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ABSTRACT
When designing a distributed network protocol, typically it is in-
feasible to fully define the target network where the protocol is in-
tended to be used. It is therefore natural to ask: How faithfully
do protocol designers really need to understand the networks they
design for? What are the important signals that endpoints should
listen to? How can researchers gain confidence that systems that
work well on well-characterized test networks during development
will also perform adequately on real networks that are inevitably
more complex, or future networks yet to be developed? Is there a
tradeoff between the performance of a protocol and the breadth of
its intended operating range of networks? What is the cost of play-
ing fairly with cross-traffic that is governed by another protocol?

We examine these questions quantitatively in the context of con-
gestion control, by using an automated protocol-design tool to ap-
proximate the best possible congestion-control scheme given im-
perfect prior knowledge about the network. We found only weak
evidence of a tradeoff between operating range in link speeds and
performance, even when the operating range was extended to cover
a thousand-fold range of link speeds. We found that it may be ac-
ceptable to simplify some characteristics of the network—such as
its topology—when modeling for design purposes. Some other fea-
tures, such as the degree of multiplexing and the aggressiveness of
contending endpoints, are important to capture in a model.

CATEGORIES AND SUBJECT DESCRIPTORS
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

KEYWORDS
Protocol; Machine Learning; Congestion Control; Learnability;
Measurement; Simulation

1. INTRODUCTION
Over the last 30 years, Internet congestion control has seen

considerable research interest. Starting with seminal work in the
1980s [24, 15, 7], the Transmission Control Protocol (TCP) has
adopted a series of end-to-end algorithms to share network re-
sources among contending endpoints [14, 6, 12, 27]. Another
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line of work has explored the use of in-network algorithms run-
ning at bottleneck routers to help perform this function more effi-
ciently [11, 10, 9, 18, 23, 21, 16].

As the Internet grows and evolves, it appears likely that new net-
work protocols will continue to be developed to accommodate new
subnetwork behaviors and shifting application workloads and goals.
Some of these may be intended for specialized environments—
e.g., inside a centrally-managed datacenter—while some will be for
broad use across the wide-area Internet, or over cellular network
paths.

In practice, however, it is challenging to guarantee that a dis-
tributed system’s performance on well-characterized test networks
will extend to real networks, which inevitably differ from those en-
visioned in development and will continue to evolve over time. This
uncertain generalizability presents an obstacle to any new proto-
col’s deployment.

In this paper, we formalize the design process for generating end-
to-end congestion-control protocols to quantify: how easy is it to
“learn” a network protocol to achieve desired goals, given a nec-
essarily imperfect model of the networks where it will ultimately be
deployed?

Under this umbrella, we examine a series of questions about
what knowledge about the network is important when designing
a congestion-control protocol and what simplifications are accept-
able:

1. Knowledge of network parameters. Is there a tradeoff be-
tween the performance of a protocol and the breadth of its
intended operating range of network parameters [30]? Will
a “one size fits all” protocol designed for networks spanning
a broad range of link speeds (§4.1), degrees of multiplex-
ing (§4.2), or propagation delays (§4.3) necessarily perform
worse than one targeted at a narrower subset of networks
whose parameters can be more precisely defined in advance?

2. Structural knowledge. How faithfully do protocol designers
need to understand the topology of the network? What are the
consequences of designing protocols for a simplified network
path with a single bottleneck, then running them on a network
with two bottlenecks (§4.4)?

3. Knowledge about other endpoints. In many settings, a
newly-designed protocol will need to coexist with traffic
from other protocols. What are the consequences of design-
ing a protocol with the knowledge that some endpoints may
be running incumbent protocols whose traffic needs to be
treated fairly (e.g. the new protocol needs to divide a con-
tended link evenly with TCP), versus a clean-slate design
(§4.5)? Similarly, what are the costs and benefits of design-
ing protocols that play nicely with traffic optimized for other
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objectives—e.g., a protocol that aims for bulk throughput but
wants to accommodate the needs of cross-traffic that may pri-
oritize low delay (§4.6)?

4. Knowledge of network signals. What kinds of congestion
signals are important for an endpoint to listen to? How much
information can be extracted from different kinds of feed-
back, and how valuable are different congestion signals to-
ward the protocol’s ultimate goals? (§3.4)

1.1 Tractable attempts at optimal (Tao) protocols
Each of the above areas of inquiry is about the effect of a pro-

tocol designer’s imperfect understanding of the future network that
a decentralized congestion-control protocol will ultimately be run
over.

In principle, we would quantify such an effect by evaluating,
on the actual network, the performance of the “best possible”
congestion-control protocol designed for the imperfect network
model, and comparing that with the best-possible protocol for the
actual network itself.

In practice, however, we know of no tractable way to cal-
culate the optimal congestion-control protocol for a given net-
work.1 Instead, throughout this study we use the Remy automatic
protocol-design tool [29], a heuristic search procedure that gener-
ates congestion-control protocols, as a proxy for the optimal solu-
tion.

We refer to these automatically generated congestion-control
protocols as “tractable attempts at optimal” (Tao) end-to-end
congestion-control protocols for a given network. Tao protocols
represent a practically realizable tilt at developing an optimal pro-
tocol for an imperfect model of a real network.

Constructing a Tao for a complex network model requires search-
ing a huge space, an intensive task even using Remy’s search opti-
mizations. In most cases, the protocol stopped improving within a
CPU-year of processing time (five days on our 80-core machine),
though there were a few cases where improvements continued to
occur.

