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ABSTRACT

Iterative procedures and their computer applications are
considered for the problem of calculating intro-bundle cross-flows
in PWR cores. The sparse band striped cross-flow coefficients
matrix is carefully analyzed for a minimum storage in the core
memory. The generated matrix is used in iterative algorithms
for solution. Different convergency criteria are discussed. Other
possible techniques are presented. A computer routine, based on
the iterative procedure developed, and to be included in a large
thermal hydraulic analysis code, is detailed. Comparison between
the effectiveness of an iterative procedure and the Gauss Elimination
Method, in their ability to solve the cross-flow problem, is discussed
on the basis of their computer applications.

Supervisor: Michael W. Golay
Title: Associate Professor of Nuclear Engineering
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CHAPTERI

INTRODUCTION

1.1 Introduction to the Problem

There is a great computational advantage in improving
the numerical computational method of matrix inversion, or of
the similar problem of solving a set of inhomogeneous linear

equations, i.e. solving the vector equation:

AX=Y (1)
for X, given Y.

The objective of this work is to develop a method which
will improve the cross-flows calculation in a large nuclear reactor
thermal hydraulic analysis computer code COBRA (1,2.3,4) by
means of an iterative procedure.

(5)

If the Gauss Elimination method is considered the costs
of computer calculation time for large order matrices can be a
serious concern: the number of required arithmetic operations is
approximately (n3/43 + n2), where n is the order of the matrix, or
the number of equations to be solved. Since the total required com-
puter time is directly proportional to the number of operations per-
formed, this can lead to long residence time and then to costly
computations. However, note that Gauss Elimination, being a direct
method, will give an exact solution if there are no round-off errors.
Now, if as an alternative the Gauss-Siedel iterative procedure(s)
is considered, and assuming all the necessary conditions for convergence

are satisfied, the calculation time can be reduced significantly., This
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mecthod requires (2n2 + n) operations for one iteration. Of course,
scveral iterations are normally required for an accurate result.
Table 1.1 Shows the number of Gauss-Siedel iterations which may
occur for several matrix sizes when the total number of operations
remains less than that in ‘thle ‘Gauss Elimination solution. It clearly
shows thaf for small matrices, the Gauss Elimination method would
be used since the number of allowed iterations is too low to give
accurate results. However, an iterative procedure will be by far
superior to the Gauss Elimination method when large matrices are
considered: this is the most interesting result since, as is explained
later, large matrices will be considered in this work.

Because of these considerations, it has been decided to use
an iterative solution technique for the resolution of a linear system of
equations relating the COBRA IIIC code cross-flows to the differential
pressure in adjacent reactor subchannels through a matrix A formed
by the cross-flow coefficients. This problem was originally solved
directly by the Gauss Elimination method.

It should be also noted that the motivation of this work
arises from the fact that A is not a ''classical" full matrix, but as is
explained later it is found to be band-striped, symmetric and sparse.

Therefore, it has been thought that an iterative procedure
could take into account the particular characteristics of this matrix,v
resulting in more efficient solutions.

The objectives of this work are the following:

1) development and implementation of an iterative
technique for solving the cross-flows problem,
which is a part of a large computer code.

2) reduction of the storage requirement for the matrix
A by generating it in a compact form in the core

memory.
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Table 1.1: Comparison betwecen the Number of Operations Required
by the Gauss Elimination Method and the Gauss-Siedel
Method (for one iteration) for Different Matrix Sizes

Matrix 1 16 32 128 3%6
Technique

GAUSS ELIMINATION

( DIRECT METHOD) e 720 |2~ 162) |2 Wak6 |~ 715584 |~15166074

GRUSS- S EDEL
HETHOD a~200 |~528 |=2080 |~32816 |=253823

CITERATIVE PAOCEDUSS)

nber oF/
\ ’ .
Malowed” Lterations
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1.2 Background

It is useful to explain the origin of the cross-flow problem.
In the thermal hydraulic analysis of a reactor, fluid flow processes
and also heat transfer are analyzed by means of the Subchannel method.
This consists of dividing the rod bundle into individual flow channels
which are coupled to their neighbors by cross-flows across adjacent
boundaries.

The geometry of the model used to describe a rod bundle
in this problem is the following: (See Fig. 1.1)

1. A certain number of axial planes - or axial steps -
equally spaced represent the fuel rod bundle from
the bottom to the top of the core.

2. Each axial plane representing a certain axial
segment of the rod bundle, is subdivided into
the same number of identical subchannels. The
geometry of the grid is chosen to be that of a
square array, i.e. each subchannel in a square
of identical dimension. Note that this configuration
allows a great flexibility in the treatment of the
problem: symmetry consideration, reproduction
of the array, and extension to large cases are
possible. (See Fig. 1.1)

The problem is mathematically formulated in such a way
that in each subchannel it is possible to compute enthalpy, mass-flow,
pressure, velocities, mass-fluxes, etc., at each axial station.

In particular the cross-flows are related to differential
pressure between two adjacent flow channels by the matrix A, which
is formed of the cross-flow coefficients. At each axial step J, the

linear system to be solved is then:
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FIG. 1.1: Symmetry Consideration for a

20 Subchannel Case
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A _?_( = Y where

J ’

Y 3 is the vector of differential pressure between two successive
axial steps,

X 3 the cross-flow vector, at axial step J, whose components are

the cross-flows at each boundary, and

A 3 the cross-flow coefficients matrix at axial step J.
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CHAPTER 2
ARRANGEMENT AND DEFINITION OF
CROSS-FLOW COEFFICIENTS MATRIX

2.1 Subchannel Considerations

When considering a set of 2 adjacent subchannels I and
J, as in Fig. 2.1, the cross-flow at boundary I-J is affected by
the six other cross-flows across the remaining boundaries of
subchannels I and J. Moreover, it is assumed that cross-flows
across all other boundaries have no effect on the particular cross-
flow I-J, and they are ignored in the transverse mass and momentum
balance which determines the I-J cross-flow.

For example, if in this case the total number of boundaries
or cross-flows is n, (n-7) cross-flows are set to 0, when considering
their effect on I-J. |

Recalling now the relation between cross-flows and differential

pressure one can write for axial step J:

M
¥§1 a-l,!’ xlﬁ = 213,3 ("'3")(21):"‘)

where the ‘qu,, are the components of the n-column cross flow vector
X5 -
For the previous example, the computation of the sum of

the products in the Eq. 2.1 involves only seven elements, since (n-7)
products are zero. Then in the array of coefficients ag,m (léi, k‘ n)
of the particular row i, will have seven significant elements. The |
chosen case corresponds to the most general location of a set of two -
subchannels in the array and for other locations the significant number
is less than seven which is then the maximum number of nonzero

elements which can possibly occur in a row. (See Fig. 2.1)
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3 1T 13 F 4
T 1T ¢ 1T
‘+ STTT ©77

1: Central Location: 6 affecting cross-flows 7 nonzero coefficients
in the corresponding row of the array A

2: Corner Location: 3 affecting cross-flows 4 nonzero coefficients
in the corresponding row of the array A

<
1 2 |
—1>
13 3: Edge Location: 4 affecting cross-flows
5 nonzero coefficients in the corresponding
ST row of the array A
J 3
—1>
+ 4 —-1——— FIG. 2.1: Affecting Cross-Flow for all
Types of Subchannel Location
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Fig. 2.2 shows the origin of the matrix for a simple case.
Note that the element on the principal diagonal is always different
from zero, since the cross-flow on the particular considered boundary
cannot be identically equal to zero.
If \»/"represents the cross-flow from subchannel i to sub-
channel j and V\g;reprgsents the cross-flow from subchannel j to

subchannel i, and since the two cross-flows are identical, i.e.,

T TR
one notes that the cross-flow coefficient matrix is therefore sym-

metric. (See Fig. 2.3)

2.2 Width of the Band

The location of the significant cross-flow coefficients
within the row depends on the channel boundary numbering. As
shown in Fig. 2.3, if the boundaries are arbitrarily numbered, the
place of the cross-flow coefficient is arbitrary within each row of the
matrix A.

Therefore, for computer applications, the identification of
the significant elements can be a lengthy procedure. It is better to
adopt a consistent boundary numbering scheme for the array: in
this way, the coefficients can be located within a ''zone" around the
principal diagonal. (See Table 2.1)

A second step is to minimize the width of each zone in each
row: the best technique consists of numbering the boundaries from
the left to the right and from the top to the bottom in the array. (2)

Since the width of each zone is different from row to row, the
last step consists of finding an overall envelope around the principal
diagonal and containing every zone: in this way all significant cross-
flow coefficients will be found within the envelope, also called the band.

In order to find the width of this band, one has just to compute

the maximum value, among all the rows of the matrix, of the interval
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nber of cross-flow

=4 = Aisa(4%4)array

—
A a B
A & | ‘J—'f e | For this case:
U I
C d D
6——
cross How: Q aFCa—l"ed by by ad ¢ |
m(—bw:-& aflected by a and d
ceossflow:C  affeched by a and d
S crombow:d  affecked by L amd ¢
3 .
L c d
a X X X »)
dr X X 9) X
¢ X (@) X x
ol o) X X X

FIG. 2.2: Origin of Matrix A for the 4-Subchannel Case
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TABLE 2 .1: Typical AAA Matrix for a 10 Subchannel Case

112 |3|4#|5]6]|7]|8]9 |10|11]|12
1 |13.2]-¢4 6.4 |-6.4
2 |64 |3.2[-64] |6u]|-Ch
3 ~64]18.¢ .k
& le.y 3L -6.4 -f-k
5 |64 |64 3.4 b |-64]  |-cu
6 A .6 12.3
7 -6 | 6.40 ne |-6b |64 |-64
['4 6.4 l1e.8]-64118.6 6.4
9 - 64 T3] B T
10 | -6.4 -et| 6.4 1h.6]12.8
11 -64|12L]19.6| 6.4
19 -64 6.4111.¢
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11

12

10

"FIG. 2.3:

Arbitrary Numbering Scheme for a 9-Subchannel Case

(12 12) Array for an Arbitrary Numbering Scheme

of a 9 Subchannel Case

TABLE 2. 2:

Qolo|x|x|o|ele|o|o]|x|o]| X%
ﬂ ojlo]|]o| X x|]o]|lo]|X|o]o]|x%x|©
Slolo|x|olo|o|lo|o|Xx]|x]|o]| %
n|xXx]o]lo]lo]| o] X% o|lo| x| X]|olo
lo|x|O|]o]o|Oo|k|[X]|o|O| X]|®©°
~| x| x| o]lo]lo]le| x| X|o|o]|o]e°
W X| X|x|o|XxX]|x|o|o| X|o|o]|e
njlo| x| Xl x| X|XxX|o]lo|Oo|°]| x| o
F|O| Q|90 x| X]|]O|Oe|o]|O]|o]| X]| X
mlo| x| xXx|o] xX|Xx]|]o]ojo| x| o] x
N|lo| x| X|]o| X|X|Xx|XxX]o]lo|e|°
«-|X}jJolo]o]lo| x| X|©Oo]|] X]o]o|] o

- xR o] |||~ Sl @
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. between the furthest element in each row and the corresponding

‘element on the principal diagonal, and then to define the width of
the band as being equal to twice this maximum value, since the

matrix A is symmetric. (See Table 2.2)

2.3 General Remarks

The density of a matrix is defined as the fraction of
nonzero elements. This has been computed in Table 2.3 for
representative values of n, showing those which are more likely
to be encountered in practice for the cross-flow problem.

