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We present quantum observable Markov decision processes (QOMDPs), the quantum analogs of partially
observable Markov decision processes (POMDPs). In a QOMDP, an agent is acting in a world where the state is
represented as a quantum state and the agent can choose a superoperator to apply. This is similar to the POMDP
belief state, which is a probability distribution over world states and evolves via a stochastic matrix. We show
that the existence of a policy of at least a certain value has the same complexity for QOMDPs and POMDPs in
the polynomial and infinite horizon cases. However, we also prove that the existence of a policy that can reach a
goal state is decidable for goal POMDPs and undecidable for goal QOMDPs.
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I. INTRODUCTION

Partially observable Markov decision processes (POMDPs)
are a world model commonly used in artificial intelligence
[1–5]. POMDPs model an agent acting in a world of discrete
states. The world is always in exactly one state, but the agent
is not told this state. Instead, it can take actions and receive
observations about the world. The actions an agent takes are
nondeterministic; before taking an action, the agent knows
only the probability distribution of its next state given the
current state. Similarly, an observation does not give the agent
direct knowledge of the current world state, but the agent
knows the probability of receiving a given observation in each
possible state. The agent is rewarded for the actual, unknown
world state at each time step, but, although it knows the reward
model, it is not told the reward it received. POMDPs are often
used to model robots, because robot sensors and actuators give
them a very limited understanding of their environment.

As we will discuss further in Sec. II, an agent can
maximize future expected reward in a POMDP by maintaining
a probability distribution, known as a belief state, over the
world’s current state. By carefully updating this belief state
after every action and observation, the agent can ensure that
its belief state reflects the correct probability that the world
is in each possible state. The agent can make decisions using
only its belief about the state without ever needing to reason
more directly about the actual world state.

In this paper, we introduce and study “quantum observable
Markov decision processes” (QOMDPs). A QOMDP is similar
in spirit to a POMDP but allows the belief state to be a
quantum state (superposition or mixed state) rather than a
simple probability distribution. We represent the action and
observation process jointly as a superoperator. POMDPs are
then just the special case of QOMDPs where the quantum state
is always diagonal in some fixed basis.

Although QOMDPs are the quantum analog of POMDPs,
they have different computability properties. Our main result,
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in this paper, is that there exists a decision problem (namely,
goal-state reachability) that is computable for POMDPs but
uncomputable for QOMDPs.

One motivation for studying QOMDPs is simply that they
are the natural quantum generalizations of POMDPs, which
are central objects of study in artificial intelligence. Moreover,
as we show here, QOMDPs have different computability prop-
erties than POMDPs, so the generalization is not an empty one.
Beyond this conceptual motivation, though, QOMDPs might
also find applications in quantum control and quantum fault
tolerance. For example, the general problem of controlling
a noisy quantum system, given a discrete “library” of noisy
gates and measurements, in order to manipulate the system
to a desired end state, can be formulated as a QOMDP.
Indeed, the very fact that POMDPs have turned out to be such
a useful abstraction for modeling classical robots suggests
that QOMDPs would likewise be useful for modeling control
systems that operate at the quantum scale. At any rate, this
seems like sufficient reason to investigate the complexity and
computability properties of QOMDPs, yet we know of no pre-
vious work in that direction. This paper represents a first step.

Recently, related work has been reported by Ying and Ying
[6]. They considered quantum Markov decision processes
(MDPs) and proved undecidability results for them that are
very closely related to our results. In particular, these authors
show that the finite-horizon reachability problem for quantum
MDPs is undecidable, and they also do so via a reduction from
the matrix mortality problem. Ying and Ying also prove EXP-
hardness and uncomputability for the infinite-horizon case (de-
pending on whether one is interested in reachability with prob-
ability 1 or with probability p < 1, respectively). On the other
hand, they give an algorithm that decides, given a quantum
MDP and an invariant subspace B, whether or not there exists a
policy that reaches B with probability 1 regardless of the initial
state, and they prove several other results about invariant sub-
spaces in MDPs. These results nicely extend and complement
ours as well as previous work by the same group [7].

One possible advantage of the present work is that,
rather than considering (fully observable) MDPs, we consider
POMDPs. The latter seem to us like a more natural starting
point than MDPs for a quantum treatment, because there
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is never “full observability” in quantum mechanics. Many
results, including the undecidability results mentioned above,
can be translated between the MDP and POMDP settings,
by the simple expedient of considering “memoryful” MDP
policies, that is, policies that remember the initial state, as
well as all actions performed so far and all measurement
outcomes obtained. Such knowledge is tantamount to knowing
the system’s current quantum state ρ. However, because we
consider POMDPs, which by definition can take actions that
depend on ρ, we never even need to deal with the issue of
memory. A second advantage of this work is that we explicitly
compare the quantum against the classical case (something not
done in [6]), showing why the same problem is undecidable in
the former case but decidable in the latter.

Finally, we mention that there has been other work that
sought to model quantum agents in dynamic and uncertain
environments [8,9], though without formal computability and
uncomputability results.

II. PARTIALLY OBSERVABLE MARKOV
DECISION PROCESSES

For completeness, in this section we give an overview of
Markov decision processes and partially observable Markov
decision processes (POMDPs).

A. Fully observable case

We begin by defining fully observable Markov decision
processes (MDPs). This will facilitate our discussion of
POMDPs because POMDPs can be reduced to continuous-
state MDPs. For more details, see Russell and Norvig [3].

A Markov decision process (MDP) is a model of an agent
acting in an uncertain but observable world. An MDP is a tuple
〈S,A,T ,R,γ 〉 consisting of a set of states S, a set of actions
A, a state transition function T (si,a,sj ) : S × A × S → [0,1]
giving the probability that taking action a in state si results
in state sj , a reward function R(si,a) : S × A → R giving the
reward of taking action a in state si , and a discount factor γ ∈
[0,1) that discounts the importance of reward gained later in
time. At each time step, the world is in exactly one known state,
and the agent chooses to take a single action, which transitions
the world to a new state according to T . The objective is for
the agent to act in such a way as to maximize future expected
reward.

The solution to an MDP is a policy. A policy π (si,t) :
S × Z+ → A is a function mapping states at time t to actions.
The value of a policy at state si over horizon h is the future
expected reward of acting according to π for h time steps:

Vπ (si,h) = R(si,π (si,h))+
γ

∑
sj ∈S T (si,π (si,h),sj )Vπ (sj ,h − 1). (1)

The solution to an MDP of horizon h is the optimal policy
that maximizes future expected reward over horizon h. The
associated decision problem is the policy existence problem:

Definition 1 (Policy existence problem). The policy exis-
tence problem is to decide, given a decision process D, a
starting state s, horizon h, and value V , whether there is a
policy of horizon h that achieves value at least V for s in D.

