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Abstract—Mobile data traffic has been steadily rising in the
past years. This has generated a significant interest in theggloy-
ment of incentive mechanisms to reduce peak-time congestio
Typically, the design of these mechanisms requires inforntan
about user demand and sensitivity to prices. Such informatin
is naturally imperfect. In this paper, we propose afixed-budget
rebate mechanisnthat gives each user a reward proportional
to his percentage contribution to the aggregate reductionn
peak time demand. For comparison, we also study a time-of-
day pricing mechanism that gives each user a fixed reward per
unit reduction of his peak-time demand. To evaluate the two
mechanisms, we introduce a game-theoretic model that captes
the public good nature of decongestion. For each mechanism,
we demonstrate that the socially optimal level of decongesn is
achievable for a specific choice of the mechanism’s paramet&Ve
then investigate how imperfect information about user demad
affects the mechanisms’ effectiveness. From our resultshe fixed-
budget rebate pricing is more robust when the users’ sensitity
to congestion is “sufficiently” convex. This feature of the fked-
budget rebate mechanism is attractive for many situations b
interest and is driven by its closed-loop property, i.e., tle unit
reward decreases as the peak-time demand decreases.

Index Terms—congestion pricing; lottery-based incentive
mechanisms; public good provisioning; probabilistic pridng

I. INTRODUCTION

The consumer demand for network bandwidth is steadi

growing. For instance, mobile data traffic nearly tripledidg

each of the past three years due to increasing penetration
mobile devices such as smartphonés [1]. Numerous stud

indicate that this growth will continue as bandwidth inteas

applications like video streaming continue to gain popular

pricing, many ISPs are now interested in moving to tiered
pricing schemes [2]]3]. However, experiments have shown
that users prefer flat-rate pricing, and will pay a premium
to avoid being metered [4][[5]. This makes the adoption of
real-time pricing particularly challenging. Thus, noveigng
mechanisms that balance the conflict between the need for
network decongestion and the users’ preference for flaegric
are of great practical interest.

Network bandwidth (and hence the level of congestion) is
not uniform during the course of a day; it drops at night
after the prime time evening hours. This variability in dema
can be exploited to design variable pricing mechanisms. For
instance, time-of-day pricing mechanisms have been dedign
to incentivize users to shift a part of their demand to the
off-peak times|[[6], [[7]. However, such mechanisms typicall
require information about user demand; in particular, the
knowledge of user preferences about shifting their demand
from peak to off-peak times. In practice, this informatioaym
be inaccurate or just too difficult to obtain due to privacy
concerns[]l7]. Thus, robustness to imperfect informatioouab
user preferences must be taken into account in the design of
any practically viable mechanism.

Recently, a fixed-budget rebate mechanism (termed “raffle-

ased scheme”) was proposed for decongestion of a shared
r}ésource[[B]. Decongestion is viewed as a public good: when
ser reduces/shifts his demand away from peak times, his
tQhtribution benefits all the users sharing the resource. Th
f&%d—budget rebate mechanism [in [8] is inspired by economic
ideas on incentivizing contributions to provision of puwbli

ity [2]. The growing demand for bandwidth forces the Inte'.‘rnegOOdS [3]. In this mechanism, each user is entitled a reward

: ) . roportional to his percentage contribution to the totahdad
Service Providers (ISPs) to adopt congestion managem P b g d

schemes. including. capacity expansion and oricing medg. uction. An attractive feature of this mechanism is tivat,
. ' g capacily expansion P 9 ractice, it can be implemented via a lottery scheme, where
anisms. Although the ISPs have historically used flat-ra
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Sach participating user wins ize with a probability equal
to the fraction he contributed to the total demand reduction
In this article, we investigate the fixed-budget rebate mech
anism, and compare it with the more traditional time-of-
day pricing mechanism for reducing Internet congestion. In
Sec/[Tl, we introduce a game-theoretic model with a contin-
uum of non-atomic users. Each user chooses his peak time
and off-peak time demand to maximize his utility. The user
utility models both his benefit from peak time decongestion,
and his willingness to reduce/shift away from the peak time
period. The model allows us to compute the user equilibrium
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of-day pricing. We compare their sensitivity to informatio
imperfections for the case when an ISP with imperfect infor-
mation about user demand chooses the mechanism parameters.
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Our results in Sed.IV can be summarized as follows: A few papers have proposed mechanisms with prices depen-
(i) For any given parameters, for each mechanism, a Nagént on congestion levels. 17 [20], Paschalidis and Tdissik
equilibrium exists, and it is unique. propose a congestion-based pricing mechanism in the dontex
(i) For the case when ISP has perfect information aboaf loss networks (i.e., phone). They provide a dynamic pro-
user demand, for each mechanism, the ISP can chogsemming formulation of the revenue maximization problem
the mechanism parameter to achieve the socially optingid of the welfare maximization problem. Then, they show
level of decongestion. that this dynamic congestion pricing mechanism can be well
(i) For the case when ISP has imperfect information aboapproximated by a simpler static time-of-day pricing. An
user preferences, the fixed-budget rebate mechanisntliernative mechanism called “Trade & Cap”, was recently
more robust to the time-of-day pricing mechanism a umproposed by Londofio, Bestavros and Laoutari$ [21]. It works
der mild condition on the users’ sensitivity to congestiorin two phases. First, users engage in a trading game where
Our analysis reveals several desirable features of fixdfey choose an amount eéservedbandwidth slots to buy
budget rebate mechanism. First, the condition under whichf@r hard-constraints traffic. In the second phase, the neimg
is more robust than the time-of-day-pricing can be integate bandwidth is allocated to users #sid bandwidth, in pro-
as “convex” user sensitivity to congestion (or delay). Thigortion of their remaining “buying power”. They show that
condition is expected to be predominant, especially foagesi this mechanism smoothes the aggregate demand to a certain
Internet which supports highly delay-sensitive applimasi. level. In their model, users have a cost function that inegea
This robustness of the fixed-budget rebate mechanism igrdrivinearly with the total demand in a given slot. In this paper,
by its closed-loop property: as the aggregate demand shiftg consider simpler one-phase pricing mechanisms with fixed
away from peak time period, the user reward for his per urii@rameters. Our model also differ from these papers in that
contribution decreases. Finally, if an ISP decides to imyaliet Users have elastic demand and their utility is an arbitrary
the fixed budget rebate mechanism, he knows the total rewésgiction of the congestion level.
(or rebate) that he owes to the users even when the informatio Two recent papers analyze time-of-day pricing mechanisms
about user demand characteristics is imperfect. In cantragver n time slots [6], [7]. In [6], Jiang, Parekh and Walrand
under the time-of-day pricing mechanism, the ISP will haveonsider a model where users have unit demand. Each user
to design the mechanism based on an estimate of the t@faposes one time-slot in which he transmits its entire defman
expected reward that he will owe to the users. to maximize his utility. The authors of|[6] obtain a bound on
The rest of the paper is organized as follows. Jek. the price of anarchy due to users selfishness.lin [7], Wong, Ha
discusses the related literature. We introduce the modeldnd Chiang consider a model with users transmitiagsions
Sec[Tll. In Sec[1V, we analyze the two incentive mechanisn® random length. Sessions arrive as a Poisson process and
(Nash equilibrium and social optimum) and compare them g&ch session is characterized bywaiting functionwhich
terms of robustness to imperfect information. We conclude feflects the willingness of the user to delay his entire sessi

Sec[V. Proofs are relegated to Appendices. for a given time, in exchange for a reward given by the
provider. The authors show how to compute the optimal reward
Il. RELATED WORK levels in order to maximize the provider profit by balancing

