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ABSTRACT

The use of Response Matrix Technique for finding
two-group, two-dimensional equivalent diffusion theory
parameters is proposed. A homogenization scheme for
calculating assembly-constant group diffusion parameters
which are dependent upon assembly position within the
reactor results. Equivalent group diffusion parameters
are determined by this response matrix scheme for assem-
blies typical of both BWR and PWR geometries. Their use
in reactor criticality problems leads to an accurate
prediction of assembly powers and reactor Keff. The
superiority of the group diffusion parameters found using
the present scheme over the conventional flux-weighted
constants is demonstrated.
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CHAPTER I

Equivalent Diffusion Theory Parameters

1.1 Introduction

Analysis of the free-neutron behavior in a reactor

requires the ability to predict the neutron density in

space, direction, and energy. Transport theory methods

such as a high order, multigroup, discrete ordinate approxi-

mation or Monte Carlo analysis(1) are capable of solving

such complex problems but are prohibitively expensive for

most practical reactor geometries. An alternative approach

is to use group diffusion theory provided that the approxi-

mations made in going from the neutron transport equation

to the neutron diffusion equation apply to the particular

problem being solved.

The principal approximation required to obtain diffusion

theory is that the neutron density in phase space, N(rQ,E),

is represented by

N(r,,E) = F(r,E) + g-V(r,E) , (1.1)

where F(r,E) and V(r,E) are a scalar and vector function of

position and energy. This linearly anisotropic distribution

can describe a general drift of neutrons buti cannot even

(2)
approximate a beam-like flow of neutrons . Near physical

boundaries where strong neutron absorbers may be adjacent to
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highly scattering but weakly absorbing material, the direc-

tion of neutron flow will be strongly towards the absorbing

material, and the use of diffusion theory will predict

inadequately the neutron density. A light water reactor,

for example, may contain small cylindrical fuel rods, lumps

of burnable poison and control rods near which the neutron

behavior tends to be highly directional so that the use

of diffusion theory will lead to inaccurate results.

In order to predict, without solving the transport

problem, the behavior of neutrons in a reactor consisting

of assemblies which have all the aforementioned hetero-

geneities, certain techniques for finding regional, group

"equivalent" cross sections and diffusion coefficients have

been developed. These equivalent diffusion theory parameters

are calculated in a two-step homogenization procedure. The

first step determines equivalent diffusion parameters which

are capable of describing the neutron behavior in a small

region where the neutron currents tend to be hightly direc-

tional for particular energy ranges. Such regions occur in

a fuel rod and the surrounding clad and moderator and near

localized absorbers and control rods. Fortunately, the

fuel cells (fuel, clad, and surrounding moderator) of each

assembly, although many in number, are usually identical (at

least at beginning of life) and prescriptioas(3,4) have been

developed which are capable of determining equivalent group

diffusion constants for the cell which adequately describe
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the cell-integrated reaction rates that would be obtained

using exact transport calculations. Likewise, methods

such as blackness theory are capable of determining the

equivalent diffusion constants for localized poisons and

(5)control rods . Once each assembly is entirely described

by material zones for which equivalent group diffusion

constants have been calculated, the entire neutron behavior

throughout the reactor can be predicted by diffusion theory.

The need for a second step of homogenization becomes

apparent upon the realization that a typical reactor may

contain as many as 160 assemblies and 225 fuel or control

cells per assembly. Thus after equivalent diffusion cons-

tants have been determined throughout the reactor from the

first step of homogenization, a full-core problem depicting

the heterogeneities within each assembly(fuel cells, control

rods, etc.) would have a minimum of 36,000 mesh points per

energy group per axial mesh plane for the core alone. To

avoid this prohibitive expense, a second stage of homogeni-

zation is carried out in which "nodes" (usually entire

assemblies) of the reactor are homogenized. Group-equivalent

diffusion parameters, constant over an entire node, are

calculated, and methods such as nodal or finite element (6, 7 ,8)

are applied to the full-core problem. The nodal and finite

element methods permit a large mesh spacing over regions of

constant (or nearly constant) material composition. This

second state of homogenization therefore permits a full-core
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solution to the group diffusion equations with a reasonable

number of mesh points. It is this second state of homogeni-

zation which is the subject of the present thesis.

1.2 Spatially-Homogenized Diffusion Parameters

Once equivalent diffusion parameters have been found

for small regions about any space point r from the first

stage of homogenization, diffusion theory is applicable

throughout the reactor core. The group diffusion equation

in matrix form as derived from the P-1 approximation to the

transport equation (2)

-v*[J.(E)]-[A(r)][(r)]+ [M(r)][(r)]=0 (1.2)

where

-- [_(r] r [Du ur]uBu u auu

and the matrix elements are given by

[ J(r)]= [Jx(r)]i

[J y(r)]= [J y(r)]j
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Jz(r)]= [ Jz (r)] k

where

[J (r)]= Col {Jlu

{A ,(r)} , a G x G matrix

Ag ,(r) E E (r)6 ,- ,(r)
tg - gg gg

, a G x G matrix

where

[X(r)]= Col {Xis X2'' '''XG I

and

[vE (r_)]= Col _ vEf2 '' ' fG(

' 2u ' ' o JGu (r)

[A(r)] H

U=x ,y, z

where

;

[M (r) ] -= [X (r) ] [vE f(r) ]



Note that at each point r there will be only one set of

equivalent diffusion parameters from-the first step of

homogenization.

The further homogenization over a large node of the

reactor such as an assembly will yield a new set of cross

sections denoted by [Du], [A], and [M]. This new set of
u

parameters should have the following characteristics:

i) they should be constant over a given volume V

ii) they are such that the eigenvalue ~ determined

from the equation

au [D U

-[(r) ((r) is solution using

[A], [M], [Du]) is identical with that given

by the solution of Eq. (1.2);

iii) they are such that the integrated reaction rates

over each different V1 for each energy group

are the same as those found by the solution of

Eq. (1.2).
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These conditions will be met if for each volume element V :

-u -[J (r)]dV = [D ] [I(r)]dV
i" au - -U V i au

IV [A (r) ][(r)]dV = [A] if

.V [M (r) dV = [N]

[(r)]dV

[f(r) ]dV

Since the [D ]i., [A]., and [M] . can be full G x G matricies
u I

(the Dg , elements for g/'g' exist for particular derivations

of the diffusion coefficients from the P-1 equation; see

reference (2)) and since each therefore contains G2 unknown

terms, determination of each element of [u i i, or

,2
[i] . would require G equations. The above three matrix

equations each result in only G equations. Therefore the

elements of [5u i, and [M] are found by requiring

a term by term equivalence of each integral. For example,
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it is required that

A ,(r)$ ,(r) dV=X f ,(r)dVIV. gg 9 V

(g=12,1..G; g'=l,2,1..,G).

Thus each term of [D ], [M], and [A] can be found once
u

[(r)]dV
2

and r [ (r) ] dV
V Iu

are known.

Specifically, the "ideal" equivalent cross section for

-(i)
interaction a, group g, F , and the group diffusion co-ag

efficient for direction u (for most derivations [D] is
U

a diagonal matrix), Di, then obeygu

a9

D -
g,u

V. aLg -W g (r-dV

J (r)dV

J (r) dV
V au gu -

2

J a 2 g r)dV
V au

(1.3)

(1.4)

IV.
1

and
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(i) (i)where $ (r)and E (r) are the group g flux and inter-
g - ag -

action cross section for process a, node i in the hetero-

-(i) - i)geneous reactor and p (r) and W are the corres-
g -ag

ponding quantities when node i is homogenized.

Equivalent group diffusion constants, constant over

node i, can be calculated by Eqs. (1.3) and (1.4). However,

their calculation requires an apriori knowledge of the

integrated reaction rate and leakage rate out of node i

in the heterogeneous reactor. Moreover, even if a know-

ledge of these quantities is assumed, the flux shape

resulting from the use of the homogenized constants,

9 (r), is required. This situation introduces a non-

linearity into the calculation of the equivalent constants,

and, since 4 (r) is constricted to be a solution of the
g-

diffusion equation, it may in fact negate the existence

of such constants.

1.3 Flux-Weighted Constants (FWC)

The most common method of calculating equivalent

diffusion constants for a given node i is to relax the

conditions that the E i and D(i) defined byag gu

Eqs. (1.3) and (1.4) must obey. In the usual flux-weighting

procedure, the equivalent cross sections are calculated

under the assumption that

V. g$ (r)dV = f $ (r)dV
V. 9.19
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However, it is unlikely that the integrated flux in node i

in the reactor consisting of homogenized assemblies will

equal the corresponding integrated flux in node i of the

heterogeneous reactor. This is the first serious theore-

tical weakness encountered when using FWC.

A second fundamental weakness resulting from using FWC

is that the homogenized diffusion coefficients are usually

defined such that

$ (r)dV
g-)V. D 9~

(i)gu 
(1.5)

i 4 (r)dV
gu )Vg -

The justification for calculating Di by Eq. (1.5) is that
gu

S g,transport(r) and Eq. (1.5) leads to a conservation

gu

of the transport rate. This reasoning is invalid, however,

since the transport cross section defined by the P-1 approxi-

mation to the transport equation is a function of the neutron

current, and weighting by the neutron flux preserves no

integrated reaction rate.

A final important point is one concerning the calculation

of the integrated flux shape of the heterogeneous reactor,



- 11 -

_ (r), within each node i. This shape is needed in the

calculations of the homogenized cross sections and dif-

fusion coefficients as defined in Eqs. (1.3) and (1.5).

The flux shape for the heterogeneous node i is determined

by isolating the node in question and solving the group-

diffusion eigenvalue problem under the assumption that the

net leakage out of each side of the node is zero. The

justification for this approximation is that most nodes

(assemblies) in a reactor are surrounded by assemblies of

nearly the same composition and that the global flux shape

across most assemblies (with the exception of those near

the reflector) will have only a slight overall curvature.

For a situation such as this, the net leakage across each

face of the node will be small. Nevertheless, the zero

current boundary condition assumption is not exact and is

even inaccurate for assemblies near the reflector or for any

other reactor condition where significant flux-tilting may

occur.

Summarizing: Flux-weighted constants (FWC) are deter-

mined by a set of calculations in which three plausible

assumptions are made:

(1) i 9g(r)dV= $ (r)dV

V. i .
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D (r) rdV
(2) 1 gu (r) g

D gu $ (r)dV

(3) all assemblies are assumed to have negligible net

leakage across each face, regardless of the assembly posi-

tion in the reactor.

1.4 Equivalent Group Diffusion Coefficients (EGDC)

The theoretical inconsistencies inherent in the calcu-

lation of FWC as described in the previous section suggest

that a more exact set of equivalent group diffusion para-

meters may be determined if the weaknesses in the flux-

weighting procedure are avoided or if an entirely different

approach to homogenization can be found which circumvents

these weaknesses. Earlier work gives evidence that an

improved spatial-homogenization technique can be found.

For. one-dimensional reactor geometries, Kollas (9) has

shown that one and two-group EGDC can be found which are

"exact" (i.e. their use will reproduce exactly the inte-

grated reaction rates and leakage rates in each assembly

as determined by a heterogeneous, full-core calculation) for

reactors in which the material in each slab assembly

comprising the reactor is located symmetrically about the



- 13 -

center plane of the assembly. This homogeneous procedure

involves a calculation of the EGDC by matrix manipulation.

It is dissimiliar to any flux-weighting procedure and yields

homogenized parameters different from the usual flux-weighted

quantities.

For two-dimensional reactor geometries and two energy

groups, previous work (10) has provided a means for calcu-

lating EGDC from a flux-weighting standpoint, but using a

Response Matrix (11,12) approach. This procedure has the

flavor of Kollas's technique in one dimension, and reduces to

the exact answer for one-dimensional, one-group problems. The

major theoretical improvements in this response matrix approach

for calculating 2-D, 2-group EGDC is that the [ $ (r)dV
)V.9

appearing in Eq. (1.1) are determined in a more exact manner.

(It is no longer assumed that J Vg(r)dV= $ (r)dV as is

I I

done in calculating FWC.) Secondly, the homogeneous diffusion

coefficients for assembly i are determined by trying to repro-

duce as closely as possible the exact transmission of neutrons

that occur in assembly i in the heterogeneous reactor. This

criteria, although vague in definition, provides a much

stronger physical foundation for determining the homogenized

diffusion coefficients than does the use of Eq. (1.5).

Finally, the zero current boundary conditions along each face
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of the assembly being homogenized is replaced by a more realis-

tic boundary condition which allows a net leakage across each

face of the assembly.

The purpose of this thesis is to examine this response

matrix approach for calculating.two-dimensional, two-group

equivalent group diffusion constants. In particular, efforts

are directed towards (1) decreasing the amount of computational

effort required in calculating the EGDC and (2) improving the

methodology of the homogenization technique such that a

further increase in accuracy is provided by the use of the

resulting EGDC.

In Chapter 2 we review the response matrix technique in

general and its application in finding 2-D, 2-group EGDC. We

then examine resulting strengths and weaknesses of the EGDC

as indicated by their use in a typical light-water reactor

problem. In Chapter 3 we present a technique for improving

upon the weaknesses of the present response matrix scheme,

and in Chapter 4 we present results of the use of these EGDC

for BWR and PWR reactor geometries. Chapter 5 contains the

conclusions of this work and recommendations for further

study.

