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ABSTRACT

A coarse mesh approximation method is presented for the solution
of the two-dimensional spatial neutron flux in multigroup diffusion
theory. This so-called finite element synthesis method is consistent in
that it is systematically derived as an extension of the finite element
method by utilizing general variational techniques. Detailed subassembly
solutions, found by imposing zero current boundary conditions over the
surface of each subassembly, are modified by piecewise continuous
Hermite polynomials of the finite element method and used directly in
trial function forms.

The finite element synthesis method differs substantially from the
finite element method in which homogeneous nuclear constants, homogenized
by flux weighting with detailed subassembly solutions, are used. However,
both schemes become equivalent when the subassemblies themselves are
homogeneous.

The application of this method to some representative one-dimen-
sional PWR configurations has been shown to be successful. However, the

extension of two-dimensional problems is not as straightforward as it
might appear to be, because there are flux discontinuities at subassembly
boundaries. Thus, some additional terms, representing the contribution
of the flux (and current) discontinuities, has to be added to the
difference equations of the approximation method.

Two-dimensional, two-group numerical calculations using representa-

tive nuclear material constants for fuel, absorber and moderator and

18 cm x 18 cm subassemblies were performed using entire subassemblies as

coarse mesh regions. The results indicate that the finite element synthe-

sis method can yield accurate criticality predictions and detailed flux

shapes throughout a core composed of heterogeneous subassemblies.

Thesis Supervisor: Allan F. Henry
Thesis Reader: Kent F. Hansen
Titles: Professors of Nuclear Engineering
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis is concerned with the numerical solutions for static

neutron diffusion problems using finite element piecewise polynomials

combined with synthesis techniques in space variables.

The study of the solutions for the neutron diffusion problem

is important, both in reactor economics and reactor safety. One

major concern of the reactor physicist is that the prediction of

the behavior of a reactor after any foreseeable nuclear accident.

A detailed safety analysis can only be obtained if all the physical

processes occuring within the reactor can be fully understood and

related to each other. Since all these processes can be shown to

be independent on the neutron flux distribution throughout the

reactor, a detailed and accurate solution of the spatial neutron

flux is vital [1].

A sufficiently detailed description of the physical process

occurring within a nuclear reactor is the Boltzmann neutron transport

equation [2]-[3]. It is essentially a neutron balance equation in

any point, any angle within a reactor system at any time and is

very difficult to solve. The P-1 and diffusion theory approximation

[4] greatly simplifies the transport equation into more tractable

forms and has been found to give an adequate approximation for the

12



flux distribution for most large-core reactors.

Because of the complexity of reactor geometries and nuclear

cross sections, numerical methods have been widely used to solve

the neutron diffusion problems and have been shown to be more power-

ful than analytical methods. The most widely used method is the

finite difference method [5]-[6], which is quite simple in principle

but which requires relatively small meshes and hence a large number

of unknowns. Thus, if hundreds of thousands of mesh points are

desired, it is extremely expensive to obtain the solution today.

For this reason, finite difference methods have generally been

limited to kinetic problems involving only a few thousand mesh

points or to relatively coarse mesh three-dimensional problems, and

alternate methods have been developed which require determination

of a smaller number of unknowns and yet which can be applied to

complex multidimensional problems.

During the past fifteen years or so a class of approximation

methods known as "synthesis methods" have been developed. The

theoretical basis of modern flux synthesis methods was introduced

into reactor physics by Selengut [7] within the context of variation-

al analysis. Calame and Federighi [8] and Kaplan [9]-[10] wer

among the first to exploit these methods for synthesizing the

spectral and spatial dependences, respectively, of the neutron flux

distribution. Other workers [1l]-[19] have subsequently extended

and tested these techniques until today there exists a sizable

13



literature on these methods.

The central idea of the synthesis methods is to express the

soltuion in terms of a small number of functions chosen to represent

various transient states of the problem. The advantage of this

method is that the expansion functions may be based on the knowledge

of a particular system. However, the selection of proper expansion

functions for various systems is difficult particularly if feedback

effects of a priori, unknown magnitude are involved. Poor selection

of expansion functions can misrepresent the solution to an extent

that is not determinable in a systematic way. Therefore, there is

a need to improve on the synthesis procedure, particularly for

space dependent kinetic problems for complex geometrical systems.

Another computational technique which has been most highly

developed in structural mechanics [20]-[21] and fluid flow [22]-[23]

is the finite element method. Its application to the neutron

diffusion equation made a few years ago has been shown to be quite

successful [24]-[26]. Briefly, it is a process by which, given the

defining equation of a problem, one seeks to discretize the equation

by dividing the problem domain into a substantial number of sub-

domains, referred to as elements. Interpolation functions (usually

piecewise polynomials) are formulated within each element in

terms of parameters associated with nodes on the element boundaries.

Then these nodal parameters are related by the use of some continuity

conditions across the interfaces of adjacent elements. The
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variational method or weighted residual method is then applied to

yield a set of simultaneous algebraic equations for the nodal

parameters. Finally, the approximate solution to the problem is

obtained by the use of a computer.

The advantage of the finite element method is that for a

given degree of accuracy, it requires a smaller number of mesh

points and thus hopefully less computational time relative to the

conventional finite difference method. Also, (in distinction to

the synthesis method) an error analysis can be performed to find

the error bounds of the approximate solution [27]-[29]. However,

when this coarse mesh method is applied to reactor systems with very

complex geometrical complications, the important flux dips and peaks

in small control rods and water holes, respectively, cannot be

accurately predicted unless a considerable number of meshes are

placed in these regions. Thus, the problem comes back to that of

reducing the number of unknowns while retaining the accuracy of the

flux distribution in highly heterogeneous regions.

The idea of combining finite element basis functions with the

synthesis technique in solving the neutron diffusion problems was

first advanced by Bailey and Henry (30]. They used both linear

and cubic Hermite piecewise polynomials multiplied into detailed

subassembly solutions to describe the neturon flux and current

and then used a variational principle to derive the desired set

of difference equations. This method was applied to some
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representative one-dimensional PWR configurations, consisting of

many cells and showed good results compared with those of coarse

mesh finite element methods. However, because the problems were

one-dimensional, there were no continuities at cell boundaries.

Thus it is not possible on the basis of this preliminary work to

provide a reliable evaluation of the potential of the idea.

The purpose of this thesis is to extend the aforementioned

finite element-synthesis scheme to two-dimensional problems by

using a variational technique. Such an extension is not as

straightforward as it might appear to be since, in the two

dimensional case, there are flux discontinuities at cell boundaries.

For example, consider two adjacent subassemblies in a square lattice.

If one cell contains a cross-shaped control rod and the other has

its control rod out resulting in a large cross-shaped water hole,

the flux found by stitching two, zero-current subassembly solutions

together will be discontinuous at the interface. Since potential

errors in overall neutron balance and detailed flux shape are the

matters of chief concern in extending to two dimensions, the thesis

deals only with the spatial approximation for static cases.

Extension to time dependent problems is left for future study.

1.2 The Time-independent, Multigroup Diffusion Theory Equations

In this section, the time-independent, energy-discretized

multigroup P-1 approximation to the Boltzmann neutron transport

16



equation is introduced. The derivation can be found in Glasstone

[31] and elsewhere [4], [32].

The standard form of the P-1 equations for each energy group

g is as follows:

j (r) + D (r)V# (r) = 0 (1.la)

G

_- (r) + Ig(r)# (r) - 9 (rO ()

g'Ig

G G

where the group index g runs from the highest energy group, 1, to

the lowest energy group, G. The symbols and notations used through-

out this thesis are summarized in Appendix A. The net current

vector Jg(r) may be eliminated via Fick's Law, Equation 1.la, to

obtain the multigroup diffusion equations:

G
- D (r)V (r) + 1 (1) 0 (1) - I) ,(r) 0 , (1) =

g-g g

1 C
g l gg g() (.2)

Both Equations 1.1 and 1.2 can be written in matrix form as

17



J(r) +JD(r)V?(r) = 0

V.J (r) + [ IM(r) - r)]@(r) = IF(r)@(r)

-V- ID(r) V(r) + [IM(r) - E(r)]G(r) r)

(1.3a)

(1. 3b)

(1.4)

respectively, where ID(r), M(r), U(r), and F(r) are GxG matrices

defined by

JD(r) = Diag[Dl(r), D2(r) ,---, DG(r)]

14(r) = Diag[jl(r) , 2 G -r) ]

T(r) =

IF(r) =

0

~21(r

-IG1(r)

Xl

X2

XG

0--------
-12G r

0

(1.5a)

(1.5b)

(1.5c)

(1.5d)

and J(r) is the group current vector

J(r) = Col[l (r), J 2 (r),...,jG(r)] (1.5e)

18
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and (r) is the group flux vector

@()=Col[#i ), $2 '''Gr](1.5f)

It is also convenient to define the GxG group absorption,

scattering the production matrix A(r)

A(r) = IM(r) - T (r) - F (r) (1.5g)

so that Equations 1.1 and 1.2 may be written simply as

J(r) + D(r)VY(r) = 0 (1.6a)

V-J(r) + A(r)@(r) = 0 (1.6b)

and

-V. ID(r)?@(r) + A(r)cD(r) = 0 (1.7)

respectively. These forms of the group diffusion equations will be

used throughout this thesis. The boundary conditions on @(r)

accompanying these equations are of the homogeneous Dirichlet or

Neumann type [33], namely

. (r(r )
a +4 a2 )D =r 0
1 an a2  -=*b

if a1 = 0, then () = 0, Dirichlet type (1.8a)

a =b
if a2 = 0, then - 0, Neumann type (1.8b)

where r denotes the spatial vector on the boundary surface and n

is the unit vector normal to the boundary surface.
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The continuity conditions imposed on the solution require

that <b(r) be continuous throughout the problem domain and the normal

component of J(r) be continuous across internal interfaces separating

two different material media.

1.3 Hermite Piecewise Polynomials and Basis Functions

Piecewise polynomials are polynomials defined only over

subregions of the problem domain, rather than over the entire domain.

The piecewise constants used in finite difference approximation can

be thought of as a- special case of the piecewise polynomials.

Piecewise polynomials yield high accuracy for approximations of

functions and their derivatives. Furthermore, besides the simplicity

of differentiation and integration for practical computations, they

have the following convenient features:

1) Piecewise polynomials permit flexibility in imposing the

continuity or jump conditions at the joints of subregions.

Also, boundary conditions can be easily imposed.

2) They provide local approximations and are thus suitable

for approximating the physical behavior of the problems

in which variations occur locally. In our case, for

example, the reactor system is characterized by local

variations of the materials and neutron cross sections,

and the use of a few piecewise polynomials is more

convenient than use of polynomials defined over the

20



entire reactor.

3) The values of functions and their derivatives can be

directly incorporated into the expansion coefficients

if proper piecewise polynomial basis functions are used.

There are many varieties of piecewise polynomials used in

numerical analysis [34]-[36]. In this section we limit the dis-

cussion to Hermite interpolating functions because of their sim-

plicity. For the convenience of the discussion, we shall use

dimensionless variables.

Let us divide a one-dimensional problem domain (O,Z] into

K adjoining regions. Each region k is bounded by nodes zk and

zk+l and has width hk = zk+l - zk. In general, the h k's are

different. It is convenient to define the dimensionless variable

x within each region k as

x z hk (1.9a)

so that region k can be described in terms of z as

zk < z < zk + hk = z k+ (1.9b)

or equivalently in terms of x as

0 < x < 1 (1.9c)

for each of the regions k, k-1, K. This kind of dimensionless

variables will be used interchangeably with the original length

variables.
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Now the Hermite interpolating polynomials, which are

polynomials of degree (2m-1), can be expressed in terms of a set

of basic functions, uk (x) and uk (x). These basic functions are

defined by the following rules:

1) They are polynomials of degree (2m-1) in x.

2) The highest value of p is (m-1)

3) The u (x) are zero except in the interval hk on the (+)

side of zk; similarly the uk~(x) are zero except in the

interval h k- on the (-) side of zk'

4) The p-th derivatives of u (x) are unity at zk and

zero at all other mesh interfaces.

5) Derivatives of u (x), lower than the p-th derivatives,

are zero at all mesh interfaces.

Using these rules, we can construct the basic functions for

Hermite interpolating polynomials of any odd degree. Specifically,

for m-l (p=O only), we have linear Hermite basic functions:

u0-( x, k-l < z < zk (1.10a)
k 0, all other z

0+ 1-x, zk < z < zk+l
uk W 0, all other 2 (1.10b)

and for m = 2 (p = 0 and 1), cubic Hermite basic functions:

0- 3x2 - 2x3, zk-l < z < zk
(x) = al h(1.lla)

uk () 0 all other z

22



0+ .1-3x2 + 2x3 z k z < zk+l (1.1b)

uk (x)=f 0  all other z

2 3
1+ -x2 + x3 z kl< z < zk

ul+X k-1l - k (1.llc)
k (x)={0  all other z

2 3
1+ x - 2x +x, zk < Z < zk+1

Uk (x){ 0  all other z (1.lld)

The forms of these linear and cubic basis functions are illustrated

in Figure 1.1.

The Hermite interpolating polynomial of order m within a

region zk < z < zk+l is just a linear combination of the basis

functions of the corresponding order:

m-1
H (x) = [a u(x) + ai+luk+l(x)] (1.12)

p=0

where a 's and ai's are constants which can be easily related to

the values and derivatives at (+) side of zk and (-) side of zk+1*

respectively, of whatever the function is being approximated.

For two dimensional problems, the Hermite basis functions

can be found by combining all the possible products from two sets

of univariate basis functions, each representing the basis functions

in one direction.
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Linear Hermite Basis Functions (m = 1)

p = 0

0-
uk

zk-l

1

0+
Uk (x)

zk+1

Cubic Hermite Basis Functions (m = 2)

p = 0

0-
uk (X)

0+
Z (x

zk-1 zk zk+1

p = 1

slope =1

27 -

z k-l

1-
uk

r k (x)

zk+1

4
~27i

Figure 1.1 Linear and Cubic Hermite Basis Functions

of Equations 1.10 and 1.11
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1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2

describes the use of a variational principle in time-independent

neutron diffusion theory. The difference equations of some low

order finite element methods applied in one-dimension are derived

from this principle to illustrate the use of this technique.

Chapter 3 is devoted to some consequences of using simple finite

element trial functions as approximations and to an attempt to

solve the discontinuity problem at singular points. The forms of

the finite element synthesis approximation in two-dimensions and

the derivation of difference equations are given in Chapter 4 along

with the results of some sample problems. The numerical techniques

used are also discussed. Finally, Chapter 5 presents conclusions

derived from this study and the possibilities of extending the

method to more general cases.
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CHAPTER 2

VARIATIONAL PRINCIPLES IN NEUTRON DIFFUSION PROBLEMS

Applications of the calculus of variation are concerned

chiefly with the determination of maxima and minima of certain

expressions involving unknown functions. Many laws of physics and

mechanics can be stated in terms of some kinds of minimization and

thus can be formulated in certain forms of variational principles

[33], [37]-[40]. An important example is well known in classical

mechanics; Hamilton's (variational) principle,

6 t2 L dt = 0 (2.1)
t1

is equivalent to Lagrange's equation of motion,

L d 0 (2.2)
aq dt 9 0

where the Lagrangian L is a function of the generalized coordinates

q and the velocities q and time t. Lagrange's equations are, in

turn, equivalent to Newton's.

Variational methods are particularly useful for determining

the approximate solutions of problems when the true solutions are

difficult to obtain. Given the space of trial functions, the

variational methods will pick a "best" one from such a space

automatically. In particular, if the true solution is within the
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space of trial functions, the variational methods will find it as

the "best" solution.

Essentially, the variational method seeks to combine known

trial functions into approximate solutions through the use of a

characteristic variational functional.'" Thetef ore .the -f irst

step of the method is to find the characteristic functional whose

first-order variation, when set to zero, yields the describing

equations and their associated conditions of the system as its

Euler equations. A space of trial functions, given in terms of

known functions and unknown coefficients (or functions), is then

chosen to approximate the solutions of the describing equations.

These approximate trial functions are then substituted into the

variational functional. Setting the first variation of this

functional to zero and allowing arbitrary variations in all the

unknowns in the trial functions results in a set of simultaneous

equations among the unknowns. Solving of this set of equations

yields the "best" obtainable approximate solutions within the space

of trial functions given.

Variational methods can be thought of as a kind of weighted

residual method since weighting functions appear in the functional

and in the equations that result from setting the first variation

of the functional to zero. The weighting functions are determined

by the form of the variational functional itself. In the case of

known adjoint equations, such as in diffusion theory, the
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functional is usually chosen so that its Euler equations include

both the original describing equations and adjoint equations. The

inclusion of corresponding adjoint trial functions in the functional

results in adjoint weighting in the variation equations and allows

greater approximation flexibility for the variational method.

2.1 Variational Principles in Diffusion Theory

The time-independent multigroup diffusion equations, given

by Equation 1.4, can be written as

IID = (D 1(2.3a)

where

F=- V - ID V + 1- T (2.3b)

The corresponding adjoint equations are

H*@* = 1 ** (2.4a)

where the adjoint operators, 1H* and F* are defined as the transpose

of the corresponding operatorslH and IF, respectively:

1 T* = I = - *-DV +3M - rT (2.4b)

since U and I4 are diagonal. * is the group adjoint flux vector, or

importance vector, which must obey the same boundary conditions as

@[41].
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The exact solutions 0(r) and 0*(r) of the diffusion equations

and the adjoint diffusion equations can be approximated by flux and

adjoint flux trial functions U(r) and U*(r) using a variational

functional of the form

JRU*U = u*T [ lilT - FU Idr (2.5)

where it is assumed that the group flux trial function vectors U* and

U as well as the normal components of the group current vectors IDVU*

and IVU across interfaces are continuous, and that U* and U vanish

at the outer surface of the reactor region R. If we denote the

arbitrary trial function variations for the adjoint flux by 6U* and

making F1 stationary with respect to U*, we have

6F1 =R u*T DHU - IFUIdr =0 (2.6a)

which contains the desired Equation 2.3a as its Euler equation.

Similarly, since Equation 2.5 can be written as

F1 JfR U[T]T I9FTU* ]dr

=R UT [*U* -
F*U*]dr

making F1 stationary with respect to U gives

U= UT[ fl*U* - -IF*U*]dr = 0 (2.6b)
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where 6U is an arbitrary variations of flux trial function U. The

Euler equation of Equation 2.6b is evidently Equation 2.4a. Thus,

we see that the exact solutions along with the exact eigenvalue are

reproduced if the exact solutions are contained in the given space

of trial functions. Generally, however, the trial function space

does not contain these exact solutions and only approximate solutions

and eignevalues are obtained from invoking Equations 2.6.

Thus, the accuracy of the above approximation depends solely

on the forms of the flux and the adjoint flux trial functions. Each

trial function can be defined in terms of known functions and

unknown coefficients (or functions). Independent variations of

the unknown coefficients of the adjoint trial functions in Equation

2.6a will then yield the "best" flux solution for that class of flux

and adjoint trial function. The corresponding "best" adjoint flux

solution is found in a similar way by using Equation 2.6b.

