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ABSTRACT

Iterative procedures and their computer applications are

considered for the problem of calculating intro-bundle cross-flows

in PWR cores. The sparse band striped cross-flow coefficients

matrix is carefully analyzed for a minimum storage in the core

memory. The generated matrix is used in iterative algorithms

for solution. Different convergency criteria are discussed. Other

possible techniques are presented. A computer routine, based on

the iterative procedure developed, and to be included in a large

thermal hydraulic analysis code, is detailed. Comparison between

the effectiveness of an iterative procedure and the Gauss Elimination

Method, in their ability to solve the cross-flow problem, is discussed

on the basis of their computer applications.

Supervisor: Michael W. Golay
Title: Associate Professor of Nuclear Engineering
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CHAPTER I

INTRODUCTION

1. 1 Introduction to the Problem

There is a great computational advantage in improving

the numerical computational method of matrix inversion, or of

the similar problem of solving a set of inhomogeneous linear

equations, i. e. solving the vector equation:

A X = Y (1)

for X, given Y.

The objective of this work is to develop a method which

will improve the cross-flows calculation in a large nuclear reactor
(1, 2, 3,4)

thermal hydraulic analysis computer code COBRA by

means of an iterative procedure.

If the Gauss Elimination (5) method is considered the costs

of computer calculation time for large order matrices can be a

serious concern: the number of required arithmetic operations is

approximately (n 3/3 + n 2), where n is the order of the matrix, or

the number of equations to be solved. Since the total required com-

puter time is directly proportional to the number of operations per-

formed, this can lead to long residence time and then to costly

computations. However, note that Gauss Elimination, being a direct

method, will give an exact solution if there are no round-off errors.
(5)

Now, if as an alternative the Gauss-Siedel iterative procedure

is considered, and assuming all the necessary conditions for convergence

are satisfied, the calculation time can be reduced significantly. This
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method requires (2n2 + n) operations for one iteration. Of course,

several iterations are normally required for an accurate result.

Table 1. 1 shows the number of Gauss-Siedel iterations which may

occur for several matrix sizes when the total number of operations

remains less than that in the Gauss Elimination solution. It clearly

shows that for small matrices, the Gauss Elimination method would

be used since the number of allowed iterations is too low to give

accurate results. However, an iterative procedure will be by far

superior to the Gauss Elimination method when large matrices are

considered: this is the most interesting result since, as is explained

later, large matrices will be considered in this work.

Because of these considerations, it has been decided to use

an iterative solution technique for the resolution of a linear system of

equations relating the COBRA IIIC code cross-flows to the differential

pressure in adjacent reactor subchannels through a matrix A formed

by the cross-flow coefficients. This problem was originally solved

directly by the Gauss Elimination method.

It should be also noted that the motivation of this work

arises from the fact that A is not a "classical" full matrix, but as is

explained later it is found to be band-striped, symmetric and sparse.

Therefore, it has been thought that an iterative procedure

could take into account the particular characteristics of this matrix,

resulting in more efficient solutions.

The objectives of this work are the following:

1) development and implementation of an iterative

technique for solving the cross-flows problem,

which is a part of a large computer code.

2) reduction of the storage requirement for the matrix

A by generating it in a compact form in the core

memory.
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TIable 1. 1: Comparison between the Number of Operations Required
by the Gauss Elimination Method and the Gauss-Siedel
Method (for one iteration) for Different Matrix Sizes
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1. 2 Background

It is useful to explain the origin of the cross-flow problem.

In the thermal hydraulic analysis of a reactor, fluid flow processes

and also heat transfer are analyzed by means of the subchannel method.

This consists of dividing the rod bundle into individual flow channels

which are coupled to their neighbors by cross-flows across adjacent

boundaries.

The geometry of the model used to describe a rod bundle

in this problem is the following: (See Fig. 1. 1)

1. A certain number of axial planes - or axial steps -

equally spaced represent the fuel rod bundle from

the bottom to the top of the core.

2. Each axial plane representing a certain axial

segment of the rod bundle, is subdivided into

the same number of identical subchannels. The

geometry of the grid is chosen to be that of a

square array, i. e. each subchannel in a square

of identical dimension. Note that this configuration

allows a great flexibility in the treatment of the

problem: symmetry consideration, reproduction

of the array, and extension to large cases are

possible. (See Fig. 1. 1)

The problem is mathematically formulated in such a way

that in each subchannel it is possible to compute enthalpy, mass-flow,

pressure, velocities, mass-fluxes, etc., at each axial station.

In particular the cross-flows are related to differential

pressure between two adjacent flow channels by the matrix A, which

is formed of the cross-flow coefficients. At each axial step J, the

linear system to be solved is then:



FIG. 1. 1:
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A X = Y , where

Y is the vector of differential pressure between two successive
- J
axial steps,

X the cross-flow vector, at axial step J, whose components are
-J

the cross-flows at each boundary, and

A the cross-flow coefficients matrix at axial step J.
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CHAPTER 2

ARRANGEMENT AND DEFINITION OF

CROSS-FLOW COEFFICIENTS MATRIX

2. 1 Subchannel Considerations

When considering a set of 2 adjacent subehannels I and

J, as in Fig. 2. 1, the cross-flow at boundary I-J is affected by

the six other cross-flows across the remaining boundaries of

subchannels I and J. Moreover, it is assumed that cross-flows

across all other boundaries have no effect on the particular cross-

flow I-J, and they are ignored in the transverse mass and momentum

balance which determines the I-J cross-flow.

For example, if in this case the total number of boundaries

or cross-flows is n, (n-7) cross-flows are set to 0, when considering

their effect on I-J.

.Recalling now the relation between cross-flows and differential

pressure one can write for axial step J:

where the 'X.g are the components of the n-column cross flow vector

For the previous example, the computation of the sum of

the products in the Eq. 2. 1 involves only seven elements, since (n-7)

products are zero. Then in the array of coefficients a (1#i,k4 n)

of the particular row i, will have seven significant elements. The

chosen case corresponds to the most general location of a set of two

subchannels in the array and for other locations the significant number

is less than seven which is then the maximum number of nonzero

elements which can possibly occur in a row. (See Fig. 2. 1)
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Fig. 2. 2 shows the origin of the matrix for a simple case.

Note that the element on the principal diagonal is always different

from zero, since the cross-flow on the particular considered boundary

cannot be identically equal to zero.

If w represents the cross-flow from subchannel i to sub-

channel j and wgrepresents the cross-flow from subchannel j to

subchannel i, and since the two cross-flows are identical, i. e.,

wi = wi ,

one notes that the cross-flow coefficient matrix is therefore sym-

metric. (See Fig. 2. 3)

2. 2 Width of the Band

The location of the significant cross-flow coefficients

within the row depends on the channel boundary numbering. As

shown in Fig. 2.3, if the boundaries are arbitrarily numbered, the

place of the cross-flow coefficient is arbitrary within each row-of the

matrix A.

Therefore, for computer applications, the identification of

the significant elements can be a lengthy procedure. It is better to

adopt a consistent boundary numbering scheme for the array: in

this way, the coefficients can be located within a "zone" around the

principal diagonal. (See Table 2. 1)

A second step is to minimize the width of each zone in each

row: the best technique consists of numbering the boundaries from

the left to the right and from the top to the bottom in the array. (2)

Since the width of each zone is different from row to row, the

last step consists of finding an overall envelope around the principal

diagonal and containing every zone: in this way all significant cross-

flow coefficients will be found within the envelope, also called the band.

In order to find the width of this band, one has just to compute

the maximum value, among all the rows of the matrix, of the interval
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TABLE 2 .1 : Typical AAA Matrix for a 10 Subchannel Case

1 12 - 6 .4 64 -4,

4 6.Lv11. 1. .4

5 4L.4 5 4 ,(4 -. 4 .4

6 -t -I--- 
-

7 -CL 6.40 imL t 4 . -. qf

4f .4 ItJ , 14 I'.6 6.4

40± -M.4 -4.4

-t mmmMm m m
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78

.1 2 11,

6 5

9 3 4

10 12

FIG. 2.3: Arbitrary Numbering Scheme for a 9-Subchannel Case

TABLE 2. 2: (12 12) Array for an Arbitrary Numbering Scheme
of a 9 Subchannel Case

I 243 4 5 6 7

- 0 0 O x x O X O O 0

20 x X 0 x x x x 0 0 0 0

3 0 1 X 0 ) x 0 0 0 o 0 X

4 0 0 0 x X0 000 0 x X

5 0 x x x X X 0 0 O O X 0

6 x x Ix 0 x x 0 X 0 0 0

7 X x 0 0 0 0 0 0 0

8 0 x 0 0 0 0 0 X 0

5 x 0 0 0 0 00 X X 0 0

10 0 0 x 0 0 0 0 0 x x 0 X

110 .0 0 x x 0 O X 0 OX 0

1210 0 X X 0 1 O 0 0 x O X

|13|110|11|-12,
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. between the furthest element in each row and the corresponding

element on the principal diagonal, and then to define the width of

the band as being equal to twice this maximum value, since the

matrix A is symmetric. (See Table 2.2)

2. 3 General Remarks

The density of a matrix is defined as the fraction of

nonzero elements. This has been computed in Table 2.3 for

representative values of n, showing those which are more likely

to be encountered in practice for the cross-flow problem.

It is known that for a very small value of density, as

is the case in this problem, the Gauss-Siedel iterative method

is more appropriate for solving such a linear system of equations.

When programming the iterative method the sparsity of the matrix

is used, since it is possible to code the matrix under a very com-

pact form, and to generate it whenever it is needed.

For the general case of a (nX n) matrix, with a maximum

of k nonzero elements per row, (k/n) being a very small quantity,

it is possible to store this matrix in core memory under a (kyn)

array, i. e. it is always possible to use a system of indices for

which n times k places in the core memory are sufficient for the

generation of A.

The coding used to generate A is discussed in Appendix B.

Note also that since a j& 0 for ( { ) ), an iterative

process can be used. However, for the treatment of a general type

of matrix, one must carefully check if all the diagonal elements are

different from zero. If not, the matrix is singular and no unique

solution exists: therefore, the computational time will be very large

in this case since the solution never converges.
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Table 2. 2: Density of Different Sizes of Matrix A

Note: Density is defined by: d = 7 n = 7
2

n n

annels 10 128 193

nber
boundaries 12 232 356

d 0.583 0.03017 0.01966
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Finally, as noted before, the matrix A is symmetric. Then,

it is seen that A = A,

where A is the transpose of A: the eigenvalues are real.

