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Abstract

We provide a proof that Markov perfect equilibrium is unique in the standard infinite-
horizon incomplete-market model with a default option which, following Eaton and Gersovitz
(1981), has become a benchmark for quantitative analyses of sovereign debt (Arellano (2008),
Aguiar and Gopinath (2006), Aguiar and Amador (2014)).

1 Motivation

A common view of sovereign debt markets is that they are prone to multiple equilibria: a market
panic may inflate bond yields, deteriorate the sustainability of government debt and precipitate a
default event, justifying investor fears. Indeed, Mario Draghi’s speech in July 2012, announcing
that the ECB was “ready to do whatever it takes” to preserve the single currency, and the subse-
quent creation of the Outright Monetary Transactions (OMT) program, are widely seen as having
moved Eurozone sovereign debt markets out of an adverse equilibrium: since then, bond spreads
have experienced dramatic falls as fears of default have receded. Prominent models in the aca-
demic literature, such as Calvo (1988), Cole and Kehoe (2000) and Lorenzoni and Werning (2013),
feature multiple equilibria which justify this common view.

At the same time, in the last decade, a booming quantitative literature in the line of Eaton
and Gersovitz (1981)—initiated by Arellano (2008) and Aguiar and Gopinath (2006), and sum-
marized by Aguiar and Amador (2014)—has studied sovereign debt markets using a benchmark
infinite-horizon incomplete-market model whose analytical properties are not well understood1.
In particular, it had so far not been known whether these models might feature multiple Markov

∗We thank Iván Werning for inspiration, continued encouragement and many useful suggestions. We also thank
Jonathan Parker, Alp Simsek and Yu Xu for helpful comments. Remaining errors are our own. Adrien Auclert gratefully
acknowledges financial support from the Macro-Financial Modeling group.

1Another booming literature uses a similar class of models to analyze unsecured consumer credit (Chatterjee, Cor-
bae, Nakajima and Ríos-Rull (2007))
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perfect equilibria, and if so, whether the reason behind the multiplicity echoed the common intu-
ition described in the previous paragraph. An example of how the literature viewed this issue is
in Hatchondo, Martinez and Sapriza (2009):

Krusell and Smith (2003) show that, typically, there is a problem of indeterminacy of
Markov-perfect equilibria in an infinite-horizon economy. In order to avoid this prob-
lem, we analyze the equilibrium that arises as the limit of the finite-horizon economy
equilibrium.

In this note, we show that Markov perfect equilibrium is unique in the canonical infinite-horizon
model with Markov income and permanent autarky punishment. We also extend the uniqueness
result to a case where income is independent and identically distributed across periods, but re-
entry is possible after a stochastic period of market exclusion—a typical assumption used in the
literature. The key to the proof is to rule out the possibility of self-sustaining improvements in the
value of borrowing arising from improvements in the terms of borrowing.

The intuition for the impossibility of such a feedback is as follows. If there are to be two
different equilibria, in one of them the government must be running a higher debt level. That
debt level must be self-sustaining, in that a government starting with this amount of debt must
find that the value from continuing to pay justifies not defaulting. But in the alternative, lower-
debt equilibrium, the government could have followed an issuance strategy along every path
that would have maintained its liabilities at a uniform distance from the higher-debt government,
economizing on interest costs and default premia. And yet that government found default to
be worthwhile. Since governments are equally well-off once access to financial markets is lost,
equilibrium must be unique.

Interestingly, this proof strategy by replication has echoes of that used by Bulow and Rogoff
(1989) to rule out reputational equilibria in a similar class of models where sovereign governments
retain the ability to save after defaulting. Although the Bulow-Rogoff result is cast in a complete
market setting, we show in Section 2.3 how to adapt it to fit an incomplete market framework,
drawing parallels to our own argument along the way. The Bulow-Rogoff result does not apply
directly to the model we study: the government can be prevented from saving after default, and
may face additional, non-reputational costs of default in the form of output losses. This allows
some debt to be sustained in equilibrium. But just as Bulow and Rogoff (1989) show that no
positive level of debt can be purely self-sustaining in equilibrium, we show that multiple equilibria
in the canonical model cannot each be self-sustaining.

