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Abstract

The heavy water moderated and cooled research reactor,
MITR-I, has been replaced with a light water cooled, heavy
water reflected reactor called the MITR-II. The MITR-II
is designed to operate at 5 thermal megawatts. The MITR-I
was shutdown in May, 1974, dismantling, construction, and
preoperational testing continued until the MITR-II went
critical on August 14, 1975. Cadmium absorbers were fixed
in the upper core of the first fuel loadings to shorten the
active core height and provide reactivity control. Solid
non-fueled elements were also loaded for additional
reactivity control.

Swelling of the original cadmium fixed absorbers
necessitated a second core configuration. The second
core contained additional solid non-fueled elements and
no fixed absorbers.

The compact core of the MITR-II causes thermal neutron
flux and power peaking to occur at the core outer boundaries
and incore locations with excess moderator. The active core
power density is in the range of 100 to 150 watts/cm® with
peaks up to 300 watts/cm®. The power, flow, and temperature
distributions cf the initial core loadings were determined
analytically and experimentally in order to evaluate the
safety limit factor and limiting operating conditions.

Neutron flux, core temperature, coolant flow, and power
distributions were measured by various experimental techniques.

The thermal-hydraulic parameters of the initial fuel
loadings are evaluated and shown to satisfy the acceptance
criteria for operation of the MITR-II.
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CHAPTER 1
INTRODUCTION

1.1 General

The Massachusetts Institute of Technology Research
Reactor has been serving the academic, industrial and
medical research needs of MIT and the surrounding community
since the initial facility went critical on July 21, 1958,
The original design of the Massachusetts Institute of
Technology, hereafter called MITR-I, operated successfully
from 1958 until May, 1974 when it was shutdown for modifi-
cation. During the design of the MITR-I, it had been
estimated that the life of the facility based on technical
obsolescence would be approximately ten years and thus,
features were incorporated into the original design that
would permit eventual modification. When the competitive-
ness of the MITR-I relative to other research facilities
decreased in the late sixties, the decision was made to
begin the process of designing a new reactor, hereafter
called the MITR-II.

The design objectives of the MITR-II were established
by the late Dr. Theos J. Thompson and carried to their
successful realization in the completed MITR-II by

Dr. David D. Lanning. Numerous Department of Nuclear
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Engineering students performed research necessary to the re-
design effort and safety evaluation of the new facility.
One of the areas of concern was an analysis of tne power
distribution and thermal-hydraulic limiting conditions for
the MITR-II. The purpose of this work is to evaluate the
power distribution limits of the initial MITR-II cores and
to recommend procedures to be used for future core loadings.
This chapter provides a brief description of the MITR-I
in order to understand the advantages of the modification.
In addition, basic features of the MITR-II are described in
order to give a familiarity with the new system which will
be useful in understanding conditions which affect the power

distribution.

1.2 MITR-I

The MITR-I was operated to steady-state powers up to
5 thermal megawatts. The reactor was moderated and forced
connection cooled by heavy water and utilized MTR type fuel
elements of highly eariched uranium-235., The fuel elements
consisted of curved plate-~type uranium and aluminum alloy
fuel which was clad with aluminum. Figure 1l.2-1 shows a
vertical cross section cof the MiTR—I. The reéctor core was
contained in an aluminum tank four feet in diameter and
seven feet high which was surrounded by a graphite reflector
region. The entire core tank region was shielded by thick

high density concrete penetrated by experimental facilities.

-28
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Access to the reactor core was only possible through the
plug above the core. The centerline of the beam ports was
located on a horizontal plane about two inches below the

centerline of the fuel,

1.2.1 Core Arrangement and Operation

The fuel elements were arranged in a widely spaced
manner in concentric rings with fuel elements being located
approximately six inches apart. The central fuel element
was located in the radial center of the tank. Figure 1.2-2
shows a horizontal cross section through the reactor and the
thirty numbered fuel element positions. In the place of
several fuel elements in the outer ring, sample assemblies
were located. The sample assemblies were used to tailor
the flux to specific beam ports, reduce core reactivity,
provide experimental facilities, and in some cases act as
check valves to allow natural circulation cooling during
absence of flow. In addition to the above, the core also
contained six shim jafety rods and one regulating control
rod.

The operating limit of the MITR-I was the prevention of

30

boiling in the reactor core. The refueling cycle was basical-

ly an out-in loading. Fresh fuel would be loaded in the
outer rings and moved closer to the core center as the
uranium was burned up. 7Table 1.2-1 snows the limits on
element loading per ring for elements containing 169 grams

235

of U when fresh.
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TABLE 1,2-1

MITR-I FUEL LOADING CRITERIA

Limit

Position 1 Grams of U235 in Element x
Number of Fueled Elements
Incore < 3270

Positions 2-7 Grams of 0235 in Element x
Number of Fueled Elements
Incore < 3700

Remaining Positions No Limit

By meeting the criteria in Table 1.2-1, the power
produced in a given element would be less than the power
required to cause boiling in the core. An additional limit
on each fuel cycle step was that the element burnup could
not exceed 43 atom percent. The reactor was operated in a
steady state mode for approximately 100 hours per week.

The total power generated by the MITR-I during its operation

slightly exceeded one quarter of a million megawatt-hours.

1.2.2 Facility Limitations

The MITR-I had operated successfully and safely for
sixteen years but in technical terms it had become an old
facility. Many major components were only available for
limited surveillance inspection and the facility was less
competitive'than ne&er research reactors. Because of the
desire for continued safe and competitive operation, it was

decided that the time had come to either perform extensive

.
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renovation or modify the reactor. 4The MITR-I was con-
structed at a time when reactor licensing requirements

wvere less stringent than present and it may have been that
the decision to renovate would not have been acceptable
upon an up-to-date safety review. Coolant pipes entering
and leaving the bottom of the core tank, an adverse coupling
between reflector dump and fuel cooling, and lack of any
seismic analysis are examples of licensing problems which
might have arisen if the renovation of the MITR-I had been
the chosen alternative.

The MITR-I was also limited in reactor fuel handling
and core access. Refueling and core access was only avail-~
able through a double plug arrangement above the core and
thus, refueling was performed in the blind. Incore irradi-
ation fac

ciza 2a
clze

o
A

1 +n what comld £fié
in CC wnat ¢could ric

through a fuel element hole in the lower shield plug. The
complexity of incore refueling and maintenance increased
personnel radiation exposure and required a high inventory
of radioactive hardware.

The neutron flux density and the neutron energy spec-
trum for the MITR-I were less desirable than competing
facilities. The flux distribution for the MITR-I is de-

scribed in the following section.

1.2.3 Thermal Neutron Flux Distribution

The thermal flux distribution across the MITR-I core

is shown in Fig. 1.2-~3. The peak thermal flux was approx-



12.5 | || [
10.0
9]
9 I
“ l
y 5.0
N un 4 N
£ l
0 Z z Z
N 3.5 (@] O O
s ¢ -t - -
B 3] B4
™ - - =
"o 2.5 - wl 9 @ |
— & (Y (Y
X o ]
5| B| B
o] 1.5 4 <5 (< <9
]
[t |
[
Z 1.0 |
P4
B
o) |
]
= '
0.5
I -
0.35 H- CORE : REFLECTOR ;| GAP ) THERMAL COLUMN
o s L | | | | | |
20 10 0 10 20 30 40 50 60 70
DISTANCE FROM CORE CENTER - INCHES
MITR-I NEUTRON FLUX AT CORE AXIAL CENTERLINE THROUGH
F l G. |, 2“'3 THE CORE AND THERMAL COLUMN AT 5.0 MW

we



35

14 n/cmZ-SEC which occurred at the center

imately 1.2 x 10
of the core. The peak thermal flux that was usable by beam
port experimenters at the core tank wall was approximately
2 x 1013. Because the beam ports looked directly at the
reactor fuel elements, the beam port neutron flux had a
high first flight to thermal flux ratio which was not a
satisfactory condition for some experimenters. Since the
MITR-I was primarily used as a source of neutrons, its use-
fulness as a research tool was greatly dependent on the

magnitude and quality of the neutron fluxes at its experimen-

tal facilities.

l.3 MITR-IT

The MITR-II is located in the same shielding and con-
tainment structure as the MITR-I. Many of the supporting
and process facilities are identical for the MITR-II when
compared to the MITR-I. The MITR-II is a heavy-water
reflected and light water cooled and moderated nuclear
reactof which utilizes flat plate-type, finned aluminum clad
fuel elements highly enriched in U-235. Like the MITR-I,
the MITR-II was designed to operate in a steady state mode
to powers of 5 thermal megawatts. Figure 1l.3-1 shows a
cross sectional layout of the MITR-II. A new tank and
pool system was installed to replace the old tank and the
top plugs.

The core is located inside of two concentric tanks and

a core housing. The outermost tank is a 4 ft., diameter
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D20 reflector tank and is used to maintain a Dzo level

for neutron reflection. The D20 system includes the
capability of rapidly lowering the D,0 level in the reflector
tank for a rapid reduction of reactivity as an alternate
shutdown means. Re-entrant thimbles are included in the
reflector tank which act as extensions of the existing

beam ports into the high flux region directly beneath the
reactor core.

The core tank holds the primary system light water and
the core housing assembly. The water surface level at the
top of the core tank pool is maintained close to atmospheric
pressure and thus, the entire system is operated at low
pressures. Heat generated in the core is removed by forced
convection. Hzo coolant enters the reactor through the
inlet plenum into the annular region between the core tank
and the flow shroud. It then flows downward in this annulus
until it reaches the bottom of the core housing where it is
directed upward through the fuel elements into the water
pool above the core. At a water level near the inlet pipe
level, the water discharges out the exit plenum. Siphon
breakers and natural convection valves which are maintained
in the closed position by primary pump pressure, open auto-
matically upon loss of flow to prevent siphoning of water
out of the core tank in the unlikely event of a pipe break

and to allow natural circulation cooling of the core.
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The fuel is arranged in a compact core configuration
in the core housing assembly which is at a higher elevation
than the MITR-I core. The fuel elements are held in place
by a rotating upper grid. The control blades come down
around the outside of the core and are effective by cutting
off thermal neutron transport between the reflector and the
core. In the initial design of the MITR-II, the control
blades were made with cadmium in an aluminum sandwich.
There are six control blades and one regulating rod in
the MITR-II.

The graphite reflector and radiation shielding for
the MITR-II are very similar to the MITR-I configuration. The
exceptions are a little additional graphite beneath the
reflector tank and the modified upper shielding around the

top of the core tank pool.

1.3.1 Core Arrangement and Operation

Fuel elements are arranged in a compact core arrange-
ment as shown in Fig. 1.3-2. The core is a hexagonal
cylinder about 15 inches across the flats formed by 27
rhombic fuel element positions. Fuel elements may be loaded
into any of three concentric rings; A, B, and C. The posi-
tions are numbered around the ring in a clockwise fashion
with the number one position in each ring being the first
position which is clockwise of a line drawn between the core

center and regulating rod. Figure 1l.3-2 shows the number
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designation for each fuel position. The inner ring

(ring A) contains 3 element positions, the middle ring
(ring B) contains 9 element positions and the outer ring
(ring C) contains 15 element positions.

The upper portion of the core is poisoned by fixed
absorbers which are attached to the absorber spider which
is part of the core housing assembly. A vertical cross
section through the core showing the fixed absorbers is
shown in Fig. 1.3-3. The absorber spider separates the core
into four regions as shown in Fig. 1.3-2, The fixed ab-
sorbers in the spider depress the power in the upper half
of the core and make the active core to be about 12 inches
or about one half the fueled length of an element. The
fact that the compact core is undermoderated combined with
the poisoned upper core results in peak thermal fluxes
occurring at the lower edges of the core.

A fueled element is shown in Fig. 1.3-4. The element
is rhombic in shape and composed of fifteen flat fuel plates.
Each plate contains a core of highly enriched uranium in the
form of U-Alx cermet which is clad with aluminum. The
fuel plate surfaces are finned in order to increase the effective
heat transfer area. The increase was needed because
the compact core generates the same total power as the
MITR-I, but has a smaller fuel plate surface area in the
active core and greater power spiking than the MITR-I. Each

element has a uniform loading of approximately 445 grams of
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U-235. All elements have a nozzle.at each end and the
elements are completely reversible in the core allowing
either end to be down.

Irradiation facilities may be positioned incore by
filling one or more fuel positions with the experimental
facility. The incore facility must be designed to prevent
unacceptable reactivity or power peaking conditions. An
Incore Sample Assembly (ICSA) shown in Fig. 1l.3-5 was
designed to fill a central element position in the original
core. This particular design proved to cause unacceptable
power peaking.

The core was designed to burn the lower half of the
elements. The upper half of the elements were intended to
be protected from burnup by the fixed absorber and the
control blades outside of the element:
half has been used to an appropriate life, the element may
be inverted, or flipped, and placed in the same or different
ring. The already depleted uranium in the top half of the
flipped element will also help to hold the flux into the
lower portion of the core. Fuel elements may be flipped or

exchanged in such a manner as desired to give the proper

burnup, reactivity, and power peaking arrangement.

1.3.2 Advantages of the MITR-II

The MITR-II was constructed because of improvements
in research capability, safety, and operations over the

previous reactor. The MITR-II provides a higher source
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intensity for neutron beam experiments and an increased

ratio of thermal flux to first flight fast neutrons. This
is possible because of reentrant thimbles which extend

into the high flux region beneath the core and because the
core was raised so that the beam ports no longer look
directly at the fuel. The new reactor has a higher fast
flux in the core for fast flux irradiations and an improved
and more flexible neutron beam in the medical therapy room.
The pool type design gives more flexibility in designing
incore irradiation facilities.

The MITR-II is a safer facility because of the com-
plete replacement of the core tank and core structures with
new, corrosion free, unirradiated materials built to meet
current code and quality assurance requirements. The
shutdown and emergency cooling system is better for the
MITR-II and the back up reactivity shutdown by dumping
the Dzo is separated from the core cooling system, The
review and modification process has helped upgrade the
entire facility.

Refueling and maintenance are simpler on the MITR-II
than they were on the MITR-I because of the pool design.
Direct view of core components make surveillance inspections
easier. Lower radiation exposure of maintenance personnel

is expected with the MITR-II.

1.3.3 New Core Limitations and Problems

Constructing a unique facility means that one is



starting at the beginning of the learning curve. The
unique design has led to various shakedown difficulties
and added expenses. Startup problems have proved to be
both frustrating and educational.

The light water moderated MITR-II is more susceptible
to power peaking difficulties than the MITR-I. Because
the core is undermoderated, power peaks occur at the core-
reflector interface or anywhere an abundance of moderator
is near the fuel, such as corner holes in the core housing
assembly or the coolant channel in the original design of
the ICSA. Power peaking must be carefully considered in
the following:

1) High control blade positions

2) Refueling proposals

3) Irradiation facilities.