It is known that for a very small value of density, as
is the case in this problem, the Gauss-Siedel iterative method
is more appropriate for solving such a linear system of equations.
When programming the iterative method the sparsity of the matrix
is used, since it is possible to code the matrix under a very com-
pact form, and to generate it whenever it is needed.

For the general case of a (nXn) matrix, with a maximum
of k nonzero elements per row, (k/n) being a very small quantity,
it is possible to store this matrix in core memory under a (kxn)
array, i.e. it is always possible to use a system of indices for
which n times k places in the core memory are sufficient for the
generation of A.

The céding used to generate A is discussed in Appendix B.

Note also that since a; £ 0 for (L{v{n ), an iterative
process can be used. However, for the treatment of a general type
of matrix, one must carefully check if all the diagonal elements are

different from zero. If not, the matrix is singular and no unique
solution exists: therefore, the computational time will be very large

in this case since the solution never converges.
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Table 2.2: Density of Different Sizes of Matrix A

Note: Density is definedby: d = 7 n =1
n 2 n
nber 10 128 193
channels ,
nber 12 232 356
boundaries

d 0.583 |]0.03017}0,.01966
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Finally, as noted before, the matrix A"is symmetric; Then,
it is seen that AT = A,
where AV is the transpose of A: the eigenvalues are real.

It can be noted that the property of definiteness or semi-
definiteness is discussed in Chapter 4 since this property greatly
aids in the solution of linear system by almost any method.

In particular, if the definiteness property is quite irrelevant
to solving the eigenvalue problem, it gives information on the sign
of eigenvalues. If A is positive semi-definite, the eigenvalues are

(6)

all non-negative and if A is positive-definité they are all positive.
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CHAPTER 3
INTRODUCTION TO GENERAL ITERATIVE PROCEDURES
Methods

1 Algebraic Formulation
1.1 General Case

3.1
3.1.
3.1.

In this section A is assumed to be a full matrix. It is also

assumed that A € L (R") and is not singular in the vector equation.

Ax =y (3.1)

One of the simplest iterative methods is that of JACOBI (9)

As @, F O, (L =4, ...,n), it is possible to write for the first iterative

solution to Eq. 3.1 as

M
_ 1 . .
%y e (V) - a% *i*})

(3.2)

If, as initial estimates, every xa is chosen to be zero,

the first iterate value of Xy is

175
Qqq

then for the second equation, - %5 is found to be:

xXq = (3. 3)

A (-3 ag
x, =— Ay
¢ 02:,( : §#¥2 J 6') (3.4)

=) .oy n
or §=or

xg= L (Yo - an X)) - (3.5)
Q2
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In a similar way the ith component of the n-column vector
X is obtained by:

.1 Y. - ¢
i = aii ( ‘ ﬁga'ax*) (3. 6)

At the next iteration every term %y¢ ((;=4, ++++ yn) is then
known and the iterative process is applied again.

If (k) is the superscript of the kth iteration

W4 ( Z a4y GM))

1
0 ¥t 3.7

then the ith component of the n-column vector X is given by:

&) . (&- )
P LY - 20y

I
with L= 1,2, ----n
Jacobi's method can be improved by the following consider-
ations:
| Assuming the computations of Eq. 3.8 are done sequentially
fori=1,2,---n, then for computing the kth iteration of the ith compo-

a0

(j =1, ---,L-1), which are then available instead of the "old" com-

(h-1)

ponents, 2C

nent, , it is advised to use the ''new'' components, a.( ) , with

, with (j =1, ---, L-1); . Of course, the other
components m, with =i+ 1, ---, n, are not yet known. The com-
ponents '%“'4) , with L=i+ 1, --n are used to compute X" ,

whose expression is now:

- L z% D30 i) o

a’LL ag LQ(
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(6’ 8)

This is the Gauss-Siedel iterative mefhod, which has been
used to solve the cross-flow problem, and has been implemented as
explained in Chapter 4, to improve its rate of convergence.

Note that Appendix B explains the program developed from

this iterative method.

3.1.1.2 Case of the Cross-Flow Coefficients Matrix

Two interesting remarks concerning the computational problem
of the Gauss-Siedel method applied to the cross-flows matrix A, can
be made.

1) The matrix is band striped: outside the band the
upper and lower triangular parts contain only zero

- elements. No operation should then be performed in
these two zones in order to avoid needless computa-
tional expense.

2)' The sparsity of A implies that operations should
only be made with significant coefficients in the row,
for the same reason.

These two remarks are closely related to the problem of the
storage of the matrix A in a compact array, with a system of indices
- allowing one to generate it whenever needed, i.e. for the computation
of the basic iterative equation (3.9).

In this way, one minimizes the computation time of this solution
method, by allowing only operations involving the nonzero values of
the coefficients, in the row, and the corresponding cross-flows com-
ponents of the cross-flow vector, _

For all these i‘easons, the generation of matrix A will be given

first consideration in the program.
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3.1.2 Matrix Formulation (6,7)

It may pfovo useful to derive the Gauss-Siedel iterative method
under the matricial form:
If D = diag (@y, -+ --- ) @pn ) and
B=D-A
Eq. 3.8 becomes

AN s L D'

v = — (3. 10)

Now, let (-E ) be the strictly lower triangular part of A and
(-F) the strictly upper triangular part; that is,

ay ™
E N
- | \
[ N (3.11)
Qn as..D..
Q
O\ E 1) an']\,
F = N !
AN I
N\ Gnan
‘O_J (3.12)
then, with D = diag (@, .-... —,a...q, the matrix A becomes:
A = D-E-F (3.13)
and Eq. 3.9 is equivalent to:
ch‘_"= )_f_+E3{_(k)+F_x_(k-1). . (3.14)
The fact that Qg £0, v=1,....... ,n insures that (D - E) is
non-singular and the Gauss-Siedel iteration can be written as:
- m-mlr _x_(k_l)+ 0-B)ly, (3.15)
k = 0,1, 2) reen
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Now with H=(D- E)'1 F

1

d-(n-1m1y

lig. 3.15 becomes:

£ - om _;gfk'l) +d, (3.16)
. : a . » .
Then «f .5_* represents the solution, (s clean thak : x'= Hl‘_**’i olelFAif:g
3.2 Convergence Theorem for Linear Iterative Methods (3-'6 b\'s)

Before introducing the concept of convergence for linear iterative
methods, it is worthwhile to review the following useful properties.

Let LL (Rn) represent the set of real (nxn) matrices, as is the
case in this problem. As A€ L (Rn) the following properties are
equivalent. '
Theorems: a) A is non-singular

b) det A = 0; (i. e. the linear system Ax = 0 has only the
solution x = 0)
c) for any vector b, the linear system Ax = b has a
unique solution (6)
If A€ L (Cn), where C" is the set of complex (nx n) matrices,

then a scalar (real or complex) and a vector §f 0 are eigenvalue

and eigenvector of A if
| A X = 2 X | (3.17)
or if A is eigenvalue of A
det(A- AT )=o0. (3.18)

Then A has n (not necessarily distinct) eigenvalues which are
the n roots of Eq. 3.13.
The collection of these n eigenvalues )” ..... ) M is called the
spectrum of A and
f (A) = max l>‘\"

1£ign is the spectral radius of A.
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This information is useful for improving the rate of convergence
of the method as explained in Chapter 4.

Coming back to the theorems; let H &€ L (Rn) and assume that
the equation

x = Hx+d (3.19)
has a unique solution x*.

Then Eq. 3.16 converges to x* for any

initial guess x° if and only if P(H) £ 1.

Subtracting
x¢ = Hxr+d, (3.20)
from Eq. 3.16, the equation representing the "error'' of the solution
is obtained:
+
s = B (3.21)
Thereby, in order that
tim (x*) - x%) = 0 for any
5: it is necessary and sufficient that (13)
lim H (k) 0
4>

This is true, if

(H) is inferior to 1. It.is then possible to
choose a norm on R" such that || Hf| <1.

Then, N 8™ g nmy

-3 0 as k —3» o

As a result, the convergence of Eq. 3.16 is reduced by this
theorem, to the algebraic problem of showing that

9<H)<1
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CHAPTER 4
IMPROVEMENT OF AN ITERATIVE TECHNIQUE

4.1 Initial Value Problem

In a convergent iterative process, the choice of the initial value,
i.e. _)g' , is not of primary importance: the accuracy of the solution
which can be obtained is not determined by this choice.

However, in the case of this problem, the first set of assumptions
has to be estimated carefully since the cross-flows solution is carried
out several times in the course of a program run: once for the steady
state case and seven times (in seven outer iterations) for a transient
state case.

For the steady state case,once the parameters involvedinthe cross-
flow problem are known, the remaining task is the solution of the
matrix equation. After a certain number of iterations for which the
convergence criteria is satisfied (see section 4. 2) one obtains a cross-
flow vector for each axial step. _

This information is kept in the core-memory, and is used later as
the init'i,al value for the first calculation step of the transient case.

This procedure is justified by the saving of computation time for
carrying out the calculation of the transient case: once a selected type
of transient and its corresponding code inputs are designed, the para-
meters involved in the set-up of the cross-flow problem change, and
one ends up with a different coefficient matrix A and therefore with a
different cross-flows solution at each axial step.

The objective of the calculation is the knowledge of the change of

every thermal and hydraulic parameter, in the very first seconds of
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the transient; thercfore, the code is run seven times for a
carcful determination of these evolving parameters during the
seven first periods of time of the transient.

Therefore, the cross-flows solution corresponding to the
steady state case comprises the initial guess for the first time step
of the transient solution. Generally, the cross-flows solution at time

(t - 1) is used as the initial guess of the calculation at time (t).

4.2 Convergence Criteria, Norms

A number of convergence criteria were used experirnen’tally
in the work. The most complete convergence criterion associated
with the Gauss-Siedel Technique was found to be that of the comparison
of the relative change in the approximation to each of the unknown

(5),

cross-flows to a given error criterion

that is

|0 (.A.«)'é ]

| ¥ (4.1)

foralli=1,...... )n
at each axial step J.

