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In this work, we use an extended tight-binding approach for calculating the Fermi-energy dependence of
the structural deformation of chiral single-wall carbon nanotubes (SWNTs). We show that, in general,
nanotube strains occur in such a way as to avoid a net charge from being accumulated on the nanotube. We
also investigate the effect of the Fermi-energy-induced strains on the electronic structure of SWNTs,
showing that the optical transition energies change by up to 0.5 eV due to the induced strains and that this
change is nearly independent of how the nanotube is deformed. Finally, we also consider the contribution
of the electron-electron Coulomb repulsion to the total energy by using an effective regularized potential
energy model. We show that the inclusion of the Coulomb repulsion leads to larger strains and smaller net
charges transferred to the nanotube.
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The nanomechanical actuation of carbon nanotubes can
be controlled by using different approaches, each relying
on a different mechanism for the coupling between the
nanotube mechanical properties and some other control-
lable parameter. Modeling the nanotube nanomechanical
responses to external stimuli is usually a difficult task
which depends strongly on the processes involved and the
type of stimulus used. For example, a nanoelectromechan-
ical actuator works by tuning nanotube properties through
an applied external electric field. However, an electric field
can affect the nanotube in several different ways, which
usually cannot be captured within a simple unique model.
For this reason, the most common approach is to select the
stimulus process which seems to be most relevant for the
particular application and to use it to model the nanotube
response. For example, Witkamp, Poot, and van der Zant
[1] consider a direct electrostatic (capacitive) force between
a gate and a suspended multiwall carbon nanotube to
explain the actuation properties observed in their devices.
Indeed, there are plenty of devices based on this electro-
static approach, such as the nanotweezers produced by Kim
and Lieber [2], the nanobalance developed by Poncharal
et al. [3], the single-molecule torsional pendulum proposed
by Meyer, Paillet, and Roth [4], and the nanotube oscillator
first proposed by Sazonova et al. [5] and further developed
by Peng et al. [6]. However, although the electrostatic
model could successfully explain the observed results, it is

by no means a general model and could not be applied in
geometries for which the nanotube is not suspended above
the gate.
Another way that a nanoelectromechanical actuator may

function is by a quantum-mechanical mechanism based on
the change in the lattice parameters in the presence of a
charge. This process has been extensively investigated by
different authors using theoretical [7–11] and experimental
[11–15] techniques for both graphene and carbon nano-
tubes. In such cases, the usual way to model the nano-
mechanical actuator mechanism is to include an extra
charge (positive or negative) transferred to the nanotube
and to optimize the carbon nanotube structure in order to
balance the increased electronic energy [9,10]. Although
this procedure can give interesting insights into the nano-
mechanical actuation of the carbon nanotubes, it is not the
most appropriate to describe the actual mechanism of an
electromechanical actuator but is rather a more appropriate
way for describing a chemical actuator, for which the
amount of charge exchanged by the doping molecule and
the nanotube is defined by the chemistry of their interaction
and by the concentration of the dopant molecules.
A usual electromechanical actuator functions by con-

tacting the nanotube with a charge reservoir, which can be
either a metal (in a field-effect-transistor-like device) or an
electrolyte (for electrochemical devices), and an electric
field is applied in order to control the flow of charge to or
from the nanotube. Although the net result of the electric
field is indeed a charge transfer between the reservoir and
the nanotube, we will show here that the nanomechanical
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response in such systems cannot be understood simply in
terms of the net charge acquired by the nanotube. The
reason for this difference is that, in the case of an
electromechanical device, the charge is not fixed but is
determined by the chemical potential at the interface
between the nanomaterial and the charge reservoir.
Ab initio modeling of the actuation mechanism for such

devices is hindered by the challenge of making an adequate
description of the charge reservoir. To avoid this problem,
we propose that the effect of the charge reservoir can be
described by its effective result, which is to determine the
Fermi energy of the nanotube. Once the Fermi energy is
defined, the total energy of the nanotube can then be
minimized for each value of Fermi energy and the nanotube
deformations can then be obtained.
In this work, we calculate the dependence of the axial,