Many pricing mechanisms have been proposed to manabe congestion cost due to demand exceeding capacity and
quality of services (QoS) in networks, see e.g., surveyh [L&he reward amount. Further analysis of this mechanismaalle
[17], [12]. For instance, in[13], Honig and Steiglitz praggoa “TUBE”, as well as implementation are provided ih_[22].
usage-based pricing mechanism, and analyze it using a mddelvever, in their model, users are only sensitive to pritles (
with delay-sensitive users. Their results show how to fineffect of congestion on the user utility is not considereatj a
the price that maximizes the provider’s revenue by solvinhe analysis is hot game-theoretic. In this paper, we censid
a fixed-point equation. A similar model is used in][14] whera model with two time slots (peak and off-peak). We provide
Basar and Srikant analyze the many-users limit. They sh@angame-theoretic analysis. In our model, user utility fiore
that, as the number of users increases, the provider's ueveare the closest td_[6] where user cost due to latency is an
per unit of bandwidth increases and conclude that this givasbitrary (convex) function of the load. However, our setup
providers an incentive to increase their network capatity  differs from [6], as each user in our model can shift an aalbjtr
number of papers, e.gl, [15], [16], [17], pricing mechargsntontinuous fraction of his demand from peak time to off-peak
based on multiple classes of customers with different fiigsr time.
are proposed and analyzed in terms of equilibrium achievedin this paper, we show that the problem of decongesting the
and optimal price per class. Ih_[18]. [19], Shen and Baspeak time can be seen as a public good provision problem.
investigate the performance of non-linear pricing in a mod®ur model is closely related to the “raffle-based” incentive
similar to [14] and find an improvement of up to 38% over linmechanism, which has been recently proposed by Loiseau,
ear pricing in some cases. However, in all the aforemention8chwartz, Musacchio, Amin and Sastfy [8]. That work was
papers, the demand is assumed stationary and the priceds fixespired by Morgan, who in[]9] pioneered the investigation
independently of the instantaneous network congestionf oraf using the lotteries for public good provision. The public
the time of the day. In contrast, in this paper, we investigagjood perspective has been applied in recent works by Sharma
linear pricing mechanisms that leverage the time varighilf and Teneketzis[[23],[[24] in the context of optimal power
user demand using a single priority class. allocation for wireless networks. The connection of Igtter



based mechanism with public good provision was originallyhere the notationy_y andz_g is standard: it denotes peak-
noted in [9] and received an extensive attention in econontime and off-peak-time demand choices for all user types but
literature (seel[25]). The idea of lotteries has also beexd ug). In @), Py(-) and Oy(-) are the utilities that a user of type
in different contexts. For instance, lottery schedulingais 6 € © gets for his demand in the peak time and off-peak
widely applied technique in resource scheduling in computeme respectivelyL,(-) and L,(-) are the disutilities due to
operating systems [26]. Recent interest in the applicatibn congestion in the peak time and off-peak time respectively.
lotteries to congestion management was facilitated by Bleru These disutilities are per unit of demand, hence they are
Prabhakar and Rama who demonstrated with a field study thatltiplied by the demand in each time. Finally, quantjty 0
lottery-based mechanisms can be effectively used to redisea fixed usage-based price (which could be zero) and gyantit
congestion in transportation systemis|[27]. In contrast, op > 0 is a fixed monthly subscription price.
contributions are methodological. We use a game-theoretide assume that utilitiesPy(-) and Og(-) are twice
model to analytically study the performance of a lottekeli differentiable increasing strictly concave functions dfet
mechanism and compare it to a more standard time-of-ddgmandWe assume that there is a fixed maximum peak-time
pricing mechanism. demandd,, (per day) that could correspond for instance to a
subscription daily peak cap, that could be a maximum usable
. MODEL demand (determined by technology limitation), or that doul
Let us consider a shared Internet access point with capadiy a maximum daily demand determined from empirical
C. Based on the usage patterns, let the day be divided into tdata For simplicity, we assume that this maximum peak-time
time periods: a peak time of duratidf and an off-peak time demand is the same for each user, but more general cases
of durationT,. We assume that each time period correspondsuld be handled easﬁy(in that case, user-dependent prices
to a stationary regime with respective loggsand p,. could also easily be handled). Each user can choose to shift
An access point is typically shared by a finite number @b off-peak time, or to simply not use, part of his maximum
users, each having his own preference for time periods whiphak-time demand. Additionally to the shifted peak-time
we model by usetype(the type of a user will typically dependdemand, each user could have an initial off-peak-time
on the applications that he use$) account for a large numberdemand. However, this additional demand does not modify
of users, we model the set of users as a continuum of nanr analysis as long as the peak time remains more congested
atomic users; i.e., each user contributes a negligibleinac than the off-peak time. For simplicity, we assume that the
of the total demand. We use the measure-theoretic framewarkial off-peak-time demand is zero, i.e., the off-peake
similar to [28], [29]. Let(©, F) be a measurable space wherdemand only corresponds to shifted peak-time demand. Then,
O is the set of user types. We assume that the user typesaeshave the following constraint on the demands:
d_istributed acc_ording to a f_inite measyren (@,]-")E. Whil_e _ Yo + 20 < dp, (0 €O). )
simpler modeling assumptions can be used (e.g., consigderin o , i
only two types), using an arbitrary measure of typegives a We assume that d_lsut|I|t|eE,,(-) and L,(-) are increasing
higher flexibility that can be interesting to fit real popidass. StCtly convex functions of the aggregate demand in each
Note that for simplicity, we describe the population at thiMe (a similar assumption is made, e.g., by Jiang, Parekh an

granularity of types instead of users as inl[28]1[29]. ThiYvalrand [6]). This assumption is realistic and quite gehda
is justified by the strict concavity of the user utilities gse@" €xample, let us focus on the average délas a measure

assumptions below) which implies that at Nash equilibriur?| the network quality, as in Honig and Steiglitz_[13]. Our

all users of the same type choose the same acHana assumption holds ifi§ the disutility is an increasing convex

consequence, although we do require that the measure of ufgction of the average delay and)(the average delay is an
is non-atomic (as for any non-atomic game), we do not requif¥f"€asing strictly convex function of the aggregate dedmam
that the measure of typesitself is non-atomic. For instance, if €duivalently of the load in the corresponding time:

all users have the same type, measuis only constituted by ~ p, = (CTP)*/ yodu(0), po = (CTO)*l/ zpdu(0).

one atom. Yet, each user of each type remains infinitesimally e ©

small, which means that the action of one user does not affégsumption {) is natural: an increase of the delay from zero

the aggregate outcome. to half a second creates no more disutility than from half
a second to one second. This assumption is also made in
A. User utility [13]. Assumption {i) holds for the vast majority of queueing
Each user of typ@ € © chooses his peak-time demagpgd Models considered in the literature. For example, it hotds f
and his off-peak time demang to maximize his utility the processor sharing queue (the most classical model for 3G
and 4G networks [30]), for which the average delay is
uo (Yo, 26, Y—0, 2—9) =Po (y9)+Op (20) —yo Ly (/@ yedﬂ(e)) 5 (py) = - iop : ©)
P
— z9L, (/ zedu(ﬂ)) — (yo + 20) g — p, () 2|f users differ by their maximum peak-time demand, each usetd be
) viewed as an appropriate number of users with identical mam peak-

time demand. The proposed model still applies with meagudefined for
IThroughout the paper, we assume that all function§ afe measurable. all subset®; € F by u(01) = Ja d-v(©1,dd) where A is the set of
In [28], Aumann notes that “the measurability assumptiorofistechnical maximum peak-time demands and measumen © x A represents the joint
significance only and constitutes no real economic remtrict distribution of types and demand.



where §, is a constant. It also holds for common modelassumption[{4), the utility[{1) of a user of typec © can
of wired networks such as the M/D/1 model considered ipe re-written as

[13] and the M/M/1 model considered by Shen and Bagar, oo ) =P —un- L (/ du(6 ) .
[18], [19]. Finally, we assume that despite the effect ofrase o(ye:20:5-6) =Fs (vo) ~vo - Ly @ye o vord

shifting part of their demand, the off-peak time remains +Og(z9) —20-q—D. (7)
lativel ted so that . . . . .
. Since we are interested in the reduction of peak time demand,
L, </ Zedu(9)> ~ 0. (4) we define the difference between the maximum peak-time
e

. o : " demand and the chosen peak-time demand:
This assumption is not strictly necessary but greatly siiepl

the presentation without affecting the important effebtst tve zg =dy, —yy, (0€O). (8)
consider in this mod@l This peak-time demandeductionincludes both the unused

For numerical illustrations of our model, we use the followPeak-time demand and the peak-time demand shifted to off-

ing example of an Internet access point. peak time. For a givery € [0,d,], we define the optimal

E le 1 (I T o shifted demand:
xample 1 (Internet access point)The capacity isC = 23 (29) = argmax [Op (20) — z0q], (6 € O).

