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Summary
The current clinical application of combination chemotherapy is guided by a historically
successful set of practices that were developed by basic and clinical researchers 50-60 years ago.
Thus, in order to understand how emerging approaches to drug development might aid the creation
of new therapeutic combinations, it is critical to understand the defining principles underlying
classic combination therapy and the original experimental rationales behind them. One such
principle is that the use of combination therapies with independent mechanisms of action can
minimize the evolution of drug resistance. Another is that in order to kill sufficient cancer cells to
cure a patient, multiple drugs must be delivered at their maximum tolerated dose – a condition that
allows for enhanced cancer cell killing with manageable toxicity. In light of these models, we aim
to explore recent genomic evidence underlying the mechanisms of resistance to the combination
regimens constructed on these principles. Interestingly, we find that emerging genomic evidence
contradicts some of the rationales of early practitioners in developing commonly used drug
regimens. However, we also find that the addition of recent targeted therapies has yet to change
the current principles underlying the construction of anti-cancer combinatorial regimens, nor have
they made substantial inroads into the treatment of most cancers. We suggest that emerging
systems/network biology approaches have an immense opportunity to impact the rational
development of successful drug regimens. Specifically, by examining drug combinations in
multivariate ways, next generation combination therapies can be constructed with a clear
understanding of how mechanisms of resistance to multi-drug regimens differ from single agent
resistance.

The origins and continued use of cancer combination chemotherapy
The overwhelming majority of cures in cancer chemotherapy have come from the
application of conventional cytotoxic chemotherapies. While some cytotoxic agents have
been the product of serendipity, and some the product of large scale screening, others were
part of the first wave of “rational” targeted therapies that were developed in the 1940’s and
were specifically aimed at targeting cancer cells on the basis of the nutritional properties that
made them distinct from normal cells (Chabner and Roberts, 2005; Wall and Wani, 1995).
The history of these early successes illustrates a unique combination of serendipity and
insight that has led to the development of potentially curative regimens for numerous forms
of cancer. It is this early success that still guides current clinical practice and clinical trials.
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In 1946 Goodman and Gilman published a landmark study in cancer chemotherapy.
Nitrogen mustard agents that were serendipitously discovered to induce drastic lymphoid
cell depletion upon accidental or wartime exposure were shown to produce remarkable
responses in human tumors from a variety of tissue origins (Goodman et al., 1984). Two
years later Sidney Farber took a more rational target based strategy for anti-cancer drug
discovery. He reasoned that if folate deficiency inhibited normal hematopoiesis and the
addition of folates accelerated leukemia in children, then anti-folates would make a
promising anti-leukemia drug. In his landmark 1948 paper, Farber (Farber and Diamond,
1948) observed the first true remissions in a disease where the time from diagnosis to death
was often measured in days. For the purpose of context, it is interesting to note the
similarities between Farber’s anti-folates and current targeted therapies. Like early clinical
trials with EGFR and BRAF inhibitors, these early reports documented some striking but
short lasting remissions in a subset of patients.

Combination genotoxic chemotherapy
In 1942, Luria and Delbruck’s fluctuation analysis (Luria and Delbruck, 1943), which
combined an experimental and mathematical modeling framework, showed that heritable
resistance to viruses was derived from pre-viral-exposure genetic variation in a bacterial
population. Later, Newcombe (Newcombe and Hawirko, 1949) extended this finding to
chemotherapy in bacteria, and in 1952, Law extended it to the resistance to anti-folates in in
vivo mouse models of cancer (Law, 1952b). Taken together these experiments suggested to
early chemotherapy researchers that there might be a benefit to giving drugs in combination
(Law, 1952a; Skipper et al., 1954). If a drug provided a resistance rate of 1/m and a second
statistically independent (non-cross resistant) drug provided resistance of 1/n then co-
resistance would occur in 1/m*n cells.

In 1958, citing the above rationales, and the successful creation of combination therapies for
tuberculosis, Emil Frei III published the first randomized control trial of a combination
therapy in cancer (Frei et al., 1958). It established clear combination efficacy over the
efficacy of the single substituent agents. In the mid 1960’s, Howard Skipper showed that in
experimental mouse models, as few as one cancer cell could give rise to lethal disease, and
that chemotherapy followed a logarithmic killing model. Specifically, the same dose killed
the same proportion of cells, regardless of the total disease burden (Skipper et al., 1964).
This suggested to Skipper and others that to have any chance of curing a cancer, a physician
would have to administer as large of a tolerable drug dose as is possible to the patient.