46
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CHAPTER 2
OBJECTIVES

The primary objectives of this work are as follows:

1) To determine experimentally and analytically
neutron flux, core power, temperature and
coolant distributions of the MITR-II,

2) To relate the predicted distributions to the
measured distributions,

3) To evaluate the limiting operating conditions
for initial cores of the MITR~II,

4) To recommend the procedures to be used for
the establishment of the limiting operating
conditions after future refueling operations.
These objectives were accemplished as a part of the

completion of the final design, construction, and startup

of the MITR-II.

2.1 Core Distributions

As described in Chapter 1, the MITR-II is a unique
reactor. The power and flux distributions are far from
typical "classical" distributions found in many reactors.
Because of this uniqueness, it is especially important to
accurately evaluate the core temperature, power and flow
distributions. By determining core wide distributions,
it is possible to be certain that the most conservative
case is being analyzed in evaluating the operating and

safety limits.



A best estimate of a distribution was determined by
analytical calculations or by scale model testing. Then
the following means were employed to empirically measure
core-wide distributions in the completed MITR-II for
comparison with the original best estimate:

l. Neutron flux and core power mapping

A, Gamma scanning of removable fuel plates

B. Flux wires

C. Self-powered incore detectors

2, Flow mapping

A. Establishment of relative fuel element
flow rates by differential measurements
using an above core flow meter assembly

B, Channel flow measurements of an individual
element

3. Temperature mapping

A. Thermocouple instrumented fuel plates

B, Thermocouples on assenbly outlets
The experimental and analytical results were compared to
determine both the accuracy of the prediction method and
areas where the prediction method could be improved.
Chapters 4, 5, 6, 7, and 8 describe the calculated and
measured core-wide distributions for the initial MITR-II
cores. Chapter 10 is a summary of the distributions and

gives a discussion of the agreement between predictions

and measurements.

2.2 Safety Limits and Operating Conditions

The design of the MITR-II core has been made with
emphasis on safe and useful operability. As part of the

startup program for the MITR-II, the safety limits and

limiting conditions for overation must be evaluated in

48



order to prove the validity of the design analysis. The 49
values of several core factors with an estimate of their un-
certainty must be determined in order to evaluate the safety
limits and limiting condition for operation. The factors
to be evaluated are defined as follows:

Ff is the fraction of primary flow cooling the fuel,

df is the flow digparity, the ratio of the minimum

expected flow in the hot channel to the average

channel flow,

F is the ratio of channel power to the average
channel power,

F is the peak power per unit volume in the plate
relative to the average power per unit volume
in that plate,
2 is the ratio of the power released into the
channel between the inlet and the hot spot to
the total power released into that channel.
Chapter 7 contains the safety limit evaluation of the

initial cores of the MITR-II.

2,3 Future Procedures for Determining Operating Conditions

It would be an unacceptable burden to perform a large
scale experimental program with each reactor refueling.
Consequently, a procedure for evaluating the safety limits
of future MITR-II cores must be developed. Section 7.5 lists
a proposed procedure for future evaluations and Chapter 10

also gives a summary of the results.
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CHAPTER 3
CONVERSION FROM MITR-I to MITR-II

3.1 Conversion Schedule

When the idea to replace the MITR-I with the MITR-II
was first conceived it was estimated that it would take
six weeks to complete the project. The first actual con-
struction schedule indicated that the conversion would take
three and one half months., In the end, it took fourteen
months to obtain a critical reactor after shutting down the
MITR-I. A chronological listing of highlights during
the conversion is shown in Table 3.1~1. The variance
between original estimates and actual required time was
caused by an underestimation of the conversion difficulty

and by several conversion problemns.

3.2 Major Conversion Problems

An overiding concern in all projects is lack of
money and difficulty in completing the project within the
originally scheduled time. The conversion to the MITR-II was
no exception to this rule. The actual problems seemed
magnified at the time because of financial limitations and
not necessarily because of difficulty of the technical
solutions. In all cases, a conservative solution was

applied to the problem, once the problem was recognized.



February, 1973
April, 1973
May, 1973

July, 1973
September, 1973
November, 1973
December, 1973
January, 1974

April, 1974

May, 1974
June, 1974

July, 1974
September, 1974
November, 1974

December, 1974

January, 1975

March, 1975
April, 1975
June, 1975

July, 1975
August, 1975

51
TABLE 3.1-1

MITR-II CONVERSION SCHEDULE

Final decision to proceed with MITR-II
Construction permit issued

Contracts signed for tanks and core
housing

Contracts signed for shielding
Contracts signed for control mechanisms
Completed initial lattice modification
Modified medical H,0 shutter system

Problems found in first core housing
casting and delay in core tank
delivery

Shielding and control rods shipped
to M.I.T.

Core tank shipped to M.I.T.

Shutdown MITR-I

Reflector tank shipped to M.I.T.
Dismantled MITR-I

Completed dismantling MITR-I
Documentation review of MITR-II tanks

Contracts signed to build weldment
core housing

Reflector Tank installed

Assembled core tank components except
for core housing

Installed core tank
Completed primary piping
Perform system hydro tests
Installed shielding

Core housing and control blades
installed

Pre-operatiocnal tests completed
Initial criticality achieved
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However, conservative solutions are not necessarily the

fastest or least expensive, which added to the financial
burden.

Delays and problems during construction do not reflect
upon the safety of the MITR-II. The MITR-II conforms to
the requirements of its Technical Specifications and
Safety Analysis Report. The reason for listing conversion
problems here is to provide a reference for some of the

occurrences during construction.

3.2.1 Lack of Quality Assurance Group

The MITR-II was constructed by the same group of
people that had operated the MITR-I successfully for many
years. This group was familiar with the facility as it
had previously existed and with the necessary radiation
procedures. Lack of skills and experience in construction
was expected to be secondary to the necessity to be
familiar with the reactor physical plant. Time would
have been required to train construction workers and still
in the end both construction workers and operating
personnel would be on the payroll. The exception to the
above is the case of an independent quality assurance
group. The purpose of quality assurance is to provide
adequate documentation that a system, structure or com-
ponent will perform satisfactorily in service and in
conformance with Safety Analysis Report and Technical

Specifications requirements.
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The Nuclear Regulatory Commission is responsible

for enforcing Title 10, Chapter 1, Code of Federal Regula-
tions. Part 50, Appendix B of the above regulations explains
the quality assurance criteria for nuclear power plants

and fuel reprocessing plants. Construction of the MITR-II
was required to meet the intent of this section. During
final operation of the MITR-I, a quality assurance program
was developed which was expected to carry over to the
construction phase of the MITR-II. The group was too

small to assign separate individuals who would be solely
devoted to quality assurance requirements. Given the
limited resources of the operating group and the numerous
demands on time, quality assurance documentation was not
given high priority. The problem was compounded by the
initial infrequency of Nuclear Regulatory Commission (NRC)
inspections with respect to the construction schedule, which
allowed much to occur without an explanation of what was
truly desired by the NRC.

Much concern and action had gone into assuring the
safety of the MITR-II, but some documentation was poorly
organized or incomplete when compared to power plant
standards. As a result, the MITR-II staff was criticized
on the implementation of their quality assurance plan. To
improve this situation, the Stone and Webster Engineering
Corporation (S&W) was retained as an outside consultant.

Stone and Webster is a large engineering firm with con-



v 5k
siderable experience in constructing nuclear power plants
and satisfying NRC requirements. S&W provided the nec-
essary experience in quality assurance matters and provided
an independent quality assurance consultant for the com-
pletion of the construction phase of the MITR-II.

At no time was the MITR-II staff intending not to
live up to its quality assurance commitments, but an initial
desire to save resources by not having an independent full-
time quality assurance group resulted in construction
schedule slippage and considerable expense in the end.
Given present NRC regulations, future conversion projects
should consider an independent, full-time experienced
quality assurance group as necessary as any items of

hardware.

3.2.2 Lack of Knowledge Concerning MITR-I Field Dimensions

The MITR-I was constructed in the 1950's and at that
time there were few formal requirements for quality
assurance and record keeping. Timely installation of
several MITR-II components was dependent upon field dimensions
agreeing with recorded print dimensions. Tight assembly
tolerances allowed little room for error. |

In several cases, the field dimension differed enough
from the expected dimension to create installation problems,
i.e., the components would not fit without being reworked.
Operation of the MITR-I had precluded verifying these field

dimensions prior to component fabrication.
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Installation of the Dzo reflector tank and the primary

system aluminum transition pipes was delayed several months
by difficulties caused by inaccurate field dimensions.
These components had to be trial fitted several times prior
to final installation. Several other components would not
fit the first time, but they resulted in much shorter delays.
The source of the problem was in expecting the field
dimensions to be correct in the first place. A program
of trial fitting was planned but this was more to verify
the expected dimensions rather than determine the actual
dimensions. 1Initial construction should have been planned
to work around critical dimensions until they were determined.
It is questionable whether such a program would have saved
much time but it would have saved some expense. Future
conversions of existing facilities should in so far as
possible avoid reliance on existing field dimensions until

they can be verified.

3.2.3 Difficulty with Aluminum Fabrication

Fabricating numerous components out of aluminum proved
to be more difficult than expected. Problems were encountered
in aluminum casting, corrosion prevention, weld radiography,
welder certification, and dimensional stability. The MITR-II
primary and D20 systems are expected to be high integrity
systems and as such, defects were not accepted during con-
struction. Tight dimensional tolerances were required to

allow the compact reactor core to operate as designed.



Aluminum fabrication to tight tolerances and low defects
proved to be time consuming.

The MITR-II core housing assembly was first made from
a 356-T6 aluminum casting. This alloy was first chosen
because of its corrosion resistance and low neutron ab-
sorption. Problems arose because the casting process
entrains a certain amount of impurities and porosity into
the cast metal. Machining the casting to final dimensions
revealed these d=ficiencies. The first casting obtained
was rejected because of excessive porosity. Several other

castings were made by a different manufacturer until one
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was obtained, which according to radiographs, was acceptable,

Upon machining, this casting also revealed defects which
required repair. During a weld repair of one of these
defects, the casting cracked at a point where consider-
able weld material had been machined away. As a result
of difficulty with obtaining a large acceptable casing
the final core housing was fabricated using 6061-T6
aluminum plate.

Considerable effort was required to prevent unaccept-
able levels of corrosion in the aluminum components. Pro-
tection against contamination by halogens and various
heavy metals was necessary. Water in the system required
constant cleanup and Ph control to prevent corrosion.

This requirement complicated the need to have various
systems partially filled with water for radiation shield-

ing.
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Butt welds which could not be inspected inservice or

during system hydrostatic tests were required to success-
fully pass weld radiography. In the Boston area there was
little experience with preparing and testing radiograph
acceptable aluminum joints. As a result, weld radiographs
were compared with the requirements of other common metals
that are used to fabricate pressure vessels. Considerable
time and expense was required to learn how to make aluminum
joints that could pass a stringent radiograph criteria.

In the same manner that it was difficult to obtain the
expertise to make radiograph acceptable weld joints, it
was difficult to have welders obtain certification on
aluminum joints. Since welding was performed in the field
and not on a production line, the welders had to be certi-
fied for all positions, a range of material thickinesses, and
several aluminum alloys. Several procedure steps, which
would be standard in production welding and would make
certification easier, had to be omitted because of re-
strictions in field welding.

Welding on aluminum components results in some initial
distortion during welding and additional distortion with
time as the welding stresses relieve. Considerable attention
to this problem was required during fabrication to assure
that the final product would meet tight dimensional tol-
erances. Machining after welding was often required to

make up for distortion during welding. Credit for



structural strength anywhere in a component could only be

taken for aluminum in the welded condition because of

large decreases in strength of aluminum from welding

and the large heat affected weld zone in the component.
Considerable time was spent learning to deal with

aluminum because of its desirable properties in a neu-

tron efficient research reactor. Other metals would have

been more forgiving could they have been employed.

3.2.4 One of a Kind Fabrication

The MITR~II is an original fabrication which was
built to replace another original fabrication, the MITR-I.
Progress was hindered by being at the beginning of the

learning curve. The cost and time for mistakes, procedure

generation, and experience gathering could not be amortized

over several units. Many of the major problems which
occurred were merely the first trial in an attempt to
build a satisfactory end product. Choices of fabrication
techﬁiques, material, and assembly procedures would cer-
tainly be much easier on a second conversion project,
Several construction problems could have been
avoided if the manufacturer were made more familiar with
the design intent and assembly requirements of the com-
ponents being fabricated. In future conversion projects,
more emphasis should be placed on familiarizing the
fabricator with the total project. As a minimum require-

ment, the fabricator should draft his own shop drawings.
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3.2.5 Preventing Loss of Neutron Economy

Being a research reactor, optimal neutron economy
is extremely important to the MITR-II. Thought was
given to the choice of materials used in the reactor to
limit neutron parasitic capture, as well as, to the de-
sign and assembly of reactor components. Boron or cadmium
contamination was prevented by assuring minimum concentra-
tions in source materials and thorough cleaning prior to
installation. Attention to neutron economy led to the
use of a casting material for the first core housing and
it was only with reluctance that a higher absorption
material was finally used. Field dimension errors led to
some misalignment between the re-entrant thimbles to the
reflector tank and the reactor beam ports which took time
to determine and to achieve the optimal alignment.

Neutron economy was important to the eventual util-
ization of the facility and time spent on its optimization
was time well spent. The problem was that some compro-
mises required to obtain a safe functioning reactor seemed

to have an adverse effect on neutrcn economy.

3.3 Fuel Loading

Fuel loading into the core of the MITR-II reactor
began on July 30, 1975. A plutonium-beryllium neutron
source was positioned in the center of the core and fuel

elements were loaded one at a time, symmetrically around

59
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the source. All nuclear instrumentation was around the
core in the graphite reflector region. Neutrcn count rates
were measured with all control blades inserted and all blades
withdrawn prior to loading each fuel element. The neutron
count rates were used to determine the amount of subcritical
multiplication and thus, predict when the reactor would
become critical.

Subcritical multiplication is defined as the ratio
of the total neutron flux, due to both the source and
fission neutrons, to the flux due to the source only
(Reff. 3.3-1). The steady state multiplication of neutrons

in the core can be represented by:

Measured Count Rate a 1

Source Count Rate - ’
1 Keff

(3.3-1)

where Source Count Rate is the count rate obtained from the
source alone and the Measured Count Rate is the measurement
of the count rate with fuel in the core. The count rates
were measured by four channels of nuclear instrumentation
surrounding the core. For Eq. 3.3-1 to be true, Keff must
be less than one, i.e., the reactor is subcritical. As
additional fuel is loaded and the reactor approaches crit-
ical, Keff tends to unity, and the multiplication becomes
infinite. 1In order to determine the actual critical loading,
the reciprocal of the count rate is plotted against the num-
ber of fuel elements loaded (all fuel elements have approxi-

mately the same uranium loading). The plot is extrapolated
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to the zero value of the reciproéal multiplication, i.e.,
infinite multiplication, to give the critical loading of
the core. Count rates were obtained with control blades
fully inserted and with blades fully withdrawn in order to
determine the critical loading with blades full in and
blades full out.

