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Abstract
Continuing outbreaks of pathogenic (H5N1) and pandemic (SOIVH1N1) influenza have underscored
the need to understand the origin, characteristics, and evolution of novel influenza A virus (IAV)
variants that pose a threat to human health. In the last 4–5 years, focus has been placed on the
organization of large-scale surveillance programs to examine the phylogenetics of avian influenza
virus (AIV) and host-virus relationships in domestic and wild animals. Here we review the current
gaps in wild animal and environmental surveillance and the current understanding of genetic
signatures in potentially pandemic strains.

1. Introduction
Nearly twenty years ago, in his landmark review of influenza, Rob Webster pointed out the
probability that birds may serve as a source of all influenza A viruses (IAV) that become
endemic in other species (1992). The emergence and maintenance of H5N1 lineages in wild
and domestic birds and the 2009 novel pandemic strain of H1N1 virus with avian origins in
humans have reinforced this view, yet shown the origin of epidemic virus to be complicated
(Neumann et al., 2009; Shortridge et al., 1998). In many respects, recent influenza events
emphasize the importance of understanding the ecology and evolution of IAV in wild animal
vectors and viral reservoir species (Fouchier and Munster, 2009; Melville and Shortridge,
2006; Munster et al., 2007; Normile, 2006). Here, we review the recent literature in influenza
with an emphasis on understanding i) how surveillance research in wild animals and the
environment can benefit public health and ii) on how knowledge of the molecular determinants
important in influenza evolution in wild species can inform pandemic preparedness.

Influenza viruses are normally classified by the antigenic properties of their highly variable
major surface proteins, hemagglutinin (HA) and neuraminidase (NA). These two proteins are
the primary targets of protective immunity in the host. Seventeen subtypes of hemagglutinin
(HA: H1–H17) and 9 subtypes of neuramindase (NA: N1–N9) are described and all but one
(H17 in bats (Tong et al., 2012)) and nearly all combinations have been isolated from wild
birds (Olsen et al., 2006; Webster et al., 1992) although some more frequently than others. The
influenza HA mediates viral binding to host cells and delivery of the viral genome into the cell
cytoplasm while the NA assists in viral exit by cutting sialic acid ties to the host cell membrane.
The viral genome of eight single-stranded negative sense RNA segments encodes 10+ proteins
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depending on the strain. In addition to the HA and NA, three proteins form the polymerase
complex (PB1, PB2, and PA) and bind the RNA segments with nucleoprotein (NP); matrix
(M) and matrix 2 (M2) comprise the protein coat of the virus; and the non-structural (NS) and
nuclear export protein (NEP) interact with cellular proteins and processes to assist viral
replication and exit and avoid the host immune response. Several additional proteins have been
identified in the PB1 and PA segments that are variably present through alternative
transcriptional open reading frames, splicing, or secondary start codons. These include PB1-
F2 and a suite of recently discovered PA forms (Jagger et al., 2012; Muramoto et al., 2012),
all of which seem to impact virulence of infection and which demand further study.

Since the emergence of a highly pathogenic form of H5N1 avian influenza from a domestic
goose in 1997, and its subsequent transmission to humans (de Jong et al., 1997), birds have
received increased attention as the source of all natural IAV variants. On rare occasions, the
highly pathogenic forms of IAV have been reported in wild birds -the first outbreak with
mortality in wild birds being identified as an H5N3 influenza strain in common terns of South
Africa in 1961 (Becker, 1966). However, retrospective analysis has identified avian origins for
all segments of human pandemic viruses. This includes the “Spanish flu” of 1918, an H1N1
strain that was perhaps one of the greatest natural disasters in human history and is estimated
to have contributed to the death of over 50 million people worldwide. Subsequent pandemic
viruses though less severe have had enormous impact on human health and include an H2N2
virus in 1957, an H3N2 virus in 1968, and the pH1N1 virus, now endemic, in 2009. Each of
these strains resulted from the reassortment of contemporary human strains with viruses
derived from birds, but probably delivered through infection of an intermediate host such as
the pig. Whether the 1918 virus moved into humans directly from an avian host is controversial.
Regardless, the avian origin of all these viruses has spurred research into the avian host in
hopes of understanding the characteristics and predictability of pandemic strains at their root.

Domestic and wild birds have been implicated as key agents for interspecies transmission to
mammalian hosts of diverse taxa including whales, seals, pigs, horses, and also humans (Claas
et al., 1998; Mandler et al., 1990; Reperant et al., 2009; Zhou et al., 2009). Phylogenetic analysis
has even revealed that some gene segments belonging to previous human pandemic strains are
still circulating in wild bird reservoirs. The NA genes of some H9N2 viruses isolated from
migratory ducks in Hokkaido, Japan, clustered with those of H3N2 viruses responsible for
causing the human pandemic of 1968 (Liu et al., 2003). Moreover, it has been speculated that
the 3 parents of the triple reassortant virus that caused the 2009 H1N1 pandemic may have
been assembled in one place by migratory birds (Gibbs et al., 2009). As such, increasing
emphasis is now placed on understanding the evolution and molecular determinants of novel
and pathogenic forms of influenza that originate from the IAV in birds.

Surveillance research in wild birds holds the promise of informing public health preparedness
for pandemic and seasonal influenza. Field surveillance studies to detect avian influenza
viruses (AIV) in animal vectors was organized in the early 1970’s, culminating with detection
of influenza virus from the cloacal swabs of wild ducks (Slemons et al., 1974). Into the 1990’s,
research in the bird host centred on describing the viral natural history and its maintenance in
waterfowl hosts. In response to the threat of Asian origin H5N1, sampling efforts have
increased by an order of magnitude or more in the last 5 years, particularly in the U.S. and
mainland China (Butler, 2012). These efforts have begun to tie the viral natural history and
studies on viral evolution to the potential for generating novel pandemic viral strains. What is
clear from past work is that the evolution and natural history of the virus is highly dependent
on the epizootiology of infection in the avian host. It is hoped that understanding the virus in
reservoir species such as gulls and ducks may help refine viral surveillance and identify unique
virus for further study. However, large biases exist in the geographic distribution of sampling
sites and most countries still have little or no organized surveillance. Countries where H5N1
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is endemic, including Egypt, India, Bangladesh, Viet Nam and Indonesia often suffer from a
lack of capacity to diagnose and characterize viruses in-country. These gaps in viral
surveillance in the wild, the focus of the first half of this review, will need to be addressed to
make the most of current surveillance research efforts.

Viruses that come out of surveillance work in wild animals is also enabling laboratory based
studies to clarify the molecular determinants of interspecies transmission, virulence and
pathogenicity, the focus of the second half of our review. Experimental work with potentially
troublesome virus or viral segments before they become a problem, should enable the
development of broadly or specific protective vaccines and therapeutics for intervention before
a pandemic is started. Influenza is unique in some respects in that one or a combination of three
mechanisms – point mutation, segment reassortment, or, less commonly, recombination may
generate genomic diversity. While recombination events do not seem to occur frequently,
(Boni et al., 2008; Hirst et al., 2004; Pasick et al., 2009, 2005) their impact could be large and
deserves further study. High rates of mutation are produced by the viral RNA polymerase,
which lacks proofreading ability during transcription of the genome. In essence, mutation
renders the host infected with a population of similar viruses with varying levels of fitness in
the given host. Selection of novel variants that possess enhanced fitness is responsible for drift
in viral strains. Unfortunately, only consensus strain sequence is commonly reported so the
importance and dynamics of variants in the host are poorly understood. This is one major gap
that needs to be addressed. However, what seems to prove the biggest challenge for human
health and a result of interspecies transmission is the ability for co-infecting viruses to swap
segments (reassortment), producing novel strains that are antigenically distant from the original
(i.e. – novel combinations of HA and NA as well as internal segments). This process allows
the virus to ‘sidestep’ the immune system of the host and spread through populations (Webby
and Webster, 2001; Webster et al., 1992). While some subtypes contain strains that are partially
cross seroreactive, the HA sequence of influenza may differ by over 30% at the amino acid
level and show limited cross reactivity in serological assays (Alexander, 2000; Dugan et al.,
2008). As reassortment goes, viruses in pigs may be a major reservoir of human emergent
strains because of the potential to mix with human subtypes (Hass et al., 2011; Shu et al.,
1994). However, pigs may not be the only animals for which this mixing is likely to take place
(see 2.2.2 “If pigs might swim” below). Studies in many other species indicate that interspecies
transmission is relatively frequent (Capua and Alexander, 2002), but that epidemics are thought
to almost always be self-limiting because viruses are not maintained or do not become endemic
in alternative host species. The specific genetics governing host range are undoubtedly
polygenic, but may depend on the co-evolution of viral gene products with host cellular
machinery to produce a competitive virus capable of establishing infection through
transmission. The steady frequency with which this occurs in humans (Morens et al., 2010)
highlights that this is a difficult but achievable and possibly even a predictable event in nature.
Understanding this dynamic in avian and other reservoir and spillover hosts holds promise to
help define the criteria to look for in potentially pandemic virus. It is also possible that
pandemics are the result of rare events that facilitate genesis of rare viruses that are challenging
to predict. Several programs are underway to study whether IAV shows a ‘pandemic signature’,
to test these competing theories, and to understand if study of wild IAV can inform public
health risk for potential pandemic influenza. In the following sections, we explore the gaps
needing work in wild animal surveillance and highlight advances in our molecular
understanding that promises to improve public health preparedness for influenza.

2. What are we missing in influenza surveillance?
2.1 Gaps in wild bird surveillance

Field surveillance studies to detect IAV in animal vectors have been conducted for over forty
years, beginning with detection in wild ducks (Slemons et al., 1974). In response to the threat
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of Asian origin H5N1, sampling efforts increased by an order of magnitude since 2005
particularly in the U.S. and mainland China (Butler, 2012). In-depth wild bird surveillance has
helped distil key concepts in IAV ecology including the role of i) aquatic wild birds as
reservoirs, ii) migratory flyways as barriers to viral evolution, iii) young immuno-naïve birds
as the hub of the wheel in IAV circulation, iv) fecal-oral transmission as the primary
transmission route in ducks and v) warm temperatures and physico-chemical properties of
aquatic habitat in limiting IAV infectivity. Now at the conclusion of continent-scale
surveillance projects targeting wild birds (Deliberto et al., 2009; Ip et al., 2008), the questions
arise: how has understanding of IAV advanced? And are there any critical gaps in
understanding that remain?

2.1.1 Hunting for a reservoir—Many of the dogmas of IAV continue to be the guiding
principles that shape the way surveillance is conducted. Waterbirds belonging to the two orders
Anseriformes (ducks, swans, geese) and Charadriiformes (shorebirds, gulls, auks) have long
been recognized as the natural reservoirs of IAV (Webster et al., 1992) Within this ecologically
diverse group the dabbling ducks (family: Anatidae), particularly mallards (Anas
platyrhynchos) are believed to be a primary host. This notion stems from decades of field
studies in North America (Alfonso et al., 1995; Hinshaw et al., 1980; Ip et al., 2008) and Europe
(Munster et al., 2007; Wallensten et al., 2007) that report highest prevalence in mallards
compared to other sympatric bird species. The role of mallards as a robust host for IAV is
supported by experimental studies that demonstrate high titres of virus shed over extended
periods by hatch year birds that remained asymptomatic (12 days: Jourdain et al., 2010; > 7
days: Keawcharoen et al., 2008). However, ecological context is important when considering
findings from wildlife surveillance.

Mallards are the most ubiquitous waterbird species across their Holarctic distribution and are
intensively managed in North America and Europe to ensure sizeable populations for hunting
(Sedinger and Herzog, 2012). Large sample sizes are easy to obtain, especially from hunter-
killed mallards, making the logistics of sampling this species easier than any other wild bird.
Within the U.S., hunter-killed birds accounted for > 30% of all 78,300 Anatidae samples
(positive and negative) deposited in the Influenza Research Database (IRD: accessed Sep
2012). Over 70% of hunter-harvested samples were collected from only 5 species of 51
Anatidae – mallard, green-winged teal (Anas carolinensis) northern shoveler (Anas clypeata),
northern pintail (Anas acuta) and American wigeon (Anas americana), in descending order.
This estimate of hunter-harvested Anatidae samples is conservative because it does not include
the large-scale surveillance effort by the U.S. Department of Agriculture that sourced the
majority of samples (68%) from hunter-shot birds (Deliberto et al., 2009), but highlights the
dependency of surveillance on hunting as a source of inexpensive and readily-available
samples, despite biases in species as well as seasonal timing, sex and age of hunted birds
(Heitmeyer et al., 1993; Pace and Afton, 1999).