We emphasize that there can be no assurance that the Tao actually
comes close to the optimal congestion-control protocol, except to
the extent that it approaches upper bounds on performance, such as
the ideal fair allocation of network resources. To characterize how
close the Tao protocols come to the bound, we formalize the notion
of a hypothetical “omniscient” protocol. This is a centralized pro-
tocol that knows the topology of the network, the link speeds, the
locations of senders and receivers, and the times at which they turn
on or off. Each time a sender turns on or off, the omniscient proto-
col computes the proportionally fair throughput allocation [17] for
all senders that are on. Each sender then transmits at its propor-
tionally fair throughput allocation, and no flow builds up a standing
queue at any bottleneck. For a particular node, the long-term aver-
age throughput of the omniscient protocol is the expected value of
its throughput allocation, with no queueing delay.

As a calibration experiment to validate the Tao approach, we de-
sign a Tao protocol with parameters shown in Table 1 (where the
buffer size of 5 BDP refers to 5 times the bandwidth-delay product:
the network link speed times the minimum round trip time (RTT)).
We summarize the performance of a protocol using a throughput-
delay graph as shown in Figure 1. For each protocol, we plot the

1The problem can be formulated as a search procedure for an op-
timal policy for a decentralized partially observable Markov deci-
sion process or Dec-POMDP [29]. However, the search for an op-
timal policy under a general Dec-POMDP is known to be NEXP-
complete [4], and no faster search procedure for the particular prob-
lem of network-protocol design has been found.

Link speed 32 Mbits/sec
Minimum RTT 150 ms
Topology Dumbbell
Senders 2
Workload 1 sec ON/OFF times
Buffer size 5 BDP
Objective ∑ log(t pt)− log(delay)

Table 1: Network parameters for the calibration experiment.

median throughput and delay (small white circle) and an ellipse rep-
resenting one standard deviation of variation. The Tao protocols are
considerably better than two human-designed protocols: Cubic [12]
(the default end-to-end congestion-control algorithm on Linux) and
Cubic over sfqCoDel (Cubic coupled with sfqCoDel [2], a recent
proposal for queue management and scheduling that runs on the
gateway nodes) on both throughput and delay. Furthermore, they
come within 5% of the omniscient protocol on throughput and 10%
on delay.

The calibration experiment does not prove that the Tao proto-
cols will continue to approach omniscient performance when there
is uncertainty about the network scenario at runtime, or when the
network scenarios are more complex. It also does not demonstrate
the relationship between the Tao protocols and the true “optimal”
solution, which (unlike the omniscient protocol) is one that will
be realizable in an end-to-end algorithm when endpoints have only
partial information about the true network state.

However, the results do give confidence that the Tao protocols
can be used as tractable proxies for an optimal protocol. In this
study, we compare human-designed protocols to various Tao proto-
cols and the omniscient protocol, generally finding that Tao proto-
cols can approach the omniscient protocol and can outperform the
existing human-designed protocols that have been designed to date
(Figures 2, 3, 4, and 6).
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Figure 1: In the calibration experiment, the Tao protocol ap-
proached the performance of the omniscient protocol.

1.2 Summary of results
Here are the principal findings of this study:



Modeling a two-bottleneck network as a single bottleneck hurt
performance only mildly. On the two-hop network illustrated by
Figure 5, on average we find that a protocol designed for a sim-
plified, single-bottleneck model of the network underperformed by
only 17% (on throughput) a protocol that was designed with full
knowledge of the network’s two-bottleneck structure (Figure 6).
Furthermore, the simplified protocol also outperformed TCP Cu-
bic by a factor of 7.2× on average throughput and outperformed
Cubic-over-sfqCoDel by 2.75× on average throughput.

Thus, in this example, full knowledge of the network topology
during the design process was not crucial.

Weak evidence of a tradeoff between link-speed operating
range and performance. We created a Tao protocol designed for
a range of networks whose link speeds spanned a thousand-fold
range between 1 Mbps and 1000 Mbps, as well as three other pro-
tocols that were more narrowly-targeted at hundred-fold, ten-fold,
and two-fold ranges of link speed (Figure 2).

The “thousand-fold” Tao achieved close to the peak performance
of the “two-fold” Tao. Between link speeds of 22–44 Mbps, the
“thousand-fold” Tao achieved within 3% of the throughput of
the “two-fold” protocol that was designed for this exact range.
However, the queueing delay of the “thousand-fold” protocol was
46% higher, suggesting some benefit from more focused operat-
ing conditions. It also takes a lot longer to compute (offline) a
“thousand-fold” Tao compared to a two-fold Tao; in run-time oper-
ation, though, the computational cost of the two algorithms is simi-
lar.

Over the full range of 1 Mbps to 1000 Mbps, the “thousand-fold”
Tao protocol matched or outperformed TCP Cubic and Cubic-over-
sfqCoDel over the entire range (Figure 2).

The results suggest that highly optimized protocols may be able
to perform adequately over a broad range of actual networks. Broad
operating range had only a weak effect on peak performance, sug-
gesting that “one size fits all” congestion-control protocols that
perform considerably better than TCP—as well as TCP plus in-
network assistance, in the case of sfqCoDel—may be feasible.

Performance at high degrees of multiplexing may be in opposi-
tion with performance when few flows share a bottleneck. We
created five Tao protocols for a range of networks with varying de-
grees of multiplexing: 1–2 senders, 1–10, 1–20, 1–50, and 1–100
(Figure 4.2 and Table 3a).