For MDPs, we will evaluate the infinite horizon case. In this
case, we will drop the time argument from the policy since it
does not matter; the optimal policy at time infinity is the same
as the optimal policy at time infinity minus 1. The optimal
policy over an infinite horizon is the one inducing the value
function

V ∗(si) = max
a∈A

[
R(si,a) + γ

∑
sj ∈S

T (si,a,sj )V ∗(sj )

]
. (2)

Equation (2) is called the Bellman equation, and there is a
unique solution for V ∗ [3]. Note that V ∗ is noninfinite if γ < 1.
When the input size is polynomial in |S| and |A|, finding an
ε-optimal policy for an MDP can be done in polynomial time
[3].

A derivative of the MDP of interest to us is the goal MDP. A
goal MDP is a tuple M = 〈S,A,T ,g〉 where S, A, and T are as
before and g ∈ S is an absorbing goal state so T (g,a,g) = 1 for
all a ∈ A. The objective in a goal MDP is to find the policy that
reaches the goal with the highest probability. The associated
decision problem is the goal-state reachability problem.

Definition 2 (Goal-state reachability problem for decision
processes). The goal-state reachability problem is to decide,
given a goal decision process D and starting state s, whether
there exists a policy that can reach the goal state from s in a
finite number of steps with probability 1.

When solving goal decision processes, we never need to
consider time-dependent policies because nothing changes
with the passing of time. Therefore, when analyzing the goal-
state reachability problem, we will only consider stationary
policies that depend solely upon the current state.

B. Partially observable case

A partially observable Markov decision process (POMDP)
generalizes an MDP to the case where the world is not fully
observable. We follow the work of Kaelbling et al. [1] in
explaining POMDPs.

In a partially observable world, the agent does not know
the state of the world but receives information about it in
the form of observations. Formally, a POMDP is a tuple
〈S,A,�,T ,R,O,�b0,γ 〉 where S is a set of states, A is a set of
actions, � is a set of observations, T (si,a,sj ) : S × A × S →
[0,1] is the probability of transitioning to state sj given
that action a was taken in state si , R(si,a) : S × A → R
is the reward for taking action a in state si , O(sj ,a,o) :
S × A × � → [0,1] is the probability of making observation
o given that action a was taken and ended in state sj , �b0

is a probability distribution over possible initial states, and
γ ∈ [0,1) is the discount factor.

In a POMDP the world state is “hidden,” meaning that the
agent does not know the world state, but the dynamics of the
world behave according to the actual underlying state. At each
time step, the agent chooses an action, the world transitions to
a new state according to its current hidden state and T , and the
agent receives an observation according to the world state after
the transition and O. As with MDPs, the goal is to maximize
future expected reward.

POMDPs induce a belief MDP. A belief state �b is a
probability distribution over possible world states. For si ∈ S,
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�bi is the probability that the world is in state si . Since �b is
a probability distribution, 0 � �bi � 1 and

∑
i
�bi = 1. If the

agent has belief state �b, takes action a, and receives observation
o the agent’s new belief state is

�b′
i = Pr(si |o,a,�b) = Pr(o|si,a,�b) Pr(si |a,�b)

Pr(o|a,�b)

= O(si,a,o)
∑

j T (sj ,a,si)�bj

Pr(o|a,�b)
. (3)

This is the belief update equation. Pr(o|a,�b) =∑
k O(sk,a,o)

∑
j T (sj ,a,sk)�bj is independent of i and

usually just computed afterwards as a normalizing factor that
causes �b′ to sum to 1. We define the matrix

(τ ao)ij = O(si,a,o)T (sj ,a,si). (4)

The belief update for seeing observation o after taking action
a is

�b′ = τ ao �b
|τ ao �b|1

, (5)

where |�v|1 = ∑
i �vi is the L1 norm. The probability of

transitioning from belief state �b to belief state �b′ when taking
action a is

τ (�b,a, �b′) =
∑
o∈�

Pr(�b′|a,�b,o) Pr(o|a,�b), (6)

where

Pr( �b′|a,�b,o) =
{

1 if �b′ = τ ao �b
|τ ao �b|1

0 else
.

The expected reward of taking action a in belief state �b is

r(�b,a) =
∑

i

�biR(si,a). (7)

Now the agent always knows its belief state so the belief
space is fully observable. This means we can define the belief
MDP 〈B,A,τ,r,γ 〉 where B is the set of all possible belief
states. The optimal solution to the MDP is also the optimal
solution to the POMDP. The problem is that the state space of
the belief state MDP is continuous, and all known algorithms
for solving MDPs optimally in polynomial time are polynomial
in the size of the state space. It was shown in 1987 that the
policy existence problem for POMDPs is PSPACE-hard [10].
If the horizon is polynomial in the size of the input, the policy
existence problem is in PSPACE [1]. The policy existence
problem for POMDPs in the infinite horizon case, however, is
undecidable [11].

A goal POMDP is a tuple P = 〈S,A,�,T ,O,�b0,g〉 where
S, A, �, T , and O are defined as before but instead of a
reward function we assume that g ∈ S is a goal state. This
state g is absorbing so we are promised that, for all a ∈ A,
T (g,a,g) = 1. Moreover, the agent receives an observation
o|�| ∈ � telling it that it has reached the goal so, for all a ∈ A,
O(g,a,o|�|) = 1. This observation is only received in the goal
state so, for all si 	= g, and all a ∈ A, O(si,a,o|�|) = 0. The
solution to a goal POMDP is a policy that reaches the goal
state with the highest possible probability starting from �b0.

We will show that, because the goal is absorbing and known,
the observable belief space corresponding to a goal POMDP
is a goal MDP M(P ) = 〈B,A,τ,�b0,�bg〉. Here �bg is the state in
which the agent knows it is in g with probability 1. We show
that this state is absorbing. First the probability of observing o

after taking action a is

Pr(o|a,�bg) =
∑

j

O(sj ,a,o)
∑

i

T (si,a,sj )(�bg)i

=
∑

j

O(sj ,a,o)T (g,a,sj ) = O(g,a,o) = δoo|�| .

Therefore, if the agent has belief �bg , regardless of the action
taken, the agent sees observation o|�|. Assume the agent takes
action a and sees observation o|�|. The next belief state is

�b′
j = Pr(sj |o|�|,a,�bg)

= O(sj ,a,o|�|)
∑

i T (si,a,sj )�bi

Pr(o|�||a,�bg)

= O(sj ,a,o|�|)T (g,a,sj ) = δgsj
.

Therefore, regardless of the action taken, the next belief state
is �bg so this is a goal MDP.

III. QUANTUM OBSERVABLE MARKOV
DECISION PROCESSES

A quantum observable Markov decision process (QOMDP)
generalizes a POMDP by using quantum states rather than
belief states. In a QOMDP, an agent can apply a set of possible
operations to a d-dimensional quantum system. The operations
each have K possible outcomes. At each time step, the agent
receives an observation corresponding to the outcome of the
previous operation and can choose another operation to apply.
The reward the agent receives is the expected value of some
operator in the system’s current quantum state.