Fuel loading was carried out with the reactor coolant
systems shutdown and bypassed. Prior to each day of fuel
loading, coolant was circulated to sweep out any bubble
buildup in the core from oxidation of newly inserted aluminum
clad fuel elements. Each position contained a water filled
dummy element which would be replaced by an enriched uranium
loaded element. One central element position was occupied

by the neutron source.

3.3.1 Core I Initial Criticality

On August 14, 1975, the MITR-II reactor went critical
for the first time. The plot of reciprocal multiplication
versus fuel loading for the first critical loading is shown
in Fig. 3.3-1. The reactor went critical with twenty
fuel elements loaded which was considerably less than the
worth was smaller than expected and was only worth approx-
imately 8.5% AK/K. The reactor had gone critical with less
fuel than expected and consequently had six water filled
fuel positions and one position containing the source

upon initial criticality. Figure 3.3-2 shows the core
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configuration for initial criticdlity.

Because of the small control bank worth, only one
additional element could be added to the core without
exceeding the shutdown margin required by the Technical
Specifications (the reactor must be subcritical by at
least 1% AK/K with the most reactive shim blade and the
regulating rod fully withdrawn). A twenty-one element core

(with 445 grams of 0235

loading per element) would be
unacceptable for long-term operation, because the reactor
would not have sufficient excess reactivity for overcoming
xenon and fission product poisoning, the empty fuel posi-
tions would allow too much bypass flow, and the power peaking '
would be unacceptable. The problem was caused by the
large amount of water in the core in the empty fuel posi-
tions. The control blades are effective because they block
thermal neutrons in the reflector from re-entering the
core. The core should operate somewhat undermoderated and
thus, depends on the reflector as a source of thermalized
neutrons. Having excess light water in the core results in
sources of thermalized neutrons in the core that decrease
the worth of reflector neutrons. For the condition of the
near fully loaded core, water in the core is worth more for
its moderating value than its negative absorber effect.

In order to load more fuel into the reactor core two
measures were considered. First, the height of the fixed

cadmium absorber in the central spider could be lowered and



FIG. 3.3-2 5

CORE CONFIGURATION FOR INITIAL CRITICALITY OF CORE I

REGULATING ROD

A - 445 gram U235 fuel element

O - water filled dummy element

@ - incore sample assembly
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second, several fuel element positions could be filled with
so0lid aluminum dummies to displace water in the core. Several
computer calculations were made using a CITATION code three-
dimensional model (CITATION model and results are discussed
in Section 5.2.3). These calculations showed that power
peaking was less adversely affected by lowering the fixed
absorber than it was by increasing the number of solid dummies.
As a result, the fixed absorber was lowered four inches and
three solid dummies (see Fig. 3.3-3A for detail of solid
dummy loaded in Core I and Fig. 3.3-3B for detail of addi-
tional solid dummies loaded into Core II) were loaded into

the core for a seond criticality loading,

3.3.2 Core I Second Criticality

The plot of reciprocal multiplication wversus fuel
loading for the second loading is shown in Fig. 3.3-4, The
reactor went critical with a loading of twenty-two active
fuel elements, three solid dummy elements, and one sample
assembly containing a neutron source.

The shim bank worth increased to approximately 14% AK/K.
Figure 3.3-5 shows the core configuration for the second
criticality.

Two additional active elements were loaded and one
solid dummy was unloaded. The core loading at the begin-
ning of power distribution measuring consisted of twenty-
four active elements, two solid dummies, and one incore
sample assembly. The neutron source was moved from an in-

core position to a position in the graphite reflector. Chapter
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FIG. 3.5-4

INVERSE MULTIPLICATION PLOT FOR SECOND CRITICAL LOADING OF CORE I
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FIG. 3.3-5

CORE CONFIGURATION FOR SECOND CRITICALITY OF CORE I

REGULATING ROD

A - 445 gram U235 fuel element

- water filled dummy element

9 - incore sample assembly

- solid dummy element, type A
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5 contains the power distribution measurements for Core I.

3.4 Fuel Loading for Core II

On February 9, 1976, during an attempt to remove a
fuel element from the reactor core it was discovered that
numerous fuel elements were not movable. Approximately
two-thirds of the reactor fuel elements were stuck in
the core because the cadmium fixed absorber sandwiches
were swollen beyond acceptable tolerances for the compact
core arrangement. The absorber sandwich expansion was
not unexpected because of a control blade sandwich
swelling which occurred several weeks earlier. The
mechanism that has been hypothesized to have caused the
swelling was based on leakage of the cadmium sandwiches.
The fixed absorber sandwiches were compcsed of a cadmium
sheet (0.040 inches) sandwiched between two aluminum plates
that are seal welded around the cutside edge in order to
seal the cadmium inside. Figure 3.4-1 shows an idealized
version of the cadmium swelling mechanism. Water leaked
into the sandwich through small cracks in the seal weld.
The water corroded the cadmium which yielded a supply of
corrosion products inside the sandwich. Hydrogen from
the corrosion process; and/or radiolytically decomposed
water built up a slight gas pressure inside the sandwich.
As the gas attempted to escape from the sandwich via the
weld leaks, cocrrosion products were carried into the cracks

and plugged the original water leaks, As the gas pressures
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continued to build up, the cadmium sandwich swelled. The
flat plate structure of the sandwiches meant that only
low pressufes (&l to 3 psig) were necessary to cause
unacceptable amounts of swelling in the fixed absorbers.
As a result of the fixed absorber swelling, it was
necessary to remove the fixed absorbers in order to pre-
vent damage to the fuel elements. The reactor fuel was
successfully unloaded and then the swollen fixed absorbers
were removed. In order to continue service to the experi-
menters during the time it tock to develop an alternative
fixed absorber, calculations were performed to evaluate

operating the reactor without any fixed absorber.

3.4.1 Core Loading Arrangement

In order to counter balance the positive reactivity
effect of removal of the fixed cadmium absorbers, Core II
was designed to contain fewer fuel elements and more
so0lid dummies. The initial core arrangement was expected
to contain 6 solid dummy elements and 21 fully loaded
elements. CITATION calculations were made to determine
the desired core reactivity level and p2rform preliminary
power peaking analysis. Figure 3.4-2 shows the core load-
ing arrangement that was initially predicted to be the
eventual Core II loading. The MITR Safeguard Committee
reviewed the planned operation without fixed absorbers and

permitted initial fuel loading.

T2



FIG. 3.4-2

PROSPOSED SIX DUMMY CORE WITHOUT FIXED ABSORBERS

REGULATING ROD

A - 445 gram U%3% fuel element

- solid dummy element - type A

- solid dummy element - type B
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3.4.2 Criticality

On March 9, 1976, the reactor went critical with 29
fuel elements loaded. Figure 3.4-3 shows the initial
critical loading with no fixed absorbers in the core.
Figure 3.4-4 shows the 1/M plot for the approach to
critical for Core II.

The reactivity worth of removal of solid dummiesAfrom
B-ring positions B-2, B-5, and B-8 was estimated to be
clese to 1.8% AK/K. In order to decrease the worth of
solid dummies in the B-ring and in order to minimize the
power peaking effect of the water gap caused by removal
of the fixed absorbers, the B-ring solid dummies were
loaded into positions B-3, B-6, and B-9. By placing
solid dummies in these B-ring positions and because of
the "notch-up" plate arrangement, no single plate would
be directly against the water gap caused by removal of
the fixed absorbers. Figure 3.4-5 shows the plate and
dummy arrangement for one section.,

In order to lower the shim bank height to prevent
unacceptable peaking effects in the upper portion of the
core, a fuel element was loaded in position A-1 replacing
a solid aluminum dummy. The final Core II loading arrange-
ment is shown in Fig. 6.1-1. Chapter 6 contains the power

distribution measurements for Core II.

Th
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FI1G. 3.4-3

CORE CONFIGURATION FOR INITIAL CRITICALITY OF CORE II

REGULATING ROD

235 fuel element

A - 445 gram U
(:) - water filled dummy element
é;} - incore sample assembly

Egj - solid dummy element - type'A

- solid dummy element - type B
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FIG. 3.4-5

NOTCH-UP FUEL PLATE ORIENTATION IN OUTER GROUP OF CORE II
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CHAPTER 4
PRIMARY COOLANT FLOW DISTRIBUTIONS

CQOlant flow distributions in the MITR-II are dis-~
cussed in this chapter. Section 4.1 describes the flow
tests that were performed to evaluate the design of the
MITR-II core tank. Section 4.2 describes flow tests on
MITR-II fuel elements. The fuel position relative flow
measurements for Core I are described in Section 4.3 and
the bypass flow measurements for Core I are desicribed in
Section 4.4. Flow distribution results for Core I are
summarized in Section 4.5. Section 4.6 describes the flow

distribution measurements and results for Core II.

4.1 Design I'low Tests

Flow tests were performed as an aid in determining
and evaluating the flow characteristics of the initial
and final designs of the MITR-II. The flow tests used
to determine the core tank bottom shape are described

in this section.

4,1.1 History
In the fall of 1969 an experimental test stand was
operated at the M.I.T. Reactor site to study hydraulic

and vibration characteristics of the core and tank assembly
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of the proposed reactor modification. The test stand

design was based on the initial core design and was a
full scale model capable of operating under full coolant
flow conditions. Initially, the program was intended to
determine flow resistances and distributions throughout
the inlet plenum and fuel matrix. In later tests, a
fully operating control blade assembly was added to
measure vibrations and drop times under full coolant
flow perturbations.

The test stand was operated from the reactor second-
ary coolant pumps, so that runs had to be scheduled during
reactor shut-down periods. Because of this limitation, a
quarter size model was simultaneously tested in the labor-
atory and these results were then used to prepare and to
supplement full scale tests. A sketch of the full size
test stand is shown in Fig. 4.,1-1.

During February, 1970, a full scale assembly of the
initially proposed finned plate fuel element was tested
under simulated operating conditions. The total pressure
drop across the assembly and the individual fuel channel
pressure drops were measured at various flow rates up to
120% of 5 MW operating flow. The results of these tests
are summarized in Section 4.2.1 and a sketch of the test
system is shown in Fig. 4.1-2.

In the summer of 1970, it was discovered that for

criticality reasons the proposed core diameter had to be
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increased. At the same time design studies were made to

reduce the inlet plenum volume to a minimum. These design
changes negated all data collected prior to that point. It
was decided to modify the existing test stand to reflect

the design changes at a reduced scale rather than completely
rebuild the facility to the new full size. The resulting
model was about 80% of the expected final size. The size
difference was considered trivial when scaling factors were
used. This assumption was confirmed by good correlation
between the quarter size test stand results and the larger
unit results. The final design of the inlet plenum was based

on this second series of tests.

4.1.2 Test Program and Limitations

The mock-up test program led to the gradual develop-
ment of the lower core tank shape, arrangement cf the flow
deflectors, and lower plenum gap (distance between core tank
and bottom of lower grid), which resulted in the optimal
fuel element flow distribution. Initial testing was per-
formed on the gquarter size model, in order to minimize the
number of variations on the 80% full size test stand.

The larger hydraulic test loop consisted of two
reactor secondary systém pumps in series with two second-
ary system booster pumps, the test stand, and the cooling
tower basin. The system is shown in Fig. 4.l1l-1. The
hydraulic measurements were made by calibrated bourdon

gages at the test stand inlet and matched impact pitot



tubes in selected fuel element positions. Total flow was
measured by a calibrated orifice in the main secondary
coolant pipe. Fuel elements were simulated by using
orificed tubes in the test stand.

The major differences between the test stand mock-up
and the actual core are: ‘ |

A) Test stand was 80% of full size which results
in dependence on accurate scaling factors,

B) Fuel elements are simulated by orificed tubes,

C) The static head of water over the core was
four feet instead of the actual eleven feet,

D) The inlet flow to the shroud in test stand

was at two locations 180 degrees apart
rather than at one location.

4,1.3 Test Summary

The flow distribution for the test which most closely
resembles the actual core is shown in Fig. 4.1-3., The
flow deflectors and plenum shape are the same for the
testlcase and actual case. The plenum gap for the test
case was 2/64 of an inch and for the actuel corse the plenum
gap is 10/64 of an inch.

The minimum flow to an element position is 7% less
than the average element position flow. Consequently, in
the MITR-II Safety Analysis Report, the factors for increases
in the enthalpy and film temperature differences were taken

to be 1.08 and 1.06, respectively.
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PLENUM FLOW DISPARITY IN DESIGN FLOW TEST LOOP

REGULATING ROD
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4.2 TFuel Element Flow Tests

Fuel element flow tests were performed to evaluate the

mechanical stability and coolant channel flow disparity of

MITR-II fuel elements.

4,2,1 Summary of Design Fuel Element Flow Tests

In 1970, a full scale assembly of the initial design

of the finned plate fuel element was tested under simulated

operating conditions. The test loop setup is shown in

Fig. 4.1-2. The final design of the fuel element was dif-

ferent from the design tested so the specific results of the

test are not applicable. The following general results

were found:

A)

B)

c)

D)

The pressure drop across the new fuel element
design can be calculated accurately using the
standard Darcy formula,

The individual channel flows for all interior
channels were within 3.5 percent of each cother,

The simulated outer channel between two fuel
elements had a much higher flow rate than in-
terior channels, :

The simulated outer channel between a fuel
element and core housing wall had a 30% lower
flow than an average interior channel, but
this channel is required to remove heat from
one side of a fuel plate where all the other
channels cool two sides.

4,2.,2 Dummy Element Flow Test

In 1974, a non-fueled element, constructed in an

identical manner and by the same vendor as all of the fuel

elements for the first core of the MITR-II, was flow tested.
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The primary concern of this test was to check the dimensional
stability of the fuel element under varying flow conditions.
In addition, the test was used to determine variations in
flow velocities between channels of the element and to
measure the pressure drop across the element.

The fuel element test loop is shown in Fig. 4.2-1.

The element tested was "Non-Fueled 001" which was constructed
by Gulf United Nuclear Fuels (GUNF) in New Haven, Connecticut.
Bourdon tube pressure gages were used to measure the pressure
drop across the fuel element. Three pitot tuvbes were used

to scan the discharge of #the element across the left, cen-
ter, and right of the end discharge as shown in Fig. 4.2-2,
Impact pressures on the pitot tubes were measured using a
water manometer. Flows rate variations were obtained by
throttling the discharge of a 100 gpm capacity centrifugal
pump. Flow was measured by a rotameter on the pump dis-
charge. A bypass of the test section was throttled to
provide back pressure .equivalent to the static head at the
discharge of the actual core.

