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Abstract

To what extent does “false science” impact the rate and direction of scientific change? We

examine the impact of over 1,100 scientific retractions on the citation trajectories of articles that

are related to retracted papers in intellectual space but were published prior to the retraction

event. Following retraction and relative to carefully selected controls, related articles experience

a lasting five to ten percent decline in the rate of citations received. This penalty is more

severe when the retracted article involves fraud or misconduct, rather than honest mistakes.

In addition, we find that the arrival rate of new articles and funding flows into these fields

decrease after a retraction.
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1 Introduction

In 2005, South Korean scientist Woo-Suk Hwang and his colleagues published an article in

Science claiming they had isolated embryonic stem cells from a cloned human embryo via

nuclear transfer (Hwang et al. 2005). Immediately following publication, scientists around

the world took time and resources to replicate and continue this line of enquiry, thus building

on the exciting (albeit controversial) field of human embryonic stem cell production using

cloning. Less than a year later, the paper was formally retracted from the literature amidst

claims of error and later findings of fraud and embezzlement. In the aftermath, the govern-

ment of South Korea curtailed investment in stem cell research for five years and, globally,

scientists no longer built on the fraudulent Hwang paper; some researchers abandoned the

field altogether while others pursued adjacent research lines that built on firmer foundations

(Furman, Murray, and Stern 2012). It took several years before researchers started to explore

some of the novel hESC production methods proposed in the controversial paper, particu-

larly parthenogenesis. In late 2007 Harvard researchers published definitive results showing

that some of the (lesser) claims made by the Korean team were actually useful insights into

other methods of hESC production (Kim et al. 2007). Until this new research, the field

had been stifled because the retracted paper “sent a lot of scientists on a wild goose chase

and down false paths,” in the words of a stem cell researcher, Robert Lanza, quoted by the

Associated Press (2005).
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This dramatic incident illustrates the central questions of our paper: To what extent

does “false science” impact the rate and direction of scientific research? To address this

question we examine the impact of retractions — publications in the academic literature

that are withdrawn by authors or editors — on cumulative knowledge production along

retracted research lines. We do so using a novel approach to characterize the intellectual

scope of research fields and their proximity to specific (retracted) papers. Our analysis

is timely because “false science” — a term we use to cover a broad range of phenomena,

from mistakes to plagiarism to difficulties in replication to systematic fraud — has received

considerable recent attention (Fang, Steen, and Casadevall 2012; Lacetera and Zirulia 2009;

Pozzi and David 2007). For scholars of scientific and technological change, retractions provide

an unusual lens to deepen our understanding of the dynamics of cumulative knowledge

production, particularly as we seek to move beyond analyses of the determinants of the rate

of inventive activity towards an understanding of the factors shaping the choice of research

direction (Aghion, et al. 2008, Dasgupta and David 1994; Furman and Stern 2011).

The spillover effects of retractions on the evolution of research fields is particularly impor-

tant given the broader welfare implications that arise from scientists shifting their position in

“intellectual space” (Aghion et al. 2008, Acemoglu 2012, Borjas and Doran 2012). However,

evidence is currently limited. As a starting point, systematic data on journal article retrac-

tions shows a strong upward trend in frequency, but as in the case of criminal activity, the

underlying magnitude of scientific mistakes and misdeeds remains poorly established (Mar-

tinson, Anderson, and de Vries 2005). In addition, a recent analysis shows that the majority
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of retractions are caused by misconduct (Fang et al. 2012). More salient for the evolution

of fields, Furman, Jensen, and Murray (2012) provide evidence that retraction notices are

effective in alerting follow-on researchers to the shaky foundations of a particular paper.

Citations to retracted papers decline by over 60% in the post-retraction period relative to

carefully matched controls. Their analysis, however, focuses on the fate of the retracted

papers themselves, not whether and to what extent retractions influence the evolution of

adjacent research areas. It also does not distinguish between different types of false science

associated with retracted events, although this heterogeneity is of primary importance since

the information that retraction provides regarding the veracity of associated knowledge can

vary widely. Thus, the challenge for our paper is to elucidate the impact of different types of

retractions on related research lines and the magnitude of spillovers to research in proximate

intellectual space.

Our conceptual approach follows Acemoglu (2012), Aghion and co-authors (2009), and

others in understanding research as arising through a cumulative process along and across

research lines that can be traced out empirically through citations from one publication

to another (e.g., Murray and Stern 2007). This approach is grounded in the assumption

that knowledge accumulates as researchers take the knowledge in a particular publication

and use it as a stepping stone for their follow-on investigations (Mokyr 2002). Although

it is a commonplace insight that the process of knowledge accumulation unfolds within an

intellectual space (e.g., Hull 1988), it has proven surprisingly difficult for social scientists to

gain empirical traction on this concept (see Azoulay, Graff Zivin, and Wang [2010] and Borjas
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and Doran [2012] for rare exceptions). We conceptualize retraction events as “shocks” to

the structure of the intellectual neighborhoods around the retracted papers, and implement

a procedure to delineate the boundaries of this space in terms of related publications in a

way that is scalable and transparent, and with scant reliance on human judgement. We are

then interested in studying whether researchers increase or decrease their reliance on related

papers following the retraction event. We differentiate this cumulative response across three

types of retractions: papers with results that have been clearly shown to be invalid and

should not be used as the basis of future research (which, borrowing from Newton’s aphorism

regarding the process of knowledge accumulation as “standing on the shoulders of giants,” we

label “absent shoulders” papers), papers where retraction creates doubt about — but does

not clearly nullify — the value of the content for follow-on research (“shaky shoulders”),

and papers where retraction does not cast aspersions on the validity of the findings (“strong

shoulders”).1

A priori, retraction events could be thought to have two countervailing effects on the

intensity of follow-on research direction. On the one hand, researchers may simply substitute

away from the specific retracted paper and increase their reliance on other research in the

same intellectual field, effectively increasing the prominence of the unretracted papers in

1Isaac Newton acknowledged the importance of cumulative research in a famous 1676

letter to rival Robert Hooke: “What Des-Cartes did was a good step. You have added much

several ways, & especially in taking ye colours of thin plates unto philosophical consideration.

If I have seen further it is by standing on ye sholders of Giants” (quoted in Stephen Inwood,

2003, pp. 216).
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that same field. On the other hand, researchers (and/or their funders) may substitute away

from the related research line, and not simply from the retracted paper. Our results clearly

show that the latter effect dominates.

Using the PubMed Related Citations Algorithm [PMRA] to delineate the fields surround-

ing over 1,100 retracted articles in the biomedical research literature, we show that 60,000

related articles experience on average a 6% decline in their citation rate following retraction,

relative to the background citation rates for 110,000 control articles that appeared in the

same journals and time periods (an empirical approach to controlling for citation trajectories

that has been used effectively in prior work on the effect of scientific institutions and gover-

nance, e.g., Furman and Stern [2011]). Moreover, this effect is entirely driven by the fate of

articles related to retractions with shaky or absent shoulders: There is no broad impact on

the field when the retraction occurred because of plagiarism or publisher error. In contrast,

mistakes, fake data, and difficulties arising in replication attempts have negative spillover

effects on intellectual neighbors. Although the collateral damage (measured in lost citations)

is about ten times smaller than the direct penalty suffered by the associated retracted article,

we find the effect to be persistent and increasing in magnitude over time.

We exploit finer grained levels of our data in order to paint a deeper picture of the impact

of retraction on related fields and on heterogeneity in the size of the effect. The negative

effect is concentrated among articles most related to the retracted paper. It is also stronger

among relatively “hot fields” of research, in which a high fraction of related articles appear

contemporaneously with the ultimately retracted articles, and “crowded” fields, in which the
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most-related articles achieve particularly high PubMed relatedness rankings. These results

suggest that the degree of scientific competition within a field impacts the way in which

negative shocks affect knowledge accumulation.

We conclude our analysis by examining the proximate causes and potential underlying

mechanisms behind the observed citation decline. We find evidence that publication rates in

the fields affected by a retraction markedly decrease following retraction, relative to control

fields. Similarly, we find that funding by National Institutes of Health (NIH) in these fields

declines in an even sharper fashion. We consider two mechanisms that may lie behind these

effects. First, we examine evidence regarding the strength of a learning interpretation rela-

tive to one based on status concerns. On the one hand, we might simply be observing that

retraction events enable scientists to discover that a particular field offers fewer prospects of

important findings than was previously believed, leaving them to substitute away from that

field onto lines of research that are not directly adjacent to the retracted knowledge. Alterna-

tively, scientists in the affected fields might believe that their reputation will be besmirched

if they tie their scientific agenda too tightly to a field that has been “contaminated” by a

retraction. Status concerns of this kind would just as surely drive away previous (or poten-

tial) participants in the field, but such shifts would this time be construed as constituting

under-investment in the affected areas from a welfare standpoint.

We find suggestive evidence that the status interpretation accounts for at least part of

the damage suffered by retraction-afflicted fields. First, we document that, even in the set

of articles related to retractions offering entirely absent shoulders to follow-on researchers,
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intent matters in modulating the observed citation responses: the penalty suffered by related

articles is much more severe when the associated source article was retracted because of fraud

or misconduct, relative to cases where the retraction occurred because of “honest mistakes.”

Second, starting from the premise that status considerations are less likely to drive the citing

behavior of scientists employed in industry, relative to that of academic citers, we show that

the former are much less responsive to the retraction event than the latter. While a learning

story suggests strengthening the retraction system in its current incarnation, the evidence

for a status explanation suggests that researchers overreact to retraction notices under the

current system.

In the remainder of the paper, we examine the institutional context for retractions as

the central approach to governing scientific mistakes and misconduct and lay out our broad

empirical strategy. We then turn to data, methods and a detailed presentation of our results.

We conclude by outlining the implications of our findings for the design of governance mech-

anisms that could help the “Republic of Science” better cope with the specific challenges

posed by the existence of false scientific knowledge.

2 Institutional Context and Empirical Design

Knowledge accumulation — the process by which follow-on researchers build on ideas de-

veloped by prior generations of researchers — has been long understood to be of central

importance to scientific progress and economic growth (Mokyr 2002; Romer 1994). In def-
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erence to Sir Isaac Newton, this cumulative process is often referred to as “standing on the

shoulders of giants,” but is conceptualized more prosaically as the way in which researchers

in one generation learn from and build upon prior research. A variety of institutions and

incentives have arisen to support this cumulative process. While substantial scholarship

has focused on understanding the role of openness in facilitating knowledge accumulation,2

there is scant evidence regarding the role of institutions that support the fidelity of scientific

knowledge (ORI 2007; Pozzi and David 2007; Lacetera and Zirulia 2009) and even less ex-

ploration of their effectiveness (Furman, Jensen and Murray 2012; Lu, Jin, Jones and Uzzi

2012). This is particularly unfortunate in light of recent instances of large-scale scientific

fraud and mistakes that have brought to the fore concerns regarding the scientific and eco-

nomic effectiveness of the institutions that govern the cumulative production of knowledge.

