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A novel “Shoelace” antenna has been used to inductively excite a short-wavelength

edge fluctuation in a tokamak boundary layer for the first time. The principal design

parameters, k⊥ = 1.5± 0.1 cm−1 and 45 < f < 300 kHz, match the Quasi-Coherent

Mode (QCM, k⊥ ∼ 1.5 cm−1, f ∼ 50 − 150 kHz) in Alcator C-Mod, responsible

for exhausting impurities in the steady-state, ELM-free Enhanced Dα (EDA) H-

mode. In H-mode, whether or not there is a QCM, the antenna drives coherent,

field-aligned perturbations in density, ñe, and field, B̃θ, which are guided by field

lines, propagate in the electron diamagnetic drift direction, and exhibit a weakly-

damped (γ/ω0 ∼ 5 − 10%) resonance near the natural QCM frequency. This result

is significant, offering the possibility that externally-driven modes may be used to

enhance particle transport. In L-mode, the antenna drives only a non-resonant B̃θ

response. The facts that the driven mode has the same wave number and propagation

direction as the QCM, and is resonant at the QCM frequency, suggest the antenna

may couple to this mode, which we have shown elsewhere to be predominantly drift-

mode-like (B. LaBombard et al., Phys. Plasmas 2014-accepted).

PACS numbers: 52.25.Fi, 52.30.-q, 52.35.-g, 52.35.Ra, 52.40.Fd, 52.55.Fa
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I. INTRODUCTION

A unifying observation across virtually all steady-state, high-confinement fusion plasma

regimes is the critical role played by edge fluctuations in regulating transport across the

plasma boundary. On the Alcator C-Mod tokamak, two instances of this phenomenon are

offered by the Enhanced Dα (EDA) H-mode1 - which features a Quasi-Coherent Mode (QCM,

f = 50−150 kHz, k⊥ = 1.5 cm−1) - and the Improved Energy Confinement Regime (I-Mode)2

- associated with the Weakly Coherent Mode (WCM, f = 100− 500 kHz, k⊥ = 1.5 cm−1).

Examples from other devices include the Quiescent H-mode first observed on the DIII-D

tokamak3, the High Recycling Steady (HRS) H-mode seen on the JFT-2M tokamak4, and

the High-Density H-mode (HDH) found on the W7-AS stellarator5. The Quiescent H-mode

features the Edge Harmonic Oscillation, while the HRS H-mode features Low- and High-

Frequency quasi-coherent modes, and the HDH is accompanied by its own quasi-coherent

mode.

The prevalence of these coherent edge structures across such a vast range of parameter

space, the critical role they play in sustaining high confinement operation, and the fact that

they all have a strong poloidal magnetic field signature inspired us to ask the question: can

we directly couple to and/or interact with these modes using an antenna? In so doing, could

we actively probe the physics of the target edge fluctuation, affect or actively drive edge

transport, destabilize edge modes and trigger a confinement transition, or impart a torque

to the plasma?

The present work documents our attempt to answer these questions using a purpose-

built, inductive excitation structure, the “Shoelace antenna,” on Alcator C-Mod. The paper

is organized as follows: in Section II, we provide a brief overview of the characteristics of

the QCM, to which the antenna was designed to couple, and review previous experiments

which have been successful in coupling to and driving relevant plasma modes. Section III

introduces the Shoelace antenna apparatus, describes the arrangement of key diagnostics,

and outlines the experimental program. Section IV then describes the edge fluctuations

produced by the antenna in the initial round of experiments; of principal importance is

the finding that, in H-mode plasmas, the antenna drives fluctuations of similar character

to the intrinsic QCM, which display a resonance around the QCM center frequency and

appear whether or not an intrinsic QCM is present. Finally, in Section V, we summarize our
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conclusions and outline directions for future experimental and computational investigations.

II. BACKGROUND

A. The EDA Regime and the Quasi Coherent Mode

The Enhanced Dα (EDA) H-mode1,6–11 is a steady-state, high-confinement regime without

ELMs that is readily produced on the Alcator C-Mod tokamak12 (R=0.68 m, Bt ≤ 8 T, n̄e .

4× 1020 m−3). It features a continuous edge fluctuation, the Quasi-Coherent Mode (QCM),

which is responsible for exhausting particles through the plasma boundary, regulating the

pedestal. The reduction in particle confinement relative to ELM-free H-mode is accompanied

by an increase in Dα emission, motivating the name of the regime. However, the energy

confinement time is only slightly reduced, and is comparable to the level achieved in ELMy

H-mode.

Recent measurements11 with a reciprocating Mirror Langmuir Probe scanning through

the mode layer have revealed the QCM to be an electron drift wave that further displays

both interchange and electromagnetic physics, spans the last closed flux surface in a nar-

row (∼3 mm) layer, and shows strong fluctuation amplitudes, with ∆ne/n̄e ∼30% and

∆Te/T̄e ∼ e∆Φ̃/Te ∼ 40%, and (from scanning Mirnov coil data) B̃r/Bθ ∼ 0.1%. Moreover,

measurements of the particle flux driven by the QCM corroborate earlier investigations that

ascribe to the QCM the role of exhausting particles from the plasma in the EDA regime.

The importance of drift waves and drift-Alfvénic turbulence13–25 in controlling the C-Mod

edge plasma state had already been revealed26, but their association with the QCM is only

recently established. Several experimental characterizations of the QCM8,10,11,27,28, includ-

ing the most recent, have described a narrow edge mode having 50 . f . 150 kHz and

k⊥ ∼ 1.5 cm−1 at the midplane, approximately field-aligned with k⊥ ≫ k‖, absent from the

high-field side, and with large amplitude fluctuations.

Figure 1 shows representative spectrograms from the phase contrast imaging (PCI) di-

agnostic sensitive to line-averaged electron density fluctuations, ˜̄ne, as well as a Mirnov coil

measuring B̃θ, from a discharge with an EDA H-mode. Several parameter traces are also

shown. Early in the discharge, the confinement transitions from L-mode to ELM-free H-

mode, but the reduction in particle transport is accompanied by a build-up of impurities,
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indicated by a strongly-increasing radiated power signal. This leads to a back-transition to

L-Mode. Shortly afterward, the plasma again transitions to H-mode, but now, a continu-

ous fluctuation develops - the QCM - visible in the PCI spectrogram as the narrow feature

sweeping down in frequency before modulating around a stable average value. The rise of

both radiated power and density is arrested, while the Dα light increases, indicating an

increase in particle transport that provides a defining characteristic of the EDA regime.