-do, - -dw
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CHAPTER II

DETERMINATION OF TWO-DIMENSIONAL, TWO-GROUP EGDC

USING A RESPONSE MATRIX SCHEME

2.1 The Response Matrix Technique in Two Dimensions

The response matrix method consists of replacing a region

of a reactor, usually an assembly, by a black box connected

with the rest of the reactor by response matrices. In practice

the entire reactor is divided into black boxes which are

interconnected with adjacent boxes by precalculated response

matrices. A reactor criticality calculation involving these

matrices gives the distribution of the partial neutron currents

along the boundaries of each box. The partial currents are

then used to calculate integrated reaction rates and to

calculate the flux at any point in the reactor.

The calculation of the distribution of the partial

currents requires a knowledge of these currents at each point

along the boundaries of the assemblies and the resulting

number of unknown parameters is infinite. Therefore, a parti-

cular spatial shape is assumed for the partial currents before-

hand. For two-dimensional reactor configurations, the choices

of both flat shapes and linear shapes have been examined with

(11,12)
fairly successful results

In applying the response matrix technique, the linear

nature of the group diffusion equations is used in order to

apply the principle of superposition. The incoming partial

current along one side of an assemlby gives rise to outgoing

AK.. - - Aft_



- 16 -

partial currents along all four sides of the assembly. By

the principle of superposition, the total outgoing partial

current on each face of the assembly is the sum of the

contributions from each incoming current. The response

matrices provide the various relationships between the in-

coming and outgoing partial currents of the four edges of an

assembly. These response matrices therefore depend upon the

distribution of incoming and outgoing partial currents along

each face as well as the assembly composition. Accordingly,

the flat or linear shape assumed for the aforementioned

criticality calculation is also used as the distribution of

the incoming currents to calculate the response matrices.

For the purpose of using response matrices to calculate

homogenized cross sections, the incoming group partial

currents will be assumed to be spatially flat.

The response matrices which are used in the reactor

criticality calculation are determined by a separate calcu-

lation for each assembly. Fortunately, most reactors have

only three or four different assembly compositions at

beginning of life. In order to calculate the response

matrices for a given assembly composition, the assembly is

isolated in a vacuum and the group g (g=l,2,...,G) partial

current leaving each face is calculated for a spatially flat,

unit incoming group g' (g'=1,2,...,G) partial current. The

integrated partial currents along each face are then related

by the response matrices. With a spatially flat, unit incoming

-AM -
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partial current assumed, the response matrix elements are

actually the fraction of the integrated group g' (g'=l,2,...,G)

partial current incident upon face t' which appears in the

energy group g (g=l,2,. .. ,G) and leaves face Z . Symbolically,

each response matrix element can be represented by R ,
gg

where

Rggg= the fraction of the integrated
gg

group g' (g'=l,2,...,G) partial

current incident upon face 9' (2.1)

which appears in energy group g

(g=1,2,...G) and leaves face t.

Another quantity which can be determined during the

calculation of the response matrices is the assembly-integrated

reaction rate of process a for neutrons appearing in group g.

A corresponding integrated reaction rate resppnse matrix

element, .denoted by I ,g (a), is defined such that

I, (a) = the assembly-integrated reaction

rate of process a for neutrons

appearing in group g as a result (2.2)

of a spatially flat, unit incoming

current in group g', along face t'.

Aft - __ "i__
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Once the actual incoming partial currents along each

face of the assembly are known, Eqs. (2.1) and (2.2) can be

used to calculate the total outgoing partial currents along

each face as well as the integrated group reaction rates.

Specifically, the outgoing partial current in group g along

face Z, denoted by J (out) can be determined by
g

2,4 G Z,2t'(in'
J (out) = E R J (in) (2.3)

9 X,=l g'=l gg g

where Jg,(in) is the incoming group g' partial current along

face Z'. Likewise, the integrated reaction rate for

process a, group g is denoted by I (a) and is calculated by

4 G
I (a) = ( I (a)J (in). (2.4)

9 R,=1 g'=l gg g

The application of the response matrix technique to the

determination of equivalent group diffusion constants is

confined to the step in which the response matrices for each

assembly composition are calculated. This step will hereafter

be refered to as the cell calculation. The reactor

-AAk - -AM
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criticality equation using these response matrices comprises

the second stage of calculation of the response matrix

technique and is not used during the assembly-homogenization

procedure.

In the next section a successful method for calculating

two-dimensional, two-group diffusion theory constants based

upon the determination of response matrices is outlined.

Results of this method and ideas for improvement are

discussed in the last two sections of this chapter.

2.2 A Spatial Homogenization Scheme Based Upon.a Response

Matrix Approach

The theoretical weaknesses of the conventional flux-

weighting procedure for finding assembly-constant, equivalent

group diffusion parameters (denoted by FWC) are discussed

(9)in Chapter I. Although Kollas has shown that an alter-

native approach of calculating equivalent diffusion constants

for certain slab geometries circumvents these weaknesses,

his scheme cannot be extended to the two-dimensional problem.

A method for calculating two-dimensional, two-group equivalent

(10)diffusion constants has been developed previously which

uses a response matrix approach in order to improve upon the

aforementioned weaknesses of the conventional flux-weighting

procedure. The equivalent group diffusion constants (EGDC)

determined by this techniqe are different than the corres-

ponding FWC; and, the use of the EGDC in a full-core problem

A - - lw
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provides a better prediction of the assembly-integrated

power density and core eigenvalue than does the use of

FWC. The methodology of this previous response matrix

approach for determining EGDC will be discussed in order

to examine its relative strengths and weaknesses.

The equivalent cross section for process a, group g

is defined in Eq. (1.3). An equivalent definition in

terms of integrated reaction rate responses is given by

4 G

ag= 4 G= (2.5)4 G 
(in,i)

2'=1 g'=l 99 9

where I , (a,i) is the integrated reaction rate response
gg9

in assembly i in the heterogeneous reactor; J , (in,i) is
g

the group g' partial current entering face V' of the node i

in the heterogeneous reactor; * ,(i) is the integrated
gg

group g flux response for an incoming unit partial current

in group g' entering face ' in assembly i in the homogeneous

reactor; and J , (in,i) is the group g' partial current

entering face 2' of node i in the homogeneous reactor. A

stronger condition is then imposed upon the calculation of
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-(i) -22tZ from Eq. (2.5) by requiring that J ,(in,i)=J ,(in,i).
ag gg

-(i)Thus, I will be defined in terms of integrated response
ag

matrix as

4 G
E E I , (at i) J", (in, i)

(i) '=1 c'=1 99 9 (2.6)0 4 G (2.6)
- I $ (i) J' ,(in, i)

V'=1 g'=l 99 9

Thisdefiitio of(i)
This definition of 1is used in the previous response

matrix approach and will also be used as a basis for calcu-

-(ilating the E 's in the improved response matrix schemeag

introduced in Chapcer III.

92
The I ,(a,i) are determined for the heterogeneous node

gg

in a straightforward fixed source calculation (the cell

calculation) by imposing a group g' unit incoming partial

current along face 2 ' and calculating the resulting integrated

reaction rate for neutrons in group g undergoing interaction a.

The values of $gg(i) and Jg, (in,i), however, cannot be

calculated in a straightforward manner. A knowledge of the

Jg, (in,i) 's requires a full-core heterogeneous solution to-

the group diffusion equation (a self-defeating process),

and $ ,(i), the flux solution in the homogeneous reactor,
gg

must be determined in a non-linear fashion since the

Ask. - An,
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equivalent cross sections used in the homogeneous reactor

solution depend upon the $ , (in)'s. In order to calculate
gg

the ,(i) and J , (in,i) several assumptions are made.
gg g
The previous homogenization procedure using a response

matrix approach was performed for assemblies which had

material placed symmetrically about the centerpoint. For

such symmetric assemblies which are themselves surrounded

by a large number of like assemblies, one can assume that

for each -energy group g and each assembly i, the Jg (in-,i)

for all Z' ('=1,2,3,4) are identical. In the previous

approach no distinction was made for assembly location and

all assemblies were assumed to be surrounded by like

assemblies. For that case, 1 for a symmetric assemblyag

is given by

G 1
E I ,(CEiO , (in, i)

-(i) g'=1 99 9
S = _1(2.7)

E # ,(i J (in,i)-
g'=1 gg

1 1

for all i. Note that I , (c,i) and J , (in,i) are the

integrated reaction response and incoming group g' partial

current for neutrons entering face 1. Neutrons are

arbitrarily chosen to be entering face 1 since the J ,(in,i)
g

are assumed equal for all V' for a given g', and since the
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I t, for a given g and g' are equal for all Z' because of
gg

the assembly symmetry. Thus, the I , (a,i)'s are calculated
gg

in a cell calculation that consists of determining response

matrices for group partial currents incident upon only one

face. This situation results in a sizable reduction in the

amount of computation required.

- (i)For two energy groups, ( obeys
ag

x I (ari) + I 2 a,i)
i = 1 2 (2.8)
ag X M +g

where X=J (in,i)/J (in,i), the ratio of the incoming group
1 2

one partial current along face one to the incoming group

two partial current along face one. If it is assumed that

X1.. 4 1
J (in,i)/J (in,i) = J (outi) Z J (out, i) , where
1 21'1

J (out,i) is the group g outgoing partial current along
g 

1
face t' resulting from the incoming partial currents J 1 (in,i)

and J2 (in,i), then one can show that2
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C-C 2 2 + +(C2 2 C ) 2+

X 2C 2 1  (2.9)

where

4
C , R
gg ,1=l gg

Once the value of X (J} (in,i)/J2(in,i)) is calculated
-1-

from Eq. (2.9), the values of the $ ,(a,i) must be deter-
gg

mined before T can be found from Eq. (2.8). This can
ag

be accomplished by an iterative scheme. First, all responses

are determined for the heterogeneous assembly i. Then

D and 5), the group one and group two diffusion
12'

coefficients for assembly i, are chosen (see below). As a

first guess, the homogenized cross sections are calculated
-l 1

from Eq. (2.8) with ,(i)=$ , (i). The diffusion coef-
gg gg

ficients are then used in conjunction with this first guess

of the 1(i 's in a cell calculation for the now homogeneousag 11

assembly, and new values of (X$ W Wg2 ) are calculated

for each group g using the same value of X that was used in

the heterogeneous cell calculation. This revised estimate of

(X1 [, (X +T(i)+$ 1 ( ] is used in Eq. (2.8)
gl g2 gl g2



- 25 -

and a new value of T is calculated. This iterative
ag

process is continued until the use of a set of Ti) *s in
ag

the cell calculation for assembly i will result in the same

value of X 1 (i)+ 92 (i) for g=1,2 as that used in deter-

mining the -(i)'s from Eq. (2.8). Thus, if the incoming
ag

group partial currents along each face of assembly i used

in the cell calculation (where here it was assumed that

for each g' and i the J ,(i) are equal for all t' and that
g

X is given by Eq. (2.9)) match the corresponding partial

currents in the homogeneous full-core solution, then the

use of the ( i)'s as determined from Eq. (2.8) will preserve
ag

the "true" integrated reaction rates in assembly i as

calculated from the numerator of the ratio in Eq. (2.8).

The values of and are chosen such that the1 2

transmission of neutrons through the homogeneous assembly i

will most closely match the corresponding transmission of

neutrons through the heterogeneous assembly. This could

best be done if a 15() and !Y(i) could be found such that
1 2

R ,(i)=R ,(i) for all g, g', Y., and '. However, being
gg gg

able to match the many response matrix elements, R ,(i),
gg

-(i' 2(is niey
with only two degrees of freedom, ' and D2 is unlikely.

-(i)
In fact, the best procedure for determining a set of D

-Ci) 2.1
and D is to match the largest value of R for each g

s cgg

as calculated from the heterogeneous cell calculation. This
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requires a double search procedure. Thus, for fixed values

of T)'s, D(i) and D , yielding homogeneous response
ag l 2

elements matching the largest R (i) and R 2(i), are found.
11 22

However, the Ti 's themselves must then be calculated
ag

iteratively for the newly found fixed values of the homo-

genized group diffusion coefficients. Fortunately this

double-iterative procedure converges quickly.

The procedure outlined in this section is the previously

tested scheme. The purpose of reviewing the technique is

to demonstrate aresponse matrix approach for calculating

equivalent diffusion theory constants. In addition, specific

areas for improvement become apparent. A major goal of

the present thesis is to improve upon the weaknesses in

the scheme just outlined.

2.3 Results

Before discussing the weaknesses of the above homo-

genization technique, the strengths of the response matrix

approach for calculating EGDC should be mentioned. First,

the group diffusion coefficients are obtained in a manner

that accounts for the true transmission of neutrons through

the cell. The normal flux-weighted values (Eq.(l.5)) are

conceptually inferior in thisregard. Second, the net

group currents at the boundaries of the assembly being

homogenized can have non-zero values. This non-zero

boundary condition is not allowed in the normal flux-weighting
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scheme in which a zero net current is assumed along each

face of the assembly. Finally, the -( 's are calculated
ag

using a good prediction of (r)dV required for Eq. (1.3).
JV.i 9

In the usual flux-weighting scheme i (r)dV is assumed

equal to f 0(r)dV. Note that the ability to match the

integrated reaction rates resulting from the homogeneous

cell calculation to those of the heterogeneous cell calcu-

lation is importgnt since the cell calculation approximately

represents the actual environmental conditions which a

given assembly will experience in the full-core problem.

The response matrix approach for calculating EGDC just

described was used to find equivalent, two-group diffusion

parameters for a reactor with assemblies typical of a

boiling water reactor. Figure 2.1 shows the assembly

geometries for the two types of assemblies in the reactor.

Both assembly types have material placed symmetrically about

the centerpoint. The cross-shaped figure in one assembly

represents control rod material and the cross-shape of the

other assembly represents water. A water reflector surrounds

MM - AL
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1a 8 m

2 an

Two BWR assemblies have the above geometry but

differ with respect to crossed-rod material.

