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Abstract
Microbes can be readily cultured and their genomes can be easily manipulated. For these reasons,
laboratory systems of unicellular organisms are increasingly used to develop and test theories
about biological constraints, which manifest themselves at different levels of biological
organization, from optimal gene expression levels to complex individual and social behaviors. The
quantitative description of biological constraints has recently advanced in several areas, such as
the formulation of global laws governing the entire economy of a cell, the direct experimental
measurement of the tradeoffs leading to optimal gene expression, the description of naturally
occurring fitness landscapes, and the appreciation of the requirements for a stable bacterial
ecosystem.

Introduction
Living organisms are optimized by evolution to survive and reproduce. Optimization targets
all levels of biological organization at once, from elementary biomolecules to large
anatomical features, from the expression levels of single genes to complex individual and
social behaviors. The complex interplay of physical, chemical, biological and ecological
constraints does not guarantee that absolute optima are achieved by the evolutionary
process, and makes the design of optimal organisms hard to predict from first principles [1,
2, 3]. The evolutionary dynamics itself introduces further complications: for instance, finite
populations can accumulate deleterious mutations [4], and species which are not the fittest
may nevertheless prevail if they are more tolerant to mutations (survival of the flattest vs.
survival of the fittest) [5]. Moreover, since no organism can be optimal in every
environment, tradeoffs are imposed on the development and maintenance of any structure
and function in living systems.

Microbes are ideal experimental systems to develop and test theories about optimality, trade-
offs and constraints in biology. The relative ease in manipulating microbial genomes and
fast reproduction rates allows experimentalists to generate mutants with the desired features,
to measure their costs and benefits, and to follow the evolutionary dynamics for thousands
of generations [6].
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Metabolic constraints
The common observation that the growth rate of a cell is inversely correlated with its
resistance to stress [7] suggests the existence of a trade-off between growth and repair. More
broadly, the growth rate may affect the entire economy of a cell through system-level
constraints. An example of this effect is the up to 10-fold variations in the production rates
of constitutively expressed genes during different growth phases [8]. Eventually, non-
linearities in the growth-rate/gene-expression feedback may even lead to bistable growth [9]
and possibly cause some cells to enter a dormant state [8]. Growth-rate dependent global
constraints have recently been expressed as simple linear relations involving the expression
levels of different classes of proteins (ribosomal, growth-rate dependent, growth-rate
independent and unnecessary) [10, 11, 12].

The macroscopic description of metabolism based on growth rates is complemented by the
detailed study of metabolic constraints and the optimization of metabolic fluxes to maximize
biomass production [13, 14]. These methods have been formalized into flux balance models
describing all the chemical reactions in a cell [15]. Even more comprehensive models
account also for the costs and benefits of enzyme synthesis [16] to describe, for instance, the
switch between efficient respiration in nutrient-poor environments and inefficient
fermentation in nutrient-rich environments [17].

Trade-offs and gene regulation
One of the primary roles of gene regulation in microbes is to modulate metabolic fluxes and
to ensure that high growth rates can be achieved in favorable environmental conditions. A
common synthetic technique to characterize cellular responses is then to decouple a
response in gene expression from its triggering signals.

Poelwijk et al. [18] cleverly improved on previous experiments [19] measuring the costs and
benefits of the lac system in E. coli by decoupling induction and metabolic activity. The cost
of the lac operon expression has been measured by tuning protein synthesis with an inducer
which cannot be metabolized, whereas the benefits of expression have been measured with a
metabolite which cannot induce. Evolutionary experiments in environments containing
different concentrations of inducer and metabolite have confirmed how a theoretical costs/
benefits analysis can predict the result of adaptation in each environment.

Similarly, by decoupling glucose sensing and glucose uptake in yeast, it has been shown
how the growth rate of yeast cells depends separately on these two variables. This is because
sensing high concentrations of extracellular glucose triggers the synthesis of extra glucose-
processing machinery and imposes a fitness burden if glucose import is less than expected
[20].

When a regulatory system is not present, it can be engineered using synthetic techniques. As
an example, in yeast, low levels of noise in the expression of a glutamate synthase provide a
fitness advantage in limiting concentrations of ammonia, whereas noisy expression increases
fitness at toxic levels of ammonia. A mutant with the ability to tune noise in response to a
signaling molecule has been built, and its evolutionary advantage in fluctuating
environments over its non-regulated wild type competitors has been established [21].

Fitness landscapes and evolutionary accessibility
Gene regulation confers a fitness advantage when the time scale of the environmental
fluctuation is shorter than a few hundred generations [22, 23]. If the environment changes
much more slowly, however, regulatory functions are typically lost, according to a “use it or
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lose it” principle [24, 25] and the optimal expression level is fixed through genetic
mutations. An example of this transition between regulation on cellular time-scales to
adaptation on evolutionary time-scales has been repeatably observed in laboratory
populations of yeast cells: when a selective pressure favors fast growth, a trade-off between
growth rate and mating efficiency causes quick silencing and an eventual loss of 23 genes in
the mating pathway to achieve a 2% growth rate advantage [26].

