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Abstract

When weak identification is a concern researchers frequently calculate confidence

sets in two steps, first assessing the strength of identification and then, on the basis

of this initial assessment, deciding whether to use an identification-robust confidence

set. Unfortunately, two-step procedures of this sort can generate highly misleading

confidence sets, and we demonstrate that two-step confidence sets based on the first

stage F-statistic can have extremely poor coverage in linear instrumental variables

models with heteroskedastic errors. To remedy this issue, we introduce a simple ap-

proach to detecting weak identification and constructing two-step confidence sets which

we show controls coverage distortions under weak identification in general nonlinear

GMM models, while also indicating strong identification with probability tending to

one if the model is well-identified. Applying our approach to linear IV we show that it

is competitive with approaches based on the first-stage F-statistic under homoskedas-

ticity but performs far better under heteroskedasticity.
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1 Introduction

In contexts where weak identification is a concern, empirical researchers in economics fre-

quently begin by calculating some statistic intended to measure identification strength. If

this preliminary step indicates that identification is not “too” weak, researchers then proceed

as usual and calculate non-robust confidence sets, while if weak identification seems to be

an issue researchers may calculate identification-robust confidence sets, look for a different

specification, or simply decline to report results. Pretests based on the first stage F-statistic

in linear instrumental variables (IV) models are the most common example of this practice.

Specifically, researchers often calculate the F-statistic for the hypothesis that the model is

unidentified and report two-stage least squares confidence sets only if this statistic exceeds

the Staiger and Stock (1997) “rule of thumb” cutoff of 10.

We can think of these procedures as constructing a confidence set in two steps, where

the first step attempts to asses identification strength and the second step chooses what

confidence set to report based on this initial assessment. Unfortunately, unless constructed

carefully two-step confidence sets of this sort can exhibit large coverage distortions, in the

sense that they may cover the true parameter value with probability substantially smaller

than we intend. In this paper we present two main results. First, we show numerically that

pretesting procedures based on the first stage F-statistic fail to control coverage distortions

in linear IV with heteroskedastic errors, even when we use heteroskedasticity-robust forms of

the F-statistic. Second, we propose a novel approach to detecting weak identification which

yields two-step confidence sets with bounded coverage distortions under mild conditions. Our

approach is computationally straightforward and yields the usual, non-robust confidence sets

with probability tending to one under strong identification. Moreover, our results apply to

general non-linear GMM models, and so allows us to reliably assess identification strength in

a wide range of settings. Simulation results show that our approach performs well in linear

IV.

To formally describe two-step confidence sets, let us denote the first-step diagnostic

for identification strength, which following D. Andrews and Cheng (2012) we will call an

identification category selection (ICS) statistic, by φICS. We assume that φICS ∈ {0, 1} where
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φICS = 0 is interpreted as evidence for strong identification while φICS = 1 is interpreted

as evidence for weak identification. The rule of thumb for the first stage F-statistic, for

example, takes φICS to be an indicator function for F < 10. In the second step we use a

non-robust confidence set if φICS = 0 and a robust confidence set if φICS = 1. Denoting the

robust and non-robust confidence sets by CSR and CSNR respectively, this results in the

two-step confidence set CS2S

CS2S =


CSNR if φICS = 0

CSR if φICS = 1
. (1)

As noted above, rather than calculating a robust confidence set CSR when φICS = 1, in

practice many researchers instead search for a new specification or simply do not report

their results. These practices can lead to extremely poor properties for reported confidence

sets, so here we focus on “complete” procedures which report a robust confidence set if

φICS = 1.

Since the intent of researchers using two-step confidence sets is to mitigate inferential

problems arising from weak identification, we can ask how successful a given procedure is in

achieving this goal. The coverage of a two-step confidence set CS2S can be expressed as

Pr {β0 ∈ CS2S} = Pr {β0 ∈ CSNR|φICS = 0} · Pr {φICS = 0}

+Pr {β0 ∈ CSR|φICS = 1} · Pr {φICS = 1} .

This coverage depends on three terms: the probability that our ICS statistic indicates weak

identification, Pr {φICS = 1}, the coverage of our non-robust confidence set conditional on

φICS = 0, Pr {β0 ∈ CSNR|φICS = 0}, and the coverage of our robust confidence set con-

ditional on φICS = 1, Pr {β0 ∈ CSR|φICS = 1}. If we had an ICS statistic which could

perfectly detect weak identification, in the sense that Pr {φICS = 1} = 1 whenever the cov-

erage of CSNR fell below 1 − α, then if CSR had coverage at least 1 − α we can see that

CS2S would have coverage at least 1−α as well. In practice, however, we must estimate the

strength of identification from the data, so our ICS procedures will be imperfect and must

be chosen carefully to ensure reasonable performance for two-step procedures. Moreover,
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absent a perfect ICS procedure we will typically pay a price for pretesting, often in the form

of lower coverage for CS2S than for CSR at some parameter values. Thus our focus will not

be on whether a nominal level 1− α confidence set has exactly correct coverage but rather

on the extent to which it controls coverage distortions in the sense of having coverage at

least 1− α− γ for some known γ.

As already noted pretests based on the first-stage F-statistic in linear IV are the most

commonly used form of ICS procedure. The well-known Staiger and Stock (1997) rule of

thumb for linear IV models with a single endogenous regressor declares instruments weak if

the first stage F-statistic falls below 10. As discussed by Stock, Wright, and Yogo (2002) this

cutoff controls the bias of two stage least squares in linear IV with homoskedastic errors,

but unfortunately gives no assurance of controlling coverage for two-step confidence sets.

Indeed, as highlighted in the next section two-step confidence sets which take φICS to be an

indicator for the first-stage F-statistic falling below 10 exhibit large coverage distortions in

some models. Stock and Yogo (2005) (henceforth SY) show that it is possible to construct

cutoffs for the first stage F-statistic which control coverage distortions for two-step confidence

sets, but these cutoffs will depend on both the estimator used and the number of instruments

and, moreover, are derived under the assumption that the data are homoskedastic.

Our first main result, demonstrated numerically in the next section, is that if we allow

heteroskedasticity the cutoffs developed by SY no longer control coverage distortions for

two-step confidence sets, even when we use heteroskedasticity-robust forms of the F-statistic.

Hence, even in the well-studied case of linear IV, commonly-used pretesting procedures fail

to control coverage distortions for two-step confidence sets. This is to our knowledge the first

demonstration that pretests based on the heteroskedasticity-robust first-stage F-statistic fail

to control coverage in heteroskedastic linear IV: while recent work by Bun and de Haan

(2010) and Olea and Pflueger (2013) has documented that the first stage F-statistic does

not give a reliable guide to the bias of 2SLS in linear IV with non-homoskedastic errors,

and Olea and Pflueger (2013) provide an alternative approach to gauge bias in IV models

with general covariance structures, neither of these papers addresses questions of testing or

confidence set construction.

Our second main result is a procedure for calculating two-step confidence sets in general
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GMM models which controls coverage under mild assumptions. These confidence sets are

based on a novel ICS statistic φICS which has the property that φICS →p 0 under conventional

strong-identification asymptotics. Thus under strong identification two-step confidence sets

based on our approach coincide with conventional non-robust confidence sets, while under

weak identification our two-step confidence sets will control coverage up to an arbitrarily

small user-specified maximal distortion.

Alternative Pretests for Weak Identification In addition to tests based on the first

stage F-statistic in linear IV, a number of other pretests for identification have been proposed

for both linear IV models and more general contexts. One group of procedures, including

those of Wright (2003) and Arellano, Hansen, and Sentana (2012), resembles the first stage

F-statistic in testing the null hypothesis of identification failure. Since these procedures test

the null of underidentification rather than weak identification, if we use them to construct

two-step confidence sets their power may be too high. Specifically, they may frequently

reject underidentification, and so set φICS = 0, even in contexts where non-robust confidence

sets are highly unreliable. SY show that one can overcome this problem in linear IV with

homoskedastic errors by increasing the critical values for the first stage F-statistic by an

appropriate margin but whether a similar adjustment is possible in general models, let alone

what an appropriate critical value might be, remains an open question.

Another group of procedures, including those of Hahn and Hausman (2002), Inoue and

Rossi (2010), and Wright (2010), takes the opposite approach and tests the null hypothesis

of strong identification. For these pretests the concern is that their power may be too low

and thus that they may fail to reject strong identification even when non-robust tests are

unreliable. In particular, we are unaware of any results guaranteeing that the power of these

tests suffices to control coverage distortions for two-step confidence sets under weak iden-

tification. To the contrary, Hausman, Stock, and Yogo (2005) document that conventional

non-robust confidence sets may exhibit large distortions even when the Hahn-Hausman test

has only a low probability of detecting weak instruments, implying that if we base φICS on

the Hahn-Hausman test for weak instruments the resulting two-step confidence set will in

some cases exhibit large coverage distortions.
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Finally, there are some diagnostics for identification strength proposed in the literature

that, together with appropriately chosen robust and non-robust confidence sets, yield two-

step confidence sets that control coverage in particular contexts. Specifically, one can view

the critical value selection procedures of D. Andrews and Cheng (2012), the pretest-based

procedures of Andrews and Mikusheva (2012), and the “switching” procedures of Elliott

Mueller and Watson (2012) as particular two-step confidence set procedures where the ICS

statistics, together with the robust and non-robust confidence sets, are chosen in such a way

that the procedure as a whole controls coverage. Unfortunately, however, these procedures

are either limited in their range of application or prohibitively computationally demanding

in many cases of economic interest.

In the next section we show numerically that two-step confidence sets based on the first

stage F-statistic and known critical values fail to control coverage distortions for two-step

confidence sets. Section 3 introduces a robust two-step confidence set and give some results

on its properties. This section focuses on the definition, intuition, and implementation of

our robust procedures while formal derivation of their asymptotic properties under weak and

strong identification is deferred to Sections 5 and 6. Section 4 demonstrates that our approach

controls coverage distortions in linear IV with heteroskedasticity and is competitive with F-

statistic-based approaches under homoskedasticity. Section 5 shows that our approach can be

used to construct robust two-step confidence sets whenever an appropriate robust confidence

set is available, and Section 6 shows that our approach is valid in general nonlinear GMM

models.

2 The Trouble with the First Stage F-Statistic

Pretests based on the first stage F-statistic are ubiquitous in empirical practice. Unfortu-

nately, two-step confidence sets based on these procedures suffer from a number of difficulties.

First, as noted in Stock, Wright, and Yogo (2002) the commonly-used rule of thumb cutoff of

10 does not correspond to any fixed level of coverage control for two-step confidence sets: to

bound coverage distortions, one must instead use the cutoffs developed in SY which depend

on the number of instruments and the estimator used to construct the non-robust confidence
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set CSNR. More worryingly, even the cutoffs derived by SY depend on the assumption of

homoskedasticity and have not been shown work outside of the homoskedastic case. In-

deed, in this section we demonstrate numerically that two-step confidence sets based on the

first stage F-statistic with SY’s cutoffs fail to control coverage distortions in linear IV with

heteroskedastic errors.

To frame our discussion, we focus on the linear IV model with a single endogenous

regressor, where we assume that either there are no additional exogenous regressors or that

any such regressors have already been partialled out. The model, written in reduced form,

is
Y = Zπ0β0 + V1

X = Zπ0 + V2

for Z a T × k matrix of instruments, X a T × 1 vector of endogenous regressors, Y a T × 1

vector of outcome variables, and V1 and V2 both T × 1 vectors of residuals, where we assume

that E [V1,tZt] = E [V2,tZt] = 0 for Zt the transpose of row t of Z.

We are interested in constructing confidence sets for the scalar coefficient β, treating

the k × 1 vector of first-stage parameters π as nuisance parameters. A common nominal

level 1 − α confidence set in empirical practice is the two stage least squares (2SLS) Wald

confidence set

CS2SLS =
[
β̂2SLS − cα/2

σ̂2SLS√
T
, β̂2SLS + cα/2

σ̂2SLS√
T

]
(2)

where cα/2 is the 1 − α/2 quantile of a standard normal distribution, β̂2SLS is the 2SLS

estimator for β0, and σ̂2SLS is an estimator of the standard deviation of
√
T β̂2SLS. We can

likewise construct Wald confidence sets based on other estimators β̂, for example limited

information maximum likelihood (LIML) or, in the heteroskedastic case, efficient two-step

GMM (2SGMM) or continuous updating GMM (CUGMM). As is now well-known, however,

confidence sets based on all these estimators may exhibit large coverage distortions when π

is small.

The common approach to assessing whether π is “too” small is based on the first-stage

F-statistic for testing the hypothesis that π = 0. If we let π̂ be the OLS estimate of π0,
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π̂ = (Z ′Z)−1 Z ′X, the first stage F-statistic is

F = T − k
k

π̂′Σ̂−1
π̂ π̂

for Σ̂π an estimator for the variance of
√
T (π̂ − π0). The conventional first-stage F-statistic,

which assumes the errors are homoskedastic, uses

Σ̂π̂ =
 1
T − k

V̂ ′2 V̂2 −
(

1
T − k

∑
t

V̂2,t

)2
 1
T − k

Z ′Z

where V̂2 = Y − Zπ̂. Unfortunately, this statistic relies critically on the assumption of

homoskedasticity, and may behave erratically if V ar (V2,t|Zt) depends on Zt. By contrast the

heteroskedasticity-robust F-statistic, based on the White (1980) covariance matrix estimator,

uses

Σ̂π̂ = 1
T

∑
V̂ 2

2,tZtZt −
(

1
T

∑
t

V̂2,tZt

)(
1
T

∑
t

V̂2,tZt

)′
.

The robust and non-robust F-statistics are asymptotically equivalent and distributed 1
k
χ2
k

asymptotically when the data are homoskedastic, but under heteroskedasticity the robust

F-statistic continues to have a scaled χ2 distribution asymptotically while the non-robust F-

statistic does not. One can likewise define serial correlation and clustering-robust F-statistics

by using appropriate robust estimators Σ̂π̂.1 Unsurprisingly, two-step procedures based on

the non-robust first stage F-statistic are unreliable when used with heteroskedastic data, so

going forward we focus on the heteroskedasticity-robust F-statistic.

