 00	1.127E 00	$1.126 E 00$	$1.1255^{1} 00$	$1.124 E 00$
0.81	1.123E 00	1.122 E 00	1.121E 00	1.120E 00	1.119000	1.118 O 0	1.117E 00	1.116F 00	1.116E 00	1.115E
0.92	1.114E00	$1.113 E 00$	1.112 E 00	1.111E 60	1.110 00	$1.109 E 00$	1.1J8E JJ	$1.107 E 00$	1.106E 00	$1.106 E$
0.93	$1.105 E 00$	1.104E 00	1.103 F 00	1.102E 00	1.101E 00	1.100E 00	1.100E 00	1.099E 00	1.098E 00	$1.097 E$
0.84	1.376E 00	$1.095 E 00$	$1.094 E 00$	1.094E CO	1.093E 00	$1.092 E 00$	1.091E 00	$1.090 E 00$	1.090E 00	$1.089 E$
0.35	1.5BEE 00	1.087E 00	$1.086 E 00$	$1.086 E 00$	1.085800	1.084E 00	1.083E 03	1.082 E 29	$1.082 t 00$	1.081 E
0.86	1.JgOF 00	1.074E 00	$1.079 E 00$	1.078E 00	1.077E 00	1.076E 00	$1.076 E 00$	1.075000	$1.074 E 00$	1.073 E
0.87	1.073 O 00	1.072E 00	1.071E 00	1.071E U0	1.070E 00	1.069E 00	1.068 E 00	1.05 CE 00	1.067 E 00	1.066 E
0.98	$1.066 E 00$	1.065E 00	$1.064 E 00$	$1.063 E 10$	1.063E 00	1.062 E 00	$1.061 E 00$	$1.051 E 3$	1.06UE 00	1.059 O
0.89	1.059E 00	1.058 O	1.057 E 00	1.057E 00	1.056E 00	1.055E 00	1.055 E 00	1.054 E 00	1.053 E 00	1.053 E
0.70	1.052E 00	$1.052 E 00$	1.051E 00	1.050E CO	1.050E 00	1.049E 00	1.048 E 00	1.048 E 00	$1.047 E 00$	1.047 E
0.91	1.046 E 00	$1.045 E 00$	1.045E 00	1.044E 00	$1.043 E 00$	1.04.3E 00	1.042 E 00	1.042 EO	1.041E 00	1.041 E
0.92	1.040 E 00	$1.039 E 00$	1.039E 00	1.038E 00	1.038 E 00	1.037 E 00	$1.036 E 00$	$1.036 E 30$	$1.035 t 00$	1.035 E 00
0.73	$1.034 E 00$	$1.034 E 00$	1.03it 00	1.033E 00	$1.032 E 00$	1.031E 00	1.031E 00	1.030 E 00	1.030E 00	1.029 F 00
0.94	1.029E 00	1.028E 00	1.028E 00	1.027E 00	$1.027 E 00$	$1.026 E 00$	$1.025 E 00$	1.025 E 00	1.324 E 00	1.024 E
0.95	1.023E 00	1.023500	1.022 O	1.022E CO	$1.021 E 00$	$1.021 E 00$	1.020E 30	1.020 E 00	1.019E 00	1.019 F
0.96	1.018E 00	1.018 O 00	1.017E 00	1.017E 00	1.016E 00	$1.016 E 00$	1.015 ± 05	1.015 E 20	$1.014 t 00$	1.014 F
0.97	1.013E 00	$1.013 E 00$	$1.013 E 00$	1.012E 10	1.012 O	1.011E 00	$1.011 E 00$	1.015 O 0	1.010 E 00	1.007 E
0.98	1.009E 00	1.00AE 00	1.00AE 00	1.007E 00	$1.007 E 00$	1.007E 00	1.006 E 00	$1.006 E 00$	$1.005 E 00$	1.005 O
0.79	1.004 E 00	$1.004 F 00$	$1.003 E 00$	1.003 E 0	1.003 E 00	1.002 E 00	1.002E 00	1.001E 00	1.001E 00	1.00CE O
1.00	1.000 E 00	$9.996 E-01$	9.992E-01	9.987E-C1	9.983E-01	9.979E-01	$9.975 \mathrm{E}-01$	4.971E-01	$9.967 E-01$	9.96 3E-01
1.01	$9.959 \mathrm{E}-01$	9.954E-01	$9.950 E-01$	9.946E-01	9.942E-01	$9.938 \mathrm{E}-01$	9.934E-01	$9.733 E-31$	9.927E-01	9.923E-01
1.02	$9.919 \mathrm{E}-01$	$9.915 E-01$	$9.911 t-01$	9.907E-01	9.903E-01	9.899E-01	9.875E-01	$9.892 \mathrm{E}-31$	9.8B8E-01	7.8ALE-01
1.03	9.ABDE-OI	9.877E-01	9.673E-01	9.869E-01	9. $865 \mathrm{E}-01$	$9.362 \mathrm{E}-01$	9.858E-01	$9.854 \mathrm{E}-01$	9.851t-01	9.847E-01
1.04	9.843E-01	9.840E-01	$9.836 E-01$	9.833E-01	9.829E-01	9.826E-01	9.822E-01	9. P1BE-01 $^{\text {a }}$	9.815E-31	9.811E-01
1.35	9.908 F-01	9.A04E-01	$9.801 E-01$	9. 798E-01	9. $794 E-01$	9.791E-01	9.787E-01	7.1A4E-01	9.7AOE-JI	9.777E-01
1.06	$9.714 \mathrm{E}-01$	9.7 90E-01	$9.767 \mathrm{E}-01$	9.764E-01	9.760E-01	9.751E-01	9.754E-01	$9.751 \mathrm{E}-01$	9.747E-01	$9.744 \mathrm{E}-01$
1.07	$9.741 \mathrm{E}-01$	$9.738 E-01$	9.734E-01	9.731E-01	9.728t-01	9.725E-01	7.722E-01	7.719E-31	9.715t-01	7.712E-01
1.08	$9.709 \mathrm{E}-01$	9.706E-01	9.703E-01	9.700E-01	9.697c̄-01	9.694E-01	$9.691 E-01$	7.688E-01	9.695[-01	9.682E-01
					$9.667 E-$ II					

Cable D. 3 Table for Estimation of Weibull Parameters $\Gamma\left(1+\frac{2}{\beta}\right)$

β	3.0	0.301	0. 2	9.3.3	0.054	1.025	0.906	0.C:7	.038	0.305
0.10	2.433E 18	1.339E 18	7.47 UE 17	$4.223 E 17$	$2.418{ }^{2} 17$	1.401E 17	0.22.0e 16	4.878 E 16	2.928E 16	1.776E 16
0.11	1.089 E 16	6.748E 15	$4.222 E 15$	2.668E 15	1.701E 15	1.95E 15	7.11:E 14	$4.656 E 14$	3.75E 14	$2 \cdot .43514$
C. 12	$1.374 E 14$	9.295E 13	$6.334 E 13$	$4.348 E 13$	3.0J6E 13	2.092E 13	1.466 E 13	1.034E 13	7.343E 12	5.246E 12
0.13	3.771612	$2.726 E 12$	1.982E 12	$1.450 E 12$	$1.066 E 12$	7.880E 11	5.856E 11	4.374 E 11	3.283E 11	2.477511
S. 14	$1.877 E 11$	$1.429 E 11$	1.093E 11	8.398 E 10	6.480E 10	5.U21E 10	3.906E 13	$3.051 E 10$	2.393E 10	1.884 E 1J
0.15	1.489E 10	1.181E 10	9.40.E 09	$7.510 E 09$	6.020E 09	4.842E 09	3.908E 09	3.164E 09	2.569E 29	2.093E 09
0.16	1.711E 09	1.402E 09	1.152E 09	$9.500 E 08$	7.653E 28	6.5i.je 28	5.411E 8	4.539 E ¢ 8	3.767E 8	3u:55E DE
0.17	2.650 E U8	2.23:E 08	1.882E 08	$1.591 E 08$	1.349E 08	$1.146 E 08$	9.759E G7	8.327E 7	7,121E 97	6.122E 07
0.18	5.239E 07	$4.503 E 07$	3.686E 07	$3.357 E 07$	2.905E 07	2.518E 07	$2.188 E 07$	$1.904 E 07$	$1.659 E 07$	$1,469 E 07$
0.19	1.267E 07	1.111E 37	9.747E 06	8.568E 06	7.544E 46	6.653E 06	5.876 E O6	$5.197 E 06$	4,6.34E 36	$4.385 E 06$
0.20	3,629E 56	3.229E 06	2.876E 06	2.566E 06	2.292E 06	2.J51E 06	1.837E Cb	$1.647 E 06$	$1.479 E 06$	1.33JE O6
0.21	1.197E O6	1.079E 06	9.736.E 05	8.795E 05	7.955E 05	7.202E 05	6.529E 05	5.924E 05	5.362505	$4.694 E 05$
0.22	4.455E 05	4.06)E 05	3.7133E 05	3.381E 05	3.191E :5	2.827E 05	2.589E C5	2.373E 05	2,177E 05	$1.999 E 05$
0.23	$1.838 E 05$	1.691E C5	1.557E 05	$1.434 E 05$	1.323E 05	1.221E 05	1.128E 05	1.043E 05	9:652E Oi	$8.938 E 04$
0.24	8.283E D4	7.683E 04	7.13 EE 34	$6.624 E 04$	6.157E i4	5.728E 34	5.332E .14	4.967 E : 4	4.63CE 34	4.319 E
0. 25	$4.232 E 04$	$3.766 E 04$	3.52:E 04	3.293E 04	$3.082 E 04$	2.886E 04	2.705E 04	$2.536 E$-4	2. 580 E 04	$2.254 E$ 54
0.26	2.099E 04	1.972E 04	1.855E 04	$1.746 E 04$	$1.644 E 04$	1.548E 04	$1.459 E 04$	$1.376 E 04$	$1.299 E 04$	$1.226 E 04$
0.27	1.158E O4	$1.095 E 04$	1.035E 04	$9.791 E \mathrm{~J}$	9.267E ¢ 3	8.776E 93	8,315E:3	7.881E $\because 3$	7.474E 33	7.:91E 03
-. 28	$6.731 E \mathrm{~J}$	6.392E 03	6.073E 03	$5.772 E 03$	5.489E 03	5.222E 03	4.969E 03	$4.732 E 03$	4.5J7E 03	$4.295 E 03$
0.29	4.094 E 03	3.905E 03	3.726E 03	$3.556 E 03$	3.395E 03	3.243E 03	3.099E 03	2.962E L3	2.633E 03	2.713E 03
0.30	2.594E O3	$2.483 E 03$	2.378E U3	$2.278 E$	2.183E i3	2. 93E 23	20.077E C3	1.925E ${ }^{\text {U }} 3$	$1.848 \mathrm{E}-3$	$1.774 E 03$
0.31	1.703E 03	1.636E 03	1.572E 03	1.511E 03	1.453E 03	1.397E 03	1.345E 03	$1.294 E 03$	1.246E 03	$1.199 E 03$
0.32	1.155E. 03	1.113E 03	1.07EE 03	$1.034 E 03$	9.975E 02	9.622E 02	$9.283 E 02$	8.960 E 02	$8.650 E 02$	2.353E 02
2.33	8.368 E 32	7.795E 32	7.533E 02	$7.281 E 32$	7.C4CE 22	6.8 9E 32	6.5a7E 62	6. $374 \mathrm{E} \dot{\text { - } 2}$	6.169E J2	5.972E 02
0.34	5.782E 02	5.60JE 02	5.426E 02	5.257E 02	5.095E 02	$4.940 E 02$	4.79.E 2	4.6455 S	4,5 6E 32	$4.372 E 02$
$\bigcirc .35$	4.243 E 02	$4.119 E 02$	3.999E 02	3.884E 02	3.772E C2	3.665E 02	3.561E C2	$3.461 E 02$	3.364E 02	3.27iE 02
0.30	3.181E 02	3.0915E 02	3.01JE 02	2.929E 02	2.851E 02	2.775E 02	2.702E 02	$2.631 E$ Ú2	2.562E 02	2.446E 92
0.37	$2.432 E 02$	2.369E 02	2.309E 02	2.251E 02	2.195E 02	2.140E 02	2.087E 02	$2.036 E 02$	1.986E 12	1.933 E 02
¢. .38	$1.892 E 02$	1.846E 02	1.803E 02	2.76 ? E 22	1.719 s ,2	1.679E 02	1.642E 02	1.602 E 02	1.566E 02	1.53:E 02
0.39	1.496 E 02	1.462E 02	1.43:E 02	$1.398 \mathrm{E} ~ 02$	1.367E 02	1.337E 02	1.358E 02	1.28JE 02	$1.253 E 02$	1.226 E 02
0.43	$1.200 \mathrm{E} J 2$	1.175E 02	1.15 E 02	$1.126 E \mathrm{C} 2$	1.1:3E 02	1.080E 02	1.058E 02	$1.037 \mathrm{EC2}$	1.016E 02	$9.957 E$ OL
0.41	9.759E O1	9.566E O1	9.378 E 01	9.195E 01	9.016E 01	8.842E 01	6.673E 01	8.508E OL	8.346E O1	$8.159 E$ Oi
0.42	8.036 E 01	7.886E 01	7.74rie 01	7.598 E O1	7.459 E 01	7.324E 01	7.191E 01	7.002501	6:936E : 1	0.813E OL
:. 43	$6.693 E 01$	$6.575 E$ U1	6.461E O1	$6.349 E$ Jl	6.239 E , 1	$6.132 E 51$	$6.028 \mathrm{E}^{61}$	$5.926 E$ O1	5,826E 21	5.728 El
0.44	5.633 E 01	5.54JE 01	5.449 El	$5.360 E 01$	5.272E OL	5.1E7E 01	5.104E Oi	$5.022 E 01$	$4.942 \mathrm{E} \mathrm{O1}$	4.664501
0.45	$4.78 \mathrm{EE} \mathrm{O1}$	$4.713 E 01$	4.64 E 01	4.568 E OL	4.498 EL	$4.429 E 31$	$4.361 E \cdot 1$	4.296E こ2	4.231501	$4.166 E 01$
0.46	$4.136 E 01$	4.045 E O1	3.986E 01	$3.927 E 01$	3.870E O2	3.014E 01	3.759E O1	$3.706 E 01$	3,653E ii	3.6.1E OL
0.47	$3.551 E 01$	$3.501 E 01$	3.452 EE 01	3.4C4E 01	3.357E 21	3.311E 01	3.286E 01	$3.222 E G 1$	$3.179 E$ D1.	$3.136 E 01$
0.48	3.0945 JL	3.053E 01	3.01JE 01	2.973E 01	2.935501	$2.896 E 01$	2.859 E O1	2.822E 01	2.786E 01	2.751E OL
0.49	2.716 EJL	2.682E 01	2.648 E 91	2.615 E O1	2.583E 31	2.551E 01	2.52JE 01	2.489E G1	2.459E 21	$2.427 E 01$
0.50	2.400101	$2.371 E 01$	2.34EE 01	2.315E 01	2.288 OL	2.261E 01	$2.235 E 0:$	2.209E 01	2.184E 01	$2.159 E 01$
0.51	$2.134 E$ UL	2.110 E 01	$2.086 E 01$	$2.063 E 01$	2.039E 01	2.-17E 01	1.994E ${ }^{1.1}$	1.973E -1	1,951E J1	1.93:E 21
1. 52	1.9.79E OL	$1.898 E 01$	1.96EE LI	1.848 E 01	1.828E CL	1.8C9E 01	1.79:E 01	$1.771 E 01$	1.753E 01	1.734 E Oi
0.53	1,716E O1	1.69\%E OL	1.68:E 01	$1.664 E 01$	$1.647 E 01$	$1.631 E 01$	$1.614 E C 1$	1.598 E 01	1.582 E 01	$1.537 E 01$
3.54	$1.551 E$ UL	1.536E 01	1.522E 01	1.5ibe OL	1.492E 61	1.47 de 01	1.463 E \% 1	1.450501	$1.436 E 01$	$1.422 E 01$
0.55	1.409 ECL	$1.396 E 01$	1.383E 01	$1.370 E 01$	1.357E 01	$1.345 E 01$	$1.333 \mathrm{E} \mathrm{O1}$	$1.321 E 01$	1.309E 01	$1.297 E 01$
0.56	1.285E 01	$1.274 E 01$	$1.263 E 01$	1.251E O2	$1.240 E 01$	1.230E O1	1.219 E 01	1.208 E 01	1.198E 01	1.188801
0.57	1.177E 01	1.167E 01	1.158 E 01	1.148E O1	1.138 EVL	$1.129 E 21$	2.119E nl	1.117 EJ	$1.111{ }^{1} 01$	$1.092 E 01$
C. 58	1.083801	1.0740^{101}	1.065E 01	1.057E 01	1.048 E 01	1.040 E O1	1.C32E O1	$1.024 E 01$	1.015E 01	1.0JEE Oi
0.57	9.997E UO	$9.919 E 00$	9.842E 00	9.766E 00	9.691E 00	9.617E 25	9.544E 0 :	9.472E C.	9.4:1E 0:	9.33 $\mathrm{EEO}^{\text {O }}$

