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We theoretically investigate the surface plasmon polariton (SPP) at the interface between a three-dimensional
strong topological insulator (TI) and a layered superconductor/magnetic insulator structure, within the random
phase approximation. The tunability of the SPP through electronic doping can be enhanced when the magnetic
permeability of the layered structure becomes higher. When the interface is gapped by superconductivity or
perpendicular magnetism, the SPP dispersion is further distorted, accompanied by a shift of group velocity
and penetration depth. Such a shift of the SPP reaches a maximum when the magnitude of the Fermi level
approaches the gap value, and may lead to observable effects. The tunable SPP at the interface between layered-
superconductor and magnetic materials in proximity to the TI surface may provide new insight in the detection
of Majorana fermions.
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I. INTRODUCTION

Surface plasmon polariton (SPP) is the collective excitation
of electrons at the interface between a conductor and dielectrics
driven by electromagnetic (EM) waves. [1,2] Despite its wide
applications in nanophotonics [3], near-field optics and tip-
enhanced Raman spectroscopy [4,5], and biological sensors
and antennas [6,7], the SPP in general suffers from problem
of huge nonradiative loss due to the strong absorption of
the metal [1–4] accompanied by additional radiative loss [8],
which limits SPP lifetime and propagation length for further
application in integrated devices.

In order to solve the SPP loss problem, low-loss plasmonics
based on graphene [9–23] and topological insulators (TIs)
[24–31] has attracted much recent attention. In far-infrared
and THz range, the major loss mechanism in graphene lies in
the scattering between electrons and optical phonons [11].
A number of studies in graphene plasmonics have been
conducted utilizing the properties of low loss and tunability.
Yan et al. [32] have reported enhanced plasmon resonance in
a patterned graphene-insulator stack structure when compared
with single-layered graphene, while Ju et al. [12] demonstrated
an enhanced tunability in the THz range in microribbon
graphene metamaterials. These efforts target manipulation of
photons and miniaturization of optical devices, and could
be further integrated and hybridized toward applications in
detectors, modulators or other integrated devices.

On the other hand, in a doped three-dimensional (3D)
TI, the electron-impurity scattering becomes dominant due
to weak electron-phonon coupling [28], with a further reduced
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backscattering probability due to topological protected surface
states [33–35]. However, unlike the booming studies in
graphene plasmonics, plasmon hybrid devices in TIs have been
seldom reported, even with comparable performance in the
THz range as well as other promising features such as net spin
polarization, i.e., “spin plasmon” [24–26,31] and spin-charge
separation [30].

Therefore, in this paper, we propose a plasmonic hybrid
structure composed of a 3D TI in close contact with a
layered superconductor. This structure provides a new platform
where SPP waves are supported. The tunability of the SPP
propagation can be achieved independently through either gate
voltage or external magnetic field. Since the Majorana bound
states, which are non-Abelian anyons in superconductors and
have great significance in topological quantum computation
[34], are predicted to exist at the boundary between a 3D TI
and a superconductor, this plasmonic structure may provide a
new perspective in search of Majorana bound states.

II. THEORY

A. Dispersion relation of an anisotropic SPP wave

Since the SPP wave is well localized at the interface, while
the Dirac electrons only exist on the surface of a TI, we could
apply anisotropic dielectric functions to model the dielectric
function of a 3D TI in order to capture both the dielectric
function of surface 2D chiral Dirac electrons (Fig. 1, xy plane,
z = 0) and the bulk dielectric constant (Fig. 1, z > 0 region).

In order to describe wave propagation in the layered
structure (Fig. 1, z < 0 region), we adopt the method proposed
by Averkov et al. [36] using an anisotropic dielectric function.
This is valid when λSP � D, where λSP is the SPP wavelength,
and D is the spatial periodicity of the layered structure. Since
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FIG. 1. (Color online) The schematic configuration of a 3D
TI/layered superconductor hybrid structure. The z < 0 region consists
of alternating layers of superconductor and insulator. The SPP wave
propagates along the interface. A back gate is present to tune the
Fermi level of the interfacial electrons, which leads to a change of
dielectric functions and furthermore a change of SPP propagation
properties.

we are interested in the long-wavelength THz range, the
condition λSP � D is guaranteed to be met. In this approach,
the anisotropy leads to the existence of an optical axis where
the EM wave suffers no birefringence [37]. Thus the electric
field and magnetic field at the interface can be written as a
superposition of an ordinary wave and an extraordinary wave:

Ej = (
Eo

j e
−κo

j |z| + Ee
j e

−κe
j |z|)ei(qxx+qyy−ωt),

(1)
Hj = (

Ho
j e

−κo
j |z| + He

j e
−κe

j |z|)ei(qxx+qyy−ωt),

where j = 1,2 denote the TI and layered superconductor sides,
respectively. Based on our model, the TI dielectric function
is defined as ε1 = (ε2D(q,ω),ε2D(q,ω),εd ) with optical axis
along the z direction, while the dielectric function of the lay-
ered superconductor is defined as ε2 = (εc(ω),εab(ω),εab(ω)),
which is anisotropic along the x direction.

Noticing the different directions of optical axis in the
upper TI region and lower superconductor region, then for
ordinary wave and extraordinary wave we have Eo

1z = 0,
Eo

2x = 0 and He
1z = 0, He

2x = 0, respectively. These equalities
are valid approximately, since, when the gap is opened, the
electromagnetic constitutive relation is modified to incorporate
the topological magnetoelectric effect [38],

D = εE − ε0cαθ

π
B

(2)
H = 1

μ
B + αθ

cμ0π
E

However, despite the O(α) correction to the electromagnetic
field by this axion constitutive relation, it actually contributes
only an order of O(α2) ∼ 10−4 correction to the plasmon
energy [38]. Moreover, since we are interested in the relative
SPP energy shift upon gating or gapping, but not the absolute
magnitude of SPP energy, the contribution from the axion term
will be canceled out when calculating the energy difference,
since the ungated or gapless SPP energy already contains
the contribution from the axion term [39]. Thus, compared
with the huge energy shift (∼1% originated from gapping or
doping) in all following calculations, we could safely neglect
the axion term and set α = 0. Within this approximation, the
components of the EM fields are shown in Appendix A, with

light speed in vacuum c = 1 and μ is the magnetic permeability
of the layered superconductor material.

Substituting the EM field components back into Eq. (1), we
obtain the localization constants, i.e., the inverse of penetration
depth away from the interface.

κo
1 =

√
q2

x + q2
y − ε2D(q,ω)ω2,

κe
1 =

√
ε2D(q,ω)

(
q2

x + q2
y

εd

− ω2

)
,

(3)
κo

2 =
√

q2
x + q2

y − μεab(q,ω)ω2,

κe
2 =

√
εc(q,ω)

εab(q,ω)
q2

x + q2
y − μεc(q,ω)ω2.

The dispersion relation of the resulting surface wave can be
written in a determinant form:∣∣∣∣∣∣∣∣∣∣∣

−iκo
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1
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y−(κo
2 )2

iμκo
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x q2

y

μκo
2

ω2εabκ
e
2

1 1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣
= 0 (4)

In this paper, we only consider the wave propagating along the
x direction, neglecting the oblique excitation. The dispersion
relation can finally be simplified as

q = ω

√
εdεab(ω) [εc(ω) − με2D(q,ω)]

εc(ω)εab(ω) − ε2D(q,ω)εd

(5)

which is the main analytical result. In this expression, μ is the
effective permeability of the layered superconductor structure
and q is the wave number along the x direction, and can be a
complex number. When both the upper and lower materials are
isotropic, i.e., ε2D = εd = ε1 and εab = εc = ε2, it is further

reduced to the well known result q = ω
√

ε1ε2
ε1+ε2

.

B. Dielectric function of the layered superconductor

Defining dimensionless frequency 
 = ω/ωJ , with ωJ the
Josephson plasmon frequency of the layered superconductor,
the dielectric function of the layered superconductor can be
written as [36]

εc(
) = εs

(
1 − 1


2

)
, εab(
) = εs

(
1 − γ 2


2

)
, (6)

where the imaginary parts are neglected. Throughout this
article, we take the value reported in [36] and set the interlayer
dielectric constant εs = 16, current-anisotropy parameter γ =
200, and ωJ = 4 meV.