Species that are not viewed as ‘table birds’ and less sought after for consumption (i.e. northern
shoveler, gadwall, Anas strepera) or non-game species (i.e. gulls, shorebirds, passerines) may
present a challenge to obtain large sample sizes adequate for detection of IAV. Consideration
of sample size is especially critical at wintering and stop-over sites where IAV prevalence is
lower compared to breeding and fall staging grounds where prevalence reaches a peak in many
aquatic birds (Guberti et al., 2007). Careful assessment of which species are high priority for
surveillance demands a shift from opportunistic to sustained, long-term sampling plans that
consider the diversity of wild bird species and spatio-temporal variation in infection patterns
along the migratory flyway. Drawing on the expertise of ornithologists to capture non-game
species may ensure sufficient sample sizes for species that may play an important yet
undetermined role in hosting IAV strains with panzootic potential (Winker et al., 2008).
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2.1.2 Charadriiformes: migrators and mixers—The current yardstick for measuring
success of a surveillance study is detection of a large number of positive samples (Hoye et al.,
2010b). This approach has perpetuated the focus on dabbling ducks, while the role of other
water bird species in IAV ecology is overlooked. The product is a global bias towards sampling
Anseriformes that account for the majority of wild bird samples collected in North America
(78%), Europe (76%), Asia (35–58%) and Russia (47%) (Fig. 1). In contrast, sampling of
Charadriiformes - another recognized reservoir for AIV, accounts for only 3–31 % of global
surveillance efforts (Fig. 1). This sampling bias has led to over-representation of viral subtypes
associated with ducks in surveillance and genomic data, including the ubiquitous H3N8 and
H4N6. Virus pools of Anseriformes and Charadriiformes have long been recognised as distinct
(Kawaoka et al., 1988; Sharp et al., 1993). Overlap occurs with promiscuous subtypes (H3,
H6, H7), however the circulation of H9, H13 and H16 is generally limited to Charadriiformes
(Krauss et al., 2004; Krauss and Webster, 2010). Uncovering the full viral diversity hosted by
the wild bird reservoir, including Charadriiformes represents a more effective strategy for
detecting influenza precursors with capacity to switch hosts and seed a human pandemic.

Charadriiformes possess host traits that favour transmission, dispersal and hemispheric mixing
of IAV suggesting they play a uniquely different role in the ecology of IAV compared to ducks
(Gaidet et al., 2012). Shorebirds are highly gregarious along their migratory cycle and are true
long-distance migrants connecting the northern and southern hemispheres (Gill Jr et al.,
2009). This combination of host factors provides a mechanism for hemispheric reassortment
of IAV and the movement of novel lineages that displace locally circulating strains. This is
consistent with the higher frequency of hemispheric reassortment observed in IAV from
shorebirds and gulls compared to other water bird hosts (Bahl et al., 2009; Dugan et al.,
2008; Ramey et al., 2010; Widjaja et al., 2004). A growing number of studies have shown that
the internal genes of virus isolated from Charadriformes in North America are of Eurasian
origin, a pattern observed along the Pacific (Ramey et al., 2010; Wille et al., 2011a) and Atlantic
coasts (Wille et al., 2011b) suggesting that wild birds belonging to this order are primary
candidates for introduction of hemispheric reassortant virus. Enhanced surveillance of
shorebirds and gulls may facilitate early detection of IAV strains imported from regions where
highly pathogenic IAV is endemic or the incursion of novel segments into the endemic viral
population.

A complete understanding of the global movements of IAV requires that Charadriiformes be
incorporated into surveillance programs. Specifically, longer-term studies need to be
established to compliment the site at Delaware Bay, U.S. that has yielded the bulk of virus
samples from shorebirds, primarily from the narrow window of spring migration (Krauss et
al., 2004; Krauss and Webster, 2010). Comprehensive sampling of Charadriiformes will
necessitate greater international collaboration to target sites where migratory flyways overlap,
allowing hemispheric reassortants to be more readily detected. Surveillance has thus far been
North America- and Europe-centric (Butler, 2012) and rarely incorporates sampling sites in
Eurasia despite the fact that breeding populations of migratory birds often span both
hemispheres at northern latitudes (i.e. Beringian region, Arctic Russia). Long-standing political
divides, the remoteness of sampling sites and lack of in-country diagnostic laboratories presents
a challenge for conducting surveillance in Africa, the Middle East, Russia, South America and
Asia, however researchers are increasingly making inroads (Fereidouni et al., 2010; Gaidet et
al., 2012; Shestopalov et al., 2006). A commitment to capacity building and a mutual resolve
to understand avian influenza dynamics across international boundaries may help to address
this geographic bias.

2.1.3 Host ecology and migration—The influence of host ecology, behaviour and
migration on transmission represents a large knowledge gap in our understanding of IAV in
part because virology and ecology remain two disparate fields that rarely overlap during the

Runstadler et al. Page 5

Infect Genet Evol. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



investigation of IAV in wild birds. Phylogeographic studies have distilled key concepts
including the generalized pattern of gene flow from north to south along migratory flyways
(Lam et al., 2012; Pearce et al., 2009) and relative separation of North American and Eurasian
virus pools (Pearce et al., 2010; Ramey et al., 2011) despite evidence of migratory connectivity
of wild birds between hemispheres (Flint et al., 2009; Winker and Gibson, 2010). Studies of
virus evolution that rely on analysis of publically-available sequences can advance our broad
understanding of IAV dynamics (Bahl et al., 2009; Lam et al., 2012) but mechanisms that drive
virus gene flow in wild birds remain elusive without consideration of host ecological
‘metadata’. However, tracking migratory animals can present a logistical and financial
roadblock for studies that seek to investigate how host behaviour can promote or prevent
transmission of pathogens (Altizer et al., 2011). Use of markers including ring-bands or more
recent technology including satellite transmitters, geolocaters and stable isotope analysis of
body tissues offers prospects for identifying the migratory behaviour and geographic origin of
hosts if integrated with traditional surveillance.

Migration is common among wild birds from seasonal habitats; however there is variation in
the propensity to migrate. Among the same species a continuum of migration strategies can
exist with residency and long-distance migration on either ends of the spectrum (Alerstam et
al., 2003). The effect of migration strategy on IAV dynamics has only recently been explored
in detail, facilitated by the use of stable isotopes (Gunnarsson et al., 2012; Hill et al., 2012a)
and trace element profiles (Fries et al., In press) in flight feathers. Using stable isotopes to
identify the breeding origin of mallards, virus detected in resident mallards during winter in
California became the predominant IAV circulating in locally-breeding mallards in summer,
supporting the view that residents act as reservoirs (Hill et al., 2012a). In contrast, migrants
introduced virus from northern breeding grounds including Alaska, but circulation of imported
virus appeared to be limited. Virological studies have identified wild bird-mediated dispersal
as the mechanism for the spread of Eurasian lineage HA subtypes along the Pacific Flyway
resulting in an outbreak of H6N2 in poultry in California (Bahl et al., 2009; zu Dohna et al.,
2009). A more nuanced understanding of the migration strategies of host species is key for
predicting gene flow patterns and the introduction of Eurasian origin virus into agricultural
regions that support farming of pigs or poultry.

The ability of migratory birds to spread IAV, particularly highly pathogenic subtypes, has been
a divisive topic among researchers with evidence both for (Gaidet et al., 2008; Saad et al.,
2007) and against (Gauthier-Clerc et al., 2007; van Gils et al., 2007). Central to this question
is an understanding of how far birds can migrate before symptoms impact flight performance.
Using satellite telemetry, the potential for 19 species of wild birds from Asia, Africa and Europe
to spread HPAI was recently assessed by Gaidet et al (2010). Comparison of dispersal rates
showed that the common teal (Anas crecca) had greatest potential to carry HPAI over 500km
during the asymptomatic period of infection, yet the likelihood of this event was restricted to
5–15 days during spring or fall migration. Furthermore, co-mingling of satellite-tracked wild
birds with domestic ducks - that can act as a reservoir for HPAI, days prior to migration was
a predictor of wild bird outbreaks along the Central Asian Flyway between 2005–2010
(Newman et al., 2012). These studies highlight that dispersive potential is species-dependent,
governed by flight performance, host pathobiology, virulence of IAV strains and spatio-
temporal overlap with reservoir hosts. A shift to residency in some animal populations triggered
by mild temperatures or dependency on agriculture or human resources may promote local
circulation of more virulent strains (Altizer et al., 2011). The correlation between migration
strategy of the host and virulence of transported pathogens is understudied in wild birds and
warrants investigation in view of implications for IAV under climate change scenarios.

2.1.5 Host immunity—Surveillance programs place an emphasis on collection of virus,
while the host response to infection is often overlooked. Production of antibodies to limit and
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overcome infection of IAV is central to the adaptive immune response in birds and should be
incorporated into surveillance efforts to identify which species are involved in IAV circulation.
Patterns of higher sero-prevalence relative to virus prevalence have been observed across many
wild bird taxa, including geese (Hoye et al., 2010a), gulls (Toennessen et al., 2011) and ducks
(De Marco et al., 2005, 2003). Investment in antibodies is a common strategy in the protection
against IAV and partly explains the seasonal pattern of infection in waterbirds. Virus
prevalence peaks after the breeding season in ducks, reflecting a build-up of young, immuno-
naïve ducks in summer (Guberti et al., 2007; Hinshaw et al., 1985). Juvenile ducks are also the
primary hosts at wintering sites (Ferro et al., 2010; Hill et al., 2012b) suggesting that exposure
to novel strains occurs at both ends of the migratory flyway, a burden on the developing immune
system of young birds. Despite collective evidence that immunity in juveniles drives the
epidemic curve of IAV in nature, surveillance programs rarely place value on collection of
paired swabs and serum from wild birds that may both inform and predict viral dynamics.

A neglected aspect that is likely to impact the scale and timing of infection among young birds
on the breeding grounds is maternal antibody (MatAb) transfer. Ducklings or chicks may gain
protection from influenza by MatAb, primarily class IgY, passed through the egg yolk (Liu
and Higgins, 1990). Persistence of MatAb varies markedly from 3 to 40 days depending on
life-history strategy and may directly correlate with length of incubation in birds (Lee et al.,
2008; Tella et al., 2002). In common quail (Coturnix coturnix) MatAb wane at 15 days, however
in the longer-lived Cory’s shearwater (Calonectris diomedea) – a seabird that lays a single egg
with a long incubation time, MatAb were still detectable in chicks at 30–40 days of age (Garnier
et al., 2012). Under this hypothesis, long-lived birds such as seabirds are expected to produce
longer lasting MatAb affording greater protection to juveniles. Maternal antibodies that provide
immunity against IAV have been identified in gull eggs (Hammouda et al., 2011; Pearce-Duvet
et al., 2009) but have not been investigated in other reservoir species. Waning immunity due
to catabolism of MatAb may be responsible for the peak in IAV prevalence observed in
ducklings weeks after they have left the nest and become flight capable. Further field and
laboratory studies should be directed at understanding how characteristics of MatAb including
temporal persistence and cross-protection may play a critical but unrecognized role in
governing infection dynamics in juveniles and viral evolution across a range of reservoir
species. Better understanding of MatAb dynamics may also help researchers to characterize
the epidemic curve in wild birds and identify where and when to target surveillance efforts.

Antibody-mediated immunity is thought to drive antigenic evolution of avian influenza in
humans (Ferguson et al., 2003) and wild birds (Dugan et al., 2008). However evidence for a
causal relationship between antibody production and virus evolution in wild birds has never
been conclusively drawn. The 26-year study by Krauss et al. (2004) has contributed towards
understanding the temporal pattern of subtype turnover in wild birds. Yet our knowledge of
virus evolution remains incomplete without understanding how the immune system acts as a
selection pressure constantly modifying the virus pool in wild birds. MatAb confer protection
against strains infecting the mother from prior seasons, while acquired immunity acts against
currently circulating strains. No study has investigated the relationship between antibodies that
develop in juveniles and the fate of targeted subtypes in subsequent seasons. Widely distributed
subtypes in ducks; H3N8 and H4N6, predominate from year-to-year and are expected to evade
the immune response of the host owing to antigenic drift, much like H1, H2 and H3 in human
populations. Assessing rates of antigenic drift among H3N8 and H4N6 in wild birds may reveal
the immunologic and genetic hallmarks of virus that have heightened fitness in the wild bird
reservoir. Implications of evading host immunity include widespread and persistent circulation
in wild birds and ultimately a heightened chance of spillover to non-reservoir species.
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2.2 Gaps in wild mammal surveillance
2.2.1 Synanthropic mammals—Mammals closely associated with human settlement may
represent a pathway for interspecies virus transmission and adaptation. More broadly, the
increasing interface between animals and humans has led to emergence of infectious disease
on a global scale (Daszak et al., 2000; Lebarbenchon et al., 2008). Emergence of highly
pathogenic IAV is no exception, with the evolution of H5N1 facilitated by co-mingling of wild
and domestic ducks on rice paddies (Gilbert et al., 2008; Hulse-Post et al., 2005) followed by
spillover to humans involved in the market chain (Martin et al., 2011). Agricultural practices
in Asia have been identified as critical to the spread of influenza; however other human
activities that diminish barriers between host species are often overlooked by surveillance
programs. Study of synanthropic wild mammals is a critical gap in our knowledge of how IAV
evolves to exploit novel hosts brought into close contact with avian reservoir species. Isolation
of a novel lineage of IAV from little yellow-shouldered bats (Sturnira lilium) resulting in
designation of an H17 subtype highlights that wild mammals can act as a reservoir with the
potential for spillover to sympatric domestic and agricultural animals (Tong et al., 2012).
Investigation is needed to clarify which genetic markers and host combinations allow influenza
to jump the species barrier, triggered by close contact between birds and mammals.