1 Gbps. Peak-time lasts, = 2 h (e.g., 6pm to 8pm), hence 26€[0,20]

T, = 22 h. © = [0,1] with a uniform distribution of types A yser of typef € © maximizing his utility [T) will choose a
p(do) = Dy/d,, - df, where D, = 7.2 - 10° Gbits andd, =  couple (zy, zy) such thatzy = z;(z9) As we are interested
7.2 Gbits (which corresponds tb, 000 users with peak-time jn the reduction of congestion at peak-time, we restrict our
capacityl Mbps). The latency disutility i, (pp) = Lod(pp)  attention to the choice ofty. Note that if ¢ = 0, then
whered(p,) is given by the PS model(3) ankly = 0.065.  .*(z,) = z,. Indeed, if there is no usage-based cost, off-
Peak-time utility isPy(zg) = (1 + 0)Fplog(1 + x/dp) With  peak-time demand always gives higher utility than

Py =130 and off-peak time utility iSOy = 1/10- F4(-). The | the absence of latency, the maximal utility of a user is

subscription price ip = $50 and the usage-base price is zero. _ . .
plonprice ¥ gemesep o =Py (dy — )~ (dy — 29) 4+ Op (2§ (9)) ~ 7 (4)d, (9)

for all # € ©, where

B. User type distribution P (d p
On the timescale of a day, the population is heterogeneous™? — ii%[ﬁﬁ]{{ v (dp = 29) = (dp — 20) q

with user types distributed according to meas,mre-l_owever, + O (25 () — zg(azg)q}, (0 €0),

we assume that each user has a type that varies randomly

across the days of a month, with the same distribution is the baseline peak-time demand reduction which maximizes
Therefore, the population is homogeneous in average on the latency-free utility. Latency and incentive mecharsswill
timescale of a month. In particular, with this assumptidre, t only result in users using less of their peak-time demaed, i.
expected utility of each user on the timescale of a monthcreasing their choice ofy beyondz,. Then, we define the

equals the daily aggregate welfare cost of shiftingas the loss of utility incurred by a user when
reducing his peak-time demand:
W= [ updu(0) ®) P a d 10
normalized byu(©). e co(xo) = ue—[ o (dp — x0) — (dp — 79) q (10)
Each user will buy a monthly contract (with subscription O (2 o 0co
price p) to use the service if his expected utility over the + 06 (25(0)) = 7 (Ie)q}’ ( )
month is positive, i.e., here if (Note that with a slight abuse of terminology, we cal(xg)
W > 0. (6) the cost ofshifting whereas the peak-time demand reduction

We assume that without any incentive mechanism, thjs can actually correspond to shifted demand and/or to unused
condition is satisfied. Then, our assumption guarantees tddmand.) The definition of the baselifd (9) guarantees that
with any welfare-improving incentive, each user will conte ., (,,) is always positive. Moreover, with our assumptions
to participate, i.e., to buy the monthly contract. on functions P,(-) and Oy(-), the cost of shiftinges(:) is

Note that if the population cannot be assumed homogenegfifferentiable and strictly convex oft), d,]; and increasing
at the timescale of a month, it is possible to divide it intgp [zy,d,] (see details in Appendix]A). Finally, to simplify
subpopulations that can be assumed homogeneous and to aglyproofs, we assume that the marginal cost of shifting is
our incentive mechanisms to each of these subpopulationspounded by a constant independentiof

We view the aggregate peak-time demand reduction
C. Model reduction to one-dimensional strategy space G — / 2odu(6) (11)
Before introducing the incentive mechanisms, we show ©

that our model can be reduced to a one-dimensional strat
space focusing on the peak-time demand reduction. Wi

apublic goodto which each user contributes by his choice
xp. Indeed, when a user reduces his peak-time demand, the
benefits of reduced peak-time congestion is shared by all the

3If one wants to consider a non-zero off-peak-time disyfilinis assump- users. We define the function
tion could be replaced by the relaxed assumption that whenatgregate
shifted demand increases, the marginal peak-time diyutdduction is higher 4A function (z.,z.) corresponding to social welfare maximization also
than the marginal off-peak-time disutility increase. satisfieszg = zj;(zg) for all 6 € ©.



MG)=—-L,(D,—-G), (12) lottery where each user wins the prizewith a probability

where D, = d,u(0) is the aggregate maximum peak-tim@qual to his percentage contribution to the total amount of
demand. Functio (") reflects the notion of how much userd€ak-time demand reduction. In this cagel (14) (15)avoul

benefit from the network decongestion at peak-time. With oGPTreéspond to expected utilities. Other implementatiang.(
assumptions otL,(-), h(-) is an increasing concave functiondeterministic) are also possible. To complete the defimitio
of the public good leveli. The term—y,L, ( [, yedu(6)) = of the fixed-budget rebate mechanism, we assume that if no

(d, — 26)h(G) in (@) has the interpretation that the benefit 4S€' reduces his_ peak-time demand then the rewa_rd is not
user gets from the peak-time decongestion is the produdsof fiven. However, if the set of users who reduce their peak-
peak-time deman(il, —z,) times the benefit per unit demandime demand is nonempty but of measure zero, then each

h(G). Notice thath(G) is negative, but its most importamcontributing user receives an infinite reward given in such a
characteristic is that it is increasing i@, i.e., the disutility WY that the integral w.r.t. the measure of usergighis is a

due to congestion reduces whéhincreases. technical assumption for the measure-theoretic settinthef

In summary, in view ofl{7)E{Z12), our peak-time decongestioﬂon'atomic game. In practice, it reflects the fact that ifycanl

model reduces to a public good provision problem similar {§ité number of users contribute, their expected rewastiel
[8]: the utility of a user of type € O is to their fraction of the total demand grows to infinity as the

B total number of users goes to infinity.
ug(wo, G) = g + (dp — 20)h(G) —colz9) =P, (13) e notice here that the fixed-budget rebate mechanism
whereh(-) corresponds to the (unit) benefit from the publitroduces uncertainty in the users bill as the reward dégpen
good andc(-) corresponds to the cost of contribution. Fronan the amount shifted by the other users. However, this

our assumptions, these functions satisfy: uncertainty is only one-sided: the maximum bill is known and

(A1) h(-)is twice differentiable, strictly concave and increasingnly the reward amount is uncertain. This asymmetry is efuci
on [0, D,]; to ensure good adoption of the mechanism.

(A2) c4(-) is positive, differentiable and strictly convex on The time-of-day pricing mechanism corresponds to a fixed
[0,d,]; and increasing offizy, dy], (6 € ©); reward per unit of shifted demand:

(A3) supyee c(dp) < oo, (0 €O). M (z9,G) =729 — App, [time-of-day pricing] (16)

Notice that in our model,(-) does not depend on the type
All the type-dependency is carried by the cost of shiftingisT
modeling choice ensures tractability of the equilibrium.

wherer is a parameter of the mechanism choeg+antiby the
provider. This mechanism is a variation of a conventiomaéti
of-day pricing mechanism, with an off-peak price subsidy. |

_ _ implementation is straightforward.

D. Incentive mechanisms In (I8) and [I6),Ap; denotes the increase in the subscrip-

Individual users maximize their own utilitf{lL3), whichtion price that the service provider imposes to finance the
differs from maximizing [(b). Thus, in general, the level oféeward mechanism. L&t pe the equilibrium level of public
public good and the aggregate user welfare achieved in @@od (in the next section, we show that the Nash equilibrium
individual maximization and in the social optimum differ.  is unique for both mechanism). We assume that the pkige

To align Nash equilibrium and social optimum objectiveds fixed in advance by the service provider to compensate the
the service provider can design mechanisms to incentivig@ward, i.e., such thaf, M7 (ze, G©9)du(9) = 0 (note that
users to reduce their peak-time demand. In this paper, ¥ expression of the aggregate welfdde (5) is thus notitlirec
compare two different incentive mechanisms: a fixed-budg@edified by the mechanisms, but only through the chosen
rebate mechanism (denotéd or FBR) and a time-of-day contributionsze)i. Then,
pricing mechanism (denote@ or TDP). _Each mechanism _ Apr=R- dy and  App = rGD . d_,,. (17)
introduces a reward based on the peak-time demand reduction p D,

9 below the maximunal,,. For the service provider to financeFrom [I17), we immediately see that the service provider has

the respective reward, each mechanism also introducest@rknow the equilibrium to determine the pricepr for the

increase in the subscription price. However, as we will séigne-of-day pricing mechanism. An error in the estimation

(Corollary[), each user’s net utility can be improved eve®f G9 could have important consequences. In contrast,

with this price increase. With mechanisjne {R, T}, the such knowledge is not necessary for the fixed-budget rebate

user utility becomes mechanism where\pr only depends on the parameté&r
ug(x97G) = ug(zg,G) + M7 (z9,G), (6 €©). (14) chosen by the service provider.

The fixed-budget rebate mechanism consists in giving eachThe marglnal utility with mechanismy € {1, T} is

user a reward proportional to his fraction of the total cntr Uy _ —h(G) — cj(xq) + Mj’(g)’ (6 € ©), (18)
bution, i.e., of the functional form: Ozg
MPB(zg,G)=R- 22 — A fixed-budget rebate] (15) "¢ R
(Ie, ) - ' 5 — APR; [|xe -buaget reba e] ( ) MR’(G) _ a and ]\/[T/(G) = (19)

where R is a parameter of the mechanism chosenanti

by the provider. In practice, this mechanism could be imple-If users have different maximum peak-time demand for whiutytare
charged different subscription prices, it is also possibldmpose a type-

mented Vi"f‘ randomizat_ion- For example, With.a finite numb@épendent price increas&p, which compensate the reward, i.e., such that
of users, it could be implemented by the simplest type gf M7 (zg, G9)du(0) = 0 is still satisfied.



