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ABSTRACT: 

We report disparate quasiballistic heat conduction trends for periodic nanoscale line 

heaters deposited on a substrate, depending upon whether measurements are based on the 

peak temperature of the heaters or the temperature difference between the peak and the 

valley of two neighboring heaters. The degree of quasiballistic transport is characterized 

by the effective thermal conductivities of the substrate which are obtained by matching 

the diffusion solutions to the phonon Boltzmann transport equation (BTE) results. We 

find that while the ballistic heat conduction effect based on the peak temperature 

diminishes as the two heaters become closer, it becomes stronger based on the 

peak-valley temperature difference. Our results also show that the collective behavior of 

closely spaced heaters can counteract the nonlocal effects caused by an isolated nanoscale 

hot spot. These results are relevant to thermal conductivity spectroscopy techniques under 
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development and also have important implications for understanding nonlocal heat 

conduction in integrated circuits and carbon nanotube array thermal interface materials.  

I. INTRODUCTIONS 

The theory of heat conduction by diffusion is inadequate in describing thermal 

transport in the quasiballistic regime, which occurs when the characteristic lengthscales 

of the device approach the heat carrier mean free paths (MFPs).
1
 For example, the 

conduction heat flux surrounding an isolated hot nanoparticle whose dimension is 

comparable with or smaller than the phonon MFP of the host medium has been predicted 

to be significantly suppressed compared with the solution of Fourier‟s diffusion theory.
2
 

This heat flux suppression due to classical size effects has impacts on 

micro-/nanoelectronics in which substantial amount of heat is generated within a small 

region and eventually conducted out through the underlying substrates.
3,4

 The 

contribution of nonlocal thermal transport to the total thermal resistance in a 

silicon-on-insulator device was predicted to be significant.
3
 In the presence of a 

sufficiently small heat source relative to the phonon MFP, the peak temperature rise in a 

two-dimensional microelectronic device was found to be substantially underestimated by 

Fourier‟s law.
4
 

Recently, experimental investigations of quasiballistic thermal transport have been 

utilized in thermal conductivity spectroscopy techniques to quantify the phonon MFP 

distributions in various materials of interests.
5–10

 In particular, Minnich et al.
7
 developed 
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a pump-and-probe time-domain thermoreflectance (TDTR) thermal conductivity 

spectroscopy technique to study phonon MFP distribution through measuring the 

effective thermal conductivities of silicon with different laser spot diameters. Extending 

the developed thermal conductivity spectroscopy technique to the nanoscale nevertheless 

requires periodic nanoscale heat sources
10

 since optical diffraction limits the smallest 

laser spot size to be around 1 µm for visible light beams. The modified measurement 

technique allows materials with short phonon MFPs to be studied.
10

 Siemens et al.6 

employed a nanometer sized metallic grating array as the heat absorbers and a soft X-ray 

as the probe to measure the decay of the diffracted beam due to transient heating of the 

metallic heat absorbers. They observed significant ballistic heat conduction effect as 

reflected in an increase of the effective thermal boundary resistance between the metallic 

heat absorbers and the substrate.  In a subsequent work performed with a transient 

thermal grating (TTG) setup, Johnson et al.8 employed the interference of two pump laser 

beams to generate a transient grating signal in a silicon membrane and another probe 

laser to measure the decay of this transient grating signal. Their measurements showed 

that the effective thermal conductivity of the membrane depends strongly on the grating 

spacing. All these works attributed the reduction in the effective thermal conductivities to 

ballistic phonon transport when the phonon MFPs is long compared to the relevant 

thermal length scales.
5–10

 It is interesting to note that transient grating experiments 

measure the temperature difference between the peak and the valley of the grating period, 

either formed by metallic absorbers
6
 or by crossing two laser beams

8
, while the TDTR 
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method measures the temperature of the metallic heat absorbers
10

. For array types of heat 

sources, either by metallic gratings or by crossing two laser beams, the effects of the 

interaction between neighboring heat sources on different thermal conductivity 

spectroscopy techniques are not clear, though. 