Recent interest in free-ranging mammalian hosts has demonstrated that a larger than expected
number of wild species are competent hosts for IAV. Wild house mice (Mus musculus) sampled
after an outbreak of low pathogenic H5N8 at a game bird breeding facility tested sero-positive
to IAV (Shriner et al., 2012). The possibility of spillover from migratory ducks sighted at the
facility prompted the authors to experimentally infect house mice with mallard-origin IAV and
demonstrate that replication occurs efficiently without adaptation of the virus to a mammalian
host (Shriner et al., 2012). The ability of IAV to cross the species barrier and replicate in
mammals without adaptation has also been demonstrated in ferrets experimentally infected
with H1N9 and H6N1 (Driskell et al., 2012). Neither virus subtype showed an affinity for
α-2,6 linked sialic acid (SA) receptors suggesting limited selection for mammalian adaptation
in the laboratory setting. These cases highlight the relative ease with which IAV circulating in
wild birds may spread among sympatric mammalian populations, however natural infections
have rarely been documented. Pikas (Ochotona curzoniae) represent one of the few free-
ranging mammals naturally-infected by IAV (highly pathogenic H5N1) circulating among
migratory waterfowl at Qinghai Lake, China (Zhou et al., 2009). Lack of diseased or dead
mammals at outbreak sites (pikas: Zhou et al., 2009) or limited clinical symptoms in
experimentally infected mammals, depending on subtype (mice: Driskell et al., 2010; ferrets:
Driskell et al., 2012; Hinshaw et al., 1981) may mask infection and contribute to a low rate of
detection in wild mammals.

Co-ordinated sampling of wild birds and mammals may shed light on mechanisms that allow
influenza to overcome the host barrier in nature, including which subtypes and host
combinations are conducive to spillover. Species with abundant urban populations such as
raccoons (Procyon lotor), European rabbits (Oryctolagus cuniculus) or bats that have the
potential to interact with wild birds are a prime candidate. Raccoons sero-surveyed for IAV
have shown exposure to subtypes commonly circulating in wild water birds (H1, H3, H4 and
H10: Hall et al., 2008) and poultry (H5N1: Horimoto et al., 2011) providing evidence of
interspecies transmission. Synanthropic rodents and bats are targets for surveillance by public
health agencies because of the need to curb zoonotic transmission of mammal-borne pathogens,
most notably hantavirus in rodents (Phan et al., 2011) and lyssaviruses in bats (Kuzmin et al.,
2012). Trapping and abatement programs led by government agencies may be a source of a
large number of samples from areas with concentrated human populations (i.e. urban and
recreational parks). Expanding sampling of free-ranging mammals in conjunction with existing
public health surveillance is imperative to monitor spread of AIV in view of how readily
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interspecies transmission can occur when avian and mammalian populations overlap.
Synanthropic mammals may be at highest risk of co-infection from avian and mammalian
strains of influenza providing conditions suitable for reassortment in nature.

2.2.2 If pigs might swim: marine mammals as mixing vessels—Marine mammals
are a particularly interesting and phylogenetically diverse group whose members comprise
multiple lineages which underwent numerous independent re-invasions of the seas and rely on
the marine environment for food. Marine mammals are globally distributed and found in nearly
all coastal waterways and shorelines. The coastal environment provides an interface between
marine and terrestrial habitats where avian reservoirs of influenza collide (sea ducks, gulls,
and shorebirds) and overlap spatio-temporally with marine mammals, providing an opportunity
for interspecies transmission of IAV. In general pinnipeds (seals, sea lions, and fur seals) are
aggregate, seasonal breeders resulting in highly synchronized terrestrial parturition, which may
lead to heightened interactions between birds, pinnipeds, domestic animals (dogs) and humans.
Our understanding of IAV in marine mammals is predominantly from pinnipeds and has
stemmed from sampling stranded animals that have washed ashore in populated areas, bio-
monitoring of wild populations deemed to be of conservation concern, mortalities resulting
from entanglement in fishing gear, and sampling associated with subsistance hunted animals.
While previous reviews did not consider there to be strong evidence for a transmission pathway
between marine mammals and humans (Alexander and Brown, 2000), there is increasing
support of the transmission of zoonotics between marine mammals and humans (Hunt et al.,
2008; Siembieda et al., 2008; Webster, 1981; Webster et al., 1981). Several IAV isolated from
marine mammals have demonstrated a preference for infection and replication in mammalian
hosts (Hinshaw et al., 1981; Lang et al., 1981; Webster et al., 1981) including documented
infection in a technician (Webster, 1981). Further, the recently isolated H3N8 from harbor
seals (Phoca vitulina) demonstrated for the first time naturally acquired mutations that indicate
mammalian adaptations (Anthony et al., 2012). These findings highlight the importance of
IAV surveillance in wild marine mammals in which evidence of frequent transmission is
accumulating, but for which many gaps in understanding remain and may pose a public health
risk.

Since the first isolation of IAV in swine (H1N1) (Shope, 1931), it has become evident that
multiple subtypes of IAV of either avian or human descent can infect pigs (Guan et al., 1996;
Karasin et al., 2000; Peiris et al., 2001). Similar to pigs, multiple IAV have been isolated from
marine mammals (Greig, 2011; Hinshaw et al., 1986). Additionally, avian-like (H3N8, H3N3,
H4N5, H4N6, H7N7) and human influenza A (H3N2) and B viruses have been isolated from
several species of marine mammals found within the coastal environment (Anthony et al.,
2012; Blanc et al., 2009; Mandler et al., 1990; Ohishi et al., 2004, 2006, 2002; Osterhaus et
al., 2000). The susceptibility of marine mammals to infection of both avian and human
influenza viruses may, in part, be due to the type and distribution of SA receptors in tissues
including the respiratory tract. Anthony et al. (2012) reported the presence of α-2,6 linked SA
and to a lesser degree α-2,3 linked SA receptors within the respiratory track of harbor seals.
These findings are in contrast to an earlier study that found only α-2,3 linked SA receptors
present in respiratory tracks of “seals and whales” (Ito et al. 1999). Attachment of avianorigin
H7N7 was predominately found in the upper respiratory tracts of harbor and grey (Halichoerus
grypus) seals (Ramis et al., 2012) which corresponds to the distribution of α-2,3 linked SA
receptors in seals (Anthony et al., 2012; Ito et al., 1999) whereas attachment of human H3N2
influenza was observed in the bronchiolar and alveolar epithelium of harbor porpoise and to a
lesser degree in harbor seals (Ramis et al., 2012). These findings suggest that the location of
infection within the respiratory track may differ for human and avian influenza viruses in
marine mammals. Further, the observed anatomical differences between marine mammal
groups (cetacean, pinnipeds) may lead to differences in susceptibility to IAV in these mammals.
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In addition to genetic reassortment between avian and human influenza viruses, adaptation of
an AIV leading to efficient infection in a mammalian host may also lead to influenza pandemics
(Webster et al., 1992). There is evidence of such adaptation in the IAV isolated from marine
mammals. In September 2011 an unusually high number of seals were observed stranded along
the coast of New England. The mortalities were associated with an infection of avian-origin
H3N8 possessing recent mutations suggesting adaptations to the mammalian host (D701N in
PB2 and binding to α-2,6 linked SA receptors). A total of 37 amino acid substitutions
distinguished this seal H3N8 virus from other avian H3N8 viruses (Anthony et al., 2012); the
exact role of the rest of the mutations in adaptation is not yet understood. However, this was
not the first occurrence of an H3N8 virus in marine mammals. An H3N8 subtype was isolated
from one harp seal caught in fishing gear off Cape Cod between December 2005 and August
2007, with no significant pathology reported (Bogomolni et al., 2008). The H3N8 has drawn
attention to the role of marine mammals in the ecology and evolution of IAV; however, the
H3N8 virus was not the first case of IAV isolated from a marine mammal.

2.2.2.1 The long history of IA V in marine mammals: The first IAV (H1N3) isolated from
a marine mammal was from a baleen whale (family Balaenopteridae) (Lvov et al., 1978).
Shortly thereafter, a mass die off of harbor seals, impacting an estimated 20% of the population
near Cape Cod was attributed to severe pneumonia and H7N7 infection (Webster et al.,
1981). Most seals affected by the die off were young of the year, suggesting that the state or
maturity of the immune system plays a role in susceptibility to IAV. The seal H7N7 was
antigenically and genetically similar to avian H7N7 but showed greater ability to infect,
replicate and produce pneumonia in a broad range of experimentally infected mammals
compared to domestic birds (Kida et al., 1982; Lang et al., 1981; Murphy et al., 1983; Webster
et al., 1981). Infection and disease observed in seals following experimental exposure to H7N7
differed between species with harbor seals exhibiting disease similar to naturally infected seals
(Webster et al., 1981). Grey seals had no indication of infection; whereas harp seals showed
no clinical signs of disease but had pathological changes and virus recovered from some seals
with surviving seals becoming sero-positive (Geraci et al., 1984). Following the H7N7 mass
mortality, harbor, grey, hooded (Cystophora cristata) and harp (Pagophilus groenlandicus)
seals and pups were culled from eastern Canadian waters to assess the presence of IAV and
antibodies (Geraci et al., 1984). While no viruses were isolated from any seals, antibodies to
H7N7 were found in 3 adult grey seals, while the other species were sero-negative (Geraci et
al., 1984). These findings raise a number of questions about the susceptibility to IAV infection
between marine mammal species and age groups. From a public health perspective, the
observation of conjunctivitis in a person working with the experimentally infected seals may
be the most profound (Webster, 1981). Following the experimentally infected seal sneezing
on a technician, seal H7N7 was recovered from the conjunctiva, suggesting that H7N7 may be
transmitted between marine mammals and humans (Webster, 1981; Webster et al., 1981).

A second epizootic of seal pneumonia occurred from 1982 to 1983 in New England and was
associated with an H4N5 influenza virus, the first time this virus had been isolated outside of
birds (Hinshaw et al., 1984). Other subtypes including H4N6 and H3N3 have also been isolated
from seals that died of pneumonia along the Cape Cod peninsula in 1991 and 1992 (Callan et
al., 1995). Antigenic and genetic analyses showed that all genes were of avian origin (Callan
et al., 1995; Hinshaw et al., 1984; Webster et al., 1981). The repeated outbreak of pneumonia
associated with IAV of avian origin suggests transmission between avian host and seals,
highlighting the importance of surveillance studies in these populations to gain a better
understanding of interspecies transmission of IAV.

It is not surprising that much of what is known about IAV in marine mammals is based on
samples from amphibious pinnipeds. However, influenza has been isolated from stranded
cetaceans (dolphins and whales). Two influenza viruses (H13N2 and H13N9), demonstrating
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dual infection, were isolated from an obviously emaciated and ill pilot whale (Globicephala
melaena) stranded along the New England Coast. Phylogenetic analyses suggest the viruses
originated from gulls (Hinshaw et al., 1986) and similar to other IAV isolated from seals (Lang
et al., 1981; Webster et al., 1981), viral replication was observed in ferrets following intranasal
inoculation (Hinshaw et al., 1986). The repeated infections in marine mammals during the last
30–40 years in New England and the associated sampling and laboratory studies have been the
foundation of our understanding of IAV in marine mammals. However, the role of marine
mammals in the ecology and evolution of influenza, outside of these mass mortalities and in
other parts of the world remain limited.

2.2.2.2 Looking back to understand the present: These outbreaks in marine mammals and
their implications for public health have prompted several retrospective studies assessing the
seroprevalance of IAV antibodies. Serological evidence of exposure to avian- and human-
origin IAV have been reported in several species of marine mammals from across the globe
(Blanc et al., 2009; Ohishi et al., 2004, 2006, 2002); however, sampling effort has varied
greatly. When subtype has been determined, H3 has been most frequently reported (Table 1).
Serological evidence of exposure to IAV has also been reported in cetaceans (Dall’s porpoise,
Phocoenoides dalli and Minke whale) hunted in the Western Pacific Ocean (Ohishi et al.,
2006). The presence of antibodies in the Minke whale may be of importance as this species
performs large annual migrations (Kasamatu et al., 1995) that may provide a mechanism for
the introduction of IAV to new regions, species or individuals (Altizer et al., 2011).

Based on serological evidence, Caspian (Pusa caspica), ringed and Baikal (Pusa sibirica) seals
were exposed to human-origin H3N2 (Ohishi et al., 2004, 2002) further supporting a possible
transmission route between marine mammals and humans. Seals from Hokkaido, Japan were
sero-positive for H3 and H6 subtypes (neuraminidase was not determined) between 1998 and
2005. In all years, sero-positive seals included juveniles which the authors suggest is evidence
of sporadic infections in this population (Fujii et al., 2007). Based on this evidence, the authors
propose that seals may be a reservoir for IAV of human origin with implications for public
health.

