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ABSTRACT

A method is developed for deriving a set of equations relating the

public risk in potential nuclear reactor accidents to the basic variables,

such as population distributions and radioactive releases, which deter-
mine the consequences of the accidents. The equations can be used to

determine the risk for different values of the basic variables without

the need of complex computer programs and can be used to determine the

variable values which are needed to satisfy various risk criteria. The

equations will provide considerable savings of time and effort in deter-

mining the consequences of the nuclear reactor accidents.

The methodology developed in this study consists of two steps. The

first step involves fitting the risk distributions of frequency versus

consequence to parametric distributions which contain a small number of

parameters. The second step involves deriving the equations which relate

the distribution parameters to the basic variables of interest. Regression

techniques are used for this second- step.

The methodology is demonstrated for examples based on the results

of the Reactor Safety Study. The calculated distributions of early

fatalities in nuclear reactor accidents and the historical records of

fatalities in hurricanes, tornadoes, earthquakes and dam failures are

examined to determine an appropriate family of parametric distributions.

From these examinations, the Weibull distribution is found to be appro-

priate for all of the examined events.

A set of equations is then derived which relate the population

distribution and the parameters of the Weibull distributions for early

fatalities from PWR accidents. The derived equations are straightforward

and useful in analyses of population effects on risk. Regression equations

relating the parameters to the characteristics of radioactive releases

are also derived. The derived equations again are straightforward and

useful for evaluating release effects on risk.
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CHAPTER I

INTRODUCTION

I.1 Objective of Study

In October, 1975 the final report of the Reactor Safety Study was

published by the U. S. Nuclear Regulatory Commission (Ref. 1). The

principal purpose of the Reactor Safety Study was to make a realistic

estimate of the public risks that could be involved in potential

accidents in commercial nuclear power plants and to provide a perspective

to compare them with non-nuclear risks to which our society are already

exposed. Though the Reactor Safety Study wvs focused on an estimate of

the total risk of the nuclear power plants existing or being planned,

the risk estimation methods developed in the Study can provide help with

regard to decision making involving regulations, site planning, plant

design and other areas relating to the safety of nuclear power plants.

To apply risk results in decision making, it is of use to prepare a

set of equations that give the relationship between the risks and the basic

variables that determine and control the consequences of nuclear reactor

accidents. With the risk expressed in terms of the basic variables,

decision can be made on the basic variables which give acceptable risk.

For example, in selection of a site for a nuclear power plant, the population

distribution may be one of the basic variables of interest. Relating the risk

to the population distribution would then allow investigation and decision on

acceptable population distribution. If this can be done, it may result in

considerable savings in time and effort in the decision making process.



2

The objective of this thesis is to develop a method for obtaining a

set of equations that describe the relationship of the public risk in

potential nuclear reactor accidents to the basic variables that drive and

control the consequences of the accidents. The method will be demonstrated

in a limited number of examples based on the results of the Reactor Safety

Study.

1.2 Basic Concepts of Risk

Since risk is a commonly used word that can convey a variety of

meanings to different people, certain concepts of risk will be discussed

here. A dictionary definition of risk is "the possibility of loss or

injury to people and property". The major elements for defining risk will

be consequence and likelihood. The following four types of consequences

were considered in the Reactor Safety Study.

a. Early fatalities (i.e., fatalities that occur within

one year of the accident).

b. Early injuries (i.e., people needing medical care).

c. Late health effects attributable to the accident.

d. Property damage

In this thesis, early fatalities will be studied specifically as an example

in developing the method to relate the risk to the basic variables. The

developed method may be applicable to other types of consequences.
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The likelihood is expressed by the frequency of occurrence of

accidents. For frequent events, the frequency can be estimated from

the historical records in the past. However, many potential accidents,

such as nuclear accidents, occur at such a low frequency that they have

not been observed. In these cases the frequency is obtained by

calculational models using basic components and system failure data.

Combining the two major elements of likelihood and consequence,

risk is then described by the distribution of frequency vs. magnitude

of consequence, which will be called "risk distribution" in this

thesis. Two expressions of the risk distribution will be used in

the following chapters. One is a "frequency distribution" (denoted

by f(x), which is defined by:

Xb

F~xa I <Xb] = f(x)dx (1-1)

where F[xa < x < xb] is the number of events per unit time that the

magnitude of consequence is between xa and xb. Another expression is

a "complementary cumulative distribution" (denoted by Fz (x)), which

presents the frequency of consequences being greater than the

magnitude x. The relation of the two expressions is given by:

F C(x) = J f(x)dx (1.2)
x
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For example, Figs. 1.1 and 1.2 show the complementary cumulative

distributions of early fatalities in nuclear reactor accidents as

well as other man-made and naturally occurring risks. Fig. 1.3 shows

the frequency distribution of early fatalities in nuclear accidents in

a form of a histogram.

The risk distributions can be summarized by certain characteristics

of the distributions, (called "risk characteristics" in this study) such

as:

1. Frequency at a specific magnitude of consequence

For example, from Fig. 1.1 the frequency of fatalities

being greater than 1,000 is about 10-6 per year for 100

nuclear plants, whereas it is 10-3 per year for chlorine

release.

2. Magnitude of consequence at a specific frequency:

For example, from Fig. 1.1 the number of fatalities at

a chance of one in 10,000 years is less than 10 for 100 nuclear

plants, whereas it is greater than 5,000 for chlorine release.

3. Risk moments, which is defined by:

4W

Mt() = ff(x) (x -dx

where

M ( ) is the t-th risk moment about . The first risk
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Fatalities fataities

Fig. 1.1 Complementary Cumulative
Distribution of Fatalities due to
Man-Caused Events

Note: From Fig.1-1 in the Main
Report of WASH-14oo(Ref-l)

Fig.1.-2 Complementary Cumulative

Distribution of Fatalities due to
Natural Evevts

Note: From Fig.1-2 in the Main
Report of WASH-1400(Ref-l) Ln
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Fig.1.3 Frequency Distribution of Early Fatalities
for U.S. 100 Commercial Nuclear Power Plants

Note: Calculated from the results of WASH-1400(Ref-)
by f(x)= (FC(x+ax)-F ()/M.
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moment about the origin can be interpreted as an expected magnitude of

consequence per unit time. For example, the expected early fatality

per year is 4.6 x lo-3 for 100 nuclear power plants and 55,000 for

automobile accidents in U. S. (Ref. 1).

1.3 Outline of the Approach

The approach developed in this thesis is presented by two major

steps. They are:

(1) The risk distributions are fitted to parametric

distributions involving only a small number of

parameters. To determine an appropriate parametric

distribution, the fatalities distributions of

nuclear and non-nuclear risks are examined. Once

an appropriate parametric distribution is selected,

the entire curve and any risk characteristic can

be estimated from the distribution parameters.

(2) A set of equations are derived to relate the

distribution parameters to the basic variables

of interest. In this study, regression techniques

are used to derive the equations.
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The fitting of the risk distribution will be studied in

Chapters II and III. A general approach of selection of candidate

parametric distributions, fitting techniques and criteria of

adequate fits will be discussed in Chapter II. In Chapter III

an application is given of the fitting techniques and the criteria

to the examination of the fatalities distributions of nuclear

and non-nuclear risks.

The regression analysis to relate the distribution parameters

to the basic variables will be studied in Chapters IV, V and VI.

In Chapter IV a discussion will be given of general approaches

of the regression techniques. In Chapter V an application will

be given of regression analysis relating the distribution parameters

to population distribution variables. In Chapter VI another

application will be given relating the parameters to radioactive

release variables.

In Chapter VII, the methodologies developed in this study are

summarized and a discussion is given of further possible extensions.
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I.4 Method of Risk Estimation

A brief discussion will be made about the methods of risk estimation

developed in the Reactor Safety Study, particularly about the consequence

model, because the numerical values of the risk estimates in this thesis

are based on the results of the consequence calculation. More detailed

information about the Reactor Safety Study can be found in WASH 1400

(Ref. 1).

I.4.1 Outline of Reactor Safety Study

The Reactor Safety Study was divided into three major tasks shown

in Figure 1.4. Task 1 included the identification of potential accidents

and quantification of both the probcEbility and magnitude of the associated

radioactive releases to the environment. Task II used the radioactive

source term defined in Task I and calculated how the radioactive materials

are distributed in the environment and what effects they have on public

health and property. Task III compared the risk of nuclear reactor

accidents estimated in Task II with a variety of non-nuclear risks to

provide a perspective of the magnitude of the nuclear risks.

1.4.2 Outline of Consequence Model

The consequence model wes developed in Task II in the Reactor Safety

Study to predict the consequences from the radioactive releases defined

by Task I. The consequence predictions served as the primary input to

Task III. The consequences of a given radioactive release depend upon

how the radioactive materials are dispersed in the environment, upon
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Probability and Consequences Overall Risk
Magnitude of of Radioactive Assessment
Radioactive Releases
Releases

TASK I TASK II TASK III

Fig.1.4 Major raska of the Reactor Safety Study

Note: Reproduced from Fig.4.1 in the Main Report of
WASH-1400 (Ref-1).

Characteization Input
,Radioactive Release -

Task I

L.....--- J

Fig. 1.5 Schematic Outline of the Consequence Model

Notes Reproduced from Fig.4.6 in the Main Report of
WASH-1 4 0 0 (ref-1)
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Risk
Determination

Task IlIl
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the number of people and amount of property exposed, and upon the effects

of radiation exposure on people and contamination of property. These

major elements of the consequence predictions are indicated in Fig. 1.5,

which shows the principal subtasks involved in Task II.

The dispersion of the radioactivity is determined principally by

the release conditions and the weather conditions at the time of release.

The release conditions are described by the release categories. Each

one of the release categories identifies the amount of radioactivity

released, the amount of heat released with radioactivity, and the

elevation of the release. (See Table 6.1 in Chapter 6.)

The standard Gaussian plume model is used to predict the way the

radioactivity is dispersed in the atmosphere. The weather data used

in the model is obtained from hour by hour meteorological records

covering a one year period. Ninety weather samples are taken and

each sample is thus assigned a probability of 1/90. The starting times

are determined by systematic selection from the meteorological data.

One quarter of the data points are chosen from each season of the year

and half from each group are taken in the daytime. This procedure

is used to reduce sampling errors to acceptable levels. The weather

stability and wind velocity is assuned to change according to the

weather recordings, but the wind direction is assumed not to change.

To determine the population that could be exposed to potential

radioactive releases, census bureau data was used to determine the

number of people as a function of distance fram a reactor in each

of the sixteen 22-1/2 degree sectors around each of the 68 sites

at which the first 100 reactors now in use or planned are located.
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Each reactor was assigned to one of six typical meteorological data

sets and a sixteen sector composite population was developed for

each set. The grouping of population sectors was performed in such

a way that the sectors of high population form seperate sectors and

the sectors of low population are grouped into composite sectors with

average population of the grouped sectors.-

The consequence model calculates the dose from five potential

exposure modes; the external dose from the passing cloud, the dose

from internally deposited radionuclides which are inhaled from the

passing cloud, external dose from the radioactive materials deposited

on the ground, the dose from internally deposited radionuclides which

are inhaled after resuspension and the internal dose from ingestion of

contaminated food.

The potential health effects considered are early fatalities,

early illnesses and late health effects. The probabilities of early

fatalities are computed by using a dose-effect relationship. For bcne

marrow dose, the probability of early fatalities varies from 0.01 to 99.99%

for doses of 320 and 750 rads respectively with a median value of 510 rads.

The number of fatalities are estimated by the number of people exposed to

radiation multiplied by the probabilities of early fatalities estimated

from dose. Early illnesses and late health effects are estimated in a

similar wej to early fatalities.

The consequence model also provides for prediction of economical

damage due to radioactive contamination. It includes evacuation cost,

loss of agricultural crops, decontamination cost, relocation cost and

property damage.
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I.4.3 Calculation Conditions for Individual Site

The consequence model outlined in the previous subsection was

developed in the Reactor Safety Study to estimate the total risk of the

first 100 nuclear power plants now in use or planned. The composite

population model was generated for these 100 reactors. In this thesis,

however, the population distribution of individual sites are used to

estimate the risks of nuclear power plants, site by site. The population

distributions of the individual sites which this study uses are obtained

from the census bureau data (Ref. 2). The following assumptions are made

in the individual site calculations.

1. Meteorological data sets typical of the eastern valleys

area are used for all of the individual site calculations.

The characteristics of the eastern valley meteorological

conditions are given in Appendix C.

2. The frequency distribution of the wind direction is assumed

to be uniform over 16 directions.

3. The radioactive inventory of 3200 MWt reactor is assumed.

4. The probabilities and magnitudes of radioactive releases

are assumed to be the same as used in the Reactor Safety

Study (Ref. 1). The estimates in the Reactor Safety Study

were based on the analyses of Surry - Power Station for

PWR's and Peach Bottom Atomic Power Station for BWR's.

(See Table C.2 in Appendix C).

Because of the assumptions listed above, the estimated risks will

be different from the "real" risks of the individual reactors. In order
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to estimate the "real" risk of a specific reactor, the following data

will be required.

1. Meteorological data based on the records observed

at the specific site.

2. Radioactive inventory based on the capacity of the

specific plant.

3. Estimates of the radioactive releases and their

probabilities based on the analysis of the system

of the specific plant.

In addition to limitations of the data, the refinement of the

consequence model is now under way in U. S. Nuclear Regulatory Comission.

Therefore the numerical values in this thesis need further refinement

before applying to actual decision making. In this sense, the purpose

of this thesis may be interpreted as being one of developing approaches

and techniques which are applicable to risk decision, which may be used

regardless of the specific data and application.
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CHAPTER II

BASIS FOR FITTING OF RISK DISTRIBUTIONS

II.1 Introduction

Risk is described by a distribution of the frequency of occurrence

versus the magnitude of consequence. A risk distribution can be

summarized by certain risk characteristics. However, any single risk

characteristic alone, such as a risk moment, does not provide a

complete information about the risk distribution. For example, the

first risk moment about the origin of a fatalities distribution does

not give any information whether the fatalities are caused by low

frequency large consequence events (such as hurricanes) or high

frequency small consequence events (such as auto accidents). Theore-

tically an infinite number of risk characteristics is required to

describe the risk distribution, which results in an infinite number of

equations to relate the risk distribution to other basic variables. As

a compromise, the risk distribution will be fitted to a parametric

distribution which only involves a small number of unknown parameters.

Once the parameters have been determined, various risk characteristics

can then be derived from the fitted parametric distribution. Also a

limited number of equations are sufficient to identify the relationship

of the risk distribution to the basic variables. In this chapter, the

general approach of fitting will be.discussed. The approach will be

applied to the fatalities distributions of nuclear and non-nuclear risks

in Chapter III.

The fitting approach can be divided into three fundamental steps,

i.e., selection of candidate distributions to be examined, estimation
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of unknown constants by fitting and determination of adequate fits based

on certain criteria. The fundamental steps will be discussed in the

following sections.

One of the special characteristics of the risk analysis is that

the extreme consequences as well as lesser consequences are of interest.

For example, people sometimes view a single large consequence event

more unfavorably than numerous small events having the same total

number of fatalities. Therefore the extreme consequence, i.e., the tail

behavior of the distribution, will be emphasized in selection of the

candidate distributions, the fitting techniques and the criteria of

adequate fits. The lesser consequence, i.e., main body behavior of

the distribution will also be considered to obtain average risk values

with small fitting errors.

11.2 Basis for Selection of Candidate Distributions

A number of candidate parametric distributions will be considered

in Chapter III to fit the calculated risk distributions in Figs. 1.1

and 1.2. These calculated distributions to be fitted are called "data

distribution" in this thesis. They were obtained by the historical

records or by the calculational models using basic component and system

failure data. The selection of the candidate parametric distributions

will be based on the following considerations:

(1) Domain where the independent variable of the distribution is

defined: The domain of the candidate distributions will be

determined by the range of the available data. For certain

non-nuclear risks, the available historical records are

limited to major incidents having consequences greater than
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a certain value. The lower end of the domain will be

determined by the incident of the smallest consequence

recorded or calculated.

(2) Number of modes of the distribution: The mode is a number

of peaks in the frequency distribution. When the data

distribution is bi-modal and neglecting one of the modes

significantly harms the analysis, bi-modal candidate

distributions will be considered.

(3) Symmetric or skewed: The skewness is an asymmetric behavior

of the frequency distribution. When the distribution peak

is to the right of the mean, the distribution is negatively

skewed. When the peak is to the left of the mean, it is

positively skewed.

(4) Tail behavior: As the tail behavior is of interest in the

analysis, a number of candidate distributions with different

tail behaviors will be considered for extrapolation

sensitivities.

(5) Number of parameters: The distributions with the smaller

number of parameters are preferred to keep the model simple.

11.3 Fitting Technique

Having selected candidate distributions, the values of unknown

parameters of the candidate distributions will be estimated from the

historical data or calculation results. Various techniques have been

developed for obtaining estimates of these unknown parameters. Though

the best technique may be different for each of the candidate distribu-

tions, two general techniques will be discussed here briefly in context
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of fitting to the risk distributions. General discussion about fitting

techniques can be found in standard statistics text books (Ref-3, Ref-4,

Ref-5 and Ref -6) .

11.3.1 Method of Moments

Let a random variable Y have a frequency distribution given by

fY(y:Ti,... ,Tk) where T's represent its k parameters. Let M be the

m-th moment of fy (y:T 1,. .. ,zk) about a given magnitude , that is:

M= f ( ~ om - fY(y:T,.T k) dy (2.1)

Clearly, M is a function of the k parameters and hence M can be
m I

written as:

M M(t,..., ) (2.2)
m mI k

Let Y1 ,Y 2 ''''',n be a random sample of size n from fy(y:T ,... ,Tk ).

The m-th sample moment M are:
m

E = (Y . M- (2.3)
m n . 1ii=1

The moment estimators T, j=l,...,k of the k-parameters are obtained

by solving the following k equations:

RM= M (l,' 2 ''.' k) m=1,2,...,k (2.4)

The advantages of this method are that the calculational procedure is

simple for many distributions and also the estimate of the first risk

moment (average risk value if (= 0) is not affected by fitting because

it is used to estimate the parameters. The disadvantage is that the

residual mean square which will be defined later is usually larger than

that of the method of least squares.
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11.3.2 Method of Least Squares

Suppose that there exist n observable variates Y1 ,Y2 ''' .,n with

variance a2, which are expressed by:

Y, = G(x :T ,T2 ' .. ,9k)+e aY

Y2 = G(x 2 T1'T2''''' k) + e 2 aY

Y = G(x :T 1 ,T 2 ,..., k)+e a (2.5)

where G(x:T 1 ,T2 ' '. k ) is a candidate function with k parameters

T ,r 22'''''k' {ei} are assumed to be errors observing Y with E{e } = 0,

where E refers to the expectation.

Let y,y 2,'' .,n be the observed value of the variates. The

estimates ^ ,... ,^k of the k parameters are obtained by minimizing:

A2 = Z [y. - G(x.:T ,..., )]2 (2.6)
n-k. 1

The advantage of this method is that it gives small value of the

residual mean square. One of the disadvantages is that it sometimes

requires a large computation time. Also the risk moments derived from

the estimated parameters are associated with fitting errors.

In applying this method to the fitting of the risk distributions,

the following options exist:

(1) The parametric function G(x:Ti,...,Tk) can be fitted to either

the complementary cumulative distribution or the frequency

distribution.

(2) The function can be fitted to y, lny, or any other transfor-

mation of y.
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This method will be applied to the fitting of the risk distribu-

tions in Appendix E. The logarithmic transformation of the

complementary cumulative frequency will be used because the fractional

errors of the complementary cumulative frequency have comparable

magnitude than the absolute errors.

11.4 Criteria of Adequate Fits

After the fitting of the data distributions to the candidate

parametric distributions is completed, one family of the distributions

will be selected for the study of the relationship to the basic

variables. The following criteria are proposed for the selection:

(1) The fitted parametric distribution should be within any

error spreads associated with the data distribution (for

example, within 90% confidence bounds). The data distribu-

tions of non-nuclear risks have estimation errors due to

the limited number of available historical records. The

data distributions of nuclear risks have errors due to the

sampling used in the computer program and the uncertainties

of the parameters used in the consequence model. The largest

discrepancy in the fitted distribution should be within any

estimated error bounds of the data distribution.

(2) The fitted distribution should have a small residual mean

square, which is defined by:

2=1 n )]2~(27s2 n-k . [yi- G(x :TI ,..., )] (2.7)
i=1

where y.,x are the observed values, G(x:T,. .. ,Tk) is a

candidate function and iT,...,Tk are the estimated values of
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the parameters. This criterion of the residual mean square

can be taken as a relative measure to be used in comparing

different possible fits. Specifically in this study, the

residual mean square. is evaluated for a natural logarithm of

the complementary cumulative distribution as:

S2 1 ~ C -l C ( ^^)1
s2  n n [lF lF ( : * k 2  (2.8)

where x is the magnitude of consequence of sample data i and

~C CF. is its complementary cumulative frequency. F (x:Tj,...,k

is the candidate distribution. T,,..., k are the estimated

values of the parameters. The natural logarithmic transfor-

mation is used here because the fractional errors of the

frequencies are of more interest than the absolute errors.

(3) Systematic errors should be small. When the tendencies to

overpredict or underpredict over the ranges of the data are

observed, the fitted distributions cannot be extrapolated to

the range where the historical records or the calculation

results are not available.

11.5 Summary

In this chapter, a general approach was presented for selection of

a parametric distribution to fit the risk distributions. These risk

distributions are obtained by the historical records or by the calcula-

tional models. The approach consists of three fundamental steps, i.e.,

selection of candidate parametric distributions, estimation of the

unknown parameters and selection of adequate fitting distributions

based on the criteria. The selection of candidate parametric distribu-
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tions is based on the number of parameters and the properties of the

data distribution, involving the domain of the independent variables,

number of modes, skewness and tail behaviors. Two fitting techniques

are specifically discussed: method of moments and method of least

squares. The method of moments is simple and does not have fitting

error of the risk moments, but it usually causes larger residual mean

squares than the method of least squares. The method of least squares

has small residual mean squares, but requires more computational work

and causes fitting errors in the estimates of the risk moments. The

criteria of adequate fits are based on the largest deviation, the

residual mean squares and the systematic errors.
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CHAPTER III

FITTING OF FATALITIES DISTRIBUTIONS OF NUCLEAR AND NON-NTUCLZAR RISKS

III.1 Introduction

The general approach of the distribution fitting is applied to

the fatalities distributions of nuclear and non-nuclear events in this

chapter. Though nuclear risks are of major interest in this thesis,

non-nuclear risks are studied here to find whether both types of

risks can be described by the same family of distributions.

In Section 111.2, candidate distributions are selected using the

general criteria discussed in Section 11.2. In Section 111.3 the

fitting technique is applied to the selected candidate distributions.

The candidate distributions are evaluated by the historical records

of non-nuclear risks in Section III.4 and by the risk estimates of

nuclear risks in Section 111.5.

111.2 Candidate Distributions

111.2.1 Selection of Candidate Distributions

The distribution of early fatalities of the average reactor as

computed in WASH-1400 (Ref. 1) is shown on different scales as

histograms in Figs. 3.1 and 3.2. The following behaviors are observed.

(1) The domain of the independent variable is positive.

(2) The histogram does not apear to have a mode.

(3) The histogram distribution is positively skewed.
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Note: Calculated from the results in WASH-1400 (Ref-1)
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(4) The histogram distribution has a long tail. The tail

behavior appears to be similar to an exponential.

The frequency distributions of other nuclear and non-nuclear risks

have similar behaviors to that of the average reactor, as shown in

Figs. 3.8, 3.10, 3.12, 3.14, 3.18 and 3.20 later in this chapter. Based

on the behaviors of these data, the following four candidate distributions

are selected in this study.

(1) Exponential

(2) Gamma

(3) Weib ull

(4) Lognormal

The distributions above have the following common properties:

(a) They have no mode or at most one mode.

(b) They are positively skewed.

(c) The above distributions cover different tail behaviors, such

as decreasing slower than the exponential, exponentially

decreasing and decreasing more rapidly than the exponential.

In fitting these distributions, the following additional considerations

are made.
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The selection of the domain of the independent variables depends

on the availability of data. For certain non-nuclear risks, the available

historical records are limited to major incidents that have consequences

greater than some value. For example, the records of tornadoes used

in this study cover the incidents having greater than 20 fatalities.

For the sake of fitting, the lower end of the domain is therefore

defined by xO which is the lower limit of the available data. The

upper end of the domain is taken to be infinity. Though the fatalities

can not exceed some physical limit (such as the population on the earth),

the probability beyond that limit will be so small in the candidate

distributions that the upper end should not effect the estimate of the

parameters and moments.

The integrals of the frequency distribitions, such as Fig. 3.1,

over the defined domain are not always unity. The dimension of the

data are also number of events per unit time. In fitting the

distributions, a normalization constant a is therefore introduced,

which is defined as the frequency per unit time that the consequences

are larger than the lower end of the domain xo* The candidate

distribution f(x) will then be defined by the following form:

f(x) = a * f(x) (3.1)

where f(x) is a probability density function, the integral of which

over the defined domain is unity. For example, for the exponential,

the density f(x) is given by:
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f(x) = exp - (x]x (3.2)ee

where 6 is a scale factor of an exponential distribution. Then the

frequency distribution of the exponential is given by:

(x - x )
f(x) = a e f(x) = 0 - exp [ - 0 (3.3)e e

Other candidate distributions also have corresponding probability

distributions which have been studied in various fields of statistical

analysis. The discussion in this thesis is based on the unnormalized

frequency distributions f(x) rather than the normalized density

distribution f(x). Similarly, the term "risk moments" are used in

this study because they are the integrals of the unnormalized frequency

distribution f(x). From Eq. (3.1), the properties and the risk moments

of the unnormalized distribution are simply obtained from those of the

densities f(x).

111.2.2 Exponential Distribution

The exponential is defined by:

f(x) = * exp [-(x-x )/8] (3.4)

where x > x , x9 > 0, a > 0, 6 > 0.
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If a and x are treated as known constants determined from the area and
0

domain of the data distribution, respectively, then the exponential is

a one-parameter distribution with a scale factor e. The complementary

cumulative distribution is given by:

FC(x) = f(x)dx = a * exp [-(x-x,)/G] (3.5)

x

The risk moments about xo are given by:

Mi = a * 6 (3.6)

42 = 2 - a - e2 (3.7)

* = a - em - (m+i)i (3.8)

The exponential with e = 1, a = 1 and x0 = 0 is illustrated in Fig. 3.3,

3.4, 3.5 and 3.6 on different scales.

111.2.3 Gamma Distribution

The distribution is defined by:

(x-x_ ) (x-xO)
f(x) = a - * exp (- e ] (3.9)

e -. s

where x > xo, x0 > 0, a > 0, 0 > 0, P > 0 and r(-) is the Garma function.

For given a and x 0 , the distribution is a two-parameter distribution with

a scale factor 0 and a shape factor . When 5 is integer, the complementary

cumulative distribution is given by:
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C (Xo 0 ~10 j l
F (x) = a exp [ ( g] e 0 (~j~ P(j+1) (3.10)

When is not integer, FC x) is not expressed by a closed form. The risk

moments about xo are given by:

M= a e 6 e (3.11)

e2 = a - e2 - 1 (+i) (3.12)

e= a e 6 - (n+1)....(M-1) (2.13)

If S > 1, the frequency distribition has a mode at x = xo + 0 4 (s-1).

if 5=1, the garma reduces to the exponential. If S < 1, the frequency

distribution does not have a mode and is continuously decreasing. If

5 < 1 and x approaches xo, the frequency distribution goes to infinity,

but the integral over any finite range about x0 is always finite. The

gamma has an exponential tail, regardless of the values of S and e.

Its behavior with e = 1, a = 1 and x0 = 0 is also illustrated in Figs. 3.3,

3.4, 3.5, and 3.0 for different values of P.

111.2.4 Weibull Distribution

The distribution is defined by:

x-x S-l x-x 0
f(x) = a' (- (-) e exp (- C-) 1 (3.14)

T1 11 T1

where x >x 3, x0 > 0, a > 0, S > 0 and n > 0.
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For given a and xo, the Weibull is a two-parameter distribution with

a scale factor n and a shape factor 8. The complementary cumulative

distribution is given by:

F C(x) = a e exp [- ] (3.15)

The risk moments about xO are given by:

M =a* *r ( +) (3.16)

M2 = C e n2 e r (l + ) (3.17)

M = ,1 m * (l + ) (3.18)

If 8 > 1, the frequency distribution has a mode at x = x + n* (1-l/S)

If 8 = 1, the Weibull reduces to an exponential. If 8 < 1, the

frequency distribution does not have a mode and is continuously decreasing.

If $ < 1 and x approaches x0, f(x) goes to infinity, but the integral

over any finite range about x is always finite. The rate of decrease

in the tail depends on the value of a. If $ < 1, the Weibull decreases

more slowly than the exponential. If 8 > 1, the Weibull decreases more

rapidly than the exponential. The Weibull behavior with Ti = 1, a = 1

and x = 0 is also illustrated for different values of 8 in Figs. 3.3,

3.4, 3.5 and 3.6.
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111.2.5 Lognormal Distribution

The distribution is defined bf

f(x) = a ( 1  exp (-(2Zn(x-x0 ) - y)2/2a2 ] (3.19)
(X-Xo) - a - VFW

where x >x, > 0, a > 0, and a > 0. For given a and x,, the

lognormal is a two-parameter distribution with a mean y and standard

deviation a for the normal variable Zn (x-x ). The complementary

cumulative distribution is given by:

F C(x) = a * T exp (-(( - y)2 /2a2 ]d (3.20)
aVT In (x-x 0)

The risk moments about x0 are given by:

=a exp [+F 2] (3.21)

M2 = a * exp (2p + 2a2] (3.22)

M = a e exp m + 12 a2 (3.23)

The frequency distribution has a mode at x = x0 + exp [- a 2 ]. The tail

of the lognormal decreases more slowly than the exponential. The lognormal

behavior with a = 1, x0 = 0, y = 0 is illustrated in Figs. 3.3, 3.4, 3.5

and 3.6 for different values of a.
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111.3 Fitting Techniques

Two candidate fitting techniques were discussed in Section 111.3.

They are the method of moments and method of least squares. The method

of moments is selected in this study because its computation procedure

is simple and also because the risk moments will be used to investigate

the relation with more basic variables. The moments estimation will be

compared with the method of least squares in Appendix E. The method

of moments is applied to the candidate distributions in the following

way.

(1) Exponential

Since this is a one-parameter distribution the first risk

moment about x is used to estimate the scale factor 0.

0

e= - 1(3.24)a

(2) Gamma

The scale factor 6 and the shape factor a are estimated from

the first two risk moments about x 0 by solving Eqs. (3.11) and

(3.12), which give:

M 12

1 (3.25)

0 2 (3.26)
a M2
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(3) Weibull

The scale factor n and the shape factor a are estimated from

the first two risk moments about xo by solving Eq. (3.16) and

(3.17). The quantity 8 is given by:

[( + 1)]z M

(l + 2)] M2a
8 (3.27)

A table which evaluates the left hand side of Eq. (3.27) versus

values of 8 is given in Appendix D for a range of 0.1 < 8 < 1.1.

1 2
Also 1(1 + g) and r(i + g) are given in Appendix D. Using these

tables to derive 8, T is then estimated by:

T1 = 1 (3.28)
a r(l +

(4) Lognormal

The mean 11 and the standard deviation a of the normal distribition

for In x are estimated from the first two risk moments by:

M M2
1 = 2 In (-) - 1/2 Zn ( ) (3.29)

M a

a2 = In (2) - 2 Zn () (3.30)a C1
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I.4 Fitting of Non-Nuclear Risk Distributions

III.4.1 Source of the Data

The candidate distribution families are fitted here to the

historical records of the non-nuclear risks. The purpose of this

analysis is to investigate whether non-nuclear and nuclear risks can

be described by one distribution family. The non-nuclear risks

investigated here are those from hurricanes, earthquakes, tornadoes

and dam failures. Except for tornadoes, the historical records are

summarized in WASH-1400 (Ref. 1). The historical record of the

major tornadoes is listed in the 1976 World Almanac (Ref. T).

The frequency versus consequence distributions of non-nuclear

risks are calculated by ranking the historical observations in a

descending order based on the magnitudes of the consequences. The

estimates of the complementary cumulative frequency at a specific

value x is calculated from the number of observations having consequences

greater than the specified value.

FC(x) = (3.31)T

where F C(x) is the calculated complementary cumulative frequency at x,

K is the number of the observations having consequences greater than

x and T is the time period in which the observations are recorded, The

frequency distribution is calculated by grouping the observations into

certain number of the classes based on the magnitude of consequence.
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The calculated frequency f(x) is given by:

AIC
f(x) = T * Ax (3.32)

where Ax is the width of the class and A is the number of the

observations in the class.

The first two risk moments about x0 are estimated from the

historical records as:

Mi (T i ~ xo) (3.33)
i

M= 1 (xi ~ xo)2 (3.34)
2 Ti

The confidence bounds of the calculated complementary cumulative

frequencies were estimated in WASH-1 400 (Ref. 1). Table 3.1 gives the

confidence factors versus the number of the observations having

consequences greater than the value of interest. These confidence

factors are reproduced from WASE-1400 (Ref. 1). The 95% upper bound

is computed by multiplying the estimated complementary cumulative value

by the corresponding confidence factor in Table 3.1 and the 5% lower

bound is computed by dividing it by the corresponding confidence factor.

One of the criteria of the adequate fits discussed in Section 11.3 is

interpreted as follows. The largest deviation of the fitted curve

should be within the 90% confidence bounds calculated from Table 3.1.
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TABLE 3.1

Confidence Factors

No. of observations 95% Upper
greater than a 9%upe5% Lower
particular value bound (a) Bound (b)

1000 1.05 1.05

100 1.2 1.2

50 1.3 1.3

20 1.4 1.5

10 1.7 1.8

5 2.1 2.5

1 4.7 10.4

(a) Estimated frequency should
upper confidence bound

(b) Estimated frequency should
lower confidence bound

be multiplied by this value to obtain

be divided by this value to obtain
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III.4.2 Hurricanes

The historical records of the fatalities in hurricanes are sumarized

in Ref. 12. 46 fatal incidents were recorded in 73 years. The estimate

of the normalization constant is then,

a= 4= .63/year
73 years

Though the fatality of less than 1 is not physically real, the domain

of the consequence is taken to be greater than 0, because it does

not cause major errors in the fitting procedure2. The risk moments

estimated from the data are:

M 1  x. = 172.31 73. i

M x2 = 5.64 x 105
2 73. i

1 See Table 6.8 in Main Report of WASH-1400 (Ref. 1)

2 The risk moments about x = 1 are,

M = 171.6

M2 = 5.64 x l0 5

The differences from the risk moments about x = 0 are not
significant. 0
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From the risk moments, the parameters of the exponential, gamma,

Weibull and lognormal distributions are estimated. The parameter of

the exponential distribution is estimated from the first risk moment

by Eq. (3.22). The parameters of the other distributions are

estimated by Eqs. (3.23) through (3.28). The residual mean squares

are calculated by Eq. (2.10). The results are summarized in Table 3.2.

The fitted complementary cumulative distributions using the parameter

estimates are given in Fig. 3.7 along with the data. The band attached

to the data points are the 90% confidence bounds discussed in Section

111.4.1. The fitted frequency distributions are given in Fig. 3.8 with

the histogram of the data calculated by Eq. (3.32).

The fitted candidate distributions are now evaluated by the criteria

discussed in Sections 11.5 and 111.4.2.

The exponential distribution in Fig. 3.7 is out of the confidence

bounds, overestimating the complementary cumulative frequency (denoted

by c.c.f. in the following discussion) by a factor of more than 2 in

the range of 10 to 500 fatalities and underestimating the c.c.f. by a

factor of more than 100 at the largest consequence of the observed data.

The gamma distribution is also out of the confidence bounds, underestimating

the c.c.f. by a factor of 2 for less than 10 fatalities. The lognormal

distribution overestimates the c.c.f. for low consequence range and

underestimates it for the largest consequence, but the distribution is

within the confidence bounds of the data. The Weibull distribution does

not show any apparent systematic error in the range of less than 1000

fatalities, but underestimates the c.c.f. for the largest consequence.
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TABLE 3.2

Estimates of the Parameters of the Fatalities

Distribution in Hurricanes

x = 0, a = .630, Mi = 1.72 x 102, M2 = 5.64 x 105

Candidate Residual
Distribution Estimates of Parameters Mean Square

Exponential 6 = 2.73 x 102 10.9

Gamma =.091 8 = 3.01 x 103  .31

Weibull a = .387 n = T.48 x 101 .11

Lognormal = 4.37 a = 2.49 .21
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The Weibull distribution is within the confidence b ounds of the data.

Table 3.2 shows that the Weibull has the smallest residual mean

square. The lognormal and gamma are the next. The exponential has the

largest residual mean square.

III.4.3 Earthquakes

The historical records of the fatalities were given in Ref. 11.

12 fatal incidents were recorded in 73 years. The domain is taken

to be greater than zero as was done in the hurricane distributions.

The estimates of the normalization constant and the first two risk

moments are given in Table 3.3. As before, the parameters of the

candidate distributions are estimated from the first two risk moments.

The results of fitting are given in Table 3.3, Figs. 3.9 and 3.10.

The exponential distribution in Fig. 3.9 is out of the confidence

bounds, underestimating the c.c.f. by a factor of more than 100 for the

largest consequence. The other three distributions are within the

confidence bounds. The gamma distribution in Fig. 3.9 slightly

underestimates the c.c.f. for the low consequence region and also for

the largest consequence. The lognormal and the Weibull underestimate

the c.c.f. for the largest consequence.

The residual mean square of the Weibull is the smallest. The

gamma and lognormal are the next. The exponential has the largest

residual mean square.