C. Dielectric function of the gapless topological insulator

The dielectric function of the chiral gapless topological
insulator surface has been reported in [24,25,27], where, for
the Hamiltonian for a 2D helical Dirac electron gas H0,

H0 = �vF

∑
k

�+
k (ẑ × �k) · �σ�k, (7)
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the Lindhard Dielectric function ε2D(q,ω) can be written as

ε2D(q,ω) = 1 − V2D(q)�(q,ω) = 1 − e2

2ε0q
�(q,ω) (8)

with the polarization operator

�(q,ω) = g

4π2

∑
γ,γ ′

∫
dk

nk,γ − nk+q,γ ′

�ω + Ek,γ − Ek+q,γ ′ + iδ

× |〈fk,γ |fk+q,γ ′ 〉|2. (9)

In this expression, g is the spin/valley degeneracy, for the chiral
states we have g = 1 due to spin-momentum locking, nk,γ

is the Fermi occupation value at the energy eigenvalue, and
Ek,γ = γ �vF k, with γ = 1 for conduction band and γ = −1
for valence band, respectively. The spinor eigenstates |fk,γ 〉 =
(e−iθk/2,iγ eiθk/2)/

√
2, with θk defined as tan θk = ky/kx . We

take the value of Fermi velocity vF = 6.2 × 105 m/s [40] in
all calculations.

The random-phase approximation (RPA) relaxation time
(RT) approximation [41] can be applied to describe the SPP
damping along the propagation direction, which leads to a
finite propagation length. Defining polarizability χ (q,ω) ≡
e2

q2 �(q,ω), the renormalized polarizability, taking the conser-
vation of electron number into account, can then be written
as

χτ (q,ω) = (1 + i/ωτ )χ (q,ω + i/τ )

1 + (i/ωτ )χ (q,ω + i/τ )χ (q,0)
, (10)

where τ is the relaxation time, which is in general frequency
dependent, and mainly originates from the electron-phonon
coupling, scattering by superconductor quasiparticles, as well
as impurities scattering. In this situation, τ can be calculated
using electron self-energy [11]:

�(E) = �e−ph(E) + �sc(E) + �imp(E) (11)

When the SPP frequency is higher than the gap of
the superconductor or above the optical frequency of the
topological insulator, the self-energy in Eq. (11) contains a
prominent imaginary part, which leads to a drastic reduction
of propagation length. However, since we are interested in
low-frequency SPPs (ω < ωJ = 4 meV, shown in Fig. 2),
where only impurity scattering dominates, the relaxation time
can be directly written as τ = μ�

√
nπ/evF , without the need

of implementing Eq. (11). Since τ ∼ 10−12s is a very large

FIG. 2. (Color online) The dispersion relations (a),(b) and gap-
induced group velocity changes (c),(d) of the SPP at various Fermi
levels with respect to gap opening. The Fermi levels are taken at
three different values with 80 meV intervals. In (c), at μ = 1, even
if the tuning of the Fermi level does not change much relative to the
dispersion relation shown in (a), it still shows a shift to the SPP group
velocity in the high-Q range.

quantity, and moreover we are interested in the frequency and
the tunability of the SPP but not the exact propagation length,
for simplicity we take τ = ∞ in all following calculations,
using Eq. (9) instead of Eq. (10).

Equation (9) can be calculated either analytically [10,27]
or numerically, thanks to the identical expression of the
polarization operator within the RPA for a simple Dirac gas
and a helical Dirac gas. In our approach, we choose T = 10 K
for numerical integration to avoid discontinuity, and compare
with analytical result with at least six-digit agreement. Then
the numerical result for the gapless TI is applied to solve for the
dielectric function of the TI when the surface state is gapped.

D. Dielectric function of the gapped topological insulator

Either the magnetic field perpendicular to the interface
(z direction in Fig. 1) or the superconductivity would open
up a gap to the gapless Dirac cone, and lift out the degeneracy
at k = 0, and further alter the dielectric function as well as SPP
dispersions. In order to take into account the effect of gaps, we
adopt the Bogoliubov–de Gennes Hamiltonian [33,42], which
can be regarded as a generalization of Eq. (7):

HBdG = 1

2

∑
k

�+
k

(
kxσy − kyσx + Mσz − EF i|�|σy

−i|�|σy −kxσy − kyσx − Mσz − EF

)
�k, (12)

where spinor �k = (ck↑,ck↓,c+
−k↑,c+

−k↓), M and |�| denote the magnetic gap and superconductivity gap, respectively, and EF is
the chemical potential. Both Eqs. (8) and (9) still hold, but the eigenvalues and eigenvectors are changed. The eigenvalues can
now be written as

E1 =
√

|�|2 + 2
(|�|2M2 + E2

F M2 + E2
F k2

)1/2 + M2 + k2 + E2
F ,

E2 =
√

|�|2 − 2
(|�|2M2 + E2

F M2 + E2
F k2

)1/2 + M2 + k2 + E2
F ,
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E3 = −
√

|�|2 − 2
(|�|2M2 + E2

F M2 + E2
F k2

)1/2 + M2 + k2 + E2
F ,

E4 = −
√

|�|2 + 2
(|�|2M2 + E2

F M2 + E2
F k2

)1/2 + M2 + k2 + E2
F .