It can be noted that the property of definiteness or semi-

definiteness is discussed in Chapter 4 since this property greatly

aids in the solution of linear system by almost any method.

In particular, if the definiteness property is quite irrelevant

to solving the eigenvalue problem, it gives information on the sign

of eigenvalues. If A is positive semi-definite, the eigenvalues are

all non-negative and if A is positive-definite they are all positive. (6)
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CHAPTER 3

INTRODUCTION TO GENERAL ITERATIVE PROCEDURES

3. 1 Methods
3. 1. 1 Algebraic Formulation
3. 1. 1. 1 General Case

In this section A is assumed to be a full matrix. It is also

assumed that A C L (R n) and is not singular in the vector equation.

A x = [ (3.1)

One of the simplest iterative methods is that of JACOBI. 9

As A / 0, ( L .,n), it is possible to write for the first iterative

solution to Eq. 3. 1 as

- 2-M- i

41

(3.2)

If, as initial estimates, every X is chosen to be zero,

the first iterate value of , is

t o s d t

then for the second equation, XZ~

(3. 3)

is found to be:

(3.4)

or

a2, ..

X', . -- - i ( Y,
0*44

4 ( Y

I (3. 5)

X a-)
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In a similar way the ith component of the n-column vector

X is obtained by:

XL ( YL ) XA7
(3.6)

At the next iteration every term X-, (L =', .... , n) is then

known and the iterative process is applied again.

If (k) is the superscript of the kth iteration

(1k) - (rT, Z~ ~)

(3.7)

then the ith component of the n-column vector X is given by:

1 4to -.
C4L ~eU

(3.8)

with L,= 1,2, ---- n

Jacobi's method can be improved by the following consider-

ations:

Assuming the computations of Eq. 3. 8 are done sequentially

for i = 1, 2, --- n, then for computing the kth iteration of the ith compo-

nent, ajc , it is advised to use the "new" components, CL with

(j = 1, --- , L -1), which are then available instead of the "old" com-

ponents, , with (j = 1, -- -, -1); . Of course, the other

components , with = i + 1, --- , n, are not yet known. The com-

ponents ,with t= i + 1, -- n are used to compute OC.

whose expression is now:

a. X (3.9)
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This is the Gauss-Siedel (6, 8) iterative method, which has been

used to solve the cross-flow problem, and has been implemented as

explained in Chapter 4, to improve its rate of convergence.

Note that Appendix B explains the program developed from

this iterative method.

3. 1. 1. 2 Case of the Cross-Flow Coefficients Matrix

Two interesting remarks concerning the computational problem

of the Gauss-Siedel method applied to the cross-flows matrix A, can

be made.

1) The matrix is band striped: outside the band the

upper and lower triangular parts contain only zero

elements. No operation should then be performed in

these two zones in order to avoid needless computa-

tional expense.

2) The sparsity of A implies that operations should

only be made with significant coefficients in the row,

for the same reason.

These two remarks are closely related to the problem of the

storage of the matrix A in a compact array, with a system of indices

allowing one to generate it whenever needed, i. e. for the computation

of the basic iterative equation (3. 9).

In this way, one minimizes the computation time of this solution

method, by allowing only operations involving the nonzero values of

the coefficients, in the row, and the corresponding cross-flows com-

ponents of the cross-flow vector.

For all these reasons, the generation of matrix A will be given

first consideration in the program.
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3. 1. 2 Matrix Formulation
(6, 7)

It may prove useful to derive the Gauss-Siedel iterative method

under the matricial form:

If D = diag (a, ... ) an ) and

B= D- A

Eq. 3. 8 becomes

--- +
(3. 10)

Now, let (-E ) be the strictly lower triangular part of A and

(-F) the strictly upper triangular part; that is,

E

0~
0

(3.11)

F =

then, with D = diag ((o.. .

A = D-E-F

and Eq. 3. 9 is equivalent to:

(11 (k)
Dx = + E x

0 (3. 12)

,o..y, the matrix A becomes:

(3.13)

+ (k - 1)+ W,_,, (3. 14)

The fact that Cti, / 0, -= 1,.......,n insures that (D - E) is

non-singular and the Gauss-Siedel iteration can be written as:

(k) = (D - E)~ 1 F x(k-1)+ (D - E)~ (3.15)

k = 0, 1, 2, .

D'- I Y

|44
\* 0
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Now with H (D - E) F

d =(D - E) y

lsq. 3. 15 becomes:

(k) = (k-1)_
x H x + d. (3.16)

X~V i rC9!64S H, $I1Oft'I) t 4Cie&tAt. H X+j &L oyif A x=
3. 2 Convergence Theorem for Linear Iterative Methods 3. bis)

Before introducing the concept of convergence for linear iterative

methods, it is worthwhile to review the following useful properties.
n

Let L (R ) represent the set of real (nxn) matrices, as is the

case in this problem. As A C L (R n) the following properties are

equivalent.

Theorems: a) A is non-singular

b) det A = 0; (i. e. the linear system Ax = 0 has only the

solution x = 0)

c) for any vector b, the linear system Ax = b has a

unique solution (6)

If A 6 L (Cn), where Cn is the set of complex (nx n) matrices,

then a scalar (real or complex) and a vector x / 0 are eigenvalue

and eigenvector of A if

A X , (3.17)

or if is eigenvalue of A

det (A- AT. )0=. (3.18)

Then A has n (not necessarily distinct) eigenvalues which are

the n roots of Eq. 3. 13.

The collection of these n eigenvalues ... , h, is called the

spectrum of A and

(A) = max

1 /i K n is the spectral radius of A.
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This information is useful for improving the rate of convergence

of the method as explained in Chapter 4.

Coming back to the theorems; let H . L (Rn) and assume that

the equation

x = Hx+d (3. 19)

has a unique solution x-. Then Eq. 3. 16 converges to x* for any

initial guess x

Subtracting

if and only if f (H) 4 1.

= Hx* + d, (3. 20)

from Eq. 3. 16, the equation representing the "error" of the solution

is obtained:

(k+1)
x_ *=H(

(k)
x - x*)

H (k+1) (x x*)

Thereby, in order that

lim (x(k)

(1) (k-1)H (x - X)

(3. 21)

- x*) = 0 for any

x0 it is necessary and sufficient that (13)

lim H (k) = 0

This is true, if (H) is inferior to 1.

choose a norm on Rn such that 1 HI ( 1.
Then, I H (k) 11 4 it H (k) 0

It-is then possible to

as k -- wo

As a result, the convergence of Eq. 3. 16 is reduced by this

theorem, to the algebraic problem of showing that.

f(H) < 1
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CHAPTER 4

IMPROVEMENT OF AN ITERATIVE TECHNIQUE

4. 1 Initial Value Problem

In a convergent iterative process, the choice of the initial value,

i. e. x* , is not of primary importance: the accuracy of the solution

which can be obtained is not determined by this choice.

However, in the case of this problem, the first set of assumptions

has to be estimated carefully since the cross-flows solution is carried

out several times in the course of a program run: once for the steady

state case and seven times (in seven outer iterations) for a transient

state case.

For the steady state caseonce the parameters involvedinthe cross-

flow problem are known, the remaining task is the solution of the

matrix equation. After a certain number of iterations for which the

convergence criteria is satisfied (see section 4. 2) one obtains a cross-

flow vector for each axial step.

This information is kept in the core-memory, and is used later as

the initial value for the first calculation step of the transient case.

This procedure is justified by the saving of computation time for

carrying out the calculation of the transient case: once a selected type

of transient and its corresponding code inputs are designed, the para-

meters involved in the set-up of the cross-flow problem change, and

one ends up with a different coefficient matrix A and therefore with a

different cross-flows solution at each axial step.

The objective of the calculation is the knowledge of the change of

every thermal and hydraulic parameter, in the very first seconds of



32

the transient; therefore, the code is run seven times for a

careful determination of these evolving parameters during the

seven first periods of time of the transient.

Therefore, the cross-flows solution corresponding to the

steady state case comprises the initial guess for the first time step

of the transient solution. Generally, the cross-flows solution at time

(t - 1) is used as the initial guess of the calculation at time (t).

4. 2 Convergence Criteria, Norms

A number of convergence criteria were used experimentally

in the work. The most complete convergence criterion associated

with the Gauss-Siedel Technique was found to be that of the comparison

of the relative change in the approximation to each of the unknown

cross-flows to a given error criterion (5)

that is

(4.1)

for all i= 1. ,n
at each axial step J.

However, this convergence criterion is found to be too strict

for two reasons. First, if in the same axial step, the different cross-

flow components have different orders of magnitude, the number of

required iterations may become too large for economical solutions.

Also, for two different axial steps, the order of magnitude of

the solution, being defined here as an "average" of the absolute

values of the cross-flow components, may be different.

In order to save computer processing unit (CPU) time, it has

been suggested that one should use a different apd relative convergence

criterion 6 for each axial step.
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Any type of norm contains the necessary information regarding

the magnitude of the average cross-flow vector, to be an acceptable

"weighting" parameter.

The three types of norms which could be used are:

1. I X I- I VY Euclidian norm,
-C E

2. X sum norm, and

3. 1X -VA max norm.

The max norm has not been selected as the scale factor for

the axially-varying & because of the calculation time it would have

required at each axial step during each time step.

The sum norm has not been used under this form, in the computer

code related problem, but as an average value coupled with exterior

value of the flow in the rod bundle as explained later in section 4. 4.

The Euclidian norm is the right one for its simplicity and

adequacy in the computational problem. (See Appendix B)

It is possible now to define a relative criterion 6 , being

the product of a fixed arbitrary constant, 6 , by the Euclidian norm

of the cross-flow vector for the given axial step. This way the con-

vergency criterion weighted by the order of magnitude of the cross-

flow norm.
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Relation (4. 1) becomes

(4.2)

The value of 6 is chosen after a set of numerical experiments

-3to be equal to: 10

The objective of this change is to reduce the calculation time

necessary to compute the component of the cross-flow vector which

has the smallest order of magnitude. One can simply say that if the

order of magnitude of the cross-flow solution is 10 , in a particular

axial step if by chance one of the cross-flow components is much

smaller, i. e. 10- 3, one is not interested in the precision of this

cross-flow estimate, since it will not affect significantly the accuracy

of the overall cross-flow mass balance in the axial plane.