Crossed Rod

Assembly A control rod material

Assembly B water

FIGURE 2.1

BWR Assembly Compositions
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TABLE 2.1

Diffusion Theory Parameters - FWC and EGDC

BWR Quarter-Core Problem with EGDC
Found From Previous R.M. Method

EGDC

al

Ea2Assembly Type*

vE fl

VEf 2

Assembly A.

Assembly B

1.4093+0

3.8073-1

1.4416+0

3.9246-1

9.6928-3

1.0796-1

9. 3719-3

9.6579-2

6.4859-3

1.2549-1

6. 4699-3

1.4333-1

1.4194-2

1. 7231-2

FWC

Assembly A

Assembly B

1.3884+0

3.8420-1

1.4470+0

3.7478-1

9.7122-3

1.2155-1

9.4224-3

8.9222-2

6.4987-3

1.4303-1

6.5050-3

1.3241-1

1.4222-2

1.7302-2

*Assembly type refers to Figure 2.1.
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Per cent error

Per cent error

1.74 -3.88 3.67

-3.39 1.01 -1.84

5.63 -3.18

- .01 1.63

5.81

.09

FWC

Per cent error in K ff -. 847

in power - FWC

in power - EGDC

EGDC

-. 890

FIGURE 2.2

BWR Quarter-Core Problem with EGDC Found From Previous

Response Matrix Homogenization Scheme

-do



- 31 -

the reactor core. EGDC and the conventional FWC were

calculated for both assembly types and are listed in

Table 2.1. A full-core criticality calculation was per-

formed for the fine-mesh heterogeneous reactor geometry.

Two full-core criticality calculations were then performed

for the reactor consisting of homogenized assemblies with

EGDC and FWC respectively. The resulting per cent errors

in assembly powers and reactor Keff are shown in Fig. 2.2

for the homogenized core solutions using the EGDC and the

FWC. The use of EGDC shows a marked improvement over the

use of FWC.

2.4 Ideas for Improving the Previous Response Matrix

Approach for Calculating EGDC

Although the response matrix method just described

results in equivalent diffusion constants that predict

neutron behavior more accurately, there are several areas

for improving the previous scheme. The first obvious weak-

ness is that all assemblies are assumed to be part of a

large number of like assemblies. In reality, however, many

assemblies in a typical reactor are surrounded by similar,

but not identical, types of assemblies. In addition, there

are also a number of assemblies with at least one face

adjacent to the reflector. Thus, one improvement upon the

previous response matrix approach would be a method of

estimating the J , (in,i)'s needed in Eq. (2.5) which takes
g

into acc;Ount the location of the assembly in the reactor.
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The other major weakness of the previous scheme is

that the determination of the E(i)'s and D( 's requires
ag g

a costly double-iterative scheme. An important improvement

would be to reduce the amount of computational effort

required in calculating the EGDC.

In the following chapter an alternative response matrix

technique is presented that eliminates much of the computa-

tional effort required in the determination of the EGDC

and also accounts for assembly position in the reactor.
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CHAPTER III

AN IMPROVED RESPONSE MATRIX APPROACH

FOR THE CALCULATION OF EGDC

3.1 Introduction

The response matrix approach for calculating homogenized

group diffusion parameters leads to a set of EGDC which are

an improvement on the conventional FWG as is evident from the

results presented in Chapter 2. However, there are still

areas for improvement over the previous scheme. Two specific

improvements, which are discussed at the end of the preceding

chapter, would be (1) a method of determining the incoming

group partial currents along each edge of the assembly being

homogenized (the J (in,i) 's) that would reflect that parti-
g

cular assembly's position in the reactor; and (2) a technique

for calculating the j~) 's and DY('),s that would require
a9 9

less computational effort than the previous double-iterative

scheme.

In the next two sections of this chapter a method is

presented which accomplishes the two aforementioned goals.

The calculation of the equivalent group diffusion coefficients

is discussed in Section 3.4.

3.2 A Homogenization Scheme Dependent Upon Assembly Location

Within The Reactor

Equivalent group cross sections which are computed in

terms of integrated reaction rate response matrices and
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incoming group partial currents are defined in Eq. (2.6).

In order to determine f() using Eq. (2.6), values of theag
incoming group partial currents incident upon each face of

the assembly, the J , (in,i)'s, must be available. One

approach is to assume that each assembly is surrounded by

a large number of assemblies identical to the one being

homogenized. For such assemblies, the incoming group g

partial current will be the same along each of the four

faces; and, for two energy groups, the calculation of T(i)
a9

depends only upon the ratio of the incoming group partial

currents (see Eq. (2.8)). A method for approximating this

ratio is outlined in Chapter 2.

The previous scheme for determining EGDC makes the

above assumption for each assembly in the reactor. Thus,

the calculation Of homogenized constants must be carried

out only for each different assembly composition. However,

the results shown in Figure 2.2 indicate that the per cent

error in assembly power is highest for assemblies located at

the core-reflector interface. The homogenization procedure

is less accurate for these assemblies since the above semi-

infinite-medium assumptions are not valid near the core

surface.

A homogenization method is now presented in which the

position of each assembly is considered in order to calculate

the J ,(in,i)'s needed in Eq. (2.6). Although a different set

of cross sections are calculated for each assembly position,
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the same technique is used to determine all cross sections,

and the same scheme is used to determine the Jgi(in,i)'s

for each position. The extra cost needed to account for an

assembly position is small in comparison to the total cost

of first finding equivalent con-stants and then solving the

resultant full-core problem, and the increase in accuracy

seems warranted.

The first stage of the present method is to calculate

the response matrices for each different assembly composition.

(Here the reference to a particular assembly composition

includes its geometry.) For assemblies with quarter-assembly

symmetry, only the response matrices for neutrons incident

upon one face are determined. The spatial shape of the in-

coming group partial currents is assumed to be flat. The

outgoing group partial current shape is then taken as that

shape resulting from the cell- calculation. (Recall that the

cell calculation is the fixed-source calculation in which

an integrated, unit group partial current incident upon a

particular face gives rise to group flux shapes throughout the

assembly. The calculation is performed for an incident partial

current of each group(g'=1,2,...,G.) A pictoral representation

of the cell calculation for two energy groups and for a

quarter-symmetric assembly is shown in Figure 3.1.

In order to determine the equivalent group cross

sections using Eq. (2.6), the actual value of each of the
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2E

4 3

(G=l)

2

4 3

(G=2)

Incoming Group One Partial Current (G'=l)

2

43 4 3)LIIJ
(G=l) (G=2)

Incoming Group Two Partial Current (G'=2)

Outgoing Group Partial Current Shapes Resulting from

Flat Unit Incoming Group Partial Currents Along Face 1.

FIGURE 3.1

Representation of Cell Calculation for Two

Energy Groups and a Quarter-Symmetric Assembly
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J2 , (in,i) 's is not required. To show that this is true,
9

Eq. (2.6) can be rewritten as

4 G ,,
J (in, i) E E I ,(ai)f ,(i)
2 L'=l 9'=1 99 9

c0g 4 G ,
J (in, i) E E I (i) , I)W2 Y'=1 g'=l 99 9

4 G
E E I , (a,i)f , (i)

2'=1 g'=1 99 9
4 G (.

L'=1 g'=1 gg g

2,' £' 11where f ,(i) =J ,(in, i) /J (in, i). Note that f (i) =1. Also,
g g 2 2

1 9,'1
J 2(in,i) is chosen arbitrarily. Any one of the J , (in,i)'s

could have been factored out of Eq. (2.6) and Eq. (3.1)

would still be valid with the fz, (i)'s redefined accordingly.
g

Thus, for the purpose of calculating Ti) by Eq. (3.1), the
V ag

Jg (in,i) 's (actually all but one) must be known only as a

multiplicative factor of one of the incoming group partial

currents. This fact will be useful in the following scheme.

Let the incoming partial current vector along face '
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of assembly i be denoted by [J. ] . where

[J '].=Col {JI (in,i),J2 (in,i),...,JG (in,i)}.in11 G (3.2)

The incoming group partial currents for each face are

represented as vectors in Figure 3.2.

The outgoing partial current vector for face 1,

[Jou], can be written in terms of the four incoming partialOuti

current vectors using the response matrices of the assembly:

[J ] .=[R ] [J1 ] .+[R ].[J2 ].+[R ].[J3 ]. +
out]i i ini 1 ini 1 in

(Z=1,2,3,4) (3.3)

where [R ] ={R (i)}, a G x G matrix (k=1,2,3,4; Z'=1,2,3,4).

The R .(i) element is defined in Eq. (2.1). Each R ,(i) 0.
g9 gg

[R,4 Iii4
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n. Iini

in i

FIGURE 3. 2

Representation of Group Partial Currents

Entering an Assembly

2

i

1

[J3 1].in 1[J! ] . ' 14in i 3
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A supermatrix [R]i is now defined such that

[R] .= [R] . (k=1,2,3,4; 9,'=1,2,3,4).

The matrix [R] . is a 4G x 4G matrix. The relation between

the incoming and outgoing partial current vectors can be

written as

[Jout i i [ in i
(3.5)

where

lfp1 lJ 2  1f'[J 3  4
out Out out] Out Out

and

1 2 3 4
[J. ].= Col{[J. ] .,[J. ] ., [J. ] .,[J. ] .}.[in I =C i in] i Pin] i Pin] il [in i

[J ] . and [Ji ] . are 4G column vectors.

Each incoming partial current vector for face 1',

[j. ] , can be written in terms of the outgoing partial
in i.

current vector for face 1', [Jo ] , in terms of an albedo
outi

matrix:,

As M-

(3.4)
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[ ' ]o (3.6)Jin] i = C [I '1jOUtl1

where

[u i o 1 (out,i) , J (out,i),...,

JG (outi)]

and

[a ] (i) } , a G x G matrix.

The elements a (i) are such that
gg

ag, (i)= the fraction of the integrated group g'

(g'=l, 2,.. . ,G) partial current leaving

face l' of assembly i which appears in

energy group g (g=1,2,...,G) and enters

face 1'.

Note that act,(i) will be a real number greater than or equal
99

to zero.

The incoming partial current vector for assembly i,

[J. ]., can be related to [J ] . by a diagonal supermatrix [A].
in i out i
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as follows:

(3.8)

where

[A] -

[a ]i

[a i 0

3
0 [a]l.

4
[a lI

(3.9)

Eqs. (3.5) and (3.8) are combined such that

[Jin] i=[W] [Jin i

[W). [A] ,[R].

(3.10)

where

(3.11)

Eq. (3.10) will have a non-zero solution only for a certain

value of the 4G x 4G matrix [W] * It is highly unlikely

that the (4G x 4G) elements of [W]. will be such that

* A do A

[Jin] i"E [A] i [ out] i
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Eq. (3.10) will have a non-trivial solution. However,

Eq. (3.10) can be treated as an eigenvalue problem such

that

[W] [(i 3.12)

where, if the reactor is critical and the albedoes are

correct, the eigenvalue y will equal unity. The elements of

[W] (=[A] [R] ) H 0 because all ac, (i) and R , (i) E 0.

Since [W] . is nonnegative, it has a nonnegative real eigen-

value y, and the corresponding eigenvector, [Jin ]i, has
(13)1

nonnegative components, not all zero .13 ) The incoming

group partial current vector entering assembly i, [Jin] i'

can be determined within a multiplicative constant by solving

this eigenvalue problem. This is enough information for

the purpose of calculating i) 's as previously discussed
g

(see Eq. (3.1)).

The calculation of [Ji ]. using Eq. (3.12) requires the
in i

knowledge of [a ]. for l'=1,2,3,4. A knowledge of the

exact values of the [a ]. elements would require a full-core

solution to the group diffusion equations. Also, the values

of the [a ]. 's (Z=l,2,3,4) may be different for each

assembly, and they depend upon the position of assembly i

within the reactor. To estimate the elements of [a ]
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without solving the full-core problem, we make the following

assumption. Consider Figure 3.3 which shows an assembly i

surrounded by four adjacent assemblies numbered one through

four. [a ]. is the albedo matrix relating the outgoing

partial current vector on face-l of Assembly i to the incoming

partial current vector on face 1 of Assembly i by the ,

relationship given in Eq. (3.6). The matrix [a l]. is

dependent upon the composition of Assembly 1. as well as

the actual boundary conditions along the three faces of

Assembly 1 which are not adjacent to Assembly i. Since

these boundary conditions cannot be determined exactly

without solving the full-core problem, we assume that, for

Assembly 1, the net group current is approximately zero

across each face not adjacent to Assembly i. Thus,

[o 1 in l for 2=faces not (3.13)
adjacent to i.

Once this assumption is made, the elements of [a ] can be

calculated from the knowledge of the response matrices of

Assembly 1 as we shall show.

