
ar
X

iv
:1

31
1.

15
71

v3
  [

as
tr

o-
ph

.H
E

] 
 3

0 
A

pr
 2

01
4

To appear in ApJ
Preprint typeset using LATEX style emulateapj v. 11/10/09

PROSPECTS FOR MEASURING NEUTRON-STAR MASSES AND RADII WITH X-RAY PULSE PROFILE
MODELING
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ABSTRACT

Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron
stars provides a direct method for measuring neutron-star properties. This technique constitutes an
important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions.
In this paper, we determine the number of distinct observables that can be derived from pulse profile
modeling and show that using only bolometric pulse profiles is insufficient for breaking the degen-
eracy between inferred neutron-star radius and mass. However, we also show that for moderately
spinning (300–800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides
additional constraints that allow a unique determination of the neutron-star properties. Using the
fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to
the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise
ratio necessary to achieve a specified measurement precision for neutron star radius. We find that
accumulating 106 counts in a pulse profile is sufficient to achieve a . 5% uncertainty in the neutron
star radius, which is the level of accuracy required to determine the equation of state of neutron-star
matter. Finally, we formally derive the background limits that can be tolerated in the measurements
of the various pulsation amplitudes as a function of the system parameters.
Subject headings: stars: neutron — relativity — gravitation

1. INTRODUCTION

When the surface emission from a spinning neutron
star is not uniform, a periodic brightness oscillation is
produced as the hot and cold spots spin in and out of the
line of sight of a distant observer. Such brightness vari-
ations may be caused by the magnetic field topology on
the stellar surface of a pulsar, by the non-uniform ther-
monuclear burning on the surface of an X-ray burster,
or by the anisotropic accretion of matter from a com-
panion star. The amplitudes and shapes of the result-
ing pulsations are determined not only by the brightness
contours on the stellar surface but also by the degree
of strong-field gravitational lensing that photons experi-
ence on their paths to the distant observer (Pechenick
et al. 1983; Strohmayer et al. 1997). For this reason,
pulse profile modeling is a powerful method for measur-
ing neutron-star masses and radii (see Strohmayer 2004).
An advantage of this method is that it does not require
a measurement of the distance to the neutron star. Two
future X-ray missions, NASA’s approved NICER (Gen-
dreau et al. 2012) and ESA’s proposed LOFT (Feroci
et al. 2012), rely on pulse profile modeling to measure
the masses and radii of neutron stars in two classes of
sources that show surface brightness oscillations in the X-
rays. NICER targets the pulsed surface emission that has
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been detected from rotation-powered millisecond pulsars,
while LOFT is designed to measure the pulse profiles of
accretion-powered millisecond pulsars and of thermonu-
clear bursters.
Earlier attempts to measure neutron-star properties

from rotation-powered (e.g., Pavlov & Zavlin 1997; Bog-
danov et al. 2007) and accretion-poweredmillisecond pul-
sars (e.g., Poutanen & Gierlinski 2003; Leahy et al. 2008)
and bursters (Nath et al. 2002) resulted in large, corre-
lated uncertainties between the inferred masses and radii.
NICER’s design, which will allow accumulating a large
number of counts for each of its targets over very long in-
tegration times, and LOFT’s large collecting area, which
will lead to highly accurate pulse profiles even during the
course of a 10 s X-ray burst, will address the issue of re-
ducing the statistical uncertainties of the measurements.
However, even when the statistical errors are reduced,
significant correlations between the inferred parameters
remain. This has been recognized in earlier studies (e.g.,
Nath et al. 2002; Poutanen & Beloborodov 2006) and has
been demonstrated more recently in a detailed study of
parameter estimation using mock LOFT data (Lo et al.
2013).
In this paper, we use simulated pulse profiles from spin-

ning neutron stars in order to identify the origin of the
degeneracies in the measurements of masses and radii
that are obtained with this technique. We use a Fourier
series decomposition of the pulse profiles at different pho-
ton energies to quantify the number of distinct observ-
ables that can be measured from each profile. We show
that, because gravitational lensing suppresses the ampli-
tudes of the high harmonics, this number is rather small
and is practically independent of the number of phase
bins used in the measurement. However, the number
of independent parameters that are required to uniquely
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characterize each system is rather large. Therefore, the
effective number of degrees of freedom in comparing the-
oretical models to data is very small or zero, causing the
observed correlations between parameters.
We further demonstrate that obtaining pulse profiles

at different photon energies significantly reduces the ex-
tent of these correlations. This is because the modulation
of the spectrum due to Doppler effects at moderate spin
frequencies introduces a photon-energy dependent struc-
ture to the pulse profiles. Observing, therefore, pulse
profiles in multiple energy bands leads to measuring ad-
ditional, uncorrelated observables, thereby increasing the
effective number of degrees of freedom. The Fourier se-
ries decomposition approach that we present here can be
used in defining the optimal ranges of photon energies
and in formulating analysis strategies that maximize the
effective number of degrees of freedom. Moreover, it pro-
vides a useful order-of-magnitude estimate for the num-
ber of photons that are required to be accumulated and
for the level of background that can be accommodated
in order for a specified precision to be reached in radius
measurements.

