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Abstract

We review double field theory (DFT) with emphasis on the doubled spacetime and its

generalized coordinate transformations, which unify diffeomorphisms and b-field gauge

transformations. We illustrate how the composition of generalized coordinate transfor-

mations fails to associate. Moreover, in dimensional reduction, the O(d, d) T-duality

transformations of fields can be obtained as generalized diffeomorphisms. Restricted to

a half-dimensional subspace, DFT includes ‘generalized geometry’, but is more general

in that local patches of the doubled space may be glued together with generalized coor-

dinate transformations. Indeed, we show that for certain T-fold backgrounds with non-

geometric fluxes, there are generalized coordinate transformations that induce, as gauge

symmetries of DFT, the requisite O(d, d;Z) monodromy transformations. Finally we

review recent results on the α′ extension of DFT which, reduced to the half-dimensional

subspace, yields intriguing modifications of the basic structures of generalized geometry.
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1 Introduction

The underlying symmetry of gravity is given by the diffeomorphism group or the group of

general coordinate transformations. Accordingly, the basic dynamical variables are tensor fields,

including the metric tensor gij that describes the spacetime geometry. This holds true in the

target space description of string theory, where the metric is augmented by an antisymmetric

tensor bij (the b-field) and a scalar φ (dilaton), as well as various p-forms, depending on the

string theory considered. The universal spacetime low-energy action for the massless fields

common to all oriented closed string theories then reads

S =

∫
dDx
√−ge−2φ

[
R+ 4(∂φ)2 − 1

12
H2

]
, (1.1)

where D = 26 or D = 10, and H denotes the three-form field strength of the b-field. This

action admits the diffeomorphism invariance of gravity and an abelian gauge symmetry of the

b-field, but it does not display any ‘higher’ symmetry that would explain the special role of the

b-field and dilaton, as opposed to any other matter fields that can be coupled to gravity. In

closed string theory, however, the field content is uniquely determined and closely related to

the T-duality group O(d, d;Z) that is well known to emerge [1] when the theory is put on a

torus background T d. In fact, for the low-energy theory of the massless fields the symmetry

becomes a continuous O(d, d;R), henceforth written as just O(d, d). The components of gij and

bij along the torus transform into each other according to the Buscher rules [2], and it is only the

particular action (1.1) that is compatible with T-duality. This naturally leads one to wonder if

there is a way to make these features manifest at the level of a spacetime action such as (1.1).

In this paper we will review ‘double field theory’ that provides such a formulation [3–7] and has

been the focus of much recent attention. For earlier attempts see [8–11], and the concluding

section for a more detailed guide to the literature.

In double field theory (DFT) an action as (1.1) can be formulated in an O(D,D) covari-

ant fashion by organizing g, b and φ into new field variables that are O(D,D) tensors [7].

Specifically, the fundamental fields are given by a symmetric O(D,D) matrix

HMN =

(
gij −gikbkj

bikg
kj gij − bikgklblj

)
, (1.2)

and an O(D,D) singlet dilaton d related to φ via e−2d =
√−ge−2φ, where M,N = 1, . . . , 2D

are fundamental O(D,D) indices. The matrix (1.2) is naturally viewed as a metric on a doubled

space with 2D coordinates XM = (x̃i, x
i), with corresponding derivatives ∂M = (∂̃i, ∂i), where

xi are the usual spacetime coordinates. The additional coordinates x̃i, dual to winding modes

of the closed string, are known to be present in the full string theory on a torus, as seen when

formulated as a second-quantized string field theory [12,13]. In DFT all coordinates are doubled

for any background, while imposing a constraint that effectively renders half of them ‘inactive’.

More precisely, we impose the constraint

ηMN∂M∂N ≡ ∂M∂M = 0 , ηMN =

(
0 1

1 0

)
, (1.3)
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where ηMN denotes the O(D,D) invariant metric. The vanishing of ∂M∂M when acting on

arbitrary fields and parameters is the weak form of the constraint and can be identified with

the level matching constraint of closed string theory. When, in addition, ∂M∂M is constrained

to vanish for all products of fields and gauge parameters, we have the strong version of the

constraint. The strong version goes beyond the level-matching constraint of closed string theory

and implies that the fields depend only on half of the (doubled) coordinates. When DFT is

applied to a background with d abelian isometries, like a torus T d, and fields are independent

of these d coordinates, we can, however, realize the full O(d, d) symmetry geometrically by the

use of x̃-dependent coordinate transformations.

The usual gauge transformations of the metric and b-field, i.e., diffeomorphisms generated

by a vector ξi and abelian gauge transformations δ
ξ̃
bij = ∂iξ̃j − ∂j ξ̃i can be lifted to O(D,D)

covariant gauge transformations of HMN and the dilaton d, with parameter ξM = (ξ̃i, ξ
i),

δξHMN = ξP∂PHMN +
(
∂Mξ

P − ∂P ξM
)
HPN +

(
∂Nξ

P − ∂P ξN
)
HMP ,

δξ
(
e−2d

)
= ∂M

(
ξMe−2d

)
,

(1.4)

where indices are raised and lowered with ηMN defined in (1.3). When specializing to the

components of HMN in (1.2) and setting ∂̃i = 0 these transformations reduce to the standard

gauge transformations. Let us stress that also the gauge transformations for ∂̃i 6= 0 are well

motivated from string theory. In fact, the gauge transformations to cubic order have been

derived from closed string field theory [4], and there is a unique way to make them background

independent as transformations of gij and bij [6]. Application to (1.2) then uniquely leads to

the above gauge transformations of H and d.

There is a unique scalar R written in terms of second derivatives of HMN and d that indeed

transforms as a scalar under (1.4), i.e., δξR = ξM∂MR. Since e−2d transforms as a density, the

scalar R can be used to write a manifestly gauge invariant action

SDFT =

∫
d2DX e−2dR(H, d) . (1.5)

Setting ∂̃i = 0 and writing it in terms of g, b and φ the above action reduces to (1.1). Thus,

once formulated in terms of the right dynamical objects and geometrical structures, the two-

derivative part of the spacetime action of bosonic string theory is unique, quite in contrast to

the original formulation. Again, for ∂̃i 6= 0, this action is also well motivated from string theory

in that expanded to cubic order around a constant toroidal background, it coincides with the

closed string field theory action of the massless fields to that order.

In this article we will elaborate on the geometrical implications of DFT. It is mainly a

review, but we also give some new results. Specifically, we show in sec. 4 that even the strongly

constrained DFT allows for backgrounds that are globally well-defined in the doubled geometry,

but not in standard differential geometry, in this sense going beyond conventional supergravity.

We will discuss the role of generalized coordinate transformations on the doubled space and why

they require some notion of generalized manifold. To explain this point recall that in general

relativity we begin with a conventional manifold for which coordinates on overlapping patches

are related by the usual general coordinate transformations. These, in turn, can be written

infinitesimally as Lie derivatives generated by the vector parameter ξi. In contrast, the gauge
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transformations (1.4) are not given by Lie derivatives on the doubled space but rather represent

‘generalized Lie derivatives’ L̂ξ, so that we have δξHMN = L̂ξHMN . If follows immediately that

we cannot view (1.4) as infinitesimal diffeomorphisms on the doubled space and, therefore, the

doubled space needs to be viewed as a suitably generalized manifold that is ‘patched together’

by some generalized coordinate transformations.

A closely related observation is that the formulation of DFT requires the constant O(D,D)

metric ηMN defined in (1.3). For a conventional manifold there is no coordinate independent

sense in which a metric can take the constant form in (1.3). Put differently, the doubled

manifold would be of a rather special ‘flat’ form, allowing for preferred coordinate systems for

which ηMN is constant. In contrast, the generalized Lie derivative in DFT does leave ηMN

invariant, L̂ξηMN = 0, implying that the notion of coordinate transformations on the doubled

space should be generalized in such a way that ηMN is actually invariant.

In a recent paper, two of us gave a proposal for such generalized coordinate transformations

that meet all consistency conditions tested so far. A generalized vector VM transforms under

X → X ′ as [14]:

V ′
M (X ′) = FM

NVN (X) , (1.6)

where

FM
N =

1

2

(
∂XP

∂X ′M
∂X ′

P

∂XN
+
∂X ′

M

∂XP

∂XN

∂X ′P

)
, (1.7)

and indices on coordinates are raised and lowered with ηMN . Similarly, an arbitrary generalized

tensor transforms tensorially, each index being rotated by F . Even though these transforma-

tions do not describe conventional general coordinate transformations on the 2D-dimensional

space they do encode arbitrary general coordinate transformations on D-dimensional isotropic

subspaces of the doubled space, that is, spaces for which tangent vectors are null in the metric η.

The components of HMN in (1.2) then transform conventionally as tensors, without imposing

any constraints on the geometry encoded by the D-dimensional metric gij. As we will review,

at the same time the action of F on ηMN is such that it is left invariant, as required. For fields

depending only on x, b-field gauge transformations are generalized coordinate transformations

x̃i → x̃i − ξ̃i(x) that mix x and x̃ coordinates.

DFT is a framework that is flexible enough to encode all that is contained in the usual

spacetime action (1.1). In particular, the presence of the ‘flat’ O(D,D) metric ηMN does

not imply that the spacetime metric gij (encoded by HMN ) is also flat or, for that matter,

restricted at all. In fact, DFT is also flexible enough to encode the framework of generalized

geometry, which has been developed in pure mathematics [15–18]. This geometry does not

change the underlying manifold M (it is not doubled). The tangent bundle T (M), however,

is replaced by T (M) ⊕ T ∗(M) and structures such as the Courant bracket are defined on this

extended bundle. Before the advent of DFT, however, it appears that generalized geometry was

not developed to the extent that invariant curvatures and thus actions such as (1.5) could be

defined. Generalized geometry is manifestly contained in DFT in that we may solve the strong

constraint (1.3) by setting, say, ∂̃i = 0, after which the components (Vi, V
i) of a generalized

vector VM acquire a definite interpretation as vector (V i) and one-form (Vi), thereby encoding

an element of T ⊕ T ∗. Moreover, the generalized Lie derivatives of vectors are given by the

action of the so-called Dorfman bracket, and their closure is governed by the Courant bracket.
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In this way, to zeroth order in α′, DFT may be viewed as the first implementation of generalized

geometry at the level of the full spacetime action. However, as we will also review, taking α′

to be non-zero the generalized Lie derivative of DFT acquires α′ corrections that even on the

half-dimensional subspace modify the defining structures of generalized geometry [19].

Apart from implementing the generalized geometry program and thus reformulating the

usual spacetime theory in terms of a geometry that is better adapted to the T-duality properties

of string theory, we will show how even at the two-derivative level DFT is yet more general,

naturally encoding ‘non-geometric’ backgrounds. The most direct way to describe backgrounds

that are not captured by ordinary supergravity is to try to relax the strong constraint (1.3) so

that solutions may depend locally both on x and x̃. In fact, in the full closed string field theory

on a torus background only the weaker level-matching constraint is required. It is a subtle

question whether the constraint can be relaxed for the massless fields only (or to zeroth order

in α′) or for different backgrounds, but there has been progress exhibiting relaxed constraints

in massive deformations of type IIA [20], generalized Scherk-Schwarz compactifications [21,22],

and now even more generally in [23]. We will be assuming the strong constraint throughout the

paper. We will see that even in the strongly constrained DFT there are still ‘non-geometric’

field configurations in DFT that are globally well-defined when patched with the generalized

coordinate transformations (1.6). These examples are closely related to the idea of ‘T-folds’,

where one allows ‘patching by O(d, d) transformations’. We believe, however, that a more

precise formulation of this idea, in the sense of a natural extension of the general coordinate

transformations of differential geometry, was lacking. We will argue that (1.6) fills the gap.

For the convenience of the reader we summarize in the following the main messages of the

review part:

• DFT can be viewed, in particular, as the physical implementation of the ‘generalized

geometry’ concepts of Hitchin-Gualtieri. In particular, it encodes the familiar low-energy

limits of string theory in generality: the backgrounds are not restricted to tori. DFT and

‘generalized geometry’ are not really ‘alternative’ approaches.

• The gauge transformations of the low-energy limit of string theory are unified in DFT

in the form of generalized coordinate transformations. These treat (arbitrary) diffeomor-

phisms of the D-dimensional subspace and b-field gauge transformations on the same

footing, in addition to encoding O(d, d) transformations for certain configurations. Gen-

eralized coordinate transformations are quite different from ordinary diffeomorphisms:

they compose in a non-standard manner, such that the composition is non-associative.

• DFT encodes also α′ corrections and thereby goes beyond two-derivative approximations

and also beyond ‘generalized geometry’ in that even on the half-dimensional subspace the

basic structures of generalized geometry are α′-deformed.

In addition to the review parts, we will also present a number of new results, which we highlight

in the following:

• We analyze the structure of simultaneous diffeomorphisms and b-field gauge transfor-

mations to illustrate the unusual properties of generalized coordinate transformations
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(non-standard composition and non-associativity).

• We discuss in the context of DFT the beloved chain of geometric and non-geometric back-

grounds originating from the constant H-flux on a three-torus. All ‘gluing conditions’ that

make these spaces well-defined can be treated in a uniform manner as generalized coor-

dinate transformations. In particular, the quantization condition on the H-flux has a

natural geometric interpretation in terms of the periodicity conditions of the dual torus.

Moreover, the non-geometric Q-flux background is well-defined in DFT thanks to gener-

alized coordinate transformations that rotate x into x̃ coordinates.

• We consider a background that is ‘truly non-geometric’ in the sense that it is not T-dual to

a geometric one. In particular, it contains H, f , and Q flux simultaneously. Nevertheless,

it is globally well-defined in DFT thanks to large generalized coordinate transformations

that act on the fields as the relevant O(d, d,Z) monodromies. In this way, even strongly

constrained DFT appears to go beyond supergravity in that it contains backgrounds (‘T-

folds’) that cannot be made globally well-defined in conventional geometry.

This article is organized as follows. In sec. 2 we discuss the generalized coordinate trans-

formations (1.6) of DFT. We show how they contain conventional diffeomorphisms and b-field

gauge transformations. The unusual composition properties of generalized coordinate transfor-

mations arise because the algebra of infinitesimal transformations is governed by the Courant-

or C-bracket rather than the Lie bracket. We make this plain by studying composition for the

explicit example of simultaneous general coordinate and b-field gauge transformations and show

that, as transformations of fields, they are associative, but become non-associative at the level

of the corresponding coordinate transformation. This is a form of non-associativity that may

have a counterpart in closed string field theory, whose gauge algebra is of L∞ type [13], rather

than a strict Lie algebra. In section 3 we discuss the relation of O(d, d) to generalized coordi-

nate transformations. In sec. 4 we discuss explicit examples of non-geometric spaces that are

not globally well-defined, but which can be patched by generalized coordinate transformations.