B. External Excitation of Plasma Modes

The importance of edge fluctuations in controlling edge transport has prompted a number

of experiments attempting to interact with these modes. Uckan et al. employed electrostatic

launching probes on the Texas Experimental Tokamak (TEXT), together with a feedback

system, and found that they were able to suppress or promote broadband edge turbulence

depending on the phase delay in the feedback circuit29. Similar results were found by

Zhai et al. on the KT-5C tokamak after reproducing the experimental setup from TEXT,

with the additional observation that, for a particular phase delay, a quasi-coherent mode

accompanied the suppression of broadband turbulence30. Work on linear devices by Schröder

et al.31 and Brandt et al.32,33 employed a set of eight probes arranged azimuthally around

the plasma column. They demonstrated open loop control resulting in both suppression of

broadband drift wave turbulence, with decreased turbulence-driven transport, and nonlinear

interaction with coherent drift waves. They also found that a mode- and frequency-selective

(spatiotemporal) excitation structure was essential to coupling to drift waves, as was driving

parallel currents with the same structure as the intrinsic mode.

In addition to probes, inductive structures have also been used to stimulate edge activity,

as in the study by Borg et al. on the TORTUS tokamak34. There, a single-winding dipole

antenna was employed with the goal of driving shear Alfvén modes in the plasma edge. The

antenna winding could be rotated arbitrarily with respect to the equilibrium magnetic field;

it was found that the maximum response was achieved when the winding was exactly aligned

with the background field, and also that the driven mode was strongly guided by the field

lines. Brandt et al. also complemented their electrostatic probe exciter with an inductive

setup using eight saddle coils, arranged azimuthally around, and external to, the plasma33.

The saddle coils reproduced the same open-loop control of drift waves as the electrostatic
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FIG. 1: Spectrograms of phase contrast imaging (PCI, ˜̄ne) and Mirnov coil (B̃θ)

fluctuation signals, together with line-averaged density (n̄e), Dα, and radiated power (Prad)

traces, from a discharge exhibiting both ELM-free and EDA H-modes. The reduced

particle confinement of the EDA H-mode relative to the prior ELM-free H-mode is

indicated both by the slower density rise and increased Dα light.
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FIG. 2: (a) Approximate radial vacuum field produced by the antenna; also shown are the

LCFS at closest possible approach, as well as the nominal B̃θ amplitude of the QCM. (b)

Photograph of the Shoelace antenna mounted inside the Alcator C-Mod vacuum vessel.

probes.

There have also been many attempts to excite specific plasma modes - typically Alfvénic

- in order to characterize their physics. Such work falls under the category of Active MHD

(AMHD) spectroscopy, which typically seeks additionally to diagnose a plasma based on the

driven response. Initial proposals for AMHD spectroscopy were made by Goedbloed et al.35,

with pioneering experimental investigation carried out on the Joint European Torus36–40 us-

ing both direct inductive and parametric drive. Similar AMHD experiments were performed

on Alcator C-Mod41–44, finding broadly comparable results.
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III. EXPERIMENTAL SETUP

A. The Shoelace Antenna

The Shoelace antenna is wound from a single length of 1.5 mm-diameter lanthanum-

doped molybdenum wire (Plansee “ML” wire, 0.3% La2O3 by weight45). The winding is in

two layers, with the wire criss-crossing its way up the ceramic (alumina) tension wheels in

19 rungs, and then retracing its path again on the top layer so as to reinforce the current

from the bottom layer. The wire path gives the impression of a shoelace, from which the

antenna takes its name. The interlayer spacing is 4.6 mm, only slightly less than the distance

between the top layer and the LCFS at the point of closest approach. This is significant

since the fall-off of the vacuum field perturbation is rapid, dropping roughly exponentially

on the length scale of twice the spacing between rungs (e.g. 2π/k⊥)
46.

Figure 2 shows a photograph of the antenna mounted in the Alcator C-Mod vacuum

vessel, together with a plot of the approximate vacuum field, last closed flux surface (LCFS)

location, and nominal QCM B̃θ amplitude.

The wires are field-aligned when the safety factor at the 95% flux surface, q95, is 3, the

same value used in the discharges of the earlier characterization of the QCM by Snipes

et al.8 The perpendicular spacing is ∆z⊥ = 2.1 cm, giving k⊥ = ±1.5 ± 0.1 cm−1, with

the spread corresponding to the full-width at half maximum (FWHM) of the k⊥ spectrum

calculated from the finite extent of the antenna in the perpendicular direction (e.g. (19

rungs−1)×∆z⊥). Since the antenna wires are angled at θw = 14.5°, the Shoelace antenna’s

toroidal mode number, n, spectrum is centered on n0 = 2πR0/ [2∆z⊥/ tan(θw)] ≈ 35, where

R0 = 0.916 m is the major radius of the top layer Shoelace rung at the midplane. The

bandwidth of the n spectrum is limited by the width of the antenna, w = 15.3 cm; modeling

the antenna as a tophat function in toroidal angle, φ, with an arc length of w gives a factor

of sinc
(

nw
2R

)

in the transform, or a span of ∆n ≈ ±23 from n0 (FWHM). These values ensure

good coupling to the QCM, which typically has8 k⊥ = 1.5 cm−1 and n = 10− 25 (at higher

safety factor), as well as to the WCM, which has a similar k⊥ and n spectrum2,47. It should

be noted that the antenna has no preferred direction; it produces an RF vacuum field which

is a standing wave in the (φ, θ) directions and decays rapidly in the radial dimension.

In a single poloidal cross section, the rungs of the antenna on the top layer fall on a circle
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frequency, used to couple two commercial, 50-Ω T&C AG1010 amplifiers to the Shoelace

antenna, which presents a low-impedance, inductive load.

centered at R = 0.613 m, z = 0 m, with a radius of 0.303 m. At closest approach, the

rungs can be as little as 5 mm behind the LCFS. This proximity is required to maximize

the induced perturbation in the plasma given its rapid radial decay; however, it also risks

damage to the antenna due to the large heat flux in the C-Mod edge. As seen in Figure 2,

the antenna is sandwiched between and in the shadow of the main limiter as well as a smaller

protection limiter. These provide a degree of shielding. Nonetheless, careful experimental

planning, as well as a robust design of the Shoelace support structure, were needed to extend

the longevity of the antenna in the harsh C-Mod edge environment.

