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ABSTRACT

The purpose of this report is to describe the development
of two new and extremely efficient numerical methods for the
steady state and transient, two-phase, lumped parameter thermal
hydraulic analysis of the fluid flow distributions in fuel pin
bundles and nuclear reactor cores as the result of ongoing
research in the Department of Nuclear Engineering at M.I.T.

These methods use the same physical model as the COBRA-
ITIC code, but are based on the alternative numerical concept
of generating a system of semi-implicit difference equations
for the pressure field using a spatilial differencing scheme
which is different from the schemes previously used by sub-
channel analysis codes. The flow and enthalpy distributions
in the lattice are found by marching downstream several times
in succession between adjacent computational planes and by
combining the computed pressure fields from these planes
together into a composite pressure field, which is then used
as the driving force for the crossflow distribution in a
reformulated form of the transverse momentum equation. Both
methods are extremely efficlient from a computational point of
view and are compatible with a variety of iterative solution
techniques because the coefficient matrices governing the
computation of the pressure fields can be shown to be Stieltjes
matrices. '

These numerical methods have been integrated into the
computational framework of the COBRA-IIIC code and a new
computer program has been written called COBRA-IIIP/MIT (P for
a pressure solution). The code is considerably faster and
more powerful than many other thermal-hydraulic analysis codes
and has the capability to solve extremely large and complex
problems with great speed. The predictions of the code have
been compared to those of COBRA-IIIC, and for most problems,
it has been found that the results of the codes agree with
one another to within a few tenths of one percent. However,
it has beendiscovered that the axial iteration scheme used by
.the COBRA-IIIC code apparently introduces severe oscillations
into the crossflow distribution that cannot be explained
physically, whereas the numerical solution scheme used by the
COBRA-ITIP/MIT code does not appear to suffer from this draw-
back and converges very rapidly to an asymptotic crossflow

distribution without oscillations as additional iterations
are performed.



It is strongly recommended that the COBRA-IIIP/MIT
code should be used in place of COBRA-IIIC for the analysis
of operational reactor conditions, because of 1ts greater
computational efficiency, and that experiments should be
performed to determine the range of applicability of these
codes when they are applied to model severe loss=-of-flow
or overpower transients. The COBRA-IIIP/MIT code and a
user's manual describing its computational capabilities
will be furnished to the Argonne National Code Center.

The code will be made available for public distribution

in 1978.
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CHAPTER I

1.1 Research Objective

In recent years many attempts have been made to
develop numerical methods for solving the set of fluid
consérvaﬁion equations® which characterize the steady
state and transient thermal-hydraulic performance of fuel.
Pin bundles and nuclear reactor cores during both single
phase and two phase flow conditions. These equations are
usually developed from a control volume approach before
they are’éast into a form more Suitable for digital computer
analysils. The purposé of this thesls 1s to present two
numerical methods for solving these equations which are
conslderably faster and more efficient than previous_methods
used to ahalyze operational reactor conditions. Another
goal of this thesis is to develop a computer codé based on'
these methods which can be used to solve a vafiety of complex

and important problems that arise in the thermal-hydraulilc

analysls of light water reactor cores.

1.2 Introduction

An excellent review of the state qf the art of reactor
thermal-hydraulic analysis codes has been given by Weilsman
and Bowring [i ]. Manj of these codes have attempted to
simplify the solution of the conservation equations by dividing

the lattice into a number of cdmputational cells having the same

size and shape [2, 3, 4], and by using an initial value approach
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to alleviate the numerical difficulties associated with
solving the conservation equations as a true boundary value
problem in which arbitrary boundary conditions are imposed
on the pressure and flow fields at the inlet and outlet of
the core. These simpljfications have enabled subchannél
anaiysis codes to handle fuel pin bundles having as many
as 37 rods [ 5], although some of the most widely used and
acknowledged codes, such as HAMBO [ 6] and COBRA-IIIC [ 7]
have geng?ally beeﬁ limited to problems having much smaller
numbers of computational cells.

The COBRA-IIIC code [ 7] is a modified version of the
COBRA-II code [ 8] in which é backward differencing scheme
is usedkforiﬂmamomentum equatlons to propagate information
to upstream as well as downstream iocations. " The COBRA—IIIC
code has the capability to compute the flow and enthélpy
flelds in fuel pin bundles during steady staﬁe and transient
econditions, and has been frequently applied td'problems
contalning flow blockages with both slngle phase and 2-
phase flow. The primary drawback of the code is that if‘
can only be used to handle problems having a moderate number
of (1.e. 30-“0) computat;onal cells, since the numerical
method used by the code tends to become extrgmely inefficient
from a computational point of viéw wheﬁ.it i1s applied to
problems that are larger and more complex.

The COBRA-IIIC/MIT code [ 9] is an 1mpfoved version of
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the original COBRA-IIIC code which takes édvantage of the
sparsity of the crossflow coefficient matrix and a more
efficient coding scheme to reduce the running time and to
permit the economic analysis of probleﬁs having more than
100 channels. Both COBRA-IIIC and COBRA—IIIC/MIT'use.the
same physical and mathematical models to compute the flow
and enthalpy distributions and have been found to glve the
same resuits for the classes of.problems to which they .
can be applied.

Whereas all of the aforementiocned codes were developed

. to model operational reactor conditions, the recently

developed COBRA-IV-I [10] qdde represents significant progress
in the field of thermal-hydraullc accident analysis because
1t solves the conservation equations as a true boundary
value problem using an adaptation of the MAC method lil] to
the control volume approach developed by Rowe [ 7 ]. .The
COBRA-IV-i code comprises all the features of a true benchmark
code and can consider the effects of severe flow blockages,
coolant expulsions, flow reversals, and recirculations.A
The code also contains a vastly improved version of the
COBRA-IIIC code in which an iterative solution scheme for
the crossflow distribution 1s used to reduce the running
time to levels presumably similar to those obtained with
COBRA-IIIC/MIT.

The TH;NC—IV code [ 2] is a Westinghouse proprietory,
steady state thermal hydraulic analysls code which uses a

veloclty-perturbation theory method to compute the flow and




and enthalpy fields in reactor cores and fuel pin bundles

in situations where the bundles and cores may contain

flow blockages. The code uses the same placement of
dependent variables in a computational cell as the MAC
method [12] and does not appear to be applicable to problems
in which the computational cells are allowed to have
different sizes and geometrical shapes.

Perhaps the most advanced of all threg-dimensional
thermal-hydraulic analysis codes is the SABRE code [13]
which is based upon the use of a primitive variable approach
to solve for the steady-state temperature and velocity
distributiongin LMFBR fuel pin bundles. Both THINCfIV and
SABRE have been verified extensively against experimental
data, but little is knownabout running times of these codes
or the precise limits of their range of applicability. A
summary of the capabilities of the codes that have been
discussed and a description of the methods upon which they
are based is given in Table 1.1.

Based on these observations, the primary objectives of
this thesis can be summarized as follows:

1. to develop more efficient numerical methods for
solving the set of conservation equations used by the COBRA-
ITIIC and COBRA~IV codes during operational reactor conditions.

2. to incorporate these methods into a new computer
code that has the capability of solving much larger and

more complex problems than many other codes with much greater

speed.
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3. to lay a firm numerical basls for these methods

and to show how they can be used to improve the representation

and interpretation of the crossflow distributions.
4. to devélép numerical methods which can be used
for solving the fluild“conservation equations by both direct
and iterative techniques in a mixed lattice where the cells
can have a variety of different sizes and geometrical shapes.
5. to compare these methods of solution to existing
methods of solving'the conservation equations in order to

show how these methods have developed historically and

to.suggest ways by which the numerical procedures that have

"been applied to these methods can be improved.




s S B R

Table 1.1. Summary of the Characteristics of Several Reactor Thermal-Hydraullc Analysis Codes

("‘x

Value Method

CODE METHOD OF REACTOR TYPES ANALYZED |COMPUTATIONS PERFORMED| GEOMETRIES
SOLUTION BWR PWR | LMFBR PBTEADY STATHTRANSIENT | ANALYZED
SUPERENERGY Marching Method X X X Arbitrary
COBRA-II  [Marching Method X X X X Arbitrary
Pseudo Boundary _
COBRA-IIIC Value Method X X X X X Arbitrary
‘ 1 ]
COBRA-IIIC/ |Pseudo Boundary
MIT Value Method X X X A Arbitrary
COBRA-IIIP/ |Pseudo Boundary
MIT Value Method X X X X Arbitrary
True Boundary
THINC-IV Value Method X X Subgginnel
: y
-7v_t |True Boundary
COBRA-IV-I Value Method X X ~X X X Arbitrary
SABRE True Boundary X X Subchannel
‘ only

LT
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1.3 Mathematical Formulation

Due to the wldespread acceptance and use of the COBRA-
ITIIC code, a considerable amount of‘the physical and
mathematical formalism employed by the code will also be
used as the basis for the numérical method to be developed
here. This essentially means that the same basic set of
governing conservation equations.will be considered and that
the same marching—type of sblutiBn procedure used for the
initial value problem wlll be retalned in space and time.
The objecfives of the methods to be proposed in this thesis
are to solve the fluld conservation equations as efficienﬁly
as possibie so that much larger and more complex problems
can be handled within the limits of existing compdtational
capacity.

1.4 Basic Assumptions

With these points in mind, the assumptions of primary
importance to the following development are:

1. A lumped parameter approaéh is valid

2. Sonic velocity propagation.is ignored

3. The diversion crossflow is usually smaller'than
the axial mass flow rate 1

b, Viscous dissipation is neglected

5. The liquid and vapor phases during boiling are in
thermodynamic equilibrium

6. Electromagnetic body forces are ignored
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Homogeneous two-phase flow may exlst during boiling
conditions
Flow reversals, recirculating flows, and coolaht

expulsions are not considered
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CHAPTER II

2.1 Governing Set of Conservation Equations

By using the control volume approach described in
reference [7], the equations for the conservation of mass,
energy, and momentum of the f;uid in a lattice composed

of a number of computational cells can be written as

Continuity:
3p, am'1 N ' :
At tax T L u A (1)
Energz:‘
. '
sh, 3h, gq N e
1 1 - 1 1]
= o3t = —= - ] (t,-t,)
oy t X my j=1 b S | my
N W N v W,
+ ) (hen) 2L+ ] (ng-ne) 2 (2)
J=1 ‘ i j=1 i
Axlal Momentum:
_l... _a_lil-:.t- - 2u _a_p_i_ + .a_.P_i.
Ai ot i 9t 9xX
Ai 2Di 24x i 9x Ai

N w N W
- gp, cos 8-° (u,~-u,) _lJ.+ (2u, - *).ﬂ_
1 ‘ng Rl R vl R val =)

Transverse Momentum:

A awi 3 s ' s
—tL+ 3 (whwyy) + () Cyywyg =() (Py=Py) )
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where the summations indicated are to be performed over
all cells (J = 1,2,. . . N) connected in the transverse
plane to each cell represented by the index i. 1In this
way, the differential equations for a typilcal cell in the
hexagonal lattice shown in Fig. 2.1 (say cell 4) may be
written explicitly by simply summing from j = 1 to 3
and the differential equations for cell 5 in the rec-
tangular lattice shown in the figure may be generated in
an analogous manner by summing from J = 1 to 4.

The equations for other layouts of cells, such as
those 1n round bundles, are generated by simply summing
over all the cells in the lattice that interact with one

another 1in such a way that the interchange of mass,

energy, and momentum is allowed to occur. As in

COBRA—IIIC, this set of equatlons is closed by defining an
additional equation for the physical state of the
coolant of ‘the form

py = plhy, P¥) | (5)
and empirical correlations for turbulent mixing co-
efficients, friction factors, heat transfer coefficients and

other parameters used to charactérize two-phase flows.

2.2. Matrix Form of the Conservation Equations

For a lattice composed of a large number of compu-

tational cells, the set conservation equations that has been




Hexagonal lattice

BRFAVAVA
JAVAVAVAY

BEAVAVAVAY,
\VAVAY;

Rectangular lattice

Fig. 2.1 Cell numbering schemes for
generating systems of difference squations’
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discussed here becomes unwieldy; consequently, a more compact
matrix notation is desirable. 1In reference [7 ] a vector
form of the conservatlon equations 1s presented in

which a transformation matrix [S] and its transpose

[S]T is used to reduce these equations to a more
:traétable'form. .The elements of the matrix [S] are
defined through two column vectors 1(X) and J(K) where

i and\J'represent the 1ndices of adjacent computational
cells and K 1s used to represent the index of the common
boundary connecting them. As in COBRA-IIIC, the entries

in [s] énd [S]T may only have values of 0, 1; and -1;,and
the crossflow 1s arbitrarily considered to be positive when the

dominant direction of the flow is from cell 1 to cell Js where

- i is less than j. : , : ' .

Using the definitions of [S] and'[S]T presented in
reference [7 ], the foregoing'consérvation eqﬁations may

-

also be written as

‘Continuitz: .
(a1 3% + % = -s1Twy : (6)
Energy: . "

g, B+ 22 = (1) @ - 21 (17 (and qwr)

- 31 s1Traeter + 21 [rnas1® - (817l e, (7
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Axial Momentum:

(k1 321 — (2u 22y + ¥y - qarr 4+ - (®)

ot

(21 [reuirs1® - (s1%rurd]

where the components.of the pressure drop due to fric-
tional forces, gravitational forces, and the effects of

turbulent mixing are given by

fa'} = - { (p? (%9' * Sa A a(g;/"“A))+ og cosq5}

- £ (3151 CauItwy W
and transverse interactlons are taken into account by |

means of the matrix forn of the transverse momentum equation:

developed for the COBRA-IIIC code: < §

Transverse Momentum:

oy et et = (PIs1 @ (10)

For conveniencé; the same nomenclature and notation used
in [ 7 ] are also used here. Consequently, this reference
should be consulted for, more detailed information about

the definition and derivation of the individual terms.
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2.3 Conversion of the Conservation Equations into

Difference Equations

The precedlng conservation equations must’be converted
.- into a system of difference equations before they can be
solved by numerical means. Taking a first order back-
ward differencing scheme for the spatial and temporal

derivatives to provide numerical stabllity allows the

! equations for the conservation of mass and axial momentum

td be written as

thtinuity
, P; - 0 m, - m,
cAJJ{J_A—t—i} + {JM «cl}-- ~[s1wyd ()

Ax1al lMomentum:

&Y ' ' [A,j]-_l { }- [2u {pj OJ} {J J= ]}

{a’ j- 1 [A 171 [[211 11T - [S]T[u* ]1 {w .‘

(12)

For reasons to be discussed in section 2 7, the
energy equation 1s approximated using a differencing scheme
which is spétially explicit and temporally implicit:

h.-h h;-h _
e e B

%’ \ T -1
§ | [AhJ_lj{w J_1}--,[83 [Atj_lj[cj_lj}+ {mJ}

[tn,_ 308105170, _,1]. (13)

ST
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In this differencing scheme (Fig. 2.2) each control
volume 1s bounded by two adjacent control volumes 1in the
axial direction and the interchange of mass, energy, and
momentum is allowed to occur between adjacent computational
cells in the transverse plane. A Taylor series expansion
of Equations (11), (127 and (13) shows that this differencing
scheme has a truncation error of 0 (Ax, At). Although many
other differencing schemes are possible, this scheme is the
only one that will be considered here. Finally, it must be
understooc that the transverse momentum equation has been
excluded from the preceeding discussion. This equation will
now be considered in more detall since a better knowledge
of 1ts structural properties as weli as the differencing.

v schemes that can be applied to it are necessary to gain a
'more comprehensive understanding of the methods to be

proposed.

