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Abstract

Recall the classical hypothesis testing setting with two sets of probability distributions P
and Q. One receives either n i.i.d. samples from a distribution p ∈ P or from a distribution
q ∈ Q and wants to decide from which set the points were sampled. It is known that the optimal
exponential rate at which errors decrease can be achieved by a simple maximum-likelihood ratio
test which does not depend on p or q, but only on the sets P and Q.

We consider an adaptive generalization of this model where the choice of p ∈ P and q ∈ Q
can change in each sample in some way that depends arbitrarily on the previous samples. In
other words, in the kth round, an adversary, having observed all the previous samples in rounds
1, . . . , k − 1, chooses pk ∈ P and qk ∈ Q, with the goal of confusing the hypothesis test. We
prove that even in this case, the optimal exponential error rate can be achieved by a simple
maximum-likelihood test that depends only on P and Q.

We then show that the adversarial model has applications in hypothesis testing for quantum
states using restricted measurements. For example, it can be used to study the problem of
distinguishing entangled states from the set of all separable states using only measurements
that can be implemented with local operations and classical communication (LOCC). The basic
idea is that in our setup, the deleterious effects of entanglement can be simulated by an an
adaptive classical adversary.

We prove a quantum Stein’s Lemma in this setting: In many circumstances, the optimal
hypothesis testing rate is equal to an appropriate notion of quantum relative entropy between
two states. In particular, our arguments yield an alternate proof of Li and Winter’s recent
strengthening of strong subadditivity for quantum relative entropy.

1 Introduction

Asymmetric hypothesis testing is the problem of distinguishing between two sources where one
wants to minimize the rate of false positives (type-1 error) subject to a constraint on the rate of
false negatives (type-2 error). In the case of n i.i.d. samples from a classical or quantum source,
a central result is the Chernoff-Stein Lemma [11, 13, 1] which states that for any constant bound
on the type-2 error, the optimal type-1 error decreases at an exponential rate whose exponent is
given by the classical (respectively, quantum) relative entropy. Similar results hold even when we
generalize the problem so that the sources are described by an unknown parameter and one needs
to design a test that works for any choice of the parameter.
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Adversarial hypothesis testing. In the first part of this paper (Section 2), we generalize this
problem further to allow the parameter to vary adaptively from sample to sample. Since we will
allow the parameter to depend arbitrarily on previous samples, this can be thought of as adversarial
hypothesis testing. That is, we wish to devise a test that can distinguish between samples from
two different sets even against an adversary that can choose the distribution in each round based
on which samples have previously been observed.

There are some simple cases where it is not hard to see that this additional power cannot help
the adversary. For example, suppose we are given a coin with heads probability p and wish to
distinguish between the cases where p ∈ [0, 1/3] and where p ∈ [2/3, 1]. It is straightforward to
show that this general problem is no harder than simply distinguishing a 1/3-biased coin from a
2/3-biased coin; equivalently, the adversary gains no advantage from the ability to be adaptive.
On the other hand, distinguishing between the two settings p ∈ {1/3, 2/3} and p = 1/2 is clearly
impossible, as the adversary can simply choose with probability 1/2 to flip the 1/3-biased coin,
and with probability 1/2 to flip the 2/3-biased coin. The resulting distribution of samples is
indistinguishable from the one arising from p = 1/2. This stresses the role of convexity since even a
non-adaptive adversary can simulate a convex combination of distributions by choosing randomly
among them.

We will prove in Theorem 2 that this property is sufficient to characterize the optimal error rate
for asymmetric hypothesis testing against an adaptive adversary. Specifically, if the two sources
vary over convex sets of probability distributions, then the problem is no harder than in the i.i.d.
case. Our Theorem 6 also establishes a version of this claim for symmetric hypothesis testing.
These two results can be thought of as adversarial versions of the classic Chernoff-Stein Lemma
and Chernoff Theorem, respectively.

Quantum hypothesis testing, entanglement, and additivity. One of our main applications
for our adversarial Chernoff-Stein Lemma is in quantum hypothesis testing, when the states to be
distinguished need not be i.i.d. Indeed, a recurrent challenge in quantum information theory is that
even apparently i.i.d. problems can involve complicated entangled states (meaning that they cannot
be written as a convex combination of independent states). For example, the quantum capacity of
an i.i.d channel requires maximizing over all n-component inputs, and in general it is known that
achieving the capacity requires using states that are entangled across channel uses [14, 17]. This
phenomenon in quantum information theory—where information-theoretic quantities for n copies
of a system are not simply n times the one-copy quantity—is known generally as the “additivity”
problem.

A similar additivity problem arises in quantum hypothesis testing when we wish to distinguish
many copies of a fixed state against a family of states that include non-i.i.d. states. One impor-
tant example is the relative entropy of entanglement ER, which is a method of quantifying the
entanglement in a state ρ as the minimum of its relative entropy with respect to any separable (i.e.
non-entangled) state. Here, ρ is a multipartite state (e.g., shared between systems A,B,C) and
separability refers to this partition. However, to establish the asymptotic hypothesis testing rate of
ρ against separable states, we need to compare n copies of ρ against states that are separable with
respect to our original partition, but not necessarily across the different copies. In our example,
ρ⊗n lives on systems A1, B1, C1, . . . , An, Bn, Cn and we need to compare against states that are
separable across the A1 . . . An : B1 . . . , Bn : C1 . . . Cn partition, but possibly entangled within the
A1, . . . , An systems (and the B1, . . . , Bn and C1, . . . , Cn systems). Indeed, such entanglement across
copies is known to be necessary to compute the relative entropy of entanglement, since examples
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exist [39] where ER(ρ⊗ ρ) < 2ER(ρ).

Restricted measurements. A further difficulty arises in the quantum setting when we consider
restricted families of measurements, such as those arising from locality restrictions. Here, too,
the optimal measurement can be entangled across copies. Moreover, since the hypothesis testing
problem involves maximizing distinguishability over allowable measurements and minimizing over
states, it is possible for entanglement to either increase or decrease the rate.

One particularly relevant example for our work involves distinguishing many copies of a state ρ
against a general separable state, using measurements from a class (such as 1-LOCC, defined below)
which preserves the set of separable states. This distinguishability scenario was studied extensively
in [33, 9, 25, 8]. Though it may initially seem to be an obscure question, it has found applications
to understanding the quantum conditional mutual information [9], to channel coding [28], and to
classical algorithms for separability testing [10] and the small-set expansion problem [2].

The main result of Section 3 provides quantum versions of the Chernoff-Stein Lemma and
Chernoff’s theorem for restricted measurements. The main idea is that the deleterious effects of
entanglement in this setting are no worse than what could be achieved by an adaptive adversary.
Thus quantum analogues follow as a corollary of our classical results. One application of these
results is an alternate proof of the improved strong subadditivity inequality of Li and Winter [25].

2 Hypothesis testing against an adaptive adversary

2.1 Asymmetric hypothesis testing

Fix two distributions p and q over a finite domain Ω. Given i.i.d. samples X1, X2, . . . , Xn from a
distribution r ∈ {p, q}, the goal is to design a test which distinguishes the two possibilities based
on the sample. The classical Chernoff-Stein Lemma characterizes the optimal exponential rate of
error decay achievable in the one-sided error setting.