Episodic popular and political interest is usually inspired by the discovery of high-profile

cases of fraud (cf. Babbage 1830; Weiner 1955; Broad and Wade 1983; LaFollette 1992)

and the recent rise in misconduct has attracted the attention of the scientific community,

including specialized blogs such as RetractionWatch.3

In contrast to popular accounts, which often focus on the shock value and the scandalous

aspects of scientific misconduct, an economic analysis of false science hinges on its impact

2These include the norms of open science (Dasgupta and David 1994, David 2008), mate-

rial repositories (Furman and Stern 2011), patent disclosure and licensing policies (Murray

and Stern 2007, Aghion et al. 2009, Murray 2010), and information technology (Agrawal

and Goldfarb 2008, Ding et al. 2010).
3http://retractionwatch.wordpress.com/
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on cumulative scientific progress. If researchers are unwittingly building on false or shaky

research results, their effort is wasted and scientific progress stifled. To our knowledge,

this study is the first to document systematically how false science shapes the direction of

scientific research.

2.1 Institutional Context

Very few practices or systems exist to identify and signal research misconduct or error. In

the United States, key public funders have created an Office of Research Integrity (ORI)

to investigate allegations of fraud or misconduct (Pozzi and David 2007). More broadly

applicable is the system of retractions used by journals themselves to alert readers when a

research publication is stricken from the scientific literature. Retractions can be made by all

or some of the authors of a publication, or by the journal’s editor, directly or at the request of

the authors’ employer. These events can occur for a variety of reasons, as we describe below.

Retraction events remain very rare, with the unconditional odds of retraction standing at

about one per ten thousand, regardless of the data source used to calculate these odds (see

Lu et al. 2013 for tabulations stemming from Thomson-Reuters’ Web of Science database).

Figure A of Section I in the online appendix documents secular increases in the incidence of

retractions in PubMed, where this incidence is measured both as a raw frequency and as a

proportion relative to the total size of the PubMed universe.4

4While this paper is not focused on the determinants of false science but rather its impact,

it is worth noting that the rise in instances of false science (or at least the increase in

its documentation via retraction notices) may be linked to a range of factors including

9
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As a matter of institutional design, the system of retractions treads a treacherous middle

ground in managing the integrity of scientific knowledge. At one end of the spectrum,

scientific societies and journals could make significant investments in replicating and verifying

all studies prior to publication, while at the other end, a knowledge registration system with

no filtering mechanism could require researchers to expend considerable time and energy on

replication and validation. The actual system in existence today relies heavily upon peer-

review but provides only limited guarantee that published knowledge is of high fidelity. As

a result, reputational incentives play an essential role to ensure the integrity of the scientific

enterprise (Merton 1973).

In practice, retraction notices are idiosyncratic and vary widely in the amount of infor-

mation they provide, ranging from a one line sentence to a more elaborated statement of

the rationale behind the retraction event. Understanding their impact on the scientific com-

munity is of central importance to the process of cumulative knowledge production and in

deriving implications for the allocation of resources, human and financial, within and across

scientific fields.

the increasingly complex and collaborative organization of the scientific enterprise (Wutchy,

Jones and Uzzi 2007) and the growing competition for resources in science. Lacetera and

Zirulia (2009) note that competition has ambiguous effects on the incidence of scientific

misconduct since scientists can also gain prominence by detecting instances of false science.
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2.2 Empirical Design

Our core research questions require that we overcome two separate data collection challenges.

First, we must develop a coding scheme to parse the underlying reasons behind each of the

(over 1,100) retractions that serve as “shocks” to the range of intellectual fields we examine.

Our coding must also account for the degree to which the retraction leaves intact vs. knocks

down the foundations upon which follow-on researchers may build. Second, we need a

credible approach to systematically identify other journal articles that lie in close proximity

in intellectual space to the retracted articles as well as a metric to measure their degree of

proximity.

Categorizing retraction events. To meet the first challenge, we have developed a detailed

taxonomy of retracted articles to capture the differences in the meaning of the retraction

events for follow-on researchers, as described in Section II of the online appendix. In a

second step and taking inspiration from Newton’s aphorism, we then systematically assigned

the 1,104 retractions in our sample to three mutually exclusive buckets denoted, “Strong

Shoulders,” “Shaky Shoulders,” and “Absent Shoulders,” respectively:

• “Strong Shoulders” means that the retraction does not in any way degrade the validity

of the paper’s analysis or claims. This may happen in instances where a publisher

mistakenly printed an article twice, when authors published an ostensibly valid study

without securing approval to publish the (unchallenged) data , or when an institutional

dispute over the ownership of research materials arose.
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• “Shaky Shoulders” means that the validity of claims is uncertain or that a fraction of

the results is invalid. The typical use of this category concerns instances where results

could not be replicated, among other reasons.

• “Absent Shoulders” is the appropriate code for retractions associated with fraudulent

results, as well as in cases where a mistake in experimental procedure irretrievably

invalidates the paper’s results.

In addition, we differentiate between retractions for which the authors intentionally at-

tempted to subvert the scientific truth and those for which the article needed to be retracted

because of an honest mistake with no indication of foul play. We therefore examined re-

tractions to develop a code for different levels of intentional deception.5 We use “No Sign

of Intentional Deception” to code cases where the authors did not intend to deceive, such

as instances of miscommunication, contamination of research materials, or coding error.

“Uncertain Intent” applies where fraud is not firmly established, but negligence or unsub-

stantiated claims raise questions about the authors’ motives. The “Intentional Deception”

code is reserved for cases where falsification, misconduct, or willful acts of plagiarism and

self-plagiarism appear to have occurred and were verified by author admissions or indepen-

dent reviews of misconduct.

5Deception might involve the paper’s factual claims (results, materials, or methods), its

attribution of scholarly credit through authorship and citations, or the originality of the

work.
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Delineating research fields. To delineate the boundaries of the research fields affected

by retracted articles, we develop an approach based on topic similarity as inferred by the

overlap in keywords between each retracted articles and the rest of the (unretracted) scientific

literature. Specifically, we use the PubMed Related Citations Algorithm (PMRA) which

relies heavily on Medical Subject Headings (MeSH). MeSH terms constitute a controlled

vocabulary maintained by the National Library of Medicine that provides a very fine-grained

partition of the intellectual space spanned by the biomedical research literature. Importantly

for our purposes, MeSH keywords are assigned to each scientific publication by professional

indexers and not by the authors themselves; the assignment is made without reference to

the literature cited in the article. We then use the “Related Articles” function in PubMed

to harvest journal articles that are proximate to the retracted articles, implicitly defining

a scientific field as the set of articles whose MeSH keywords overlap with those tagging

the ultimately retracted article. As a byproduct, PMRA provides us with both an ordinal

and a cardinal dyadic measure of intellectual proximity between each related article and its

associated retraction. For the purposes of our main analysis, we only consider related articles

published prior to the retraction date. We distinguish those published prior to the retracted

article and those published in the window between the retracted article’s publication date and

the retraction event itself. Further, we also exclude related articles with any co-authors in

common with the retracted article in order to strip bare our measure of intellectual proximity

from any “associational baggage” stemming from collaboration linkages. Finally, we build

a set of control articles by selecting the “nearest neighbors” of the related articles, i.e., the
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articles appearing immediately before or immediately after in the same journal and issue, as

in Furman and Stern (2011) and Furman et al. (2012a).6

Empirical strategy. Together, these advances allow us to estimate the causal impact of

retraction events on the vitality of scientific fields. We start by examining the impact of a

retraction on the citations to the retracted papers themselves, in a reprise of the earlier study

by Furman et al. (2012a), but using a more complete sample and carefully differentiating the

effect across different types of retractions. Indeed, to the extent that retractions are highly

differentiated in the information they impart to follow-on researchers regarding the strength

of the shoulders upon which they stand, we would anticipate that this type of variation would

powerfully moderate the impact on follow-on citations. We then perform the main exercise

of the paper by examining the impact of retraction events on citations to related articles and

their controls in a simple difference-in-differences framework. Again, we separately estimate

the impact of different types of retractions.

Lastly, we explore the mechanisms that may be at play, focusing on the set of “absent

shoulder” retractions. We do so by exploring citations to related articles made by authors in

academia versus industry, on the assumption that status effects (in comparison to learning

6We select the nearest neighbors as controls on the premise that the ordering of papers in

journal issues is random or close to random. To validate this premise, in analyses available

from the author, we replicate the results in Table 8 with an alternative control group where

one control is selected from each journal issue literally at random. The results do not differ

substantially.
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effects) are more likely to influence the citing behavior of academic researchers than their

private-sector counterparts. We also develop an analysis of the rate of production of related

articles (rather than citation to these related articles) in the pre- and post-retraction period.

Similarly, mapping related articles to NIH funding, we explore how resources devoted to

scientific fields are influenced by retractions, comparing again to control fields. Overall, this

empirical design advances our ability to examine issues related to the direction of research

across scientific fields, and provides a nuanced understanding of the role of retractions in the

process of cumulative knowledge production.

3 Data and Sample Construction

This section details the construction of our multilevel, panel dataset.

3.1 Retracted Articles

We begin by extracting from PubMed, the public-access database which indexes the life

sciences literature, all original journal articles that were subsequently retracted, provided

that these articles were published in 2007 or earlier, and retracted in 2009 at the latest.

After purging from the list a few odd observations,7 we are left with a sample of 1,104

7These include an article retracted and subsequently unretracted, an erratum that was

retracted because of disagreement within the authorship team about whether the original

article indeed contained an error, along with a few others.
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articles.8 As detailed in Section II of the online appendix, we develop an exhaustive category

scheme to code the reasons that explain the retraction event. These reasons are tabulated

in Table 1.9 In our next step, we classify each retraction into one of three categories that

denote whether the results contained in the source article can be relied upon for follow-on

research. The “strong shoulders” subsample comprises 202 articles retracted for reasons that

do not cast any aspersion on the validity of the results contained therein. In contrast, we

classify 589 retractions (53.4%) as providing “absent shoulders” for follow-on scientists to

stand on, often because of fraudulent data or other types of misconduct. Finally, the “shaky

shoulders” category (289 events or 26.2% of the cases) groups those retraction events for

which the validity of the results remains shrouded in uncertainty.

