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General optimization technique for high-quality community detection in complex networks
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Recent years have witnessed the development of a large body of algorithms for community detection in complex
networks. Most of them are based upon the optimization of objective functions, among which modularity is the
most common, though a number of alternatives have been suggested in the scientific literature. We present
here an effective general search strategy for the optimization of various objective functions for community
detection purposes. When applied to modularity, on both real-world and synthetic networks, our search strategy
substantially outperforms the best existing algorithms in terms of final scores of the objective function. In terms
of execution time for modularity optimization this approach also outperforms most of the alternatives present in
literature with the exception of fastest but usually less efficient greedy algorithms. The networks of up to 30 000
nodes can be analyzed in time spans ranging from minutes to a few hours on average workstations, making our
approach readily applicable to tasks not limited by strict time constraints but requiring the quality of partitioning
to be as high as possible. Some examples are presented in order to demonstrate how this quality could be affected
by even relatively small changes in the modularity score stressing the importance of optimization accuracy.
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I. INTRODUCTION

The increasing availability of large amounts of data has
motivated an enormous general interest in the burgeoning
field of network science. In particular, the broad penetration of
digital technologies in different spheres of human life provides
substantial sources of data sets which explore the intricacies
of manifold aspects of human activity. The topics they
cover range from personal relationships among individuals to
professional collaborations, from telephone communication to
data exchange, from mobility and transportation to economical
transactions and interactions in social media. Analyzing such
data sets often leads to the construction of complex networks
describing relations among individuals, enterprises, locations,
or more abstract entities, such as the buzzwords and hashtags
employed in social media; whenever the resulting structures
are geographically located, they can then be studied at different
scales, including global, countrywide, regional, and local
levels. Furthermore, complex networks can arise from the
study of biological phenomena, including neural, metabolic,
and genetic interactions.

Community detection is one of the pivotal tools for
understanding the underlying structure of complex networks
and extracting useful information from them; it has been used
in fields as diverse as biology [1], economics (the World Trade
Net is analyzed in Ref. [2]) human mobility [3–7], communica-
tions [8,9], and scientific collaborations [10]. Many algorithms
were devised in the field of community detection, ranging from
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straightforward partitioning approaches, such as hierarchical
clustering [11] or the Girvan-Newman [12] algorithm, to
more sophisticated optimization techniques based on the
maximization of various objective functions.

The most widely used objective function for partitioning
is modularity [13,14]: it relies on comparing the strength
of inter- and intracommunity connections with a null model
in which edges are randomly rewired. In order to obtain
partitions yielding optimal values for modularity, researchers
have suggested a large number of optimization strategies: well-
known algorithms include the simple greedy agglomerative
optimization by Newman [15] and faster Clauset-Newman-
Moore heuristic [16]; Newman’s spectral division method [13]
and its improvements (which employ an additional Kernighan-
Lin-style [17] step) [14]; a similar method by Sun et al. [18],
in which partitions are iteratively refined by considering
all possible moves of single nodes to all existing or new
communities; the aggregation technique commonly referred
to as the Louvain method, extremely fast even on large-
scale networks [19]; simulated annealing [20,21]; extremal
optimization [22]; and many others [23]. In the last few
years, researchers have shown that modularity suffers from
certain drawbacks, including a resolution limit [21,24] which
prevents it from recognizing smaller communities (a proposed
multiscale workaround which involves modifying the network
can be found in Ref. [25]).

At least three of the several alternative objective functions
deserve to be mentioned: description code length, block model
likelihood measure, and surprise. The description code length
of a random walk on a network, upon which the Infomap
algorithm [26,27] by Rosvall and Bergstrom is based, is a
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well-known information-theoretical measure, reputed to be
among the best available [28]; it appears, however, that code
length optimization also suffers from a resolution limit, as
discussed in Ref. [29], where a workaround is proposed. The
second approach is based on the likelihood measure for the
stochastic block model, variations of which were suggested in
Refs. [30–35]. Finally, Surprise [36] compares the distribution
of intercommunity links to that emerging from a random
network with the same distribution of nodes per community.
For a detailed, if not up-to-date, review of existing community
detection methods, the reader can refer to Ref. [23].

