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ABSTRACT

A method is developed for deriving a set of equations relating the
public risk in potential nuclear reactor accidents to the basic variables,
such as population distributions and radioactive releases, which deter-
mine the consequences of the accidents. The equations can be used to
determine the risk for different values of the basic variables without
the need of complex computer programs and can be used to determine the
variable values which are needed to satisfy various risk criteria. The
equations will provide comsiderable savings of time and effort in deter-
mining the consequences of the nuclear reactor accidents.

The methodology developed in this study consists of two steps. The
first step involves fitting the risk distributions of frequency versus
consequence to parametric distributions which contain a small number of
parameters. The second step involves deriving the equations which relate
the distribution parameters to the basic variables of interest. Regression
techniques are used for this second step.

The methodology is demonstrated for examples based on the results
of the Reactor Safety Study. The calculated distributions of early
fatalities in nuclear reactor accidents and the historical records of
fatalities in hurricanes, tornadoes, earthquakes and dam failures are
examined to determine an appropriate family of parametric distributioms.
From these examinations, the Weibull distribution is found to be appro-
priate for all of the examined events.

A set of equations is then derived which relate the population
distribution and the parameters of the Weibull distributions for early
fatalities from PWR accidents. The derived equations are straightforward
and useful in analyses of population effects on risk. Regression equations
relating the parameters to the characteristics of radioactive releases
are also derived. The derived equations again are straightforward and
useful for evaluating release effects on risk.
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CHAPTER I
INTRODUCTION

I.1 Objective of Study

In October, 1975 the final report of the Reactor Safety Study wes
published by the U. S. Nuclear Regulatory Cormission (Ref. 1). The
principal purpose of the Reactor Safety Study wes to make a realistic
estimate of the public risks that could be involved in potential
accidents in commercial nuclear power plants and to provide a perspective
to compare them with non-nuclear risks to which our scciety are already
exposed. Though the Reactor Safety Study wes focused on an estimate of
the total risk of the nuclear power plants existing or being planned,
the risk estimation methods developed in the Study can provide help with
regard to decision making involving regulations, site plannirng, plant
design and other areas relating to the safety of nuclear power plants.

To apply risk results in decision making, it is of use to prepare a
set of equations that give the relationship between the risks and the basic
variables that determine and control the consegquences of nuclear reactor
accidents. With the risk expressed in terms of the basic variables,
decision can be made on the basic variables which give acceptable risk.
For example, in selection of a site for a nuclear power plant, the population
distribution may be one of the basic variables of interest. Relating the risk
to the population distribution would then allow investigation and decision on
acceptable population distribution. If this can be done, it may result in

considerable savings in time and effort in the decision making process.



The objective of this thesis is to develop a method for obtaining a
set of equations that describe the relationship of the public risk in
potential nuclear reactor accidents to the basic variables that drive and
control the consequences of the accidents. The method will be demonstrated
in a limited number of examples based on the results of the Reactor Safety

Study.

I.2 Basic Concepts of Risk

Since risk is a commonly used word that can convey a variety of
meanings to different people, certain concepts of risk will be discussed
here. A dictionary definition of risk is "the possibility of loss or
injury to people and property". The major elements for defining risk will
be consequence and likelihood. The following four types of consequences

were considered in the Reactor Safety Study.

a. Early fatalities (i.e., fatalities that occur within
one year of the accident).

b. EFarly injuries (i.e., people needing medical care).

C. Late health effects attributable to the accident.

d. Property damage

In this thesis, early fatalities will be studied specifically as an example
in developing the method to relate the risk to the basic variables. The

developed method may be applicable to other types of consequences.



The likelihood is expressed by the frequency of occurrence of
accidents. For frequent events, the frequency can be estimated from
the historical records in the past. However, many potential accidents,
such as nuclear accidents, occur at such a low frequency that they have
not been observed. In these cases the frequency is obtained by
calculational models using basic components and system failure data.

Combining the two major elements of likelihood and consequence,
risk is then described by the distribution of frequency vs. magnitude
of consequence, which will be called "risk distribution” in this
thesis. Two expressions of the risk distribution will be used in
the following chapters. One is a "frequency distribution" (denoted
by £(x), which is defined by:

*5
Flxg < x X xp] = I £(x)dx (1.1)
Xq
where Flx, < x < x,] is the number of events per unit time that the
magnitude of consequence is between x, and Xp. Another expression is
a "complementary cumulative distribution" (denoted bty Fc(x)), which
presents the frequency of consequences being greater than'the

magnitude x. The relation of the two expressions is given by:

Fo(x) = r £(x)dx (1.2)
X



For example, Figs. 1.1 and 1.2 show the complementary cumulative

distributions of early fatalities in nuclear reactor accidents as

well as other man-made and naturally occurring risks. Fig. 1.3 shows

the frequency distribution of early fatalities in nuclear accidents in

a form of a histogram.

The risk distributions can be summarized by certain characteristics

of the distributions, (called "risk characteristies" in this study) such

as:

1.

2.

3.

Frequency at a specific magnitude of consequence :

For example, from Fig. 1.1 the frequency of fatalities
being greater than 1,000 is about 10" per year for 100
nucleer plants, whereas it is 1073 per year for chlorine
release.
Magnitude of consequence at a specific frequency:

For example, from Fig. 1.1 the number of fatalities at
a chance of one in 10,000 years is less than 10 for 100 nuclear
plants, whereas it is greater than 5,000 for chlorine release.

Risk moments, which is defined by:

m(e) = [ 2+ (x - ) - ax (1.3)
Q

where

Mt(g) is the t-th risk moment about . The first risk
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moment about the origin can be interpreted as an expected magnitude of

consequence per unit time. For example, the expected early fatality

per year is 4.6 x 107> for 100 nuclear power plants and 55,000 for

automobile accidents in U. S. (Ref. 1).

I.3 Outline of the Approach

The approach developed in this thesis is presented by two major

steps.

(1)

(2)

They are:

The risk distributions are fitted to parametric
distributions involving'only a small number of
perameters. To determine an appropriate parametric
distribution, the fatalities distributions of
nuclear and non-nuclear risks are examined. Once
an eppropriate parametric distribution is selected,
the entire curve and any risk characteristic can

be estimated from the distribution parameters.

A set of equations are derived to relate the
distribution parameters to the basic wvariables
of interest. 1In this study, regression techniques

are used to derive the equations.



The fitting of the risk distribution will be studied in
Chapters II and III. A general approach of selection of candidate
parametric distributions, fitting techniques and criteria of
adequate fits will be discussed in Chapter II. In Chapter III
an application is given of the fitting techniques and the criteria
to the examination of the fatalities distributions of nuclear
and non-nuclear risks,

The regression analysis to relate the distribution parameters
to the besic variables will be studied in Chapters IV, V and VI.
In Chapter IV a discussion will be given of general approaches
of the regression techniques. In Chapter V an application will
be given of regression analysis relating the distribution parameters
to population distribution variables. In Chapter VI another
epplication will be given relating the parameters to radiocactive
release variables.

In Chapter VII, the methodologies developed in this study are

sumarized and a discussion is given of further possible extensions.



I.4 Method of Risk Estimation

A brief discussion will be made about the methods of risk estimation
developed in the Reactor Safety Study, particularly about the consequence
model, because the numerical values of the risk estimates in this thesis
are based on the results of the consequence calculation. More detailed
information about the Reactor Safety Study can be found in WASH 1400

(Ref. 1).

I.L.1 Outline of Reactor Safety Study

The Reactor Safety Study was divided into three major tasks shown
in Figure l.4. Task 1 included the identification of potential accidents
end quantification of both the prob &ility and magnitude of the associated
radicactive releases to the enviromnment. Task II used the radioactive
source term defined in Task I and calculated how the radicactive materials
are distributed in the enviromment and what effects they have on publie
health and property. Task III compared the risk of nuclear reactor
accidents estimated in Task II with a variety of non-nucle=sr risks to

provide a perspective of the magnitude of the nuclear risks.

1.4.2 Outline of Consequence Model

The consequence rnodel wzs developed in Task II in the Reactor Safety
Study to predict the consequences from the radiocactive relesses defined
by Task I. The consequence predictions served as the primary iaput to
Task III. The consequences of a given radicactive release depend upon

how the radiocactive materials are dispersed in the environment, upon
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the number of people and amount of property exposed, and upon the effects
of radiation exposure on people and contamination of property. These
major elements of the consequence predictions are indicated in Fig. 1.5,
which shows the principal subtasks involved in Task II.

The dispersion of the radiocactivity is determined principally by
the release conditions and the weather conditions at the time of release.
The release conditions are described by the release categories. Each
one of the release categories identifies the amount of radiocactivity
released, the amount of heat released with radioactivity, and the
elevation of the release. (See Table 6.1 in Chapter 6.)

The standard Gaussian plume model is used to predict the way the
radiocactivity is dispersed in the atmosphere. The weather data used
in the model is obtained from hour by hour meteorological records
covering a one year period. Ninety weather samples are taken and
each sample is thus assigned a probsbility of 1/90. The starting times
are determined by systematic selection from the meteorological data.

One quarter of the data points are chosen from each seéson of the year
and half from each group are taken in the daytime. This procedure

is used to reduce sampling errors to acceptable levels. The weather
stability and wind velocity is assumed to change according to the
weather recordings, but the wind direction is assumed not to change.

To determine the population that could be exposed to potential
radiocactive releases, census bweau data was used to determine the
number of pecople as a function of distance from a reactor in each
of the sixteen 22-1/2 degree sectors around each of the 63 sites

at which the first 100 reactors now in use or planned are located.

11
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Each reactor was assigned to one of six typical metecrological data
sets and a sixteen sector composite population was developed for
each set. The grouping of population sectors was performed in such
a way that the sectors of high population form seperate sectors and
the sectors of low population are grouped into composite sectors with
average population of the grouped sectors. -

The consequence model calculates the dose from five potential
exposure modes; the external dose from the passing cloud, the dose
from internally deposited radionuclides which are inhaled from the
passing cloud, external dose from the radioactive materials deposited
on the ground, the dose from internally deposited radionuclides which
are inhaled after resuspension»and the internal dose from ingestion of
contaminated food.

The potential health effects considered are early fatalities,
eerly illnesses and late health effects. The probebilities of early
fatalities are computed by using a dose-effect relationship. For bwme
marrow dose, the probebility of early fatalities varies from 0.01 to 99,997
for doses of 320 and 750 rads respectively with a median value of 510 rads.
The number of fatalities are estimated by the number of people exposed to
radiation multiplied by the probabilities of early fatalities estimated
from dose. Early illnesses and late health effects are estimated in a
similar weg to early fetalities.,

The consequence model also provides for prediction of economical
damage due to radicactive contamination. It includes evacuation cost,
loss of agricultural crops, decontamination cost, relocation cecst and

property damage.



I.k.3 Calculation Conditions for Individual Site

The consequence model outlined in the previous subsection was
developed in the Reactor Safety Study to estimate the total risk of the
first 100 nuclear power plants now in use or planned. The composite
population model was generated for these 100 reactors. In this thesis,
however, the population distribution of individual sites are used to
estimate the risks of nuclear power plants, site by site. The population
distributions of the individual sites which this study uses are obtained
from the census bweau data (Ref. 2). The following assumptions are made

in the individual site calculations.

1. Meteorological data sets typical of the eastern valleys
area are used for all of the individual site calculations.
The characteristics of the eastern valley meteorological
conditions are given in Appendix C.

2. The frequency distribution of the wind direction is assumed
to be uniform over 16 directions.

3. The radiocactive inventory of 3200 MWt reactor is assumed.

L, The probabilities and magnitudes of radiocactive releases
are assunmed to be the same as used in the Reactor Safety
Study (Ref. 1). The estimates in the Reactor Safety Study
were based on the analyses of Surry - Power Station for
PWR's and Peach Bottom Atomic Power Station for BWR's.
(See Table C.2 in Appendix C).

Because of the assumptions listed above, the estimated risks will

be different from the "real" risks of the individual reactors. In order

13



to estimate the "real" risk of a specific reactor, the following data

will be required.

1. Meteorological data based on the records observed
at the specific site.

2. Radiocactive inventory based on the capacity of the
specific plant.

3. Estimates of the radiocactive releases and their
probabilities besed on the analysis of the system

of the specific plant.

In addition to limitations of the daté, the refinement of the
consequence model is now under way in U. S. ﬁuclear Regulatory Cormission.
Therefore the numerical values in this thesis need further refinement
before applying to actuzl decision making. In this sense, the purpose
of this thesis may be interpreted as being one of developing approaches
and techniques which are applicable to risk decision, which may be used

regardless of the specific data and application.

14
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CHAPTER II

BASIS FOR FITTING OF RISK DISTRIBUTIONS

IT.1 Introduction

Risk is described by a distribution of the frequency of occurrence
versus the magnitude of consequence. A risk distribution can be
summarized by certain risk characteristics. However, any single risk
characteristic alone, such as a risk moment, does not provide a
complete information about the risk distribution. For example, the
first risk moment about the origin of a fatalities distribution does
not give any information whether the fatalities are caused by low
frequency large consequence events (such as hurricanes) or high
frequency small consequence events (such as auto accidents). Theore-
tically an infinite number of risk characteriétics is required to
describe the risk distribution, which results in an infinite number of
equations to relate the risk distribution to other basic variables. As
a compromise, the risk distribution will be fitted to a parametric
distribution which only involves a small number of unknown parameters.
Once the parameters have been determined, various risk characteristics
can then be derived from the fitted parametric distribution. Also a
limited number of equations are sufficient to identify the relationship
of the risk distribution to the basic variables. 1In this chapter, the
general approach of fitting will be discussed. The approach will be
applied to the fatalities distributions of nuclear and non-nuclear risks
in Chapter III.

The fitting approach can be divided into three fundamental steps,

i.e., selection of candidate distributions to be examined, estimation
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of unknown constants by fitting and determination of adequate fits based
on certain criteria. The fundamental steps will be discussed in the
following sectionms.

One of the special characteristics of the risk analysis is that
the extreme consequences as well as lesser consequences are of interest.
For example, people sometimes view a single large consequence event
more unfavorably than numerous small events having the same total
number of fatalities. Therefore the extreme consequence, i.e., the tail
behavior of the distribution, will be emphasized in selection of the
candidate distributions, the fitting techniques and the criteria of
adequate fits. The lesser consequence, i.e., main body behavior of
the distribution will also be considered to obtain average risk values

with small fitting errors.

II.2 Basis for Selection of Candidate Distributions

A number of candidate parametric distributions will be considered
in Chapter III to fit the calculated risk distributions in Figs. 1.1
and 1.2. These calculated distributions to be fitted are called "data
distribution" in this thesis. They were obtained by the historical
records or by the calculational models using basic component and system
failure data. The selection of the candidate parametric distributions
will be based on the following considerations:

(1) Domain where the independent variable of the distribution is

defined: The domain of the candidate distributions will be
determined by the range of the available data. For certain
non-nuclear risks, the available historical records are

limited to major incidents having consequences greater than
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a certain value. The lower end of the domain will be
determined by the incident of the smallest consequence
recorded or calculated.

(2) Number of modes of the distribution: The mode is a number

of peaks in the frequency distribution. When the data
distribution is bi-modal and neglecting one of the modes
significantly harms the analysis, bi-modal candidate
distributions will be comsidered.

(3) Symmetric or skewed: The skewness is an asymmetric behavior

of the frequency distribution. When the distribution peak
is to the right of the mean, the distributiom is negatively
skewed. When the peak is to the left of the mean, it is
positively skewed.

(4) Tail behavior: As the tail behavior is of interest in the

analysis, a number of candidate distributions with different
tail behaviors will be considered for extrapolation
sensitivities.

(5) Number of parameters: The distributions with the smaller

number of parameters are preferred to keep the model simple.

I1.3 Fitting Technique

Having selected candidate distributions, the values of unknown
parameters of the candidate distributions will be estimated from the
historical data or calculation results. Various techniques have been
developed for obtaining estimates of these unknown parameters. Though
the best technique may be different for each of the candidate distribu-

tions, two general techniques will be discussed here briefly in context
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of fitting to the risk distributions. General discussion about fitting
techniques can be found in standard statistics text books (Ref-3, Ref-4,

Ref-5 and Ref-6).

I1.3.1 Method of Moments
Let a random variable Y have a frequency distribution given by
fY(y:rl,...,rk) where 1's represent its k parameters. Let Mm be the

m—-th moment of fY(y:t .,rk) about a given magnitude £, that is:

1,-0

Mm = J (y-—g)m'-fY(y:rl,...,rk)dy (2.1)

Clearly, Mm is a function of the k parameters and hence Mm can be

written as:

Mm = Mm(rl,...,rk) (2.2)

Let Yl’Yz""’Yn be a random sample of size n from fY(y:rl,...,rk).

The m—th sample moment ﬂﬁ are:
n m

The moment estimators %j’ j=1,...,k of the k-parameters are obtained

by solving the following k equations:

M = Mm(tl,r m=1,2,...,k (2.4)

L 2""’Tk)

The advantages of this method are that the calculational procedure is
simple for many distributions and also the estimate of the first risk
moment (average risk value if £=0) is not affected by fitting because
it is used to estimate the parameters. The disadvantage is that the
residual mean square which will be defined later is usually larger than

that of the method of least squares.
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I1.3.2 Method of Least Squares
Suppose that there exist n observable variates Yl’Yz""’Yn with

variance 02, which are expressed by:

Y, = G(xlzrl,Tz,...,rk)-kel Oy

Y, = G(xzztl,rz,‘..,rk)+-ech

<
|

= G(xnzrl,t ,...,rk)+enc (2.5)

2 Y

where G(x:rl,tz,...,rk) is a candidate function with k parameters

T 4T seeesT,. {e,} are assumed to be errors observing Y, with E{e,}=0,
1’2 k i i i

where E refers to the expectation.

Let AT FERTRED A be the observed value of the variates. The

estimates %1""’%k of the k parameters are obtained by minimizing:

A2 =

fk'z [yi--G(xi:rl,...,rk)]2 (2.6)

)

n

The advantage of this method is that it gives small value of the
residual mean square. One of the disadvantages is that it sometimes
requires a large computation time. Also the risk moments derived from
the estimated parameters are associated with fitting errors.

In applying this method to the fitting of the risk distributionms,
the following options exist:

(1) The parametric function G(X:Tl,...,Tk) can be fitted to either
the complementary cumulative distribution or the frequency
distribution.

(2) The function can be fitted to y, lny, or any other transfor-

mation of y.
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This method will be applied to the fitting of the risk distribu-

tions in Appendix E. The logarithmic transformation of the

complementary cumulative frequency will be used because the fractional

errors of

magnitude

the complementary cumulative frequency have comparable

than the absolute errors.

II.4 Criteria of Adequate Fits

After the fitting of the data distributions to the candidate

parametric distributions is completed, one family of the distributions

will be selected for the study of the relationship to the basic

variables.

(1)

(2)

The following criteria are proposed for the selection:
The fitted parametric distribution should be within any
error spreads associated with the data distribution (for
example, within 90% confidence bounds). The data distribu-
tions of non-nuclear risks have estimation errors due to
the limited number of available historical records. The
data distributions of nuclear risks have errors due to the
sampling used in the computer program and the uncertainties
of the parameters used in the consequence model. The largest
discrepancy in the fitted distribution should be within any
estimated error bounds of the data distribution.

The fitted distribution should have a small residual mean

square, which is defined by:

n
z [yi-c(xi:%l,...,%k)]z (2.7)
i=1

st = n-k

where yi,xi are the observed values, G(x:rl,...,rk) is a

candidate function and %1,...,fk are the estimated values of
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the parameters. This criterion of the residual mean square
can be taken as a relative measure to be used in comparing
different possible fits. Specifically in this study, the
residual mean square is evaluated for a natural logarithm of

the complementary cumulative distribution as:

Sz=

Z [1nF

c
i i

L - W F (iR, ., 8 )12 (2.8)
where X, is the magnitude of consequence of sample data i and
fg is its complementary cumulative frequency. Fc(x:rl,...,rk)
is the candidate distribution. fl,...,?k are the estimated
values of the parameters. The natural logarithmic transfor-
mation is used here because the fractional errors of the
frequencies are of more interest than the absolute errors.

(3) Systematic errors should be small.‘ When the tendencies to
overpredict or underpredict over the ranges of the data are
observed, the fitted distributions cannot be extrapolated to

the range where the historical records or the calculation

results are not available.

I1.5 Summary

In this chapter, a general approach was presented for selection of
a parametric distribution to fit the risk distributions. These risk
distributions are obtained by the historical records or by the calcula-
tional models. The approach consists of three fundamental steps, i.e.,
selection of candidate parametric distributions, estimation of the
unknown parameters and selection of adequate fitting distributions

based on the criteria. The selection of candidate parametric distribu-
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tions is based on the number of parameters and the properties of the
data distribution, involving the domain of the independent variables,
number of modes, skewness and tail behaviors. Two fitting techniques
are specifically discussed: method of moments and method of least
squares. The method of moments is simple and does not have fitting
error of the risk moments, but it usually causes larger residual mean
squares than the method of least squares. The method of least squares
has small residual mean squares, but requires more computational work
and causes fitting errors in the estimates of the risk moments. The
criteria of adequate fits are based on the largest deviatiom, the

residual mean squares and the systematic errors.



CHAPTER III

FITTING OF FATALITIES DISTRIBUTIONS COF NUCLEAR AND NON-NUCLEAR RISKS

III.1 Introduction

The general approach of the distribution fitting is applied to
the fatalities distributions of nuclear and norn-nuclear events in this
chapter. Though nuclear risks are of major interest in this thesis,
non-nuclear risks are studied here to find whether both types of
risks can be described by the same family of distributions.

In Section III.2, cendidate distributions are selected using the
general criteria discussed in Section II.2. In Section III.3 the
fitting technique ié applied to the selected candidate distributions.
The candidate distributions are evaluated by the historical records
of non-nuclear risks in Section III.l4 and by the risk estimates of

nuclear risks in Section III.S.

ITII.2 Candidate Distributions
III.2.1 Selection of Candidate Distributions

The distribution of early fatalities of the zverage reactor as
computed in WASH-1LQO (Ref. 1) is shown on different scales as

histograms in Figs. 3.1 and 3.2. The following btehaviors are observed.

(1) The domain of the independent variable is positive.
(2) The histogram does not appear to have a mode.

(3) The histogram distribution is vpositively skewed.