The Shoelace power system will be described elsewhere48. However, a brief overview is

given here. The Shoelace antenna operates in a broad band from 45-300 kHz, covering the

QCM frequency range (50-150 kHz), as well as part of the WCM band (120-500 kHz). A

custom matching network, described schematically in Figure 3, couples power from two 1-

kW T&C AG1010 50-Ω amplifiers to the low-impedance, inductive antenna. The matching

network uses solid-state switching to discretely tune the system to the drive frequency in

real time, and provides excellent performance across the entire operational band. This

is demonstrated in Figure 4, which shows power transmission into the matching network,

current driven in the antenna, and combined power output from the two amplifiers from

an antenna test. At frequencies within the QCM band of these experiments (typically 80-

120 kHz), about 1600 W or better of the available 2 kW is dissipated in the antenna.
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B. Discharge Development

Discharge parameters from the Shoelace experimental campaign approximated those used

in the earlier examination of the QCM by Snipes et al.8, since the Shoelace antenna was

designed based upon the characterization of the QCM provided by this study. This choice

was additionally motivated by the need to reduce the gap between plasma and antenna,

as described above. The low-heating-power ohmic EDA H-modes achieved in these target

discharges help to avoid damaging the winding given its proximity to the plasma.

Traces from a typical discharge are shown in Figure 5. Transition to H-mode was facili-

tated by ramping down the toroidal field to reduce the threshold heating power. Since EDA

H-modes tend to favor higher q95
1, it was expected that this parameter would have to be

subsequently ramped up after the transition to ELM-free H-mode; in practice, this was not

necessary, and q95 was maintained near the value that optimized the alignment between the

Shoelace winding and the equilibrium field.

The edge region of several ohmic EDA H-modes used in Shoelace antenna experiments

was well-diagnosed by the Mirror Langmuir Probe (MLP), and its properties are discussed

in detail elsewhere11. The MLP revealed that the LCFS in these discharges is typified by

Te ≈ 50 eV and ne ≈ 1.5× 1020 m−3, so that τei ≈ 100 ns and τii ≈ 5 µs, with k⊥ρs ≈ 0.07

for the antenna-imposed wave number.

C. Diagnostic Setup

Figure 6 shows a plan view (R, φ) of Alcator C-Mod, and indicates the placement of the

Shoelace antenna relative to a number of fluctuation diagnostics; a (φ, z) view is shown in

Figure 7, together with several poloidal cross sections of key diagnostics. Shown also are

field lines along the last closed flux surface; these connect to the positions on the LCFS

to which the antenna rungs project along rays to the antenna arc center. The following

section reveals that, in fact, the antenna-driven fluctuation is guided by field lines, such that

diagnostics which do not map to the antenna on a field line near the LCFS do not observe the

driven mode. The diagnostics which are almost always mapped to the antenna include phase

contrast imaging49 (PCI), measuring line averaged density fluctuations, ˜̄ne, with 32 vertical

chords in a poloidal cross section having a uniform spacing, ∆R =2.7 mm, in major radius;
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three polarimetry50 chords, sensitive to both density and magnetic field fluctuations (though

in the present work, the contribution from B̃ is negligible); and wall-mounted Mirnov coils43,

measuring B̃θ. The reflectometer, scanning Mirror Langmuir Probe, and gas puff imaging

diagnostics do not map to the antenna.

IV. RESULTS AND DISCUSSION

A. Antenna in Receiver Mode

Before discussing the results obtained from energizing the antenna, it is interesting to

examine the voltage induced across the antenna by the fluctuating radial magnetic field

associated with the QCM. Figure 8 shows a spectrogram of the short-time magnitude squared

coherence, |Pxy/
√

PxxPyy|2, with Pxy the cross power spectral density between signals, x and

y, between this induced voltage and the signal from a PCI chord measuring ˜̄ne; the high

degree of coherence illustrates that the antenna, when used as a receiver highly selective in

k⊥, is sensitive to the QCM. The presence of a strong induced signal across the eighteen
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dipole loops of the antenna also indicates that the QCM has a long poloidal correlation

length.

B. Antenna in Driver Mode

Figure 9a shows spectrograms from a PCI chord, a polarimeter chord, and a Mirnov coil,

as well as n̄e and Dα traces, from a discharge in which the Shoelace antenna was driven.

Additional traces from this discharge are shown in Figure 5. A dashed line indicates the

transition between ohmic L- and ohmic H-mode. A brief ELM-free H-mode gives way to an

EDA H-mode, with a QCM visible in the spectra of all three diagnostics, and, after a short

delay, an accompanying rise in Dα, consistent with a reduction in particle confinement.

Also visible in the spectrograms of all three diagnostics is a triangular waveform which

12



t [s]

f 
[k

H
z
]

1.1 1.2 1.3 1.4

50

100

150

0

2

4

n
e

[1
0
2
0
/
m
3
]

0

1

2
D

α
f 

[k
H

z
]

40
80

120

1120712016

MSCoh, ant. and  PCI_30

Mag. Sq. coherence

between antenna

receiver and PCI

chord

_

0

0.2

0.4

0.6

0.8

1

M
a
g

. 
S

q
. 
C

o
h

e
re

n
c
e

PCI spectrogram

FIG. 8: Short-time (∼ 3.3 ms bins) magnitude squared coherence spectra between voltage

induced over Shoelace antenna and PCI fluctuation signal showing that the Shoelace
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precisely tracks the Shoelace antenna drive frequency. Several observations are noteworthy:

(a) a B̃θ perturbation at the antenna frequency is visible in both ohmic L- and H-mode,

while the driven ñe fluctuation only appears in H-mode; (b) the driven fluctuation appears

strongest near the QCM center frequency, but is also present away from this frequency;

(c) the driven ñe appears early in the ELM-free H-mode phase, slightly preceding the QCM.

These remarks are true in general for the perturbation driven by the Shoelace antenna.

A clearer view of the driven perturbation is offered by examining the magnitude squared

coherence between the antenna current signal, Ia, and the fluctuation diagnostic signals, u,

|PIau/
√

PIaIaPuu|2, computed over a short, running time window that spans about 3.3 ms.

This short-time magnitude squared coherence is shown for the same three fluctuation sig-

nals in Figure 9b. We see now that the coherent perturbation in the PCI signal appears

immediately after the transition to ELM-free H-mode, while a coherent B̃θ signal is present

throughout the entire Shoelace pulse.

Another feature of the driven perturbation is that it is not global. Rather, it is guided

by field lines which map to antenna rungs. Figure 10 illustrates this point. Here, a poloidal

cross section is shown which contains two Mirnov coils sitting on extensions from the vac-

uum vessel wall. The LCFS is also reproduced, together with the Shoelace antenna rung

positions projected onto the LCFS and mapped to this toroidal location on field lines. Both
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FIG. 9: (a) Spectrograms of fluctuations signals from a PCI chord, a polarimeter chord,

and a Mirnov coil during a discharge in which the Shoelace antenna was energized,

together with density and Dα traces. The Shoelace response is seen in the triangle-wave

feature in the spectrograms, which tracks the drive frequency and appears on top of the

intrinsic QCM fluctuation. The spectral amplitudes are raised by an exponent to aid in

visualizing the Shoelace response. The [deg] abbreviation in the polarimetry panel refers to

degrees of Faraday rotation. The Mirnov coil measurement is given at the coil. The

vertical dashed line marks the transition between L- and H-mode. (b) Short-time

(∼ 3.3 ms bins) magnitude squared coherence between the antenna current and PCI,

Mirnov coil, and polarimeter fluctuation signals. The n̄e and Dα traces are reproduced.

coils pick up the QCM. However, while the bottom coil, which does map to the Shoelace an-

tenna, shows strong cross coherence with the antenna current throughout the duration of the

discharge, the top coil, which does not map to the antenna, has very little cross-coherence.