However, this convergence criterion is found to be too strict
for two reasons. First, if in the same axial step, the different cfoss-
flow components have different orders of magnitude, the number of
| required iterations may become too large for economical solutions.
Also, for two different axial steps, the order of magnitude of
the solution, being defined here as an "'average' of the absolute
values of the cross-flow components, may be different.
In order to save computer processing unit (CPU) time, it has
been suggested that one should use a different apd relative convergence

1
criterion & for each axial step.
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Any type of norm contains the necessary information regarding
the magnitude of the average cross-flow vector, to bc an acceptable
"weighting'' parameter.

The three types of norms which could be used are:

N

1. i\ ?-(-“E = (24 l ZLIZ)VZ Euclidian norm,
i= ‘
"

2. ‘l ?_S_,“s = Z. \X.',' sum norm, and
L=

3. “ _)_(_“n"" max [ XLl max norrﬁ.

1w

The max norm has not been selected as the scale factor for
the axially-varying € because of the calculation time it would have
required at each axial step during each time step.

The sum norm has not been used under this form, in the computer
code related problem, but as an average value coupled with exterior
value of the flow in the rod bundle as explained later in section 4. 4.

The Euclidian norm is the right one for its simplicity and |
adequacy in the computational problem. (See Appendix B)

It is possible now to define a relative criterion 5‘ , being
the product of a fixed arbitrary constant, £ , by the Euclidian norm
of the cross-flow vector for the given axial step. This way the con-
vergency criterion weighted by the order of magnitude of the cross-

flow norm.
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Relation (4. 1) becomes

P L PN Fa

(4.2)

The value of 8 is chosen after a set of numerical experiments
to be equal to: 10_3.

The objective of this change is to reduce the calculation time
necessary to compute the component of the cross-flow vector which
has the smallest order of magnitude. One can simply say that if the
order of magnitude of the cross-flow solution is 10-1, in a particular
axial step¢if by chance one of the cross-flow components is much
smaller, i.e. 10", one is not interested in the precision of this
cross-flow estimate, since it will not affect significantly the accuracy

of the overall cross-flow mass balance in the axial plane.

4.3 Improving the Rate of Convergence of the Gauss-Siedel Method

4. 3. 1‘ Successive Over Relaxation

(9)

Using the following notation one can write an expression for

the change between iterates in the Gauss-Siedel method

L L (4.3)
with
£ - o-pta®-y. (4.

Generally, an iteration algorithm can be written under the form
of Eq. 4.3, with different E.ﬁ for different algorithms.

Now, in order to accelerate the convergence of the iteration,
one can multiply the residual vector by a real number SL such as:
1< SL € 2, with the result

+
o 5 ana (4. 5)
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the residual vector being given as

_rf = D (k+1)+D Fx(k) D-ll-_a_(l_(. (4.6)

Eq. 4.5 takes the form
_f-k+1) k, o [D E x' (k+1) | szk)"‘D-lz.‘z‘_(kfl
(4.7)

or

LSk a)sqp e et Ex®ep ]

(4. 8)
Using the notation
i(kﬂ) = D-1 E x (ic+1) +D F x(k) + D-ly (4.9)

which represents the result in the Gauss-Siedel iteration; Eq. 4.5

becomes

weHl [1 N+ S x EHL), (4.10)

4.3.2 Convergence Criteria Considerations for SOR

A necessary and sufficient condition for the convergence of
any iterative algorithm is that the spectral radius of the iteration
matrix be less than unity. (12, 13)

In the case of the Gauss-Siedel method the necessary conditions
which insure convergence are positive definiteness and diagonal
. (10, 11)
dominance.

: o Do) .

The following definitions are of interest in this regard:

1. An(nxn)matrix A = ( a,.‘i) is weakly diagonally dominant by

rows if

| a.;al J*J“ql
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for all 1{i¢n, with strict inequality required for at least
one value of i, the matrix is strictly diagonally dominant if strict
inequality holds for all i, similar conditions hold for diagonal
dominance by columns;

_ The cohcept of scaling can be introduced by the following
definition:(w)

Let A be an(nx n)matrix, then if there exists a scaling
of the columns [ rowé] of A by a set of nonzero multipliers such
that the transformed matrix is strictly diagonally dominant by rows

[columns] , then A possesses generalized diagonal dominance by
rows [columns] H
3. Let A = (a;é )and B = ( b;i) be two nXr matrices. Then
AYBif  aiy ) by forall1ign, 1 j¢r. I
0 is the null matrix and A3, 0, then A is a non-negative
matrix. Similar conditions hold for strict inequality, and if A 0,
then A is a positive matrix.

With these definitions, one may outline a convergence criterion
for general matrices. The following theorem shows that a general
coefficient matrix may be scaled arbitrarily by rows and by columns
Without affecting the asymptotic convergence, the successive over
~ relaxation.

The restrictions for the properties of the matrix are also
presented:(‘o)

LetA = D+ E + F be an(nx n)coefficient matrix where D=diag
@y » o oeee ,8nm ), aiv fO0for 1i¢nand E, F are respectively
strictly lower and upper triangular matrices. Let a matrice A be
obtained from A by scaling the rows and columns of A with arbitrary
nonzero multipliers. Then the SOR iteration matrices for A and A!

will have the same eigenvalues.
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'The SOR iteration matrix for A is given as
M, =+ [(1-2)D+a K, and

by construction,

A' = PAQ,
where P and Q are diagonal matrices with nonzero diagonal edaes,
The diagonal, lower triangular and upper triangular parts of A' are
respectively given as

| PDQ, PEQ, PFQ,

and the SOR iteration matrix for A' is therefore seen to be

Mw =L P(p+28)Q]"' [(1-N)PDa -nPFQ]

= Q“ MwQ
thus M and M'w have the same eigenvalues.
From this theorem, useful corollaries are decided, which
would be applied to the problempo)
Corollary 1: The Successive over Relaxation (SOR) method
is convergent for A if and only if it is convergent for A', and
the asymptotic rates of convergence are the same in both cases.
Corollary 2: If scaling by rows or columns can produce a
matrice A' which is diagonally dominant then the Gauss-Siedel
and Jacobi methods are convergent for the original matrix A.
Corollary 3: If the transformed matrix A' is diagonally
dominant, then, Successive over Relaxation (SOR) is guaranteed

to converge for JL in the range.

2

0 &L

1 + min (SI’ Sz) ,

. . e
with Sl = miax _%b "*)

| i) ,
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2— \ G:L}\

S, = max vt)
! \ i | -

It follows that Successive over Relaxation (SOR) is convergent also

for A in the same range.

For the validity of the experimental value of SL found for
Successive over Relaxation (SOR), in the COBRA IIIC cases examined
in this work, (see Appendix B), a verification could be done in the range
0L &', such as is discussed above to insure convergence of the
method for a general coefficients matrix.

Finally, concerning The definiteness it should be interesting

(\3)

to note that Ostrowski proved that for a coefficient matrix with
positive diagonal element a necessary and sufficient condition for the
convergence of Successive over Relaxation (SOR) is that the matrix be
positive definite.

These remarks are intended to give a better understanding of
all the transformations which can be performed to convert A to a
positive diagonal dominant matrix, and to include in the general
computational treatment of the problem, a routine for checking the

convergence of A', before undertaking the solution scheme.
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CHAPTER 5
FURTHER MODIFICATIONS OF THE METHOD

5.1 Finding the maximum eigenvalue: Iterative Refinement

The calculation of the eigenvalue spectrum has not been con-
sidered in this work, since it would have affected the overall com-
putational time. However, one can use the maximum value of the
eigenvalue spectrum to hasten the convergence of the process, with-
out spending additional computational time. |

Using at each iteration the vector A k such as:

Ak . xkoxkto (5. 1)
It is known that for large value of k the ratio
A .
lim ( A ) =M (5.2)
I
"\—)ob AL

foranyi=1,2,---n

This relation could be used as a kind of convergence criterion:

If for the iterations k - 1, k, k + 1, the ratios

h &
%

- | x
ALE 1 A:M

(5. 3)

are approximately equal, one can consider that the solution has been
obtained and stops the iteration.
The value >\1 can be given a certain range of uncertainty

within which the value of the ratio, of two successive iterations, can
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be considered equal to )1 .

The final solution is then

X% - Z(k +____$.E{____

1- 7 (5. 4)
since:
§k+1 ) Z(k N é_k
.?Slf+2 ) Z(k N Qk N _A—k+1
[}
X® = X A (14+), #hg #-mme- ) (5. 5)
and n . ,l
2. =
L=0 1- }& (5. 6)

Note also that when )1 is known, one can compute Eq. 5.4 for

each component i, i.e.

Xt = X, + v
1-M

5.2 Other Possible Values for Convergence Criterion

As mentioned in Section 4.2, the choice of an adequate conver-
gence criterion is important. If it is chosen to be too strict, large
computational requirements can occur, and the results will not be
significant: some of them will have an order of magnitude which will

not even affect the cross-flow average value in a given axial plane.
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If it is chosen to be too loose, the results will not be sufficiently
accurate,

13y choosing the norm of the cross-flow vector in cach axial
plane, one is interested in obtaining an average value of the order
of magnitude of the cross-flows.

However, other different convergence criteria. relgted to an
exterior parameter have been examined. For example, the average
axial flow rate value in the core which is previously calculated, is
used as a reference "'parameter' and the cross-flow convergence
criterion was taken to be (10-3) times this value. |

As explained in detail in Appendix B differént parameters

such as FLLO, FERROR, MOYFLO have been examined.

5.3 Sensitivity Analysis: Finding Solution by Components

An interesting refinement of the method could now be considered.
As explained in Section 4. 3 the cross-flow vector is computed in such
a way that the inner iterations end when each of the cross-flow com-
ponents satisfies the convergence criterion. One can remark that
since the magnitudes of the various cross-flow components are not
necessarily uniform some of them will have satisfied the convergence
criterion from early in the calculation while others will not yet have
done so. The time required to complete all of the required calculations,
namely, the inner iterations, for all components, can be very large
for large order matrices.

If and only if the cross-flow components converge uniformly

and monotonically, the iteration procedure can be modified in such a

way that after one cross-flow component has reached its solution,

namely, after having satisfied a given convergency criterion, the

outer iteration, i.e. calculation of cross-flow vector, will not change

nor modify this value.
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One can note the considerable calculation saving time which
coﬁld be obtained for large cross-flow vectors.

However, one must be careful when using this technique: a
sensitivity analysis, for a typical small case, should be carried
out in order to estimate the effect of the truncation error on the
cross-flow components. In Appendix B a complete set of instructions
is proposed for a print-out of COBRA III C results at different typical

stages of calculation.
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CHAPTER 6

CONCLUSION AND DISCUSSION OF RESULTS

The superiority of an iterative technique over a direct solution
method, in the particular case of the large sparse matrix problem,
is not obvious. However, it can be made plausibleby the following
remarks.