See Table 6.9 in the Main Report of WASH-1400 (Ref. 1)
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Table 3.3

Estimates of the Parameters of the Fatalities

Distribution in Earthquakes

x0 = 0, a = .164, M, = 1.53 x 101, M2 = 8.13 x 103

Candidate Residual
Distribution Estimates of Parameters Mean Square

Exponential 8 = 9.31 x 10 2.96

Gamma a = .212 8 = 4.38 x 102  .27

Weibull 8 = .511 n = 4.84 x 101 .26

Lognormal u = 3.66 a = 1.74 .42
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III.4.4 Tornadoes

The historical records of the major tornadoes in Ref. 7 are

summarized in Table 3.4. 38 incidents were recorded in 47 years

that caused more than 20 fatalities. As the records below 20

fatalities are not found in Ref. 7, the domain of the fatalities

is taken to be greater than 20. The normalization constant and the

first two risk moments about xO = 20 which are estimated from

Table 3.4 are given in Table 3.5. The results of fitting are given

in Table 3.5, Figs. 3.11 and 3.12.

The exponential distribution in Fig. 3.11 is out of the confidence

bounds of the data, underestimating the c.c.f. by a factor of more

than 100 for the largest consequence of the data. The other three

distributions underestimate the c.c.f. for the largest consequence,

but they are within the confidence bounds of the data. The residual

mean square of the Weibull distribution in Table 3.5 is the smallest.

The lognormal and the gamma are the next. The exponential has the

largest residual mean square.
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Table 3.4

Fatalities of U.S. Major Tornadoes
(1925 - 1971) (a)

Number Date (month/year) Lives Lost

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

3/25
4/65
3/32
4/36
3/52
4/36
4/47
6/44
6/53
5/53
2/71
4/45
5/27
6/53
5/55
3/42
4/27
9/27
3/66
1/49
3/66

11/26
4/42
5/57
5/30
4/29

12/53
5/68
3/48
4/67
1/69
9/38
1/46
6/58
5/60
5/70
4/70
2/59

689
271
268
216
208
203
169
150
116
114
110
102
92
90
80
75
74
72
61
58
57
53
52
48
41
40
38
34
33
33
32
32
30
30
30
26
25
21

(a) From "The World Almanac and Book of Facts 1976",
Newspaper Enterprise Association, Inc.
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Table 3.5 Estimates of the Parameters of the Fatalities Distribution
in Tornadoes

x0 = 20, a = .810, MI = 6.62 x101, M2 = 1.67 X104

Candidate
Distributions Estimates of Parameters

Residual
Mean Square

Exponential

Gamma

Weibull

Lognormal

e = 8.17 x 101

S = .479

S = .708

e = 1.71 x:102

T = 6.53 x101

y = 3.84 a = 1.12

.66

.11

.086

.093
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III.4.5 Dam Failures

The historical records of the fatalities in dam failures are

summarized in Ref. 11. Eight fatal incidents were recorded in

84 years. The domain is taken to be greater than zero as was done

in the distributions of hurricanes and earthquakes. The normalization

constant and the first two risk moments are estimated from the historical

data in Ref. 1. The estimates are given in Table 3.6. The results of

fitting are given in Table 3.6, Figs. 3.13 and 3.14.

All of the four candidate distributions underestimate the

complementary cumulative frequency for the largest consequence, but

they are within the confidence bounds of the data. The residual

mean square of the gama distribution is the smallest. The next

are the Weibull and the lognormal. The exponential has the largest

residual mean square.

1 See Table 6.12 in the Main Report of WASH-1400 (Ref. 1)
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Table 3.6

Estimates of the Parameters of the Fatalities

Distribution in Dam Failures

x0 = 0, a = .0952, Ml = 3.48 x o10, M2 = 5.07 x 104

Candidate Residual
Distribution Estimates of Parameters Mean Square

Exponential a = 3.65 x 102 1.70

Garma = .335 6 = 1.09 x 103  .37

Weibull 8 = .608 n = 2.47 x 102 .39

Lognormal y = 5.21 a = 1.38 .57
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III,4.6 Summary of Fitting of the Non-nuclear Risk Distributions

In the previous sections the candidate distributions have been

examined based on the historical records of hurricanes, earthquakes,

tornadoes and dam failures. From the largest deviation of the fitted

distribution from the data, the exponential distribution is found to

be inadequate to fit the data of hurricanes, earthquakes and tornadoes.

The gamma distribution is found to be inadequate to fit the hurricane

data. The Weibull and lognormal distributions fit the data within the

confidence bounds.

Table 3.7 summarizes the residual mean squares of the fitting.

The residual mean squares indicate the order of the adequacy of fitting.

The residual mean squares of the Weibull are the smallest for hurricanes,

earthquakes and tornadoes. The gamma distribution has the smallest

residual mean square in fitting of the data of dam failures.

If a single family of distributions is selected for all of the

examined non-nuclear risk distributions, the Weibull is assessed as

the distribution which is preferred, because its complementary cumulative

distributions are within the 900 confidence bounds of the data and its

residual mean squares are the smallest or next to the smallest for

all of the studied non-nuclear risk distributions.
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Table 3.7

Residual Mean Scuares of Fitting of

the Non-nuclear Risk Distributions

Type Candidate Distributions
of

Risk
Exponential Gamma Weibull Lognormal

Hurricanes 10.9 .31 .11 .21

Earthquakes 2.96 .27 .26 .42

Tornadoes .66 .11 .086 .093

Dam Failures 1.70 .37 .39 .57



62

111.5 Fitting of Nuclear Risk Distributions

111.5.1 Sources of the Data

The candidate distributions are now tested by the early fatalities

distributions of nuclear reactor accidents. The distributions investigated

here are the average of the first 100 commercial nuclear power plants

in U.S. and the distributions for two individual sites. The average

distribution is derived from the risk estimates of the first 100 nuclear

reactors given in the Reactor Safety Study (Ref. 1).

The distributions of the individual sites are calculated in

this thesis using the consequence model under the calculation conditions

discussed in Section 1.4.3. The population distributions used in the

individual site calculations are selected from the population distributions

of the 68 sites at which the first 100 commercial power plants are

located. The selected two sites noted by A and B are the 3rd highest

and 3rd lowest respectively when the 68 sites are ranked in a descending

order by the cumulative population within 5 miles. The selected two

sites can be interpreted as representing the 95% upper and 5% lower

bounds of the spectrum of the population distributions. The population

distributions of the selected two sites are given in Appendix C. PWR

accidents and BWR accidents are calculated seperately in the individual

site calculations. Since PWR and BWR accidents have similar early

fatalities risk curves, the following combinations are considered to

cover the spectra of the population distributions and the reactor types.

The calculated cases are PWR accidents at site A and BWR accidents at

site B.
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The risk distributions and risk moments are calculated by the

consequence model. As discussed in Section 1.4, the consequence model

uses sampling methods in estimating the risk distribution. Let x and pi

be the consequence magnitude and the probability of the sample trial (i).

The probability pi assigned to the trial is calculated from the probability

of the release, the probability of the wind direction, the probability

of the evacuation speed and the number of samples picked from the

meteorological records. The complementary cumulative frequency is

estimated by the summation of the probabilities of the trials having

consequences greater than the specific value as:

FC -W pi (3.35)
x.>

1-

The frequency distribution is also estimated from the consequence

results by the summation of the probabilities of the trials having

consequences within certain intervals.

P.

f~)=x<x.i<x+Ax C
Axx= -A- {F (x+Ax) - F(x)} (3.36)Ax Ax

For all of the nuclear risk curves, the lower end of the domain

is taken to be zero. The first two risk moments about the origin

are estimated from the consequence results as:

M = xi - (3.37)

-142 X1 2 Pi (3.38)
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In the following sections and the chapters about the nuclear risks

the risk moments will always be evaluated about the origin. Unless

the reference point to evaluate the risk moments is specified, it

should be considered to be about the origin. The normalization constant

a is estimated by:

a = I p. (3.39)

The calculated risk distributions have the following two types of

errors. One error is due to sampling since the model picks certain

number of weather data out of the one year meteorological record. The

other type of error is due to the uncertainties of the parameters in

the consequence model, such as the probabilities of the occurrences

of the releases, the deposition velocities, the dose response relationship,

etc.

The sampling error depends on the number of the trials having

consequences greater than the specified value. The confidence factors

discussed in Section 111.4.1 can be applied to determine the magnitude

of the sampling errors. From Table 3.1 the probability of the largest

consequence has 90% confidence factors of 5 and 1/20. The sampling

error is effectively zero for the lower consequences because of the

large number of trials having consequences greater than the specified

magnitude. Because of the increasing size of the sampling error, the

results of the calculation are truncated at the complementary cumulative

frequency of 10-9 /year for both the average distribution of the 100
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reactors and the risk distributions at individual sites, as done in the

Reactor Safety Study (Ref. 1).

The uncertainties of the parameters are due to the insufficiency

of our knowledge about the parameters. For example, the dose-response

relationship (the relationship between the dose to the organs and the

fatal fraction of population exposed to the radiation) is not precisely

known because of the insufficiency of the available data.

For the average risk curve of the 100 reactors the uncertainties

due to the above two causes were estimated in WASH-1400 (Ref. 1) to be

represented by factors of 1/4 and 4 on the consequence magnitude and

1/5 and 5 on the probabilities. No estimate of uncertainties has been

made for the individual site calculations. It can be expected that the

uncertainty bounds of the individual site calculations will be larger

than those of the average case because of the smaller number of trials

involved in the calculations. However, since the sampling error

is small compared to the uncertainties of the parameters except for

the largest consequence whose probability is below 10-9 per reactor

year, it is assumed in this study that the uncertainty bounds of the

individual site calculations have comparable magnitudes to those

of the average of the 100 reactors.
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111.5.2 Average of U.S. 100 Reactors

The total risk of the first 100 commercial nuclear power plants

were estimated in the Reactor Safety Study (Ref. 1). The risk

uurves, the risk moments and the normalization constant are derived from

the consequence results obtained in the Reactor Safety Study after dividing

the probabilities by 100 to get the average of the 100 reactors. The

calculated complementary cumulative distribution of early fatalities

is given in Fig. 3.15 by the dots. The calculated distribution is not

smooth because of the sampling error. The bands attached to the dots

indicate the magnitudes of the uncertainties in the consequence calculation.

The calculated frequency distribution is given in Fig. 3.16 as a histogram.

The calculated risk moments and normalization constant are given in

Table 3.8.

As before, the parameters of the candidate distributions are

estimated from the first two risk moments and the normalization constant

(Eqs. (3.35) through (3.39)). The estimates and the residual mean

squares are given in Table 3.8. The estimated complementary cumulative

distributions and the frequency distributions of the candidate parametric

distributions are given in Fig. 3.15 and 3.16 respectively.

Fig. 3.15 shows that the exponential distribution overestimates the

complementary cumulative frequency (denoted by c.c.f. in the following)

in the range of less than 200 fatalities and underestimates it above

200 fatalities. The estimated consequence magnitude at about 10-9

per reactor year is smaller than the consequence results by a factor

of 5. The gamma distribution underestimates the c.c.f. by a factor of 2

for the range of less than 100 fatalities and overestimates the c.c.f.
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Table 3.8 Estimates of the Parameters of the Early Fatalities
Distribution of the Average of U.S. 100 Commercial Reactors

xo = 0, a = 4.72 x 10~7, Mi = 4.60 x 10-2, M2 = 6.45 x 10-2

Candidate
Candidate
Distribution

Exponential

Gamma

Weibull

Lognormal

Estimates of Parameters

6 = 9.75 x 101

a = .0783 e = 1

a = .371 a = 2

y = 3.31 c- = 2

Residual
Mean Square

.30 x 103

.45 x 101

.62

47.07

.691

.194

.057
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between 500 and 2000 fatalities. The lognormal distribution appears

not to have systematic errors. Except for the exponential distribution,

the other three distributions are within the range of the uncertainties

of the consequence model. The residual mean square of the lognormal

is the smallest in Table 3.8. The Weibull and gamma are the next.

The exponential has the largest residual mean square.

111.5.3 PWR Accidents at Site A

The consequence calculation is made in this thesis using the

population distribution of Site A in Table C.5 and the release characteristics

of PWR accidents in Table C.3. As discussed in Section 1.5.3, the obtained

consequence distribution is hypothetical because of the assumptions of

the meteorological conditions, the plant capacity and the probabilities

of the reactor system failures. The assumed conditions are not based

on the actual data of the power plant at Site A.

From the consequence calculation, the normalization constant and

the first two risk moments are estimated by Eqs. (3.35) through (3.39).

The parameters of the candidate functions are estimated in Table 3.9.

The estimated candidate distributions are shown in Figs. 3.17 and 3.18

along the calculated distributions by the consequence model. (The

calculated distributions are shown by dots in Fig. 3.17 and as a

histogram in Fig. 3.18).

Fig. 3.17 shows that the exponential distribution slightly

overestimates the c.c.f. in the range between 10 and 500 fatalities

and underestimates the c.c.f. in the range greater than 100 fatalities.
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Table 3.9 Estimates of Parameters of the Early Fatalities Distribution
in PWR Accidents at Site A

x0 = 0, a = 5.78 x 10~7, Mi = 2.72 x 10-4, M2 = 5.77 x 10~1

Candidate
Candidate
Distribution Estimates of Parameters

Exponential e = 4.61x 101

Gamma 8= .284 0=1

Weibull = .570 n = 2

Lognormal = 5.40 0- = 1

Residual
Mean Square

.66 x 103

* 91 x 102

.51

14.28

.095

.102

.195
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The lognormal distribution slightly overestimates the c.c.f. in the

range between 10 and 200 fatalities and the gamma distribution slightly

underestimates it in the range less than 300 fatalities. The Weibull

appears not to have systematic errors. The candidate distributions are

within the range of the uncertainties of the consequence calculation

but the exponential distribution is less favorable than the other three

because of the underestimation of the magnitude by a factor of 3 at

about 10-9 per reactor year. The residual mean square of the gamma

distribution is the smallest in Table 3.9. The Weibull and the lognormal

are the next. The exponential has the largest residual mean square.

111.5.4 BWR Accidents at Site B

The consequence calculation is made in this thesis using the

population distribution of Site B in Table C.6 and the release characteristics

of the BWR accidents in Table C.3. The calculated distribution is also

hypothetical like the distribution at Site A in the previous section.

The results of the fitting are given in Figs. 3.19, 3.20 and Table 3.10.

Fig. 3.19 shows that the exponential distribution slightly over-

estimates the c.c.f. in the range between 10 and 100 fatalities. The

gamma distribution underestimates the c.c.f. for less than 10 fatalities.

The lognormal and the Weibull slightly overestimate the c.c.f. in the

range between 10 and 50 fatalities. All of the candidate distributions

are within the uncertain ranges of the consequence model. The order of

preference based on the residual mean squares in Table 3.10 is Weibull,

gamma, lognormal and exponential.

- __ 'L;
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Table 3.10 Estimates of Parameters of the Early Fatalities Distribution
in BTR Accidents at Site B

xo = 0, a = 1.61x 10-1, M1 = 9.92 x 10-7, M2 = 3.46 x10-4

Candidate
Distribution Estimates of Parameters

Residual
Mean Square

Exponential

Gammna

Weibull

Lognormal

e = 6.17 x101

8 = .214

= .513

ui = 3.26

8 = 2.87 x102

= 3.23 x101

a = 1.73

2.15

.152

.107

.186
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111.5.5 Summary of Fitting of Nuclear Risk Distributions

Based on the fittings for nuclear risks, the exponential is found

to be inadequate to fit the average distribution of the U.S. 100 reactors.

The residual mean squares in Table 3.11 show the order of preference

of the renaining candidate distributions. If a single family of

distributions is selected for all of the examined risk curves, the

Weibull is assessed as being adequate because its residual mean squares

are the smallest or the second smallest for all of the examined risk

distributions.

111.6 Summary and Conclusions

The approach developed in Chapter II is demonstrated in this chapter

to examine the early fataliti?s distributions of nuclear and non-nuclear

risks. Four candidate distributions are studied, exponential, gamma,

Weibull and lognormal distributions. They are selected from the

considerations of (1) having no mode or at most one mode, (2) positively

skewed behaviors (3) different tail behaviors and (4) having only one

or two parameters to be estimated. The method of moments is used to

estimate the parameters of these distributions.

In order to select a distribution family which adequately describes

the fatalities distributions, the historical records of hurricanes,

earthquakes, tornadoes and dam failures are examined. The Weibull

distribution is assessed to be appropriate as a family of distributions

that describe the examined non-nuclear risk distributions. For the
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caldulated nuclear risks from the average of U.S. 100 reactors and

from the two individual site calculation results, the Weibull distribution

is also assessed to be appropriate. For both nuclear and non-nuclear

risks, the Weibull distribution is determined to be the distribution

which adequately describes the examined risk curves.
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Table 3.11 Residual Mean Squares of Nuclear Risks

Candidate Risk Models

Exponential Gamma Weibull LognormalReactor

Average of U.S.
Reactors

PWR at Site A

BWR at Site B

47.07

14.28

2.15

.691

.095

.152

.194

.102

.107

.057

.195

.186
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CHAPTER IV

BASIS FOR REGRESSION ANALYSIS

IV.1 Introduction

In the preceding two chapters, the fittings of the risk

distributions to the parametric distributions were discussed. The

next major step in the analysis is to derive the equations that relate

the distribution parameters to the basic variables that drive and

control the consequences of the nuclear reactor accidents. In this

chapter, a general discussion will be made about derivation of the

basic variable equations. The application will then be discussed in

the following chapters.

IV.2 Derivation of the Basic Variable Equations

IV.2.1 Outline of the Approach

In this study the regression analysis approach is used to relate

the distribution parameters to the basic variables. For the purpose

of presentation, the approach in the analysis can be represented by

six fundamental steps. Such a breakdown represents useful means of

giving a perspective on the process, although a simple summary of this

kind cannot fully describe all the elements in a complex analysis. The

six fundamental steps are:

(1) Identification of the basic driving variables to be studied.

(2) Selection of the dependent variables of the regression

equations.

(3) Assembling the data to be used in identifying the relation-

ship between the dependent and basic variables.
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(4) Formulation of candidate equations relating the dependent

and basic variables.

(5) Estimation of the unknown constants in the equations.

(6) Investigation of the adequacy of the derived equations.

Each step is now discussed in context of a risk analysis of the

nuclear reactor accidents.

IV.2.2 Identification of the Basic Variables

The following are some examples of the basic variables that would

be of interest in a risk analysis of the nuclear reactor accidents:

(1) Population distribution.

(2) Meteorological condition.

(3) Probabilities and magnitudes of radioactive releases.

(4) . Evacuation speed and evacuation area in emergency situations

of the reactor accidents.

These variables would be of interest in the following decision

making and evaluation studies:

(1) The population distributions and the meteorological conditions

would be of interest in selection of sites for nuclear power

plants.

(2) The probabilities and magnitudes of radioactive releases

would be of interest in evaluation of safety systems in a

nuclear power plant involving engineering safety features,

operation restrictions and maintenance activities.

(3) The evacuation speed and area would be important in emergency

planning.

In the regression analysis, the basic variables to be studied are

called "regressor variables." The population distribution and the
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characteristics of radioactive releases will be studied as regressor

variables in the following chapters to demonstrate the regression

analysis approach for identifying the dependent and basic regressor

variables.

IV.2.3 Selection of the Dependent Variables

The dependent variables can be selected from the risk characteris-

tics or the distribution parameters of the fitted distributions. Since

the appropriate family of the parametric distributions has been

selected, the other risk characteristics or distribution parameters

can be estimated from the selected variables. The following variables

can be studied as dependent variables:

(1) Scale factor, shape factor and normalization constant of the

fitted parametric distribution.

(2) Risk moments about a specific magnitude of consequence.

(3) Complementary cumulative frequency at a specific magnitude

of consequence.

(4) Magnitude of consequence at a specific value of complementary

cumulative frequency.

(5) Slope of the tangent of the complementary cumulative

distribution at a specific magnitude of consequence.

The selection of the dependent variables is based on the following

considerations:

(a) The relationship between the dependent and basic variables

can be expressed by fairly simple and straightforward

equations.

(b) The selection may depend on the situation being considered

in the decision making or evaluation process.
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The variables listed above would be of interest in the following

situations:

(1) Distribution parameters of the selected parametric distribu-

tion: The parameters control the behavior of the distribu-

tion. For example, the shape factor 6 of the Weibull distri-

bution controls the rate of decrease in the tail. The scale

factor n of the Weibull distribution represents the magnitude

of consequence at a complementary cumulative frequency of

a/e, where e is the Euler's constant. The normalization

constant represents the frequency that the consequence is

greater than the lower end of the domain. When the decision

is based on these characteristic quantities, they can be

selected as dependent variables.

(2) Risk moments: The first risk moment about the origin will be

selected when the decision is based on the expectation of the

magnitude of consequence. The second and higher moments

about the origin represent the tail behavior of the distribu-

tion. When the decision is based on the extreme consequences,

the second and higher moments would be of interest.

(3) Complementary cumulative frequency at a specific magnitude of

consequence: When the decision is based on the frequency at

a specific magnitude (for example, 1000 fatalities), it can

be selected as a dependent variable.

(4) Magnitude of consequence at a specific frequency: When the

decision is based on the magnitude at a specific complementary

cumulative frequency (for example, 10 9/year), it can be

selected as a dependent variable.
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(5) Slope of the tangent of the complementary cumulative distri-

bution: The slope represents the rate of decrease of the

frequency. Specifically the slope at the tail would be

selected when the extrapolation of the distribution is of

interest to the consequences greater than the largest

consequence in the historical records or in the calculation

results.

When the scale and shape factors are not selected as dependent

variables, they will be estimated from the selected dependent variables.

For example, the first two risk moments about the origin and the normal-

ization constant will be selected as dependent variables in Chapter 5.

The Weibull parameters 6 and n can be estimated by Eqs. (3.27) and

(3.28). Once the Weibull parameters are estimated, we have an entire

distribution and can derive any risk characteristic in terms of the

parameters. For example, the magnitude of consequence at a specific

complementary cumulative frequency Fc is give by:

xx0 +fT1 [ln c]1  (4.1)

where 8 and 1 are the estimates by Eqs. (3.27) and (3.28).

IV.2.4 Assembling of the Data

In the risk analysis the data are generally obtained from the

historical records or from the calculational model. The data obtained

can be certain risk characteristics or risk distributions. To identify

the relation to the basic variables, the data must be obtained for

different values of the basic variables. A set of the data used for

the analysis is called "data base" in this study.

In this thesis the data base is obtained from the consequence
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model. For example, in Chapter 5 the first two risk moments and the

normalization constant will be calculated by the consequence model for

68 different population distributions. The calculated 68 different

sets of the risk moments and the normalization constant will be used

in identifying the relationship between the dependent variables and the

population distribution.

IV.2.5 Formulation of Candidate Equations

A number of candidate equations with unknown constants are

formulated to relate the dependent variables to the regressor variables.

Simple and straightforward equations with a small number of unknown

constants are desirable. Consider the following two candidate

equations:

y = h(z ,z2 ,...,zm Il'''T k) + e (4.2)

y = h'(z ,z2,...,zm l''''' k' k+1''''' k+v) +'(4.3)

where y is the dependent variable and z ,...,z are the regressor

variables. T's are the unknown constants and E and s' are the random

error variables. Eq. (4.3) has v additional unknowns compared to Eq.

(4.2). Generally Eq. (4.3) with (k+v) unknowns predict the value of y

more accurately than Eq. (4.2) with k unknowns. But Eq. (4.2) is more

desirable than Eq. (4.3) because of its smaller number of unknowns. As

a compromise the significance of added v unknown constants is tested by

the partial F-statistic which will be discussed in the following sub-

section.

IV.2.6 Estimation of the Unknown Constants

The method of least squares is used to estimate the unknown con-
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stants. For example, the unknowns in Eq. (4.2) are estimated by

minimizing:

n
= 0 [y. - h(z ,...,z .T ,...,T )] (4.4)

. i li mi 1 k
i=1

where the subscript i refers to the data value prepared in Section

IV.2.4 and n is the total number of the sample data.

Having obtained the estimates ?1,.. .k the significance of the

derived equations are expressed by the F-value defined by:

Sg/k
F = (4.5)

S / (n-k-1)

where

S2 Z - h(z ,.., .. ,k)] (4.6)
ik

yo = y (4.7)

2 2 1. 48
S= y. - h(z ,...,z t )] (4.8)
R i i -**2mi i k

If the F-value determined by Eq. (4.5) is larger than the F-value

at the predetermined significance level with (k,n-k-1) degrees of

freedom, the candidate equation Eq. (4.2) is found to be significant

to express the variation of the dependent variable of the data. The

F-value in Eq. (4.5) is related to the multiple correlation co-efficient

pm which is defined by:

S 2
2 = 2  

(4.9)
m S'+ S

G R

The multiple correlation coefficient also indicates the significance of

the regression results.

In the preceding section, the compromise between the accuracy of
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prediction and the number of unknowns is discussed. Now Eqs. (4.2) and

(4.3) are compared. Let ', ... ,) ,. k ' t' be the estimates of
1 k' k+i'" k+v

the unknowns in Eq. (4.3) determined by the method of least squares.

The significance of the added v unknowns is examined by the partial

F-statistic defined as:

[S2 - (S2)']/v
F' = R (4.10)

(S2) '/(n-k-v-i)
R

where

2
(S2)' = E [y. -2'z , . , .t , . , ' ) (4.ll)- h~z 4.z IT jY-It

R i li mi 1 k+v

If the partial F-value in Eq. (4.10) is smaller than the F-value at the

predetermined significance level with (v,n-k-v-1) degrees of freedom,

the added v unknowns can be eliminated and Eq. (4.2) with k unknowns is

found to be adequate.

Stepwise regression technique is a method for determining equations

with the minimum number of unknowns without decreasing the accuracy in

predicting the variation of the dependent variables. It uses the

partial F-tests repeatedly by adding or eliminating the unknown

constants (or the regressor variables associated with the unknown

constants).

Details of the regression techniques and the tables of the F-dis-

tribution are found in Ref-8.

IV.2.7 Test of the Adequacy of the Derived Equations

The following criteria are used to investigate the adequacy of the

derived equations:

(1) The F-value in Eq. (4.5) or the multiple correlation coeffi-

cient in Eq. (4.9) should be large. This criterion can be
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taken to be a relative measure to be used in comparing

different possible equations.

(2) The error should not be systematic. When the regression

estimates of the dependent variables are plotted versus the

data values used for regression, the points should lie

closely about the 45 degree line and no tendency is observed

to overpredict or underpredict various range of the data.

(3) The fitted risk distribution using the derived basic variable

relations will be compared to the data distribution.

(4) Various risk characteristics will also be compared using the

basic variable relation to determine the fitted risk

characteristics.

IV.3 Summary

The approach for deriving the regression equations is discussed in

this chapter. The fundamental elements of the approach are identified

as: (1) identification of the basic regressor variables; (2) selection

of the dependent variables; (3) assembling of the data; (4) formulation

of candidate equations; (5) estimation of the unknown constants; and

(6) investigation of the adequacy of the derived equations.

Some of the possible basic variables are identified and two of them

will be studied in the following chapters. The dependent variables can

be selected from the risk characteristics or the distribution parameters

of the fitted distributions. The data used for regression analysis can

be obtained from the historical records or the calculational model. In

this study they are obtained from the consequence model. The candidate

equations with a small number of unknown constants are desired. The
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unknown constants are estimated by the method of least squares. The

significance of adding or eliminating unknown constants can be tested

by the partial F-statistic. The adequacy of the derived equations is

examined by: (1) F-value or multiple correlation co-efficient; (2)

systematic error in prediction of the dependent variables; (3) compari-

son of the fitted risk distribution to the data distribution; and

(4) comparison of the predicted risk characteristics to those calculated

by the consequence model.



91

CHAPTER V

REGRESSION ANALYSIS OF POPULATION DISTRIBUTION

V.1 Introduction

In the previous chapter a general procedure of regression analysis

was proposed. The procedure will be demonstrated in this chapter in

an example in which the population distribution is a basic variable.

Since the population distribution is one of the potentially important

factors in decisions on sites for nuclear power plants, the equations

relating the risk to the population distribution will provide help in

decision on an acceptable population distribution.

The example studied in this chapter is the relationship between

the population distribution and the early fatalities distribution of PWR.

accidents in northeastern valley meteorological condition. But the

methods developed in this chapter will be generally applicable to other

consequences, other types of reactor accidents and other meteorological

conditions.

The discussion in this chapter follows the procedure of regression

analysis proposed in the preceding chapter. Section V.2 discusses

the population distribution which is the basic variable in this chapter.

The selection of the dependent variables is made in Section V.3 and the

data base is prepared in Section V.4. The regression model is formulated

in Section V.5 and the regression fitting is made in Section V.6. The

adequacy of the derived equations is examined in Section V.T. An example

of decision making involving siting for a nuclear power plant is given

in Section V.3.
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V.2 Incorporation of the Population Distribtion in a Risk Model

A polar coordinate system is used here to describe the population

distribution. The origin is set at the location of the nuclear power

plant. The number of people living in (Ar, AS) at (r,e) is defined

to be:

n(r,6) Ar AS = r -. p(r,e) Ar - AS (5.1)

where n(r,e) is the number of people per radian per unit distance and

p(r,9) is the population per unit area.

r'

e

Fig. 5.1 Illustration of the Polar Coordinate Sustem for Describing

the Population Distribution
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In the consequence computer model, the population distribution

is discretized by dividing a circle of 500 miles radius1 into sixteen

22-1/2 degree sectors and dividing a sector into 34 annular segments.

Fig. 5.2 illustrates some of the annular segments in the consequence

model. Eq. (5.1) is first integrated over a 22-1/2 degree sector in

the direction j.

n j(r) = { n(rO)de (5.2)

where n j(r) is the population per unit distance at r in a 22-1/2 degree

sector in the direction j. Eq. (5.2) is then integrated over r to derive

the population in the k-th annular segment from the origin in a sector of

the direction j.

N = fk+Ar k/ (r)dr (5.3)

rk-Ark/
2

where rk is the distance of the midpoint of the k-th segment from the

reactor and Ark is the width of the annular segment. rk and Ark used

in the consequence calculation are listed in Appendix C. The populations

in the annular segments are treated as basic regressor variables in

this chapter.

IThe effects of nuclear reactor accidents on the public beyond 500
miles are considered too small and no calculation is performed beyond
500 miles.
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Fig. 5.2 Illustration of the Annular Segments

in the Consequence Model
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V.3 Selection of the Dependent Variables

The dependent variables can be selected from the risk characteristics

or the distribution parameters listed in Section IV.2.2. in this chapter,

the first two risk moments and the normalization constant are selected as

the dependent variables, since they have been used to derive the fitted

Weibull distributions which have been shown to adequately describe the

data distributions of consequence vs. frequency. These three variables

represent the following behaviors of the distribution. The first risk

moment gives the average number of fatalities per unit time. The second

risk moment accounts the tail behavior of the distribution. The normalization

constant gives the area under the frequency distribution, which is the

probability per unit time of consequences being greater than zero.

V.4 The Data Base for Regression Analysis

A total of 68 different population distributions are used for the

regression analysis. The populations correspond to the 68 sites where

the 100 reactors are now in use or planned to be located. The populations

are calculated from the 1970 census bureau data (Ref. 2). As shown in

Table 5.1, the 68 populations have a large. spread with regard to the

cumulative distribution. The populations also cover different patterns

as shown in Fig. 5.3. The regression equations derived from these

populations should therefore cover the likely variations which might

be considered in selection of sites for nuclear power plants.

The first two risk moments and the normalization constant are

calculated by the consequence computer model for each of the 68

population distribttions assuming FWR accidents and northeastern valley
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Table 5.1 Spread of Cumulative Population in the 68 Population
Distributions

Cumulative Population in a Circle
(thousands)

Average

Radius (miles)
Highest
Distribution

2

5

10

20

50

100

21

62

207

896

16,485

23,908

of the
Distributions

1.4

8.7

42

Lowest
Distribution

0

0

1.4

214

2,073

6,973

19

171

523

500 108,757 60,302 6,9947



97

C

,1:

//

10
5/

r

10 41Z1
to4 I

4-4/

re 

oa

0/

45-

.5-4 1

IX

Fig- 5.3 Cumulative Population Distributions of
Different Patterns

Note :Sites CADBE correspond to the
1st,3rd,35th,65th,68th when 68 sites
are ranked based on the populations in
5 miles.
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Table 5.2 Results of Consequence Calculations of PWR

Accidents for 68 Different Population Distributions

Population
Distribution
Sample No.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
349
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

55
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
65

Normalization
Constant

First
Risk
Moment

9I 5F05
2. 72E-C4
1.59E-05
8-.8 7E-07
7.57E-05
3.20E-05
5.7JE-05
5.70E-05
1.34E-05
2.94F-05
3.38E-05
6.95E-04
2.94E-05
1.25E-04
1.66E-05
1.21E-04'
3.85E-04
1.88E-05
5.61E-05
1.71E-04
6.73E-05
3.87E-03
7.30E-06
1. 73E-05.
4.82E-05
1.22E-05
3. 18E-05
1. 73E-05
8.3GE-06
2.02E-05
1.01E-04
1.31E-05
1.34E-05
5.95E-05
9.63E-06
3.82E-05
3.81E-05
2.23E-05
1.4 5E-04
8.45E-06
5.84E-05
1 . 16E-05
8. 77E-05
4.62E-05
3. 14E-05
1.91E-05
1.53E-05
5. 32E-04
1.22E-04
3. 88E-05
6. 78E-C5
1. 14k-04
2. 75E-04
4.08E-5
1.96E-05
4. 18E-05
3. 79E-05
8.55E-06
2. 79E-05
1.07C-04
4 . 3 7E-05
6.42E-06
2.08E-05
3.29E-06
4. 12E-05
4.27r-06
2. 77U-05
7. g9E-06

Second
Risk
Moment
-B~2TE~-0 Z

5. 77E-C1
7.15E-03
6.47E-C4
8.62E-02
1.30E-02
5.35E-C2
5.35E-02
1. 12E-C2
6.78E-02
5.66E-02
2.07E CC
6.78E-C2
1.53E-01
1.37E-C2
2.17E-01
8.95E-C I
9.99E-03
1.03E-01
3.85E-01
7.21E-C2
8.63E-02
1.92E-03
1.69E-02
3.64E-02
5. 14E-03
5.42E-02
5.04E-C2
3.57E-03
9. 13E-C3
1. ICE-01
5.98E-03
9.52E-C3
6.03E-02
2.83E-03
1.ICE-01
3.94E-02
1.11E-02
2. 12E-0 1
3.56E-03
4.42E-02
3.73E-C3
6.02E-02
2.81E-02
4.59E-02
1.38E-02
1.21E-02
1.53E CO
3.04E-01
6.02[-C2
6.62E-02
1.27E-01
4. 70E-C1
3.67E-02
8.46E-03
4.32E-C2
3.02E-02
1.97E-C3
1.59E-02
1.CSE-C 1
1.82E-n2
3.20E-03
1.C6E-12
3.68E-04
5.211-C2
6.95E-03
8.38E-02
4.74E-03

5.78E-07
1.60E-07
1.28E-08
2.33E-07
2.82E-07
2.76E-07
2. 76E-07
8.74E-08
7.48E-08
1. 13E-07
7.09E-07
7.4RE-08
4.02E-07
8.71E-08
3.65E-07
6.85E-07
1.26E-07
1 .8E-07
4.42E-07
3.11 E-07
1.95E-07
9.81E-33
1. 09-07
1.94E-17
9.39E-03
9.22E-08
3.70E-08
7.05E-08
1.98E-07
3. 17E-07
1.22E-07
1.2 1E-07
2. 12E-17
1.05E-07
1.37E-07
2.44E-17
1. 74E-07
2.47E-07
8. 54E-08
2.77E-C7
1 * 1 .9-07
5. 13E-07
I.96E-07
1.97E-07
1.66E-07
1.50E-C7
8.59E-07
3. 30E-07
2.4CE-07
3.01E-07
3.76E-C7
6.51E-07
2.65E-07
1.81E-37
2.C7E-C7
2. 12E-07
2.CFE-07
1.55E-07
3. 40E-07
2.49E-27
6.44E-0
1. 17E-07
9.67E-08
2.4 4E-07
3. 55E-13

4. 99E-08
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meteorological conditions.' The results are given in Table 5.2 and

will be used as the data base for the regression analysis.

V.5 Formulation of the Regression Model

Having obtained the data base, the next step in the analysis is

to formulate a model that relate the dependent variables Ml, M2 and a

to the populations in the annular segments. To keep the model simple

and also to make the results applicable to other geometries, the

regression coefficients will be expressed as functions of the distance

from the reactor. The functions will be called "transfer functions" in

this study. Before defining the transfer functions, some of the

assumptions and techniques in the consequence model will be discussed

because the forms of the transfer functions are dependent on the

assumptions and techniques in the consequence model.

V.5.1 Assumptions and Techniques in the Consequence Model

Only the assumptions and techniques related to the definition

of the transfer functions are briefly discussed. A full description

of the consequence model can be found in Appendix VI of WASE-i400 (Ref.l).

The discussion of the effects on the transfer functions will be made in

the course of defining the transfer functions. With regard to the

assumptions and techniques, the following points are important.

(1) A sampling method is used in the consequence model. One

trial consists of one radioactive release, one evacuation

speed, one starting time of meteorological conditions (stability,

precipitation, and wind speed) and one wind direction.
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(2) The variables listed above are considered to be independent

of each other. The probability assigned to one trail is

therefore a product of the probabilities of the individual

events.

(5.4)Pt = P

where

p : probability assigned to one trial.

PR: probability of a release occuring.

pV: probability of an evacuation speed being realized.

pS: probability assigned to one starting time of

meteorological data. As discussed in Section I.4,

if 90 starting times are selected, each of them is

assigned with a probability of 1/90.

pj: prob bility of the wind blowing in the specific

direction.

(3) The shift of the wind direction in the downwind is not explicitly

treated. The radioactive plume travels in the direction in

which the wind was blowing at the starting time of release.

Therefore for one trial the fatalities occur only in one

direction.

(4) The frequency distribution of the wind direction is uniform

over the 16 directions. The probability pj in Eq. (5.4) is

therefore 1/16. The probability pt assigned to one trial is

thus independent of the specific wind direction.
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V.5.2 Definition of Transfer Functions

Consider one trial in which the wind is blowing in the direction j.

