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I. A

We introduce a model for the operational costs of an
electric distribution utility. The model focuses on two of
the new services that are enabled by the Advanced Me-
tering Infrastructure (AMI): (1) the fine-grained anomaly
detection that is possible thanks to the frequent smart
meter sampling rates (e.g., 15 minute sampling inter-
vals of some smart meter deployments versus monthly-
readings from old meters), and (2) the ability to shape the
load thanks to advanced demand-response mechanisms
that leverage AMI networks, such as direct-load control.

We then study two security problems in this context.
(1) In the first part of the paper we formulate the prob-
lem of electricity theft detection (one of the use-cases
of anomaly detection) as a game between the electric
utility and the electricity thief. The goal of the electric-
ity thief is to steal a predefined amount of electricity
while minimizing the likelihood of being detected, while
the electric utility wants to maximize the probability
of detection and the degree of operational cost it will
incur for managing this anomaly detection mechanism.
(2) In the second part of the paper we formulate the
problem of privacy-preserving demand response as a
control theory problem, and show how to select the
maximum sampling interval for smart meters in order
to protect the privacy of consumers while maintaining
the desired load shaping properties of demand-response
programs.

II. I

For most electric distribution utilities, creating a busi-
ness case for improving computer security and support-
ing long-term security research is a difficult task because
of the lack of risk models that capture the effects of
security and privacy in their revenue and profit margins.

We consider the point of view of an electric dis-
tribution utility that needs to create a business case
for improving their security posture by introducing an
electricity-theft anomaly detection mechanism and a
privacy-preserving demand response program.

We model the electricity-theft anomaly detection case
as a game played between the utility and fraudulent

consumers, and characterize the Nash equilibrium of the
game.

In the second part of the paper we consider the
privacy-preserving demand-response problem and using
realistic values of a direct-load control example, we show
how the peak shaving goal of the demand-response
program depends on the privacy (sampling interval) of
the Advanced Metering Infrastructure (AMI).

III. B M
A. Electricity Theft

Energy theft in emerging economies has been a wide-
spread practice. A World Bank report [1] found that up
to 50% of electricity in developing countries is acquired
via theft. Electricity theft can be caused by physical
and cyber attacks. Physical security considerations range
from defaulting on payments to directly connecting
loads to the electricity distribution lines. A cyber attack
against smart meters is also possible (and the focus of
this paper). While some basic protective measures have
been developed (tamper-evident seals, secure link com-
munications), they are not enough to prevent successful
attacks during the meter lifespan. In addition to vulner-
abilities identified by security researchers [2], [3]—some
of them allowing rogue remote firmware updates [4]—
hacked smart meters have been used to steal electricity,
costing a single U.S. electric utility hundreds of millions
of dollars annually, as reported by a cyber-intelligence
bulletin issued by the FBI [5]. The FBI report warns
that insiders and individuals with only a moderate level
of computer knowledge are likely able to compromise
and reprogram meters with low-cost tools and software
readily available on the Internet. The FBI report also
assesses with medium confidence that as smart grid use
continues to spread throughout the country, this type of
fraud will also spread because of the ease of intrusion
and the economic benefit to both the hacker and the
electric customer.

Detecting electricity theft has traditionally been ad-
dressed by physical checks of tamper-evident seals by
field personnel and by using balance meters [6]. While
valuable, these techniques alone are not enough. Tamper
evident seals can be easily defeated [7] and balance
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meters can detect that some of the customers connected
to it are misbehaving, but cannot identify exactly who
they are. Despite the vulnerabilities of smart meters, the
high-resolution data they collect is seen as a promis-
ing technology to improve electricity-theft detection. In
general, utilities are gathering more data from many
devices and they are leveraging big data analytics [8] to
obtain better situational awareness of the health of their
system. One of the key services offered by Meter Data
Management (MDM) vendors for turning big data into
actionable information is called revenue assurance, where
data analytics software is used by the utility on the
collected meter data to identify possible electricity theft
situations and abnormal consumption trends [9]. Big
data analytics is thus a new cost-effective way to comple-
ment the use of balance meters (which are still necessary
to detect when electricity thieves connect directly to
the power distribution lines instead of tampering with
the meter) and physical personnel checking for tamper-
evident seals.

In this paper we model of a utility using statistical
anomaly detection in smart meter readings to identify
potential electricity theft. Our work creates a game-
theoretic formalism of recent research efforts in electric-
ity theft detection [10], [11].