A few more strategies for community detection follow:
the replica correlation method introduced in Ref. [37],
which is also an information-based measure; two recently
proposed algorithms, which infer community structures by
using generalized Erdős numbers [38] and by focusing on
the statistical significance of communities [39]; a recent
approach for modularity optimization (conformational space
annealing [40]) which delivers acceptable results very quickly
and is scalable to larger networks, as is the modification to
the algorithm by Clauset, Newman, and Moore [16] proposed
in Ref. [41].

A key point in the evaluation of algorithms for community
detection is the choice of meaningful benchmarks. Bench-
marks can be roughly divided into two groups. In the first, one
compares the final scores achieved by different algorithms for
the optimization of the same objective function on a variety of
networks. In the second type of benchmark, resulting partitions
are checked against imposed or well-known structures in
synthetic or real-world networks; this kind of benchmark
is fundamental for the evaluation of different partitioning
techniques not necessarily based on the optimization of the
same objective function. Other methods to obtain independent
evaluations of the reliability of communities found, without
relying on the known community structure nor objective func-
tion scores, focus (among other parameters) on recurrence of
communities under random walks [42,43], and their resilience
under perturbations of the network edges [44].

In the present work we suggest a universal optimization
technique for community detection, which we apply to two
of the aforementioned objective functions: modularity and
description code length. We also present the results of a
two-stage benchmark. First, we compare the performance of
our algorithm, in terms of the resulting values for objective
functions, with a host of existing optimization strategies,
separately for modularity and description code length; we
show in this way that we consistently provide the best
modularity scores, and results on par with Infomap when
optimizing description code length. Next, by employing in
each case the best available algorithm, we compare the
performances of modularity and description code length as
objective functions in reconstructing underlying structures on a
large set of synthetic networks, as well as the known structures
on a set of real-world networks.

II. THE ALGORITHM

The vast majority of search strategies take one of the
following steps to evolve starting partitions: merging two
communities, splitting a community into two, or moving

nodes between two distinct communities. The suggested
algorithm involves all three possibilities. After selecting an
initial partition made of a single community, the following
steps are iterated as long as any gain in terms of the objective
function score can be obtained: (1) for each source community,
the best possible redistribution of every source nodes into each
destination community (either existing or new) is calculated;
this also allows for the possibility that the source community
entirely merges with the destination; (2) the best merger, split,
or recombination is performed. As the proposed technique
combines all three possible types of steps, in the following we
will refer to it as Combo.

The fulcrum of the algorithm is the choice of the best
recombination of vertices between two communities, as splits
and mergers are particular cases of this operation: for each pair
of source and (possibly empty) destination communities, we
perform a shift of all the vertices fashioned after Kernighan
and Lin’s algorithm [17]. Specifically, we recombine the two
communities starting from several initial configurations, which
include (a) the original communities, (b) the case in which the
whole source community is moved to the destination, (c) a few
intermediate mergers, in which a random subset of the source
community is shifted to the destination. For each starting
configuration, we iterate a series of Kernighan-Lin shifts until
no further improvement is possible; each is performed by
(1) initializing a list of available nodes to include all the
nodes from the original source community and (2) iterating
the following steps until list is empty: (a) find the node i

in the list for which switching community entails the largest
gain or the minimum loss (if no gains are available) and
(b) switch i to the other community, remove i from the list
of available nodes, and save the intermediate result. After a
series of Kernighan-Lin improvements has been completed for
each of the starting configurations, we select the intermediate
result which yields the best score in terms of objective
function. See Algorithm 1 for schematic pseudocode of
Combo [45].