Let A(r) be the ratio of the fatalities per unit r at r to the population

per unit r at r in a 22.5 degree sector for the trial. A(r) is a

function of the dose to the critical organs and the area covered by

the radioactive plume. It is then dependent on the specific release,

evacuation speed and meterological condition of the trial, but it is

independent of the wind direction. Since the shift of the wind direction

is not considered, the total number of fatalities for the trial is given

by:

x =f A(r) - nj(r) - dr (5.5)

r

The first risk moment is the expectation of x over all trials.

M = E[x] (5.6)

where E refers to an expectation over all trials. From Eq. (55), M1 is

then given by:

M = E ( A(r) * n (r)]dr = E[A(r) * n (r)]dr (5.7)

Since the frequency distribution of the wind direction is uniform,

4= l E[A(r)] n (r)dr (5.8)



102

The first transfer function will therefore be defined as:

a(r) = * E[A(r)] (5.9)

Then M1 is expressed as:

M = a(r) - n (r) - dr (5.10)

Jr

As M, is an annual expected number of fatalities, a(r) is an annual

expected number of fatalities per individual at distance r. The

quantity a(r) can also be interpreted as a probability of death per

reactor year for an individual living at distance r.

The second risk moment is an expectation of x2 ,

x2 = f A(r) n (r)]2

r

= Jf A(r) * A(r') * nj(r) * n (r')drdr (5.11)

Then, rr'

= E(x 2 ] E(A(r) - A(r')] - n (r) * n (r')drdr' (5.12)

J r r'

The second transfer function b(r,r') will be defined as:

b(r,r') 1 E(A(r)* A(r')] (5.13)

Then,

M2 J b(r,r') n (r) - n (r')drdr' (5.14)

Jr r?
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The quantity b(r,r') is the annual expected number of fatalities at

r and r' per individual at r and r' arising from the same accident.

It also can be interpreted as a probability that an individual at

r and r' will both be killed in the same accident.

Finally, the third transfer function c(r) will be defined to

relate the normalization constant a with the population distribution.

The constant a is the probablity per reactor year for which the

fatalities will be greater than zero.

a = E[H(x)] (5.15)

where

H(x) = 1 for x > 0

= 0 for x = 0

Let d. be the closest distance at which people live from a reactor in

the direction j.

n (r) =0 at r < d

> 0 at r = d

> 0 at r > d (5.16)

Then,

x = A(r) nj(r)dr

= A(r) - n(r)dr (5.17)
dj
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Now, a is expressed by:

a = E[H(f A(r) . n (r)dr)] (5.18)

Since it is difficult to express the expectation of H equation in a

simple form, an approximation relating a to the closest distance d

will be constructed. The third transfer function c(r) is then defined

as:

a = ( [c(r)] (5.19)
r=d

The adequacy of Eq. (5.19) will be tested by the regression fits.

In the consequence computer model, a circle of 500 miles radius

is divided into 16 x 34 annular segments. The key equations of the

transfer functions are then expressed in the discrete geometry of the

consequence model by the following equations.

a(rk) = ECA(rk)] (5.20)

M,= a(r k) - k (5.21)
j k

b(rk, rk') = 1E(A(rk) A(rk')] (5.22)

M = b(rk, r k - N j' (5.23)
jk k' kJk J

a = [c(r)] rr (5.24)
kmin(j)
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where k mi(j) is the closest segment in which the population ismin

greater than zero in the direction j.

The transfer functions a(r), b(r,r') and c(r) are dependent

on the type of consequence, the average weather characteristics and

the type of releases, but they are independent of the population

distribution. The transfer functions for early fatalities in PWR

accidents in northeastern valley meteorological conditions are being

studied in this chapter.

To keep the model simple, the transfer functions will be expressed

in terms of possible parametric functions which will be tested in the

regression analysis. The forms of the functions and the constants

to be fitted by the regression analysis will be studied in Section V.6.

V.6 Regression Fitting

V.6.1 Methods for Fitting

We wait to express the transfer functions as parametric functions

with a small number of unknown constants which give adequate fits. Two

approaches are studied in order to derive the form and the constants

from the consequence calculation. The first approach is to use the data

base prepared in Section V.4 for the 68 sample population and derive

a(r), b(r,r') and c(r) by Eqs. (5.21), (5.23) and (5.24) using regression

analysis. The second approach involves calculating the ratio A(rk of

the fatalities at rk to the population in a sector at r, for each trial

from the consequence calculation. Using Eqs. (5.20) and (5.23),

the average of A(rk) and A(rk) ' A(rk') over all the trials will give
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a(rk) and b(rk, rk') respectively. a(rk) and b(rk, rk') can then be

fitted to the parametric functions involving the distance r. Though

both approaches can give the same results (within fitting errors),

each has its own advantages and disadvantages. The two approaches

are discussed in more detail in the following subsections.

V.6.1.1 Regression from Data Base of Ma ,M and a

This approach uses the data base in Section V.4 and Eqs. (5.21),

(5.23) and (5.24). Possible parametric functions are assumed for

a(r), b(r, r') and c(r). Let h a(rl a,, a2 , ... , a.) be the assumed

parametric functions of a(r) with unknown constant's a,, a2 , *** , a.

The estimates of the dependent variable M1 for the 68 populations are

given in Table 6.2. Also the populations in the annular segments Njk

are given for the 68 samples. Since. the range of the estimates of M4

cover several orders of magnitude, the regression analysis will be

based on the natural logarithmic transformation of Mi.

Zn M = n { h(r k a, ... , a) Njk } + c (5.25)
j k

where e refers to the random error variable. Using the non-linear regression

analysis, the unknown constants al, ... , a are estimated by minimizing:

[n(M) - 2n {{ l ha(rkf a ,a..., ) - (Njk i}]2 (5.26)
ki jk

where the subscript i refers to the population sample.
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The derivation of b(r, r') is similar to a(r). A candidate function

hb(r, r'l b, ... , b ') is assumed and the unknown constants b1 , ... , bV

are estimated by minimizing:

'& X Ln(M2 )j. - Zn {~~'jhb(r, r'I bl, ... ,

iJ ikk'

e(NLjkli e (Njk' )i}] (5.27)

Finally let hc(rI ci, ... , cv') be the candidate function of c(r).

The closest segments at which the population are greater than zero are

identified for each of the population distributions. The unknown

constants are estimated by minimizing:

A2= (Zn ai - Zn { hc(r. jc, ... , cv'') ] (5.28)

i .3 min(j)

The above approach has the following advantages:

(1) The number of population distributions used can be arbitrary

as long as the number is greater than or equal to the number of

unknown constants. The fitting errors can be decreased by

increasing the number of population distributions.

(2) Since the dependent variables Mt, yp and a are integrated over

distance, their estimates from their consequence program have

relatively small sampling errors of the trials.

The disadvantages of this approach are:

(1) A sizable amount of computation time can be required to

estimate , and by the consequence program for a larger

number of population distributions. For example,
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approximate 10 minutes of CPU time on the IBM 360

were required to prepare the data base in Table V.2.

(2) Since the risk moments do not directly suggest

appropriate functional forms of the candidate

functions, a number of functional forms may need

to be tried to find an adequate fitting form.

V.6.1.2 Use of the Averages of Ratios of Fatalities

The second approach involves having the consequence model

calculate the ratio of fatalities at the distance r to the

population in a 22-1/2 degree sector at rk for each trial. These

ratios are then averaged over all trials. The ratio (Ak]t for

the specific trial t is calculated by:

((Nf)jklt
(A-kt = N jk (5.29)

jik

where ((Nf)jklt is the number of fatalities in the annular segment

(j,k) at the trial t and Njk is the population in the annular segment

(j, k). As the wind direction is assumed to be independent of

the radioactive release, the starting time for the meteorological

conditions and the evacuation speed, (AkJt is consequently

independent of the wind direction. Furthermore, (Ak t can be

calculated using one sample population distribution. To avoid the

case of Njk = 0, a uniform population distribition is used as a

sample population in this study.
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Njk o *rk Ar (5.30)

where p 0 is the population density of the uniform population distribution.

Averaging (Ak t over all the trials, the estimate of a(rk) is

obtained as:

ak= -[AkIt P RPV * S
t

[A t *A I R * PV PS (5.31)

where p'vs are the probabilities assigned to the individual events

in Eq. (5.4).

The estimates of b(r, rk') is also obtained from (Ak] t as:

b ' t . (Ak t *R * PV ' S (5.32)
t

The quantity c(rk) is not derivable by this averaging approach since

c(r) is defined by Ea. (5.19) which is used to approximate the

expectation of H equation in Eq. (5.18). Instead of c(r) another type

of approximation can be used.

a = E(H(f A(r) - n (r)dr)] (5.33)
) i
di

a is approximated by:

a i E[H(A(d ) - n (d )] (5.34)
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By definition of d i,

n1 (d1 ) > 0 (5.35)

= E(H(A(d ))]

Since the wind direction distribition is uniform,

= g E(H(A(r))]r=d

Another transfer function Y(r)

Y(r) = E[(A(r))

Then,

a C y(r)] r=d

(5.36)

(5.37)

is'defined as:

(5.38)

(5.39)

The estimate of Y(rk)

Yk = IH((Ak)

is obtained from the consequence calculation by:

t) 0 * (5.40

Then,

)
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The approximation in Eq. (5.34) assumes that whenever there are

fatalities occurring then some of these will most likely occur at the

closest distance from the reactor at which people live. Since the

complete integral in Eq. (5.33) is approximated by the closest

distance in Eq. (5.34), the approximation of Eq. (5.39) can under-

estimate a. However this appears to be a reasonable approximation

and furthermore can be used only to give the functional form of

c(r). The-estimates of Y(r) in Eq. (5.40) will be used to obtain

the functional form of c(r). Having obtained the estimates of a(rk)'

b(rk, rk') and Y(rk), they can then be fitted to the parametric functions.

The method of fitting will also involve least squares. Suppose

ha( rl a,, ... , a ) is a candidate function of a(r). The unknown

constants are then estimated by minimizing:

K
A2 = I (in a. - Zn h (r I al, ... , a )]2  (5.41)
a k1 a k V

where K is the number of the annular segment in one direction. The

natural logarithmic transformation is used in Ea. (5.41) because a

varies over several orders of magnitude.

In a similar manner, the unknown constants of the candidate function

hb(r, r' bl, ... , bv') are estimated by minimizing:

K K
A2 = I (Zn b ' - nh r b , b ')] (5.42)

b k=1l k '=l kk k
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Finally, if hY(rj y1 , ... , lv') is the candidate function for

y(r), the unknown constants y, ... ,y are estimated by minimizing:

K
A = ( inyk - in hy (rk l '*' y Yv')] (5.43)

k=1

The advantages of this approach are:

(1) The estimates of a(rk), b(rks k') and y(rk)

from the consequence program can be plotted to

suggest appropriate forms for the candidate

functions.

(2) Computation time needed to derive ak, bkk' and

Yk can be much smaller than that required to

estimate the risk moments and the normalization

constants for many population distributions.

The disadvantages are the following:

(1) The estimates ak, bk' and yk can have large

sampling errors if smaller number of trias

are used in the consequence calculation. The

occurrence of precipitation in the plume can

especially cause large scattering in the

estimates.

(2) c(r) is not derivable by this approach. Instead

of c(r), the further approximation involving

y(r) is required.



113

V.6.1.3 Combinations of the Two Approaches

Two approaches for deriving the functional forms and the unknown

constants of the candidate functions have been discussed in the

preceding two subsections. In this study the two approaches are

combined, The method of averaging ratios of fatalities is first used

to investigate appropriate forms of the candidate functions. After the

candidate functions are selected, the unknown constants are then

finally estimated using the risk moments and the normalization

constants from the 68 population distribution. This combination

approach is used in this study since the regression fits from the 68

population distributions will have the smallest sampling errors and

the averaging of ratios involves little computer time to investigate

possible candidate functions.

V.6.2 Evaluation of a(r)

Based on Eqs. (5.29) and (5.31), the quantities ak's are estimated

by the consequence program. The final estimates are plotted versus

miles from a reactor in Fig. 5.4. The scattering of the data points

in Fig. 5.4 is due to sampling error. Fig. 5.4 suggests an exponential

function as a candidate function:

ha (r) = a, exp [-a 2 - r] (5.44)

Using the data base in Table 5.2, the constants are now derived by the

regression using Eq. (5.25). The derived constants a and a2 are given

in Table 5.3 with their 90% confidence bounds.

In addition to the exponential, the following candidate functions

are also tested:
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ha (r) = a- r-a2 (5.45)

ha r) = a- exp [-a 2 - r] + a 3 - exp [-a4 - r] (5.46)

The constants are also estimated from the data base in Table 5.2 using

Eq. (5.25). The derived constants are also given in Table 5.3.

The sums of the residual squares are calculated by:

2 2
SR = Z [ln (M ). - ln { z Z h (r ) N 5.47)

R1 i a k k

The multiple correlation co-efficients are calculated by Eq. (4.9).

The results are also given in Table 5.3.

Eqs. (5.44) and (5.45) are first compared with each other because

both have two unknown constants. From Table 5.3, the exponential

function Eq. (5.44) has a larger multiple correlation coefficient than

the power function Eq. (5.45). Eq. (5.44) is then preferred as an

equation with two unknowns. Eq. (5.46) has two additional unknowns

compared to Eq. (5.44). The decrease of the residual squares due to

the added unknowns is tested by the partial F-value defined by Eq.

(4.10):

F' = (1.61- .656)/2 = 45.8
(.656)/(68 - 4 -1)

Since the upper 10% F-value with (2,63) degrees of freedom is 2.39, the

added two unknowns have a statistically significant effect on the

variation of the first risk moment. The derived equations having the

forms of Eqs. (5.44) and (5.46) are plotted in Fig. 5.4. Fig. 5.4 shows

that the double exponential equation (5.46) fits the consequence result

better than the single exponential equation (5.44) in the range of
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Table 5.3 Estimates of Parameters of a(r) and Sum of Residual Squares

Candidate
Function

aI - exp (-a 2 - r)

Estimates of
Parameters

a, = 3.51x 10~8

90% Confidence Bounds

Upper

3.87 x 10-8

Lower

3.18 x 10-8

Sum of
Residual
Squares

Multiple
Correlation
Coefficient

1.61 .992

Standard
Deviation

.155

a 2 = .600

a, = 1.86 x 10~8 2.27 x 10-8 1.53 x 10-8

a 2 = 1.994

aI - exp (-a 2 - r) +
+ a 3 - exp (-a4 - r)

a, = 2.12 x 10~8

a 2 = .526

a 3 = 8.38 x10~8

a4 = 1.852

2.51 x 10-8

.550

1.06 x 10~7

2.198

1.79 x 10-8

.502

6.60 x 10-8

1.506

a, - r-a2

.621 .580

2.105 1.883

11.85 .937 .421

.656 .997 .099

H
H
a'
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r <1 mile and r >12.5 miles. These two equations will be further

examined in Section V.7.

V.6.3 Evaluation of b(r,r')

Based on Eqs. (5.29) and (5.31), the quantities (bkk,)'s are

eliminated by the consequence program. Since bkk, is two-dimensional,

the diagonal components (b ) are plotted in Fig. 5.5(a). The off-

diagonal components (bkk,) are plotted versus the distance between r

and r' for a given value of r in Fig. 5.5(b). Fig. 5.5(a) shows that

the diagonal components decrease approximately exponentially. Fig.

5.5(b) shows that the off-diagonal components also decrease approximate-

ly exponentially. Since b(r,r') is symmetrical with respect to r and

r', the following candidate function is therefore considered.

hb (r,r') = b - exp [-b 2 - (r+r')] exp [-b 3 -r - r' !] (5.48)

In addition, the following candidate functions are also examined:

hb (r,r') = b - exp [-b 2 - (r+r')] - exp [-b 3 . (r _ r')2 ] (5.49)

hb(r,r') = b1  (r) -b2 - (r')-b2 - exp [-b3 - Ir - r I ] (5.50)

hb(r,r') = b - exp [-b 2 - (r +r')] + b 3 - exp [-b 4 - (r +r')]

- exp [-b 5 - Ir - r'l] (5.51)

Using the data base in Table 5.2 and Eq. (5.27), the constants of

the candidate equations are estimated. The sums of the residual squares

and the multiple correlation co-efficients are also calculated. The

results are given in Table 5.4.

The multiple correlation co-efficients of Eqs. (5.48) and (5.49) in
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Estimates of Parameters of b(r,r') and Sum of Residual Squares

90% Confidence Bounds

Candidate
Function

bI - exp [-b 2 -(r+r')]
-exp [-b3-|r-r']

bi - exp [-b 2 -(r+r')
-exp [-b 3 -(r-r') 2J

bi-(r-r')-b2
exp [-b 3 -| r-r' I

{bi-exp[-b 2 -(r+r')]

+b3
-exp[-by-(r+r')]
xexp[-b 5 -Ir-r'] i

Estimates of
Parameters

b, = 2.05 x 10r8

b2 = .352

b 3 = .557

bi = 2.00x 10~ 8

b 2 = .343

b3 = .472

bI = 1.38 x 10~8

b2 = 1.362

b3 = .515

bi = 1.30 x 10~8

b2 = .320

b3 = 1-.08 x 1~77

b4

b5

= 1.117

S. 664

Upper

2.50x 10-8

.368

.826

2.43 x 10-8

.359

.787

Lower

1.68 x 10-8

.341

Sum of
Residual
Squares

Multiple
Correlation
Coefficient

5.85 .986

Standard
Deviation

.295

.287

1.65 x 10~8 5.92 .985 .297

.327

.158

2.05 x 10-8

1.462

1.138

1.71x 10-8

.507

1.85 x 10~ 7

1.459

.933

9.30x 10- 9

1.262

0

9.83 x 10- 9

.133

6.28 x 10-8

.775

.395

33.74

3.79

.913

.991

.710

.238

0

Table 5.4
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Table 5.4 are approximately equal. The difference in the off-diagonal

components between Eqs. (5.48) and (5.49) has an insignificant effect

on the multiple correlation co-efficient. The power function Eq. (5.50)

has a smaller multiple correlation coefficient in Table 5.4. Among the

examined equations of three unknown constants, Eq. (5.48) is selected

in this study because of its simple form and larger multiple correlation

coefficient.

The effect of the added two unknowns in Eq. (5.51) is tested by the

partial F-value:

F' = (5.85-3.79)/2 = 16.88
3.79/(68 -5 -1)

Since the upper 10% F-value with (2,61) degrees of freedom is 2.39, the

added two unknowns have a statistically significant effect on the

variation of the second risk moment. The derived equations having the

forms of Eqs. (5.48) and (5.51) are shown in Figs. 5.5(a) and 5.5(b).

Eq. (5.51) fits the consequence results better than Eq. (5.48) in the

range of r and r' < 1 mile. Eqs. (5.48) and (5.51) will be further

examined in Section V.7.

V.6.3 Evaluation of c(r)

Based on Eqs. (5.29) and (5.40), the quantities yk's are estimated

by the consequence program and the final estimates are plotted in Fig.

5.6. As discussed in Section V.6.1.2, y(r) can underestimate c(r) but

it can be expected that c(r) and y(r) can be expressed by the same form

of functions. Since Fig. 5.6 suggest an exponential function, an

exponential function, an exponential candidate function of c(r) is

studied:
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hc(r) = c1 - exp [-c 2 - r] (5.52)

In addition, the following functions are also tested:

h (r) = c r-C2 (5.53)

h (r) = c- exp [-c2 - r] + c 3 - exp [-c4 - r] (5.54)

Using the data base in Table 5.2, the constants of the candidate

functions are derived. The estimates of the constants, the sums of the

residual squares and the multiple correlation coefficients are given in

Table 5.5.

The multiple correlation coefficient of the power function Eq.

(5.53) is smaller than that of the exponential function Eq. (5.52).

The exponential function is then preferred to the power function. The

effect of the two additional unknowns in Eq. (5.54) is studied by the

partial F-value as:

F' = (.288- .240)/2 = 6.3
.240/63

Since the upper 10% F-value with (2,63) degrees of freedom is 2.39,

the added two unknowns have a statistically significant effect on the

variation of the normalization constant. The derived equations (5.52)

and (5.54) are compared with the consequence results in Fig. 5.6. Both

of the derived equations of c(r) slightly overestimate the plots of

YkIs as discussed in Section V.6.1.2. But the difference between c(r)

and yk's appears to be small. The double exponential equation (5.54)

has a slower rate of decrease than the single exponential equation

(5.52) in the range of r >10 miles. Eqs. (5.52) and (5.54) will be

further examined in Section V.7.
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Table 5.5 Estimates of Parameters of c(r) and Sum of Residual Squares

Candidate
Function

ci-exp[-c 2 -r]

Estimates of
Parameters

ci = 1.12 x 10~7

c2 = .398

90% Confidence Bounds

Upper

1.16 x 1077

.407

Lower

1.08 x 10~7

Sum of
Residual

Squares

Multiple
Correlation
Coefficient

.288

Standard
Deviation

.999 .066

.390

ci = 7.26 x 10-8 8.03 x 10~8 6.57 x 10~8

c2 = 1.124

cI-exp[-c 2 -r]

+c3 -exp [-c, - r]
ci = 7.61 x 10-8

c2 = .346

c3 = 5.63 x 10~8

1.38 x 10~7

.407

1.09 x 10~7

4.19 x 10-8

.284

2.90 x 10-8

1.315 .253

c, -r-c2

1.195 1.053

4.30 .979 .253

.240 .999 .060

c4 = .784
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V.7 Examination of the Adequacy of the Regression Equations

The adequacy of the regression equations derived in the previous

section is investigated with regard to the predicted risk characteris-

tics and predicted distribution behaviors.

V.7.1 Predicted Risk Characteristics

(1) First Risk Moment My

The first risk moment is first estimated from the

regression results of the single exponential equation (5.44)

for each of the 68 sample population distributions. The

regression estimate is given by:

1di . 1 0 x a2 rk (Njk )i

i=l,.. .,68 (5.55)

where a1 and a2 are the derived constants. The estimates by

Eq. (5.55) are given in Table 5.6. The estimates are then

plotted versus the consequence results in Table 5.2. This

plot is shown in Fig. 5.7. If the regression estimates accu-

rately predict the data, the points in Fig. 5.7 should lie

about the 45 degree line and no systematic error is observed

(i.e., tendencies to overpredict or underpredict various

ranges of the data). The largest deviation between the pre-

dicted and data first risk moment is a factor of 1.7.

The regression results of the double exponential equation

(5.46) are examined in a similar manner. The regression

estimates are given by:



Table 5.6 Estimates of the Dependent Variables from 126
the Single Exponential Transfer Functions

a(r)= a1 .exp(-a 2 .r)
b(r,r')= bj~exp(-b2- (r+r'))- exp(-b 3-| r-rel )
c(r)= c.exp(-c2 'r)

Sample No. M1 gL
1 9.145E-05 8.6-5S-02 1.844E-06
2 2.666E-04 7.437E-01 3.145E-06
3 1.499E-05 6.4199-03 6.094E-07
4 9.797E-07 3.e87 -04 4.319E-"8
5 7.648E-05 7.544E-02 1.453=-06
6 3.749i-05 2.338;-02 1.238E-06
7 5.779E-05 5.922E-12 1.313E-Q6
8 5.779E-05 5.922E-02 1.313E-06
9 1.691E-05 1.798E-02 3.925E-07

10 2.6925-35 7.133E-32 3.6612-47
11 3.736E-05 6.041E-02 5.971E-07
12 6.9668-04 .1.607E 00 5.765E-Q6
13 2.692E-05 7.133E-,02 3.661E-07
14  

1.189E-04 1.339E-131 2.296C-06
15 1.672E-05 2.054E-02 3.538E-07
16 1.215E-04 2.511E-31 1.851--06
17 4.096E-34 1.0788 CO 4.376F-J6
18 1.956E-05 1.066E-02 6.162E-07
19 5.698E-05 1.101E-31 9.514E-07
20 1.717E-Q4 4.2119-01 2.272E-06
21 6.496E-05 6.663E-02 1.511E-06
22 3.126E-05 5.084E-02 6.769E-07
23 B.2

99
E-;6 2.664E-03 3.87nE-07

24 1.636E-05 1.76-:-02 4.198E-07
25 4.886E-05 2.2188-02 1.377E-06
26 1.291E-35 7.010E-03 4.2.;9-7
27 3.880E-05 E. 762E- j2 5.374E-07
28 1.634=-05 4.762E-32 2.034E-07
29 8.773E-06 4.401E-03 3.063E-07
3) 2.1038-05 1. 131E-.2 7.801E-07
31 1.023E-04 1.041E-01 2.040E-06
32 1.093c-C5 4.306E-03 4.610E-i7
33 1.278E-35 1.C92-02 4.155E-07
34 5.577E-05 4.717S-32 1.203E-06
35 7.976E-06 2.632E-03 3.761E-;7
36 3.462E--5 e.5169-02 5.480E-07
37 3.776E-05 4.748E-02 8.925E-a7
38 2.422E-J5 1.705E-02 7.393E-37
39 1.454E--4 8.704E-02 2.460=-06
40 6.324E-Q6 2.335E-03 2.891E-.7
41 5.531E-05 1.242E-02 1.4"08-06
42 1. 22 -s,5 4.967-03 4.901E-07
43 8.5C3E-35 4.904E-32 2.639E-C6
44 4.5308-05 2.259E-02 1.2725-C6
45 3.380r3-05 3.236E-02 8.312E-07
46 1.698=-0 5 1. 728 -0 2 5. 818"-J7
47 1.330E-C5 9.626=-33 4.652E-07
4a 5.337E-04 1.432E 00 5.512E-06
49 1.215E-14 2.9998-01 1.6018-06
50 4.5415-05 1.053E-01 8.309E-47
51 6.649!-35 6.643E-02 1.598E-06
52 1.179E-4 1.160E-31 2.331S-06
53 2.923E-04 5.637E-01 3.878E--06
54 4.123E-U5 3.034E-02 1.185E-.06
55 2.2671-05 1.2a4z-02 7.203E-07
56 3,8439-05 2.892E-02 1.017'-06
57 3.992--05 3.671E-02 1.043E-46
58 7.927E-06 1.393=-03 5.627E-07
51 2.503-0,5 1.123F-32 5.252c-07
60 1.168-4 1.43Z- 04' 6
61 4, 533E- 5  1.4608-02 1.661C-16
62 7.377E-06 3.634--3 2.713c-,7
63 2.175E-05 1.4948-02 6. 795-07
64 3.560E-06 4.2798-0)4 2.94E-27
65 4.696E-05 S.223E-22 9.735E-07
66 4.570E-06 6.13d!-03 1.14');-37
67 2.2831-05 5.838.-32 3.237z-07
6d 8.0330-J6 5.438F-23 2.4 7-5 7
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( - exp 2 rk] + a 3 e [a1S rk]

(Njk )i i=1,...,68 (5.56)

where a,..., are the derived constants. The estimates by

Eq. (5.56) are given in Table 5.7. The estimates are plotted

in Fig. 5.8. The largest deviation between the predicted and

the data first moment is a factor of 1.3.

The largest deviation of a factor of 1.7 of the estimates

by Eq. (5.55) is judged to be acceptable for risk analysis and

decision making considering the uncertainties of the conse-

quence model. If more accuracy is required in the risk

analysis, the estimates of the double exponential function by

Eq. (5.56) can be used. The distribution behaviors will be

examined later in this section based on the estimates by Eq.

(5.55).

(2) Second Risk Moment M

The second risk moment is first estimated from the

derived regression equation (5.48) for each of the 68 sample

population distributions by:

(M2) i = Z Z Z e b 2  (rk+ rk )M exp [ -~3
j k k' (5.57)

Ir rk,] - (N k) i (N k,). i=l,...,68

where b1 , b2 and b3 are the derived constants. The predicted

second risk moments are given in Table 5.6. The plots of the

predicted versus the data second risk moments are given in

Fig. 5.9. The points in Fig. 5.9 lie about the 45 degree line

and the deviations show no systematic error. The largest



Table 5.7 Estimates of the Dependent Variables from 129
the Double Exponential Transfer Functions

a(r)= a 1 -exp(-a 2 -r) + a 3 -exp(-a 4 .r)
b(r,r' )= (b1.exp(-b 2 .(r+r'))+b 3 .exp(-b4(r+r')))

.exp(-b 5. I r-r'j) )
c(r)= c 1 .exp(c 2 .r) + o3 .exp(c4 .r)

Sample No. MI M2.
I 9. 1E-05 9.21I-C2

2.67E-04 6.14E-Cl 3.33E-06
3 1.5.E-05 6.C2E-23 6.22E-07
4 9.3vE-C7 4.982-.14 3.99E-18
5 7.65E-15 7.53E-02 1.45E-06
6 3.75E-05 2.05E-02 1.2qE-16
7 5.7dE-C5. 5.84E-,'2 1.32E-06
8 5.7bE-05 5.84E-.'2 1.32E-06
9 1.6E-CS 1.76E-02 3.95E-17

1,. 2.69E-05 6.582-f%2 3.75E-,)7
11 3.719E-C5 6.41E-C2 5.87E-01
12 6./rI-.4 ' 2.08E CO 5.38E-06
13 2.69-Q5 6.53E-r2 3.75E-17
14 1.1E-04 1.40E-Cl 2.27E-06
15 1.67-AS 2.C1E-C2 3.56E-07
16 1.22E-14 2.39E-Cl 1.88E-06
17 4.9E-S4 9.4:E-'1 4.55E-06
18 .6E-05 1.)2E-02 6.25E-17
19 5.7.2-5 9.64E-C2 9.9CE-07
2 1.72E-04 3.83E-!1 2.34E-36
21 6.50E-35 .6.34E-02 1.53E-06
22 3.13E-05 4.44E-02 7.C6E-07
23 8. 3C E--6 2.47E-23 3.96E-07
24 1.64E-05 1.37E-42 4.12E-17
25 4.89 -05 3.65E-02 1.18E-06
26 1.23E-25 6.42E-C3 4.33E-07
27 3.8SE-05 7.74E-CZ 5.58E-07
28 l.63E-C-5 4.88E-^2 2.C2E-07
29 8.77E-C6 3.9CE-03 3.13E-07
3. 2.11 -5 1.0JE-72 8.11-17
31 1.02E-04 1.17E-Cl 1.97E-26
32 1. '9E-5 4.06E-:3 4.70E-07
33 1.2tE-35 9.12E-03 4.40E-27
34 5.5dE-5 5.63E-C2 1.14E-06
35 7.SoE-C6 2.27E-03 3.94E-07
36 3.46E-05 8.06E-02 5.57E-07
37 3.782-G5 4.83E-02 8.33E-07
301 2.4ZE-05 1.65E-02 7.48E-;7
39 1.43E-04 2.25E-Cl 1.89E-06
4- 6.32E-C6 2.24E-C3 2.93E-07
41 5.53E-05 4.08E-02 1.42E-26
42 1.24E-05 4.32E-C3 5.13E-07
43 8.5LE-05 5.912-02 2.4qE- 6
44 4. 5 3E-C5 2.79E-12 1.19E-26
45 3.38E-25 3.43E-:2 a.65E-J7
46 1.7CE-C5 1.22E-02 5.58E-07
47 1.33-'5 1.14E-.2 4.41E-:7
4J 5.34E-C4 1.41E C: 5.54E-06
49 1.22E-C4 2.84E-01 1.63E-26
5. 4.54E-05 .17E-11 .8.27E-07
51 6.65E-05 6.07E-%2 1.55E-26
52 I.182-C4 1.42E-01 2.19E-06
53 2.9-.F-::4 4.97E-1 4.02E-16
54 4.12E- 5 2.66L-02 1.23E-06
55 2."- /E--5 I1.29E-.'2 7. 6vE-0 7
56 3.94E-C5 3.03E-02 1.00-06
57 3.99r-n5 3.49E-2 1.:6E-:16
5 ; 7. q.it-N 13,-,3 5.732-07
59 2.5.F-75 1.27E-~.2 7.94E /1
60 1.17E-C4 1.3AE-0 1  2.02-36
61 4.172-C5 1.82E-02 2.49E-07
62 6.42E-'.6 3. 2 E-0 3 6.44E-11
63 2.'dE-05 1. 26E-;2 1. 17E--37
64 3.29F-C6 3.68E-C4 9.61E-09
65 4.122-05 5.21E-02 2.43E- 7
66 4.2/E-06 6.95E-13 3.5E-
67 2.77E-05 P.38E-C2 6.49E- 2
63 7.98E-C6 4.74E-C3 4.99E-OR
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deviation between the predicted and data second risk moments

is a factor of 2.4.

The regression results of Eq. (5.51) are also examined.

The regression estimates are given by:

(M2  Z E Z b exp 2  (rk+rk,)l +
j k k'

+ b3 * exp ~4 (r k+rk')' x exp [-b5 Irk rk'

- (Nk )i - (N k,). i=l,...,68 (5.58)

The estimates are shown in Table 5.7 and Fig. 5.10. The

largest deviation between the predicted and the data is a

factor of 1.9.

The largest deviation of a factor of 2.4 of Eq. (5.57) is

judged to be acceptable for risk analysis. The distribution

behavior will be studied later in this section based on the

second risk moment estimated by Eq. (5.57). If further accu-

racy is required in the analysis, the estimates by Eq. (5.58)

can be used.

(3) Normalization Constant a

The normalization constant is estimated from the derived

single exponential equation (5.52) for each of the 68 samples

by:

~c (dj)i
a. = ce2 i=l,...,68 (5.59)

i .1
J

where di and a2 are the derived constants. The results are

given in Table 5.6 and Fig. 5.11. The points in Fig. 5.11 do

not show any systematic error. The largest deviation is a
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factor of 1.2.

The double exponential equation (5.54) is also examined.

The normalization constant is estimated by:

exp c + x
al = - x -62 - (d ) ] + c3 * _P^~4 - (d )Y

i=1,... ,68 (5.60)

where c1 ,...,c4 are the derived constants. The estimates are

given in Table 5.7 and Fig. 5.12. The largest deviation is a

factor of 1.2.

The largest deviation of a factor of 1.2 of the estimates

by Eq. (5.59) is judged to be acceptable considering the

uncertainties of the consequence model. The distribution

behaviors will be examined later in this section based on the

estimates by Eq. (5.59). If more accuracy is required in the

analysis, the estimates by Eq. (5.60) can be used.

Since no systematic error is observed in the normaliza-

tion constant and since the deviations between the predicted

and data normalization constants are smaller than those of

the first and second risk moments, the approximation of Eq.

(5.19) relating a to the closest distance d. at which people
J

live is therefore judged to be adequate for the calculations

performed in this study. However it should be noted that

this specific example does not prove that the approximation of

Eq. (5.19) is valid for other types of consequences and for

other types of meteorological models. Careful studies will

be required for each different case.
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V.7.2 Predicted Distribution Behaviors

The next step in assessing the regression results is to test the

combined effects of regression errors on the distribution behaviors.

The examined regression results are single exponential equations (5.44),

(5.48) and (5.52). The distribution behaviors are predicted by the

Weibull distribution, the parameters of which are estimated from the

regression results.

(1) Weibull Shape Factor and Scale Factor

The shape factor a and scale factor n are first derived

from the regression results of M1, M 2 and a given in Table

5.6 for each of the 68 samples of the population distribu-

tions. Secondly, S and n are then derived from the data

values of M1, M2 and a given.in Table 5.2.

The shape factors from the regression results and the

data values are compared in Fig. 5.13. The points lie about

the 45 degree line and the deviations do not show systematic

error in Fig. 5.13. The largest deviation is 0.14 and 90%

of the points are within the bounds of ±.08. The scale

factors are similarly compared in Fig. 5.14. The points lie

about the 45 degree line and the deviations do not show any

systematic error. The largest deviation is a factor of 1.9

and 90% of the points are within factors of 1.4 and 1/1.4.

The deviations of the shape and scale factors are within

the uncertainties of the consequence model: further judgement

in the acceptability is obtained from the complementary cumu-

lative distributions which are discussed next.
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(2) Complementary Cumulative Distribution

The complementary cumulative distribution is obtained

from the shape factor and scale factor estimated from the

regression equations for each of the 68 samples, i.e.,

F (x) = a exp [-fyi (5.61)

This derived complementary cumulative distribution is then

compared for each of the sample population distributions with

the data distribution of consequence vs. frequency calculated

by the consequence model. These data curves are obtained

directly from the consequence calculation and do not involve

fittings to the data values of M1 , M 2 and a. Two of the

samples will be specifically discussed here. One is the

sample (#63) which gives the largest deviation of 3 in Fig.

5.13. The other is the sample (#39) which gives the largest

deviation of n in Fig. 5.14.

Fig. 5.15 compares the predicted complementary cumulative

distribution with the data distribution of site (#63). The

predicted distribution underestimates the probabilities

between 100 fatalities and 500 by a factor of maximum 1.2

and underestimates the magnitude below 10~ /year by a factor

of 1.6. The magnitudes of these errors are smaller than the

uncertainty ranges of the consequence model, which were

estimated to be factors of 5 and 1/5 on the probabilities and

factors of 4 and 1/4 for the consequence magnitude. (See

Section 111.5.1).

Fig. 5.16 compares the complementary cumulative distribu-



141

tion estimated from the regression equations to the data

distribution of site (#39). The estimated distribution under-

estimates the probabilities between 300 fatalities and 3000 by

a factor of 4 at most. The underestimation of the consequence

magnitude is maximum a factor of 3 in the same interval.

These errors are also within the uncertainty ranges given for

the consequence model. For the other samples examined, the

complementary cumulative distributions from regression and the

data complementary cumulative distributions agree at least as

well as for the samples (#39) and (#63).

The samples other than (#39) and (#63) are now examined

with regard to the consequence magnitude at a specific comple-

mentary cumulative frequency. Since the effects of the errors

of and a on the tail behaviors can be large and the tail

behaviors are of importance, the consequence magnitudes at

10 9/year are selected to test the regression fits. The value

of 109 /year is a truncation point in the consequence model,

which was determined by the compromise between accuracy and

computation time (Ref-1).