The rapid success of Emil Frei’s 1958 trial, advances in supportive care, and Howard
Skipper’s principals for curing experimental mouse models all led to the highly successful
but not experimentally controlled adoption of the 4-drug VAMP regimen (Freireich EJ,
1964). Coupled with care that was able to ameliorate the side effects of therapy and
effectively dose even higher cumulative drug doses into leukemia patients, the VAMP
regimen was the first big step towards the large and potentially curative regimens that we
have today. It is important to note that this type of study (in which combinations of drugs are
combined at maximally tolerated doses) was not able to specify the mechanism of increased
efficacy following increased drug dose, nor the minimization of the outgrowth of resistance,
but it can and did demonstrate improved efficacy. It was this bold, but less carefully
controlled strategy that led to the rapid and successful adoption of combination
chemotherapy for many cancers, and by 1973 (DeVita and Schein, 1973) had revolutionized
the treatment of cancer by finding cures for previously untreatable diseases. Thus, it is
interesting to note that the biggest early successes of cancer therapy owe less to systematic
controlled trials and more to bold and decisive attempts to cure very sick patients.
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These early and impressive successes fostered a manner of thinking about care that still
largely dictates current clinical practice in combination therapy, namely that randomized
combinations of chemotherapeutics can identify select combinations that improve the
number of patients that show a durable response. Many clinical trials using a similar process
are still constructed in attempts to improve the current standard of care (Conroy et al., 2011;
Pirker et al., 2009). Next, we will examine current genomic evidence for what makes cells
resistant to combination therapy in light of the early rationales underlying combination
regimens.

The clinical efficacy of combination therapy and its acquired resistance
The initial hypotheses behind the first combination therapy regimens suggested that: 1) The
maximum possible cumulative dose of drug should be given, and 2) Independent drugs with
non-overlapping mechanisms of action are important for minimizing the probability of
therapeutic resistance. The ideas about resistance have only been tested in the context of
cross resistance following the selection of single drug resistant cell lines in Luria-Delbruck
fluctuation tests (Luria and Delbruck, 1943). However, the genomic evidence in relapsed
cancers following clinical combination treatment in multiple systems suggests that this
microbiology inspired rationale, while true in the context of infectious diseases like
tuberculosis and HIV (Almeida Da Silva and Palomino, 2011; Durant et al., 1999), is very
different in the context of relapsed human cancers that are initially sensitive to combination
chemotherapy. In order to think about how systems biology might inform drug selection and
the clinical trials process, we must consider how current clinical combinations fail in
patients (Figure 1).

The mutational analysis of leukemia suggests multidrug resistant cell
states

Examining pre and post treatment matched patient samples is critical to identifying the
nature of acquired drug resistance in cancer. One of the first studies to analyze recurrent
genomic alterations in cohorts of matched pre-treatment and post relapse patients performed
copy number analysis on acute lymphoblastic leukemia samples (Mullighan et al., 2008).
Mullighan and colleagues showed two striking results that speak to both the historic
rationales for combination therapy and current studies on therapeutic resistance. First, the
majority of relapse clones following conventional combinatorial chemotherapy represent
low frequency variants in the pre-treatment tumor that were progenitors of the dominant
diagnosis clone. Second, the majority of alterations that dominated at relapse did not include
direct alterations in the known biochemical targets of common therapeutics that were used
for leukemia treatment. Rather, the most common alterations tended to affect B-cell
development, changes that might be hypothesized to promote generally drug resistant cell
states or homing to developmental niches which promote therapeutic resistance. In a later
study by the same group, the sequencing of selected exons in matched pre- and post
treatment samples also identified recurrent mutations in B-cell developmental pathways, as
well as in CREBBP and genes that induce transcriptional states that correlate with drug
resistance (Mullighan et al., 2011). Finally, most recently, matched pre and post-treatment
AML samples revealed mutations in genes that were not related to the direct drug targets of
frontline chemotherapeutic action (Ding et al., 2012). Though these studies employed single
measurement methodologies (sequencing or copy number analysis), taken together they
suggest that relapsed leukemia treated with multi-agent regimens develop resistance profiles
that favor the development of a multi-drug resistant cell state. This state appears to be broad
in its definition, but includes the alteration of apoptotic, epigenetic, and developmental cell
states. Thus, resistance to multi-drug regimens does not appear to occur via the combination
of mutations conferring resistance to component parts of a regimen.
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Resistance to targeted therapy is pathway specific
Perhaps one of the most exciting aspects of emerging targeted therapies is that resistance to
these agents is both easily identifiable and qualitatively distinct from drug resistance to
combination regimens. Specifically, resistance to these agents frequently arises as a direct
drug-target alteration affecting therapeutic response. For example, following the treatment
of chronic myelogenous leukemia (CML) with Abl kinase inhibitor Imatinib, it was noted
that resistant cells harbored a spectrum of resistance mutations in the BCR-Abl kinase
domain. Importantly, cells harboring some of these resistance mutations remained sensitive
to a distinct multi-kinase inhibitor, dasatinib. While still competitively inhibiting BCR-Abl,
dasatinib was found to have improved efficacy over imatinib in treating leukemia with most
BCR-Abl kinase domain mutations (Shah et al., 2004; Talpaz et al., 2006).