It should be pointed out that the Mirnov coils do not provide a point-localized mea-

surement, and neither do the PCI or polarimetry chords. This complicates the mapping
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FIG. 10: (a) Cross section showing location of two Mirnov coils, mounted on standoffs

from the vacuum vessel, the LCFS (solid black line), and field lines (×’s and •’s) mapping

Shoelace rungs on LCFS. (b) Short-time magnitude squared coherence for each coil; strong

coherent response on bottom coil, almost none on top.

analysis, and also leads to uncertainty in the mode location. It has been assumed here and

elsewhere in this work that the driven mode is localized to a narrow layer around the LCFS.

This assumption is inspired by the recent measurements made with the Mirror Langmuir

Probe (MLP)11 described earlier, which show that the QCM, itself, is localized within a

∼ 3 mm layer spanning the LCFS. Moreover, the rapid-fall-off of the antenna vacuum field,

and the experimental requirement of minimizing the gap between antenna and plasma in

order to observe a strong driven response, limits the radial extent in which we expect to

find the driven mode to the edge plasma. Nonetheless, at present, we have not measured

precisely where the mode envelope is localized radially; such measurements will be carried

out using the MLP. However, because the field-line mapping between the antenna and these

diagnostics remains sufficiently far from the single x-point, so that magnetic shear remains

low on the field line path, the results shown below pertaining to field-line mapping are ro-

bust against this uncertainty in the mode flux surface. We will return to this topic in the

discussion of wave number estimates, Sec. IVC.
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FIG. 11: (a) Poloidal cross section containing PCI chords, as well as mapped locations of

antenna rungs. While the PCI chords intersect the LCFS at two points, only the

intersection below the midplane maps to the antenna. (b) The magnitude squared

coherence at the antenna frequency is plotted in the color axis against major radius and

time. This produces a one-dimensional image across the major radial direction of the

magnitude squared coherence, which evolves as the discharge progresses. Overplotted in

blue and orange lines are the antenna rung locations mapped on the LCFS to the plane

containing the PCI chords. The subplots are n̄e and Dα traces and a spectrogram from a

single PCI chord.

Figure 11 provides a stronger indication of field-line guidance. The cross-section con-

taining the PCI chords is shown, again with an illustration of the LCFS and the mapped

Shoelace rung locations. In Figure 11b, a time-evolving, one-dimensional image of the in-

duced perturbation is produced by stacking top-to-bottom the magnitude squared coherence

at the antenna frequency for each PCI chord, and assembling all such images from each time

slice, left-to-right. Overlaid on these images are the evolving locations of the Shoelace rungs

mapped to the PCI cross section. The coherent signal is bounded in major radius by the ex-

tent reached by the Shoelace antenna rungs. Indeed, the four rungs that map to the smallest

major radii mostly do not overlay with a perturbation, perhaps because of the increased gap

between the plasma and the rungs at the lower portion of the antenna. Moreover, in the

later part of the discharge, PCI seems to resolve very narrow lines of perturbation tracking
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closely the mapped rung locations. It should be noted that the electron diamagnetic drift

direction points toward the outward major radial direction (toward the top of the plot, as

shown in the figure) at the location on the LCFS where the antenna maps to the PCI chords.

One might conjecture that the lack of a driven fluctuation below the lowest rungs of the

antenna in Figure 11 might be because the driven perturbation cannot propagate into this

region. However, in reverse-field discharges, for which the electron diamagnetic drift velocity

points in the opposite direction, the driven response is still restricted to mapped field lines,

and the inner-most chords still do not observe a coherent response.

In fact, the field-line mapping criterion predicts accurately which diagnostics do and do

not observe the driven perturbation. Figures 6 and 7 show top-down (R,φ) and unwrapped

side-on (φ, z) views of the mapped field lines, together with the locations of a number of

fluctuation diagnostics. Only the fluctuation diagnostics which map to the Shoelace antenna

- namely, the PCI chords, one to three polarimeter chords, and a subset of Mirnov coils -

ever observe a signal coherent with the antenna current.

It is interesting that the driven perturbation is localized to field lines mapping to the

antenna, while the QCM is global on the low-field side, especially since we might expect

the driven perturbation to drift across field lines. A response strongly guided by magnetic

field lines is reminiscent of resonance cones51–56 describing, for example, the propagation

of electrostatic, cold plasma modes, and in particular, the low-frequency electrostatic ion

wave branch. Recall also that a field-guided response was observed by Borg et al. in ex-

periments on the TORTUS tokamak using a single dipole antenna, corresponding to a single

field-aligned rung on the Shoelace antenna, driven below the ion cyclotron frequency and

intended to excite shear Alfvén waves34, whose group velocity also runs parallel to the mag-

netic field. However, the electron-ion collision time in the plasma edge for these discharges

is τei ≈ 100 ns, such that τ−1
ei /ω ≈ 20, suggesting strong damping for both the shear Alfvén

and electrostatic waves, while the electron-ion collisions are destabilizing for drift waves

(compare, e.g., the warm plasma numerical examples in Scott24 for kinetic shear Alfvén

waves, Chap. 4, Sec. VI, and drift waves, Chap. 5, Sec. VIII)57. Other properties of the

driven mode, discussed below, are also inconsistent with the shear Alfvén and electrostatic

wave scenarios. As such, at present, the proper interpretation of the driven mode’s guided

behavior is still a mystery.
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indicated by arrows.

C. Driven Mode Wave Number and Propagation Direction

Thus far, the analysis has focused on the magnitude of the driven fluctuation. By exam-

ining its phase across several diagnostics, we may extract mode and wave numbers. Doing

so shows that the driven mode has k⊥ = 1.5 cm−1 at the midplane, precisely the same

value as imposed by the antenna winding structure; is approximately field-aligned; and has

a phase velocity pointing in the same direction as the electron diamagnetic drift velocity,

v∗ = ∇pe ×B/(neeB
2).