Let Assembly 1 in Figure 3.3 be isolated from Assembly i

and let the faces of Assembly 1 be numbered as shown in

Figure 3.3. Note that face 1 of Assembly 1, as depicted in

Figure 3.3, is adjacent to face 1 of Assembly i. Thus,
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(2)

(4) 2 (3)

_____ _____ (1) _ _ _ _ _

(3) (2) (4)

2) 4 (1) (4) i (3) 1) 3 (2)

(4) (1) (3)

(3)

(1)

1 (4)

(2)

FIGURE 3.3

Representation of Assembly and Its Four

Adjacent Neighbors
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in]Assembly 1 outlAssembly i

[utAssembly 1 ut Assembly i

(3.14a)

(3.14b)

The matrix [a] is sought such that [J ]i =[ai ]pout 1 i'in u E.3

or using Eq. (3.14a)

[ 1 1 i
nli 1 ijifl'i

(3.15)

[Jout1lis first written as

o =[R11]l 1 l+[R12 2
[Out] 1 [ ]in~i[ 1 i1in~i +

[R13 i 3 +[R14 [ 4 .[Ri ][] 1+[ ]lIinl1 (3.16)

The use of Eq. (3.13) then gives

(3.17)[Jout 1 [R 11] l in l +[D] [C] 1

where

[C]2=Col{ [J3t u l ut 1}4 (3.18)

.
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and

[D] ={[R12] [R3] [R 14]1} . (3.19)

Equations similar to Eq. (3.17) can be written for each

[m 1  (m=2,3,4) in terms of [1i], the [Jt 1

(for m=2,3,4), and the response matrices of Assembly 1.

The resulting group of equations can then be written as

[ C] =[ L][ J 1 1J[C] (3.20)

where [C] is defined by Eq. (3.18),

[L] = Col{[ 21 1, [ R31 1, [ R41 1

[R23]

[R32 [R33

[R ] [R ]1

and

(3.21)

[P] 1 =

1

1

[R 24

[R 34

[R 44

(3.22)

1

[R 22]11,
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The matrix [C] 1 can be determined from Eq. (3.2) to be

(3.23)

Combining Eqs. (3.23) and (3.17) yields

[Jout l= [R11]+[D][[I]-[Pl]1[L] [J ni

l 1 1 T h e r f o r e
But [Ju 1 i~ from Eq. (3.14b). Therefore,

1 i= [R ]1+[D] 1[[I-[P] 1~[L] 1~in' 1L ]ij[I>P1 Ll[Jin] 1

(3.24)

- (3.25)

It is apparent from comparing Eq. (3.25) to Eq. (3.15) that

a1 =[R ]+[D][ ]-[P] L F (3.26)

The albedo matrix for each of the other faces of

Assembly i shown in Figure 3.3, [a ]. (Z=2,3,4), are found

1 k2 Iin the same manner as [a ],. Once the [a ].'s are determined

they are used in Eq. (3.11).

The evaluation of [a 1 ., a G x G matrix, requires that

-[C]= [I}'=[ P] [L] 1[Jl .] 1
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the inverse of [[I]-[P],, a 3G x 3G matrix, be calculated.

For two energy groups the calculation of [a ] takes very

little computer time.

For assembly faces adjacent to a water reflector,

shroud and reflector, etc., alternative means for obtaining

the corresponding [a ]. are available. For example,

expressions for two-group albedoes for various water reflec-

tor and shroud plus reflector geometries have been determined

(14)
by Kalambokas . These albedoes obey Eq. (3.6) and are

used in Eq. (3.11) as are the [a ].'s calculated from

Eq. (3.26).

The homogenization procedure for calculating equivalent

group diffusion constants as a function of assembly position

within the reactor is sufficiently complex that a review of

the technique may be helpful at this point.

The homogenization scheme can be broken into four

distinct stages:

1) Calculate the current response matrices and the

integrated reaction rate response matrices for

each different assembly composition. For assem-

blies with quarter-assembly symmetry only the

response matrices for neutrons incident upon one

face are required. The response matrices are

calculated in the cell calculation and are

inexpensive to determine. A typical reactor is
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made up of only three or four different assembly

compositions and therefore only the corresponding

number of cell calculations are performed.

2) Calculate the albedo matrices, [a1k (1=1,2,3,4),

for each different assembly composition k using

Eq. (3.26). Note that, because of the approxi-

mations used to determine the [a ] k's (Eq. (3.13))

and because [a ] is therefore dependent only upon

the assembly composition, the [a kI 's need be

determined only for each different assembly

composition and not for each location i. Also,

[a ]k will be identical for each 1 (1=1,2,3,4)

for assemblies with quarter-assembly symmetry.

Thus, only one [a ]k need be calculated for each

composition k displaying such symmetry. For

example, for a reactor having three different

assembly compositions in which all assemblies

are quarter-symmetric, only three distinct [a ]k

matrices are calculated using Eq. (3.26). Other

[a ] k's may be needed for the assembly-reflector

interfaces. The corresponding albedo matrices

(14)
are determined by alternate means as

previously pointed out.

3) The [Jn ]i's are calculated from Eq. (3.12) oncein as

the [a kI 'is are obtained from step 2. The [a kIi is

- h^ a
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of assembly i are the [a ]s of the corres-

ponding adjacent material k. For example, as

1
depicted in Figure 3.3, [a ]i of Assembly i is

1 k 1 k
the [a ] of Assembly 1 where [a1 ] of Assembly 1

has been calculated in step 2. Likewise, if

side 1 of Assembly i is adjacent to water rather

than another assembly, [a1] ]k=[akwater where

[a1 k=water is the albedo matrix of the water

reflector as calculated using Kalambokas's results.

Note that step 3 is the first stage in the calcu-

lation of the i 's where assembly position is
ag

considered. A set of [J. ]. 's will be determined
in 1

uniquely for each assembly position i. (Note,

however, that for repeating assembly placements

in a large reactor, such as a checkerboard array,

a particular assembly composition might be sur-

rounded identically for several different positions

i. In such cases the [J. ].'s will be identical
in 1

for several values of i and [Ji ]. for k=1,2,3,4
in

must be determined only once for all those

positions.)

4) The homogenized group cross sections, ET(), are
ag

calculated using Eq. (2.6) since all [J .'sin 1

are known from the previous step. The determination

of the (i 's still requires the knowledge of the
ag
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(i, s. The T 's and D 's can be calculated4ggi ag g

by the double-iterative search scheme outlined

in Chapter 2. However, a scheme for determining

f g(r)dV will be described 
in Section 3.3,

1

thereby eliminating the double-iterative search.

One significant point concerning the calculation of the

's using Eq. (2.6) should be mentioned. For symmetric

assemblies the evaluation of the (i) 's may be written such
a9

that

4

-(i). _K, =1
ag 4

E
V'=1

G

E (in, i)
g '=1 99 9

G

E $ gI g (in,i)
g'1=1 99 9

where 1  ,g (a,i) and p , (i) are without superscripts. If
gg gg

the J , (in,i) are identical for all ' then the above

expressions reduces to

G
I I ,(az,i)J ,(in,i)

-(i 1'=1 g 9
g = 9

ag G_

g'=1

(3.27b)

g ,J ,(in,i)

a

(3.27a)
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where there is not a superscript on J , (in,i). Or if

2 4
E [ = [J (see Fig. 3.2) then Eq. (3.27a)

X'=1 in i k'=3 in i

reduces to

2 2
E E I ,(aji)J , (in,i)

(i)_ -'=1 q'=1 99 9 (3.27c)
ag9 2

E 4) ,(aci)J ,(in,i)

These expressions reduce the amount of computation required

to calculate the i) 's, and will prove useful for most
ag

practical reactor problems. Most important, however, is

that the above three relations will be needed for the evalu-

ation of f (r)dV as described in Section 3.3.

IV i

The albedo matrices provide a means for calculating the

incoming group partial currents for an assembly (within a

multiplicative factor) through the use of Eqs. (3.11) and

(3.12). One interesting observation is noteworthy. The

previous technique assumes [Jin ]i identical for all 2 andini

calculates a value of the incoming group 1 to group 2

partial current ratio, using Eq. (2.9). It can be shown

(see Appendix A) that equating each [a ] of assembly i
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to the G x G identity matrix and solving Eqs.(3.ll) and

(3.12) in terms of the response matrices results in an

expression for X identical to Eq. (2.9). Thus, the semi-

infinite medium method outlined in Chapter 2 for obtaining

the two-group [Jin ]i can be viewed as a special case of the

present method. But, the use of the albedo matrices cal-

culated from Eq. (3.26) for assembly-assembly interfaces

or those found using Kalambokas's method for assembly-

reflector interfaces will result in a better representation

of the true boundary conditions of the assembly.

The albedo matrices of the two BWR assembly compositions

shown in Fig. 2.1 were computed and are listed in Table 3.1.

These are the [a ]k matrices of each different assembly

composition. The [a] s used in Eq. (3.11) are the

[a ] s of the material surrounding assembly i. Note that

the matrices listed in Table 3.1 are much different from

1 kthe identity matrix, and only the [a] elements are listed

since the other [a ] 's (Z=2,3,4) will be identical to
l1k

[a ] because of assembly symmetry.

Four different PWR assembly compositions are shown in

Fig. 3.4. Note that these assemblies are larger than the

BWR assemblies. Assembly types F and E have shim rods in

addition to the five control rod channels. The control rod

channel is filled with water in all assembly types except

assembly Dw The corresponding [a ]k's for each assembly

- M A



- 55 -

TABLE 3. 1

Material Albedoes - BWR Compositions*

Assembly A

8.7582-1

7.4347-1

7.7504-2

3.9796-1

Assembly B

1.0092+0

9.5021-1

1.1372-1

4.4841-1

*The assemblies are quarter-symmetric and the albedo

matrices [a) . are identical for Z=1,2,3,4. Therefore only

the elements of [a ] are listed. The notation a , refers

to Eq. (3.7). Assemblies A and B refer to those shown in

Figure 2.1.

1
011

1
a12

1
'21

1
2 2
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Assembly is 20.6248 cm x 20.6248 cm with 196 square cells each

1.4732 cm, x 1.4732 cm.

Assembly Type

F1 2

E16
D

0

0

Material 1

water

water

water

control rod

Shim Notation

x

0

no shims

no shims

Remaining material is fuel. Nuclear properties of the fuel, shims,

water and control rod for assemblies are listed in Appendix C.

FIGURE 3.4 - Typical PWR Compositions
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type were calculated and are listed in Table 3.2. The

assemblies are quarter-symmetric and only the [a1 ] 's

need by calculated.

The technique described in this section for calculating

EGDC provides a means for determining the [Ji ]i's as a

function of reactor position i. In addition, the actual

technique is independent of assembly position. Only the

[J ].'s used to compute the cross sections change from
in i

position to position, and these depend upon the albedo

matrices of the surrounding material. The albedo matrices

in turn depend only upon assembly composition. The last

-(i)
stage of the homogenization proceudre calculates )

by solving Eq. (2.6). This solution requires a knowledge

of the M,(i) 's. In the following section a method is
gg

presented that eliminates the iterative search for

Jv i g(r)dV.

3.3 A Method for Predetermining the Integral of the

Flux-Shape Resulting from the Use of EGDC

The previous scheme for calculating EGDC use a double-

iterative search. The group diffusion coefficients were

chosen and the ~(i 's were found by an iterative determination
ag

of fV. (r)dV. New diffusion coefficients were found by

i.

matching the largest response .matrix elements and the
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TABLE 3.2

Material Albedoes - PWR Compositions*

Assembly F 1 2

1.1132+0

9.6944-1

1.2589-1

4.5659-1

Assembly E1 6

1.2438+0

1.0888+0

1.7219-1

5.2922-1

Assembly 
D0

1.2273+0

1.0027+0

1.8348-1

5.5508-1

Assembly Dw

5.8779-1

4.9052-1

8.0729-2

4.6445-1

*The assemblies are quarter-symmetric and the albedo

matries [a ]. are identical for Z=1,2,3,4. Therefore

only the elements of [a ]. are listed. The notation

a z, refers to Eq. (3.7). Assemblies Fl 2 ,El 6 ,DO and DW

refer to those shown in Figure 3.4.

a

a12
1

a 2

1
a21

a22
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! 's were recomputed for these new set of U 's. Then
ag g

new f 's were found for the recomputed ''s. The double-
g ag

iterative search was found to converge to a set of I 's
ag

and D 's that reproduce the largest response matrix
g

elements and the $ (r)dV used in calculating the E 'S.
fv. g -g

1

In this section a method is presented which eliminates the

step of computing J (r)dV iteratively.

Vi

The flux shape in assembly i resulting from the use of

EGDC in the full-core problem will closely match the flux

shape in assembly i resulting from the cell calculation

provided that the boundary conditions used in the cell

calculation closely match the boundary conditions of the

homogeneous full-core solution. Recall that we also require

that incoming group partial currents of the homogeneous

assembly match those of the heterogeneous assembly. There-

fore the incoming group partial currents of the homogeneous

cell calculation will be the same as those of the heterogeneous

cell calculation. This means that the [J ].'s calculated
in I

for the heterogeneous assembly by the methodology outlined

in Section 3.2 will be used as the boundary condition for

the homogeneous assembly. This fact is mentioned since a

homogeneous assembly calculation must be carried out in
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order to calculate f g(r)dV iteratively. And for the

i
purpose of computing j 9(r)dV In a non-iterative manner

the heterogeneous assembly boundary conditions will be

matched.

It should be pointed out that the "true" integrated

reaction rates of the heterogeneous assembly are calculated

using Eq. (2.4) and this is the same expression used in the

numerator of tne ratio in Eq. (2.6). Thus, after the

response matrices of the heterogeneous assembly are calculated

and the [Ji I' s are determined from Eq. (3.12), a hetero-

geneous assembly calculation using the [J. ].'s as the fixed
in i

surface source is not performed since enough information is

available for calculating the heterogeneous reaction rates

from Eq. (2.4). Likewise, once the [J P ].'s are determined,
in i

the [Joutl i's of the heterogeneous assembly are calculated

using Eq. (2.3).

The flux shape in the homogeneous assembly will be

relatively smooth. This fact suggests that (r) within

the homogeneous assembly can be expanded as a polynomial

function. Since the J (in,i)'s and J (out,i)'s yield
g g

values of the average group fluxes and their normal deriva-

tives for the assembly surfaces, (r) can be estimated

by fitting to products of Cubic Hermite polynomials.