Remark 1: Two possible types of matrices can be handled

throughout the introbundle cross-flows calculation. In one type the
cross-flow coefficient matrix may be diagonally dominant: in this
case and for any size of matrix the rate of convergence is rapid and
an iterative technique, like the Successive over Relaxation (SOR)
used in this work will be as much as four times quicker than the
Gauss Elimination, according to other numerical experiments (15)
and therefore will show its clear superiority in calculation time. In
the other case, if the matrix is not diagonally dominant, the rate of
convergence will be slower and therefore a breakeven matrix size
can be found when comparing computation times required by the
direct method (e. g. Gauss Elimination) and those needed by the
Successive over Relaxation method. The difficulty in judging the
merit of one or the other method arises when the accuracy of the

results must be taken into consideration.

Remark 2: When one compares the results given by the direct

method to the results given by the iterative technique one notes that:
a) If the results are identical up to the fifth decimal - and
omitting the round-off error, - the calculation time is
larger (approximately twice as large) for the iterative

method when compared to those given by the Gauss
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Elimination for small order matrices (12 X 12). Fof
large order matrices (128 X 128) the calculation time is
faster by 35% for the iterative technique. An estimate -
based on numerical experiments and an empirical corre-

(3) - predicts an 80%

lation proposed by R. W. Bowring
advantage to the iterative method over the Gauss Elimination
for very large order matrices (360 X 360). Note that these
experiments verify approximately the theoretical estimates:
(23 + nz) operations are required when using the Gauss
Elimination and (2n2 + n) are needed for each iteration when
using the Gauss-Siedel method (5). Since satisfactory

results are obtained after an average of 14 iterations when
using the iterative technique, one finds that the breakeven -
size appears at an approximate matrix size of 62, Thereafter,
for larger order matrices the superiority of the iterative
technique is confirmed. (See table 6.1)

As explained in Section 4.2 and 5. 2, if one uses a conver-
gence criterion equal to 10_3 in the relative convergence test
of the iterative technique, one notes a significant time reduction
in the calculation. When comparing the cross-flow results
to those given by the Gauss Elimination, a discrepancy of
the order of 10-‘3 appears in the results but this does not
affect the mass flow rates and enthalpy results. One must
recall that the Gauss Elimination is a direct method and
therefore that it gives exact results. The great advantage
of the iterative technique is its flexibility because of the
adjustable value of the convergency criterion. Since a small

discrepancy in the cross-flow results does not affect outside

parameters, it is then worthwhile to loosen the convergency
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Table 6.1: Overall Time Calculation Comparison between Iterative
Technique and Gauss Elimination for Typical Cases
Encountered in the Cross-Flow Problem

'3‘ DIAGONALLY DOMINANT mm\ixmon -DIAGONALLY POMINANT  MATRIX
2 5 ‘
> e IDENTICAL L1073 vaninT! TDBNTICAL lo-3 VARIATION
:_ E RESULTS. |o VARIRTION RESULTS.
: E netwt-f Difkcr [TTRRATIV DIRGCT TTERATIVE] DIRECT [[TTeAmive] DREeT
N < TECRNIQUE MB'H\OD winique] MgTrop |[[Tecaniave | METWOD |ITEcunique| neTROD
LY
|
12 x42 R | o |IT<n| ¢
T' ® Tz/"’ Ti’ = 16Ty i Tl "'"SST% 2
(S\!\A“Whi
62x 62 . Ti<Ty
J T.:Tx/q T& ) T":Tg, Ti' ) T
2
\bs‘"?f)"" Ti= 85T, ,
428 x128
T-Tay| T2 Tets| T [[T=¥h T
c oder :
h&?«a [TeWa | T T-toh| B |[Te2o| &
(356x356¢)
Note: 1. T2 = Computation Time by Direct Method

2. Identical results mean except for round-off errors, results
can be considered identical up to the fifth decimal.
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criterion and get then a considerable saving in cal-
culation time. Results for different typical matrices
are reported in Table 6. 1.

c) It is finally recalled that a value equal to 10-2 for the
convergence criterion corresponds to an accuracy
threshold value since for this value and larger value
of the convergence criterion, the cross-flow results

| are very different from those obtained by the Gauss
Elimination method and consequently the enthalpy and
mass flow rates results are different from those found
by the direct methods. For all these reasons and as
explained in section b of Remark 2, 10-3 is by experi-
ment the most appropriate value for the éonvergency
criteria when the relative convergence test is used in
the Iterative Technique.

Remark 3: Depending on the IBM Fortran computer level which

is used differences in calculation time can occur. For example, if

an IBM Fortran GI-level computer is used, two successive runs of

a same problem show a 10% variation in calculation time. If an IBM
Fortran H-level computer is used, the calculation time is approxiinately
reduced by a factor of two and variation in calculation time for two
successive runs is no more than 5%. (See Figs. 6.1, 6.2, 6.3)

Remark 4: Finally, a statement for judging the overall efficiency

of the method will be based on the following formula proposed by R. W.
Bowring (3), The IBM 370/175 calculation time for-the cross-flow
problem with the Gauss Elimination method has been found to be given

as:

T = 0.00282 NK +0.000000837TNK M Sz + 0.0000 127 NK2.

The first term is the contribution to the calculation time for

set-up of the matrix. In both methods - Gauss Elimination and Iterative
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'I‘O,Chnique‘- it has the same value.

The sccond term répresents the calculation time for storage
of the coefficient matrix. As seen in Chapter 1 when using the Gauss
FElimination method the value of the variable MS can vary from 11 to
63. For the iterative method the value of MS is fixed to 7. Therefore,
there is a clear superiority in calculation time for the Iterative Tech-
nique over the Gauss Elimination method.

The last term concerns the cross-flow calculation time. To
clarify the validity of the proposed formula one must recall that in
Chapter 1 theoretical estimates of the required number of operations
to be performed for both methods have been presented (5, 6). It has
been shown that (n 3 +n 2) operations are required for the Gauss
Elimination solution while (2n2 + n) are needed for the Gauss-Siedel
Iterative Technique. Therefore, without any false speculatio.n one
can deduce that the proposed formula underestimates the calculation
time required by the Gauss Elimination: this time must be at least
proportional to N3 while those for the Gauss-Siedel method must be
proportional to Nz. (See Figs. 6.4, 6.5)

From this remark it is clear that the formula should be modified
to predict a more realistic time estimate from the Gauss Elimination
method for large order matrieces.

| The overall conclusion is stronger after the above explanations:
the Successive over Relaxation method has proved to be practically
comparable to the Gauss Elimination for small order matrices (12 12)
but is considerably superior in terms of computational effort when

large order matrices are considered.
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APPENDIX A

INTRODUCTION TO COBRA-IIIC: STUDY OF SUBROUTINE DIVERT

A.1 Channel Topography and Array LOCA

The objective of this section is to explain the stripping
technique used to determine the coefficients of the cross-flows
array AAA and to describe the information contained in the array
LOCA. 1t is advised that one consult the report MEK-28(2) for
additional information.

Assuming a square lattice geometry, as shown in Fig. A. 1,
the cross-flow W;';\' at boundary i-j, is affected by the cross-flows
through the other boundaries of channels i and j. According to
Fig. A.1 which corresponds to the most general location of two
channels in the array, the cross-flow wij at the ""principal boundary"

i-j is influenced by the ''secondary'' boundaries: a-i, b-j, d-j, j-f,
i-e, i-c. Therefore, all other cross-flow coefficients beyond the
six secondary boundaries are set to 0. |

It is noted that six is the maximum number of influencing
secondary boundaries for a given boundary.

In the other two possible locat'ibons for a square array, i.e,
edge and corner position, respectively, four and three are the
number of influencing boundaries. (See Fig. A. 2)

If NK represents the number of channel boundaries and
if a;i represents the coefficient of cross-flows for any i, j,
(1<i,j<NK), a matrix, AAA, of cross-flows coefficients is formed.

The row position of the coefficients does not depend on the

channel numbering but on the channel boundaries numbering.
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SUBCHANNEL A SUBCHANNEL B
o, A
U/ ' O/
SUBCHANNEL | SUBCHANNEL
C
Q © ® »
SUBCHANNEL I SUBCHANNEL J'
(3)- (6)
\ \/
I = boundary numbering of I-J
1 same A-1
2 same C-1
3 same 1-E
4 same B-J
5 same J-F
6 same J-D

FIG. A.1 Subchannel Boundary Numbering
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It has been found that numbering the boundaries left to
right, top to bottom for a pair of adjacent flow channels minimizes
the width of the matrix interval in which the coefficients of the
secondary boundaries are found. By this stripping technique the
coefficients lie in a band along the diagonal having a width which
is equal to twice the maximum of the difference between the diagonal
and kthe extreme elements of a same row (i. e. the difference between
the furthest element and the diagonal element) among all the NK rows
of the matrix. Every element outside the striped band is, of course,
equal to zero.

An additional argﬁment for setting up the matrix AAA ina
band-limited form can finally be presented: once the numbering
scheme of the channel boundaries has been selected, the problem
consists of placing in each row of the matrix AAA, whose diagonal
element represents the considered cross-flow, all the other affecting
cross-flows. An example in Fig. A. 3 illustrates how to set up AAA.

Two sets of information are contained in the array LLOCA:

i) sign of the cross-flows, and

ii) numbering of the secondary affecting boundaries for each

boundary in the set of given channels.

Discussion of Item i: The convention of sign presented in the MEK-28

report is summarized in Table A. 1.

Discussion of Item ii: The array LOCA is a two dimension array

(NK, 8) which provides the following information:
1) if the number of the principal boundary is K the corresponding
FORTRAN statement becomes: LOCA (K, 1) = K
2) the number of all secondary boundaries is identified in the
program by: (LOCA (K,L), L =2,7) i.e. secondary

boundary, if none, the LOCA values are set to zero.



58

FIG. A.3: 9 Subchannels Case
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TABLE A.1l: Sign Convention used in DIVERT

1 - For Primary Boundary:

Sign of Cross-Flow 1 J g J

For Principal

Boundary

2 - For Secondary Boundaries:

I-J,J-M multiplied by
1 J M

or -1.0
1J M

otherwise 1.0
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3) the total number of boundaries is written under the
following FORTRAN statement: LOCA (K, 8)

For example, a 10 channel case, Fig. A.4 shows the
boundaries numbering, and Table A. 2 gives the numbering scheme
used in LOCA. For example, the cross-flow at boundary 5 is
affected by cross-flows through: 1, 2, 7, 8, 10. The array LOCA

gives:

LOCA (5,1) = 5

LOCA (5,2) = -1

LOCA (5,3) = 2

LOCA (5,4) = 7

LOCA (5,5) = -8

LOCA (5,6) = -10

LOCA (5,7) =0

LOCA (5,8) = 6

Finally, Table A.3 shows the information confained in LOCA

for the 10-channel case.