The corresponding unnormalized eigenvectors are shown in
Appendix B.

III. RESULTS AND DISCUSSIONS

In order to conveniently express the dielectric functions
for both the TI and layered superconductor, we define dimen-
sionless wave number Q = vF qx/(cωJ ), and all energies are
dimensionless and expressed in units of ωJ .

The SPP dispersion relations are obtained by solving Eq.
(5). The typical dispersion relations at various gate voltages,
i.e., Fermi levels EF , are shown in Figs. 2(a) and 2(b). We
see an enhanced tunability, i.e., a shift of dispersion relation
when EF varies, when the lower layer has increased effective
magnetic permeability μ. By defining the SPP group velocity
vg = d
/dQ, we see an additional change of propagation
properties induced by either M or |�| [Figs. 2(c) and 2(d)] by
plotting the percentage SPP group velocity shift,

�vg

vg

= vg(gapped) − vg(gapless)

vg(gapless)
.

Here both the magnetic gap M and superconductivity gap
|�| are dimensionless in units of the Josephson plasmon
frequency ωJ .

In order to further investigate the effect of the gap on the
SPP propagation, the relative shift of group velocity �vg/vg

as a function of dimensionless wave number Q and Fermi

FIG. 3. (Color online) The percentage shift of SPP group velocity
as a function of Q and EF , at three different gap values M = 5,
|�| = 0.5 (a); M = 10, |�| = 1.0 (b); and M = 15, |�| = 1.5 (c).
The change is negative for EF > 0 and positive for EF < 0, and
reaches a maximum when the Fermi level is close to the gap values
(d). Notice all gap values are expressed in units of ωJ (ωJ = 4 meV
throughout the calculation); for instance the green solid line M = 5,
|�| = 0.5 corresponds to M = 20 meV, |�| = 2 meV.

level EF is shown in Fig. 3, at different values of gap. It can
be seen directly that the shift is increased at larger gap value,
and it increases as a function of Q. Most importantly, the shift
reaches a peak value when the Fermi level approaches the gap
value. This feature can be seen more clearly in a line plot with
fixed Q value [Fig. 3(d)]. We also see that SPP group velocity
vg does not shift when Fermi level EF = 0. In contrast to the Q

and EF dependent shift of group velocity caused by the energy
gap, the localization constants show a qualitatively different
behavior. The localization constant in the TI side κo

1 is sensitive
neither to EF nor to Q [Figs. 4(a), 4(c), and 4(e)], while in the
layered superconductor side κo

2 is tunable by EF but still Q

independent. The importance of the localization constant shift
with Q can hardly be overestimated, in that it indicates that
the different propagation properties of the SPP are almost fully
coming from the group velocity, other than the difference in
SPP wavelength. Fewer controllable variables would definitely
make the experimental results easier to explain.

FIG. 4. (Color online) Relative shift of the o-light component of
localization constants for TI κo

1 [panels (a), (c), (e)], and layered
superconductor κo

2 [panels (b), (d), (f)]. The localization constants
for e-light κe

1 and κe
2 have different magnitudes but features similar

to κo
1 and κo

2 , respectively. We see that the shift is not sensitive to
the Fermi level EF of topological insulators, but always reaches peak
values when EF is near the value of the gap. Unlike the shift of group
velocity, which is Q dependent, the localization constants are almost
independent of Q value.
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The reason that the maximum vg shift occurs when the
gap matches the Fermi level can be understood in the light
of electronic transition and available electron density for
plasmonic oscillation. Electrons in the conduction band are
mostly extended and dominate the surface plasmon excitation.
When the Fermi level is lower than the energy gap, charge
carriers need additional energy to fulfill the transition to
the conduction band in order to contribute to the collective
excitation. On the other hand, since the SPP is excited by
EM waves, when the Fermi level is higher than the energy
gap, the electronic transition by optical excitation is limited
by occupied electrons. The increasing forbidden transition
leads to a reduced shift of dielectric function, and moreover
the vg shift is reduced accordingly. Thus, only when the
Fermi level reaches the value of energy gap is the number
of available electrons participating in the electronic transition
and collective excitation maximized, and leads to a shift of
SPP frequency and group velocity.