radial, and torsional strains on the Fermi energy (μ) of
single-wall carbon nanotubes by using an extended tight-
binding model. In a previous work [16], we demonstrate
that chiral nanotubes are intrinsically twisted [17] (or
naturally torsioned, as it is also called [16,18]), due to a
torsional instability. This intrinsic twist is explained in
terms of an electronically driven stress which causes the
nanotube to twist itself in order to relax into a lower energy
configuration [16]. This process indicates a coupling
between the nanotube structure and its electronic popula-
tion. The emergence of a natural torsion in chiral carbon
nanotubes is further verified by molecular dynamics and by
a density-functional tight binding approach [18]. However,
in the later work the explicit influence of the electronic
energy to the total carbon nanotube energy is disregarded.
Furthermore, similar effects are predicted for MoS2 nano-
tubes and for bent graphene, indicating that the presence of
a natural torsion is an intrinsic characteristic of chiral
nanotubes [19,20]. We in the present work improve the
extended tight-binding approach used by Vercosa et al. [16]
by considering that the nanotube electronic states are
populated according to the Fermi-Dirac distribution with
a given electronic temperature Tel and a chemical potential
μ (in the present work, the terms chemical potential and
Fermi energy are used interchangeably so that EF ¼ μ).
The total electronic energy of the nanotube is obtained by
summing the energies of the populated electronic states,
while the total nanotube energy is given by the sum of the
total electronic energy and the energy associated with the
ionic repulsion between the constituent carbon atoms. Ionic
repulsion energies between up to the seventh-nearest
neighbors as a function of the interatomic distances are
used [21]. The structural optimization is performed within
the adiabatic approximation, such that the total energy is
evaluated at the relaxed atomic positions. This approach
disregards the effects of phonon contributions to the total
energy. This assumption is justified by the fact that the
phonon energies are independent of the Fermi energy, thus
contributing only to defining the unstrained configuration,

and to the fact that the electronic energies involved in the
effects studied here will be much larger than the thermal
energy of electrons kBTel at room temperature. Finally, we
discuss the effects of the electron-electron Coulomb repul-
sion on the total energy and how this repulsion affects the
nanotube deformations.
For the band-structure calculations, we use an extended

tight-binding model [22] which considers the 2s, 2px, 2py,
and 2pz atomic orbitals, thus enabling the rehybridization
of the σ and π orbitals and the inclusion of curvature effects.
In addition, the elements of the Hamiltonian and overlap
matrices are calculated by using interactions up to the
seventh-nearest neighbors (long-range atomic interactions).
The tight-binding parameters are determined as functions
of the interatomic distances, following the scheme based
on the density functional theory and developed by Porezag
et al. [21]. Moreover, this method uses the geometry of the
nanotube directly, without the need of using the zone-
folding technique, and makes use of the full symmetry of
the structure by adopting the angular-helical representation
of the unit cell [22,23].
The optimization process is accomplished numerically

by using a simple direct-search method, known as coor-
dinate search, grid search, or compass search [24,25]. The
method is comprised of searching the immediate surround-
ings of an initial point in the parameter space to be
optimized by using a predefined initial step length for
each parameter. The point in the configuration space which
yields the greatest reduction in the total energy is chosen
for the next step. If none of the surrounding configurations
yield a reduction of the total energy, the step lengths are
scaled down. The process is repeated until the desired
accuracy is obtained. Further details of the optimization
process can be obtained in Refs. [16,22].
We show that the three types of strain (axial, radial, and

torsional) are equally relevant to the relaxation process and
the changes in the optical transition energies are nearly
independent of how the nanotube is deformed. Also, these
findings draw attention to the fact that the torsional strain of
the nanotube and its electronic properties can be controlled
by applying a gate voltage to the nanotube, which opens up
a wide range of possibilities for technological applications
in the field of nanoelectromechanical devices.
To ensure a more realistic analysis, we consider the

electrons to be at room temperature (Tel ¼ 300 K), while
the Fermi energy μ was varied from −2.0 to 2.0 eV in steps
of 0.1 eV, where μ ¼ 0 corresponds to the case where the
Fermi energy is in the middle of the electronic band gap,
and thus no net charge is present in the nanotube. For each
value of μ, the nanotube structure is optimized, and, from
the values of the optimized parameters, it is possible to
calculate how the torsional, radial, and axial strains depend
on the Fermi energy.
Figures 1(a)–1(c) show the values of the torsional strain