Our result is important because it shows that the multiplicity intuition is not valid in a bench-
mark model that is accepted as a good description—both qualitative and quantitative—of sovereign
debt markets. It provides an additional analytical result for a model about which few such results
exist. And it shows that alternative strategies to compute Markov perfect equilibria should all
converge to the same solution. Even though we do not cover all cases of models written in the
literature—indeed, the proofs become more involved as the model increases in complexity—our
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results suggest that it is unlikely that quantitative findings in the literature are driven by a hidden
equilibrium selection.

To be clear, our objective is not to deny that sovereign debt markets can be prone to self-
fulfilling crises, or that OMT may have ruled out a bad equilibrium. But we hope that a proof of
equilibrium uniqueness in this benchmark model may help sharpen the literature’s understanding
of the assumptions that are needed for such multiple equilibria to exist. We provide our thoughts
on this matter in the conclusion.

2 Short-term debt, Markov income, and permanent exclusion

2.1 Model description

We now describe what we call the canonical infinite-horizon model with Markov income and per-
manent autarky punishment (see Aguiar and Amador (2014)). Output y follows a discrete Markov
chain with elements in Y , |Y| = Y ∈ N and transition matrix π (y′|y). A government has utility
over consumption

E

[
∞

∑
t=0

βtu (ct)

]

Each period the government receives y as endowment, and strategically decides to default given
y ∈ Y and the level of debt b that it has promised to repay. Default is punished by permanent au-
tarky, with output also reduced by an exogenous cost φ (y) ∈ [0, y]. While in good credit standing,
the government decides how much to borrow or lend given a bond revenue schedule. This sched-
ule is determined by competitive, risk-neutral international investors, who demand an expected
gross return of R.

We focus on Markov perfect equilibria, where the schedule depends only on the size of the
bond issue: Q(y, b′) is the total amount raised when the government promises to repay b′. Letting
p = 1 denote the decision to repay and p = 0 denote the decision to default, the value function
Vo(y, b) given income y and debt b is given by

Vo(y, b) = max
p∈{0,1}

pV(y, b) + (1− p)Vd(y) (1)

where the value of repaying is

V(y, b) = max
b′

u(c) + βEy′|y
[
Vo(y′, b′)

]

s.t. c + b = y + Q(y, b′) (2)

and the value of default is

Vd(y) = u(y− φ (y)) + βEy′|y
[
Vd(y′)

]
(3)
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We assume that when a government is indifferent between repayment and default, it chooses
to repay. Thus p(y, b) = 1 if, and only if V(y, b) ≥ Vd(y). Since international investors receive
expected repayment Ey′|y[p(y′, b′)], and demand return R, the bond price schedule is

Q(y, b′) =
b′

R
Ey′|y

[
p
(
y′, b′

)]
=

b′

R
Py′|y

[
V(y′, b′) ≥ Vd(y′)

]
(4)

Definition. A Markov perfect equilibrium is a set of policy functions p (y, b), c (y, b), b′ (y, b) for
repayment, consumption and next period borrowing, value functions V (y, b), Vo (y, b), Vd (y)
and a bond revenue schedule Q(y, b′) such that (1)-(4) are satisfied.

Assumption 1. u is strictly increasing, continuous, concave, and u(c) = −∞ if c ≤ 0.

Assumption 2. To rule out Ponzi schemes, there exists an upper bound B > 0 such that the government
must choose b ≤ B. (B may be chosen high enough to be non-binding in equilibrium.)

Assumption 3. R > 1 and βR < 1.

Under these assumptions, it is possible to prove that V (y, b) is continuous, strictly decreasing
in b, and declines to −∞ for sufficiently large b.2 Hence, at each level of income y, there exists a
threshold b∗ (y) such that the government repays if and only if b ≤ b∗ (y); this threshold is the
unique value that satisfies the equality

V (y, b∗ (y)) = Vd(y)

Note that the thresholds b∗ (y) need not be ordered monotonically in y, since a higher current
income typically raises both the value of repaying and the value of default. In the case of i.i.d
income with no output costs of default, it is possible to show that b∗ (y) is increasing in y (see
Arellano (2008)) but such monotonicity is not needed for our proof.