In fact, many structures used in micro-/nanoelectronics are also arranged periodically. 

For example, integrated circuits often consist of periodic nanoscale MOSFET array 

deposited on top of a substrate. Generated heat is released on the drain side and 

conducted away through the substrate. Although previous studies have investigated 

quasiballistic thermal transport in isolated nanostructures to mimic heat generation in 

individual MOSFET,
3,4

 the impact of interplay between periodic nanoscale hot spots on 

the heat transport when their spacing becomes smaller than the MFPs of heat carriers is 

still an open question. Another similar scenario is nanowire or nanotube arrays used as 

thermal interface materials.
11–17

 Although heat spreading from an isolated nanotube to a 

substrate is highly ballistic,
18–20

 it is not clear whether the same effect exists for arrays of 

nanowires and nanotubes as used for real thermal interface materials.  

In this work, we numerically study the impact of heater dimension and heaters‟ spacing 

on the thermal transport regime in the underlying substrate based on solving the phonon 

BTE under transient heating conditions. We compute the peak temperature rise of the 

heaters which corresponds to the measured signal in the TDTR experiment
7,21

 and is also 

of interests for microelectronics and nanowire/nanotube based thermal interface materials. 

The surface temperature difference between the peak and the valley of such periodic 
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structures, corresponding to measurements in the TTG experiments,
8,22

 is also calculated. 

Using these two temperatures as „measured‟ signals, the effective thermal conductivities 

keff of the substrate that encode the degree of ballistic thermal transport are fit by 

matching the solution of the heat equation with that of the phonon BTE across a wide 

range of lengthscales.
23

 We find that both the heater size and the spacing between 

neighboring heaters have strong impact on the transport regime. Our results also show 

that the degree of ballistic thermal transport depends on what is measured: for the peak 

temperature rise, the ballistic effect diminishes as the heaters get closer, while for the 

peak-valley temperature difference, ballistic effect increases.  

II. SIMULATION DETAILS 

In the quasiballistic regime, many phonons have MFPs longer than the characteristic 

thermal lengthscales and do not scatter in the local heated region. Analyzing heat transfer 

in this regime requires solving the phonon BTE. In general, the phonon BTE is difficult 

to solve since the phonon distribution function is a scalar in the six dimensional phase 

space.
1
 In this study, we investigate the heat transport regime in the underlying substrate 

with periodic nanoscale line heaters on top under transient heating conditions. The 

simulation domain is sketched in Fig. 1(a). To make the computations tractable, the 

heater and substrate are modeled as materials with phonons being the heat carriers. The 

material properties, listed in Table 1, are chosen based on sensitivity consideration and 

assumed to be temperature independent. In addition, to compensate for the computational 
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cost associated with solving the frequency dependent BTE, the developed transport 

model is based upon a gray two-dimensional phonon BTE, meaning that all the phonons 

in the heater and the substrate assume the same respective transport properties. Although 

existing studies all show that phonon MFP spans a wide range,
9,24,25

 the constant MFP 

assumption helps to understand the physics and simulation results are useful for 

reconstructing phonon MFP distributions from experimental data through thermal 

conductivity suppression function
26,27

.  

                      

Figure 1. (a) Schematic of the simulation domain; (b) representative of one period. 

Table 1. Material properties of the heater and substrate. 

Material Bulk k (W/mK) Cv (J/m
3
K) V (m/s)   (nm) 

Heater 100 2.35E6 3000 42 

Substrate 50 1.0E6 1500 100 

The transient phonon BTE under the relaxation time approximation
1
 is given by: 

0Ι I I
V I

t 

 
   


                        (1) 

(a) (b) 
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where 
1

( ) =
4

0 

  