ετ (TS) for the optimized structure as a function of the
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Fermi energy μ. As can be seen, there is a great variation
in ετ for all of the three single-wall carbon nanotubes
(SWNTs) studied here: (8,7), (9,7), and (9,6). It can also be
noted that the torsional strain shows an abrupt change
whenever μ is close to reaching one of the nanotube
subband extrema. This phenomenon will be discussed in
detail later in the present work. It is also important to
comment on the similarities and differences between the
three curves of Figs. 1(a)–1(c). First of all, it can be seen
that, as the Fermi energy reaches the first electronic
subband extremum, the (8,7) nanotube suffers a small
negative torsional strain at first, and afterwards the direc-
tion of the torsional strain reverses itself abruptly, leading
to a torsional strain on the order of 0.75% at μ ≈�1 eV. As
the second electronic subband is reached, the effect reverses
itself again, leading to negative torsions. For the (9,7)
nanotube, the effect is quite similar but shows one striking
difference: The direction of the torsional strain is opposite;
i.e., when the first subband is reached, the torsional strain is
initially positive and then reverses towards negative values,
and so on for the second subband. These opposite behav-
iors between the S1 and S2 SWNTs is similar to the
behavior of the band gap of SWNTs under uniaxial and
torsional strains, as verified by Yang and Han [26]. For
the (9,6) SWNT, which is metallic, a relevant variation of
its torsion is also observed only when μ reaches the E11

subband.

It is relevant to point out that similar calculations were
performed in this work for a large number of SWNTs
(not shown here) and that a clear pattern could be
observed. In fact, all semiconducting tubes of type S1,
for which modðn −m; 3Þ ¼ 1, show similar behaviors as
that observed for the (8,7) nanotube shown in Fig. 1(a),
while all S2 nanotubes ½modðn −m; 3Þ ¼ 2� behave as the
(9,7) nanotube, and the metallic M0 [modðn −m; 3Þ ¼ 0]
nanotubes behave as the (9,6) nanotube. Similar quali-
tative behaviors are obtained for nanotubes of up
to 1.7 nm.
In Figs. 1(d)–1(i), we show the axial strain εT (AS) and

the radial strain εR (RS) as a function of the Fermi energy μ.
It can be seen that, for all three nanotubes [(8,7), (9,7), and
(9,6)], there is a clear tendency for compression in both
the axial and radial directions with increasing jμj. Likewise,
in the case of the torsional strain, there is a change of
behavior whenever the value of μ reaches one of the
nanotube subband extrema. Furthermore, another interest-
ing feature about this dependence of εT and εR on μ is the
fact that, although there is an overall tendency for nanotube
compression, which is nearly symmetric for positive and
negative values of μ, the behavior of the axial and the radial
strains as μ reaches a valence subband is opposite to that
observed when μ reaches a conduction subband. This
behavior as a function of μ is contrary to what is observed
for the torsional strains, which, as discussed above, show a
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FIG. 1. Torsional, axial, and radial strains as a function of the Fermi energy (μ) for the type-1 ½modðn −m; 3Þ ¼ 1� and type-2
½modðn −m; 3Þ ¼ 2� semiconducting SWNTs (8,7) and (9,7), respectively, and for the metallic (type-0) SWNT (9,6). The resulting
injected charge q for each value of μ is also provided for a more complete analysis, and this charge is in units of the elementary charge e
per carbon atom in the SWNT structure. Moreover, the approximate values for the valence subband maximum (Ev
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the conduction subband minimum (Ec
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3) on each nanotube are shown by the vertical lines as guides to the eye.
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qualitatively symmetric behavior for the valence and
conduction bands; see Figs. 1(a)–1(c).
It is now interesting to discuss how these electronically