We found that a Tao protocol designed to handle between 1 and
100 senders came close to the performance achieved by an om-
niscient protocol over most of that range. However, this came at
the cost of diminished throughput at lower degrees of multiplexing.
Conversely, a protocol trained to handle between 1 and 2 senders
suffered large queuing delays (when the link never dropped pack-
ets) or repeated packet drops (on a link with finite buffering) when
run on a network with 100 senders.

These results suggest that—unlike with link speed—prior knowl-
edge of the expected degree of multiplexing over bottleneck links
may be beneficial when designing a congestion-control protocol.

TCP-awareness hurt performance when TCP cross-traffic was
absent, but helped dramatically when present. We measured the
costs and benefits of “TCP-awareness”—designing a protocol with
the explicit knowledge that it may be competing against other end-
points running TCP, compared with a “TCP-naive” protocol for a
network where the other endpoints only run the same TCP-naive
protocol.

When contending only with other endpoints of the same kind, the
“TCP-naive” protocol achieved 55% less queueing delay than the
TCP-aware protocol. In other words, “TCP-awareness” has a cost
measured in lost performance when TCP cross-traffic is not present
(Figure 7).

But when contending against TCP, the “TCP-naive” protocol
was squeezed out by the more aggressive cross-traffic presented by
TCP. By contrast, the “TCP-aware” protocol achieved 36% more
throughput and 37% less queueing delay than the “TCP-naive”
protocol, and claimed its fair share of the link capacity from TCP.

Instructions to reproduce the results in this paper, along with the
congestion-control protocols produced by Remy in the process are
available at http://web.mit.edu/remy/learnability.

2. RELATED WORK
This section discusses closely related work on congestion control

and explains how our work has an analogy with theoretical notions
of learnability.

2.1 Congestion control
Congestion control over packet-switched networks has been a

productive area of research since the seminal work of the 1980s,
including Ramakrishnan and Jain’s DECBit scheme [24] and Ja-
cobson’s TCP Tahoe and Reno algorithms [15]. End-to-end algo-
rithms typically compute a congestion window or a paced trans-
mission rate using the stream of acknowledgments (ACKs) arriving
from the receiver. In response to congestion, inferred from packet
loss or, in some cases, rising delays, the sender reduces its window
or rate; conversely, when no congestion is perceived, the sender
increases its window or rate.

In this paper, we use the Remy [29] protocol-design tool to gen-
erate end-to-end Tao congestion-control schemes from first prin-
ciples. The Remy work showed that such an approach can pro-
duce schemes whose performance is competitive with or outper-
forms human-generated schemes, including most varieties of TCP
congestion control, on intended target networks.

By contrast, this paper uses the Remy program as a tool for un-
derstanding the nature of the problem of protocol design without
being able to fully define the intended target networks. We use the
program’s output as a proxy for the “best possible” Tao congestion-
control protocol intended for a particular imperfect network model,
and then ask how that protocol performs on a different set of net-
works that varies from the model in some respect (topology, link
speed, behavior of contending endpoints, etc.).

For reference, we also compare with existing congestion-control
protocols in wide use, including Linux’s TCP Cubic [12], and the
less-aggressive NewReno algorithm [14]. End-to-end congestion
control may be assisted with explicit router participation; we also
measure Cubic in conjunction with sfqCoDel [2]. sfqCoDel runs
at the bottleneck gateways and uses the CoDel [21] queue man-
agement algorithm along with the stochastic fair queueing [20]
scheduling algorithm.

2.2 Learnability
TCP congestion control was not designed with an explicit objec-

tive function in mind. Kelly et al. present an interpretation of TCP
congestion-control variants in terms of the implicit goals they at-
tempt to optimize [17]. This line of work is known as Network Util-
ity Maximization (NUM); more recent work has modeled stochastic
NUM problems [31], where a stochastic process dictates how flows
enter and leave the network over time.

We extend this problem by examining the difficulty of designing
a network protocol given an imperfect model of the network where

http://web.mit.edu/remy/learnability


it will be deployed, in order to understand the inherent difficulties
of the problem of congestion control.

Formally speaking, designing such a protocol is a problem in
sequential decision-making under uncertainty and can be modeled
as a decentralized partially observable Markov decision process [4]
(Dec-POMDP). In that context, the purpose of this paper is to ask:
how well can a protocol designer “learn” the optimal policy (proto-
col) for one Dec-POMDP on a given set of networks and success-
fully apply the learned policy to a different set of networks?

In doing so, we draw an explicit analogy to the concept of
“learnability” employed in machine learning [28, 25]. A canoni-
cal machine-learning task attempts to design a classifier for a large
population of data points, supplied with only a smaller (and possi-
bly skewed) “training set” meant to teach the classifier about the full
population of data. Subsequently, the performance of the resulting
classifier is evaluated in how well it correctly classifies points in a
“test set”, generally drawn from the actual population. Learnability
theory measures the difficulty of inferring an accurate classifier for
the test set, given a training set.

Just as a classifier-design procedure may minimize the error rate
or maximize the width of the margin [5] over the training set as a
proxy for maximizing predictive performance on unseen inputs, the
Remy tool uses an objective function in terms of throughput and
delay, averaged over the design model, as a proxy for performance
on as-yet-unseen networks.