To construct a two-step confidence set as in (1) we need to define an appropriate robust

confidence set. Here we consider confidence sets based on the S statistic of Stock and Wright

(2000) (a generalization of (1949) Anderson-Rubin statistic),

S(β) = TgT (β)′ Σ̂g (β)−1 gT (β) (3)

where gT (β) = 1
T

∑
Zt (Yt − βXt) and Σ̂g (β) is the usual heteroskedasticity-robust variance

1Since we consider the case with a single endogenous regressor, these robust F-statistic all coincide with
the Kleibergen-Paap (2006) Wald statistic for testing that π = 0.
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estimator for
√
TgT (β),

Σ̂g (β) = 1
T

∑
t

(Yt −Xtβ)2 ZtZt − gT (β) gT (β)′ . (4)

The S statistic evaluated at the true parameter value will be approximately χ2
k distributed

in large samples regardless of identification strength, so the level 1− α confidence set for β

based on this statistic is

CSS =
{
β : S (β) < χ2

k,1−α

}
for χ2

k,1−α the 1 − α quantile of a χ2
k distribution. Thus, the two-step confidence set based

on the robust F-statistic F , cutoff c, Wald confidence set CSW , and S confidence set CSS,

will be

CS2S =


CSW if F ≥ c

CSS if F < c

. (5)

In the remainder of this section, we examine the coverage of these two-step confidence

sets, Pr {β0 ∈ CS2S}, for different Wald confidence sets and cutoffs. We first highlight

that the conventional rule of thumb cutoff does not control coverage for two-step confidence

sets even in homoskedastic models, while the SY cutoffs do. We then provide what is, to

our knowledge, the first demonstration in the literature that the SY cutoffs fail to control

coverage distortions under heteroskedasticity, even when using the heteroskedasticity-robust

F-statistic.

For our simulations we set β0 = 0 and assume that Zt is a collection of dummy variables

for different values of a categorical instrument Z̃t ∈ {1, ..., k} . We take k ∈ {5, 10, 20} and

for each k consider two calibrations: one with a moderate degree of endogeneity (denoted

by M) and the other with a very high degree of endogeneity (denoted by H). Our main sim-

ulation designs feature a substantial amount of heteroskedasticity, but we first examine the

performance of two-step procedures under homoskedasticity. In each simulation calibration

we consider a wide range of values for identification strength (as measured ‖π‖) ranging from

non-identification to very strong identification, and report the smallest coverage probability

for each confidence set over these different values, min‖π‖ Pr‖π‖ {β0 ∈ CS}. All simulations
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are based on samples of 10,000 observations. For further details on our simulation design

see the Appendix.

2.1 The First Stage F-Statistic Under Homoskedasticity

We study the performance of nominal level 95% F-statistic-based two-step confidence sets

(5) using different cutoffs c and different Wald confidence sets CSW under homoskedasticity.

We begin with the usual LIML and 2SLS confidence sets, which we can view as two-step

confidence sets with c = 0. Next, we consider rule of thumb confidence sets which take

c = 10. Finally we use cutoffs based on critical values from SY, specifically c = 26.87,

c = 38.54, and c = 62.30 for k = 5, k = 10, and k = 20 respectively when we take CSW
to be the 2SLS confidence set, and c = 5.44, c = 3.68, and c = 3.21 when we take CSW to

be the LIML confidence set.2 The results of SY imply that in models with homoskedastic

errors this choice of cutoffs ensures coverage distortions no larger than 10%, and so coverage

no less that 85%, for two-step confidence sets with nominal coverage 95%.

The results of this exercise are reported in Table 1. As these make clear, the rule of thumb

cutoff of 10 does not ensure any fixed level of coverage control for two-step confidence sets:

while 2SLS confidence sets based on the rule of thumb have coverage distortions less than

10% in the M calibrations, they exhibit more substantial distortions in the H calibrations,

and the degree of distortion is increasing in the number of instruments k. In contrast, two-

step confidence sets based on the cutoffs of SY have coverage distortions not exceeding 10%

(and thus coverage not less than 85%) in all cases, as expected.

2.2 The First Stage F-Statistic Under Heteroskedasticity

As already noted, coverage control for two-step procedures based on the first stage F-statistic

with cutoffs from SY relies critically on the assumption of homoskedasticity. To illustrate

this fact we repeat the same simulation exercise as above but now take the errors to be

heteroskedastic, so V ar ((V1,t, V2,t) |Zt) depends on Zt (see appendix for details). Since 2SLS

and LIML are inefficient under heteroskedasticity, in addition to Wald confidence sets based
2We obtain these cutoffs by taking φICS = 1 when the 5% F-test of SY cannot reject the hypothesis that

the nominal 5% Wald test of interest has true size exceeding 10%.
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Medium Endogeneity (M) High Endogeneity (H)
Confidence Set k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

LIML CS 57.7% 38.2% 25.2% 11.1% 1.9% 0%
2SLS CS 58.8% 40.4% 42.7% 0% 0% 0%

Rule of thumb LIML CS 92.9% 93.1% 93.5% 90.4% 91.5% 91.4%
Rule of thumb 2SLS CS 90.4% 89.1% 89.2% 82% 76.1% 64.2%

SY LIML CS 91.6% 90.6% 89.4% 88.4% 89.2% 89.7%
SY 2SLS CS 92.6% 92.4% 93.6% 87.5% 87.7% 87.7%

Table 1: Minimal coverage for nominal level 95% confidence sets in homoskedastic IV simulations with
10,000 observations, based on 10,000 simulations. LIML CS and 2SLS CS are the usual Wald confidence
sets based on LIML and 2SLS, while the rule of thumb confidence sets are two-step confidence sets (5) using
the rule-of-thumb cutoff c = 10 and the robust S (or Anderson-Rubin) confidence set CSS . Finally, the SY
confidence sets use the SY cutoffs discussed in the text, the robust S (or Anderson-Rubin) confidence set
CSS , and have asymptotic coverage at least 85% in models with homoskedastic errors.

on these estimators we also consider confidence sets based on CUGMM and 2SGMM. When

considering two-step confidence sets based on SY we use LIML cutoffs for CUGMM and

2SLS cutoffs for 2SGMM.3

The minimal coverage for all confidence sets considered is reported in Table 2. As in

the homoskedastic case neither Wald confidence sets nor two-step confidence sets based on

the rule of thumb cutoffs control coverage distortions. Unlike in the homoskedastic case,

however, under heteroskedasticity two-step confidence sets using the SY cutoffs also fail to

control coverage distortions, regardless of whether we use efficient or inefficient estimators.

More generally, we see that in many cases heteroskedasticity gives rise to far more pronounced

coverage shortfalls than we observed under homoskedasticity.

The central problem with two-step confidence sets based on the SY cutoffs is that under

heteroskedasticity the first stage F-statistic is no longer a reliable indicator of identification

strength, at least when used with conventional cutoffs. While this point has previously been

highlighted with regard to 2SLS bias by Bun and de Haan (2010) and Olea and Pflueger

(2013), the issue appears especially stark when considering coverage. In Figure 1 we plot the

coverage of Wald confidence sets against the mean of the first-stage F-statistic for the model

with ten instruments and the medium endogeneity (M) calibration as we vary ‖π‖, noting

that E [F ] is a strictly increasing function of ‖π‖. As this figure makes clear, even when the
3We also considered CUGMM and 2SGMM in the homoskedastic case but, unsurprisingly given the large

sample size, their behavior was indistinguishable from that of LIML and 2SLS respectively.
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Medium Endogeneity (M) High Endogeneity (H)
Confidence Set k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

LIML CS 57.2% 41.3% 27.2% 6.5% 9.5% 1%
2SLS CS 38.3% 27.4% 37.2% 0% 0% 0%

CUGMM CS 28.2% 13% 31.7% 4.8% 0.5% 0%
2SGMM CS 20.6% 9.3% 30.2% 0% 0% 0%

Rule of thumb LIML CS 63.2% 44.8% 31.9% 21.8% 9.5% 1%
Rule of thumb 2SLS CS 55.1% 30.8% 41.8% 0% 0% 0%

Rule of thumb CUGMM CS 45.4% 18.4% 37.3% 71.5% 54.7% 13.1%
Rule of thumb 2SGMM CS 35.4% 13% 34.6% 1.9% 0% 0%

SY LIML CS 61.2% 43% 29.1% 21.8% 9.5% 1%
SY 2SLS CS 63.6% 40.2% 56.1% 0% 0% 0%

SY CUGMM CS 39.5% 15.3% 34.1% 63.2% 54.7% 3.1%
SY 2SGMM CS 46.7% 19.8% 49.2% 2.8% 0% 0%

Table 2: Minimal coverage for nominal level 95% confidence sets in heteroskedastic IV simulations with
10,000 observations, based on 10,000 simulations. LIML CS, 2SLS CS, CUGMM CS, and 2SGMM CS are
the usual Wald confidence sets based on LIML, 2SLS, CUGMM, and 2SGMM, while the rule of thumb
confidence sets are two-step confidence sets (5) using the rule-of-thumb cutoff c = 10 and the robust S (or
Anderson-Rubin) confidence set CSS . Finally, the SY confidence sets use the SY cutoffs discussed in the text,
the robust S confidence set CSS , and have asymptotic coverage at least 85% in models with homoskedastic
errors.

mean of the first stage F-statistic is 500, most nominal 95% Wald confidence sets exhibit

coverage distortions exceeding 15%. A still more extreme version of this issue arises in the

H calibration, where the 2SLS confidence set has a 15% coverage distortion even when the

mean of the first stage F-statistic is 100,000. Given these large distortions, it is unsurprising

that two-step confidence sets based on the first-stage F-statistic and known cutoffs fail to

generate reliable two-step confidence sets in models with heteroskedastic data.

3 A Simple Two-Step Confidence Set: A User’s Guide

In this section we develop a simple approach to constructing two-step confidence sets which

control coverage in general nonlinear GMM models. Our technique is based on the obser-

vation that one can construct a preliminary weak identification-robust confidence set CSR,P
which is a strict subset of the conventional non-robust confidence sets CSNR with probability

tending to one under the usual strong identification asymptotics. Consequently, if we take

φICS to be an indicator for the event that CSR,P 66⊆ CSNR we have that φICS →p 0 under
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Figure 1: Coverage of Wald confidence sets plotted against the mean of the first stage F-statistic as we vary
‖π‖ in heteroskedastic linear IV M calibration with k = 10.

strong identification. On the other hand provided our robust confidence set CSR contains

the preliminary confidence set, CSR,P ⊆ CSR, we can see that CS2S will always contain

the preliminary confidence set and thus will have coverage at least equal to that of CSR,P .

Hence, this approach yields two-step confidence sets which are equivalent to the usual, non-

robust confidence set under strong identification while also controlling the maximal coverage

distortion under weak identification.

This section focuses on the definition and implementation of our robust procedures, as

well as some intuition for their properties. Formal discussion of the asymptotic properties of

these procedures under weak- and strong-identification asymptotics are deferred to Sections

5 and 6 below.

3.1 GMM Model and Test Statistics

We consider a general GMM model with k×1-dimensional moment condition gt (θ) which we

assume is mean zero when the m-dimensional parameter θ is equal to its true value θ0. In the
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linear IV model, for example, we can take θ = β and gt (β) = Zt (Yt −Xtβ) . More generally,

suppose we are interested in inference on a p-dimensional parameter (p ≤ m) β = f (θ) for f

a continuously differentiable function such that ∂
∂θ′
f (θ0) is full-rank. For example, we may

be interested in constructing a confidence set for the ith element of the structural parameter

vector and so take f (θ) = θi.

Let gT (θ) = 1
T

∑
t gt (θ) be the sample average of gt (θ), and let Σ̂g, Σ̂θg, and Σ̂θ be estima-

tors for V ar
(√

TgT (θ)
)
, Cov

(√
Tvec

(
∂
∂θ′
gT (θ)

)
,
√
TgT (θ)

)
, and V ar

(√
Tvec

(
∂
∂θ′
gT (θ)

))
respectively, where vec (A) denotes the vectorization of A, achieved by stacking its columns.

In models where the data is independent across observations t we can use the usual heteroskedasticity-

robust covariance estimators

Σ̂g (θ) = 1
T

∑
t gt (θ) gt (θ)′ − gT (θ) gT (θ)′

Σ̂θg (θ) = 1
T

∑
t vec

(
∂
∂θ′
gt (θ)

)
gt (θ)′ − vec

(
∂
∂θ′
gT (θ)

)
gT (β)′

Σ̂θ (θ) = 1
T

∑
t vec

(
∂
∂θ′
gt (θ)

)
vec

(
∂
∂θ′
gt (θ)

)′
− vec

(
∂
∂θ′
gT (θ)

)
vec

(
∂
∂θ′
gT (θ)

)′
.

(6)

Define the S statistic as in (3), noting that (4) is simply Σ̂g as defined in (6) specialized to

the linear IV model. Following Kleibergen (2005), define a modified estimator for the mean

of ∂
∂θ′
gT (θ) ,

DT (θ) =
[
∂

∂θ1
gT (θ)− Σ̂θ1g(θ)Σ̂g(θ)−1gT (θ), ... , ∂

∂θp
gT (θ)− Σ̂θpg(θ)Σ̂g(θ)−1gT (θ)

]

where Σ̂θig(θ) is the k × k block of Σ̂θg(θ) corresponding to θi. Note that vec (DT (θ)) =

vec
(
∂
∂θ′
gT (θ)

)
− Σ̂θg(θ)Σ̂g (θ)−1 gT (θ). The K statistic of Kleibergen (2005) for testing hy-

potheses on the full parameter vector θ is then

K (θ) = TgT (θ)′ Σ̂g (θ)−1DT (θ)
(
DT (θ)′ Σ̂g (θ)−1DT (θ)

)−1
DT (θ)′ Σ̂g (θ)−1 gT (θ) . (7)

As discussed in Kleibergen (2005), K (θ) is a particular efficient GMM score statistic.

Kleibergen shows that under mild regularity conditions K (θ0) converges to a χ2
m distri-

bution in both weakly and strongly identified models, while the difference S (θ0) − K (θ0)

converges to a χ2
k−m distribution and is asymptotically independent of K (θ0) .
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We assume that we have some estimator θ̃ for θ which under strong identification is

first-order equivalent to

θ̂ = arg min
θ
gT (θ)′ Ω̂ (θ) gT (θ) . (8)

Here Ω̂ (θ) is a symmetric positive-definite weighting matrix which we will assume converges

uniformly in probability to a full-rank matrix Ω (θ) under strong identification. Note that

by taking Ω̂ (θ) = Σ̂g (θ)−1 this definition nests CUGMM as a special case. Since 2SGMM

and CUGMM are first-order equivalent under strong identification this means we can also

take θ̃ to be the efficient two-step GMM estimator. Inefficient estimators are also allowed

by (8), for instance the 2SLS estimator (which takes Ω̂ (θ) =
(

1
T
Z ′Z

)−1
) applied to linear

IV models with heteroskedastic errors.

