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1 Introduction

The past few years have seen much progress in our understanding of supersymmetric quan-

tum field theories in 2+1 space-time dimensions. From the perspective of string theory and

the AdS/CFT duality [1–3], a significant result was the discovery of (2 + 1)-dimensional

superconformal field theories (SCFTs) on N coincident M2-branes placed at the tip of

various Calabi-Yau cones. The simplest example is the case where the Calabi-Yau cone is

C
4/Zk and the dual SCFT is the ABJM theory, a U(N)k ×U(N)−k Chern-Simons-matter

gauge theory with N = 6 supersymmetry [4] (for a review, see for instance [5]; for earlier

work, see [6–12]). Independent of string theory, there have also been new exact results

such as computations of partition functions of supersymmetric theories on curved mani-

folds [13, 14] that use the technique of supersymmetric localization introduced in [15, 16],

as well as a procedure called F -maximization [17–19]. F -maximization states that in N = 2

SCFTs, the U(1)R symmetry that appears in the superconformal algebra is precisely the

one that maximizes F = − log |ZS3 |, ZS3 being the partition function on S3, over the set

of all possible U(1) R-symmetries. The present paper searches for an AdS/CFT interpre-

tation of F -maximization, where it focuses on the particular case of ABJM theory and its

supergravity dual.

In N = 2 notation, the matter content of the U(N)k ×U(N)−k ABJM theory consists

of two bifundamental chiral multiplets Za, a = 1, 2, transforming in the representation
(

N̄,N
)

of the gauge group and two bifundamental chiral multiplets Wb, b = 1, 2, trans-

forming in the conjugate representation
(

N, N̄
)

. The most general choice of a U(1)R
symmetry group within the global symmetry group of ABJM theory involves three param-

eters. These parameters determine an assignment of R-charges1 R[Za] and R[Wb] to the

four bifundamental chiral multiplets such that the constraint

R[Z1] +R[Z2] +R[W1] +R[W2] = 2 (1.1)

coming from the requirement that the quartic superpotential W ∝ tr
(

ǫabǫ
cdZaWcZ

bWd

)

has R-charge two is satisfied. For a general choice of the U(1)R charges R[Za] and R[Wb],

one can define a deformed ABJM theory on S3 by specifying couplings to curvature that

preserve only an OSp(2|2) × SU(2) super-algebra that contains U(1)R ⊂ OSp(2|2). The

reason why the S3 Lagrangian depends on the U(1)R charges is that the minimal algebra on

S3 that includes four supercharges must also include a U(1)R symmetry, in stark contrast

with the flat space situation.

For a general choice of U(1)R, the theory on S3 will not be conformal. The theory

is conformal only when R[Za] = R[Wb] = 1/2, as can be deduced from the embedding

of OSp(2|2)× SU(2) into the superconformal algebra OSp(6|2, 2) corresponding to N = 6

superconformal symmetry. (When k = 1, 2 the superconformal algebra is enhanced further

1This description is somewhat imprecise because the matter chiral multiplets are not gauge invariant, so

the R[Za] and R[Wb] may not be gauge invariant observables. However, one can construct gauge invariant

observables by combining the bifundamental chiral multiplets with certain monopole operators. Under the

convention that the monopole and antimonopole operators have the same R-charge, the R[Za] and R[Wb]

become well-defined observable quantities. For more details, see [18].
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to OSp(8|2, 2) corresponding to N = 8 superconformal symmetry.) If one did not know

that the superconformal ABJM theory had more than N = 2 supersymmetry, one would

have to resort to F -maximization to determine which U(1)R charges correspond to the

superconformal theory. Using matrix model techniques that build on the supersymmetric

localization results of [13, 17], it was found to leading order in N that [18]

F =

√
2πN3/2

3
4
√

R[Z1]R[Z2]R[W1]R[W2] , (1.2)

when the Chern-Simons level is k = 1, which is the case we will focus on from here on.

Under the constraint (1.1), this expression is maximized for the free-field values R[Za] =

R[Wb] = 1/2, which correspond to the superconformal theory. For any other choice of

the U(1)R charges, the S3 theory is not conformal, and we can think of it as a relevant

deformation of the superconformal one.

In the large N approximation, the M-theory dual of the superconformal ABJM theory

with k = 1 is given by the AdS4×S7 vacuum of eleven-dimensional supergravity.2 Instead

of working in eleven dimensions, we work within a consistent truncation of N = 8 gauged

supergravity in four dimensions [20] and find a three-parameter family of classical solutions

dual to the general deformation of ABJM theory discussed above. The acid test of our

work is the agreement between the S3 free energy F calculated from supergravity with the

field theory expression (1.2). In particular, when the free energy is maximized, the bulk

geometry becomes (Euclidean) AdS4 (more correctly, the hyperbolic space H
4), with the

expected superconformal symmetry.

Our classical supergravity solutions describe holographic RG flows that start from

the superconformal ABJM theory in the UV, but never reach a true IR limit, because

on S3 one cannot probe distances larger than the radius of the sphere. These solutions

are nevertheless smooth: the three-sphere shrinks to zero size smoothly at some value of

the holographic radial coordinate. (See [21–23] for other supergravity solutions dual to

field theories on compact spaces, where a similar phenomenon occurs.) In some sense, the

existence of a largest length scale on S3 prevents the appearance of a singularity in the bulk.

The AdS4 solution of N = 8 gauged supergravity is invariant under the OSp(8|4)
superalgebra, the same algebra as the dual ABJM theory at Chern-Simons level k = 1.

The classical solutions we find are Euclidean solutions that break this large symmetry to

the Euclidean superalgebra OSp(2|2)×SU(2). In view of the discussion of F -maximization

above, it suffices to look for a consistent N = 2 truncation of the theory of [20]. Our

solutions involve only fields in the N = 2 truncation. We use symmetries to guide us

to a truncated theory that contains the N = 2 gravity multiplet plus three U(1) gauge

multiplets. The asymptotic values of the three complex scalars of the gauge multiplets

determine a choice of R-charges in the perturbed ABJM theory on the boundary. Our

supergravity solutions are extrema of the bosonic Euclidean action

S =
1

8πG4

∫

d4x
√
g






−1

2
R+

3
∑

α=1

|∂µzα|2
(

1− |zα|2
)2 +

1

L2

(

3−
3
∑

α=1

2

1− |zα|2

)






, (1.3)

2For arbitrary k the supergravity dual is AdS4 × S7/Zk, and the eleven-dimensional supergravity ap-

proximation is valid as long as N ≫ k5 [4].
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where G4 is the Newton constant in four dimensions, and L is a constant chosen such that

one of the extrema of (1.3) is H
4 of radius L. The action for the scalar fields is a sigma

model with H
2 × H

2 × H
2 target space. When L = ∞, it reduces to the well known stu-

model [24, 25]. The action (1.3) may be completed to a gauged N = 2 supergravity model

by adding appropriate gauge field3 and fermion terms. In this form it contains a SO(2)R×
SO(2)3 residue of the SO(8)R symmetry of the parent N = 8 theory. The SO(2)R rotates

the two gravitino fields and will be identified with the U(1)R of the deformed ABJM theory.

There are four main subtleties related to the action (1.3), its extrema, and their field

theory interpretation. The first subtlety concerns the group theory needed to derive (1.3) as

a consistent truncation ofN = 8 gauged supergravity. The 70 real scalar fields of theN = 8

theory transform in the 35v and 35c representations of the SO(8)R symmetry, and they are

customarily written as self-dual and anti-self dual fourth-rank antisymmetric products of

the 8s representation [20]. The field theory deformations we are interested in can be written

as Lagrangian deformations in a formalism where only an SU(4)R subgroup of SO(8)R is

manifest. Even if the whole SO(8)R were manifest, it would be more natural to write down

these deformations as states in 35v and 35c represented as rank-two traceless symmetric

products of 8v and 8c. Making the connection between the two ways of representing 35v
and 35c and examining their decomposition under SU(4)R (and further subgroups thereof)

requires a tedious group theory analysis. This analysis is needed to establish an explicit

correspondence between the three zα appearing in (1.3) and their dual field theory operators

written in terms of the bifundamental fields of the ABJM theory.

The second subtlety involves the Euclidean continuation of Lorentzian supergravity. It

is well known that spinors ψ and ψ† that are related by complex conjugation in a Lorentzian

theory become independent in its Euclidean continuation. The reason is that the isometry

group of flat Euclidean space factors as SO(4) = SU(2) × SU(2), and group elements are

described by the pair (U, V ) of 2 × 2 unitary matrices. Since ψ → Uψ, but ψ† → ψ†V −1,

we must allow ψ and ψ† to be independent. (This contrasts with the Lorentz group in

which the (1/2, 0) and (0, 1/2) are conjugate representations.) Since fermions and bosons

are linked by SUSY transformation rules, we must also allow formally conjugate boson

fields to be independent. In particular, in the Euclidean action (1.3) one should treat as

independent the complex fields zα and their would-be Lorentzian conjugates z̄α. (Later we

denote the conjugate scalars by z̃α to emphasize that they are not related to the zα).

The third subtlety is related to holographic renormalization. One must choose a renor-

malization scheme that is consistent with supersymmetry. To find such a scheme one should

understand how supersymmetry transformations act asymptotically on the fields zα and z̃α.

A similar analysis was performed in [26] in Lorentzian signature and provides a different

way of understanding that, up to a chiral rotation, supersymmetry requires the real and

imaginary parts of zα to be quantized with opposite boundary conditions [27]. In our Eu-

clidean setup it is zα− z̃α that should be quantized using regular boundary conditions and

zα+ z̃α that should be quantized using the alternate boundary conditions described in [28].

3The gauge fields were omitted from (1.3) because they vanish in the classical solutions needed to describe

the duals of the deformed ABJM theory.

– 4 –



J
H
E
P
0
3
(
2
0
1
4
)
1
3
5

The fourth subtlety is related to the last point just mentioned. It is not the renormal-

ized bulk on-shell action that should be identified with the boundary free energy F , but

instead its Legendre transform with respect to the leading asymptotic behavior of zα+ z̃α.

Such a Legendre transform was introduced in [28], where it was explained that the Legen-

dre transform is necessary for obtaining the correct correlation functions in the field theory

whose gravity dual contains a scalar with alternate boundary conditions.

In the following sections we provide more detailed information. In section 2 we describe

the field theory setup more carefully. An important viewpoint, advocated in [19, 29], is that

one should think of the three-parameter family of R-charge assignments (1.1) as complexi-

fied N = 2-preserving real mass deformations of ABJM theory with purely imaginary mass

parameters. In three dimensions, a real mass deformation arises not from a superpotential

but from the coupling of a U(1) current multiplet to a background N = 2 vector multiplet

with SUSY-preserving expectation values for the scalar fields of the vector multiplet. In

section 3 we derive an N = 2 consistent truncation of N = 8 gauged supergravity, which we

further describe in an N = 1 formulation whose bosonic Lagrangian is (1.3). In section 4

we describe the analytic continuation to Euclidean signature and provide the Euclidean

supersymmetry transformation rules. In section 5 we derive and solve the BPS equations

that follow from these transformation rules. Lastly, in section 6 we perform holographic

renormalization and give the field theory interpretation of our solutions. We will be able

to reproduce (1.2) from a gravity calculation. Many of the details of our computations are

relegated to the appendices.

2 Field theory setup

2.1 N = 2 deformations of ABJM theory

As mentioned in the introduction, ABJM theory with gauge group U(N)×U(N) and Chern-

Simons levels (k,−k) for the two gauge group factors has N = 6 supersymmetry and global

SU(4)R × U(1)b symmetry group. When k = 1, 2, this symmetry is enhanced to SO(8)R,

and hence the theory has N = 8 supersymmetry. In the N = 2 formulation presented in [4],

the symmetry group that acts on the N = 2 super-fields is a U(1)R×SU(2)×SU(2)×U(1)b
subgroup of SU(4)R × U(1)b. The SU(4)R × U(1)b symmetry becomes visible only when

the Lagrangian is written in terms of the N = 2 super-field components [4, 30].

In N = 2 notation, the field content of ABJM theory consists of the two U(N) vector

multiplets and four chiral multiplets that transform in bifundamental representations of

the gauge group. An off-shell N = 2 vector multiplet (Ai, σ, λ,D) in 3d consists of a vector

field Ai, a complex fermion λ, and two real scalars σ and D.4 We denote the two U(N)

vector multiplets of ABJM theory by (Ai, σ, λ,D) and
(

Ãi, σ̃, λ̃, D̃
)

. An N = 2 chiral

multiplet (Z, χ, F ) consists of a complex scalar Z, a complex fermion χ, and an auxiliary

complex scalar F . In ABJM theory we have two chiral multiplets (Za, χa, F a), a = 1, 2,

4In Euclidean signature, the gauge field Ai and the scalars σ and D are allowed to take complex values,

and λ should be treated as independent from its complex conjugate. Similarly, the chiral multiplet fields

(Z, χ, F ) introduced later on should be considered as independent from their complex conjugates.
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field U(N)×U(N) SU(2)× SU(2) U(1)R U(1)b

(Aµ, σ, λ,D) (adj,1) (1,1) (0, 0, 1, 0) 0
(

Ãµ, σ̃, λ̃, D̃
)

(1, adj) (1,1) (0, 0, 1, 0) 0

(Za, χa, F a)
(

N̄,N
)

(2,1) (1/2,−1/2,−3/2) 1

(Wa, ηa, Ga)
(

N, N̄
)

(1, 2̄) (1/2,−1/2,−3/2) −1

Table 1. The fields of ABJM theory and their gauge and global charges.

that transform in the
(

N̄,N
)

representation of the U(N) × U(N) gauge group, and two

chiral multiplets (Wa, ηa, Ga), a = 1, 2, that transform in the conjugate representation
(

N, N̄
)

. The gauge and global U(1)R × SU(2)× SU(2)×U(1)b charges of all the fields are

summarized in table 1. The salient features are as follows. The U(1)R charges are those of

free fields. The first SU(2) factor rotates the first pair of chiral multiplets, and the second

SU(2) factor rotates the second pair. The U(1)b symmetry is generated by the topological

current ∗tr(F + F̃ ), where F and F̃ are the field strengths of the two U(N) gauge fields.