The variational functional F1 is not the only functional that

produces the desired variational equations 2.6 when made stationary.

Anohter functional incorporating the flux and adjoint flux diffusion

equations is the Rayleigh's principle [42],

RU* 3HUdr

F2[U*'U] 1 - (2.7)
U* 3FUdrxfRU'd

Although the forms of F2 and F1 differ, it can be shown [43] that

functional F2 gives identical Euler equations as Equations 2.6 and

is equivalent to functional Fl. However, because the form of F1
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is much simpler than that of F it will be used later in this

thesis.

2.2 Discontinuous Trial Functions

In the previous section we stated that the admissable trial

functions for flux and adjoint flux used in functional F1 must

satisfy certain continuity conditions inside the reactor region R.

This restriction greatly reduces the flexibility and generality of

our methods. In this section the class of allowable trial functions

will be extended to include discontinuous flux and current trial

functions.

Special provisions must be made in the approximation method

such that this extended class of trial functions can be properly

used. In order to account for the discontinuities in the trial

functions, it is necessary to include special terms specifying

continuity conditions directly in the approximation method. This

can be achieved through the use of a variational functional whose

Euler equations include not only the original P-1 equations but

also the associated continuity conditions for both flux and current.

A general functional of this type which allows discontinuous flux,

current and adjoint trial functions is given [18], [44]-[46] as

follows:
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F3 .U*,U,V*,v] = {U*T l + Aul + V*T. [VU +D_'V]1dr

+ n -[ (U* +U*) _V+ y4 +V*) T (U+ - U) ]ds (2.8)

r

where U*, U, V*, and V are the group flux and group current approxima-

tions to D*, @, J*, and J, respectively, and where the first integral

extends over all r inside reactor region R and the second extends

over all interior surfaces where discontinuities occur. i is the

unit vector normal to interior surfaces. Quantities evaluated on

sides of surfaces toward which is pointing are denoted with the

subscript (+) and evaluated on the other sides of such surfaces are

denoted with the subscript (-).

The first variation of F3 with respect to the adjoint

quantities can be found in a straightforward manner:

F*= T[v.v + AU] + 6V*T. [VU +]D 1 V]ldr
3 R

+ . [ (6U* + 6U*)T (- V_)+(6y* +6V*)T(U-U_) ]ds (2.9)

r

The desired P-1 equations, Equations 1.6, and the associated con-

tinuity conditions for flux and current at the inner surfaces follow

directly by setting 6F = 0. To show that the adjoint P-1 equations

and the continuity conditions for adjoint flux and current also

resulted from this variational functional if F3 is made stationary

with respect to variation in the unstarred quantities, it is

32



necessary to rearrange Equation 2.8. This can be done by integrating

by parts terms involving spatial derivatives and replacing all

terms by their transposes. The result is the alternate expression

F [U*,U,1*,V3 = {UT[-.VV* + A*U*1+ -[-_.V* +] U)-V*]}dr

lf..T T
- - [(U+ + U_)T (V - _V*)+(V + V..) (U* - U*)]ds (.0f + + - -+ + -(2.10)

It is clear by now that if the first variation of F3 with respect to

its unstarred arguments is now set equal to zero, we get adjoint P-1

equations along with their continuity conditions:

- V-J* + A*$* = 0 (2.lla)

VO* - D~1J* = 0 (2.11b)

*= (2.110)

. = .J* (2.lld)

In most applications, only approximations to the flux and

current solutions are desired. In such cases variational functional

F3 in the form of Equation 2.8 is more convenient and the approxima-

tion is then based on the following:

fR 6uT [V+ AU] + 6V* T -LU + ID l] )dr +

1T T
+ - [ (SU* + 6U*) ( - V-)+(6V* +6V*) (U+ - U_)]ds=0

r (2 ) +
r (2. 12)
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If the adjoint trial functions are defined as

U* = U (2. 13a)

V* = V (2.13b)

then Equation 2.12 reduces to the Rayleigh-Ritz Galerkin method

[47]-[49], a weighted residiml method based upon flux weighting.

The variation equation can be further simplified for certain

cases regardless of the choice of weighting. For the approximation

methods which require the currents to obey explicitly Fick's laws:

V -VUDU (2.14a)

V*= + DVU* (2.14b)

Equation 2.12 reduces to

R[6U*AU - 6V*T ]DV]dr_

+ fi.[(6U* - 6U*)T (V + V_)+(6y + 6_V) (U+- U_)]ds = 0

r (2.15)

If in addition the flux and adjoint flux are required to be everywhere

continuous, the above equation reduces to the simple form

R[6U* AU - 6V*T , - dr = 0 (2.16a)

or equivalently,

f [6U** AU + (&6U*)- ID(VU)]dr = 0 (2.16b)
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One note about the boundary conditions: In the present

discussion the allowed trial functions used in the approximation

methods must satisfy the same boundary conditions as the true

solutions. Though it is possible to extend the variational principle

so that the permissible class of trial functions is augmented to

include functions with arbitrary conditions on the boundary, we

shall not pursue this point since the imposing of boundary conditions

is easy with the use of Hermite interpolating functions as trial

functions.

2.3 Fick's Law as a Consequence of Variational Principle

Some simple derivations of the difference equations are given

here using trial functions of finite element methods in one-

dimension. These derivations will show that Fick's law always sur-

faces as a natural consequence of the variational equation 2.12. In

each case, flux and adjoint flux continuity is assumed in the

approximate trial functions while current continuity is not. Various

forms of current trial functions are used in different cases. In

the derivation process we shall first allow the values of trial

functions at boundaries to vary arbitrarily, then impose the re-

quired boundary conditions (which usually involves setting some

boundary values to zero and eliminating some equations) after we get

the general system of equations. This procedure is totally

equivalent to that of first imposing boundary conditions and then
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finding the desired system of algebraic equations, and will be used

throughout this thesis. In this way we can accomodate various

sets of boundary conditions at one time.

2.3.1 The Linear Basis Function Approximation

The group flux trial functions defined as nonzero within each

region k can be expressed in terms of linear basis functions as

Uk (z) = (1-x)Pk + k+ (2.17a)

k = 1 to K

U*(z) = (1-x)Pk + xPl (2.17b)

where P and P* are the approximate group flux and adjoint fluxk k

column vectors, respectively, at point zk, and 0 < x < 1 within

each region k. Figure 2.1 illustrates the form of these trial

functions. Different forms of current trial functions can be used.

We shall start with (i) Fick's law current, followed by (ii) constant

current, (iii) linear current, and (iv) quadratic current trial

functions within each region k.

(i) Fick's Law Current Trial Functions:

The group current trial functions which obey Fick's law are

given, according to Equations 2.14, by

Vk(z) = hIk(x)[Pk k+1] 2.18a)

; k =1 to K

V*(z) = Ekj()[P* P*] (2.18b)
k hz k k
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zk-1 zk zk+l

Figure 2.1 The Flux Trial Functions of Linear Finite

Element Approximation
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Insertion of these trial functions into variation equation

2.16a results in the equation

K 1

k {[(l-x)P + xk+ k(x)[(x)pk + xP ]
k=1 0

+ [6P - 6Pk+1 1  - P 1J}dx =0 (2.19)
h k

Allowing arbitrary variations in all P* results in a system of
k

K+1 equations in K+l unknowns which can be written as:

b P + dP2 0 (2.20a)

akkl +k k + Ck k+l = 0 ; k = 2 to K (2.20b)

aK+1PK + bK+ PK+l =0 (2.20c)

where the GxG matrix coefficients ak, bk, ck are of the form

A - B and are defined in Section 1 of Appendix C assuming

homogeneous regional nuclear constants. Zero flux boundary conditions

can be imposed by use of only Equation 2.20b with P1 = PK+1 = 0'

while symmetry boundary conditions require the use of the other

equations as well. The matrix form of these equations for the

boundary conditions of zero flux on the left and symmetry on the

right is given in Figure 2.2.

(ii) Constant Current Trial Functions:

The current trial functions which are constant within each

region k are given by

38



k Sk

+1 K+1 PK+1

1

2 2

6k 5k k

K+1 K+l
PK+l

L~)
~0

Figure 2.2 Matrix Form of the Linear Finite Element Method Approximation.
Eqs. 2.20 for the case of zero flux on the left and symmetry
boundary condition on the right.

Where: ak k X k

b k
k k X k =2 to K+l1

ck = 1 1C



Vk(z) = Qk (2. 21a)

; k = 1 to K

Vk(z) = Q (2.21b)

where Q and Q* are column vectors with constant elements representing

the approximate values of group current and adjoint current,

respectively, in the region k. Since Fick's law is not true in

this case, Equation 2.12 must be used instead of Equation 2.16a.

Insertion of Equations 2.17 and 2.21 into variation equation 2.12

yields the equation

h {[ f 1-x)6P + x6P* ]T kA(x)[(l-x)P + k+
k=l 0

+ 6Q*T [-(Pk +1
k h k k ~ kxkQk]d

K
+ k 2k-1) = 0 (2.22)

Allowing arbitrary variations in all Q* gives

f [P k+ k) + hk Dk xQkdx = 0; k= 1 to K

.*. [j (x)dx]Qk ~ k k+l k

or equivalently,

Q 1 1 1:klxdx-
k Vk(z) = - [ (x) x] (Pk+l k)

-[IfIDk(x)dx] -d U(z) ; k = 1 to K (2.23)

0  
dzk
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Equation 2.23 can be thought of as Fick's law in an integrated sense.

In the case of constant diffusion coefficients within each region k,

Equation 2.23 reduces to the simple form of Fick's law:

Vk (z)=-]Dk d Uk(Z) (2.24)

in each region k.

Allowing arbitrary variations in all P* results in a systemk

of equations of the same form as Equations 2.20, if we substitute

PkIs for Qk's by using Equation 2.23. The matrix coefficients are

different in general. However, for the case of homogeneous regional

nuclear constants, they are identical to those given in Section 1

of Appencix C.

(iii) Linear Current Trial Functions:

The linear current trial functions which are not necessarily

continuous across the inner interfaces between regions can be ex-

pressed in terms of linear basis functions as

Vk(z) = (1-x)Qk,+ + xQk+l- (2.25a)

: k = 1 to K
V*(z) = (1-x)Q* + xQ* (2.25b)k k9+ 10

where Qk,+ and Qk+1,- are the approximate group current column vectors

at positive side of node zk and negative side of node zk+1, respective-

ly. The form of these trial functions is illustrated in Figure 2.3.

Substitution of Equations 2.17 and 2.25 into variation equation
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2.12 results in the equation

K T
hk <[(1-x) 6P* + x6P ] { (k+1,

k=1 0 k h

+ A(x) [ (-x)Pk + Xpk+l}>dx

K 1r 1 1

+ hk <[ (1-x)6Q* + x6Qk+, k+ pkf k+ X~k+19- h k+l k
k=l 0

+ 1D- WxI[(1-x) Qk + xQk lI>dx
+ k k,++ k+1l,-]}d

K T
+ 6PT ( - k =

k=2

Allowing arbitrary variations in all Q , we have

21(Pk+1 k) + [J(1-x) 2 1j1 (x)dx]Qk,+

+[J (1-x)xIDk (x)dx]Qk+, - 0; k = 1 to K

Similarly, arbitrary variations in all Qk1, gives

1(Pk1
2h k +l P) + [J x(l-x) ]D~'(x)dx]Qk,+

+[1 x 2 1 (x)dx]Qk+1,- = 0; k = 1 to K
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Solving simultaneous Equations 2.27 results in

Qk,+ - 1 [ix]D(x)dx]-[i (1-x)x ek (x)dx] }(P1
ks+ 2h k k+ jk k 0(k+lk)

k 0 0
(2. 28a)

Q IB [fl~-x)'D~l~~dx]'-[f(l-x)x]Dk (x)dx]-
Qk+1,- 2hk k+1- x)dx] [

(Pk+1 k) (2.28b)

where]Bk,+ and k+1,- are GxG diagonal matrices defined by

Bk,+ rfx2 -l(x)dx]l 'x(1-x) ]Dk1 (x)dx]
0 0

- [ fx(l-x) Ek 1 (x)dx] l 1[f-(x)2 D- 1(x)dx] (2.29a)
0 0

EBk+1,- =[lx2 -1 lx)dx] 'fl~ -x]Ekl x)dx]

-[f x(l-x) IEkl(x)dx]l fx2 -l(x)dx] (2.29b)
0 0

If E)k(x) is constant within each region k, then Equations 2.29

and 2.28 can be reduced to

B B1 -1 -1 1 -1 1 -1 -1 1 -1 3
B k+1,- =Bk,+ IDk IDk kIDk V

and

Qk+1,- k,+ (Dk 1- 1 k+1 k k k+1

so that the current trial functions become constant and are given by
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Vk(z) = , - h Ik (Pk+1- Uk Uk(z); k = 1 to K

(2.30)

i.e., the current trial functions are related to flux trial functions

via Fick's law.

The system of equations relating all P k's can be found by

allowing arbitrary variations in all Pg's in Equation 2.26 and sub-
k

stituting for all Qk,+'s and Qk+1,-'s with P k's. Under the circum-

stance that all regional nuclear constants are homogeneous, Equation

2.20 with matrix coefficients defined in Appendix C.1 results.

One interesting situation arises when some regions are

symmetric. For example, if region k is symmetric, then Dk(x)

k (1-x) for 0 < x < 1. Substract Equation 2.27b from Eq. 2.27a gives

Qk+l,- Qk,+ since

f1lx) 2 U1 (x)dx = (1-x) 2 Dk 1 (1-x)dx = 1x2 D-1(x)dx
0 0 0okf

by simple change of variables. Therefore, the current trial functions

become a constant in this region and is given by

Vk (z)=Qk,+ - ([x]D x)dx] ~(k 1 x f kl(x)dx] 1

d (Z
SUk(z)

which, as it must, reduces to Fick's law if Dk(x) is constant.
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(iv) Quadratic Current Trial Functions:

The current trial functions which are quadratic in general are

given by

Vk(Z) = x2Lk + xMk + Nk (2.31a)

k= ltoK

V*(z) = x2L + xMI + N (2.31b)

where Lk, Mk, Nk and their corresponding adjoint quantities are all

Gxl column vectors with constant elements. They are not continuous

across the region interfaces in general and are illustrated in

Figure 2.4.

Insertion of Equations 2.17 and 2.31 into variation equation

2.12 results in the equation

K 1 T

hk <[ (1-x) 6 P + x6k+1 {(2xLk+Mk
k,=1 0k

+ Ak k+ xk+1]}>dx+A k(x)[(l-x)Pk + Pk+l ]d

K 1 2Tl
+ Ih <x26L + x6M + 6N*]Tk(P k+lPk

k=l 2

+Dk 1l 2Lk + xMk + Nk]}>dx

K
+ I 6P* [N - (L + Mk1 + Nk-1)] = 0 (2.32)

k=2

Allwwing arbitrary variations in L , Mg, and N* yields a set of

equations
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zk-1 zk zk+l

Figure 2.3 The Linear Current Trial Functions (as defined

by Equation 2.25a)

zk-1 zk zk+l

Figure 2.4 The Quadratic Current Trial Functions (as defined

by Equation 2.31a)
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hk 2{ k+1 k) + ()[ 2 L + xMk + Nk])dx - 0 (2.33a)

hkf x 11 (Pk+l k) + ]Dkl (x)2 Lk + xMk + Nk])dx = 0 (2.33b)
0 hk

hk k+1 + - (x)[x2 L + xMk + N -]dx = 0 (2.33c)hkfl ~h k+l- k ~k (x[ k Nkd
0 k

k = 1 to K

which can be solved for Lk, Mk, and Nk in terms of Pk and Pk+1. For

the case of constant k in each region k, Equations 2.33 have

the solution

k ; k - 1 to K

Nk = kk k+l k

so that the current trial functions again become constant and obey

Fick's law.

Again, the system of equations for all P k's is given by

Equations 2.20 under the assumption that all nuclear constants

are homogeneous within each region.

2.3.2 The Cubic Hermite Basis Function Approximation [50]-[51]

The group flux trial functions within each region k can be

expressed as a linear combination of cubic Hermite basis functions

as
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Uk( = (1-3x 2+2x3 k + (3x 2-2x3 )Pk+l

2 3 -123 -
-(x-2x +x )h D (x)Qk x )h D(x)Qk+ (2.34a)

2 3 2 3U*(z) = (1-3x +2x )P + (3x -2x +1

-(x-2x2 +x3 )hklD W Qt - 2 +x3 )hk]D-1 (X)Q+ (2.34b)

where k = 1 to K. P is the approximate group flux solution vector atk

node zk and the meaning of Qk will become apparent later. Because

of the properties of basis functions, continuity of flux is automatical-

ly met since

Uk(zk) = Uk(x=O)=PkUk-1 (x)=Uk-l(zk)

U*(zk) = U*(x=O)=P*=Uk(X=1)mU-l(zk

Figure 2.5 illustrates the forms of these trial functions.

For the current trial functions we shall again assume various

forms starting with (i) Fick's law current and followed by (ii)

Quadratic current and (iii) Linear current approximations in each

region k.

(i) Fick's Law Current Trial Functions:

Application of Fick's law defines the current trial functions

for each k as
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zk-1 zk zk+1

Figure 2.5 The Cubic Hermite Basis Functions

Approximation (as defined by Equation 2.34a)
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Vk(z) = hDk(x)( 6 x- 6x 2 k~k+1)+(1-4x+3x2 )Qk+(-2x+3x 2 k+1

(2.35a)

V*(z) = Ek (x)(6x-6x 2 +(P*1-P*)+(-l+4x-3x 2)Qk+(2x-3x2 )Q+ 1

(2. 35b)

where the assumption that Dk(x) varies very little with x inside each

region k has been made. From Equations 2.35 it is clear that Qk is

the approximate group current solution vector at node zk and that

current is continuous across the region interfaces:

Vk(zk) = Vk(xO) = Qk= Vkl (xl) = Vk-l(zk)

V*(zk = V*(xinO) = -= V* (X-l) = V*l(zk
V (z kk k-1 k-l zk

Equations 2.34 and 2.35 are now substituted into variation

equation 2.16a and the resultant lengthy equation can be written

as follows:

6P* (bl P + b2 Q + dl P + C2
1 1 1 b 1Q1  l1P2  lQ

+ 6Q*T {b3 P  + b4 Q + c3 P2 + c41Q2

K T

+ 6 P{al +akk- blk + + clkPk+1 + kk+1

K

+ I6Q* {a3k k- + a4k k- + b3*Pk + b4k k + c3k k+ + c4k~+
k=2k k kk k k+l kQk+l
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+ P 1 {alK+1 K + a2K+lQK + bK+1PK+l + b2K+lQK+l}

+ 6Q* {a3K+ K + a4K+1QK + b3K+lPK+l + b4K+1QK+l =

(2.36)

where GxG matrix coefficients {al,---,c4} are of the form A - and

are defined in Section 2 of. Appendix C assuming homogeneous regional

nuclear constants.