A. QOMDP formulation

A QOMDP uses superoperators to express both actions
and observations. A quantum superoperator S = {K1,...,KK}
acting on states of dimension d is defined by K d × d Kraus
matrices [12,13]. A set of matrices {K1,...,KK} of dimension
d is a set of Kraus matrices if and only if

K∑
i=1

K
†
i Ki = Id . (8)

If S operates on a density matrix ρ, there are K possible next
states for ρ. Specifically the next state is

ρ ′
i → KiρK

†
i

Tr(KiρK
†
i )

(9)

with probability

Pr(ρ ′
i |ρ) = Tr(KiρK

†
i ). (10)

The superoperator returns observation i if the ith Kraus matrix
was applied.
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We can now define the quantum observable Markov
decision process (QOMDP).

Definition 3 (QOMDP). A QOMDP is a tuple
〈S,�,A,R,γ,ρ0〉 where we have the following.

(1) S is a Hilbert space. We allow pure and mixed quantum
states so we will represent states in S as density matrices.

(2) � = {o1,...,o|�|} is a set of possible observations.
(3) A = {A1,...,A|A|} is a set of superoperators. Each

superoperator Aa = {Aa
1,...,A

a
|�|} has |�| Kraus matrices.

Note that each superoperator returns the same set of possible
observations; if this is not true in reality, some of the Kraus
matrices may be the all zeros matrix. The return of oi indicates
the application of the ith Kraus matrix so taking action a in
state ρ returns observation oi with probability

Pr(oi |ρ,a) = Tr
(
Aa

i ρAa
i
†)

. (11)

If oi is observed after taking action a in state ρ, the next state
is

N (ρ,a,oi) = Aa
i ρAa

i
†

Tr
(
Aa

i ρAa
i
†) . (12)

(4) R = {R1,...,R|A|} is a set of operators. The reward
associated with taking action a in state ρ is the expected value
of operator Ra on ρ:

R(ρ,a) = Tr(ρRa). (13)

(5) γ ∈ [0,1) is a discount factor.
(6) ρ0 ∈ S is the starting state.
Like an MDP or POMDP, a QOMDP represents a world

in which an agent chooses actions at discrete time steps and
receives observations. The world modeled by the QOMDP is
a quantum system that begins in ρ0, the starting state of the
QOMDP. At each time step, the agent chooses a superoperator
from the set A, whereupon the corresponding operation is
done on the system and the agent receives an observation from
the set � in accordance with the laws of quantum mechanics.
The agent also receives a reward according to the state of the
system after the operation and R. As in an MDP or POMDP,
the agent knows the entire QOMDP model a priori and its
goal is to use this information to maximize its future expected
reward.

A QOMDP is fully observable in the same sense that the
belief state MDP for a POMDP is fully observable. Just as the
agent in a POMDP always knows its belief state, the agent in a
QOMDP always knows the current quantum superposition or
mixed state of the system. In a POMDP, the agent can update its
belief state when it takes an action and receives an observation
using Eq. (5). Similarly, in a QOMDP, the agent can keep
track of the quantum state using Eq. (12) each time it takes
an action and receives an observation. Note that a QOMDP is
much more analogous to the belief state MDP of a POMDP
than to the POMDP itself. In a POMDP, the system is always
in one actual underlying world state that is simply unknown to
the agent; in a QOMDP, the system can be in a superposition
state for which no underlying “real” state exists.

As with MDPs, a policy for a QOMDP is a function π :
S × Z+ → A mapping states at time t to actions. The value

of the policy over horizon h starting from state ρ0 is

V π (ρ0) =
h∑

t=0

E[γ tR(ρt ,π (ρt ))|π ].

Let πh be the policy at time h. Then

V πh(ρ0) = R(ρ0,πh(ρ0))

+ γ

|�|∑
i=1

Pr (oi |ρ0,πh(ρ0))V πh−1 (N (ρ0,πh(ρ0),oi)),

(14)

where Pr(oi |ρ0,πh(ρ0)), N (ρ0,πh(ρ0),oi), and R(ρ0,πh(ρ0))
are defined by Eqs. (11), (12), and (13) respectively. The
Bellman equation [Eq. (2)] still holds using these definitions.

A goal QOMDP is a tuple 〈S,�,A,ρ0,ρg〉 where S, �,
A, and ρ0 are as defined above. The goal state ρg must
be absorbing so that, for all Ai ∈ A and all Ai

j ∈ Ai if

Tr(Ai
jρgA

i
j

†
) > 0,

Ai
jρgA

i
j

†

Tr
(
Ai

jρgA
i
j

†) = ρg.

As with goal MDPs and POMDPs, the objective for a goal
QOMDP is to maximize the probability of reaching the goal
state.

B. QOMDP policy existence complexity

As we can always simulate classical evolution with a quan-
tum system, the definition of QOMDPs contains POMDPs.
Therefore we immediately find that the policy existence prob-
lem for QOMDPs in the infinite horizon case is undecidable.
We also find that the polynomial horizon case is PSPACE-hard.
We can, in fact, prove that the polynomial horizon case is in
PSPACE.

Theorem 1. The policy existence problem (Definition 1) for
QOMDPs with a polynomial horizon is in PSPACE.

Proof. Papadimitriou and Tsitsiklis [10] showed that
polynomial horizon POMDPs are in PSPACE and the proof
still holds for QOMDPs with the appropriate substitution for
the calculations of the probability of an observation given
a quantum state and action [Eq. (11)], N [Eq. (12)], and R

[Eq. (13)], all of which can clearly be done in PSPACE when
the horizon is polynomial. �

IV. A COMPUTABILITY SEPARATION IN
GOAL-STATE REACHABILITY

However, although the policy existence problem has the
same complexity for QOMDPs and POMDPs, we can show
that the goal-state reachability problem (Definition 2) is de-
cidable for goal POMDPs but undecidable for goal QOMDPs.

A. Undecidability of goal-state reachability for QOMDPs

We will show that the goal-state reachability problem is
undecidable for QOMDPs by showing that we can reduce the
quantum measurement occurrence problem proposed by Eisert
et al. [14] to it.
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FIG. 1. (Color online) The quantum measurement occurrence
problem. The starting state ρ0 is fed into the superoperator S. The
output is then fed iteratively back into S. The question is whether
there is some finite sequence of observations that can never occur.

Definition 4 (Quantum measurement occurrence problem).
The quantum measurement occurrence problem (QMOP) is
to decide, given a quantum superoperator described by K
Kraus operators S = {K1,...,KK}, whether there is some finite
sequence {i1,...,in} such that K

†
i1
...K

†
in
Kin ...Ki1 = 0.

The setting for this problem is shown in Fig. 1. We assume
that the system starts in state ρ0. This state is fed into S. We
then take the output of S acting on ρ0 and feed that again into
S and iterate. QMOP is equivalent to asking whether there is
some finite sequence of observations {i1,...,in} that can never
occur even if ρ0 is full rank. We will reduce from the version
of the problem given in Definition 4 but will use the language
of measurement occurrence to provide intuition.

Theorem 2 (Undecidability of QMOP). The quantum
measurement occurrence problem is undecidable.

Proof. This can be shown using a reduction from the matrix
mortality problem. For the full proof see Eisert et al. [14]. �

We first describe a method for creating a goal QOMDP
from an instance of QMOP. The main ideas behind the choices
we make here are shown in Fig. 2.