The gauge-invariant objects with charge n contain monopole operators T (n) that turn on n

of units of ∗tr
(

F + F̃
)

flux through a two-sphere surrounding the insertion point. When

k = 1, T (1) transforms in
(

N, N̄
)

and T (−1) transforms in
(

N̄,N
)

, and we can construct

gauge-invariant operators such as tr
(

T (1)Za
)

and tr
(

T (−1)Wb

)

. The global U(1) charges

we listed in table 1 are in the convention that the monopole T (1) and the anti-monopole

T (−1) have equal charges — for more details, see [18].

The Lagrangian of the superconformal ABJM theory consists of Chern-Simons kinetic

terms for the two N = 2 vector multiplets, standard kinetic terms for the chiral multiplets

Za and Wb, and superpotential interaction terms coming from a superpotential of the form

W ∝ tr
(

ǫabǫ
cdZaWcZ

bWd

)

. (2.1)

The superconformal R-charge assignment in table 1 follows from the fact that W should

have R-charge two and that the SO(8)R symmetry mixes together the Za and Wb.

In this paper we break the global symmetry group of ABJM theory to its maximal

Abelian subgroup by considering an R-charge assignment different from that in table 1.

The most general R-charge assignment consistent with the marginality of the superpoten-

tial (2.1) can be taken to be

R[Z1] =
1

2
+ δ1 + δ2 + δ3 , R[W1] =

1

2
− δ1 + δ2 − δ3 ,

R[Z2] =
1

2
+ δ1 − δ2 − δ3 , R[W2] =

1

2
− δ1 − δ2 + δ3 ,

(2.2)

where δα are three parameters. One can think of (2.2) as a mixing of the canonical

R-symmetry from table 1 with the diagonal U(1)×U(1)×U(1)b subgroup of the SU(2)×
SU(2)×U(1)b flavor symmetry. The U(1)R symmetry with charges (2.2) is still a symmetry

of ABJM theory on R
2,1, but this U(1)R symmetry is not the one that appears in the N = 2

superconformal algebra OSp(2|4) ⊂ OSp(8|4).
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As explained in [17, 19, 29], given a U(1)R symmetry (which in general can be taken to

be a linear combination of a canonical U(1)R symmetry and other flavor U(1) symmetries,

as in (2.2)) of an N = 2 theory on R
2,1, one can construct a theory on S3 that is invariant

under OSp(2|2)r × SU(2)ℓ, where the bosonic part of OSp(2|2)r is U(1)R × SU(2)r and

SU(2)ℓ×SU(2)r ∼= SO(4) is the isometry group of S3.5 Such a construction was performed

in [17] at the level of a microscopic Lagrangian, and in [19, 29] more abstractly by coupling

the flat space theory to a set of background fields. Following the approach in [17], which we

will explain shortly in section 2.2, the OSp(2|2)r × SU(2)ℓ-invariant Lagrangian of ABJM

theory on S3 with the R-charge assignment (2.2) is

L = LSCFT +
2
∑

b=1

(

R
[

Zb
]

− 1

2

)

tr

(

1

a2
Z†
bZ

b +
1

a
χ†
bχ

b +
2i

a

(

σZ†
bZ

b − Z†
b σ̃Z

b
)

)

+
2
∑

b=1

(

R[Wb]−
1

2

)

tr

(

1

a2
W †bWb +

1

a
η†bηb +

2i

a

(

σ̃W †bWb −W †bσWb

)

)

− 1

a2

2
∑

b=1

(

R
[

Zb
]

− 1

2

)2

Z†
bZ

b − 1

a2

2
∑

b=1

(

R[Wb]−
1

2

)2

W †bWb .

(2.3)

Here, LSCFT is the Lagrangian of ABJM theory on S3 with the canonical R-charge as-

signment corresponding to δα = 0. The canonical R-charge assignment makes the theory

superconformal, and LSCFT can be obtained by conformally coupling the flat space ABJM

Lagrangian to curvature. In this paper we will find the supergravity dual of the theory

with Lagrangian (2.3).

Using (2.2), (2.3) becomes

L = LSCFT +
1

a2
[

(δ1 − 2δ2δ3)O1
B + (δ2 − 2δ1δ3)O2

B + (δ3 − 2δ1δ2)O3
B

]

+
1

a

(

δ1O1
F + δ2O2

F + δ3O3
F

)

− 1

a2
(

δ21 + δ22 + δ23
)

OS ,

(2.4)

where

O1
B = tr

(

Z†
1Z

1 + Z†
2Z

2 −W †1W1 −W †2W2

)

,

O2
B = tr

(

Z†
1Z

1 − Z†
2Z

2 +W †1W1 −W †2W2

)

,

O3
B = tr

(

Z†
1Z

1 − Z†
2Z

2 −W †1W1 +W †2W2

)

,

OS = tr
(

Z†
1Z

1 + Z†
2Z

2 +W †1W1 +W †2W2

)

,

(2.5)

and

O1
F = tr

(

χ†1χ1 + χ†2χ2 − η†1η1 − η†2η2
)

+ (σ, σ̃ terms) ,

O2
F = tr

(

−χ†1χ1 + χ†2χ2 − η†1η1 + η†2η
2
)

+ (σ, σ̃ terms) ,

O3
F = tr

(

−χ†1χ1 + χ†2χ2 + η†1η
1 − η†2η2

)

+ (σ, σ̃ terms) .

(2.6)

5Similarly, one can preserve OSp(2|2)ℓ × SU(2)r where the bosonic subgroup of OSp(2|2)ℓ is U(1)R ×

SU(2)ℓ. The two choices are related by formally sending a → −a in all the formulas presented in this

section.
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The terms involving σ and σ̃ can be read off from (2.3) and were omitted in (2.6) for clarity.

The perturbation (2.4) breaks SO(8)R to its maximal Abelian subgroup U(1)R × U(1) ×
U(1)×U(1)b. Note that to leading order at small δα the operator OS is absent, and up to

a factor of a the coefficients of Oα
B are equal to those of Oα

F .

Under the SU(4)R ×U(1)b symmetry of the superconformal ABJM theory, the scalars

transform in the 41 representation usually denoted by Y A =
(

Z1, Z2,W †1,W †2
)

. It is clear

from (2.5) that the Oα
B are states in the adjoint 150. The Oα

B are the lowest components

of the SUSY multiplet containing the conserved SU(4)R currents, so they have fixed scale

dimension ∆ = 1. On the other hand, the operator OS is an SU(4)R singlet, and its

scale dimension is not protected from loop corrections. There is no scalar dual to OS in

the supergravity theory we construct in section 3. Nevertheless, the precise match of the

free energy calculations in the gravity dual and in the deformed QFT indicates that the

dynamical effects of OS are included.

ABJM theory is invariant under a space-time parity symmetry that also exchanges the

two gauge groups. Under this symmetry Oα
B are invariant, but Oα

F change sign. Therefore

Oα
B are scalar operators, while Oα

F are pseudo-scalars.

2.2 The deformed Lagrangian from coupling to background vector multiplets

In this section we explain the construction of the deformed Lagrangian (2.3). Related

arguments appear in [17, 29].

An unusual feature of the deformed Lagrangian (2.3) is that the coefficients R[Zb]−1/2,
etc., which appear as coupling constants, actually denote an assignment of R-charges to

the elementary chiral operators of the ABJM theory. A useful viewpoint is that (2.3)

describes ABJM theory on S3 coupled to three background U(1) vector multiplets, which

take supersymmetry-preserving expectation values.

Let us start with the simpler situation of a chiral multiplet (Z, χ, F ) interacting with

an abelian vector multiplet (Ai, σ, λ,D) and return to ABJM theory later. In appendix D

we outline a method to obtain this Euclidean theory via dimensional reduction from four

dimensions and to modify the supersymmetry transformations and Lagrangian when the

theory is defined on S3. The main results are that the Lagrangian on the three-sphere of

radius a is

S1/2 =

∫

d3x
√
g

(

DiZ∗DiZ + σ2Z∗Z + iχ†σiDiχ+ iχ†σχ− F ∗F

+ λT (iσ2)Z
∗χ+ χ†(iσ2)Zλ

∗ −DZ∗Z +
3

4a2
Z∗Z

)

,

(2.7)

and that the supersymmetry algebra generated by Q and Q† is

{

Q,Q†
}

= σiJi + iqσ +
1

a
R , (2.8)

where Ji is an SU(2)r isometry of S3, σi are the Pauli matrices, q is the gauge charge,

and R is the U(1)R charge. The gauge charges of (Z, χ, F ) are +1, and the R-charges are
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(1/2,−1/2,−3/2), as appropriate for free fields. The conjugate fields
(

Z∗, χ†, F ∗
)

have

opposite gauge and R-charges. The first and last terms in (2.8) correspond to the even

generators of OSp(2|2)r; the middle term is just a gauge transformation.

As noticed in [17], one can also write down an S3 Lagrangian that is invariant under

a modified supersymmetry algebra generated by Q′ and Q′† with
{

Q′, Q′†
}

= σiJi + iqσ +
1

a
R′ , (2.9)

such that the U(1)R′ charges of a chiral multiplet are now (∆,∆− 1,∆− 2) for some given

∆. The modified Lagrangian is

S∆ = S1/2+

∫

d3x
√
g

[

− 1

a2

(

∆− 1

2

)(

∆− 3

2

)

Z∗Z+
1

a

(

∆− 1

2

)

(

χ†χ−σZ∗Z
)

]

. (2.10)

This Lagrangian was obtained in [17] by direct computation.

A more conceptual way to derive (2.10) is [29] to notice that one can obtain (2.9)

from (2.8) by shifting

(Ai, σ, λ,D)→ (Ai, σ, λ,D) +
(

A′
i, σ

′, λ′, D′
)

(2.11)

and regarding (A′
i, σ

′, λ′, D′) as a background vector multiplet which is set to

σ′ = −i∆− 1/2

a
, D′ = −∆− 1/2

a2
, A′

i = 0 , λ′ = 0 . (2.12)

The background (2.12) is chosen so that it is invariant under supersymmetry. Indeed, the

supersymmetry variations of the bosonic fields A′
i, σ

′, and D′ vanish automatically because

they must be proportional to the fermions, which are set to zero. The supersymmetry

variation of λ′ is

δλ′ =

(

1

2
σijF ′

ij + iσi∂iσ
′ + iD′ − 1

a
σ′
)

ǫ , (2.13)

where ǫ is a left-invariant Killing spinor on S3 (see (D.1)), and it can be easily seen that it

also vanishes in the background (2.12). Since the supersymmetry variations of σ′ and D′

vanish, we can treat these quantities as coupling constants in the Lagrangian.

Let’s return now to the case of ABJM theory that we are interested in here. The

SCFT Lagrangian, obtained for free-field R-charge assignments, is that corresponding to

the non-Abelian generalization of (2.7) for each of the chiral multiplets (Za, χa, F a) and

(Wa, ηa, Ga), as well as Chern-Simons kinetic terms for the vector multiplets and a super-

potential interaction derived from (2.1). The most general R-charge assignment (2.2) is ob-

tained by coupling ABJM theory to three background vector multiplets (A′α
i , σ

′α, λ′α, D′α)

and setting

σ′α = −iδα
a
, D′α = −δα

a2
, A′α

i = 0 , λ′α = 0 . (2.14)

Just like (2.12), this background also preserves supersymmetry. To reproduce (2.2) we

should take the charges of the fields Z1, Z2,W1,W2 (and of their SUSY partners) under the

three background vector multiplets to be (1, 1,−1,−1), (1,−1, 1,−1), and (1,−1,−1, 1).
The Lagrangian (2.3), or its equivalent form (2.4), is then immediately obtained by gen-

eralizing the simpler example of a single chiral multiplet charged under a U(1) gauge field

that we presented above.
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2.3 Some group theory

At Chern-Simons level k = 1, the SU(4)R × U(1)b internal symmetry of ABJM theory is

enhanced to SO(8)R, so we construct the gravity dual as a consistent truncation of N = 8

supergravity. It is important to pair up the operators Oα
B and Oα

F with a subset of the 70

scalars and pseudo-scalars of the supergravity theory. The triality of SO(8) complicates

the search for the correct correspondence. A group theory argument to solve this problem

is presented in this section. It is a subtle argument, but it is not necessary to follow it

closely in a first reading of this paper. The reader can pause to consider the result in (2.18)

below and then proceed to the next section.

Since we want to construct the gravity dual of the perturbation (2.4), we need to

know which supergravity fields correspond to the operators Oα
B and Oα

F . The 35 scalars

and 35 pseudo-scalars of N = 8 gauged supergravity transform, respectively, in the 35v
and 35c representations of SO(8)R. Correspondingly, in the undeformed ABJM theory,

the operators Oα
B and Oα

F are states in the 35v and 35c representations of the SO(8)R
symmetry, and according to the AdS/CFT dictionary each of them must be dual to a bulk

scalar or pseudo-scalar field. We match the bulk fields with the boundary operators by

considering their transformation properties under a subgroup of SO(8)R that is broken by

the perturbation (2.4). The simplest such subgroup is U(1)R × SU(2) × SU(2) × U(1)b,

which we encountered before as the symmetry group acting on the N = 2 super-fields.

