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ABSTRACT

The purpose of this report is to describe the development
of two new and extremely efficient numerical methods for the
steady state and transient, two-phase, lumped parameter thermal
hydraulic analysis of the fluid flow distributions in fuel pin
bundles and nuclear reactor cores as the result of ongoing
research in the Department of Nuclear Engineering at M.I.T.

These methods use the same physical model as the COBRA-
IIIC code, but are based on the alternative numerical concept
of generating a system of semi-implicit difference equations
for the pressure field using a spatial differencing scheme
which is different from the schemes previously used by sub-
channel analysis codes. The flow and enthalpy distributions
in the lattice are found by marching downstream several times
in succession between adjacent computational planes and by
combining the computed pressure fields from these planes
together into a composite pressure field, which is then used
as the driving force for the crossflow distribution in a
reformulated form of the transverse momentum equation. Both
methods are extremely efficient from a computational point of
view and are compatible with a variety of iterative solution
techniques because the coefficient matrices governing the
computation of the pressure fields can be shown to be Stieltjes
matrices.

These numerical methods have been integrated into the
computational framework of the COBRA-IIIC code and a new
computer program has been written called COBRA-IIIP/MIT (P for
a pressure solution). The code is considerably faster and
more powerful than many other thermal-hydraulic analysis codes
and has the capability to solve extremely large and complex
problems with great speed. The predictions of the code have
been compared to those of COBRA-IIIC, and for most problems,
it has been found that the results of the codes agree with
one another to within a few tenths of one percent. However,
it has beendiscovered that the axial iteration scheme used by
the COBRA-IIIC code apparently introduces severe oscillations
into the crossflow distribution that cannot be explained
physically, whereas the numerical solution scheme used by the
COBRA-IIIP/MIT code does not appear to suffer from this draw-
back and converges very rapidly to an asymptotic crossflow
distribution without oscillations as additional iterations
are performed.



It is strongly recommended that the COBRA-IIIP/MIT
code should be used in place of COBRA-IIIC for the analysis
of operational reactor conditions, because of its greater
computational efficiency, and that experiments should be
performed to determine the range of applicability of these
codes when they are applied to model severe loss-of-flow
or overpower transients. The COBRA-IIIP/MIT code and a
user's manual describing its computational capabilities
will be furnished to the Argonne National Code Center.
The code will be made available for public distribution
in 1978.
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CHAPTER I

1.1 Research Objective

In recent years many attempts have been made to

develop numerical methods for solving the set of fluid

conservat'ion equations" which characterize the steady

state and transient thermal-hydraulic performance of fuel.

pin bundles and nuclear reactor cores during both single

phase and two phase flow conditions. These equations are

usually developed from a control volume approach before

they are cast into a form more suitable for digital computer

analysis. The purpose of this thesis is to present two

numerical methods for solving these equations which are

considerably faster and more efficient than previous. methods

used to analyze operational reactor conditions. Another

goal of this thesis is to develop a computer code based on

these methods which can be used to solve a variety of complex

and important problems that arise in the thermal-hydraulic

analysis of light water reactor cores.

1.2 Introduction

An excellent review of the state of the art of reactor

thermal-hydraulic analysis codes has been given by Weisman

and Bowring [l ]. Many of these codes have attempted to

simplify the solution of the conservation equations by dividing

the lattice into a number of computational cells having the same

size and shape [2, 3, 4], and by using an initial value approach
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to alleviate the numerical difficulties associated with

solving the conservation equations as a true boundary value

problem in which arbitrary boundary conditions are imposed

on the pressure and flow fields at the inlet and outlet of

the core. These simplifications have enabled subchannel

analysis codes to handle fuel pin bundles having as many

as 37 rods E 5], although some of the most widely used and

acknowledged codes, such as HAMBO [ 6] and COBRA-IIIC [ 7]

have generally been limited to problems having much smaller

numbers of computational cells.

The COBRA-IIIC code C 7) is a modified version of the

COBRA-II code C 8) in which a backward differencing scheme

is used for thomomentum equations to propagate information

to upstream as well as downstream locations. The COBRA-IIIC

code has the capability to compute the flow and enthalpy

fields in fuel pin bundles during steady state and transient

gonditions, and has been frequently applied to problems

containing flow blockages with both single phase and 2-

phase flow. The primary drawback of the code is that it

can only be used to handle problems having a moderate number

of (i.e. 30-40) computational cells, since the numerical

method used by the code tends to become extremely inefficient

from a computational point of view when it is applied to

problems that are larger and more complex.

The COBRA-IIIC/MIT code [ 9) is an improved version of
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the original COBRA-IIIC code which takes advantage of the

sparsity of the crossflow coefficient matrix and a more

efficient coding scheme to reduce the running time and to

permit the economic analysis of problems having more than

100 channels. Both COBRA-IIIC and COBRA-IIIC/MIT use the

same physical and mathematical models to compute the flow

and enthalpy distributions and have been found to give the

same results for the classes of problems to which they

can be applied.

Whereas all of the aforementioned codes were developed

to model operational reactor conditions, the recently

developed COBRA-IV-I [10] cdde represents significant progress

in the field of thermal-hydraulic accident analysis because

it solves the conservation equations as a true boundary

value problem using an adaptation of the MAC method [11] to

the control volume approach developed by Rowe [ 7 ]. The

COBRA-IV-I code comprises all the features of a true benchmark

code and can consider the effects of severe flow blockages,

coolant expulsions, flow reversals, and recirculations.

The code also contains a vastly improved version of the

COBRA-IIIC code in which an iterative solution scheme for

the crossflow distribution is used to reduce the running

time to levels presumably similar to those obtained with

COBRA-IIIC/MIT.

The THINC-IV code [ 2] .is a Westinghouse proprietory,

steady state thermal hydraulic analysis code which uses a

velocity-perturbation theory method to compute the flow and

- AMM,



and enthalpy fields in reactor cores and fuel pin bundles

in situations where the bundles and cores may contain

flow blockages. The code uses the same placement of

dependent variables in a computational cell as the MAC

method [12] and does not appear to be applicable to problems

in which the computational cells are allowed to have

different sizes and geometrical shapes.

Perhaps the most advanced of all three-dimensional

thermal-hydraulic analysis codes is the SABRE code [13]

which is based upon the use of a primitive variable approach

to solve for the steady-state temperature and velocity

distributionsin LMFBR fuel.pin bundles. Both THINC-IV and

SABRE have been verified extensively against experimental

data, but little is knownabout running times of these codes

or the precise limits of their range of applicability. A

summary of the capabilities of the codes that have been

discussed and a description of the methods upon which they

are based is given in Table 1.1.

Based on these observations, the primary objectives of

this thesis can be summarized as follows:

1. to develop more efficient numerical methods for

solving the set of conservation equations used by the COBRA-

IIIC and COBRA-IV codes during operational reactor conditions.

2. to incorporate these methods into a new computer

code that has the capability of solving much larger and

more complex problems than many other codes with much greater

speed.
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3. to lay a firm numerical basis for these methods

and to show how they can be used to improve the representation

and interpretation of the crossflow distributions.

4. to develop numerical methods which can be used

for solving the fluid conservation equations by both direct

and iterative techniques in a mixed lattice where the cells

can have a variety of different sizes and geometrical shapes.

5. to compare these methods of solution to existing

methods of solving the conservation equations in order to

show how these methods have developed historically and

to suggest ways by which the numerical procedures that have

been applied to these methods can be improved.

0'



( '~

y (

Table 1.1. Summary of the Characteristics of Several Reactor Thermal-Hydraulic Analysis Codes

CODE METHOD OF REACTOR TYPES ANALYZED COMPUTATIONS PERFORMED GEOMETRIES

SOLUTION BWR PWR LMFBR 3TEADY STATI TRANSIENT ANALYZED

SUPERENERGY Marching Method X X X Arbitrary

COBRA-II Marching Method x X x X Arbitrary

COBRA-IIIC Pseudo Boundary X X X X X ArbitraryValue Method

OBRA-IIIC/ Pseudo Boundary X X X X Arbitrary
IT Value Method

OBRA-IIIP/ Pseudo Boundary X X X X Arbitrary
IT Value Method

HINC-IV True Boundary X X SubchannelValue Method iol

COBRA-IV-I True Boundary ArbitraryValue Method Ariay

SABRE True Boundary x x Subchannel
Value Method only
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1.3 Mathematical Formulation

Due to the widespread acceptance and use of the COBRA-

IIIC code, a considerable amount of the physical and

mathematical formalism employed by the code will also be

used as the basis for the numerical method to be developed

here. This essentially means that the same basic set of

governing conservation equations will be considered and that

the same marching-type of solution procedure used for the

initial value problem will be retained in space and time.

The objectives of the methods to be proposed in this thesis

are to solve the fluid conservation equations as efficiently

as possible so that much larger and more complex problems

can be handled within the limits of existing computational

capacity.

1.4 Basic AssumDtions

With these points in mind, the assumptions of primary

importance to the following development are:

1. A lumped parameter approach is valid

2. Sonic velocity propagation is ignored

3. The diversion crossflow is usually smaller than

the axial mass flow rate

4. Viscous dissipation is neglected

5. The liquid and vapor phases during boiling are in

thermodynamic equilibrium

6. Electromagnetic body forces are ignored
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7. Homogeneous two-phase flow may exist during boiling

conditions

8. Flow reversals, recirculating flows, and coolant

expulsions are not considered

.
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CHAPTER II

2.1 Governing Set of Conservation Equations

By using the control volume approach described in

reference [7], the equations for the conservation of mass,

energy, and momentum of the fluid in a lattice composed

of a number of comput<tional cells can be written as

Continuity

3p am1  N

j=1

Energy:

1 3hi ahi q1  N c
-= - - (t-t ) m

Tl, -T i J=1 i m

N w( N w
+ (h(-h i 3=1h m-h*) (2)
j=1 i =1

Axial Momentum:

1 ap_
1At 2u +
A 1 at ± at ax

m2Fvfi + kiv1 +a

L 2D 2Ax i ax A

N w N w
- gp cos 0-f' (u -u ) + (2u -u*) (3)

3=1 i A J=1 i

Transverse Momentum:

aw 
)
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where the summations indicated are to be performed over

all cells (j = 1,2,. . . N) connected in the transverse

plane to each cell represented by the index i. In this

way, the differential equations for a typical cell in the

hexagonal lattice shown in Fig. 2.1 (say cell 4) may be

written explicitly by simply summing from j = 1 to 3

and the differential equations for cell 5 in the rec-

tangular lattice shown in the figure may be generated in

an analogous manner by summing from j = 1 to 4.

The equations for other layouts of cells, such as

those in round bundles, are generated by simply summing

over all the cells in the lattice that interact with one

another in such a way that the interchange of mass,

energy, and momentum is allowed to occur. As in

COBRA-IIIC, this set of equations is closed by defining an

additional equation for the physical state of the

coolant of the form

p = p(hi, P*) (5)

and empirical correlations for turbulent mixing co-

efficients, friction factors, heat transfer coefficients and

other parameters used to characterize two-phase flows.

2.2. Matrix Form of the Conservation Equations

For a lattice composed of a large number of compu-

tational cells, the set conservation equations that has been

.. Akw -
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Hexagonal lattice

Rectangular lattice

Fig. 2.1 Cell numbering schemes for

generating systems of difference equations
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discussed here becomes unwieldy; .consequently, a more compact

matrix notation is desirable. In reference [ 7 ] a vector

form of the conservation equations is presented in

which a transformation matrix [S] and its transpose

[S]T is used to reduce these equations to a more

tractable form. The elements of the matrix [S] are

defined through two column vectors ±(K) and j(K). where

i and j represent the indices of adjacent computational

cells and K is used to represent the index of the common

boundary connecting them. As in COBRA-IIIC, the entries

T
in [S] and [S] may only have values of 0, 1, and -1, and

the crossflow is arbitrarily considered to be positive when the

dominant direction of the flow is from cell i to cell j, where

i is less than J.

Using the definitions of ES] and [S]T presented in

reference [7 ], the foregoing conservation equations may

also be written as

Continuity:

[A] {% + }= -[T{w}- (6)

Energy: d

1h,}+ { , } = [j {Q},- [.] [S]T [Ah] (w'}U- at x [ [h

I' is] ESTEAt]{c} + E)[Eh]ECs]T - S]T~h*il{w1, (7)



24

Axial Momentum:

A atat x
[-A] {$ - {2u }+ {$.} -{a'} + (8)

[ ] [2u][S]T £sJT[u*]] {wl

where the components of the pressure drop due to fric-

tional forces, gravitational forces, and the effects of

turbulent mixing are given by

{a'} = { (S)2 + + A p /A + pg cos}

- tE}3Cs]T CAu]{w'} . (9)

and transverse interactions are taken into account by

means of the matrix fornm of the transverse momentum equation

developed for the COBRA-IIIC code:

Transverse Momentum:

(aw} +U *+(s)[C]{w} = ( )CS] (P}
at ax

For convenience, the same nomenclature and notation used

in 7 ] are also used here. Consequently, this reference

should be consulted for, more detailed information about

the definition and derivation of the individual terms.
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2.3 Conversion of the Conservation Equations into

Difference Equations

The preceding conservation equations must be converted

into a system of difference equations before they can be

solved by numerical means. Taking a first order back-

ward differencing scheme for the spatial and temporal

derivatives to provide numerical stability allows the

equations for the conservation of mass and axial momentum

to be written as

Cohtinuity

[A ] + m -[S T{w} , (11)

Axial rhrnentum:

[A ]j [2u ]ttj~j1+ j l1
At At AX

(at J 1 )+ [AJ i E'2u ]i[s]T -Es] Tu* {w N1. (12)

For reasons to be discussed in section 2.7, the

energy equation is approximated using a differencing scheme

which is spatially explicit and temporally implicit:

E.nergy: e

1 h h + h -j-1= {m }l {Q-12
A t ) Ax JI.

[Ah 1w } .- [S]T[At J.l][Jcj... +lfl+{m }

I[hJ ][S]T_ S T[h* ] 11. (13)

det - fh -
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In this differencing scheme (Fig. 2.2) each control

volume is bounded by two adjacent control volumes in the

axial direction and the interchange of mass, energy, and

momentum is allowed to occur .between adjacent computational

cells in the transverse plane. A Taylor series expansion

of Equations (11), (12 and (13) shows that this differencing

scheme has a truncation error of 0 (Ax, At). Although many

other differencing schemes are possible, this scheme is the

only one that will be considered here. Finally, it must be

understood that the transverse momentum equation has been

excluded from the preceeding discussion. This equation will

now be considered in more detail since a better knowledge

of its structural properties as well as the differencing

schemes that can be applied to it are necessary to gain a

more comprehensive understanding of the methods to be

proposed.