 

m,p

p ω,p ω,pI x, y, , , t  dωf VD  is the local directional phonon 

intensity along the propagation direction ( , ) ( : polar angle,  : azimuthal angle, as 

sketched in Fig. 2(a)), V is the phonon group velocity,   is the gray phonon lifetime, 

and 0( )x, y, tI  is the equivalent equilibrium phonon intensity used to resolve the spatial 

and temporal temperature distribution.
23,28

 In the definition of the phonon intensity I,   

is the phonon quanta energy, 
f  is the spectral phonon occupation function, ω,pD  is 

the spectral density of phonon states for polarization p, ω,pV  is the spectral group 

velocity, and ω,pω  is the maximum vibration frequency for polarization p. The difficulty 

of solving Eq. (1) originates from obtaining 0I , which averages the directional phonon 

intensity over the entire solid angle.
2,23,28

 The numerical technique has been thoroughly 

described elsewhere
4
 and is briefed here. 

In this work, the discrete ordinate method is used to solve the phonon BTE together 

with a two-dimensional Gauss-Quadrature to integrate properties over the 4  solid 

angle.
29

 An explicit first-order finite differencing method is implemented to perform both 

temporal and spatial derivatives in the phonon BTE. The initial temperature distributions 

inside the heaters and the substrate are assumed to be uniform, respectively, but differ by 

1K. That temperature difference, small enough to justify the use of constant material 

properties, drives a heat current between them. The discretized BTE form depends upon 

the phonon propagation direction,
4
 as shown by the differencing schemes in Fig. 2(b), 

where μ = cosθ  is the directional cosine and η  is defined as η = sinθcosφ . In general, 
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backward differencing is taken when phonons travel along the positive direction, and vice 

versa. For example, the discretized BTE for the quadrant μ < 0, η > 0  is given by: 



   
   

k+1 k k k k k k k

i, j, n, m i, j, n, m i+1, j, n, m i, j, n, m i, j, n, m i, j-1, n, m i, j, n, m i, j, 0I I I I I I I I
Vμ Vη

Δt Δx Δy
        (2) 

where i, j, n, m, and k are the x, y, μ , η , and time indices, respectively, k

i, j, n, mI  is the 

phonon intensity at a specific point (i, j, n, m) in the phase space and time k, and k

i, j, 0I  is 

the equivalent equilibrium intensity at time k. Similarly, the discretized transport equation 

for other propagation directions can be written down. This explicit scheme is used to 

propagate in time until the expected simulation time is reached.  

      

Figure 2. (a) Local phonon propagation direction, adapted from Ref. 4; (b) discretization 

schemes for different phonon propagation directions.  

A two-dimensional Gaussian-Quadrature is implemented in the simulation to discretize 

the directional angles μ  and  .
4
 In particular, we discretize the directional cosine μ  

from -1 to 1 into 40μN  points and the azimuthal angle   from 0 to   (not 0 ~ 2π  

due to symmetry) into 30φN  points. The corresponding weights nω  and 
*

mω  for 

each propagation direction ( μ, η ) is computed through a numerical program and satisfy 

(a) (b) 
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2  
*φ

n = 1 m = 1 n m

NN
πω ω . To guarantee stability and accuracy, the spatial and time steps 

must be sufficiently small and satisfy:  

minΔx
Δt < 

V
                             (3) 

where 
minΔx  is the minimum spatial step size and V is the phonon group velocity. In this 

study, the spatial step size is chosen to be equal to or less than one twentieth of the 

smaller phonon MFP of the heater and the substrate, therefore ensuring stability and 

convergence.  

Once initialized, the rate of heat rejection depends strongly upon the interfacial thermal 

properties, i.e. phonon transmittance and reflectance at the heater-substrate interface.
30–33

 

In this study, phonon scattering at the metal-substrate interface is assumed to be 

completely diffuse, which implies that phonons leaving the interface on either side of the 

interface bear an isotropic distribution. Energy conservation requires the transmittance 

and reflectance to obey the following relation: 

 1 R T                                 (4) 

where R and T are the reflectance and transmittance on either side of the interface. At 

thermal equilibrium, the net heat flux across an interface is exactly zero, as required by 

the principle of detailed balance
1
 which relates the transmittances on either side of an 

interface to one another by: 
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V1 1

21 12

V2 2


C V

T T
C V

                          (5) 

where T12 is the transmittance from medium 1 to medium 2, T21 is the transmittance from 

medium 2 to medium 1, and Cvi and Vi (i=1, 2) are the volumetric specific heat capacities 

and speeds of sound, respectively. To obtain the transmittances, we first specify the 

transmittance T12 (T12 = 0.1). Then T21 can be straightforwardly determined through Eq. 