In our work, we envision a protocol designer working to generate
a congestion-control protocol for a large set of real networks (e.g.,
the Internet), supplied with only an imperfect model of the range of
variation and behavior of those networks. The imperfect model is
the “training scenarios”—a model of the target networks used for
design purposes. The “testing scenarios” are drawn from the popu-
lation of actual target networks. In contrast with theoretical notions
of learnability that rigorously demonstrate the learnability of entire
families of functions [28], this study assesses learnability experi-
mentally: we measure the difficulty (in terms of lost performance)
of designing an adequate protocol for a network model, and then
deploying it on target networks that cannot be perfectly envisioned
at the time of design.

3. EXPERIMENTAL SETUP
We describe our experimental procedure below. First, we spec-

ify a set of training scenarios: a set of network configurations
(§3.1) that express the designer’s imperfect model of the network.
Next, we specify an objective function (§3.2). The protocol-design
process (§3.3) synthesizes a congestion-control protocol that max-
imizes the value of this function, averaged over the set of train-
ing scenarios. Finally (§3.6), we specify the testing scenarios of
network configurations, which may be similar or dissimilar to the
training scenarios.

We evaluate the synthesized congestion-control protocol on the
testing scenarios to assess the questions of this study—how easy
is it to “learn” a network protocol to achieve desired goals, given
an imperfect model of the networks where it will ultimately be de-
ployed?

3.1 Training scenarios
The training scenarios specify the set of network configurations

that the protocol-design process is given access to. Formally, a net-
work configuration specifies:

1. The topology: the link speed and propagation delay of each
link in the network along with a graph representing the inter-
connections between nodes.

2. The locations of senders and receivers within the topology,
and the paths connecting the senders to the receivers.

3. A model of the workload generated by the application run-
ning at each endpoint. We use an on/off model for the
workload, where a sender turns “on” for a certain duration
drawn from an exponential distribution, then turns “off” for
an amount of time drawn from another exponential distribu-
tion before turning on again.

4. The buffer size and queueing discipline at each gateway. For
all training scenarios in this paper, we model a FIFO queue.
For testing scenarios, we model a FIFO queue except in the
case of Cubic-over-sfqCoDel, which runs sfqCoDel at the
gateway nodes.

3.2 Objective function
The objective function expresses the protocol designer’s figure of

merit for the goodness of a congestion-control protocol. Many such
metrics have been proposed, including alpha-fair throughput [26],
flow completion time [8], throughput-over-delay [22], or measures
based on a subjective opinion score [13].

In this study, we specifically considered objective functions of
the form:

log(throughput)−δ log(delay) (1)

Here, “throughput” is the average information transmission rate
of a sender-receiver pair, defined as the total number of bytes suc-
cessfully delivered divided by the total time the sender was “on”
and hence had offered load. The “delay” is the average per-packet
delay of packets in the connection, including propagation delay and
queueing delay. The δ factor expresses a relative preference be-
tween high throughput and low delay.

The protocol-design process works to maximize the sum of the
objective function across all connections. The log in the objective
function expresses a preference for “proportionally fair” resource
allocation [17]—for example, it is worthwhile to cut one connec-
tion’s throughput in half, as long as this allows another connection’s
throughput to be more-than-doubled.

3.3 Protocol-design process
We outline the Remy protocol-design tool briefly here, following

the treatment of [29]. Remy models a congestion-control protocol
as a set of match-action rules, mapping between the state main-
tained by the sender and an action to be executed. The “state”
tracks a small set of congestion signals, updated on every acknowl-
edgment from the receiver. The “action” specifies changes in the
behavior of the congestion-control protocol.

To simplify learning, Remy assumes a piecewise-constant map-
ping, and searches for the mapping that maximizes the average
value of the objective function across the training scenarios. The
mapping is initialized to prescribe a default action for all memory
values. Remy then simulates the protocol on the training scenar-
ios and uses the simulation results—and the resulting value of the
objective function—to gradually refine the mapping.

For the experiments in this paper, the sender tracks four conges-
tion signals:

1. rec_ewma: An exponentially-weighted moving average, or
EWMA, of the interarrival times between acks with a weight
of 1/8 for new samples.

2. slow_rec_ewma: The same as rec_ewma, but with a
weight of 1/256 for new samples, producing an average taken
over a longer history.



3. send_ewma: A moving average of the intersend time be-
tween sender timestamps echoed in the received ACKs, with
a weight of 1/8 for new samples.

4. rtt_ratio: The ratio of the most recent round-trip-time
measurement and the minimum RTT seen so far.

3.4 Value of the congestion signals
We performed a measurement study to evaluate the value of each

of these four signals on the ultimate performance of a congestion-
control protocol. We selectively “knocked out” each signal in turn
and designed a new congestion-control protocol from scratch (miss-
ing that signal), in order to observe the effect of losing the signal on
the protocol’s ultimate behavior.

In our measurements, we found that each of these congestion
signals independently brought value to a congestion-control proto-
col. No three-signal subset was as strong as using all four signals.
The most valuable signal—by which we mean the signal whose re-
moval caused the greatest harm to the ultimate performance—was
the rec_ewma. This suggests that these protocols may gain con-
siderable value from understanding the short-term packet-arrival
dynamics at the receiver.

3.5 The congestion response
The action uses a window-based congestion-control protocol that

caps the number of packets in flight, with pacing to regulate the rate
at which an end host meters packets into the network. The action
for any value of the memory is a triplet that specifies:

1. A multiplier m to the current value of the congestion window.

2. An increment b to the current value of the congestion win-
dow.

3. A lower bound τ on the pacing interval between outgoing
packet transmissions.

To emphasize that the resulting protocol is a brute-force approxi-
mation of the best algorithm for a given set of training scenarios and
objective function, we refer to such protocols as “tractable attempts
at optimal” congestion control, or Tao protocols.