Notice that in [(IB), there is nd’(G) term corresponding to
the variation of the aggregate due to the variation of a sser’
decision. This is because, in the non-atomic game, users are
negligible and do not account for the variation @finduced
by their action when taking their decision. [0 {18) and in all
future occasions, we abuse notation by denoting with aglarti
derivative w.r.t.zy the marginal quantities corresponding to
variations following the variation of a user’s action.

For both mechanisms, the marginal reward’ is indepen-
dent of the individual contributiomg. Due to the term-h(G)
in ([I8), the marginal utility decreases wher increases. - - ‘
Intuitively, if the congestion is lower at peak time, a useud 0 2000 4000 6000
want to use it more. Hence he would want to reduce less his G
peak-time demand. This d/ecrease of the marginal utility It% 1. lllustration of the fixed-point equatiofi (21) for Ewple . The
accentuated by the terd/ ' (G) = R/G in the case of the dashdotted line corresponds to the amoGinthat users shifts (r.h.s. df{R1)).
fixed-budget reward mechanism. The dashed and solid_lines correspond_ to the aggregat_e AP tI'_lat

users would want to shift (.h.s. df{P1)) givénhas been shifted for the fixed-

budget rebate and time-of-day pricing mechanisms respéctiTo obtain
IV. ANALYSIS GED = G* = 78,000, parameters were set tB = $5,500 and r =

In this sectiorﬁ we show that, for each mechanism, thergQ/Gbit. The corresponding subscription price increassis.
exists a unique Nash equilibrium. Then, we show that for Intuitively, for a given level of public goodG, each
appropriate values of the mechanisms parameters, thegvechHSer )Of typed € © chooses his best response contribution
social optimum and that for a wide range of parameterdy (G) € [0,d,] to maximize his utility. Then, integrating
both mechanisms are welfare improving. Finally, we compat@e contribution of each type gives the amount of public good

the two mechanisms based on their sensitivity to imperfeef*"(G) that users want to provide in response to a gigen

G, @G(resp)

information about the user utilities. An equilibrium occurs when both quantities are equal, which
For clarityy we will use the following notation: corresponds to solving the fixed-point equation
Tr (O, h,{cotoco. B) and  Tr(O,puh {coloco,7) GIE(G) = G. (21)

are the non-atomic games where users selfishly optimizerig.[] illustrates the two terms of the fixed-point equation
their own utility (I4) in the fixed-budget rebate mechanisfor both mechanisms. As we mentioned, a key feature of our
and in the time-of-day pricing mechanism respectively. Weiodel is that the higher the level of public go6dis (i.e., the
denote with the superscript? the quantities at equilibrium jower peak-time congestion is), the fewer users are willing
in both games and we explicitly write their dependenceronto reduce their peak-time demand (the marginal utility] (18)
and R or on other parameters whenever necessary to aveiddecreasing inG). Therefore the aggregate best response
ambiguity. Similarly, we denote with the superscriptthe G(esP)() decrease whert increases and this decrease is
social optimum quantities corresponding to the maximazati faster for the fixed-budget rebate mechanism for which the
of (§), and denote explicitly their dependence on pararsetgharginal utility decreases faster. MoreovéfesP(G) is con-

whenever necessary. tinuous, which leads to a unique fixed point. The continufty o
G(esPY @) is due to assumptio(A2) (a linear cost of shifting
A. Nash equilibrium existence and uniqueness could induce discontinuities where a slight modificationCof

We define a Nash equilibrium of the non-atomic gahe would make some users switch from not reducing their peak-
(j € {R.T}) as a function:(®¥ : © — [0,d,] such that for M€ demand to reducing it by,).
all g € 0, ué(xg,a:(_eg)) < ué(zéeq),a?(_eg)),ng € [0,d,]. Due
to the strict concavity of the utility,), it is equivalent tar(®%

satisfying the first-order conditions (FOCSs)
<0, VO:zyg=0,

B. Social optimum

We now show that the social optimum is unique and
coincides with the Nash equilibrium of both mechanisms for

5_% —0, VO0:ape(0,dy), (20) parameters®* andr* given in the next theorem.
‘ Oze >0, V0:z9=dp, Theorem 2. The following characterizes the social optimum:
whereg—;‘i is given by [I8), and satisfying_(1L1). (i) There exists a function*®, uniquely determined almost-
The first theorem establishes existence and uniqueness of everywhere, which maximizes the aggregate wel@ye
the Nash equilibrium for both incentive mechanisms. (i) For the fixed-budget rebate mechanism, we have

. _ z®9(R) = z* almost-everywhere (and hence
Theorem 1. For the fixed-budget rebate mechanism, for any Gd(R) = G*) for R = R*, where

R > 0, there exists a unique Nash equilibriusf (R). e vt .
The same result holds for the time-of-day pricing mecha- R =G"h(GT)(D - GY). (22a)
nism, for anyr > 0. The same result holds for the time-of-day pricing mech-

anism forr = r*, where
6Some of the first results of this section appearedin [8] ferftked-budget

rebate mechanism. They are extended here to handle botraniscs. r* =h(G*)(D - G*). (22b)



TABLE | . . .
EFFECT OF THE INCENTIVE MECHANISMS ON CONGESTION FOR such a large reward will not happen in practice, nevertiseles

ExampLE[ (cF. FiG.[). THE RIGHT COLUMN CORRESPOND TO ANY OF  We include it here for completeness of the model analysis.
THE TWO MECHANISM WITH ITS OPTIMAL PARAMETERSR* = $5, 500 Propositiorﬂl implies that for Iarge enough parameters, the

AND 7* = $9/GBIT (I.E., TO SOCIAL OPTIMUM). . . . L .
: . . equilibrium level of public good will be positive. Let us dad,
incentive mechanism

no incentive mechanism with optimal parameter, for the fixed-budget rebate mechanisi®i, as the smallest
(= social optimum) parameter value such that®?(R) > 0 for R > R; and

G 55 Ghits 565 Ghits similarly r for the time-of-day pricing mechanism. Then we

W 23’880 7(?';):0 have the following result characterizing these thresholds

Pp : :
3(pp) 130's 12s Proposition 2. For the fixed-budget rebate mechanisk~

Po 0.092 0.098 0, i.e.,, GEI(R) > 0 for any R > 0 (if the participation
5(po) 1.10s 1.11s

constraint(@) is not imposed).

For the time-of-day pricing mechanism> 0.
Intuitively, this result holds because the externalityeféc

by a user £h(G) + M3') in the game corresponding to any_ The intuition behind Proppsitio 2 is as follows. Fpr the
mechanism is independent of his type. Therefore, by fixingf¥€d-budget rebate mechanism, for aRly> 0, the marginal
reward that is also independent of the type, it is possible fgward is infinite atz = 0. All users want to contribute hence
achieve social optimum (similarly to a Pigovian tax|[31]). th|_s_ is not an (_aqumbnum. In contrast, fqr the tme—of—day
For Exampldl, Talil | illustrates the effect of the incentivB'i¢ing mechanism, the marginal reward is constant. If it is
mechanisms with the optimal parameters of Thedfem 2: thg{pall enough so that the marginal utility of almost-all user
permit a180% increase of the aggregate welfare which, if¥PeS is non-positive a = 0, then it is the equilibrium.
our model, also correspond tol80% increase of the average Note that Propositiol2 holds independently of the value of
utility of each user over the timescale of a month. Peak-tinfg" and is consistent with Theordmh 2. In particularGf = 0,
congestion is significantly decreased: the load is decdeage then social optimum is achieved at Nash equilibrium for the

7% but the average delay drops B9%. On the other hand, fixéd-budgetrebate mechanism only #or= R* = 0; whereas
off-peak time decongestion is hardly increased. social optimum is achieved at Nash equilibrium for the time-

of-day pricing mechanism for any smaller tharv.

The next proposition describes the evolution of the aggre-
C. Nash equilibrium variation with the mechanism parametegate welfare with the mechanism parameters.