Allowing arbitrary variations in all P* and Q* results in a

system of 2(K+l) equations in 2(K+l) unknowns. The choice of either

zero flux, Pk = 0 as well as P - 0, or zero current, Qk = 0 ask ~ kk

well as SQ* = 0, boundary conditions for k - 1 or k = K+1 reduces the
k

system to a set of 2K equations in 2K unknowns. Figure 2.6 illustrates

the matrix form of such a system for the case of zero flux on the

left and zero current on the right boundary conditions.

(ii) Quadratic Current Trial Functions:

As in Section 2.3.1(iv), the current trial functions which are

quadratic are given by, Equations 2.31. The insertion of Equations 2.34

and 2.31 into variation equation 2.12 yields

K kl2 3 *+ 2 36p 23 -
h <[(1-3x +2x + (3x -2x )k+1 + (-x+2x -x )hk ]D (x)6Q

k=l kj0  k]l

+(x2_ 3 )hk 3D~(x)Q+ 1 ] { (2xLk4 k)+ x) [(1-3x2 +2x3 )k
k

2 D~lx)hk*] h k (x)k(x (x)

+(3x2 2x )pk+l + (-x+2x2 x3  k +( 2 _ 3  1  K+l

dx
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b4 c3 c4

a22 bl 2 b2 2 c12

a42 b32 b42

L

c2
2

c32 c42

-I

alk a2k blk b2k clk c2k

a3k a4k b3k b4k c3k c4k

alK a2K

a3K a4K

blK b2K ClK

b3K b4K c 3
K

alK+1 a2K+1 blK+l

Q1

Q2

P K+l

= 0

Figure 2.6 Matrix Form of the Cubic Hermite Finite Element Method Approximation

Equation 2.36 for the case of zero flux on the left and symmetry

boundary conditions on the right

where ank = ank ~ k

bnk = 1nk En

cnk =1
nk ' ~k X nk

n = 1 to 4
and

k= 1 to K + 1

U'

P k



K 1k l < x 6 ~ , ] { _ 2+ 2  + x + { [(6x-6x2  k+l~k)

2k-12 -

+ (-l+4x-3x 2)hkDk (x)Qk + (2x-3x2 1hk (x)Qk+l

Skl(x)[x2Lk + xMk + Nk}>dx

K
+ I 6P* [Nk-(Lk-l + 1-kl + Nk-1] = 0 (2.37)

k=2

Assuming thatID k(x) is constant within each region k and allowing

arbitrary variations in all L q , M and N results in the following

equations:

1 k+ 1 + k-lk+
h kEt kl ) -3kmk Qkl0kk k+l]

k. +D ( Lk + Mk + Nk)=0-

11 1 -1 1
2 k+1 ) 12 k k 2k 12 hkk. k+l1

+ ID 1 (1 L + M + Nk

1 ( -P' -1 1 1
h (Pk+l k) +Dk ( Lk + Mk + ) 0

which can be readily solved to give

Lk hWkk k+1-) + k + Qk+1

M -P pso k1 2(2Q + )
Nk h k(.8k k+l)kk+l

N k =k (2. 38)
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so that the group current trial functions in this case becomes

Vk 1 k(6x-6x2 )(Pkk+1)+(l-4x+3xQ+(-2x+3x2 )k+l

i.e., the Fick's law current.

It can be shown that Equation 2.36 with identical matrix

coefficients, as defined in Appendix C.2, is the result of taking

arbitrary variations in all P* and Q* in Equation 2.37 and sub-k k

stituting for Lk, Mk and Nk using Equations 2.38.

(iii) Linear Current Trial Functions:

To make the notation more&clear, the linear current trial functions

given in Equations 2.25 may be rewritten in the form

Vk(z) = xMk + Nk (2.39a)

; k = 1 to K

V*(z) = + N* (2.39b)

k z)xTj k

where Nk is the approximate group current column vector at positive

side of node zk and (Mk + Nk) is the approximate group current vector

at negative side of node z k+l*

Substitution of Equations 2.39 and 2.34 into variation equation

2.12 results in the equation
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k <[ (1-3x2+2x3)6P*+(3x2-2x3)6 Pk+ +(-x+2x 2 _ hk -1
k=- 0

+(x2 3 )hklk k+1] 6Q*ITk1 (x) [ (1-3x 2+2x3)k+(3 x 2-2x3 k+l

+(-x+2x2_ 3 )hk ( k + (x2-x )hk Dk (x)Qk+l ]}>dx

K l T 2 2
+ 2 hk <[x6M:+6N ]T{ [ 6x-6x )k+1 k)+(-l+4x-3x2 -l k
k=1 0 k

2 -1 -1
+ (2x-3x,)hktDk (x)Qk+I] +]'Dk (xX 'k+N k )}>dx

K
+ I SP [N - k-l

k=2
+ Nk-1)] = 0

Assuming that IDk(x) is constant within each region k and taking

arbitrary variations in and N* yields the following equations:

1 [i(Pk+1 k) + L- hk k k1]

1 -P-P + 11 +
hkPk+lk) + ]k (Mk +Nk)

+k ( Mk + Nk) 0 0

=0

which have the solution

= Qk+l

N -0D (P -P
k hk k k+l k) + 2(kk+L

The current trial functions then take the form of

Vk(z) = k k k+ +k ( - t) Qk+lk
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which is not Fick's law. This result is expected since the degree of

the assumed current trial functions is not high enough.

2.3.3 Summary of Section 2.3

From the study of the previous two subsections, we see that the

use of variational equation 2.12, which is derived from setting the

first variation with respect to adjoint quantities in the variational

functional F3 to zero, has the ability to force the current trial

functions to obey Fick's law in one-dimension provided the following

conditions are imposed:

1) The flux (and adjoint flux) trial functions are continuous

across the region interfaces,

2) The diffusion coefficient matrix ]Dk is constant within

each region k, and

3) The degree of current trial functions is higher than or

equal to the degree of flux trial functions minus 1.

It can be shown (through more lengthy algebra) that the above con-

ditions also apply to two-dimensional problems. In this case, however,

we must change the third condition to say that the degree of X-direction

current trial functions in x must be higher than or equal to the degree

of flux trial functions in: x minus 1 and the degree of flux trial

functions in the y must be higher than or equal to the degree of flux

trial functions in y. An analogous condition must be satisfied by

Y-direction current trial functions.
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In the next two chapters, we shall assume that the approximate

current (and adjoint current) trial functions are always related to

the approximate flux (and adjoint flux) trial functions via Fick's

law, whether the latter are continuous acorss the region interfaces

or not. However, when it is possible to make the flux trial functions

continuous throughout the reactor (as in Chapter 3), we shall assume

that too, so that the simpler variation equation, Equation 2.16a,

can be used instead of Equation 2.12 in the derivation of the

difference equations.
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CHAPTER 3

INVESTIGATION OF FINITE ELEMENT METHOD USING DISCONTINUOUS

CURRENT TRIAL FUNCTIONS

For a one-dimensional problem, the use of linear Hermite inter-

polation polynomials as approximate flux trial functions in the

form of Equations 2.17 limits the number of unknowns to one for each

node. Since these unknowns are tied up with the approximate values

of the flux at nodal points z = zk, this leaves us with no choice for

imposing the current continuity conditions if Fick's law current

trial functions are used. The same situation also exists in two-

dimensional problems if we use bi-linear Hermite interpolation

polynomials as flux trial functions and demand that they be continuous

across all region interfaces.

The approximation employing cubic Hermite basis functions in

one-dimension, as described in Section 3.2 of Chapter 2, has the

ability to match both flux and current at interfaces between adjoining

regions if Fick's law is assumed. Extension to using bi-cubic Hermite

polynomials as flux approximations in two-dimensions, however, en-

counters the problem of current discontinuity in that no matter what

forms of approximate trial functions are used for the flux, there is

no way to force the Fick's law current trial functions to be con-

tinuous at those points which are formed by intersections of two or

more material interfaces [52]. These points are called singular points.
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In order to make the approximate solution to the diffusion

problem more complete, it would be necessary to include the singular

solutions [47], [53]-[54]. However, this is an impractical task for

computation and the approach to be taken in this thesis is to ignore

the singular part of the solution. The effect of singular solution

on reaction rates and integral properties in reactor problems is

generally negligible.

It is the aim of this chapter to investigate the consequences

of not imposing any condition on those "current" coefficients in the

cubic (or bi-cubic) flux trial functions, thus completely relaxing

the requirement of current continuity. Use of the variational

functional F, which permits the discontinuous trial functions in

its solution space, whould enable us to find the "best" relation

between these floating parameters. For simplicity, and without loss

of generality, we shall assume that the nuclear constants are

homogeneous within each individual subregions.

3.1 Derivation of Difference Equations in 1-D

The approximate cubic flux trial and weight functions, which

are continuous throughout the 1-D problem domain, can be expressed

in the following forms:

Uk(z) = u (x)Pk + u 0(x)Pk+1 + ul+ (x)k,+ + u1 (x)Qk+1,- (3.la)

0+ 0-
U* (z) = u 0 (x)P* + u 0-(x)P* 1+ 1
k = k+l + u l Q* + u~(x)Q* (3.lb)k,+ k+1,-

k = 1 to K
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where the Uk *k' Sk,+' k,- and corresponding adjoint quantities

0+ 1±
are G-element vectors, and a ~(x) and u (x) are cubic Hermite basis

functions defined by Equations 1.11. With the understanding that they

are defined only over subregion k for each k = 1 to K, we can suppress

the subscripts associated with them. The current trial functions

defined by Fick's law in each region are given by

V Z 1 du 0 du 0 - dul1 Q+ du 1 -
k(z) - k dx k + k+1 dx k,+ dx k+,-

(3.2a)

V*(z) 1 E 1 P* + d0Pk +d Q* + dx +1,
k \k1dx k dx k+1 dx k,+ d kl-

k = 1 to K (3.2b)

Insertion of these trial function forms into variation equation

2.16a results in the equation

h 1 {[6Pu (x) + 6Pku 1+(x) + +*1,- T
klJO k u ±+(x k+l k +u ()+uk+..u()k1 k0

"k[u 0+ (xPk + u 0~(x)F k+1 + ul1+ ()k,+ + u 1~(x)Qk+l 1- x

du+ du0~ dul du+1

1 1 f, Q6 du+ + * du- + 6Q* dul.+ +SQ* 1.du-T
k=l + k 0 k dx k ,1x- k+ dx k+l,- dx

1) du0+P +du0- P u1+ Q1 d - Q 1d
k dx k dx k+1 dx Qk,+ + Qk+l,-]}dx - 0

(3.3)
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Allowing arbitrary variations in all P*, Q , and Q*k+1 results in

a system of 3K+1 equations in 3K+l unknowns (Pk, k = 1 to K + 1;

Qk,+, k = 1 to K; and Qk,-, k = 2 to K + 1). These equations are given

in Section 1 of Appendix D. The GxG matrix coefficients in these

1
equations are of the form A - B where A includes diffusion,

absorption and scattering of neutrons and B includes fission neutron

production of certain regions.

The choice of either zero flux, Pk=0 as well as 6P*=O for k=1 cr
k

K+l, or zero current, Q+=6Q*= 0 or K+,- =6Q = 0, boundary

conditions reduces the system to 3K-1 equations in 3K-1 unknowns. If

we arrange the unknowns in order of Q k k, Qk,+, then the resultant

coefficients matrix of this system of equations is a symmetric, 7-

stripe matri4.

3.2 Derivation of Differente Equations in 2-D

For two-dimensional rectangular geometry problem domain shown in

Figure 3.1, we subdivide the continuous variable X in the horizontal

direction into I adjoining intervals and variable Y in the vertical

direction into J adjoining intervals so that each region (i,j) is

bounded by the lines X=X1 , X=X+1' YYj, and Y=Yj+1 .* Similar to the

one-dimensional case, we define h =X i+1-X and h =Y j+y as the

widths of region (i,j) in X and Y directions, respectively. We also

define the dimensionless variables x and y within each region (i,j) as
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(XI+1Y 1)

(I,1)

(I, J)

IX +1' J+1(X1 p 'J+j)

h xi Xi+1 - x

h = Y j+1 y j

X - X
x = i <X

hxi i+1 in each of
Y - Y the region

y = h A Y fY<Yj+1 ij
yj

Figure 3.1 The Subdivisions of Rectantular Problem Domain
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x -X

x (3.4a)
xi

Y -Y

y h (3.4b)
yj

so that region (i,j) can be 'escribed in terms of x and y as

O x4l; O1y l

for each region (i,j), i = 1 to I, j = 1 to J.

Because there are four cubic Hermite basis functions in each

direction, 16 bi-cubic basis functions can be formed for a two-

dimensional problem within a region. The most general form of flux

trial function in any region (i,j) is thus a linear combination of

these sixteen basis functions. Careful examination to satisfy the

requirement of flux continuity reduces the general form of flux trial

function in region (i,j) to

U (x 3y)=[P u (xWu 0+(y)+P (0)u 0 (x)u0+ ()+P, +1-(x U00

(0,0) 0+ 0- (1,0) 1+ 0+ (1,0) 1- o+
+P ij+1 u (x) u (y).+P i;-( .+)U xWu (y)+) +1,j j(-)U (x)u (y)

+ P( ) (-)u1~(x)u0(y) + P (10)(+)ul+ Wu0-(y)+i+lsj+l itj+l

+ P (1)(+)u (x Wu1+ (y)+P (1)(+)u0~(xWul1+()
+ P(u~ u~yi+lo ( x

+ P (0,1) (-)u 0 (Wu 1 -(y) + P(O l)(.H.uG+ (X)ul1-(y)i+ltj+l( i~j+l
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+ P (1) (l)u1+ (x)u1+(y)+P i (2)u1 (- u 1+(y)

+ P (3)u1~(x)u (y) + P(1 1) u 1+ (X)u1- (y)] (3.5)i~l~j~ligj+l

where P (00) is the approximate value of flux column vector at node
inj

(X1,X ),P f )* (+)and P (9l (+) are related to X-direction current column

vector at node (Xi, Y ) and Y-direction column vector at node (XiYj+),

respectively, and P (l (k-1 to 4) are related to the approximate

values of XY at (x, Y J), (Xi_, Y ), (Xi_, Y _), and (Xi+, Y _),

respectively, Similar expression for adjoint flux trial functions in

region (i,j), U* (x,y) is formed by replacing all P's with their
19j

corresponding adjoint quantities (P*'s).

The current trial function in region (i,j) can be written as

(xy) = I Qi, (x,y) + J R 9(x,y) (3.6)

where Q (x,y) is the approximate X-direction current trial function

and R (x,y) is the approximate Y-direction current trial function,

both in region (i,j). i and iJ are unit vectors in the X- and Y-

directions, respectively. According to Fick's law,

Q (x,y) I--D iiaU (x,y)ihjxh 3x i,j

ID P(00) d 0+ + 1(0) du (y)
la~ ij WX i+l $j dx U.(Y

+ P(oO) du0- 0- (0,0) du0 +  0-
i+l,j+1 u (y) + P u (y)dx i,j+l dx

64



+ P('51) du u (y) + P(0 () du0+
i9j dx i+1,jx

P (1,0) du1  0- (,) dul+ 0-(
+i,j+1 x u (y) + ij+1 dx u (y)

+ duG + 1+ (0 1) du0  1+
19,j + dx (Y +(+)l , dxU (Y

+ p (01) du~ 1- (0,1) ( du 1-(
i+1,j+1 dx i,j+1 dx u

+ 1 P (1) dul + (y) + P(1) (2 ) dul +(

(131) du 1+ 1-(1)

+ P ( 3 )d -u (1,) (4) d u (y)] (3.7a)i+1,j+1 dx i" g '±j+. dx ~I(.a

and

R (x,y) = - U (xy)h -U x y)
yj

_ - j (0,0) 0+ du + p(0,0) 0- du0+

h, u (x) dy +i+,j dy

(0,0) 0- du0 ~ + P(Oo) 0+ du0 ~
i+j+ (x) dy u x) dy

SP(1,0 (+) u1+ du 0+  P (-) u1- W du+
:Loj (+uC)dy + (- Cx dy

(1,9,0 1 du~ ( 1+ du0 ~

i+1,j+1 dy i,j+1 dy

65



+ p l(+) u 0+(x) d + P (0') (+) u 0~ W du
iti dy i+l , j

(0,1) 0- du ~ (0,1) 0+ du1~
+ p1 (-) dy + Pij+ dy

+ (1 (1) 1 + P (2) 1- du+
i~jdy 1+ () u(x dy

+ P 1(3) u,1) d + P ( (4) u1+ du 3.7b)
i+1,j +1 dy 4)j~ u x d(.b

Similar expressions can be written for adjoint current trial functions

in each region (i,j).

The variation equation 2.16a can now be written as

I J 1 T
I Jh h Jdx dy [6U* A U -

=1 =1 0 0

(6Q*T I-1 + R*T ID - R )] = 0 (3.8)
i9j ±ji19j ijj i9j i9j

Substitution of Equations 3.5 and 3.7 into this equation, then allowing

arbitrary variations in all starred adjoint quantities results in a

system of equations involving (3I+1)(3J+l) equations in same number

of unknowns. These equations are given in Section 2 of Appendix D.

The GxG matrix coefficients in these equations are of the form

A -B. The ordering of unknowns follows the rule that: (i) j=1

to J + 1, (ii) for each j, i=1 to I+1, and (iii) for each (i, j), the

nine unknowns (less than nine at boundary points) are in the order

p(0'0), p(10) +9(1,0)_ . (0,1) ., (0,1) 9(1,1)(i)
1,3 i~j i,3 1,3 i~j i~j
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P"(2'1) , P2( ') (3), and P (.)(4).
i,j i,j i,j

Imposing the boundary conditions reduces slightly the number of

equations as well as number of unknowns. However, regardless of the

types of boundary conditions imposed, the system of equations is

an NxN matrix problem of the form

iA P + 1 P_ (3.9)

where A and B are independent of X and P is a column vector consisted

of N unknown elements. The order N of the matrix equation is dependent

on the chosen boundary conditions and is given for various choices in

Table 3.1.

3.3 Numerical Method

The matrix equations which results from the approximations given

in this chapter are of the form of Equation 3.9. The source iterative

scheme and the Cholesky method which are used in solving these equations

are discussed in this section.