3.6 Evaluation procedure
To measure the difficulty of learning a congestion-control pro-

tocol with an imperfect model of the eventual network, we choose
a testing scenario of network configurations and evaluate the Tao
protocol on it. All evaluations are performed in the ns-2 simulator.
Using a different simulator for training and testing helps build con-
fidence that the congestion-control protocols learned are robust to
quirks in a simulator implementation.

We compare the performance of Tao protocols optimized for “ac-
curate” models of the network against Tao protocols optimized for
various kinds of imperfect models, in order to measure how faith-
fully protocol designers need to understand the network they are
designing for. In the interest of reproducibility, for each experiment
that we run, we tabulate the training and testing scenarios (for e.g.
Tables 3a and 3b).

For reference, we also compare the Tao protocols with two com-
mon schemes in wide use today:

1. TCP Cubic [12], the default congestion-control protocol in
Linux

2. Cubic over sfqCoDel [2], an active-queue-management and
scheduling algorithm that runs on bottleneck routers and as-
sists endpoints in achieving a fairer and more efficient use of
network resources

3.7 Caveats and non-goals
We view this work as a first step towards answering questions un-

der the broad umbrella of the “learnability” of congestion control.
The simulation experiments are deliberately simplistic, favoring
scenarios that explore foundational questions over simulations that
are representative of deployed networks. We use Remy-generated
protocols as a proxy for the optimal solutions, which means that
the results may change when better protocol-design tools are devel-
oped, or when these protocols are tested on real physical networks
outside of simulation. It is not our goal here to reverse-engineer
the per-node, microscopic behavior of Tao protocols—we are inter-
ested in using measurements of their varying performance to char-
acterize the learnability of the protocol-design problem itself.

4. INVESTIGATING THE LEARNABILITY OF
CONGESTION CONTROL

4.1 Knowledge of link speed
We evaluated the difficulty of designing a congestion-control

protocol, subject to imperfect knowledge of the parameters of the
network.

Some congestion-control protocols have been designed for spe-
cific kinds of networks [3, 19] or require explicit knowledge of the
link speed a priori [16]. Others are intended as a “one size fits all,”
including most variants of TCP.

We set out to answer a question posed in [30]: are “one size fits
all” protocols inherently at a disadvantage, because of a tradeoff
between the “operating range” of a protocol and its performance?

To quantify this, we designed four Tao protocols for training
scenarios encompassing a thousand-fold variation in link speeds,
a hundred-fold variation, a ten-fold variation, and a two-fold vari-
ation. Each range was centered on the geometric mean of 1 and
1000 Mbps (32 Mbps), and each set of training scenarios sampled
100 link speeds logarithmically from the range. The training and
testing scenarios are shown in Table 2.

Tao Link speeds RTT Number of senders
1000x 1–1000 Mbps 150 ms 2
100x 3.2–320 Mbps 150 ms 2
10x 10–100 Mbps 150 ms 2
2x 22–44 Mbps 150 ms 2

(a) Tao protocols designed for breadth in link speed

Link speeds RTT Number of senders
1–1000 Mbps 150 ms 2

(b) Testing scenarios to explore breadth in link speed

Table 2: Scenarios for “knowledge of link speed” experiment,
showing the effect of varying the intended link-speed operating
range. Each Tao was designed for a network with a single bot-
tleneck, and each sender had a mean “on” and “off” time of 1 s.

We tested these schemes in ns-2 by sweeping the link speed be-
tween 1 and 1000 Mbps, keeping the other details of the simulated
network identical to the training scenario. The results are shown
Figure 2.

We find evidence of a weak tradeoff between operating range
and performance—optimizing for a smaller range did help mod-
estly over that range. However, the improvements in objective from
narrowing down the operating range were modest, and each Tao
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Figure 2: Evidence of a weak tradeoff between operating range in
link speed of a congestion-control protocol and performance. The
Tao protocols designed with more specific network models (Tao-
2x and Tao-10x) performed modestly better—within their design
ranges—than protocols designed for a broader range of networks
(Tao-100x and Tao-1000x), at a cost of deterioration when the ac-
tual network did not fall within the training scenarios. The four Tao
protocols outperformed Cubic and Cubic-over-sfqCoDel over their
design ranges.

(including the Tao-1000x) outperformed existing algorithms over
its full design range.

4.2 Knowledge of the degree of multiplexing
Congestion-control protocols have to cope with uncertainty in the

degree of multiplexing from one use to the next even when running
on a network with a fixed and known topology. The number of
users on the network could change as could the number of flows
generated by these users. Here, we evaluate whether it is possible
to learn a protocol that is robust to such uncertainty.

Specifically, we designed five Tao protocols, each for a fixed
dumbbell topology, but with increasing degrees of multiplexing as
described in Table 3a. We then test all five protocols on the testing
scenarios in Table 3b. Figure 3 shows the results for two cases: one
with a buffer size of five times the bandwidth-delay product and
an extreme case where the link doesn’t drop any packet. In both
cases, we see that it is possible to train a protocol to perform well
across a wide range of multiplexing, but at the cost of diminished
performance at very low degrees of multiplexing. On the flip side,
designing for a much smaller range in the degree of multiplexing
degrades performance dramatically outside that range.