FIG. 2. (Color online) A goal QOMDP for a QMOP instance
with superoperator S = {K1,K2,K3} with three possible outcomes.
We create three actions to correspond to the three outputs of the
superoperator. Each action Ai has two possible outcomes: either
the system transitions according to Ki from S or it transitions
to the goal state. Intuitively, we can think of Ai as either outputting
the observation “transitioned to goal” or observation i from S. Then it
is clear that if the action sequence {A2,A1,A3} is taken, for instance,
the probability that we do not see the observation sequence 2, 1, 3 is
the probability that the system transitions to the goal state somewhere
in this sequence. Therefore, the probability that an action sequence
reaches the goal state is the probability that the corresponding
observation sequence is not observed.

Definition 5 (QMOP goal QOMDP). Given an instance
of QMOP with superoperator S = {K1,...,KK} and Kraus
matrices of dimension d, we create a goal QOMDP Q(S) =
〈S,�,A,ρ0,ρg〉 as follows.

(1) S is (d + 1)-dimensional Hilbert space.
(2) � = {o1,o2,...,od+2} is a set of d + 2 possible obser-

vations. Observations o1 through od+1 correspond to at goal
while od+2 is not at goal.

(3) A = {A1,...,AK} is a set of K superoperators each with
d + 2 Kraus matrices Ai = {Ai

1,...,A
i
d+2} each of dimension

d + 1 × d + 1. We set

Ai
d+2 = Ki ⊕ 0 =

⎡
⎢⎣Ki

0
...

0 . . . 0

⎤
⎥⎦ , (15)

the ith Kraus matrix from the QMOP superoperator with the
d + 1st column and row all zeros. Additionally, let

Zi = Id+1 − Ai
d+2

†
Ai

d+2 (16)

=
⎛
⎝∑

j 	=i

K
†
jKj

⎞
⎠ ⊕ 1 (17)

=

⎡
⎢⎢⎢⎢⎣

∑
j 	=i

K
†
jKj

0
0
...

0 0 ... 1

⎤
⎥⎥⎥⎥⎦ . (18)

Now (K†
jKj )† = K

†
jKj and the sum of Hermitian matrices is

Hermitian so Zi is Hermitian. Moreover, K
†
jKj is positive

semidefinite, and positive semidefinite matrices are closed
under positive addition, so Zi is positive semidefinite as well.
Let an orthonormal eigendecomposition of Zi be

Zi =
d+1∑
j=1

zi
j

∣∣zi
j

〉〈
zi
j

∣∣.
Since Zi is a positive semidefinite Hermitian matrix, zi

j is non-

negative and real so
√

zi
j is also real. We let Ai

j for j < d + 2

be the d + 1 × d + 1 matrix in which the first d rows are all
zeros and the bottom row is

√
zi
j 〈zi

j |:
(
Ai

j<d+2

)
pq

=
√

zi
j

〈
zi
j

∣∣q〉δp(d+1),

Ai
j<d+2 =

⎡
⎢⎢⎢⎢⎣

0 ... 0
...

. . .
...

0 ... 0√
zi
j

〈
zi
j

∣∣

⎤
⎥⎥⎥⎥⎦ .

(Note that if zi
j = 0 then Ai

j is the all-zero matrix, but it is
cleaner to allow each action to have the same number of Kraus
matrices.)

(4) ρ0 is the maximally mixed state ρ0ij = 1
d+1δij .

(5) ρg is the state |d + 1〉〈d + 1|.
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The intuition behind the definition of Q(S) is shown in
Fig. 2. Although each action actually has d + 2 choices, we
will show that d + 1 of those choices (every one except Ai

d+2)
always transition to the goal state. Therefore action Ai really
only provides two possibilities.

(1) Transition to goal state.
(2) Evolve according to Ki .
Our proof will proceed as follows. Consider choosing some

sequence of actions Ai1 ,...,Ain . The probability that the system
transitions to the goal state is the same as the probability that it
does not evolve according to first Ki1 then Ki2 , etc. Therefore,
the system transitions to the goal state with probability 1 if
and only if it is impossible for it to transition according to first
Ki1 then Ki2 , etc. Thus, in the original problem, it must have
been impossible to see the observation sequence {i1,...,in}. In
other words, the agent can reach a goal state with probability
1 if and only if there is some sequence of observations
in the QMOP instance that can never occur. Therefore we
can use goal-state reachability in QOMDPs to solve QMOP,
giving us that goal-state reachability for QOMDPs must be
undecidable.

We now formalize the sketch we just gave. Before we can
do anything else, we must show that Q(S) is in fact a goal
QOMDP. We start by showing that ρg is absorbing in two
lemmas. First, we prove that Ai

j<d+2 transitions all density
matrices to the goal state. Second, we show that ρg has zero
probability of evolving according to Ai

d+2.
Lemma 1. Let S = {K1,...,KK} with Kraus matrices of

dimension d be the superoperator from an instance of QMOP
and let Q(S) = 〈S,�,A,ρ0,ρg〉 be the corresponding goal
QOMDP. For any density matrix ρ ∈ S, if Ai

j is the j th
Kraus matrix of the ith action of Q(S) and j < d + 2
then

Ai
jρAi

j

†

Tr
(
Ai

jρAi
j

†) = |d + 1〉〈d + 1|.

Proof. Consider

(
Ai

jρAi
j

†)
pq

=
∑
h,l

Ai
j ph

ρhlA
i
j

†
lq

(19)

=
∑
h,l

Ai
j ph

ρhlA
i
j

∗
ql

(20)

= zi
j

∑
h,l

〈
zi
j

∣∣h〉ρhl

〈
l
∣∣zi

j

〉
δp(d+1)δq(d+1), (21)

so only the lower right element of this matrix is nonzero. Thus
dividing by the trace gives

Ai
jρAi

j

†

Tr
(
Ai

jρAi
j

†) = |d + 1〉〈d + 1|. (22)

�
Lemma 2. Let S be the superoperator from an instance of

QMOP and let Q(S) = {S,�,A,ρ0,ρg} be the corresponding
QOMDP. Then ρg is absorbing.

Proof. By Lemma 1, we know that for j < d + 2 we have

Ai
j |d + 1〉〈d + 1|Ai

j

†

Tr
(
Ai

j |d + 1〉〈d + 1|Ai
j

†) = ρg.

Here we show that Tr(Ai
d+2ρgA

i
d+2

†
) = 0 so that the probabil-

ity of applying Ai
d+2 is zero. We have

Tr
(
Ai

d+2|d + 1〉〈d + 1|Ai
d+2

†)
(23)

=
∑

p

∑
hl

Ai
d+2ph

δh(d+1)δl(d+1)A
i
d+2

∗
pl

(24)

=
∑

p

Ai
d+2p(d+1)A

i
d+2

∗
p(d+1) = 0, (25)

since the (d + 1)st column of Ai
d+2 is all zeros by construction.