-0 a
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Consider the assembly shown in Figure 3.5. Let the

integrated group flux along face L, , and the integrated

group net current in the outward normal direction, g

be defined as follows:

1 x (x,x,0)dx (3.28a)
90 9

u 2JXI (x,h )dx (3.28b)

g(h ,y)dy (3.28c)

91 JY4(o,iy)dy (3.28d)

- hxJ y(x,0)dx (3.29a)
91 h

S xJ y(xh )dx (3.29b)
9- 0 9

0 h
i:0 yhYx(h ,y)dy (3.29c)
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Oh h ,h

2

4 3

1

0,0 h ,0x

y

FIGURE 3.5

Representation of Assembly Notation

Used in Cubic-Hermite Expressions

- M I" a
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_ h y
Jg yJ(0Ygy)dy (3.29d)

where the $ (x,O), J y(x,0), etc. are group fluxes and net
g g

currents along the surfaces of the heterogeneous assembly

(calculated from the known values of the J (in,i) and
9

J (out,i)'s). The negative sign in Eqs. (3.29a) andg

(3.29d) is required since k is the integral of the group g
g

net current leaving face Z in the outward normal direction

and J y(x,O) and J x(y,Q) are the group g net currents along

faces 1 and 4 respectively in the positive x and y directions

which are the inward normal direction for faces 1 and 4.

The integral of the group flux and group current along

the surface of the homogeneous node are required to match

those of the heterogeneous node. Therefore, for the homo-

geneous assembly, we expand the integral of the group flux

in the y-direction in the x-direction in terms of the inte-

grated group fluxes and currents along faces 3 and 4 such that

Jh 4 (x3y)dy=3 4 u0 + 3 0
gd (x)+$u (x)+ u Du (3.30)

0 x g g x
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where the u0+ (x) etc. are the Cubic Hermite basis functions

(see ADpendix B). In a similar manner, the integral of the

flux in the x-direction is expanded in the y-direction such

that

h D 2

g (x, y) dx=Y wg(y) (y)+ 0 (Y) - (y )
0 ~ ~ g g y

(3.31)

where the w 1+ y) etc. are also defined in Appendix B.

Integrating Eq. (3.30) from 0 to h and Eq. (3.31) from

0 to hy gives the following two relations:

hIx
0

h

0

fh h h 2
y (x, y) dxdy=-2 '43+ E9 ]

0 g 2 g g 12D g g

hy -h 2 -1-,
(x,y)dxdy= -Y[Tl29 hy 1 2]

0o gx2 g g 12D g gg

(3.32)

(3.33)

and

- 'M M Am
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These expressions for fh 1 h Yg(x,y)dxdy are the f F (r)dV
0 10 JV.9 ~

that we seek for use in Eq. (1.3). For the purpose of

calculating EGDC by the response matrix scheme, the 's
g

and J 's are calculated in terms of the response matrices
g

of the heterogeneous assembly. However, there are now two

expressions for f 4g(r)dV. The integral of the flux as

computed from Eq. (3.32) uses information of the flux and

current along the two faces of the assembly, and the integral

as computed from Eq. (3.33) uses information pertaining to

the other two faces. The optimum procedure for determining

J i ~ (r)dV would be one which uses the available information

about the flux and current along all four faces of the assembly.

In addition, it should be pointed out that the use of

Eq. (3.32) and Eq. (3.33) requires the value of D . The proper
g

value of D to use in these equations is not clear. The
g

values of the U(i) 's found by matching the largest response
9

matrix elements cannot be determined until the homogenized

cross sections are known. In fact, matching the "true"

V. T(r)dV (found by the double-iterative search) 
by

choosing various values of D results in a value of D that
g g

is not even close in value to the "true" U . If T (r)dV
9 j Vi

a, - - -
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as determined by Eq. (3.32) or (3.33) is only slightly

dependent upon the D , then any reasonable value of D

could be used, but this dependence was found to be signi-

ficant. Because of the lack of a value for D and because
g

each of the above equations use only half of the available

surface information, the use of only one of the above equations

to calculate J 9 (r)dV is theoretically unsound. Indeed,

the use of either Eq. (3.32) or Eq. (3.33) alone to compute

f (r)dV was shown to give inaccurate results.

A successful approach was found to be one which uses

both equations. The integral of the group flux as computed

from Eq. (3.32) or (3.33) is a linear function of l/D

Note however that for a quarter-symmetric assembly i, if

2 t
[J. ] = [JS ] .(see Fig. 3.2) or if the [J. ] is
in i Z'=3 in i in i

the same for all l' 's, the two expressions (3.32) and (3.33)

will be identical. But for either of these two situations,

two independent expressions can be determined since the -(i)s

can be computed using Eq. (3.27b) or (3.27c). Use of either

Eq. (3.27b) or (3.27c) will guarantee that Eqs. (3.32) and

(3.33) will be distinct. In addition, it is highly unlikely

that, for non-symmetric assemblies, Eqs. (3.32) and (3.33)

will not be distinct. Thus, the scheme to be described first

- t
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requires that, if so needed, the 5E) 's be computed using
ag

Eq. (3.27b) or (3.27c).

The two linear functions of Eqs. (3.32) and (3.33) are

plotted in Fig. 3.6 for a rodded BWR assembly (Fig. 2.1)

of an infinite repeating lattice. (Note that in this case,

for example, all [J ]'s are the same for k'=1,2,3,4 and

Eq. (3.27b) is used to insure two distinct linear functions

for J Tg(r)dV.) The two straight lines representing

V.

Jvg i(r)dV intersect for a particular value of 1/D . At
1g

this value of 1/DgI J (r)dV resulting from Eq. (3.32)

is identical to (r)dV computed from Eq. (3.33). It
1- g

was found that the value of I 9 (r)dV at the intersection

is a very good estimate of the true J 4g(r)dV needed in

Eq. (1.3). The (r)dV calculated in this manner has
V. ~

two very satisfying properties: (1) It depends upon the

linear functions of both Eq. (3.32) and (3.33). Thus, all

available information concerning the surface group fluxes

and group currents is used to determine the flux integral;
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.577 .601 .625 .649 .673

l/DI

1.2 1.5 1.8 2.1 2.4

l/D
2

62.6

61.0

59.97

59.4

2.7

SAMPLE CASE

BWR Assembly A Near Center of Large Number of Like Assemblies

FIGURE 3.6

Linear Curves of the Integrated Homogeneous Flux Shape Resulting

from Cubic-Hermite Expansions as a Function of The Inverse of

the Diffusion Coefficient

(Eq,3.32)

Eq.3.33)

.697

' Eq.3.32)

(Eq.3. 33)

1 -(r)dV

57.8

9.75

8.50

7.942
Y 2 (r)dV
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and (2) The value of l/D is not required since the value

of p (r)dV is computed at the particular value of 1/D

where a plot of the two linear functions intersect. Various

other methods of combining Eqs.- (3.32) and (3.33) were

examined but none proved to be as satisfactory as the above

intercept technique.

The value of J (r)dV computed from this intercept

technique can be written analytically by eliminating 1/Dg

from Eqs. (3.32) and (3.33) and solving for J 9g(r)dV
such that

f ()dV =(b -m b')/(m'-m) (3.33)
V. 9 ~V 9 9 9 9

where

h2
m [ 2) (3.34a)

g 12 g g

m h-[ 3 ] (3.34b)
g 12 g g

h
bg -[3 (3.34d)

g2 g g
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Recall that the J's and 's can be written in terms of the
g g

current response matrices of the heterogeneous assembly.

The intercept method was found to give an accurate

estimate of { Fg(r)dV for various types of assembly geo-

metries and various assembly boundary conditions. (The

Is and 's depend upon the [J k ]i's and [J ]'s which
gg sin dpnuote i OUti

in turn depend upon assembly placement.) The values are

compared to the "true" fi (r)dV (which are taken to be

V.

the solution of the double-iterative scheme described in

Chapter 2) and the results are shown in Table 3.3. Also

shown in this table is $ (r)dV , the integral of the

group flux shape in the heterogeneous assembly. The conven-

tional flux-weighting procedure assumes that [ Fg(r)dV =

I

J (r)dV. Note the large errors that result when this

V.

approximation is made.

Examination of Table 3.3 reveals that the intercept

method gives a good estimate of $ (r)dV for all assembly

types and all assembly locations. The calculation of the

E i's using the $ (r)dV of the Cubic-Hermite-Interceptacg
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TABLE 3.3

Results of the Cubic-Hermite-Intercept Method

for Calculating J (r)dV*

Vi

fg (r)dV

Exact

Assembly**
Position i

g=1

g=2

FW***CHI

g=1

g=2

g=1

g=2

BWR Assemblies

5.9971+1

7.9420+0

4.8776+1

8.3324+0

6.1636+1

1.4575+1

1.8324+2

3.7599+1

1.5696+2

2.8015+1

5.1593+1

7.3924+0

5.9975+1(

7.9433+0(

.01)

.02)

4.8764+1( -.03)

8.3226+0 ( -. 12)

6.1865+1( .37)

1.5121+1( 3.75)

1.8325+2(

3.7762+1(

1.5720+2(

.01)

.43)

.15)

2.8539+1( 1.87)

5.1616+1( .04)

7.3892+0( -. 04)

5.9847+1( -. 21)

6.9942+0(-11.93)

4.8551+1( -.46)

9.0146+0( 8.19)

6.1335+1( -.49)

1.3286+1( -8.84)

1.8230+2( -. 51)

4.0324+1( 7.25)

1.5642+2( -.34)

2.5174+1(-10.14)

5.1465+1( -.25)

6.5511+0(-11.38)

(continued on next page)

AI

BI

Ql

Q2,Q4

Q3,Q7

Q5,Q9
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TABLE 3.3 (continued)

f (r)dV

Assembly**
Position i

Exact

g=l

g=2

CHI

g=2
g=2

5.7892+1

9.0894+0

BWR Assemblies

5.7845+1( -.08)

9.0972+0( .09)

5.7643+1( -.43)

9.8767+0( 8.66)

Hl-H7,H9 are

identical to

Ql-Q7,Q9

(see Table 4.6)

1.7879+2

2.8590+1

1.5401+2

3.1510+1

5.0865+1

8.5040+0

1.9100+2

3.1511+1

3.7293+1

9.9854+0

1.7868+2(

2.8517+1(

1.5402+2(

3.1645+1(

5.0841+1(

8.4985+0(

1.9092+2(

3.1442+1(

3.7389+1(

1.0193+1(

-. 06)

-. 26)

.01)

.43)

-. 05)

-. 06)

-.04)

-. 22)

.26)

2.08)

1.7800+2(

3.1043+1(

1.5322+2(

3.3797+1(

5.0630+1(

9.2118+0(

1.9013+2(

3.4158+1(

3.7067+1(

1.0601+1(

(continued on next page)

FW***

g=1

g=2

Q6,Q8

H8

H10

Hil

H12

H13

-. 44)

8.58)

-. 51)

7.26)

-. 46)

8.32)

-. 46)

8.40)

-. 61)

6.17)

- ft - &
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TABLE 3.3 (continued)

Jig(r)dV

Exact CHI

Assembly**
Position i

g=2
g=2

g=2
g=2

BWR Assemblies

9.9411+1

2.0415+1

9.9450+1( .04)

2.0534+1( .58)

9.8903+1(

2.1893+1(

PWR Assemblies

1.0345+2

2.3272+1

9.2398+1

2.3285+1

7.4470+1

1.6968+1

2.6001+2

4.6739+1

1.0294+2( -.49)

2.3136+1( -.58)

9.1919+1( -.52)

2.3141+1( -.62)

7.5002+1( .71)

1.7119+1( .89)

2.6089+2( .34)

4.6057+1(-1.46)

1.0299+2 (

2.5341+1(

9.1803+1(

2.5048+1(

7.2676+1(

-. 44)

8.89)

-. 64)

7.57)

-2.41)

1.5864+1( -6.51)

2.5916+2( -.33)

5.1308+1( 9.78)

*Numbers in parenthesis are per cent difference from exact
value.

**Assembly positions refer to Figures (4.1,4.2 and 4.3).

Those positions ending in I (AI,EI,etc.) represent the

corresponding assembly as if it were surrounded by a large
number of like assemblies.

***FW represents Av4g(r)dV, the integral of the flux

resulting from the cell calculation which would be used

in a normal flux-weighting procedure.

FW***

g=2
g=2

H14, H15
-. 51)

7.24)

EI

DI

DI

Pl

P2
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method eliminates the need for a double-iterative search

since the homogenized cross sections are calculated before

the group diffusion coefficients search is performed. In

the next section the scheme for determining the U 's is
g

discussed.

3.4 Calculation of the Homogenized Group Diffusion Coefficients

The ideal set of 5 's would result in the transmission of
g

neutrons through the homogeneous assembly that would closely

match the actual transmission through the heterogeneous

assembly. This could best be accomplished if D 's could be
g

found such that their use with the 5i) 's in the homogeneous
ag

cell calculation would result in current response matrix

elements identical to those of the heterogeneous assembly.

However, a set of D 's cannot be found whose use will match

all the response matrix elements.

Several methods for computing the 5 's were examined.
g

The values of D and D2 which best describe the "true"

neutron transmission of neutrons were those found be requiring

that the largest R and the largest R2 2  (kzl,2,3,4;112

k'=1,1,3,4) of the heterogeneous assembly be reproduced in

the homogeneous cell calculation. For example, suppose the

largest RU, and RZ of the heterogeneous cell are R and1122 11
11 31

R2 2 . Recall that R is the fraction of neutrons entering

face one in group one and leaving face three in group one.