The seroprevalence of IAV in marine mammals of the arctic has been of particular interest, in
part because this region is sensitive to climate change and also due to the reliance of subsistence
hunters on these populations. Interspecies transmission of IAV has been documented through
routes of ingestion and inhalation of aerosolized viruses in other species. Therefore, the
presence of IAV in marine mammals hunted for human consumption has a direct implication
for public health. Antibodies to influenza A have been found in many arctic species of marine
mammals including beluga (Delphinapterus leucas), ringed seal, harp seals, hooded seals, and
walrus (Odobenus rosmarus) (Calle et al., 2002; Danner and McGregor, 1998; Nielsen et al.,
2001; Stuen et al., 1994). While other species including narwhals (Monodon monoceros),
bowhead whale (Balaena mysticetus), bearded seals (Erignathus barbatus) and one population
of walruses (Calle et al., 2002, 2008; Nielsen et al., 2001) have not shown antibodies. These
studies were based on retrospective serological samples and viral isolates were not collected.
Therefore, genetic analysis could not be performed, leaving open the question of the role of
IAV in the arctic environment and its potential impact on public health.

Surprisingly antibodies to influenza B, normally a human only virus and the isolation of
influenza B virus in harbor seals has been reported (Blanc et al., 2009; Osterhaus et al.,
2000). These observations further highlight the need for systematic and prospective
surveillance of influenza in wild marine mammals. The current knowledge of influenza virus
in marine mammals has been built upon opportunistic and relatively low sampling, in part due
to logistical and permit constrains of handling and sampling marine mammals required under
the U.S. Marine Mammal Protection Act (MMPA, 1972). Therefore, prospective surveillance
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of influenza in marine mammals will require the collaboration with government agencies and
non-profits to facilitate adequate sampling in order to better understand the influence of these
mammals on the ecology and evolution of influenza viruses and the potential impacts on public
health.

2.3 The gaps in environmental surveillance
2.3.1 Environment as an intermediate “host”—The role of environmental persistence
of virus in the overall ecology of influenza is undoubtedly a critical one and likely plays a
significant role in species specificity, periodicity of infection, reassortment, and epidemic
initiations and persistence. Several modelling efforts have concluded that AIV requires an
environmental component of indirect transmission (Breban et al., 2009; Lebarbenchon et al.,
2010; Rohani et al., 2009), and mounting circumstantial evidence supports this hypothesis. In
one particularly interesting case, turkeys in Minnesota and their water sources were monitored
for AIV. The H13N2 virus, typically associated with gulls, was detected in a turkey for the
first time only after it was detected in the pond water two weeks prior (Sivanandan et al.,
1991). This led the authors to conclude that gulls likely shed virus into the pond where it
persisted and ultimately infected turkeys. Another study monitored ducks and turkeys that
shared a water habitat and found in nearly all cases, viruses detected in turkeys were first
detected in the ducks (Halvorson et al., 1983). A recent report describes an H9N2 isolated from
an egret in Dongting Lake (Wang et al., 2012a), the same subtype typically found in ducks and
chickens and isolated several years prior from the water of that same lake (Zhang et al.,
2011b). On the heels of the 2004 H5N1 epidemic, an extensive survey of H5N1 seropositive
individuals in Cambodia found that swimming or bathing in pond water were strong risk factors
for seropositive status (Vong et al., 2009). Supporting this correlation, a Vietnam woman and
a Cambodian child each contracted H5N1 with no identifiable risk factors other than swimming
in contaminated water (WHO, 2007). Further H5N1 epidemiological analyses showed a strong
correlation between minimal distance to the nearest lake or wetland and the likelihood of an
outbreak, as well as an inverse relationship between outbreaks, precipitation and bird density
(Fang et al., 2008).

Given the logistics of collecting and screening large volumes of water for virus, sampling
methodologies have not yet been refined. When large enough quantities of virus are present,
unconcentrated water can be tested with some success (Halvorson et al., 1983; Hinshaw et al.,
1979, 1980; Leung et al., 2007; Stallknecht et al., 2010). For a much more sensitive screening,
large volumes of water need to be concentrated through a number of possible mechanisms
(Heijnen and Medema, 2009; Roepke et al., 1989; Sivanandan et al., 1991) and there is concern
that the handling may destroy the influenza virus. Although the concentration of natural water
samples needs further optimization, the erythrocyte binding assay described by Roepke et al.
(1989) has become a broadly accepted means for detecting virus from water. This assay
capitalizes on HA binding to SA and uses SA expressing chicken erythrocytes to precipitate
virus out of solution. The recovered fraction can then be screened for viral RNA using RTPCR
or live virus via egg or tissue inoculation. Unfortunately, several PCR inhibitors reside in
environmental samples and therefore limit the efficiency of RTPCR, and concentration
methods can damage virus particles and therefore limit the efficiency of egg inoculations.
Coupled with the difficulties of obtaining, filtering and concentrating large volumes of water,
environmental surveillance is understandably in its infancy.

2.3.2 Virus is lurking in water and dirt—While screening has been limited, 13 of the 16
HA subtypes known to circulate in wild birds have been detected in a wide range of freshwater,
including river water, lakes and ponds, standing puddles near farms, and drinking water from
poultry cages (see Table 2 and Fig. 2). While only a small number of viruses have been
recovered in total, the geographic distribution is surprisingly large given these low numbers.
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Environmental recovery of virus has spanned multiple countries, flyways, and biomes, even
including warm, temperate regions considered to be inhospitable to virus persistence (Henaux
et al., 2012) (Fig. 3). In many cases, only viral RNA was detected (Heijnen and Medema,
2009; Henaux et al., 2012; Lang et al., 2008), either because the virus failed to grow in eggs
or the studies were not designed to test for live virus. Nonetheless, a wide representation of
live virus has been recovered from egg inoculations using both concentrated and
unconcentrated natural water sources (Halvorson et al., 1983; Hinshaw et al., 1979, 1980; Ito
et al., 1995; Leung et al., 2007; Markwell and Shortridge, 1982; Sivanandan et al., 1991;
Stallknecht et al., 2010; Zhang et al., 2011a). H2 and H8 are the only subtypes present in ducks
that have not yet been recovered from water, however both of these subtypes are rare even
within the duck population (0.9% and 0.3%, respectively) (Krauss et al., 2004), and each has
been recovered from soil. Interestingly, despite the nearly exclusive prevalence of H9–H13 in
shorebirds with only rare occurrences in ducks (Krauss et al., 2004), all of these subtypes have
been recovered from freshwater sources. The only subtypes that have not yet been isolated
from any environmental source are H14–H16, typically associated with marine birds and
detected at low prevalence even in the natural reservoir. There are currently no reports
attempting AIV detection from a marine environment.

Even fewer studies have looked at persistence and/or detection of virus in environmental
reservoirs beyond water, such as lake sediment, soil, flora and fauna. The analyses that have
been done yielded a remarkably high prevalence of virus (Fig. 2). Although Horm et al.
(2012) only looked for H5N1, a high prevalence of viral RNA was still found in environmental
samples spanning straw, dust, mud, and aquatic plants from five households in Cambodia. An
analysis of lake sediment from small Alaskan ponds heavily utilized by migratory birds found
AIV RNA in 55.6% of the samples tested (Lang et al., 2008), with a large diversity in the
subtypes identified. There has been one report of H5N1 recovered from a small fish in
Cambodia (Horm et al., 2012) and another of H6N8 recovered from freshwater clams
(Huyvaert et al., 2012).

Only three studies to date have compared concurrent data from waterfowl and either water
(Halvorson et al., 1983; Hinshaw et al., 1980) or lake sediment (Lang et al., 2008). As might
be expected, one of these studies (Hinshaw et al., 1980) found only a subset of the high diversity
of viruses detected in ducks were recovered from the water and in two subsequent years,
reflected the most prevalent duck subtypes. The question remains as to whether the subtypes
were the most prevalent in ducks because they persist the best in water, or if their detection
was purely stochastic and reflected higher viral shedding. In contrast to a strictly stochastic
model, a similar study design found twenty-one subtypes in ducks over a two year period, with
only four that could be recovered from pond water (Halvorson et al., 1983). In this instance,
the water associated AIV did not reflect the most common subtypes found in ducks. Likewise,
a study of lake sediment recovered numerous AIV which largely reflected those present in
ducks the prior season, however there were subtypes prevalent in ducks not found in water and
a subtype found in water that was not seen in the ducks (Lang et al., 2008). These discrepancies
highlight the current inability to predict what might be found in the environment purely based
on what is found in the bird population and underscores our need to better understand
environmental dynamics.

Viral pathogenicity may also differ between viruses persisting in water and those found by
surveillance of birds. One study recovered several H9N2 isolates from both surface water in
the Dongting Lake wetland, and feces deposited along the shore. An assessment of key amino
acid changes known to impact pathogenicity revealed no apparent differences amongst the
isolates, yet those derived from the water were more pathogenic in mice than those derived
from feces (Zhang et al., 2011b). Similarly, H13N2 recovered concurrently from pond water
and turkey also showed differences in pathogenicity, with the water derived virus being more
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pathogenic in mice (Laudert et al., 1993). It is unclear if viruses are under selective pressure
for pathogenicity in the environment, or whether this selection would impact the severity of
disease in subsequently infected wild birds. Alternatively, adaptation towards stability in the
environment may inadvertently result in unrecognized amino acid changes associated with
increased pathogenicity in mammals. Both explanations highlight the need to identify the
molecular basis for environmental stability of AIV and consequences for transmission in the
natural reservoir.

2.3.3 Lessons learned from experimental studies—A handful of experimental studies
have begun to define the dynamics of AIV stability outside of the host. The majority of these
studies have inoculated distilled water with a known quantity of virus isolated from amniotic
allantoic fluid and manipulated the model for temperature, pH, and salinity. Inoculated virus
is followed over time and typically assayed by either egg inoculation or titration in a tissue
culture system to quantify the presence of live virus. Under these carefully controlled laboratory
conditions, general trends have emerged. As a broad statement, clean filtered water maintained
at a low temperature (below 17C), low salinity (freshwater, < 0.5 ppt), and neutral pH (6.8–
7.4) provides the virus with the greatest longevity. Under these ideal conditions, it is not
uncommon to see virus maintaining infectivity for nearly a year (Lebarbenchon et al., 2012,
2011; Nazir et al., 2011), with one report recovering live virus after 667 days (Brown et al.,
2007). These analyses clearly provide the proof-of-principle that influenza can readily persist
across wild bird migratory seasons. Unfortunately, while it is convenient to look for general
trends in viral persistence under a defined panel of parameters, mounting evidence underscores
that the picture is much more complex and only beginning to be understood.

Experimental studies have convincingly demonstrated that as temperature increases, viral
persistence decreases at an exponential rate (Stallknecht et al., 2010). As a general
approximation, most studies have found that virus persists for nearly one year at 0–4C
(Lebarbenchon et al., 2012, 2011; Nazir et al., 2010), approximately 6 months at 10–17C
(Brown et al., 2007; Lebarbenchon et al., 2012, 2011; Nazir et al., 2011; Stallknecht et al.,
1990a, 1990b), 1 month at 20–23C (Lebarbenchon et al., 2012; 2011), and a week or less at
28C or higher (Lebarbenchon et al., 2012; Nazir et al., 2010, 2011; Stallknecht et al., 1990a,
1990b). Despite these temperature generalities, a great deal is still unknown about virus
circulation in the natural setting. Natural water sources are not maintained at constant
temperatures, and while modest fluctuations (17C/23C) have little effect on virus stability
(Lebarbenchon et al., 2012), more extreme fluctuations could be more damaging. One study
showed that cycling between −20C and 4C dramatically reduced virus longevity
(Lebarbenchon et al., 2011), while another (Shoham et al., 2012) found only a 25% decline in
infectivity after multiple freeze/thaw cycles or a year of frozen storage. Virus isolates further
differ in thermostability, particularly at colder temperatures (Brown et al., 2009; Nazir et al.,
2011) and irrespective of HA subtype (Scholtissek, 1985). Interestingly, even within the same
virus strain, differences in stability are found. An H7N3 recovered from a mallard remained
infectious for 6 months, while an H7N3 recovered from a laughing gull retained infectiousness
for 7.5 months (Stallknecht et al., 2010). In an analysis of five closely related reassortant of
low pathogenic avian influenza (LPAI), all viruses showed decreased persistence with higher
temperatures, but the rate of that decline differed between viruses and the rank order for virus
stability differed across temperatures. For example, H3N8 was the shortest lived of the five
viruses at 4C, but was one of the longest lived at 17C (Lebarbenchon et al., 2012). Likewise
H6N1 declined rapidly with increased temperature, while H4N8 was relatively robust at all
temperatures tested. These five viruses were reassortants isolated from wild ducks in Minnesota
from the same region at the same time, and since they showed no difference in viral shedding,
these modest differences in viral persistence could conceivably impact which strain is
propagated in the host population. These sorts of studies further illuminate the incomplete
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picture that is obtained when surveillance efforts focus exclusively on the viruses present in
the bird population without consideration to the environmental component.