4. 3 Improving the Rate of Convergence of the Gauss-Siedel Method

4. 3. 1 Successive Over Relaxation
(9)

Using the following notation one can write an expression for

the change between iterates in the Gauss-Siedel method

k+1 k k
x x + r , (4.3)

with

rk= (D - E) (A x (k ). (4.4)

Generally, an iteration algorithm can be written under the form

of Eq. 4. 3, with different r for different algorithms.

Now, in order to accelerate the convergence of the iteration,

one can multiply the residual vector by a real number.Si such as:

1 45.A ( 2, with the result

k+1 k k
x =x + r , and (4. 5)
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the residual vector being given as

rk - 1 E x(k+1) + D-1 F x(k) + D~ y - xk (4.6)

Eq. 4. 5 takes the form

x(k+1) =k + -D1 E x(k+1) + D-1 Fx(k)+ D- 1 _ x(k

(4.7)

or

o (k+1) =k 1 (Ex k+1) D 1 Fx(k) +D

(4.8)

Using the notation

(k+1) -D1 E x(k+1) + D~1 F x(k) + D- 1y (4.9)

which represents the result in the Gauss-Siedel iteration; Eq. 4. 5

becomes

'vk+1 k + .5 (k+1) (4.10)
doo IiLA n

4. 3. 2 Convergence Criteria Considerations for SOR

A necessary and sufficient condition for the convergence of

any iterative algorithm is that the spectral radius of the iteration

matrix be less than unity. (12, 13)

In the case of the Gauss-Siedel method the necessary conditions

which insure convergence are positive definiteness and diagonal

dominance. (10,11)
(10)

The following definitions are of interest in this regard:

1. An(nx n matrix A = ( CA) is weakly diagonally dominant by

rows if

ICL;,I
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for all 14 i4 n, with strict inequality required for at least

one value of i, the matrix is strictly diagonally dominant if strict

inequality holds for all i, similar conditions hold for diagonal

dominance by columns;

The concept of scaling can be introduced by the following
(t0)

definition:

Let A be an(nyt n)matrix, then if there exists a scaling

of the columns L rows] of A by a set of nonzero multipliers such

that the transformed matrix is strictly diagonally dominant by rows

[columns] , then A possesses generalized diagonal dominance by

rows [columns] ;

3. Let A = ) and B = ( be two nxr matrices. Then

A > B if Ct;'/ i for all 14ig n, 14 Z r. If

0 is the null matrix and A>/ 0, then A is a non-negative

matrix. Similar conditions hold for strict inequality, and if A> 0,

then A is a positive matrix.

With these definitions, one may outline a convergence criterion

for general matrices. The following theorem shows that a general

coefficient matrix may be scaled arbitrarily by rows and by columns

without affecting the asymptotic convergence, the successive over

relaxation.

The restrictions for the properties of the matrix are also

presented:10)

Let A D + E + F be an(nx n)coefficient matrix where D=diag

(a, , ..... a ), a Z 0 for 14 i n and E, F are respectively

strictly lower and upper triangular matrices. Let a matrice A be

obtained from A by scaling the rows and columns of A with arbitrary

nonzero multipliers. Then the SOR iteration matrices for A and A'

will have the same eigenvalues.
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The SOR iteration matrix for A is given as

MA =(D+.5E) 1  [(1-.)D+sl F3 , and

by construction,

A' = P A Q,

where P and Q are diagonal matrices with nonzero diagonal eA.

The diagonal, lower triangular and upper triangular parts of A' are

respectively given as

PDQ, PEQ, PFQ,

and the SOR iteration matrix for A' is therefore seen to be

= k'M Lc sQ Y'LIAPQ.7Q

thus M and M'w have the same eigenvalues.

From this theorem, useful corollaries are decided, which

would be applied to the problem.

Corollary 1: The Successive over Relaxation (SOR) method

is convergent for A if and only if it is convergent for A', and

the asymptotic rates of convergence are the same in both cases.

Corollary 2: If scaling by rows or columns can produce a

matrice A' which is diagonally dominant then the Gauss-Siedel

and Jacobi methods are convergent for the original matrix A.

Corollary 3: If the transformed matrix A' is diagonally

dominant, then, Successive over Relaxation (SOR) is guaranteed

to converge for . in the range.

- 21 + min (S , 2

with S - max
1
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S2 max hG

It follows that Successive over Relaxation (SOR) is convergent also

for A in the same range.

For the validity of the experimental value of A found for

Successive over Relaxation (SOR), in the COBRA III C cases examined

in this work, (see Appendix B), a verification could be done in the range

0 <S (A/,', such as is discussed above to insure convergence of the

method for a general coefficients matrix.

Finally, concerning T1% definiteness it should be interesting

to note that Ostrowski(G) proved that for a coefficient matrix with

positive diagonal element a necessary and sufficient condition for the

convergence of Successive over Relaxation (SOR) is that the matrix be

positive definite.

These remarks are intended to give a better understanding of

all the transformations which can be performed to convert A to a

positive diagonal dominant matrix, and to include in the general

computational treatment of the problem, a routine for checking the

convergence of A', before undertaking the solution scheme.
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CHAPTER 5

FURTHER MODIFICATIONS OF THE METHOD

5. 1 Finding the maximum eigenvalue: Iterative Refinement

The calculation of the eigenvalue spectrum has not been con-

sidered in this work, since it would have affected the overall com-

putational time. However, one can use the maximum value of the

eigenvalue spectrum to hasten the convergence of the process, with-

out spending additional computational time.
k

Using at each iteration the vector k such as:

k _ k - k-1 (5.1)

It is known that for large value of k the ratio

lim (5. 2)

for any i = 1, 2, --- n

This relation could be used as a kind of convergence criterion:

If for the iterations k - 1, k, k + 1, the ratios

(5.3)

are approximately equal, one can consider that the solution has been

obtained and stops the iteration.

The value can be given a certain range of uncertainty

within which the value of the ratio, of two successive iterations, can
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be considered equal to

The final solution is then

X- = Xk + A k

1- N1

since:

Xk+1

X_ +
k+2

k k
= _X + k

k k k+1

k + k + +-------) (5. 5)

and

L=0 (5.6

Note also that when is known, one can compute Eq. 5. 4 for

each component i, i. e.

)

X = -k +
-- 1 L

k

5. 2 Other Possible Values for Convergence Criterion

As mentioned in Section 4. 2, the choice of an adequate conver-

gence criterion is important. If it is chosen to be too strict, large

computational requirements can occur, and the results will not be

significant: some of them will have an order of magnitude which will

not even affect the cross-flow average value in a given axial plane.

(5.4)

X AV

Aft
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If it is chosen to be too loose, the results will not be sufficiently

accu rate.

By choosing the norm of the cross-flow vector in each axial

plane, one is interested in obtaining an average value of the order

of magnitude of the cross-flows.

However, other different convergence criteria related to an

exterior parameter have been examined. For example, the average

axial flow rate value in the core which is previously calculated, is

used as a reference "parameter" and the cross-flow convergence

criterion was taken to be (10- 3) times this value.

As explained in detail in Appendix B different parameters

such as FLO, FERROR, MOYFLO have been examined.

5. 3 Sensitivity Analysis: Finding Solution by Components

An interesting refinement of the method could now be considered.

As explained in Section 4. 3 the cross-flow vector is computed in such

a way that the inner iterations end when each of the cross-flow com-

ponents satisfies the convergence criterion. One can remark that

since the magnitudes of the various cross-flow components are not

necessarily uniform some of them will have satisfied the convergence

criterion from early in the calculation while others will not yet have

done so. The time required to complete all of the required calculations,

namely, the inner iterations, for all components, can be very large

for large order matrices.

If and only if the cross-flow components converge uniformly

and monotonically, the iteration procedure can be modified in such a

way that after one cross-flow component has reached its solution,

namely, after having satisfied a given convergency criterion, the

outer iteration, i. e. calculation of cross-flow vector, will not change

nor modify this value.
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One can note the considerable calculation saving time which

could be obtained for large cross-flow vectors.

However, one must be careful when using this technique: a

sensitivity analysis, for a typical small case, should be carried

out in order to estimate the effect of the truncation error on the

cross-flow components. In Appendix B a complete set of instructions

is proposed for a print-out of COBRA III C results at different typical

stages of calculation.
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CHAPTER 6

CONCLUSION AND DISCUSSION OF RESULTS

The superiority of an iterative technique over a direct solution

method, in the particular case of the large sparse matrix problem,

is not obvious. However, it can be made plausible by the following

remarks.

Remark 1: Two possible types of matrices can be handled

throughout the introbundle cross-flows calculation. In one type the

cross-flow coefficient matrix may be diagonally dominant: in this

case and for any size of matrix the rate of convergence is rapid and

an iterative technique, like the Successive over Relaxation (SOR)

used in this work will be as much as four times quicker than the
(15)

Gauss Elimination, according to other numerical experiments

and therefore will show its clear superiority in calculation time. In

the other case, if the matrix is not diagonally dominant, the rate of

convergence will be slower and therefore a breakeven matrix size

can be found when comparing computation times required by the

direct method (e. g. Gauss Elimination) and those needed by the

Successive over Relaxation method. The difficulty in judging the

merit of one or the other method arises when the accuracy of the

results must be taken into consideration.