(5). When solving the diffusion heat transfer model, an interfacial thermal conductance 

Gdiff is needed as the input and is determined from the phonon transmittances by:
1,34

 

12 v1 1

12 21

diff

4(1 0.5( ))


 

C VT
G

T T
                       (6) 

No size dependence of the interfacial thermal conductance is assumed, consistent with 

recent experiments.
7
 Simulation results to be presented later will also validate this 

assumption. 

The periodicity of the computed structure allows us to simulate one period of the 

structure, as shown in Fig. 1(b). The thicknesses of the heater array and the substrate are 

80 nm and 3 μm respectively. In reality, the substrate is a semi-infinite system with its 

backside being adiabatic. In practice, by checking the substrate backside temperature rise, 

we find that 3 μm is sufficiently thick to approximate the substrate as a semi-infinite body. 

We also find that doubling the substrate thickness to 6 μm causes almost no difference in 

the peak temperature rise and peak-valley temperature difference. The left and right 

boundaries of the substrate in Fig. 1(b) are periodic boundaries.
35

 We implement the 
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periodic boundary condition as a specular reflection. All other free boundaries (including 

the free surfaces of the heater and the gaps between neighboring heaters) are modeled as 

being adiabatic. The effects of these free boundaries‟ specularity (fraction of phonons 

being specularly reflected) are checked by comparing the BTE results under totally 

specular and totally diffuse boundary conditions. Our simulation results show almost no 

specularity dependence from such comparison, thus we also model these free surfaces as 

specularly adiabatic walls. 

The equivalent equilibrium phonon intensity,
4,34

 corresponding to a locally thermalized 

state, is computed by weighting all the directional intensities through:  

1
( ) = ( )

2π

   
k k

0

*φ

n = 1 m = 1 n m

NN
x, y, t x, y, , , tI I ω ω               (7) 

where ( ) k
x, y, , , tI  is the directional phonon intensity at (x, y) along the direction 

( , ) at time  . Instead of calculating the local thermodynamic equilibrium temperature 

which does not exist in highly non-equilibrium transport, we compute the equivalent 

equilibrium temperature
4,34

 which is a measure of the local energy density and defined as:  

4π
( ) = ( )

k

0

CV
T x, y, t x, y, tI                        (8) 

The local heat flux along a specific direction consists of contributions from all the 

directional phonon intensities at the point being studied. For example, if we define the 

cross-plane direction as x, the local heat flux along this direction is given by:  
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1
( ) = ( )

2π
*      

kφ

n = 1 m = 1 n mnx

NN μx, y, t x, y, , , t ω ωq I              (9) 

where  n
 is the directional cosine. Similarly, the heat flux along the in-plane direction 

can be written down as:  

2

( )
1

( ) = ( ) 1 cos
2π

*      
kφ

n = 1 m = 1 n mn my

NN φx, y, t x, y, , , t ω ωq I       (10) 

The effects of heater dimension and spacing between neighboring heaters on the 

transport regime in the substrate of the proposed structure are studied under the 

framework of the developed thermal model.  Heat transport occurs from the heaters to 

the underlying substrate after imposing an initial temperature difference between them. 