The consequence magnitude at 10 9/year is first derived

for the 68 samples from and n estimated by the regression

results. The percentile is given by:

a1/
x (10-9) = n - [ln ]c±9j 1  (5.62)

The consequence magnitude of 10 9/year of the data distribu-

tion are then estimated by interpolation of the adjacent two

data points below and above 10 9/year.
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in (x= in [x] + in (10-9) - in (FS)
(10) in (Fh) - in (F )

(ln x - n x ) (5.63)

where the subscripts h and Z denote the two adjacent points.

Fig. 5.17 compares the consequence magnitudes estimated

from regression to those estimated from the data distribu-

tions. The estimates from regression systematically overpre-

dict the estimates of the data distributions. The bias is a

factor of 1.2. This error can be due to the fact that the

consequence model tend to underestimate the tails of the

.distributions if sufficient number of trials are not taken.

More importantly, the largest deviation is a factor of 2.0,

which is smaller than the uncertainty ranges of factors 4 and

1/4 in the consequence model.

V.7.3 Conclusions from the Regression Examinations

The regression results have been examined for their ability to

predict the risk characteristics and distribution behaviors. The

equations examined were:

a(r) = 3.51 x 10~8 - exp [-.600 r] (5.64)

a(r) = 2.12 x 108 exp [-.526 r] + 8.38 x 10~ exp [-1.852 r]
(5.65)

b(r,r') = 2.05 x 10 exp [-.352 (r + r')] exp [-.557 r - r]
(5.66)

b(r,r') = 1.30 x 10 exp [-.320 (r+r')] +

+ 1. 08 x 10~7 exp [-1.117 (r + r') exp [-. 664 r - r']

(5.67)

c (r) = 1.12 x 10~7 exp [-.398 r] (5.68)
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c(r) = 7.61x 10~8 exp [-.346 r] + 5.63 x 10~8 exp [-.784 r]
(5.69)

No systematic errors were observed in the prediction of M, M2 and

a. The largest deviations were factors of 1.7 for Eq. (5.64), 1.3 for

Eq. (5.65), 2.4 for Eq. (5.66), 1.9 for Eq. (5.67), 1.2 for Eq. (5.68)

and 1.2 for Eq. (5.69). The equations (5.64), (5.66) and (5.68) with

smaller number of unknowns were judged to be acceptable considering the

uncertainties of the consequence model.

The predicted distribution behaviors were then examined for Eqs.

(5.64), (5.66) and (5.68). No systematic errors were observed for the

prediction of $ and n. The largest deviations were 0.14 for S and a

factor of 1.9 for n. The complementary cumulative distributions for

the two samples which showed the largest deviation for S and a were

within the uncertainty ranges of the consequence model. The consequence

magnitudes at 10 9/year derived from the regressions overestimate those

from the data by a factor of 1.2. This factor is not large and is

within the uncertainty ranges of the consequence model.

Based on the above results, the derived equations (5.64), (5.66)

and (5.68) were therefore judged to be acceptable for risk analysis and

decision making.

V.8 Example of Applications of the Regression Results

Having obtained the regression results, they can then be used to

estimate the risk distributions for new situations of different popula-

tions without having to rerun the consequence model. Furthermore,

because of the explicit relationship of the regression equations (trans-

fer functions), the sensitivity studies and decision making studies are

able to be performed in a straightforward manner. The regression
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results applied to siting will be discussed here.

V.8.1 Application of Regression Results to Siting

The population distribution is one of the important factors. in

selection of sites for nuclear power plants. An example is given here

for the application of the regression results to the siting studies

based on an idealized population distribution. The population model

considered is a bell-shaped, gaussian distribution illustrated in Fig.

5.18. The population distribution of a particular city or a town is

expressed by the bell-shaped model in Fig. 5.18 and the overall

population distribution of a site surrounded by numerous cities and

towns can be expressed by the series of the bell-shaped population

distributions. A city or a town expressed by the bell-shaped model is

called a "population group" in this study.

The population distribution of a particular population group is

assumed to be symmetric about its center. Let NT be the total popula-

tion in the group, R be the distance of its center from the reactor and

aR be the average deviation from the center. 47% of the total popula-

tion are living within the radius of aR and 90% are living within the

radius of 2aR. Using the (r,c) co-ordinate in Fig. 5.18, the population
R*

per unit area at (r,C) is expressed by:

NT (r -R) 2  g2
p(r,C) = exp [- R) ] (5.70)

2 T a2 2a2 2 2
2 TR 2 R 2 R

From the regression results, the first risk moment is expressed as:

M= Ef a(r) n .(r) dr

- 0

=f a (r) - E .r) dr (5.71)

0j
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Let nT(r) be the population in an annulus per unit r at distance r,

i.e.,

n (r) = E n.(r) (5.72)
T.

Then,

M f a(r) nT (r) - dr (5.73)

Since the regression equation (5.71) is based on the (r,e) coordi-

nate, an approximation is made here to estimate nT (r) from p(r,C). The

integration with respect to 6 is approximated by the integration with

respect to C.

nT(r) f p (r,c) dC

- N exp[(r- R)] (5.74)

72 c- 2cy2
R R

nT(r) is also a gaussian distribution. When numerous cities and towns

are considered, the overall population distribution is expressed by the

series of the gaussian distributions:

n (r) = T)E exp [- 2 2 (5.75)
T 2 (R2 2 (aR )4

where the subscript Z refers to a specific city or town.

Using the population distribution in Eq. (5.75) and an exponential

function for the transfer function a(r), the first risk moment can be

estimated to be:
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M =f a(r) - nT (r) dr
0

{ (N) (r -R )2
= f a1 - exp [-a2 - r]- exp [- 2 dr

0 2 2 R 2 R Z

a2 - (aR) Z
1E a, (NT 2, exp [-a2 - R + 2

O[r-R + 2a (aR)2]2

x exp ~ 2 [rZRdr (5.76)
0 2Z i(a t 2(a )J

The integral in Eq. (5.76) can be approximated by unity under the

following conditions:

R > 2(a R) + a2  (aR)£ (5.77)

The discussion of this approximation is given in Appendix F. Then the

first risk moment is finally estimated to be:

a2 . (CR

MI= Z a1 - (NT) -* exp [-a 2 - R + 2 (5.78)

The second risk moment and the normalization constant can be

estimated in a similar manner. The estimation of these quantities are

also discussed in Appendix F. Having obtained the first two risk

moments and the normalization constant, the Weibull parameters can then

be estimated by Eqs. (3.25) and (3.26). The comparison of the risk

distributions derived from the bell-shaped population model to the

results of the consequence calculation is also given in Appendix F.

Using the bell-shaped population model and the regression results,

such as Eq. (5.78), the investigation can be made on the contributions

of the cities and towns to the risk distribution. Alternatively, given

the distances, radii and populations of the cities and towns, the

decision making studies on selection of sites for nuclear power plants
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can be made from the regression results, such as Eq. (5.78) In the

following section, a numerical example is given for siting studies.

V.8.2 Numerical Example of Siting

A hypothetical siting problem is discussed here. Though siting

problems are generally two-dimensionsal, the situation given here is a

one-dimensional case. The two-dimensional problems can be solved by

the same approach as in the example here.

The problem is posed as follows:

(1) A nuclear power plant is planned on a line between two large

cities A and D in Fig. 5.19. Two towns are located between

them. The populations other than the above four are not

considered.

(2) The cities and towns have bell-shaped population distributions

and their distances, radii and populations are given in Fig.

5.19.

(3) Only the early fatalities are considered. The transfer

functions previously derived for PWR accidents in the north-

eastern valley meteorological condition are used.

(4) The site is desired to be selected so as to keep the first

risk moment less than that for the average of the first 100

commercial power plants, which is 4.6 x 10 /reactor year.

(See Section 111.5.2.)

Set the origin of the axis at the center of the city A as shown in

Fig. 5.19. The distance r of a site from the center of the city A is

the variable that will be examined. As the site should be between A

and D, the constraint is 0 <r < RD. The problem then is to estimate the

value of r that keeps the first risk moment less than 4.6 x 10~ /year
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under the constraint of 0< r < R D'

From Eq. (5.78), the first risk moment is estimated as the sum of

the contributions of the four population groups:

2
- a2

M, = NA- a - exp [-a2- r+ - aA

a2

+ NB - a exp [-a2 -r-RB - aB

a2

+ NC - a, exp [-a2 - Ir - R Cl CC

a 2

+ ND a, exp [-a2 - r - +RD 2 - (DJ (5.79)

Using the numerical values in Fig. 5.19, and the constants of transfer

functions estimated previously in Section V.6.2, the first risk moment

is calculated and plotted in Fig. 5.20. The solid line in Fig. 5.20

shows the estimate of the first risk moments as a function of the

distance from the center of the city A. The dashed lines show the

contributions of each population group. From Fig. 5.20, the distances

that satisfy the criteria are estimated to be:

13 miles < r < 16 miles

The plant can be selected within this area and will satisfy the imposed

criteria.

Even though the example given here is highly restrictive, it shows

the methods by which the approaches discussed in this study can be used

in decision making involving risk.. In more realistic situations, the

second risk moment and the complementary cumulative distribution can be

used to compare with additional risk criterial. Actual population distri-

butions can also be used, perhaps involving numerical techniques and

computer evaluations.



2~0~1

-2
10

-3
10

0

-0
10

0

Fi-5.20

10 20
r XMi1es from the Cer ter of City A

Estimate of the First Risk :oment for the
Example Sitinz Problem

154

30



155

V.9 Summary and Conclusions

The regression approach discussed in Chapter 4 was demonstrated

in this chapter in which the population distribution was taken to be the

basic variable. The early fatalities distribution of PWR accidents in

the northeastern valley meteorological condition was used to derive the

regression results. In the regression analysis, the first two risk

moments and the normalization constant were selected as dependent

variables. The data base for the regression analysis was prepared by

the consequence computer program using the population distributions of

the 68 sites as sample population distributions.

A number of candidate regression equations were studied. The

following were judged to be adequate:

M, = f f al exp (-a 2 r) n (r) dr (5.80)
j r

M2 = E f f b1 exp [-b 2 (r+r')] exp [b 3 jr-r' ]
j r r'

Sn. (r) n. (r) dr dr' (5.81)
2J J

a = Z [c1 exp (-c 2  r=d. (5.82)

J

The unknown constants in the equations above were estimated by the

nonlinear least squares. The derived equations were tested for the

predicted risk characteristics and for the predicted distribution

behaviors. No systematic errors were observed for the risk character-

istics and for the shape and scale factors of the Weibull distribution.

The distributions of consequence vs. frequency derived from the

regression equations agreed with the results of the consequence calcu-

lation within the uncertainty range of the consequence model.

Having obtained the regression results, they can be applied to new
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situations for sensitivity studies and decision making investigations.

Because of the simple form of the regression equations, the involved

calculations are straightforward and do not require consequence code

or large computer times. With regard to the new situations, the

regression equations were applied to a hypothetical example of decision

making involving siting. The location of a site which satisfy the

specified criteria was obtained from the regression equations. The

example illustrated how the approach of the study can be used in

decision making.
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CHAPTER VI

REGRESSION ANALYSIS OF RADIOACTIVE RELEASE

VI.1 Introduction

The methods developed in this study will be applied to another

evaluation situation in which the probabilities and magnitudes of

radioactive releases are taken as the basic variables. The situation

considered in this chapter concerns the evaluation of safety systems

in nuclear power plants, involving engineering safety features, opera-

tion restrictions and maintenance procedures. Safety systems in nuclear

power plants are designed to reduce the probabilities of the occurrences

of the accidents or alternatively to reduce the magnitudes of the

releases to tne environment. The equations relating the risk to the

probabilities and magnitudes of the radioactive releases can then

provide valuable information for the evaluations of safety systems.

In the Reactor Safety Study, the spectrum of the radioactive

releases was expressed by the release categories shown in Table 6.1.

These release categories are composites of numerous accident sequences

with similar characteristics. PWR accidents are represented by 9

release categories(1) and BWR accidents are represented by 5 release

categories. In the preceding chapters of this thesis, the consequence

calculation has been carried out for each of the release categories

and the results have been combined to produce the overall risk from

potential nuclear accidents. In this chapter each release category is

1 Since PWR-l category is subdivided into PWR-lA and PWR-lB due to
the difference of energy release, PWR accidents are effectively
represented by 10 release categories.



Table 6.1 Summary of Accidents Involving Core

DURATION
TIME OF oF
RELEASE RELEASE

(Hr) (Hr)

2.5

2.5

5.0

2.0

2.0

12.0

10.0

0.5

0.5

2.0

30.0

30.0

5.0

3.5

0.5

0.5

1.5

3.0

4.0

10.0

10.0

0.5

0.5

2.0

3.0

3.0

2.0

5.0

WARNING
TINE FOR
EVACUATION

(Hr)

1.0

1.0

2.0
2.0

1.0

1.0

1.0

N/A

N/A

1.5

2.0

2.0

2.0

N/A

ELEVATION CONTAINMENT

OF
LEERAW,

RELEASE RELEAISE

(Meters) (106 Btu/1tr)

25 .52 0 (d)

0 170

0 6

0 1
0 0.3

0 tI/A

0 N/A

0 N/A

0 N/A

25

0

25

25

150

130

30

20

N/A

N/A

Xe-Kr

0.9

0.9

0.

0.6

0.3

0.3

6x10

2x10

3x10
6

1.0

1.0

1.0

0.6

5x10

FRACTION OF

Org. I I

Gx10 
3

7x10

6x10

2x10 
3

2x10 
3

2x10

2x 10
2xlOe
5x10

7x 10

7x10
1

7x10
3

7x10-

7x10

2x10 9

0.7

0.7

0.2

0.09

0.03

2x 10~

1x10 
4

Ix10

0.40

0.90

0.10

Ox10~
4

6x10 
1 1

CORE INVENTORY

Cs-Rb

0.4

0.5

0.2

0.04

9x10

8x10
1x10-5

5x10

-76x 10

0.40

0.50

0.10

5x10

4x10~
9

Te-Sb

0.4

0.3

0.3

0.03

5x10 
3

lx10

2x10
5

1x10-6

1x10-9

0.70

0.30

0.30

4x10

Ox10-12

RELEASED (a)
(bi (c)

Ba-Sr Ru La

0.05

0.06

0.02

5x10

1x10

9x10

1x10-6
lx 10
1x10

8

1x10 
1

0.4

0.02

0.03

3x10

6x10 4
7x10-5

1x10-6

0

0

0.05 0.5

0.10 0.03

0.01 0.02

6I-4 6l- 46x104 6x10

Ox10lO 0

3x10

4x10
3

3x10

4x10
4

7x10
5

x 10 5

2x10
7

0

0

5x10
3

4x10
3

3x10
3

1x10
4

0

(a) A discussion of the isotopes used in the study is found in Appendix VI. Background on the isotope groups and release
mechanisms is found in Appendix VII.

(b) Includes Mo, Rh, Tc, Co.

(c) Includes Nd, Y, Ce, Pr, La, Nb, Am, Cm. Pu, Np, Zr.

(d) A lower energy release rate than this value applies to part of the period over which the radioactivity is being released.
The effect of lower energy release rates on consequences is found in Appendix VI.

Note: Reproduced from TABLE 5-1. in Main Report of WASH-1400(Ref-1)

H
LA
00

RELIASE
CATEGORY

PWR I

PWR 2

Pi-S 3

PWR 4

PWRI 5

PWR 6

PWR 7

PWRl 6

PWR 9

PROBABILITY
per

Reactor-Yr

9x10 
7

Hx10-
6

4x10

5x10 
7

-77xlu

6x10-6

4x10-
5

4x 10

4x 10

1xI0-6

6x 10

2x10

2I-62x10-

1x10 
4

11115

LIWR

UWR

53111

8WH

I .

2

3

4

5
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treated separately to study the consequences of a specific release.

VI.2 Radioactive Release Variables

The regressor variables are identified from the characteristics of

radioactive releases. Though the probability and magnitude are major

characteristics of releases, other chacteristics also affect the conse-

quences of radioactive releases, i.e., the time of the release, the

duration of the release, the warning time for evacuation, the elevation

of the release, and the energy content in the released plume. Table 6.1

shows the characteristics of the release categories of PWR and BWR

accidents taken from WASH-1400 (Ref-1). These release data are used to

generate the data base for the regression analysis. Each of the

variables that characterize the radioactive releases will be discussed

in the following subsections.

VI.2.1 Probability of Occurrence

Since the probability of occurrence does not affect the magnitude

of consequences, the distribution fq(x) of consequence vs. frequency

for a specific release q is expressed as the product of the probability

of occurrence Pq and the conditional distribution f *(x) given theq q

release q occurs.

f(x) = Pq f*(x) (6.1)

The regression analysis is based on the conditional distribution f*(x)

and the probability of occurrence is therefore not included in the

regressor variables.
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VI.2.2 Time of Release

The time of the release refers to the time interval between the

start of the accident and the release of the radioactive materials

from the containment building to the atmosphere. The time of the

release is used to calculate the initial decay of the radioactivity.

Since increasing times reduce the amount of radioactivity released to

the environment, the variable is included in the expression for

effective source which will be defined in subsection VI.2.7. The time

of the release is denoted by (T r) hours.

VI.2.3 Duration of Release

The duration of the release is the total time during which the

radioactive materials are emitted into the atmosphere. The duration

is used to make it possible to account for the wind meander in long

duration releases. The duration is denoted by (Td) hours in the

following equations.

VI.2.4 Warning Time for Evacuation

The warning time is the time interval between the awareness of

impending core melt and the release of radioactive materials from the

containment building. A longer warning time allows more time to

evacuate the public to areas where the radiation exposure will be

smaller or none. This variable is denoted by (T ) hours in the

regression equations.

VI.2.5 Elevation of Release

The elevation of release affects the dispersion pattern of airborne

radioactive isotopes in the atmosophere. As the elevation increases,

the maximum airborne concentration of radioactivity at the ground level
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decreases. The variable is denoted by (h) meters in the regression

equations.

VI.2.6 Energy Content of Release

When the containment of a reactor breaks, a large amount of energy

may be released with the radioactive isotopes in a form of high

temperature steam. When the gas is at a high temperature, the radio-

active plume will rise due to its buoyancy. The variable is denoted

by (E) 10 6xBtu/hr in the regression equations.

VI.2.7 Release Fractions

From the large number of isotopes produced in a reactor, 54 radio-

isotopes were assessed to be of importance in the Reactor Safety Study.

The selection was based on quantities (curies), release fractions,

radioactive half-lives, emitted radiation types and chemical character-

istics. The 54 selected isotopes were grouped into 8 isotope groups

based on their chemical behaviors. The release fractions of the core

inventories were determined for the 8 isotope groups as given in Table

6.1.

Two approaches for selection of regressor variables are considered

with regard to the release fractions. One is to select the release

fractions of the eight isotope groups as the basic regressor variables.

The isotope groups which have insignificant effect on the consequence

can be eliminated, for example, by the stepwise regression method which

was discussed in Section IV.2.6. A second approach is to define one

variable which is a weighted sum of the release fractions of the eight

isotope groups. In this study, the second approach is selected from

the following reasons:
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(1) Early fatalities are caused by the combined effects of the

doses from the eight isotope groups. The decrease of the

release fraction of one isotope group can be compensated by

the increases of the releases of the other isotope groups.

(2) The release fractions of the eight groups are correlated

with each other. For example, in Table 6.1 the release

fractions of all of the eight isotope groups for PWR-9

release category are smaller than those for PWR-1 release

category, because similar physical processes underly in the

release mechanism for all of the isotope groups.

The weighting factors of the release fractions are derived from

the physical consideration of the effects on early fatalities. The

factors considered are the inventories in the core, the dose conversion

factors and the dose-response factors. Since the early fatalities

result essentially from the damage to three organs, the weighting

factors are first defined for each organ. The organs considered are

bone-marrow, lung and gastrointestinal tract. The weighting factor of

isotope group (g) for organ (k) is defined to be:

(k)
I. - exp[-X. - T ] C.

( E 1 r (6.2)
g j in group g (LD)(k)

50

where

S(k)= weighting factor of group (g) for organ (k).
g

I. = inventory of isotope (j) in the core [curies].

A. = radioactive decay constant of isotope (j) [/hour].
J

Tr = time of release [hour].
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C.k) = dose conversion factor of isotope (j) to organ (k)

[rem *m 3/C. -sec]

(LD) (k) = dose to organ (k) lethal to 50% of the exposed
50

population [rem]

When the contribution of the build-up from the parent isotope is

significant, the radioactive decay term exp[-.- T I is corrected to
J r

include the build-up term from the parent isotope.

The dose conversion factor in Eq. (6.2) is the sum of the three

modes of exposure, which are inhalation dose, ground shine dose and

cloud shine dose.

C (k) = B (C (k) + s (C )(k) + s - (C ) (k) ( V ). (6.3)
3I 3 C C 3 G G 3 d3

where

B breathing rate [m3/sec].

(C (k) = inhalation dose conversion factor of isotope (j)

to organ (k) [rem/C.].

sC =shielding factor for cloud shine dose.

(k)
(CC j = cloud shine dose conversion factor of isotope (j)

to organ (k) [rem- m 3/C. -sec].

s = shielding factor for ground shine dose.

(k)
(CG ) = ground shine dose conversion factor of isotope (j)

to organ (k) [rem -m 2 /CD il1

(Vd) = deposition velocity of isotope (j) [m/sec].
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The effective source for organ (k) is then defined by the sum of

(k)the release fractions weighted by the factors Q .
g

(k) = E ! - q 
(6.4)

g g g

where

(k) = effective source for organ (k) [sec/m3].

q = release fraction of isotope group (g).

The quantity (k) can be interpreted as being related to the inverse of

the atmospheric dispersion factor (X/Q) at a distance where 50% of the

exposed population die due to the damage to the organ (k). The weight-

(k)
ing factors 0 are given in Table 6.2. The discussion on the basis

g

for the definition of the weighting factors and the source data used

for deriving the values in Table 6.2 are given in Appendix G.

Since the risks resulting from the damage to the three organs are

competing with each other, the overall effective source is defined by

the maximum value of the ($ (k)) 's of the three organs.

$ = Max {$MARROW LUNG G.I. (6.5)

The overall effective source defined above is used in this study

as the regressor variable. It is denoted by ($) x 105 sec/m 3 in the

regression equations.

VI.3 Selection of the Dependent Variables

As discussed in Section VI.2.1, the regression analysis is based

on the conditional risk distribution given the specific release

occurrence. The risk characteristics of the conditional risk distribu-
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Table 6.2 Weighting Factors of Isotope Groups for Effective Source

Organ

Bone Marrow

Lung

G.I. Tract

Isotope
Group

Kr - Xe

I()

Cs - Rb

Te - Sb

Ba- Sr

Ru

La

Kr - Xe

S(1)

Cs - Rb

Te - Sb

Ba - Sr

Ru

La

Kr - Xe

I (1)

Cs - Rb

Te - Sb

Ba - Sr

Ru

La

Weighting Factor 2

5.73 x 103 + 7.90 x 104 exp [-.20 - Tr]

7.81 x 105 exp [-.058- Tr]

5.64 x 104

2.54 x 105

5.01 x 105

2.28 x 105

1.77 x 106

1. 21 x 102 + 1.6 x 103 exp [-.20 - Tr]

3.35 x 104 exp [-.058 - Tr]

7.43 x 103

6.83 x 104

3.32 x 104

9.53 x 105

4.28 x 106

4.18 x 102 + 8.2 x 103 exp [-.20 - Tr]

7.70x104 exp [-.058 -Tr]

4.08 x 103

6.18 x 104

1.69 x 105

2. 92 x 105

1.53 x 106

1Organic iodines and non-organic iodines are included.
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tion are defined in a similar manner to those of the overall risk

distribution given in Section 1.2. For example, the risk moments of

the conditional risk distribution about the origin are defined as:

M* = x f *(x) -dx (6.6)
t f

where M* is the t-th risk moments of the conditional risk distribution
t

about the origin.

The normalization constant of the conditional risk distribution

a *is similarly defined as:

a* = f f*(x) -dx (6.7)

The transfer functions relating the risk moments to the population

variables are also re-defined based on the conditional risk distribu-

tion as:

M= Z a (r) - n.(r) - dr (6.8)

r

M = b*(r,r') - n.(r) - n.(r') - dr - dr' (6.9)

r r

a= Z [c*(r)]d (6.10)
jr J

The dependent variables of the regression analysis can be selected

from the risk characteristics of the conditional risk distribution. In

this chapter the transfer functions are again fitted to the parametric

functions of the distance r and the constants of the fitted functions

are used as dependent variables. The constants are now treated as

being functions of the release characteristics. The advantage of the

constants of the transfer functions is their independence of the

specific population distribution. Therefore the results of the
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regression analysis are applicable to any population distribution.

VI.4 The Data Base for Regression Analysis

VI.4.1 Input Conditions

The release categories of PWR and BWR accidents in Table 6.1 are

used as samples of radioactive releases for the regression analysis. A

consequence calculation is made for each of the release categories

using the northeastern valley meteorological condition and the radio-

active inventories of a 3200 MW/th power plant. Early fatalities occur

only in eight out of the fifteen release categories. Since eight

samples are not sufficient as the data base for the analysis, an

additional 20 cases are calculated by changing one regressor variable

at a time in the consequence program. The input conditions of the

additional calculations are given in Table 6.3. The total 28 cases

of calculation are performed. It should be noted that the probabilities

of occurrence are assumed to be unity in the calculations in Table 6.3

since the regression analysis is based on the distribution of conse-

quence vs. conditional probability given the accident occurrence.

VI.4.2 Derivation of the Constants of the Transfer Functions

The methods discussed in Section V.6.1 are used to derive the forms

and the constants of the transfer functions. Figs. 6.1 through 6.4 show

the consequence calculation results for BWR-1, BWR-2 and BWR-3 release

categories. The following candidate functions are considered for these

curves. They are the same functions that were considered for the PWR

accidents in Chapter V.

a*(r) = a - exp [-a2 - r] (6.11)



Table 6.3 Conditions of Additional Consequence Calculations for Regression Analysis

Duration Warning
Time of

Case Release
No. (hr)

1 2.0
2 2.0
3 2.0

4 30.0
5 2.0
6 2.0
7 2.0
8 2.0
9 2.5
10 2.5
11 2.5
12 2.5
13 2.0
14 2.0
15 2.0
16 2.0
17 2.0
18 2.0
19 2.0
20 2.0

of
Release
(hr)

Time for Elevation
Evacuation
(hr)

0.5
0.5
0.5
3.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.5
3.0
0.5
0.5
0.5
0.5
0.5
0.5

of Release

(m)

1.5
1.5
1.5
2.0
.5

1.0
2.0
3.0
2.0
3.0
2.0
3.0
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5

Release Fractions
Energy
Release
(106Btu/hr)

25
25
25
10
25
25
25
25
25
25
25
25
25
25
25
25
25
25
10
1

300
30
6
6

130
130
130
130
520
520
20
20

130
130
130
130
130
130
130
130

I Ru Te

.4

.4

.4

.9

.4

.4

.4

.4

.7

.7

.7

.7

.4

.4

.1
1.0
.4
.4
.4
.4

.5

.5

.5
.03
.5
.5
.5
.5
.4
.4
.4
.4
.5
.5
.5
.5
.1

1.0
.5
.5

IThe release fractions of
here.

the other isotopes are the same as in the release categories given

H
ON00~

(1)
others

BWR-1
BWR-1
BWR-1
BWR-2
BWR-1
BWR-1
BWR-1
BWR-l
PWR-1
PWR-l
PWR-l
PWR-l
BWR-l
BWR-l
BWR-1
BWR-1
BWR-1
BWR-1
BWR-1
BWR-1

.7

.7

.7

.3

.7

.7

.7

.7

.4

.4

.4

.4

.7

.7

.7

.7

.7

.7

.7

.7
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Table 6.4 Estimates of ai and a2 as the Data Base for the Regression of
the Release Variables

Calculation Case a2

PWR - 1A

PWR - 1B,

PWR - 2

PWR - 3

PWR - 4

BWR'- 1

BWR - 2

BWR - 3

Additional Cases (1):

9.13 x 10- 3

1.85 x 10- 3

1.73 x10-3

1.40 x 10-2

3.38 x 10-2

1.66 x 10-3

3.30 x 10-3

3.50 x 10-3

1.57 x 10- 3

5.75 x10-3

1.87 x10-2

1.21 x10-2

2.11 x10-3

1.87 x10-3

1.47 x10-3

1.28 x10-3

1.49 x10-3

1.29 x10-3

7.77 x10-3

6.93 x10-3

2.15 x10-3

2.48 x10-3

1.63 x10-3

1.55 x 10- 3

2.23 x 10-3

2.29 x 10-3

3.10 x10-3

3.22 x10-3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

calculation case number in Table 6.3.

.437

.562

.512

1.600

3.390

.451

1.66

3.76

.504

.403

.397

1.401

.468

.458

.460

.449

.546

.535

.442

.432

.618

.737

.522

.301

.661

.323

.489

.505

1Corresponding to the
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b*(r,r') = b exp [-b 2 - (r+r')] - exp [-b 3 - |r -r'1] (6.12)

c*(r) = c1 -exp [-c2 - r] (6.13)

For the other releases, the same exponential functions are consi-

dered. The estimates of a1 and a2 for the 28 cases are given in Table

6.4. The estimates of the other constants b,, b2 , b 3, cl and c2 are

given in Appendix H. The estimates of the constants are used as the

data base for the regression analysis.

VI.5 Formulation of the Regression Model

The next step is to select candidate equations that relate the

dependent variables a,, a2 , bj, b 2, b 3, cl and c2 to the regressor

variables discussed in Section VI.3. The analysis of the dependent

variable al is discussed in detail. The results of the other regres-

sions are mostly briefly presented.

The following points are considered in the selection of the

candidate questions:

(1) The values of the dependent variables a1 , a2 , b1 , b2 , b3, cl

and c2 are positive.

(2) The equations should have as few unknown constants as possible

which still adequately fit the distributions of the dependent

variables.

(3) The equations with smaller sum of the residual squares and no

significant systematic error are desirable.

The relation of the dependent variables and each of the regressor

variables is studied first. Table 6.5 shows the correlation co-effi-

cient between the dependent variable a and each of the regressor
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variables. Linear and natural logarithmic transformations are

investigated. To have smaller sum of the residual squares, the

transformation that gives the largest correlation co-efficient is

preferred. Except for the elevation term (h), the natural logarithmic

transformations of the regressor variables give larger correlation

co-efficients than the linear transformations. Even for the elevation

term, the difference of the correlation co-efficients between the two

transformations of the regressor variable (h) is less than 0.1. To

keep the model as simple as possible, natural logarithmic forms are

selected for all of the regressor variables. Since the dependent

variable a should be positive, the following regression model is

considered:

ln a = k + k -ln h +k -ln T + k -ln T +1 01 11 21 w 31 d

+ k -ln E + k51 - ln $ + E1 (6.14)

where k0 1 ,...,k 51 are constants to be derived and e 1 is the random

error variable. Eq. (6.14) does not include the interaction terms.

Possible interactions will be tested later.

The candidate equations of the other dependent variables are

selected in a similar process. The following equations are thus

considered in this study:

ln a = k + k - ln h + k - ln T + k - ln T +2 02 12 22 w 32 d

+ k 2ln E + k52 2ln + e (6.15)

ln b = k + k - ln h + k - ln T + k ln T +1 03 13 23 w 33 d

+ k4 'ln E + k53- n + (6.16)
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Table 6.5 Correlation Coefficients of ai and Regressor Variables

Dependent Variable

ai

in al

ai

in ai

ai

ln ai

ai

ln al

al

ln ai

Regressor Variable

h

in h

h

ln h

Tw
ln T

w
Tw
ln T

w

Td

ln Td

Td

ln Td

E

ln E

E

in E

ln 5

ln !

Correlation Coefficient

-. 466

-. 391

-. 496

-. 453

.107

.153

.071

.126

.380

.382

.362

.371

-. 445

-. 837

-. 597

-. 882

-. 501

-. 569

-. 466

-. 492

(Note): h = elevation of release (m)

T = warning time for evacuation

Td = duration of release (hour)

E = energy release (106 Btu/hr)

$ = effective source (105 m 3/sec)

(hour)
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In b = k + k - ln h + k - ln T + k - ln T +
2 04~ 14 2L4  w 34~ d

+ k - ln E + k54 - ln $ + E4 (6.17)

In b = k + k * - n h + k - ln T + k - In T +
3  0 5  k 1  2 5  w 3 5  d

+ k4 5 * ln E + k55 in l + E5 (6.18)

ln c = k + k ln h + k 6 ln T + k * ln T +1 06 16 26 w 36 d

+ k46 * ln E + k5 6 - ln $ + E6  (6.19)

ln c2 = k0 7 + k1 7  ln h + k - ln T + k - ln T +2 0 1727 w 37 d

+ k 7 - ln E + k57 - ln w + E7 (6.20)

where k's are unknown constants and E's are random error variables.

VI.6 Derivation of the Constants of the Regression Equations

In the previous population regressions a small number of unknowns

were involved. Because of the larger number of terms in the regression

equations considered here, stepwise regression analysis is used to

eliminate the terms which have insignificant effect on the variation of

the dependent variables. In the stepwise regression, a partial

F-statistic is used to eliminate the terms of insignificant effects,

as discussed in Section IV.2.6. The linear multiple regression program

in the DCRT Mathematical and Statistical Package of National Institute

of Health (Ref-9) is used to calculate the F-values. An upper 10%

level is selected as the criterion of elimination of the insignificant

terms. Table 6.6 shows the process of elimination in the regression

equation of (ln ). The calculated F-value of the warning time term

(n T ) is smaller than the upper 10% F-value with (1,22) degrees of
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freedom. The term (ln T ) can then be eliminated. Then the equation

without (ln T ) is tested.

In a, = k0  + ki -0ln h + k 3 1 - In Td + k - In E +

k51 -n $ + E1  (6.21)

The partial F-value is calculated again. Similarly, the term (in Td

can also be eliminated. The elimination process is terminated when

the partial F-values for the remaining variables are larger than the

10% level. For example, the partial F-value of (ln$) shown in Table

6.6 is larger and hence is not eliminated. Additional t-tests are also

made, as shown in Table 6.7, to help assure that the remaining terms

cannot be eliminated.

From the stepwise regression, the final derived equation of ln al

is thus:

In a1 = -2.56 - .53 ln E - .46 ln h - .40 ln$ (6.22)

Interaction terms are then considered by adding the product terms

to Eq. (6.22). For example, to consider the interaction of (ln h) and

(ln$) the following equation is studied:

ln a = k' +k * + k' -n h + k'- In 5 +
1 01 11 21 31

+ k'- ln $ -In h + e' (6.23)
411

where ko',...,k'j are constants and E' is the random error variable.

Partial F-tests are made again with regard to the product term and are

eliminated as shown in Table 6.8.

The significance of the final regression analysis is also tested

by the F-value given in Table 6.9, which is related to the multiple
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Table 6.6 Partial F-tests for the Elimination of Insignificant
Regressor Variables for ln ai

Eliminated
Regressor
Variable

Difference
of Residual
Squares by
Elimination

Mean of
Residual Partial
Squares F-value

F-value at
10% level
(Degrees of
Freedom)

.26 2.95

.32 2.94

7.59 2.93

Table 6.7 Results of t-tests of the Remaining Regressor Variables

Regressor Regression
Variable Coefficient

in E

in h

in $

Standard
Deviation of
Regression
Coefficient

-. 596

-. 456

.403

t -value (1)

.053

.091

.147

in T
w

in T d

in 4;

.027

.033

.751

.106

.102

.099

(1,22)

(1,23)

(1,24)

-11.3

-4.99

2.75

lt=1.31 at 10% level with 24 degrees of freedom. If the absolute
value of t is smaller than 1.31, the regression variable can be
eliminated.
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Table 6.8 Partial F-test of Interaction Terms

Interaction
Term Studied

(in E) - (n h)

(in h) - (n $)0

(ln $) - (ln E)

Sum of Square
Attributable to
the Interaction
Term

Mean Square of
Deviation from
Regression

.003

.034

.050

F-value
(Degrees of
Freedom)

.103

.102

.101

.03

.333

.496

(Note): F-value is 2.94 at upper 10% significance level with degrees of
freedom of (1,23).
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Table 6.9 Analysis of Variance of Regression Analysis of ln ai

Attributable to Regression Analysis

Deviation from Regression Analysis

Total

Intercept

Multiple Correlation

Standard Error of Estimate

Degrees
of Sum of Mean
Freedom Squares Squares F-value

3 21.09 7.03 70.8

24 2.38

27 23.47

.099

-2.56

. 948

.315
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correlation co-efficient. As the F-value at upper 0.1% significance

level with (3,24) degrees of freedom is 7.55, the F-value of 70.8 in

Table 6.9 shows that the regression equation (6.22) is statistically

significant.

The final regression results of a are therefore:

al = 7.73 x10-2 - E-.5 3 , h-.46 .40 (6.24)

The 90% confidence bounds on a are estimated by el.645s and e- 1645s

where s is the standard deviation of lna 1 and is equal to 0.315.

Similar analyses are made for the other dependent variables. The

regression result of a2 is given in Table 6.10 and the results of b ,

b2 , b3' , and c2 are summarized in Appendix H. The final equations

obtained are:

a2 = 2 .93 -td' - E.59 E ,-.98 (6.25)

b, = 4.16 x10 2 h' 27  E-' (6.26)

043 .19 .12 -. 99
b2 = 1.75 - h -td E - (6.27)

- 52 (.8
b3 = 1.45 .-. 52 (6.28)

-2 -37 -. 65 -. 65 .93c= 8.63 x10 - h -td - E - $ (6.29)

- 080 - 1.02c2 = 2.43 - h , -(6.30)

VI.7 Investigation of the Adequacy of the Regression Results

The regression results of al and a2 are tested individually and

collectively as follows. The examination of the other dependent

variables is given in Appendix H.
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Table 6.10 Regression Analysis of a2

Dependent Regressor Regression
Variable Variable Coefficient

ln a 2 ln td

ln E

ln $

Intercept

Multiple Correlation

Standard Error of Estimate

F-value

.233

.059

-. 980

Standard
Error of
Regression
Coefficient t-value

.0453

.0177

.066

1.074

.988

.106

323.1

(0.1% F-value for 3 and 24 degrees of freedom is 7.55)

5.2

3.7

-14.9
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VI.7.1 Examination of Individual Results

The quantity a1 is estimated from the regression results Eq. (6.24)

for each of the 28 samples of the radioactive releases and is compared

with the data in Table 6.5. The estimates and data are plotted in

Fig. 6.5. If the regression estimates accurately predict the data, the

points in Fig. 6.5 should lie closely about the 45 degree line. As

observed the points do lie about the 45 degree line and no systematic

error is observed (i.e., tendencies to overpredict or underpredict

various ranges of data). The quantity a2 is similarly examined in

Fig. 6.6 and no systematic error is observed.