The test section was constructed to provide the same
space for the fuel element as would be provided by sur-
rounding fuel elements in the core housing. The flow
direction in the inlet plenum is the same as the actual
case. The lower grid and top grid plate openings were
also identical to the final housing. Upon discharging

from the upper grid opening, the water in the test loop
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FI1G. 4.2-2

POSITION OF SCANNING PITOT TUBES

Left Center Right

/? / 16

channel
number

2-7/8-

Note: Channels 1 and 16 are outside half channels.
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also underwent a sudden expansion.

Two limitations on the accuracy of the test mock-up
are the absence of element to element flow via gaps in the
fuel element end nozzles and inaccuracy in modeling the lower

inlet plenum.

4,2.3 Mechanical Stability of Fuel Element

The mechanical stability of a dummy fuel element was
tested in the fuel element test loop. The element,
"Non-Fueled 001", was dimensionally checked at GUNF and
channel width measurements were made for each fuel element
coolant channel prior to flow testing. During this initial
measuring, GUNF found some local channel positions that
were close to exceeding the channel width tolerance. GUNF
reworked those channels by bending to bring them well with-
in the channel tolerance. The dimensions of the element
were checked at M.I.T. using a functional fit gauge.

The element was inserted into the test section and
subjected to the following flows:

A) Three hours at 120% operating flow (91 gpm),

B) Twelve cycles from 30 gpm to 90 gpm,

C) Three hours at 100% operating flow (76 gpm),

After the test, the element still fit in the functional
fit gauge and was returned to GUNF to have the coolant
channel measurements repeated. Exterior measurements of the

element appeared to be unchanged after the flow test. Most

of the coolant channels underwent a uniform expansion of
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0.0005 to 0.002 inches; i.e., the plates expanded outward

from the center of the element. Coolant channels which had
been reworked because they were too large (and thus were
bent smaller) appeared to have returned tc the pre~worked
conditions very quickly. The same trend was not true for
reworked channels that had been too small. No channel was
significantly smaller after the test.

Thus, there appears to be a small uniform expansion
of coolant channels during flow at the expense of the
channels between elements. The tests indicate the element
is mechanically acceptable with the added information that
channels reworked because they are too large will probably
return to the pre-worked size after coolant flow is

initiated.

4,2.4 Channel Flow Measurecments

Relative channel flow measurements were taken using
impact pitot tubes shown in Fig. 4.2-3. After flow was
egtablished, the pitot tube would be bled to remove any
air bubbles. While scans were being made with one pitot
tube, the remaining two tubes would be withdrawn into the
side wall. The pitot tube measured the impact pressure
directly at the discharge of each individual channel by
traveling in the gap between the fuel element plates and
the end nozzle and moving at a 90° angle to the plates.
Static pressure was measured at the same elevation as the

pitot tubes. The pitot tube was moved to the postion that
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FIG. 4.2-3
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gave the peak impact pressure on thé water manometer for
each channel discharge. Each pitot tube would measure
the impact pressure at one discharge location on each of
the coolant channels. By using three pitot tubes, three
locations for each channel were measured as shown in
Fig. 4.2-2.

Several initial tests were required to become familiar
with operating the test loop and to determine that an
on-line filter was necessary to prevent collection of
foreign material in the dummy element (the storage tank in
the test loop had not been used for a number of years
prior to this test). Complete tests were then made at
flows of 74 gpm and 85 gpm and results are shown on
Table 4.2-1. The values of Ah are the difference between
the impact pressure and the static pressure. The sub-
gscripts on the values, i.e., Ahl, Ahz, and Ah3, represent
the values for the left, right, and central pitot tubes,
respectively. For incompressible fluids, the following
equation is valid:

Ah  « V2, (4.2-1)
where,
V is fluid velocity.
Thus, the values of ~/Ah shown in Table 4.2-1 are pro-
portional to the coolant channel discharge velocity.
Looking at Table 4.2-1, several conclusions can be

made. First, the central pitot tube yields a flow velocity



TABLE 4,2-1

CHANNEL FLOW MEASUREMENTS DATA FOR LEFT, CENTRAL, AND
RIGHT MEASUREMENTS IN ELEMENT TEST LOOP

A = Ahl for pitot tube on left side of element outlet,
B = Ah2 for pitot tube on right side of element outlet.
C = Ah3 for pitot tube in center of element outlet.
S Vemy c-D
D = 2, 3 v T X 100 = % error between central
i=1 measurement and average.

Ah = inches of water on manometer.

Channels 1, 16 are outside half channels.

Channels 2 throagh 15 are interior channels.
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TABLE 4.2-1 (Continued)

Element Total Flow = 74.0 GPM

Channel # A B Cc D ‘Q%Q % 100
1l 4,53 4,37 4.47 4,46 +0.22
16 5.0 4.18 4.47 4,55 -1.8
2 4,85 4,86 4.69 4,80 -2.3
3 5.05 5.08 5.20 5.11 +1.8
4 4.9 5.11 5.0 5.0 0.0
5 5.05 4.80 5.15 5.0 +3.0
6 4.80 5.01 5.10 4,97 +2,.6
7 4.90 4,86 4,95 4,90 +1.0
8 4.85 5.11 4,80 4,92 -2.4
9 4,80 4.79 4,90 4,83 +1.4
10 4,24 4,29 4,24 4,26 -0.47
11 4,36 4.57 4,47 4.47 0.0
12 4,24 4,35 4,36 4,32 +0.93
13 4.47 4,32 4,58 4,36 +5.0
14 4.74 4,80 4.80 4,78 +0.42
15

5.0 4,18 4.47 4,55 -1.8

Average Error = 1l.6%



TABLE 4.2-1 (Continued)

Element Total Flow = 85.0 GPM

Channel # A B C D Q%Q % 100
1 5.15 5.0 5.15 5.10 +0.98
16 5.52 4.88 5,24 5,22 +0.38
2 5.66 5.68 5.57 5.64 +1.2
3 5.92 5.83 5.87 5.87 0.0
4 5.74 6.0 5.87 5.87 0.0
5 5.79 5.78 6.0 5.86 2.4
6 5.61 5.96 5.96 5.84 2.1
7 5.74 5.8l 5.66 5.74 -1.4
8 5.66 5.80 5.6l 5.69 -1.4
9 5.57 5.78 5.79 5.71 +1.4
10 4.95 5.07 4.9 4.97 ~-1l.4
11 5.1 5.18 5.15 5.14 +0.19
12 5.0 5.01 5.i5 5.08 +1.4
13 5.15 5.19 5.43 5.26 +3.2
14 5.43 5.75 5.66 5.61 +0.89
15 6.2 6.2 6.24 6.22 +0.32

Average Error = 1.2%



which is within a few percent of average of the three pitot
tubes and thus gives a good representation of the coolant
channel flow velocity. Second, the exterior channels,
channels 1 and 16 have a flow velocity which is about

10% less than the interior channels. Channels 1 and 16
simulate channels that would exist between a fuel element
and core housing wall. The significance of this lower flow
velocity is discussed in Section 4.2.5. Third, there
appears to be a large difference between the flows of the
individual interior channels.

Because of this large disparity between the interior
channel flows, an attempt was made to minimize (or average
out) effects caused by the test loop setup and flow
measuring apparatus. This was achieved by removing the
element and flipping it 180° and repeating the flow scan
with the central pitot tube. The data for the 0° and 180°
cases at 74 and 85 gpm are shown in Table 4,2-2, Note
that channel 4, for instance, is the same physical channel
in both 0° and 180° tests but that its position in the
test loop would be different. Table 4.2-2 shows that the
average of the 0° and 180° cases yields a much more uniform
interior channel flow velocity. The minimum channel flow
velocity is about 7% less than the average flbw. Mean
values and standard deviations for the results are shown

on Table 4,.2-2.
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TABLE 4.2-2
CHANNEL FLOW MEASUREMENT DATA FOR 0° AND 180°
ELEMENT MEASUREMENTS IN ELEMENT TEST LOOP

A =VAhc_0° for measurements across center of element
outlet with notch end up.

B =Vﬁhc-180° for measurements across center of element
outlet with notch end down.

c ;VAhc—0° +v%hc—l80° _ average of notch up and notch

2 ~ down measurements.

Ah = inches of water on manometer

Channels 1, 16 are outside half channels.

Channels 2 through 15 are interior channels.,
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TABLE 4.2-2 (Continued)
Element Total Flow = 74.0 GPM

Channel # A B C

1 4.47 4,75 4.61
16 4.47 4.63 4.55
2 4.69 5.18 4.94
3 5.20 4.93 5.07
4 5.0 4.76 4,88
5 5.15 4,72 4.94
6 5.10 5.13 5.12
7 4,95 5.15 5,05
8 4.80 5.43 5.12
9 4.90 5.50 5.20
10 4.24 5.08 4.66
11 4.47 5.26 4.87
12 4.36 5.43  4.90
13 4.58 5.54 5.06
14 4.80 5.35 5.08
15 5.05 5.57 5.31
~ Mean Standard Deviation
Outside Channel  4.58 0.042

Interior Channel 5.01 0.163



TABLE 4.2-2 (Continued)

Element Total Flow = 85.0 GPM

Channel # A B Cc
1 5.15 5.39 5.27
16 5.24 5.24 5.24
2 5.57 5.91 5.74
3 5.87 5.74 5.81
4 5.87 5.31 5.59
5 6.0 5.41 5.71
6 5.96 5.51 5.74
7 5.66 5.47 5.57
8 5.61 5.88 5.75
9 5.79 6.31 6.05
10 4,90 5.91 5.41
11 5.15 6.08 . 5.62
12 5.15 6.25 '5.70
13 5.43 6.32 5.88
14 5.66 6.15 5.91
15 6.24 6.40 6.32
Mean Standard Deviation
Outside Channel 5.255 0.021

Interior Channel 5.77 0.224
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4.2.5 Channel Flow Disparity

In Section 3.3.4.3.3 of the MITR-II Safety Analysis
Report, hot channel factors for channel dimensional
tolerances were derived. Differences in the channel
diameter give rise to smalil inequities in the flow dis-
tribution among the channels. These flow inequities led
to variations in the channel enthalpy rise and in the
film temperature difference. All uncertainties in the
film temperature difference are included in the heat
transfer coefficient and effectiveness uncertainty factor
(1.20) which is included in F, in the MITR-II Technical
Specifications equation for evaluating the limiting
conditions for operation.

The uncertainty factor for the channel enthalpy rise
is included separately, both in the Safety Limit and
limiting conditions for operation, and is dependent on
the channél to channel flow disparity. Using channel
dimensional tolerances, the channel flow disparity can
be calculated (Ref. 4.2-2). The channel flow disparity

is defined as follows:

W_. (AV)m.

min in . .
= o = Channel Flow Disparity, (4.2-2)
wnom, AV nom
where,
W = channel mass flow rate,

A = channel area,

V = flow velocity.
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By assuming that entrance and exit losses are proportion-
al to friction losses within the channel, the channel
pPressure drop can be calculated using the standard Darcy

equation:

£Lv2

D 29 (4.2-3)

AP = p

For narrow rectangular channels De can be approximated
as 2d where d is the channel width, thus by equating

pressure between channels:

2 2

v
(53—) = (fV ) ' (4.2-4)
nominal minimum
channel vchannel
where,

f is the channel friction factor.
For typical turbulent flowd, the following relationship

. for the friction factor holds:

-0.2
£ = (DV) « (av)” . (4.2-5)

Combining Egs. 4.2-4 and 4.2-5, the velocity ratio between

the minimum and nominal channels becomes:

V. a. 2/3
vmiﬂ = (dmln) ] (4.2-6)
nom nom

Since A « d, the channel flow disparity becomes:

Wmin dmin 2/3 Amin dmin 2/3 dmin dmin 5/3
= ( ) = ( ) ( ) = ( )

c w d A d d

nom nom nom nom nom nom

(4.2-7)
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Based on the fuel fabrication specifications for the
/4

stituting this value into Eq. 4.2-7 yields the following

MITR-II, the ratio d

min is equal to 0.955. Sub-

nom
value of the flow disparity based on fuel channel
tolerances:

d; =0.926 . | (4.2-8)
C

Using the results of the interior channel flow measure-
ments in Section 4.2.4, an experimentally determined
velocity ratio can be determined. Taking the average
flow velocity, subtracting two standard deviations, and
dividing by the average flow velocity gives a minimum to
average velocity ratio. The average of the ratios for the
74 and 85 gpm cases yields a velocity ratio of 0.929.

Thus, the channel flow velocity ratio based on a minimum
channel velocity that is two standard deviations less

than the average is:

v_.
min

= 0,929 . (4.2-9)
nom

Combining the experimentally based value of the velocity
ratio with the area ratio based on fuel channel tolerances
yields the following value of the flow disparity:

df vmin Amin

= = (0.929) (0.955) = 0.887  (4.2-10)
¢ vnom Anom

The experimentally based flow disparity yields a larger

disparity than the calculated disparity. Channel widths
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vary within the allowable tolerance along the channel

length. Because of these variations, it has not been
possible to correlate the experimental flow velocities
with actual measured channel widths. For the purpose
of evaluating the core performance, the experimentally
based value of channel flow disparity will be used, even
though it may only be the uncertainty in the flow measure-
ment methods that make it larger than the expected calcu-
lated value. No measured flow velocity was more than two
standard deviations less than the average. The flow dis-
parity was greater than the 1970 test because the original
test element was manufactured using tight tolerances and
the present test used a production line element.

The simulated exterior channels between the outer
fuel plate and core housing wall had a flow velocity
which was approximately 90 percent of the average interior
channel (see Table 4.2-2). The ratio of flow in an

exterior channel to an interior channel is:

wexterior _ Vexterior Aexterior _ 0.044
= = 0.9 5078

W, : v, . A, : = 0.51
interior interior ~interior (4.2-11)
Thus, the exterior channel has approximately 50% of the
coolant flow of an interior channel, but this channel is
required to remove heat from only one side of a fuel
plate whereas, the interior channels are required to cool

two sides. The 1970 test gave a higher exterior channel

flow, but it did not have proper nozzle openings for flow.



4.3 Fuel Position Flow Measurements for Core I

Relative flow measurements of the reactor core fuel
positions were necessary to determine the plenum chamber
flow disparity. The plenum flow disparity is defined as
the ratio of the coolant flow in the fuel element position
of interest to the flow in the average fuel element position
in the core. These measurements were obtained by position-
ing flow velocity measuring devices at the discharge of each
fuel element position. The tests were performed using the
fully loaded reactor core with both one and two main pump
operation. The flow measuring methods and the results

for Core I are described in this section.

4.3.1 Incore Flow Meters

Two flow meters were used to measure relative flow
distribution. The first was a simple pitot tube and
is shown in Fig. 4.3-1. This flow measuring device was
used for scanning the core outlet area and making a
qualitative check on the second flowmeter which was
used as the primary flow measuring device.