2.4 Development of a New Spatial Differencing Scheme for

the Transverse Momentum Eauation

The purpose of the transverse momentum equation is to

couple the computational "cells together so that pressure

gradients generated by the axial momentum equation can be

used as the driving forces for the transport of mass,

energy, and momentum between computational cells in the transverse
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hj +, mj+1

Pj+11 +1-- 
-----

{hjI {mj P

x

y

fwj+1 )

Fig. 2,2 Sample mesh grid to be used

for numerical calculations

VW-,
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plane. The purpose of this section is to present a spatial

differencing scheme for the transverse momentum equation

which will be used as the basis for the numerical methods

to be developed. The idea of the differencing scheme is

to split the pressure vector -and all the other transverse

friction terms which .drive the cross flow in the transverse

momentum equation into a sum of spatially implicit and

explicit parts. By introducing the weighting function, e,

having an arbitrary value between 0.0 and 1.0, the pressure

vector {P} and the cross flow resistance terms [C]{w} in

Equation (10) can be written as

{P} = ) 6{P }+ (1-0) {PJ_-1I (14)

[CJ{w} = 6[C ]{w } + (1-e)[C 3 1 fw 1 }, (15)

where 0.0 < 0 < 1.0.

As a result, it is then possible to write the transverse

momentum equation more -generally as

+ u*iw - w1 + ( EC ]

[C } = ( )[S] 6{P }+(1-e) {P } (16)

where the significance of the proposed differencing scheme

can be seen by examining the form of the transverse momentum

equation for various values of e; e.g.; by setting 6 equal

to 0.0, 1/2, and 1.0 respectively,
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9 , 0. 0:

+ u* w - J-1 + ( )C }N

(8)C[S] {p l (17)

9 = 1/2:

-w u*w. uu j w~j-.1W + ( ) ]
At Ax 2

=( (P I + f____1 (18)

= 1.0:

+ jw - u* w-1 + (.-)[C

(j)[S]{P }. (19)

Thus, it car be seen that an approach has been developed

which allows the cross flow distribution to be driven by any

combination of the pressure fields that exist at the top and

the bottom of each plane of computational cells. By

choosing a value for e, the pressure fields from adjacent

axial levels can be blended together in a manner that allows

the degree of coupling of the transverse and axial momentum

equations to be a function of the problem being solved.

This blending of the pressure fields tends to eliminate

sudden changes in the, transverse cross flow distribution

caused by discontinuities resulting from the application

of the correlations for the pressure gradients at the inter-

face between flow regimes and allows more flexibility to

be used in modeling the transfer of momentum between the

computational cells.



30

2.5 Development of a Pressure-Based "Theta Method"

2.5.1 Derivation of the Difference Equations for the

Pressure Field

Using the aforementioned difference equations, Eqns. (11)

(16) as the starting point for the development of the

proposed method, it should be noted that it is desirable

to construct a procedure that simultaneously guarantees

the conservation of mass and momentum at each axial elevation

of the core at each instant of time. This condition can

be satisfied by combining the continuity equation, Equation

(11), together with the axial momentum equation, Equation

(12), to explicitly eliminate the time dependent density

term, { IR}. The result of this substitution 's a set ofat
matrix equations of the form

[A ] m + [2u ][A ]1 m -j + [2u ][A* ]~1S]T{wj}
Ati J AxJ11ICI{I

+ - =a }J-1 + [A ] [2u ][S]T{wj} -

A ] T[u* ]{WJ}. (20)

Since [A ] [AJ]', and [u ] are diagonal matrices, Equation

(20) can also be writter1 as

[A ]-1 M m + [2u ][A]- m -mj-1 + LJ-1
At Ax Ax

{a? ' 1 } [A ] [S]T u* ]{w} . (21)

The transverse momentum equation, Equation (16), is then

solved for 'the cross flow distribution as function of the

pressure distribution giving
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t(] {w } = + W

+ (a)(6-1)[C } + (8)[S] e*{P } + (1-e){P }(22)

This system of equations can also be written in the form

{w } = [D w u w + (a)(-1)[C IwI}

ES A9P~ + XJ-

*j
+(8)[D ]- [S] B{P } + (1-9){P I

where ED ] + + ( )8[C 3]J .(24)

Substituting Equation (23) into Equation (21) to explicitly

eliminate the cross flow distribution results in the

following system of equations for the pressure field

m rlv fm.' -MQP L)
[A ] m + [2u ][A ] m -1+ J1LAAt ~ UJJAx~ Ax 5

{a - [A ] [S]T u D ] u AtAx

+ ()(0-1)[C }N - (P)[A ] [S] Eu *]ED ] [S]

9{P3 } + (1-e){P J-1 (25)

Additional algebraic manipulation allows these equations to

be written in. more compressed form as

[i + eM ]{P } = [I - (1-6)M ]{P } t {b3 } (26)
AxCI -lPl T*

where EM .] = Ax(E) [A ][S]T Eu *][D 3 1 ES] (27)

[I] is the identity matrix, and the vector {b3 } is given by

{b3 } = Ax{a } - ( )[A 1 {m-i~ } - [A ]1 12u ]{m -m }



-AX[A ~1CS] T[u* ][D ]~ [S] + u w~

(6-1) [CSlw .D J-13

Note that {b }is a source vector containing terms which

contribute to the axial pressure gradient as the result of

frictional forces, gravitational forces, and the spatial

and temporal acceleration of the flow. In spite of the

seemingly complex structure of this vector, it should be

noted that it contains only one entry from each computa-

tional cell. Finally, the value of {mg in Equation (25)

is unknown and therefore must be initially estimated and

updated through iteration.

2.5.2 Discussion of the Difference Equations for the

Pressure Field

In order to more clearly comprehend the consequences

of the procedure that has been proposed, it is helpful to

write Equation (26) as

{P j} = [I+GM ]~ 1 [I-(l-O)M J ]{P J 1 } + [I+6M]~{b }

and to examine the structure of the matrix

the pressure field {Pjl for various values

o = 0.0, 1/2, and 1.0 allows Equation (29)

in the following three forms

8 = 0.0

(P) [I-M (I{p l } + {b }

equations governing

of e. Setting

to be written

(30)

32

(28)

(29)
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o = 1/2

{?} = I+ i1[I {Pj + LI+1 b } (31)
2 2

9 1. 0

{p3 } = [I+M ]~ 1 (P 1 + I+Mj]~I{b} (32)

As discussed in section 2.4, these equations demonstrate

that a direct relationship exists between the form of the

equations for the pressure field and the forces that are used

to drive the cross flow distribution between the computational

cells in the transverse plane. Setting 6 = 0.0 allows the

cross flow distribution to be driven by the pressure field

that exists at the bottom of each plane of computational

cells. From Equation (30) it can be seen that this results

in a differencing scheme which is spatially explicit. but

temporally implicit. Choosing 6 = 1.0 means that the cross

flow distribution is governed by the pressure field which

.exists at the top of each plane of computational cells.

This in turn is numerically equivalent to requiring that

the system of equations to be solved for the pressure field

is fully implicit as denpted by Equation (32). Finally,

by setting 6 = 1/2, Equation (31) shows that it is possible

to generate a system of equations where the cross flow

distribution is driven by the average of the pressure

distributions that exist at the top and the bottom of each

plane of cotiputational cells. In this specific case, the

difference equations are temporally implicit b-ut have a

dh -- 100-
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spatial component whose structure is analogous to that of

the Crank-Nicholson method. It should be noted that other

values of e lead to other spatial differencing schemes,

and in fact, a whole spectrum of these schemes can be

generated from Equation (29) by selecting other values of

8. Finally, it should be recognized that reducing the value

of 6 increases the diagonal dominance of the coefficient

matrix, but does so at the cost of reduced numerical

stability (Section 6.3).

2.5.3 Derivation of the Cross Flow Distribution from the

Pressure Field

When transverse pressure gradients develop between the

computational cells at a given axial elevation, the flow

field in the lattice becomes perturbed and a cross flow

distribution is set up in order to equalize imbalances in

the radial pressure field. To account for the effects of

the cross flow distribution on the interchange of mass and

momentum between the computational cells, the cross flow

distribution must first be found from the transverse

momentum equation, Equation (10). The pressure vector used

to drive the cross flow distribution in this equation is

found by blending the pressure field computed from Equation

(29) together with the pressure field from the previous -

axial level to form the composite pressure field given

by Equation (14) as the numerical
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scheme sweeps downstream. The cross flow distribution at

successive axial steps is then found from Equation (16) by

rewriting it as

(w-} = [DI + u + (

+ (1)[D ]-1 [] 8{P }+(i-e) {P 1 (33)

where ED ] is the diagonal matrix defined by Equation (24).

This additional step requires very little computational effort

since the inverse of [DJ] can be found by inspection. Finally,

it should be recognized that no assumption has been made so

far with regard to 6; i.e.., 6 can still assume an arbitrary

value between 0.0 and 1.0.

2.6 A Ccmparison of the "Theta Method" to the Numerical

Method Used by COBRA-IIIC

In order to more clearly comprehend the capabilities

of the method that has been developed, it is instructive to

compare its features to those of the method used by COBRA-

IIIC.

The starting point for the comparison is the equation

used to compute the cross flow distribution in the COBRA-

IIIC code

EM ]'{w = {b } ( 3 4)J c J c

where

[Mj]c = [ ] + (x + (i)[C3 ] +

a& - Almb
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Ax()[S][A 11 [2u ][S]T _ CS]TCu" ] (35)

is the coefficient matrix that determines the transverse

flow field,

{b }c w+ Ax( {a' } -

[A ]- m f-j + [2u ] P (36)

is the source vector that drives the transverse flow field,

and the subscript c refers to the fact that these equations

are used by the COBRA-IIIC code.

The comparison of the two methods is begun by examining

the structure of the coefficient matrix used by each method

and the consequence of these structural properties from a

numerical point of view. A more detailed discussion of

the meaning of the terms to be used is given in [ T 1.

The analysis of Equation (34) starts by realizing that

[-A u, u ], and [u* ] are diagonal matrices. With this

observation it is possible to write the cross flow coefficient

matrix more generally as

[M I C 1 ll,] + ( 2 [ss T (37)

-where C 1] and [C2 ] are matrices containing parameters that

are problem dependent, [I] is the identity matrix, and [SI

and [S]T are "interface or gap connection matrices" whose

purpose is to maintain a consistent ordering scheme between

the cells used to define the topology of the lattice and

boundaries used to define interactions between adjacent cells.
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Fig. 2,3 A simple subchannel numbering scheme
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Equation (37) shows that both the size and structure of the

cross flow coefficient matrix are determined primarily by

the order of multiplication of [S] and [S]T for the simple

subchannel numbering scheme shown in Fig. 2.3.

In these equations, the number of cross flows is

indicated by the symboi. NF and the number of nodes at which

the pressure is to be found by the symbol NP. Here, as in

COBRA-IIIC, the cross flow is considered to be positive when

the dominant direction of fluid flow is from cell i to cell

J, where i is less than J. From Equations (38) and (39) it

T
can be seen that [S] and ES] are generally rectangular

matrices rather than square matrices since they represent

a topological situation in which there are considerably

more boundaries than computational cells:

NP - 4
1-1 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0

1 0 0 -1 0 0 0 0 0

0 1 0 0 -1 0 0 0. 0

0 0 1 0 0 -1 0 0 0

0 0 0 1 -l 0 0 0 0

0 0 0 0 1 -1 0 0 0
S} = 0 0 0 0 0-1 0 038)

0 0 0 0 1 0 0 -1 0

0 0 0 0 0 1 0 0 -1

0 0 00 -l0 -10 0 0 0 0 0 1 -1 0

0O 0 0 0 0 0 0 1 -



NF
1 0 1 0 0 0 0 0 0 0

-1 1 0 1 0 0 0 0 0 0

0 -1 0 0 1 0 0 0 0 0

CS]T =

0 00

0 0
0 0

0 0 -1 0 0 1 0 1 0 0 0 0

0 0 0 -1 0 -1 1 0 1 0 0 0

0 0 0 0 -1 0 -l 0 0 1 0 0

0 0 0 0 0 0 0 -1 0 0 1 0

0 0 0 0 0 0 0 0 -1 0 -1 1

0 0 0 0 0 0 0 0 0 -1 0 -1

I

NP

'V

39

(39)

Thus [S] is an NPxNF matrix whereas its transpose, [S]T

is an NFxNP matrix. Taking the product of [Z] and [S]T

for the subchannel numbering scheme shown in Fig. 2.3

results in an NFxNF matrix of the form

[S][S]T

C 'KTV

2 -1 1 -1 0 0 0 0 0 0 0 0

-1 2 0 1 -1 0 0 0 0 0 0 0

1 0 2 0 0 -1 0 -1 0 0 0 0

-1 1 0 2 0 1 -1 0 -1 0 0 0

0 -1 0 0 2 0 1 0 0 -1 0 0

0 0 -1 1 0 2 -1 1 -1 0 0 0

0 0 0 -1 1 -l 2 0 1 -1 0 0

0 0 -1 0 0 1 0 2 0 0 -1 0

0 0 0 -1 -1 1 0 2 0 1-1

0 0 0 0 -1 0 -1 0 0 2 0 1

0 0 0 0 0 0 0 -1 1 0 2 -1

0 0 0 0 0 0 0 0 -1 1 -1 2

NF (40)

It should be noted that the structure of this coefficient

matrix is very similar to the structure of the cross flow

Ak- 10-
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coefficient matrix contained in the COBRA-TIIC code. The

primary difference is that the coefficient matrix used by

the code is modified by the addition of the diagonal terms

in Equation (35):
U

C~]+ [ - ] + ( c )[IAt A.-4 1 ~C~ (141)

This modification generally improves the numerical properties

of the matrix, and in many cases, appears to provide the

diagonal dominance necessary to guarantee the success of

iterative solution techniques. However, the iteration is

relatively slow to converge, and is not much more efficient

from a computational point of view than Gaussian elimination,

particularly for problems where the axial mesh spacing is

very large (i.e., approximately equal to one foot). For

this reason, the cross flow distribution 'is found in COBRA-IIIC

by solving Eq. (34) by Gaussian elimination, and it is the

repeated application of this inversion technique to Eq. (34)

at each axial level of the core at each instant of time that

is primarily responsible for the long running time of the

code.