The presence of periodically arranged hot and cold spots in the computed structure 

generates thermal grating effects.
8
 To gain insight into the heat conduction, we examine 

both the peak temperature rise (i.e. the temperature difference between points A and C, 

ACT , as indicated in Fig. 1(b)) and the temperature difference between the grating peak 

and valley (i.e. the temperature difference between points A and B, ABT , as indicated in 

Fig. 1(b)). The temporal decays of the peak temperature rise and the peak-valley grating 

temperature difference from the diffusion heat equation are matched with the 

corresponding results from the phonon BTE by minimizing the norm between these two 

model curves to find the effective thermal conductivities that are then used to analyze the 

heat transfer regime.  
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III. RESULTS AND DISCUSSION 

Two important length scales affecting the heat transfer are the heater width w and the 

period L (heater spacing = L – w) of the heater array. The simulations are carried out by 

varying the heater width w under different filling fractions (FF) defined as the ratio of the 

heater width to the heater array period w/L. This means that we systematically tune the 

heater width w while maintaining the filling fraction w/L at constant values to examine 

the effects of these two parameters on the thermal transport. Hereafter, without explicit 

explanation, we refer the phonon MFP or   to the substrate phonon mean free path.  

As discussed before, we assumed that the interfacial thermal conductance has 

negligible size dependence. This assumption is validated from our simulation results, as 

shown in Fig. 3 which plots the calculated temporal interfacial thermal conductance G 

(based on the temporal interfacial heat flux and temperature difference across the 

interface) from the phonon BTE at different filling fractions when the heater width is 100 

nm. Clearly, G increases with increasing filling fraction at a fixed heater width. However, 

the overall variation of G is within 6% and thus can be neglected. The computed 

interfacial thermal conductances for other geometries, including small and large heater 

widths relative to the phonon MFP, fall in the same range (2.50 ～ 2.64 x 10
8
 W/m

2
K). 

In addition, we note that the magnitude of the calculated G is very close to the value Gdiff 

predicted by Eq. (6): 2.465 x 10
8
 W/m

2
K. Consequently, we implement a constant 

interfacial thermal conductance computed from Eq. (6) when solving the diffusion heat 

equation for different geometries and only fit the substrate thermal conductivity.  
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Figure 3. Calculated interfacial thermal conductance as a function of time at different 

filling fractions when w = 100 nm.  

Figure 4 shows the decay of the peak temperature rise when the heater width is 100 nm 

(same as the substrate phonon MFP  ) at a 10% filling fraction. The decay rate from the 

phonon BTE represented by the red squares is slower than that of Fourier‟s law 

represented by the green dashed curve obtained by using the bulk thermal conductivity of 

the substrate. The discrepancy between the diffusion result and the BTE data indicates the 

presence of ballistic transport in the substrate.
23

 Our best fitting result returns an effective 

thermal conductivity keff ≈ 37.5 W/mK represented by the blue solid curve. This reduced 

substrate thermal conductivity implies that there is an additional ballistic resistance 

associated with transport in the substrate.
6,10
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Figure 4. Demonstration of classical size effects by fitting the peak temperature rise. The 

results correspond to a heater width of 100 nm at a 10% filling fraction.  

The effect of varying filling fractions is shown in Fig. 5 where the heater width is kept 

constant at 100 nm under three different filling fractions. The dots represent the data from 

the phonon BTE and the solid curves represent the best fittings from the diffusion heat 

equation. As the filling fraction increases from 10% to 83%, keff increases by 

approximately 20% from 37.5 W/mK to 47.0 W/mK, which indicates that the filling 

fraction, apart from the heater size, also significantly affects the thermal transport in the 

substrate. In the limit of zero spacing between heaters (100% filling fraction), the 

structure is effectively a continuous film covering the substrate and our fitting returns the 

bulk thermal conductivity, consistent with prior measurements.
7
 Intuitively, for two 

structures with the same heater size, the structure with a larger filling fraction (smaller 

spacing) more closely approaches to the „film case‟ and therefore has a higher keff. One 

can also view a continuous thin film heater as the superposition of many closely spaced 

point heat sources. Our results demonstrate that this superposition of closely spaced 
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ballistic heat sources with identical heat generation actually leads to the familiar diffusive 

transport picture. This observation has many implications for thermal management of 

micro-/nanoelectronics and thermal interface materials. In microelectronics, heat may 

also be generated in a region of the MOSFET much smaller than the MFP of the substrate 

that spreads out the heat. Our calculation results suggest that the collective behavior 

caused by closely packed MOSFETs will counteract the ballistic effects present in an 

isolated nanoscale hot spot
3,4

 and thus the thermal management in micro- and 

nanoelectronics may not be as serious as inferred from isolated device simulations. 