Therefore, ρg is absorbing. �
Now we are ready to show that Q(S) is a goal QOMDP.
Theorem 3. Let S = {K1,...,KK} be the superoperator from

an instance of QMOP with Kraus matrices of dimension d.
Then Q(S) = 〈S,�,A,ρ0,ρg〉 is a goal QOMDP.

Proof. We showed in Lemma 2 that ρg is absorbing, so all
that remains to show is that the actions are superoperators. Let
Ai

j be the j th Kraus matrix of action Ai . If j < d + 2 then

(
Ai

j

†
Ai

j

)
pq

=
∑

h

Ai
j

†
ph

Ai
j hq

(26)

=
∑

h

Ai
j

∗
hp

Ai
j hq

(27)

=
√

zi
j

∗〈
p
∣∣zi

j

〉√
zi
j

〈
zi
j

∣∣q〉
(28)

= zi
j

〈
p
∣∣zi

j

〉〈
zi
j

∣∣q〉
, (29)

where we have used that
√

zi
j

∗
=

√
zi
j because

√
zi
j is real.

Thus for j < d + 2

Ai
j

†
Ai

j = zi
j

∣∣zi
j

〉〈
zi
j

∣∣.
Now

d+2∑
j=1

Ai
j

†
Ai

j = Ai
d+2

†
Ai

d+2 +
d+1∑
j=1

zi
j

∣∣zi
j

〉〈
zi
j

∣∣ (30)

= Ai
d+2

†
Ai

d+2 + Zi (31)

= Id+1. (32)

Therefore {Ai
j } is a set of Kraus matrices. �

Now we want to show that the probability of not reaching
a goal state after taking actions {Ai1,...,Ain} is the same as
the probability of observing the sequence {i1,...,in}. However,
before we can do that, we must take a short detour to show
that the fact that the goal-state reachability problem is defined
for state-dependent policies does not give it any advantage.
Technically, a policy for a QOMDP is not time dependent
but state dependent. The QMOP problem is essentially time
dependent: we want to know about a specific sequence of
observations over time. A QOMDP policy, however is state
dependent: the choice of action depends not upon the number
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of time steps but upon the current state. When reducing a
QMOP problem to a QOMDP problem, we need to ensure that
the observations received in the QOMDP are dependent on
time in the same way that they are in the QMOP instance. We
will be able to do this because we have designed the QOMDP to
which we reduce a QMOP instance such that after n time steps
there is at most one possible nongoal state for the system. The
existence of such a state and the exact state that is reachable
depends upon the policy chosen, but regardless of the policy
there will be at most one. This fact, which we will prove in the
following lemma, allows us to consider the policy for these
QOMDPs as time dependent: the action the time-dependent
policy chooses at time step n is the action the state-dependent
policy chooses for the only nongoal state the system could
possibly reach at time n.

Lemma 3. Let S = {K1,...,KK} with Kraus matrices of
dimension d be the superoperator from an instance of QMOP
and let Q(S) = 〈S,�,A,ρ0,ρg〉 be the corresponding goal
QOMDP. Let π : S → A be any policy for Q(S). There is
always at most one state σn 	= ρg such that Pr(σn|π,n) > 0.

Proof. We proceed by induction on n.
Base case (n = 1). After one time step, the agent has taken

a single action, π (ρ0). Lemma 1 gives us that there is only
a single possible state besides ρg after the application of this
action.

Induction step. Let ρn be the state on the nth time step and
let ρn−1 be the state on the (n − 1)st time step. Assume that
there are only two possible choices for ρn−1: σn−1 and ρg . If
ρn−1 = ρg , then ρn = ρg regardless of π (ρg). If ρn−1 = σn−1,
the agent takes action π (σn−1) = Ain . By Lemma 1 there is
only a single possible state besides ρg after the application
of Ain . �

Thus, in a goal QOMDP created from a QMOP instance,
the state-dependent policy π can be considered a “sequence of
actions” by looking at the actions it will apply to each possible
nongoal state in order.

Definition 6 (Policy path). Let S = {K1,...,KK} with Kraus
matrices of dimension d be the superoperator from a QMOP
instance and let Q(S) = 〈S,�,A,ρ0,ρg〉 be the corresponding
goal QOMDP. For any policy π let σk be the nongoal state
with nonzero probability after k time steps of following π if it
exists. Otherwise let σk = ρg . Choose σ0 = ρ0. The sequence
{σk} is the policy path for policy π . By Lemma 3, this sequence
is unique so this is well defined.

We have one more technical problem we need to address
before we can look at how states evolve under policies in a
goal QOMDP. When we created the goal QOMDP, we added
a dimension to the Hilbert space so that we could have a
defined goal state. We need to show that we can consider
only the upper-left d × d matrices when looking at evolution
probabilities.

Lemma 4. Let S = {K1,...,KK} with Kraus matrices of
dimension d be the superoperator from a QMOP instance
and let Q(S) = 〈S,�,A,ρ0,ρg〉 be the corresponding goal
QOMDP. Let M be any (d + 1) × (d + 1) matrix and let d(M)
be the upper left d × d matrix in which the (d + 1)st column
and row of M have been removed. Then for any action Ai ∈ A

Ai
d+2MAi

d+2
† = Kid(M)Ki ⊕ 0.

Proof. We consider the multiplication in terms of elements:

(
Ai

d+2MAi
d+2

†)
pq

=
d+1∑
h,l=1

Ai
d+2ph

MhlA
i
d+2

†
lq

(33)

=
d∑

h,l=1

Ai
d+2ph

MhlA
i
d+2

∗
ql

, (34)

where we have used that the (d + 1)st column of Ai
d+2 is zero

to limit the sum. Additionally, if p = d + 1 or q = d + 1, the
sum is zero because the (d + 1)st row of Ai

d+2 is zero. Assume
that p < d + 1 and q < d + 1. Then

d∑
h,l=1

Ai
d+2ph

MhlA
i
d+2

∗
ql

=
d∑

h,l=1

KiphMhlKi
†
lq = (Kd(M)K†)ql . (35)

Thus

Ai
d+2MAi

d+2
† = Kid(M)K†

i ⊕ 0. (36)

�
We are now ready to show that any path that does not

terminate in the goal state in the goal QOMDP corresponds
to some possible path through the superoperator in the QMOP
instance.

Lemma 5. Let S = {K1,...,KK} with Kraus matrices of
dimension d be the superoperator from a QMOP instance
and let Q(S) = 〈S,�,A,ρ0,ρg〉 be the corresponding goal
QOMDP. Let π be any policy for Q and let {σk} be the policy
path for π . Assume π (σk−1) = Aik . Then

σk = Kik ...Ki1d(ρ0)K†
i1
...K

†
ik

⊕ 0

Tr(Kik ...Ki1d(ρ0)K†
i1
...K

†
ik

)
.