Table D. 3 (continued) $\Gamma\left(1+\frac{2}{\beta}\right)$

β	0.0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.309
0.	$9.261 E 00$	9.192 E 00	9.124E 0	$9.056 E 00$	8.990E 00	8.924E 00	8.859E OO	$8.795 E 00$	B.732E 00	$8.669 E$
0.61	8.6UJECO	8.546E 00	8.485E 00	8.425E 00	8.366E 00	8.307E 00	$8.250 E$ OC	6.192E 00	6.136E 00	8.08JE 00
0.62	8.024 O0	7.970E 00	$7.916 E 00$	$7.862 E 00$	7.8cige 00	7.757E 00	7.795E 09	7.654E US	7.6.3E	7.553E
1.63	$7.593 E 00$	7.454E 09	7.40 LE 00	7. 358 CO	7.310E 00	$7.263 E 00$	7,217E CO	7.171E OO	7.125E 00	7.060 O 0
0.64	7.035E 00	6.991E 00	6.948E 00	6.904E 00	6.862E 00	$6.819 E 00$	6.778 E OO	$6.736 E 00$	$6.695 E 00$	$6.654 E 00$
0.65	$6.614 E 00$	6.574E 00	$6.535 \ddot{E} 00$	6.496E 00	6.457E 60	$6.419 E 30$	$6.381 E$	6.344E JO	6.3:7E JL	$6.27: E$
0.6	6.234E 00	$6.198 E 00$	$6.162 E$ OJ	6.127E 00	$6.092 E 00$	$6.057 E 00$	6.023 E 00	S.989E 00	5.955E 00	5.922 E 0
0.67	5.889E 00	5.856E 00	5.824E 00	5.792E 00	5.760E 00	5.728 EO	$5.697 E$ OC	5.666E 00	5.636E 00	5.635 E 09
1.68	5.575E 00	5.546E 30	5.516E 0 ?	5.487E OJ	5.458E 00	5.429 E D	$5.401 E 00$	5.373E 00	5.345 E OJ	$5.317 E 00$
0.69	S.29JE 60	5.263E 00	$5.236 E 00$	5.209E 00	5.183E 00	$5.157 E$ OU	$5.131 E 00$	5.105E 00	5.079E 00	5.054 EO
0.70	5.029 E 00	$5.004 E 00$	4.98:E 00	4.955E 00	4.931E 00	$4.907 E 00$	$4.883 E 00$	4.860E 00	$4.836 E 00$	$4 . E 23 E$
$0.7 i$	4.790150	4.768 E 00	$4.745 E 03$	$4.723 E 00$	$4.7 J O E 00$	$4.678 E 00$	4.657 EO	$4.635 E 00$	4.614 EDO	$4.592 E 05$
0.72	$4.571 E 00$	$4.55 J E ~ O S$	4.530 E 00	4.509E 00	4.489E 00	$4.468 E 00$	4.448 E 00	$4.428 E 00$	4.409 EO	4.389 E 00
0.73	$4.370 E 00$	4.350 E 00	4.33:E 00	4.312 E 00	$4.294 E$ OS	$4.275 E 03$	$4.256 E:$	4.238 E 90	$4.22 C E 05$	$4.2 .2 E 0:$
0.74	$4.184 E$ U0	$4.166 E 0 J$	4.148 E 00	4.131E 00	$4.114 E 00$	$4.6 .96 E 00$	4.0798000	4.062E 00	4.645E 00	$4.329 E 00$
0.75	4.022 EO	3.996E 00	3.979E 00	3.963E 00	3.947E 00	$3.931 E 20$	3.915 CO	3.902E 00	3.884E UO	3.869E OO
0.7	3.853 E 00	$3.838 E 00$	$3.823 E 0$?	3.8JaE 03	3.793 EOJ	3.778 E 00	3.764E \%	3.749E	3.735E 0:	$3.72{ }^{\text {E E }}$
6.77	3.706E 30	3.692E 00	3.678 E 00	3.664E 00	$3.650 E 00$	$3.636 E$ DO	3.623E $0^{\text {O }}$	3.609E 03	3,596E OD	3.583E OO
0.73	$3.569 E 00$	3.556E 00	3.543E 00	3.530E 00	$3.517 E 00$	3.5C.4E 00	$3.492 E 00$	3.479E 00	3,467E 00	$3.454 E 0$
¢. 79	3.442 E U0	3.43JE 09	3.418E 0:	3.4J6E JU	3.394E OO	3.382 E 30	3.37 E 0	3.358E 00	3,346E OS	$3.335 E$ OU
0.80	$3.323 E 00$	$3.312 E 00$	3.3015 00	3.289E CO	3.278E 00	3.267E 00	3.256E 00	3.245E 00	3.234E 00	$3.223 E 00$
0.81	$3.213 E 00$	3.2E2E 00	3.19:E 00	$3.181 E 00$	3.17CE 00	3.160E DO	3.150E 00	3.139E ${ }^{\circ}$	3,129E 0	3.119E
1.62	3.159E 50	3.699E 05	$3.369 E 0.3$	3.:79E ${ }^{\text {dJ }}$	3.UV'JE U0	3. 60E 00	3.050E 00	$3.041 E 00$	3.こ31E 00	$3.022 E 00$
0.83	3.012800	3.ŨC3E 00	$2.994 E 00$	2.984E 00	2.975E 00	2.966E 00	$2.957 E 00$	2.948E Sis	2,939E 0 ?	2.93 : E
$\dot{+}$	$2.921 E$ U0	-2.912E QU	2.904E 0j	2.895E JJ	2.886E $\therefore 0$	2.878E 00	2.869E 00	$2.861 E 00$	2.853E 00	$2.844 E 00$
0.85	2,836E 00	$2.828 E 00$	2.82:E 00	2.811E 00	2.803E 00	2.795E 00	2.787E 00	2.779 EO	2.771E 00	2.704E 00
0.86	2.756E 05	2.748E 00	2.74:E00	$2.733 E 00$	2.725E 00	2.717E 00	2.710 E O	2.702E 00	2.695E J	2.688 E 0\%
¢.87	2.48CE 30	$2.673 E 00$	$2.666 E 1$	2.658E JU	2.651E 00	2.644E 92	$2.637 E 90$	2.630 J 20.	$2.623 E 00$	2.616E 00
0.88	2.6U9E 00	2.602E 00	2.595 E 00	2.589E 00	2.582E 00	$2.575 E 00$	2.568E 00	2.562E 00°	2.555E 00	2.549E 05
0.89	2. 542 E 00	2.535E 00	2.529E 00	2.523E 00	2.516E 00	$2.510 E 00$	$2.504 E 00$	$2.497 E 00$	2.491E 00	2.485E 00
0.90	2.479E 00	2.472E 00	2.466E 9	2.46:E 03	2.454E 00	2.448E 00	2.442E	$2.436 E$ OC	2.430E O:	$2.424 E$
0.9	$2.419 E 00$	2.413 E 00	2.407E 00	$2.401 E 00$	2.396E 00	2.390E 00	2.384E CO	$2.379 E 00$	2, 373 E 00	$2.367 E 05$
0.92	2.362E 00	2.356E 00	2.35:E 00	2.345E 00	$2.340 E 00$	$2.335 E 09$	2.329E 00	2.324E 00	2.319E 00	2.3i3E 00
0.9	2.308100	2.3C3E 00	2.298E 00	2.293E OO	2.287E CO	2.282E OJ	2.277 E O	2.272E 0	2,267E 0:1	2.262E 0 :
0.94	2.257E 3 S	2.252E 05	$2.247 E$ ON	$2.242 E 00$	2.238 CCO	2.233E 00	2.228E 00	2.223E CO	2,218E 00	2.214 E 03
C. 95	2.209E 00	2.204E 00	2.199E 00	2.195E 00	$2.190 E 00$	2.185E 00	$2.181 E 00$	2.176E 00	2.172E 00	2.267E 00
0.96	$2.163 E 00$	2.158E 00	2.154E 20	2.149E 00	2.145E 00	2.141E ${ }^{\text {j }}$	2.136E C.	2.132 E in	20128E 37	2.123E O.
0.97	$2.119 E 00$	2.115E 90	2.11: ${ }^{\text {d }}$	2.14.6E 00	2.102E 00	$2.6198 E 00$	2.094 ECO	2.39:Je 00	2.386E 00	2.082E 00
0.98	2.077E GO	$2.073 E 00$	2.GE9E 00	2.065E 00	2.06IE 00	2.057E 00	$2.053 E$ OU	$2.049 E 00$	2.046E DO	2.04?E 00
0.99	2. U38E 00	2.034E 00	2.C3?E 00	2.626E 00	2.022E 00	2.019E 00	2.015600	2.011E	2.0.7E 20	$2.0 .4 E{ }^{\circ}$
1.0	2.JUUE 20	$2.996 E 00$	1.993E 0:	1.989 E OJ	1.965E 00	1.982E 00	1.978 OJ	$1.975 E C 0$	1.971E 00	1.967E 00
1.01	1.964E 00	1.960E 00	1.957E 00	$1.953 E 00$	1.950E 00	1.947E 00	1.943 E 00	$1.940 E 00$	1.936E 00	1.933 EJ
1.02	1.930 E 00	1.926E 00	1.923E 00	1.919E 00	1.916E 00	$1.913 E 00$	1.910E 00	1.906 E 00	1.993E 00	1.9.E 0.
1.03	$1.897 E 00$	$1.893 E 05$	1.89.E $0:$	1.887E OL	1.884E 0	1.881E 0J	1.878 Ec -	1.874E 00	1.871E 00	$1.869 E 03$
1.04	1.865 E 00	1.862E 00	1.859 E 00	1.856E 00	1.853 E 00	1.350E 00	1.847E OO	$1.844 E 00$	1.841E 00	$1.836 E 00$
1.05	1.635E 00	1.832 E 00	1.829E 00	$1.826 E 00$	1.823 E 00	1.820E 00	1.818 E 00	1.815 E NO	1.812E 00	1.809E 00
1.06	$1.826 E 00$	1.8., 3600	1.8ile 0.9	1.798E OU	2.795E 03	1.792 E 00	1.795E 5	1.787 EL	1.784E 0:	$1.781 E 00$
1.07	$1.779 E 00$	1.776E 00	1.77 EE 00	1.771E 00	1.768E 00	1.765E 00	$1.763 E 00$	1.760E 00	1.757E 00	1.755 E 00
1.08	1.752 E 00	1.750E 00	1.747E 00	1.744E 00	1.742E 00	1.739 E 00	$1.737 E$ OC	$1.734 E 00$	1.732E 00	1.729E 00
1.09	1.727E 00	1.724 E 00	1.722E O:	1.719E OU	1.717E On	1.714 ED	1.712 E	1.71 [E 20	1.7E7E JJ	1.7.5E OJ

APPENDIX E

COMPARISON OF FITTING TECHNIQUES

E. 1 Introduction

Two fitting techniques were discussed in Section 2.3, the method of moments and the method of least squares. The method of moments was used in Chapter III to examine the fatalities distributions of nuclear risks and non-nuclear risks. In this appendix, the two methods are compared with regard to the residual mean squares and the estimates of the parameters. The comparisons are based on the Weibull distribution. The data distributions examined are the early fatalities distributions of hurricanes, average of U.S. reactors and PWR accidents at Site A.