Fitness landscapes assign a fitness value to each genotype or phenotype (in a specified
environment) and they represent a geometric setting in which to study the evolutionary
process connecting a low-fitness ancestral organism to its high-fitness descendants (Figure
1a). Whereas evolution can proceed rapidly along adaptive paths of increasingly fit
organisms [27, 28, 29], real populations do cross moderately shallow fitness valleys under a
variety of conditions: if the fitness deficit of the intermediates is small enough [30], if the
mutation rate is large enough, if the available time is long enough or by exploiting small
effective population sizes (e.g. at the frontier of a range expansion [31]).

Synthetic approaches are increasingly applied to delineate naturally occurring landscapes by
constructing all the possible genetic intermediates between ancestral organisms and their
evolved counterparts [27, 28, 32, 33, 34, 35, 36, 37, 38]. Although such experimental studies
are necessarily limited by the exponential number of possible intermediates, various kinds of
landscapes have been studied. Notably, the mapping involved in the definition of a
landscape is not necessarily one-to-one: different genotypes can converge to the same
phenotype [39] and, in case of multi-stable gene expression [40], the same genotype can
produce different phenotypes. Moreover, even if genotype-to-phenotype landscapes may be
approximately linear, the non-linearity of the further mapping between phenotype and
growth rate leads to a non-linearity of the final genotype-to-fitness landscapes [32], which
often display epistatic effects leading to diminishing returns [33, 34, 35].

Starting from the geometric properties of experimentally measured landscapes, the
properties of the evolutionary dynamics can be predicted or, vice versa, some properties of
naturally occurring fitness landscapes can be inferred by observing the evolutionary
dynamics. Especially relevant properties of fitness landscapes are the ones which do not
depend on how phenotypes or growth rates are scaled. Examples of these topological
features are the number of accessible paths leading to a fitness maximum, the number of
peaks in a landscape, and the presence of sign epistasis (Figure 1b), a necessary condition
for the generation of multi-peaked landscapes [41]. Sign epistasis has been further shown to
reduce the number of accessible evolutionary paths [42], to increase their length by
imposing genetic detours [43], to increase the repeatability of evolution [44], and to interfere
with its reversibility [36, 45].

Notably, the biochemical constraints encoded by sign epistasis can also be exploited to
encode biological functions. This is highlighted in a landscape describing the activity of a
lac promoter as a function of mutations in the lac repressor and in its operator [37]. Each
repressor/operator pair can be interpreted as a key-lock system and the fact that the
landscape is multi-peaked (due to sign epistasis) indicates that a different key-lock system
[46] can be generated with a few mutations in the repressor and a few compensatory
mutations in the operator.

Novel regulatory functions can indeed evolve with surprising rapidity [38, 47]. In [38], a lac
promoter controlled a synthetic operon for the simultaneous expression of two enzymes in a
laboratory population of E. coli. High expression levels of the operon conferred higher
fitness in environment A and low fitness in environment B. While alternating between the
two environments, the experimenters added an inducer molecule only in environment B, so
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that the operon was highly expressed when low expression would have been optimal and
repressed when high expression would have been optimal. After only three rounds of
mutagenesis and competitive growth, the logic of regulation in the bacterial population was
reversed, so that the inducer molecule had effectively become an inhibitor. Surprisingly,
only three key mutations in the lac repressor protein were necessary to develop this new
mode of regulation [38, 48].

Synthetic ecosystems
Natural extensions of the formalism used to describe constraints and trade-offs at the single-
cell level (Figure 2a) have recently been applied to small synthetic ecosystems, where each
species can be considered as a module with specific metabolic inputs and outputs [49].

As a simple proof of principle, two variants of a yeast strain have been built, each
overproducing an amino acid essential for the other strain (Figure 2b). In an environment
without the two amino acids the two strains were obligate cooperators [50] and, in some
conditions, they managed to coexist. In a similar experiment with E. coli, all possible pairing
of 46 auxotrophic strains have been explored. In ~17% of the cases, the two strains were
able to provide each others’ essential nutrients and survive in environments which would
have killed each of them separately [51].

Stable cooperation in synthetic ecosystems which did not co-evolve is not guaranteed. In
fact, in well-mixed conditions, asymmetries in growth rates, different tolerance to insults
such as starvation or antibiotics and delays in the release of metabolites often result in the
rapid rise of one strain, followed by the collapse of the whole population [52]. However,
since these mutualistic interactions are based on the exchange of diffusible molecules,
spatially structured environments (typically with length scales in the hundreds of microns)
may enable the existence of synthetically assembled multi-species microbial communities
[52].

Alternatively, even in spatially unstructured environments, the temporal structure of a
population can play a relevant role in the coexistence of multiple species. Starting from the
same ancestral E. coli strain, the seasonality induced by daily serial dilutions promoted the
co-evolution of two strains, each one occupying its own temporal niche: early in the day a
fast-growing strain feasted on fresh medium; later in the day a scavenger strain thrived by
cannibalizing the first strain [53].