Given (4), a bond revenue schedule Q is characterized by the thresholds {b∗ (y)}y∈Y induced
by the policy function:

Q(y, b′) =
b′

R
Py′|y

[
b′ ≤ b∗

(
y′
)]

=
b′

R ∑
{y′ :b′≤b∗(y′)}

π
(
y′|y

)
(5)

An illustration of equilibrium objects is given in figures 1 and 2.3

2See Appendix A for all the proofs that are not in the main text.
3The computation is for an example with two states Y = {yL, yH}, with an iid income process, so that the bond

price schedule is independent of y. The calibration is u = c1−γ

1−γ with γ = 2, β = 0.8, R = 1.1, yL = 0.2, yH = 1.2 and
π (yL) = 0.2. Starting from a risk-free bond revenue schedule, the algorithm iterates on the value function using a grid
with 750 points, and updates the bond revenue schedule using the default policy until convergence. See Hatchondo,
Martinez and Sapriza (2010) for a discussion of quantitative solution methods in this class of models.
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2.2 Uniqueness of equilibrium

Suppose that we have two distinct equilibria (V, Q) and (Ṽ, Q̃), each with a set of default thresh-
olds {b∗ (y)}y∈Y and

{
b̃∗ (y)

}
y∈Y . At first glance, it seems difficult to derive any relationship

between these two equilibria.
For instance, if for some y we have b∗(y) > b̃∗(y) and for other y we have b∗(y) < b̃∗(y),

neither bond price schedule Q or Q̃ will necessarily dominate the other. In one equilibrium, it may
be easier to borrow at certain levels of b and harder at others—and with an infinite horizon, the
complex differences in default policy may be induced endogenously by the resulting differences
in payoffs.

The key observation of this paper is that we can cut through this complexity with a simple
inequality for the two value functions V and Ṽ, related to the maximum difference between the
default thresholds. The basis of this inequality is a simple replication strategy we call mimicking
at a distance. Suppose that b̃∗(y) exceeds b∗(y) by at most M > 0. Then we show that it is always
weakly better to start with debt of b − M in the (V, Q) equilibrium than with debt of b in the
(Ṽ, Q̃) equilibrium, and indeed strictly better whenever b ≤ b̃∗(y). This observation, formalized
in Theorem 1, will ultimately be the basis of the proof that distinct equilibria are impossible in
Theorem 2.

Why? The government with debt b−M in the (V, Q) equilibrium has the option to mimic the
policy of the government with debt b in the (Ṽ, Q̃) equilibrium—always defaulting at the same
points, and otherwise choosing the same level of debt for the next period minus M. Before it
defaults, this government is better off because it pays less to service debt, allowing it to consume
more. Debt service, in turn, costs less for two reasons. First, the mimicking government poses
weakly less risk of default. This is due to the choice of M: since M is the maximum amount by
which the default thresholds b̃∗(y) exceed the thresholds b∗(y), as long as the government in the
(V, Q) equilibrium chooses debt of M less than the government it is mimicking, it is weakly less
likely to default. Second, the mimicking government has strictly less debt, meaning that the cost
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of providing an expected return of R > 1 on this debt is lower.
Following this policy, the mimicking government always consumes more until default, imply-

ing weakly higher payoffs that become strictly higher as long as it does not default right away.

Theorem 1 (Mimicking at a distance.). Consider two distinct equilibria (V, Q) and
(

Ṽ, Q̃
)

, with asso-

ciated default thresholds {b∗ (y)}y∈Y and
{

b̃∗ (y)
}

y∈Y . Define

M = max
y

b̃∗ (y)− b∗ (y) (6)

and assume without loss of generality that M > 0. Then, for any y,

V(y, b−M) ≥ Ṽ(y, b) (7)

with strict inequality whenever b ≤ b̃∗(y).

Proof. First, note that for any b′ and y, applying (5) we have

Q
(
y, b′ −M

)
=

(b′ −M)

R ∑
{y′ :b′−M≤b∗(y′)}

π
(
y′|y

)
≥ (b′ −M)

R ∑
{y′ :b′≤b̃∗(y′)}

π(y′|y)

>


b′

R ∑
{y′ :b′≤b̃∗(y′)}

π(y′|y)

−M = Q̃(y, b′)−M (8)

Thus the amount that a government in equilibrium (V, Q) can raise by issuing b′ − M of debt
is always strictly larger than the amount that a government in equilibrium (Ṽ, Q̃) can raise by
issuing b′ of debt, minus M. The two intermediate inequalities in (8) reflect the two sources of this
advantage. First, there are weakly more cases in which b′ −M ≤ b∗(y′) than in which b′ ≤ b̃∗(y′),
and this higher chance of repayment makes it possible to raise more. Second, since R > 1, issuing
M less debt costs strictly less than M in the current period.