Remark 2: When one compares the results given by the direct

method to the results given by the iterative technique one notes that:

a) If the results are identical up to the fifth decimal - and

omitting the round-off error, - the calculation time is

larger (approximately twice as large) for the iterative

method when compared to those given by the Gauss
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Elimination for small order matrices (12 )( 12). For

large order matrices (128 X 128) the calculation time is

faster by 35% for the iterative technique. An estimate -

based on numerical experiments and an empirical corre-

lation proposed by R. W. Bowring (3) - predicts an 80%

advantage to the iterative method over the Gauss Elimination

for very large order matrices (360 A 360). Note that these

experiments verify approximately the theoretical estimates:
3 2

(n + n ) operations are required when using the Gauss
2

Elimination and (2n + n) are needed for each iteration when
(5)using the Gauss-Siedel method . Since satisfactory

results are obtained after an average of 14 iterations when

using the iterative technique, one finds that the breakeven

size appears at an approximate matrix size of 62. Thereafter,

for larger order matrices the superiority of the iterative

technique is confirmed. (See table 6. 1)

b) As explained in Section 4. 2 and 5. 2, if one uses a conver-
-3

gence criterion equal to 10 in the relative convergence test

of the iterative technique, one notes a significant time reduction

in the calculation. When comparing the cross-flow results

to those given by the Gauss Elimination, a discrepancy of

the order of 10-3 appears in the results but this does not

affect the mass flow rates and enthalpy results. One must

recall that the Gauss Elimination is a direct method and

therefore that it gives exact results. The great advantage

of the iterative technique is its flexibility because of the

adjustable value of the convergency criterion. Since a small

discrepancy in the cross-flow results does not affect outside

parameters, it is then worthwhile to loosen the convergency
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Table 6. 1: Overall Time Calculation Comparison between Iterative
Technique and Gauss Elimination for Typical Cases
Encountered in the Cross-Flow Problem

Note: 1. T2 = Computation Time by Direct Method

2. Identical results mean except for round-off errors, results
can be considered identical up to the fifth decimal.
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criterion and get then a considerable saving in cal-

culation time. Results for different typical matrices

are reported in Table 6. 1.
-2

c) It is finally recalled that a value equal to 10 for the

convergence criterion corresponds to an accuracy

threshold value since for this value and larger value

of the convergence criterion, the cross-flow results

are very different from those obtained by the Gauss

Elimination method and consequently the enthalpy and

mass flow rates results are different from those found

by the direct methods. For all these reasons and as

explained in section b of Remark 2, 10-3 is by experi-

ment the most appropriate value for the convergency

criteria when the relative convergence test is used in

the Iterative Technique.

Remark 3: Depending on the IBM Fortran computer level which

is used differences in calculation time can occur. For example, if

an IBM Fortran GI-level computer is used, two successive runs of

a same problem show a 10% variation in calculation time. If an IBM

Fortran H-level computer is used, the calculation time is approximately

reduced by a factor of two and variation in calculation time for two

successive runs is no more than 5%. (See Figs. 6. 1, 6. 2, 6. 3)

Remark 4: Finally, a statement for judging the overall efficiency

of the method will be based on the following formula proposed by R. W.

Bowring (3). The IBM 370/175 calculation time for the cross-flow

problem with the Gauss Elimination method has been found to be given

as:

T = 0.00282 N K + 0.000 000 837 N K M S2 + 0.0000 127 NK2

The first term is the contribution to the calculation time for

set-up of the matrix. In both methods - Gauss Elimination and Iterative
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Technique - it has the same value.

The second term represents the calculation time for storage

of the coefficient matrix. As seen in Chapter 1 when using the Gauss

Elimination method the value of the variable MS can vary from 11 to

63. For the iterative method the value of MS is fixed to 7. Therefore,

there is a clear superiority in calculation time for the Iterative Tech-

nique over the Gauss Elimination method.

The last term concerns the cross-flow calculation time. To

clarify the validity of the proposed formula one must recall that in

Chapter 1 theoretical estimates of the required number of operations
(5, 6

to be performed for both methods have been presented It has
3 2

been shown that (n + n ) operations are required for the Gauss

Elimination solution while (2n 2 + n) are needed for the Gauss-Siedel

Iterative Technique. Therefore, without any false speculation one

can deduce that the proposed formula underestimates the calculation

time required by the Gauss Elimination: this time must be at least

proportional to N3 while those for the Gauss-Siedel method must be
2

proportional to N . (See Figs. 6. 4, 6. 5)

From this remark it is clear that the formula should be modified

to predict a more realistic time estimate from the Gauss Elimination

method for large order matrices.

The overall conclusion is stronger after the above explanations:

the Successive over Relaxation method has proved to be practically

comparable to the Gauss Elimination for small order matrices (12 12)

but is considerably superior in terms of computational effort when

large order matrices are considered.
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APPENDIX A
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APPENDIX A

INTRODUCTION TO COBRA-IIIC: STUDY OF SUBROUTINE DIVERT

A. 1 Channel Topography and Array LOCA

The objective of this section is to explain the stripping

technique used to determine the coefficients of the cross-flows

array AAA and to describe the information contained in the array

LOCA. It is advised that one consult the report MEK-28(2) for

additional information.

Assuming a square lattice geometry, as shown in Fig. A. 1,

the cross-flow w , at boundary i-j, is affected by the cross-flows

through the other boundaries of channels i and j. According to

Fig. A. 1 which corresponds to the most general location of two

channels in the array, the cross-flow wij at the "principal boundary"

i-j is influenced by the "secondary" boundaries: a-i, b-j, d-j, j-f,
i-e, i-c. Therefore, all other cross-flow coefficients beyond the

six secondary boundaries are set to 0.

It is noted that six is the maximum number of influencing

secondary boundaries for a given boundary.

In the other two possible locations for a square array, i. e.

edge and corner position, respectively, four and three are the

number of influencing boundaries. (See Fig. A. 2)

If NK represents the number of channel boundaries and

if a-j represents the coefficient of cross-flows for any i, j,
(1(i, j<NK), a matrix, AAA, of cross-flows coefficients is formed.

The row position of the coefficients does not depend on the

channel numbering but on the channel boundaries numbering.
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SUBCHANNEL A SUBCHANNEL B

SUBCHANNEL
C

2

SUBCHANNEL I

3e

-I

0
SUBCHANNEL J

- I-ME

SUBCHANNEL

0
I

D

I =boundary numbering of I-J

1 same A-I

2 same C-I

3 same I-E

4 same B-J

5 same J-F

6 same J-D

FIG. A. 1 Subchannel Boundary Numbering
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Subchannel A Subchannel B

1

3

Subchannel J Subchannel K

0

I
CORNER CASE: 3 Affecting Boundaries

EDGE CASE: 4 Affecting Boundaries

2 affected by boundaries 1, 3,4,5J

Corner and Edge Subchannel Case

1 affected by boundaries 2, 3, 4

3 affected by boundaries 1, 5, 6

2

FIG. A. 2:
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It has been found that numbering the boundaries left to

right, top to bottom for a pair of adjacent flow channels minimizes

the width of the matrix interval in which the coefficients of the

secondary boundaries are found. By this stripping technique the

coefficients lie in a band alorng the diagonal having a width which

is equal to twice the maximum of the difference between the diagonal

and the extreme elements of a same row (i. e. the difference between

the furthest element and the diagonal element) among all the NK rows

of the matrix. Every element outside the striped band is, of course,

equal to zero.

An additional argument for setting up the matrix AAA in a

band-limited form can finally be presented: once the numbering

scheme of the channel boundaries has been selected, the problem

consists of placing in each row of the matrix AAA, whose diagonal

element represents the considered cross-flow, all the other affecting

cross-flows. An example in Fig. A. 3 illustrates how to set up AAA.

Two sets of information are contained in the array LOCA:

i) sign of the cross-flows, and

ii) numbering of the secondary affecting boundaries for each

boundary in the set of given channels.

Discussion of Item i: The convention of sign presented in the MEK-28

report is summarized in Table A. 1.

Discussion of Item ii: The array LOCA is a two dimension array

(NK, 8) which provides the following information:

1) if the number of the principal boundary is K the corresponding

FORTRAN statement becomes: LOCA (K, 1) = K

2) the number of all secondary boundaries is identified in the

program by: (LOCA (K, L), L = 2, 7) i. e. secondary

boundary, if none, the LOCA values are set to zero.
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FIG. A. 3: 9 Subchannels Case



59

TABLE A. 1: Sign Convention used in DIVERT

1 - For Primary Boundary:

Sign of Cross-Flow I J IJ

For Principal
0 0

Boundary

2 - For Secondary Boundaries:

I - J, J - M multiplied by

I J M

or -1.0

I J M

otherwise 1.0
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3) the total number of boundaries is written under the

following FORTRAN statement: LOCA (K, 8)

For example, a 10 channel case, Fig. A. 4 shows the

boundaries numbering, and Table A. 2 gives the numbering scheme

used in LOCA. For example, the cross-flow at boundary 5 is

affected by cross-flows through: 1, 2, 7, 8, 10. The array LOCA

gives:

LOCA (5, 1) = 5

LOCA (5, 2) = -1

LOCA (5, 3) = 2

LOCA (5, 4) = 7

LOCA (5, 5) = -8

LOCA (5, 6) = -10

LOCA (5, 7) = 0

LOCA (5, 8) = 6

Finally, Table A. 3 shows the information contained in LOCA

for the 10-channel case.

A. 2 Study of COBRA-III C Subroutine DIVERT

For greater clarity, the COBRA-III C coding and the subroutine

DIVERT are referred to in this study respectively as COBRA and OND

(Old-New-Divert).

The OND is composed of four parts:

i) lists of arrays and variables,

ii) setting the coefficients of the matrices AAA and B,

iii) solution of simultaneous equations by means of the

Gauss Elimination, subroutine DECOMP and SOLVE,

iv) Modifying certain cross-flows if forced values.
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Table A. 2:

FIG. A. 4: Map for a 10 Channel Case

Convention of Numbering used in LOCA

I J Boundary nber

6 10 3

1 24

i - 5 5

6 _ 6
_ _ 5 r7

5 S 8

2 4 9

5 8 10

4 7 1.



ARRAY SET IN ACO K

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

1

-2
-5
0
0
0
4

2
-1
5

-3
-6

0
0
5

3
-2
6
0
0
0
0
3

4
1

-7
-9

0
0
0
4

5
-1

2
7

-8
-10

0
6

MAXIMUM OVERALL STRIPE WIDTH

REQUIRE

6
-2
3
8
0
0
0
4

7
-4
9
5

- 8
-10

0
6

FOR ABBEY

8
-5
-7
10
6
0
0

9
-4
7

-11
-12

0

10
-5
-7
8

11
0

11
-9
12
10
0

12
-9
11

0
0

0 0
0 0 0 0

5 5 5 4 3

AAA IN DIVERT - 11 FOR BOUNDARY

132 STORES FOR AAA SIZE AND THIS OK SINCE LESS THAN

NO. 10

1 PROVIDED

N

w

LOCA (K, 8) K = 1 TO 12
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Dfiscussion of item i: Several variables and arrays used in the

OND are listed under the following different names:

1) AAA, the matrix of cross-flow coefficients, has a

elements (1,/,i,kNK) and these elements are repre-

sented by: DATA (SAAA + K + current index ),

2) B, the NK-column matrix representing the "guessed"

differential pressures, whose elements are b

(1k NK , 1(:: =max number of axial steps) is

listed as DATA ( S B + index ),

3) W, the NK-column matrix of the cross-flows whose

elements are Wij, (14i NK, i44T. max number of

axial steps) is listed as DATA (S ANSWE + ind ).