Most of our analyses focus on the 589 observations belonging to the “absent shoulders”

subsample (Table 2). The papers in this subsample were published between 1973 and 2007

and took an average time of three years to be retracted, though many of the more recent

articles were retracted within one year — perhaps because of a higher probability of detection

8In comparison, Lu et al. (2013) extract 1,465 retraction events from Thomson Reuters’

Web of Science over the same period. The Web of Science covers a wider cross-section of

scientific fields (including the social sciences and engineering), but has shallower coverage

than PubMed in the life sciences. By combining the events corresponding to life sciences

journals as well as multidisciplinary journals — such as Science, PNAS, or Nature — it

appears that the life sciences account for between 60% and 70% of the total number of

retractions in the Lu et al. sample.
9Despite extensive efforts, we were unable to locate a retraction notice in 24 (2.17%)

cases.
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since the dawn of the electronic publishing era. Although this subsample is dominated by

instances of fraud or other types of misconduct, 31% of the events appear to be the results

of honest mistakes on the part of the investigators involved, with a further 8% for which

it is unclear whether the scientists actively subverted the scientific process in the course of

performing the research and reporting its results.10

Regardless of intent, however, it would be a mistake to consider each observation as

completely independent from all the others in the sample. Close to sixty percent of the

observations can be grouped into cases involving more than one retraction event, for example

because the same rogue investigator committed fraud in multiple papers, or because the

same contaminated research materials were used in multiple published articles. Figure B

of Section I in the online appendix displays the histogram of the distribution of retraction

events by retraction case (N = 334). The case identifier will play an important role in the

econometric analysis since all of our results will report standard errors clustered at the case

level of analysis.

3.2 Related Articles

Traditionally, it has been very difficult to assign to individual scientists, or articles, a fixed

address in “idea space,” and this data constraint explains in large part why bibliometric

10This represents an inversion of the relative prevalence of fraud and mistakes, compared

to an earlier analysis performed by Nath et al. (2006), but it is in line with the recent results

reported by Fang et al. (2012).
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analyses typically focus on the determinants of the rate of scientific progress rather than its

direction. The empirical exercise in this paper hinges crucially on the ability to relax this

constraint in a way that is consistent across retraction events and also requires little, if any,

human judgement.

This challenge is met here by the use of the PubMed Related Citations Algorithm

[PMRA], a probabilistic, topic-based model for content similarity that underlies the “re-

lated articles” search feature in PubMed. This database feature is designed to aid a typical

user search through the literature by presenting a set of records topically related to any

article returned by a PubMed search query.11 To assess the degree of intellectual similarity

between any two PubMed records, PMRA relies crucially on MeSH keywords. MeSH is the

National Library of Medicine’s [NLM] controlled vocabulary thesaurus. It consists of sets of

terms naming descriptors in a hierarchical structure that permits searching at various levels

of specificity. There are 26,581 descriptors in the 2012 MeSH edition (new terms are added

to the dictionary as scientific advances are made). Almost every publication in PubMed is

tagged with a set of MeSH terms (between 1 and 103 in the current edition of PubMed, with

both the mean and median approximately equal to 11). NLM’s professional indexers are

trained to select indexing terms from MeSH according to a specific protocol, and consider

each article in the context of the entire collection (Bachrach and Charen 1978; Névéol et al.

2010). What is key for our purposes is that the subjectivity inherent in any indexing task

11Lin and Wilbur (2007) report that one fifth of “non-trivial” browser sessions in PubMed

involve at least one invocation of PMRA.
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is confined to the MeSH term assignment process, which occurs upstream of the retraction

event and does not involve the articles’ authors.

Using the MeSH keywords as input, PMRA essentially defines a distance concept in

idea space such that the proximity between a source article and any other PubMed-indexed

publication can be assessed. The algorithm focuses on the smallest neighborhood in this

space that includes 100 related records.12 Given our set of source articles, we delineate the

scientific fields to which they belong by focusing on the set of articles returned by PMRA

that satisfy five additional constraints: (i) they are original articles (as opposed to editorials,

comments, reviews, etc.); (ii) they were published up to the year that precedes the calendar

year of the underlying retraction event; (iii) they appear in journals indexed by the Web

of Science (so that follow-on citation information can be collected); (iv) they do not share

any author with the source, and (v) they are cited at least once by another article indexed

by the Web of Science in the period between their publication year and 2011. Figure C of

Section I in the online appendix runs through a specific example in the sample to illustrate

12However, the algorithm embodies a transitivity rule as well as a minimum distance cutoff

rule, such that the effective number of related articles returned by PMRA varies between 4

and 2,642 in the larger sample of 1,104 retractions, with a mean of 172 records and a median

of 121.
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the use of PMRA.13 Section III of the online appendix illustrates through an example how

PMRA processes MeSH keyword information to delineate the boundaries of research fields.

For the set of 589 retractions with absent shoulders, the final dataset comprises 32,699

related articles that can be ordered by relatedness using both an ordinal measure (the rank

returned by PMRA) as well as a cardinal measure which we normalize such that a score of

100% corresponds to the first “non-trivial” related record.14

As a result of these computational and design choices, the boundaries of the fields we

delineate are derived from semantic linkages to the exclusion of other considerations such as

backward and forward citation relationships, or coauthorships. Judgement and subjectivity

is confined to the initial indexing task which assigns keywords to individual articles. The

individuals performing these tasks are trained in a consistent way, draw the keywords from

a controlled vocabulary which evolves only slowly over time, and do not have any incentives

to “window-dress” the articles they index with terms currently in vogue in order to curry

attention from referees, editors, or members of funding panels. Of course, the cost of this

approach is that it may result in boundaries between fields that might only imperfectly

13To facilitate the harvesting of PubMed-related records on a large scale, we have

developed an open-source software tool that queries PubMed and PMRA and stores

the retrieved data in a MySQL database. The software is available for download at

http://www.stellman-greene.com/FindRelated/.
14A source article is always trivially related to itself. The relatedness measures are based

on the raw data returned by PMRA, and ignore the filters applied to generate the final

analysis dataset, e.g., eliminating reviews, etc.
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dovetail with the contours of the scientific communities with which the authors in our sample

would self-identify. The main benefit, however, is that it makes it sensible to use citation

information to evaluate whether the narrow fields around each retracted article atrophy or

expand following each retraction event.

3.3 Identification Strategy and Nearest-Neighbor Controls

A natural starting point to identify the spillovers of retraction events on their associated fields

is to examine changes in citations received by the set of related articles after the retraction,

relative to before, using a simple related article fixed effects specification. Since the retraction

effect is mechanically correlated with the passage of time as well as with a paper’s vintage,

our specifications must include age and calendar year effects, as is the norm in empirical

studies of scientific productivity (Levin and Stephan 1991). In this framework, the control

group that pins down the counterfactual age and calendar time effects for articles related to a

current retraction is comprised of other related articles whose associated retraction occurred

in earlier periods or will occur in future periods. This approach may be problematic in

our setting. First, related articles observed after their associated retraction event are not

appropriate controls if the event affected the trend in the citation rate; Second, the fields

from which retractions are drawn might not represent a random cross-section of all scientific

fields, but rather might be subject to idiosyncratic life cycle patterns, with their productive

potential first increasing over time, eventually peaking, and thereafter slowly declining. If
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this is the case, fixed effects will overestimate the true effect of the retraction effect, at least

if we rely on articles treated in earlier or later periods as an “implicit” control group.

To mitigate these threats to identification, our preferred empirical strategy relies on the

selection of matched controls for each related — i.e., “treated” — article. In concrete terms,

we select as controls for each related article their “nearest neighbors” in the same journal,

volume, and issue, i.e., the two articles that immediately precede and follow the treated

article. When the related article is first or last in the particular issue of the journal consid-

ered, we select a single control. The final dataset corresponding to the “Absent Shoulders”

subsample comprises 65,461 such controls.

One potential concern with this control group is that its members may also be affected by

the retraction treatment, since they are drawn from the same set of journals as the related

articles. In what follows, we ignore this threat to identification for three separate reasons.

First, the fields identified by PMRA are extremely thin slices of intellectual space, and their

boundaries do not depend on journal or date of publication information (see Section III of the

online appendix). Second, in the extremely rare cases in which one of these nearest neighbor

controls also happens to be related to a retraction through the algorithm, we select instead

the article that is “twice removed” in the table of contents from the focal related article.

Finally, as can be observed in Table 3, the rate at which the controls cite the retraction with

which they are indirectly associated is almost two orders of magnitude smaller than the rate

of citation that links the retractions with the “treated” (i.e., related) articles.
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Citation data. PubMed does not contain citation data but we were able to retrieve this

information from the Web of Science (up to the end of 2011) using a perl script. We further

process these data to make them amenable to statistical analysis. First, we eliminate all

self-citations, where self-citation is inferred by overlap between any of the cited authors with

any of the citing authors (an author name is the combination formed by the last name and

the first initial for the purpose of this filter). Second, we parse the citing article data to

distinguish between the institutional affiliations of citers, in particular by flagging the citing

articles for which at least one of the addresses recorded by the Web of Science is a corporate

address, which we infer from the presence of abbreviations such as Inc, Corp, GmbH, Ltd,

etc. We then aggregate this information at the cited article-year level of analysis. In other

words, we can decompose the total number of citations flowing to individual articles at a

given point in time into a “private” and a “public” set, where public citations should be

understood as stemming from academic scientists, broadly construed (this will also include

scientists employed in the public sector as well as those employed by non-profit research

institutes). Citations are a noisy and widely-used measure of the impact of a paper and the

attention it receives. But the use of citation data to trace out the diffusion of individual bits of

scientific knowledge is subject to an important caveat. Citations can be made for “strategic”

rather than “substantial” reasons (cf. Lampe [2012] for evidence in this spirit in the context

of patent citations). For example, authors of a paper may prefer to reduce the number of

citations in order to make larger claims for their own paper; they may be more likely to “get

away with it” (i.e., not having editors and referees request to add citations) if the strategically
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uncited papers are close in intellectual space to a retracted paper. Unfortunately, we do not

have the ability to parse the citation data to distinguish strategic from substantial citations,

a limitation that the reader should bear in mind when interpreting our results.

Descriptive Statistics. Table 3 provides basic information about the matched sample. By

construction, control and treated articles are matched on year of publication and journal,

and they appear to match very closely on the length of the authorship roster. Because in

many cases, retraction occurs relatively quickly after publication, only 30% of the related

articles in the data are published after the publication of the source article, and only 7.9%

of these articles cite the soon-to-be-retracted source. Conversely, only 6.1% of the articles

at risk of being cited by the source (because they were published before its publication) are

in fact cited by it.