Now we can formally define the mimicking at a distance policy. For any income and debt levels
y and b, let the history y0 be such that the income and debt owed at t = 0 are y and b. The
equilibrium

(
Ṽ, Q̃

)
induces an allocation

{
c̃
(
yt) , b̃

(
yt−1) , p̃

(
yt)}

yt�y0
at all histories following

y0.4 We construct a policy for the government in the equilibrium (V, Q) starting at y0 as follows.
For every history yt � y0, let

b
(

yt−1
)

= b̃
(

yt−1
)
−M

p
(
yt) = p̃

(
yt)

c
(
yt) =





c̃
(
yt)+ Q

(
yt, b̃

(
yt)−M

)
−
(

Q̃
(

yt, b̃
(
yt))−M

)
if p̃

(
yt) = 1

c̃
(
yt) if p̃

(
yt) = 0

(9)

4b̃(yt) is defined to be the amount of debt chosen at history yt to be repaid in period t + 1.
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We have, at all histories where repayment takes place (p̃
(
yt) = 1),

c
(
yt)+ b

(
yt−1

)
−Q

(
yt, b

(
yt)) = c

(
yt)+ b̃

(
yt)−M−Q

(
yt, b̃

(
yt)−M

)

= c̃
(
yt)+ b̃

(
yt)− Q̃

(
yt, b̃

(
yt))

= yt

and trivially c(yt) = c̃(yt) = yt − φ(yt) whenever p̃(yt) = 0. Hence the budget constraint is
satisfied at each yt. Furthermore, using (8) we see that c(yt) > c̃(yt) whenever p̃(yt) = 1. In short,
when there is repayment, the mimicking policy (9) sets consumption c(yt) equal to consumption
c̃(yt) in the other equilibrium, plus a bonus Q

(
yt, b̃

(
yt)−M

)
−
(

Q̃
(

yt, b̃
(
yt))−M

)
> 0 from

lower debt costs. In default, the two policies provide equal consumption.
The mimicking policy, of course, need not be optimal; but since it is feasible, it serves as a

lower bound for V(y, b−M). We thus conclude from c(yt) ≥ c̃(yt) that

V (y, b−M) ≥ ∑
yt�y0

βtΠ
(
yt) u

(
c
(
yt)) ≥ ∑

yt�y0

βtΠ
(
yt) u

(
c̃
(
yt)) = Ṽ (y, b)

with strict inequality whenever p̃(y0) = 1 (or equivalently b ≤ b̃∗(y)), since this implies c(y0) >

c̃(y0).

An illustration of the mimicking policy used in Theorem 1 is given in Figures 3 and 4, which
depict time paths in a hypothetical two-state case. In this case, debt starts relatively high and the
high-income state yH keeps recurring, leading the government to deleverage in anticipation of
lower incomes in the future. Figure 3 shows the paths of b̃ (filled circles) and the mimicking policy
b = b̃−M (hollow circles), while Figure 4 shows the paths of c̃ (filled circles) and the consumption
c = c̃ + Q(y, b̃−M)− (Q̃(y, b̃)−M) induced by the mimicking policy (hollow circles).

Although c is always greater than c̃ in Figure 4, the gap c− c̃ differs substantially across peri-
ods. This reflects fluctuations in the two sources of c− c̃: differences in default premia, and the
lower cost of servicing b = b̃−M rather than b̃. First, since both debt levels at t = 2 are above the
respective default thresholds for yL, there is no difference at t = 1 in the two default premia. At
t = 3, however, the mimicking policy achieves a debt level below b∗(yL), while the other policy
has debt that remains above b̃∗(yL). Thus the default premium disappears at t = 2 for the mimick-
ing policy while still being paid for the other policy, leading to an expansion in the gap c− c̃. From
t = 4 onward both policies achieve debt levels below their yL default thresholds, leading to the
disappearance of all default premia. This causes the gap c− c̃ to compress dramatically starting
at t = 3.

The central observation is that if it starts with debt M = max b̃∗(y) − b∗(y) below the other
government, the mimicking government can keep itself at the fixed distance M, achieving higher
consumption along the way.

We now turn to the main result, which uses Theorem 1 to rule out multiple equilibria (V, Q)
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Figure 3: Example paths for b and b̃.

c

t = 1 t = 2 t = 3 t = 4

Figure 4: Example paths for c and c̃.

and (Ṽ, Q̃) altogether.

Theorem 2. In the canonical model, Markov perfect equilibrium has a unique value function V(y, b) and
debt price schedule Q(y, b).