Put differently, there is a tradeoff between good performance at
high and low degrees of multiplexing. A high degree of multiplex-
ing requires a protocol to be conservative in grabbing spare band-
width and good performance at low degrees of multiplexing needs
a protocol to quickly grab spare bandwidth. As a result, protocols
trained for low degrees of multiplexing are too aggressive at higher
degrees, causing either large queuing delays, when the buffer never
drops a packet, or diminished throughput, when the buffer drops
packets and causes more retransmissions than transmissions2. In ei-
ther case, the result is a degradation in the objective function when

2This is similar to the congestion collapse that triggered the devel-
opment of TCP congestion control [15].

Tao Link
speeds

On avg. Off avg. min-
RTT

#
senders

Tao-1–2 15 Mbps 1 sec 1 sec 150 ms 2
Tao-1–10 15 Mbps 1 sec 1 sec 150 ms 10
Tao-1–20 15 Mbps 1 sec 1 sec 150 ms 20
Tao-1–50 15 Mbps 1 sec 1 sec 150 ms 50
Tao-1–100 15 Mbps 1 sec 1 sec 150 ms 100

(a) Tao protocols designed for breadth in multiplexing

Link
speeds

On avg. Off avg. min-
RTT

#
senders

Buffer

15 Mbps 1 sec 1 sec 150 ms 1–100 5 BDP,
no drop

(b) Testing scenarios to explore breadth in multiplexing

Table 3: Scenarios for “knowledge of the degree of multiplexing”
experiment

such low-degree protocols are tested outside their training range.
Conversely, a protocol trained for a wide range in the degree of
multiplexing is unduly conservative at lower degrees of multiplex-
ing leading to lost throughput and a degradation in the objective
function.

4.3 Knowledge of propagation delays
Today, some specialized congestion-control protocols are tai-

lored for networks with either large propagation delays (e.g., the
Aspera [1] file transfer protocol over long-distance links) or short
delays (such as DCTCP [3] within the data center). Here, we ask
whether it is possible to design a single congestion-control protocol
with good performance without making strong assumptions about
the propagation delay a priori.

We designed four Tao protocols for varying ranges of the mini-
mum round trip time of the network as shown in Table 4a and tested
it on the scenarios shown in Table 4b. Figure 4 shows that training
for exactly one minimum RTT (150 ms) results in a protocol with
good performance over the 50–250 ms range, but its performance
degrades drastically below 50 ms.

Tao Link
speeds

On
avg.

Off
avg.

min-RTT #
senders

rtt-150 33 Mbps 1 sec 1 sec 150 ms 2
rtt-145–155 33 Mbps 1 sec 1 sec 145–155 ms 2
rtt-140–160 33 Mbps 1 sec 1 sec 140–160 ms 2
rtt-50–250 33 Mbps 1 sec 1 sec 50–250 ms 2

(a) Tao protocols designed for breadth in propagation delay.

Link
speeds

On avg. Off avg. min-RTT #
senders

33 Mbps 1 sec 1 sec 1, 2, 3 . . . 300 ms 2

(b) Testing scenarios to explore breadth in propagation delay.

Table 4: Scenarios for “knowledge of propagation delay” experi-
ment

On the other hand, adding a little diversity to the training — by
looking at minimum RTTs from 145 to 155 ms instead — results in
performance over the 1–300 ms range that is commensurate with a
protocol trained for the much broader range of 50 to 250 ms.
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Figure 3: Tao protocols perform well across a wide range of multiplexing, but at the cost of diminished performance when there are very few
senders. However, training to accommodate lower degrees of multiplexing degrades performance at higher degrees of multiplexing.
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Figure 4: Training for a little diversity in propagation delays re-
sults in good performance over a much wider range of propagation
delays.

These results suggest that prior knowledge of the propagation de-
lay of a target network may not be particularly necessary or valuable
to the protocol designer.

4.4 Structural knowledge
We evaluated the difficulty of designing a congestion-control

protocol, subject to imperfect knowledge of the network’s structure
or topology.

It is an understatement to say that the Internet is a vast network
whose full structure is known to nobody and which no model can
accurately capture. Nonetheless, researchers regularly develop new
distributed protocols for the Internet, which are deployed based on
tests in example network paths that imperfectly capture the Inter-
net’s true complexity.

In practice, protocol designers expect that they can reason about
the performance of a distributed network algorithm by modeling
the network as something simpler than it is. We worked to capture
that intuition rigorously by studying quantitatively how difficult it

is to learn a congestion-control protocol for a more-complicated
network, given a simplified model of that network’s structure.

In ns-2, we simulated a network with two bottlenecks in a
“parking-lot” topology, shown in Figure 5. Flow 1 crosses both
links and encounters both bottlenecks. It contends with Flow 2 for
access to the bottleneck queue at node A, and contends with Flow
3 for access to the bottleneck queue at node B.

Link 1 / 75 ms Link 2 / 75 ms
A B C

Queue Queue

10--100 Mbits/s 10--100 Mbits/s

Flow 3Flow 2

Flow 1

Figure 5: Parking-lot topology used to measure the consequences
of imperfect knowledge of the network’s structure.

Tao Links modeled Num. senders
one-bottleneck one, 150 ms delay 2
full two-bottleneck two, 75 ms delay each 3

Table 5: Training scenarios used to measure the consequences of
imperfect knowledge of the network structure. Both protocols were
designed for link speeds distributed log-uniformly between 10 and
100 Mbps, and for flows with mean “on” and “off” time of 1 second.