IV. CONCLUSIONS

We provide a generic theoretical framework to study the
surface plasmon polariton (SPP) at the interface between a
topological insulator (TI) and layered superconductors. The
SPP in this hybrid structure may be widely applied to study
novel optical and transport phenomena at the interface, through
the tunability of SPP propagation by gating or gapping the
surface states of the TI. It can also be generalized to a larger
category of materials in proximity to a TI surface. For instance,
Wei et al. [43,44] have shown that when the ferromagnetic
insulator EuS is on the top of topological insulator Bi2Se3, it
induces significant magnetic moment in Bi2Se3 thin films and
induces breaking of T -reversal symmetry. The SPP in such a
ferromagnetic/TI hybrid structure can also be studied within
this approach.

Furthermore, the Majorana zero mode is predicted to exist
[35,42,45] as a domain wall state at the interface between
TI and ferromagnetic-superconductor boundaries. Therefore,
at the TI/layered superconductor interface, propagating SPPs
may interact with the Majorana domain wall state, and lead to
the shift of the SPP propagation properties, including group
velocity, reflectivity and transmissivity, etc. In this regard, the
change of optical properties of the SPP can be considered
a semiclassical manifestation of the existence of Majorana
fermions, which is a pure quantum phenomenon with non-
Abelian statistics. The existence of the zero-mode level may
contribute to electronic transition, and leads to a further change
of dielectric functions. Unlike transport measurements, which
involve only a single Majorana fermion domain wall state, this
hybrid structure can be regarded as the interaction between
the SPP and a series of domain wall states, coming from each
domain wall state along the interface. In a nutshell, the SPP
on the TI surface may provide insights to the detection of
Majorana Fermions as a conceptually novel platform.
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APPENDIX A: COMPONENTS OF EM FIELDS

Ho
1x = κo

1

iω
Eo

1y, Eo
1x = −qy

qx

Eo
1y, Ho

1y = − iκo
1 qy

ωqx

Eo
1y,

Ho
1z = q2

x + q2
y

ωqx

Eo
1y, He

1x = iωε2D(q,ω)

κe
1

Ee
1y,

Ee
1x = qx

qy

Ee
1y,

He
1y = − iωqxε2D(q,ω)

qyκ
e
1

Ee
1y,

Ee
1z =

(
iκe

1

qy

+ iω2ε2D(q,ω)

qyκ
e
1

)
Ee

1y,

Ho
2z = qx

ωμ
Eo

2y, Ho
2y = iqxqy

ωμκo
2

Eo
2y, Eo

2z = − iqy

κo
2

Eo
2y,

Ho
2x = q2

y − (
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2
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iωμκo
2

Eo
2y, Ee

2z = κe
2

iqy

Ee
2y,

He
2z = ωεab(q,ω)

qx

Ee
2y,

He
2y = −ωεab(q,ω)κe

2

iqxqy

Ee
2y, Ee

2x = q2
x − μω2εab(q,ω)

qxqy

Ee
2y,

APPENDIX B: (UNNORMALIZED) EIGENVECTORS
OF THE BdG HAMILTONIAN

Defining k2 = k2
x + k2

y , δ− = |�| − M , and δ+ = |�| +
M , the four eigenvectors can be written as

|fk,1〉 =
(

−1,
δ−+

√
(δ−)2+k2

ikx + ky

, − δ− +
√

(δ−)2 + k2

ikx + ky

,1

)T

,

|fk,2〉 =
(

1,
δ+ −

√
(δ+)2 + k2

ikx + ky

,
δ+ −

√
(δ+)2 + k2

ikx + ky

,1

)T

,

|fk,3〉 =
(

−1,
δ− −

√
(δ−)2 + k2

ikx + ky

,
−δ− +

√
(δ−)2 + k2

ikx + ky

,1

)T

,

|fk,4〉 =
(

1,
δ+ +

√
(δ+)2 + k2

ikx + ky

,
δ+ +

√
(δ+)2 + k2

ikx + ky

,1

)T

.
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