23



f(x) Probability per Reactor Year per Early Fatality

24

xlo'8
2.0 T T i T
105 o -
1.0} n
0.5 M
O.o  —-— 2 e ———
0 100 200 300 400 500

x Early Fatalitiés

Fig.3.1 Histogram of the Early Fatalities Distribution
of the Average of the U.S.100 Reactors
(Linear Scale)

Note: Calculated from the results in WASH-1400(3ef-1)



25

10-6 f ~T T T T
h .
Fs) s
e !
g S
o
*;
= 1077 E
By ] ]
=4 [ J
q 1
S
o 8. ] A
Q 10~ 3 - ?
&~ o :
ol ]
O — ]
>4 ammmamen
& - 1
Q —
t)) 10-9 3 -3
a d
O
o=
— 1

&
o I
- 10
> 10 3 ] 3
+ L
-t
-]
o=
Q L
o |
ﬁ 11
é 10 3 L 3
= .
) 10-12 X \ L

10° 10l 102 103 10* 107

X EFarly Fatalities
*ig. 3.2 Histogram of the Early Fatalities Distribution
of the Average of U.S. 100 liuclear Zeactors
(Logarithmic Scale)
Note: Calculated from the results in WASZ-1400(Ref-1)



26

(4) The histogram distribution has a long tail. The tail

behavior appears to be similar to an exponential.

The frequency distributions of other nuclear and non-nuclear risks
have similar behaviors to that of the average reactor, as shown in
Figs. 3.8, 3.10, 3.12, 3.14, 3.18 and 3.20 later in this chapter. Based
on the behaviors of these data, the following four candidate distributions

are selected in this study.

(1) Exponential
(2) Garma
(3) Weibull

(4) Lognormal

The distribubtions above have the following common properties:

(a) They have no mode or at most one mode.

(b) They are positively skewed.

(¢c) The above distributions cover different teil behaviors, such
as decreasing slower than the exponential, exponentially

decreasing and decreasing more rapidly than the exponential.

In fitting these distributions, the following additional considerations

are made.



27

The selection of the domain of the independent variables depends
on the availsbility of data. For certain non-nuclear risks, the available

historical records are limited to major incidents that have consequences

‘greater than some value. For example, the records of tornadoes used

in this study cover the incidents having greater than 20 fatalities.

For the sake of fitting, the lower end of the domain is therefore
defined by Xq which is the lower limit of the available data. The

upper end of the domain is taken to be infinity. Though the fatalities
can not exceed some physical limit (such as the population on the earth),
the probability beyond that limit will be so small in the candidate
distributions that the upper end should not effect the estimate of the
parameters and mcments.

The integrals of the frequency distributions, such as Fig. 3.1,
over the defined domairn are not always unity. The dimension of the
data are also number of events per unit time. In fitting the
distributions, a normalization constant & is therefore introduced,
which is defined as the frequency per unit time that the consegquences
are larger than the lower end of the domain Xge The candidate

distribution f£(x) will then be defirned by the following form:

f(x) = a « T(x) (3.1)

where T(x) is a probability density function, the integral of which

cver the defined domain is unity. TFor example, for the exponential,

the density f(x) is given by:



T(x) = % * exp [ - _e__o— ] (3.2)

where € is a scale factor of an exponential distribution. Then the

frequency distribution of the exponential is given by:

(x = x )
Q

5 ] (3.3)

£(x) =a - (x) = %-‘ exp [ -
Other candidate distributions alsoc have corresponding probtability
distributions which have been studied in various fields of statistical
analysis. The discussion in this thesis is based on the unnormalized
frequency distributions f(x) rather then the normalized density
distribution f£(x). Similarly, the term "risk moments" are used in
this study because they are the integrals of the unnormalized frequency
distribution f£(x). From Eq. (3.1), the properties and the fisk moments
of the unnormalized distribution are simply obtained from those of the

densities f£(x).

ITI.2.2 Exponential Distribution

The exponential is defined by:
=Z .
£(x) =g * exp [-(x-x)/8] (3.4)

where x 2.35’ %, 20, a>0, 8 > o0.

28
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If o and Xo are treated as known constants determined from the area and
domain of the data distribution, respectively, then the exponential is
a one-parameter distribution with a scale factor 8. The complementary

cumulative distribution is given by:

FC(x) =T f(x)ax = a ¢ exp [~(x-x,)/8] (3.5)
X

The risk moments about x, are given by:

My =a -8 (3.6)
Mz=2°cx°62 (3.7)
M =a - 8™ o (m+1)! ‘ (3.8)

The exponential with 6 = 1, ¢ =1 and X, = 0 is illustrated in Fig. 3.3,

3.4, 3.5 and 3.6 on different scales.

II1.2.3 Gamma Distribution

The distribution is defined by:

F-1
(x=x5) (x-x5)
f(x) =a g « exp [- =] (3.9)
8 - I'(8)
where x > X , X, 20,2 >0, 8 >0, B> 0 and I'(+) is the Garma function.

For given o and x,, the distribution is a two-parameter distributicn with
a scale factor 6 and a shape factor 8. When B8 is integer, the complementaxry

cumulative distribution is given by:
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C o)
F'(x) =a° exp [~ ——e—] . z 5 G (3.10)
When B is not integer, Fc(x) is not expressed by a closed form. The risk

moments about x, are given by:

M =c 8 8B (3.11)
M, =a . 82 « 5 « (p+1) (3.12)
My=a 8 g e (B1)....(gm-1) (2.13)

If 8 > 1, the frequency distribution has a mode at x = x_ + 8 < (g-1).
If B=1, the garma reduces to the exponential, If B < 1, the frequency
distribution dces not have a mode and is continuously decreasing. If

B < 1 and x approaches x the frequency distribution goes to infinity,

o,
but the integral over any finite range about > is alwgys finite. The
garma has an exponential tail, regardless of the wvalues of 8 and 8.

Its behavior with 6 = 1, ¢ = 1 and X, = 0 is also illustrated in Figs. 3.3,

3.4, 3.5, and 3.6 for different values of 3.

III.2.4  Weibull Distribution

The distribution is defined by:

X=X Bl x=-x_ 3
) rexe (- () ] (3.1%)

f(x)=a-(-§;)-<

where X > Xy, X5, 20, @ >0, B >0 and n > 0,



31

For given @ and Xgs the Weibull is a two-parameter distribution with
a scale factor N and a shape factor 8. The complementary cumulative

distribution is given by:

x-x_1B
P = a e (- [ ) (3.15)

The risk moments about x5 are given by:

e e . 1

M =aen=*T(1+ Ep . (3.16)
- ® 2 L] —2

My=a-<n F (1 + B) (3.17)
- [ ] m L -m

M =aen T (1+ 3) (3.18)

'If B > 1, the frequency distribution has a mode at x = x,+n e (1-1/6)1/8-
If B = 1, the Weibull reduces to an exponential. If B < 1, the

frequency distribution does not have a mode and is continuously decreasing.
If B < 1 and x approaches X» £(x) goes to infinity, but the integral

over any finite range about xo is always finite. The rate of decrease

in the tail depends on the value of 8., If B < 1, the Weibull decreases
more slowly than the exponential, If B > 1, the Weibull decreases more
rapidly than the exponential. The Weibull behavior withn =1, a =1

and x_ = 0 is also illustrated for different values of B in Figs. 3.3,

(o]
3.4, 3.5 and 3.6.
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III.2.5 Lognormal Distribution
The distribution is defined by :
1

£(x) =a —= [-(2n(x-x,) - u)?/20%] (3.19)
x (x-xo) —— exp n(x=-Xq

vhere x > x,, x, 20, @ >0, and 0 > 0. For given a and Xo» the
lognormel is a two-parameter distribution with a mean Y and standard
deviation O for the normal variable £n (x-xo). The complementary

cumilative distribution is given by:

Fc(x) =q r exp [-(& - u)?/202]4aE (3.20)

2n(x~xo)

ov2w

The risk moments atout x, are given by:

M, = a * exp (u+ %52] (3.21)
M, = a * exp [2u + 20?] (3.22)
M =a* exp [mn+ %mzoz] ? (3.23)

The frequency distribution has a mode at x = X, + exp [y - g2]. The tail
of the lognormal decreases more slowly than the exponential. The lognormal
behavior with @ = 1, x, = 0, u = 0 is illustrated in Figs. 3.3, 3.4, 3.5

and 3.6 for different values of G.
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III.3 Fitting Techniques

Two candidate fitting techniques were discussed in Section III.3.
They are the method of moments and method of least squares. The method
of moments is selected in this study because its computation procedure
is simple and also because the risk mcments will be used to investigate
the relation with more basic variables. The moments estimation will be
compared with the method of leasf squares in Appendix E. The method

of moments is applied to the candidate distributions in the following

way.

(1) Exponential
Since this is a one-parameter distribtution the first risk

moment about xo is'used to estimate the scale factor 6.

S

1
= (3.24)

6 =
(2) Gamma
The scale factor © and the shape factor B are estimated from

the first two risk moments about x by solving Egs. (3.11) and

(3.12), which give:

M2

B = 1 (3.25)
%2“ - Mlz
M.a - M2

g = -2 1 (3.26)

a My

37
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(3) Weibull
The scale factor N and the shape factor B are estimated from
the first two risk moments about x, by solving Eq. (3.16) and

(3.17). The quantity B is given by:

r(1 + 312
[T+ P2y 2

[r(1 + -:-)1 M2

(3.27)

A table which evaluates the lef: hand side of Eq. (3.27) versus
values of B is given in Appendix D for a range of 0.1 < B < 1l.l.
1 2

Also (1 +3) and r(1 + ‘B') are given in Appendix D. Using these
tables to derive B, N is then estimated by:

n = T (3.28)

a (1 + 73-)

(4) Lognormal

The mean U and the standard deviation O of the normal distribution

for n x are estimated from the first two risk moments by:

M M

=28 (25 - 1/2 2 (3D (3.29)
M M
o = tn () - 2 n (3) (3.30)
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III.L Fitting of Non-Nuclear Risk Distributions
III.4.1 Source of the Data

The candidate distribution families are fitted here to the
historical records of the non-nuclear risks. The purpose of this
analysis is to investigate whether non-nucleer and nuclear risks can
be described by one distribution family. The non-nuclear risks
investigated here are thosé from hurricanes, earthquakes, tornadoes
and dam failures. Except for tornadoes, the historical records are
summarized in WASH-1400 (Ref. 1). The historical record of the
major tornadoes is listed in the 1976 World Almanac (Ref. T).

The frequency versus consequence distributions of non-nuclear
risks are calculsted by ranking the historical observations in a
descending order besed on the magnitudes of the consequences. The
estimates of the complementary cumulative frequency at a specific
value x is calculated from the number of observations having consequences

greater than the specified value.
K
Fo(x) = 3 (3.31)

where Fc(x) is the calculated complementary cumulative fregquency at x,
x is the number of the observations having consequences greater than

X and T is the time pericd in which the observations are recorded, The
frequency distribution is calculated by grouping the observations into

certain number of the classes based on the magnitude of conseguence.
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The calculated frequency f(x) is given by:

£(x) = '@% ‘ (3.32)

where Ax is the width of the class and Ak is the number of the
observations in the class.
The first two risk moments about x, are estimated from the

historical records as:

M= 51 (x - x,) (3.33)
i

2 =T ) X - xo) (3.34)
1

The confidence bounds of the calculated complementary cumulative
frequencies were estimated in WASH-1400 (Ref. 1). Table 3.1 gives the
confidence factors versus the number of the observations having
consequences greater than the value of interest. These confidence
factors are reproduced from WASE-1400 (Ref. 1). The 95% upper tound
is computed by multiplying the estimated complementary cumulative value
by the corresponding confidence factor in Table 3.1 and the 5% lower
bound is computed by dividing it by the corresponding confidence factor.
One of the criteria of the adequate fits discussed in Section II.3 is
interpreted as follows. The largest.deviation of the fitted curve

should be within the 90% confidence bounds calculated frcm Table 3.1,



41

TABLE 3.1

Confidence Factors

No. of observations

groater than & bound () S
1000 ' 1.05 1.05
100 1.2 1.2
50 1.3 1.3
20 1.4 1.5
10 1.7 1.8
5 2.1 2.5
1 4.7 10.4

(a) Estimated frequency should be multiplied by this value to obtain
upper confidence bound

(b) Estimated frequency should be divided by this value to obtain
lower confidence bound
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IIT.4,2 Hurricanes
The historical records of the fatalities in hurricanes are summarized
in Ref. 1}. k46 fatal incidents were recorded in 73 years. The estimate

of the normalization constant is then,

_ L6

= m = .63/3’6&1'

a
Though the fatality of less than 1 is not physically real, the domain
of the consequence is taken to be greater than 0, because it does

2

not cause major errors in the fitting procedure“. The risk moments

estimated from the data are:

= L =
My = 2= z x, = 172.3
M, =27 x2 = 5.64 x 105
2 T3 i i

! See Table 6.8 in Main Report of WASH-1400 (Ref. 1)
2 The risk moments about x, = 1l are,

171.6

-

5.64 x 103

"

The differences from the risk moments atout x = 0 are not
significant. °
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From the risk moments, the parameters of the exponential, gamma,
Weibull and lognormal distributions are estimated. The parameter of
the exponential distribution is estimated from the first risk moment
by Eq. (3.22). The parameters of the other distributions are
estimated by Eqs. (3.23) through (3.28). The residual mean squares
are calculated by Eq. (2.10). The results are summarized in Table 3.2.
The fitted complementary cﬁmulative distributions using the parameter
estimates are given in Fig. 3.7 along with the data. The band attached
to the data points are the 90% confidence bounds discussed in Section
III.k.1. The fitted frequency distributions are given in Fig. 3.8 with
the histogram of the data calculated by Eq. (3.32).

The fitted candidate distributions are now evaluated by the criteria
diséussed in Sections II.5 and III.k.2.

The exponential distribution in Fig. 3.7 is out of the confidence
bounds, overestimating the complementary cumulative frequency (dencted
by c.c.f. in the following discussion) by a factor of more than 2 in
the range of 10 to 500 fatalities and underestimating the c.c.f. by &
factor of more than 100 at the largest consequence of the observed data.
The gamma distribution is also out of the confidence bounds, underestimating
the c.c.f. by a factor of 2 for less than 10 fatalities. The lognormal
distribution overestimates the c.c.f. for low consequence range and
underestimates it for the largest consequence, but the distribution is
within the confidence bounds of the data. The Weibull distribution does
not show any apparent systematic error in the range of less than 1000

fatalities, but underestimates the c.c.f. for the largest consequence.
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TABLE 3.2

Estimates of the Parameters of the Fatalities

Distribution in Hurricanes

x =0, a=,630, M =1.72 x 102, My = 5.6% x 10°
2

Candidate Residual
Distribution Estimates of Parameters Mean Square
Exponential 8 = 2.73 x 102 10.9
Gamma 8 = .091 8 = 3,01 x 102 .31
Weibull B = .387 n = T.48 x 10! A1

2.49 21

Lognormal o= L,37 o
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The Weibull distribution is within the confidence bounds of the data.
Table 3.2 shows that the Weibull has the smallest residusal mean
square. The lognormal and gamma are the next. The exponential has the

largest residual mean square,

III.4.3 Earthquakes

The historical recordé of the fatalities were given in Ref, 1l,
12 fatal incidents were recorded in 73 years. The domain is taken
to be greater than zero as was done in the hurricane distributions.
The estimates of the normelization constant and the first two risk
moments are given in Table 3.3. As before, the parameters of the
candidate distributions are estimated from the fix;st two risk moments.
The results of fitting are given in Table 3.3, Figs. 3.9 and 3.10.

The exponential distribution in Fig. 3.9 is out of the confidence
bounds, underestimating the c.c.f. by a factor of more than 100 for the
largest consequence. The other three distributions are within the
confidence bounds. The gamma distribution in Fig. 3.9 slightly
underestimates the c.c.f. for the low consequence region and also for
the largest consequence. The loénormal and the Weibull underestimate
the c.c.f. for the largest consequence.

The residual mean square of the Weibull is the smallest. The
garma and lognormal are the next. The exponential has the largest

residual mean square.

“See Table 6.9 ir the Main Report of WASH-1400 (Ref. 1)
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Table 3.3
Estimates of the Parameters of the Fatalities

Distribution in Earthquakes

x =0, a=,64 M =1.53 x 10!, Mo = 8.13 x 103

o 1

Candidate Residual
Distribution Estimates of Parameters Mean Square
Exponential 8 = 9,31 x 10 2.96
Gamma B = .212 ® = 4.38 x 102 .27
Weibull B = .511 n = 4,84 x 10? .26
Lognormal u = 3.66 o=1.Th 42
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III.L.4 Tornadoes

The historical records of the major tornadoes in Ref. T are
summarized in Table 3.4, 38 incidents were recorded in 4T years
that caused more than 20 fatalities. As the records below 20
fatalities are not found in Ref. 7, the domain of the fatalities
is taken to be greater than 20. The normalization constant and the
first two risk moments aboﬁt X, = 20 which are estimated from
Table 3.4 are given in Table 3.5. The results of fitting are given
in Table 3.5, Figs. 3.11 and 3.12.

The exponential distribution in Fig. 3.11 is out of the confidence
bounds of the data, underestimating the c.c.f. by a factor of more
than 100 for the largest consequence of the data. The other three
distributions underestimate the c.c.f. for the largest consequence,
but they are within the confidence bounds of the data. The residual
mean square of the Weibull distribution in Table 3.5 is the smallest.
The lognormal and the gamma are the next. The exponential has the

largest residual mean square.
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Table 3.4

Fatalities of U.S. Major Tornadoes
(1925 - 1971) (a)

Number Date (month/year) Lives Lost
1 3/25 689
2 4/65 271
3 3/32 268
4 4/36 216
5 3/52 208
6 4/36 203
7 4/47 169
8 6/44 150
9 6/53 116

10 5/53 114
11 2/71 110
12 4/45 102
13 5/27 92
14 6/53 90
15 5/55 80
16 3/42 75
17 4/27 74
18 9/27 72
19 3/66 61
20 1/49 58
21 3/66 57
22 11/26 53
23 4/42 52
24 5/57 48
25 5/30 41
26 4/29 40
27 12/53 38
28 5/68 34
29 3/48 33
30 4/67 33
31 1/69 32
32 9/38 32
33 1/46 30
34 6/58 30
35 5/60 30
36 5/70 26
37 4/70 25
38 2/59 21
(a) From "The World Almanac and Book of Facts 1976",

Newspaper Enterprise Associatiom, Inc.
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Table 3.5 Estimates of the Parameters of the Fatalities Distribution
in Tornadoes

x, = 20, o = .810, M; = 6.62x 101, M, = 1.67 x 10"

Candidate Residual
Distributions Estimates of Parameters Mean Square
Exponential 6 = 8.17 x 10! .66
Gamma B = .479 8 = 1.71x102 .11
Weibull B = .708 n = 6.53 x10! .086

Lognormal u = 3.84 c=1.12 .093
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III.4,5 Dam Failures

The historical records of the fatalities in dam fallures are
sumarized in Ref. 11, Eight fatal incidents were recorded in
84 years. The domain is taken to be greater than zero as was done
in the distributions of hurricanes and earthquakes. The normalization
constant and the first two risk moments are estimated from the historical
data in Ref. 1. The estimates are given in Table 3.6. The results of
fitting are given in Table 3.6, Figs. 3.13 and 3.1k,

A1l of the four candidate distributions underestimate the
complementary cumulative frequency for the largest consequence, but
they are within the confidence bounds of the data. The residual
meen square of the gamma distribution is the smallest. The next
are the Weibull and the lognormal. The exponential has the largest

residuel mean sguare,

lsee Table 6.12 in the Main Report of WASH-1400 (Ref. 1)



Table 3.6

Estimates of the Parameters of the Fatalities

Distribution in Dam Failures

X, = 0, @ = ,0952, My = 3.48 x 10!, M, = 5.07 x 10%

Candidate Residual
Distribution Estimates of Parameters Mean Square
Exponential & = 3.65 x 102 1.70
Gamma, 8 = .335 8 = 1,09 x 103 37
Weibull B = .608 n = 2.47 x 102 .39
Lognormal u =521 c=1.38 .57
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III.4.6 Summary of Fitting of the Non-nuclear Risk Distributions

In the previous sections the candidate distributions have been
examined based on the historical records of hurricanes, earthguakes,
tornadoes and dem failures. From the largest deviation of the fitted
distribution from the data, the exponential distribution is found to
be inadequate to fit the data of hurricanes, earthquekes and tornadoes.
The gamma distribution is found to be inadequate to fit the hurricane
data. The Weibull and lognormal distributions fit the data within the
confidence bounds.

Table 3.7 summarizes the residual mean squares of the fitting.
The residual mean squares indicate the order of the adequacy of fitting.
The residual mean squares of the Weibull are the smallest for hurricanes,
earthquakes and tornadoes. The gamme distribution has the smallest
residual mean square in fitting of the data of dam failures.

If a single family of distributions is selected for all of the
examined non-nucleaer risk distributions, the Weibull is assessed as
the distribution which is preferred, because its complementary cumulative
distributions are within the 90% confidence bounds of the data and its
residual mean squares are the smallest or next to the smallest for

all of the studied non-nuclear risk distribdbutions.
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Table 3.7
Residual Mean Squares of Fitting of

the Non-nuclear Risk Distributions

Type Candidate Distributions
of
Risk
Exponential Gamma, Weibull Lognormal
Hurricanes - 10.9 .31 .11 .21
Earthquakes 2.96 .27 .26 A2
Tornadoes .66 .11 . 086 .093

Dam Failures 1.70 <37 «39 ST
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III.5 Fitting of Nuclear Risk Distributions
I1I.5.1 Sources of the Data

The candidate distributions are now tested by the early fatalities
distributions of nuclear reactor accidents. The distributions investigated
here are the average of the first 100 commercial nuclear power plants
in U.S. and the distributions for two individual sitesf The average
distribution is derived from the risk estimates of the first 1C0 nuclear
reactors given in the Reactor Safety Study (Ref. 1).