In this Chapter, Equation 3.9 has been defined as ordered first

by spatial indexing followed by group indexing within each spatial

index. For convenience, it is a general practice to reorder these

equations so that they are ordered first by group indexing followed

by spatial indexing within each group. After reordering, Equation

3.9 can be written as

(3.10a)(]L +]M) P = TP + B P
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Table 3.1 Matrix Order N of the Bi-cubic Hermite Basis

Functions Approximations with Discontinuous

Current Trial Functions

1 - Zero flux boundary condition

2 - Symmetry (zero current) boundary condition

Boundary Condition Type Matrix Order

Left Right Top Bottom N

1 1 1 1 G (91J+I+J+1)

1 1 1 2

1 1 2 1
G (91J+I+J-1)

1 2 1 1

2 1 1 1

1 1 2 2

2 2 1 1

1 2 2 2
G(91J+I+J-3)

2 1 2 2

2 2 1 2

2 2 2 1

2 2 2 2

1 2 1 2

1 2 2 1
G (91J+I+J-2)

2 1 1 2

2 1 2 .
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where

A - L +1M - T (3.1Ob)

and: IL, the stiffness matrix, results from leakage; I, the mass matrix,

results from absorption; T is the group-to-group scattering transfer

matrix; and B is the fission source production matrix. If N is the

number of unknowns in each of the G groups, IL and 1 are GxN block

diagonal matrices composed of G NxN symmetric matrices IL and D1 of the
g g

form

L = Diag[ IL 1 -- LGI

24 = Diag[ I,9--, IGI

and T and B are in general full block matrices composed of G NxN

symmetric matrices T gg and B gg , respectively. If only down-scattering

is permitted, T becomes lower block triangular; T gg, = 0 whenever

g > g.

A direct method such as the Gauss elimination method [42],[55]

is inefficient compared to iterative schemes for solving large systems

of linear equations, such as Equation 3.10a. One very commonly used

method in reactor physics calculation is the source iterative scheme

[5], [56]-[57]. In this method, the equation for the j-th iterative

solution of Equation 3.10a is set in the following form

( + )P = G [ T , 1B , 1 P (3.11)
ghe g gg , gg -g

where g =1,2-,G
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l -1;
g' < g

g' > g,

j = 1,2,...,

and P( = Col [ , P ,---,2G ] is an initial guess. In our
_= zCl -2 -C

case, K = L +]M is positive definite and we can use the Cholesky
g g g

scheme [58]-[59], which always gives a unique factorization of1K in

the form

]K =EET (3.12)

wherelE is a

we note that

lower triangular matrix. LetIK = (k ), IE = (e ).

according to Equation 3.12 we have

2
k = e + e.jj ji j2

2 + -- + e
2

jJ

k = e e + el2eJ2 + -- + e e , j <i

Therefore, e can be determined using the algorithm,

J-1 2 1/2
e =[k - e ]

ij n

j-1
e i = [kij - einejn ]/ejj (3.13)

n=1

T
The matrices]Eand E possess the same band structure asIK . By using

g

the Cholesky scheme, the numerical inversion of K is simplified, and it
g

requires only a forward and a backward sweep to invert JE and ET

respectively.

In the eigenvalue problem defined by Equation 3.9, only the largest
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eigenvalue X is of interest because it corresponds to the neutron

multiplication constant in the reactor physics. The largest eigenvalue

of Equaion 3.9 can be determined by the power method 15], [56], [60] which

is determined briefly below. Suppose P'(j+l) is the (j+1)-th iterative
-g

solution to Equation 3.11 for group g before renormalization and PCI) is

the j-th iterative solution fn-o group g after normalization, then

the largest eigenvalue and its eigenfunction are defined by

(j+1)l 
P~ j l

X (j+1) - -) - (3.14a)

S-g -g

S(j+)

- X(j+l)

Steps defined by Equations 3.11 and 3.14 are repeated until the following

convergence criteria are satisfied:

(j+1) (j)
() I (3.15a)

10 () -X

P (j+1) .,(j)
max ng ng < E (3.15b)
n,g I (j) ~P

ng

The whole procedure described in this section can be best

illustrated in Figure 3.2.
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Start

j=o

Read or Generate

P,(0) adX(0)P andXA

Calculate (IL +IM )l for all g usingg g
Cholesky matrix fac-totization method

j - j+l

Compare P (j+1) by

Eq. 3.11

Compute X (j+1) and P(J+l)

using Eqs. 3.14

Is (j+1) _(j) <No

X(j)-

Yes

Stop

Figure 3.2 Solution Scheme for A P = -B P Using

Source Iterative Method.
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3.4 Numerical Results

In this section, some of the numerical results for stationary

eigenvalue problems are presented in order to demonstrate the accuracy

of the variational method using cubic Hermite basis functions as flux

approximations with discontinuous Fick's law current trial functions.

No special computer programs- were written for the calculations and

each individual case was treated as a single computer problem. The

two-group parameters used in the following examples are given in

Table 3.2.

Example 3.1 One-dimensional, Two-group, Single Region Problem

We consider an eigenvalue problem for a one-dimensional two-

group, one region simple diffusion problem. The reactor configuration

is depcited in Figure 3.3.

The analytical solution for this simple problem can be found

easily and is given by

(z) = C sin( ' z)

$2(z) = sin z) (3.16)

where L = 60 cm is the width of the reactor and C is the fast to thermal

flux ratio which is a constand independent of position z given by

2 2 + Z2
C = = 3.337902595

21

The largest eigenvalue A for the problem can be shown to be
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Table 3.2 Two-group Nuclear Constants

(a) Thermal Group

Ftil Water Reflectors

D2  0.4 0.15

E2 0.2 0.02

VEf 2  0.218 0.0

X2  
0.0

(b) Fast Group

Fuel Water Reflectors

D 1.5 1.2

0.0623 0.101

E21 0.06 0.1

VE f 0.0 0.0

Xi 1.0
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-ff2) (121)= 1.031303490

[D(j) 2 + ]+i 2  2 +12

In Table 3.3(a), comparisons are made for eigenvalues and average

fast to thermal flux ratios obtained by various nesh spacings. It is

seen that both the eigenvalues and flux ratios converge to the true

analytical values with decreasing mesh spacings. The average fast to

thermal flux ratio is defined as the average value obtained by dividing

the fast group result by the corresponding thermal group result for each

space unknowns. In Table 3.3(b), the thermal fluxes at various points

of the reactor are compared and it is seen that the flux shape converges

rapidly to the analytical shape as the mesh sizes are refined. The

relative error is defined as

Average Error -Approximate Value - True Value
True Value (3.17)

In Table 3.3(c), the thermal currents at various points of the

reactor are compared with the analytical results. It is seen that the

"best" results for current obtained using a variational method that

permits discontinuities in current are not continuous at mesh points.

As the mesh size shrinks, more and more current discontinuities are

introduced, although the magnitude of discontinuities seems to become

smaller and smaller.

Since the problem is a homogeneous one, the converges to the true

eigenvalue and true flux and current shapes are quite fast. Accuracies

of 10~9 in eigenvalue, 10-5 in flux shape and 10-3 in current shape can
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Table 3.3 Results of One-dimensional, Two-group,

One-region Problem: Example 3.1

(a) Eigenval es and Average Fast to Thermal Flux

Ratios

Az Eigenvalue, X Flux Ratio, C

Analytical 1.031303490 3.337902595

L/2 1.031303421 3.337902612

L/3 1.031303485 3.337902596

1/6 1.031303490 3.337902595

L/12 1.031303490 3.337902595

$ = 01 F l1 = 0
, dz

L = 60 cm

Figure 3.3 Reactor Configuration for Example 3.1
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Table 3.3 (Continued)

(b) Thermal Fluxes with Relative Error

z Analytical Az = L/2 Az = L/3 Az = L/6
(error x 104) (error x 105) (error x 106)

0.0 0.0 0.0 0.0 0.0

5.0 0.13052619 0.13053365 0.13051992 0.13052531
(+0.572) (-4.80) (-6.74)

10.0 0.25881905 0.25871065 0.25879147 0.25881793
(-4.19) (-10.7) (-4.33)

15.0 0.38268343 0.38248222 0.38265889 0.38268085
(-5.26) (-6.41) (-6.74)

20.0 0.5 0.49979957 0.49996639 0.49999785
(-4.01) (-6.72) (-4.30)

25.0 0.60876143 0.60861390 0.60872601 0.60875732
(-3.98) (-5.82) (-6.75)

30.0 0.70710678 0.70687644 0.70703144 0.70710374
(-3.26) (-10.7) (-4.30)

35.0 0.79335334 0.79328492 0.79330454 0.79334798
(-0.862) (-6.15) (-6.76)

40.0 0.86602540 0.86568184 0.86596717 0.86602167
(-3.97) (-6.72) (-4.31)

45.0 0.92387953 0.92330950 0.92383484 0.92387329
(-6.17) (-4.84) (-6.75)

50.0 0.96592583 0.96541020 0.96580584 0.96592166
(-5.34) (-12.4) (-4.32)

55.0 0.99144486 0.99122627 0.99136572 0.99143708
(-2.20) (-7.98) (-7.85)

60.0 1.0 L0 1.0 1.0
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Table 3.3 (Concluded)

(c) Thermal Currents and Relative Errors

* Currents are in the unit of D2 and since D2 is a constant in this example, it is just a

scaling factor
** Wherever a double-value appears, the upper one corresponds to the value at the left-hand

side and the lower one corresponds to the value at the right-hand side of zk'

z Analytical Az = L/2 (error x 10 3 Az = L/3(error x 10) Az = L/6(error x 10 )

0.0 1.0 1.00098816(+0.988) 1.00019725(+0.197) 1.00001242 (+0.124)

5.0 0.99144486 0.99081050(-0.640) 0.99125542(-0.191) 0.99143956(-0.0535)

10.0 0.96592583 0.96498125(-0.978) 0.96584471(-0.0840) 0.96589942(-0.273)
0.96597621 (+0.522)

15.0 0.92387953 0.92350042(-0.410) 0.92396515(+0.0927) 0.92387459(-0.0535)

20.0 0.86602540 0.86636800(+0.396) 0.86561671(-0.472) 0.86596197(-0.732)
0.86677571(+0.866) 0.86611033(+0.981)

25.0 0.79335334 0.79358399(+0.291) 0.79293956(-0.522) 0.79334909(-0.0536)

30.0 0.70710678 0.70514840(-2.77) 0.70704737(-0.0840) 0.70701064(-1.36)
0.71170298(+6.50) 0.70722045(+1.61)

35.0 0.60876143 0.60755666(-1.98) 0.60909913(+0.555) 0.60875816(-0.0537)

40.0 0.5 0.49762201(-4.76) 0.49909484(-1.81) 0.49987771(-2.45)
0.50148711(+2.97) 0.50013468(+2.69)

45.0 0.38268343 0.38189902(-2.05) 0.38201065(-1.76) 0.38268138(-0.0536)

50.0 0.25881905 0.26038768(+6.06) 0.25860398(-0.831) 0.25867894(-5.41)
0.25901496(+7.57)

55.0 0.13052619 0.13308801(+19.6) 0.13126710(+5.68) 0.13050076 (-1.95)

60.0 0.0 0.0 0.0 0.0



be obtained even when a mesh size of Az'= L/6 = 10 cm is used. This

is not the case when the reactor becomes more heterogeneous, as can

be seen from the next example.

Example 3.2 One-dimensional, Two-group, Two-region Problem

The reactor configuration is shown in Figure 3.4. It consists

of a water reflector region and a fuel region. The analytical solution

of this problem is also possible [61], though not easy. The largest

eigenvalue is X = 1.020902463 and the flux and current shapes are

combinations of hyperbolic functions as well as trigonometric functions.

Table 3.4(a) gives the eigenvalues obtained by various methods.

It is seen that all eigenvalues converge to the true value and that the

rate of convergence of the present method is comparable to that of cubic

Hermite method (m = 2). This result should be expected since the only

difference between these two methods is in the initial assumption about

current coefficients in the flux trial functions. In Table 3.4(b),

the thermal fluxes at 5 cm intervals using different mesh spacings are

compared with the analytical solution. The neutron fluxes are seen

to converge to the true solution, though not as fast as in the

homogeneous case. And when Az = L/12 spacing is used, the result is

quite good. Table 3.4(c) compares thermal neutron currents predicted

by the present method against analytical results. It is observed that

the most severe discontinuity usually occurs at the material interface

and that the magnitudes of discontinuities decrease as Az decreases

and as the distances from the interface become larger.
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Table 3.4 One-dimensional, Two-group, Two-region

Eigenvalue Problem: Example 3.2

(a) Eigenvalue, A

Hermite Method* Present Method Finite
m = 1 r = 2 (m = 2) Difference

L/3 1.02483992 1.02145224 1.021534466 1.02397928

L/6 1.02257106 1.02096418 1.020964354 1.02410016

L/12 1.02147201 1.02090512 1.020904977 1.02139257

*From C.M. Kang [24].

0 1 Reflector
0

I - Nclear Fuel
L/3

Figure 3.4 Reactor Configuration for Example 3.2
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Table 3.4 (Continued)

(b) Thermal.Fluxes with Relative Errors

z Analytical Az = L/3 2 Az = L/6 Az = L/12
(cm) (error x 10) (error x 10 (error x 101)

0.0 0.0 0.0 0.0 0.0

5.0 0.08486903 -0.02365409 0.08575762 0.08492856
(-128.0) (+10.5) (+7.01)

10.0 0.30882356 0.046933375 0.32170626 0.30907204
(+52.0) (+41.7) (+8.05)

15.0 0.83938228 0.87290130 0.90204065 0.84008346
(+3.99) (+74.6) (+8.35)

20.0 0.57723662 0.58098635 0.57136244 0.57652361
(+0.650) (-10.2) (-12.4)

25.0 0.41559201 0.42719308 0.39992663 0.41503756
(+2.79) (-37.7) (-13.3)

30.0 0.55164109 0.53331112 0.54655308 0.55164881
(-3.32) (-9.22) (+0.140)

35.0 0.68057223 0.71250788 0.68137634 0.68059766
(+4.69) (+1.18) (+0.374)

40.0 0.79133441 0.77795075 0.79187389 0.79135182
(-1.69) (+0.682) (+0.220)

45.0 0.88074847 0.88394510 0.88098813 0.88075832
(+0.363) (+0.272) (+0.112)

50.0 0.94639693 0.95235240 0.94650201 0.94640103
(+0.629) (+0.111) (+0.0433)

55.0 0.98650822 0.98907119 0.98651891 0.98650875
(+0.260) (+0.0108) (+0.00537)

60.0 1.0 1.0 1.0 1.0

Normalized to $2 (L) - 1.0
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Example 3.3 Two-dimensional, One-group, One-region Model Problem

An eigenvalue problem for a two-dimensional neutron diffusion

equation is considered in this example. The configuration consists of

uniform nuclear fuel and is shown in Figure 3.5. For the one-group

D, 1. and \vif, we use the thermal group constants given in Table 3.2.

For the present method, we only calculate the eigenvalue and flux

shape using a mesh size of L/2 = 20 cm in both directions because of

large number of unknowns (In fact, the number of unknowns is 38 per

group for a 2x2 problem, from Table 3.1). This eigenvalue is listed in

Table 3.5 with eigenvalues for different meshes obtained by the cubic

finite element method and the finite difference scheme, Note that the

present method yields a worse eigenvalue than the finite difference

scheme using the same mesh size. The flux shapes at y = 0 cm and y = 20

cm obtained from present method are compared with the true cosine shapes

in Figure 3.6. The currents are not continuous across all mesh

interfaces.

Example 3.4 Two-dimensional, Two-group, Two-region Problem

In this example, we consider an eigenvalue problem of the two-

group neutron diffusion equations. The system consists of a fuel

region inside and a reflector region outside (Figure 3.7).

In Table 3.6, comparisons are made for eigenvalues obtained by

various methods. For cubic (m = 2) Hermite method, the results given

correspond to using Equation 3.5 as flux trial functions and setting
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Table 3.5 Eigenvalue 1/X of a Two-dimensional,

One-group, One-region Problem:

Example 3.3

Analytical, 1/X = 0.9230903697

Ar Cubic Heri_e* Finite Difference Present Method

L/2 0.9230904055 0.92280573 0.9212300089

L/4 0.9230903703 0.92301801

L/6 0.9230903697 0.92305812

* From C.M.Kang [24].

0

L

= 0
dY L

# = 0

~= 0
* = 0

L = 40 cm

Figure 3.5 Reactor Configuration for Example 3.3
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40.00 10.0 20.0 30.0

Flux at y = 20.0 cm

Analytic

2x2

0.9230903697

0.92122300089 (-0.2023%)

Flux at y - 0.0 cm

Figure 3.6 Flux Shapes: Example 3.3
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1) ID 1P (01)(1) = E)2 P (91)(2) = JD 3P (1)(3) = 3D4 P (1'1) (4) (3.18)

whereIDk is the diffusion constant matrix at k-th corner of point (X.,X.),

at singular points (D 1 D3  ID2 )4 ), and

2) Eq. 3.18, ElDP (l 9(+) = 2P ('t(-), and ]D2P (
0'1 (+) =I E

1 ili 2 ~j 2i~j3 i9j

at all regular points (1 1 D 3 =ID2 D4 ), before applying the weighted

residual process in Ritz-Galerkin method. It is seen that both the cubic

Hermite method and the present method for Ar = L/2 yield accuracy

comparable to that of the finite difference scheme for Ar = L/20.

In Figure 3.8, thermal fluxes at y = 0 cm and y = 20 cm for (i)

Cubic Hermite method, Ar = L/2, (ii) Present variational method,

Ar = L/2, and (iii) Finite difference method, Ar = L/20 are compared.

Note that present method gives slightly better flux shapes than the

cubic Hermite method.

From the results of these numerical examples, it is observed that

the present variational method using discontinuous Fick's law current

trial functions yields eigenvalues and flux shapes comparable to those

obtained from the cubic Hermite method and is generally better than

the linear Hermite method and finite difference method. However,

since the number of unknowns in present method is considerably larger

than that of the cubic Hermite method if the same mesh spacing is used,

we conclude that the cubic Hermite method is better than our present

method.
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Table 3.6 Eigenvalues 1/X of Two-dimensional,

Two-group, Two-region Problem:

Example 3.4

Hermite Method* Present Finite

Ar m = 1 m = 2 Method Difference

L/2 1.0802150 1.1082321 1.1075521 1.0783013

L/4 1.0962251 1.1134916 1.0797120

L/6 1.1040456 1.1140943 1.1105031

*
From C.M. Kang [24].

0

# = 0
dX

L/2

L

i = 0
dY
L/2

L

# = 0

L = 40 cm

Figure 3.7 Reactor Configuration for Example 3.4
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0 10 20 30

Thermal Flux at y = 20.0 cm

Kang's, L/2

Variational, L/2

Finite Difference, L/20

40 cm

1.1082321

1.1075521

1.1105031

0 10 20 30 40 cm

Thermal Flux at y = 0.0 cm

Figure 3.8 Thermal Flux Shapes: Example 3.4
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CHAPTER 4

FINITE ELEMENT SYNTHESIS APPROXIMATION METHOD

IN NEUTRON DIFFUSION PROBLEMS

As described in the beginning of this thesis, the finite element

methods have been shown [24], [62] to approximate accurately flux

solutions and eigenvalues of multigroup diffusion theory when applied

to problems having homogeneous material within the mesh regions. How-

ever, when this method is applied to a reactor system having very

complex geometrical details, the region mesh sizes must be limited

unless some types of homogenization procedures are used. If the mesh

spacing Js chosen such that some mesh regions are heterogeneous, then

application of the variational principle given in Chapter 2 results in

weight averaging of the nuclear constants with products-of the basis

functions and their derivatives, as given by the approximate trial

functions.