2. CALCULATIONS OF PULSE PROFILES

We use the ray tracing algorithm described in Psaltis
& Özel (2013) to calculate the brightness oscillations de-
tected by an observer at infinity that arise from a circu-
lar, uniform hot spot of angular radius ρ on the surface
of a spinning neutron star. The observer and the center
of the spot are located at an inclination i and at a co-
latitude θs, respectively, with respect to the stellar spin
axis. We assume that the emission from the hot spot
has a blackbody spectrum and is isotropic in the local
Lorentz frame on the stellar surface. Note that, in gen-
eral, the beaming of the emerging radiation may not be
isotropic, but will depend on the particular type of sys-
tem under consideration (see also end of §3.1).
The targets of interest for missions such as NICER

and LOFT spin at ∼ 200 − 700 Hz. The spacetime
around such neutron stars can be uniquely described by
the Hartle-Thorne metric (Hartle & Thorne 1968). Cal-
culations within this metric allow us to accurately ac-
count for the effects of Doppler shifts and aberration, of
frame dragging, as well as of the oblateness of the stellar
surface and of its quadrupole moment5. Morsink et al.
(2007) and Psaltis & Özel (2013) showed that all these
effects need to be taken into account in order for measure-
ments of neutron-star masses and radii via pulse profile
modeling to reach the ∼ 5 − 10% accuracy required to
distinguish between equations of state (e.g., Lattimer &

Prakash 2001; Özel & Psaltis 2009).
In this setup, eight distinct parameters are required to

fully specify the geometry of the system and the space-
time of a neutron star spinning at a known frequency f :

(i) the mass M of the neutron star;
(ii) the equatorial radius Req of the neutron star;
(iii) the ellipticity of its surface ǫs;
(iv) its specific spin angular momentum a ≡

2πIfc/GM2, where I is its moment of inertia;

5 Simulations of pulse profiles for neutron stars spinning at &
700 Hz can only be performed with numerical spacetimes, which
depend on the details of the equation of state (see Cadeau et al.

2007 and discussion in Psaltis & Özel 2013).
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Fig. 1.— Pulse profiles (photon flux as a function of rotational
phase) generated by a circular hot spot on the surface of a neutron
star spinning at 1 Hz. The solid line corresponds to a neutron star
with M = 1.6M⊙ and Req = 10 km and the crosses to a neutron
star withM = 1.8M⊙ andReq = 11 km, where we chose the masses
and radii so that the two stars have comparable M/Req. The hot
spot has a radius of ρ = 10◦, is located at a colatitude of θs = 40◦,
and is observed from an inclination of i = 30◦ with respect to
the stellar spin axis. In order to demonstrate that, at low spin
frequencies and for a wide range of geometries, the pulse profile
is nearly sinusoidal, we use open circles to show the pulse profile
for the 1.6 M⊙ star, when we have suppressed all the harmonics
beyond the fundamental. The similarity between all three pulse
profiles demonstrates visually that pulse-profile modeling for slowly
spinning neutron stars suffers from a large degeneracy between the
inferred mass and radius.

(v) the quadrupole moment of its spacetime as mea-
sured by the parameter η;

(vi) the observer inclination i;
(vii) the colatitude of the spot θs; and
(viii) the angular radius of the spot ρ.

If the emission originates from two localized hot spots,
as in the case of polar-cap emission from rotation-
powered millisecond pulsars (see, e.g., Bogdanov et al.
2007), then up to two additional angles may be needed
to specify the relative position of the two spots on the
stellar surface.
The observed pulse profiles are affected by each of these

eight parameters and could, in principle, contain ade-
quate structure to allow for uncorrelated measurements
of all of them. However, as we will show in the following
section, gravitational light bending smears the profiles
and effectively erases some of the structure that encodes
the detailed properties of the neutron star and of the
spacetime. As a result, realistic pulse profiles do not
contain enough information to measure these eight pa-
rameters independently, even at the signal-to-noise ratios
expected when a large number of photons is collected.
However, tight relations exist between several of the

above macroscopic quantities that depend very weakly
on the equation of state (e.g., Morsink et al. 2007; Yagi
& Yunes 2013; Bauböck et al. 2013) and can be used
to reduce the number of free parameters that are neces-
sary to model pulse profiles. In particular, hereafter, we
will use relations that connect the parameters ǫs, a, and
η to M and Req (Bauböck et al. 2013). Finally, when
the angular size of the spot is small (ρ . 10◦), the pulse
profile does not depend on this parameter (see, e.g., Bog-
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Fig. 2.— Contours of constant fractional rms amplitude of pul-
sations generated by a hot spot on the surface of a neutron star
spinning at 1 Hz, as a function of the assumed stellar mass and
radius. The remaining parameters of the calculation are the same
as in Figure 1. The contours lie along lines of constant M/Req.
This is expected given that the fractional rms amplitude depends
on the amount of gravitational lensing experienced by the photons
and the latter, for a slowly spinning neutron star, depends only on
M/Req.

danov et al. 2007). Therefore, for systems in which the
surface emission is highly localized, as is expected to be
the case during the first fraction of a second of an X-ray
burst before the burning front has propagated to a signif-
icant distance away from the ignition point (Strohmayer
et al. 1997, 1998) and for polar-cap heating in the case
of rotation-powered pulsars (e.g., Bogdanov 2013), the
spot size can be eliminated as a parameter. As a result,
the pulse profile is determined only by four parameters:
M , Req, i, and θs. In the following section, we show that
these four parameters can be independently inferred from
realistic pulse profiles if we use neutron stars that spin
at moderate rates and utilize the photon-energy depen-
dence of the profiles.