We identify U(1)R×SU(2)×SU(2)×U(1)b as a subgroup of SO(8)R by first considering

SU(4)R ×U(1)b as the subgroup of SO(8)R under which

8v → 41 ⊕ 4̄−1 ,

8c → 4̄1 ⊕ 4−1 ,

8s → 60 ⊕ 12 ⊕ 1−2 ,

(2.15)

and then embedding U(1)R × SU(2)× SU(2) into SU(4)R such that

4→ (2,1) 1

2

⊕ (1,2)− 1

2

,

4̄→ (2,1)− 1

2

⊕ (1,2) 1

2

,

6→ (2,2)0 ⊕ (1,1)1 ⊕ (1,1)−1 .

(2.16)

(From here on we make no distinction between the 2 and 2̄ of SU(2).) The justification

of (2.15)–(2.16) is as follows. As mentioned above, if we write ABJM theory at level k

in super-field components the global symmetry SU(4)R × U(1)b becomes manifest. One

finds that Y A = (Za,W †b) transforms in the 41 of SU(4)R × U(1)b, ψA =
(

ǫacχ
c, ǫbdη

†d
)

transforms in the 4̄1, and the six supercharges corresponding to the N = 6 manifest

supersymmetry transform in the 60. When k = 1, SU(4)R ×U(1)b is enhanced to SO(8)R,

and the four scalars Y A and their complex conjugates transform in the 8v, while the four

fermions ψA and their conjugates transform in the 8c. The eight supersymmetries transform

in the 8s. What we call 8v, 8c, and 8s is of course a triality choice, and the choice made

in (2.15) yields a more immediate comparison with supergravity.
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U(1)R × SU(2)× SU(2)×U(1)b irrep operator in 35v operator in 35c

(1,1)0,0 tr
(

Z†
cZc −W †cWc

)

tr
(

χ†
cχc − η†cηc

)

(3,1)0,0 tr
(

Z†
aZb − 1

2δ
b
aZ

†
cZc

)

tr
(

χ†
aχb − 1

2δ
b
aχ

†
cχc
)

(1,3)0,0 tr
(

W †aWb − 1
2δ

a
bW

†cWc

)

tr
(

η†aηb − 1
2δ

a
b η

†cηc

)

(2,2)1,0 tr (ZaWb) tr
(

χ†
aη†b

)

(2,2)−1,0 tr
(

Z†
aW †b

)

tr (χaηb)

Table 2. Some explicit formulas for the operators in 35v and 35c corresponding to the decompo-

sition (2.17).

Using (2.15) and (2.16) and thinking of 35v and 35c as symmetric traceless products

of 8v and 8c, respectively, it is not hard to see that under SO(8)R → SU(4)R × U(1)b →
U(1)R × SU(2)× SU(2)×U(1) we have

35v → 102 ⊕ 1̄0−2 ⊕ 150 → (3,1)0,0 ⊕ (1,3)0,0 ⊕ (1,1)0,0 ⊕ (2,2)1,0 ⊕ (2,2)−1,0 ⊕ . . . ,
35c → 10−2 ⊕ 1̄02 ⊕ 150 → (3,1)0,0 ⊕ (1,3)0,0 ⊕ (1,1)0,0 ⊕ (2,2)1,0 ⊕ (2,2)−1,0 ⊕ . . . ,

(2.17)

where the indices are the U(1)R and U(1)b charges, and from the last expression on each line

we omitted the terms that have non-zero U(1)b charge. See table 2 for explicit expressions

of the scalar and pseudo-scalar operators corresponding to the various terms on the right-

hand side of (2.17). Using this table, we can now characterize Oα
B and Oα

F . O1
B

(

O1
F

)

is

the state in 35v (35c) that corresponds to the singlet (1,1)0,0 in the decomposition of 35v
(35c) under U(1)R × SU(2) × SU(2) × U(1)b. Under the same decomposition, O2

B

(

O2
F

)

and O3
B

(

O3
F

)

are states that belong, respectively, to the symmetric and anti-symmetric

combinations of (1,3)0,0 and (3,1)0,0. Specifically these operators have vanishing charges

under the Cartan subalgebra of the product group precisely because they break SO(8)R to

its Cartan subgroup and not any further.

At the level of linearized perturbations, the N = 8 supergravity theory contains 35

scalars and 35 pseudo-scalars packaged into the totally antisymmetric tensor Σijkl that

satisfies the duality constraint (Σ∗)ijkl = ǫijklmnpqΣmnpq. The indices of Σijkl are 8s indices.

The real and imaginary parts of Σijkl have different duality properties and transform in

different 35-dimensional representations of SO(8). We can take the self-dual real part to

transform in the 35v, and the anti-self-dual imaginary part to transform in the 35c.

We can take the U(1)R subgroup of SO(8)R to be given by SO(2) rotations of the 12

indices, and U(1)b to correspond to SO(2) rotations of the 34 indices. This assignment

is consistent with the decomposition of the eight supercharges in the 8s under U(1)R ×
SU(2) × SU(2) × U(1)b — see (2.15) and (2.16). The SU(2) × SU(2) ∼= SO(4) factor acts

by rotating the remaining 5678 indices.

The operators Oα
B and Oα

F have vanishing U(1)R and U(1)b charges, so we should

examine which of the Σijkl have the same property. These are the complex field Σ1234
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and six complex fields Σ12ab where a, b ∈ {5, 6, 7, 8} (as well as Σ5678 and Σ34ab with

are related to Σ1234 and Σ12ab by duality.) Clearly, under U(1)R × SU(2) × SU(2) ×
U(1)b, Σ1234 transforms as (1,1)0,0, and Σ12ab transforms as an SO(4) adjoint, which is

(3,1)0,0 ⊕ (1,3)0,0.

We are now ready to find which Σijkl correspond to the operators Oα
B and Oα

F .

The result

O1
B + iO1

F ←→ Σ1234 , O1
B − iO1

F ←→ Σ5678 ,

O2
B + iO2

F ←→ Σ1256 , O2
B − iO2

F ←→ Σ3478 ,

O3
B + iO3

F ←→ Σ1278 , O3
B − iO3

F ←→ Σ3456 ,

(2.18)

is shown as follows. As explained above, O1
B and O1

F are singlets under U(1)R × SU(2)×
SU(2) × U(1)b. They should correspond to Σ1234. O2

B and O2
F

(

O3
B and O3

F

)

correspond

to the symmetric (anti-symmetric) combination of (3,1) and (1,3). In the fundamental

representation of SO(4) the Cartan generators can be taken to be diag{1,−1, 1,−1} (as the
zero weight state in (3,1)) and diag{1,−1,−1, 1} (as the zero weight state in (1,3)). This

implies that the symmetric (anti-symmetric) combination of (3,1) and (1,3) is therefore

given by Σ1256 (Σ1278). Taking into account the duality property of Σijkl, the correspon-

dence in (2.18) follows.

3 Consistent truncation of N = 8 gauged supergravity

3.1 An N = 2 truncation

The field content of the N = 8 theory consists of a four-dimensional metric gµν , 8 gravitinos

ψi
µ (where i is an SO(8) spinor index in 8s), 28 gauge fields Aij

µ (antisymmetric in the 8s
indices ij), 56 Majorana dilatinos χijk (antisymmetric in the 8s indices ijk), and 35 scalars

and 35 pseudo-scalars packaged into a 56-bein V . We use the gauge where the 56-bein is

written as

V = exp

(

0 Σijkl

(Σ∗)ijkl 0

)

, (3.1)

with Σijkl a totally antisymmetric complex field satisfying the self duality condition

(Σ∗)ijkl = ǫijklmnpqΣmnpq that we introduced in section 2.3. In this section we work in

Lorentzian signature.

Since the perturbed Lagrangian (2.3) preserves a U(1)R × U(1)3 subgroup of SO(8),

so should its supergravity dual. We can find the supergravity dual by first restricting the

N = 8 theory to its U(1)3-invariant sector,6 and then writing down and solving the BPS

equations. As we explained in section 2.3, we take U(1)3 to act as SO(2) rotations in the 34,

56, and 78 indices. The fields that survive the truncation are the metric gµν , 2 gravitinos

ψ1
µ and ψ2

µ, 4 gauge fields A12
µ , A34

µ , A56
µ , A78

µ , and 3 complex scalars Σ1234, Σ1256, and

Σ1278. All the other fields of the N = 8 gauged supergravity theory are set to zero. The

truncated theory is an N = 2 theory with one graviton multiplet and 3 vector multiplets.

6We do not require invariance of the truncated theory under U(1)R. If we did that, we would eliminate

the supersymmetric parters of the fields with zero R-charge, and we would not have a supergravity theory.
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We now work out the bosonic Lagrangian of this N = 2 truncation. The four gauge

fields are dropped because they play no role in the classical solutions we seek.7 We take

Σ1234 = ρ1e
iθ1 , Σ5678 = ρ1e

−iθ1 ,

Σ1256 = ρ2e
iθ2 , Σ3478 = ρ2e

−iθ2 ,

Σ1278 = ρ3e
iθ3 , Σ3456 = ρ3e

−iθ3 ,

(3.2)

and we set all the other independent components of Σijkl to zero. It is convenient to define

the three complex fields

zα = eiθα tanh ρα . (3.3)

The bosonic part of the action, with the SO(8) tensors taken from [20], is

Sb =
1

8πG4

∫

d4x
√−g

[

1

2
R− 1

96
Aijkl

µ Aµ
ijkl + g2

(

3

4

∣

∣

∣
Aij

1

∣

∣

∣

2
− 1

24

∣

∣Ai
2jkl

∣

∣

2
)]

, (3.4)

where G4 is the Newton constant in four dimensions. With the ansatz (3.2) a tedious

computation yields

Sb =
1

8πG4

∫

d4x
√−g







1

2
R−

3
∑

α=1

|∂µzα|2
(

1− |zα|2
)2 +

1

L2

(

−3 +
3
∑

α=1

2

1− |zα|2

)






, (3.5)

where instead of using the gauge coupling constant g we introduced the length scale L,

normalized such that an extremum of this action is AdS4 with radius of curvature L. The

action for the scalar fields in (3.5) is a sigma model action with H
2×H

2×H
2 target space.

This action is not new. The kinetic term for the scalars is familiar from the stu-model

where it is determined by an N = 2 prepotential. The scalar potential is then fixed by

N = 2 supersymmetry in the sense that it can be derived from the same prepotential: see,

for example, section 3.2 of [31].

3.2 An N = 1 formulation

Since the gauge fields in the N = 2 truncation of the previous section are not needed, it

is convenient to pass to an N = 1 description. The N = 2 theory consists of a graviton

multiplet and three vector multiplets, which in N = 1 language should be written as one

graviton, one gravitino, three vector, and three chiral multiplets. From now on we will

ignore the gravitino and vector multiplets, and work effectively in an N = 1 supergravity

theory with a graviton multiplet (consisting of the metric and a gravitino) and three chiral

multiplets (consisting of a complex scalar and a Majorana fermion each). The discussion

of N = 1 supergravity is based on chapter 18 of [32].

For an N = 1 supergravity theory with chiral matter, the bosonic action can be

written as

Sb =
1

8πG4

∫

d4x
√−g

[

1

2
R−Kαβ̄∂µz

α∂µz̄β̄ − VF
]

, (3.6)

7It is consistent to set the gauge fields to zero because there are no charged matter fields in our N = 2

truncation.
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where Kαβ̄ is the Kähler metric, and VF is the potential. The Kähler metric can be obtained

from a Kähler potential K from Kαβ̄ = ∂α∂β̄K, and the potential VF can be written in terms

of the superpotential W as

VF = eK
(

−3WW̄ +∇αWKαβ̄∇β̄W̄
)

, (3.7)

where the Kähler covariant derivative is defined as ∇αW = ∂αW + (∂αK)W .

For us, the Kähler potential and Kähler metric are

K = −
3
∑

α=1

log
[(

1− |zα|2
)]

, Kαβ̄ =
δαβ̄

(

1− |zα|2
)2 , (3.8)

and the superpotential is

W =
1 + z1z2z3

L
. (3.9)

Then using (3.7) with

∇αW =
z̄α + z1z2z3/zα

1− |zα|2
, ∇ᾱW̄ =

zᾱ + z̄1z̄2z̄3/z̄ᾱ

1− |zᾱ|2
, (3.10)

we obtain

VF =
1

L2

(

3−
3
∑

α=1

2

1− |zα|2

)

. (3.11)

The normalization of the potential was chosen so that the AdS4 extremum of (3.6) obtained

when zα = z̄α ≡ 0 has radius L. It is striking that the coupled cubic W produces a

decoupled VF .