The distributions of the individual sites are calculated in
this thesis using the consequence model under the calculation conditions
discussed in Section I.4.3. The population distributions used in the
individual site calculations are selected from the population distributions
of the 68 sites at which the first 100 commercial power plants are
located, The selected two sites noted by A and B are the ;rd highest
and 3rd lowest respectively when the 68 sites are ranked in a descending
order by the cumulative population within 5 miles. The selected two
sites can be interpreted as representing the 95% upper and 5% lower
bounds of the spectrum of the population distributions. The population
distributions of the selected two sites are given in Appendix C. PWR
accidents and.BWR accidents are calculated seperately in the individual
site calculations. Since PWR and BWR accidents have similar early
fatalities risk curves, the following combinations are comsidered to
cover the spectra of the population distributions and the reactor types.
The calculated cases are PWR accidents at site A and BWR accidents at

site B.
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The risk distributions and risk moments are calculated by the
consequence model. As discussed in Section 1.4, the consequence model
uses sampling methods in estimating the risk distribution. Let X, and Py
be the consequence magnitude and the probability of the sample trial (i).
The probability py assigned to the trial is calculated from the probability
of the release, the probability of the wind direction, the probability
of the evacuation speed and the number of samples picked from the
meteorological records. The complementary cumulative frequency is

estimated by the summation of the probabilities of the trials having

consequences greater than the specific value as:

FC(X) - z 91 (3'35)

X.>X
=

The frequency distribution is also estimated from the consequence
results by the summation of the probabilities of the trials having

consequences within certain intervals.

! »p,

x<x , <xtAx <

£x) = ——— - Kl}; (7 (x+ax) - FC(x)} (3.36)

For all of the nuclear risk curves, the lower end of the domain
is taken to be zero. The first two risk moments about the origin

are estimated from the consequence results as:
My = . 3.37
1 ; X4 Pi ( )

Mz = z xiz i Pi (3.38)
i



In the following sections and the chapters about the nuclear risks

the risk moments will always be evaluated about the origin. Unless

the reference point to evaluate the risk moments 1is specified, it

should be considered to be about the origin. The normalization constant

@ is estimated by:
a= ) P (3.39)

The calculated risk distributions have the following two types of
errors. One error is due to sampling since the model picks certain
number of weather data out of the one year meteorological record. The
other type of error is due to the uncertainties of the parameters in
the consequence model, such as the probabilities of the occurrences
of the releases, the deposition velocities, the dose response relationship,
etc.

The sampling error depends on the number of the trials having
consequences greater than the specified value. The confidence factors
discussed in Section III.4.1 can be applied to determine the magnitude
of the sampling errors, From Table 3.1 the probability of the largest
consequence nas 90%Z confidence factors of 5 and 1/20. The sampling
error is effectively zero for the lower consequences because of the
large number of trials having consequences greater than the specified
magnitude. Because of the increasing size of the sampling error, the
results of the calculation are truncated at the complementary cumulative

frequency of lO'g/year for both the average distribution of the 100



reactors and the risk distributions at individual sites, as done in the
Reactor Safety Study (Ref. 1l).

The uncertainties of the parameters are due to the insufficiency
of our knowledge about the parameters. For example, the dose-response
relationship (the relationship between the dose to the organs and the
fatal fraction of population exposed to the radiation) is not precisely
known because of the insufficiency of the available data.

For the average risk curve of the 100 reactors the uncertainties
due to the above two causes were estimated in WASH~1400 (Ref. 1) to be
represented by factors of 1/4 and 4 on the consequence magnitude and
1/5 and 5 on the probabilities. No estimate of uncertainties has been
made fbr the individual site calculations. It can be expected that the
uncertainty bounds of the individual site calculations will be larger
than those of the average case because of the smaller number of trials
involved in the calculations. However, since the sampling error
is small compared to the uncertainties of the parameters except for
the largest consequence whose probability is below 10-9 per reactor
year, it 1s assumed in this study that the uncertainty bounds of the
individual site calculations have comparable magnitudes to those

of the average of the 100 reactors.
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III.5.2 Average of U.S. 100 Reactors

The total risk of the first 100 commercial nuclear power plants
were estimated in the Reactor Safety Study (Ref. 1). The risk
curves, the risk moments and the normalization constant are derived from
the consequence results obtained in the Reactor Safety Study after dividing
the probabilities by 100 to get the average of the 100 reactors. The
calculated complementary cumulative distribution of early fatalities
is given in Fig. 3.15 by the dots. The calculated distribution is not
smooth because of the sampling error. The bands attached to the dots
indicate the magnitudes of the uncertainties in the consequence calculation.
The calculated frequency distribution is given in Fig. 3.16 as a histogram.
The calculated risk moments and normalization constant are given in
Table 3.8.

As before, the parameters of the candidate distributions are
estimated from the first two risk moments and the normalizaction constant
(Eqs. (3.35) through (3.39)). The estimates and the residual mean
squares are given in Table 3.8. The estimated complementary cumulative
distributions and the frequency distributions of the candidate parametric
distributions are given in Fig. 3.15 and 3.16 respectively.

Fig. 3.15 shows that the exponential distribution overestimates the
complementary cumulative frequency (denoted by c.c.f. in the following)
in the range of less than 200 fatalities and underestimates it above
200 fatalities. The estimated consequence magnitude at about 10-9
per reactor year is smaller than the consequence results by a factor
of 5. The gamma distribution underestimates the c.c.f. by a factor of 2

for the range of less than 100 fatalities and overestimates the c.c.f.



Table 3.8 Estimates of the Parameters of the Early Fatalities
Distribution of the Average of U.S. 100 Commercial Reactors
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xg = 0, @ = 4.72x1077, M} = 4.60x1072, M, = 6.45 x 1072

Candidate Residual
Distribution Estimates of Parameters Mean Square
Exponential 6 = 9.75x 101 47.07
Gamma 8 = .0783 6 = 1.30x10° .691
Weibull B = .371 n = 2.45x10! .194
Lognormal u = 3.31 g = 2.62 .057
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between 500 and 2000 fatalities. The lognormal distribution appears
not to have systematic errors. Except for the exponential distribution,
the other three distributions are within the range of the uncertainties
of the consequence model. The residual mean square of the lognormal

is the smallest in Table 3.8. The Weibull and gamma are the next.

The exponential has the largest residual mean square.

I11.5.3 PWR Accidents at Site A

The conseéuence calculation is made in this thesis using the
population distribution of Site A in Table C.5 and the release characteristics
of PWR accidents in Table C.3. As discussed in Section I.5.3, the obtained
consequence distribution is hypothetical because of the assumptions of
the meteorological conditions, the plant capacity and the probabilities
of the reactor system failures. The assumed conditions are not based
on the actual data of the power plant at Site A.

From the consequence calculation, the normalization constant and
the first two risk moments are estimated by Egqs. (3.35) through (3.39).
The parameters of the candidate functions are estimated in Table 3.9.
The estimated candidate distributions are shown in Figs. 3.17 and 3.18
along the calculated distributions by the consequence model. (The
calculated distributions are shown by dots in Fig, 3.17 and as a
histogram in Fig. 3.18).

Fig. 3.17 shows that the exponential distribution slightly
overestimates the c.c.f. in the range between 10 and 500 fatalities

and underestimates the c.c.f. in the range greater than 100 fatalities.
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Table 3.9 Estimates of Parameters of the Early Fatalities Distribution
in PWR Accidents at Site A

xg =0, @ = 5.78x1077, M; = 2.72x107%, M, = 5,77 x 10~}

Candidate Residual
Distribution Estimates of Parameters Mean Square
Exponential 6 = 4.61x10! 14.28
Gamma B = .284 8 = 1.66x103 .095
Weibull 8 = .570 n = 2.91x102 .102

Lognormal u = 5.40 g=1.51 .195
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The logno:mal distribution slightly overestimates the c.c.f. in the

range between 10 and 200 fatalities and the gamma distribution slightly
underestimates it in the range less than 300 fatalities. The Weibull
appears not to have systematic errors. The candidate distributions are
within the range of the uncertainties of the consequence calculation

but the exponential distribution is less favorable than the other three
because of the underestimation of the magnitude by a factor of 3 at

about 109 per reactor year. The residual mean square of the gamma
distribution is the smallest in Table 3.9. The Weibull and the lognormal

are the next. The exponential has the largest residual mean square.

I11.5.4 BWR Accidents at Site B

The consequence calculation is made in this thesis using the
population distribution of Site B in Table C.6 and the release characteristics
of the BWR accidents in Table C.3. The calculated distribution is also
hypothetical like the distribution at Site A in the previous section.
The results of the fitting are given in Figs. 3.19, 3.20 and Table 3.10.

Fig. 3.19 shows that the exponential distribution slightly over-
estimates the c.c.f. in the range between 10 and 100 fatalities. The
gamma distribution underestimates the c.c.f. for less than 10 fatalities.
The lognormal and the Weibull slightly overestimate the c.c.f. in the
range between 10 and 50 fatalities. All of the candidate distributions
are within the uncertain ranges of the consequence model. The order of
preference based on the residual mean squares in Table 3.10 is Weibull,

gamma, lognormal and exponential.
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Table 3.10 Estimates of Parameters of the Early Fatalities Distribution

in BWR Accidents at Site B

xg =0, a =1.61x1078, M} = 9.92x10"7, M, = 3.46 x 10~

Candidate Residual
Distribution Estimates of Parameters Mean Square
Exponential 8 = 6.17 x 10} 2.15
Gamma B = .214 8 = 2.87 x 10 .152
Weibull 8 = .513 n = 3.23x10! .107
Lognormal U= 3.26 c=1.73 .186
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II1.5.5 ’Summary of Fitting of Nuclear Risk Distributions

Based on the fittings for nuclear risks, the exponential is found
to be inadequate to fit the average distribution of the U.S. 100 reactors.
The residual mean squares in Table 3.11 show the order of preference
of the renaining candidate distributions. If a single family of
distributions is selected for ail of the examined risk curves, the
Weibull is assessed as being adequate because its residual mean squares
are the smallest or the second smallest for all of the examined risk

distributions.

1I7.6 Summary and Conclusions

The approach developed in Chapter II is demonstrated in this chapter
to examine the early fatalities distributions of nuclear and non-nuclear
risks. Four candidate distributions are studied, exponential, gamma,
Weibull and lognormal distributions. They are selected from the
considerations of (1) having no mode or at most one mode, (2) positively
skewed behaviors (3) different tail behaviors and (4) having only one
or two parameters to be estimated. The method of moments is used to
estimate the parameters of these distributioms.

In order to select a distribution family which adequately describes
the fatalities distributions, the historical records of hurricanes,
earthquakes, tornadoes and dam failures are examined. The Weibull
distribution is assessed to be appropriate as a family of distributions

that describe the examined non-nuclear risk distributions. For the
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calculated nuclear risks from the average éf U.S. 100 reactors and

from the two individual site calculation results, the Weibull distribution
is also assessed to be appropriate. For both nuclear and non-nuclear
risks, the Weibull distribution is determined to be the distribution

which adequately describes the examined risk curves.
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Table 3.11 Residual Mean Squares of Nuclear Risks

Candidate Risk Models

Reactor Exponential Gamma Weibull Lognormal

Average of U.S.
Reactors 47.07 .691 .194 . 057

PWR at Site A 14.28 .095 .102 .195

BWR at Site B 2.15 .152 .107 .186
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CHAPTER IV

BASIS FOR REGRESSION ANALYSIS

IV.1 Introduction

In the preceding two chapters, the fittings of the risk
distributions to the parametric distributions were discussed. The
next major step in the analysis is to derive the equations that relate
the distribution parameters to the basic variables that drive and
control the consequences of the nuclear reactor accidents. In this
chapter, a general discussion will be made about derivation of the
basic variable equations. The application will then be discussed in

the following chapters.

IV.2 Derivation of the Basic Variable Equations

IV.2.1 Outline of the Approach

In this study the regression analysis approach is used to relate
the distribution parameters to the basic variables. For the purpose
of presentation, the approach in the analysis can be represented by
six fundamental steps. Such a breakdown represents useful means of
giving a perspective on the process, although a simple summary of this
kind cannot fully describe all the elements in a complex analysis. The
six fundamental steps are:

(1) 1Identification of the basic driving variables to be studied.

(2) Selection of the dependent variables of the regression

equations.
(3) Assembling the data to be used in identifying the relation-

ship between the dependent and basic variables.



(4)

(5)
(6)

82
Formulation of candidate equations relating the dependent
and basic‘variables.
Estimation of the unknown constants in the equations.

Investigation of the adequacy of the derived equations.

Each step is now discussed in context of a risk analysis of the

nuclear reactor accidents.

IVv.2.2 1Identification of the Basic Variables

The following are some examples of the basic variables that would

be of interest in a risk analysis of the nuclear reactor accidents:

(1)
(2)
(3)
(4)

Population distribution.
Meteorological condition.

Probabilities and magnitudes of radioactive releases.

. Evacuation speed and evacuation area in emergency situations

of the reactor accidents.

These variables would be of interest in the following decision

making and evaluation studies:

(1)

(2)

(3)

The population distributions and the meteorological conditions
would be of interest in selection of sites for nuclear power
plants.

The probabilities and magnitudes of radiocactive releases

would be of interest in evaluation of safety systems in a
nuclear power plant involving engineering safety features,
operation restrictions and maintenance activities.

The evacuation speed and area would be important in emergency

planning.

In the regression analysis, the basic variables to be studied are

called "regressor variables.”" The population distribution and the
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characteristics of radioactive releases will be studied as regressor
variables in the following chapters to demonstrate the regression
analysis approach for identifying the dependent and basic regressor

variables.

IV.2.3 Selection of the Dependent Variables

The dependent variables can be selected from the risk characteris-
tics or the distribution parameters of the fitted distributions. Since
the appropriate family of the parametric distributions has been
selected, the other risk characteristics or distribution parameters
can be estimated from the selected variables. The following variables
can be studied as dependent variables:

(1) Scale factor, shape factor and normalization constant of the
fitted parametric distribution.

(2) Risk moments about a specific magnitude of consequence.

(3) Complementary cumulative frequency at a specific magnitude
of consequence.

(4) Magnitude of consequence at a specific value of complementary
cumulative frequency.

(5) Slope of the tangent of the complementary cumulative
distribution at a specific magnitude of consequence.

The selection of the dependent variables is based on the following

considerations:

(a) The relationship between the dependent and basic variables
can be expressed by fairly simple and straightforward
equations.

(b) The selection may depend on the situation being considerad

in the decision making or evaluation process.
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The variables listed above would be of interest in the following

situations:

(1) Distribution parameters of the selected parametric distribu-
tion: The parameters control the behavior of the distribu-
tion. For example, the shape factor B of the Weibull distri-
@utioﬁ controls the rate of decrease in the tail. The scale
factor n of the Weibull distribution represents the magnitude
of consequence at a complementary cumulative frequency of
a/e, where e is the Euler's constant. The normalization
constant represents the frequency that the consequence is
greater than the lower end of the domain. When the decision
is based on these characteristic quantities, they can be
selected as dependent variables.

(2) Risk moments: The first risk moment about the origin will be
selected when the decision is based on the expectation of the
magnitude of consequence. The second and higher moments
about the origin represent the tail behavior of the distribu-~
tion. When the decision is based on the extreme consequences,
the second and higher moments would be of interest.

(3) Complementary cumulative frequency at a specific magnitude of
consequence: When the decision is based on the frequency at
a specific magnitude (for example, 1000 fatalities), it can
be selected as a dependent variable.

(4) Magnitude of consequence at a specific frequency: When the
decision is based on the magnitude at a specific complementary
cumulative frequency (for example, lO-g/year), it can be

selected as a dependent variable.
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(5) Slope of the tangent of the complementary cumulative distri-

bution: The slope represents the rate of decrease of the
frequency. Specifically the slope at the tail would be
selected when the extrapolation of the distribution is of
interest to the consequences greater than the largest
consequence in the historical records or in the calculation
results.

When the scale and shape factors are not selected as dependent
variables, they will be estimated from the selected dependent variables.
For example, the first two risk moments about the origin and the normal-
ization constant will be selected as dependent variables in Chapter 5.
The Weibull parameters 8 and n can be estimated by Egs. (3.27) and
(3.28). Once the Weibull parameters are estimated, we have an entire
distribution and can derive any risk characteristic in terms of the
parameters. For example, the magnitude of consequence at a specific

complementary cumulative frequency FC is give by:

a]]l/ﬁ (4.1)

x=xo+ﬁ'[ln[F—c

N

where 8 and fi are the estimates by Egqs. (3.27) and (3.28).

IV.2.4 Assembling of the Data

In the risk analysis the data are generally obtained from the
historical records or from the calculational model. The data obtained
can be certain risk characteristics or risk distributions. To identify
the relation to the basic variables, the data must be obtained for
different values of the basic variables. A set of the data used for
the analysis is called '"data base'" in this study.

In this thesis the data base is obtained from the consequence
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model. For example, in Chapter 5 the first two risk moments and the
normalization constant will be calculated by the consequence model for
68 different population distributions. The calculated 68 different
sets of the risk moments and the normalization constant will be used

in identifying the relaﬁionship between the dependent variables and the

population distribution.

IV.2.5 Formulation of Candidate Equations

A number of candidate equations with unknown constants are
formulated to relate the dependent variables to the regressor variables.
Simple and straightforward equations with a small number of unknown
constants are desirable. Consider the following twd candidate

equations:
y = h(zl,zz,...,zmlrl,...,rk) + € (4.2)

y = h'(zl,z veesT )y + ¢! 4.3)

TR 0 Tk Ty

where y is the dependent variable and zl,...,zm are the regressor
variables. T's are the unknown constants and ¢ and €' are the random
error variables. Eq. (4.3) has v additional unknowns compared to Eq.
(4.2). Generally Eq. (4.3) with (k+v) unknowns predict the value of y
more accurately than Eq. (4.2) with k unknowns. But Eq. (4.2) is more
desirable than Eq. (4.3) because of its smaller number of unknowns. As
a compromise the significance of added v unknown constants is tested by
the partial F-statistic which will be discussed in the following sub-

section.

I1V.2.6 Estimation of the Unknown Constants

The method of least squares is used to estimate the unknown con-
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stants. For example, the unknowns in Eq. (4.2) are estimated by

minimizing:

A2 =

[ e W= ]

[yi-h(zli,n-,z T ,--.,rk)]2 (4.4)

mi' 1

i=1
where the subscript i refers to the data value prepared in Section
IV.2.4 and n is the total number of the sample data.
Having obtained the estimates fl,...,?k, the significance of the

derived equations are expressed by the F-value defined by:

Sé/k
= ST ED (4.5)
where
s2 =31 [y, - h(z z 2 ,...,2)1% (4.6)
¢ ;70 1177 %m0t Tk
1
Yo =Ly (4.7)
i
2 - - 2
Sg = Iy, - hiz heeenz ]t 2] (4.8)

i
If the F-value determined by Eq. (4.5) is larger than the F-value
at the predetermined significance level with (k,n~k-1) degrees of
freedom, the candidate equation Eq. (4.2) is found to be significant
to express the variatiom of the dependent variable of the data. The
F-valué in Eq. (4.5) is related to the multiple correlation co-efficient

fn which is defined by:

2
2 SG
02 m gy (4.9)
SG + SR

The multiple correlation coefficient also indicates the significance of
the regression results.

In the preceding section, the compromise between the accuracy of
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prediction and the number of unknowns is discussed. Now Egs. (4.2) and

(4.3) are compared. Let f;""’fé’f£+1""’fi+v be the estimates of

the unknowns in Eq. (4.3) determined by the method of least squares.
The significance of the added v unknowns is examined by the partial
F-statistic defined as:

_ [s2 - (s2)'1/v .10
(s2) "/ (n=k=v=1) |

F'

where

231 = - 1 1 ] 2
(s3) i [y, - h (zli,...,zmi]’?l,...,fk+\))] (4.11)

If the partial F-value in Eq. (4.10) is smaller than the F-value at the
predetermined significance level with (v,n-k-v-1) degrees of freedom,
the added v unknowns can be eliminated and Eq. (4.2) with k unknowns is
found to be adequate.

Stepwise regression technique is a method for determining equations
with the minimum number of unknowns without decreasing the accuracy in
predicting the variation of the dependent variables. It uses the
partial F-tests repeatedly by adding or eliminating the unknown
constants (or the regressor variables associated with the unknown
constants).

Details of the regression techniques and the tables of the F-dis-

tribution are found in Ref-8.

IV.2.7 Test of the Adequacy of the Derived Equations

The following criteria are used to investigate the adequacy of the
derived equations:

(1) The F-value in Eq. (4.5) or the multiple correlation coeffi-

cient in Eq. (4.9) should be large. This criterion can be
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taken to be a relative measure to be used in comparing
different possible equations.

(2) The error should not be systematic. When the fegression
estimates of the erendent variables are plotted versus the
data values used for regression, the points should lie
closely about.the 45 degree line and no tendency is observed
to overpredict or underpredict various range of the data.

(3) The fitted risk distribution using the derived basic variable
relations will be compared to the data distribution. .

(4) Various risk characteristics will also be compared using the
basic variable relation to determine tﬁe fitted risk

characteristics.

IV.3 Summary

The approach for deriving the regression equations is discussed in
this chapter. The fundamentgl elements of the approach are identified
as: (1) identification of the basic regressor variables; (2) selection
of the dependent variables; (3) assembling of the data; (4) formulation
of candidate equations; (5) estimation of the unknown constants; and
(6) investigation of the adequacy of the derived equations.

Some of the possible basic variables are identified and two of them
will be studied in the following chapters. The dependent variables can
be selected from the risk characteristics or the distribution parameters
of the fitted distributions. The data used for regression analysis can
be obtained from the historical records or the calculational model. In
this study they are obtained from the consequence model. The candidate

equations with a small number of unknown constants are desired. The
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unknown constants are estimated by the method of least squares. The
significance of adding or eliminating unknown constants can be tested
by the partial F-statistic. The adequacy of the derived equations is
examined by: (1) F-value or multiple correlation co-efficient; (2)
systematic error in prediction of the dependent variables; (3) compari-
son of the fitted risk distribution to the data distribution; and

(4) comparison of the predicted risk characteristics to those calculated

by the consequence model.
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CHAPTER V

REGRESSION ANALYSIS OF POPULATION DISTRIBUTION

V.l Introcduction

In the previous chapter a general procedure of regression analysis
was provosed. The procedure will be demonstrated in this chapter in
an example in which the population distribution is a basic variable.
Since the population distribution is one of the potentially important
factors in decisions on sites for nuclear power plants, the equations
relating the risk to the povulation distribution will provide help in
decision cn an acceptable population distribution.

The example studied in this chapter is the relationship between
the population distributiocn and the early fatalities distribution of FWR
accidents in northeastern valley meteorological condition. But the
methods develcped in this chapter will be generally applicable to other
consegquences, other types of reactor accidents and other meteorological
conditicns.