Similarly, the predicted ballistic contact effect of an isolated point contact such as 

between a carbon nanotube and the underlying substrate may diminish in closely 

arranged carbon nanotube arrays used in thermal interface materials.
20

  

 

Figure 5. Effects of varying filling fractions w/L on keff by fitting the peak temperature 

rise. Open dots (squares, circles, and triangles) represent BTE results and solid lines 

represent the best fittings from Fourier‟s diffusion theory when the heater width is 100 

nm. The corresponding effective thermal conductivities are 47.0 W/mK, 43.5 W/mK, and 
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37.5 W/mK for 83%, 50%, and 10% filling fractions, respectively, clearly showing the 

impact of filling fraction on the heat transport in the underlying substrate.  

Figure 6 further shows the normalized effective substrate thermal conductivities as a 

function of the normalized heater width w  at three different filling fractions. When 

the heater width w is appreciably larger than the phonon MFP ( w ≈ 10), phonons 

experience sufficient scattering and thus diffusive transport occurs in the substrate.
1,10

 In 

this scenario, the fitting returns the bulk thermal conductivity regardless of the filling 

fraction, as verified by Fig. 6. As the heater width is gradually reduced to a level 

comparable to the phonon MFP, some phonons travel ballistically and do not relax.
10,36

 

Those ballistic phonons result in an additional ballistic thermal resistance which 

suppresses the rate of heat rejection through the conduction in the substrate, leading to a 

lower effective thermal conductivity. However, the degree of ballistic transport in the 

substrate under those three different filling fractions differs significantly as the heater 

width becomes comparable or small than the phonon MFP, as indicated by the 

substantially distinct effective thermal conductivities. For the very large filling fraction, 

represented by the blue curve, the transport is more diffusive compared with the transport 

at those two smaller filling fractions, which again implies that the collective behavior due 

to the interaction between closely spaced nanoscale heat sources significantly counteracts 

the nonlocal effects that occurs in the case of an isolated nanoscale heat source. We also 

note that heat generation in current MOSFETs is typically confined to be around a tiny 



18 

small region (much smaller than the gate length) near the drain side, thus the predicted 

impact of collective behavior may not reduce the non-local effects substantially due to 

the small filling fraction. However, as the gate length continues to shrink, we expect such 

collective behavior to have significant influence in reducing the degree of non-local 

transport.  

As mentioned before, periodically arranged nanoscale heat sources are required in the 

TDTR technique to probe short phonon MFP materials.
10

 Typically, a set of effective 

thermal conductivities is measured with respect to some characteristic thermal 

lengthscales, i.e. heater sizes. Phonon MFPs are subsequently estimated by assuming the 

heat transfer suppression of phonons with MFPs longer than the heater dimension.
7,10

 Our 

simulation results indicate that accurate interpretation of the measured effective thermal 

conductivities and phonon MFP reconstruction must take into account the impact of both 

the heater size and the spacing between neighboring heaters.  
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Figure 6. Normalized effective thermal conductivities vs. normalized heater width at 

three different filling fractions by fitting the peak temperature rise. 

Interestingly, the effective thermal conductivities obtained via fitting the peak-valley 

temperature difference are found to be inversely correlated to the filling fraction as 

opposed to fitting the peak temperature rise. Figure 7 shows the peak-valley temperature 

difference solutions from the phonon BTE together with the best fittings from the 

Fourier‟s diffusion theory for 400nm-sized heaters at three different filling fractions. 