The most common non-robust confidence set for β is based on the Wald statistic

W (β) = T
(
β̃ − β

)′
Σ̂−1
β̂

(
β̃ − β

)
(9)

where Σ̂β̂ estimates the variance of
√
T β̃

Σ̂β̂ = ∂
∂θ′
f
(
θ̃
)′ (

GT

(
θ̃
)′

Ω̂
(
θ̃
)
GT

(
θ̃
))−1

GT

(
θ̃
)′

Ω̂
(
θ̃
)

Σ̂g

(
θ̃
)

Ω̂
(
θ̃
)
GT

(
θ̃
)
×(

GT

(
θ̃
)′

Ω̂
(
θ̃
)
GT

(
θ̃
))−1

∂
∂θ′
f
(
θ̃
)

for GT (θ) = ∂
∂θ′
gT (θ) the Jacobian of gT (θ) with respect to θ. Under strong identification

standard results yield that W (β0)→d χ
2
p.

3.2 A Generalized Weak Identification-Robust Test Statistic

To construct two-step confidence sets it will be useful to have a weak identification-robust

test statistic which is asymptotically equivalent to the Wald statistic (9) under strong iden-

tification. The K statistic (7) satisfies this requirement if we are interested in inference on

the full parameter vector f (θ) = θ and use an efficient estimator with Ω̂ (θ) = Σ̂g (θ)−1 ,

but since researchers frequently use inefficient estimators (e.g. 2SLS in linear IV with het-

eroskedasticity) and/or would like to conduct inference on some lower-dimensional function

of the parameter vector, a more general robust statistic is needed. In this section we give a
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heuristic derivation of a more general robust statistic whose properties are formally developed

in Section 6.

A major difficulty with the Wald statistic (9) is that when identification is weak the

estimator θ̃ will typically be inconsistent with a highly non-standard distribution. Thus,

rather than basing inference on the estimator θ̃, robust statistics like (7) instead rely on the

properties of the moment condition and its derivatives evaluated at a given parameter value

θ, which can easily be studied even when identification is weak. We would like to follow this

route and construct a statistic that depends only on the behavior of gT (θ) and its derivative

at θ, but that is also equivalent to W (β) when identification is strong.

Happily for our purposes, under strong identification well known results (see e.g. Newey

and McFadden 1994, Section 3.4) establish that the estimator θ̃ is asymptotically equivalent

to the one-step estimator based on any value θ in a
√
T neighborhood of θ0. Specifically,

note that the first order condition for (8) implies that

∂

∂θ

(
gT
(
θ̂
)′

Ω̂
(
θ̂
)
gT
(
θ̂
))

= 0

which, taking a mean-value expansion and discarding lower-order terms, yields that

GT

(
θ̂
)′

Ω̂
(
θ̂
) (
gT (θ) +GT (θ∗)

(
θ̂ − θ

))
+ op

(
1√
T

)
= 0

where θ∗ is a value between θ̂ and θ that may vary across rows of GT (θ∗) and op
(

1√
T

)
denotes terms that converge in probability to zero at a rate faster than

√
T under strong

identification. Rearranging and imposing standard strong-identification assumptions (see

Assumptions 5 and 6 below) this gives us that for θ in a
√
T -neighborhood of θ0,

θ̂ − θ = −
(
GT (θ)′ Ω̂ (θ)GT (θ)

)−1
GT (θ)′ Ω̂ (θ) gT (θ) + op

(
1√
T

)

where the leading term on the right hand side is referred to as a one-step estimator. Note

that this term depends only on the properties of the moment condition at parameter value

θ, and so avoids issues arising from non-standard behavior for the estimator θ̃. As noted in

Kleibergen (2005), however, under weak identification GT (θ) will in general be noisy and
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correlated with gT (θ). This can give rise to intractable behavior for the one-step estimator,

but we can avoid these issues by replacing GT (θ) with DT (θ), which is asymptotically

equivalent to GT (θ) under strong identification but is asymptotically independent of gT (θ).

Using the ∆-method approximation f
(
θ̂
)
−f (θ) = ∂

∂θ′
f (θ)

(
θ̂ − θ

)
+op

(
1√
T

)
we then obtain

a modified one-step estimator for f
(
θ̂
)
− f (θ):

f
(
θ̂
)
− f (θ) = − ∂

∂θ′
f (θ)

(
DT (θ)′ Ω̂ (θ)DT (θ)

)−1
DT (θ)′ Ω̂ (θ) gT (θ) + op

(
1√
T

)
. (10)

To construct our robust test statistic, we simply substitute the one step estimator in

(10) into the expression for the Wald statistic (9), evaluate the covariance estimator Σ̂β̂ at θ

rather than θ̂, and replace GT (θ) with DT (θ) in all expressions. This yields the generalized

robust statistic

KΩ,f (θ) =

TgT (θ)′Ω̂ (θ)DT (θ)
(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
∂
∂θ′
f(θ)′×(

∂
∂θ′
f(θ)

(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
DT (θ)′Ω̂ (θ) Σ̂g(θ) ×

Ω̂ (θ)DT (θ)
(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
∂
∂θ′
f(θ)′

)−1
×

∂
∂θ′
f(θ)

(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
DT (θ)′ Ω̂ (θ) gT (θ) .

(11)

As our heuristic derivation highlights, we can think ofKΩ,f (θ) as a Wald statistic based on

a particular one-step estimator. Since this is one interpretation for C (α) statistics, KΩ,f (θ)

is closely related to the GMM C (α) statistics discussed by Lee (2005). If we take Ω̂ (θ) to

be the efficient GMM weighting matrix, KΩ,f (θ) reduces to the K (θ) statistic (7) when we

test the full parameter vector, while for f (θ) which selects a subvector of θ (e.g. the first

parameter alone) one can show that KΩ,f coincides with the LMeff statistic proposed by

Chaudhuri and Zivot (2011). We show in Section 6 that when evaluated at the true param-

eter value θ0, KΩ,f (θ0) converges to a χ2
p distribution regardless of identification strength

while S (θ0)−KΩ,f (θ0) converges to a χ2
k−p distribution and is asymptotically independent

of KΩ,f (θ0). Critically, under strong identification this statistic will be asymptotically equiv-

alent to W (f (θ)) on
√
T neighborhoods of the true parameter value θ0.
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3.3 Our Suggested Two-Step Confidence Set

Using S and KΩ,f we can now define our two-step confidence sets. For a > 0 define the

preliminary robust confidence set as the set of values β such that there exists a value θ with

f (θ) = β and KΩ,f (θ) + a · S (θ) ≤ χ2
p,1−α,

CSR,P =
{
β : min

θ:β=f(θ)
(KΩ,f (θ) + a · S (θ)) ≤ χ2

p,1−α

}
. (12)

For an estimator β̃ which is first-order equivalent to (8) under strong identification, letW (β)

be the Wald statistic (9). Define CSNR to be the Wald confidence set

CSNR =
{
β : W (β) ≤ χ2

p,1−α

}
, (13)

and note that for β̃ 1-dimensional this gives us t-statistic confidence sets of the form (2).

Let φICS be an indicator function for CSR,P 6⊆ CSNR

φICS = 1 {CSR,P 6⊆ CSNR} . (14)

Define F (x; a, k, p) to be the cumulative distribution function for a (1 + a)χ2
p+aχ2

k−p distri-

bution and F−1 (1− α; a, k, p) to be the 1− α quantile of this distribution. Our level 1− α

robust confidence set is

CSR =
{
β : min

θ:β=f(θ)
(KΩ,f (θ) + a · S (θ)) ≤ F−1 (1− α; a, k, p)

}
. (15)

We obtain the following as an immediate corollary of Theorems 1-3 below:

Corollary 1 For CSR,P , CSNR, φICS, and CSR as defined in (12)-(15), the two step con-

fidence set CS2S defined in (1) has the following properties:

1. Under Assumptions 2-4 below, for γ = 1− α− F
(
χ2
p,1−α; a, k, p

)
,

lim inf
T→∞

Pr {β0 ∈ CS2S} ≥ F
(
χ2
p,1−α; a, k, p

)
= 1− α− γ

under weak identification.
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2. Under strong identification (and Assumptions 2, 5, and 6 below), φICS →p 0,

Pr {CS2S = CSNR} → 1, and Pr {β0 ∈ CS2S} →p 1− α.

Corollary 1 establishes that the recommended two-step confidence set has asymptotic

coverage at least 1 − α − γ regardless of identification strength. Moreover, CS2S coincides

with the the non-robust confidence set CSNR with probability tending to one under strong

identification, and thus has asymptotic coverage 1 − α in this case. Thus, unlike two-step

procedures based on the first-stage F-statistic, our approach controls coverage distortions in

general models, including linear IV with heteroskedasticity.

3.4 Choosing the Value a and Computing Critical Values

The parameter γ = 1− α− F
(
χ2
p,1−α; a, k, p

)
measures the maximal coverage distortion for

CS2S. This is the price paid for using this two-step procedure, rather than using a fully

robust confidence set like CSR. Choosing a smaller value of γ reduces the maximal possible

coverage distortion, but also makes our preliminary confidence set CSR,P larger, which in

turn increases Pr {φICS = 1} for any finite sample size and thus makes our ICS procedure

more stringent, in the sense that it requires more extensive evidence before concluding that

identification is strong.

Since F
(
χ2
p,1−α; a, k, p

)
is decreasing and continuous in a, converges to 1 − α as a → 0,

and converges to 0 as a→∞, we can set a to achieve any value for γ between 0 and 1− α.

In practice, we suggest choosing γ and then selecting a accordingly. In particular, given k

and p we recommend the following:

1. Select the coverage α for the non-robust confidence set and the maximal permitted

coverage shortfall γ for the two-step procedure.

2. For M a large number, for each m ∈ {1, ...,M} draw (Am, Bm) ∼
(
χ2
p, χ

2
k−p

)
indepen-

dently. Let ã (γ) solve

1
M

M∑
m=1

1 {(1 + ã (γ))Am + ã (γ)Bm} = 1− α− γ.

3. Let F̃−1 (1− α; ã (γ) , k, p) equal the 1− α quantile of (1− ã (γ))Am + ã (γ)Bm.
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4. Construct the two-step confidence set CS2S as above, using a = ã (γ) and approximat-

ing F−1 (1− α; ã (γ) , k, p) by F̃−1 (1− α; ã (γ) , k, p).

As is easy to see, for M large this procedure will deliver two-step confidence sets with

asymptotic coverage at least 1− α− γ regardless of identification strength, and asymptotic

coverage exactly 1−α under strong identification. This procedure is easy to implement and

the only user-selected parameter is the permitted level of coverage distortion γ. For ease of

use, values for
(
ã (γ) , F̃−1 (1− α; ã (γ) , k, p)

)
for p ∈ {1, 2, 3} and α ∈ {1%, 5%, 10%} are

reported in Supplementary Appendix A. To avoid the use of non-standard critical values, we

could also use alternative robust confidence sets whose construction requires only χ2 critical

values. See Supplementary Appendix B for one such approach.

4 Two-Step Confidence Sets in Linear IV

In this section, we apply the two-step confidence sets developed in Section 3 to the linear

IV model discussed in Section 2. We show in simulation that our ICS procedure φICS has

performance competitive with pretests based on the first stage F-statistic in models with

homoskedastic data but also controls coverage distortions for CS2S even under heteroskedas-

ticity.

4.1 Two Step Confidence Sets Under Homoskedasticity

We return to the homoskedastic IV model considered in Section 2.1 and simulate the coverage

of the robust confidence sets CSR and CSR,P , as well as two-step confidence sets constructed

as suggested in Section 3. For consistency with the simulations in Section 2.1, in all cases

we set α = 5% and γ = 10%. By construction the robust confidence set CSR has asymp-

totic coverage 95% under both weak and strong identification, while CSR,P has asymptotic

coverage 85% and the two step confidence sets have minimal asymptotic coverage at least

85%. The simulation performance of these confidence sets, reported in Table 3, supports our

theoretical results, showing that the simulated coverage of CSR and CSR,P is quite close to

their theoretical coverage while the minimal coverage of the two-step confidence sets is in all
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Medium Endogeneity (M) High Endogeneity (H)
Confidence Set k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

CSR 95% 94.6% 94.7% 94.8% 94.7% 94.6%
CSR,P 84.7% 85% 85.2% 85.4% 85.6% 84.3%

CS2S LIML 92.6% 92.4% 90.4% 86% 87% 85%
CS2S 2SLS 92.8% 92.8% 92.9% 86% 87% 85%

Table 3: Minimal coverage for confidence sets in homoskedastic IV simulations with 10,000 observations,
based on 2,500 simulations. CSR and CSR,P are robust 95% and 85% confidence sets, respectively, calculated
as suggested in Section 3 for α = 5% and γ = 10% based on the two-stage least squares weight Ω̂ (θ) =( 1
T Z
′Z
)−1. CS2S LIML and CS2S 2SLS are two-step confidence sets (1) based on LIML and 2SLS, calculated

as described in Section 3 for α = 5% and γ = 10%.

cases at least 85%.

Since pretesting procedures based on the critical values of SY (discussed in Section 4)

also guarantee coverage at least 85% under homoskedasticity, it is interesting to compare

their behavior to that of our ICS statistic (14). In Figure 2 we plot the mean of our ICS

statistics E [φICS] together with E [φICS,SY ] , the mean of the ICS statistics based on the

first stage F-statistic with SY’s critical values, against the mean of the first-stage F-statistic

as we vary ‖π‖ in the moderate endogeneity (M) calibration with k = 10. As we can see,

our ICS procedure for LIML behaves quite similarly to that of SY, while our ICS procedure

for 2SLS indicates strong identification with substantially higher probability than that of

SY. Repeating this exercise for the other M calibrations (results not shown) we find similar

results, while when we consider the high endogeneity H calibrations we find no general

ordering between our ICS procedures and those of SY.

4.2 Two Step Confidence Sets Heteroskedasticity

In this section we simulate the performance of our robust and two-step confidence sets in

the heteroskedastic linear IV calibrations studied in Section 2.2. In particular, we consider

the robust confidence sets CSR and CSR,P based on both the inefficient 2SLS weight matrix

Ω̂ (θ) =
(

1
T
Z ′Z

)−1
and the efficient weight matrix Ω̂ (θ) = Σ̂g (θ)−1, as well as two-step

confidence sets based on LIML, 2SLS, CUGMM, and 2SGMM constructed as discussed in

Section 3. In all cases, for consistency with Section 2.2 we take α = 5% and γ = 10%.