A.2 Study of COBRA-IIIC Subroutine DIVERT

For greater clarity, the COBRA-III'C coding and the subroutine
DIVERT are referred to in this study respectively as COBRA and OND
(Old-New-Divert).

The OND is composed of four parts:

i) lists of arrays and variables,
ii) setting the coefficients of the matrices AAA and B,
iii) solution of simultaneous equations by means of the
Gauss Elimination, subroutine DECOMP and SOLVE,

iv) Modifying certain cross-flows if forced values.
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FIG. A.4: Map for a 10 Channel Case

Table A.2: Convention of Numbering used in LOCA
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Discussion of item i: Several variables and arrays used in the

OND are listed under the following different names:

1) AAA, the matrix of cross-flow coefficients, has a
elements (1\(1, k€ NK) and these elements are repre-
sented by: DATA (SAAA + K + current index ),

2) B, the NK-column matrix representing the '"guessed"
differential pressures, whose elements are b‘_:‘
(1\<k\<NK , 1<)Q= max number of axial steps) is
listed as DATA ( S B + index ),

3) W, the NK-column matrix of the cross-flows whose
elements are Wij, (1 \<i\<NK, 1(8(]': max number of
axial steps) is listed as DATA (S ANSWE +ind ).

(1)

It is recommended that one read the MEK-20 report for a

complete list of variables and arrays used in COBRA.

Discussion of item ii: It is necessary to define the role of sub-

routine ACOL before detailing the second part of OND.

The maximum width of the band is.determined in ACOL,
and the value is assigned to MS. Then the subroutine CORE 2
(NK, MS), called by ACOL, reserves, as a dynamic storage with
DATA instructions, (MSXNK) places in the core memory.

For example, in a 16-channel case, arranged in a square
array, there are 24 channel boundaries and a maximum width of
11, then in the core memory 11 groups of 24 elements are reserved

for the storage of AAA.

The objective of the second part of OND is to set up the
coefficients of the AAA and B matrices and to arrange them in

memory according to the following system of indices.
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1. Fvery element in AAA is set up to zero by:
DATA (SAAA + K¢NK w (L-1) = 0
with 1{K{NK , 1\<L\<MS.

2. Setting elements of B (B is an NK-column matrix)
after having calculated them is performed by the
statement:

DATA (SB + K) = f (variables depending on pressure),
with 1{ KENK.

3. Setting the elements of AAA outside the principal
diagonal, using LOCA (K, 8), for (1K §NK), which
stores the maximum number of secondary affecting
boundaries for boundary K, (see Fig. A.5), is per-
formed according to the instructions |
NBOUND = IDAT (SLOCA + K + MG#7),
with MG = maximum number of boundaries.

The variable LL is an index  varying between 1 and
NBOUND and allows then the current index to be com-
puted by

L = IDAT (SLOCA +K + MG # (LL-1).

L only varies thereby up to the last significant value

in the array LOCA. Since (LL-1) can have value between
0 and (NBOUND-1), a test on LL is made in order to |
protect the first significant coefficient in the (MS NK)
array for the row K.

DATA (SAAA +K + NK X (L-1) , where in this case

L = MID-K+L and MID = (MS+1)/2.

Note that the sign of the coefficient is restored by SAVE.
Now, for all other values of LL the coefficients are
stored in the array positions

DATA (SAAA +K + NK X (L-1), 1KZNK.
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4. The elements of the principal diagonal in the original
array (NKXNK) are stored in the column MID of the
array (MS X NK), with MID = (MS + 1)/2.

Matrix elements are then stored by:

DATA (SAAA +K + NK % (MID-1), 1£ K< NK.

Note that the array (NK X NK) has always been ''virtual",
and never used nor indiced under this ideal form.

The rearrangement of the elements in (MSXNK) storage,
compared to the initial location they would have had in
(NK X NK) is shown in Tables A.4 and A. 5.

One can conclude that the motivation in storing the
nonzero el‘emem“:s of the AAA matrix under an (MS ¥ NK)
array is to relocate the significant coefficients of the
cross-flows "'around' the element MID of the row,
according to the information given by LOCA. However,
it should be noticed that this configuration does not

avoid an important number of element 0 per row.

Discussion of item iii: This part of OND deals with the modifications

of simultaneous equations to account for specified values of cross-
flows given in subroutine FORCE. Since the different case of channels

set did not involve any forced cross-flows this part has not been changed.

Discussion of item iv: Subroutine DECOMP is first called by OND and

uses the method of maximum pivoting for triangularing the array
(NKX MS). By successive transformation, this array is put into a
form shown in Fig. A.6.

It should be noted that the pivoting is made around the MID
column of the previous array. A test for the singularity of the system
is made for the element MID of the last row NK. If this is 0, the

matrix is then singular and the system cannot be solved..
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LAY ABA:
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TABLE A.5: Output of the Array (NK X MS)
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Subroutine SOLVE is then called for the resolution of the
linear system. Subroutines DECOMP and SOLVE are two
complementary subroutines of the Gauss Elimination method

used to solve the matrix Eq. 1.1,

Then, the results, for the given core axial step J,are

stored for print outs in the array.
DATA (SW + K + MG % (J-1) = DATA (SANSWE + K),

where

DATA (SANSWE + K) is the cross-flow solution at row K,

for the axial step J.
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APPENDIX B
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APPENDIX B

I Backgrou nd

One recalls that the linear relation between the cross-flows

of a same axial step J can be written down

A Xy =By (1.1)
where
A is the cross-flow coefficient matrix at J,

1

X - is the cross-flow ''vector' at axial step J, and
&3 is the pressure differential between axial step J and
J-1.

In the most general location of a set of two subchannels in
the array, a particular cross-flow may be affected by a maximum
of seven other cross-flows in its immediate vicinity. The other
cross-flows at secondary boundaries have no effect on the particular

cross-flow and are then set to 0.

Therefore, the relation (1-1) which can be written

. ) —
% a-tc, Xfc - bL = Lo-- M)

(j=1,--7)
can be interpreted as involving only a maximum of seven nonzero
coefficients in each row of A, It should be also noted that the con-
figuration of A, i.e. the place of the nonzero elements in each row,
is directly related to the chosen boundary numbering scheme in the
problem. It has been found that numbering the boundaries from left
to right and from top to bottom decreases for each row the width of

the interval within which the significant coefficients are found. With
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()

this procedure one ends up with a band matrix.

Note also that by symmetry of construction, the matrix
A is symmetric.

It has been noticed that the Gaussian Elimination method
used to solve the cross-flow problem in the subroutine DIVERT
of COBRA-IIIC resul;ced in large computational time. Moreover,
if large order matrices would be considered, this could be a
major concern in the computational budget.

Because of the sparsity of A, it has been thought that an
iterative procedure particularly adapted to this type of problem
should be investigated.

This report presents the successive over relaxation method
(SOR) developed for this particular type of matrix, and its corre-
sponding coding to be included in the MIT-modified version of the
COBRA III-C code. With: this new method, another major modifi-
cation has been brought to subroutine DIVERT: as noted befoxje, a
maximum of seven nonzero elements lies among each row of MS-
elements of the band matrix. The storage of the band width matrix
is done by the subroutine CORE 2 (NK, MS) in the COBRA III-C
version and reserves (NK X MS) spaces in the core memory.
Obviously, this storage is oversized since only a maximum of
(7 X NK) spaces will contain nonzero elements. For large order
matrices, one then notes, the saving in storage would be significant
if only (7 X NK) spaces were affected to the storage of A. The
generation of the array A under a compact form constitutes the
second major modification to the code and the corresponding program
is detailed in this report.

Finally, for programmers unfamiliar with COBRA, a list of
array,indices & variables used throughout the different modified sub-

routines is also given.
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II Successive over Relaxation Method (SOR)

This scction is intended to provide the basic equations
uscd for the set-up of the problem. For additional references,
one may consult one of the sources listed in References.

At each axial step, i.e. each axial plane containing a
cross section of the subchannels, one has the following relation
between the cross-flow vector Wy , the pressure differential

vector Py , and the cross-flow coefficient matrix AAA
AAAy Xy = By for J =1,=-~=-N, (1)
Splitting the coefficient matrix AAAy, such as:

AAAy = -E+D-F (2)
the Gauss-Siedel procedure gives for the kth iteration:

(k) _ (k) (k-1)
D Wy =Ry +EWy; +FWg (3)

Since the coefficient aii # 0, for alli=1,.... NK, this insures

that (D - E) is non-singular and (3) becomes:

(k) _ -1 (k-1) -1 ,
Wy =(D-E) F Wo +(D-E) "B, 4
k=0,1,2,

Now, if one wishes to hasten the convergence of the solution,
one may consider the successive over relaxation technique. The

(k)

new value of W is taken to be:

) _ o (c-1) (k)
WU s WA Wy (5)

for some parameter  such as 1{ 1< 2, for which the number of
iterations becomes minimum.
It may prove useful to formulate the problem in terms of
component W.',,'a of the vector Wy .
1) The Gauss-Siedel method at the (k+1)th iteration, gives:
(next page)



i=1,----NK (6)
and

2) the SOR method gives:

™ ) (&) .
WL,: = ('\ -5L) WL,: + Wi.‘,{.; ) . (7)

The coding of the iterative technique for a cross-flow solution

is based on the Eq. 7 and is detailed in the following pages.
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B. 1 List of Arrays, Variables, Indices used in the Subroutine for

Iterative Method, ITER

Note that the code name of the iterative procedure is ITER.
For a better understanding of the extent of the transformations
brought to DIVERT to include an iterative procedure it has seemed
useful to present in this report a complete list of arrays and
variables even if most of them do not differ from those used in
DIVERT.