Consider any acceptance region An ⊆ Ωn and the corresponding error probabilities αn = pn(Acn)
and βn = qn(An), where we use Sc to denote the complement of a set S. Then for 0 < ε < 1, define

βεn
..= min

An⊆Ωn

αn<ε

βn .

We define the optimal error exponent by

E(p, q) ..= lim
ε→0

lim
n→∞

− log βεn
n

.

The following well-known lemma characterizes E in terms of the relative entropy (see, e.g.,
Theorem 11.8.3 of [13]).

Lemma 1 (Chernoff-Stein Lemma). Consider any two distributions p and q over a finite domain
Ω with D(p ‖ q) <∞. Then E(p, q) = D(p ‖ q).

Here, D(p ‖ q) is the relative entropy, given by

D(p ‖ q) ..=
∑
x∈Ω

p(x) log
p(x)

q(x)
,
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and we take D(p ‖ q) ..=∞ when there is an x ∈ Ω such that p(x) 6= 0 but q(x) = 0.

The adaptive setting. Suppose now that P,Q ⊆ RΩ are closed, convex sets of probability
distributions. An adaptive P -strategy p̂ is a collection of functions {p̂k : Ωk−1 → P : k = 1, 2, . . .}.
Let A(P ) denote the set of all adaptive P -strategies. For x ∈ Ωn, we denote

p̂(x) ..=
n∏
k=1

p̂k(x1, . . . , xk−1)(xk) .

As before, let An ⊆ Ωn be an acceptance region, but now we define

αn ..= sup
p̂∈A(P )

p̂(Acn) ,

and
βεn

..= min
An⊆Ωn

αn<ε

sup
q̂∈A(Q)

q̂(An) .

We denote the adversarial one-sided error exponent by

Eadv(P,Q) ..= lim
ε→0

lim
n→∞

− log βεn
n

.

Observe that for single distributions p, q ∈ RΩ, we have Eadv({p}, {q}) = E(p, q).

Theorem 2 (Adversarial Chernoff-Stein). Let Ω be a finite domain. For any closed, convex sets
of probability distributions P,Q ⊆ RΩ, we have

Eadv(P,Q) = min
p∈P,q∈Q

D(p ‖ q) (1)

whenever the right-hand side is finite.

Thus in the asymptotic regime, adversarial adaptive hypothesis testing is no harder than the
i.i.d. setting. Indeed, the hypothesis test used is a simple Neyman-Pearson test for p, q minimizing
the RHS of (1). This result was previously known in the non-adaptive case, where it is sometimes
referred to as composite hypothesis testing [23].

Proof. Let p∗ ∈ P and q∗ ∈ Q be the minimizers of D(p ‖ q) as p and q vary over P and Q,
respectively. We assume they exist and that 0 < D(p∗ ‖ q∗) < ∞, else the theorem is vacuously
true. By considering non-adaptive strategies that simply play p∗ and q∗ in each coordinate, one
sees that

Eadv(P,Q) ≥ Eadv({p∗}, {q∗}) = E(p∗, q∗) = D(p∗ ‖ q∗) ,

where the last equality is Lemma 1. Thus we need only prove that Eadv(P,Q) ≤ D(p∗ ‖ q∗).
To this end, for n ∈ N and 0 < ε < 1/2, we define an acceptance region

An,ε =

{
x ∈ Ωn : log

p∗(x1)p∗(x2) · · · p∗(xn)

q∗(x1)q∗(x2) · · · q∗(xn)
≥ n(D(p∗ ‖ q∗)− ε)

}
.

Our first goal is to argue that, for every adaptive P -strategy p̂, and every ε > 0, we have

lim
n→∞

p̂(An,ε) = 1 . (2)
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We will then show that for any adaptive Q-strategy q̂, we have

q̂(An,ε) ≤ e−n(D(p∗ ‖ q∗)−ε) . (3)

Once these are proved, letting ε→ 0 yields the desired claim.
Toward proving (2), observe that, for every ε > 0, limn→∞(p∗)n(An,ε) = 1 by the law of large

numbers. The following lemma will imply that the same is true for p̂.

Lemma 3. For any p ∈ P , we have∑
x∈Ω

p(x) log
p∗(x)

q∗(x)
≥
∑
x∈Ω

p∗(x) log
p∗(x)

q∗(x)
.

Proof. By Theorem 11.6.1 in [13], we have

D(p ‖ q∗) ≥ D(p ‖ p∗) +D(p∗ ‖ q∗) .

Observing that D(p ‖ q∗)−D(p ‖ p∗) =
∑

x∈Ω p(x) log p∗(x)
q∗(x) , we see that this is precisely the desired

inequality.

Now, for x ∈ Ω, let L(x) = log p∗(x)
q∗(x) . The preceding lemma states that for any p ∈ P , we have

Ep[L(x)] ≥ Ep∗ [L(x)] = D(p∗ ‖ q∗) . (4)

Consider a sequence of random variables {Xk} distributed according to p̂ (in other words, Xk

is sampled according to the measure p̂k(X1, X2, . . . , Xk−1)), and the corresponding martingale
difference sequence

Dk
..= L(Xk)− E[L(Xk) | X1, . . . , Xk−1] .

Since the differences are uniformly bounded, Chebyshev’s inequality implies that for any ε > 0,

lim
n→∞

P

(
n∑
k=1

Dk ≥ −εn

)
= 1 . (5)

On the other hand, (4) implies that for each k, one has E[L(Xk) | X1, . . . , Xk−1] ≥ D(p∗ ‖ q∗).
Combining this with (5) yields

lim
n→∞

p̂(An,ε) = lim
n→∞

P

(
n∑
k=1

L(Xk) ≥ n(D(p∗ ‖ q∗)− ε)

)
≥ lim

n→∞
P

(
n∑
k=1

Dk ≥ −εn

)
= 1 ,

confirming (2).
We now turn to verifying (3).

Lemma 4. For any q ∈ Q, we have ∑
x∈Ω

q(x)
p∗(x)

q∗(x)
≤ 1 .
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Proof. For λ ∈ [0, 1], write qλ = λq + (1− λ)q∗. Since q∗ is the minimizer of D(p∗ ‖ q) for q in the
convex set Q, we know that the derivative of D(p∗ ‖ qλ) at λ = 0 is non-negative.

Calculate

d

dλ
D(p∗ ‖ qλ) =

∑
x∈Ω

p∗(x)
d

dλ
log

p∗(x)

qλ(x)

= −
∑
x∈Ω

p∗(x)
d

dλ
log

(
λq(x) + (1− λ)q∗(x)

p∗(x)

)
= −

∑
x∈Ω

p∗(x)
q(x)− q∗(x)

λq(x) + (1− λ)q∗(x)
.

Using the fact that the derivative is non-negative at λ = 0 yields

∑
x∈Ω

p∗(x)q∗(x)

q∗(x)
≥

k∑
i=1

p∗(x)q(x)

q∗(x)
,

but the left-hand side is equal to 1, yielding the desired result.