It is recommended that one read the MEK-20 (1) report for a

complete list of variables and arrays used in COBRA.

Discussion of item ii: It is necessary to define the role of sub-

routine ACOL before detailing the second part of OND.

The maximum width of the band is determined in ACOL,

and the value is assigned to MS. Then the subroutine CORE 2

(NK, MS), called by ACOL, reserves, as a dynamic storage with

DATA instructions, (MSXNK) places in the core memory.

For example, in a 16-channel case, arranged in a square

array, there are 24 channel boundaries and a maximum width of

11, then in the core memory 11 groups of 24 elements are reserved

for the storage of AAA.

The objective of the second part of OND is to set up the

coefficients of the AAA and B matrices and to arrange them in

memory according to the following system of indices.
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1. Every element in AAA is set up to zero by:

DA TA (SAAA + KiNK 0 (L-1) = 0

with 1 K.NK , 1.L,<MS.

2. Setting elements of B (B is an NK-column matrix)

after having calculated them is performed by the

statement:

DATA (SB + K) = f (variables depending on pressure),

with 14KKNK.

3. Setting the elements of AAA outside the principal

diagonal, using LOCA (K, 8), for (1,K 4MK), which

stores the maximum number of secondary affecting

boundaries for boundary K, (see Fig. A. 5), is per-

formed according to the instructions

NBOUND = IDAT (SLOCA + K + MG*7),

with MG = maximum number of boundaries.

The variable LL is an index- varying between 1 and

NBOUND and allows then the current index to be com-

puted by

L = IDAT (SLOCA + K + MG e (LL-1).

L only varies thereby up to the last significant value

in the array LOCA. Since (LL-1) can have value between

0 and (NBOUND-1), a test on LL is made in order to

protect the first significant coefficient in the (MS NK)

array for the row K.

DATA (SAAA + K + NK 9 (L-1) , where in this case

L = MID-K+L and MID = (MS+1)/2.

Note that the sign of the coefficient is restored by SAVE.

Now, for all other values of LL the coefficients are

stored in the array positions

DATA (SAAA + K + NKX (L-1), 1.K<NK.
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4. The elements of the principal diagonal in the original

array (NKANK) are stored in the column MID of the

array (MS X NK), with MID = (MS + 1)/2.

Matrix elements are then stored by:

DATA (SAAA +K + NK 9((MID-1), 1.KNK.

Note that the array (NK A NK) has always been "virtual",

and never used nor indiced under this ideal form.

The rearrangement of the elements in (MSXNK) storage,

compared to the initial location they would have had in

(NK X NK) is shown in Tables A. 4 and A. 5.

One can conclude that the motivation in storing the

nonzero elements of the AAA matrix under an (MSNK)

array is to relocate the significant coefficients of the

cross-flows "around" the element MID of the row,

according to the information given by LOCA. However,

it should be noticed that this configuration does not

avoid an important number of element 0 per row.

Discussion of item iii: This part of OND deals with the modifications

of simultaneous equations to account for specified values of cross-

flows given in subroutine FORCE. Since the different case of channels

set did not involve any forced cross-flows this part has not been changed.

Discussion of item iv: Subroutine DECOMP is first called by OND and

uses the method of maximum pivoting for triangularing the array

(NK X MS). By successive transformation, this array is put into a

form shown in Fig. A. 6.

It should be noted that the pivoting is made around the MID

column of the previous array. A test for the singularity of the system

is made for the element MID of the last row NK. If this is 0, the

matrix is then singular and the system cannot be solved.



-2. so4ti-02
RMAY AAA:

0.0

C.0

C.C

0.0

C.C

C.C

0.0

C.C

cC

6.4064E400

C.C

1.2e13E*01

0.0

6.4045E+00

0.C

6.4C63E+00

-6.4042E+00

-6.4C17E+CO

-6.4063E+00

0.0

C.C

Cec

C.0

C.C

0.0

6.4054E+00

0.0

6.4059E4C0

0.0

6.4059E*CO

0.0

-6.4042E+00

-6.4C60E+00

-6.4062E400

-6.4059E*00

C.0

0.0

-6.4063E400

c.0

0.0

0.0

-6.4019E+ CO

0.0

0.0

0.0

0.0

0.0

coo

C.c

-6.4C59*00

C.C

-6.4C59E4C0

0.0

C.C

6.4C52E+CO

0.0

6.4059E+00

C.c

6.4061E+CO

C.0

-6.4C42E+ CO

C.0

-6.4063E+00

C.C

0.0

C.O.

-6.4064E+00

C.C

C.0

C.C

-6.4C 1E+ Co

0.0

CCc

0.0

0.0

0.c

0.0

- 0.0

c.c

-6.4045E+CO

0.0

-6.4C63E+CO

0.0

0.0

6. 4C63E CO

0.0

1.2814E+01

0.0

6.4042E*CO

0.0

6.4062E*CO

CC

-6.4019E400

0.0

0.0

0.0

0. C 1.3234E+01
I .

-6.4060E+00

-6.4059E+CO

0.0

0.0

0.c

0.0

-6.4059E+00

1.3235E+01 -6.4061E+00

1.9636E+01 0.0

1.3233E*01 0.0

1.3235E+01 0.0

1.9642E+01 0.0

1.3234E+01 -6.4062E*03

-6.4064E*00

0.C

0.0

1.2812E+01

1.9643E+01 0.0

1.3229E+01 0.0

1.9642Et01 1.2813E+01

1.9638E+01 6.4019E*00

f..4017E*C0 1.9632E+01 0.0

w
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TABLE A. 5: Output of the Array (NK X MS)

AY AAA:

0.0

C.0

C.C

0.0

C.C

C.C

0.0

C.C

C.C

6.4064E400

C.C

1.2el3E+01

0.0

6.4045E+00

0.C

6.4C63E+0 C

-6.4042ECO

-6.4C17E+CO

-6 .4063E+00O

0.0

C.C

C.C

C.0

C.C

0.0

6.4C54E+00

0.0

6.4059E4C0

0.0

6.4C59E+CC

0.0

-6.4042E+00

-6.4C6.CE+00

-6.4C62E400

-6.4059E+00

C.0

0.0

-6.4063E400

C.0

c.0

0.0

-6.4C19E+CO

0.0

0.0

0.0

C.0

0.0

C.0

C.C

-6.4C59E+*00

C.C

-6.4C55E+CO

0.0

C.:

6.4C52E+CO

0.0

6.4059E+00

C.C

6.4061E+00

C.0

-6.4C42E+CO

C.0

-6.4C63E400

C.C

. .C

C.0

-6.4C64E+CO

C.C

C.0

C.C

-6.4C19E+CO

0.0

C.C

0.0

0.0

0.c

0.0

.0.0

C.C

-6.4045E+CO

0.0

-6.4C63E+C0

0.0

0.0

6.4C63E+CO

0.0

1.2814E*C

0.0

6.4042E+C0

0.0

6.4062E+C0

C.C

-6.4019E4C0

0.0

0.0

0.0

h 1.C 1.3234E+01
* 1.

-6.4060E+00

-6.4059E+CO

0.0

0.0

0.C

0.0

-6.4064E400

C.C

0.0

* 1.2812E+01

E.4017E*CO

-6.4059E+00

1.3235E+01 -6.4061E*00

1.9636E+C1 0.0

1.3233E+01 0.0

1.3235E+01 0.0

1.9642E+01 C.0

1.3234E+01 -6.4062E*C3

1.9643E+01 0.0

1.3229E+01 0.0

1.9642E*01 1.2813E*01

1.9638E+C1 6.4019E+00

1.9632E+01 0.0

.1 J %j I c-%;.s -Z.1 I ukot-v I
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Subroutine SOLVE is then called for the resolution of the

linear system. Subroutines DECOMP and SOLVE are two

complementary subroutines of the Gauss Elimination method

used to solve the matrix Eq. 1. 1.

Then, the results, for the given core axial step J,are

stored for print outs in the array.

DATA (SW + K + MG 1e (J-1) = DATA (SANSWE + K),

where

DATA (SANSWE + K) is the cross-flow solution at row K,

for the axial step J.



71

APPENDIX B
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APPENDIX B

I Background

One recalls that the linear relation between the cross-flows

of a same axial step J can be written down

A X =B (1.1)

where

A is the cross-flow coefficient matrix at J,

X is the cross-flow "vector" at axial step J, and

B is the pressure differential between axial step J and

J-1.

In the most general location of a set of two subchannels in

the array, a particular cross-flow may be affected by a maximum

of seven other cross-flows in its immediate vicinity. The other

cross-flows at secondary boundaries have no effect on the particular

cross-flow and are then set to 0.

Therefore, the relation (1-1) which can be written

(j = 1-- J)

can be interpreted as involving only a maximum of seven nonzero

coefficients in each row of A. It should be also noted that the con-

figuration of A, i. e. the place of the nonzero elements in each row,

is directly related to the chosen boundary numbering scheme in the

problem. It has been found that numbering the boundaries from left

to right and from top to bottom decreases for each row the width of

the interval within which the significant coefficients are found. With
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this procedure one ends up with a band matrix.t )

Note also that by symmetry of construction, the matrix

A is symmetric.

It has been noticed that the Gaussian Elimination method

used to solve the cross-flow problem in the subroutine DIVERT

of COBRA-III C resulted in large computational time. Moreover,

if large order matrices would be considered, this could be a

major concern in the computational budget.

Because of the sparsity of A, it has been thought that an

iterative procedure particularly adapted to this type of problem

should be investigated.

This report presents the successive over relaxation method

(SOR) developed for this particular type of matrix, and its corre-

sponding coding to be included in the MIT-modified version of the

COBRA III-C code. With- this new method, another major modifi-

cation has been brought to subroutine DIVERT: as noted before, a

maximum of seven nonzero elements lies among each row of MS-

elements of the band matrix. The storage of the band width matrix

is done by the subroutine CORE 2 (NK, MS) in the COBRA III-C

version and reserves (NK X MS) spaces in the core memory.

Obviously, this storage is oversized since only a maximum of

(7 X NK) spaces will contain nonzero elements. For large order

matrices, one then notes, the saving in storage would be significant

if only (7 X NK) spaces were affected to the storage of A. The

generation of the array A under a compact form constitutes the

second major modification to the code and the corresponding program

is detailed in this report.