Since influenza is an enveloped virus, the inverse correlation between viral persistence and
temperature may in part be explained by the effect of temperature on lipid fluidity and
membrane stability. At 4C the lipids that comprise the influenza outer envelope are ordered,
rigid, and therefore environmentally stable. This state changes as temperature increases, with
the lipids becoming completely disordered and therefore fluid at 41C (Polozov et al., 2008).
The disordered fraction facilitates the ability of the virus to fuse, uncoat, and establish infection.
Temperature has been demonstrated as a key determinant for aerosolization (Lowen et al.,
2007, 2008), and lipid composition of influenza has been shown to impact fusability, infectivity
(Sun and Whittaker, 2003; Takeda et al., 2003) and the potential for aerosolization (Polozov
et al., 2008). The balance between ordered (cold tolerant) and disordered (fusion competent)
states of the virus likely impacts tolerance for indirect transmission and pathogenicity and is
probably determined by lipid composition. As lipid composition is acquired from the host cell
and at least partially directed by viral components (Rossman and Lamb, 2011; Veit and Thaa,
2011), lipid composition would be expected to vary between different viruses and host species.
These differences may therefore help to explain the variation in temperature stability across
influenza isolates and merits further study.

While most viruses are labile in high salinity associated with ocean water, there is considerable
strain variability in the continuum between fresh and brackish water (Brown et al., 2009;
Stallknecht et al., 2010). A close analysis of several LPAI H5 and H7 documented that H7
decrease less rapidly at a high salinity than H5 (Brown et al., 2007). Even between two different
isolates of high pathogenic avian influenza (HPAI) H5N1, one isolate persisted longer with
low salinity and the other at high salinity (Brown et al., 2007). AIV is typically the most stable
at a neutral to slightly basic pH (7.4–8.2) (Brown et al., 2009), with extreme highs and lows
detrimental to the virus and resulting in a nearly 7-fold drop in persistence (Irwin et al.,
2011). There are however exceptions, since H6N4 shows the greatest stability at pH 8.6 (Brown
et al., 2009), and there is considerable variability in the pH threshold isolates can tolerate before
being rendered non-infectious (Scholtissek, 1985; Stallknecht et al., 2010). H2 and H11
maintain viability down to 4.8 and 4.6 respectively, while H8 and several H1, H5, and H7s are
rendered non-infectious at a pH of approximately 6.0 (Scholtissek, 1985). Finally, there is a
general trend for AIV to be more robust than human influenza at low pH (Webster et al.,
1978).

Several studies have also found interactions in how temperature, salinity, and pH impact viral
persistence. Viruses in brackish conditions (0.5 – 20 ppt) persist the longest at pH 6.2, while
the same virus in freshwater (> 0.5 ppt) persist the longest at a pH 8.2 (Stallknecht et al.,
1990a). This same trend for higher salinity to overcome low pH was also seen for at least some
virus isolates by Keeler et al. (2012). For a given virus, temperature can influence both ideal
salinity (Brown et al., 2007) and pH tolerance (Stegmann et al., 1987). The HA fusion
mechanism is irreversibly triggered at pH 5 and in physiological conditions, triggering outside
of the endosomal compartment renders the virus nonviable. However the HA conformational
change at low pH does not occur when the virus is at 0C (Stegmann et al., 1987) and therefore
lower temperatures are protective against low pH.

Differences in aquatic compositions might influence which subtypes can persist in different
habitats, thereby impacting species specificity of AIV. Several environmental parameters of
interest have previously been proposed, including presence of or adherence to metals and
organic compounds, sunlight, bacteria, biofilms and bivalves (Stallknecht et al., 2010). The
handful of studies that have begun to address these additional features of the biotope and its
role in viral stability have already begun to uncover intriguing results. Survival of virus is
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favoured in filtered water compared to unfiltered water (Domanska-Blicharz et al., 2010; Irwin
et al., 2011). This was nicely demonstrated by inoculating virus into Baltic Sea water. Untreated
water resulted in a rapid loss of infectiousness, while pre-filtering the sample of water prior to
inoculation resulted in prolonged virus survival (Domanska-Blicharz et al., 2010). This
suggests that at least some microorganisms may be detrimental to environmental persistence
of virus. Likewise, clams may also limit virus persistence. When placed into H3N8 inoculated
water, freshwater clams reduced the virus concentration to just above the detection limit within
24 hours and the virus laden clams did not infect ducks upon consumption (Faust et al.,
2009). Differences in susceptibility across subtypes and how that may relate to host specificity
have not yet been examined. Microorganisms or freshwater clams may limit indirect virus
transmission in specific water habitats and thereby influence which hosts become infected.
While some aquatic life forms may hinder the persistence of virus in water, a small number of
studies have suggested such individuals may act as a potential reservoir for virus. Following
experimental inoculation, live virus (H5N1) can be recovered from tadpoles and fighting fish
one day after the animals are submerged into infected water (Horm et al., 2012). High
concentrations of viral RNA were detected in water fleas placed into H4N6 or H5N1 inoculated
water (Abbas et al., 2012), and virus was recovered from mussels for up to six days after
placement into contaminated water (Horm et al., 2012). Further work is needed to know if
these potential reservoirs either release infectious virus back into the environment, or serve as
a viral delivery vehicle to birds that include them in their diet.

Environmental contributions to the indirect transmission of AIV are complex, multifaceted,
and barely beginning to be understood. A more nuanced understanding of how environmental
parameters impact virus persistence can help to identify habitats where transmission, and
especially interspecies transmission, is most likely to occur. While the current methodological
limitations render environmental surveillance a particularly challenging task, the critical nature
of the results in understanding AIV ecology and potential human epidemics necessitates that
such surveillance efforts are pursued.

3. Genomic signatures of potentially pandemic viruses
Transmission of IAV to humans from wild animals or environmental sources caused four major
pandemics in the last two centuries: H1N1 (Spanish flu) in 1918, H2N2 in 1957, H3N2 in 1968
and H1N1 in 2009 (Cheng et al., 2012; Taubenberger and Morens, 2006; Wright et al.,
2007). The past pandemics and the threat of H5 and H9 emergence in humans highlight the
public health concern. Unfortunately, frequent genetic drift and shifts are driving influenza
virus evolution at a very high pace (Chen and Holmes 2006; Taubenberger and Morens
2009), making predicting features of the next pandemic virus difficult. Pandemic preparedness
involves three main approaches: analysing viruses that caused the previous pandemics,
understanding virus/host ecology, and monitoring viral evolution by continuous surveillance.
Analysing the sequences of previous pandemic viruses is instrumental in understanding how
they evolved and identifying the molecular signatures associated with host switching and
enhanced virulence to humans. Studying the virus ecology, which is tightly bound to the host
ecology, is essential for understating the patterns of AIV global spread. Early detection of
pandemic virus precursors via continuous surveillance of wild animals is a pre-emptive strike
against the aftermath of a pandemic because it provides us a golden opportunity to prepare
vaccine seed strains before the pandemic even begins (Monto et al., 2006). The numerous
studies of previous pandemic viruses revealed that they all carried at least one or more avian
genomic segments and arose by one of two mechanisms; either via gradual adaptation of a
purely avian virus or modification of a human-adapted virus by genetic reassortment (Smith
et al., 2009; Taubenberger and Kash, 2010). In this section of our review, we will highlight the
known molecular changes (see Fig. 5) associated with the complex multi-step process of host
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switching from wild to domestic birds and then to mammalian species and eventually inter-
mammalian transmissibility (the pandemic prototype).

3.1 Learning from avian influenza viruses in the wild
Surveillance in wild birds may serve as an early warning system for highly pathogenic or
potentially pandemic influenza strains (Hoye et al., 2010b), but isolation of strongly pathogenic
strains, including H5N1 has been infrequent. Infection of birds is mostly asymptomatic, where
the virus infects epithelial cells lining the intestine and is shed in the feces. Transmission of
influenza virus to a non-infected bird is thought to occur mainly via the fecal-oral route
(Munster et al., 2007) but only on rare occasions is the highly pathogenic form of IAV reported
in wild birds. The first reported case of high mortality in wild birds was due to H5N3 infection
in common terns (Sterna hirundo) of South Africa in 1961 (Becker, 1966). More recently, in
late 2002, an outbreak of HPAI H5N1 was first reported in migratory waterfowl in Hong Kong,
and a few months later, an avian H5N1 virus closely related to one of these viruses was isolated
from two human cases (Sturm-Ramirez et al., 2004).

Direct transmission from wild birds to humans, however, is extremely rare and usually has
involved an intermediate species such as domestic poultry (Reperant et al., 2012). Serologic
evidence suggests that some bird hunters and banders are exposed to IAV strains that are found
mainly in wild ducks such as H11N9 (Gill et al., 2006; Gray et al., 2011), but clinical infection
is not well documented. For H5N1, the only report of suspected direct transmission of H5N1
from wild birds to humans was in Azerbaijan as a result of de-feathering of infected swans
(Gilsdorf et al., 2006).

Phylogenetic analysis has revealed that some gene segments belonging to previous human
pandemic strains are still circulating in wild bird reservoirs. For instance, the NA genes of
some H9N2 viruses isolated from migratory ducks in Hokkaido, Japan, clustered with those
of H3N2 viruses that caused the human pandemic of 1968 (Liu et al., 2003). Moreover, it has
been speculated that the 3 parents of the triple reassortant virus that caused the 2009 H1N1
pandemic may have been assembled in one place by migratory birds (Gibbs et al., 2009). With
the exponential rise in sequence information in public databases, a critical need is to
phenotypically characterize individual strains which appear to be unique or to carry
characteristic mutations of highly pathogenic virus.

3.1.1 Intercontinental mixing—Mixed infection and reassortment have been shown to be
extremely common in wild birds (Wang et al., 2008). After analyzing 167 complete genomes
recovered from cloacal swabs of 14 bird species sampled across North America, (Dugan et al.,
2008) proposed that, in the absence of strong mammalian selective pressure that favours the
spread of only a limited number of stable subtypes, IAV exist in wild birds as a large pool of
transient genome constellations that are continuously reshuffled by reassortment. The impact
of these reassortment events on the evolution of LPAI viruses is not clearly understood. A
similar assessment of oral-pharyngeal samples has yet to be attempted, possibly owing to the
poor recovery of virus from the trachea of dabbling ducks (Munster et al., 2009; Webster et
al., 1978). Gulls and passerines fit the description of an intermediate host more closely than
mallards, but oral-pharyngeal samples are lacking because of difficulties implicit with capture
of these non-game species. Collection of droppings or fecal samples is a more popular strategy
for sampling Laridae - fecal samples comprised 28% of total samples collected globally,
compared to the 5% collected from Anatidae (Fig. 2). Collection of fresh droppings from the
ground is easier and less involved than live capture and allows a larger number of samples to
be collected (Hoye et al., 2010b). However, this strategy is likely to be biased when used to
assess prevalence for Laridae that shed IAV primarily from the respiratory tract based on
experimental studies (Brown et al., 2006; Costa et al., 2011). Moreover, Strum-Ramirez et al.
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(2005) observed that viruses replicated to higher levels in the trachea than in the cloaca of both
inoculated and contact birds, suggesting that the digestive tract might not be the main site of
H5N1 influenza virus replication in ducks and that the fecal-oral route might not be the only
transmission route. Thorough assessment of potential intermediate hosts in nature will require
increased collection of oral-pharyngeal swabs from avian species including those that have
traditionally not been a focus of surveillance.

Global phylogenetic analysis splits IAV into two main lineages: Eurasian and American, which
reflect the ecological and geographic separation of avian hosts. However, they are not
completely separated because of the intercontinental movements of some long-distance
migrant ducks, gulls, and shorebirds (Liu et al., 2004; Makarova et al., 1999). A majority of
these intercontinental gene-mixing events in the U.S. are found in viruses isolated from Alaska,
which is located at the crossroads of Eurasian and North American migratory flyways and
receives about 1.5–2.9 million birds from Asia every year (Winker and Gibson, 2010).
Although still a rare event overall, viruses carrying a mix of Eurasian and American genes have
been isolated at a high frequency from gulls (Dugan et al., 2008; Widjaja et al., 2004). A
thorough sequence analysis of gull influenza isolates from the U.S. revealed segments with a
mosaic phylogeographic pattern; with at least one segment in the majority of those viruses
originating from Eurasian lineages (Wille et al., 2011a). No study to date has detected
movement of a complete virus derived from either clade into the other continent (Krauss et al.,
2007).