driven axial, radial, and torsional strains can affect the
carbon nanotube properties. To accomplish this, an opti-
mization of the structural parameters is performed for
each value of μ in the following four cases: all optimized
(all opt)—where all structural parameters are optimized;
torsional strain optimized (TS opt)—where axial and radial
strains are kept constant; axial strain optimized (AS opt)—
where torsional and radial strains are kept constant; and
radial strain optimized (RS opt)—where axial and torsional
strains are kept constant. In the present work, we will focus
on the dependence of the optical transition energies on the
Fermi energy μ.
In Fig. (2), the energies for the two first optical transition

energies E11 and E22 of the (8,7) semiconducting nanotube
as a function of μ are shown as black circles for the all-opt
case. For comparison, we also show the results obtained for
the TS-opt, AS-opt, and RS-opt cases (red diamonds, blue
triangles, and green squares, respectively). It can be seen
that, for all these cases, the transition energies undergo a
large variation as the Fermi energy changes, although the
variations of the Eii values are only slightly smaller for the
AS-opt and RS-opt cases. These results indicate that these
effects on the optical transition energies are a general result
and that these results are nearly independent of the specific

way in which the nanotube deformation occurs, be it by
radial, axial, or torsional deformations or a combination of
the three.
We would next like to clarify the physical process behind

the dependence of the torsional strain on the Fermi energy
and its consequences on the carbon nanotube structure.
For this, we show in Fig. (3) the complete band structure
of the (8,7) nanotube for μ ¼ 0.0, 0.5, and 1.0 eV (left,
middle, and right panels, respectively) in the reduced
Brillouin zone (BZ) scheme. Within this scheme, the wave
vector k is defined for the pure translational vector T,
taking into account the pure translational symmetry of the
nanotube [23]. However, as the torsional strain is being
considered in this work, this pure translational symmetry is
broken in the strained structures. Nevertheless, although the
reduced-BZ scheme is not strictly appropriate to represent
the band structure of these distorted materials, we choose to
use this scheme in Fig. (3) only to allow for a clearer
physical discussion of these results, while the extended-BZ
scheme, which is defined by using the helical nanotube
symmetry [23], is used for all the actual calculations
reported here.
First of all, it can be seen that most of the changes in

EðkÞ happen at the band extrema (which are highlighted in
each panel). In order to understand the effects of the Fermi
energy, we focus our attention on the bands in which the
E11 and E22 optical transitions are located, shown as the
highlighted lines in Fig. 3. It can be seen that, as μ
approaches the first unoccupied subband, the carbon nano-
tube tends to twist itself in order to avoid the occupation
of this band, since this band occupation would invariably
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a full structural optimization (black circles) and for the case
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increase the total electronic energy of the SWNT. This twist
causes the E11 gap to become slightly larger, as is seen also
in Fig. 2, but at the same time causes the E22 transition
energy to decrease. At μ ¼ 0.5 eV, E11 becomes close to
E22 so that it is no longer possible to prevent the occupation
of both conduction subbands, and thus it becomes ener-
getically more favorable for the nanotube to twist itself in
the opposite direction so that the E11 gap decreases. This
happens since the density of states has a peak at the
conduction band minimum. Therefore, in order to minimize
the electronic energy, the nanotube deformation is now in
the direction that takes the band minimum towards the
lowest energy possible, decreasing the nanotube band gap
and increasing the E22 gap so that the second subband
remains unoccupied. As μ is increased and other subbands
are reached, a similar process takes place, thereby explain-
ing the recurrent behavior observed for both the depend-
ence of the torsional strain and the Eii transition energies.
One of the shortcomings of the tight-binding model used

in this work is that it does not explicitly consider the
Coulomb repulsion between the excess charges injected
into the nanotube. This repulsion can have important effects
on the dependence of the nanotube deformations on the
Fermi energy (μ). Including this repulsion energy is not
trivial in twisted systems, for which there is no pure
translational symmetry. In order to evaluate this repulsive
energy effect qualitatively, we have considered a simple 1D
model to describe the Coulomb repulsion energy term in
the total energy of the structure. We briefly describe this
model below.
Consider that the nanotube is a 1D wire of length L and

that the total charge Q is uniformly distributed along the
nanotube length; i.e., the wire has a constant linear charge
density. Taking into account that the nanotubes have a finite
nonzero diameter, we base the calculations on the following
regularized 1D potential [27,28]:

VðzÞ ¼ 1

4πϵ

q
jz − z0j þ d

; ð1Þ

in which z is the coordinate of this 1D wire along the
nanotube axis and d is the diameter of the SWNT, ϵ is an
effective dielectric constant, and q is a unit charge located
at z ¼ z0 in Eq. (1).
Considering the potential in Eq. (1), the total repulsion

energy EðrepÞ
total can be calculated as

EðrepÞ
total ðλ; L; dÞ ¼

λ2L
4πϵ

�
−1þ

�
1þ d

L

�
ln

�
1þ L

d

��
; ð2Þ

where λ is the constant linear charge density along the tube.
Because of the long-range Coulomb interaction, we con-
sider that the nanotube length is given by L ¼ NcellsT,
where Ncells is the number of translational unit cells, which
for the (8,7) carbon nanotube analyzed in this work is

Ncells ¼ 18, corresponding to a length of approximately
100 nm. Different values of Ncells lead to different calcu-
lated deformations; however, the results are qualitatively
consistent with each other. By analyzing Eq. (2), it can be
verified that, if the net charge of the nanotube is fixed, the
contribution of the electron-electron Coulomb interaction
would, in principle, create a stress towards the expansion in
both the axial and radial directions and would not have any
significant influence on the torsional degree of freedom.
Figure 4 shows the behavior of the radial, axial, and

torsional strains as a function of μ for the (8,7) SWNTwhen
the Coulomb interaction is considered. This figure also
provides previous results obtained without the Coulomb
repulsion (blue points and lines) in order to enable
comparisons, and they are labeled as ϵ → ∞. The calcu-
lations are performed for different values of ϵ in order to
simulate a static screening due to the intrinsic permittivity
of the nanotube and the environmental influence. The
intrinsic dielectric constant ϵNT for nanotubes and for
graphene is approximately 4ϵ0 (with ϵ0 being the vacuum
permittivity) [29]. For this reason, in the following analysis,
we focus on what happens for ϵ ¼ 4ϵ0. In this case, it
can be noted that, although a simple analysis would lead
us to believe that the Coulomb repulsion would produce a
tendency for expansion in both the axial and the radial
directions, while not affecting the torsional strain
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results obtained when the Coulomb repulsion energy between the
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significantly, the results shown in Figs. 4(a)–4(c) demon-
strate a very different behavior. In fact, the electron-electron
Coulomb repulsion effect enhances the compression ten-
dency for both εT and εR, and this repulsion actually has a
strong influence on ετ.
By comparing these results for ϵ ¼ 4ϵ0 with those

obtained for ϵ → ∞ (without electron-electron repulsion),
it can be seen in Fig. 4(a) that the curved shape of ετ as a
function of μ remains approximately the same. The abrupt
changes that appear whenever μ is close to a subband
extremum are also observed for ϵ ¼ 4ϵ0. However, the
magnitude of the total strain is amplified, and the maximum
strain occurs at higher values of jμj. Another important
difference is that, while for ϵ → ∞ the torsional strain
behavior is nearly symmetric with regards to positive and
negative values of μ, for ϵ ¼ 4ϵ0 the symmetry for þμ
and −μ is broken. The reason for this broken symmetry
lies in the fact that, when electron-electron repulsion is
considered, the dependence of the torsional strain is
strongly coupled to both the radial and the axial deforma-
tions, which have asymmetric behaviors with respect to þμ
and −μ, as seen in Figs. 1(d) and 1(g) for the (8,7) SWNT.
In addition, an interesting effect that arises from these
new results is that for ϵ ¼ 4ϵ0, and also for ϵ ¼ 2ϵ0, the
torsional strain ϵτ seems to acquire a practically linear
behavior for μ between 1.0 and 2.0 eV, which could be
useful for applications in nanoelectromechanical devices.
Furthermore, in Figs. 4(b) and 4(c), we show the