In Lorentzian signature the fermionic partners of the metric and the complex fields

zα are a Majorana gravitino ψ̂µ and three Majorana fermions χ̂α, the hats signifying

four-component fermions. The linearized supersymmetry variations, with supersymmetry

parameter ǫ̂ also satisfying the Majorana condition, are

δPLψ̂µ =

(

∂µ +
1

4
ωµ

abγab −
3

2
iAµ

)

PLǫ̂+
1

2
γµe

K/2WPRǫ̂ ,

δPRψ̂µ =

(

∂µ +
1

4
ωµ

abγab +
3

2
iAµ

)

PRǫ̂+
1

2
γµe

K/2W̄PLǫ̂ ,

δPLχ̂
α = PL

(

/∂zα − eK/2gαβ̄∇β̄W̄
)

ǫ̂ ,

δPRχ̂
β̄ = PR

(

/∂z̄β̄ − eK/2gαβ̄∇αW
)

ǫ̂ ,

(3.12)

(see appendix A for our conventions) where the Kähler connection Aµ is given by

Aµ =
1

6
i
(

∂µz
αKα − ∂µz̄ᾱKᾱ

)

=
i

6

3
∑

α=1

z̄ᾱ∂µz
α − zα∂µz̄ᾱ

1− |zα|2
. (3.13)
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We can convert the fermions to two-component Weyl spinor notation by writing

ψ̂µ =

(

ψµ

ψ̃µ

)

, χ̂α =

(

χα

χ̃α

)

, ǫ̂ =

(

ǫ

ǫ̃

)

. (3.14)

The Majorana condition relates the bottom spinor to the complex conjugate of the top one:

ψ̃µ = iσ2(ψµ)
∗ , χ̃α = iσ2(χ

α)∗ , ǫ̃ = iσ2ǫ
∗ . (3.15)

In terms of Weyl spinors, the supersymmetry variations (3.12) can be written as

δψµ =

(

∂µ +
1

4
ωµ

abσ[aσ̄b] −
3

2
iAµ

)

ǫ+
1

2
σµe

K/2Wǫ̃ ,

δψ̃µ =

(

∂µ +
1

4
ωµ

abσ̄[aσb] +
3

2
iAµ

)

ǫ̃+
1

2
σ̄µe

K/2W̄ ǫ ,

δχα = σµ∂µz
αǫ̃− eK/2gαβ̄∇β̄W̄ ǫ ,

δχ̃β̄ = σ̄µ∂µz̄
β̄ǫ− eK/2gαβ̄∇αWǫ̃ .

(3.16)

One can show using the Majorana condition (3.15) that the second and fourth equations

are the complex conjugates of the first and third, respectively.

4 Analytic continuation to Euclidean signature

As explained in detail in appendix A, in Euclidean signature we should not impose the

Majorana condition (3.15). Instead, the spinors ψ̃µ, χ̃
α, and ǫ̃ are treated as independent

of ψµ, χ
α, and ǫ, respectively. Similarly, we should not require that z̄α be the complex

conjugate of zα, and we should allow in principle the metric to be complex. Instead of

writing z̄α, in Euclidean signature we will write z̃α.

The bosonic part of the N = 1 Euclidean action is then

Sbulk =
1

8πG4

∫

d4x
√
g

[

−1

2
R+

3
∑

α=1

∂µz
α∂µz̃α

(1− zαz̃α)2
+

1

L2

(

3−
3
∑

α=1

2

1− zαz̃α

)]

. (4.1)

The supersymmetry transformations are the same as (3.16), with the only exception that

we should now use the σµ and σ̄µ matrices in (A.12), as appropriate for Euclidean signa-

ture. Plugging in the explicit form of the Kähler potential and superpotential from (3.8)

and (3.9), we obtain

δψµ =

(

∂µ +
1

4
ωµ

abσ[aσ̄b] +
1

4

3
∑

α=1

z̃α∂µz
α − zα∂µz̃α

1− zαz̃α

)

ǫ+
1 + z1z2z3

2L
∏3

β=1

√
1− zβ z̃β

σµǫ̃ ,

δψ̃µ =

(

∂µ +
1

4
ωµ

abσ̄[aσb] −
1

4

3
∑

α=1

z̃α∂µz
α − zα∂µz̃α

1− zαz̃α

)

ǫ̃+
1 + z̃1z̃2z̃3

2L
∏3

β=1

√
1− zβ z̃β

σ̄µǫ ,

δχα = σµ∂µz
αǫ̃− (1− zαz̃α)

(

zα + z̃1z̃2z̃3/z̃α
)

∏3
β=1

√
1− zβ z̃β

ǫ ,

δχ̃α = σ̄µ∂µz̃
αǫ− (1− zαz̃α)

(

z̃α + z1z2z3/zα
)

∏3
β=1

√
1− zβ z̃β

ǫ̃ .

(4.2)

In the next section we will find BPS solutions that satisfy δψµ = δψ̃µ = δχα = δχ̃α = 0.
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5 BPS equations and Killing spinors

5.1 Metric ansatz and second order equations of motion

Consider the metric ansatz

ds2 = L2e2A(r)ds2S3 + e2B(r)dr2 (5.1)

and the vielbein

ei = LeA(r)êi , e4 = eB(r)dr , (5.2)

where êi (i = 1, 2, 3) is a frame on the unit S3.8 Having two functions A(r) and B(r)

in the metric ansatz (5.1) is certainly redundant, but it might be helpful not to specify a

gauge just yet. Later on, we will find it convenient to work in a gauge where the metric is

conformally flat:

eA(r) =
r

L
eB(r) , ds2 = e2B(r)

(

dr2 + r2dΩ2
3

)

. (5.3)

Let ω̂ij be the spin connection on S3. The spin connection for the frame (5.2) is

ωij = ω̂ij , ωi4 = −ω4i = A′e−Bei . (5.4)

The second order equations of motion that follow from extremizing the Euclidean

action (4.1) are

A′′ −A′B′ +
3
∑

α=1

zα′z̃α′

(1− zαz̃α)2 +
e−2A+2B

L2
= 0 ,

zα′′ + (3A′ −B′)zα′ +
2z̃α(zα′)2

1− zαz̃α +
2zαe2B

L2
= 0 ,

z̃α′′ + (3A′ −B′)z̃α′ +
2zα(z̃α′)2

1− zαz̃α +
2z̃αe2B

L2
= 0 .

(5.5)

The Hamiltonian constraint is

3(A′)2 −
3
∑

α=1

zα′z̃α′

(1− zαz̃α)2 −
3e−2A+2B

L2
+
e2B

L2

(

3−
3
∑

α=1

2

1− zαz̃α

)

= 0 . (5.6)

It can be checked that the Hamiltonian constraint is consistent with the second order equa-

tions (5.5), meaning that if it holds for a particular value of r the second order equations

guarantee that it holds for all r.

8In all of our supergravity calculations we consider an S3 of unit radius. Since we keep the bulk curvature

scale L explicit, the S3 radius can be restored by dimensional analysis when reading off field theory quantities

from the supergravity solutions.

– 16 –



J
H
E
P
0
3
(
2
0
1
4
)
1
3
5

5.2 Warm-up: supersymmetry of H4

As a warm-up, let’s start by solving the BPS equations in the case where zα = z̃α = 0. We

should find that the metric describes H4, and we will find the Killing spinors. The SUSY

variations (4.2) become

δψµ =

(

∂µ +
1

4
ωµ

abσ[aσ̄b]

)

ǫ+
1

2L
σµǫ̃ ,

δψ̃µ =

(

∂µ +
1

4
ωµ

abσ̄[aσb]

)

ǫ̃+
1

2L
σ̄µǫ .

(5.7)

Requiring that the two variations in (5.7) vanish, and specializing for µ = i and µ = r we

obtain

∇i

(

ǫ

ǫ̃

)

= −iσi
2

(

LA′eA−B −ieA
−ieA −LA′eA−B

)(

ǫ

ǫ̃

)

,

∂r

(

ǫ

ǫ̃

)

=
ieB

2L

(

0 1

−1 0

)(

ǫ

ǫ̃

)

,

(5.8)

where the derivative ∇i appearing in the first equation is the covariant derivative on the

unit radius S3.

We expect ǫ and ǫ̃ to be linear combinations of Killing spinors on S3, with coefficients

depending on r. These Killing spinors satisfy

∇iζ =
i

2
σiζ (5.9)

(these are invariant under the SU(2)ℓ subgroup of the SO(4) = SU(2)ℓ × SU(2)r isometry

of S3) and

∇iξ = −
i

2
σiξ (5.10)

(these are invariant under SU(2)r). So the eigenvalues of the matrix appearing in the first

line of (5.8) should be ±1, or in other words the determinant of that matrix should be −1:

−L2(A′)2e2(A−B) + e2A = −1 . (5.11)

In the conformally flat gauge (5.3), this equation becomes r
(

e−A
)′

=
√
1 + e−2A, whose

solution is e−A = r0
2r − r

2r0
, where r0 is an integration constant that can be set to r0 = 1

by reparameterizing r. The metric can therefore be written as

ds2 =
4L2

(1− r2)2
(

dr2 + r2dΩ2
3

)

. (5.12)

This is the metric on H
4 of curvature radius L, where the unit H4 is parameterized as the

Poincaré disk of unit radius.
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We still need to check that all the equations in (5.8) can be solved consistently. In our

gauge, (5.8) becomes

∇i

(

ǫ

ǫ̃

)

= −iσi
2

(

1+r2

1−r2
− 2ir

1−r2

− 2ir
1−r2

−1+r2

1−r2

)(

ǫ

ǫ̃

)

,

∂r

(

ǫ

ǫ̃

)

=
i

1− r2

(

0 1

−1 0

)(

ǫ

ǫ̃

)

.

(5.13)

It can be checked that these equations are solved by
(

ǫ

ǫ̃

)

=
1√

1− r2

(

r

−i

)

ζ (5.14)

or
(

ǫ

ǫ̃

)

=
1√

1− r2

(

1

−ir

)

ξ . (5.15)

This is a 4-dimensional space of solutions because on S3 there exist two linearly independent

solutions to ∇iζ = i
2σiζ and two linearly independent solutions to ∇iξ = − i

2σiξ. The

Killing spinors in (5.14)–(5.15) are parameters for the odd generators of the Euclidean

N = 1 superconfromal algebra OSp(1|2, 2), which is the Euclidean continuation of the

Lorentzian superconformal algebra OSp(1|4). The even subalgebra of OSp(1|2, 2) is the

conformal algebra USp(2, 2) ∼= SO(4, 1).

When the N = 1 supergravity theory whose H
4 solution we just derived is embedded

in the N = 8 gauged supergravity theory, there are 8 independent supersymmetry transfor-

mations with parameters (ǫi, ǫ̃i), i = 1, . . . , 8 that transform in the spinor 8s representation

of the SO(8)R symmetry. Each of these parameters can be chosen to be (5.14) or (5.15),

yielding the 32 odd generators of OSp(8|2, 2).

5.3 BPS equations for the three-scalar system

We return to the full system of BPS conditions obtained from the vanishing of the super-

symmetry variations (4.2). With our metric and frame (5.1)–(5.2), these conditions can be

written as the system of equations:

∇i

(

ǫ

ǫ̃

)

= −iσi
2





LA′eA−B −i eA(1+z1z2z3)√
(1−z1z̃1)(1−z2z̃2)(1−z3z̃3)

−i eA(1+z̃1z̃2z̃3)√
(1−z1z̃1)(1−z2z̃2)(1−z3z̃3)

−LA′eA−B





(

ǫ

ǫ̃

)

, (5.16)

∂r

(

ǫ

ǫ̃

)

=

[

ieB

2L
∏3

α=1

√
1− zαz̃α

(

0 1 + z1z2z3
−(1 + z̃1z̃2z̃3) 0

)

(5.17)

− 1

4

3
∑

α=1

z̃α∂rzα − zα∂rz̃α
1− zαz̃α

(

1 0

0 −1

)](

ǫ

ǫ̃

)

,

(

0

0

)

=

[

− 1

L

(1−zαz̃α)
∏3

β=1

√

1−zβ z̃β

(

zα+
z̃1z̃2z̃3
z̃α

0

0 z̃α+
z1z2z3
zα

)

+e−B

(

0 −i∂rzα
i∂rz̃α 0

)](

ǫ

ǫ̃

)

.

(5.18)
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We expect to find non-trivial solutions where ǫ and ǫ̃ are proportional either to the

S3 left-invariant Killing spinors ζ or to the right-invariant ones ξ. The first equation

above, (5.16), then simplifies to

(

0

0

)

=







LA′eA−B ± 1 −i eA(1+z1z2z3)
∏

3

β=1

√
1−zβ z̃β

−i eA(1+z̃1z̃2z̃3)
∏

3

β=1

√
1−zβ z̃β

−LA′eA−B ± 1







(

ǫ

ǫ̃

)

, (5.19)

where the upper signs correspond to ζ and the lower signs to ξ. For each choice of sign,

eqs. (5.3) and (5.18) are eight linear algebraic equations for ǫ and ǫ̃ that must be consistent

with one another. The consistency conditions can be found by solving for ǫ̃ in terms of ǫ

from one of the equations and plugging the solution into the other ones. Equivalently, one

can combine (5.18) with (5.3) into a system of eight equations for two unknowns ǫ and ǫ̃;

the system has nontrivial solutions if and only if all the 2×2 minors have zero determinant.

From these conditions, we find the BPS equations:

LeA−B
(

1 + z̃1z̃2z̃3
)

zα′ =
(

±1− LeA−BA′
)

(1− zαz̃α)
(

zα +
z̃1z̃2z̃3

z̃α

)

,

LeA−B
(

1 + z1z2z3
)

z̃α′ =
(

∓1− LeA−BA′
)

(1− zαz̃α)
(

z̃α +
z1z2z3

zα

)

,

−1 = −L2(A′)2e2A−2B + e2A
(

1 + z1z2z3
) (

1 + z̃1z̃2z̃3
)

∏3
β=1 (1− zβ z̃β)

.

(5.20)

The first equation in (5.20) is obtained from the bottom row of (5.3) and the top row

of (5.18). The second equation is obtained from the top row of (5.3) and the bottom

row of (5.18). Lastly, the third equation in (5.20) is obtained from (5.3). It can be

checked that (5.20) imply the second order equations of motion (5.5) and the Hamiltonian

constraint (5.6), as well as the vanishing of the other 2×2 minors of the system of equations

for ǫ and ǫ̃.