For these examples the transformations take the form of O(d, d) transformations viewed as

transformations of fields but, intriguingly, do not act in the naive O(d, d) representation on the

(doubled) coordinates. In sec. 5 we discuss the issues related to the relaxation of the strong con-

straint. Finally, in sec. 6, we review the recently introduced α′-extended geometry [19], which

requires an intriguing generalization of most geometric concepts, e.g., the Lie derivatives, inner

product, etc. We close by giving a summary and outlook.

2 Generalized coordinate transformations in DFT

We introduce in this section the notion of generalized coordinate transformations in DFT and

discuss special cases, such as conventional diffeomorphisms and b-field gauge transformations,

and the subtleties of their geometrical interpretation. Specifically, we display the type of non-

associativity that emerges when combined diffeomorphisms and b-field gauge transformations

are viewed as generalized coordinate transformations.
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2.1 Diffeomorphisms and b-field gauge transformations

Generalized coordinate transformations XM → X ′M act on tensors as in (1.6). Thus, on the

generalized metric (1.2) we have

H′
MN (X ′) = FM

K FN
LHKL(X) , (2.1)

where we recall

FM
N =

1

2

(
∂XP

∂X ′M
∂X ′

P

∂XN
+
∂X ′

M

∂XP

∂XN

∂X ′P

)
. (2.2)

Let us first review how conventional general coordinate transformations are included in (2.1).

Assume that the strong constraint is solved by having all fields depend only on x, not x̃, and

consider the transformation

xi → xi′ = xi′(x) , x̃′i = x̃i . (2.3)

It can be easily seen that for this special transformation the two terms in (2.2) actually give

the same contribution. Thus,

H′
MN (X ′) =

∂XP

∂X ′M
∂X ′

P

∂XK

∂XQ

∂X ′N
∂X ′

Q

∂XL
HKL(X) . (2.4)

Specializing to the componentHij = gij and employing the usual index splitting V M = (Vi , V
i)

we obtain

H′ij(x′) =
∂x̃p
∂x̃′i

∂x′p

∂xk
∂x̃q
∂x̃′j

∂x′q

∂xl
Hkl(x) = δip

∂x′p

∂xk
δjq
∂x′q

∂xl
Hkl(x) =

∂x′i

∂xk
∂x′j

∂xl
Hkl(x) , (2.5)

using in the second step that x̃′i = x̃i. This is the conventional general coordinate transforma-

tion of a contravariant 2-tensor Hij . Thus, as required, DFT correctly reproduces the usual

diffeomorphisms acting on the (inverse) metric gij . Similarly, it is easy to see that all other

components of HMN transform such that they give rise to the usual diffeomorphisms acting on

the component fields gij and bij .

Let us next compare with the generalized coordinate transformation of the O(D,D) metric

ηMN , which in components reads more precisely

ηMN =

(
0 δij

δi
j 0

)
. (2.6)

The transformation takes the same form as in (2.4), with H replaced by η. As in (2.5), the

diagonal components ηij and ηij transform tensorially and therefore, being zero, they remain

zero. Also the off-diagonal components transform tensorially. Indeed, again from (2.4) we find

ηij
′ =

∂x̃p
∂x̃′i

∂x′p

∂xk
∂xq

∂x′j
∂x̃′q
∂x̃l

ηkl = δip
∂x′p

∂xk
∂xq

∂x′j
δlq δ

k
l =

∂x′i

∂xq
∂xq

∂x′j
= δij = ηij . (2.7)

Thus η is invariant under general coordinate transformations. This is how it is consistent in DFT

to have a constant metric without restriction on the group of general coordinate transformations

and therefore without restriction on allowed spacetime geometries.
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Next consider the the b-field gauge transformations, which take the form

b′ij = bij + ∂iξ̃j − ∂j ξ̃i . (2.8)

They are encoded in (2.4), via the generalized coordinate transformation

x̃′i = x̃i − ξ̃i(x) , xi′ = xi , (2.9)

acting on a generalized metric that depends only on x. The details were given explicitly in

section 3.1 of [14] and thus we do not repeat them here. Note that this transformation leaves

x invariant but mixes x̃ with x.

In double field theory we can also consider generalized coordinates transformations of the

form

x′
i
= xi − ξi(x̃) , x̃′i = x̃i , (2.10)

i.e. they leave x̃ invariant but mix x with x̃. Provided the fields are now assumed to depend on

x̃, not x, these transformations satisfy the strong constraint eq. (1.3). We can parametrize the

O(D,D) matrix H in a different way using a new metric g̃ij and a bi-vector field βij as follows:

HMN =

(
g̃ij − βikg̃klβlj −βikg̃kj

g̃ikβ
kj g̃ij

)
. (2.11)

Then one can show that the transformation (2.10) acts like a gauge transformation on β,

βij
′
= βij + ∂̃iξj − ∂̃jξi , (2.12)

and hence it is called beta gauge transformation. As before, for certain backgrounds, the beta

gauge transformations become a b-field gauge transformation or diffeomeorphisms in another

T-duality frame, respectively. We finally note that we may also evaluate the DFT action for the

fields in (2.11), but still depending on the usual x coordinates. In this case the action reduces

to that discussed in relation to non-geometric fluxes in [25,26,34].

We close this subsection by discussing a form of ‘trivial’ gauge transformations that leave

the fields invariant. Consider a generalized coordinate transformation of the form

X ′M = XM − ∂Mχ , (2.13)

for some function χ. We view this as an exact transformation. It was shown in [14] that for

an exact coordinate transformation of the form X ′M = XM − ζM(X) the associated F can be

written in terms of the matrix aM
N = ∂Mζ

N as

F = 1 + a− at +
∞∑

n=2

(
an − 1

2
an−1at

)
. (2.14)

The strong constraint implies that ata = 0, for any transformation. Specializing to the trans-

formation (2.13) we obtain aM
N = ∂M∂

Nχ, which implies a = at and that all powers of a

vanish by the strong constraint. It then follows from (2.14) that F = 1 and so the generalized

coordinate transformation induced by (2.13), say on the generalized metric, reads

H′(X ′) = F H(X)F t = H(X) . (2.15)
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We next observe that

H′(X ′) = H′(X − ~∂χ) = H′(X)− ∂Mχ∂MH′(X) + · · · = H′(X) , (2.16)

where we used the strong constraint that implies that all χ dependent terms vanish. Therefore,

fields are strictly invariant under these trivial gauge transformations:

H′(X) = H(X) . (2.17)

An example is given by fields that are independent of x̃ and a shift x̃′i = x̃i−∂iχ, with a function

χ depending only on x. From (2.9) we identify this as a b-field gauge transformation with exact

one-form gauge parameter ξ̃i = ∂iχ. We thus recover the well-known ‘gauge symmetry of

gauge symmetries’ for the b-fields gauge transformations. Similarly, for fields depending only

on x̃ and a shift x′i = xi − ∂̃iχ, with a function χ depending only on x̃, we get a trivial β

gauge transformation (2.12). Apart from these straightforward examples there are more subtle

trivial coordinate transformations for which χ may be a function of both some x and x̃. This

redundancy in the gauge transformations of DFT will become important below, c.f. sec. 4, where

only some representative among the “equivalent” coordinate transformations is compatible with

certain topological restrictions.

2.2 Composition of generalized coordinate transformations

We now turn to a discussion of the general composition of the transformations (2.1), which is

different from that of ordinary diffeomorphisms. To explain this point it is convenient to intro-

duce an alternative, ‘active’ form of the transformations as the exponential of the infinitesimal

transformations governed by generalized Lie derivatives. Thus, consider the transformation

V ′
M (X) = exp

(
L̂ξ
)
VM (X) . (2.18)

Note that here both sides depend on X, not X ′. The question now is whether there is an

associated generalized coordinate transformation X → X ′ = X − ξ(X) + · · · so that this

implies the same field transformation as (2.1). This turns out to be a technically rather non-

trivial problem. We have confirmed in [14] that, in an expansion in ξ, the two transformations

agree if

X ′M = e−ΘK(ξ)∂KXM , (2.19)

where

ΘK(ξ) = ξK + δK3 (ξ) +O(ξ5) , with δK3 (ξ) ≡ 1

12
(ξξL)∂KξL , (2.20)

using the short-hand notation ξ = ξP∂P . For ordinary diffeomorphisms in standard geometry

one would simply have ΘM = ξM . The extra term in Θ carries the index on a derivative. This

implies, via the strong constraint, that on a scalar the action of such a transformation is like

that of an ordinary diffeomorphism. This is as it should be, since the generalized Lie derivative

coincides with the ordinary Lie derivative for the case of a scalar. A closed form of Θ(ξ) is not

known, nor the geometrical significance of this function.

9



With the equivalent form (2.18) of finite transformations we can immediately analyze com-

position. Consider the consecutive action of two exponentials, with parameters ξ1 and ξ2,

respectively,

eL̂ξ1(X)eL̂ξ2(X) = e
L̂ ξc

12
(X) . (2.21)

The resulting transformation, indicated on the right hand side, has a parameter that can be

computed with the Baker-Campbell-Hausdorff (BCH) relation. Indeed, using the commutator

of generalized Lie derivatives, [
L̂ξ1 , L̂ξ2

]
= L̂[ξ1,ξ2]C , (2.22)

with the C-bracket

[
ξ1, ξ2

]M
C
≡ ξN1 ∂N ξ

M
2 −

1

2
ξ1N∂

M ξN2 − (1↔ 2) , (2.23)

the result reads

ξc12 = ξ2 + ξ1 +
1

2

[
ξ2, ξ1

]
C
+

1

12

([
ξ2,
[
ξ2, ξ1

]
C

]
C
+
[
ξ1,
[
ξ1, ξ2

]
C

]
C

)
+ . . . . (2.24)

If we had the Lie bracket rather than the C-bracket in here, this formula would encode the

familiar group structure of diffeomorphisms: acting with two diffeomorphisms is equivalent to

acting with one that is simply the composition of maps of the first two. Here, however, we have

the C-bracket, which in turn implies that acting with two generalized coordinate transformations

is equivalent to a third, but this third one is not given by the direct composition of maps, thereby

reflecting a novel group structure.

This observation has a curious consequence because the C-bracket (2.23) has a non-trivial

Jacobiator. This leads to a form of non-associativity, as we now explain. Acting on fields,

symmetry transformations are always associative. Thus we must have

(
eL̂ξ1(X)eL̂ξ2(X)

)
eL̂ξ3(X) = eL̂ξ1(X)

(
eL̂ξ2(X)eL̂ξ3(X)

)
. (2.25)

To verify this, we use the notation ξc(ξ2, ξ1) = ξc12 for the parameter in (2.24) and note that

the above requires

exp
(
L̂ ξc(ξ3,ξc(ξ2,ξ1))

)
= exp

(
L̂ ξc(ξc(ξ3,ξ2),ξ1)

)
. (2.26)

A straightforward computation shows, however, that the gauge parameters differ,

ξc
(
ξ3 , ξ

c(ξ2, ξ1)
)

= ξc
(
ξc(ξ3, ξ2) , ξ1

)
− 1

6
J(ξ1, ξ2, ξ3) +O(ξ4) , (2.27)

where

J(ξ1, ξ2, ξ3) =
[
ξ1,
[
ξ2, ξ3

]
C

]
C
+ cyclic , (2.28)

is the C-bracket Jacobiator. This Jacobiator is actually a trivial parameter: JM = ∂MN , where

N is the Nijenhuis tensor defined by

N(ξ1, ξ2, ξ3) =
1

6

(〈[
ξ1, ξ2

]
C
, ξ3
〉
+ cyclic

)
. (2.29)

Generalized Lie derivatives with trivial gauge parameters vanish. The effective parameters

in (2.27) differ by a trivial term, as one can convince oneself that the higher order terms
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are also Jacobiators. As a result (2.26) holds. Therefore, as field transformations the gauge

transformations are perfectly associative.

Intriguingly, this does not hold as transformations of coordinates. In order to see this

consider three consecutive coordinate transformations defined by the maps mi with i = 1, 2, 3:

m1 : X → X ′ , X ′ = e−Θ(ξ1)(X)X ,

m2 : X
′ → X ′′ , X ′′ = e−Θ(ξ2)(X′)X ′ ,

m3 : X
′′ → X ′′′ , X ′′′ = e−Θ(ξ3)(X′′)X ′′ .

(2.30)

The map m21 = m2 ⋆m1 that defines the generalized diffeomorphism associated with the action

of m1 followed by m2 is given by

m21 : X → X ′′ X ′′ = e−Θ(ξc(ξ2,ξ1))(X)X . (2.31)

Having three successive transformations they can be implemented in two different ways resulting

in maps mα and mβ:

mα = m3 ⋆ (m2 ⋆ m1) : X → X ′′′
α X ′′′

α = exp
[
−Θ(ξc(ξ3, ξ

c(ξ2, ξ1)))
]
X ,

mβ = (m3 ⋆ m2) ⋆ m1 : X → X ′′′
β X ′′′

β = exp
[
−Θ(ξc(ξc(ξ3, ξ2), ξ1))

]
X .