Vi.7.2 Examination of the Combined Regression Results

The quantities a and a2 are constants of the transfer function

a(r). Possible combined errors are examined by estimating the first

risk moments of the sample population distributions using al and a2

derived by the regression. The first risk moment is estimated from

the regression results by:

*
(M ). = Z Z (a) - exp [-(a ) - r] - (N ). (6.31)

,q jk q 2 q k

*
where (M )iq is the estimate of the first risk moment of the condi-

tional distribution at site i for the release q. (a ) and (a2)q are

the constants of the transfer function for the release q estimated from

the regression results. (Njk i is the population in the k-th annular

segment in the direction j at the site i. The estimates of the first

risk moment is compared with the results of the consequence calculation.

The population distributions Site A and Site B are used to evaluate the

adequacy of the regression. The results in Fig. 6.7 do not show

systematic error and the largest error is a factor of 1.7. In Chapter V



10 I

0-2

104 L
10 10 102

a, Data for Rezression

Fi -65 Test of the Regression Results of a

185

c

0o

02
0

0

C4

10-



186

en 1.0 'IIII

O/ e

CC
/ e /

* /

o 1

**ctactor of /3-

Q)

0 10

100

10- 10 010

a 2 Data f or Regression

Fig.. Test of the Reg.ression R4esults of a2



-2 -l 0 1 210 10 ~ 10 10

Results of Consequence Calculation

Fig.6.7 Comparison of the Estimated First Risk .oment
from Regression with the Consequence Results

187

103
Er,

410

al

e1

0

10

"4

E!
0

* 0

4-)
0

10-

10 -2 L
10

Mi

3
10



188

the largest error observed in Fig. 5.6 was a factor of 1.7 and was

found to be within the uncertainty bounds of the consequence model.

Therefore the error in Fig. 6.7 can also be concluded within the error

bounds of the consequence model.

Similar examinations are made for the regression results Eqs.

(6.26) through (6.30) in Appendix H. The results are found to be

adequate.

VI.8 Example of Possible Applications of the Regression Results

Having obtained the regression results, they can then be used

for estimating the consequences of radioactive releases of different

characteristics without having to rerun the consequence program. For

example, in the Reactor Safety Study, numerous accident sequences

obtained by the event tree analysis are grouped into the release

categories in Table 6.1. Using the regression results, the first two

risk moments and the normalization constant for each of the accident

sequences in the release category can be estimated without rerunning

the consequence program. Because of the explicit relationship of the

regression equations, sensitivity studies and decision making studies

are also able to be carried out in a straightforward manner. The

regression results applied to an evaluation of the safety systems in

a nuclear power plant will be particularly discussed here.

VI.8.1 Evaluation of the Safety Systems

The safety systems in a nuclear power plant include engineering

safety features, operation restrictions and maintenance activities.

They are designed to reduce the risk of the reactor accidents by

reducing the probabilities of the occurrences or alternatively by
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reducing the magnitudes of radioactive releases to the environment.

To present the application of the regression results to the

evaluation of safety systems, a particular accident sequence q is

considered. The distribution of consequence versus probability for the

accident sequence is given by Eq. (6.1) as:

*
f (x) = P - f (x) (6.32)
q q q

where P is the probability estimated for the accident sequence q and

*
f (x) is the conditional distribution given the accident occurrence.

The regression results allow the first two risk moments and the

*
normalization constant of the conditional distribution f (x) to be

q

estimated from the release characteristics of the accident sequence,

which involves the release fractions of the core inventories, the

elevation of the release, the energy content of the release, the time

of the release, the duration of the release and the warning time for

*
evacuation. For example, the constants of the transfer function a (r)

are estimated from the release characteristics by Eqs. (6.24) and (6.25)

as:

(a ) = 7.73 x 10-2 - (E)-.5 - (h)-' - (f).4 0  (6.33)
1q q q q

(a ) = 2.93 - 2(T ) 3 (E)'059 -)98 (6.34)2 q d q q q

Given a population distribution, the first risk moment of the condi-

tional distribution given the accident occurrence is estimated by:

(M ) = Z (a ) - exp [-(a2)q ' rk] Njk (6.35)
j k ~q [(2qj

The first risk moment of the unconditional distribution is then given

by:
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(M1 ) = P q- Z (a,) - exp [-(a2) q r ] - N.k (6.36)
q q j k

The second risk moment and the normalization constant of f (x) are
q

estimated in a similar manner.

If the safety systems are designed to reduce the probability of

occurrence Pq , the effects of the systems can be evaluated from the

regression results, such as Eq. (6.36), because the probability term

P is separated from the effects of the other release characteristics.

cGiven the population distribution and the risk moments of the condi-

tional distribution, criteria can be considered for the probability of

the occurrence P which give the acceptable risk characteristics.
q

If the safety systems are designed to reduce the magnitude of the

release, the effect of the decrease of the magnitude can be estimated

from the regression results, such as Eqs. (6.33), (6.34) and (6.36). A

numerical example is given in the following subsection about the

evaluation of a hypothetical iodine removal system.

The regression results furthermore allow trade-off studiss to be

considered between the population distribution, the probability of

occurrence and the magnitude of the release. For example, the objective

to obtain the acceptable first risk moment in Eq. (6.36) can be achieved

by selecting a site of low population or by adding or improving the

safety systems, which reduces the probability of occurrence or the

magnitude of release. Such trade-off studies can be straightforwardly

made from the regression results.

VI.8.2 Numerical Example of Application of the Regression Results

A hypothetical iodine removal system is studied to demonstrate the

application of the regression results to the evaluation of the safety
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systems. The problem is to express the decrease of the first risk

moment in terms of the iodine removal efficiency under the following

assumptions:

(1) The release characteristics considered are similar to those

of a PWR-2 release category shown in Table 6.1 when no iodine

is removed by the system considered.

(2) Only the release fraction of the iodine is affected by the

system and the other release characteristics are unchanged

by the system.

(3) The population distribution at Site A shown in the Appendix C

is used.

(4) Only early fatalities are considered. The regression results

derived in this chapter are then applied, which are based on

the northeastern valley meteorological condition and

radioactive inventories of a 3200 MW-th plant.

Let w be the iodine removal efficiency of the considered system.

As 70% of the iodine inventory in the core is released when no iodine

is removed by the system considered, the release fraction of the iodine

at the removal efficiency w is given by:

q I ) = 0.70 (1-w) (6.37)

The effective source term is calculated by Eqs. (6.2) and (6.4) from

the iodine release fraction in Eq. (6.37), the release fractions of

the other isotope groups in Table 6.1 and the weighting factors in

Table 6.2. The calculated effective sources for the three organs are

given in Fig. 6.8 as a function of the removal efficiency. Fig. 6.8

shows that the effective source to the bone marrow is dominant over
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those of the other two organs. The effective source for the bone

marrow is therefore selected as the overall effective source term.

*

The constants a. and a of the transfer function a (r) are

estimated by Eq. (6.33) and (6.34) from the overall effective source

term in Fig. 6.8 and the other release characteristics of the PWR-2

release category in Table 6.1. The estimated constants al and a2

are given in Fig. 6.9 as a function of the iodine removal efficiency

W. From the population distribution at Site A, the constants a and a2

in Fig. 6.9 and the probability of occurrence of 8 x 10-6 per reactor

year (PWR-2 release in Table 6.1), the first risk moment is estimated

by Eq. (6.44). The result is given in Fig. 6.10 as a function of the

removal efficiency. Finally, the decrease of the first risk moment by

the iodine removal system is also shown in Fig. 6.10 as a function of

the removal efficiency.

Fig. 6.10 can be used to evaluate the decrease of the first risk

moment when data in the iodine removal efficiency of the system are

available. Alternatively, Fig. 6.10 can be used to calculate the

required iodine removal efficiency of the system to obtain the accept-

able first risk moment.

VI.9 Summary and Conclusions

The regression approach discussed in Chapter IV was demonstrated

in this chapter in which the release characteristics was taken to be

the basic variable. The early fatalities distribution in the north-

eastern valley meteorological condition was used to derive the regres-

sion results. The regressor variables are the warning time for evacua-

tion, the duration of the release, the energy content in the released
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plume and the effective source which is a weighted sum of the release

fractions. The probability of the occurrence was not taken as a

regressor variable by considering the conditional distribution of early

fatalities given the accident occurrence. The constants of the transfer

functions discussed in the preceding chapter were taken to be the

dependent variables.

The lognormal equations, such as given below, were tested.

ln a = k01 + k ln h + k ln T + k - ln T +1 1 1 1 w 31 d

+ kl - ln E + k51 -1n $ + E (6.38)

The terms that have insignificant effects on the variation of the

dependent variables were eliminated by the partial F-test. The final

equations obtained are:

-2 53 46 .40
a, = 7.73 x 10 - E - h - (6.39)

a = 2.93- T .23 E . (6.40)
2 d

-2 -. 27 -. 39
bi = 4.16 x 10 - h * E (6.41)

b = 1.75 .043 -T' 9 - E' -. '99 (6.42)
2 d

b3 = 1.45 - 52 (6.43)

c = 8.63 x 10 h 37  T *65  E* 65  (6.44)

-- 080 -1-02
c = 2.43- h . (6.45)

Systematic errors were not observed for prediction of the dependent

variables and the estimates of the risk characteristics M , M 2 and a

were found to be within the uncertainty range of the consequence model.



197

Having obtained the regression results, they can be applied to new

situations for sensitivity studies and decision making investigations.

Because of the simple form of the regression equations, the involved

calculations are straightforward and do not require the consequence

codes or large computation time. The regression results were applied

to an example of evaluation of a hypothetical iodine removal system.

The decrease of the first risk moment was finally expressed as a func-

tion of the iodine removal efficiency of the system. The example

illustrates how the regression results can be used in evaluation and

decision making.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

VII.1 Summary and Conclusion

The objective of this thesis is to develop a methodology for

deriving a set of explicit equations which relate the public risk in

potential nuclear accidents to the basic variables which determine

the consequences of the accidents. The equations give insight into

the physical relationships which are involved in the accident risks.

Once the equations are derived, they can be used for sensitivity

analyses and decision making studies without the need of complex

computer programs.

The methodology developed in this study consists of two steps.

The first step involves describing the consequence versus frequency

curve in terms of a parametric distribution having a small number of

parameters. The second step involves relating the parameters to the

basic driving variables.

A general approach for fitting the consequence versus frequency

distributions to the parametric distributions consists of three

fundamental steps. These steps are selection of the candidate

parametric distributions, estimation of the unknown parameters and

determination of adequate fits. The selection of the candidate

parametric distributions is based on the properties of the risk

distributions including the domain of the independent variables,

number of modes, skewness, and tail behavior. The method of moments

and the method of least squares are discussed as means of estimating

the unknown constants. Criteria of adequate fits are based on the
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largest deviation of the fits, systematic errors in the fits and

residual mean squares.

The developed approach is demonstrated for the examples of

fatality distributions of nuclear and non-nuclear risks. Four candidate

distributions are examined: exponential, gamma, Weibull and lognormal

distributions. For these examples, the method of moments is used to

estimate the unknown parameters. In order to select a distribution

family which adequately describes the fatalities distributions, the

historical records of hurricanes, earthquakes, tornadoes and dam

failures are examined. The calculated risk curves of nuclear reactor

accidents are also examined for different population distributions and

different types of the accidents. Based on these examinations, the

Weibull distribution is determined to be the distribution which

adequately describes all these. various risk curves. The estimates of

the Weibull parameters for the examined curves are summarized in Table

7.1. The lower end of the domain x0 , the normalization constant a,

the risk moments about x0 are determined from the historical data or

from the results. of consequence calculation. The Weibull shape

parameter 6 and scale parameter n are determined from the first two risk

moments, allowing simple and efficient estimation to be performed.

For the second step in the methodology, relating the distribution

parameters to the basic driving variables, regression techniques are

used in this study. The regression approach consists of 6 fundamental

steps. These fundamental steps are: (1) identification of regressor

variables, i.e., the basic driving variables to be considered; (2)

selection of the dependent variables; (3) assembling the data to be used

in the regression; (4) formulation of candidate regression equations
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which express the relationship between the dependent and regressor

variables; (5) estimation of the unknown constants in the regression

equations by the method of least squares; and (6) testing of the

adequacy of the derived equations.

The regression analysis approach is demonstrated in two examples.

One example uses the population distribution as the basic regressor

variable. Three exponential functions (called "transfer functions")

are derived which relate the first two risk moments and the normaliza-

tion constant to the population distribution. Table 7.2 gives the

transfer function results which are determined in this study. An

application of the derived equations is demonstrated for an example of

selection of a site for a nuclear power plant.

The regression approach is demonstrated for another example in

which the characteristics of the radioactive releases are treated as

the basic regressor variables. The dependent variables are taken to be

the constants of the transfer functions determined in the preceding

analysis of the population distribution. The lognormal equations which

are determined are given in Table 7.3. The derived equations are

applied to the evaluation of a hypothetical iodine removal system.

In conclusion, the methodology proposed in this study is found to

be appropriate in deriving explicit equations which relate the risk to

basic driving variables. The derived equations are fairly simple and

straightforward, which allows for simple and straightforward applica-

tions to decision making studies and other calculations and evaluations.

VII.2 Recommendations

The methodology proposed in this study is one attempt at deter-



Table 7.1 Estimates of the Parameters of the Weibull Distribution

Fc (x) = a ] exp ((XXO..}1 f(x) = a - - -iiX - . . g [_ .]

Events

Hurricanes

Earthquakes

Tornadoes

Dam Failures

Average of U.S. Reactors

PWR Accidents at Site A

BWR Accidents at Site B

(1)

0

0

20

0

0

0

0

=111= ini( 2 )

(2)
a (1/year)

6.30 x 10-1

1.64 x 10-1

8. lox 10-1

9.52 x 10-2

4.72 x 10~7

5.78 x 10~7

1.61 x 10-8

1.27 x 102

1.53 x 101

6.62 x 101

3.48 x 101

4.60 x 10-5

2.72 x 10~4

9. 92 x 10~7

5.64 x 105

8.13 x 103

1.67 x 104

5.07 x 104

6.45 x 10-2

5.77 x 10-1

3.46 x 10~4

.387

.511

.708

.608

.371

.570

.513

7.48 x 101

4.84 x 101

6.53 x 101

2.47 x 102

2.45 x 101

2.91 x 102

3.23 x 101

1x0 is determined from the smallest consequence in the data.

2a is determined from the number of events having consequences greater than x0.

'
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Table 7.2 Transfer Function Results of PWR Accidents in Northeastern
Valley Meteorological Conditions.

Dependent
Variable

First Risk Moment

Second Risk
Moment

Transfer Equations

M = E ai - exp (-a 2 -r) - n. (r) - dr
j

M2 =
j

J b1 - exp [-b2 -(r+r')] -

- exp [-b3- Ir-r' I ] - n. (r) - n.(r')
J J

Constants

ai = 3.51 x 10-8

a 2 = .600

bi = 2.05 x 10~8

b2 = .352

b 3 = .557

- dr - dr'

Normalization
Constant

a = -c exp [-c2 -d.] cl = 1.79 x 10-6

c2 = .398

(Note): (1) n.(r) is the population per unit distance at r in a 22
J

degree sector of the direction j.

(2) d. is the minimum distance at which people live from a

reactor in the direction j.

-



Table 7.3 Summary of the Regression Results of the Radioactive Releases~1 )

Transfer Functions (2) Regression Equations

M, = P - E ai - exp (-a 2 -r) - n (r) dr

Jr

M2 = P '

j r
T - exp [-b 2 -(r+r')] -

-exp [-b3-Ir-r'I] n (r) n (r') dr dr'

a = P - E ci exp [-c2 dJ

j

a, = 7.73 x 10-2 - E-- 53 - h- 6 . 4 0

a2 = 2.93 x t d.23 - E. 0 5 9 .*-. 98

bi = 4.16 x 10-2 - h-. 2 7 - E-.39

b2 = 1.75 - h. 0 4 3 - td - 19 - E- 99

b3 = 1.45 - $-.52

ci = 8.63 x 10-2 - h~-37 - td-.65 . E-93

c2 = 2.43 - h-. 0 8 0 . -1.02

1The northeastern valley meteorological conditions are assumed.

P = probability of the occurrence (1/year).

3td = duration of the release (hours), E = energy content in the plume (106 Btu/hr),

h = elevation of the release (meters), $ = effective source (105 m 3/sec).

0'
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mining basic relationships which can be used in risk evaluations and

decision making situations involving risks. The methodology is

demonstrated for only one type of consequence (early fatalities), one

meteorological condition (northeastern valley sites) and two sets of

basic variables (population distribution and radioactive releases).

Further studies will be required to develop broader results, such as

considering other types of consequences, other meteorological condi-

tions, and other basic variables. As consequence models and computer

programs change, the regression relationships will also need to be

reevaluated to determine updated results.

The methodology may also be applicable to evaluation of non-nuclear

risks, such as dam failures. Relating the risks to the basic variables

of interest may provide help in decision making and risk evaluations in

these situations. Further studies are recommended to determine the

feasibility of applying the methodology to these different situations.

With regard to the more detailed recommendations, the following

studies are specifically recommended:

Chapter II and Chapter III

(1) Only two general fitting techniques were discussed in this

study. However a large number of other techniques have been

developed and the most appropriate technique may depend on

the candidate parametric distributions. For example, a linear

estimator of the Weibull distribution with the logarithmic

transformations of dependent and independent variables is

discussed in Ref-6. Further studies are recommended to test

other techniques of fitting parametric distributions to the

consequence versus frequency risk distributions.
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(2) Four candidate distributions were examined to fit the risk

curves. Other distributions should also be investigated to

determine their feasibility and particular advantages and

disadvantages.

Chapter V

(3) The transfer function c(r) that relates the normalization

constant with the closest distance at which people live to

the reactor was defined in Section V.5 as an approximation

of the expectation of the H equation. In the example case

of the fatalities distribution of PWR accidents, the error

of this approximation was found to be within the uncertainty

range of the consequence model. However in other situations,

this approximation may not be appropriate. Therefore, further

studies are required to define the transfer function that

relates the normalization constant with the population

distribution for a wider variety of consequences.

Chapter VI

(4) The effective source was defined for early fatalities in

Section VI.2 because the interaction effects of the release

fractions of various isotope groups are not simple. For

other types of consequences, however, one or two isotope

groups may have dominant effects on the magnitude of conse-

quence. For example, the property damage may be dominated

by the release fraction of the Cs group. In these cases, the

selection of the release fractions as regressor variables

may be appropriate. Further studies are recommended in
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studying basic regressor variables for the analysis of a

wide variety of consequences.
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APPENDIX B

NOMENCLATURE

Since this thesis is related to various different fields, such as

statistics, meteorology, health physics, etc., it is sometimes

difficult to achieve a consistency about the notation. The nomenclature

is thus given here for each chapter.

Chapter I

F

Fc

f

M

t

x

Chapter II

E

e ,. e

f

F

G

i

number of events per unit time

complementary cumulative frequency (number of events per
unit time)

frequency per unit time per unit consequence

risk moment

order of the risk moment

consequence magnitude

integration interval

reference magnitude for the evaluation of the risk
moment

expectation

random error variables

frequency distribution

complementary cumulative distribution

complementary cumulative frequency of the data i

candidate parametric function

subscript denoting the data to be fitted
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k

M

m

n

s2

xi

x.

Y

Y ,y

A 2

oy

ti,...,Tk

Chapter III

Fc

f

Mi

M2

m

m

p

number of parameters

risk moment of the candidate distribution

risk moment estimated from the data to be fitted

order of the risk moment

number of the data

residual mean square of the estimated equation

independent variable

observed value of the independent variable

random variable

observed value of Y

residual mean square to be minimized for the method of
least squares

reference point for the evaluation of the risk moments

standard deviation of the random variable Y

parameters of the candidate function

estimates of the parameters

complementary cumulative frequency

frequency distribution (number of events per unit time
per unit consequence)

normalized density distribution (number of events per
unit consequence)

first risk moment about the lower end of the domain

second risk moment about the lower end of the domain

m-th risk moment about the lower end of the domain

order of the risk moment

probability assigned to the sample data or the trial in
the consequence calculation



T

x

x0

Ax

a

ar

K

AK

CY

Chapter IV

F

F'

Fc

h

k

m

F-value for the evaluation of the significance of the
regression equation

partial F-value for the evaluation of the significance
of the added unknown constants

complementary cumulative frequency

candidate regression equation

number of parameters

number of regressor variables
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time period in which the historical records are
available for non-nuclear risks

magnitude of consequence

lower end of the domain of x

interval of the consequence magnitude for the
calculation of the frequency distribution from the
historical records or from the consequence results

normalization constant

shape factor of the gamma distribution or the Weibull
distribution

Gamma function

scale factor of the Weibull distribution

scale factor of the exponential distribution or the
gamma distribution

number of historical observations having consequences
greater than the specified magnitude

number of historical observations having consequences
in the certain range of the magnitude Ax

mean of the normal variate (ln x) of the lognormal
distribution

reference magnitude for evaluation of the risk moment

standard deviation of the normal variate (ln x) of the
lognormal distribution



n

s2
G

S S2
R'

x

x0

y

yO

z

a

A2

TI

V

m

T

Chapter V

A

Ak

a

ai,... ,a

&,-.,A

ak

ratio of the fatalities to the population for a specific
trial

ratio of the fatalities to the population in the k-th
annular segment for a specific trial

transfer function that relates the first risk moment to
the population distribution

unknown constants of the candidate function of a(r)

estimates of a1 ,...,a by regression

the average of A.k over all the trials
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number of the data for regression

sum of squares attributable to regression

sum of residual squares

magnitude of consequence

lower end of the domain of x

dependent variable

average of y-values of the data

regressor variable

normalization constant

shape factor of the Weibull distribution

sum of residual squares to be minimized in the
regression analysis

random error variables

scale factor of the Weibull distribution

number of added unknowns in the regression equation

multiple correlation coefficient

unknown constants in the candidate equations

estimates of T by regression



b

b kk,

c

ci,.. , ,,

d

E

Fc

h' Z

F'

H

h
a

hb

h
C

h
Y

i

j

K

k,k'

k .min
2.M
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transfer function that relates the second risk moment to

the population distribution

unknown constants of the candidate function of b(r,r')

estimates of bi,...,b , by regression

the average of [Ak- Ak,] over all the trials

transfer function that relates the normalization
constant a to the closest distance of population from
the reactor -

unknown constants of the candidate function of c(r)

estimates of ci,...,c ,, by regression

closest distance at which people live from a reactor

expectation over the trials

complementary cumulative frequency

complementary cumulative frequencies of the two adjacent
data points in the consequence results below and above
10- 9/year

partial F-statistic for the evaluation of the added
unknowns

unit step function

candidate function of a(r)

candidate function of b(r,r')

candidate function of c(r)

candidate function of y(r)

subscript denoting the sample data

subscript denoting the wind direction

number of segments considered in the consequence model

subscript denoting the segment

the closest segment at which people live

subscript denoting the population group in the bell-

shaped population model

first risk moment about the lower end of the domain
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M2

Nf

N f

NT

n

nj

nT

p.

PR

PS

Pt

pv

R

RB RCRD)

r

rk

Ark

S R

t

x

xh ' xZ

a

second risk moment about the lower end of the domain

population in an annular segment

fatalities in an annular segment

total population in a population group in the bell-
shaped population model

population per unit distance per radian

population per unit distance in a 22.5 degree section in
the direction j

population per unit distance in an annulus of unit width

probability of the wind blowing to the direction j

probability of occurrence of release

probability assigned to a specific sample of the weather
data

probability assigned to a specific trial

probability assigned to a specific evacuation speed

distance from the origin to the center of the bell-
shaped population group

distance from the origin to the center of the population
groups B, C and D respectively

distance from the origin

distance from the origin to the center of the annular
segment

width of the k-th annular segment

sum of residual squares

subscript denoting the trial

magnitude of consequence

consequence magnitudes of the two adjacent points in the
consequence results below and above the complementary
cumulative frequency of 10- 9/year

normalization constant

shape factor of the Weibull distribution
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y transfer function which approximately relates the
normalization constant to the closest distance at which
people live from a reactor

Y1,.-YV,,, unknown constants of the candidate function of y(r)

A2 ,A2 ,A2 A2  sum of residual squares to be minimized in the
a b c y regression approach

e~e' random error variables

coordinate axis perpendicular to r

n scale factor of the Weibull distribution

6 angular coordinate in the polar coordinate system

v,v' ,v'',v'' number of unknown constants in the candidate
functions

p population per unit area

aA'aB'aC'aD average deviation of the population in the bell-
shaped population groups A, B, C and D

a R average deviation of the population in a bell-shaped
population model

Chapter VI

a*

ai,a
2

B

b*

bib 2,b3

C

CC

CG

CI

c*

transfer function relating the condition first risk
moment M* to the population distribution

parameters of the exponential function to fit a*(r)

breathing rate

transfer function relating the conditional second risk
moment M2 to the population distribution

parameters of the exponent function to fit b* (r,r')

dose conversion factor involving three modes of exposure

dose conversion factor for cloud shine dose

dose conversion factor for ground shine dose

dose conversion factor for inhalation dose

transfer function relating the conditional normalization
constant a* to the closest distance at which people live
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ci,c2 parameters of the exponential function to fit c*(r)

d closest distance at which people live from the reactor

E energy content in the released plume

f frequency distribution

f* conditional frequency distribution given the release
occurrence

g subscript denoting the isotope groups for the evaluation
of the release fractions

h elevation of radioactive release

I inventory of radioactivity in a reactor core '

j subscript denoting the isotope

k subscript denoting the organ in a body

k01 ,k0 2,.--k57

k6jk'2 ,...' constants in the regression equations

(LD)5 0  a dose that causes deaths to 50% of the exposed
population

M* first risk moment of the conditional distribution f*(x)
given the accident occurrence about the lower end of the
domain

M* second risk moment of the conditional distribution f*(x)
given the accident occurrence about the lower end of the
domain

M* t-th risk moment of the conditional distribution givent the accident occurrence

N population in an annular segment

n. population per unit distance in a 22.5 degree sector in
the direction j

P probability of occurrence of release

Q released amount of radioactivity

q subscript denoting a specific release

q 9release fraction of the isotope group g

q Irelease fraction of iodine
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r

Scs C

sC G

Td

T
r

T
w

t

Vd

x

a

Si,...,7

X

Chapter VII

a

a ,a
2

b

b1 ,b2 ,b3

c

c1 ,c2

distance from the origin

standard deviation of the estimate of the dependent
variable

cloud shine shielding factor

ground shine shielding factor

duration of the release

time of the release

warning time for evacuation

subscript denoting the order of the risk moment

deposition velocity

consequence magnitude

normalization constant of the conditional frequency
distribution f*(x) given the accident occurrence

random error variables

radioactive decay constant

ground level airborne concentration of radioactivity

effective source

weighting factor for effective source

iodine removal efficiency

transfer function relating the first risk moment to the
population distribution

parameters of the exponential function fitted to a(r)

transfer function relating the second risk moment to

the population distribution

parameters of the exponential function fitted to b(r,r')

transfer function relating the normalization constant to
the closest distance at which people live

parameters of the exponential function fitted to c(r)



218

d closest distance at which people live from a reactor

E energy content of the released plume

FC complementary cumulative frequency

h elevation of release

j subscript denoting the direction

k,k' subscript denoting the segment

Mi first risk moment about the lower end of the domain

M 2  second risk moment about the lower end of the domain

n. population per unit distance in a 22.5 degree sector in
the direction j

P probability of occurrence of release

r distance from the origin

Td duration of release

x magnitude of consequence

X0 lower end of the domain of x

a normalization constant

a shape factor of the Weibull distribution

a scale factor of the Weibull distribution

effective source
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APPENDIX C

INPUT DATA FOR CONSEQUENCE CALCULATION OF INDIVIDUAL SITES

Major input data for the consequence calculation of the individual

sites are summarized in this appendix. Since most of the input data for

the individual site calculations are the same as those for the calcula-

tion of the first 100 commercial nuclear power plants performed in the

Reactor Safety Study, only the data of specific importance in the

individual site calculations are given in this appendix. The input data

which are not given here are found in Appendix VI of WASH-1400 (Ref-l.

The characteristics of the northeastern valley meteorological

condition are given in Table C.l. All of the calculations of the

individual sites in this study are based on this meteorological

condition.

The inventories of the radioactive isotopes in Table C.2 are used

in this study. The inventories in Table C.2 were calculated in the

Reactor Safety Study, assuming a 3200 MW-th PWR core at a time of just

prior to refueling after the operation at a constant specific power

density of 40 MW/kg U. BWRs have approximately the same inventories as

PWRs.

The release characteristics of PWR and BWR accidents are given in

Table C.3. The calculation results in Chapter III and Chapter V are

based on the overall risks from the release categories in Table C.3.

In Chapter VI, these release categories provide the data base for the

regression analysis.

The geometry for the population distribution used in the conse-

quence code is given in Table C.4. The population distributions of
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Site A and Site B are given in Tables C.5 and C.6, respectively, as

examples of the population distributions used in this study. They

correspond to the 3rd highest and 3rd lowest, respectively, when the

68 sites considered in this study are ranked in a descending order

based on the cumulative populations within 5 miles. These population

distributions are used in Chapters III and VI and Appendix F as the

examples for demonstrating the methodologies.



Table C.1 Joint Frequency Distribution for Thermal Stability, Windspeed, and Rain for Northeastern

Valley Meteorological Condition

Thermal
Stability

A

B

C

D

E

F

Rain

No rain
Rain

No rain
Rain

No rain
Rain

No rain
Rain

No rain
Rain

No rain
Rain

Summation .

Wind Speed (m/s)

0-1 1- 2 2-3 3-4 4-5 5-6 6-7 >7 Summation

1.83 2.93 2.69 2.52 2.17 1.42 1.14 1.54
0.09 0.06 0.03 0.05 0.00 0.01 0.00 0.01

0.49 0.34 0.26 0.21 0.25 0.15 0.06 0.15
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.51 0.49 0.49 0.31 0.34 0.27 0.23 0.40
0.01 0.05 0.02 0.00 0.00 0.00 0.00 0.01

6.06 4.52 4.84 3.54 2.68 2.33 1.22 2.57
0.37 0.51 0.41 0.19 0.10 0.10 0.10 0.23

7.61 5.64 4.77 3.45 2.45 1.18 0.88 1.70
0.53 0.54 0.57 0.39 0.16 0.06 0.06 0.17

8.11 4.86 2.51 1.21 0.50 0.31 0.15 0.17
0.25 0.10 0.09 0.08 0.07 0.01 0.01 0.00

25.87 20.05 16.61 11.85 8.85 5.83 3.85 7.10

16.50

1.92

3.13

29.87

30.15

18.44

100.00

(Note): From Table VI-5-2A in Appendix VI of WASH-1400 (Ref-1).

H

. . . . . .
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TABLE C.2 Initial Activity of Radionuclides in the Nuclear
Reactor Core at the Time of Hypothetical Accident

Radioative Inventory
No. Radonuaclide Source (curies x 108) falf-ife (days)

1 cwbalt-S 0.0078 71.0
2 Coblt-40 0.0029 1,920
3 Krypton-as 0.0056 3.950
4 Krypton-8a 0.24 0.163
5 Krypton-87 0.47 0.0528
6 Krypton-88 0.68 0.117
7 Rad1dium-86 0.00026 16.7
a Strontim-89 0.94 52.1
9 Strontium-90 0.037 11,030

10 Strontim-91 1.1 0.403
11 TttiUM-90 0.039 2.67
12 trim-91 1.2 59.0
13 Zirconissa-95 1.5 65.2
14 -frconm-97 1.5 0.71
15 xiohiuvo-9s 1.5 35.0
16 Molybdenum-99 1.6 2.8
17 Technetiis-99m 1.4 0.25
16 Ruthenitum-103 1.1 39.5
19 Rtheniue-10s 0.72 0.165
20 RAtheniam-106 0.25 366
21 hoital-105 0.49 1.50
22 Telluria-127 0.059 0.391
23 ellzium-127a 0.011 109
24 911erium-129 0.31 0.048
25 9elurium-129m 0.053 0.340
26 TUurium-131m 0.13 1.25
27 Tluriump-132 1.2 3.25
28 Antimony-127 0.061 3.86
29 Antimony-129 0.33 0.179
30 lodi-e131 0.85 6.05
31 Zedine-132 1.2 0.0958
32 Zodiae-133 1.7 0.875
33 3odine-134 1.9 0.0346
34 Zodtne-135 1.5 0.280
35 Xmon-133 1.7 5.28
36 ama-135 0.34 0.364
37 Cesium-134 0.075 750
38 Cesium-136 0.030 13.0
39 Casius-137 0.047 U1,000
40 Sarim-140 1.6 12.8
41 Lanthatmm-140 1.6 1.67
42 CrLM-141 1.5 32.3
43 Cerlm-143 1.3 1.30
44 Carim-144 0.5 284
45 Praemodymium-143 1.3 13.7
46 weodymius-147 0.60 11.1
47 Septunium-239 16.4 2.35
48 Plutonium-238 0.00057 32,500
49 Plutonim-239 0.00021 8.9 x 106
50 Plutomium-240 0.00021 2.4 x 106
51 Plutonium-241 0.034 5,350
52 Amriciam-241 0.000017 1.5 x 105
53 Curium-242 0.0050 163
54 Corium-244 0.00023 6,630

Note: From TABLE VI 3-1 in Appendix VI of WASH-1400(Ref-1)



Table C.3 Release Characteristics of PWR and BWR Accidents

DURATION

TIME OF OF
RELEASE RELEASE

(Hr) (Hr)

2.5

2.5

5.0

2.0

2.0

12.0

10.0

0.5

0.5

2.0

30.0

30.0

5.0

3.5

0.5

0.5

1.5

3.0

4.0

10.0

10.0

0.5

0.5

2.0

3.0

3.0

2.0

5.0

WARNING
TIME FOR

(VACUATION

(Hr)

1.0

1.0

2.0

2.0

1.0

1.0

1.0

N/A

N/A

1.5

2.0

2.0

2.0

N/A

ELEVATION CONTAINMENT
E.VTor ENERG.Y

RELEASE R6LEASE

(Meters) (10 Btu/Hr)

25

0

0

0

0

0

0

0

0

25

0

25

25

150

'20 (d)

170

6

1

0.3

N/A

N/A

N/A

N/A

130

30

20

N/A

N/A

FRACTION OF CORE INVENTORY RELEASED (a)

(b) (c)
Xe-Kr Org. I I Cs-Rb Te-Sb Ba-Sr Ru La

0.9

0.9

0.8

0.6

0.3

0.3

6x10

2x10

3x10-6

1.0

1.0

1.0

0.6

5x10 4

6x10- 3

7xl0

6x10

2x10

2x10-

2x 10

2x10- 5

5x106

7x10
9

7x10

7xl0

7x10

7x10 
4

2xl0

0.7

0.7

0.2

0.09

0.03

8x10 4
-5

2x10 7
1x10

4

0.40

0.90

0.10

8x10~
4

6x10 
1 1

0.4

0.5

0.2

0.04

9x10

8x10

lx10

5x10
4

6x 10

0.40

0.50

0.10

5x10-
3

4xl0 9

0.4

0.3

0.3

0.03

5x10-
3

1x10 3

2x10-

1x10-6

1x10 
9

0.70

0.30

0.30

4x10

8x10-
1 2

0.05

0.06

0.02

5x10

1x10-
3

9x10

1I-6

1x10-
1x10 8 1

0.05

0.10

0.01

6x10~4

8x10~
14

0.4

0.02

0.03

3x10~

6x10~
4

7x10-
5

1x10-6

0

0

0.5

0.03

0.02

6x10~4

0

3x10-3

4x10

3x10

4x10-

7x10-
5

2x 10

0

0

5x10

4x10
3

3x10

1x10
0

(a) A discussion of the isotopes used in the study is found in Appendix VI. Background on the isotope groups and release
mechanisms is found in Appendix VII.

(b) Includes Mo, Rh, Tc, Co.

(c) Includes Nd, Y. Ce, Pr, La, Nb, Am, Cm, Pu, Np, Zr.

(d) A lower energy release rate than this value applies to part of the period over which the radioactivity is being released.
The effect of lower energy release rates on consequences is found in Appendix VI.

Note: From Table 5-1 in the Main Report of WASH-1400 (Ref-1)

La)

RELEASE
CATEGORY

PWR 1

PWR 2

PJR 3

PWR 4

PWR 5

PWR 6

PWR 7

PWR 6

PWR 9

PROBABILITY
per

Reactor-Yr

9x10

8x10-
6

4x10-
6

5x10 
7

7x10

6x10-6

4x10-
5

4xl0- 5

4x10~
4

1x10-6

6x10-6

2x10-
5

2x10-
6

1x10 4

BWR

bWR

BWR

BWR

BWR

1
2

3

4

5
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Table C.4 Geometry for the Population Distribution in the Consequence
Model

Distance to
Midpoint (miles)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Width of Segment
Ark (miles)

Outer Radius
(miles)

.25

.75
1.25
1.75
2.25
2.75
3.25
3.75
4.25
4.75
5.50
6.50
7.75
9.25

11.25
13.75
16.25
18.75
22.5
27.5
32.5
37.5
42.5
47.5
52.5
57.5
62.5
67.5
77.5
92.5

125.
175.
275.
425.