It is also worth mentioning that the inclusion of random
initial configurations is usually essential to the algorithm
performance. The experiments reported in the Supplemental
Material [46] in Fig. S5 show that on average considering
random configurations increases the resulting modularity
score by 2%, which could sometimes correspond to quite
a considerable partitioning improvement. As we can see in
Table I even much smaller changes to modularity score result
in significant variations in the partitioning. Also Fig. S6
from the Supplemental Material [46] shows that despite this
randomness results of Combo are very stable (varying in
bounds of 0.1%). However, processing random configurations
also takes time: without them the algorithm appears to be on
overage 4.2 times faster, which makes it possible to suggest this
simplified version of the algorithm for the applications when
execution time is more crucial. At the same time, replacing
such random configurations with partitioning produced via
other methods, e.g., spectral division, makes the algorithm
more prone to being captured by local maxima.

Experimental tests show a striking regularity in the depen-
dence of Combo execution time on the number of nodes of the
network; Fig. 1 demonstrates that this behavior is close to a
power law with exponent 1.8. As one can see from the figure
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Algorithm 1: Combo.

input : A network net containing n nodes, initial partition initial communities (by default initially
all nodes in one community), the maximal number of communities max communities
(infinity by default)

output: A partition of the network into communities

1 Initialize variables for storing partitions and their gains;
2 for each pair (origin, dest) of communities do // dest may be empty community

// Calculate best gain from moving nodes from origin to dest
3 ReCalculateGain(origin, dest);
4 while BestGain() > THRESHOLD do
5 PerformMove(best origin, best dest, best partition);

// Update gains for changed communities
6 for each community i do
7 ReCalculateGain(best origin, i); ReCalculateGain(i, best origin);
8 ReCalculateGain(best dest, i); ReCalculateGain(i, best dest);
9 Procedure PerformMove(origin, dest, partition)

10 Move nodes from origin to dest according to partition;
11 Procedure BestGain()
12 Select from remembered partitions one with the best gain;
13 Return this gain and corresponding best origin, best dest and best partition;
14 Procedure ReCalculateGain(origin, dest)
15 if dest is new community and we already have max communities then
16 return;
17 Define and initialize number of tries;
18 for tryI ← 1 to number of tries do
19 foreach vertex v from origin community do
20 move v to dest or leave in origin with equal probability ;
21 Calculate new gain, assign zero to previous gain;
22 while new gain > previous gain do
23 PerformKernighanLinShifts(origin, dest);
24 if achieved gain is greater then current maximum then
25 Remember current partition and gain;
26 Procedure PerformKernighanLinShifts(origin, dest)
27 Calculate gains from moving each node to opposite community ;
28 for i ← 1 to size of origin community do
29 Perform temporary movement that produces maximal gain;
30 Remember current gain and moved node;
31 Recalculate all gains;
32 Retrieve the movements leading to a maximal gain among intermediately calculated and perform

them;

Combo can deal with networks of up to 30 000 nodes in time of
up to a few hours (on an iMac machine with Core i7 3.1 GHz
CPU and 16 GB memory). However, memory availability is a
bottleneck for the current implementation, and for the bigger
networks the code slows down even more whenever it starts
using the computer’s virtual memory.

As the sequence of operations in Combo is strongly
dependent on the specific network, sharp evaluations of its
computational complexity are difficult to obtain; the regularity
of the dependence observed in Fig. 1, however, hints at some
robust mechanism acting under the hood. In the Supplemental
Material [46], we justify an upper bound to the execution time
of O[N2 log(C)], where N is the number of nodes, and C the
number of communities in the network.

III. MODULARITY OPTIMIZATION BENCHMARKS

We first evaluated the performance of Combo for mod-
ularity optimization. We selected six algorithms for the
comparison: (a) the Louvain method [19]; (b) Le Martelot [43];
(c) Newman’s greedy algorithm (NGA) [15]; (d) Newman’s
spectral algorithm with refinement [14]; (e) simulated an-
nealing [20]; and (f) extremal optimization [22]. The set
of algorithms we have chosen offers a good sample of the
current state of the art. Simulated annealing is reputed to
be capable of getting very close to real maxima, and ex-
tremal optimization offers a good tradeoff between speed and
performance [23,47,48]; they provided the best-performing
algorithms in at least one benchmark [49]. The recursive
Louvain method is fast and relatively effective [28] and
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TABLE I. Difference in the modularity score and corresponding
NMI similarity between best and alternative partitioning produced by
different algorithm.