Note also that the modifications are labeled by: ADD

i. e. variables added to the list.
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IMPLICIT INTEGER (%)

COMMON / COBRA4/ ABETA , AFLUX , ATOTAL BBETA ,PIAR, DT, DX,
ELEY , EEAROR ,FLO ,FTHM , GC, GK, GRID, HSURF, HF,
HFGq , Hg T2, I3 , TERROR ,TQP3, TTERAT, JI,32,

/
J3, 4,375,736, 37, xDEBVG , KF , KIJ,

A
2
3
4 NAFACT  NARAMP NAX , NAXL , NBBC , NCRAN NCHE,NDY NF,
5 NGAPS , NQRID , NGRIDT , NGTY®E , NGXL, NK, NODES,NODESF, Noot
€ NAMMY, NROD, NSCBC , NV ,NVisCw, PT | PATCK, POWER, PREF
7 QAX ;, RHOF , RHD& , SigMA, SL, TF, TFLUID, THETA,THcCK,
§ UF, VF, VFa, Vg, L, |

COMMON / COBRA 2/ AALW) , AF(T) , AFACT (10,10) , AV(7), AXIAL(30),
1 AXLLID) | BBLY) , BX(30) , CLLY) , CCLAD(2), CFUEL(R),DFOELL2),
2 GAPXL(l0), GFACT(9, ), GRIDXLLID) , RGAPC2) AHF(30), Hhal3y,
3 Tr{D D), KCLAD(2), KFLEL (1) , KKF(30) , NCH(10), NQAP(9),

4 Pp(30), RCLAD(D), RFVEL(D), SSGMA (36) [ TCLAP(Z), WF (30)
S VUFLI0), W& (30) , XQUALLIOY , Y (30), TT(50)

Note that the two COMMON lists above

have not been modified. They are identical
to those used in DIVERT of the COBRA-IIIC
version. |
Note also that FERROR and FLO are used

later as "weighting'' parameters.
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ADD-1

REAL

ADD-2 -

REAL

LOGICAL GRID
LOGICAL TESTOP
KIJ, KF, KKF,KCLAD, KFUEL
OMEGA

TESTOP:

OMEGA:

ADD-1: TESTOP has a logical value, It

can be . TRUE. or . FALSE.. This is used,
after the comparison test to a selected cri-
terion, to determine whether the test is
effectively satisfied or not for all cross-
flows at a certain axial step J. Note that
TESTOP is initialed to . TRUE.. The way
the iterative method is programmed implies
that if one and only one cross-flow does not
reach, at any iteration, the desired result,
i.e. if it féils to satisfy the convergence
criterion, the logical TESTOP will then
have the value . FALSE., and the iterative
procedure will be repeated until satisfactory
results are reached for each of the cross-
flows.

ADD-2: REAL OMEGA; OMEGA defined as

a real number is the computed value of the
parameter of the successive over relaxation
procedure. This has been found by increasing,

between 1 and 2, a number by 0.01 at each
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step, in order to find the value which
minimized the number of iterations for
the successive over relaxation formula:
4/3 is the value of OMEGA which mini-
mizes iterations and then computation

time.
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COMMON/COBRA3/ MA , MC , MG , MN , MR, M3, MX,
$4% , 4R , $ARA, SAC, $ALPHA, $AN , JANSWE | $B,
$ccHAN |, $CD , PCHFR, $ON, $ND, $CP, $D, $DC, $DFOX,
$ DHDX, $DHYD , § DHYDN, $DisT, $ DPDX, $DPK, $DUR $DR, $F,
$ FACTO, $ FDIW , $ FINLE ,$ FLUX, $ FMULT, § FOLD, $Fsp, $FSPLi, $FaFLo
$6AP , $GAIN , $GAPS B H , b HFILM ,$ninw,$nou,$nm,§‘ﬂ
$IDFUE  $ 1DGAP, $ 1K , % TBOIL , $TK, $LC, $LENGT,$LOCA, $LR,
$ NCHFR §MCFRC , $ MCFRR , BNTYPE ,$NWRAP $NWRES,$¥,$ PERM, $ru
4 PRi, $PRNTC, $ PRNTR, $PRNTN, $7W, $ PWRE $QC, $ QF, § pPRIM,
$QUAL, 3 RADIA, $RHD , $ RROOL, $ 5P, $T , HTDOMY, $TINLE, $TRoD,
$U, BUR , BUSAYE , BUSTAR , $v , $VisC, $viscw, $ve $vPa,
pw,$woLd, $WP, $WSAVE , $X, $XCROS
CoOMMON DATA (1)
LOGQICAL LDAT ()
INTEQER IDATCL)

EQUIVALENCE (DATALY), IDATC), LDAT(Y)
EQUIVALENCE (NCHAN , NCRANL)

Note that, from the above list, no
variables have been modified, added

or withdrawn.

Note: NCHANL is used in the convergency

criteria.
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The new variables defined for ITER are

discussed below:

EPS is the value assigned to the convergency
criterion. It has seemed useful to present
in this report the two convergency criteria
which may be considered.

1 - Relative Criteria

For the (p+1) th iteration, one ends up with:

I w(fﬂ)__ wm‘

| w®i

It is the adequate convergency criterion for

< EPs

the Gauss-Siedel method.

According to the accuracy of the results in
which one may be interested the value as-
signed to EPS can be "weighted'' by outside
parameters such as the axial flow in the
channel, an average of the flows in two
adjacent channels, or even by small real
numbers.

"nominal"

However, after different runs, the
value of EPS has been taken to be 10-3, Which
permits both sufficient accuracy of the results,
and reasonably small calculational times.

Note that for this relative convergency, one
has to be sure of the positive value of the
denominator. In fact, after a certain number

of iterations, one can end up with a very small
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value of some of the cross-flow components,
i.e. 1wl 2107%%, The effect on the cal-
culational time is clear: one will have very
large computational requirements and there-
fore costly runs.

The denominator has to be ''proofed' against
such cases: it suffices to add to the value

|w?t ], a very small positive number.

When used in this subroutine, the test was:

II. Absolute Criteria

One can also use the absolute difference
between two successive iterations as a con-

vergence criterion, i.e.:
| W' wf] < Eps

This test is easier to handle from a compu-
tational viewpoint, since it may lead to

shorter calculation time but one must consider
that it is not as strict as the relative criteria:
-in case of non-uniform convergence, the iter-
ations may be terminated further from the exact
result than those obtained with the relative
criteria,

As in case 1, different outer parameters have
been tried, if one wants greater accuracy in

the results. As before, the nominal value of
EPS is fixed to be 10™°;

1- EPS x FERROR = EPS. Since FERROR,

which is the allowed error for flow calculation
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is of the order of 10_3, the test is carried
out with a precision to 10_6 between two
successive iterations. If the results have
improved in accuracy, the calculation
requirement has been too large, and this

has been cancelled out.

2- EPS X(FLO/NCHANL) has been tried in
order to get a test value compatible with the
order of magnitude of the flow in the channel.
Also, one ends up with unrealistically large

calculation times.

-3 - An average value of the flow in two

adjacent channels has also been tried as a
convergence criterion for the same reason,
but once again, the calculation time ended up

to be large.

This variable represents the number of iterations.
The maximum allowed value is 200. If this value
is reached, the calculation is stopped - for the
particular cross-flow at a given axial step - and
the results are printed out.

Note that this number is intended to protect the
calculation time, in case of an error in the input.
represents the value of the index of the nonzero
coefficient in the array AAA and the index of the
corresponding value of the cross-flow to be mul-

tiplied to this coefficient.
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has the value for each iteration of:

i-2 oK
(&w1) , (h)
Z ae,s Wc,;- - Z dee, 3 w‘"
e-\ en
This is computed through the index INDI.

is an index such as 2 {NTR 7 and is intended
to find, through LLOCA, the values of the co-
efficients and cross-flows, forming the ex-

pression (7).

is the value attributed to the previous value
of the component Wi’ at iteration k, if the

running iteration is at (k + 1).

becomes the absolute difference between

(daat) (k)
|We - We

or the relative absolutf difference
[ Wi Wi |

| Wt
according to the chosen convergency criteria.
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B. 2 Generation of AAA

As mentioned before, the space attributed in the core memory
by DIVERT to the storage of AAA, is by far too large. It is useful to
look back to this previous set-up of the cross-flow coefficients array
in order to understand the present modifications.
| It consisted of:

1. Set-up (NK X MS) places in the core memory to 0 by:
LMAX = MS
DO 310 K =1, NK
DO 290 L. = I, LMAX
290 DATA( AAA+K+NK * (L-1)) = 0
310 CONTINUE
Note that LMAX, or MS, represents the computed value of

the maximum width of the band striped matrix. This is done in the
subroutine ACOL, through CORE 2 (NK, MS).

Note also that the way of storing AAA is done in the following
way: MS blocks of NK elements are set up to 0; with the same location,
in an NK-block, being set to 0 at each stage of the outer DO LOOP.

K = 1 0
L = 1 1st NK-block
K =1 0 0
L = 2
1st NK-block 2nd NK-block
K =1
0 ) ————
= LMAX = MS 1st NK-block 2nd NK-block
(o]

MS NK-block
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2. Set-up of vector B

Note that this part has not been modified.

TI = IDAT ($IK+K)

T3 = TDAY (§ 3K +K)

DATA (48 +K)$: (DATRA ($SP+ K+ M= (T 1)) - (PATA C4OPOX+TI) -DATA L $DPOX+TIN
| DX) % SL % OATA ( $ FACTO + K) + PATA (S USAYE + K) R DATA (S W+ K+ M& w(TM1-1))/
1 DXGC + DATA ($ WOLD + KK + M§ « (T-1))/ DT4C.

SAYE = ABIT (1, DATA ( $U+TL), DATA C $USTAR +K), DATACEA+IT), DATA(§OPK I))

1 TM1-1) , DATA C$F+TI +Mc 2 1))
4 .nm‘?ﬁl‘x‘é&%‘,‘}nt}jgé C$ ’l"‘b*p.'@i' DATA ( $ A+3T), DATACADPK +35),
A %

DATA (PE+ I CIMI-1) (SFE 438+ Mc X (S5-1)

3. Find the maximum number of affecting cross-flow for each
cross-flow i (14 i NK) by:

NBOUND = IDAT ( LOCA +K + MG * 7)

- It has seemed useful to detail the mechanism of this instruction.
LOCA is an (NKX 8) or an (MG X 8) array. The
8 th element in each column, is the maximum number of affecting
cross-flow for a given one. Since an array is always stored by

row, the twelve last elements will be found by:

MG»% 7+ K with 14 K ¢ NK.

A ¢ y e -2
Al ¥ty 3 >- — - > =
2| - -—» < —» - —F
i *
\ ! ' )
| b
| ' b ’
‘ | |
[T ——- g = I'x

K:\'ll --4--—’ NK‘

4. Once NBOUND (K) is found for K, an index LL will vary
between 1 and NBOUND (K) to find the value of the affecting cross-flow
by:

DO 300 LL = 1, NBOUND




LOCA (X,8) ARRAY SET IN ACOL K=1T0 12

(n 1 2 3 4 5 6 7 8 9 10 11 12

(2) 4 -1 =2 1 =1 =2 -4 =5 -4 =5 =9 =9

(3) -2 5 6 =7 2 3 9 -7 7 -7 12 1

(4) -5 -3 0 -9 7 g8 5 10 =11 8 10 0

(5) 0 -6 0 o -8 0 -8 6 =12 11 0 0

(6) 0 0 0 0o -10 0 =190 0 0 0 0 0

(7 0 0 0 0 0 0 0 0 0 0 0 0

(8) 4 5 3 Y 6 4 6 5 5 5 y 3

MAXIMOM OVERALL STRIPE WIDTH FCR ABBAY AA2 IN DIVERT = 11 FOR BOUNDARY NO. 10
REQUIRE 132 STORES FOR AAA SIZE AND THIS GR SINCE LESS THAN 1 PROVIDED

VOOT £eaay ay} jo dinQ 1°gHAIHVL
L8
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Note that NBOUND is of course different for different K.