For the proposed me.phod, the coefficient matrix

governing the pressure distribution can be written as

[I-+ eMs] (42)

Since CI]is the identity matrix and [MJ] is defined by

Equation (27), the size and structure of this coefficient

matrix is determined primarily by the order of multiplication
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of [S] and ES]T. Taking the expressions for CS]T and [S]

given previously and multiplying them together in the proposed

order gives

NP.
2 -1 Q -1 0 0 0 0 0

-1 3 -1 0 -1 0 0 0 0

0 -1 2 0 0 -1 0 0 0

-1 0 0 3 -1 0 -1 0 0

[S]T[S] = 0 -l 0 -1 4 -1 0 -l 0 NP (43)
0 0 -1 0 -1 3 0 0 -1

0 0 0 -1 0 0 2 -1 0

0 0 0 0 -l 0 -1 3 -1
0 0 0 0 0 -1 0 -1 2

Thus it can be seen that the coefficient matrix governing

the pressure field has a structure which suggests that the

radial pressure distribution obeys a type of Poission

equation. This is a consequence of the fact that the solution

scheme is formulated to take advantage of the "primitive

variables" governing the flow field, and one of them is the

pressure {pj}. Furthermore, since the diagonal entries

in Equation (43) are equial in magnitude and opposite in sign

to the sum of the off-diagonal entries in any row or column,

the matrix has a much simpler and more.predictable band

structure than that of Equation (40). This numerically

desirable feature stems from the fact that each computational

cell in the transverse plane at which the pressure is to be

16, . .- .0.0ft- __ -
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found is only connected to its nearest neighboring cells,

whereas in COBRA-IIIC, the crossflow across one boundary

may be affected by the crossflow across as many as six

other boundaries in the lattice of cells shown in Fig.2.3.

Thus it can be -seen that the band width of the coefficient

matrix is reduced by approximately a factor of two if a

solution scheme based upon the pressure is used.

The primary computational advantage of the proposed

method lies in the fact that the coefficient matrix governing

the pressure field, Equation (42), is a Stieltjes matrix;

that is to say, the matrix is a diagonally dominent,

irreducible, positive definite matrix with a simple and

predictable band structure for any non-trivial space step

and time step size. For consistent numbering schemes, the

convergence of standard iterative solution techniques for

matrices of this type can be guaranteed. Consequently,

it is now possible and advisable to find the pressure

distribution in the lattice by iterative techniques rather.

than by the method of Gaussian elimination. In Chapter 5 it will

be shown that the use of an iterative solution scheme is often more

efficient than a direct solution scheme, and can save a consider-

able amount of time and effort in the computation of the pressure

distribution.

2.7 Use of the Conservation of Energy Equation with the

Theta Method

The purpose of the preceding discussion has been to

develop a general numerical method for solving the equations

for the conservation of mass and momentum in fuel pin bundles
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and nuclear reactor cores. The energy equation,Equation (2),

was not considered explicitly because an understanding of

its structure was not necessary for the development of the

proposed method. However, after the equations for the

conservation of mass and momentum have been solved, the

thermal response of the fluid must be interfaced with the

hydraulics and the ene'rgy transferred from the pins through

heat transfer coefficients. This is generally done by

solving the energy equation, Equation (13), for the enthalpy

of the fluid at a new axial level, h, using the value of

the enthalpy from the previous axial level, h 1 and the

rate of energy generation known to exist in each computational

cell. The energy balance is performed using the axial mass

flow rates, {mj}, found from a previous solution of the

momentum equations. Thus the solution of the energy equation

can be looked upon as an "outer iteration" in the two-step

solution procedure. Generally speaking, it would be necessary

to iterate between the energy equation and the momentum

equations at least once at each axial elevation to obtain

a self-consistent solution to the entire system of con-

servation equations. This is especially necessary for

problems that involve considerable departures from operational

reactor conditions (i.e., moderately severe transients).

The relationship between the "outer iteration" scheme for

the energy equation and the "inner iteration" scheme for

the momentum equations is illustrated in the flow chart in

Figure 2.4.
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Fig. 2.4 Flow Chart for Iterations Between
the Energy Equation and the Momentum Eqiiations

Start at axial
level J

Estimate mass flow rate

- Set ]e

Solve the energy egn.
orh (first iteration)

Find P by solving Eq(2 )

OUTER ITERATION Blend together the pres-
sure fields using Eq(l4)Solve the energy equ-

ation, Eq.(13), for a
new value of(h,1 on INNER
the second and sub- Solve Eq.(16) for the ITERATIONsequent iterations crossflow distribution

Find the new value of
(m from the continuity eqn.

-YES
Is A m too- large?'?

ZNO

Sweep downstream to the
next axial level (j+1)
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2.8 Boundary Conditions for the Theta Method

Since the theta method may be used to solve an initial

value problem in which the flow and enthalpy fields are

found by marching downstream between the inlet and the

outlet of a reactor core or rod bundle, it is necessary

to specify the values of the axial mass flow rates, the

pressures, and the enthalpies at the inlet of each channel

to obtain a self-consistent solution to the entire system

of conservation equations. Alternatively, it is possible

for the method to be formulated as a "boundary value approach"

in which the exit pressure may be specified and the inlet pressure

level is "floated" to give a uniform outlet pressure. In

either case, the sequential nature of the solution procedure

allows arbitrary spatial and temporal forcing functions to

be applied to the system pressure, the inlet enthalpy,

the inlet mass flow rate, and the radial and axial power.

distributions. The crossflow at the core inlet is usually

assumed to be zero, although more detailed crossflow

distributions may be prescribed if a better physical picture

is required and enough experimental evidence is available

to specify it. The axial iteration schemes that may be

applied to deal with the difference equations used by the

theta method are discussed in more detail in Chapter 4.
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2.9 Drawbacks of the Theta Method for a Flow-Blockage

Type of Analysis

Whereas the coefficient matrix governing the pressure

distribu'tion is a Stieltjes matrix for cases in which the

theta method is used to solve for the pressure at level j

as a function of the pressure at level J-1 (see Eq. 26),

the method has the drawback that it cannot be applied

rigorously to problems where the crossflow is very large

because the terms in the axial momentum equation which

account for frictional and gravitational effects are

evaluated at the bottom of a node rather than at the top

of a node by means of a relationship of the form

{a }.1 {k }{m 12}. {f (44)

This approximation is acceptable as long as the change in

the axial mass' flow rate,Am = {m -m } between the top

and the bottom of a node is small, since an order of magnitude

analysis presented in greater detail in section 3.1 shows

that

{aj } = -{k m 2

= -{k I{mi1 +zMI2 } {f2 I

-{kMm 21 -{k }{2m - } (45)

or {a '}= -{k I{m 2 - I ={a .I (46)

if Am<<{m I
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However, in the event of a flow blockage, &m can be

almost as large as {mj_.l , and the {aj-i'} ={aj?}

approximation cannot be justified a priori. To rectify

this limitation of the theta method, a more general numerical

method called the MAT method (Modified and Advanced Theta Method)

will now be developed. Like the original theta method,

the MAT method also uses the concept of splitting the forcing

terms and the pressure fields which drive the crossflow

distribution in the transverse momentum equation into a

sum of spatially implicit and explicit parts. However,

because of the fact that the MAT method is based upon evalua-

ting the terms which account for the frictional and gravitational

effects directly at axial level j, the method is inherently

more stable and can consider problems in which the crossflow is

even larger than the axial mass flow rate. This feature of

the method gives it the capability to analyze flow blockages

and other types of problems that involve severe departures

from operational reactor conditions. The numerical basis of

the MAT method will be discussed in detail in the presentation

to follow.
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CHAPTER III

3.1 The MAT Method

3.1.1 Derivation of the Difference Equations for the MAT

Method

If the continuity equation, Eq. (11), given in

section 2.3 is written .as

{m } {m J1- Ax[S] T {w - [A ]{ }At x (47)

it is possible to express the axial mass flow rate at level

J in terms of the axial mass flow rate at level J-1 by

means of a relationship of the form

{m } = {mjl} + {Am} (48)

T p-
where {Am} = -Ax[S] {wj} - Ax[Aj]{1  A } (49)

is the change in the axial mass flow rate between the top

and the bottom of each plaAe of computational cells.

Using this relationship, the terms in the axial momentum

equation which account for the pressure drop due to frictional

and gravitational effects can be written as

{a ' -{k}{m 2 (50)

= -{k }{m + AM)2 - (51)

= -{k }{m 2 + 2m + 2 (52)

where the{.Am 2 term is generally small enough to be discarded

for operational reactor conditions. However, because of the
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possibility that(Am 2 } may be as large as {m } 2

for cases in which there is a severe flow blockage, an

order of magnitude analysis shows that it may not be

appropriate to construct a system of equations in which

2
the effects of the presence of the {Am} term are

ignored. For the sake of numerical convenience, the

flow-squared terms are written in the form suggested by

Rowe[7]:

Order of Magnitude Analysis

If Am is very small compared to mj , Eq. (52) can be

written as

{M } 2 + {2m Aml + }2 { 2

1 1 6 62

and when Am is somewhat larger,

(-112 + {2m 1 Am} + {Am) 2  {mj 1  2 + {2m

1 -1 6 62

Note that very large values of Am require that

{M }2 + {2m J 1 Am + fAm 2  M 2 + f2m J 1+Am}Am

1 1 1 12

{M J-1}2 + M {m+m J- 11Am
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{m }2 =. {m }2 + {2m J..+Am}{Am} (53)

and since

{AmI = {m } - {mj l} (54)

the {Am}2 term can be retained by writing {m }2 As

{M } {m 72 + {m +m 1 {Am1 (55)

The terms which account for the pressure drop due to

frictional and gravitational effects may then be expressed

as

{a 9} -{k }{m _1 2 - {k }{m +m }Am -{f } (56)

Applying the same reasoning to the temporal acceleration

term in the axial momentum equation gives

-1 -l-MJ. A m -~m J+m -r }
At ~ At

[A ] - } ] -{m } (57)
At At j-

and using the definition of Am given by Eq. (48), it is

possible to cast the temporal acceleration term into the

alternative form

-l{m - I= [A ) + [A ]-1 mJ-

At AtAt (58)

Substituting Eqs. (56) and (58) into the axial momentum

equation given previously allows the conservation of

momentum in the axial direc-tion to be written as
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A 1 = 2u + [A ]JAX jU At j At

2 (AF
-{k Im - {f - + (k }{m +m 3  {

+ [Aj ] (2u [r] - [STEu 1] {w } (59)

and since the continuity equation, Eq. (49), requires that

Am} = -AxES]T{w } - Ax[A3 ] (60)

it is possible to simultaneously guarantee the conservation

of mass and momentum at each axial level of the core at each

instant of time by writing Eq. (59) as

(p-p1 1 -{k }{m _ }2
Axj At.j -l

+ 2u + + Axk A (m +m ))

+ [A 3 ] [2u +A][S]T T u ] J {

+ Ax [K (m +n ) I [S]Tw.} (61)

Solving the transverse momentum equation for the crossflow

distribution as a function of the pressure distribution gives

+ j + (T)eCC ] {w } V - u w

+ ( )(-)[C~~j~w 1 ) + (2)[S]fe{P } + (-e){ j-{w j1 zj-± (52)



This system of equations can also be written in the form

-.1{w} =.[D ]- {0 } + ( )[D ]- [3] B{P } = (1-e){P 3)

where ED I is the diagonal matrix defined by

(611
+ + (6)e[C ](64)

and the other forcing terms in the transverse momentum

equation are represented by

{J} =u} f:w + )j-1 j-1 (65)

Finally, substituting Eq. (63) into Eq. -(61) to explicitly

eliminate the crossflow distribution results in the following.

system of fundazmental equatibns for .the pressure field

Ax Ax
{p -pi1 } 4 = $ A ]{M -m } -Ax{k }{m 2 x~

+4xpj-_ 2-. j+ AX+ Axk A3(m +m31

+Ax[A2u+ A + Ax[A]k3 (m +nj )[EST Tui]]

[D{ ] {o} + ( )[Dj]3 [S] 6{P } + (1 e){P } (66)

Additional a1gebraic manipulation allows these equations

to be written in more compressed form as

[I + (l-e)M ]{p } = [I - eM.]{pj1 + {b'} (67)

where I is the identity matrix,

M I] = Ax (Z) [[A I- [B ]S]T[D] [3]

- [A I[S]T[u ]D 1 1 [S] (68)

is a coefficient matrix governing the pressure field,
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{b } = C]_ m } - Ax{k }{m 2 Ax{%}

+ A{pj- }2u + + Axk A (m +m

+ Ax[A ] [B ][S]TED ] {0 } - Ax[A ][S]T[u ][D i1{0 }

(69)

is a source vector that contains terms which contribute to

the axial pressure gradient, and

[B ] = [2u ] + E + Ax[A ]k (m +m J 1 ) (70)

is a matrix which is used in the construction of the source

vector and the coefficient matrix governing the pressure field.

3.1.2 Discussion of the Difference Equations Used by the MAT

Method

It is interesting to observe that by simply manipulating

the difference equations into a different form before eliminating

the crossflow distribution, it has been made possible to

construct a system of equations for the pressure field in

which the order of appearance of the weighting functions e,

and (1-e) have been reversed. As a result of the inter-

change of these weighting functions in the coefficient matrices

operating on {pj} and {pj l , a numerical procedure has

been constructed in which a value of 6 = 1.0 corresponds to

a differencing scheme which is spatially explicit, and a

value of e = 0.0 corresponds to a differencing scheme which

is spatially implicit. Setting 6 = 1/2, however, is still

equivalent to requiring that the difference equations have

a spatial component whose structure is analogous to that

of the Crank-Nicholson method.
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One of the primary computational advantages of the

MAT method is the fact that the coefficient matrix

operating onfp } is a Stieltjes matrix, so that it is

now possible to solve Eq. (67) for {p } using an

iterative solution technique such as the method of

successive overrelaxation. Moreover, Eq. (68) shows that

[M '] can be written as a sum of two matrices [M ] and

[M "]:

[M ] = [M ] + [MJ"] (71)

where EMJ] = -Ax(s)[A ]1ICS]TEu ][D ]1[S] (72)

is the coefficient matrix which appears in the equations

of the original theta method, Eq. (27), and

[M "] = Ax( E)[A ]~1[B ][S]T[D ]1[S] (73)

is a new coefficient matrix whose purpose is to modify the

pressure field to account for the presence of the.higher

-order terms, {2m 1 Am} and fAm 2 } in Eq. (52). Both [M ]

and [M "] are NPxNP matrices because their structure -is

determined primarily by the order of multiplication of

[S]T and [S]. Similarlt, it can be seen that the source

vector {b '}, which is responsible for generating the

axial pressure distribution, again contains only one entry

from each computational cell.
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3.2 Boundary Conditions for the MAT Method

The fact that the equations used by the MAT method

are based upon solving for the pressure at axial level j-1

as a function of the pressure at axial level j makes it

possible to develop a computational procedu:' in which it

is not necessary to know the form of the inlet pressure

distribution to find the flow and enthalpy fields. Instead,

the exit pressure differentials between channels may be

set equal to zero in the manner outlined in section 4.1.3

and the inlet pressure distribution may be "floated" to

give a uniform outlet pressure. Thus the MAT method has

been constructed to use exactly the same set of boundary

conditions fo.:' the system pressure that are used by the

crossflow approach in the COBRA-IIIC code. Since all the

conservation equations used by the MAT method are to be

solved sequentially rather than simultaneously, it is

also necessary to specify the inlet enthalpy distribution,

the inlet mass flow rates, and the inlet crossflow dis-

tribution. The crossflow at the core inlet is usually

assumed to be zero, although more detailed crossflow dis-

tributions may be prescribed if a better physical picture

is required and if there is enough experimental evidence

available to specify it. The "boundary conditions" that

are to be used with the methods discussed in this thesis

are summarized in Table 3.1. Thus it can be seen that

only the adaptation of the MAC method used by COBRA-IV-I,
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Table 3.1. Boundary Conditions for Various Types of Solution Techniques

Type of Code or Method Inlet Conditions Outlet Conditions

COBRA-II
(Initial Value Approach) Specify p,m,w, and h Outlet pressure distribution

is floated

COBRA-IIIC Specify m,w, and h [S](p}=0 (Outlet pressure is
(Boundary Value Approach) Inlet prJssure distribution is set equal to a constant)

"floated"

THETA Method
(Initial Value Approac) Specify p,m,w, and h Outlet pressure distribution

_0. is floated

THETA Method Specify m,w, and h [S]{P}=0 (Outlet pressure is
(Boundary Value Approach) Inlet pressure distribution is set equal to' a constant)

"floated"

MAT Method
(Initial Value Approac) Specify p,m,w, and h Outlet pressure distribution

is floated

MAT Method Specify m,w, and h [S]{p}=O (Outlet pressure is
(Boundary Value Approach) Inlet pressure distribution is set equal to a constant)

"floated"

COBRA-IV-I Specify m,w, and p at the core Specify m,w, and p at the core
(True Boundary Value inlet outlet
Approach)

%ul
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which is a true boundary value method, requires a knowledge

of the pressure distribution at both the inlet and the

outlet of the core.