With the preceding lemma in hand, we finish the proof of (3). Fix some adaptive Q-strategy
q̂. By Markov’s inequality,

q̂(An,ε) ≤ e−n(D(p∗ ‖ q∗)−ε) Eq̂
[
p∗(x1) · · · p∗(xn)

q∗(x1) · · · q∗(xn)

]
. (6)

We now use the fact that, by Lemma 4, the sequence of likelihood ratios
∏n
i=1

p∗(xi)
q∗(xi)

is a super-
martingale with respect to q̂. In particular,

Eq̂
[
p∗(x1) · · · p∗(xn)

q∗(x1) · · · q∗(xn)

]
= Eq̂

[
p∗(x1) · · · p∗(xn−1)

q∗(x1) · · · q∗(xn−1)
Eq̂n(x1,x2,...,xn−1)

p∗(x)

q∗(x)

]
≤ Eq̂

[
p∗(x1) · · · p∗(xn−1)

q∗(x1) · · · q∗(xn−1)

]
≤ · · ·
≤ 1 ,

where in the second line we have applied Lemma 4 to the distribution q̂n(x1, x2, . . . , xn−1) ∈ Q,
and then we have continued by induction. Combining this with (6) completes our verification of
(3) and hence our proof of the theorem.

2.2 Chernoff information and symmetric hypothesis testing

Suppose again that we have two distributions p and q over a finite domain Ω. We also have n i.i.d.
samples X1, X2, . . . , Xn from a distribution r ∈ {p, q}, and a Bayesian hypothesis: The samples
come from p with probability πp and from q with probability πq. Consider a test Tn ⊆ Ωn. If
(X1, X2, . . . , Xn) ∈ Tn, we declare that the sample came from p.

Our goal is to minimize the expected error

δn(Tn) ..= πp p
n(T cn) + πq q

n(Tn) .
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In this case, the best achievable error exponent is

γ(p, q) ..= lim
n→∞

− 1

n
min
Tn⊆Ωn

log δn(Tn) .

Observe that the constants πp and πq do not affect γ(p, q).
For λ ∈ [0, 1], let us define

Γλ(p, q) ..= − log
∑
x∈Ω

p(x)λq(x)1−λ ,

and for p and q distinct, let λ(p, q) be the value of λ ∈ [0, 1] that maximizes Γλ(p, q). Finally, put
Γ∗(p, q) ..= Γλ(p,q)(p, q). We have the following characterization due to Chernoff (see, e.g., Theorem
11.9.1 of [13]).

Theorem 5. For any distributions p and q, one has

γ(p, q) = Γ∗(p, q) = D(r ‖ q) = D(p ‖ r) ,

where r is the distribution given by

r(x) ..=
p(x)λ(p,q)q(x)1−λ(p,q)∑
y∈Ω p(y)λ(p,q)q(y)1−λ(p,q)

We will prove a corresponding theorem in the adaptive setting. To this end consider again two
closed, convex sets of distributions P,Q ⊆ RΩ. Define the adversarial two-sided error exponent

γadv(P,Q) ..= lim
n→∞

− 1

n
min
Tn⊆Ωn

max
p̂,q̂

log (p̂(T cn) + q̂(Tn))

where the maximum is over all adaptive P -strategies p̂ and adaptive Q-strategies q̂.

Theorem 6 (Adversarial Chernoff Theorem). For any finite domain Ω and closed, convex sets of
distributions P,Q ⊆ RΩ, we have

γadv(P,Q) = min
p∈P,q∈Q

Γ∗(p, q) .

Proof. Assume P and Q are disjoint, since otherwise both γadv(P,Q) and Γ∗(P,Q) are trivially
equal to zero. Let p∗ ∈ P and q∗ ∈ Q denote the minimizers of Γ∗(p, q) and put λ∗ = λ(p, q). First,
we have

γadv(P,Q) ≤ γadv({p∗}, {q∗}) = γ(p∗, q∗) = Γ∗(p∗, q∗) ,

where the latter equality is given by Theorem 6. Thus we are left to prove γadv(P,Q) ≥ Γ∗(p∗, q∗).
To this end, for n ∈ N, define

Tn ..=

{
x ∈ Ωn :

n∏
i=1

p∗(xi) ≥
n∏
i=1

q∗(xi)

}
.

Fix also an adaptive P -strategy p̂ and an adaptive Q-strategy q̂. We will show that

lim
n→∞

− log(p̂(T cn) + q̂(Tn))

n
≤ Γ∗(p∗, q∗) . (7)

We will need to employ the following easy variant of the “envelope theorem.”
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Lemma 7. Consider a differentiable function f : [0, 1]2 → R. Define V (t) = infλ∈[0,1] f(λ, t) and
suppose that for every t ∈ [0, 1], there is a unique λ∗(t) ∈ (0, 1) such that V (t) = f(λ∗(t), t). If λ∗

is differentiable at t ∈ [0, 1], then V ′(t) = f2(λ∗(t), t) where f2 is the partial derivative of f with
respect to its second argument.

Proof. Let f1 denote the partial derivative of f with respect to its first argument. Writing V (t) =
f(λ∗(t), t) and applying the chain rule yields

V ′(t) = f2(λ∗(t), t) + f1(λ∗(t), t)
d

dt
λ∗(t).

The second term is zero because f1(λ∗(t), t) = 0 by optimality of λ∗(t).

Remark 8. Observe that if f(λ, t) has ∂2

∂λ2 f(λ, t) > 0 for some t ∈ [0, 1], then λ∗(t) is the unique

solution of ∂
∂λf(λ, t) = 0 and is differentiable by the implicit function theorem. Note that the

assumptions of Lemma 7 can be relaxed considerably; see, e.g., [29, Ch. 3].

This allows us to prove the following.

Lemma 9. For any distribution q ∈ Q, one has

∑
x∈Ω

q(x)
p∗(x)λ

∗

q∗(x)λ∗
≤
∑
x∈Ω

q∗(x)
p∗(x)λ

∗

q∗(x)λ∗
.

Proof. For t ∈ [0, 1], define a distribution qt ..= tq + (1 − t)q∗ ∈ Q. Moreover, define a function
f : [0, 1]2 → R by

f(λ, t) =
∑
x∈Ω

qt(x)1−λp∗(x)λ .

Observe that since qt 6= p∗ for any t, we have

∂2

∂λ2
f(λ, t) =

∑
x

qt(x)1−λp∗(x)λ
(

ln

(
p∗(x)

qt(x)

))2

> 0

for all t ∈ [0, 1] and λ ∈ (0, 1). Moreover, for fixed t, the minimum of f(λ, t) is achieved for some
λ ∈ (0, 1).

Let f2 be the partial derivative of f in its second argument; then one computes:

f2(λ, t) =
∑
x∈Ω

(q(x)− q∗(x))(1− λ)qt(x)−λp∗(x)λ .

If we let V (t) = minλ∈(0,1) f(λ, t), then optimality of q∗ implies V ′(0) ≤ 0. But now Lemma 7 (in
conjunction with Remark 8) yields

0 ≥ V ′(0) = f2(λ∗, 0)

=
∑
x∈Ω

(q(x)− q∗(x))(1− λ∗)q∗(x)−λ
∗
p∗(x)λ

∗
.