B. Privacy
Smart meters allow large-scale data collection, making

individual household data available at unprecedented
levels of granularity. Monitoring energy consumption
at high granularity can allow the inference of detailed
information about consumers’ lives. Such behavioral
data is highly valuable to advertising companies, law
enforcement, and criminals. Hence, there is potential for
erosion of individual privacy in the development of the
smart grid, and we must ensure proper controls are in
place.

Previous research has tried to mitigate these pri-
vacy concerns by power-mixing [12], [13], data aggrega-
tion [14], [15], and cryptographic techniques [16], [17].
While these approaches are promising, they do not
address the privacy-by-design principle of data min-
imization; i.e., what is the minimum data collection
frequency that still allows the utilities to efficiently per-
form advanced smart grid operations, including load
management and demand-response?

In this paper we concentrate on the best principles
for data collection of energy-use data. In particular, we
formulate the problem as a discrete-time control sam-
pling problem, and show what properties we need to
study from this sampled system in order to maintain a
satisfactory level of demand-response functionalities.

IV. A M  O C  P 
D U

We consider a cost model of a regional distribution
utility that considers two important factors related to

their profits.
First, we model the non-technical losses due to theft

by a subset θ (from the total set of customers Θ) of
consumers stealing electricity. To reduce the losses due
to electricity theft the utility can invest in anti-fraud tech-
nologies and recover a part of the the electricity stolen
by imposing fines on the consumers it has identified as
committing fraud.

Second, we consider the cost the regional utility needs
to pay to their provider of electricity in order to satisfy
the demands of their consumers. To manage this cost the
utility can deploy demand-response mechanisms.

In this paper we study how security and privacy affect
the electricity distribution costs by using the following
models:

1) To deal with electricity theft, we consider a game
played between set θ of independent consumers
stealing electricity and the electric utility. We find
a Nash equilibrium of the game.

2) To manage the costs necessary to supply the de-
mand of their consumers, we consider a direct load
control demand response deployment. We formu-
late the privacy-preserving demand-response problem
as the task of finding the maximum allowable
sampling rate that keeps the demand lower than
a predefined maximum value.

The privacy-preserving DR is a design consideration
which can be imposed by the Government or a regu-
lator on the electric distribution utility. Once the AMI
sampling scheme is in place, our game-theoretic model
permits us to consider strategic consumers who are
interested in stealing electricity.

We assume an electric distribution utility who has
an AMI deployment collecting a time-series of electric
power consumption yi

k for every time step k and every
customer i ∈ Θ.

Let qi denote the expected total consumption of user
i, and qU

i denote the expected unbilled part of the
consumption of user i. Note that qU

i = 0 for honest
users i ∈ Θ − θ. Thus an electricity thief sends a signal
yk back to the utility that does not represent their true
consumption.

We assume the distribution utility has three design
variables: (1) the effort e invested in anti-fraud technolo-
gies, (2) the anomaly detection test D used to identify
electricity theft, and (3) the sampling interval N (the time
interval between measurement yk and yk+N taken by their
smart meter deployments).

For a fixed N, the revenue of a distribution utility is the
sum of the tariffs T from all customers plus the recovered
fines Fr from the detected electricity theft:

R(e,D) =
∑
i∈Θ

T(qi
− qU

i) +
∑
i∈θ

ρ(e,qU
i,D)Fr(qU

i), (1)

where ρ represents the probability of detecting an elec-
tricity thief.



There are two main costs to the electric utility. The
first is the investment in protecting their infrastructure
against electricity theft ψ(e), and the second one relates
to the costs associated with meeting demand of all the
consumers

∑
k Yk, where Yk =

∑
i∈Θ yi

k +qU
i (i.e., Yk is the

total demand at time k including the unbilled demand
qU

i).
The profit of the utility is thus:

R(e,D) − C({Yk}) − ψ(e). (2)

In the next section we study the terms R(e,D) and ψ(e)
with a game theoretic model of electricity theft detection,
and in Section VI we focus on the middle term of the
equation C({Yk}), formulating the problem of maximizing
the privacy the utility provides to its consumers while
keeping the same cost C({Yk}) as other more privacy
invasive AMI sampling rates.

V. A G TM  E T
D

There are many ways the utility can invest in protect-
ing their infrastructure. They can:

1) invest in a centralized meter data management
(MDM) solution that performs analysis of the time
series received by consumers and comparing them
to historical trends and correlate them to other
customers in similar residences or businesses.