We can analyze the equations (5.20) in the conformally flat gauge (5.3) where LeA−B =

r. A regular metric at r = 0 would have eA = r+O
(

r2
)

, which implies that 1−LeA−BA′

vanishes at r = 0, but −1 − LeA−BA′ does not. Since the left-hand sides of the first two

equations in (5.20) also vanish at r = 0 if one assumes that zα and z̃α are regular, these

two equations imply that zα(0)z̃α(0) = −z1(0)z2(0)z3(0) for the upper choice of signs, and
zα(0)z̃α(0) = −z̃1(0)z̃2(0)z̃3(0) for the lower choice of signs. Developing a series solution

to (5.20) around r = 0, one can see that zα(r) and z̃α(r) are all proportional:

zα(r) = zα(0)f(r) , z̃α(r) = z̃α(0)f(r) , (5.21)

for some function f satisfying f(0) = 1.

Let’s focus on the upper choice of signs. Denoting zα(0) = cα and using zα(0)z̃α(0) =

−z1(0)z2(0)z3(0), we can write

zα(r) = cαf(r) , z̃α(r) = −c1c2c3
cα

f(r) . (5.22)
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Plugging (5.22) in the first two equations of (5.20) and eliminating A′, one obtains a

differential equation for f :

f ′ =
2(f − 1)(c1c2c3f + 1)

(1 + c1c2c3)r
. (5.23)

The solution of this first order differential equation is

f(r) =
1− (r/r0)

2

1 + c1c2c3(r/r0)2
, (5.24)

where r0 is an integration constant. We can set r0 = 1 by reparameterizing r, and we

will henceforth do so. Using (5.22) and (5.24), one can find an algebraic equation for A

from substituting the expression for A′ found from the first equation in (5.20) into the last

equation of (5.20). Solving this algebraic equation yields the metric

ds2 =
4L2(1 + c1c2c3)

(

1 + c1c2c3r
4
)

(1− r2)2 (1 + c1c2c3r2)
2

(

dr2 + r2dΩ2
3

)

. (5.25)

To summarize, for the upper choice of signs in (5.3), we obtain a three-parameter

family of solutions

SU(2)ℓ ×OSp(2|2)r branch: ds2 =
4L2(1 + c1c2c3)

(

1 + c1c2c3r
4
)

(1− r2)2 (1 + c1c2c3r2)2

(

dr2 + r2dΩ2
3

)

,

zα =
cα
(

1− r2
)

1 + c1c2c3r2
, z̃α = − c1c2c3

(

1− r2
)

cα (1 + c1c2c3r2)
. (5.26)

(The label “SU(2)ℓ × OSp(2|2)r branch” will be explained shortly.) The Killing spinors

should of course be proportional to the left-invariant S3 Killing spinors ζ satisfying

∇iζ = i
2σiζ because that’s the dependence that led us to consider the upper choices of

sign. From any of the equations in (5.18) and (5.3) we can moreover find that ǫ = irǫ̃

by simply plugging in the solution (5.25)–(5.26). The explicit r-dependence of the Killing

spinors can be found by solving (5.17), which is an equation that we haven’t considered so

far. We find that the solution is
(

ǫ

ǫ̃

)

=

(

1 + c1c2c3r
4
)1/4

√

(1− r2) (1 + c1c2c3r2)

(

r

−i

)

ζ . (5.27)

These Killing spinors are the fermionic parameters of an OSp(1|2) algebra whose

bosonic sub-algebra is the SU(2)r subgroup of the SO(4) ∼= SU(2)ℓ × SU(2)r isometry

group of S3. Within the N = 1 supergravity theory we considered, our solution therefore

has SU(2)ℓ × OSp(1|2)r symmetry, where the subscript r on OSp(1|2)r means that this

group contains SU(2)r as opposed to SU(2)ℓ. However, we obtained our N = 1 theory

from an N = 2 truncation of N = 8 gauged supergravity, and in the N = 2 theory

we have supersymmetry transformations with two independent parameters (ǫi, ǫ̃i) with

i = 1, 2, transforming in the fundamental of an SO(2)R symmetry group. Seen as extrema

of the N = 2 gauged supergravity action, our backgrounds (5.26) are invariant under

SU(2)ℓ ×OSp(2|2)r, which justifies the label we gave to this branch of solutions in (5.26).
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One can go through a similar exercise for the lower choice of signs in (5.16) to find

solutions that preserve OSp(2|2)ℓ × SU(2)r. As can be seen by examining the BPS equa-

tions (5.20), one simply exchanges zα with z̃α in this case:

OSp(2|2)ℓ × SU(2)r branch: ds2 =
4L2(1 + c1c2c3)

(

1 + c1c2c3r
4
)

(1− r2)2 (1 + c1c2c3r2)
2

(

dr2 + r2dΩ2
3

)

,

zα = − c1c2c3
(

1− r2
)

cα (1 + c1c2c3r2)
, z̃α =

cα
(

1− r2
)

1 + c1c2c3r2
. (5.28)

It is also straightforward to calculate the Killing spinors

(

ǫ

ǫ̃

)

=

(

1 + c1c2c3r
4
)1/4

√

(1− r2) (1 + c1c2c3r2)

(

1

−ir

)

ξ , (5.29)

which are now the fermionic parameters of an OSp(1|2)ℓ algebra containing SU(2)ℓ. In

the N = 2 supergravity theory there are again two independent supersymmetry variations,

and the background (5.28) is invariant under OSp(2|2)ℓ × SU(2)r.

6 Field theory interpretation

We now use the supergravity solutions (5.26) and (5.28) presented in the previous section

to calculate the S3 free energy and match the field theory result (1.2).

6.1 Supersymmetric holographic renormalization

In the discussion thus far we have neglected several issues concerning the behavior of the

bulk fields at the AdS4 boundary (in Euclidean signature the H4 boundary) and their effect

on the on-shell action. One well-known issue is that the Euclidean bulk action integral (4.1)

diverges at the boundary when classical solutions of the equations of motion are inserted.

The cure for this problem is to introduce a cutoff surface at large distance and add counter-

terms to make the action finite. The theory of holographic renormalization [33] provides a

systematic prescription for these counter-terms, but the possibility of finite counter-terms

is left open. Finite counter-terms and related issues are especially important in our problem

because the classical BPS gravity solution must be dual to the deformed ABJM theory,

which possesses global N = 2 supersymmetry on S3.

It is an axiom of the AdS/CFT correspondence that the classical solutions of the

gravity theory provide sources and expectation values for operators in the dual boundary

QFT. This information is contained in the asymptotic behavior of bulk fields. To be more

specific we consider the H
4 metric in the form

ds2 =
4L2

(1− r2)2
(

dr2 + r2dΩ2
3

)

= L2
(

dρ2 + e2A(ρ) dΩ2
3

)

. (6.1)

We have made the change of coordinates r = tanh(ρ/2), so that e2A(ρ) = sinh2 ρ. We will

introduce below a similar radial coordinate for the metric (5.25) of our bulk solution. In
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the ρ coordinate, any solution of the bulk equations of motion of the massless scalars of

the gravity theory behaves near the boundary as

zα(ρ, x) = aα(x)e−ρ + bα(x)e−2ρ + . . . ,

z̃α(ρ, x) = ãα(x)e−ρ + b̃α(x)e−2ρ + . . . ,
(6.2)

where x denotes the coordinates on S3. In simpler applications of AdS/CFT, the leading

coefficient aα(x) is the source for the dual operator in the field theory while bα(x) determines

the expectation value. However, for massless scalars this assignment is ambiguous, and we

will use global supersymmetry to determine the correct choice.

As originally noted in [27], it turns out that supersymmetry requires the use of reg-

ular boundary conditions for some scalars and irregular boundary conditions for others.

When irregular boundary conditions are needed, the AdS/CFT dictionary requires [28]

that a Legendre transformation of the on-shell action be used to calculate quantities in the

dual QFT.

In our problem, since we now introduce a spacetime boundary, we should supplement

the Einstein-Hilbert action by the well-known Gibbons-Hawking term

SGH = − 1

8πG4

∫

∂
d3x
√
hK , (6.3)

where h is the determinant of the induced metric hij(x, ρ) at the cutoff ρ = ρmax, and

K = 1
L∂ρ ln

√
h is the trace of the extrinsic curvature. This boundary term is needed in

order to properly define the variational problem for the metric. Holographic renormaliza-

tion prescribes that two additional counterterms should be added to the classical action:

a counterterm associated with the curved boundary surface, and a counterterm required

because massless scalars are present:

Sa =
L

16πG4

∫

∂
d3x
√
hR , (6.4)

Sb =
1

4πG4L

∫

∂
d3x
√
h

[

1 +
1

2

3
∑

α=1

zαz̃α

]

, (6.5)

where R is the Ricci scalar of hij . For our situation (6.1), the metric diverges at the rate

L2e2ρ/4 as ρ→∞ and R = 24e−2ρ/L2. As required by holographic renormalization, these

counterterms are local functionals of the fields at the cutoff surface. The sum of the bulk

action in (4.1), with radial integral cut off at ρ = ρmax and the boundary terms,

S = Sbulk + SGH + Sa + Sb , (6.6)

remains finite as ρmax → ∞ for any solution of the Euler-Lagrange equations of mo-

tion of the gravity theory. Indeed, the counterterms Sa and Sb are obtained by imple-

menting this requirement, a procedure known as “near-boundary analysis.” See [34] or

section 23.11 of [32].

Although well defined, the action S of (6.6) is not satisfactory unless the counterterm

Sb is replaced by

SSUSY =
1

4πG4

∫

∂
d3x
√
h eK/2|W | . (6.7)
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The reason for this change is discussed in appendix B. It is needed to satisfy global su-

persymmetry for flat-sliced domain walls, and it is required here as well because both flat-

and S3-sliced domain walls are solutions of the same classical theory. The renormalized

on-shell action is then defined as

Son−shell = Sbulk + SGH + Sa + SSUSY . (6.8)

Inserting the specific Kähler potential and superpotential (3.9) and expanding at small

zα and z̃α, we rewrite SSUSY as

SSUSY =
1

4πG4L

∫

∂
d3x
√
h

[

1 +
1

2

3
∑

α=1

zαz̃α +
1

2

(

z1z2z3 + z̃1z̃2z̃3
)

]

, (6.9)

in which terms which vanish as ρmax →∞ have been dropped. We see that Sb and SSUSY

differ by the cubic term in the scalars. The difference makes a finite contribution to Sren in

the limit ρmax →∞. The AdS/CFT match of the free energy, toward which we are working

in this section, depends crucially on the inclusion of SSUSY.

A second argument in favor of the counterterm SSUSY emerges from a study of super-

symmetric boundary conditions. At large values of ρ, the SUSY transformations of the bulk

supergravity theory relate the asymptotic coefficients for the scalar fields zα, z̃α in (6.2)

to the analogous coefficients for the spinors and to each other. As shown in appendix C,

bulk supersymmetry transformations relate the combinations

aα − ãα and

(

bα − ã1ã2ã3

ãα

)

+

(

b̃α − a1a2a3

aα

)

(6.10)

(separately for each α = 1, 2, 3) as well as the sets

aα + ãα and

(

bα − ã1ã2ã3

ãα

)

−
(

b̃α − a1a2a3

aα

)

. (6.11)

From the viewpoint of the AdS/CFT dictionary, the boundary behavior (6.2) encodes

sources and VEVs in the dual field theory. A supersymmetric treatment in the framework

of holography requires that we should either take the quantities in (6.10) to be sources

and those in (6.11) to be VEVs, or the other way around.9 Since sources and VEVs are

canonically conjugate variables, we would therefore like the canonical conjugate of aα to

be proportional to b̃α − a1a2a3/aα and that of ãα to be proportional to bα − ã1ã2ã3/ãα.
This is what the renormalized action (6.8) accomplishes:

δSon-shell
δaα

= lim
ρ→∞

e−ρ

[

∂Lbulk
∂(∂ρzα)

+
δSSUSY

δzα

]

=

√
gsL2

64πG4

[

b̃α − a1a2a3/aα
]

,

δSon-shell
δãα

= lim
ρ→∞

e−ρ

[

∂Lbulk
∂(∂ρz̃α)

+
δSSUSY

δz̃α

]

=

√
gsL2

64πG4

[

bα − ã1ã2ã3/ãα
]

,

(6.12)

9A third possibility exists where we take a linear combination of (6.10) and (6.11) to be the sources and

the orthogonal linear combination to be the VEVs. All these possibilities are related by chiral rotations in

the bulk.
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where we denoted the determinant of the metric gsij on the unit S3 by gs. Any additional

finite counter-terms cubic in zα and z̃α would generate additional terms in (6.12) that are

quadratic in aα and ãα. The special role of the counter term SSUSY is thus evident in

the result.

6.2 AdS/CFT dictionary

The discussion at the end of the previous subsection did not make any assumptions as

to whether the coefficients in (6.10) or those in (6.11) should be treated as field theory

sources or VEVs. From now on we do make such a choice: we consider the coefficients

in (6.10) to correspond to field theory sources and those in (6.11) to correspond to VEVs

for the following reason. In Lorentzian signature where zα and z̃α are complex conjugates

of each other, our convention was that the real part of zα is a scalar and the its imaginary

part is a pseudo-scalar. The bulk scalars are dual to the boundary scalar operators Oα
B of

scale dimension one, and the bulk pseudo-scalars are dual to the boundary pseudo-scalar

operators Oα
F of scaling dimension two. According to the standard rules of the AdS/CFT

dictionary, the sources for Oα
B and Oα

F would then be proportional to bα + b̃α and aα− ãα,
respectively, at least when all the sources are small. We interpret the fact that bα+b̃α should

be modified to the expression in (6.10) as a non-linear effect required by supersymmetry.