The PCI diagnostic provides a measurement of the major radial wave number kR, of

the line-integrated density fluctuations. To derive wave numbers resolved within a flux

surface, it is necessary to make an assumption about how the mode is localized. It is usually

assumed8,49 that the mode exists in a narrow layer around a single flux surface, and that

the PCI measurement, itself, can be localized to the point(s) where the chord intersects the

mode’s flux surface. Typically, the chords pass through a flux surface at an upper and lower

point; however, only the lower intersection maps to the antenna on a field line, and so this

ambiguity is removed. In the following, we first take the driven mode to lie nominally on

the LCFS, and later explore what happens when this assumed mode layer is varied across

other, nearby flux surfaces.

To aid in the calculation of wave numbers, we employ the ballooning coordinate system
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described by Dudson et al.58. The coordinate, z, associated with a test point corresponds

to the toroidal angle, φ, of the location at the outer midplane, θ = 0, which maps on a field

line to the test point. y is the poloidal angle, θ, of the test point; when z is held constant,

varying y results in advancing along a field line. Here, the test points correspond to the

intersections between the PCI chords and the mode surface.

Figure 12 motivates a procedure for extracting a perpendicular wave number. The parallel

direction corresponds to y, and the perpendicular direction to z. We relate the phase angle of

the fluctuation signals, α, to the y and z coordinates associated with the PCI chords through

the expression, −αℓ = nzℓ + myℓ + α0, for each chord, ℓ. The negative sign in front of α

appears because α is derived from the phaser representation, y(t) = ℜ
{

|A| ej(ωt+α)
}

, while

the mode number corresponds to the traveling wave, ei(nφ−ωt) = ej(ωt−nφ) (taking j = −i).
n = −∂α

∂z
is just the toroidal mode number. The corresponding wave number is kφ = n/R.

Approximating the mode as field-aligned, k = k⊥ê⊥, and −αℓ = nzℓ + α0. To obtain k⊥

given n, we take kφ to be the projection of k onto the êφ direction holding y = θ constant,

such that

k⊥ =
n

sin (χ)R
(1)

where tan(χ) ≡
√

B2−B2

φ

Bφ
= 1/ν, with Bφ = B · êφ the toroidal field strength, ν ≡ B·∇φ

B·∇θ
the

local field-line pitch58, and χ and R are evaluated at the outer midplane.

The quality of the fit under the field-aligned approximation is apparent from Figure 13,

which plots the phase angle, α, of each chord against the z coordinate, together with the

least-squares fit to −αℓ = nzℓ + α0 from the outer 21 chords59, using spectral analysis

over a ∼ 3 ms time slice. Note that α is “unwrapped” - differences between the phases of

adjacent chords greater than or equal to π are eliminated by adding multiples of ±2π. The

field-aligned approximation captures the phase progression across the PCI chords extremely

well. As such, it may be concluded that taking k⊥ ≫ k‖ introduces a negligible error in the

estimate for k⊥.

On the other hand, it is difficult to measure k‖ using the PCI diagnostic. This is because

the intersections between the chords and the lower LCFS span a poloidal range of θ32−θ1 ≈
15°. By contrast, the range of z spans & 60°. These ranges, combined with the expectation

(derived from the QCM) that k⊥ ≫ k‖, means that the PCI diagnostic cannot provide a

good measurement for k‖, since most of the phase difference across the chords is due to the
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lower intersection of PCI chord, ℓ, with the LCFS.

phase progression in the perpendicular direction.

Figure 14 (Multimedia view) shows the result of performing the calculation for k⊥ using

PCI data. Prior to the onset of H-mode, there is no coherent signal in the density fluctuation,

and so the calculated value for k⊥ varies randomly and rapidly. However, immediately after

the H-mode transition, k⊥ of the coherent signal locks to the value imposed by the antenna

winding structure, namely, 1.5 cm−1. Moreover, the sign corresponds to propagation in the

laboratory frame in the same direction as the electron diamagnetic drift velocity.

Figure 14b (Multimedia view) reports data from a reverse-field discharge which had an

early ELM-free H-mode (not EDA H-mode, and without an apparent QCM), followed by a

back-transition to Ohmic L-mode, and finally terminating in a disruption. For reference, a

spectrogram from this discharge of a single PCI chord is reproduced in Figure 16, accom-

panied by density and Dα traces. Here, again, during H-mode, k⊥ settles precisely on the

magnitude imposed by the antenna winding. However, now, the sign is negative, following
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FIG. 14: (a) Calculation of k⊥ using the phase progression of the cross-power between the

antenna current and the PCI chords from each time slice of the coherence spectrogram; a

spectrogram from a PCI chord appears underneath, showing both the QCM and the

Shoelace-driven perturbation. The sign of k⊥ indicates propagation in the same direction

as the electron diamagnetic drift velocity. (b) In this reversed field discharge, the value k⊥

for the driven fluctuation changes sign, consistent with the inversion of the electron

diamagnetic drift direction. H-mode is lost just after 0.8 s, after which time the antenna

produces no coherent density response. See supplemental material at (a) [URL will be

inserted by AIP] and (b) [URL will be inserted by AIP] for animations showing the

time-evolving ω vs. kR diagram from the cross-power between PCI and the antenna

current, together with subplots showing the time-evolving magnitude squared coherence

and the final calculation of k⊥. The antenna perturbation appears as a feature with fixed

kR and scanning frequency. (Multimedia view)

the reversal of the field and electron diamagnetic drift directions.

It is prudent to examine how the assumption that the driven mode is localized to the

LCFS affects the estimate for k⊥. Figure 15a shows the result of repeating the k⊥ calculation

after assuming the mode is localized on each of 21 uniformly-spaced flux surfaces between

0.95 ≤ ψ̄ = (ψ − ψ0)/(ψLCFS − ψ0) ≤ 1.05; at the midplane, this corresponds to a range

from ∼ 8 mm inside to ∼ 8 mm outside the LCFS. The field-aligned approximation is still

employed. The inset shows the value of k⊥ obtained for each flux surface for a particular
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∼ 3 ms time slice around 1.20 s. The dashed lines highlight the FWHM band, k⊥ =

1.5± 0.1 cm−1, expected for the antenna’s winding structure. The estimate for k⊥ is robust

against uncertainty in the identity of the flux surface to which the mode is localized. This

is because the field lines that map the PCI chords to the midplane over this range of flux

surfaces do not pass close enough to the x-point to experience significant magnetic shear.

In fact, we might attempt to use this procedure to localize the driven fluctuation based on

k⊥-matching considerations; doing so would suggest that the driven mode sits in a layer

between 0.98 . ψ̄ . 1.048 (−3 . Rmid − Rmid,LCFS . 7.5 mm). However, this estimate

is subject to error from the EFIT reconstruction. Nonetheless, it is consistent with the

expectation that the mode is localized in the edge, near the LCFS and overlapping with the

QCM layer.