2) invest in increasing redundancy (balance meters)
by adding redundant meters at different parts of
their infrastructure.

3) invest in hardening the smart meters, by adding
better tamper-resistant solutions, and embedded
sensors in the meter that report reprogramming or
tampering attempts.

In this paper we focus on the centralized MDM solution
for many reasons: (1) it is the main focus of many
AMI deployments, (2) it does not require the capital
investments of the other technologies, (3) the operational
cost of managing a meter data management solution
fits better with the model we are going to introduce
for the distributor in the next section, and (4) it is the
only solution that can be retrofitted to an existing AMI
deployment.

In the MDM security model we assume the distribu-
tion utility has an anomaly detection mechanism D that
tries to identify if the received electricity consumption
signal y is fraudulent or not.

We assume the period of study is from k = 1 to k =
n, thus with the advanced metering infrastructure, the
electric utility is able to collect for each user a vector
yi
∈ Rn (note that yk can be negative, thus modeling

consumers who can give electricity back to the grid by
e.g., installing solar panels).

We assume that electricity thieves have compromised
smart meters and can thus send falsified meter measure-
ments yk. (Attackers that steal electricity by connecting

directly to the distribution lines are outside the scope of
this paper.) We assume each measurement yi

k is the result
of a random process driven by a probability density
function f i

1(yi). An honest user will have a probability
density f i

0(yi) different from the density of an attacker
f i
1(y) and satisfying the following constraints:

1TEi
0[Y] = qi and 1TEi

1[Y] ≤ qi
− qU

i (3)

We assume that the utility knows f i
0 for each user (e.g.,

by historical profiles the utility can estimate the normal
electricity consumption distribution f i

0 before the user
compromises and reprograms the smart meter to start
giving fake signals).

We assume consumers have already established an
average consumption pattern qi (a fixed value) and that
attackers have a minimum amount of electricity it wants
to steal qU

i.
For notational simplicity we drop in the following

analysis the superscript i denoting the individual con-
sumer from f0, f1, y, yk,qU, and q. However, we note that
all the results are valid for the general case when each
consumer i is different from the other consumers as we
will show at the end of this section.

From Eq. (2) we observe that the goal of the utility
is given by:

max
e≥0,D

∑
Θ

T(q − qU) +
∑
θ

ρ(e,qU,D)Fr(qU) − ψ(e). (4)

In this paper we assume the tariff T is given by a
regulator and is not controlled by the distribution utility,
therefore the parameters that the utility can control affect
only the following terms:

max
e≥0,D

∑
θ

ρ(e,qU,D)Fr(qU) − ψ(e). (5)

The operational cost ψ of managing the anomaly de-
tectorD is quantified by the resources (effort e) the distri-
bution utility assigns for dealing with false alarms (e.g.,
the number of analysts and field engineers responding to
false events). The probability of detecting fraud increases
with the effort e dedicated by the utility in anti-fraud
mechanisms, and with the amount of electricity stolen.
As we will show later in this section, it also depends on
the density function f1 the attacker uses. qU and can be
modeled as

ρ : R+ ×R ×AqU → [0, 1] (6)

where

AqU =
{

f1 : 1TE1[Y] ≤ q − qU

}
. (7)

Thus ρ assigns for to each investment level e, stolen
electricity qU, and pdf f1, a probability of detection.

Given this problem definition, the optimal anomaly
detection testD is the one that maximizes the probability
of detecting a fraudster ρ subject to an upper bound on
the false alarm rate e (the investment).



From Neyman-Pearson theory we know that the opti-
mal detection test D (the test that maximizes the prob-
ability of detection given a constraint in the number of
false alarms) is the likelihood-ratio test:

D(y) = ln
f1(y)
f0(y)

H1

R
H0

τ (8)

Thus

ρ(e,qU,D) = P1

[
ln

f1(y)
f0(y)

> τ

]
+ γP1

[
ln

f1(y)
f0(y)

= τ

]
(9)

where τ and γ are selected such that

P0

[
ln

f1(y)
f0(y)

> τ

]
+ γP0

[
ln

f1(y)
f0(y)

= τ

]
= e (10)

We note however that we do not know f1, as it is
selected by an attacker.