3. MEASURING NEUTRON-STAR PARAMETERS FROM
PULSE PROFILE MODELING

3.1. Slowly Spinning Neutron Stars

The external spacetime of a slowly spinning neutron
star depends only on its compactness GM/Rc2. There-
fore, modeling pulse profiles observed from such systems
can only lead to a measurement of M/Req and not of the
two parameters independently. We illustrate this degen-
eracy in Figure 1, where we show the pulse profiles from
two slowly spinning (1 Hz) neutron stars, with substan-
tially different masses and radii but with very similar
compactness. In Figure 2, we further demonstrate the
degenerate dependence of pulse profiles on M/Req. In
particular, we plot contours of constant fractional root-
mean-squared (rms) amplitude on the mass-radius plane
for a neutron star spinning at 1 Hz, while keeping fixed
the inclination of the observer to i = 30◦ and the colati-
tude of the hot spot to θs = 40◦. As expected, the con-
tours are lines of constant M/Req. In the next section,
we will discuss how these contours change as a function
of the neutron-star spin frequency.
Figure 1 also demonstrates that the pulse profile is

highly sinusoidal by comparing the result of the ray-
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Fig. 3.— Pulse profiles generated by a circular hot spot on the
surface of a neutron star spinning at 1 Hz. In this case, the hot spot
has a radius ρ = 10◦, is located at a colatitude θs = 80◦, and is
observed from an inclination i = 90◦ with respect to the spin axis,
such that it is occulted by the neutron-star surface for a fraction of
the spin period. The solid line shows a truncated sinusoid that best
describes the result of the ray-tracing calculation. Even though the
occultation generates a large number of measurable harmonics, the
pulse profile can be accurately described by only two numbers: its
amplitude and the duration of the occultation.
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Fig. 4.— The pulse profile and the phase dependence of a spectral
color for a neutron star spinning at 600 Hz. In this calculation,
the colatitude of the spot is θs = 40◦ and the inclination of the
observer is i = 60◦. The spectral color is defined here as the ratio
of the number of photons with energies above the temperature of
the blackbody emission to the number of those below. The peak of
the spectral color occurs close to the phase at which the tangential
velocity of the surface is maximum. On the other hand, the peak of
the radiation flux occurs close to the phase at which the projected
area of the hot spot is maximum. For this reason, the former
precedes the latter. The dashed line shows the sinusoid that has
the same amplitude as that of the fundamental harmonic of the
oscillations.

tracing calculation to a pure sinusoid with the appro-
priate phase and amplitude. This implies that, even if
the signal to noise of an observation allows splitting the
observed pulse profile into a large number of phase bins,
the complete information content in the profile is cap-
tured by a single quantity: the amplitude of the sinu-
soid. In other words, if we decompose the pulse profile of
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Fig. 5.— Amplitudes of the fundamental and second harmonic
for the pulsations originating on the surface of a 1.6 M⊙, 10 km
neutron star, as a function of its spin frequency, for two different
inclinations of the observer (30◦ and 60◦). The remaining pa-
rameters of the calculation are the same as in Figure 1. At slow
spins, the pulse profiles are highly sinusoidal whereas, at higher
spins, Doppler effects introduce asymmetries to the pulse profiles
and increase the amplitudes of the higher harmonics. Even at spin
frequencies as high as 600 Hz, the amplitude of the second har-
monic is ≃ 10 times lower than that of the fundamental for these
geometries. The lines show the approximate scaling of equation (1)
for the amplitude of the harmonic, given the calculated amplitude
of the fundamental. The amplitude of the fundamental increases
slightly with spin frequency because of the increase in the peak-to-
peak excursion caused by Doppler boosts.

a slowly spinning neutron star into a Fourier series, only
the amplitude of the fundamental will be measurable.
When the geometry is such that the hot spot is oc-

culted by the stellar surface for a fraction of the spin
phase, a large number of harmonics will be present. How-
ever, these additional harmonics acquire large amplitudes
only because of the truncation of the otherwise sinusoidal
profile due to the occultation (Gibbs phenomenon). In
this case, the total information content in the pulse pro-
file is represented by only two quantities, e.g., the frac-
tional rms amplitude of the oscillation and the duration
of the occultation (see Fig. 3).
When we compare the number of unique pieces of infor-

mation encoded in the pulse profile of a slowly spinning
neutron star (i.e., two in a geometry with occultation or
one without) to the number of parameters required to
describe the system (i.e., three: M/Req, i, and θs), it
becomes apparent that pulse profile modeling in such a
system can only result in highly correlated measurements
of its parameters. Additional structure in the pulse pro-
files may also be present due to an anisotropic beaming
of radiation on the stellar surface (e.g., Poutanen & Be-
loborodov 2006). However, measuring the amplitudes of
the higher harmonics in this case will only provide in-
formation about the beaming of radiation and not about
the neutron-star properties.