In order to read off
(

aα, ãα, bα, b̃α
)

more easily, let us now change coordinates in

our solutions (5.26) and (5.28) to the gauge B = 0 (see (5.1)) where the metric takes the

asymptotic form in (6.1). There is no simple analytic formula for this change of coordinates,

but we can use the following asymptotic expansion close to the boundary

r = 1− 2e−ρ + 2e−2ρ − 2
(1− c1c2c3)2
(1 + c1c2c3)2

e−3ρ + . . . , (6.13)

such that the metric (5.25) takes the form

ds2 = L2dρ2 +
L2e2ρ

4

(

1− 1 + c1c2c3(c1c2c3 − 10)

(1 + c1c2c3)2
e−2ρ + · · ·

)2

dΩ2
3 . (6.14)

For the SU(2)ℓ ×OSp(2|2)r branch of solutions (5.26) we then have

zα(ρ) =
4cα

1 + c1c2c3
e−ρ − 8cα(1− c1c2c3)

(1 + c1c2c3)2
e−2ρ + · · · ,

z̃α(ρ) = − 4c1c2c3
cα(1 + c1c2c3)

e−ρ +
8c1c2c3(1− c1c2c3)
cα(1 + c1c2c3)2

e−2ρ + · · · ,
(6.15)

while for the OSp(2|2)ℓ × SU(2)r branch the expressions for zα and z̃α in (6.15) are inter-

changed. By comparison of the asymptotic forms (6.15) and (6.2) it is easy to read off the

values of
(

aα, ãα, bα, b̃α
)

. We can then calculate the values of the sources in (6.10):

1

a
(aα − ãα) = ±4 (cα + c1c2c3/cα)

a(1 + c1c2c3)
,

1

a2

[(

bα − ã1ã2ã3

ãα

)

+

(

b̃α − a1a2a3

aα

)]

= −8 (cα + c1c2c3/cα)

a2(1 + c1c2c3)
,

(6.16)
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where the upper sign corresponds to the branch (5.26) and the lower sign corresponds

to (5.28). Here, we reintroduced the sphere radius a using dimensional analysis: the

boundary field theory pseudo-scalars sourced by the first line in (6.16) have scaling dimen-

sion two, while the scalars sourced by the second line in (6.16) have scaling dimension one.

The simplification in the second line of (6.16) obtained after the inclusion of the quadratic

terms in aα and ãα is quite remarkable.

To compare with the field theory, we should identify the parameters δα that are related

to the R-charges of the bifundamental fields through (2.2) as

δα = n
cα + c1c2c3/cα
1 + c1c2c3

, (6.17)

where n is a so-far undetermined normalization constant. Such undetermined normalization

constants usually appear in the AdS/CFT dictionary because in most cases there is no clear

way of relating the normalization of the bulk field to that of the dual operator. As we will

see below, the supergravity backgrounds in this paper allow the determination of n.

Note that, up to a dimensionless factor, we can interpret the quantities 1
a (a

α − ãα) and
1
a2

(

bα − ã1ã2ã3/ãα + b̃α − a1a2a3/aα
)

as background values for the scalar fields σ′α and

D′α that are part of three (off-shell) background vector multiplets coupled to the boundary

theory that we defined in section 2.2. In order to preserve SUSY on the boundary we must

have10 σ′α = ±iaD′α. Using (2.14) and (6.17), we find

σ′α = ∓incα + c1c2c3/cα
a(1 + c1c2c3)

, D′α = −ncα + c1c2c3/cα
a2(1 + c1c2c3)

. (6.18)

These expressions agree indeed with (6.16) up to a proportionality constant.

6.3 The S
3 free energy

Evaluating the action (6.8) on the solutions (5.26) and (5.28), one obtains

I =
πL2

2G4

1− c1c2c3
1 + c1c2c3

. (6.19)

The finite counter-term SSUSY that we included in (6.8) is crucial for obtaining this ex-

pression; without it, the second fraction in (6.19) would be raised to the third power.

It is not I that one should compare with the field theory F because the choice of sources

in (6.10) or (6.11) involves using the alternate quantization introduced in [28] where for

some fields one does not pick the leading coefficient at the boundary to correspond to a

source, but instead its canonically conjugate variable. The quantity I would be the S3 free

energy of the field theory where the sources are aα and ãα. Instead, we want the S3 free

energy in the theory where the sources are (6.10), which is just the Legendre transform of

the on-shell action with respect to aα + ãα. We therefore have

J = Son-shell −
1

2

3
∑

α=1

∫

S3

d3x (aα + ãα)

(

δSon-shell
δaα

+
δSon-shell
δãα

)

. (6.20)

10In (2.14) we worked in the case where the SUSY generators are part of OSp(2|2)r. The OSp(2|2)ℓ case

is obtained by sending a → −a, as mentioned in footnote 5.
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For our solutions, using (6.12) and the asymptotics (6.2) and (6.15), we get

J =
πL2

2G4

(

1− c21
) (

1− c22
) (

1− c23
)

(1 + c1c2c3)
2 . (6.21)

The pre-factor πL2/2G4 in this expression equals the value of F for the superconformal

ABJM theory at level k = 1 in the large N limit,
√
2πN3/2/3 [35, 36]. Using this identifi-

cation, as well as the relation between the R-charges of the bifundamental fields and the cα
as given by (6.17) and (2.2), one finds that (6.21) agrees with the field theory result (1.2)

for n = 1/2. This match is one of the main results of this paper. It is remarkable how

when one uses (6.17) with n = 1/2, the quantity under the square root in (1.2) becomes a

perfect square and (1.2) matches the expression (6.21), which has no square roots.

7 Discussion

In this paper we found new analytical backgrounds of N = 8 gauged supergravity in

four Euclidean dimensions by solving the BPS equations for an N = 1 truncation of

the N = 8 theory whose bosonic part consists of the metric and three complex scalar

fields. These solutions, which are given in (5.26) and (5.28), are asymptotically H
4, and

when embedded into the N = 8 theory they generically preserve N = 2 supersymmetry.

They are dual to deformations of the superconformal ABJM theory at Chern-Simons level

k = 1 on S3 corresponding to the most general choice of the N = 2 U(1)R symmetry.

Equivalently, they correspond to the ways of coupling the k = 1 ABJM theory, seen as an

N = 2 theory, to curvature while preserving an OSp(2|2)× SU(2) symmetry. On the field

theory side, the S3 free energy F was computed in [18] starting from the supersymmetric

localization results of [17] and using the matrix model techniques developed in [36]. We

match this result with a supergravity calculation, as we show in section 6. In obtaining this

match, it is important that we perform holographic renormalization in a way consistent

with supersymmetry, and that we take a Legendre transform of the on-shell supergravity

action. Our computation provides a way of finding the precise normalization of the field

theory operators corresponding to the bulk supergravity scalar fields in our setup.

It is perhaps worth describing the simplest supergravity backgrounds we find. If we

take c2 = c3 = 0 in (5.26) and (5.28), we find that only z1 (in (5.26)) or z̃1 (in (5.28)) do

not vanish. These solutions are particularly simple because the scalar fields do not back-

react on the metric. The absence of the back-reaction is due to the fact that the stress

tensor involves products of z1 and z̃1 (or of their derivatives), as obtained by continuing

to Euclidean signature the Lorentzian stress tensor in which z1 and z̃1 are each other’s

complex conjugates; since either z1 or z̃1 vanishes, the stress tensor vanishes too, and by

the Einstein equations the metric is just H4. More specifically, the case where z̃1 = 0 is

ds2 =
4L2

(1− r2)2
(

dr2 + r2dΩ2
3

)

,

z1 = c1
(

1− r2
)

, z̃1 = z2 = z̃2 = z3 = z̃3 = 0 .

(7.1)
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Even though the metric is H
4, there is no conformal symmetry because z1 depends non-

trivially on the H
4 coordinates. In Lorentzian signature, a situation where the metric is

AdS4 but the matter fields break the SO(3, 2) symmetry would be impossible, because any

complex scalar with a non-trivial profile in the AdS4 directions produces a non-vanishing

stress tensor.

For a superconformal field theory dual to AdS4 × Y , where Y is a seven-dimensional

Sasaki-Einstein space, it was shown in [36] that the S3 free energy is given by

F = N3/2

√

2π6

27Vol(Y )
. (7.2)

For ABJM theory at level k = 1, we have Y = S7. Using Vol
(

S7
)

= π4/3, it is not

hard to see that (7.2) matches (1.2) when the R-charges have the superconformal values

R[Za] = R[Wb] = 1/2. An interesting observation of [18, 37] was that, in fact, (7.2)

continues to hold away from the superconformal values of the R-charges provided that one

computes Vol(Y ) using a Sasakian metric on Y that is not Einstein. The volumes of these

Sasakian metrics can be taken to be parameterized by the R-charges R[Za] and R[Wb],

computed now as volumes of certain five-cycles of Y . There is so far no known explanation

of this observation. It would be interesting to see whether the Euclidean supergravity

solutions constructed in this paper can be lifted to eleven dimensions, and whether the lift

would illuminate why (7.2) still holds away from the superconformal point.

As is well known, the gauge/gravity duality provides a valid description of the dual

quantum field theory in a strong coupling limit, a limit in which traditional field-theoretic

methods usually cannot be applied. In the example considered in this paper, the field theory

results of [18] were made possible by the method of supersymmetric localization, which was

quite powerful even at strong coupling and in the absence of conformal symmetry. Thus

the agreement we have found between the two sides of the duality is unusually precise and

quantitative.

Acknowledgments

We thank H. Elvang, D. Jafferis, I. Klebanov, J. Maldacena, M. Mezei, and K. Skenderis for

useful discussions. The research of DZF is supported in part by NSF grant PHY-0967299.

The work of SSP is supported in part by a Pappalardo Fellowship in Physics at MIT. Both

authors are supported in part by the U.S. Department of Energy under cooperative research

agreement Contract Number DE-FG02-05ER41360. SSP thanks the Stanford Institute for

Theoretical Physics for hospitality while this work was in progress.

A Conventions and Euclidean supersymmetry

In this appendix we explain our conventions, and comment on the Euclidean continuation of

supersymmetric (3+1)-dimensional theories in flat space. We focus on theories with global

supersymmetry because going from global to local supersymmetry in Euclidean signature

doesn’t pose any additional challenges relative to the ones in Lorentzian signature. The

results presented in this section are not new. They are implicit, for example, in the recent

work [29].
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A.1 Lorentzian signature conventions

Our Lorentzian signature conventions are the same as those in [32]. As in chapter 3 of [32],

we define the four-dimensional gamma matrices to be

γµ =

(

0 σµ

σ̄µ 0

)

,
σµ = (1, ~σ) ,

σ̄µ = (−1, ~σ) , (A.1)

where σi are the three Pauli matrices. These matrices satisfy the following two useful

relations:

γ0γµ =

(

σ̄µ 0

0 −σµ

)

, σ2σµσ2 = −(σ̄µ)T . (A.2)

The left and right projectors are PL =
(

1+γ5
)

/2 and PR =
(

1−γ5
)

/2, where γ5 is given by

γ5 = −iγ0γ1γ2γ3 =
(

1 0

0 −1

)

= σ3 ⊗ 1 . (A.3)

In [32], supersymmetric theories in 3 + 1 dimensions are constructed using Majorana

spinors.11 The Majorana condition on a Dirac spinor χ̂ is χ̂ = B−1χ̂∗, where

B = γ0γ1γ3 =

(

0 −iσ2
iσ2 0

)

= σ2 ⊗ σ2 = B−1 . (A.4)

Writing χ̂ in Weyl form

χ̂ =

(

χ

χ̃

)

, (A.5)

the Majorana condition implies

χ̃ = iσ2χ
∗ , χ† = χ̃T iσ2 . (A.6)

The Dirac adjoint is defined as ¯̂χ = χ̂†iγ0. The result

¯̂χ = i
(

−χ̃† χ†
)

= i
(

χT iσ2 χ̃
T iσ2

)

(A.7)

is helpful to convert 4-component expressions to Weyl form.

As an example, the Lagrangian of a massive Majorana fermion can be written in Weyl

components as

−LMajorana =
1

2
¯̂χ/∂χ̂− 1

2
m ¯̂χχ̂ (A.8)

=
i

2
χ̃T (iσ2)σ̄

µ←→∂µχ−
i

2
m
[

χ̃T (iσ2)χ̃+ χT (iσ2)χ
]

. (A.9)

11We treat all spinor fields and parameters as anti-commuting.
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As another example, the gravitino Lagrangian is

Lgravitino = −
1

2
¯̂
ψµγ

µνρDνψ̂ρ −
m

2
¯̂
ψµγ

µνψ̂ν

=
i

2
ǫµνρσ

¯̂
ψµγ5γνDρψ̂σ −

m

2
¯̂
ψµγ

µνψ̂ν ,

(A.10)

where we used γµνρ = −iǫµνρσγ5γσ and ǫ0123 = −1. The Weyl decomposition is

Lgravitino = −
1

2
ǫµνρσψ̃T

µ (iσ2)σ̄ν
←→
Dρψσ −

m

2

[

ψT
µ iσ2σ

[µσ̄ν]ψν + ψ̃T
µ (iσ2)σ̄

[µσν]ψ̃ν

]

. (A.11)

Note that a feature of this notation (which persists in the Euclidean version below) is

that no special concern is needed for up/down or dotted/undotted spinor indices.