The phase information may also be reported directly as the toroidal mode number, n.

This is done in Figure 15b. Here, the toroidal mode number obtained from the outer 21

chords of the PCI diagnostic is compared with that from two Mirnov coils spaced 4.8 toroidal

degrees apart. Note that the field-aligned approximation is not applied to the analysis of

the Mirnov coils, since they are displaced only in the toroidal angle. The values obtained

from the two diagnostics are comparable, though there is a discrepancy between the stable

value from PCI (between 31 and 34) and the Mirnov-supplied value prior to H-mode (during

which time there is no coherent ñe), and in the later part of the discharge. The lines labeled

“antenna” correspond to the toroidal mode number for a field-aligned perturbation with

k⊥ = 1.5 cm−1; the positive line closely matches the measured toroidal mode number.

Because the antenna drives a coherent B̃θ response for the entire discharge, the Mirnov coils

provide a measurement of n for the induced fluctuations prior to the onset of H-mode.

The fact that the toroidal mode numbers calculated from PCI (giving measurements

of the driven mode below the midplane, and determined assuming k‖ = 0) and Mirnov

coils (placed at a different poloidal angle above the midplane, and calculated without any

assumption about k‖) gives further confidence in approximating the driven mode as field-

aligned, k⊥ ≫ k‖. This is consistent with a drift wave response, which tends to select the

longest parallel wavelength. This wavelength is often estimated to be twice the connection

length, Lc ≈ 9 m∼ q95πR, which connects a point near the lower (upper) x-point to the top

(bottom) of the plasma on a field line spanning the bad curvature region; doing so yields

k‖ ∼ π/Lc = 0.0035 cm−1 ≪ k⊥ = 1.5 cm−1.
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FIG. 15: (a) Calculation of k⊥ under field-aligned approximation, but taking the driven

mode to be localized on any of 21 uniformly-spaced flux surfaces between

0.95 ≤ ψ̄ = (ψ − ψ0)/(ψLCFS − ψ0) ≤ 1.05, as depicted by the line color; at the midplane,

this corresponds to a range from ∼ 8 mm inside to ∼ 8 mm outside the LCFS. Inset: the

value of k⊥ obtained for each flux surface during a ∼ 3 ms time slice around 1.20 s. The

dashed lines highlight the FWHM band, k⊥ = 1.5± 0.1 cm−1, expected for the antenna’s

winding structure. (b) Toroidal mode number derived from Mirnov coils, as well as PCI

measurements, from a different discharge. The Mirnov coils pick up a coherent response in

B̃θ for the entire antenna pulse, allowing a measurement of n for the driven fluctuations

prior to the onset of H-mode. Also included is the antenna toroidal mode number

corresponding to k⊥ = ±1.5 cm−1 for a field-aligned perturbation. The subplot shows a

spectrogram from a single PCI chord.

The role of E × B flow also needs to be considered. Recent measurements with the

MLP11 for ohmic EDA H-mode discharges like the ones discussed here have shown that

in the QCM mode layer, the radial electric field points outward, such that the E × B and

electron diamagnetic flows oppose one another. As such, the QCM propagates in the electron

diamagnetic drift direction in both the laboratory and plasma frames. But ∼ 1 mm inward

from the LCFS, the E × B flow changes directions, with vE = v∗ at ∼ 2 mm inside the

LCFS. If the antenna-driven mode overlaps spatially with the QCM, as assumed above, then

it also rotates in the electron diamagnetic drift direction in both the plasma as well as the
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FIG. 16: Spectrogram of reversed-field discharge in which a resonant response to the

antenna appears on the diagnostic signals, but where there is no apparent intrinsic QCM.

laboratory frame. However, a precise measurement of the driven mode layer is necessary in

order to make this statement with certainty.

D. Transfer Function Analysis

Up until now, we have focused on the coherence of fluctuations in short (∼3 ms) time

slices. It is also instructive to examine the response across an entire frequency scan, typically

covering ∼40 kHz, by examining the transfer function, an analysis technique commonly

employed in the Active MHD literature36,40,43,44. The transfer function, H(jω), can be

thought of as the coherent output registered in the signal, y (e.g. output from a PCI chord

or a Mirnov coil), caused by, and related linearly to, the input signal, x (here, the antenna

current). It is calculated from H(jω) = Pxy/Pxx, where again, Pxy is the complex cross

power spectral density between signals, x and y, and Pxx the power spectral density of x.

The transfer function is especially useful in detecting resonances, since it reveals peaks in

the coherent response. These peaks can then be characterized by their center frequency

(corresponding to the natural resonant frequency of the mode), bandwidth (corresponding

to the damping rate), and overall magnitude.

Indeed, the frequency response of the Shoelace antenna is strongly peaked in H-mode,
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FIG. 17: Magnitude of coherent response, x|Pxy/Pxx|, where x is the antenna current and

y is the fluctuation signal, for (a,b,c) a forward-field shot with an intrinsic QCM and

(d,e,f) a reverse-field shot with no prominent intrinsic QCM. The responses are from (a,d)

a PCI chord and (b,e) a Mirnov coil. The bottom subplots (c,f) show the antenna drive

frequency (blue solid line), together with the peak frequencies in the PCI (black solid) and

Mirnov coil (green dashed) spectra. Orange vertical dashed lines highlight peaks in the

coherent response.

but not in L-mode. Figure 17 illustrates this point. It shows an estimate for the absolute

amplitude of the coherent response obtained by scaling the transfer function by the antenna

current amplitude, |H · Ia|. Both the line integrated density fluctuation, ˜̄ne, from a PCI

chord and the poloidal field fluctuation, B̃θ, measured at a Mirnov coil are shown60. For

comparison, the amplitude of the maximum spectral component of the fluctuation signal in

the band from 40 to 200 kHz is overplotted. The frequency of the maximum component for

each fluctuation signal is included in a subplot, together with the antenna frequency. The

data on the left-hand side (Figure 17a-c) are from the same discharge as that shown in Figure

9, which had a fully-developed EDA H-mode with a QCM. The data on the right-hand side

(Figure 17d-f) correspond to the discharge in Figure 16, which had a short-lived ELM-free

H-mode and no prominent QCM.

When the antenna frequency crosses the peak in the PCI spectrum - a proxy for the QCM

center frequency - we see a sharp peak in the coherent response, such that the amplitude of
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the coherent fluctuation matches the peak amplitude in the spectrum. This is true for both

˜̄ne and B̃θ measurements. We may wonder whether the antenna is driving a fluctuation of

this amplitude, or is locking the intrinsic mode to its own phase. The second possibility

might seem more plausible given that the total peak fluctuation amplitude increases only

slightly when the antenna crosses the QCM frequency.