3.3 A Comparison of the Numerical Properties of the MAT

Method and the Theta Method

Although the theta method has the desirable numerical

property that it works with a Stieltjes matrix when it is

used to solve for the pressure at axial level j as a function

of the pressure at axial level J-1, the MAT method has the

advantage that it is more suitable for solwing the inverse

of this problem (i.e., finding the pressure at axial level

J-1 as a function of the pressure at aXial level J) because

the coefficient matrix

[I + (1-o)M ]J(74)

used by the MAT method is a Stieltjes matrix for this case.

This difference between the properties of the methods

is extremely significant from a numerical point of view. This is

because the solution scheme in COBRA-IIIC attempts to

drive the crossflow distribution at axial level j by the

pressure differences evaluated with respect to axial level

J-1, whereas the solution scheme used in COBRA-II is based on the

inverse approach of driving the crossflow distribution by the

pressure field at level J. Thus,.the theta method

is similar to the initial value approach used in COBRA-II

(see section 4.1.2), and the MAT method more closely resembles
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the "boundary value approach" used in COBRA-IIIC. However,

because of the better approximation to the flow squared

terms used by the MAT method,and the fact that it is not

formulated as an initial value approach, the MAT method

has been found to be considerably. more stable (see Section 6.3)

and can be applied rigorously to problems' in which the

diversion crossflow becomes even larger than the axial mass

flow rate. Finally, it will be shown in the sections to

follow that the MAT method can be extended very easily to

deal with situations in which flow disturbances can be

propagated several nodes upstream, whereas the theta

method is not nearly as stable or as efficient when it is

applied to problems of this type.

.6
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CHAPTER IV

4.1 Axial Iteration Schemes for the Theta Method and the MAT

Method

In order to implement the numerical methods which

have been developed in this thesis into a reactor thermal

hydraulic analysis code, it is necessary to consider the

types of axial iteration schemes that can be applied to the

difference equations used by these methods. This requires

an in-depth analysis of each of these schemes with respect

to the physical assumptions they use, their computational

efficiency, and their compatibility with different kinds

of boundary conditions. Since the axial iteration schemes

used by reactor thermal hydraulic analysis codes are generally

classified as either (a) single pass schemes, (b)

single pass schemes which are locally iterative, or (c)

multipass schemes, the primary features of each of these schemes

will now be considered separately.

4.1.1 Single Pass Axial Iteration Schemes

Single pass axial iteration schemes are really nothing

more than marching techniques in which the initial conditions

at the reactor inlet are given and in which a solution is

obtained by marching downstream through the lattice in the

axial direction only once. These schemes are extremely

efficient from a computational point of view because they

usually involve solving an explicit energy equation and
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an implicit or explicit form of the momentum equations only

once at each axial level of the core. However, they are

generally considered to be the least accurate from a

physical point of view because they do not contain a

mechanism for correcting errors that may be propagated through

the solution of the difference equations as the result of

an inaccurate initial guess of either the pressure, the

enthalpy, or the axial mass flow rate at each axial elevation

of interest. For this reason, it is believed that a

single pass axial iteration scheme is not the most appropriate

scheme to be used with the methods that have been developed

here, although it should be pointed.out that well known

codes such as CHIC-KIN [14] are based on single pass

axial iteration schemes.

4.1.2 Single Pass Locally Iterative Axial Iteration Schemes

The next level of sophistication that may be introduced

into a reactor thermal hydraulic analysis code is a single

pass, locally iterative axial iteration scheme. This type

of iteration scheme is based on the premise of sweeping

downstream only once, but differs from a true marching

technique because it peerorms additional iterations on the

flow or pressure fields at specific axial planes in the core

where these fields do not converge to a specified tolerance

after the first iteration. Some iteration schemes of this type, such

as those contained in HAMBO [6] and MIXER [15], attempt

to equalize transverse pressure gradients at each axial
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elevation in the core while the numerical scheme sweeps

downstream, whereas the iterative scheme used in COBRA-II,

for example, is slightly more realistic because it is based

on the assumption that appreciable transverse pressure

gradients can exist across a fuel pin bundle or a reactor

core and that these pressure gradients are the primary

driving force for the transverse crossflow distribution.

Thus the techniques used in the HAMBO and MIXER codes would

be expected to be applicable to closed bundles, where

transverse pressure gradients are fairly small, whereas

the crossflow approach used by the COBRA series of codes

would be expected to be more appropriate for analyzing

the "open lattice" found in a PWR core, where transverse

pressure gradients can sometimes be significant. Generally

speaking, locally iterative schemes are just slightly more

expensive than single pass schemes because they require

additional iterations to be performed only at those

planes where the solution initially fails to converge, but

these schemes are generally much more accurate from a

physical point of view, particularly in problems where

there is boiling, since they provide a mechanism for correcting

errors in the initial estimates of the pressure fields

and the flow fields at selected axial'elevations in the core.

The original version of the theta method and the numerical

scheme used in COBRA-II are both examples of methods that
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are suitable for use with a single pass, locally iterative

axial iteration scheme. Although the continuity equation

and the momentum equations used by the theta method are

time dependent and are applicable to more complex situations

than the equations used in COBRA-II (which are only able

to handle steady state problems )the procedures applied

to solve both sets of equations, as illustrated in the flow

charts in Figs. 4.1 and 4.2, are essentially the same. After

initial values of {p} , {h}, {w} , and{m} are established

at the core inlet, a differencing scheme is constructed

in which an energy equation is solved explicitly for the

enthalpy{h } at level j as a function of the enthalpy

(h J} at level J-1. The values of{m 1 1, {p l, and

{w } are assumed to apply at level j for the purpose of

evaluating the fluid properties. In COBRA-II an equation

derived from the combination of the axial and transverse

momentum equations is discretized using a backward spatial

differencing scheme, and the equation is solved directly

for the crossflow distribution {w } at level j as a function

of the values of {m J}, }W {J1, and {p J-1 } at level J-1.

The newly computed values of {ii} are compared with the old

ones to determine if all the crossflows have converged to

within an acceptable tolerance. If cohvergence does not

occur, a flag is set up within the program to perform another

iteration within the loop at the axial elevation of interest.

Since the new value of {w }is quite sensitive to the old
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Fig. 4.2 Flow Chart for the"Theta' I START
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one, (w is modified according to the algorithm

{w (k) 1/2 {w (k-1) + 1/2 {w (k) (75)

to presumably accelerate the convergence of the iteration,

where k and k-l are iteration indices for the crossflow at

the same points in space and time. This value of the

crossflow is thcn used to update the values of the axial

mass flow rates via the continuity equation, and if

convergence does not occur, the new values of the axial

mass flow rates are used to update the coefficients in

the difference equations to be solved for{w3 }. If convergence

does occur, the pressure {p 3 } is computed from the axial

momentum equation as a "back calculation" and the numerical

scheme is allowed to sweep downstream to the next axial

level.

Because of the fact that only the very simplest form

of the transverse momentum equation

{Clwlw} =[s]{p} (76)

is used in COBRA-II, the coefficient matrix of the difference

equations used to compute the crossflow distribution is almost

singular, and it is nepessary to impose an upper limit

on the space step size for a given value of the crossflow

resistance coefficient [C] to prevent. transverse flow loops.

On the other hand, because of the fact that the values of

{w } are updated periodically to converge the local axial

mass flow'rates, it is also necessary for the largest

eigenvalue of the coefficient matrix governing the iteration
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on {w } to have an absolute value of less than 1.0.

This imposes another lower limit on the acceptable size

of the axial mesh spacing for a given value of the crossflow

resistance coefficient:

2[C] {w } (77)

ES] EST[u*]

where [S]ES] Tu ] is a matrix containing the axial velocity

of the fluid carried by the diversion crossflow. If this

second condition is not satisfied, errors grow in the flow

solution and flow reversals may occur in an attempt to

satisfy the momentum equations. Fortunately, this minimum

value of Ax is much smaller than the values (i.e., 1 inch to 6

inches) that are usually desired for rod bundle calculations.

The theta method can be formulated to use essentially

the same numerical procedure to govern the computation of

the flow and enthalpy fields, except that the idea of the

method is to construct a system of difference equations

which can be solved directly for the pressure fields, so

that the computation of the crossflow distribution is only

a "back calculation." The restriction on the minimum

size of the axial mesh spacing is avoided because the coefficient

matrices governing the pressure field at each axial level

of the core can be shown to be diagonally dominant for

any value of the space step size. Reducing the time step

size simply increases the diagonal dominance of the coefficient

matrix and accelerates the rate of convergence of the
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iteration. Consequently, the theta method allows a more

complex system of conservation equations to be solved more

efficiently without experiencing the major drawbacka of

the initial value approach used in COBRA-II.

4.1.3 Multi-Pass Axial Iteration Schemes

For certain types of problems it is believed that a

more consistent picture of physical reality can be obtained

by constructing a Imultipass" axial iteration scheme

in which the flow and- pressure fields are found by marching

downstream several times in succession between the inlet

and the outlet of the core and iterating on the flow fields

until the change in the mass flow rates formed from successive

axial iterations is less than some prescribed convergence

criterion. This type of marching scheme is simply'a

generalization of a single pass locally iterative method.

in which an attempt is made to improve estimates of the

flow and pressure fields on each successive sweep through

the core. However, it is questionable in many cases

whether this procedure is actually necessary because it

involves updating the values of the variables at every point,

although there may be only a few points (out of several

thousand) where the iteration initially fails to converge.

The primary motivation for using this type of axial

iteration scheme is that it has.the capability to propagate

information from downstream locations to upstream locations
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at the rate of one axial mesh point per iteration.

Consequently, the effects of blockages and bulk boiling

can be felt upstream of the points at which they actually

occur if a backward differencing scheme, such as the one

used in COBRA-IIIC, is applied-to the pressure fields in

the momentum equations. MAT method and the COBRA-IIIC

method are similar to one another with respect to their

use of boundary conditions on the system pressure and the

computational procedures that can be employed to determine

the flow and enthalpy distributions. Both methods may be

based upon computing pressure differences rather than the

absolute of the pressure, and a "boundary value" type of

solution may be obtained with either method by updating

the inlet pressure distribution on successive axial iterations

through the core while the inlet mass flow rates and the

system outlet pressure are assumed to remain constant.

Thus, neither method requires an explicit knowledge of the

inlet pressure distribution to begin a calculation. As

shown in the flow chart in Fig. 4.3, a COBRA-IIIC computation

is begun by sweeping from the inlet to the exit of each

channel. With inlet information on the flow, crossflow,

and enthalpy distributions given, the enthalpy can be

advanced from axial J-1 to axial level j by solving the

same explicit energy equation used by the MAT method,

Eq. (13). For the first axial iteration the flow rate

{m} at level j is set equal to the flow rate {mj.. } from
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level J-1; otherwise, the previous iterate is used. A

system of equations for the crossflow distribution is

generated by combining the axial momentum equation, Eq. (12),

with the transverse momentum equation, Eq. (16), and the

continuity equation, Eq. (11), to eliminate the lateral

pressure difference [S] {p }1 at level J-1. The lateral

pressure difference [S] {p } at the top of the node is then

set equal to zero, and this system of equations is solved

directly for the crossflow distribution {wj} using a first

order implicit differencing scheme to approximate

the spatial and temporal derivatives [7]. The fact

that the lateral pressure differences at the top

of each node are initially set equal to zero does not mean

that the COBRA-IIIC code uses an iteration scheme to

equalize these differences at the top of each plane of

computational cells in the core, since the lateral pressure

differences are found by a "back calculation" after the cross-

flow is driven by an initial estima-te, CS] {p }-[S]{pj} ,

of the lateral pressure difference at each axial elevation.

The axial mass flow rates {mj} at level j are updated using

the continuity equatioA, Eq. (11), and the numerical scheme

is allowed to sweep downstream to the next axial level,

where this entire process is repeated again. When the

calculation reaches the exit of each channel, a check is

made to see if the flow distribution has converged at each

mesh point to the tolerance which was originally specified.
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If convergence has been achieved, the computation stops;

otherwise, the entire computation is repeated again starting

at the first axial level (e.g., the core inlet), and

sweeping downstream to the last axial level (e.g., the core

outlet). During the second and subsequent iterations, the

most recent values of the axial mass flow rates are used

in the equation for the computation of the crossflow

distribution. This eliminates the uncertainties that were

introduced into the solution by estimating the value of (m}

for the first iteration. However, none of the boundary

conditions at the inlet of the core are changed because they

are assumed to be known before the solution begins. Only

the inlet piessure distribution(which is not a boundary

condition) is "floated" to adjust for changes in the total

pressure drop through the core that are created by successively

better estimates of the crossflow distribution. The

number of axial iterations required for this procedure to

converge depends upon the type of problem being solved,

and is obviously also a function of the flow convergence

criterion that is used since the distance the pressure

difference [S]{p} is propagated upstream depends upon the

amount the axial mass flow distribution is perturbed by

the presence of grids, blockages, or the incidence of boiling

at downstream locations.