Table 3 indicates that related articles and their nearest neighbors differ slightly in the total

number of citations received at baseline (the calendar year preceding the retraction event),

with related articles having received 1.7 citations more on average than the controls. Figure 1

compares the distributions of cumulative baseline citations for control and related articles,

respectively. The controls appear to be slightly more likely to have received zero or one

citation at baseline. This is not necessarily surprising, if, as mentioned above, articles related

to retractions are drawn from fields that draw more attention from the scientific community

in the years leading up to the retraction event. Nonetheless, these small differences in the

level of citations at baseline could prove problematic for our identification strategy if they
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translate into preexisting trends in citations for treated articles, relative to control articles

in the pre-retraction period. We will carefully document below that such pre-trends are

extremely small in magnitude and undetectable from a statistical standpoint, buttressing

the core assumption that underlies our empirical strategy.

3.4 Field-level Analyses

To examine the proximate causes of the spillover effects of retractions on their fields, we study

whether patterns of entry into these fields, or the funding that accrues to active researchers

in these same fields, is altered by the retraction event. To do so, we create a second dataset

that collapses the related article-level data onto a retracted article-level panel dataset.

As previously, we view scientific fields as isomorphic to the set of articles related (through

PMRA) to a given source article. In contrast to the previous section, however, we make use

of the related articles published after a retraction event (as well as before). A “field” is

born in the year during which the oldest related article was published. Starting from the

set of 589 retractions in the “absent shoulders” subsample, we eliminate 24 observations for

which this oldest related article is “too young” — it appeared less than five years before the

retraction event. This ensures that all the fields in the dataset have at least a five year time

series before its associated retraction event; each field defined in this way is followed up to

the end of 2011. We then select 1,076 “nearest neighbor” articles that appear in the same

journal and issue as the retracted articles, allowing us to delineate 1,076 control fields in an

analogous fashion.
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It is then straightforward to compute yearly “entry rates” into treated and control fields

by counting the number of related articles published in the field in each year. Capturing fund-

ing information at the field level is slightly more involved. PubMed systematically records

NIH grant acknowledgements using grant numbers, but without referencing the particular

grant cycle to which the publication should be credited. To address this issue, we adopt the

following procedure: for each related publication, we identify the closest preceding year in

a three-year window during which funding was awarded through either a new award or a

competitive renewal; we then sum all the funding in the grant year that ultimately generates

publications in the focal field.

The descriptive statistics for the field-level analyses are displayed on Table 4. The num-

ber of observations across the publication frequency dataset and the funding dataset differ

because (i) the funding data are available only until 2007, whereas the publication data is

available until the end of our observation period (2011); and (ii) we drop from the funding

analysis the fields for which there is not a single publication acknowledging NIH funding for

the entire 1970-2007 period.

4 Results

The exposition of the econometric results proceeds in four stages. After a brief exposition of

the main econometric issues, we present descriptive statistics and results pertaining to the

effect of retractions on the rate of citations that accrue to the retracted articles. Second, we
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examine the extent of the retraction effect on the set of related articles. Third, we study

whether the retraction events altered patterns of entry and funding into the scientific fields

associated with the retracted articles. Fourth, we explicate the mechanism(s) underlying the

results.

4.1 Econometric Considerations

Our estimating equation relates the number of citations that are received by related article j

in year t to characteristics of j and of retracted article i:

E [CITESjt|Xijt] = exp [β0 + β1RLTDj × AFTERit + f(AGEjt) + δt + γij]

where AFTER denotes an indicator variable that switches to one the year after the retrac-

tion, RLTD denotes an indicator variable that is equal to one for related articles and zero for

control articles, f(AGEjt) corresponds to a flexible function of article j’s age, the δt’s stand

for a full set of calendar year indicator variables, and the γij’s correspond to source arti-

cle/related article (or control) fixed effects, consistent with our approach to analyze changes

in j’s rate of citations following the retraction of source article i.

The fixed effects control for many individual characteristics that could influence citation

rates, such as journal status. To flexibly account for article-level life cycle effects, f(AGE)
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consists of thirty two age indicator variables, where age measures the number of years elapsed

since the article was published.15

Estimation. The dependent variable of interest is extremely skewed. For example, 40.33%

of the article-year observations in the data correspond to years in which the related ar-

ticles/controls receive zero citations. Following a long-standing tradition in the study of

scientific and technical change, we present conditional quasi-maximum likelihood estimates

based on the fixed-effect Poisson model developed by Hausman et al. (1984). Because the

Poisson model is in the linear exponential family, the coefficient estimates remain consis-

tent as long as the mean of the dependent variable is correctly specified (Gouriéroux et al.

1984).16

Inference. QML standard errors are robust to arbitrary patterns of serial correlation

(Wooldridge 1997), and hence immune to the issues highlighted by Bertrand et al. (2004)

concerning inference in DD estimation. We cluster the standard errors around retraction

cases in the results presented below.

15The omitted category corresponds to articles in their year of publication, i.e., articles’

birth year. It is not possible to separately identify calendar year effects from age effects in the

within-article dimension of our panel dataset in a completely flexible fashion, because one

cannot observe two articles at the same point in time that have the same age but different

vintages (Hall et al. 2007). In our specifications, the indicator variable corresponding to

articles in their thirty-first year also absorbs the subsequent age dummies.
16In Section IV of the online appendix, we find that OLS estimation yields qualitatively

similar findings.

28

469



Dependent Variables. Our primary outcome variable is an article’s number of citations in

a given year. Secondary outcomes include the number of related articles (either to retracted

papers or their nearest neighbors) published before and after the retraction event, as well as

the amount of NIH funding (in millions of 2007 dollars) flowing to scientists who subsequently

publish related articles (either to retracted papers or their nearest neighbors). Though the

funding measure is distributed over the positive real line, the Hausman et al. estimator can

still be used in this case (Santos Silva and Tenreyro 2006).

4.2 Effect of Retraction on Retracted Papers

Table 5 reports the results from simple difference-in-differences analyses for the sample of

1,037 retractions and 1,922 nearest neighbors in the journals in which the retracted articles

appeared.17 Column 1 reports the estimate of the retraction effect for the baseline specifi-

cation. The result implies that, relative to the controls, retracted papers lose 69% of their

citations in the post-retraction period. The magnitude of the effect is in line with the 60%

decline estimated by Furman et al. (2012a) in a smaller sample of PubMed-indexed retrac-

tions. Column 2 shows that the effect is barely affected when we drop from the sample those

observations corresponding to retracted articles for which the retraction reason is missing.

Column 3 includes in the specifications the main effect of the retraction treatment as well

as two interactions with the “shaky shoulders” and “absent shoulders” indicator variables.

17Sixty seven retracted articles needed to be dropped from the estimation sample because

they appeared in journals not indexed by the Web of Science.
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In this model, the main effect implicitly captures the post-retraction fate of the retracted

papers that still maintain “strong shoulders.” While this effect is negative and statistically

significant (with an implied decrease in the citation rate equal to 38%) its magnitude is

markedly smaller than that of the effect corresponding to the “shaky shoulders” retractions

(66%) and smaller still than the effect for the “absent shoulders” category (73%). Dropping

the “strong shoulders” group from the sample increases the magnitude of the retraction effect

in absolute value (to 72%, column 4), while focusing on the earliest retraction event in each

case slightly lowers the estimated effect (66%, column 5).

In short, our results confirm the earlier findings of Furman et al. (2012a). In addition, the

results in column 3 provide important empirical validation for the coding exercise detailed

in the online appendix. Although the coefficients in this specification are not statistically

different from each other, their magnitudes are ordered in an intuitive way, with the post-

retraction penalty decreasing monotonically with the strength of the shoulders provided to

follow-on researchers.

4.3 Effect of Retraction on Related Papers

We now turn to the core of the empirical analysis, examining the effect of retraction on

the citation outcomes for the related articles identified by the PubMed Related Citations

Algorithm. The first set of results appears in Table 6, which is structured analogously to

Table 5. Column 1 reports the difference-in-difference estimate for the entire sample. We find

that related articles experience a precisely estimated 5.73% decline in the rate at which they
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are cited in the post-retraction period, relative to the control articles. Column 2 shows that

the estimate does not change after dropping the articles related to retractions for which we

were unable to find the underlying reason. Column 3 parses the retraction effect according

to our “shoulders” coding. A clear difference emerges between the fate of articles related

to “strong shoulders” retraction and the fate of those related to either “shaky shoulders”

or “absent shoulders” retractions. The articles related to “strong shoulders” retractions

are essentially immune to the retraction event (in fact the estimated effect is positive, but

also small in magnitude and not statistically different from zero). In contrast, the implied

elasticities for the articles related to “shaky shoulders” and “absent shoulders” retractions

are 8.70% and 6.20%, respectively (the corresponding estimates are not statistically different

from each other). In other words, we find evidence of negative spillovers of the retraction

event onto the adjacent research area, but only in the cases for which the underlying cause of

the retraction suggests that follow-on researchers should proceed with caution (if proceeding

at all) before building on the retracted paper’s results.

By eliminating from the estimation sample the observations associated with “strong

shoulders” retractions, Column 4 further documents that the negative spillovers stemming

from the retraction event are of comparable magnitudes for articles related to both “shaky

shoulders” and “absent shoulders” retractions. Column 5 only retains the first retraction
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event across retraction cases. Although the magnitude of the treatment effect shrinks some-

what, it remains negative and precisely estimated.18

The rest of our analysis focuses on the “absent shoulders” subsample of 589 retrac-

tions and 98,160 related and control articles. Figure 2 provides a way of scaling the nega-

tive spillovers of retraction events onto their related fields by comparing the post-retraction

penalty experienced by related articles with the post-retraction penalty experienced by the

retracted articles themselves. In both cases, the penalty is measured by differencing the log

number of cumulative citations between 2011 and the year of the retraction event (using

instead a fixed two-year window starting in the year of the retraction yields very similar

results). The slope of the regression line is very close to .1, indicating that related arti-

cles lose, on average, only one tenth of the citations lost by the retraction. We note that

this ratio dovetails with that of the elasticities estimated in Tables 5 and 6, respectively.

Moreover, with an average of 60 related papers per retracted article, the aggregate citation

consequences of the retraction events for the scientific fields involved are not trivial.

To provide a better sense of the magnitude of these aggregate losses, we estimate an

analog of Table 6 using OLS in Section IV of the online appendix. The dependent variable is

the number of citations received in levels. The results are substantially unchanged compared

to our benchmark Poisson specification. Furthermore, the citation decline estimated therein

(-0.173 citation per year) can form the basis of back-of-the-envelope calculation. Using this

18These results, reported as QML Poisson estimates in Table 6, are consistent with results

obtained from negative binomial regressions with bootstrapped standard errors.
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estimate of the citation penalty and aggregating to the field level (taking into account both

the average numbers of articles per field and the average length of the post-retraction period

in the sample), we conclude that retraction-afflicted fields experience, on average, a loss of

75 citations relative to control fields. Stated differently, this is as if we deleted from the

average field one paper in the Top 7% of the distribution for the total number of long-run

citations.