We can see that as in the homoskedastic case discussed above our robust confidence sets
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Figure 2: E [φICS ] = Pr {φICS = 1} plotted against the mean of the first stage F-statistic as we vary ‖π‖
in heteroskedastic linear IV M calibration with k = 10, where SY LIML and SY 2SLS denote pretests based
on the first stage F-statistic and the critical values of SY discussed in Section 2, while ICS LIML and ICS
2SLS use the ICS statistic (14) with α = 5% and γ = 10%.
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Medium Endogeneity (M) High Endogeneity (H)
Confidence Set k = 5 k = 10 k = 20 k = 5 k = 10 k = 20
CSR Inefficient 95.1% 94.7% 95.2% 94.7% 95.2% 94.6%
CSR,P Inefficient 84.7% 84.3% 85% 86% 85% 84.6%
CSR Efficient 95.1% 94.6% 94.7% 94.9% 94.5% 95%
CSR,P Efficient 84.9% 84.5% 84.6% 84.8% 85.4% 84%
CS2S LIML 94.1% 92.4% 93% 86.8% 86.8% 85.2%
CS2S 2SLS 93.7% 94% 94.3% 86.7% 86.6% 85.2%

CS2S CUGMM 95% 94.1% 93.4% 86.8% 92.6% 88.8%
CS2S 2SGMM 94.5% 94% 93.9% 86.8% 92.8% 88.8%

Table 4: Minimal coverage for confidence sets in homoskedastic IV simulations with 10,000 observations,
based on 2,500 simulations. CSR and CSR,P Inefficient are robust 95% and 85% confidence sets (15) based
on the two-stage least squares weight matrix Ω̂ (θ) =

( 1
T Z
′Z
)−1, calculated as suggested in Section 3 for

α = 5% and γ = 10%. CSR and CSR,P Efficient are robust confidence sets with Ω̂ (θ) = Σ̂g (θ)−1 calculated
as suggested in Section 3 α = 5% and γ = 10%. CS2S LIML, CS2S 2SLS, CS2S CUGMM, and CS2S 2SGMM
are two-step confidence sets (1) based on LIML, 2SLS, CUGMM, and 2SGMM, calculated as described in
Section 3 for α = 5% and γ = 10%.

CSR and CSR,P have minimal coverage quite close to their theoretical coverage of 95% and

85%, respectively. Unlike the procedures based on the first stage F-statistic discussed in

Section 2.2, we can also see that our two-step confidence sets have minimal coverage at least

85%, consistent with our theoretical results. Thus, our simulation results confirm that our

approach delivers two-step confidence sets CS2S which control coverage distortions, including

in linear IV models with heteroskedasticity.

5 A Simple Two-Step Confidence Set: Theory

In this section we develop results concerning the properties of two-step confidence sets in

general models. Our main results apply to contexts where we have a robust confidence set

which is contained within the non-robust confidence set of interest with probability tending to

one under strong identification. We show that whenever this condition holds we can construct

a two-step confidence set which controls coverage distortions under weak identification and

is asymptotically equivalent to the non-robust confidence set when identification is strong.

Further, we note that these results can be used to create two-step confidence sets with

uniformly bounded asymptotic coverage distortions when an appropriate uniformly correct

confidence set is available. As a preliminary step we begin by defining several different
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notions of limiting coverage probability, including asymptotic coverage and coverage under

particular sequences of parameter values.

We assume that in sample T we observe data with distribution FT (β0,T , ψ0,T ) , where

β ∈ B ⊆ Rp is a parameter of interest and ψ ∈ Ψ is some, potentially infinite-dimensional,

nuisance parameter. We allow the true parameter values β0,T and ψ0,T to drift with the

sample size, and index the sequence of true parameter values by

ξ = {(β0,T , ψ0,T )}∞T=1 ∈ Ξ = Π∞T=1 (B ×Ψ) .

We typically want confidence sets to control asymptotic coverage probability, defined as the

limit of the minimal probability that CS contains the true value

ACP (CS) = lim inf
T→∞

inf
(β0,ψ0)∈B×Ψ

PrT,(β0,ψ0) {β0 ∈ CS} .

In this paper, we will also be interested in less stringent notions of coverage. In particu-

lar, define the (asymptotic) sequential coverage probability of confidence set CS under the

sequence of true parameter values ξ as

SCP (CS, ξ) = lim inf
T→∞

PrT,ξ {β0,T ∈ CS} .

Likewise, define the sequential coverage probability of confidence set CS under the set of

sequences Ξ∗ ⊂ Ξ as the minimal sequential coverage probability under sequences in this set,

SCP (CS,Ξ∗) = inf
ξ∈Ξ∗

SCP (CS, ξ) .

Note that sequential coverage probability under Ξ is simply the asymptotic coverage proba-

bility

SCP (CS,Ξ) = ACP (CS) .

We will be particularly concerned with sequential coverage probability under “strongly iden-

tified sequences” which we will denote by ΞS ⊆ Ξ, and under “weakly identified sequences”

which we will denote by ΞW ⊆ Ξ.
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As above, suppose we have non-robust and robust confidence sets CSNR and CSR. We

assume that our non-robust confidence set has sequential coverage at least 1−α under strong

identification

SCP (CSNR,ΞS) ≥ 1− α, (16)

but impose no restrictions on the performance of this confidence set under weak identification.

By contrast, we will assume that the robust confidence set CSR has coverage at least 1− α

under both weak and strong identification

min {SCP (CSR,ΞS) , SCP (CSR,ΞW )} ≥ 1− α. (17)

For two-step confidence sets CS2S as in (1), we can see that the sequential coverage of CS2S

will depend on the limiting behavior of φICS. We can derive bounds which hold for all choices

of φICS, specifically

Lemma 1 When (16) and (17) hold,

1. SCP (CS2S,ΞW ) ≥ 1− α− supξ∈ΞW lim supT→∞ PrT,ξ {φICS = 0}

2. SCP (CS2S,ΞS) ≥ 1− α−min
{
α, supξ∈ΞS lim supT→∞ PrT,ξ {φICS = 1}

}
.

These inequalities are tight, in the sense that one cannot obtain a sharper bound without

additional restrictions on the joint behavior of CSNR, CSR, and φICS.

Our approach to constructing two-step confidence sets exploits such additional structure.

In particular, we make the following assumption:

Assumption 1 We have a preliminary confidence set CSR,P such that:

1. SCP (CSR,P ,ΞW ) ≥ 1− α− γ

2. PrT,ξ {CSR,P ⊆ CSR} = 1 for all T and ξ ∈ Ξ

3. infξ∈ΞS lim infT→∞ PrT,ξ {CSR,P ⊆ CSNR} = 1.

This assumption requires the existence of a preliminary confidence set that (1) has sequential

coverage at least 1−α−γ when identification is weak, (2) is contained in CSR with probability
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one, and (3) is contained in CSNR with probability tending to one under all strongly identified

sequences. While this might seem quite demanding, we show in the next section that for

CSNR a Wald confidence set and CSR, CSR,P as defined in Section 3.3, this condition holds

in general weakly identified GMM models under mild conditions. Under Assumption 1 we

can easily establish that the two-step confidence sets CS2S defined using φICS as in (14) have

bounded coverage distortions under weak identification and correct coverage under strong

identification.

Theorem 1 Under Assumption 1 together with (16), for φICS as defined in (14) the two

step confidence set CS2S has the following properties:

1. SCP (CS2S,ΞW ) ≥ 1− α− γ

2. SCP (CS2S,ΞS) ≥ 1− α

3. infξ∈ΞS lim infT→∞ PrT,ξ {CS2S = CSNR} = 1.

Further, supξ∈ΞS lim supT→∞ PrT,ξ {φICS = 1} = 0.

Theorem 1 shows that whenever we have a preliminary robust confidence set satisfying

Assumption 1 we can create a two-step confidence set which controls coverage distortions

and is equal to our non-robust confidence set with probability tending to one under strong

identification. This result highlights the value of identification-robust test statistics which

are locally asymptotically equivalent to the conventional non-robust (e.g. Wald) statistics

when identification is strong, since given such statistics it is typically straightforward to

construct a preliminary confidence set satisfying Assumption 1 and thus to construct robust

two-step confidence sets.

If there exists a preliminary confidence set CSR,P satisfying Assumption 1 which has

uniformly correct coverage (one with ACP (CSR,P ) ≥ 1− α− γ), by Theorem 1 we can use

it to construct two-step confidence sets with uniformly correct coverage. Thus, since the

results of D. Andrews, Cheng, and Guggenberger (2011) imply that CSR,P as defined in (12)

has asymptotic coverage probability 1 − α − γ in linear IV with one endogenous regressor
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and heteroskedastic errors, Theorem 1 shows that the two-step confidence set developed in

Section 3.3 has asymptotic coverage at least 1−α−γ in this case, ACP (CS2S) ≥ 1−α−γ.4

6 Two-Step Confidence Sets for GMM

Under mild assumptions, the preliminary robust confidence set CSR,P defined in (12) satisfies

Assumption 1 in general GMMmodels, and thus can be used to construct two-step confidence

sets which control coverage distortions. Specifically, as in Section 3, suppose we have a GMM

model with moment condition gt (θ) which is mean zero when evaluated at the true parameter

value. To accommodate the drifting sequences of parameter values introduced in Section 5,

let ET,ξ [·] denote an expectation in sample size T under sequence of true parameter values ξ.

We begin by giving conditions under which the robust confidence sets CSR and CSR,P have

correct sequential coverage even in weakly identified models, and then turn to establishing

their properties in strongly identified models. Throughout this section, whenever we write a

limit in an assumption we are implicitly assuming that limit exists.

6.1 Behavior Under Weak Identification

To establish the properties of our robust confidence sets under weak identification, we assume

that a central limit theorem holds for the moment condition and its derivative evaluated at

the true parameter value. In particular, much as in Kleibergen (2005) we assume that

Assumption 2 For all ξ ∈ ΞW ∪ ΞS, under ξ we have that for JT,ξ (θ) = ET,ξ
[
∂
∂θ′
gT (θ)

]
,

1√
T

T∑
t=1

 gt(θ0,T )

vec
(
∂
∂θ′
gt(θ0,T )− JT,ξ (θ0,T )

)
→d

 ψg

ψθ0

 ∼ N

0,

 Σg Σgθ

Σθg Σθ




where Σg is positive definite and

 Σg Σgθ

Σθg Σθ

 = lim
T→∞

V arT,ξ

 1√
T

T∑
t=1

 gt(θ0,T )

vec
(
∂
∂θ′
gt(θ0,T )

)

 .

4To obtain this result, we impose the same restrictions on the nuisance parameter space Ψ as in D.
Andrews, Cheng, and Guggenberger (2011).

27



Under this assumption we have that
√
TgT (θ0,T ) = 1√

T

∑
t gt (θ0,T ) and its re-centered

Jacobian converge jointly to a normal distribution. To construct test statistics with a known

limiting distribution, we further need to assume that we can estimate the asymptotic variance

matrix of
(√

TgT (θ0,T ) ,
√
Tvec

(
∂
∂θ′
gT (θ0,T )

))
and that the weight matrix Ω̂ (θ) converges

to some non-random positive-definite limit.

Assumption 3 For all ξ ∈ ΞW we have estimators Σ̂g (θ0,T ) , Σ̂θg (θ0,T ) and Σ̂θ (θ0,T ) which

converge in probability to Σg, Σgθ, and Σθ. Further, evaluated at the true parameter value

the weight matrix Ω̂ (θ) satisfies

Ω̂ (θ0,T )→p Ω

for a non-stochastic symmetric positive-definite matrix Ω.

Provided Assumptions 2 and 3 hold, Lemma 1 of Kleibergen (2005) gives us a joint

limiting distribution for the appropriately scaled and re-centered gT (θ0,T ) and DT (θ0,T ).

Lemma 2 Under Assumptions 2 and 3 we have that for all ξ ∈ ΞW ,


√
TgT (θ0,T )

√
T vec (DT (θ0,T )− JT,ξ (θ0,T ))

→d

 ψg

ψD

 ∼ N

0,

 Σg 0

0 ΣD




where ΣD = Σθ − ΣθgΣ−1
g Σgθ.

To derive the limiting distribution for KΩ,f as defined in (11), we need a final assumption

to ensure that (i) we can normalizeDT (θ0,T ) such that it converges to a limiting random vari-

able which is non-singular almost surely and (ii) there exists a corresponding normalization

for ∂
∂θ′
f (θ0,T ) which ensures that this term converges to a non-singular limit.

Assumption 4 There exist sequences of full-rank normalizing matrices Λ1,T and Λ2,T of

dimension m×m and p× p, respectively, such that

1. DT (θ) Λ1,T →d D for a (possibly degenerate) Gaussian random matrix D which is full

rank almost surely

2. Λ2,T
∂
∂θ′
f (θ0,T ) Λ1,T → F for a full-rank matrix F
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Further, the elements of Λ1,T are of order O
(√

T
)
.5

This assumption is rather high-level, but can easily be verified in many leading cases.

For example, Kleibergen (2005) considers the case where
√
TJT,ξ converges to a finite matrix

J , in which case we can take Λ1,T =
√
TIm and Λ2,T = 1√

T
Ip. More broadly, this assumption

holds under the commonly-used weakly identified GMM embedding of Stock and Wright

(2000). Given these assumptions, it is easy to establish that KΩ,f (θ0) and S (θ0)−KΩ,f (θ0)

have a well-behaved limiting distribution even under weak identification.

Theorem 2 Under Assumptions 2, 3, and 4, under all ξ ∈ ΞW ,

(KΩ,f (θ0,T ) , S (θ0,T )−KΩ,f (θ0,T ))→d

(
χ2
p, χ

2
k−p

)

and KΩ,f (θ0,T ) and S (θ0,T )−KΩ,f (θ0,T ) are asymptotically independent.

For tests of the full parameter vector (f(θ) = θ) based on the efficient weighting matrix

Ω̂ (θ) = Σ̂g (θ)−1, Theorem 2 follows from results in Kleibergen (2005). Likewise, in the

case where we are interested in testing a subset of the parameter vector (e.g. f (θ) = θ1)

and use the efficient weighting matrix Ω̂ (θ) = Σ̂g (θ)−1, Theorem 2 follows from results in

Chaudhuri and Zivot (2011). The primary innovation of Theorem 2 is thus the fact that

it allows for alternative weighting matrices Ω̂ (θ) 6= Σ̂g (θ)−1. While these weightings lead

to inefficient tests and confidence sets when identification is strong, empirical researchers

frequently use estimators based on inefficient weights (e.g. two-stage least squares applied

to heteroskedastic data), so to construct two-step confidence sets based on such estimators

it is important that we allow for general Ω̂ (θ).