Modularity score

Network Best Alternative Deviation NMI

1 0.419790 0.418803 0.000987 0.923345
2 0.526799 0.518828 0.007971 0.732029
3 0.566688 0.565416 0.001272 0.924726
4 0.527237 0.498632 0.028605 0.784013
5 0.310580 0.290605 0.019975 0.553769
6 0.605445 0.602082 0.003363 0.919872
7 0.507642 0.493481 0.014161 0.741351
8 0.432456 0.432057 0.000399 0.651622
9 0.955014 0.954893 0.000121 0.971705
10 0.850947 0.846159 0.004788 0.816490

has therefore been applied in various real-world network
analyses [50,51]. Newman’s greedy algorithm and spectral
algorithms can be considered classical approaches, since they
were suggested right after modularity was introduced about
10 years ago and were therefore used in a number of previous
benchmarks [19,23,28,48]. The technique by Le Martelot
is a more recent approach, for which a benchmark already
exists [52].

We ran each algorithm on three sets of networks: (1)
widely available data sets found in the literature; (2) five
graphs, obtained from NDA-protected telecom data, in which
the weight of each edge corresponds to the total duration of
telephone calls between two locations; and (3) 10 synthetic net-
works generated using the Lancichinetti-Fortunato-Radicchi
approach [53,54]. Detailed descriptions and references can be
found in the Supplemental Material [46].

As a measure of the comparative quality of partitioning,
we computed the average rank of each algorithm over all
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FIG. 1. (Color online) Dependence of Combo execution time on
the network size (for all the benchmark networks described below)
showing a power law relation.
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FIG. 2. (Color online) Average normalized performance rank of
each algorithm in terms of partitioning quality (main plot) and speed
(subplot): values ranging from 0 (worst performance) to 1 (best) are
attributed to each algorithm, and their average computed.

the networks on which it has been tested. When multiple
algorithms yielded the same modularity, we equated their rank
to the best among them (1 for the highest modularity score).
For ranks based on execution time we scored zero all those
algorithms that didn’t converge within 12 hours.

As summarized in Figs. 2 and 3, Combo significantly
outperforms other algorithms, with an average rank score of
0.98; the next best placements are simulated annealing (0.67),
Louvain (0.55), and spectral method (0.51); other algorithms
show considerably less consistent outcomes. Figure 4 shows
that Combo is not as fast as the greedy aggregation algorithms
(Louvain, Le Martelot), but faster than other algorithms,
both complex, such as simulated annealing, and simple, such
as NGA (for which we are, however, using a MATLAB
implementation). In the worst cases (usually when the resulting
number of communities is big enough), Combo finalizes
computation in a matter of hours for networks of thousands
to tens of thousands of nodes. That is why in cases where the
network is big enough and the computational time is crucial,
while the resulting partitioning quality is not, using faster
approaches might be the better choice.

Often, however, the reliability of the final community
structure is of paramount importance: in such cases, we will
want to aim at the highest possible value of the objective
function, as even small differences in the resulting modularity
score can translate into macroscopic variations in the quality
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FIG. 3. (Color online) Performance of algorithms as average
percentage of their resulting modularity score to the maximum,
achieved by the best algorithm.
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FIG. 4. (Color online) Execution times by network size and
algorithm.

of partitioning. In the next section, we show that a variation
as small as 0.5% can have a sizable impact on the community
structure of a network, and Fig. 3 demonstrates that Combo
outperforms its nearest rivals by around 2% on average in
terms of achieved modularity score. While at the moment it is
impossible to guarantee that an achieved partition is a global
maximum, we can assume that choosing the one sporting the
highest score is the best option.