A useful homogenization procedure which is commonly used in

reactor physics analysis is to homogenized the nuclear material within

each mesh region by flux weighting with an assumed flux shape determined

a priori within that region in order to preserve reaction rates,

n (r) (r)dr

< $n (r)dr '1

in
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where $n (r) is the assumed flux shape in region n.

In large reactors the core is usually composed of a lattice of

heterogeneous fuel subassemblies containing fuel, clad, coolant

channels, and possibly control rods or coolant-filled control rod

channels. Each subassembly can be divided into several distinct

homogeneous regions whose microcell macroscopic group, constants are

found by multigroup energy-dependent calculations [63]. Detailed

subassembly solutions are then found for each subassembly by assuming

that the current on the outside boundary of the subassembly is zero.

Flux weighting the nuclear material in each subassembly with the

corresponding detailed subassembly solution for each subassembly

region (according to Equation 4.1) then results in regional homogeneous

nuclear constants which may better approximate the physics of the

region.

Proper use of detailed flux weighted constants can lead to accurate

criticality measurements, but the detailed fine flux structure within

each region is lost since it appears only in crosssections homogenization

and not in the approximation. The present finite element synthesis

method is intended to solve this difficulty by combining the detailed

subassembly solutions with finite element basis functions in the flux

approximation, so that the fine structure can be retained in the flux

solution. The application of this method to 1-D problems has been

shown to be successful [30]. The purpose of this chapter is to extend

the finite element synthesis method to 2-D diffusion problems using

bl-linear basis functions.
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4.1 Derivation of the Difference Equations

4.1.1 Linear Basis Function Approximation in 1-D

The proposed finite element synthesis method, utilizing linear

basis functions and defined as nonzero within each mesh region k,

k = 1 to K in one-dimension, is given by

Uk(z) = $k kN1()(- + ( 1 (1) X Pk1 (4. 2a)

Uk(z) = $P(x)[$*k (0)(l-x)P + -k (1) x P * (4.2b)

V k(z) = n k () k-0(lx k +*k $ (1xP k+1I

+ l D k+11 (4.2c)kk+l

Vf(z) = ip(x)[$ (0)(1-x)P* + P (1) x k1b

Vk(z)f=lk [k(O(1)k +k- k+1

+ LIDk 1 -* ()P] (4.2d)1 -k -l)O~"* ~

where: P is the unknown approximate group flux column vector at point

zk, and *', * k , and n are GxG diagonal matrices composed of detailed
k9 k9 k' k k

group flux %g9k(z) and group current ng,k(z) solutions, and their adjoints,

defined as nonzero only within region k. Because of the variable

transformation between z and x, $k (0) represents $Pk(zk), and $ k(1)

represents ik(zk+l); neither of which for the moment is allowed to

be zero for any region. The detailed current solutions are given from
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the detailed flux solutions by Fick's law as

r (z) = -IDk (Z) (4.3a)

diP*(z)
rJ(z) = + IDk(z) k (4.3b)k dz

As a result, the current trial functions are related to the flux trial

functions by analogous expressions. Also, be definition of the detailed

flux solutions,

rOk) = k(1) = rT(O) = rik(l) = 0

From the forms of the trial functions, we see that the flux

continuity conditions are obeyed since

Uk(0) = U k-(1) P (4.4a)

U*(0) = U*k(1) P* (4.4b)

The current trial functions, however, are discontinuous. It is evident

that this approximation reduces to the simple linear basis function

finite element method if detailed flux solutions for each group are

taken to be constant. The detailed derivation and the resulting

difference equations using approximation Equations 4.2 are given in

Chapter 3 and Appendix C of Bailey's thesis [30].

4.1.2 Bi-linear Basis Function Approximation in 2-D

The flux trial functions for the finite element synthesis method
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using bi-linear basis functions and defined as nonzero within each

mesh region (i,j), i = 1 to I, j = 1 to J in two-dimension, is given

by

U (x,y) = $ (xy) [$ (0,0)P

+ (1,0)P2 1 i+l, + piqj(l9) 2 2 i+1 ,j+1

+ 1 (0,1)P (X)P2 (Y)P1  1 ] (4.5a)

U* .(xy) = $ (x,y)[$* (0,O)P (x)P yPt
i9j i91iq 1 1 i9j

+ *- 10P() YP + J1 (1"1)P (X)P (Y)P*~+ q $ (,)2 1 i+1,j+ 11)P2 2 i+1,9j +1

+ (01)P ( 2 ,j+1] (4.5b)

where

P1 (x) = 1 x

are the univariate linear basis functions. P is the unknown approxima-

tion group flux column vector at point (Xi,Y ), and $x, $* are GxG

diagonal matrices composed of the detailed group flux solutions

$gqi (XY) and their adjoints, respectively, defined as nonzero only

within region (ij). For the moment, we assume that is nonzero

at the region boundary.

The detailed current solutions are given from the detailed flux
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solutions by Fick's law as

(xy) =- -(x,y) (xy)

*i~ qy i a~ ;
* (XY) =j-.-D (x,y) $ (x,y)

s hxi a~ x19

1a
( <x,y) = - - (x,y) (x,y)t h j ay iD

yj

I * (x,y) = D (x,y) $ 4)* (x,y)
yj

where E and (* are X-direction detailed current and adjoint current

solutions and n and rn* are Y-direction current and adjoint current

solutions. Then the X-direction and Y-direction current trial functions

which obey Fick's law are given by

Q (xY) = E (xY)[~1 (0,0)P0(x)P Pi

+ (1 0)P2  p (Y)P + $ (11)P 2 M d d

+ iJ (0,1)Pl(x)p2(y)Pj+1]

+ D, (x,y)i .(x,y)[1j- (0,O)qlpx) y1()P&

+ $i2i (1,0)q2 (x)P1(Y)p+ 1 j + i (1,1)q2 2i+1j+1

+ $j<0,)0 1x)P 2 (Y)p 1 , l (4.6a)
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R 91(x,y) =n s XYlijqo 1() Yp19

+ lp -1 (19O)P (X)P (Y)Pi~. + 4-1 (191)p (x)P (Y)P+ji

+ i(O ,1) P(X) P(Y) p

yj

-1 1O (qlyP+,

l1i .(x,y)

+ -1 (,) xq(~

Q* (xy) = C xy0-1 00pW Y*

(4. 6b)

+ 2(x) 1( Pi~1
+ * 1 (191)-P (x)P Y*

9j isj 2 9o~

+ i oo)I Jp()P

h1 I ~x-i
(x,y) 0

-1 + - 1IqW YP+* 19, ~ 2 (x)Pl(Y)p*+s 12 2i+lj+ l
ii .(,i

+ 4* -1(0,1)q (X)P (Y)P* +~ (4.6c)
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R* (Xy) =Ti* (XY)[1 (0,0(l.))Px )*

yj

+2 1 i+1 ,j + * 1 1 ) P 2 2 i +1,j +1

+ P* (0,1)P 2 , 1 J(4.6d)

where

q10 = - Tq P1 (x) = +1
12 2 w~

1 dx

q (x) d p a-P(x) =-1

We note that the flux trial functions are continuous only at the

mesh points and are discontinuous at the interfaces of mesh regions in

general. The current trial functions are discontinuous also across

region interfaces. Also, be definition of the detailed subassembly

solutions

(0, = = ( ,y) =* (1,y) = 0

TI (x, 0) = ni (x,1) = n* (x,0) = n* (x,1) = 0
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Since the flux is not continuous across region interfaces while

Fick's law is still valid within regions, the suitable variation

equation to be used is Equation 2.15. For two-dimensional case,

Equation 2.15 can be written in the form

I J l
h xil h xi 

f
=1j=1 0

J1 Tdx dy[I6U T(x,y) Ai(xY)u (x,Y)
0 *i ' ,3

- 6QT (xy) D (x,y)Q (x,y)-SR* T(xy) ]D_ (x,y)R (x,yJ

I-1
+ ii

h dy[6U* (1,y)-6U*+1, T +
~rjU i+lj i+ l oj

I J-1

+ =1 l
1=1 j=1

(0 ,y)+Q 1 9 (1y)]

h dx[6U* (x,1)-6U* j+1 (xO)] [R (xO)+R (xl)]
0io 11i~~ ~

(O,y)+ Q* (,y)] I[U (0,y)-U (1,y)

J- 1
+ I h dx[6R*,,j+1(x,O)+ 6R* (1,y) ]T [U +(x,0)-U (x,1) ]=0

2i=1 j=1 0ioii~+ 9
(4.7)

Substitution of Equations 4.5 and 4.6 results in the equation

I+1 J+l T p +ab

i=l j=1
+ a Pi-1,j+1

+ba P +bbP + Pj+-iP iP-i,j +icc i+1

+ ca P + cb P + cc P =0
z-iqj i+lsj-l Z-i 9j i+l Ij z-i~j i+llj+11

97

(4.8)

+ -1h dy [6Q*+1j
i=1 j=1 0



where "undefined" quantities (corresponding to points that would lie

outside the physical limits of the reactor) are always set equal to

zero. The GxG matrix coefficients {a , a ,---, c lare

integral quantities having the mathematical form A - 1B and

are defined in detail in Appendix E.

Zero flux boundary conditions are easily imposed. For example,

if zero flux conditions are imposed on the left boundary of the

reactor, we can set P . = 0, j = 1 to J + 1. This also requires

that P*, j = 1 to J + 1 be zero, which in turn requires the 6P

coefficients in Equation 4.8 to vanish. If all four sides of the

reactor have zero flux conditions, then allowing arbitrary variations

in P* , j = 2 to J, results in a system of (I-1)(J-1) equations in

(I-1)(J-1) unknowns. Zero current boundary conditions are found

using symmetry considerations. If, for example, zero current

boundary conditions are imposed on the right boundary, then "boundary

condition equations" can be derived by assuming pseudo-regions

(I+lj), j = 1 to J of width h and height h 's having mirror

image properties of region (I,j), j = 1 to J, about line X=XI+1

ID .+j (x,y) =1 19 (1-x~y) (4-9a)
1+1,3I,j

; j = 1 to J

/AI+1j = Ij (1-x,y) (4.9b)

and the detailed flux and current solutions for these regions are

assumed to be symmetric and anti-symmetric in the X-direction,

respectively, to the corresponding detailed flux and current solutions
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in the regions (I,j), j = 1 to J:

UI+ 1 ,j(xY) = U (1-x,y) (4.10a)

U+1 j (XY) = U* (1-x,y) (4.10b)
II~j

j - 1 to J

V I+ (x,y) =-V j(-xy) (4.1c)

VI+1,(xY) = -V* (1-x,y) (4.10d)

The addition of pseudo-regions (I+1,j), j = 1 to J to the summation

in Equation 4.7 results in the calculation of coefficients jaa

(j=2 to J+1), ! 1+1,j (j=l to J+1)) .1 +,j(=l to J), aI+1 , j(j=2 to J+1),

bb (j=l to J+1), and bc (j=1 to J) in Equation 4.8. If all
wI+l 9j --i+l 2j

four sides of the reactor have symmetry conditions, then allowing

arbitrary variations in P*, i=1 to I+1, j=1 to J+l, results in

a system of (I+1)(J+l) equations in the same number of unknowns.

Like the situation in one-dimensional case [30], a serious

drawback of the approximation given by Equations 4.5 and 4.6 is that

it does not allow the use of detailed flux solutions containing

explicitly zero flux boundary conditions. However, such detailed

solutions can be allowed by modifying the trial function forms in

the boundary regions. For example, if a zero-flux condition is

imposed on the left boundary and a detailed solutions * i~(x,y) is

given such that $ 4~(0,y) = 0 in the region (1,j) for a particular

J, the trial functions of Equations 4.5 and 4.6 can be modified for
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this region as

U (, = 1,)) 2P

+ 9 $ (,)2 2,j+1)

U* (x,y) = *(x,y)[$* (1,0)P (y)P*

i~i it 1 29

+ * (1,1)P2 (Y)PQ* (x,y) = l*1 (x~[44 10 )P,+ -1j+1

Q (xy) = (x,y)[p* (1,)P (y)P

R ,(XY) = n[(x ) (1,)P 2

(4.lla)

(4. 1b)

(4.llc)

(4.11d)

+ P1 (11)p2 (Y)P2 j+1

+ 1I) xy 0 xy(- (1,0)q nN2,j

+ * (1,1)q2 ,j1I

19 (~2jl

(4.lle)
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R* (x, y) = T* (x, y) [$* (1, 0)P (YP -1 (1,21)P2()P2,j+

1 * - 1,0)q (y)P*
h .j 1,j i2j 1,3 1 2,3yJ

+$* (1,1)q 2 ( 2, j 11 (4.1f)

The above equations are equivalent to fixing the X-direction basis

functions for this particular region (1,j) so that

P1 (x) = , P2 X 1

ql(x) = 0 , q2 (x) = 0 (4.12)

in Equations 4.5 and 4.6. In this way, the imposed zero boundary con-

dition is explicitly given by * 13(x,y) rather than by the form of the

trial functions. The use of these special trial functions in the

boundary regions alters the definitions of some of the matrix coefficients,

but the whole system of equations are of the same form as that of the

ordinary zero-flux boundary conditions.

Regardless of the types of boundary conditions imposed, Equation

4.8 results in an NxN matrix problem of the form

1
A P = 1 P (4.13)

where A and B are independent of A. The order N of the matrix equations,

which depends on the chosen boundary conditions, is given in Table 4.1.

Careful examination of the matrix coefficients given in Appendix

E shows that neither A nor B are symmetric matrices in general. Only
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Table 4.1 Matrix Order N of the Bi-linear Finite

Element Synthesis Approximations as a

Function of the Imposed Boundary

Conditions.

1 - Zero Flux

2 - Symmetry

Boundary Condition-Type, Matrix Order

Left Right Top Bottom N

1 1 1 1 G(I-1)(J-1)

1 1 1 2 G(I-1)J
1 1 2 1

1 2 1 1 GI(J-1)
2 1 1 1

1 1 2 2 G(I-1)(J+l)

1 2 1 2

1 2 2 1 GIJ
2 1 1 2

2 1 2 1

2 2 1 1 G(I+1)(J-1)

1 2 2 2

2 1 2 2 GI(J+l)

2 2 1 2

2 2 2 1" G(I+1)J

2 2 2 2 G(I+1)(J+l)

102



when the geometry of the problem is symmetric about the 450 line, do

A and lB become symmetric.

4.2 Calculational and Programming Techniques

The matrix equations which result from the approximations given

in this chapter are of the form of Equation 4.13, which is identical

to Equation 3.9 in the previous chapter except that A and B are not

symmetric in the present situation. The conventional group indexing

followed by spatial indexing within each group in ordering the un-

knowns is assumed. For the double spatial indexing, we shall order

the unknowns first by Y-direction indexing, j, followed by X-

direction indexing, i, for each j.

Because of the complexity of the matrix coefficients (aa

ab, --- , cc } encountered in the approximation, it is difficult

to find a systematic way for assembling the coefficients so that a

single computer program can be used to find the eigenvalue X and

corresponding eigenfunction directly when the geometry and regional

detailed nuclear constants are the input. Therefore, the calculations

were performed in four steps as follows:

(i) Calculation of the Detailed Subassembly Solutions:

Calculation of the two-dimensional subassembly detailed fluxes

and adjoint solutions were performed using the existing code PDQ-7

[64]-[66]. The PDQ-7 program solves neutron diffusion-depletion

problems in one, two, or three dimensions in rectangular, cylindrical
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or hexagonal geometries. Up to five energy groups, including two

overlapping thermal groups, are permitted. For the present applica-

tion, the non-depleting option for two dimensions, rectangular

geometry, one or two energy groups was needed.

The boundary conditions imposed were zero-current conditions

on all four boundaries, in accord with the definition of detailed

subassembly solutions. Also, subassembly (i,j) is divided into MxN

homogeneous subregions having widths of z and z , respectively,
x,m y,n

in the X and Y directions. Omitting group subscripts, the detailed

flux solutions for each group in subassembly (i,j) is represented

by a set of (M+1)(N+l) points

$ (xy) = {$mn ; m=1,M+l, n=1,N+l} (4.14)

(11.) Calcul a tio o' f 'Dou. -b IC -- A i-neer Tnt-ygrals :

The matrix elements required for use in the approximation

methods are combinations of various double and linear integrals of

products of subassembly detailed solutions and polynomial functions.

The double integrals are calculated for each subassembly (ij) from

the basic integral unit

DIA = dx J dy f .(x,y)g (x,y)C. .(x,y)x y (4.15)
ij 0 0

where the functions f .(x,y) and g . (x,y) represent flux and/or X-
i,3 j

or Y-direction current solutions for the same or different groups.

C . (x,y) represents a group nuclear constant which is homogeneous
it

in each subregion (m,n) of the subassembly (i,j)
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C (x,y) = {Cm,n ; m=1,M, n=1,N} (4.16)

and k and k are positive integers in the ranges 0 < kk < 2.

If we assume that for the detailed flux solutions of the form

Equation 4.14, the average flux in subregion (m,n) is given by

m,n 4 m,n +$+,n + lPm+1n+l + $mn+l 4.17a)

the average X-direction current in subregion (m,n) is given by

D

~ 2 mn 1'-P + l(41bM,n 2x9m m+1l,n m,n)+('m+1,n+l 'Pm,n+l)] (4.17b)

and the average Y-direction current in subregion (m,n) is given by

D

m,n 2z m,n+1 ~ 'Pn +( l ,n+l - $m+ln)] (4.17c)
y,n

then the basic integral unit can be broken into sums over each sub--

region (mn)

M N
DIA m1 n m ,n mn m,n (k+l) (Z+l)

k+l k+l P+l k+l
(xm+1  m Yn+l ~ n (4.18)

The linear integrals are integrations along the subassembly

interfaces. For a horizontal interface between subassemblies (i,j)

and (i,j+l), the line integrals can be calculated from basic integral

unit of the form

SIA = J dx f j(xl)gij+1(x,0)D 9(x,l)xk (4.19)
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where f (x,l) is the detailed flux solution at the bottom edge of

the subassembly (i,j), gi 1j+1 (xO) is the detailed flux soltuion at

the top edge of the subassembly (i,j+l), D (x, 1) is the diffusion

constant at the bottom edge of the subassembly (i,j) and 0 < k < 2.

If we assume that the average fluxes along this particular

interface are given by

mN+l 2 m,N+l + $m+,N+l sub.(ij) (4.20a)

1 ( + (4.20b)
m, 1 12 + m+l,l sub.(i,j+l)

then Equation 4.19 can be written as

M 1 k+1 k+1
DIA = m= m,N+m,lD m,N (k+l) (xm+1  m ) (4.21)

Programs DOB1 and DOB2 which calculate quantities F, (a,b;c,d),

defined by Equation El and consisting of combinations of various

double integrals, in one-group and two-group, respectively, are

listed in Appendix F. Programs LIN1 and LIN2 which calculate various

linear integrals in one-group and two-group, respectively, are also

listed in Appendix F.