2.4 Development of a New Spatial Differencing Scheme for

the Transverse Momentum Equation

The purpose of the transverse,momentum equatioﬁ is to
coupie the computational ‘cells together so that pressure
gradlents generated‘by the axial momentum equatlion can be
used as the driving forces for the transport of mass, |

energy, and momentum between computational cells in the transverse
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{n;.1) {mjﬂl\

. {PJH} Jj+1 \\ /
| | -

LA R

N\
% =

SN

-

{WJ +1} _

Fig. 2.2 Sample mesh grid to be used
for numgrical calculations

\
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plane. The purpose of this sectlion 1s to present a spatial
differencing scheme for the transverse momentum equation
which will be used as the basis for the numerical methods
to be déveloped. The idea of the differencing scheme 1is

to split the ﬁressure vector -and all the other transverse
friction terms which drive the cross flow in the transverse
momentum equatlon into a sum of spatially implicit and ’
explicit parts. By introducing the weighting function, 6,
having an arbitrary value between 0.0 and 1.0, the pressure
vector fP} and the cross flow resistance terms [Cl{w} in
Equation (10) can be written as

(P} = 8Py} + (1-0) {P,_-} (14)

[cliw} = 60C, 10wy} + (1-8)[C,_y1Mw, 1, (15)

where 0.0 < 8 < 1.0.
As a result, it is then possible to write thé transve:se\

momentum equatlon more "generally as

{wrv'vz} +{U*ij"u*j—le-l} + (%) {e[cjl{wj}ﬂ'l-e)
At . ' '

Ax
ECJ_l]{wJ_l}}= ()81 { 0{P;}+(1-0) {Pj-l}} ; (16)

where the significance of the proposed differencing scheme
can be seen by examining the form of the transverse momentum
equation for various values of 8; e.g.; by setting 6 equal

to 0.0, 1/2, and 1.0 respectively,
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"9 = 0.0:

W, -W u* w,-u¥*, .w .8
J "3+ J"3 T 3-1"3-14%+ (F)[cC Hw } =
{ At } { Ax : } L J-1 J-1

(ST {py_y) (17)

8 = 1/2: ‘
4{“:-&1 3 gu*Jer u*3_1w3_1}~+ © {[CJ]{WJH[CJ_IJ{WJ_I}

At Ax : 2

- '(‘:‘)[SJ{{'PJ} +2{PJ—-1}} , sy
8 = 1.0:

R ] £ i A TR I A IR ISR N IR [T

AT Ax LA B

(P Is1ee). | a9

Thus, 1t car be seen that an approachvhas been developed
which allows the cross flow distribution to be drivquby any
combination of the pressure fields that éxist at'thé’top and .
the bottom of eacﬁ plane of computational cells. By
choosing a value for 6, the pressure fields from adjacent
axial levels can be blended together in a manner that allows
the degree of coupling of the transverse and axial momentum
equations to be a function of the problem being solved.

This blending of the pfgssure fields tends to eliminate
sudden changes'iq;tﬁg transverse cross flow distribution
caused by discontinuities resulﬁing from the application

of the correlations for the pressure gradients at the inter-
face between flow regimes and allows more flexibility to

be used in modeling the transfer of momentum between the

computational cells.
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2.5 Development of a Pressure-Based "Theta Method"

2.5.1 Derivation of the Difference Equations for the

Pressure Field

Using the aforementioned difference equations, Egns. (11)
- @16) as the startinq point for the development bf the
proposed method, 1t should be noted that it is desirable
to construct a'procedure that ;imultaneousiy guarantees ‘
the conservation of mass and momentum at each axial elevation
of the core at each instant of time. This condition can
be satisflied by combining the continulty equation, Equation
(11), together with the axial momentum equation, Equation
(12), to~explicit1y eliminate the time dependent density
term,‘{%%}. The result of this substitution s a set of

matrix equations of the form ' .
[AJ]']‘ {mj'mj + [2u,10A ]‘1{’“1‘“‘1-1}+ [2u, 1A, ]'l[S]T{wJ}
At Ax . .
Pr=Pr 1 le o -1 T g
+ { Jij—i} {a J-l} + [AJ] [2uJ][S] {WJ}
[AJ]—I[SJTCU*J]{WJ}. - (20)

Since [AJ], [Aj]"l, and [uJ] are diagonal matrices, Equatilon
(20) can also be written, as
- - -1 - P~
(A, 7 m ™ b orow, 708,77 I ™™ b o+ 18R
J At J J Ax Ax :
~1panqT ) ' -
= ' ¥ . (21)
{a j-l}.[AJ] (s1°[u j]{wj} |
The transverse momentum equation, Equation (16), 1s then
solved for the cross flow distribution as function of the

pressure distribution giving
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u® W nt, w
b+ 5t o] o {28 [igal

+ ()(e-1)0c,_ M, 1} + (PIS] {é{PJ} + (1—e){1=3_1}},<22>

This syétem of equations can also be written in the form

w u*, ow
twy} = D17 {K%} +{ = '1] + (P e-1)[Cy_; 1wy ;)
s -1 |

u

#* -1
-1 (Ll 414 (8 |
where [DJ] = [At et (Z)GECJ]] . (24)
Sﬁbstitﬁting Equation (23) into Equation (21) to explicitly

eliminate the cross flow distribution results in the

following system of equations for the pressure field

m,-m e
[AJ]-l {'%'E'l} * Loy 108,17 { = 1} {J - l} -

- {a'J 1} - (a1 s1 T J][D ]'1{{3% —-1-‘—1—»"-—-}
-1 -1
_{e{pj} + <1-e){1=j_1}} . @5

Additional algebraic manipulation allows these equations to

be written in more compressed form as
L)

1+ oM, ]{P } = [I - (1-8)M ]{PJ 1}t {bJ} (26)
_ “lpqAT -1
where [MJJ = Ax(f) [AJ] [s1'[u* J][DJ]_ (s1, 27)
[I] is the identity matrix, and the vector {bj} is given by

X Ax -1 = 1 -1 _
{bJ} = Ax{a J-l} - (At)[AJ] {mj-mj} [AJ] [2uj]{mJ m

J=-1

}

e R AR R B L

PRI D




8 = 0.0

~ax[a, 171 5170u*, 100, 171 Ls) {Z-’%] +{u =1 -1}

~(§J(6~1)[Cj_l]{w3_l{} . l - (28)
Note that {bj}is a source vector containing terms which
contribute to the axial pressure gradient as thé result of
frictional forces, gravitational forces, and the spatlal

and temporal acceleration of the flow. In spite of the
seemingly complex structure of this vector, it should be

noted that it contains only one entry from each computa-

tional cell. Finally, the value of {mJ}iqlEquation (25)

is unknown and therefore must be initially estimated and

updated through iteration.

2.5.2 Discussion of the Difference Equations for the

Pressure Fleld

In order to more clearly comprehend the consequences
of the procedure that has been proposed, it 1is helpful to
write Equation (26) as oL B o
- {pg) = (I-!-GMJ]-]‘[I-(I-G)MJ]{Pj_l} + tI+6Mj]-1{bj'} (29)

and to examine the structure of the matrix equations governing

the préssure field {Pj} for various values of 6. Setting

8 = 0.0, 1/2, and 1.0 allows Equation (29) to be written

in the following three forms

- - . N . . - —— - .

= [I- ) | (30)
| {PJ} (1 MJ]{PJ_l} + {bJ}' ‘ 3
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8 = 1/2
3 -1 M M "l
{?J} = [I+§1] [I*?i]{?‘j_l} + [I+—21] {bJ} s (31)
@ =1.0

. = -1
(py} = (1w Thepy

R 83U O A o (32)

J

As discussed in section 2.4, these equations demonstrate
that a direct relationship exists between the form of the.
equations for the pressure field and the forces that aré used
to drive:the cross flow distribution between the computational
cells in the transverse plane. Setting 6 = 0.0 allows the
cross flow distribution to be driven by the pressure field

" that exlsts at the bottom of eadh plane of computational
cells. From Eduation (30) it can be seen that this results
in a differencing scheme which is spatially explicit but
temporally implicit. Choosing 6 = 1.0 means that thé cross
flow distribution 1s governed by the bressﬁreifield which
.exists at the ﬁop of each plane of computatidﬁal cells.
This in turn is ﬁumerically equivalent to requiring that
the system of equations to be solved for the pressure fileld
is fully implicit as denpted by Equation (32). Finally,
by setting 6 = 1/2, Equation (31) shows that it is possible
to generate a system of‘equations where the cross flow
distribution is driven by the average of the pressure
distributionsvthat exiét at the top and the bottom of each
plane of computational cellsl In this specific case, the

difference eduations are temporally implicit but have a




spatial component whose structure 1s analogous to that of
the Crank-Nicholson method. It should be noted that other
values of 8§ lead to other spatlal differencing schemes,

and 1n fact, a whole spectrum of these schemes can be

- generated from Equation (29) by selecting other values of

8. Finally, it should be recognized that reducing the value
of 6 1lncreases the dlagonal dominance of the coefficient
matrix, but does so at the cost of reduced numerical

stabllity (Section 6.3).

2.5.3 Derivation of the Cfoss Flow Distribution from the

" Pressure Field

When transverse pressure g;adients develop between the
computational cells at a given axial elevation, the’flpw |
field in the lattice becomes perturbed and a cross fiow
distribution 1s set up in order to equal?ze imbalances in
the radial pressure field. To account for theﬁeffects of
the cross flow distribution on the interchange of mass and
momentum between the computational cells, the cross flow
distribution must first be found from the transverse
momentum equation, Equat;on (10).. The pressure vector used
to drive the cross flow distribution in this equation is
found by blending the pressure field coﬁputed from Equation
(29) together with the pressure field from the previous

axial level to form the composite pressure field given

by Equation (14) as the numerical
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scheme sweeps downstream. The cross flow distribution at
successive axlal steps is then found from Equation (16) by

rewrlting it as

- *
w u .w
(w3} = [DJ]'I{ o or =t (%)(S-I)ECJ_l]{wJ_l}}
‘S >-'1 d
+ (?)[DJ] [s] {;G{PJ}+(1-B} {PJ_lf} s (33)

where .[DJ]'1 is the diagonal matrix defimed by Equation (24).
This additional step requires very little computational effort
since the 1inverse of [Dj] can be found by inspection. Finally,
it should be recognized that no éssumption has been made so

far with regard to 0; 1.e., 8 can still assume an arbitrary

value between 0.0 and 1.0.

'(~ 2.6 A Ccmparison of the "Theta Method" to the Numerical

Method Used by COBRA-ITIC

In order to more clearly comprehend the capabilities .
of the method that has been developed,>1t is instructive to
compare l1lts features to those of the method uéed by COBRA-
IIIC. | |

The starting point for the comparisom 1s the équéfion

used to compufe the cross flow distribution in the COBRA-

1

IIIC code
D1 0w 3, = o) s - (34)
where |
u* |
M1, = (2] + 0521+ (Pleyl+
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Ax($)[s1A,17 [[ZuJJ[SJT - [S]T[u*JJ] (35)
i1s the coefficient matrix that determines the transverse
flow field,

- * '
' w Uy Wy s ,
T {z%} + { = + ax(PsT | fa' -

cAJr? {’3%_;171} + czujn{f_;ig;} | (36)°
1s the source vector that drives the transverse flow field,
and the subscript c¢ refers to ﬁhe fact that these equations
are used by the COBRA-IIIC code. |

The éomparison of the two methods 1s begun by examining
the structure of the coefficient matrix used by each method
and the’consequence of these structural.properties from a
numerical point of view. A more detalled discussion;of
the meaning of the terms to be used 1s given in (713.

The analysis of Equation (34) starts by realizing that
EAJ], [uJ], and [u*j] are diagonal matrices. ‘With this
observation it is possible to write the cross flow coefficient

matrix more generally as

My, = [c;1011 + [0,1s1(s1” @0

- where [Cl] and [02] are matrices containing parameters that

are problem dependent, [I] 1s the identity matrix, and [S]
and ts]T are "interface or gap connection matrices" whose
purpose 1s to maintain a consistent ordering scheme between
the cells used to define the topolbgy of the lattilice and

boundarles used to define interactions between adjacent cells.
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Equation (37) shows that both the size and structure of the
cross flow coefficient matrix are determined primarily by
the ofder of multiplication of [S] and [S]T for the simple
subchannel numbering scheme shown in Fig. 2.3.

In these équations, the npmber of cross flows is
indicated by the symboi NF and fhe number of nodes at which
the pressure is to be found by fhe symbol NP. Here, as in
COBRA-IIIC, the cross flow is cénsidered to be positive when
the dominant direction of fluid flow is from cell i to cell
J, where 1 1s less than j. From Equations (38) and (39)'it
can be seen that [S] and [S]T are generally rectangular
matrices rather than square matrices since they represent
a topological situation in which there are considerably

more boundaries than computational cells:

& NP 4
1 -1 0 0 o 0 o o o]4%
] 0 1-1 00 0 0 0 ©
1 0 0-106200 0 0
o 1. 0 0-1 0 0 0 0O
0 01 0 0-10 0 0 -
0 0 0 1-1020 0 O
O 0 0 0 1-1020 0
[S}=15 0 0 ¢t 0 0-1 o of¥F
0 00 01 0 0-1 0
O 00 0 0 1 0 0-=-1
©o 0 0 0 0 0 1-1 0f
0 0o 0o 0 0 0 0 1-1fy
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(38)
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¢ NF y
1 o1 00 000 020 0 0 %
1 1. 0 1 0 0 0 0 0 0 0 O
0-1 0 01 0 0 0 0 0 0 O
0 0-1 0 0 1 0 1 0 0 0 O
(si¥T={o 0 0-1 0-1 1 0 1 0 o of NP (39)
0 0 0 0-1 0-1 0 0 1 0 O
0O 0 000 0 0-10010
0 0 0 00 0 0 O0-1 0-1 1
000000 0 0 0-1 0-1 |
Thus [S] 1s an NPxNF matrix whereas 1ts transpose, [S]T,
is an NFxNP matrix. Taking the product of [g5] and [S]T
for the subchannel numbering scheme shown in Fig. 2.3
results in an NFxNF matrix of the form |
NF =3 A
2-1 1-1 0 0 0 0 0 0 0 O
-1 2 0 1-1 0 0 0 0 0 0 O
1 0 2 0 0-1 0-1 0 0 0 O
-1 1 0 2 0 1-1 0-1 0 0 O
0-1 0 0 2 0 1 0 0-1 0 O
(syrs1T =0 0-1 1 0 2-1 1-1 0 0 0fyp (40)
0 0 0-1 1-1 2 0 1-1 00
0 0-1 0 0 1 0 2 0 0-1 0
0 0 0-1 06-1 1 0 2 0 1-1
0 0 0 0-1 0-1 0 0 2 0 1
00 0 0 0 0 0-1120 2-1
000 0 00 0 0 0-1 1-1 2}

It should be noted that the structure of this coefficient

matrix 1s very similar to the structure of the cross flow
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coefficient matrix contailned in the COBRA-TIIC code. The
primary difference 1s that the coefficient matrix used by
the code 1s modified by the addition of the diagonal terms
in Equation (35):

*
. 1 u
(3] + [0 + (Prc,] (31)

This modification generally improves the numerical properties
of the matrix, and in many cases, appears to provide the
diagonal dominance necessary to guarantee the success of
iterative solution techniques. However, the lteration 1is
relatively slow to converge, and 1s not much more efficlent
from a computational point of view than Gausslan elimination,
particularly for problems where the axial mesh spacing is

very large (i1.e., approximately equal to one foot), For

_ this reason, the cross flow distribution is found in COBRA-IIIC

by solving Eg. (34) by Gaussian elimination, and it is the
repeated application of this inversion technique to Eq. (34)
at each axlal level of the core at each instant of time that
1s primarily responsible for the long running time of the
code.