Dynamics of the treatment effect. We also explore the dynamics of the effects uncov-

ered in Table 6. We do so in Figure 3 by estimating a specification in which the treatment

effect is interacted with a set of indicator variables corresponding to a particular year rel-

ative to the retraction year, and then graphing the effects and the 95% confidence interval

around them. Two features of the figure are worthy of note. First, there is no discernible

evidence of an effect in the years leading up to the retraction, a finding that validates ex

post our identification strategy.19 Second, after the retraction, the treatment effect increases

monotonically in absolute value with no evidence of recovery.

Exploring heterogeneity in the effect of retractions. We explore a number of factors

that could modulate the magnitude of the retraction effect on intellectual neighbors’ citation

rates. Table 7 reports the results of seven specifications that include interaction terms

19This finding is also reassuring as it suggests that retractions are not endogenous to the

exhaustion of a particular intellectual trajectory, i.e., it does not appear as if researchers

resort to the type of misconduct that yields retractions after uncovering evidence that their

field is on the decline.
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between the retraction treatment effect and characteristics of either the retracted article

or the retracted/related article dyad. Column 1 evaluates how the cumulative attention

to the retracted article affects the reduction of citation to related articles. The rationale

for this analysis is that citations are a proxy for the amount of attention that scientists

in the field (and other related fields) gave to the retracted paper prior to retraction, and

may be a predictor for the amount of collateral damage in a given field. The coefficient

on the interaction term shows that highly cited retracted papers — those in the top 25th

percentile of citations at the time of retraction — have larger negative spillovers on citations

to their related papers (8.0% vs. 3.9%). However, the additional decrease is not statistically

significant at conventional levels.

Columns 2 and 3 explore how publication trends at the field-level moderate the main

retraction effect. In Column 2, we consider how a field’s “hotness” — the extent to which a

field experiences elevated rates of entry in the years leading up to the retraction—impacts

the retraction’s effect on related papers, We define a field as “hot” when the field is in the top

quartile of all fields in terms of the percentage of papers published in either the retraction year

or within three years.20 We find these very active fields feel the effect of a retraction (-14.4%)

more than “colder” fields (-3.4%). Column 3 focuses on how the intellectual concentration of

a field intensifies the treatment effect of retraction. Our measure of “crowdedness” relies on

the wedge between our ordinal measure of intellectual proximity and the cardinal measure

20The field consists of all the related papers, as identified by the PMRA algorithm, pub-

lished in or before the retraction year.
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returned by the PubMed Related Citations Algorithm (PMRA). In some fields, the twenty

fifth most related paper published prior to retraction will be closely related to the retracted

article, whereas in other fields, the twenty fifth most related paper will be only a distant

intellectual neighbor of the retraction. We label a field as “crowded” if this 25th highest

ranking related paper lies between the 75th and 100th percentile for the relatedness score.21

As is the case with “hot fields,” we see that most of the negative spillover effects occur in the

“crowded” fields, while the more diffuse fields experience little or no decrease in citations.

Columns 4 and 5 examine whether citation linkages between the related and retracted

articles moderate the magnitude of the retraction treatment effect. Recall that relatedness

in the PMRA sense does not take into account citation information, but only semantic

proximity as inferred from MeSH keywords. Related articles can be published before the

underlying source — in which case they are at risk of being cited by it — or after the

source’s publication (but before its retraction) — in which case they are at risk of citing the

soon-to-be retracted publication. In column 4, we limit the estimation sample to the articles

published after the retracted piece but before the retraction. In this subsample, we find

that the negative retraction response to be especially pronounced (-14.8%) for the 6.1% of

articles that were directly building on the retracted articles (as inferred by a citation link).

Column 5, in contrast, restricts the estimation sample to the set of related articles (and

their controls) that appeared before the retracted articles were published. We find that the

21In the rare cases where the field has less than 25 papers published in or before the

retraction year, then the score of the least related paper is used.
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related articles that are also cited by the retraction experience a 6.1% boost in the citation

rate following the retraction event. This result is consistent with the idea that the researchers

who continue to work in the field in spite of the retraction event choose to build instead on

prior, unretracted research. The overall effect on the field can still be negative since only a

small fraction (7.9%) of articles related to the source are also cited by the source. Column 6

uses our coding of author “intent” to compare how the treatment effect of retraction differs

in clear cases of fraud from fraud-free retraction cases or those with uncertain intent. We see

that cases of “Intentional Deception” largely drive the negative effect on the field’s citations

(-7.8%), while fields that experienced retractions with “No Sign of Intentional Deception”

(the omitted category) had no citation decline, on average. Figure D of Section I in the

online appendix explores the extent to which the age of a related article at the time of

the retraction event influences the magnitude of the treatment effect. In this figure, each

circle corresponds to the coefficient estimates stemming from a specification in which the

citation rates for related articles and their controls are regressed onto year effects, article age

indicator variables, as well as interaction terms between the treatment effect and the vintage

of each related articles at the time of the retraction. Since related articles in the sample are

published between one and ten years before their associated retraction event, there are ten

such interaction terms.22 The results show that only recent articles (those published one,

two, or three years before the retraction) experience a citation penalty in the post-retraction

period, whereas older articles are relatively immune to the retraction event.

22The 95% confidence intervals (corresponding to robust standard errors, clustered around

case codes) are denoted by the blue vertical bars.
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Finally, Figure 4 and Figure E (Section I in the online appendix) investigate the extent

to which “relatedness” (in the sense of PMRA) exacerbates the magnitude of the response.

In Figure 4, we use the ordinal measure of relatedness, namely the rank received by a focal

article in the list returned by PMRA for a specific source article. We create 22 interaction

variables between the retraction effect and the relatedness rank: Top 5, Top 6-10,. . . , Top 95-

100, 100 and above. The results show that lower-ranked (i.e., more closely related) articles

bear the brunt of the negative citation response in the post-retraction event. Figure E is

conceptually similar, except that it relies on the cardinal measure of relatedness. We create

one hundred variables interacting the retraction effect with each percentile of the relatedness

measure, and estimate the baseline specification of Table 7, column 1 in which the main

retraction effect has been replaced by the 100 corresponding interaction terms. Figure E

graphs the estimates along with the 95% confidence interval around them. The results are

a bit noisy, but here, too, closely related articles (those for which the relatedness measure is

above the 80th percentile) appear to experience a sharper drop in citations post-retraction.

4.4 Effect on Entry and Funding at the Field Level

So far, the empirical exercise has examined cumulative knowledge production by building

on ideas that originated before the retraction event, allowing us to hold the quality of these

ideas constant over the entire observation window. In order to understand the proximate

causes of the negative spillovers documented above, we must examine whether the retraction
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event influenced the production of new ideas in the affected fields, and assess the extent to

which these same events altered the distribution of funding across scientific fields.

Table 8 reports the results. Columns 1 through 3b report our estimate of the treatment

effect for entry into the retraction-relevant fields, whereas columns 4a and 4b report the

treatment effect for funding. A number of interesting patterns emerge. First, the response

is consistently negative, indicating that both funding and publication activity decrease in

the affected fields following the first relevant retraction event and relative to the patterns

observed in control fields. Second, the magnitude of the treatment effect increases when

we define the boundaries around fields in a stricter fashion. Third, the effect of retraction

on the rate of new publications is not meaningfully different when we look at articles in

high impact journals vs. low impact journals (columns 3a and 3b). This result implies that

the publications “lost” due to retractions do not disproportionately belong to one class of

journals. Fourth, the funding response is always larger in magnitude than the publication

response. Figure 5 provides event study graphs for both the publication intensity effect

(Panel A) and funding effect (Panel B) using the same approach as that followed in Figure 3.

In both cases, the magnitude of the retraction effect increases over time without evidence of

a reversal.

As a robustness check, we investigated whether the decline in publications might be a

result of a “mentor exit” effect, in which the removal of principal investigators reduces the

number of new researchers in the field.23 In Section V of the online appendix, we report

23We are grateful to an anonymous referee for encouraging us to pursue this explanation.
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that more of the lost field-level citations are associated with retractions where first authors

rather than last authors are identified as culpable for the retraction. These results suggest

that retraction yields the greatest negative citation outcomes not when lab directors (who

are typically listed last on scientific papers) are culpable for retractions, but when junior

investigators (post-docs and graduate students are often listed as first authors) are at fault

for retraction. Furthermore, we find that retracted first authors and middle authors are

less likely to reappear in fields in which papers have been retracted than are retracted last

authors (Section VI of the online appendix). These analyses suggest that (1) the strength

of the treatment effect is greatest when the author culpable for retraction is the first author

(rather than the last author) and (2) that the publication decline is not driven by the exit

of PIs or lab directors, but may be driven by the exit of first authors.24

To summarize, these results help explain why we observe downward movement in the

citations received by related articles highlighted earlier: There are fewer papers being pub-

lished in these fields and also less funding available to write such papers. While these effects

constitute the proximate causes of the negative spillovers that are the central finding of the

paper, they beg the question of what the underlying mechanisms are. What explains the

flight of resources away from these fields?

24These results accord well with the evidence presented in Jin et al (2013).
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4.5 Underlying Mechanisms of the Retraction Effect

A number of mechanisms may underlie our findings regarding negative citation, entry, and

funding. We investigate evidence regarding two possibilities. First, a relative decrease in

attention subsequent to retraction may reflect scientists’ learning about the limited potential

for follow-on research in retraction-afflicted fields. The case of Jan-Hendrik Schön is con-

sistent with this explanation. Schön’s research at Bell Labs initially produced spectacular

results using organic materials to achieve a field-transistor effect; his results were eventually

demonstrated to have been the result of fraudulent behavior and subsequent efforts building

on his work suggest the impossibility of achieving field-transistor effects using the materials

Schön employed (Reich, 2009). Second, the field-level declines in citation, entry, and funding

we observe could also arise from a fear of reputational association with the “contaminated”

fields or authors. The case of Woo-Suk Hwang that we invoke at the beginning of the paper

is consistent with this type of explanation: Follow-on researchers eschewed all implications

of Hwang’s work, although some would prove promising when the field revisited his work a

few years after the retractions.