11
R 2 is the fraction of group two neutrons entering face one22
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and leaving face one in group two. Initial values of D

and D are chosen and are used with the Z(i 's computed2 ag

using the Cubic-Hermite-Intercept technique in a now

homogeneous cell calculation. Note that, since response

31 11
elements are being matched (in.this example R31 and R ),

only the response matrix calculation need be performed.

Next, the R and R resulting from the homogeneous cell11 22

calculation are compared to the corresponding elements of

the heterogeneous cell calculation. The search continues

31 11until the true R and R are reproduced in the homo-

geneous assembly.

The search for the proper D1 and D2 was found to require

only several (3 to 7) homogeneous assembly calculations.

One reason is that, for fixed cross sections, R1 1  is largely

dependent upon the value of D and only slightly dependent

upon D2 since R is the fraction of neutrons entering and

leaving the assembly in group one. The same is true of the

dependence of R2 2 on D2 . In addition, for most assemblies

2,.', 11,
the largest R ' s are the R ' s (the group g to group g

gg gg

reflection element), and R is even more dependent upon D
gg g

11
(and not D ,) than are the other R (9.'l). (R is the

g gg gg

only g to g reflection matrix for a quarter-symmetric assembly.

For non-symmetric assemblies there may exist R (2/l) larger
gg

11 9.2'
than R .) Since the largest R to be matched is

gg 11

primarily a function of 5 and not D2, the effect of the value
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of D upon the resulting value of R can be monitored

and a new guess of D is made using linear extrapolation

techniques. The same is true for D2 in relation to the

largest R2 2 . Although there is a slight dependence of

Rk upon D ,, the above search scheme was found to work
gg

quite well for all cases.

Another advantage of matching the largest RW and
11

R 2 is that, for assembly geometries typical of most

reactors, these elements are the largest response elements

of all the Rz2 ,. Thus, the D 's obtained by matching the
gg g

largest R ZZ guarantee the proper transmission of a large
gg

portion of the neutrons. Also, most of the remaining R 99
gg

elements of the homogeneous assembly are very close in

value to the corresponding elements of the heterogeneous

assembly. Table 3.4 lists the response matrix elements of

the homogeneous and heterogeneous assembly of a typical BWR.

Also shown are the values of D and the D found from the
g g

conventional flux-weighting technique. Note that the "true"

31 11
elements R and R are reproduced in this case. Table 3.511 22

lists the corresponding information for a typical PWR assembly.

The response matrix calculations are independent of the

assembly's boundary conditions. However, D and D will be1 2

slightly dependent upon the assembly's position in the core

since the -(i)'s used in the homogeneous cell calculation areasg

a function of assembly position i.

- *
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TABLE 3. 4

Comparison of Response Matrix Elements Resulting

From Heterogeneous Cell Calculation and Homogeneous

Cell Calculation - BWR*

Heterogeneous EGDC

1.3830-1

2.5569-2

2.4527-1

3.1761-1

1.2050-1

5. 6685-3

5. 4377-2

5.6696-3

3.3218-1

1.2104-2

1.1611-1

1.2649-1

1.4024-1

2.4174-2

2.1374-1

3.1761-1

1. 2461-1

6. 4872-3

5. 7356-2

8.2337-3

3.3218-1

1.2168-2

1. 0758-1

1.2689-1

(continued on next page)

R1

R
1

R 11

R2R 1121

R 21
11

R 1

31

R 1

R 2
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TABLE 3.4 (continued)

Diffusion Coefficients

Group 1

DFlux-weighted

O;EGDC

1.3884

1.4093

Group 2

.38420

.38073

*Homogeneous cell calculation uses group diffusion coef-

ficients found by matching largest response matrix elements

of heterogeneous cell calculation. Assembly is a BWR

type A in an infinite number of like assemblies.

R , s = R 3 1 
1 s and are not listed.

gg gg

- a ft ft
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TABLE 3.5

Comparison of Response Matrix Elements Resulting

from Heterogeneous Cell Calculation and Homogeneous

Cell Calculation - PWR*

Heterogeneous EGDC

3.8942-1

6.0189-2

4.0448-1

4.2566-1

6.0392-2

6.6951-3

3.9937-2

4.4873-3

2.3860-1

1.9185-2

1.1442-1

7.6035-2

3.8940-1-

6.2183-2

3.9153-1

4.2561-1

5.9943-2

6.3633-3

4.0066-2

4.3088-3

2.3981-1

1.8507-2

1.1653-1

7.5304-2

(continued on next page)

R1

R 11
R21

R 11R12

R 1 *
22

R 21

11

R 21
21

R 1

1R31

R31
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TABLE 3.5 (continued)

Diffusion Coefficients

DFlux-weighted

lEGDC

Group 1

1. 4499

1. 4458

Group 2

.37666

.40179

*Homogeneous cell calculation uses group diffusion coef-

ficients found by matching largest response matrix elements

of heterogeneous cell calculation. Assembly is a PWR

type E16 in a long strip of different PWR assemblies.
163

R 41 s = R 3 1's and are not listed.
gg gg
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Finally, a good initial guess for the D 's can signi-

ficantly decrease the number of cell calculations required

in the search for the proper d 's. If no initial guess is ,
g

available, flux-weighted values can be calculated from the

heterogeneous cell calculation and then used as an initial

guess for the D 's.
g

Although the above scheme for determining the homo-

genized diffusion coefficients might seem a little like a

"cook book" prescription, the technique is quite straight-

forward, has a plausible theoretical basis, and is easy to

program for computer application.

3.5 Summary

The response matrix scheme described in this chapter

is an improvement upon the previous scheme. The present

scheme results in the two significant improvements that were

mentioned as homogenization goals in the introduction to this

chapter. Namely, the scheme accounts for assembly position

within the reactor and it also decreases the amount of

computational effort by eliminating the double-iterative scheme.

A summary of the method is now outlined.

I) Calculate the necessary current response matrices

and integrated reaction rate responses for each

different assembly composition in a heterogeneous

cell calculation.
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II) Calculate the albedo matrices for each material

composition. For each different assembly compo-

sition calculate the [aZ ] k's (9=1,2,3,4) using

Eq. (3.26). For quarter-symmetric assemblies

the [az ]k's are identical for each Z and only

one [a ]k must be computed. The albedo matrices

for reflector material can be computed using

Kalambokas's(14) expressions.

III) Calculate the [Jin]i's for each assembly position i

using Eq. (3.12).

IV) Depending upon assembly symmetry and the values

of the [Jin)i's, choose either Eq. (2.6), (3.27a),

(3.27b), or (3.27c) as the equation to be used

for computing the E 's of assembly i. Calculate
cag

the numerator of the expression for r(i) usingag

the integrated reaction rate responses of the

heterogeneous assembly. Using the same set of

[Jin]i's required in the chosen expression for

, calculate (r)dV from Eq. (3.33).

Now compute the ji'ts. Repeat this procedure
ag

for each assembly position i.

V) Determine the D 's of each assembly position i
g

by the search technique described in Section 3.4.
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CHAPTER IV

BWR AND PWR SAMPLE PROBLEMS

4.1 Introduction

The response matrix homogenization technique was used

to calculate two-group, two-dimensional equivalent diffusion

constants for problems representing geometries typical of

boiling and pressurized light water reactors. A description

of the sample problems and the results are presented in

this chapter.

The BWR problems consist of a reactor core of twenty-five

assemblies arranged in a 5 x 5 array. All assemblies in the

BWR problems are one of the two assembly types shown in

Fig. 2.1. A water reflector surrounds the core. The two-

group cross sections and diffusion coefficients for the

assembly materia'ls and water reflector are listed in

Appendix C.

Two sample BWR problems were examined. The first problem

consists of a reactor geometry in which the two different

assembly compositions are arranged in a checkerboard array.

The reactor has quarter-core symmetry and a description of

the resulting quarter-core problem is shown in Fig. 4.1.

This problem is identical to the sample problem used in the

examination of the previous response matrix scheme (the

results of which are shown in Fig. 2.2), and will therefore

provide a comparison between the two schemes. Each assembly
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position is numbered for later reference, and each assembly

composition is identified by either an A or B which repre-

sents the corresponding assembly composition shown in

Figure 2.1.

The second BWR problem has half-core symmetry, and the

resulting half-core problem is shown in Fig. 4.2. Again the

assembly positions are numbered and the assembly compositions

are represented in the same manner as before.

The choice of a representative PWR problem was governed

by practical considerations. The assembly geometries used

in the PWR sample problem are those representative of the

types used by Combustion Engineering (15) and are shown in

Fig. 3.4. It was found that at least two mesh points per

fuel (or control, shim, etc.) cell were required for an

accurate solution of the heterogeneous benchmark problem and

the response matrix cell calculation. Because of the size

of the PWR assemblies (i.e. the large number of fuel, control,

and shim cells) a realistic quarter-core problem would be

prohibitively expensive. In addition the PWR assemblies

are more homogeneous in nature than the BWR assemblies.

Thus one would expect that the homogenization scheme would be

more severly tested by the BWR problems. For this reason the

examination of PWR problems with core geometries similar

to those of the BWR problems was felt to be unduly repetitious.

Nevertheless some test of the present scheme's applicability

- - Ak-
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to PWR geometries was needed. A PWR sample problem using

realistic PWR assembly compositions, but not prohibitively

expensive and not repetitious with regard to the BWR

problems, was chosen and is shown in Fig. 4.3. The nuclear

data for the assembly materials, water reflector, and core

shroud are given in Appendix C.

4.2 Calculated Data for Sample Problems

The first step of the present homogenization scheme is

to calculate the current and integrated reaction rate response

matrices for each different assembly composition in the

reactor. The response matrices for the BWR assembly composi-

tions are listed in Table 4.1. The notation of assembly types

refers to the assemblies shown in Fig. 2.1. The response

matrices of the PWR assembly compositions are listed in

Table 4.2 and the assembly types refer to those shown in

Fig. 3.4. Note that all assemblies, both BWR and PWR, are

quarter-symmetric and only the response matrices for neutrons

incident upon one face were calculated.

The second step in the homogenization technique requires

that the albedo matrices of each assembly composition (and

reflector material, etc.), the [a ] k's, be determined using

Eq. (3.26) for assembly compositions and Kalambokas's

results 1 4 ) for reflector material. The material albedo

matrices for the BWR and PWR assemblies were calculated and

are listed in Tables 3.1 and 3.2 respectively. Since all
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Q1 Q2 03

A B A

Q4 05 06

B A B

Q7 Q8 Q9

A B A

Assembly types A and B refer to the assemblies shown I.n

Figure 2.1.

Numbers in upper right hand corner represent assembly :position.

An eight cm water reflector surrounds the core.

Mesh Spacing

Heterogeneous reference problem: 5 cm spacing throughout core

and reflector

Homogeneous problems: 5 cm in reflector and fuel within -2 cm

of interface and 1 cm elsewhere

FIGURE 4.1

BWR Quarter-Core Configuration

Ak - - Ah,



- 87 -

Hl H2 H3

H4 H5 H6

B A B

H7 H8 H9

A B A

H10 Hll H12

B B B

H13 H14 H15

B B B

Assembly types A and B refer to the assemblies shown in

Figure 2.1.

Numbers in upper right hand corner represent assembly position.

An eight cm water reflector surrounds the core.

Mesh spacing for heterogeneous and homogeneous problems

corresponds to that used for quarter-core problems.

FIGURE 4.2

BWR Half-Core Configuration
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J =0n

Shroud

Pl

F12

P2

E
16

J =0
n

Assemblies F and E refer to those shown in Figure 3.4.12 16

Number in upper right corner refers to assembly position.

The shroud is 2.59715 cm in thickness, and there is zero

net leakage out of the sides of the strip.

There is a 20.6248 cm water reflector on the outside of the

-shroud.

The mesh spacing is .7366 cm for all problems.

FIGURE 4.3

PWR Strip Configuration
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TABLE 4.1

Response Matrices of Heterogeneous Assembly

BWR Compositions*

Assembly A

1.3830-1

2.5569-2

2.4527-1

3.1761-1

1.2050-1

5.6685-3

5.4377-2

5.6696-3

3.3218-1

1.2104-2

1.1611-1

1.2649-1

R31,'s and
gg

Assembly B

1.3475-1

2.9758-2

2.6099-1

3.3033-1

1.2937-1

9.3373-3

7.0244-2

1.2291-2

3.3574-1

1.5989-2

1.3189-1

1.3534-1

are not listed. Assemblies refer

to those shown in Figure 2. 1.

R

R
R1

R 1111

R 11

R21

21

R 21
31

R 21

R 2

R 31R31

41
*R ,s
gg
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TABLE 4.2

Response Matrices of Heterogeneous Assembly

PWR Compositions*

R1

R 1

R 11

11

R 11

21

R 21

11

R 231

R 2

12

R31

Assembly E1 6
Assembly F 1 2

3. 9426-1

5.2409-2

4.2684-1

3.9024-1

5.9761-2

5.2588-3

3.7864-2

3. 3563-3

2.3898-1

1.5675-2

1.1305-1

6.7817-2

Assembly 
D0

3.8768-1

6.3575-2

3.6300-1

4. 4870-1

5.9412-2

7.1293-3

3.6986-2

4.5198-3

2. 3793-1

2.0252-2

1.0635-1

7.7202-2

Assembly DW

3.4476-1

5.2183-2

3.1988-1

4.3078-1

3.4443-2

3.2800-3

1.9344-2

1. 8831-3

1. 9990-1

1.2862-2

7.6324-2

6.9468-2

*R,'s =4Rl's
gg gg'

and are not listed. Assemblies refer to

those shown in Figure 3.4.