The numerical procedure that must be implemented to

allow the MAT method to be used with a multi-pass axial
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iteration scheme is essentially the same as the procedure

described above. As shown in the flow chart in Fig. 4.4, the

energy equation, Eq. (13), is solved explicitly for the

enthalpy {h } at axial level j using the value of the

enthalpy {h J-1 } alre.dy computed at axial level J-l.

The momentum equations, Eqns. (12) and (16), are then

combined' together with the continuity equation,(Eq. 11),

to generate a system of equations Eq. (67) for the pressure

distribution {pj} as a function of the axial mass flow rate

{mj}. The values of {m } in both the source vector and the

coefficient matrix of these equations are unknown, but

they can be initially estimated and updated using the

iterative p-ocess described previously. To perform an

axial iteration, the conservation equations used by the

MAT method are solved at each axial level as the solution

scheme sweeps downstream between the inlet and the

outlet of each channel. As in the original version of the

theta method, the pressure distribution {pl} found by

solving Eq. (67) is blended together with the pressure

field {p} from the top of each axial level to form the

eomposite pressure field given by Eq. (14):

{p} = G{p}+(l-e){p-} .(78)

The crossflow distribution at each axial elevation is then

found from the transverse momentum equation by rewriting it as

{w } = ED ]1 {O } + ( )[D ]~1[S] (e{p } + (1-e){p
(79)
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where ED is the diagonal matrix defined by Eq. (64)

and {0 } is a vector containing the other forcing terms

(see Eq. (65)). As indicated previously, the additional

step requires very little computational effort because the

inverse of ED ] can be found. by inspection. Thus the

pressure distribution is found directly at each step in

the iteration while the computation of the crossflow

distribution is a "back calculation." As in COBRA-IIIC,

the value of {pj} (or equivalently, the value of the

lateral pressure difference [S]{p3 }) in Eqns. (66) and

(79) is not initially known, but it can be set equal to a

constant (such as zero to avoid the necessity of computing

the source term [I-9M'){p }) for the first, axial iteration,

and then updated so that its new value can be used for

successive iterations. Because of the fact that the MAT

method applies a backward differencing scheme to the

momentum equations, downstream effects can be propagated

upstream at the rate of one axial mesh point per iteration.

4.2 Considerations for Transient Situations

In both the COBRA-IIIC approach and the MAT methodology,

steady state calculations are performed by setting the time

step At equal to some arbitrarily large value, since the

difference equations used by both methods are temporally

implicit and inherently stable for large time steps.

Transient calculations are performed in the same way but
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for a selected time step size At. "Boundary conditions"

and other forcing functions are set to their desired

values at the beginning of each new time step; then,

the calculation sweeps through the core for the number

of axial iterations needed to achieve a convergent flow

distribution. The converged solution is used for the new

initial condition and the same procedure is continued for

all time steps until the end of the transient is reached.

%a
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CHAPTER V

5.1 The COBRA-TIIP/MIT Code

The previous chapters of this thesis have been concerned

primarily with discussing the mathematical formalism upon

which the numerical methods that have been developed are based.

The purpose of this chapter is to compare the computational

efficiency of these methods to one another and to outline

the way in which these methods have been integrated into

the computational logic of a computer code called COBRA-IIIP/MIT.

As discussed in detail in an earlier publication [161,

this code is based upon the same conservation equations and

physical models that are used in COBRA-IIIC, but due to im-

provements in the method of coding, and the use of the

numerical methods that have been developed in this thesis,

it will be shown that it is now possible for the code to

solve much larger problems than previous codes with much

greater speed.

The first version of the COBRA-IIIP/MIT code was

based upon the theta method outlined in Chapter II. This

version of the code was suitable for modeling operational

reactor conditions where the crossflow was less than 5 or

10% of the axial mass flow rate, but was not designed or was

ever intended to be used to analyze the effects of severe

flow blockages. This was primarily because the {a }'T =

{a '- approximation outlined in section 3.1.1 could only be
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{2m Am} and {Am 2} terms in the axial momentum equation

could be ignored. When problems are encountered where the

crossflow becomes nearly as large (or larger) than the axial

mass flow rate, the {a 1'} = {a.T} assumption is presumably

invalidated, and better approximations to the flow-squared

terms, such as those used by the MAT method, have to be

made. Consequently, a more general version of the COBRA-

IIIP/MIT code was set up and in this version of the code,

a computational algorithm was developed in which the con-

servation equations were solved by the MAT method rather

than by the theta method.

5.2 Rational for the Axial Iteration Scheme used by the

COBRA-IIIP/MIT Code

Although the MAT method has been shown to be compatible

from a numerical point of view with multipass axial iteration

schemes in which information is propagated from downstream

locations to upstream locations at the rate of one node

per iteration, this type of axial iteration scheme is not

contained in the latest version of the code. This is because

it is believed to be computationally wasteful to iterate

over the entire axial height of the core many times in

succession if there are only one or two points (out

of several thousand in some cases) where the iteration

initially fails to converge. Further, it is believed that
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this computational procedure must be avoided -if future-

improvements are to be made to the MEKIN code [17] especially

since the use of a thermal hydraulic method with a multipass

axial iteration scheme can easily cause the running time of

the code to become prohibitive if it is applied to problems

where a large number of axial iterations have to be performed

during each sweep between the neutronics and the thermal-

hydraulics[18]. Consequently, "to maintain a reasonable

balance between computational efficiency and physical accuracy,

the MAT method has been implemented into COBRA-IIIP/MIT as

a single pass, locally iterative method. Thus additional

iterations are only performed at those planes in the core where

they are needed. This type of axial iteration scheme

coupled to the inherent computational efficiency of the MAT

method has enabled the code to solve problems having as many

as 625 channels with arbitrary geometrical shapes, and with

no limit to the number of time steps or space steps that can

be used. However, because of the fact that the backward

differencing scheme discussed in section 4.1.3 has been

retained in this application of the MAT method, the new version

of the COBRA-IIIP/MIT code does not require an explicit

knowledge of the inlet pressure distribution to obtain a

meaningful solution to the entire system- of conservation

equations. Thus the boundary conditions required to run

the code are now exactly the same as those used by COBRA-IIIC.



79

5.3 Solution Schemes

5.3.1 Iterative Methods - Successive Overrelaxation

Since the stucture of the coefficient matrix which

governs the pressure field in each of the methods that has

been developed is a strong function of the geometrical

arrangement of the cells in the lattice, the types of

numbering schemes that can be applied to these cells can

have an important effect upon the overall computational

efficiency of the methods. For example, in cases where

the cells in the lattice are arranged in rectangular arrays,

both of these coefficient matrices will be diagonally

dominant, positive definite, irreducible matrices if the

cells are numbered consistently (i.e., either row by row

or column by column as shown in Fig. 5.1) and if each cell

is connected to no more than four other neighboring cells.

In this case, the entries in each matrix can be ignored

if they have a value of zero, and the remaining entries

with non-zero values can be compressed into a 5-striped

array in the manner shown in Figure 5.2. The pressure

distribution may then be found by applying the method of

successive overrelaxation to the non-zero entries within

the array. The successive over-relaxation in COBRA-IIIP/MIT

is carried out on a pointwise basis to account for the fact

that the cells may have different sizes and geometrical
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Fig. 5.1 Consistent Cell Numbering Schemes
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arrangements. However, it is recognized that it may be

more desirable for rectangular geometries to carry out

the relaxation line by line. The relaxation factor

governing this iterative scheme may be supplied by the

user as part of the input data required to execute the

code, or it may be computed by the computational sub-

routines built into the code itself. The optimum

relaxation factor is found by monitoring the behavior of

the residuals formed by taking the difference between

successive iterates of the pressure field, and applying

the method of Carrs [19] to infer the value of the

relaxation factor which minimizes the spectral radius

of the iteration matrix.

5.3.1.1 Successive Overrelaxation for Assembly-Sized Nodes

It has been found that the optimum relaxation factors

for both the theta method and the MAT method are a strong

function of the ratio of the axial mesh spacing (Ax) to the

cross-sectional flow area"[A ] of the cells. For an axial

mesh spacing of six inches and a flow area representative

of an entire PWR fuel assembly (i.e., -.40 square inches) the

optimum relaxation factor is usually less than 1.1, which

indicates that the spectral radius of the iteration matrix

is close to 0.0, and that errors introduced into the iteration
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are damped out very quickly [20]. For problems of this

type, the transverse pressure distribution usually converges

to three decimal places in less than eight radial iterations,

regardless of the shape of the radial or axial power

distributions and the number of-rod spacers (i.e., grids)

oriented perpendicular to the direction of the flow.

Table 5.1 shows the number of "inner iterations" needed

to converge the pressure field to three decimal places as

a function of axial position for a reactor core 120 inches

high in which only one computational cell is used to represent

each fuel assembly in the transverse plane.. The core

has five different types of grids and 128 fuel assemblies.

An axial mesh spacing of six inches is used for this case.

The rapid convergence of the pressure field shown here is

indicative of the convergence rates of both methods when

they are applied to problems in which it Is desirable to

represent large numbers of fuel assemblies explicitly.

5.3.1.2 Successive Overrelaxation for 'Subehannel-Sized Nodes

It is also necessary in reactor analysis to consider

cases in which the method of subchannel anal!ysis is used

to represent each subchannel by an individual computational

cell. Several cells that may be used for this purpose are

shown in Fig. 5.3. For problems of this type, the ratio of

the axial mesh spacing tothe cross-sectional flow area is

much larger for a given value of Ax than when one cell is

used to represent an entire fuel assembly. As equations (26),

- - - AMA



Table 5.1. Number of Iterations Needed to Solve Problems
with Assembly-Sized Cells

Node Number Axial Elevation Number of
(inches) Iterations

1 6 6
2 12 6

3 18 7
4 24 6
5 30 8
6 36 7
7 - 42 6
8 48 6
9 54 6

10 60 6
11 66 7
12 72 6
13 78 6
14.- 84 8
15 90 7
16 96 6

17 102 6

18 108 6
19 114 6
20 120 8
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Fig. 5.3 Cells for the method of subchannel analysis
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(27), (67), and (68) show, the large value of this ratio

tends to make the sum of the off-diagonal terms in the

coefficient matrices almost comparable in magnitude to the

diagonal terms. In this case, the diagonal dominance of

the coefficient matrix is reduced and the spectral radius

of the matrix governing the iterationon the pressure field

is much closer to 1.0. For a typical problem of this type,

a PWR subchannel may have a cross-sectional flow area of

a few tenths of a square inch, and the axial mesh spacing for a

fuel management type of analysis is usually chosen to be

about six inches. Using the method of Carr4, it has been

found that this type of situation results in an optimum

relaxation factor between 1.6 and 1.8. From a practical

point of view, the fact that the relaxation factor is so

large means that a great many more iterations are required

to converge the pressure field to an accep+-able tolerance

if an iterative type of inversion scheme is used. Table 5.2

shows the number of "inner iterations" required by both the

MAT method and the original theta method to converge the

pressure field to three decimal places for the small section

of the PWR fuel assembly shown in Fig. 5.4. In both cases,

the number of iterations performed on the pressure field

appears to be affected by the presence of the grids. It

should be noted that the MAT method requies somewhat more

iterations for the given input parameters, but as indicated

previously, the MAT method is considerably more stable and



87

Table 5.2. Number of Iterations Needed to Solve
Problems with Subchannel-Sized Cells

Node Axial Grid gumber of Number of
Number Elevation Position CteratLons Iterations

(incties) X = Yes for MAT for Theta

1 6 X 49 43
2 12 37 40

3 18 9 10

4 24 7 8
5 30 7 7
6 36 6 6
7 42 X 56 49

8 48 50 46

9 54 7 7
10 60 6 6
11 66 6 6
12 72 X 52 51

13 78 49 44
14 84 6 7
15 90 6 6
16 96 X 41 39

17 102 40 38

18 108 7 8
19 114 6 6
20 120 f X 60 52

- IMMMM-



88

Symmetry
.............lines

0000
QOOO

OOO'000
OOQo.O 000

Fig, 5.4 Small section of a PWR fuel assembly



89

does not require detailed information about the boundary

conditions on the pressure distribution at the core inlet

to determine the flow and enthalpy fields.

5.3.2 Direct Solution Schemes-Gaussian Elimination

Whereas the method.of successive overrelaxation can be

used very effectively to determine the pressure fields in

a lattice where the cells are arranged in periodic, regular

arrays, it has the drawback that it is -.difficult to apply to

problems such as the one shown in Fig. 5.5 where the cells

are lumped together into clusters having a variety of different

sizes and geometrical shapes. This is due to the fact that

the coefficient matrices governing the pressure fields do

not have a simple or predictable bar.d structure, so that

it is necessary to operate on many of the zeros in each

matrix to ensure that each cell interacts with all of its

neighboring cells in the lattice. Moreover, it is frequently

necessary to consider a reactor lattice in which the rods

are packed very tightly together, so that the subchannels

are considerably smaller than those encountered in the analysis

of a pressurized water reactor. In this case, the spectral

radius of the iteration matrix is very close to 1.0, and the

iterative solution scheme takes many iterations to converge.

For problems of this type, it may be more efficient from a

computational point of view to abandon the method of successive

but not as many as COBRA-IIIC does

- Awft
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overrelaxation and to solve Eq. (26) to Eq. (67) by the

method of Gaussian elimination. Since the Gaussian

elimination is simply a procedure for manipulating the

coefficients of the difference equations to give a coefficient

matrix which is lower triangular, the number of operations

required to reduce the coefficient matrix to this form is

a very sensitive function of the type of cell numbering

scheme that is used. For example, in some numbering schemes

such as the one shown In Fig. 5.6,. the cells may be

connected to one another in such a manner that the coefficient

matrix has no preceptible band structure. In this case,

it is necessary to operate on virtually all the entries in

the matrix (including all the zeros) to reduce it to lower

triangular form. This is extremely inefficient from a

computational point of view because the number of operations

required to solve for the pressure field cpn be shown to be'

proportional to the number of channels cubed [203. Fortunately,

it is possible to devise cell numbering schemes such as the

one shown in Fig. 5.7 which tend to compress the non-zero

coefficients governing the interactions between adjacent

channels into a much narrower stripe centered around the

diagonal so that the coefficients above and below the stripe

have entries that are exclusively zero. An example of a

coefficient matrix of this type is illustrated in Fig. 5.8(a).