Although we may not be able to rule out either explanation entirely, exploring the rela-

tive importance of these mechanisms matters because their welfare implications differ. For

example, it may be ideal from a social planner’s perspective if scientists simply redirect

their efforts away from retraction-rich fields after a retraction event demonstrates their un-

promising nature. If, however, status considerations inhibit entry into potentially productive
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fields of research, the risk exists that the negative spillovers we documented earlier reflect

underinvestment from a social welfare standpoint.

We exploit the fine-grained level of detail in the data to provide evidence regarding

the relative merits of these explanations. We begin by examining whether the retracted

authors’ intent influences the citation response to related articles written before the retraction

event. Limiting the estimation sample to the set of retractions offering “absent shoulders”

to follow-on researchers, we include in the benchmark specification two additional variables

corresponding to the interaction of the retraction effect with, respectively, the “uncertain

intent” and “intentional deception” indicators mentioned earlier (Table 7, column 6). The

evidence clearly shows that the post-retraction penalty is larger when there is clear evidence

of malicious intent. It is possible that retractions associated with misconduct are, even in

this restricted sample, more consequential for the field than are retractions associated with

“honest mistakes.”25

The finding that biomedical research fields apply a greater citation penalty when errors

are intentional is consistent with the idea that a stigma attaches to research lines in which

fraud has been perpetuated. At least two other explanations are possible, however. First,

although the lack of a pre-trend in Figure 3 suggests that retraction is not the result of the

“fishing out” of a research area, intentional fraud may signal its future fruitlessness (i.e.,

25We also find this effect in models (unreported but available upon request) in which we

control for retraction “size” by including in the specification interaction terms between the

retraction effect and the quartiles of post-retraction penalty at the retracted article level.
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as progress may only be possible through active deception), whereas an honest error may

provide no such signal about future research prospects. It is also possible that the differential

response to fraud- and mistakes-afflicted fields may arise from the rational expectation that

fraud could be widespread, while mistakes are more likely to be idiosyncratic.26 In this view,

even if there are no costs of associating with a field going forward (e.g. because journals

and referees respond to the retraction by being more vigilant) and no learning about the

future prospects of that field, the possibility of undiscovered false science in past work may

reduce future work in that area.27 The evidence in Section 4.3 that retractions in “hot fields”

have a disproportionate effect on future citations does not lend support to these explanatory

mechanisms.

To further investigate the possibility that a reputational mechanism may be at work, we

examine heterogeneous responses between academic- and firm-based citers. We start from

the premise that scientists employed by profit-seeking firms would persist in investigating

topics that university-based scientists (and NIH study sections) frown upon (post retrac-

26Another possibility, of course, is that researchers under-react to the discovery of honest

mistakes. Though mistakes are likely more idiosyncratic than instances of fraud, one can

think of instances where this is not the case, such as with the contamination of reagents or

cell lines, as in the famous example of HeLa cells (Lucey et al. 2009).
27We thank one of our anonymous referees for highlighting this alternative interpretation.

The reviewer also noted the possibility that the “wild goose chase” effects of false science

might contribute to the decreased citations and entry in affected fields, as scientists spend

time trying to investigate and verify results related to the retracted paper.
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tion), as long as the possibility of developing a commercial product remains.28 We parse the

forward citation data to separate the citations that stem from private firms (mostly pharma-

ceutical and biotechnology firms, identified by suffixes such as Inc., Corp., LLC, Ltd., GmbH,

etc.) from those that originate in academia (broadly defined to include non-profit research

institutes and public research institutions as well as universities). Even though we classify as

“private” any citing article with a mix of private and academic addresses, almost 90% of the

citations in our sample are “academic” according to this definition. In Table 9, columns 1a

and 1b, we find that academic and private citers do not differ at all in the extent to which

they penalize the retracted articles. Conversely, columns 2a and 2b indicate that private

citers hardly penalize related articles, whereas academic citers do to the extent previously

documented.29 The difference between the coefficients is statistically significant (p < 0.01).

These findings are consistent with the view that the retraction-induced spillovers we have

documented stem, at least in part, from academic scientists’ concern that their peers will

hold them in lower esteem if they remain within an intellectual field whose reputation has

28We ground our assumptions regarding the potentially differential responses of academic-

and industry-based scientists by appealing to prior work on differences in incentives and

status concerns among academic and industrial scientists, the former of whom have princi-

pally (though not exclusively priority-based incentives) and the latter of whom face stronger

(though not exclusive) financial and organizational incentives that are not directly tied to

standing in the research community (Dasgupta and David, 1994; Stern, 2004).
29The estimation sample is limited to the set of related articles and their controls that

receive at least one citation of each type over the observation period.
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been tarnished by retractions, even though these researchers were neither coauthors on the

retracted article itself nor building directly upon it.

It is possible, however, that these differences arise because industry scientists find it

easier to substitute citations within a field because their work is more applied in nature.30

To investigate this possibility, we have matched the PubMed database with the US patent

data to identify the citations received from patents by published scientific articles.31 Our

working assumption is that papers that are cited by patents are more likely to be later

stage, whereas those that receive no citations from patents are more likely to correspond to

“upstream” research. 10.7% of retracted articles in the “Absent Shoulders” subsample were

ever cited in a patent (Table 2), while 8.7% of their related articles and 8.3% of the nearest

neighbor controls were ever cited in a patent (Table 3).

We use these data to examine whether the citation patterns of academic and industrial

papers also depend on the “upstream” or “downstream” character of the research itself

(i.e., whether it is specifically cited in a patent). We observe no difference in the case of the

retracted articles themselves (Table 9, Columns 1c and 1d.) However, the distinction between

upstream and downstream research matters for the rate of citations to related papers. In

particular, academic citations to retraction-related articles experience a negligible decline if

the related paper was ever cited in a patent (Column 2c, sum of the coefficients), but the

effect remains strongly negative and significant for related papers not cited in a patent. In

30We thank an anonymous referee for this suggestion.
31See Appendix D in Azoulay et al. (2012) for more details on the patent-to-publication

matching process that provides a foundation for the analyses presented in Table 9.
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other words, the differential response noted above is limited to more “upstream” research,

which makes up over 90% of the retraction-related papers in our sample.

In summary, the available data does not enable us to directly evaluate the relative im-

portance of the “learning” and “status” interpretations of the effects we uncover. Viewed

in their entirety, however, our analyses suggest that status concerns play an important role

in explaining the intellectual atrophy of retraction-afflicted fields. And if participation in

these fields is curtailed as a result of these concerns, the conjecture that depressed partici-

pation corresponds to underinvestment from a social welfare standpoint is, at the very least,

plausible.

5 Conclusions

This paper constitutes the first investigation of the effect of “false science” on the direction of

scientific progress. Our findings show that scientific misconduct and mistakes, as signaled to

the scientific community through retractions, cause a relative decline in the vitality of neigh-

boring intellectual fields. These spillovers in intellectual space are significant in magnitude

and persistent over time.

Of course, an important limitation of our analytical approach is that, though we can

document that retraction events cause a decrease in the rate of citations to related articles,

we cannot pinpoint exactly where the missing citations go, or more precisely, in which direc-

tion scientists choose to redirect their inquiries after the event. Nonetheless, the empirical
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evaluation has a number of interesting implications. Through the coding scheme we have de-

veloped to understand the particular circumstance of each retraction event, we highlight the

limitations of the institutional practices that are supposed to ensure the fidelity of scientific

knowledge. In particular, the analysis brings systematic evidence to bear on the heightened

attention devoted to the topic of scientific misconduct in science policy circles. Some ana-

lysts suggest that the scientific reward system has been corrupted and is in need of wholesale,

radical reform (Fang et al. 2012). This view points to the increase in detected frauds and

errors as a strong indication that much invalid science goes undetected. Acknowledging

this possibility, others retort that a system of retractions is precisely what the “Republic of

Science” requires: a mechanism that swiftly identifies false science and effectively commu-

nicates its implications for follow-on research (Furman et al. 2012a). The validity of the

more optimistic view hinges crucially on what is signaled by a retraction notice and on how

scientists in the affected fields process this information and act upon it. Our results suggest

that retractions do have the desired effect on the particular paper in question, but also lead

to spillover effects onto the surrounding intellectual fields, which become less vibrant.

If these negative spillovers simply reflected the diminished scientific potential of the af-

fected fields, then the “collateral damage” induced by retractions would not be a cause for

concern and would reinforce the belief that the retraction process is a relatively effective way

to police the scientific commons (Furman et al. 2012a). However, our evidence indicates that

broad perceptions of legitimacy are an important driver of the direction of scientific inquiry.

Unfortunately, retraction notices often obfuscate the underlying reason for retraction, which
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diminishes the information content of the signal they provide to follow-on researchers. As a

result, there could be high returns to developing a standardized coding approach for retrac-

tions that journals and scientific societies could draw upon to help the scientific community

update their beliefs regarding the nature and scope of false science. While journal editors

may understandably balk at the suggestion that it is incumbent upon them to make clear

determinations regarding the underlying causes of retractions, a clearly-articulated schema

would increase the incentives of authors to report problems emerging after the publication

of an article and provide a more nuanced context within which universities themselves (as

well as funding bodies) might investigate and adjudicate instances of false science.32

A second issue raised by our paper relates to our understanding of what constitutes an

intellectual field. As we noted in the introduction, economists have devoted considerably

more time and attention to the study of the rate of inventive activity than to its direction.