dependence of εT and εR on μ for different values of the
dielectric constant ϵ. In the case of ϵ ¼ 4ϵ0, we clearly see
that there is an enhancement in the compression tendency
for both the axial εT and the radial εR strains as jμj
increases. In addition, it seems that εT acquires a smooth
behavior for μ betweenþ1.0 andþ2.0 eV, and εR acquires
a practically linear behavior for values of μ between þ1.0
and þ2.0 eV, similarly to what occurs for ετ.
The explanation for these unexpected behaviors of εT

and εR is that, although Eq. (2) predicts a tendency for the
nanotube expanding in both the axial and radial directions

due to the dependence of EðrepÞ
total on the nanotube length L

and diameter d, it can also be seen that EðrepÞ
total depends

quadratically on the total nanotube net charge Q ¼ λL.
Thus, it seems that it is more energetically favorable for
the nanotube to compress itself both radially and axially
in order to avoid a charge transfer, thus diminishing the

net charge in the nanotube, than to reduce EðrepÞ
total by an

expansion of the nanotube. In fact, the simultaneous
compression in both the radial and axial directions causes
an increase in the tight-binding hopping energy between
different atoms, causing an overall increase in the energy
difference between the valence and conduction bands.
These changes cause the energy bands to move away from
the Fermi energy μ, thus reducing the net charge transferred
into the nanotube. As a result, the net charge value observed

for ϵ ¼ 4ϵ0 can be up to 70% smaller than the values
obtained for when the electron-electron Coulomb repulsion
was neglected (ϵ → ∞). Also, the same reasoning can be
used to explain the surprising influence that the Coulomb
repulsion has on ετ. In conclusion, the insertion of the
Coulomb repulsion causes the nanotube to relax itself in
such a way that it minimizes the charge transfer between
the nanotube and the reservoir, causing enhanced strains in
the axial, radial, and torsional directions, as compared to
the case when the Coulomb repulsion is neglected.
Finally, we comment on how the nanotube deformations

change for varying effective dielectric constants ϵ. As can
be seen in Fig. 4, as the values of ϵ increase, the
contribution from the electron-electron Coulomb repulsion
to the total energy decreases, such that the behavior of the
axial, radial, and torsional deformations evolves towards
the results obtained when the electron-electron repulsion
is neglected (ϵ → ∞). Similar results are obtained for the
(9,7) and (9,6) nanotubes (not shown here).
In summary, we have applied an extended tight-binding

approach for evaluating the Fermi-energy dependence of
the structural deformation of SWNTs. We have shown that
the nanotube deformation occurs in such a way as to avoid a
net charge from being accumulated on the nanotube. This
result is understood in view of the fact that the extra charge
added to the nanotube increases the total electronic energy,
and some of this extra energy can be relaxed by giving rise
to additional nanotube axial, radial, and torsional strains. In
spite of the simplicity of the model, we can argue that there
is a general tendency that the strains which are introduced
are such that they minimize the net charge on the nanotube.
To verify this, we further consider the contribution of the
electron-electron Coulomb repulsion to the total energy
by using an effective regularized potential energy model.
We show that the inclusion of the Coulomb repulsion leads
to larger strains and smaller net charges for the same value
of Fermi energy. Torsional strains of up to ετ ∼ 2% are
calculated for a Fermi energy of μ ¼ 1 eV. We would also
like to stress that the nearly linear behavior of the torsional
strain as a function of the Fermi energy that is observed for
some ranges of μ indicates that this process could be used
for the development of high-precision nanoelectromechan-
ical devices, for which the magnitude of the nanotube
deformation could be well controlled by the applied gate
voltage. Finally, it is important to comment that nano-
electromechanical devices are not the only systems for
which the nanotube Fermi energy is fixed by its interaction
with a charge reservoir. For example, in the case of carbon-
nanotube-based nanocomposites, the Fermi energy of the
system is mainly controlled by the properties of the matrix
material [30]. In such cases, a significant amount of strain is
expected on the embedded carbon nanotubes.
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