Proof. Suppose to the contrary that there are distinct equilibria (V, Q) and
(

Ṽ, Q̃
)

, with associated

default thresholds {b∗ (y)}y∈Y and
{

b̃∗ (y)
}

y∈Y . From (5), these thresholds give the price sched-
ule Q, and lemma A.4 shows that the value function V is unique conditional on Q. It suffices,
therefore, for us to show that the thresholds are unique.

Without loss of generality, assume that the maximal difference between b̃∗ and b∗ is positive
and is attained at income level y ∈ Y :

max
y

b̃∗ (y)− b∗ (y) = b̃∗ (y)− b∗ (y) = M > 0

Applying Theorem 1 for y = ȳ and b = b̃∗(ȳ) = b∗(ȳ) + M, we know that

V(ȳ, b∗(ȳ)) > V(ȳ, b̃∗(ȳ))

But this contradicts the fact that b∗(ȳ) and b̃∗(ȳ) are default thresholds, which requires V(ȳ, b∗(ȳ)) =
V(ȳ, b̃∗(ȳ)) = Vd(ȳ). Thus our premise of distinct equilibria cannot stand.

The intuitive thrust of Theorems 1 and 2 is that distinct debt price schedules cannot both be
self-sustaining. No two schedules Q and Q̃ can simultaneously rationalize their corresponding de-
fault thresholds b∗(ȳ) and b̃∗(ȳ) at the income level ȳ of maximum difference. Instead, mimicking
at a distance it is strictly better to face Q starting at the lower default threshold b∗(ȳ), and this is
inconsistent with the assumption that the value function at each threshold must be the (common)
default value.
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An adaptation of Theorem 2 also shows that equilibrium as defined by Zhang (1997) is unique.
Zhang restricts borrowing to always be risk-free, with endogenous state-by-state borrowing limits
φ (y) defined such that the value of borrowing at the limit for a state is that of autarky for that state.
Assuming that M = maxy {φ̃ (y)− φ (y)} = φ̃ (y)− φ (y) > 0, a strategy for the government at
φ (y) of mimicking at a distance the government at φ̃ (y) achieves strictly higher value, showing
that equilibrium must be unique in this case as well.

2.3 Relation to Bulow and Rogoff

Our replication proof is related to that used by Bulow and Rogoff (1989) to rule out reputational
equilibria in sovereign debt models where saving is allowed after default. The Bulow and Rogoff
(1989) result only applies directly to environments with complete markets, since their replication
strategy specifies state-contingent payments that may not be supported by the span of available
assets when markets are incomplete. Our replication strategy makes sure that mimicking is feasi-
ble given the asset span, with all benefits from lower interest costs and default premia consumed
immediately by the mimicker. One can therefore see our result as an application of Bulow and
Rogoff (1989)’s ideas to an incomplete market environment and in a different context.

Other applications of the Bulow-Rogoff argument are possible in incomplete markets, such
as the Bulow-Rogoff result itself. Here is the proof in our environment. Suppose that the only
punishment for default is a lack of ability to borrow. Consider the maximal debt level attainable in
Markov perfect equilibrium, b∗ (y∗) = maxy b∗ (y), and suppose b∗ (y∗) > 0. Whatever repayment
strategy is optimal starting at b∗(y∗), it is possible to mimic this strategy at a distance starting at
0, avoiding debt altogether and achieving strictly higher consumption due to savings on interest
payments. Since this strategy is feasible after default, it places a lower bound on the value of
defaulting when income is y∗; and since it provides greater value than the optimal repayment
strategy starting at b∗(y∗), default must be strictly preferable to repayment. This means that debt
b∗(y∗) > 0 cannot be attained in equilibrium, thereby ruling out any reputational equlibrium with
positive debt in this incomplete markets environment.

3 Extensions to the canonical model

There are several natural directions in which the canonical model of Section 2 can be modified. In
Section 3.1, we show that determinacy is retained for a particular extension, where the possibility
of market reaccess after default is added but the stochastic process for income is simplified to iid.
In Section 3.2, we describe how our argument breaks down with other modifications to the basic
framework, and speculate on whether multiplicity may be possible in these cases.
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3.1 Stochastic market reentry, iid case

In the literature, a typical departure from the canonical model of Section 2 is an assumption that
market reaccess is possible after default. This makes the value of default depend on the equilib-
rium value of borrowing, implying that Theorems 1 and 2 do not directly apply. Nevertheless, for
the special case where income follows an iid process, the argument still goes through with some
modification.