This gap has arisen in part because of the empirical challenges associated with delineating

the boundaries among intellectual fields. Our approach relaxes the data constraint through

the systematic use of keyword information. The same approach could also prove itself useful

to explore more generally the ways in which researchers, through their publications, choose

positions in intellectual space, and change these positions over time. At the same time,

32Alternative mechanisms — such as “replication rings” — have been proposed to counter-

act the negative spillovers in intellectual space associated with retraction events (Kahneman

2012). Whether “local” responses of this type can be implemented successfully is question-

able, in light of the costs they would impose on researchers active in retraction-affected

fields.
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economists’ conceptual grasp of intellectual landscapes remains in its infancy, with a near

exclusive focus on vertical “research lines” (cf. Aghion et al. 2008). We hope that our

empirical results will prove useful to economists seeking to understand movement across

research lines and the consequences of these movements for cumulative knowledge production

and, ultimately, economic growth.
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Table 1: Reasons for Retractions 

 All Cases 
“Strong Shoulders” 

Subsample 

“Shaky Shoulders” 

Subsample 

“Absent Shoulders” 

Subsample 

Plagiarism 90 8.15% 78 38.61% 11 3.81% 1 0.17% 

Duplicated Publication 92 8.33% 90 44.55% 2 0.69% 0 0.00% 

Publisher Error 13 1.18% 8 3.96% 5 1.73% 0 0.00% 

Faulty/Absent IRB Approval 9 0.82% 5 2.48% 4 1.38% 0 0.00% 

Not Enough Information To Classify 42 3.80% 0 0.54% 36 12.46% 6 1.05% 

Questions About Validity 35 3.17% 0 0.00% 31 10.73% 4 0.68% 

Author Dispute 33 2.99% 5 2.48% 28 9.69% 0 0.00% 

Miscellaneous 24 2.17% 15 7.43% 8 2.77% 1 0.17% 

Did Not Maintain Proper Records 3 0.27% 0 0.00% 3 1.04% 0 0.00% 

Fake Data 361 32.70% 0 0.00% 14 4.84% 347 58.91% 

Error/Mistake 271 24.55% 1 0.50% 62 21.45% 208 35.31% 

Could Not Replicate 92 8.33% 0 0.00% 78 26.99% 14 2.38% 
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Fake Data & Plagiarism 15 1.36% 0 0.00% 7 2.45% 8 1.36% 

Missing 24 2.17% 0 0.00% 0 0.00% 0 0.00% 

Total 1,104 100.00% 202 100.00% 289 100.00% 589 100.00% 

Note: Retraction reasons for a set of 1,104 original articles indexed by PubMed, published between 1973 and 2008, and 

retracted before the end of 2009. This sample is further broken down into three subsamples. The “strong shoulders” 

subsample comprises 202 articles retracted for typically innocuous reasons, or at least reasons that do not cast doubt on 

the veracity of the results contained therein. The “shaky shoulders” subsample comprises 289 retracted articles for which 

either the retraction notice or information retrievable on the world-wide web cast some doubt on the extent the results 

should be built upon by follow-on researchers. Finally, the “absent shoulders” subsample contains 589 retracted articles 

that will be the source sample for the bulk of the analysis. For these cases, we could ascertain with substantial certainty 

that the results are not to be relied upon for future research. This can occur because of intentional misconduct on the part 

of the researchers involved, or because of mistakes on their part. The comprehensive spreadsheet listing of these retracted 

articles – complete with the references used to code retraction reasons – can be downloaded at 

http://jkrieger.scripts.mit.edu/retractions/. 
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Table 2: Descriptive Statistics for 589 Retracted Source Articles 

[“Absent Shoulders” Subsample] 

 Mean Median 
Std. 

Dev. 
Min. Max. 

Publ. Year for Retracted Article 1997.606 2000 7.848 1973 2007 

Retraction Year 2000.844 2004 7.821 1977 2009 

Retraction Speed (years) 3.238 2 2.893 0 16 

Nb. of Related Articles 59.205 43 64.021 1 627 

Part of a Multiple Retractions Case 0.625 1 0.485 0 1 

Intentional Deception 0.611 1 0.488 0 1 

Uncertain Intent 0.081 0 0.274 0 1 

No Sign of Intentional Deception 0.307 0 0.462 0 1 

Part of a Multiple Retractions Fraud Case 0.458 0 0.499 0 1 

Cumulative Citations [as of 7/2012] 45.100 21 70.493 0 728 

US-based Reprint Author 0.533 1 0.499 0 1 
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Article Ever Cited in a Patent 0.107 0 0.309 0 1 

Note: These 589 retractions can be grouped into 334 distinct cases – a case arises because a researcher, 

or set of researchers, retracts several papers for related reasons, e.g., because of repeated fraud. 
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Table 3: Descriptive Statistics for Related Articles and “Nearest-Neighbor” Controls 

[“Absent Shoulders” Subsample] 

  Mean Median Std. Dev. Min. Max. 

NN Controls 

(N=65,461) 

Article Publication Year 1999.110 2001 6.994 1970 2008 

Number of Authors 5.148 5 2.959 1 78 

Article Age at time of Retraction 3.987 4 2.425 1 10 

Published After Retracted Article 0.301 0 0.459 0 1 

Baseline Stock of Cites 12.203 4 35.836 0 3064 

Baseline Stock of Cites from Private Firms 1.174 0 3.844 0 230 

Cites Retracted Piece (N=19,299) 0.001 0 0.031 0 1 

Cited by Retracted Piece (N=33,370) 

Article Ever Cited in a Patent 

0.001 

0.083 

0 

0 

0.028 

0.275 

0 

0 

1 

1 

Related Articles 

(N=32,699) 

Article Publication Year 1999.244 2001 6.959 1970 2008 

Number of Authors 5.122 5 2.715 1 50 

Article Age at time of Retraction 3.961 4 2.419 1 10 
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Published After Retracted Article 0.300 0 0.458 0 1 

Baseline Stock of Cites 13.891 4 38.660 0 3713 

Baseline Stock of Cites from Private Firms 1.280 0 4.217 0 368 

Cites Retracted Piece (N=9,737) 0.079 0 0.270 0 1 

Cited by Retracted Piece (N=16,927) 0.061 0 0.240 0 1 

 Article Ever Cited in a Patent 0.087 0 0.281 0 1  

Note: The set of related articles is composed of journal articles linked to the 589 retracted articles of Table 2 through 

PubMed’s “related articles” algorithm (see Figure 1) and downloaded using the open source FindRelated software 

[http://www.stellman-greene.com/FindRelated/]. We exclude from the raw data (i) articles that do not contain original 

research, e.g., reviews, comments, editorials, letters; (ii) articles published outside of a time window running from ten 

years before the retraction event to one year before the retraction event; (iii) articles that appear in journals indexed by 

PubMed but not indexed by Thompson-Reuters’ Web of Science; (iv) articles that we fail to match to Web of Science; (v) 

articles that we do match to Web of Science, but receive zero forward citations (exclusive of self-citations) from their 

publication year up until the end of 2011; and (vi) articles for which at least one author also appears on the authorship 

roster of the corresponding retracted article. For each related article, we select as controls its “nearest neighbors” in the 
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same journal and issue – i.e., the articles that immediately precede and/or immediately follow it in the issue. By 

convention, the controls inherit some of the properties of their treated neighbor. 
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Table 4: Descriptive Statistics for the Entry and Funding Samples 

 Article Frequencies [1975-2011] Funding [1975-2007] 

  

Nb. of 

Related 

Articles 

Nb. of 

Closely 

Related 

Articles 

(rank 20 or 

lower) 

Nb. of 

Closely 

Related 

Articles 

(80% score or 

higher) 

 
Nb. of 

Grants 
$ Amounts 

  Mean 
Std. 

Error 
Mean 

Std. 

Error 
Mean 

Std. 

Error 
 Mean 

Std. 

Error 
Mean 

Std. 

Error 

Control N=1,076 4.64 7.49 0.31 0.88 0.22 0.55 N=778 1.21 2.43 $5,587,872 $20,433,959 

Retracted N=565 3.99 7.36 0.24 0.80 0.15 0.46 N=411 1.16 2.64 $5,077,185 $16,683,593 

Total N=1,641 4.42 7.45 0.29 0.86 0.20 0.52 N=1,189 1.19 2.50 $5,413,844 $19,239,559 

Note: We compute entry rates into the field surrounding a retracted article (or one of its nearest neighbor) by counting 

the number of PubMed-related articles in a particular year. We measure NIH funding for the same fields by summing the 

grant amounts awarded in a particular year that yields at least one publication over the next three years that is related to 
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either a retracted article or one of their nearest-neighbor controls. The means and standard deviations are computed over 

all observations in the resulting retracted article/year panel dataset (NT=53,451 for related article frequencies; 

NT=42,524 for funding). 
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Table 5: Effects of Retraction on Citations to Retracted Articles, by Retraction Reason 

 (1) (2) (3) (4) (5) 

 
Entire 

Sample 

Excludes 

Missing 

Rtrct. 

Reasons 

Excludes 

Missing 

Rtrct. 

Reasons 

Further 

Excludes 

“Strong 

Shoulders” 

Retractions 

Only 

earliest 

retraction 

event in 

each case 

After Retraction 
-1.171** -1.172** -0.472** -1.080** -1.081** 

(0.099) (0.100) (0.099) (0.104) (0.066) 

After Retraction × Shaky Shoulders 
  -0.609**   

  (0.141)   

After Retraction × Absent Shoulders 

  -0.809** -0.199  

  (0.152) (0.157)  

     

Nb. of Retraction Cases 720 705 705 551 552 

Nb. of Retracted/Control Articles 2,959 2,915 2,915 2,431 1,570 
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Nb. of Article-Year Obs. 39,469 38,925 38,925 34,735 20,513 

Log Likelihood -62,620 -62,182 -62,054 -57,567 -34,611 

Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The dependent 

variable is the total number of forward citations (exclusive of self-citations) received by each retracted 

article (or its nearest neighbor controls) in a particular year. All models incorporate a full suite of calendar 

year effects as well as 31 article age indicator variables (age zero is the omitted category). Exponentiating 

the coefficients and differencing from one yields numbers interpretable as elasticities. For example, the 

estimates in column (1) imply that retracted articles suffer on average a statistically significant (1-exp[-

1.171])=68.99% yearly decrease in the citation rate after the retraction event. 

QML (robust) standard errors in parentheses, clustered around retraction cases. 

†p < 0.10, *p < 0.05, **p < 0.01. 
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Table 6: Effects of Retractions on Citations to Related Articles, by Retraction Reason 

 (1) (2) (3) (4) (5) 

 
Entire 

Sample 

Excludes 

Missing 

Rtrct. 

Reasons 

Excludes 

Missing 

Rtrct. 

Reasons 

Further 

Excludes 

“Strong 

Shoulders” 

Retractions 

Only 

earliest 

retraction 

event in 

each case 

After Retraction 
-0.059** -0.059** 0.040 -0.085** -0.038* 

(0.013) (0.013) (0.030) (0.030) (0.016) 

After Retraction × Shaky Shoulders 
  -0.131**   

  (0.044)   

After Retraction × Absent Shoulders 
  -0.104** 0.028  

  (0.037) (0.038)  

Nb. of Retraction Cases 770 747 747 573 572 

Nb. of Source Articles 1,104 1,080 1,080 878 580 

Nb. of Related/Control Articles 169,741 167,306 167,306 137,969 90,167 
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Nb. of Article-Year Obs. 2,094,725 2,064,465 2,064,465 1,800,425 1,066,306 

Log Likelihood -2,747,714 -2,714,047 -2,713,760 -2,398,154 -1,457,463 

Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The dependent 

variable is the total number of forward citations (exclusive of self-citations) received by each related article 

in a particular year. All models incorporate a full suite of calendar year effects as well as 31 article age 

indicator variables (age zero is the omitted category). Exponentiating the coefficients and differencing from 

one yields numbers interpretable as elasticities. For example, the estimates in column (1) imply that related 

articles suffer on average a statistically significant (1-exp[-0.059])=5.73% yearly decrease in the citation rate 

after the retraction event. 