For the proposed mefhod, the coefficient matrix

governing the pressure distribution can be written as
1+ eMJ] : . : (42)
Since [I]is the identity matrix and,[MJ] is defined by

Equation (27), the size and structure of this coefficient

matrix is determined primarily by the order of multiplication
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of [S] and [S]T. Taking the expressions for [SJT and [S]
given previously and multiplying them tcgether in the propocsed

order gives

€ NP - >
2-1 0-1 0 0 0 0 074
-1 3-1 0-1 0 0 0 O
0-1 2 0 0-1 0-0 O
-1’0 0 3-1 0-1 0 0
[s17s1=|0-1 0-1 4-1 0-1 o]NP (43)
0 0-1 0-1 3 0 0-1
‘ 0 0 0-1 00 2-1 0
0 0 0 0-1 0-1 3-1
0 0 0 0 0-1 0-1 21,

Thus 1t can bé seen that the coefficlent matrix governing
the pressure fiéld has a structure which suggests that the
radial pressure distributlon obeys a type of Polssion
equatlon. This is a consequence of the fact that»the'solution
scheme is formulated to take advantage of the "primitive
variables" goverﬁing the flow field, and one cf them 1s the
pressure {pj}. Furthermore, since the diagonal entries

in Equation (43) are equwal in magnitude and opposite in sign
to the sum of the’off—diagonal entries in any row or bolumn,
the matrix has a2 much simpler and more.predictable band
strﬁcture than that of Equation (40). This numerically
desirable feature stemé from the fact that each computational

cell in the transverse plane at which the pressure is to be
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found is only connected to its nearest neighboring cells,
whereas in COBRA—IIIC? the crossflow across one boundary
may be affected by the crossflow across as many as six
other boundaries in the lattice of cells shown in Fig.2.3.
Thus 1t can be seen that the band width of the coefficient
matrix is reduced by approximately a factor of two if a
solution scheme based upon the pressure 1s used.

The primary computational advantage of the proposed
method lies in the fact that the coefficlent matrix governing
the pressure field, Equation (42), 1s a Stieltjes matrix;
that is to say, the matrix is a diagonally dominent,
irreducible, positive definite matrix with a simple and
predictable band structure for any non-trivial space step
and time step size. For consistent numbering schemes, the
convergence of standard iterative solution techniques for
matrices of this type can be guaranteed. Consequently,
it is now possible and advisable to find the pressure
distribution in the lattice by iterative techniques rather
than by the method of Gaussian elimination. In Chapter 5 it will
be shown that the use of an iterative solution scheme 1s often more
efficient than a direct solution scheme, and can save a conslder-
able amount of time and effort in the computation of the pressure

distribution.

2.7 Use of the Conservation of Energy Equation with the

Theta Method

The purpose of the preceding discussion has been to
develop a general numerical method for solving the equations

for the conservation of mass and momentum in fuel pin bundles
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and nuclear reactor cores. The energy équation,Equation (2),
was not considered explicitly because an understanding of

its structure was not necessary for the development of the
proposed method. However, after the equations for the
conservaéion of mass and momentum have been solved, the
thermal response of the fluid‘must be interfaced with the
hydraulics and the ene}gy transferred from the pins through
heat transfer coefficients. Th;s is generally done by
solving the energy equation, Equation (13), for the enthalpy
of'the f%uid at a hew axial level, hJ, using the value of

the enthalpy from the previous axial level, hj-l’ and the
rate of energy generation krown to exist in each computational
cell. The energy balgnce.is performed using the axial mass
flow rates; {mj}, found from a previous solution of the
momentum equations. Thus the sdlution Qf the energy equation
can be 1ookéd upon as an "outer iteration" in the tw6~step
solution procedure. Generally speaking, it would be necessary
to iterate between the energy equation and the momentum
equations at least once at each axial elevat;on to obtain

a self-consistent solution to the entire system of con—l
servation equations. This 1s especially necessary for
problems that involve co;siderable departures from operational
reactor conditions (i.e., moderately severe transients).

The relationship between the "outer iteration" scheme for

the energy equation and the "inner iteration" scheme for

the momentum equations is illustrated in the flow chart in

Figure 2.14.




Fig. 2.4 Flow Char: for Iterations Between
the Energy Equation and the Momentum Equations
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2.8 Boundary Conditions for the Theta Method

Since the theta method may be used to solve an initial
value problem in which the flow and enthalpy fields are
found by marching downstream between the iﬁlet and the
outlet of a reactor core or rod bundle, it is necessary
to specify the values”of the axlal mass flow rates, the
pressures, and the enthalpiles ét the inlet of each channel
to obtain a self-consistent soiution to the entire system
of conservation equations. Alternatively,Ait is possible
for the‘method to be formulated as a "boundary value approach"
in which the exit pressure may be specified and the inlet pressure
level 1s "floated" to give a uniform outlet pressure. In
elther case, the sequential nature o the solution procedure
allows arbitrary spatial and temporal forcing functions to
be applied to the system pressure, the inlet enthalpy,
the inlet mass flow rate, and the radial and axial power
distributions. The crossflow at the core iqlet is usually
assumed to be_zero, although more detailed crossflow
distributions may be prescribed if a better physical pictufe
1s required and enough experimental evidence 1is aﬁailable
to specify it. The axial iteration schemes that may be
appllied to deal with the difference equations used by the

theta method are discussed in more detail in Chapter 4.
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2.9 Drawbacks of the Theta Method for a Flow-Blockage

Type of Analysis

Whereas the coefficient matrix governing the pressure
distribution is a Stieltjes matrix for cases in which the
theta method is used to solve.for the pressure at level jJ
as a function of the p;essure ét level j-1 (see Eq. 26),
the methqd has the drawbtack thaﬁ it cannot be applied
rigorously to problems where thé crossflow 1is very large
because the terms in the axial momentum equation which
account for frictional and gravitational effects are
evaluafed at the bottom of a node rather than at the top
of a nodé by means of a relétionship of the form

Hm, 21~ {r,} (44)

{aj_lt} = {k -1

J J
This approximation is.acceptéble as long as the change 1in

the axial mass flow rate,Am = { } between the top -

-m
myTMy-1 =
and the bottom of a node is small, since an order of magnitude

analysls presented 1in greater detail in sectibn 3.1 shows

that -

{a '} = -{kjmjg} -1£,)

= -k, Hmy_y+am}? = (2, )

= -l g% -Gk} em_an +in®) ~(e)) (45)
or f{ag'}= ~l Hmy 1%} - {£,} =(a, ;') (46)
if Am<<{mj-l}
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However, in the event of a flow blockage, am can be

almost as large as {mj-l} , and the {aj-1'} ={ay'}

approximation cannot be justified a priori. To rectify

this limitation of the theta method, a more general numericaly
method called the MAT method (Modified and Advanced Theta Method)
will now be developed. Like the original theta method,

the MAT method also uses the concept of splitting the forcing
terms and the pressure fields which drive the crossflow
distribution in the transverse momentum equation into a

sum of spatially implicit and explicit parts. However,

because of the fact that the MAT method is based upon evalua-
ting the terms which account for the frictional and gravitational
effects directly at axlial level j, the method 1s inherently

moré stable and can consider probiemé in which the crossflow 1s
even larger than the axial mass flow rate. This feature of

the method gives it the capabillity to analyze flow blockages

and other types of problems that involve severe departures

from operatlonal reactor conditions. The numerical basls of

the MAT method willl be discussed in detail in the presentation

to follow.
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CHAPTER. III

3.1 The MAT Method

3.1.1 Derivation of the Difference Equations for the MAT
Method

It thé continuity equation, Eq. (11), given in

section 2.3 1s written as

. : - T : Ps—p
(m,} = {my_;} - ax{s170w)} - (A, 3(=Ledax (47)

it 1s possible to express the axial mass flow rate at level
J in terms of the axlial mass flow rate at level j-1 by
means of a relationship of the form

{mj} = {mj-l} + {am} ' ' (u48)

P P
where {am} = -ax[s17(w,} - ax[a,10-1d) - (49)
1s the change in the axial mass flow rate between the top
and the bottom of each plane of computational cells.
: Using this_relationship, the terms in the axial momentum

equation which account for the pressure drop due to frictional

and gravitational effects can be written as

= - 2“ - . .
{a '} = {kj}{mJ } {fJ}. (50)
2
= "{kJ}{mj_l + Am}°© - {fj} . . (51)
{kj}{mj-l + 2my_,4m + Am } {fi} (52)

where the{Amz} term is generally small enough to be discarded

for operational reactor conditions. However, because of the
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possibillity that{AmZ} may be as large as {mJ_l} 2

for cases in which there is a severe flow blockage, an
order of magnitude analysis* shows that it may not be
appropriate to construct a system of equations in which
the effects of the presence of the {Am} 2 term are
ignored. For the sake of numerical convenience, the

flow-squared terms are written-in the form suggested by

Rowe[7]:

‘Order'of Magnitude Analysis

If Am 15 very small compared to mj—l’ Eq. (52) can be
written as

2

2 2
{my 1} % + {2my_,om} + {Am}" = {m, .}
1 1 8 52
and when Am is somewhat larger,
{m }2 + {2m, ,Am} + {Am}2 ; {m, .} Zﬁ; {2m, ,Am}
J-1 J-1 Cd-1 J-1
1 -1 8 82 o
Note that very large values of Am require that
{m, 3% + {2m, -am} + {Aam®} = {m, }2 + {2m, -+Am}Am
J-1 J-1 J-1 J-1
1 1 1 12
= {m }2'+ {m,+m, .}Am
J-1 J 73-1

49
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(my}% = tmy ;1% + {2mg_;+am} an) (53)
and since
{Am} = {mj} - {mj-l} | | : (54)
the {Am}2 term can be retained by writing {mJ}2 as
2. 2 o _
Am,"} = Amy F7 + {my+my ;1 {Am} | (55)

The terms which account for the pressure drop due to

frictional and gravitational effects may then be expressed

-as .

"o 2
tay'} = ~li,Hmy ;1% - {k Hmg+my_ Yam -1, ) (56)

J J -1 J

.Applying the same reasoning to the temporal acceleration

term in the axial momentum equation zives

1

A ]-1 = o AT . = o
—i mymmgd = s mgemyp gy | .
T e n 1T N E (57)
B R AR Ry R Rl

and using the definition of Am giveh by Eq. (48), it is

possible to cast the temporal acceleration term into the

alternative form

. 1 “ _

[AIJ {mj_aj }___. [AJ]-l {imi} + [AJ ]"'l {ml_l-mz}
‘ At

At At (58)

Substituting Egs. (56) and (58) into the axial momentum
equation given previously allows the conservation of

momentum in the axial direction to be written as
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Py PBi_ ' Pi=Ps | -1
{—-1——1-——‘3;( 1} = {?uj_—iJAt }4- [AJ] { }

(ATt ¢
-{kj}{mj - ) -.{*z%- + {kJ}{mJ-%mj_l}} (am} ©

-1 - T T, ¥ ' "
+ [Aj]- [EZUJ][S] - [s] EUJ ]1 {WJ} , .(59)
and since the continuity equation, Eq. (49), requires that

{Am} = -Ax[S]T{wj} - Ax[Aj] {P—J:-fi}

At (60)

. 1t is possible to simultaneously guarantee the conservation

of mass and momentum at each axial_ level of the core at each

instant of time by writing Eq. (59) as

{Efj'?;[—l} (a. ]-l{ Q"ng }- {¥ }{rnJ | I {fj}
Ax R

+ {f(zuj + ﬁf + Axk Ay (motmy 1)) (Eiggiij}

-1 T T
+ [44] chuj At][S] ~0577 Ly, ]J Gy}

+ Ax[Kj(mj-M 1;_[ [S] {w } (61)
Solving the transverse momentum equation for the crossfilow

distribution as a function of the pressure distribution gives
1)

¥ . — *
1, ¢ s D AR T B B B T
[‘5‘5 t g %’ef%]] o} -{zﬁs}* {‘H?L}

+ ($)(e-1)0C,_1wy_13 + (DIs:ap) 4 (1-6){1’5_1}} 62)
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This system of equations can also be written in the form

g 5)(p, 373 - |
tw} = [0,1710,} + (9)0p,17Ls] {B{PJ} (1- 8){PJ 1}63)

where [D ] -1 . 1s the diagonal matrix defined by | ‘. é 4
o , -1. , ' o

u . . ) .

[}w 3+ (Pelc ]] U (64)

and the other forcing ‘terms in the transverse momentum

equation are represented by ‘ : .

»

- * _ . B
W u w '
- R J"l "l Sy .
{OJ} N {{E%}' {———Ki—l—;} + (f)(e"l)[cj—ljfwj-l;} : (55)
Finally, substituting Eq..(63) into Eq. -(61) to explicitly

eliminate the crossflow distribution results in thé following.

systenm of fundamental equations for -the préssure field

(py-py_y} = 45 AT MR om0} - axlie Himg 2} - axf))

+aE-lps-F,}{2u, + IF + Axkjﬂ.j(nj-l-mjbl) )
raxlag 77 [ L2ugr 8%+ axtagdg(nomg_ 0577 (1%, "1]
{[le'lioj} + (30,17 (8] {e{Pj} : <1-9){P3-i}} (66)

Additional al g braic manlpulation allow; these equationg
to be written in more comp”essed form as

[T+ (-00N)Jp; 1} = [T - oMy 10pyd + ()} (67)
where I is the identity matrix,

nf3 = axc$) 14,3720, 3057700, g8

- (a1 s” [uj'mjrl{s:f_] - (68)

is a coefficient matrix governing the pressure field,
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!

= Axp, 4=1= - 2y -
- {bJ} = At[AJ] {mj’mj-l} Ax{kj}{mj-l } - ax{f,}

J

Ax - Ax .
-1 T -1 -1 T * -1
i + AX[AJ] [BJ][S] [DJ] {OJ} - Ax[AJ] [s] [uJ ][Dj] (égg}

is a source vector thet contains terms which contribute to

" the axial pressure gradient, and , '
= ' Ax ; |
(8,1 = [[Zuj] + Ax Ax[AJ]kJ(mj-i-mJ_l)] (70)
1s a matrix which is used in the construction of the source

vector and the coefficient matrix governing the pressure field.