Proof. We proceed by induction on k.
Base case (k = 1). If k = 1 then either some A

i1
l with l <

d + 2 or A
i1
d+2 is applied to the system. In the first case, Lemma

1 gives us that the state becomes ρg . Therefore, σ1 is the result
of applying A

i1
d+2 so

σ1 = A
i1
d+2ρ0A

i1
d+2

†

Tr
(
A

i1
d+2ρ0A

i1
d+2

†) (37)

= Ki1d(ρ0)K†
i1

⊕ 0

Tr
(
Ki1d(ρ0)K†

i1
⊕ 0

) (38)

= Ki1d(ρ0)K†
i1

⊕ 0

Tr(Ki1d(ρ0)K†
i1

)
(39)

using Lemma 4 for Eq. (38) and the fact that Tr(A ⊕ 0) =
Tr(A) for Eq. (39).
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Induction step. On time step k, we have ρk−1 = σk−1 or
ρk−1 = ρg by Lemma 3. If ρk−1 = ρg then ρk = ρg by Lemma
2. Therefore, σk occurs only if ρk−1 = σk−1. In this case the
agent takes action Aik . If A

ik
j is applied to the system with

j < d + 2, ρk is the goal state by Lemma 1. Therefore, the
system transitions to σk exactly when ρk−1 = σk−1 and A

ik
d+2

is applied. By induction

σk−1 = Kik−1 ...Ki1d(ρ0)K†
i1
...K

†
ik−1

⊕ 0

Tr
(
Kik−1 ...Ki1d(ρ0)K†

1 ...K
†
ik−1

) . (40)

Note that

d(σk−1) = Kik−1 ...Ki1d(ρ0)K†
i1
...K

†
ik−1

Tr
(
Kik−1 ...Ki1d(ρ0)K†

1 ...K
†
ik−1

) . (41)

Then

σk = A
ik
d+2σk−1A

ik
d+2

Tr
(
A

ik
d+2σk−1A

ik
d+2

†) = Kikd(σk−1)K†
ik

⊕ 0

Tr
(
Kikd(σk−1)K†

ik

) (42)

using Lemma 4. Using Eq. (41) for d(σk−1), we have

Kikd(σk−1)K†
ik

= Kik ...Ki1d(ρ0)K†
i1
...K

†
ik

Tr
(
Kik−1 ...Ki1d(ρ0)K1...Kik−1

) , (43)

and

Tr
(
Kikd(σk−1)K†

ik

)

= Tr

(
Kik ...Ki1d(ρ0)K†

i1
...K

†
ik

Tr
(
Kik−1 ...Ki1d(ρ0)K1...Kik−1

)
)

(44)

= Tr
(
Kik ...Ki1d(ρ0)K†

i1
...K

†
ik

)

Tr
(
Kik−1 ...Ki1d(ρ0)K1...Kik−1

) , (45)

Substituting Eqs. (43) and (45) for the numerator and denom-
inator of Eq. (42), respectively, and canceling the traces, we
find

σk = Kik ...Ki1d(ρ0)Ki1 ...Kik ⊕ 0

Tr
(
Kik ...Ki1d(ρ0)K†

i1
...K

†
ik

) . (46)

�
Now that we know how the state evolves, we can show

that the probability that the system is not in the goal
state after taking actions {Ai1,...,Ain} should correspond to
the probability of observing measurements {i1,...,in} in the
original QMOP instance.

Lemma 6. Let S = {K1,...,KK} with Kraus matrices of
dimension d be the superoperator from a QMOP instance
and let Q(S) = 〈S,�,A,ρ0,ρg〉 be the corresponding goal
QOMDP. Let π be any policy and {σk} be the policy path
for π . Assume π (σj−1) = Aij . The probability that ρn is not
ρg is

Pr(ρn 	= ρg) = Tr
(
Kin ...Ki1d(ρ0)K†

i1
...K

†
in

)
. (47)

Proof. First consider the probability that ρn is not ρg given
that ρn−1 	= ρg . By Lemma 3, if ρn−1 	= ρg then ρn−1 = σn−1.
By Lemma 5,

σn−1 = Kin−1 ...Ki1d(ρ0)K†
i1
...K

†
in−1

⊕ 0

Tr
(
Kin−1 ...Ki1d(ρ0)K†

i1
...K

†
in−1

) , (48)

so

d(σn−1) = Kin−1 ...Ki1d(ρ0)K†
i1
...K

†
in−1

Tr
(
Kin−1 ...Ki1d(ρ0)K†

i1
...K

†
in−1

) . (49)

If A
in
j for j < d + 2 is applied then ρn will be ρg . Thus the

probability that ρn is not ρg is the probability that A
in
d+2 is

applied:

Pr(ρn 	= ρg|ρn−1 	= ρg)

= Tr
(
A

in
d+2σn−1A

in
d+2

†)
(50)

= Tr
(
Kind(σn−1)K†

in
⊕ 0

)
(51)

= Tr
(
Kind(σn−1)K†

in

)
(52)

= Tr
(
Kin ...Ki1d(ρ0)K†

i1
...K

†
in

)

Tr
(
Kin−1 ...Ki1d(ρ0)K†

i1
...K

†
ii−1

) . (53)

Note that Pr(ρn 	= ρg|ρn−1 = ρg) = 0 by Lemma 2. The total
probability that ρn is not ρg is

Pr(ρn 	= ρg)

= Pr(ρn 	= ρg ∩ ρn−1 	= ρg) + Pr(ρn 	= ρg ∩ ρn−1 = ρg)

= Pr(ρn 	= ρg|ρn−1 	= ρg) Pr(ρn−1 	= ρg)

+ Pr(ρn 	= ρg|ρn−1 = ρg) Pr(ρn−1 = ρg)

= Pr(ρn 	= ρg|ρn−1 	= ρg) Pr(ρn−1 	= ρg|ρn−2 	= ρg)

×... Pr(ρ1 	= ρg|ρ0 	= ρg)

=
n∏

k=1

Tr
(
Kik ...Ki1d(ρ0)K†

i1
...K

†
ik

)

Tr
(
Kik−1 ...Ki1d(ρ0)K†

i1
...K

†
ik−1

)

= Tr
(
Kin ...Ki1d(ρ0)K†

i1
...K

†
in

)
.

�
Since the probability that the agent observes the sequence

of measurements {i1,...,in} is the same as the probability that
the sequence of actions {Ai1 ,...,Ain} does not reach the goal
state, we can solve QMOP by solving an instance of goal-
state reachability for a QOMDP. Since QMOP is known to
be undecidable, this proves that goal-state reachability is also
undecidable for QOMDPs.

Theorem 4 (Undecidability of goal-state reachability for
QOMDPs). The goal-state reachability problem for QOMDPs
is undecidable.

Proof. As noted above, it suffices to show that we can reduce
the quantum measurement occurrence problem (QMOP) to
goal-state reachability for QOMDPs.

Let S = {K1,...,KK} be the superoperator from an instance
of QMOP with Kraus matrices of dimension d and let
Q(S) = 〈S,�,A,ρ0,ρg〉 be the corresponding goal QOMDP.
By Theorem 3, Q(S) is a goal QOMDP. We show that there is
a policy that can reach ρg from ρ0 with probability 1 in a finite
number of steps if and only if there is some finite sequence
{i1,...,in} such that K

†
i1
...K

†
in
Kin ...Ki1 = 0.