Rearranging yields the desired claim.
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The preceding lemma shows that the sequence
∏n
i=1

p∗(xi)λ
∗

q∗(xi)λ
∗ is a supermartingale with respect

to q̂. Thus we can write

Eq̂

[
n∏
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗

]
= Eq̂

[
n−1∏
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗ Eq̂n(x1,...,xn−1)

p∗(xn)λ
∗

q∗(xn)λ∗

]

≤ e−Γ∗(p∗,q∗)Eq̂

[
n−1∏
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗

]
≤ · · ·
≤ e−nΓ∗(p∗,q∗) ,

where in the second line we have used Lemma 9 along with the fact that q = q̂n(x1, . . . , xn−1) ∈ Q,
and then we have continued by induction.

By Markov’s inequality, this implies q̂(Tn) ≤ e−nΓ∗(p∗,q∗). By the symmetry of the preceding
argument with respect to P and Q, the same bound of p̂(T cn) ≤ e−nΓ∗(p∗,q∗) holds for p̂. Combining
these yields γadv(P,Q) ≥ Γ∗(p∗, q∗), completing the proof.

3 Distinguishing quantum states with restricted measurements

A central problem in quantum information is to distinguish between a pair of quantum states ρ
and σ. Necessary background and definitions for the reader unfamiliar with quantum information
theory can be found in Appendix A. As usual, there is a tradeoff between errors of type 1 and
2, i.e., mistaking ρ for σ and vice versa. The quantum Neyman-Pearson lemma states that the
optimal tradeoff curve between errors of type 1 and 2 is achieved by choosing

M = {θρ− σ ≥ 0},

for some θ ≥ 0, where {X ≥ 0} denotes the projector onto the eigenvectors of X with nonnegative
eigenvalue. The estimation strategy is then to perform the measurement {M, I −M} and guess ρ
upon obtaining outcome M or σ upon obtaining outcome I −M.

One well-known case is when ρ and σ have prior probabilities p and 1 − p, respectively, and
we wish to minimize the total probability of error. In this case the optimal M is given by M =
{pρ− (1−p)σ ≥ 0}, and the probability of error is 1−‖pρ−(1−p)σ‖1

2 , where ‖ ·‖1 denotes the Schatten
1-norm. The familiar trace distance 1

2‖ρ− σ‖1 corresponds to the case p = 1/2.

We modify this basic problem of state distinguishability in three (simultaneous) ways:

1. We consider only measurements M from some restricted class M .

2. We allow ρ, σ to be drawn adversarially from some sets R,S, respectively.

3. We consider the asymptotic limit in whichM,R, S are replaced by families M = (M1,M2, . . .),R =
(R1, R2, . . .),S = (S1, S2, . . .) with Mn, Rn, Sn describing measurements and states on V ⊗n.
Our goal is then, for each n, to find a measurement M∈Mn that will effectively distinguish
any state ρ ∈ Rn from any state σ ∈ Sn.
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These changes render the problem a good deal more abstract, and introduce a large number
of new parameters. Thus, it may be helpful to keep in mind a prototypical example that was
one of the motivations for this work. For some fixed bipartite state ρ over A ⊗ B, let Rn be the
singleton set {ρ⊗n}, and let Sn ..= Sep(A⊗n : B⊗n). This corresponds to studying the asymptotic
distinguishability of many copies of ρ from a separable state on the same number of systems. For
this special case, we introduce the notation ρ := ({ρ}, {ρ⊗2}, . . .) and Sep(A : B) := (Sep(A :
B), Sep(A⊗2 : B⊗2), . . .). Where the context is understood, we will often omit the reference to A,B
and simply write Sep or Sep. Finally, we will consider a restricted class of measurements M, such
as the class of 1-LOCC measurements (as discussed in [33, 9, 25, 8]).

3.1 Background on restricted quantum measurements

We begin by introducing notation, describing known results on restricted-measurement distin-
guishability, and presenting a few small new results to help clean up the landscape. In Section 3.2,
we describe our restricted-measurement version of the quantum Stein’s Lemma, and in Section 3.3
we give an application to quantum conditional mutual information.

3.1.1 Quantum Stein’s Lemma

Let us first introduce some definitions analogous to the classical setup discussed in Section 2. We
replace our finite domain Ω with a finite-dimensional vector space V , and denote the set of density
matrices over V by D(V ). Often we will be interested in the case where V is a composite system,
e.g., a bipartite space A⊗B. If ρ, σ are density matrices on V , then the relative entropy of ρ with
respect to σ is

D(ρ ‖σ) ..= tr (ρ(log ρ− log σ)) . (8)

If ker(σ) * ker(ρ), we take D(ρ ‖σ) ..=∞.
Following the classical case, we define an acceptance operatorMn (analogous to the acceptance

region Tn) to be an operator on V ⊗n satisfying 0 ≤ Mn ≤ I (i.e., a POVM element), with
corresponding error probabilities αn = tr ((I −Mn)ρ⊗n) and βn ..= tr (Mnσ

⊗n). Again we can
define βεn

..= min{βn : αn < ε} and

E(ρ, σ) ..= lim
ε→0

lim
n→∞

− log βεn
n

(9)

Hiai and Petz [19] proved the following quantum analogue of Lemma 1:

D(ρ ‖σ) = E(ρ, σ). (10)

See also [5, 24] for elegant and elementary proofs. The “strong converse” of (10) was proved by
Ogawa and Nagaoka [31], and can be thought of as showing that (10) holds when the limit of ε→ 0
in (9) is replaced by any fixed ε ∈ (0, 1).

3.1.2 Asymptotic composite hypothesis testing

An important generalization of hypothesis testing is when ρ and σ are chosen from setsR,S ⊆ D(V ),
respectively, and we need to design our test with knowledge only of R and S. This problem is known
as composite hypothesis testing and is closely related to the classical Sanov’s theorem. In [4, 18],
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it is proved that the best error exponent when R is general and S is the singleton set S = {σ} is
given by

D(R ‖σ) ..= min
ρ∈R

D(ρ ‖σ) . (11)

One case of particular interest to quantum information is when ρ ∈ D(A⊗B) and S is the set
of separable states on A⊗B, i.e., S = Sep(A : B). The quantity D(ρ ‖ Sep) ..= D(ρ ‖ Sep(A : B)) is
known as the relative entropy of entanglement [38] and has been widely studied as an entanglement
measure (see, e.g., Table I in [9]); note that it is usually written as ER(ρ).

One challenge in working with the relative entropy of entanglement is that D(ρ⊗n ‖ Sep) will
not in general be equal to n · D(ρ ‖ Sep), reflecting the fact that Sep(A⊗n : B⊗n) is larger than
the convex hull of {σ1 ⊗ · · · ⊗ σn : σ1, . . . , σn ∈ Sep(A : B)}. Intuitively, Sep(A⊗n : B⊗n) can be
thought of as the set of states on the 2n systems A1 . . . AnB1 . . . Bn which are separable across the
A1 . . . An : B1 . . . Bn cut, but may be entangled arbitrarily among the A systems and among the
B systems. This is an example of the quantum-information phenomenon known as the additivity
problem (see, e.g., [41, 36]).