(2.32)

To cubic order in parameters

Θ(ξc(ξ3, ξ
c(ξ2, ξ1))) = ξc(ξ3, ξ

c(ξ2, ξ1)) + δ3(ξ1 + ξ2 + ξ3) +O(ξ4) ,

Θ(ξc(ξc(ξ3, ξ2), ξ1)) = ξc(ξc(ξ3, ξ2), ξ1)) + δ3(ξ1 + ξ2 + ξ3) +O(ξ4) .
(2.33)

It then follows from (2.27) that

Θ
(
ξc
(
ξ3 , ξ

c(ξ2, ξ1)
))

= Θ
(
ξc
(
ξc(ξ3, ξ2) , ξ1

))
− 1

6
J(ξ1, ξ2, ξ3) +O(ξ4) . (2.34)

We therefore have

X ′′′
α (X) = exp

[
−Θ

(
ξc
(
ξc(ξ3, ξ2) , ξ1

))
+ 1

6J(ξ1, ξ2, ξ3) +O(ξ4)
]
X

= exp
[
−Θ

(
ξc
(
ξc(ξ3, ξ2) , ξ1

))]
exp
[
1
6J(ξ1, ξ2, ξ3)

]
X +O(ξ4)X

= exp
[
−Θ

(
ξc
(
ξc(ξ3, ξ2) , ξ1

))](
X + 1

6J(ξ1, ξ2, ξ3)X
)
+O(ξ4)X

= X ′′′
β (X) + 1

6J(ξ1, ξ2, ξ3)X +O(ξ4)X

= X ′′′
β (X) + 1

6
~∂N(ξ1, ξ2, ξ3) +O(ξ4)X ,

(2.35)

where we used J = ∂KN ∂K = (~∂N)K∂K . In components we write

X ′′′
α

K
(X) = X ′′′

β
K
(X) + 1

6∂
KN(ξ1, ξ2, ξ3) +O(ξ4)X . (2.36)

This is the failure of associativity of the ⋆ composition of generalized diffeomorphisms, calculated

to leading order. Only the Jacobiator contributes to this order. The anomalous term δ3 in Θ(ξ)

cancelled out. In the next subsection we will illustrate this fact by inspecting simultaneous

general coordinate and b-field gauge transformations.
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2.3 Simultaneous diffeomorphisms and b-field gauge transformations

For definiteness we take the solution of the strong constraint for which all fields depend only

on x. Then we can still consider the generalized coordinate transformation

xi′ = xi′(x) , x̃′i = x̃i − ζi(x) , (2.37)

corresponding to a simultaneous general coordinate and b-field gauge transformation. As the

gauge parameters depend only on x this is consistent with the strong constraint. In absence of

abelian isometries these are essentially the only residual transformations compatible with this

solution of the strong constraint. We compute

∂X ′
M

∂XP
=




∂xi′

∂xp

∂x̃′

i

∂xp

∂xi′

∂x̃p

∂x̃′

i

∂x̃p


 ≡

(
Λp

i(x) −∂pζi
0 δpi

)
, (2.38)

where we treated P is a row index and M as a column index, and we introduced the notation

Λp
i(x) ≡ ∂xi′

∂xp
. (2.39)

The inverse matrix is then given by

∂XQ

∂X ′
M

=

(
∂xq

∂xi′

∂x̃q

∂xi′

∂xq

∂x̃′

i

∂x̃q

∂x̃′

i

)
, (2.40)

where

∂xq

∂xi′
= (Λ−1)i

q ,
∂xq

∂x̃′i
= 0 ,

∂x̃q
∂x̃′i

= δq
i ,

∂x̃q
∂xi′

= (Λ−1)i
p ∂pζq . (2.41)

With (2.38) and (2.41) we now can compute the various components of the matrix F defined

in (2.2), using the usual splitting M = (i ,
i),

Fi
j = (Λ−1)i

j , F i
j = Λj

i , F ij = 0 ,

Fij =
1

2

(
(Λ−1)i

pΛj
q ∂pζq − ∂jζi + (Λ−1)i

p
(
∂pζj − ∂jζp

))
.

(2.42)

We note that in this case the two terms in F are different and thus both needed. As a consistency

check one may verify F ∈ O(D,D),

FM
P FN

P = δM
N . (2.43)

Specializing (2.1) to components we have, for instance,

g′ij(x′) = H′ij(x′) = F i
k F j

lHkl = Λk
i Λl

j gkl =
∂xi′

∂xk
∂xj′

∂xl
gkl , (2.44)

i.e., the metric still transforms with a standard general coordinate transformation. For the

transformation of the b-field we have to inspect an off-diagonal component,

−g′ip b′pj = H′i
j = F iK Fj

LHKL = F i
k Fj

LHk
L = F i

k Fj
lHk

l + F i
k FjlHkl

= Λk
i
[
(Λ−1)j

lHk
l +

1

2

(
(Λ−1)j

p Λl
q ∂pζq − ∂lζj + (Λ−1)j

p
(
∂pζl − ∂lζp

))
Hkl
]

= −Λk
igkl
[
(Λ−1)j

p blp − 1
2(Λ

−1)j
p ∂pζq Λl

q + 1
2 ∂lζj − (Λ−1)j

p ∂[pζl]

]
,

(2.45)
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where we use the (anti)symmetrization convention [ab] = 1
2(ab − ba). Writing g′ip b′pj =

Λk
iΛl

pgkl b′pj the above expression quickly yields the following transformation for b:

b′ij = (Λ−1)i
k (Λ−1)j

l
(
bkl + ∂[k ζl]

)
+ 1

2

(
(Λ−1)i

k∂kζj − (Λ−1)j
k∂kζi

)
. (2.46)

In the last term Λ−1 just transforms ∂ into ∂′ and so the result can also be written as

b′ij =
∂xk

∂x′i
∂xl

∂x′j
(
bkl + ∂[k ζl]

)
+ ∂′[i ζj] . (2.47)

This can be viewed as a b-field gauge transformation, followed by a diffeomorphism, followed

by another b-field gauge transformation, with the same parameter, but performed in the new

coordinate system. An alternative writing is obtained by recalling that ∂[k ζl] transforms as a

two-form, so that we also have

b′ij(x
′) =

∂xk

∂x′i
∂xl

∂x′j
bkl(x) +

1

2

(
∂′i
(
ζ ′j(x

′) + ζj(x)
)
− ∂′j

(
ζ ′i(x

′) + ζi(x)
))

, (2.48)

where ζ ′i(x
′) = ∂xk

∂x′i ζk(x) is the coordinate transformed one-form parameter. Thus, the resulting

transformation is a general coordinate transformation together with a b-field gauge transfor-

mation with respect to a parameter that is the average of the original one and the coordinate

transformed one. Note that for a trivial coordinate transformation both terms agree; in partic-

ular a trivial transformation is given by x′i = xi, x̃′i = x̃i − ∂iχ.

The particular combination (2.48) is forced on us by the original O(D,D) covariant form of

generalized coordinate transformations, which in turn is compatible with the C-bracket. As we

discussed above, the C-bracket has a non-trivial Jacobiator, leading to the non-associativity of

coordinate transformations. We will illustrate in the next subsection the unusual composition

law for the coordinate transformations underlying the transformations (2.48) and the non-

associativity of successive compositions.

2.4 Composition, Courant-bracket and non-associativity

Let us now ask the question how the simultaneous general coordinate and b-field gauge trans-

formations compose. We will see that they do not compose in the naive sense of coordinate

maps, i.e., the ‘group structure’ will be non-trivial. To this end let us consider the consecutive

action of two generalized coordinate transformations,

m1 : x′i = x′i(x) , x̃′i = x̃i − ζ1i(x) ,

m2 : x′′i = x′′i(x′) , x̃′′i = x̃′i − ζ ′2i(x′) ,
(2.49)

where we denoted the transformations by m1 and m2 for later use. We note that we have

chosen a notation with a ′ on ζ2 that is in principle redundant, because there is no independent

definition of a ζ2(x), but it is convenient in order to remind us with respect to which coordinate

systems the parameters are originally defined. The first transformation in (2.49) leads by use

of (2.48) to

b′ij(x
′) =

∂xk

∂x′i
∂xl

∂x′j
bkl(x) +

1

2

(
∂′i
(
ζ ′1j(x

′) + ζ1j(x)
)
− ∂′j

(
ζ ′1i(x

′) + ζ1i(x)
))

. (2.50)
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Similarly, the second transformations leads to

b′′ij(x
′′) =

∂x′p

∂x′′i
∂x′q

∂x′′j
b′pq(x

′) +
1

2

(
∂′′i
(
ζ ′′2j(x

′′) + ζ ′2j(x
′)
)
− ∂′′j

(
ζ ′′2i(x

′′) + ζ ′2i(x
′)
))

. (2.51)

Inserting now (2.50) in the first term in here we get

∂x′p

∂x′′i
∂x′q

∂x′′j
b′pq(x

′) =
∂xk

∂x′′i
∂xl

∂x′′j
bkl(x) +

1

2

∂x′p

∂x′′i
∂x′q

∂x′′j
∂′p
(
ζ ′1q(x

′) + ζ1q(x)
)
− (i↔ j)

=
∂xk

∂x′′i
∂xl

∂x′′j
bkl(x) +

1

2

(
∂′′i ζ

′′
1j(x

′′) +
∂x′q

∂x′′j
∂′′i ζ1q(x)− (i↔ j)

)
,

(2.52)

where we used again that ∂′[pζ
′
q] transforms as a 2-form, and we used the chain rule in the last

term. This last term can be written as

1

2

∂x′q

∂x′′j
∂′′i ζ1q(x) =

1

2
∂′′i

( ∂x′q
∂x′′j

ζ1q(x)
)
− 1

2

∂2x′q

∂x′′i∂x′′j
ζ1q(x) . (2.53)

The last term is symmetric in i, j and thus drops out in (2.52). Thus we have

∂x′p

∂x′′i
∂x′q

∂x′′j
b′pq(x

′) =
∂xk

∂x′′i
∂xl

∂x′′j
bkl(x) +

1

2
∂′′i

(
ζ ′′1j(x

′′) +
∂x′q

∂x′′j
ζ1q(x)

)
− (i↔ j) . (2.54)

Using this now in (2.51) we obtain

b′′ij(x
′′) =

∂xk

∂x′′i
∂xl

∂x′′j
bkl(x)+

1

2
∂′′i

(
ζ ′′1j(x

′′)+
∂x′q

∂x′′j
ζ1q(x)+ ζ

′′
2j(x

′′)+ ζ ′2j(x
′)
)
− (i↔ j) . (2.55)

This is the final form of the consecutive action of (2.49) on the b-field.

Let us now see how this compares to the transformation associated with the naive compo-

sition of the generalized coordinate transformations. To this end we have to view this transfor-

mation as a single generalized coordinate transformation X → X ′′. According to (2.48) such a

transformation acts as

b′′ij(x
′′) =

∂xk

∂x′′i
∂xl

∂x′′j
bkl(x) +

1

2
∂′′i

(
ζ ′′12j(x

′′) + ζ12j(x)
)
− (i↔ j) , (2.56)

where

x̃′′i = x̃i − ζ12i(x) , (2.57)

for some effective parameter ζ12i(x). Next we have to compare this parameter with the one

that would emerge from direct composition of the two transformations (2.49), which we denote

by ϑ12. This parameter is easily computed,

x̃′′i = x̃′i − ζ ′2i(x′) = x̃i − ζ ′2i(x′)− ζ1i(x) ≡ x̃i − ϑ12i(x) , (2.58)

and thus

ϑ12i(x) = ζ ′2i(x
′) + ζ1i(x) . (2.59)

In here, of course, we have to think of x′ as a function of x according to (2.49), in order for

both sides to be functions of x. Replacing ζ12 by ϑ12 in (2.56) yields

b′′ij(x
′′) =

∂xk

∂x′′i
∂xl

∂x′′j
bkl(x)+

1

2
∂′′i

(
ζ ′′1j(x

′′)+ ζ1j(x)+
∂xk

∂x′′j
ζ ′2k(x

′)+ ζ ′2j(x
′)
)
− (i↔ j) . (2.60)
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Comparing with (2.55) it is evident that this differs, for generic values of ζ1 and ζ2, in the

second term from the actual transformation b → b′′. This is, of course, what we expected,

since we saw above that composition is governed by the C-bracket, which differs from the Lie

bracket governing ordinary composition of diffeomorphisms when one considers both a non-zero

diffeomorphism and b-field gauge parameter.

It would be convenient to have a closed expression for the effective parameter ζ12 in terms

of ζ1 and ζ2 in order to investigate the unconventional rules of composition in more detail. One

can, of course, determine ζ12 to arbitrary order in an derivative expansion by using the BCH

formula and the C-bracket. However, so far we did not find a simple closed expression for ζ12,

but one may hope that a better analytic understanding of the composition is possible. It is

likely that this would require a better parametrization of the transformations (2.49).

We close this section by discussing why generalized coordinate transformations of the type

(2.49) are necessarily non-associative as transformations of coordinates when both the diffeo-

morphism and the b-field gauge parameter are non-trivial. This follows from the specific form

of the Jacobiator of the C-bracket,

J(U, V,W ) =
[[
U, V

]
C
,W
]
C
+
[[
V,W

]
C
, U
]
C
+
[[
W,U

]
C
, V
]
C
, (2.61)

which is given by

J(U, V,W ) =
1

6
∂M
(〈[

U, V
]
C
,W
〉
+
〈[
V,W

]
C
, U
〉
+
〈[
W,U

]
C
, V
〉)

, (2.62)

c.f. (2.29) above. From the structure of the C-bracket it follows that this vanishes for ∂̃i = 0

when all three arguments have only vector parts, i.e., when Ui = 0, etc. In contrast, for

non-zero vector and one-form contributions this is non-zero. In particular, the composition

of three transformations with non-zero diffeomorphism and b-field gauge parameter leads to a

non-trivial Jacobiator. Thus, if we add to the two transformations m1 and m2 in (2.49) a third

transformation m3 and if we denote the composition of generalized coordinate transformations

by ⋆, it follows that generically

m3 ⋆ (m2 ⋆ m1) 6= (m3 ⋆ m2) ⋆ m1 . (2.63)

In other words, combined diffeomorphisms and b-field gauge transformations are non-associative

when viewed as coordinate transformations on the doubled space. On the contrary, as we

explained above, these transformations are perfectly associative when acting on fields.1

3 O(d, d) as generalized coordinate transformations

In this section we discuss the realization of particular O(D,D) transformations as generalized

coordinate transformations of DFT. It turns out that in presence of d commuting isometries,

i.e., for field configurations that are independent of d coordinates, the O(d, d) subgroup can be

viewed as part of the generalized coordinate transformations. The action on the coordinates is,

however, different from the naive O(d, d) action but nevertheless reproduces the required field

1Further comments on the diffeomorphisms of DFT can be found in [24].
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transformations. In order to understand this somewhat unexpected feature, in the first subsec-

tion we discuss again, but from a different perspective, how the generalized diffeomorphisms of

DFT differ from ordinary diffeomorphisms. In the second subsection we discuss explicitly how

to realize O(d, d) transformations as generalized coordinate transformations.

3.1 The role of O(D,D) and its invariant metric

We have seen above that the presence of a gauge invariant flat metric ηMN does not impose

constraints on the geometry of the D-dimensional subspace of the doubled space since the gauge

transformations (or coordinate transformations) are governed by generalized Lie derivatives

(or generalized coordinate transformations). Here we will briefly elucidate this point from

yet another perspective.2 We explain that generalized diffeomorphisms cannot be viewed as

ordinary diffeomorphisms in a doubled space subject to constraints such as, e.g., the condition

that they preserve the constant metric ηMN .