The results for Flow 1 (the flow that crosses both links) are shown
in Figure 6.3 The experiment sweeps the rate of each of the two
links between 10 and 100 Mbps, and the shaded area in the fig-
ure shows the full locus of throughputs seen by Flow 1. For each
pair of rates (for link 1 and link 2), we also calculate the ideal pro-
portionally fair throughput allocation, and plot the locus of these
allocations as the throughput achievable by the omniscient proto-
col.

The results suggest that a congestion-control protocol designed
for a simplified model of the network’s structure will experience

3Results for Flow 2 and Flow 3 (flows crossing only a single link)
were nearly identical between the schemes.
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with 75 ms of delay per hop. A tractable attempt at optimal (Tao)
congestion control for a simplified one-bottleneck model of the net-
work performs only a little worse than a protocol designed with
knowledge of the network’s full two-bottleneck structure.

a small, but quantifiable, penalty to its performance, indicated on
the figure as the gap between the two Tao protocols. Results from
Cubic and Cubic-over-sfqCoDel are shown for comparison.

These results give some rigorous support to a protocol designer’s
intuition that understanding the true network in all its complexity
may not be crucial.

4.5 Knowledge about incumbent endpoints
We investigated the consequences of designing a congestion-

control protocol with the knowledge that some cross-traffic may be
the product of pre-existing incumbent protocols.

This question has considerable practical relevance; in practice,
the developer of a new network protocol will rarely be able to ar-
range a “flag day” when all endpoints switch to the new protocol.4

On the broad Internet today, cross-traffic will typically be the
product of traditional loss-triggered TCP congestion-control proto-
cols, such as NewReno or Cubic. This status quo presents a serious
problem for new protocols that seek to perform differently or that
try to avoid building up standing queues inside the network.

Some protocols, such as Vegas [6], perform well when contend-
ing only against other flows of their own kind, but are “squeezed
out” by the more-aggressive cross-traffic produced by traditional
TCP. Conventional wisdom is that any “delay-based” protocol will
meet a similar fate. This has contributed to a lack of adoption of
Vegas and other delay-based protocols.

Ideally, a newly-designed protocol would perform well (e.g. high
throughput, low delay) when interacting with other endpoints run-
ning the same protocol, and would appropriately share a network
with incumbent endpoints running traditional TCP. But what are the
actual consequences of building this “TCP-awareness” into a pro-
tocol?

4There has not been a “flag day” on the Internet since the switch to
IP in 1983!

Tao Link
rates

RTT Senders ON/OFF time

TCP-
aware

9–
11 Mbps

100 ms 2 Tao
1 Tao, 1 AIMD

5 sec ON/OFF
5 sec ON, 10 ms OFF

TCP-
naive

9–
11 Mbps

100 ms 2 Tao 5 sec ON/OFF
5 sec ON, 10 ms OFF

(a) Tao protocols with and without TCP awareness, dumbbell network with
buffer size 2 BDP

Link
rates

RTT Senders ON/OFF time

10 Mbps 100 ms 2 TCP-aware 5 sec ON, 10 ms OFF
10 Mbps 100 ms 2 TCP-naive 5 sec ON, 10 ms OFF
10 Mbps 100 ms TCP-aware, AIMD 5 sec ON, 10 ms OFF
10 Mbps 100 ms TCP-naive, AIMD 5 sec ON, 10 ms OFF
10 Mbps 100 ms 2 AIMD 5 sec ON, 10 ms OFF

(b) Testing scenarios for “knowledge about incumbent endpoints” experi-
ment, dumbbell network with buffer size 2 BDP

Table 6: Scenarios for “knowledge about incumbent endpoints” ex-
periment

We studied this by designing two Tao protocols, TCP-Naive and
TCP-Aware, for a simple network—one whose model specified that
the cross-traffic would be from the same protocol, and one whose
model included a training scenario where the cross-traffic was from
traditional TCP half the time (Table 6a). Remy uses an AIMD pro-
tocol similar to TCP NewReno to simulate TCP cross-traffic.

The results are shown in Figure 7. In the left panel, protocols
compete only with cross-traffic from the same protocol. In this ho-
mogeneous setting, adding TCP-awareness to a Tao protocol builds
up standing queues, more than doubling the queueing delay without
affecting throughput.

But in a mixed setting (Figure 7, right panel) where a Tao com-
petes against TCP NewReno, the TCP-naive Tao is squeezed out
and does not get its fair share of the link. In the shaded region
showing the results when NewReno competes with the TCP-aware
Tao, TCP-awareness allows the Tao to claim its fair share of the link
and reduces the queueing delay experienced both by itself and by
TCP NewReno.

To further understand the differing performance of TCP-naive
and TCP-aware Tao protocols, we inspect their transmissions in
the time domain, when contending with a contrived model of TCP
cross-traffic (Figure 8) that turns on exactly at time t=5 seconds
and turns off exactly at t=10 seconds. The results show that TCP-
awareness is a complicated phenomenon, which yields higher de-
lays in isolation but smaller delays when contending with TCP. It
is not simply a question of “more aggressive” or “less aggressive”
congestion-control.

The results suggest that new delay-minded protocols can avoid
being squeezed out by traditional loss-triggered TCP, but building
in this behavior comes at a cost to performance in the absence of
TCP cross-traffic.