Definition 1. Let R = (R1, R2, . . .), S = (S1, S2, . . .), with Rn, Sn ⊆ D(V ⊗n). Then the asymp-
totic relative entropy of R with respect to S is

D(R ‖S) ..= lim
n→∞

inf
ρ∈Rn
σ∈Sn

D(ρ ‖σ)

n
. (12)

We further define

αn(M) ..= sup
ρ∈Rn

tr ((I −M)ρ) (13)

βn(M) ..= sup
σ∈Sn

tr (Mσ) (14)

βεn
..= inf{βn(M) : αn(M) < ε} (15)

E(R,S) ..= lim
ε→0

lim
n→∞

− log βεn
n

(16)

Note that the limits of Eq. (12) (resp. Eq. (16)) may not exist, in which case we leave D(R ‖S)
(resp. E(R ‖S)) undefined. See [6] for a discussion of replacing the lim with lim inf or lim sup.

An important special case of Eq. (12) is the regularized relative entropy of entanglement [37],
which is defined to be limn→∞

1
nD(ρ⊗n ‖ Sep), and is normally denoted E∞R (ρ). In our notation

this quantity is given by
D(ρ ‖ Sep), (17)

In terms of Definition 1, the result of [4, 18] can be expressed as

D(R ‖S) = E(R,S), (18)

whenever R,S are of the form Rn = {ρ⊗n : ρ ∈ R1} and Sn = {σ⊗n}, for some set R1 and some
state σ. We call results of the form (18) “quantum Stein’s Lemmas,” because, like the classical
Chernoff-Stein Lemma, they give an equality between a relative entropy and an error exponent for
hypothesis testing.

A quantum Stein’s Lemma has also been proven in the case when R = {ρ⊗n}n and S is a family
of sets. In this case, (18) is proved in [7] in the case where S is a self-consistent family of states,
meaning that:
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1. Each Sn is convex and closed.

2. There exists a full-rank state σ such that each Sn contains σ⊗n.

3. For each σ ∈ Sn, trn σ ∈ Sn−1.

4. If σn ∈ Sn, σm ∈ Sm then σn ⊗ σm ∈ Sn+m.

5. Sn is closed under permutation.

Some important cases of self-consistent families of states are Sep (defined in Section 3.1.1), PPT
(defined in Appendix A, although it will not be used in this paper) and ρ for any full-rank state ρ.

3.1.3 Hypothesis testing with restricted measurements

We now introduce the problem of quantum hypothesis testing with restricted measurements. In
general, two-outcome measurements on V ⊗n have the form {M, I − M} where 0 ≤ M ≤ I.
However, it is often useful to consider smaller classes of measurements, such as those that two
parties can perform with local operations and classical communication (LOCC).

Definition 2. Let R = (R1, R2, . . .), S = (S1, S2, . . .), with Rn, Sn ⊆ D(V ⊗n), and M = (M1,M2, . . .),
with Mn a set of measurements on D(V ⊗n). Then the asymptotic relative entropy of R with respect
to S under measurements M is

DM(R ‖S) ..= lim
n→∞

sup
M∈Mn

inf
ρ∈Rn
σ∈Sn

D(M (ρ) ‖M (σ))

n
. (19)

We further define

αn(M) ..= sup
ρ∈Rn

tr ((I −M)ρ) (20)

βn(M) ..= sup
σ∈Sn

tr (Mσ) (21)

βεn(M) ..= inf
M∈M

{βn(M) : α(M) < ε} (22)

EM(R,S) ..= lim
ε→0

lim
n→∞

− log βεn
n

(23)

As before, the quantities (19) and (23) are left undefined with the corresponding limit does not exist.

Following our notation for families of states, we use boldface (e.g. M) to denote families of
measurements. In particular, we define SEP(A : B) to denote separable measurements on A : B
(i.e. M of the form

∑
iXi ⊗ Yi with Xi, Yi ≥ 0) and denote the corresponding family by

SEP(A : B) = (SEP(A : B), SEP(A⊗2 : B⊗2), . . .).

Again we will often write SEP or SEP where the systems A,B are clear from context. Note that
Sep(A : B) and SEP(A : B) both refer to sets of matrices that can be written as

∑
iXi ⊗ Yi with

Xi, Yi ≥ 0; the difference is that Sep refers to density matrices (i.e. matrices with trace one) and
SEP to measurement outcomes (i.e. matrices with operator norm ≤ 1).

Another important class of measurements is ALL, which is simply the set of all valid quantum
measurements: i.e. ALL = {0 ≤M ≤ I}. The corresponding family is denoted ALL.

One further definition we will need (following [33], but with different notation) is the idea of a
compatible pair.
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Definition 3. For M is a collection of measurements and S is a collection of states, we say that
(M,S) are a compatible pair if applying a measurement in M to a state in S and conditioning on
any outcome leaves a residual state that is still in S. In other words, for any positive integers n, k,
applying a measurement in Mk to Sn+k and conditioning on any outcome leaves a state that is still
in Sn.

For example (SEP,Sep) is a compatible pair. Our main results (in Sections 3.2 and 3.4)
involve compatible pairs, and we also discuss previously known results about compatible pairs in
Section 3.1.5.

3.1.4 Relations between distinguishability measures

Finally, we state some known and new results that relate the different versions of D,E,DM, EM.
The following statement is a consequence of the minimax theorem.

Lemma 10. Let R, S and M be closed convex sets. Then

max
M∈M

min
ρ∈R
σ∈S

D(M (ρ) ‖M (σ)) = min
ρ∈R
σ∈S

max
M∈M

D(M (ρ) ‖M (σ)) (24)

Proof. The proof is an application of Sion’s minimax theorem [35]. The function f(M, (ρ, σ)) ..=
D(M(ρ) ‖M(σ)) is jointly convex in ρ and σ [27]. However, to apply minimax we also need that
it is quasi-concave in the measurement M. In order to do so, we linearize the function in the
measurement by maximizing over the set of probability measures on M instead. Let P(M) be the
set of probability measures over M . We have,

max
M∈M

min
ρ∈R
σ∈S

D(M (ρ) ‖M (σ)) = max
µ∈P(M)

min
ρ∈R
σ∈S

EM∼µD(M (ρ) ‖M (σ))

= min
ρ∈R
σ∈S

max
µ∈P(M)

EM∼µD(M (ρ) ‖M (σ))

= min
ρ∈R
σ∈S

max
M∈M

D(M (ρ) ‖M (σ)) , (25)

where the second equality follows from Sion’s minimax theorem applied to the function g(µ, (ρ, σ)) ..=
EM∼µD(M (ρ) ‖M (σ)), which is linear in µ and convex in (ρ, σ).

Known facts: The following relations between the quantities have been derived previously.