The discussion in this chapter follows the procedure of regression
anelysis vproposed in the preceding chapter. Section V.2 discusses
the population distributicn which is the basic variable in this chapter.
The selection of the dependent variables is made in Section V.3 and the
data base is prepared in Sectior V.4, The regression model is fermulated
in Section V.5 and the regression fitting is made in Section V.6. The
adeguacy of the derived egquations is examined in Section V.T. An example
of decision meking involving siting for a nuclear power plant is given

in Section V.8,



v‘.2 Incorporation of the Population Distribution in a Risk Model

A polar coordinate system is used here to describe the population
distribution. The origin is set at the location of the nuclear power
plant. fﬁe number of people living in (Ar, 46) at (r,8) is defined

to be:

n(r,8) Ar A8 = ¢ » p(r,8) Ar * A9 (5.1)

c

vhere n(r,®) is the number of people per radian per unit distance and

p(r,8) is the population per unit area.

Fig. 5.1 Illustration of the Polar Cocrdinate Sustem for Describing

the Population Distribution
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In the consequence computer model, the population distribution
is discretized by dividing a circle of 500 miles radius! into sixteen
22-1/2 degree sectors and dividing a sector into 34 annular segments.
Fig. 5.2 illustrates some of the annular segments in the consequence
model. Eqg. (5.1) is first integrated over a 22-1/2 degree sector in

the direction J.

ny(z) = J n(r,8)ds (5.2)
T
g
where nj(r) is the population per unit distance at r in a 22-1/2 degree
sector in the direction j. Eq. (5.2) is then integrated over r to derive
the population in the k-th annular segment from the origin in a sector of
the direction J.

T
n

Uik = 3

Tk-Ar

(r)dr (5.3)
k/2
where ry is the distance of the midpoint of the k-th segment from the

reactor and Ark is the width of the annular segment. and Ark used

i
in the consequence calculation are listed in Appendix C. The populations
in the annular segments are treated as basic regressor variables in

this chapter,

{The effects of nuclear reactor accidents on the public beyond 500
miles are considered too small =nd no calculation is performed beyond
500 miles.,

93






95

V.3 Selection of the Devendent Variables

The dependent variables can bte selected from the risk characteristics
or the distribution parameters listed in Section IV.2.2. In this chapter,
the first two risk moments and the normalization constant are selected as
the dependent variables, since they have been used to derive the fitted
Weibull distributions which have been shown to adequately describe the
data distributions of consequence vs. frequency. Theée three variables
represent the following behaviors of the distribution. The first risk
moment gives the average number of fatalities per unit time. The second
risk moment accounts the tail behavior of the distribution. The normalization
constant gives the area under the frequency distribution, which is the

provability per unit time of consequences being greater than zero.

V.4 The Data Base for Regression Analysis

A total of 68 different population distributions are used for the
regression analysis. The populations correspond to the 68 sites where
the 100 reactors are now in use or planned to be located. The populatiocns
are calculated from the 1970 census bureau data (Ref. 2). As shown in
Teble 5.1, the 68 populations have a large. spread with regard to the
cunulative distribution. The populations also cover different patterns
as shown in Fig. 5.3, The regression equations derived from these
populations should therefore cover the likely variations which might
be considered in selection of sites for nuclear power plants.

The first two risk moments and the normalization constant are
calculated by the consequence computer model for each of the 68

population distributions assuming FWR accidents and northeastern valley
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Table 5.1 Spread of Cumulative Population in the 68 Population
Distributions

Cumulative Population in a Circle

(thousands)
Average
Highest of the Lowest
Radius (miles) Distribution Distributions Distribution
2 21 1.4 0
5 62 8.7 0
10 207 42 1.4
20 896 214 19
50 16,485 2,073 171
100 23,908 6,973 523

500 108,757 60,302 6,947
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Table 5.2 Results of Consequence Calculations of PWR
Accidents for 68 Different Population Distributlons

Population First Second Normalization
Distributlon BRisk Risk Constant
Sample No. Moment Moment
) 1 9YSET0S “BTIBE=0Z “ITYIESUT -
2 2.72E=C4 S.77E-C1 5.78E-07
3 1.59€-G5 T1.156-03 : 1.60E-07
4 8.87€-C7 6.47E~Ca 1.28E~-08
5 T.57€E~GC5 8.62E-02 2.3)E-07
6 3.2G€-35 1.30€~-C2 2.82E-07
7 5.7E-05 5.35£-C2 2.,76E-C7
8 S.70E=-0Q5 5.35€-02 2.76E-07
9 1.34E-05 1.12€~-C2 8,74E-C8
10 2.94F~-05 6.78E-C2 7.48E-08
11 3.38E-05 " 5.66E-02 1.13€-37
12 6.95E-04 2.07e CC 7.09€-37
13 2.94E-25 6.78E-C2 7.4BE~-08
14 1.256~-Q4 1.53€e-01 4.02€-Q7
15 1.66E-05 . 1.376-C2 8.71E-08
16 1.21E-0¢4" 2.17€-01 3.65E-07
17 3.85€~-04 8.95E-C1l 6.85E-07
18 1.88E-05 9.99E-01 1.26E-Q7
19 5.61E~035 1.G3e-C1 1.58E-07
20 1.71E-04 3.85€E-C1 4.42€E-07
21 6.73E-05 7.21e-C2 3.11€E-07
22 3.87€-05 8.63E-Q2 1.95€-27
23 7.3CE-06 1.92€E-03 9.81€-23
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meteorological conditions.’ The results are given in Table 5.2 and .

will be used as the data base for the regression analysis.

V.5 Formulation of the Regression Model

Having obtained the data base, the next step in the analysis is
to fprmulate a model that relate the dependent variables Ml’ M2 and ¢
~to the populations in the annular segments. To keep the model simple
and also to maske the results applicable to other geometries, the
regression coefficients wilibbe expressed as functions of the distance
from the reactor. The functions will be called "transfer functions" in
this study. Before defining the transfer functions, some of the
assumptions and techniques in the consequence model will be discussed
bepause the forms of the transfer functions are dependent on the

assumptions and techniques in the consequence model.

V.5.1 Assumptions and Techniques in the Consequence Model

Only the assumptions and techniques related to the definition
of the transfer functions are briefly discussed. A full description
of the consequence model can be found in Appendix VI of WASE-1L0O (Ref.l).
The discussion of the effects on the transfer functions will be made in
the course of defining tﬁe transfer functions. With regard to the

assumptions and techniques, the following points are important.

(1) A sampling method is used in the consequence model. One

trial consists of one radicactive release, one evacuation
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speed, one starting time of meteorological conditions (stability,

precipitation, and wind speed) and one wind directicn.



(2)

(3)

(4)
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The variables listed above are considered to be independent
of each other. The probebility assigned to one trail is
therefore a product of the probabilities of the individual

events.

Py PR ' Py " Fg "y (5.1)

where

P. ¢ probability assigned to one trial.

PRt probability of a release occuring.

Py: probability of an evacuation speed being realized.

Pg: probebility assigned to one starting time of
meteorological data. As discussed in Section I.lk,
if 90 starting times are selected, each of them is
assigned with a probability of 1/90.

pJ: prob ebility cf the wind blowing in the specific

direction.

The shift of the wind direction in the downwind is not explicitly
treated. The radioactive plume travels in the direction in
which the wind wes blowing at the starting time of release.
Therefore for one trial the fatalities occur only in one
direction.

The frequency distribution of the wind direction is uniform

over the 16 directions. The probebility 94 in Eq. (5.4) is
therefore 1/16. The probability P, assigned to cne trial is

thus independent of the specific wind direction.
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V.5.2 Definition of Transfer Functions

Consider one trial in which the wind is blowing in the direction J.
Let A(r) be the ratio of the fatalities per unit r at r to the population
per unit r st r in a 22.5 degree sector for the trial. A(r) is a
function of the dose to the critical organs and the area covered by
the radicasctive plume., It is then dependent on the specific release,
evacuation speed and meterological condition of the trial, but it is
independent of the wind directicn. Since the shift of the wind direction
is not considered, the total number of fatalities for the trial is given
by:

x = I A(r) - nj(r) s dr (5.5)

r

The first risk moment is the expectation of x over 21l trials.
M. = E[x] (5.6)

where E refers to an expectation over all trials. From Eq. (5.5), Ml is

then given by:

M=E[JMﬂ'n

. (<)ar = [ 5lale) « ny(r)lar (5.7)

J

Since the fregquency distribution of the wind direction is uniform,

::
'_.l

!
LI

V| ElA(r)] ¢ a,(r)ar (5.8)
J
3



The first transfer function will therefore be defined as:
1l
a(r) = 3z * E[A(r)] (5.9)

Then Ml is expressed as:
My= %I a(r) - nj(r) s dr (5.10)
r

As My is an annual expected number of fatalities, a(r) is an annual
expected number of fatalities per individual at distance r. The
quantity a(r) can also be interpreted as a probability of death per
reactor year for an individual living at distance r.

The second risk moment is an expectation of x2.

2 = J A(r) = nj(r)]z
r
= JI A(zr) » A(z') o nd(r) . nj(r')drdr (5.11)
rr'

Then,

Mo

E(x?] =%-gi J J z[A(z) * A(x")] * ny(r) * ny(rt)dardr (5.12)
J rr

t

The second transfer function b(r,r') will be defined as:

b(r,r') = Iz E(A(r) » Alr")] (5.13)
Then,
M, = 3 J J b(r,r') o nj(r) . nj(r')drdr’ (5.14)
J

rr!
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The quantity b(r,r') is the'annual expected numter of fatalities at
r and r' per individual at r and r' arising from the same accident.
It also can be interpreted as a probability that an individual at
r and r' will both be killed in the same accident.

Finally, the third transfer function c(r) will be defined to
relate the normalization constant a with the population distribution.
The constant o is the probablity per reactor year.for which the

fatalities will be greater than zero.

e = E[E(x)] : (5.15)
where
H(x) =1 for x > 0
=0 forx =0

Let dj be the closest distance at which people live from a reactor in

the direction J.

nj(r) =0 at r < dj
>0 at r = dJ
>0 at r > dj (5.1€)
Then,
x = j Alr) » nj(r)dr

(o)

-]

j Alz) - nj(r)dr (5.17)
43
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Now, a is expréssed by:
®
« = 2u([ Alr) + n(x)ar)] (5.18)
J
Since it is difficult to express the expectation of E equation in a
simple form, an approximation relating o to the closest distance dJ
will be constructed. The third transfer function e(r) is then defined

as:

a=1 [e(r)] (5.19)
J r=dJ
The adequacy of Eq. (5.19) will be tested by the regression fits.
In the consequence computer model, a circle of 500 miles radius
is divided into 16 x 34 annular segments. The key equations of the
transfer functions are then expressed in the discrete geometry of the

consequence model by the following equations.

a(r,) = Iz ElA(z,)] (5.20)
M, = a(r,) - 1 (5.21)
2= DL et -y

By, 7') = 37 ElA(r) * Ar,")] (5.22)
My=3 13y olr,z ') eN, oN " (5.23)
27 Tpp Bk & TJk

@ =Y [c(r)]r=r (5.2h)
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W .
here kmln

(J) is the closest segment in which the population is
greater than zero in the direction J.

The transfer functions a(r), b(r,r') and c(r) are dependent
on the type of consequence, the average weather characteristics and
~the type of releases, but they are independent of the population
distribution. The transfer functions for early fatalities in PWR
accidents in northeastern valley meteorclogicael conditions are being
studied in this chapter.

To keep the model simple, the transfer functions will be expressed
in terms of possibkle parametric functions which will be tested in the

regression analysis. The forms of the functions and the constants

to be fitted by the regression analysis will be studied in Section V.6.

V.6 Regression Fitting
V.6.1 Methods for Fitting

We want to express the transfer functions as parametric functions
with a2 small number of unknown constants which give adequate fits. Two
approaches are studied in order to derive the form and the constants
from the consequence calculation. The first approach is to use the data
base prepared in Section V.4 for the 68 sample population and derive
a(r), b(r,r') and c(r) by Egs. (5.21), (5.23) and (5.2L4) using regression
analysis. The second approach involves calculating the ratio A(rk) of
the fatalities at rk to the population in a sector at Ty for eesch trial
from the consequence calculation. Using Egs. (5.20) and (5.23),

the average of A(r,) and A(r.) * A(r,') over all the trials will give
k k k
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a(rk).and b(ry, ry') respectively. a(ry) and b(ry, r ') can then ve
fitted to the perametric functions involving the distance r. Though
both approaches can give the same results (within fitting errors),
each has its own advantages and disadvantages. The two approaches

are discussed in more detail in the following subsections.

V.6.1.1 Regression from Data Base of My, M, and &

This approach uses the data base in Section V.4 and Zgs. (5.21),

(5.23) and (5.2L4). Possible parametric functions are assumed for
a(r), b(r, r') and c(r). Let h (r| 81y 80y eee av) be the assumed
a
perametric functions of a(r) with unknown constants a1y 89y ees 3 Bye
The estimates of the dependent variable M; for the 68 populations are
given in Table 6.2. Also the populations in the annular segments Njk
are given for the 68 samples. Since the rangé of the estimates of My
cover several orders of magnitude, the regression analysis will be

3

based on the natural logarithmic transformation of'Ml.

W re (5.25)

ga My = 2n { % ; Bo(r | &gy vov ya) - ny

where € refers to the random error variavle. Using the non-linear regression

analysis, the unknown constants 815 +ee &, are estimated by minimizing:

a2 = E [2a(21}); - 2n {§ E halry | &y oo s ay) o (7,312 (5.26)

where the subscript i refers to the population sample.



107

The derivation of b(r, r') is similar to a(r). A candidate function

ny(r, r'| Bys eee s bv,) is assumed and the unknown constanmts by, ... , b,

are estimated by minimizing:

8 = T a0y - 22 (T 1T (e, '] oy, wee s 3y
1 Jkk'

© (Mygdg o (Njk')i}] (5.27)

Finally let he(r| Cls s+ » Cy'") be the candidate function of elr).
The closest segments at which the population are greater than zero are
identified for each of the population distributions. The unknown

constants are estimated by minimizing:

A%:E [En Qi—ln{ihc(rk ‘Cl, ess 9 C‘J”) ] (5-28)

i J min(J)

The above approach has the following advantages:

(1) The number of population distributions used can be artitrary

as long as the number is greater than or equal to the number of

unknown constants. The fitting errors can be decreased by
incressing the number of population distributions.

(2) Since the dependent variables My, Mp and ¢ are integrated over
distance, their estimates from their consequence rrogram have
relatively small sampling errors of the trials.

The disadvantages of this approach are:

(1) A sizable amount of cemputation time can be rsquired to

estimate ; , M and 4 by the consequence Trogram for a larger

number of population distributions. For example,
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epproximate 10 minutes of CPU time on the IBM 360
were required to prepare the data base in Table V.2.
(2) Since the risk moments do not directly suggest
appropriate functional forms of the candidate
functions, a number of functional forms may need

to be tried to find an adequate fitting form.

V.6.1.2 Use of the Averages of Ratios of Fatalities

The second approach involves having the consequence model
calculate the ratio of fatalities at the distance r to the
population in a 22-1/2 degree sector at T for each trial. These
ratios are then averaged over all trials. The ratio [Ak]t for

the specific trial ¢ is calculated by:

((Fg) 4]
(8], = ——;;;ik—i (5.29)

where [(Nf)jk]t is the number of fetalities in the annular segment
(J,k) at the trial t and Njk is the population in the annular segment
(3 k). As the wind direction is assumed to be independent of

the radicactive release, the starting time for the meteorological

conditions and the evacuation speed, [Ak] is consequently

t
independent of the wind direction., Furthermore, [Ak]t can be
calculated using one sample population distribution. To avoid the

case of Njk = 0, a uniforn population distribution is used as a

sample population in this study.
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. I
Ny = F 0, T, * Ar (5.30)
where Po is the population density of the uniform population distribution.

Averaging [Ak]t over all the trials, the estimate of a(rk) is

obtained as:

ak=§ Ay e PR - Py - D5 - By

-

t

where p's are the probabilities assigned to the individual events
in Eq. (Sth)'

The estimates of b(rk, rk') is also obtained from [Ak)t as:

5
S

plad, s (a1, - pp - Py - B (5.32)
t

The quantity c(rk) is not derivable by %this averaging approach since
c(r) is defined by Eg. (5.19) which is used to approximate the
expectation of H equation in Eq. (5.18). Instead of c(r) another type
of aprroximation can be used.

a = E[E(| A(r) - nj(r)dr)] (5.33)
J

u——8

o is approximated by:

e ¥ E(r(a(d,) - nJ(dJ))] (5.3k)



By definition of dj’
nj(dj) >0 (5.35)

Then,

e

a

E[H(A(dj))] (5.36)

Since the wind direction distribution is uniforn,

e

S

a

§ E{H(A(r))]r=dj (5.37)

Another transfer function v(r) is defined as:

Y(r) = Tz E[E(&(r))] (5.38)

Then,

e

a

g [v(r)1r=dJ (5.39)

The estimate of Y(rk) is obtained from the consequence calculation by:

Yy =%g§ [E((A) T * g =y * pg (5.40)
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The approximation in Eq. (5.34) assumes that whenever there are
fatalities occurring then scme of these will most likely occur at the
closest distance from the reactor at which people live. Since tke
complete integral in Eq. (5.33) is approximated by the closest
distance in Eqg. (5.34), the approximation of EZq. (5.29) can under-
estimate a. However this appears to be a reasonable approximation
and furthermore can be used only to give the functional form of
c{r). The estimates of y(r) in Zq. (5.40) will be used to obtain
the functional form of c(r). Having obtained the estimates of a(rk),
b(rk, rk') and Y(rk), they can then be fitted to the parametric functionms.
The method of fitting will also involve least squares., Suppose
ha(rl By eee s av) is a candidate function of a(r). The unknown
constants are then estimated by minimizing:

K

Ai = E [en 2 - n ha(rk| a

L vee s av)]2 (5.41)

l’
where X is the number of the annular segment in one direction. The
natural logerithmic transformation is used in Eg. (5.41) because 2
varies over several orders of magnitude.

In a similar manner, the unknown constants of the candidate function

(ry r'| by, +o. 5 b ') are estimated by minimizirg:
1 v

2 -
Ab

K
!

‘ Y 1]
[2a bkk’ - in hb(rk, rk" Doy eee 5 B )1 (5.42)

1

'ﬁMN
’.J

=1



Finally, if by(ﬂ Yis vee s

v(r), the unknown constants Y1s +++ » Yy''' are estimated by minimizing:

A2
Y

\Y

K

kgl ['?'n Yk - 2n hY(rkl Yl’ e Y\)”')]

The advanteges of this approach are:

(1)

(2)

The estimates of a(rk), b(rk, Yk') and y(rk)
from the consequence program can be plotted to
suggést approvriate forms for the candidate
functions.

Computetion time needed to derive s bkk' and
Y, can be much smaller then that required to
estimate the risk moments and the normalization

constants for many pooulation distributions.

The disadvantages are the following:

(1)

The estimates 3, bkk' and Y, can have large
sampling errors if smaller number of trias

are used in the consequence calcuwlation. The
occurrence of precipitation in the plume can
especially cause large scattering in the
estimates,

c(r) is not derivable by this approach. Instead
of c(r), the further approximation involving

v(r) is required.

v,''') is the candidate function for

(5.43)
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V.6.1.3 Combinations of the Two Approaches

Two approaches for deriving the functional forms and the unknown
constants of the candidate functions have been discussed in the
preceding two subsections. In this study the two approaches are
combined, The method of averaging ratios of fatalities is first used
to investigate appropriate forms of the candidate functions. After the
candidate functions are selected, the unknown constants are then
finally estimated using the risk moments and the normalization
constants from the 68 population distribution. This combination
approach is used in this study since the regression fits from the 68
population distributions will have the smallest sampling errors and
the averaging of ratios involves little computer time to investigate

possible candidate functionms.

V.6.2 Evaluation of a(r)

Based on Egqs. (5.29) and (5.31), the quantities ak's are estimated
by the consequence program. The final estimates are plotted versus
miles from a reactor in Fig. 5.4. The scattering of the data points
in Fig. 5.4 is due to sampling error. Fig. 5.4 suggests an exponential

function as a candidate functiom:
ha(r) = a; - exp [-a2 °r] (5.44)

Using the data base in Table 5.2, the constants are now derived by the

regression using Eq. (5.25). The derived constants a, and a, are given

2
in Table 5.3 with their 90% confidence bounds.
In addition to the exponential, the following candidate functions

are also tested:
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ha(r) =a;°r (5.45)

ha(r) = a; *exp [-az- r] + a, * exp [-a, *r] (5.46)

"

The constants are also estimated from the data base in Table 5.2 using
Eq. (5.25). The derived constants are also given in Table 5.3.

The sums of the residual squares are calculated by:

52 = i [1n (), - In { § 1zC h_(r) -Njk}]?' (5.47)
The multiple correlation co-efficients are calculated by Eq. (4.9).
The results are also given in Table 5.3.

Eqs. (5.44) and (5.45) are first compared with each other because
both have two unknown constants. From Table 5.3, the exponential
function Eq. (5.44) has a larger multiple correlation coefficient than
the power function Eq. (5.45). Eq. (5.44) is then preferred as an
equation with two unknowns. Eq. (5.46) has two additional unknowns
compared to Eq. (5.44). The decrease of the residual squares due to
the added unknowns is tested by the partial F-value defined by Eq.

(4.10):

(1.61~-.656)/2  _ 45.8

Pl o= 656)/68-4-1) -

Since the upper 10% F-value with (2,63) degrees of freedom is 2.39, the
added two unknowns have a statistically significant effect on the
variation of the first risk moment. The derived equations having the
forms of Eqs. (5.44) and (5.46) are plotted in Fig. 5.4. Fig. 5.4 shows
that the double exponential equation (5.46) fits the consequence result

better than the single exponential equation (5.44) in the range of
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Fig.5.4 Transfer Function a(r) for PWR Accidents



Table 5.3 Estimates of Parameters of a(r) and Sum of Residual Squares

907% Confidence Bounds

Sum of Multiple
Candidate Estimates of Residual Correlation Standard
Function Parameters Upper Lower Squares Coefficient Deviation
ay - exp (-a, * r) a; = 3.51x10°8 3.87x10°8 3,18x1078 1.61 .992 .155
a, = .600 .621 .580
ap - r 22 ay = 1.86x1078 2.27x1078 1.53x1078 11.85 .937 421
a, = 1.994 2.105 1.883
a; - exp (-a, +r) + a; =2.12x10°8 2.,51x10°8 1.79x1078 .656 . 997 .099
+ a3 - exp (-a, + r)
a, = .526 .550 .502
ay = 8.38x1078 1.06x10"7 6.60x 1078
a, = 1.852 2.198 1.506

911
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r <1 mile and r>12.5 miles. These two equations will be further

examined in Section V.7.