But how might this discovery be used improve the development of effective drug
combinations? Surprisingly, when used in a temporally distinct manner, these two kinase
inhibitors, whose spectrum of resistance mutations are somewhat distinct can be
alternatingly dosed over the course of the disease to stave off resistance, as long as
compound mutations or single mutations causing resistance to both drugs are not present.
Furthermore, several recent studies suggest that cells bearing the T315I resistance mutation
(a mutation that confers resistance to both kinase inhibitors) can be treated with enhanced
efficacy by using combination therapy. For example, cells expressing BCR-Abl T315I are
sensitive to the combination of dasatinib with an aurora kinase inhibitor (Shah et al., 2007).
Additionally, allosteric inhibitors that bind to the myristate-binding groove of the Abl
protein were recently developed, that in combination with kinase domain targeted therapies,
are capable of reducing T315I positive disease in tumor bearing mice (Zhang et al., 2010).
Finally, combinations of conventional cytotoxic drugs (L-asparaginase and dexamethasone)
with BCR-Abl inhibitors can overcome T315I-mediated resistance in a mouse model of
BCR-Abl positive acute lymphoblastic leukemia (Boulos et al., 2011). All of these strategies
illustrate attempts to create next generation combination regimens that incorporate agents to
resensitize tumors to targeted therapeutics. Thus, unlike conventional chemotherapeutic
regimens, some regimens involving targeted agents seek to restore individual component-
specific activity - a situation that would presumably select again for single agent resistance.

While these BCR-Abl-related studies are the most advanced efforts to rationally build
clinical regimens to circumvent targeted resistance, similar investigations into the modes of
targeted resistance in the hedgehog pathway in medulloblastoma confirm the prevalence of
on-target pathway mutations (Yauch et al., 2009) in response to targeted therapy. Studies in
EGFR inhibitor-treated lung cancers have identified amplifications in the Met receptor
tyrosine kinase, an example of a parallel pathway activation mechanism inducing resistance
to targeted therapy (Turke et al., 2010). Furthermore, studies in BRAFV600E treated
melanoma have identified downstream mutations in Mek (Wagle et al., 2011). This data
suggests that these resistance mechanisms (mutations directly in the pathways of drug action
or parallel to drug action in drug sensitive cancers) can be employed in response to
numerous targeted therapeutics. With this in mind, there is increasing interest in the use of
these agents in combination regimens. This rationale is highly similar to the original
rationale for the first combo regimens, i.e. that the addition of independent drugs blocks
targeted therapeutic resistance. Just like the initial regimens, in the context of combination
therapy, it will be important to consider whether the therapeutic combinations adopted are
actually able to shift mechanisms of therapeutic resistance, or whether they increase the
effective amount of killing, or both. These data will be critical in understanding and
preventing resistance that might develop in response to combinatorial therapy involving new
“targeted” therapeutics.
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Clinical drug resistance to conventional chemotherapies can also be
pathway specific

The comparison between conventional regimen resistance and targeted therapeutic
resistance is obscured by the fact that currently regimens contain multiple drugs that are not
specifically targeted at oncogenic pathways, and because conventional therapeutics are
almost always dosed in combination. This makes it difficult to directly compare the clinical
mechanisms of drug resistance following single cytotoxic therapy in clinical cohorts. In spite
of this, some pre-clinical evidence suggests that many classic chemotherapeutic agents,
when dosed in isolation, can promote very similar modes of resistance as targeted therapies.