E. 2 Fitting Techniques

E.2.1 Method of Moments

The method of moments was used in Chapter III to estimate the parameters. In the Weibull distribution, the estimates of the shape factor β and the scale factor η are obtained by solving the following equations:

$$
\begin{align*}
& \frac{\left[\Gamma\left(1+\frac{1}{\beta}\right)\right]^{2}}{\Gamma\left(1+\frac{2}{\beta}\right)}=\frac{M_{1}^{2}}{M_{2} \cdot \alpha} \tag{E.1}\\
& \eta=\frac{M_{1}}{\alpha \cdot \Gamma\left(1+\frac{1}{\beta}\right)} \tag{E.2}
\end{align*}
$$

where

$$
M_{1}=\text { the first risk moment. }
$$

$$
\begin{aligned}
& M_{2}=\text { the second risk moment. } \\
& \alpha=\text { the normalization constant. } \\
& \Gamma(\cdot)=\text { the Gamma function. }
\end{aligned}
$$

E.2.2 Method of Least Squares

The shape factor and the scale factor are estimated by minimizing:

$$
\begin{equation*}
\Delta^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left\{\ln \tilde{F}_{i}^{c}-\ln \left[\alpha \cdot \exp \left\{-\left(\frac{x_{i}}{n}\right)^{\beta}\right\}\right]^{2}\right. \tag{E.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\tilde{\mathrm{F}}_{\mathrm{i}}^{\mathrm{c}}= & \text { complementary cumulative frequency assigned to the } \\
& \text { data } i . \\
\mathrm{x}_{\mathrm{i}}= & \text { magnitude of the consequence of the data } i . \\
\mathrm{n}= & \text { total number of the data. }
\end{aligned}
$$

The natural logarithm is used in the least squares because the fractional errors of the frequencies have comparable magnitudes rather than the absolute errors of the frequencies. The non-linear least-squares program in the DCRT Mathematical and Statistical Package of National Institute of Health (Ref-9) is used. The initial values for the iterative calculation in the method of least squares are obtained from the results by the method of moments. The number of iterations required are from 6 to 8 to reach the convergence level of 10^{-4}.

E. 3 Basis for Comparison

The two fitting techniques are compared on the following basis:
(1) In Chapter III the Weibull distribution was found to be
within the error bounds of the data distribution when the parameters were estimated by the method of moments. The method of least squares is examined to determine if it satisfies the same criterion.
(2) The residual mean squares for the two methods are compared.

$$
\begin{equation*}
s=\frac{1}{n-2} \sum_{i}\left[\tilde{F}_{i}^{c}-\ln \left\{\alpha \cdot \exp \left[-\left(\frac{x}{\hat{n}}\right)^{\hat{\beta}}\right]\right\}\right]^{2} \tag{E.4}
\end{equation*}
$$

where $\hat{\beta}$ and $\hat{\eta}$ are the estimates of the Weibull parameters.
(3) The estimates of the risk moments are obtained from the least-squares estimates of the parameters.

$$
\begin{align*}
& \hat{M}_{1}=\alpha \cdot \hat{n} \cdot \Gamma\left(1+\frac{1}{\hat{\beta}}\right) \tag{E.5}\\
& \hat{M}_{2}=\alpha \cdot \hat{\eta}^{2} \cdot \Gamma\left(1+\frac{2}{\hat{\beta}}\right) \tag{E.6}
\end{align*}
$$

where $\hat{\mathbb{M}}_{1}$ and $\hat{\mathrm{M}}_{2}$ are the estimates of the first two risk moments. The fitting errors of the risk moments are examined in the method of least squares. In the method of moments the estimates of the risk moments by Eqs. (E.5) and (E.6) are equal to the data values.

For the nuclear curves, the fitting errors are also compared with the regression errors in the regression analysis of the population distribution. When the fitting errors are smaller than the regression errors, the selection of the fitting techniques does not significantly affect the investigation of the relationship between the risk distributions and the population distribution variables.

E. 4 Comparison of Fitting Techniques

The early fatalities distributions of hurricanes, average of U.S.

100 commercial reactors and PWR accidents at Site A are examined in the following sections.

E.4.1 Hurricanes

The normalization constant and the lower end of the domain were determined in Section III. 4.3 as:

$$
\begin{aligned}
& \alpha=.63 / \text { year } \\
& x_{0}=0
\end{aligned}
$$

The residual mean square, the estimates of the parameters and the risk moments by the two fitting techniques are given in Table E.I. The complementary cumulative distributions derived from the estimates of the parameters are shown in Fig. E. 1 along with the data. The bands attached to the data points are the 90% confidence bounds.

Fig. E. 1 shows that the Weibull distributions by the two techniques are both within the 90% confidence bounds of the data. The method of least squares gives somewhat higher probability for the largest consequence. The method of moments gives somewhat higher probability values in the region of medium and low consequences. The residual mean square of the least-squares fitting is smaller by a factor of 1.8 than that of the method of moments. Since the method of least squares gives slower rate of decrease in the tail, the estimates of the risk moments are somewhat larger than those of the method of moments, which are the data value. In conclusion, the selection of the fitting techniques is judged not to have significant effect.

E.4.2 Average of U.S. Reactors

The normalization constant and the lower end of the domain were
determined in Section III.5.3 as:

$$
\begin{aligned}
& \alpha=4.72 \times 10^{-7} / \text { reactor year } \\
& x_{0}=0
\end{aligned}
$$

The results of the fittings are given in Table E. 1 and Fig. E.2. The uncertainty ranges of the data are represented by factors of 5 and $1 / 5$ on the probability and by factors of 4 and $1 / 4$ on the magnitude. Fig. E. 2 shows that both of the fitted distributions are within the uncertainty ranges of the data. The residual mean square of the method of least squares is smaller than that of the moment fitting by approximately 15%. The risk moments estimated by the least-squares fitting are smaller than those of the data values and the moments fitting. The differences are a factor of approximately 0.9 for the first risk moment and a factor of approximately 0.7 for the second risk moment. Since the 90% error bounds in the regression analysis in Chapter V were factors of 1.3 and $1 / 1.3$ for the first risk moment and factor of 1.6 and $1 / 1.6$ for the second risk moment, the selection of the fitting techniques is judged not to have significant effect in this study.

E.4.3 PWR Accidents at Site A

The normalization constant and the lower end of the domain were determined in Section III. 5.4 as:

$$
\begin{aligned}
& \alpha=5.78 \times 10^{-7} / \text { reactor year } \\
& x_{0}=0
\end{aligned}
$$

The results of the fittings are given in Table E.1 and Fig. E.3. The uncertainties of the data are represented by factors of 5 and $1 / 5$ on
the probability, and 4 and $1 / 4$ on the magnitude. Fig. E. 3 shows that both of the fitted curves are within the uncertainty ranges of the data. The residual mean square by the least squares method is smaller than that of the moment method by approximately 20%. The differences of the risk moments between the two methods are a factor of 1.05 for the first risk moment and a factor of 0.95 for the second risk moment. These errors are within the 90% error bounds of the regression analysis performed in Chapter V and are judged not to have significant effects in the regression results.

E. 5 Conclusion

The Weibull fittings determined by the two methods are within the uncertainty ranges of the data for all of the examined curves. The method of least squares gives smaller residual mean square than the method of moments, however the differences are less than a factor of 2 for the examined events. The errors of the estimates of the risk moments by the method of least squares are within the 90% error bounds in the regression analysis in Chapter V.

In conclusion, the selection of the fitting techniques is judged not to have significant effects on the analysis in this study.

Table E. 1 Comparison of the Fitting Techniques in the Fatalities Distributions

Type of Risk	Variables Compared	Fitting Techniques	
		Method of Moments	Method of Least Squares
Hurricanes	Residual Mean Square	. 107	. 060
	Shape Factor B	. 387	. 301
	Scale Factor $\quad n$	7.48×10^{1}	5.18×10^{1}
	Risk Moments $\quad M_{1}$	1.72×10^{2}	2.96×10^{2}
	M_{2}	5.64×10^{5}	4.12×10^{6}
Average of U.S. Reactors	Residual Mean Square	. 194	. 170
	Shape Factor B	. 371	. 380
	Scale Factor $\quad \eta$	2.45×10^{1}	2.33×10^{1}
	Risk Moments $\quad M_{1}$	4.60×10^{-5}	4.06×10^{-5}
	M_{2}	6.45×10^{-2}	4.65×10^{-2}
PWR Accidents at Site A	Residual Mean Square	. 102	. 081
	Shape Factor B	. 570	. 616
	Scale Factor $\quad \eta$	2.91×10^{2}	3.40×10^{2}
	Risk Moments $\quad M_{1}$	2.72×10^{-4}	2.85×10^{-4}
	M_{2}	5.77×10^{-1}	5.51×10^{-1}

Fig. E. 1 Comparison of the fitting Techniques in the Fatalities Distribution of Aurricanes

Fig. E. 2 Comparison of the Fitting Techniques in the Early Fatalities Distribution of the Averase of U.S. 100 Reactors

Fig.E. 3 Comparison of the Fitting Techniques in the Early Fatalities Distribution of PWR Accidents at Site Λ.

APPENDIX F

BELL-SHAPED POPULATION MODEL

F. 1 Introduction

The bell-shaped or gaussian population distribution discussed in Section V. 8 is discussed again here in more detail. A numerical example is also given to show the applicability of the model. The bellshaped population model allows the evaluation of the risk of nuclear reactor accidents to be performed for each of the cities and towns surrounding the nuclear power plants.

F. 2 Bell-Shaped Population Model

The population distribution of a city or a town is idealized by a bell-shaped population model shown in Figure F.1. The population distribution is symmetric about its center. Its total population is N_{T}, the distance of the center from a reactor is R and 90% of the total population are living in a radius of $2 \sigma_{R}$. Now consider the (r, ζ) coordinate in Fig. F.1. The population per unit area at (r, ζ) is expressed as

$$
\begin{equation*}
\rho(r, \zeta)=\frac{N_{T}}{2 \pi \sigma_{R}^{2}} \cdot \exp \left[-\frac{(r-R)^{2}}{2 \sigma_{R}^{2}}-\frac{\zeta^{2}}{2 \sigma_{R}^{2}}\right) \tag{F.1}
\end{equation*}
$$

Since the regression equations in Chapter V are based on the (r, θ) co-ordinate, an approximation is made based on the assumption that a city or a town is in a $22 \frac{1}{2}$ degree sector, i.e.,

$$
\begin{equation*}
2 \sigma_{R}<\frac{\pi}{8} \cdot R \tag{F.2}
\end{equation*}
$$

Fig. F.1 Illustration for Bell-shaped Population
Model

Based on this assumption, the population per unit distance at r in a $22 \frac{1}{2}$ degree sector is approximated by:

$$
\begin{equation*}
n_{j}(r)=\int_{-\infty}^{\infty} \rho(r, \zeta) d \zeta=\frac{N_{T}}{\sqrt{2 \pi} \sigma_{R}} \exp \left(-\frac{(r-R)^{2}}{2 \sigma_{R}^{2}}\right) \tag{F.3}
\end{equation*}
$$

The population distribution in a $22 \frac{1}{2}$ degree sector is also expressed by a gaussian distribution. When the city or town is large enough to cover a number of sectors, the populations of the city or town are divided into separate population groups, each of which can be expressed by a gaussian distribution with respect to r .

The bell-shaped population model is thus applied to each of the cities and towns surrounding the nuclear power plant. The population distribution in a $22 \frac{1}{2}$ degree sector is expressed by the series of the bell-shaped distributions as:

$$
\begin{equation*}
n_{j}(r)=\sum_{\ell=1}^{L_{j}} \frac{\left(N_{T}\right)_{\ell}}{\sqrt{2 \pi}\left(\sigma_{R}\right)_{\ell}} \cdot \exp \left[-\frac{\left(r-R_{\ell}\right)^{2}}{2\left(\sigma_{R}\right)_{\ell}^{2}}\right] \tag{F.4}
\end{equation*}
$$

where the subscript ℓ refers to each of the population groups involving cities and towns. L_{j} is the total number of the population groups in the direction j .