We assume the attacker knows the anomaly detection
test used by the utility company is a likelihood-ratio test,
but we assume the attacker does not know e (i.e. the
attacker does not know during operation the threshold
τ and randomization γ used by the utility, which can
be selected and changed online depending on the avail-
ability of analysts investigating alarm reports). Therefore
we assume the attacker wants to minimize the likelihood
ratio value.

In other words, The goal of the attacker is to find
f2 ∈ AqU (i.e., an f2 that satisfies the constraint on the
amount of electricity stolen qU) while minimizing the
expected likelihood ratio function:

min
f2∈AqU

E2

[
ln

f1(y)
f0(y)

]
(11)

= min
f2∈AqU

∫
f2(y) ln

f1(y)
f0(y)

dy (12)

Note that f1(y) is chosen by the defender as part of its
likelihood ratio test D(y), while f2(y) is chosen by the
attacker.

We will prove later in the paper that the solution f ∗1 to
the following equation is such that the optimal move for
the defender is to choose f1 = f ∗1 and the optimal move
for the attacker is to choose f2 = f ∗1 .

min
f1∈AqU

∫
f1(y) ln

f1(y)
f0(y)

dy (13)

Notice first that the objective function is convex in f1.
We let qε(y) = f ∗1 (y)+ εh(y) and construct the Lagrangian
of the objective function and the constraints∫

qε(y) ln
qε(y)
f0(y)

dy + µ1

(∫
qε(y)dy − 1

)
+ µ2

(
1T

∫
yqε(y)dy − (q − qU)

)
(14)

By taking the derivative with respect to ε and equating
this quantity to zero for all possible h(y), we find that the
optimal f ∗1 has to be of the form:

f ∗1 (y) = f0(y)e−µ2 y−µ0 (15)

where µ0 = µ1 + 1. In order to obtain the values of the
Lagrange multipliers µ0 and µ2 we use the constraints of
f1. The first constraint states that f ∗1 must be a pdf and
therefore ∫

f0(y)e−µ2 y−µ0 dy = 1 (16)

solving for µ0 we have

µ0 = ln
∫

f0(y)e−µ2 ydy (17)

Replacing this solution in Eq. (15) we get

f ∗1 (y) =
f0(y)e−µ2 y∫
f0(y)e−µ2 ydy

(18)

The second constraint in AqU is rewritten in terms of
Eq.(18) as

1T
∫

y
f0(y)e−µ2 y∫
f0(y)e−µ2 ydy

dy = q − qU (19)

from where we can obtain µ2 (once we know f0).
We now show that f ∗1 is a Nash equilibrium between the

attacker and the defender. First, we show that an attacker
has no incentive to deviate from f ∗1 if the defender selects
f ∗1 for its likelihood ratio test:

Assume an attacker selects a pdf

f2 ∈ AqU (20)

then, the expected value of the likelihood ratio test under
f2 is:

E2

[
ln

f ∗1 (y)
f0(y)

]
=

∫
ln

f ∗1 (y)
f0(y)

f2(y)dy (21)

=

∫
f2(y) ln

e−µ2 y∫
f0(y)e−µ2 ydy

dy

=

∫
f2(y) ln e−µ2 y

− ln
∫

f0(y)e−µ2 ydy
∫

f2(y)dy

=

∫
(−µ2y) f2(y)dy − ln

∫
f0(y)e−µ2 ydy

≥ − µ2(q − qU) − ln
∫

f0(y)e−µ2 ydy

=

∫
−µ2y f ∗1 (y)dy −

∫
f ∗1 (y)dy ln

∫
f0(y)e−µ2 ydy

=

∫
f ∗1 (y) ln

e−µ2 y∫
f0(y)e−µ2 ydy

dy

=

∫
f ∗1 (y) ln

f ∗1 (y)
f0(y)

dy

Similarly, the defender has no incentive on selecting
a pdf f3 different from f ∗1 if the attacker selects f ∗1 . The



proof of this statement is a direct result of the Neyman-
Pearson lemma, which in our case implies that the test
that maximizes the probability of detection ρ for any
fixed false alarm rate is the likelihood ratio test with
with f ∗1 as the alternate hypothesis and f0 as the null
hypothesis.