3.2. Moderately Spinning Neutron Stars

When a neutron star is spinning at moderate rates
(∼ 300−800Hz), the nearly relativistic velocity of its sur-
face causes three phenomena that introduce complexity
to the pulse profiles: Doppler shifts of the photon ener-
gies, aberration in their angular distribution, and time

delays between photons emitted at different spin phases.
We show in Figure 4 the deviation of the pulse profile
from a pure sinusoid for a spot at 40◦ colatitude on a
neutron star spinning at 600 Hz, and observed from a
30◦ inclination. As found in earlier studies (e.g., Braje
et al. 2000), the pulse profile becomes asymmetric and
peaks at an earlier phase compared to the sinusoid.
We quantify the degree of structure in the pulse pro-

files by comparing the amplitude of the second harmonic
to that of the fundamental as a function of the spin fre-
quency in Figure 5. As expected, the amplitude of the
second harmonic increases significantly with increasing
spin frequency and is more than an order of magnitude
larger for a 600 Hz star compared to a slowly spinning
one. The harmonic amplitudes also depend strongly on
the observer’s inclination and are much larger for an ob-
server located closer to the rotational equator. Indeed,
the ratio of the harmonic amplitude to that of the fun-
damental scales approximately as (see Poutanen & Be-
loborodov 2006)

C2

C1
≃ 2

(

2πfReq

c

)

sin i sin θs

=0.126

(

f

300 Hz

)(

Req

10 km

)

sin i sin θs . (1)

This approximate scaling is shown in Figure 5, for two
different observer inclinations, and matches the results of
the numerical calculation. Note that the primary scaling
is due to the first-order Doppler effect while higher-order
corrections (due to the oblateness and the quadrupole
moment of the neutron star) affect primarily the nu-
merical factor in this last equation. Using the sim-
pler Schwarzschild+Doppler approximation (e.g., Miller
& Lamb 1998; Poutanen & Beloborodov 2006; Lo et al.
2013), as opposed to the Hartle-Thorne metric we use
here, therefore, leads only to a systematic bias in the
measurement and not to qualitatively different uncer-
tainties.
It is evident from equation (1) that a marked difference

between slowly and moderately spinning neutron stars is
that in the latter case, the amplitude of the second har-
monic shows a strong dependence on the neutron star ra-
dius. The amplitudes of higher harmonics can, therefore,
be useful for breaking the degeneracy between the stellar
mass and radius that we discussed in §3.1. This is shown
in Figure 6, in which contours of constant fractional rms
amplitude (left panel) and of the ratio of the amplitudes
of the second harmonic to the fundamental (right panel)
are plotted on the mass-radius parameter space. In this
calculation, the neutron star is spinning at 600 Hz, the
inclination of the observer is i = 30◦, and the colatitude
of the hot spot is θs = 40◦. (Note that this geometry
is far from the one that maximizes the ratio C2/C1.)
The contours of constant fractional rms amplitude (left
panel) are primarily along lines of constant compactness,
as in the case of slowly spinning neutron stars. However,
they bend upwards at large radii because of the increase
in the peak-to-peak flux excursion caused by Doppler
boosts. In contrast, the contours of constant amplitude
ratios (right panel) are primarily vertical, since the har-
monic amplitudes increase with stellar radius, as shown
in eq. [1]). The weak mass dependence of these contours
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Fig. 6.— Contours of constant (Left) fractional rms amplitude and (Right) ratio of the amplitude of the harmonic to that of the
fundamental for pulsations generated by a hot spot on the surface of a neutron star spinning at 600 Hz, as a function of the stellar mass and
radius. The remaining parameters of the calculation are the same as in Figure 1. For a fixed neutron-star spin frequency, the stellar radius
determines the magnitude of the Doppler effects, which themselves determine predominantly the harmonic content of the pulse profiles.
For this reason, the contours shown in the right panel are nearly vertical and correspond to lines of nearly constant radius.
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Fig. 7.— Contours of constant (Left) fractional rms amplitude and (Right) ratio of the amplitude of the harmonic to that of the
fundamental for pulsations generated by a hot spot on the surface of a neutron star spinning at 600 Hz, as a function of the colatitude of
the spot and the inclination of the observer. The remaining parameters of the calculation are the same as in Figure 1. In both cases, the
contours lie primarily along curves on which the product sin i sin θs is constant.

arises from the effects of gravitational lensing and from
the redshift factors that need to be taken into account
when computing the velocity of the stellar surface in the
local Lorentz frame.
Figure 5 demonstrates that, even at the high end of the

observed spin frequencies, the ratio of the amplitude of
the second harmonic to that of the fundamental is quite
small; naturally, the amplitudes of the higher harmon-
ics are even smaller (see, e.g., Poutanen & Beloborodov
2006). Moreover, the right panel of Figure 6 shows that
the ratio of the amplitude of the harmonic to that of the
fundamental needs to be measured to a ∼ 10% fractional
accuracy in order for the observations to distinguish be-
tween neutron-star radii that differ by ∼ 1 km. As we
will show in §4, this is quite a severe requirement and
makes it unlikely that future observations will be able to
extract more than two measurable quantities from bolo-

metric pulse profiles.6 Therefore, even in this case, the
independent pieces of information in realistic measure-
ments still falls short of the number of system parame-
ters (i.e., four) that need to be determined. In principle,
the relative phase of the harmonic and the fundamental
provides additional information. However, in practice,
the phase is too poorly determined due to the weakness
of the harmonic.
In Figure 7, we take a different cut through the four-

dimensional parameter space and plot the dependence of
the fractional rms amplitude (left panel) and the ratio
of the amplitude of the harmonic to that of the funda-
mental (right panel) as a function of the spot colatitude