3.1.2 Molecular determinants of host specificity within wild birds—Wild birds play
an important role in the ecology of IAV, however, the factors governing interspecies
transmission or host-subtype associations are largely unknown. Studying the patterns of
attachment of a human (H3N2) and an avian (H6N1) virus to the colon and trachea sections
from 12 wild bird species using histochemistry techniques revealed significant variations
between closely related avian species, suggesting that the ability of wild birds to serve as hosts
for AIV strongly varies among species (Jourdain et al., 2011). Some gull species, in particular,
may be important to IAV reassortment due to their frequent intercontinental movements.
Although H13 and H16 subtypes are believed to be gull-specific, gulls as a group have been
shown to host many other viral subtypes (Munster et al., 2007; Olsen et al., 2006; Wille et al.,
2011a). Phylogenetic analysis of the HA and other internal genes of H7N3 viruses isolated
from gulls and shorebirds in the Delaware Bay area showed that they are closely related to
HPAI H7N3 viruses that caused the 2004 outbreak in chickens in British Columbia (Hirst et
al., 2004; Krauss et al., 2007). The Delaware Bay H7N3 viruses replicated well in chickens
and killed chicken embryos, suggesting that they might have high potential to evolve into HPAI
if transmitted to chickens.

The majority of viruses isolated from gulls though are unable to infect experimentally
inoculated ducks, suggesting there are host barriers between wild bird species (Kawaoka et al.,
1988). The exact mechanisms controlling these observed species preferences are not clearly
understood, but will most likely involve differences in receptor specificities between viruses
isolated from ducks and gulls as a result of host adaptation (Matrosovich et al., 2009, 2008).
Some receptor-binding site substitutions that are unique for gull-specific subtypes (such as
Y98F, A138S and E190T in H16, G228S and R229W in both H13 and H16) could be playing
a role in fine-tuning the interaction with non-identical receptors in these hosts. The substitution
of G to S at position 228 is of particular importance because it has been shown to affect receptor-
binding preference of human H2 and H3 viruses (see further discussion in section 3.3.1 below).
A switch from P to L at position 215 is capable of changing the configuration of the receptor
binding domain (RBD). Furthermore, at position 222, all viruses isolated from ducks carry a
bulky amino acid (K, P, R, L, Q or W), which is substituted by a small one (G) in the HA of
H13 viruses.
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It is often overlooked that avian viruses may not be uniform in their binding ability to α-2,3
linked SA receptors. However, by comparing the patterns of viral binding to a panel of synthetic
sialylglycopolymers (SGPs) having the same terminal α-2,3 linked SA fragment and differing
only in the structure of the inner parts of the carbohydrate chain, Yamnikova et al. (2003) and
Gambaryan (2005) were able to demonstrate significant differences between chicken, duck,
and gull viruses. These findings raised questions about the impact of these differences on the
transmissibility of IAV.

A better understanding of the exact chemical nature of glycan receptors and their distribution
on tissues from different species of wild birds would greatly enhance our knowledge of the
virus/host interactions in the wild. Although several investigators have studied the receptor
expression patterns in chickens, ducks and other species of domestic and wild birds (Costa et
al., 2012; Kuchipudi et al., 2009; Pillai and Lee, 2010; Yu et al., 2011), these studies have
probed only for the two main glycosidic linkage types using lectin histochemistry staining.
Therefore, a comprehensive understanding of glycan receptor distribution on tissues of
different species of birds is still lacking. Mass spectrometry is an important tool that provides
a systematic analysis of the total glycan content of tissues because of its ability to detect glycans
in complex mixtures with high sensitivity. It provides an insight into the fine structural details
of glycans such as length and branching, beyond the simple description of the glycosidic
linkage (Nicholls et al., 2012; Viswanathan, 2010).

3.1.3 HPAI H5N1 in wild birds—H5N1 viruses are a particularly high priority due to their
frequent emergence in poultry as HPAI and to documented human disease. Surveillance studies
of wild birds in northern Europe provided evidence that they harbor the LPAI ancestral viruses
of HPAI H5 and H7 strains found in poultry. For each of the HPAI outbreaks that occurred in
Europe since 1997, closely related LPAI relatives were found in mallards (Munster et al.,
2005). In countries where H5N1 infections of wild birds have been documented, such as China,
there was little evidence that HPAI H5N1 strains were perpetuated early on (Ellis et al.,
2004). Therefore, the role of wild birds in the geographic spread of HPAI H5N1, particularly
to the US, is strongly debated (Flint, 2007). It has been speculated that infected Asian wild
birds can’t transport H5N1 for long distances because infection would negatively affect their
health and hinder or significantly delay migration (Normile, 2005). Although surveys
conducted in the U.S. during the period 2006–2008 showed that wild birds were free of HPAI
H5N1 (Deliberto et al., 2009), globally, H5N1 disease clusters along several flyways were
found to be associated with the seasonal migration of wild birds, spreading from endemic
poultry sources in southern China to other regions (Si et al., 2009). Wild birds have also been
implicated in the spread of H5N1 to countries in the Middle East such as Egypt (Saad et al.,
2007). Since H5N1 viruses were present in apparently healthy migratory birds just before their
migration in this region, it was proposed that wild birds in synergism with poultry trade play
an important role in the spread of H5N1 over long distances (Chen et al., 2006c; Kilpatrick et
al., 2006). The question of whether wild birds can be silent carriers may rely on the
documentation of infection in birds that are healthy enough to migrate on both ends of the
flyways. Indeed, some experimental infection studies, showed that HPAV H5N1 infection is
not fatal for certain species of waterfowl and shorebirds (Brown et al., 2006; Kalthoff et al.,
2008; Keawcharoen et al., 2008; Perkins and Swayne, 2002), suggesting that wild bird species,
particularly mallards, can potentially be long-distance vectors of highly pathogenic avian
influenza virus (H5N1).

3.1.3.1 Molecular markers of H5N1 pathogenicity in wild birds: As mentioned, several
H5N1 outbreaks in Asia have resulted in mortalities in waterfowl since 2002. The molecular
determinants of pathogenicity in ducks are poorly understood. A few studies have pointed to
the PA and PB1 subunits of the polymerase complex as major contributors to virulence in
ducks. Introducing two mutations into the PB1 (Y436H) and PA (T515A) genes reduced the
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virulence of a small-plaque phenotype of A/Vietnam/1203/04 (H5N1), which is known to be
highly virulent for ferrets, mice and mallards (Hulse-Post et al., 2007). Two amino acid
substitutions in the PA (S224P and N383D) of the A/duck/Hubei/49/05 virus were associated
with a highly virulent phenotype (Song et al., 2011). Additional work on H5N1 pathogenicity
in wild birds is needed to clarify the constraints on H5N1 evolution and transmission in
reservoir species.

3.1.3.2 Spillover from domestic to wild birds: Many of the wild bird mortalities due to H5N1
have coincided with outbreaks in poultry (Kwon et al., 2005; Lee et al., 2005). Molecular
analysis of these viruses indicated that the majority of them are spillover events from domestic
poultry outbreaks. H5N1 viruses that caused an outbreak in Qinghai Lake in western China in
2005, which resulted in high mortalities in bar-headed geese (Anser indicus) and gulls had
multi-basic insertions at the cleavage site of HA and a deletion of 20 amino acids in the NA,
which indicate previous adaptation to domestic chickens (see section 3.2.1 below) (Chen et
al., 2006b, 2005). In addition, surveys on IAV in wild black-billed magpies (Pica hudsonia)
in Guangxi, China, have identified some interesting H9N2 reassortants carrying H5N1-like
PB1 genes, which presumably derived from the co-circulating H9N2 and H5N1 viruses. These
reassortants had similar motifs at the HA cleavage site to LPAI H9 chicken isolates and also
NA stalk deletions similar to current prevailing chicken isolates, suggesting that these viruses
were transmitted from domestic chickens (Dong et al. 2011b). The repeated transmission from
poultry to wild birds has raised some concerns about the possibility of H5N1 adapting to and
becoming endemic in wild bird populations. As of 2011 the United Nations Food and
Agriculture Organization considers H5N1 virus to be endemic in China, Bangeladesh,
Vietnam, Indonesia, India, and Egypt (http://www.cdc.gov/flu/avianflu/h5n1-animals.htm).
The establishment of silent H5N1 infections in wild birds would pose a serious threat,
especially if they retain pathogenicity to other species (Boyce et al., 2009).

3.2 Host switching - wild to domestic birds
IAV are usually introduced to domestic poultry either directly via shared aquatic habitats and
drinking water sources or indirectly via contaminated farming equipment (Alexander, 2007;
Reperant et al., 2012). However, adaptive changes are commonly seen to establish infection
in domestic poultry with wild bird derived IAV. In fact, since human isolates from domestic
poultry outbreaks frequently resemble them, it was proposed that adaptation to land-based
poultry facilitates transmission of novel IAV to humans (Wright et al., 2007). The additional
finding that α-2,6 linked SA receptors were found with great abundance in chicken tracheal
sections strongly suggests that chickens can be important intermediate hosts for generating
zoonotic IAVs (Kuchipudi et al., 2009).

The HA protein is synthesized as a single polypeptide precursor (HA0), which is matured by
proteolytic cleavage via trypsin-like cellular enzymes, producing the HA1 and HA2 proteins
(Skehel and Wiley, 2000). Many H5 and H7 viruses evolve into HPAI in the chicken, usually
through the acquisition of polybasic amino acid insertions (R and K residues) at the HA0
cleavage site. This change facilitates systemic virus spread by rendering the HA0 cleavable by
ubiquitous proteases available in many body tissues. However, it was shown that acquisition
of a polybasic cleavage site by itself was not sufficient for converting virus into HPAI for
chickens, and other changes involving additional viral proteins are required (Stech et al.,
2009).

Surveillance of IAV circulating in domestic poultry is considered a high priority for eliminating
potential human epidemics resulting from zoonotic transmission from poultry. The H5N1
viruses that spread in Hong Kong in late 1997 crossed the species barrier to humans, causing
respiratory infection in 18 patients and death in 6 after close contact with poultry. Fortunately
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the virus didn’t spread from person to person and a culling of over 1.5 million chickens is
largely credited with averting further human infection and possibly pandemic spread
(Shortridge et al., 2000). A comprehensive map of the various determinants involved in
adaptation to domestic birds is still lacking. The currently known molecular features that reflect
viral adaptation to poultry include: in-frame deletion in the NA stalk region and substitutions
in HA and NS.

3.2.1 NA stalk deletions—HA binds to SA linked to cellular membrane glycoproteins,
whereas the sialidase activity of the NA facilitates the release of progeny virions as a receptor-
destroying enzyme, essential for release of viral particles from the host cell after budding. The
NA stalk is a structure that separates the globular, enzymatically active head of the tetrameric
NA from the hydrophobic transmembrane domain (Russell et al., 2006). Stalk deletions
associated with adaptation to poultry have been reported in many subtypes and usually range
from 20–30 amino acid residues (Campitelli et al., 2004; Giannecchini et al., 2010; Li et al.,
2010; Mundt et al., 2009; Sorrell et al., 2010). IAV with a short stalk have not been isolated
from waterfowl except in cases where HPAI H5N1 spilled over to wild birds (Chen et al.,
2006b; Liu et al., 2005), strongly suggesting that this variant does not have a selective
advantage in wild birds. A comprehensive analysis of thousands of NA sequences by Li et al.
(2011) revealed that these deletions were often accompanied by changes in the HA such as
addition of glycosylation sites, presumably to maintain functional balance between HA and
NA, which is necessary for viral infectivity (Lu et al., 2005; Matrosovich et al., 1999; Mitnaul
et al., 2000; Wagner et al., 2000).

Experimentally, it was shown that NA stalk deletions enhanced IAV replication in chickens;
however, the molecular mechanism behind this growth advantage is still unclear. The sialidase
activity of NA orchestrates the release of progeny virions. Although these deletions are
expected to negatively affect the function of NA, the release of a recombinant LPAI H1N1
virus carrying an engineered NA stalk deletion was not affected (Munier et al., 2010).

Previous studies have shown that Japanese quails (Coturnix japonica) can play an important
role as an intermediate host in the adaptation of IAV to land-based birds. Japanese quail are
highly susceptible to wild-bird derived IAV and have been implicated in the transmission of
IAV subtypes that have crossed the species barrier to humans, including H5N1 and H9N2
(Guan et al., 1999; Makarova et al., 2003; Wan and Perez, 2006). Sequence analysis of a quail-
adapted mallard strain of H2N2 (A/Mallard/Potsdam/178-4/83) identified 6 mutations in 4
genes, PB2 (A588V), PB1 (Q268R, D398E, S654I), NP (A234T) and HA (N155D), suggesting
that the internal genes also play a role in host adaptation (Sorrell and Perez, 2007). However,
adaption of the quail-adapted virus to chickens was accompanied by an additional mutation in
the HA (K303Q) and a deletion in the NA stalk region. These adaptive changes altered viral
behaviour from intestinal shedding to shedding and transmission via the respiratory tract,
indicating that the NA stalk deletion is a major determinant of respiratory tropism of IAV
(Sorrell et al., 2010).