(iii) Computation of Matrix Elements:

This step involves the calculation of matrix elements from the

results of the previous step. Careful bookkeeping is necessary in

order to insure the accuracy of the computation. However, for a

reactor system consisting of a relatively small number (< 4) of
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different subassemblies, this is not a difficult task; it usually

takes several hours of work.

(iv) Calculation of Eigenvalue and Eigenfunction:

The source iterative scheme and power method discussed in

Section 3.3 are used to find the largest eigenvalue X and corresponding

eigenfunction once the matrix elements for L , Mg , T , and B , are

known. The inverting procedures for K IL +Mg , however, must be
g g g

changed because K is not symmetric. Thus, instead of using the

Cholesky scheme of matrix factorization, the Gauss-Jordan method

[42], [55] was used to invert Y .
g

Programs MAN1 and MAN2 which calculate the eigenvalue X and

its corresponding eigenfunction for one-group and two-group problems,

are listed in Appendix F.

4.3 Numerical Results

In this section we present the results of three cases obtained

through the use of the finite element synthesis method. Each case was

also analyzed by the pure linear finite element method using detailed

flux weighted nuclear constants. These results are compared with

reference solutions obtained from the finite difference code CITATION

[67].

4.3.1 Case 1: 25 Subassembly Reactor Configuration Made up of 2

Different Types of Subassemblies - One Group.
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The reactor configuration and its 2 different types of sub-

assemblies are depicted in Figure 4.1. The one-group nuclear constants

of subassemblies are given in Table 4.2. The detailed flux solutions

for each subassembly were found using the finite difference code PDQ-7

with symmetry boundary condiAons and a 20x20-mesh region per sub-

assembly geometry as indicated in Figure 4.2. The resulting detailed

flux solutions for Sub. 1 and Sub. 2 are shown in Figures 4.3 and 4.4,

for y = 0 cm and y = 4 cm, respectively. The detailed-flux-weighted,

homogenized, subassembly nuclear constants are given in Table 4.3,

and are used in the linear finite element calculations.

The reference solution for this problem was found using the same

mesh intervals in each subassembly as in the calculation for detailed

subassembly solutions. With the symmetry about X=20 cm taken into

account, this is a 50x100-mesh region problems for CITATION.

The graphical results for the one-group approximation methods

for this case are shown in Figures 4.5, 4.6 and 4.7 for three

elevations Y = 12 cm, 20 cm and 24 cm, respectively. The flux dis-

continuity across subassembly boundaries, which is inherent in the

approximation, is shown in Figure 4.6, and more clearly in Figure

4.7. The magnitude of the gap along a boundary depends on those two

bordering subassembly detailed flux solutions at that boundary. It

is seen that the present synthesis method using a coarse mesh of

8 cm gives reasonably good results compared to the reference solutions.

They are farther better than finite element method using the same
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Table 4.2 One-group Nuclear Constants of Subassemblies

of Figure 4.1 - Case 1

Subassembly 1

Material 1 (fuel) Material 2 (moderator)

I (cm~ 1 ) 0.0232927 0.0

a (cm~1) 0.04 0.015

D(cm) 0.3 0.1

IV 2.5

Subassembly 2

Material 1 (fuel) Material 2(absorber)

J (cm~1 ) 0.0232927 0.0

la (cm~1 ) 0.04 0.500

D(cm) 0.3 0.5

v 2.5

Table 4.3 Homogenized Subassembly One-group Nuclear Constants

- Case 1
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coarse mesh.

Comparisons of eigenvalues, X, obtained from different methods

are shown in Table 4.8 (p.146). We see that the present synthesis

method gives a much better eigenvalue than the linear finite element

method using identical coarse mesh.

4.3.2 Case 2: 25 Subassembly Reactor Configuration Made up of

One Type of Core Subassembly and One Type of

Reflector Subassembly - One Group

The difference between case (1) and case (2) is that in (1)

fuel is present right up to the edge of the reactor, while in (2)

there is a reflector zone of moderator subassemblies. The reactor

configuration and its two different types of subassemblies for case

(2) are depicted in Figure 4.8. The one-group nuclear constants of

subassemblies are given in Table 4.4. The detailed flux solution for

Sub. 1, obtained by using PDQ-7 with geometry indicated in Figure 4.2,

is shown in Figure 4.9 for y = 0 and 4 cm. The detailed flux weighted

homogenized nuclear constants, used in finite element calculation, are

given in Table 4.5. Note that for reflector subassembly, we assume that

the detailed flux solution is constant over the whole subassembly,

because there is no fission inside. The resultant flux weighted

homogenized constants are thus the same constants as for the reflector

subassembly itself.

The reference solution for this case was found using the same

mesh intervals in each subassembly as in the calculation for detailed
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Table 4.4 One-group Nuclear Constants of Subassemblies of

Figure 4.8 - Case 2

Subassembly 1

Material 1 (fuel) Material 2 (moderator)

f(cm~ ) 0.0228646 0.0

a.(em~) 0.045 0.015

D(cm) 0.4 0.4

2.5

Subassembly 2 (reflector)

Table 4.5 Homogenized Subassembly One-group Nuclear Constants

- Case 2
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Sub. 1 Sub. 2

D(cm) 0.4 0.6

Ja(cm~) 0.04179954 0.02

Vf (cm~) 0.05106339 0.0
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subassembly solutions. Because of the quarter-core symmetry, the

problem size was 50x50.

The graphical results for this case are shown in Figures 4.10,

4.11 and 4.12 for elevations Y=12 cm, 20 cm, and 8 cm, respectively.

The magnitude of flux discontinuities across the interfaces of two

different types of subassemblies is much less than that of case'l.

This is because there is no strong absorber present in the reactor

core and thus the subassembly 1 detailed flux shape is relatively

flat. Also, because of this fact, the results obtained from the

linear finite element method and linear synthesis method are closed

to each other and both predict quite good flux shapes and eigenvalues

(Table 4.8) compared to the reference solutions.

4.3.3 Case 3: 49 Subassembly Reactor Configuration Made up of 2

Types of Core Subassemblies and One Type of Reflector

Subassembly - Two Groups

The reactor system for this problem consists of a 25-subassembly

core made up of 2 different types of subassemblies surrounded by a ring

of 24 identical water reflector subassemblies. The reactor configuration

and its 3 different types of subassemblies are depicted in Figure 4.13.

The two-group nuclear constants for three different kinds of materials,

(fuel, absorber and water moderator) which form the three types of

subassemblies, are given in Table 4.6.

The detailed subassembly flux and adjoint flux solutions- are

found using PDQ-7 with a 14x14-mesh region per subassembly. The
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partitioning of mesh intervals is 4(1.5cm) + 6(1.0) + 4(1.5) in both

X and Y directions. Figures 4.14 - 4.17 illustrate these subassembly

detailed solutions for Sub. 1 and Sub. 2. For water subassembly,

Sub. 3, the detailed solutions are constant over the whole region.

The homogenized two-group constants for each type of subassembly are

given in Table 4.7.

The reference solution for this case was found using the same

nesh intervals in each subassembly as in the calculation for detailed

subassembly solutions. The total number of mesh regions is 49x49,

because of quarter-core symmetry.

The graphical results for this two-group problem are shown in

Figures 4.18 - 4.21. It is seen that the coarse-mesh linear finite

element method cannot predict the thermal flux peaks and dips in the

reactor. This indicates that finer meshes must be used to obtain good

results. The linear synthesis method, whether calculated by adjoint

weighting or flux weighting, gives reasonably good general shapes both

for fast and thermal fluxes in the core region. However, the magnitudes

of thermal peaks in subassemblies of type 2 can be very different com-

pared to those of reference solutions. The cause of this phenomenon

is the inability to predict the thermal flux peak in the reflector

near the core-reflector interface by using flat flux shapes in the

reflector subassembly and treating each subassembly as one mesh-region.

One way to overcome this difficulty is to put more mesh points

in the reflector region by partitioning the reflector subassemblies

further. Another way is to use some prescribed flux shapes in the
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Table 4.6

f21

xl

Two-group Nuclear Constants of Three Different

Materials in Subassemblies of Figure 4.13 -

Case 3

fuel absorber moderator

Material 1 Material 2

1.436

0.02647

0.007293

0.01596

1.0

D2 0.3868 0.3507 0.3126

2 0.1018 0.4021 0.008736

v f 2  0.1531 0.0 0.0

X2 0.0 - -

1.092

0.003185

0.0

0.0

1.545

0.028824

0.0

0.02838

Table 4.7 Homogenized Subassembly Two-group Nuclear

Constants - Case 3

D 1.4030165 1.4464270 1.545

0.02423738 0.009547083 0.028824

v 0.006593731 0.006596349 0.0

0.01442972 0.01714810 0.02838

D2 0.3854548 0.3749848 0.3126

2 0.1129898 0.08698106 0.008736

Vyf2  0.1473952 0.1287213 0.0
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reflector subassemblies instead of flat shapes.

Figure 4.22 shows the average X-direction flux shapes for water

subassemblies at the left side of the reactor, found from the reference

solution. The Y-direction flux shapes are assumed to be flat. These

fast and thermal flux shapes d1 ffer from those obtained by a simple

1-D calculation involving only one 18-cm region of water and one 18-cm

region of fuel:

0-flux I Wnter ThO1 I 0-current
0 18 36 cm

by 2% at most, using the same mesh intervals (14) in each region.

Therefore, in the actual calculation where we normally would not have

the reference solution in advance we can obtain the flux shapes from

some simple auxiliary calculations. The flux shapes for water

subassemblies at other three sides of the reactor can be found by

symmetry considerations.

Figure 4.23 shows the flux shapes for the top-left corner water

subassembly, again from the reference solution. Simple auxiliary

2-D calculation involving 3 water regions and 1 pure fuel region:
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0-flux

0 18 36 cm

Water Water

0-flux 18 0-current

Water Fuel

36 cm 0-current

shows that these flux shapes differ only slightly (<3%) with each

other.

For the modified calculation which follows below, we shall

use Figures 4.22 and 4.23 as the regular flux as well as adjoint

flux shapes for various water subassemblies.

The use of the flux shapes shown in Figures 4.22 and 4.23 is not

legitimate in our present approximation, since these shapes do not

have zero normal currents on all four subassembly boundaries. How-

ever, we can show that for the present case, use of these flux

shapes merely adds some leakage terms to the calculations of those

matrix elements (Appendix E) which correspond to reflector-core

interfaces. These terms are of the form
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+ (1 dyP (y)P (y)[$*T 0,1)$*T 0ly)c (1,y)$~1 (1,0)
+ 2 0 m n 2,j 2, J 1,j

- @ (1 0) ( , )$ 2 , (0 y)* 2 ,j

for the interface between subassemblies (1,j) and (2,j) for a par-

ticular j, and where m ant , are either 1 or 2. The two terms in

the square brackets are of the same sign.

A rough estimate, using the maximum absolute value for the

first term and minimum absolute value for the second term, gives a

largest value of

18 1
2 5 ;[(1.003)(0.0111) - (0.0111)(0.981)] = 0.00073

for the fast leakage and a largest value of

18 1
2 - [(1.053)(0.00433) - (0.00433)(0.936)] = 0.00152

for the thermal leakage. These values are less than one tenth of one

percent of the original leakage matrix elements. The results shown in

the following pages are the results obtained by ignoring these

additional small terms.

The results obtained by using these modified shapes for reflector

subassemblies along with the previous shapes for core subassemblies

are shown in Figures 4.24 - 4.27. It is seen that the flux shapes,

especially the thermal flux shapes, improve significantly in the core

region (X > 18 cm). The eigenvalues obtained from various methods are

140



0.7

0.6

-O
0 0"@

0.4

Q)
IN

0 0.3

0.2

Reference

- ---- Linear FEM

o 0 0 O Adjoint 0.1
FES

* * *@eFlux

S0.0
0.0 18.0 36.0 54.0 63.0

x (cm)

Figure 4.24 Fast Flux at Y = 27 cm- Case 3, Modified

141



.0

/ .8

.6

/ 8

0.4

/ O

Reference

- - - -Linear FEM -.

00 0 0 Adj oint
/ 8 FES

e ee eFlux

(fi~ 0 a

C.0 18 .0 36.0 54.0 6.

x (cm)

Figure 4.25 Fast Flux at Y =63 cm -Case 3, Modified

142



.25

- - - - Linear FEM

-- 00 a0.20o o o o Adjoint*
FES

e*e.e e Flux

0.15

H

o eo0

loowz 0

0.10

00.0

/ 0

'00

0.0 18.0 36.0 54.0 63.0

x (cm)

Figure 4.26 Thermal Flux at Y = 27 cm - Case 3, Modified

143



0.5

o o o o Adjoint1 0.4

Flux 
FES

0 0

x 0
0.3

rX4 0

"cd

0.2
o

/ u 0.1

0e 0.2

0.0 18.0 36.0 54.0 63.0

x (cm)

Figure 4.27 Thermal Flux at Y = 63 cm - Case 3, Modified

144



compared in Table 4.9. It is observed that: (i) the linear FEM

using flux-weighted constants gives better results than the linear

synthesis method and (ii) flux-weighted results are better than

adjoint-weighted results in linear synthesis method. Although

there is some mathematical reason to expect that the adjoint-

weighted result should be better than the flux-weighted result,

there is no proof of this expectation and it is common that in many

numerical problems the reverse is true (as in this case).

From the above example, we conclude that the method of

synthesizing detailed subassembly solutions with finite element

basis functions in two-dimensional diffusion problems is quite

encouraging. Thus, instead of the calculating of a large, fine-

mesh problem to obtain the eigenvalue and detailed flux shape

throughout a geometrically complicated core, we can solve the

same problem by first determining a few, much smaller, fine-mesh

subassembly solutions and then performing a very small coarse-mesh

calculation.
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Table 4.8 One-group Eigenvalue A Obtained from Different

Methods - Cases 1 and 2

Case 1 Case 2

Reference 1.0081406 1.0071173

Linear FEM 0.9447535 0.9918033
(-6.29%) (-1.52%)

Linear Synth. 1.0017971 0.9919463

(-0.63%) (-1.51%)

Table 4.9 Two-group Eigenvalue X Obtained from Different

Methods - Case 3

Case 3

Reference 1.0428543

Linear FEM 1.0397139 (-0.30%)

Adjoint 1.0593464 1.0319060

Weighited (+1.58%) (-1.05%)
Linear
Synth. Flux 1.0510194 1.0380392

Weighted (+0.78%) (-0.46%)
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions of the Study

Our proposed approximation, which couples detailed subassembly

flux solutions together with bi-linear finite element basis functions,

has a mathematical structure that is very similar to a coarse mesh

bi-linear finite element approximation in which detailed flux shapes

have been used beforehand to flux-weight the nuclear constants in

each region. However, the two methods are conceptually different and

become equivalent only when all of the coarse mesh regions are homoge-

neous. The proposed method is also similar to existing synthesis

methods which use detailed flux solutions or other known flux shapes

directly in the trial function for the flux. However, it is different

in that it does not require full core, detailed flux shapes as input

but instead stitches together a few fine-mesh subassembly solutions.

The numerical results indicate that the proposed scheme is

able to predict criticality accurately as well as the detailed flux

shapes for each group. The results indicate that although both the

proposed scheme and the finite element method with flux-weighted

constants give good criticality estimates, the actual detailed flux

behavior is much better approximated by the proposed method than

the finite element method using coarse meshes.

As in any coarse mesh approximation method, inaccurate results
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can occur when the coarse mesh region sizes chosen are too large.

Thus it would be useful if there were error bounds that could be

ascribed to the finite-element synthesis method. The accuracy of

finite element methods is known to improve geometrically as the mesh

sizes is decreased. Thus there is a useful error criteria for the

finite element methods. On the other hand, the inability to predict

error estimates has always been a major drawback of synthesis

techniques, even though through proper physical insight and ex-

perience, accurate results can be obtained. Whether or not error

bounds can be found for solutions obtained by combining synthesis and

finite element flux shapes is not yet known.

Another thing which is lacking in this study is the computation

time comparison between various methods. This is because of our

inability to generate computer code for which the eigenvalue and

flux shapes of a problem can be obtained directly without any

intermediate matrix elements calculations, and we have to obtain the

results step by step.

In conjunction with the study, we found some interesting results

related to the finite element Hermite basis functions approximations:

(i) Under certain conditions described in the end of Chapter 2,

Fick's law is a natural consequence of using the variational

functional F3 .

(ii) The solution that is found by applying a variational

method using continuous cubic flux trial functions and
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discontinuous Fick's law current trial functions is not

necessarily the best. We found in Chapter 3 that the cubic

Hermite method, which defines continuous flux trial functions

in such a way that the current trial functions are also con-

tinuous throughout the problem domain except at singular

points, yields more accurate results even though the trial

functions space is more limited.

5.2 Recommendations for Future Study

For future study of the finite element synthesis method, some

areas which deserve closer attention are:

i) Development of error bounds for the finite element-

synthesis method. The close similarity between the present method and

the finite element methods may allow an extension or generalization of

error estimates previously developed for finite element methods.

ii) Examination of the matrix properties of the synthesis

method. This is necessary in order to guarantee convergence to a

positive eigenvalue and an everywhere positive flux solution.

The bi-linear finite element synthesis method can be extended

to three-dimensional diffusion problems as well as to a higher degree

of Hermite basis polynomials. The mathematical principles are the

same as for the present method, and the main concern would be the

algebraic complexity of handling large numbers of lengthy equations.
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Also possible is the extension of using the proposed trial function

forms in spatial overlapping synthesis methods for multi-dimensional

reactor problems, where the discontinuities of flux and current

trial functions occur at different places.
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APPENDIX A

TABLE OF SYMBOLS

g

r

9(r)

D (r)

Z(r)

~ (r)

Xg

V1 (r)

D(r), J*(r)

J (r), J*(r)

Energy group index which runs from the highest to the

lowest energy group as g - 1 to G.

The position vector.

Scalar neutron flux in energy group g at r

2
(neutrons/cm -sec).

Neutron current vector in energy group g at r

(neutrons/cm -sec).

Diffusion coefficient for neutrons in energy group g

at r (cm).

Macroscopic total neutron removal cross section in energy

group g at r (cm~).

Macroscopic neutron scattering cross section from energy

-1
group g' to energy group g at r (cm ).

The eigenvalue of the diffusion problem.

Fission spectrum yield in energy group g.

Macroscopic fission neutron production cross section

-1
in energy group g at r (cm ) !

Scalar group flux column vector of length G and the

corresponding adjoint flux vector.

Vector group current column vector of length G and the

corresponding adjoint current vector.
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ID(r) GxG diagonal group diffusion coefficient matrix.

1(r) GxG diagonal group removal cross section matrix.

W(r) GxG group scattering out cross section matrix.

F(r) GxG group fission-production cross section matrix.