Quasiballistic transport occurs for all three of these structures as can be seen from the 

obtained effective thermal conductivities. However, the structure with the largest filling 

fraction has the lowest thermal conductivity compared with other two cases. Physically 

this originates from the fact that the peak-valley temperature difference always measures 

the thermal transport between the two heaters as the valley is the lowest temperature 

point on the substrate surface.
8
 The spacing between adjacent heaters becomes the 

characteristic thermal length while fitting the peak-valley temperature difference. At a 

fixed heater width, the structure with a larger filling fraction has a smaller spacing 

between adjacent heaters, consequently giving a lower effective thermal conductivity. 

The contradicting trends in the effective thermal conductivities obtained using the peak 

temperature rise of the heater and the temperature difference between the peak and the 

valley in a grating structure imply that a single effective thermal conductivity cannot 

perfectly match the results from the phonon BTE and the diffusion theory in the whole 
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simulation domain.
37

 Equivalently, the peak temperature rise and peak-valley temperature 

difference are associated with two different thermal lengths for the same structure and 

care must be taken when comparing the thermal conductivities measured by these two 

signals.  

 

Figure 7. Effects of varying filling fractions on keff by fitting the peak-valley grating 

temperature difference. The data correspond to a heater width of 400 nm at three different 

filling fractions. Open dots (triangles, circles, and squares) are the BTE results and solid 

lines are the best fitting based on Fourier‟s law. The corresponding effective thermal 

conductivities for 10%, 50%, and 83% filling fractions are 47.2 W/mK, 43.0 W/mK, 30.0 

W/mK, respectively, showing an opposite trend in the effective thermal conductivity 

while varying the filling fraction at the same heater width.  

The thermal conductivities measured by the peak-valley temperature difference as a 

function of the normalized heater width is shown in Fig. 8. It is worth noting that for a 

large filling fraction, the keff is significantly lower than the bulk value even at a very large 
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heater size ( w = 10). This occurs because the spacing between heaters is still 

comparable to the phonon MFP despite of the large heater size.  

 

Figure 8. Normalized effective thermal conductivities vs. normalized heater width at 

three different filling fractions by fitting the peak-valley grating temperature difference.  

Note that a single spectrum-averaged phonon MFP is used in this study to make the 

calculations tractable. In reality, phonon MFP in many materials varies by several orders 

of magnitude.
9,24

 Consequently, when the heater width or spacing between neighboring 

heaters falls within the range of the phonon MFP spectrum, long-MFP phonons travel 

ballistically and short-MFP phonons propagate diffusely, resulting in a much more 

complicated transport picture. Incorporating real phonon dispersion and frequency 

dependent MFPs makes a deterministic approach (for example, discrete ordinate method) 

to solving the phonon BTE expensive. More sophisticated technique, such as Monte 

Carlo method,
38,39

 needs using to assess the effect of nonlinear phonon spectrum. Future 

work will focus on the implementation of newly developed variance-reduced Monte 
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Carlo method to evaluate the impact of phonon dispersion on the thermal transport 

characteristics in the presence of periodical nanoscale heat sources.  

IV. CONCLUSION 

We have studied the impact of heater sizes and spacings on the thermal transport 

regime in a substrate covered by periodic heat sources when either the heater width or the 

spacing becomes comparable to the phonon MFP. When the peak temperature rise and 

the peak-valley temperature difference are used as separate measures of the transport 

regime in the substrate, they give opposite trends in the substrate effective thermal 

conductivity as a function of the spacing between heaters. When only the heater 

temperature is of concern, we identified that the close spacing between neighboring 

heaters can counteract the ballistic transport effects which occur in the presence of an 

isolated nanoscale hot spot, consistent with the fact that in the limit that the heaters 

become a continuous film, both experimental and simulation results approach that of 

diffusive transport. On the other hand, if the peak-valley temperature difference on the 

surface is measured, ballistic effect becomes stronger as the spacing between heaters 

becomes smaller. These results are important for understanding experimental results in 

phonon MFP spectroscopy using TDTR method and transient thermal grating method, 

and for understanding the impact of scaling on the thermal management of micro- and 

nanoelectronics, and thermal interface materials.  
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