F. 3 Estimation of the Risk Moments

Using the transfer functions derived in Chapter V, the risk moments are estimated for the bell-shaped population distribution. The transfer functions used here are:

$$
\begin{align*}
& a(r)=a_{1} \cdot \exp \left[-a_{2} \cdot r\right] \tag{F.5}\\
& b\left(r, r^{\prime}\right)=b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \cdot \exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right] \tag{F.6}\\
& c(r)=c_{1} \cdot \exp \left[-c_{2} \cdot r\right] \tag{F.7}
\end{align*}
$$

The first risk moment is estimated by:

$$
\begin{align*}
N_{1}= & \sum \int_{0}^{\infty} a(r) \cdot n_{j}(r) d r \\
= & \sum_{j} \int_{0}^{\infty} a_{1} \cdot \exp \left[-a_{2} \cdot r\right] \cdot\left\{\begin{array}{c}
\sum_{j} \\
\left.\sum_{\ell=1} \frac{\left(N_{T}\right)_{\ell}}{\sqrt{2 \pi}\left(\sigma_{R}\right)_{\ell}} \cdot \exp \left(-\frac{\left(r-R_{\ell}\right)^{2}}{2 \sigma_{R}^{2}}\right)\right\} d r \\
=
\end{array}\right. \\
& \sum \sum_{\ell=1}^{L_{j}}\left(N_{T}\right)_{\ell} \cdot a_{1} \cdot \exp \left(-a_{2} R_{\ell}+\frac{a_{2}^{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}}{2}\right)^{2} \\
& \times \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}\left(\sigma_{R}\right)_{\ell}} \cdot \exp \left(-\frac{\left\{r-R_{\ell}+a_{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}\right\}^{2}}{2\left(\sigma_{R}\right)_{\ell}^{2}}\right) d r \tag{F.8}
\end{align*}
$$

The integral in Eq. (F.8) is rewritten as:

$$
\begin{align*}
& \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}\left(\sigma_{R}\right)_{\ell}} \exp \left(\frac{\left\{r-R_{\ell}+a_{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}\right\}^{2}}{2 \cdot\left(\sigma_{R}\right)_{\ell}^{2}}\right) \mathrm{dr} \\
& =-\int_{-R+a_{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}}^{\infty} \frac{1}{\sqrt{2 \pi}\left(\sigma_{R}\right)_{\ell}} \exp \left(-\frac{\xi^{2}}{2 \cdot\left(\sigma_{R}\right)_{\ell}^{2}}\right) \mathrm{d} \xi \tag{F.9}
\end{align*}
$$

where $\xi=r-R_{\ell}+a_{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}$. The approximation is made here based on the assumption as:

$$
\begin{equation*}
-R_{\ell}+a_{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}<-2\left(\sigma_{R}\right)_{\ell} \tag{F.10}
\end{equation*}
$$

Then the integration range in Eq. (F.9) is from less than $-2\left(\sigma_{R}\right)$ to infinity. Therefore the integral in Eq. (F.9) is greater than .97, which is approximately unity. Then Eq. (F.8) is approximately expressed as:

$$
\begin{equation*}
M_{1}=\sum_{j} \sum_{\ell=1}^{L_{j}}\left(N_{T}\right)_{\ell} \cdot a_{1} \cdot \exp \left(-a_{2} \cdot R_{\ell}+\frac{a_{2}^{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}}{2}\right) \tag{F.11}
\end{equation*}
$$

The second risk moment M_{2} is calculated to be:

$$
\begin{align*}
M_{2}= & \Sigma \int_{j}^{\infty} \int_{0}^{\infty} b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right] n_{j}(r) \cdot \\
& \cdot n_{j}(r) \cdot d r \cdot d r^{\prime} \tag{F.12}
\end{align*}
$$

The term $\exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right]$ in this equation indicates the simultaneous occurrence of deaths at r and r^{\prime}. The term decreases by an order of magnitude when the interval between r and r^{\prime} is more than $2.3 / b_{3}{ }^{*} 2 / b_{3}$. The approximation can be made of calculating the second risk moment for each population group separately if the distance between the two adjacent population groups is more than $2 / b_{3}$.

$$
\begin{equation*}
\left|\left[R_{\ell+1}-2\left(\sigma_{R}\right)_{\ell+1}\right]-\left[R_{\ell}+2\left(\sigma_{R}\right)_{\ell}\right]\right|>2 / b_{3} \tag{F.13}
\end{equation*}
$$

where the subscripts ℓ and $(\ell+1)$ refer to the adjacent population groups and the population outside the radius of $2 \sigma_{R}$ are ignored.

Then the risk moment M is calculated to be:

$$
\begin{aligned}
M_{2}= & \sum_{j} \sum_{\ell=1}^{L_{j}} \int_{0}^{\infty} \int_{0}^{\infty} b_{1} \cdot \exp \left[-b_{2} \cdot\left(r+r^{\prime}\right)\right] \cdot \exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right] \\
& \times \frac{\left(N_{T}\right)_{\ell}^{2}}{2 \pi\left(\sigma_{R}\right)_{\ell}^{2}} \exp \left[-\frac{(r-R)_{\ell}^{2}}{2\left(\sigma_{R}\right)_{\ell}^{2}}\right] \cdot \exp \left[-\frac{\left(r^{\prime}-R\right)_{\ell}^{2}}{2\left(\sigma_{R}\right)_{\ell}^{2}}\right] d r \cdot d r^{\prime}
\end{aligned}
$$

Eq. (F.14) still requires a numerical integration. Further approximation is made here. For a small town whose radius $2 \sigma_{R}$ is smaller than $1 / b_{3}$, the term $\exp \left[-b_{3} \cdot\left|r-r^{\prime}\right|\right]$ is approximated by 1 .

$$
\begin{equation*}
2 \sigma_{R}<1 / b_{3} \tag{F.15}
\end{equation*}
$$

Then the interpretations of r and r^{\prime} can be separated and the second risk moment becomes:

$$
\begin{equation*}
M=\sum_{j} \sum_{\ell=1}^{L_{j}}\left(N_{T}\right)_{\ell}^{2} \cdot \exp \left[-2 \cdot b_{2} \cdot R_{\ell}+b_{2}^{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}\right] \tag{F.16}
\end{equation*}
$$

Finally, the normalization constant is calculated from the distance to the closest town or city.

$$
\begin{align*}
& \alpha=\sum_{j} c_{1} \cdot \exp \left[-c_{2} \cdot d_{j}\right] \tag{F.17}\\
& d_{j}=R_{l j}-2 \cdot\left(\sigma_{R}\right)_{l j} \tag{F.18}
\end{align*}
$$

where $R_{l j}$ and $\left(\sigma_{R}\right)_{l j}$ are the center distance and deviation, respectively, of the closest population group in the direction j. The populations outside the radius of $2 \cdot \sigma_{R}$ are ignored in Eq. (F.18)

Once M_{1}, M_{2} and α are obtained, the scale factor and the shape factor of the Weibull distribution can be obtained using Eqs. (3.27) and (3.28) in Chapter III. The entire risk distribution can then be derived.

The constraints of the derived equations are discussed here. In estimating the first risk moment by Eq. (F.11), the following constraints should be considered:
(1) The population group is in a $22 \frac{1}{2}$ degree sector. (Eq. (F.2))

$$
\begin{equation*}
2\left(\sigma_{R}\right)_{\ell}<\frac{\pi}{8} \cdot R_{\ell} \tag{F.19}
\end{equation*}
$$

(2) From Eq. (F.10),

$$
\begin{equation*}
R_{\ell}>a_{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}+2 \cdot\left(\sigma_{R}\right)_{\ell} \tag{F.20}
\end{equation*}
$$

The first constraint Eq. (F.19) can be removed in the estimation of the first risk moment. Let $n_{T}(r)$ be the total population per unit r at r from the reactor.

$$
\begin{equation*}
n_{T}(r)=\sum_{j} n_{j}(r) \tag{F.21}
\end{equation*}
$$

Then the first risk moment is estimated by:

$$
\begin{equation*}
M_{1}=\int_{0}^{\infty} a(r) \cdot n_{T}(r) \cdot d r \tag{F.22}
\end{equation*}
$$

In the integration over ζ in Eq. (F.1) to calculate the total population per unit distance $n_{T}(r)$, the assumption (F.2) is not required. However the integration over θ is still approximated by the integration over ζ. When the distance R is greater than $2\left(\sigma_{R}\right)$, the error of the approximation is small. Therefore the constraint of Eq. (F.20) is sufficient. The total population $n_{T}(r)$ is also expressed by the series of the bellshaped population distributions. The first risk moment can then be estimated from the following equation without considering the directions:

$$
\begin{equation*}
M_{1}=\sum_{\ell}\left(N_{T}\right)_{\ell} \cdot a_{1} \cdot \exp \left[-a_{2} \cdot R_{\ell}+\frac{a_{2}^{2} \cdot\left(\sigma_{R}\right)^{2}}{2}\right] \tag{F.23}
\end{equation*}
$$

The constraint of this equation is:

$$
\begin{equation*}
R_{\ell}>a_{2} \cdot\left(\sigma_{R}\right)_{\ell}^{2}+2 \cdot\left(\sigma_{R}\right)_{\ell}^{2} \tag{F.24}
\end{equation*}
$$

In estimating the second risk moment by Eq. (F.16), the following constraints should be considered:
(1) $2 \cdot\left(\sigma_{R}\right)_{\ell}<\frac{\pi}{8} \cdot R_{\ell}$
(2) $\left|\left[R_{\ell+1}-2 \cdot\left(\sigma_{R}\right)_{\ell+1}\right]-\left[R_{\ell}+2 \cdot\left(\sigma_{R}\right)_{\ell}\right]\right|>2 / b_{3}$
(3) $2 \cdot \sigma_{R}<1 / b_{3}$

In Eq. (F.16), the assumption of (F.25) cannot be removed.
In deriving the normalization constant by Eqs. (F.17) and (F.18), the assumption of (F.25) is necessary.

F. 4 Application of Bell-Shaped Model to Site A

The adequacy of the bell-shaped population model will be studied by the population distribution of Site A. The population per unit distance in a 22.5 degree sector are fitted by the series of the bellshaped distributions given by Eq. (F.4). The method for deriving the constants of the bell-shaped model is discussed first.

F.4.1 Derivation of Constants of Bell-Shaped Model

The population data in the annular segments given in Appendix C are used to derive the constants of the bell-shaped model. The first step in the derivation is to separate the population distribution into a series of the population groups. Fig. F. 2 shows the population per mile in each of the 16 directions around Site A as a function of distance from the reactor. The population groups are identified by the peaks in Fig. F.2. The neighbouring groups are bunched into one group when their peaks are within 1 mile distance. A total of 44 population groups are identified within 20 miles from the reactor.

The next step is to fit each population group by a bell-shaped model. For presentation, an example in Fig. F. 3 is considered. The population in the segments are denoted by v and the central distances of the segments from the reactor are denoted by r in Fig. F.3. The population in the segments in Fig. F. 3 are assumed to belong to one population group. The total population in the group is given by:

Fig.F. 2 Population in a 22.5 Degree Sector Around Site A

Fig. F. 2 (continued)

$\begin{array}{ll}\text { Fig. F. } 3 \text { Illustration for Derivation of } \\ & \text { Parameters of the Bell-shaped } \\ & \text { Population Model }\end{array}$

Table F.l Constants of Bell-Shaped Model and First Two Risk Moments for Site A

Direction	Index	Population N	Miles from Reactor R	Radius σ_{R} (miles)	Risk Moments			
					M_{1}		M_{2}	
N	1	1,420	1.8	. 25	1.7	10^{-5}	1.2	10^{-2}
	2	823	3.3	. 25	4.1	10^{-6}	1.4	10^{-3}
	3	1,349	6.2	. 46	1.2	10^{-6}	5.0	10^{-4}
	4	9,667	12.0	2.1	5.7	10^{-7}	7.2	10^{-4}
NNE	5	1,918	2.8	. 49	1.3	10^{-5}	1.1	10^{-2}
	6	3,807	5.5	. 46	5.2	10^{-6}	6.3	10^{-3}
	7	15,340	9.2	1.28	3.0	10^{-6}	9.1	10^{-3}
	8	61,340	17.5	3.9	5.3	10^{-7}	2.3	10^{-3}
NE	9	517	. 8	. 25	1.2	10^{-5}	3.1	10^{-3}
	10	27,410	4.8	. 87	6.4	10^{-5}	5.8	10^{-1}
	11	10,420	7.5	. 57	4.3	10^{-6}	1.2	10^{-2}
	12	5,264	12.6	1.4	1.3	10^{-7}	1.0	10^{-4}
	13	4,423	22.3	2.8	1.0	10^{-9}	1.6	10^{-7}
ENE	14	6,088	3.8	1.23	2.2	10^{-5}	6.3	10^{-2}
	15	14,203	5.8	1.59	2.4	10^{-5}	9.5	10^{-2}
	16	12,090	11.4	1.06	5.5	10^{-7}	1.1	10^{-3}
	17	28,920	19.7	3.23	4.9	10^{-8}	5.9	10^{-5}
E	18	1,394	1.3	. 25	2.3	10^{-5}	1.6	10^{-2}
	19	4,523	4.0	. 78	1.6	10^{-5}	2.7	10^{-2}
	20	2,620	9.0	1.0	4.9	10^{-7}	2.8	10^{-4}
	21	10,580	19.2	4.4	5.2	10^{-8}	3.4	10^{-5}
ESE	22	4,620	9.3	. 25	6.4	10^{-8}	6.4	10^{-4}
SSE	23	696	22.5	. 8	3.8	10^{-11}	1.4	10^{-9}