Traditional chemotherapeutic agents are often generally thought of as pleiotropic; however,
this is not an accurate description of all cytotoxic chemotherapies. While nitrogen mustards
and cisplatin are highly chemically reactive, and nucleoside analogs can incorporate into
DNA and RNA, other drugs such as methotrexate, camptothecin, doxorubicin, and
dexamethasone (Bledsoe et al., 2002; Matthews et al., 1977; Pommier et al., 2010; Staker et
al., 2002) make direct and specific contacts with their enzymatic targets. An examination of
the preclinical literature suggests that in the case of camptothecin, doxorubicin and
methotrexate, resistance to these agents can result in direct modifications to their respective
drug targets (Hashimoto et al., 1996). Though many selection experiments have also
revealed the role of P-Glycoprotein (P-gp) and drug efflux in multi-drug cross resistance (a
topic discussed at greater length in the next section), if P-gp is inhibited and anthracycline
resistance is selected for, the resistance profile can revert back to a target dependent
(topoisomerase I or topoisomerase II alpha) mechanism of drug resistance (Beketic-
Oreskovic et al., 1995; Zander et al., 2010). This is in contrast to the clinical picture of
multidrug resistance portrayed above. Thus, in the absence of direct evidence, it is
interesting to speculate that the direct target mediated resistance to classic
chemotherapeutics is difficult to select for in the face of current clinical combination therapy
regimens, and that this is due to the combination of classic chemotherapeutic agents, and not
the nature of the agents themselves.

Functional mechanisms of clinical efficacy in combination therapy
If a property of combination therapy in human cancers is that it selects for multi-drug
resistant cell states, the distinctions between infectious disease and cancer may be indicative
of the complex regulation of drug metabolism and cell death in mammalian cells (Letai,
2008). A well-described mechanism for the development of such a multi-drug resistant state
is the overexpression of P-gp (Borst, 2012). This pump can mediate the efflux of numerous
drugs used in combinatorial regimens, including anthracyclines, taxanes, and Vinca
alkaloids (Szakacs et al., 2006). Surprisingly, however, while there is substantial evidence
that elevated drug transport can mediate drug resistance in model systems, there is only
limited evidence for a role of these transporters in chemoresistance in human tumors.

More recently it has been shown that in patient clinical samples and primary tissues, the
“proximity” to the apoptotic threshold in cancer cells, as measured by the sensitivity of the
mitochondrial cytochrome c release to pro-apoptotic peptides, is correlated with therapeutic
response and the size of the therapeutic window that a drug can achieve. Thus, the proximity
of cancer cells to the apoptotic threshold may be a key determinant of the therapeutic
responsiveness of mammalian cancers (Ni Chonghaile et al., 2011). If maximizing the
therapeutic dosing across the apoptotic spectrum increases the effective dose of drug and
maximally activates apoptosis as a therapeutic response, then it suggests that intrinsic
resistance to targeted therapies may be due to the fact that they haven’t been formulated into
regimens sufficiently potent to bypass the apoptotic threshold. Curiously, however, while
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cell death is the ultimate objective of cancer therapies, apoptotic pathway alterations are not
a common mechanism underlying the evolution of drug resistance (Borst et al., 2007). Thus,
commonly predicted mechanisms of multi-drug resistance (drug efflux, apoptosis, etc…) are
rarely identified in multi-drug resistant tumors.

These data highlight a conundrum in modern therapeutics. Commonly used drug
combinations lack clearly defined mechanisms of resistance, thus it is difficult to stratify
cohorts of patients based on the status of individual genes (Abramson and Shipp, 2005).
Thus, for many malignancies, we are committed to the use of these regimens as first line
therapies, even if they have a substantial failure rate – a fact that explains the continued use
of these regimens 60 years after their inception. Conversely, targeted agents have defined
mechanisms of resistance, but have limited durable efficacy as single agents or when
combined with agents that reinforce single drug action. Thus, given that cancer evolves
resistance to multi-drug regimens in a manner that is distinct from antibiotic or antiviral
resistance, it is critical to develop strategies to understand the genetic determinants of the
response of cancer cells to combinatorial chemotherapeutics. In other words, we need to
understand mechanisms of multi-drug resistance in order to begin to deviate from decades-
old drug regimens. Here, we will describe emerging approaches to model multi-drug action.