First assume there is some sequence {i1,...,in} such that
K

†
i1
...K

†
in
Kin ...Ki1 = 0. Consider the time-dependent policy

that takes action Aik in after k time steps no matter the state.
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By Lemma 6, the probability that this policy is not in the goal
state after n time steps is

Pr(ρn 	= ρg) = Tr
(
Kin ...Ki1d(ρ0)K†

i1
...K

†
in

)
(54)

= Tr
(
K

†
i1
...K

†
in
Kin ...Ki1d(ρ0)

)
(55)

= Tr(0) (56)

= 0 (57)

using that Tr(AB) = Tr(BA) for all matrices A and B.
Therefore this policy reaches the goal state with probability
1 after n time steps. As we have said, time cannot help goal
decision processes since nothing changes with time. Therefore,
there is also a purely state-dependent policy (namely, the one
that assigns Aik to σk where σk is the kth state reached when
following π ) that can reach the goal state with probability 1.

Now assume there is some policy π that reaches the goal
state with probability 1 after n time steps. Let {σk} be the policy
path and assume π (σk−1) = Aik . By Lemma 6, the probability
that the state at time step n is not ρg is

Pr(ρn 	= ρg|π ) = Tr
(
Ki1 ...Kind(ρ0)K†

i1
...K

†
in

)
(58)

= Tr
(
K

†
i1
...K

†
in
Kin ...Kii d(ρ0)

)
. (59)

Since π reaches the goal state with probability 1 after n

time steps, we must have that the above quantity is zero. By
construction d(ρ0) is full rank, so for the trace to be zero we
must have

K
†
i1
...K

†
in
Kin ...Kii = 0. (60)

Thus we can reduce the quantum measurement occurrence
problem to the goal-state reachability problem for QOMDPs,
and the goal-state reachability problem is undecidable for
QOMDPs. �

B. Decidability of goal-state reachability for POMDPs

The goal-state reachability problem for POMDPs is decid-
able. This is a known result [15], but we reproduce the proof
here, because it is interesting to see the differences between
classical and quantum probability that lead to decidability for
the former.

At a high level, the goal-state reachability problem is
decidable for POMDPs because stochastic transition matrices
have strictly non-negative elements. Since we are interested
in a probability 1 event, we can treat probabilities as binary:
either positive or zero. This gives us a belief space with 2|S|
states rather than a continuous one, and we can show that
the goal-state reachability problem is decidable for finite state
spaces.

Definition 7 (Binary probability MDP). Given a
goal POMDP P = 〈S,A,�,T ,O,�b0,g〉, let M(P ) =
〈B,A,τ,�b0,�bg〉 be the corresponding goal belief MDP with
τ ao defined according to Eq. (4). Throughout this section, we
assume without loss of generality that g is the |S|th state in
P so (�bg)i = δi|S|. The binary probability MDP is an MDP
D(P ) = 〈Z|S|

{0,1},A,Z,�z0,�zg〉 where (�zg)i = δi|S| and (�z0)i = 1

if and only if (�b0)i > 0. The transition function Z for action
a nondeterministically applies the function Zao to �z. For

�z ∈ Z|S|
{0,1}, the result of Zao acting on �z is

Zao(�z)i =
{

1 if (τ ao�z)i > 0
0 if (τ ao�z)i = 0. (61)

Let

P o
a (�z) =

{
1 if τ ao�z 	= �0
0 else

. (62)

If action a is taken in state �z, Zao is applied with probability

Pr(Zao|a,�z) =
{

1∑
o′∈� P o′

a (�z)
if P a

o (�z) > 0

0 else
. (63)

Note that the vector of all zeros is unreachable, so the state
space is really of size 2|S| − 1.

We first show that we can keep track of whether each entry
in the belief state is zero or not just using the binary probability
MDP. This lemma uses the fact that classical probability
involves non-negative numbers only.

Lemma 7. Let P = 〈S,A,�,T ,O,�b0,g〉 be a goal-state
POMDP and let D(P ) = 〈Z|S|

{0,1},A,Z,�z0,�zg〉 be the associated

binary probability MDP. Assume we have �z and �b where �zi = 0
if and only if �bi = 0. Let

�zao = Zao(�z)

and

�bao = τ ao �b
|τ ao �b|1

.

Then �zao
i = 0 if and only if �bao

i = 0. Moreover, P o
a (�z) = 0 if

and only if |τ ao �b|1 = 0.
Proof. Using the definition of Zao from Eq. (61),

�zao
i = Zao(�z)i =

{
1 if (τ ao�z)i > 0
0 else . (64)

Let N = |τ ao �b|1. Then

�bao
i = 1

N

|S|∑
j=1

τ ao
ij

�bj . (65)

First assume �bao
i = 0. Since τ ao

ij � 0 and �bj � 0, we must
have that every term in the sum in Eq. (65) is zero individually
[16]. Therefore, for all j , either τ ao

ij = 0 or �bj = 0. If �bj = 0
then �zj = 0 so τ ao

ij �zj = 0. If τ ao
ij = 0 then clearly τ ao

ij �zj = 0.
Therefore

0 =
|S|∑
j=1

τ ao
ij �zj = (τ ao�z)i = �zao

i . (66)

Now assume �bao
i > 0. Then there must be at least one term

in the sum in Eq. (65) with τ ao
ik

�bk > 0. In this case, we must
have both τ ao

ik > 0 and �bk > 0. If �bk > 0 then �zk > 0. Therefore

�zao
i = (τ ao�z)i =

|S|∑
j=1

τ ao
ij �zj =

∑
j 	=k

τ ao
ij �zj + τ ao

ik �zk > 0. (67)

Since �bao
i � 0 and �zao

i > 0, we have shown that �zao
i = 0 exactly

when �bao
i = 0.
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Now assume |τ ao �b|1 = 0. This is true only if τ ao
ij

�bj = 0 for
all i and j . Thus by the same reasoning as above τ ao

ij �zj = 0

for all i and j so τ ao�z = �0 and P o
a (�z) = 0.

Now let |τ ao �b|1 > 0. Then there is some k with τ ao
ik �zk >

0 by the same reasoning as above. Therefore τ ao�z 	= �0 so
P o

a (�z) = 1. �
We now show that the agent can reach the goal in the binary

probability MDP with probability 1 if and only if it could reach
the goal in the original POMDP with probability 1. We do each
direction in a separate lemma.

Lemma 8. Let P = 〈S,A,�,T ,O,�b0,g〉 be a goal POMDP
and let D(P ) = 〈Z|S|

{0,1},A,Z,�z0,�zg〉 be the corresponding
binary probability MDP. If there is a policy πD that reaches the
goal with probability 1 in a finite number of steps in D(M) then
there is a policy that reaches the goal in a finite number of steps
with probability 1 in the belief MDP M(P ) = 〈B,A,τ,�b0,�bg〉.