Finally, for programmers unfamiliar with COBRA, a list of

array,indices & variables used throughout the different modified sub-

routines is also given.
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II Successive over Relaxation Method (SOR)

'This section is intended to provide the basic equations

used for the set-up of the problem. For additional references,

one may consult one of the sources listed in References.

At each axial step, i. e. each axial plane containing a

cross section of the subchannels, one has the following relation

between the cross-flow vector Wy , the pressure differential

vector P , and the cross-flow coefficient matrix AAA

AAA 3. = _P7  for J = 1,-----N. (1)

Splitting the coefficient matrix AAA 1 , such as:

AAA 3 = -E + D - F (2)

the Gauss-Siedel procedure gives for the kth iteration:

(k) (k) (k-1) (3)
DAW =_ +EW +FW (3

Since the coefficient att / 0, for all i = 1, ... NK, this insures

that (D - E) is non-singular and (3) becomes:

(k) = D-E)1 F (k-1) + (D - E)

k = 0, 1, 2,

Now, if one wishes to hasten the convergence of the solution,

one may consider the successive over relaxation technique. The

new value of W (k) is taken to be:

(k) - (k-1) ( -Z)+ w(k) (5)

for some parameter .. such as 1414 2, for which the number of

iterations becomes minimum.

It may prove useful to formulate the problem in terms of

component WC,j of the vector W .

1) The Gauss-Siedel method at the (k+1)th iteration, gives:

(next page)
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(
"-I

for J = 1, ---- N

i = 1, - --- NK

and

2) the SOR method gives:

(W (I.3

The coding of the iterative technique for a cross-flow solution

is based on the Eq. 7 and is detailed in the following pages.

(io)Iw. 2IV
e:'Alt,

~tk~i)

(6)

(7)

& t/j will
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B. 1 List of Arrays, Variables, Indices used in the Subroutine for

Iterative Method, ITER

Note that the code name of the iterative procedure is ITER.

For a better understanding of the extent of the transformations

brought to DIVERT to include an iterative procedure it has seemed

useful to present in this report a complete list of arrays and

variables even if most of them do not differ from those used in

DIVERT.

Note also that the modifications are labeled by: ADD

i. e. variables added to the list.
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TM?tiCiT TE%& ( S)

COMMON / CoRAi/ AETA , ALUX , AToTtBSETA/,PiA ,bT, Dx,

i ELEY FEAkRoA ,FLO ; FTK 1 GIC, WCjI, Rip, tiSURF, 4F,

2. F61 , di 12 , 13 , ERROR , IT EAT, JI,,T2,

3, 14, 5, Jg, 57, K DE 4, KF , KIJ ,

K A FACT / N A R p , pA, NA AL NBBC , NC-AREco, M,

5 N4AP5 , N 6Ib / N PdDT NCIT Y , N XL, NK, NSJNOD6ESVP

C Ied AM, NWbby N6Cba, Nuy NV C ?t. , p\rc, 0WE, PRE F

7 QAX / R1oF , R40( ,Sf 6jA I SLI TF, TFLUiD, T&ETATMCK%

? UF, VF, VF6,tV(a .

C6k{RW/ Co6A 2-/ AA4), AFC7), fAAcT( 0j10) / AVM7), ALP0LL3O),

1 AXLLLO) I 84) , 13XC30) c46Y) , CCLAD2.), cFUELC2.),DFPELC2)

Z. (jAXL (), (aFACT(9, so), 4D X L..o) ; AA C2), .F 0), 4 4L4)

3 Z6Ai D uo), KCL 2) (?-), ,,FEL (2) , KKFL3) NCHAo), NSAPL9),

4 P.3o) RC LAD2)., RfUEL(2), $SI1AA 00) ,TUPtp2.), UUF(30)

$ WVF 00) , W6t (.3o , X UAUUcM I C C30), TTC30)

Note that the two COMMON lists above

have not been modified. They are identical

to those used in DIVERT of the COBRA-III C

version.

Note also that FERROR and FLO are used

later as "weighting" parameters.
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ADD-1 -1

ADD-2-Z

TESTOP:

OMEGA:

ADD-1: TESTOP has a logical value. It

can be . TRUE. or . FALSE.. This is used,

after the comparison test to a selected cri-

terion, to determine whether the test is

effectively satisfied or not for all cross-

flows at a certain axial step J. Note that

TESTOP is initialed to . TRUE.. The way

the iterative method is programmed implies

that if one and only one cross-flow does not

reach, at any iteration, the desired result,

i. e. if it fails to satisfy the convergence

criterion, the logical TESTOP will then

have the value . FALSE., and the iterative

procedure will be repeated until satisfactory

results are reached for each of the cross-

flows.

ADD-2: REAL OMEGA; OMEGA defined as

a real number is the computed value of the

parameter of the successive over relaxation

procedure. This has been found by increasing,

between 1 and 2, a number by 0. 01 at each

LO1CAL GAID

LO gICAL TESTOP

REAL KIJ, KF, IKKF, KCLAD, KFUEL

REAL OMEGA
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step, in order to find the value which

minimized the number of iterations for

the successive over relaxation formula:

4/3 is the value of OMEGA which mini-

mizes iterations and then computation

time.
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COMMON/CoSA 3 S/MA , MN , MA, ,

$ $ ) , , $ AC , $ALF4A , AA , $ANSWE , 188_

1 $CCH AN ,

. f D HDX,

3 $FACTO,

CD CRFR ,$WN, $ pNP, $Ci, $ D, $DC, $DFDX

*DRYD ,$DHYDN, $PiST $I PDX, $ DK $,DUR,$DR, #Fj

$ FDIV $ FINL.E , FLUX, FMULT, $4POLD,4F5,$F5Fi,$FXVLO

4 ( At / $ $h, 4G CA-S ,4 I , 1 4FiLM ,+4iNLEHOL.,+1+ViIM

5 $ bFUE , ID;AP, IK , $IOL , $,TK I$$C,$LEN6TtA, $LR,

6 NCIFPR,$MCFAC., $ MCFAR , $TYPE ,$NWRAP,$NVItIS,*?,$PEnix,$ra

r7 $ Pai, $ TC, g? ~PR ,$FRWT * ,$PW, 4?qw $9c$ , $ 9PRM,

8 4QAt $AIA ,* R-O ,RWOOL/ $ 5P I T I RYj*/#TI*LE,$RD,

$U , $VR , $U5AYE, - USTAR. , V

$w $WOLD r I WFP

COHMod

L 0 c i CAL

(NTE4ER

*ViSC, $Y(SCW, $VFPYPA ,

SWsAVE

DATA (1)

L DAT CI)

tDAT CO

EquiVA LENCE

;OUNEALE m (NrCR4pIKC.NCA LI

Note that, from the above list, no

variables have been modified, added

or withdrawn.

Note: NCHANL is used in the convergency

criteria.

I

MX ,

A

I

,I

I *x , * ACROS

C DATA CO,) IDAT CI, ' DA T( )
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The new variables defined for ITER are

discussed below:

EPS EPS is the value assigned to the convergency

criterion. It has seemed useful to present

in this report the two convergency criteria

which may be considered.

1 - Relative Criteria

For the (p+1) th iteration, one ends up with:

II w'-w)I <EP

It is the adequate convergency criterion for

the Gauss-Siedel method.

According to the accuracy of the results in

which one may be interested the value as-

signed to EPS can be "weighted" by outside

parameters such as the axial flow in the

channel, an average of the flows in two

adjacent channels, or even by small real

numbers.

However, after different runs, the "nominal"
-3

value of EPS has been taken to be 10 , which

permits both sufficient accuracy of the results,

and reasonably small calculational times.

Note that for this relative convergency, one

has to be sure of the positive value of the

denominator. In fact, after a certain number

of iterations, one can end up with a very small
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value of some of the cross-flow components,

i. e. JWT 1 0. 10- 20. The effect on the cal-

culational time is clear: one will have very

large computational requirements and there-

fore costly runs.

The denominator has to be "proofed" against

such cases: it suffices to add to the value

1W7 1, a very small positive number.

When used in this subroutine, the test was:

II. Absolute Criteria

One can also use the absolute difference

between two successive iterations as a con-

vergence criterion, i. e.:

W '- W < EP'S

This test is easier to handle from a compu-

tational viewpoint, since it may lead to

shorter calculation time but one must consider

that it is not as strict as the relative criteria:

in case of non-uniform convergence, the iter-

ations may be terminated further from the exact

result than those obtained with the relative

criteria.

As in case 1, different outer parameters have

been tried, if one wants greater accuracy in

the results. As before, the nominal value of

EPS is fixed to be 10-3

1- EPS x FERROR = EPS. Since FERROR,

which is the allowed error for flow calculation
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is of the order of 10- 3, the test is carried

out with a precision to 10-6 between two

successive iterations. If the results have

improved in accuracy, the calculation

requirement has been too large, and this

has been cancelled out.

2- EPS X(FLO/NCHANL) has been tried in

order to get a test value compatible with the

order of magnitude of the flow in the channel.

Also, one ends up with unrealistically large

calculation times.

3 - An average value of the flow in two

adjacent channels has also been tried as a

convergence criterion for the same reason,

but once again, the calculation time ended up

to be large.

IITER This variable represents the number of iterations.

The maximum allowed value is 200. If this value

is reached, the calculation is stopped - for the

particular cross-flow at a given axial step - and

the results are printed out.

Note that this number is intended to protect the

calculation time, in case of an error in the input.

INDI represents the value of the index of the nonzero

coefficient in the array AAA and the index of the

corresponding value of the cross-flow to be mul-

tiplied to this coefficient.
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TERMM has the value for each iteration of:

1+1)

This is computed through the index INDI.

NTR is an index such as 2 (NTR <7 and is intended

to find, through LOCA, the values of the co-

efficients and cross-flows, forming the ex-

pression (7).

RESERV is the value attributed to the previous value

of the component W., at iteration k, if the
1

running iteration is at (k + 1).

RAPID becomes the absolute difference between

or the relative absolute difference

according to the chosen convergency criteria.
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B. 2 Generation of AAA

As mentioned before, the space attributed in the core memory

by DIVERT to the storage of AAA, is by far too large. It is useful to

look back to this previous set-up of the cross-flow coefficients array

in order to understand the present modifications.

It consisted of:

1. Set-up (NK X MS) places in the core memory to 0 by:

LMAX = MS

DO 310 K = I, NK

DO 290 L = I, LMAX

290 DATA ( AAA + K + NK * (L-1)) = 0

310 CONTINUE

Note that LMAX, or MS, represents the computed value of

the maximum width of the band striped matrix. This is done. in the

subroutine ACOL, through CORE 2 (NK, MS).