Predicting phenotypic response to drug action in mammalian cells
Cancer cells exist in a multivariate landscape (Kreeger and Lauffenburger, 2010), involving
both oncogene and tumor suppressor signaling as well as signaling from the tumor
microenvironment. Similarly, drugs activate and inhibit cellular pathways, and there is
significant complexity to drug response. A variety of modeling approaches, each requiring
different levels of molecular detail, and each uniquely suited to different types of data have
begun to make progress in predicting drug effects across different cellular contexts.
Predictive in vitro models of cellular systems may be effective ways to predict the cellular
context in which a small molecule or a combination of small molecules might be active.
Though most often employed in the context of targeted therapeutic inhibition, the lessons
and methods of these studies can be used to examine diverse cytotoxic combinations.

In well-studied systems with well-characterized pathways, it is possible to use differential
equations of biochemical reactions to describe the mechanisms by which pro/anti-apoptotic
signals are conveyed in biochemical networks. This approach has demonstrated that even
non-oncogenic signaling proteins can be targets for drug intervention. Schoerberl and
colleagues showed that Erb3 inhibition decreases AKT phosphorylation across a broad range
of initial conditions (Schoeberl et al., 2009). The utility of Erb3 inhibition across a range of
initial conditions demonstrates the power of in silico modeling to identify drug targets that
have limited context-dependence. Importantly, from a methodological perspective, to make
a useful model, all biochemical parameters do not have to be known a priori. They can be
estimated by first discovering highly sensitive species in the set of biochemical reactions.
Then, using simulated annealing, many parameters can be fit to cell line data. With these fit
parameters incorporated, a novel understanding of signaling network function can emerge
(Chen et al., 2009). While these approaches have proven their effectiveness for targeted
therapeutic discovery, they remain underutilized for conventional cytotoxic therapeutics.
However, similar types of models of DNA damage have been built to describe other
phenomena (Toettcher et al., 2009), and may be used in the future to inform the therapeutic
efficacy for conventional therapies.

When biochemical reactions are less described, higher levels of model abstraction can be
used to understand the effect that biochemical reactions have upon cell outcome, even if the
reactions are not modeled explicitly. Using partial least squares regression modeling in
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mammalian cells, Janes et al. suggested that, given TNF-alpha induced cell death and
opposing growth factor stimuli, kinase pathway interventions could be accurately predicted
in a colon cancer cell line (Janes et al., 2005; Janes et al., 2004). Impressively, this method
incorporated enough of the signaling network context that it allowed for the prediction of
apoptotic responses in diverse cell lines of epithelial origin (Miller-Jensen et al., 2007). In
isogenic models of RAS signaling, Kreeger et al. showed that a similar multi-pathway model
could incorporate diverse effects on cell death that were mediated by different RAS proteins
to accurately predict apoptotic response (Kreeger et al., 2009). To examine questions of
kinase inhibitor specificity and off target effects, Kumar et al. showed that models
incorporating multivariate descriptions of signaling responses could accurately predict
cellular outcomes in the presence of promiscuous kinase inhibitor activity (Kumar et al.,
2008). Together these studies show that regression based models can incorporate cell type
and oncogene specific network influences to estimate drug on and off target effects that
contribute to therapeutic action.

While these efforts focused on predicting specific drug effects on particular species in
multivariate models, drugs often have a broader spectrum of biochemical and genetic
effects. This spectrum requires a drug-centric approach, utilizing profiling methods and high
level statistical modeling that can simultaneously assess multiple relevant cellular effects,
and predict the most relevant alterations for cellular phenotypes.

Multivariate signatures characterizing drug action
In order to understand the effects of combinations of drugs, we first have to understand
single drug effects in a multivariate manner. Beyond simple drug-target biochemical
interactions, most small molecules have many biochemical effects and genetic interactions;
they act promiscuously on a variety of cellular enzymes and processes (Xie et al., 2012).
When considered in the context of large-scale genetic screens, these same molecules harbor
a diverse array of genetic interactions (Bartz et al., 2006; Doles and Hemann, 2010;
Whitehurst et al., 2007). Comprehensive characterization of small molecules should help
provide mechanistic information on how similar two drugs effects are, and can help to
identify the cellular backgrounds in which they will show greater efficacy.