A(r) GxG group removal, scattering, and production matrix.

k Ofte-dimensional spatial index which runs from the left-

most first region to the right-most K-th region, as

k = 1 to K.

i,j Two-dimensional spatial indices. For horizontal direc-

tion, i runs from the left-most first region to the

right-most I-th region as i - 1 to I and for vertical

direction, j runs from the top first region to the

bottom J-th region as j = 1 to J.

Unit vectors in- the X and Y directions in a 2-D problem.

z The one-dimensional axis variable divided into K regions

such that each region k is bounded by nodes zk and zk+l

X, Y The two-dimensional axis variables divided into I and J

intervals, respectively, such that each region (ij)

is bounded by lines X = Xi, X = X+1' Y = Yj, and

Y = Yj+1'

x A dimensionless variable defined in each region k as

x = (z-zk)/(zk+1-zk), such that 0 < x < 1 as

z < z < Zk+1. It is also used as the dimensionless
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variable in X-direction in a 2-D problem.

y A dimensionless variable in Y-direction in a 2-D problem,

defined in the same way as x.

U(r),U*(r) Scalar group flux and adjoint (or weighting) flux trijl

function (column vectors of length G).

V(r),V*(r) Vector group current and adjoint (or weighting) current

trial function (column vectors of length G).

Qi' ,Qi * X-direction group current and adjoint current trial

function (column vectors of length G in region (i,j)).

R ,R. * Y-direction group current and adjoint current trial
i,j' i,j

function (column vectors of length G in region (i,j)).

k(z), k*(z) Detailed one-dimensional subassembly flux and weighting

flux solutions in coarse mesh region k.

k (z),nk*(z) Detailed one-dimensional subassembly current and weight-

ing current solutions in coarse mesh region k.

i 4,9* Detailed two-dimensional subassembly flux and weighting

flux solutions in coarse mesh region (i,j).

* Detailed two-dimensional subassembly X-direction

current and weighting current solutions in coarse mesh

region (i,j).

i ,9 * IDetailed two-dimensional subassembly Y-direction current

and weighting current solutions in coarse mesh region

(i,j).
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A Discretized matrix form of the GxG group diffusion,

absorption, and scattering matrices.

B Discretized matrix form of the GxG group fission-

production matrix.

P The unknown approximate group flux solution vector which

may contain group current unknowns.
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APPENDIX B

INNER PRODUCTS FOR HERMITE BASIS FUNCTIONS

Nonvanishing inner products for the univariate basis functions

uP (x) fork

below:

(i) m=1

m = 1,2 (as defined by Eqs. 1.10 and 1.11) are listed

0- 0+ 1
(uk uk-1)

0+ 0+ 1
(uk uk )

dO0- 0+ 1
( uk t1k) = -

d 0+ 0+ 1
( , x u k -

(- -u dxk-) =-1

d 0+ d 0+
( dx% P duk)

0- 0- 1
(uk uk 3

0+ 0- 1
Uk uk+l 6

d 0- 0- -1

(x Uk~, u ) - -

d 0+ 0- 1
( uk , Uk+ 2

d 0- d 0-
(t Uk x = 1

d 0+ d 0-
d x uk dx kl

= 1

(ii) m = 2

0- 0+ 9
(uk uk-1 = 70

0- 0- 13
(uk ,uk) 35

0- 1+ 13
(uk , uk-) 420

0- 1- 11
(uk , uk 210
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0+ 0+ 13
(uk Uk 35

0+ 0- 9
uk , uk+1 70

1- 0+ 13
(uk , Uk-1 - 420

1- 0- 11
(uk uk 210

1+ 0+ 11
(uk , uk 210

1+ 0- 13
(Uk , Uk+l 420

d 0- 0+ 1
(uk Uk) k-1 2

d 0- 0-
Uk Uk~ :

( 0+ 0+
dx uk ' Uk S2

d 0+ 0- 1
(d uk ' Uk+ ~ 2

d 1- 0+ 1
( Uk Uk-1 0 -

d 1- 0-
(x Uk Uk TO

0+ 1+ 11
k , uk 210

0+ 1- 13
(uk , Uk+1 40o

1- 1+ 1
(uk uk-1 140

1- 1- 1
(uk uk 105

1+ 1+ 1
(uk uk 105

1+ 1- .__1_
uk ,uk+1 140

d 0- 1+ 1
( u- , k-1 10

d 0+ 1+ 1

d 0+ u1- .1
(t U k ~ k+) 10

d 1- 1+1
d-g Uk Uk-1) 66

d 1- 1- =0
( -Uk Uk 0
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d 1+ 0+ 1
(x Uk ) = 10

(d 1+ 0- 1
dx uk uk+1 1

d 0- d 0+ 6
uk *dx uk-1 5

d 0- d 0- 6
( -uk *d uk 5

(t uk ,dx uk

d 0+ d 0- 6
uk uk+1 5

d 1- d 0+ 1
(dx Uk 0 uk-1 16

d 1- d 0- -1
(t Uk ' dx 1Uk 10

d 1+ d 0+ 1
7 Uk 6 Uk 10

d 1+ d 01 1
(t U~ k dx Uk-i-t 10-

d 1+ 1+
(a; uk , uk ) = 0

d 1+ 1- 1
(t uk Uk+1) 6i

d 0- d ,1+ 1
t- uk dx uk-1) 16

d 0- d 1- 1
(xUk Uk 10

d 0+ d 1+ 1
(xuk Tx k l

d 0+ d 1- 1
(7Uk 1uk+1) 10

d 1- d 1+ 1
(* uk u 7 k-1) 36

d 1- d 1- 2
( a; Uk v ix Uk 15=

d 1+ d 1+ =2

Uk v ; Uk 15

d 1+ d 1- 1
t u k v'x *k+1) 3

The inner products for multivariate basis functions can be determined

using the univariate inner products.
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APPENDIX C

DIFFERENCE EQUATION COEFFICIENTS RESULTING FROM USE OF

THE FINITE ELEMENT APPROXIMATION METHODS IN CHAPTER 2

The GxG matrix coefficients resulting from the linear finite

element approximation and the cubic Hermite finite element approxima-

tion in multigroup diffusion theory are defined below in various

sections. The coefficients are given in terms of assumed homogeneous

regional nuclear constants through the use of the GxG group matrices

~1
]Dk and Ak. Since Ak k ~ F, these coefficients are of

the form A - 1 Various inner products of the finite element

basis functions used to facilitate the calculation are listed in

Appendix B.

C.1 Coefficients of the Linear Finite Element Method Equations

(as defined by Eqs. 2.20)

Interior Coefficients; k = 2 to K:

ak = 6 & k-l hk-l1 k- /hk-l

bk 3 k-1 hk-l + "khk) + (Dklhk-1. +Dk/h k)

ck =6 k hk ~k/k

Symmetry Boundary Condition Coefficients:

b h Ah /h1 3 1 h1 11
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c Ah- Dl/hl = ck (k=l)

+ 6/hK = ak (k = K+l)

b K+ 1 - K

bK+l = 1h + 31D. + hl

C.2 Coefficients of the Cubic Hermite Finite Element Method Equations

(as defined by Eq. 2.38)

Interior Coefficients; k - 2 to K:

ak 70 k-1 h-1 - k-1/hk-1

a2 13 2 -1 l
k 420 f-1 hk k-1 10

blk -lhk-1 + Ak h)k + kIk/hk-1 k/hk

b2 = L11 Ikh 2 -1 2 -1
k 210 k-k-1 k-1 Akhk k

clk 70 khk k/hk

2 13 2 I-1 1
c2 k 420 Akhk 1 1

a3 13 -1 2 1
k 420 k-1 -l k-1 1
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1 -1 3 -1 1 -l
a4k 6 k- 1 . k-1 k-i 3 0hk-1 k-1

b=11 -1 2 -1 2
b3k -210 (Dkl hk-12 Akfk hk Ak)

b4k 1 -1 1 3 1 2 -1 -1b4 hk (ID~ )D I(h kkl+hiDk

13 -1 2 1
c3k Dh kAk+l1

c4k k h3  ID - 1
1 40 IDkk Akmk 30 hkM)kl

Zero Flux Boundary Condition Coefficients:

1 -1 3 -1 2 -1
b47 h A ID+ h ID
1 105 111 1

c3 1 3  1 h2 A + c3 (k 1)
1 420 111 10 k

c41 =.11D h1 IA I 1l) Lh ]D' c4 k (k 1)
1 140 1 1 30 1 1 k

a3 =1 D 2 1 0(
K+1 420 K hi - a3k k K+l)

a4 = -1 13 -1 h = a4 k = K+)
K+1 140 + K K 3 hKIK k

14= -1 3 .-1 2 h-1
K+1 105 DK 'A'K +15 KDK
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Symmetry Boundary Condition Coefficients:

bl =3 A h + /h1 35, 5 11

cl =-JA h /h cl (k = 1)
705 1 1 D/llk~k1

13 2 17- 1 _

c2 - 4h2 1  - = c2 (k =1)

lK+l 6alK+1hK K/hK = alk (k =K+1)

a2 - 13 + = a2 (k = K+)K+1 4201K h K 10 k (

bK+l 1 hK DK
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APPENDIX D

DIFFERENCE EQUATIONS RESULTING FROM USE OF CUBIC FINITE

ELEMENT APPROXIMATIONS WITH DISCONTINUOUS FICK'S LAW

CURRENT TRIAL FUNCTIONS

The difference equaticas resulting from the cubic (and bi-cubic)

finite element approximations with discontinuous Fick's Law current

trial functions in 1-D and 2-D are given below. The nuclear constants

are assumed to be homogeneous in each region.

D.1 Difference Equations in 1-D (derived from Eq. 3.3)

For simplicity we define

d[a,b]k = dah k + db Dk/hk

and

d[a,b](k,k') d[a,b]k + d[a,b]k

and with the understanding that all nuclear constants outside the

reactor region should be set equal to zero, we have

(i) From taking arbitrary variations in all P*, k=1 to K+l:

k

- 2 k-1 k-l + [( , 1 ]k-1 Sk-l,+

+ [ 6] (k-1,k) k + [ ,1]k 4k,+

1+.3 3P
1 2 1 k-l Qk,- + [ 2 ]k Pk+l

I' k k+1,- = 0 ; k = 1 to K+1 (Dl.1)
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(ii) From taking arbitrary variations in all Q k = 1 to K:

[1OT , 1]k k + 5 7 2]kQk,++ 0 42 k k+l

-30t, 1]k qk+l,- - 0 k = 1 to K

(iii) From taking arbitrary variations in all Q _, k =

(Dl. 2)

2 to K+1:

113 1 3 10 10 21 k-l k- [ , - _ k-1 1 k-1 k-1,+ 1 1 -

+ 21 -+5 [ ,2k-1 4k,- = 0 ; k = 2 to K + 1

(iv) Zero fluxboundary conditions:

Eliminate k = 1 and k = K + 1 equations from Eqs. D1.1

and set P = P
1 K+l

= 0.

(v) Zero current boundary conditions:

Eliminate k = 1 from Eq. Dl.2 and k = K + 1 from Eq. D1.3

and set Ql,+ = QK+1,- = 0
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D.2 Difference Equations in 2-D (derived from Eq. 3.81

For simplicity we define
h h

d[a,b,c] dah h + db h + dc - D
i~j xi y i.;j h Ljj h i~j

x yj

d[a,b,c] d[a,b,c] + d[a,b,c]i, 1,

With the understanding that all nuclear constants outside the

reactor region should be set equal to zero, we have

(i) From taking arbitrary variation in all P (O), i=l toi Si

1+1, j=l to J+l:

27 3 (0,0)
175 28 1-1, j-1 1-1,j-1

1 39 9 (,0)
+ -50[28' - 13 P il'-

+ [ , 9 -13, - ]0 P )(

13 13 (1,1)
+ 4 2-00 [:1 01 i-1, j- 1 Pi-1,j-1()

3 [399 2 61 P (0,0)
+1 [4 ,, i-,lj-l+j-1) ij-l

1 33 9 (1,0)+ 175 2- 8' 4 11 ij-1 1,j-1

- [3 -11 P (-9 )
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+1 1 (i-1,j-1+i,j-1) Pi (091)

1 143 13 (1,1)2100 42 2 i,j-1 i,j-1

. 1 143 13 (1,1)
2100 42 * 2' i-i,j-1 ij-l

+7 [ -1-1] Pi+0j

1 39 9 1 (1,0)

+ 1 39 9-3, ~ (091)350 28' 2, -1] Pi+1,j-l

13 -13 -1-1 p(1,1)
4200 429 1,j-1 i+1,ji-1

(2)

(2)

+ ,-26 ,9](i-1,j-1+ i-1,j) 1o-o

+ 13 13 1(1,0)
+350 42' (i-1, j-1+j-1, j) 1-1, j

+ , -11, (01)

+ -7--[2-81-1 T) -1Ipi-igj

- 1 33 9 ,-1 (]9)

1 143_1 913 p (1,1) (1)+2100T2 1 2 -1,j i-1,j1

(+)
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- - -11 ] 1 P(4
2100 42 *2 1-1,j i-i,j

78 13 1(00)
+57[t= ,1, (l-l+itj-l+1-1,lij itj

+' -$- 11] P +175 42 '2 * 1 (Ij-l+itj) itj

1 143 13 (1,0)
175 42~' 2 (i-1,j-+i-j) ,j ,

1 143 13 p(0,1)+ [42 , 1 1 i-1,j+i,j) P ,

1, 143 13 (0,1)
-7 [2 , 21 (1-1, j -l+1, j -1) 1, j

2100 1

(-)

C-)

11 p(1 1) (1)
91i~j

11 11 (1,1)
210021' 1 i-1,j ij"2

11 11

2100 21

- (i 1) (3)

(1,1)
,j-1 1,

3 39 (0,0)
+75 14, *-26, (,j-l+ij) i+1,j
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- 13 13 (1 ,0)

1 33 9 P(0,1)
+175 289 4 ii MM (+)

1 33 93 (0,1)
-T(T [ -1 1 i+1s

- 1 143 P 3] (101) (2)210542' 2 itj i+1,j

+2100[42 2 ilj-1 P

-1 -1]

1 39
350

(3)

- (0,0)

9 (0,1)-13, - ] j Pi-1,j+1

413
4205 42' 1

-1 ,j (11) (4)

+ 3 39 -(2j)
175 1r 4 ~ ,-6 (i-1,9J+i 9) i , J+1

+ [ 33 9-

1 33 9
-5 [t -1]

173
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175 '28" i-Iti i-i si+l

1 '39 9 131 p (1310)
I- W350 28P i-lgj i-lgj+l

(10)H

P-tj ij+1



213 -1 ,j ij 1

+ 1 143 13 (1,1)
+10 [42 *2 * -1,j i~j+1(3

210 0 42 * 2 * ij ij+1

+ 73 -1 -1] P (0*0)
175[t28' *i,j i+lj+1

1 39 9 (1,0)
350 28' 13]s., i+1,j+1

1 [39 13 9 p(0,1)
350 , -13, - ,j i+i,j+1

+ 4130 1 i*j i 1,j+1(3) 0

i = 1 to I + 1, j = 1 to J + 1

(ii) From taking arbitrary variations in

i = 1 to I, j = 1 to J + 1:

1 33. 9 p (090)
175 28'4 ij-1 1,0(j-1

+ [. ,t 3, -2]

all P
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l 143 13 (o ,1)
+2100 42 '2 1,j-1 1,j-1 +

1 13 13
+lol2'* ~ -'iM-1 1i,j-1

+ , - , -1 3P1

3 3 1 1(1,0)
350 28' 2' lijj-1 i+1,j-1

13 13(01
+ 0[ 42, -1, -1] Ps(- l (+)

1 13 13 (1,1)
1400 42 9 ' ij-1 i+,j-1 (2)

+ [143 13 (0,0)
+175[42 2 3(1,j-1+i,j) 1,j

+ -5~ [ ,13, 3 1  ,j-i j)

2100'21 ii
11 11 (,1)

11 11
21 9 ,j-1 ~ij

1 11 22 11 p(l 1) '1)
+1050' - ji,

1 11 22 (1,1)
~ 1050 21' 3' * jj- 1 , (4)
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13' 13 _9)p(0,0)
+ 356[t4Z (igj-l+1,j) i+1,j

3 13 13 (1,0)
350 [42 9 1 (i,.-1+1,j) 1i+1,j

1 143 1 3]
+2100 42 2 i

((0,1)
i+1,tj

1 143 - 13 1 l(0 1)
2100 4t 1 ij-1 1+1,j

1 11 22
1400 212 9

1 11 22 1]
1400 t 9

(1,1)
15ji+1,:j

p(1,1)(3
itj-1 i+1, (3)

1 33 9 (0,0)
+ 5[25' -49 1,ig ij+1

3, -2]1 P (1,0)91igj+1

1 143 13
2100 42 2' 9j ij+1'

1 13 13 -(1,1) (4)
1050 42' 3 1,jio+1

1 39 9 (0,0)
+ 3 25' 2 , 913 P0i+1, j+1

1(0,0)9 [ 9 ' 2 i j+1j+
350 28 i+j+
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13 13 (0,1)
4200 i+1,j+1

+ [ , -l] P (3) = 0

i = 1 to I, j = 1 to J + 1 (D2.2)

(iii) From taking arbitrary variations in all P (-)

i = 2 to I +1, j - 1 to J +1:

1 39 9 - (0,0)
350 28' i-1 j - 11,-1

3 3 1 (1,0)
350[ 28' 2' i1j1i-1,j-1

13 139 l 1 (0 ,1)-
4200E 1-1,j-1 i-ij-1

1 13 13 - (1,1) (1)
14002 T i-1,j-1 i-1,:j-1

1 33 9
17528s' 4'

(0,0)
1-1,j-1 1,jt-1

+ [- - , 3, i-2] - - )

1 143 13 1(0 +1)
2100[42 * 2 1 i-1,j-1 i,j-1

1 13 13 (1,1)
+1050[t 42' 3 * i-1,j-1 Pitj-1(2
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13 13 +(0,0)
350 12 -1 +-l

3 13 13 p(1,0)
350 4 2' 9 (1-1, j-1+1-1,j) 1-1, j

1 143 13]
2100 42 i-1,j

P (0 ,1)
i-1,:j

1 143 13 1 (0 ,1)
+2100 42 -1, j-1 1-1,i

1 1 11 22 (1,1)

+1 [115 22 (1,1)(4
+1400 21 9 i-1,j-1 i-1,j

1 143 13 il(0,0)
1~5 [42 2 (i-lj-l+i-lj) ij

2 13
13,

11 9 1 1l(01)

+2100 21t 1-1,j- 1,j

1 1122 (,1)
1050 21 3 i-1,j i,j

1 11 22 1(1,1) (3)
1050 21' 3' i-1,j-1 ,j
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+ [ 9 -2, 3]
(0'1)

i-1j 9 (+)

1 139 1 13 p(1,1)()+ [05 1 , - 3 l-] s P (1)