The second flowmeter was a flow averaging pitot bar.
This type of flowmeter was chosen because of the limitations
that: materials used in the core tank must be made from
either stainless steel or aluminum; be able to function
under a 10 foot head of water; and be possible to
fabricate within a reasonable cost. The flowmeter is

shown in Fig. 4.3-2., Basically, the meter consists of a
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FIG. 4.3
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FIG. 4.3-2
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four feet long, two inch I.D. tube with a pitot bar and

pressure tap, located approximately three feet from the
entrance of the "2, An adapter (which fits snuggly
in the discharge zzle of a MITR-II fuel element) is
welded to the ern.rsance of the tube. Water flowing into
the flowmeter from the fuel element travels up the tube
and discharges from the tube into the core tank pool.

The pitot bar itself is constructed from two con-
centric tubes (see Fig. 4.3-2). The outer tube has an
inner diameter of 0.25 inches and 0.02-inch-thick walls.
There are four holes in the tube which face upstream to
measure an average impact pressure over the velocity
profile in the main two-inch tube. A small inside tube
with an inner diameter of 3/32 of an inch and 0.0l-inch-
thick walls measures the average impact pressure at cen-
line between the four holes. The pressure on this small
inside tube is measured on one leg of a water manometer
with the downstream suction pressure being measured on
the second leg. Flowmeters of this design and hole

spacing are commercially available (Ref. 4.3-1).

4,3.1.1 Flow Meter Characteristics

The pitot tube and pitot bar in both incore flcow
meters measure the flow velocity in a tube with a known
flow area. Thus, the output from these flowmeters is
proportional to a flow rate. For the main incore flow-

meter (utilizing the averaging pitot bar) most of the water
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discharging from a fuel position is assumed to exit through
the flowmeter with the effect of flow resistance from the
flowmeter on the element being measured proportional to the
normal flow out of the element. Thus, the flowmeter will
measure the relative flow between elements only.

For incompressible fluids, the square root of the
measured impact pressure minus the measured static pres-
sure is proportional to the velocity. For the primary
flowmeter, the impact pressure and downstream pressure
were measured (downstream pressure was measured by a
pressure tap 180° from the pitot bar openings). The
downstream pressure is thus the static pressure minus flow
suction effects. The use of these pressures gives a
larger differential pressure on the water manometer and
for this reason yields increased measuring accuracy, but
it causes the output to deviate slightly from the true
square root relation. 1In order to determine the true re-
lationship between differential pressure and flow rate, a
calibration described in Section 4.3.1.2 was performed.

The pitot bar was located 18 diameters upstream from
the entrance and 5 diameters downstream from the exit of
the tube. Thus, the flow in the tube should.be fully de-

veloped at the location of the pitot bar.

4.3.1.2 Testing and Calibration

The primary flowmeter with the flow averaging pitot

bar as described in Section 4.3.1.1 was tested and cali-
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brated in a test section shown in Fig. 4.3-3. The flow

was measured by using a calibrated rotameter in the test
loop and the differential pressure in the flowmeter was
measured with a water manometer. The test was performed
by varying the flow through the test loop and recording
the manometer and rotameter readings. The results of
the test are shown in Fig. 4.3-4., A least squares fit
was performed and the slope was found to be 0.477. Thus,

for the primary flowmeter:

W e (an)2-477 (4.3-1)

where,
W is flow in flowmeter,
Ah the difference between impact pressure

and downstream pressure as measured by
manometer.

The relative flows per element are obtained by com-

0.477

paring the (Ah) for each fuel element position.

4.3.2 Incore Flow Measurements

Incore flow measurements were taken as part of MITR-II
Startup Procedure 5.9.2. Initial flow measurements
were made with fuel loadings typical of operating con-
ditions including the effect of solid dummies and an
incore sample assembly in various reactor fuel positions.
The reactor rfuel positions can be divided into four grouﬁs
which are separated by the lower and absorber spiders.

Changes which affect a fuel position (such as loading a
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solid dummy where an element had been previously) appeared
to have most of its effect on the other positions within
its group and have little effect on individual pecsitions

in other groups. The four groups of elements are as

listed below (see Fig.

1.3-2 for core arrangement).

Group 1 Group 2 Group 3 Group 4
A-1 B-1 C-2 B-4 C-7 B-7 C-12
A-2 B-2 (C-3 B-5 C-8 B-8 C-13
A-3 B-3 C-4 B-6 C-9 B-9 C-14

C-1 C-5 C-6 C-10 C-11 C-15

Relative flow ratios for the different fuel element
positions are shown in Table 4.3-1 for the initial measure-
ments of several core loading arrangements. Measurements
were made with both one and two pumps operating.

After the arrangement for Core I of the MITR-II was
decided upon, a second set of flow measurements were taken
with the Core I fuel element configuration. Measurements
for each fuel element position were repeated three times |
in order to reduce experimental uncertainty. Two fuel
positiohs could not be measured with the primary flow
measuring device because of interference with the hold
down grid latch. These positions were C-5 and C-6. The-
pitot tube flowmeter was used to scan all fuel positions
to verify that neither of these positions had the lowest
coolant flow. The pitot tube was not as accurate as the
primary flowmeter since it did not fit snuggly into the
fuel element nozzle, but the pitot tube did show the same

trends as the flowmeter. Results of final relative flow
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TABLE 4.3-1

RATIO OF ELEMENT POSITION FLOW TO CORE AVERAGE ELEMENT FLOW WITH VARIOUS SOLID DUMMY
AND ICSA CONFIGURATIONS IN GROUPS FOR ONE AND TWO PUMP OPERATION

Position Dummy Element Dummy Element
in Reactor in Group not in Group ICSA in Group
1 Pump 2 Pump 1 Pump 2 Pump 1 Pump 2 Pump
Group 1
A-1 ‘ * * 0.854 0.844 // //
A-2 - 1.017 - 0.940 0.913 0.894 0.965
A-3 - 0.9857 0.894 0.911 1.007 0.983
Group 2
B-1 ' 1.066 1,082 1.076 1.068 - -
B-2 * * 1.056 1.055 - -
B-3 0.980 1.009 1.026 1.025 - -
c-1 1.013 1.001 0.980 1.013 - -
C-2 0.970 0.975 0.950 0.966 - -
c-3 1.003 1.008 1.003 0.994 - -
Cc-4 0.960 0.990 0.931 0.937 —~— -
C-5 - - - - - -
Group 3
B-4 - 1.037 1.036 1.080 - —
E~5 * * 1.076 1,049 - o
B-6 -- 1.083 1.086 1.091 - -
C-6 - - - - - -
c-7 0.964 0.967 0.954 0.903 - -
Cc-8 - 1.026 1.020 0.971 - -
c-9 -- 0.991 0.9€0 0.977 - -
c-10 —— 0.996 0.993 1.006 - -

ETT



TABLE 4.3-1 (Continued)

Position Dummy Element Dummy Element
in Reactor in Group not in Group ICSA in Group
1 Pump 2 Pump 1 Pump 2 Pump 1 Pump 2 Pump
Group 4

B-7 1.086 1.070 1.079 1.031 - =
B-8 // // 1.083 1.041 - --
B-9 1.056 1.074 1.083 1.052 - -
C-11 : 1.013 1.006 1.003 0.959 - -
C-12 0.980 0.983 0.954 0.935 - -
C-13 1.030 +1.017 1.036 0.944 - -
Cc-14 1.026 0.979 0.980 0.943 - -

C-15 1.036 1.034 1.040 1.024 - -

* Solid dummy in fuel position
// ICSA in fuel position
-- Data not taken

Note: All measurements made using incore flowmeter (Fig. 4.3-2)

nTT
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measurements with two primary pumps operating are shown

in Table 4.3-2.

4,3.2.1 One Primary Pump Versus Two Primary Pumps

Relative element flow ratios appear to be the same
for both one pump and two pump operation. Data for one
and two pump operation is shown on Table 4.3-1. Thus,
the flow disparity will be independent of the number of

pumps operating.

4,3.2.2 Solid Dummy Element Effects

A dummy element only seems to affect flow ratios in
element positions that are in the same group (see Section
4,3.2 for groupings) as the dummy element itself. The
outer three groups (composed of B and C-ring elements)
appear to be affected in an identical manner by a dummy
element. Inserting a solid dummy in the center B-position
in a group caused the flow in the other elements of *the
group to increase. Element positions in the C-ring with
full sides adjacent to the dummy element seem to experi-
ence the greatest increase in flow. Without a dummy
element in the group, the minimum ratio of element flow to
core average element flow for any of the three outer
groups was approximately 0.94. With a dummy in the group,
the minimum flow ratio is raised to approximately 0.97.
The similar results for each of the outer groups indicate

that the core is flow symmetric and that no one side of the
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TABLE 4,3-2

COMPARISON OF RATIOS OF ELEMENT POSITION FLOW TO CORE
AVERAGE ELEMENT FLOW OBTAINED USING SCANNING
PITOT TUBE AND INCORE FLOWMETER

Position in Scanning Incore Flowmeter
Reactor Pitot Tube (Figure 4.3-2)
(Figure 4.3-1)

A~-1 . * *
A-2 1.065 1.017
A-3 0.997 0.986
B-1 1.060 1.049
B-2 * *
B-3 : 1.039 0.997
c-1 0.993 0.942
Cc-2 0.974 0.960
c-3 0.964 0.981
c-4 0.968 0.977
Cc-5 0.917 -
B-4 1.011 1.007
B-5 1,121 1.057
B-6 1.100 1.073
C-6 0.980 -
c~7 0.907 0.945
Cc-8 1.004 1.011
c-9 0.867 0.9377
C-10 0.949 0.9811
B-7 1.073 1.082
B-8 * *
B-9 - 1.098 1.092
c-11 0.974 0.985
Cc-12 0.983 0.946
Cc-13 1.010 0.997
C-14 0.932 1.025
c-15 1.010 1.001

* g0lid dummy in fuel position
-- data not taken because of interference with grid
latch
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core receives a disproportionate share of the flow. The
average flow ratio per element for each group is shown

in Table 4.3-3.

TABLE 4.3-3

AVERAGE ELEMENT FLOW IN GROUP WITH AND
WITHOUT SOLID DUMMY IN GROUP

1 Dummy in Group Dummy not in Group
Group 1 1.001 0.889
Group 2 1.01 1.008
Group 3 1.016 1.011
Group 4 1.02 0.991

(Data taken from averaging data in Table 4.3-1)

Note in the above table, that with the exception of
Group 1, there is little difference in average flow ratio
per element in a group between the one dummy and no dummy
cases. However, for these outer three groups, adding a
solid dummy improves the flow distribution within that
group by increasing flow to the lower than average flow
C-ring element positions by diverting the flow from a
normally above average flow B-ring element positions.

The flow distribution in the A-ring elements of Group 1
is greatly improved by adding a solid dummy element to the
group. There appears to be insufficient flow to the group
for three elements without having a large flow disparity.
This problem is not serious since during reactor operation,

at least one A-ring position is expected to be filled by a
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solid dummy or In-core Sample Assembly (both have much
lower flow than a fuel element).

Because of limitations on reactor shutdown margin and
because of an insufficient number of non-fueled elements,
it was not possible to perform flow tests without some solid
dummies somewhere in the core. The data indicates that
dummies exert only a local influence on flow disparity and

that this limitation is not important.

4.3.2.,3 ICSA Effects

Coolant flow through the Incore Sample Assembly (ICSA)
tested (see Fig. 1l.3-5) was a fraction of a normal element
flow. Consequently, the effect of the ICSA was between a
fuel element and solid dummy element. Table 4.3-1 veri-
fies this effect. Design of an ICSA for A-ring positions
must insure that there is a sufficient flow restriction
in the ICSA to provide adequate cooling for the remaining

A-ring elements.

4.3.3 Plenum Flow Disparity for Core I

As a result of the second set of measurements with
the primary flowmeter, plenum flow disparity factors for
each fuel element position for Core I of theAMITR-II were
determined. Factors for each position are shown in
Fig. 4.3-5. 1In general, the values for Groups 2 and 4
represent flow disparity factors for outer groups which
have a solid dummy in the center B-position. The values

for Group 3 represent a typical outer group with no solid
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FIG. 4.3-0
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dummy elements present.

4.4 Core Bypass Flows

There are several sources which allow coolant to by-
pass the active fuel elements in the core. Some of these
sources are controllable by design (ICSA, solid dummy
elements, etc.) and others are small leakage flows. It is
important to obtain an estimate of these bypass flows in
order to determine the fraction of coolant that cools the
active core (Ff). Because many of these flows are small,
they are difficult to accurately measure in core in the
presence of the turbulence effects from the large primary
coolant flow.

The bypass flows were estimated by three manners:

A) Calculated, knowing leakage area and
pressure drop,

B) Out core test loops,
C) Using pitot tube scans incore and
comparing flows seen to fuel element

position flows.

The results of these estimates are shown on Table 4.4-1.

4.4.1 Check Valve Flow Tests

Because of a valve sticking problem encountered
during the preoperational testing of the natural cir-
culation and anti-syphon valves (Ref. 4.4-1), a flow
test was made to verify the new design of the natural
circulation valves. The test loop setup is shown in

Fig. 4.4-1. After being tested for 1000 cycles, a

120
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prototype valve still yielded low leakage flows. Four
valves for use incore were constructed and each was tested
in the test loop prior to installation. Leakage flow was
measured on the test loop rotameter.

The volume of check valve leakage varied directly
with the pressure on the check valve. This indicates that
once the valve closes, there is no additional deformation
of the seating surface to reduce flow as pressure increases.
Thus .the higher the pressure, the higher the leakage flow
and vice-versa. At pressures that correspond to reactor
values, the average leakage of the natural circulation
valves was 1.5 gpm/valve. No valve had a greater leakage

than 2 gpm at these pressures.

4,4,.2 Bypass Flow Evaluation for Core I

Table 4.4-1 shows the sources of bypass flow for Core
I and estimates for their quantities. The means for ob-
taining those estimates is also listed. The leakages
listed in the table are not adjustable except for the by-
pass flow for the dummy elements. The bypass flow for the
dummy elements could be reduced by replacing the dummy
elements with active elements or by reducing the flow
cooling the dummies if operating experience shows that
this is possible.