Biochemical Signatures
Most compounds exert multiple biochemical effects in cellular systems. In order to examine
the pleiotropy of the enzymatic effects induced by several families of anticancer agents,
many groups have begun to examine the systematic biochemical profiles of drug action.
Using recombinant protein libraries, compound Kd’s can be systematically measured for
hundreds of kinase domains. This binding information can yield profiles of affinities that
broadly describe kinase inhibitor specificity. When plotted on phylogenetic trees of kinase
sequence similarity, selectivity profiles of kinase inhibitors can be easily visualized
(Karaman et al., 2008). Because kinase inhibitors are competitive inhibitors of ATP binding,
a recent effort has extended the analysis of the selectivity of kinase inhibitors to the
measurement of kinase activity in the presence of high ATP concentrations to more closely
approximate cellular effects. This allows for the clustering of drugs based upon their relative
kinase activity and the discovery of new drug targets/functions for known inhibitors
(Anastassiadis et al., 2011). Together these approaches offer broad biochemical readouts of
kinase inhibitor action, and allow for the biochemical classification of kinase inhibitors.

Beyond kinase activity, proteomics approaches in cell lysates can be used to couple
quantitative mass spectrometry with conventional biochemical characterization approaches.
Using non-specific kinase or histone-deacetylase beads as a capture reagent, proteomic
signatures that are capable of semi-comprehensively assessing inhibitor function at various
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concentrations are used to produce inhibitor signatures of phosphorylation/de-acetylation
inhibition (Bantscheff et al., 2007; Bantscheff et al., 2011). Together, these biochemical
approaches offer a variety of strategies for comprehensively profiling the biochemical
effects of small molecules in an attempt to understand specificity and mechanism of action.

Genetic signatures
While drugs have typically been characterized biochemically, and this approach can
elucidate a spectrum of enzymatic effects, these biochemical characterizations often lack
functional information about how a drug is actually causing cytotoxicity within a cancer
cell.

The first efforts towards large-scale drug characterization in mammalian cell lines were
performed on the NCI-60 panel of cell lines. This panel was created in an attempt to
accelerate drug discovery for the treatment of therapeutically intractable solid tumors that
did not benefit from the first generation of combination regimen building. As a consequence
of work with this set of cell lines, a large amount of screening data on thousands of novel
compounds was generated by the NCI in the 1980’s (Paull et al., 1989). Upon characterizing
and examining the profiles of activity for diverse compounds across cell lines, the NCI
proposed the COMPARE approach. COMPARE sought to rank-order lists of drugs with
correlated patterns of response across the entire NCI-60 panel of cell lines. Following the
annotation of the NCI-60 panel with genetic and biochemical data, wide-ranging efforts
were undertaken to align and cluster the cell line response data with the molecular
characterization data (Scherf et al., 2000; Weinstein et al., 1997) using the discovery
algorithm. These efforts highlighted the potential importance of the p53 tumor suppressor
and the P-glycoprotein efflux pump in predicting cellular response to many commonly used
cytotoxic compounds. Recently, utilizing the NCI data and microarray expression data for
the NCI 60 cell lines, the Theordescu group has suggested that it is possible to use the
NCI-60 data to predict drug response in completely distinct cell lines and cancer subtypes
using the CONEX algorithm (Lee et al., 2007). However, while thousands of compounds
have been screened in the NCI-60 cells, and comprehensive genomic data exists, it remains
difficult to mine and interpret the data that are generated via these efforts. Additionally,
concerns exist as to the relevance of these cell lines to actual human tumors.

In 2006, a large microarray compendium, termed the connectivity map, was generated to
allow developers of novel compounds to query a large database of reference compounds for
relationships to an investigational compound or a disease state (Lamb et al., 2006). These
searches have been suggested to not only identify a compounds’ mechanism of action
(Hieronymus et al., 2006), but also allow for the querying of target signatures to produce
predictions for therapeutic intervention (based on the assumption that opposing drug gene
expression patterns should effectively cancel out pathogenic disease states) (Wei et al.,
2006). Finally, this work has been used by other groups to reposition drugs with similar
molecular profiles but distinct indications (Dudley et al., 2011; Sirota et al., 2011).
Importantly, while these efforts have produced new proofs of concept, the signatures that are
generated can be very difficult to interpret from a functional perspective. Furthermore, the
published efforts to validate predictions often focus on “top-ranked compounds” and have
not at this point rigorously validated the predictive depth of these signature-based queries.