6 This number can be increased by one if the geometry of the
system is such that the hot spot is occulted for a fraction of the
spin phase (see the discussion in §3.1 for the case of slowly spinning
neutron stars).
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Fig. 8.— The evolution of the radiation spectrum, as observed
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eters of the calculation are the same as in Figure 5. The various
curves correspond to different spin phases, with zero representing
the phase at which the center of the hot spot and the observer
are on the same meridian. Comparing the ordering of the curves
at very low and very high photon energies reveals a strong color
oscillation during a spin cycle.

and the observer’s inclination. In both panels, the con-
tours of constant amplitude and the contours of constant
harmonic ratio lie along curves on which the product
sin i sin θs is nearly constant. This implies that, if there
is no occultation, the two measurable quantities cannot
be used to infer the two angles independently. However,
given that constraining these two angles independently
is often not of interest, the above combination sin i sin θs
can be treated as a single nuisance parameter, thus re-
ducing the number of system parameters that need to be
measured to three. We will now show that the photon
energy dependence of the pulse profiles can provide the
additional pieces of information and break the remaining
degeneracy between parameters.

3.3. The Photon Energy Dependence of Pulse Profiles

It is well understood that the Doppler effects that in-
crease the amplitudes of the higher harmonics in the
pulse profile also introduce a modulation to the radia-
tion spectrum observed at infinity. This is shown for a
typical set of parameters in Figure 8 at four different spin
phases. As expected, the radiation spectrum is softer in
the range of spin phases for which the hot spot is reced-
ing from the observer and harder when the hot spot is
approaching.
We can quantify the degree of spectral modulation dur-

ing a pulse phase by defining a color as the ratio between
the number of photons observed in two energy bands
separated at an energy equal to the hot-spot tempera-
ture. In Figure 4, we plot the evolution of such a color
with pulse phase for a typical configuration, where we
use a photon energy equal to the hot-spot temperature
(as measured at the neutron-star surface) to separate the
two energy bands. The evolution of the color with pulse
phase shows a nearly sinusoidal modulation with a sig-
nificant fractional rms amplitude and a peak phase that
is offset from that of the flux oscillation. As we will
show below, the amplitudes and the peak phases of the

color oscillations do not have the same dependence on
the system parameters as the amplitudes of the harmon-
ics of the bolometric flux. For this reason, they provide
the two additional observables needed to break the de-
generacies discussed in §3.2 and allow a measurement of
all the system parameters. This is true even when using
the minimal spectral information encoded in one spectral
color. If the number of photons accumulated during an
observation allow separating the pulse profiles into sev-
eral energy bands, additional consistency relations be-
tween model parameters can be obtained.
Figure 9 shows contours of constant fractional rms am-

plitude of the color oscillations (left panel) and of the
phase difference between the phase of peak color minus
the phase of peak flux (right panel) on the mass-radius
parameter space. If there were no gravitational lensing
and redshift effects, the amplitude of the color oscilla-
tions would be strictly proportional to the radius of the
neutron star and would have a scaling similar to the one
given in equation (1). However, gravitational effects in-
troduce a weak dependence on the neutron-star compact-
ness such that the contours of constant color amplitude
shown in Figure 9 are not parallel to the contours of
constant harmonic ratios shown in the right panel of Fig-
ure 6.
The dependence of the contours of constant phase dif-

ference between the color and flux oscillations on mass
and radius shown in the right panel of Figure 9 is more
subtle. The peak phases of the two oscillations are de-
termined by the combination of the evolution of the pro-
jected surface area of the hot spot on pulse phase (which
peaks at phase zero) and of the Doppler effects (which
peak at phase 0.75). The flux oscillation is determined
predominantly by the former effect, peaks close to zero
phase, and the Doppler boosts introduce small correc-
tions, moving the peak toward earlier phases. On the
other hand, the color oscillation is determined predomi-
nantly by the Doppler effects, peaks close to phase 0.75,
and the surface area projection introduces a small cor-
rection, moving the peak toward later phases. For small
values of the neutron-star compactness, for which the
gravitational lensing effects are weak, the relative shift
between the two peak phases is dominated by Doppler
effects and, therefore, the contours shown in Figure 9 be-
come more vertical. At high values of the neutron-star
compactness, for which the relative shift between the two
peak phases is dominated by gravitational lensing effects,
the contours become nearly horizontal.
The contours of the four observables shown in Figures 6

and 9 on the mass-radius parameter space do not have
the same dependence on the system properties. This
leads to the conclusion that measuring with sufficient
accuracy the amplitudes of the lowest two harmonics of
the bolometric flux oscillation, as well as the amplitude
and relative phase of the spectral color oscillation is ad-
equate to uniquely determine all four parameters of each
observed system, as we will discuss in the next section.
We explore in Figure 10 the dependence of the frac-