Suppose now that income y follows an iid process with probability π (y), and that it is possible
to re-access markets with zero debt after a stochasic period of exclusion, which has independent
probability 1− λ of ending in each period. That is, replace (3) by

Vd(y) = u(y− φ (y)) + βλEy′
[
Vd(y′)

]
+ β (1− λ)Ey′

[
Vo(y′, 0)

]
(10)

Since the income process is iid, the expected value of reentry Ey′ [Vo(y′, 0)] does not depend on y,
and for simplicity we denote it by Vre. The iid assumption also implies that the debt price schedule
Q depends only on the debt amount b′, not the current income y, as (5) reduces to

Q(b′) =
b′

R ∑
{y′ :b′≤b∗(y′)}

π
(
y′
)

(11)

In this setting, Theorem 1 becomes the following.

Theorem 3 (Mimicking at a distance, iid case with reentry.). Consider any two distinct equilibria
(V, Q) and

(
Ṽ, Q̃

)
, with associated default thresholds {b∗ (y)}y∈Y and

{
b̃∗ (y)

}
y∈Y , such that Ṽre ≥

Vre.
Then there exists some y such that b̃∗(y) > b∗(y), and defining

M = max
y

b̃∗ (y)− b∗ (y) > 0 (12)

we have for any y and b
V(y, b−M)−Vd(y) ≥ Ṽ(y, b)− Ṽd(y) (13)

with strict inequality whenever b ≤ b̃∗(y).

Proof. First, we must show that if Ṽre > Vre, then there exists some y such that b̃∗(y) > b∗(y).
Suppose to the contrary that b∗(y) ≥ b̃∗(y) for all y, which by (11) implies that Q(b′) ≥ Q̃(b′) for
all b′. It follows that Vo(y, 0) ≥ Ṽo(y, 0) for all y, since the government starting with zero debt and
facing the weakly higher debt schedule Q can always replicate the policy of the government facing
Q̃, achieving weakly higher consumption in the process.5 This implies Vre ≥ Ṽre, a contradiction;
thus b̃∗(y) > b∗(y) for some y.

5Explicitly, it can set b
(
yt) = b̃

(
yt), p

(
yt) = p̃

(
yt), c

(
yt) = c̃

(
yt)+ Q

(
b̃
(
yt))− Q̃

(
b̃
(
yt)), and c(yt) ≥ c̃(yt)

follows from Q ≥ Q̃.
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Meanwhile, if Ṽre = Vre, then the statement of the theorem makes no distinction between
(V, Q) and (Ṽ, Q̃). Since the thresholds {b∗(y)} and {b̃∗(y)}must not be identical if the equilibria
are distinct, we may suppose without loss of generality that b̃∗(y) > b∗(y) for y.

To establish (13) for any y and b, we use the same mimicking at a distance argument as in
Theorem 1, although the calculation becomes somewhat more complicated. We continue to set
b(yt) = b̃(yt) − M and p(yt) = p̃(yt), along with the consumption policy in (9). The payoff in
equilibrium (Ṽ, Q̃), i.e. Ṽ(y, b), is the expected utility in the repayment phase plus the

∑
p̃(yt)=1

βtΠ
(
yt) u

(
c̃
(
yt))+ ∑

p̃(yt)=0,p̃(yt−1)=1

βtΠ
(
yt) Ṽd(yt) (14)

while the payoff for the mimicking government, which places a lower bound on V(y, b−M), is

∑
p̃(yt)=1

βtΠ
(
yt) u

(
c
(
yt))+ ∑

p̃(yt)=0,p̃(yt−1)=1

βtΠ
(
yt)Vd(yt) (15)

Subtracting (14) from (15), and using c(yt) ≥ c̃(yt), we have

V(y, b−M)− Ṽ(y, b) ≥ ∑
p̃(yt)=0,p̃(yt−1)=1

βtΠ(yt)
(

Vd(yt)− Ṽd(yt)
)

(16)

Using (10), we compute

Vd(y′)− Ṽd(y′) = βλEy′′ [Vd(y′′)− Ṽd(y′′)] + β(1− λ)(Vre − Ṽre)

=⇒ Vd(y′)− Ṽd(y′) =
β(1− λ)

1− βλ
(Vre − Ṽre) (17)

which combined with (16) gives

V(y, b−M)− Ṽ(y, b) ≥ β(1− λ)

1− βλ
(Vre − Ṽre)


 ∑

p̃(yt)=0,p̃(yt−1)=1

βtΠ(yt)




Finally, subtracting Vd(y)− Ṽd(y) = β(1−λ)
1−βλ (Vre − Ṽre) from both sides and using the assumption

Ṽre ≥ Vre yields

(V(y, b−M)−Vd(y))− (Ṽ(y, b)− Ṽd(y))

≥ β(1− λ)

1− βλ
(Ṽre −Vre)


1− ∑

p̃(yt)=0,p̃(yt−1)=1

βtΠ(yt)


 ≥ 0 (18)

as desired.