In this case, the width of the band (MS) is determined by

the -code from simple geometrical arguments, and the computational
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subroutines within the code only generate the coefficients

inside the band that have non-zero values. The band is then

stored by the code as an N by MS array (see Fig. 5.8(b))

and the Gaussian elimination is performed by operating upon

only the entries contairred within this array. Since the

number of operations required to set up the coefficient

matrix is proportional to the number of channels, the

number of operations reouired to decompose the matrix is

proportional to the number of channels times the square of

the band width, and the number o.f operations required to

solve the remaining system of matrix equations for the

pressure field is proportional to the number of channels

squared, the total central processirg unit (CPU) time

needed to complete this entire process can be written as

2 2CPU time = C 1N + C2N(MS) + C3 N

where N is the number of channels and C1 , C2 and C are

constants that are problem dependent. For most problems

empirical studies indicate that the values of C1 , C2 and

C3 result in a computation time that is proportional to

the number of channels to the 1.6 power. Thus it can

be seen that a considerable reduction in the running times

of both the theta method and the MAT method can be achieved

by simply taking advantage of the sparsity of the coefficient

matrix and by adopting a cell numbering scheme in which the

non-zero coefficients within each matrix are compressed into a

narrow band centered around the diagonal.
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Fig. 5.8(a) Coefficient matrix used

for Gauss elimination
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Fig. 5.8(b) Compressed coefficient matrix

used for Gauss elimination
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5.4 Execution Time Comparisons

Table 5.3 gives a comparison of the computation time

needed by various codes and methods in use today to compute

the crossflow distribution as- a function of the number of

computational cells. These results indicate that the

versions of the COBRA-IIIP/MIT code that have been based

upon either the MAT method or the theta method are considerably'

faster and more efficient than their predecessors. Whereas

the crossflow computation time of the COBRA-IIIC code

increases as the number of cells cubed, and the crossflow

computation time of COBRA-IIIC/MIT still increases as the

1.6 power of :the number of cells, the computation time re-

quired to compute the crossflow distribution with COBRA-IIIP/MIT

is approximately a linear function of the number of cells

when an iterative solution scheme is used. If the equations

for the pressure field are solved by Gaussian elimination,

rather than successive overrelaxation, the direct inversion

scheme tends to make the computation time proportional to

the number of channels to the 1.6 power, but as stated

previously, the total CPU time is still considerably less

than that of COBRA-IIIC/MIT because the band width of the

coefficient matrix governing the pressure field (section

2.6) is only half that of the COBRA-IIIC/MIT crossflow

coefficient matrix for problems with a large number of

computational cells. It is also important to realize that

the execution times given in rows 1, 2, and 5 are independent
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Table 5.3. Crossflow Solution Times for Various Thermal Analysis Codes

Method__ofNumber of Channels
Code Method of 

400___ 
_____ _____Solution 16 64 128 200 300 400

Gauss Elimina-

COBRA-IIIC tion with no 9 -compression of 1.7 128.49 987.36 3293.61 10250 31980
crossflow co-
efficient matrix

30BRA-IIIC/ Gauss Elimina-
MIT tionwith full

compression of .17 1.38 9.09 19.67 39.80 81.24
crossflow co-
efficient matrix

3OBRA-IIIP/ Successive over-
MIT relaxation with

with MAT optimized re- .15 .44 1.23 1.82 2.65 3.62Method laxation factor

30BRA-IZIP/ Successive over-
MIT relaxation with

with Theta optimized re- .15 .42 1.28 1.78 2.67 3.59Method laxation.factor

30OBRA-IIIP/
MIT with
MAT method
or theta
method

Gauss Elimina-
tion with full

oressure co-
e fficient mtfri Y

.17 76 2.16 7.95 * 16.53*

Notes: All results are for 10 axial- levels on an IBM 370/165 with the H compiler.
Note that the results of-these timing runs may vary by + 10% during the course
of a day due to changes in the work load on the system.

For economic reasons these results are estimated by extrapolation.
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of the axial mesh spacing, the size of the cells, and

the number of rod spacers (i.e., grids) because they are

based Qn .the use of Gaussian elimination, whereas the

execution times for successive overrelaxation can be somewhat

longer or shorter than those given-here if the size of

the cells is changed or if one fails to obtain a good

estimate for the optimum relaxation factor before proceeding

with the iterative solution scheme. Hence the crossflow

solution time of the COBRA-IIIP/MIT code will always lie

somewhere between the times given in rows 3 and 5 , except

in cases where the method of successive overrelaxation

converges more rapidly. Finally, it can be seen that there

is no significant difference between the execution times of

COBRA-IIIP/MIT when the MAT method and the theta method

are used, in spite of the fact that the MAT method is

considerably more general and more stable. Users who

wish to make timing runs with the codes may do so using the

simple timing subroutine shown in Table 5.4.

5.5 Effect of the Axial Iteration Scheme on the Solution Time

For the sake of consistency, the results in Table 5.3

have been presented for cases in which all the codes have

been allowed to perform only one axial iteration. In practice,

it is often found that several iterations may be needed to

converge the methods that have been discussed in this thesis

to a self-consistent flow distribution. However, the amount



Table 5.4. A Simple Subroutine for Timing Runs

SUBROUTINE PRNTIM (IN)

C. This subroutine may be used to determine the cr-r-flow
C. solution time and the total execution time of tte
C. COBRA-IIIP(MIT) code by calling it within the c--= at
C. selected points of interest

CALL TIMING(IT)
IF(IN.EQ.0) GO TO 100
CPUTIM=FLOAT(IT-ITT)*0.01
WRITE(6,1000) IN,CPUTIM

1000 FORMAT(lX,?*** PRNTIM *
RETURN
END

(',Il,')',F7.2,' SEC.',/)

I&
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of CPU time required by COBRA-IIIP/MIT to achieve this

convergence is often considerably less than COBRA-IIIC

or COBRA-IIIC/MIT due to the use of the single pass,

locally iterative axial iteration scheme contained within

the code. This scheme .has usually been found to reduce

the computation time by an additional factor of 3 or 4

compared to the other codes, depending upon the type of

problem being solved. Finally, it has been found that the

total execution time of COBRA-IIIP/MIT is approximately

70% or 80% greater than the crossflow solution times shown

in Table 5.3. This appears to indicate that the new code

and the methods upon which it is based are considerably

faster and more efficient than their predecessors.

46
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CHAPTER VI

6.1 Concepts of Convergence and Stability Applied to

Computational Fluid Mechanics

In many other branches of nuclear engineering, such

as those which are concerned with solving problems in

reactor physics, structural mechanics, and heat transfer,

the differential equations governing the behavior of

physical systems are well known and well understood.

Consequently, a considerable amount of time and effort

has been devoted to developing analytical techniques for

predicting the stability, the convergence, and the consistency

of numerical methods and differencing schemes for solving

these conservation equations. The purpose of this chapter

is to summarize the attempts that have been made to extend

these techniques into the field of computational fluid

mechanics, and to show in many cases that it is virtually

impossible to use the same techniques to prove the con-

vergence or the stability of the numerical methods that

have been developed to solve the .conservation equations

used by the COBRA-IIIC code.

6.2 Analytical Proofs of Stability

Although a great deal of work has been done in recent

years to attempt to prove the stability of numerical schemes

for solving the fluid conservation equations, a careful

study of the literature shows that this work has been
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restricted almost exclusively to a Von Neumann stability

analysis of the differential forms of the conservation

equations used by primitive variable techniques such as

"MAC" [12] and the stream function-vorticity approach [21]

for the case of incompressible flow (p = constant). This

approach has recently been extended by Porsching [22] to

deal with a primitive variable technique for the case of

a thermally expandable fluid, but no general stability

analysis has ever been applied successfully (as far as

it is known) to the forms of the conservation equations

that are used by the COBRA-IIIC code. Rowe [8] considered

the stability of the initial value approach used by COBRA-II

and was able to show that the iteration governing the

crossflow distribution at each axial level of the- core

could be made to be stable for a steady state cas-e in

which the spatial and temporal acceleration terms in

the transverse momentum were ignored. Hansen and Khan

[23] then attempted to extend Rowe's work *to time dependent

cases by considering a more general time dependent form

of the conservation equations coupled to the multi-pass

axial iteration scheme used in COBRA-IIIC. They failed

to proire the stability of the method. using a Von Neumann

stability analysis because of the complex, non-linear

form of the equations and ultimately recommended

that the stability of the code should be determined by

performing an unspecified set of nuraerical tests. While
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the author of this thesis has been somewhat more successful

in showing that both the crossflow distribution and the

transverse pressure distribution can be found using

iterative solution techniques because the coefficient

matrices governing these iterative schemes have diagonal

dominance, it is not believed to be possible to show

(except by running the code, of course) that the overall

axial iteration should also converge. Consequently, it

is felt that the stability of the numerical methods developed

in this thesis must be determined by numerical tests

rather than by analytical means.

6.3 Numerical Tests of Stability

To explore the stability of these methods a very

comprehensive set of numerical experiments have been

performed. In these experiments the behavior of problems

having as many as 600 channels has been studied, and it has

been found that both the theta method and the MAT method

are stable for all spatial differencing schemes in which

the crossflow distribution is driven by a pressure field

which is at least as implicit as the pressure field

obtained by taking the average of the pressure distributions

that exist at the top and the bottom of each plane of

computational cells. From Eq. (26) it can be seen that

this condition is satisfied for the theta method when it

is formulated as an initial value method for values of 8

greater than or equal to 0.5. Conversely, the same condition
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is satisfied for the MAT method and for the theta method

when it is formulated as a boundary value method for values

of 9 less than or equal to 0.5. More implicit spatial

differencing schemes have always been found to be stable.

As far as the temporal'differencing schemes are

concerned, it appears that both methods are unconditionally

stable since the difference equations governing the

temporal behavior of the system are fully implicit.

However, from a practical point of view, it has been

found that the MAT method is apparently able to handle much

more severe cases than any version of the theta method

before it becomes unstable. For example, MAT has successfully

considered problems in which flow blockage simulations have

created axial mass flux differences as great as 1000 to 1 between

adjacent computational cells in the core, whereas the

theta method. when it is formulated as an initial value

approach, appears to become unstable for axial mass flux

differences as low as 5 or 10 to 1. Thus it is believed

that the MAT method should be used to analyze a problem that

contains a severe flow blockage, and that it can be applied

equally well to analyze problems that involve only small

departures from operational reactor conditions. A

summary of the stability requirements for the methods that

have been discussed here is given in Table 6.1.



Table 6.1. Stability Requirements for Several Types of Solution Techniques

Method and Type of Spatial Stability Temporal Stability

Solution Scheme Condition Condition

Theta Method None

-Initial Value Approach- 6*.0.5 Method is Fully Implicit

Theta Method None

-Boundary Value Approach- 660.5 Method is Fully Implicit

MAT Method None

-Initial Value Approach- 6O0.5 Method is Fully Implicit

MAT Method None

-B3oundary Value Approach- 810.5 Method is Fully Implicit

COBRA-II See Eq.(77) for condition Not Applicable

-Initial Value Approach- on minimum A x Method is not Time De-
Maximum AxAl cr 2 feet pendent

COBRA-IIIC None None

-Boundary Value Approach- Method is Fully Implicit Method is Fully Implicit

COBRA-IV-I None-COBRA-IIIC Approach Courant condition
-"MAC" Methodology- used for Steady State Method is Fully ExplicitConditions
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6.4 Analytical Proofs of Convergence

Although a great deal of time and effort has been

spent in recent years to develop numerical methods for

solving the set of fluid conservation equations that

characterizes the steady state and transient thermal

hydraulic performance of fuel pin bundles and reactor

cores, very little progress has been made to determine if

these methods actually converge to unique and physically

realistic solutions of the conservation equations.

Proofs of convergence in computational fluid mechanics

have been restricted almost exclusively to linearized

versions of the Navier-Stokes equations for the case

of incompressible flow [24]. These proofs have consisted

of applying a linear Von Neumann stability analysis

to the numerical methods that have been developed to

show that they are stable, and then argueing that if the

difference approximations are a consistent approximation

to the differential equations as the mesh spacing approaches

zero, then they must satisfy the Lax theorem [25].

and converge to the true solution of the differential

equations. The major drawback of this approach is that

it has not been extended to the true non-linear form of the

differential equations and does not appear to be capable

of proving the convergence of methods for the more

general- case of compressible flow [21] which is, of course,

considered in the COBRA-IIIC code by means of the equation

of state,(Eq. 15).
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6.5 Numerical Tests of Convergence

The methods that have been discussed in this thesis

really cannot be analyzed for consistency and convergence

in the same manner as traditional numerical techniques

because they are not based on the same set of fluid

conservation equations. Consequently, it is believed that

an absolute proof of the consistency or convergence of

the numerical methods that have been developed here

cannot be determined by simply expanding the difference

approximations to the equations in a Taylor series and

showing that they converge tothe true differential equations

as the mesh spacing approaches zero, since the equations

used by COBRA-IIIC are derived from a control 'olume

approach and there has never been any proof given that these

equations are numerically or physically equivalent to the-

true differential.equations whose consistency and stability

have been proven in other branches of fluid mechanics.

Thus, it is believed that it is first necessary to show

that the COBRA-IIIC conservation equations can be derived

from first principles before any meaningful proof of the

convergence of the methods that have been developed for

solving them can be given. Until this is done, .the only

way to determine the convergence of these methods is to

check them with respect to computational consistency, and

to compare their predictions to the limited amount of

experimental data that is available. Finally, it must
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be recognized that considerable uncertainty currently

exists in the values of many of the empirical correlations

and coupling coefficients used in the equations, and that

it is conceivable that almost any method in use today

could be made to agree reasonably well with experimental

data by simply altering the values of these coefficients

within a reasonable range to suit the characteristics of

the problem on hand. Numerical proofs of the convergence

of these methods will be presented for certain types of

simple problems in Chapter 7.
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CHAPTER VII

7.1 Numerical Tests and Results

Although a considerable amount of time has been

devoted in this thesis to explaining the physical and

numerical formalism behind the methods that have been

discussed, the only way to demonstrate their feasibility

on a practical. scale is to run a series of numerical

tests in which they are compared to one another and to

the results of physical experiments. Consequently, an

attempt will be made to present a general picture of

the similarities and differences between the predictions

of the methods, and to suggest specific types of experiments

or sample problems where a meaningful comparison of the

capabilities of these methods can be made.

7.2 Sample Problems to be Considered

Because it has been found from experience that it is

extremely difficult, if not impossible, to draw any meaningful

conclusions about the results of the methods when they are

applied to very large and'complex problems, it is believed

that a systematic comparison of the similarities and

differences between the methods can be bdst illustrated

by considering simple problems with a very small number

of computational cells. Consequently, almost all the

results that will be presented here will be for cases
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similar to those shown in Fig. 7.1 in which two adjacent

computational cells representing either subchannels or fuel

assemblies are connected to one another by a single common

geometrical boundary so that the interchange of

mass, energy, and momentum is allowed to occur. More

complex cases can be considered by running the codes after

the results of these simple cases are more clearly under-

stood.