Table F. 1
(continued)

Direction	IndexPopulation			Risk Moments		
			Miles from Reactor R	Radius σ_{R} (miles)	M_{1}	M_{2}
S	24	9,386	23.2	2.5	8.9×10^{-10}	3.2×10^{-7}
SSW	25	787	11.3	. 42	3.4×10^{-8}	4.6×10^{-6}
SW	26	777	2.3	. 25	7.1×10^{-6}	2.5×10^{-3}
	27	6,962	19.7	2.1	4.0×10^{-9}	1.6×10^{-6}
WSW	28	399	5.5	. 5	5.2×10^{-7}	7.0×10^{-5}
	29	1,180	11.2	. 38	5.2×10^{-8}	1.1×10^{-5}
W	30	569	1.8	. 25	7.0×10^{-6}	1.9×10^{-3}
	31	941	3.3	. 25	4.7×10^{-6}	1.8×10^{-3}
	32	14,082	11.3	2.3	1.5×10^{-6}	2.7×10^{-3}
	33	14,870	19.7	2.0	1.9×10^{-9}	7.1×10^{-6}
WNW	34	1,518	1.8	. 25	1.9×10^{-5}	1.3×10^{-2}
	35	1,679	3.3	. 25	8.4×10^{-6}	5.7×10^{-3}
	36	12,090	12.3	2.86	1.2×10^{-6}	1.4×10^{-3}
NW	37	977	3.3	. 25	4.9×10^{-6}	1.9×10^{-3}
	38	1,547	5.5	. 50	2.2×10^{-6}	1.1×10^{-3}
	39	1,020	13.8	. 42	9.7×10^{-9}	1.3×10^{-6}
	40	615,300	40.7	5.1	5.3×10^{-11}	7.0×10^{-8}
NNW	41	3,542	2.6	. 80	2.9×10^{-5}	4.5×10^{-2}
	42	1,638	8.3	. 71	4.4×10^{-7}	1.7×10^{-4}
	43	1,697	14.1	. 88	1.4×10^{-8}	3.2×10^{-6}
	44	6,591	19.7	1.80	3.0×10^{-9}	1.3×10^{-6}
Total of the Risk Moments					3.00×10^{-4}	9.2×10^{-1}
Results of the Consequence Calculation					2.72×10^{-4}	5.8×10^{-1}

(Note): The first risk moments are estimated from the constants of the transfer function of PWR accidents in the northeastern valley weather condition.

$$
\begin{equation*}
\mathrm{N}_{\mathrm{T}}=\sum_{\mathrm{k}} \nu_{\mathrm{k}} \tag{F.28}
\end{equation*}
$$

The distance of the center of the group from the reactor is estimated by:

$$
\begin{equation*}
R=\frac{\sum_{k} \nu_{k} r_{k}}{N} \tag{F.29}
\end{equation*}
$$

The deviation from the center of the population group is estimated by:

$$
\begin{equation*}
\sigma_{R}=\sqrt{\frac{\Sigma v_{k}\left(r_{k}-R\right)^{2}}{N_{T}}} \tag{F.30}
\end{equation*}
$$

When the tails of the two population groups are overlapping in one segment, half of the population in the segment is assigned to each of the population groups.

The constants of the population groups are estimated for Site A and are given in Table F.1.

F.4.2 Estimation of Risk Moments at Site A

The first two risk moments for the population group ℓ are estimated by:

$$
\begin{align*}
& \left(M_{1}\right)_{\ell}=a_{1} \cdot N_{\ell} \cdot \exp \left[-a_{2} R_{\ell}+\frac{a_{2}^{2}}{2} \sigma_{\ell}^{2}\right] \tag{F.31}\\
& \left(M_{2}\right)_{\ell}=b_{1} \cdot N_{\ell}^{2} \cdot \exp \left[-2 b_{2} R_{\ell}+b_{2}^{2} \sigma_{\ell}^{2}\right] \tag{F.32}
\end{align*}
$$

where a_{1}, a_{2}, b_{1} and b_{2} are the constants of the transfer functions discussed in Chapter 5. The numerical values of the constants for PWR accidents in the northeastern valley weather condition are used. The results are given in Table F.1. The summations of the risk moments of the population groups give the total risk moments of Site A. The estimates are compared with the results of the consequence calculation.

The first risk moment from the bell-shaped model is overestimated by approximately 10% and the second risk moment is overestimated by approximately 60\%.

The normalization constant α is estimated by Eqs. (F.17) and (F.18). Using the numerical values of PWR accidents, α is estimated as

$$
\alpha=5.57 \times 10^{-7} / \text { reactor year }
$$

The results of the consequence calculation is:

$$
\tilde{\alpha}=5.78 \times 10^{-7} / \text { reactor year }
$$

The difference of these estimates of the normalization constant is less than 4%. The distribution of consequence vs. frequency is estimated by Eqs. (3.27) and (3.28) from M_{1}, M_{2} and α of the bell-shaped population model and compared to the results of the consequence calculation in Fig. F.4. The distribution estimated by the bell-shaped population model is within the uncertainty range of the consequence model discussed in Section III.5.2. Therefore the bell-shaped population model is judged to be adequate to describe the population distribution.

Some insight about siting for nuclear power plants can be obtained from Table F.1. A contribution of 20% to the first risk moment and 60% to the second risk moment comes from the population group with 27,410 population at 4.8 miles in the northeast direction. The existence of this population group has a dominant contribution to the tail behavior of the curve. Approximately 50% of the first risk moment comes from numerous small towns with the populations between 500 and 5000 1ocated within 4 miles from the reactor. The existence of these towns have
dominant effects on the main body of the curve. The large city of 61,340 at 17.5 miles in NNE and the metropolitan area of 615,300 at 40 miles in NW have insignificant contribution to the risk moments (less than 1\%), since the probability of early fatality decreases sharply as the distance from a reactor increases. In this specific example, small towns and a city of 27,000 within 5 miles have dominant contributions to the risk distribution.

Pig. F. 4 Comparison of the Estinates fron the Eell-Shaped Population Model to the Results of the Consequence Calculation (Site A.)

APPENDIX G

EFFECTIVE SOURCE

G. 1 Introduction

In the regression analysis of radioactive releases, a concept of the effective source was introduced to combine the release fractions of the eight isotope groups into one variable. The reasons for introducing the effective source were the following:
(1) Early fatalities are caused by the combined effects of the doses from the eight isotope groups.
(2) The release fractions of the eight isotope groups are correlated with each other because similar physical processes underlie in the release mechanisms for all of the isotope groups.

The effective source was defined as a weighted sum of the release fractions of the eight isotope groups. The weighting factors were derived from the inventories of the radioisotopes, the dose conversion factors and the dose-response relationship. In this appendix, the rationale of derivation of the weighting factors and the source data of the numerical values are discussed.

G. 2 Derivation of the Effective Source

In the consequence model, 54 important radioactive isotopes are considered. The 54 isotopes are grouped into 8 isotope groups and the release fractions are estimated for the eight isotope groups. From the inventory of the isotope (j) and the release fraction of the isotope group (g) to which the isotope (j) belongs, the amount of the isotope
(j) released into the environment is given by:

$$
\begin{equation*}
Q_{j}=I_{j} \cdot q_{g(j)} \cdot \exp \left[-\lambda_{j} \cdot T_{r}\right] \tag{G.1}
\end{equation*}
$$

where $\quad Q_{j}=$ released amount of the isotope (j). [Ci]
$I_{j}=$ inventory of the isotope (j) in the reactor core. [Ci]
$q_{g(j)}=$ release fraction of the isotope group (g) to which the isotope (j) belongs.
$\lambda_{j}=$ radioactive decay constant of the isotope (j). [/hour] $T_{r}=$ time of release. [hour]

The exponential term in Eq. (G.1) accounts for radioactive decay before the release. When the build-up from the radioactive decay of the parent isotope is significant, the following term is added to Eq. (G.1):

$$
\begin{equation*}
I_{p} \cdot q_{g^{\prime}(p)} \cdot \frac{\exp \left[-\lambda_{p} \cdot T_{r}\right]-\exp \left[-\lambda_{j} \cdot T_{r}\right]}{\lambda_{j}-\lambda_{p}} \tag{G.2}
\end{equation*}
$$

where the subscript (p) refers to the parent isotope of the isotope (j) and $g^{\prime}(p)$ is the isotope group to which the parent isotope (p) belongs.

From the gaussian dispersion model used in the consequence model, the ground level airborne concentration at the distance r from the reactor is given by:

$$
\begin{equation*}
x_{j}(r)=\frac{Q_{j}}{2 \pi \sigma_{y} \sigma_{z} u} \exp \left(-\frac{h^{2}}{2 \sigma^{2}}\right) \tag{G.3}
\end{equation*}
$$

where $\quad X_{j}(r)=$ ground level airborne concentration of the isotope (j) at the distance r from the reactor. [Ci•sec/m ${ }^{3}$]

$$
\begin{aligned}
& \sigma_{y}, \sigma_{z}=\text { dispersion parameters. [m] } \\
& u=\text { wind speed. [m/s] } \\
& h=\text { elevation of the release. [m] }
\end{aligned}
$$

Since the early fatalities are expected in a close area from the reactor, the radioactive decay after the release is ignored in deriving the effective source.

From the concentrations of the radioactivities the health effects are calculated. Among the various organs in a human body, three organs are particularly critical in causing early fatalities. They are bone marrow, lung and gastrointestinal tract. The dose to these organs consist of three modes of exposure. They are inhalation dose, cloud shine dose and ground shine dose. The inhalation dose to the organ (k) from the isotope (j) is calculated from the airborne concentration:

$$
\begin{equation*}
\left(D_{I}\right)_{j}^{(k)}(r)=B \cdot\left(C_{I}\right)_{j}^{(k)} \cdot X_{j}(r) \tag{G.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left(D_{I}\right)_{j}^{(k)}(r)=\text { inhalation dose to organ (k) from the isotope } \\
& \quad(j) \text { at the distance } r \text {. [rem] } \\
& \left.B=\text { breathing rate. [} \mathrm{m}^{3} / \mathrm{sec}\right] \\
& \left(C_{I}\right){ }_{j}^{(k)}=\text { inhalation dose conversion factor of the isotope } \\
& (j) \text { to the organ }(k) . \quad[r e m / C i]
\end{aligned}
$$

Similarly, the cloud shine dose is determined by:

$$
\begin{equation*}
\left(D_{C}\right)_{j}^{(k)}(r)=s_{C} \cdot\left(C_{C}\right)_{j}^{(k)} \cdot x_{j}(r) \cdot \phi \tag{G.5}
\end{equation*}
$$

where $\quad\left(D_{C}\right)_{j}^{(k)}(r)=$ cloud shine dose to the organ k from the isotope
(j) at the distance r. [rem]

$$
\begin{aligned}
& s_{C}=\text { cloud shine shielding factor. } \\
& \left(C_{C}\right)_{j}^{(k)}=\text { cloud shine dose conversion factor of the isotope } \\
& \left.(j) \text { to the organ (k). [rem } \cdot \mathrm{m}^{3} / \mathrm{Ci} \cdot \mathrm{sec}\right] \\
& \phi=\text { correction factor for the finite cloud. }
\end{aligned}
$$

Practically the correction factor for the finite cloud is close to unity where early fatalities are expected. It will be ignored in the following calculation.

The ground shine dose is proportional to the radioactivity deposited on the ground as:
where

$$
\begin{equation*}
\left(D_{G}\right)_{j}^{(k)}(r)=s_{G} \cdot\left(C_{G}\right)_{j}^{(k)} \cdot G_{j}(r) \tag{G.6}
\end{equation*}
$$

$$
\begin{aligned}
& \left(D_{G}\right)_{j}^{(k)}=\text { ground shine dose to the organ (k) from the isotope } \\
& (j) \text { at the distance } r \text {. [rem] } \\
& s_{G}=\text { ground shine shielding factor. } \\
& \left(C_{G}\right)_{j}^{(k)}=\text { ground shine dose conversion factor of the isotope } \\
& (j) \text { to the organ }(k) . \quad \text { [rem. } m^{2} / C i \cdot \text { sec] } \\
& G_{j}(r)=\text { concentration of the isotope }(j) \text { desposited on the } \\
& \text { ground. [Ci/m }{ }^{2} \text {. }
\end{aligned}
$$

In a case without rain, the ground concentration is proportional to the ground level airborne concentration as:

$$
\begin{equation*}
G_{j}(r)=\chi_{j}(r) \cdot\left(V_{d}\right)_{j} \tag{G.7}
\end{equation*}
$$

where $\left(\nabla_{d}\right)_{j}$ is a deposition velocity of the isotope (j).
The total dose to the organ (k) is a sum over all the isotopes and over the three modes of exposure:

$$
\begin{equation*}
D_{T}^{(k)}(r)=\sum_{j}\left(\left(D_{I}\right)_{j}^{(k)}(r)+\left(D_{C}\right)_{j}^{(k)}(r)+\left(D_{G}\right)_{j}^{(k)}(r)\right) \tag{G.8}
\end{equation*}
$$