Proof. For �b ∈ B define z(�b) to be the single state �z ∈ Zn
{0,1}

with �zi = 0 if and only if �bi = 0. Let π be the policy for M(P )
with π (�b) = πD(z(�b)). Let �b0,�b1,...,�bn be some sequence of
beliefs of length n + 1 that can be created by following policy
π with observations {oi1 ,...,oin}. Then

�bk+1 = τπ(�bk )oik �bk∣∣τπ(�bk )oik �bk
∣∣
1

= τπD(z(�bk ))oik �bk∣∣τπD (z(�bk ))oik �bk
∣∣
1

. (68)

Define ak = πD(z(�bk)). Consider the set of states �z0,�z1,...,�zn

with �zk+1 = ZπD (�zk )oik (�zk). We show by induction that �zk =
z(�bk).

Base case (k = 0): We have �z0 = z(�b0) by definition.
Induction step: Assume that �zk = z(�bk). Then

�zk+1 = ZπD (�zk)oik (�zk) = ZπD (z(�bk ))oik (�zk) = Zakoik (�zk) (69)

by induction. Now

�bk+1 = τ aik
oik �bk

|τ aik
oik �bk|1

. (70)

Therefore �zk+1 = z(�bk+1) by Lemma 7.
We must also show that the sequence �z0,�z1,...,�zn has

nonzero probability of occurring while following πD . We must
have that P

oik
ak

> 0 for all k. We know that �b0,�b1,...,�bn can be
created by following π so the probability of �b0,�b1,...,�bn is
greater than zero. Therefore, we must have

Pr(o|ak,�bk) = |τ akoik �bk|1 > 0 (71)

for all k, so Lemma 7 gives us that P
oik
ak

> 0 for all k. Thus
{�z0,...,�zn} is a possible sequence of states seen while following
policy πD in the MDP D(P ). Since πD reaches the goal
state with probability 1 after n time steps, we have �zn = �zg .
Therefore, since �zn = z(�bn), we must have �bn

i = 0 for all
i 	= |S|, and only �bn

|S| > 0. Since |�bn|1 = 1, we have �bn
|S| = 1.

Thus �bn = �bg and π also reaches the goal state with nonzero
probability after n time steps. �

Lemma 9. Let P = 〈S,A,�,T ,O,�b0,g〉 be a goal POMDP
and let D(P ) = 〈Z|S|

{0,1},A,Z,�z0,�zg〉 be the corresponding
binary probability MDP. If there is a policy π that reaches
the goal with probability 1 in a finite number of steps in the

FIG. 3. A policy in an MDP creates a tree. Here, the agent
takes action A1 in the starting state, which can transition the world
state nondeterministically to three other possible states. The policy
specifies an action of A3 for the state on the left, A1 for the state in
the middle, and A6 for the state on the right. Taking these actions
transitions these states nondeterministically. This tree eventually
encapsulates all states that can be reached with nonzero probability
from the starting state under a particular policy. The goal can be
reached with probability 1 if there is some depth below which every
node is the goal state.

belief state MDP B(M) = 〈B,A,τ,�b0,�bg〉 then there is a policy
that reaches the goal in a finite number of steps with probability
1 in D(P ).

Proof. MDP policies create trees of states and action choices
as shown in Fig. 3. Consider the tree πT formed by π . Nodes
at depth n or greater are guaranteed to be �bg . For �z ∈ Z|S|

{0,1},
we let b(�z) be the deepest state in πT for which �bi = 0 if and
only if �zi = 0. If there are multiple states for which this is true
at the same level, we choose the leftmost one. If no such state
is found in πT , we set b(�z) = �bg . We define a policy πD for
D(P ) by πD(�z) = π (b(�z)). Let �z0,�z1,...,�zn be any sequence of
states that can be created by following policy πD in D(P ) for
n time steps. Define ak = πD(�zk) and define ik as the smallest
number such that �zk+1 = Zakoik (�zk) (some such Zakoik exists
since �z0,...,�zn can be created by following πD). Now consider
b(�zk). We show by induction that this state is at least at level k

of πT .
Base case (k = 0). We know that �b0

i = 0 if and only if
�z0
i = 0 so b(�z0) is at least at level zero of πT .

Induction step. Assume that �zk is at least at level k of πT .
Then

�zk+1 = Zakoik (�zk). (72)

Therefore by Lemma 7

�b′ = τ akoik b(�zk)

|τ akoik b(�zk)|1 (73)

has entry i zero if and only if �zk+1
i = 0. Now P ak

ok
(�zk) 	= 0

only if |τ akoik b(�zk)|1 	= 0 also by Lemma 7. Since �z1,...,�zn

is a branch of πD , we must have P ak
ok

> 0. Therefore

|τ akoik b(�zk)|1 > 0. Now ak = π (b(�zk)) so �b′ is a child of b(�zk)
in πT . Since, by induction, the level of b(�zk) is at least k, the
level of �b′ is at least k + 1. Now �b = b(�zk+1) is the deepest
state in the tree with �bi = 0 if and only if �zk+1

i = 0 so the
level of b(�zk+1) is at least the level of �b′. Therefore the level
of b(�zk+1) is at least k + 1.

Thus the level of b(�zn) is at least n. We have b(�zn) = �bg

since π reaches the goal state in at most n steps. Since b(�zn)i =
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δi|S|, we have that �zn = �zg . Therefore πD is a policy for D(P )
that reaches the goal with probability 1 in at most n steps. �

We have now reduced goal-state reachability for POMDPs
to goal-state reachability for finite state MDPs. We briefly
show that the latter is decidable.

Theorem 5 (Decidability of goal-state reachability for
POMDPs). The goal-state reachability problem for POMDPs
is decidable.

Proof. We showed in Lemmas 8 and 9 that goal-state reach-
ability for POMDPs can be reduced to goal-state reachability
for a finite state MDP. Therefore, there are only O(|A||S|)
possible policies (remember that for goal decision processes,
we need only consider time-independent policies). Given a
policy π , we can evaluate it by creating a directed graph G

in which we connect state si to state sj if τ (si,π (si),sj ) > 0.
The policy π reaches the goal from the starting state in a finite
number of steps with probability 1 if the goal is reachable from
the starting state in G and no cycle is reachable. The number
of nodes in the graph is at most the number of states in the
MDP so we can clearly decide this problem. Thus goal-state
reachability is decidable for POMDPs. �

C. Other computability separations

Although we looked only at goal-state reachability here,
we conjecture that there are other similar problems that

are undecidable for QOMDPs despite being decidable for
POMDPs.

For instance, the zero-reward policy problem is a likely
candidate for computability separation. In this problem, we
still have a goal QOMDP(POMDP) but states other than the
goal state are allowed to have zero reward. The problem is to
decide whether the path to the goal state is zero reward. This
is known to be decidable for POMDPs, but seems unlikely to
be so for QOMDPs.

V. FUTURE WORK

We were only able to give an interesting computability
result for a problem about goal decision processes, which
ignore the reward function. It would be of great interest to
prove a result about QOMDPs that made nontrivial use of the
reward function.

We also proved computability results but did not consider
algorithms for solving any of the problems we posed beyond a
very simple PSPACE algorithm for policy existence. Are there
quantum analogs of POMDP algorithms or even MDP ones?
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