7.3 Comparisons of the Results of the Methods for Cases with

Only One Axial Iteration

7.3.1 Time Step Sensitivity Studies

Since the COBRA-IIIP/MIT code is b~ered on the single

pass locally iterative axial iteration scheme discussed

in section 4.1.2 and the COBRA-IIIC code is based on a true

multipass axial iteration ~scheme, a consistent comparison

of the predictions of the codes and their numerical methods

cannot be given for cases which require more than one axial

iteration. Consequently, the discussion in this section

will be restricted to the sample problem shown in Fig. 7.2

in which the flow convergence criterion is made large enough

so that only one axial iteration is performed. In this problem,

a grid with a loss coefficient of 2.5 is located midway

between the inlet and the outlet of two identical fuel

assemblies with different radial power peaking factors, and

the power level in both assemblies is doubled uniformly in one
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second. With an axial mesh spacing of two inches, and with

one computational cell used to represent an entire assembly

in the transverse plane, a time step sensitivity study was

performed in which the time step size used by the theta method,

the MAT method, and the COBRA-IIC .method was varied between

one second and one-tenth of a second to see the effect

changing the time step size would-have on the crossflow

distribution. The results shown in Figs .7.3, 7.4 , and 7.5

indicate that none of these methods is very sensitive to the

value of the time step size, and that the MAT method and the

COBRA-IIIC method both appear to converge to approximately

the same asymoptotic crossflow distribution for this problem

as the time step size is decreased. This, of course, should

come as no surprise because both methods solve exactly the

same set of conservation equations with the same set of

boundary conditions. However, the theta method, when it

is used as an initial value approach, appears to converge

to a crossflow distribution which is somewhat lower at the

outlet of the hot channel than the distributions predicted

by the other methods. This is believed to be due to the

{a J }= {aj '} approximation discussed in section 3.1.1 and the

use of a somewhat different set of boundary conditions on

the inlet pressure distribution (i.e., inlet pressure =

constant). Table 7.1shows the coolant temperatures, enthalpies,

axial mass flow rates, and densities predicted by all three

methods at the exit of the hot channel during the course of
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Table 7.1. Values of the Variables Predicted by Several
Methods at the Outlet of the Hot Channel as a
Function of Time

Time Temperatures (F*) Densities (lbm/ft3)
(sec)

COBRA- COBRA-
IIIC MAT THETA IIIC MAT THETA

0 607-30 607.33 607.32 41.65 41.65 41.65

.1 608.24 608.26 638.26 41.57 41.57 41.57

.2 610.08 610.09 610.10 41.41 41.40 41.40

.3 612.80 612.79 612.81 41.16 41.16 41.15

.4 616.29 616.27 616.30 -40.84 40.84 40.83

.5 620.42 620.37 620.44 40.44 40.45 40.43

.6 625.02 624.97 624.06 39.99 39.99 39.98

.7 629.96 629.89 630.03 39.48 39.49 39.46

.8 635.08 635.01 635.14 38.93 38.94 38.90

.9 640.29 640.21 640.38 38.35 38.36 38.32

1.0 642.81 642.80 642.89 35.93 35.99 35.88

(continued on next page)



118

Table 7.1. (Continued)

of

Time Enthalpies (BTU/lbm) Mass Flux (Mlbm/hrft )
(see )

COBRA- COBRA-
IIIC MAT THETA IIIC MAT THETA

0 627.70 627.76 627.74 2.464 2.462 2.462

.1 629.08 629.13 629.11 2.479 2.480 2.478

.2 631.84 631.86 631.85 2.490 2.493 2.489

.3 635.91 635.90 635.91 2.499 2.501 2.493

.4 641.21 641.17 641.26 2.505 2.506 2.496

.5 647.56 647.49 647.65 2.509 2.510 2.502

.6 654.78 654.69 654.86 2.511 2.513 2.503

.7 662.67 662.57 662.79 2.511 2.513 2.504

.8 671.06 670.94 671.27 2.510 2.512 2.502

.9 679.78 679.65. 679.88 2.508 2.516 2.499

1.0 688.73 688.60 688.84 2.501 2.509 2.492
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the transient. Although it can be seen that all three

methods predict slightly different magnitudes and shapes

for the cross flow distribution as a function of time, these

differences appear to have a very small (and almost negligible)

effect upon the properties of the fluid at the outlet of

the hot channel. In fact, the maximum difference between

the predictions of the methods at.any time during the transient

is less than two tenths of one per cent. Since this is

at least one or two orders of magnitude less than the

uncertainties that are inherent in some of ,the empirical

correlations used by the codes to compute the heat transfer

coefficients and the axial pressure drop, this example serves~

to illustrate the point that it makes very little difference

from a practical point of view which method is used to

analyze the effects of a moderately severe transient as

lone as the crossflow is less than a few nce cent of the

axial mass flow rate. For transients where much more

severe boilino takes nlace over a larger fraction of the

axial length of the core, or where the effects of flow

blockages must be taken into account, the (a = {a,}

approximation used by the theta method ceases to be valid,

and considerable differences may develop.between its pre-

dictions and those of the other methods. For example, if

the radial power peaking factors in the assemblies are

changed to 1.5 and 0.5 to create a 3 to 1 power gradient

across the bundles, the crossflow distribution predicted
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by the theta method at the end of the transient is considerably

different than that of the other two methods, as illustrated

in Fig. 7.6. This slightly different sample problem again

serves to illustrate the point that the MAT method and the

method used in COBRA-IIIC give results that are in reasonably

good agreement with one another as long as only one axial

iteration is performed. However, it must. be recognized that

a hypothetical experiment for this problem which had an

error of only 5% or 10% in the measured values of the axial

mass flow rates could not possibly distinguish .between

the predictions of the MAT method and COBRA-IIIC and probably

could not even determine if the {a Jf} = {a '} approximation

used by the theta method was a valid assumption for this case.

7.3.2 Space Step Sensitivity Studies

In order to demonstrate the sensitivity of the methods

that have been discussed to changes in the size of the axial

mesh spacing, a sensitivity study was performed in which

the mesh spacing was varied between one inch and one foot

for the problem that was described previously. As shown

in Figs. 7.7., 7.8, and 7.9 the COBRA-IIIC method, the theta

method, and the MAT method' were all found to converge

rather rapidly to approximately the same asymoptotic axial

mass flow distribution as the mesh spacing was reduced.

These results apparently indicate that none of these methods

is very sensitive to the size of the axial mesh spacing,

and that for many practical problems, an axial mesh spacing

19ft, - -



121

4xial position (inches)

25.0

20.0

0

1.0
10.0Q4-4

0

5.0

0.0
12030 60 90

Axial position (inches)

Fig. 7.6 Crossflow distributions predicted for a

3 to 1 radial power gradient

25.1

20.4

15.(

10.(

5.C

0.06
0



122

Axial position (inches)

184*0 30 60 90 120
I 184.0

183.5 -
183.5

1883.5

183.0- 
Axl -183.0

Ita

E
182.5-- 182.5

Ax=6" Ax=12"

182.0- -182 2

181.5181.5

181.01
n 2 An On Io)11

Axial position (inches)

of COBRA-IIIC Space Step Sensitivity StudyFig. 7.7 Results



123

Axial position(inches)

184.oO 30 60 90 120184.0

183.5 
-8.18383.

183.0
183.0

- x 1"

dx=3"
182.5

-182.5

A x=6 "a x=12"
182.0 

182.0

181.5 181.5

181.0
0 30 60 90 81.0

Axial position (inches)

Fig. 7.8 Results of the MAT Method Space Step Sensitivy Study



124

Axial position (inches)

120

--- 181.20
0 30 60 90

Axial position (inches)

Fig. 7.9 Results of the Theta Method Space Step Sensitivity Study

.0

.5

.0

184.

183.5

183.0

182.5

182.

181.

181.

b2.5

82.0

1.5



125

of six inches or one foot is sufficient to give an acceptable

estimate of the axial mass flow rate.

Reducing the axial mesh snacing apparently reduces the

errors in the estimates of {mj} that are used to -compute

the crossflow distribution for the first iteration, and

presumably causes the methods to converge to an "asymoptotic"

distribution. However, it is not clearly understood why

the MAT method and COBRA-IIIC should not converge to exactly

the same answers as the axial mesh spacing is reduced, since

they attempt to solve exactly the same system of difference

equations when 6 is set equal to 0. It is conceivable that

these slight differences for the first axial iteration may

be due to roundzff errors, since all the computations in

COBRA-IIIC are carried out in single precision, whereas most

of the computations in COBRA-IIIP/MIT are performed in double

precision. Again it must be recognized that the differences

illustrated here are no larger than a few tenths of a per cent,

and are so small that they cannot possibly be resolved by

experimental measurement. Thus the "accuracy" of the codes

for problems of this kind can only be judged by making an

objective evaluation of tlie physical consistency of their

results, unless analytic solutions to the conservation

equations for meaningful problems are aviilable.
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7.4 Effect of the Axial Iteration Scheme on the Solution

In previous chapters of this thesis it was shown that

the COBRA-IIIC code is based on a multipass axial iteration

scheme which allows information from downstream locations

to be propagated upstream at the rate of one axial node

per iteration. However, no analytical proof of the stability,

the consistency, or the convergence of this scheme has

ever been given, and it has never been determined whether

additional iterations always improve the accuracy of the

solutions. The purpose of this section is to demonstrate

that the axial iteration scheme used by COBRA-IIIC does not

always appear to improve the accuracy of the solutions to

the conservation equations, and in some cases, actually

appe'ars to make the results considerably worse because it

introduces strange oscillations into the shape of the cross-

flow distribution ahich cannot be explained physically. The

effect that these oscillations can have on the predictions

of the code will generally be shown to be small, although

they can have an extremely important effect on the total

computation time.

Fig. 7.10 shows a very simple'problem that will be used to

test the consistency of the axial iteration scheme contained

within the code. This problem consists of two identical

fuel pin bundles from a PWR whose size and operational

characteristics are described in Table 7.2. One computational

cell is used to represent each assembly and both assemblies

1 1 - - 100000-1
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Table 7.2. PWR Fuel Bundle Characteristics for a Sample Problem
Used to Test the Axial Iteration Scheme

PWR Fuel Assemblies

Axial power distribution - uniform

Radial power peaking factors - 0.8 and 1.2

Number of cells per assembly - 1

Nominal operating conditions:

System outlet pressure: 2100 psia

Inlet enthalpies: 538 BTU/lbm
(uniform for all channels)

Average inlet mass flux: 2.48xo6lbm/hr/ft2
(uniform for all channels)

62Average assembly heat flux: .2x10 BTU/hr/ft2

Channel length: 120 inches

Axial mesh spacing: 2 inches

2
Flow area for each cell: ,267 ft

Number .of rods per cell: 225
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are subjected to a loss of flow transient in which the

mass flow rate into each assembly is reduced uniformly

by a factor of 2 in two seconds. This problem was run

twice with the COBRA-IIIC code with exactly the same input

data, but with two different values -.01 and .001- for the

flow convergence criterion. The crossflow distributions

predicted by the code for these convergence criteria, and

the number of axial iterations that were actually performed

as a function of time are shown in Figs. 7.11, 7.12, and 7.13. It

can clearly be seen that the code does not appear to converge

to an asymoptotic flow distribution as the convergence

criterion is tightened and more axial iterations are per-

formed. In fact, these figures apparently show that it

tends to diverge and develop more unphysical oscillations

as the number of axial iterations is increased. The version

of the MAT method used in COBRA-IIIP/MIT apparently does

not suffer from this problem because it is programmed into

the code with a single pass, locally iterative axial iteration

scheme. The crossflow distribution predicted for this

problem by the MAT method is shown in Figs. 7 .14, 7.15, and 7.16.

It can be seen that the MAT method converges very rapidly

to an asymoptotic flow distribution during each step in the

transient as more iterations are performed. Thus it is

believed that the version of the MAT method used by COBRA-

IIIP/MIT gives a more consistent picture of what one would

expect to happen physically when it is applied to this simple

problem.
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7.5 Effect of the Axial Iteration Scheme on the Axial Mass

Flow Rate and Other Important Variables

Since it has been shown that performing more axial iterations

with COBRA-IIIC does not necessarily improve the accuracy

of the code's solutions to the fluid conservation equations,

it is extremely important to determine the effect that the

oscillations developed by the iteration scheme can have on

the code's estimates of variables such as the axial mass flow

rate, the temperature, the density, and the enthalpy of the

coolant. To illustrate the magnitude of this effect, the

values of these variables at the outlet of the hot assembly

of the same problem were studied as a function of the number

of axial iterations that were performed. The results of

this study, which are summarized in Table 7.3,appear to

indicate that none of these variables is very sensitive to

the details of the shape of the crossflow distribution. In

fact, it has been found that the oscillations produced by

the axial iteration scheme hardly show up at all in plots

of the axial mass flow distribution, and that the maximum

change in the values of the other variables as the result

of these oscillations is less than half a percent for this

case. Since these variations are much smaller than any

experiment could possibly detect, it is likely that the

oscillations were never reported before simply because

they did not have much of an effect upon the predictions

of the code. Consequently, there was no reason to look for

.0- - - I=- -
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Table 7.3 Effect of the COBRA-IIIC Axial Iteration Scheme on the
Values of Several Variables at the Outlet of
the Hot Channel

CASE A Flow Convergence Criterion = .01
(Average number of axial iterations = 1)

Time Temperature Enthalpy Density Flow rate
(sec.) (OF) (BTU/lbm) (lbm/ft ) (lbm/sec)

0.0 607.29 627.68 41.65 182.19

1.0 620.56 647.78 40.43 137.61

2.0 642.81 688.34 36.10 92.87

CASE B Flow Convergence Criterion = .001
I (Average number of axial iterations 8)

Time Temperature Enthalpy Density Flow rate
(sec) (*F) (BTU/lbm) (lbm/ft5 ) (lbm/sec)

0.0 607.30 627.68 41.64 182.18

1.0 620.55 647.76 40.42 137.38

2.0 642.80 688.17 36.18 -92.24
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them and even less motivation to try to explain the reason

for their existence. However, from a mathematical point of

view, it is clear that these effects can have an extremely

important practical implication, since they apparently

indicate that there is little to be gained by performing

more than one or two axial iterations with the COBRA-IIIC

code if doing so simply consumes a great deal of additional

computer time and causes the answers to some problems to

become worse.