Naively, one may have tried to implement a doubled geometry with O(D,D) metric ηMN

as follows. Start from a conventional 2D-dimensional manifold M2D, thus governed by the

conventional diffeomorphism group Diff(M2D), but impose the additional condition that it

respects the O(D,D) metric ηMN . This would be in complete analogy to symplectic geometry,

where one starts with a 2D-dimensional manifold, but then imposes the constraint that a

symplectic form is left invariant. This in turn reduces the diffeomorphism group to the (still

infinite-dimensional) group of symplectomorphisms. Applying the same strategy to theO(D,D)

metric we would require

δξηMN = LξηMN = ξK∂KηMN + ∂M ξ
KηKN + ∂Nξ

KηKM = 0 . (3.1)

Using ηMN to raise and lower indices this condition becomes

∂M ξN + ∂NξM = 0 . (3.2)

This is the usual Killing equation on a flat space, whose general solution is ξM = aM+ΛMNX
N ,

with aM and ΛMN = −ΛNM constant, corresponding to translations and rigid SO(D,D)

transformations. Thus, the diffeomorphism group is reduced according to

Diff(M2D) → ISO(D,D) . (3.3)

If we now apply such a transformation to another tensor, say a vector VM , we can use condition

(3.2) and write

δξVM = ξK∂KVM + ∂Mξ
KVK

= ξK∂KVM +
1

2

(
∂Mξ

K − ∂KξM
)
VK .

(3.4)

This differs from the generalized Lie derivative L̂ξVM = ξK∂KVM +
(
∂Mξ

K − ∂KξM
)
VK due to

the factor of one-half in the last term. This shows quite clearly that the generalized diffeomor-

phisms cannot be interpreted as conventional diffeomorphisms on the doubled space. In fact,

2OH thanks Axel Kleinschmidt for discussions on this point.
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while the generalized Lie derivatives close according to the modified C-bracket, by construction

the similarly looking transformations (3.4) must still close according to the conventional Lie

bracket. To verify this we compute the commutator

[
δξ1 , δξ2

]
VM =

[
ξ2, ξ1

]K
∂KVM +

1

2

(
∂M
[
ξ2, ξ1

]K − ∂K
[
ξ2, ξ1

]
M

)
VK

− 1

4

((
∂Mξ2K + ∂Kξ2M

)(
∂KξL1 + ∂LξK1

)
− (1↔ 2)

)
VL ,

(3.5)

with the conventional Lie bracket

[
ξ1, ξ2

]K
= ξL1 ∂Lξ

K
2 − ξL2 ∂LξK1 . (3.6)

The first line in (3.5) gives the expected transformation δξ12VM with ξ12 = [ξ2, ξ1], while in the

second line only terms with the symmetrized derivative of the parameters survived, which are

zero by (3.2). Thus, the gauge transformations (3.4) close according to the usual Lie bracket.

In summary, if we work with a conventional 2D-dimensional manifold with metric ηMN ,

diffeomorphisms are restricted to ISO(D,D) transformations to preserve the metric, and their

closure is governed by the usual Lie bracket. These transformations do not contain the full

D-dimensional diffeomorphism group but only its rigid subgroup GL(D,R) ⊂ ISO(D,D). If

we work instead with a generalized 2D-dimensional manifold with metric ηMN , we impose the

strong constraint on all fields and gauge parameters. Generalized diffeomorphisms preserve the

constant form of ηMN because generalized Lie derivatives satisfy L̂ξηMN = 0 for all ξM . Gen-

eralized Lie derivatives close with an algebra governed by the C-bracket. The strong constraint

restricts the possible generalized diffeomorphisms but allows arbitrary conventional diffeomor-

phisms of the D-dimensional subspace, thereby not posing any constraints on the physical

spacetime.

As we will discuss below, for backgrounds with commuting isometries, e.g., for torus back-

grounds T d, generalized diffeomorphisms include the T-duality O(d, d) transformations, but

with gauge parameters that differ from the naive O(d, d) ansatz. Specifically, in a particular

form of the generalized coordinate transformations (related to others by a trivial gauge trans-

formation, c.f. eq. (2.13) above) it differs by factors of one-half, which are related to those

encountered above.

3.2 O(d, d) and dimensional reduction

We now discuss how for special field configurations O(d, d) transformations result from gener-

alized coordinate transformations. This is relevant for configurations for which the fields are

independent of a subset of d coordinates. This condition on the background holds if we have,

for example, d commuting isometries, taken to mean that all fields have zero Lie derivatives

along d vector fields that have zero Lie brackets. The reduction, called strict dimensional reduc-

tion, is different from Kaluza-Klein compatification, where massive modes arise from coordinate

dependence along the extra dimensions.

Specifically, we split the coordinates into (xµ, yα), α = 1, . . . , d, and assume that metric

and b-field are independent of yα. We then focus on the O(d, d) action on the field components
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along the coordinate directions yα, which we may combine into a d× d-dimensional matrix,

Eαβ = gαβ + bαβ . (3.7)

The O(d, d) transformations are then encoded in the usual covariant rotation of the generalized

metric or, equivalently, by

E ′ = gO(d,d)E = (AE +B) (CE +D)−1 . (3.8)

Here gO(d,d) is an O(d, d) group element of the form

gO(d,d) =

(
A B

C D

)
, (3.9)

with d-dimensional matrices A,B,C,D satisfying

AtC + CtA = 0 , BtD +DtB = 0 , AtD + CtB = I . (3.10)

Our task is now to realize the required O(d, d) transformations as generalized coordinate

transformations in DFT. Throughout this section we will not assume any topological condi-

tions for the background configurations and so we ignore the question whether the generalized

coordinate transformations to be given below are ‘globally well-defined’. In other words, we

assume the ‘internal’ space on which O(d, d) acts to be non-compact, with fields independent of

these coordinates, which is the case relevant for a strict dimensional reduction. The physically

more relevant case of toroidal backgrounds requires some care for the quantization conditions

and will be discussed in detail in the next section.

Before we consider the relevant special subgroups of O(d, d) let us first discuss the action

of a generic O(d, d) element hMN viewed as the coordinate transformation of the (doubled)

internal coordinates YM = (ỹα, y
α)

Y ′M = hMNY
N , or Y ′ = hY . (3.11)

A straightforward computation, whose details can be found in [14], shows that the above coor-

dinate transformation leads to an F of the form

FM
N =

[(
h−1

)2]M
N . (3.12)

This means that as far as the rotation of field components is concerned, it acts as the square

of the expected matrix, while for the transformation of the coordinate argument it acts as

expected. But since the fields are assumed to be independent of Y this allows us to modify the

transformations in order to fix the field transformations. We now turn to the various special

subgroups for which we will see that the coordinate transformations can be adapted, e.g. by

taking the square root, so as to induce the required field transformation.

(i) GL(d) transformations

These are given in terms of the subgroup defined by A,D ∈ GL(d) with

D = (At)−1 , B = C = 0 . (3.13)
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The action of this GL(d) subgroup of O(d, d) rotates both the y coordinates and their duals ỹ.

We can consider, however, the transformation that rotates the y’s but not the ỹ’s:

y′ = (At)−1y . (3.14)

These are trivially contained in the generalized coordinate transformations of DFT. An equiv-

alent transformation at the level of fields, and thus related to the above by a ‘trivial’ transfor-

mation, rotates y and ỹ with the square root of the O(d, d) matrix (assuming this element is in

the component connected to the identity).

(ii) Shifts in the b-field

Constant shifts in the b-field are given by the following matrices:

A = D = I , C = 0 → Bt = −B . (3.15)

These transformations can be viewed as generalized coordinated transformations (2.9) that

implement b-field gauge transformation (2.8),

ỹ′α = ỹα − ξ̃α(y) , ξ̃α(y) =
1

2
Bαβy

β . (3.16)

Note that there is a additional factor of one-half when comparing this generalized coordinate

transformation with the O(d, d) transformation induced by (3.15) acting on the coordinates as

an O(d, d) vector. This factor of one-half should not come as a surprise, for it corresponds

precisely to the same factor encountered in sec. 3.1 when comparing conventional coordinate

transformations on a doubled space with the generalized coordinate transformations of DFT.

There is no contradiction in the appearance of this factor one-half, because the fields do not

depend on ỹ, and thus their arguments are not transformed, with the result that the field trans-

formations are exactly as required by the O(d, d) action. Let us note that when considering the

double torus, a transformations with these factors of one-half may be incompatible with the pe-

riodicity conditions. We will see, however, that in these cases there is an alternative coordinate

transformation, with the same action on fields, i.e., related by a trivial gauge transformation,

that is compatible with the torus identifications.

(iii) Shifts in β

These are the transformations that are conjugate to (ii), i.e.

A = D = I , B = 0 → Ct = −C . (3.17)

This transformation corresponds to constants shifts of the β field defined in (2.11). It can again

be viewed as a generalized coordinated transformation, this time in the form (2.10). In order

to see this recall that in (3.12) we obtained for the naive coordinate transformation the square

of the O(d, d) matrix. Thus, while generally the O(d, d) transformations cannot be viewed as

generalized coordinate transformations, they do allow for such an interpretation in case of group

elements connected to the identity and for backgrounds with abelian isometries (for which the

fields do not depend on the corresponding coordinates). For then we can simply take the square

root of the O(d, d) element so that the rotation of field components is as required. Specialized

to (3.17) this amounts to replacing the O(d, d) matrix according to

hMN (C) =

(
δα

β 0

Cαβ δαβ

)
⇒

(√
h
)M

N (C) =

(
δα

β 0

1
2C

αβ δαβ

)
. (3.18)
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Equivalently, this amounts to choosing in (2.10)

ξα(ỹ) =
1

2
Cαβ ỹβ , (3.19)

which by construction induces the expected β gauge transformation. Note that the parameter

now depends on ỹα, which is compatible with the strong constraint since we assumed that there

are isometries along the dual yα directions. Note also that there is an additional factor of one-

half when comparing this transformation with the corresponding element of O(d, d), because

we needed to take the square root. This, again, is perfectly consistent and to be expected in

view of the discussion in sec. 3.1, but in order to be compatible with the torus identifications we

will eventually adopt again a modified generalized coordinate transformation without factors

of one-half.

(iv) Factorized T-duality along all directions

Finally, for the so-called factorized T-duality along all directions one may choose an O(d, d)

matrix of the form

A = D = 0 , C = B = I , (3.20)

which exchanges x coordinates and x̃ coordinates.3 In this case we have to distinguish between

d odd and d even. In fact, for d odd we are dealing with an O(d, d) element that cannot be

continuously connected with the identity element of O(d, d). In contrast, for d even we can find

a continuous path connecting the identity with an O(d, d) transformation exchanging x and x̃.

Only in the latter case can we associate such a T-duality transformation with a generalized

coordinate transformation in generality, as we will now discuss, giving a counter-example for

d = 1.

Let us now investigate the simplest example, d = 1, in which case the most general (constant)

coordinate transformation takes the form

Y ′ =

(
ỹ′

y′

)
= QY , Q =

(
a b

c d

)
∈ GL(2,R) . (3.21)

Note that for generality here we do not restrict to an O(2, 2) matrix, because viewed as a

coordinate transformation a priori we may employ a general, invertible transformation. The

transformation matrix F is then given by

F =
1

2

(
(Q−1)tηQη + ηQη(Q−1)t

)
=

1

ad− bc

(
d2 − bc 0

0 a2 − bc

)
. (3.22)

In order for this transformation to describe the overall factorized T-duality inversion it would

have to be of an off-diagonal form, such as

F =

(
0 1

1 0

)
. (3.23)

This follows since in a generalized coordinate transformation F acts on the generalized metric

H in the same way as an O(d, d) element and so would have to be of the (off-diagonal) matrix

3A factorized T duality is a ‘genuine’ T-duality transformation in the sense that it is an O(d, d) transformation

that does not belong to the ‘geometric subgroup’ GL(d,R) ⋉ R
1

2
d(d−1) that originates from special general

coordinate transformations and b-field gauge transformations.
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form of a factorized T-duality. There is, however, clearly no solution for a, b, c, d that satisfies

this condition.

We now turn to the case that d is even, focusing on d = 2. For this case an explicit continuous

family of O(2, 2) matrices connecting the identity with a genuine T-duality transformation was

constructed in appendix A.3 in the second reference of [27]. This family is defined by

h(α) = exp
[
α
(
T 14 + T 12 + T 32 + T 34

)]
, α ∈

[
0,

π

2

]
, (3.24)

where (TMN )KL = 2ηK[MδN ]
L denote the O(d, d) generators in the fundamental representation.

For α = 0 this gives the identity matrix, while for α = π
2 we obtain

h(π2 ) =




0 0 −1 0

0 0 0 −1
−1 0 0 0

0 −1 0 0


 , (3.25)

which is the action of two T-dualities, in directions 1 and 2. Since we saw in eq. (3.12) that in

order to reproduce a genuine T-duality transformation as a generalized coordinate transforma-

tion we have to take the square root of the O(d, d) matrix this is what we have to do for (3.25).

Since this transformations is connected to the identity this is straightforward and we obtain

(
h(π2 )

) 1
2 = h(π4 ) =

1

2




1 1 −1 1

−1 1 −1 −1
−1 1 1 1

−1 −1 −1 1


 . (3.26)

By construction, the corresponding generalized coordinate transformation X → X ′ = h(π4 )X

induces the same O(d, d) transformation on fields as (3.25). We will use (3.26), in an alternative

form with an identical action on fields, to discuss a (genuinely) non-geometric background.

4 T-folds as well-defined backgrounds in DFT

In this section we discuss particular spacetimes in DFT and their patching conditions as gen-

eralized coordinate transformations. Conventional spacetime manifolds are generally encoded

in DFT via coordinate patchings that involve only the x, not the x̃, for which the gener-

alized coordinate transformations of DFT reduce to the usual coordinate transformations of

conventional differential geometry. In contrast, for certain special toroidal backgrounds we can

allow for patching conditions that involve the x̃, in which case the coordinate transformations

are related but not identical to O(d, d) transformations. This will be illustrated with various

examples.