Due to the complexity of even the smallest laboratory ecosystems discussed above,
microbial communities are a standing challenge for synthetic and systems biology. Notably,
about 1/3 of the genes in E. coli still have no known function and a fraction of those genes
might be related to the microbes’ social life. Even more strikingly, the majority of microbial
species cannot be cultured in isolation and much of the uncharted territory in the microbial
world might remain unexplored until the networks of ties and constraints in microbial
communities are understood [54].

The spread of cooperation
In microbial consortia each organism follows a selfish strategy, exploiting other organisms,
preying on them [55] or synthesizing toxins for chemical warfare [56]. However,
cooperative and altruistic behaviors are often observed in nature, in apparent contrast with
the evolution of selfish genes. The emergence and, even more importantly, the persistence of
cooperative behaviors can be investigated using synthetic techniques which allow scientists
to manipulate microbial strategies. Communities of engineered microbes become then a tool
to understand ecosystems beyond the microbiology laboratory.
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Yeast cells grown on sucrose provide a model system to study cooperative behaviors [57,
58]. Cooperator cells pay an individual cost to hydrolyze sucrose, producing glucose as a
common good which diffuses in the medium (Figure 2c). Cheater cells, instead, are
engineered to take advantage of the glucose in the medium without paying the cost for its
production. Cheater cells can readily invade a population of cooperators and spread.
Surprisingly, however, even in a well-mixed environment it has been shown that coexistence
is possible [57]. Although cooperators are always exploited by cheaters, cooperators can
survive by having preferential access to the common good they produce, and fare relatively
well when the common good is scarce. Spatially structured populations further promote
cooperation [59, 60]: since a common good typically diffuse in the environment, local sub-
communities which happen to be rich in cooperators also become privileged recipients of the
common good and grow faster, so that the overall fraction of cooperators increases. This is
the essence of the Simpson’s paradox, which recent experiments on engineered E. coli have
explicitly demonstrated [61]. To further emphasize the importance of laboratory models for
a thorough understanding of natural ecosystems, Chuang et al. [62] used a simple bacterial
system to demonstrate that costs and benefits can be non-linear functions of the population
structure, and that costs and benefits measured at the cell level are not simply related to the
same parameters for the whole population.

Conclusion
We briefly reviewed recent experiments and theoretical work to understand the structure of
metabolic, regulatory, evolutionary and social constraints. Despite considerable effort, these
pioneering studies are partial or isolated results, providing mostly anecdotal evidence.
Encouragingly, there is a trend of ever cheaper and more widespread use of synthetic
biology tools to read and write genomes, and of biophysics techniques to quantify the
behavior of living cells. This trend is enabling the acquisition of an unprecedented amount
of data [63] and of aggressive hypothesis testing. Independent studies on a variety of
systems are rapidly accumulating: the generic features of fitness landscapes [64] will reveal
the constraints of evolution as a stochastic optimization process, whereas the emerging
motifs in the networks of interactions within microbial communities will soon have a direct
impact on biotechnology and human health.
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Highlights

• biological constraints are apparent at different scales, from cells to ecosystems

• empirical relations involving growth rates reveal intra-cellular constraints

• variable environments impose trade-offs and select for optimal gene regulation

• rugged fitness landscapes constrain the evolutionary process and its outcome

• stable ecosystems are constrained by their environmental and social structures
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Figure 1.
The geometry of fitness landscapes. a Example of an experimentally mapped 4-dimensional
phenotypic landscape describing the effectiveness (measured as MIC, Minimum Inhibitory
Concentration) of a beta-lactamase enzyme in hydrolysing the antibiotic cefotaxime [27,
36]. Every circle represents a genotype for which each of the four mutations can be absent
(white wedge) or present (orange wedge). The blue arrows indicate the selective pressure to
acquire mutations which increase the MIC. The landscape in this example is rugged,
meaning that some mutations can be beneficial or deleterious depending on the genetic
background in which they appear. The landscape is nevertheless single-peaked. b An
example of sign epistasis on a 2-dimensional landscape. Whereas starting from a wild type
genotype (ab) the combined fitness effect of two mutations (AB) is beneficial, the effect of
only one of the two mutations (either A or B) is deleterious. For this reason the evolutionary
dynamics is not guaranteed to find the global maximum of fitness (fAB) and it might remain
stuck for long times in a sub-optimal local maximum (fab).
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Figure 2.
Cost/benefit analyses at multiple scales. a Single cells quickly adapt to balance the costs
associated with the expression of a gene and the benefits deriving from the gene products in
order to achieve optimal growth rates [18]. b Bacterial communities are often based on
mutualistic interactions. A-cells might pay a cost so that B-cells can benefit from it. In turn,
A-cells indirectly benefit from the success of B-cells. c Despite the existence of cells which
do not cooperate, cooperative behaviors can still be maintained [57] if cooperator cells have
preferential access to a public good (e.g. if a diffusive dynamics ensures that producers are
also exposed to higher concentrations of the common good). Quantitative details of the costs
and benefits, together with the spatial [52] and temporal [50, 53, 55] structures of the
interactions are often crucial for the evolutionary stability of these social interactions.
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