3.1.2 Discussion of the Difference Equations Used by the MAT

Method
It is Hnteresting to observe.that by simply manipulating
<Z: .'theAdifferehce equations into a different form before eliminating
the crossflow distribution, it has been made possiﬁlé to
construct a system of equationskfor the pressure field in
which the order of appearance of the‘weighting functions 8
and (1-9) have been reversed. As a result 6f the inter-
change of these weighting functions in the coefficient matrices
operating on {pj} and {pj-l} , a numerical procedﬁre has
been constructed in whfbh a value of 6 = 1.0 corresponds to
a differencing scheme which is spatially explicit, and a
value of 8 = 0.0 corresronds to a differencing scheme which
1s spatially impliicit. Setting 6 = 1/2, however, 1is still
equivalent to requiring that the difference equations have
- . a spatial component whose structure 1s analogous to that

of the Crank-Nicholscn method.
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One of the primary computational advantages of the
MAT method is the fact that the coefficient matrix
operating on{pj_l} is a Stieltjes matrix, so that it is
now possible to solve Eq. (67) for {pj-l} using an
iterative solution technique such as the method of
successive overrelaxation. Moreover, Eq. (68) shows that
[MJ'] can be written as a sum of two matrices [MJ] and

[MJ"]:
[M‘;] = [MJ] + [MJ"] . (71)

s P -1
where [M;] = -Ax(g)[A;17"[S17[u, 1(D,17"[S] (T

i1s the coefficient matrix which appears in the equations
of the origirnal theta method, Eq. (27), and
| . s -1 T -1 :

M.,"] = Ax(3)[A B S D S .o

[M,"] (04,1778, 1(s1°[D; 177 (5] e
is a new coefficient matrix whose purpose is to modify the
pressure field to account for the presence of the higher

-order terms, {2m, ,Am} and {Amz} in Eq. (52). Both [MJ]

J=-1
and [MJ"] are NPxNP matrices because their structure -is
determined primarily by the order of multiplication of
[S]T and [S]. Similarly, it can be seen that the source
vector {bJ'}, which is responsible for generating thé
axial pressure dlstribution,again contalns only one entry

from each computational cell.
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3.2 Boundary Conditions for the MAT Method

The fact that the equations used by the MAT method
are based upon solving for the pressure at axial level j;l
as a function of the preésure.at axial level ] makes it
possible to dévelop a cohputafional procedu: in which 1t
is not necessary to know the form of the inlet pressure
distribﬁtion»to find the flow and enthalpy fields. Instead,
thé exit pressure differentials between channels may be
sét eqﬁa} to zero in the manner outlined in section 4.1.3
and thé inlet pressure distribution may be "floated" to
give a'uniform outlet pressure. Thus the MAT method has
beén const:ucted to use exaétly the same set of boundary
conditions for the system pressure that are used by the
crossflow approach in the COBRA-IIIC code. Since all the
conservation equations used by the ﬁAT method are to be
solved sequentially rather than simultaneously,'it 1s
also necessary to specify the inlet ehthalpy.distribution,
the inlet mass flow rates, and the inlet crossflow dis-
triﬁution. The crossfl&w at the core inlet is usqally
assumed to be zero, although more detailed grossflow dis-
tributions may be presc;ibed if a better physical picture
is required and if there is enough experimental evidence
avallable to specify it. The "ﬁoundar§ conditions™ that
are to be used with the methods discussed in this thesis
are summarized in Table 3.1. Thus it can be seen that

only the adaptation of the MAC method used by COBRA-IV-I,

- Py
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Table 3.1. Boundary Conditions for Various Types of Solution Technilques

Type of Code or Method

COBRA-II
(Initial Value Approach)

Inlet Conditions

Outlet Conditions

r——
—

Specify p,m,w, and h

Outlet pressure distribution
1s floated

COBRA-IIIC
(Boundary Value Approach)

Specify m,w, and h
Inlet prossure distribution 1s
"floated"

[S1{p}=0 (Outlet pressure is
set equal to a constant)

THETA Method
(Initial Value Approach)

Specify p,m,w, and h

]
Outlet pressure distribution
1s floated

THETA Method
(Boundary Value Approach)

Specify m,w, and h
Inlet pressure distribution is
"floated" :

[S]1{P}=0 (Outlet pressure is
set equal to a constant)

MAT Method
(Initial Value Approach)

Specify p,m,w, and h

Outlet pressﬁre distribution
1s floated

MAT Method
(Boundary Value Approach)

Specify m,w, and h
Inlet pressure distribution 1s
"floated"

[S1{p}=0 (Outlet pressure is
set equal to a constant)

COBRA-IV-I
(True Boundary Value
Approach)

Specify m,w, and p at the core
inlet

Specify m,w, and p at the core
outlet

19))
O
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which is a true boundary value method, requires a knowledge
of the pressure distribution at both the inlet and the

outlet of the core.

3.3 A Comparison of the Numerical Properties of the MAT

Method and the Theta Method

Although the theta method has the desirable humerical>
property that it works with a Stleltjes matrix when 1t is
used to solve for the pressure at axial lewvel J as a function
of the préssure at axial level 3—1, the MAT method has the
advantage that it is more suitable for solwing the inverse
of thils problem (i.e., finding the pressure at axial level
J-1 as a function of the pressure at axial level J) because
the coefficient matrix ' :

[T+ (1-0)M,'] . | o
used by the MAT method 1s a Stieltjes matrix for ﬁhis'case.

This difference between the properties of the methods
1s extremely significant from a numerical point of view. This is
because the solution scheme in COBRA-IIIC attempts to |
drive the crossflow distribution at axilal levél J by the
pressure differences evafuated with respect to axial level
J=1, whereas the solution scheme used in COBRA-II is based on the
inverse approach of driving the crossfléw distribuﬁion by the
pressure field at level j. Thus,.thé theta method
i1s similar to the initial valuevapproach used in COBRA-II

(see section 4.1.2), and the MAT method more closely resembles
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the "boundary value approach" used in COBRA-IIIC. However,
because of the better approximation to the flow squared
terms used by the MAT méthod,and the fact that 1t is not
formulated as an initial value approach, the MAT method

has been found to belconsiderably.more stable (see Section 6.3)

- and can be applied riéorously to problems in which the

diversion crossflow becomes even larger thén the axial mass
flow rate. Finally, it will be shown in ﬁhe sections to
follow that the MAT method can be extended very easily to
deal with situations in which flow disturbances can be
propaéated several hodes upstream, whereas the theta

method 1is not nearly as stéble or as efficient when it 1is

applied to problems of this type.
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CHAPTER IV

4.1 Axial Iteration Schemes for the Theta Method and the MAT

Method

In order to implement the numerical methods which
have been developed in this thesls iInto a reactor thermal
hydraulic analysis code,'it is necessary to consider the
types of axial iteration schemes that can be applied to the
difference equations used by these methods. This requires
an in—depth analysis of each of these schemes‘with respect
to the physical assumptions they use, their computational
efficiency, and their compatibility with different kinds
of boundary conditions. Since the axial iteration schemes
used by reactor thermal hydraulic analysis codes are generally
cléssified as éither (a) single pass schemes, (b)‘ |

single pass schemes whigh are locally iterative, or (c)

multipass schemes, the primary features of each of these schemes

will now be considered separately.

4.1.1 Single Pass Axial Iteration Schemes

Single pass axial iteration schemes are realiy nothing
more than marching techgiques in which the initial conditions
at the reactor 1inlet are given and in which a solution is
obtained by marching downstream through the lattice in the
axial direction only once. These schemes are extremely
efficient from a computational point of view because they

usually involve solving an explicit energy equation and
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an implicit or explicit form of the momentum equations only
once at each axial level of the core. However, they are
generally considered to be the least accurate from a

physical point of view because they do not contain a
mechanism for correcting errors that may be propagated through
the sqlution of the difference equations as the result of

an inaccurate initial guess of éither the pressure, the
enthalpy, or the.axial mass floﬁ rate at each axial elevation
of interest. For this reason, it is belleved that a

single péss axial iteration scheme is not the most appropriafe
scheme to be used with the methods that have been developed
here, although it should be pointed out that well known

codes such as CHIC-KIN [14] are based on single pass

akial iteration schemes.

,4.1.2 Single Pass Locally Iterative Axiai Iteration‘Séhemes

The next level of sophistication that may be 1ntroduced'
into a reactor thermal hydraulic analysis co@e is a single
pass, locally iterative axlal iteration scheme. This type
of iteration séheme is based on the premise of sweeplng
downstream only once, but differs from a true marching
technique because it performs additional iterations on the
flow or pressure filelds at specific axial planes in the core
where these fields do not converge to g specified tolerance
after the first iteration. Some iteration schemes of this type, such
as those contained in HAMBO [6] and MIXER [15], attempt

to equalize transverse pressure gradients at each axilal
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elevation in the core while the numericai scheme sweeps
downstream, whereas the lterative scheme used in COBRA-II,
for example, is slightly more realistic because 1t 1is based
on the assumption that appreciable transverse pressure
gradients can exist across a fuel pin bundle or a reactor
core and that these pressure gradients are the primafy
driving force for the transverse crossflow distribution.
Thus the techniques used in thé HAMBO and MIXER codes would
be expected to be applicable to closed bundles, where
transvefse pressure gradients are fairly small, whereas

the crossflow approach used by the COBRA series of codes
would be expected‘to be more appropriate_for analyzing

the "open lattice" found in a PWR core, where transverse

pressure gradients can sometimes be significant. Generally

speaking, locally iterative schemes are just slightly more

expensive than single pass schemes because they require

- additional iterations to be performed only at those

planés where the solution initially fails to converge, but
these schemes are generally much more accurate from a
physical point of view, particularly in problems where

there 1is boiling, since® they p:ovide a mechanism for correcting
errors in the initial estimates of the pressure fields

and the flow fields at selected axial ‘elevations in the core.
The original version of the theta method‘and the numerical

scheme used in COBRA-II are both examples of methods that
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are suitable for use with a single pass, locally iterative
axial iteration scheme. Although the continuity equation

and the momentum equations used by the theta method are

time dependent and are applicable to‘ﬁére complex situations
than thé equations used in COBRA-II (thch are only able

to handle steady state.problems.jthé procedures applied

to solve both sets of equations, as illustrated in the flow
charts in Figs..h.l and 4.2, afe essentlally the same. After
initial values of {p} , {h}, {w} , and{m} are established

at the éore inlet, a differencing scheme 1is constructed

in which an energy equation is solved explicitly for the
enthalpy{hj} at level ] as a function of the enthalpy

{hy_1} at level j-1. ‘The values of{my_;}, {py_;}, and

{Wj-l} are assumed to apply at level J for the purpose of
evaluating the fluid properties. In COBRA-II an eqﬁafion
derived from the cémbination of the axial and transverse
momentum equations is discretized using a backward spatial
differencing scheme, and the equation is solved directly

for the crossflow distribution {wJ} af level J as a function_
of the values of {mj_l}, {wj-l}’ and {pj—l} at leQel J-1.

The newly computed values of {WJ} are compared with the old
ones to determine if alllthe crossflows have converged to
within an acceptable tolerance. If cohvergeﬁce does not
occur, a flag 1s set up within the program to perform another
iteration within the loop at the axial elevation of interestf

Since the new value of {w,}is quite sensitive to the old

J
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Fig. 4.1 Flow Chart for COBRA-II START ‘
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Fig. 4.2 Flow Chart for the Theta" | START

Method
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one, {Wj} -1s modified according to the algbrithm

3 (%)

Aw }(k) = 1/2 {w }(k'l) + 1/2 {w

3 j (75)

J

to presumably aécelerate the convergence of the iteration,
where k and k-1 are iteration indices for the crossflow at
the same éoints in space and‘time; This value of the
croséflow is thcen used to update the values of the axial
mass flow rates via the continuity equation, and if
convergence does not occur, the new values of the axial
mass flow rates are used to.ﬁpdate the coefficients in
the differenceequations to be solved for{wj}. If convergence
does occur, the pressure {pj} 1s computed from the axial
momentum equation as a "back calculation”" and the numerical
scheme is aliowed»to sweep downstream to the next axial
level. | | '

Because of the fact that only the very simplest form
of the transverse momentum equation ;

tclwlw} =[s1{p} . (76)
is used in COBRA-II, the coefficient matrix of the difference
equations used to compute the crossflow distribution is almost
singular, and it 1s negessary to impose an upper 1limit
on the space step size for a given value of the crossflow
resistance coefficient [C] to prevent transverse flow loops.
On the other hand, because of the fact that the values of
{WJ} are updated peribdically to converge the local axial
mass flow rates, 1t is alsé necessary for the largest

elgenvalue of the coefficient maprix governing the iteration
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on {WJ} to have an absolute value of less than 1.0.

Thls 1mposes another lower limit on the acceptable size

of the axlal mesh spacing for a given value of the crossflow

resistance coefficlent:

2[¢] {w, ) o
(510517 Cu*]
where [S][SJT[u?] is a matrix containing the axial velocity

Ax >

of the fluid carfied by the diversion crossflow. If this

second condition 1s not satlisfied, errors grow in the flow

solution and flow reversals may occur in an attempt to

satisfy fhe momentum equatiohs. Fbrtunately, this minimum

value ofAx 1s much smaller than the values (i.e., 1 inch tO'S

inches) that are usually desired for rod bundle calculations.
The theta method can be formulated tp use ess?ntiaily

.the same numefical procedure to govern the computatibn of

the flow and enthalpy fields, except that the idealof the

. method is to construct a system of differencé equations

which can be solved directly for the pressure fields, so

that the computation of the crossflow distribution is only

a "back calculation."” The restriction on the minimum

size of the axial mesh“spacing is avoided because the coefficient

matrices governing the pressure field at each axial level

of the core can be shown to be diagonélly dominant for

any value of the space step size.'bReducing the time step

size simply increases the diagonal dominance of the coefficient

matrix and accelerates the rate of convergence of the
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iteratlion. Consequently, the theta method allows a more
complex system of conservation equations to be solved more

efficiently without experiencing the major drawbacks of

the initial value approach used in COBRA-II.

4,1.3 Multi-Pass Axial Iteration Schemes

’For certaln types of problems it is belleved that a
more consistent picturé of physical reality can be obtained
by constructing a "multipass" axial iteration scheme
in which the flow and pressure fields are found by marching
downstream several times in succession between thé.inlet
and the.outlet of the core and iterating on the flow fields
until the change in the mass flow rates formed from successive
axial iteratlons i1s less than some prescribed convergence
criterion. This type of marching schéme is simply a
generalization of a single pass locally iterative ﬁethod‘
in which an attempt 1s made to improve estimates of the
flow and pressure fields on each sugcessive.sweep through
the core. However, it is questionable in many cases
whether this procedure is actually necessary becaﬁse it
involves updating the walues of the variables at every point,
although there may be only a few points (out of several
thousand) where the iteration initially fails to converge.
The primary motivation for using this type of axial
iteration scheme is that it has .the capability to propagate

information from downstream locaticns to upstream locations
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at the rate of one axial mesh point per iteration.
Consequently, the effects of blockages and bulk boiling
can be felt upstream of the points at which they actually
occur 1f é backward differencing scheme, Such as the one
used in COBRA-IIIC, is applied~to the pressure fields in
ﬁhe momentum eq&ations. MAT method and the COBRA-IIIC
method are similar to one another with respect to their
use of boundary conditions on the system pressure and the
computational procedures that can be employed to determine
the flow and enthalpy distributions. Both methods may be
based upon computing pressure differences rather than the
ébsolute of the pressure, and a "boundary value" type of

solution may be obtained with either method by updating

" the inlet pressure distribution on successlive axial iterations

through the core while the inlet mass flow rates and the
system outlet pressure are assumed to remain‘cbnstant.
Thus, neither method requires an explicit kﬁowledge of the
inlet pressure distribution to begin a calculation. As
shown in'the flow chart in Fig. 4.3, a COBRA-IIIC computation
1s begun by sweéping ﬁfom the inlet to the exit Qf each
channel. With inlet information on the flow, crossflow,
and enthalpy distributions given, the enthalpy can be
advanced from axial j-1 to axial level J by solving the
same explicilt energy equation used by the MAT method,

Eq. (13). For the first axial iteration the flow rate

{mJ} at level J is set equal to the flow rate {m

J—l} f#om
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level jJ-1; otherwise, the previous iterate is used. A

system of equations for the crossflow distribution is

generated by combining the axial momentum equation, Eq. (12),
with the transverse momentum equation, Eq. (16), and the
continuity equation, Eq. (11), to eliminate the lateral
pressure difference‘ks] {pJ—l} at level Jj-1. The lateral

pressure difference [S] {p,} at the top of the node 1s then -

J

set equal to zero, and thils system of equations 1s solved

directly for the crossflow distribution {wJ} using a first

orde; implicit differencing scheme to approximate

the spatial and temporal'derivatives [7];‘ The fact

that the lateral pressure differences at the top

of each node are initially set equal to zero does not mean
that the COBRA-IIIC code uses an iterétion scHeme to
equalize thése differences at the top of each plané Qf _
computational Eells in the core, since the lateralypressure
differences are found by a "back calculation” after the cross-
flow 1s driven by an initial estimate, {S].{pj}-[s]{pj_l} ,

of the lateral pressure difference at each axial elevation.
The axlal mass flow rates {mj} at level ] are updated using
the continuity equatioﬁ, Eq. (11), and the numerical scheme

is allowed to sweep downstream to the next axial level,

where tﬁis entire procesé is repeated again. When the
calculation reaches the exit of each channel, a check is

made to see if the flow distribution has converged at each

mesh point to the tolefance which was originally specified.
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- If convergence has been achieved, the computation stops;
otherwise, the entire computation is repeated again starting
at the first axial level (e.g., the core inlet), and
sweeping downstream to the last axial levei (e.g., the core
outlet). During the second and subsequent iterations, the
ﬁost'reéent‘values of the axiai méss flow rates are used
in the equation for the computation of the crossflow
distribﬁtion. This eliminates the uncertainties thét were
introduced into the solution by estimating the value of {mj}
for the first iteratlion. However, none of the boundary
conditions at the inlet of the core are chénged because they
are assumed to be known before the solution begins. Oniy |
the inlet rressure distribution(ﬁhich»is not a boundary
‘condition) is "floated" to adjust for changes in the total
préssure drop through the core that are created by successively
better estimates-of the crossflow distribution. The |
number of axial iterations required for this:prOCedure to
convergé depends upon the type of problem being solved,
and is obviously also a function of the flow convergence
criterion that 1is used,since the distance the pressure
differencé [S]{p} is p;opagated upstream depends upon the
amount the axial‘mass flow distribution is perturbed by.
the presence of grids, blockages, or Ehe Incidence of boiling
at downstream locations. |
The numerical procedure that must be implemented to

allow the MAT method to be used with a multi-pass axial
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lteration scheme 1s essentially the same as the procedure
described above. As shown in the flow chart in Fig. 4.4, the
energy equation, Eq. (13), 1s solved explicitly for the
enthalpy {hJ} at axlal level J using the value of the
enthalpy {hj;l} already computed at axial level J-1.