For Core I of the MITR-II, the bypass flow totaled

approximately 105 gpm. This yields a Fe of 0.9487 from
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TABLE 4+4-1
SUMMARY OF BYPASS FLOWS FOR CORE I

Source Estimated Bypass Flow Source of Estimate

Control blade cooling hoies 13.4 gpm Calculated by knowing
Core housing corner holes 3.9 gpm pressure drop and

hole sizes

Natural Circulation check

valves (4) 6.0 gpm Test loop data

Anti-syphon valves (2) 3.0 gpm Comparison with natural
circulation valves

Solid dummy elements (3) 68.3 gpm Measured with primaryl
flowmeter

Annular partition gasket 5.0 gpm No flow measured, source

Annular partitibn and core of estimate is minimum

housing joint ‘ 5.9 gpm flow detectable using pitot

tube

€2t



124

the following equation:

F. = Total coolant flow - bypass flow

£ Total coolant flow ¢, (4.4-1)

Flow through an Incore Sample Assembly (ICSA) would have
to be added to the bypass flow and thus would make Ff a
smaller number if an ICSA was loaed in the core. The
uncertainty on bypass flow for Core I is less than 20gpm
which would yield an uncertainty of Ff approximately one
percent (20 gpm represents a 15% uncertainty in the bypass
flow which is estimated to be greater than the actual

uncertainty).

4,5 Summary of Flow Distributions for Core I

The channel and plenum flow disparities have been ex-
perimentally determined for Core I of the MITR-II. The
channel flow disparity is:

£
c

Channel flow disparity = d = 0.887. (4.5-1)
Plenum flow disparities are shown in Fig. 4.3-5. The
fuel position which contained the lowest element flow in
Core I was position C-9., The plenum flow disparity for

C-9 with a Core I loading is:

C-9 plenum flow disparity = df = 0.9377. (4.5-2)

P



For the C-9 fuel position in Core I, this yields a total

maximum flow disparity:

df = 0.887 x 0.9377 = 0.832 . (4.5-3)

Similar maximum flow disparities can be obtained for
each fuel element position by multiplying the channel
disparity dfc by the dfp for the position in Fig. 4.3-5.
Repeat measurements indicate that the relative flow
measurements have a two standard deviation uncertainty of
one percent.

For Core I of the MITR-II, the fraction of coolant

cooling the core was:

Fe = 0.9487 (4.5-4)

Fe also has an uncertainty of approximately one percent.

4.6 Flow Distribution for Core II

Flow measurements were made on Core II of the MITR-II.
Flow considerations for Core II differed from Core I in
the following manner:

A) Removal of fixed absorbers resulted in

additional solid dummies being loaded
into the reactor,
B) Solid dummies were loaded into side
B-ring positions (B-3, B-6, B-9)
rather than central B~ring positions
(B"Z, B"S, B"B).
As a result of these differences, flow measurements

were made for Core II using the incore flowmeter described

in Section 4.3.
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4.6.1 Plenum Flow Disparity

Table 4.6-1 shows the measured plenum flow disparity
between element positions for the Core II loading con-
figuration. Note that the highest flows still occur
in the B-ring and that the range of flow disparities is
similar to the Core I loading. The range of plenum flow
disparities for Core I is 1.092 to 0.937 and the range
for Core II is 1.084 to 0.93.

Figure 4.6-1 shows the plenum flow disparities, dfp,

that were used in evaluating the safety limit and limiting

conditions for operation of Core II.

4,6.2 Bypass Flows

The fraction of the flow that cools the active fuel
elements, Ff, is smaller for Core II because of additional
bypass flow £hrough the added solid dummies. Table 4.6-2
gives a summary of bypass flows for Core II. The total
-bypasslflow is approximately 159 gpm. This yields a Fe
of 0.9205 using Eq. 4.4-1.

4.6.3 Summary of Flow Distribution for Core II

The channel flow disparity is the same as for Core I
and is equal to 0.887. Plenum flow disparities, df , are
P
shown in Fig. 4.6-1 and the total flow disparity, df, is

the product of the channel and plenum disparities.



| | 127
TABLE 4.6-1

RATIO OF ELEMENT POSITION FLOW TO CORE AVERAGE ELEMENT
FLOW OBTAINED USING INCORE FLOWMETER ON CORE II

Position in Reactor Ratio
A-1 1.009
A-2 *
A-3 *
B-1 1.074
B-2 1.049
B~3 *
c-1 0.989
c-2 0.930
c-3 0.951
Cc-4 ' 0.949
C-5 -
B-4 1.032
B-5 1.058
B~6 ' *
C-6 --
c-7 0.954
c-8 0.993
c-9 0.953
Cc-10 1.019
B-7 1.084
B-8 1.032
B-9 *
c-11 1.009
c-12 0.944
Cc-13 0.944
C-14 0.972
Cc-15 1.036

* gSolid Dummy in fuel position

-~ Data not taken because of interference with
grid latch
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TABLE 4 . 6"2

SUMMARY OF BYPASS FLOWS FOR CORE II

Source Estimated Bypass Flow Source of Estimate
Control blade cooling holes 13.4 gpm Calculated by knowing
Core housing corner holes 3.9 gpm pressure drop and
hole size
Natural Circulation check
valves (4) 6.0 gpm Test loop data
Anti-syphon valves (2) 3.0 gpm Comparison with natural
circulation valves
Solid dummy elements (3) 122.8 gpm Measured with primary
‘ flowmeter
Annular position gasket 5.0 gpm No flow measured, source
Annular partition and core of estimate is minium flow
housing joint 5.0 gpm detectable using pitot tube

621
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For Core II of the MITR-II, the fraction of coolant

cooling the core, F_, was equal to 0.9205.

£
The uncertainty on Ff and df remains at one percent

for each.
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CHAPTER 5
POWER DISTRIBUTIONS IN CORE I

Power distributions in Core I of the MITR-II are dis-
cussed in this chapter. Section 5.1 summarizes the pre-
dictions used to evaluate the initial design of the MITR-II.
Section 5.2 describes the design check predictions used to
evaluate the final design of the MITR-II and used to com-
pare with the experimental power distribution measurements.
The experimental measurement of power distribution by gamma
scanning of removable fuel plates in an MITR-II fuel element
is discussed in Section 5.3. Section 5.4 describes neutron
flux measurements in Core I by copper wire activation. The
results of power and neutron flux measurements and calcu-

lations of Core I are summarized in Section 5.5.

5.1 Design Predictions

Initial design studies of the MITR-II were performed
by numerous members of the MITR staff and Nuclear Engineering
Department students. The Qoal of the initial work was to
determine a final design of the MITR-II and to prepare a
Safety Analysis Report (Ref. 5.1-1) for the project. The
completed Safety Analysis Report (SAR) is a summary of the

design predictions and conclusions. Design predictions
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regarding power distribution are further summarized in this

section,

The base core for most original design studies consisted
of a fully loaded core with one sample assembly in a center
ring position. In most cases the sample assembly was mocked

up by using a "lead fuel element”.

5.1.1 Power Density Distribution

Reactor physics methods used to evaluate the MITR-II
were developed by Addae (Ref. 5.i~2). A finite difference
diffusion code, Exterminator-II, provided the basid power
distributions used in evaluating core power densities.
Homogeneous average power densities were obtained from
Exterminator-II (Ref. 5.1-3) and these were converted
into heterogeneous vélues using a method described in
Section 3.3.4.3.3 of the MITR-II Safety Analysis Report.

A similar method was used to evaluate the design check
results from CITATION and is described in Section.5.2.3.l
of this work. The major difference between the two methods
is the additional normalization factor required for
Exterminator-II since its output is in fissions/cm3 and
CITATION prints out power densities in watts/cm3.

Figure 5.1-1 shows’the predicted axiai heat flux
distribution along the hottest fuel plate at an edge of
the core and at a central core position as predicted by
Exterminator-II. Values of the axial and radial power

peaking were determined using Exterminator-II calculations.
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The axial peaking factor, Fa’ is the ratio of the maximum
power density in a fuel plate to the average power density
in that fuel plate. The radial peaking factor, Fr' is the
ratio of the total power generated in a fuel plate to that
generated in the average fuel plate in the core. Table
5.1-1 gives a summary of Fo and F_as evaluated using
Exterminator-II at several shim bank heights (Ref. 5.1-1).
The product F_. x F, iz a measure of the power density
at a point compared to the average power density in the
core. For Table 5.1-1 which was used as an example in
the SAR anaiysis, all maximum Fa X Fr values are at the
bottom edge of the fuel. As seen from Table 5,1-1, the
effect of lowering the shim bank is important. Lowering
the shim bank raises the peak by shortening the core.
Figure 5.1-2 shows the predicted power density dis-
tribution for a vertical section of the core. Figures
5.1-3 and 5.1-4 show power density distributions for a
horizontal cross section at core mid-height for a hex-
agonal model and a R-Z model, respectively. These three
figures were made by Addae (Ref. 5.1-2) for a smaller
diameter core than the final desién and the latter two
were normalized such that the average power density equals
1.0. Note that the R~Z model misses the power peak that
occurs because of the water hole at the corner of the core

housing.
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TABLE 5.1-1

SUMMARY OF AXIAL AND RADIAL POWER PEAKING FACTORS

F F F_xF
a r r a
Shim Blade Height Center Edge Center Edge Center Edge
above Fuel Bottom Plate Plate Plate Plate Plate Plate
14 inches 2.19 2,01 1.20  1.45 2.63 2.91
10 inches 2.29 2.66 1;30 1.22 2,98 3.24
8 inches 2,44 3.17 1,36 1.07 3.32 3.39

SET
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FIG. 5.1-4
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5.1.2 Neutron Flux Distribution

One goal of the reactor modification was to increase
the neutron source intensity for neutron beam experiments.
Figure 5.1-5 shows the thermal neutron flux surrounding
the reactor core as calculated by Kadak (Ref. 5.1-4).

The predicted thermal neutron flux at the outside edge of
the heavy water tank for the MITR-II core is predicted to
be about the same as that flux at the same region for the
MITR-I core. The advantage of the redesign is derived from
the greater flux that the re-entrant thimbles extending
into the heavy water tank view.

Figure 5.1-5 shows that the thermal flux at the beam

13 neutrons/cm3. This

port tip is approximately 8.5 x 10
is an optimistic prediction because it neglects such fac-
tors as beam port perturbation, but even ihcluding several
factors that will lower the beam port flux, the flux en-
hancement to neutron beam experiments is expected to be

approximately a factor of three increase in thermal

neutron flux over levels in the MITR-I.

5.2 Design Check Predictions

Computer calculations were made as a design check
and to predict power and flux distributions in various core
configurations of the MITR~II. The main tool used in
désign check predictions was the computer code CITATION

(Ref., 5.2-1),
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5.2.1 CITATION Code and Neutron Cross Section Set

CITATION is designed to solve problems involving the
finite difference representation of diffusicn theory,
treating up to three space dimensions with arbitrary
group-to-group scattering. X-Y-2Z, e-R;Z, hexagonal-Z and
triangonal-Z geometrics.may be treated. Depletion problems
may be solved and fuel mangaged for multi-cycle analysis.
The code is designed to effectively use computers in the
IBM-360 series.

The cross sections used in CITATION were developed by
Kadak (Ref. 5.1-4) following the procedures set forth by
Addae (Ref. 5.1-1). The cross sections were updated by
Emrich (Ref. 5.2-2)., The basic cross section data used is
that of Hansen and Roach (Ref, 5.2-3).

For the energy range above 1 ev., the diffusion length
of neutrons was considered long enough so that the flux
distribution would not be sensitive to the fine structure
of the material distribution in the core. The first 13
higher energy group cross sections from Hansen and Roach
were used for energies above 1 ev. .

In the energy range below 1 ev., the diffusion length
of neutrons is of the same order at the thickness of the
fuel plates and hence, self-shielding would be important.
To obtain good cross sections for the fuel below 1 ev., it
was necessary to account for heterogeneous effects of an

individual fuel cell. The procedure that was developed
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was to find equivalent homogeneous cross sections in two

steps. The first step involved the homogenization of an
individual fuel plate, while the second step used the data
obtained from the first step to complete the homogenization
of the rest of the fuel element. The integral transport
theorylcode THERMOS (Ref. 5.2-4) was used to perform these
calculations and to perform whole core radial and axial
calculations to obtain core wide thermal cross sections

for the fuel. The results of the whole core calculations
yielded two sets of thermal crosgtsections whose energy
structure éorresponded to the two lowest energy groups
contained in a modified 15 group cross section set (2
thermal groups plus 13 epithermal and fast groups). The

15 group space dependent cross sections were then collapsed
to three using the EXTERMINATOR-II diffusion theory code
(Ref. 5.1-3). Cross sections for the three energy groups
shown in Table 5.2-1 were used in the present work.

The beam port and sample assembly void cross sections
were calculated by Lukic (Ref. 5.2-5) for the two dimen-
sional model and Emrich for the three-dimensional model.
The void effective cross sections were obtained from a
diffusion theory model derived by Kennedy (Ref. 5.2-6).
Kennedy's model replaces the voids across which neutrons
stream without making any collisions by a fictitious pure
scattering material.

For control blades, cross sections were obtained by

representing the cadmium absorbers by fictitious diffusion
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regions having the same net absofption effect as the actual
cadmium absorbers. The control blade cross sections in the
present work were calculated by Emrich (Ref. 5.2-2).

Up to 80 nuclides were used to represent homogenized
elements in various locations. The nuclides were combined
to form various compositions at each location. Table 5.2-2
lists the composition numbers, nuclide numbers, and nuclide

names used in the three-dimensional computer model,

TABLE 5.2-1

MITR-II Three Group Energy Structure

Fast 3 kev., - = kev.
Epithermal .4 ev, - 3 kev.
Thermal , 0.00025 ev. - .4 ev.

5.2.2 Two-Dimensional Calculation

A two-dimensional R-Z mock-up of the reactor core was
used for initial flux calculations and reactivity measure-
ments in the present work. Areas investigated using the two-
dimensional model were beam port length optimization, DZO
blister tank flux and reactivity effects, and the effect of
changing core housing aluminum alloys.. Figure 5.2-1 shows
the R-Z core model analyzed by CITATION. Figure 5.2-2 shows
the group 3, thermél flux, predicted by CITATION for the base
case fully loaded core.