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5
1.0
1.0
1.5
1.5
2.5
2.5
2.5
2.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

15.0
15.0
50.0
50.0

150.0
150.0

Segment
Number

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.5

10.0
12.5
15.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
85.0

100.0
150.0
200.0
350.0
500.0



Table C.5 Population Distribution of Site A
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Table c.6 Population Distribution of Site B

Oufx ******,******************************************
AEIUS

(MILESO N NNk NE ENt L ESt

0 0
0 0
0 0
0 c

0 0

0 C
0 0
0 C
0D C
0 0
0 c
0 0

SC
O 0

0 IC?

0 0
140)

912 C'
7585 2185
4226 3270
1899 2670
7157 21842

41979 1235
111ba 4725

941t 4041
31443 1588a

1167132 15226
115670 25076
121590 37974
54681? 257343
2a5104 653395
913554 1495084

3120431 646552'

0
0
0
0
0

0
0

G
C
0
0

1358
0

5123
A44
0

639
1151

IC20
5185
4312
3199
3924
4161
2218

24004
50060

309093
268252

142904 3
1285

0
0
0
0
0
a
0
0
3
0
0
0
0
0

1457
0
0
0

3433
850

!246
2310

12451,
5423
1334
1164
8190
9966

48351
59293

172931
162641
111310

0

C

0

0
0
0

1250
0
CC

1326
C

1134
2280
4482
1841
883
450

1315
15282
14833
38280

5824
19418
32545

103C35
3310

0
0

DIRECTION *****************************************

St SSE S SSW SW WSW

0
C
0
0
C
C
0
0
C
0

0
0
0

0

716
49557

142541
14461
2933

2403
18971
4C76
5462

21406
12C44

296588
0

0

-D
0
I)

C9

0
0

2C

C
C
I1
0

1C29
C
0

2C13
5214

2118
32266

2769
1813
3998
3463
2330
7613

25449
6355

14116
19210
87053

1302
0
C

0
0
0
0
0
0
a?
0

87
0
0
0
0
0

2401

0
0

2023
3124
1808
2430

617
2339
2952
3237
2135
1934
5966

14363
15311
64769

221512
895335

2568382

0
0
0
0
0

'30
0
0
0
0
0

1303
0
0
0
0

2862
5301
4858
1613
1491
1062
1391

27118
19384
35111
32671
14005
11130
9981

509457
111330

0
0
0
0
0
0
0
0
0
0
0
0

1024
240
720

1076
1067

0
556
921

5125
1293
4011
3169
3534

0
10425
48355
9133
24007
84538

311577
659040
519240

0
0
0
0
0
0
0
0
0
0
0

264
0
0
0

1505
0

965
971

1006
466

1653
3982
5416
3609
2703
3619
669

6517
13037

122656
973929

1035683
1094509

W WNW

0
0
0
0
0
0
0
0
0
0

915
0
0

555
0

765
6792
4613
1836

0
1415
2930
2511

25979
9807
4640

15265
3396

48286
31294

193617
726125

1867137
1655100

0
0
0
0
0
0
0
0
0
0
0
0
0

845
0
0

5369
452

1201
4281
9390
6307

15214
891

7425
6860
9265

41896
160558

59540
6805

148461
1563248
118776

-. 5
1.0
1.5
2.0
2.5
I.0
3.5
4.0
4.5
5.0

7.0
1.5

10.0
12.5
15.0
11.5
20.0
25. 
J3.0
35.3
43.0
45.0
aC.C

35.0
6C .0

itC.0

1es~.0

15 .0
2 3C0.0
350.01
530 .0

13

M

0
C

0
0

C

36

1112
C

0~ ~tr.44
4546
3225

473
2318
9160
49"4
9046

2131.3
96446
15129
8441 )

222115
179711

1138351
1626441

NW NNW

a 0
0 0
a 0
0 0
0 a
a 0
0 0
0 0
0 0
o 0
0 0
o I
0 a
o 0
0 0
o e

461 0
0 0

2226 1031
1306 8?2
1139 16016
3663 1654
2669 3532
5816 5894

14667 6995
73871 31089
28136 8565
12131 16944
71267 51179
39494 17099

233163 162022
486811 390124
95220210344C2

33375215305572



227

APPENDIX D

TABLES FOR ESTIMATION OF THE WEIBULL PARAMETERS FROM THE MOMENTS

For the convenience of the calculation of the Gamma functions in

estimating the Weibull parameters, the following quantities are given

as functions of 8 in the range .1< <1.1.

1 2 2
Table D.l: [fr(l+-)] /r(l+- )

Table D.2: r(1+ )

Table D.3: r + )



Table D.1

0 0.0

Table for Estimation of Weibull Parameters r(1+ ) r(1+})

0.001 0.002 0.0013 0.004 0.005

0.10
0.11
0.12
0. 13
0.14
0.15
0.16
0.11
0.18
0.19
0.20
0.21
0.22
0.21
0.24
0.25
0.26
0.21
0.2N
3.29
0.0 1
0.31
0.32
0.11 1
0.34
0. 15
0.36
0. 37
0.38
0.19
0.40
0.41
0.42
0.41
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
J. 5
0.54
0.55
0.56
0.57
0.5
0.59

5.413F-06
I.822E-05
4.993E-05
1.168E-04
2.414E-04
4.SISE-04
7.8 04C-04
1.26?E-01
1.9320-03
2. 23E-0 1
3.968E-03
5.394C-013
7. 123E-03
9.173E-03
1.1560-32
1.429E-02
t . 736E-02
2.0 FE-02
2.454E-02
2.864E-02
3.307C-02
3. 780E-02
4.264E-02
4.816E-02
5.376E-02
5.960E-02
6.569E-02
7.199E-02
1.849E-02
8. 518E-02
9.204E-0?
9.905E-32
1.062E-01
I .135E-0l
1.20E-01
1.283E-01
t .15 9E-1 I
1.435E-01
1.512E-01
1.509E-01
I .667E-0L
1.7450-8 1
1.823E-01
I.901E-01
1.979E-01
2.051F-01
2.1 ISE-Ol
2.213-01
2.290E-31
2.368C-01

6.179E-06
2.032E-05
5.4?IE-05
.1.262E-04
2.5SOE-04
4*?SE-04
8.211E-04
1.320E-03
2.01OE-03
2.926E-03
4.098E-33
5.553E-03
7.313E-03
9.396E-03
1.182E-02
1.458E-02
1.769E-02
2.114E-02
2.494E-02
2.907E-02
3.351E-32
3.829E-02
4.336E-0?
4.871E-02
5.433E-02
6.020E-02
6.631E-02
7.263E-02
1.91SE-02
8.586E-02
9.273E-02
9.976E-02
1.069E-01
1.142E-01
1.216E-01
1.291E-01
1.366F-01
1.443E-01
1.519E-01
1.597E-01
I.674E-01
1.752E-01
1.SIOE-01
1.909E-01
1.987E-01
2.065E-01
2.143E-01
?.221E-01
2.29iE-01
2.375E-01

00

0.006 0.001 0.008 0.009

7.035E-06
2.262E-05
5.986E-05
1. 363C-04
2.756E-04
5.070E-04
8.633E-04
1.380k-03
2.091E-03
3.031E-03
4.230E-03
5.7151-01
7.507E-03
9.623E-03
1.208E-02
1.487E-02
1.802E-02
2.15 1E-02
2.534E-02
2.950E-02
3.399E-02
3.S79E-02
4.388E-02
4.926E-02
5.491E-02
6.080E-02
6.693E-02
7.327E-02
1.982E-02
6.654E-02
9.14E-0?
1.00SE-01
1.076E-01
1.149t-01
1.223E-01
1.298E-01
1.3174-01
1.450E-01
1.527E-01
1.605E-01
1.682E-01
1.760E-01
1.838E-01
1.916E-01
1.995E-01
2.013E-01
2.ISIE-01
2.228E-01
2.306E-01
2.383E-01

7.989E-06
2. 513E-05
6. 539E-05
1. 469E-04
2*941E-04
5.364E-04
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I.442E-03
2.174E-03
3.139E-03
4.365E-03
5.880E-03
7.703E-63
9.853E-03
1.234E-02
1.S17E-('2
1.835E-02
2. 187E-02
2. 574E-02
2.993E-02
3.445E-02
3.928E-02
4.441E-02
4.981E-02
5.549E-02
6.140E-02
6. 755E-0V2
7. 92E-02
8.0481:-02
8.722E-02
9.413E-02
1.012E-01
1.084E-01
1.157E-01
1.231E-Cl
1.306E-0t
1.382E-01
1.458E-01
1.535E-01
1.612E-01
1.690E-01
1.768E-01
1. 846E-01
I.924E-01
2.002E-01
2.080E-01
2.158E-01
2.236E-0I
2.314E-01
2.391E-Cl

9.050E-06 1.023E-05
2.787E-OS 1.084E-05
7.133E-05 7.770E-05
1.582E-04 1.702E-04
3.13SE-04 3.139E-04
5.671E-04 5.992E-04
9.527E-04 9.998E-04
1.505E-03 1.571E-03
2.260E-03 2.348E-03
3.24)E-03 3.362E-03
4.503E-03 4.644E-0l
6.048E-03 6.219E-03
7.903E-03 8.101E-03
1.009E-02 1.032E-02
1.261E-02 1.288E-02
1.547E-02 1.578E-02
1.869k-02 1.903E-02
2.224E-02 2.262E-02
2.614E-02 2.655E-02
3.0170-02 3.081E-02
3.492E-02 3.540E-02
3.978E-02 4.029E-02
4.494E-02 4.547E-02
5.017E,02 5.091E-02
5.6071-02 5.665E-02
6.201E-02 6.262E-02
6.818E-02 6.881E-02
7.457E-02 7.522E-02
8.11SE-02 8.t8lE-02
8.790E-02 8.859E-02
9.483F-02 9.553E-02
1.019E-O 3.026E-01
1.091E-01 1.098E-O
1.1641E-01 1.171E-01
1.238E-0 1.246E-01
1.313E-01 1.3210-01
1.389E-01 1.397E-01
1.466E-01 1.473E-01
1.541E-01 1.5501-01
1.620E-01 1.628E-01
1.698E-01 1.706E-01
1.776E-01 1.784E-01
1.854E-01 1.862E-Ok
1.912E-01 1.940E-01
?.010E-O 2.018E-01
2.088E-01 2.096E-01
2.166E-01 2.174E-01
2.244E-01 2.2521:-0
2.321E-01 2.129E-01
2.398E-01 7.4061-0l

1.153E-05 1.297E-35
).408E-05 1.759E-05
8.452E-OS 9.182E-05
1.829E-04 1.64E-04
3.553E-04 3.778E-04
6.326E-04 6.674E-04
1.049E-03 1.099E-03
1.639E-03 1.109E-33
2.438E-03 2.531E-03
3.478E-03 3.596E-03
4.788E-03 4.935E-33
6.393E-03 6.571E-03
8.11E-03 8.521E-03
1.056E-02 1.00LE-02
1.315E-02 1.341E-02
1.609E-02 1.640E-02
1.937E-02 1.972k-02
2.100E-02 2.331E-02
2.696E-32 2.738E-02
1.126F-02 i.173E-02
3.587E-02 1.635E-02
4.019E-02 4.130E-02
4.600E-02 4.654E-32
5.149E-02 5.205E-02
5.724E-02 S.78?E-02
6.323E-02 6.384E-02
6.944E-02 7.009E-02
7.587E-02 7.6521-02
8.248E-02 8.316E-02
8.928E-02 8.996E-02
9.6231-02 9.6931E-02
1.033E-01 1.043E-01
1.105E-O 1.113E-01
1.179E-01 1.186E-01
1.253E-01 1.261E-01
1.3281-01 1.336E-3k
1.404E-01 1.412E-01
1.481E-01 1.489E-O
1.558E-01 1.566E-01
1.636E-01 1.641E-01
1.713E-01 1.72tE-01
1.791E-01 1.799E-01
1.870E-01 1.817E-01
1.948E-01 1.956E-01
2.026E-01 2.034E-01
2.104E-01 2.112E-01
2.182E-01 2.190E-01
2.259E-01 2.267E-01
2.3371E-01 2.344E-01
2.414k-01 2.421E-31

1.456k-35 I.630E-O
4.138E-05 4.549E-05
9.962E-OS 1.019E-04
2.106E-04 2.255E-04
4.013E-34 4.260E-04
7.036E-04 7.412E-04
1.152F-33 1.206E-04
1.781E-03 1.855E-0
2.626E-03- 2.123E-03
3.7I8E-03 3.842E-03
5.085E-33 5.218E-03
6.752E-03 6.916E-01
8.737E-03 8.953E-01
1.105E-0? 1.130E-O
1.471E-32 1.400E-02
1.672E-02 1.704E-02
2.007E-32 2.042E-02
2.376E-02 2.415E-02
2.780E-02 2.822E-02
1.216C-32 1.261E-02
3.61E-02 1.712E-02
4.181E-02 4.232E-02
4.708E-32 4.762E-02
5.262C-02 5.319E-02
5.842E-02 5.901E-02
6.445E-02 6.507E-02
7.371E-02 7.135E-02
7.718k-02 7.783E-02
6.343E-32 8.450E-OP
9.065E-02 9.135E-0?
9.764k-02 9.834E-02
1.048E-01 1.055E-01
1.120E-01 1.127E-01
1.194E-01 1.201E-01
1.268E-01 1.276E-01
1.344E-01 1.351E-01
1.420E-31 1.427E-01
1.496E-01 1.504E-01
1.574k-01 1.581E-01
1.651E-31 1.659E-O
1.729E-Dl 41.7ME-01
1.807E-0 1.815E-01
1.885E-O 1.893E-0l
1.963E-01 1.971E-O
2.041k-31 2.049E-O
2.119E-01 2.127E-01
2.197E-01 2.205E-01
2.275E-01 2.283E-01
2.152E-31 2.360E-01
2.429E-01 2.417E-01



Table D.l (continued) r(1+ ) r(1+

is 0.0

0.60 2.445E-01
0.61 2.521k-O
0.62 2.597Tf-01
0.63 2.673E-01
0.64 2.748E-01
0.65 2.822E-01
0.66 2.896E-01
0.67 2.970E-01
0.68 3.042E-01
0.69 3.115E-01
0.10 3.186E-01
0.71 3.257E-01
0.7? 3.327E-01
0.73 3.396E-01
0.74 3.465-01
0.75 3.533E-01
0.76 3.601E-01
0.77 3.667E-01
0.78 3.713-01
0.79 3.790E-01
0.0 3.863E-01
0.81 3.926E-01
0.82 3.989E-01
0.83 4.051E-01
0.84 4.113F-01
0.85 4.174E-01
0.86 4.234E-01
0.7 4.293E-01
0.88 4.352E-01
0.89 4.409E-01
0.90 4.467E-01
0.91 4.523E-01
0.92 4.579E-01
0.93 4.634E-01
0.94 4.65HE-01
0.95 4.742E-01
0.96 4.195E-01
G.91 4.847E-01
0.993 4.899k-O
0.99 4.950E-01
1.00 5.00OE-01
1.01 5.0501-O
1.02 5.099E-01
1.03 5.147E-01
1.04 5.S95E-01
1.05 5.242E-01
1.06 5.289E-01
1.07 5.335E-01
1.08 5.380E-01
1.09 5.425E-01

0.001

2.452E-01
2.529E-01
2.605E-0 I
2.680E-01
2.755E-01
2.830E-0 I
2.904E-01
2.977E-01
3.050E-0 1
3.122E-01
3.193E-01
3.264E-01
31.334E-01
1.403E-01
3.472E-01
3.540E-01
3.607E-01
3.674E-01
3.740E-0 I
3.805E-01
3.0869E-01
3.933E-01
3.996E-01
4.058E-01
4.119E-01
4.180E-01
4.240E-01
4.299E-01
4.357E-01
4.415E-01
4.472E-01
4.529E-01
4.584E-01
4.639E-3 I
4.694E-01
4.747E-01
4.800E-0t
4.852E-01
4.904E-01
4.955E-01
5.005E-01
5.05'E-01
5. 104E-01
5. ISZE-0I
5.200E-01
5.247E-01
5.291E-01
S.339E-01
5.384E-01
5.429E-01

0.002 0.00

2.460E-0t 2.468E-01
2.536E-01 2.5,44E-01
2.612E-01 2.620E-01
2.688E-01 2.695E-01
2.763E-01 2.770E-OS
2.837E-01 2.845E-01
2.911E-01 2.918k-0l
2.984E-O 2.992E-O
3.057E-O 3.064E-01
3.529E-O 3.136E-01
3.200E-01 3.207E-01
3.271E-01 3.278E-01
3.341E-01 3.348E-OS
3.410E-01 3.417E-01
3.479E-01 3.486E-01
3.547E-01 3.554E-01
3.614E-01 3.621E-01
3.680E-01 3.687E-01
3.746E-Ol 3.753E-Ol
3.8LE-01 3.18E-01
3.875k-O 3.882E-01
3.939E-01 3.945E-01
4.002E-01 4.008E-01
4.064E-01 4.070E-01
4.125E-01 4.131E-01
4.186E-01 4.192E-01
4.246E-O 4.252E-01
4.305E-01 4.311E-01
4.363E-01 4.369E-01
4.421E-01 4.427E-01
4.478E-O 4.484E-01
4.534E-01 4.540E-01
4.590E-01 4.595E-01
4.645E-01 4.650E-01
4.699E-01 4.704E-01
4.752E-01 4.758E-01
4.805E-01 4.811E-Cl
4.857E-01 4.863E-01
4.909E-01 4.914E-01
4.960E-01 4.965E-01
5.OlOE-01 5.015E-O
5.060E-01 5.064E-01
5.108E-01 5.113E-01
5.157E-01 5.162E-01
5.204E-O 5.209E-01
5.2515-01 5.256E-01
5.298E-01 5.303E-01
5.344E-01 5.348E-01
5.389E-01 5.393E-01
5.434E-01 5.438E-01

0.004 0.005

2.475E-01 2.483E-01
2.551E-01 2.559E-01
2.627E-O 2.635E-01
2.703E-01 2.710E-01
2.778E-01 2.785E-01
7.852E-O 2.859E-01
2.926E-01 2.933E-01
2.999F-01 3.006E-01
3.371E-01 3.079E-O
3.143E-01 3.150E-01
3.214E-01 3.222E-01
3.285E-01 3.292E-01
3.355E-01 3.362k-O
3.424E-01 3.431E-01
3.493E-01 4.499E-O1
3.560E-01 3.567E-01
3.627E-01 3.634E-01
3.694E-01 3.700E-01
3.759E-O 1.766E-01
3.824E-01 3.831E-01
3.888E-01 3.895E-01
3.952E-01 3.958k-01
4.014E-01 4.020E-01
4.076E-01 4.082E-01
4.137E-01 4.143E-01
4.198E-01 4.20E-01
4.258E-01 4.263E-01
4.31E-01 4.322E-01
4.375E-01 4.381E-01
4.4321-01 4.438E-01
4.489E-01 4.495E-01
4.545E-01 4.551E-01
4.601E-O 4.606E-01
4.656E-01 4.661E-01
4.710E-01 4.715E-01
4.763E-O 4.769E-01
4.816E-01 4.821E-01
4.868E-01 4.87E-01
4.919E-01 4.924E-01
4.970E-01 4.975E-01
5.020E-01 5.025E-01
5.069E-01 5.074E-01
5.118E-O 5.121E-01
5.166E-01 5.171E-01
5.214E-01 5.219E-01
5.261E-01 5.265-01
5.307E-01 5.312E-01
5.35E-Ol 5.357E-01
5.398E-01 5.402e-01
5.443E-01 5.447E-01

0.006

2.490E-0I
2.567E-01
2.642E-01
2.71SE-01
2. 793r-01
2.867E-01
2.940E-01
3.013E-01
3.086E-01
3. 158E-01
3.229E-01
3.299E-01
3.369E-0I
3.438E-01
3.506E-01
3. 574E-01
3.64SE-01
3.707E-01
3.772E-01
3.837E-01
3.901E-01
3.964E-01
4.027-01
4.088E-01
4.150E-01
4.210E-31
4.269E-01
4.328E-01
4.386E-31
4.444E-01
4.501E-01
4.557E-01
4.612E-01
4.666E-01
4.720E-01
4.774k-01
4.826E-01
4.878E-01
4.929E-01
4.980E-01
5.010E-01
5.019E-0l
5.128E-01
5.176E-01
5.223E-01
5.270E-01
5.316E-01
5.362E-01
5.407E-Ot
5.451E-OL

3.007

2.498E-OS
2.574E-O
2.653E-01
2. 125E-O
2.803F-31
2.874E-O
2.949E-O
3.321E-3t
3.393E-01
3.165E-0S
3.236E-O0
3.306E-O
3.376E-O
3.445f-01
3.5 1E-315
3.583E-01
3.647E-O
3.713E-O
3.7 7E-OS
3.843E-01
3.907E-0 N
1.973E-01
4.033E-01
4.395E-01
4.156E-01
4.216E-31
4.275E-01
4. 36#E-01
4.392E-01
4.450E-01
4.506E-01
4.562E-01
4.617E-0
4.672f-Ol
4.726E-01
4.779E-01
4.831E-01
4.881Ef-31
4.934E-01
4.985E-O
5.035E-31
S.084E-01
5.133E-01
5.181E-01
5.228E-01
5.275E-01
5.321E-01
5.366E-01
5.411E-01
5.456E-01

0.008 0.009

2.506E-01 2.513E-01
2.582E-31 2.589E-O
2.656E-01 2.665E-01
2.733E-01 2.740E-01
2.807E-01 2.815E-0l
2.881E-31 2.889E-01
2.955E-01 2.962E-01
3.028k-01 3.035E-01
3.1009-31 3.107E-01
3.172k-01 3.179E-01
3.243E-01 3.250E-01
3.313E-01 3.320E-01
3.383E-01 3.390E-l
3.452k-01 3.458E-01
3.520E-31 3.521E-01
3.587E-01 3.594E-01
3.654E-01 3.661E-01
3.720E-01 3.727E-01
3.785E-01 3.92E-01
3.850E-01 3.856E-01
3.914E-31 3.920E-O
3.977E-01 3.983E-01
4.039E-O 4.045E-01
4.101E-31 4.107E-01
4.162E-31 4.168E-O
4.222E-01 4.22AE-01
4.281E-01 4.287E-01
4.340E--31 4.346E-01
4.398E-01 4.404E-01
4.455E-01 4.461E-O
4.512E-31 4.517E-01
4.568E-01 4.573E-0l
4.623E-01 4.6?8E-01
4.677E-31 4.684E-01
4.731E-31 4.736E-01
4.784E-DS 4.749E-01
4.837E-31 4.842E-O
4.888k-31 4.894E-01
4.940E-01 4.945E-Ol
4.990k-01 4.995E-01
5.040E-011 5.045E-01
5.089E-01 5.094E-01
5.137E-01 5.142E-01
5.185E-31 5.190E-01
5.233E-01 5.237E-O
5.279E-01 5.284E-01
5.325E-01 5.330E-01
5.371E-01 5.375E-01
5.416E-01 5.420E-01
5.450E-31 5.465E-01



Table D.2 Table for Estimation of Weibull Parameters r(1+ )

a 0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.10 3.629E 06 2.876E 06 2.292E 06 1.837E 06 1.479E 06 1.197f 06 9.736E 25 7.955E 05 6.529E 05 5.382E 05
).1 4.455E 05 3.703E 05 3.091E 05 2.589E 05 2.177E 05 1.838E 05 1.557E 05 1.323E 05 1.128E 05 9.652E: 04
0.12 8.283E 04 7.1311E 04 6.1571 04 5.332e 04 4.640E 04 4.032E 04 3.520E 04 3.082E 04 2.105E 04 2.380E 04
0.13 2.099E 04 .855E 04 1.644E 04 1.459E 04 1.299F 04 .158E 04 1.03SE 04 9.267E 03 8.315E 0) ?.474E 03
0.14 6.731E 01 6.013E 03 5.489E 03 4.970E 03 4.507E 03 4.094E 03 3.726E 03 3.395 03 3.099k 03 2.833E 01
ti.15 2.594f 01 2.378E 03 2.181E 03 2.00E 03 1.648E 03 1.703E 03 1.572E 03 1.451F 33 1.345E 03 1.246E 03
0.16 1.155E 03 3.071E 03 9.975E 0? 9.28E 02 8.650E 02 8.06SE 02 7.533E 02 1.040E 02 6.587E 02 6.169E 02
0.11 5.782E 02 5.426E 02 5.09SE 02 4.790E 02 4.506E 02 4.243E 02 1.999E 02 3.772E 02 3.561E 02 3.364E 02
0.18 3.181E 02 3.010E 02 2.851E 02 2.702E 02 2.562E 02 2.432E 02 2.309E 02 2.19SE 32 2.087E 02 1.986E 02
0.19 1.892E 02 1.813E 0? 1.719E 02 1.640k 02 1.566E 02 1.496E 02 1.430E 32 1.367F 02 1.308k 02 1.255E 02
0.20 1.200E 02 1.150E 02 1.103E 02 1.058E 02 1.016 02 9.759E 01 9.311E 01 9.016E 01 8.673E 01 8.346E 01
0.21 8.036 01 7.743E 01 7.459E 01 7.191E 01 6.936E 01 6.691E 01 6.461E 01 6.239E 01 6.328E 01 5.826E 01
0.22 5.633k 01 5.449E 01 5.212E 01 5.104E 01 4.942k 01 4.788E 01 4.640E 01 4.499E 01 4.061k 01 4.2311E 01
0.23 4.106E 01 3.986E 01 3.870C 01 3.759E 01 3.653E 01 3.551E 01 3.452E 01 1.157E 01 3.266E 01 1.179E 01
0.24 3.094E 01 3.013E 01 2.93SE 01 2.859E (.1 2.766E 01 2.116E 01 2.64SE 01 2.583L 31 2.520k 01 2.459E 01
0.75 2.400E 01 2.343E 01 2.288E 01 2.235E 01 2.184E 01 2.1346 01 2.086E 01 2.034E 31 1.994E 01 1.951E 01
0.26 1.909E 01 1.868E 01 1.028E 01 1.790E (1 1.753E 01 1.716E 01 1.691E 01 1.647E 01 1.614E 31 1.582E 01
0.27 1.551E 01 1.521E 01 1.492E 01 1.463E (1 1.436E 01 1.409E 01 1.383F 01 1.357E 2t 1.333E 01 1.309E 01
0.28 1.285E 01 1.2631 01 1.240E 01 1.219E 1 1.198E 01 1.117E 01 1.158f 01 1.1318 01 1.119E 31 1.101E 01
0.29 1.083E 01 1.065E 01 1.048E 01 1.032E 01 1.015E 01 9.997E 00 9.842E 00 9.691E 33 9.544E 00 9.401E 00
0.10 9.261f 00 9.124E 00 8.990k 00 8.859E h0 8.112E 00 8.607E 00 8.485E 00 81.66E 00 8.250E 00 8.136E 00
0.11 8.024E 00 7.916E 00 7.809E 00 7.705E 00 7.6011E 00 7.501E 00 7.406E 00 7.4106 03 7.217k 00 7.125E 00
0.32 7.33SE 00 6.948E 00 6.862E 00 6.178E 00 6.69SE 00 6.614E 00 6.535E 03 6.457E 00 6.381L 00 6.307E 00
0.33 6.234E 00 6.162E 00 6.092E 00 6.023E 00 5.955E 00 5.889E 00 5.824E 00 5.163E 30 5.697E 00 5.636E 00
0.34 5.575E 00 5.516E 00 5.458E OC 5.401E G0 5.34SE 00 5.290E 00 5.236E 00 5.183E 00 5.131E 00 5.079E 00
0.35 5.029E 00 4.900E 00 4.93t1 00 4.883E uO 4.836E 00 4.190E 00 4.745E 00 4.700F 03 4.657k 00 4.614E 00
6,.36 4.511E 00 4.530E 00 4.489E 00 4.448E 00 4.409E 00 4.370E 00 4.131E 00 4.294E 00 4.256E 00 4.220E 00
0.37 4.184E 00 4.14SE 00 4.114E 00 4.079E 00 4.045E 00 4.012E 00 4.979F 00 3.947E 00 3.915E 00 3.884E 00

0.18 3.853E 00 3.823E 00 31.793E 00 3.764E 30 3.745E 00 3.706E 00 3.6781E 03 3.650E 00 4.623E 00 1.596E 00
0.19 3.569E 00 3.543E 00 3.517E 00 3.492E 00 3.467E 00 1.442E 00 3.418 00 1.194E 00 3.170E 00 3.346E 00
0.40 3.323E 00 3.301E 00 3.278F 00 3.256E 00 3.234E 00 3.213E 00 3.1M1E 03 1.170E 03 3.150t 00 3.129E 00
0.41 4.109E 00 3.089E 00 3.0701E 00 3.050F 00 3.011k 00 1.012F 00 2.994E 00 2.915E 00 2.95YE 00 2.939E 00
3.42 2.421E 00 2.904E 00 2.886E OC 2.869E 00 2.853E OC 2.836E 00 2.820E 00 2.831E 00 2.7871 00 2.771E 00
0.41 2.756E 00 2.740E 00 2.725E 00 2.7110E 00 2.695E 00 2.680E 00 2.666E 03 2.651E 03 2.6371E 00 2.623 00

0.44 2.609t 00 2.595E 00 2.582E 00 2.568E 00 2.55SE 00 2.542t 00 2.529E 00 2.5166 00 2.504E 00 2.491E 00
0.45 2.479E 00 2.466E 00 2.454E 00 2.442E 00 2.430E 00 2.419E 00 2.407E 00 2.396E 00 2.384E 00 2.373E 00
0.46 2.162E 00 2.351E 00 2.340E 00 2.329E (0 2.319E 00 .2.308E 00 2.298E 03 2.287E 00 2.277E 00 2.267E 00

0.47 2.257E 00 2.2471t 00 2.218E 00 2.228E 00 2.218E 00 2.209E 00 2.199E 00 2.190E 03 2.181k 00 2.172E 00
0.48 2.163E 00 2.154E 00 2.145 00 2.136E 00 2.128E 00 2.119E 00 2.111E 00 2.102E 00 2.094E 00 2.086E 00
0.49 2.0771E 00 2.069E 00 2.0611 00 2.053E 00 2.046E 00 2.038E 00 2.030E 00 2.0?2E 33 2.015E 00 2.007E 00

0.50 2.000E 00 1.993E 00 1.985E 00 1.978E 00 1.971H 00 1.964E 00 1.957E 00 1.950E 00 1.943E 03 1.936E 00

0.51 1.930E 00 1.923E 00 1.916E 00 1.910E 00 1.9032 00 1.897E 00 1.890E 00 1.084E 00 1.878E 00 1.871E: 00
0.52 1.86SE 00 1.659E 00 1.853 00 1.847E 00 1.841S 00 1.835E 00 1.8291 03 1.873E 00 1.818E 00 11.812E 00
0.53 1.806E 00 1.801E 00 1.195k 00 1.7901 00 1.784E 00 1.179E 00 1.73E 00 1.768E 00 1.763E 00 1.757E 00
0.54 3.752E 00 1.741E 00 1.742E 00 1.737E 00 1.732S 00 1.727E 00 1.722E 33 1.71E 00 1.712E 00 1.707E 00
0.55 1.702E 00 1.698E 00 1.693E 00 1.688E 00 1.684E 00 1.679E 00 1.674E 00 1.673E 00 1.665E 00 1.661E 00

0.56 1.651Ei 00 1.652E 00 1.648E 00 1.643E 00 1.619E 00 1.635E 00 1.631E 03 1.621E 00 1.622E 00 1.618E 00

0.57 1.614E 00 1.610E 00 1.606E 00 1.602E 00 1.598E 00 3.594E 00 1.590E 03 1.586E 00 I.583E 00 1.579e 00
0.58 1.575E 00 .571E 00 1.567E 00 1.564E CO 1.560E 00 I.556E 00 1.551E 33 1.549E 33 1.5461 00 1.542E 00
0.59 1.548F 00 1.535E 00 1.531E 00 1.528E 00 1.52SE 00 1.521E 00 1.518E 03 1.514E 00 .511E 00 1.508E 00



Table D. 2 (continued) r(1+ 1)

0 0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.60 1.505E 00 1.501E 00 1.498E 00 1.495E 00 1.492E 00 I.489E 00 1.485E 03 1.482E 00 1.479E 00 1.476E 00
0.61 1.413E 00 1.470E 00 1.467E 00 1.464E 00 1.461E 00 1.458E 00 1.455E 00 1.452E 33 1.449E 00 1.446E 00
0.62 1.444E 00 1.441E 00 1.438E 00 1.435E 00 1.432E 00 1.430E 00 1.427E 00 1.424E 00 1.421E 00 1.419E 00
0.63 1.416E 00 I.413E 00 1.41tE 00 1.408E 0O 1.406E 00 1.403E 00 t.400E 03 1.398E 00 1.395E 00 1.393E 00
0.64 1.390E 00 1.388E 00 1.385E 00 1.383E 00 1.391F 00 1.378E 00 1.3761- 00 1.3713E 03 1.371E 00 1.369E 00
0.6S 1.366E 00 1.364E 00 1.362E 00 1.359E CO 1.357E 00 1.355E 00 1.35)E 00 1.350E 00 t.348C 00 1.346E 00
0.66 1.344E 00 1.341E 00 1.339E 00 1.337E 010 I.335E 00 t.333E 00 1.33tE 03 1.329E 00 1.327k 00 t.324E 00
0.67 1.122E 00 1.320E 00 1.318t 00 136E 00 1.314E 00 1.312E 00 t.310E 00 1.338E 00 1.306E 00 1.304E 00
n.68 1.332E 00 1.300E 00 1.299E 00 1.297E 60 1.295-z 00 1.293E 00 t.291E 03 I.289E 00 I.287E 00 1.285E 00
0.69 1.284E 00 1.282E 00 1.280E 00 1.278E 00 1.276E 00 1.275E 00 1.273t 00 1.271E 0) 1.269E 00 1.268E 00
0.10 1.266E 00 1.264E 00 t.262E 00 1.261E 00 1.259E 00 I.257E 00 1.256E 00 1.254E 00 1.252E 00 1.251E 00
0.71 1.249E 00 1.247E 00 1.246E 00 1.244E 00 1.243-c 00 1.241E 00 1.239E D3 I.233E 00 1.236E 00 1.235E DO
0.72 1.233E 00 1.232E 00 1.230E 00 1.229E 00 1.227E 00 1.226E 00 1.224E 00 1.223E 33 1.221E 00 1.220E 00
0.71 1.21BE 00 I.217E 00 1.2t5E 00 1.214C 00 I.212 00 1.211E 00 1.210E 03 1.23HE 00 1.207E 03 1.205E 00
0.74 1.204E 00 1.203E 00 1.20IE 00 I.200E 00 t.199E 00 1.197E 00 I.196E 03 1.195E 00 1.193E no 1.192E 00
0.75 1.191E 00 1. 9189E 00 1.188E 00 Is.187F 00 1.185SE 00 1.184E 00 1.183 00 1.182E.33 1.180t 00 1.179E Of)
0.76 1.178E 00 1.177E 00 1.175E 00 1.174E C0 t.173E 00 I.172E 00 1.171E 03 I.169E 00 t.16RE 00 1.i67E 00
0.77 I.166E 00 1.165E 00 1.163E 00 I.162E 1A 1.161E 00 1.160E 00 t.159E 03 1.1586 00 1.157t 00 1.155E 00
0.78 t.t54E 00 1.153E 00 1.t52E 00 t.151E 00 1.150E 00 1.149E 00 1.140E 00 1.147E 00 t.o4E 00 1.144E 00
0.79 1.143E 00 1.142E 00 I.141E 00 1.140E 00 1.139E 00 1.13RE 00 L.137E 03 1.136E 00 t.135E 00 t.134E 00
0.83 - 1.33E 00 I.132E 00 t.13lt 00 1.130E 00 1.129E 00 1.128E 00 1.127E 00 I.126E 00 I.125E 00 1.t24E 00
00.8t .123E 00 1.122E 00 1.121E 00 1.120E 00 1.119E 00 1.118E 00 1.117E 00 1.116F 00 1.116C 00 1.115E 00
0W I.114E 00 1.113E 00 I.112E 00 1.111E C-0 1.110z 00 t.109E 00 1.138E 33 1.107E 00 1.106E 00 1.106E 00

0.93 1.105E 00 1.104E 00 1.103E 00 I.102E 00 1.101E 00 1.100E 00 1.100E 00 I.099E 00 1.098E 00 1.097E 00
0.84 I.396E 00 1.095E 00 t.094E 00 1.094E C0 1.093S. 00 1.092E 00 1.091E 03 1.090E 00 1.390E 00 1.089E 00
0.35 1.388E 00 1.087E 00 I.086E 00 1.086E 00 I.085E 00 1.084E 00 t.083E 03 1.082E 33 l.082L 00 1.081E 00
0.86 1.380E 00 1.079E 00 1.079E 00 1.078E 00 1.077E 00 1.076E 00 1.076E 03 1.075E 00 1.074E 00 1.073E 00
0.87 I.073E 00 1.072E 00 t.071E 00 1.071E 00 1.070E 00 1.069E 00 1.068E 00 L.068E 03 1.067E 00 1.066E 00
O.818 t.066E 00 1.365E 00 1.*064E 00 1.063E 00 1.063E 00 t.062E 00 1.061E 00 1.0051E 33 I.060E 00 1.059E 00