Note also that the way of storing AAA is done in the following

way: MS blocks of NK elements are set up to 0; with the same location,

in an NK-block, being set to 0 at each stage of the outer DO LOOP.

K=1

L=1

K1

L =2

K =1

L = LMAX = MS

st NK-block

0 I
1st NK-block

01
1st NK-block

MS NK-block

2nd NK-block

I01
2nd NK-block

I.----.
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2. Set-up of vector B

Note that this part has not been modified.

5 -r. DAT ( $K *K)
tDATA ( j4K) (DATA CDPi + K t (7 A ( T $DrAII) -DCT$ CDDome11*

DX),*ISL DATA 4 FACTO + K)-rATh ($05AVE ,K)r DATA ($ W+ K+ M4 *(5M - i))
S ox4C - DATA ($ wOLD+ K + R4Y (-O)/ DT4C-

.AYE - A 1Sir , D ATA C $0 +I1) , DATA ($V/5AR + K , DATA C$A+1I), PATA($9K+ M
0AT ($F + MC ,(d1M-1) IDAT CF +TI+HC (U -1))

A PAalTCI9 DA U3r), DAT C S$sTNA+K ,DATA C$ A*7TV )AT (4 0P +f,
( * r ra ;,ue+ mce t NK-0 , VATAC F 4 SO+ me- I cr-

3. Find the maximum number of affecting cross-flow for each

cross-flow i (1<i< NK) by:

NBOUND =IDAT( LOCA + K + MG * 7)

It has seemed useful to detail the mechanism of this instruction.

LOCA is an (NKX 8) or an (MG X8) array. The

8 th element in each column, is the maximum number of affecting

cross-flow for a given one. Since an array is always stored by

row, the twelve last elements will be found by:

MG * 7 + K with 14 K. NK.

4 t. ---S

4. Once NBOUND (K) is found for K, an index LL will vary

between 1 and NBOUND (K) to find the value of the affecting cross-flow

by:

DO 300 LL = 1, NBOUND



LOCA (K, 8)

(1) 1
(2) 4
(3) -2
(4) -5
(5) 0
(6) 0
(7) 0
(8) 4

ARRAY SET IN ACOL

2
-1

5
-3
-6
0
0
5

3
-2

6
0
0
0

4
1

-7
-9
0
0

5
-1

2
7

-8
-10

K = 1 TO

6
-2
3
8
0
0

7
-4

9
5

-89
-10

12

8
-5
-7
10

6
0

0 0 0 0 0 0
3 4 6 4 6 5

10
-5

9
-4

7
-11
-12
0
0
5

11
-9

12
-9

-7 12 11
8
11
0

10
0

0
0

0 0
0 0 0
5 4 3

MAXIMUM OVERALL STRIPE WIDTH FOR ARBAY AAA IN DIVERT = 11 FOR BOUNDARY NO.

REQUIRE 132 STORES FOR AAA SIZE AND THIS OK SINCE LESS THAN

10

1 PROVIDED

wI
t4

0
I,,%

CD

0
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Note that NBOUND is of course different for different K.

L = IDAT ( LOCA + K + MG (LL-1))

Now L represents the value of the element found in the

array LOCA. If, for example, in the case of 10 channels, 12

boundaries (see fig. 2) , one takes the 7th column of NK.

LOCA (7, 1) = 7

LOCA (7, 2) = -4

Note that, one always has: LOCA (K, 1) = K.

For the first value of LL (LL=1), the cross-flow coefficient value

is on the principal diagonal and this is done in two steps.

STEP 1: L = MID - K+L

Note that for any K, (14KKNK), L in the RHS will always

have the value K. Then L (LHS) is always equal to MID. This is done

on purpose since, in this subroutine, one wants to store all the diagonal

elements of the matrix AAA, i. e. the element of the NK column MID, in

the same NK-block by the instruction:

DATA ( AAA+K +NK * (L-1)) = SAVE

Note that this instruction is valid also for any other values of

K, since it affects their value. Only at the end of the DO Loop, on the

affecting cross-flow (LL), the diagonal element is corrected by:

DATA ( AAA+K+NK*(MID- 1)) =DATA( AAA+K+NK*

(MID i) +

R in RHS is nothing else but:

DATA ( AAA+K+NK* (L- 1)) for L= MID

It is interesting to note that the MID elements are stored in a

same NK-block:
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STEP 2:

For the other elements corresponding to LL = 1, an index

L, having the value of the corresponding element in LOCA is given by:

L = IDAT ( LOCA + K + MG * (LL-1)) .

The value of L can then be negative or positive. An absolute value is

taken:

L = IABS (L)

and the value of the index becomes

L = MID - K + L

Since for this particular case MS = 11, NK = 12, MID is found to be 6

(from ACOL), one gets L in (LHS).

Therefore, (MS - 1) blocks of NK-elements are used for the

storage of a maximum of (7 x NK) nonzero elements.

One can then notice that the place in the core memory is

oversized since MS can be found very large for the same amount, i. e.

7 x NK nonzero elements in the array.

Setting a New Compact Array (7 NK)

The idea is to reduce the storage by relocating the elements

of the matrix AAA according to a bijection with the elements of LOCA.

In ITER the adopted procedure is the following:

(M 14.

2
C4.

+

4
di

-C
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STEP 1:

Set-up a zone of (7 X NK) elements in the core memory to 0 by:

DO 1975 K = 1, NK

DO 2222 L = 1, 7

2222 DATA ( AAA+K+NK*(L- 1)) = 0

STEP 2:

Find the maximum number of affecting cross-flow in LOCA by:

NBOUND = IDAT ( LOCA + K + MG * 7)

DO 1974 LL = 1, NBOUND

L = IDAT ( LOCA +K + MG * (LL - 1)

same as DIVERT

L = IABS (L)

same as DIVERT

STEP 3:

The main difference is to give to the value of the cross-flow

coefficients a location in the (7 X NK) places, by:

1976 DATA ( AAA+K+NK* (LL- 1))=--

1974 CONTINUE

Note that, now there is no difference between

the different value of LL - .. e. if LL is a

diagonal element or any element of a row -

because MID - the NK-column - around which

the location of each element of a row was made,

is no longer used. The inner DO LOOP - on

1974 - is done on a particular column of LOCA

and gives by LL the direct location that must

be affected to the corresponding element of the

array AAA. Note also that thereafter if it is an

element of the principal diagonal its value is
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corrected by:

DATA ( AAA + K) =

DATA( AAA+K) +

This corresponds to the case LL = 1, i. e.

LL-1=0.

Remember that one always has LOCA (K, 1)=

K

Then,by

CONTINUE

THE outer DO Loop on the K (1( Kj NK) is

pursued.

Note that with this relocation of the elements

of AAA one ends up with Table B. 3.

I. I
I I

1

2

1975

ii

I I
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TABLE B. 2: Print-Out from DIVERT of the Array A

:29 COMPACT ALA:

1.3234?+C 1

1.3235E+0 1

1.9636F+01

1.3233E+01

1.3235E+01

1.9642E+01

1.3234E+0 1

1.9643E*01

1.3229E3+01

1.96423+01

1.9638E+01

6.4054E+0C

-6.4060E+00

-6.4059'.+00

6.4052E+00

-6.4060-7+00

-6.4059E*00

-6.4042E+00

-6.4063E+00

-6.4042E+00

-6.4063E+00

-6.4019E+00

1.9632E+01 -6.4019R+00

-6.4059E*0 3

-6.4061E+00

0.0

-6.41453+00%

6.40642+100

1.2813E+01

6.4063E+00

6.4063E+O

-6.4017E+00

6.4362E400

1.28122+01

0.0

-6.4059E+00

0.0

0.0

-6.4062E+00

0.0

-6.4062F+00

1.2814E+01

-6.4019E+00

I .2813E+01

0.0
A A

-6.4059E+30

6.4059E+CO

6.4059E+03

-6. 4.C422+00

6.01 059E+ 00

6.4061E+CO

6.4045E+00

-6.4064E+03

6.9042r+00

-6.40643+11

6.18019E+00

6.4017E+40

0.0

0.0

0.0

;-6.4063B+00

0.0

-6.4063E+00

0.0

0.0

0.0

0.0
A A

0. -

0.0

0.01

0.0

0.15

0-1)

0-1

0- A
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This is more than useful for the programming of the

iterative procedure, since the element of AAA and those of each cross-

flow vector are related through LOCA for their value, position and

sign.
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TABLE B. 3: Print-Out from ITER of the Array A

:EW COMPACT AAA:

1.3234E+01

1.3235E+01

1.9636E+01

1.3233E+01

1.3235E+01

1.9642E+01

1.3234E+01

1.9643E+01

1.3229E+01

1.9642E+01

1. 9638E+01

1.9632E+01

-6.4059E+00

-6.4061E+00

0.0

-6.4045E+00

6.4064E+00

1. 2813E+01

6.4063E+00

6.4063E+00

-6.4017E+00

6.4062E+00

1.2812E+01

6.4054E+30

-6.4060E+00

-6.4059E+00

6.4052E+00

-6.4060E+00

-6,4059E+00

-6.4042E+00

-6.4063E+00

-6.4042E+00

-6.4063E+00

-6.4019E+00

-6.4019E+00

0.0

-6. 4059E+00

0.0

0.0

-6.4062E+00

0.0

-6.4062E+00

1.2814E+01

-6.4019E+00

1.2813E+01

0.0

-6.4059E+00

6.11059E+00

6.4059E+00

-6.4042E+00

6.q059E+00

6.4061E+00

6.4045E+00

-6.4064E+00

6.4042E+00

-6.4064E+00

6.4019E+00

6.4017E+00

0.0

0.0

0.0

0.0

-6.4063E+00

0.0

-6.4063E+00

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-A
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TABLE B. 4: TypicalThutfor a 10 Subchannel Case

10 15 5 10 21
2000

.184 -0.2
3 21

.0 0.144
0.301.54
0.601.28
0.900.312

4

0 PWR NC=10
-1
1000.0 2600.0

1 0 0

0.050
0.351
0.651

.309

.59

.14
0.950.200

STRIPE BOUNDARY NUMBERING

- 30
0

0.100.783
0.401.60
0.700.95
1.000.094

2 10 7 3 4 1 0 3
1 1 1.0
4.0110.9780.565
1 7 0.5
4.0110.9780.565
1.1281.0901.1521
0.05 1 .16

37.43

37.43

.0031.1651
2 .32

0.151
0.451
0.750

348.0

348.0

.1521.0631
3 .49

.050

.56

.775

310.2

310.2

0.201.280
0.501.50
0.800.588

0.122

0.122

.1641.1821.068
3 -66 3

0.251.45
0.551.40
0.850.450

0.0

0.0

.87 2 *99

9 10 -1
3 6 10
5 9
8

2.0 .08 640..3225 8.80
9
.5
10

0.02

1
0.
1

11 1
2250.