Theorem 1. Let

D
i,∗(y) = ln

f i,∗
1 (y)

f i
0(y)

H1

R
H0

τ (22)

then f i,∗
1 is a Nash equilibrium between a distribution utility

with the following objective:

max
Di

∑
i∈θ

ρ(e,qU
i,Di)Fr(qU

i) − ψ(e). (23)

and players i ∈ θ with the following objective:

min
f i
2∈A

i
qU

∫
f i
2(y) ln

f ∗,i1 (y)

f i
0(y)

dy (24)

The final part of the optimization problem for the
utility company is the selection of e.

max
1≥e≥0

∑
i∈θ

ρ(e,qU
i,Di,∗)Fr(qU

i) − ψ(e). (25)

Assuming ψ is a linear function and ρ is differentiable
with e we obtain the following first order condition:∑

i∈θ

∂eρ(e,qU
i,Di,∗)Fr(qU

i) = ψ. (26)

To understand the interpretation of this result, assume
all customers steal the same amount of electricity qU.
Then Eq. (26) simplifies to∑

i∈θ

∂eρ(e,qU,D
i,∗) =

ψ

Fr(qU)
(27)

Now notice how ρ(e,qU,Di) is the Receiver Operating
Characteristic (ROC) curve of Di, therefore the above
equation simply means that the optimal false alarm rate
e can be identified as the place in the ROC curve where
the sum of the slopes is equal to ψ

Fr(qU) . Since the ROC is
continuous and the slope starts at ∞ and goes to 0 as e
grows, there exists such a point satisfying the first order
condition.

VI. P-P D-R

In the last section we focused on the first and last
terms of Eq. (2). In this section we investigate the middle
term C({Yk}) by formulating the problem of maximizing
the privacy the utility provides to its consumers while
keeping the same cost C({Yk}) as other more privacy
invasive AMI sampling rates.

To understand how the cost C({Yk}) is related to
demand-response, we summarize a cost function we
have encountered with some of the distribution utilities

we have talked with. A large portion of distributors in
the U.S. buy the energy from larger regional transmission
utilities. Their cost function C depends not only on
the amount of power required to meet the demand of
all their consumers Q =

∑
Yk, but also on the time-

properties of the demand Yk,Yk+1, . . . . A common cost
function (e.g., for a monthly period) is the following:

C(Y) = rQ + p max
k

Yk (28)

where usually p � r. The first part of the equation
represents the total amount of energy bought during the
period at rate r (this price might change over the month,
but for simplicity we assume it is fixed), while the latter
part represents the maximum amount of power that was
required by the utility in the one-month period. This
latter part takes into consideration the costs for capacity
planning, to make sure providers have enough resources
to supply the maximum demand of the distribution
utility.

This cost structure is also a major incentive to imple-
ment demand-response programs targeting the reduc-
tion of maxk Yk. In this section we study how privacy-
preserving sampling of smart meter users yk impacts
demand-response programs, and provide a set of metrics
to study in order to find the optimal privacy-preserving
sampling that keeps the maximum demand maxk Yk low
with a high probability.

For simplicity we assume that the set of attackers is
empty (θ = ∅), leaving the joint problem of electricity
theft and its impact in demand response for future work.

A. Individual user models

There are many (envisioned or deployed) demand
response programs aimed to shaping the load Yk and
lowering the peaks at the request of the utility company.
Most of the current deployments are based on messages
sent by the electric utility either by phone or email
to the energy administrator of a facility or a house
owner, informing of an incoming event, and asking them
to lower their electricity consumption during a certain
period of time in return or reduced electricity bills.

This method is inefficient and therefore there are
many ongoing programs trying to create novel demand-
response programs that can reach a larger set of cus-
tomers and achieve better control of the load. One
popular case study is the use of real-time price incentives
delivered by the smart meter to automatic appliances in
the user home that respond to these price signals accord-
ing to some preference of the user. Another common
demand-response program is direct-load control [18],
where the utility or demand-response provider controls
a load in a consumer premise (typically a thermostat
within some predefined bounds).

In this section we consider a simple direct-load control
example. For an individual user i, we model her power



consumption dynamics with the following model:

(yi
k+1 − yi

k+1) = αi(yi
k − yi

k) + βiui
k + wi

k (29)

where yi
k ∈ R represents the power consumption of user

i at time k, and ui
k ∈ R represents the control signal given

to user i at time k. Here, we assume that αi, βi are given
and yi

k is given for all k. Furthermore, we assume that wi
k

is normally distributed with zero mean and variance σ2
d,i.

The wi
k are mutually independent across time k. Also, we

assume we can measure xi
k directly.