From Eqs. (G.4) through (G.8), the total exposure is determined as:

$$
\begin{aligned}
D_{T}^{(k)}(r) & =\sum_{j}\left(B \cdot\left(C_{I}\right)_{j}^{(k)} \cdot \chi_{j}(r)+s_{C} \cdot\left(C_{C}\right)_{j}^{(k)} \cdot \chi_{j}(r)+\right. \\
& \left.+s_{G} \cdot\left(C_{G}\right)_{j}^{(k)} \cdot\left(V_{d}\right)_{j} \cdot \chi_{j}(r)\right) \\
& =\sum_{j}\left(B \cdot\left(C_{I}\right)_{j}^{(k)}+s_{C} \cdot\left(C_{C}\right)_{j}^{(k)}+s_{G} \cdot\left(C_{G}\right)_{j}^{(k)} \cdot\left(V_{d}\right)_{j}\right) X_{j}(r)
\end{aligned}
$$

Inserting Eqs. (G.1) and (G.2) into Eq. (G.9):

$$
\begin{align*}
& D_{T}^{(k)}(r)=\sum_{j}\left\{\left[B \cdot\left(C_{I}\right)_{j}^{(k)}+s_{C} \cdot\left(C_{C}\right)_{j}^{(k)}+s_{G} \cdot\left(C_{G}\right)_{j}^{(k)} \cdot\left(V_{d}\right)_{j} \times\right.\right. \\
& \left.\quad \times I_{j} \cdot q_{g(j)} \cdot \exp \left(-\lambda_{j} \cdot T_{r}\right)\right\} \frac{1}{2 \pi \sigma_{y} \sigma_{z} u} \exp \left(-\frac{h^{2}}{2 \sigma^{2}}\right)^{(G \cdot 10)} \tag{G.10}
\end{align*}
$$

The risks resulting from the damages to the three organs compete with each other, but practically one of them has a dominant effect on early fatalities. That is the dose to the bone marrow. To assure the dominance of the bone marrow dose over the doses to the other two organs, the doses are normalized by the dose-response relationship. As the mortality criteria are often stated in terms of the dose that would be lethal to 50% of the exposed population (denoted by $L D_{50}$), the doses are normalized as:

$$
\begin{equation*}
E^{(k)}(r)=\frac{D_{T}^{(k)}(r)}{(L D)_{50}^{(k)}} \tag{G.11}
\end{equation*}
$$

where
$E^{(k)}(r)=$ normalized dose to the organ (k) at the distance r.
(LD) ${ }_{50}^{(k)}=50 \%$ lethal dose to the organ k.
The organ that has the largest value of $\mathrm{E}^{(\mathrm{k})}(\mathrm{r})$ has a dominant contribution in causing fatalities. Inserting Eq. (G.10) into Eq. (G.11) and rewriting the summation over isotopes in two steps of summation, one over the isotopes in each of the isotope groups and then over the eight isotope groups, the normalized dose to the organ (k) is given by:

$$
\begin{aligned}
& E^{(k)}(r)=\frac{1}{2 \pi \cdot \sigma_{y} \cdot \sigma_{z} \cdot u} \exp \left(-\frac{h^{2}}{2 \sigma^{2}}\right) \times\left\{\begin{array}{l}
\Sigma q_{g} \times \\
g
\end{array}\right. \\
& \left.\times \frac{\sum_{i \operatorname{ing}}\left(B \cdot\left(C_{I}\right)_{j}^{(k)}+s_{C} \cdot\left(C_{C}\right)_{j}^{(k)}+s_{G} \cdot\left(C_{G}\right)_{j}^{(k)} \cdot\left(V_{d}\right)_{j}\right) \cdot I_{j} \cdot e^{-\lambda \cdot \lambda_{j} \cdot T_{R}}}{\left(L D_{50}\right)^{(k)}}\right\}
\end{aligned}
$$

The weighting factors of the isotope groups are defined as:

Then, the effective source $\psi^{(k)}$ is defined as:

$$
\begin{equation*}
\psi^{(k)}=\sum_{g} q_{g} \cdot \Omega_{g}^{(k)} \tag{G.14}
\end{equation*}
$$

$\Omega_{g}^{(k)}$ and $\psi^{(k)}$ are independent of the distance r. The normalized dose $E^{(k)}(r)$ is simply rewritten as:

$$
\begin{equation*}
E^{(k)}(r)=\frac{1}{2 \pi \cdot \sigma_{y} \cdot \sigma_{z} \cdot u} \exp \left(-\frac{h^{2}}{2 \sigma_{z}^{2}}\right) \cdot \psi^{(k)} \tag{G.15}
\end{equation*}
$$

Then

$$
\begin{equation*}
\psi^{(k)}=2 \pi \cdot \sigma_{y} \cdot \sigma_{z} \cdot u \cdot \exp \left(+\frac{h^{2}}{2 \sigma_{z}^{2}}\right) \cdot E^{(k)}(r) \tag{G.16}
\end{equation*}
$$

At the distance that the dose to the organ (k) is equal to $L D_{50}^{(k)}$, $E^{(k)}(r)=1$. Therefore, $\psi^{(k)}$ is interpreted as the inverse of the dispersion factor $\frac{1}{2 \pi \cdot \sigma_{y} \cdot \sigma_{z} \cdot u} \exp \left(-\frac{h^{2}}{2 \sigma_{z}^{2}}\right)$ at the distance where 50% of the exposed population are lethal due to the damage to the organ (k).

The organ that has a dominant effect on causing early fatalities can be identified by comparing $\psi^{(k)}$'s. Then the overall effective source is defined as:

$$
\begin{equation*}
\psi=\operatorname{Max}\left\{\psi^{\text {MARROW }}, \psi^{\text {LUNG }}, \psi^{\text {G.I. }}\right\} \tag{G.17}
\end{equation*}
$$

Practically in most of the release categories,

$$
\begin{equation*}
\psi=\psi^{\text {MARROW }} \tag{G.18}
\end{equation*}
$$

G. 3 Source of Data for Deriving Weighting Factors

The weighting factor was defined in the previous section as:

$$
\Omega_{g}^{(k)}=\frac{\sum_{\text {ing }}\left(B \cdot\left(C_{I}\right)_{j}^{(k)}+s_{C} \cdot\left(C_{C}\right)_{j}^{(k)}+s_{G} \cdot\left(C_{G}\right)_{j}^{(k)} \cdot\left(\nabla_{d}\right)_{j}\right) \cdot I_{j} \cdot e^{-\lambda_{j} T_{R}}}{\left(L D_{50}\right)^{(k)}}
$$

The data for estimating $\Omega_{g}^{(k)}$ are given in Tables G. 1 through G.5.
Table $G .1$ gives the radioactive inventory I_{j} and the half-life. The decay constant λ_{j} is derived from the half-life by:

$$
\begin{equation*}
\lambda_{j}=\frac{.693}{\left(T_{k_{2}}\right)_{j}} \tag{G.20}
\end{equation*}
$$

where $\left(T_{\frac{1}{2}}\right){ }_{j}$ is the half-1ife of the isotope (j). Tables G. 2 through G. 4 summarize the dose conversion factors. Table G. 5 summarizes the miscellaneous data in Eq. (G.19).

G. 4 Numerical Values of Weighting Factors

The weighting factors derived from Eq. (G.19) are shown as functions of the time of the release (T_{r}) in Figs. G. 1 through G.3. These figures show that the changes of the effective source in the range of $1 \mathrm{hr} \leq \mathrm{T}_{\mathrm{r}} \leq 30 \mathrm{hrs}$ are small except for iodines and noble gases. The effects of the time on the weighting factors of iodines and noble gases are accounted for by assuming the equivalent half-lives for these groups. The effective half-lives are determined from Fig. G. 1 through G.3. The results in Table G.6 are used to determine the effective source in Chapter VI.

TABLE G. 1 Initial Activity of Radionuclides in the Nuclear
Beactor Core at the Time of Eypothetical Accident

No.	Redionuclide	Radionctive Inventory Source (euries $\times 10^{8}$)	Half-Life (days)
1	Cobalt-58	0.0078	71.0
2	cobalt-60	0.0029	1,920
3	$\mathrm{Kryp}^{\text {con-0 }}$	0.0056	3.950
4	Kxypton-85a	0.24	0.183
5	хгуpeon-87	0.47	0.0528
6	xrypton-98	0.68	0.117
7	Tubidium-86	0.00026	18.7
8	strontium-39	0.94	52.1
9	strontium-90	0.037	11,030
10	Strontium-91	1.1	0.403
11	Yetrium-90	0.039	2.67
12	Yteriumal	1.2	59.0
13	zirconium-95	1.5	65.2
14	2ircoaium-97	1.5	0.71
15	miobiumas	1.5	35.0
16	Molybdenum-99	1.6	2.8
17	Technotium-990	1.4	0.25
18	Suthenium-103	1.1	39.5
19	Ruthenium-105	0.72	0.185
20	Eutheaiv-106	0.25	366
21	mhodium-105	0.49	1.50
22	vellurium-127	0.059	0.391
23 24	2011urias-1279	0.011	
24 25		0.31 0.053	0.048 0.340
26	Tellurivol31m	0.13	1.25
27	Tolturiom-132	1.2	3.25
28	Antimony-127	0.061	3.88
29	Antisony-129	0.33	0.179
30	Iodine-131 Iodine-132	0.85 1.2	8.05 0.0958
32	Iodine-133	1.7	0.875
33	Jodine-134	1.9	0.0366
34	Iodine-135	1.5	0.200
35	xenon-133	1.7	5.28
36	xenon-135	0.36	730.304
37	Cesiu ${ }^{-134}$	0.075	13.0
38	Cesiumb cesiu - -	0.030 0.047	11.000
40	Barivill 140	1.6	12.8
41	Leanthanuil 140	1.6	1.67
42	Ceriumolill	1.5	38.3
43	Cartios 143	1.3	1.30
44	Cesium 144	0.35	
45	Fracoody ${ }^{\text {a }}$ - 163	1.3	13.7 11.1
45	Meodyeius-147	16.4	2.35
43	Plutonivor 238	0.00057	32,500 ${ }^{\text {a }}$
49	Plutonium-239	0.00021 0.00021	8.9×10^{6} 2.4×10^{6}
50	Plutoaiu-240	0.00021 0.036	2.4.350
52	Anericiu-241	0.000017	1.5×10^{5}
53	Curium-242	0.0050	163
54	Curium 244	0.00023	6.630

Hote: From table vI 3-1 in Appendix VI of WASE-1400(ref.1)

Table G． 2 Dose Conversion Factor for Bone Marrow

ISETLPE	$\begin{aligned} & \text { (VHALATICN } \\ & \text { (KEM/CI) } \end{aligned}$	$\begin{aligned} & \text { CLOUD SHINE } \\ & \text { (KEM-SEL/M*\#3) } \end{aligned}$	
CC－58	7.95802	2．40E－01	6.15 E 01
C0－60	2．00E O2，	6．31E－ii	1．48E－ 2
KK－45	6．10E－？ 1	5．78E－04	1．48E－01
KR－85 ${ }_{\text {i }}$	3．90E－01	5．50E－02	7．85E 00
KR－37	1.30 E 00	1．92E－ 1	9.65 E J0
KR－88	3．10e of	4．83E－01	5．95E j 1
RE－86	$3.25 E 03$	2．27E－02	5．45E 0：
SR－39	3．35E 03	3．：	J．－
SK－90	6．10E 03	0.0	ว．0̄
SR－41	2．15E 02	$1.93 E-01$	5.10801
$\mathrm{Y}-90$	$4.70 E^{2}$	\bigcirc	）－
Y－91	1.43 t 03	$6.39 \mathrm{E}-34$	$1.505-31$
2R－95	$6.70 \mathrm{taz}^{\text {c }}$	1．81E－J1	4．73E J1
2R－97	1．9．j 02	4．72E－J2	3.35 E －1
NB－95	5.75 E 02	$1.83 \mathrm{E}-01$	$4.58 E \mathrm{DI}$
MO－49	$1.25 \mathrm{E}^{2} 2$	$4.44 \mathrm{E}-02$	$1.56 E 01$
TC－99M	l．IOE OL	$5.42 \mathrm{E}-\dot{\mathrm{H} 2}$	3．7UE JO
RU－103	$4.05 t 02$	1．36E－01	3．53E Ji
ku－16．5	2.43 EOL	$2.21 E-31$	$3.22 E$ J1
RU－1C6	$4.40 E 02$	5．22E－J2	1.33 E －：
RH－105	2．30E O1	2．74E－02	6.40 E J．
TE－127	3．90E OO	1．16E－03	2． $27 E-J 1$
TE－127M	1.82 E 02	1．79E－93	2.04 E jo
TE－129	1．10t 00	$1.81 \mathrm{E}-02$	$1.21 E J 0$
TE－129M	3．15E 02	9．92E－J3	7．10E 30
TE－131M	$3.0 J E C 2$	3．56E－01	3．55E 01
TE－13：	9.4 E 02	7．31E－J2	$1.09 E 02$
SB－121	3．1こと ${ }^{\text {d }}$	1.84 － 21	4.53 E O1
SB－129	4.6 － 01	2．97E－U1	4.13 El
1－131	1．50E j2	1．03E－31	2.73 E J
1－132	5．JOE Ol	5.89 E － 1	$5.65 E^{1}$
［－133	9．35E 21	$1.83 E-01$	4.0 OE Ot
1－134	2．Jうe 01	$5.89 E-01$	$2.28 E$ O1
I－135	9．1．JE 01	$4.42 \mathrm{E}-\mathrm{J1}$	g．uje jl
$x E-133$	1．60E 00	1．59E－j2	$6.55 E$ Jo
XE－135	2.15 C J	8．47E－02	1．5日E 01
CS－134	$4.95 E 03$	$4.03 E-U 1$	1．J2E 02
CS－136	$3.55 \mathrm{EPO}^{3}$	5．42E－J1	$1.32 \mathrm{E} \mathrm{j2}$
CS－131	3．25E 03	1．49E－j1	3．78E 01
BA－140	2．1JE J3	5．61E－02	2．50E Ji
LA－140	$6.7 \mathrm{EE} \mathrm{J2}$	$6.06 E-01$	$1.31 E$ J2
CE－141	1.13 E 02	3．22E－32	$9.25 E$ j0
CE－143	9．55E O1	9．36E－J2	2.41 t 01
CE－144	2．35E OL	$7.61 E-J 3$	3．92E $\cup 0$
PR－143	1.78 E 01	0．0	0.0
NO－147	$1.40 E ~$ $6.20 E ~$	$4.39 E-U 2$ $4.97 t-j 2$	$1.24 E ~$ $1.74 E$
$N P-239$ $P U-239$	6．20E O1	$4.97 \mathrm{E}-\mathrm{J} 2$	l．74E Ji
PU－234 PU－23y	$1.71 E ~$ 1.592 1.52	4．25E－JS	5．95E－02
PU－240	1.64 E 02	3．89E－ 25	1．ひ9E－－
PU－24i	4．20E－02	9．53E－10	$5.15 t-06$
AM－24i	2.65 E2	9．33E－j3	T．JJE JO
CM－24C	2.03 E .02	3．89E－05	1．02E－J1
CM－244	2．016 02	2．81E－j3	1.62 E 20