V.6.3 Evaluation of b(r,r'")

Based on Egs. (5.29) and (5.31), the quantities (bk¥,)'s are
eliminated by the consequencé program. Since bkk' is two-dimensional,
the diagonal components (bkk) are plotted in Fig. 5.5(a). The off-
diagogal components (bkk') are plotted versus the distance between r
and r' for a given value of r in Fig. 5.5(b). Fig. 5.5(a) shows that
the diagonal components decrease approximately exponentially. Fig.
5.5(b) shows that the off-diagonal components also decrease approximate-
ly exponentially. Since b(r,r') is symmetrical with respect to r and

r', the following candidate function is therefore considered.

hb(r,r') = b, *exp [—b2 s (r+1')] * exp [-b3 . r-—r'[] (5.48)

In addition, the following candidate functions are also examined:

hb(r,r') b, * exp [—b2 «(r+1r')] - exp [-b3~ (r-r")?] (5.49)

-b

b, * ()

hb(r,r') 2. (r')_bz * exp [-b3 clr-r'|] (5.50)

hb(r,r') = {bl 'exp[-bz °(rj+r')] + b, 'exp[-b“ s (r+1')] -

» exp [-b, ° r-t'|] (5.51)

Using the data base in Table 5.2 and Eq. (5.27), the constants of
the candidate equations are estimated. The sums of the residual squares
and the multiple correlation co-efficients are also calculated. The
results are given in Table 5.4.

The multiple correlation co-efficients of Eqs. (5.48) and (5.49) in
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Table 5.4 Estimates of Parameters of b(r,r') and Sum of Residual Squares

907% Confidence Bounds

Sum of Multiple
Candidate Estimates of Residual Correlation Standard
Function Parameters Upper Lower Squares Coefficient Deviation
by « exp [-by- (r+r')] b; = 2.05x10°8 2.50x1078 1.68x 1078 5.85 . 986 .295
rexp [-bye|r-r'{1 35, .368 .341
by = .557 .826 .287
by - exp[—b2°(r+r'%] by = 2.00x10°8 2.43x108 1.65x10°8 5.92 .985 .297
L] — L] — '
exp [=by- (r-t')%) 343 .359 .327
by = .472 .787 .158
by (r-r')~b2 b; =1.38x10°8 2.05x10°8 9.30x 109 33.74 .913 .710
— . — '
exp [-by-|r-r'[1  _ ) 362 1.462 1.262
by = .515 1.138 0
{by-exp[-by(r+r')] b; = 1.30x10°8 1.71x10°8 9.83x10°9 3.79 .991 .238
+bj _
cexp[-by- (r+r')] P2 = 320 .507 .133
xexp[-bg+|r-r'|] by = 1.08x10°7 1.85x10°7 6.28x 1078
by, = 1.117 1.459 .775
bs = .664 .933 .395

0c1
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Table 5.4 are approximately equal. The difference in the off-diagonal
components between Egs. (5.48) and (5.49) has an insignificant effect
on the multiple correlation co-efficient. The power function Eq. (5.50)
has a smaller multiple correlétion coefficient in Table 5.4. Among the
examined equations of three unknown constants, Eq. (5.48) is selected
in this study because of its simple form and larger multiple correlation
coefficient.

The effect of the added two unknowns in Eq. (5.51) is tested by the

partial F-value:

o o (5.85-3.79)/2
3.79/(68-5- 1)

= 16.88

Since the upper 10% F-value with (2,61) degrees of freedom is 2.39, the
added two unknowns have a statistically significant effect on the
variation of the second risk moment. The derived equations having the
forms of Egs. (5.48) and (5.51) are shown in Figs. 5.5(a) and 5.5(b).
Eq. (5.51) fits the consequence results better than Eq. (5.48) in the
range of r and r' < 1 mile. Egs. (5.48) and (5.51) will be further

examined in Section V.7.

V.6.3 Evaluation of c(r)

Based on Egs. (5.29) and (5.40), the quantities Yk's are estimated
by the consequence program and the final estimates are plotted in Fig.
5.6. As discussed in Section V.6.1.2, y(r) can underestimate c(r) but
it can be expected that c(r) and y(r) can be expressed by the same form
of functions. Since Fig. 5.6 suggest an exponential function, an
exponential function, an exponential candidate function of c(r) is

studied:
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hc(r) = cy " exp [-c2~ r] (5.52)
In addition, the following functions are also tested:

h (r) =c -1 2 (5.53)

hc(r) = c,; *exp [-c2 er] + cq* exp ['Cu e ] (5.54)

Using the data base in Table 5.2, the constants of the candidate
functions are derived. The estimates of the constants, the sums of the
residual squares and the multiple correlation coefficients are given in
Table 5.5.

The multiple correlation coefficient of the power function Eq.
(5.53) is smaller than that of the exponential function Eq. (5.52).

The exponential function is then preferred to the power function. The
effect of the two additional unknowns in Eq. (5.54) is studied by the

partial F-value as:

. _ (.288-.240)/2 _

-240/63 6.3

F

Since the upper 107% F;value with (2,63) degrees of freedom is 2.39,

the added two unknowns have a statistically significant effect on the
variation of the normalization constant. The derived equations (5.52)
and (5.54) are compared with the consequence results in Fig. 5.6. Both
of the derived equations of c(r) slightly overestimate the plots of
Yk's as discussed in Section V.6.1.2. But the difference between c(r)
and Yk’s appears to be small. The double exponential equation (5.54)
has a slower rate of decrease than the single exponential equation

(5.52) in the range of r > 10 miles. Eqs. (5.52) and (5.54) will be

further examined in Section V.7.
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Pig. 5.5 Transfer Functions c(r) and vy(r) for
PWR Accidents
Note: The lines show the estimates of c(r) and

the dots snow Y(r),wnich is an approximation
of ¢(r).



Table 5.5 Estimates of Parameters of c(r) and Sum of Residual Squares

907 Confidence Bounds

Sum of Multiple
Candidate Estimates of Residual Correlation Standard
Function Parameters Upper Lower Squares Coefficient Deviation
cyprexpl-cyer] c; = 1.12x1077 1.16x1077 1.08x1077 .288 .999 .066
cp, = .398 . 407 .390
cprrC2 c) = 7.26x10°8 8.03x10°8 6.57x1078 4.30 .979 .253
co = 1.124 1.195 1.053
cyrexp[-cy-r] c; = 7.61x1078 1.38x1077  4.19x1078 .240 .999 .060
tcy-exp[-cy-r]
cp, = .346 .407 .284
c3 = 5.63x1078 1.09x10"7 2.90x 1078
cy = .784 1.315 .253

%¢l
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V.7 Examination of the Adequacy of the Regression Equations
The adequacy of the regression equations derived in the previous
section is investigated with regard to the predicted risk characteris-

tics and predicted distribution behaviors.

V.7.1 Predicted Risk Characteristics

(1) First Risk Moment M;
The first risk moment is first estimated from the
regression results of the single exponential equatioh (5.44)
for each of the 68 sample population distributions. The

regression estimate is given by:

i=1,...,68 (5.55)

where él and éz are the derived constants. The estimates by
Eq. (5.55) are given in Table 5.6. The estimates are then
plotted versus the consequence results in Table 5.2. This
plot is shown in Fig. 5.7. If the regression estimates accu-
rately predict the data, the points in Fig. 5.7 should lie
about the 45 degree line and no systematic error is observed
(i.e., tendencies to overpredict or underpredict various
ranges of the data). The largest deviation between the pre-
dicted and data first risk moment is a factor of 1.7.

The regression results of the double exponential equation

(5.46) are examined in a similar manner. The regression

estimates are given by:



Table 5.6 Estimates of the Dependent Varlables fro
m
the Single Exponential Transfer Functlons

a(r)= ai.exp(-az.r)

b(r,r')= bloexp(-bz-(r+r'))-exp(-b3-|r-r'l)

c(r)= cq-exp(=cp.T)

Sample No. My Mo a
1 9.145E=05 8.62°55=92 1o 84%E-J6
2 2.666E=04 T.437E=-01 3,1455=06
3 1.499E-05 b.4195-03 50094E=37
4 9.797E-07 3. £887E-4 4,319E-28
5 7.64BE=-C5 7.5442-02 1.4535=36
] 3.749E-05 2.3385-02 1.238E=08
T 5.779E=35 5.922E=72 1.313E=-U6
8 5,779E-0Q5 5.922£=02 1.313E=C6
9 1.691E-25 1. 798E=-02 3.925€E=-07
19 246925=25 7+4133E-32 3.6613-6G7
11 3.T3I6E=-US 6e0alE=J2 5.971E-Aa7
i2 6+366E=04 .1e62TE 30 5.7652=06
13 24692E-15 Tel331E-32 3,651F=07
14 1+ 189E-0Q4 1¢239E-91 2.296E-Q6
15 146728=35 2.054E-32 1,5238-07
16 1.215€=04 24511E=-J1 1.8515-06
17 4,086E=34 1.07RE €O 4,3T6E-06
18 1.956E-05 1.066E=032 54162E=07
19 5.638E~05 1.101E-351 9.514E=-Q7
20 1. T17E=-u4 4,213-01 2.272E=36
21 65+4496E=05 by 653E-02 1.511E-26
22 3.126E=35 5.084E=C2 54 THIE-CT
23 8e299E-56 2.664E=-03 3.877E=-37
24 1.636E-C5 1a 7625012 4.1982-37
25 4,8386E=-J5 2.218¢-G2 1.377E-16
26 1.2915-35 7.010E-933 4qe229S=7T
27 3,88GE=-05 B, TO2E=.2 5,374E=-37
28 1.6342=05 4o T62E-12 2.0345=07
25 8¢ TT3E=06 44,407E-03 3,063£-07
3) 2.123€~05 lel31E=32 7.891E=C7
31 1.023E-04 1.041E-0Q1 2.040E-06
2 1.0936-C5 4,326E-33 4e8613E=uT
33 1.278E=-35 1,0928=-02 44155E=07
34 5.577T2=-05 4, T17E=22 1.273E-C6
s 7.9765-06 2.532E-03 3, 761E-27
36 3,462E~35 £a5165=-02 5.480E=37
37 3, 7T6E=-Q5 4,T48E=-02 3,325€-07
X 2.422E=J5 1,7058=-02 7.393E-77
39 le 454E="14 B¢ TORE=-U2 2.460E-C6
40 ba324E=C6 2.235E=03 2. 8S1E-3T
41 S.531E=-05 “,242E-02 1, 4M0E=GS
42 1. 223E=45 4,96TE=33 4,5015-07
43 8. 5CJE=25 4,9248=32 24 633E-06
44 445325=05 2,2598-02 1,2725-C6
45 3, 360E=05 3,236E=02 BeA12E-IT
46 1.6985-05 1,3725=32 5,8185-J7
7 1+330€-C5 9,6262=383 44652E=11
a8 5,337E-34 1.4322 02 5.512E-06
49 1.215E=14 2¢9575-1 1. 601E=36
5¢ 4,5415=05 1.,0538-01 8.309E=37
51 beb495=05 6e643E-02 le SBE=ub
52 1.173F=-04 1.1608=J1 2.3315-35
53 24923E-C4 5,6375-G1 3.8782-06
54 44123E=05 3,034E-32 1.1855-26
33 2.3675=45 1.2343-02 T7.223E=37
56 3,843E=05 2.892E-22 1.0176-06
57 3,9923=05 1,6718-02 1aC&3E-C6
58 Te927E=36 1.3933=-03 5.62TE=17
59 2.5738=-15 1.123F=32 £42525=3
3 1.1638=04 1,438E=-351 2,0475=]6
61 445835=55 la4622=G2 1.6610-38
52 7.37T7E=-06 3,534F-03 2.7135=L7
63 2.175E=-35 1e606F=02 5,0795=37
64 3,5605=26 4,2783-94 2.994E=37
a5 445636F-U5 3.223E-22 9, T35E=C7
8é 4,57NC=06 641347-03 1.1493=37
67 2.2833-95 5.8337-32 3.2378=47
64 8.032E=16 5.438F=13 2e41GF=LT
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(Ml)i = ? i {al * exp [-a2 'rk] + 4, cexp [-aL+ -rk]}-

(N, ). i=1,...,68 (5.56)

.,a, are the derived constants. The estimates by

where a 4

120
Eq. (5.56) are given in Table 5.7. The estimates are plotted
in Fig. 5.8. The largest deviation between the predicted and
the data first moment is a factor of 1.3.

The largest deviation of a factor of 1.7 of the estimates
by Eq. (5.55) is judged to be acceptable for risk analysis and
decision making considering the uncertainties of the conse-
quence model. If more accuracy is required in the risk
analysis, the estimates of the double exponential function by
Eq. (5.56) can be used. The distribution behaviors will be

examined later in this section based on the estimates by Eq.

(5.55).

Second Risk Moment Mz
The second risk moment is first estimated from the
derived regression equation (5.48) for each of the 68 sample

population distributions by:

(Mz). = Z ng 15' bl * exp [--b2 . (rk+rk,)] * exp [-bs
J (5.57)

LS PR C R FENCITDIEE S PRI
where 51, 52 and 63 are the derived constants. The predicted
second risk moments are given in Table 5.6. The plots of the
predicted versus the data second risk moments are given in
Fig. 5.9. The points in Fig. 5.9 lie about the 45 degree line

and the deviations show no systematic error. The largest



Table 5.7 Estimates of the Dependent Variables from
the Double Exponential Transfer Functlions

a(r)= al-exp(-az-r) 4+ 2q.exp(=ay.r)

b(r,r')= (bl-exp(-bz-(r+r'))+b3oexp(-b4(r+r'))l

c(r)= cloexp(cz.r) e 03.exp(04.r)

. exp(=bs. |T-r']))

Sample No. M1 Mo o

1 3,14E-95 Jedle~12 ledlc—Jb
2 2.67E=C% £.14E=C1 3.33E-06
3 1.5.E=-33 &.C2E-23 6.22E-27
4 9.3.E=47 4,38E-14 3.99€-8
5 7.65E-15 7.53E-C2 1.45€6=-06
& 3.75€-25 2.35€-12 1.295-16
7 5.74€-CS. S.84E=""2 1.32E-26
8 S.TEE=D5 S.84E="2 1.32E-16
9 1.65E-C5 1.76E-C2 3.85E-97
Ia 2.698=45 6.58E-2 3.T5E-37
11 3.74E=C5 £.41E=C2 5.87€E-07
12 6.21C=04 2.CBE €O 5.38E=-26
13 2.695-¢5 6.53E-72 3.75€=-17
14 1.158-C4 1.4CE=-C1 2.27E-26
15 1.675=-25% 2.01E-C2 3.56E-37
16 1.225-7% 2.39€-C1 1.88E-06
17 4,29E=%06 9.40E=01 4,55E-26
13 1.58E=05 1+)2E=22 6.25E-7
19 5.7.5=05 9.64E=C2 §.9CE=27
2: 1.72E-24 3.836-71 2.34E-26
21 6.50E=-25 6,34E=32 1.53E-26
2 3.13E-25 4,44E=02 7.C6E-07
23 8.3CE=36 2.47€-33 3.56€-37
24 1.645-35 1.37E-"2 4.12E-27
25 4.895=25 3.65€=-22 1.18E-06
26 1.238=25 6.42E-03 4.,33e-07
27 3.838-05 7.74E-C2 5.53E-37
29 l.&3E-05 4,38E="2 2.62€-27
29 3.77E-C6 3.6CE-33 3.13E8-57
3. 2.115=-05 1.00E=12 8.11E-37
31 .n2E-04 1.17€=-21 1.97E-16
32 1.29E-75 +0BE-13 4.7CE-0T
33 1.288-35 9.12E-22 4,63E=27
34 5.545=C5 5.63E=C2 1.14E=-96
35 7.58E-C6 2.278-923 3.94E-27
38 3, 45E-C5 €.06E-72 5.57E-07
37 3.742-G5 4,33E-12 8.33E-07
33 2.4.5-25 1.45E-2 7.48E-07
39 1.43E=24 2,25€6-%1 1.89E=-26
4 6.32E-C6 2.26€E-C3 2.938-07
41 5.532-55 4.8E=-C2 1.42E-36
42 1.24E-05 4,32E-C3 S.13E-27
43 R.5.2-C5 5.512-32 2.495=-26
44 4,.538-35 2.798-22 1.195-136
45 3.38E=33 3.438-22 4.65E-37
46 1.725-C5 1.228-42 5.5RE-07
47 1.218="5 l.l4g-2 4.41E=-37
4r 5.34FE=Ch l.4lE €2 5.54E-26
49 1.228-C4 2.84C-C1 1.63E-26
5. 4.545=75 1.07€-21 8.27€-97
51 h.ESE-25 6.07E="2 1.55e=-76
5z 1.185=C4 1.42E-01 2.19&-06
53 2.5.6-14 &.57E-71 JO2E-36
54 4,1268="5 2.66E-02 1.23E-26
5% 2.218=35 LJ9E-i12 7.60E=07
56 1.945=C5 3.C3E-C2 1.c0s-236
57 3,547=75 3.49€-12 1.:68=26
55 T.9.k-3L 1.31E-23 5.73£-07
53 2.5.€-15 1.27E=-22 1.548~31
&% 1.17E=Cé 1.335-%1 2.C72-26
&i 4.372-C5 1.82E-G2 2.49E=-97
62 b5.42E-76 1,21E-23 b.44E-73
63 2.04E-15 1.26E=-22 1.17E=-27
ba 3.29F-Cb 1.6HE-C4 9.6 7E-0R
65 4,127-25 5.21E-72 2.43€C-17
5Ho 4.278-26 £.G5E~73 3.53E-24
67 2.772-C5 £.38E-02 6.49E="2
63 7.98E=26 4.T0E=CH 4.59E-0A
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deviation between the predicted and data second risk moments
is a factor of 2.4.

The regression results of Eq. (5.51) are also examined.

The regression estimates are given by:

(Mz)i = ; T % {bl * exp [—bz- (rk4-rk,)] +
jkk
+ by v exp [-B, + (r, +r )] xexp [-by - [r, -1 [T~
TN () =68 (5.58)

The estimates are shown in Table 5.7 and Fig. 5.10. The
largest deviation between the predicted and the data is a
factor of 1.9.

The largest deviation of a factor of 2.4 of Eq. (5.57) is
judged to be acceptable for risk analysis. The distribution
behavior will be studied later in this section based on the
second risk moment estimated by Eq. (5.57). If further accu-
racy is required in the analysis, the estimates by Eq. (5.58)
can be used.

(3) Normalization Constant o

The normalization constant is estimated from the derived
single exponential equation (5.52) for each of the 68 samples

by:

G, =18 e 2 4o .. 68 (5.59)
h|

where 61 and 62 are the derived constants. The results are

given in Table 5.6 and Fig. 5.11. The points in Fig. 5.11 do

not show any systematic error. The largest deviation is a
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factor of 1.2.
The double exponential equation (5.54) is also examined.
The normalization constant is estimated by:
@, = § {cl' exp [-c, -(dj)i] + c3*exp[-c, -(dj)i]

i=1,...,68 (5.60)

where 51’---’54 are the derived constants. The estimates are
given in Table 5.7 and Fig. 5.12. The largest deviation is a
factor of 1.2.

The largest deviation of a factor of 1.2 of the estimates
by Eq. (5.59) is judged to be acceptable considering the
uncertainties of the consequence model. The distribution
behaviors will be examined later in this section based on the
estimates by Eq. (5.59). If more accuracy is required in the
analysis, the estimates by Eq. (5.60) can be used.

Since no systematic error is observe& in the normaliza-
tion constant and since the deviations between the predicted
and data normalization constants are smaller than those of
the first and second risk moments, the approximation of Eq.
(5.19) relating o to the closest distance dj at which people
live is therefore judged to be adequate for the calculations
performed in this study. However it should be noted that
this specific example does not prove that the approximation of
Eq. (5.19) is valid for other types of consequences and for
other types of meteorological models. Careful studies will

be required for each different case.
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V.7.2 Predicted Distribution Behaviors

The next step in assessing the regression results is to test the
combined effects of regression errors on the distribution behaviors.
The examined regression results are single exponential equations (5.44),
(5.48) and (5.52). The distribution behaviors are predicted by the
Weibull distribution, the parameters of which are estimated from the
regression results.

(1) Weibull Shape Factor and Scale Factor

[

The shape factor 8 and scale factor n are first derived
from the regression results of M, M, and o giﬁen in Table
5.6 for each of the 68 samples of the population distribu-
tions. Secondly, B and n are then derived from the data
values of Ml’ M2 and o given in Table 5.2.

The'shape factors from the regression results and the
data values are compared in Fig. 5.13. The points lie about
the 45 degree line and the deviations do not show systematic
error in Fig. 5.13. The largest deviation is 0.14 and 90%
of the points are within the bounds of *.08. The scale
factors are similarly compared in Fig. 5.14. The points lie
about the 45 degree line and the deviations do not show any
systematic error. The largest deviation is a factor of 1.9
and 90% of the points are within factors of 1.4 and 1/1.4.

The deviations of the shape and scale factors are within
the uncertainties of the consequence model: further judgement
in the acceptability is obtained from the complementary cumu-

lative distributions which are discussed next.
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Complementary Cumulative Distribution

The complementary cumulative distribution is obtained
from the shape factor and scale factor estimated from the

regression equations for each of the 68 samples, i.e.,

8
Fc(x) = o exp [-{%} ] (5.61)

This derived complementary cumulative distribution is then
compared for each of the sample population distributions with
the data distribution of consequence vs. frequency calculated
by the consequence model. These data curves are obtained
directly from the consequence calculation and do not involve
fittings to the data values of Ml’ M2 and a. Two of the
samples will be specifically discussed here. One is the
sample (#63) which gives the largest deviation of 8 in Fig.
5.13. The other is the sample (#39) which gives the largest
deviation of n in Fig. 5.14.

Fig. 5.15 compares the predicted complementary cumulative
distribution with the data distribution of site (#63). The
predicted distribution underestimates the probabilities
between 100 fatalities and 500 by a factor of maximum 1.2
and underestimates the magnitude below 10—8/year by a factor
of 1.6. The magnitudes of these errors are smaller than the
uncertainty ranges of the consequence model, which were
estimated to be factors of 5 and 1/5 on the probabilities and
factors of 4 and 1/4 for the consequence magnitude. (See
Section III.5.1).