In this section, we investigate the variation of the eqb'i"q:’roposition 3. If the participation constraini(@) is not im-

rium quantities when the mechanism parameteasd R vary.  posed, for the fixed-budget rebate mechanism, the equitibri
For ease of exposition, we first assume that the part'c'pat'ﬁggregate welfaréV (¢9 (R) is increasing in[0, R*], decreas-
constraint [(B) is not imposed (we will come back to thghg in [R*, R] and constant foR > R.

effect of the participation constraint later in this senticee For the time-of-day pricing mechanism, the equilibrium
Proposition[#). Then, we have the following results on th&ggregate welfaréV (€9 (1) is constant ono, r]. For r > r,

variations of the equilibrium contributions. the same results as for the fixed-budget rebate mechanigi hol
Proposition 1. If the participation constraint(@) is not im- by changingR to r everywhere.

posed, for the fixed-budget rebate mechanism, we have:  pyonqsition[B, illustrated on Figl 2 shows that the welfare
(i) For any R’ > R, a:((fq) (R > x(e‘”(R) (V0 € ©); and is unimodal. IfG* > 0, it increases to its only maximum at

the inequality is strict ifd < a:ff (R) < dp. R* or r* and then decreases. @ = 0 (henceR* = 0 and
(i) For any R > R, G®(R') > G©I(R); and the r* = r), the welfare is maximal akR = 0 or r = 0 (i.e.,
inequality is strict if0 < G(9(R) < D,,. with no incentive mechanism) and it only decreases (after a
(i) There exists a threshol® > R* such that, for anyg > constant phase for the time-of-day pricing mechanism).
R, I((fq)(R) =d, for all € © and G (R) = Dpﬂ In extreme cases where the reward parameter is too large,

§H16 equilibrium aggregate welfare may become negative. For

instance, consider a case where the usage-based iice

so high compared to the off-peak time utilityy(-) that all
Intuitively, since the marginal utility (18) increases wihe users have zero off-peak time demand. If the reward is larger

reward parameters, the equilibrium contributions of ea®ér u than R or 7, then users would not use the service at all and

increases (resulfi)); and similarly for the equilibrium level the aggregate welfare would bepi(©) < 0. In that case, the

of public good (resultii)). The existence of the thresholdsparticipation constraint is not satisfied, hence userssivitiply

R and 7 (result (iii)) is a consequence of assumptioh3) not buy the service. The next proposition, which is easily

which means that reducing even the last bit of his peak-tingerived using the monotonicity of Propositioh 3, describes

demand implies a finite marginal cost for the user, which caiow the previous results are changed when introducing the

be compensated by a large-enough reward. Clearly, a case wirticipation constraint.

The same results hold for the time-of-day pricing mechani
by changingR to r everywhere.

"To avoid ambiguity on the definition of the thresholdsR, we assume Proposif[ion 4. If the participation Cantrain@ i§ imposed,
that they are the smallest possible such thresholds. for the fixed-budget rebate mechanism, there exists a tblésh



Rmax € (R*, 0] such that (a) x 10

(i) For all R < Rmax all the users buys the monthly sub-

scription and the results of Propositidth 1, Propositidn 2 8.l

and Propositiori B hold. '

(ii) Forall R > Rmax nO user buys the monthly subscription, 6 '

hence the welfare is zero.

The same results hold for the time-of-day pricing mechanism
by changingR to r everywhere.

---W ) (R) (FBR) |

The effect of the participation constraint is simple: belaw
thresholdRmax Or rmax, all the users participate and above this
threshold, no users participate. This is due to our assompti
that the population is homogeneous at the timescale of a oL ‘ ‘ i
month. Since users are offered a monthly subscription, they 0 S 10 Ro15
will buy it if they expected utility over the month is posiéiv R/R R
which is equivalent to the aggregate welfare being positive(p) x 10*

Due to our assumption that the welfare is positive withowyt an [— w9 () (TDP) |
incentive mechanism, we havén.x > R*, i.e., the welfare

is positive for anyR < R*. The thresholdRnax can even

be infinite if the off-peak time utility is high enough and the
usage-based price is small enough so that users have positiv
utility over the month even without using the peak time.

The last result, which is a direct consequence of the previou
results of this section, shows that both mechanisms arawelf
improving for a wide range of parameters.

Corollary 1. If G* > 0, the fixed-budget rebate mechanism

is strictly welfare improving for any parametdt in a range :

(0, Ry) whereRy € (R*, Rmax: 0 %rmf’” 5 10 15
WEI(R) > WE(0), VRe (0,Rp). T r/r*

The same results hold for the time-of-day pricing mechanidrg. 2.  Variation of the equilibrium aggregate welfare withe reward
by changingR to r everywhere, and to 7. parameter for Examplg] 1: (a) for the fixed-budget rebate ard@sm — (b)

for the time-of-day pricing mechanism.

This regult is impor.tant as it shows that, by.imp!ementi.ngT (O, 11, h, {co}oco, ) correspond to the baseline case of
an incentive mechanism with a parameter lying in a widgs fect information considered in the previous sectiond an
range arognd an optimal parameter, the provider can inereggnnose thak* and * have been chosen according fal(22)
welfare. Fig.[2 shows that for Examp[é 1, the time-of-day, inquce a socially optimal level of public good at equilitm
pricing mechanism with any parameter (i@, 2r*) is welfare (i.e., GE9 = G*). We assume that”* € (0 D,). We analyze
improving, and the foeq-budget rebate mechanism with agye variations in equilibrium and in social optimum when
parameter in(0,14R") is welfare improving However, a p« and,* are maintained for the respective mechanisms and
consequence of Propositign 3 is that both meghanls*ms Gaflities are perturbed (i.e., actual utilities are diffat from
0(\$>rshoot if R or r |s*too large (larger thal?™ or 7*),  {he estimation used by the provider to set the parameters).
G'*% can be larger that™ and the aggregate user welfare is \ye restrict our analysis to the case where only the cost of
suboptimal. In a competitive environment, a provider woulghting is perturbed and the rest of the utilities is unajesh
not intentionally choose an overshooting parameter be&cayggeed, we argue that it is more difficult to obtain data on
it would be a competitive disadvantage as compared 0y time preferences (the willingness to move demand from
provider choosing an optimal parameter. However, if thgaak time to off-peak time) than on the total demand or on
provider has imperfect information about user utilitigsnay e sensitivity to delay. Therefore, the cost of shiftingriere
overshoot unintentionally. Figl 2 suggests that in thict®e |iely to be imperfectly estimated by the provider. We colesi
aggregate welfare remains higher for the fixed-budget eeb@te following general form of the perturbed cost of shifting
mechanism than for the time-of-day pricing mechanism. & th Go() = co() + ¢ pol-) 23)
next section, we investigate in details the robustness df ea _ v v po ) )
mechanism to imperfect information about user utilities. ~ Whereeis a real number ang : [0, d,,] — R is a continuously
differentiable function satisfying

/
D. Comparison of the two incentive mechanisms Slelg zes[lé,%p} Ipo )] < co.

In this section, we compare the sensitivity of théarametee is the perturbation magnitude and functiay{-) is
two incentive mechanisms to imperfect information abotle direction of the perturbation. For the analysis, werigst
user utilities. Let the gameEr (O, i, h, {co}oco, R*) and to small perturbations, i.el¢| small. For|e| small enough, the




perturbed functiongy(-) satisfy assumptiorfA2-3). We as- rso(G) thanry(G). It is often the case. The fact thag(G)
sume that the perturbation direction is such that the agdeegdecreases whe@ increases is thelosed-loopeffect: the more
best response has a non-zero perturbation at the order ene iisers reduce their peak-time demand, the lower the in@entiv
at the pointG* (the non-perturbed equilibrium). Otherwise, the¢o reduce it is. However, ifz(G) decreases much faster that
equilibrium point would not be changed by the perturbatiomso (G), rr(G) can be closer to'so(G). This possibility is
For numerical illustrations, we will use the following sitep covered by caséi) of Propositiorb.
perturbation which satisfies the above conditigps:) = cs(+) Fig.[d illustrates the result of Propositibh 5 with the pertu
for all typesé € O, i.e., cy(-) is scaled by a factoit + ¢ bationpy(-) = co(-) for all 6 € ©. As it turns out, Examplgl1
independent of the type. (Fig. [3-(a)) falls in casg(i) of Proposition[b (see the unit
Let G§§q> () and G(Te‘])(e) be the equilibrium levels rewards on Figl4); hence the fixed-budget rebate mechanism
of public good in the games with perturbed utilitiesemains closer to social optimum than the time-of-day pgci
Tr(O,u,h,{Cotoco, R*) and 7 (O, u, h, {Co}toco,r*), re- mechanism. This is due to fact that the sensitivity to cotiges
spectively. Leti*?(¢) and W *¥(¢) be the corresponding is “strongly convex”, i.e., functior(-) (I2) is far from linear.
equilibrium welfares. LetG*(e) and W*(¢) be the socially Hence, the optimal unit rewarfl (24c) decreases “fast’, as fo
optimal level of public good with perturbed utilities, artiet the fixed-budget rebate mechanism. For the sole purpose of
corresponding welfare resulting from the maximization[8f ( illustrating numerically casi) of Propositiori b, we construct
wherecy(-) is replaced by (-). To evaluate the variation of the following example:

G(®9 with the perturbation, we need to evaluate the Variati%kample 2. Everything is defined as in Examgl 1, but the

of the aggregat(erelse)st resporG€°=?) (recall that;*d is the disutility function is artificially contrived to havé(G) = 1.2-

fixed-point of G™PX.), see [(2IL)). (The variation of/* is {3 . (G095 — D095 (The factor1.2 - 103 is chosen to
0-95), .

handleld sitr)nilarly since from TEeordﬁfszz the social optri]mu_ eld the same social optimum level of public go6d than
can also be seen as a Nash equilibrium in a mechani§ie, omoie) when — 0,)

SO with unit reward given by[(24c).) For this purpose, we _ _ . .
introduce, for each mechanisjne {R, T, SO}, the quantity =~ Ex.[2 is a contrived example whet#:-) is almost linear so
«; equal to the opposite of the slope 6i®P).) at the that the optimal unit rewardso is almost constant, as in the
common non-perturbed equilibrium poidt* = G*(0) (see time-of-day pricing mechanism. As a result, the time-o§-da

[@3)). We define the following conditions: pricing mechanism is closer to social optimum (Fify. 3-(b)).
Propositio b compares the distance betwéétf and G*

1 1 1
(C1) ‘IJFQ 1+ aso l+ar 1+asol for the two incentive meghanifsms,_ when utilities are.pmdr
1 1 1 1 It holds fp_r all pertur_bat|on direction§py(-) }oco (sat|_sfy|r_1g
(C2) - ‘ - . the conditions mentioned above). However, the direction of
l+ar ltaso I+ar l+aso the variation of G(¢? and G* depends on the perturbation

If the slopesa;’s for the different mechanisms are closelirections {py(-)}9co. With the simple perturbation where
enough, these conditions reduce to the following moretingii p,(-) = ¢4(-) for all # € ©, Fig.[d shows thatG(®? and G*
conditions (see details in Appendix_ G-B): decrease when increases (this could also be easily derived
(CY) [Fp(@) — P ()] < [P (G) — 150 (@), atG = G*(0), analytically from t_h_e proof of Rropositidﬁl 5). Intl_JitiveI}')f
(C2) |rz(G) = 150 (G)| > M (G) — rso(G)|, atG = G*(0), users are less willing to contribute due to a high cost of
§h|ft|ng the equilibrium and social optimal amount of @abl
good will be lower. With a general perturbation, the vaadati
of G(®9 andG* is determined by the variation of the aggregate

wherery,, 1/, s, are the respective derivatives of the uni
rewards

R
rr(G) = &, (24a) best respons& ) at the pointG*(0) when the utilities
rp(G) =71 (24b) perturbation is introduced.
rso(G) = (GQ)(D = G). (24¢) From Propositiofi]5, we deduce the following result.

Theorem 3. There exists,,, > 0 such that, for any perturba-
tion (Z3) with ¢ # 0 and |¢| < €,,, we have:
(i) if condition (C1)is satisfied, then the fixed-budget rebate
mechanism is more robust than the time-of-day pricing

Then we have the following results.
Proposition 5. There existse,, > 0 such that, for any
perturbation(23) with € # 0 and |¢| < €,

(i) if condition (C1) is satisfied, then

mechanism:
G0 - 60 <[5 0 - ") WA (€) < Wi () < W (o)
(ii) if condition (C2) is sat|sf|ed then (ii) if condition (C2)is satisfied, then the time-of-day pricing
el * e * -
| ‘q%q)( G ‘G( q) — (o). | ngﬂzg:zm:s more robust than the fixed-budget rebate
The intuition behind ProposmoEIS is the following: the WI(%eq)(e) - W:(Fe@(e) < W*(e).

mechanism with the unit reward closer to the optimal unit

reward rso(G) have an equilibrium closer to the social Theorem[B is our main robustness result. It establishes
optimum equilibriumG*(¢). Sincerr(G) and rso(G) are which of the two mechanisms remains closer to optimal after
both decreasing functions, one expectgGG) to be closer to the perturbation, in terms of welfare, i.e., in terms of user
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(a) for ExampldlL — (b) for Exampld 2.

Variation of the equilibrium amount of public go@&(¢? when
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(a) 30 o e
i ---rg (FBR)
o514 —rp (TDP) ||
o 20
n H
= i
£ 15\
= "
£ 10—
0 ~"w- ———— :‘-_--d ---------- T ==-
0 2000 4000 6000
(b) 30 —
: ==-TR (FBR)
25,: —_—TT (TDP) u
o 200
(/) 1
= i
& 15}
= \
= q0bh
5’7\‘\“-._____
0 ‘-"""-----‘-----_-‘.'_"_:{ =====
0 2000 4000 6000
G
Fig. 4. Unit reward as a function ofi: (a) for Example[lL — (b) for
Example[2.
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TABLE Il
EQUILIBRIUM FOR EXAMPLE[D, WITH UTILITIES PERTURBED BY A
SCALING OF FACTOR(1 + €) WITH ¢ = 0.5. THE PARAMETERS ARE
CHOSEN BASED ON UNPERTURBED UTILITIESR = $5, 500 AND
r = $9/GBIT (SEEFIG.[).

| | no mecha.] TDP mecha.  FBR pricing SO |
G 37 Ghits 127 Gbhits 395 Gbits 467 Gbits
W ~0 61,000 75,200 75,400
x 10"
3 :
(a) ---W*(e) — W () (FBR)
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Fig. 5. \Variation of the aggregate welfat& (9 when functionscy (-) are
scaled by a factof1+¢) starting from the baseline case: (a) for Exanigle 1 —
(b) for Exampld 2. For readability and robustness comparigiee difference
W*(e) — WD (¢) is plotted.

expected utility over the timescale of a month (see Sed)lI-
The conditions of Theorel] 3 are the same as in Propogition 5:
mechanismj € {R,T} is more robust if its unit reward is
closer to the optimal unit reward. Since Example 1 satisfies
condition (C1) (due to “strong enough” convexity of the
sensitivity to congestion), the fixed-budget rebate meisian
is more robust. It means that if the provider chooses the
parameters based on an imperfect estimation of the cost of
shifting cg(-), the welfare of a population of users whose
actual cost of shifting i€ (-) will be higher with the fixed-
budget rebate mechanism than with the time-of-day pricing
mechanism. Similarly, if the cost of shifting was varying
according to a given probability law and paramet&sand
r were chosen based on expectations, the fixed-budget rebate
mechanism would give a higher expected welfare.

Fig.[d illustrates our robustness results for a simple pertu
bation. It shows that our analysis withclose to zero extends
to larger perturbations. The numerical values for Exarfijple 1
are reported in Talp1ll: for &0% error in the cost-of-shifting
estimation ¢ = 0.5), the welfare is20% below optimal with
the time-of-day pricing mechanism, whereas it is 00l§%
below optimal with the fixed-budget rebate mechanism.
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V. CONCLUDING REMARKS already technically possible in most settings (mobile asce

) _ ) _ . _electricity with smart meters, etc.). The use of probatidlis
This paper provides a comparative analysis of two incentiygicing also raises the question of contention billing and
mechanisms of reducing peak-time congestion in Intemgifiability. However, these transparency issues are #mees
broadband access: a fixed-budget rebate mechanism inspifgGn many other contexts where they have been successfully
by the economic literature on public good provision bygyed (state lotteries, casinos, etc.). For instanceeirtion
means of lotteries, and a more standard for the netwog¢hniques similar to those used for gamblifigl [32] could be

literature time-of-day pricing mechanism. The fixed-budggged here.

rebate mechanism can be interpreted as probabilisticngrici

_While our motivating application is telecommunications,

in this mechanism, each user’s reward depends not only on s pejieve that the fixed-budget rebate mechanism could be

contribution but also on the contribution of the other usé/s
suggest that this mechanism has two advantages relatite to
time-of-day pricing mechanism with given prices for specifi

modified for use in other applications such as electricitgt an
tFansportation networks. In the case of electricity demand
management, privacy and security considerations make our

time slots. Firstly, the fixed-budget rebate mechanism $ €36 chanism advantageous relative to real-time pricingeéd
to implement via lottery-like scheme(s), for which a total,- mechanism requires no real-time user-dispatcher com-

user reward is announced by the ISP in advance. Seconglly,
it has built-in self-tuning, which appears to be attractine
environments with imperfectly known demand.

nication. In addition, unlike currently suggested riéale
pricing mechanisms (e.gl. [33]), our mechanism requirdg on
aggregate data. We plan to explore these other applications

Our paper uses a simplified model to provide a theoretiggk re work.

structure that permits to understand the benefits of the fixed

budget rebate mechanism over more standard approaches. The

deployment of the mechanism will raise a number of practical
questions. In particular, the ISP has to decide at whichescal,
to deploy the mechanism: deploying it at the scale of a
base station would involve too precise monitoring whereas
deploying it region-wide would face the issue that users di!
not all share the same access bottleneck. We believe that
such decision should be made based on historical statmtics [3]
each bottleneck that are accessible to ISPs. Our model also
considers only two time periods whereas it could be usefyk
for an ISP to use a finer subdivision of the day. Again, we
believe that the number of time periods should be determinéd
using historical data available to the provider. The fixedidet
rebate mechanism could be easily extended to multiple timeé]
periods and we believe that it would remain more robust than
the time-of-day pricing mechanism. 7]

In our model, we considered a monopolist and the reward
was financed by an increase in the subscription price. wél
showed that both mechanisms still improve each user’s geera
utility. In different scenarios, if the subscription pricannot
be increased, it would be possible to finance the reward f)%]
a different means, e.g., by the reduction of the congestion
cost or by the higher number of customers that the provider
could accommodate with the same infrastructure due to lowéH
congestion.