E(ρ,σ) = D(ρ ‖σ) quantum Stein’s Lemma [19] (26)

D({ρ} ‖S1) ≥ D(ρ ‖S}) for S satisfying self-consistency property (4) (27)

D(R ‖S) ≥ DM(R ‖S) from monotonicity of relative entropy (28)

E(ρ,S) = D(ρ ‖S) for S a self-consistent class [7] (29)

We can, in fact, relate DALL, D,E using

DALL(· ‖S)
(41)

≥ E(·, S)
(29)
= D(· ‖S)

(28)

≥ DALL(· ‖S) (30)
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3.1.5 Superadditivity

When we consider families of states and measurements, it is not a priori clear whether the dis-
tinguishability per system should increase or decrease with the number of systems. We say that
a quantity f(ρ) is subadditive if f(ρXY ) ≤ f(ρX) + f(ρY ) (e.g., entropy) and superadditive if
f(ρXY ) ≥ f(ρX) + f(ρY ) (e.g., most entanglement measures). A function f is weakly subaddi-
tive (resp. superadditive) if f(ρ⊗n) is ≤ nf(ρ) (resp., ≥ nf(ρ)). If a function is both (weakly)
subadditive and superadditive then we say it is (weakly) additive.

One of the main results known so far about relative entropy with restricted measurements is
due to Piani [33], who used these measures to prove a superadditivity inequality:

D(ρXY ‖S2) ≥ DM(ρX ‖S1) +D(ρY ‖S1) for compatible (M, S) [33] (31)

D(ρ ‖S) ≥ DM(ρ ‖S1) as a corollary of (31) [33] (32)

In fact, Piani’s result can easily be improved to show that DM(R ‖S) is superadditive whenever
(M,R) and (M,S) are compatible pairs.

Lemma 11. Let (M,R) and (M,S) be compatible pairs. Then for all ρXY

DM2(ρXY ‖S2) ≥ DM1(ρX ‖S1) +DM1(ρY ‖S1). (33)

Moreover,
DM(R ‖S) ≥ DM1(R1 ‖S1), (34)

Proof. The argument is a direct adaptation of the proof of Theorem 1 in [33].
Let ρXY , σXY ∈ S2 be states and MX ,MY ∈ M1 optimal measurements for DM1(ρX ‖S1)

and DM1(ρY ‖S1), respectively. Let k be the number of outcomes of MX , and let e1, . . . , ek be an
orthonormal basis of Ck. Then:

D ((MX ⊗MY )(ρXY ) ‖ (MX ⊗MY )(σXY ))

= D

(
k∑
i=1

pi(ρX)eie
∗
i ⊗MY (ρiY ) ‖

k∑
i=1

pi(σX)eie
∗
i ⊗MY (σiY )

)

= D (pi(ρX) ‖ pi(σX)) +
k∑
i=1

pi(ρX)D
(
MY (ρiY ) ‖MY (σiY )

)
≥ D (MX(ρX) ‖MX(σX)) +D

(
k∑
i=1

pi(ρX)MY (ρiY ) ‖
k∑
i=1

pi(ρX)MY (σiY )

)

= D (MX(ρX) ‖MX(σX)) +D

(
MY (ρY ) ‖MY

(
k∑
i=1

pi(σX)σiY

))
, (35)

where the first inequality follows from Proposition 1 of [33], the second by definition with pi(ρX) =
tr(M i

XρX) and ρiY = trX(M i
X ⊗ IY ρXY )/pi(ρX), the third from Lemma 1 of [33], and the fourth

from property 2 of Proposition 1 of [33].
Since (M,R) and (M,S) are compatible, we can lower bound the last term of (35) byDM1(ρX ‖S1)+

DM1(ρY ‖S1), from which (33) follows. (34), in turn, is a direct consequence of (33).
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The preceding lemma says that DM(· ‖S) is superadditive for compatible pairs (M,S). The
compatibility requirement here is essential. The pair (ALL,Sep) is not compatible, and here D(· ‖S)
is known to be strictly subadditive (i.e. not superadditive) in some cases [39].

On the other hand, DM(· ‖S) can be strictly superadditive (i.e., not subadditive). Let us
consider the simple situation in which Rn = {ρ⊗n} and Sn = {σ⊗n}. It is a consequence of the
quantum Stein’s Lemma (10) that

D(ρ ‖σ) = lim
n→∞

1

n
DALL(ρ⊗n ‖σ⊗n).

Thus, any example in which

max
M∈ALL

D(M(ρ) ‖M(σ)) < D(ρ ‖σ) (36)

will yield an example in which DM(· ‖S) is strictly superadditive. In fact, Lemma 1 of [32] states
that (36) holds whenever D(ρ ‖σ) is finite and ρσ 6= σρ. Thus superadditivity is a generic property
of DM(· ‖ ·).

3.2 A quantum Stein’s Lemma for restricted measurements

Theorem 12 (Quantum Stein’s Lemma for restricted measurements). For any compatible pairs
(M,R) and (M,S),

DM(R ‖S) = EM(R,S) . (37)

Proof. For any positive integer k, let Ek ..= DMk
(Rk ‖Sk), and choose some Mk ∈ Mk achieving

the maximum in DMk
(Rk ‖Sk). Let P ..= Mk(Rk) and Q ..= Mk(Sk). By our choice of M, we

have
D(p ‖ q) ≥ Ek ∀p ∈ P, q ∈ Q. (38)

Given a state ρ ∈ D(V ⊗nk), we applyMk to each block of k systems, obtaining outcomes x1, . . . , xn.
Then since (M,R) and (M,S) are compatible pairs, the distribution of each xi, conditioned on any
possible value of x1, . . . , xi−1, is an element of P (if ρ ∈ Rnk) or Q (if ρ ∈ Snk). Thus, according to
Theorem 2, there is an acceptance region that achieves the rate Ek. Thus

EM(R,S) ≥ Ek. (39)

Since (39) holds for any k, we obtain

EM(R,S) ≥ DM(R‖S). (40)

The reverse inequality can be obtained by the following standard argument: Let Mn ∈Mn be
an optimal sequence of measurements in DM(R ‖S) and ρn ∈ Rn, and σn ∈ Sn optimal sequences of
states in EM(R ‖S). (Here “optimal” is in the sense of Lemma 10; i.e. Mn achieves the maximum
on the LHS of (24) and ρn, σn achieve the minimum on the RHS of (24).) Then by monotonicity
of relative entropy (see, e.g., [31]),

DM(R ‖S) ≥ lim
n→∞

D(Mn(ρn) ‖Mn(σn))

n
≥ − lim

n→∞

(1− αn(M)) log βn(M)

n
≥ EM(R ‖S). (41)

This is analogous to the result in [7], which established E(ρ,S) = DALL(ρ ‖S) for self-consistent
sets of states S, but incomparable because in general (ALL,S) will not be a compatible pair.
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3.3 Stronger Subadditivity of Quantum Entropy

We now present an application of Theorem 12 to a strengthening of the celebrated strong subad-
ditivity inequality of Lieb and Ruskai for the quantum entropy [26], which can be written as

I(A : B | C)ρ ≥ 0 (42)

where

I(A : B | C)ρ ..= H(AC)ρ +H(BC)ρ −H(ABC)ρ −H(C)ρ
..= H(ρAC) +H(ρBC)−H(ρABC)−H(ρC)

denotes the conditional mutual information of a state ρABC . In what follows we will often omit the
subscript ρ when the state is understood. See Appendix A for additional discussion.