The momentum equations, Eqns. (12) and (16), are then
combined'together with the coptinuity equation,(Eq. 11),

to generate a system of equations Eq. (67) for the pressure
distri?ution'{pj} as a function of the axial mass flow rate
{md}. The values of {mj} in both t he source vector and the
coefficient matrix of these equations are unknown, but

they can be initially estimated and updated using the

iterative p=ccess described previously. To perform an

" axial iteration, the conservation equations used by the

MAT method aré solved at each axial level as the solution
scheme sweeps downstream between the inlet and the
outlet of each channel. As in the original version of the
theta method, the pressﬁre distribution {pj—l} found by
solving Eq. (67) is blended together with the pressure
field ij} from the top of each axial level to form the
composite pressure fié&d given by Eq. (14): N

{p} = olpy}+(1-0){p;_;} | . (78)

The crossflow distribution at each axial elevation is then
found from the transverse momentum equation by rewriting it as

- -1 s -1
twg} = [0,77100,) + (PO, 17 s] {atpy} + <1-e>{pj_l%(79)

J J
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where [DJ]-l is the diagonal matfix defined by Eq. (64)
and {OJ} is a vector éontaining the other forcing terms
(see Eq. (65)). As indicated previously, the additional
step requires very little computational effort because the
inverse of [DJ] can be found by inspection. Thus the
pressure distributich is found‘difectly at each step in
the iteration while the compuéation of the crossflow
distribution is a "back calculation." As in COBRA-IIIC,
the value of {pj} (or equivalently,'the value of the
1aterai pressure difference [S]{pj}) in Egns. (665 and
(79) i1s not initially known, but 1t can be set equal to a
constant (such as zero to avoid the necessity of computing

the source term [I-GM']{pj}) for the first axial iteration,

“and then updated so that its new value can be used for

successive iteratidns. Because of the fact that the MAT
method applies a backward differencing scheme to the
momentum equations, downstream effects can be propagated

upstream at the rate of one axial mesh point per iteration.

4,2 Considerations for Transient Situations

In both the COBRA:IIIC approach amd the MAT methodology,
steady state caléulations are performed by setting the time
step At equal to some arbitrarily 1arée value, since the
difference equations used by both metheds are temporally
implicit and inherently stable for large time steps.

Transient calculations are performed in the same way but
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for a selected time step size At. "Boundary conditions"
and other forcing functlions are set to their desired
values at the beginning of each new time step; then,

the calculation sweeps through the core for the number

of axlal iterations needed to achileve a convergént flow
distribution. The converged Solution is used for the new

initial condition and the same procedure 1is continued for

all time steps until the end of the transient is reached.
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CHAPTER V

5.1 The COBRA-IIIP/MIT Code

The érevious chapters of this thesis have been concerned
primarily with discussing the mathematical formalism upon
which the numerical meéhods that have been developed are based.
The purpose of this chapter is to compare the computational
efficiency of these methods to one another and to outline
the way in which these methods have been integrated into
the compufational logic of a computer code called COBRA-IIIP/MIT.
As discussed in detail in ah'earlier publication [16],
this code 1s based upon the same conservation equations and
physical models that are used in COBRA-IIIC, but due to im-
provements 1in the method of cddihg, and the use of the'
numerical methods thaﬁ have been developed in this thesis,
it will be shown that it is now possible for the code to
solve much larger problems than previous codes with much
greater speed. | _

The first version of the COBRA-IIIP/MIT code was
based upon the theta method outlined in Chapter II. This
version of the code was saitable for modeling operational

reactor conditions where the crossflow was less than 5 or

10% of the axial mass flow rate, but was.not designed or was

- ever intended to be used to analyze the effects of severe

flow blockages. This was primarily because the {aj-l'} =

{aJ“} approximation outlined in section 3.1.1 could only be




Justified a priori for cased in which the "higher order"

{2mj_lAm} and {Amz} terms in the axial momentum equation
could be ignored. When problems are encountered where the
crossflow becomes nearly as large (or larger) than the axial
mass flow rate, the {aj,l'} = {aj'} assumption 1s presumably
invalidated, and better approximations to the flow-squared
terms, such as those used by the MAT method, have to be
made. Consequently, a more general version of the COBRA-
IIIP/MIT code was set up and in this version of the code,

a computafional algorithm was developed in wﬂich the con-

servation equations were solved by the MAT method rather

than by the theta method.

5.2 Rational for the Axial Iteration Scheme used by the

COBRA-IIIP/MIT Code

Although the MAT method has been shown to be compatible
from a numerical point of view with multipass axial iteration
schemes in which infdrmation is propagated from downstream
locations to upstream locations at the rate of one node
per iteration, this type of axial iteration scheme is not
contained in the latest version of the code. This is because
it 1is believed to be computationally wasteful to iterate
over the entire axial height of the core many times in
succession if there are only one or two points (out
of several thousand in some cases) where the iteration

initially fails to converge. Further, it is believed that
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this computational procedure must be avoided:1if future-
improvements are to be made to the MEKIN code [17] especially
since the use of a thermal hydraulic method with a multipass
axial iteration scheme can ea;ily cause the running time of
the code to become prohibitive if it is applied to problems
where a large number of.axial iterations have to be performed
during each sweep between the nedtronics and the thermal-
hydraulics([18]. Consequently, to maintain a reasonable
balance between computational efficiency and physical accuracy,
the MAT method has been implemented into COBRA-IIIP/MIT as

a single pass, locally iterative method. = Thus additional
iterations are only performed at those planés in the core where
they are needed. This type of a#ial lteration scheme

coupled to the inherent computatidnal efficiency of the MAT
method has enabled the code to solve problems having as many
as 625 channels with arbitrary geometricél shapes, ahd with

no limit to the number of time steps or spaceisteps that can

bé ﬁsed. However, because of the fact that thé backward
differencing schéme discussed in section 4.1.3 has been
retalned in this application of the MAT method, the new version
of the COBRA-IIIP/MIT code does not require an explicit
knowledge of the inlet pressure distribution to obtain a
meaningful solution to the entire system of conservation
equations. Thus the boundary conditions required to run

the code are now exactly the same as those used by COBRA-IIIC.
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5.3 Solution Schemes

5.3.1 Iterative Methods - Successive Overrelaxation

Since the stucture of the coefficient matrix which
governs the pressure fleld in each of the methods that has
been developed is a strong function of the geometrical
arrangement of the cells in the lattice, the types of
numbering schemes that can be applled to these cells can
have an important effect upon the overall computational
efficiency of the methods. For example, in cases where
the cells 1n the lattice are arranged in rectangular arrays,
both of these coefficilent matrices will be diagonally
dominant, positive deflnite, irreducible matrices if the
cells are numbered consistently (i.e., either row by row
or column by column as shown in Fig. 5.1) and if each cell
1s connected to no more thén four other neighboring cells.
In this case, the entries in each matrix can be ignored
1f they have a value of zero, and the remaining entries
with non-zero values can be compressed into a 5-striped
array in the manner shown in Figure‘5.2. The pressure
distribution may then be found by applying the method of
successive overrelaxation to the non-zero entries within
the array. The successlive over-relaxation in COBRA-IIIP/MIT
is carried out on a pointwise basis to account for the fact

that the cells may have different sizes and geometrical
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Fig. 5.2 Five-Striped arrays used for
successive overrelaxation
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arrangements. However, it 1s recognized that it may be
more desirable for rectangular geometries to carry out
the relaxation line by line. The relaxation factor
governing this iterative scheme may be supplied by the
user as part of the input data required to execute the
code, or it may be computed by the computational sub-
routines buillt into the code itself. The optimum
relaxation factor is found by monitoring the behavior of
the residuals formed by taking the difference between
successive iterateé of the pressure field, and applying
the method of Carré [19] to infer the value of the
relaxation factor which minimizes the spectral radius

of the iteration matrix.

5.3.1.1 Successive Overrelaxation for Assembly-Sized Nodes

It has been found that the optimum relaxation factors
for both the theta method and the MAT method are a strong
function of the ratio of the axial mesh spacing (pAx) to the
cross-sectional flow area"[AJ] of the cells. For an axial
mesh spacing of six inches and a flow area representative
of an entire PWR fuel assembly (i.e., =40 square inches) the
optimum relaxation factor is usually less than 1.1, which
Indicates that the spectral radius of the iteration matrix

is close to 0.0, and that errors introduced into the iteration
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are damped out very quickly [20]. For problems of this
type, the transversé pressure distribution usually converges
to three Qecimal places in less than eight radial iterations,
regardless of the shape of the radial or axial power
distributions and the number of-rdd spacers (i.e., grids)
oriented pérpendicular go the direétion of the flow.

Table 5.1 shows the number of "inner iterations" needed
to converge the pressure field to three decimal places as
a functlion of axial poéition for a reactor core 120 inches
high in which only one computational cell is used to represent
each fuel assembly in the tfansverse plane.  The core
has five different types of grids and 128 fuel assemblies.
An axial mesh spacing of six inches is used fbf this case.
The rapid convergence of the pressure field shown here is
indicative of the con&ergence rates of both methods when
they are applied to'préblems in which it 3s desirable to
repreéent large numbers of fuel assemblies explicitly.

5.3.1.2 Successive Overrelaxation for Subchannei-Sized Nodes

It 1s also necessary in reactor analysis to consider
cases in which the method of subchannel amalysis is used
to represent each subchan;el by an individual computational
cell. Several cellé that may be used for thils purpose are
shown in Fig. 5.3. For problems cf this.type, the ratio of
the axial mesh spacing tothe cross-sectiomal flow area is

much larger for a given value of Ax than when one cell is

used to represent an entire fuel assembly. As equations (26),




Table 5.1. Number of Iterations Needed to Solve Problems

with Assembly-Sized Cells

Node Number Axial Elevation Number of
L (inches) Iterations

1 6 6

2 12 6

3 18 7

b 24 6

5 30 8

6 36 7

7 42 6

8 48 6
9 54 6
10 60 6
11 - 66 T
12 72 6.
13 78 6
14 - 84 8
15 90 7
16 96 6
17 , lo2 6
18 108 6
19 114 6
20 120 8
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Fig. 5.3 Cells for the method of subchannel analysis
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(27), (67), and (68) show, the large value of this ratio
tends to make the sum of the off-diagonal terms 1n the
coefficlent matrices almost comparable in magnitude to the
diagonal terms. In this case, the diagonal dominance of

the coefficient matrix 1s reduced and the spectral radilus

of the matrix governing.the iterationon the pressufe field
is much closer to 1.0. For a typical problem of this type,
a PWR subchannel may have a cross-sectional flow area of

a few tenths of a square 1nch, and the axial mesh spacing for a
fuel management type of analysis is usually chosen to be
about six inches. Using the method of Carré, it has been
found that this type of situation results in an optimum
relaxation factor between 1.6 and 1.8. From a practical
point of view, the fact that the relaxation factoé‘is‘sg
iarge means that a great many more ilterations are fequired
to converge the pressure field to an acceptable tolerance

1f an iterative type of inversion scheme is used. Table 5.2
shows the number of "inner iterations™ required by both the
MAT method and the original theta method tc converge theA
pressure field to three decimal places for the small section
of the PWR fuel assembly ;hown in Fig. 5.4. In both cases,

the number of 1terations performed on the pressure field

appears to be affected by the presence of the grids. It

should be noted that the MAT method requies somewhat more
iterations for the given input parameters, but as indicated

previously, the MAT method is considerably more stable and
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Table 5.2. Number of Iterations Needed to Solve
Problems with Subchannel-Sized Cells
Node Axial Grid Number of [Number of
Number | Elevation| Position {[terationsiIterations
(inches)| X = Yes | for MAT |[for Theta
1 6 X 4g 43
2 12 37 4o
3 18 9 10
b 24 7 8
5 30 7 7
6 36 6 6
7 42 X 56 L9
8 48 50 b6
9 54 7 7
10 60 6 6
11 66 6 6
12 72 X 52 51
13 78 49 by
14 84 6 7
15 90 6 6
16 96 X 41 39
17 102 4o 38
18 108 7 -8
19 114 6 6
20 120 " X 60 52
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does not require detailed information about the boundary
conditions on the pressure distribution at the core inlet
to determine the flow and enthalpy fields;

5.3.2 Direct Solution Schemes-Gaussian Elimination

~Whereas the method .of successive overrelaxation can be

used very effectively to determine the pressure fields in

‘a lattice where fhe cells are arranged in periodic, regular

arrays, 1t has the drawback that it 1s "difficult to apply to
problems such as the one shown in Fig. 5.5 where the célls

are lumped together into clusters having a variety of different
sizes and geometrical shapes. Thié 1s due to the fact that

the coefflcient matrices governing the pressﬁ;e fields do

not have a simple or prediptable bahd'structure; so that

it 1s necessary to operate on many of the zeros in each
matrix*to ensure that each cell Interacts with all of its -
neighboring cells in the lattice. Moreover, it!is freqﬁéntly
necessary to consider a reactor lattice in whiéh’thé rods

are packed very tightly together, so that the subchannels

are considérably smaller than those encountered in the analysis

of a pressurized water reactor. In this case, the spectral

-radius of the iteration matrix is very close to 1.0, and the

lterative solution scheme takes many iterations to converge.
For problems of this type, it may be more efficlent from a

computational point of view to abandon the method of successive

#
but not as many as COBRA-IIIC does
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Fig. 5.5 Cells for a mixed lattice calculation
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overrelaxation and to solve Eq. (26) to Eq. (67) by the
method of Gaussian elimination. Since the Gaussian
elimination 1s simply a procedure for manipulating‘the
coefficieﬁts of_the difference equations to glve a coefficilent
matrlix which is lower t{iangular, the number of operations
required to redﬁce thé coefficient matrix to this form is

a very sensitive function of the type of cell numbering
scheme that‘is uséd. For ekample, in some nﬁmbering schemes
such as the one shown in Fig. 5.6, the cells may be

connected fo one another in Such a manner that the coefficient
matrix has no preceptible band structure. In this case,

it 1s necessary to operate on virtually all the entries in
the matrix (including all the zeros) to reduce it to lower
triangular form. This is extremelyvinefficieht from a
computationai point of view because the number of opefations

required to solve for the pressure field can be shbwn to be’

91

proportional to the number of channels cubed [(20]. Fortunately,

1t 1is possible to devise'cell numbering schemgs such as the
one shown in Fig. 5.7 which tend to compress the non-zero
coefficients governing the interactions betweenbadjécent
channels into a much narrgwer stripe centered around the
dlagonal S0 that the coefficlents above and below the stripe
have entries that are exclusively zero. " An example of a
coefficient matrix of this type is illustrated in Fig. 5.8(a).