Note that Theorem 2 implies that SCP (CSR,P ,ΞW ) = 1−α−γ and SCP (CSR,ΞW ) =

1−α for CSR,P and CSR as defined in (12) and (15). Thus, since CSR,P ⊆ CSR by definition,

Assumption 1(1) and (2) hold. Hence, to verify Assumption 1 all that remains is to show

that CSR,P ⊆ CSNR with high probability under strong identification.
5That is, they are bounded above in absolute value by C

√
T for some constant C.
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6.2 Behavior Under Strong Identification

We now examine the properties of the preliminary confidence set CSR,P under strong iden-

tification. Specifically, we will define the set of strongly identified sequences ΞS as the set of

sequences such that conventional GMM assumptions (closely related to those of e.g. Newey

and McFadden (1994)) are satisfied. Following Newey and McFadden we consider two main

groups of assumptions. The first group implies the consistency of the estimator

θ̂ = arg min
θ
gT (θ)′ Ω̂ (θ) gT (θ) ,

while the second group implies its asymptotic normality.6 To simplify the exposition, we

assume that for all ξ ∈ ΞS, θ0,T = θ0 for all T so that the true value θ0 is not changing with

the sample size.

Assumption 5 For all ξ ∈ ΞS the following conditions hold:

1. gT (θ)→p limT→∞ET,ξ [gT (θ)] uniformly over the parameter space Θ for θ

2. ET,ξ [gT (θ0)] = 0 ∀T

3. Ω̂ (θ)→p Ω (θ) uniformly over Θ for Ω(θ) continuous and everywhere positive definite

with a uniformly bounded maximal eigenvalue and a minimal eigenvalue bounded away

from zero

4. For all ε > 0 there exists δ > 0 such that

(
lim
T→∞

ET,ξ [gT (θ)]
)′

Ω (θ)
(

lim
T→∞

ET,ξ [gT (θ)]
)
< δ

only if ‖θ − θ0‖ < ε.

Assumption 5(1) requires that the sample mean of the moment condition gT (θ0) be uni-

formly close to its mean in large samples, while Assumption 5(3) requires that the weighting

matrix be well-behaved. Assumption 5(2) and (4) are identification conditions, which ensure
6For simplicity we assume that we are working with CSNR based directly on θ̂, but all results also apply

to any θ̃ which is first-order equivalent to θ̃, that is θ̃ such that ‖θ̂− θ̃‖ = op

(
1√
T

)
under strong identification.
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that the population objective function is small if and only if evaluated in a neighborhood of

the true parameter value. Assumption 5(4) will generally fail in contexts where identification

issues arise. Provided these conditions hold, standard arguments yield the consistency of θ̂.

Next, we consider an assumption yielding asymptotic normality of θ̂ with the usual limiting

distribution.

Assumption 6 The following conditions hold for all ξ ∈ ΞS

1. θ0 belongs to the interior of Θ

2. gT (θ) and Ω̂ (θ) are almost surely continuously differentiable on some open ball B(θ0)

around θ0

3. For

J(θ) = lim
T→∞

JT,ξ (θ) = lim
T→∞

ET,ξ

[
∂

∂θ′
gT (θ)

]
,

J(θ) is continuous at θ0, GT (θ) = ∂
∂θ′
gT (θ)→p J(θ) uniformly on B(θ0), and J (θ0) is

full-rank

4. supθ∈B(θ0)

∥∥∥∥∂vec(Ω̂(θ))
∂θ′

∥∥∥∥ = Op(1)

5. Σ̂g(θ) →p Σg(θ) uniformly on B (θ0), and Σg (θ) = limT→∞ V arT,ξ(
√
TgT (θ)) is con-

tinuous in θ and everywhere positive-definite on B (θ0)

Assumption 6(1) rules out cases where the true parameter value lies near the boundary

of the parameter space. Assumption 6(2) requires that the moment condition and weight

function both be smooth, while (3) and (4) require that their derivatives be well-behaved.

Finally, Assumption 6(5) requires that we have a uniformly consistent estimator for Σg (θ) on

a neighborhood of θ0. Assumptions 2, 5, and 6 together yield the usual limiting distribution

for the estimator θ̂ and the Wald statistic W (β0) = W (f (θ0)). In particular, for W (β) as

in (9), standard arguments yield W (f (θ0))→d χ
2
p. Critically, these assumptions also imply

the local asymptotic equivalence of the statistics KΩ,f (θ) and W (f (θ)). Formally,
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Lemma 3 Let {Aθ,T} be a sequence of random sets such that lim supT→∞ Pr {Aθ,T = ∅} < 1

and supθ∈Aθ,T ‖θ − θ0‖ = Op

(
1√
T

)
(where we define the sup to be zero if Aθ,T is empty).

Under Assumptions 2, 5, and 6, under all ξ ∈ ΞS we have

sup
θ∈Aθ,T

‖W (f (θ))−KΩ,f (θ)‖ = op(1).

Lemma 3 establishes that KΩ,f (θ) and W (f (θ)) are locally asymptotically equivalent

under strong identification, as suggested by our heuristic derivation in Section 3.2. Using

this lemma, it is easy to verify Assumption 1(3).

Theorem 3 Under Assumptions 2, 5, and 6, for CSR,P as defined in (12) and CSNR as in

(13) we have that

inf
ξ∈ΞS

lim inf
T→∞

PrT,ξ {CSR,P ⊆ CSNR} = 1.

Thus, under strong identification Assumption 1(3) holds. Since one can easily verify (16)

under Assumptions 2-6, the conditions of Theorem 1 hold for the approach suggested in

Section 3 in general GMM models.

7 Conclusion

In this paper we highlight that commonly-used approaches to detecting weak identification

and constructing confidence sets can lead to highly misleading inferences. In particular we

demonstrate that in linear IV two-step confidence sets based on the first-stage F-statistic

can exhibit severe coverage distortions under heteroskedasticity. To remedy this issue we

suggest an approach to detecting weak identification and constructing two-step confidence

sets which we show controls coverage distortions in general GMM models. Applied to linear

IV our approach yields two-step confidence sets that are competitive with those based on

the first stage F-statistic under homoskedasticity, but which unlike conventional approaches

also control coverage distortions under heteroskedasticity. While our results focus on the

case where the non-robust component of our two-step confidence set is based on the Wald

statistic, by the equivalence of the trinity of classical tests these results naturally extend to

Quasi-Likelihood ratio or distance metric confidence sets.

32



While our simulations focus on linear IV, which is the most common context in which

two-step procedures are currently applied, our theoretical results apply far more broadly

and offer a novel approach to reliably assessing identification strength in a wide range of

nonlinear and dynamic contexts where no alternative which controls coverage distortions

for two-step confidence sets is currently available. Further, the core idea of our approach,

that the equivalence of different confidence sets under the usual asymptotics allows us to

asses the reliability of classical approximations, can also be applied to detecting the failure

of standard confidence sets in other non-standard problems, for example robust inference in

the presence of unit roots and inference on parameters near the boundary of the parameter

space.
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Appendix

IV Simulation Design

Heteroskedastic Case To examine the behavior of two-step confidence sets in simulation

we need to specify the process generating (Z, V1, V2) . Our focus is on heteroskedasticity, so

we consider models where (Zt, V1,t, V2,t) are independent across t but where V ar (V1,t, V2,t|Zt)

may depend on Zt. We assume we have a categorical instrument and that Zt is a collection

of dummy variables for different values of Z̃t ∈ {1, ..., k}, so Zt ∈ {e1, ..., ek} where ei is

the k × 1 vector with 1 in the ith entry and zeros everywhere else. We further assume that

Z̃t is uniformly distributed so that Pr {Zt = ei} = 1
k
for all i ∈ {1, ..., k} and set the true

parameter value β0 = 0.

Since the support of Zt is finite we can model V ar (V1,t, V2,t|Zt) fully flexibly and take

 V1,t

V2,t

 |Zt ∼ N (0,ΣV (Zt)) .

To explore the behavior of the model for different parameter values we drew many values of

ΣV (Zt) and the direction of the first stage π/‖π‖ at random. For each draw we considered

a large range of values for ||π||, ranging from non-identification to very strong identification,

and for our simulations we focus on particular draws of ΣV (Zt) and π/‖π‖ that generate

large coverage distortions for some values of ‖π‖. We study models with five, ten, and

twenty instruments (k ∈ {5, 10, 20}) and in each case consider two calibrations, one with a

very high degree of endogeneity as measured by the correlation between the errors V1,t and

V2,t, which we denote by H, and the other with more moderate endogeneity, which we denote

by M. The space of possible covariance structures is extremely large, however, so there

certainly exist alternative parameter values generating much more pathological behavior

for non-robust procedures than we report here. Consequently, our results give only lower

bounds for possible coverage distortions. In all cases we consider simulated samples of 10,000

observations.

To give a sense of the parameter values used in our simulations, in Table 5 we report the
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Medium Endogeneity (M) High Endogeneity (H)
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

Corr (V1,t, V2,t) -0.66 -0.59 -0.44 -1.00 1.00 -1.00
Stdev (Stdev (V1,t|Zt)) /Stdev (V1,t) 0.40 0.53 0.44 0.56 0.55 0.51
Stdev (Stdev (V2,t|Zt)) /Stdev (V2,t) 0.63 0.55 0.50 0.56 0.55 0.51

Table 5: Summary of linear IV calibration values. Note that Corr (V1,t, V2,t) is in all cases strictly less than
one in absolute value, but the reported value is rounded to nearest 0.01.

(unconditional) correlation between V1,t and V2,t as well as Stdev (Stdev (Vi,t|Zt)) /Stdev (Vi,t),

which is a natural measure for the degree of heteroskedasticity.

Homoskedastic Case

For the homoskedastic case, we consider the same simulation calibrations described above,

except that in each case we eliminate heteroskedasticity by taking V1,t, V2,t to be independent

of Zt with  V1,t

V2,t

 ∼ N (0, E [ΣV (Zt)]) .

Proofs

Proof of Lemma 1

To prove (1), note that for any ξ ∈ Ξ and any T , we have

PrT,ξ {β0,T ∈ CS2S} ≥ PrT,ξ {β0,T ∈ CSR} − PrT,ξ {φICS = 0} .

By (17) SCP (CSR,ΞW ) ≥ 1−α, so Lemma 1(1) follows immediately from the definition of

sequential coverage probability.

To prove (2), note that

PrT,ξ {β0,T ∈ CS2S} ≥ PrT,ξ {β0,T ∈ CSNR} − PrT,ξ {β0,T 6∈ CSR and φICS = 1} ,

and

PrT,ξ {β0,T 6∈ CSR and φICS = 1} ≤ min {PrT,ξ {β0,T 6∈ CSR} , P rT,ξ {φICS = 1}} .
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By (16) SCP (CSNR,ΞS) ≥ 1− α so

SCP (CS2S,ΞS) ≥ 1− α− sup
ξ∈ΞS

lim sup
T→∞

min {PrT,ξ {β0,T 6∈ CSR} , P rT,ξ {φICS = 1}}

but supξ∈ΞS lim supT→∞ PrT,ξ {β0,T 6∈ CSR} ≤ 1− α by assumption, implying the result.

Proof of Theorem 1

To establish (1), note that by Assumption 1(2), PrT,ξ {CSR,P ⊆ CSR} = 1 for all T and

ξ ∈ Ξ. Thus by the definition of CS2S, PrT,ξ {CSR,P ⊆ CS2S} = 1 for all T and ξ ∈ Ξ.

Consequently, PrT,ξ {β0,T ∈ CSR,P} ≤ PrT,ξ {β0,T ∈ CS2S}, so (1) follows immediately from

Assumption 1(1). (2) follows immediately from Lemma 1(2) and Assumption 1(3). (3) is

implied by

sup
ξ∈ΞS

lim sup
T→∞

PrT,ξ {φICS = 1} = 0,

which is an immediate consequence of Assumption 1(3).

Proof of Lemma 2 Follows immediately from Lemma 1 of Kleibergen (2005).

Proof of Theorem 2 Note that we can re-write KΩ,f as

KΩ,f (θ) =

TgT (θ)′Ω̂ (θ)DT (θ)Λ1,T
(
Λ′1,TDT (θ)′Ω̂ (θ)DT (θ)Λ1,T

)−1
Λ′1,T ∂

∂θ′
f(θ)′Λ′2,T×(

Λ2,T
∂
∂θ′
f(θ)Λ1,T

(
Λ′1,TDT (θ)′Ω̂ (θ)DT (θ)Λ1,T

)−1
Λ′1,TDT (θ)′Ω̂ (θ) Σ̂(θ) ×

Ω̂ (θ)DT (θ)Λ1,T
(
Λ′1,TDT (θ)′Ω̂ (θ)DT (θ)Λ1,T

)−1
Λ′1,T ∂

∂θ′
f(θ)′Λ′2,T

)−1

Λ2,T
∂
∂θ′
f(θ)Λ1,T

(
Λ′1,TDT (θ)′Ω̂ (θ)DT (θ)Λ1,T

)−1
Λ′1,TDT (θ)′ Ω̂ (θ) gT (θ) .

By Lemma 2,
(√

TgT (θ0,T ) ,
√
Tvec (DT (θ0,T )− JT,ξ)

)
converges to (ψg, ψD) which are mu-

tually independent. Since we have assumed that the elements of Λ1,T are of order
√
T , note

that 1√
T

Λ1,T = O (1), so
(√

TgT (θ0,T ) , DT (θ0,T )Λ1,T
)
will be asymptotically independent as

well. In particular,
(√

TgT (θ0,T ) , DT (θ0,T )Λ1,T
)
→d (ψg, D) where ψg|D ∼ N (0,Σg) .
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We can further re-write KΩ,f (θ) as

TgT (θ)′Σ̂g (θ)−
1
2 ×

P
(

Σ̂g (θ)
1
2 Ω̂ (θ)DT (θ)Λ1,T

(
Λ′1,TDT (θ)′Ω̂ (θ)DT (θ)Λ1,T

)−1
Λ′1,T ∂

∂θ′
f(θ)′Λ′2,T

)
×

Σ̂g (θ)−
1
2 gT (θ) .

where P (X) = X (X ′X)−1X ′ denotes the projection matrix onto X. By Assumptions 3 and

4 and the Continuous Mapping Theorem,

Σ̂g (θ0,T )
1
2 Ω̂ (θ0,T )DT (θ0,T )Λ1,T

(
Λ′1,TDT (θ0,T )′Ω̂ (θ0,T ) Σ̂g (θ0,T ) Ω̂ (θ0,T )DT (θ0,T )Λ1,T

)−1
×

Λ′1,T ∂
∂θ′
f(θ0,T )′Λ2,T →d Σ

1
2
g ΩD (D′ΩΣgΩD)−1 F ′

where the sole random component on the right hand side is D, and the right hand side

has rank p almost surely. Together with the fact that Σ−
1
2

g ψg|D ∼ N (0, Ik), this implies

by the Continuous Mapping Theorem that (KΩ,f (θ0,T ) , DT (θ0,T )Λ1,T ) →d

(
K∗Ω,f , D

)
where

K∗Ω,f |D ∼ χ2
p, since conditional on D K∗Ω,f is a quadratic form in a standard-normal random

vector and a rank-p projection matrix.