. 0.89 1.059E 00 1.058E 00 1.057E 00 1.057E 00 1.056E 00 1.055E 00 I.055E 03 1.054E 00 1.053E 00 1.053E 00
0.90 1.052E 00 1.052E 00 1.051E 00 1.050E 00 1.050E 00 1.049E 00 1.048E 00 1.048E 00 1.047E 00 L.047E 00
0.91 t.046E 00 1.045E 00 1.045E 00 1.044E 00 1.043E 00 1 .04-3E 00 1.042E 00 1.042E 00 L.041E 00 1.041E 00
0.92 I.040E 00 1.039E 00 I.039E 00 1.038E 00 1.038E 00 1.037E 00 1.036E 00 1.036E 33 1.035k 00 1.035E 00
0.33 1.034k 00 t.034E 00 i,.033Ek 00 1.033E 00 1.032E 00 1.031E 00 1.031E 00 1.030E 00 1.030E 00 1.029E 00
0. 94 1.029E 00 1.028E 00 1.028E 00 1.027E 00 1.027E 00 1.026E 00 1.025E 00 1.025E 00 1.324E 00 t.024E no
0.95 Io.023E 00 I.023E 00 1.022E 00 1.022E GO 1.021E 00 t.021E 00 1.020E 03 1.020E 00 1.019E 00 t.019E GO
0.96 1.018E 00 1.018E 00 I.017E 00 1.017E 00 1.016E 00 1.016E 00 1.015E 03 1.015E 00 t.3l4E 00 I.014E 0n
0.91)7 1.o0Pi3E 00 1.013 00 1.0I1E 00 I.012E 00 1.012E 00 1.011E 00 1.011E 30 1.313E 00 1 ..0 I0E 00 1.009E 0 0
0.98 1.009E 00 1.008E 00 1.00RE 00 1.007E 00 1.007E 00 t.007E 00 1.006E OD t.006E 00 1.035E 00 1.005E 00
0.99 1.004E 00 1.0O04E 00 I.003E 00 1.003E 00 1.003E 00 1.002E 00 1.002E 00 1.001E 00 I.001E 00 1.000E 01
1.00 1.000E 00 9.996E-01 9.992E-01 9. 9 87E-C0I 9.983E-01 9.979E-01 9.975E-01 9.971E-01 9.967E-01 ,9.o963E -0 1
1.01 9.959E-01 9.954E-01 9.950E-0t 9.946E-01 9.942E-01 9.938E-01 9.934E-01 9.933E-31 9.927E-01 9.923E-01
1.02 9.919E-01t 9.9t5E-01 9.9t1E-01 9.907E-0L 9.903E-01 9.899E-01 9.895E-01 9.892E-31 9.888E-01 9.884E-01
1.03 9.880E-01 9.877E-01 9.873E-01 9.869E-01 9.865E-01 9.362E-01 9.858E-01 9.854E-01 9.851t-01 9.847E-01
1.04 9.843E-01 9.840E-01 9.816E-01 9.833E-01 9.829Ei-01 9.8261E-01 9.822E-01 9.818E-01 9 .8 15E-3 t 9.811E-01
1.35 9.90dE-01 9.804E-01 9.801E-0t 9.798E-01 9. 794E -0 t 9.791E-01 9.787E-01 9.784E-01 9.780E-31 9.777E-01
1.06 9.774E-0L 9.77DE-01 9.767E-01 9.764E-01 9.760E-01 9.757E-01 9.754E-0L 9.751E-01 9.747E-01 9.744E-01
1.07 9.741E-01 '9.738E-01 9.734E-01 9.73E-01 9.728k-01 9.725E-01 ).722E-01 9.M9-31 9.7I16-01 9 .712?E - 0
I.D8 9.709E-01 9.706E-01 9.703E-01 9.700E - 01 9.6972-01 9.694E-01 9.691E-01 9.689E-01 9.695E-01 9.682E-01
1.09 9.679E-01 9.676E-01 9.673E-01 9.670E-01 9.667E-n1 9.664E-01 9.661E-01 9.658E-31 9.655E-31 9.652E-01



Table D.3 Table for Estimation of Weibull

0.10
0.11
0.12
0.13

0.15
0.16
0.17
0.18
0.19
0.20
0.2L
D.22
0.23
0.24
0.25
0.26
0.27
* .28
0.29
0.30
0.*31
0.32
3.*33
0.34
-.a35
0.36
0.37
C.38
0.39
D.4a
0.41
0.*42
.43

0.44
0.45
0.46
8.47
0.48
0.49
0.50
0.51
..52
0.53
3.54
0.55
0.56
0.57
C.58
0.59

2.433E
1. 089E
1.374E
3.771E
1.877E
1.489E
1.7112
2.650E
5. 239E
1.267E
3.629E
1.197E
4.455E
1.838E
8.283E
4.232E
2.099E
1. 158E
6.731E
4. 094E
2.594E
1.703E
1. 155E
8..68E
5. 782E
4.243E
3.181E
2.432E
1. 892E
1. 496E
1.200E
9.759E
8.036E
6.693E
5.633E
4. 788E
4.136E
3.551E
3.094E
2.716E
2.400E
2. 134E
1.939E
1,716E
1.551E
1.409E
1.285E
1.177E
1.083E
9.997E

0.201

1.339E
6.748E
9.295:
2.726E
1.429E
1.181E
1.402E
2.23&E i
4.508E I
1.111E
3.229E I
1.079E
4.U6)E
1.691E
7.683E
3.766E
1.972E
1.095E
6.3922
3.90 E
2.4.83E
1.636E
1.113E
7.795E
5.603E
4.119E
3.094E 4

2.3696
1.846E
1.462E
1.175E
9.566E
7.886E
6.575E
5.5402
4.7132E
4.045E
3.501E
3.053E
2.682E
2.371E
2. 110E
1.888E
1.699E
1.536E
1.396E
1.274E
1.167E
1.74E
9.919E

0.' 2

7.470E
4.222E
6.334E
1.982E
1. ̂93E
9.40E I
1.152E
1.882E
3.886E
9.747E
2,876E I
9.736E
3.7o3E
1.557E
7.13iE'
3.52'E I
1.855E I
1.035E I
6.073E I
3.726E I
2.378E
1.572E I
1.07-E 4
7. 533E .4

5.426E 4
3.999E 4
3.01wE I
2.309E 4
1.803E
1.433E 4
1.15 E 4
9.378E I
7.744E
6.46E IL
5.449E
4.64 E 4
3.986E
3.452E 1
3.01i
2.648E
2.343E 4
2.086E
1.86eE
1.68:E 4

1.521E 2
1.383E 4
1.263E 4
1.158E 4

1.065E 4
9.842E

0.3V33

4.223E
2. 668E
4.348E
1.450E
8. 398E
7.510E
9.500E
1.591E
3.357E
8.568E
2.566E
8.795E
3.381E
1.434E
6.624E
3.293E
1.746E
9.791E
5.772E
3.556E
2.278E
1.511E
1.034E
7.281E
5.257e
3.884E
2.929E
2.251E
1.76 E
1.398E
1.126E
9.195E
7.598E
6.349E
5.360E
4.568E
3.927E
3.4C4E
2.973E
2.615E
2.315E 
2.0§3E
1.848E
1.664E
1.56E
1.370E
1.251E
1.148E
1.057E
9.766E

O.04

2.418E
1.701E
3.006E
1.066E
6.480E
6.020E
7.853E
1.349E
2.905E
7.544E
2.292E
7.955E
3.091E
1.323E 4

6. 157E I
3.082E I
1.644E 4
9.267E
5.489E 4

3.395E 4
2.183E 4

1.453E I
9.975E 4

7. 4CE 4
5.095E I
3.772E 4
2.851E 4
2.195E 4
1.719E
1.367E I
t.133 4
9.016E 4
7.459E 1
6.239E
5.272E
4.498E i
3.870E 4

3.357E
2.9352 4
2.583E
2.288E
2.039t 4
1.828E 4

1.647E I
1.492E 4

1.357E 4
1.240E 4
1.1382 1
1.048E
9.6912 E

Parameters

1.401E
1. 95E
2.092E
7.880E
5.4.21E2:
4.842E 4
6.51iE'
1.146E I
2.518E 4
6.653E I
2.051 I
7.202E I
2.827E 
1.221E 4
5.728E
2.886E 1
1.548E I
8.776E
5.222E 4
3.243E I
2...93E 1
1.397E 4

9.622E
6.8 9E
4.940E 4
3.665E 4

2.775E
2.140E I
1.679E I
1.337E1
1.080E I
8.42E 4
7.324E 4

6.132E
5.187E
4.429E
3.814E I
3.311E 
2.896E I
2.551E I
2.261E 4
2.^17E
1.89E 4

1.631E 4

1.478E I
1.345E I
1.230E 4
1.129E
1.040E I
9.617E

0.~)06

8.220E
7.11E -
1.466E
5.856E
3.906E
3.3890E
5.411E
9.759E
2.188E
5.876E
1.837E
6.529E
2.589E
1.128E
5,332E
2.705E
1.459E 4
8315E
4.969E I
3.099E I
2.07 !NI
1.345E I
9.283E
6.587E
4.79 E
3.561E I
2.702E
2.087E
1.64)E
1.38E
1.058E
8.673E
7.191E
6.028E
5.104E
4.361E
3.759E
3.266E
2.859E
2.523E
2.235E
1.994E
1.79:2E
1.614E
1.463E
1.333E
1.219E
1.119E
1.032E
9.544E i

4. 878E
4.656E
1.034E
4.374E
3.051E
3.164C-
4.539E
8.327E
1.904E
5.197E
1.647E
5.924E
2.373E
1.043E
4.967E
2,536E
1.376E
7.881E
4.732E
2.962E
1.925E
1.294E
8.960E
6. 374E
4.645E
3.461E
2.631E
2.036E
1.602E
1.280E
1.037E
8.508E
7.0622
5.926E
5.022E
4.296E
3.706E
3.222E
2. 822E
2.489E
2.209E
1.973E
1.771E
1.598E
1.450E
1.321E
1.208E
1. 11 1
1.024E
9.4726

2.928E
3- 75E
7,343E
3.283E
-2.393E
2.569E
3.767E
7 121E
1.6592
4.634E
1.479E
5.3825
2.177E
9:652E
4463C E
2 380E
1.299E
7.474E
4- 537E
2.633E
1.848E
1.246E
8.650E
6.169E
4 5 6E
3,364E
2,562E
1: 986E
1.566E
1.253E
1. 16E
8.3462
6 936E
5 826E
4.942E
4.231E
32653E
3.179E
2.786E
2.459E
2.184E
1,951E
1,753E
1.582E
1.436E
1.309E
1.198E
1.111E
1.015E
9.4'1E

1.776E
2.48E
5,246E1
2.477E
1.884E
2.093E
3.1.55E i
6,122E I
1449E i
4.385E I
1.23)E 4
4.894E I
1.999E I
8.93j6E I
4.319E 1
2.234E i
1.226E I
7.:91E I
4.295E I
2.7132 1
1.774E I
1.199E I
8.353E I
5.972E I
4.372E i
3.271E I
2.496E i
1.933E I
1.53'E I
1.226E I
9.957E I
8.189E 1
6.813E I
5.728E I
4.664E
4.166E
3.6.1E
3.136E I
2.751E
2.429E I
2.159E I
1.93.E
1.734E I
1.567E 4

1.422E I
1.297E I
1.188E I
1.092E I
1.038E 
9.332E I

I

2r a +
a



Table D.3 (continued)

0.0 0.001

0.6)
0.61
0.62
*63

0.64
0.65
0.66
0.67
0.68
0.69
0.10
0.71
0.72
0.73
B .74
0.75
0.76
1. 77
0.78
10.79
0.80
0.81
1'-.62
0.83

. 84
0.85
0.86
.9.87
0.*88
0.89
0.90)
0.91
0.92
0.93
0.*94
0.95
0.*96

0.98
0.99
1.0;
1.01
1.02
1.03
1.04
1.05
1.06
I .07
1.08
1.09

9.261E
8.607E
8.024E
7.503E
7.035E
6.614E
6.234E
5.8896
SO.575E
5.290E
5.029E
4.7906
4571E
4.370E
4.184E
4.012E
3.853E
3.706E
3.569E
3.442E
3.323E
3. 213E
3.1396
3.012E
2.921E
2,836E
2.756E
2.680E
2.609E
2.542E
2.479E
2.419E
2. 362E
2.308E
2.257E
2.209E
2.163E
2.119E
2.077E
2.038E
2.0006E
1.964E
1.930E
1.897E
1.865E
1.635E
1.806E
1.179E
1.752E
1.727E

r(1+ 2

0.006 0.007

9.192E
8.546E6
7. 970E
7.454E
6.991E
6.574E
6.198E
5. 856E
5.546E
5.263E
5.004E
4.768E
4.553E
4.350E
4.166E
3.996E
3.838E
3.692E
3.556E
3.431E
3.312E
3.2C2E
3.C99E
3.003E
2.912E
2.828E
2.748E
2.673E
2.602E
2.535E
2.472E
2.4136
2.356E
2.303E
2.252E
2.204E
2.158E
2.115E
2.073E
2.034E
1.996E
1.960E
1. 926E
1.893E
1.862E
1.832E
1.833E
1*776E
1.750E
1.724E

0.402

9.124E I
8.485E I
7.916E
7.40LE I
6.946E 4
6.535E
6.162E
5.824E
5.516E 4
5.236E 4
4.98.E iE

4.745E 4
4.53;E i
4.33:E I
4.148E i
3.979E
3.823E 4
3.678E 4
3.543E 4
3.418E 4
3.30iE 4
3.19.i 
3.089E I
2.994E 4
2.904E 4
2.82:E 4
2.74-E i
2.666E I
2.595E I
2.529E I
2.466E
2.407E 4
2.35E 4
2.298E 4
2.247E 4
2.199E I
2.154E
2.111E
2.069E 4
2.0363E I
1.993E I
1.957E I
1.923E 4
1.89.E I
1.859E I
1.829E I
1.81E I
1.773E I
1.747E I
1.722E I

0.003

9.056E I
8.425E
7.862E I
7.35E
6.904E 4
6.496E 4

6.127E 4

5.792E I
5.487E 4
5.209E 4
4.955E 4
4.723E 4
4.509E 4
4.312E 4
4.131E 4
3.963E I
3.8086 0
3.664E 4
3.530E 4
3.436E I
3.289E 4
3.181E 4
3."79E
2.984E 4
2.895E
'2.811E 
2.733E 4
2.658E
2.589E 4
2.523E 4
2.46'E
2.401E I
2.345E 4
2.293E 4
2.242E 4
2.195E 4
2.149E 4
2.V6E
2.0656 I
2.026E 4
1.989E I
1.953E i
1.919E I
1.887E i
1.856E I
1.826E I
1.798E I
1.771E i
1.744E I
1.719E I

0.004

8.990E i
8.366E 4
7.896 
7.310E E
6.862E I
6.457E 4
6.092E 4
5.760E 4
5.458E I
5.183E I
4.931E I
4.730E I
4.489E I
4.294E 1
4.114E I
3.947E 4
3. 793E 4
3.650E 4
3.517E 1
3.394E f
3.278E
3.7E 
3.07JE I
2.975E 4
2.886E
2.803E I
2.725E i
2.651E 1
2.582E I
2.516E 4
2.454E 4
2.396E I
2.340E I
2.287E 4
2.238E 4
2.190E 4
2.145E 4
2.102E I
2.061E I
2.022E I
1.965E i
1.950E I
1.9166 I
1.884E (
1.853E I
1.823E
1.795E
1.768E I
1.742E 4
1.717E (

0.005

8.924E I
8.307E I
7.757E I
7.263E 1
6.819E I
6.419E 
6.057E I
5.728E I
5.429E i
5.157E I
4.907E I
4.678E I
4.4686E I
4.275E I
4.096E I
3.931E
3.778E 
3.636E I
3.5(4E I
3.382E 
3.267E I
3.160E I
3. 60E I
2.966E I
2.878E I
9.795E I
2.717E I
2.644E
2.575E I
2.510E I
2.448E I
2.390E I
2.335E I
2.282E I
2.233E I
2.185E I
2.141E '
2.098E I
2.057E I
2.019E I
1.982E I
1.947E I
1.913E I
1.881E I
1.850E I
1.820E I
1.792E (
1.765E I
1.739E I
1.714E I

8.859E
8.250E
7.705E
7,217E
6.778E
6.381E
6.023E
5. 697E
5.401E
5. 131E
4. 883E
4.657E
4.448E
4.256E
4.079E
3.915E
3.764E
3.623E
3.492E
3.37E
3.256E
3. 150E
3.050E
2.957E
2.869E
2.787E
2.710E
2.637E
2. 568E
2.504E
2.442E
2.384E
2.329E
2.277E
2.228E
2.181E
2.136E
2.094E
2.053E
2.015E
1.978E
1. 943E
1.910E
1.878E
1.847E
1.8186E
1.79E
1.763E
1.737E
1.712E

00
0&
00
0O
00
0
00
00
00
03
00
tj .
00
0

00
00
:' I
00
00

00
00.
00-
00
00
00
03
00
00
00

00
00
0 .
no
00
00

0 
00
00)
00
00
0..
00
00

00
00

8.795E
8.1926
7.654E
7.171E
6.736E
6. 344E
5.989E
5.666E6
5.373E
5. 105E
4.860E
4.635E
4.428E
4.238E
4.062E
3.900E
3.749E
3.609E
3.479E
3.358E
3.245E
3.139E
3.041E
2.948E
2.861E
2.779E
2.702E
2.630E
2.,562E
2.497E
2.436E
2.379E
2.324E
2.272E
2.223E
2. 176E
2.132E
2.390E
2.049E
2.011E
1.975E
1.940E
1.906E
1.874E
1. 844E
1.815E
1.787E
1.760E
1.734E
1.71E

00
00
00
00
00
00
00
00
00
00
00
00
00

00
00

00
00
00
00
003

00
: 0

00

00
00
00
30
00
00
00
00
00

00
o0r
00
00

00
00
00
00
00

00
00

j0

0.006

8.732E 4
6.136E i
7.6'3E I
7 125E I
6.695E 1
6)3:7E
5.955E I
5.636E I
5.345E I
5.79E I
4.836E i
4.614E I
4.439E I
4,220E 4
4- 45E 1
3.846 4
3.735E
3a596E I
3.467E i
3.346E I
3;234E I
3>129E I
3. 31E 
2,939E I
2.853E I
2.771E I
2.695E i
2.623E I
2.555E I
2.491E i
2.430E I
2,173E I
2.319E I
2.267E I
2.218E 
2.172E i
2.128E
2.386E I
2.046E i
z.. :7E
1.971E I
1.936E I
1.903E I
1.871E I
1,841E 4
1.812E I
1.784E I
1,757E I
1.732E I
1.7C7E 4'

0.009

8.669E
6.082E
7.553E
7.060E
6.654E
6.27:E
5.922E
5.635E
5.317E
5. 054E
4.813E
4.592E
4.389E
4.2.2E
4.329E
3.869E
3.72'E
3.583E
3.454E
3.335E
3.223E
3.119E
3.022E
2.93 E
2.844E
2.764E
2.688E
2.616E
2,549E
2.485E
2.424E
2.367E
2.313E
2.262E
2.214E
2.167E
2.123E
2.082E
2. 042E
2.0'4E
1.967E
1.933E
1.92 E
1.868E
1.636E
1.809E
1.781E
1.755E
1.729E
1.7:5E

iA
wA
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APPENDIX E

COMPARISON OF FITTING TECHNIQUES

E.1 Introduction

Two fitting techniques were discussed in Section 2.3, the method

of moments and the method of least squares. The method of moments was

used in Chapter III to examine the fatalities distributions of nuclear

risks and non-nuclear risks. In this appendix, the two methods are

compared with regard to the residual mean squares and the estimates of

the parameters. The comparisons are based on the Weibull distribution.

The data distributions examined are the early fatalities distribu-

tions of hurricanes, average of U.S. reactors and PWR accidents at Site

A.

E.2 Fitting Techniques

E.2.1 Method of Moments

The method of moments was used in Chapter III to estimate the

parameters. In the Weibull distribution, the estimates of the shape

factor a and the scale factor q are obtained by solving the following

equations:

[r 1 )2 2
22

2 = _____(E. 1)
r(1+ ) M2

M

1 =(E.2)

where

M = the first risk moment.
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M 2 the second risk moment.

a = the normalization constant.

I(.) = the Gamma function.

E.2.2 Method of Least Squares

The shape factor and the scale factor are estimated by minimizing:

2

12 n ~cxi, a2  i ln F. - ln [a - exp - -- } (E.3)
n- 2

where

F = complementary cumulative frequency assigned to the
i

data i.

x = magnitude of the consequence of the data i.

n = total number of the data.

The natural logarithm is used in the least squares because the frac-

tional errors of the frequencies have comparable magnitudes rather than

the absolute errors of the frequencies. The non-linear least-squares

program in the DCRT Mathematical and Statistical Package of National

Institute of Health (Ref-9) is used. The initial values for the

iterative calculation in the method of least squares are obtained from

the results by the method of moments. The number of iterations

required are from 6 to 8 to reach the convergence level of 10~4.

E.3 Basis for Comparison

The two fitting techniques are compared on the following basis:

(1) In Chapter III the Weibull distribution was found to be
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within the error bounds of the data distribution when the

parameters were estimated by the method of moments. The

method of least squares is examined to determine if it

satisfies the same criterion.

(2) The residual mean squares for the two methods are compared.

S = I [C - ln a - exp [2 (E.4)
n -2 i ( 1

where 8 and ^ are the estimates of the Weibull parameters.

(3) The estimates of the risk moments are obtained from the

least-squares estimates of the parameters.

M, = a - - r(1+ z) (E.5)

2 2
2 = a - 2 - +Z) (E.6)

where M, and M2 are the estimates of the first two risk

moments. The fitting errors of the risk moments are examined

in the method of least squares. In the method of moments the

estimates of the risk moments by Eqs. (E.5) and (E.6) are

equal to the data values.

For the nuclear curves, the fitting errors are also compared with

the regression errors in the regression analysis of the population

distribution. When the fitting errors are smaller than the regression

errors, the selection of the fitting techniques does not significantly

affect the investigation of the relationship between the risk distribu-

tions and the population distribution variables.

E.4 Comparison of Fitting Techniques

The early fatalities distributions of hurricanes, average of U.S.
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100 commercial reactors and PWR accidents at Site A are examined in

the following sections.

E.4.1 Hurricanes

The normalization constant and the lower end of the domain were

determined in Section 111.4.3 as:

a = .63/year

x =0
0

The residual mean square, the estimates of the parameters and the risk

moments by the two fitting techniques are given in Table E.l. The

complementary cumulative distributions derived from the estimates of

the parameters are shown in Fig. E.1 along with the data. The bands

attached to the data points are the 90% confidence bounds.

Fig. E.1 shows that the Weibull distributions by the two techniques

are both within the 90% confidence bounds of the data. The method of

least squares gives somewhat higher probability for the largest

consequence. The method of moments gives somewhat higher probability

values in the region of medium and low consequences. The residual mean

square of the least-squares fitting is smaller by a factor of 1.8 than

that of the method of moments. Since the method of least squares gives

slower rate of decrease in the tail, the estimates of the risk moments

are somewhat larger than those of the method of moments, which are the

data value. In conclusion, the selection of the fitting techniques is

judged not to have significant effect.

E.4.2 Average of U.S. Reactors

The normalization constant and the lower end of the domain were
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determined in Section 111.5.3 as:

a = 4.72 x10 /reactor year

x0 =0

Thd results of the fittings are given in Table E.1 and Fig. E.2. The

uncertainty ranges of the data are represented by factors of 5 and 1/5

on the probability and by factors of 4 and 1/4 on the magnitude. Fig.

E.2 shows that both of the fitted distributions are within the

uncertainty ranges of the data. The residual mean square of the method

of least squares is smaller than that of the moment fitting by approxi-

mately 15%. The risk moments estimated by the least-squares fitting

are smaller than those of the data values and the moments fitting. The

differences are a factor of approximately 0.9 for the first risk moment

and a factor of approximately 0.7 for the second risk moment. Since

the 90% error bounds in the regression analysis in Chapter V were

factors of 1.3 and 1/1.3 for the first risk moment and factor of 1.6

and 1/1.6 for the second risk moment, the selection of the fitting

techniques is judged not to have significant effect in this study.

E.4.3 PWR Accidents at Site A

The normalization constant and the lower end of the domain were

determined in Section 111.5.4 as:

a = 5.78 x10 7/reactor year

x0 0

The results of the fittings are given in Table E.1 and Fig. E.3. The

uncertainties of the data are represented by factors of 5 and 1/5 on
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the probability, and 4 and 1/4 on the magnitude. Fig. E.3 shows that

both of the fitted curves are within the uncertainty ranges of the data.

The residual mean square by the least squares method is smaller than

that of the moment method by approximately 20%. The differences of the

risk moments between the two methods are a factor of 1.05 for the first

risk moment and a factor of 0.95 for the second risk moment. These

errors are within the 90% error bounds of the regression analysis

performed in Chapter V and are judged not to have significant effects

in the regression results.

E.5 Conclusion

The Weibull fittings determined by the two methods are within the

uncertainty ranges of the data for all of the examined curves. The

method of least squares gives smaller residual mean square than the

method of moments, however the differences are less than a factor of 2

for the examined events. The errors of the estimates of the risk

moments by the method of least squares are within the 90% error bounds

in the regression analysis in Chapter V.

In conclusion, the selection of the fitting techniques is judged

not to have significant effects on the analysis in this study.



240

Table E.1 Comparison of the Fitting Techniques in the Fatalities
Distributions

Type of
Risk

Hurricanes

Average of
U.S. Reactors

PWR Accidents
at Site A

Variables
Compared

Residual Mean

Shape Factor

Scale Factor

Risk Moments

Residual Mean

Shape Factor

Scale Factor

Risk Moments

Residual Mean

Shape Factor

Scale Factor

Risk Moments

Square

TI

Mi

M2

Square

S

TI

Mi

M 2

Square

S

TI

Mi

M2

Fitting Technique

Method of
Moments

.107

.387

7.48 x 101

1.72 x 102

5.64 x 105

.194

.371

2.45 x 101

4.60 x 1075

6.45 x 10-2

.102

.570

2.91 x102

2.72 x 10-4

5.77 x 10-1

Method of
Least Squares

.060

.301

5.18 x 10'

2.96 x 102

4.12 x 106

.170

.380

2.33 x 10'

4.06 x l0-5

4.65 x 10-2

.081

.616

3.40 x 102

2.85 x 10-4

5.51 x 10-1
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APPENDIX F

BELL-SHAPED POPULATION MODEL

F.1 Introduction

The bell-shaped or gaussian population distribution discussed in

Section V.8 is discussed again here in more detail. A numerical

example is also given to show the applicability of the model. The bell-

shaped population model allows the evaluation of the risk of nuclear

reactor accidents to be performed for each of the cities and towns

surrounding the nuclear power plants.

F.2 Bell-Shaped Population Model

The population distribution of a city or a town is idealized by

a bell-shaped population model shown in Figure F.l. The population

distribution is symmetric about its center. Its total population is

NT, the distance of the center from a reactor is R and 90% of the total

population are living in a radius of 2aR. Now consider the (rC)

coordinate in Fig. F.l. The population per unit area at (r,;) is

expressed as

p(r,) - T (r -R) 2 - - (F.1)

2TaR R R

Since the regression equations in Chapter V are based on the (r,e)

co-ordinate, an approximation is made based on the assumption that a

city or a town is in a 22- degree sector, i.e.,
2

2aR < *R (F.2)
R 8
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Based on this assumption, the population per unit distance at r in a

22- degree sector is approximated by:

n.(r) f p(r,c) d4 = NT exp 1- 2  (F.3)

_W27aR 2aR

The population distribution in a 22- degree sector is also expressed2

by a gaussian distribution. When the city or town is large enough to

cover a number of sectors, the populations of the city or town are

divided into separate population groups, each of which can be expressed

by a gaussian distribution with respect to r.

The bell-shaped population model is thus applied to each of the

cities and towns surrounding the nuclear power plant. The population

distribution in a 22- degree sector is expressed by the series of the

bell-shaped distributions as:

L. 2
j (NT)z (r -R )

n.(r) = E - exp [ 2 ] (F.4)

where the subscript Z refers to each of the population groups involving

cities and towns. L. is the total number of the population groups in

the direction j.

F.3 Estimation of the Risk Moments

Using the transfer functions derived in Chapter V, the risk moments

are estimated for the bell-shaped population distribution. The transfer

functions used here are:

a(r) = a, -exp [-a2 * r] (F.5)

b(r,r') = b1 - exp [-b 2- (r+r')] exp [-b3 - Ir-r'|] (F.6)

c(r) = cI - exp [-c 2 - r] (F. 7)
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The first risk moment is estimated by:

e0

N, = Z J a(r) -n. (r) dr
j 0

= Z f a, - exp [-a 2 0 r]
j 0

rL
j (NT) e

-E - exp
Z~l '27(aR) i

L 2
j a (aR.j 

= (NT) - a1  exp I-a2R+ 2
j %=1

x 1 - expf-
0 42 7r(aR) Z

r (r-R)
- dr

2a 2

x

) dr

The integral in Eq. (F.8) is rewritten as:

7 exp{
0 /7 (aR) Z

I- ~2' 2
r-R +a 2 R )

2 dr
2 - (a)

-R exp 2 2] 

-R +a *(a R)~ Zl021 (CaR) Z 2 -(a R)ZI
(F. 9)

2
where = r -iR + a2  (aR ). The approximation is made here based on

the assumption as:

-R+ a2  (aR)2 < - 2 (aRE (F.10)

Then the integration range in Eq. (F.9) is from less than -2 (aR to

infinity. Therefore the integral in Eq. (F.9) is greater than .97,

which is approximately unity. Then Eq. (F.8) is approximately expressed

as:

L 2L. ra - (aR )2
M1 = Z Z (NT) - a, - exp -a2 * R + 2

j z=1

The second risk moment M2 is calculated to be:

(F.11)

(F.8)
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M = E f f b, - exp [-b2 - (r+r')] exp [-b3 - r-r'|] n.(r)

j 0 0

- n.(r) - dr - dr' (F.12)

The term exp [-b 3 - r - r'I] in this equation indicates the simultaneous

occurrence of deaths at r and r'. The term decreases by an order of

magnitude when the interval between r and r' is more than 2.3/b 3 * 2/b3 -

The approximation can be made of calculating the second risk moment

for each population group separately if the distance between the two

adjacent population groups is more than 2/b3'

[RX+1 - 2(aR)z2 +l] - [R + 2 (aR z] > 2/b3  (F.13)

where the subscripts Z and (t+1) refer to the adjacent population groups

and the population outside the radius of 2aR are ignored.

Then the risk moment M is calculated to be:

L

M2 = Z E f f b - exp [-b2 -r +r')] exp (-b3 -r - r']
j Z=l 0 0

(N )2 (r-R )2 (r' -R 2 (F.14)
x T 2 exp 2 exp 2 dr- dr'

21r (a R z 2 (cR) 2 2(a R)

Eq. (F.14) still requires a numerical integration. Further approxima-

tion is made here. For a small town whose radius 2aR is smaller than

1/b3, the term exp [-b3  Ir -r'I1 is approximated by 1.

2aR < 1/b3  (F.15)

Then the interpretations of r and r' can be separated and the second

risk moment becomes:
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L.
3 2 2 2

M = E (NT) , exp [-2 - b 2 - R +b2 R Z] (F.16)
j 1=1

Finally, the normalization constant is calculated from the distance

to the closest town or city.

a = c exp [-c2 -d.] (F.17)

d. = R - 2 - (aR)l. (F.18)

where R and (R )lj are the center distance and deviation, respective-

ly, of the closest population group in the direction j. The populations

outside the radius of 2-aR are ignored in Eq. (F.18)

Once M , M2 and a are obtained, the scale factor and the shape

factor of the Weibull distribution can be obtained using Eqs. (3.27) and

(3.28) in Chapter III. The entire risk distribution can then be

derived.

The constraints of the derived equations are discussed here. In

estimating the first risk moment by Eq. (F.11), the following con-

straints should be considered:

(1) The population group is in a 22- degree sector. (Eq. (F.2))
2

2(aR < - R (F.19)

(2) From Eq. (F.10),

R > a2  R (a + 2 -(aR)Z (F.20)

The first constraint Eq. (F.19) can be removed in the estimation of the

first risk moment. Let nT(r) be the total population per unit r at

r from the reactor.
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nT (r) = E n (r) (F.21)

Then the first risk moment is estimated by:

M, - f a(r) - nT(r) - dr (F.22)
0

In the integration over ; in Eq. (F.1) to calculate the total population

per unit distance nT(r), the assumption (F.2) is not required. However

the integration over 6 is still approximated by the integration over C.

When the distance R is greater than 2 (aR), the error of the approxima-

tion is small. Therefore the constraint of Eq. (F.20) is sufficient.

The total population nT(r) is also expressed by the series of the bell-

shaped population distributions. The first risk moment can then be

estimated from the following equation without considering the direc-

tions:

a . (aR)2

M = Z (NT a1 - exp [-a2 - R + 2 ] (F.23)

The constraint of this equation is:

R > a2 * a + 2 - (aR) (F.24)

In estimating the second risk moment by Eq. (F.16), the following

constraints should be considered:

(1) 2 - (aRR (F.25)
(R Z 8 

(2) ![R Z+1 - 2-((OR) £+l~ [R z + 2-(a R)z 11 > 2/b, (F.26)

(F.27)(3) 2 - a R < 1/b 3



251

In Eq. (F.16), the assumption of (F.25) cannot be removed.

In deriving the normalization constant by Eqs. (F.17) and (F.18),

the assumption of (F.25) is necessary.

F.4 Application of Bell-Shaped Model to Site A

The adequacy of the bell-shaped population model will be studied

by the population distribution of Site A. The population per unit

distance in a 22.5 degree sector are fitted by the series of the bell-

shaped distributions given by Eq. (F.4). The method for deriving the

constants of the bell-shaped model is discussed first.

F.4.1 Derivation of Constants of Bell-Shaped Model

The population data in the annular segments given in Appendix C

are used to derive the constants of the bell-shaped model. The first

step in the derivation is to separate the population distribution into

a series of the population groups. Fig. F.2 shows the population per

mile in each of the 16 directions around Site A as a function of

distance from the reactor. The population groups are identified by

the peaks in Fig. F.2. The neighbouring groups are bunched into one

group when their peaks are within 1 mile distance. A total of 44

population groups are identified within 20 miles from the reactor.

The next step is to fit each population group by a bell-shaped

model. For presentation, an example in Fig. F.3 is considered. The

population in the segments are denoted by v and the central distances

of the segments from the reactor are denoted by r in Fig. F.3. The

population in the segments in Fig. F.3 are assumed to belong to one

population group. The total population in the group is given by:
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Table F.1 Constants of Bell-Shaped Model and First Two Risk Moments for
Site A

Direction Index

N

NNE

NE

ENE

E

ESE
SE
SSE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23

Population
N

1,420
823

1,349
9,667
1,918
3,807

15,340
61,340

517
27,410
10,420
5,264
4,423
6,088

14,203
12,090
28,920
1,394
4,523
2,620

10,580
4,620

696

Miles
from
Reactor
R

1.8
3.3
6.2

12.0
2.8
5.5
9.2

17.5
.8

4.8
7.5

12.6
22.3
3.8
5.8
11.4
19.7
1.3
4.0
9.0

19.2
9.3

22.5

Risk Moments

Radius

aR
(miles)

.25

.25

.46
2.1

.49
.46

1.28
3.9

.25

.87

.57
1.4
2.8
1.23
1.59
1.06
3.23

.25

.78
1.0
4.4

.25

1.7
4.1
1.2
5.7
1.3
5.2
3.0
5.3
1.2
6.4
4.3
1.3
1.0
2.2
2.4
5.5
4.9
2.3
1.6
4.9
5.2
6.4

10-5
10-6
10-6
10~
10-5
10-6
10-6
10~7
10-5
10-5
10-6
10~7
10-9
10-5
10-5
10~
10~8
10-5
10-5
10-7

10-8
10-8

.8 3.8 10-11

1.2
1.4
5.0
7.2
1.1
6.3
9.1
2.3
3.1
5.8
1.2
1.0
1.6
6.3
9.5
1.1
5.9
1.6
2.7
2.8
3.4
6.4

10-2
10-3
10-4
10~4
10-2
10-3
10-3
10-3
10-3
10-1
10-2
10-4
10~7
10-2
10-2
10-3
10-5
10-2
10-2
10-4
10-5
10-4

1.4 10~9

(continued)
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Table F.1

(continued)-

Direction Index
Population
N

Miles
from
Reactor
R

Risk Moments

Radius

aR
(miles)

S
SSW
SW

WSW

W

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

NNW

9,386
787
777

6,962
399

1,180
569
941

14,082
14,870
1,518
1,679
12,090

977
1,547
1,020

615,300
3,542
1,638
1,697
6,591

23.2
11.3

2.3
19.7

5.5
11.2

1.8
3.3

11.3
19.7

1.8
3.3

12.3
3.3
5.5

13.8
40.7

2.6
8.3

14.1
19.7

2.5
.42
.25

2.1
.5
.38
.25
.25

2.3
2.0

.25
.25

2.86
.25
.50
.42

5.1
.80
.71
.88

1.80

Total of the Risk Moments

Results of the Consequence Calculation

8.9 x 10-10
3.4 x 10-8
7.1 x 10-6
4.0 x 10-9
5.2 x10~7
5.2 x 10-8
7.0 x 10-6
4.7 x 10-6
1.5 x 10-6
1.9 x 10~9
1.9 x 10-5
8.4 x 10-6
1.2 x 10-6
4.9 x 10-6
2.2 x 10-6
9.7 x 10~9
5.3 x10~1'
2.9 x 10-5
4.4 x 10-7
1.4 x 10-8
3.0 x 10-9

3.00x 10~4

2.72 x 10-4

3.2 x 10~7
4.6x 10-6
2.5 x 10-3
1.6 x 10-6
7.0x 10-5
1.1 x l05
1.9 x 10-3
1.8 x 10-3
2.7 x 10-3
7.1 x 10-6
1.3 x 10-2
5.7 x 10-3
1.4 x 10-3
1.9 x 10-3
1.1x 10-3
1.3 x 10-6
7.0 x 10-8
4.5 x 10-2
1.7 x 10~4
3.2 x 10-6
1.3 x 10-6

9.2 x 10-1

5.8 x 10-1

(Note): The first risk moments are estimated from the constants of the
transfer function of PWR accidents in the northeastern valley
weather condition.
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NT = E vk (F.28)
k

The distance of the center of the group from the reactor is estimated

by:

E vkrk

R = kN (F.29)

The deviation from the center of the population group is estimated by:

R= Z vk (rk-R) (F.30)
aR Y N (F30v T

When the tails of the two population groups are overlapping in one

segment, half of the population in the segment is assigned to each of

the population groups.