Our model focuses on user welfare maximization rather thé]
on the cost savings for the ISP. However, we believe that both
objectives are consistent, as in an competitive environmepz;
increasing user welfare allows either to accommodate more
users with the same capacity or to reduce the capacity pro[\{ii]
sioning costs for the same user base. A quantitative asatysi
these questions would require modeling of the cost stractur
and of the competition (we could typically assume perfe€t
competition) and is left as future work.

To implement in practice the fixed-budget rebate mechgs]
nism, an ISP will need to track separately the consumption
at peak and off-peak time. However, such separate accqungn
is also needed for the time-of-day pricing mechanism and is

El

] Cisco Systems, “Cisco Visual Networking
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APPENDIXA
PROPERTIES OF THE COST OF SHIFTING

Let § € ©. First, we show that the functiony — cp(x),
defined by[(ID), is differentiable df, d,]. By assumption, the
functionzg — Py(d, — x¢) — (d, — z¢)q is differentiable so
we only need to show that the function — Og(2;(xs)) —
zp(xg)q at zg mao IS differentiable on0, d,]. Since the func-

tion z — Oy(z) is twice differentiable increasing strictly

concave by assumption, the function— Oy (z) — zq is twice
differentiable strictly concave. Led ;,,q, be its maximum on
[0,d,]. Then,

s5t0) = {

If 29.max = 0 (hencez;(zo) = 26,max, V& € [0,d,]), Or if
20,maz = dp (hencezj(zg) = x¢,Yz € [0,d,]), thenzy —
Og(z5(x)) — z5(x9)q is clearly differentiable orf0,d,]. If
Zo,maz € (0,d,), we need to show thaty — Og(z}(xg)) —
zp(xg)q is differentiable at the pointy ,,,q.. But Sincezg max
is an interior maximum, we hav@y (29, max)—q = 0, therefore
both the left and right derivatives ofy +— Og(z;(z9)) —
25 (x9)q at 2o, mas are zero.

o It xp < 20 maz,
20 mazx if Ty > 20, max-
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Next, to show that the functiony — cy(xg) is strictly
convex on[0,d,], we show that its derivative is increasing.
By assumption thaP(-) is strictly concave, the derivative of
xg — — [Po(dp — xe) — (dp — x)q] is increasing. Moreover,
the derivative ofrg — — [Og(2;(x9)) — 25 (xa)q] is increas-
ing on [0, zg,;maz) and constant ofzg ,aq, dp). Therefore the
derivative ofxg — cg(xg) is increasing.

Last, we show thaty — cy(zg) is increasing orz,, d,|.

If z, = dp, the result is trivial. Ifz, < d,, by definition of
Zg, Cp(zy) > 0. Hence, since we have shown thgt-)
increasing, we havej(xzy) > 0,Vz € (zg4,d,] which gives
the result.

APPENDIXB
PROOF OFTHEOREM]

Let R and r be fixed and letj € {R,T}. For a given
G € [0, D,), the best response (solving the FOCS (20)) defines
a measurable function®sP(G) : © — [0,d,] given for all
0 € © by

/

0, if M7(G) —h(G) —c4(0) <0,
d,, it M7 (G) = h(G) —¢)(d,) >0,
(cp)~t ( MiI'(G) — (G)), otherwise

Due to assumptio{A2), c¢,(-) is strictly increasing, hence
invertible and with an increasing inverse function. Theref
(9) uniquely defines P G). Let

GUesP(G) = / @)y ()
(S)

be the aggregate best response. By definition and strict con-
cavity of the utility function, a measurable function :

— [0,d,] is a Nash equilibrium if and only if there exists
G € [0, D,] satisfying the fixed-point equation_(21) such that
r = x(feSp)(G). To conclude the proof, we show thdf]21)
admits a unique fixed-point (see illustration on Fiy. 1).

2§ G)= (25)

(26)

Lemma 1. There exists a unique solution @¢1).
Proof: The r.h.s. of[(21) @) is clearly a strictly increasing
continuous function of7, from [0, D,] to [0, D,].

For the I.h.s. G®sP(@)), firstly note that it is a continuous
function of G. Indeed, due to assumptigA2), (c,(-))~1(-) is
strictly increasing continuous, henad®P(G) is continuous
in G for all # € ©. Moreover, the functionz(®sP Q)
© — [0,dp] is dominated by the constant function equal
to d, (i.e., |z"P\G)| < d,) which is integrable w.r.ty.
Therefore, for any= € [0, D,] and for any sequend&,,).,>o
which converges t@7, we havez(®P\G,,) — 2esPY( @)

pointwise (by continuity of:{**"(G) w.r.t to G for all 6 € ©)
and by Lebesgue dominated convergence theorem,

: (resp) _ . (resp)
nh_}n;OG (Gn) = nh_}n;O G):179 (Gp)du(0)
-l
G(resp)(G).

Clearly, the l.h.s. P ) is also a non-increasing func-
tion of G taking values in0, D,]. Therefore, there is a unique
fixed-point of [22). [


http://www.nj.gov/oag/ge/index.html
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APPENDIXC for almost-alld € O, that is for almost alp such that:;; = 0.

PROOF OFTHEOREMI[Z] The case of subséb; is handled similarly and yields the
We first prove(i). Let X be the set of functions : © — R necessary condition:
such thatf, |zs|du(f) < oo and letX, ¢ X' be the set of W(G*)(Dp — G*) = h(G") — cp(ay) >0, (29)
functionsz : © — [0,d,]. Consider the aggregate welfafé (5¥or almost all§ such thatr} = d,.
as a functional onY taking values inR: In summary, [2I7)E(29) show that for functiart to maxi-
-~ B mize W, it is necessary that* is solution of the FOCH(20)
W) = h (/@ :vgdu(b‘)) (D” /@xedu(e)) where MJ'(G) is replaced byh'(G)(D — G). By assump-

i D, tion (A1), this is a decreasing function @f. Therefore the
_/@C"(x")d“(e) +/@“9d“(9) _pd_p' same proof as for Theoref 1 shows that is uniquely
Since X, is compact and the functional is continuous, determined almost-everywhere.
it has a maximum (see Corollary 38.10 634, p. 152]). Let We now prove(i)). From the proof of par(i), it is clear
z* € X, be such thalV is maximal and let that if R = R* (resp.r = r*), then the FOCs[(20) at
. * (0 a Nash equilibrium coincide with the optimality condition,
G = /@x" u(0). which gives the result.
Define the three subsets 6f. ©,, ©, and ©3 wherez* =
0, z* € (0,dy) and z* = d, respectively. We now derive APPENDIXD
necessary conditions far* to maximizeW in each subset. PROOF OFPROPOSITIONT]

We start with the subs@, corresponding to interior points.  \ye provide the proof for the fixed-budget rebate mechanism
Lety € X be such thay, = 0 for all § € ©\0,. We define (; _ ) |tis the same for the time-of-day pricing mechanism.
the directional derivative (also called Gateaux derigtiof We first prove(i) using three cases.