In [9], the following lower bound was shown for any state ρABC :

I(A : B | C) ≥ DALL(ρABC ‖ Sep(A : BC))−DALL(ρAC ‖ Sep(A : C)) (43)

Moreover the following inequality was shown

DALL(ρABC ‖ Sep(A : BC))−DALL(ρAC ‖ Sep(A : C)) ≥ E1-LOCC(ρ,Sep(A : B)), (44)

with 1-LOCC the class of all measurements that can be implemented by quantum local operations
and classical communication from Bob to Alice (see Appendix A for the precise definition). This
implies that the conditional mutual information is lower bounded by E1-LOCC(ρ ‖ Sep(A : B)).

In [25] the following strengthening of (44) was obtained:

DALL(ρABC ‖ Sep(A : BC)) ≥ DALL(ρAC ‖ Sep(A : C)) +D1-LOCC(ρAB ‖ Sep(A : B)) , (45)

which implies
I(A : B | C) ≥ D1-LOCC(ρAB ‖ Sep(A : B)) . (46)

Theorem 12 shows that (45) is equivalent to (44) and so it can be used in conjunction with [9]
to give an alternative proof of (46).

3.4 Symmetric hypothesis testing with restricted measurements

Our main result on symmetric hypothesis testing against an adaptive adversary (Theorem 6) implies
a corresponding result for symmetric quantum hypothesis testing. For quantum states ρ, σ, define

Γ∗(ρ, σ) ..= max
0≤λ≤1

Γλ(ρ, σ) ..= max
0≤λ≤1

− log tr(ρλσ1−λ) (47)

Γ∗M(R,S) ..= lim
n→∞

sup
M∈Mn

inf
ρ∈Rn
σ∈Sn

Γ∗(M (ρ) ‖M (σ))

n
(48)

γM(R,S) ..= lim
n→∞

sup
M∈Mn

inf
ρ∈Rn
σ∈Sn

− 1

n
log tr(Mσ + (I −M)ρ) (49)

A quantum analogue of the Chernoff Theorem was proven in [1] and in our notation can be
expressed as

γALL(ρ,σ) = Γ∗(ρ, σ).

Using the same idea behind the proof of Theorem 12, one can prove a restricted-measurement
quantum Chernoff Theorem.
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Theorem 13. If (M,R) and (M,S) are compatible pairs, then

γM(R,S) = Γ∗M(R,S).

The proof is essentially the same as that of Theorem 12 with the adversarial Chernoff-Stein’s
Lemma replaced by the adversarial Chernoff Theorem (Theorem 6). We omit the details.

3.5 Open questions

Having established a quantum Stein’s Lemma for restricted measurements, we would like to know
if a strong converse can also be proven, or more generally if we can calculate the error exponent
for type-2 error when type-1 error is required to be < ε for some fixed ε ∈ (0, 1). The difficulty is
that DM(· ‖S) > DM1(· ‖S1) in general, and we would need to control the rate of convergence as
a function of n in the lim used to define DM(· ‖S).

Like many information-theoretic quantities, D(ρ ‖ Sep) and DM(ρ ‖ Sep) (for various natural
choices of M) are operationally interesting, but are hard in practice to compute. We would like
to know the complexity of estimating them (which is a variant of the usual question about the
hardness of testing separability, cf. [16, 10]) and whether good relaxations exist (cf. [3]).

Finally, a major application of restricted-measurement distinguishability is to the related ques-
tions of k-extendable states1, tripartite states with low conditional mutual information (i.e. “approx-
imate Markov states”, cf. [20]), and the quality of approximations achieved by the sum-of-squares
hierarchy (cf. [2]). A few of the more prominent open questions here are:

• If I(A : B | E)ρ ≤ ε then does there exist an “approximate recovery” map T : E → E ⊗ B
such that (id⊗T )ρAE ≈δ ρABE , with δ → 0 as ε → 0? (Here we use A,B,E both to
denote quantum subsystems and the corresponding vector spaces.) This conjecture is due to
Andreas Winter, and would imply an approximate equivalence between k-extendability and
low conditional mutual information.

• How large can DM(ρ ‖ Sep) be when ρ is k-extendable and M is the class of separable mea-
surements? Sharp bounds are known [10] when M = 1-LOCC, and if they could be extended
to separable measurements it would have implications for quantum Merlin-Arthur games with
multiple Merlins [16] as well as for classical optimization algorithms.

• The ability of semidefinite programming hierarchies to estimate small-set expansion can be
understood in terms of a restricted-measurement distinguishability problem [2]. A major
open question is whether small-set expansion on graphs of size n can be well-approximated
by O(log n) levels of these hierarchies, which would imply a quasipolynomial-time algorithm
for the problem. Can tools from quantum information shed further light here?

A Appendix: Background on Quantum Information

This appendix contains a very brief review of the quantum formalism and notation used in this
paper. For a much more detailed introduction to quantum information theory, see [40], or for an
overview of the field of quantum computing and quantum information more generally see [30, 22].

1A bipartite state ρAB is said to be k-extendable if there exists a state ρ̃AB1...Bk such that ρ̃ABi = ρAB for each i.
The idea of k-extendability was introduced in [34, 15], where it was proved that for any fixed dimension of A and/or
B, the set of k-extendable states approaches the set of separable states. However, the rate of convergence is an open
question.
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Density matrices. The quantum analogue of a probability distribution over [d] = {1, . . . , d} is
called a density matrix, or simply a state. Density matrices must be positive semi-definite and
have trace one. These conditions are analogous to the requirement that probabilities must be
nonnegative and normalized; indeed diagonal density matrices correspond exactly to probability
distributions. If A is a complex vector space, then define D(A) to be the set of density matrices
on A, meaning the set of operators on A that are positive semi-definite and have trace one. Let
L(A,B) denote the set of linear operators from A to B, and let L(A) := L(A,A).

Tensor product. To describe composite quantum systems, we use the tensor product. The tensor
product of a vector x ∈ Cd1 and a vector y ∈ Cd2 is denoted x⊗ y and has entries that run over all
xi1yi2 for i1 ∈ [d1], i2 ∈ [d2]. Similarly, if X and Y are matrices, then their tensor product X ⊗ Y
has matrix elements (X ⊗Y )(i1,i2),(j1,j2) = Xi1,j1Yi2,j2 . For vector spaces A,B, we let A⊗B denote

the span of {a⊗ b : a ∈ A, b ∈ B}. Note that Cd1 ⊗ Cd2 ∼= Cd1d2 . Finally, in each case we use the
tensor power notation X⊗n to stand for

n times︷ ︸︸ ︷
X ⊗X ⊗ · · · ⊗X .

Product and separable states. The tensor product is used to combine quantum states in
the same way that independent classical probability distributions are combined to form a joint
distribution. Indeed, if p, q are probability distributions of independent random variables, then
p⊗ q denotes the joint distribution. Similarly, if ρ and σ are density matrices, then ρ⊗ σ denotes
the state of a system that is in a so-called product state. The convex hull of the set of product
states is called the set of separable states. We write Sep(A : B) to indicate the split along which
we demand that the states be separable, e.g.