In this case, the width of the band (MS) is determined by

the -code from simple geometrical arguments, and the computational
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subroutines within the code only generate the coefficiénts
inside the band that have non-zero values. The band is then
stored by the code as an N by MS array (see Fig. 5.8(b))
and the Gaussian elimination is performed by operating ﬁpon
only the entries contairfed within this array. Since the
number éf operations required to set up the coefficiént
matrix is proportional to the number of channelé; the
number of operations required to decompose the matrix is
probortional to the number of channels times the square of
the band width, and the number of operations required to
solve the remaining system of matrix equations for the
pressure field 1s proportional to the number of channels
squared, the total central processirg unit (CPU) time
needed to complete this entire process caﬁ be written as

2

CPU time = C.N + CZN(MS)Q + C.N

1 3
where N 1s the number of channels and Cl’ 02 and 03 are
constants that are problem dependent. For most problems
empirical studies indicate that the values of Cl’ 02 and'
03 result in a computqtion time that 1s proportional to

(4]
the number of. channels to the 1.6 power. Thus 1t can

be seen that a considerable reduction in the running times

of both the theta method and the MAT metﬁod can be achieved

by simply taking advantage of the sparsity of the coefficient
matrix and by adopting a cell numbering scheme in which the
non-zero coefficients within each matrix are compressed into a

narrow band centered arcund the diagonal.
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Fig. 5.8(a) Coefficient matrix used
for Gauss elimination
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5.4 Execution Time Comparisons

Table 5.3 gives a compafison of the computation time
needed by various codes and methods in use today to compute
the crossflow distribution as a function of the number of
computational cells. These results indicate that the
versions of the COBRA-IIIP/MIT code that have been based
upon eilther the MAT method or thg theta methbd are considerably:
faster and more efficient than theilr predecessors. Whereas
the crossflow computation time of the COBRA-IIIC code
Increases as the number of cells cubed, and the crossflow
computation time of COBRA-IIIC/MIT still increases as the
1.6 power of :the number of cells, the computation time re-
gquired to compute the crossflow distribu=ion with COBRA-IIIP/MIT
Is approximately a linear function of the nﬁmber of cells
when an lterative solution scheme is used. If the eqﬁations
for the pressure field are solved by Gaussian elimination,
rather than successive cverrelaxation, the direct inversion
séheme tends to make the computation time proportional to
the number of channels to the 1.6 power, but as stated
previously, the total CPU time is still considerably less
than that of COBRA—IIIC/MET because the band width of the
coefficient matrix governing the pressure field (section
2.6) is only half that of the COBRA-IIIC/MIT crossflow
coefficient matrix for problems with a large number of
computationa% cells. It is also important to realize that

the execution times given in rows 1, 2, and 5 are independent
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Table 5.3. Crossflow Solutlon Times for Various Thermal Analysis Codes

Number of Channéls

Code Method of
Solution 16 64 128 200 300 4oo
e e e e e —— f——
Gauss Elimina~- '
tion with no * - % * ¥
COBRA-IIIQ ;ompression of 1.7 128.49% - | 987.36° [3293.61 10250°| 31980
crossflow co- _ '
efficient matrix
COBRA-ITIC/| Gauss Elimina-

MIT tionwith full % *
compression of 17 1.38 9.09 19.67 39.80 | 81.24
crossflow co-
efficient matrix

COBRA-IIIP/| Successive over-
MIT relaxation with '
with MAT | optimizéd re- .15 oy 1.23 1.82 2.65% 3.62"
Method laxation factor
COBRA-ITIIP/ | Successive over-
MIT relaxation with M
with Theta| optimized re- .15 L2 1.28 1.78 2.6 .59%
Method laxatlion .factor ' 7 7 399
. FOBRA-IIIP/ | Gauss Elimina-
ﬁig Wig? a tion with full : . .
method| gombresgien of 17 .76 2.16 .
or theta |pressure co- 4.1k 7.957| 16.53
|_method efficient matrix ‘
Notes: All results are for 10 axlal levels on an IBM 370/165 with the H compiler.

Note that the results of -these timing runs may vary by + 10% during the course
of a day due to changes in the work load on the system.

For economic reasons these results are estimated by extrapolation.
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of the axial mesh spacing, the size of the cells, and

the number of rod spacers (i.e., grids) because they are
based on the use of Gausslan elimination, whereas the
execution times for successive overrelaxation can be somewhat
longer or shorter than those gi#en.here 1f the size of

the cells is changed or if one fails to obtain a good

‘estimate for the optimum relaxation factor before proceeding

with the iterative solution scheme. Hence the crossflow
solution timé of the COBRA-IIIP/MIT code will always lie
somewhere between the times Ziven in rows 3 and 5 ; ekcept
in cases wheré thé method of successive overrelaxation
converges more rapidly. Finally, itvcanAbe seen that there
is no significant difference bétween the execﬁtion times of
COBRA-IIIP/MIT when the MAT methodland the theta method

are used, 1in spite of the fact that the MAT method is
considerably more general and more stable. Usgrs who

wish to make timing runs with the codes may dd‘so ﬁsing the

simple timing subroutine shown in Table 5.4.

5.5 Effect of the Axial Iteration Scheme on the Solution Time

For the sake of consistency, the results in Table 5.3
have been presented for cases in which gll the codes have
been allowed to perform only one axial iteration. 1In practice,
it 1s often found that Several iterations may be needed to
converge the methods that have been discussed in this thesis

to é self-conéistent flow distribution. However, the amount
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Table 5.4. A Simple Subroutiné for Timing Runs

SUBROUTINE PRNTIM (IN)

This subroutine may be used to determine the crs:z=2low
solution time and the total execution time of tz=
COBRA-IIIP(MIT) code 3y calling it within the cciz at
selected points of interest

CALL TIMING(IT)

IF(IN.EQ.0) GO TO 100

CPUTIM=FLOAT(IT-ITT)*0.01

WRITE(6,1000) IN,CPUTIM

FORMAT(1X, '*¥% PRNTIM *** (' I1,')' F7.2,' SEC.',/)
RETURN o -

END
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of CPU time required by COBRA-IIIP/MIT to achieve this
convergence 1s often considerably less than COBRA-IIIC

or COBRA-IIIC/MIT due to the use of the single pass,
locally iterative axial iteration scheme contained within
the code. This scheme ,has usually been found to reduce
the computation time by an additional factor of 3 or 4
compared to the other codes, depénding upon the type of
problem being solved. Finally,rit has been found that the
total execution time of COBRA-IIIP/MIT is approximately
70% or 80% greater than the crossflow solution times shown
in Table 5.3. This appears»to indicate thst the new code
and the‘methods upon which it is based are considerably

faster and more efficient than their predecessors.
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CHAPTER VI

6.1 Concepts of Convergence and Stability Applied to

Computational Fluid Mechanics
In many other branches of nuclear englneering, such
as thoée which are cancerned with solving problems in
reactor physics, structural méchanics, and heat transfer,

the differential equations governing the behavior of

_ physical systems are well known and well understood.

Consequently, a conslderable amount of time and effort
has been devoted to developing analytical techniques for
predicting the stability, the convergence, and the consistency

of numerical methods and differencing schemes for solving

~ these conservation equations. The purpose of this chapter

I1s to summarize the attempts that have been made ﬁo extend
these techniquesvinto the field of computational fluid
meéhanics, and to show in many cases that it is virtually
Impossible to use the same techniques té prove the con-
vergence or the stability of the numerical ﬁethods thét
have been aeveloped to solve the conservation equations
used by the COBRA-IIIC code.
6.2 Analytical Proofs of Stabilitv

Although a great deal of work has been done in recent
years to attempt to prove the stability of numerical schemes
fer solving the fluid conservation equations, a careful

study of the literature shews that this work has been
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restricted almost exclusively to a Von Neumann stability
analysis of the differential forms of the conservation
equations used by primitive variable techniques such as
"MAC" [12] and the stream function-vorticity approach [21]
for the case of 1nc0mpréssible flow (p = constant). This
appfoach has recently been extended by Porsching [22] to
deal with a primitive variable technique for the casé of

a thermally expandable fluid, but no general stabillity

"analysis has ever been applied suécessfully (as far as

it 1s known) to the forms of the conservation equations
that are used by the COBRA-IIIC code. Rowe'[8], considered
the stability of the initial value approach used by COBRA-II

and was able to show that the iteration governing the

crossflow distribution at each aiial level of the core
could be made to be stable for a steady state case in
which the spatial and témporal accelebationfterms in

the transverse momentum were ignoped. .Hanéen and Khan

[23] then attémpted to extend Rowe's WOrk‘to time dependeﬁt
cases by considering a more general time dependent form

of the conservation equations coupled to the multi-pass
axial iteration scheme used in COBRA-IIIC. They failed

to prove the stability of the method using a Von Neumann
stability analysis because of the complex, non-linear

form of the equations and ultimately recommended

that the stability of the code should be determined by

performing an unspecified set c¢f nunerical tests. While




the author of this thesis has been somewhat more successful
in showing that both the crossflow distribution and the
transverse pressure distribution can be found using

iterative solution techniques because the coefficient
matrices governing these iterative schemes have diagonal
dominance, it 1s not believed to be possible to show

(except by running the code, of course) that the overall
axlal iteration should also convefge. Consequently, it

is felt that the stabllity of the numerical methods developed
in this thesis must be determined by numerical tests

rather than by analytical means.

6.3 Numerical Tests of Stability

To explore the stability of these methods a very
comprehensive set of numerical experiments have been
performed. In these experiments the behavior of problems
having as many as 600 channels has been studied, and it has
been found that both the theta method and the MAT method
are stable for all spatlal differencing schemes in which
the crossflow distribution 1s driven by a pressure field
which 1s at least as implicit as the pressure field
obtained by taking the average of the pressure distributions
that exist at the top and the bottom of each plane of
computational cells. From Eq. (26) it can be seen that
this condition is satisfied for the theta method when it
is formulated as an initial value method for values of 6§

greater than or equal to 0.5. Conversely, the same condition
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ls satisfied for the MAT method and for the theta method
when it 1s formulated as a boundary value method for values
of 6 less than or equal to 0.5. More impiicit spatial
differencing schemes have always been found to be stable.

As far as the temporal differencing schemés are .
concerned, it»appea;s that both methods are unconditionally
stable since the difference equations g&verning the
temporal behavior of the system are fuliy implicit.

gowever, from a pfactical point of view, it has been
found that the MAT.method is apparently able to handle much
ﬁore severe cases than any version of the theta method
before 1t becomes unstable. For_ekample, MAT has successfuliy
consldered problems in which flow blbckagé simulations have
created axial mass flux differences as great as 10004tb 1 between
adjJacent computational cells in the dore, wheréas the
theta method. when it is formulated as an initial value
approaéh, appears to become unstable for axial mass flux
differences as low as 5 or 10 to 1. Thus it 1s believed
that the MAT method should be used to analyze a'probiem that
contalns a severe flow blockage, and thatvit can be applied
equally well to_anal§;e problems that involve only small
departures from operational reactor comditions. A

summary of the stability requiremenés for the methods that

have been discussed here is given in Table 6.1.
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Table 6.1. Stability Requirements for Sevéral Typés of Solutlion Technlques

Method and Type of

Spatial Stabllity

Temporal Stabllity

-Boundary Value Approach-

Solution Scheme Condition Condition
Theta Method _ None
-Initial Value Approach- 820.5 - Method 1s Fully Implicit
‘Theta Method None
-Boundary Value Approach- 84£9.5 Method 1is Fully Implicit
MAT Method Nope
-Initiél Value Approach- 020.5 Method 1s Fully Implicit
MAT Method None :
8£0.5 Method 1is Fully Implicit

COBRA-II
~-Initlal Value Approach-

See Eq.(77) for condition
on minimum A x
Maximum Ax £ 1 cr 2 feet

Not Applicable
Method is not Time De-
pendent

COBRA-IIIC
~-Boundary Value Approach-

_ None
Method 1s Fully Implicit

None

Method 1s Fully Implicit

COBRA-IV-I
-"MAC" Methodology-

None-COBRA-IIIC Approach
used for Steady State
Conditions

Courant condition
Method 1s Fully Explicit

60T
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6.4 Analytical Proofs of Convergence

Although a great deal of time and effort has been
spent in recent years to develop numerical methods for
solving the set of fluid bonservation equatlions that
characterizes the steady state and transient tﬂermal
hydraulic performan;e of fuel pin bundles and reactor
cores, very little progress has been made to determine if
these methods actually converge to unique and physically
realistic solutipns of the conservation equations.

Proofs of convergence in computational fluid mechanics

have been restricted almpst exclusively to linearized
versions of the Navier-Stokes equaﬁions for the case

of incompressible flow [24]. These proofs have consisted
of applying'a linear Von Neumann stabilit& analysi;

to the numerical methods that have been developed to

show that thLey are stable, and then argueing'that if the
difference approximations are a consistentﬁapproximation

to the differential equations as the mesh Spacing approaches
zero, then they must satisfy the Lax theorem (25]. |

and converge to the }rue solﬁtion of the differential
equations. The major drawback of this apprdach is that

it has not been extended to the true non-linear form of the
differential equations and does noé appear tolbe capable

of proving the conVergence of methods for the more

general case of compressible flow [21] which is, of course,

-considered in the COBRA-IIIC code by means of the equation

of state,(Eq. 19).
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6.5 Numerical Tests of Convergence

The methods that have been discussed in this thesis
really cannot be analyzed for consistency and convergence
in the same manner as traditional numerical techniques
because they are not based on the same set of fluid
conser&ation equations. Conseouently, it is believed that
an absolute proof of the consistency or convergence of
the numerical methods that have been developed here |
cannot be determined by simply expanding the difference
approximations to the equations in a Taylor series and
showlng that they converge tothe true differential equations
as the mesh spacing approaches zero, since the equations
used by COBRA-IIIC are deriﬁed from a control volume
approach and there has never been any proof given that these
equations are numerically or physically equivalent to the.

true differential equations whose consistency and stability

~ have been proven in other branches of fluid mechanics.

Thus, it is believed that it is first necessary to show
that the COBRA-IIIC conservation equations can be defived
from first principles before any meaningful proof of the
convergence of the me%hods that have been developed for
solving them cao be given. Until this 1is done, .the only
way to determine the convergence of these methods is to
check them with respect to computational consistency, and
to compare their predictions to the limited amount of

experimental data that is évailable. Finally, it must
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be recognized that conslderable uncertainty currently
exists in the values of many of the empiriqal correlations
and coupling coefficients used in the equations, and that
it 1s conceivable that almost any method in use today

could be made to agree reasonably well with experimental

‘data by simply altering the values of these coefficients

wlthin a reasonable range to sult the characteristics of
thé problem on hand. Numerical proofs of the convergence
of these methods will be presented for certain types of

simple problems in Chapter 7.
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'CHAPTER VII

7.1 Numerical Tests and Results

Although a considerable amount of time has been
devoted in this thesis to explaining the physical and
numerical formalism behind the methods that have been
discussed, the only way to demonstrate theilr feasibility
on a.practicaliscale is to run a éeries of numerical
tests in which they are compared té one another and to
the fesulté of physical experiments. Consequently, an
attempt ﬁill be made to present a general picture of
the similarities and differenées between the predictions
of the methods, and to suggest specific “ypes of exneriments
. or sample problems where a meaningful comparison of the

capabilities of these methods can be made.