tional rms amplitude of the color oscillations (left panel)
and the phase difference between the flux and the color
oscillations (right panel) on the spot colatitude and the
inclination of the observer. The contours of constant
fractional rms color amplitude lie along curves on which
the product sin i sin θs is nearly constant, as was the case
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peak spectral color and of peak radiation flux, for pulsations generated by a hot spot on the surface of a neutron star spinning at 600 Hz, as
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of peak spectral color minus that of peak radiation flux, for pulsations generated by a hot spot on the surface of a neutron star spinning
at 600 Hz, as a function of the colatitude of the spot and the inclination of the observer. The remaining parameters of the calculation are
the same as in Figure 8. The contours of the fractional rms amplitude of the spectral oscillation approximately follow curves on which the
product sin i sin θs is constant, as in the case of the first two observables shown in Figure 7. In contrast, the phase difference results in a
nearly orthogonal constraint and provides the information needed to measure the two angles independently.

with the two observables obtained from the bolometric
flux oscillations (see Fig. 7). This is expected given that
the color oscillations are also generated by Doppler ef-
fects and are determined by the projection of the vector
of the surface velocity along the instantaneous line-of-
sight between the observer and the hot spot. In contrast,
the phase difference between the flux and the color oscil-
lations shows a significantly different dependence on the
two angles. Therefore, if measuring the two angles inde-
pendently is a goal in and of itself, this last observable
provides the additional piece of information necessary to
achieve it.

4. PROSPECTS FOR MEASURING NEUTRON-STAR
PROPERTIES FROM PULSE PROFILE MODELING

In §2, we showed that the pulse profile observed from
a neutron star spinning at a moderate rate can be ac-

curately described by four parameters: the mass of the
neutron star, its equatorial radius, the inclination of the
observer, and the colatitude of the hot spot on the stellar
surface. In §3, we demonstrated that observations of the
photon energy dependent pulse profiles result in at least
four measurable quantities that have a distinct depen-
dence on the model parameters: the amplitude of the
bolometric flux oscillation, the amplitude of its second
harmonic, the amplitude of the spectral color oscillation,
and the phase difference between the bolometric flux and
the color oscillations.
The first three of these four observables depend on

the same combination sin i sin θs of the two geometric
parameters. Therefore, if the main goal of the pulse
profile modeling is to measure the masses and radii of
neutron stars, this combination can be treated as a sin-
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parameter space on which the parameters not shown remain constant. The distinct dependence of the four observables on the system
parameters allows a unique recovery of the assumed neutron-star mass and radius.

gle parameter. In this case, the first three observables
lead to a unique determination of the system parameters.
Nonetheless, if all four observables can be measured with
sufficient accuracy, then the geometry of the system can
also be uniquely determined.
In §3, we also quantitatively explored the dependence

of the four observables on the neutron star mass and
radius. Three of the four observables acquire detectable
amplitudes because of the relativistic Doppler shifts on
the rapidly spinning neutron-star surface. As a result,
the accuracy of the measurements will depend on the
accuracy at which the amplitudes of the harmonics and
color oscillations can be measured. Using, for example,
equation (1), we can relate an uncertainty ∆C2 for the
measurement of the amplitude of the harmonic to an
uncertainty for the inferred radius ∆Req as

∆Req

Req
=

[

2C1

(

2πfReq

c

)

sin i sin θs

]−1

∆C2 . (2)

As we show in the appendix, the uncertainty with
which the amplitude of a given harmonic can be mea-
sured depends on the total number of source counts S
accumulated during the observations and on the total
number of background countsB accumulated at the same
time as

∆Cn =

√
S +B

S
. (3)

Combining the last two equations, we obtain

∆Req

Req
=

[(

4πfReq

c

)

sin i sin θs

]−1 (√
S +B

C1S

)

. (4)

This equation provides the analytic understanding for
the figure of merit R introduced by Lo et al. (2013),
which is closely related to the quantity in the rightmost
parentheses shown above.
When the number of source photons dominates that of

the background, i.e., when S ≫ B, then the uncertainty

in the measurement of the neutron-star radius scales as

∆Req

Req
≃ 0.055

(

C1

0.3

)−1 (
f

600 Hz

)−1 (
Req

10 km

)−1

(

sin i

0.5

)−1 (
sin θs
0.5

)−1 (
S

106 cts

)−1/2

.(5)

This relation suggests that achieving a 5% accuracy in
the measurement of a neutron star radius from pulse
profile modeling requires accumulating of the order 106

source counts.
Figure 11 shows the constraints on the model param-

eters that can be obtained from measuring the four ob-
servable quantities discussed above with a precision that
is characteristic of an observation with one million source
counts. In particular, we assumed that all fractional am-
plitudes were measured with an accuracy of 10−3 and
the phase difference between flux and color oscillations
was measured with an accuracy of 5× 10−4 (see the Ap-
pendix). For this example, the simulated lightcurve was
generated for a 1.6M⊙, 10 km neutron star spinning at
600 Hz, observed at an inclination of 30◦, with a small
uniform hot spot on its surface at a colatitude of 40◦.
The figure demonstrates that the distinct dependence of
the four observables on the system parameters allows a
unique recovery of the assumed neutron-star mass and
radius. Moreover, it also shows that the assumed uncer-
tainties lead to a measurement of the neutron star mass
and radius that is sufficient to distinguish between dif-
ferent equations of state.