We can handle S (θ0,T )−KΩ,f (θ0,T ) in a similar manner. In particular, note that

S (θ)−KΩ,f (θ) =

TgT (θ)′Σ̂g (θ)−
1
2 ×(

I − P
(

Σ̂g (θ)
1
2 Ω̂ (θ)DT (θ)Λ1,T

(
Λ′1,TDT (θ)′Ω̂ (θ) Σ̂g (θ) Ω̂ (θ)DT (θ)Λ1,T

)−1
Λ′1,T ∂

∂θ′
f(θ)′Λ′2,T

))
×

Σ̂g (θ)−
1
2 gT (θ) .

so

(KΩ,f (θ0,T ) , S (θ0,T )−KΩ,f (θ0,T ) , DT (θ0,T )Λ1,T )→d

(
K∗Ω,f , S

∗ −K∗Ω,f , D
)

where
(
K∗Ω,f , S

∗ −K∗Ω,f
)
|D ∼

(
χ2
p, χ

2
k−p

)
and

(
K∗Ω,f , S

∗ −K∗Ω,f
)
are independent conditional

on D. Thus we have that
(
K∗Ω,f , S

∗ −K∗Ω,f
)
and independent and distributed

(
χ2
p, χ

2
k−p

)
unconditionally as well, which establishes the result.

Proof of Lemma 3 The proof is standard, but is included for completeness. If Aθ,T
is empty, we have defined supθ∈Aθ,T ‖W (f (θ))−KΩ,f (θ)‖ = 0. Hence, we restrict atten-
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tion to non-empty realizations of Aθ,T and condition on Aθ,T 6= ∅ for the remainder of the

analysis. We know that for B(θ0) as in Assumption 6, Pr {Aθ,T ⊂ B(θ0)} → 1. Hence,

by our assumptions, supθ∈Aθ,T ‖GT (θ)− J(θ0)‖ = op(1), supθ∈Aθ,T ‖DT (θ)− J(θ0)‖ = op(1),

and supθ∈Aθ,T
∥∥∥Σ̂g(θ)− Σg(θ0)

∥∥∥ = op(1). By a mean value expansion

(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
DT (θ)′Ω̂ (θ) gT (θ)

=
(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
DT (θ)′ Ω̂ (θ) (gT (θ0) +GT (θ∗) (θ − θ0))

for θ∗ a value between θ and θ0 which can vary across rows. By the Continuous Mapping

Theorem and the fact that J(θ) and Ω(θ) are continuous and full rank at θ0:

sup
θ∈Aθ,T

∥∥∥∥(DT (θ)′Ω̂ (θ)DT (θ)
)−1

DT (θ)′ Ω̂ (θ)− (J(θ0)′Ω (θ0) J(θ0))−1
J(θ0)′Ω (θ0)

∥∥∥∥ = op(1)

while

sup
θ∈Aθ,T

∥∥∥∥(DT (θ)′Ω̂ (θ)DT (θ)
)−1

DT (θ)′ Ω̂ (θ)GT (θ∗)− I
∥∥∥∥ = op(1).

Hence,
supθ∈Aθ,T

∥∥∥∥(DT (θ)′Ω̂ (θ)DT (θ)
)−1

DT (θ)′ Ω̂ (θ) gT (θ)−

(J(θ0)′Ω (θ0) J(θ0))−1 J(θ0)′Ω (θ0) gT (θ0)− (θ − θ0)
∥∥∥ = op

(
1√
T

)
.

Similar arguments establish that

sup
θ∈Aθ,T

∥∥∥(J(θ0)′Ω (θ0) J(θ0))−1
J(θ0)′Ω (θ0) gT (θ0) +

(
θ̂ − θ0

)∥∥∥ = op

(
1√
T

)

and hence, by the triangle inequality, that

sup
θ∈Aθ,T

∥∥∥∥(DT (θ)′Ω̂ (θ)DT (θ)
)−1

DT (θ)′ Ω̂ (θ) gT (θ)−
(
θ̂ − θ

)∥∥∥∥ = op

(
1√
T

)
.

Since

sup
θ∈Aθ,T

∥∥∥∥(DT (θ)′Ω̂ (θ) Σ̂g (θ) Ω̂ (θ)DT (θ)
)−1
−
(
GT (θ̂)′Ω̂

(
θ̂
)

Σ̂g

(
θ̂
)

Ω̂
(
θ̂
)
GT

(
θ̂
))−1

∥∥∥∥ = op(1)

under our assumptions, this suffices to establish the desired equivalence for tests of the full
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parameter vector, which take f (θ) = θ. To complete the proof, we need only show that the

same result holds for general f (·), which follows from ∆-method arguments. In particular,

as noted in Van der Vaart (2000) Theorem 3.1, under our assumptions

∥∥∥∥∥√T (f (θ̂)− f (θ0)
)
−
√
T
∂

∂θ′
f(θ0)

(
θ̂ − θ0

)∥∥∥∥∥ = op(1).

Since supθ∈Aθ,T ‖θ − θ0‖ = op(1) , by the definition of differentiability

sup
θ∈Aθ,T

∥∥∥∥∥f(θ)− f(θ0)− ∂
∂θ′
f(θ0) (θ − θ0)

‖θ − θ0‖

∥∥∥∥∥ = op(1)

which implies that

sup
θ∈Aθ,T

∥∥∥∥∥√T (f (θ)− f (θ0))−
√
T
∂

∂θ′
f(θ0) (θ − θ0)

∥∥∥∥∥ = op(1)

and hence by the triangle inequality
∥∥∥√T (f (θ̂)− f (θ)

)
−
√
T ∂
∂θ′
f(θ0)

(
θ̂ − θ

)∥∥∥ = op(1),

yielding the statement:

∥∥∥∥∥√T (f (θ̂)− f (θ)
)

+
√
T
∂

∂θ′
f(θ0)

(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
DT (θ)′ Ω̂ (θ) gT (θ)

∥∥∥∥∥ = op(1).

Since supθ∈AT,θ
∥∥∥ ∂
∂θ′
f(θ0)− ∂

∂θ′
f(θ)

∥∥∥ = op(1) and ∂
∂θ′
f(θ0) is full rank,

supθ∈Aθ,T

∥∥∥∥∥
(

∂
∂θ′ f(θ)

(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
DT (θ)′Ω̂ (θ) Σ̂g (θ) Ω̂ (θ) D̂T (θ)

(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
∂
∂θ′ f(θ)′

)−1
−(

∂
∂θ′ f(θ0)

(
J (θ0)′Ω (θ0) J (θ0)

)−1
J (θ0)′ Ω̂ (θ0) Σ̂g(θ0)−1Ω̂ (θ0) J(θ0)

(
J (θ0)′Ω (θ0) J (θ0)

)−1 ∂
∂θ′ f(θ0)′

)−1
∥∥∥∥ = op(1)

by the Continuous Mapping Theorem, and by the triangle inequality

supθ∈Aθ,T

∥∥∥∥∥
(

∂
∂θ′ f(θ̂)

(
GT (θ̂)′Ω̂

(
θ̂
)
GT (θ̂)

)−1
GT (θ̂)′Ω̂

(
θ̂
)′

Σ̂g(θ̂)−1Ω̂
(
θ̂
)
GT (θ̂)

(
GT (θ̂)′Ω̂

(
θ̂
)
GT (θ̂)

)−1
∂
∂θ′ f(θ̂)′

)−1
−(

∂
∂θ′ f(θ)

(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
DT (θ)′Ω̂ (θ) Σ̂g(θ)−1Ω̂ (θ)DT (θ)

(
DT (θ)′Ω̂ (θ)DT (θ)

)−1
∂
∂θ′ f(θ)′

)−1
∥∥∥∥∥ = op(1).

Hence supθ∈Aθ,T |W (f (θ))−KΩ,f (θ)| = op(1), so the KΩ,f and Wald statistics are first-order

equivalent on Aθ,T as we wanted to show.
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Proof of Theorem 3 For S (θ) as in (3), note that Assumption 5 implies that for any

ε > 0,

inf
‖θ−θ0‖≥ε

S (θ)→p ∞.

Thus, if we define Aθ,T =
{
θ : a · S (θ) ≤ χ2

p,1−α

}
, we can see that supθ∈Aθ,T ‖θ − θ0‖ =

op (1). A mean-value expansion yields that gT (θ) = gT (θ0) + GT (θ∗) (θ − θ0) for θ∗ an

intermediate value which may vary across rows. Since supθ∈B(θ0) ‖GT (θ)− J(θ)‖ = op(1),

and supθ∈B(θ0)

∥∥∥Σ̂g(θ)− Σg(θ)
∥∥∥ = op(1) for an open ball B (θ0) around θ0 as in Assumption

6 and J(θ) and Σg(θ) are continuous in θ, we can see that

sup
θ∈Aθ,T

∣∣∣S (θ)− T (gT (θ0) + J (θ0) (θ − θ0))′ J (θ0)′Σg (θ0)−1 (gT (θ0) + J (θ0) (θ − θ0))
∣∣∣ = op(1).

Thus, for any ε > 0 we can see that for λ the minimal eigenvalue of Σg (θ0)−1 ,

P rT,ξ

{
inf

θ∈Aθ,T

(
S (θ)− λT ‖gT (θ0) + J (θ0) (θ − θ0)‖2

)
> −ε

}
→ 1.

Since
√
TgT (θ0) = Op(1) by Assumption 2, this implies thatsupθ∈Aθ,T ‖θ − θ0‖ = op

(
1√
T

)
.

Thus, we have established that Aθ,T =
{
θ : a · S (θ) ≤ χ2

p,1−α

}
shrinks towards θ0 at rate

√
T .

Next, note that KΩ,f (θ) ≥ 0 by construction, so KΩ,f (θ) + a · S (θ) ≥ a · S (θ) and

CSR,P ⊆ Aθ,T . By standard results on the distribution of tests for over-identifying restrictions

infθ S (θ)→d χ
2
k−pθ , so since

KΩ,f (θ) + a · S (θ) ≥ KΩ,f (θ) + a · inf
θ
S (θ)

and by Lemma 3 we know that supθ∈Aθ,T |KΩ,f (θ)−W (f (θ))| = op(1), we obtain

PrT,ξ

{
inf

θ∈Aθ,T
(KΩ,f (θ) + a · S (θ)−W (f (θ))) > 0

}
→ 1

with the consequence that PrT,ξ {CSR,P ⊆ CSNR} → 1, as we wanted to show.
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Supplementary Appendix to

Robust Two-Step Confidence Sets,

and the Trouble with the First Stage F-Statistic

Isaiah Andrews

Section A in this Supplementary Appendix tabulates weights ã (γ) and critical values

F̃−1 (1− α; ã (γ) , k, p) for calculating the robust confidence sets CSR,P and CSR defined in

(12) and (15) in the main text. Section B discusses an alternative approach to creating

robust confidence sets which requires only χ2 critical values.

Supplementary Appendix A: Critical Values

Tables 6-14 report weights ã (γ) for constructing robust confidence sets CSR,P and CSR as

in (12) and (15), together with critical values F̃−1 (1− α; ã (γ) , k, p) for calculating CSR.

These values are calculated following the approach discussed in Section 3.4 based on ten

million simulation draws (M = 107). Each table corresponds to a given pair (α, p) for

α ∈ {0.01, 0.05, 0.1} and p ∈ {1, 2, 3} and reports values for number of moment conditions

k ∈ {1, 2, ..., 30} and maximal distortion γ ∈ {0.01, 0.05, 0.1, 0.15, 0.2} .

Supplementary Appendix B: Alternative Robust Confidence Sets

The robust confidence sets CSR,P and CSR defined in (12) and (15) represent only one of

many ways to construct robust confidence sets which satisfy Assumption 1 and that can thus

be used to construct two-step confidence sets. While we find that this approach performs

quite well in simulation, it has the disadvantage of requiring that we calculate appropriate

weights a (γ) and critical values F−1 (1− α; ã (γ) , k, p) (though we tabulate these for many

values of (α, γ, k, p) in Supplementary Appendix A). In this section, we discuss an alternative

approach to constructing robust confidence sets, based on a generalization of the JK tests

suggested by Kleibergen (2005), which requires only χ2 critical values.
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γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2
k ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val
1 0.221 8.15 0.871 12.48 1.593 17.30 2.354 22.38 3.216 28.13
2 0.185 8.10 0.623 11.63 0.986 14.72 1.311 17.55 1.633 20.40
3 0.159 8.08 0.498 11.24 0.744 13.68 0.947 15.78 1.138 17.79
4 0.140 8.06 0.419 10.99 0.605 13.09 0.751 14.80 0.885 16.41
5 0.124 8.03 0.363 10.82 0.514 12.70 0.628 14.19 0.729 15.53
6 0.113 8.01 0.321 10.67 0.449 12.42 0.541 13.74 0.623 14.93
7 0.102 7.99 0.289 10.58 0.399 12.21 0.477 13.44 0.544 14.50
8 0.094 7.99 0.263 10.52 0.360 12.08 0.428 13.20 0.484 14.17
9 0.087 7.98 0.241 10.45 0.328 11.94 0.387 12.99 0.437 13.90
10 0.081 7.97 0.223 10.40 0.302 11.83 0.355 12.83 0.399 13.68
11 0.076 7.96 0.207 10.34 0.280 11.73 0.327 12.69 0.367 13.50
12 0.071 7.95 0.193 10.30 0.261 11.66 0.304 12.58 0.339 13.34
13 0.067 7.95 0.182 10.26 0.244 11.59 0.284 12.47 0.316 13.21
14 0.064 7.95 0.171 10.23 0.230 11.54 0.267 12.40 0.296 13.10
15 0.060 7.94 0.162 10.20 0.217 11.49 0.251 12.32 0.278 13.00
16 0.057 7.94 0.154 10.18 0.205 11.45 0.238 12.26 0.263 12.92
17 0.055 7.94 0.146 10.15 0.195 11.40 0.225 12.19 0.249 12.83
18 0.053 7.94 0.140 10.13 0.186 11.37 0.214 12.15 0.236 12.76
19 0.050 7.93 0.134 10.12 0.178 11.34 0.205 12.11 0.225 12.71
20 0.048 7.93 0.128 10.10 0.170 11.30 0.196 12.06 0.215 12.64
21 0.046 7.93 0.123 10.10 0.163 11.28 0.187 12.03 0.206 12.60
22 0.045 7.92 0.118 10.08 0.157 11.26 0.180 11.99 0.197 12.55
23 0.043 7.93 0.114 10.07 0.151 11.25 0.173 11.96 0.189 12.52
24 0.041 7.93 0.110 10.06 0.145 11.24 0.166 11.94 0.182 12.48
25 0.040 7.93 0.106 10.05 0.140 11.22 0.161 11.92 0.176 12.45
26 0.039 7.93 0.102 10.04 0.135 11.21 0.155 11.90 0.170 12.42
27 0.038 7.93 0.099 10.04 0.131 11.19 0.150 11.88 0.164 12.40
28 0.036 7.92 0.096 10.03 0.127 11.17 0.145 11.86 0.158 12.37
29 0.035 7.92 0.093 10.02 0.123 11.15 0.141 11.84 0.153 12.34
30 0.034 7.92 0.090 10.01 0.119 11.15 0.136 11.82 0.149 12.32