A.2 From Lorentzian to Euclidean signature

We use a very straightforward method to define the Euclidean version of any 4-dimensional

Lorentzian signature field theory. There are three steps:

1. Rewrite the Lorentzian theory in terms of two-component Weyl spinors. This allows

us to treat Lorentzian theories with either Dirac or Majorana spinors.

2. Continue the time components of vectors as x0 → −ix4, A0 → iA4, σ0 →
iσ4, σ̄0 → iσ̄4. After this is done, the Lorentzian and Euclidean actions are related

by exp
[

iSLor
]

= exp
[

−SEuc
]

.

3. Require that the resulting action, transformation rules, and equations of motion

are invariant under the spacetime isometry group SO(4), which is implemented as

SU(2)L × SU(2)R.

Euclidean symmetry is the guiding principle. To discuss its application to spinors we

define Euclidean “Weyl matrices” by

σµ = (~σ,−i) , σ̄µ = (~σ, i) , (A.12)

where the σi are again the Pauli matrices.12 As in the Lorentzian case, the two sets of

matrices are related by

σ2σµσ
2 = −(σ̄µ)T . (A.13)

Let yµ be a real 4-vector and define the matrix

Y = σ̄µy
µ , (A.14)

which is an imaginary scalar multiple of a finite element of SU(2). Note that detY =

−∑µ y
µyµ, and that the vector components can be obtained from Y as the trace

yµ =
1

2
tr(σµY ) . (A.15)

12In flat Euclidean space, there is no distinction between upper and lower vector indices.
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Let the pair of matrices (U, V ) denote an element of SU(2)L×SU(2)R. The transformation

Y → Y ′ ≡ V −1Y U (A.16)

defines a linear map that takes Y into Y ′, which is another matrix of the same type. Since

the determinant is invariant and SU(2) is a connected group, the vector y′µ is related to

yµ by y′µ = Λµ
νy

ν , where Λ is a matrix of SO(4). Indeed, the map (A.16) defines a

homomorphism13 of SU(2)L × SU(2)R → SO(4).

The Majorana spinor Lagrangian (A.8) looks essentially the same in Euclidean

signature

LMajorana =
i

2
χ̃T (iσ2)σ̄

µ←→∂µχ−
i

2
m
[

χ̃T (iσ2)χ̃+ χT (iσ2)χ
]

, (A.17)

but it is now interpreted as a Euclidean Lagrangian with σ̄µ given in (A.12). The kinetic

term is invariant provided that spinors transform as

χ(x)→ Uχ
(

Λ−1x
)

, χ̃(x)→ V χ̃
(

Λ−1x
)

. (A.18)

The mass terms in (A.17) reduce to the standard SU(2) invariant form, e.g.

χT iσ2χ = ǫαβχαχβ . (A.19)

The reason that χ̃ cannot be interpreted as the Hermitian conjugate of χ now emerges;

they transform in non-conjugate representations of SO(4). The spinor χ transforms in the

(1/2,0) representation of SU(2)L×SU(2)R, and χ̃ transforms in the (0,1/2) representation.

Thus we treat χ and χ̃ as independent fields in the Euclidean theory.

The equations of motion which follow from (A.17) are

σ̄µ∂µχ = mχ̃ , σµ∂µχ̃ = mχ . (A.20)

To derive the second equation we used (A.13). Combining these two equations we obtain

∇2χ = σµ∂µσ̄
ν∂νχ = m2χ . (A.21)

The sign of the m2 term is the same as for a massive scalar field in Euclidean space, as it

should be. (Note that the propagators of massive Euclidean fields have no poles.)

A.3 Euclidean supersymmetry

The next step is to study Euclidean supersymmetry. To stimulate book sales we start with

the component form of the N = 1, D = 4 theories discussed in chapter 6 of [32]. The

conventions there are modified as follows:

1. Scale the SUSY parameters of [32] by ǫ→
√
2ǫ.

2. Since there are no Majorana spinors in the Euclidean theory, the formulas of [32]

must be rexpressed in the Weyl spinor formalism using appendix A above.

13When V = U , the corresponding SO(4) transformations fix the component y4 of yµ, while transforma-

tions with V −1 = U correspond to “boosts” involving y4.
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We then use the procedure outlined in appendix B. The Euclidean versions of the super-

symmetry and supergravity theories needed in the main part of this paper were obtained

by this method.

We now give two simple examples that we will also use later on in appendix D. The

first is that of an off-shell U(1) vector multiplet, which in Lorentzian signature consists of

a gauge field Aµ, a Majorana fermion λ̂, and a real auxiliary scalar D. The Lorentzian

Maxwell action is (see (6.48) of [32] with λ→ λ̂/
√
2)

SLor
Maxwell =

1

e2

∫

d4x

(

−1

4
FµνF

µν − 1

4
¯̂
λγµD

µλ̂+
1

2
D2

)

. (A.22)

In Euclidean signature, we formally allow Aµ and D to be complex, and consider the Weyl

components (λ, λ̃) of λ̂ (see (A.5)) to be independent. The Euclidean Maxwell action is

therefore

SEuc
Maxwell =

1

e2

∫

d4x

(

1

4
FµνF

µν +
i

4
λ̃T (iσ2)σ̄

µ←→∂µλ−
1

2
D2

)

. (A.23)

Both (A.22) and (A.23) are invariant under the transformation rules

δAµ = − i
2

[

ǫT (iσ2)σµλ̃+ ǫ̃T (iσ2)σ̄µλ
]

,

δD = −1

2

[

ǫT (iσ2)σ
µ∂µλ̃− ǫ̃T (iσ2)σ̄µ∂µλ

]

,

δλ =

(

1

2
σ[µσ̄ν]Fµν + iD

)

ǫ ,

δλ̃ =

(

1

2
σ̄[µσν]Fµν − iD

)

ǫ̃ ,

(A.24)

which can be found by writing the transformation rules given in (6.49) of [32] in Weyl com-

ponents. These transformation rules are correct in both Lorentzian and Euclidean signature

provided that one uses the Weyl matrices in (A.1) in Lorentzian signature and (A.12) in Eu-

clidean. The Lorentzian theory requires λ̃ = (iσ2)λ
∗ and ǫ̃ = (iσ2)ǫ

∗, but in the Euclidean

theory we should take λ̃ and ǫ̃ to be independent from λ and ǫ.

As a second example, we study a massless N = 1 chiral multiplet charged under a

U(1) vector multiplet. In Lorentzian signature, the chiral multiplet fields are a complex

boson Z, its complex conjugate Z̃ = Z̄, a Majorana fermion χ̂, and a complex auxiliary

boson F and its complex conjugate F̃ = F̄ . The action is given in (6.58) and (6.59) of [32]:

SLor
chiral =

∫

d4x
(

−DµZ̄DµZ− ¯̂χγµPLDµχ̂+F̄F+i
¯̂
λZ̄PLχ̂+i ¯̂χPRZλ̂+DZ̄Z

)

. (A.25)

The covariant derivatives appearing in this expression are

DµZ = (∂µ − iAµ)Z ,

DµZ̄ = (∂µ + iAµ)Z̄ ,

DµPLχ̂ = (∂µ − iAµ)PLχ̂ ,

DµPRχ̂ = (∂µ + iAµ)PRχ̂ .

(A.26)
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Passing to Weyl components and performing the Euclidean continuation, we obtain the

Euclidean action

SEuc
chiral=

∫

d4x
(

DµZ̃DµZ+iχ̃T (iσ2)σ̄
µDµχ−F̃F+λT (iσ2)Z̃χ+χ̃

T (iσ2)Zλ̃−DZ̃Z
)

.

(A.27)

The transformation rules are obtained from (6.62) and (6.63) of [32]:

δZ = iǫT (iσ2)χ ,

δZ̃ = iǫ̃T (iσ2)χ̃ ,

δχ = σµDµZǫ̃+ Fǫ ,

δχ̃ = σ̄µDµZ̃ǫ+ F̃ ǫ̃ ,

δF = iǫ̃T (iσ2)σ̄
µDµχ− ǫ̃T (iσ2)λ̃Z ,

δF̃ = iǫT (iσ2)σ
µDµχ̃+ ǫT (iσ2)λZ̃ .

(A.28)

As in the case of the vector multiplet, these transformation rules are equally valid in both

Lorentzian and Euclidean signature, provided that one uses (A.1) in Lorentzian signature

and (A.12) in Euclidean. Furthermore, in Lorentzian signature we should impose the reality

conditions Z̃ = Z̄, F̃ = F̄ , χ̃ = (iσ2)χ
∗, and ǫ̃ = (iσ2)ǫ

∗, but these reality conditions are

formally relaxed in Euclidean signature.

B BPS form of flat-sliced domain wall action

In this section we put the action for a flat-sliced AAdS 4-dimensional domain wall into

the Bogomolny form of a sum of squares plus surface term. The first order differential

equations which appear as factors in the square terms then become the BPS equations for

the domain wall and the surface term becomes the counter term needed for the on-shell

action. We work in Lorentzian signature.

We write the domain wall metric as

ds2 = e2A(r)ηµνdx
µdxν + dr2 . (B.1)

It is straightforward to work out the scalar curvature for an arbitrary bulk dimension D:

R = −(D − 1)
(

2A′′ +DA′2
)

. (B.2)

After partial integration the gravitational action becomes:

1

16πGD

∫ √−gR =
(D − 1)(D − 2)

16πGD

∫

drdD−1x e(D−1)AA′2 . (B.3)

The surface term that is dropped vanishes exponentially at the AdS boundary. If evaluated

at a finite cutoff r = rmax, it is canceled by the Gibbons-Hawking boundary term present

in the action.
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For a generalN = 1 Kähler σ-model coupled to gravity with potential of the form (3.7),

we find

S =
1

8πG4

∫

d4x
√−g

[

1

2
R−Kαβ̄∂µz

α∂µz̄β̄ − VF
]

=
1

8πG4

∫

dr d3x

(

e3A
[

3
(

∂rA± eK/2|W |
)2
−Kαβ̄

(

∂rz
α ∓ eK/2

√

W/W̄ Kαγ̄∇γ̄W̄

)

(

∂rz̄
β̄ ∓ eK/2

√

W̄/W Kδβ̄∇δW

)]

− ∂

∂r

(

2e3AeK/2|W |
)

)

. (B.4)

Note that each factored term and the surface term are invariant under Kähler transforma-

tions K(z, z̄)→ K(z, z̄)+ f(z)+ f̄(z̄). We see that the action is stationary if the first order

flow equations we now write are satisfied:

∂rz
α = ±eK/2

√

W/W̄ Kαγ̄∇γ̄W̄ ,

∂rz̄
β̄ = ±eK/2

√

W̄/W Kδβ̄∇δW ,

∂rA = ∓eK/2|W | .

(B.5)

These are the BPS equations for general flat-sliced domain walls.

On-shell, when the BPS equations are satisfied, the action (B.4) is given by the total

derivative term. At the boundary cutoff, we find

Scutoff =
1

4πG4

∫

d3x
(

e3AeK/2|W |
)

r=rmax

. (B.6)

Since eA(r) ∼ er/L as r →∞, L being the AdS scale, the surface term is divergent with cubic

leading divergence. We must add a counterterm to cancel the divergence at the bound-

ary in order to construct the renormalized on-shell action. The formalism of holographic

renormalization requires that the counterterm is a local function of the supergravity fields,

evaluated at the cutoff, but this prescription allows unspecified finite local counterterms.

In this case, we must resolve this ambiguity by choosing the counterterm Sct = −Scutoff,
so that the renormalized on-shell action of a BPS domain wall vanishes. Otherwise the

expectation value 〈Tµν〉 of the stress tensor in the state of boundary QFT dual to the bulk

BPS configuration would not vanish, in violation of global supersymmetry. To obtain cor-

relation functions in the boundary field theory, we need to consider the more general bulk

configuration of BPS domain wall plus fluctuations. In this case the renormalized on-shell

action does not vanish. However, as an example in five bulk dimensions shows [34, 38], it is

necessary to include the counterterm above, evaluated in the more general configuration,

or otherwise correlation functions may have unphysical properties.

In this paper we are primarily interested in S3-sliced domain walls, rather than flat-

sliced. The Bogomolny argument fails in this case, and the renormalized action of the

domain wall configuration does not vanish. However, the counterterms of holographic

renormalization have a “universal” structure. They must be valid for all solutions of the

classical field equations of a given bulk theory. Therefore we include the same counterterm

above in the calculation of the on-shell action in section 6.
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C The boundary limit of bulk SUSY

The main goal of this appendix is to understand how bulk SUSY transformations act on

the coefficients
(

aα, ãα, bα, b̃α
)

defined through (6.2). A similar analysis was performed

in [26] in a slightly simpler situation in Lorentzian signature.

It can be checked that the coefficients
(

aα, ãα, bα, b̃α
)

mix only with the coefficients of

the leading asymptotic terms e−3ρ/2 and e−5ρ/2 in the expansions of the bulk gauginos χα

and χ̃α. In particular, they don’t mix with the gravitino and they don’t back-react on the

metric. We therefore work with the H
4 metric given in (6.1) (with radial coordinate ρ).

The bosonic action (4.1) must be supplemented by its fermionic counterpart. The

full action can be found in chapter 18.1 of [32] and is fairly complicated. Only a limited

number of fermionic terms, namely the kinetic and mass terms for the bulk gauginos, are

relevant for the near boundary analysis we are about to perform, the rest being suppressed.