Fig. 5.16 compares the complementary cumulative distribu-
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tion estimated from the regression equations to the data
distribution of site (#39). The estimated distribution under-
estimates the probabilities between 300 fatalities and 3000 by
a factor of 4 at most. The underestimation of the consequence
magnitude is maximum a factor of 3 in the same interval.

These errors are also within the uncertainty ranges given for
the consequence model. For the other samples examined, the
complementary cumulative distributiocns from regression and the
data complementary cumulative distributions agree at least as
well as for the samples (#39) and (#63).

The samples other than (#39) and (#63) are now examined
with regard to the comsequence magnitude at a specific comple-
mentary cumulative frequency. Since the effects of the errors
of B and n on the tail behaviors can be large and the tail
behaviors are of importance, the consequence magnitudes at
lO—g/year are selected to test the regression fits. The value
of 10_9/year is a truncation point in the consequence model,
which was determined by the compromise between accuracy and
computation time (Ref-1).

The consequence magnitude at lO-g/year is first derived
for the 68 samples from 8 and n estimated by the regression

results. The percentile is given by:
X, -9, = n°[1ln [—JL—J]I/B (5.62)
(107°) 10—9

The consequence magnitude of lO-glyear of the data distribu-
tion are then estimated by interpolation of the adjacent two

-3
data points below and above 10 ~/year.
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1n (10-%) - 1n (F$)
1n (Fﬁ) -1ln (Fg)

] =1n [x,] +

In [x(14-9y ?

. (lnxh-lnxz) (5.63)

where the subscripts h and 2 denote the two adjacent points.
Fig. 5.17 compares the consequence magnitudes estimated
from regression to those estimated from the data distribu-
tions. The estimates from regression systematically overpre-
dict the estimates of the data distributions. The bias is a
factor of 1.2. This error can be due tocthe fact that the
consequence model ‘tend to underestimate the tails of the
distributions if sufficient number of trials are not taken.
More importantly, the largest deviation is a factor of 2.0,

which is smaller than the uncertainty ranges of factors 4 and

1/4 in the consequence model.

V.7.3 Conclusions from the Regression Examinations
The regression results have been examined for their ability to
predict the risk characteristics and distribution behaviors. The

equations examined were:

a(r) = 3.51x10"° + exp [-.600 r] (5.64)
a(r) = 2.12x10 " exp [-.526 r] + 8.38 x 10" ° exp [-1.852r]
(5.65)
b(r,r') = 2.05 ><10—8exp[--.352(r-!-r')] -exp[-.557ir-r'i]
(5.66)
b(r,r') = {1.303<10-8exp[-.320(r-+r')] +

+ 1.08><1o‘7exp[—1.117(r-+r')]} - exp [~.664 [r-r']]
(5.67)

c(r) = 1.12x 10"/ exp [-.398 ] (5.68)
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c(r) = 7.61x10 Pexp [-.346 7] + 5.63x 10" exp [~.784 r]
(5.69)

No systematic errors were observed in the predic;ion of My, M, and
¢. The largest deviations were factors of 1.7 for Eq. (5.64), 1.3 for
Eq. (5.65), 2.4 for Eq. (5.66), 1.9 for Eq. (5.67), 1.2 for Eq. (5.68)
and 1.2 for Eq. (5.69). The equations (5.64), (5.66) and (5.68) with
smaller number of unknowns were judged to be acceptable considering the
uncertainties of the consequence model.

The predicted distribution behaviors were then examined for Egs.
(5.64), (5.66) and (5.68). No systematic errors were observed for the
prediction of B and n. The largest deviations were 0.14 for 8 and a
factor of 1.9 for n. The complementary cumulative distributions for
the two samples which showed the largest deviation for B and n were
within the uncertainty ranges of the consequence model. The consequence
magnitudes at lO—g/year derived from the regressions overestimate those
from the data by a factor of 1.2. This factor is not large and is
within the uncertainty ranges of the consequence model.

Based on the above results, the derived equations (5.64), (5.66)
and (5.68) were therefore judged to be acceptable for risk analysis and

decision making.

V.8 Example of Applications of the Regression Results

Having obtained the regression results, they can then be used to
estimate the risk distributions for new situations of different popula-
tions without having to rerun the consequence model. Furthermore,
because of the explicit relationship of the regression equations (trans-
fer functions), the sensitivity studies and decision making studies are

able to be performed in a straightforward manner. The regression
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results applied to siting will be discussed here.

V.8.1 Application of Regression Results to Siting

The population distribution is one of the important factors in
selection of sites for nuclear power plants. An example is given here
for the application of the regression results to the siting studies
based on an idealized population distribution. The population model
considered is a bell-shaped, gaussian distribution illustrated in Fig.
5.18. The population distribution of a particular city or a town is
expressed by the bell-shaped model in Fig. 5.18 and the overall
population distribution of a site surrounded by numerous cities and
towns can be expressed by the series of the bell-shaped population
distributions. A city or a town expressed by the bell-shaped model is
called a "population group" in this study. |

The population distribution of a particular population group is
assumed to be symmetric about its center. Let NT be the total popula-
tion in the group, R be the distance of its center from the reactor and
IR be the average deviation from the center. 47% of the total popula-
tion are living within the radius of o, and 907% are living within the

R

radius of ZOR. Using the (r,Z) co-ordinate in Fig. 5.18, the population

per unit area at (r,Z) is expressed by:

N 2 2
-R
p(r,z) = 5 eXp (- (z 2) - CZ ] (5.70)
21TGR ZOR ZGR

From the regression results, the first risk moment is expressed as:

M, = T f a(r) *n,.(r)dr
. J
39

]

? a(r) - {E n.(r)}- dr (5.71)
0 i 3
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Let nT(r) be the population in an annulus per unit r at distance r,

i.e.,
nT(r) = I n,(r) (5.72)
j J
Then,
M, = f a(r) °nT(r) «dr (5.73)

Since the regression equation (5.71) is based on the (r,8) coordi-
nate, an approximation is made here to estimate nT(r) from p(r,z). The
integration with respect to 6 is approximated by the integration with

respect to G.

[ e(z,z)dg

nT(r) = g
N _oy2
= T exp [-4E2R (5.74)
/E;GR 20R

nT(r) is also a gaussian distribution. When numerous cities and towns
are considered, the overall population distribution is expressed by the

series of the gaussian distributioms:

( Ty [ (r_R’*)zl (5.75)
n.(r) =2 exp [~—F5—<7 5.75
T % /E;(GR)i 2(ox)¢

where the subscript & refers to a specific city or town.
Using the population distribution in Eq. (5.75) and an expomential
function for the transfer function a(r), the first risk moment can be

estimated to be:
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(o]

M = f a(r) -nT(r)dr

0
o (N.) (r-R,)2

= f a, ~exp[-a_ -r]- {Z — T exp [--————4£——]}dr
0 1 2 2 V2T (o), 2(op)

2
a3 - (9R)g

= i a, .(NT)Q - exp [-a, - R, + 5
® - 2., 212
[r Rz-i-a2 (GR)QJ
X | == exp |- 7002 d (5.76)
0 V2w (o,) R7g
R 2
The integral in Eq. (5.76) can be approximated by unity under the
following conditions:
2
Rl > Z(UR)Q + a, (GR)R (5.77)

The discussion of this approximation is given in Appendix F. Then the

first risk moment is finally estimated to be:

M, = i a, '(NT)Q ~exp[-az' R2+-————E—*——] | (5.78)

The second risk moment and the normalization constant can be
estimated in a similar manner. The estimation of these quantities are
also discussed in Appendix F. Having obtained the first two risk
moments and the normalization constant, the Weibull parameters can then
be estimated by Eqs. (3.25) and (3.26). The comparison of the risk
distributions derived from the bell-shaped population model to the
results of the consequence calculation is also given in Appendix F.

Using the bell-shaped population model and the regression results,
such as Eq. (5.78), the investigation can be made on the contributions
of the cities and towns to the risk distribution. Alternatively, given
the distances, radii and populations of the cities and towns,‘the

decision making studies on selection of sites for nuclear power plants
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can be made from the regression results, such as Eq. (5.78) In the

following section, a numerical example is given for siting studies.

V.8.2 Numerical Example of Siting

A hypothetical siting problem is discussed here. Though siting
problems are generally two-dimensionsal, the situation given here is a
one~dimensional case. The two-dimensional problems can be solved by
the same approach as in the example here.

The problem is posed as follows:

(1) A nuclear power plant is planned on a line between two large
cities A and D in Fig. 5.19. Two towns are located between
them. The populations other than the above four are not
considered.

(2) The cities and towns have bell-shaped population distributions
and their distances, radii and populations are given in Fig.
5.19.

(3) Only the early fatalities are considered. The transfer
functions previously derived for PWR accidents in the north-
eastern valley meteorological condition are used.

(4) The site is desired to be selected so as to keep the first
risk moment less than that for the average of the first 100
commercial powér plants, which is 4.6 x lO—S/reactor year.
(See Section III.5.2.)

Set the origin of the axis at the center of the city A as shown in

Fig. 5.19. The distance r of a site from the center of the city A is
the variable that will be examined. As the site should be between A
and D, the constraint is O <r-<RD. The problem then is to estimate the

value of r that keeps the first risk moment less than 4.6><10—5/year
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under the constraint of O0< r«< RD.
From Eq.

the contributions of the four population groups:

2 .
M, = NA' a, - exp[—az- r-%TZ" oA]
a?
+ Np-a cexp[-a,- r—RB[+—§2—~cB]
a2
+Noa, rexpl-a, - r-RC|+—2—2--oC]
a?
+ND-a1'exp[-a2- r—RDI+—22-~OD]

Using the numerical values in Fig. 5.19, and the constants
functions estimated previously in Section V.6.2, the first
is calculated and plotted in Fig. 5.20. The solid line in

shows the estimate of the first risk moments as a function
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(5.78), the first risk moment is estimated as the sum of

(5.79)

of transfer
risk moment
Fig. 5.20

of the

distance from the center of the city A. The dashed lines show the
contributions of each population group. From Fig. 5.20, the distances

that satisfy the criteria are estimated to be:
13 miles < r < 16 miles

The plant can be selected within this area and will satisfy the imposed
criteria.

Even though the example given here is highly restrictive, it shows
the methods by which the approaches discussed in this study can be used
in decision making involving risk. - In more realistic situations, the
second risk moment and the complementary cumulative distribution can be
used to compare with additional risk criterial. Actual population distri-

butions can also be used, perhaps involving numerical techniques and

computer evaluations.
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V.9 Summary and Conclusions

The regression approach discussed in Chapter 4 was demonstrated.
in this chapter in which the population distribution was taken to be the
basic variable. The early fatalities distribution of PWR accidents in
the northeastern valley meteorological condition was used to derive the
regression’results. In the regression analysis, the first two risk
moments and the normalization constant were selected as dependent
variables. The data base for the regression analysis was prepared by
the consequence computer program using the population distributions of
the 68 sites as sample population distributions.

A number of candidate regression equations were studied. The

following were judged to be adequate:

M, = ; f a, exp (-a,r) nj(r) dr (5.80)
jr
M, = ? f { blexp{-bz(r4-r')]exp[b3Ir-—r']]-
jrr
'nj(r)nj(r)drdr‘ (5.81)
a =z [c1 exp (—czr)]r=d (5.82)
N ]

The unknown constants in the equations above were estimated by the
nonlinear least squares. The derived equations were tested for the
predicted risk characteristics and for the predicted distribution
behaviors. No systematic errors were observed for the risk character-
istics and for the shape and scale factors of the Weibull distribution.
The distributions of consequence vs. frequency derived from the
regression equations agreed with the results of the consequence calcu-
lation within the uncertainty range of the consequence model.

Having obtained the regression results, they can be applied to new
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situations for sensitivity studies and decision making investigatioms.
Because of the simple form of the regression equations, the involved
calculations are straightforward and do not require consequence code

or large computer times. With regard to the new situations, the
regression equations were applied to a hypothetical example of decision
making involving siting. The location of a site which satisfy the
specified criteria was obtained from the regression equations. The
example illustrated how the approach of the study can be used in

decision making.
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CHAPTER VI

REGRESSION ANALYSIS OF RADIOACTIVE RELEASE

VI.1 1Introduction

The methods developed in this study will be applied to another
evaluation situation in which the probabilities and magnitudes of
radioactive releaseg are taken as the basic variables. The situation
considered in this chapter concerns the evaluation of safety systems
in nuclear power plants, involving engineering safety features, opera-
tion restrictions and maintenance procedures. Safety systems in nuclear
power plants are designed to reduce the probabilities of the occurrences
of the accidents or alternatively to reduce the magnitudes of the
releases to tne environment. The equations relating the risk to the
probabilities and magnitudes of the radiocactive releases can then
provide valuable information forkthe evaluations of safety systems.

In the Reactor Safety Study, the spectrum of the radioactive
releases was expressed by the release categories shown in Table 6.1.
These release categories are composites of numerous accident sequences
with similar characteristics. PWR accidents are represented by 9

(1)

release categories and BWR accidents are represented by 5 release
categories. In the preceding chapters of this thesis, the consequence
calculation has been carried out for each of the release categories

and the results have been combined to produce the overall risk from

potential nuclear accidents. In this chapter each release category is

lSince PWR-1 category is subdivided into PWR-1A and PWR-1B due to
the difference of energy release, PWR accidents are effectively
represented by 10 release categories.



Table 6.1 Summary of Accidents Involving Core

DURATION WAMNING  ELEVATION co":::;':‘f“
peLiase PROBABILITY ::::“g; m_g:sﬂ Lf:::“‘m:g” “Eﬁ::“g RELEASE FRACTION OF CORE INVENTORY RELEASED '’ = —
CATEGORY Reactor-Yr (Hr) (Hr) {Hr) mc.-tej)_‘(lo Btu/lir) Xe-Kr Org. I i Cs-Rb  Te-Sb Ba-Sr Ru La
PHR 1 ax10”’ 2.5 0.5 1.6 25 s2g(d 0.9 oxao} 0.7 6.4 0.4 0.05 0.4 3x107°
PuR 2 sx107° 2.5 0.5 1.0 o 170 0.9 mwe? 07 05 0.3 0.06 0.02 4x10]
Pk ) ax10”® 5.0 .5 2.0 0 6 0.6 ex10”} 0.2 0.2 0.3 0.02 0.03 307}
PWR 4 sx107 7 2.0 3.0 2.0 o i 0.6 2x10°} 0.09 0.04 0.03 sx10”? 3x10”7 4xr0”?
PWR S xiu” 2.0 4.0 1.0 [} 0.3 0.3 2x07? 0.03 9xi07? sa0”? 1x107? ex107? 7wa07?
PHR ox107° 12.0 10.0 1.0 o N/R 0.3 2x0 Y ax107Y exi07? 107! ax10™® 7107 1070
PHR 7 4xi0”® 10.0 10.0 1.0 0 N/A 6x10”2 2x107° 2x10™> 1107 2x20™° 1x107® 1207 2:2077
PR 6 ax10”" .5 0.5 N/A 0 N/A 2107 5x207° 1x107Y sx107? 1x107® 1x10® 0 0
PWR 9 ax10”? .5 0.5 N/A 0 N/A x10™® 7107 0”7 exio”? 1ao? o} o 0
BWR 1. 11678 2.0 2.0 1.5 25 130 1.0 %1077 0.40 0.40 0.70  0.05 0.5 sx107°
BWR 2 6x10® 30.0 3.0 2.0 0 10 1.0 0} 0.90 0.50 0.30 0.10  0.03 4xi0”’
BHR 3 2x107° 0.0 1.0 2.0 25 20 1.0 m0? 010 010 0.3 o001 0.02 30’
BWR 4 2x1078 5.0 2.0 2.0 25 N/A 0.6 1108 Bx107Y sx107? ax107} ex10™* ex107% 1xa0”?
BWR 5 1x1074 s 5.0 N/A 150 N/A 5x10™% 241072 6x107'! 4x20™% Bx10712 Bx107!* 0 o

{a) A discussion of the 1sotopes used in the study 1s found in Appendix VI. Background on the isotope groups and release
mechanisms is found in Appendix VII.

(L)  Includes Mo, Rh, Tc, Co.
(c) Includes Nd, ¥, Ce, Pr, La, Nb, Am, Cm, Pu, Np, 2r.

(d) A lower energy release rate than this value applies to part of the period over which the radioactivity is being released.
The effect of lower energy release rates on consequences is found in Appendix VI.

Note: Reproduced from TABLE 5-1 in Main Report of WASH-1400(Ref-1)

8ST
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treated separately to study the consequences of a specific release.

VI.2 Radioactive Release Variables

The regressor variables are identified from the characteristics of
radioactive releases. Though the probability and magnitude are major
characteristics of releases, other chacteristics also affect the conse-
quences of radioactive releases, i.e., thé time of the release, the
duration of the release, the warning time for evacuation, the elevation
of the release, and the energy content in the released plume. Table 6.1
shows the characteristics of the release categories of PWR and BWR
accidents taken from WASH-1400 (Ref-1). These release data are used to
generate the data base for the regression analysis. Each of the
variables that characterize the radioactive releases will be discussed

in the following subsections.

VI.2.1 Probability of Occurrence

Since the probability of occurrence does not affect the magnitude
of consequences, the distribution fq(x) of consequence vs. frequency
for a specific release q is expressed as the product of the probability
of occurrence Pq and the conditiomal distribution fg(x) given the

release q occurs.
=P .¢*
fq(x) Pq fq(x) (6.1)

The regression analysis is based on the conditional distribution fa(x)
and the probability of occurrence is therefore not included in the

regressor variables.
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VI.2.2 Time of Release

The time of the release refers to the time interval between the
start of the accident and the release of the radicactive materials
from the containment building to the atmosphere. The time of the
release is used to calculate the initial decay of the radioactivity.
Since increasing times reduce the amount of radioactivity released to
the environment, the variable is included in the expression for
effective source which will be defined in subsection VI.2.7. The time

of the release is denoted by (Tr) hours.

VI.2.3 Duration of Release

The duration of the release is the total time during which the
radioactive materials are emitted into the atmosphere. The duration
is used to make it possible to account for the wind meander in long
duration releases. The duration is denoted by (Td) hours in the

following equations.

V1.2.4 Warning Time for Evacuation

The warning time is the time interval between the awareness of
impending core melt and the release of radiocactive materials from the
containment building. A longer warning time allows more time to
evacuate the public to areas where the radiation exposure will be-
smaller or none. This variable is denoted by (Tw) hours in the

regression equations.

VI.2.5 Elevation of Release
The elevation of release affects the dispersion pattern of airborme
radioactive isotopes in the atmosophere. As the elevation increases,

the maximum airborne concentration of radioactivity at the ground level
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decreases. The variable is denoted by (h) meters in the regression

equations.

VI.2.6 Energy Content of Release

When the containment of a reactor breaks, a large amount of energy
may be released with the radioactive isotopes in a form of high
temperature steam. When the gas is at a high temperature, the radio-
active plume will rise due to its buoyancy. The variable is denoted

by (E) 106XBtu/hr in the regression equations.

VI.2.7 Release Fractions

From the large number of isotopes produced in a reactor, 54 radio-
isotopes were assessed to be of importance in the Reactor Safety Study.
The selection was based on quantities (curies), release fractioms,
radioactive half-lives, emitted radiation types and chemical character—
istics. The 54 selected isotopes were grouped into 8 isotope groups
based on their chemical behaviors. The release fractions of the core
inventories were determined for the 8 isotope groups as given in Table
6.1.

Two approaches for selection of regressor variables are considered
with regard to the release fractions. One is to select the release
fractions of the eight isotope groups as the basic regressor variables.
The isotope groups which have insignificant effect on the consequence
can be eliminated, for example, by the stepwise regression method which
was discussed in Section IV.2.6. A second approach is to define one
variable which is a weighted sum of the release fractions of the eight
isotope groups. In this study, the second approach is selected from

the following reasons:
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(1) Early fatalities are caused by the combined effects of the

doses from the eight isotope groups. The decrease of the
release fraction of one isotope group can be compensated by
the increases of the releases of the other isotope groups.

(2) The release fractions of the eight groups are correlated

with each other. For example, in Table 6.1 the release
fractions of all of the eight isotope groups for PWR-9
release category are smaller than those for PWR-1 release
category, Because similar physical processes underly in the
release mechanism for all of the isotope groups.

The weighting factors of the release fractions are derived from
the physical consideration of the effects on early fatalities. The
factors considered are the inventories in the core, the dose conversion
factors and the dose-response factors.. Since the early fatalities
result essentially from the damage to three organs, the weighting
factors are first defined for each organ. The organs considered are
bone-marrow, lung and gastrointestinal tract. The weighting factor of

isotope group (g) for organ (k) is defined to be:

(k)
I,- -A, T « C.

NN r A R 2 (6.2)
g j in group g (LD)(k)

50

where

Qék) = weighting factor of group (g) for organ (k).
Ij = inventory of isotope (j) in the core [curies].
Aj = radioactive decay constant of isotope (j) [/hour].
T_ = time of release [hour].
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C§k) = dose conversion factor of isotope (j) to organ (k)
[(rem 'm3/Ci-secJ

(LD)éE) = dose to organ (k) lethal to 507% of the exposed

population [rem]

When the contribution of the build-up from the parent isotope is
significant, the radiéactive decay term exp[-—xj ~Tr] is corrected to
include the buila-up term from the parent isotope.

The dose conversion factor in Eq. (6.2) is the sum of the three
modes of exposure, which are inhalation dose, ground shine dose and

cloud shine dose.

e

h (6.3)

_n. ey ® RPPRNS RN
= B (CI)j + Se (CC)j + Sq (CG)j (Vd)j

where

B = breathing rate [m3/sec].

(CI)§k) = inhalation dose conversion factor of isotope (j)

to organ (k) [rem/Ci].

So = shielding factor for cloud shine dose.

(Cc)gk) = cloud shine dose conversion factor of isotope (j)

to organ (k) [rem -m3/Ci - sec].

sg = shielding factor for ground shine dose.

(CG)gk) = ground shine dose conversion factor of isotope (j)

to organ (k) [rem 'mz/Ci].

w = deposition velocity of isotope (j) [m/sec].

d)j
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The effective source for organ (k) is then defined by the sum of

(k)

the release fractions weighted by the factors Qg .

(k) (k) A
=10 . 6.4
v s g 9 (6.4)
where
w(k) = effective source for organ (k) [sec/m3].

q_. = release fraction of isotope group (g).