L = IDAT ( LOCA +K + MG (LL-1))

Now L represents the value of the element found in the
array LOCA. If, for example, in the case of 10 channels, 12
boundaries (see fig. 2) , one takes the 7th column of NK.

LOCA (7,1) = 7

LC')CA (7,2) = -4

Note that, one always has: LOCA (K, 1) = K.
For the first value of LL (LL=1), the cross-flow coefficient value
is on the principal diagonal and this is done in two steps.

STEP 1: L = MID - K+L

Note that for any K, (1{K&NK), L in the RHS will always

have the value K. Then L (LHS) is always equal to MID. This is done

on purpose since, in this subroutine, one wants to store all the diagonal

elements of the matrix AAA, i.e. the element of the NK column MID, in

the same NK-block by the instruction:
DATA ( AAA+K + NK * (L-1)) = SAVE % ----~-

Note that this instruction is valid also for any other values of

K, since it affects their value. Only at the end of the DO Loop, on the

affecting cross-flow (LL), the diagonal element is corrected by:

DATA ( AAA +K + NK * (MID - 1)) = DATA ( AAA +K + NK *
(MID - 1) + = = ===~ ~ R -

/_______/

R in RHS is nothing else but:
DATA ( AAA +K + NK * (L - 1)) for L. = MID

It is interesting to note that the MID elements are stored in a

same NK-block:
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(mip-1)* (MD)™ - Hock (HID 4 )" ARecke

- e .- - - e

DATA G-+ |4 - )
DATA(-—-+2+ =)
DATA(-~ -+ NK¢---)

STEP 2:

For the other elements corresponding to LL = 1, an index
L, having the value of the corresponding element in LOCA is given by:

L = IDAT ( LOCA +K + MG * (LL-1)) ,
The value of L can then be negative or positive. An absolute value is
taken:

L = IABS (L)
and the value of the index becomes

L=MID-K+L ,
Since for this particular case MS = 11, NK = 12, MID is found to be 6
( from ACOL), one gets L in (LHS).

Therefore, (MS - 1) blocks of NK-elements are used for the
storage of a maximum of (7 x NK) nonzero elements.

One can then notice that the place in the core memory is
oversized since MS can be found very large for the same amount, i.e.

7 x NK nonzero elements in the array.

Setting a New Compact Array (7 NK)

The idea is to reduce the storage by relocating the elements
of the matrix AAA according to a bijection with the elements of LOCA.

In ITER the adopted procedure is the following:




90

STEP 1:

‘Set-up a zone of (7 X NK) elements in the core memory to 0 by:

DO 1975 K = 1, NK
DO 2222 L = 1,7
2222 DATA ( A AA+K+NK*(L -1)) = 0

STEP 2:
Find the maximum number of affecting cross-flow in LOCA by:
NBOUND = IDAT ( LOCA + K + MG * 7)
DO 1974 LL = 1, NBOUND
L. = IDAT ( LOCA +K + MG * (LL - 1)
same as DIVERT
L. = IABS (L)
same as DIVERT

STEP 3:
The main difference is to give to the value of the cross-flow

coefficients a location in the (7 X NK) places, by:

1976 DATA ( AAA+K+NK * (LL - 1)) = ===~
1974 CONTINUE
Note that, now there is no difference between

the different value of LL - t.e. if LL is a

diagonal element or any element of a row -
because MID -~ the NK-column - around which
the location of each element of a row was made,
is no longer used. The inner DO LOOP - on
1974 - is done on a particular column of LLOCA
and gives by LL the direct location that must

be affected to the corresponding element of the
array AAA. Note also that thereafter if it is an

‘element of the principal diagonal its value is
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corrected by:
DATA ( AAA +K) =
DATA ( AAA +K) + == =~~

This corresponds to the case LLLL = 1, i.e.
LLL-1=0.

Remember that one always has LOCA (K, 1)=
K

Then,by

CONTINUE

THE outer DO Loop on the K (1§ K¢ NK) is
pursued.

Note that with this relocation of the elements

of AAA one ends up with Table B. 3.

—
8 8 §

~ - S

}ga z_:} 3.3 e S
N ;S s -
aadt |8 S S i 35‘
eyl |t i
Huli 533 d 3

Dturn.t
Uemnt
3™ pow

— e wam | m— |, v ——— — e— —m—

— e e w—
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TABLE B.2: Print-Out from DIVERT of the Array A

‘R COHP!CT .lll:
1.32338+01 6.8053E43C  -6.5059E+20
1.3235F4C1  =-6.80602+00 6.8059E+C0
1.9636E401 -6.8059%+00 6.U0SSE+0D
1.3233E+01 6.8052E400  —6.n042E+90
1.32352+01 -6,80605+00 6.C0S9E+50
1.9682E401  =6.8059E+00 6.L061E4CO
1.32382+01 -6.8042E+00 6.8045E+0)
1.9683E401  -6.0063E+400  -6.806UE+0D
1.3229E401 -6.8032E+00 6.8082P+0)
1.96425401  -6.8063R+00  =6.LO6LZ+ID
1.9638E+01 -6.80192+00 6.8019E+00
1.9632E+01 -6.4019%+00 6.8017E+30
-6.8059E+00 ¢.0 0.0 . 4
-6.8061E+400  -6.8059E+00 0.0 3.9
2.0 0.0 0.0 0.0
~6.87452400 [N 9.9 2.0
6.50652+00 -6.5062B+00 £6.40632+00 9.0
1.28132+21 0.0 0.0 0.5
6.8063R+00  -6.4062F+00 -6.80532+00 9.¢
6.4063E+C0 1.28142¢01 0.0 0.
-6.G017E+C0  ~6.8019E+00 0.0 0.9
6.89622430 1.2813E+01 .2 2.2
1.28122409 0.0 0.9 2.0
aa an an Aa
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This is more than useful for the programming of the
iterative procedure, since the element of AAA and those of each cross-
flow vector are related through LOCA for their value, position and

sign.



TABLE B. 3:

'EW COMPACT ARA:

1.3234E+01

1.3235E+G1

1.9636E+01

1.3233E+01

1.3235E+01

1.96U42E+01

1.3234E+01

1.9643E+01

1.3229E+01

1.9642E+01
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Print-Out from ITER of the Array A

6.4054E+)20
-6.4060E+00
-6.4059E+00
6.4052E+00
~-6,8060E+00

-6,4059E+00

- -6.40U42E+00

-6.4063E+00
-6.4042E+00

-6, 4063E+00

-6.4059E+00
6.4059E+00
6.4059E+00

~6.4042E+90
6.40S9E+0D
6.4061E+00
6.4045E+00

=6.4064E+00
6.4042E+00

-6.406UE+0D
6.4019E+00

6.4017E+00

1.9638E+01  =6.4019E+00
1.9632E+01 ~ -6.4019E+00
-6.4059E+00 0.0
-6.4061E+400  -6.4059E+00
9.0 0.0
-6.4045E+00 0.0
6.LOGUE+D0  =-6.4062E+0D
1.2813E+401 0.0
6.L063E+00  -6.4062E+00
6.4063E+00 1.2814E+01
~6.4017E+400  =-6.4019E+00
6.U062E+00 1.2813E+01

1.2812E+401

0.0

26.4063E+00

0.0
-6.4063E+0C0

0.0

0.0

0.0
0.0
¢c.0
2.0
0.0
0.

<

0.0
0.0
0.0
0.0

e.0
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'TABLE B. 4: TypicalInputfor a 10 Subchannel Case

1 45

10 15 5 10 21
2000
1 1 0 PWR NC=10 STRIPE BOUNDARY NUMBERING
1 -1
1 1000.0 2600.0 - 30
2 1 0 0 0
0,184 =0.2
3 2l
0.0 0.1‘04 000509309 001000783 001510050 002010280 002510‘05
06301454 0.351659 04401460 04451456 06501650 0,551.40
06601628 06651614 04700695 04750.775 048004588 0.850.,450
069006312 0,950,200 1,000.094
'
2 10 7 3 4 1 0 3
1 1 1.0 37.43 348.0 310,.2 0.122 0.0
1"-0110.97800565
) 7 0.5 37.43 348.0 310.2 0.122 0.0
4,011049780,565
1.1261.090141521.0031,1651,1521.0631.,1641,1821.,068
0,05 1 .16 2 «32 3 +49 3 ;66 3 .87 2
7 8 9 10 -1
o 1 3 6 10 .
0 2 5 9
0 4 8
o 7 - .
0
2¢0 408 640,,3225 8,80 +076%405.0.,02251000,
9 1 1 0
5 Ce 144, 0. 10 | 1. 20
10 1 0 0 1 :
0.02 .
11 1 1 2 2 2 2 )
2250, 557.3 2.66 0,189
0.0 1.0 11,056
0.0 1.0 1¢1.15
0.1.000 le 0,77 .
0.1.000 1.1.000
12 3 2 2 3
110
110

0.374
06374

99

(o

264.0
264,0
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B.3 ITERATIVE METHOD FOR A MODIFIED COBRA -III-C

The programming of the SOR method is straightforward once
the new set-up of the array AAA is established. It has seemed useful
however, to present the Flow Chart, Fig.B.1 . |

Note first that the‘par"t of ITER dealing with the calculation
of the cross-flow is not a subroutine - as DECOMP and SOLVE were
for DIVERT. The basic idea is to have a very flexible programming
in which any combination of constants, useful for the calculation, or
even the convergence criteria can be varied without difficulty. . The
programming can be divided into several steps.

1 - Set-up of the constants,

2 - Initialisation of cross-flow,
3 - Iterative cross-flow calculation,
4 - Test with convergency criteria, and

5 - Print-out of the results.

1. Set-up of Constants

E?S = 0.01 x FERROR

OMEGA = &, /3.

Note that one can change, according to the desired accuracy

of the results, the value of EPS - as mentioned before.
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PEFINE (ONSTANTS
EPS, OMEGA, .....

o SET-UP W3
g (ImBalisabion Lo
et cakodation)
| Oukew Do Loy ow b4
| Aawrab Caladalins 1
: TITER = 0
I \ N
| Tmer Do levp TITER = TTITER +|
' o, J '
l R
l A TESTOP = . TAVE.
|
| > \ E
| Stnaac perews
| ol Wk :
' TEARMM = 0.0 _ _ _ 3
: Compute L Do loop W
I for aumdiser avial o
| b{(f: o £3] A 3
WM wit+)) .

I Lo SoR : Wik, SOR 8
: Go To HAIN pute by ' S
. [~

|
I
i
|
|
>
Do LooP

\

TESTOP = TESTVP
- kND, ABSCRAPD)

.LE. EPS »

PRINT - oUT

RESVULTS OF ‘\
AXIAL STEP o e 451’ No .