7.2 Sample Problems to be Considered

Because it pas peen found from experience that it 1s
extremely difficult, if not impossible, to draw any meaningful
conclusions about the pesults of the methods when théy are
applied to very large and'bomplexAproblems, it 1s believed
that a systematic comparison of the similarities and
differences between the methods can be best illustrated
by considering simple problems with a very small number
of computational cells. Consequently, almost all the

results that will be presented here will be for cases
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similar to those shown in Fig. 7.1 in which two adjacent
computational cells representing either subéhannels or fuel
assemblies are connected to one another by a single common
geometrical boundary so that the interchange of

mass, energy, and mcmentum 1is alloweq'to occur. AMofe

complex cases can be considered by running the codes after

the results of these simple cases are more clearly under-

stood.

7.3 Comparisons of the Results of the Methods for Cases with

Only One Axial Iteration

7.3.1 Time Step Sensitivity Studies

Since the COBRA-IIIP/MIT code is bzted on the single
pass locally iterative axial iteration scheme,discussed-
in section 4.1.2 and the COBRA-IIIC code is based on a true

multipass axial iteration 'scheme, a consistent comparison

of the predictions of the codes and theilr numerical methods

cannot be given for cases which require more than one axial
iteration. Consequently, the discussion in this section

will be restricted to the sample problem shown in Fig. 7.2

in which the flow convergéhce criterion is made large enough

so that only one axial iteration is performed. In this problem,

a grid with a loss coefficient of 2.5 is located midway
between the inlet and the outlet of two identical fuel
assemblies with different radial power peaking factors, and

the power level in both assemblies is doubled uniformly in one




111

- Subchannel-Sized Cells

Assembly~Sized_Ce11s

0000000
0000000
0000000
0000 000
0000000
0000000

- |oo00000

0000000
0000000
0000000
0000000
0000000

0000000

0000000

Fig. 7.1 Types of sample problems to be considered



Assembly

8"

N

112

Radiai Power Peaking

Factors

1.2

Reactor Outlet

|
/

i
th
\Ji

Reactor Inlet

Fig. 7.2 Sample problem for time stép

sensitivity studies

™

" Hot 1
Assembly

Grid




(”\

113

second. With an axial mesh spacing of two inches, and with
one computational cell used to represent an entire assembly

in the transverse plane, é time step sensitivity study was
performed in which the time step size used by the theta method,
the MAT method, and the POBRA-IIIC_method was varied between
one second and one-tenth of a second to see the effect
changing the time step size would have on the crossflow
distribution. The results shown in Figs.7.3, 7.4, and 7.5
indicate that none of these methods is very sensitive to the
value of the time step size, and that the MAT method and the

COBRA-IIIC method both appear to cdnverge to approximately

- the same asymoptotic crossflow distribution for this problem

as the time step'size is decreased. This, of Eourse, should
come as no surprise because both méthods solve exactly-#he |
same set of conservation equations with tﬁe same set of
boundary conditions. However, the theta method,;when it

1s used as an initial value approach, appears tﬁ ceonverge

to a crossflow distribution which is samewhat lower at the
outlet of the hot channel than the distributlions predicted

by the other methods. This is believed to be due to the

‘{aj_l'}=={aj'} approximation discussed in section 3.1.1 and the

use of a somewhat different set of boundary conditions on

the inlet pressure distribution (i.e., inlet pressure =
constant). Table'z_lshowé the coolant temperatures, enthalpies,
axlal mass flow rates, and densities predicted by all three

methods at the exit of the hot channel during the course of
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Table 7.l. Values of the Variables Predicted by Several

Methods at the Outlet of the Hot Channel as a

117

O Function of Tine
Time Temperatures (F°) Densities (lbm/ft3)
(sec)f
COBRA- COBRA-
| II1IC MAT THETA IIIC MAT | THETA
| 0 607.30 607.3; 607.32 | 41.65 | 41.65| 41.65
.1 608.24 | 608.26 | 628.26 | u41.57 | b41.57 | 41.57
.2 610.08 | 610.09 | 610.10 | 41.41 | 41.40 | 41.%40
.3 612.80 | 612.79 | 612.81 | 41.16 | 41.16 | 41.15
A4 616.29 | 616.27 | 616.30 } -40.84 4o.84 | 40.83
.5 620.42 | 620.37 | 620.44 § 4o.ub 40.45 | 40.43
.6 625.02 | 624.97 62&.06 39.99 39;99 39.98
~ 7 629.96 | 629.89 | 630.03 | 39.48 | 39.49 | 39.46
h .8 635.08 | 635.01 | 635.14 | 38.93 38.94 | 38.90
.9 640.29 | 640.21 | 640.38 | 38.35 38.36 | 38.32
1.0 642.81 | 642.80 | 642.89 | 35.93 | 35.99 | 35.88

(continued on next page)
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Table 7.l. (Continued)

?igg) Enthalpies (BTU/lbm) Mass Flux (Mlbm/hrftz)
COBRA- : COBRA-

IIIC MAT THETA IIIC MAT | THETA
0 627.70 | 627.76 | 627.78 | 2.u68 | 2.u62 2.1462
1 629.08 | 629.13 | 629.11 | 2.u79 | 2.480 | 2.u78
.2 631.84 | 631.86 | 631.85 | 2.490 | 2.493 | 2.489
.3 635.91 | 635.90 | 635.91 | 2.499 | 2.501 | 2.493
b - 641.21 | 641.17 | 641.26 | 2.505 2.506 | 2.496
.5 647.56 | 647.49 | 647.65 | 2.509 |[. 2.510 2.502
.6 654.78 | 654.69 | 654.86 || 2.511 | 2.513 | 2.503
.7 662.67 | 662.57 | 562.79 | 2.51% | 2.513 | 2.504
.8 671.06 | 670.94 | 671.27 | 2.510 | 2.512 | 2.502
.9 | 679.78 | 679.65.| 679.88 | 2.508 | 2.516 2.1499
1.0 688.73 | 688.60 688.84 2.501 2.509 2.492
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the transient. Although it can be seen that all three

methods predict slightly different magnitudes and shapes
for the cross flow distribution as a function of time, these
differences appear to have a very small (and almost negligible)

effect upon the properties of the fluid at the outlet of

" the hot channel. In fact, the maximum difference between

the predictions of the methods at any time during the transient

1s less than two tenths of one per cent. Since this is

at least one or two orderslof-magnitude less than the
uncertainties that are inherent in some of the empirical
correlationé used by the codes to compute the heat transfer
coefficients and the axial pressure drop, this example serves -
to 1llustrate the point that it makes vefy little difference
ffom a practical boint of vieﬁ which method is used to
analyze the effects Qf a moderately severe transient as'
lone as fthe crossflow is less than a few ne> cent of the
axial mass flow rate. ﬁor transients where mucﬁ more

severe boiline takes nlace over a lareger fraction of the
axlal length of the core, or where the effects of flow

»

blockages must be taken into account, the {aJ_IQ = {a,}

approximation used by the theta method ceases to be valid,
and considerable differences may develop between 1ts pre-
dictions and those of the other methods. For example, if
the radial power peaking factors in the assemblies are
changed to 1.5 and 0.5 to create a 3 to 1 power gradient

across the bundles, the crossflow distribution predicted




(

. mass flow fates could not possibly distinguish between

method, and the MAT method’ were all found to converge
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by the theta method at the end of the transient is considerably

different than that of the other two methods, as illustrated

in Pig. 7.6. This slightly different sample problem again
serves to 1llustrate the point that the MAT method and the
method used in COBRA-IIIC give results that are in reasonably
good agreement with one éhother as long as only one axial
iteration is performed. However, 1t must. be recognized ﬁhat
a hypothetical expériment for thié problem which had an

error of only 5% or 10% in the measuréd values of the axial

the predictions of the MAT method and COBRA-IIIC and probably
could not even determine if the {aj_l'} = {aJ'} approximation
used by the theta method was a Valid assumption for this case.

7.3.2 Space Step Sensitivity Studies

In order to demonstrate the sensitivity of the métﬁods
that have been discussed to changes in the size of the axial
mesh spacing, a sensitivity study was performed in which
thé mesh spacing.was varied between one inch and one foot
for the problem that was described previously. As shown

in Figs. 7.7, 7.8, and 7.9 the COBRA-IIIC method, the theta

rather rapidly to approximately the same asymoptotic axial
mass flow distribution as the mesh spacing was reduced.
These results apparently indicate that none of these methods
is very sensitive to the sizé of the axial mesh spacing,

and that for many practical problems, an axial mesh spacing
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of six inches or one foot is suffilcient to'give an acceptable
estimate of the axial mass flow rate. |

Reducing the axial mesh spacing apparently reduces the
errors in the estimates of {mj} that are used to compute
the crossflow distribution for the first iteration, and
presumably.causes the me%hods to cenverge to an "asymoptotic"
distribution. However, it is not-clearly understood why
Athe MAT method and-COBRA-IIIC shoﬁld not converge to exactly
the same answers as the axial mesh spacing is redueed, since
they attembt to solve exactly the same system of difference
equations when 8 is set equal to 0. It 1s conceivable that
these slight differences for the first axial iteration hay
be due to round>ff errors, since all the'computatioﬁs in
COBRA-IIIC are carried out in single preeision, whereas most
of the computations in COBRA-IITP/MIT are performed in double
precision. Again it‘must be recognized that the differences
1llustrated here are no larger than a few tenths of a per cent,
and are so small that they cannot possibly be resolved by
experimental measurement. Thus the "accuracy" of the codes
for problems of this kind can only be judged by makihg an
objective evaluation of tHe physical consistency of their
results, unless anal&tic solutions to the conservation

equations for meaningful problems are available.
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7.4 Effect of the Axial Tteration Scheme on the Solution

In previous chapters cof this thesis it was shown that
the TOBRA-IIIC code is based on a multipass axial iteration
scheme which allows information from downstream locgtions
to be propagated upstream at the rate of one axial node
per iteration. However;.no analytical proof of the stability,
the consistency, or the convergence of this scheme has
ever been given, and it has never been determined whether
additional iterations always improve'the accuracy of the
solutions. The purpose of thls section is to demonstrate
that the axlal iteration scheme used by COBRA-IIIC does not
always appear to improve the accuracy of the solutions to
the conservation equations, and in some cases, actually
appears to make the resﬁlts considerably worse because it
introduces strange oscillations into the shape of the crdss—

flow distribution which cannot be explained physically. The

. effect that these oscillations can have on the pfedictions

of the code will generally be shown to be small, although
they can have an extremely important effect on the total
computation time. .

Fig. 7.10 shows a very simple problem that will be used to
test the consistency of the axial iteration scheme contained
within the code. This problem consists of two identical
fuel pin bundles from a PWR whose size and operational

characteristics are described in Table 7.2.0ne computational

cell is used to represent each assembly and both assemblies
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Fig. 7.10 Sample Problem for Testing the Effects of

the Axlal Iteration Scheme
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Table 7.2. PWR Fuel Bundle Characteristics for a Sample Problem
Used to Test the Axial Iteration Scheme

PWR Fuel Assemblies
!Axial power distribution - uniform
Radial power peaking factors - 0.8 and 1.2
Number of cells per assembly —‘l
— —_— e
Nominal operating conditions: '
Gi\ : System outlet pressure: - 2160 psia-
Inlet enthalpies: 538 BTU/1lbm
(uniform for 2ll channels) : :
Average inlet mass flux: 2.48x1061bm/hr/ft2
(uniform for all channels) :
Average assembly heat flux: ;ZXIOGBTU/hP/ftZ
Channel length: 120 inches
Axlal mesh spacing: . 2 inches
Flow area for each cell: 267 ftg‘
Number .of rods per cell: 225 |
Cf,
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are subjected to a loss of flow transient in which the

mass flow rate into each assembly is reduced uniformly

by a factor of 2 in two seconds. This problem was run

twice with the COBRA-IIIC code with exactly the same input
data, but with two different values -.01 and .00l1- for the
flow‘convergence criterié;. The crossflow distributions
predicted by the code for these convergence criteria, and

the number of axial iterations that were actually performed

as a function of timé are shown in Figs. 7.11, 7.12, and 7.13. It
can clearly be seen that the code does not appear to converge
to an asymoptotic flow distribution as the convergence |
criterion 1s tightened and more axial iterations are per-
formed. 1In fac%, these figureslapparently show that 1t

tends to diverge and deveiop more unphysical oscillatioqs

as the number of axial iterations 1s 1ncreased. The version
of the MAT method used in COBRA-IIIP/MIT apparently does

not suffer from this problem because it is’progfammed into

the code with a single pass, locally iterative axial iteration
scheme. The crossflow distribution predicted for this

problem by the MAT method is shown in Figs. 7.14, 7.15, and 7.16.
It can be seen that the MA; method converges veéry rapidly

fo an asymoptotic flow distribution during each step in the
transient as more iterations are pérforméd. Thus it is
believed that the version of the MAT method used by COBRA-
IIIP/MIT gives a more consistent pictufe of what one would

expect to happen physically when it is applied to this simple

problenm.
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— 7.5 Effect of the Axial Iteration Scheme on the Axial Mass

Flow Rate and Other Important Variables

Since it has been shown that performing more axial iterations

with COBRA-IIIC does not necessarily improve thé accuracy

of the code's solutions to the fluid conservation equations,
it 1is extrémely importanﬁ.to determine the effect that the
oscillations develqped by the iteration scheme can have on

- the code's estimates of variables such as the axial mass flow
rate; the temperature, the density, and the enthalpy of the
coolant. To illustrate the magnitude of this effect, the
values of these variables at the outlet of the hot assemblyv
of the same problem were studied as a_function of the number
of axial iterations that were performed. The results of
this study, which are summarized ih Table 7.3,appear to
indicate that none of these variables-is very sensiti&e‘to
the details of the shape of the crbssflcw distribﬁtiqn. In
fact, it has been found that the osclllations produced by
the axial iteration scheme hardly show up at all in plots

of the axial mass flow distribution, and that the maximumA
change in the values of the other variables as the résult

- of these oscillations is féss than half a percent. for this
‘case. Since these variations are much smaller than any
experiment could possibly detect, it is iikely that the
oscillations were never reported before simply because

they di1d not have much of an effeét upon the predictions

_ " of the code. Consequently, there was no reason to look for
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Table 7.3 Effect of the COBRA-IIIC Axial Iteration Scheme on the
Values of Several Variables at the Outlet of
the Hot Channel

CASE A Flow Convergence Criterion = .01
" (Average number of axial iterations = 1)

Time Temperature Enthalpy Densit Flow rate
(sec.) (°F) (BTU/1bm) (lbm/ft (1bm/sec)
0.0 607.29 ° 627.68 41.65 182.19

!
1.0 620.56 647.78 4o.43 137.61
2.0 | 642.81 688.34 36.10 92.87
i
CASE B n Flow Convergence Criterion = .001
(Average number of axlal iterations = 8)

Time Temperature Enthalpy Densit§ Flow rate

(sec) (°F) (BTU/1bm) (1bm/ft3) (1bm/sec)

0.0 607.30 627.68 41.64 182.18

.1.0 620.55 647.76 uo.uz 137.38

2.0 642.80 688.17 36.18 92.24
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them and even less motivation to try to explain the reason
for theilr existence. However, from a mathematical point of
view, it 1s clear that these effects can have an extremely
important practical implication, since they apparently
indicate that there 1is little to be galned by performing
more than one or two axlal iterations with the COBRA-IIIC
code 1if doing so simply consumes a great deal of additional
computer time and causes the answers to some problems to
become worse.