IV. IMPORTANCE OF PRECISION: THE EFFECT
OF SMALL CHANGES IN MODULARITY

VALUES ON PARTITIONS

Here in order to stress the importance of looking for
even the minor gains in the modularity score, we would
like to show that relatively small changes in this partition
quality function can be reflected by macroscopic variation
of the communities involved. To illustrate this point, first,
we compared the partition with the highest modularity score
of 10 first networks (incidentally for all 10 networks it is
the one obtained by using Combo) from our modularity
benchmark (their descriptions can be found in Supplemental
Material [46]) with the partitioning obtained by Louvain
method being one of the closest competitors. As shown in
Table I, differences in modularity score that one might consider
to be relatively low can correspond to sizable variations
of partition. In order to quantify that difference we used
normalized mutual information (NMI) [49] (introduced in
detail in the Supplemental Material [46]). It is scaled from
0 to 1, and the more similar partitions are the higher NMI
they have, for identical partitions NMI equals to 1. We see that
quite often difference in the modularity score less than 0.01 or
even 0.001 which one might perhaps consider to be the minor
deviation at the first glance, could actually result in substantial
variations of the corresponding community structure with the
corresponding NMI similarity values sometimes as low as
0.6–0.7.

Another important question of course is whether those
noticeable changes in community structure sometimes coming
along with the small gains in the modularity scores one
could achieve by using the higher performance algorithm,
actually improve the partitioning quality in a certain sense.

TABLE II. NMI similarity to the original network structure and
corresponding modularity scores for partitioning of LFR synthetic
networks produced by different algorithms.

Network Modularity score NMI

size Best Alternative Deviation Best Alternative

1000 0.376667 0.342281 0.034386 0.989395 0.705298
2000 0.339416 0.243512 0.095904 0.998217 0.158417
3000 0.569376 0.556105 0.013271 1.000000 0.969851
4000 0.570596 0.563286 0.007310 0.997617 0.975451
5000 0.616145 0.609881 0.006264 0.996095 0.976030
6000 0.571150 0.556786 0.014364 0.996035 0.954530
7000 0.565559 0.549285 0.016274 0.996824 0.944399
8000 0.614574 0.608583 0.005991 0.991510 0.968284
9000 0.575881 0.566198 0.009683 1.000000 0.961747
10 000 0.605243 0.581807 0.023436 0.996522 0.943804

This is a complex question lying mostly beyond the scope
of the current article as in fact it requires one to understand
to which extent the modularity score itself could be trusted
as the partitioning quality function. There is an ongoing
debate in the literature about advantages and limitations of the
modularity optimization approach including the modularity
resolution limit [21,24]. Also the question of what to take for a
partitioning quality is not always obvious: even if for some of
the real-world networks we possess a knowledge of their actual
underlying community structure there is no guarantee it would
be indeed optimal in any theoretical sense including modular-
ity score optimization. But just as a simple illustration to that
question we introduce a second experiment where we used
networks generated by Lancichinecchi-Fortunato-Radicchi’s
method [53,54] having a pretty much straightforward imposed
community structure. For each of the networks we compared
two partitions obtained by Combo and Louvain method with
this original community structure based on which the network
was created. Table II shows that while the results of Combo
providing the better modularity score appear to be 99–100%
similar to the original community structure, the results of the
other method that might seem to be just slightly worse in terms
of modularity already demonstrate a much less convincing
match: usually around 95–97% but sometimes down to 70%
or even 15% in terms of NMI. And better modularity score
always comes together with the better NMI.

Just to give a visual example of how the partitioning
changes corresponding to the minor modularity improvement
could look like we show two different partitions for the
United Kingdom telephone network studied in Refs. [8,9]
in which link weights represent the number of telephone
calls between locations: one obtained with Combo, the other
with the Louvain method (Fig. 5). Although the modularity
gain is only 0.0043, which at a first glance may suggest
that the quality of two partitioning is actually comparable, a
number of macroscopic differences are visible. Slightly higher
modularity score also translates into a lower level of noise in
the spatial structure of the resulting communities and a better
agreement with the official administrative divisions of Great
Britain being quantified by NMI similarity measure: 0.804
against 0.703.
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FIG. 5. (Color online) Partitioning of a network based on the
number of all calls entertained between each pair of locations. A
minimal variation in modularity (less than 1%) can turn into a sizable
difference in partitioning. Here the Combo results show cleaner
geographical separation of communities and are substantially more
similar to official administrative divisions with modularity equal to
0.6753 and NMI = 0.804, compared to modularity = 0.6710 and
NMI = 0.703 for Louvain.