The idea behind this calculation is that at any point, the possibility of future reentry affects
both the value of default and the value of repayment. Reentry is less important to the value of
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repayment, however, because it occurs farther in the future and is discounted. Thus the expression
in parentheses in (18) is positive. This is why it was necessary to subtract Vd(y) and Ṽd(y) in (13):
the effect of reentry on V alone is uncertain, but the effect on V −Vd is not.

As with Theorem 2, we can now prove

Theorem 4. In the model with iid income and stochastic market re-entry, Markov perfect equilibrium has
a unique value function V(y, b) and debt price schedule Q(b).

Proof. This closely resembles the proof of Theorem 2. As before, it suffices to prove that the default
thresholds {b∗ (y)}y∈Y and

{
b̃∗ (y)

}
y∈Y are unique.

Assume without loss of generality that Ṽre ≥ Vre. Invoking Theorem 3, we know that the
maximum difference M between b̃∗ and b∗ is positive. Suppose that it is attained at some ȳ.

max
y

b̃∗ (y)− b∗ (y) = b̃∗ (y)− b∗ (y) = M > 0

Applying inequality (16) from Theorem 3 for y = ȳ and b = b̃∗(ȳ), we have

V(ȳ, b∗(ȳ))−Vd(ȳ) > Ṽ(ȳ, b̃∗(ȳ))− Ṽd(ȳ)

But by the definition of b∗(ȳ) and b̃∗(ȳ), we must have V(ȳ, b∗(ȳ)) = Vd(ȳ) and Ṽ(ȳ, b̃∗(ȳ)) =

Ṽd(ȳ), so that this inequality reduces to 0 > 0, an impossibility.

3.2 Other extensions

It is natural to ask whether we can generalize Theorem 4 to the general Markov process for income
considered in Theorem 2. As it stands, the approach in Theorems 3 and 4 does not admit any
straightforward generalization: it relies on the fact that in the iid case, the expected value from
reentry does not depend on the current state. That way, when faced with multiple equilibria, we
can pick the equilibrium with the higher expected value from reentry, and then compare equilibria
in a direction such that this higher value only strengthens our argument.

With a general Markov process, there is no longer any unambiguous ranking across equilibria
of the expected value from future reentry, which now depends (perhaps in a complicated way)
on the current level of income. This disrupts our argument. But the proof’s failure in this case
does not point the way to any simple counterexample either, and indeed it suggests that any
such counterexample must be rather counterintuitive. For instance, it is most natural to envision
multiple equilibria such that the bond prices from one equilibrium dominate those from the other:
in our notation, Q̃(y, b) ≥ Q(y, b) for all y and b. This corresponds to the usual intuition—an
intuition that we rejected in simpler cases—that cheaper debt might be self-sustaining, as it raises
the benefits from participating in financial markets and makes governments more eager to avoid
default. In this case, however, there is an unambiguous ranking of the value from reentry (reentry

12



is better in the equilibrium where it is cheaper to borrow), and our strategy from Theorem 4 can
be invoked to rule out the multiplicity.

At the very least, therefore, if multiplicity exists in the general Markov case with reentry we
know that it must be a surprising kind of multiplicity—among any two equilibria, each must offer
cheaper borrowing in some places and more expensive borrowing in others. For this reason, we
suspect that our argument’s inapplicability here is more of a technical issue than a harbinger of
hidden multiplicity. But we currently cannot rule out the possibility of nonuniqueness in this
environment.

Another possible extension is to allow for haircuts on existing debt, where governments must
pay back some fraction of their debt even after defaulting. Although this is an important case, it is
not easily addressed using our approach. If default does not completely purge the existing stock
of debt, the value from default depends on the current level of debt, whereas our argument makes
essential use of the value from default being constant. (See, for instance, the last two sentences in
the proof of Theorem 2.)