4.1 Generalities

We start by discussing generalized string backgrounds, which are configurations that are defined

using generalized coordinate transformations for patching together different coordinate charts
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instead of the standard diffeomorphisms used for differentiable Riemannian manifolds. Known

examples are T-folds [28,29], namely non-geometric string backgrounds with so-called Q-fluxes

that are locally Riemannian spaces but fail to be so globally because field configurations around

non-trivial homology cycles are glued using T-duality transformations rather than b-field gauge

transformations or diffeomorphisms. In addition to their essential role for the definition of T-

folds, T-duality transformations often relate geometrical and non-geometrical backgrounds to

each other. For example, a three-dimensional torus with constant H-field is T-dual along one

direction to a geometrical twisted torus, which after a T-duality transformation along a second

direction is T-dual to a three-dimensional T-fold with non-geometric Q-flux. Performing one

more T-duality transformation along the third direction one obtains a non-geometric R-flux

background, leading to the well-known chain [30]

Habc
Tx−→ fabc

Ty−→ Qc
ab Tz−→ Rabc . (4.1)

Here, fabc = −2e[bmec]n∂mena is the ‘geometric flux’ related to the Levi-Civita spin connection.

The R-flux background is usually thought not to be a Riemannian space, even locally. Using

DFT and dual coordinates, however, one can begin to make sense of the background associated

with an R-flux space.

The geometric interpretation of the new fluxes Q and R, in contrast to H and f , is not clear

a priori in terms of the usual 10-dimensional supergravities. However, as the non-geometric

fluxes are obtained through O(D,D) transformations we can use DFT to formulate an action

for non-geometric string backgrounds, which is on equal footing with the original NS action

in eq. (1.1). To be more specific, as explained in [25, 26, 31–34], one can perform certain field

redefinitions of the metric g and the b-field, which have the form of O(D,D) transformations,

and which lead to new background variables, namely a metric g̃ij , a bivector βij instead of the b-

field, and a dilaton φ̃. Alternatively, we can take a different parametrization of the fundamental

generalized metric in terms of a metric and a bivector rather than a 2-form, see (2.11). The

action written in terms of these variables schematically takes the form

S =

∫
dDxdDx̃

√
−g̃e−2φ̃

[
R̃+ 4(∂φ̃)2 − 1

4
Q2 + · · ·

]
, (4.2)

where the dots represent terms that vanish when we set the differential operators βij∂j and ∂̃i

equal to zero. The non-geometric Q-flux (replacing H) is given by

Qi
jk = ∂iβ

jk . (4.3)

This action is invariant under beta gauge transformations of the form (2.12). Although this is

not manifest in the above form, one can show that Q plays a natural role as (part of) a new

connection ∇̃i for the winding derivatives [25], see also [34]. More precisely, the Q2 term in

the above action then becomes part of a second (dual) Einstein-Hilbert term involving winding

derivatives. Moreover, as discussed in [25], the full DFT action written in this form also encodes

R-flux contributions, which read

Rijk = 3
(
∂̃[iβjk] + βp[i∂pβ

jk]
)
. (4.4)

This is a tensor under the ‘beta gauge transformations’ (2.12) parametrized by ξi. Its leading

term is the complete T-dual of the H-flux and not visible in conventional geometry with only
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x coordinates. Its subleading term, however, is visible in conventional supergravity written

in terms of the new variables g̃ij and βij. We finally note that one can also show [35] that

non-geometric objects like Q-branes are globally well-defined solutions of the action (4.2), in

analogy to their T-dual counterparts, the NS-5-branes, which are well-defined solutions of the

original action (1.1).

In the following we will discuss some aspects of non-geometric backgrounds and their cor-

responding O(D,D) monodromy transformations. We will show that these can be seen as

generalized coordinate transformations, which define the generalized patching conditions of the

non-geometric background spaces. In particular, we will discuss a background that is genuinely

non-geometric in the sense that it is not T-dual to a geometric background, but which can nev-

ertheless be consistently defined in DFT by virtue of generalized coordinate transformations

that take the form of factorized T-dualities.

The D = (d+ d′)-dimensional backgroundsMd+d′ to be considered in the following can be

described in a convenient uniform manner: they all take the form, at least locally, of a fibration

of a d-dimensional torus T d
f over a d′-dimensional base Bd′ :

T d
f →֒ Md+d′ → Bd′ . (4.5)

In our examples, the base space will be the one-dimensional circle S1.

We will show that all backgrounds to be defined below are globally well-defined in DFT

according to the following universal picture. The coordinates are split into x1, x2 for the 2-

torus (augmented by the dual coordinates x̃1, x̃2 for the doubled torus) and the coordinate

z, with the identification z ∼ z + 2π. We consider backgrounds whose metric and b-field

depend only on z. In order to show that such a background is globally well-defined we have

to verify that the metric and b-field at z = 0 and z = 2π are gauge equivalent and so can be

consistently ‘glued together’. In standard supergravity this is the case if they are related by

a diffeomorphism or a b-field gauge transformation. However, DFT also allows for genuinely

non-geometric backgrounds, for which generalized coordinate transformations are required that

take the form of genuine T-duality transformations. More specifically, we will show that in

each case there is a generalized coordinate transformation of the doubled torus coordinates

(x1, x2, x̃1, x̃2) so that

H′(g′, b′)(z = 2π) = H(g, b)(z = 0) , (4.6)

as depicted graphically in Figure 1.

While for conventional backgrounds the generalized diffeomorphism used in the gluing acts

only on (x1, x2) and so reduces to a conventional diffeomorphism, for the non-geometric back-

grounds a generalized diffeomorphism is required that acts non-trivially on the full doubled

coordinates. Before we discuss this in detail, we review in the next subsection the relation

between the needed O(d, d) transformations and generalized diffeomorphisms.

We now illustrate the above general results with various examples motivated by non-

geometric string compactifications and non-geometric fluxes. For comparison with the liter-

ature on the subject it is instructive to give these transformations also in terms of the Kähler
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Figure 1: Construction of a background field configuration for a double-torus fibration over a circle z ∼
z + 2π. A generalized diffeomorphism of the double torus induces the desired identifications

of fields at z = 0 and z = 2π.

parameter ρ and the complex structure τ of the torus, which are given by

ρ = −b12 + i V , τ =
g12
g11

+ i
V

g11
, (4.7)

where V is the volume of the 2-torus. The T-duality group O(2, 2) acts on ρ and τ according

to the isomorphism

SO(2, 2) ∼= SL(2)τ × SL(2)ρ , (4.8)

with the usual SL(2) action on τ and ρ

τ ′ =
aτ + b

cτ + d
, ρ′ =

a′ρ+ b′

c′ρ+ d′
. (4.9)

The explicit embedding for the SL(2) parameters into an O(D,D) matrix as (3.9) reads [39],

A = a′

(
a b

c d

)
, B = b′

(
−b a

−d c

)
, C = c′

(
−c −d
a b

)
, D = d′

(
d −c
−b a

)
. (4.10)

4.2 3-torus with constant H-flux

We first consider a three-dimensional target space, which we take to be a flat torus along the

directions xi = (x1, x2, x3 = z), with an H-flux H3 = H̄dx1 ∧ dx2 ∧ dz, where H̄ is a constant.

The H flux is quantized according to [36]4

1

(2π)2α′

∫
H3 ∈ Z . (4.11)

For now we use conventions for which the length dimensions of fields, constants and coordinates

is given by

[g] = [b] = 0 , [α′] = L2 , [x] = L , [H̄] =
1

L
, (4.12)

4This holds for conventions in which the world-sheet string action is given by

S = −
1

4πα′

∫

dσdτ
(√

hh
αβ

∂αX
i
∂βX

j
gij + ǫ

αβ
∂αX

i
∂βX

j
bij

)

.
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where x collectively denotes the coordinates xi and L is a length scale. The metric takes the

constant form gij = δij and the coordinates are identified according to xi ∼ xi+2πRi. Therefore

the flux integral in (4.11) is given by

∫
H3 =

∫
H̄d3x = (2π)3R1R2R3 H̄ , (4.13)

so that the quantization condition (4.11) becomes

2πR1R2R3 H̄

α′ ∈ Z . (4.14)

The b-field, in a particular gauge, can be written as

b ≡ b12 = −b21 = H̄ z , (4.15)

with all other components set to zero.

Next, we investigate the question whether this background is globally well-defined. To this

end we have to compare the field configurations at z = 0 and z = 2πR3. While g is constant,

we find that for b

b(2πR3)− b(0) = 2πR3H̄ . (4.16)

This can be compensated by a b-field gauge transformation acting on the fields living in a

neighborhood of z = 2πR3. A possible choice is:

ξ̃1 = 2πR3H̄x
2 , ξ̃2 = 0 → b′ = b− 2πR3H̄ , (4.17)

so that after this gauge transformation

b′(2πR3) = b(2πR3)− 2πR3H̄ = b(0) , (4.18)

and the space is globally well-defined despite the apparent lack of periodicity in z.

As reviewed earlier, the above b-field gauge transformation can also be realized as a gener-

alized coordinate transformation which, noting (4.17), is written as

x1′ = x1 ,

x2′ = x2 ,

x̃′1 = x̃1 − 2πR3H̄x
2 , (4.19)

x̃′2 = x̃2 .

Therefore this background possesses patching conditions that are naturally viewed as DFT gen-

eralized coordinate transformations, mixing x and x̃ coordinates and thus treating the required

general coordinate and b-field gauge transformations on the same footing.

Let us now show that the above coordinate transformations on the double torus in fact

require the quantization of the H-flux. For this we take the x̃1 circle to have the radius R̃1

given by T-duality:

R̃1 =
α′

R1
. (4.20)
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Then, in (4.19), if we shift x2 → x2+2πR2 we must get the same point on the dual torus. This

requires that the resulting shift in x̃1 be some integer multiple n of 2πR̃1:

(2πR3)(2πR2) H̄ = n 2π
α′

R1
→ 2π R1R2R3

1

α′ H̄ = n , (4.21)

which is precisely the quantization condition (4.14) of the flux. We could have realized the

same duality transformation by the coordinate transformation x̃′2 = x̃2 + 2πR3H̄x
1, which

by the same argument gives the flux quantization upon taking the dual circle along x̃2 to

have radius R̃2 = α′

R2
. We have thus arrived at a purely geometric perspective on the flux

quantization condition. Let us note, finally, that for this background DFT is not strictly

needed as the patching may also be done in conventional supergravity using the allowed b-field

gauge transformations. This will change for some examples below.

We next discuss the above example for slightly different conventions, which will be more

convenient below. Specifically, we will work with dimensionless coordinates so that, e.g., the

metric becomes dimensionful, and the radii no longer enter the coordinates but the metric. To

this end we perform the coordinate transformation xi → x̂i = xi

Ri
∈ [0, 2π], dropping the hats

shortly. This leads to a metric that is given in terms of the radii Ri by

g =



R2

1 0 0

0 R2
2 0

0 0 R2
3


 . (4.22)

The new b-field after this coordinate transformation (b̂ ≡ b̂12) is given by

b̂ = R1R2 b = R1R2 H̄ z = R1R2R3 H̄ ẑ ≡ α′H ẑ , (4.23)

where we introduced

H ≡ R2R2R3H̄

α′ → 2πH ∈ Z , (4.24)

and rewrote the quantization condition (4.14). In these conventions the b̂-field has dimension

L2 and so has its one-form gauge parameter ˆ̃ξ, since the hatted coordinates are dimensionless.

We have that, schematically,
ˆ̃
ξ = Rξ̃, which leads to the expected form for the b-field gauge

transformations δb̂ = ∂̂
ˆ̃
ξ. This leads to an α′ dependence in the relation between b-field gauge

transformations and generalized coordinate transformations. In fact, defining dimension-free

dual coordinates with standard periodicity ˆ̃x ≡ x̃

R̃
= R

α′ x̃, makes the coordinate transformation

x̃′ = x̃− ξ̃ turn into

ˆ̃x′ = ˆ̃x− R

α′ ξ̃ = ˆ̃x− 1

α′
ˆ̃
ξ . (4.25)

Thus, working with dimensionless coordinates and metric and b-field of length dimension L2

we have a relative factor of α′ between the b-field gauge transformation and the generalized

diffeomorphism. Dropping the hats on fields and coordinates and setting α′ = 1, the background

field values are given by (4.22) and a b-field that is, in a particular gauge, linear in z,

b = b12 = −b21 = Hz , (4.26)

while the periodicity condition of the double torus is xi ∼ xi+2π and x̃i ∼ x̃i+2π. This is the

convention we use from now on.
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We close this section by mentioning that one can also view the above transformations as

O(2, 2) monodromy transformations in the 1,2-directions. We first note that the b-field gauge

transformation (4.17) acts on the Kähler parameter as

ρ′ = ρ+ 2πR3H̄ , (4.27)

while τ is invariant. With the above isomorphism this corresponds to the O(2, 2) matrix

h =




1 0 0 2πR3H̄

0 1 −2πR3H̄ 0

0 0 1 0

0 0 0 1


 . (4.28)

In particular, it is straightforward to verify (4.27) and the invariance of τ .

4.3 Twisted 3-torus: f-flux

Now we consider a twisted 3-torus that is a field configuration related to the flat torus with

H-flux discussed above by a T-duality in the 1-direction [36]. The metric is independent of xα,

α = 1, 2, but depends on the coordinate z,

g =




1
R2

1
−Hz

R2
1

0

− Hz
R2

1
R2

2 +
(
Hz
R1

)2
0

0 0 R2
3




. (4.29)

This is a three-dimensional so-called nilmanifold with no additional b-field.

We want to investigate whether this background is globally well-defined. As above we have

to compare the metric at z = 0 and z = 2π. One finds after a quick computation for the

complex structure τ of the 2-torus defined in (4.7)

τ(2π)− τ(0) = −2πH , (4.30)

while ρ is unchanged. This lack of periodicity can be compensated by an O(2, 2) transformation

in the 1,2-directions, so that τ ′(2π) = τ(0), with the following matrix

h =




1 2πH 0 0

0 1 0 0

0 0 1 0

0 0 −2πH 1


 , (4.31)

where we used again the explicit isomorphism (4.8). This matrix belongs to the GL(2) sub-

group. Thus, we can can reproduce this transformation by an accompanying general coordinate

transformation in the (x1, x2) coordinates,

x1′ = x1 ,

x2′ = x2 − 2πHx1 ,

x̃′1 = x̃1 ,

x̃′2 = x̃2 . (4.32)
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Thus, the space is globally well-defined. Note that the x̃ coordinates are not transformed, in

contrast to the naive O(2, 2) action of (4.31) on XM . We could have realized the same field

transformations with a (dual) transformation on (x̃1, x̃2), leaving (x1, x2) invariant.5

4.4 3-torus with Q-flux: T-fold

Finally, we consider the situation obtained from the previous example by a T-duality transfor-

mation in the 2-direction. This gives the background

g = f




1
R2

1
0 0

0 1
R2

2
0

0 0
R2

3
f


 , b = f




0 − Hz
R2

1R
2
2

0

Hz
R2

1R
2
2

0 0

0 0 0


 , (4.33)

where

f(z) =
[
1 +

( Hz

R1R2

)2 ]−1
. (4.34)

This configuration is known to be non-geometric. Indeed, as we will now discuss, when going

around the z circle one cannot find a general coordinate or b-field gauge transformation which

would make these fields globally well-defined. We can achieve this, however, by using a gener-

alized coordinate transformation corresponding to a β-shift as the transition function between

two patches on the z circle.