Table G． 3 Dose Conversion Factor for Lung

ISC．TCP．	I：BALATIL： （NEY／CI）	CLUUD SHINE （REM－SEC／M＊＊3）	GRUUNU ¿HINE （2EM－SEC／M～＊2）
CCT－58	5．2je 04	$2.21 E-U 1$	$5.15 E$ J1
CD－6i	2．5．E OS	5．67E－01	$1.33 E 02$
KR－85	1．3uc－01	4．47E－v4	1．15E－Ji
KR－35：4	$2.1 . E-01$	$3.22 E-J 2$	$4.61 E$ do
KR－${ }^{\text {K }} 7$	9．6こEーJ1	1．72E－01	d．65E JO
KR－H8	2．JJE 00	$4.47 E-01$	5．55E J1
RU－96	1．4．E 04	1．94E－さ2	$4.63 E$－ 0
SR－59	7．8：E 03	J．？	J．0
SR－90	$1.45 E 34$	3．j	）．u
SR－91	$4.2 J E ~ J 3 ~$	1．60E－01	4.13 E j：
Y－90	3．3．E O4	¢0）	
Y－91	1．9．E 05	5．94E－j4	$1.40 E-01$
LR－95	1．1UF j5	$1.52 \mathrm{E}-01$	3．86E J
2R－97	1．50E 34	$4.05 \mathrm{E}-02$	$6.55 E$ Ji
NE－95	$3.00 E: 4$	$1.56 E-41$	$3.91 E$－1
M0－94	$1.00 E .34$	3．42E－02	$1.09 t ~ J 1 ~$
TC－79M	8．90E ：	2．54E－i2	4．J6E JO
RU－103	5．20E 34	1．05E－01	2．76E Ol
RU－165	2．20E－ 3	1.67 E－ul	2．43E jb
RU－130	1.60 t 6	$4.06 E-02$	$1.03 E$ O1
RH－1：3	3．60t S 3	$1.61 E-02$	3．76E JO
TE－127	$1.60 E 03$	8．78E－04	1．71E－j1
TE－127M	$1.10 E$ S	5．61E－04	$6.70 \mathrm{E}-0 \mathrm{i}$
TE－129	5．60E 32	1．35t－02	$9.05 E-U 1$
TE－129M	1．50E ${ }^{\text {S }}$	6．97E－U3	S．10E OO
TE－131M	1.10 E ．${ }^{\text {L }}$	$2.94 \mathrm{E}-\mathrm{Jl}$	$6.95 E$ jl
TE－132	3．JJE 4	$4.19 E-02$	$3.45 E$ Jl
S8－127	2．50E J4	$1.43 t-01$	3．53E Ji
S8－129	3.2 ，E O3	2．53E－j1	3.49 E OL
1－131	$2.40 E 03$	8．22E－ن2	2．J8E－ 4
I－132	1．JUE 03	4．83E－j1	4．61E J1
1－133	3．10E US	$1.46 E-U 1$ $5.00 E-01$	$3.25 E ~ J I$ $1.93 E ~ O 1$
$1-134$ $1-135$	$5.6 J E ~$ 2.5 OE	4．こうE－ざ1	7．0JE Jl
XE－133	4.1 UE－O1	6．97E－し3	$2.88 E 00$
XE－13S	$9.4 C E-J 1$	5． $26 \mathrm{E}-32$	$9.45 t$ wo
CS－134	3．40E 34	3．28E－01	3．3JE O1
CS－136	$8.22 E 03$	$4.44 E-U 1$	1．JBE j2
CS－137	2．5UE 34	$1.15 \mathrm{E}-J 1$	2.92 E O1
BA－140	6．30E こ3	4．14E－J2	1．98E $1.17 E$
LA－140	1．60E O4	5．39E－01 $1.5: E-U 2$	1．17E 3.82 E
CE－14i CE 143	6．1．JE $1.3 J E .4$	6． $8.8 \mathrm{E}-02$	$1.57 E$ J1
CE－144	$1.40 E$ Só	3．44E－J3	2.49 U ט
PR－143	$4.90 E 04$	0.0	0.0
NU－147	3．7．E 34	2．78E－02	$7.85 E$ J0
NP－239	9．2．E－3	$2.65 t-02$	9．35E 00
PU－23n	7．JこE ？ 7	9．58E－06	2．7JE－02
PU－234	6．5CE 07	5．42E－06	1．48E－J2
PU－240	6．6JE－7	$9.17 E-36$	$2.57 E-J 2$
PU－241	2．20E 54	2．94t－1J	1．76E－C6
AM－241	7．JうE 17	$3.22 t-\hat{3}$	$2.42 E \sim 0$
CM－242	5．50E C7	8．31E－06	2．18E－こ2
CM－244	3．82E ？6	1．こ7E－ن3	6．20E－j1

Table G． 4 Dose Conversion Factor for Gastrointestinal
Tract

ISCTM．${ }_{\text {S }}$	I：IHALATIUN （REM／CI）	CLLUU SHINE （REM－SEC／M＊＊ 3 ）	$\begin{aligned} & \text { GRCUND } \mathcal{H} I N E \\ & \text { (REM-SEC } / M * 2 Z \text {) } \end{aligned}$
CC－58	4.28 E	1．42E－61	3.63 EV
CE－60	1．01E 34	4．61E－C1	1．U9E O2
KR－45	6．12E－ 2	$3.42 \mathrm{E}-\mathrm{US}^{4}$	9．8CE－J2
KR－85：4	9．46E－ 2	2．C2E－U2	$2.88 E 00$
KR－87	8．10E－ら゙1	$1.43 E-01$	7．2UE 0
KR－S8	$2.07 E$ 〕	$3.83 E-01$	$4.75 E$ O1
R $\mathrm{B}-36$	1．4．E 3	1．33E－j2	3．19E 00
SR－89	6．86E ： 3	う。	$\bigcirc \cdot 6$
SR－90	9．1UEころ	3.9	－u
SK－91	1．43E 23	1．21E－01	3．12E Cl
Y－90	2．6．E－ 4	0.0	
Y－91	2.3 E － 4	5．39E－U4	1．27E－01
2R－95	3．92E こ3	1．1うE－G1	2．79E Ol
2R－97	$1.10 E^{3}$	3．17E－02	5．05E 0：
NB－95	3．1LE 3	1．： $27 E-01$	$2.69 E$ ui
MO－99	7.4 E ： 3	2．52t－02	7．80E CO
TC－99\％	6．93E J：	1．58E－G2	2．53E j0
RU－103	2．0JE 03	8．03E－C2	$2.11 E 01$
RU－1：	$4.92 E-2$	1．25E－j1	$1.81 E 01$
RU－166	8.88 C	3．08E－02	$7.85 t 00$
RH－105	4．ことE ：2	1．21E－V2	2．35E JO
TE－127	1．79E 02	6．64E－04	$1.29 E--1$
TE－127M	3．57E ：3	1．38E－C4	$1.93 E-j i$
TE－129	2．56E OC	y．92E－03	6．65E－01
TE－12．7 M	$1.5 J E=4$	5． $36 \mathrm{E}-03$	3．73E 30
TE－131m	5．35E Û3	$2.14 E-61$	$\text { 5.ن } 5$
TE－132	3．3UE 3	2．61E－92	$\begin{aligned} & 6.25 E \text { it } \\ & 2.63 E \text { 01 } \end{aligned}$
SB－127	9．10E 33	1．06t－01	$2.63 E$ O1
S8－129	$4.86 E$ i2	1．85E－J1	$\begin{aligned} & 2.56 E \\ & 1.57 E \\ & 1.57 \end{aligned}$
l－131	7．26E Sl	6．22E－02	$1.57 E$ dl
t－132	4.44 E ： 1	3．64E－こ 1	$3.46 E \mathrm{Ji}$
$1-133$	1．52E 02	$1.13 t-01$ $3.61 E-01$	2．51E O1
$1-134$ $1-135$	$1.72 E ~ S 1$ $1.08 E ~$	$3.61 E-O 1$ $3.33 E-O 1$	$1.40 E ~$ $5.8 E E$ 1
$1-135$ $X E-133$	1．08E 1.3 E－＇1	$3.33 E-01$ $3.97 E-J 3$	S．8UE JO $1.64 E$
XE－135	$4.85 t-01$	3．19E－02	$6.00 E ~ J 0$
C5－134	2．1JE J3	$2.41 E-01$	$6.10 E 01$
CS－136	2．32E 3	3．14E－U1	$\begin{aligned} & 7.65 E ~ j 1 \\ & 2.23 E ~ J 1 \end{aligned}$
CS－137	$9.12 E-2$	8．78E－02	2．23E J1
8A－140	7．84E J3	3．08E－02	10562 91
LA－140	1．J7E 14	4．58E－01	$9.90 E ~$ $2.34 E$
CE－14i	1．2JE 13	9．17E－U3 $4.56 E-U 2$	$2.34 E ~$ $1 . J T E ~$
CE－144	8.52 E J4	2．06EーJ3	1.84 EO
PR－143	6.75 E 03	0.0	5．0
ND－147	$3.99 E$ j3	1．97E－J2	$\text { 5.55E } 30$
NP－239	1．J4E：3	$1.66 E-J 2$	5．85E O：
PU－238	5．00E 03	$1.41 E-35$	
PU－234 $P U-240$	$4.60 E$ J3	6．C3E－J6 $1.27 E-J 5$	1．64E－02
PU－240 PU－241	4．7うE 33	1．64E－1C	9．90E－ひ7
AM－241	5．2JE：3	$1.8 E E-3^{3}$	$1.35 E J 0$
CM－242	5．50E 03	$1.31 E-05$	$3.46 E-02$ $3.63 E-01$
CM－244	5．2je is	6．23E－ら4	3．63E－01

Table G. 5 Miscellaneous Data for Deriving Weighting Factors

Parameter

Breathing rate $B^{(1)}$
Shielding factors
Ground shine dose ${ }^{(2)}, s_{g}$
Cloud shine dose ${ }^{(3)}$, s_{c}
Deposition velocity ${ }^{(4)}$
Iodine vapor and particles
Noble gas
(5)

Bone Marrow
Lung
Gastrointestinal Tract
Time of release
.50
1.0

Value
$2.66 \times 10^{-4} \mathrm{~m} / \mathrm{sec}$
$10^{-2} \mathrm{~m} / \mathrm{s}$
$0 \mathrm{~m} / \mathrm{s}$

510 rem
20,000 rem
3,500 rem
See Table 6.1
(Note): (1) From Section 8.2.3 in Appendix VI of WASH-1400 (Ref-1).
(2) From Table VI 11-9 in Appendix VI of WASH-1400 (Ref-1).
(3) From Table VI 11-7 in Appendix VI of WASH-1400 (Ref-1).
(4) From Section 6.3.1 in Appendix VI of WASH-1400 (Ref-1).
(5) From Fig. VI 9-1, VI 9-2, VI 9-3 in Appendix VI of WASH-1400 (Ref-1).