The constants of the population groups are estimated for Site A

and are given in Table F.l.

F.4.2 Estimation of Risk Moments at Site A

The first two risk moments for the population group Z are estimated

by:

a2

(M = a, - N - exp [-a2Rz + - -a ] (F.31)

(M2)i = b - N2 - exp [-2b2 R + b2 a2] (F.32)

where al, a2 , b, and b2 are the constants of the transfer functions

discussed in Chapter 5. The numerical values of the constants for PWR

accidents in the northeastern valley weather condition are used. The

results are given in Table F.1. The summations of the risk moments of

the population groups give the total risk moments of Site A. The

estimates are compared with the results of the consequence calculation.
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The first risk moment from the bell-shaped model is overestimated by

approximately 10% and the second risk moment is overestimated by

approximately 60%.

The normalization constant a is estimated by Eqs. (F.17) and

(F.18). Using the numerical values of PWR accidents, a is estimated

as

a = 5.57 x 10~ /reactor year

The results of the consequence calculation is:

a = 5.78 x 10-7/reactor year

The difference of these estimates of the normalization constant is less

than 4%. The distribution of consequence vs. frequency is estimated

by Eqs. (3.27) and (3.28) from IM, M2 and a of the bell-shaped popula-

tion model and compared to the results of the consequence calculation

in Fig. F.4. The distribution estimated by the bell-shaped population

model is within the uncertainty range of the consequence model discussed

in Section 111.5.2. Therefore the bell-shaped population model is

judged to be adequate to describe the population distribution.

Some insight about siting for nuclear power plants can be obtained

from Table F.1. A contribution of 20% to the first risk moment and 60%

to the second risk moment comes from the population group with 27,410

population at 4.8 miles in the northeast direction. The existence of

this population group has a dominant contribution to the tail behavior

of the curve. Approximately 50% of the first risk moment comes from

numerous small towns with the populations between 500 and 5000 located

within 4 miles from the reactor. The existence of these towns have
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dominant effects on the main body of the curve. The large city of

61,340 at 17.5 miles in NNE and the metropolitan area of 615,300 at

40 miles in NW have insignificant contribution to the risk moments

(less than 1%), since the probability of early fatality decreases

sharply as the distance from a reactor increases. In this specific

example, small towns and a city of 27,000 within 5 miles have dominant

contributions to the risk distribution.
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A E Results of
Consequence
Calculation
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00
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Fig.F.4 Comparison of the Estimates from the Pell-Shaped Population
Model to the Results of the Consequence Calculation (Site A )
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APPENDIX G

EFFECTIVE SOURCE

G.1 Introduction

In the regression analysis of radioactive releases, a concept of

the effective source was introduced to combine the release fractions

of the eight isotope groups into one variable. The reasons for

introducing the effective source were the following:

(1) Early fatalities are caused by the combined effects of the

doses from the eight isotope groups.

(2) The release fractions of the eight isotope groups are

correlated with each other because similar physical processes

underlie in the release mechanisms for all of the isotope

groups.

The effective source was defined as a weighted sum of the release

fractions of the eight isotope groups. The weighting factors were

derived from the inventories of the radioisotopes, the dose conversion

factors and the dose-response relationship. In this appendix, the

rationale of derivation of the weighting factors and the source data

of the numerical values are discussed.

G.2 Derivation of the Effective Source

In the consequence model, 54 important radioactive isotopes are

considered. The 54 isotopes are grouped into 8 isotope groups and the

release fractions are estimated for the eight isotope groups. From the

inventory of the isotope (j) and the release fraction of the isotope

group (g) to which the isotope (j) belongs, the amount of the isotope



262

(j) released into the environment is given by:

Q. - I. - qg - exp [-A. -T ] (G.1)

where Q released amount of the isotope (j). [Ci]

I inventory of the isotope (j) in the reactor core. [Ci]

q 0)= release fraction of the isotope group (g) to which

the isotope (j) belongs.

A = radioactive decay constant of the isotope (j). [/hour]

Tr - time of release. [hour]

The exponential term in Eq. (G.1) accounts for radioactive decay before

the release. When the build-up from the radioactive decay of the

parent isotope is significant, the following term is added to Eq. (G.1):

exp [-A -T ] - exp [-A. -T ]

I - q 9, ()*- p r . (G.2)p ~gI(p) A. -A r(G2

where the subscript (p) refers to the parent isotope of the isotope (j)

and g'(p) is the isotope group to which the parent isotope (p) belongs.

From the gaussian dispersion model used in the consequence model,

the ground level airborne concentration at the distance r from the

reactor is given by:

X (r) = exp -- (G.3)
i 2 ra a zu 202

where Xj (r) = ground level airborne concentration of the isotope

(j) at the distance r from the reactor. [Ci-sec/m 3]
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a , az = dispersion parameters. [m]

u = wind speed. [m/s]

h = elevation of the release. [m]

Since the early fatalities are expected in a close area from the

reactor, the radioactive decay after the release is ignored in deriving

the effective source.

From the concentrations of the radioactivities the health effects

are calculated. Among the various organs in a human body, three organs

are particularly critical in causing early fatalities. They are bone

marrow, lung and gastrointestinal tract. The dose to these organs

consist of three modes of exposure. They are inhalation dose, cloud

shine dose .and ground shine dose. The inhalation dose to the organ (k)

from the isotope (j) is calculated from the airborne concentration:

(DI)(k)(r) = B - (C) (k) . X (r) (G.4)

where (D )(k) (r) = inhalation dose to organ (k) from the isotope
I 3

(j) at the distance r. [rem]

B = breathing rate. [m3/sec]

(C )(k) - inhalation dose conversion factor of the isotope

(j) to the organ (k). [rem/Ci]

Similarly, the cloud shine dose is determined by:

(DC k) r = sC- (CC) k) - X (r) (G.5)

where (D )(k) (r) = cloud shine dose to the organ k from the isotope
C i



264

(j) at the distance r. [rem]

sC = cloud shine shielding factor.

(CC k) = cloud shine dose conversion factor of the isotope

(j) to the organ (k). [rem -m 3/Ci-sec]

* = correction factor for the finite cloud.

Practically the correction factor for the finite cloud is close to unity

where early fatalities are expected. It will be ignored in the

following calculation.

The ground shine dose is proportional to the radioactivity

deposited on the ground as:

(DG)k)(r) = s (G )(k) .G (r) (G.6)

where (DG (k) = ground shine dose to the organ (k) from the isotope

(j) at the distance r. [rem]

s G ground shine shielding factor.

(CG k) = ground shine dose conversion factor of the isotope

(j) to the organ (k). [rem- m2 /Ci secl

G (r) = concentration of the isotope (j) desposited on the

ground. [Ci/m 2]

In a case without rain, the ground concentration is proportional to the

ground level airborne concentration as:

G (r) = X1 (r) - (Vd)j
(G. 7)
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where (Vd) is a deposition velocity of the isotope (j).

The total dose to the organ (k) is a sum over all the isotopes

and over the three modes of exposure:

D k) r) = E (D)k) (r) + (DC) k) (r) + (D k) (r) (G.8)

From Eqs. (G.4) through (G.8), the total exposure is determined as:

D k) (r) = Z B-(C )(k) - X (r) + sC C7 k) - X (r) +

+ SG (CG) k) (Vd)j Xg (r)

(G.9)

EZ B - (C) (k C Cj + sG G (k) d (Vj

Inserting Eqs. (G.1) and (G.2) into Eq. (G.9):

D k) (r) = Z [B (C ) k) + sC (Cc )k) + s (CG) k) d(Va) X

2  (G.10)

xI. q exp (-X. T r a az ur 21r)cr rju2er y(- 2a

The risks resulting from the damages to the three organs compete

with each other, but practically one of them has a dominant effect on

early fatalities. That is the dose to the bone marrow. To assure the

dominance of the bone marrow dose over the doses to the other two

organs, the doses are normalized by the dose-response relationship. As

the mortality criteria are often stated in terms of the dose that would

be lethal to 50% of the exposed population (denoted by LD50), the doses

are normalized as:
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(k)

(k) DT (r)
E () = (k (G. 11)

(LD)(k)
50

where E(k) (r) = normalized dose to the organ (k) at the distance

r.

(LD) ( = 50% lethal dose to the organ k.

The organ that has the largest value of E (k) (r) has a dominant contri-

bution in causing fatalities. Inserting Eq. (G.10) into Eq. (G.11)

and rewriting the summation over isotopes in two steps of summation,

one over the isotopes in each of the isotope groups and then over the

eight isotope groups, the normalized dose to the organ (k) is given by:

E (k) (r) 1 x [(_ h- x Eq x
y2-a y-az u 2a2 g (G.12)

Z B- (C) (k)+sC- )CC k)+sG -(CG (k). Vd}Ij je e TR
in itg Gi (dj

(LD)50)

The weighting factors of the isotope groups are defined as:

k -Zi B-(CI)(k)+sCO(C C) (k)+sG (C Gc k)(Vd) jI.-eX -TR

(k) a in gk
g 

(LD50 (k)
(G. 13)

Then, the effective source *$(k) is defined as:

$(k) =Zq 0(k) (G.14)
gg

a(k) and * (k) are independent of the distance r. The normalized dose
g

E (k) (r) is simply rewritten as:
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E(k)(r) = 2( a az-u 2 (k) (G.15)

Then

= 2r-a -az-u - exp + - E k)(r) (G.16)

z

(k)
At the distance that the dose to the organ (k) is equal to LD5 0 '

E (k) (r) =1. Therefore, ( is interpreted as the inverse of the

1 h2
dispersion factor 27-a -a -u exp -- at the distance where 50% of

y z z

the exposed population are lethal due to the damage to the organ (k).

The organ that has a dominant effect on causing early fatalities

can be identified by comparing *(k), s. Then the overall effective

source is defined as:

$ = Max fMARROW LUNG G.I. G.17)

Practically in most of the release categories,

== *MARROW (G.18)

G.3 Source of Data for Deriving Weighting Factors

The weighting factor was defined in the previous section as:

) E B(C) (k)+sC-(CC )(k)+sG-(CG k),(V d)j3Ij-jTR

(k) ,3in g( Ij C C

Sing 50) (k) (G.19)

The data for estimating Q k)are given in Tables G.1 through G.5.
g

Table G.l .gives the radioactive inventory I. and the half-life. The

decay constant X . is derived from the half-life by:
J
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= .693 (G.20)
3 (T ).

where (T ). is the half-life of the isotope (j). Tables G.2 through

G.4 summarize the dose conversion factors. Table G.5 summarizes the

miscellaneous data in Eq. (G.19).

G.4 Numerical Values of Weighting Factors

The weighting factors derived from Eq. (G.19) are shown as

functions of the time of the release (T r) in Figs. G.1 through G.3.

These figures show that the changes of the effective source in the

range of 1 hr < Tr -30 hrs are small except for iodines and noble gases.

The effects of the time on the weighting factors of iodines and noble

gases are accounted for by assuming the equivalent half-lives for these

groups. The effective half-lives are determined from Fig. G.1 through

G.3. The results in Table G.6 are used to determine the effective

source in Chapter VI.
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Table G.2 Dose Conversion Factor for Bone Marrow

ISC7T.PE I %ALAr i CLOUD S!iINE GROUNU ITEk
I KEM/CII) (KE"-St6/M**3) I AEM-SA:C/M**2e)

CC-58
CO-60
KK-145
KR-85'
KR-37
KR-88
RB-86
SR-89
SR-90
SR-91
Y-90
Y-91
ZR-95
2R-97
N8-95
MO-99
TC-99M
RU-103
kU-IC5
RU-IC6
RH-105
TE-127
7E-127M
rE-129
TE-124M
TE-131M4
rE-132
SB-121
S-129
I-131
1-132
1-133
1-134
1-135
XE-133
XE-135
CS-13*
CS-136
CS-131
BA-140
LA-140
CE-141
CE-143
CE-144
PR-143
N-147
NP-239
PU-234I
PU-239
PU-240
PU-24i
AV-241
CM-24i
Vs-244

7.95E 02
2.00E O
6.10-21
3.90E-01
1.30E 00
3.10E 00C
3.25E 03
3.35E 03
6.10E 03
2.15E 02
4.70E 02
1.43k 03
6.70b 02
1.9 "" 02
5.75E 02
1.25E 32
1.10E 01
4.05t 02
2.43E 01
4.40E 02
2.30E 01
3.90E 00
1.82E 02
1.10t 00
3.15e 02
3.OJE C2
9.4-E 02
3.131 Z2
4.6.t 01
1.SOE 52
5.40E 01
9.35E '1
2.3.E 01
9.10E 01
1.6OE 00
2.1E 3L.
4.95E 03
3.SSE 03
3.25E 03
2.13E 33
6.7'E 32
1.13E 02
9.55E 01
2.35E 02
1.78E 01
1.40E 02
6.20E 01
1.71E 02
1.59E 32
1.64E 02
4.20E-02
2.6S 02
2.03E.02
2.0LL 02

2.40E-01
6.31E-l
5.78E-04
5.50E-02
1.92E-wL
4.83E-01
2.27E-02
3.:
3.0
1.931E-01

6.39E-04
1.8f -E-1
4.72E-J
1.83E-01
4.44E-02
5.42E-02
1. 36e-1 I
2.21E-01
5.22E-2
2.74t-02
1.16E-03
1.79E-03
1.81E-02
9.92E-03
3.56&:0 1
7.31E-j2
1.84t-01.
2.97E-01
1.04E-31
5.89E-JL
1.83k-01
5.89E-01
4.425-31
1.59E-02
8.47t-02
4.03E-01
5.42E-.1
L.4 9 E-1 I
5.61E-02
6.06E-01
3.22E-02
9.36iE-)2
7. 616-33
0.0
4.39E-02
4.97t-2
4.25E-a5
2. 17E-05
3.896-35I
S.53E-13
9. 33E-. 4
3.89E-05
2.81E-.3

6.15E 01
1.48E 32
1.4dE-0L
7.85E 00
9.65E 30
5.95E ;1
5.45E Q:

3.0
5.13E 01
).-
1.50t-O
4.73E 31
3.35E al
4.58* 01
1.56E 01
3.7 E JO
3.58E Ji
3.22E J1
1.33E ;1
6.40E J
2.27E-01
2.04E 0
1.216 0
7.10E 30
3.55E 01
1.09E 02
4.53E 01
4.13E al
2.73t 31
5.65E 1
4.06E 01
2.286E 01
9.uE 31
6.55E J0
1.56E 01
1.32E 02
1.32E 32
3.701E 01
2.50E 31
1.31E 32
9.25E 30
2.41b 31
3.92E #0
0.0
1.24E W1
1.74E 01
1.19t-i
5.95E-02
l.v9E--1
5.15k-06
7.33E 00
1.02E-1
1.62E 30

270



Table G.3 Dose Conversion Factor for Lung

ISCTLP- IN6IALAt L. 3LOUD SHIE GROUU 'aMV4

IVtaE/C II (REM4-S E./M**5 E - /

CC-58
CD-6.;
KR-85
KR-35-4
KR-87

Rb-86
SR-89
SR-90
SR-91
Y-90
Y-91
L-95
2R-97
MS-95
MO-99
TC-99M
RU-103
RU-ICS5
RU-)o

TE-121
TE-12714
Tk-129
TE-129M
TE-131MM
TE-132
S-127
S-129
1-131
1-132
I-133
I-134
1-135
XE-133
XIE-135
CS-134
CS- 136
CS-137
8A-140
LA-140
CE- 141
CE-143
CE-144
PR-143
N0-147
?IP-239
PU-23h
PU-239
PU-240
PU-241,
AM-241
CM-242
CM-244

5.2.O 04
2.5.E 0S
1.8&c0L
2.1.E-01
9.60E-31
2.3JE 00
1.4.E 04
7.8.E 03
1.4ZE 34
4.23E 33
3.3.E 04
1.9.E 05
1.10E -15
1.50E 34
3.00E .4
1.o0E -j4
8.90E i
5.20E 34
2.20E .3
1.60k 6
3.60t 3
1.60E 03
1.10E ..5
5.6 E 32
1.501 .'5
1.10E -34
3.JJE -4
2.50E 34
3.2sE 03
2.40E 03
1.3E 03
3.10k 03
5.6JE 2
2.52E 03
4 -IE-01
9.4CE-31
3.40E 04
8.20E 03
2.5.E 4
6.33E :3
1-60E 04
6.1 LA .4
1.33E -4
1.403'1 6
4.90E 04
3.74E 24
9.2.E .3
7.32E zI
6.5CE 07
6.6jE .7
2.20E Co4
7.01 )I
5.50E 07
3.83E '6
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2.01E-01
5.67E-01,
4.47E-,44
3.22E-J2
1.72E-01,
4.47E-01
L.94E-%2
3.3 '

3.)
1.60E-01

5.94E-;4
1.52E-01.
4.030E-02
.56E- L

3.421-02
2.54E-%02
1.05E-01
1.67E-w I
4.06E-02
1.61E-02
8.78E-04
5.61E-04
1.35L-02.
6.97E-03
2.94E-01
4.19E-02
1.43t-01
2.53E-.1
8.22E-02
4.831E- L
1.46E-01
5.00E-01
4.o E- 1
6.97E- .3
5.6e-32
3.28E-01
4.44E-J1
1-15E-J1
4.14E-02
5.39E-01
1.5'E-Q2
6.8E-02
3.44E-33
0.0
2.78E-02
2.65t-02
9.58E-06
5.42E-06
9. 17E-06
2.94t-10
3.22t-03
8.31E-06
I.7E-43

So-LSE 3 1
1.33C 02
1.15E-iL
4.61E sO
d.65e 00
5.55E J1
4.63E 0
3.J
3.u

1e40E-CE
3.86E ;I

6.55E a&
3.91E Al
1.091 31
4.A6 30
2.16E 01
2.43E 7 i
1.03E 01
3.76E 00
1.71E-l1
6.70E-0i
9.05E-01
5.10E 00
6.95E A
3.45E I1
3.531E 1
3.49E 01
2.38E 21
4.61E 1t
3.25E 4t
1.93E 01
7*03E j l
2.88E 00
9.451 0
8.33E 01
1.8E Jl
2.92E 01
1.98E U
1.17E OZ
3.82E 30
1.57E 41
2.49E o0
0.0
7.85E 30
9.35E 00
2.73E-02
1.48E-32
2.57E-.2
1.76E-06
2.42E 0
2.18E-Z2
6.20E-31
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Table G.4 Dose Conversion Factor for Gastrointestinal

Tract

IscrtLb. IAHALArIuN CLLUL SHINL GRCUNO HINE
(REM/C1) (REM-SEC/M**3) (REM-SEC/M*2)

CC-58 4.28k 03 1.42E-%1 3.63E 4i

CL-60 1.01E 34 4.61E-C1 1.09E 02
KR-135 6.12E- 2 3.42E-w4 9.80E-2
KR-SS!A 9.46E--Z 2.02E-u2 2.88E 00
KR-87 8.10E--,1 1.43E-01 7.2wE I0

KR-S8 2.07E 3U 3.83E-01 4.75E 01

RH-36 1.4'E .3 1.33E-02 3.19E 00

SR-d9 6.86E :3 3. 3.C

SR-90 9.10 C.
S-91 1.43E 3J 1.21E-01 3.12E 01

Y-90 2.6.E 24
Y-91 2.3.JE .4 5.39E-J4 1.27E-01

ZR-95 3.92E 21 1.1%E-G1 2.79E Q1
LR-97 1.10E 049 3.17E-02 5.05E 01
Nb-95 3.11E .3 L1.07E-u1 2.69E w!

MO-99 7.4.E :3 2.52t-02 7.80E 00

7C-99P 6.93E 3: 1.58E-02 2.53E a0

Ru-103 2.03E 03 8.03E-C2 2.11E 01

RU154.92E -2 1.25E-,51 1.81E 01
RU-IC6 8.88E 4 3.08E-02 7.85k 00

RH-10S 4.3WE 32 1.1-2 2.35E 0O
TE-127 1.79E 02 6.64E-04 1.29E--1

TE-127M 3.57E :3 1.38E-04 1.93E-A1

TE-129 2.56i 00 9.92E-03 6.651-01

TE-129M 1.53E --4 5.36E-03 3.73E 0

TE-131M 5.35E 03 2.14E-01 5.u5E I'
7E-132 3.3.E !3 2.61E-02 6.25E I
SS-127 9.10E 33 1.06t-01 2.63E 01
58-129 4.86E *2 1.85e-01 2.56E 01

1-131 7.26E 31 6.22E-02 1.57E aI
1-132 4.44E L1 3.64E-J1 3.461E 1i

1-133 1.52E 02 1.13t-O 2.51E 01

1-134 1.72t :I 3.61E-01 1.40e 01

1-135 1.08E 02 3.33E-01 5.83E ,

XE-133 1.3,E-II 3.97E-J3 1.64E JO

XE-135 4.85t-01 3.196-02 6.00E 30

CS-134 2.1UE 13 2.41E-01 6.10E 01

CS-136 2.32E .3 3.*14E-t01 7.65E j1

CS-137 9.12E .2 8.78E-02 2.23E 4)

SA-140 7.84E 33 3.08E-02 1.56E il

LA-140 1.37E )4 4.58E-01 9.901 01

CE-141 1.2.1 )3 9.17E-.,J 2.34E 30

CE-143 5.76E 33 4.-6E-V2 1..4E 01

CE-144 8,52E 34 2.061-03 L.84e 00
PR-143 6.75E 03 0.0 300
NO-147 3.99C ;3 1.97E-32 5.55E J0

NP-239 1.4E :3 1.66E-32 5.851 0.

PU-238 5.00E 03 le41E-05 3.98E-.2

PU-23I 4.60E 33 6.03E-06 1.641-02
PU-240 4.7E )3 1.27E-45 3.55E-.2

PU-241 0.- 1.64E-10 90o-47

A5-24. e23E ;3 1.8CE-i3 1.35E JO
CM-242 5.50E 03 1.31E-05 3.46E-02

CM-244 5.2.E Xl 6.ZSE-04 3.63E-01
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Table G.5 Miscellaneous Data for Deriving Weighting Factors

Parameter Value

Breathing rate BU)

Shielding factors

Ground shine dose(2), s

Cloud shine dose 3), se

Deposition velocity(
4 )

Iodine vapor and particles

Noble gas

50% lethal dose(5)

Bone Marrow

Lung

Gastrointestinal Tract

Time of release

2.66 x10-4 m /sec

.50

1.0

10-2 m/s

0 m/s

510 rem

20,000 rem

3,500 rem

See Table 6.1

(Note): (1) From Section 8.2.3 in Appendix VI of WASH-1400 (Ref-1).

(2) From Table VI 11-9 in Appendix VI of WASH-1400 (Ref-1).

(3) From Table VI 11-7 in Appendix VI of WASH-1400 (Ref-i).

(4) From Section 6.3.1 in Appendix VI of WASH-1400 (Ref-1).

(5) From Fig. VI 9-1, VI 9-2, VI 9-3 in Appendix VI of

WASH-1400 (Ref-l).
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Table G.6 Weighting Factors of Isotope Groups for Effective Source

Organ

Bone Marrow

Lung

G.I. Tract

Isotope
Group

Kr - Xe

I()

Cs -Rb

Te - Sb

Ba -Sr

Ru

La

Kr - Xe

I (1)

Cs - Rb

Te - Sb

Ba - Sr

Ru

La

Kr - Xe

S(1)

Cs - Rb

Te - Sb

Ba - Sr

Ru

La

Weighting Factor 0

5.73 x 103 + 7.90 x 104 exp [-.20 - Tr]

7.81 x 105 exp [-. 058 - Tr]

5.64 x104

2.54 x105

5.01 x 105

2.28 x 105

1.77 x 106

1.21 x 102 + 1.6 x 103 exp [-.20 - Tr]

3.35 x 104 exp [-.058 - Tr]

7.43 x 103

6.83 x104

3.22 x104

9.53 x105

4.28 x 106

4.18 x 10 2 + 8.2 x 103 exp [-.20 - Tr]

7.70 x 104 exp [-.058- Tr]

4.08 x 103

6.18 xl104

1.69 x 105

2.92 x 105

1.53 x 106

inorganic iodines are included.lOrganic iodines and
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APPENDIX H

REGRESSION RESULTS OF THE CONSTANTS OF b(r,r') AND c(r)

WITH REGARD TO RELEASE CHARACTERISTICS

The regression fittings of the constants of the transfer functions

b(r,r') and c(r) are made in the same way as the analysis of a and a2

in Section VI.6. The results are summarized in the following tables

and figures:

Table H.1 Data Base for Regression of b1 , b2 and b 3

Table H.2 Data Base for Regression of c, and c2

Table H.3 Regression Result of bi

Table H.4 Regression Result of b2

Table H.5 Regression Result of b3

Table H.6 Regression Result of c,

Table H.7 Regression Result of c2

Fig. H.1 Test for Adequacy of Regression of bi

Fig. H.2 Test for Adequacy of Regression of b2

Fig. H.3 Test for Adequacy of Regression of b 3

Fig. H.4 Test for Adequacy of Regression of cl

Fig. H.5 Test for Adequacy of Regression of c2

Fig. H.6 Examination of Combined Result of b(r,r')

Fig. H.7 Examination of Combined Result of c(r)
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Table H.1 Data Base for Regression of bi, b2 and b3

Calculation Case

PWR- 1A

PWR - lB

PWR - 2

PWR - 3

PWR -4

BWR - 1

BWR - 2

BWR- 3

Additional Cases (1):

5.68 x 10-3

2.27 x 10-3

1.72 x 10-3

1.40x 10-2

3.40 x 10-2

2.78 x 10-3

2.83 x 10-3

6.40 x 10-3

1 3.18 x10-3

2 3.14 x 10-3

3 1.09 x 10-2

4 1.59 x 10-2

5 4.22 x 10-3

6 3.77 x 10-3

7 2.43 x 10-3

8 3.14 x 10-3

9 2.15 x 10-3

10 1.92 x10-3

11 5.33 x10-3

12 5.13 x10-3

13 3.48 x10-3

14 4.05 x10-3

15 1.62 x10-3

16 2.58 x 10-3

17 2.78 x 10-3

18 1.97 x 10-3

19 3.54 x 10-3

20 8.40 x10-3

1Corresponding to the calculation case number in Table 6.3.

.333

.550

.431

1.09

2.28

.432

1.100

2.820

.476

.309

.297

1.10

.453

.466

.435

.505

.509

.502

.339

.339

.578

.590

.468

.311

.536

.289

.242

.396

.443

.572

.454

1.32

1.58

.558

.801

1.050

.588

.489

.291

.900

.605

.582

.520

.491

.541

.540

.434

.428

.542

.534

.559

.512

.730

.592

.481

.480
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Table H.2 Data Base for Regression of ci and c2

Calculation Case
cl C9

PWR - 1A

PWR - 1B

PWR - 2

PWR -3

PWR - 4

BWR - 1

BWR - 2

BWR - 3

Additional Cases ()

5.27 x10-2

7.63 x10-3

1.17 x10-2

1.39 x10-2

3.06 x10-2

9.68 x10-3

3.29 x10-3

2.50 x10-3

1 5.06 x10-3

2 2.60 x10-2

3 5.38 xl0- 2

4 1.59 x10-2

5 1.05 x10-2

6 1.05 x10-2

7 8.61 x10-3

8 7.11 xlo-3

9 6.71x1- 3

10 5.73 xl0-3

11 4.47 x10-2

12 3.77 x10-2

13 4.12 x10-3

14 3.90 x10- 3

15 1.11x10-2

16 1.27 x10-2

17 7.16 x10-3

18 2.64 x10-2

19 2.55 x10-2

20 4.32 x10-2

1Corresponding to the calculation case number in Table 6.3.

.243

.297

.437

.714

2.23

.230

.649

1.460

.236

.214

.191

.723

.242

.235

.229

.211

.296

.295

.252

.240

.232

.249

.269

.244

.294

.138

.287

.282
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Table H.3 Regression Analysis of bi

Standard
Deviation of

Dependent Regressor Regression Regression

Variable Variable Coefficient Coefficient t-value

ln bi in h -.266 .097 -2.73

ln E -.387 .043 -8.90

Intercept -3.18

Multiple Correlation 0.893

Standard error of estimate 0.341

F-value 49.5

(0.1% F-value for 2 and 25 degrees of freedom is 9.22)
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Table H.4 Regression Analysis of b2

Dependent
Variable

ln b2

Standard
Deviation of

Regressor Regression Regression
Variable Coefficient Coefficient t-value

in h .043 .0319 1.34(1)

in T .192 .0472 4.1

in E .116 .0184 6.3

in * -.990 .0692 -14.2

Intercept

Multiple Correlation

Standard Error of Estimate

F-value

(0.1% F-value for 4 and

.559

.984

.110

176.3

23 degrees of freedom is 6.69)

1 t-value at 10% significance level with 23 degrees of freedom is
1.32. The term (in h) is marginally significant.
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Table H.5 Regression Analysis of b 3

S.tandard
Error of

Dependent Regressor Regression Regression

Variable Variable Coefficient Coefficient t-value

ln b3 ln $ -.515 .070 -7.31

Intercept .372

Multiple correlation .820

Standard error of estimate .205

F-value 53.48

(0.1% F-value for 1 and 26 degrees of freedom is 13.7)

(Note): The t-value of (ln E) is 1.29, while the upper 10% t-value with

26 degrees of freedom is 1.32. It is eliminated in this study.
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Table H.6 Regression Analysis of cl

Dependent
Variable

ln ci

Standard
Deviation of

Regressor Regression Regression Computed
Variable Coefficient Coefficient t-value

ln h -.374 .140 -2.68

in Td -.652 .207 -3.16

in E -.653 .081 -8.11

ln $ .928 .303 3.06

Intercept -2.45

Multiple correlation .888

Standard error of estimate .481

F-value 21.44

(0.1% F-value for 4 and 23 degrees of freedom is 6.69)
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Table H.7 Regression Analysis of c2

Standard
Error of

Dependent Regressor Regression Regression

Variable Variable Coefficient Coefficient t-value

in C2 in h -.0801 .0564 1.42

ln $ -1.02 .0690 -14.8

Intercept .886

Multiple correlation .953

Standard error of estimate .194

F-value 123.9

(0.1% F-value for 2 and 25 degrees of freedom is 9.22)



Cro

4-)

0

Co

4a)

a
"4

04

100

10o

1- 2

13
-~ - 10

10
-3 -2 -l

10 10
b, Data for Regression

Fig.H.1 Test of the Regression Results of b,

286

0
10



287

101

Ul Factor of 1.4r4-

0
10~

0

-la0

U)~ac Fato of1.f

10"" 10 101

t, Data for Regression

Fig.H.2 Test of the Regression Results of b2



288

101 1 AP 9I I I

e/

Factor of 1.8

0 -

0~

Qe

**

C.)

Factor ofof/.

P'Pr

100

b Data for Regression

Fig.H.3 Test of the Regression Results of b1. czk. 3



289

100

ma -i

4-),

C
0 Factor of 2.5

10

IbO

1 1
c D f Rg sI 0

10) 3

clDt or* Regressiofn/.

Fig. H.4 Test of the Regression Results of cl



290

10

r-4

Factor of 1.5 -

.0

o 0

e) -

10
-l) 0

~0 10 1

0
/ 0e/ /

4-)-

- of tFactor of of c2

010

-

10 10 10
02 Data for Regression

F"-ig. H-5 Test of the ReF-ression 'Results of 0



291

6
10

* Site A

a Site B

oC 5o 10

Factor of 2.5

10

43

0

10 
/

C\

102

101
101 10 210 310 410 5106

M2 Results of the Consequence
Calculation

Fig.H.6 Comparison of the Estimated Second Risk Moment
from the Regression with the Consequnce Results



292

0
crm 10 1

e Site A
a) Site B / e

/

Ce
0 -* /*-

bo / *

Q /
e

4-)

e0 /10

.4-) mo

rof 1/2.3

-3-

10- 10 -2 10 10 0

Results of Consequence Calculation

Table H.7 Comparison of the Estimated Normalization

Constant from Regression with the Consequence
Re suits

Note: The largest deviation of a factor of 2.3 is
larger than the regression errors in Chapter 5
(1.2), but still within the uncertainty ranges
of the consequence model.



293

BIBLIOGRAPHICAL NOTE

The author was born on January 10, 1948, in Genkai town, Saga pre-

fecture in Japan. The Genkai Nuclear Power Plant (2 PWR's) is 5 miles

away from his birthplace. The author's father, Giro Maekawa, received

a Ph.D. degree in 1948 from the Chemical Engineering Department of

the University of Kyushu on "Improvements of the Method for Recovery of

Aluminum from Low-grade Ore".

In 1957 his family moved to Kamakura-city, where he spent his junior

and senior high school life.

His college life in the University of Tokyo was in the midst of

the stormy years of the Students Revolution. He received his B.E.

(kogaku-shi) from the University of Tokyo in 1970. The thesis for the

degree was on "Radiation-Induced Graftpolymerization of Tetrafluoro-

ethylene on Polyethylene".

After his graduation, he worked in the Nuclear Fuel Department of

Furukawa Electric Inc. He joined the joint project for the design

of the Gd 203 - UO2 fuel test assembly between Furukawa Electric Inc.

and Japan Atomic Energy Research Institute.

After the two years' working experience, he returned to the

University of Tokyo as a Master candidate in 1972. He joined the

Environmental Research Group supervised by Prof. Y. Yamatomo and

Prof. R. Kiyose. His contribution to the group was a development



294

of an atmospheric dispersion model for the dose estimation of the routine

release from a spent-fuel reprocessing plant. Also in 1972 he worked

with Mr. Y. Naito in Japan Atomic Energy Research Institute on a

development of a three-dimensional neutron diffusion program based on

a flux synthesis method.

He was admitted as a Master candidate by the Nuclear Engineering Dept.

of MIT in 1973. His M.S. thesis on the analysis of safeguard system against

theft was supervised by Prof. N. C. Rasmussen and sponsored by the

MIT-Harvard joint committee on Arms Control.

Publications:

1. M. Maekawa, Radiation-Induced Graft-Polymerization of

Tetrafluoroethylene on Polyethylene, B.E. thesis (March, 1970)

(in Japanese)

2. M. Maekawa, M. Toba and Y. Naito: Rod-Cell Burn-up Calculation

Code TRIBURN in the Fuel Geometry of Three Different Compositions,

JAERI-memo 5383, (Aug., 1973) (in Japanese)

3. M. Mishiro, Y. Yamamoto and M. Maekawa: Dose Estimation Model

for Gaseous Fission Products from Nuclear Facilities, J. of Faculty

of Engineering, Univ. of Tokyo, Vol. XXXII, No. 4, pp 589 (1974).

4. M. Maekawa: System Analysis of Safeguard System Against Nuclear

Theft, M. S. Thesis MIT (1975)

5. Y. Naito, M. Maekawa and K. Shibuya: A Leakage Iterative Method

for Solving the Three Dimensional Neutron Diffusion Equation,

Nuclear Science and Engineering: 58, 182-192 (1975).

REAiDING RUM - M.I.T.



Distribution List

Copies Addresses

Nuclear Regulatory Commission

4 Office of Nuclear Regulatory Research, Probabilistic
Analysis Branch

Division of Reactor Safety Research, Director
Division of Reactor Safety Research, Assistant

Director for Water Reactor Safety Research
1 Division of Reactor Safety Research, Chief, Research

Applications Branch
1 Division of Reactor Safety Research, Assistant

Director for Advanced Reactor Safety Research
1 Division of Safeguards, Fuel Cycle and Environmental

Research, Director
17 Advisory Committee on Reactor Safeguards
I Executive Director for Operations, Technical

Advisor
Assistant Director for 'Operating Technology, Division of

Operating Reactors, Office of Nuclear Reactor Regulation
Assistant Director for Reactor Safety, Division of Systems

Safety, Office of Nuclear Reactor Regulation
Assistant Director for Plant Systems, Division of Systems

Safety, Office of Nuclear Reactor Regulation
Assistant Director for Environmental Technology, Division

of Site Safety and Environmental Analysis, Office of
Nuclear Reactor Regulation

Assistant Director for Environmental Projects, Division of
Site Safety and Environmental Analysis, Office of Nuclear
Reactor Regulati on

Assistant Director for Site Analysis, Division of Site
Safety and Environmental Analysis, Office of Nuclear
Reactor Regulation

I Director, Division of Safeguards, Office of Nuclear
Material Safety and Safeguards

Director, Division of Fuel Cycle and Material Safety,
Office of Nuclear Material Safety and Safeguards

2 Office of Standards Development, Director
1 - Bethesda Technical Library

Enerov Research and Development Administration

Division of Nruclear Research & Applications, Director
1 Division of Reactor Development & Demonstration,

Assistant Director, Reactor Safety
1 Reactor Safety Research Coordination, Director

Headquarters 1.ibrary, Germantown, Md.

1~



-2-

Addresses

Laboratories, Contractors Others

Argonne National Laboratory, Reactor Analysis and Safety
Division, Director

Argonne National Laboratory, Technical Library
Battelle Memorial Institute, Columbus, Ohio, Library
Battelle Pacific Northwest Laboratory, Library
Brookhaven National Laboratory, Department of Applied

Science, Associate Chairman for Reactor Safety, Walter
Y. Kato

Brookhaven National Laboratory, Department of Applied
Science, Thermal Reactor. Safety Division, Head,
Melvin M. Levine

Electric Power Research Institute, Nuclear Safety and Analysis
Dept., 3412 Hillview Ave., Palo Alto, Calif. 94304

Environmental Protection Agency, Deputy Assistant
Administrator for Radiation Programs, 401 M St. SW,
Washington, D. C. 20460

Library of Congress, Washington, D. C.
National Technical Information Service
Oak Ridge National Laboratory,'Nuclear Safety Information

Center
Sandia Laboratories, Technical Library
Sandia Laboratories, Director, Nuclear Fuel Cycle

Programs, Albuquerque, New Mexico 87115

Dr. Peter E. McGrath, Sandia Laboratories, Waste
Management and Environmental Project, Division 5413,
Albuquerque, New Mexico, 87115

80 total

0

Copies

1
25
1

1
1

1 * I