4.6 The price of sender diversity
We further generalize the notion of TCP-awareness by asking

whether it is possible to design multiple new congestion-control
protocols to simultaneously achieve differing objectives when con-
tending on the same bottleneck link.

We consider two extreme cases: a throughput-sensitive sender
that weighs throughput ten times over delay (δ = 0.1, Tpt. Sender),
and a delay-sensitive sender that weighs delay ten times over
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throughput (δ = 10.0, Del. Sender). Tables 7a and 7b list the train-
ing and testing scenarios for this experiment.

We suspected that achieving diversity in this manner may not be
possible, reasoning that endpoints that share the same bottleneck
link will necessarily experience the same queueing delay, and there-
fore endpoints that achieve an optimal throughput-to-delay tradeoff
will experience the same overall performance on both throughput
and delay.

However, contrary to this hypothesis, our findings are that it
is possible to co-optimize congestion-control algorithms such that
they each try to obtain a different objective, and yet—because of
variable duty cycles—are able to coexist. Even when running to-
gether (Figure 9b), the delay-sensitive sender sees lower delay than
the throughput-sensitive sender, while the opposite is true with
throughput. When congestion-control protocols are co-optimized,

but each sender runs homogeneously (Figure 9a), each sender re-
ceives higher throughput or lower delay, as the case they may be.

However, coexistence does come at a price to the throughput-
sensitive sender, which suffers a loss in throughput by being “nice”
to the delay-sensitive sender, both when run with the delay-sensitive
sender and when running by itself . By comparison, the perfor-
mance of the delay-sensitive sender is affected only modestly.

5. CONCLUSION
This study represents an early step towards a rigorous under-

standing of the tradeoffs and compromises of network protocol de-
sign. We asked: how easy is it to “learn” a network protocol to
achieve desired goals, given a necessarily imperfect model of the
networks where it will ultimately be deployed?
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contrast, co-optimizing the senders hurts the throughput-sensitive sender,
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Figure 9: The cost and benefits of sender diversity.

Tao Link
rates

RTT Senders ON/OFF
time

δ Buffer

Del.
Sender

10 Mbps 100 ms 0, 1, or 2 of
each type

1 sec
ON/OFF

10.0 No
drop

Tpt.
Sender

10 Mbps 100 ms 0, 1, or 2 of
each type

1 sec
ON/OFF

0.1 No
drop

(a) Tao protocols for diverse senders: one favors throughput, the other delay

Link
rates

RTT Senders ON/OFF time Buffer

10 Mbps 100 ms 1 Del. Sender
1 Tpt.Sender 1 sec ON/OFF No

drop

(b) Testing scenarios for “price of sender diversity” experiment

Table 7: Scenarios for “price of sender diversity” experiment

We investigated several questions under this umbrella by using
Remy as a design tool to produce a tractable-attempt-at-optimal
(Tao) protocol under various prior assumptions about the network
environment. We found only weak evidence of a tradeoff between
operating range and performance, even when the operating range
covered a thousand-fold range of link speeds. We found that it may
be acceptable to simplify some characteristics of the network—
such as its topology—when modeling for design purposes. In con-
trast, features such as the degree of multiplexing and the aggres-
siveness of contending endpoints were important to capture.

Much remains to be understood about the protocol-design prob-
lem before computer-generated protocols will be practically de-
ployable across the broad Internet. For example, can we tractably
synthesize a single computer-generated protocol that outperforms
human-generated incumbents over a wide range of topologies, link
speeds, propagation delays, and degrees of multiplexing simultane-

ously? Does such a protocol still perform well on networks more
complicated than the two-hop parking lot? While our experimental
results suggest qualitatively that Remy-generated protocols do not
carry a substantial risk of catastrophic congestion collapse, can a
protocol optimizer maintain and verify this requirement mechanis-
tically, as part of the design process? Our findings from this study
suggest that optimization tools may be able to tackle these kinds of
questions in the near future.

Our formalization of the protocol-design process rests on ask-
ing the Remy tool to construct a congestion-control scheme, given
stated assumptions about the network and an objective function.
By contrast, for a human-designed protocol (e.g., existing flavors
of TCP), it is usually not possible to describe exactly the implicit
underlying assumptions about the network or the intended objec-
tive. For that reason, it cannot be guaranteed that our conclu-
sions are truly applicable to the problem of protocol design gen-
erally, rather than simply to Remy and similar computer-generated
protocol-design methods.

Nonetheless, we do qualitatively observe that the performance
of human-designed protocols can depend strongly on network pa-
rameters. The single-peaked performance of Cubic-over-sfqCoDel
in Figure 4 and the declining performance in Figure 2 suggest that
this protocol rests on assumptions about the network parameters—
assumptions that may hold more or less well in practice. We there-
fore believe that our results, and our method generally, can provide
useful insights to network protocol designers about what factors are
important to model accurately and what factors may be simplified
as part of a design process.

In the future, we envision network protocols will be developed
mechanistically from first principles: with human designers doc-
umenting the objectives and assumptions that a new protocol will
have, and automatic processes synthesizing the resulting protocol
itself. Such a methodology would allow for a more agile network



architecture, because changing requirements or subnetwork behav-
iors could be accommodated simply by changing the inputs to an
automatic process.

While it may have been more straightforward in the past and
present for human designers to create protocols directly, based
on intuitive design guidelines, the experience of other fields of
engineering—mechanical, electrical, civil—suggests to us that pro-
tocol design will eventually also adopt a more structured founda-
tion. We will need answers to questions like the ones in this study
to make such a transition successful.
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