Table 6: Weights ã (γ) and critical values F̃−1 (1− α; ã (γ) , k, p) for p = 1 and α = 0.01.
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γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2
k ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val
1 0.085 4.17 0.419 5.45 0.852 7.12 1.338 8.99 1.901 11.15
2 0.066 4.17 0.289 5.30 0.510 6.48 0.710 7.60 0.911 8.75
3 0.054 4.16 0.226 5.23 0.378 6.24 0.504 7.12 0.623 7.97
4 0.046 4.16 0.186 5.18 0.304 6.11 0.396 6.86 0.479 7.56
5 0.040 4.16 0.159 5.15 0.256 6.02 0.329 6.70 0.392 7.32
6 0.035 4.16 0.138 5.13 0.221 5.96 0.282 6.59 0.333 7.15
7 0.031 4.16 0.123 5.11 0.196 5.92 0.247 6.52 0.290 7.03
8 0.028 4.15 0.111 5.10 0.175 5.88 0.221 6.46 0.258 6.94
9 0.026 4.15 0.101 5.09 0.159 5.86 0.199 6.41 0.232 6.87
10 0.024 4.15 0.092 5.08 0.146 5.84 0.182 6.37 0.211 6.82
11 0.022 4.15 0.085 5.07 0.134 5.82 0.167 6.34 0.194 6.77
12 0.021 4.15 0.079 5.06 0.125 5.80 0.155 6.32 0.179 6.73
13 0.019 4.15 0.074 5.06 0.116 5.79 0.145 6.30 0.167 6.70
14 0.018 4.15 0.069 5.05 0.109 5.78 0.136 6.28 0.156 6.67
15 0.017 4.15 0.065 5.05 0.103 5.77 0.127 6.26 0.146 6.65
16 0.016 4.15 0.062 5.04 0.097 5.76 0.120 6.25 0.138 6.63
17 0.015 4.15 0.059 5.04 0.092 5.75 0.114 6.24 0.131 6.61
18 0.015 4.15 0.056 5.04 0.087 5.75 0.108 6.23 0.124 6.59
19 0.014 4.15 0.053 5.04 0.083 5.74 0.103 6.22 0.118 6.58
20 0.013 4.15 0.051 5.03 0.079 5.74 0.098 6.21 0.113 6.57
21 0.013 4.15 0.048 5.03 0.076 5.73 0.094 6.20 0.108 6.56
22 0.012 4.15 0.046 5.03 0.073 5.73 0.090 6.20 0.103 6.55
23 0.012 4.15 0.045 5.03 0.070 5.72 0.087 6.19 0.099 6.54
24 0.011 4.15 0.043 5.02 0.067 5.72 0.083 6.18 0.095 6.53
25 0.011 4.15 0.041 5.02 0.065 5.71 0.080 6.18 0.092 6.52
26 0.011 4.15 0.040 5.02 0.063 5.71 0.078 6.18 0.088 6.52
27 0.010 4.15 0.039 5.02 0.060 5.71 0.075 6.17 0.085 6.51
28 0.010 4.15 0.037 5.02 0.058 5.70 0.072 6.17 0.083 6.51
29 0.010 4.15 0.036 5.02 0.057 5.70 0.070 6.16 0.080 6.50
30 0.009 4.15 0.035 5.02 0.055 5.70 0.068 6.16 0.077 6.50

Table 7: Weights ã (γ) and critical values F̃−1 (1− α; ã (γ) , k, p) for p = 1 and α = 0.05.
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γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2
k ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val
1 0.058 2.87 0.305 3.53 0.647 4.46 1.043 5.53 1.517 6.82
2 0.042 2.86 0.196 3.46 0.359 4.13 0.510 4.79 0.665 5.47
3 0.033 2.86 0.147 3.43 0.258 4.02 0.352 4.55 0.442 5.07
4 0.027 2.86 0.118 3.41 0.204 3.96 0.273 4.43 0.335 4.87
5 0.023 2.86 0.099 3.40 0.170 3.93 0.224 4.36 0.272 4.75
6 0.020 2.86 0.085 3.39 0.145 3.90 0.191 4.31 0.229 4.67
7 0.017 2.86 0.075 3.38 0.127 3.89 0.166 4.27 0.199 4.61
8 0.016 2.86 0.067 3.38 0.114 3.87 0.148 4.25 0.176 4.57
9 0.014 2.86 0.061 3.38 0.102 3.86 0.133 4.23 0.158 4.54
10 0.013 2.86 0.055 3.37 0.093 3.86 0.121 4.22 0.143 4.52
11 0.012 2.86 0.051 3.37 0.086 3.85 0.111 4.21 0.131 4.50
12 0.011 2.86 0.047 3.37 0.079 3.84 0.103 4.20 0.121 4.48
13 0.010 2.86 0.044 3.37 0.074 3.84 0.095 4.19 0.112 4.47
14 0.010 2.86 0.041 3.36 0.069 3.83 0.089 4.18 0.105 4.46
15 0.009 2.86 0.038 3.36 0.065 3.83 0.084 4.18 0.098 4.45
16 0.008 2.86 0.036 3.36 0.061 3.83 0.079 4.17 0.093 4.44
17 0.008 2.86 0.034 3.36 0.058 3.82 0.075 4.17 0.088 4.43
18 0.008 2.86 0.032 3.36 0.055 3.82 0.071 4.16 0.083 4.43
19 0.007 2.86 0.031 3.36 0.052 3.82 0.067 4.16 0.079 4.42
20 0.007 2.86 0.029 3.36 0.050 3.82 0.064 4.16 0.075 4.42
21 0.007 2.86 0.028 3.36 0.047 3.82 0.061 4.15 0.072 4.41
22 0.006 2.86 0.027 3.36 0.045 3.81 0.059 4.15 0.069 4.41
23 0.006 2.86 0.026 3.36 0.043 3.81 0.056 4.15 0.066 4.41
24 0.006 2.86 0.025 3.35 0.042 3.81 0.054 4.15 0.063 4.40
25 0.006 2.86 0.024 3.35 0.040 3.81 0.052 4.14 0.061 4.40
26 0.005 2.86 0.023 3.35 0.039 3.81 0.050 4.14 0.059 4.40
27 0.005 2.86 0.022 3.35 0.037 3.81 0.048 4.14 0.057 4.40
28 0.005 2.86 0.021 3.35 0.036 3.80 0.047 4.14 0.055 4.39
29 0.005 2.86 0.021 3.35 0.035 3.80 0.045 4.14 0.053 4.39
30 0.005 2.86 0.020 3.35 0.034 3.80 0.044 4.14 0.051 4.39

Table 8: Weights ã (γ) and critical values F̃−1 (1− α; ã (γ) , k, p) for p = 1 and α = 0.1.
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γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2
k ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val
2 0.176 10.85 0.637 15.10 1.086 19.25 1.513 23.18 1.950 27.22
3 0.155 10.82 0.523 14.68 0.838 18.06 1.110 21.01 1.371 23.89
4 0.138 10.79 0.447 14.41 0.690 17.36 0.889 19.81 1.072 22.10
5 0.125 10.78 0.392 14.21 0.590 16.87 0.746 19.01 0.887 20.97
6 0.114 10.76 0.349 14.06 0.518 16.53 0.646 18.45 0.759 20.17
7 0.105 10.75 0.316 13.94 0.462 16.26 0.570 18.03 0.664 19.59
8 0.097 10.74 0.288 13.85 0.418 16.05 0.512 17.69 0.592 19.12
9 0.091 10.73 0.266 13.76 0.381 15.87 0.464 17.42 0.535 18.75
10 0.085 10.72 0.246 13.70 0.351 15.72 0.426 17.20 0.488 18.44
11 0.080 10.71 0.230 13.64 0.326 15.60 0.393 17.01 0.449 18.19
12 0.076 10.71 0.215 13.58 0.304 15.49 0.365 16.84 0.416 17.97
13 0.072 10.70 0.203 13.53 0.285 15.39 0.341 16.70 0.387 17.78
14 0.068 10.70 0.191 13.49 0.268 15.31 0.321 16.58 0.363 17.62
15 0.065 10.69 0.181 13.45 0.253 15.24 0.302 16.47 0.341 17.48
16 0.062 10.69 0.172 13.42 0.240 15.17 0.286 16.37 0.322 17.35
17 0.059 10.69 0.164 13.39 0.228 15.11 0.271 16.29 0.305 17.24
18 0.057 10.68 0.157 13.37 0.218 15.06 0.258 16.22 0.290 17.15
19 0.054 10.68 0.150 13.34 0.208 15.01 0.246 16.15 0.276 17.05
20 0.052 10.67 0.144 13.32 0.199 14.97 0.235 16.09 0.264 16.97
21 0.050 10.67 0.138 13.30 0.191 14.93 0.225 16.03 0.252 16.90
22 0.049 10.67 0.133 13.28 0.183 14.90 0.216 15.98 0.242 16.83
23 0.047 10.67 0.128 13.27 0.176 14.87 0.208 15.93 0.232 16.77
24 0.045 10.67 0.124 13.25 0.170 14.84 0.200 15.88 0.224 16.71
25 0.044 10.66 0.120 13.23 0.164 14.80 0.193 15.84 0.215 16.66
26 0.043 10.66 0.116 13.22 0.159 14.78 0.186 15.81 0.208 16.60
27 0.041 10.66 0.112 13.20 0.153 14.75 0.180 15.77 0.201 16.56
28 0.040 10.66 0.109 13.19 0.149 14.73 0.174 15.74 0.194 16.52
29 0.039 10.65 0.105 13.18 0.144 14.71 0.169 15.71 0.188 16.48
30 0.038 10.65 0.102 13.17 0.140 14.69 0.164 15.68 0.182 16.45

Table 9: Weights ã (γ) and critical values F̃−1 (1− α; ã (γ) , k, p) for p = 2 and α = 0.01.
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γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2
k ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val
2 0.065 6.38 0.301 7.80 0.579 9.46 0.861 11.16 1.160 12.95
3 0.055 6.38 0.243 7.72 0.441 9.16 0.623 10.51 0.801 11.85
4 0.047 6.38 0.204 7.66 0.359 8.98 0.494 10.15 0.620 11.27
5 0.042 6.37 0.177 7.63 0.305 8.86 0.412 9.92 0.509 10.90
6 0.038 6.37 0.156 7.60 0.265 8.77 0.354 9.76 0.433 10.65
7 0.034 6.37 0.140 7.58 0.235 8.71 0.311 9.64 0.378 10.47
8 0.031 6.37 0.126 7.56 0.212 8.66 0.278 9.54 0.336 10.32
9 0.029 6.37 0.116 7.54 0.192 8.61 0.252 9.47 0.302 10.21
10 0.027 6.37 0.106 7.53 0.176 8.58 0.230 9.41 0.275 10.12
11 0.025 6.37 0.099 7.52 0.163 8.55 0.211 9.35 0.252 10.04
12 0.023 6.37 0.092 7.51 0.151 8.52 0.196 9.31 0.233 9.98
13 0.022 6.37 0.086 7.50 0.141 8.50 0.183 9.27 0.217 9.92
14 0.021 6.37 0.081 7.49 0.133 8.48 0.171 9.24 0.203 9.87
15 0.019 6.37 0.077 7.48 0.125 8.47 0.161 9.21 0.190 9.83
16 0.018 6.37 0.073 7.48 0.118 8.45 0.152 9.19 0.180 9.80
17 0.018 6.37 0.069 7.47 0.112 8.44 0.144 9.16 0.170 9.76
18 0.017 6.37 0.066 7.47 0.107 8.42 0.137 9.14 0.161 9.74
19 0.016 6.36 0.063 7.46 0.102 8.41 0.130 9.13 0.153 9.71
20 0.015 6.36 0.060 7.46 0.097 8.40 0.124 9.11 0.146 9.69
21 0.015 6.36 0.057 7.46 0.093 8.39 0.119 9.09 0.140 9.66
22 0.014 6.36 0.055 7.45 0.089 8.38 0.114 9.08 0.134 9.64
23 0.014 6.36 0.053 7.45 0.086 8.38 0.109 9.07 0.128 9.63
24 0.013 6.36 0.051 7.45 0.082 8.37 0.105 9.06 0.123 9.61
25 0.013 6.36 0.049 7.45 0.079 8.36 0.101 9.05 0.119 9.59
26 0.012 6.36 0.048 7.44 0.077 8.36 0.098 9.03 0.115 9.58
27 0.012 6.36 0.046 7.44 0.074 8.35 0.094 9.02 0.111 9.57
28 0.011 6.36 0.044 7.44 0.072 8.35 0.091 9.02 0.107 9.55
29 0.011 6.36 0.043 7.44 0.069 8.34 0.088 9.01 0.103 9.54
30 0.011 6.36 0.042 7.44 0.067 8.34 0.086 9.00 0.100 9.53