3.2.2 HA acid stability—After virus uptake by receptor-mediated endocytosis, the virus is
exposed to the acidic pH of the endosome, which triggers fusion between the viral and
endosomal membrane and release of the viral nucleocapsids into the cytoplasm (Palese and
Shaw, 2007). The acid stability of HA is another factor affecting IAV pathogenicity and
ecology. Mutations that modulate HA acid stability have been associated with changes in viral
pathogenicity and environmental persistence. An increase in H5N1 pathogenicity in chickens
was correlated with an increase in the pH of HA activation, which was linked to variations at
residues 104 and 115 located in the N- and C-termini of helix-110 of HA1 (DuBois et al.,
2011). On the other hand, an H5N1 virus carrying an H24Q mutation, which decreased the pH
of HA activation, was shed more extensively from infected mallards into drinking water and
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persisted for a longer period in the environment (Reed et al., 2010). The molecular determinants
of viral persistence in the environment deserve further investigation as described above.
Although a few studies have revealed some intriguing differences in the environmental
persistence of viral isolates belonging to the same HA subtype in particular, decoding these
determinants has been hampered by the lack of HA sequences (Brown et al., 2007; Stallknecht
et al., 2010).

3.2.3 HA and NS substitutions—Other HA amino acid substitutions associated with IAV
adaptation to chickens are A198V and S274F (Li and Cardona, 2010). The NS genes of H5N1
viruses, which re-emerged from geese in Hong Kong’s chickens in 2001, carried a unique 5-
aa deletion (position 80–84) in the middle of the NS1 protein (Guan et al., 2002). Whether
these substitutions are associated with the interspecies transmission from aquatic birds to
domestic birds is still unknown. More experiments are needed to delineate the biological role
of these mutations.

3.3 Host switching – Mammalian jumps
IAV circulating in birds may also acquire certain changes that render them transmissible to
mammals, including humans, pigs, horses, dogs and seals. Despite the debate in the literature
about the origin of the 1918 H1N1 pandemic virus and whether it originated from a purely
adapted avian virus or as a result of reassortment (Smith et al., 2009; Taubenberger and Kash,
2010), H5N1 and H9N2 viruses represent elegant examples of mammalian adaptation. H9N2
are low-pathogenic IAVs that were firstly isolated in 1966 in the US from turkeys (Homme
and Easterday, 1970). Since their isolation in North America, H9N2 IAV on the North
American continent have been found mainly in shorebirds and wild ducks, with no evidence
of permanent lineages of these viruses in land-based poultry. In 1988, the isolation of an H9N2
virus from Japanese quail in Southern China was the first recorded land-based poultry case of
H9N2 in Asia (Perez et al., 2003). H9N2 viruses continued to disseminate and became endemic
in domestic poultry outside of North America (Bi et al., 2010; Dong et al., 2011a; Fusaro et
al., 2011; Hossain et al., 2008; Xu et al., 2007). Since 1997, there have been several reports of
transmission of H9N2 IAV from land-based poultry to mammals, including humans and pigs
(Cong et al., 2007; Lin et al., 2000). Experimentally, it was shown that H9N2 IAV acquired
affinity to bind efficiently to α-2,6 linked SA receptors (Matrosovich et al., 2001), considered
one of the key elements for human infectivity. Given the potential of H9N2 to transmit to
humans, this group of viruses is currently on the list of the WHO as a potentially pandemic
virus (Alexander et al., 2009; Li et al., 2003).

In section 3.3, we will highlight the main genetic markers of such IAV species jumps to
mammalian hosts, particularly humans, where research efforts have focused.

3.3.1 HA receptor binding domain—The RBD of HA is a critical determinant of IAV
host tropism and transmissibility because it mediates the initial interaction between the virus
and the SA receptor (Chandrasekaran et al., 2008). Structurally, it is composed of 3 main
elements: helix-190 (residues 188–194), loop-220 (residues 221–228) and loop-130 (residues
134–138). Other highly conserved residues, such as Tyr98, Trp153, His183 and Tyr195, form
the base of the receptor-binding pocket (Skehel and Wiley, 2000). Amino acid substitutions
affecting the conformation of the RBD usually result in changes in the receptor-binding affinity
of HA and a consequent switch in host species specificity (Medina and Garcia-Sastre, 2011).
HA recognizes host glycans with terminal SA residues, which represent a diverse family of
sugars with a 9-carbon backbone that vary in structure among different species. SA are the
outermost unit on glycan chains with two main types of linkage to the underlying galactose
(Gal) arising from carbon-2. SA can either be linked to carbon-3 of Gal to form an α-2, 3
glycosidic linkage or to carbon-6 of Gal to form an α-2,6 glycosidic linkage (Nicholls, 2008;
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Wilks, 2012). It is generally believed that avian viruses preferentially bind to SA receptors
with an α-2,3 linkage, whereas human viruses prefer an α-2,6 linked SA; and a switch from
α-2,3 to α-2,6 is a prerequisite for the adaptation of avian viruses to the human host (Wright
et al., 2007). Therefore, identifying RBD mutations that would enable this switch might be of
great value to preparing for the emergence of pandemic strains. Additional studies also suggest
that HA-receptor interactions are more complex than the simple α-2,3 versus α-2,6 dichotomy.
In addition to the type of the linkage, the terminal SA itself and the overall glycan size and
topology are also important determinants of binding affinity (Chandrasekaran et al., 2008;
Gambaryan et al., 2003; Imai and Kawaoka, 2012; Ito et al., 2000; Suzuki et al, 2000).

The effects of point mutations and topology of the RBD on the receptor binding affinity of
IAV have been extensively studied in viruses that caused pandemics in humans (H1, H2 and
H3) and viruses considered to be potentially pandemic (H5 and H9). In particular, the recent
advances in glycan microarray technologies have revolutionized our understanding of the
interaction between influenza viruses and their host cell receptors. This technology enables
investigators to pinpoint, with a high degree of accuracy, the differences between HA binding
to hundreds of different glycans attached to a single chip (Stevens et al., 2006c). Comparative
sequence analysis revealed that human adapted H2N2 and H3N2 viruses, which caused the
1957 and 1968 pandemics, required as few as two amino acid substitutions near the RBD
(Q226L and G228S) to switch their receptor binding affinity from the avian α-2,3 to the human
α-2,6 type (Connor et al., 1994). On the other hand, two different amino acid substitutions
(E190D and G225D) within the RBD of H1N1 viruses, which caused the 1918 Spanish flu
pandemic, mediated the direct avian-to-human switch (Matrosovich et al., 2000; Stevens et al.,
2006a). Despite the structural similarities between the HA proteins of H5N1 and 1918 H1N1,
introducing the E190D/G225D mutations didn’t enhance the binding of the HA of a HPAI
H5N1 virus (A/Vietnam/1203/2004) to α-2-6 linked SA on a glycan array chip. Surprisingly,
however, introducing the G226L/G228S double mutation (typical of H2 and H3), did not fully
convert the H5N1’s HA to α-2,6 linked SA specificity; although it reduced its binding affinity
to α-2,3 linked SA (Stevens et al., 2006b). Other HA mutations, such as N182K and Q192R,
have been reported to enhance the binding of H5 to the human-type receptor (Yamada et al.,
2006). In H9N2 viruses, a frequently detected mutation, Q226L, was shown to increase the
affinity of virus to bind to human-type α-2,6 linked SA receptors, replicate better in human
airway epithelial cells, and transmit more efficiently to direct contacts in a ferret model
(Matrosovich et al., 2001; Wan and Perez, 2007; Wan et al., 2008). However, amino acid
substitutions within the RBD do not always correlate with enhanced virus transmissibility. An
example is the D222G mutation in 2009 pandemic H1N1 virus (Belser et al., 2011). Therefore,
changes in the RBD that are associated with IAV adaptation to humans seem to be very complex
and subtype-dependent. More work will be needed to determine if patterns are apparent in the
repertoire of potential sequence changes.

3.3.2 Polymerase—Receptor binding is only one part of a successful viral life cycle and a
productive infection in the host. The polymerase complex (PB2, PB1 and PA) is essential for
transcribing and replicating the negative-sense viral genomic RNA. Polymerase genes appear
to be critical for adaptation of AIV to the human host (Boivin et al., 2010). Replacing the
polymerase gene complex of A/Vietnam/1203/04, a fatal human case H5N1 isolate, with that
of a non-lethal strain completely attenuated it, highlighting the importance of the polymerase
complex for viral virulence (Salomon et al., 2006). Using the wealth of sequences available
for thousands of IAV isolates, several investigators used a suite of computational tools to
identify markers that discriminate human from avian viruses, in an attempt to understand how
avian viruses adapt to humans and cause pandemics. Only a subset of these markers was
conserved in all human pandemic influenza virus sequences, such as the A199S, E627K and
K702R substitutions in the PB2 protein. Although these markers were distributed among all
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genes, the majority of them were found in the three proteins of the viral polymerase complex,
particularly at the domains where these proteins interact (Allen et al., 2009; Chen et al.,
2006a; Finkelstein et al., 2007; Tamuri et al., 2009). Moreover, several adaptive evolution
experiments in mouse models have linked lethal mutations to the viral polymerase genes
(Gabriel et al., 2007, 2005; Ping et al., 2011). Together, these studies suggest that the
polymerase complex is highly influenced by the host environment.

3.3.2.1 PB2: Among the 3 proteins (PB2, PB1 and PA) of the viral polymerase complex, PB2
appears to play the most profound role in viral adaptation to mammalian hosts, particularly
humans. An E627K mutation is one of the most important determinants that confer the ability
to infect humans because it allows the virus, which normally grows at 40C in the avian intestinal
tract, to grow at the lower temperature of the human upper respiratory tract (33C) (Gabriel et
al., 2005; Subbarao et al., 1993). The E627K change has been correlated with the enhanced
virulence of many HPAI H5N1 strains and was shown to be essential for optimal interaction
of PB2 with NP and other cellular proteins involved in transcription and replication (Labadie
et al., 2007; Ng et al., 2012). D701N is another PB2 mutation that has been shown to be
implicated in adaptation to growth in human cells (Li et al., 2005; Steel et al., 2009). These
mutations were not found in the H1N1 2009 pandemic virus (pdmH1N1) and introducing them
by reverse genetics did not increase polymerase activity or have an impact on virus replication
in vitro or in vivo (Herfst et al., 2010; Jagger et al., 2010). These findings sparked interest in
finding other PB2 residues that might contribute to enhanced pdmH1N1 IAV replication in
mammalian cells. 590S and 591R mutations have been identified as important residues for
polymerase activity and for efficient virus replication (Mehle and Doudna, 2009). Based on a
crystal structure of the C-terminal regions of H5N1 and H1N1 PB2, residues 590 and 591 were
found to lie very close to residue 627 (Yamada et al., 2010). Therefore, it was concluded that
these 2 residues may compensate for the lack of lysine at position 627 and confer efficient
replication on pdmH1N1 in mammals. Other PB2 markers of suggested pathogenicity have
also been identified in H9N2 viruses, which are another group of high concern for potential
pandemic strains. A combination of either D253N/Q591K or M147L/E627K mutations
resulted in a polymerase with higher in vitro activity and increased viral replication efficiency
in human bronchial epithelial cells and mice (Mok et al., 2011; Wang et al., 2012b).

3.3.2.2 PB1: PB1 in the polymerase complex has also been reported to contribute to viral
adaptation to the mammalian host. PB1-F2 is a small proapoptotic viral protein (90 amino
acids) that is encoded within the PB1 gene by an alternative reading frame (Chen et al.,
2001). A single amino acid substitution (N66S), which was found in both Hong Kong 1997
H5N1 and the 1918 pandemic H1N1 virus, was shown to increase virulence in mice (Conenello
et al., 2007).

3.3.2.3 PA: Serial passage of the LPAI wild-bird H5N2 in a mouse model identified a T97I in
the PA protein to be a key determinant of enhanced virus replication in mice (Song et al.,
2009). Moreover, a recent study showed that the exchange of entire PA segments between
avian and human viruses (akin to a reassortment event) facilitates viral adaptation to humans.
An avian polymerase from A/green-winged teal/Ohio/175/1986(H2N1) carrying a PA subunit
from the 2009 pdmH1N1 virus exhibited increased polymerase activity in vitro and helped the
virus to overcome growth restriction in human cells. Reassortant viruses showed enhanced
replication kinetics and pathogenicity to mice. This enhancement in replication efficiency was
mapped to a single amino acid substitution in the PA (T552S) (Mehle et al., 2012). These and
other mutations in the genes encoding the viral polymerase have demonstrated that genetic
diversity encoded in these segments may play a very important role in viral adaptation and
pathogenicity in a new host. Many more such changes in wild viruses await analysis.
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3.3.3 Genetic reassortments—In addition to adaptational mutation, reassortment is an
important mechanism for the generation of potentially pandemic influenza strains. Sequence
analysis revealed that the pandemics of 1957 and 1968 were caused by avian-human
reassortants that acquired human receptor binding properties (Taubenberger and Kash, 2010).
Phylogenetic analysis has suggested that the H5N1 influenza viruses that caused 1997’s
outbreak in Hong Kong were reassortants that obtained their internal gene segments from a
quail H9N2 virus (Qa/HK/G1/97) (Guan et al., 1999). Several studies have been conducted to
investigate the possibility of pandemic strain emergence via reassortment between human and
avian or swine viruses. A human H3N2 reassortant virus carrying the internal genes of avian
H5N1 exhibited reduced replication and transmission in a ferret model, suggesting that the
genetic basis of mammalian transmissibility is complex (Maines et al., 2006). Coinfection with
H9N2 and 2009 pdmH1N1 influenza viruses in the same host (e.g., pigs and humans) could
provide the opportunity for reassortment between these viruses. Experimentally, 127 hybrid
viruses derived from these two subtypes by reverse genetics showed high genetic compatibility
and more than half replicated to a high titre in vitro. In vivo studies of 73 of 127 reassortants
revealed that all viruses were able to infect mice without prior adaptation and 8 reassortants
exhibited higher pathogenicity than both parental viruses (Sun et al., 2011). Moreover, it was
also shown that H9N2/H3N2 (seasonal influenza) and H9N2/pdmH1N1 (swine flu) reassortant
viruses have been shown to infect and transmit by respiratory droplet transmission in ferrets
after adaptation by serial passage and incorporation of amino acid changes on the surface and
internal genes (Kimble et al., 2011; Sorrell et al., 2009). In addition, H9N2/pdmH1N1
reassortants replicated and transmitted more efficiently in pigs than the parental H9N2 virus
(Qiao et al., 2012). The sum of this work demonstrates the possibility of novel pandemic strains
being generated from reassortment between avian H9N2 and other IAV subtypes.