4.1. Importance of the Background Model

We emphasize that three of the four observables dis-
cussed above are fractional rms amplitudes of Fourier
harmonics. Measuring these fractional amplitudes re-
quires obtaining both the pulsed and unpulsed (“DC”)
components of the pulse profiles. If an additional back-
ground that does not originate on the neutron-star sur-
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face is present in the observed energy band, this compo-
nent needs to be separately measured and subtracted.
The alternative, i.e., measuring the properties of the
additional background from the pulse profiles them-
selves, introduces severe degeneracies between the in-
ferred model parameters, as shown in Lo et al. (2013).
This is easy to understand within the framework of
counting system parameters and observables that we fol-
lowed here. Indeed, if we choose to perform pulse pro-
file analysis in two energy bands with unknown back-
grounds, then we introduce two additional parameters
to our model, increasing the total number to six. How-
ever, the number of observables that can be inferred ac-
curately from the pulse profiles remains equal to four.
This difference between the number of model parame-
ters and observables results in substantial degeneracies
between the model parameters of interest.
The approach we developed in this paper allows us

to also investigate the accuracy at which the number of
background counts needs to be known a priori in order
for a desired accuracy in the mass and radius measure-
ment to be achieved. If we denote by an the absolute
amplitude of the n−th Fourier component in a profile
and by N ≡ S + B the total number of counts accumu-
lated, then the fractional source amplitude of the same
Fourier component is simply

Cn =
an
S

=
an

N −B
. (6)

At least two effects, in principle, contribute to the uncer-
tainty in the measurement of the fractional source ampli-
tude: the uncertainty in the measurement of the absolute
amplitude ∆a and the uncertainty in the a priori knowl-
edge of the background ∆B. Incorporating both sources
of error, we obtain

∆C2
n =

∆a2n
(N −B)2

+

[

an
(N −B)2

]2

∆B2

=

(

∆an
S

)2

+
(an
S2

)2

∆B2 . (7)

The first term in the right-hand side of this equation is
the Poisson error in the measurement of the fractional
amplitude and is given by equation (3). Assuming that
the uncertainty in the measurement of the background
is Poisson dominated, ∆B =

√
B. Inserting these two

expressions in the last equation, we obtain

∆C2
n =

(
√
S +B

S

)2

+ C2
n

B

S2
(8)

or simply

∆Cn =

√

S +B(1 + C2
n)

S
. (9)

Equation (9) shows that the background contributes
in two ways in the uncertainty of the measured frac-
tional amplitude of the source: the overall counts in
the background increase the level of the Poisson noise
in the power spectrum and hence degrade the measure-
ment of the absolute amplitude of the pulsations. At
the same time, the uncertainty in the subtraction of the
background counts affects the inference of the fractional

amplitude of the pulsations. Because C2
n ≪ 1, the lat-

ter effect is always subdominant compared to the former.
We can, therefore, neglect it and simply use equation (4)
to infer the expected uncertainty in the measurement of
neutron-star radii when the observations have a signifi-
cant background.

5. CONCLUSIONS

In this paper, we investigated how pulse profiles gener-
ated by hot spots on moderately spinning neutron stars
can be used to infer the stellar mass and radius. We
showed that bolometric pulse profiles do not contain suf-
ficient information to break parameter degeneracies to
uniquely measure these quantities. However, a measure-
ment of the spectral color oscillations provides additional
constraints that allow a separate determination ofM and
Req. Extracting pulse profiles even in just two differ-
ent energy bands is sufficient to derive this information.
However, achieving 5% precision in neutron-star radius
requires accumulating & 106 counts in the pulse profile
measurements. This can be accomplished by long ex-
posure times (as in the case of NICER) or by a large
collecting area (as in the case of LOFT).
The requirements we presented here for making mea-

surements of the neutron star radius with a given preci-
sion are robust to the detailed energy coverage and re-
sponse of a particular instrument. Given that our study
has utilized idealized light curves, the details of, e.g.,
required number of counts, can be refined for a partic-
ular detector or choice of energy bandpass. However,
we note that because only two energy channels are re-
quired to make the spectral color oscillation measure-
ment, even a modest energy resolution is sufficient. On
the other hand, a broad energy coverage is advantageous
because the color oscillations are more pronounced when
measured over a wider energy range. Ideally, the energy
bandpass should include at least the blackbody peak or
the exponential tail above the peak.
X-ray spectral color oscillations have been previously

reported in several thermonuclear burst oscillations from
two neutron stars (Strohmayer et al. 1999; Strohmayer
2000). These color oscillations were all measured during
the burst decay phase and were found to be in phase with
the flux oscillations, contrary to the expectations dis-
cussed above. This suggests that the color oscillations in
the burst tails are not generated by Doppler effects and
are not appropriately modeled by the hot spot model
described above. This also corroborates other lines of
arguments that the oscillations in the burst tail are gen-
erated by a different mechanism (e.g., surface modes)
than those in the burst rise (see also Watts 2012 and
references therein).
In the case of oscillations observed during the rise

phases of X-ray bursts, which are the prime targets for
LOFT , the predominant background arises from the X-
ray emission from the accretion flow. In the case of sur-
face emission from rotation powered pulsars, which are
the main targets for NICER, the non-thermal emission
from the neutron-star magnetosphere is the main source
of the background. In both cases, the energy spectrum of
the pulsations is very different from the energy spectrum
of the background. If the shape of the energy spectrum
of the background is known, e.g., from theoretical mod-
els and prior observations, then its overall normalization
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can be measured at an energy band where the pulsed
surface emission is negligible, i.e., at hard X-rays. Such
an approach will lead to an independent measurement of
the background in the energy bands of interest and will
not adversely affect measuring neutron-star masses and
radii from pulse profile modeling.
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APPENDIX