However, in experiments examining nonlinear interaction between a driven mode and a

coherent drift wave structure on a linear device, Brandt et al.33 observed frequency pulling

and the appearance of sidebands in the fluctuation spectra. These features are not appar-

ent in the fluctuation spectra obtained during Shoelace antenna operation, though higher

antenna power may be needed to access this behavior.

In addition, in the case where there is no apparent QCM, the response is still peaked

around a particular frequency, as shown in the data in Figure 17d-f, suggesting a resonance.

During the ELM-free H-mode, the coherent response dominates the PCI spectrum most of

the time, and the Mirnov coil response all of the time. The peaks in the density response

are shallower than, but still comparable to, those in the EDA case in 17a-c. This is a

significant result, and suggests that, on mapped field lines, the antenna might be able to

drive a fluctuation close to the level of an intrinsic QCM, even when no such intrinsic mode

is present. Given the QCM’s role in regulating the pedestal, we might also speculate that

the antenna drives transport on mapped field lines similar to the intrinsic mode; further

experiments are necessary to investigate this exciting possibility.

Before proceeding, it is important to point out that when the field pitch angle evolves

during the discharge, it is necessary to remove a phase offset. This was not necessary in the

calculation of mode numbers using the short-time spectral analysis because the time slices

were on the order of ∼3 ms, and the pitch angle evolves on a longer time scale, as evidenced

by the mapped rung locations overplotted on the time-evolving 1D coherence image in

Figure 11. However, over the course of a complete frequency scan, lasting 50 ms in these

experiments, the pitch angle can change appreciably. This effect may be accounted for in

the transfer function as H(jω) = Hc(jω)e
−jn∆z, where the subscript, c, denotes calibration,

and ∆z the change in the toroidal angle after mapping to the outer midplane.

Figure 18 shows the transfer function magnitude and phase over a single frequency scan

from three mapped diagnostics: a PCI chord, a Mirnov coil, and a polarimeter chord. The

data are from the same forward-field discharge described in Figure 17a-c. The magnitudes
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FIG. 18: (a) Transfer function magnitude for a PCI chord, a Mirnov coil, and a

polarimeter chord over a single frequency scan, normalized to the maximum value over the

scan for each diagnostic to allow comparison. (b) Phase of the transfer function over the

course of the same scan, adjusted by the phase offset, n∆z, to account for the change in

the mapped toroidal angle, ∆z, for each diagnostic, following the mapping procedure

described in Section IVC.

are normalized by the maximum value over the scan so that data from different diagnostics

can be compared, while the phase is adjusted according to the discussion above. The peak

frequency, FWHM, and relative phase transition match across the three diagnostics. The

relative change in phase of 180° over the frequency scan further suggests that the response

may be modeled as a simple pole using an expansion of the form,

Hc(jω) = H0 +
A

γ + j(ω − ω0)
+

A∗

γ + j(ω + ω0)
(2)

where H0 is a real constant offset, A is the complex residue, A∗ its complex conjugate, γ the
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FIG. 19: (a) Plot in complex plane of transfer function, H, for eight outer-most PCI

chords (blue solid line), together with parameterized fit using Eq. 2 (green solid line).

Arrows indicate phase angle of residue, A. The fact that circular trajectories of H are

advancing in the clockwise direction for increasing frequency is indicative of a damped

resonance. (b) Plot of −1 multiplied by the unwrapped phase angle of each pole residue

from each chord versus corresponding chord major radius. The slope gives the major radial

wave number, kR. An inset shows Shoelace mapping on the LCFS in the PCI plane, as

well as the Bφ and electron diamagnetic drift directions. (c,d) Here, the data is from a

discharge with reversed field. Again, the sign of kR is flipped, following the inversion of the

electron diamagnetic drift direction. No QCM was present in this discharge, but the

antenna response still appears to be a weakly-damped resonance.

damping rate, ω0 the resonant angular frequency, and the property that H(−jω) = H∗(jω)

ensures a purely real output signal. The residue, damping rate, and resonant frequency may

then be used to characterize the peak.

Figure 19 examines the transfer function for a forward-field shot with a strong QCM

(Figure 19a,b), as well as a reversed-field shot with no apparent QCM (Figure 19c,d). In
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both cases, the plot of the transfer function in the complex plane (the Nyquist plot), shown

with a blue solid line, executes a circular trajectory, rotating in the clockwise direction for

increasing frequency. The green solid line plots Eq. 2 with parameters fit to the same

peak; this functional form always appears as a circle in the complex plane, circulating in the

clockwise direction when γ > 0 (implying a damped response).

The phases, α, of the pole residues, A, used to fit the transfer function are also tracked

and unwrapped, again revealing a major radial wave number, kR, that (a) matches the

antenna k⊥ after assuming a field-aligned structure and mapping to the midplane, and (b)

points in the direction of the electron diamagnetic drift direction, flipping sign between the

forward- and reverse-field cases.

Having closely analyzed the phase of the residue, we may investigate the other fit param-

eters of Eq. 2. Figure 20a plots the resonant frequency, f0 = ω0/(2π), for each frequency

scan, along with the peak in the PCI spectrum (black solid line) and the antenna drive fre-

quency (black dashed line). f0 is reproduced with little scatter across multiple PCI chords

(blue solid lines), Mirnov coils (green solid lines), and polarimeter chords (red solid lines).

Moreover, it tracks very closely the frequencies at which the antenna drive crosses the peak

PCI frequency, recovering the result mentioned earlier that the peak frequency matches the

QCM frequency when there is a QCM present. It is also interesting that, when the antenna

frequency approaches the peak in the PCI spectrum, the peak tends to follow the drive

briefly.

Figure 20b shows the damping rate, γ, normalized by 2π for comparison with the res-

onant frequency. The error bars correspond to the standard deviation across independent

measurements of an individual diagnostic. A damping rate of γ/ω ≈∼5% appears across

all diagnostics. The damping rate in the reversed field discharge shown in Figure 17d-

f is higher - around 10% - and displays more scatter across the diagnostics. The range,

γ/ω0 = 0.05 − 0.1, is typical of these experiments, indicating that the driven mode is only

weakly damped.

V. CONCLUSIONS AND FUTURE WORK

A new “Shoelace” antenna was used for the first time to drive fluctuations in the Alcator

C-Mod tokamak edge. The field-aligned antenna winding imposes a particular k⊥ = ±1.5±
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FIG. 20: (a) Resonant frequency from PCI (blue solid lines), Mirnov coils (green solid),

polarimetry (red solid); antenna freq. (black dashed); peak PCI freq. (black solid). The

resonant frequency tends to track the QCM frequency, whose proxy here is the peak in the

PCI spectrum. (b) Damping rate across discharge, as determined by transfer function

between antenna current and fluctuation signals from a Mirnov coil, a PCI chord, and a

polarimeter chord. Damping rates from a wide variety of discharges are low, settling to a

value between γ/ω0 = 5− 10%, where ω0 is the resonant angular frequency.