3.89 42-1

6.0189-2

4. 0448-1

4.2566-1

6.0392-2

6.6951-3

3.9937-2

4. 4873-3

2. 3860-1

1.9185-2

1.1442-1

7.6035-2
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1 k
assemblies are quarter-symmetric, only the [a ] 's were

computed. The positional albedoes matrices associated with

assembly i used in Eq. (3.11), the [a ] 's, are the

[a ]'s of the adjacent material k. The [a ] i's of each

position i for both the BWR and PWR sample problems are

listed in Appendix C.

Once the [a ] i's were determined, the [J ]. 's were
in i

calculated for each position i using Eq. (3.12). The

incoming partial current matrices for the BWR quarter-core

assembly positions shown in Fig. 4.1 were computed and are

listed in Table 4.3. The [J. ].'s for the BWR half-core
in i

problem (Fig. 4.2) are given in Table 4.4. The incoming

group partial currents for the assemblies comprising the PWR

sample problem shown in Fig. 4.3 are listed in Table 4.5.

The [J. ] . 's having been obtained for each assembly
in i

position i, the cross sections were computed using the

Cubic-Hermite expressions for J (r)dV given by Eq. (3.33)
IV 9

in conjunction with the appropriate equation (3.27a, 3.27b,

or 3.27c) defining Ei . The diffusion coefficients were
ag

then determined by the technique outlined in Chapter 4. An

interesting point is that, during the process of performing

the homogeneous cell calculation for determining the D 's,
I. g

the actual I 4 (r)dV can be calculated and 1-i
Jy g - ag
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TABLE 4.3

Incoming Group Partial Currents

BWR Quarter-Core Problem*

Position i**

Q2,Q4

Q3,Q7

(in, i)

(in, i)

5.6884

1.0000

6.8796

1.0000

6.2291

1.0000

6.4247

1.0000

7.1336

1.0000

Q5,Q9

Q6,Q8

J1 (in,i)

J (in, i)
2

2.1842

2.2347

1.6551

1.5429

J (in,i)

J (in, i)
2

6.3237

.99397

5.5712

.93514

J (in,i)

J2 (in, i)

1.4469

1.6220

6.3237

.99397

5.5712

.93514

*Partial
Notation

currents are those used in Eq. (3.27a,b or c).
for partial currents refers to Figure 3.2.

**Assembly position refers to Figure 4.1.
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TABLE 4.4

Incoming Group Partial Currents

BWR Half-Core Problem*

(in, i)

Assembly 1
Position i J2 (in,i)

J1 (in, i)

J (in,i)2

J1 (in, i)

J (in,i)

J (in, i)

J (in,i)

Hl-H7, H9
are identical
to Q1-Q7,Q9
(see Table 4.3)

H8

H10

Hll

H12

H13

H14,H15

6.1729

1.0000

5.7198

1.0000

6.2156

1.0000

6.1827

1.0000

.84656

1.0000

1.0151

1.0000

5.1581

.71801

4.7508

.73115

5.1791

.72213

3. 8396

.63628

5.3232

.74665

6.1583

1.0228

6.0097

.96736

3.3433

.60638

3.4613

.60045

5.3232

.74665

1.6278

1.6142

6.0097

.96736

3.4613

.60045

*Partial currents are those used in Eqs. (3.27a,b or c).
Notation for partial currents refers to Figure 3.2.

**Assembly position refers to Figure 4.2.
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TABLE 4.5

Incoming Group Partial Currents

PWR Problem*

Position i**

P1

(in,i)

J(in, i)

5.2234

1.0000

8.5725

1.0000
P2

J (in,i)

J2 (in,i)

1.0683

.26411

23.672

4.0388

J3 (in,i)1

J (in, i)2

2.7870

.47269

15.183

3.0817

*Partial currents are those used in Eq. (3.27a,b or c).

Notation for partial currents refers to Figure 3.2.

**Assembly position refers to Figure 4.3.

4 (in,i)

J (in,i)

2.7870

.47269

15.183

3.0817
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can be recalculated using this value. Since the initial

Cubic-Hermite estimate of $ ~ (r)dV is very accurate,
J V. 9

the E(i)'s change very little and recalculating them does

not interfere with the linear extrapolation scheme for

determining the D 's. The cross sections used for the
g

sample problems were calculated in this manner.

The two-group cross sections and diffusion coefficients

for the assemblies comprising the BWR quarter-core reactor

problem are listed in Table 4.6. Note that they are posi-

tionally dependent; the assembly position notation refers to

Fig. 4.1. The conventional FWC of each assembly composition

is also given in Table 4.6. The EGDC and FWC calculated

for the assemblies of the half-core BWR problem described

in Fig. 4.2 are listed in Table 4.7. The homogenized diffu-

sion constants for the PWR problem are given in Table 4.8

where the notation for assembly position refers to the

assemblies shown in Fig. 4.3.

4.3 BWR Results

A quarter-core criticality calculation was performed

for the fine-mesh heterogeneous reactor geometry of the

quarter-core BWR problem depicted in Fig. 4.1. Two criti-

cality calculations were then performed for the reactor

consisting of homogenized assemblies with the EGDC and FWC

listed in Table 4.6. The resulting per cent errors in
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TABLE 4.6

Diffusion Theory Parameters - FWC and EGDC

BWR Quarter-Core Problem

EGDC

Position i*

al

a22

vEf

VE f2

1.4227+0

3.7917-1

1.4418+0

3.9236-1

1.4209+0

3.7991-1

1.4193+0

3.8037-1

1.4414+0

3.9252-1

9.6577-3

1.0887-1

9.3628-3

9.6631-2

9.6759-3

1.0843-1

9.6880-3

1.0814-1

9.3766-3

9.6530-2

6.4599-3

1.3137-1

6.4635-3

1.4356-1

6.4735-3

1.2886-1

6.4824-3

1.2654-1

6.4732-3

1.4319-1

1.4137-2

1.7228-2

1.4167-2

1.4186-2

1.7234-2

FWC

Assembly A

Assembly B

1.3884+0

3.8420-1

1.4470+0

3.7478-1

9.7122-3

1.2155-1

9.4224-3

8.9222-2

6.4987-3

1.4303-1

6.5050-3

1.3241-1

1.4222-2

1.7302-2

*Assembly position refers to Figure 4.1.

'S " t*d .

Q2,Q4

Q3,Q7

Q5,Q9

Q6,Q8
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TABLE 4.7

Diffusion Theory Parameters - FWC and EGDC

BWR Half-Core Problem

EGDC

al

a2Position i*

Hl-H7,H9 are

identical to

Ql-Q7,Q9

(Table 4.6)

VE 2

VEf2

1.4415+0

3.9246-1

1.4418+0

3.9236-1

1.4416+0

3.9242-1

1.4415+0

3.9243-1

1.4420+0

3.9220-1

1.4418+0

3.9234-1

9.3745-3

9.6568-2

9.3629-3

9.6631-2

9.3724-3

9.6584-2

9.3731-3

9.6579-2

9.3466-3

9.6695-2

9.3628-3

9.6632-2

6.4717-3

1.4326-1

6.4636-3

1.4355-1

6.4703-3

1.4332-1

6.4708-3

1.4330-1

6.4520-3

1.4382-1

6.4635-3

1.4356-1

1.7231-2

1.7228-2

1.7230-2

1.7231-2

1.7222-2

1.7228-2

FWC for Assembly A and
Problem given in Table

B

FWC

are same as those for BWR Quarter-Core
4.6.

*Assembly position refers to Figure 4.2.

21

H8

H10

Hil

H12

H13

H14,H15

Ab - - -
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TABLE 4.8

Diffusion Theory Parameters - FWC and EGDC

PWR Problem

EGDC

al

a2
Position i*

fl

f2

1.4706+0

3.8559-1

1.4373+0

4.0809-1

8.8855-3

9.2418-2

9.1954-3

7.3768-2

5.7202-3

1.2507-1

5.1427-3

1.0848-1

1.7288-2

1.7557-2

FWC

Assembly F1

Assenbly E1 6

1.4462+0

3.7264-1

1.4499+0

3.7666-1

8.8782-3

8.4492-2

9.2048-3

6.7498-2

5.7184-3

1.1493-1

5.1507-3

9.8895-2

1.7224-2

1.7531-2

*Assembly position refers

21

Pl

P2

to F igure 4.3.

,ft ,M a dbMML--



- 99 -

assembly powers and reactor Keff are shown in Fig. 4.4.

All criticality calculations were normalized to the same

total reactor power. The mesh layout for both the hetero-

geneous and homogeneous problems is shown in Fig. 4.1.

The use of EGDC for the half-core BWR problem depicted

in Fig. 4.2 was examined in a similar manner. A criticality

calculation was performed for the fine-mesh heterogeneous

reactor geometry and for the homogeneous reactor geometries

using the EGDC and FWC given in Table 4.7. The per cent

errors in assembly powers and reactor K are shown in

Fig. 4.5. Note that the assembly compositions comprising

one portion of the core in this problem represent assemblies

in which the cross-shaped control rod has been withdrawn.

The resulting flux distribution is tilted towards one side

of the reactor. This is an important point because the

results of this half-core problem illustrate the applicability

of EGDC for reactor conditions in which significant flux

tilting may occur.

4.4 PWR Results

The PWR problem depicted in Fig. 4.3 consists of two

assemblies, a shroud and water reflector at one end of this

short strip, and albedo boundary conditions at the opposite

end. This problem is designed to represent the reactor

conditions present in two assemblies along the centerline

of a half-core symmetric reactor and near the reflector.



- 100 -

XX Per cent error in Power - FWC

XX Per cent .error in Power - EGDC

01 02 03

1.74 -3.88 3.67

.25 .48 - .68

Q5 06

5.63 -3.18

- .47 .42

Q9

5.18

.63

FWC

-. 847Per cent error in K eff

EGDC

-. 379

FIGURE 4.4

BWR Quarter-Core Results



- 101

Reference per cent total power

Per cent error in power - FWC

Per cent error in power - EGDC

Hl H2 H3

2.288 3.257 3.025

1.02 -4.57 2.83

.74 .03 -1.18

H4 H5 H6

3.426 3.393 4.424

4.33 5.08 3.64

.15 .84 .14

B7 H8 H9

3.448 4.906 4.473

3.76 2.16 6.29

.97 .32 .64

1110 Hll H112

4.238 5.164 5.593

1.39 .80 .39

.17 .60 .75

1113 H114 1115

3.841 4.699 5.167

-1.03 .25 .36

.05 .38 .41

Reference

.842530

FWC
per cent

-. 572

error
EGDC

per cent error

-. 197

FIGURE 4.5

BWR Half-Core Results

K ff
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The heterogeneous, fine-mesh solution was first obtained

from a criticality calculation. The homogeneous assemblies

with the EGDC and FWC listed in Table 4.8 were then used in

two criticality calculations respectively. The mesh layout

for each problem is shown in Fig. 4.3. The total power in

the strip was normalized to the same value for all problems.

The resulting per cent errors in assembly powers and Keff

of the strip are shown in Fig. 4.6.

An important point to recognize is that the boundary

conditions of this short strip are close to being zero

current along each edge of both assemblies. Thus, since

the FWC are found for exactly these conditions, their use

in this problem should lead to accurate results; that

they do is evident from Fig. 4.6. The applicability of

the present scheme for computing EGDC for PWR assembly

geometries is also evident.

A discussion of the sample problem in this chapter and

recommendations for future study are presented in the

following chapter.

M-Aft M -Aft
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Per cent error in power - FWC

Per cent error in power - EGDC

Per cent error in K f

Pl

-. 36

-. 62

P2

.32

.55

FWC

-.098

EGDC

.024

FIGURE 4.6

PWR Strip Results
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CHAPTER V

DISCUSSION OF RESULTS AND RECOMMENDATIONS

FOR FUTURE STUDY

5.1 Discussion of Results

The use of the response matrix scheme for determining

two-group, two-dimensional equivalent diffusion theory

parameters results in an accurate prediction of the neutron

behavior for both BWR and PWR reactor geometries. The

magnitude of the per cent error in assembly power is small

(<1.18%) for all sample problems. In addition, the per

cent error in reactor K (a measure of overall reactor

behavior) is less than 0.4% for all problems. The results

shown in Chapter 4 indicate that the use of conventional

FWC does not result in such an accurate prediction of neutron

behavior, but instead leads to significant per cent errors

in assembly powers.

The results of the quarter-core BWR problem are shown

in Fig. 4.4. The magnitude of the per cent errors in

assembly powers when the EGDC are used -is less than one

per cent for all assemblies, the largest being -. 68%. The

use of FWC, however, results in assembly powers that are

all at least one per cent in error; the per cent errors in

fact range from 1.74% to 5.81%. Also the value of Keff

calculated using the EGDC is more accurate than that

resulting from the use of FWC (-.393% error compared to

-.847%). These large differences in per cent errors in

M *' & goo
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assembly powers and Keff resulting from the use of FWC

as compared to EGDC indicate the stronger theoretical

foundation of the response matrix homogenization approach

over the conventional flux-weighting procedure.

Recall also that the previous method of calculating

EGDC by a response matrix approach (see Chapter 2) was tested

using this same problem, the results of which are shown in

Fig. 2.2. Comparison of Figs. 2.2 and 4.4 indicate the

improvement of the present homogenization scheme over the

previous technique. The per cent errors in the powers

for assemblies bordering the reflector are much lower as a

result of using the albedo boundary conditions for calculating

the relative partial group currents entering each face of

an assembly. Previously it was assumed that each assembly,

even those adjacent to the reflector, was near the center

of a large array of like assemblies. The theoretical

improvement of accounting for assembly position within the

reactor is obvious. Now all the assembly power per cent

errors are less than one per cent compared to a high of

-3.39% using the EGDC found by the previous response matrix

technique. In addition, the magnitude of the per cent

error in K dropped from -.809% to -.397%. .