W aroundz* in the d|rect|%r}y as ) — Wz Case 1:If G(9(R) = 0, then the result is obvious.
diW (z*,y) = lim (2" +ty) - W(z") Case 2:If G(®9(R) = D,, then we have®/D,, — h(D,) —
Then, we have =0 t cy(dp) > /O for almost-alld € ©, \INhich implies R’/ D,, —
. oo i} . h(D,) — c4(d,) > 0. HenceG®¥ (R') = D,,.
dW(xay) :\/@yG[h (G )(DP -G )_h(G )—09(%)] d,LL(@), Case 3:If G(eCI) (R) c (O’Dp)_ For a giverG' I("QSP)(G) of
’ . . o (25) is non-decreasing wheR increases taR?’, and strictly
where the exchange between limit and integration in the Ia}ﬁEreasing forf’s sit. x(resp)(G(eq) (R)) € (0,D,). Since the

term (giving—yscj(¢)) is justified by Lebesgue’s dominatedget of g chy's is of positive measure, the new fixed-point has
convergence theorem whenevgs |yo - cj ()| du(f) < oo. GEA(R) > GEI(R).

This holds here due to assumptith3).
For z* to be optimal, it is necessary thablt{z*,y) = 0, i.e.,

From (i), (ii) follows clearly. B
We finally prove (iii). The exjstence of the threshold
* * * * R
/@ yo - [ (G*)(Dy — G*) — h(G*) — cy(x})] du(6) = 0. follo/vvs from the fact thatM ™ (D,) o hence
2 R _ — > ~
For this to hold for any functiory such thaty, = 0 for all ]\}—g(d&lg% a}sLéfr%)ptig(G}gégg = 0 for amost-allg € © beyond
0 € ©\0O9, it is necessary that we have '
! * * * / *®\
W(G*)(Dy = G*) = h(G") = cylap) =0, (27) JR——

for almost-alld € ©,, i.e., for almost-all¢ such thatz; € PROOF OFPROPOSITIONZ]
(0,dp).

We now treat the case of subget, which corresponds the
points of the lower boundary. Let € X be such thagy > 0
for all € ©; andyy, = 0 for all € ©\0O4; that isy is a
direction that “pushes up” the values of that are at zero.

For the fixed-budget rebate mechanism wih > 0, if
G = 0, the unit reward is infinite, hence each user wants to
contribute positively. Therefor&; = 0 is not an equilibrium.

The directional derivative of¥ aroundz* in the directiony APPENDIXF
is defined similarly to the previous case but with a limit 0: PROOF OFPROPOSITIONS
dW(z*,y) = lim W(z* +ty) — W(z") We provide the proof for the fixed-budget rebate mechanism
) . ’ t—0+ t ’ ( = R). Itis the same for the time-of-day pricing mechanism.
which gives Let R > 0 and denote for simplicityr = z(¢9(R) and

dw (2% y) :/yg-[h’(G*)(Dp — GF)=h(G*)—dy(x3)] du(). G = GEV(R). Using the notation of the proof of Theorédm 2
6, (Appendix[T), the derivative of the welfare aroumdin the
For z* to be optimal, it is necessary thatldz*,y) < 0, i.e., directiony € X' is

[ w0 (G)D, - &) = W(G) i) dutd) < 0 AW (z.9)= [ 0+ [(G)(D, - G) ~ H(G) — ch(w0)] o).
S

For this to hold for any functiony such thaty, > 0 for all ~ Suppose first thak < R* and consider the directione &
6 € ©; andy, = 0 for all @ € ©\Oy, it is necessary that ~ such that dz® (R
W(G*)(Dp — G*) = h(G") — cy(xp) <0, (28) Yo dr '
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By Propositior[1L, we hav&®d(R) < G* andz*¥(R) < Gg.ieéSp) Gg%eQ)(O)) is independent of the mechanignfsee [25)
for almost-alld € ©. Therefore, we havgy > 0 for all € and )), and 'so id.
O, U B3 andyy = 0 for § € ©; (recall thato,, ©, and O3 Starting from the pOint(Ggw(O), Ggrisp) (GSQ) (0))), at

are the subsets @& wherez* =0, 2* € (0,d,) andz™ = d, _ (resp) . .
respectively). Moreover, we have(G)(D, — G) — ) the first order(s’; ~"(G) decreases linearly whef increases.

(@) - : . V6 _
cy(rs) > 0 forall 0 € 0, U 6y, Inceed, ind, 1/(G*)(D, —  TMerelore it can be seen geome_tlrga”y tha it wil crossiaga
) WGP — eh(ag) — 0 and B (G)(D, — G) — h(G) > the first bisector at the new equilibrium poin
W (G*)(Dyp—G*)—h(G*) (by concavity ofi(G)(D,—G)) and Ge) = GEV1) + —— +o(e), (34)
cy(wo) < cylxy). In O3, K (G*)(Dp—G*) = h(G*) —cy(xj) > 1 +
0 andh’(G)(Dp—G)—h(G) > W' (G*)(D,—G*)~h(G*) and  where —a; . is the slope of the curve?griSp)(G) atG =
cy(zg) = @(x;j). We c_onclude that & (z,y) > 0, therefore Ggsq)(o), ie. :

W€ (R) increases withR. (resp)
The caseR € (R*, R) is handled similarly and iR > R, e = ——2— (Gﬁiq’(o)) : (35)

o . i dG
the equilibrium does not vary witl® by Propositior iii) .
d y ¥ FI0P ) From [33), it is easy to see that sinde is first-order ine,

the first-order term in the Taylor series of . will give a
second-order term in the Taylor series@j‘eq) (€). Therefore,
we can restrict the series of; . (35) at the order zeray; . =
A. Proof of the Proposition aj + o (1), which directly gives the desired resulf132). m

From the proof of Theoremi]1, we know that for any
mechanismj € {R,T}, Ge‘]) is the fixed-point solution B. Reduction ofC1-2)to (C1’-2)
of (21). Here, we epr|C|tIy write the dependence in the \we pave

APPENDIX G
PROOF OFPROPOSITIONS

mechanism, i.e., for mechanismwe denote by reSp)(G) the qGresp) q

individual best responsg_(5), and ﬁgesr’)( ) the aggregate dJG (G) = el [/ xg.i%Sp)(G)du(H)] :
best response (P6) to a gived < [0,D,]. We use the d ©

notationr; (rather thani/7") for the unit reward (sed(24)). = / — [ (;e(fp)(G)] du(9),
From the proof of Theorerh] 2, we know thé&t* is found o dG

as the fixed-point solution of the same equatibnl (21) with = 4;(G)- (Tj(G) - h'(G)) )

r;(G) = rso(G) defined by [(24c). Therefore, we will usewhere )
the notationG* = G( 9 which emphasizes this similarity and A, (G) = ((cg)’l) (r;(G) — h(G))du(0), (36)
helps shorten the proofs notation. 02,;(G)

Before evaluating the variations of the equilibrium with and©, ;(G) is the subset of’s for which x(“ZSP)(G) € (0,d,).
note that when = 0 (baseline), we have the same equilibrium: z; ~ _ eq)( 0), ©,;(G) is independent of the mechanism

G%0) = GEY0) = GS(0), (30) J, so that[(3l) shows that; (G'S?(0)) is independent of the

mechanismj. Denoting by A = A; (G(e (0)) the common

and the same unit rewards at equilibrium:
value, we have for alj € {R, T, SO}

re(G) =r0(G) =rs0(@) if G=G%Y0). (31)

e e
Whene # 0, functionsc, are perturbed. For a givefi € =4 (T/' (G( U )) — (Ggﬂ(o))) '
[0, D,], the aggregate best response is modified accordinglylf we assume that fof; # jo, |aj, — «j,| is small, then
We denote byG(resr’)(G) the new aggregate best respons 1 1 gy — @y
Recall that we also denote hy*?(¢) the new equilibrium jl +a;, l1+4a;| | 1+a +ollas = azl),
point which is the fixed point ofG(reSp)() The following A
lemma readily implies the result of Proposmﬁh 5.  1+a, ’T 2 r ’ +of ’T o h ’)

. . " o
Lemma 2. For any j € {R, T, SO}, we have With this, conditiongC1’-2’) are easily deduced frofC1-2).

G§eq) (€) = G;-eq)(o) + TE@ +o(e), (32) APPENDIXH
J

where PROOF OFTHEOREMI[3

_(resp) [ ~(eq) _ Aresp) [ ~(eq) We consider the aggregate Welfaﬂa (5) as a functiotrof

Je=Gje (GR (O)) o (GR (O)) W(G) = W (2P(G)). We haved (G*(e)) = 0. The result
is a first-order quantity inc independent of the mechanigm of Theorem[B is then deduced from Proposit[dn 5 using a
and ditrese) taylor expansion around@*(¢): for j € {R, T},
aj=——1L (G(eq) (0)) . (33) (ea) vy _ \ (eq fn2
J dG r W(G;7(€) = W(G™(€)) + O ((G; 7 (€) = G™(€))7) -

Proof: First note thatGg.riSp) (G§§q> (0)) is continuously
differentiable with respect ta, and by assumption, the
first-order term inJ. is non-zero. Moreover, due td_(31),
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