0.1 cm−1, with toroidal mode number, n = ±35 ± 23, while a custom-built wide-band

matching network allows operation in a broad frequency range from 45-300 kHz. These

wave number and frequency ranges were chosen primarily to cover the parameters normally
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observed for the QCM, which regulates the pedestal in the ELM-free, steady-state EDA

H-mode regime. However, they also cover part of the parameter range of the WCM, which

accompanies the I-mode regime. 2 kW of RF power are provided by two commercial 50 Ω

amplifiers.

The antenna was energized during a number of ohmic L- and H-mode plasmas. In H-mode

plasmas, the antenna drove density and magnetic field perturbations in the edge, while in

L-mode plasmas, only magnetic field perturbations were induced. The driven mode always

propagated in the electron diamagnetic drift direction in both forward- and reverse-field

operation, and was approximately field-aligned, with k⊥ and n matching the values imposed

by the antenna winding. The driven fluctuations were also guided by field lines.

Moreover, the driven response was strongly peaked around a specific frequency in H-mode,

but not in L-mode. In EDA H-mode discharges with an intrinsic QCM, the resonance fell

precisely on the QCM center frequency. However, even in ELM-free H-mode discharges

without a prominent QCM, the antenna response was still peaked. In both cases, the

damping rate was weak, with γ/ω0 ≈ 5−10%, with the lower end of the range corresponding

to EDA H-mode discharges. At the resonant frequency, a large fraction of the total ñe and B̃θ

fluctuation was strongly coherent with the antenna current. In discharges with a QCM, it is

possible that the antenna locked the intrinsic mode phase to its own. In discharges without

a strong QCM, the antenna-induced fluctuation seemed to dominate the QCM range of the

ñe and B̃θ spectra. This is significant in that it suggests the driven mode may be driving

transport in a similar fashion to, but in the absence of, the intrinsic QCM.

The antenna-driven mode shares the same k⊥, frequency, and propagation direction as

the QCM, with k⊥ ≫ k‖, is localized to the edge, only exhibits a density fluctuation after

the development of steep edge gradients in H-mode, and is guided by field lines. The

guided behavior is reminiscent of resonance cones predicted for low-frequency electrostatic

waves51–55, as well as shear Alfvén waves34, but these scenarios are not consistent with the

high collisionality (τ−1
ei /ω ≈ 20 ≫ 1) of the edge, nor the driven resonance around the QCM.

Experiments in linear devices have shown that exciting mode-selective parallel currents is

the essential ingredient for coupling to drift waves, and that this may be done inductively33.

As such, it is tempting to identify the driven mode with the QCM, which has been identified

as an electron drift wave with additional interchange and electromagnetic character11. How-

ever, at present, we do not have the same detailed diagnostic information61 of the driven
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mode as is available for the intrinsic QCM, and so it is difficult to conclusively verify this

association.

Examining the driven mode using the Mirror Langmuir Probe (MLP) would allow us

to (a) identify the degree of spatial overlap between the intrinsic QC and driven modes,

(b) determine the phase difference between the different fluctuation quantities (especially

electron pressure, p̃e, and potential, Φ̃) to characterize the driven mode physics, (c) examine

via local measurements whether the antenna affects the amplitude, phase, or stability of the

intrinsic mode, (d) determine whether the antenna imparts torque to the plasma, and (e)

crucially, learn whether the antenna-induced mode independently drives transport. Such an

investigation was not possible in the initial round of experiments because the antenna was

not field-aligned for pitch angles at which the antenna mapped to the MLP location. The

antenna has since been prepared for the next experimental campaign by rewinding at a new

angle which does map to the MLP.

The Shoelace antenna power system is capable of locking in real-time to an analog signal

with a coherent feature in the QCM band, 50-150 kHz, from a fluctuation diagnostic, adding

a phase delay tunable in 64 steps between 0 and 360 degrees. The construction of this system

will be described elsewhere48. The operation of the system was demonstrated in initial

experiments, as shown in Figure 21. Here, a spectrogram of a PCI signal is accompanied

by traces of the PCI peak (blue solid line) and antenna drive (green solid line) frequencies,

as well as the antenna current. The antenna frequency closely tracks the rapidly-varying

PCI peak frequency, while the antenna current remains near 80 A throughout the discharge

as the matching network continually adjusts its tuning following the changing frequency.

Feed-forward amplitude modulation was applied to the current program to help distinguish

the antenna-driven fluctuation from the intrinsic QCM.

The phase lock system was built to explore whether the antenna may feedback stabilize,

or further destabilize, the intrinsic QCM, and whether it may also impart a torque to the

plasma, in an analogous manner to an AC motor, where the antenna plays the role of the

stator and the current filaments of the QCM, the rotor. However, only preliminary work

was carried out with this system, and further experiments are needed to determine whether

or not the antenna may be used in this way.

Lastly, while 2 kW of input power were available to the Shoelace antenna, the matching

network and winding are built to allow expansion to 10 kW. Power scans enabled by an
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FIG. 21: A real-time frequency lock of the antenna drive to a QCM feature in the PCI

signal has already been demonstrated in experiments.

increase in available input could (a) help us understand how fluctuation-driven transport

correlates to mode amplitude, (b) learn how much additional power a nonlinearly-saturated

QCM can accept, and (c) possibly explore nonlinearities in the antenna response (answering,

for example, the question of whether doubling antenna current results in doubling the driven

mode amplitude).

Accompanying the experimental effort, we have begun modeling the antenna/plasma

interaction using BOUT++, a highly-adaptable framework for performing plasma fluid sim-

ulations in arbitrary, three-dimensional, curvilinear coordinate systems58. Initial work has

utilized a three-field (pressure (pe), vorticity (ω̄ = b · ∇ × ũ), and parallel ion velocity u‖)

slab model with magnetic and flow shear; however, the model will be expanded to include

electromagnetic and curvature effects. The goal is to understand the processes which control

the measured damping rate, and in addition to construct a minimal model sufficient to ex-

plain the antenna coupling to the plasma. We should point out that, as of the preparation of
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this publication, simulation of the QCM using BOUT++ remains an active area of research62,

and the precise behavior measured in experiment has not yet been fully captured in the

model.

It is the authors’ hope that the insight gained in the theoretical effort will help guide

future experimental inquiry using the Shoelace antenna on Alcator C-Mod.
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