Let us compute the field values at z = 0 and z = 2π for the Kähler parameter (4.7) of the

2-torus. We first compute with (4.33) that

ρ(z) =
1

Hz − iR1R2
. (4.35)

This implies

ρ(2π) =
1

2πH − iR1R2
=

1

2πH + 1
ρ(0)

=
ρ(0)

1 + 2πHρ(0)
. (4.36)

This (non-linear) transformation on ρ cannot be viewed as a gauge symmetry of supergravity.

It can be viewed, however, as an O(2, 2) transformation in the 1,2-directions. Thus it can be

compensated with the inverse transformation, given by the following matrix

h =




1 0 0 0

0 1 0 0

0 2πH 1 0

−2πH 0 0 1


 , (4.37)

as follows again with (4.8). Thus, in order to make this space globally well-defined one needs to

resort to some notion as T-fold, where one allows for ‘patchings with O(d, d) transformations’.

In standard supergravity, whereO(d, d) cannot be viewed as part of the gauge group, this is little

more than words, but in DFT this idea can be given a concrete meaning. In fact, as reviewed

above, O(2, 2) transformations can be viewed as generalized coordinate transformations in DFT.

5The square root of (4.31), acting both on the x and x̃ coordinates, also leads to the same field transformation

but is illegal in general due to the periodicity implied by the torus topology.
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Since (4.37) takes the form of a β transformation we infer from sec. 3.2(iii) that we need the

generalized coordinate transformation (3.19) to reproduce the non-linear transformation (4.36)

of ρ. One obtains

x1′ = x1 + πHx̃2 ,

x2′ = x2 − πHx̃1 ,

x̃′1 = x̃1 ,

x̃′2 = x̃2 . (4.38)

However, due to the factors of πH rather than 2πH ∈ Z, this transformation is not compatible

with the torus identifications, but we can consider an alternative transformation, acting in the

same way on fields, that rotates x1 and x2 as follows

x1′ = x1 + 2πHx̃2 ,

x2′ = x2 . (4.39)

This transformation is well defined and implements the desired transformation of fields. It

differs from (4.38) by a trivial gauge transformation of the type (2.13), with

χ = −πHx̃1x̃2 . (4.40)

This shows that in DFT this space is globally well-defined, given the generalized coordinate

transformations mixing x and x̃ used for the patching after going around the circle in z direction.

We finally note that the parameter H is now associated with a non-geometric Q-flux.

4.5 Genuine non-geometric backgrounds

After discussing the above chain of backgrounds obtained from the geometric H-flux background

by T-duality transformations we now want to consider a background that is genuinely non-

geometric in the sense that it is not T-dual to a geometric background. (Such backgrounds

have also been discussed in [37].) As discussed in [38, 39] this background can be constructed

as a truly asymmetric Z2 orbifold CFT. The corresponding background is a fibered torus with

the following complex structure and Kähler parameters:

τ(z) =
τ0 cos(fz) + sin(fz)

cos(fz)− τ0 sin(fz)
, f ∈ 1

4
+ Z ,

ρ(z) =
ρ0 cos(Hz) + sin(Hz)

cos(Hz)− ρ0 sin(Hz)
, H ∈ 1

4
+ Z . (4.41)

Here τ0 and ρ0 are arbitrary parameters of the background. In fact, this three-dimensional

background does not solve the beta function equations for the underlying non-linear sigma model

for arbitrary parameters τ0 and ρ0; it is not a conformal field theory. Only for τ0 = ρ0 = i, the

background becomes an CFT, namely the exactly solvable, freely acting asymmetric Z2 orbifold

CFT. However, we may still consider these backgrounds as off-shell configurations for arbitrary

parameters. One can show that this background is not T-dual to a geometric background. We
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also mention that this background contains f,H and Q flux. Specifically one can identify the

geometric flux with the f -parameter, whereas H,Q are generated by H.

In order to analyze the global structure we compare again the fields at z = 0 and z = 2π.

We find an inversion of the complex structure as well as an inversion of the Kähler parameter

of the fibre torus:

τ(2π) = − 1

τ(0)
, ρ(2π) = − 1

ρ(0)
. (4.42)

The fixed point of this transformation, τ0 = ρ0 = i, precisely agrees with the asymmetric

orbifold point, mentioned already above. Note that at the fixed point this transformation

(4.42) has trivial action on τ and on ρ. Nevertheless, it corresponds to an O(2, 2) monodromy

transformation, which will still act non-trivially on the coordinates and the dual coordinates.

The transformation (4.42) corresponds to the following O(2, 2) monodromy transformation:

h =




0 0 −1 0

0 0 0 −1
−1 0 0 0

0 −1 0 0


 . (4.43)

As discussed in sec. 3.2(iv), see (3.25), this particular O(2, 2) group element, which corresponds

to an overall T-duality transformation, can be associated to a generalized coordinate transfor-

mation that is determined by the square root (3.26) of this matrix. However, since the matrix

entries of (3.26) are half-integer valued this transformation is not compatible with the torus

identifications assumed for the (doubled) coordinates. In order to remedy this we can give an

alternative form of the generalized coordinate transformation that results from this one by a

trivial gauge transformation, thus giving the same transformation of fields, however, in a way

that is compatible with the torus identifications.

We now give the details of this ‘trivial’ generalized coordinate transformation. The original

(illegal) transformation we write as

X ′M = AM
N X

N , (4.44)

where A is the constant matrix (3.26). The induced generalized coordinate transformation on

fields is determined by the associated F , which reads

F(A)MN =
1

2

(
η(A−1)T ηA+Aη(A−1)T η

)M
N . (4.45)

We now act with a second, trivial transformation

X ′′M = X ′M + ∂′Mχ = AM
N XN + (A−1)N

M ∂Nχ , (4.46)

where we used the chain rule in the second equation (and indices on A−1 are raised and lowered

with η). Thus, in matrix notation we have

X ′′ = AX + η(A−1)T η ~∂χ = A
(
X + ~∂χ

)
, (4.47)

where we used A ∈ O(2, 2), which implies A = η(A−1)T η. We now give a function χ that leads to

a particularly simple coordinate transformation that induces the required field transformation.
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It reads6

χ(x1, x2, x̃1, x̃2) =
1

2

(
x1x2 + x̃1x̃2 − x̃1x2 − x1x̃2

)
− 3

2

(
x̃1x

1 + x̃2x
2
)

− 1

4

(
(x1)2 + (x2)2 + (x̃1)

2 + (x̃2)
2
)
.

(4.48)

Inserting (3.26) for A and this ansatz for χ in (4.47) it is straightforward to compute the resulting

coordinate transformation X → X ′′. Viewing this as a single coordinate transformation it is

more convenient to write the new coordinates as X ′, and we finally get

x̃′1 = −x̃2 ,

x̃′2 = x1 ,

x′1 = −x2 ,

x′2 = x̃1 .

(4.49)

This corresponds to a constant coordinate transformation of the form (4.44), with matrix

A =




0 −1 0 0

0 0 1 0

0 0 0 −1
1 0 0 0


 . (4.50)

One may easily check with (4.45) that the associated F is indeed of the required form (4.43).

Since this transformation is integer-valued it is indeed compatible with the torus identifications.

This suffices to show that in DFT the space is globally well-defined. It is curious to note that

the above matrix has determinant −1. Thus, this coordinate transformation is orientation-

reversing, and so realizing this fibered torus as a globally well-defined (doubled) space forces

us to view it as some kind of generalized higher-dimensional Möbius strip. There are actu-

ally various different forms of valid coordinate transformations leading to the required field

transformation, but we have checked that they have all determinant −1.

Let us finally mention that one may construct further non-geometric backgrounds that are

even more exotic and that do not fit into the strongly constrained DFT known so far. For

instance, recently a background has been constructed that contains a genuine R-flux and for

which one accordingly expects only a non-local description, i.e., one which is not covered by

T-folds. Specifically, this background can be constructed as an asymmetric Z4×Z2 orbifold [39].

One feature of these backgrounds is that the expressions for the Kähler and complex structure

moduli are inherently non-local in the sense that they depend simultaneously on the coordinate

z and its dual z̃. As such these field configurations even violate the weak constraint, which

requires ∂z∂z̃ to annihilate all fields. The weak constraint is equivalent to the level-matching

constraint for the massless string fields on the torus, but once we consider different backgrounds

or include additional fields/states (say, in form of extra gauge fields) it is conceivable that there

may be constraints that are compatible with these novel backgrounds. For the moment this

remains as a very non-trivial open problem.

6Note that χ does not satisfy the weak constraint ∂M∂Mχ = 0. While perhaps surprising, χ still gives a

trivial gauge transformation because this only requires ∂Mχ∂MA = 0, for any field A. This condition is satisfied

because no field A depends on x1, x2 nor x̃1, x̃2.
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5 Comments on the strong constraint

In this section we discuss the role of the strong constraint and the issues related to attempts

to relax it. There are various reasons to believe that the strong constraint can and should be

relaxed, ranging from string theory on a torus background to massive and gauged deformations

of supergravity. We discuss the example of massive type IIA DFT, where the consistency of a

weaker constraint with the gauge symmetries is simple to understand.

There have been a series of papers discussing the construction of gauged supergravity in

lower dimensions by means of a generalized Scherk-Schwarz compactification of DFT [21–23].7

Specifically, the Scherk-Schwarz ansatz allows for a dependence on the (doubled) internal co-

ordinates and seems to lead naturally to gauged supergravity formulated with the embedding

tensor technique [42,43]. It turns out that in order to obtain the most general lower-dimensional

gauged supergravity theories a relaxation of the constraints, strong and weak, is required as

one needs a certain restricted dependence on both the internal coordinates and their duals. In

addition, the DFT action must be supplemented by a set of terms that would vanish if the

constraints are enforced. The resulting lower-dimensional gauged supergravity is consistent, in

particular gauge invariant, and in this sense the supplemented DFT action with Scherk-Schwarz

ansatz is consistent with a relaxed constraint. In fact, [23] states that once the constraints re-

quired by closure of the gauge algebra are imposed, gauge invariance of the action can be

established modulo the very same constraints. It would be useful to characterize explicitly

and understand the scope of the proposed set of weaker constraints, in particular, because the

weak constraint is a constraint in string theory. We hope that the simpler example of mas-

sive type IIA may be a guide in order to arrive at a conceptual understanding of generalized

Scherk-Schwarz compactifications in DFT.

5.1 Implications of the strong constraint

The constraint (1.3) is interpreted in the strong sense that ∂M∂M annihilates all fields and

gauge parameters, but also all products, so that for generic fields or parameters A and B we

require

∂M∂MA = ∂M∂MB = 0 , ∂MA∂MB = 0 . (5.1)

The first group of conditions is referred to as the weak form of the constraint. The first, together

with the second, is referred to as the strong constraint.

As has been shown in [6], the strong constraint implies that, effectively, all fields depend

only on half of the coordinates. They may depend only on xi or only on x̃i or any combina-

tion obtained by an arbitrary O(D,D) transformation. The subspaces corresponding to these

restricted coordinates are also called totally null — as all tangent vectors are null with respect

to the O(D,D) invariant metric in (1.3). Therefore, we can state the strong constraint equiva-

lently as follows:

Strong constraint: DFT fields only depend on the coordinates of a totally null subspace.

The conditions (5.1) are then a direct consequence of the strong constraint in this formulation.

7We are grateful to D. Marques for a discussion and correspondence on this subject.
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It is noteworthy that in explicit computations only the form (5.1) is ever required. The fact

that (5.1) implies the above statement of the strong constraint is more nontrivial and we discuss

the proof now. For this purpose, we first recall Witt’s theorem on vector spaces:

Witt’s Theorem: Let V be a finite dimensional vector space with a non-degenerate bilinear

form. Any isometry between two subspaces of V can be extended to an isometry of V .

For our setup the vector space will be the 2D-dimensional space R2D of generalized momenta

PM =

(
pi

wi

)
, (5.2)

and the non-degenerate bilinear form will be the O(D,D) metric ηMN . Isometries of V are

O(D,D) transformations. Consider a field A(x, x̃) with a single Fourier mode

A(x, x̃) = AP e
ipix

i+iwix̃i = AP e
iPKXK

. (5.3)

The constraint ∂M∂M = 0 gives

ηMNPMPN = 0 → P · P = 0 P is null . (5.4)

If we have two fields A = AP e
iPKXK

and A′ = AP ′eiP
′

K
XK

, both P and P ′ must be null, but

the strong constraint ∂MA∂MA
′ = 0 implies that, in addition, these two momenta must be

orthogonal

P · P ′ = 0 . (5.5)

It is thus the case that all momenta appearing in fields or gauge parameters span an N -

dimensional isotropic subspace S
N of the momentum space R

2D, namely, a subspace of null

vectors. Indeed, since all momenta appearing on fields or gauge parameters must be null and

any chosen pair must be orthogonal, any linear superposition of these momenta is null. Since

isotropic subspaces of R2D with metric η cannot have dimensionality larger than D, we must

have N ≤ D.

Now consider the maximal isotropic subspace E
D of R2D described by a basis of D vectors

without winding

E1 =

(
e1

0

)
, E2 =

(
e2

0

)
, E3 =

(
e3

0

)
, . . . , ED =

(
eD

0

)
. (5.6)

We argued above that the momenta that appear on the fields that satisfy the strong constraint

span the isotropic space S
N . Let Vi, with i = 1, 2, . . . N denote a basis for S

N . Consider now

the linear map mN defined by the map of basis vectors

mN : Vi → Ei , i = 1, 2, . . . , N . (5.7)

This map is clearly an isometry between S
N and mN (SN ), both of which are subspaces of R2D.

It follows by Witt’s theorem that mN can be extended to an O(D,D) transformation of R2D.