Sep(A : B) = conv{α⊗ β : α ∈ D(A), β ∈ D(β)}. (50)

Although the set Sep(A : B) is convex, it is not easy to work with. For example, computational
hardness results are known for the weak membership problem. Instead, it is sometimes more
convenient to consider the relaxation PPT, which denotes the set of states with Positive Partial
Transpose. The partial transpose operator Γ (meant to resemble the right half of the T that usually
denotes transpose) acts linearly on L(A⊗B) by mapping X ⊗ Y to X ⊗ Y T ; equivalently we can
write it as idA⊗TB, where idA is the identity operator on L(A) and TB is the transpose operator
on L(B). We define PPT(A : B) = {ρ ∈ D(A ⊗ B) : ρΓ ∈ D(A : B)}. This set is easier to work
with because it has a semidefinite-programming characterization. Moreover, it is straightforward
to show that Sep(A : B) ⊂ PPT(A : B). However, in general this inclusion is strict, and as the
dimensions of A,B grow large, PPT can be an arbitrarily bad approximation for Sep [3].

Partial trace. Another concept from probability theory that we will need to generalize is the idea
of a marginal distribution. Say we have a density matrix ρAB ∈ D(A⊗B). The subscript emphasizes
the systems which ρ describes, which are analogous to the random variables corresponding to a
probability distribution. To obtain the state on only the A system, we apply the partial trace
operator trB := idA⊗ trB to ρAB. The action of the partial trace is often denoted by writing only
the subscripts, as in

ρA := trB ρAB and ρB := trA ρAB. (51)
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(This notation generalizes; e.g. if ρ ∈ D(A ⊗ B ⊗ C), then ρB = trAC ρABC = trA trC ρABC , etc.)
Concretely, (ρA)i,i′ =

∑
j(ρAB)(i,j),(i′,j) and (ρB)j,j′ =

∑
i(ρAB)(i,j),(i,j′). We see that if ρ is diagonal

then this coincides with the idea of a marginal distribution from classical probability theory.

Measurements. Although technically all of physics is described by quantum mechanics, it is
often convenient to make a distinction between quantum information, which is often carried in
very small systems such as single atoms or single photons, and classical information, which is
carried in macroscopic systems, such as a bit in a classical RAM. The bridge from quantum state
to probability distribution is given by a measurement (also sometimes called a POVM), which
formally is a collection of matricesM = (M1, . . . ,Mk) satisfyingMi ≥ 0 for each i (meaning each
Mi is positive semi-definite) and M1 + · · ·+Mk = I. Performing the measurement M on state ρ
yields outcome i with probability tr[ρMi]. Thus we can interpretM as a linear map from L(V ) to
Rk, with the psd and normalization conditions serving to guarantee that M maps D(V ) to valid
probability distributions.

Measurements on multipartite states. For our purposes, we will consider a quantum state to
be destroyed after it is measured. However, if we have a quantum state on multiple systems, such
as A⊗B, and we measure only system A, then we will still have a quantum state on system B. In
this case, the probability of obtaining outcome i is P[i] = tr[MiρA] and the residual state in this
case is

trA[(Mi ⊗ I)ρAB]

P[i]
. (52)

Since
∑

iMi = I, we can verify that if we average over all measurement outcomes, then system B
is left in the state ρB, independent of the choice of measurement. This is an important feature of
quantum mechanics; despite the possibility of entanglement, there is no way for Alice (who controls
system A) to signal to Bob (who controls system B) through her choice of measurement.

Restricted classes of measurements. Consider a bipartite system A ⊗ B, with systems A,B
held by Alice and Bob respectively. Performing a general measurement on A ⊗ B may require
that Alice and Bob exchange quantum messages, so it is often more practical for them to consider
only measurements that they can perform using Local Operations and Classical Communication
(LOCC). Although such restricted measurements were initially introduced to model these practical
restrictions, they have since arisen in settings such as [9, 25] for completely different reasons. The
class LOCC is difficult to work with and is cumbersome to even properly define—see [12] for
a discussion—so we will often work with various restrictions or relaxations of it. A restriction
which is interesting in its own right is the class 1-LOCC, which corresponds to Alice performing a
measurement locally and sending the outcome to Bob. We say that M ∈ 1-LOCC if M = {Mi,j}
withMi,j = Xi⊗Yi,j , each Xi, Yi,j ≥ 0,

∑
iXi = I and for each i,

∑
j Yi,j = I. On the other hand,

a useful relaxation is the set SEP, for which each Mi should have the form Mi =
∑

j Xi,j ⊗ Yi,j
with each Xi,j , Yi,j ≥ 0. An even further relaxation is PPT for which we demand only that each
MΓ

i ≥ 0 (apart from the usual conditions that
∑

iMi = I and each Mi ≥ 0). Finally we use ALL
to denote the set of all measurements. Summarizing, we have

1-LOCC ⊂ LOCC ⊂ SEP ⊂ PPT ⊂ ALL.

In each case, we consider measurements with any finite number of outcomes, so these classes are
technically not compact.
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Entanglement swapping. An important concept in our work (building on [33]) is that of com-
patible pairs of families of measurements and states. We say that a measurement outcome Mi

is compatible with a family of states S if for each n and each ρ ∈ Sn, applying Mi to the first
system leaves a residual state (defined by (52)) that is in Sn−1. A family of measurements M is
compatible with S if each outcome of each measurement in M is compatible with S. If S = Sep,
then 1-LOCC, LOCC, SEP are all compatible with S. If S = PPT then the set of compatible mea-
surements includes PPT. However, it is easy to construct examples of incompatible pairs. Let
e1, . . . , ed be an orthonormal basis for Cd and define Ψ = 1

d

∑
i,j∈[d] ei⊗ej⊗ei⊗ej . Observe that Ψ

has entanglement between systems 1:3 and systems 2:4, but is product across the 13:24 cut. Now
consider a measurement acting on systems 12. One can calculate that

tr12[(Mi ⊗ I)ΨΨ∗] =
MT

i

d
. (53)

Thus, ifMT
i is proportional to an entangled state, then the measurement can create entanglement

on the previous unentangled states 3,4 that were not measured. This phenomenon—in which we
start with A1 : A2 and B1 : B2 entanglement, measure A1B1 and end with A2 : B2 entanglement—is
called entanglement swapping [21] and is one of the main new difficulties encountered in attempting
to perform hypothesis testing with respect to classes such as Sep.

Entropy. The classical (Shannon) entropy of a distribution p is given by H(p) = −
∑

i pi log(pi).
The quantum analogue is called the von Neumann entropy, and is given by H(ρ) = − tr[ρ log ρ].
Observe that H(ρ) is the Shannon entropy of the eigenvalues of ρ, and coincides with the Shannon
entropy when we consider probability distributions to be diagonal density matrices. If ρABC is a
multipartite state, then we let H(A)ρ := H(ρA), H(AB)ρ = H(ρAB), etc. When ρ is understood,
we may write simply H(A), H(AB), . . .. Analogous to the classical mutual information, conditional
entropy, etc. we can define

H(A | B) ..= H(AB)−H(B) (54)

I(A : B) ..= H(A) +H(B)−H(AB) (55)

I(A : B | C) ..= H(AC) +H(BC)−H(ABC)−H(C), (56)

in each case with an implicit dependence on some state ρ. Finally, the quantum relative entropy
is D(ρ ‖σ) := tr[ρ(log ρ − log σ)]. Many of these quantities behave similarly to their classical
analogues, but a number of new subtleties emerge; see Chapter 11 of [40] or Chapter 11 of [30] for
more information.
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