Although it has not been possible to explain why these
effects occur physically, it is conceilvable that additional
axial iterations may introduce roundoff errors into the
solutions which cause thei: accuracy and their consistency
to be destroyed. Another possible explanation of this
phenomenon 1s that the axial iteration scheme used by the
code 1s not an appropriate model of physlcal reality. This
is believed to be due to the fact that the code does not know
inherently when to stop transferring information from
downstream to upstream locations, since the distance this

information is "pumped" upstream is solely a function of

the flow convergence criterion one wishes to choose. Consequently,

choosling a convergence criterion which is too "tight" may cause
the crossflow distribution to oscillate in order to conserve
mass and momentum while information about the downstream flow
distribution 1s propagated so far upstream that it may be pumped

entirely out of the core.
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7.6 Comparison of the Results of the Methods for a Flow-
Blockage Analysis

Although it has been found that the theta method cannot
be applied to study the effects of severe flow blockages when
it 1s formulated as an initial value approach because it
tends to encounter problems with numerical stability, both
the MAT method and the COBRA-~IIIC method do not suffer
from this drawback, and can be used to analyze a varlety of
problems in which severe flow blockages occur. In this

sectlon, the predictions of these two methods will be

compared to one another for a simple problem that contailns

a flow blockage. The purpose of this section will be to

show the effects the axial iteration scheme used by these
methods can have upon the cqnsistency of the results.

The test problem that will be used to maké this comparison

is shown in Fig.7.17. The problem consits of two identical

fuel assemblies with different radial poﬁer péaking factors

and a constant axial heat flux distribution. A flow
obstruction in the form of a grid with a ioss coefficieht

of 2.5 1s placed across the entire hot assembly, 6ut ﬁot

across the cold assembly, at a position midway between

kthe inlet and the outlet of the assembllies. Both assemblies

are then subjected to a loss of flow transient in which
the inlet mass flow rates, which are initially uniform,
are reduced uniformly by a factor of 2 in two seconds.
With a single computational cell used to represent each
assembly, the COBRA-IIIC meﬁhcd and the MAT method were
both used to analyze thié problem with a flow convergence
criterion of .05. This analysis was then repeated with a

"tighter" convercence criterion of .01. Figures 7.18, 7.19,

PN I ——
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and 7.20 show the crossflow distribution predicted by the MAT
method as a function of time. It 1s found that there is no
appreciéble difference between the predictions of the
method for these two different values of the flow convergence
criterion, and that the results appear to appréach an
asymoptqtic flow distribution very rapidly as additionai
iterations are performed or as the space stép size and the
time steo size 1s reduced. The MAT method was not able to
anticivate the oresence of the grid at uovstream locations
in this case because it was implemented into the COBRA=IIIP/MIT code
with a single pass, locally iterative axial iteration scheme.
The predictions of the COBRA—IIiC code are shown
in Figures "7.21, 7.22, and 7.23 for a ccnvergence criterion
of .05 and in Ficures 7.2H3 7.25,_and 7.26 for a convergenee
eriterion-of .01. It can cleérly be seen in both cases
that aooreciable oscillations develop in the crossflow dis-
tribution in front of the biockage. Moreover,.it appears
that tightening the convergence criterion from .05 to .01
for this case doés not necessarily make the answers any
"better" if they}are Judged from the viewpoint of physical
or numerical consistency,'since there is apparently no
indication that tightening'the convergence criterion damps
out the oscillations and causes the crossflow to converge
to a truly "asymoptotic" distribution.
It must be emphasized aggin that it is not understood

precisely why these oscillations occur. As discussed earlier,

PR T
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it 1s concelvable they may be caused by roundoff errors
within the code, but it is also possible that the axial
iteration scheme is not converging properly, since it has
never been shown conclusively that the scheme should converge
to the true solution of the differential equations. It is
also significant that the oscillations in this case only
appear to be produced in front of the blockage (e.g. upstream), -
whereas in the previous case, whiéh did not contain a blockage,
they were found to be»produced over the entire axial length
of the bunéle.

From an historical point of view, i1t must be pointed
out that the primary reason a true multipass axial iteration
scheme was put into the COBRA-IIIC code was to allow the
code to pfopagate iﬁformation from downétream'locations to
upstream locations at the rate of one axial node per itération._
This was necessary to provide a mechanism to enable the
marching type of solution scheme used by the code to anticipate
the presence of blockages, bulk boiling, and grids at |
positions upstream of those at which they actually occurred.
It can be seen from Figs. 7.21, 7.22, and 7.23 that the code
performs this function very well, but in doing so, it also
appears to introduce a great deal of "fine structure" into
the crossflow distribution that cannot bé explained physically.
It is conceivable that this "fine structure" was never reported

before simply because the details of the crossflow distributions

'~ were never really analyzed by many of those who used the code.

e e el ..

P e |
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Consequently, a great deal of attention was focused on plots of the
axlal mass flow rate, the coolant temperature, and the

DNBR (which were not particularly sensitive to changes in

the shape of the crossflow distribution) and it was then concluded
that there were no anomalies caused by the axial iteration

scheme simply because they were not large enough to be

seen in the body of existing experimental data. From a

practical point of view, it is easy to understand this

approach, and 1t can even be argued that errors in the shape of
the'crossflow distribution are not important for most

practical problems (as shown in Section 7.5). However, it 1s felt
that these errors can be very important if they are large

enough and appear frequently enough in the analysis of problems
which contain severe flow blockages. Table 7.4 gives a com- -
parison of the results predicted by the MAT method (with a single
pass locally iterative axial iteration scheme) and the COBRA-IIIC
method (with a multipass axial iteration scheme) at the outlet

of the hot assembly for the flow blockage case which was just
considered. It can be seen that all the variables computed by the
codes agree with one another to within 2%, except for the axial
mass flow rates, which can differ in some cases by as much as

10%. It is not presently known which of these results is

more physically correct, but on the basis of the information that
i1s available at this time [2,26,27] it appears that the presence:
of a flow blockage in an assembly is only felt by the fluid

1 or 2 inches upstream. Consequently, it 1is

conceivable that reality may lie somewhere in between the

A . . ol
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at the OQutlet of the Hot Channel for a Blockage Run

" Table 7.4, Comparison of the Predictions of the MAT Method and the COBRA-IIIC Method

Time (sec)fEnthalpy(BTU/1bm) § Temperature (°F) Density(lbmﬁ‘t3) MassFﬂux(Mlbm/hnf%
. ! ‘ ,
. COBRA-3C MAT LOBRA-BC MAT ICOBRA-3C MAT COBRA-3C MAT
0.0 632.50 [640.70 610.52 615.96 1,37 40.87 2.2582 2.0654
1.0 652.95 [662.53 623.87 . |629.87 40.10 |39.49 1.7088 | 1.5653
2.0 696.35 |708.59 642.82 6L42.80 32.92 29.01 1.1386 | 1.0239

Average enthalpy
difference =2%

Average temperature

difference =1%

Averége density
difference =2%

Average mass flow
difference = 8%

€61
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the predictions of the two codes, and that neither a single
pass locally iterative scheme nof a true multipass may be
able to give an entirely satisfactory answer‘for such an
extreme case. Moreover, it is necessary to point out that
if a true multipass axial iteration scheme were used with

the MAT method in the COBRA-IIIP/MIT code, it would not

‘be surprising if both the codes agreed with one another

to within the limits of today's existing experimental

data for blockage calculations, even i1f severe unphysical
oscillati&ns in the crossflow distribution were predicted
by both codes in the vicinity of the blockage. Therefore,
it 1s felt that unless experiments are performed that are

able to resolve the fine structure of the crossflow distribution

Satisfactorily between both fuél assemblles and subchannels

during transient and steady state conditibns, and are'able

to show exactly how far upstream the presence of a blockage
can be felt in an operational pressurized water reactor,

the ultimate determination of the worth of the axial iteratioh
schemes used by these codes for both a flow blockage analysis
and operational reactor conditions must be measured'by

comparing their predictioﬁs to those of codes such as COBRA-IV-I

Awith 1ts MAC methodology or SABRE with its primitive variable

approach and advanced models of turbulence. Only then will
it be possible to answer many of the questions that have been

posed in this thesis.

. M. oo ol
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CHAPTER VIII

- 8.1 Conclusions

% Based on the work that has been performed in this thesis,
| it is possible to'draw a number of cohclusions about the
state-of-the-art of réactof thermal-hydraulic analysis codes,
and the numerical.methods that have beén developed over the
years to sblve the fluid conservation equations used by
these cgdes. | ‘
Briefly speaking, these conclusions can be summarized
as follows: '
(1) It appears that both of the numerical methods that have
'been developed in this thesis are considerably faster and
l;,f . more efficlient than previous methods that have been gsed
for solving ﬁhe fluid conservation equations used b& the
COBRA-IIIC code. | P -
(2) There appears to be very littie difference betwéen the
"predictions of these methods and those of the COBRA-IIIC
code as long as theyvare used to analyze operatiopal reactor
conditions.
(3) For almost any prac%ical problem, it appears to be
possible to obtain good estimatés of the flow and enthalpy
flelds with only a single pass 1oca11§ iterative axial
iteration scheme.
(4) Additional axial itgrations do not always appear to

— improve the accuracy of the crossflow solution scheme in the COBRA-

(
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ITIC code, and in many cases,.they appear to make it
considerably worse because they introduce severe os-
éillations into the crossflow distribution that cannot

bg explained physically.

(5) While these oscillations ﬁave been seen in many simpie
problems, 1t is not kﬁown precisely why théy occur. It

1s possible that they are due to roundoff errors within the
code, although they may also be causedrby the axiél
iteration scheme attempting to transfer information from
downstream to upstream locations.

(6) If is conceivable that these oscillations were never
reported before simply becéuse they did not have much of

an effect upon the predictions of the code. It is not

knowﬁ whether these oscillations can be observed ex-
perimentally or 1if they can have a significant effect upon
the results of a flow blockage analysis; | |

(7) From the viewpoint of computational efficiency, it
apparently makes no sense to perform additional axial itefa~
tions with COBRA-IIIC if doing so consumes a great deal of
additional computation time and simply makes the answers to
many problems worse.

(8) The single pass locally iterative scheme used with the
MAT method in the COBRA-IIIP/MIT code does not appear to suffer
from\these drawbacks and converges very rapidly td an
"asyuptotic™ crossflow distribution without oscillations

s additional iterations are performed.

AR A, . iR
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(9) For problems that contain a severe fiow blockage,

there are perceptible differences between the predictions
of the two codes, but these may be due simply to
differences in the axial iteration schemes used by the
codes. |

(10) It is believed tkat the merits of all the codes and
methods that have been discussed here must be judged on the
basis of their computational cansistency and their agreeﬁent
with experimental data, since no absolute proof of the
convergénce or the stability of the methods used to solve

the COBRA-IIIC conservation equations has ever been given.

8.2 Recommendatiois

Based on the observations and conclusions that have
been presented here, 1t is believed that the bredicﬁibns of
the two codes are 1n reasonably good agreement with one another
for operational reactor conditions, and that it may not be
posslible to resolve the small differences between the pre-

dictions of the codes experimentally for many practical

problems. Consequently, it is felt that any of the codes

and the methods that haVe been discussed here can be used
with a reasoﬁable degree of confidence for most problems

that do not involve extreme departures from opérational
reactor conditions. Therefore, it 1s recommended that the
COBRA-IiIP/MIT code should be used in place of the CCBRA-IIIC
code for dealing with these problems because of its greater

speed and computational efficiency:

A i,
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The results of the codes only appear to differ from each

other significantly when they are used to model severe
transients or problems where the effects of severe flow
blockages must be taken into account. For these problems,

it 1s recommended that an attempt should be made to determine
whether the osclllations in the crossflow distribution pre-
dicted by the COBRA-IIIC code are really physical, or whether
they are just numerical effects generated by the code's

axial iteration scheme. If 1t 1s not possible to determine

if the oscillations actually exist by comparing the predictions
of the COBRA-IIIC code to those of more advanced codes such as
THINC-IV and SABRE, it 1s recommended that the validity of the
COBRA-IIIC axial iteration scheme should be tested by perform-
ing more precise experimental measurements. Although the
COBRA-IIIP/MIT code has been developed mainly for use in LWR
applications, it should also be recognized that the methodology
developed here can be applied equally well to analyze thé steady
state and transient performance of LMFBR cores. This entails
the application of equally efficient cell numbering schemes to
deal with the hexagonal arrays encountered 1n these systems,
and the development of a wire wrap model that is compatible with
the pressure based solution schemes presented here. Finally,
it is recommended that the axial iteration scheme which i1s
currently used with the MAT method should be converted into

a true multipass scheme before the predictions of the
COBRA-IITIP/MIT code are compared to the results of the flow
blockage experiments that are availlable in the literature
today. Only then will it be possible to answer many of the

questions that have been posed in this thesils.

PSR
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NOMENCLATURE

computational cells

NP

i

Matrices:

Symbol Dimension

[A;] NPXNP
[cJ] NFXNF
[qj] NFXNF
[Dj] NFXNF
[hJ] NPXNP
[Ahj] NFXNF
[h?] NFXNF
[%] NPXNP
[(S] NPXNF
[S]T NPXNP

Meaning

Matrix of cross sectional
flow areas in the axial
direction

Matrix of thermal conduc-
tivities between adjacent

computational cells

Matrix of transverse friction
coefficients between adjacent
computational cells

Matrix used to compute the
cross flow distribution from
the transverse momentum
equation ’

Matrix of enthalpiles from
each computational cell

Matrix of enthalpy differences

between adjacent computational
cells

Matrix of the enthalpies
carried by the diversion cross
flow between adjacent computa-
tional cells

Matrix of volumetric heat
generation rates

Interface or gap connection
matrix used as a lateral
differencing operator

Interface or gap connection

matrix used as a lateral
summation operator

162

Number of boundaries for cross flow between adjacent’

Number of points at which the pressure is to be found

Special
Properties

Diagonal

Diagonal
Diagonal

Diagoﬁal

Daigonal

Diagonal

Diagonal

Diagonal

Contains only

entries having
the values of

1, 0, and -1 not
diagonal

Contains only
entries having
the values of
1,0, and -1, not
diagonal
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Matrices (Continued)

' Special
Symbol Dimension Meaning Properties
[Atj] NFXNF Matrix of lateral temperature Diagonal

differences between adjacent
computation cells

[uj] NPXNP Matrix containing the axial Diagonal
velocity of the fluid from
each computational cell

[u%] NFXNF Matrix containing the axial Diagonal
J velocity of the fluid carried
by the diversion crossflow
between adjacent computational

cells.
Vectors:
{a'} NPX1 Vector containing the axial -
J pressure gradients from each
) channel in the lattice
{bj} NPX1 Source vector used by the -
theta method
{p!} NPX1 Source vector used by the -
J MAT method
{hj} NPX1 Vector containing the enthalpies -
. from each channel in the lattice
{mj} NPX1 Vector containing the axial mass -
flow rates from each channel in
the lattice
{Pj} NPX1 Vector containing the pressure -
field at axial level j
{Pj-l} NPX1 Vector containing the pressure -
field at axial level j-1
{p.} NPX1 Vector containing the density —
J of the fluid in each channel
in the lattice
{uj} NPX1 Vector containing the axial -

velocity of fluid in each
channel in the lattice

*
{uj} NFX1 Vector containing the axial -
velocity of the fluid carried
by the diversion cross flow

{w,} NFX1 Vector containing the cross -
J flow between adjacent computa-
tional cells.
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Miscellaneous constants:

Symbol

Dimension

S

)
X
AX

AT
S

Meaning

Transverse momentum factor
Axial elévation

Axial mesh spacing

Time step size

Weighting function used by

MAT method and the theta
method

Superscript used to indicate
the value of a variable from
a previous time

164

Special
Properties
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