Recently in mammalian cells, functional gene perturbation using targeted RNA interference
or chemical perturbations has been used to examine the differential sensitivity of cells to
drugs (Jiang et al., 2011; Wolpaw et al., 2011). Both of these methods focus on targeted
feature sets that are capable of discriminating between drugs that act upon distinct subsets of
biology. While the chemical approach has added resolution over non-apoptotic forms of cell

Pritchard et al. Page 8

Drug Resist Updat. Author manuscript; available in PMC 2014 April 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



death, the shRNA-based approach allows for quantitative boundaries and predictions to be
made using an algorithmic add-on to conventional supervised machine learning approaches.
The strength of both of these approaches is that they detail specific functional relationships
that alter cellular responses to a given compound.

In silico approaches
Large distinctions exist between efforts that seek to model drug mechanisms of action in
silico using datasets of clinical information, since these contain diverse data from clinical
practice. Campillos et al. started with a database of side effects from the unified medical
language system (UMLS) and used it to build a common side effects drug interaction
network. They identified sets of compounds with modest structural similarity, but high
correlations in overall side effect profiles. Finally, by using in vitro biochemical assays, they
confirmed common target binding (Campillos et al., 2008). While this method cannot
attribute a specific side effect to a specific target, nor prove a functional role for the
interaction, it is the only method that uses actual clinical data to classify drugs by their
mechanism of action. Furthermore, in the future, this approach may be extended to predict
the mechanisms of particular side effects. It is also interesting to speculate that common side
effects profiles would demarcate “bad” combinations in a potential regimen, and that early
dismissal of combinations with close network proximity might reduce drug toxicity.

The field of signature-based prediction has developed numerous approaches to
simultaneously characterize drug action beyond cell death. Signatures of drug action can tell
us about inhibitor selectivity/off target effects, transcriptional response similarity, function
and toxicological action. All of these indications are valuable, but if used together they
might be combined in the drug development process to simultaneously characterize
investigational compounds and promote their more rational and safe use.

Systems perspectives in combination therapy
There are many innovative perspectives on how systems/network biology might inform
targeted cancer therapy, (Erler and Linding, 2010; Fitzgerald et al., 2006; Pawson and
Linding, 2008). A major articulated goal is to identify activated pathways that are druggable,
compensatory pathways that account for single targeted treatment failure, or combinations
of network nodes that give greater than additive benefits. Furthermore, mass action kinetic
models in well-studied pathways (EGFR) have been suggested to be potentially capable of
identifying combinations of molecular species with synergistic effects (Fitzgerald et al.,
2006). This is most often considered in the context of specific kinase inhibitors targeted
against oncogenic pathways. However, many cancers are currently treated with cytotoxic
clinical regimens that have diverse cure rates (Abeloff, 2008), and some that respond well to
therapy initially but rapidly develop resistance (Abeloff, 2008). Less often considered
(Tentner et al., 2012) is the value of systems biology in examining classical
chemotherapeutics. Chemotherapeutics activate downstream pathway signaling following
treatment. Oncogene and tumor suppressor networks are known to alter similar signaling
molecules as a result of oncogenic transformation. For instance: given a particularly
responsive patient population, it may be desirable to use two drugs with the same
mechanism of action but non-overlapping toxicity. Furthermore, kinase inhibitors are often
neither specific nor free of side effects (Kantarjian et al., 2012), and, as such, signatures of
their effects and models of their action could help guide regimen building - even if the
assumptions present in modeling efforts (inhibition of one key node) are not valid. Applying
systems and network biology to characterize the global alterations affecting therapeutic
response in the face of chemotherapy should promote the appropriate – or even optimal - use
of current clinically used drugs.
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Towards combination drug signatures
To integrate systems/network biology into the future of combination regimens, network
approaches will have to delineate altered pathways and understand how combinations of
drugs will interact with those pathways. If combination chemotherapy in cancer tends to
select for drug resistant cell states, a couple of hypotheses might account for this effect. The
first is that resistance to multiple drugs in a combination regimen is mediated by
downstream network effects that are common to all drugs (a common effects/non
independent action hypothesis), and second, combinations may co-opt distinct sub-networks
downstream of drug targets to create combination specific effects. Understanding these
distinctions will be critical to future regimen building. A good way to test these conflicting
hypotheses and examine them with next generation therapeutics will be to develop
combination therapy signatures. While this is an attractive and potentially useful idea, no
current methods for signature-based drug prediction as detailed above have specifically
addressed how, relative to single agents, combinations of drugs might function. This may be
due to technical and/or conceptual limitations of certain approaches, but combination
signatures will be critical to regimen design.