(k)

The quantity ¥ can be interpreted as being related to the inverse of
the atmospheric dispersion factor (x/Q) at a distance where 50% of the
exposed population die due to the damage to the organ (k). The weight~

ing factors Qék)

are given in Table 6.2. The discussion on the basis
for the definition of the weighting factors and the source data used
for deriving the values in Table 6.2 are given in Appendix G.

Since the risks resulting from the damage to the three organs are
competing with each other, the overall effective source is defined by

¢9)

the maximum value of the (Y )'s of the three organs.

MARROW LUNG’ LpG.I.} (6.5)

¢=MAX{\P » Y

The overall effective source defined above is used in this study
as the regressor variable. It is denoted by (¥) x 105 sec/m3 in the

regression equatioms.

VI.3 Selection of the Dependent Variables
As discussed in Section VI.2.l, the regression analysis is based
on the conditional risk distribution given the specific release

occurrence. The risk characteristics of the conditional risk distribu-
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Table 6.2 Weighting Factors of Isotope Groups for Effective Source

Isotope
Organ Group Weighting Factor Qé
Bone Marrow Kr -Xe 5.73x 103 + 7.90 x 10* exp [-.20 - Tr]
D 7.81% 105 exp [~-.058 - Tr]
Cs - Rb 5.64 x 10"
Te - Sb 2.54 x 105
Ba - Sr 5.01x 10°
Ru 2.28 x 10°
La 1.77 x 108
Lung Kr - Xe 1.21%x10% + 1.6 x 103 exp [-.20 - Tr]
I 3.35x 10" exp [-.058 - Tr]
Cs - Rb 7.43 x 103
Te - Sb 6.83 x 10"
Ba - Sr 3.32 x 10"
Ru 9.53 x 103
La 4.28 x 108
G.I. Tract Kr - Xe 4.18 x 102 + 8.2x 103 exp [-.20 + Tr]
A 7.70x 10% exp [-.058 - Tr]
Cs - Rb 4.08 x 103
Te - Sb 6.18 x 10"
Ba - Sr 1.69 x 10°
Ru 2.92 x 103
La 1.53 x 108

1 e e as s o .
Organic iodines and non-organic iodines are included.
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tion are defined in a similar manner to those of the overall risk
distribution given in Section I.2. For example, the risk moments of

the conditional risk distribution about the origin are defined as:
M = J x" ¢ £%(x) - dx (6.6)

where M: is the t-th risk moments of the conditional risk distribution

about the origin.
The normalization constant of the conditional risk distribution

o* is similarly defined as:
* *
a” = j £7(x) - dx (6.7)

The transfer functions relating the risk moments to the population

variables are also re-defined based on the conditional risk distribu-

tion as:

W= g J a®(r) ‘0 () - dr (6.8)
. r

M’z’ = I J J b*(r,r') *n.(r) *n.(r') + dr - dr' (6.9)
j ' 3 j

rr

* *

¢ = T [c()]__ (6.10)
i r=d;

The dependent vafiables of the regression analysis can be selected
from the risk characteristics of the conditional risk distribution. 1In
this chapter the transfer functions are again fitted to the parametric
functions of the distance r and the constants of the fitted functions
are used as dependent variables. The constants are now treated as
being functions of the release characteristics. The advantage of the
constants of the transfer functions is their independence of fhe

specific population distribution. Therefore the results of the
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regression analysis are applicable to any population distribution.

VI.4 The Data Base for Regression Analysis

VI.4.1 1Input Conditioms

The release categories of PWR and BWR accidents in Table 6.1 are
used as samples of radioactive releases for the regression analysis. A
consequence calculation is made for each of the release categories
using the northeastern valley meteorological condition and the radio-
active inventories of a 3200 MW/th power plant. Early fatalities occur
only in eight out of the fifteen release categories. Since eight
samples are not sufficient as the data base for the analysis, an
additionalAZO cases are calculated by changing one regressor variable
at a time in the consequence program. The input conditions of the
additional calculations are given in Table 6.3. The total 28 cases
of calculation are performed. It should be noted that the probabilities
of occurrence are assumed to be unity in the calculations in Table 6.3
since the regression analysis is based on the distribution of conse-

quence vs. conditional probability given the accident occurrence.

VI.4.2 Derivation of the Constants of the Transfer Functionms

The methods discussed in Section V.6.1 are used to derive the forms
and the constants of the transfer functions. Figs. 6.1 through 6.4 show
the consequence calculation results for BWR-1l, BWR-2 and BWR-3 release
categories. The following candidate functions are considered for these
curves. They are the same functions that were considered for the PWR

accidents in Chapter V.

a*(r) = a, *exp [-a, 1] (6.11)



Table 6.3 Conditions of Additional Consequence Calculations for Regression Analysis

Duration Warning Release Fractions
Time of of Time for Elevation Energy
Case Release Release Evacuation of Release Release (1)
No. (hr) (hr) (hr) (m)- (10°Btu/hr) I Ru Te others
1 2.0 0.5 1.5 25 300 oAb .5 .7 BWR-1
2 2.0 0.5 1.5 25 30 .4 .5 .7 BWR-1
3 2.0 0.5 1.5 25 6 ! .5 .7 BWR-1
4 30.0 3.0 2.0 10 6 .9 .03 .3 DBWR-2
5 2.0 0.5 .5 25 130 4 .5 .7 BWR-1
6 2.0 0.5 1.0 25 130 A .5 .7 BWR-1
7 2.0 0.5 2.0 25 130 4 .5 .7 BWR-1
8 2.0 0.5 3.0 25 130 4 .5 .7 BWR-1
9 2.5 0.5 2.0 25 520 .7 A .4 PWR-1
10 2.5 0.5 3.0 25 520 .7 .4 .4 PWR-1
11 2.5 0.5 2.0 25 20 .7 A .4 PWR-1
12 2.5 0.5 3.0 25 20 .7 oy .4 PWR-1
13 2.0 1.5 1.5 25 130 A .5 .7 BWR-1
14 2.0 3.0 1.5 25 130 4 .5 .7  BWR-1
15 2.0 0.5 1.5 25 130 .1 .5 .7 BWR-1
16 2.0 0.5 1.5 25 130 1.0 .5 .7 BWR-1
17 2.0 0.5 1.5 25 130 o4 .1 .7 BWR-1
18 2.0 0.5 1.5 25 130 A 1.0 .7  BHWR-1
19 2.0 0.5 1.5 10 130 b .5 .7 BWR-1
20 2.0 0.5 1.5 1 130 4 .5 .7  BWR-1

1
The release fractions of the other isotopes are the same as in the release categories given
here.

89T
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Table 6.4 Estimates of a; and a, as the'Data Base for the Regression of

the Release Variables

Calculation Case

ax an

PWR - 1A 9.13 x 1073 437
PWR - 1B 1.85 %1073 .562
PWR - 2 1.73 x1073 .512
PWR - 3 1.40 x10™2 1.600
PWR - 4 3.38 x10"2 3.390
BWR™ 1 1.66 x1073 .451
BWR - 2 3.30x10°3 1.66
BWR - 3 3.50 x10"3 3.76
Additional Cases™: 1 1.57 x1073 .504
2 5.75 x 1073 .403

3 1.87 x10™2 .397

4 1.21 x1072 1.401

5 2.11 x1073 . 468

6 1.87 x1073 .458

7 1.47 x1073 .460

8 1.28 x1073 449

9 1.49 x1073 .546

10 1.29 x1073 .535

11 7.77 x 10”3 442

12 6.93 x10~3 432

13 2.15 x 1073 .618

14 2.48 x1073 .737

15 1.63 x1073 .522

16 1.55 x10~3 .301

17 2.23 x1073 .661

18 2.29 x10"3 .323

19 3.10 x1073 .489

20 3.22 %1073 .505

lCorresponding to the calculation case number in Table 6.3.
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b*(r,r') = b, * exp [-b2 s (r+r'")] - exp [-b3 . r-—r']] (6.12)

1

c*(r) = c, * exp ['Cz' r] (6.13)

For the other releases, the same exponential functions are consi-
dered. The estimates of a, and a, for the 28 cases are given in Table

6.4. The estimates of the other constants bl’ b b3, ¢y and ¢, are

2 2
given in Appendix H. The estimates of the constants are used as the

data base for the regression analysis.

VI.5 Formulation of the Regression Model

The next step is to select candidate equations that relate the
dependent variables a;, a,, bl’ b2’ b3, ¢, and c, to the regressor
variables discussed in Section VI.3. The analysis of the dependent
variable a, is discussed in detail. The results of the other regres-
sions are mostly briefly presented.

The following points are considered in the selection of the

candidate questions:

(1) The values of the dependent variables a;, a,, by, b,, by, ¢,
and c, are positive.

(2) The equations should have as few unknown constants as possible
which still adequately fit the distributions of the dependent
variables.

(3) The equations with smaller sum of the residual squares and no
significant systematic error are desirable.

The relation of the dependent variables and each of the regressor

variables is studied first. Table 6.5 shows the correlation co-effi-

cient between the dependent variable a, and each of the regressor
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variables. Linear and natural logarithmic transformations are
investigated. To have smaller sum of the residual squares, the
transformation that gives the largest correlation co-efficient is
preferred. Except for the elevation term (h), the natural logarithmic
transformations of the regressor variables give larger correlation
co—efficients than the linear transformations. Even for the elevation
term, the difference of the correlation co-efficients between the two
transformations of the regressor variable (h) is less than 0.1. To
keep the model as simple as possible, natural logarithmic forms are
selected for all of the regressor variables. Since the dependent
variable a, should be positive, the following regression model is

considered:

In a, = ko1 + k11 *ln h + k21 *1n Tw + k31 *1n Td +

+ k ) *1ln E + k51 *In ¢ + ¢ (6.14)

4 1

where k01,...,k51 are constants to be derived and € is the random
error variable. Eq. (6.14) does not include the interaction terms.
Possible interactions will be tested later.

The candidate equations of the other dependent variables are

selected in a similar process. The following equations are thus

considered in this study:

Ina, =k, *k,*Inh+k,*InT +ky, InT, +

(6.15)

L

+ k 2 *1ln E + ksz eln Yy + €,

in b1 = k03 + k13 *In h + k23 * 1In Tw + k33 *1n Td +

. . .16
+k,*InE+ k53 ln ¥ + €, (6.16)
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Table 6.5 Correlation Coefficients of a; and Regressor Variables

Dependent Variable Regressor Variable Correlation Coefficient
a h -.466
In h -.391
In a h -.496
In h -.453
w
In T .153
w
In a; T .071
w
In T .126
w
a Td .380
1n Td .382
1n a3 Td .362
1n Td .371
ay E -.445
In E -.837
In a3 E -.597
In E -.882
a ] -.501
1n ¢ -.569
In a v ] -.466
In ¢ -.492

(Note): elevation of release (m)

h =
Tw = warning time for evacuation (hour)
Td = duration of release (hour)
E
1]

= energy release (10° Btu/hr)

effective source (105 m3/sec)
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= . . -+ .
In b k + qu ln h + kzu 1n Tw k3u In T, +

2 o4 d

+ kL}L+ *1ln E + ksu- In y + €, (6.17)
1n b3 = kO5 + kls «In h + kzs- 1n Tw + k35 * 1In Td +

+ kys*1ln E + kg 1n ¢ + €5 (6.18)
1n ¢, = k06 + kls *ln h + k26 * 1In TW + k36 * 1n Td +

+ kus' i1n E + kss «ln ¢ + €¢ (6.19)
In c, = k07 + k17 *«ln h + k27 «1n TW + k37 *1n Td +

+ k“7 *Iln E + ks7 «1ln v + €, (6.20)

where k's are unknown constants and t's are random error variables.

VI.6 Derivation of the Constants of the Regression Equations

In the previous population regressions a small number of unknowns
were involved. Because of the larger number of terms in the regression
equations considered here, stepwise regression analysis is used to
eliminate the terms which have insignificant effect on the variation of
the dependent variables. In the stepwise regression, a partial
F-statistic is used to eliminate the terms of insignificant effects,
as discussed in Section IV.2.6. The linear multiple regressioﬁ program
in the DCRT Mathematical and Statistical Package of National Institute
of Health (Ref-9) is used to calculate the F-values. An upper 10%
level is selected as the criterion of elimination of the insignificant
terms. Table 6.6 shows the process of elimination in the regression
equation of (lnal). The calculated F-value of the warning time term

(lxxTw) is smaller than the upper 10% F-value with (1,22) degrees of
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freedom. The term (ln'ﬁﬂ) can then be eliminated. Then the equation

without (ln'rw) is tested.

ln a, = k + kll *In h + kal «In T

1 01 + kul *1n E +

d

k51 *1n ¢ + € (6.21)

1

The partial F-value is calculated again. Similarly, the term (lan)
can also be eliminated. The elimination process is terminated when
the partial F-values for the remaining variables are larger than the
10% level. For example, the partial F-value of (Iny) shown in Table
6.6 is larger and hence is not eliminated. Additional t-tests are also
made, as shown in Table 6.7, to help assure that the remaining terms
cannot be eliminated.

From the stepwise regression, the final derived equation of lna.1

is thus:
1n a; = -2.56 - .531nE - .461nh - .401nvy (6.22)

Interaction terms are then considered by adding the product terms
to Eq. (6.22). For example, to consider the interaction of (Inh) and

(In ¢) the following equation is studied:

- 1! r . r o, T,
In a1 k01 + kll In E + kz1 In h + k31 l1n ¢ +

+ k;l *In¢y+1lnh + ¢! (6.23)

1

where kél""’kLI are constants and si is the random error variable.
Partial F-tests are made again with regard to the product term and are
eliminated as shown in Table 6.8.

The significance of the final regression analysis is also tested

by the F-value given in Table 6.9, which is related to the multiple



Table 6.6 Partial F-tests for the Elimination of Insignificant

Regressor Variables for 1ln a;
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Difference F-value at
Eliminated of Residual Mean of 107% level
Regressor Squares by Residual Partial (Degrees of
Variable Elimination Squares F-value Freedom)
in Tw _ . 027 .106 .26 2.95 (1,22)
In Td .033 .102 .32 2.94 (1,23)
In ¢ .751 .099 7.59 2.93 (1,24)
Table 6.7 Results of t-tests of the Remaining Regressor Variables
Standard
Deviation of
Regressor Regression Regression (1)
Variable Coefficient Coefficient t-value
In E -.596 .053 -11.3
In h -.456 .091 ~4.99
In ¢ .403 147 2.75
1

value of t is smaller than 1.31, the regression variable can be

eliminated.

t=1.31 at 10% level with 24 degrees of freedom. If the absolute



Table 6.8 Partial F-test of Interaction Terms
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Sum of Square

Attributable to Mean Square of F-value
Interaction the Interaction  Deviation from (Degrees of
Term Studied Term Regression Freedom)
(In E) * (In h) .003 .103 .03
(In h) « (1n ) .034 .102 .333
(In ¢¥) * (1n E) .050 .101 .496
(Note):

freedom of (1,23).

F-value is 2.94 at upper 10% significance level with degrees of



Table 6.9 Analysis of Variance of Regression Analysis of 1n a,
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Degrees

of Sum of Mean

Freedom Squares Squares F-value
Attributable to Regression Analysis 3 21.09 7.03 70.8
Deviation from Regression Analysis 24 2.38 .099
Total 27 23.47
Intercept -2.56
Multiple Correlation . 948
Standard Error of Estimate .315
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correlation co-efficient. As the F-value at upper 0.1% significance
level with (3,24) degrées of freedom is 7.55, the F-value of 70.8 in
Table 6.9 shows that the regression equation (6.22) is statistically
significant.

The final regression results of a, are therefore:

a; = 7.73x1072 - F "2 . pTrh8 L g0 O (6.24)

l.6845s -1.645s
e ’

The 907% confidence bounds on a, are estimated by e and

1

where s is the standard deviation of lna, and is equal to 0.315.

1

Similar analyses are made for the other dependent variables. The

regression result of a, is given in Table 6.10 and the results of bl’

2

bz’ b3, c. and c, are summarized in Appendix H. The final equations

1

obtained are:

23 059 -.98

a, =293t B .y (6.25)
b, = 4.16x10 2+ n "2 . g7+ (6.26)
b?_ = 1.75 - h.0’+3 . td.l9 . E.12 . w-.99 (6.27)
by = 1.45 -y "2 (6.28)
¢, = 8.63x1077n Y g THO L gTI8 Ly (6.29)
¢, = 2.43 - por 080 m1.02 (6.30)

VI.7 Investigation of the Adequacy of the Regression Results
The regression results of a; and a, are tested individually and
collectively as follows. The examination of the other dependent

variables is given in Appendix H.
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Table 6.10 Regression Analysis of a,

Standard
Error of
Dependent Regressor Regression Regression ,
Variable Variable Coefficient Coefficient t-value
ln a; In ts .233 .0453 5.2
In E .059 .0177 3.7
In ¥ -.980 . 066 -14.9
Intercept 1.074
Multiple Correlation .988
Standard Error of Estimate .106
F-value 323.1

(0.1% F-value for 3 and 24 degrees of freedom is 7.55)
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VI.7.1 Examination of Individual Results

The quantity a, is estimated from the regression results Eq. (6.24)
for each of the 28 samples of the radioactive releases and is compared
with the data in Table 6.5. The estimates and data are plotted in
Fig. 6.5. 1If the regression estimates accurately predict the data, the
points in Fig. 6.5 should lie closely about the 45 degree line. As
observed the points do lie about the 45 degree line and no systematic
error is observed (i.e., tendencies to overpredict or underpredict
various ranges of data). The quantity a2 is similarly examined in

Fig. 6.6 and no systematic error is observed.

Vi.7.2 Examination of the Combined Regression Results

The quantities a; and a, are constants of the transfer function
a(r). Possible combined errors are examined by estimating the first
risk moments of the sample population distributions using a; and a,
derived by the regression. The first risk moment is estimated from
the regression results by:

12{ (al)q * exp [-(az)q . rk] . (Njk)i (6.31)

*
(Ml)i q =z

’ 3

* '3 I3 . » .
where <Ml)i q is the estimate of the first risk moment of the condi-
’

tional distribution at site i for the release q. (al)q and (az)q are
the constants of the transfer function for the release q estimated from
the regression results. (Njk)i is the population in the k-th annular
segment in the directiom j at the site i. The estimates of the first
risk moment is compared with the results of the consequence calculation.
The population distributions Site A and Site B are used to evaluate the

adequacy of the regression. The results in Fig. 6.7 do not show

systematic error and the largest error is a factor of 1.7. 1In Chapter V
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the largest error observed in Fig. 5.6 was a factor of 1.7 and was
found to be within the uncertainty bounds of the consequence model.
Therefore the error in Fig. 6.7 can also be concluded within the error
bounds of the consequence model.
Similar examinations are made for the regression results Egs.
(6.26) through (6.30) in Appendix H. The results are found to be

adequate.

VI.8 Example of Possible Applications of the Regression Results
Having obtained the regression results, they can then be used
for estimating the consequences of radioactive releases of different
characteristics without having to rerun the consequence program. For
example, in the Reactor Safety Study, numerous accident sequences
obtained by the event tree analysis are grouped into the release
categories in Table 6.1. Using the regression results, the first two
risk moments and the normalization constant for each of the accident
sequences in the release category can be estimated without rerunning
the consequence program. Because of the explicit relationship of the
regression equations, sensitivity studies and decision making studies
are also able to be carried out in a straightforward manner. The
regression results applied to an evaluation of the safety systems in

a nuclear power plant will be particularly discussed here.

VI.8.1 Evaluation of the Safety Systems

The safety systems in a nuclear power plant include engineering
safety features, operation restrictions and maintenance activities.
They are designed to reduce the risk of the reactor accidents by

reducing the probabilities of the occurrences or alternatively by
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reducing the magnitudes of radioactive releases to the environment.
To present the application of the regression results to the
evaluation of safety systems, a particular accident sequence q is
considered. The distribution of consequence versus probability for the

accident sequence is given by Eq. (6.1) as:
£ (x) =P -f (x) (6.32)
X) = . X : .
q q q

where Pq is the probability estimated for the accident.sequence q and
f:(x) is the conditional distribution given the accident occurrence.

The regression results allow the first two risk moments and the
normalization constant of the conditional distribution f:(x) to be
estimated from the release characteristics of the accident sequence,
which involves the release fractions of the core inventories, the
elevation of the release, the energy content of the releaﬁe, the time
of the release, the duration of the release and the warning timé for
evacuation. For example, the constants of the transfer function a*(r)
are estimated from the release characteristics by Eqs. (6.24) and (6.25)

as:

(a)) = 7.73 x1072. (E);'S3 . (h);'“s . “”)f;w (6.33)
(a,)g = 2.93 - (Td)c‘l23 . <E>;1°59 SO (6.34)

Given a population distribution, the first risk moment of the condi-

tional distribution given the accident occurrence is estimated by:

*
M), = § 12( (@Dgrexp [-@ay) = rp ] - Ny (6.35)

The first risk moment of the unconditional distribution is then given

by:
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M) =P § Eapg e (e ] Ny, (6.36)

The second risk moment and the normalization constant of fq(x) are
estimated in a similar manner.

If the safety systems are designed to reduce the probability of
occurrence Pq, the effects of the systems can be evaluated from the
regression results, such as Eq. (6.36), because the probability term
Pq is separated from the effects of the other release characteristics.
Given the population distribution and the risk moments of the condi-
tional distribution, criteria can be considered for the probability of
the occurrence Pq which give the acceptable risk characteristics.

If the safety systems are designed to reduce the magnitude of the
release, the effect of the decrease of the magnitude can be estimated
from the regression results, such as Eqs. (6.33), (6.34) and (6.36). A
numerical example is given in the following subsection about the
evaluation of a hypothetical iodine removal system.

The regression results furthermore allow trade-off studiss to be
considered between the population distributiom, the probability of
occurrence and the magnitude of the release. Fof example, the objective
to obtain the acceptable first risk moment in Eq. (6.36) can be achieved
by selecting a site of low population or by adding or improving the
safety systems, which reduces the probability of occurrence or the
magnitude of release. Such trade-off studies can be straightforwardly

made from the regression results.

VI.8.2 Numerical Example of Application of the Regression Results
A hypothetical iodine removal system is studied to demonstrate the

application of the regression results to the evaluation of the safety
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systems. The problem is to express the decrease of the first risk
moment in terms of the iodine removal efficiency under the following
assumptions:

(1) The release characteristics considered are similar to those
of a PWR-2 release category shown in Table 6.1 when no iodine
is removed by the system considered.