Table 10: Weights ã (γ) and critical values F̃−1 (1− α; ã (γ) , k, p) for p = 2 and α = 0.05.
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γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2
k ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val
2 0.043 4.80 0.214 5.59 0.431 6.59 0.660 7.65 0.911 8.80
3 0.035 4.80 0.166 5.55 0.318 6.43 0.463 7.29 0.608 8.17
4 0.030 4.80 0.137 5.52 0.254 6.34 0.361 7.11 0.463 7.85
5 0.026 4.80 0.116 5.51 0.213 6.29 0.297 6.99 0.376 7.65
6 0.023 4.80 0.101 5.50 0.183 6.25 0.253 6.90 0.317 7.52
7 0.020 4.80 0.090 5.49 0.161 6.21 0.221 6.84 0.275 7.42
8 0.018 4.80 0.081 5.48 0.144 6.19 0.197 6.80 0.243 7.35
9 0.017 4.80 0.073 5.47 0.130 6.17 0.177 6.76 0.218 7.29
10 0.015 4.80 0.067 5.47 0.119 6.15 0.161 6.73 0.197 7.24
11 0.014 4.80 0.062 5.47 0.109 6.14 0.148 6.71 0.181 7.20
12 0.013 4.80 0.058 5.46 0.101 6.13 0.136 6.69 0.167 7.17
13 0.012 4.80 0.054 5.46 0.094 6.12 0.127 6.67 0.155 7.14
14 0.012 4.80 0.050 5.46 0.088 6.11 0.118 6.65 0.144 7.12
15 0.011 4.80 0.047 5.45 0.083 6.11 0.111 6.64 0.135 7.10
16 0.010 4.80 0.045 5.45 0.078 6.10 0.105 6.63 0.127 7.08
17 0.010 4.80 0.042 5.45 0.074 6.09 0.099 6.62 0.120 7.07
18 0.009 4.80 0.040 5.45 0.070 6.09 0.094 6.61 0.114 7.05
19 0.009 4.80 0.038 5.45 0.067 6.08 0.089 6.60 0.108 7.04
20 0.008 4.80 0.037 5.45 0.064 6.08 0.085 6.59 0.103 7.03
21 0.008 4.80 0.035 5.44 0.061 6.08 0.081 6.59 0.098 7.02
22 0.008 4.80 0.034 5.44 0.058 6.07 0.078 6.58 0.094 7.01
23 0.007 4.80 0.032 5.44 0.056 6.07 0.075 6.57 0.090 7.00
24 0.007 4.80 0.031 5.44 0.054 6.07 0.072 6.57 0.087 6.99
25 0.007 4.80 0.030 5.44 0.052 6.06 0.069 6.56 0.083 6.99
26 0.007 4.80 0.029 5.44 0.050 6.06 0.066 6.56 0.080 6.98
27 0.006 4.80 0.028 5.44 0.048 6.06 0.064 6.55 0.077 6.97
28 0.006 4.80 0.027 5.44 0.046 6.06 0.062 6.55 0.075 6.97
29 0.006 4.80 0.026 5.44 0.045 6.05 0.060 6.55 0.072 6.96
30 0.006 4.80 0.025 5.44 0.044 6.05 0.058 6.54 0.070 6.96

Table 11: Weights ã (γ) and critical values F̃−1 (1− α; ã (γ) , k, p) for p = 2 and α = 0.1.
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γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2
k ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val
3 0.153 13.08 0.531 17.38 0.880 21.34 1.196 24.92 1.506 28.44
4 0.138 13.06 0.459 17.10 0.732 20.58 0.965 23.58 1.185 26.42
5 0.126 13.04 0.406 16.89 0.630 20.05 0.814 22.68 0.983 25.11
6 0.116 13.03 0.364 16.73 0.555 19.66 0.707 22.03 0.843 24.17
7 0.107 13.01 0.331 16.60 0.497 19.35 0.626 21.53 0.740 23.48
8 0.100 13.00 0.303 16.49 0.451 19.11 0.562 21.13 0.660 22.92
9 0.093 12.99 0.280 16.41 0.412 18.91 0.512 20.83 0.596 22.49
10 0.088 12.98 0.260 16.33 0.381 18.73 0.469 20.55 0.545 22.12
11 0.083 12.98 0.243 16.26 0.354 18.59 0.434 20.33 0.501 21.81
12 0.079 12.97 0.229 16.20 0.330 18.47 0.404 20.14 0.465 21.55
13 0.075 12.97 0.216 16.15 0.310 18.36 0.377 19.97 0.433 21.33
14 0.071 12.96 0.204 16.11 0.292 18.26 0.354 19.83 0.406 21.14
15 0.068 12.96 0.194 16.06 0.276 18.18 0.334 19.70 0.382 20.96
16 0.065 12.95 0.184 16.03 0.262 18.10 0.316 19.58 0.361 20.80
17 0.062 12.95 0.176 15.99 0.249 18.03 0.300 19.48 0.342 20.66
18 0.059 12.94 0.168 15.96 0.238 17.96 0.286 19.38 0.325 20.54
19 0.057 12.94 0.161 15.93 0.227 17.91 0.273 19.29 0.309 20.43
20 0.055 12.94 0.155 15.91 0.217 17.86 0.261 19.22 0.295 20.33
21 0.053 12.93 0.149 15.89 0.209 17.81 0.250 19.15 0.283 20.23
22 0.051 12.93 0.143 15.86 0.201 17.77 0.240 19.09 0.271 20.15
23 0.050 12.93 0.138 15.84 0.193 17.72 0.231 19.03 0.260 20.07
24 0.048 12.92 0.133 15.82 0.186 17.68 0.222 18.97 0.251 20.00
25 0.047 12.92 0.129 15.80 0.180 17.65 0.214 18.92 0.241 19.93
26 0.045 12.92 0.125 15.79 0.174 17.62 0.207 18.87 0.233 19.87
27 0.044 12.92 0.121 15.77 0.168 17.58 0.200 18.83 0.225 19.81
28 0.043 12.92 0.117 15.76 0.163 17.55 0.194 18.79 0.218 19.76
29 0.041 12.92 0.114 15.74 0.158 17.53 0.188 18.75 0.211 19.71
30 0.040 12.91 0.111 15.73 0.153 17.50 0.182 18.71 0.204 19.66

Table 12: Weights ã (γ) and critical values F̃−1 (1− α; ã (γ) , k, p) for p = 3 and α = 0.01.
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γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2
k ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val
3 0.055 8.24 0.250 9.77 0.470 11.49 0.683 13.16 0.902 14.86
4 0.048 8.24 0.213 9.71 0.387 11.29 0.547 12.74 0.702 14.17
5 0.043 8.24 0.186 9.67 0.331 11.15 0.459 12.47 0.579 13.73
6 0.039 8.24 0.165 9.64 0.289 11.04 0.396 12.27 0.494 13.42
7 0.035 8.24 0.149 9.61 0.258 10.96 0.349 12.13 0.432 13.19
8 0.033 8.23 0.135 9.59 0.232 10.90 0.312 12.01 0.384 13.01
9 0.030 8.23 0.124 9.57 0.212 10.85 0.283 11.91 0.346 12.87
10 0.028 8.23 0.115 9.56 0.195 10.81 0.259 11.84 0.315 12.74
11 0.026 8.23 0.107 9.55 0.180 10.77 0.239 11.77 0.289 12.65
12 0.025 8.23 0.100 9.54 0.168 10.74 0.221 11.71 0.267 12.56
13 0.023 8.23 0.094 9.52 0.157 10.71 0.207 11.67 0.249 12.49
14 0.022 8.23 0.088 9.52 0.147 10.69 0.194 11.62 0.233 12.43
15 0.021 8.23 0.084 9.51 0.139 10.67 0.182 11.58 0.219 12.37
16 0.020 8.23 0.079 9.50 0.132 10.65 0.172 11.55 0.206 12.32
17 0.019 8.23 0.076 9.50 0.125 10.63 0.163 11.52 0.195 12.28
18 0.018 8.23 0.072 9.49 0.119 10.62 0.155 11.50 0.185 12.25
19 0.017 8.23 0.069 9.49 0.113 10.60 0.148 11.47 0.176 12.21
20 0.017 8.23 0.066 9.48 0.108 10.59 0.141 11.45 0.168 12.17
21 0.016 8.23 0.063 9.48 0.104 10.58 0.135 11.43 0.160 12.15
22 0.015 8.23 0.061 9.47 0.100 10.56 0.129 11.41 0.154 12.12
23 0.015 8.23 0.058 9.47 0.096 10.56 0.124 11.40 0.148 12.10
24 0.014 8.23 0.056 9.47 0.092 10.55 0.119 11.38 0.142 12.07
25 0.014 8.23 0.054 9.46 0.089 10.54 0.115 11.37 0.137 12.05
26 0.013 8.23 0.053 9.46 0.086 10.53 0.111 11.35 0.132 12.04
27 0.013 8.23 0.051 9.46 0.083 10.53 0.107 11.34 0.127 12.02
28 0.013 8.23 0.049 9.46 0.080 10.52 0.104 11.33 0.123 12.00
29 0.012 8.23 0.048 9.45 0.078 10.51 0.100 11.32 0.119 11.99
30 0.012 8.23 0.046 9.45 0.075 10.51 0.097 11.31 0.115 11.97

Table 13: Weights ã (γ) and critical values F̃−1 (1− α; ã (γ) , k, p) for p = 3 and α = 0.05.
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γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2
k ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val ã (γ) Crit Val
3 0.036 6.48 0.176 7.35 0.347 8.42 0.522 9.51 0.705 10.66
4 0.031 6.48 0.147 7.32 0.281 8.32 0.410 9.28 0.539 10.26
5 0.027 6.48 0.126 7.31 0.237 8.25 0.339 9.14 0.439 10.01
6 0.024 6.48 0.111 7.29 0.205 8.20 0.290 9.03 0.371 9.84
7 0.022 6.47 0.099 7.28 0.181 8.16 0.254 8.96 0.322 9.71
8 0.020 6.47 0.089 7.27 0.162 8.13 0.226 8.90 0.285 9.61
9 0.018 6.47 0.081 7.26 0.147 8.11 0.204 8.85 0.255 9.53
10 0.017 6.47 0.074 7.26 0.134 8.08 0.186 8.81 0.232 9.47
11 0.015 6.47 0.069 7.25 0.124 8.07 0.170 8.77 0.212 9.41
12 0.014 6.47 0.064 7.25 0.115 8.05 0.158 8.75 0.196 9.37
13 0.013 6.47 0.060 7.24 0.107 8.04 0.147 8.72 0.182 9.33
14 0.013 6.47 0.056 7.24 0.100 8.03 0.137 8.70 0.169 9.30
15 0.012 6.47 0.053 7.24 0.094 8.02 0.129 8.68 0.159 9.27
16 0.011 6.47 0.050 7.23 0.089 8.01 0.121 8.66 0.149 9.25
17 0.011 6.47 0.048 7.23 0.084 8.00 0.115 8.65 0.141 9.22
18 0.010 6.47 0.045 7.23 0.080 7.99 0.109 8.64 0.134 9.20
19 0.010 6.47 0.043 7.23 0.076 7.99 0.103 8.62 0.127 9.18
20 0.009 6.47 0.041 7.23 0.073 7.98 0.099 8.61 0.121 9.17
21 0.009 6.47 0.040 7.22 0.070 7.98 0.094 8.60 0.116 9.15
22 0.009 6.47 0.038 7.22 0.067 7.97 0.090 8.59 0.111 9.14
23 0.008 6.47 0.036 7.22 0.064 7.97 0.087 8.59 0.106 9.13
24 0.008 6.47 0.035 7.22 0.062 7.96 0.083 8.58 0.102 9.11
25 0.008 6.47 0.034 7.22 0.059 7.96 0.080 8.57 0.098 9.10
26 0.007 6.47 0.033 7.22 0.057 7.96 0.077 8.57 0.094 9.09
27 0.007 6.47 0.032 7.22 0.055 7.95 0.075 8.56 0.091 9.08
28 0.007 6.47 0.030 7.22 0.053 7.95 0.072 8.55 0.088 9.08
29 0.007 6.47 0.030 7.21 0.052 7.95 0.070 8.55 0.085 9.07
30 0.007 6.47 0.029 7.21 0.050 7.94 0.067 8.54 0.082 9.06

Table 14: Weights ã (γ) and critical values F̃−1 (1− α; ã (γ) , k, p) for p = 3 and α = 0.1.
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Like the confidence sets CSR,P and CSR discussed in the main text, JK confidence sets are

based on the fact that, evaluated at the true parameter value, KΩ,f (θ0) and S (θ0)−KΩ,f (θ0)

are asymptotically independent and distributed χ2
p and χ2

k−p. To construct the JK confidence

set for β, define JΩ,f (θ) = S (θ)−KΩ,f (θ) and for constants αK , αJ ∈ (0, 1) let

CSJK =
{
β : ∃θ s.t. β = f (θ) , KΩ,f (θ) ≤ χ2

1−αK ,p, and JΩ,f (θ) ≤ χ2
1−αJ ,k−p

}

or, equivalently

CSJK =
{
β : min

θ:β=f(θ)
max

{
KΩ,f (θ)− χ2

1−αK ,p, JΩ,f (θ)− χ2
1−αJ ,k−p

}
≤ 0

}
.

Under Assumptions 2-6 one can show using the proofs of Theorems 2 and 3 that the asymp-

totic coverage of this robust confidence set is at least (1− αJ) (1− αK) = 1−αJ−αK+αJαK
under both weak and strong identification.

To construct a preliminary confidence set CSJK,P such that CSR,P = CSJK,P will sat-

isfy Assumption 1, let CSJK,P be the JK confidence set based on (αJ,P , αK,P ) satisfying

(1− αJ,P ) (1− αK,P ) = 1 − α − γ and αK,P > α. CSJK,P will have sequential coverage at

least 1− α− γ under weak identification,

SCP (CSJK,P ,ΞW ) ≥ 1− α− γ

and will be contained in the non-robust confidence set with probability tending to one under

strong identification

inf
ξ∈ΞS

PrT,ξ {CSJK,P ⊆ CSNR} → 1

for CSNR as in (13). Thus, this choice satisfies Assumption 1(1) and (3). If we define

CSR = CSJK for αK ≤ αK,P , αJ ≤ αJ,P , and (1− αJ) (1− αK) = 1 − α, we can see that

CSJK,P ⊆ CSJK for all realizations of the data, so Assumption 1(2) is satisfied as well. Thus,

under the assumptions of Theorem 3 the choice CSR,P = CSJK,P and CSR = CSJK satisfies

Assumption 1 and thus yields two-step confidence sets which control coverage distortions.

Simulation results based on the same calibrations studied in Section 4 (available on request)
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show that two-step procedures based on JK confidence sets with αK = 0.8 · α and αK,P =

0.8 (α + γ) perform comparably to the approach developed in the main text for α = 5% and

γ = 10%.
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