Table G. 6 Weighting Factors of Isotope Groups for Effective Source

Organ	Isotope Group	Weighting Factor Ω_{8}
Bone Marrow	$\mathrm{Kr}-\mathrm{Xe}$	$5.73 \times 10^{3}+7.90 \times 10^{4} \exp [-.20 \cdot \mathrm{Tr}]$
	$I^{(1)}$	$7.81 \times 10^{5} \exp [-.058 \cdot \mathrm{Tr}]$
	Cs - Rb	5.64×10^{4}
	$\mathrm{Te}-\mathrm{Sb}$	2.54×10^{5}
	$\mathrm{Ba}-\mathrm{Sr}$	5.01×10^{5}
	Ru	2.28×10^{5}
	La	1.77×10^{6}
Lung	$\begin{aligned} & \mathrm{Kr}-\mathrm{Xe} \\ & \mathrm{I}^{(1)} \end{aligned}$	$\begin{aligned} & 1.21 \times 10^{2}+1.6 \times 10^{3} \exp [-.20 \cdot \mathrm{Tr}] \\ & 3.35 \times 10^{4} \exp [-.058 \cdot \mathrm{Tr}] \end{aligned}$
	Cs-Rb	7.43×10^{3}
	$\mathrm{Te}-\mathrm{Sb}$	6.83×10^{4}
	$\mathrm{Ba}-\mathrm{Sr}$	3.22×10^{4}
	Ru	9.53×10^{5}
	La	4.28×10^{6}
G.I. Tract	$\begin{aligned} & \mathrm{Kr}-\mathrm{Xe} \\ & \mathrm{I}^{(1)} \end{aligned}$	$\begin{aligned} & 4.18 \times 10^{2}+8.2 \times 10^{3} \exp [-.20 \cdot \mathrm{Tr}] \\ & 7.70 \times 10^{4} \exp [-.058 \cdot \mathrm{Tr}] \end{aligned}$
	$\mathrm{Cs}-\mathrm{Rb}$	4.08×10^{3}
	$\mathrm{Te}-\mathrm{Sb}$	6.18×10^{4}
	$\mathrm{Ba}-\mathrm{Sr}$	1.69×10^{5}
	Ru	2.92×10^{5}
	La	1.53×10^{6}

Fig. G. 1 Weighting Factor for Bone Darrow

Fig. G. 2 Weighting Factor for Lung

Fig. G. 3 Weighting Factor for Gastrointestinal Tract

APPENDIX H
REGRESSION RESULTS OF THE CONSTANTS OF $b(r, r$ ') AND $c(r)$ WITH REGARD TO RELEASE CHARACTERISTICS

The regression fittings of the constants of the transfer functions $b\left(r, r^{\prime}\right)$ and $c(r)$ are made in the same way as the analysis of a_{1} and a_{2} in Section VI.6. The results are summarized in the following tables and figures:

Table H. 1 Data Base for Regression of b_{1}, b_{2} and b_{3}
Table H. 2 Data Base for Regression of c_{1} and c_{2}
Table H. 3 Regression Result of b_{1}
Table H. 4 Regression Result of b_{2}
Table H. 5 Regression Result of b_{3}
Table H. 6 Regression Result of c_{1}
Table H. 7 Regression Result of c_{2}
Fig. H. 1 Test for Adequacy of Regression of b_{1}
Fig. H. 2 Test for Adequacy of Regression of b_{2}
Fig. H. 3 Test for Adequacy of Regression of b_{3}
Fig. H. 4 Test for Adequacy of Regression of c_{1}
Fig. H. 5 Test for Adequacy of Regression of c_{2}
Fig. H. 6 Examination of Combined Result of $b\left(r, r^{\prime}\right)$
Fig. H. 7 Examination of Combined Result of $c(r)$

Table H. 1 Data Base for Regression of b_{1}, b_{2} and b_{3}

Table H. 2 Data Base for Regression of c_{1} and c_{2}

Calculation Case		c_{1}	c_{2}
PWR - 1A		5.27×10^{-2}	. 243
PWR - 1B		7.63×10^{-3}	. 297
PWR - 2		1.17×10^{-2}	. 437
PWR - 3		1.39×10^{-2}	. 714
PWR - 4		3.06×10^{-2}	2.23
BWR-1		9.68×10^{-3}	. 230
BWR-2		3.29×10^{-3}	. 649
BWR-3		2.50×10^{-3}	1.460
Additional Cases ${ }^{(1)}$:	1	5.06×10^{-3}	. 236
	2	2.60×10^{-2}	. 214
	3	5.38×10^{-2}	. 191
	4	1.59×10^{-2}	. 723
	5	1.05×10^{-2}	. 242
	6	1.05×10^{-2}	. 235
	7	8.61×10^{-3}	. 229
	8	7.11×10^{-3}	. 211
	9	6.71×10^{-3}	. 296
	10	5.73×10^{-3}	. 295
	11	4.47×10^{-2}	. 252
	12	3.77×10^{-2}	. 240
	13	4.12×10^{-3}	. 232
	14	3.90×10^{-3}	. 249
	15	1.11×10^{-2}	. 269
	16	1.27×10^{-2}	. 244
	17	7.16×10^{-3}	. 294
	18	2.64×10^{-2}	. 138
	19	2.55×10^{-2}	. 287
	20	4.32×10^{-2}	. 282

[^2]Table H. 3 Regression Analysis of b_{1}

| | | Standard
 Deviation of
 Regression
 Coefficient | t-value |
| :--- | :--- | :--- | :--- | :--- |

Table H. 4 Regression Analysis of b_{2}

Dependent Variable	Regressor Variable	Regression Coefficient	Standard Deviation of Regression Coefficient	t-value
$\ln \mathrm{b}_{2}$	$\ln \mathrm{h}$. 043	. 0319	$1.34{ }^{(1)}$
	In T_{d}	. 192	. 0472	4.1
	1n E	. 116	. 0184	6.3
	$\ln \psi$	-. 990	. 0692	-14.2

Intercept . 559

Multiple Correlation . 984
Standard Error of Estimate . 110
F-value
176.3
(0.1% F-value for 4 and 23 degrees of freedom is 6.69)
$1_{t-v a l u e}$ at 10% significance level with 23 degrees of freedom is 1.32. The term ($\ln \mathrm{h}$) is marginally significant.

Table H. 5 Regression Analysis of b_{3}

Dependent Regressor Variable 	Regression Coefficient	Standard Error of Regression Coefficient	t-value	
$\ln \mathrm{b}_{3} \quad \ln \psi$	-. 515	. 070		-7.31
Intercept	. 372			
Multiple correlation	.820			
Standard error of estimate	. 205			
F-value	53.48			
(0.1\% F-value for 1 an	26 degrees	freedom is	3.7)	

(Note): The t-value of $(\ln E)$ is 1.29 , while the upper $10 \% t-v a l u e$ with 26 degrees of freedom is 1.32. It is eliminated in this study.

Table H. 6 Regression Analysis of c_{1}

Dependent Variable	Regressor Variable	Regression Coefficient	Standard Deviation of Regression Coefficient	Computed t-value
$\ln \mathrm{c}_{1}$	1 n h	-. 374	. 140	-2.68
	$\ln \mathrm{T}_{\mathrm{d}}$	-. 652	. 207	-3.16
	1n E	-. 653	. 081	-8.11
	ln ψ	. 928	. 303	3.06
Intercept		-2.45		
Multiple correlation		. 888		
Standard error of estimat		. 481		
F-value		21.44		
(0.1\% F-value for 4 and 23 degrees of freedom is 6.69)				

Table H. 7 Regression Analysis of c_{2}

Dependent Variable	Regressor Variable	Regression Coefficient	Standard Error of Regression Coefficient	t-value
$\ln \mathrm{c}_{2}$	$\ln \mathrm{h}$	-. 0801	. 0564	1.42
	$\ln \psi$	-1.02	. 0690	-14.8
Intercept		. 886		
Multiple correlation		. 953		
Standard error of estimate		. 194		
F-value		123.9		
(0.1\% F-value for 2 and 25 degrees of freedom is 9.22)				

Fig.H.l Test of the Regression Results of b_{1}

Fig.t. 2 Test of the Regression Results of b_{2}

Fig.H. 3 Test of the Regression Results of b_{3}

Fis. H. 4 Test of the Regression Results of c_{1}

Fig. H. 5 Iest of the Regression Results of c_{2}

Fig.Z. 5 Comparison of the Estimated Second Bisk Moment from the Regression with the Consequnce Results

Table H. 7 Comparison of the Estimated Normalization Constant from Regression with the Consequence -Results

Note: The largest deviation of a factor of 2.3 is larger than the regression errors in Chapter 5 (1.2), but still within the uncertainty ranges of the consequence model.

The author was born on January 10, 1948, in Genkai town, Saga prefecture in Japan. The Genkai Nuclear Power Plant (2 PWR's) is 5 miles away from his birthplace. The author's father, Giro Maekawa, received a Ph.D. degree in 1948 from the Chemical Engineering Department of the University of Kyushu on "Improvements of the Method for Recovery of Aluminum from Low-grade Ore".

In 1957 his family moved to Kamakura-city, where he spent his junior and senior high school life.

His college life in the University of Tokyo was in the midst of the stormy years of the Students Revolution. He received his B.E. (kogaku-shi) from the University of Tokyo in 1970. The thesis for the degree was on "Radiation-Induced Graftpolymerization of Tetrafluoroethylene on Polyethylene".

After his graduation, he worked in the Nuclear Fuel Department of Furukawa Electric Inc. He joined the joint project for the design of the $\mathrm{Gd}_{2} \mathrm{O}_{3}-\mathrm{UO}_{2}$ fuel test assembly between Furukawa Electric Inc. and Japan Atomic Energy Research Institute.

After the two years' working experience, he returned to the University of Tokyo as a Master candidate in 1972. He joined the Environmental Research Group supervised by Prof. Y. Yamatomo and Prof. R. Kiyose. His contribution to the group was a development
of an atmospheric dispersion model for the dose estimation of the routine release from a spent-fuel reprocessing plant. Also in 1972 he worked with Mr. Y. Naito in Japan Atomic Energy Research Institute on a development of a three-dimensional neutron diffusion program based on a flux synthesis method.

He was admitted as a Master candidate by the Nuclear Engineering Dept. of MIT in 1973. His M.S. thesis on the analysis of safeguard system against theft was supervised by Prof. N. C. Rasmussen and sponsored by the MIT-Harvard joint committee on Arms Control.

Publications:

1. M. Maekawa, Radiation-Induced Graft-Polymerization of

Tetrafluoroethylene on Polyethylene, B.E. thesis (March, 1970) (in Japanese)
2. M. Maekawa, M. Toba and Y. Naito: Rod-Cell Burn-up Calculation Code TRIBURN in the Fuel Geometry of Three Different Compositions, JAERI-memo 5383, (Aug., 1973) (in Japanese)
3. M. Mishiro, Y. Yamamoto and M. Maekawa: Dose Estimation Model for Gaseous Fission Products from Nuclear Facilities, J. of Faculty of Engineering, Univ. of Tokyo, Vol. XXXII, No. 4, pp 589 (1974).
4. M. Maekawa: System Analysis of Safeguard System Against Nuclear Theft, M. S. Thesis MIT (1975)
5. Y. Naito, M. Maekawa and K. Shibuya: A Leakage Iterative Method for Solving the Three Dimensional Neutron Diffusion Equation, Nuclear Science and Engineering: 58, 182-192 (1975).

Distribution List

Addresses

Nuclear Regulatory Commission

Office of Nuclear Regulatory Research, Probabilistic Analysis Branch
Division of Reactor Safety Research, Director
Division of Reactor Safety Research, Assistant Director for Water Reactor Safety Research
Division of Reactor Safety Research, Chief, Research Applications Branch
Division of Reactor Safety Research, Assistant Director for Advanced Reactor Safety Research
Division of Safeguards, Fuel Cycle and Environmental Research, Director
Advisory Committee on Reactor Safeguards
Executive Director for Operations, Technical Advisor
Assistant Director for Operating Technology, Division of Operating Reactors, Office of Nuclear Reactor Regulation
Assistant Director for Reactor Safety, Division of Systems Safety, Office of Nuclear Reactor Regulation
Assistant Director for Plant Systems, Division of Systems Safety, Office of Nuclear Reactor Regulation
Assistant Director for Environmental Technology, Division of Site Safety and Environmental Analysis, Office of Nuclear Reactor Regulation
Assistant Director for Environmental Projects, Division of Site Safety and Environmental Analysis, Office of Nuclear Reactor Regulation
Assistant Director for Site Analysis, Division of Site Safety and Environmental Analysis, Office of Nuclear Reactor Regulation
Director, Division of Safeguards, Office of Nuclear Material Safety and Safeguards
Director, Division of Fuel Cycle and Material Safety, Office of Nuclear Material Safety and Safeguards
Office of Standards Development, Director
Bethesda Technical Libfary

Enerav Research and Development Administration

Division of Nuclear Research \& Applicatians, Director
Division of Reactor Development \& Demonstration, Assistant Director, Reactor Safety
Reactor Safety Research Coordination, Director
Headquarters library, Germantown, Md.

Laboratories, Contractors Others

1

Dr. Peter E. McGrath, Sandia Laboratories, Waste Management and Environmental Project, Division 5413, Albuquerque, New Mexico, 87115
Argonne National Laboratory, Reactor Analysis and Safety Division, Director
Argonne National Laboratory, Technical Library
Battelle Memorial Institute, Columbus, Ohio, Library
Battelle Pacific Northwest Laboratory, Library
Brookhaven National Laboratory, Department of Applied Science, Associate Chairman for Reactor Safety, Walter Y. Kato

Brookhaven National Laboratory, Department of Applied Science, Thermal Reactor Safety Division, Head, Melvin M. Levine
Electric Power Research Institute, Nuclear Safety and Analysis Dept., 3412 Hillview Ave., Palo Alto, Calif. 94304
Environmental Protection Agency, Deputy Assistant Administrator for Radiation Programs, 401 M St. SW, Washington, D. C. 20460
Library of Congress, Washington, D. C.
National Technical Information Service
Oak Ridge National Laboratory, Nuclear Safety Information Center
Sandia Laboratories, Technical Library
Sandia Laboratories, Director, Nuclear Fuel Cycle Programs, Albuquerque, New Mexico 87! 15

80 total

[^0]: See Table 6.9 in the Main Report of WASH-1400 (Ref. 1)

[^1]: The effects of nuclear reactor accidents on the public beyond 500 miles are considered too small and no calculation is performed beyond 500 miles.

[^2]: ${ }^{1}$ Corresponding to the calculation case number in Table 6.3.