0.0 1.0
0.0 1.0
0.1.000
0.1.000
12 3
10
10
4 5

1
144.

0

.076405.0.02251000.
0

0. 10 1 1. 20
0 1

1 2
557.3

1.1.056
1.1.15
1. 0.77.
1.1.000
2 2

2 2 2
2.66 0.189

3

C4

0.374

0.374

264.0

264.0

1

7
0
0
0
0
0

8
1
2
4
7

1
1
1
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B. 3 ITERATIVE METHOD FOR A MODIFIED COBRA -III-C

The programming of the SOR method is straightforward once

the new set-up of the array AAA is established. It has seemed useful

however, to present the Flow Chart, Fig.B. 1

Note first that the part of ITER dealing with the calculation

of the cross-flow is not a subroutine - as DECOMP and SOLVE were

for DIVERT. The basic idea is to have a very flexible programming

in which any combination of constants, useful for the calculation, or

even the convergence criteria can be varied without difficultyr. ..The

programming can be divided into several steps.

1 - Set-up of the constants,

2 - Initialisation of cross-flow,

3 - Iterative cross-flow calculation,

4 - Test with convergency criteria, and

5 - Print-out of the results.

1. Set-up of Constants

E S -. 00 1 x FERRo.

OMECIA L,/3.

Note that one can change, according to the desired accuracy

of the results, the value of EPS - as mentioned before.
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2. Initialization of Cross-Flows

(1) 1 116 K L - 1 NK

( D DATA ( ANSWE, + KL) -W 9AT A($W + KL+*M4 x (T-1))

At J=1, the cross-flow value is initialized for the steady state

case to zero.

At J = j, the cross-flow value is initialized, bef ore iteration,

to the results of the previous axial step J=j-1. This initialization is

intended to hasten the convergence process.

Note that for each axial step J, only NK cross-flow have to

be calculated. The iteration procedure must be understood as being

carried out until the convergency criterion is satisfied. The value of

J - the axial plan on which the calculation is done - being determined

in MAIN.

For clearer understanding, it has been decided to call by

vector cross-flow, W. , the NK set of cross-flows in a same axial

step: therefore, each cross-flow can be considered as a component

of & . The calculation procedure starts with the value W as

an initial value, and ends up, when the test is satisfied, with W. .

Note that for the steady state case every cross-flow vector

in each axial step is set to 0. At the end of the steady calculation one

has W50 W *, For the transient state case the initial values

of the components of the cross-flow vector are: W, W2
At the end of the first calculation - for the transient - one ends

up with: W 5 , W S*I

the subscript being for the first run of the transient calculation

which requires seven successive runs.
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Generally one gets: initial value for 1th step of transient

calculation: W T .

and ends up with: W..

3. Iterative Cross-Flows Calculation Test with Convergency Criteria

II TE R .o
I TEK T TTE R -+I

TESfor I. TEro.
00 2001 4MK =1,H K
AG5EAV eDATA ( $ANWE + KKK)
TEAMM 0.0
D O l2 NTA . I 7
-Npr tPAT( LocA +HHK . MI MNTK-1))
SND1 = LASC INP3)

TGA M. TEAM M DArA( AAA r KKK + UK X (M-1))* VATA (AlWE+1NVL)

PATA (*ASWE -MMK) :(PATA (MKEK) - TEAMM)/ (DATA (, $ A~ +-MMK))
) ATA (,A ANSWE-+t MMK) c. (4,, 0 - OM 1;el A)N A ESE6ftY+ OM SEj Aki *DfTA~t AUWW + 14K)
A Aip ( ASESEY - PATA ( #APIJt4E +MMK)) / ( AESESAy

TESTfor T ErSTOP , AND. (AB6 ( A Afip), Lg . EPS)

IF(.N '. TESTOP) . A JP. ciT.TEt.LE. zoo)) 6:o To 2oo8

IITER, after being initialized to zero, for each axial step, is

set up at 2000 to ITER = ITER + 1:

Note that when the cross-flow vector W%*I is calculated - i. e.

when each component 1,<i NK satisfies the convergence criteria - then

IITER indicates the number of iterations which has been required for the

vector calculation and note for each component only.

If this number is larger than 200 - i. e. the iteration procedure

is by far too long - the calculation is stopped. This is intended to protect

the calculation time.

loot

2o0.

2001

(4)

('5)

$9)
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TESTOP is initialized to . TRUE. and the print-out of the

results will be done if and only if . TESTOP. is set up to . TRUE.

after the iterations. If it is set up on FALSE then the calculation

is carried out again starting at 20008.

The DO Loop on MMK with (1 MMK NK) is intended to store

the previous computed value of the cross-flow components.

TERMM is, of course, set to 0 for each component before

calculation. Then, DO Loop on NTR (2, 7) is the sum of the products

of the cross-flow coefficients with the corresponding cross-flow

component. Note that this important expression is rather straight-

forward with a system of indices - INDI - directly related to LOCA.

DATA ( AAA + MMK + NK * (NRT - 1)) is the cross-flow

coefficient value associated to the cross-flow component value

DATA ( AAA + INDI).

It has seemed useful to detail a feature of the coding dealing

with the dynamic storage of the results. Instead of using two NK

storages - one for the components at kth iteration and one for the

components at (k + 1) th iteration - only one NK storage is used. It

consists of storing successively an NK storage containing the compo-

nents of then the k th iteration with components of the (k + 1) th iteration.

Fig. 4 summarizes this procedure.

Once the SOR procedure is applied, note that the test is

carried out. If the test is satisfied for the i th component, the calcu-

lation continues in the DO LOOP (2001) with the (i + 1) th component.

(1 i NK)

The test value - TESTOP - must be set up to TRUE after the

calculation and test of all components in order to print out the results.

If the value of the test is set up to - FALSE - i. e. if one of the compo-

nents does not satisfy the convergency criteria - the whole process - i. e.

iteration of the component - is carried out again until the test value

KEEPS FOR ALL COMPONENTS, the value . TRUE.
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WRITE (6, 2090) ITER, J

2090 FORMAT (/, 7H IITER=, 13, 5X, 12H AXIAL STEP=, 13)

DO 150 K=1, NKK

150 DATA ($W+K+MG* (J-1)) = DATA($ANSWE+K)

RETURN

END

Once the convergence criterion is satisfied, the results

can be printed out. Note that the results are printed out at each

axial step J.
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TABLE B. 4: Typical AAA for a 10 Subchannel Case

EW COMPACT AAA:

1.3234E+01 6.4054E+10

1.3235F+01 -6.4060E+00

1.9636F+01 -6.4059"+00

1.3233E+01 6.4052E+00

1.3235s+01 -6.40601+00

1.9642E+01 -6.4059E+00

1.3234E01 -6.4042E+00

1.9643E+01 -6.4063E+00

1.3229E+01 -6.4042E+00

1.9642E+01 -6.4063E+00

1.9638E+01 -6.40193+00

1.9632E+01 -6.40197,+00

-6.4059!+00

-6.4061E+00

0.0

-6. u!42453+00

6.40643+30

1.281 32+. 1

6.4063F+00

6.4063E400

-6.4017E+00

6.4062E+20

1.23122+01

0.0

-6.4059E+00

0.0

0.0

-6.4062E403

0.0

-6.4062.+0)

1.2814E+01

-6.4019E+00

1.2A13E+01

c.0

A 0%

-6.41059E+00

6.4059E+00

6.4059E+00

-6.1:0422+00

6..059E+00

6.4061E+C0

6.4045E+C0

-6.4064E+00

6.4042E+00

-6.4064E+11

6.1019r+00

6.4017E+00

0.0

0.0

0.0

0.0

-6.4063E+0

0.0

-6.4063E+00

0.0

0.0

C.0
0. A

0.

0

0.0

0.0.

0.0

0. 0

0.0
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B. 4 CONCLUSIONS AND RECOMMENDATIONS

An overall comparison between the calculation time for the

two methods - Gauss Elimination Method and Successive over Relaxa-

tion - can now be envisionned.

For small order matrices, the iterative solution

computational time is larger by a factor of two than the Gauss Elimi-

nation method. When larger cases are considered the calculation

time reduces significantly from 35% for the 128 case to an estimated

80% for the 356 case.

Note that this result is stated conservatively. Favorable

matrix properties can improve the relative advantages of the Gauss-

Siedel method. If the matrice happens to be diagonally dominant, the

calculation time will be reduced for any order by a factor of four.

If a theoretical estimate of the calculation time should be

given, the formula proposed by Bowring could be used:

t = 0. 00282NK + 0. 000000837 X NK MS 2+0.0000127 NK2

The first term accounts for the set-up of equations. With

each solution method it is identical: 0. 00282 NK.

The second term represents the calculation time for the

storage of the matrix. For iterative method MS is fixed to be 7;

therefore this term amounts to 0. 000 0005859 NK, and the last term

is estimated to be proportional to NK2 - for the Gaussian Elimination,

when the theoretical estimate gives a calculation time proportional to.
3NK . Therefore, this estimate is believed to be too optimistic for

the direct method. The calculation time for the Successive over

Relaxation method cannot be smaller than proportional to NK2 for each
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X*auss Si.4eIaMfo. n*)op.

FIG. 6. 5: Estimate of the Required Gauss-Siedel Calculation Time from the
Formula Proposed by R. W. Bowring in MEK-31 Report

I, L .4 5,

Fig. B. 3: Calculation Time Estimate
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iteration. An average of 14 iterations is required for acceptably

accurate results. Therefore, the last term of Eq. can be
2 2

written: 0.0000 127 *A 14 X NK = 0.0001778 NK
(9)

The formula becomes:

0. 00282 NK + 0. 000 005859 NK + 0. 000 1778 NK 2  (0)

This theoretical estimate should give a rather rough idea

for computing larger matrices.
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