3.3.4 HA-NA balance—During viral budding, progeny virions remain attached to the cell
surface via HA until the enzymatic activity of NA destroys the receptors and releases those
cell-bound viruses (Palese and Shaw, 2007). A functional balance between the activities of HA
and NA has been suggested to play a role in establishing and sustaining efficient human
transmissibility (Xu et al., 2012; Yen et al., 2011). Therefore, mutations that alter this delicate
balance might be used as indicators for pandemic potential This concept was best demonstrated
with pdm2009 H1N1, which resulted from reassortment of several swine lineage viruses. The
NA and M segments of this virus came from Eurasian avianlike swine H1N1, and the other 6
segments came from North American swine H1N2, which itself was a triple reassortant of
classical swine H1N1 virus (providing the HA, NP, and NS segments), a North American avian
H1N1 virus (providing the PB2 and PA segments), and a human H3N2 virus (providing the
PB1 segment) (Garten et al., 2009). Survey of the swine progenitors of pdmH1N1 has identified
a swine H1N2 virus from Hong Kong, which differed from the pdmH1N1 by only the NA
segment. This H1N2 virus had similar receptor specificity to the pdmH1N1, but grew at lower
titres. Introducing the NA segment from pdmH1N1 did not improve viral replication efficiency;
however, it did increase the respiratory droplet transmissibility in a ferret model, suggesting
that a functional match among the 8 gene segments is required for efficient mammalian/human
transmission (Yen et al., 2011).

3.3.5 Codon usage bias—Codon-usage bias is another consideration that may be involved
in IAV adaptation to the mammalian host. The degenerate genetic code means that synonymous
codons can code for the same amino acid. Although synonymous mutations are not expected
to cause any change in the amino acid sequence, it is observed that these codons are not used
in equal measure during translation. Furthermore, this bias differs between different species
and is generally attributed to differences in the availability of tRNA during protein translation.
Accumulating evidence suggests this bias is subject to selective pressure that varies according
to the host species and is not due to random mutations (Plotkin and Kudla, 2011). Since viruses
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are completely dependent on host cellular machinery for their protein synthesis, it is logical to
assume that the codon usage features of the host will most likely influence viral evolution and
adaptation. Some studies have proposed that IAV have inherited an evolutionary advantage
that allowed them to transmit from a non-human to a human host due to their low codon usage
bias (Ahn et al., 2006; Liu et al., 2010). However, it was also shown that the codon usage
patterns of human IAV were distinct from those of avian viruses. Generally, human viral genes
had a lower GC content and the nucleotide G was used frequently as the 3rd codon position in
the viral genome (Wong et al., 2010), suggesting a certain degree of mammalian adaptation is
required before sustained transmission in humans.

3.3.6 Glycosylation—Many HA molecules are N-linked glycosylated (NLG) at several sites
in the globular head and stem through attachment of a glycan moiety to asparagine at the
consensus sequence Asn-X-Ser/Thr; where X is any amino acid except proline (Kim and Park,
2012). Glycosylation of the HAs globular head helps modulate the biological activity and
receptor binding specificity of HA, and hence the overall viral virulence in several ways.
Glycosylation near antigenic epitopes also shields HA from antibody-mediated neutralization,
leading to escape from immune recognition (Das et al., 2010). Therefore, any amino acid
changes that would lead to acquisition or loss of glycosylation sites should be carefully
scrutinized. An increased number of N-linked glycans attached to the head of HA was shown
to attenuate H3N2 in mice (Vigerust et al., 2007). On the other hand, loss of a glycosylation
site via a single amino acid substitution (Asn-246-Ser) in the HA of another H3N2 virus was
accompanied by increased virulence to mice (Reading et al., 2009). Glycosilation is also a
potent regulator of receptor binding affinity. Acquisition of NLG at the globular head can
reduce the affinity of HA to its receptors, possibly through simple steric hindrance by the bulky
side chain of the oligosaccharide, which blocks access of HA to the SA receptor (Ohuchi et
al., 1997; Wagner et al., 2002; Wagner et al., 2000). The presence of NLG on residue N158 of
H5N1 was shown to decrease the affinity of HA to bind to α-2,6 linked SA (Chen et al.,
2012). On the other hand, loss of a glycosylation site in the lab-adapted strain A/Puerto Rico/
8/34 at residue 131, adjacent to the RBD of HA, increased the binding affinity to the α-2,6
linked SA receptor (Das et al., 2011). Introducing a T160A mutation in the HA of A/Vietnam/
1203/2004(H5N1) removed a glycosylation site at residue 158, but had no effect on the receptor
preference of this virus. However, when compensated with an additional Q226L mutation,
which is known to help IAV adapt to the α-2,6 linked SA human receptors, the T160A/Q226L
double mutant exhibited altered receptor-binding specificity from α-2,3 linked SA to α-2,6
linked SA (Wang et al., 2010).

Changes in NLG have also been shown to modulate transmissibility. In a guinea pig model,
an H5N1 virus that could bind to both α-2,3 linked SA and α-2,6 linked SA lost its affinity
for α-2,6 linked SA after introduction of the A160T mutation, which resulted in loss of a
glycosylation site at residues 158–160 and a consequent loss of transmissibility of the parental
virus (Gao et al., 2009).

3.4 Inter-mammalian airborne transmission
The H5N1 outbreak that occurred in Hong Kong in 1997 provided the first concrete evidence
that purely avian viruses can acquire the necessary adaptive changes to be transmitted directly
to humans without prior reassortment in a mammalian host and can be fatal (Bender et al.,
1999; Shortridge et al., 1998). A fundamental question that influenza virologists are trying to
answer is what are the minimal genetic requirements that would render H5N1 potentially
pandemic, i.e., airborne transmissible between humans? Two recent experiments were
conducted to address this question. These experiments relied on serial passage of H5N1 or
H5N1/H1N1 reassortant viruses in ferrets and studied the changes that would allow these
viruses to spread via droplet transmission between separately caged animals. Both experiments

Runstadler et al. Page 26

Infect Genet Evol. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



have shown that only a handful of changes could convert a virus into one that is efficiently
transmissible in mammals (Herfst et al., 2012; Imai et al., 2012). Ferrets are the best mammalian
models for avian influenza. Similar to humans, they have a predominance of α-2,6 linked SA
in the upper airway and a lesser amount of α-2,3 linked SA on the respiratory epithelia
(Matsuoka et al., 2009). Imai et al. (2012) used a reassortant virus containing an H5 HA within
the background of pdmH1N1 virus. This virus was capable of droplet transmission in the ferret
model after acquiring 4 HA mutations: N158D, N224K, Q226L and T318I. In the sister
experiment, Herfst et al. (2012) modified an Indonesian strain of H5N1 by introducing 2 HA
mutations (Q222L and G224S) to a priori switch receptor affinity from α-2,3 linked SA to
α-2,6 linked SA and the E627K mutation in the PB2 to help the virus grow at the lower
temperature of the mammalian upper respiratory tract. This genetically modified virus became
airborne transmissible after acquiring 2 more HA mutations (H103Y and T156A) during serial
passage in ferrets, suggesting that H5N1 can potentially become airborne transmissible
between mammals without reassortment in an intermediate host. Although the starting points
in these 2 experiments were different, they selected for viruses with similar phenotypes
characterized by altered HA receptor specificity, loss of a glycosylation site and increased pH
stability of the HA. A comprehensive analysis of thousands of sequences from surveillance
data accumulated over the last 15 years revealed that 2 of these mutations are commonly found
in circulating H5N1 strains in some endemic countries, such as Egypt. Therefore, it may be
concluded that some viruses might require only 3 additional mutations to become airborne
transmissible between mammals in the wild (Russell et al., 2012). These elegant experiments
clearly showed that H5N1 pose a serious pandemic threat to humans, and therefore those
mutations have to be carefully monitored in all current and future surveillance efforts.

4.0 Concluding remarks
The future of influenza research seems to depend on an ability to marry the persistent efforts
of researchers to understand the mechanisms of viral infection and protection, (driven by the
need for effective vaccine) with the growing interest in understanding the origin and evolution
of new and continuing viral threats in nature. The advent of next generation and third generation
sequencing technology and other tools to examine viral and host dynamics in greater detail and
in higher throughput is already paying dividends in many areas of research in this field as
demonstrated by several experiments referred to in this review. However, even as a new
pandemic virus may erupt this season and dictate a need for intense study and vaccine
development, we should be mindful of the continuing need for investment in longer-term
projects to understand the basic immunology, evolution, and ecology of viruses in the wild.
These efforts will aid predictive models and have a major impact on the public health
preparedness for future pandemic threats. To push forward, influenza research must continue
towards becoming an interdisciplinary effort combining the work of ecologists, ornithologists,
epidemiologists, modelers, geneticists and molecular and cellular virologists as well as others.
The insights highlighted in this review along with new efforts to fill the gaps in the study of
wild virus and to unlock the molecular, ecological, and evolutionary criteria that govern the
formation of potential pandemic strains will help to clarify and mitigate the looming threat of
influenza to human and animal populations.
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NA neuraminidase

IAV influenza A virus

AIV avian influenza virus

PB1, PB2, and PA polymerase complex

NP nucleoprotein

M matrix

M2 matrix 2

NS non-structural

NEP nuclear export protein

MatAb maternal antibody

SA sialic acid

SGPs sialylglycopolymers

LPAI low pathogenic avian influenza

HPAI high, pathogenic avian influenza

RBD receptor binding domain

NLG N-linked glycosylated
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Highlights – Influenza review (Runstadler, Hill, Hussein, Puryear, and Keogh)

• We review the literature in influenza research to explore how the study of wild
influenza is connected to concerns for human disease.

• We point to what we think are the most important gaps left in studies to date in
wild bird, mammal, and environmental influenza surveillance.

• We review work that has defined what the most important adaptations are in the/
potential emergence of avian influenza viruses as pandemic viruses.

• Additional emphasis is placed on the molecular determinants that govern
interspecies movements of virus and their potential importance in the generation
of pandemic strains capable of entering the human population.
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Figure 1.
Surveillance effort targeted towards wild birds. Anseriformes (ducks, geese, swans: green) and
Charadriiformes (shorebirds, gulls, auks: blue) account for almost all samples from wild bird
orders collected in North America and Europe. Data are based on number of samples (positive,
negative & untested) deposited in Influenza Research Database at 20 September, 2012 (n =
152,312). Other sampled wild bird orders include: Ciconiiformes (storks, herons, egrets),
Columbiiformes (doves, pigeons), Coraciiformes (kingfishers, bee-eaters, rollers, hornbills),
Cuculiformes (cuckoos, roadrunners, Gruiformes (cranes, rails), Sphenisciformes (penguins),
Passeriformes (perching birds), Pelicaniformes (pelicans), Piciformes (woodpeckers),
Procellariiformes (albatrosses, shearwaters, petrels), Sphenisciformes (penguins).
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Figure 2.
Detection of IAV from environmental sources. Data represent counts of the thirteen
hemagglutinin (HA) subtypes detected. Data are sourced from reports of environmental
detection published in the literature and sequences available on Genbank.
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Figure 3.
Geographic distribution of IAV detected from the environment spans biomes and migratory
flyways of wild birds. Sampling sites are indicated by a white circle.
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Figure 4.
Genomic segments involved in enhanced virulence and/or host switching. Segments carrying
mutations that have been shown experimentally to be involved in such phenotypic changes are
highlighted in solid black and discussed within the text. Most of the mutations recorded in
viruses isolated from wild birds are related to spill over events of HPAI H5N1 from domestic
birds. The fact that 6 segments are involved in mammalian adaptation reflects the complexity
of this process and the bias towards studying IAV that switches to mammals.
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Figure 5.
Sample types from Anatidae (ducks, swans, geese) and Laridae (gulls, terns, kittiwakes)
collected during global surveillance. Data are based on number of samples (positive, negative
& untested) deposited in the Influenza Research Database at 20 September, 2012.
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