Therefore there is an O(D,D) transformation that maps all relevant momenta to a subspace

of vectors without winding. Fields without winding are fields that do not depend on x̃. This

shows that there is an O(D,D) transformation to a coordinate frame in which fields do not

depend on the tilde coordinates.
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5.2 Can the strong constraint be relaxed?

Let us now address the question: Can the strong constraint be relaxed? Asked in this generality

the answer is undoubtedly yes. In fact, in closed string field theory on a torus background only

the level-matching constraint is required, which is a weaker form of (5.1). For the massless

fields (for which the number operators N and N̄ both have eigenvalue equal to one) it reads

L0 − L̄0 = −piwi = 0 , (5.8)

where pi and w
i are the momentum and winding modes, respectively. Translating to coordinate

space this constraint implies ∂̃i∂i = 0 and thus ∂M∂M = 0 when acting on the massless fields

and the associated gauge parameters. In general, L0 − L̄0 = N − N̄ − piwi = 0, so massive

fields have integrally quantized values of ∂M∂M . Closed string field theory is in fact a fully

consistent weakly constrained DFT, and so in the full string theory the doubled coordinates

are undoubtedly physical and real. Of course, the full string theory is quite intricate and it

is therefore of interest to focus just on the massless sector. For this sector, we can define the

strong constraint by the requirement that the operator ∂M∂M that annihilates fields and gauge

parameters, also annihilate all products of fields and/or gauge parameters.8 Therefore, the

more interesting question is this: Can the strong constraint be relaxed for the massless string

fields only and/or to a finite order in α′? In the following we address the issues one encounters

in relation to this question.

There are two main obstacles one encounters when trying to relax the strong constraint

to the weak constraint.9 First, one has to find an action and gauge transformations so that

invariance of the action and closure of the gauge algebra require only the use of ∂M∂MA = 0,

not of ∂MA∂MB = 0. This is a very non-trivial problem, as the latter condition is heavily

used in most DFT computations. But the second obstacle is even more severe: one must make

the symmetry variations consistent with the weak constraint. More precisely, if we impose

∂̃i∂iΦ = 0 for a generic DFT field Φ or a gauge parameter, consistency requires that the gauge

variations, which read schematically

δξ Φ = ξ · Φ , (5.9)

should respect the constraint. Since we no longer have the strong constraint, the product of

parameter and field in general does not satisfy the constraint, so that

∂̃i∂i(δξΦ) 6= 0 . (5.10)

Thus the gauge variation is not compatible with the weak constraint. In order to remedy this

we have to project out those Fourier modes that violate the constraint p ·w = 0. Denoting this

projection by [ ] we may try a new ansatz for the gauge transformations,

δξ Φ =
[
ξ · Φ

]
. (5.11)

Since we are projecting out unwanted Fourier modes, this modification of the gauge transforma-

tions introduces a non-locality into the theory. This projection and the associated non-locality

8It is not clear if there is a useful definition of strongly constrained string field theory.
9One can try to relax both, as is the case in the works of [21–23].
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are, however, present in closed string field theory as well, as this is the way it is consistent with

the weaker level-matching constraint. After introducing the projectors, gauge invariance of the

action and closure of the gauge algebra become a highly non-trivial issue and can only be es-

tablished if the projector satisfies a sufficient number of algebraic identities, perhaps exhibiting

a structure similar to the L∞-algebras governing closed string field theory [13].10

The first obstacle of formulating gauge transformations whose gauge algebra closes and that

leave an action invariant modulo only ∂M∂MA = 0 has actually been solved in one particular

case, the DFT for the Ramond-Ramond (RR) sector of type II. The second obstacle can be

overcome by a partial weakening of the strong constraint. We discuss this now.

5.3 Massive type II: minor relaxation of the strong constraint

We start by recalling the basics of type II DFT as constructed in [20, 27]. The RR fields are

encoded in a Majorana-Weyl spinor of the two-fold covering group Spin(10, 10) of SO(10, 10),

while the generalized metric is uplifted to an element S of Spin(10, 10), satisfying S = S
†. The

Clifford algebra reads {
ΓM ,ΓN

}
= 2ηMN 1 , (5.12)

so that due to the off-diagonal form of the O(D,D) metric the gamma matrices can be identified

with fermionic lowering and raising operators ψi and ψ
i, respectively,

ψi ≡
1√
2
Γi , ψi ≡ 1√

2
Γi , (5.13)

with (ψi)
† = ψi. We can thus introduce a Clifford vacuum |0〉, satisfying ψi|0〉 = 0 for all i,

and define the spinors by acting with the raising operator. The RR p-form potentials C(p) are

then encoded in the spinor

χ =
10∑

p=0

1

p!
Ci1...ip ψ

i1 . . . ψip |0〉 . (5.14)

The Dirac operator corresponding to the Clifford algebra (5.12),

/∂ ≡ 1√
2
ΓM∂M = ψi∂i + ψi∂̃

i , (5.15)

then acts on the spinor (5.14) as a natural O(D,D) covariant extension of the exterior derivative.

In fact, for ∂̃i = 0 it acts on (5.14) by increasing the form degree by one and taking the totally

antisymmetrized derivative, exactly as the exterior derivative on forms. Moreover, it generally

squares to zero thanks to the first constraint in (5.1),

/∂
2

=
1

2
ΓMΓN∂M∂N =

1

2
ηMN∂M∂N = 0 , (5.16)

where we used (5.12). Below we will need this relation only in the weak form, when /∂
2
acts on

a single field or parameter.

10In collaboration with C. Hull two of us (OH and BZ) have obtained partial results along these lines, but

they are as yet inconclusive.
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The complete bosonic type II DFT action reads

S =

∫
d10x d10x̃

(
e−2dR(H, d) + 1

4
(/∂χ)† S /∂χ

)
, (5.17)

and is supplemented by the self-duality constraint

/∂χ = −K /∂χ , K ≡ C−1
S , (5.18)

where C denotes the charge conjugation matrix of Spin(10, 10). This theory is gauge invariant

under the generalized diffeomorphisms parametrized by ξM , which act on the spinor χ as

δξχ = ξM∂Mχ+
1

2
∂M ξNΓMΓNχ , (5.19)

and under a new abelian gauge symmetry with a Spin(10, 10) spinor parameter λ,

δλχ = /∂λ , (5.20)

which reduces to the usual p-form gauge symmetry when ∂̃i = 0. The invariance of /∂χ under

this symmetry (and thus the invariance of the action and self-duality constraint) is manifest

thanks to /∂
2
= 0.

As usual, the above action is only ξM gauge invariant if we impose the strong constraint,

but as noted above /∂
2
= 0 and thus λ invariance requires only the weaker constraint. It turns

out that we can also reformulate the ξM gauge transformations of the RR fields so as to allow

for a minor relaxation of this constraint. To this end we rewrite δξχ as

δξχ = ξM∂Mχ−
1

2
ΓMΓNξN∂Mχ+

1

2
ΓM∂M

(
ξNΓNχ

)
. (5.21)

The last term in here takes the form of a field-dependent abelian gauge transformation with

parameter λ = 1√
2
ξNΓNχ, and so upon a field-dependent parameter redefinition this term can

be eliminated. Using then the Clifford algebra in the remaining term above we arrive at

δξχ = /ξ /∂χ , (5.22)

where we set /ξ = 1√
2
ΓMξM . The claim is now that closure of the gauge algebra on χ and ξM

and gauge invariance of the RR action require only the weaker constraint. More precisely, these

computations require the conditions

∂M∂MA = 0 , A =
{
χ, λ, ξM

}
, (5.23)

but no condition of the form ∂MA∂MB = 0.

We thus have shown that for the RR sector the first of the obstacles discussed in the previous

subsection has been solved. However, as stressed above in regard to the second obstacle, this

is not yet sufficient to claim to have a weakly constrained theory. In fact, without the strong

constraint the gauge transformations (5.22) are not consistent with the weak constraint, for

the same reasons as in (5.10), but we can still relax the strong constraint somewhat using

the observation that in contrast to (5.19) in (5.22) the field appears only under a derivative.

Therefore, if we take the RR fields to be a sum of terms that depend arbitrarily on xi, we can
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also include terms that depend linearly on x̃i but have no xi dependence. The gauge variation

will then be x̃ independent and thus compatible with (5.23). We have therefore arrived at the

following weakened version of the strong constraint:

Weakened strong constraint: The RR fields of DFT can only depend on the coordinates of a

totally null subspace and at most linearly on the coordinates orthogonal to this space.

It turns out that thanks to this relaxation the type II DFT (5.17) now also encodes the

massive type IIA theory due to Romans [40]. To see this we have to make an ansatz for the

RR one-form that depends linearly on one of the x̃i, say x̃1,

C(1)(x, x̃) = Ci(x)dx
i +mx̃1dx

1 , (5.24)

where m is a mass parameter. Inserting this into the field strength F we obtain

F = /∂χ = (ψi∂i + ψi∂̃
i)χ = Fm=0 + ψi∂̃

i(mx̃1)ψ
1|0〉 . (5.25)

Note that the /∂ operator acts non-trivially on the m-dependent part. In this last term the

two operators ψi and ψi annihilate each other, leading to a non-vanishing contribution to the

‘zero-form’ field strength:

F (0) = m . (5.26)

Thus, the x̃-dependent part acts as a ‘(−1)-form’ in the sense that acting with the (generalized)

exterior derivative /∂ we obtain a zero-form. It has been noticed before in the literature that

if one formally introduces (−1)-forms the formulation of massive supergravity simplifies [41].

Here we obtained a natural geometric interpretation of these exotic objects: (−1)-forms are

1-forms depending on the dual coordinates. Insertion of the ansatz (5.24) into type II DFT

indeed precisely reproduces the massive type IIA theory [20].

We have thus seen that for the RR subsector of DFT the strong constraint can be relaxed

somewhat so as to allow for a simultaneous dependence on coordinates and their duals, provided

one of them enters only linearly. The resulting conventional spacetime theory then corresponds

to a massive deformation.

6 Doubled α′ geometry

As the generalized metric form of double field theory was developed it became clear that

one could try to include higher-derivative terms in the action while preserving the continu-

ous O(D,D) symmetry of the theory as well as the gauge symmetries [7]. It was soon realized,

however, that the expected higher derivative corrections, in particular, the Riemann-squared

terms were difficult to include while preserving the symmetries of the theory [44].

This difficulty makes it instructive to discuss why we expect that the continuous O(D,D)

symmetry of the two-derivative DFT survives the inclusion of α′ corrections from string theory.

For this we will review an argument by Sen [45]. We then discuss and explain a few of the key

results of the recent construction of α′ corrected DFT presented in [19].
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6.1 O(d, d) survives α′ corrections

We now consider the argument of [45], which explains why a string theory with d space-like

coordinates described by d free scalar fields leads to a reduced string theory with O(d, d) con-

tinuous symmetry. This is true including α′ corrections. This result makes it plausible that a

DFT with global O(D,D) must exist upon inclusion of α′ corrections.

For the standard matter CFT of free bosons the holomorphic and antiholomorphic sectors

decouple. All correlators are invariant under simultaneous and independent rotations of the

∂Xi and ∂̄Xi currents, with i = 1, 2, . . . , d. Sen’s argument is couched in the language of

string field theory and effective actions. It begins by stating that the string field encoding the

fluctuations of the (internal) metric and b-field takes the form

(hij + bij)α
i
−1ᾱ

j
−1c1c̄1|0〉 . (6.1)

As a consequence of the correlators’ invariance, the string field theory will have the exact

symmetry under the O(d)×O(d) action

h+ b → h̃+ b̃ = S(h+ b)RT , S,R ∈ O(d) . (6.2)

Consider now the effective field theory of the fields Gij , Bij as known with two derivatives.

This theory uses a generalized metric H as in (1.2) with (g, b) replaced by (G,B), and has a

symmetry

H → H̃ = ΩH Ωt , (6.3)

where Ω ∈ O(d, d). There is an O(d) ×O(d) subgroup described by the matrices

Ω =
1

2

(
S +R R− S
R− S S +R

)
. (6.4)

This subgroup leaves invariant the flat background Gij = δij , Bij = 0. Since we view the string

field as fluctuations of G,B around the flat background, we have

Gij = δij + hij + . . . ,

Bij = bij + . . . ,
(6.5)

where the dots indicate terms quadratic and higher order in the fluctuations. It is now possible

to verify that the symmetry (6.3), (6.4), through the above expansion turns into the symmetry

(6.2). Since this O(d)×O(d) of the string field theory is exact and holds to all orders of α′ the

symmetry should exist in the low-energy theory described with fields (G,B). This subgroup

contains 2 · 12 · d(d− 1) = d(d− 1) generators.

We then note that any coordinate invariant theory with gravity and a dilaton (such as the

reduced theory we are considering) has a GL(d) symmetry arising from a GL(d) transformation

of the d coordinates: xi → Ai
j x

j . This symmetry should exist to all orders in α′. At the level

of the G,B fields we have G → AGAT and B → ABAT , while the dilaton is shifted as

φ→ φ+ ln(detA). In terms of O(d, d) these transformations arise from

Ω =

(
A 0

0 (At)−1

)
. (6.6)
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Not all of the GL(d) generators are new: the diagonal subgroup O(d) of O(d) × O(d) with

R = S is also a subgroup of GL(d). Thus only d2 − 1
2d(d− 1) = 1

2d(d+ 1) generators are new.

Finally, the low-energy theory theory must have, even with α′ corrections, the Kalb-Ramond

symmetries δBij = ∂iǫj−∂jǫi of the two-derivative theory. Taking ǫi = fijx
j with constant fij’s

we get δBij = fji − fij ≡ Cij , with C an antisymmetric constant matrix. This transformation

is an O(d, d) transformation with

Ω =

(
1 0

C 1

)
. (6.7)

These so-called B-shifts amount to 1
2d(d − 1) generators. With O(d) × O(d), the additional

generators from GL(d) and the B shifts we have identified all the generators of O(d, d). Indeed

the count works:

d(d− 1) +
1

2
d(d+ 1) +

1

2
d(d− 1) = 2d2 − d =

1

2
(2d)(2d − 1) , (6.8)

which is the number of generators of O(d, d). This concludes the argument that the reduced

theory of massless fields must have a global, continuous O(d, d) symmetry even as α′ corrections

are included.