+ 1 [143 1 L3(090)
175 42 * *2 (i- +1,j) ,j

1r 1 p ~(l,0) +2 10 ,1' 1 P j9 (+)

11 11 (1,o)
~ 2100ti 19i-1,j 4, j ~

2 113 9 011p(091)
+525 14, ,1]11j1j +

15 1 22 (1,1)

1 1 11 22 (191) (2)
1oso 21 T i-1,j itj

1 33 9 (OO)
+17 [2 -1 ] Pi+1,j

1 143 1 13]
210042

+ [ , -2, 3)

p (1,0)
i+1, j

P 1)

S 13 _ 13 (1,1))
- 05 - 1, ] P (2)ji~ s
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1 39 9 (0,0)
+350 28, -13 -l Pi-1,j+1

+ 13 13 1 13 P (1,) (4)

400 -2'1,j 1 0+1

3 3 1 (0 ,1)
- [ , 1  13P1 -,j j+ 1

1 13 13 1(1,1) ()
1400 It 9 i-1 i-,j+1

+ [3 1 , -1 ] ( 1 -1 ,j0,j ))

+21-00 Pt:: + )

1 143 13 (1,0)
2100 42 2 1 -i j ij+1

3 13 13 (0 ,1)
_350(429 1 T] (1-1,j+i, j) 1, j+1

+1 [1 22(1)
1400 211 9 i-1,j ij+1

1 11 22 (1,1)
1400 29 9 i ij+1

+1 3.9 s 1t 9] (0,0)
350 -13, - ] P9i+1,j+

S -, -1] P (1+1

(-)
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3 3 1 (0,1)

- [1 , -, ] P(1) () 0

+1400 (3) = 09 ~o~

i=1to I + 1, j - 1 to J (D2.4)

(v) From taking arbitrary variations in all P -),

i = 1 to I + 1, j = 2 to J + 1:

1 39 9 (0,0)

- 1 -- [ - 13 - ]P ) (1

30 12 ' 2 -,- - ,O)j-1

1 13 13 (1,0)

400 42 i-1,j-1 1-1,j 1

13 3 (0,0)
3 [3 1 -1](-,j-l+1,)j-)
1 143 193 p( (1

2100 429 92 i-i. j-1 (+)j

1 1143 13. (10)H

+2100 42 * 2 -1,j-l 1,j-l

3 13 s.131 (0,l)
-0 [ ,L 1, ] i-1,j-l+i~j-1) 1,j-1
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1 11 is223 (1,1)()

i 11 22 (1,1) (2)

1 39 9 (00)17- 39t -13 o- ] I P028 2 ,j-1 i+1,j-1

+ 1 10 -, -ij1 P (1, 0)
4200 4 isi-ii+1,j-i(-

3 3-1 1 (1)-(O
350 *28' 1 i,j-1 i+1,j -1

1 1s 13 (1,1) (2)
+ 140 9 ij-1 i+1,j -12

1 33 9 p(0,0)
-5 [f81 -11, ]41 - P-t

1 143 -1913 1(1,0) +
2100 28 9 21i-tj-1 i-1, j

+ [ , 2, 3] P - )

1 13 113 P(1,1)(4
1050 3 i-,j- -1,j

- [ 11 ](-1,j-1+ij-1) 0)

- 1 ( , 1 1] P ,0)
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2 13 ( (0,1)
525 [4 3 ,131 (i-1,j-l+ij-1) ij

11 2(,1)
- 1 11 22 P(l9) (3)

1 33 9 (0,0)
- [E, -11, 41ij-1 i+1,j

1 143 13 (1,0)
+1 [ 4 , -, Pi+1,j

*1 3 x- 1.93 (01,1)

1050 42 - ij-1 i+1,j (3) = 0

i = 1 to I + 1, j = 2 to J + 1 (D2.5)

(vi) From taking arbitrary variations in all P (1)

i = 1 to I, j = 1 to J:

11 [119 t1 (0,0)[,1, 1] P(.O

+ 1 [11 22 (1,0) )
0 [1 ,, 1]1 P +
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1 1122 (0,1)

[ , 1 U ) (1)

+ 1 14s,-l13] P (000
2100 42 * *2 itj i+1,j

1 11 22 (1,0)
14 00 [.* 0 1*19 i+1,j

1 13 1 .
+05 [t , -11]

P(Qsl)
i +10 i

1 1 1 1 (1,1) (2)
1050 *41 -5iq i+1,j

1 143 13 1 (0,0)
21OO002 2' 9j 1,1+1

1 13 13 1 (1,0) )+ 05[t: ,- -1] iij+1

1 11 22 (0,1)
1400 [19s ij+1

151 1 p (1,1)1050 [4 3 1i, j+1

+ 13 13 (0,0)
420 0 42*t * ij i+1,j+1

1 13 13 _ (lo) 
14-00 42* 9 ~ i+1,j+1
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1 13 13 (0,1)
- -1, 9 Pi i+i+-

+ [ ,1, 1] il P(3) =0

1 to I, j = 1 to J (D2.6)

(vii) From taking arbitrary variations in all P
itd

2 to I + 1, j- 1 to J:

- 1-[ -11, 0=
2100 4232 i-].j i(OO)

1 11 22 1] p(1,0) +
- 021" 9' ,j i-,,1]

1 13 13 1(0,1)
13- 0 1fP 3 i-~ i (+)

1 1 1 1 i P (1,1)
1050 14 3 -1 i-1,j

11 11 p(0,0)
2100 2 1' ' i-i ij

1 11 22 1(1,0)
1050 219 3 i- i'j

1 11 22 (0,1)
1050 219 3 i-1,j i9j

1575 14 i-1,j (2)
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13 13 (0,0)
4200 [ts 1-1,j I i-1,j+1

1 13 13 (0)
1400 42 9 i-1,j -1,)j+

1400 2 9 i Iii-l,i+1

1 3 13 (11)

-1 143 13 -1 00
+ 100 [ , ii-, ij+1

1 13 13 0(10)
~125I6 42 *2 1-1,j i, +1

1 11 22 (0 1)+ [ 9 , 41, 9J Pi+140021 19~,~P

1 1 1 (1,1)
1050 * 9 3 1i-1,j i,j+1 (3) 0

1 - 2 to I + 1, j - 1 to J (D2.7)

(viii) From taking arbitrary variations in all P (ll) (3)9

i = 2 to I + 1, j - 2 to J + 1:

13 13 P (0,0)

+ 00[f -, -1 P-d1+

187



881

(0 4 I) l II Y T -

P'T a -VT-I 1 -
(O~o) II IT

P i-T~ T-PlT-I(T OC -'T00

I Il

(1 1o) EI CI I

V+ iVT T- F' T .6 cTZ OO#'I

a CZ TT+
(oI) CTI I

(Z) T--VI I-VT I
(IT)d

(I'0) zz

TT cl Ir-PV-T 1 .c
(0 11) 1I L

II

IT I

cI I OO

I-PI I-VT-T- zZIOT
al L- -4 +(o1o) CI CI I

(I) I-VT-I c I-Vf4 -T [I 4T6 I OOZ~
(I'T ) c I

(+)TPT-Tac I-VT-I 6 s1 Z+I. IO
(I " ) C+C



1 1 11 22 1( l(0 1)

+ 215i-,j-1 P (3) = 0

i = 2 to I + 1, j = 2 to J + 1

(ix) From taking arbitrary variations in all

1 to I, j = 2 to J + 1:

1 143 13 (0,0)
200 42 *2 itj-1 itj-1

1 13 13 ( ,0)
1050L42i j-1 ij-1

1 11 22 p(0,1)

1 1 1 (1,1)
1050 1 3ij-1 i,j-1

P(4)
i~j

13 13
4200 42 * i~j-1 i+1,j-1

1 13 13 (1,0)
+40 [2 , , -1] Pi+1,j-1

1 13 -1
-1400[2

13
(+)

+ 4013 , j-1 1 -1) (2)~4 W0 1 10 i i+1,j -1
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11 11(00)
-10 [ , 1, 1]9P

1 11 22 (1,0)
10d56 21 1,-1 i~j

+ 1 11 22] (0,1) H1050 21 3 ij-1 1,

+ 27514$i 1 p (191) (4)
1575 ,jit-1 t

1 143 13 (0,0)
-100 [2 , -1 ]i+l,j

1 11 22 (1,0)

[ , s - 1, ] (-)

10554E2' -1 3 ±,j-l i C-)

11 1] p (l1) (3)
1050 14' 3 1j-1 i+1,j ()-

i = 1 to I, j - 2 to J + 1

(x) Zero flux boundary condition on the left:

Set P 0,0)= 60,0)* - 0, j - 1 to J + 1, thiswill

eliminate J + 1 equations from Eq. D2.1. Zero flux

boundary conditions on other edges can be treated in

the same way.
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(xi) Zero current boundary conditions on the left:

Set P ( ) P ( (+)* =0 j = 1 to J + 1,

this will eliminate J + 1 equations from Eq. D2.2.

Zero current b. c. on other edges can be treated in the

same way.
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APPENDIX E

DIFFERENCE EQUATION COEFFICIENTS RESULTING FROM

USE OF THE FINITE ELEMENT SYNTHESIS APPROXIMATION

METHOD IN TWO-DIMENSION

The GxG matrix coefficients resulting from the finite element

synthesis method using bi-linear basis functions in two-dimensional

multigroup diffusion theory are defined below.

In order to simplify the forms of the coefficients, it is

convenient to define the following GxG matrices:

K i,j y) = i*j (x ij(x,y)h xi h 19i (xY)

IL X (x,y) = CiTj (x,y) D-1 (x,y)h h ( (x,y)

IL (xy) = n T (x,y)Dil1(x,y)hihyj , (xY)

X (x,y) = ( (x (x,y)h

I Y (xy) = n*T (x,y) P (x,y)h

X *T
IMis (x,y) = $iq (x,y) cis (x,y)h y

]3p (x.y) = * 9 (x,y) n i (x,y)h x
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R (x~y)- $ ~(x9y) E (x~y) h xy

(x,y- y(x~y) iDj(xY) h (xy)

yj
hh

S ()=x *T x
SR (X,) =~ *T )ID (.) XYfor each region (i,j), and

S (x) = h (x,1) ID (x,0) *1 (x,0)
yj

s (x) -i * (x,0) m (x,0) i -(x,1)
.yj

S (x) h = j $j+1 *sl

h
S (x) = xi *T (xl)ID (x,1) $i,j+1Xm

yj

for each horizontal region interface and

h

hxi t 9

Ti(Y) = * T (O,y) ID (1y)$ (ly)
T~i~j hxi iiji' t

T y ' (l,y)1D (1Y) $pi+1,(j qY)

for each vertical region interface.
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Also define the GxG matrix E (a,b; cd) as
ipj

1E (ab; c,d) - dx dy <p( bX

-[ 4 (x,y)]pcx d j c db(Y)' (x)L(Y)

- IN .(x,y)pc d + qa b c+

+ 3R (~~c d + pax b c cjx1)P(xP~

+ IR (~~c q())(E.l)

where a,b,c and d are equal to either 1 or 2 and

pc(x) = (1-xP

p2p
- p(x) = 1 d q -j

q2 2

+ I (Xp x

for each region (i,j), i = 1 to I, j - 1 to J. Then with the under-

standing that all nuclear constants outside the reactor region should

be set equal to zero, we can write the matrix coefficients in the

following form:
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(i) Zero-current or Symmetry Boundar conditions on All Four Boundaries

* -1 j-1) - (2,2; 1,1) I(00

+ ( fd p (y* - it{ (1, 1)

12 -
+ $T- (1,1)T Y* (-,j190

- $ l (0,1)Ti- j-1 * -1(0,0)}

1-

(00

+ $ T- (11)si-1,3-1-(X l -1 , -

--

- i(1,0)S t-+1 ,3-2(0,0)1

i = 2 to I + 1, j :- 2 to J + 1
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ab = T T 1i i1j122_12*_ 0

+'ir'9 i -1 -j

+ .1- dylYp()VT-1(9)I 1

x (0,0- j(0 , Y N - 00

+ Tiiji-1- ij

- T -1 (0,0,)T - (0, 0) }

+ fo dyp2(y)p2(y) {i- 1 j ..{ll R1 1.1lY

x -1I

+ I -L1j1op) i1j 1j

*T_1 1 3,1) T(Y~v-1(1 )

+ - + i-1
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*T 1  (x)] -1 f
+2(1,o0) [Si-1,+j-1 1,- 1 to v +

i = 2 to I +1, j-lto J+ 1

a-1

+ I 
1

dypl(y)p2 - 1 ,j

- IR (Oiy)4 1 (0,1)

-1 -2,

-1
*- (00)T - -

1 -1

+ 
-1, (1,0)

-R ( (,1)]$

*T 1 (1,0)
I. Si- j 1i, (0 0)

-1,

i = 2 to I + 1, j = 1 to J
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+ d

1i, 0) E j(2,1; 19) ,2 9 (0,1)

(1 , 0)[ (Rx 1,Y)

+ Ili1-19 j

- (1,1)S-1 v



ba, -I* -1 (1)E29;1V-1l (10

+ *T (01) E 1211)- 00

2 fo

*T
1 l

dyp 2(Y) -v 1 (Y) i v- (1,91)IT()

-T +g- v-1

+ 
T1

+11
2f0 dxp (x)p (x{4i J-1(Gl Ri 1(,1

- F, .(x9 0) V-1 .1 (00)

1ij

+ p*T (O91)Si~-l (01

- pij 1(000)s~~..

1 (1 -

IR dx(x)p x){1 (1,)i.l2 22 T 11-1,j-1

+ -1 11 ix -1 ,j-
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i - 1 to I + 1, j - 2 to J + 1

bb = F (1 -1bb TIP19 (0,0) Ei9 (1,1;11)l (.090)

+ *Tl(1,0) E (2,1; 2,1)$p~ (1,0)

+ (1) E(2, 2 ;2,2)$ (1,1)

+ lp* 1(0,1) E (1 , 2;1, 2)$p- (0,1)

-1

+ dyp ()p f T(00) [T+- ()21 Jo Y 1 Y/ 1 YLj ~ +~1

- T (y)J$ (1,0)

+ $ (1,0)[T_ (y) -T j

*T~
+f dyp2 2 1-1jl,)[

+ ~- Y2Y(Y)Y){IP(0 1)~

1-

2 Ti-l+,j-1 iij-l

+*T (y)-1

+ 2 odxpy 1( p (){$ j-(0,1) [S ir (x)
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- S Wj-l+ (0,0)

+ $* (0,0) [S -1 -S
iqj it+J -1 i~j- ij-1

+ ax2 2 1-1 j-i1,)[

- S i-1,j-(xl - 1 ,0)

+ *T (9)SW S ) -
i+ 1, )[i-1+j-1 -1,j -1,j

i = 1 to I + 1, j = 1 to J + 1

*T i

-,j 2-- 1 j(lO)

+ $ (0,0)

E (2,1;2,2)$ (1,1)

1,(1 -1

+ L dyp (Y) p2 (Y) % (0, 0) [T(

-T (Y) (11)

+ -1 ( 1 , o) [T- (Y) -T+i 1 Y) ,(01))

y -
- R .91(X91)] (0,11)20



- T (09T1( l)s. *(X)47 (091)

2 f:i 2 -2 i-ij '-q

IRy (x11-1 11
:L-1L9j 9(x,1)-

-19 -l+ i g+

i=1 to I + 1, j =1 to J

1~- iq 1111-

+ -1 dyp (y)p (y){ip T (0911)[E x ..(09y)

x~j i-1

- 4.)*T '9)T~ (Yv- (9)
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+ dxp(xp2(
0 o lxp(

+ l(0,1)Sijl() -1 j-2 1
-1j-

-+-1 -1

i 1 to I, j = 2 to J + 1

. 0,0
3iJ 19J

+ -1 (0,1) (12;212) (01)

+ f0 dypYp

+ 4)ji (0,0)T 1 ~ (y)$ (0,0)

+ . I dyp(Y)p 2p(Y){2*T (0.1) [ 1,,_ 1(0-Y)
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-1
$(1,0)

{V -(0,1) 1[ F _(x, 1)

- I s-(x,0)]$is- (1,0)

(1, 1; 2, 1)$ql (1, 0)

(0,0O)(R X(0,y)- R X-(1,y)1

+Ip- (1,0)T_ 11(y) ,S(1,0)}

- R x (1,y)]$ - (1,1)



*T 1  -1

T -l

+7
0

+(, [i+j-1 - -1

i = 1 to I, j = 1 to J + 1

cc (0,0) E i (11;22)$j (1,1)

dyp*T 
X

1 (Y)P2(0Y,0)11 01R~

+ $ T'p
:iq j

(O9y)

(0,1)

- * (1,0)T_ (Y)$ (1,1)}

+ - I dxp1 (x)p2(x)lpj

- K, (x,1l$ l(1,1) +

(0,0) + IRj+(x1 ,)

91 -j() ii1 (10

- (091)s (x) 1

i = 1 to I, j = 1 to J
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(OsO)T (Y) -1

i+si i+l qj- IR (1,y)] (1,1)



(ii) Zero Flux Boundary Condition on Certain Boundaries

If the left boundary has a zero-flux condition and the

other three boundaries have symmetry conditions, then we should use

the following equations:

bb 2  1 + bc P + cb P +c EC P 0
2, ,1 +-2,1 2,2 +-2 P 3,1 -2,1 3,2

ba P +bb P +bc P +ca P +cb P +cc P =0
-2, j 2, j-1 -2Pj j -2 P2, j+l -2,j 3,j-1 z2,j 3,j -2,j 3,j+1

j = 2 to J

ba P + bb P +cP +b P -0
-2,J+l + -2,J+l 2,J+l + -2,J+l 3,J + -2, J+l 3, J+l

ab P +ac P +bb P +bc P +cb P

+cc P 0; i 3 to I + 1
z-i 91 i+l , 2

a j P +ab P + ac. P +ba P +bb P

+ bc P +ca P + cb P +c P
+ Pi1i,j+1 P.-4, i+l1,j-1 + ,j i+lj +--, Pi+lj+1 = 0

i = 3 to I + 1

j = 2 to J

aa P + ab P + ba P + bb P
-,J+1 i-1,J i,J+1 i-1,J+1 + i,J+l i,J -i,J+l 1,J+1

+ cai,J+1 i+1,J + i,J+1 i+,J+1 = 0; i = 3 to I + 1
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where the matrix coefficients are defined the same way as in (i). The

equations and coefficients for zero-flux conditions on other .boundary

or boundaries can be found similarly.

The implied zero-flux boundary conditions, as defined by trial

functions Equations 4.11, will result in equations having the same forms

as ordinary zero-flux conditions. However, the matrix coefficients

must be changed by putting the appropriate modified basis functions,

similar to Equations 4.12, in the corresponding regions.
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APPENDIX F

LISTING OF THE COMPUTER PROGRAMS

FORTRAN listings of programs LIN1, LIN2, DOB1, DOB2, MAN1,

and MAN2 are listed in only the first five copies of this report in

the following six sections.
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