(2) Only the release fraction of the iodine is affected by the
system and the other release characteristics are unchanged
by the system.

(3) The population distribution at Site A shown in the Appendix C
is used.

(4) Only early fatalities are considered. The regression results
derived in this chapter are then applied, which are based on
the northeastern valley meteorological condition and
radioactive inventories of a 3206 MW-th plant.

Let w be the iodine removal efficiency of the considered system.

As 70% of the iodine inventory in the core is released when no iodine
is removed by the system considered, the release fraction of the iodine

at the removal efficiency w is given by:
q;(w) = 0.70 (1-w) (6.37)

The effective source term is calculated by Egqs. (6.2) and (6.4) from
the iodine release fraction in Eq. (6.37), the release fractions of
the other isotope groups in Table 6.1 and the weighting factors in
Table 6.2. The calculated effective sources for the three organs are
given in Fig. 6.8 as a function of the removal efficiency. Fig. 6.8

shows that the effective source to the bone marrow is dominant over
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those of the other two organs. The effective source for the bone
marrow is therefore selected as the overall effective source term.

The const;nts a, and a, of the transfer function a*(r) are
estimated by Eq. (6.33) and (6.34) from the overall effective source
term in Fig. 6.8 and the other release characteristics of the PWR-2
release category in Table 6.1. The estimated constants a; and a,
are given in Fig. 6.9 as a function of the iodine removal efficiency
w. From the population distribution at Site A,‘the constants a, and a,
in Fig. 6.9 and the probability of occurrence of 8=<10_6 per reactor
year (PWR-2 release in Table 6.1), the first risk moment is estimated
by Eq. (6.44). The result is given in Fig. 6.10 as a function of the
removal efficiency. Finally, the decrease of the first risk moment by
the iodine removal system is also shown in Fig. 6.10 as a functicn of
the removal efficiency.

Fig. 6.10 can be used to evaluate the decrease of the first risk
moment when data in the iodine removal efficiency of the system are
available. Alternatively, Fig. 6.10 can be used to calculate the
required iodine removal efficiency of the system to obtain the accept-

able first risk moment.

VI.9 Summary and Conclusions

The regression approach discussed in Chapter IV was demonstrated
in this chapter in which the release characteristics was taken to be
the basic variable. The early fatalities distribution in the north-
eastern valley meteorological condition was used to derive the regres-
sion results. The regressor variables are the warning time for evacua-

tion, the duration of the release, the energy content in the released
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plume and the effective source which is a weighted sum of the release
fractions. The probability of the occurrence was not taken as a
regressor variable by considering the conditional distribution of early
fatalities given the accident occurrence. The constants of the transfer
functions discussed in the preceding chapter were taken to be the
dependent variables.

The lognormal equations, such as given below, were tested.

ln a, = k

1 + kll *1n h + k21 +1n TW + k3l +In T, +

01 d

+k,, *1n E+ k51 «1ln ¢ + €, (6.38)

The terms that have insignificant effects on the variation of the
dependent variables were eliminated by the partial F-test. The final

equations obtained are:

a, = 7.73x1072 . g L pT ML MO (6.39)
a, = 2.93- ;% g 099 .y (6.40)
b, = 4.16x10 2+ n "2 - g (6.41)
by = 1.75 .m0 g t0 g tR T (6.42)
b, = 1.45+y "% ' (6.43)
e; = 8.63x107 7 - h Y LB ET Ly (6.44)
¢, = 2.43 - n 080 .71 02 (6.45)

Systematic errors were not observed for prediction of the dependent
variables and the estimates of the risk characteristics Ml’ MZ and o

were found to be within the uncertainty range of the consequence model.
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Having obtained the regression results, they can be applied to new
situations for sensitivity studies and decision making investigationms.
Because of the simple form of the regression equations, the involved
calculations are straightforward and do not require the consequence
codes or large computation time. The regression results were applied
to an example of evaluation of a hypothetical iodine removal system.
The decrease of the first risk moment was finally expressed as a func-
tion of the iodine removal efficiency of the system. The example
illustrates how the regression results can be used in evaluation and

decision making.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

VII.1 Summary and Conclusion

The objective of this thesis is to develop a methodology for
deriving a set of explicit equations which relate the public risk in
potential nuclear accidents to the basic variables which determine
the consequences of the accidents. The equations give insight into
the physical relationships which are involved in the accident risks.
Once the equations are derived, they can be used for semnsitivity
analyses and decision making studies without the need of complex
computer programs.

The methodology developed in this study consists of two steps.
The first step involves describing the consequence versus frequency
curve in terms of a parametric distribution having a small number of
parameters. The second step involves relating the parameters to the
basic driving variables.

A general approach for fitting the consequence versus frequency
distributions to the parametric distributions consists of three
fundamental steps. These steps are selection of the candidate
parametric distributions, estimation of the unknown parameters and
determination of adequate fits. The selection of the candidate
parametric distributions is based on the properties of the risk
distributions including the domain of the independent variables,
number of modes, skewness, and tail behavior. The method of moments
and the method of least squares are discussed as means.of estimating

the unknown constants. Criteria of adequate fits are based on the

198
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largest deviation of the fits, systematic errors in the fits and
residual mean squares.

The developed approach is demonstrated for the examples of
fatality distributions of nuclear and non—nuclear‘risks. Four candidate
distributions are examined: exponential, gamma, Weibull and lognormal
distributions. For these examples, the method of moments is used to
estimate the unknown parameters. In order to select a distribution
family which adequately describes the fatalities distributions, the
historical records of hurricanes, earthquakes, tornadoes and dam
failures are examined. The calculated risk curves of nuclear reactor
accidents are also examined for different population distributions and
.different types of the accidents. Based on these examinations, the
Weibull distribution is determined to be the distribution which
adequately describes all these various risk curves. The estimates of
the Weibull parametefs for the examined curves are summarized in Table

7.1. The lower end of the domain x the normalization constant o,

0°
the risk moments about x, are determined from the historical data or
from the results of consequence calculation. The Weibull shape
parameter B8 and scale parameter n are determined from the first two risk
moments, allowing simple and efficient estimation to be performed.

For the second step in the methodology, relating the distribution
parameters to the basic driving variables, regression techniques are
used in this study. The regression approach consists of 6 fundamental
steps. These fundamental steps are: (1) identification of regressor
variables, i.e., the basic driving variables to be considered; (2)

selection of the dependent variables; (3) assembling the data to be used

in the regression; (4) formulation of candidate regression equations
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which express the relationship between the dependent and regressor
variables; (5) estimation of the unknown constants in the regression
equations by the method of least squares; and (6) testing of the
adequacy of the derived equations.

The regression analysis approach is demonstrated in two examples.
One example uses the population distribution as thg basic regressor
variable. Three exponential functions (called "transfer functions")
are derived which relate the first two risk moments and the normaliza-
tion constant to the population distribution. Table 7.2 gives the
transfer function results which are determined in this study. An
application of the derived equations is demonstrated for an example of
selection of a site for a nuclear power plant.

The regression approach is demonstrated for another example in
which the characteristics of the radiocactive releases are treated as
the basic regressor variables. The dependent variables are taken to be
the constants of the transfer functions determined in the preceding
analysis of the population distribution. The lognormal equations which
are determined are given in Table 7.3. The derived equations are
applied to the evaluation of a hypothetical iodine removal system.

In conclusion, the methodology proposed in this study is found to
be appropriate in deriving explicit equations which relate the risk to
basic driving variables. The derived equations are fairly simple and
straightforward, which allows for simple and straightforward applica-

tions to decision making studies and other calculations and evaluations.

VII.2 Recommendations

The methodology proposed in this study is one attempt at deter-



Table 7.1 Estimates of the Parameters of the Weibull Distribution

Fc(x) = ¢ exp [-[

X=X
n

8
Q] ]

n

p-1 B
f&)=a.-%° r-xﬂ -am[-F-XQ]

1) (2)

Events X a (1/year) M M, B 0
Hurricanes 0 6.30x107!  1.27x10? 5.64 x 10° .387 7.48 x 10!
Earthquakes 0 1.64x107!1 1.53x10! 8.13 x 103 .511 4.84 x 10!
Tornadoes 20 8.10x107!  6.62x 10! 1.67 x 10" .708 6.53 x 10!
Dam Failures 0 9.52x1072 3,48 x 10} 5.07 x 10" .608 2.47 x 107
Average of U.S. Reactors 0 4.72x1077 4.60x1075  6.45 x1072 .371  2.45 x 10!
PWR Accidents at Site A 0 5.78x1077 2.72x107* 5.77 x107! .570 2.91 x102
BWR Accidents at Site B 0 1.61x107% 9.92x1077 3.46x107" .513 3.23 x10!

lxo is determined from the smallest consequence in the data.

2a is determined from the number of events having consequences greater than xg.

10¢
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Table 7.2 Transfer Function Results of PWR Accidents in Northeastern
Valley Meteorological Conditions.

Dependent
Variable Transfer Equations Constants
First Risk Moment M; = I f a) * exp (-aj*r) -nj(r) «dr a; = 3.51x1078
3
a; = .600
Second Risk My, =2 f[ by * exp [=by- (r+r')] b; = 2.05x 1078
Moment 3
b2 = ,352
- exp [-b3y*|r-r'|] *n. () *n,(z') -
J J by = .557
e dr - dr'
Normalization a =1 cy*exp[-cyped,] cyp = 1.79x10°6
Constant 3 J
Cor = .398

(Note): (1) nj(r) is the population per unit distance at r in a 22%

degree sector of the direction j.

(2) dj is the minimum distance at which people live from a

reactor in the direction j.



Table 7.3 Summary of the Regression Results of the Radiocactive Releases

(1)

(2)

Transfer Functions

Regression Equations

3)

My =P - 1L I aj * exp (-ay°r) -nj(r) dr
k|

r

My =P - 1L f by * exp [~bye (x+r')] *
J rr'

. exp [—b3'|1:-r'|]nj (r) n, (r') drdr'

a =P+ L cjexp[-cy°d

]
j |

a)

as

€1

c2

[

7.73x1072 ¢« E=+93 « =46 . w.hO

2.93 x td.23 . E«059 . l‘,"'.98

4.16x1072 + h™+27 « g7+ 39

1.75 . h.0‘+3 ° tdo 19 . E—- 99

1,45y -2

8.63x1072 ¢« h~-37 . td""55 «E- 93

2.43 ¢ h—.080 . 1‘1-1'02

1The northeastern valley meteorological conditions are assumed.

2P = probability of the occurrence (1/year).

3
d

= duration of the release (hours), E = energy content in the plume (105 Btu/hr),

t
h = elevation of the release (meters), Y = effective source (10° m3/sec).

€0¢
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mining basic relationships which can be used in risk evaluations and
decision making situations involving risks. The methodology is
demonstrated for only one type of consequence (early fatalities), one
meteorological condition (northeastern valley sites) and two sets of
basic variables (population distribution and radiocactive releases).
Further studies will be required to develop broader results, such as
considering other types of consequences, other meteorological condi-
tions, and other basic variables. As consequence models and computer
programs change, the regression relationships will also need to be
reevaluated to determine updated results.

The methodology may also be applicable to evaluation of non-nuclear
risks, such as dam failures. Relating the risks to the basic variables
of interest may provide help in decision making and risk evaluations in
these situations. Further studies are recommended to determine the
feasibility of applying the methodology to these different situations.

With regard to the more detailed recommendations, the following

studies are specifically recommended:

Chapter II and Chapter III

(1) Only two general fitting techniques were discussed in this
study. However a large number of other techniques have been
developed and the most appropriate technique may depend on
the candidate parametric distributions. For example, a linear
estimator of the Weibull distribution with the logarithmic
transformations of dependent and independent variables is
discussed in Ref-6. Further studies are recommended to test
other techniques of fitting parametric distributions to the

consequence versus frequency risk distributionms.



(2)

Chapter V

(3

205

Four candidate distributions were examined to fit the risk
curves. Other distributions should also be investigated to
determine their feasibility and particular advantages and

disadvantages.

The transfer function c(r) that relates the normalization
constant with the closest distance at which people live to

the reactor was defined in Section V.5 as an approximation

of the expectation of the H equation. In the example case

of the fatalities distribution of PWR accidents, the error

of this approximation was found to be within the uncertainty
range of the consequence model. However in other situationms,
this approximation may not be appropriate. Therefore, further
studies are required to define the transfer function that
relates the normalization constant with the population

distribution for a wider variety of consequences.

Chapter VI

(4)

The effective source was defined for early fatalities in
Section VI.2 because the interaction effects of the release
fractions of various isotope groups are not simple. For
other types of consequences, however, one or two isotope
groups may have dominant effects on the magnitude of conse-
quence. For example, the property damage may be dominated

by the release fraction of the Cs group. In these cases, the
selection of the release fractions as regressor variables

may be appropriate. Further studies are recommended in
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studying basic regressor variables for the analysis of a

wide variety of consequences.



207
APPENDIX A

REFERENCES

U.S. Nuclear Regulatory Commission. Reactor Safety Study--An

Assessment of Accident Risks in U.S. Commercial Nuclear Power

Plants, WASH-1400 (NUREG-75/014). Washington: U.S. Nuclear

Regulatory Commission, October, 1975.

U.S. Department of Commerce. Master Enumeration District List with

Coordinates. Washington: U.S. Department of Commerce, 1970.

A. Hald. Statistical Theory with Engineering Applications. New

York: John Wiley & Sons Inc., 1951.

A.E. Green and A.J. Bourne. Reliability Technology. New York:

Wiley-Interscience, 1972.

C.R. Rao. Linear Statistical Inference and Its Applications. New

York: John Wiley & Sons Inc., 1965.

N.R. Mann, R.E. Schafer and N.D. Singpurwalla. Methods for

Statistical Analysis of Reliability and Life Data. New York: John

Wiley & Sons Inc., 1974.

The World Almanac 1976. New York: Newspaper Enterprise Association

Inc., 1976.

N.R. Draper and H. Smith. Applied Regression Analysis. New York:

John Wiley & Sons Inc., 1966.

Computer Center User's Manual, DCRT. Washington: National




208

Institute of Health, August, 1975.



209

APPENDIX B

NOMENCLATURE

Since this thesis is related to various different fields, such as
statistics, meteorology, health physics, etc., it is sometimes
difficult to achieve a consistency about the notation. The nomenclature

is thus given here for each chapter.

Chapter I
F number of events per unit time
F© complementary cumulative frequency (number of events per
unit time)
£ frequency per unit time per unit consequence
M risk moment
t order of the risk moment
X consequence magnitude
LIFEN integration interval
3 reference magnitude for the evaluation of the risk
moment
Chapter II
E expectation

S ERREEL random error variables
£ frequency distribution

complementary cumulative distribution

=C . .
Fi complementary cumulative frequency of the data i
G candidate parametric function

i subscript denoting the data to be fitted



%

Tl,...,Tk

Pheensty

Chapter III

FC

f

|

number of parameters

risk moment of the candidate distribution

risk moment estimated from the data to be fitted
order of the risk moment

number of the data

residual mean square of the estimated equation
independent variable

observed value of the independent variable
random variable

observed value of Y

residual mean square to be minimized for the method of
least squares

reference point for the evaluation of the risk moments
standard deviation of the random variable Y
parameters of the candidate function

estimates of the parameters

complementary cumulative frequency

frequency distribution (number of events per unit time
per unit consequence)

normalized density distribution (number of events per
unit consequence)

first risk moment about the lower end of the domain
second risk moment about the lower end of the domain
m-th risk moment about the lower end of the domain

order of the risk moment

210

probability assigned to the sample data or the trial in

the consequence calculation
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Ax

Ak

Chapter IV

F'

211

time period in which the historical records are
available for non-nuclear risks

magnitude of consequence

lower end of the domain of x

interval of the consequence magnitude for the
calculation of the frequency distribution from the
historical records or from the consequence results

normalization constant

shape factor of the gamma distribution or the Weibull
distribution

Gamma function
scale factor of the Weibull distribution

scale factor of the exponential distribution or the
gamma distribution

number of historical observations having consequences
greater than the specified magnitude

number of historical observations having consequences
in the certain range of the magnitude Ax

mean of the normal variate (ln x) of the lognormal
distribution

reference magnitude for evaluation of the risk moment

standard deviation of the normal variate (In x) of the
lognormal distribution

F-value for the evaluation of the significance of the
regression equation

partial F-value for the evaluation of the significance
of the added unknown constants

complementary cumulative frequency
candidate regression equation
number of parameters

number of regressor variables



2 q2'
SR’SR

X0

Yo

>

Chapter V
A

A

215ee0.,8

31,.0.54

"

\Y

\Y]
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number of the data for regression

sum of squares attributable to regression
sum of residual squares

magnitude of consequence

lower end of the domain of x

dependent variable

average of y-values of the data

regressor variable

normalization constant

shape factor of the Weibull distribution

sum of residual squares to be minimized in the -
regression analysis

random error variables

scale factor of the Weibull distribution

number of added unknowns in the regression equation
multiple correlation coefficient

unknown constants in the candidate equations

estimates of t by regression

ratio of the fatalities to the population for a specific
trial

ratio of the fatalities to the population in the k-th
annular segment for a specific trial

transfer function that relates the first risk moment to
the population distribution

unknown constants of the candidate function of a(r)
estimates of al,...,av by regression

the average of Ak over all the trials
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Bl,--o,b\)'

kk.'

Cl,...,c [}

\Y)

Cl,...,cv,,

d
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transfer function that relates the second risk moment to
the population distribution

unknown constants of the candidate function of b(r,r')

estimates of bl,...,bv, by regression

the average of [Ak- Ak'] over all the trials

transfer function that relates the normalization
constant o to the closest distance of population from
the reactor -

unknown constants of the candidate function of c(r)

estimates of ClsecesC by regression

closest distance at which people live from a reactor

expectation over the trials

complementary cumulative frequency

complementary cumulative frequencies of the two adjacent
data points in the consequence results below and above

10~9/year

partial F-statistic for the evaluation of the added

unknowns
unit step
candidate
candidate
candidate
candidate
subscript
subscript
number of

subscript

function
function
function
function
function
denoting
denoting
segments

denoting

of a(r)

of b(r,r")

of c(r)

of y(r)

the sample data

the wind direction

considered in the consequence model

the segment

the closest segment at which people live

subscript denoting the population group in the bell-
shaped population model

first risk moment about the lower end of the domain
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second risk moment about the lower end of the domain
population in an annular segment
fatalities in an annular segment

total population in a population group in the bell-
shaped population model

population per unit distance per radian

population per unit distance in a 22.5 degree section in
the direction j

population per unit distance in an annulus of unit width
probability of the wind blowing to the direction j
probability of occurrence of release

probability assigned to a specific sample of the weather
data

probability assigned to a specific trial
probability assigned to a specific evacuation speed

distance from the origin to the center of the bell-
shaped population group

distance from the origin to the center of the population
groups B, C and D respectively

distance from the origin

distance from the origin to the center of the annular
segment

width of the k-th annular segment

sum of residual squares

subscript denoting the trial

magnitude of consequence

consequence magnitudes of the two adjacent points in the
consequence results below and above the complementary
cumulative frequency of 10~2/year

normalization constant

shape factor of the Weibull distribution
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Y transfer function which approximately relates the
normalization constant to the closest distance at which
people live from a reactor

YiseoesY o unknown constants of the candidate function of y(r)

Ai,A%,Ai,AZ sum of residual squares to be minimized in the
regression approach

g€,€' random error variables
o coordinate axis perpendicular to r
n scale factor of the Weibull distribution
5] angular coordinate in the polar coordinate system
vov', " ,v'""" number of unknown constants in the candidate
functions '
o) population per unit area
Gp»0p29c>0p  average deviation of the population in the bell-
shaped population groups A, B, C and D
R average deviation of the population in a bell-shaped
population model
Chapter VI
a* transfer function relating the condition first risk
moment MT to the population distribution
aj,ajs parameters of the exponential function to fit a*(r)
B breathing rate
b* transfer function relating the conditional second risk

moment Mg to the population distribution

by,bs,b parameters of the exponent function to fit b*(r,r')
192503

c dose conversion factor involving three modes of exposure
CC dose conversion factor for cloud shine dose

CG dose conversion factor for ground shine dose

CI dose conversion factor for inhalation dose

c* transfer function relating the conditional normalization

*

constant a” to the closest distance at which people live
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cy,C parameters of the exponential function to fit c*(r)

15C2

d closest distance at which people live from the reactor

E energy content in the released plume

£ frequency distribution

£* conditional frequency distribution given the release
occurrence

g subscript denoting the isotope groups for the evaluation

of the release fractions

h elevation of radiocactive release

I inventory of radioactivity in a reactor core °
3 , subscript denoting the isotope

k subscript denoting the organ in a body

kg1,kgose..rks?

constants in the regression equations
kblskéza---,ké7} !

(LD)50 a dose that'causes deaths to 50% of the exposed
population

MF first risk moment of the conditional distribution f£*(x)
given the accident occurrence about the lower end of the
domain

M; second risk moment of the conditionmal distribution f*(x)
given the accident occurrence about the lower end of the
domain

M: t-th risk moment of the conditional distribution given
the accident occurrence

N population in an annular segment

n, population per unit distance in a 22.5 degree sector in

J the direction j

P probability of occurrence of release

Q released amount of radioactivity

q subscript denoting a specific release

qg release fraction of the isotope group g

qq release fraction of iodine
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A

X

Chapter VII

1272273

distance from the origin

standard deviation of the estimate of the dependent
variable

cloud shine shielding factor

ground shine shielding factor

duration of the release

time of the release

warning time for evacuation

subscript denoting the order of the risk moment
deposition velocity

consequence magnitude

normalization constant of the conditional frequency
distribution f*(x) given the accident occurrence

random error variables

radioactive decay constant

ground level airborne concentration of radioactivity
effective source

weighting factor for effective source

iodine removal efficiency

217

transfer function relating the first risk moment to the

population distribution
parameters of the exponential function fitted to a(r)

transfer function relating the second risk moment to
the population distribution

parameters of the expomential function fitted to b(r,r')

transfer function relating the normalization constant to

the closest distance at which people live

parameters of the exponential function fitted to c(r)
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closest distance at which people live from a reactor
energy content of the released plume
complementary cumulative frequency
elevatiQn of release
subscript denoting the direction
subscript denoting the segment
first risk moment about the lower end of the domain
second risk moment about the lower end of the domain

population per unit distance in a 22.5 degree sector in
the direction j

probability of occurrence of release
distance from the origin

duration of release

magnitude of consequence

lower end of the domain of x
normalization constant
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