Although it has not been possible to explain why these

effects occur physically, it is conceivable that additional

axial iterations may introduce roundoff errors into the

solutions which cause their accuracy and their consistency

to be destroyed. Another possible explanation of this

phenomenon is that the axial iteration scheme used by the

code is not an appropriate model of physical reality. This

is believed to be due to the fact that the code does not know

inherently when to stop transferring information from

downstream to upstream locations, since the distance this

information is "pumped" upstream is solely a function of

the flow convergence criterion one wishes to choose. Consequently,

choosing a convergence criterion which is too "tight" may cause

the crossflow distribution to oscillate in order to conserve

mass and momentum while information about the downstream flow

distribution is propagated so far upstream that it may be pumped

entirely out of the core.
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7.6 Comparison of the Results of the Methods for a Flow-

Blockage Analysis

Although it has been found that the theta method cannot

be applied to study the effects of severe flow blockages when

it is formulated as an initial value approach because it

tends to encounter problems with numerical stability, both

the MAT method and the COBRA-IIIC method do not suffer

from this drawback, and can be used to analyze a variety of

problems in which severe flow blockages occur. In this

section, the predictions of these two methods will be

compared to one another for a simple problem that contains

a flow blockage. The purpose of this section will be to

show the effects the axial iteration scheme used by these

methods can have upon the consistency of the results.

The tes-t problem that will be used to make this comparison

is shown in Fig.7.17. The problem consits of two identical

fuel assemblies with different radial power peaking factors

and a constant axial heat flux distribution. A flow

obstruction in the form of a grid with a loss coefficient

of 2.5 is placed across the entire hot assembly, but not

across the cold assembly, at a position midway between

the inlet and the outlet of the assemblies. Both assemblies

are then subjected to a loss of flow transient in which

the inlet mass flow rates, which are initially uniform,

are reduced uniformly by a factor of 2 in two seconds.

With a single computational cell used to represent each

assembly, the COBRA-IIIC method and the MAT method were

both used to analyze this problem with a flow convergence

criterion of .05.. This analysis was then repeated with a

"tighter" convergence criterion of .01. Fieures 7.18, 7.19,
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and 7.20 show the crossflow distribution predicted by the MAT

method as a function of time. It is found that there is no

appreciable difference between the predictions of the

method for these two different values of the flow convereence

criterion, and that the results appear to approach an

asymoptotic flow distribution very rapidly as additional

iterations are performed or as the snace step size and the

time steo size is reduced. The MAT method was not able to

anticinate the Dresence of the grid at uDstream locations

in this case because it was implemented into the COBRA-IIIP/MIT code

with a s.inele pass, locally iterative axial iteration scheme.

The predictions of the COBRA-IIIC code are shown

in Figures 7.21, 7.22, and 7.23 for a convergence criterion

of .05 and in Fieures 7.24, 7.25, and 7.26 for a convergenee

criterion-of .01. It can clearly be seen in both cases

that aDoreciable oscillations develop in the crossflow dis-

tribution in front of the blockage. Moreover, it appears

that tightening the convergence criterion from .05 to .01

for this case does not necessarily make the answers any

"better" if they are judged from the viewpoint of physical

or numerical consistency, since there is apparently no

indication that tightening the convergence criterion damps

out the oscillations and causes the crossflow to converge

to a truly "asymoptotic" distribution.

It must be emphasized again that it is not understood

precisely why these oscillations occur. As discussed earlier,
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it is conceivable they may be caused by roundoff errors

within the code, but it is also possible that the axial

iteration scheme is not converging properly, since it has

never been shown conclusively that the scheme should converge

to the true solution of the differential equations. It is

also significant that the oscillations in this case only

appear to be produced in front of the blockage (e.g. upstream),

whereas in the previous case, which did not contain a blockage,

they were found to be produced over the entire axial length

of the bundle.

From an historical point of view, it must be pointed

out that the primary reason a true multipass axial iteration

scheme was put into the COBRA-IIIC code was to allow the

code to propagate information from downstream locations to

upstream locations at the rate of one axial node per iteration.

This was necessary to provide a mechanism to enable the

marching type of solution scheme used by the code to anticipate

the presence of blockages, bulk boiling, and grids at

positions upstream of those at which they actually occurred.

It can be seen from Figs. 7.21, 7.22, and 7.23 that the code

performs this function veiry well, but in doing so, it also

appears to introduce a great deal of "fine structure" into

the crossflow distribution that cannot bd explained physically.

It is conceivable that this "fine structure" was never reported

before simply because the details of the crossflow distributions

were never really analyzed by many of those who used the code.
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Consequently, a great deal of attention was focused on plots of the

axial mass flow rate, the coolant temperature, and the

DNBR (which were not particularly sensitive to changes in

the shape of the crossflow distribution) and it was then concluded

that there were no anomalies caused by the axial iteration

scheme simply because they were not large enough to be

seen in the body of existing experimental data. From a

practical point of view, it is easy to understand this

approach, and it can even be argued that errors in the shape of

the crossflow distribution are not important for most

practical problems (as shown in Section 7.5). However, it is felt

that these errors can be very important if they are large

enough and appear frequently enough in the analysis of problems

which contain severe flow blockages. Table 7.4 gives a com-

parison of the results predicted by the MAT method (with a single

pass locally iterative axial iteration scheme) and the COBRA-IIIC

method (with a multipass axial iteration scheme) at the outlet

of the hot assembly for the flow blockage case which was just

considered. It can be seen that all the variables computed by the

codes agree with one another to within 2%, except for the axial

mass flow rates, which can differ in some cases by as much as

10%. It is not presently known which of these results is

more physically correct, but on the basis of the information that

is available at this time [2,26,27] it appears that the presence

of a flow blockage in an assembly is only felt by the fluid

1 or 2 inches upstream. Consequently, it is

conceivable that reality may lie somewhere in between the
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Table 7.4. Comparison of the Predictions of the MAT Method and the COBRA--IIIC Method
at the Outlet of the Hot Channel for a Blockage Run

Average enthalpy
difference =2%

Average temperature Average density
difference ~1% difference =2%

Average mass flow
difference = 8%

Time(sec) Enthalpy(BTU/lbm) Temperature (OF) Density(lbm/t t3) Mass Flux(Mlbm/hrf

CO3RA-30 MAT OBRA-3C MAT COBRA-3C MAT COBRA-3C MAT

0.0 632.50 640.70 610.52 615.96 41.37 40.87 2.2582 2.0654

1.0 652.95 662.53 623.87 629.87 40.10 39.49 1.7088 1.5653

2.0 696.35 708.59 642.82 642.80 32.92 29.01 1.1386 1.0239

LOJ
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the predictions of the two codes, and that neither a single

pass locally iterative scheme nor a true multipass may be

able to give an entirely satisfactory answer for such an

extreme case. Moreover, it is necessary to point out that

if a true multipass axial iteration scheme were used with

the MAT method in the COBRA-IIIP/MIT code, it would not

be surprising if both the codes agreed with one another

to within the limits of today's existing experimen'tal

data for blockage calculations, even if severe unphysical

oscillations in the crossflow distribution were predicted

by both codes in the vicinity of the blockage. Therefore,

it is felt that unless experiments are performed that are

able to resolve the fine structure of the crossflow distribution

satisfactorily between both fuel assemblies and subchannels

during transient and steady state conditions, and are able

to show exactly how far upstream the presence of a blockage

can be felt in an operational pressurized water reactor,

the ultimate determination of the worth of the axial iteration

schemes used by these codes for both a flow blockage analysis

and operational reactor conditions must be measured by

comparing their predictions to those of codes such as COBRA-IV-I

with its MAC methodology or SABRE with its primitive variable

approach and advanced models of turbulence. Only then will

it be possible to answer many of the questions that have been

posed in this thesis.

1.0OM w . -*W
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CHAPTER VIII

8.1 Conclusions

Based on the work that has been performed in this thesis,

it is possible to draw a number of conclusions about the

state-of-the-art of reactor thermal-hydraulic analysis codes,

and the numerical methods that have been developed over the

years to solve the fluid conservation equations used by

these codes.

Briefly speaking, these conclusions can be summarized

as follows:

(1) It appears that both of the numerical methods that have

been developed in this thesis are considerably faster and

more efficient than previous methods that have been used

for solving the fluid conservation equations used by the

COBRA-IIIC code.

(2) There appears to be very little difference between the

predictions of these methods and those of the COBRA-IIIC

code as long as they are used to analyze operational reactor

conditions.

(3) For almost any practical problem, it appears to be

possible. to obtain good estimates of the flow and enthalpy

fields with only a single pass locally iterative axial

iteration scheme.

(4) Additional axial iterations do not always appear to

iMprove the accuracy of the crossflow solution scheme in the COBRA-
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IIIC code, and in many cases, they appear to make it

considerably worse because they introduce severe os-

cillations into the crossflow distribution that cannot

be explained physically.

(5) While these oscillations have been seen in many simple

problems, it is not known precisely why they occur. It

is possible that they are due to roundoff errors within the

code, although they may also be caused by the axial

iteration scheme attempting to transfer information from

downstream to upstream locations.

(6) It is conceivable that these oscillations were never

reported before simply because they did not have much of

an effect upon the predictions of the code. It is not

known whether these oscillations can be observed ex-

perimentally or if they can have a significant effect upon

the results of a flow blockage analysis.

(7) From the viewpoint of computational efficiency, it

apparently makes no sense to perform additional axial itera-

tions with COBRA-IIIC if doing so consumes a great deal of

additional computation time and simply makes the answers to

many problems worse.

(8) The single pass locally iterative scheme used with the

MAT method in the COBRA-IIIP/MIT code does not appear to suffer

from these drawbacks and converges very rapidly to an

"asymptotic" crossflow distribution without oscillations

a additional iterations are performed.

'AONO Alo - -,
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(9) For problems that contain a severe flow blockage,

there are perceptible differences between the predictions

of the two codes, but these may be due simply to

differences in the axial iteration schemes used by the

codes.

(10) It is believed tkat the merits of all the codes and

methods that have been discussed here must be judged on the

basis of their computational consistency and their agreement

with experimental data, since no absolute proof of the

convergence or the stability of the methods used to solve

the COBRA-IIIC conservation equations has ever been given.

8.2 Recommendatiois

Based on the observations and conclusions that have

been presented here, it is believed that the predictions of

the two codes are in reasonably good agreement with one another

for operational reactor conditions, and that it may not be

possible to resolve the small differences between the pre-

dictions of the codes experimentally for many practical

problems. Consequently, it is felt that any of the codes

and the methods that hak*e been discussed here can be used

with a reasonable degree of confidence for most problems

that do not involve extreme departures from operational

reactor conditions. Therefore, it is recormunended that the

COBRA-IIIP/MIT code should be used in place of the COBRA-IIIC

code for dealing with these problems because of its greater

speed and computational efficiency.

AMIN.- - --- ftswL



158

The results of the codes only appear to differ from each

other significantly when they are used to model severe

transients or problems where the effects of severe flow

blockages must be taken into account. For these problems,

it is recommended that an attempt should be made to determine

whether the oscillations in the crossflow distribution pre-

dicted by the COBRA-IIIC code are really physical, or whether

they are just numerical effects generated by the code's

axial iteration scheme. If it is not possible to determine

if the oscillations actually exist by comparing the predictions

of the COBRA-IIIC code to those of more advanced codes such as

THINC-IV and SABRE, it is recommended that the validity of the

COBRA-IIIC axial iteration scheme should be tested by perform-

ing more precise experimental measurements. Although the

COBRA-IIIP/MIT code has been developed mainly for use in LWR

applications, it should also be recognized that the methodology

developed here can be applied equally well to analyze the steady

state and transient performance of LMFBR cores. This entails

the application of equally efficient cell numbering schemes to

deal with the hexagonal arrays encountered in these systems,

and the development of a wire wrap model that is compatible with

the pressure based solution schemes presented here. Finally,

it is recommended that the axial iteration scheme which is

currently used with the MAT method should be converted into

a true multipass scheme before the predictions of the

COBRA-IIIP/MIT code are compared to the results of the flow

blockage experiments that are available in the literature

today. Only then will it be possible to answer many of the

questions that have been posed in this thesis.
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NOMENCLATURE

NF = Number of boundaries for cross flow between adjacent
computational cells

NP = Number of points at which the pressure is to be found

Matrices:

Symbol Dimension Meaning
Special

Properties

Matrix of cross sectional
flow areas in the axial
direction

Matrix of thermal conduc-
tivities between adjacent
computational cells

Matrix of transverse friction
coefficients between adjacent
computational cells

Matrix used to compute the
cross flow distribution from
the transverse momentum
equation

Matrix of enthalpies from
each computational cell

Matrix of enthalpy differences
between adjacent computational
cells

Matrix of the enthalpies
carried by the diversion cross
flow between adjacent computa-
tional cells

Matrix of volumetric heat
generation rates

Interface or gap connection
matrix used as a lateral
differencing operator

Interface or gap connection
matrix used as a lateral
summation operator

Diagonal

Diagonal

Diagonal

Diagonal

Daigonal

Diagonal

Diagonal

Diagonal

Contains only
entries having
the values of
1, 0, and -1 not
diagonal

Contains only
entries having
the values of
1, 0, and -1, not
diagonal

[Aj]

[ci]

[C.]

[D. ]

[h ]

[ Ah.]

[h ]

[Q ]

[S]

[]T

NPXNP

NFXNF

NFXNF

NFXNF

NPXNP

NFXNF

NFXNF

NPXNP

NPXNF

NPXNP
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Matrices (Continued)

Symbol Dimension
Special

PropertiesMeaning

Matrix of lateral temperature
differences between adjacent
computation cells

Matrix containing the axial
velocity of the fluid from
each computational cell

Matrix containing the axial
velocity of the fluid carried
by the diversion crossflow
between adjacent computational
cells.

Diagonal

Diagonal

Diagonal

Vectors:

Vector containing the axial
pressure gradients from each
channel in the lattice

Source vector used by the
theta method

Source vector used by the
MAT method

Vector containing the enthalpies
from each channel in the lattice

Vector containing the axial mass
flow rates from each channel in
the lattice

Vector containing the pressure
field at axial level j

Vector containing the pressure
field at axial level j-1

Vector containing the density
of the fluid in each channel
in the lattice

Vector containing the axial
velocity of fluid in each
channel in the lattice

Vector containing the axial
velocity of the fluid carried
by the diversion cross flow

Vector containing the cross
flow between adjacent computa-
tional cells.

.. ffm .ft- - -Ok

[At ]

[u ]I

*
[u.]

NFXNF

NPXNP

NFXNF

{a }

{b.}

{b.}

{h }
3

{mj}

{P. 
}

{p }

{u }

*
{u.}

{w.}

NPX1

NPX1

NPX1

NPX1

NPXl

NPX1

NPXl

NPX1

NPXl

NFX1

NFX1

W



Miscellaneous constants:

Symbol Dimension

s

x

Ax

At

e

Special
PropertiesMeaning

Transverse momentum factor

Axial elevation

Axial mesh spacing

Time step size

Weighting function used by
MAT method and the theta
method

Superscript used to indicate
the value of a variable from
a previous time
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