The beam port length optimization resulted in the beam
ports ektending within 4 inches of the centerline of the

reactor. The calculations indicated that the closer to the



MATERIAL COMPOSITIONS

Composition

1

10
11
12

Nuclide Nuclide
Number Number
1 U-235
2 U-238
4 Al
3 H20
32 Al
33 H20
5 = U-235
6 - U~-238
8 Al
7 Hzo
9 U-235
10 U-238
11 Al
12 H20
15 U-235
16 U-238
13 Al
14 H20
17 U-235
18 U-238
20 Al
19 H20
21 D,0
22 a?
47 H20
34 Pb
35 Al
36 cd
37 Al
54 Al
55

TABLE 5,2-2

D20

OF THE VARIOUS REGIONS IN THE
REACTOR USED IN CITATION CALCULATIONS

Volume

Percent

* 91%
.07%
52.82%
46.20%

50.00%
50.00%

.91%
.07%
52.82%
46.20%

.91%
.07%
52.82%
46.20%

.91%
.07%
52.82%
46.20%

.91%
.07%
52.82%
46.20%
98.60%
.30%
.50
100.00%

85.00%
-15,00%

100.00%
100.00%
100.00%

1y
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TABLE 5.2-2 (Continued)

Nuclide Nuclide Volume

Composition Number Name Percent
13 24 U-235 .91%
25 U-238 .07%

26 Al 52.82%

27 H,0 46.20%

14 28 U-235 .91%
29 U-238 .07%

30 Al 52.82%

31 H,,0 46.20%

15 39 H.0 50.00%
40 A? 50.00%

16 41 c 100.00%
17 42 D.0 50.00%
43 At 50.00%

18 44 H,0 100.00%
19 45 H.0 94.5 %
46 At 5.5 3

20 47 H,,0 100.00%
21 48 H,0 100.00%
22 28 U-235 .ols
29 U-238 .07%

30 Al 52.82%

31 H.0 9.24%

- v8id 36.96%

23 15 U-235 .91%
16 U-238 .07%

13 Al 52.82%

14 H.0 9.24%

- vdid 36.96%

24 51 H..0 90.00%
52 at , 10.00%

25 21 D.0 40.00%
22 at 9.00%

56 Void 51.00%
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TABLE 5.2-2 (Continued)

Nuclide Nuclide Volume
Composition Number Name Percent
26 21 D..0 63.00%
22 at 5.00%

56 Void 32.00%

27 22 Al 14.80%
56 Void 82.20%

28 21 D..0 46.00%
22 af 8.00%

56 Void 46.00%

29 21 D0 30.00%
22 ‘af 10.00%

56 Void 60.00%

30 21 D..0 52.00%
22 at 7.00%

56 " Void 41.00%

31 21 D.0 60.00%
' 22 af 6.00%

56 Void 41.00%

32 21 D.0 78.00%
22 a? 3.008%

56 Void 19.00%

33 5 U-235 .91%
6 U-238 .07%

8 Al 52.82%

- Void 46.20%

34 9 U-235 .91%
10 - U-238 .07%

11 Al ' 52.82%

- Void 46.20%

35 15 | U-235 .91%
16 U-238 ©.07%

13 Al 52.82%

- Void 46.20%



Composition

36

37

38

39

40

41

TABLE 5.2-2 (Continued)

Nuclide
Number

24
25
26

28
29
30

Nuclide
Name

U-235
U-238
Al

Void -

U-235
U-238
Al
void

U-235
U-238
Al
Void
U-235
U-238

Al
void

H.,0
at

Void

Volumne
Percent

.91%
.07%
52.82%
46.20%

.91%
* 07%
52.82%
46.20%

.91%
.07%
52.82%
46.20%

.91%
L] 07%
52.82%
46.20%

42.00%
58.00%

100.00%

k7
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FIG. 5.2-2

5 MW THERMAL NEUTRON FLUX FROM 2-D CITATION

1.0}
|

core tank

D,O

tank

¢

§

)

¢

/

',

)

/

)

/
I ; ’

f

J

/

/

¢

[ 2

[ —_—
I \ \U 'f

/)

s

]

[

/

, .

2,0 x 10

13

B N N NN N N N N N N N N N N W N N . W . . . L L . W L N N

13 X §

4,0 x 10 2.0 x 10

group 3 flux, 26 fuel elements, blades at 8 inches,
fixed cadmium absorber 14 inches from fuel bottom edge




150
centerline of the core that the beam ports extended
the higher the flux they viewed. If the beam ports extended
to the centerline of the core there would be no scattering
material at the end of the beam port to scatter neutrons
out the beam port. As a result, the beam port ends were
selected to be 4 inches from the centerline Qf the éore,
where 4 inches represented several neutron scattering mean
free paths in D,0. |

D,0 blister tank studies reéulted in raising the
height of the D,0 blister tank in order to increase the
neutron flux available to the medical therapy room.
CITATION predicted a reactivity change for opening the
raised shutter of -0.036% AK/K or -46mg., The actual
measured reactivity worth of emptying the blister tank was
approximately -70 m8. This is actually good agreement
considering the large mesh spacing at the blister tank
and statistical error induced by determining a small
number from the difference of two large numbers.

The change in the core housing alloy was necessitated
by core housing fabrication problems as described in
Section 3.2.3. The effect of the alloy change was ex-
pected to be a 15% increase in the aluminum absorbtion
cross section. The two-dimensional calculation.predicted
that this change would result in a reactivity decrease
of 0.274% AK/K and would decrease the peak thermal flux

at the beam port ends by approximately 0.5%.



151
The two-dimensional model was useful for modeling

effects which were symmetric about the core centerline.
For a more detailed analysis, the three-dimensional model

was used.,

5.2.3 Three-Dimensional CITATION Calculation

Initial cores of the MITR-II were mocked-up using
a three-dimensional (R, 6, 2Z) approximation to the hex-
agonal cylinder shaped core. Only half of the core was
mocked-up in these calculations since the MITR-II is
approximately symmetric along a line passing through
the center of the core and the center of the regulating
rod. Using half core symmetry allowed additional mesh
points in the R and 2 direction up to the limit of the
M.I.T. computer core space. Figure 5.2-3 shows a
schematic representation of an R~ plane used to mock-up
the reactor core in CITATION. Figure 5.2-4 shows an
example of the core model for R-Z slice through the core
at one of the 6's. The initial model used by this work
was based on the model by Yeung (Ref. 5.2-7).

The CITATION core model divides the active core into
8 sections in the R direction and 11 sections in the 6
direction. The mesh points were set up so that fuel
elements in the A and B rings could be changed easily.
In the axial direction, the active core is divided into
3 main sections: the upper section in which the fuel is

strongly affected by the fixed absorbers and control
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blades, the lower section in which the fuel is adjacent

to the heavy water reflector and subjected to thermal
flux peaking, and the middle section of the core which
is little affected by either the control blades or the
heavy water reflector.

While it will be shown in this work that CITATION
gives'good predictions for neutron flux, power density,
and reactivity changes, CITATION predictions for absolute
Kogg Missed the actual Kofg by 4-to 5% AK/K. Table 5.2-3
gives the CITATION prediction ana measured Keff for some
early core configurations. The error may have been
caused by error in the cross sections with large amounts
of H,0 present in the core and possibly by an error in

the effective core diameter used in R, Z, © model.

5.2.3.1 Power Density

One feature of CITATION is that if a total core power
is specified, the code will print out average meéh point
specific volume power densities for each mesh point con-
taining fissile material. The values of these average
power densities, P(R,Z,0), are normalized such that the
total integrated power over the core is equal to the
specified total power. Using the local power densities
from CITATION, fuel plate heat fluxes, channel powers, and
fuel piate wall temperatures can be calculated.

The fuel plate heat fluk, (Q/A)i, generated in the

ith mesh point volume is calculated by multiplying the



MEASURED AND PREDICTED Keff

Case

Original base case
26 elements, fixed
at 14", blades at 10"

First critical case

21 elements, fixed

at 14", blades at 10",
4 waterfilled positions

23 elements, fixed at
12", 3 dummies, blades
at 10"

23 elements, fixed at
10", 3 dummies, blades
at 10"

23 elements, fixed at
10", 3 dummies, blades
full in

24 elements, fixed at
12", 2 dummies, blades
at 1Q“

24 elements, fixed at
10", 2 dummies, blades
at 10"

24 elements, fixed at
10", 2 dummies, blades
at 8"

Citation 3-D

1.063

0.918

- 0.969

0.954

0.834

1.000

0.981

0.959

Measured

0.998

0.996

0.892

1.023

1.005

FOR CORE I CONFIGURATIONS

Difference

0.08

0.042

0.058

0.042

0.046
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average local power density, P(R,Z,0), by the ratio of

unit volume of homogenized core heat transfer area in

a unit volume of core and by a correction factor that

converts the watts/cm3 obtained from CITATION to BTU/hr—ftB.

For fuel elements in the first core of MITR-II the

following holds:

(0/A); BTU/hr-ft® = 833 P(R,Z,0); (5.2-1)

where,

w2

(Q/Aa) 4 is the fuel plate heat flux (off ope
A side of the fuel plate) for the i
mesh point,

P(R,Z,e)i ig, the average power densi%y in the
i mesh point in watts/cm™,
The ratio of the local power density to the core
average power density is equal to the product FrFa

where:

Fr is the radial peaking factor, the ratio of the
power produced in a fuel plate to the power
produced in the average fuel plate,

F is the axial peaking factor, the ratio of the
power density at a local spot on a plate to the
average power density in that plate.

The value of FrFa for the ith mesh point is evaluated'as
follows:
P(R,2,0);

(F.F)., = ’ (5.2-2)
raiti P(R,2,0) vq(n,z,e{j

V(R,Z,G)j

Ema



where,
V(R,Z,e)j is the volume of the'jth mesh point,
m is the total number of fueled mesh points.
The denominator of Eq. 5.2-2 which represents the core
average power density may also be determined in the follow-

ing manner:

é& P(R,2,0) 5 V(R,2,0)
P(R,2,0) pyp = VR, 2, ).
j=1 ]

Total Core Power
Total Fueled Volume in CITATION Model °

(5.2-3)

Combining Egs. 5.2-1 and 5.2-3 yields the core average

fuel plate heat flux:

(Q/A) BTU/hr-ft2 = 833 P(R,Z,0) yp (5.2-4)

where,
P(R,%2,0) 1is in units of watts/cm3.
PCk, the power deposited in a coolant channel between
two fuel plates, can be calculated by assuming that all of
the heat from the two fuel plate sides facing a channel

is deposited in the channel. The following equation

represents the heat deposited in a channel K:
L

PCk = 2 g W Q/A(z) dz (5.2~5)
0
where,

W is the fueled width of the fuel plate,

Q/A(z) is the area heat flux from a fuel plate side
as a function of 2Z,

157
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L is the fueled height of the fuel plate.
Note that the factor 2 is required because there
are 2 fuel plate sides per channel. For CITATION results

the following equation replaces Eq. 5.2-5:

n
PC, = 2W S (/) 2, (5.2-6)
i=1

where,

(Q/A)i is the fuel plate area heat flux for constant
R and 6.corresponding to the channel of interest,

2. 1is the height in the % direction of the ith

1 mesh point,

n 1is the number of fueled mesh point volumes in
the Z direction for a constant R and 6.

The individual value of Fr for the Kth channel can be

obtained by the folloWing equations:

(F), = " - , C (5.2-7)
2W (Q/A)
AVE i%_l Z i
n
or (F), = 4 (Q/A)i “ .  (5.2-8)

QM pyp 2 23

-
i
o
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th

The value of Fa for the i mesh point in the Kth channel

is given by the following equation:
(o/m)

(Fa)ik = n °
(Q/A)iZi

i=1

I
M=
N

»

The fuel plate wall temperature is calculated by using

the following general equations:

Q/A(z) = nh (T,(z) - T(z) ) , (5.2-10)

(5.2-11)

Z
2 g W Q/A(z) dz =mC_(Tg(z) - T,) ,

where,
Q/A(z) is the plate heat flux as a function of z,
n is the clad fin effectiveness,

Tw(z) is the wall temperature as a function of gz,
Tf(z) is the fluid temperature as a function of z,

W is the constant fuel plate width,

m is the mass flow rate,

C is the fluid heat capacity,

T is the fluid inlet temperature.
Equations 5.2-10 and 5.2~11 can be combined to give:

Z

_ Q/A(z2) 2W
Tw(z) - T, = By + —-; { Q/A (z)dz.
0

A

(5.2-12)
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Knowing the values of n, h, W, m, Cp, and To’ the fuel
plate wall temperature, Tw(z), can be calculated at the

mesh point interfaces using the CITATION results by the

following equation:

n
T (7.) - T = —u=t 4 20 <
w''n i=

o nh e (Q/n) 2, (5.2-13)

where,

n is the number of mesh points from the bottom
of the fueled region,

Z, is the axial height thaficorresponds to n mesh
voints from the bottom of the fueled region.

By utilizing Egs. 5.2-1, 5.2-6, and 5.2-13, the safety"
limits and limiting conditions for operation as explained
and evaluated in Sections 7.2 and 7.3 are obtained using
the three—diménsional results of CITATION.

Power density distributions for Core I of the MITR-II
were obtained using a three-dimensional CITATION calculation.
Core I had solid aluminum dummies in core positions A-1,
B-2, and B-8. The bottom of the fixed absorber was 10
inches from the bottom of the fuel and the shim bank was
at 8 inches for these calculations. Figure 5.2-5 shows
the axial power distribution for an outside plate in
element C-8. CITATION predicts that this will be the
hottest fuel plate. |

Figure 5.2-6 shows the axial power distribution for
a plate next to a solid dummy in A-2. Note the large

power spike at the bottom of the element and the power
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depression at the top because of the fixed absorber.

Figure 5.2-7 shows the axial power distribution for an
interior plate in B-5. B~5 has the highest total element
power density of any element in the Core I configuration.

Figures 5.2-8, 5.2-9, and 5.2-10 show power density
distributions on respective horizontal planes through the
core at 0.53, 4.05, and 13 inches from the bottom of the
fuel (Core I CITATION predictions for fuel element powers

are shown in Fig. 6.4-1).

5.2.3.2 Flux Distributions

CITATION prints out the neutron flux for each of the
three energy groups at each mesh point. Figure 5.2-11
shows the predicted thermal neutron flux for a vertical
cross section through Core I of the MITR-II. A detail
listing of the neutron flux at each mesh point for each
energy group is listed in Appendix B.

Comparisons between CITATION flux predictions and

copper wire data are found in Section 5.4.

5.2.3.3 Sensitivity to Shim Bank Height

The power distribution in the core changes with varia-
tions in the shim bank height. Figures 5.2-12 and 5,2-13
illustrate two potential effects of concern from changing
the shim bank height. For a plate in the C~ring near the
edge of the core, raising the shim bank increases the
total power produced by the plate (Fr increases) but

decreases the actual power peak itself (Fa decreases).
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F1G. 5.2-5

CITATION RELATIVE POWER DISTRIBUTION
ON PLATE 1 OF ELEMENT IN C-8

(Core I, blades at 8 inches)
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FIG. 5.2-6

CITATION RELATIVE POWER

. DISTRIBUTION ON PLATE 1

OF ELEMENT IN A-2

(Core I, blades at 8 inches)
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CITATION RELATIVE POWER
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FI1G. 5.2-8

CITATION RELATIVE POWER DISTRIBUTION FOR HORIZONTAL LAYER 11

(horizontal layer 11 is 0.53 inches from bottom of fuel)

contour lines are constant values of FrFa
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FIG. 5.2-9

CITATION RELATIVE POWER DISTRIBUTION FOR HORIZONTAL LAYER 9

(horizontal layer 9 is 4.05 inches from bottom of fuel)

AANAANNN

contour lines are constant values of FrF
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FIG. 5.2-10

CITATION RELATIVE POWER DISTRIBUTION FOR HORIZONTAL LAYER 6

(horizontal layer 6 is 13.0 inches from bottom of fuel)

contour lines are constant values of FrFa
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This effect can be seen in Fig. 5.2-12, For a plate in the

A-ring near the center of the core, raising the shim bank de-
creases the total power produced by the plate (Fr decreases)
because more power is bein produced by C-ring elements. If,
however, the element in the center of the core has a power
peak at a z position above the bottom edge of the core, as is
the case with the initially designed ICSA, then the axial peak
will occur at a higher position on the plate as the shim bank
is raised. This effect can be seen on Fig. 5,2-13,

Chapter 7 covers safety limits and operating limits for
the MITR-II. It is shown in Chapter 7 that the safety limit
is proportional to the total power produced on a plate. The
greater the power produced on a plate, the closer the approach
to the safety limit. If a factor, SLF, represents the safety
limit, then the higher the value of the SLF is, the closer
one is to the safety limit. It is also shown in Chapter
7 that the limiting condition- for operation is propor-
tional to the peak power generated and its axial location.