UNCERTAINTIES IN THE MEASUREMENT OF PULSATION AMPLITUDES AND PHASES

In this appendix we show, for completeness, that the accuracy with which the fractional amplitude and phase of a
periodic signal can be measured from a noisy time series that is folded at the known period of the signal depends on
the total number of counts due to the source and due to the known background (see also discussion in van der Klis
1989).
Because of Poisson noise in the measurement, the amplitudes of the Fourier components of a signal that is assumed

to be constant in time are not zero. If we denote by xk the number of photons measured in the k-th bin of such a time
series and by aj the Fourier component at frequency bin j, where nb is the number of bins, we can write

xk =
1

nb

nb/2
∑

j=−nb/2

aj exp (−2πijk/nb) . (A1)

The mean number of photons in each bin is

x̄k =
a0
nb

=
S +B

nb
, (A2)

where we have denoted by S and B the total number of photons collected due to the source and due to the background,
respectively.
Poisson noise leads to a flat Fourier spectrum with a mean amplitude that we denote here by aP. We can calculate

this mean amplitude using Parseval’s theorem. The variance in the number of counts collected in each time bin is
related to the Fourier amplitudes by

Var(xk) =
1

nb

nb−1
∑

j=−nb/2;j 6=0

|aj |2 ≃ |aP|2; . (A3)

Moreover, the standard deviation σ of the number counts in each bin is related to the mean number of photons by
σ2 = x̄k and to the variance by

σ2 =
Var(xk)

nb
. (A4)
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Combining the last two equations together, we find that the mean amplitude of the Fourier components of the Poisson
noise is

|aP| =
√
S +B

nb
. (A5)

If the time series contains in addition to the Poisson noise a periodic signal that is uncorrelated with the noise, the
quantity |aP| will represent the uncertainty within which the amplitude of the signal can be measured.
In this paper, we have been using fractional amplitudes of the periodic signals, which we can obtain by dividing the

absolute amplitude of a signal by the average number of counts in each bin due to the source alone. In this case, the
noise level CP of the fractional amplitudes becomes

CP =

( |aP|
nb

)(

S

nb

)−1

=

√
S +B

S
. (A6)

In order to verify the validity of equation (A6), we generated a large number of simulated observations using the
lightcurve shown in Figure 4 for a different number of source photons S and a constant background ofB = 2×105 counts,
adding the appropriate level of Poisson noise. For each simulated observation, we measured the amplitude of the
fundamental and of the second harmonic and used the distribution of amplitudes over the various realizations to
infer the uncertainty in each measurement. The open triangles in Figure 12 show the measured uncertainty of the
amplitudes as a function of the number of source counts. The solid line that follows the open triangles is the analytic
result of equation (A6) and agrees well with the results of the simulations.
We used the same simulations to also measure the phase of the fundamental Fourier component with respect to a

fiducial phase in all realizations of the data. The open circles in Figure 12 show the dependence of the uncertainty in
the measured phase on the number of source counts. The solid line that follows the open circles is given by the simple
relation

σφ =

√
S +B

2S
(A7)

and also agrees well with the results of the simulations.
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Bogdanov, S., Rybicki, G. B., & Grindlay, J. E. 2007, ApJ, 670,

668
Bogdanov, S., ApJ, 762, 96
Braje, T. M., Romani, R. W., & Rauch, K. P. 2000, ApJ, 531, 447
Cadeau, C., Morsink, S. M., Leahy, D., & Campbell, S. S. 2007,

ApJ, 654, 458
Feroci, M., Stella, L., van der Klis, M., et al. 2012, Experimental

Astronomy, 34, 415
Gendreau, K. C., Arzoumanian, Z., & Okajima, T. 2012,

Proc. SPIE, 8443, 844313
Hartle, J. B., & Thorne, K. S. 1968, ApJ, 153, 807
Lattimer, J. M., & Prakash, M. 2001, ApJ, 550, 426
Leahy, D. A., Morsink, S. M., & Cadeau, C. 2008, ApJ, 672, 1119
Lo, K. H., Miller, M. C., Bhattacharyya, S., & Lamb, F. K. 2013,

ApJ, 776, 19
Miller, M. C., & Lamb, F. K. 1998, ApJ, 499, L37
Morsink, S. M., Leahy, D. A., Cadeau, C., & Braga, J. 2007, ApJ,

663, 1244
Nath, N. R., Strohmayer, T. E., & Swank, J. H. 2002, ApJ, 564,

353
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