Finally, another important strand of the literature considers long-term debt, as in Hatchondo
and Martinez (2009). Here our argument breaks down completely: a simple mimicking strategy
is no longer viable when the bond price schedule is so complex, with bond prices influenced by
the likelihood of endogenous default in the arbitrarily distant future. In a related continuous
time environment, Lorenzoni and Werning (2014) exhibit multiple equilibria: in their model, an
adverse shift in the bond price schedule forces the government into a path of increasing debt,
which justifies the initial shift. Although their analysis does not adapt directly to the Hatchondo
and Martinez (2009) model, it does suggest that multiple equilibria may be present.

4 Conclusion

We have showed that the Eaton-Gersovitz model of sovereign debt with default does not admit
multiple equilibria. It is useful to reflect upon the features of the environment which make this
result hold, by comparing it to two classes of alternative environments which do feature multiple
equilibria.

In the model of Cole and Kehoe (2000), the government observes whether the current-period
bond auction has been successful before it decides whether or not to repay previous-period cred-
itors. When bond auctions fail, repayment must be done out of current-period resources instead
of being smoothed over many periods, which the risk-averse government finds more costly. This
timing assumption creates a coordination problem among creditors, giving rise to multiple equi-
libria. The literature sometimes refers to this phenomenon as “rollover multiplicity”. The model
we study rules it out, since uncertainty over the bond auction outcome is not allowed conditional
on the current state and level of issuance.

In the model of Calvo (1988), multiplicity arises because of the way the bond revenue-raising
process works. In the Calvo model, a government borrows an exogenous amount b at date 0 and
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inherits a liability of Rbb at date 1. It then uses a mix of distortionary taxation and debt repu-
diation to finance a given level of government spending. Since a higher interest rate Rb tilts the
balance towards more repudation at date 1, and since investors need to break even when lending
to the government, there exist two rational expectations equilibria: one with high Rb and high
repudiation, and one with low Rb and low repudiation. This is sometimes called “Laffer curve
multiplicity” in reference to the shape of the bond revenue curve that arises in this model (the
function that gives bond revenue b as a function of promised repayment Rbb has an inverted-V
shape). In the model we study, the government directly announces the amount it will owe tomor-
row, allowing it to avoid the downward-sloping part of the bond revenue curve.6 Lorenzoni and
Werning (2013) make a forceful argument that such an assumption requires a form of commitment
to fiscal adjustment that governments are unlikely to have in practice, and they develop several
dynamic variants of Laffer curve multiplicity where debt crises take place in slow motion.

Rollover and Laffer curve multiplicity are attractive and widely studied mechanisms, but there
is a prevalent view that multiplicity runs even deeper—that it is a general feature of infinite-
horizon models with sovereign debt. This paper rejects that view, showing that a simple and
widely adopted model can produce a unique equilibrium. The common intuition that markets can
tip between good and bad equilibria, despite its evident practical appeal, need not hold in every
instance—rather, it depends on the detailed way in which those markets are modeled. We view
the result in this paper as an invitation for continued study of those details, and for a renewed
focus on reconciling theory with the widespread perception that debt markets are plagued by
multiple equilibria.
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A Proofs

Lemma A.1. For any y, V (y, b) is strictly decreasing in b

Proof. Fix y and consider b̃ > b. Let b̃′ be an optimal choice for next-period borrowing at b̃. Then,
since b̃′ is a feasible choice at b, we have

V (y, b) ≥ u
(

y + Q
(

y, b̃′
)
− b
)
+ βEy′

[
Vo(y′, b̃′)

]

> u
(

y + Q
(

y, b̃′
)
− b̃
)
+ βEy′

[
Vo(y′, b̃′)

]
= V

(
y, b̃
)

Lemma A.2. V is continuous in b
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Proof. Let c be an optimal choice at b. Then c− ε is a feasible choice at b + ε so

V (b + ε)−V (b) ≥ u (c− ε)− u (c)

which shows that limε→0 V (b + ε) ≥ V (b). From lemma A.1, V (b + ε) ≤ V (b) so limε→0 V (b + ε) ≤
V (b).

Lemma A.3. For any y, limb→∞ V (y, b) < Vd (y)

Proof. Since the no-Ponzi condition requires that b′ ≤ B, we have maxb′ Q(y, b′) ≤ B/R < ∞.
Thus when b > y + B/R, V (y, b) = −∞.

Lemma A.4. For given Q, V is unique.

Proof. Standard.
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