We provide some justification for such a model, as
well as some physical intuition for the significance of
the parameters αi and βi. First, assume that wi

k and ui
k

are simply zero for all k. Then, we can see that the
trajectory will simply be yi

k = yi
k; thus, yi

k represents
the uncontrolled trajectory of power consumption. Of
course, people’s behavior is not deterministic, so the wi

k
term models some of the uncertainty in human behavior.
Now, suppose some external disturbance perturbs the
user’s power consumption away from this default pref-
erence; if |αi

| < 1, then this perturbation will eventually
die out and the user will resume her previous power
consumption patterns. The αi parameter models the
sensitivity of the user’s preferences to perturbations.

On the other hand, βi represents the efficacy of control.
For example, the input signal, ui

k, which modifies power
consumption could be the price of electricity. In such a
scenario, βi would represent the user’s price elasticity
of demand near the operating point. Another possible
signal could be direct-load control, either through some
Advanced Metering Infrastructure (AMI) or even, as in
current practice, phone calls to commercial plants. Yet
another possibility is thermostatically controlled loads
where the input is a thermostat setpoint.

We also note that, defining µi
k = yi

k+1−α
iyi

k, this model
is equivalent to:

yi
k+1 = α

iyi
k + β

iui
k + di

k (30)

where di
k is normally distributed with mean µi

k and
variance σ2

d,i. Additionally, by recursion, we can see that:

yi
k+N = (αi)N yi

k +

N−1∑
j=0

(αi)(N−1)− jβiui
k+ j +

N−1∑
j=0

(αi)(N−1)− jdi
k+ j.

(31)
We note that, given xi

k and ui
j for j ∈ {k, k+1, . . . , k+(N−1)},

that yi
k+N is a normally distributed random variable with

mean:

(αi)N yi
k +

N−1∑
j=0

(αi)(N−1)− jβiui
k+ j +

N−1∑
j=0

(αi)(N−1)− jµi
k+ j (32)

and variance:
∑N−1

j=0 ((αi)(N−1)− j)2σ2
d,i.

B. Aggregated model
Now, suppose we have n users whose dynamics are

de-coupled and can be modeled by Eq. (30). As done
in previous section we define the state to be the vector
containing the power consumption of all n users: yk =
(y1

k , y
2
k , . . . , y

n
k ). This yields the following dynamics:

yk+1 = Ayk + Buk + dk (33)

where A = diag(α1, α2, . . . , αn), B = diag(β1, β2, . . . , βn) are
known, and dk follows a multivariate normal distribu-
tion with known mean µk = (µ1

k , µ
2
k , . . . , µ

n
k ) and known

variance Σd = diag(σ2
d,1, σ

2
d,2, . . . , σ

2
d,n). The dk are mutually

independent across time k.
Once again using recursion, we can see:

yk+N = AN yk +

N−1∑
j=0

A(N−1)− jBuk+ j +

N−1∑
j=0

A(N−1)− jdk+ j. (34)

Say yk and u j for j ∈ {k, k + 1, . . . , k + (N − 1)} are given.
Then yk+N is a multivariate normal random variable with
mean:

AN yk +

N−1∑
j=0

A(N−1)− jBuk+ j +

N−1∑
j=0

A(N−1)− jµk+ j (35)

and variance:
∑N−1

j=0 A(N−1)− jΣdA(N−1)− j.
With this model, we can begin to perform some anal-

ysis. Specifically, we can formulate demand-response
programs as control policies. Once this is done, we can
quantify the effects of sub-sampling on the performance
of such control policies. The end result is that we will
be able to state what sampling rate is needed to achieve
certain performance criteria; in a sense, this will allow
us to quantify how much the utility company should be
willing to ‘pay’ for the user’s power consumption data.

C. Example control policy
Note that the total power consumption at time k

is given by Yk = 1Txk, where 1 is a vector of ones.
Furthermore, note that the system is controllable if βi , 0
for all users.

We provide an example of a control policy. Suppose
the system is controllable. Now, let this be the control
scheme: given a measurement of the complete state, xk,
it calculates the total demand: Yk = 1T yk. It also has
a given target value for Yk, call this Y∗k. Then, it tries
to set each y j

k+1 to be y j∗
k =

yk
Yk

Y∗k. Thus, it attempts to
maintain proportions as well as set a target consumption.
If the state is not measured at time k, it will just use the
expected value E[yk], given available measurements, as
an estimator. In both cases, it is easy to see that:

ui
k =

1
βi (y j∗

− αiE
[
yk

]
− µi

k) (36)

for all users i. This control is deterministic given a
sampling rate, target demand, and measurements.