If an equation, OLE, represents the limiting condition
for operation, then the higher the value of the OLE is,
the higher one is to the limiting condition for operation.
The SLF and OLE are defined and evaluated in Chapter 7.
Table 5.2-4 shows that for an element in the C-ring,
raising the shim bank increases the value of the SLF

and decreases the value of the OLE (compare case 3

and 5). The same table also shows that for an element

in the A-ring with its peak above the bottom edge, raising
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ol FIG. 5.2-12

CITATION POWER DENSITY PREDICTION ON
PLATE 1 IN ELEMENT IN POSITION C-8

(plate 1 is next to core housing)
(Core I, evaluated for two blade-heights)

(power = 5.0 MW)
(power density is for homogenized core)
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FIG. 5.2-13

CITATION POWER DENSITY PREDICTION FOR
PLATE 1 IN ELEMENT IN POSITION A-2
WHERE PLATE 1 IS NEXT TO THE ICSA IN A-1

(Core I, ICSA in position A-1l instead
of solid dummy element)

(power density is for homogenized core)
(power = 5.0 MW)

blades at 8
inches

100 200 300
power density (watts/cm3)
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TABLE 5,2-4

EFFECT OF ICSA AND BLADE HEIGHT ON INITIAL

CORE FACTOR EVALUATION ESTIMATES

Core Configuration

23 elements, 3
blades at 10",

24 elements, 2
blades at 10",

24 elements, 2
blades at 10",

24 elements, 2

blades at 8",

24 elements, 2
blades at 8",

dumnies,
ICSA

dummies,
ICsA

dummies,
ICSA

dummies,
ICSA

dunnies,
ICsA

Channel
Location

A-2 next
to ICSA

A-2 next
to ICSA

C-8 next

" to outer

edge

A-2 next
to ICSA

C-8 next
to outer
edge

2.78

OLE*

4.05

3.92

3.63

3.80

* These factors are derived and explained in Chapter 7.
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the shim bank decreases the value of the SLF and increases

the value of the OLE (compare cases 2 and 4). For an

A-ring element which only has its peak at the bottom,

raising the shim bank would decrease the total power pro-

duced by the plate and decrease the power at the peak.

For this case, raising the shim bank decreases the value of

the SLF and can either increase or decrease the value of the

OLE depending upon the new axial distribution in the plate.
This shift with blade height will not be a problem

for Core I because there is adequate margin in the safety

limit for elements in the C-ring and adequate margin in

the A-ring for the limiting condition for operation with

the ICSA removed.

5.2.3.4 Sensitivity to the Number of Solid Dummies

For Core I, CITATION power density data can be used
to show that the fewer the number of solid dummies, the
more slightly favorable the core in terms of the safety
limit and limiting condition for operation. Comparing
cases 1 and 2 on Table 5,2-4 confirms this conclusion.
This trend occurs because the core power is being averaged
over more elements and there is more heat transfer area
available. There is a limit as to how many solid dummies
could be replaced by fuel elements (neglecting the addi-
tional problem of shutdown reactivity margin) before this
trend would reverse because lowering the shim bank to com-

pensate for the reactivity addition of the fuel element
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would begin to cause excessive peaking in the lower core.

5.2.3.5 Sensitivity to the Incore Sample Assembly (ICSA)

Figure 5.2-13 shows the axial power distribution
in the fuel plate next to the ICSA as predicted by CITATION.
Insertion of the originally designed ICSA into the A-ring
causes excessive power peaking in surrounding elements.
As is discussed in Chapter 7, the unacceptable power peaking
caused by the ICSA as predicted by CITATION and confirmed
by the experimental measurements iesulted in the originally

designed ICSA being removed for Core I of the MITR-II.

5.3 Experimental Measurement of Power Density

The power distribution in the MITR-II core was
experimentally measured by gamma scanning of removable
fuel plates in an MITR-II fuel element and is described
in this section. Before operation above 1 KW was per-
mitted, low power testing was required in order to .
determine initial power peaking and to measure the rela-
tive core power distribution of the cold and unpoisoned

Core I of the MITR-II.

5.3.1 General Description of Gamma Scanning

The gamma scanner design was initially developed by

Donald Labbe, Gamma Scanner for MITR-II Fuel Plates

(Ref. 5.3-1)., Some modification and initial construction

was performed by Steven Grill, Construction of the Gamma

Scanner for MITR-II Fuel Plates (Ref. 5.3-2).
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The fission product density in a fuel element is

directly proportional to the power density history of the
fuel element. The pufpose of the gamma scanner is to
measure the fission product gamma rays emitted from a
specific volume of a fuel plate while shielding out the
gamma rays from the remainder of the fuel plate. Com-
parison of the count rates from different volumes of the
fuel plate will show the relative power distribution.
Appropriate corrections must be made for background, back-
scatter radiation, decay times, edge effects and previous
irradiation history of the fuel plate. A fuel element
was constructed with removable plates so that it could

be irradiated in various locations throughout the core
and then removed and scanned after each irradiation. From
the scanning data, relative core power maps were developed

for the first core loading.

5.3.2 Scanner Apparatus

The gamma 3canner apparatus consists of a lathe table,
collimator, lead shielding, electronics, removable plate

element, and transfer cask.

5.3.2.1 Removable Plate Element

A special fuel element was constructed for use in the
gamma scanning experiment. The element was constructed
by Gulf United Nuclear Fuels and was labeled 4M41l. The

element is shown in Fig. 5.3-1 and is identical with a
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standard fuel element except that five fuel plates and one

end nozzle are removable.

The removable plates were not swaged into the element
as were the remaining ten plates. The five plates were
free to slide out of the element when the removable end
nozzle was unscrewed. The removable plate element was only
loaded in core for low power testing with the main coolant
pumps off because of the element's decreased structural
integrity caused by the loose plates. The element was
constructed to tight tolerances in order to simulate
channel dimensions in a standard element. Alcohol was
required to lubricate any plate to be removed in order to
prevent galling of the aluminum.

Each of the removable plates was radiographed in order
to determine the fuel density distribution in each fuel
plate. Fuel densities are measured by making densitometer
readings on the radiographs. Densitometer maps for each of
the five removable plates are shown in Figs. 5.3-2 through
5.3-6. Lower densitometer readings indicate high fuel |
concentrations. Densitometer values for nominal fuel
density vary because of radiograph development techniques
and must be normalized against a standard for each radio-

graph.
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5.3.2.2 Collimator and Shielding

The collimator designed by Labbe (Ref. 5.3-1) and con-
structed by Grill (Ref. 5.3-2) is shown in Fig. 5.3-7. The
collimator was designed to maximize the count rate from a
one-sixteenth square inch area of fuel plate while minimizing
the effect of collimator leakage, background, and backscatter
radiation. Because of longitudinal variations in the fuel
plate power density were expected to be much greater than
transverse variations, a rectangular slot collimator was
developed. Care was taken during assembly of the collima-
tor section to avoid shielding weaknesses and gamma streaming.

The complete collimator and shielding arrangement is
shown in Fig. 5.3-8. Lead shielding was positioned com-
pletely around the tunnel where the fuel plate would be
located in order to limit backscattered radiation from
reaching the detector and to shield the experimenters.

The fuel plate was movable in the tunnel so that any point
on the plate could be placed under the collimator. Parts
of the shielding were machined to allow proper overlapping
of shielding, to allow free motion of the fuel plate,

and to allow shielding to fit in several tight positions.

A removable section of the collimator was constructed
to allow repeatable positioning of a standard source used
to check electronics drift. The location of the removable

section is shown in Fig. 5.3-8.



FIG.5.37 4 rreer

-

GAMMA SCANNER COLLIMATOR DIMENSIONS

< 1.167 ™™ 2 - I 0.291
| |
[
e~ 0. 83 2 —o | 0.208
|
10T
dimensions ! :
| u
shown | | b
are in | | "
inches ' ' 6 b
\ | [
| { [
| ] ] |

Lt
3

;
i




FIG. 5.3-8

—
,///-detector cavity
’//f'collimator source insert

transverse control
r B ——
. |

' | A

—————————————— '”_’“‘__—”‘-Z?—'""“‘“——’__ o)

steel plate
collimator

longitudinal control

GAMMA SCANNER

S8t



186
A second collimator was installed in the gamma scan-
ning apparatus for measuring activated copper wires. Details
of this second collimator and copper wire counting are

described in Section 5.4.

5.3.2.3 Electronics

A block diagram of the electronics used in gamma
scanning fuel plates is shown in Fig. 5.3-9, The NaI (Th)
crystal, phototube, and preampliﬁier were positioned above
the collimator. After initial aiignment and testing of
the counting setup, the detector was wedged into a fixed

position and remained in the same position for all scans.

5.3.2.4 Plate Movement

The movement of individual fuel plates under the
collimator section must be accurately determined. Positions
must be repeatably obtained within the desired experimental
accuracy. A precision lathe table was used to accomplish
these goals.

A long steel plate, 0.250 inch thick and 3.0 inches
wide, was secured to the lathe table. A slot on the plate
was machined for accurate and repeatable positioning of
fuel plates. The steel plate with the fuel plate riding
piggy-back could bé moved transversely and longitudinally
in the tunnel under the collimator shielding. Indicators
attached to the lathe table gave the transverse (Y-axis)

and longitudinal (X-axis) position of the steel plate.



The zero positions for the indicators were determined by
sighting through the collimator to an end position on the
machined slot on steel plate. The repeatability of steéel
plate positions was verified by using dial indicators.

The transverse and longitudinal dimensions were repeatable

in all cases to within 1/32 of an inch (#0.08 cm.).

5.3.3 Scanning Procedure

Fuel plate gamma scanning was performed as part of
MITR-II Startup Procedure 5.9.1. A separate procedure
was developed for handling of the removable plate element.
Details of these two procedures are given in Appendix A,
The development of scanning techniques is described in the

following sections.

5.3.3.1 1Initial Tests

187

No fuel plate scans were performed by Labbe (Ref. 5.3-1)

or Grill (Ref. 5.3-2) to verify the initial design and con-
struction of the scanner apparatus because of delays in the
MITR-II construction schedule. Both Labbe and Grill

tested the detection system with a variety of standard
gamma sources in order to determine the detector re-
solution and the electronics drift. The NaI crystal
resolution was found to be acceptable and electronics

drift which would result in changing the low energy gamma
ray cutoff was found to be acceptable provided that the

detection system was allowed to warm up for several days.
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Labbe scanned some irradiated foils in order to

verify the repeatability of the plate positioning apparatus.

5.3.3.2 Preparations for Scanning

Preparations for scanning included final testing and
modification of the gamma scanner apparatus and develop-
ment and testing of scanning procedures. The basic components
of the scanner had been assembled well in advance of the

actual experiment. -

-~

After the electronics were Qarmed up for several days,
a final check was performed on the detector resolution and
the discriminator settings were determined. The baseline
discriminator setting was chosen so that fission product
gamma rays with energies greater than approximately 0.35

131 source provided

Mev would be detected. A standard I
a means to set the low energy cutoff and check for any
electronics drift., Differential counts for a 0.2 volt
window and 1131 source versus discriminator voltage for
the scanner detector system are shown in Fig. 5.3-10.

For the scanning experiment, the discriminator was set at
0.5 volts, this setting corresponded to a position on the
lower energy side of the 0.3645 Mev iodine peak. A point
was chosen on the slope of the peak, rather than the peak
itself, so that the direction of the electronics drift
could be determined. Normal scanning took place with
counting in the integral mode, i.e., all detected gammas

above the cutoff energy would be counted. Placing an 1131
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source in a repeatable position and no fuel plate in the
scanner, differential counts were taken using the same
baseline cutoff and a small voltage window. Thus by
lboking at a small energy band on the slope of the iodine
peak, the drift of the energy cutoff up or down could be
indicated by respective increases or decreases in the
standard source counts.

A uranium foil counter was set up near the gamma
scanner apparatus. A block diagram of the foil counter
detection system is shown in Fig. 5.3-9. This setup was
needed to count uranium foils which would be irradiated
in a reactor pneumatic irradiation facility at the same
time the removable plate element was irradiated. The
foils would be counted simultaneously with the fuel plates,
resulting in data which indicated the fission product
decay rate. The uranium foil caﬁnter was checked with
standard sources and the baseline discriminator setting

131 standard source.

was also determined using an I
Differential counts for a 0.2 volt window and IlBlsource
versus discriminator voltage for the foil detector system
are shown in Fig. 5.3-10.

Some modification of the scanner apparatus was nec-
essary to allow free movement of the lathe table and
attached steel plate. Labbe (Ref. 5.3-1) had suggested a

series of points to be scanned on the fuel plates, but

limitations in the transverse movement of the fuel plate
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in the shieldin§ tunnel made it impossible to scan some of
his suggested points for backscattering corrections. The
shielding tunnel had to be shortened to obtain additional
longitudinal freedom to fully scan the fuel plates. In-
dicators were also added to the lathe table to allow
accurate measurement of fuel plate positions.

A transfer and handling procedure for the removable
plate element was developed. The procedure is given in
Appendix A. A steel cask was used to transfer the ir-
radiated fuel element from the reéctor floor to the
counting location. Once at the counting location, the
element was transferred from the steel cask to a lead
cave. The cave was open on both ends to allcw easy dis-
assembly of the element and removal Qf fuel plates. The
cave was oriented in the counting location to minimize
backscattered radiation from reaching the scanner detector.
All scans were done with all parts of the removable plate
element in the cave except the single plate in the process
of being scanned. A sketch of the transfer cask and lead
cave is shown in Fig. 5.3-11.

A dry run was carried out using the unirradiated
removable plate element. This was done to insure that
the actual scanning with hot fuel plates, would be accom- -
plished smoothly and witih a minimum of personnel exposure.
The fuel plates were scanned to deter<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>