In examining combination network “signatures”, combinations may be a sum of their
component drug networks, they may reinforce single component drug networks, or they may
act on sub-networks that are not utilized by single drugs (combination off target effects). All
of these effects may be desirable in different personalized medicine contexts with a diverse
range of prior knowledge. For example, if a combination of drugs reinforces a single
component drug network (one drug potentiates the effect of another), it is best administered
to a patient population that is responsive to that single drug mechanism. While this would
require single drug sensitizing networks to be well described, it may reveal combinations of
drugs that increase the therapeutic window for a single component compound - while also
increasing the on-target effects to which a given patient is known to be susceptible.

If a combination of compounds results in an averaging of their component sensitivities and
resistances, will drug-specific genetic dependencies be cancelled out? If so, this suggests a
striking paradox: namely, could a genetic interaction in a single component drug case be
rendered unimportant in the context of a combination? This possibility is an intriguing
concept that will have to be explicitly investigated, because, although it would suggest the
minimization of resistance to one drug, it would also minimize sensitivity to another. This
dichotomy in a combination regimen, one drug sensitizing while the other promoting
resistance to a particular legion would have a strong benefit in the absence of any genetic
knowledge - a type of drug hedge betting. This averaging of sensitivities and resistances
may reflect a requirement inherent in clinical trials – that efficacy must be demonstrated
across genetically diverse cohorts. Of course, such homogenization would also come at the
cost of optimal regimens for individual patients.

Final thoughts
Understanding the network biology of single and combination drugs could guide clinical
practice across a diverse spectrum of knowledge concerning tumor pathology and genetics.
In the absence of any information as to the underlying genetic networks driving tumor
progression in the patient, broadly acting combinations that independently utilize diverse
sub-networks may form an optimal therapeutic strategy. Conversely, in an attempt to
administer drug combinations with particularly potent combination action (i.e. synergy), it
may be possible to identify the signatures of sub-networks that are functionally important for
that drug combination and design companion diagnostics to target the right combination to
the right patient. In fact, it may absolutely essential to identify such critical sub-networks
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prior to the administration of “synergistic” therapies. Drug synergy has historically been a
terrible predictor of in vivo combinatorial efficacy. This could be due the strong context-
dependence of synergistic efficacy. In other words, “synergistic” therapies may absolutely
require biomarkers that stratify optimal patient populations prior to the construction of
clinical trials. Finally, in the presence of extensive pathological information, we may not
only be able to pick the right combination for the right patient, i.e. match drugs to
information about the bulk portion of a patient’s tumor, but identify resistant subpopulations
in heterogeneous tumors before they dominate a tumor and dose drug combinations that
might minimize the outgrowth of these subpopulations.
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Figure 1.
A diagram showing the relationship between single and combinatorial therapy and the
development of drug resistance. In response to single agent treatment of bacteria or tumor
cells, whether targeted or “cytotoxic”, drug target alterations or, perhaps, drug efflux, can
mediate therapeutic resistance. Here lower case letters indicate specific mutations in drug
target genes. Conversely, in response to combinatorial therapy, bacteria evolve specific
resistance mechanisms to each agent, while mammalian cells evolve resistance to targeted
therapeutics, reinforcing alterations that restore target activity as well as mechanisms of
multi-drug (target non-specific) resistance.
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Figure 2.
A diagram showing potential computational solutions revealed by the addition of two drug
“signatures”. Combination treatments may reveal signatures representative of one of the
component signatures. In this case, the drug combination would be expected to act like one
of the parental drugs – merely at a lower dose. Alternatively, the combination signature may
be an average of component signatures, in which global genetic dependencies are reduced or
homogenized. Finally, a combination signature may deviate completely from component
signatures – representing a neomorphic affect achieved by the drug combination.
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