Notice that the problem of privacy-preserving control
is different from other problems in networked control
systems because while we might not be able to sample
the electricity consumption yk as frequently as we would
like, our control signal does not need to be sampled, as
more frequent controls uk do not compromise privacy.
In future work we plan to place additional realistic con-
straints to the demand-response control signal such as
minimizing the number of times it is used (i.e., maximize
the amount of time uk = 0), or placing bounds umin

Now, say we have the following criteria: the system
should be within an interval [Y∗k−Yb,Y∗k+Yb] for all k with
probability 1−ε, where yb is some pre-specified constant.
We can simulate the efficacy of this control while varying
sampling rates.

D. Simulation results

We simulate the model and control policy for a two-
user system. Our goal is to show an example of the
type of studies an AMI deployment might consider in
order to select the sampling rate of their smart meters.
In particular, our goal is to define an upper bound Y∗k+Yb
that will keep the second term of our desired target cost
C({Yk}) bounded.

We then show two metrics of interest as functions of
the sampling interval N:

1) Pr
[
Yk+N ∈ [Y∗k − Yb,Y∗k + Yb

]
in Figure 2,

2) The interval S = [Ymin,Ymax] such that
Pr [Yk+N ∈ S] ≥ 0.99 in Figure 3.

While demand-response programs only care about the
highest interval bound Ymax (not the lower one), if we
don’t place the lower bound in our problem formulation,
the optimal control signal would attempt to drive the
demand to be as low as possible. In future work we
plan to address this drawback by adding a control cost
function that includes a penalty cost each time we use
the control signal.

Our simulation uses the following parameters:

A = diag(0.64,−0.32)
B = diag(2.54, 1.27)
Σd = diag(10, 20)
Y∗ = 94.9482
Yb = 25

(37)

where Y∗k = Y∗ for all k. These parameters are influenced
by results in statistical estimation of thermostatically
controlled loads [19]. We use the time window K = 128.
For µk, we plot the nominal total demand and desired
control interval in Figure 1.

To see the efficacy of our control policy and how it
varies with different sampling rates, we used Monte
Carlo simulation methods. We have the following re-
sults. First, we plot the probability our control will keep
the total demand in the desired interval, as a function
of sampling intervals, in Figure 2. Next, we show the
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Fig. 1. The nominal total demand and the desired demand bounds.
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Fig. 2. The probability our control will keep us in the desired interval,
as a function of sampling rate.

demand intervals we can maintain with 99% probability
in Figure 3.

With these simulations our goal was to perform a
preliminary exploratory study of the type of problem
formulation and the type of properties we would like to
maintain in a demand-response system. In future work
we plan to explore the analytical properties of privacy-
preserving demand-response in AMI networks.

VII. C  FW

In this paper we presented a unified cost model that
allowed us to study the impacts of electricity theft de-
tection and privacy for the bottom line of a distribution
utility (their profits).

We first formulated a game between the distribution
utility and electricity thieves, and found the Nash equi-
librium of the game as a probability density function that
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Fig. 3. The demand interval we can maintain with probability 99%,
given a sampling rate.

attackers and defenders must choose in order to send
AMI measurements yk.

We then performed a preliminary analysis of how to
achieve the maximum level of privacy possible subject
to a bound on the maximum load.

In future work we plan to explore more directions.
We are particularly interested in a study on privacy-
preserving electricity theft detection. In other words, we
would like to explore how the sampling interval of smart
meters affects the ability of the distribution utility to
identify anomalies and electricity theft. According to the
central-limit theorem, for large sampling intervals and
with an i.i.d assumption, the distribution of attackers
and defenders will follow a Gaussian distribution. The
mean and the variance of an honest user will be known
in advance, and the mean of the attacker will also be
known thanks to the constraint imposed by qU; therefore
the goal of the attacker will be to find the variance that
minimizes their probability of detection:

Another research direction is to place more realistic
demand-response constraints in the problem formulation
of the control signal as well as to the objective in the
controller. Such constraints include a cost for using the
control signal, a control signal that is bounded, users that
are not elastic to the control, etc.

Finally, we would also like to jointly study the problem
of privacy preserving demand response under electricity
theft.
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