6.2 α′-geometry

The absence of a duality covariant generalized Riemann tensor that is fully determined in

terms of the physical fields of DFT, see [44], made it clear that some deformation of the

structures of the theory was needed in order to include the Riemann-squared terms that arise

in the α′-expansion of the effective theory for the massless sector of closed strings. It was

generally believed that the duality transformations of the fields would be modified while the

gauge transformations, which include diffeomorphism and b-field transformations, would not be

changed. Nevertheless, it was anticipated from string field theory that the opposite would be

true: duality would remain manifest (thus un-corrected) while gauge symmetries would receive

some kind of corrections.

Indeed, the formulation of [19] shows that the gauge structure of the theory is changed.

Recall that gauge parameters ΞM(X) contain components (ξ̃i, ξ
i) that depend both on (x, x̃).

When we restrict ourselves to fields and gauge parameters that do not depend on x̃, ξ̃i becomes

a one-form and ξi a vector.

In the two-derivative theory (no α′ corrections) we had the following key structures

〈Ξ1|Ξ2〉 = ξM1 ξN2 ηMN ,

[Ξ1,Ξ2]
M
C

= ξN[1 ∂N ξ
M
2] −

1

2
ξK1
←→
∂ Mξ2K ,

L̂ΞVM = ξP∂PV
M + (∂M ξP − ∂P ξM )V P .

(6.9)

(In this section only we use the (anti)symmetrization convention [ab] = ab − ba, and A←→∂ B ≡
A∂B − (∂B)A.) The first structure is the inner product, formed simply using the metric η.

The inner product is a generalized scalar formed from two vectors. The second structure is the
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C-bracket of two gauge parameters (vectors), giving a third. When restricted to parameters

that do not depend on x̃, it reduces to the Courant bracket of generalized geometry. The third

line defines the generalized Lie derivative of a generalized vector V along Ξ. The commutator

of two such Lie derivatives, with two different gauge parameters, is a Lie derivative with respect

to a parameter formed by taking the C-bracket of the two original parameters.

When we include α′ corrections the above structures are modified. Interestingly, the mod-

ifications that were obtained are exact: they do not represent just first-order corrections to

be supplemented by further, or infinitely many, terms to be determined. They are complete

and self-consistent corrections. We do not write them with explicit factors of α′ but rather the

corrections are recognized by the higher number of derivatives; a factor of α′ is associated with

two derivatives. The new structures, denoted the same way as the ones above except for the

Lie derivative, are given by

〈Ξ1|Ξ2〉 = ξM1 ξN2 ηMN − (∂N ξ
M
1 )(∂M ξ

N
2 ) ,

[Ξ1,Ξ2]
M
C

= ξN[1 ∂Nξ
M
2] −

1

2
ξK1
←→
∂ Mξ2K +

1

2
(∂Kξ

L
1 )
←→
∂ M (∂Lξ

K
2 ) ,

LΞV
M = ξP∂PV

M + (∂M ξP − ∂P ξM )V P − (∂M∂Kξ
L)∂LV

K .

(6.10)

Each structure has one additional term: the inner product has a two derivative term and

both the bracket and the generalized Lie derivative now have a term with three derivatives.

The commutator of two corrected Lie derivatives gives, exactly, a corrected Lie derivative

with parameter given by the corrected C bracket. Moreover the Jacobiator of the corrected C

bracket is still a trivial gauge parameter, as it was for the two-derivative theory and as needed

for consistency. The correction to the generalized Lie derivative implies that the transformation

law V ′ = FV with F given by (1.7) requires modification to order α′. We will not attempt

here to find such modification.

Interestingly, the corrections in (6.10) do not vanish when we restrict to fields and parameters

that do not depend on x̃. Therefore the above corrections imply corrections to the familiar

structures of generalized geometry. Consider, for example, the inner product, which in the

absence of x̃ dependence becomes

〈Ξ1|Ξ2〉 = ξi1ξ̃2i + ξi2ξ̃1i − ∂iξ
j
1 ∂jξ

i
2 . (6.11)

The last term is the higher-derivative correction. For the C bracket the vector part is not

corrected, but the one-form part is

([Ξ1,Ξ2]C )
i = ξk[1∂kξ

i
2] ,

([Ξ1,Ξ2]C )i = ξk[1∂k ξ̃2]i +
1
2

(
ξk1
←→
∂i ξ̃2k + ξ̃1k

←→
∂i ξ

k
2

)
+ 1

2 (∂kξ
ℓ
1)
←→
∂i (∂ℓξ

k
2 ) .

(6.12)

The correction term is the last term on the right-hand side of the second line. Finally, for the

Lie derivatives we have

(LΞV )i = ξk∂kV
i − V k∂kξ

i

(LΞV )i = ξk∂kVi + ∂iξ
p Vp + (∂iξ̃p − ∂pξ̃i)V p − ∂i∂kξ

p∂pV
k .

(6.13)
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The correction is the last term on the second line and it only affects the Lie derivative of the

one-form. Note, however, that this correction involves the vector V k. Thus at order α′ the

one-form and the vector mix under generalized diffeomorphisms!

Given the gauge structure above, reference [19] looked for fields and gauge transformations.

The key technical tool is a chiral CFT in the doubled space with a novel propagator and

simplified OPE’s, as the result of the strong constraint. The CFT has currents ZM(z) ≡ X ′M (z)

and the dynamical fields are introduced through the weight-two operators

S ≡ 1

2
(Z2 − φ′′) ,

T ≡ 1
2M

MNZMZN − 1
2(M̂

MZM )′ .

(6.14)

Here we introduced the dilaton φ = −2d, in order to comply with the conventions of [19], which

enters in S, while the double metricM enters in T . The double metric is related but is not equal

to the generalized metric HMN . While off-shell H squares to one, the former is unconstrained.

The second term in T , needed for consistency with gauge transformations, contains an auxiliary

field M̂. This field is determined in terms of the double metric and the dilaton by the condition

div T = 0, where the divergence of an operator is defined through its OPE with S. Thus T is

a divergenceless operator.

Gauge transformations of any operator O are defined by the commutator δΞO =
[∫

Ξ ,O
]
,

and are readily evaluated with the use of operator products. This was used in [19] to find the

gauge transformations ofM and φ

δΞMMN = ξP∂PMMN + (∂M ξP − ∂P ξM )MPN + (∂N ξP − ∂P ξN )MNP

− 1
2

[
∂MMPQ ∂P (∂Qξ

N − ∂N ξQ) + 2 ∂QMKM ∂N∂Kξ
Q + (M ↔ N)

]

− 1
4 ∂K∂

(MMPQ ∂N)∂P∂Qξ
K ,

δΞφ = ξ · ∂φ+ ∂ · ξ .

(6.15)

The gauge transformation of the double metric MMN receives α′ and α′2 corrections (sec-

ond and third lines, respectively) since we recognize that the first line is simply the familiar

generalized Lie derivative. The gauge transformation of the dilaton is unchanged.

For the dynamics, the key idea is that the equations of motion are the condition that S
and T satisfy the Virasoro algebra. A gauge invariant action that implements this idea can be

written and it takes the cubic form

S =

∫
eφ
(
〈T |S〉 − 1

6〈T |T ⋆ T 〉
)
. (6.16)

The definition of the various ingredients required here were given in [19]. For example, 〈·|·〉
above is a scalar inner-product between weight-two tensors and the ⋆-product of two weight-two

tensors gives a divergenceless weight-two tensor as the answer. As it turns out, in terms of the

double metric, the equation of motion takes the formM2 = 1+2V, where V is quadratic inM
and contains from two up to six derivatives. While the generalized metric squares to the identity,

the double metricM squares to the identity up to higher derivatives terms. The replacement

of H for the unconstrained M is a very significant departure from the two-derivative theory,

forced by α′ corrections.
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7 Conclusions and Outlook

We have reviewed DFT with a focus on the geometrical aspects such as the notion of general-

ized manifold. We tried to convince the reader that the structures required by DFT inevitably

require a generalization of the manifold structure. As the notion of a manifold is deeply in-

grained in our intuition, this may appear to be a rather radical and speculative step, but we

should stress that such a conclusion follows quite conservatively from what we know about

string theory and, more specifically, string field theory. More precisely, this conclusion relies on

the following inputs:

(i) Closed string field theory for a torus background

(ii) Background independence

(iii) Gauge transformations as some form of coordinate transformations

In fact, string field theory on a torus (input (i)) inevitably leads to doubled coordinates and

gauge transformations involving doubled derivatives (explicitly known to cubic order). Then

requiring a manifestly background independent formulation (input (ii)), thereby not requiring

anymore a torus background, uniquely leads to the generalized Lie derivatives of DFT. Finally,

if one wants to reproduce these generalized Lie derivatives as some sort of coordinate trans-

formation X → X ′ (input (iii)), we are forced to adopt a notion of generalized coordinate

transformations, thus requiring a generalized notion of manifold. Among the above assump-

tions, (iii) is perhaps the one that one could possibly imagine to abandon. Perhaps in the

ultimate formulation of string theory the notion of manifold and coordinates will disappear

altogether, but as long as we stick to coordinates, the emergence of a generalized manifold of

the type discussed here seems inevitable.

The usefulness of DFT and its associated generalized geometric structures is evident in the

striking economy of the corresponding formulations of the low-energy effective actions of string

theory. The most conservative interpretation of DFT is to treat the winding coordinates as

purely formal and to think of the doubled derivatives as ∂M = (0, ∂i). In this case DFT may

be viewed as the physical implementation of the ‘generalized geometry’ program of Hitchin-

Gualtieri [15–17]. It is clear, however, that DFT goes beyond generalized geometry in at least

two aspects: First, certain non-geometric backgrounds, such as those given in eq. (4.33) and

(4.41), are not globally well-defined in standard supergravity (nor in the generalized geometry

rewriting), but can be consistently patched together in DFT once we allow for generalized

coordinate transformations that mix x and x̃ coordinates. In this way, DFT appears to provide

a concrete framework for the inclusion of ‘T-folds’. Second, the α′-corrections of string theory,

formulated in DFT, lead to modifications of the gauge transformations and gauge algebra that

are non-trivial even on the half-dimensional subspace relevant for generalized geometry [19].

In particular, Lie derivatives in the D-dimensional subspace receive α′ corrections as do the

defining structures of generalized geometry (like the Courant bracket).

Despite these first glimpses of a radically different geometry underlying string theory, it is

clear that we are just beginning to understand these new structures and that the presently

known DFT and its geometry are just first approximations to the full story. For instance, the
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strongly constrained DFT allows only for rather mild deviations form standard geometry, as in

the form of T-folds and some non-geometric backgrounds. Massive IIA gives a clear example

of a possible relaxation of the strong constraint [20]. With the recent progress reported in [23]

it is becoming clear that the most general gauged supergravities appearing in four dimensions

may be obtained by a Scherk-Schwarz reduction of a suitably extended DFT. The weak and

strong constraints are not assumed, instead, a set of weaker constraints arising from the closure

of the gauge algebra is imposed. The recent reformulation of DFT given in [47] may be helpful

to understand better this construction in that it puts DFT in a form already adapted to general

Kaluza-Klein compactifications, thus representing the ideal starting point for a comparison of

the lower-dimensional and higher-dimensional constraints. Finally, in regard to the (further

generalized) α′-geometry we are just at the beginning, and it remains to be seen how the

formulation of this geometry will enlighten our understanding of string theory in general.

Some further aspects about the covariant description of non-geometric fluxes in double

field theory will be presented in [48], including their relation to gauged supergravity and T-

folds, as well as a derivation of the fluxes associated to the backgrounds of section 4 from

the generalized metric. Finally, let us make one more short comment on the appearance of

non-commutativity and non-associativity in the presence of b-field gauge transformations and

non-geometric backgrounds. Performing a world-sheet quantization procedure of the closed

string coordinates Xi(τ, σ) in non-geometric target spaces, one loses commutativity and even

associativity of the closed string coordinates (see refs. [38, 49–52]). It is tempting to speculate

that this non-associativity of the closed string geometry, derived from the world-sheet theory, is

related to the DFT non-associativity of generalized coordinate transformations. At the moment,

however, we do not see a logical connection between these two non-associative structures, but

this issue certainly deserves further studies.

We now mention a few other developments and possible generalization that we did not

cover in more detail in the main text. DFT has been applied in various contexts, including the

heterotic theory [53], massless and massive type II theories [20,27,54], and their supersymmetric

extensions [55–57], and also leads to a compelling generalization of Riemannian geometry [14,44,

58–60], which in turn is closely related to (and an extension of) results in generalized geometry

[15–18]. Another intriguing feature of DFT is that it makes manifest a ‘double copy’ property

of supergravity, i.e., a certain factorization of gravity Feynman rules in terms of Yang-Mills-like

Feynman rules, as was already pointed out in [3] and shown more explicitly in [61]. The ideas

of DFT have also been generalized to various U-duality groups in order to describe truncations

of D = 11 supergravity [62–70]. Until recently, however, they were restricted to rather severe

truncations of D = 11 supergravity, but it has now been shown how to formulate complete

gravity theories in fully U-duality covariant manner in [71,72], leading to an ‘exceptional field

theory’ analogue of double field theory. Other developments and further results related to DFT

have appeared in [73–77]. We finally note that short, early reviews can be found in [78]. More

extensive and more recent reviews have appeared in [79].

We conclude by listing some outstanding questions:

• In DFT the b-field gauge transformations are treated geometrically as coordinate trans-

formations on the doubled space. The known mathematical framework for b-fields is given
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in the language of ‘gerbes’ and thus it would be useful to understand any relation between

these approaches.

• How does the compactification on non-geometric backgrounds proceed in general? It

should lead to gauged supergravity theories that so far had no higher-dimensional ances-

tor, as was recently discussed in [39] for the non-geometric form given in eq. (4.41).

• There should be a better understanding of the solution space for the weaker constraints

used in the context of the extended DFT that yields gauged supergravities upon Scherk-

Schwarz reduction. What kinds of doubled coordinate dependence do they allow? What is

the relation to string theory, given that the weak constraint, which holds in string theory,

is now relaxed?

• Since infinitesimal gauge transformations receive α′ deformations, the same should happen

for finite or large gauge transformations. Can we write a natural, closed-form expression

for these corrected large gauge transformations?

• The α′ deformations of the gauge transformations, bracket, and action may be generalized

to other string theories. In particular, in the context of superstring theories, it may shed

light on the subtle relation between duality symmetries and supersymmetry.

• In the ‘exceptional field fheory’ one may investigate the same generalizations and appli-

cations relevant to DFT – to supersymmetry, higher derivatives corrections, non-trivial

backgrounds, etc.
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