V. MINIMUM DESCRIPTION CODE LENGTH
BENCHMARKS

In our second benchmark, we use the Combo algorithm to
optimize description code length compression and compare
the results to those obtained using the original Infomap
implementation by Rosvall and Bergstrom [26,27]. Because
of longer execution time of Combo for code length, we ran the
comparison on the set of networks of size up to 8000 from the
previous benchmark. Since Infomap is a greedy algorithm and
results are dependent on a random seed, we ran it 10 times for
each network and picked the best result.

Unlike for modularity, final values for code length are very
close, with a single network in which their difference is about
5%, and less than 3% in all other cases; Combo yields a better
code length in 8 networks, Infomap in 9, the results being
the same in all other cases. Detailed results are reported in
the Supplemental Material [46]. Combo thus results in a valid
alternative and an ideal complement to Infomap, as in several
cases it is proved capable of finding better solutions.

The analysis above proves that Combo is efficient in terms
of optimization of both objective functions: modularity and
code length. Now having such a high-performance universal
optimization technique opens a new research opportunity
worth additional consideration. Some attempts at comparing
multiple partitioning algorithms dealing with different ob-
jective functions are already present in the literature [55].
However, if done using different optimization techniques it
is not possible to clearly judge whether higher performance
of a certain approach is due to the objective function
relevance or just the optimization technique performance.
As Combo efficiently yields near-optimal results for both
modularity and code length, we can now for the first time
fairly compare modularity and code length as community

detection objective functions. As a simple initial criteria for
such a comparison we consider the ability of reproducing
the existing preimposed community structure in synthetic
networks. Results are presented in the Supplemental Material
(see the section Modularity vs. Description Code Length
Comparison) [46]. Overall we found that modularity yields
more reliable community reconstruction in more complex
cases as the level of noise increases. Also code length performs
surprisingly poorly for smaller networks, while for bigger
networks with relatively low level of noise its performance
already exceeds the one of modularity. Based on that, one could
recommend using modularity for discovering community
structure in networks with a weaker clustering effect, while
code length might be a better choice for larger networks with
relatively strong communities.

VI. CONCLUSIONS

We have presented Combo, an optimization algorithm for
community detection capable of handling various objective
functions, and we analyzed its performance with the two
most popular partitioning quality measures: modularity and
description code length. With regard to modularity, Combo
consistently outperforms all the other algorithms with which
we have compared it, including the current state of the art. For
what concerns the code length optimization, Combo provides
results on par with those of Infomap, which is the defining
algorithm for this objective function.

The current implementation of Combo, however, has
limitations in terms of maximal network size it is able to
handle within a reasonable time: due to memory constrains its
current applicability limit is around 30 000 nodes on modern
workstations. Running times are usually longer compared
to the fastest greedy algorithms, but often considerably
shorter than for other highly efficient optimization techniques:
networks whose size is close to the above threshold can
be handled within a few hours, while smaller networks of
several thousand nodes only require minutes. Combo is thus
an optimal choice when the quality of the resulting partition
is of paramount importance, while the network is not too big
and running time is not strictly constrained.

Combo as an optimization technique is flexible, in that
it can be adapted to many other objective functions; possible
extensions might be stochastic block model likelihood [56] and
surprise [36]. Additional advantages include the possibility of
limiting the number of resulting communities (e.g., to obtain
the optimal bipartitioning of a network) and the algorithm ap-
plicability to further fine-tuning of results previously obtained
using other algorithms.

Finally, by studying how well the most efficient optimiza-
tion techniques for modularity and code length reproduce the
known underlying community structure of the networks, we
have provided as fair as possible a comparison between the
two objective functions.
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