QML (robust) standard errors in parentheses, clustered around retraction cases. 

†p < 0.10, *p < 0.05, **p < 0.01. 

 

68 
 

469



Table 7: Exploring Heterogeneity in the Magnitude of the Retraction Effect 

‘‘Absent Shoulders’’ Subsample 

 (1) (2) (3) (4) (5) (6) 

After Retraction -0.040* -0.035† -0.010 -0.019 -0.076** 0.016 

 (0.021) (0.019) (0.029) (0.024) (0.018) (0.039) 

After Retraction × Highly Cited Source -0.043      

 (0.035)      

After Retraction × “Hot Field”  -0.121**     

  (0.042)     

After Retraction × “Crowded Field”   -0.105**    

   (0.036)    

After Retraction × Cites Retracted Piece    -0.141*   

    (0.057)   

After Retraction × Cited by Retracted 

Piece 

    0.135*  
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     (0.054)  

After Retraction × Uncertain Intent      -0.099 

      (0.065) 

After Retraction × Intentional Deception      -0.097* 

      (0.046) 

Nb. of Retraction Cases 334 334 334 204 324 334 

Nb. of Source Articles 589 589 589 384 550 589 

Nb. of Related/Control Articles 96,541 96,541 96,541 29,036 50,297 98,160 

Nb. of Article-Year Obs. 1,240,107 1,240,107 1,240,107 329,451 706,932 1,261,713 

Log Likelihood -

1,670,555 

-

1,670,316 

-

1,670,250 

-431,661 -963,226 -

1,686,298 

Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The dependent variable is the 

total number of forward citations (exclusive 

of self-citations) received by each related article in a particular year. All models incorporate a full suite of calendar year 

effects as well as 31 article age indicator variables (age zero is the omitted category). Exponentiating the coefficients and 

differencing from one yields numbers interpretable as elasticities. For example, the estimates in column (1) imply that 
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related articles suffer on average a statistically significant (1-exp[-0.040])=3.92% yearly decrease in the citation rate after 

the retraction event. 

 

Highly cited source articles are retracted papers that are in the top quartile of the citation distribution (assessed at the 

time of retraction). We define the retracted paper’s field as the set of related papers identified by PubMed’s PMRA 

algorithm. We measure recent activity in a field by computing the fraction of papers in that field published in the three 

year period leading up to the retraction event. We denote a field as ‘‘hot’’ if it belongs to the top quartile of this measure. 

We measure ‘‘crowdedness’’ in a field using the relatedness score of the twenty fifth highest ranking related paper that was 

published in or before the retraction year. In the rare cases where the field has less than 25 papers published in or before 

the retraction year, then score of the highest ranked (i.e., least related) paper in the set is used. We denote a field as 

‘‘crowded’’ if it belongs to the top quartile of this measure. We derive the Uncertain Intent and Intentional Deception 

codes from retraction notices and publically available information about the retraction event (see section II of the online 

appendix). 

 

QML (robust) standard errors in parentheses, clustered around retraction cases. † p < 0.10, * p < 0.05, ** p < 0.01 
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Table 8: Effect of Retraction on Publication Frequency and NIH Funding 

 (1) 

 

 

Nb. of  

Related 

Articles 

(2a) 

 

Nb. of  

Closely 

Related 

Articles 

(80% score or 

higher) 

 

(2b) 

 

Nb. of  

Closely 

Related 

Articles 

(rank 10 or 

lower) 

(3a) 

 

Nb. of 

Related 

Articles 

Published in 

High Journal 

Impact 

Factor 

Journals 

(3b) 

 

Nb. of 

Related 

Articles 

Published in 

Low Journal 

Impact 

Factor 

Journals 

(4a) 

 

 

Nb. of 

Grants 

(4b) 

 

 

 

$ 

Amounts 

 

After Retraction -0.309** -0.433** -0.271† -0.333** -0.240** -1.152** -1.363** 

 (0.096) (0.166) (0.141) (0.115) (0.092) (0.110) (0.145) 

Nb. of Retraction Cases 333 333 333 333 333 332 332 

Nb. of Treating/Control Articles 1,644 1,511 1,626 1,633 1,644 1,513 1,513 

Nb. of Article-Year Obs. 53,854 49,521 53,264 53,453 53,854 43,159 43,159 
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Log Likelihood -188,980 -30,028 -26,628 -121,006 -112,071 -54,399 -273,467 

Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The dependent variable is the total 

number of related articles published in a particular source/year (columns 1a, 2a, 2b, 3a and 3b), as well as the number or total 

dollar amount of NIH funding awarded in a particular year that yields at least one publication over the next three years that 

is related to either a retracted article or one of their nearest-neighbor controls (columns 4a, and 4b). The high Journal Impact 

Factor (JIF) category includes journals in the top quartile of JIF (indexed by ISI), while the low JIF category includes 

journals from the lower three quartiles. All models incorporate a full suite of calendar year effects. 

QML (robust) standard errors in parentheses, clustered around retraction cases. 

†p < 0.10, *p < 0.05, **p < 0.01. 
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Table 9: Interpreting Citation Behavior for Articled Related to “Absent Shoulders” 

Retractions 

   Retracted Papers Related Papers  

 (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) 

         

 Academ

ic 

Citation

s 

Only 

Private-

Firms 

Citation

s 

Only 

Academ

ic 

Citation

s 

Only 

Private-

Firms 

Citation

s 

Only 

Academ

ic 

Citation

s 

Only 

Private-

Firms 

Citation

s 

Only 

Academ

ic 

Citation

s 

Only 

Private-

Firms 

Citation

s 

Only 

After Retraction 

 

After Retraction × Retracted Paper Cited in 

Patent 

 

-1.293** -1.309** -1.304** -1.283** -0.054** -0.006 -0.071** -0.005 

(0.154) (0.188) (0.180) (0.236) (0.017) (0.023) (0.017) (0.025) 

  

 

 

0.041 

(0.178) 

 

-0.086 

(0.328) 

 

   

 

0.066† 

 

 

-0.000 
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After Retraction × Related Paper Cited in 

Patent 

   (0.038) (0.045) 

Nb. of Retraction Cases 

Nb. of Source Articles 

304 304 304 304 334 334 334 334 

1,089 1,089 1,089 1,089 589 589 82,819 53,357 

Nb. of Related/Control Articles     62,205 62,205 96,373 61,806 

Nb. of Article-Year Obs. 15,711 15,711 
15,711 15,711 

807,203 807,203 
1,238,11

8 

801,709 

Log Likelihood -30,568 -8,234 

-30,568 -8,234 -

1,366,13

6 

-402,337 

-

1,756,28

6 

-400,178 

Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The dependent variable is the total 

number of forward citations (exclusive of self-citations) received by each related article in a particular year. All models 

incorporate a full suite of year effects as well as 31 article age indicator variables (age zero is the omitted category). 

Exponentiating the coefficients and differencing from one yields numbers interpretable as elasticities. 

In columns (2a) and (2b), the estimation sample is limited to those related articles and controls that receive at least one “private 

firm” citation between their year of publication and 2011. For this analysis, a citation is said to emanate from a private firm 
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when at least one address listed by the Web of Science includes a suffix such as Inc., Corp., LLC, Ltd., GmbH, etc.  

QML (robust) standard errors in parentheses, clustered around retraction cases. 

†p < 0.10, *p < 0.05, **p < 0.01. 
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Figure 1: Cumulative Citations at Baseline for Related Articles and their 

“Nearest-Neighbor” Controls 

 

Note: We compute the cumulative number of citations, up to the year that immediately 

precedes the year of retraction, between 32,699 treated (i.e., related) articles and 65,461 

control articles in the “absent shoulders” subsample. 
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Figure 2: Post-Retraction Period Scatterplot of Changes in Citation Rates for 

Related Articles and their Associated Retracted Articles 

 

Note: The figure explores the relationship between the post-retraction citation “penalty” 

suffered by retracted articles and the average change in citation experienced by the set 

of articles that are related in intellectual space to the retracted articles. The post-

retraction period refers to the years between the year of retraction and 2011 (using a 

two-year fixed window instead of this variable window yields very comparable results). 

The citation changes are computed by forming the difference in the logs of one plus the 

number of citations received by each article up until the beginning and the end of the 

post-retraction window, respectively. The slope of the retraction line is about 0.1, i.e., 

for every ten citations “lost” by a retracted articles, related articles suffer a penalty of 

about one citation. 
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Figure 3: Dynamics of the Retraction Effect on Forward Citation Rates 

 

Note: The solid line in the above plot correspond to coefficient estimates stemming from 

conditional fixed effects quasi-maximum likelihood Poisson specifications in which the 

citation rates for related articles and their controls are regressed onto year effects, 

article age indicator variables, as well as 20 interaction terms between treatment status 

and the number of years before/elapsed since the retraction event (the indicator variable 

for treatment status interacted with the year of retraction itself is omitted). The 95% 

confidence interval (corresponding to robust standard errors, clustered around case 

codes) around these estimates is plotted with dashed lines. 
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Figure 4: Interaction between the Post-Retraction Treatment Effect and 

Relatedness Rank as per PubMed’s “Related Article” Algorithm 

 

 

Note: The circles in the above plot correspond to coefficient estimates stemming from 

conditional fixed effects QML Poisson specifications in which the citation rates for 

related articles and their controls are regressed onto year effects, article age indicator 

variables, as well as interaction terms between the treatment effect and indicator 

variables for the relatedness ranking btw. the related article and its associated retraction 

(as per PubMed’s “Related Articles” algorithm). Each circle correspond to five 

consecutive ranks (e.g., Top 5, Top 6-10, etc.) with all articles receiving a rank above 

one hundred grouped together in the same bin. The 95% confidence interval 

(corresponding to robust standard errors, clustered around case codes) are denoted by 

the vertical bars and their caps. 
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Figure 5 

Field-level Dynamics 

 

A. Article Frequency B. NIH Funding 

  

Notes: The solid lines in the above plot correspond to coefficient estimates stemming from conditional fixed effects quasi-

maximum likelihood Poisson specifications in which the number of related publications (Panel A) and NIH funding 

in millions of 2007 dollars (Panel B) associated with a particular source article are regressed onto year effects as well 
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as 20 interaction terms between treatment status and the number of years before/elapsed since the retraction event 

(the indicator variable for treatment status interacted with the year of retraction itself is omitted). The 95% 

confidence interval (corresponding to robust standard errors, clustered around retraction cases) around these 

estimates is plotted with dashed lines; Figure 5A corresponds to a dynamic version of the specification in column 

(1a) of Table 8, while Figure 5B corresponds to a dynamic version of the specification in column (2b) in the same 

table. 

 

 

82 

469