The results of the half-core BWR problem are shown in

Fig. 4.5. Again the use of EGDC is an improvement upon the

use of FWC. The largest magnitude of the per cent error in

'.WWWM6M& - - -
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assembly power is 1.18% using EGDC as compared to a

maximum of 6.29% using FWC. For the problem using EGDC,

the remaining assembly power per cent errors are all less

than one per cent. The corresponding per cent errors for

the FWC problem, however, are .greater than one per cent

over most of the core. The reactor K is also predicted

more accurately using EGDC.

Note that there is a flux tilt from one side of the

core to the other resulting from the withdrawal of the

cross-shaped control rods over one portion of the core.

The results of this half-core problem demonstrate the

applicability of the use of EGDC for situations in which a

flux tilt may occur. In particular, the results shown in

Fig. 4.5 reveal that the determination of group diffusion

coefficients by matching the largest response matrix

elements leads to an accurate representation of the "true"

transmission of neutrons.

The PWR results, shown in Fig. 4.6, indicate that

both the use of EGDC and FWC lead to an accurate prediction

of assembly powers for this particular problem. However,

the group partial currents entering each assembly as

calculated from the homogeneous problem using EGDC are very

close in value to the corresponding partial currents

resulting from the heterogeneous problem; these partial

currents resulting from the homogeneous problem using FWC,

however, are not close in value to the heterogeneous results.
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Thus the "true" transmission of neutrons is better described

when the EGDC are used, and for a larger problem this would

be crucial.

In addition, studies indicate that the use of a finer

mesh size for the two-assembly problems and for the cell

calculations would result in a convergence in the results

of the heterogeneous and EGDC problems but not for the

heterogeneous and FWC problems. But all assembly power

per cent errors shown in Fig. 4.6 are very small and the

use of either FWC or EGDC leads to accurate results for this

problem. Most importantly, this problem reveals that the

present response matrix scheme for calculating EGDC can

be applied successfully to PWR geometries.

The evaluation of all group diffusion parameters, both

for BWR and PWR geometries, is performed using the same

method for all reactor positions. This is an asthetically

pleasing property of the homogeneization scheme since the

procedure can be easily programmed to account for assembly

position by "scanning" an assembly's adjacent material and

then using a given subroutine for calculating the EGDC.

An alternate scheme would be to redefine the basic

response matrix cell calculation such that it would

include the appropriate boundary conditions for a particular

assembly position within the reactor. This technique was

triedwith some degree of success, but it is conceptually

inferior to the present scheme in that the homogenization

ANNAMMM - A
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procedure varies from one assembly position to another.

Therefore this alternate scheme was discarded.

The use of the Cubic-Hermite expansions for calculating

(r)dV proved quite successful. The Cubic-Hermite
V i ~

estimate is very accurate (see Table 3.3), and by eliminating

the double-iterative search used in the previous technique,

it substantially reduces the amount of computational effort

required. Even with this improvement the calculation of

the EGDC for a given assembly location requires more

computational effort than does the calculation of the

corresponding FWC. However the amount of computer time

required to calculate the conventional FWC is quite small

in the first place, and the increase in cost to compute the

EGDC for a given assembly by the present homogenization

scheme is inconsequential.

There is also an increase in homogenization cost as

a result of calculating EGDC for each assembly position.

But the resulting increase in accuracy is evident.

Figs. 2.2 and 4.4 show the results for the same BWR problem,

one in which the EGDC depend upon assembly position and

the other in which they do not. A comparision of these

two figures clearly indicates that there is a substantial

improvement in accuracy when positionally dependent EGDC

are used. The cost of calculating positionally dependent

EGDC and solving the resulting reactor problem is small in

M-t ' - WM
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comparison to solving the corresponding heterogeneous,

full-core problem. Because the resulting increase in

accuracy is significant, the use of positionally dependent

EGDC seems warranted.

The two general goals of-this thesis were to improve

upon the accuracy of the previous response matrix homo-

genization scheme and at the same time reduce the compu-

tational costs. The present homogenization technique

accomplished these two goals. In addition, (like the

earlier scheme) it is applicable to more than two energy

groups and has the theoretically appealing property of

reducing to the more exact homogenization procedure for

one-dimensional problems.

5.2 Recommmendations for Future Study

The application of EGDC to practical reactor situations

seems promising in light of the observations made.

Additional specific areas for future study would be:

1) A further study of the scheme for determining

the group diffusion coefficients. In parti-

cular a method is needed for providing an

accurate estimate of the first guess of the

diffusion coefficients for the iterative

search.

2) An effort to provide a comprehensive, fast

running computer code to calculate the EGDC.

111111MANIAN& - - -
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Efforts were made during the development

of the present scheme to reduce the required

amount of computational effort to a minimum.

However, no effort was made in this thesis

to minimize the computer cost of determining

the EGDC since those costs were very small

in the first place. Presently the codes

used during the calculation of the EGDC

are limited in scope and provide information

useful in the development of the present

scheme but unnecessary in regard to the

final technqiue chosen. The combination

of these codes into one code would reduce

the computer costs significantly.

More general areas of possible study would be:

1) A study of the present scheme for a broader

range of time-independent, two-dimensional

sample problems. This would include

analysis of two-dimensional problems with

more than two energy groups.

2) The use of EGDC for time-dependent problems.

The first part of the analysis should include

a study of Kollas's "exact" EGDC for one-

dimensional transient problems. The

extension to two-dimensional geometry using

the present scheme could then be attempted
in view of the l-D results.
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APPENDIX A

Calculation of the Incoming Group One to Group Two

Ratio for the Semi-Infinite Medium Approximation

Using an Albedo Boundary Approach

We wish to show that equating each [a ]i of assembly i

to the G x G identity matrix and solving Eqs. (3.11) and

(3.12) in terms of the response matrices results in an

expression for X, the incoming group one to group two partial

current ratio, identifcal to Eq. (2.9).

For each [a ]. equal to a two by two identity matrix,

[W] i defined by Eq. (3.11), becomes

[W]. = [R]. . (C.1)

Thus, Eq. (3.12) (y[J ini i[WIJ ini) for this case results

in the following four matrix equations:

1. 11 1 12 2 13 3
y [JI" ] .=[R11 [JO ]+[R1 ] .+[R13 3].

in i i in iin i ijin i+

[R ] [J ] (C.2a)
-[i in 1

y 2 ] =[R21 1 .+[R 22 [J ] .+[R 2 [J ] .+
in i in i in i i in i

[R24 [4 ] (C.2b)
i in i

jawmat.aft - -
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Y 3ni=R 31 1:i. n] l 32 j2 [R33 i 3 +.
Y[Jin] i[ 31 [ ]+[R32] [J~ ] .+[R3 3[.I.fin 1 inli

[R 3 [ (C. 2c)I i[jin].i

4 41 1 42 2 43 3Y[Jin i R i[J in i+[R 4 i in i+[R 31.iJ i+

[R ][J ] . (C.2d)
I 1 in 1

Because the assembly i is assumed to be quarter-symmetric,

[R ]i=[R ]gifor all I and Y£'. In addition, because the

assembly is symmetric and because identical boundary conditions

are imposed upon each side of the assembly, [J ] will be

identical for each X.. Therefore, the above four equations

are redundant and can be written as the following single

equation:

[J 1 R11 [R21 +[R31]i+[R ] [J} (C.3)

We now define C such that
gg'

C , = R (C.4)
gg gg
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where Cg , is defined in the same manner as the Cg , in

Eq. (2.9).

The above equation can be written as

Y[J 1 in

Cli

C2 1

C12

C2 2

1 

i

in]i

Solving for the eigenvalue y results in the quadratic

equation

2
y - (C 1 1 +C 2 2 )Y+(C 1 1 C2 2 -C 2 1 C1 2 )=Q

The solution'for the positive root of y gives

(C1 1 +C 2 2 ) + (Cl- 22) +4C 21C2

T2

Substitution of y from Eq. (C.7) into the second

(C.7)

equation in (C.5) results in the following value of J 12'

C11-C 2 2  2ll +4C 1 2 C2 1

2C2 1

(C.8)

Eq. (C.8) is identical to Eq. (2.9).

(C.5)

(C.6)

J 1 12 =

AkftWft..I,., -
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APPENDIX B

Cubic Hermite Basis Functions

The Cubic Hermite basis functions used in Eqs. (3.30)

and (3.31) are defined as follows:

u0+ (x) - [-2 (1-x/h ) 3+3(1-x/h 2

0 (x ) x

u0' (x) [-2 (x/h ) +3(x/h ) 2
h x x,x

u1+ W ( x )3 +lxh2 hu(x) 2 [- (1--x/h ) 3+(1-x/h ) 2h0x x

u (x) H [(x/h ) 3-(x/h ) 2]hxhx xx

0+ 3 2
w0 (y) = [-2(1-y/h ) +3(1-y/h )

0y y

w (y) 2[-2(y/h ) +3(y/h ) 2
wh Y Y
y

1+ 3 2
w0 (y) 2 [-(1-y/h ) +(l-y/h ) ]hy

y y

1-3
w (y) 2 [(y/h ) 3 -(y/h )2]hy

y y

*f- t omd
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APPENDIX C

DATA FOR BWR AND PWR SAMPLE PROBLEMS

This appendix contains useful information for the

sample problems presented in the text of this thesis.

ANN.--ft -
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TABLE C.l

Basic Nuclear Data

BWR and PWR Problems

al. VE

4aterial* Ea2

BWR Sample Problems

A and B fuel.

A rod

B rod and
Water
Reflector

PWR Sample Problem**

F Fuel
12

F Shims
12

E Fuel
16

1.417+0

3.883-1

1.473+0

4.704-1

1.420+0

3.891-1

9.769-3

8.868-2

9.609-3

2.276-1

9.512-3

8.109-2

6.806-3

1.441-4

0.0

0.0

6.277-3

1.278-1

(continued on next page)

Ahot a AkM

VEf
2

7.293-3

1.531-1

1.596-21.436+0

3.868-1

1.092+0

3.507-1

1.545+0

3.126-1.

1.051-2

1.018-1

3.185-3

4.021-1

4.440-4

8.736-3

0.00.0

0.0

0.0

0.0

2.838-2

1.525-2

1.926-2

1.558-2

I
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TABLE C.l (continued)

Material*

Eal

E a2

E Shims
16

DO and D W0 0
Fuel

Rod Channel
(Water)

Rod Channel
(Control Rod)

Shroud

Water
Reflector

1.473+0 1.631-2

4.662-1 2.951-2

1.426+0 9.125-3

3.903-1 6.917-2

1.729+0 8.993-4

2.914-1 1.582-2

1-.208+0 7.017-2

5.156-1

8.617-1

1.999-1

3.442-3

3.536-1 9.480-2

1.817+0

2.711-1

7.495-4

1.706-2

*Material notation for BWR problems refers to Fig. 2.1.
PWR material notation refers to Fig. 3.4.

**The PWR two-strip problem includes assemblies F12 and E16'
the shroud, and the water reflector. The nuclear data
for the remaining assemblies is listed for use in calculating
albedoes and Cubic-Hermite expansions for various PWR
assemblies (see Tables 3.2 and 3.3).

VIfl

VYg
2

0.0

0.0

5.459-3

1.021-1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.877-2

1.616-2

3.268-2

1.481-2

5.124-3

3.585-2

D 1



TABLE C.2

Boundary Albedoes for Sample Problems*

DWR Reflector PWR Reflector plus Shroud

PWR Albedoes
for Side of Strip Opposite

Beflector and Shroud

3.0806-1

0.0

5.1675-1

0.0

7.0000-1

0.0

1.4792-1 - 5.6037-2

7.8573-1 4.8802-1 5.0000-1

(14)
*Reflector albedoes are calculated using Kalambokas' s expressions. The
albedoes listed in the last column were chosen to simulate possible reactor
conditions.

a 11

a412

a2 1

a22

H

0

0.0
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TABLE C.3

Positional Albedoes for Sample Problems*

Assembly
Position i

01

Q2,Q4

Q3,Q7

Q5,Q9

Q6,Q8

1[a ]

B

A

B

B

A

2
[a ].

3
[a ].

BWR-Quarter Core

wB B

wB A

wB B

B B

A A

BWR-Half Core

Hl-H7,H9 are
identical to
Ql-Q7,Q9

H8

H10

Hill

H12

H13

H14,H15

B

B

B

B

wB

wB

A

A

B

A

B

B

PWR Problem

wP

F I

(continued

I

I

on next page)

4

WB

A

B

B

A

A

B

B

B

B

B

A

WB

B

B

wB

B

Pl

P2

E

z
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TABLE C.3 (continued)

*Assembly positions refer to Figures 4.1, 4.2 and 4.3.

The assembly orientation used in the homogenization

procedure is chosen such that the positional albedoes

listed for each f4ce Z, (see Figure 3.2), [a ]., are

those of the surro4nding material. The notation for

each positional albedo matrix refers to the material

albedo matrices listed in Tables 3.1, 3.2 and C.2

where A=albedo matrix of assembly A; B=albedo matrix of

assembly B; wB=albedo matrix of the BWR water reflector;

E=albedo matrix of assembly E16 ; wP=albedo matrix of

the PWR water reflector plus shroud; 1=2 x 2 identity

matrix; and Z=albedoes listed in third column of

Table C.2.

IORW_ .