In Lorentzian signature, the quadratic action for the bulk gauginos is in four-component

notation

Lf = −1

2
Kαβ̄

(

¯̂χα /DPRχ̂
β̄ + ¯̂χβ̄ /DPLχ̂

α
)

− 1

2

(

mαβ
¯̂χαPLχ̂

β + m̄ᾱβ̄
¯̂χβ̄PRχ̂

ᾱ
)

. (C.1)

The Kähler metric Kαβ̄ and other target space data we need are given in (3.8)–(3.10). The

mass matrices can be obtained from the superpotential via

mαβ = eK/2∇α∇βW , m̄ᾱβ̄ = eK/2∇̄ᾱ∇̄β̄W̄ . (C.2)

Since we are only interested in the asymptotic expansion at large ρ where the scalars are

small, we can expand both the Kähler metric and the mass matrices at small values of the

fields. Using the Kähler metric (3.8) and the superpotential (3.9), we find

Kαβ̄ = δαβ̄ + · · · ,

mαβ =
z1z2z3

zαzβ
+ · · · , m̄ᾱβ̄ =

z̄1z̄2z̄3

z̄ᾱz̄β̄
+ · · · .

(C.3)

The equations of motion following from (C.1) are

Kαβ̄ /D (PLχ̂
α) = −m̄ᾱβ̄

(

PRχ̂
ᾱ
)

,

Kαβ̄ /D
(

PRχ̂
β̄
)

= −mαβ

(

PLχ̂
β
)

.
(C.4)

These equations hold both in Lorentzian and Euclidean signature, provided that one uses

the appropriate form of the gamma matrices. For the Euclidean case where the metric

is (6.1), expanding these equations at large ρ, we find

χ1(ρ, x) = γ1(x)e−3ρ/2 − i
(

2 /∇γ1(x) + ã2(x)γ̃3(x) + ã3(x)γ̃2(x)
)

e−5ρ/2 + . . . ,

χ̃1(ρ, x) = γ̃1(x)e−3ρ/2 + i
(

2 /∇γ̃1(x) + a2(x)γ3(x) + a3(x)γ2(x)
)

e−5ρ/2 + . . . ,
(C.5)

as well as similar relations obtained by cyclic permutations of the 123 indices. Here, /∇
is the Dirac operator on the unit S3, and γα(x) and γ̃α(x) are spinor-valued integration

constants that depend only on the coordinates on S3. These equations are the fermionic

analog of (6.2).
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Bulk supersymmetry transformations will mix together
(

aα, ãα, bα, b̃α, γα, γ̃α
)

. The

expressions for the supersymmetry variations of the bulk gauginos were given in (4.2).

They should be supplemented by the supersymmetry variations of the bosons:

δz = iχT (iσ2)ǫ ,

δz̃ = iχ̃T (iσ2)ǫ̃ .
(C.6)

The boundary expansion of the bulk Killing spinors in the case where they are pro-

portional to the left-invariant S3 Killing spinors ζ is

ǫ(ρ, x) =
(

eρ/2 − e−ρ/2 + · · ·
)

ζ(x) ,

ǫ̃(ρ, x) = −i
(

eρ/2 + e−ρ/2 + · · ·
)

ζ(x) .
(C.7)

This expression follows from (6.13) combined with either (5.14) or (5.27) (up to an unim-

portant normalization constant). Using the transformation rules and (C.7), we find

δa1 = iγ1T (iσ2)ζ ,

δã1 = γ̃1T (iσ2)ζ ,

δb1 =
[

2 /∇γ1 +
(

ã2γ̃3 + ã3γ̃2
)

− iγ1
]T

(iσ2)ζ ,

δb̃1 = i
[

2 /∇γ̃1 +
(

a2γ3 + a3γ2
)

− iγ̃1
]T

(iσ2)ζ ,

δγ1 =
(

2a1 + b1 − 2i/∂a1 − ã2ã3
)

ζ ,

δγ̃1 = i
(

2ã1 − b̃1 − 2i/∂ã1 + a2a3
)

ζ .

(C.8)

These are the sought for asymptotic transformation rules! They can be regrouped into

the form

δ
(

a1 ∓ ã1
)

= i
(

γ1 ± iγ̃1
)

ζ ,

δ
(

(

b1 − ã2ã3
)

±
(

b̃1 − a2a3
))

=
[

2 /∇
(

γ1 ± iγ̃1
)

− i
(

γ1 ± iγ̃1
)]T

(iσ2)ζ , (C.9)

δ
(

γ1 ± iγ̃1
)

=
(

2
(

a1∓ã1
)

−2i/∂
(

a1 ∓ ã1
)

+
(

b1−ã2ã3
)

±
(

b̃1−a2a3
))

ζ,

which shows that the asymptotic constants of the bulk fields split into two sets (corre-

sponding to the upper and lower signs) by the action of the SUSY transformations. We

take the combinations with the upper signs to correspond to field theory sources and the

ones with lower signs to correspond to VEVs.

A similar analysis can be performed for the case where the bulk Killing spinors are

proportional to the right-invariant S3 Killing spinors ξ. We have

ǫ(ρ, x) =
(

eρ/2 + e−ρ/2 + · · ·
)

ξ(x) ,

ǫ̃(ρ, x) = −i
(

eρ/2 − e−ρ/2 + · · ·
)

ξ(x) ,
(C.10)
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which up to normalization follows from a large ρ expansion of (5.29). We find

δa1 = iγ1T (iσ2)ξ ,

δã1 = γ̃1T (iσ2)ξ ,

δb1 =
[

2 /∇γ1 +
(

ã2γ̃3 + ã3γ̃2
)

+ iγ1
]T

(iσ2)ξ ,

δb̃1 = i
[

2 /∇γ̃1 +
(

a2γ3 + a3γ2
)

+ iγ̃1
]T

(iσ2)ξ ,

δγ1 =
(

−2a1 + b1 − 2i/∂a1 − ã2ã3
)

ξ ,

δγ̃1 = i
(

−2ã1 − b̃1 − 2i/∂ã1 + a2a3
)

ξ ,

(C.11)

which implies

δ
(

a1 ∓ ã1
)

= i
(

γ1 ± iγ̃1
)

ξ ,

δ
(

(

b1 − ã2ã3
)

±
(

b̃1 − a2a3
))

=
[

2 /∇
(

γ1 ± iγ̃1
)

+ i
(

γ1 ± iγ̃1
)]T

(iσ2)ξ , (C.12)

δ
(

γ1 ± iγ̃1
)

=
(

−2
(

a1∓ã1
)

−2i/∂
(

a1∓ã1
)

+
(

b1−ã2ã3
)

±
(

b̃1−a2a3
))

ξ.

We again see that the SUSY transformations split the integration constants into the same

two sets as above, corresponding to the upper and lower signs.

The SUSY transformations given above are for an OSp(1|2) subgroup of OSp(2|2). To
find the N = 2 transformations we should consider two independent SUSY parameters ζi
(or ξi), with i = 1, 2, and consider a second set of bulk gauginos that were ignored in the

N = 1 supergravity theory. The coefficients γα and γ̃α therefore become γαi and γ̃αi , where

the extra index i labels which bulk gaugino they correspond to.

D Global SUSY invariance of Chern-Simons-matter theories

In this appendix we review the SUSY properties of U(1) Chern-Simons theory on S3 coupled

to a chiral multiplet with electric charge q = +1. These properties are discussed in detail

in [17], but we repeat them in our conventions, because details are needed to establish the

relation between the boundary behavior of bulk supergravity theory and the dual perturbed

ABJM theory.

The theory on S3 is obtained from the globally supersymmetric N = 1, D = 4 theory

in Lorentzian signature, by analytic continuation to flat Euclidean R
4 (as was done in

appendix A.3), followed by dimensional reduction to R
3. We then construct the theory on

S3 by inserting the corrections necessary for SUSY when the constant spinors ǫ, ǫ̃ of the

R
3 theory are replaced by the left-invariant Killing spinors on S3, which satisfy

∇iǫ =
i

2a
σiǫ , ∇iǫ̃ =

i

2a
σiǫ̃ . (D.1)

The dimensional reduction procedure defines the matter action with its coupling to the

gauge multiplet. The Chern-Simons Lagrangian, which describes the free dynamics of the

gauge multiplet, is intrinsically three-dimensional. We find its form by requiring SUSY

invariance under the transformation rules obtained by the procedure above.
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We start with the four-dimensional actions and Euclidean transformation rules pre-

sented in appendix A.3. We dimensionally reduce to 3d along the 4th direction by dropping

the dependence of all the fields and SUSY parameters on x4. In performing the dimen-

sional reduction, we denote the fourth component of the gauge field A4 = σ. Note that our

conventions (A.26) on the gauge covariant derivatives are opposite to those of [17].

Our results for the transformation rules (including the sphere corrections) are

δAi = −
i

2
ǫT (iσ2)σiλ̃−

i

2
ǫ̃T (iσ2)σiλ ,

δσ = −1

2
ǫT (iσ2)λ̃+

1

2
ǫ̃T (iσ2)λ ,

δD = −1

2
ǫT (iσ2)

(

σi∇iλ̃−
i

2a
λ̃

)

+
1

2
ǫ̃T (iσ2)

(

σi∇iλ−
i

2a
λ

)

,

δλ =

(

1

2
σijFij + iσi∂iσ + iD − 1

a
σ

)

ǫ ,

δλ̃ =

(

1

2
σijFij − iσi∂iσ − iD +

1

a
σ

)

ǫ̃

(D.2)

for a U(1) vector multiplet, and

δZ = iǫT (iσ2)χ ,

δZ̃ = iǫ̃T (iσ2)χ̃ ,

δF = ǫ̃T (iσ2)
(

iσiDiχ+ iσχ− λ̃Z
)

,

δF̃ = ǫT (iσ2)
(

iσiDiχ̃+ iσχ̃+ λZ̃
)

,

δχ = Fǫ+

(

σiDiZ − σZ +
i

2a
Z

)

ǫ̃ ,

δχ̃ =

(

σiDiZ̃ − σZ̃ +
i

2a
Z̃

)

ǫ+ F̃ ǫ̃

(D.3)

for a chiral multiplet. Here, Diχ = (∇i−iAi)χ, DiZ = (∂i−iAi)Z, etc. When a =∞, these

expressions are the dimensional reduction of (A.24) and (A.28). The 3d actions invariant

under these transformation rules are

SCS =
ik

4π

∫

d3x
[

ǫijkAi∂jAk −
√
g
(

λ†λ+ 2iσD
)]

,

Schiral =

∫

d3x
√
g

(

DiZ̃DiZ + σ2Z̃Z + iχ̃T (iσ2)σ
iDiχ+ iχ̃T (iσ2)σχ− F̃F

+ λT (iσ2)Z̃χ+ χ̃T (iσ2)Zλ̃−DZ̃Z +
3

4a2
Z̃Z

)

.

(D.4)

When a = ∞, the matter action Schiral is obtained by dimensional reduction from its 4d

counterpart (A.27).

It is straightforward, but tedious, to check how the SUSY algebra is realized on the

chiral multiplet. Denoting by δ and δ̃ the contributions to the variations (D.2)–(D.3) that
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are proportional to ǫ and ǫ̃, respectively, we have
[

δ, δ̃
]

Z =

[

−iǫT (iσ2)σiǫ̃Di + ǫT (iσ2)ǫ̃

(

iσ +
1

2a

)]

Z ,

[

δ, δ̃
]

Z̃ =

[

−iǫT (iσ2)σiǫ̃Di − ǫT (iσ2)ǫ̃
(

iσ +
1

2a

)]

Z̃ ,

[

δ, δ̃
]

χ =

[

−iǫT (iσ2)σiǫ̃Di + ǫT (iσ2)ǫ̃

(

iσ − 1

2a

)]

χ ,

[

δ, δ̃
]

χ̃ =

[

−iǫT (iσ2)σiǫ̃Di − ǫT (iσ2)ǫ̃
(

iσ − 1

2a

)]

χ̃ ,

[

δ, δ̃
]

F =

[

−iǫT (iσ2)σiǫ̃Di + ǫT (iσ2)ǫ̃

(

iσ − 3

2a

)]

F ,

[

δ, δ̃
]

F̃ =

[

−iǫT (iσ2)σiǫ̃Di − ǫT (iσ2)ǫ̃
(

iσ − 3

2a

)]

F̃ .

(D.5)

Writing the supersymmetry variations in terms of the supercharges:

δ = iǫT (iσ2)Q , δ̃ = iǫ̃T (iσ2)Q̃ , (D.6)

it is not hard to see that
[

δ, δ̃
]

= ǫT (iσ2)
{

Q, Q̃T (iσ2)
}

ǫ̃, so the expressions (D.7) are

consistent with the supersymmetry algebra
{

Q, Q̃T iσ2

}

= σiJi + iqσ +
1

a
R , (D.7)

where Ji is an SU(2)r isometry, q is the gauge charge, and R is the R-charge. For the free

chiral multiplet (Z, χ, F ), the gauge charge is +1 and the R-charges are (1/2,−1/2,−3/2).
The anti-chiral multiplet

(

Z̃, χ̃, F̃
)

has opposite gauge and R-charges.

The anticommutators in (D.7), as well as the entire discussion in this appendix, involves

the odd generators of OSp(2|2)r, whose bosonic part contains the SU(2)r subgroup of

the SO(4) ∼= SU(2)ℓ × SU(2)r isometry of S3. One can repeat this discussion by using

OSp(2|2)ℓ ⊃ SU(2)ℓ to couple the flat space theory to curvature, which amounts to sending

a → −a in all the above formulas. In particular, the Killing spinors (D.1) would now be

right-invariant.
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