N

N v [
Fig. B.1l: Flow Chart¥of ITER
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2. Initiélization of Cross-Flows

“) b0 1186 KlL=1,NK
@) DATA ( $ ANSWE + KL) = DATACSW + KL+ Max (3-)))

(3) {1986 LoNTINVE

At J=1, the cross-flow value is initialized for the steady state
case to zero.

At J = j, the cross-flow value is initialized, before iteration,
to the results of the previous axial step J=j-1. This initialization is
intended to hasten the convergence process.

Note that for each axial step J, only NK cross-flow have to
be calculated. The iteration procedure must be understood as being
carried out until the convergency criterion is satisfied. The value of
J - the axial plan on which the calculation is done - being determined
in MAIN.

For clearer understanding, it has been decided to call by
vector cross-flow, Wy , the NK set of cross-flows in a same axial
step: therefore, each cross-flow can be considered as a component
of Wy . The calculation procedure starts with the value W 3 8s
an initial value, and ends up, when the test is satisfied, with Wy .

Note that for the steady statel case every cross-flow vector
in each axial step is set to 0. At the end of the steady calculation one
has W 2R Wz"“, For the transient state case the initial values
of the components of the cross-flow vector are: W, Wz

At the end of the first calculation - for the transient - one ends
up with: WSoR , WSt
the subscript being for the first run of the transient calculation

which requires seven successive runs.



99

Generally one gets: initial value for 1th step of transient

one Som, soR
calculation: V"zl,'\‘t.\ ) Wzﬁ(-; )
. Son SOR
and cnds up with: WJ,TQ , W,'T‘ y e

3. Iterative Cross-Flows Calculation Test with Convergency Criteria

-Zooi

2002

2001

TITER = O J4)

1ITER = TITER + 1
TESTO? = . TRLE.

00 2001 MMK = 1,NK

RESERY = DATA ( $ ANSWE + HMK)

TERMM = 0,0

DO 2002 NTR =2,7

INDT = IPAT( $ LOCA + MMK + MG % (NTR-1))

INDI = IABS (INPI)

TEAUM = TERMM + DATA (4% AAA + MMK + NK x (NTR-1))2 DATA ($ ANSWE+ INDL)
comnTinve

PATA ( $ANSWE + MMK) =(PATA (48 + MMK) - TERMM)/ (DATA ( $ AAA + HMX))
DATA ( $ANSWE+MMK) = (1.0~ ONEGA) # RESEAY + onee.momactnuswumux)ks)
AAPID = ( RESGRY - DATA ( $ANSWE +MMK))/ ( RESERY :

TESToP= TESTOP . AND. (ABS (RAPID). LE . EPS)
CONTINVE

\F ((.NoT. TESTOP). AND. (TITER.LE. 200)) g0 TO 2003 lboy

IITER, after being initialized to zero, for each axial step, is
set up at 2000 to IITER = IITER + 1:
Note that when the cross-flow vector V_Yf::' is calculated - i.e.
when each component 1\<i\< NK satisfies the convergence criteria - then
IITER indicates the number of iterations which has been required for the
vector calculation and note for each component only.
If this number is larger than 200 - i.e. the iteration procedure

is by far too long - the calculation is stopped. This is intended to protect

the calculation time.
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TESTOP is initialized to . TRUE. and the print-out of the
results will be done if and only if . TESTOP. is set up to . TRUE.
after the iterations. If it is set up on FALSE then the calculation
is carried out again starting at 20008.
| ‘The DO Loop on MMK with (1 MMK NK) is intended to store

the previous computed value of the cross-flow components.

TERMM is, of course, set to O for each component before
calculation. Then, DO Loop on NTR (2, 7) is the sum of the products
of the cross-flow coefficients with the corresponding cross-flow
component. Note that this important expression is rather straight-

forward with a system of indices - INDI - directly related to LOCA.

DATA ( AAA + MMK + NK * (NRT - 1)) is the cross-flow
coefficient value associated to the cross-flow component value
DATA ( AAA + INDI). '

It has seemed useful to detail a feature of the coding dealing
with the dynamic storage of the results. Instead of using two NK
storages - one for the components at kth iteration and one for the
components at (k + 1) th iteration - only one NK storage is used. It
consists of storing successively an NK storage containing the compo-
nents of then the kth iteration with components of the (k + 1) th iteration.
Fig. 4 summarizes this procedure. _

Once the SOR procedure is applied, note that the test is
carried out, If the test is satisfied for the ith component, the calcu-
lation continues in the DO LOOP (2001) with the (i + 1) th component.

(1 i NK)

The test value - TESTOP - must be set up to TRUE after the
calculation and test of all components in order to print out the results.

If the value of the test is set up to - FALSE - i.e. if one of the compo-
nents does not satisfy the convergency criteria - the whole process - i.e.
iteration of the component - is carried out again until the test value

KEEPS FOR ALL COMPONENTS, the value . TRUE.
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‘WRITE (6,2090) IITER, J
2090 FORMAT (/,7H IITER=,13, 5X, 12H AXIAL STEPs=,I3)
DO 150 K=1, NKK
150 DATA ($W+K+MG* (J-1)) = DATA(SANSWE+K)
RETURN
END

Once the convergence criterion is satisfied, the results
can be printed out. Note that the results are printed out at each

axial step J.
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Fls B2: ?roamm Mina Detarls of ITER .

INLTIALLZATION ®Y DATA ( $ ANSWE + KL) = STORAGE OF
PAE VIOUS CALCVLATED

PATA ($ W+ KL+MGx(3-)
@, @),3) * Gr LOMPONENT AT $TEP
| € KLENK (3-1)
» NOTE: FOR J=(,all
W's arc 2evo.

Compvtation of

Cross - Flow Gomponenwl| 0 v son (o) 9ot ) sonle STORAGE OF THE
_fneah wm-How | W, T W L Wik ! ARRRY QCFORE
vecbor- CALCVLATION , AT
ITERATION K
“ . .
Ascome & Uerabime
" Formola is: o
STEPA : Compule wl '\ A h-1) MMK=1
? ‘( N (& - gZL Qe V}l ) RESERY = DATA($ ANS WE+
an = MMK) .
e W,“' ")
PoNe ©Y

TERMM = TEAMM + DATA (4 AAR + UMK+ NK % (NTR-1)) %
DATA (4 ANSWE + INDT)
PATA (4 ANSWE+ HMK) = DATA ($8 +MMK) - TEAMM,TOATR (§ AXAT

MHK))
+ FORMULA ok S.O.R.

TF CAITERIA SATISFIED ~ie if
TREN

W) sor 50,50
STORAGS BE wWMES W, 50m IW{,' a “'s. ki
S fo all | SCENK
GEWERALLY FOR COMPUTING
WY G o 1o

(&), 500 k), SR
wj_ ‘)’ ) ,\‘fﬂk ’

TU4T BEFORE COMPytati
1t W), 500 (k) son . fl)s0n K 3
or L™ comroNenT \A’. ) Wy ;--~-,“}¢-, ) = d:;'

STORAGE WILL BE
« . * t’
oo WL Wy ™

AFTEA VTERATION K : b
o s

WITH THIS PYNAMIL STORAGE |, (15) 15 COMPUTED WITROUT USING 2 5YSTEMS OF
INDICES 2> 2 ARAAYS .
£-) N®
{hel)
Yix A

1 &)




‘EW COMPACT ARA:

1.32302;01
1.3235F401
1.9636F+C1
1.3233E+01
1.32352+01
1.9642E+01
1.3234E+01
1.9643E+01
1.3229E+01
1.96425401
1.9638E+01

1.9632E401

-6.4059:2+00
~6.8961E+00
.0

-6.u2453+00
6.L06424+00
1.28132421
6.8063F+00
6.U26324C9
-6.40172+C0O
6.4762E+90
1.23122+401

LYY
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)
-6
0
°

6.8054E+2C
-6.8060E+00
-6.8059%+00

6.8052E+00
-6,30602+99
~6.8059E+90
-6.4042E+00
-6.490635+00
-6.4032E+00
-6.8063E+990
-6.80192+09)

-6.40197+00

.0
«8059E+00
<0
.0

-6.4062E40D

0
-6
1
-6
1
c

"~

.0
+40627+090
. 28145401
-U4019E+0D
«2813E+01
.0

)

-6.4059E+30
6.LOS9E+00
6.40S9E+0)

-6.00822490
6.L05S9E+5D
6.L061E+C)
6.4045B+09

~6.8064F+00
6.8082E4+0)

-6.L06UE+ID
6.8019E+09
6.2017B400

n.0
0.0
0.0
9.2

L6.5063E+C0

2.0

-6.40632+00

0.0
0.0
2.2
c.o

L

TABLE B.4: Typical AAA for a 10 Subchannel Case

)]
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B.4 CONCLUSIONS AND RECOMMENDATIONS

An overall comparison between the calculation time for the
two methods - Gauss Eliminatidn Method and Successive over Relaxa-
tion - can now be envisionned.

For small order matrices, the iterative solution
computational time is larger by a factor of two than the Gauss Elimi-
nation method. When larger cases are considered the calculation
time reduces significantly from 35% for the 128 case to an estimated
80% for the 356 case.

Note that this result is stated conservatively. Favorable
matrix properties can improve the relative advantages of the Gauss-
Siedel method. If the matrice happens to be diagonally dominant, the
calculation time will be reduced for any order by a factor of four.

If a theoretical estimate of the calculation time should be

(3)

given, the formula proposed by Bowring could be used:

t = 0.00282NK + 0.000000837 X NK X MS>+0. 0000127 NK>

(%)

The first term accounts for the set-up of equations. With
each solution method it is identical: 0.00282 NK.

The second term represents the calculation time for the
storage of the matrix. For iterative method MS is fixed to be 7;
therefore this term amounts to 0. 000 0005859 NK, and the last term
is estimated to be proportional to NKZ - for the Gaussian Elimination,
when the theoretical estimate gives a calculation time proportional to.
NKS. Therefore, this estimate is believed to be too optimistic for
the direct method. The calculation time for the Successive over

Relaxation method cannot be smaller than proportional to NK2 for each
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FIG. 6.5: Estimate of the Required Gauss-Siedel Calculation Time from the
Formula Proposed by R. W. Bowring in MEK-31 Report
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Fig. B.3: Calculation Time Estimate
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iteration. An average of 14 iterations is required for acceptably
accurate results. Therefore, the last term of Iiq. can be

written: 0.0000 127 R 14 X NK2 = 0.0001778 NKZ.

(9)

The formula becomes:

0.00282 NK + 0.000 005859 NK + 0.0001778 NK2 (40 )

- This theoretical estimate should give a rather rough idea

for computing larger matrices.
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